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Titre : (en français) Construction de surfaces à courbure moyenne constante et surfaces minimales 
par des méthodes perturbatives 
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Résumé : Cette thèse s'inscrit dans l'étude des
sous-variétés minimales et à courbure moyenne
constante et de l'influence de la géométrie de la
variété  ambiante  sur  les  solutions  de  ce
problème.
Dans le premier chapitre, en suivant les idées de
F. Almgren, on propose une généralisation de la
notion  d'hypersurface  à  courbure  moyenne
constante  à  toutes  codimensions.  En
codimension m-k, on définit les sous-variétés à
courbure  moyenne  constant  comme  points
critiques  de  la  fonctionnelle  de  k-volume  des
bords des sous-variétés minimales de dimension
k+1.  On  prouve  l'existence  dans  les  variétés
riemanniennes  compactes  de  sous-variétés  à
courbure  moyenne  constante  de  codimension
quelconque  qui  sont  des  perturbations  des
sphères géodésiques de petit volume.
Dans  le  deuxième  chapitre  on  s'intéresse  aux
surfaces minimales à bords libres dans la boule
unité de l'espace euclidien de dimension 3, 

c'est-à-dire  aux  surfaces  minimales  plongées
dans  laboule  unité  dont  le  bord  rencontre  la
sphère  unité  orthogonalement.  On  démontre
l'existence  de  deux  famille  géométriquement
distinctes  de  telles  surfaces  qui  sont  indexées
par  un entier  n  assez grand,  qui  représente  le
nombre  de  composantes  connexes du  bord  de
ces  surfaces.  ous  donnons  en  particulier  une
deuxième preuve d'un résultat de A. Fraser et R.
Schoen concernant l'existence de telles surfaces.
Un des résultats fondamentaux de la théorie des
surfaces  à  courbure  moyenne  constante  est  le
théorème  de  Hopf  qui  affirme  que  les  seules
sphères  topologiques  à  courbure  moyenne
constante dans l'espace euclidien de dimension
3  sont  les  sphères  rondes.  Dans  le  troisième
chapitre, on propose une construction dans une
variété  riemannienne  de  dimension  3  d'une
famille  de  sphères  topologiques  à  courbure
moyenne constante qui ne sont pas convexes et
dont la courbure moyenne est très grande. 

Title : (en anglais) Construction of constant mean curvature and minimal surfaces by perturbation 
methods

Keywords : Constant mean curvature, minimal surface, perturbation

Abstract  : In  the  first  chapter,  following the
ideas  of  F.  Almgren,  we  propose  a
generalization  of  the  notion  of  hypersurface
with  constant  mean  curvature  to  all
codimensions.  In codimension m-k we define
constant  mean  curvature  submanifolds  as  the
critical  points  of  the  functional  of  the  k-
dimensional volume of the boundaries of k+1-
dimensional  minimal  submanifolds.  We prove
the  existence  in  compact  Riemannian
manifolds  of  constant  mean  curvature
submanifolds  of  arbitrary codimension  which
are perturbations of geodesic spheres of small
volume.
In  the  second  chapter,  we  consider  free
boundary minimal surfaces in the unit ball of
the  three  dimensional  Euclidean  space,  i.e.
minimal surfaces embedded in the unit ball

and which meet  the  unit  sphere  orthogonally.
We prove  the  existence  of  two geometrically
distinct families of such surfaces parametrized
by an integer n large enough, which represents
the  number  of  the  boundary  components.  In
particular, we give an independent proof of the
result  of A. Fraser and R. Schoen concerning
the existence of such surfaces.
One of the fundamental results of the theory of
constant mean curvature surfaces is the Hopf's
theorem which asserts that the only topological
spheres  with  constant  mean  curvature  in  the
Euclidean 3-space are the round spheres. In the
third chapter, we  propose a  construction in  a
three  dimensional  Riemannian  manifold  of  a
family of nonconvex topological spheres with
large constant mean curvature. 
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des mathématiques.

Je suis reconnaissante pour l’ambiance chaleureuse que j’ai trouvé au CMLS, et je remercie
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moi. Je remercie ma famille qui, bien que loin, s’intéresse toujours beaucoup à ma vie et mon
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Introduction

0.1 Brief overview

My Ph.D. research has been focused in 3 main areas: the existence of constant mean curvature
higher codimensional submanifolds (in the sense of F. Almgren), the construction of free
boundary minimal surfaces in the Euclidean 3-ball and the construction of surfaces with large
constant mean curvature in generic Riemannian manifolds. Most of my work techniques come
from Riemannian geometry and PDEs analysis: the theory of elliptic operators, perturbation
techniques, analysis in weighted function spaces.

The study of minimal and constant mean curvature surfaces has a rich mathematical
history. Various approaches and techniques from different branches of mathematics have been
used in the investigation of these geometrical objects: calculus of variations, complex analysis,
nonlinear PDEs, geometric measure theory, integrable systems, etc. This domain has known
quite remarkable developments in the last three decades. A survey of the classical theory of
minimal and constant mean curvature surfaces can be found for example in [12], [24], [78],
[81], [88], [91]. Even though it would be difficult to mention all the important achievements
of this theory, the following section proposes a brief overview of some old and more recent
results that are related to the subject of this thesis.

0.1.1 Mean curvature

The mean curvature (function) of a surface in the Euclidean 3-space is a geometric quantity
which was first introduced in the 18th century by S. Germain in her study on elasticity,
following the works of L. Euler. It is defined as the sum of the principal curvatures of the
surface at a point, i.e. the maximum and the minimum values of the curvature of curves on
the surface which are obtained as the intersection of the surface with a plane containing the
normal to the surface at a given point, as the plane varies. This definition can be generalized
to submanifolds of any dimension and codimension in any Riemannian manifold. The mean
curvature (vector) of a submanifold Σ is then defined as the trace of the second fundamental
form of Σ, i.e. the symmetric bilinear form hΣ on TΣ taking values in the normal bundle of
Σ, which is defined by

hΣ(X,Y ) := ∇XY −∇Σ
XY ∈ NΣ,

for all X,Y ∈ TΣ, where ∇ is the Levi-Civita connection associated to the ambient metric
and ∇Σ is the Levi-Civita connection on Σ (endowed with the induced metric). Then the
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mean curvature vector is given by
HΣ := TrhΣ.

In codimension 1, the mean curvature vector is given by the mean curvature (function) times
the unit normal.

0.1.2 Minimal surfaces

A hypersurface (or more generally a submanifold) in a Riemannian manifold is said to be
minimal if its mean curvature vector vanishes. Let Σ be a compact submanifold (with or
without boundary) and Ξ a vector field in the ambient Riemannian manifold (Mm+1, g). Let
us denote by ξ the flow associated to Ξ, namely

dξ

dt
(p, t) = Ξ(ξ(p, t)),

for all p ∈ M and t close to 0, and ξ(p, 0) = p. For t ∈ R close to 0, we define Σt to be the
image of Σ by ξ(·, t). Then the first variation formula of the volume yields

d

dt
Volm(Σt)

∣∣∣∣
t=0

=

∫
Σ
g(HΣ,Ξ) dvol +

∫
∂Σ
g(ν∂Σ,Ξ) dσ, (1)

where ν∂Σ is the conormal to the boundary of Σ (i.e. the unit normal to ∂Σ in Σ). In
particular, a compact surface is minimal if and only if it is a critical point of the volume
functional with respect to variations preserving its boundary.

First examples and minimal graph equation

The first example (other than the plane) of a minimal surface in the Euclidean 3-space was
the catenoid described by L. Euler [32] in 1744. It is a surface of revolution whose generating
curve is (up to scaling) the graph of cosh function and it turns out to be the only minimal
surface of revolution in R3.

Another famous minimal surface in R3 is the helicoid which was also described by L. Euler
but proved to be minimal by J.B. Meusnier [85] in 1776. It is the only ruled minimal surface
other than the plane.

In the same work, J.B. Meusnier [85] showed that the mean curvature of a graph of the
function u over a domain Ω ⊂ R2 is identically equal to zero if and only if u satisfies the
following quasilinear elliptic partial differential equation, formulated by J.L. Lagrange in 1762
in his work on the calculus of variations:

div

(
∇u√

1 + |∇u|2

)
= 0. (2)

Minimal graphs have the property to be area minimizing, they constitute an important class
of minimal surfaces. For example, in 1915, S.N. Bernstein [7] proved that the only entire
minimal graph in the Euclidean 3-space is the plane.
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Weierstrass representation and Plateau’s problem

In the 19th century, new increasingly complicated examples of minimal surfaces were provided
by A. Enneper [30], H. Scherk [105], H. Schwarz [110], B. Riemann [100] and K. Weierstrass
[114]. Many of these minimal surfaces are periodic.

A fundamental contribution to the theory of minimal surfaces was made by the discovery
by A. Enneper and K. Weierstrass in 1866 [114], [30] of representation formulas that establish
a correspondence between the minimal immersions in R3 and the so called “Weierstrass data”
given by a meromorphic function and a holomorphic 1-form. An important corollary obtained
by this approach is the fact that there exist no compact minimal surfaces in R3. Even though,
normally, it is hard to conclude from the Weierstrass data what is the shape of the resulting
surface as well as whether the surface is embedded or not, combined with other techniques,
Weierstrass representation remains one the most powerful tools in providing examples and
classification of minimal surfaces.

One of the most important achievements in the theory of minimal surfaces is the resolution
in the beginning of the 20th century of the Plateau’s problem named after the mathematician
J. Plateau who studied the behavior of soap films. The problem is to show the existence of a
least area surface with a given boundary curve. It was solved in 1930 separately by J. Douglas
[28] and T. Rado [98] using techniques coming from the calculus of variations.

Topological classification of minimal surfaces

Many aspects of the modern theory of minimal surfaces in R3 originate from the pioneering
work of R. Osserman [91] in 1960s, where questions concerning the analytic and the topological
properties of minimal surfaces were stated and for which partial answers have been obtained
only recently. A major challenge of this theory has been the classification of the complete
embedded minimal surfaces according to their topological type (genus and the number of
ends).

For many years it had been conjectured that the only complete minimal surfaces of of finite
topological type in R3 are the catenoid, the helicoid, and the plane. But in 1982, J. Costa
[15] discovered a minimal surface that has genus one and two ends asymptotic to catenoids,
and one end asymptotic to a plane. A year later, D. Hoffman and W. Meeks [49] proved that
this surface is actually embedded. Since then, many other examples have been constructed.
D. Hoffman and H. Karcher [46] found a family of minimal deformations of the Costa surface
where the planar end becomes catenoidal. A generalization to the case of arbitrary genus was
also given by D. Hoffman and W. Meeks [50]. A minimal surface whose end is asymptotic to
the end of the helicoid but whose genus is equal to 1 was found by D. Hoffman, H. Karcher
and F. Wei [47], [48], while D. Hoffman, M. Weber and M. Wolf [53] proved that it was
embedded, which provided an example, different from the helicoid, of a complete embedded
minimal surface of finite topology and infinite total curvature. A generalization to the case
of arbitrary genus was recently obtained by D. Hoffman, M. Traizet and B. White [52]. A
complete minimal topological Möbius strip was discovered by W. Meeks [80].

9



An important class of minimal surfaces is constituted by complete minimal surfaces with
finite total curvature. In 1964, R. Osserman [91] showed that such surfaces have the conformal
structure of compact Riemann surfaces with a finite number of points removed and have total
curvature equal to an integer multiple of −4π. R. Schoen showed [107] that complete minimal
surfaces with finite total curvature can only have planar or catenoidal ends. In particular,
when the number of ends is equal to two, the surface must be the catenoid. P. Collin’s [13]
theorem asserts that if Σ has finite topology and more than one end, then Σ has finite total
curvature. F.J. López and A. Ros [71] proved that the only genus zero complete embedded
minimal surfaces of finite total curvature are the catenoid and the plane. On the other hand,
W. Meeks and H. Rosenberg [82] showed that the only properly embedded minimal surface
with only one end is asymptotic to the helicoid. In particular, when the genus is zero, the
only possible example is the helicoid.

0.1.3 Constant mean curvature surfaces

In codimension 1, we say that a hypersurface Σ in a Riemannian manifold (M, g) has constant
mean curvature (CMC) if the mean curvature function HΣ is a constant .

Recall that the classical isoperimetric problem in (Mm+1, g) consists in finding the hy-
persurface of least m-dimensional volume among all compact hypersurfaces enclosing a given
m + 1-dimensional volume. Solutions to the isoperimetric problem, when they are regular
enough, provide examples of constant mean curvature surfaces, unfortunately, the only solu-
tion (up to translations) to this problem in Rm+1 is the round sphere Sm. More generally,
a closed embedded surface has constant mean curvature if and only if its volume is critical
among all variations that preserve the volume of the region bounded by the surface.

Indeed, let Σ be an embedded hypersurface that is the boundary of a region Ω in M . We
consider the compact hypersurface Σt that is the image of Σ under the flow ξ(·, t) associated
to a vector field Ξ and let Ωt be the region in M bounded by Σt. Then, given λ > 0, consider
the function

Eλ(t) := Volm(∂Ωt)− λVolm+1(Ωt).

The first variation of the volume formulae yield

E ′λ(0) = −
∫

Σ
(HΣ − λ) 〈NΣ,Ξ〉, (3)

where NΣ is a unit normal to Σ. Therefore, Σ = ∂Ω has constant mean curvature equal to λ
if and only if Ω is a critical point of the functional

Ω 7→ Volm(∂Ω)− λVolm+1(Ω). (4)

Role of the round sphere: Hopf’s and Alexandrov’s theorems

In 1853, H.J. Jellet [57] proved that the only closed star-shaped constant mean curvature
surface in R3 is the round sphere. In 1956, Hopf [54] showed that the only immersed constant
mean curvature topological spheres in the Euclidean 3-space are round spheres and he con-
jectured that the same is true for any compact immersed orientable constant mean curvature
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surface in Rn. Two years later A.D. Alexandrov proved [3] that the only compact connected
embedded constant mean curvature surface in R3 is the round sphere.

The proofs of Hopf’s and Alexandrov’s theorems introduced two powerful tools of inves-
tigation of constant mean curvature surfaces. Hopf’s proof involves the study of a quadratic
differential form, referred to as the Hopf’s differential, which is defined for any conformal im-
mersion and which is holomorphic if and only if the immersion has constant mean curvature.
Alexandrov’s method is referred to as the method of moving planes and uses the maximum
principle for elliptic partial differential equations (2).

Further examples of CMC surfaces

Hopf’s conjecture was disproven in dimension greater than 3 in 1982 by W.Y. Hsiang [55].
In 1984, immersed constant mean curvature topological tori were constructed by H.C. Wente
[115] using some doubly periodic solution to the Sinh-Gordon equation. In 1989 U. Pinkall
and I. Sterling [97] classified all constant mean curvature tori immersed in R3 and A. Bobenko
[9] gave an explicit description of the corresponding metrics.

In 1970s H.B. Lawson [69] showed that for each complete constant mean curvature surface
in the Euclidean 3-space there is an associated complete minimal ”cousin“ in the 3-sphere.
He introduced a procedure of explicit construction of complete minimal surfaces in S3 and
described two new examples of complete embedded doubly periodic constant mean curvature
surfaces in R3. Lawson’s idea was developed by H. Karcher [64] and K. Große-Brauckmann
[41] who constructed a large number of new examples.

Noncompact CMC surfaces

For a long time, the only known examples of noncompact CMC surfaces in R3 have been
the cylinder and the one parameter family of Delaunay surfaces [23] discovered in 1841. The
latter are the only complete, noncompact constant mean curvature surfaces of revolution in
R3 and are generated by rotating roulettes of conics. A roulette of an ellipse gives rise to
an embedded constant mean curvature surface referred to as an unduloid, while a roulette
of a hyperbola (which is a bit harder to visualize), gives rise to an immersed constant mean
curvature surface which is referred to as a nodoid. In the case where the conic is a parabola,
one obtains a catenoid whose mean curvature is equal to zero.

The asymptotic behavior of constant mean curvature surfaces was first studied by W.
Meeks [79], who proved that any annular end of a complete noncompact Alexandrov-embedded
constant mean curvature surface in R3 is contained in a solid half-cylinder of finite radius. As
a byproduct he has proven that there exist no constant mean curvature surfaces with only one
end. N. Korevaar, R. Kusner and B. Solomon [65] have proven that an Alexandrov-embedded
constant mean curvature surface in R3 can only have ends asymptotic to Delaunay surfaces.
Thanks to this result, R. Kusner, R. Mazzeo and D. Pollack [66] described the structure of
the moduli space of complete Alexandrov-embedded noncompact constant mean curvature
surfaces with finite topology.
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0.1.4 Constant mean curvature surfaces obtained via perturbation tech-
niques

The general idea of perturbation methods is to produce new examples of geometric objects
of interest using existing ones as summands and often lead to construction of new non-trivial
solutions which would be hard to obtain by different methods. Since 1980s these techniques
have played an important role in many areas of geometry and found remarkable applications
for example in the study of the topology of smooth 4-manifolds by S. Donaldson [26] and C.
Taubes [113] and the study of singular solutions to Yamabe equation by R. Schoen [106].

The first constructions of constant mean curvature surfaces via perturbation methods were
obtained in late 1980s in the pioneering work of N. Kapouleas. In [60], the author produces
genus 2, compact, constant mean curvature surfaces in R3 by fusing Wente tori and compact
surfaces of higher genus and noncompact surfaces of arbitrary genus and the number of ends
great than 3 [58], [59], by gluing together round spheres with pieces of Delaunay surfaces.

Since then, many other examples of compact and noncompact constant mean curvature
surfaces were constructed by perturbation methods, including the gluing constructions of R.
Mazzeo, F. Pacard and D. Pollack [77], R. Mazzeo and F. Pacard [74], [75], F. Pacard and H.
Rosenberg [93], etc.

General scheme of a gluing construction

The results described in chapters 2 and 3 of this thesis rely on perturbation techniques intro-
duced by N. Kapouleas and R. Mazzeo, F. Pacard and D. Pollack. In this paragraph I would
like to point out the main ingredients of the constructions described in the works of these
authors. In the following example we assume that the ambient space is the Euclidean 3-space,
but the ideas described below can be generalized to higher dimensions as well as to the case
of a generic Riemannian manifold.

Normal perturbations and the Jacobi operator

Let Σ be a smooth embedded surface with or without boundary in R3. One way to describe
the surfaces nearby Σ is to parametrize them as normal graphs over Σ. More precisely, let NΣ

be a unit normal vector field to Σ and take a C2 function w on Σ. We denote by Σ(w) the
surface parametrized by

Σ 3 p 7−→ p+ w(p)NΣ(p) ∈ Σ(w).

When the norm of w is small enough, the Taylor expansion of the mean curvature of Σ(w) in
the powers of w and the partial derivatives of w up to the second order has the form:

H(Σ(w)) = HΣ + JΣw +QΣ(w,∇w,∇2w),

where HΣ is the mean curvature of Σ, JΣ = DwH|w=0 is the linearized mean curvature, or
the Jacobi operator about Σ, and QΣ is a nonlinear function of w and the components of the
gradient and the Hessian of w, which satisfies:

QΣ(0, 0, 0) = DQΣ(0, 0, 0) = 0.
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Moreover, the second variation of the area formula gives an explicit expression of the Jacobi
operator which reads:

JΣ = ∆Σ + |hΣ|2,
where ∆Σ is the Laplace-Beltrami operator on Σ and |hΣ|2 is the squared norm of the second
fundamental form of Σ.

By definition, a compact surface Σ is nondegenerate, if any solution to the problem:

JΣw = 0 in Σ and w = 0 on ∂Σ, (5)

is trivial. We say that a noncompact surface Σ is nondegenerate if there are no nontrivial
solutions w ∈ L2(Σ) of (5).

Connected sum construction

From the topological point of view, to perform a connected sum of two surfaces Σ+ and Σ−

amounts to remove a small disk around a point on each surface, and then to identify the
two boundaries of the disks. From the geometric point of view, it amounts to first move the
surfaces Σ± in R3, so that they are tangent at a common point p (which can be assumed to be
the origin), then to remove a small disk centered at p on each surface, to translate the surfaces
away from each other in the direction orthogonal to their common tangent plane at p (which
is assumed to be the horizontal plane), and then to perform a connected sum identifying the
two circle boundaries with the two boundaries of a ”small neck“ given by a catenoid scaled
down by a small factor ε > 0, and which has been truncated, namely the surface parametrized
by

Cε(s, φ) = ε (cosh s cosφ, cosh s sinφ, s) ,

for (s, φ) ∈ [−sε, sε]× S1 for some sε � 1 carefully chosen.

As it has been remarked in the works of R. Mazzeo, F. Pacard and D. Pollack, from the
analytical point of view it turns out to be better to deform Σ± using the Green’s functions
associated to the Jacobi operators JΣ± to get a better matching with the asymptotic shape of
the catenoid. Assume that Σ± are nondegenerate surfaces with boundary and let p ∈ Σ+∩Σ−

be the point where Σ± are tangent. By the Green’s function associated to the operator JΣ±

with a pole at p, we mean the solution to the problem:

JΣ± Γ± = −2π δp in Σ±, and Γ± = 0 on ∂Σ±,

where δp is the Dirac mass at the point p.

In the neighborhood of p the surfaces Σ± can be seen as graphs over their common tangent
plane, which we assume to be the horizontal coordinate plane with p being the origin. In
Euclidean coordinates in the horizontal plane the functions Γ± have the following expansions:

Γ±(x) = c±0 ± log |x|+O(|x|).

On the other hand, the catenoid Cε can be seen as a bi-graph over {x ∈ R2 : |x| > ε} of
the function

Gε(x) = −ε log
ε

2
+ log |x|+O(ε3|x|−2).
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The idea is to translate Σ± away from each other by a distance ± d/2 − εc±0 respectively
and to choose d > 0 and a real number rε in such a way, that the graph

x 7→
(
x, ± d/2− ε c±0 + εΓ±(x) +O(|x|2)

)
, |x| > rε = ε cosh sε,

is “as close as possible” to the graph of the function Gε in the neighborhood |x| ∼ rε. Com-
paring the constant terms, one can see, that we should take:

d = 2ε log
2

ε
,

and comparing the rest of the expansions, we choose rε for which the remaining terms (that
are of the form O(|x|2) +O(ε |x|) +O(ε3 |x|−2)) are minimal, which is the case when

rε ∼ ε3/4.

We will denote the resulting connected sum by Aε. This surface is called the approximate
solution and its construction can be done in such a way that it depends smoothly on ε.

Perturbation of the approximate solution

The next step consists in perturbing Aε into a constant mean curvature surface, or in other
words, this amounts to solve an equation of the form:

H(Aε) + JAε w +QAε(w) = c, for some w ∈ C2(Aε), (6)

and some constant c (which corresponds to the mean curvature of the surface we are interested
in). Remark, that (6) can be written in the form:

JAε w = c−H(Aε)−QAε(w),

which we will try to solve using a fixed point argument. One checks that, as ε tends to 0,
the function c − H(Aε) tends to 0 in a suitable topology. If the Jacobi operator JAε were
invertible with inverse uniformly bounded as ε tends to 0, the problem would amount to find
a fixed point of the operator

w 7→ J−1
Aε (H(Aε) +QAε(w)) ,

in a small closed ball of an appropriate Banach space.

Obstructions

An obstruction to a gluing construction arises when the linearized mean curvature operator
JAε about the approximate solution has small eigenvalues (eigenvalues that tend to 0 as fast
as ε tends to 0 or non trivial kernel), which prevents from applying directly the perturbation
argument. Small eigenvalues are always expected since the Euclidean catenoid is degenerate
in the sense that there are Jacobi fields (solutions to JCε w = 0) which are defined on the
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catenoid and tend to 0 fast at the two ends of the catenoid (these arise as the Jacobi fields
associated to horizontal translations of the catenoid). The space of eigenfunctions associated
to the small eigenvalues of JAε is usually referred to as the approximate kernel of the operator
JAε , and will be denoted here by Kε.

Remark that one can construct a family of approximate solutions which depends on a cer-
tain number of geometric parameters: for example, one can vary the “size” ε of the “catenoidal
neck” and change the points where the connected sum is performed (vary slightly the angle
between the axis of the “neck” and the normals to the summands Σ±). In some cases, one
can get rid of small eigenvalues by imposing symmetries on the surface one wants to con-
struct, which also, in general, imposes a unique choice of the free parameters. Many examples
of constant mean curvature and minimal surfaces obtained by gluing methods make use of
symmetries and therefore are highly symmetric.

In the general case, one can use what is usually referred to as a Lyapunov-Schmidt re-
duction argument, applying Banach fixed point theorem in the space of functions orthogonal
to the approximate kernel Kε. As a result, one obtains a surface whose mean curvature is
constant up to an element of Kε. The goal is then to analyze the degrees of freedom in the
construction of the family of approximate solutions, and to prove that there is a clever choice
of the parameters for which the corresponding term in the approximate kernel vanishes.

Constant mean curvature surfaces in Riemannian manifolds

During the last decades the attention of many researchers was attached to the extension
of the classical results stated above to hypersurfaces of higher dimension or to geometries
different from the Euclidean space. A lot of progress has been made in the study of constant
mean curvature surfaces in simply connected homogeneous 3-manifolds, classified by Thurston
according to the dimension of their isometry group. These manifolds include the space forms
S3 and H3, the products H2 × R or S2 × R, the Lie group Sol(3) and many other examples.
Techniques coming from complex analysis, harmonic maps, integrable systems, maximum
principle and etc. lead to construction of a large number of examples and allowed to obtain
important classification results. U. Abresch and H. Rosenberg [1], [2] introduced an analogue
of the Hopf’s differential, which allowed them to solve the Hopf’s problem (classification of
constant mean curvature surfaces spheres) in some of these geometries, while Alexandrov’s
problem (classification of compact constant mean curvature surfaces surfaces) was studied
by B. Daniel and P. Mira [22]. An important progress has been made in the classification
of entire minimal graphs (Bernstein’s problem) in the works of P. Collin and H. Rosenberg
[14], B. Daniel and L. Hauswirth [21], I. Fernandez and P. Mira [33], [34]. Solutions of
the isoperimetric problem were studied for example in the works of W.T. Hsiang and W.Y.
Hsiang [45]. B. Daniel extended the classical Lawson’s correspondence to the homogeneous
3-manifolds [19], [20].

Even though a lot of problems remain open, there is by now a rather good understanding
of the space of constant mean curvature surfaces in special geometries. In contrast, there exist
few results in the case when the ambient manifold is endowed with a “generic” Riemannian
metric. In this general setting, even seemingly simple problems have no answer. The existence
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of closed embedded curve with given constant geodesic curvature remained open for a long
time and partial positive answers were given recently in [112] and [109].

Solutions to the isoperimetric problem

Constant mean curvature hypersurfaces in a Riemannian manifold M can be obtained as solu-
tions, when they are regular enough, to the isoperimetric problem. The following fundamental
existence theorem results from the works of F. Almgren [4], M. Grüter [42], E. Gonzalez, U.
Massari, I. Tamanini [40] and F. Morgan [86]: in an m+ 1-dimensional compact Riemannian
manifold M and for all t, 0 < t < Vol(M), there exists a compact region Ω ⊂ M whose
boundary Σ = ∂Ω minimizes the m-volume among the regions of m + 1-volume equal to t.
Moreover, except for a closed singular set of Hausdorff dimension at most m−7, the boundary
Σ of any minimizing region is a smooth embedded hypersurface with constant mean curvature.
In particular, if m ≤ 6, then Σ is smooth.

Techniques used in [4], [42], [40] and [86] to investigate the properties of the isoperimetric
surfaces come from the geometric measure theory. Another powerful tool is studying the
isoperimetric profile of the ambient manifold, more precisely the function

IM : (0,Vol(M))→ R, IM (t) = inf {Volm(∂Ω) : Ω ⊂M region, Volm+1(Ω) = t} .

The properties of IM were analyzed in the works of C. Bavard and P. Pansu [6], [96], S. Gallot
[38], W.Y. Hsiang [56] and others and were used for example to prove the fact that if Σn is
a sequence of isoperimetric surfaces in M enclosing volumes tn → t, then Σn converges to an
isoperimetric surface enclosing a volume t.

The study of the solutions of the isoperimetric problem remains a very active area of
research and a profound description of this theory can be found in works of A. Ros [102]. A
drawback of this approach is that one does not control the value of the mean curvature of
the surface obtained by this method and very little information is in general available on the
geometry of the solution. However, in the case when the volume constraint is small, it has
been shown in the works of P. Berard, D. Meyer [8], O. Druet [29] and A. Ros [102] that the
solutions are close to geodesic spheres of small radii and concentrate at critical points of the
scalar curvature R of the ambient manifold M .

0.1.5 Constant mean curvature perturbations of geodesic spheres

The proof of Hopf’s theorem works in the space forms R3, S3, and H3, while uniqueness Hopf
type results were obtained in other special geometries [1], [2], [22]. It is natural to consider
the problem of classification of constant mean curvature topological spheres immersed in a
generic Riemannian manifold.

In 1990, R. Ye showed [118] that every nondegenerate critical point o of the scalar curvature
function R of a Riemannian manifold (M, g) has a neighborhood that can be foliated by
constant mean curvature hypersurfaces which are close to small geodesic spheres centered at
o and converge to o when their mean curvature tends to infinity.
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I propose the reader to give a closer look to R. Ye’s construction. Let Sε(p) denote a
geodesic sphere in (Mm+1, g), of radius ε > 0 centered at the point p. For ε small enough
Sε(p) can be seen as the image by the exponential map of the Euclidean sphere:

Θ ∈ Sm ⊂ TpM 7−→ expp(εΘ) ∈ Sε(p).

The mean curvature of Sε(p) then satisfies:

H(Sε(p)) =
m

ε
− ε

3
Ricp(Θ,Θ) +O(ε2),

where Ricp is the Ricci tensor of M evaluated at p. Hence, in some sense, H(Sε(p)) is close to
being constant and it is reasonable to expect that Sε(p) can be deformed into some constant
mean curvature surface, at least for ε small enough. Unfortunately, as observed by R. Ye in
[118], this is not the case. When ε is small enough, the Jacobi operator about Sε(p) is close
to the Jacobi operator of the Euclidean sphere of radius ε which reads ε−2 (∆Sm + m). This
operator has a non trivial (m + 1)-dimensional kernel consisting of the restrictions to Sm of
the coordinate functions:

Ker(∆Sm +m) = span{Θi, i = 1, . . . ,m+ 1}.

This prevents one from directly applying a perturbation argument. Let H(w) denote the
mean curvature of the normal graph of the function w over Sε(p) and let Π be the L2-
orthogonal projection to the space Ker(∆Sm +m) and Π⊥ the projection to the corresponding
orthogonal complement. Then using Banach fixed point theorem, one can find a function
w∗ ∈ Π⊥

(
C2,α(S2)

)
such that

Π⊥ (H(w∗)) =
m

ε
.

On the other hand, it turns out that the equation Π (H(w∗)) = 0 can be written in the form

〈∇gR(p),Θ〉 = O(ε2), (7)

where ∇gR(p) is the gradient of the scalar curvature, calculated with respect to the metric
g and evaluated at p. Thus, if o is a nondegenerate critical point of the scalar curvature, for
every ε small enough one can find a point pε such that (7) holds. In this way, one obtains
a constant mean curvature hypersurface which is a normal geodesic graph over the geodesic
sphere Sε(pε), where distg(o, pε) = O(ε2).

Later, F. Pacard and X. Xu showed [95] that constant mean curvature topological spheres
can also be constructed when the scalar curvature is not a Morse function, which for example
covers the case of Einstein or constant scalar curvature manifolds. As a first step, similarly
to R. Ye, the authors show that for all p ∈ M , and all ε > 0 small enough, the geodesic
sphere Sε(p) can be perturbed to a surface Σε(p) whose mean curvature is close in a particular
sense to being constant. More precisely, the mean curvature of Σε(p) (when the surface is
parameterized by the unit sphere Sm) satisfies:

H(Σε(p))−
m

ε
= 〈A,Θ〉, Θ ∈ Sm,
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for some vector A ∈ Rm+1, where by 〈·, ·〉 we denote the scalar product in Rm+1.

Remark that the functions of the form 〈A,Θ〉 are exactly the elements of space Ker (∆Sm +m).
The surfaces Σε(p) are called “pseudo constant mean curvature spheres” by F. Pacard and X.
Xu and were also studied by S. Nardulli, [90], who refers to them as “pseudo bubbles”.

To understand the idea of the construction of F. Pacard and X. Xu, let us consider first
the following simple example. Let Σ be a compact surface in Rm+1 whose mean curvature
satisfies:

HΣ = λ+ 〈A,NΣ〉, for some fixed vector A ∈ Rm+1,

where NΣ is the unit normal vector field to Σ and λ is a constant. Take B ∈ Rm+1, and
consider the one parameter family of surfaces Σt obtained by translation of Σ in the direction
B:

p ∈ Σ 7→ p+ tB ∈ Σt.

Let Ω and Ωt be the regions in Rm+1 bounded by Σ and Σt, and consider the functional

Eλ(t) = Area(∂Ωt)− λVol(Ωt),

which appears in the variational characterization (4) of the compact constant mean curvature
surfaces. Since translations are isometries in the Euclidean space, we have

E ′λ(t) = 0,

which implies that ∫
Σ

(HΣ − λ) 〈B,NΣ〉 dvolΣ = 0, for all B ∈ Rm+1.

Finally, taking B = A, we find:∫
Σ
|〈A,NΣ〉|2 dvolΣ = 0 ⇒ A = 0

and conclude that Σ is a constant mean curvature surface.

In the Riemannian manifold (M, g) we no longer have isometries given by translations.
However, in a small neighborhood of a given point, the expansion of the metric g in geodesic
normal coordinates can be seen as a perturbation of the Euclidean metric. Then for ε small
enough, one can apply an idea similar to the one described above to the pseudo CMC spheres
Σε(p) whose mean curvature satisfies:

H(Σε(p)) =
m

ε
+ 〈A,Θ〉.

Let Ωε(p) denote the region in M bounded by Σε(p). F. Pacard and X. Xu show that if p is
a critical point of the functional

Eε(p) = Volm(∂Ωε(p))−
m

ε
Volm+1(Ωε(p)), (8)
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then the mean curvature of Σε(p) is constant.

Finally, remark that the scalar curvature R of the ambient manifold M appears in the
expression of the volume of the geodesic spheres, more precisely, we have:

Volm (Sε(p)) = εm Vol(Sm)

(
1− ε2

2(m+ 1)
R(p) +O(ε4)

)
.

Using the fact that Σε(p) are constructed as small perturbations of geodesic spheres, F. Pacard
and X. Xu obtain that

ε−mEε(p) = c0 + c1 ε
2R(p) +O(ε4),

for some constants c0 and c1 independent of ε.

The results of R. Ye and F. Pacard and X. Xu outlined above play a key role in the
constructions described in the chapters 1 and 3 of this thesis.

Other examples of surfaces with large constant mean curvature

H. Rosenberg [103] has shown that if Σ is a closed surface with sufficiently large constant mean
curvature H in a compact Riemannian 3-manifold M , then Σ separates M into two connected
components and the distance between Σ and a point of the component of M \Σ towards which
the mean curvature vector is pointed is bounded above by a constant times 1/H.

The result of H. Rosenberg implies that a constant mean curvature surface should look like
a small tube around some set and classification of such sets has been a challenging problem. R.
Mazzeo and F. Pacard [76] showed the existence of constant mean curvature surfaces obtained
by perturbation of geodesic tubes about nondegenerate closed geodesics. A. Butscher and R.
Mazzeo [10] proposed a construction (under some symmetry assumptions on the metric) of
a family of compact constant mean curvature surfaces condensing along a geodesic segment,
passing through a nondegenerate critical point of the scalar curvature, obtained by gluing
together a large number of geodesic spheres. For some special noncompact 3-manifolds they
also prove the existence of one-ended constant mean curvature surfaces condensing to geodesic
rays. F. Mahmoudi, R. Mazzeo and F. Pacard proved in [72] the existence of constant mean
curvature surfaces with large mean curvature which are close to small geodesic tubes around
embedded minimal submanifolds.

0.1.6 Constant mean curvature surfaces via doubling constructions

Examples of surfaces with small constant mean curvature in Riemannian manifolds have been
obtained via perturbation techniques, which are referred to, following N. Kapouleas, as “dou-
bling constructions”. In this paragraph, I would like to explain the main ideas behind this
method, since similar techniques will be applied in the results described in the chapter 2 of
this thesis.

The idea is to construct a constant mean curvature surface by performing a connected
sum of two copies of a given oriented, embedded compact minimal surface Λ. More precisely,
assuming that Λ is nondegenerate, one can apply the implicit function theorem to obtain, for
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any ε close to 0, a constant mean curvature surface Λε with mean curvature ε. It is easy to
check that Λ±ε are normal graphs over Λ for some functions of the form ±εψ+O(ε2), where
ψ ∈ C∞(Σ) solves JΛψ = 1. In a recent unpublished paper F. Pacard and T. Sun [94] show
that one can perform a connected sum between Λε and Λ−ε at any nondegenerate point of the
function ψ to produce new constant mean curvature surfaces with H = ε.

In the case where there is a group of isometries acting on M and the Jacobi operator
of Λ has a nontrivial kernel, the fact whether it is possible or not to carry out a doubling
construction depends on what is called the “neck configuration”, more precisely the set of
points p1, . . . , pk ∈ Λ where the connected sum is performed and the “size of the necks”. To
understand this, it is convenient to use the Green’s function method, namely, to understand
for which choice of p1, . . . , pk, there exists a solution to the problem:

JΛ Γ = −2π (δp1 + · · ·+ δpk) , (9)

and then to glue the graph of the function Γ together with k “necks” given by catenoids
centered at pi and scaled by a small factor.

For example, consider the case where the initial minimal surface Λ is the equatorial sphere
S2 in the 3-sphere S3. The corresponding Jacobi operator ∆S2 + 2 has a nontrivial kernel
given by restrictions to S2 of the coordinate functions. This prevents from solving (9) for the
number of points k = 1. On the other hand, introducing symmetry with respect to one of the
coordinate axis and taking k = 2 and p1, p2 antipodal points on S2, one can find a solution
to (9).

A. Butscher and F. Pacard [11] showed that when Λ is the minimal Clifford torus in S3

and the Jacobi operator is given by 2 (∆ + 2), surfaces with small constant mean curvature
can be produced by performing connected sums at the points of a lattice which contains 2πZ2

and which is not included in {(x, y) ∈ R2 : x± y = 0 mod [2π]}.

Remark that the constructions described in [94] and [11] produce for all ε small enough
constant mean curvature surfaces of mean curvature H = ε, and the number of ”necks“ in
the construction is bounded independently of ε, while the size of the ”necks“ is given by a
constant times ε.

On the other hand, N. Kapouleas and S.D. Yang [63] showed that the doubling construction
technique can be applied to produce new examples of minimal surfaces, but this time a certain
relation has to be satisfied between the number of points where the connected sum is performed
and the size of the “necks”. The authors prove the existence of minimal surfaces in S3 obtained
by doubling the minimal Clifford torus performing the connected sum at the points of the
square lattice ln := 2π

n Z2 for n large enough, where the Clifford torus T 2 is identified with
R2/2πZ2. To understand why the construction works only for large numbers n, consider the
Green’s function Γn with poles at the vertices of ln:

(∆ + 2) Γn = −2π
∑
pi∈ln

δpi , (10)
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where the non-trivial kernel of the operator ∆ + 2 is eliminated using the symmetry of the
lattice. Next, one can introduce a function G, such that Γn(x) = G(nx). Then (10) is
equivalent to

∆G+
2

n2
G = −2π δp0 in T 2.

The solution can be found by induction, putting G = c+
∑∞

j=0

(
2
n2

)j
Gj , where the functions

Gj solve

∆G0 = −2π δp0 +
1

2π
and ∆Gj = −Gj−1, with

∫
T 2

Gj = 0.

A direct calculation then shows that c = −n2

2π and in local coordinates in the neighborhood of
pi ∈ ln the function Γn has the expansion

Γn(x) = −n
2

2π
− log n− log |x|+ . . . , (11)

where by . . . we denote some function bounded independently of n in some neighborhood of
the origin. On the other hand, as it has been observed in the subsection 0.1.4, a catenoid
centered at pi and scaled by the factor ε can be seen as a bi-graph over T 2 of the function

Gε = −ε log
ε

2
+ ε log |x|+O(ε3 |x|−2). (12)

In order to perform connected sums of the graphs of the functions ∓Γn and ±Gε, one needs the
largest terms in the expansions (11) and (12) to match exactly. We can make the logarithmic
terms match by multiplying Γn by the factor ε. On the other hand, the constant terms
coincide, when

log 2/ε =
n2

2π
+ log n+ . . .

which defines the relation between the “neck size” ε and the number of “necks” given by the
integer n. Finally, as in the case of constructions described in the subsection 0.1.4, one applies
a perturbation argument to deform the constructed connected sum into a minimal surface.
Other examples of minimal surfaces in S3 were constructed by N. Kapouleas by doubling the
equatorial sphere [61] and by D. Wiygul by stacking (tripling, quadrupling, etc.) Clifford tori.

0.2 Chapter 1: Higher codimension isoperimetric problems

In the first chapter, which is a work in collaboration with R. Mazzeo and F. Pacard, we
propose a generalization of the classical notion of a constant mean curvature hypersurface to
submanifolds of arbitrary codimension. We also prove the existence in compact Riemannian
manifolds of constant mean curvature (in the sense that we introduce) submanifolds which
are small perturbations of geodesic spheres of small volume.

Let K be an embedded submanifold of a compact Riemannian manifold (Mm+1, g). Recall,
that by definition (given in the subsection 0.1.1) the mean curvature vector of K is defined as
the trace of its second fundamental form:

hK(X,Y ) = πNK∇XY, for X,Y ∈ TK, and HK = TrhK ,
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where ∇ is the Levi-Civita connection on M associated to the metric g and πNK is the
fibrewise orthogonal projection TKM → NK on the normal bundle of K. In codimension
1, when dim(NK) = 1, we say that K has constant mean curvature if the mean curvature
function g(HK , NK) is constant. There are many possible extensions of the notion of constant
mean curvature to higher codimensions, for example, asking that HK is parallel, or HK is
harmonic. We propose a different, strictly variational definition, building on the ideas of F.
Almgren [5].

Critical points of the area functional subject to the volume constraint produce constant
mean curvature surfaces. F. Almgren [5] generalized the classical isoperimetric problem to
higher codimensional submanifolds, which amounts to solve the following minmax problem:

max
K : Volk(K)=c

(
min

Q : ∂Q=K
Volk+1(Q)

)
.

where c is a constant. Moreover, F. Almgren proves that the solutions in the Euclidean space
Rm+1 are round spheres. The existence result in an arbitrary Riemannian manifold as well
as regularity properties of the solutions were obtained in the work of F. Morgan and M.C.
Salavessa [87].

Recall that constant mean curvature hypersurfaces can also be understood as boundaries
of the critical points of the functional

Ω 7→ Vol(∂Ω)− λVol(Ω), (13)

where λ is a constant which corresponds to the value of the mean curvature.

In arbitrary codimension, we will say that a k-dimensional submanifold K has constant
mean curvature if it is a boundary of a smooth (k+1)-dimensional submanifold Q which is a
critical point of the functional

Q 7→ Vol(∂Q)− λVol(Q).

These critical points are characterized by the fact that Q is a minimal submanifold such
that the mean curvature vector of the boundary K = ∂Q satisfies:

HK = λn,

where n is a unit vector field normal to K and tangent to Q, in other words, if K has constant
mean curvature in Q and HK has no components orthogonal to Q. A k-dimensional sphere
Sk = Sk×{0}, which is the boundary of a (k+1)-dimensional ball Bk+1 in the Euclidean space
Rm+1, k < m, is an example of a constant mean curvature (in the given sense) submanifold
of codimension m+ 1− k.

We have proved the existence of constant mean curvature submanifolds of arbitrary codi-
mension in generic Riemannian manifolds in the above sense. Our result is a generalization
of the works of R. Ye [118] and F. Pacard and X. Xu [95] on constant mean curvature spheres
described in the subsection 0.1.5. We construct constant mean curvature spheres of arbitrary
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codimension near nondegenerate critical points of the partial scalar curvature function which
is defined on the Grassmannian bundle of the ambient manifold. For any (k+ 1)-dimensional
subspace Πp ⊂ TpM , we define the partial scalar curvature:

Rk+1(Πp) := −
k+1∑
i,j=1

〈R(Ei, Ej)Ei, Ej〉,

where E1, . . . , Ek+1 is any orthonormal basis for Πp. Note that Rm+1(TpM) is the standard
scalar curvature at p, while R2(Πp) is twice the sectional curvature of the 2-plane Πp.

We define a k-dimensional geodesic sphere Skε (Πp) in M as the image by the exponential
map of a sphere of radius ε in TpM :

Skε (Πp) :=
{

expp

(
ε

k+1∑
i=1

ΘiEi

)
, Θ ∈ Sk

}
.

We prove the following result:

Theorem 0.2.1. If Πp is a nondegenerate critical point of Rk+1, then for all ε sufficiently
small, there exists a constant mean curvature submanifold Kε(Πp) which is a normal graph
over Skε (Π̃p̃) by some section with C2,α norm bounded by cε3, and dist (Π̃p̃,Πp) ≤ c ε2.

Let me give some details of our construction.

Study of the Jacobi operator in arbitrary codimension

Let Σ be an embedded submanifold of M , either closed or with boundary. By definition, the
Jacobi operator JΣ about Σ is the differential of the mean curvature with respect to normal
perturbations of Σ. Let Φ ∈ C2(Σ, NΣ) be a normal vector field to Σ with ‖Φ‖C0 sufficiently
small. If ∂Σ 6= ∅, we require also Φ = 0 on ∂Σ. Then

ΣΦ :=
{

expq(Φ(q)), q ∈ Σ
}

is an embedded submanifold. We define:

JΣ(Φ) := ∇ ∂
∂s
H(ΣsΦ)

∣∣∣
s=0

.

Let πNΣ and πTΣ be the orthogonal projections to the normal and the tangent bundles of
Σ. We denote the operators πNΣ◦JΣ and πTΣ◦JΣ by JNΣ and JTΣ respectively. The expression
of the operator JNΣ is given by a standard formula [68]:

JNΣ = −∆N
Σ + RicNΣ + H

(2)
Σ , (14)

where ∆N
Σ is the (positive definite) connection Laplacian on sections of NΣ, and the other

two terms are the following symmetric endomorphisms of NΣ: the orthogonal projection
RicNΣ = πNΣ ◦ RicΣ of the partial Ricci curvature RicΣ defined by

g(RicΣX,Y ) :=
dim Σ∑
i=1

g (R(Ei, X)Ei, Y ) , for all X,Y ∈ TΣM,
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(note that the curvature tensor appearing on the right is the one on all of M , and is not the
curvature tensor for Σ); the square of the shape operator defined by

H
(2)
Σ (X) :=

dim Σ∑
i,j=1

〈hΣ(Ei, Ej), X〉hΣ(Ei, Ej), for all X ∈ TΣM.

In general, JΣ(Φ) has a nontrivial component JTΣ (Φ) which is parallel to Σ. However, when
Σ is a minimal submanifold, we have JTΣ = 0. We will see that in the linearized problem that
we consider in our work this term is also canceled, so we do not need to make it explicit.

Linearized problem

Now, let Kk, k ≤ m be a constant mean curvature submanifold in Mm+1. By definition, there
exists a minimal submanifold Q such that

K = ∂Q and HK = λn,

where n is a unit normal to K in Q. We would like now to perturb K into another CMC
submanifold with the same value of the mean curvature. Take a vector field Φ ∈ NK and
consider the submanifold KΦ =

{
expp(Φ), p ∈ K

}
. By definition, KΦ has constant mean

curvature if and only if
KΦ = ∂QΦ and H(KΦ) = λnΦ,

where QΦ is a minimal submanifold, and nΦ is a unit normal to KΦ in QΦ. We see that QΦ

and nΦ depend on the extension of the vector field Φ defined on K = ∂Q to the interior of
Q. Therefore, unlike the case of codimension 1, the problem is no longer local, which a priori
gives rise to supplementary difficulties. First of all, we prove the following result:

Lemma 0.2.1. If Q is a nondegenerate minimal submanifold, there is a smooth mapping
Φ 7→ QΦ from a neighborhood of 0 in C2,α(K,NK) into the space of (k + 1)-dimensional
minimal submanifolds of M with C2,α boundary, such that Q0 = Q and ∂QΦ = KΦ. Moreover,
QΦ is a geodesic graph over Q for some vector field UΦ ∈ TQM such that UΦ|K = Φ.

Secondly, we consider the functional

H(s) := H(KsΦ)− λnsΦ,

where nsΦ is a unit normal to KsΦ in the minimal submanifold QsΦ and consider the linear
operator

LQ := ∇ ∂
∂s
H(s)

∣∣∣
s=0

.

Notice that πTK ◦ LQ = 0. Indeed, let T be a tangent vector field to KsΦ. Then since
H(s)⊥KsΦ and H(0) = 0, we find

g(H′(0), T ) + g(H(0), T ′(0)) = 0.
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Notation 0.2.1. We introduce the operator

DQ := πNK ◦ ∇ ∂
∂s
nsΦ

∣∣∣
s=0

.

Let UΦ be the extension in Q of the vector field Φ ∈ NK defined in Lemma 0.2.1, and ŪΦ

the part of UΦ linear in Φ. We denote by [·]⊥ the orthogonal projection TKM → NK ∩NKQ.
We have the following result:

Proposition 0.2.1. The operator DQ satisfies

DQ =
[
∇nŪΦ

∣∣
K

]⊥
,

while the operator LQ is given by

LQ(Φ) = πNK ◦ JK(Φ)− λDQ(Φ).

Linearization for K = Sk ⊂ Rm+1

As a next step, we apply the analysis described above to the case where K = Sk = ∂Bk+1 in
the Euclidean space Rm+1, k < m. Take Φ ∈ C2,α(Sk, NSk) and decompose

Φ = [Φ]⊥ − φΘ, where Θ ∈ Sk, [Φ]⊥ ∈ NSk ∩NBk+1.

Then the operator πNSk ◦JSk acts separately on these components. Using (14) and Proposition
0.2.1, we find:

πNSk ◦ JSk(Φ) = ∆Sk [Φ]⊥ − (∆Sk + k)φΘ,

while the operator DBk+1 acts only the component [Φ]⊥ of Φ and is given by the Dirichlet-to-
Neumann operator, more precisely by,

DBk+1(Φ) =
∂

∂n
UΦ, where ∆Bk+1 UΦ = 0 and UΦ|Sk = [Φ]⊥,

where n = −Θ is the unit normal to Sk in Bk+1.

Kernel of the linearized operator

Analyzing the properties of the operators given above, we find that the linear operator LBk+1

has a non-trivial kernel. More precisely, we have:

(∆Sk + k) φ = 0⇒ φ ∈ span{Θj , j = 1, . . . , k + 1} and

(∆Sk − kDBk+1) [Φ]⊥ = 0⇒ [Φ]⊥ ∈ span
{(
cjµ Θj + dµ

)
Eµ, j = 1, . . . , k + 1

}
,

where Eµ, µ = k + 2, . . . ,m+ 1 is an orthonormal basis of NBk+1.
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Construction of constant mean curvature submanifolds

Let Πp be a (k+ 1)-dimensional plane in TpM and consider the k-dimensional geodesic sphere
Skε (Πp) defined in (14), which is the boundary of a (k+ 1)-dimensional geodesic ball which we
denote by Bk+1

ε (Πp). We find:

H(Bk+1
ε (Πp)) = O(ε) and H(Skε (Πp))−

k

ε
n = O(ε),

where n is a unit normal to Skε (Πp) in Bk+1
ε (Πp). So, in some sense, Skε (Πp) is close to being

a constant mean curvature submanifold when ε is small enough. Unfortunately, similarly
to the case of codimension 1 described in the subsection 0.1.5, we cannot directly apply a
perturbation argument to deform Skε (Πp) into a CMC submanifold, since for ε small enough
the operator LBk+1

ε (Πp) is close to ε−2 LBk+1 which, according to the previous paragraph, has

a nontrivial kernel.

We show then that for ε small enough, Skε (Πp) can be deformed into a submanifold which
is a generalization to higher codimensions of a “pseudo constant mean curvature sphere”, or
a “pseudo bubble” described in [95] and [90] and which we discuss in the subsection 0.1.5.
We prove that for all Πp and all ε small enough, there exists a minimal submanifold Qε(Πp),
which is a small perturbation of Bk+1

ε (Πp), whose boundary Kε(Πp) is a normal graph over
Skε (Πp) such that

H(Kε(Πp))−
k

ε
n = 〈~a,Θ〉n+

m+1∑
µ=k+2

(〈~cµ,Θ〉+ dµ) Nµ,

for some ~a,~cµ ∈ Rk+1 and dµ ∈ R. Here by n we denote a unit normal to Kε(Πp) in Qε(Πp)
and by Nµ, µ = k + 2, . . . ,m+ 1 an orthonormal basis of NQε(Πp).

Choice of the parameters

We consider the functional

Eε(Πp) := Volk (∂Qε(Πp))−
k

ε
Volk+1 (Qε(Πp)) ,

defined on the Grassmannian bundle of TM , which is a generalization to higher codimension
of the functional (8) defined by F. Pacard and X. Xu [95]. We show that if Πp is a critical
point of Eε, then Kε(Πp) is a constant mean curvature submanifold. Remark, that in the
construction of Kε(Πp) we have m + 1 degrees of freedom which correspond to infinitesimal
translations of the plane Πp, and (k + 1) × (m − k) degrees of freedom which correspond to
rotations of Πp in TpM which transform Πp to a plane orthogonal to Πp. Thus, the number
of degrees of freedom matches exactly the number of equations in the system

~a = 0, ~cµ = 0, dµ = 0, µ = k + 2, . . . ,m+ 1.

Finally, we obtain:
ε−k Eε(Πp) = c0 + c1 ε

2Rk+1(Πp) +O(ε4),
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for some constants c0 and c1 independent of ε, where Rk+1 is the partial scalar curvature of
the manifold M . Thus, if Πp is a nondegenerate critical point of Rk+1, then there exists a

plane Π̃p̃ which is a critical point of Eε and such that dist
(

Πp, Π̃p̃

)
≤ c ε2.

0.3 Chapter 2 : Free boundary minimal surfaces in the unit
3-ball

In the second chapter, which is a work in collaboration with A. Folha and F. Pacard, we
are interested in the existence of minimal surfaces embedded in the Euclidean unit 3-ball B3

which meet the unit sphere S2, the boundary of B3, orthogonally. Such surfaces arise as critical
points of the area functional among the surfaces embedded in B3 whose boundaries lie on S2,
and, following [36], are referred to as free boundary minimal surfaces. We prove the existence
of two geometrically distinct families of free boundary minimal surfaces in B3, parametrized
by an integer n large enough which represents the number of boundary components.

Obviously, horizontal unit disks obtained by the intersection of the planes passing through
the origin with the unit 3-ball are examples of such free boundary minimal surfaces. J.C.
Nitsche [88] showed that these are the only free boundary solutions of topological disk type.

A. Fraser, M. Li [35] have formulated the conjecture that the only free boundary minimal
surface of topological type of an annulus which is properly embedded in B3 is the critical
catenoid:

(s, φ) ∈ R× S1 7→ 1

s∗ cosh s∗
(cosh s cosφ, cosh s sinφ, s), where s∗ tanh s∗ = 1.

In a recent paper, A. Fraser and R. Schoen [37] proved the existence of free boundary min-
imal surfaces Σn in B3 which have genus 0 and n boundary components for all n ≥ 3. These
surfaces emerge in the study of maximizing metrics for the first eigenvalue of the Dirichlet-
to-Neumann operator on compact 2-manifolds. Let (M2, g) be a compact 2-dimensional
Riemannian manifold with nonempty boundary. Then the Dirichlet-to-Neumann operator
Dg : C∞(∂M)→ C∞(∂M) is defined by:

Dgu =
∂û

∂ν

∣∣∣∣
M

, where ∆gû = 0 in M, û|∂M = u,

ν being a unit normal to ∂M in M . Dg is a non-negative self-adjoint operator with discrete
spectrum, referred to as Steklov eigenvalues. Let σ1(g) denote the first Stekloff eigenvalue
associated to a metric g. The authors prove that when M has genus 0 and n boundary com-
ponents, there exists a metric gmax for which the maximum of σ1(g) lengthg(∂M) is achieved.
Moreover, the corresponding eigenfunctions define a minimal free boundary embedding of M
in B3. They remark that when n tends to infinity, the corresponding free boundary minimal
surface Σn converges on compact sets of B3 to a double copy of the equatorial disk.

In our work, give an independent construction of Σn for n large enough using perturbation
techniques. We also prove for all n large enough the existence of free boundary minimal
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surfaces Σ̃n in B3 which have genus 1 and n boundary components, which is a new result that
doesn’t follow from [37].

To state our main theorem, let us identify R3 with C× R and denote by Sn the group of
isometries generated by

(z, t) 7→ (z̄, t), (z, t) 7→ (z,−t), and (z, t) 7→ (z · e
2πi
n , t).

Theorem 0.3.1. There exists n0 ≥ 0 such that for each n ≥ n0 there exists a genus 0 free
boundary minimal surface Σn and a genus 1 free boundary minimal surface Σ̃n which are both
embedded in B3 and meet S2 orthogonally along n closed curves.

Both surfaces are invariant under the action of the group Sn and, as n tends to infinity,
the sequence Σn converges to a double copy of the unit horizontal (open) disk, uniformly on
compacts of B3, while the sequence Σ̃n converges to a double copy of the unit horizontal (open)
punctured disk, uniformly on compacts of B3 \ {0}.

Our proof is in the spirit of the proof of existence of minimal surfaces in S3 by doubling
by N. Kapouleas [61], N. Kapouleas and S.D. Yang [63], and D. Wiygul [117]. Similarly to
[63], our constructions work only for a large number n of boundary components. The resulting
surfaces have the structure of two nearby parallel horizontal disks joined by n boundary bridges
which are close to scaled down copies of half-catenoids arranged periodically along the unit
horizontal great circle of S2, and a “neck” which is close to a scaled down catenoid with
vertical axis centered at the origin.

Let me give here a brief description of our construction of the family of genus 1 free
boundary minimal surfaces Σ̃n. We will see that an analogous proof with several simplifications
gives the existence of a family of genus 0 free boundary minimal surfaces Σn.

Parametrization of the unit ball

First of all, we parametrize a neighborhood of the horizontal disk D2 × {0} in the unit ball
B3 by a region in the unit cylinder D2 × R in the following way:

X : D2 × R→ B3, X(z, t) = A(z, t) (z,B(z) sinh t) ,

where

B(z) =
1 + |z|2

2
and A(z, t) =

1

1 +B(z)(cosh t− 1)
.
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In this parametrization, the boundary |z| = 1 of the unit cylinder corresponds to the boundary
S2 of the unit ball. Moreover, each leaf t = t0 is a constant mean curvature spherical cap with
H = 2 sinh t0 which meets the boundary of the ball orthogonally (when t = 0 we obtain the
unit disk D2 × {0}).

Moreover, we find that the pull-back metric X∗geucl in D2 × R has the form

X∗geucl = A2(z, t)
(
|dz|2 +B2(z) dt2

)
. (15)

Vertical graphs in B3

An important role in our construction is played by vertical graphs over the horizontal disk
D2 × {0} in B3 parametrized by

z ∈ D2 7→ X(z, w(z)) ∈ B3 for w ∈ C2(D2). (16)

We find that the Taylor expansion of the mean curvature of such graphs in powers of w and
derivatives of w has the form:

Hgr(w) = Lgr w +Qgr(w,∇w,∇2w), (17)

where

Lgr · := ∆(B · ) = ∆

(
1 + |z|2

2
·
)

is the linearized mean curvature operator and Qgr is a smooth nonlinear function which
satisfies Qgr(0, 0, 0) = DQgr(0, 0, 0) = D2Qgr(0, 0, 0) = 0. Moreover, the graph (16) meets
the boundary of the ball orthogonally if w satisfies the homogeneous Neumann boundary
condition:

∂rw|r=1 = 0.

Remark that Lgr has a non-trivial kernel which consists of the functions 2x1
1+|z|2 and 2x2

1+|z|2 ,

and corresponds to tilting the unit disk D2 × {0} in B3. The kernel can be eliminated by
imposing invariance under the action of a group of rotations around the vertical axis.

Green’s Function

According to A. Fraser and R. Schoen, the surfaces that we would like to construct should
have the structure of connected sums of two nearby copies of the unit disk with small “bridges”
that are close to half-catenoids located symmetrically on the unit circle S1 and a small “neck”
close to a catenoid centered at the origin.

As before, to get a better matching with the asymptotics of the catenoid, we first deform
D2×{0} using a suitable Green’s function and then perform the connected sum. We place the

poles of the Green’s function at z = 0 and at the n-th roots of unity zm = e
2πmi
n , m = 1, . . . , n,

and look for the solution of the problem:{
∆(BΓn) = c0 δ0 in D2,

∂rΓn =
∑n

m=1 cn δzn on S1,
(18)
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for some constants c0, c1, . . . , cn. If we assume that Γn is invariant under rotations by the angle
2π
n , then solving (18) is equivalent to finding a function G such that Γn(z) = G(zn)/B(z) and:{

∆G = c̃0 δ0 in D2,

∂rG− 1
n G = c̃1 δ1 on S1.

(19)

for some constants c̃0, c̃1. A solution to (19) can be found explicitly. We decompose G as a
sum of two functions, one of which has a singularity at z = 0, and the other a singularity at
z = 1. More precisely, we find that

G0(z) := − log |z| − n

satisfies ∆G0 = 0 in D2 \ {0} and ∂rG0 − 1
nG0 = 0 on S1. On the other hand, the function

G1(z) := −n
2

+

∞∑
k=0

1

nk
ReHk(z), where Hk(z) :=

∞∑
j=1

zj

jk+1
,

is harmonic in D2, and, since
H0(z) = − log(1− z),

and
∂r (ReHk) = ReHk−1 on S1, ∀k ∈ N,

G1 satisfies:

∂rG1 −
1

n
G1 = 0 on S1 \ {1}.

Finally, we put:

Γn(z) :=
1

B(z)
(τ0G0(zn) + τ1G1(zn)) ,

where the coefficients τ0, τ1 ∈ R are carefully chosen when we “glue” the graph of Γn with a
“catenoidal neck” and “half-catenoidal bridges”. We find that Γn has the following expansion
in the neighborhoods of z = 0 and z = zm:

Γn(z) =


−n
(
2τ0 + τ1

2

)
− 2n τ0 log |z|+O(|z|2 log |z|), as |z| → 0

−n (2τ0 + τ1
2 ) + τ1 log n− τ1 log |z − zm|

+O(|z − zm| log |z − zm|), as |z − zm| → 0.

(20)

“Half-catenoidal bridges” and “catenoidal neck”

The role of boundary “bridges” connecting two “copies” of the unit disk could be played by
minimal stripes obtained by the intersection of Euclidean catenoids centered at the n-th roots
of unity with the unit sphere S2. The difficulty of this approach is the fact that those stripes
do not meet S2 orthogonally. We prefer to embed “catenoidal bridges” in B3 orthogonally to
S2 but loosing the minimality condition.
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Let C− := {ζ ∈ C : Re(ζ) ≤ 0} be a half-plane and consider the conformal mappings

λm : ζ ∈ C− 7→ e
2πim
n

1 + ζ

1− ζ
∈ D̄2

which provide local diffeomorphisms from a neighborhood of ζ = 0 in C− to neighborhoods of
z = zm in the unit disk. Then we introduce the mappings

Λm : (ζ, τ) ∈ C− × R 7→ (λm(ζ), 2τ) ∈ D̄2 × R,

and for ε ∈ (0, 1) parametrize the m-th “catenoidal bridge” Cε,m in B3 by

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7→ X ◦ Λm

(ε
2

coshσ eiθ,
ε

2
σ
)
∈ Cε,m,

for some σε � 1. Since the restriction of X ◦ Λm to horizontal planes is conformal, Cε,m
meets the boundary of the unit ball orthogonally and is close to the truncated Euclidean
half-catenoid scaled by the factor ε and centered at z = zm.

On the other hand, in the neighborhood of z = 0, the metric X∗geucl given by (15), is close
to the metric |dz|2 + 1

4dt
2. For ε̃ ∈ (0, 1) we define the surface

Xcat
ε̃ : (s, φ) ∈ (−sε̃, sε̃)× S1 7→

(
ε̃ cosh s eiφ, 2 ε̃s

)
∈ R3, for some sε̃ � 1,

that is minimal with respect to |dz|2 + 1
4 dt

2. Then the surface Cε̃,0 parametrized by

(s, φ) ∈ (−sε̃, sε̃)× S1 7→ X ◦Xcat
ε̃ (s, φ) ∈ Cε̃,0,

is close to a truncated catenoid scaled by the factor ε̃.

Matching

Taking the change of variables z = λm
(
ε
2 coshσ eiθ

)
away from σ = 0, we can see the “half-

catenoidal bridge” Cε,m as a bi-graph over {z ∈ D2 : |z − zm| > ε} for the function

Gε,m = −ε log
ε

2
+ ε log |z − zm|+O(ε3 |z − zm|−2). (21)

On the other hand, taking the change of variables z = ε̃ cosh s eiφ away from s = 0, we can
see the “catenoidal neck” Cε̃,0 as a bi-graph over {z ∈ D2 : |z| > ε̃} of the function

Gε̃,0 = −ε̃ log
ε̃

2
+ ε̃ log |z|+O(ε̃3 |z|−2). (22)
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Comparing (21) and (22) with the expansions of the function Γn in the neighborhoods of
z = zm and z = 0 given by (20), we find that ε, ε̃, as well as the coefficients τ1 and τ2, can be
expressed as functions of the number n of boundary components. Comparing the logarithmic
terms, we find:

τ1 = ε and n τ0 = ε̃,

while the comparison of the constant terms gives:

ε̃ ∼ ε and n ∼ log(1/ε).

Finally, we shall effectuate the “gluing” in the regions where the resting terms are mini-
mized, that is when

|z| = ε̃ cosh sε̃ ∼ ε
1
2 and |z − zm| ∼ ε coshσε ∼ ε

2
3 .

Remark 0.3.1. These computations, together with the fact that constant functions are not
in the kernel of the linearized mean curvature operator Lgr give an idea why our construction
works only for n large enough.

Perturbation argument

At this stage, using the connected sum construction, we obtain for all n large enough a genus
1 surface that is embedded in B3 and meets ∂B3 orthogonally along n boundary components.
We will denote this surface by An and refer to it as approximate solution. The next step is
to perturb An into a minimal surface. Take a vector field Ξ in B̄3 transverse to An and let
ξ : B̄3 × (0, 1)→ B̄3 be the associated flow:

dξ

dt
= Ξ(ξ(·, t)), ξ(p, 0) = p, for p ∈ B̄3.

We shall choose Ξ in such a way that the surfaces An,t := ξt(An) are embedded in B3 for all
t small enough and meet S2 orthogonally along ∂An,t. Finally, for w ∈ C2,α(An), we consider
the surface An(w) parametrized by

p ∈ An 7→ ξ(p, w(p)) ∈ An(w).

Then An(w) meets the boundary of the unit ball orthogonally when w satisfies the homoge-
neous Neumann boundary condition on ∂An:

gn(∇gnw,N∂An) = 0,

where gn is the metric induced on An from the Euclidean metric and N∂An is a unit normal
to ∂An in An.

As in the construction described in the subsection 0.1.4, the Taylor expansion of the mean
curvature of An(w) in powers of w and derivatives of w has the form:

H(An(w)) = H(An) + Lnw +Qn(w,∇w,∇2w),
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where H(An) is the mean curvature of the approximate solution, Ln is the linearized mean cur-
vature operator aboutAn, andQn is a smooth non-linear function, which satisfiesQn(0, 0, 0) =
DQn(0, 0, 0) = 0. Our goal then is to solve the equation:

Lnw = −H(An)−Qn(w).

Working in appropriate functional spaces, we show that the norm of H(An) tends to 0 when
n tends to infinity as e−na for some a > 1. Then choosing an appropriate transverse vector
field Ξ, we show that the operator Ln has a right inverse which is not uniformly bounded in
n, but explodes as enν , for ν � 1 that we choose. The result follows from Banach fixed point
theorem for contracting mappings applied to w 7→ −L−1

n (H(An) +Qn(w)).

Linear analysis

In conclusion, let me say a few words about the properties of the linear operator Ln. We
show that the problem of small eigenvalues (eigenvalues that tend to 0 as fast as n tends to
infinity) can be solved by imposing symmetries to the constructed surface. More precisely,
in the regions of the “half-catenoidal bridges”, Ln is close to the Jacobi operator about the
half-catenoid. Then the small eigenvalues generated by rotations and translations of the
catenoid are eliminated by imposing the symmetries w(σ, θ) = w(−σ, θ) = w(σ, 2π−θ) and the
homogeneous Neumann boundary condition ∂θw|θ∈{π

2
, 3π

2
} = 0. All the other small eigenvalues

are eliminated by imposing invariance under rotations by the angle 2π
n . Finally, in the region

where An is parametrized by a domain of the unit disk, Ln is close to the operator Lgr defined
in (17). So, we are interested in the solutions of the linear problem:{

∆(Bw) = f in D2 \ {0}

∂rw = 0 on S1 \ {z1, . . . , zn}.
(23)

After the change of variables z 7→ zn, we find that (23) is equivalent to a Poisson’s equation
with homogeneous Robin boundary data:{

∆W = F in D2 \ {0}

∂rW − 1
nW = 0 on S1 \ {1}.

(24)

A solution to (24) can be found using the fact that for n ≥ 2 the associated operator has no
bounded kernel. On the other hand, when n tends to infinity, (24) converges to the Poisson’s
equation with homogeneous Neumann boundary data, which, in its turn, has a nontrivial
kernel. This (together with the presence of the eigenvalues generated by the dilation of the
catenoid) explains why the inverse operator “slightly” explodes when n tends to infinity.
However, this does not prevent us from applying Banach fixed point theorem in a ball the
radius of which tends to 0 when n tends to infinity much faster than the norm of L−1

n explodes.
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0.4 Chapter 3: Nonconvex constant mean curvature surfaces
in Riemannian manifolds

In the third chapter, we propose a construction in a Riemannian 3-manifold (M, g) of a family
of nonconvex topological spheres with large constant mean curvature.

These surfaces are obtained as connected sums of two geodesic spheres of equal small radii
tangent at one point. Our construction is possible when the scalar curvature function R of
the ambient manifold has a critical point ocr such that the Hessian of R at ocr has a simple
nonzero eigenvalue.

More precisely, let (M, g) be a smooth 3-dimensional Riemannian manifold. Let ocr ∈ M
be a critical point of the scalar curvature function R, λ 6= 0 a simple non-zero eigenvalue
of HessocrR, and vλ ∈ TocrM the associated unit eigenvector. Take ε ∈ R+ small enough
and consider the union S#(ε, ocr, vλ) of two geodesic spheres of radius ε tangent at ocr, with
centers located symmetrically with respect to ocr on the geodesic passing through ocr with
velocity vλ. Our result reads:

Theorem 0.4.1. There exist ε∗ ∈ (0, 1) and for every ε ∈ (0, ε∗) a surface Sε of constant
mean curvature equal to 2

ε such that the Hausdorff distance between Sε and S#(ε, ocr, vλ) is
bounded by a constant times ε2. The surface Sε is embedded if λ < 0 and immersed if λ > 0.

Let me give a short description of our construction.

Pseudo constant mean curvature spheres

Our goal is to construct a constant mean curvature surface which is close to a connected sum
of two geodesic spheres in M . The first difficulty then is the fact that the summands in our
construction do not have constant mean curvature. Let Sε(p) be a geodesic sphere of radius ε.
The first step would be to perturb Sε(p) into some CMC surface. Unfortunately, as observed
R. Ye [118], F. Pacard and X. Xu [95] and S. Nardulli [90], in general, this is not possible, since
the Jacobi operator about Sε(p) is close to the operator ε−2 (∆S2 + 2) which has a nontrivial
kernel. As it is explained in the subsection 0.1.5, in some sense, the best we can do is to
perturb Sε(p) into a pseudo constant mean curvature sphere Σε(p) whose mean curvature is
constant up to an element of Ker(∆S2 + 2):

H(Σε(p))−
2

ε
= 〈A,Θ〉, Θ ∈ S2,

for some vector A ∈ R3. Here and below we denote by 〈·, ·〉 the scalar product in R3. Moreover,
one can explicitly calculate [118]:

A = −2π ε2

15
∇gR(p) +O(ε4).
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“Catenoidal neck”

The next step is to describe surfaces that can play the role of the “neck” in the connected
sum construction. As it is pointed out in the subsection 0.1.4, in the Euclidean space this role
is usually played by an element of the family catenoids:

Cη : (s, φ) ∈ [−sη, sη]× S1 7→ (η cosh s cosφ, η cosh s sinφ, η s) ,

where the parameter η ∈ (0, 1) is referred to as the “neck size”. In the Riemannian case, one
can use geometric properties of the catenoid, given an embedding of Cη in M which, at least
for η small enough, is close to the identity in some chosen coordinates.

Consider Λ a smooth embedded surface in M , and let NΛ denote a unit normal to Λ.
Given q ∈ Λ, then the mapping

FΛ(q′, z) = expq′
(
z NΛ(q′)

)
defines a diffeomorphism from a neighborhood of (q, 0) in Λ×R to a neighborhood of q in M .
Now let (y1, y2) 7→ ζ(y1, y2) be local coordinates on Λ with the origin at q. The mapping

FΛ,q(y
1, y2, z) = FΛ(ζ(y1, y2), z)

defines a local diffeomorphism from a neighborhood of 0 in R3 to a neighborhood of q in M
and is referred to as Fermi coordinates. We call the surface Cη,q:

(s, φ) ∈ [−sη, sη]× S1 7→ FΛ,q (η cosh s cosφ, η cosh s sinφ, η s) ∈ Cη,q

a “catenoidal neck”.

In our case, it is convenient to take Λ to be a geodesic disk of small radius. More precisely,
first we fix the “axis” of the “neck”, i.e. a minimizing geodesic γ in M and a point q0 ∈ γ,
and then consider the geodesic disk Λ centered at q0 and orthogonal to γ. For all q ∈ Λ we
have a “catenoidal neck” Cη,q, with its “axis” “parallel” to γ.

Connected sum construction in M

Because of the absence of isometries in a generic Riemannian manifold M (namely the ab-
sence of translations and rotations), we cannot apply directly the procedure described for the
euclidean space in the paragraph 0.1.4 to perform a connected sum of two surfaces in M .
We could imagine an analogous procedure, if for a given family of surfaces, parametrized, for
example, by their location in M , we could assign to all d > 0 small enough, a pair of elements
the distance between which (in the sense of the distance between closed disjoint sets in the
metric space M) is equal to d.

Take d < ε. It is easy to choose a pair of geodesic spheres of radius ε the distance between
which is equal to d. For this it is sufficient to fix a point o ∈ M , a vector v ∈ ToM with
‖v‖g = 1 and to place the centers of the spheres at expo

(
±
(
ε+ d

2

)
v
)
.
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In the next result we show that an analogous procedure also works for a family of pseudo
CMC spheres since the last ones are small perturbations of geodesic spheres. More precisely,
consider the family

Σ±ε,t = Σε (expo(± tv)) .

Then we have

Lemma 0.4.1. For all d ∈ (0, 1/2 ε) there exists a unique t ∈ (ε, 2ε) such that the distance
between the surfaces Σ±ε := Σ±ε,t is equal to d and is realized by a unique geodesic γ, a priori
different from t 7→ expo(tv).

Remark 0.4.1. We will see that we also need to perform a connected sum of a pair of in-
tersecting “pseudo bubbles”. In this case, we cannot talk about the “distance” between the
surfaces, but prove that there exist two intersecting pseudo constant mean curvature spheres
Σ±ε , such that the interior of Σ+

ε ∩ Σ−ε is crossed by a unique minimizing geodesic γ of length
d which intersects Σ±ε orthogonally.

In what follows, we will have two connected sums, one embedded and one immersed, and
we will see in the final argument that, depending on the sign of the eigenvalue λ 6= 0 of the
Hessian of the scalar curvature R, one of these connected sums can be perturbed into a constant
mean curvature surface.

Next, we describe the “gluing procedure” between two pseudo CMC spheres and a “catenoidal
neck”. Let γ : [0, 1]→M be the geodesic that realizes the distance between Σ± and consider
a small geodesic disc Λ orthogonal to γ at q0 = γ(1/2). For all η > 0 small enough and all
q ∈ Λ there is a “catenoidal neck” Cη,q which is an embedding of the euclidean catenoid via
Fermi coordinates. Notice that when q = q0, the “axis” of the “neck” is orthogonal to Σ±ε ,
and otherwise we create a small angle between the normals to Σ±ε and the “axis”.
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Using the ideas of R. Mazzeo, F. Pacard and D. Pollack [77], to get a better matching with
the asymptotics of the catenoid, first we deform Σ±ε with Green’s functions associated to their
Jacobi operators and then perform the connected sum.

Green’s functions

Let JΣ±ε
be the Jacobi operators about the pseudo CMC spheres Σ±ε . We would like to define

and to study the Green’s functions Γ± associated to JΣ±ε
with poles at p± ∈ Σ±ε , namely, the

solutions to the problem:
JΣ±ε

Γ± = −2π δp± in Σ±ε (25)

where δp± are the Dirac masses at p±. On the other hand, parametrizing Σ±ε by the Euclidean
sphere S2, and we find that JΣ±ε

satisfy:

JΣ±ε
= ε−2 (∆S2 + 2) + L, where ‖Lu‖C0,α(S2) ≤ c ‖u‖C2,α(S2).

Unfortunately, the fact that the operator ∆S2 + 2 has a nontrivial kernel prevents us from
finding directly Γ± and getting reasonable estimates which would be uniform in ε when ε
tends to 0. However, instead of (25), we can solve the problem:

JΣ±ε
Γ± = −2π δp± + 〈B±,Θ〉, (26)

for some vectors B± ∈ R3. Moreover, an explicit computation gives

B± =
ε−2

2
Θ(p±) +O(1).

Approximate solution

Let the poles of the Green’s functions p± be the points of intersection of the geodesic γ with
the pseudo bubbles. We can parametrize Σ±ε in the neighborhood of p± as normal graphs over
the geodesic disc Λ. In geodesic normal coordinates in Λ centered at q we have:

Γ±(y) = c± ± log |y|+O(|y| log |y|). (27)

On the other hand, the “catenoidal neck” Cη,q can be seen as a bi-graph over Λ of the
function Gη:

Gη = −η log
η

2
+ η log |y|+O

(
η3 |y|−2

)
. (28)

Finally, comparing (27) and (28), we show that for all o ∈ M , v ∈ ToM with ‖v‖g = 1,
η > 0, and q ∈ Λ with η and dist(q, q0) small enough, one can choose the “distance” d(o, v, η, q)
between Σ±ε in such a way that the constant terms in the expansions of η Γ± and Gη,q match
exactly. This distance satisfies |d − 2 η log(2/η)| ≤ c η. Next, we “glue” the graphs together

with the help of a cut-off function at |y| ∼ η
3
4 .

At this stage, for ε small enough, the resulting surface, which we will denote byAε, depends
on 8 geometric parameters: the point o ∈M (3 degrees of freedom), the unit vector v ∈ ToM
(2 degrees of freedom), the “neck size” η (1 degree of freedom), and the “location” q of the
“axis” of the “neck” in the geodesic disk Λ (2 degrees of freedom).

37



Perturbation argument

As a next step, we shall perturb Aε into a constant mean curvature surface provided ε is
chosen small enough. Let Ξ be a smooth vector field defined in a neighborhood of Aε in M
and transverse to Aε, and let ξ : M × (0, 1)→M be the associated flow:

dξ

dt
= Ξ(ξ(·, t)), ξ(p, 0) = p, ∀p ∈M.

Take a function w ∈ C2(Aε) small enough and let us denote byAε(w) the surfaces parametrized
by p ∈ Aε 7→ ξ(p, w(p)) ∈ Aε(w). Then, the expansion of the mean curvature of Aε(w) in
powers of w and derivatives of w can be written in the form:

H(Aε(w)) = H(Aε) + Lεw +Qε(w,∇w,∇2w),

where H(Aε) is the mean curvature of the approximate solution, Lε is the linearized mean
curvature operator about Aε and Qε is a non-linear function which satisfies:

Qε(0, 0, 0) = DQε(0, 0, 0) = 0.

Our goal is to solve the equation:

Lεw =
2

ε
−H(Aε)−Qε(w,∇w,∇2w).

If Lε were an invertible linear operator with its inverse uniformly bounded in ε when ε tends
to 0, we could apply Banach fixed point theorem to w 7→ L−1

ε

(
2
ε −H(Aε)−Qε(w)

)
in a ball

of an appropriate Banach space, where the radius of the ball would be determined by the
norm of H(Aε)− 2

ε .

First, we study the mean curvature of Aε. We will assume that η and dist(q, q0) are
bounded by a suitable power of ε. Using the minimality of the catenoid in the Euclidean
space, we show that in the “neck region” the L∞ norm of H(Aε) tends to 0 when ε tends to
0. On the other hand, will make H(Aε)− 2

ε very small in a suitable topology which will take
in the account the fact that the area of “neck region” tends to 0 much faster than the area of
the rest of Aε when ε tends to 0.

Let χ± ∈ C∞(Aε) be some cut-off functions supported in the regions parametrized by
the pseudo CMC spheres. Then, using the expression for the mean curvature of Σ±ε and the
equation satisfied by the Green’s functions, we find:

H(Aε)−
2

ε
= χ+ 〈C+,Θ〉+ χ−〈C−,Θ〉+Hε,

where C± ∈ R3 satisfy:

C± = −2π ε2

15
∇R(o±) +

ε−2 η

2
Θ(p±) +O(ε4), (29)

and Hε tends very fast to 0 when ε tends to 0 in the appropriate topology. Here o± are the
“centers” of the pseudo bubbles Σ±ε and p± are the poles of the Green’s functions.
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Next, we study the properties of the linear operator Lε. We remark the presence of small
eigenvalues of Lε (eigenvalues that tend to 0 as fast as ε tends to 0) which can be identified
knowing the structure of Lε.

We find that in the regions parametrized by pseudo CMC spheres, Lε is close to the
operator ∆S2 + 2 which has a 3 - dimensional kernel consisting of the coordinate functions
Θ1,Θ2,Θ3.

On the other hand, in the “catenoidal neck” region, Lε is close to the Jacobi operator about
the Euclidean catenoid. Recall, that the Euclidean catenoid is degenerate and in particular
has 2 nontrivial Jacobi fields given by the functions cosφ

cosh s and sinφ
cosh s which decay at infinity

and correspond to the horizontal translations of the catenoid.

We denote by Kε the space of eigenfunctions of Lε corresponding to small eigenvalues, and
following N. Kapouleas, we refer to it as approximate kernel of Lε. Using the ideas described
above, we find that the dimension of Kε is equal to 8, matching exactly the number of free
parameters in our construction.

We will use a Lyapunov-Schmidt reduction argument, applying Banach fixed point theorem
in the space of functions orthogonal to Kε, to perturb Aε into a surface whose mean curvature
H satisfies:

H − 2

ε
=

n∑
i=1

Ai Φi, where Kε = span{Φi, i = 1, . . . , 8}, (30)

provided ε is chosen small enough.

Choice of the parameters

In the final argument, we will explain how to choose the 8 geometric parameters appropriately
to ensure that H = 2

ε . The coefficients Ai in (30) depend continuously on o ∈ M , v ∈ ToM ,
η ∈ (0, 1) and a ∈ R2. We show that for ε small enough the system of equations

Ai = 0, i = 1, . . . , 8, (31)

can be written in the form (Id + F )(·) = 0 for a function F bounded uniformly on o, v, η, a,
and apply the Schauder’s fixed point theorem in a ball of R8 in order to find a solution.

First 6 equations. We define the basis {Φi} of the approximate kernel Kε in such a way
that its first 6 elements are close to the elements of

Ker(∆S2 + 2) = span{Θ1,Θ2,Θ3},

defined in the regions parametrized by the pseudo bubbles. So, using the structure of the
mean curvature of Aε, given by (29), we write the first 6 equations in (31) in the form:

− 2π ε2

15
∇gR(o±) +

1

2
η ε−2 Θ(p±) + ε4F (o, v, η, a) = 0. (32)
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With a slight abuse of notations, we can write:

o± = o± ε v +O(ε2),
p± = ∓v +O(ε2), when Aε is embedded

p± = ±v +O(ε2), when Aε is immersed.

First, let us assume first that Aε is embedded and take ocr a critical point of the scalar
curvature: ∇gR(ocr) = 0. Then (32) is equivalent to the following 6 equations:{

−2π ε2

15 HessocrR(o− ocr − ε v)− 1
2 η ε

−2 v + ε4 F (o, v, η, a) = 0,

−2π ε2

15 HessocrR(o− ocr + ε v) + 1
2 η ε

−2 v + ε4 F (o, v, η, a) = 0.
(33)

This gives
o− ocr + ε2 F (o, v, η, a) = 0.

Next, let vλ be the unit eigenvector corresponding to a simple eigenvalue λ 6= 0 of HessocrR.
If we write

v = vλ + ṽ,

then the projection of (33) to vλ gives:

η +
4π λ ε5

15
+ ε6 F (o, v, η, a) = 0.

In particular we see that since η > 0, the solution exists only if λ < 0. In the case where
λ > 0, we should choose the immersed approximate solution.

Finally, projecting (33) on the subspace of R3 orthogonal to vλ, gives the equation:

(Hessocr − λ Id) ṽ + ε F (o, v, η, a) = 0,

which can be rewritten in the form:

ṽ + ε F (o, v, η, a) = 0.

Thus if the solution of (31) exists, it satisfies:

distg(o, ocr) ≤ c ε2, ∠(v, vλ) ≤ c ε,
∣∣η − sign(λ)λ ε5

∣∣ ≤ c ε6.

Last 2 equations. To understand the structure of the last two equations, we project
(31) on the functions Φ7 and Φ8 supported in the neck region and close to cosφ

cosh s and sinφ
cosh s .

Taking the change of coordinates

y = η cosh s(cosφ, sinφ),

we find that away from s = 0, we have Φ6+i ≈ η yi

|y|2 , i = 1, 2.

To explain why these equations can be written in the form (Id + F )(·) = 0, we propose to
consider the following example.
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Let P0 be the horizontal plane in R3 and Cη the catenoid scaled by the factor η with vertical
axis centered at the origin. Recall, that Cη can be written as a bi-graph over {y ∈ P0 : |y| > η}
of the function

Gη(y) = log
2

η
+ η log |y|+O(η3 |y|−2).

On the other hand, let P± be two planes parametrized as graphs over P0 of the affine functions

u±(y) = ± log
2

η
+ c±1 y

1 + c±2 y
2.

Take ρ > 0 and let D2(ρ) be a unit disk in P0 of radius ρ centered at the origin. We denote
by χ a cut-of function which satisfies

χ ≡ 0 in D2(ρ/2) and χ ≡ 1 in P0 \D2(ρ).

Finally, we remark that the mean curvature of the surface parametrized by(
y, χ(y)u±(y)± (1− χ(y))Gη(y)

)
is equal to 0 everywhere but D2(ρ) \D2(ρ/2). On the other hand, for η small enough, in this

region the largest terms in the projection of the mean curvature to yi

|y|2 are given by∫
D2(ρ)\D2( ρ

2
)
∆
(
χ
(
u+ − u−

)) yi

|y|2
=

∫
∂D2(ρ)

∂r
(
χ
(
u+ − u−

))∣∣
r=2ρ

yi

|y|2
dφ (34)

∫
∂D2(ρ)

(
χ
(
u+ − u−

))
∂r

(
yi

|y|2

)∣∣∣∣
r=2ρ

dφ

=
4π

ρ

(
c+
i − c

−
i

)
.

In particular, we see that the largest terms in this projection are determined by the slopes of
the planes P±.

Let us go back to our construction. We can see the regions of the approximate solution
where we effectuate the gluing, as graphs over the geodesic disc Λ of the functions

u±(y) = u±(q) +∇u±(q) y +O(|y|2),

(
u±(q0) = ±d

2
, ∇u±(q0) = 0

)
.

In particular, the role of the slopes will be played by ∇u±(q) which are nontrivial when q 6= q0,
or in other words, when we vary the angle between the “axis” of the “neck” and the normals
to the pseudo bubbles in the connected sum construction. A calculation similar to (34) gives
the equations:

∇u+(q)−∇u−(q)

ρ
+ F (o, v, η, a) = 0,
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which, using the fact that u+ has a local maximum and u− a local minimum at q0, can be
written in the form:

Hessq0

(
u+ − u−

)
(q − q0) + ρF (o, v, η, a) = 0.

In our construction, we take ρ = ε4 and roughly speaking we obtain dist(q, q0) ≤ c ε4.

Finally, by Schauder’s fixed point theorem, there exists a set of parameters (o, v, η, a)
for which Ai(o, v, η, a) = 0. The corresponding surface, which we denote by Sε, has constant
mean curvature and is embedded when λ < 0 and immersed with self-intersections when λ > 0.
Finally, let S#(ε, ocr, vλ) be the union of two geodesic spheres Sε(expocr(± εvλ)) tangent at
ocr. Then the Hausdorff distance between Sε and S#(ε, ocr, vλ) is bounded by a constant
times ε2.

0.5 Perspectives of future work

In conclusion, I would like to say a few words about further possible developments of our
results.

The proposed definition of constant mean curvature submanifolds of arbitrary codimension
introduces a whole new class of geometrical objects which are worth studying, even in R3. A
curve in R3 has constant mean curvature according to the above definition, if it is the boundary
of a minimal surface and if its extrinsic curvature is equal to the geodesic curvature and is
constant. Following the work of J.C.C. Nitsche on free boundary minimal surfaces [88], one
can prove that the only compact constant mean curvature curve that bounds a topological
disk, is a circle S1 bounding a flat disk D2. Unfortunately, further topological classification
appears to be a difficult task. It is likely that there exist no constant mean curvature compact
curves bounding a minimal surfaces of topological type of an annulus, but we have no proof
of this fact. There are many examples of noncompact minimal surfaces bounded by constant
mean curvature curves: minimal surfaces bounded by straight lines (the examples of Riemann
in R3 and B. Daniel [18] in H3), a portion of the plane contained between two parallel lines
or a portion of the helicoid contained between two parallel helices. To give further evidence
that this notion of constant mean curvature surfaces is the right one for codim > 1, we would
like to prove the existence of singly periodic examples paralleling the construction of Delaunay
surfaces (which can be obtained by gluing infinitely many spheres arranged along an axis using
small ”catenoidal necks“), which could be obtained by gluing techniques from flat disks and
pieces of helicoids contained between two straight lines.

We hope that the second construction can be generalized to prove the existence of higher
genus free boundary minimal surfaces in B3.

Finally, the third construction should generalize to the case of any finite number of spheres
which would give examples of constant mean curvature surfaces of arbitrary genus in Rieman-
nian manifolds.
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0.6 Introduction aux résultats de thèse en français

Chapitre 1: Problèmes isopérimétriques en codimension quel-
conque

Dans le premier chapitre, qui est un travail en collaboration avec R. Mazzeo et F. Pacard, on
propose une généralisation de la notion classique d’hypersurface à courbure moyenne constante
à des sous-variétés de codimension quelconque. On prouve également l’existence dans des
variétés riemanniennes compactes de sous-variétés à courbure moyenne constante (dans le
sens introduit) qui sont des perturbations des sphères géodésiques de petit volume.

Soit K une sous-variété plongée d’une variété riemannienne compacte (Mm+1, g). Par
définition, le vecteur courbure moyenne de K est défini comme la trace de la seconde forme
fondamentale de K:

hK(X,Y ) = πNK∇XY, pour X,Y ∈ TK, et HK = TrhK ,

où ∇ est la connexion de Levi-Civita sur M associée à la métrique g et πNK est la projection
orthogonale TKM → NK sur le fibré normale de K. En codimension 1, lorsque dim(NK) =
1, on dit que K est à courbure moyenne constante quand la fonction courbure moyenne
g(HK , NK) est constante. Il existe déjà plusieurs extensions de la notion de courbure moyenne
constante en codimension supérieure, parmi lesquelles, celles qui demandent que le champ de
vecteurs HK soit parallèle où harmonique. En s’appuyant sur les idées de Almgren [5], on
propose d’adapter une définition directement variationnelle.

F. Almgren [5] a généralisé le problème isopérimétrique classique aux sous-variétés de
codimension quelconque, ce qui consiste à résoudre le problème minmax suivant :

max
K : Volk(K)=c

(
min

Q : ∂Q=K
Volk+1(Q)

)
,

où c est une constante. Almgren prouve que les solutions dans l’espace euclidien Rm+1 sont
les sphères rondes, tandis que les questions d’existence et de régularité des solutions dans des
variétés riemanniennes ont été étudiées dans le travail de F. Morgan et M.C. Salavessa [87].

Les hypersurfaces à courbure moyenne constante peuvent être vues comme bords des points
critiques de la fonctionnelle

Ω 7→ Vol(∂Ω)− λVol(Ω), (35)

où λ est une constante qui correspond à la valeur de la courbure moyenne.

En codimension supérieure, on dit qu’une sous-variété K de dimension k < m est à cour-
bure moyenne constante si K est un bord d’une sous-variété Q qui est point critique de la
fonctionnelle

Q 7→ Vol(∂Q)− λVol(Q).

Ces points critiques sont caractérisés par le fait que Q est une sous-variété minimale telle
que la courbure moyenne du bord K = ∂Q vérifie :

HK = λn,
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où n est une normale unitaire de K dans Q, autrement dit si K est à courbure moyenne
constante dans Q et si HK n’a pas de composantes orthogonales à Q. Dans l’espace euclidien
Rm+1, la sphère Sk = Sk × {0} de dimension k < m (le bord de la boule Bk+1 de dimension
k+1), est un exemple de sous-variété à courbure moyenne constante de codimension m+1−k.

Dans notre travail, on propose une généralisation du théorème de R. Ye [118] qui prouve
l’existence de familles d’hypersurfaces à CMC qui sont des petites perturbations des sphères
géodésiques centrées aux points critiques non-dégénérés de la fonction courbure scalaire, et
du résultat plus récent de F. Pacard et X. Xu [95] qui construisent de telles familles dans
le cas où la courbure scalaire n’est pas une fonction de Morse. Par analogie, on obtient des
familles de sous-variétés à CMC associées aux points critiques non-dégénérés d’un invariant
géométrique qu’on appelle courbure scalaire partielle, défini sur le fibré grassmannien de la
variété ambiante. Pour tout sous-espace Πp ⊂ TpM de dimension (k + 1), on définit :

Rk+1(Πp) := −
k+1∑
i,j=1

〈R(Ei, Ej)Ei, Ej〉,

où E1, . . . , Ek+1 est une base orthonormée de Πp. On remarque que Rm+1(TpM) est égale à la
courbure moyenne standard en p, tandis que R2(Πp) est le double de la courbure sectionnelle
du plan Πp.

On définit la sphère géodésique Skε (Πp) associée au plan Πp comme l’image par l’application
exponentielle de la sphère de rayon ε centrée en 0 dans Πp :

Skε (Πp) :=
{

expp

(
ε
k+1∑
i=1

ΘiEi

)
, Θ ∈ Sk

}
.

On prouve le résultat suivant :

Théorème 0.6.1. Soit Πp un point critique non-dégénéré de Rk+1, alors pour tout ε suff-
isamment petit, il existe une sous-variété à courbure moyenne constante Kε(Πp) qui est un
graphe normal sur la sphère géodésique Skε (Π̃p̃) d’une section de norme C2,α bornée par cε3,
et dist (Π̃p̃,Πp) ≤ c ε2.

Voici une courte description de notre construction.

L’étude de l’opérateur de Jacobi en codimension quelconque

Soit Σ une sous-variété plongée dans M , fermée ou à bord. L’opérateur de Jacobi JΣ de Σ est
défini comme différentielle de la fonctionnelle courbure moyenne par rapport aux perturbations
normales de Σ. Soit Φ ∈ C2(Σ, NΣ) un champ de vecteurs normal à Σ avec la norme ‖Φ‖C0

suffisamment petite. Si ∂Σ 6= ∅, on demande également Φ = 0 sur ∂Σ. Alors,

ΣΦ :=
{

expq(Φ(q)), q ∈ Σ
}

est une sous-variété plongée. On définit :

JΣ(Φ) := ∇ ∂
∂s
H(ΣsΦ)

∣∣∣
s=0

.
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Soient πNΣ et πTΣ les projections orthogonales sur les fibrés normal et tangent de Σ.
On utilise les notations JNΣ et JTΣ pour les opérateurs πNΣ ◦ JΣ et πTΣ ◦ JΣ respectivement.
L’expression explicite de JNΣ est donnée par la formule standard [68] :

JNΣ = −∆N
Σ + RicNΣ + H

(2)
Σ , (36)

où ∆N
Σ est le Laplacien (défini positif) qui agit sur les sections de NΣ, et les deux autres

termes sont des endomorphismes symétriques suivants de NΣ : la projection orthogonale
RicNΣ = πNΣ ◦ RicΣ de la courbure partielle de Ricci de Σ définie par

g(RicΣX,Y ) :=
dim Σ∑
i=1

g (R(Ei, X)Ei, Y ) , pour tous X,Y ∈ TΣM,

(ici le tenseur de courbure R est celui associé à la variété ambiante M); le carré de l’opérateur
de forme défini par

H
(2)
Σ (X) :=

dim Σ∑
i,j=1

〈hΣ(Ei, Ej), X〉hΣ(Ei, Ej), pour tous X ∈ TΣM.

En générale, JΣ(Φ) a une composante non-triviale JTΣ (Φ) parallèle à Σ. Néanmoins, quand
Σ est une sous-variété minimale, on a JTΣ = 0. On verra que dans le problème linéarisé qu’on
étudie ce terme parallèle disparâıt également, et pour cette raison, on n’a pas besoin de le
rendre explicite.

Problème linéarisé

Soit Kk, k ≤ m une sous-variété fermée à courbure moyenne constante plongée dans Mm+1.
Par définition, il existe une sous-variété minimale Q telle que

K = ∂Q et HK = λn,

où n est une normale unitaire de K dans Q. On aimerait perturber K en une autre sous-
variété dont la courbure moyenne est à nouveau égale à λ. Plus précisément, on cherche un
champ de vecteurs Φ ∈ NK tel que la sous-variété KΦ =

{
expp(Φ(p)), p ∈ K

}
vérifie

KΦ = ∂QΦ et H(KΦ) = λnΦ,

où QΦ est une sous-variété minimale, et nΦ est une normale unitaire de KΦ dans QΦ. On voit
que la construction de QΦ et nΦ dépend de l’extension à l’intérieur de Q du champ de vecteurs
Φ défini sur K = ∂Q. En conséquence, contrairement au cas de codimension 1, le problème
n’est plus locale, ce qui à priori engendre des difficultés supplémentaires. En premier lieu, on
prouve le résultat suivant :

Lemme 0.6.1. Soit Q une sous-variété minimale non-dégénérée. Alors il existe une appli-
cation lisse Φ 7→ QΦ d’un voisinage de 0 dans C2,α(K,NK) sur l’espace des sous-variétés
minimales de M , telle que Q0 = Q et ∂QΦ = KΦ. De plus, QΦ est un graphe géodésique sur
Q d’un champ de vecteurs UΦ ∈ TQM tel que UΦ|K = Φ.
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L’étape suivante est de considérer la fonctionnelle

s ∈ R 7→ H(s) := H(KsΦ)− λnsΦ,

où nsΦ est une normale unitaire de KsΦ dans la sous-variété minimale QsΦ, et l’opérateur
linéarisé

LQ := ∇ ∂
∂s
H(s)

∣∣∣
s=0

.

On remarque que πTK ◦LQ = 0. En effet, soit T un champ de vecteurs tangent à KsΦ. Or
H(s)⊥KsΦ et H(0) = 0, donc

g(H′(0), T ) + g(H(0), T ′(0)) = 0.

Notation 0.6.1. On introduit l’opérateur

DQ := πNK ◦ ∇ ∂
∂s
nsΦ

∣∣∣
s=0

.

Soient UΦ l’extension dans Q du champ de vecteurs Φ définie par Lemme (0.6.1) et ŪΦ sa
partie linéaire en Φ. On note par [·]⊥ la projection orthogonale TKM → NK ∩ NKQ. On
obtient le résultat suivant :

Proposition 0.6.1. L’opérateur DQ vérifie

DQ =
[
∇nŪΦ

∣∣
K

]⊥
,

tandis que l’opérateur LQ est donné par

LQ(Φ) = πNK ◦ JK(Φ)− λDQ(Φ).

Linéarisation pour K = Sk ⊂ Rm+1

On applique l’analyse décrite ci-dessus au cas particulier où K = Sk = ∂Bk+1 dans l’espace
euclidien Rm+1, k < m. Soit Φ ∈ C2,α(Sk, NSk). On décompose

Φ = [Φ]⊥ − φΘ, où Θ ∈ Sk, [Φ]⊥ ∈ NSk ∩NSkB
k+1.

Alors, un calcul explicite montre que l’opérateur πNSk ◦ JSk vérifie

πNSk ◦ JSk(Φ) = ∆Sk [Φ]⊥ − (∆Sk + k)φΘ,

tandis que DBk+1 est donné par l’opérateur Dirichlet-to-Neumann :

DBk+1(Φ) =
∂ÛΦ

∂n
,

où ÛΦ ∈ NQ, ∆Bk+1 ÛΦ = 0 et ÛΦ

∣∣∣
Sk

= [Φ]⊥.
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Noyau de l’opérateur linéarisé

Une analyse simple des propriétés de LBk+1 montre que cet opérateur a un noyau non-trivial,
plus précisément, on trouve que :

(∆Sk + k) φ = 0⇒ φ ∈ span{Θj , j = 1, . . . , k + 1} et

(∆Sk − kDBk+1) [Φ]⊥ = 0⇒ [Φ]⊥ ∈ span
{(
cjµ Θj + dµ

)
Eµ, j = 1, . . . , k + 1

}
,

où Eµ, µ = k + 2, . . . ,m+ 1 une base orthonormée de NBk+1.

Argument perturbatif

Soit Πp ⊂ TpM un plan de dimension k + 1 et Skε (Πp) = ∂Bk+1
ε (Πp) la sphère géodésique, le

bord de la boule géodésique, associées à Πp. On trouve :

H(Bk+1
ε (Πp)) = O(ε) et H(Skε (Πp))−

k

ε
n = O(ε),

où n est une normale unitaire de Skε (Πp) dans Bk+1
ε (Πp). C’est donc naturel, au moins pour

ε suffisamment petit, de s’attendre à pouvoir perturber Skε (Πp) en une sous-variété à cour-
bure moyenne constante. Malheureusement, l’opérateur LBk+1

ε (Πp) est proche de l’opérateur

ε−2 LBk+1 qui, selon le paragraphe précédent, a un noyau non-trivial, ce qui nous empêche de
directement appliquer un argument perturbatif.

Néanmoins, on peut utiliser la méthode de réduction de Lyapunov-Schmidt et perturber
Skε (Πp) en une sous-variété qui est à courbure moyenne constante à un terme de Ker(LQ) près.
Plus précisément, on prouve que pour tout Πp ∈ Gk+1(TM) et tout ε assez petit, il existe une
sous-variété minimale Qε(Πp) qui est une petite perturbation de Bk+1

ε (Πp), et dont le bord
Kε(Πp) est un graphe normal sur Skε (Πp) tel que

H(Kε(Πp))−
k

ε
n = 〈~a,Θ〉n+

m+1∑
µ=k+2

(〈~cµ,Θ〉+ dµ) Nµ,

avec ~a,~cµ ∈ Rk+1 et dµ ∈ R. Ici, les champs de vecteurs n,Nk+2, . . . , Nm+1 forment une base
orthonormée de NKε(Πp) et n désigne une normale unitaire de Kε(Πp) dans Qε(Πp).

Choix des paramètres

On considère la fonctionnelle

Eε(Πp) := Volk (∂Qε(Πp))−
k

ε
Volk+1 (Qε(Πp)) ,

définie sur le fibré grassmannien de TM et introduite dans le cas de codimension 1 par F.
Pacard et X. Xu [95]. On montre que si Πp est point critique de Eε, alors Kε(Πp) est une
sous-variété à courbure moyenne constante. On remarque que dans la construction de Kε(Πp)
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on a m + 1 degrés de liberté qui correspondent aux translations infinitésimales du plan Πp,
et (k + 1) × (m − k) degrés de liberté qui correspondent aux rotations de Πp dans TpM qui
transforment Πp en plans orthogonales à Πp. Ainsi, le nombre de degrés de liberté correspond
au nombre d’équations dans le système

~a = 0, ~cµ = 0, dµ = 0, µ = k + 2, . . . ,m+ 1.

Enfin, on obtient
ε−k Eε(Πp) = c0 + c1 ε

2Rk+1(Πp) +O(ε4),

oùRk+1 est la fonction courbure scalaire partielle de M et où les constantes c0, c1 ne dépendent
pas de ε. En particulier, pour tout point critique non-dégénéré Πp de Rk+1, il existe un point

critique Π̃p̃ de Eε tel que dist
(

Πp, Π̃p̃

)
≤ c ε2, d’où suit notre résultat.

Chapitre 2 : Surfaces à bords libres dans la boule unité eucli-
dienne B3

Dans le deuxième chapitre, qui est un travail en collaboration avec A. Folha et F. Pacard,
on s’intéresse à l’existence des surfaces minimales plongées proprement dans la boule unité
euclidienne B3 qui rencontrent la sphère unité S2, le bord de B3, de manière orthogonale.
Ces surfaces apparaissent comme des points critiques de la fonctionnelle d’aire parmi les
surfaces plongées dans B3 dont les bords varient sur S2, et, d’après [36], sont appelées surfaces
minimales à bords libres. On prouve l’existence de deux familles géométriquement distinctes
de telles surfaces, paramétrées par un entier n suffisamment grand qui représente le nombre
de composantes connexes du bord.

Les disques équatoriaux obtenus par l’intersection des plans passants par l’origine avec la
boule unité, sont des exemples de surfaces minimales à bords libres. J.C. Nitsche [88] a montré
que ce sont les seules solutions du type topologique disque.

A. Fraser, M. Li [35] ont formulé la conjecture selon laquelle modulo les isométries, la seule
surface minimale à bords libres du type topologique anneau plongée proprement dans B3 est
le caténöıd critique :

(s, φ) ∈ R× S1 7→ 1

s∗ cosh s∗
(cosh s cosφ, cosh s sinφ, s), où s∗ tanh s∗ = 1.

Dans un travail récent, A. Fraser and R. Schoen [37] ont prouvé l’existence pour tous n ≥ 3
de surfaces minimales à bords libres dans B3 qui ont un genre 0 et n composantes connexes
de bord. Ces surfaces émergent dans l’étude des métriques maximisantes pour la première
valeur propre de l’opérateur Dirichlet-to-Neumann sur les variétés compactes de dimension 2.
Plus précisément, soit (M2, g) une variété riemannienne à bord. Pour u ∈ C∞(∂M), soit û
l’extension harmonique (calculée par rapport à la métrique g) de u dans M . Alors l’opérateur
Dirichlet-to-Neumann est défini par :

Dg(u) =
∂û

∂ν

∣∣∣∣
∂M

,
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où ν est une normale unitaire de ∂M dans M . Dg est un opérateur auto-adjoint à spectre
discret, appelé valeurs propres de Steklov. Soit σ1(g) la première valeur propre de Steklov
associée à la métrique g. A Fraser et R. Schoen montrent que si M a un genre 0 et n
composantes connexes de bord, il existe une métrique gmax pour laquelle le maximum de
σ1(g) lengthg(∂M) est atteint. De plus, les fonctions propres correspondantes définissent un
plongement minimal à bords libres Σn de M dans B3. Ils remarquent que quand n tend
vers l’infinie, la suite Σn converge sur les compacts de B3 vers une copie double d’un disque
équatorial.

Dans notre travail, on propose une construction indépendante de Σn pour n assez grand
utilisant des techniques perturbatives. On prouve également l’existence de surfaces minimales
à bords libres Σ̃n dans B3 qui ont un genre 1 et n composantes connexes de bord pour n assez
grand, ce qui un nouveau résultat qui ne découle pas de [37].

Avant d’énoncer notre théorème, on identifie R3 avec C × R et introduit un groupe
d’isométries Sn généré par

(z, t) 7→ (z̄, t), (z, t) 7→ (z,−t), et (z, t) 7→ (z · e
2πi
n , t).

Théorème 0.6.2. Il existe n0 ≥ 0 tel que pour tout n ≥ n0 il existent une surface minimale
à bords libres Σn de genre 0 et une surface minimale à bords libres Σ̃n de genre 1 plongées
dans B3 qui rencontrent S2 de manière orthogonale le long de n courbes fermées.

Les deux surfaces sont invariantes par l’action du groupe Sn et, quand n tend vers l’infinie,
la suite Σn converge vers une copie double du disque horizontal (ouvert), uniformément sur
les compacts de B3, tandis que la suite Σ̃n converge vers une copie double du disque épointé,
uniformément sur les compacts de B3 \ {0}.

Notre preuve est dans l’esprit des preuves d’existence de surfaces minimales dans S3 par
dédoublement proposées par N. Kapouleas [61], N. Kapouleas et S.D. Yang [63], et D. Wiygul
[117]. Comme dans [63], notre construction marche quand le nombre n de composantes con-
nexes du bord est assez grand. Les surfaces qu’on obtient ont la structure de deux disques
horizontaux parallèles connectés par n “demi-ponts” caténöıdaux arrangés le long du cercle
horizontal de S2 de manière périodique et par un “cou” caténöıdal à axe vertical centré à
l’origine.

Voici une courte description de notre construction d’une famille de surfaces minimales à
bords libres de genre 1, et on verra qu’une preuve analogue avec quelques simplifications donne
l’existence d’une famille de surfaces minimales à bords libres de genre 0.
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Paramétrisation de la boule unité

Premièrement, on paramètre un voisinage du disque horizontal D2×{0} dans la boule B3 par
une région du cylindre D2 × R de manière suivante :

X : D2 × R→ B3, X(z, t) = A(z, t) (z,B(z) sinh t) ,

où

B(z) =
1 + |z|2

2
et A(z, t) =

1

1 +B(z)(cosh t− 1)
.

Dans cette paramétrisation, le bord |z| = 1 du cylindre correspond au bord S2 de la boule
unité. De plus, chaque feuille t = t0 est une calotte sphérique à courbure moyenne constante
H = 2 sinh t0 qui rencontre le bord de la boule de manière orthogonale (quand t = 0 on
obtient le disque unité D2 × {0}).

On trouve que la métrique X∗geucl dans D2 × R est de forme

X∗geucl = A2(z, t)
(
|dz|2 +B2(z) dt2

)
. (37)

Graphes verticaux dans B3

Un rôle important dans notre construction est joué par les graphes verticaux sur le disque
D2 × {0} ⊂ B3 paramétrés par

z ∈ D2 7→ X(z, w(z)) ∈ B3 pour w ∈ C2(D2). (38)

Le développement limité de la courbure moyenne d’un tel graphe en puissances de w et de
dérivées de w jusqu’au deuxième ordre s’écrit sous la forme :

Hgr(w) = Lgr w +Qgr(w,∇w,∇2w), (39)

où

Lgr := ∆(B · ) = ∆

(
1 + |z|2

2
·
)

est l’opérateur de courbure moyenne linéarisé et Qgr est une fonction non-linéaire lisse qui
vérifie Qgr(0, 0, 0) = DQgr(0, 0, 0) = D2Qgr(0, 0, 0) = 0. De plus, le graphe (38) rencontre le
bord de la boule de manière orthogonale si w vérifie la condition homogène de Neumann au
bord :

∂rw|r=1 = 0.

On remarque que l’opérateur Lgr a un noyau non-trivial composé des fonctions 2x1
1+|z|2 et 2x2

1+|z|2

ce qui correspond à pencher le disque D2 × {0} dans B3. Ce noyau peut être éliminé en
imposant l’invariance par l’action d’un groupe de rotations autours de l’axe verticale.

50



Fonction de Green

D’après A. Fraser et R. Schoen, les surfaces qu’on aimerait construire devraient être proches
de sommes connexes de deux copies du disque horizontal avec des petits “demi-ponts” proches
de demi-caténöıdes placés de manière periodique sur le cercle unité horizontal et un petit
“cou” proche du caténöıde centré à l’origine.

En utilisant les idées R. Mazzeo, F. Pacard et D. Pollack [77], pour obtenir une meilleure
correspondance avec le comportement (logarithmique) du caténöıde à l’infinie, on perturbe
d’abord le disque D2 × {0} à l’aide d’une fonction de Green associée à l’opérateur Lgr, puis

effectue la somme connexe. Soit zm = e
2πmi
n , m = 1, . . . , n les ne racines de l’unité. On cherche

une solution du problème : {
∆(BΓn) = c0 δ0 dans D2,

∂rΓn =
∑n

m=1 cn δzn sur S1,
(40)

avec des constantes c0, c1, . . . , cn. Si on suppose que la fonction Γn est invariante par les
rotations d’angle 2π

n , alors résoudre (40) est équivalent à trouver une fonction G telle que
Γn(z) = G(zn)/B(z), {

∆G = c̃0 δ0 dans D2,

∂rG− 1
n G = c̃1 δ1 sur S1,

(41)

avec des constantes c̃0 et c̃1. Une solution de (41) peut être trouvée explicitement. On
décompose G en somme de deux fonctions, dont une a une singularité en z = 0, et l’autre a
une singularité en z = 1. Plus précisément, la fonction

G0(z) := − log |z| − n

vérifie ∆G0 = 0 dans D2 \ {0} et ∂rG0 − 1
nG0 = 0 sur S1. D’un autre coté, la fonction

G1(z) := −n
2

+

∞∑
k=0

1

nk
ReHk(z), où Hk(z) :=

∞∑
j=1

zj

jk+1
,

est harmonique dans D2, et, puisque

H0(z) = − log(1− z),

et
∂r (ReHk) = ReHk−1 on S1, ∀k ∈ N,

G1 vérifie :

∂rG1 −
1

n
G1 = 0 on S1 \ {0}.

Enfin, on écrit notre fonction de Green sous la forme :

Γn(z) :=
1

B(z)
(τ0G0(zn) + τ1G1(zn)) ,
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où les coefficients τ0, τ1 ∈ R sont soigneusement choisis à l’étape où on “recolle” le graphe
de Γn avec le “cou” et les “demi-ponts” caténöıdaux. Le développement limité de Γn aux
voisinages de z = 0 et z = zm s’écrit sous la forme :

Γn(z) =


−n
(
2τ0 + τ1

2

)
− 2n τ0 log |z|+O(|z|2 log |z|), quand |z| → 0

−n (2τ0 + τ1
2 ) + τ1 log n− τ1 log |z − zm|

+O(|z − zm| log |z − zm|), quand |z − zm| → 0.

(42)

“Demi-ponts” et “cou” catenöıdaux

Le rôle des “demi-ponts” caténöıdaux qui vont dans notre construction joindre les deux
“copies” du disque unité, pourrait être joué par des bandes obtenus par l’intersection des
caténöıdes euclidiens centrés aux ne racines de l’unité avec la sphère S2. La difficulté de
cette approche est que ces bandes ne sont pas orthogonales à S2. On préfère de plonger les
demi-caténöıdes dans B3 orthogonalement à S2, en perdant la propriété de minimalité.

Soit C− := {ζ ∈ C : Re(ζ) ≤ 0} un demi-plan. On considère les applications

λm : ζ ∈ C− 7→ e
2πim
n

1 + ζ

1− ζ
∈ D̄2

qui définissent des difféomorphismes locales entre le voisinage de ζ = 0 dans C− et les voisi-
nages de z = zm dans le disque unité. Puis, on introduit les applications

Λm : (ζ, τ) ∈ C− × R 7→ (λm(ζ), 2τ) ∈ D̄2 × R.

Pour ε ∈ (0, 1) on paramètre le me “demi-pont” caténöıdal Cε,m dans B3 par

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7→ X ◦ Λm

(ε
2

coshσ eiθ,
ε

2
σ
)
∈ Cε,m,

pour σε � 1 choisi plus tard. Alors, Cε,m est proche d’un demi-caténöıde centré en z = zm,
dilaté par ε > 0, et tronqué à la hauteur σε. De plus, puisque la restriction de X ◦ Λm aux
plans horizontaux est conforme, Cε,m rencontre ∂B3 de manière orthogonale.

D’en autre coté, dans le voisinage de z = 0, la métrique X∗geucl donnée par (37) es proche
de la métrique |dz|2 + 1

4dt
2. Pour ε̃ ∈ (0, 1) et sε̃ � 1 choisis plus tard, on considère la surface

paramétrée par

Xcat
ε̃ : (s, φ) ∈ (−sε̃, sε̃)× S1 7→

(
ε̃ cosh s eiφ, 2 ε̃s

)
∈ R3,

minimale par rapport à la métrique |dz|2 + 1
4 dt

2. Alors, la surface Cε̃,0 :

(s, φ) ∈ (−sε̃, sε̃)× S1 7→ X ◦Xcat
ε̃ (s, φ) ∈ Cε̃,0,

est proche d’un caténöıde dilaté par ε̃ et tronqué à la hauteur sε̃.
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“Matching”

Avec le changement de variables z = λm
(
ε
2 coshσ eiθ

)
dans des régions où σ 6= 0, on peut

considérer le “demi-pont” caténöıdal Cε,m comme bi-graphe sur {z ∈ D2 : |z − zm| > ε} de
la fonction

Gε,m = −ε log
ε

2
+ ε log |z − zm|+O(ε3 |z − zm|−2). (43)

D’un autre coté, avec le changement de variables z = ε̃ cosh s eiφ dans des régions où s 6= 0,
on peut considérer le “cou” caténöıdal Cε̃,0 comme bi-graphe sur {z ∈ D2 : |z| > ε̃} de la
fonction

Gε̃,0 = −ε̃ log
ε̃

2
+ ε̃ log |z|+O(ε̃3 |z|−2). (44)

En comparant les expressions (43) et (44) avec le développement limité de la fonction de
Green Γn aux voisinages de z = zm et z = 0 (42), on trouve que ε, ε̃, ainsi que les coefficients τ1

et τ2, sont exprimés en fonction du nombre n de composantes connexes du bord de la surface
qu’on construit. En comparant les termes logarithmiques, on trouve :

τ1 = ε and n τ0 = ε̃,

tandis que en comparant les termes constants on trouve :

ε̃ ∼ ε and n ∼ log(1/ε).

Enfin, en comparant les termes restants on conclut que le “recollement” devrait être ef-
fectué dans des régions où

|z| = ε̃ cosh sε̃ ∼ ε
1
2 et |z − zm| ∼ ε coshσε ∼ ε

2
3 .

Remark 0.6.1. Ces calculs, avec le fait que les fonctions constantes n’appartiennent pas
au noyau de l’opérateur linéarisé Lgr donnent une idée pourquoi notre construction marche
uniquement pour n assez grand.

Perturbation

À cette stade, pour tout n assez grand, on obtient via la somme connexe une surface de genre
1 plongée dans B3 et orthogonale à ∂B3 le long de n composantes connexes de bord. On
notera cette surface par An et l’appellera solution approchée. La prochaine étape est alors de
perturber An en une surface minimale à bords libres.

Soient Ξ un champ de vecteurs dans B̄3 transverse à An et ξ : B̄3 × (0, 1) → B̄3 le flot
associé :

dξ

dt
= Ξ(ξ(·, t)), ξ(p, 0) = p, p ∈ B̄3.

On choisi Ξ de telle façon que pour tout t suffisamment petit, la surface An,t := ξt(An) soit
plongée dans B3 et rencontre S2 orthogonalement le long de ∂An,t.

Enfin, pour w ∈ C2,α(An), on introduit la surface An(w) dans B3 paramétrée par

p ∈ An 7→ ξ(p, w(p)) ∈ An(w).
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Alors, An(w) rencontre S2 de manière orthogonale quand w vérifie sur ∂An la condition
homogène de Neumann au bord :

gn(∇gnw,N∂An) = 0,

où gn est la métrique induite sur An de la métrique euclidienne et N∂An est une normale
unitaire de ∂An dans An.

Le développement limité de la courbure moyenne de An(w) en puissances de w et des
dérivées de w s’écrit sous la forme :

H(An(w)) = H(An) + Lnw +Qn(w,∇w,∇2w),

où H(An) est la courbure moyenne de la solution approchée, Ln est l’opérateur de courbure
moyenne linéarisé défini sur An, et Qn une fonction non-linéaire lisse, qui vérifie Qn(0, 0, 0) =
DQn(0, 0, 0) = 0. Notre but alors est de résoudre l’équation :

Lnw = −H(An)−Qn(w).

On montre que dans une topologie adaptée, la norme de H(An) tend vers 0 quand n tend
vers l’infinie comme e−na pour une constante a > 1. De plus, on montre que pour un choix
convenable du champ de vecteur Ξ, l’opérateur Ln est inversible. Son inverse ne sera pas
uniformément borné en n, mais explosera comme enν , pour ν � 1 qu’on choisit. Alors, le
résultat découlera du théorème de point fixe de Banach pour les applications contractantes,
appliqué à l’application w 7→ −L−1

n (H(An) +Qn(w)).

Analyse linéaire

En conclusion, disons quelques mots sur les propriétés de l’opérateur linéaire Ln. On montre
que le problème de petites valeurs propres (de valeurs propres qui tendent vers 0 aussi vite
que n tend vers l’infinie) peut être résolu en imposant l’invariance par rapport à un groupe
d’isométries de la surface qu’on construit. Plus précisément, dans les régions de “demi-ponts”,
l’opérateur Ln est proche de l’opérateur de Jacobi du demi-caténöıde. Les petites valeurs
propres qui correspondent aux rotations et translations du catenoid sont éliminées en imposant
les symétries w(σ, θ) = w(−σ, θ) = w(σ, 2π− θ) ainsi que la condition homogène de Neumann
au bord ∂θw|θ∈{π

2
, 3π

2
} = 0. Les autres petites valeurs propres sont éliminées en imposant

l’invariance par la rotation d’angle 2π
n . Enfin dans la région de An paramétrée par un domaine

du disque unité, l’opérateur Ln est proche de l’opérateur Lgr (39). On s’intéresse alors aux
solutions du problème : {

∆(Bw) = f dans D2 \ {0}

∂rw = 0 sur S1 \ {z1, . . . , zn}.
(45)

qui est équivalent, après le changement de variables z 7→ zn, à l’équation de Poisson avec la
condition de Robin au bord :{

∆W = F dans D2 \ {0}

∂rW − 1
nW = 0 sur S1 \ {1}.

(46)
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Une solution de (46) peut être trouvée en utilisant que pour tout n ≥ 2 le noyau l’opérateur
associé est trivial. D’un autre coté, quand n tend vers l’infinie, (46) converge vers l’équation
de Poisson avec la condition homogène de Neumann au bord, qui, à son tour, a un noyau non-
trivial. Ça explique (ainsi que la présence des valeurs propores engendrées par les dilations
du caténöıde) pourquoi la solution de (46), et en conséquence, la norme de L−1

n , explosent
“légèrement” quand n tend vers l’infinie. Cependant, on obtient le résultat en appliquant le
théorème de point fixe de Banach dans une boule d’un espace fonctionnel dont le rayon tend
vers 0 beaucoup plus vite que la norme de L−1

n explose.

Chapitre 3: Surfaces non-convexes à courbure moyenne con-
stante dans des variétés riemanniennes de dimension 3

Dans le troisième chapitre, on prouve l’existence dans une variété riemannienne générique de
dimension 3 d’une famille de sphères topologiques non-convexes dont la courbure moyenne est
grande.

Ces surfaces sont obtenues comme sommes connexes de deux sphères géodésiques de rayons
identiques tangentes en un point. Notre construction est possible quand la fonction courbure
scalaire R de la variété ambiante a un point critique ocr, tel que la hessienne de R en ocr a
une valeur propre simple non-nulle.

Plus précisément, soit (M, g) une variété riemannienne lisse de dimension 3. Soient ocr ∈M
un point critique de la courbure scalaire R, λ 6= 0 une valeur propre simple de HessocrR et
vλ ∈ TocrM le vecteur propre associé. Pour ε ∈ R+ suffisamment petit, on considère l’union
S#(ε, ocr, vλ) de deux sphères géodésiques de rayon ε tangentes en ocr, dont les centres sont
placés de manière symétrique par rapport à ocr sur la géodésique qui passe par ocr avec la
vitesse égale à vλ. On prouve le résultat suivant :

Théorème 0.6.3. Il existe ε∗ ∈ (0, 1) tel que pour tous ε ∈ (0, ε∗) il existe une surface
Sε à courbure moyenne constante égale à 2

ε telle que la distance de Hausdorff entre Sε et
S#(ε, ocr, vλ) est bornée par une constante fois ε2. La surface Sε est plongée si λ < 0 et
immergée si λ > 0.

Voici une courte description de notre construction.

Pseudo bulles

Rappelons, que dans l’espace euclidien d’effectuer la somme connexe de deux surfaces Σ±, de
point de vue topologique, signifie de faire Σ± tangentes en un point, les translater légèrement
dans la direction de leur normale commune, puis enlever des petits disques autours des points
où on aimerait effectuer la somme connexe, et identifier les bords de ces disques avec les bords
d’un petit “cou”. R. Mazzeo, F. Pacard et D. Pollack [77] ont montré que si les surfaces Σ±

sont à courbure moyenne constante, alors leurs somme connexe peut être perturbée, quand la
taille du “cou” est assez petite, en une surface qui a la même valeur de la courbure moyenne.
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Dans notre cas, on aimerait effectuer la somme connexe de deux sphères géodésiques dont
la courbure moyenne n’est pas constante, mais proche d’être constante quand le rayon des
sphères est petit. Soit Sε(p) une sphère géodésique de rayon ε centrée en p ∈M . La courbure
moyenne de Sε(p) étant donnée par :

H(Sε(p)) =
2

ε
+O(ε),

la première étape serait de perturber Sε(p) en une surface à CMC. Malheureusement, d’après
l’observation de R. Ye [118], en générale, ce n’est pas possible à cause de la présence de
petites valeurs propres (de valeurs propres qui tendent vers 0 aussi vite que ε tend vers 0)
de l’opérateur de Jacobi de Sε(p). En effet, ce dernier est proche de l’opérateur de Jacobi de
la sphère euclidienne de rayon ε qui s’écrit sous la forme : ε−2 (∆S2 + 2) et admet un noyau
composé des restrictions sur S2 des fonctions coordonnées :

Ker(∆S2 + 2) = {Θ1,Θ2,Θ3}.

Alors, dans un certain sens, le mieux qu’on puisse faire est de perturber Sε(p) en une sur-
face Σε(p) dont la courbure moyenne est constante modulo un élément de Ker(∆S2 + 2).
Plus précisément, soit 〈·, ·〉 le produit scalaire dans R3. Alors la courbure moyenne de Σε(p)
vérifiera :

H(Σε(p))(Θ)− 2

ε
= 〈A,Θ〉, Θ ∈ S2,

pour un vecteur A ∈ R3. Un calcul explicite [118] montre que

A = −2π ε2

15
∇gR(p) +O(ε4).

D’après Naridulli [90], on appelle les surfaces Σε(p) pseudo bulles.

“Cou” caténöıdal

La prochaine étape est de trouver une surface qui jouerait le rôle du “cou” dans la construction
de la somme connexe. Dans l’espace euclidien ce rôle est la plus part de temps joué par un
élément de la famille de caténöıdes :

Cη : (s, φ) ∈ [−sη, sη]× S1 7→ (η cosh s cosφ, η cosh s sinφ, η s) ,

où le paramètre η ∈ (0, 1) est appelé “la taille du cou”. Dans le cas riemannien, on peut
utiliser les propriétés géométriques du caténöıde étant donné, au moins pour η suffisamment
petit, un plongement de Cη dans M qui est proche de l’identité dans les coordonnées choisies.

Soient Λ une surface lisse plongée dans M et NΛ une normale unitaire de Λ. Pour q ∈ Λ
l’application

FΛ(q′, z) = expq′
(
z NΛ(q′)

)
définit un difféomorphisme d’un voisinage de (q, 0) dans Λ×R sur un voisinage de q dans M .
Soient (y1, y2) 7→ ζ(y1, y2) des coordonnées locales sur Λ à l’origine en q. Alors l’application

FΛ,q(y
1, y2, z) = FΛ(ζ(y1, y2), z)
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définit un difféomorphisme d’un voisinage de 0 dans R3 sur un voisinage de q dans M , qu’on
appelle coordonnées de Fermi. On paramètre le “cou” caténöıdal Cη,q par

(s, φ) ∈ [−sη, sη]× S1 7→ FΛ,q (η cosh s cosφ, η cosh s sinφ, η s) ∈ Cη,q.

Dans notre cas, il sera pertinent de prendre pour Λ un disque géodésique de rayon suff-
isamment petit. Plus précisément, on fixe un point q0 ∈ M et une géodésique minimisante γ
qui passe par q0 et qu’on appelle “l’axe du cou”, puis on plonge un caténöıde de “taille du
cou” η dans M via coordonnées de Fermi associées au disque géodésique Λ de rayon ε centré
en q0 et orthogonale à γ.

On verra dans l’argument finale qu’on doit introduire dans notre construction des degrés
de liberté supplémentaires et pour cette raison, on considère une famille de “cous” caténöıdaux
Cη,q paramétrés par la position q ∈ Λ de leurs “axes” parallèles à γ.

Somme connexe dans une variété riemannienne

Dans une variété riemannienne, à cause de l’absence d’isométries (notamment, l’absence de
translations et de rotations), on ne peut pas effectuer la somme connexe entre deux surfaces
de la même façon que dans l’espace euclidien. Néanmoins, on pourrait imaginer une procédure
analogue si, étant donné une famille de surfaces, paramétrées par exemple par leur positions
dans M , on pouvait choisir, pour tout d > 0 suffisamment petit, une unique paire d’éléments la
distance entre lesquelles (dans le sens de distance entre deux ensembles disjoints dans l’espace
métrique M) est égale à d.

Soit d ∈ (0, 1/2 ε). Un exercice simple est de choisir deux sphères géodésiques de rayon ε
à distance d. Pour ça, il suffit de fixer un point o ∈ M et un vecteur v ∈ ToM , et de placer
les centres des sphères en expo

(
±
(
ε+ d

2

)
v
)
.

On montre qu’une procédure analogue existe pour une famille de pseudo bulles, en util-
isant le fait que ces dernières sont des petites perturbations des sphères géodésiques. Plus
précisément, on considère la famille

Σ±ε,t = Σε (expo(± tv))

et obtient le résultat suivant

Lemme 0.6.2. Pour tout d ∈ (0, 1/2 ε) il existe unique t ∈ (ε, 2ε), tel que la distance entre
les surfaces Σ±ε := Σ±ε,t est égale à d, réalisée par une unique géodésique γ, à priori différente
de t 7→ expo(tv).
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Remark 0.6.2. On aura également besoin d’effectuer une somme connexe d’une paire de
pseudo bulles qui ont une intersection non-vide. Dans ce cas là, on ne peut pas parler de la
“distance” entre les surfaces, mais on montre que pour tout d ∈ (0, ε), il existe une unique paire
de pseudo bulles Σ±ε , dont l’intersection est traversée par une unique géodésique minimisante
γ de longueur d qui intersecte Σ±ε orthogonalement.

À partir de maintenant, on aura deux sommes connexes, une plongée et l’autre immergée,
et on verra dans l’argument finale que, en fonction du signe de la valeur propre λ 6= 0 de la
hessienne de la fonction courbure scalaire R, une de ces sommes connexes peut être perturbée
en une surface à courbure moyenne constante.

L’étape suivante est de décrire une procédure de “recollement” entre une paire de pseudo
bulles Σ±ε et un “cou” caténöıdal à “axe” parallèle à la géodésique γ qui réalise la “distance”
entre les pseudo bulles. Plus précisément, soit Λ le disque géodésique centré en q0 = γ

(
1
2

)
et orthogonale à γ. Alors, on considère la famille de “cous” Cη,q paramétrée par la “taille du
cou” η et la position q ∈ Λ de “l’axe” dans Λ. On remarque que par construction, quand
q = q0, “l’axe du cou” est orthogonale à Σ±ε , tandis qu’en variant q, on varie l’angle entre
“l’axe” et les normales à Σ±ε .

Fonctions de Green

Selon R. Mazzeo, F. Pacard et D. Pollack [77], de point de vue analytique, pour obtenir une
meilleure correspondance avec le comportement asymptotique (logarithmique) d’une caténöıde,
c’est mieux de d’abord perturber les surfaces Σ±ε à l’aide des fonctions de Green associées à
leurs opérateurs de Jacobi, puis effectuer la somme connexe.

Soient JΣ±ε
les opérateurs de Jacobi des pseudo bulles Σ±ε . On aimerait définir et étudier

les solutions du problème :
JΣ±ε

Γ± = −2π δp± , (47)

où δp± sont les masses de Dirac en p± ∈ Σ±ε . D’un autre coté, en paramétrant Σ±ε par la
sphère euclidienne S2, on trouve que les opérateurs JΣ±ε

s’écrivent sous la forme :

JΣ±ε
= ε−2 (∆S2 + 2) + L, où ‖Lu‖C0,α(S2) ≤ c ‖u‖C2,α(S2).
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Malheureusement, le fait que l’opérateur ∆S2 + 2 admet un noyau non-trivial nous empêche
de trouver directement Γ± et d’obtenir des estimations raisonnables qui seraient uniformes en
ε quand ε tend vers 0. Néanmoins, au lieu de résoudre (47) on peut trouver une solution du
problème :

JΣ±ε
Γ± = −2π δp± + 〈B±,Θ〉, (48)

pour des vecteurs B± ∈ R3. Un calcul explicite donne :

B± =
ε−2

2
Θ(p±) +O(1)

Solution approchée

On choisit les pôles p± des fonctions Γ± comme les points les de l’intersection de “l’axe du
cou” γ avec Σ±ε . Alors, aux voisinages de p±, les surfaces Σ±ε peuvent être paramétrées comme
graphes normaux sur le disque Λ. Dans les coordonnées normales géodésiques centrés en q ∈ Λ,
on trouve :

Γ±(y) = c± ± log |y|+O(|y| log |y|). (49)

D’un autre coté, le “cou” caténöıdal Cη,q peut être vu comme bi-graphe sur le disque
géodésique Λ d’une fonction Gη, qui vérifie au voisinage de q :

Gη = −η log
η

2
+ η log |y|+O

(
η3 |y|−2

)
. (50)

On montre que pour tous o ∈ M , v ∈ ToM avec ‖v‖g = 1, η ∈ (0, 1), et q ∈ Λ avec η et
dist(q, q0) suffisamment petits, on peut choisir la distance d entre les pseudo bulles de telle
façon que les termes constants dans les développements limités de η Γ± et ±Gη cöıncident
exactement, ce qui permet de “recoller” les graphes de η Γ± et le “cou” Cη,q à l’aide d’une
fonction troncature.

À cette stade, pour tout ε suffisamment petit, on obtient une surface, qu’on notera Aε
et qu’on appellera solution approchée, qui dépend de huit paramètres géométriques : le point
o ∈M (trois degrés de liberté), le vecteur unitaire v ∈ ToM (deux degrés de liberté), la “taille”
du cou η (un degré de liberté), et la position q de “l’axe du cou” dans le disque géodésique Λ
(deux degrés de liberté).

Argument perturbatif

Le prochaine étape est de perturber pour ε suffisamment petit la solution approchée Aε en
une surface à courbure moyenne constante. Soient Ξ un champ de vecteurs lisse défini dans
un voisinage de Aε dans M et transverse à Aε, et ξ : M × (0, 1)→M le flot associé :

dξ

dt
= Ξ(ξ(·, t)), ξ(p, 0) = p, ∀p ∈M.

Pour w ∈ C2(Aε) suffisamment petit, soit Aε(w) la surface paramétrée par p ∈ Aε 7→
ξ(p, w(p)) ∈ Aε(w). Alors, le développement limité de la courbure moyenne de Aε(w) en
puissances de w et les dérivées de w s’écrit sous la forme :

H(Aε(w)) = H(Aε) + Lεw +Qε(w,∇w,∇2w),
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où H(Aε) est la courbure moyenne de la solution approchée, Lε est l’opérateur de courbure
moyenne linéarisé et Qε est une fonction non-linéaire lisse qui vérifie :

Qε(0, 0, 0) = DQε(0, 0, 0) = 0.

Notre but est de trouver une solution de l’équation :

Lεw =
2

ε
−H(Aε)−Qε(w,∇w,∇2w).

Si Lε était inversible avec l’inverse uniformément borné en ε quand ε tend vers 0, alors on pour-
rait appliquer le théorème de point fixe de Banach à l’application w 7→ L−1

ε

(
2
ε −H(Aε)−Qε(w)

)
dans une boule d’un espace de Banach adapté, à condition que la norme de H(Aε) − 2

ε tend
vers 0 quand ε tend vers 0.

On étudie d’abord la courbure moyenne de Aε. On suppose que η et dist(q, q0) soient
bornés par une puissance de ε adapté. En utilisant le fait que le caténöıd est minimal dans
l’espace euclidien, on trouve que dans la région du “cou”, la norme L∞ de H(Aε) tend vers
0 quand ε tend vers 0. D’un autre coté, on rend la norme de H(Aε)− 2

ε très petite dans une
topologie adaptée qui prend en compte que l’aire de la région caténöıdale tend vers 0 beaucoup
plus vite que l’aire du reste de Aε.

D’un autre coté, en dehors du “cou”, Aε est paramétrée comme graphe sur Σ±ε des fonctions
de Green. Soient χ± des fonctions troncatures à support dans les régions paramétrées par les
pseudo bulles. Alors, en utilisant l’expression de la courbure moyenne de Σ±ε ainsi que les
équations vérifiées par les fonctions de Green, on obtient :

H(Aε)−
2

ε
= Hε + χ+ 〈C+,Θ〉+ χ−〈C−,Θ〉,

où la norme de Hε tend très vite vers 0 quand ε tend vers 0 dans un espace fonctionnel adapté
et 〈C±,Θ〉 ∈ Ker(∆S2 + 2). Plus précisément, on trouve :

C± = −2π ε2

15
∇R(o±) +

ε−2 η

2
Θ(p±) +O(ε4), (51)

où o± sont les “centres” des pseudo bulles Σ±ε et p± sont les pôles des fonctions de Green.

Ensuite, on s’intéresse aux propriétés de l’opérateur linéaire Lε. On constate la présence
de petites valeurs propres de Lε (de valeurs propres qui tendent vers 0 aussi vite que ε tend
vers 0) qui peuvent être identifiées en utilisant la structure de Lε.

Plus précisément, dans les régions de Aε paramétrées par les pseudo bulles, l’opérateur Lε
est proche de l’opérateur ε−2 (∆S2 + 2) qui admet un noyau de dimension trois composé des
fonctions coordonnées Θ1,Θ2,Θ3.

D’un autre coté, dans la région du “cou”, Lε est proche de l’opérateur de Jacobi du
ceténöıde euclidien. Ce dernier est une surface dégénérée, et en particulier admet deux champs
de Jacobi engendrés par les translations horizontales du caténöıde et donnés par les fonctions
cosφ
cosh s et sinφ

cosh s qui décroissent très vite à l’infinie.
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On note par Kε l’espace des fonctions propres de Lε associées aux petites valeurs propres.
D’après N. Kapouleas, on appelle Kε noyau approché. En utilisant les idées décrites ci-dessus,
on montre que la dimension de Kε est égale à huit, ce qui correspond au nombre de paramètres
libres dans notre construction.

Dans l’étape suivante, on utilise la méthode de réduction de Lyapunov-Schmidt, qui con-
siste à appliquer, pour ε est suffisamment petit, le théorème de point fixe de Banach dans un
espace des fonctions orthogonales à Kε pour perturber la solution approchée Aε en une surface
dont la courbure moyenne vérifie :

H − 2

ε
=

8∑
i=1

Ai Φi, (52)

où Kε = span{Φi, i = 1, . . . , 8}.

Choix des paramètres

Dans l’argument finale, on explique comment choisir les huit paramètres géométriques pour
avoir H = 2

ε . Les coefficients Ai dans (52) dépendent de manière continue de o ∈M , v ∈ ToM ,
η ∈ (0, 1) et q ∈ Λ. On montre que pour ε suffisamment petit, le système d’équations

Ai = 0, i = 1, . . . , 8, (53)

peut s’écrire sous la forme (Id + F )(·) = 0 pour une fonction F bornée uniformément en
o, v, η, q, et trouve une solution dans une boule de R8 grâce au théorème de point fixe de
Schauder.

Six premières équations On définit la base {Φi} du noyau approché Kε de telle façon
que les six premières fonctions soient proches aux éléments de

Ker(∆S2 + 2) = span{Θ1,Θ2,Θ3},

définis dans les régions paramétrées par les pseudo bulles. On projette la courbure moyenne
de notre surface perturbée sur ces six premières fonctions et remarque que, l’impact de la
perturbation étant négligeable, les plus grands termes dans cette projection viennent de la
courbure moyenne de la solution approchée Aε. D’après (51), les premières six équations de
(53) vont s’écrire sous la forme :

− 2π ε2

15
∇gR(o±) +

1

2
η ε−2 Θ(p±) + ε4 F (o, v, η, a) = 0. (54)

Avec un léger abus de notation, on peut écrire :

o± = o± ε v +O(ε2),
p± = ∓v +O(ε2), si Aε est plongée

p± = ±v +O(ε2), si Aε est immergée.

61



D’abord, supposons que la surface Aε est plongée. Soit ocr un point critique de la courbure
scalaire : ∇gR(ocr) = 0. Alors, (54) est équivalent à :{

−2π ε2

15 HessocrR(o− ocr − ε v)− 1
2 η ε

−2 v + ε4 F (o, v, η, a) = 0,

−2π ε2

15 HessocrR(o− ocr + ε v) + 1
2 η ε

−2 v + ε4 F (o, v, η, a) = 0.
(55)

Ça implique
o− ocr + ε2 F (o, v, η, a) = 0.

Maintenant, soit vλ le vecteur propre associé à une valeur propre simple λ 6= 0 de HessocrR.
On écrit

v = vλ + ṽ,

et trouve que la projection de (55) sur vλ donne :

η +
4π λ ε5

15
+ ε6 F (o, v, η, a) = 0.

En particulier, on voit que puisque η > 0, la solution existe si et seulement si λ < 0. D’un
autre coté, si λ > 0, on obtient une solution en supposant que Aε est immergée.

Enfin, en projetant (55) sur le sous-espace de R3 orthogonale à vλ, on trouve le système :

(Hessocr − λ Id) ṽ + ε F (o, v, η, a) = 0,

qu’on peut écrire sous la forme :

ṽ + ε F (o, v, η, a) = 0.

On conclut, qu’une solution de (53) doit vérifier :

distg(o, ocr) ≤ c ε2, ∠(v, vλ) ≤ c ε,
∣∣η − sign(λ)λ ε5

∣∣ ≤ c ε6.

Deux dernières équations. Pour comprendre la structure des deux dernières équations,
on projette (53) sur les éléments Φ7 et Φ8 de Kε définis dans la région du “cou” et proches
des fonctions cosφ

cosh s et sinφ
cosh s . En effectuant le changement de variables

y = η cosh s(cosφ, sinφ),

dans une région où s 6= 0, on trouve Φ6+i ≈ η yi

|y|2 , i = 1, 2.

Pour expliquer pourquoi ces deux dernières équations s’écrivent sous la forme (Id+F )(·) =
0, on propose de considérer l’exemple suivant.

Soient P0 le plan horizontal dans R3, Cη le caténöıde vertical dilaté par η � 1, et P+, P−

deux plans obtenus comme copies de P0 légèrement écartées et légèrement penchées. Soient
ρ ∈ R et D2(ρ) := {x ∈ R2 : |x| < ρ} le disque de rayon ρ dans P0. Soit χ une fonction
troncature, telle que

χ ≡ 0 dans D2(ρ/2) et χ ≡ 1 dans R2 \D2(ρ).
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Soit y1, y2 des coordonnées dans P0. On peut voir le caténöıde comme bi-graphe sur {y ∈ P0 :
|y| > η} de la fonction

Gη = η log
2

η
+ η log |y|+O(η3 |y|−2)

et paramétrer P± comme graphes sur P0 des fonctions affines

u± = ±η log
2

η
+ c±1 y

1 + c±2 y
2.

Enfin, on considère la surface “recollée”, paramétrée par

y 7→
(
y, (1− χ(y))Gη(y) + χ(y)u±(y)

)
.

On trouve que la courbure moyenne de cette surface est nulle partout, sauf dans l’anneau
D2(ρ) \ D2

(ρ
2

)
. D’un autre coté, pour η suffisamment petit et P± suffisamment proches de

P0, la courbure moyenne sera proche de ±∆ (χu±). Le calcul∫
D2(ρ)\D2( ρ

2
)
∆
(
χ
(
u+ − u−

) ) yi

|y|2
=

∫
∂D2(ρ)

∂r

(
χ
(
u+ − u−

) ) yi

|y|2

∣∣∣∣
r=ρ

dφ (56)

−
∫
∂D2(ρ)

(
χ
(
u+ − u−

))
∂r

(
yi

|y|2

)∣∣∣∣
r=ρ

dφ

=
4π

ρ

(
c+
i − c

−
i

)
.

montre que les plus grands termes dans la projection de la courbure moyenne sur yi

|y|2 sont

déterminés par les pentes c±i des plans P±.

Revenons maintenant à notre problème. Par construction, dans les régions où on effectue
le recollement, on peut voir notre surface comme un graphe normale sur le disque Λ d’une
fonction

u±(y) = u±(q) +∇u±(q) y +O(|y|2),

(
u±(q0) = ±d

2
, ∇u±(q0) = 0

)
.

On voit que la “pente” ∇u±(q) apparâıt quand on varie la position q de “l’axe du cou” dans
Λ. Alors, les plus grands termes dans la projection de la courbure moyen sur Φ7,8 sont donnés

par la projection de ∆(χ+ u+−χ− u−) sur yi

|y|2 . Un calcul similaire à (56) montre que les deux

dernières équations s’écrivent sous la forme :

∇u+(q)−∇u−(q)

ρ
+ F (o, v, η, a) = 0,

ou, puisque q0 est un maximum locale pour u+ et un minimum locale pour u−, sous la forme

Hessq0

(
u+ − u−

)
(q − q0) + ρF (o, v, η, a) = 0.
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Dans notre construction on prend ρ = ε4 et obtient que la solution doit vérifier dist(q, q0) ≤
c ε4.

Enfin, le théorème de point fixe de Schauder nous donne l’existence pour tout ε suffisam-
ment petit, de (o, v, η, a) tels que Ai(o, v, η, a) = 0. La surface correspondante, qu’on note Sε

(plongée quand λ < 0 et immergée quand λ > 0) est à courbure moyenne constante. Enfin, si
S#(ε, ocr, vλ) désigne l’union de deux sphères géodésiques Sε(expocr(± εvλ)) tangentes en ocr,
alors, la distance de Hausdorff entre Sε et S#(ε, ocr, vλ) est bornée par une constante fois ε2.
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Chapter 1

Higher codimension isoperimetric
problems

1.1 Introduction and statement of the result

Constant mean curvature (CMC) hypersurfaces are critical points of the area functional sub-
ject to a volume constraint. Examples include sufficiently smooth solutions to the isoperimetric
problem. If K is an embedded submanifold in a Riemannian manifold (Mm+1, g), then its
mean curvature vector HK is the trace of its second fundamental form. When K is a hy-
persurface, then we say that K has CMC if this vector has constant length, and this is the
only sensible definition in this case. However, when codimK > 1, it is less obvious how to
formulate the CMC condition, since there is more than one way one might regard the mean
curvature vector as being constant. One definition that has perhaps received the most atten-
tion is to require that HK be parallel. This is quite restrictive, and for that reason, not very
satisfactory.

We propose a different, and directly variational definition building on the ideas of F.
Almgren [5]. The classical isoperimetric problem amounts to find hypersurfaces K of least
m-dimensional volume enclosing a region of prescribed m+1 dimensional volume. F. Almgren
generalized the isoperimetric problem in higher codimension by defining the volume enclosed
by S as the infimum of volumes of (m+ 1)-dimensional submanifolds Q with ∂Q = S.

In this chapter, which is a work in collaboration with R. Mazzeo and F. Pacard, extending
the standard characterization of CMC hypersurfaces, we propose to define constant mean
curvature submanifolds to be boundaries of submanifolds which are critical for a certain energy
functional. Roughly speaking, we say that K has constant mean curvature if K = ∂Q where
Q is minimal, K has CMC in Q, and HK has no component orthogonal to Q.

Our goal is to show that generic metrics on any compact manifold admit “small” CMC
submanifolds in this sense. The result proved here is a generalization of the theorem by R.
Ye [118] described in the subsection 0.1.5, which proves the existence of families of CMC
hypersurfaces that are small perturbations of geodesic spheres centered at nondegenerate
critical points of the scalar curvature function R of the ambient manifold M . The more recent
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paper [95] by F. Pacard and X. Xu obtains such families of CMC hypersurfaces when the
scalar curvature is not a Morse function; in that case, these hypersurfaces are centered near
critical points of a different curvature invariant.

Let us now introduce the relevant curvature function. For any (k+1)-dimensional subspace
Πp ⊂ TpM , define the partial scalar curvature

Rk+1(Πp) := −
k+1∑
i,j=1

g(R(Ei, Ej)Ei, Ej),

where E1, . . . , Ek+1 is any orthonormal basis for Πp. Note that Rm+1(TpM) is the standard
scalar curvature at p, while R2(Πp) is twice the sectional curvature of the 2-plane Πp. The
Grassmannian bundle Gk+1(TM) is the fiber bundle over M with fiber at p ∈ M the Grass-
mannian of all (k + 1)-planes in TpM . We regard Rk+1 as a smooth function on Gk+1(TM).

We denote by Skε (Πp) and Bk+1
ε (Πp) the images of the sphere and ball of radius ε in Πp

under the exponential map expp, p ∈M . We can now state our main result.

Theorem 1.1.1. If Πp is a nondegenerate critical point of Rk+1, then for all ε sufficiently
small, there exists a CMC submanifold Kε(Πp) which is a normal graph over Skε (Π̃p̃) by some
section with C2,α norm bounded by cε3 and dist (Π̃p̃,Πp) ≤ c ε2.

Our construction of CMC submanifolds generalizes the method introduced in [95], and can
also be carried out in certain cases when the partial scalar curvature has degenerate critical
points, for example when (M, g) has constant partial scalar curvature.

Theorem 1.1.2. There exists ε0 > 0 and a smooth function

Ψ : Gk+1(TM)× (0, ε0) −→ R,

defined in (1.9) below, such that if ε ∈ (0, ε0), and Πp is a critical point of Ψ(·, ε), then there
exists an embedded k-dimensional submanifold Kε(Πp) with constant mean curvature equal to
k/ε. This submanifold is a normal graph over the geodesic sphere Skε (Πp) with respect to a
section with C2,α bounded by c ε3.

The function Ψ is essentially just the associated energy functional restricted to a particular
finite dimensional set of approximately CMC submanifolds.

Existence of CMC submanifolds also follows from the work of F. Morgan and M.C.
Salavessa [87] as smooth solutions to the higher codimension isoperimetric problem defined
by F. Almgren. Observe that these solutions should correspond to points where Rk+1 has a
local maximum as in [90].

1.2 Outline of the chapter

The outline of this chapter is as follows. We first give a more careful description of our proposed
definition of constant mean curvature and its relationship to the associated energy functional.
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We introduce the linearization and the second variation of this energy, then compute these
operators in detail for the round sphere Sk ⊂ Rm+1, k ≤ m. The construction of “small”
solutions of the CMC problem concentrating around critical points of the function Ψ proceeds
in stages. We construct a family of approximate solutions, then solve the problem up to
a finite dimensional defect. This defect depends on certain parameters in the approximate
solution, and in the last step we employ a variational argument to choose the parameters
appropriately to solve the exact problem. Certain long technical calculations are relegated to
the appendices.

1.3 Preliminaries

In this section we begin by setting notations and recalling some standard formulæ. This is
followed by the introduction of a variational notion of constant mean curvature for closed
submanifolds of arbitrary codimension. We compute the first and the second variations of
the associated energy functional, and then explain what these look like for round spheres (of
arbitrary codimension) in Rm+1.

1.3.1 Mean curvature vector

Let (Mm+1, g) be a compact smooth Riemannian manifold. We write ∇Σ for the induced
connection on any embedded submanifold Σ, and reserve ∇ for the full Levi-Civita connection
on M .

The second fundamental form of Σ is the symmetric bilinear form on TΣ taking values in
the normal bundle NΣ defined by

hΣ(X,Y ) := ∇X Y −∇Σ
XY = πNΣ∇X Y, X, Y ∈ TΣ;

here πNΣ is the fibrewise orthogonal projection TΣM → NΣ. The trace of hΣ is a section of
NΣ, and is called the mean curvature vector field

HΣ := tr g hΣ =
dim Σ∑
i=1

hΣ(Ei, Ei),

where {Ei} is any orthonormal basis for TΣ. By definition, Σ is minimal provided HΣ ≡ 0.

1.3.2 Constant mean curvature in higher codimension

Let us now specialize to the case where Qk+1 ⊂ M is a smooth, compact submanifold with
boundary, and ∂Q =: K. The normal bundle NK decomposes as an orthogonal direct sum

NK = NK⊥ ⊕NK‖ ,

where NK‖ = NK ∩ TQ has rank 1, and NK⊥ = NK ∩NQ has rank m− k. We shall write
n for the inward pointing unit normal to K in Q. Thus if Φ ∈ NK, then

Φ = [Φ]⊥ + [Φ]‖ = [Φ]⊥ + φn

for some scalar function φ.
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Definition 1.3.1. The closed submanifold K ⊂M is said to have constant mean curvature if
K = ∂Q where Q is minimal in M , K has constant mean curvature in Q, and the Q-normal
component [HK ]⊥ ∈ NK⊥ vanishes.

A key motivation is that this definition is variational, where the relevant energy is given
by

Eh0(Q) := Volk(∂Q)− h0 Volk+1(Q), (1.1)

where h0 is a constant.

Proposition 1.3.1. The submanifold K = ∂Q has constant mean curvature h0 (in the sense
of Definition 1.3.1) if and only if

DEh0 |Q = 0.

The meaning of the differential here is the usual one. Let Ξ be a smooth vector field on M
and denote by ξ its associated flow. For t small, write Qt = ξ(Q, t) and Kt := ∂Qt = ξ(K, t).
The requirement in the Proposition is then that for any smooth vector field Ξ,

d

dt
Eh0(Qt)

∣∣∣∣
t=0

= 0.

The proof is standard. The classical first variation formula (see Appendix 1) states that

d

dt
Vol(Kt)

∣∣∣∣
t=0

= −
∫
K
g(HK ,Ξ) dvolK ,

and
d

dt
Vol(Qt)

∣∣∣∣
t=0

= −
∫
Q
g(HQ,Ξ) dvolQ −

∫
K
g(n,Ξ) dvolK .

It follows directly from this that

d

dt

∣∣∣∣
t=0

Eh0(Qt) = 0,

for all vector fields Ξ if and only if HK = h0 n and HQ ≡ 0, as claimed.

The definition above coincides with the standard meaning of CMC when K is a hyper-
surface in M which is the boundary of a region Q. Notice that Kk ⊂ Rk+1 ⊂ Rm+1 and K
has CMC as a hypersurface in Rk+1, then it has CMC in the sense of Definition 1.3.1. In
particular, round sphere Sk ⊂ Rm+1 has CMC in this sense.

A similar result has been obtained in [87] for stationary submanifolds for the isoperimetric
problem in higher codimension.
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1.3.3 Jacobi operator in higher codimension

Let us now study the differential of the mean curvature operator, which is known as the
Jacobi operator. For this subsection, we revert to considering an arbitrary submanifold Σ,
either closed or with boundary, and shall now recall the expression for this operator.

The Jacobi operator JΣ is the differential of the mean curvature vector field with respect
to normal perturbations of Σ. To describe this more carefully, consider the exponential map
exp from an ε-neighborhood of the zero section in TΣM into M . Since exp∗|{v=0} = Id, if

Φ ∈ C2(Σ;NΣ) has ||Φ||C0 sufficiently small, then

ΣΦ := {expq(Φ(q)) : q ∈ Σ}

is an embedded submanifold. We shall denote the family of submanifolds ΣsΦ by Σs, and their
mean curvature vector fields by Hs. We also write Fs : Σ→ Σs for the map q 7→ expq(sΦ(q)).
By definition,

JΣ(Φ) = ∇∂/∂sHs

∣∣
s=0

.

When ∂Σ 6= ∅, we also require that Φ = 0 on ∂Σ. The operator πNΣ ◦ JΣ will be denoted
JNΣ . We recall in Appendix 1 the proof of the standard formula

JNΣ = −∆N
Σ + RicNΣ + H

(2)
Σ , (1.2)

where ∆N
Σ is the (positive definite) connection Laplacian on sections of NΣ,

∀Φ ∈ NΣ, ∆N
Σ Φ =

dim(Σ)∑
i=1

∇NEi ∇
N
Ei Φ−∇N∇Σ

Ei
Ei

Φ,

where∇NXY = πNΣ
◦∇XY and the other two terms are the following symmetric endomorphisms

of NΣ:

(i) The orthogonal projection RicNΣ = πNΣ
◦ RicΣ on the normal bundle of Σ of the partial

Ricci curvature RicΣ, defined by

g (RicΣX,Y ) := −tr g g (R(·, X)·, Y ))

= −
dim Σ∑
i=1

g (R(Ei, X)Ei, Y ) , for all X,Y ∈ TM,
(1.3)

(note that the curvature tensor appearing on the right is the one on all of M , and is not
the curvature tensor for Σ);

(ii) the square of the shape operator, defined by

H
(2)
Σ (X) :=

dim Σ∑
i,j=1

g (h(Ei, Ej), X) h(Ei, Ej), for all X ∈ TM. (1.4)
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In general, JΣ(Φ) 6= JNΣ (Φ) since JΣ(Φ) has a nontrivial component JTΣ (Φ) which is parallel
to Σ; as we show later, that part is canceled in our final formula so we do not need to make
it explicit. Note, however, that JTΣ (Φ) vanishes when Σ is minimal. Indeed, writing the mean
curvature vector field to ΣsΦ in the form

Hs =
∑
ν

g (Hs, Nν(s)) Nν(s),

where Nν(s), ν = dim Σ + 1, . . . ,m+ 1 is a local orthonormal frame for NΣsΦ we find

[JΣ(Φ)]T =
∑
ν

[ (
g
(
∇∂/∂sHs

∣∣
s=0

, Nν(0)
)

+ g
(
HΣ, ∇∂/∂s

∣∣
s=0

Nν(s)
))

Nν(0)

+ g (HΣ, Nν(0)) ∇∂/∂s
∣∣
s=0

Nν

]T
=
∑
ν

g (HΣ, Nν(0))
[
∇∂/∂sNν(s)

∣∣
s=0

]T
,

and if HΣ = 0, we have JTΣ = 0.

1.3.4 Linearization about a constant mean curvature submanifold

Let Q be a smooth compact minimal submanifold with a boundary K such that

HK = h0 n

where n is a unit normal to K in Q and h0 is a constant. We set

C2,α
0 (NQ) := {V ∈ C2,α(NQ) : V |K = 0}.

With this notation in mind, we have the:

Definition 1.3.2. The minimal submanifold Q is nondegenerate if

JQ : C2,α
0 (NQ) −→ C0,α(NQ),

is invertible.

Lemma 1.3.1. If Q is nondegenerate, then there is a smooth mapping Φ 7→ QΦ from a
neighborhood of 0 in C2,α(NK) into the space of (k+ 1)-dimensional minimal submanifolds of
M with C2,α boundary, such that Q0 is the initial submanifold Q and ∂QΦ = KΦ.

Proof. Fix a continuous linear extension operator

C2,α(NK) 3 Φ 7→ VΦ ∈ C2,α(TQM).

Thus VΦ is a vector field along Q which restricts to Φ on K. Without loss of generality, we
can assume that VΦ ∈ TQ if [Φ]⊥ = 0 and VΦ ∈ NQ when [Φ]‖ = 0. Next, let W be a C2,α

section of NQ which vanishes on K. If both ||Φ||2,α and ||W ||2,α are sufficiently small, then
expQ(VΦ +W ) is an embedded C2,α submanifold QU with U = VΦ +W , and KΦ := ∂QU .
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Denoting the mean curvature vector of QU by H(Φ,W ), we find

DWH|(0,0) (W ) = JQW.

Since Q is minimal, DWH|(0,0) (W ) takes values in NQ, whereas H(Φ,W ) ∈ NQU ⊂
TQUM , so we cannot directly apply the implicit function theorem. To remedy this, first let

H̃(Φ,W ) be the parallel transport of H(Φ,W ) along the geodesic s 7→ expq(sU(q)), from
s = 1 to s = 0. Parallel transport preserves regularity (this reduces to the standard result on
smooth dependence on initial conditions for the solutions of a family of ODE’s), so H̃(Φ,W )
is a C0,α section of TQM . Now define

Ĥ(Φ,W ) := πNQ ◦ H̃(Φ,W ),

where πNQ : TQM → NQ is the orthogonal projection. Since H(Φ,W ) ∈ NQUM and since
||U ||C1 is small, H̃(Φ,W ) lies in the nullspace of πNQ at any q ∈ Q if and only if it actually

vanishes. Thus it is enough to look for solutions of Ĥ(Φ,W ) = 0. Notice that DW Ĥ|(0,0) = JQ.
We can now apply the implicit function theorem to conclude the existence of a C2,α map
Φ 7→W (Φ) such that H(Φ,W (Φ)) = Ĥ(Φ,W (Φ)) ≡ 0 for all small Φ.

We henceforth denote by QΦ the minimal submanifold expQ (VΦ +W (Φ)). Observe that

when [Φ]⊥ = 0, the submanifold parametrized by expQ(V[Φ]‖) is O(‖Φ‖2C2,α) close to QΦ; this is
easy to check when Φ := φn where φ is small. Therefore, in this ‘tangential’ case, we conclude
that

UΦ = V[Φ]‖ +O(‖Φ‖2C2,α).

Next, when [Φ]‖ = 0, we define Z[Φ]⊥ as the solution of

JQ Z[Φ]⊥ = 0, Z[Φ]⊥

∣∣∣
K

= Φ⊥,

and it is easy to check that the submanifold parametrized by expQ(Z[Φ]⊥) is also O(‖Φ‖2C2,α)
close to QΦ. We summarize all this in the

Lemma 1.3.2. When ‖Φ‖C2,α is small, we have the decomposition

UΦ = V[Φ]‖ + Z[Φ]⊥ +O(‖Φ‖2C2,α).

Now consider the energy Eh0 along a one-parameter family s 7→ Qs := QsΦ of minimal
submanifolds with boundaries Ks := ∂Qs = KsΦ. By the formulæ of the last subsection,

d

ds
Eh0(Qs) = −

∫
Ks

g(Hs − h0 ns, ∂/∂s) dvolKs ,

where Hs is the mean curvature of Ks and ns is the inward pointing unit normal to Ks in Qs.
Note that this first variation of energy is localized to the boundary; the interior terms vanish
because of the minimality of the Qs. Our task is to compute

d2

ds2
Eh0(Qs)

∣∣∣∣
s=0

,
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when Q is critical for Eh0 .

Parametrize both Ks and Qs by y 7→ Fs(y) := expy(UsΦ(y)) (with y ∈ K or y ∈ Q,
respectively). As before, choose a smooth local orthonormal frame Eα for TK, so that
(Fs)∗Eα = Eα(s) is a local (non-orthonormal) frame for TKsΦ. We then include ns, the
unit inward normal to Ks in Qs. Moreover, we extend ns to a vector n̄s ∈ TQs so that it
satisfies ∇Qsn̄s n̄s = 0. We supplement this to a complete local frame for TQsM (at least near
points of Ks) by adding a local orthonormal frame Nµ(s) ∈ NQs. Here we let the indexes
α, β, . . . run from 1 to k while µ, ν, . . . run from k + 2 to m+ 1 .

Notation 1.3.1. Set Hs = H(Ks)− h0 ns. We also write

LQ = ∇∂/∂sHs
∣∣
s=0

.

Note that we can decompose H′(0) into H′(0)NK +H′(0)TK , its components perpendicular
and parallel to K. Since H(s) ⊥ Ks, we have that 〈H(s), Eα(s)〉 = 0, so

〈H′(0), Eα〉+ 〈H(0), E′α(0)〉 = 0.

Since H(0) = 0, we obtain πTK ◦ LQ = 0.

Next decompose Φ = [Φ]⊥ + φn into parts perpendicular and parallel to Q (along K).
Note that we can choose the vector field UΦ extending Φ and defined in Lemma 1.3.1 so that
its component tangent to Q lies in the span of n̄. More precisely, we have a decomposition
UΦ = [UΦ]⊥ + uφ n̄ locally near KΦ, where [UΦ]⊥

∣∣
K

= [Φ]⊥ and uφ|K = φ.

To see that E′α(0) = ∇EαΦ, choose a curve c(t) in K with c(0) = p, c′(0) = Eα and define
G(t, s) = expc(t)(sΦ(c(t))); we then obtain that

∇∂/∂sEα
∣∣
s=0

= ∇∂/∂s∇∂/∂tG(t, s)
∣∣
s=t=0

= ∇∂/∂tΦ(c(t))
∣∣
t=0

= ∇EαΦ,

as claimed. To compute n′(0), observe that (Fs)∗(n(0)) is always tangent to Qs and transverse,
but not necessarily a unit normal, to Ks. We can adjust it, using the Gram-Schmidt process,
to get that

ns =
(

(Fs)∗(n(0))−
∑

cαEα(s)
)
/
∣∣∣((Fs)∗(n(0))−

∑
cαEα(s)

∣∣∣ ,
where

cα(s) = 〈Eα(s), (Fs)∗n(0)〉/|Eα(s)|2.
Arguing as before, take a curve d(t) in Q such that d(0) = p and d′(0) = n and define
G̃(t, s) = expd(t)(UsΦ(d(t))). Note that UsΦ = s(V[Φ]‖ + Z[Φ]⊥) +O(s2‖Φ‖2C2,α). We get

∇∂/∂s(Fs)∗n(0)
∣∣
s=0

= ∇∂/∂s∇∂/∂tG̃(t, s)
∣∣∣
t=s=0

= ∇n(V[Φ]‖ + Z[Φ]⊥)

and since cα(0) = 0, we obtain

[n′(0)]⊥ =
[
∇nV[Φ]‖ +∇nZ[Φ]⊥

]∣∣∣⊥
K

=
[
∇⊥nZΦ⊥ + φ∇⊥n n̄

]∣∣∣
K
.

Finally, the component [n′(0)]‖ = 0. Combining these calculations gives the
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Proposition 1.3.2. If Q is critical for Eh0, then

LQ Φ = (πNK ◦ JK − h0DQ) Φ,

where
DQΦ =

[
∇⊥nZΦ + φ∇⊥n n̄

]∣∣∣
K
.

1.3.5 Linearization about the Euclidean sphere of higher codimension

We conclude this section by discussing the precise form of this linearization, and its nullspace,
when

K = Sk × {0} ⊂ Q = Bk+1 × {0} ⊂ Rm+1,

since this is our basic model later. It is easy to see that Bk+1 is critical for Ek.
The unit inward normal to Sk in Bk+1 is nSk(Θ) = −Θ. If Φ ∈ C2,α(NSk), then

Φ = [Φ]⊥ − φΘ,

where the first term on the right is perpendicular to Bk+1. The operator JN
Sk

acts on these

two components separately, via J⊥
Sk

and J
‖
Sk

, respectively.

The first of these operators acts on sections of the trivial bundle of rank m−k. Obviously,

RicNSk = 0, cf. (1.3), and (H
(2)

Sk
)⊥ = 0 as well, so

J⊥Sk = ∆Sk

acting on (m−k)-tuples of functions. Its eigenvalues are `(k+`−1). The operator DBk+1 also
acts on sections of the trivial bundle NBk+1

∣∣
Sk

. In fact, since JBk+1 = ∆Bk+1 , this operator is

simply the standard Dirichlet-to-Neumann operator for the Laplacian (acting on Rm−k-valued
functions). Its eigenfunctions are the restrictions to r = 1 of the homogeneous harmonic
polynomials P (x), x = rΘ, Θ ∈ Sk. If P is homogeneous of order `, then P (x) = r`P (Θ),
so DBk+1P (Θ) = −`P (Θ) (recall we are using the inward-pointing normal). Combining these
two operators, we see that ∆Sk−kDBk+1 has eigenvalues −`(k+ `−1)+k` = −`(`−1), hence(

J⊥Sk − kDBk+1

)
[Φ]⊥ = 0

⇒ [Φ]⊥ ∈ span{ (aµ + bµΘj)Eµ, j = 1, . . . , k + 1, µ = k + 2, . . . ,m+ 1},

where Eµ, µ = k + 2, . . . ,m+ 1 is an orthonormal basis for NBk+1 = Rm−k.
The remaining part is

J
‖
Sk

= ∆Sk + k,

since RicSk = 0 and H
(2)

Sk
= k Id. Thus

J
‖
Sk

(φΘ) = J
‖
Sk

(φ) Θ = 0 ⇒ φ ∈ span {Θ1, . . . ,Θk+1}.

We have now shown that the nullspace K of LBk+1 splits as K⊥ ⊕ K‖. The first of these
summands is comprised by infinitesimal translations in Rm−k and rotations in the jµ planes
(now j ≤ k + 1); the second summand corresponds to infinitesimal translations in Rk+1.
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1.4 Construction of constant mean curvature submanifolds

We now turn to the main task of this paper, which is to construct small constant mean
curvature submanifolds concentrated near the critical points of Rk+1. The first step is to
define a family of approximate solutions, i.e. a family of pairs (Qε,Kε) where Qε is minimal
and has nearly CMC boundary. We then use a variational argument to perturb this to a
minimal submanifold with exactly CMC boundary.

1.4.1 Approximate solutions

We adopt all the notations used earlier. Thus we fix Πp ∈ Gk+1(TM) and an orthonormal
basis Ei, 1 ≤ i ≤ m+1 of TpM , where Ej , 1 ≤ j ≤ k+1 span Πp and Eµ, µ ≥ k+2, span Π⊥p .
This induces a Riemann normal coordinate system (x1, . . . , xm+1) near p, and it is standard
that

gij(x) = g(∂xi , ∂xj ) = δij +
1

3

∑
k,`

(Rp)ikj` x
kx` +O(|x|3), (1.5)

where δ is the Euclidean metric.

Rescaling

In terms of the map Fε : TpM →M , Fε(v) = expp(εv), used earlier, define the metric

gε = ε−2F ∗ε g

on TpM , or equivalently, work in the rescaled coordinates yj = xj/ε. In either case,

gε = |dy|2 + ε2hε(y, dy), (1.6)

where hε is family of smooth symmetric two-tensors depending smoothly on ε ∈ [0, ε0]. The
mean curvature vectors Hg and Hgε with respect to g and gε satisfy

ε2Hg = (Fε)∗H
gε , and ‖Hgε‖gε = ε ‖Hg‖g.

Let Bk+1 = Bk+1(Πp) ⊂ Πp be the unit ball and Sk = Sk(Πp) = ∂Bk+1, and denote their
images under Fε by Bk+1

ε (Πp) and Sk+1
ε (Πp). These have parametrizations

Sk 3 Θ 7−→ expgp

ε k+1∑
j=1

Θj Ej

 , Bk+1 3 y 7−→ expgp

ε k+1∑
j=1

yj Ej

 .

In the lemmas (1.4.1) and (1.4.2) below we give the expansion of the mean curvature of
Bk+1
ε (Πp) and Skε (Πp) in terms of ε. To this end we introduce two supplementary curvature

invariants which are restrictions of the Ricci curvature of the ambient manifold M :
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Notation 1.4.1.

Rick+1(Πp)(v1, v2) = −
k+1∑
i=1

gp(Rp(Ei, v1)Ei, v2), v1, v2 ∈ Πp

Ric⊥k+1(Πp)(v,N) = −
k+1∑
i=1

gp(Rp(Ei, v)Ei, N), v ∈ Πp, N ∈ Π⊥p .

Note that
Ric⊥k+1(Πp) =

[
RicNBk+1

ε (Πp)

]
p
.

Moreover, here and below, we write O(εk) for a function with C0,α norm bounded by Cεk.

Lemma 1.4.1. The mean curvature of the geodesic ball Bk+1
ε (Πp)

Hg(Bk+1
ε (Πp))(y) =

m+1∑
µ=k+2

(
2 ε

3
Ric⊥k+1(Πp)(y,Eµ) +O(ε2)

)
Nµ, y ∈ Bk+1

where Nµ, k + 2 ≤ µ ≤ m+ 1 is an orthonormal basis of NBk+1
ε (Πp).

Proof. Recall that

Hg(Bk+1
ε (Πp)) =

1

ε2
(Fε)∗H

gε(Bk+1).

We denote N ε
µ , k + 1 < µ < m+ 1 the orthonormal basis of the normal bundle of Bk+1 with

respect to the metric gε obtained by applying the Gram-Schmidt process to the vectors Ei(p),
1 ≤ i ≤ m+ 1. Remark that

gε(N ε
µ , Eν) = δµν +O(ε2), µ = k + 1, . . . ,m+ 1.

Remark, that the vector fields Nµ = 1
ε (Fε)∗(N ε

µ) form an orthonormal basis of NBk+1
ε (Πp)

with respect to the metric g.

The Christoffel symbols corresponding to the metric gε are:

(Γgε)`ij(y) =
1

2
g`qε
(
∂yj (gε)iq + ∂yi(gε)jq − ∂yq(gε)ij

)
= δ`q

ε2

6
yp (Rijqp +Ripqj +Rjiqp +Rjpqi −Riqjp −Ripjq) +O(ε3)

= −ε
2

3
(Ripj` +Ri`jp) y

p +O(ε3),

whence
gε(∇gε∂yi∂yj ,N

ε
µ) = (Γgε)µij +O(ε4)

Taking the trace in the indexes i, j = 1, . . . , k + 1 with respect to gε gives the result.
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Lemma 1.4.2. The mean curvature of the geodesic sphere Skε (Πp) satisfies

Hg(Skε (Πp)) =

(
k

ε
− ε

3
Rick+1(Πp)(Θ,Θ) +O(ε2)

)
nS

+
m+1∑
µ=k+2

(
2 ε

3
Ric⊥k+1(Πp)(Θ, Eµ) +O(ε2)

)
Nµ, Θ ∈ Sk,

where nS is a unit normal vector field to Skε (Πp) in Bk+1
ε (Πp) with respect to the metric g.

Proof. The proof is similar to that of the previous lemma, but with several changes. Let
u1, . . . , uk 7→ Θ(u1, . . . , uk) be a local parametrization of Sk ⊂ Πp. The tangent bundle TSk

is spanned by the vector fields Θα = ∂uαΘ, α = 1, . . . , k. We remark that

Hg(Skε (Πp)) =
1

ε2
(Fε)∗H

g
ε (Sk).

By Gauss’s lemma,
g ((Fε)∗Θα, (Fε)∗Θ) (Fε(Θ)) = gp(Θα,Θ) = 0,

for α = 1, . . . , k, hence, we put nS := −1
ε (Fε)∗Θ. We have

∇gε∂uα∂uβ = ∂uα ∂uβΘ + (Γgε)`ij(Θα)i(Θβ)j E`,

α, β = 1, . . . , k; i, j, ` = 1, . . . ,m + 1. Since he vector field ∂uα ∂uβΘ is tangent to Bk+1(Θ),
we find

gε

(
∇gε∂uα∂uβ ,N

ε
µ

)
= (Γgε)µab (Θα)a (Θβ)b +O(ε3).

Taking trace in the indexes α, β with respect to the metric induced on Sk from gε we get

gε(H
gε(Sk),N ε

µ) =
2 ε2

3
Ric⊥k+1(Πp)(Θ, Eµ) +O(ε3).

In order to find [Hgε(Sk(Πp))]
||, recall the standard fact that if Σ ⊂ M is an oriented

hypersurface with unit inward pointing normal NΣ, and if Σz is the family of hypersurfaces
defined by

Σ× R(q, z) 7→ expq(zNΣ(q)) ∈ Σz,

with induced metric gz, then

|HΣ| = −
d

dz
log
√

det gz.

In our case, considering Sk = ∂Bk+1 with metric gε, let gεz be the induced metrics on the
Euclidean sphere of radius 1− z. Then,

det gεz = (1− z)2k det gS
(

1− ε2(1− z)2

3
RicSk(Πp)(Θ,Θ) +O(ε3)

)
,
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where gS is the standard spherical metric on Sk(Πp). From this we deduce that

gε

(
Hgε(Sk),−Θ

)
= k − ε2

3
Rick+1(Πp)(Θ,Θ) +O(ε3).

this completes the proof.

Proposition 1.4.1. Fix Πp ∈ Gk+1(TM). Then for ε > 0 small enough, there exists a
minimal submanifold Qε(Πp) which is a small perturbation of Bk+1

ε (Πp), whose boundary
Kε(Πp) = ∂Qε(Πp) is a normal graph over Skε (Πp) and whose mean curvature vector field
satisfies

Hg(Kε(Πp))(Θ)− k

ε
nK = 〈~a,Θ〉nK +

m+1∑
µ=k+2

(〈~cµ,Θ〉+ dµ)Nµ, (1.7)

for some constant vectors ~a = ~a(ε,Πp), ~cµ = ~cµ(ε,Πp) ∈ Rk+1 and constants dµ = dµ(ε,Πp) ∈
R and where by 〈·, ·〉 we denote the scalar product in Rm+1. Here nK is a normal vector field
to Kε(Πp) in Qε(Πp) and Nµ, µ = k+2, . . . ,m+1 form an orthonormal basis of [NKε(Πp)]

⊥.

Proof. Take a vector field Φ ∈ C2,α(TpM) defined along the unit sphere Sk(Πp), such that

Φ(Θ) = −φ(Θ) Θ +
m+1∑
µ=k+2

Φµ(Θ)Eµ,

and write
SkΦ =

{
Θ + Φ(Θ), Θ ∈ Sk

}
.

Then there exists a submanifold Bk+1
ε,Φ such that ∂Bk+1

ε,Φ = SkΦ and which is minimal with
respect to gε. The proof of this fact is almost the same as the proof of the Lemma (1.3.1); the
only difference is that we use a “perturbed” metric and the starting submanifold is no longer
minimal. Let VΦ be a linear extension of Φ in Bk+1 and take

W ∈ C2,α(TpM), W =
m+1∑
µ=k+2

WµEµ, W |Sk = 0.

We put U(y) := VΦ(y) +W (y) and let H(ε,Φ,W ) denote the mean curvature with respect to
the metric gε of the submanifold

Bk+1
U :=

{
y + U(y), y ∈ Bk+1

}
.

Note that H(0, 0, 0) = 0 and

D3H|(0,0,0) = JBk+1 = ∆Bk+1 .
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We can then apply the implicit function theorem to Ĥ(ε,Φ,W ) = π ◦H(ε,Φ,W ), where π is
the orthogonal projection onto the subspace of TpM spanned by Eµ, k+2 ≤ µ ≤ m+1. Then
for ε and ‖Φ‖C2,α small enough, there exists a mapping (ε,Φ) 7→W (ε,Φ) such that

Ĥ(ε,Φ,W (ε,Φ)) = 0 and H(ε,Φ,W (ε,Φ)) = 0.

Moreover, we can write

Uε,Φ = VΦ +W (ε,Φ) = Vφ + ZΦ +Wε +O(‖ε3‖) +O(ε2‖Φ‖) +O(‖Φ2‖),

where Vφ(y) = −φ(y/‖y‖) y, the vector field ZΦ is the harmonic extension of Φ in Bk+1 and
Wε satisfies

∆Bk+1 Wµ
ε = −2 ε2

3
Ric⊥k+1(Πp)(y,Eµ), Wε = 0 on Sk.

Remark 1.4.1. A simple calculation shows that

Wε(y) =
ε2

3

1

k + 3
(1− |y|2)

m+1∑
µ=k+2

Ric⊥k+1(Πp)(y,Eµ)Eµ.

As a next step, we calculate the mean curvature of SkΦ with respect to the metric gε. First
note that the vector fields

τα = (1− φ) Θα − ∂uαφΘ +
m+1∑
µ=k+2

∂uαΦµEµ

locally frame TSkΦ, while

ΘΦ = Θ +
1

1− φ
∇Skφ, and (Eµ)Φ = Eµ −

1

1− φ
∇SkΦµ

are a local basis for the normal bundle of SkΦ with respect to the Euclidean metric. Applying
the Gram-Schmidt process with respect to the metric gε to these local frames yields the unit
normal to SkΦ in Bk+1

ε,Φ , which we denote nεΦ, and the orthonormal frame (NΦ)εµ for the normal

bundle of Bk+1
ε,Φ along SkΦ with respect to gε. It is clear that

〈nεΦ,−ΘΦ/|ΘΦ|geucl〉gε = 1 +O(ε2), and 〈(Nµ)εΦ, (Eµ)Φ/|(Eµ)Φ|geucl〉gε = 1 +O(ε2),

and nε0 = −Θ and (Nµ)ε0 = N ε
µ . We can then write

Hgε(SkΦ)− k nεΦ =
(
gε

(
Hgε(SkΦ), nεΦ

)
− k
)
nεΦ +

m+1∑
µ=k+2

gε

(
Hgε(SkΦ), (NΦ)εµ

)
(NΦ)εµ.

Notation 1.4.2. We let LΠp(Φ) denote any second order linear differential operator acting
on Φ. The coefficients of LΠp(Φ) may depend on Πp ∈ Gk+1(TM) and ε ∈ (0, 1), but for all
j ∈ N there exists a constant Cj > 0 independent of Πp and ε such that

‖LΠp(Φ)‖Cj,α(Sk) ≤ Cj ‖Φ‖Cj+2,α(NSk).
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Similarly, for ` ∈ N, Q`Πp(Φ) denotes some nonlinear operator in Φ, depending also on Πp

and ε, such that Q`Πp(0) = 0 and which has the following properties. The coefficients of the

Taylor expansion of Q`Πp(Φ) in powers of the components of Φ and its derivatives satisfy that

for any j ≥ 0, there exists a constant Cj > 0, independent of Πp ∈ Gk+1(TM) and ε ∈ (0, 1),

‖Q`Πp(Φ1)−Q`Πp(Φ2)‖Cj,α(Sk) ≤ Cj
(
‖Φ1‖Cj+2,α(NSk) + ‖Φ2‖Cj+k,α(NSk)

)`−1
‖Φ1−Φ2‖Cj+k,α(NSk)

provided ‖Φi‖C1(NSk) ≤ 1, i = 1, 2.

Using the fact that the Christoffel symbols associated to the metric gε are of order O(ε2),
we obtain

gε

(
Hgε(SkΦ), nεΦ

)
− k = −ε

2

3
Rick+1(Πp)(Θ,Θ) + J

‖
Sk
φ

+O(ε3) + ε2 LΠp(Φ) +Q2
Πp(Φ),

gε

(
Hgε(SkΦ), (NΦ)εµ

)
=

2ε2

3
Ric⊥k+1(Πp)(Θ, Eµ) + L⊥Bk+1 Φµ

+O(ε3) + ε2 LΠp(Φ) +Q2
Πp(Φ).

As before, we let K‖ and K⊥ be the null-spaces of the operators

J
‖
Sk

= ∆Sk + k and L⊥Bk+1 = ∆Sk −DBk+1 ,

and write P‖ and P⊥ for the L2 orthogonal complements of K‖ and K⊥ in C2,α(Sk). Define
the space

E := Rk+1 × (Rk+1 ⊕ R)m−k × P‖ × (P⊥)m−k. (1.8)

There exists an operator
G : (C0,α(Sk))m−k −→ E,

such that

G(f0, f1, . . . , fm−k) =
(
~a(Πp, f),~cµ(Πp, f), dµ(Πp, f), φ(Πp, f),Φ⊥(Πp, f)

)
is the solution to  J

‖
Sk
φ = 〈~a,Θ〉+ f0,

L⊥
Bk+1 Φµ = 〈~cµ,Θ〉+ dµ + fµ−k.

Applying a standard fixed point theorem for contraction mappings, we find that there exist
c > 0 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) and Πp ∈ Gk+1(TM) there is a unique
element (

~a(ε,Πp),~cµ(ε,Πp), dµ(ε,Πp), φ(ε,Πp),Φ
⊥(ε,Πp)

)
,
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in a closed ball of radius c ε2 centered at 0 in E (for some constant c > 0) such that

Hgε(SkΦ) = −k nεΦ + 〈~a,Θ〉nεΦ +
m+1∑
µ=k+2

(〈~cµ,Θ〉+ dµ) (NΦ)εµ.

Finally, to finish the proof we put

nK =
1

ε
(Fε)∗ n

ε
Φ and Nµ =

1

ε
(Fε)∗ (Nµ)εΦ

and Kε(Πp) := Fε(S
k
Φ(ε,Πp)), Qε(Πp) := Fε(B

k+1
ε,Φ(ε,Πp)).

Remark 1.4.2. Using the fact that

Rick+1(Πp)(Θ,Θ) ∈ P‖ and Ric⊥k+1(Πp)(Θ, Eµ) ∈ K⊥,

and decomposing

Rick+1(Πp)(Θ,Θ) =
k+1∑
a=1

Rick+1(Πp)aa (Θa)2 +
k+1∑
a6=b=1

Rick+1(Πp)ab Θa Θb,

one can easily verify that the vector field Φε,Πp obtained in Proposition 1.4.1, satisfies

φε,Πp =
ε2

3

(
2

k(k + 2)
Rk+1(Πp)−

1

k + 2
Rick+1(Πp)(Θ,Θ)

)
+O(ε3),

[Φ]⊥ε,Πp = O(ε3).

1.4.2 Variational argument

We now employ a variational argument to prove that one can choose Πp ∈ Gk(M) in such
a way that the submanifold Kε(Πp) obtained in the previous Proposition has constant mean
curvature.

To state our result, we introduce the following restrictions of the Riemann tensor of M :

Notation 1.4.3.

Rk+1(Πp)(v1, v2, v3, v4) = gp(Rp(v1, v2)v3, v4), v1, v2, v3, v4 ∈ Πp,

R⊥k+1(Πp)(v1, v2, v3, N) = gp(Rp(v1, v2)v3, N), v1, v2, v3 ∈ Πp, N ∈ Π⊥p ,

Finally, introduce the function r on Gk+1(TM):

r(Πp) = 1
36(k+5)

[
8 ‖Rick+1(Πp)‖2 − 18

k+1∑
i,j,`=1

∇Ei∇Ei g(R(Ej , E`)Ej , E`)|p

−3 ‖Rk+1(Πp)‖2 + 5Rk+1(Πp)
2 + 24 k+1

k+3 ‖Ric
⊥
k+1(Πp)‖2 + 12 ‖R⊥k+1(Πp)‖2

]
+
ε4

18

1

(k + 2)(k + 3)

[
k+6
k R

2
k+1(Πp)− 2 ‖Rick+1(Πp)‖2

]
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Now consider the energy Eε restricted to this finite dimensional space of submanifolds,

Eε(Πp) := Volk(Kε(Πp))−
k

ε
Volk+1(Qε(Πp)),

which is a function on Gk+1(TM). Tracing through the construction of Kε(Πp) one obtains
the relationship of this function to the curvature functions defined above.

Lemma 1.4.3. There is an expansion

(k + 1) Eε(Πp)

εk Vol(Sk)
=

(
1− ε2

2(k + 3)
Rk+1(Πp) +

ε4

2(k + 3)
r(Πp) +O(ε5)

)
.

Proof. The proof is a technical calculation, contained in the Appendix.

The main result of this section is the following proposition

Proposition 1.4.2. If Πp is a critical point of Eε, then Kε(Πp) has constant mean curvature.

Remark 1.4.3. Theorems (1.1.1) and (1.1.2) are Corollaries of Proposition (1.4.2). Indeed,
if we define

Ψ(ε,Πp) = 2 ε−2 (k + 3)

(
1− (k + 1)

Eε(Πp)

εkVol(Sk)

)
; (1.9)

then for any j ≥ 0, there exists a constant Cj which is independent of ε such that

‖Ψ(ε, ·)−Rk+1(·) + ε2r(·)‖Cj(Gk+1(TM)) ≤ Cj ε3.

Proof of the Proposition. Let Πp be a critical point of Eε. We show that the parameters ~a, ~c
and d must then necessarily vanish. We do this by considering various types of perturbations
of Πp.

First consider the perturbations in Gk+1(M) which correspond to parallel translations of
Πp. In other words, we suppose that the family of planes Πexpp(tξ) in Gk+1(M) are parallel

translates of Πp along the geodesic expp(tξ).

The submanifold Kε(Πexpp(tξ)) is a normal graph over Kε(Πp) by a vector field Ψε,Πp,ξ,t

which depends smoothly on t. This defines a vector field on Kε(Πp) by

Zε,Πp,ξ = ∂tΨε,Πp,ξ,t

∣∣
t=0

.

The first variation of the volume formula yields

0 = DEε|Πp(ξ)

=

∫
Kε(Πp)

(
g(H(Kε(Πp)), Zε,Πp,ξ)−

k

ε
g(n,Zε,Πp,ξ)

)
dvolKε(Πp)

−k
ε

∫
Qε(Πp)

g(H(Qε(Πp)), Zε,Πp,ξ) dvolQε(Πp),

(1.10)
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and then the construction of Qε(Πp) and Kε(Πp) gives that∫
Kε(Πp)

(
〈~a,Θ〉g(n,Zε,Πp,ξ) +

m+1∑
µ=k+2

(〈~cµ,Θ〉+ dµ) g(Zε,Πp,ξ, Nµ)
)

= 0.

Let Ξ be the vector field obtained by parallel transport of ξ along geodesics issuing from
p, and suppose that c is a constant independent of ε and ξ. Then

‖Zε,Πp,ξ − Ξ‖g ≤ c ε2 ‖ξ‖.

By construction of Kε(Πp), we have

‖n+
1

ε
(Fε)∗Θ‖g ≤ c ε2, and ‖Nµ −

1

ε
(Fε)∗Eµ‖g ≤ c ε2.

Now take ξ ∈ Πp ⊂ TMp, so that

g(n,Zε,Πp,ξ) = g

(
−1

ε
(Fε)∗Θ +

(
n+

1

ε
(F )∗Θ

)
, Ξ +

(
Zε,Πp,ξ − Ξ

))
,

and

g(Nµ, Zε,Πp,ξ) = g

(
1

ε
(Fε)∗Eµ +

(
Nµ −

1

ε
(Fε)∗ ~Eµ, Ξ +

(
Zε,Πp,ξ − Ξ

)))
.

We conclude that∣∣g(n,Zε,Πp,ξ) + gp(ξ,Θ)
∣∣ ≤ c ε2‖ξ‖, and

∣∣g(Nµ, Zε,Πp,ξ)
∣∣ ≤ c ε2‖ξ‖,

hence ∫
Kε(Πp)

〈~a,Θ〉 gp(ξ,Θ) ≤
∣∣∣ ∫
Kε(Πp)

〈~a,Θ〉 gp(ξ,Θ)

+

∫
Kε(Πp)

〈~a,Θ〉 g(Zε,Πp,ξ, n)

+
m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) g(Zε,Πp,ξ, Nµ)
∣∣∣

≤ c ε2 ‖ξ‖
( ∫
Kε(Πp)

|〈~a,Θ〉| +
m+1∑
µ=k+2

∫
Kε(Πp)

|〈~cµ,Θ〉+ dµ|
)
.

Now taking ξ =
∑k+1

i=1 a
iEi we obtain

∫
Kε(Πp)

〈~a,Θ〉2 ≤ c ε2 ‖~a‖

 ∫
Kε(Πp)

|〈~a,Θ〉|+
m+1∑
µ=k+2

∫
Kε(Πp)

|〈~cµ,Θ〉+ dµ|

 .
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In Euclidean space, we have the equality

Volk(S
k)‖v‖2 = (k + 1)

∫
Sk
〈v,Θ〉2, for all v ∈ Rk+1.

By the expansion of the induced metric, we obtain for ε small enough

1

2
Volk(S

k) εk ‖v‖2 ≤ (k + 1)

∫
Kε(Πp)

〈v,Θ〉2.

Also, since Volk(Kε(Πp)) = O(εk), we deduce

‖~a‖ ≤ c ε2
(
‖~a‖+

m+1∑
µ=k+2

(‖~cµ‖+ |dµ|)
)
. (1.11)

Now move p in the direction of a vector ξ ∈ Π⊥p to get∣∣g(Zε,Πp,ξ, Nµ)− gp(ξ, Eµ)
∣∣ ≤ c ε2‖ξ‖, and |g(n,Zε,Πp,ξ)| ≤ c ε2‖ξ‖.

We can write

m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) gp(ξ, Eµ) ≤
∣∣∣ m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) g(Zε,Πp,ξ, Nµ)

−
m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) gp(ξ, Eµ)

+

∫
Kε(Πp)

〈~a,Θ〉 g(Zε,Πp,ξ, n)
∣∣∣

≤ c ε2 ‖ξ‖
∫
Kε(Πp)

(
|〈~a,Θ〉|+

m+1∑
µ=k+2

|〈~cµ,Θ〉+ dµ|
)
.

Taking ξ = dν Eν gives∫
Kε(Πp)

dν 〈~cν ,Θ〉+ dν
2 ≤ c ε2 |dν |

( ∫
Kε(Πp) |〈~a,Θ〉|

+
m+1∑
µ=k+2

∫
Kε(Πp)

|〈~cµ,Θ〉+ dµ|
)
.

(1.12)

Next consider a perturbation of Πp by a one-parameter family of rotations of Πp in TpM
generated by an (m+ 1)× (m+ 1) skew matrix A. Then

DEε|Πp (A) =
d

dt

∣∣∣∣
t=0

Eε((I + tA+O(t2))Πp) =
d

dt

∣∣∣∣
t=0

E(At(Kε(Πp))),
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where, in geodesic normal coordinates

At(x) = x+ tAx+O(t2).

The coordinates of the vector field associated to this flow are

Zε,Πp,ξ(x) =
d

dt

∣∣∣∣
t=0

At(x) = Ax.

Considering only matrices A ∈ o(m) such that A : Πp → Π⊥p , we obtain∣∣g(Zε,Πp,ξ, n)
∣∣ ≤ c ε2‖AΘ‖, and

∣∣g(Zε,Πp,ξ, Nµ)− 〈AΘ, Eµ〉
∣∣ ≤ c ε2‖AΘ‖.

This gives the

m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) 〈AΘ, Eµ〉

≤
∣∣∣ m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) g(Zε,Πp,ξ, Nµ)

−
m+1∑
µ=k+2

∫
Kε(Πp)

(〈~cµ,Θ〉+ dµ) 〈AΘ, Eµ〉

+

∫
Kε(Πp)

〈~a,Θ〉 g(Zε,Πp,ξ, n)
∣∣∣

≤ c ε2

∫
Kε(Πp)

‖AΘ‖ |〈~a,Θ〉|+
m+1∑
µ=k+2

‖AΘ‖ |〈~cµ,Θ〉+ dµ|

 .

Let Cν be the (m− k)× (k+ 1) matrix with column ν equal to the vector ~cν ∈ Rk+1, and
all other columns equal to 0. Then if

A =

(
0 −CTν
Cν 0

)
,

we get ∫
Kε(Πp)

〈~cν , 〉2 + 〈~cν ,Θ〉dν ≤ C ε2
( ∫
Kε(Πp)

|〈~cν ,Θ〉| |gp(~a,Θ)|

+
m+1∑
µ=k+2

∫
Kε(Πp)

|〈~cν ,Θ〉| |〈~cµ,Θ〉+ dµ|
) (1.13)

Adding (1.12) and (1.13) now gives∫
Kε(Πp)

|dν + 〈~cν ,Θ〉|2 ≤ c ε2
(∫

Kε(Πp)
(|dν |+ |〈~cν ,Θ〉|) |〈~a,Θ〉|

+
m+1∑
µ=k+2

(|dν |+ |〈~cν ,Θ〉|) |〈~cµ,Θ〉+ dµ|
)
.
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In Euclidean space, if v ∈ Rk+1 and α ∈ R are arbitrary, then∫
Sk
|α+ 〈v,Θ〉|2 =

(
α2 +

1

k + 1
‖v‖2

)
Volk(S

k).

Using once again the decomposition of the induced metric on Kε(Πp) we find for ε small
enough

1

2(k + 1)
εk Volk(S

k)
(
α2 + ‖v‖2

)
≤
∫
Kε(Πp)

|α+ 〈v,Θ〉|2 . (1.14)

which gives

‖~cν‖2 + |dν |2 ≤ c
1

εk−2
(‖~cν‖+ |dν |)

(∫
Kε(Πp)

|〈~a,Θ〉| +

m+1∑
µ=k+2

∫
Kε(Πp)

|〈~cµ,Θ〉 + dµ|
)
.

Since Volk(Kε(Πp)) = O(εk), we get

‖~cν‖+ |dν | ≤ c ε2 (‖~a‖+

m+1∑
µ=k+2

(‖~cµ‖+ |dµ|)). (1.15)

Adding (1.11) and (1.15) gives‖~a‖+
m+1∑
µ=k+2

(‖~cµ‖+ |dµ|)

 ≤ c ε2

‖~a‖+
m+1∑
µ=k+2

(‖~cµ‖+ |dµ|)

 ,

which implies finally that ‖~a‖ = 0, ‖~cµ‖ = 0 and |dµ| = 0, k + 1 ≤ µ.

We conclude that if Πp is a critical point of the functional Eε, then the manifold Kε(Πp)
is a constant mean curvature submanifold of M .

1.5 Appendix 1

Mean curvature of submanifolds: Let Σk ⊂ Mm+1 be an embedded submanifold. Let
x1, . . . , xk be local coordinates on Σ and

Eα = ∂xα

the corresponding coordinate vector fields. Suppose that Ek+1, . . . , Em+1 is a local frame for
NΣ. This gives local coordinates transverse to Σ by

p ∈ Σ 7−→ expp

 m+1∑
j=k+1

xj Ej

 .

We make the convention that Greek indexes run from 1 to k, while Latin indexes run from
k + 1 to m+ 1. The induced metric on Σ has coefficients ḡαβ, while

h̄iαβ := Γiαβ = g(∇EαEβ, Ei)
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are the coefficients of the second fundamental form. We also record the Christoffel symbols

Γjαi = g(∇EαEi, Ej).

The following result is standard, cf. [72] for a proof.

Lemma 1.5.1. If X =
m+1∑
j=k+1

xj Ej, then

gαβ = ḡαβ − 2 ḡ(h̄αβ, X) + g(R(Eα, X)Eβ, X) + g(∇EαX,∇EβX) +O(|x|3)

= ḡαβ − 2 h̄iαβ x
i +
(
g(R(Eα, Ei)Eβ, Ej) + gγγ

′
h̄iαγ h̄

j
γ′β + Γiα` Γj`β

)
xi xj +O(|x|3)

gαj = −Γiαj x
i +O(|x|2)

gij = δij +
1

3
g(R(Ei, E`)Ej , E`′)x

` x`
′
+O(|x|3).

Let Φ be a smooth section of NΣ and consider the normal graph ΣΦ = {expp(Φ(p)) : p ∈
Σ}. Now let us use the previous lemma to expand the metric and volume form on ΣΦ. To
state this result properly, introduce ∇N , the induced connection on NΣ,

∇NΦ = πNΣ ◦ ∇Φ.

Using the definitions of §2, we find that

Lemma 1.5.2.

Volk(ΣΦ) = Volk(Σ)−
∫

Σ
g(H(Σ),Φ) dvolΣ

+
1

2

∫
Σ

(
|∇NΦ|2g − g((RicΣ + H2

Σ) Φ,Φ)
)

dvolΣ

+
1

2

∫
Σ

(g(H(Σ),Φ))2 dvolΣ + ...

Proof. First of all we expand the induced metric on ΣΦ. Using the result of the previous
Lemma, we find

(ḡΦ)αβ = ḡαβ − 2 g(h̄αβ,Φ) + g(R(Eα,Φ)Eβ,Φ) + g(∇EαΦ,∇EβΦ) + . . .

= ḡαβ − 2 g(h̄αβ,Φ) + g(R(Eα,Φ)Eβ,Φ)

+ ḡγγ
′
g(h̄αγ ,Φ) g(h̄γβ,Φ) + g(∇NEαΦ,∇NEβΦ) + . . .

Next we use the well known expansion√
det(I +A) = 1 +

1

2
TrA+

1

8
(TrA)2 − 1

4

(
Tr(A2)

)
+ ...
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to find √
det ḡΦ =

(
1− g(H(Σ),Φ) + 1

2

(
|∇NΦ|2g − g((RicΣ + (H)2

Σ) Φ,Φ)

+ (g(H(Σ),Φ))2
)

+ ...
) √

det ḡ.

This completes the proof.

From this we obtain the first and second variations of the volume functional,

DΦVolk(ΣΦ)|ΦΨ = −
∫

Σ
g(H(ΣΦ),Ψ) dvolΣΦ

, (1.16)

and

D2
ΦVolk(ΣΦ)|Φ=0(Ψ,Ψ) =

∫
Σ

(
|∇NΨ|2 − g((RicΣ + H2

Σ) Ψ,Ψ)
)

dvolΣ

+

∫
Σ

(g(H(Σ),Ψ))2 dvolΣ.

On the other hand, differentiating (1.16) once more gives

D2
ΦVolk(ΣΦ)|Φ=0(Ψ,Ψ) = −

∫
Σ
g(DΦH(ΣΦ)|Φ=0Ψ,Ψ) dvolΣ

+

∫
Σ

(g(H(Σ),Ψ))2 dvolK .

Comparing the two formulæ implies that the orthogonal projection of the Jacobi operator to
NΣ equals

JNΣ := DΦH(ΣΦ)|Φ=0 = ∆N
g + RicNΣ + H2

Σ ,

1.6 Appendix 2

We give here the proof of Lemma 1.4.3, namely the proof of the formula

(k + 1) Eε(Πp)

εk Vol(Sk)
=

(
1− ε2

2(k + 3)
Rk+1(Πp) +

ε4

2(k + 3)
r(Πp) +O(ε5)

)
and find the expression of the function r. Let Kε(Πp) be the constant mean curvature sub-
manifold constructed in Proposition (1.4.1) and denote by F : TpM −→ M the exponential
map. Recall that

Kε(Πp) = F (Skε,Φ),

where Skε,Φ is a submanifold of TpM parametrized by
{
ε (1− φ) Θ + εΦ⊥, Θ ∈ Sk

}
. It follows

from the proof of that proposition that

φ(Θ) =
ε2

3

(
2

k(k + 2)
Rk+1(Πp)−

1

k + 2
Ric(Πp)(Θ,Θ)

)
+O(ε3),

Φ⊥ = O(ε3).
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Also consider the minimal submanifold

Qε(Πp) = F (Bk+1
ε,Φ ),

where Bk+1
ε,Φ =

{
ε y + εUΦ(y), y ∈ Bk+1

}
and recall that

UΦ(y) = φ (y/‖y‖) +Wε(y) +O(ε3),

Wε(y) =
ε2

(k + 3)

m+1∑
µ=k+2

k+1∑
i=1

Ric⊥(Πp)iµ(|y|2 − 1) yiEµ.

We shall calculate the volume forms of Skε,Φ and Bk+1
ε,Φ with respect to F ∗g. First of all,

recall that in the neighborhood of x = 0 we have

(F ∗g)ij = δij +
1

3
gp(Rp(x,Ei)x,Ej) +

1

6
gp(∇xRp(x,Ei)x,Ej)

+
1

20
gp(∇x∇xRp(x,Ei)x,Ej)

+

m+1∑
`=1

2

45
gp(Rp(x,Ei)x,E`) gp(Rp(x,Ej)x,E`) +Op(|x|5),

where Rp is the curvature tensor of M at the point p, cf. [108].

Volume of the CMC sphere

We first find the expansion of the metric induced on Skε,Φ. To this end we express the tangent

vector fields to Skε,Φ in terms of the vector fields Θα, α = 1, . . . , k tangent to the unit sphere

Sk:

τα = ε (1− φ(Θ)) Θα − ε ∂α φΘ +

m+1∑
µ=k+2

ε ∂αΦµEµ, α = 1, . . . , k.

The metric coefficients then satisfy

gKαβ = ε2(1− φ)2 gSαβ + ε2 ∂αφ∂βφ+
ε4

3
(1− φ)4 gp(Rp(Θ,Θα)Θ,Θβ)

+
ε5

6
gp(∇ΘRp(Θ,Θα)Θ,Θβ) +

ε6

20
gp(∇Θ∇ΘRp(Θ,Θα)Θ,Θβ)

+
k+1∑
l=1

2ε6

45
gp(Rp(Θ,Θα)Θ, El) gp(Rp(Θ,Θβ)Θ, El)

+

m+1∑
µ=k+2

2ε6

45
gp(Rp(Θ,Θα)Θ, Eµ) gp(Rp(Θ,Θβ)Θ, Eµ) +O(ε7).
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Using √
det(I +A) = 1 +

1

2
trA+

1

8
(trA)2 − 1

4
tr(A2) +O(|A|3),

we get

ε−k
√

det gK√
det gS

= 1− kφ+
k(k − 1)

2
φ2 +

1

2
|∇Skφ|2

− ε2

6
(1− (k + 2)φ)Rick+1(Πp)(Θ,Θ)− ε3

12
∇ΘRick+1(Πp)(Θ,Θ)

− ε4

40
∇2

ΘRick+1(Πp)(Θ,Θ) +
ε4

72
(Rick+1(Πp)(Θ,Θ))2

− ε4

180

k+1∑
i,j=1

gp(Rp(Θ, Ei)Θ, Ej)
2

+
ε4

45

k+1∑
i=1

m+1∑
µ=k+2

gp(Rp(Θ, Ei)Θ, Eµ)2 +Op(ε5).

Volume of the minimal ball

Now let us calculate the volume element of Qε(Πp). The tangent vectors to Bk+1
ε,Φ are given by

Ti(y) = ε (1− u(y))Ei + ε ∂yi u(y) y + ε
m+1∑
µ=k+2

∂yiW
µ
ε (y)Eµ +Op(ε4),

where u(y) = φ(y/|y|). The corresponding metric coefficients have then the expansion
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ε−2 gQij = (1− u)2 δij + (1− u)
(
∂yiu yj + ∂yju y

i
)

+ |y|2∂yiu ∂yju+
m+1∑
µ=k+2

∂yiW
µ
ε ∂yjW

µ
ε

+
ε2

3
(1− u)4 gp(Rp(y,Ei)y,Ej) +

ε2

3

m+1∑
µ=k+2

[
Wµ
ε gp(Rp(Eµ, Ei)y,Ej)

+Wµ
ε gp(Rp(y,Ei)Eµ, Ej) + ∂yiW

µ
ε gp(Rp(y,Eµ)y,Ej) + ∂yjW

µ
ε gp(Rp(y,Ei)y,Eµ)

]
+
ε3

6
gp(∇yRp(y,Ei)y,Ej) +

ε4

20
gp(∇y∇yRp(y,Ei)y,Ej)

+
2ε4

45

k+1∑
l=1

gp(Rp(y,Ei)y,El) gp(Rp(y,Ei)y,El)

+
2ε4

45

m+1∑
µ=k+2

gp(Rp(y,Ei)y,Eµ) gp(Rp(y,Ei)y,Eµ) +O(ε5).

Using the fact 〈∇u, y〉 = 0 and the fact that for the matrix Aij = yi ∂yju+ yj ∂yiu we have
1
4 tr(A2) = 1

2 |y|
2 |∇u|2, we calculate the volume element of Qε(Πp):

ε−(k+1)
√

det gQ = 1− (k + 1)u+
k(k + 1)

2
u2 +

m+1∑
µ=k+2

1

2
|∇SkWµ

ε |2

− ε2

6
(1− (k + 3)u)Rick+1(Πp)(y, y)

+
ε2

3

k+1∑
i=1

m+1∑
µ=k+2

[
Wµ
ε gp(Rp(y,Ei, Eµ, Ei) + ∂yiW

µ
ε gp(Rp(y,Ei)y,Eµ)

]

− ε3

12
∇yRick+1(Πp)(y, y)− ε4

40
∇2
yRick+1(Πp)(y, y)

+
ε4

72
(Rick+1(Πp)(y, y))2 − ε4

180

k+1∑
i,j=1

gp(Rp(y,Ei)y,Ej)
2

+
ε4

45

k+1∑
i=1

m+1∑
µ=k+2

gp(Rp(y,Ei)y,Eµ)2 +Op(ε5).

Expansion of the energy functional

Collecting the results obtained above, we find
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ε−k
(

Vol(Kε(Πp))−
k

ε
Vol(Qε(Πp))

)
=

1

k + 1
Vol(Sk)− ε2

2(k + 3)

∫
Sk
Rick+1(Πp)(Θ,Θ) dσ +

ε2

3

∫
Sk
Rick+1(Πp)(Θ,Θ)φdσ

+
5 ε4

k + 5

∫
Sk

[
− 1

40
∇2

ΘRick+1(Πp)(Θ,Θ) +
1

72
(Rick+1(Πp)(Θ,Θ))2

− 1

180

k+1∑
i,j=1

gp(Rp(Θ, Ei)Θ, Ej)
2 +

1

45

k+1∑
i=1

m+1∑
µ=k+2

gp(Rp(Θ, Ei)Θ, Eµ)2
]
dσ

+
m+1∑
µ=k+2

∫
Bk+1

[k
2
Wµ
ε ∆Bk+1 Wµ

ε

]
− ε2 k

3

k+1∑
i=1

(
Wµ
ε gp(Rp(Θ, Ei, Eµ, Ei) + ∂yiW

µ
ε Rp(Θ, Ei,Θ, Eµ)

)
dy

− 1

2

∫
Sk
φ∆Sk φ−

k

2

∫
Sk
φ2 dσ +O(ε5).

We now recall some identities. First,∫
Sk

(Θi)2 dσ =
1

k + 1
Vol(Sk),

∫
Sk

(Θi)4 dσ = 3

∫
Sk

(Θi Θj)2 dσ =
3

(k + 1)(k + 3)
Vol(Sk);

and second, if aijpq ∈ R i, j, p, q = 1, . . . , k + 1, then

k+1∑
p,q,l,n=1

∫
Sk
apqln Θp Θq Θl Θn dσ =

3

(k + 1)(k + 3)
Vol(Sk)

k+1∑
i=1

apppp

+
1

(k + 1)(k + 3)
Vol(Sk)

k+1∑
q 6=p=1

(appqq + apqpq + apqqp)

=
1

(k + 1)(k + 3)
Vol(Sk)

k+1∑
p,q=1

(appqq + apqpq + apqqp) ;

and develop each term:
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∫
Sk
Rick+1(Πp)(Θ,Θ) dσ =

k+1∑
i,j=1

∫
Sk
Rick+1(Πp)(Ei, Ej) Θk Θl dσ

=
k+1∑
i=1

Rick+1(Πp)(Ei, Ei) (Θi)2 dσ

=
1

k + 1
Vol(Sk)Rk+1(Πp);

∫
Sk

(Rick+1(Πp)(Θ,Θ))2dσ =
1

(k + 1)(k + 3)
Vol(Sk)

(
2
k+1∑
i,j=1

(Rick+1(Πp)(Ei, Ej))
2
)

+
k+1∑
i,j=1

Rick+1(Πp)(Ei, Ei)Rick+1(Πp)(Ej , Ej)

=
1

(k + 1)(k + 3)
Vol(Sk)

(
2 ‖Rick+1(Πp)‖2 +Rk+1(Πp)

2
)

;

k+1∑
i,j=1

∫
Sk
gp(Rp(Θ, Ei)Θ, Ej)

2 dσ

=
1

(k + 1)(k + 3)
Vol(Sk)

k+1∑
i,j,p,q=1

(
R2
ipjq +RipjpRiqjq +Ripjq Riqjp

)
=

1

(k + 1)(k + 3)
Vol(Sk)

(
‖Rick+1(Πp)‖2 +

3

2
‖Rk+1(Πp)‖2

)
;

(we use here that R2
ijpq = (Ripjq −Riqjp)2 = R2

ipjq +R2
iqjp − 2Ripjq Riqjp);

k+1∑
i=1

m+1∑
µ=k+2

∫
Sk
gp(Rp(Θ, Ei)Θ, Eµ)2 dσ

=
1

(k + 1)(k + 3)
Vol(Sk)

(∥∥∥Ric⊥k+1(Πp)
∥∥∥2

+
3

2

∥∥∥R⊥k+1(Πp)
∥∥∥2
)

;
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∫
Sk
∇2

ΘRick+1(Θ,Θ) dσ

=
1

(k + 1)(k + 3)

k+1∑
i,j=1

(
∇2
Ei Rick+1(Πp)(Ej , Ej) + 2∇Ei∇Ej Rick+1(Ei, Ej)

)

=
2

(k + 1)(k + 3)
Vol(Sk)

k+1∑
i,j,`=1

∇Ei∇Eig(R(Ek, El)Ek, El)|p ;

m+1∑
µ=k+2

∫
Bk+1

Wµ
ε ∆Bk+1Wµ

ε dy

= −2 ε4

9

1

k + 3

m+1∑
µ=k+2

∫
Bk+1

k+1∑
j=1

(
Ric⊥k+1(Ej , Eµ)

)2
(yj)2 (1− |y|2) dy

= −2 ε4

9

1

(k + 3)(k + 1)
Vol(Sk) ‖Ric⊥k+1‖2

(
1

k + 3
− 1

k + 5

)

= −ε
4

9

4

(k + 1)(k + 3)2(k + 5)
Vol(Sk) ‖Ric⊥k+1‖2;

m+1∑
µ=k+2

∫
Bk+1

Wµ
ε

k+1∑
i,p=1

Ripiµ y
p dy = −ε

2

3

1

(k + 3)

∫
Bk+1

m+1∑
µ=k+2

k+1∑
j=1

(
Ric⊥k+1(Ej , Eµ)

)2
(yj)2(1− |y|2) dy

= −ε
2

3

2

(k + 1)(k + 3)2(k + 5)
Vol(Sk) ‖Ric⊥k+1‖2;

and
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m+1∑
µ=k+2

∫
Bk+1

∂yiW
µRpiqµ y

p yq dy

=
ε2

3

1

(k + 3)

m+1∑
µ=k+2

∫
Bk+1

k+1∑
i,p,q=1

(
Ric(Πp)

⊥
iµRpiqµ y

p yq (1− |y|2)

− 2
k+1∑
j=1

Ric(Πp)
⊥
jµRpiqµ y

j yi yp yq
)
dy

=
ε2

3

2

(k + 1)(k + 3)2(k + 5)
Vol(Sk)

[
− ‖Ric⊥k+1‖2

−
k+1∑
p,q=1

m+1∑
µ=k+2

(
Ric(Πp)

⊥
pµRqpqµ +Ric(Πp)

⊥
qµRppqµ +Ric(Πp)

⊥
qµRqppµ

) ]

= −2 ε2

3

1

(k + 1)(k + 3)2(k + 5)
Vol(Sk) ‖Ric⊥k+1‖2.

This gives finally

(k + 1) E(Πp)

εk Vol(Sk)
= 1− ε2

2

1

k + 3
Rk+1(Πp)

+
ε4

72

1

(k + 3)(k + 5)

[
8 ‖Rick+1(Πp)‖2 − 18

k+1∑
i,j,`=1

∇Ei∇Ei g(R(Ej , E`)Ej , E`)|p

− 3 ‖Rk+1(Πp)‖2 + 5Rk+1(Πp)
2 + 24

k + 1

k + 3
‖Ric⊥k+1(Πp)‖2 + 12 ‖R⊥k+1(Πp)‖2

]
+
ε4

18

1

(k + 2)(k + 3)

[k + 6

k
R2
k+1(Πp)− 2 ‖Rick+1(Πp)‖2

]
+O(ε5)

= 1− ε2

2(k + 3)
Rk+1(Πp) +

ε4

2(k + 3)
r(Πp) +O(ε5).
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Chapter 2

Free boundary minimal surfaces in
the unit 3-ball

2.1 Introduction and statement of the result

In this chapter, which is a work in collaboration with A. Folha and F. Pacard, we are interested
in minimal surfaces which are embedded in the Euclidean 3-dimensional unit open ball B3 and
which meet S2, the boundary of B3, orthogonally. Following [36], we refer to such minimal
surfaces as free boundary minimal surfaces.

Obviously, unit disks obtained as the intersection of B3 with planes passing through the
origin, are examples of free boundary minimal surfaces. Moreover, these are the only free
boundary minimal surfaces in B3 of topological disk type [89].

The so called critical catenoid parametrized by

(s, θ) 7→ 1

s∗ cosh s∗
(cosh s cos θ, cosh s sin θ, s) , where s∗ tanh s∗ = 1,

is another example of a free boundary minimal surface. A. Fraser and M. Li conjectured that
up to congruences this it is the only free boundary minimal annulus embedded in B3 [35].

Free boundary minimal surfaces arise as critical points of the area among surfaces embed-
ded in B3 whose boundaries lie on S2 but are free to vary on S2. The fact that the area is
critical for variations of the boundary of the surface which are tangent to S2 translates into
the fact that the minimal surface meets S2 orthogonally.

In a recent paper [37], A. Fraser and R. Schoen have proved the existence of free boundary
minimal surfaces Σn in B3 which have genus 0 and n boundary components, for all n ≥ 3. For
large n, these surfaces can be understood as connected sums of two nearby parallel horizontal
disks joined by n boundary “bridges” which are close to scaled down copies of half catenoids
arranged periodically along the unit horizontal great circle of S2. Furthermore, as n tends
to infinity, these free boundary minimal surfaces converge on compact subsets of B3 to the
horizontal unit disk taken with multiplicity two.

We give in this chapter another independent construction of Σn for n large enough. Our
proof is very different from the proof of A. Fraser and R. Schoen and is more in the spirit of the
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proof of the existence of minimal surfaces in S3 by doubling constructions by N. Kapouleas [61]
and N. Kapouleas and S.D. Yang [63]. We also prove the existence of free boundary minimal
surfaces in B3 which have genus 1 and n boundary components for all n large enough.

To state our result precisely, we define Pn to be the regular polygon with n-sides, which is
included in the horizontal plane R2 × {0} and whose vertices are given by(

cos

(
2πm

n

)
, sin

(
2πm

n

)
, 0

)
∈ R3, for m = 1, . . . , n.

We define Sn ⊂ O(3) to be the subgroup of isometries of R3 which is generated by the
orthogonal symmetry with respect to the horizontal plane, the orthogonal symmetry with
respect to the horizontal coordinate axis Ox1 and the rotations around the vertical axis which
leave Pn globally invariant.

Our result reads:

Theorem 2.1.1. There exists n0 ≥ 0 such that, for each n ≥ n0, there exists a genus 0 free
boundary minimal surface Σn and a genus 1 free boundary minimal surface Σ̃n which are both
embedded in B3 and meet S2 orthogonally along n closed curves.

Both surfaces are invariant under the action of the elements of Sn and, as n tends to in-
finity, the sequence Σn converges to a double copy of the unit horizontal (open) disk, uniformly
on compacts of B3 while the sequence Σ̃n converges to a double copy of the unit horizontal
(open) punctured disk, uniformly on compacts of B3 \ {0}.

Even though we do not have a proof of this fact, it is very likely that (up to the action
of an isometry of R3) the surfaces Σn coincide with the surfaces already constructed by R.
Schoen and A. Fraser. In contrast, the existence of Σ̃n is new and does not follow from the
results in [37]. The parametrization of the free boundary minimal surfaces we construct is
not explicit, nevertheless our construction being based on small perturbations of explicitly
designed surfaces, it has the advantage to give a rather precise description of the surfaces Σn

and Σ̃n. Naturally, the main drawback is that the existence of the free boundary minimal
surfaces is only guaranteed when n, the number of boundary curves, is large enough.

2.2 Outline of the chapter

Remark 2.2.1. Through out the chapter we explain in details the construction of the genus 1
free boundary minimal surfaces Σ̃n with n boundary components for n large enough. One will
see that the same proof (with several simplifications) gives the existence of the genus 0 free
boundary surfaces Σn with n boundary components.

In section 2.3, we study the mean curvature of surfaces embedded in B3 which are graphs
over the horizontal disk D2 × {0}. In section 2.4, we analyze harmonic functions which are
defined on the unit punctured disk in the Euclidean 2-plane and have log-type singularities at
the punctures. In sections 2.5, 2.6, and 2.7 for every n ∈ N large enough, we construct a genus 1
surface An embedded in B3 which meets S2 = ∂B3 orthogonally along n boundary curves, and
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such that the mean curvature of An tends to 0 in a suitable topology when n tends to infinity.
We refer to An as approximate solution. In section 2.8, we consider the surfaces embedded
in B3 with genus 1 and n boundary components which are obtained as perturbations of An
and meet the sphere S2 orthogonally. In section 2.9, we study the properties of the linearized
mean curvature operator about the approximate solution An and finally, in the section 2.10,
we explain a fixed point argument that allows us for n large enough to perturb An into a free
boundary minimal surface Σ̃n satisfying Theorem 2.1.1.

2.3 Mean curvature operator for graphs in the unit 3-ball

We are interested in surfaces embedded in B3 which are graphs over the horizontal disk
D2 × {0}. To define these precisely, we identify R2 × {0} with the complex plane C, and
introduce the following parametrization of the unit 3-ball:

X(ψ, φ, x3) :=
1

coshx3 + cosψ

(
sinψ eiφ, sinhx3

)
,

where ψ ∈ (0, π/2), φ ∈ S1 and x3 ∈ R. The horizontal disk D2 × {0} corresponds to x3 = 0
in this parametrization and the unit sphere S2 corresponds to ψ = π/2. Also, the leaf x3 = x0

3

is a constant mean curvature surface (in fact it is a spherical cap) with mean curvature given
by

H = 2 sinhx0
3,

(we agree that the mean curvature is the sum of the principal curvatures, not the average)
moreover, this leaf meets S2 orthogonally.

In these coordinates, the expression of the Euclidean metric is given by

X∗geucl =
1

(coshx3 + cosψ)2

(
dψ2 + (sinψ)2 dφ2 + dx2

3

)
.

We introduce the coordinate

z =
sinψ

1 + cosψ
eiφ,

which belongs to the unit disk D2 ⊂ C. We then define X by the identity

X (z, x3) = X(ψ, φ, x3),

where z and (ψ, φ) are related as above. Then

X (z, x3) = A(z, x3)(z,B(z) sinhx3),

where the functions B and A are explicitly given by

B(z) =
1

2

(
1 + |z|2

)
, A(z, x3) :=

1

1 +B(z)(coshx3 − 1)
.
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Let |dz|2 = dz dz̄ be the Euclidean metric on D2, then the pull-black metric in D2×R is given
by

X ∗geucl = A2(z, x3)
(
|dz|2 +B2(z) dx2

3

)
. (2.1)

Take a function u ∈ C2(D2). In the next result, we compute the mean curvature of the
graphs:

z ∈ D2 7→ X (z, u(z)) ∈ B3. (2.2)

We have:

Lemma 2.3.1. The mean curvature of the surface parametrized by (2.2) is given by

Hgr(u) =
1

A3(u)B
div

(
A2(u)B2∇u√
1 +B2 |∇u|2

)
+ 2

√
1 +B2 |∇u|2 sinhu, (2.3)

where by definition A(u) = A(·, u). In this expression, the gradient of u, the divergence and
the norm of ∇u are computed with respect to the metric |dz|2 on D2.

Proof. The area form of the vertical graph z = x1 + i x2 7→ (z, u(z)) with respect to the
pull-back metric X ∗geucl is given by

da := A2(u)
√

1 +B2 |∇u|2 dx1 dx2.

The differential of the area functional at u is given by

DArea|u (v) =

∫∫
D2

(
A2(u)B2∇u · ∇v√

1 +B2 |∇u|2
+ 2A(u) ∂x3A(u)

√
1 +B2|∇u|2 v

)
dx1 dx2.

Since
∂x3A = −A2B sinhx3,

we conclude that

DArea|u (v) =

−
∫∫

D2

(
div

(
A2(u)B2∇u√
1 +B2 |∇u|2

)
+ 2A3(u)B

√
1 +B2 |∇u|2 sinhu

)
v dx1 dx2.

Observe that the unit normal vector with respect to X ∗geucl is given by

Ngr :=
1

A(u)

1√
1 +B2 |∇u|2

(
−B∇u+

1

B
∂x3

)
,

and hence

X ∗geucl(Ngr, ∂x3) =
A(u)B√

1 +B2 |∇u|2
,

so that
X ∗geucl(Ngr, ∂x3) da = A3(u)B,
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and the result follows from the first variation of the area formula

DArea|u(v) = −
∫∫

D2

Hgr(u) geucl(N, ∂x3) v da.

Let us denote by ∆ the (flat) Laplacian on D2 and by ∇u and ∇2u the gradient and the
Hessian of u with respect to the Euclidean metric |dz|2 on D2. Finally, consider the polar
coordinates (r, φ) in D2.

Corollary 2.3.1. The graph of the function u meets the sphere S2 = ∂B3 orthogonally at the
boundary when u satisfies homogeneous Neumann boundary condition:

∂ru|r=1 = 0.

Moreover, we can rewrite (2.3) in the form

Hgr(u) = Lgr u+Qgr(u,∇u,∇2u),

where Lgr is the linearized mean curvature operator which reads

Lgr u = ∆(Bu) = ∆

(
1 + |z|2

2
u

)
, (2.4)

and Qgr(·, ·, ·) is a smooth nonlinear function that satisfies

Qgr(0, 0, 0) = 0, DQgr(0, 0, 0) = 0, D2Qgr(0, 0, 0) = 0

and whose Taylor expansion is affine in ∇2w and at least quadratic in ∇w.

Proof. It is easy to verify that if ∂ru|r=1 = 0, then the tangent vector ∂
∂r
X (r eiφ, u(r eiφ))

∣∣∣
r=1

is collinear to X (eiφ, u(eiφ)), which implies that the graph of u meets the boundary of B3

orthogonally. The expression for the mean curvature follows from a careful analysis of (2.3).

Remark 2.3.1. The operator Lgr in D2 with homogeneous Neumann boundary data has a
kernel which consists of the functions 2x1

1+|z|2 ,
2x2

1+|z|2 and corresponds to tilting the unit disk

D2 × {0} in B3. The kernel can be eliminated by imposing invariance under the action of a
group of rotations around the vertical axis.

2.4 Harmonic functions with singularities defined on the unit
disk

According to A. Fraser and R. Schoen, the surfaces that we would like to construct should
have the structure of connected sums of two “nearby copies” of the unit disk D2 × {0} with
small “bridges” which are close to truncated scaled down half-catenoids centered at the n-th

roots of unity zm = e
2πim
n , and a small “neck” which is close to a truncated scaled down

catenoid centered at the origin.
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Recall that the catenoid has logarithmic behavior at infinity. According to the ideas of R.
Mazzeo, F. Pacard, and D. Pollack [77], it turns out that from the analytical point of view, to
get a better matching with the asymptotics of the catenoid, it is better first to deform the unit
disk using a Green’s function associated to the operator Lgr with poles at z = 0 and z = zm,
m = 1, . . . , n, and then perform the connected sum. We use the notation D2

∗ for the unit open
punctured disk D2 \ {0}. Our goal now is to understand the solutions of the problem{

Lgr Γn = 0 in D2
∗,

∂rΓn = 0 on ∂D2 \ {z1, . . . , zn}
(2.5)

which have log-type singularities at z = zm and z = 0. Let Gn be a solution of{
∆Gn = 0 in D2

∗,

∂rGn − 1
nGn = 0 on ∂D2 \ {1}

(2.6)

which has logarithmic growth at z = 1 and z = 0. Then Γn(z) = Gn(zn)/B(z) is a solution
to (2.5) invariant under rotations by the angle 2π

n . A solution of (2.6) can be constructed
explicitly. We define in D̄2 \ {1} the function

G1
n(z) := −n

2
+ Re

 ∞∑
j=1

n zj

nj − 1

 . (2.7)

Writing

1

nj − 1
=
∞∑
k=0

1

(nj)k+1
,

we see that we also have the expression

G1
n(z) := −n

2
+ Re

( ∞∑
k=0

Hk(z)

nk

)
,

where, for all k ∈ N, the function Hk is given by

Hk(z) :=
∞∑
j=1

zj

jk+1
. (2.8)

Observe, that
H0(z) = − ln(1− z). (2.9)
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Obviously, G1
n is harmonic in the open unit disk. Making use of (2.8) we see that for all k ≥ 1

∂r (ReHk) = ReHk−1

on ∂D2, while it follows from (2.9) that

∂r (ReH0) = −1

2

again on ∂D2 \ {1}. Therefore, we conclude from (2.4) that

∂rG
1
n −

1

n
G1
n = 0 on ∂D2 \ {1}.

We also define in D̄2
∗, the function G0

n by

G0
n(z) := −n− log |z|. (2.10)

Again G0
n is harmonic in D2

∗ and we have

∂rG
0
n −

1

n
G0
n = 0 on ∂D2.

To complete this paragraph, we define

Γ1
n(z) :=

1

B(z)
G1
n(zn) and Γ0

n(z) :=
1

B(z)
G0
n(zn). (2.11)

By construction, Lgr Γ1
n = 0 in D2 and ∂rΓ

1
n = 0 on ∂D2 away from the n-th roots of unity;

while Lgr Γ0
n = 0 in D2

∗ and ∂rΓ
0
n = 0 on ∂D2.

2.5 “Half-catenoidal bridges”

One of the options could be to construct the “bridges” in B3 as minimal stripes obtained by
the intersection of Euclidean catenoids centered at z = zm with the unit sphere. The difficulty
of this approach is that those stripes do not meet S2 orthogonally. We prefer to find a free
boundary embedding of the half-catenoids in B3, but loosing the minimality condition.

We use the notation C− for the half-plane {ζ ∈ C |Re(ζ) ≤ 0}. For m = 1, . . . , n consider
the conformal mappings

λm : ζ ∈ C− 7−→ e
2iπm
n

1 + ζ

1− ζ
∈ D̄2 \ {−e

2iπm
n }, (2.12)

which transform a half-disk in C− centered at ζ = 0 and of radius ρ < 1 to a domain obtained

by the intersection of the unit disk D̄2 with the disk of radius 2ρ
1−ρ2 centered at 1+ρ2

1−ρ2 e
2iπm
n . Let

(ζ = ξ1 + iξ2, ξ3) be coordinates in C− × R. We define the mapping

Λm : (ζ, ξ3) ∈ C− × R 7−→ (λm(ζ), 2 ξ3) ∈ D̄2 \ {−e
2iπm
n } × R. (2.13)
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Take ε ∈ (0, 1) and consider the half-catenoid Cε/2 in C− × R, parametrized by

Xcat
ε/2 : (σ, θ) ∈ R×

[
π

2
,
3π

2

]
7→
(ε

2
coshσ eiθ,

ε

2
σ
)
∈ C− × R. (2.14)

Then we parametrize the m-th “catenoidal bridge” Cε,m by

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7→ X ◦ Λm ◦Xcat

ε/2(σ, θ) ⊂ B̄3,

where the value of σε will be made precise in the subsection 2.7. Using the facts that the half-
catenoid meets the boundary of the half-space orthogonally and that the restriction of the
mapping X ◦ Λm to horizontal planes is conformal, one can check that Cε,m meets S2 = ∂B3

orthogonally at the boundary.

2.6 “Catenoidal neck”

Again, one of the possibilities could be to use as the “catenoidal neck” the standard Euclidean
catenoid embedded in B3 and centered at the origin. We choose an alternative construction,
changing slightly the value of the mean curvature but simplifying the perturbation argument.
Remark that in a neighborhood of (z, x3) = 0 the metric X ∗geucl = A2(dz2 +B2 dx2

3) is close
to g̃eucl := dz2 + 1

4dx
2
3. Fixing ε̃ ∈ (0, 1) we introduce the surface C̃ε̃ parametrized by

X̃cat
ε̃ : (s, φ) ∈ [−sε̃, sε̃]× S1 7→ (ε̃ cosh s eiφ, 2 ε̃s) ∈ D2 × R, (2.15)

where the value of sε̃ will be made precise in the subsection 2.7. Then C̃ε̃ is minimal with
respect to g̃eucl. Finally, we parametrize the “catenoidal neck” Cε̃,0 by

X ◦ X̃cat
ε̃ : [−sε̃, sε̃]× S1 −→ B3.

2.7 Approximate solution

In this section we describe the “gluing procedure” between a graph over the horizontal disk
of a suitable Green’s function and the catenoidal “bridges” and “neck”. Let the functions Γ0

n

and Γ1
n be defined as in (2.11). As a fist step, for some τ0, τ1 ∈ R, we find the expansion of

the function
Gn(z) := τ0 Γ0

n + τ1 Γ1
n

in the neighborhood of z = z0 and z = zm.
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Notation 2.7.1. We denote by ĉ any positive constant independent of the choice of τ1, τ0, n, ε
and ε̃. Let u and v be two functions, then we write v = Ô(u) when z → z̃, if there exists ĉ > 0
(independent of τ0, τ1, n, ε and ε̃) such that |v| ≤ ĉ |u| in some neighborhood of z̃.

Consider the functions G0
n and G1

n defined in (2.10) and (2.7). We introduce the function

fn(z) :=
∞∑
k=0

Hk(z
n)

nk
=
∞∑
k=0

1

nk

∞∑
j=1

znj

jk+1
,

where G1
n(zn) = −n

2 + Re fn(z). It is easy to verify that

∂fn
∂z

(z) = − d

dz
log(1− zn) +

1

z
fn(z),

which yields
d

dz

(
fn
z

)
= −nz

n−2

zn − 1
.

A straightforward calculation shows that the function

z 7→ hn(z) := −nz
n−2

zn − 1
+

1

zm(z − zm)

is continuous in a small enough neighborhood of z = zm and that

|hn(zm)| ≤ ĉ n.

Thus, in a neighborhood of z = zm we have:

fn(z)

z
+

1

zm
log(z − zm) =

1

zm
lim
z→zm

(fn(z) + log(z − zm)) +

∫ zm

z
hn(z)dz,

where the integral is taken along the segment of the straight line passing from z to zm and
by log we mean the principal value of complex logarithm defined in the unit disk deprived of
a segment of a straight line which doesn’t pass through any of the n-th roots of unity. We
obtain:

∞∑
k=1

1

nk
Hk(z

n
m) =

∞∑
k=1

∞∑
j=1

1

nk jk+1
≤ π2

6(n− 1)
.

Moreover,
Re lim

z→zm
(− log(1− zn) + log(z − zm)) = − log |n zn−1

m | = − log n.

In a small enough neighborhood of z = zm and we obtain:

G1
n(zn) = −n

2
+ cgr(n)− log |z − zm|+ Ô(|z − zm| log |z − zm|) + Ô(n|z − zm|),

where |cgr(n)| ≤ ĉ log n. This yields
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Gn(z) =


−n
(
τ0 + τ1

2

)
+ τ1 cgr(n)− τ1 log |z − zm| + Ô

(
(|τ0|+ |τ1|)n|z − zm|

)
+Ô

(
(|τ0|+ |τ1|)|z − zm| log |z − zm|

)
, as |z − zm| → 0;

−2n
(
τ0 + τ1

2

)
− 2 τ0n log |z|+ Ô

(
(|τ0|+ |τ1|)|z|2

)
, as |z| → 0.

(2.16)

On the other hand, let the mappings λm : C− → D̄2 and Λm : C− × R → D̄2 × R be
defined as in (2.12) and (2.13). In a neighborhood of z = zm taking the change of coordinates

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7→ z = λm

(ε
2

coshσ eiθ
)
∈ D̄2,

we can see the image by the mapping Λm of the truncated half-catenoid (parametrized in
C− × R by (2.14)) as bi-graph over D̄2 \ λm ({ζ ∈ C− : |ζ| > ε/2}) of the function

Gmcat(z) := −ε log
ε

2
+ ε log |z − zm|+ Ô

(
ε3 |z − zm|−2

)
. (2.17)

Similarly, in a neighborhood of z = 0, taking the change of coordinates

(s, φ) ∈ [−sε̃, sε̃]× S1 7→ z = ε̃ cosh s eiφ ∈ D2,

we can see the surface embedded in the unit cylinder and parametrized by (2.15) as a bi-graph
over {z ∈ D2 : |z| > ε̃} of the function

G0
cat(z) := −2 ε̃ log

ε̃

2
+ 2 ε̃ log |z|+ Ô

(
ε̃3 |z|−2

)
. (2.18)

The next step is to choose the parameters τ1, τ0, ε, and ε̃ in such a way that the leading
terms in (2.16) match exactly the leading terms in (2.17) and (2.18). More precisely, comparing
the logarithmic terms, we take τ1 = ε and nτ0 = ε̃. On the other hand, the constant terms
match if

−ε̃− εn

2
= ε̃ log

ε̃

2
and − ε̃− εn

2
+ ε cgr(n) = ε log

ε

2
.

This gives us the relation

log
ε

ε̃
+
ε̃

ε
− n

2

ε

ε̃
= −n

2
+ cgr(n) + 1,

which yields
ε

ε̃
= g−1

n

(
−n

2
+ cgr(n) + 1

)
:= d(n) ∈ [1/2, 1],

where gn(t) : t ∈ (0,+∞) 7→ log t − n
2 t + 1

t ∈ (−∞,∞). This gives a unique correspondence
between ε, ε̃ and n, which satisfy

ε ∼ ε̃, n ∼ log ε.

Finally, comparing the remaining terms we see that we should truncate the summands and
effectuate the connected sum in the regions where

|z − zm| ∼ ε2/3 and |z| ∼ ε1/2.
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Remark 2.7.1. These estimates together with the fact that constant functions are not in the
kernel of the operator Lgr give an idea why our construction works only for large numbers n.

Finally, we perform a connected sum in such a way that the resulting genus 1 surface is
embedded in B3 and meets S2 orthogonally at the boundary. Moreover, since all the parame-
ters in our constructions are expressed as functions of the number of boundary components n,
we denote our surface by An and refer to it as approximate solution. Here is a more detailed
description of An.

Notation 2.7.2. We introduce the cut-off functions η̄, η ∈ C∞ (0, 1) defined by

η̄(t) = 1 for t < 1
2 ε

2/3, η̄(t) = 0 for t > 2 ε2/3,

η(t) = 1 for t < 1
2 ε

1/2, η ≡ 0 for t > 2 ε1/2,

and the functions η0, ηm ∈ C∞(D2) defined by

η0(z) := η(|z|), ηm(z) := η̄
(∣∣λ−1

m (z)
∣∣) . (2.19)

1) We parametrize the graph regions Ω±gr of An as vertical graphs:

z ∈ Dgr 7−→ X (z,∓Gn) ,

where Gn is defined in (2.16) and Dgr is a subdomain of D̄2 defined by

Dgr :=
{
z ∈ D2 : |z| > 2 ε1/2

} n⋂
m=1

λm

({
ζ ∈ C− : |ζ| > 2 ε2/3

})
. (2.20)

2) As in the subsection 2.6, we parametrize the “catenoidal neck” region Ω0
cat by:

(s, φ) ∈ [−sε̃, sε̃]× S1 7−→ X ◦ X̃cat
ε̃ (s, φ) = X

(
ε̃ cosh s eiφ, 2 ε̃s

)
,

where sε̃ satisfies ε̃ cosh sε̃ = 1
2ε

1
2 .

3) The “half-catenoidal bridges” regions Ωm
cat are parametrized as the images by the map-

pings X ◦ Λm of the truncated half-catenoid Cε/2 ⊂ C− × R:

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7−→ X ◦ Λm ◦Xcat

ε/2(σ, θ) = X ◦ Λm

(ε
2

coshσ eiθ,
ε

2
s
)
,

where σε satisfies ε coshσε = ε
2
3 .

4) Finally, in the gluing regions Ωi,±
glu, we interpolate between Ω±gr and the catenoidal regions

and parametrize An by:
z ∈ Di

glu 7−→ X (z,± υi(z)) ,

where the functions υi are defined by

υi :=
(
ηiG

i
cat − (1− ηi)Gn

)
, i = 0, 1, . . . , n, (2.21)
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and Di
glu are the subdomains of the unit disk defined by

D0
glu :=

{
z ∈ D2 :

1

2
ε1/2 < |z| < 2 ε1/2

}
⊂ D2, (2.22)

Dm
glu := λm

({
ζ ∈ C− :

1

2
ε2/3 < |ζ| < 2 ε2/3

})
⊂ D2, m = 1, . . . , n.

2.8 Perturbation argument

The next step is to show that the approximate solution An can be perturbed, at least for n
large enough, into some free boundary minimal surface. To this end, we describe all genus 1
surfaces embedded in B3 which are close to An and meet S2 orthogonally at the boundary.
Let Ξ be a vector field in B̄3 transverse to An and ξ be the associated flow:

dξ

dt
= Ξ (ξ(·, t)) and ξ(p, 0) = p ∀p ∈ B̄3.

We shall choose Ξ in such a way that that for all t small enough the surface An,t := ξ(An, t)
is embedded in B3 and meets S2 orthogonally along ∂An,t = ξt(∂An). Take w ∈ C2(An) and
let An(w) be the surface parametrized by

p ∈ An 7→ ξ(p, w(p)) ∈ An(w).

Then An(w) meets S2 orthogonally at the boundary if w satisfies the homogeneous Neumann
condition on ∂An:

gn(∇gnw,N∂An) = 0,

where gn is the metric induced on An from the Euclidean metric, ∇gn is the gradient calculated
with respect to gn, and N∂An is a unit normal to ∂An in An.

The expansion of the mean curvature of An(w) in powers of w and derivatives of w up to
the second order has the form:

H(An(w)) = H(An) + Lnw +Qn(w,∇w,∇2w),

where H(An) is the mean curvature of the approximate solution, Ln is the linearized mean
curvature operator about An, and Qn is a smooth nonlinear function of w and the components
of the gradient and the Hessian of w. Below, we explain an appropriate choice of the vector
field Ξ and study the properties of the function H(An) and the operators Ln and Qn in
appropriate function spaces.

2.8.1 Choice of the transverse vector field

In this paragraph we describe explicitly the parametrization of the perturbed surfaces An(w),
which implicitly explains the choice of the transverse vector field Ξ.
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1) In the graph regions Ω±gr we parametrizeAn(w) as a vertical bi-graph over the subdomain
Dgr ⊂ D2, defined as in (2.20):

z ∈ Dgr 7→ X (z, ∓ [Gn(z) + w(z)]) .

2) In the “catenoidal neck” region, we parametrize An(w) as an image in B3 of a normal
graph over the surface C̃ε̃ defined in the section 2.6, more precisely we put

(s, φ) ∈ [−sε, sε]× S1 7→ X
(
X̃cat
ε̃ (s, φ) +

w

2
Ñcat(s, φ)

)
⊂ An(w)

where (s, φ) are cylindrical coordinates in Ω0
cat and

Ñcat(s, φ) =

(
− 1

cosh s
eiφ, 2 tanh s

)
, (2.23)

is a unit normal to C̃ε̃ ⊂ D2 × R with respect to the metric g̃eucl = dz2 + 1
4 dx

2
3.

3) In the same manner, in the “half-catenoidal bridges” regions, we parametrize An(w) as
an image in B3 of a normal graph over the half-catenoid:

(σ, θ) ∈ [−σε, σε]×
[
π

2
,
3π

2

]
7→ X ◦ Λm

(
Xcat
ε/2(σ, θ) +

w

2
Ncat(σ, θ)

)
∈ An(w)

where (σ, θ) are half-cylindrical coordinates in Ωm
cat and

Ncat(σ, θ) =

(
− 1

coshσ
eiθ, tanhσ

)
, (2.24)

is a unit normal to the Euclidean half-catenoid Cε/2.

4) Finally, in the gluing regions Ωi,±
glu we interpolate smoothly between the parametrizations

described above. Consider the functions υi defined in (2.21). We introduce the function ῡ
in C− defined by ῡ(ζ) := υm(λm(ζ)), m = 1, . . . , n. Finally, let η, η̄ ∈ C∞(R) be the cut-off
functions defined in (2.19). Then in Ωi,±

glu we parametrize An(w) by

z ∈ D2, 1
2 ε

1/2 < |z| < 2 ε1/2 7→ X
(

(z, υ0(z)) + w V0(z)
)
,

ζ ∈ C−, 1
2 ε

2/3 < |ζ| < 2 ε2/3 7→ X ◦ Λm

(
(ζ, ῡ(ζ)) +

w

2
V̄(ζ)

)
,

where the vector fields V0 and V̄ are defined in D2 × R and C− × R by

V0 := η
1

2
Ñcat ± (1− η) (0, 0, 1) and V̄ := η̄ Ncat ± (1− η̄) (0, 0, 1). (2.25)

Remark 2.8.1. The surface An(w) is invariant under the action of the group Sn and meets
the unit sphere S2 = ∂B3 orthogonally at the boundary.
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2.8.2 Function spaces

In this paragraph we define the function spaces we will work in.

Definition 2.8.1 (Weight function). We introduce the weight function

γ : p ∈ An 7→
n
Π
i=0
|p− pi|, where p0 = 0, pm =

(
cos

2πm

n
, sin

2πm

n
, 0

)
,

where by | · | we denote the Euclidean distance in R3.

Definition 2.8.2 (Weighted Hölder spaces). Let gn be the metric induced on An from the

Euclidean metric and take ν ∈ R. We denote by Ek,αν,n the subspace of functions w ∈ Ck,α(An)

1) endowed with the norm

‖w‖Ek,αn,ν := sup
An
|γ−νw|+

k∑
`=1

sup
An
‖γ`−ν∇`w‖gn (2.26)

+ sup
p,p′∈An

∣∣∣∣γk+α−ν(p)∇kw(p)− γk+α−ν(p′) ∇kw(p′)

dgn(p, p′)α

∣∣∣∣ ,
2) invariant under the action of the group Sn,

3) and for k = 2 satisfying homogeneous Neumann boundary condition

gn(∇gnw,N∂An) = 0.

Remark 2.8.2. Recall that in different regions of An we work with different coordinate sys-
tems. For r, ρ ∈ (0, 1] consider the following subdomains of the unit disk

D0
r :=

{
z ∈ D2 : |z| < r

}
and Dm

ρ := λm
(
{ζ ∈ C− : |z| < ρ}

)
A0
r :=

{
z ∈ D̄2 : r < |z| < 2 r

}
and Amρ := λm

(
{ζ ∈ C− : ρ < |ζ| < 2 ρ}

)
and finally

Dr,ρ :=
(
A0
r

n⋃
m=1

Amρ

)
\
(
D0
r

n⋃
m=1

Dm
ρ

)
.

We introduce the function

γD : z ∈ D̄2 7→ |z|
n
Π
m=1
|z − zm| = |z||zn − 1|.

Then the norm (2.26) is equivalent to the norm defined by

sup
s∈[−sε,sε−1]

∥∥(ε̃ cosh s)−ν w
∥∥
Ck,α([s,s+1]×S1)

+ sup
σ∈[−σε,σε−1]

‖
(ε

2
coshσ

)−ν
w‖Ck,α([σ,σ+1]×[π2 ,

3π
2 ])

+ sup
ρ∈[ρε,1/2], r∈[rε,1/2]

‖γ−νD w‖Ck,α(Dr,ρ,γ−2
D |dz|2)

,
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where ρε = 1/2 ε2/3 and rε = 1/2 ε1/2. Observe that, in the last term we use the singular metric
γ−2
D |dz|2 to calculate the gradient and the Hessian of the function. Finally, the homogeneous

Neumann boundary condition on the function w on the boundaries of the “half-catenoidal
bridges” reads:

∂θw|{π2 , 3π2 } = 0.

2.8.3 Mean curvature of the approximate solutions

In this section, we show that in a suitable topology H(An) tends to 0, when n tends to infinity.
To this end, we obtain L∞ estimates for H(An) in different regions of An. In the graph and
gluing regions we use the result of Lemma 2.3.1 for the mean curvature of vertical graphs. On
the other hand, in the catenoidal regions, our task amounts to calculate the mean curvature
of the catenoid embedded in B3 via a diffeomorphism which can be seen as a perturbation of
the identity. More precisely, we have the following result:

Proposition 2.8.1. For all β ∈ (0, 1) and for all k ∈ N ∪ {0} there exist constants ĉk > 0
and ĉ > 0 independent of n such that the mean curvature of the surface An satisfies

∣∣∣γk∇kH(An)
∣∣∣ ≤ ĉk


e−n(3−β) γ−4 in Ω±gr

n⋃
i=0

Ωi,±
glu

e−n(1−β) γ−1 in
n⋃

m=1
Ωm
cat

e−n(1−β) in Ω0
cat

(2.27)

‖H(An)‖E0,α
n,ν−2

≤ ĉ e−n(
5
3
−2ν). (2.28)

Proof. Graph and gluing regions:

According to Lemma 2.3.1 and Corollary 2.3.1, the mean curvature of the graph X (z, u(z)))
for u ∈ C2(D2) with C1 norm small enough satisfies:

Hgr(u) = ∆ (Bu) +Qgr(u,∇u,∇2u).

In the regions Ω±gr we take u = ∓Gn. Then (2.27) follows from the fact that ∆ (B Gn) = 0, the
properties of the operator Qgr described in Corollary 2.3.1, and the estimates

|Gn(z)| ≤ ĉ0 ε

(
| log ε|+ |log |z||+

n∑
m=1

|log |z − zm||

)
,

∣∣∣∇kGn(z)
∣∣∣ ≤ ĉk ε

(
1

|z|k
+

n∑
m=1

1

|z − zm|k

)
,

for ĉi > 0 independent of ε.
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In the gluing regions Ωi,±
glu we take

u = ±υi = ±
(
ηiG

i
cat − (1− ηi)Gn

)
, i = 0, . . . , n.

For k ∈ N ∪ {0} and for all β ∈ (0, 1) we have ∇kηi = Ô(|z − zi|−k), and

∇kGn ∼ ∇kGicat = Ô(ε |z − zi|−k), ∇k
(
Gn −Gicat

)
= Ô(ε1−β|z − zi|1−k),

where z0 = 0, zm = e
2πim
n . A direct calculation gives

|H(An)| ≤ ĉ ε3−β |z − zi|−4.

The estimates for the derivatives of H(An) follow from structure of the smooth function
(u,∇u,∇2u) 7→ Qgr(u) and the estimates for ∇kGn and ∇kυi.

“Half-catenoidal” regions:

In Ωm
cat the proof amounts to calculate the mean curvature of Cε/2 ⊂ C− × R with respect to

the ambient pull-back metric

(X ◦ Λm)∗geucl(ζ, ξ3) = A2(Λm(ζ, ξ3))
( 4 |dζ|2

|1− ζ|4
+ 4B2(Λm(ζ, ξ3)) dξ2

3

)
=

4(
|1− ζ|2 + (1 + |ζ|2)(cosh(2ξ3)− 1)

)2

(
|dζ|2 + (1 + |ζ|2)2 dξ2

3

)

= a2(ζ, ξ3)
(
|dζ|2 + b2(ζ) dξ2

3

)
,

where a(ζ, ξ3) =
2

|1− ζ|2 + (1 + |ζ|2)(cosh(2ξ3)− 1)
and b(ζ) = 1 + |ζ|2.

Using the notations 2.7.1, we can express the metric induced on Cε/2 in the form:

gε(σ, θ) = ε2 cosh2 σ(dσ2 + dφ2) +O(ε3 cosh3 σ).

Let ∇ be the Levi-Civita connection associated to the metric (X ◦Λm)∗geucl. We have the
following estimates for the Christoffel symbols in a neighborhood of (ζ, ξ3) = 0:

Γ1
11 = −Γ1

22 = Γ2
12 = 1

a
∂a
∂ξ1

= O(1), Γ2
11 = −Γ2

22 = −Γ1
12 = − 1

a
∂a
∂ξ2

= O(1),

Γ1
13 = Γ2

23 = Γ3
33 = 1

a
∂a
∂ξ3

= O(|ξ3|), Γ3
11 = Γ3

22 = − 1
ab2

∂a
∂ξ3

= O(|ξ3|),

Γ1
33 = −( b

2

a
∂a
∂ξ1

+ b ∂b∂ξ1 ) = O(1), Γ2
33 = −( b

2

a
∂a
∂ξ2

+ b ∂b∂ξ2 ) = O(1),

Γ3
13 = 1

a
∂a
∂ξ1

+ 1
b
∂b
∂ξ1

= O(1), Γ3
23 = 1

a
∂a
∂ξ2

+ 1
b
∂b
∂ξ2

= O(1),

Γ1
23 = Γ2

13 = Γ3
12 = 0.
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Using that ∇∂k∂` = ∂` ∂kX
cat
ε/2 +

[
∂`X

cat
ε/2

]i [
∂kX

cat
ε/2

]j
Γqij ∂q , we find:∣∣∣∣[∇∂k∂` − ∂k ∂`Xcat

ε/2

]i
(σ, θ)

∣∣∣∣ ≤ ĉ ε2 cosh2 σ, i = 1, 2∣∣∣∣[∇∂k∂` − ∂k ∂`Xcat
ε/2

]3
(σ, θ)

∣∣∣∣ ≤ ĉ ε2 coshσ,

for a constant ĉ independent of ε, where ∂k, ∂` denote either ∂σ or ∂θ and i, j, q = 1, . . . , 3. On
the other hand, the unit outward normal to Cε/2 with respect to the metric (X ◦ Λm)∗geucl
reads

N(σ, θ) =
1

a
√

b2

cosh2 σ
+ tanh2 σ

(
− b

coshσ
eiθ,

1

b
tanhσ

)
.

Thus, the second fundamental form (hε)k` = (X ◦ Λm)∗geucl(∇∂k∂`,N) satisfies

hε(σ, θ) = ε(−dσ2 + dφ2) + Ô(ε2 coshσ).

This yields: |H(An)(σ, θ)| =
∣∣tr (g−1

ε hε
)

(σ, θ)
∣∣ ≤ ĉ

coshσ
for a constant ĉ independent of ε.

“Catenoidal neck” region:

In order to calculate the mean curvature in the “catenoidal neck” region, we need to calculate
the mean curvature of the surface C̃ε ⊂ D2 × R with respect to the ambient pull-back metric

X ∗geucl(z, x3) = A2(z, x3)
(
|dz|2 +B2(z)dx2

3

)
.

The proof repeats the one given above for the mean curvature of the “half-catenoidal
bridges” up to changing several estimates. The first fundamental form in this region satisfies:

g̃ε(s, φ) = ε̃2 cosh2 s(ds2 + dφ2) + Ô(ε4−β cosh4 s),

while the Christoffel symbols satisfy:

Γ̃1
11 = −Γ̃1

22 = Γ̃2
12 = 1

A
∂A
∂x1

= O(|z||x3|2), Γ̃2
11 = −Γ̃2

22 = −Γ̃1
12 = − 1

A
∂A
∂x2

= O(|z||x3|2),

Γ̃1
13 = Γ̃2

23 = Γ̃3
33 = 1

A
∂A
∂x3

= O(|x3|), Γ̃3
11 = Γ̃3

22 = − 1
AB2

∂A
∂x3

= O(|x3|),

Γ̃1
33 = −(B

2

A
∂A
∂x1

+B ∂B
∂x1

) = O(|z|), Γ̃2
33 = −(B

2

A
∂A
∂x2

+B ∂B
∂x2

) = O(|z|),

Γ̃3
13 = 1

A
∂A
∂x1

+ 1
B
∂B
∂x1

= O(|z|), Γ̃3
23 = 1

A
∂A
∂x2

+ 1
B
∂B
∂x2

= O(|z|),

Γ̃1
23 = Γ̃2

13 = Γ̃3
12 = 0,
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which yields for all β ∈ (0, 1)∣∣∣ [∇̃∂k∂` − ∂k ∂` X̃cat
ε̃

]i
(s, φ)

∣∣∣ ≤ ĉ ε3−β cosh3 s, i = 1, 2∣∣∣ [∇̃∂k∂` − ∂k ∂` X̃cat
ε̃

]3
(s, φ)

∣∣∣ ≤ ĉ ε3−β cosh2 s,

for a constant ĉ independent of ε, where ∇̃ is the Levi-Civita connection associated to the
metric X ∗geucl. The second fundamental form then satisfies

h̃ε(s, φ) = ε̃ (−ds2 + dφ2) + Ô(ε3−β cosh2 s).

Finally, we obtain for all β ∈ (0, 1)

|H(An)| =
∣∣∣tr(g̃−1

ε̃ h̃ε

)∣∣∣ ≤ ĉ ε1−β.

The estimates for the derivatives of the mean curvature in the catenoidal regions follow
from the estimates for the mappings Xcat

ε , X̃cat
ε̃ , X and Λm.

2.8.4 Mean curvature of the perturbed surfaces

Take a function w ∈ E2,α
n,ν and let An(w) be the perturbed surface defined in the beginning of

the section. Recall that the Taylor expansion of the mean curvature of An(w) in powers of w
and its derivatives has the form:

H(An(w)) = H(An) + Lnw +Qn(w).

In this subsection, we analyze the properties of the linear operator Ln and the nonlinear
function Qn(w) := Qn(w,∇w,∇2w) separately in different regions of An.

We start by studying the properties of Ln and Qn in the regions where An is parametrized
as a vertical graph over a subdomain of the unit disk. We obtain the following result. Let the
domain Dr,ρ ⊂ D̄2 and the function γD ∈ C∞(D̄2) be defined as in Remark 2.8.2.

Proposition 2.8.2. For all β ∈ (0, 1) the linearized mean curvature operator Ln in the regions

Ω±gr
n⋃
i=0

Ωi,±
glu can be expressed in the form:

Ln = Lgr + e−n(2−β) γ−4 L̂,

where Lgr = ∆ (B· ) and L̂ is a linear partial differential of second order which satisfies

‖L̂ w‖C0,α(Dr,ρ, γ−2
D |dz|2)

≤ C ‖w‖C2,α(Dr,ρ, γ−2
D |dz|2)

, ∀r, ρ ∈ (0, 1), (2.29)

for a constant C is independent of r, ρ and ε. If in addition ‖γ−1w‖E1,α
n,ν

< 1, the non-linear

function Qn satisfies

Qn(w) = e−n(1−β) γ−4Q2(w) + enβ γ−4Q3(w),

112



‖Qk(w1)−Qk(w2)‖C0,α(Dr,ρ, γ−2
D |dz|2)

≤ C max
i=1,2

{
‖wi‖k−1

C2,α(Dr,ρ, |dz|2)

}
× ‖w1 − w2‖C2,α(Dr,ρ, γ−2

D |dz|2)

for a constant C > 0 independent of ε, r and ρ.

Proof. In the graph region Ω±gr the surface An(w) is parametrized as a vertical bi-graph over
Dgr ⊂ D2 × {0} of the function (Gn + w) and, by Corollary 2.3.1, we have

H (An(w)) = Hgr (Gn + w) ,

where
Hgr(Gn + w) = H(An) + ∆(Bw) +Qgr (Gn + w)−Qgr(Gn). (2.30)

Developing this expression and using the structure of the operator Qgr, described in Corollary
2.3.1, we obtain the desired properties of Ln and Qn.

In the gluing regions Ωi,±
glu the result is a consequence of the following lemma which is a

simple generalization of a classical result already used for example in [77] and [93].

Lemma 2.8.1. Let Σ be a smooth surface in R3. Take w ∈ C2
loc(Σ) and V1 and V2 two smooth

vector fields on Σ. Let Hi(w) be the mean curvature of the surfaces parametrized by

Σ 3 p 7→ p+ w(p)Vi(p) ∈ R3, i = 1, 2.

Then the following relation holds:

DH2
∣∣
w=0

(v) = DH1
∣∣
w=0

(τ v) +∇H · T

where τ = ‖V N
2 ‖/‖V N

1 ‖ and T = V T
2 − τ V T

1 , and where V N
i and V T

i are the orthogonal
projections of Vi on the normal and the tangent bundles of Σ.

Proof of Lemma 2.8.1. The proof consists of applying the implicit function theorem to the
equation

p+ t V1(p) = q + s V2(q), p, q ∈ Σ, t, s ∈ R.

Expressing locally p and t as functions of q and s:

p = Φ(q, s) and t = Ψ(q, s),

with Φ(q, 0) = q and Ψ(q, 0) = 0, one obtains

∂sΨ(·, 0)[V1]N = [V2]N and ∂sΦ(·, 0) = [V2]T − ∂sΨ(·, s)[V1]T .

On the other hand, differentiating the identity

H1(Ψ(q, w(q)))(Φ(q, w(q))) = H2(w)(q)

with respect to w at w = 0 yields

DH1
∣∣
w=0

(∂sΨ(·, 0) v) +∇H · ∂sΦ v = DH2
∣∣
w=0

(v).
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In order to calculate the mean curvature in the regions Ω0,±
glu , we apply the result of Lemma

2.8.1 to the surface C̃ε̃ embedded in D2 × R and parametrized by

(ε̃ cosh s eiφ, 2 ε̃ s),

where ε̃ cosh s ∼ ε
1
2 and φ ∈ S1. We take

V1 := (0, 0, 1) and V2 := V0 =
1

2
η0 Ñcat ± (1− η0) (0, 0, 1),

where the vector field Ñ is a unit normal to C̃ε̃ with respect to g̃eucl. Finally, we calculate
the mean curvature and the orthonormal projections with respect to the metric X ∗geucl =
|dz|2 + 1

4 dx
2
3 + Ô(ε). We find |∇H(An)| = Ô(ε1/2) and

[(0, 0, 1)]N =
1

2
+ Ô(ε), [(0, 0, 1)]T = Ô(ε),

[
Ñcat

]N
= 1 + Ô(ε),

[
Ñcat

]T
= Ô(ε)

which yields τ = 1 + Ô(ε), T = Ô(ε1/2) and the desired properties of the operator Ln.

Similarly, in the regions Ωm,±
glu we apply Lemma 2.8.1 to the surface embedded in R×

[
π
2 ,

3π
2

]
and parametrized by (ε

2
coshσ eiθ,

ε

2
σ
)
,

where ε coshσ ∼ ε
2
3 and θ ∈

[
π
2 ,

3π
2

]
. We take

V1 =
1

2
(0, 0, 1) and V2 =

1

2
V̄ =

1

2

(
η̄ Ncat ± (1− η̄) (0, 0, 1)

)
,

and calculate the mean curvature and the orthogonal projections with respect to the metric
(X ◦ Λm)∗geucl = 4 geucl + Ô(ε2/3).

In the following two results, we show that in the “catenoidal regions” the properties of
H(An(w)) can be obtained using the properties of the normal graphs over the catenoid in
R3 scaled by a small factor. We start by analyzing of the mean curvature in the “catenoidal
neck” region Ω0

cat.

Proposition 2.8.3. For all β ∈ (0, 1) the linearized mean curvature operator Ln in the
“catenoidal neck” region Ω0

cat can be expressed in the form

Ln =
1

ε̃2 cosh2 s

(
∂2
s + ∂2

φ +
2

cosh2 s

)
+ enβ L̂,

where L̂ is the second order partial differential operator which satisfies

‖L̂ w‖C0,α((s,s+1)×S1) ≤ C ‖w‖C2,α((s,s+1)×S1), ∀s ∈ (−sε, sε − 1)

114



for a constant C independent of s and ε. If in addition ‖γ−1w‖E1,α
n,ν

< 1, the nonlinear term

Qn(w) can be expressed in the form

Qn(w) =
1

ε3 cosh4 s
Q2
cat(w) +

1

ε4 cosh4 s
Q3
cat(w), where

∥∥∥Qkcat(w1)−Qkcat(w2)
∥∥∥
C0,α((s,s+1)×S1)

≤ C max
i=1,2

{
‖wi‖k−1

C2,α((s,s+1)×S1)

}
× ‖w1 − w2‖C2,α((s,s+1)×S1),

for a constant C independent of s and ε.

Proof. Recall that the region Ω0
cat ⊂ An can be seen as the image by the mapping X of the

normal (with respect to the metric g̃eucl = dz2 + 1
4dx

2
3) graph over the surface C̃ε̃ ⊂ D2 × R:

(s, φ) ∈ (−sε, sε)× S1 7→ X̃cat
ε̃ (s, φ) +

w(s, φ)

2
Ñ cat(s, φ) ∈ C̃ε̃

(w
2

)
.

On the other hand, we notice that calculating the mean curvature of C̃ε̃
(
w
2

)
with respect to

the metric g̃eucl is equivalent to calculating the mean curvature of a normal graph about the
Euclidean catenoid scaled by the factor ε̃. Then, a standard computation which we postpone
to the appendix, gives

Hcat

(w
2

)
=

1

ε̃2 cosh2 s

(
∂2
s + ∂2

φ +
2

cosh2 s

)
w

2
+

1

ε3 cosh4 s
Q2
cat(w) +

1

ε4 cosh4 s
Q3
cat(w).

Secondly, we use the fact the pull-back metric X ∗geucl can be seen as a perturbation of the
metric g̃eucl:

X ∗geucl(z, x3) = (1 +O(x2
3)) g̃eucl +O(|z|2) dx3.

Calculating the mean curvature with respect to X ∗geucl corresponds to adding to Hcat(w) an
initial mean curvature term equal to H(An) and some smaller linear and nonlinear terms.
Since the nonlinear part has the same properties as when we calculation the mean curvature
with respect to g̃eucl, we only have to understand the behavior of the additional linear terms.
This can be achieved by a direction computation which can be also found in the Appendix.

Finally, the same ideas can be applied to analyze the properties of the operators Ln and
Qn in the “half-catenoidal bridge” regions.

Proposition 2.8.4. The linearized mean curvature operator Ln in the “half-catenoidal bridge”
region Ωm

cat can be expressed in the form:

Ln =
1

ε2 cosh2 σ

(
∂2
σ + ∂2

θ +
2

cosh2 σ

)
+

1

ε coshσ
L̂,
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where L̂ is the second order partial differential operator which satisfies:

‖L̂ w‖C0,α((σ,σ+1)×[π
2
, 3π

2
]) ≤ C ‖w‖C2,α((σ,σ+1)×[π

2
, 3π

2
]), ∀σ ∈ [−σε, σε − 1]

for a constant C independent of σ and ε. If in addition ‖γ−1w‖E1,α
n,ν

< 1, the nonlinear term

Qn(w) can be expressed in the form

Qn(w) =
1

ε3 cosh4 σ
Q2
cat(w) +

1

ε4 cosh4 σ
Q3
cat(w), where

∥∥∥Qkcat(w1)−Qkcat(w2)
∥∥∥
C0,α((σ,σ+1)×[π2 ,

3π
2 ])
≤ C max

i=1,2

{
‖wi‖k−1

C2,α((σ,σ+1)×[π2 ,
3π
2 ])

}
× ‖w1 − w2‖C2,α((σ,σ+1)×[π2 ,

3π
2 ]),

for a constant C independent of σ and ε.

Proof. The proof follows from the same argument as the proof of Proposition 2.8.3 if one
remarks that An(w) is obtained as the image by the mapping X ◦ Λm of a normal (with
respect to geucl) graph about the Euclidean catenoid Cε/2 scaled by the factor ε

2 and that the
metric (X ◦ Λm)∗ geucl can be seen as a small perturbation of the Euclidean metric scaled by
the factor 4:

(X ◦ Λm)∗geucl(ζ, ξ3) = (4 +O(|ζ|)) geucl +O(|ζ|2) dξ2
3 .

2.9 Linear analysis

Recall, that our goal is to solve
H(An(w)) = 0 (2.31)

for some w ∈ E2,α
n,ν . Using the notations introduced in the previous section, we can write this

equation in the form
Lnw = −H(An)−Qn(w).

Since H(An) tends to 0 in a suitable topology when n tends to infinity, we hope for n large
enough to find a solution using a fixed point argument. To this end, we need to show that
the operator Ln has a right inverse in suitable function spaces and study its norm when n
tends to infinity. In this section, we show that the properties of Ln can be deduced from
the properties of the operator Lgr defied in the noncompact domain D2

∗ with homogeneous
Neumann boundary condition on S1 \ {z1, . . . , zn} together with the properties of the Jacobi
operator about the Euclidean catenoid defined in the infinite unit cylinder.
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2.9.1 Linear analysis on the punctured disk

We now analyze the operator Lgr in the unit punctured disk D2
∗ subject to homogeneous

Neumann boundary data on S1 \ {z1, . . . , zn}:{
∆(Bw) = f in D2 \ {0},

∂rw = 0 on S1 \ {z1, . . . , zn}.
(2.32)

Since ∂rB|r=1 = 1, this is equivalent to studying the problem:{
∆w = f in D2 \ {0},

∂rw − w = 0 on S1 \ {z1, . . . , zn},
(2.33)

where f is a given function whose regularity and properties will be stated shortly. We assume
that the functions f and w are invariant under rotations by the angle 2π

n . With this assumption,
the operator associated to (2.33) does not have any bounded kernel for n ≥ 2 and hence, the
solvability of (2.33) follows from classical arguments [67]. For example, if f ∈ C0,α(D̄2) we get
the existence of a solution w ∈ C2,α(D̄2) to (2.33). Moreover,

‖w‖C2,α(D̄2) ≤ C
(
‖w‖C0(D̄2) + ‖f‖C0,α(D̄2)

)
.

We need to understand what happens if we allow f to have singularities at 0 and/or zm,
m = 1, . . . , n.

Definition 2.9.1 (Weighted Hölder spaces in the punctured disk). Take the function

γD : z 7→ |z||zn − 1|

and ν ∈ R. The space Ck,αν (D2
∗) is defined to be the space of functions u ∈ Ck,αloc (D2

∗) for which
the following norm is finite

‖u‖Ck,αν (D2
∗)

:= ‖γ−νD u‖Ck,α(D∗,γ
−2
D |dz|2) <∞.

Notation 2.9.1. Let χ̄ ∈ C∞(C−) be a cut-off function, which is radial and satisfies

χ̄(ζ) ≡ 0 for |ζ| < 1

5
, and χ̄(ζ) ≡ 1 for |ζ| > 2

5
.

Then we consider the conformal mapping λ : C− → D̄2,

λ(ζ) :=
1 + ζ

1− ζ
∈ D̄2,

and introduce the functions χ, χn ∈ C∞(D̄2), defined by

χ(z) = χ̄(λ−1(z)), χn(z) = χ(zn).

Notice, that χ ≡ 1 in a neighborhood of 1 and χn ≡ 1 in neighborhoods z = zm, m = 1, . . . , n.
Moreover, we have

∂rχ|r=1 = 0 and ∂rχn|r=1 = 0.
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Definition 2.9.2 (Deficiency space). We define the deficiency space

Dn = span{1, χn},

Proposition 2.9.1. Assume that ν ∈ (0, 1). Then there exists a constant C > 0 and for all
n large enough and all f ∈ C0,α

ν−2(D2
∗) such that f(z) = f(z̄) = f(z · zm), there exist a unique

function ψ ∈ C2,α
ν (D2

∗) and unique constants ĉ0 and ĉ1 such that

w := ψ + ĉ0 + ĉ1 χn

is a solution to {
∆w = f in D2

∗,

∂rw − w = 0 on S1 \ {z1, . . . , zn},

that satisfies w(z) = w(z̄) = w(z · zm) and

‖w‖C2,α
ν (D2

∗)⊕Dn
≤ C ‖f‖C0,α

ν−2(D2
∗)
. (2.34)

Before starting the proof of Proposition 2.9.1, we notice that instead of the problem (2.33),
we can consider an equivalent problem defined in D̄2 \ {0, 1}. Since we assume that f(z) =
f(z̄) = f(z · zm), there exists a function F such that

F (zn) =
1

n2
|z|2−2nf(z),

and if W is a solution to {
∆W = F in D2 \ {0},

∂rW − 1
nW = 0 on S1 \ {1},

(2.35)

then
w(z) = W (zn)

satisfies (2.33) and w(z) = w(z̄) = w(z · zm).

We proceed as follows. First, we analyze the existence and the properties of the solution
of (2.35) in weighted L∞ spaces. In Lemma 2.9.1 given below, we consider the case where the
function F only has a singularity at z = 0. Next, in Lemma 2.9.2, we consider the general
case where F has singularities at z = 0 and z = 1. In order to finish the proof of Proposition
2.9.1, we go back to the problem (2.33) and obtain regularity properties for the solution in
D̄2 \ {0, z1, . . . , zn} using the Schauder’s elliptic regularity theory in Hölder weighted spaces.
Finally, this provides us the solution to the problem (2.32).

First, let us assume that the function F in (2.35) only has a singularity at z = 0. We have
the following result.
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Lemma 2.9.1. Assume ν0 ∈ (0, 1). There exists a constant C0 > 0 (which depends on ν0)
and for all n ≥ 2 and all functions F , such that |z|−ν0+2 F ∈ L∞(D2), there exist a unique
function Ψ and a unique constant c∗0 such that

W := Ψ + n c∗0

is a solution to (2.35) and

‖ |z|−ν0 Ψ ‖L∞(D2) + |c∗0| ≤ C0 ‖ |z|−ν0+2 F ‖L∞(D2). (2.36)

Proof of Lemma 2.9.1. First, let us assume that F is radial. In this case, (2.35) reduces to a
second order ordinary differential equation which can be solved explicitly:

Ψrad
0 (r) =

∫ r

0

1

s

∫ s

0
t F (t) dt ds, W rad

0 = Ψrad
0 + n c∗0,

c∗0 = −
∫ 1

0
s F (s) ds+

1

n

∫ r

0

1

s

∫ s

0
t F (t) dt ds. (2.37)

With little work, one checks that the result is indeed correct in this special case.

Furthermore, we claim that, if we restrict our attention to the space of functions for which∫
S1

F (reiφ) r dφ = 0, ∀r ∈ (0, 1),

then there exists a function Ψmean
0 such that

‖|z|−ν0 Ψmean
0 ‖L∞(D2) ≤ C0 ‖|z|−ν0+2F‖L∞(D2).

We construct Ψmean
0 as a uniform limit of solutions to the Poisson’s equation in annuli with

mixed boundary data. More precisely, for any R ∈ (0, 1) we put AR = {z ∈ D2 : |z| > R}
and remark that for n ≥ 2 the operator associated to the problem:{

∆ΨR = F in AR,(
∂rΨR − 1

nΨR

)∣∣
r=1

= 0, ΨR|r=R = 0
(2.38)

has no kernel. This yields (cf. [67]) the existence of a solution ΨR to (2.38) which satisfies:

‖ΨR‖L∞(AR) ≤ c(R) ‖F‖L∞(AR),

for some constant c(R) which depends on R. Next, we show that this inequality can be
rewritten in the form:

‖|z|−ν0ΨR‖L∞(AR) ≤ C0 ‖|z|−ν0+2F‖L∞(AR), (2.39)

for a constant C0 > 0, which, this time, is independent of R. The last fact is proven by
contradiction, using the following classical argument (cf. [93]). Assume that C0 = C0(R)
depends on R and that there exists a sequence Rj → 0 such that C0(Rj)→∞. We put:

Ψj :=
1

C0(Rj)
ΨRj , Fj :=

1

C0(Rj)
F, Aj = ARj .
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Then
∆ Ψj = Fj , ‖|z|2−ν0Fj‖L∞(Aj) →j→∞ 0.

Next, by linearity we can assume that
∥∥ |z|−ν0+2 F

∥∥
L∞(AR)

= 1, then we have

‖|z|−ν0 Ψj‖L∞(Aj) ≤ 1.

Furthermore, by assumption there exists a sequence of points zj ∈ Aj such that

Ψj(zj) = |zj |ν0 .

Several situations can occur:

1. If the sequence (zj) ⊂ Aj admits a subsequence converging to a point z∞ ∈ D2
∗, then by

Schauder’s elliptic estimates on the gradient of Ψj and by Arzelà-Ascoli theorem, the sequence
(Ψj) admits a subsequence converging uniformly on compact sets to a solution Ψ∞ of{

∆ Ψ∞ = 0 in D2
∗,

∂rΨ∞ − 1
nΨ∞ = 0 on S1,

(2.40)

such that |Ψ∞(z)| ≤ |z|ν0 . This implies Ψ∞ = 0 and contradicts the fact that Ψ∞ (z∞) =
|z∞|ν0 6= 0.

2. If the sequence (zj) admits a subsequence converging to 0, while
Rj
|zj | →j→∞ 0, we put

Φj(z) := Ψj (z |zj |) |zj |−ν0 and verify that

‖ |z|−ν0Φj ‖L∞(Aj) ≤ 1, Φj (zj/|zj |) = 1.

Then the sequence (Φj) admits a subsequence converging uniformly on compact sets to a
solution Φ∞ of the problem

∆ Φ∞ = 0, in R2 \ {0},

which satisfies |Φ∞(z)| ≤ |z|ν0 . This yields Φ∞ ≡ 0 and gives a contradiction with the fact

that Φj

(
zj
|zj |

)
= 1 for all j.

3. If the sequence (zj) admits a subsequence converging to 0, while
Rj
|zj | →j→∞ a < 1, then

the sequence (Φj) admits a subsequence converging on compact sets to a solution Φ∞ of the
problem {

∆ Φ∞ = 0 in {z ∈ R2 : |z| > a},

Φ∞||z|=a = 0,

such that |Φ∞| ≤ |z|ν0 . On the other hand, decomposing Φ∞ in Fourier series, we see that for
n ≥ 2 the problem has no non-trivial solution. This once again implies Φ∞ ≡ 0 and gives a
contradiction.
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4. Finally, the case when sequences (zj) admits a subsequence converging to 0, while
Rj
|zj | →j→∞ 1 doesn’t happen. Indeed, for every j we have{

∆ Ψj = Fj in {z ∈ D2 : Rj < |z| < 2Rj},

Ψj |r=Rj = 0.

Moreover, |Fj | ≤ Rν0−2
j and |Ψj | ≤ Rν0

j . By elliptic regularity, we have |∇Ψj | ≤ ĉ Rν0−1
j in the

subsets of {z ∈ D2 : Rj < |z| < 2Rj}. This implies that in a neighborhood of |z| = Rj , we
have

|Ψj | ≤ ĉ Rν0−1
j (|z| −Rj) ,

for a constant ĉ independent of ε. At z = zj this yields 1− Rj
|zj | ≥ ĉ, which is not possible for

j large enough.

Therefore, (2.39) implies that by the elliptic regularity theory we have a uniform bound
on the gradient of ΨR on compact sets of D2

∗, and by Arzelà-Ascoli theorem, there exists a
subsequence of (ΨR) converging uniformly on compact sets to a solution of (2.35).

Finally, let as prove that the constant in (2.36) does not depend on n. By construction,
for all n ≥ 2 the solution W can be written in the form:

W = Ψrad + Ψmean + c∗0 n,

where Ψrad is radial and
∫
S1 Ψmean(reiφ)r dφ = 0, ∀r ∈ (0, 1). The fact that

‖ |z|−ν0 Ψrad ‖L∞(D2) + |c∗0| ≤ C0 ‖ |z|2−ν0 F ‖L∞(D2)

for a constant C0 independent of n follows from the explicit expression given by (2.37). We
use once again an argument by contradiction to prove the inequality for Ψmean. Assume by
linearity that ‖ |z|2−ν0 F ‖L∞(D2) = 1 and that there exists a sequence (nk) ∈ N and a sequence
of functions (Ψk) which satisfy (2.35) and a sequence of points (zk) ∈ D2

∗ such that

‖ |z|−ν0Ψk ‖L∞(D2) ≤ C0(nk) and Ψk(zk) = C0(nk) |zk|ν0 .

Put Ψk := 1
C0(nk) Ψk and assume that (zk) admits a subsequence converging to a point z∞ ∈

D2
∗. Then, by the Elliptic estimates for the gradient and by Arzelà-Ascoli theorem, the

sequence (Ψk) admits a subsequence converging uniformly on compact sets of D2
∗ to a solution

Ψ∞ of the problem:
∆Ψ∞ = 0 in D2

∗, ∂rΨ∞ = 0 on S1,

which satisfies |Ψ∞(z)| ≤ |z|ν0 . Considering the expansion of Ψ∞ in Fourier series and using
the fact that Ψ∞ has no radial part, we find Ψ∞ ≡ 0, which contradicts the fact Ψ∞(z∞) =
|z∞|ν0 . In the case where zk converges to 0, we put

Φk(z) := Ψk(|zk|z)|zk|−ν0 .

Then Φk(zk/|zk|) = 1 and (Φk) admits a subsequence converging uniformly on compact sets
to a function Φ∞ which is harmonic in R2 \ {0}. Using that Φ∞ has no radial part and that
|Φ∞(z)| ≤ |z|ν0 , we obtain a contradiction.
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Corollary 2.9.1. For all ν0 ∈ (0, 1), can write (2.36) in the form:

‖ |z|−ν0+k∇kΨ ‖L∞(D2) ≤ Ck0 (ν0) ‖ |z|2−ν0 F ‖L∞(D2), k = 0, 1, 2,

|c∗0| ≤ C1
0 (ν0) ‖ |z|2−ν0 F ‖L∞(D2),

where
Ck0 (ν0) ≤ C νk−2

0

for a constant C independent of ν0.

Proof. The inequality for the radial part Ψrad and the constant c∗0 follows directly from (2.37).
On the other hand, Ψmean is bounded by a constant does not depend on ν0. The estimates
for the derivatives follow from the the Schauder’s elliptic estimates in weighted spaces. To see
this, it is sufficient to apply in the neighborhood of z = 0 the classical Schauder’s estimates
in the annuli of inner radius R and exterior radius 2R to the function Ψ(R· ).

As a next step, we assume that F can have singularities at z = 0 and z = 1. Let
χ ∈ C∞(D2) be the cut-off function defined in Notation 2.9.1. We have the following result.

Lemma 2.9.2. Assume ν0, ν1 ∈ (0, 1). There exists a constant C1 > 0 (which depends on
ν0 and ν1) and for all n large enough and all functions F , such that |z|−ν0+2|z − 1|−ν1+2 F ∈
L∞(D2) there exist a unique function Ψ and unique constants c∗0 and c∗1 such that

W := Ψ + n c∗0 + c∗1 χ

is a solution to (2.35) and satisfies

‖ |z|−ν0 |z − 1|−ν1Ψ ‖L∞(D2) + |c∗0|+ |c∗1| < C1 ‖ |z|−ν0+2|z − 1|−ν1+2F ‖L∞(D2).

Proof of Lemma 2.9.2. Let the mapping λ : C− → D̄2 be defined as in Notation 2.9.1. We
decompose

F = F0 + F1 = (1− χ)F + χF,

and define the function

F 1 : ζ 7→ 4

|1− ζ|2
F1(λ(ζ)).

Notice that |ζ|−ν1+2 F 1 ∈ L∞(C−) and∥∥ |ζ|−ν1+2 F 1

∥∥
L∞(C−)

≤ C
∥∥ |z|−ν0+2 |z − 1|−ν1+2 F

∥∥
L∞(D2)

.

Let W 1 be solution of
∆W 1 = F 1(ζ) in {ζ ∈ C− : |ζ| < 2

5},

∂ξ1 W 1

∣∣
ξ1=0

= 0,

W 1

∣∣
|ζ|= 2

5
= 0,
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then the function
W1(z) := W 1(λ−1(z))

satisfies:
∆W1 = F1 in supp(χ) \ {1} and ∂rW1|r=1 = 0.

Moreover, we have:∥∥ |z − 1|−ν1 W1

∥∥
L∞(supp(χ)\{1}) ≤ C ‖ |z|

−ν0+2 |z − 1|−ν1+2 F ‖L∞(D2).

The existence and the properties of W 1 follow from Lemma 2.9.1. More precisely, we
extend F 1 by symmetry with respect to the coordinate axis ξ1 = 0 to {ζ ∈ C : |ζ| < 2

5} and
consider the problem  ∆W 1 = F 1 in {ζ ∈ C : |ζ| < 2

5},

W 1

∣∣
|ζ|= 2

5
= 0.

(2.41)

If F 1 is radial, the solution of (2.41) is found explicitly and can be written in the form

W
rad
1 = Ψ

rad
1 (ρ) + c∗1, (2.42)

where

Ψ
rad
1 (ρ) =

∫ ρ

0

1

s

∫ s

0
t F 1(t) dt ds and c∗1 = −

∫ a

0

1

s

∫ s

0
t F 1(t) dt ds.

Moreover, there exists a constant C > 0 such that

‖ |ζ|−ν1 Ψ
rad
1 ‖L∞(D2( 2

5
)) + |c∗1| ≤ C ‖ |ζ|−ν1+2 F 1 ‖L∞(D2( 2

5
)).

On the other hand, if ∫
S1

F 1(ρ, θ) ρ dθ = 0, for all ρ ∈ (0, 2/5),

we prove, using the same argument as in Lemma 2.9.1, the existence of Ψ
mean
1 which is a

solution to (2.41) and satisfies:

‖ |ζ|−ν1 Ψ
mean
1 ‖L∞(D2( 2

5
)) ≤ C ‖ |ζ|

−ν1+2F 1 ‖L∞(D2).

Finally, we put

W 1 = W
rad

+ Ψ
mean
1 .

The function
χW1 = χW 1(λ−1(·))

can be extended by zero to the entire open unit disk D2. We have:{
∆(χW1) = F1 + 2∇χ∇W1 +W1 ∆χ in D2,

∂r(χW1) = 0 on S1 \ {1}.
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The function ∇χ∇W1 +W1 ∆χ has compact support in D2
∗, so according to Lemma 2.9.1

we can find a function W0 which satisfies:{
∆W0 = F0 − 2∇χ∇W1 −W1 ∆χ in D2

∗,

∂rW0 − 1
nW0 = 0 on S1 \ {1}.

By the elliptic regularity, we have:

‖∇χ∇W1 ‖L∞(D2) ≤ C ‖ |z − 1|−ν1+2 F1‖L∞(D2),

for some positive constant C. This yields:

‖ |z|−ν0+2 (F0 − 2∇χ∇W1 −W1 ∆χ) ‖L∞(D2) ≤ C ‖ |z|−ν0+2|z − 1|−ν1+2 F ‖L∞(D2).

So, we can write W0 = Ψ0 + c∗0 n, where

‖ |z|−ν0 Ψ0 ‖L∞(D2) + |c∗0| ≤ C ‖ |z|−ν0+2|z − 1|−ν1+2F‖L∞(D2).

The function Wapp := W0 + χW1 satisfies:{
∆Wapp = F in D2

∗,

∂rWapp − 1
nWapp = − 1

n χW1 on S1 \ {1}.

Notice, that we can write
Wapp = Ψ + c∗0 n+ c∗1 χ

(changing if necessary the values of the constants c∗0 and c∗1), and for example writing

Wapp = [(1− χ) Ψ0 + χΨ1 + χ (Ψ0 − Ψ0(1))] + χΨ0(1) + χ c∗1 + c∗0 n.

In order to find the exact solution, we define the function

hn(z) :=
|z|2 − 1

2n
χW1(z),

which satisfies:  ∆hn = |z|2−1
2n ∆(χW1) + 2r

n ∂r (χW1) + 2
n χW1,

∂rhn − 1
nhn

∣∣
r=1

= 1
nχW1.

Then, we introduce the function
Wn := Wapp + hn,

and verify that{ ∥∥ |z|−ν0+2 |z − 1|−ν1+2 (∆Wn − F )
∥∥
L∞(D2)

≤ ĉ
n

∥∥ |z|−ν0+2 |z − 1|−ν1+2 F
∥∥
L∞(D2)

,

∂rWn − 1
nWn

∣∣
r=1

= 0,
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for a constant ĉ independent of n. Next, consider the operator

Rn : F ∈ |z|ν0−2 |z − 1|ν1−2 L∞(D2) 7→ ∆Wn(F )− Id(F ) ∈ |z|ν0−2 |z − 1|ν1−2 L∞(D2).

Then ‖Rn‖ ≤ ĉ
n for a constant ĉ independent of n, and thus, for n large enough, the operator

Id + Rn is invertible. Finally, the function

W := Wn

(
(Id + Rn)−1(F )

)
satisfies (2.35) and can be written in the form:

W = Ψ + c∗0 n+ c∗1 χ,

where

‖ |z|−ν0 |z − 1|−ν1 Ψ ‖L∞(D2) + |c∗0|+ |c∗1| ≤ C1 ‖ |z|2−ν0 |z − 1|2−ν1 F ‖L∞(D2).

Finally, we prove that the constant C1 does not depend on n. Again, for the radial part of
Ψ and the deficiency terms the inequality follows from the explicit expressions given by (2.37)
and (2.42). For the remaining part Ψmean, such that

∫
S1 Ψmean(rφ) r dφ = 0, ∀r ∈ (0, 1) the

proof follows from an argument by contradiction analogous to the one described in Lemma
2.9.1.

Now we go back to the problem (2.33) and analyze the solutions for f ∈ C0,α
ν−2(D2

∗).

Proof of Proposition 2.9.1. Consider the function F defined by the relation

f(z) = n2 |z|2n−2 F (zn).

If f ∈ C0,α
ν−2(D2

∗), then

F (z) ∈ |z|ν/n−2 |z − 1|ν−2 L∞(D2),

and

‖ |z|−ν/n+2|z − 1|−ν+2 F ‖L∞(D2) ≤ C
1

n2
‖ γ−ν+2

D f ‖L∞(D2)

for a constant C independent of n. Furthermore, by Lemma 2.9.2, for all n large enough,
there exits a function W which satisfies{

∆W = F in D2 \ {0},

∂rW − 1
nW = 0 on S1 \ {1},

and can be decomposed as
W = Ψ + c∗0 n+ c∗1 χ,

where

‖|z|−ν/n |z − 1|−ν Ψ‖L∞(D2) ≤ C n2 ‖|z|2−ν/n |z − 1|2−ν F‖L∞(D2) ≤ C ‖ γ−ν+2
D f ‖L∞(D2)

|c∗0| ≤ C n ‖|z|2−ν/n |z − 1|2−ν F‖L∞(D2) ≤ C
1

n
‖ γ−ν+2

D f ‖L∞(D2)

|c∗1| ≤ C n2 ‖|z|2−ν/n |z − 1|2−ν F‖L∞(D2) ≤ C ‖ γ−ν+2
D f ‖L∞(D2)
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for a constant C > 0 independent of n. Then the function w(z) := W (zn) satisfies (2.33) and
can be decomposed as

w(z) = ψ(z) + ĉ0 + ĉ1 χn, (2.43)

with
‖γ−νD ψ‖L∞(D2) + |ĉ0|+ |ĉ1| ≤ C ‖γ2−ν

D f‖L∞(D2). (2.44)

Finally, in (2.43) we have ψ ∈ C2,α
ν (D2) which follows from the Schauder’s elliptic esti-

mates in weighted spaces. To see this, it is sufficient to apply in the neighborhood of z = 0
the classical Schauder’s estimates to the functions ψ(R, · ) and ψ(λm(R· )) in the domains{
z ∈ D2 : R < |z| < 2R

}
and λm ({ζ ∈ C− : R < |ζ| < 2R}) for all R ∈ (0, 1

2).

Corollary 2.9.2. From Proposition 2.9.1 we deduce the properties of the solutions to the
problem (2.32).

2.9.2 Linear analysis on the half-catenoid

Consider the problem:{ (
∂2
σ + ∂2

θ + 2
cosh2 σ

)
w = f in R×

[
π
2 ,

3π
2

]
,

∂θw = 0 on R× {π2 ,
3π
2 }.

(2.45)

Lemma 2.9.3. Assume that δ ∈ (−1, 0). The subspace of (coshσ)δC2,α
(
R×

[
π
2 ,

3π
2

])
which

is invariant by (σ, θ) 7→ (σ, 2π − θ) and (σ, θ) 7→ (−σ, θ) and solves{ (
∂2
σ + ∂2

θ + 2
cosh2 σ

)
w = 0 in R×

[
π
2 ,

3π
2

]
,

∂θw = 0 on R× {π2 ,
3π
2 },

is trivial.

Proof. We decompose w in Fourier series

w(σ, θ) =
∑
j∈Z

ωj(σ)eijθ,

then the functions wj are solutions of the ordinary equations(
∂2
σ − j2 +

2

cosh2 σ

)
wj = 0.

These solutions are asymptotic either to (coshσ)j or to (coshσ)−j . By hypothesis, the solution
is bounded by a constant times (coshσ)δ and |δ| < 1, so the solution has to be asymptotic to

(coshσ)−j , and then the solution is bounded. On the other hand, −j2 +
2

cosh2 σ
≤ 0, so the

maximum principle assures that wj = 0, for all j ≥ 2.
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Observe that the imposed symmetry (σ, θ) 7→ (σ,−θ) and the boundary condition imply
w1 = 0. When j = 0, ω0 is the solution of the ordinary equation(

∂2
σ +

2

cosh2 σ

)
w0 = 0.

By direct computations, we can see that tanhσ and σ tanhσ−1 are two independent solutions
neither of which belongs (coshσ)δC2,α(R×

[
π
2 ,

3π
2

]
).

The next step is to prove that, under some assumptions, there exists a right inverse of the
problem (2.45) and it is bounded.

Proposition 2.9.2. Assume that δ ∈ (−1, 0). Then there exists a constant C and for all
f ∈ (coshσ)δC0,α(R ×

[
π
2 ,

3π
2

]
) such that f(σ, θ) = f(−σ, θ) = f(σ, 2π − θ) there exists a

unique constant d̂1 and a unique function v ∈ (coshσ)δC2,α(R×
[
π
2 ,

3π
2

]
) such that

w = v + d̂1

solves (2.45), w(σ, θ) = w(−σ, θ) = w(σ, 2π − θ), and

‖(coshσ)−δ v‖C2,α(R×[π2 ,
3π
2 ]) + |d̂1| ≤ C ‖(coshσ)−δf‖C0,α(R×[π2 ,

3π
2 ]). (2.46)

Proof. Let us extend the function f by symmetry with respect to the coordinate axis ξ1 = 0
to the entire unit cylinder R× S1. Then there exists a function w which satisfies:(

∂2
σ + ∂2

θ +
2

cosh2 σ

)
w = f in R× S1,

where w = v + d̂1 and

‖(coshσ)−δv‖C2,α(R×S1) + |d̂1| ≤ C ‖(coshσ)−δf‖C0,α(R×S1).

The proof of this fact is classic, and can be found for instance in [77], but, for the sake of
completeness, we give here the details. Decompose f in Fourier series in θ:

f(σ, θ) =
∑
j∈Z

fj(σ) eijθ,

then for all t ∈ R and |j| ≥ 2, let vtj be a solution to(
d2

dσ2
− j2 +

2

cosh2 σ

)
vtj = fj in |σ| < t, vtj(±t) = 0, j ≥ 2,

obtained by the maximum principal and the method of sub- and supersolutions, taking
1

j2 − 2− δ
(coshσ)δ as a barrier function (using that (δ2−j2) cosh2 s+2+δ−δ2 ≤ −j2+2+δ).
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Taking a sum over |j| > 2, we obtain a function vt which by the Schauder’s elliptic theory
satisfies

‖(coshσ)−δvt‖C2,α((−t,t)×S1) ≤ C‖(coshσ)−δf‖C0,α((−t,t)×S1),

for a constant C independent of t. Finally, the sequence vt admits a subsequence which
converges uniformly on compact sets of R ×

[
π
2 ,

3π
2

]
as t tends to infinity to a solution v̂ of

(2.45), such that (2.46) is satisfied.

Notice that, by construction, f(σ, θ) = f(σ,−θ) = f(σ, π − θ), so f has no Fourier mode
1 and we only need to treat the case when f = f0(s). We construct a solution explicitly:

w0(σ) = tanhσ

∫ σ

0
(1− t tanh t) dt− (1− σ tanhσ)

∫ σ

0
tanh t dt.

Remark that for |fj(σ)| ≤ (coshσ)δ there exist constants c, d and d̂1 such that

ω0 + d (1− s tanh s) = v0 + d̂1 and

‖(coshσ)−δ v0‖C2,α(R×S1) + |d̂1| ≤ ‖(coshσ)−δf‖C0,α(R×S1).

The estimates for derivatives of w0 are obtained by Schauder’s theory. Finally, we put

v = v0 + v̂ and w = v + d̂1,

and, by symmetry, ∂θ w|{π
2
, 3π

2
} = 0.

2.9.3 Linear analysis on the catenoid

In this subsection we consider the equation(
∂2
s + ∂2

φ +
2

cosh2 s

)
w = f in R× S1. (2.47)

Proposition 2.9.3. Assume that δ ∈ (−1, 0). Then given f ∈ (cosh s)δC(R× S1), such that
f(s, φ) = f(−s, φ) = f(s,−φ) = f(s, φ + 2π

n ), there exists a unique constant d̂0 and a unique
function v ∈ (cosh s)δC2,α(R× S1) such that

w = v + d̂0

solves (2.47), w(s, φ) = w(−s, φ) = w(s,−φ) = w(s, φ+ 2π
n ) and

‖ (cosh s)−δ v ‖C2,α(R×S1) + |d̂0| ≤ C ‖ (cosh s)−δ f‖C0,α(R×S1). (2.48)
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Proof of Proposition 2.9.3. Consider the function F : (s, φ) 7→ 1
n2 f( sn ,

φ
n) and let W be a

solution of (
∂2
s + ∂2

φ +
2

n2 cosh2 s
n

)
W = F, (2.49)

then the function
w(s, φ) = W (ns, nφ)

satisfies (2.47) and w(s, φ) = w(−s, φ) = w(s,−φ) = w(s, φ + 2π
n ). The existence of W with

desired properties is a consequence of the following two lemmas.

Lemma 2.9.4. Assume that δ ∈ (−1, 0). The subspace of (cosh s
n)δ L∞

(
R× S1

)
which is

invariant by (s, φ) 7→ (s,−φ) and (s, φ) 7→ (−s, φ) and solves(
∂2
s − j2 +

2

n2 cosh2 s
n

)
W = 0 in R× S1,

is trivial.

Proof. The proof is analogous to the proof of the lemma (2.9.3) and uses the maximum
principal for the Fourier modes j ≥ 1 and treats explicitly the case j = 0.

Lemma 2.9.5. Assume that δ ∈ (−1, 0). Then there exists a constant C and for all functions

F ∈
(
cosh s

n

)δ
L∞

(
R× S1

)
such that F (s, φ) = F (−s, φ) = F (s,−φ), there exists a unique

constant d̂0 and a unique function V ∈
(
cosh s

n

)δ
L∞(R× S1) such that

W = V + d̂0

solves (2.49) and∥∥∥∥(cosh
s

n

)−δ
V

∥∥∥∥
L∞(R×S1)

+ |d̂0| ≤ C
∥∥∥∥(cosh

s

n

)−δ
F

∥∥∥∥
L∞(R×S1)

. (2.50)

Proof of Lemma 2.9.5. We decompose both F and W in Fourier series

F =
∑
j∈Z

Fj(s) e
ijφ, and W =

∑
j∈Z

Wj(s) e
ijφ.

For all t ∈ R and |j| ≥ 1, there exists a function V t
j that satisfies(

∂2
s − j2 +

2

n2 cosh2 s
n

)
V t
j = Fj , V t

j (±t) = 0.

This follows from the maximum principle if we take
1

j2n2 − 2− δ
(cosh s

n)δ as a barrier func-

tion. When t tends to infinity, we can choose a subsequence of functions converging uniformly
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on compact sets of R× S1 to a solution of (2.49) which satisfies (2.50). For j = 0 we find the
solution explicitly

W0(s) = tanh
s

n

∫ s
n

0
(1− t tanh t)F (nt) dt−

(
1− s

n
tanh

s

n

)∫ s
n

0
tanh t F (nt) dt.

As in Proposition 2.9.2 there exists a function V0 ∈
(
cosh s

n

)δ
L∞(R× S1) and a constant d̂0,

such that the function W0 = V0 + d̂0 satisfies (2.50).

Finally, we put v(s, φ) = V (ns, nφ). By the Schauder’s theory, v ∈ (cosh s)−δ C2,α(R×S1)
and

‖(cosh s)−δv‖C2,α(R×S1) ≤ C ‖(cosh s)−δf‖C0,α(R×S1).

2.9.4 Gluing the parametrices together

In this subsection we construct a solution of the linear problem

Lnw = f

by gluing together solutions to linear problems in the punctured disk D̄2 \ {0, z1, . . . , zn}, the
cylinder R× S1 and the half-cylinder R×

[
π
2 ,

3π
2

]
obtained in the subsections 2.9.1, 2.9.2 and

2.9.3. The main result of this subsection reads

Proposition 2.9.4. There exist constants C > 0 and ` ∈ N and for all f ∈ E0,α
n,ν−2 and all n

large enough, there exists a function w ∈ E2,α
n,ν which satisfies

Lnw = f and ‖w‖E2,α
n,ν
≤ ĉ e` ν n ‖f‖E0,α

n,ν−2
.

Proof. The proof consists of 6 steps. Let us use the decomposition of An in graph, catenoidal
and gluing regions as it is described in the subsection 2.7. In Step 1, we show that a function
f ∈ E0,α

n,ν−2 can be written as a sum f = f+ + f−, where

f+ ≡ 0 in Ω−gr

n⋃
i=0

Ωi,−
glu and f− ≡ 0 in Ω+

gr

n⋃
i=0

Ωi,+
glu.

Then we show that there exist diffeomorphisms Y± from a subdomain of D̄2 \ {0, z1, . . . , zn}
to some regions in An such that the function

f+ ◦Y+ = f− ◦Y− := f̆

can be extended to the entire D̄2 \ {0, z1, . . . , zn} in such a way that f̆ ∈ C0,α
ν−2(D2

∗).

In Step 2, using the results of Proposition 2.9.1, we find a solution w̆gr to the problem{
∆ (B w̆gr) = f̆ in D2 \ {0},

∂rwgr = 0 in S1 \ {z1, . . . , zn},
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and show that truncating w̆gr ◦ Y−1 in the neighborhood of the punctures, we obtain an
approximate solution to the equation Lnw = f in the graph and gluing regions.

In Step 3, we show that in the “catenoidal neck” and “half-catenoidal bridge” regions, the
error has a specific form and can be compensated using linear analysis in the cylinder R× S1

and the half-cylinder R×
[
π
2 ,

3π
2

]
described in Propositions 2.9.2 and 2.9.3.

In Step 4, we combine the solutions obtained in Steps 2 and 3 to obtain an approximate
solution to our problem in An by truncating the terms that decay at infinity and gluing
together the deficiency terms.

Finally, in Step 5, we find an exact solution using a perturbation argument.

Step 1 : Decomposition of the function f

Take a function f ∈ E0,α
n,ν−2 and consider the cut-off function ϑ ∈ C∞(R) which satisfies

ϑ(t) ≡ 1 for t > 1 and ϑ(t) ≡ 0 for t < −1.

Let (s, φ) be the cylindrical coordinates in the “catenoidal neck”. We write

f = f+ + f−,

where while in the half-cylindrical coordinates (σ, θ) in regions of the “catenoidal bridges” we
put

f+(s, φ) = ϑ(s) f(s, φ) and f−(s, φ) = (1− ϑ(s)) f(s, φ).

In the same manner, let (σ, θ) be half-cylindrical coordinates in region of one of the “half-
catenoidal” bridges. We put

f+(σ, θ) = ϑ(σ) f(σ, θ) and f−(σ, θ) = (1− ϑ(σ)) f(σ, θ).

Next, let us explain the construction of diffeomorphisms Y± from some neighborhoods of
An to a subdomain of D̄2 \ {0, z1, . . . , zn}.

Take real numbers sn > 0 and σn > 0 that satisfy

ε̃ cosh sn =
1

4n
and

ε

2
coshσn =

1

4n
.

Let us denote by x0 the map that corresponds to the parametrization of the “catenoidal region”
in An by cylindrical coordinates. We also put A0

n := x0
(
[−sn, sn]× S1

)
.

In the same manner, we denote by xm the map which corresponds to the parametrization of
the “half-catenoidal bridge” by half-cylindrical coordinates, and putAmn := xm

(
[−σn, σn]×

[
π
2 ,

3π
2

])
.

On the other hand, we introduce cylindrical coordinates in a neighborhood of z = 0 in
D2 \ {0} via the one of the mappings

z0,+ε : (s, φ) ∈ (−∞, sn)× S1 7→ ε̃

2
es eiφ ∈ D2,

z0,−ε : (s, φ) ∈ (−sn,+∞) 7→ ε̃

2
e−s eiφ ∈ D2.
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In the same manner, we introduce half-cylindrical coordinates in a neighborhood of z = zm
in D̄2 \ {zm} via one of the mappings

zm,+ε : (σ, θ) ∈ (−∞, σn) 7→ λm

(ε
4
eσeiθ

)
∈ D̄2 or

zm,−ε : (σ, θ) ∈ (−σn,+∞) 7→ λm

(ε
4
e−σ eiθ

)
∈ D̄2.

Finally, we introduce the mappings

z0ε : (s, φ) ∈ (−sn, sn)× S1 7→ ε̃ cosh s eiφ ∈ D2,

zmε : (σ, θ) ∈ (−σn, σn)×
[
π

2
,
3π

2

]
7→ λm

(ε
2

coshσ eiθ
)
∈ D2.

Consider the following regions of the unit disk:

Do,n :=

{
z ∈ D2 :

ε̃

2
e−sn ≤ |z| ≤ ε̃

2
esn
}

and Dm,n :=
{
z ∈ D2 :

ε

4
e−σn ≤ |λm(z)| ≤ ε

4
eσn
}
,

and remark that the mappings

xi ◦
(
zi,±ε
)−1

provide diffeomorphisms from Di,n to Ain. On the other hand, let

p± : Ω±gr

n⋃
i=0

Ωi,±
glu ⊂ An −→ D2

denote the vertical projections of the graph and to the unit disk. By construction, we have

p± ◦ x0(s, φ) = z0ε(s, φ) = ε̃ cosh s eiφ in Ω±gr ∪ Ω0,±
glu ,

p± ◦ xm(σ, θ) = zmε (σ, θ) = λm

(ε
2

coshσ eiθ
)

in Ω±gr ∪ Ωm,±
glu .

We can write

p± ◦ x0 ◦
(
z0,±ε

)−1
= Id + Φ0,±

ε : D0,n → D0,n, where
∣∣∣Φ0,±

ε (z)
∣∣∣ ≤ c ε2|z| ,

p± ◦ xm ◦
(
zm,±ε

)−1
= Id + Φm,±

ε : Dm,n → Dm,n, where
∣∣∣Φm,±

ε (z)
∣∣∣ ≤ c ε2

|z−zm| .

for a constant c independent of ε. Consider the domain

D2
# := D2 \

({
z ∈ D2 : |z| < ε̃

2
e−sn

} n⋃
m=1

{
z ∈ D2 : |λm(z)| < ε

4
e−σn

})

of the unit disk and the cut-off functions µi,n ∈ C∞(D2), i = 0, . . . , n, such that

µ0,n(z) ≡ 1 for |z| ≤ 1
8n and µ0,n ≡ 0 for |z| ≥ 1

4n ;

µm,n(z) ≡ 1 for
∣∣λ−1
m (z)

∣∣ ≤ 1
8n and µm,n ≡ 0 for

∣∣λ−1
m (z)

∣∣ > 1
4n .
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Then we define the diffeomorphism Y+ from D2
# to its image in An by

Y+(z) :=



x0 ◦
(
z0,+ε

)−1
(z), for |z| ≤ 1

8n

xm ◦
(
zm,+ε

)−1
(z), for

∣∣λ−1
m (z)

∣∣ ≤ 1
8n ,

(p+)
−1 ◦

(
Id + µi,n Φi,+

ε

)
(z), for z ∈ supp (∇µi,n) ,

(p+)
−1

(z) elsewhere.

Finally, we check that the function

f̆ := f+ ◦Y+ = f− ◦Y−,

defined in D2
# can be extended by 0 to the entire punctured disk D̄2 \ {0, z1, . . . , zn} and

moreover, we have f̆ ∈ C0,α
ν−2(D2

∗).

Step 2: Contribution of the linear analysis on the punctured disk

The function f̆ ∈ C0,α
ν−2(D2

∗) satisfies f̆(z) = f̆(z̄) = f̆(z · zm), so, by Corollary 2.9.1, there

exists a function w̆gr ∈ C2,α
ν (D2

∗)⊕Dn, which is a solution to{
∆ (B w̆gr) = f̆ in D2 \ {0},

∂rw̆ = 0 in S1 \ {z1, . . . , zn},
(2.51)

where w̆gr = ψ̆gr + ĉ0 + ĉ1 χn with

‖ψ̆gr‖C2,α
ν (D∗)

+ |ĉ0|+ |ĉ1| ≤ C ‖f̆‖C0,α
ν−2(D2

∗)
.

Next, we show that the functions

w±gr := w̆gr ◦
(
Y±
)−1

,

(defined locally in An) are approximate solutions to Lnw = f in the regions Ω±gr ∪Ωi,±
glu, i =

0, 1, . . . , n. Indeed, by Proposition 2.8.2, for all u ∈ E2,α
n,ν we have in Ω±gr ∪ Ωi,±

glu∣∣γ2−ν (Ln u− Lgr u)
∣∣ ≤ C ε2 γ−2 ‖u‖E2,α

n,ν
.

Moreover, by construction,∣∣γ2−ν (Lgr w±gr − f)∣∣ ≤ C ∣∣γ2−ν (Lgr ◦Y± − Lgr) w±gr∣∣ ≤ C ε2 γ−2 ‖f‖E0,α
n,ν−2

.

This yields ∥∥Lnw±gr − f∥∥C0,α
ν−2(Ω±gr∪Ωi,±glu)

≤ c ε
2
3 ‖f‖E0,α

n,ν−2
, i = 0, 1, . . . , n,

where for Ω ⊂ An, we denote by C0,α
ν−2(Ω) the restriction of E0,α

n,ν−2 to Ω.

On the other hand, since the function ψ̆gr in the decomposition of w̆gr decays in the

neighborhood of the punctures in D̄2 \ {0, z1, . . . , zn}, we can extend ψ̆gr ◦ (Y±)
−1

to the
entire surface An in a natural way using a suitable cut-off function which we define below.
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Notation 2.9.2. Let us choose real numbers sg and Sg, such that the gluing region Ω+
glu of

An is parametrized by [sg, Sg]×S1 ⊂ R×S1. By symmetry, the region Ω−glu is parametrized by

[−Sg,−sg]× S1. We introduce the cut-off function ξ0 ∈ C∞
(
D2
)

which is radial and satisfies

ξ0(z) ≡ 1 for |z| > ε̃

2
e−sg and ξ0(z) ≡ 0 for |z| < ε̃

2
e−Sg .

In the same manner, let the gluing region Ωm,+
glu be parametrized by [σg,Σg] ×

[
π
2 ,

3π
2

]
. Then

we introduce the cut-off function ξm ∈ C∞
(
D2
)

which satisfies

ξm(z) ≡ 1 when
∣∣λ−1
m (z)

∣∣ ≥ ε

4
e−σg and ξm(z) ≡ 0 when

∣∣λ−1
m (z)

∣∣ < ε

4
e−Σg .

Finally, we define the function ξ :=
n
Π
i=0
ξi.

We put

ψ±gr :=
(
ξ ψ̆
)
◦
(
Y±
)−1 ∈ E2,α

n,ν ,

and since ∣∣ψ∓gr∣∣ ≤ c εν γ−ν in Ω±gr ∪ Ωi,±
glu ∪ Ωi

cat,

we find ∣∣γ2 Ln
(
ψ+
gr + ψ−gr

)∣∣ ≤ c εν γ−ν in An. (2.52)

Step 3 : Contribution of the linear analysis on the catenoids

Notation 2.9.3. Let ηi ∈ C∞(An) be the cut-off functions, which are invariant under the
action of the group Sn and satisfy

ηi ≡ 1 in Ωi
cat and ηi ≡ 0 in Aε \

(
Ωi
cat ∪ Ωi,+

glu ∪ Ωi,−
glu

)
.

Next, consider the functions

hi := γ2 ηi
(
Ln
(
ψ+
gr + ψ−gr

)
− f

)
∈ E0,α

n,ν−2.

Taking the cylindrical coordinates (s, φ), we can extend the function h0(s, φ) by 0 to the
entire cylinder R×S1. In the same manner, we can extend the function hm(s, σ) to the entire
half-cylinder R×

[
π
2 ,

3π
2

]
. By the invariance by the action of the group Sn, in half-cylindrical

coordinates all the functions hm coincide and we can omit the index m in what follows.

By (2.52), we have

h0 ∈ (cosh s)−ν C0,α(R× S1) and h ∈ (coshσ)−ν C0,α

(
R×

[
π

2
,
3π

2

])
.

Moreover, there exists a constant C > 0 independent of ε such that

‖(cosh s)ν h0‖C0,α((R×S1) ≤ C εν ‖f‖E0,α
ν,n
,

‖(coshσ)ν h‖C0,α(R×[π2 ,
3π
2 ]) ≤ C εν ‖f‖E0,α

ν,n
.
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Using the results of the subsection 2.9.2, 2.9.3 we find functions w̆0
cat and w̆1

cat, such that
(
∂2
σ + ∂2

θ + 2
cosh2 σ

)
w̆1
cat = h in R×

[
π
2 ,

3π
2

]
,

∂θw̆
1
cat

∣∣
{π

2
, 3π

2
} = 0,

1

2

(
∂2
s + ∂2

φ +
2

cosh2 s

)
w̆0
cat = h0 in R× S1.

We can write
w̆0
cat = v̆0

cat + d̂0, and w̆1
cat = v̆1

cat + d̂1,

where

‖(cosh s)ν v̆0
cat‖C2,α(R×S1) + |d̂0| ≤ C ‖(cosh s)νh0‖C0,α(R×S1),

‖(coshσ)ν v̆1
cat‖C2,α(R×[π2 ,

3π
2 ]) + |d̂1| ≤ C ‖(coshσ)νh‖C0,α(R×[π2 ,

3π
2 ]),

and

v̆0
cat(s, φ) = v̆0

cat(−s, φ) = v̆0
cat(s,−φ) = v̆0

cat (s, φ+ 2π/n) ,

v̆1
cat(σ, θ) = v̆1

cat(−σ, θ) = v̆1
cat(σ, 2π − θ).

Notice that since the functions v̆0
cat and v̆1

cat have exponential decay at infinity, we can
extend them in a natural way to the entire surfaceAn with the help of suitable cut-off functions.
We put

v0
cat := η0 v̆

0
cat and vmcat := ηm v̆

1
cat,

where ηi are defined as in Notation 2.9.3.

Step 4: Approximate solution to the linear equation

First of all, we show that we can extend the deficiency terms ĉ0 n + ĉ1 χn coming from the
linear analysis in the punctured disk, and the deficiency terms d̂0 and d̂1 coming from the
linear analysis about the catenoid and the half-catenoids, to the entire surface An by gluing
them together in the regions Ωi,±

glu, i = 0, 1, . . . , n. Consider the functions

u0(s) := 1− s tanh s, u1(σ) := 1− σ tanhσ,

that can be locally considered as functions on An in some small neighborhoods including the
“catenoidal neck” and the “half-catenoidal bridges” respectively. Also, let Γ0

n and Γ1
n be the

Green’s functions defined in (2.11). We introduce on An the function

κ := η0 (a0 u0 + d̂0) +
n∑

m=1

ηm (a1 u1 + d̂1) (2.53)

+ (1−
n∑
i=0

ηi)
(
b0 Γ0

n + b1 Γ1
n + ĉ0 + ĉ1 χn

)
,
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where ηi are the cut-off functions defined in Notation 2.9.3 and show that one can choose the
constants a0, a1, b0 and b1 in such a way that∥∥κ− b0 Γ0

n − b1 Γ1
n − ĉ0 − ĉ1 χn

∥∥
C2,α
ν (Ωi,±glu)

� ‖f‖E0,α
n,ν−2

. (2.54)

First, remark that, by construction, given in Notation 2.9.1, we have χn ≡ 0 in Ω0
glu and

χn ≡ 1 in Ωm
glu, m = 1, . . . , n. Moreover, Ω0,±

glu , we obtain

Γ0
n(ε̃ cosh s eiφ) =

 −2n+ 2n log ε̃− 2n s+ Ô(ε), s > 0,

−2n− 2n log ε̃+ 2n s+ Ô(ε), s < 0,

where the meaning of the symbol Ô is explained in 2.7.1. On the other hand, we have

u0(s) =

 1− s+ Ô(ε), s > 0

1 + s+ Ô(ε), s < 0,

and
Γ1
n(ε̃ cosh s eiφ) = −n

2
+ Ô(ε).

Comparing linear terms in the the first and the third terms in (2.53), we find the first
equation on a0, a1, b0, b1:

a0 = 2n b0, −b1 n
2
− 2n b0 + 2n b0 log ε̃+ ĉ0 = a0 + d̂0. (2.55)

Similarly, in Ωm,±
glu , using the notations of the subsection 2.4 we obtain

Γ1
n

(
λm

(ε
2

coshσ eiθ
))

=


−n

2
+ cgr(n)− log ε

2 − σ + Ô(ε2/3−β), σ > 0,

−n
2

+ cgr(n)− log ε
2 + σ + Ô(ε2/3−β), σ < 0

u1(σ) =

 1− σ + Ô(ε2/3), σ > 0,

1 + σ + Ô(ε2/3) σ < 0,

and
Γ0,±
n (s, φ) = −n+ Ô(ε2/3).

This gives us the second equation:

a1 = b1, b1

(
cgr(n)− n

2
− log

ε

2

)
− b0 n+ ĉ0 + ĉ1 = a1 + d̂0. (2.56)

Then the system (2.55) and (2.56) has a unique solution.
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Next, let the functions ψgr, v
i
cat and κ be defined as above. We introduce the function

wapp := ψ+
gr + ψ−gr +

n∑
i=0

vicat + κ.

Then wapp ∈ E2,α
n,ν and it follows from the previous estimates that

‖Lnwapp − f‖E0,α
n,ν−2

≤ c ε
2ν
3 ‖f‖E0,α

n,ν−2
,

for a constant c independent of ε. Moreover, there exist constants C > 0 and ` ∈ N, such that
for all n ≥ 2 and all f ∈ E0,α

n,ν−2

‖wapp‖E2,α
n,ν
≤ C ε−`ν ‖f‖E0,α

n,ν−2
.

Step 5: Exact solution to the linear equation

Consider the operator

Rapp : f ∈ E0,α
n,ν−2 7−→ Lnwapp(f)− Id(f) ∈ E0,α

n,ν−2.

Then ‖Rapp‖ � 1 and the operator Id +Rapp is an invertible. Finally, we put

w(f) := wapp

(
(Id +Rapp)−1 f

)
.

and verify that
Lnw(f) = f, and ‖w(f)‖E2,α

n,ν
≤ C ε−`ν ‖f‖E0,α

n,ν−2
.

2.10 Nonlinear argument

Proposition 2.10.1. There exists n0 ∈ N, such that for all n ≥ n0, there exist ν, α ∈ (0, 1)
and a function wn ∈ E2,α

n,ν such that An(wn) is a free boundary minimal surface in B3.

Proof. Our goal is to solve the equation

Lnw = −Hn −Qn(w) for some w ∈ E2,α
n,ν .

By Propositions 2.8.1 and 2.8.2, 2.8.4, 2.8.3 and 2.9.4, there exist constants C > 0 and ` ∈ N
independent of n, such that

‖L−1
n Hn‖E2,α

n,ν−2
≤ C e−n(5/3−` ν) := rn,

‖L−1
n Qn(w)‖E2,α

n,ν−2
≤ C e−n(1/3−` ν) ‖w‖E2,α

n,ν
,

‖L−1
n (Qn(w1)−Qn(w2)) ‖E2,α

n,ν−2
≤ 1

2
‖w1 − w2‖E2,α

n,ν
,
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for ‖w‖ ≤ rn and α, ν, β and n large enough. Theorem 2.1.1 then follows from Banach fixed
point theorem for contracting mappings applied to the mapping

w ∈ E2,α
n,ν 7−→ −L−1

n (Hn +Qn(w)) ∈ E2,α
n,ν

in the ball of radius 2 rn.

2.11 Appendix

Let C̃ε̃ be the surface in R3 parametrized as in (2.15). Then

Lemma 2.11.1. The mean curvature of C̃ε̃(w) with respect to the metric g̃eucl = dz2 + 1
4dx

2
3

satisfies

Hcat(w) =
1

ε̃2 cosh2 s

(
∂2
s + ∂2

φ +
2

cosh2 s

)
w

2
+

1

ε3 cosh4 s
Q2
cat(w) +

1

ε4 cosh4 s
Q3
cat(w),

where Qkcat(w) are a nonlinear functions of w and the components of the gradient and the
Hessian of w calculated with respect to the metric ds2 + dφ2. Moreover, for all s ∈ R

∥∥∥Qkcat(w1)−Qkcat(w2)
∥∥∥
C0,α([s,s+1]×S1)

≤ C max
i=1,2

{
‖wi‖k−1

C2,α([s,s+1]×S1)

}
(2.57)

× ‖w1 − w2‖C2,α([s,s+1]×S1),

for a constant C independent of s and ε and
∥∥ wi
ε cosh s

∥∥
C1,α(R×S1)

< 1.

Proof. Let us denote by Qkcat(w) any nonlinear function satisfying the property (2.57). The
tangent vectors to C̃ε̃(w) are given by

Ts(w) = Ts + ∂sw Ñ
cat + w ∂sÑ

cat, Tφ(w) = Tφ + ∂φw Ñ
cat + w ∂φÑ

cat,

where Ts =
(
ε̃ sinh s eiφ, ε̃

)
, Tφ =

(
i ε̃ cosh s eiφ, 0

)
. Let

gcat = ε̃2 cosh2 s(ds2 + dφ2), hcat = ε̃(−ds2 + dφ2)

be the first and the second fundamental forms of the standard Euclidean catenoid scaled by a
factor ε̃. The induced metric on C̃ε̃(w) can be written in the form

gcat(w) = gcat − w

2
hcat +Q2

cat(w).

We look for a normal (with respect to g̃eucl) vector field to C̃ε̃(w) in the form

Ñ ](w) = Ñ cat + as(w)Ts + aφ(w)Tφ.
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Then the equations

g̃eucl(Ñ
](w), Ts(w)) = 0, g̃eucl(Ñ

](w), Tφ(w)) = 0

yield: ak(w) = − ∂kw

2 ε̃2 cosh2 s
+

1

ε3 cosh4 s
Q2
cat(w). We find

Ñ(w) := Ñ ](w)/‖Ñ ](w)‖g̃eucl = Ñ cat − ∂sw

2 ε̃2 cosh2 s
Ts −

∂φw

2 ε̃2 cosh2 s
Tφ,

+
1

ε2 cosh2 s
Q2
cat(w) Ñ cat +

1

ε2 cosh3 s
Q2
cat(w)T,

where T is a unit tangent vector. Since g̃eucl is a scalar metric, the second fundamental form
satisfies

h̃cat(w)k` = g̃eucl

(
∂k∂`X̃

cat
ε̃ , Ñ(w)

)
,

∂k∂`X̃
cat
ε̃ (w) = ∂k∂`X

cat
ε̃ +

1

2

(
∂kw ∂`Ñ

cat + ∂kw ∂`Ñ
cat + ∂k∂`w Ñ

cat + w ∂k∂`Ñ
cat
)
,

h̃cat(w) = hcatε̃ + Hess
w

2
− w

2 cosh2 s
Id +

1

2
tanh s

(
−∂sw ∂φw
∂φw ∂sw

)
+

1

ε cosh2 s
Q2
cat(w).

Finally, the result of the lemma follows by taking trace with respect to the metric gcat(w).

Now, let give the details of the proof of Proposition 2.8.3. By L̂ we denote any bounded
linear operator from C2,α(R× S1) in C0,α(R× S1).

The metric induced on Sn(w) from X ∗geucl can be written in the form

g̃(w) = gcat(w) +
(
g̃− gcat

)
+ ε3−β cosh2 s L̂w + small nonlinear terms.

We look for a normal (with respect to he metric X ∗geucl) vector field to Sn(w) in the form

N](w) = Ñ(w) + ãs(w)Ts(w) + ãφ(w)Tφ(w).

Then it follows from the equations

X ∗geucl(N](w), Ts(w)) = 0, X ∗geucl(N](w), Tφ(w)) = 0,

that ãs(w) and ãφ(w) satisfy(
ãs(w)
ãφ(w)

)
= −A2(w)

(
B2(w)− 1

4

)
(g̃(w))−1

(
dx2

3(Ñ(w), Ts(w))

dx2
3(Ñ(w), Tφ(w))

)
.

We obtain

N(w) := N](w)/‖N](w)‖X ∗geucl

= Ñ(w) +
(
N(0)− Ñ

)
+ ε cosh s L̂w + small nonlinear terms.
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Let ∇̃(w) be the Levi-Civita connection corresponding to the metric X ∗geucl and taken along
Sn(w), then we have

∇̃∂k∂`(w) = ∂k∂`X̃
cat
ε̃ (w) +

(
∇̃∂k∂` − ∂k∂`X̃

cat
ε̃

)
+ ε2 cosh2 s L̂w

+ small nonlinear terms.

The second fundamental form hk`(w) = X ∗geucl
(
∇̃∂k∂`(w),N(w)

)
satisfies

h(w) = h̃cat(w) +
(
h− hcat

)
+ ε2−β cosh2 s L̂w + small nonlinear terms,

and, finally, taking the trace with respect to the metric g̃(w) and using the results of Propo-
sition 2.8.1 we obtain

H(w) = Hn +Hcat(w) + ε−β L̂ w + nonlinear terms.
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Chapter 3

Nonconvex constant mean curvature
spheres in Riemannian 3-manifolds

3.1 Introduction and the statement of the result

In Euclidean 3-space, Hopf’s Theorem (1950s) asserts that round spheres are the only topo-
logical spheres whose mean curvature is constant.

In 1990, R. Ye [118] proved the existence of embedded constant mean curvature spheres in
any Riemannian manifold whose scalar curvature function has nondegenerate critical points.
More precisely, let (M, g) be a Riemannian manifold and let Sε(p) denote the geodesic sphere
of radius ε > 0 centered at p ∈ M . Given a nondegenerate critical point ocr ∈ M of the
scalar curvature function R on M , there exists a neighborhood of ocr which is foliated by
constant mean curvature topological spheres Σε for ε ∈ (0, ε∗). Each leaf Σε of this foliation is
a normal geodesic graph for some function w = O(ε3) over the geodesic sphere Sε(oε) centered
at a point pε ∈M that satisfies distg(oε, ocr) = O(ε2).

In [95] F. Pacard and X. Xu generalized the result of R. Ye to the case where the scalar
curvature of the ambient compact manifold is not a Morse function (which includes the case of
manifolds endowed with constant scalar curvature metrics), constructing topological spheres
with large constant mean curvature but loosing the foliation property.

In this chapter, we prove the existence in “generic” Riemannian 3-manifolds of families of
topological spheres that have large constant mean curvature but are not convex. Such surface
can be obtained by perturbing a connected sum of two tangent geodesic spheres of small radii
whose centers are lined up along a geodesic that passes through a critical point ocr of the
scalar curvature function R with velocity equal to a unit eigenvector associated to a simple
nonzero eigenvalue of the Hessian of R at ocr.

More precisely, let (M, g) be a Riemannian 3-dimensional manifold. We assume that we
are given ocr ∈ M , a critical point of the scalar curvature function R, for which HessR at
ocr has a simple nonzero eigenvalue λ. Let vλ be a unit eigenvector of associated to λ. Take
ε > 0 small enough and consider the union S#(ε, ocr, vλ) of two geodesic spheres of radius ε
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tangent at ocr, with centers located symmetrically with respect to ocr on the geodesic passing
through ocr with velocity vλ. With these notations, our result reads:

Theorem 3.1.1. There exists ε∗ > 0 and, for all ε ∈ (0, ε∗), a surface Sε of constant
mean curvature equal to 2/ε such that the Hausdorff distance between Sε and S#(ε, ocr, vλ) is
bounded by a constant times ε2. The surface Sε is embedded if λ < 0 and immersed if λ > 0.

The existence of nonconvex topological spheres of large constant mean curvature in Rie-
mannian manifolds has already been considered by A. Butcher and R. Mazzeo [10] under
some symmetry assumption on the metric g. These authors prove the existence of families of
constant mean curvature topological spheres obtained by gluing together a large number of
geodesic spheres of small radius which are tangent and arranged along a geodesic segment γ
passing through a nondegenerate critical point of the scalar curvature function R, provided
the metric is rotationally symmetric in a tubular neighborhood of γ (i.e. only depends on the
distance to γ).

Our result is reminiscent of a result of N. Kapouleas [62], where the existence of “slowly
rotating drops” or “gyrostatic equilibria” (equilibria of rotating liquid masses) is proven. In
this work, the problem amounts to find embedded surfaces in R3 whose mean curvature is
given by

H = 1 + c d2, (3.1)

where d is the distance to the axis of rotation (say the vertical axis). From the point of view
of physics, one can consider two drops of liquid of small radii arranged symmetrically with
respect to the origin along an horizontal straight line passing through the origin. One can
imagine that these two drops are connected together by a small liquid bridge near the origin.
If there is no rotation, the two drops will merge under the action of capillarity while, if some
small rotation is imposed to the system, the centrifugal force induced by the rotation will
counterbalance the capillarity force and somehow prevent the drops to merge.

In our construction, it is the gradient of the scalar curvature that plays the role of the
centrifugal force in [62]. However, the fact that we are working in a setting without any
symmetry induces a lot of technical complications which we will explain.

3.2 Outline of the chapter

In Section 3.3, we provide some classical results in differential geometry which we use in this
work. For example, we recall the expansion of the metric in some special coordinate systems
and the expression of the mean curvature of normal graphs over a given surface.

In Section 3.4, we explain the construction of a family of surfaces, which we refer to as
approximate solutions, whose mean curvature is close to 2/ε (in a sense to be made precise)
and which depend on 8 geometric parameters. Let us briefly describe this construction here in
the case where one tries to construct embedded constant mean curvature topological spheres
that are mentioned in the above Theorem.
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We start with p ∈ M and ε small enough. We will see that the mean curvature of Sε(p),
the geodesic sphere of radius ε centered at p, is given by

H(Sε(p)) =
2

ε
+O(ε),

and hence it is, in some sense, close to being constant. It is reasonable to expect that Sε(p)
can be perturbed into some constant mean curvature surface, at least for ε small enough.
Unfortunately, as observed by R. Ye in [118], this is not the case. Indeed, when ε is small
enough, the Jacobi operator about Sε(p) is close to the Jacobi operator about the Euclidean
sphere of radius ε which reads ε−2 (∆S2 + 2). This operator has a non trivial 3-dimensional
kernel K0 which prevents one from applying directly a perturbation argument to deform Sε(p)
into a constant mean curvature surface. The best one can do is to perturb Sε(p) into a surface
Σε(p) whose mean curvature is constant up to an element of K0 and, with slight abuse of
notations, we can write

H(Σε(p))−
2

ε
∈ K0.

These surfaces are called pseudo CMC spheres by F. Pacard and X. Xu [95] or pseudo bubbles
by S. Nardulli [90]. They are, in some sense, the closer we can approach a constant mean
curvature surface when we start from a geodesic sphere of small radius.

We now fix a point o ∈ M , a unit vector v ∈ ToM , ε > 0 small enough and a parameter
d ∈ (0, 1) also very small (say d � ε). We consider a pair of “pseudo CMC spheres” Σ±ε :=
Σε (expo(±tv)), where the parameter t > 0 is chosen in such a way that the distance between
Σ±ε is exactly equal to d. We let γ be the geodesic of length d which realizes the distance
between the two surfaces.

In the next step, we perform a connected sum of Σ+
ε and Σ−ε using a “catenoidal neck”

that looks like a Euclidean catenoid which has been scaled down by a factor η � 1 and
whose “axis” is “parallel” to γ (we hope that the rough picture is clear and we will make
these notions precise later on). Observe that we have two degrees of freedom in choosing the
axis of the catenoidal neck “parallel” to γ. We will see that a certain relation needs to be
satisfied between the distance d and the size of the catenoidal neck η. At this stage, for all ε
small enough, the resulting surface which will be denoted by Aε depends on the choice of 8
parameters: the point o ∈M (3 degrees of freedom), the unit vector v ∈ ToM (two degrees of
freedom), the size of the neck η (one degree of freedom) and the location of the neck parallel
to γ (two degrees of freedom).

In sections 3.5, 3.6 and 3.7, we prove that it is possible to perturb Aε into a constant mean
curvature surface provided ε is chosen small enough. This goes through a careful study of the
Jacobi operator about Aε and the identification of its “small” eigenvalues (i.e. eigenvalues
which tend to 0 fast as ε tends to 0). It turns out that Kε, the space of eigenfunctions of the
Jacobi operator about Aε associated to these small eigenvalues, is 8 dimensional, matching
exactly the number of free parameters in our construction. Following N. Kapouleas, this space
will be called approximate kernel.

In the last section, we will use a Lyapunov-Schmidt reduction argument, applying Banach
fixed point theorem in the space of functions orthogonal to Kε, to perturb Aε into a surface
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whose mean curvature H satisfies

H − 2

ε
∈ Kε,

provided ε is chosen small enough. Observe that the surface we have constructed still depends
on 8 parameters. In the final argument, we will explain how to choose the 8 parameters
appropriately to ensure that H = 2

ε . The corresponding surface Sε will be the constant mean
curvature surface we are looking for and we will see that it is at Hausdorff distance at most
c ε2 from S#(ε, ocr, vλ) for some constant c > 0.

3.3 Preliminaries

In this section, we collect some classical results in differential geometry and introduce the
main notations and geometric objects that we use in the chapter. We refer to [12], [68] and
[108] for further details.

Remark 3.3.1.

1. Throughout this chapter, we will assume that the manifold M is compact. In reality,
when M is not compact, given ocr ∈ M a critical point of the scalar curvature R, we
will only work in a geodesic disk in M of some bounded radius centered at ocr.

2. By ε∗ ∈ (0, 1) we will denote a constant which will vary from result to result but can be
chosen uniformly for all results.

3.3.1 Normal Geodesic Coordinates

For p ∈ M , we denote by expp the exponential map defined on TpM and associated to the
metric g. We fix an orthonormal frame E1, E2, E3 of the tangent bundle TM and consider in
a neighborhood of p ∈M normal geodesic coordinates centered at p. The mapping

ζp(x) := expp

(
3∑
i=1

xiEi(p)

)
,

where x = (x1, x2, x3) ∈ R3 gives us a local diffeomorphism between a neighborhood of 0 in R3

and a neighborhood of p in M . In these coordinates, the metric g has the following expansion
in powers of x, [108]:

g(∂xi , ∂xj )(x) = δij +
1

3
g(Rp(Ei, Ek)Ej , E`)x

k x` (3.2)

+
1

6
g(∇EmRp(Ei, Ek)Ej , El)xk xl xm +O(|x|4),

where Rp is the Riemann curvature tensor of (M, g) evaluated at the point p.

Notation 3.3.1. In the following, O(|x|k) denotes a smooth function whose i-th partial deriva-
tives are bounded by a constant times |x|k−i in a fixed neighborhood of p ∈M , the bounds being
uniform in p.
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3.3.2 Change of coordinates

It will be necessary in some of our computations to compare coordinates of a point in normal
geodesic coordinate systems centered at two different points. Assume that o ∈M is fixed and
take p ∈M in a small neighborhood of o. We fix an orthonormal basis E1(o), E2(o), E3(o) of
ToM and denote by x the geodesic normal coordinates centered at o.

Let Ẽ1(p), Ẽ2(p), Ẽ3(p) be an orthonormal basis of TpM obtained by the Gram-Schmidt
orthogonalization process starting from the basis ∂x1(p), ∂x2(p), ∂x3(p) of TpM . Given q close
enough to p, we denote by γpq(s) the minimizing geodesic starting at time s = 0 at p and
ending at q at time s = 1. We set v := γ′pq(0) ∈ TpM . The coordinates of γpq(s) in the normal
coordinate system centered at p are given by

zk(s) = vks, k = 1, 2, 3,

while, in the normal coordinate system centered at o, its coordinates can be expanded in
powers of s as

xk(s) =

∞∑
i=0

aki s
i,

where
ak0 = xk(p) and ak1 = vk +O(|v||x(p)|2).

Putting this information into the geodesics equation

d2xk

ds2
+ Γkij(x)

dxi

ds

dxj

ds
= 0, (3.3)

evaluated at p and using the fact that Γkij(x(p)) = O(|x(p)|), we conclude that ak2 = O
(
|x(p)| |v|2

)
.

Finally, differentiating (3.3) ` times and evaluating it at p gives the expression of the coeffi-
cients ak2+` for all `. Using that xk(p) = zk(o) and vk = zk(q), we obtain the expansion

xk(q) = zk(q)− zk(o) +O
(
|z(o)|2|z(q)|+ |z(o)||z(q)|2

)
.

3.3.3 Fermi coordinates

Let S be an oriented surface in M and NS a unit normal vector field to S. Take q0 ∈ S, then
the mapping FS given by

FS(q, z) := expq(z NS(q))

defines a local diffeomorphism from a neighborhood of (q0, 0) in S×R into a neighborhood of
q0 in M . The coordinates associated to FS are called Fermi coordinates.

Given x 7→ ζSq0(x) local coordinates on S, for x in a neighborhood of 0 in R2, we define

FS,q0(x, z) := FS
(
ζSq0(x), z

)
. (3.4)
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Lemma 3.3.1 (Expansion of the metric in Fermi coordinates). There exists a tubular neigh-
borhood of the surface S in which the metric g can be written as

g =
2∑

i,j=1

(gz)ij dxi dxj + dz2,

where gz is the induced metric on the surface Sz = {FS(q, z) ∈ M : q ∈ S} parallel to S and
has the following expansion in powers of z:

gz = gS − 2 z hS + z2 kS +O(z3),

where gS and hS denote respectively the first and the second fundamental forms of S and where
kS is defined by

kS = hS ⊗ hS + g(R(NS , ·)NS , ·).

Proof. The coordinate vector fields corresponding to FS,q0 are denoted by

X0 := (FS,q0)∗(∂z) and Xi := (FS,q0)∗(∂xi), i = 1, 2.

The curve z 7→ FS,q0(x, z) is a geodesic and X0(x, 0) = NS(x). This implies g(X0, X0) = 1 and
∇X0X0 = 0. Furthermore, using that X0 and Xi are coordinate vector fields and therefore
commute, we get

∂zg(X0, Xi) = g(∇X0X0, Xi) + g(∇X0Xi, X0)

= g(∇X0Xi, X0) = g(∇XiX0, X0) =
1

2
∂xig(X0, X0) = 0.

Therefore, g(X0, Xi)(z) = g(X0, Xi)(0) = 0. This yields the decomposition of the ambient
metric g.

Notice that, by definition, gz(x, 0) = gS(x). Let us calculate the next terms in the expan-
sion of gz in powers of z. We have

∂zg(Xi, Xj)(x, 0) = g(∇XiX0, Xj)(x, 0) + g(∇XjX0, Xi)(x, 0) = −2 (hS)ij(x).

Furthermore, using the fact that [Xi, Xj ] = 0 we get ∇X0∇Xi = R(X0, Xi) +∇Xi∇X0 and

∂2
zg(Xi, Xj) = g(∇X0∇XiX0, Xj) + g(∇X0∇XjX0, Xi) + 2g(∇XiX0,∇XkX0)

= 2 g(R(X0, Xi)X0, Xj) + 2 g(∇XiX0,∇XjX0).

This yields ∂2
zg(x, 0) = 2 g(R(NS , ·)NS , ·)(x, 0) + 2 g(∇·NS ,∇·NS)(x, 0) = kS(x) and finishes

the proof.
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3.3.4 Mean curvature of normal graphs

We keep the notations of the previous subsection and we recall here the proof proposed in [93]
(see also [94]) of a formula for the mean curvature of normal graphs about a given surface in
a Riemannian manifold.

Proposition 3.3.1. Assume that we are given a function u ∈ C2(S) which is small enough
and has compact support. Then the mean curvature of the S(u), the normal graph of u over
S, namely

S(u) :=
{

expq(u(q)NS(q)) : q ∈ S
}
,

is given by

HS(u) = divgu

 ∇guu√
1 + |∇guu|2gu

− 1

2

√
1 + |∇guu|2gu Trgu ġu +

1

2

ġu (∇guu,∇guu)√
1 + |∇guu|2gu

, (3.5)

where ġz := ∂zgz.

Proof. The induced metric gS(u) on S(u) reads

gS(u) = gu + du⊗ du,

and hence we get
det gS(u) =

(
1 + |∇guu|2

)
det gu,

and the volume of S(u) is given by

Vol(S(u)) =

∫
S

√
1 + |∇guu|2 dvolgu .

Computing the differential of this functional with respect to u, we obtain

Du Vol(S(u))|u v =

∫
S

1√
1 + |∇guu|2gu

gu(∇guu,∇guv) dvolgu

− 1

2

∫
S

1√
1 + |∇guu|2gu

ġu (∇guu,∇guu) v dvolgu

+
1

2

∫
S

√
1 + |∇guu|2gu Trgu ġu v dvolgu .

Integrating by parts the first term gives

Du Vol(S(u))|u v = −
∫
S

divgu

 ∇guu√
1 + |∇guu|2gu

 v dvolgu

− 1

2

∫
S

1√
1 + |∇guu|2gu

ġu (∇guu,∇guu) v dvolgu

+
1

2

∫
S

√
1 + |∇guu|2gu Trgu ġu v dvolgu .
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Next, observe that the unit normal to S(u) can be written in the form

NS(u) =
1√

1 + |∇guu|2gu
(X0 −∇guu),

and hence
dvolgu = g(NS(u), X0) dvolgS .

The result than follows from the first variation formula, when S is deformed using the vector
field v X0

DuVol(S(u))|u v = −
∫
S
HS(u) g(NS(u), X0) v dvolgS .

As a consequence, we get the:

Corollary 3.3.1. The expression (3.5) can be expanded in powers of u and the derivatives of
u up to the second order as

HS(u) = HS + JS u+QS(u,∇u,∇2u), (3.6)

where HS is the mean curvature of S, JS is the Jacobi operator about S given explicitly by

JS := ∆S + TrgS (hS ⊗ hS) + Ric(NS , NS), (3.7)

where ∆S is the Laplace-Beltrami operator on S and Ric is the Ricci tensor of (M, g). Finally,
QS is a smooth function of u, ∇u and ∇2u, which satisfies

QS(0, 0, 0) = 0, DQS(0, 0, 0) = 0.

Observe that the Taylor expansion of QS is affine in ∇2u and at least quadratic in ∇u.

Proof. The result follows directly from a careful examination of the terms in (3.5). The
expression for the Jacobi operator can be obtained from

DuHS(u)|u=0 = ∆gu +
1

2
(Trgu(ġu ⊗ ġu)− Trgu g̈u) ,

and the expansion gz = gS − 2z hS + z2 kS +O(z3) given by Lemma 2.1.

3.3.5 Mean curvature of transverse graphs

Assume that we are given ÑS , a smooth vector field transverse (but not necessarily normal
nor unitary) to the surface S. Given a function u ∈ C2(S) which is small enough and which
has compact support, we define, as above, S(u) to be the normal graph over S for the function
u and we also consider the surface S̃(u) parametrized by

p 7→ expp

(
u(p) ÑS(p)

)
,

for p ∈ S. The following result [77], [93] gives the relation between the mean curvature function
H̃S(u) of S̃(u) and the mean curvature function HS(u) of S(u).
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Proposition 3.3.2. The mean curvature of S̃(u) can be written in the form

H̃S(u) = HS + JS

(
g(NS , ÑS)u

)
+ g(∇HS , ÑS)u+ Q̃S(u),

where JS is the Jacobi operator about the surface S and Q̃S is a nonlinear operator which
enjoys the same properties as the operator QS described in Corollary 3.3.1.

Proof. For s ∈ R close to 0 and q ∈ S one can apply the implicit function theorem to

expp(tNS(p)) = expq(s ÑS(q)),

to express p ∈ S and t ∈ R as functions of q and s:

p = Ψ(q, s) and t = ψ(q, s),

with Ψ(q, 0) = q and ψ(q, 0) = 0. Using the fact that (exp)∗|v=0 = Id, one checks that

∂Ψ

∂s
(·, 0) = ÑT

S , and
∂ψ

∂s
(·, 0) = g(ÑS , NS),

where ÑT
S is the projection of ÑS on the tangent bundle of S. On the other hand, differenti-

ating the identity
HS(ψ(·, u))(Ψ(·, u)) = H̃S(u)(·)

with respect to u at u = 0 yields

DHS(u)|u=0

(
∂ψ

∂s
(·, 0) v

)
+ g

(
∇HS ,

∂Ψ

∂s
(·, 0)

)
v = DH̃S(u)

∣∣∣
u=0

(v),

which completes half of the result. The fact that the structure of nonlinear terms is preserved
follows from the fact that Ψ and ψ are local diffeomorphisms with ψ(·, 0) = 0.

3.4 Construction of the approximate solution

3.4.1 Blowing up the metric

Throughout the chapter it will be easier for us to work with a rescaled metric on M . To this
aim, given ε ∈ (0, 1), we define

gε :=
1

ε2
g. (3.8)

Notation 3.4.1. The symbol O(εk) will denote a smooth function whose derivatives are
bounded by a constant (depending on the number of derivatives) times εk in a fixed neigh-
borhood of a given point p ∈M , the bounds being uniform in p.
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In normal coordinates (x1, x2, x3) (associated to the metric gε), we have the expansion

(gε)ij(x) := δij +
ε2

3
g(Rp(Ei, Ek)Ej , E`)x

k x` (3.9)

+
ε3

6
g(∇EmRp(Ei, Ek)Ej , El)xk xl xm +O(ε4),

where E1, E2, E3 is an orthonormal (with respect to g) frame of TM . Now let Eεi := εEi be
a frame orthonormal with respect to gε. We introduce the mapping

ζε,p(x) := expp

(
3∑
i=1

xiEεi

)
, (3.10)

where x ∈ R3, |x| ≤ 1. Then there exists ε∗ ∈ (0, 1) such that for all ε ∈ (0, ε∗), ζε,p is a
diffeomorphism and the mapping (ε, p) 7→ ζε,p depends smoothly on ε ∈ (0, ε∗) and p ∈M .

With these definitions, the geodesic sphere Sε(p) in (M, g) of radius ε centered at p can
be seen as the image by ζε,p of the Euclidean unit sphere S2.

Jacobi operator in the blown up metric

Again, assume that S ⊂ M is an orientable surface and let NS and N ε
S = εNS be unit

normal (with respect to the metrics g and gε respectively) vector fields on S. Given a function
u ∈ C2,α(S) small enough, we define the surfaces S(u) and Sε(u) by

p ∈ S 7→ expp(u(p)NS(p)) ∈ S(u) and p ∈ S 7→ expp (u(p)N ε
S(p)) ∈ Sε(u).

Let Jg and JgεS denote the Jacobi operators about S calculated with respect to the metrics g
and gε respectively. Then we have

εHg (S(u)) = Hgε (S(u)) = Hgε
(
Sε

(u
ε

))
, (3.11)

which yields
JgεS u = ε2 JgS u.

3.4.2 Pseudo CMC spheres

Jacobi operator about the Euclidean sphere

The Jacobi operator about the Euclidean unit sphere S2 reads

JS2 = ∆S2 + 2.

This operator has a nontrivial kernel spanned by the restrictions to S2 of the coordinate
functions:

Ker(JS2) = span{Θ1,Θ2,Θ3},
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where Θ ∈ R3,
∑3

i=1 Θi = 1. Let Π and Π⊥ denote the L2 orthogonal projections onto
Ker(JS2) and the orthogonal complement of Ker(JS2) respectively. Then the operator

∆S2 + 2 : Π⊥
(
C2,α(S2)

)
−→ Π⊥

(
C0,α(S2)

)
,

is invertible. So, for every function f ∈ C0,α(S2) we can find unique function u ∈ Π⊥(C2,α(S2))
and vector A ∈ R3 such that

(∆S2 + 2) u = f − 〈A,Θ〉,

where

A =

∫
S2

f Θ dvolS2

and where by 〈·, ·〉 we denote the scalar product in R3.

Construction of pseudo CMC spheres

A key ingredient in our construction is the following result which is already available in the
works of S. Nardulli [90] and F. Pacard and X. Xu [95].

Let Sε(o) be the geodesic sphere in (M, g) of radius ε small enough centered at o ∈M . We
identify the metric gε = 1

ε2
g with the pull-back metric (ζε,o)

∗ gε = geucl +O(ε2) in R3. Then
the mean curvature of Sε(o) satisfies

Hgε(Sε(o)) = Hgε(S2) = 2 +O(ε2).

We would like to perturb Sε(o) into a constant mean curvature surface with mean curvature
equal to 2. To this end, we take a function u ∈ C2,α(S2) and let S2(u) be the normal (with
respect to the Euclidean metric) graph over S2:

S2(u) := {(1− u) Θ, Θ ∈ S2}.

We consider the function K(ε, u) := Hgε(S(u))− 2. Obviously, we have

K(0, 0) = 0 and DuK(0, 0) = ∆S2 + 2.

We would like to apply the Implicit Function Theorem to the equation K(ε, u) = 0, unfortu-
nately, as we have seen, the operator JS2 = ∆S2 + 2 has a nontrivial kernel Ker(JS2) which
prevents us from doing so. However, one can certainly invert the operator JS2 in the space
of functions orthogonal to Ker(JS2). This implies that it is possible to apply the implicit
function theorem to solve

Hgε(S2(u))− 2 ∈ Ker(JS2),

for all ε > 0 close enough to 0.

Proposition 3.4.1. There exists ε∗ > 0 such that for all ε ∈ (0, ε∗) and all o ∈ M there
exists a surface Σε(o) parametrized by

Θ ∈ S2 7→ ζε,o
(
(1 + uε,o) Θ

)
∈ Σε(o), (3.12)
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with uε,o ∈ C2,α(S2), ‖uε,o‖C2,α(S2) ≤ C ε2, and such that the mean curvature of Σε(o) satisfies

εHg(Σε(o)) = Hgε(Σε(o)) = 2 + 〈Aε,o,Θ〉, (3.13)

where Aε,o ∈ R3 and ∣∣∣∣Aε,o +
2π ε3

15
∇gR(o)

∣∣∣∣ ≤ C ε5,

for a constant C independent of ε ∈ (0, ε∗) and o ∈ M . Moreover, uε,o and Aε,o depend
smoothly on ε ∈ (0, ε∗) and o ∈M .

Proof. First, let x1, x2, x3 be geodesic normal coordinates at o associated to the metric gε. We
have the expansion:

(gε)ij = δij +
ε2

3
Rikjl x

k xl +
ε3

6
Rikjl,mx

k xl xm +O(ε4),

where Rikjl and Rikjl,m are the components of the Riemann curvature tensor R and the tensor
∇R in an orthonormal (with respect to g) basis of ToM . Then we calculate

Hgε(S2) = 2− ε2

3
Ricij ΘiΘj − ε3

4
Ricij,k ΘiΘjΘk +O(ε4), (3.14)

where Ricij and Ricij,k are the components of the Ricci tensor Ric and the tensor ∇Ric in
an orthonormal (with respect to g) basis of ToM . We postpone the proof of this claim to the
Appendix.

Next, take a function u ∈ C2,α(S2) and consider the surface S2(u) which is a normal (with
respect to the Euclidean metric) graph about S2. Remark that this is equivalent to take a
normal geodesic graph about Sε(o) since by Gauss lemma (expo)∗(Θ) is a normal vector field
to Sε(o). Take A ∈ R3 and consider the function

K(ε, u,A) = Hgε(S2(u))− 2− 〈A,Θ〉,

defined for ε ∈ [0, 1). Then K is linear in A and we have

K(0, 0, 0) = 0 and DuK|(0,0,0) = ∆S2 + 2.

By the Implicit Function theorem, for ε small enough there exists a function uε,o ∈ Π⊥
(
C2,α(S2)

)
and a vector Aε,o ∈ R3 such that

K(ε, uε,o, Aε,o) = Hgε(S(uε,o))− 2− 〈Aε,o,Θ〉 = 0.

A straightforward calculation gives uε,o = O(ε2). Moreover, we have

Aε,o =

∫
S2

(
Hgε

(
S2(uε,o)

)
− 2
)

Θ dvolS2 .

Using Bianchi identity (see Appendix for the proof), we find

Π

(
ε3

4
Ricij,k ΘiΘjΘk

)
=

2π ε3

15
∇gR(o). (3.15)
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This, together with the identities

Π
(
Θi Θj

)
= Π

(
ΘiΘjΘkΘl

)
= 0, Π⊥

(
ΘiΘjΘk

)
= 0 i, j, k, l = 1, 2, 3,

Π ((∆S2 + 2)uε,o) = 0,

yields ∣∣∣∣Aε,o +
2π ε3

15
∇gR(o)

∣∣∣∣ ≤ C ε5,

for a constant C independent of ε and o. Finally, the surface Σε(o) := ζε,o(S
2(uε,o)) satisfies

the claim in the proposition.

Jacobi operator about pseudo CMC spheres

In what follows, we will often omit the index gε, when it is clear that the computations are
done with respect to this metric. Since geodesic spheres Sε(o) and pseudo CMC spheres Σε(o)
constructed in the previous paragraph are parametrized by the Euclidean unit sphere S2, we
identify from now on the function spaces Ck,α(Sε(o)) and Ck,α(Σε(o)) with Ck,α(S2).

According to the proof of Proposition 3.4.1, using a perturbation argument together with
3.4.2, we express the Jacobi operator (calculated with respect to the metric gε) about Sε(o)
in the form:

JSε(o) = ∆S2 + 2 + ε2 Lε,o,

where by Lε,o we will denote any linear operator on S2 whose coefficients depend smoothly
on ε and o and that satisfies the property

‖Lε,o u‖C0,α(S2) ≤ C ‖u‖C2,α(S2). (3.16)

We show that an analogous result also holds for the Jacobi operator about Σε(o).

Notation 3.4.2. We denote by Jε,o the Jacobi operator (calculated with respect to the metric
gε) about Σε(o).

Notice that the geodesics in M issued from o can be extended in a unique manner until their
intersection with Σε(o). The unit (with respect to gε) tangent vectors to these geodesics form
a C2,α vector field on Σε(o) which we denote by Υε,o. Remark that the mapping (ε, o) 7→ Υε,o

is smooth in ε ∈ (0, ε∗) and o ∈M . Let Ĵε,o be the linearized mean curvature operator which
arises when Σε(o) is perturbed in the direction Υε,o. Clearly,

Ĵε,o = ∆S2 + 2 + ε2 Lε,o.

On the other hand, let Nε,o be a unit normal (with respect to gε) to Σε(o), then

|gε (Υε,o, Nε,o)− 1| ≤ C ε2

for a constant C > 0 independent of ε and o. Thus, by Proposition 3.3.2, we obtain

Jε,o = ∆S2 + 2 + ε2Lε,o.
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Lemma 3.4.1. For all o ∈ M , ε ∈ (0, ε∗) and all f ∈ C0,α(S2) there exist unique function
u ∈ Π⊥

(
C2,α(S2)

)
and vector A ∈ R3 such that

Jε,o u = f − 〈A,Θ〉.

Moreover,

‖u‖C2,α(S2) ≤ C ‖f‖C0,α(S2),∣∣∣∣A− ∫
S2

Θ f dvolS2

∣∣∣∣ ≤ C ε2 ‖f‖C0,α(S2),

where the constant C > 0 is independent of ε ∈ (0, ε∗) and o ∈M , and the mapping f 7→ (u,A)
depends smoothly on ε and o.

Proof. According to the results stated in the subsection 3.4.2, there exist uapp ∈ Π⊥
(
C2,α(S2)

)
and Aapp ∈ R3 such that

(∆S2 + 2)uapp = f − 〈Aapp,Θ〉.
Consider the mapping

R : f ∈ C0,α(S2) 7→ Jε,o uapp(f) + 〈Aapp(f),Θ〉 − f ∈ C0,α(S2).

Then ‖R‖ ≤ c ε2 for a constant c independent of ε. Thus, for ε small enough, there exists an
inverse operator (Id + R)−1 and we put

u(f) := uapp

(
(Id + R)−1 f

)
and A(f) := Aapp

(
(Id + R)−1 f

)
,

which satisfy
Jε,o u(f) = f − 〈A(f),Θ〉.

3.4.3 Green’s function for the Jacobi operator about a pseudo CMC sphere

Given o ∈ M and ε ∈ (0, ε∗), let Σε(o) be the pseudo CMC sphere defined in the subsection
3.4.2, and take p ∈ Σε(o). We would like to define and study the Green’s function Γε,o,p
associated to the operator Jε,o with a pole at p. In principle, we should be looking for the
solution of the problem

Jε,o Γε,o,p = −2π δp, (3.17)

where δp is the Dirac mass on Σε(o) supported at p. Unfortunately, the presence of small
eigenvalues (and potentially the presence of a nontrivial kernel) for the operator Jε,o prevents
us from finding directly Γε,o,p and getting reasonable estimates which would be uniform in ε
as this parameter tends to 0. Therefore, in view of the properties of the operator Jε,o that are
described in the previous paragraph, instead of (3.17), we can consider the problem

Jε,o Γε,o,p = −2π δp + 〈B,Θ〉, for some B ∈ R3.

Let gε,o and dε,o be the metric and the intrinsic geodesic distance induced on Σε(o) by the
metric gε. We have the following result:
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Proposition 3.4.2. There exist a function Γε,o,p defined on Σε(o)\{p} and a vector Bε,o,p ∈ R3

which satisfy
Jε,o Γε,o,p = −2π δp + 〈Bε,o,p,Θ〉. (3.18)

Moreover,

Bε,o,p =
1

2
Θ(p) +O(ε2),

and for ` = 0, 1, 2 there exists a constant C` > 0 such that∣∣∣(dε,o(p, ·))` ∇` (Γε,o,p + log dε,o(p, ·)− γε,o,p)
∣∣∣
gε,o
≤ C` (dε,o(p, ·))2 |log dε,o(p, ·)| ,

(the estimate being uniform in ε, o and p) where γε,o,p is a function which is affine in normal
geodesic coordinates in Σε(o) defined in the neighborhood of p and the mapping (ε, o, p) 7→
(Γε,o,p, γε,o,p, Bε,o,p) is smooth in ε, o and p.

Proof. First of all, notice that according to Corollary 3.3.1, the Jacobi operator about Σε(o)
satisfies

Jε,o = ∆Σε(o) + trgε,o (hε,o ⊗ hε,o) + Ricg(Nε,o, Nε,o),

where hε,o is the second fundamental form on Σε(o) and Nε,o is a unit normal to Σε,o calculated
with respect to the metric gε. So, the potential in this expression is a C2,α function on Σε(o),
bounded by a constant independent of ε.

Secondly, we work in geodesic normal coordinates on Σε(o) centered at the point p. In
these coordinates, we have

∆Σε(o) =
2∑
i=1

∂2
xi +

2∑
i,j=1

O(|x|2) ∂xi ∂xj +
2∑
i=1

O(|x|)∂xi ,

where the functions O(|x|k) are defined as in Notation 3.3.1. Remark that

Jε,o (− log dε,o(p, ·)) = −2π δp + F,

where F = F0 + F1 log dε,o(p, ·) with F1 ∈ C2,α(Σε(o)) and
∣∣∇kF0

∣∣ ≤ (dε,o(p, ·))−k, k = 0, 1, 2.

Let µε,o,p ∈ C2,α(Σε(o)) be a cut-off function that is identically equal to 1 in the exterior
of the geodesic disk in Σε(o) of radius 1

2 centered at p and to 0 in the geodesic disk of radius
1
4 centered at p. Now put

f(x) := (1− µε,o,p(x))F (x). (3.19)

For r0 > 0 we use the notations D2
∗(r0) =

{
x ∈ R2 : 0 < |x| < r0

}
and S1(r0) = ∂D2

∗(r0).
Finally, let r eiφ be complex polar coordinates in D2

∗(r0). We prove the following lemma:

Lemma 3.4.2. Let f be the function defined in (3.19). Then there exist unique function v̂
such that |∇`v̂| ≤ c r2−` and constants c̃0, ci, i = 0, 1, 2 such that

v = v̂ + c0 + c̃0 r
2 log r + c1 r e

iφ + c2 r
2 log r e2iφ

satisfies {
∆eucl v = f in D2

∗
(

1
2

)
,

v = 0 on S1
(

1
2

)
.

(3.20)
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Proof of Lemma 3.1. We decompose the functions v and f in Fourier series:

v =
∑
j∈Z

vj(r) e
iφj , f =

∑
j∈Z

fj(r) e
iφj .

For all 0 < ρ < 1
2 let vj,ρ be the solution of the ordinary differential equation(
∂2

∂r2
+

1

r

∂

∂r
− j2

r2

)
vj,ρ(r) = fj(r), vj,ρ(ρ) = vj,ρ

(
1

2

)
= 0.

For |j| > 2 we find vj,ρ using r2

j2−4
|fj | as a supersolution. Putting

vρ :=
∑
|j|≥3

vj,ρ(r)e
iφj and Aρ :=

{
x ∈ R2 : ρ < |x| < 1

2

}
,

we find
‖ r−2 vρ ‖L∞(Aρ) ≤ C

∥∥∥ ∑
|j|≥3

fj(r) e
iφj
∥∥∥
L∞(D2

∗( 1
2))

(3.21)

for a constant C independent of ρ. By elliptic regularity theory, (3.21) implies the existence
of a uniform bound on the gradient of vρ and thus, by the Arzelà-Ascoli theorem, there exists
a subsequence of functions converging uniformly on compact sets to a solution v̂ of (3.20).

Solutions in Fourier modes |j| ≤ 2 can be constructed explicitly. We obtained

v0(r) :=

∫ r

0

1

z

∫ z

0
t f0(t) dt+ d0;

v1(r) := −r−1

∫ r

0

t2 f1(t)

2
dt+ r

∫ r

0

f1(t)

2
dt+ d1 r;

v2(r) := − 1

r2

∫ r

1

t3 f2(t)

4
dt+ r2

∫ r

1

f2(t)

4t
dt+ d2 r

2.

A direct calculation then shows that for a suitable choice of the constants di, i = 0, 1, 2
the function v := v̂ + v0 + v1 + v2 has the right properties.

Now we put u := (1 − µε,o,p) v and F̃ := Jε,o u − F. Then F̃ ∈ C0,α(Σε(o)) and
‖F̃‖L∞(Σε(o)) ≤ C for a constant C independent of ε, o and p. By Lemma 3.4.1, there exist
a function ũ ∈ C2,α(Σε(o)) and a vector Bε,o,p ∈ R3, such that

Jε,o ũ = F̃ − 〈Bε,o,p,Θ〉,

where

Bε,o,p =

∫
S2

Θi F̃ dvolS2 +O(ε2).
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Finally, we put
Γε,o,p := − log dε,o(p, ·)− u+ ũ.

Next, applying (in the sense of distributions) both sides of the expression (3.18) to Θ, we
obtain ∫

Σε(o)
(Jε,o Γε,o,p) Θ dvolgεΣε(o)

= −2πΘ(p) +

∫
Σε(o)

Θ 〈Bε,o,p,Θ〉 dvolgεΣε(o)
.

Integrating the first term by parts and using the fact that Jε,o is a self-adjoint operator, we
obtain∫

Σε(o)
(Jε,o Γε,o,p) Θi dvolgεΣε(o)

=

∫
Σε(o)

(
Jε,o Θi

)
Γε,o,p dvol

gε
Σε(o)

=

∫
S2

(
ε2 Lε,o Θi

)
Γε,o,p (1 +O(ε2)) dvolS2 = O(ε2).

On the other hand,∫
Σε(o)

ΘiΘj dvolgεΣε(o) = (1 +O(ε2))

∫
S2

Θi Θj dvolS2 = 4π δij +O(ε2).

This yields Bε,o,p = 1
2 Θ(p) +O(ε2).

3.4.4 Pseudo CMC spheres as summands in a gluing construction

In the Euclidean space to perform a connected sum of two surfaces Σ± amounts to make Σ±

tangent at a common point, then to translate the surfaces slightly away from each other in
the direction orthogonal to their common tangent plane, remove small disks around the points
where the surfaces are tangent and “replace” these disks by a small neck. In particular, it was
shown in [77]), that if Σ± have CMC, one can perturb a connected sum of Σ± into a surface
with the same value of the mean curvature.

Unfortunately, we cannot apply this construction directly in a generic Riemannian manifold
M because of the absence of isometries (namely, the absence of translations and rotations).
Instead, we given family of surfaces parametrized by their location in M , we should define
a procedure that allows to associate to a number d > 0 small enough, a pair of surfaces the
distance between which is equal to d.

Take d ∈ (0, 1/2 ε). It is easy to choose a pair of geodesic spheres of radius ε the distance
between which is equal to d. For this it is sufficient to fix a point o ∈ M , a vector v ∈ ToM
with ‖v‖g = 1 and to place the centers of the spheres at expo

(
±
(
ε+ d

2

)
v
)
.

In the next result we show that an analogous procedure also works for a family of pseudo
CMC spheres since the last ones are small perturbations of geodesic spheres. More precisely,
consider the family

Σ±ε,t = Σε (expo(± tv)) .

We prove
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Lemma 3.4.3. For all d ∈ (0, 1/2 ε) there exists a unique t ∈ (ε, 2ε) such that the distance
(calculated with respect to the metric g) between the surfaces Σ±ε := Σ±ε,t is equal to d and is
realized by a unique geodesic γ, a priori different from t 7→ expo(tv).

Moreover, the mapping (ε, o, v, d) 7→ γ is C1 in ε ∈ (0, ε∗), o ∈M , v ∈ ToM and d ∈ (0, 1/2 ε).

Proof. For the sake of convenience we work with the rescaled metric gε. Take an orthonormal
(with respect to gε) basis Eε1, E

ε
2, E

ε
3 of ToM , such that Eε3 = ε v and let x1, x2, x3 be the

corresponding normal geodesic coordinates. We denote by x̄ the 2-vector (x1, x2).

Notation 3.4.3. In what follows we denote by x̄ 7→ Fε,o,v,t(x̄) any C2,α function which depends
in a C1 manner on ε, o, v, t and whose derivatives are bounded independently of ε, o, v, t.

Take a pair of points p+ ∈ Σ+
ε,t and p− ∈ Σ−ε,t of coordinates x+ and x− in the neighbor-

hoods the intersection of Σ±ε,t with the geodesic t 7→ expo(tv). Using the information about

the structure of the surfaces Σ±ε,t given in Proposition 3.4.1, the formula for the change of
coordinates given in the subsection 3.3.2, and the fact that the Christoffel symbols associated
to the metric gε = geucl +O(ε2) satisfy (Γε)

k
ij = O(ε2), we can write

x3
± = ±

(
t

ε
−
√

1− |x̄|2
)

+ ε2 Fε,o,v,t(x̄±).

Let γ(p+, p+) be the minimizing geodesic connecting p+ and p−. The unit outward normals
to Σ±ε,t at p± can be written in the form

N±(x̄) = −
2∑
i=1

xi± ∂i +
√

1− |x̄|2 ∂3 + ε2 Fε,o,v,t(x̄±).

On the other hand, the unit tangent vectors to γ(p+, p−) at p± can be written in the form

T±(x̄) = ±
3∑

k=1

(
xk− − xk+

)
|x+ − x−|

∂k + ε2 Fε,o,v,t(x̄+, x̄−).

Then the system of equations N± = T± can be written in the form

Go,v,t(ε, x̄+, x̄−) = Ĝ(x̄+, x̄−) + ε2 Fε,o,v,t(x̄+, x̄−) = 0,

where Ĝ : R4 −→ R4 is defined by Ĝi(x̄+, x̄−) = xi+ +
(xi+−xi−)

|x+−x−| , i = 1, 2,

Ĝ2+i(x̄+, x̄−) = xi− +
(xi+−xi−)

|x+−x−| , i = 1, 2.
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We have Go,v,t(0, 0, 0) = 0 and D(x̄+,x̄−)Go,v,t
∣∣
(0,0,0)

is invertible. So, by the Implicit Function

Theorem, there exists ε∗ ∈ (0, 1) and for all ε ∈ (0, ε∗) there exist C1 functions (ε, o, v, t) 7→
x±(ε, o, v, t) such that

Go,v,t(x+(ε, o, v, t), x−(ε, o, v, t), ε) = 0.

Moreover, the solution satisfies

x̄±(ε, o, v, t) = ε2Fε,o,v,t(x̄+, x̄−),

which yields the uniqueness of x̄±(ε, o, v, t). We denote the points of coordinates (x̄±, x
3
±) by

p±0 and put
d(t) := distg(p

+
0 , p

−
0 ) = 2 (t− ε) +O(ε2).

Since d′(t) > 0, we can express t as a C1 function of d.

Remark 3.4.1. We will see in the final argument developed in the section 3.7 that we also
need to perform a connected sum of two intersecting pseudo CMC spheres. In this case we
cannot talk about the distance between the surfaces, but we prove (the proof is exactly the same
as the proof of Lemma 3.4.3) that for all d ∈ (0, 1/2 ε) there exists t ∈ (0, ε) such that the
interior of Σ+

ε,t ∩ Σ−ε,t is crossed by a unique minimizing geodesic γ of length d that intersects

Σ±ε,t orthogonally. Moreover, the mapping (ε, o, v, d) 7→ γ is C1.

In what follows we will construct two connected sums (and two approximate solutions),
one embedded and one immersed with self-intersections, and we will see that depending on the
sign of the eigenvalue λ 6= 0 of the Hessian of the scalar curvature, we will show that one of
these connected sums can be deformed into a constant mean curvature surface.

3.4.5 “Catenoidal neck”

Now that we can construct a pair of pseudo CMC spheres at a fixed “distance” we would like
to insert a small neck between them. In R3 the role of the neck is usually played by a catenoid
scaled by a small factor η > 0 referred to as the “neck size”:

Cη : (s, φ) ∈ [−sη, sη]× S1 7→ (η cosh s cosφ, η cosh s sinφ, ηs) , (3.22)

for some sη � 1 carefully chosen in the gluing argument [77]. In a Riemannian manifold
(M, g), in order to use the geometric properties of the catenoid, we shall embed of Cη in M
taking coordinates that are close to cylindrical coordinates in R3.
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Using the results of the subsection 3.4.4, let us fix ε ∈ (0, ε∗), o ∈ M , v ∈ ToM with
‖v‖g = 1, and d ∈ (0, 1/2 ε) and consider a pair of pseudo CMC spheres Σ±ε (o, v, d) (either
disjoint or intersecting) the “distance” between which is equal to d. Let γ be the minimizing
geodesic with γ(0) = p−0 ∈ Σ−ε and γ(1) = p+

0 ∈ Σ+
ε , where distg(p

+
0 , p

−
0 ) = d.

Next, take q0 := γ
(

1
2

)
and consider the geodesic disk Λ centered at q0 and orthogonal to γ.

Remark, that we can choose an orthonormal (with respect to the metric gε) basis Eε1, E
ε
2, E

ε
3

of Tq0M that depends in a C1 manner on ε, o, v, d and such that E3 = γ′(1/2)/‖γ′(1/2)‖gε .
For this it is sufficient to fix an orthonormal frame tangent of S2 (which will provide an
orthonormal frame tangent of Σ−ε that is C1 in ε, o, v, d) and to take the parallel transport of
this frame along γ from p−0 to q0. The geodesic disc Λ is then parametrized by

x ∈ D2 7→ expq0
(
x1Eε1 + x2Eε2

)
∈ Λ.

Consider the mapping (x1, x2, z) 7→ F εΛ,q0(x1, x2, z) from a neighborhood of 0 in R3 to a
neighborhood of q0 in M which defines Fermi coordinates associated to the surface Λ (see
3.3.3, where the normal to Λ is unit with respect to the metric gε). We refer to the surface

Cη,0 := F εΛ,q0(Cη)

as the initial position of the “catenoidal neck” with “axis” γ.

Remark 3.4.2 (Varying the position of the “axis”).

For the reasons that will be explained in the section 3.7, we need to introduce extra freedom
and to this end consider a 2-parameter family of “catenoidal necks” with their “axis” parallel
to γ. More precisely, take a point q ∈ Λ of coordinates (x1, x2) = (a1, a2). Then, let (y1, y2)
be normal geodesic coordinates centered at q (as before, we work with the metric gε and choose
an orthonormal frame tangent to Λ which is C1 in ε, o, v, d), and (y1, y2, z) 7→ F εΛ,q(y

1, y2, z)
the corresponding Fermi coordinates.

Then, we have a two parameter family of “catenoidal necks” given by

Cη,a := F εΛ,q(Cη).

3.4.6 Gluing the summands together

In this subsection, we explain how we can “glue together” a pair of pseudo CMC surfaces Σ±ε
with a “catenoidal neck” Cη,a, where the construction these surfaces depends in C1 manner on
ε ∈ (0, ε∗), o ∈M,v ∈ TpM,a ∈ R2 and d ∈ R. Using the ideas introduced in [77], in order to
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get a better matching with the asymptotics of the catenoid, we first deform Σ±ε using Green’s
functions associated to their Jacobi operators, and then perform the connected sum.

We notice also, that a certain relation between the parameters should be satisfied. More
precisely, we leave ε, o, v, η, a as free parameters and express d as a function of ε, o, v, η, a.

Assumptions on the parameters

For the reasons explained in the section 3.7, we need a certain restriction on the choice of
the parameters o ∈ M , v ∈ ToM , with ‖v‖g = 1, η ∈ (0, 1) and |a| ∈ R2. Let ocr ∈ M be a
critical point of the scalar curvature function R of the ambient manifold M and vλ the unit
eigenvector associated to a simple eigenvalue λ 6= 0 of the Hessian of R at ocr.

Assumption 3.4.1. We assume that there exists a (possibly large) constant C∗ independent
of ε, o, v, η, a such that

distg (o, ocr) ≤ C∗ ε2, ∠ (v, vλ) ≤ C∗ ε, η ≤ C∗ε4 and |a| ≤ C∗η3/4,

where by ∠ (v, vλ) we mean the angle between vλ and the result of the parallel transport of v
along the minimizing geodesic from o to ocr.

Σ±ε as normal graphs over Λ

With the notations introduced in the previous subsections the pseudo CMC spheres Σ±ε can
be seen in the neighborhood of p±0 as normal geodesic graphs over the geodesic disk Λ. Let
N ε

Λ be a unit normal (with respect to the metric gε) on Λ. In what follows let us assume that
the “distance” d between Σ±ε is computed using the metric gε. Then:

Lemma 3.4.4. In the neighborhood of p±0 ∈ Σ±ε the surfaces Σ±ε can be parametrized by

F±Λ : q′ ∈ Λ 7→ expq′
(
u±(q′)N ε

Λ

)
, (3.23)

where u± ∈ C2,α(Λ) are convex functions such that

u±(q0) = ±d
2

and ∇u±(q0) = 0.

Take a point q ∈ Λ, such that distgε(q, q0) = |a|. Then in normal geodesic coordinates on Λ
centered at q we have the expansions:

u±(y) = u±(q) +∇u±(q) · y +O(|y|2), (3.24)

where u±(q) = ±d
2 +O(|a|2) and |∇u±(q)| = O(|a|).

Proof. The proof follows from the construction of surfaces Σ±ε and Λ.
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Transverse vector fields on Σ±ε

Remark that in the neighborhood of q0 ∈ Λ, normal geodesic graphs over Λ can be seen as
transverse geodesic graphs over Σ±ε . Indeed, the geodesics issued from Λ with velocity vectors
orthogonal to Λ can be extended until their intersection with Σ±ε . The unit (with respect to
gε) tangent vectors to theses geodesics then form C2,α vector fields on Σ±ε which we denote by
K±. (By construction K± are C1 in ε, o, v, and d).

Let N± be unit normals (with respect to gε) on Σ±ε , which we take outward when the
surfaces Σ±ε are disjoint, and inward when Σ±ε intersect. We use the notation p±q := F±Λ (q) for
q ∈ Λ. Then for all ψ± ∈ L∞(Σ±ε ) small enough defined in the neighborhood of p±q in Σ±ε , the
transverse geodesic graph over Σ±ε parametrized by

p ∈ Σ± 7→ expp
(
ψ±(p)K±(p)

)
coincides with the normal geodesic graph over Λ parametrized by

q′ ∈ Λ 7→ expq′
( (
u± − ψ± ◦ F±Λ

)
(q′)NΛ(q′)

)
,

where NΛ is a unit normal to Λ with respect to gε.

Lemma 3.4.5. In a neighborhood of p±q ∈ Σ±ε of radius c|a| for some c > 0 independent of
ε, o, v, η, a, we have

|gε (K±, N±)| = 1 +O
(
|a|2
)

Proof. First of all, when q = q0, then p±q = p±0 and the result follows from the fact that

K±(p±0 ) = N±(p±0 ) and

∂xigε (K±, N±) (p±0 ) = gε(∇∂xiK±,K±)(p0) + gε(∇∂xiN±, N±)(p0) = 0.

When q 6= q0, the result follows from the fact that the distance in Σ±ε between p±0 and p±q is
bounded by a constant (independent of ε, o, v, η, a) times |a|.

Notation 3.4.4. We denote by Σ±ε (ρ) the region in Σ±ε obtained as the image by F±Λ of
geodesic disc in Λ of radius ρ centered at q. We denote by Σ±ε (ρ1, ρ2) the image by F±Λ of
the geodesic annulus of inner radius ρ1 and outer radius ρ2 centered at q. Finally, we use the
notation (Σ±ε (ρ))

c
= Σ±ε \ Σ±ε (ρ).

Let µ± ∈ C2,α(Σ±ε ) be cut-off functions such that µ± ≡ 0 in Σ±ε (1/4) and µ± ≡ 1 in
(Σ±ε (1/2))

c
. We introduce the vector fields

Ñ± := µ±N± + (1− µ±)K±. (3.25)
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Graphs of Green’s functions

Notation 3.4.5. We denote by J± the Jacobi operators about Σ±ε calculated with respect to
the metric gε. We also denote by J̃± the linearized mean curvature operators which arise when
Σ±ε are perturbed in the direction of the vector fields Ñ± defined in (3.25).

Let dΣ±ε
be the geodesic distances induced by the metric gε on the surfaces Σ±ε . We use the

notation d± := dΣ±ε

(
p±q , ·

)
.

We study the Green’s functions associated to the operators J̃± with poles at p±q . More
precisely, we have the following result:

Proposition 3.4.3. There exist functions Γ± defined on Σ±ε \ {p±q }, vectors B± ∈ R3 and
constants κ± > 0 such that

J̃± Γ± = −κ± δp±q + 〈B±,Θ〉. (3.26)

Moreover,

B± =
1

2
Θ
(
p±q
)

+O(ε2),

and there exist constants c± ∈ R and C` > 0, ` = 0, 1, 2 such that∣∣∣(d±)`∇`
(
Γ± + log (d±)− c±

)∣∣∣ ≤ C` (d±) |log (d±)| ,

where the mapping (ε, o, v, η, a) 7→ (Γ±, B±, c±) is C1.

Proof. By Proposition 3.3.2, the operators J± and J̃± are conjugate, more precisely

J̃± = J±

(
gε(Ñ±, N±) ·

)
+ V ±

where V ± ∈ C2,α(Σ±ε ) is a potential bounded by a constant independent of ε, o, v, η, a. The
result follows then from Proposition 3.4.2 and the estimates on the scalar product gε(K±, N±)
obtained in Lemma 3.4.5.

Let the mappings F±Λ : Λ→ Σ±ε be defined as in (3.23) and consider the functions

Γ±Λ := Γ± ◦ F±Λ . (3.27)

In the following result we compare the behavior of Γ±Λ in a neighborhood of q in Λ \ {q} and
the asymptotic behavior of the “catenoidal neck” Cη,a.

Lemma 3.4.6. In the geodesic normal coordinates on Λ centered at q the functions Γ±Λ have
the expansions

Γ±Λ(y) = c±0 + log |y|+O (|y| log |y|) . (3.28)

On the other hand, the “catenoidal neck” Cη,a can be seen as a normal geodesic bi-graph over
Λ of the function

Gη := η log
2

η
+ η log |y|+O

(
η3 |y|−2

)
, (3.29)

where the mapping (ε, o, v, d, η, a) 7→ (Γ±Λ , Gη) is C1.
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Proof. Using Lemma 3.3.1 and the fact that the second fundamental form of Λ is bounded by
a constant times ε2, in Fermi coordinates in M given by the mapping F εΛ,q we have

(gε)ij = δij +O(ε2).

Let dΣ±ε
and dΛ be intrinsic geodesic distances on Σ±ε and Λ associated to gε. The result then

follows from Proposition 3.4.3 and the fact that in a neighborhood of q ∈ Λ small enough

dΛ(q, q′) = dΣ±ε
(p±q , p

±
q′) +O

(
ε2 dΣ±ε

(p±q , p
±
q′)
)
.

The expansion of the function Gη follows from the change of coordinates

(y1, y2) = η cosh s(cosφ, sinφ).

Matching

Using the results of the previous paragraph, we see that in order to “glue” together the graphs
of the Green’s functions Γ± over Σ±ε with a “catenoidal neck” Cη,a we need the expansions of
the functions u± − η Γ±Λ and ±Gη to be close in some neighborhood of q ∈ Λ.

1) Adjusting the “distance”: Let us first assume that Σ±ε are disjoint. In order to match the
constant terms in the expansions obtained in Lemma 3.4.6 we first “translate” the “catenoid”
in the direction orthogonal to Λ by the constant

η log
η

2
+ u+(q)− η c+0 .

More precisely, this means that we parametrize the upper and the lower parts of the neck as
graphs of the functions

G+
η (y) := u+(q)− η c+0 + η log |y|+O

(
η3|y|−2

)
, (3.30)

G−η (y) := 2η log
η

2
+ u+(q)− η c+0 − η log |y|+O

(
η3|y|−2

)
. (3.31)

Next, in order to match the constant terms in the expansions of Γ−Λ and G−η , we need to have

2 η log
η

2
+ u+(q)− η c+0 = u−(q)− η c−0 . (3.32)

We can rewrite this equation in the form D(d, o, v, η, a) = 0, where

D(d, o, v, η, a) = d+ 2 η log
η

2
+ η(c−0 − c

+
0 ) +O

(
η3/2

)
.

Take o0 ∈ M , v0 ∈ ToM , with ‖v0‖g = 1, η0 > 0 and a0 ∈ R2 satisfying the assumption
3.4.1. Then we can find d0 ∈ (0, 1), such that

D(d0, o0, v0, η0, a0) = 0.
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By the Implicit Function theorem, there exists a neighborhood of o0, v0, η0, a0, where (o, v, η, a) 7→
d(o, v, η, a) is a C1 function and D(d(o, v, η, a), o, v, η, a) = 0. Remark, that we have

|d− 2 η log(2/η)| ≤ C η,

for a constant C independent of ε, η, a, o, v when ε is small enough.

2) Choosing the gluing region: The difference between u±−η Γ±Λ and G±η is now a function
of the form

O
(
η|y| log |y|+ |a||y|+ η3 |y|−2 + |y|2

)
.

We perform the “gluing” in the region where this difference is minimized, namely, when

|y| = η
3
4 =: rη. (3.33)

Parametrization of the resulting surface

In this paragraph we summarize the results given above and describe the parametrization of
the resulting connected sum, which we denote by Aε and refer to as approximate solution. We
divide Aε into 5 regions:

Aε = Ω+
sp ∪ Ω+

glu ∪ Ωcat ∪ Ω−glu ∪ Ω−sp.

1) The “spherical regions” Ω±sp are parametrized as transverse transverse graphs over the
pseudo CMC spheres Σ±ε of functions the η Γ± given by Proposition 3.4.3, when the surfaces
are perturbed in the direction of the vector fields Ñ± defined in (3.25).

2) The “catenoidal region” Ωcat is parametrized as a Euclidean catenoid scaled by the factor
η, truncated and embedded in M via Fermi coordinates, as it is explained in the subsection
3.4.5:

(s, φ) ∈ [−sη, sη]× S1 7→ F εΛ,q (η cosh s cosφ, η cosh s sinφ, ηs+ η c) ,

where η cosh sη = 1
2rη and the constant c is defined in the paragraph “Matching” and depends

on ε, o, v, η, a but is bounded independently of ε, o, v, η, a.

3) Finally, in the “gluing regions” Ω±glu we interpolate smoothly between Ω±sp and Ωcat.

Notation 3.4.6. We introduce a cut-off function χ ∈ C2,α(Λ) which is radial in geodesic
normal coordinates in Λ centered at q and is identically equal to 1 when r > rη and to 0 when
r < rη/2. (By construction, χ depends continuously on ε, o, v, η, a).
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We parametrize the regions Ω±glu as normal graphs over the geodesic annulus in Λ of inner
radius rη/2 and outer radius rη of the functions

G± := χ(u± − η Γ±Λ) + (1− χ)G±η , when Σ±ε are disjoint, (3.34)

G± := χ(u∓ − η Γ∓Λ) + (1− χ)G±η , when Σ±ε intersect. (3.35)

Remark 3.4.3. The surface Aε is either embedded or immersed with self-intersections and
depends on ε ∈ (0, ε∗) and on 8 geometric parameters: the point o ∈ M , the unit vector
v ∈ ToM , the “neck size” η > 0 and the “location” of the neck a ∈ R2 that satisfy the
assumptions 3.4.1. We write Aε = Aε(o, v, η, a).

3.5 Perturbation of the approximate solution

We would like to show that the surface Aε can be perturbed at least for ε small enough into
some CMC surface. To this end, we describe in this section the surfaces in M obtained as
small deformations of Aε. Let Ξ be a vector field in M defined in the neighborhood of Aε and
transverse to Aε, and let ξ be the associated flow:

dξ

dt
= Ξ (ξ(·, t)) , and ξ(p, 0) = p.

Take a function w ∈ C2,α(Aε) and consider the surface Aε(w) parametrized by:

p ∈ Aε 7→ ξ (p, w(p)) ∈ Aε(w).

The expansion of the mean curvature of Aε(w) in the powers of w and derivatives of w up to
the second order has the form:

Hgε (Aε(w)) = Hgε (Aε) + Lεw +Qε(w), (3.36)

where H(Aε) is the mean curvature of the approximate solution Aε, Lε is a linearized mean
curvature operator about Aε, and Qε is a nonlinear function in w and the components of the
gradient and the Hessian of w. In the results described below we explain an appropriate choice
of the vector field Ξ and study the properties of the function H(Aε) and the operators Lε and
Qε in appropriate function spaces.

3.5.1 Choice of the transverse vector field

In this subsection we describe explicitly the parametrization of the perturbed surfaces Aε(w)
which will explain implicitly the choice of the transverse vector field Ξ.

1) First, we describe the region of Aε(w) parametrized by the “spherical regions” Ω±sp of

Aε. Let Ñ± be the vector fields defined on Σ±ε by (3.25). By construction, in (Σ±ε (1/2))
c

these
vectors coincide with unit normals to Σ±ε , while in Σ±ε (1/4), the parallel transport of Ñ± to
Λ coincides with a unit normal to Λ. We parametrize Aε(w) by
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p ∈
(
Σ±ε (rη)

)c 7→ expp

( (
η Γ± + w

)
(p) Ñ±(p)

)
∈ Aε(w).

2) In the “catenoidal region” we parametrize Aε(w) as an image in M of a normal (with
respect to the Euclidean metric) graph over the Euclidean catenoid:

(s, φ) ∈ [−sη, sη]× S1 7→ F εΛ,q

(
Cη + wNcat

)
∈ Aε(w),

where

Ncat(s, φ) =

(
− 1

cosh s
cosφ,− 1

cosh s
sinφ, tanh s

)
is a unit normal (with respect to the Euclidean metric) to the catenoid Cη and the mapping
F εΛ,q defines, as in (3.4), Fermi coordinates centered at q ∈ Λ.

3) Finally, we have the region parametrized by the “gluing regions” Ω±glu where we inter-
polate smoothly between Ncat and a unit normal to Λ. We parametrize Aε(w) by

y ∈ R2, rη/2 < |y| < rη 7→ F εΛ,q

( (
y,G±(y)

)
+ w(y) Υ±(y)

)
,

where the functions G± are defined in (3.34) and the vector fields Υ± are defined in R3 by

Υ± = (1− χ)Ncat ± χ(0, 0, 1). (3.37)

3.5.2 Function spaces

Notation 3.5.1. Let χ ∈ C2,α(Λ) be the cut-off function defined as in Notation 3.4.6. We
define the function χ+ ∈ C2,α(Aε), such that χ+ ≡ 1 in Ω+

sp, χ
+ ≡ χ in Ω+

glu, and χ+ ≡ 0 in

Aε \
(
Ω+
sp ∪ Ω−sp

)
. In the same manner, we define the function χ− ∈ C2,α(Aε).

Notation 3.5.2 (Weight function). We introduce a weight function ϑ ∈ C∞(Aε) that interpo-
lates smoothly between the distance to points p±q in Σ±ε and the function s 7→ η cosh s defined
in the “catenoidal neck” region. More precisely, we put

ϑ := χ+ d+ + χ− d− + (1− χ+ − χ−) η cosh s

where d± is the distance to p±q in Σ±ε associated to the metric gε.

Definition 3.5.1 (Weighted Hölder spaces). Take ν ∈ R. We say that a function w belongs

to the space Ck,αν (Aε), k = 0, 1, 2 if the following norm is finite

‖w‖Ck,αν = sup
Aε
|ϑ−νw|+

k∑
`=1

sup
Aε
‖ϑ`−ν∇`w‖gε (3.38)

+ sup
p,p′∈Aε

∣∣∣∣∣ϑk+α−ν(p)∇kw(p)− ϑk+α−ν(p′)∇kw(p′)

dεAε(p, p
′)α

∣∣∣∣∣ .
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For a region Ω ⊂ Aε, we denote the restriction of Ck,αν to Ω by Ck,αν (Ω).

Remark 3.5.1. Let us adopt the notations 3.4.4. Then the norm (3.38) is equivalent to

‖w‖Ck,αν = sup
s∈[−sη ,sη−1]

‖(η cosh s)−ν w‖
Ck,α
(

[s,s+1]×S1, ds2+dφ2
)

+ ‖w‖Ck,α((Σ+
ε (1/2))

c
) + ‖w‖Ck,α((Σ−ε (1/2))

c
)

+ sup
ρ∈[rη ,1/4]

‖d−ν+ w‖
Ck,α
(

Σ+
ε (ρ, 2ρ), d−2

+ g+

) + sup
ρ∈[rη ,1/4]

‖d−ν− w‖
Ck,α
(

Σ−ε (ρ, 2ρ), d−2
− g−

),
where g± are the metrics induced on Σ±ε from gε. Notice, that in the last two terms we use
singular metrics d−2

± g± to calculate the gradient and the Hessian of the function.

3.5.3 Mean curvature of the approximate solutions

In this subsection we analyze the mean curvature of the approximate solution Aε.

First of all, using the fact that the catenoid is minimal with respect to the Euclidean metric
and that gε = geucl + O(ε2), we show that in the “catenoidal region” the mean curvature of
Aε tends to 0 in L∞ norm as ε tends to 0. More precisely, we have the following result:

Proposition 3.5.1. For all ε ∈ (0, ε∗) and all o, v, η, a satisfying the assumptions 3.4.1, the
mean curvature of the surface Aε(o, v, η, q) in the catenoidal region Ωcat satisfies for k = 0, 1, 2∣∣∣∇kHgε(Aε)(s, φ)

∣∣∣ ≤ Ck ε2,

for a constant Ck > 0 independent of ε, o, v, η, a and where the derivatives ∇k are calculated
with respect to the metric ds2 + dφ2.

Proof. In Ωcat the surface Aε is parametrized as the image of the Euclidean catenoid

Cη : (s, φ) ∈ R× S1 7→ (η cosh s cosφ, η cosh s sinφ, η s+ η c) ,

where η cosh sη = 1
2 rη by the mapping F εΛ,q which defines Fermi coordinates at q associated to

the geodesic disk Λ. Our task is to find the mean curvature of Cη with respect to the ambient

pull-back metric
(
F εΛ,q

)∗
geucl. We have[(
F εΛ,q

)∗
geucl

]
ij

(y, z) = δij +O
(
ε2
(
|y|2 + |z|

))
,

which follows from Lemma 3.3.1 and the fact that the second fundamental form of the geodesic
disk Λ calculated with respect to the metric gε satisfies

hΛ = O(ε2).

Then the induced metric on the catenoid can be written in the form

gcatε = η2 cosh2 s(ds2 + dφ2) +O(ε2 η3 cosh3 s).
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Let Ncat be a unit normal to Cη with respect to geucl, then the unit normal with respect to
the pullback metric satisfies

N ε
cat = Ncat +O(ε2η cosh s).

Next, since the Christoffel symbols corresponding to the Levi-Civita connection associated to

the metric
(
F εΛ,q

)∗
geucl satisfy Γkij = O(ε2), we calculate the second fundamental form:

hcatε = η(−ds2 + dφ2) +O(ε2η2 cosh2 s).

Finally, we deduce the estimates for the mean curvature:

Hgε(Aε) = tr
(
(gcatε )−1 (hcatε )

)
= O(ε2).

Next, we estimate the mean curvature of Aε in the “spherical regions”, applying the
formula for the mean curvature of transverse geodesic graphs given by Proposition 3.3.2.
Parametrizing Σ±ε by the Euclidean unit sphere S2, we obtain an expression for Hgε(Aε)− 2
where we distinguish two types of terms: terms controlled by η3 (d±)−4 and terms which
belong to Ker (∆S2 + 2).

As before, let R be the scalar curvature function of M and assume that o± ∈ M are the
“centers” of the pseudo CMC spheres Σ±ε = Σε(o

±). Then, we have:

Proposition 3.5.2. For all ε ∈ (0, ε∗) and all o, v, η, q satisfying the assumption 3.4.1, the
mean curvature of Aε(o, v, η, q) in Ω±sp can be written in the form

Hgε(Aε)− 2 = H0 + 〈C±,Θ〉

where

C± := −2π ε3

15
∇gR(o±) +

η

2
Θ(p±q ) +O(ε5) ∈ R3, (3.39)

and
|∇kH0| ≤ Ck η3 (d±)−4−k,

for a constant Ck > 0 independent of ε, o, v, η, a and where the derivatives ∇k are calculated
with respect to the metric g± induced on Σ±ε from gε.

Proof. For simplicity we will omit the index gε in the expression for the mean curvature,
keeping in mind that all the calculations are done with respect to this rescaled metric. By
construction, in Ω±sp the surface Aε can be seen as a transverse graph over the pseudo CMC
spheres Σ±ε of the functions η Γ±. Hence, by Proposition 3.3.2,

H(Aε) = H(Σ±ε ) + η J̃± Γ± +Q±
(
η Γ±

)
,
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where J̃± are linearized mean curvature operators and Q± are non-linear, smooth, quadrati-
cally vanishing functions. By Proposition 3.4.3,

η J̃± Γ± = η 〈B±, Θ〉, where B± =
1

2
Θ(p±q ) +O(ε2).

On the other hand, by Proposition 3.4.1, we have

H(Σ±ε ) = 2 + 〈Aε,o± ,Θ〉, where Aε,o± = −2π ε3

15

(
∇gR(o±)

)
+O(ε5).

On the other hand, using the structure of the nonlinear terms given by Corollary 3.3.1, we

find that the leading terms in Q± (η Γ±) are controlled by η3
∣∣∣∇2Γ± |∇Γ±|2

∣∣∣ ≤ C η3
(
d±q
)−4

.

The estimates for the derivatives of the mean curvature follow from the estimates for the
derivatives of Γ± and the fact that (u,∇u,∇2u) 7→ Q±(u) is a smooth function.

Finally, we find that the mean curvature of Aε in the “gluing regions” is bounded in L∞

norm. However, we distinguish two types of terms: terms bounded independently of ε, o, v, η, a
and terms for which the estimates depend on the constant C∗ appearing in the assumption
3.4.1. We have the following result:

Proposition 3.5.3. For all ε ∈ (0, ε∗) and all o, v, η, a satisfying the assumptions 3.4.1, the
mean curvature of Aε(ε, o, v, η, a) in Ω±glu can be written in the form

Hgε(Aε) = H0 +H1,

where supp(H1) ⊂ Ω+
glu ∪ Ω−glu and

|∇kH0| ≤ Ck r−kη , |∇kH1| ≤ Ck C∗ r−kη ,

for a constant Ck > 0 independent of ε, o, v, η, a.

Proof. In the gluing regions, the surface Aε is parametrized as normal graphs over the geodesic
disc Λ of the functions G±, defined in (3.34).

Let us denote by HΛ(u) the mean curvature of the normal graph over Λ of the function u,
calculated with respect to the metric gε. On the other hand, we denote by H±(v) the mean
curvature of the transverse graphs over Σ±ε of the function v, when the surfaces are perturbed
in the direction of the vector fields Ñ±. By Corollary 3.3.1,

HΛ(G±) = H(Λ) + JΛ G± +QΛ(G±),

where JΛ is the Jacobi operator about Λ, which by Corollary 3.3.1 satisfies

JΛ = ∆Λ + VΛ,

where ∆Λ is the Laplace-Beltrami operator on Λ, calculated with respect to the metric induced
from gε, VΛ is a potential bounded by a constant times ε2, and QΛ is a smooth nonlinear
quadratically vanishing function. On the other hand, by results of the subsection 3.4.6,

HΛ

(
u± − η Γ±Λ

)
= H±

(
η Γ±

)
,
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thus, we can write

H(Aε) = χ±H±
(
η Γ±

)
+ (1− χ±)HΛ(G±η )

+ 2 (∇Λχ) ∇Λ

(
u± − η ΓΛ −G±η

)
+ (∆Λχ)

(
u± − η Γ±Λ −G

±
η

)
+QΛ(G±)− χQΛ(u± − η Γ±Λ)− (1− χ)QΛ(G±η ),

where ∇Λ is the gradient associated to the metric gε. By Lemma 3.4.4, in Ω±glu, we can have:

u± − η Γ±Λ −G
±
η = ∇u± · y + v±, where |∇kv±| ≤ Ck |y|2−k,

for a constant Ck > 0 independent of ε, o, v, η, a. This yields the desired expression for the
mean curvature in Ω±glu, where we put

H1 := ∆eucl

(
χ∇

(
u+ − u−

)
· y
)
, (3.40)

and combining all the other terms in H0 we verify that

|∇kH0| ≤ Ck r−kη , |∇kH1| ≤ Ck C∗ r−kη
for a constant Ck independent of ε, o, v, η, a for ε small enough.

Remark 3.5.2. By product of this proof is the presence of the term H1 (3.40) in the expression
of the mean curvature of the approximate solution Aε, which plays an important role in the
fixed point argument developed in the section 3.7.

Corollary 3.5.1. For all ε ∈ (0, ε∗) and all o, v, η, a satisfying the assumption 3.4.1, the mean
curvature of the approximate solution Aε can be written in the form

Hgε(Aε)− 2 = H+ χ+〈C+,Θ〉+ χ− 〈C−,Θ〉,

where
‖H‖C0,α

ν−2(Aε) ≤ C η
3/2−` ν

for constants C > 0 and ` ∈ N independent of ε, o, v, η, a.

3.5.4 Mean curvature of the perturbed surfaces

Let Aε(w) be the surface obtained as a perturbation of the approximate solution Aε for
w ∈ C2,α(Aε) as it is described in the beginning of the section. Recall that we can express the
mean curvature of Aε(w) in the form

Hgε (Aε(w)) = Hgε (Aε) + Lεw +Qε(w).

In this subsection we analyze the properties of the operators Lε and Qε in appropriate func-
tion spaces. We start by studying these properties in the “spherical” and “gluing” regions,
parametrized as transverse graphs over subdomains in the pseudo CMC spheres Σ±ε .
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Proposition 3.5.4. For all β ∈ (0, 1) and ε small enough, the linearized mean curvature
operator Lε restricted to Ω±sp ∪ Ω±glu can be expressed in the form

Lε = J̃± + η2−β ϑ−4 L̂±,

where J̃± are the linearized mean curvature operators about Σ±ε defined in (3.4.5), are L̂± are
linear partial differential operators that satisfy (with the notations 3.4.4):

‖L̂±w‖C0,α
(
(Σ±ε (1/2))

c
, g±
) ≤ C ‖w‖

C2,α
(
(Σ±ε (1/2),)

c
, g±
)

‖L̂±w‖C0,α
(

Σ±ε (ρ, 2ρ), ϑ−2 g±
) ≤ C ‖w‖

C2,α
(

Σ±ε (ρ, 2ρ), ϑ−2 g±
), ∀ρ ∈ (rη, 1/4)

for a constant C > 0 independent of ε, o, v, η, a and ρ. If in addition ‖ϑ−1w‖C1,α
ν (Aε) < 1, then

the nonlinear function Qε(w) for all β ∈ (0, 1) can be expressed in the form

Qε(w) =
η1−β

ϑ4
Q2
±(w) +

η−β

ϑ4
Q3
±(w),

where ∥∥∥Qk±(w1)−Qk±(w2)
∥∥∥
C0,α
(
(Σ±ε (1/2))

c
, g±
) ≤ C max

i=1,2

{
‖wi‖k−1

C2,α
(
(Σ±ε (1/2))

c
, g±
)}

× ‖w1 − w2‖C2,α
(
(Σ±ε (1/2))

c
, g±
)

∥∥∥Qk±(w1)−Qk±(w2)
∥∥∥
C0,α(Σ±ε (ρ, 2ρ), ϑ−2g±)

≤ C max
i=1,2

{
‖wi‖k−1

C2,α(Σ±ε (ρ, 2ρ), ϑ−2g±)

}
× ‖w1 − w2‖C2,α(Σ±ε (ρ, 2ρ), ϑ−2g±),

for a constant C > 0 independent of ε, o, v, η, a and ρ.

Proof. Again, for simplicity we will omit the index gε. First, consider the regions of An(w)
parametrized as transverse graphs over Σ±ε of the functions Γ± + w. By Proposition 3.3.2,

H(Aε(w)) = H(Σ±ε ) + J̃±
(
η Γ± + w

)
+Q±

(
η Γ± + w

)
.

Then the properties of Lε and Qε in this region follow from the properties of the nonlinear
function Q± described in Corollary 3.3.1.

Recall that in the “gluing regions”, the surface Aε(w) is parametrized by some subdomains
of the geodesic disc Λ. Let y1, y2 be normal geodesic coordinates in Λ centered at the point q.
By construction, we obtain Aε(w) by first taking normal graphs over Λ of the functions G±,
and then perturbing them in the direction of some vector fields Υ± which satisfy∣∣∣∇k gε(Υ±, NΛ)

∣∣∣ ≤ Ck η2 |y|−2−k
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for a constant Ck independent of ε, o, v, η, a. We check that the corresponding linearized mean
curvature operator can be written in the form

∆R2 + η2 |y|−4 L̂.

Moreover, the same is true for the operators J̃± defined on Σ±ε , when we parametrize the
last surfaces as transverse graphs over Λ. This, together with the properties of the nonlinear
terms, yield the properties of Lε and Qε in Ω±glu.

In the next result, we show that the properties of the operators Lε andQε in the “catenoidal
region” can be deduced from the properties of the mean curvature of normal graphs about the
Euclidean catenoid.

Proposition 3.5.5. For ε small enough, the linearized mean curvature operator about Aε
restricted to the region Ωcat can be expressed in the form

Lε =
1

η2 cosh2 s

(
∂2
s + ∂2

φ +
2

cosh2 s

)
+

ε2

η cosh s
L̂catw,

where Jcat = 1
η2 cosh2 s

(
∂2
s + ∂2

φ + 2
cosh2 s

)
is the Jacobi operator about the Euclidean catenoid

scaled by the factor η and L̂cat is a linear partial differential operator such that

‖L̂catw‖C0,α([s,s+1]×S1) ≤ C ‖w‖C2,α([s,s+1]×S1),

for all s ∈ [−sη, sη − 1] and a constant C independent of ε, o, v, η, q and s. If in addition
‖ϑ−1w‖C1,α

ν (Aε) < 1, then the nonlinear function Qε(w) can be written in the form

Qε(w) =
1

η3 cosh4 s
Q2
cat(w) +

1

η4 cosh4 s
Q3
catw,

where ∥∥∥Qkcat(w1)−Qkcat(w2)
∥∥∥
C0,α([s,s+1]×S1)

≤ C max
i=1,2

{
‖wi‖k−1

C2,α([s,s+1]×S1)

}
(3.41)

× ‖w1 − w2‖C2,α([s,s+1]×S1)

for a constant C independent of ε, o, v, η, a and s.

Proof. The proof is based on the fact that by construction, the region Ωcat of the surface Aε(w)
can be seen as the image by the mapping F εΛ,q of the normal (with respect to the Euclidean
metric) graph:

Cη(w) : (s, φ) ∈ [−sη, sη]× S1 7→ Cη(s, φ) + wNcat(s, φ) ∈ R3

over the Euclidean catenoid Cη. The computation of the mean curvature of Cη(w) with respect
to geucl is classic and we postpone it to appendix. On the other hand, we use the fact that

the pull-back metric
(
F εΛ,q

)∗
geucl can be seen as a perturbation of the euclidean metric:(

F εΛ,q
)∗
geucl(y, z) = geucl +O

(
ε2
(
|y|2 + |z|

))
.
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To calculate the mean curvature of Cη(w) with respect to
(
F εΛ,q

)∗
geucl amounts to add an

initial mean curvature term which is equal to Hgε(Aε) and some smaller linear and nonlinear
terms. Since the nonlinear terms have the same properties as the ones that appear from the
computations in the Euclidean space, we only need to understand how changes the linearized
mean curvature operator. This is a straight forward computation which can be also found in
the Appendix.

3.6 Linear analysis

Ideally, our goal is to solve the equation

Hgε (Aε(w)) = 2,

for some w ∈ C2,α
ν (Aε), or equivalently

− Lεw = Hgε(Aε)− 2 +Qε(w). (3.42)

We hope to find a solution using a fixed point argument and to this end we would like to
find a right inverse of the linear operator Lε and study its properties when ε tends to 0.
Unfortunately, it turns out that we do not get estimates uniformly bounded in ε, namely
because of the presence of small eigenvalues of Lε (eigenvalues that tend to 0 as fast as ε tends
to 0), which can be identified knowing the structure of this operator.

By Proposition 3.5.4 and the results of the section 3.4.2, in the “spherical regions” of Aε
parametrized by a region of the Euclidean unit 2-sphere, Lε is close to the operator ∆S2 + 2,
which has a 3-dimensional kernel that consists of the coordinate functions Θi, i = 1, 2, 3.

On the other hand, by Proposition 3.5.5, in the “catenoidal region” of Aε the operator Lε
is close to the Jacobi operator about the Euclidean catenoid. Recall that due to the isometries
in the Euclidean space and the dilation, the catenoid is degenerate. In particular, its Jacobi
fields corresponding to horizontal translations are given by the functions

ξ1 =
cosφ

cosh s
and

sinφ

cosh s

which decay very fast at infinity, and hence generate small eigenvalues of Lε.

The idea is instead of solving
Lεw = f,

to solve the problem
Lεw − f ∈ Kε, (3.43)

where Kε is a finite (actually 8) dimensional space, which we will define in the subsection 3.6.3
and will refer to as approximate kernel. For ε small enough, we find a solution to (3.43) using
linear analysis about 2 noncompact domains, namely the punctured sphere Σ±ε \{p±q } and the
infinite catenoid.
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3.6.1 Linear analysis on a punctured CMC sphere

Let Σ be a pseudo CMC sphere in M . For p ∈ Σ, we use the notation Σ∗ := Σ \ {p}. In this
subsection, we analyze the properties of the Jacobi operator JΣ about Σ∗.

Definition 3.6.1. We adopt the notations 3.4.4, taking Σ instead of Σ±ε and p instead of p±q .
Then, let µsp ∈ C2,α(Σ) be a function such that µsp ≡ 0 in Σ(1/4) and µ ≡ 1 in (Σ(1/2))c.

We introduce the deficiency space

Dsp := span{1, µsp}.

We have the following result:

Proposition 3.6.1. Assume that ν ∈ (0, 1). Then there exists a constant C and for all
f ∈ C0,α

ν−2(Σ∗) there exist unique ψsp ∈ C2,α
ν (Σ∗), c

1
sp, c

2
sp ∈ R, and Bsp ∈ R3 such that

wsp = ψsp + c1
sp µsp + c2

sp

satisfies
JΣwsp = f − 〈Bsp,Θ〉. (3.44)

Moreover,

‖wsp‖C2,α
ν (Σ∗)⊕Dsp ≤ C ‖f‖C0,α

ν−2(Σ∗)
, (3.45)

|Bsp| ≤ C ‖f‖C0,α
ν−2(Σ∗)

. (3.46)

Before we proceed to the proof of Proposition 3.6.1, let us recall the proof of the following
classical result [72]:

Lemma 3.6.1. Assume that ν ∈ (0, 1). Then there exists a constant C > 0 and for all
f ∈ C0,α

ν−2(D2
∗) there exist unique ψ ∈ C2,α

ν (D2
∗) and c∗ ∈ R such that w := c∗ + ψ satisfies{

∆w = f in D2
∗,

w = 0 in S1.
(3.47)

and
‖ψ‖C2,α

ν (D2
∗)

+ |c∗| ≤ C ‖f‖C0,α
ν−2(D2

∗)
.

Proof of Lemma 3.6.1. We construct the solution as a limit of the solutions wρ to the Poisson’s
equation with homogeneous Dirichlet boundary data in Aρ := {y ∈ R2 : ρ < |y| < 1}.

Let (r, φ) be polar coordinates in D2
∗. We decompose the functions wρ and f in Fourier

series in the angular variable φ:

wρ =
∑
j∈Z

wj,ρ(r) e
iφj and f =

∑
j∈Z

fj(r) e
iφj .
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By linearity, we may assume that |f | ≤ rν−2 and therefore |fj(r)| ≤ rν−2. The function wj,ρ
then satisfies (

∂2
r +

1

r
∂r −

j2

r2

)
wj,ρ = fj in (ρ, 1), wj,ρ(1) = wj,ρ(ρ) = 0.

Notice that for |j| ≥ 1 the function rν

j2−ν2 is a supersolution to our problem and hence

|wj,ρ(r)| ≤
rν

j2 − ν2
.

We put wρ =
∑
|j|≥1wj,ρ, and obtain

‖r−ν wρ‖L∞(Aρ) ≤ C ‖r2−ν f‖L∞(Aρ),

for a constant C independent of ρ. By the Schauder’s estimates, this yields a uniform bound
on the gradient of wρ and hence, by the Arzelà-Ascoli theorem, wρ converges uniformly on
compact sets to a solution of (3.47). Moreover, we have

‖w‖C2,α
ν (D2

∗)
≤ C ‖f‖C0,α

ν−2(D2
∗)
,

which follows from the Schauder’s estimates in weighted Hölder spaces obtained from the
standard Schauder’s estimates [39] on concentric annuli of inner radius R and outer radius 2R
applied to w(R ·).

For j = 0 we find the solution explicitly:

w0 =

∫ r

0

1

z

∫ z

0
t f0(t) dt dz + c∗, c∗ =

∫ 1

0

1

z

∫ z

0
t f0(t) dt dz.

Proof of Proposition 3.6.1. In geodesic normal coordinates in Σ centered at p, we have

JΣ = ∆ + L̂Σ,

where

L̂Σ = O(|x|2)

3∑
i,j=1

∂xi∂xj +O(|x|)∂xi +O(1),

and ∆ is the flat Laplacian in R2. First, let w1 be the solution of the problem{
∆w1 = (1− µsp) f in D2

∗
(

1
2

)
,

w1 = 0 on S1
(

1
2

)
,

given by Lemma (3.6.1). Then we can write w1 = c1
sp + ψ1, where

‖ψ1‖C2,α
ν (D2

∗)
+ |c1

sp| ≤ C ‖f‖C0,α
ν−2(D2

∗)
.
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Consider the function

f̃ := µsp f + 2∇µsp∇w1 + ∆µspw1 − L̂Σ ((1− µsp)w1) ∈ C0,α(Σ),

which has compact support in Σ and satisfies

‖f̃‖C0,α(Σ) ≤ C ‖f‖C0,α
ν−2(Σ∗)

.

According to Proposition 3.4.1, there exist a function w2 ∈ C2,α(Σ) and a vector Bsp ∈ R3

such that
JΣw2 = f̃ − 〈Bsp,Θ〉,

where

‖w2‖C2,α(Σ) ≤ C ‖f̃‖C0,α(Σ),∣∣∣∣Bsp − ∫
S2

f̃ Θ dvolS2

∣∣∣∣ ≤ C ε2 ‖f̃‖C0,α(Σ).

We can write w2 = ψ2 + c2
sp, where

‖ψ2‖C2,α
ν (Σ∗)

+ |c2
sp| ≤ C ‖f‖C0,α

ν−2(Σ∗)
.

Finally, the function wsp := (1− µsp)w1 + w2 satisfies the claim of the theorem.

Remark 3.6.1. In what follows we apply the result of Proposition 3.6.1 to the punctured
pseudo CMC spheres Σ±ε \ {p±q }, but instead of the Jacobi operator we will take the linearized

mean curvature operator J̃± that arises when the surfaces are perturbed in the direction of the
vector field Ñ± defined in 3.25, using that these two operators are conjugate.

3.6.2 Linear analysis on the Euclidean catenoid

Lemma 3.6.2. Assume that δ ∈ (−1, 0). The subspace of (cosh s)δC2,α
(
R× S1

)
which solves(

∂2
s + ∂2

φ +
2

cosh2 s

)
w = 0

is 2 dimensional and is spanned by the functions

ξ1 =
cosφ

cosh s
and ξ2 =

sinφ

cosh s
.

Proof. We decompose w in Fourier series

w(s, φ) =
∑
j∈Z

ωj(s)e
ijφ,
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then the functions wj are solutions of the ordinary equations(
∂2
s − j2 +

2

cosh2 s

)
wj = 0.

These solutions are asymptotic either to (cosh s)j or to (cosh s)−j . By hypothesis, the solution
is bounded by a constant times (cosh s)δ and |δ| < 1, so the solution has to be asymptotic to

(cosh s)−j , and then the solution is bounded. On the other hand, −j2 +
2

cosh2 s
≤ 0, so the

maximum principle assures that wj = 0, for all |j| ≥ 2.

By a direct computation we find that for |j| = 1 the space of solutions is spanned by
the functions 1

cosh s and sinh s + s
cosh s while the functions tanh s and 1 − s tanh s are two

independent solutions when j = 0. Among these four functions only the first one belongs to
(cosh s)δ C2,α(R× S1).

Definition 3.6.2. Let µcat ∈ C∞(R× S1) be a cut-off function which is identically equal to 0
in (−∞, 1)× S1 and to 1 in (2,+∞)× S1. We introduce the deficiency space

Dcat := span{µcat, s µcat}.

Proposition 3.6.2. Assume that δ ∈ (−1, 0). Then there exists a constant C such that for
all h ∈ (cosh s)δC0,α(R × S1) there exist unique function vcat ∈ (cosh s)δC2,α(R × S1) and
constants cicat, B

i
cat, i = 1, 2 such that

wcat = vcat + µcat
(
c1
cat + c2

cat s
)

satisfies (
∂2
s + ∂2

φ +
2

cosh2 s

)
wcat = h−B1

cat ξ1 −B2
cat ξ2.

Moreover, we have

Bi
cat =

∫
R×S1

h ξi ds dφ and

∫
R×S1

w ξi = 0, i = 1, 2, (3.48)

and
‖(cosh s)−δ vcat‖C2,α(R×S1) + |c2

cat|+ |c2
cat| ≤ C ‖(cosh s)−δh‖C0,α(R×S1). (3.49)

Proof. We borrow the techniques of the proof from [77] and [93], but for the sake of complete-
ness we give here the details. Decompose h in Fourier series in φ:

h(s, φ) =
∑
j∈Z

hj(s) e
iφj .

Then for every t ∈ R and |j| ≥ 2, let vtj be a solution of(
d2

ds2
− j2 +

2

cosh2 s

)
vtj = hj in |s| < t, vtj(±t) = 0,
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which can be obtained by the maximum principal and the method of sub- and supersolutions,

taking
1

j2 − 2− δ
(cosh s)δ as a barrier function. Taking a sum over |j| > 2 of vtj e

iφj , we

obtain a function vt which by Schauder’s elliptic theory, satisfies

‖(cosh s)−δvt‖C2,α((−t,t)×S1) ≤ C ‖(cosh s)−δh‖C0,α((−t,t)×S1), (3.50)

for a constant C independent of t. When t tends to infinity, by the Arzelà-Ascoli theorem the
sequence vt admits a subsequence that converges on compact sets to a function v such that(

∂2
s + ∂2

φ +
2

cosh2 s

)
v =

∑
|j|≥2

hj(r) e
iφj .

For j = 1 and j = 0 we construct the solutions explicitly. We use the notation

h̃±1 := h±1 −
2π

cosh s

∫
R

h±1(t)

cosh t
dt.

Then by the variation of the constant method we obtain

v±1 =
1

cosh s

∫ s

0

(
sinh t+

t

cosh t

)
h̃±1(t) dt−

(
sinh s+

s

cosh s

)∫ s

−∞

h̃±1(t)

cosh t
dt.

A simple verification, using

∫
R

h̃±1(t)

cosh t
dt = 0, gives

∥∥∥(cosh s)−δ v±1

∥∥∥
L∞(R×S1)

≤ c
∥∥∥(cosh s)−δ h

∥∥∥
L∞(R×S1)

.

Finally, we take

w0(s) = tanh s

∫ s

0
(1− t tanh t)h0(t) dt− (1− s tanh s)

∫ s

0
tanh t h0(t) dt

and notice that there exist constants c̃1, c̃2 and c1
cat and c2

cat such that

w0 + c̃1 (1− s tanh s) + c̃2 tanh s = v0 + µcat
(
c1
cat + c2

cats
)
,

where
‖(cosh s)−δ v0‖C2,α(R×S1) + |c1

cat|+ |c2
cat| ≤ ‖(cosh s)−δh‖C0,α(R×S1).

The estimates for derivatives of w0 are obtained by the Schauder’s theory. Finally, we put
vcat = v + v0 + v1 e

iφ + v−1 e
−iφ.
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3.6.3 Gluing the parametrices together

In this subsection we construct a right inverse of the operator Lε in some appropriate function
spaces.

Notation 3.6.1. Let us adopt the notations 3.4.4 and introduce a cut-off function χ0 ∈
C2,α(Aε) such that χ0 ≡ 0 in regions parametrized by (Σ±ε (1/2))

c
and χ0 ≡ 1 in the union of

Ωcat and the regions parametrized by Σε(rη/2, 1/4).

Let χ± be the cut-off functions defined in Notation 3.5.1.

Definition 3.6.3 (Approximate kernel). Let us introduce the functions

Φj := χ+ Θj , Φ3+j := χ−Θj , j = 1, 2, 3, Φ7 :=
χ0

η2 cosh2 s
ξ1, Φ8 :=

χ0

η2 cosh2 s
ξ2.

We define the space

Kε = span
{

Φj , j = 1, . . . 8
}

(3.51)

to be the approximate kernel of the operator Lε.

Proposition 3.6.3. Assume that ν ∈ (0, 1). Then for all ε ∈ (0, ε∗), all o, v, η, a satisfying
the assumptions 3.4.1 and for all f ∈ C0,α

ν−2(Aε) there exists a function w ∈ C2,α
ν (Aε) and a

vector A ∈ R8 such that

Lεw = f −
8∑
i=1

Ai Φi. (3.52)

Moreover, we have

‖w‖C2,α
ν (Aε) ≤ C η

−` ν ‖f‖C0,α
ν−2(Aε) and |A| ≤ C ‖f‖C0,α

ν−2(Aε)

for constants C > 0 and ` ∈ N independent of ε, o, v, η, a.

Proof. The proof consists of constructing an an approximate solution of (3.52) by gluing
together solutions of linear problems on the punctured CMC spheres Σ±ε \ {p±q } and the Eu-
clidean catenoid Cη obtained by Propositions 3.6.1 and 3.6.2, and then applying a perturbation
argument to find an exact solution. We do this in 5 steps.

In Step 1, we show that a function f ∈ C0,α
ν−2(Aε) can be decomposed as a sum f = f++f−,

where
f+ ≡ 0 in Ω−glu ∪ Ω−sp and f− ≡ 0 in Ω+

glu ∪ Ω+
sp.

Then we find diffeomorphisms Ψ± from some regions in Σ±ε \ {p±q } to a region in Aε, such

that the functions f̆± := f± ◦Ψ± can be extended up to the punctures in such a way that

f̆± ∈ C0,α
ν−2

(
Σ±ε \ {p±q }

)
.
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In Step 2, using the results of the subsection 3.6.1, we find solutions to the linear problems

J̃± w̆
±
sp = f̆± − 〈B±sp,Θ〉,

and show that the functions w̆±sp ◦ (Ψ±)
−1

provide an approximate solution to (3.52) in the

regions Ω±sp ∪ Ω±glu of Aε.

In Step 3, we explain that in the catenoidal region Ωcat the error is of special form and can
be corrected using the linear analysis on the Euclidean catenoid described in the subsection
3.6.2. Here again, we solve a linear problem in a noncompact domain, namely, in R× S1.

In Step 4, we combine the solutions obtained in Steps 2 and 3 to obtain an approximate
solution to (3.52) in Aε, truncating the terms that decay at infinity and gluing together the
deficiency terms.

Finally, in Step 5, we find an exact solution by applying a perturbation argument.

Step 1: Decomposition of the function f

We introduce the cut-off function X ∈ C∞(Aε) such that in the region Ωcat endowed with
cylindrical coordinates (s, φ) we have

X ≡ 0 for s < −1 and X ≡ 1 for s > 1

and extend X to the entire surface Aε by 0 and by 1. Then for f ∈ C0,α
ν−2(Aε), we can write

f = X f + (1− X) f = f+ + f−.

Next, we explain now the construction of Ψ±.

Notation 3.6.2. Let us use Notation 3.4.4 and also denote by A±c (ρ) the parts of Aε parametrized
by (Σ±ε (ρ))

c
and put

A0(ρ) := Aε \
(
A+
c (ρ) ∪ A−c (ρ)

)
.

Next, consider the mapping that provides cylindrical coordinates (s, φ) in A0(1
4) :

ζ0
cyl : (s, φ) ∈ [− ŝ, ŝ]× S1 7→ ζ0

cyl(s, φ) ∈ A0 (1/4) , η cosh ŝ = 1/4.

On the other hand, one can define cylindrical coordinates in Σ+
ε (1/4) via the mapping

ζ+
cyl : (s, φ) ∈ [−∞, ŝ]× S1 7→ F+

Λ

(η
2
es (cosφ, sinφ)

)
∈ Σ+ (1/4) .

In the same manner, one defines cylindrical coordinates in Σ−ε (1/4) via the mapping

ζ−cyl : (s, φ) ∈ [− ŝ,+∞]× S1 7→ F−Λ
(η

2
e−s (cosφ, sinφ)

)
.

Remark that the mappings

ζ0
cyl ◦

(
ζ±cyl

)−1
: Σ±ε

(
e−ŝ, 1/4

)
−→ A0 (1/4)
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locally provide the diffeomorphisms we are looking for.

On the other hand, by construction, the regions Ω±sp ∪ Ω±glu ⊂ Aε are parametrized as

transverse graphs over some regions in Σ±ε and we denote the corresponding mappings by

ζ±sp :
(
Σ±ε (1/2 rη)

)c −→ Ω±sp ∪ Ω±glu ⊂ Aε,

where rη describes the size of the gluing region (3.33).

By construction, in Σ±ε (1/2 rη, 1/4)

ζ0
cyl = ζ±sp ◦ F±Λ (η cosh s (cosφ, sinφ)) .

Thus, the mappings

Φ± :=
(
ζ±sp
)−1 ◦ ζ0

cyl ◦
(
ζ±cyl

)−1
: Σ±ε (1/2 rη, 1/4) −→ Σ±ε (1/2 rη, 1/4) ,

satisfy∣∣(Φ+ − Id
)

(s, φ)
∣∣ ≤ c η e−s for s ∈ (sη, ŝ),

∣∣(Φ− − Id
)

(s, φ)
∣∣ ≤ c η es for s ∈ (−ŝ,−sη),

where sη > 0 is defined by η cosh sη = 1
2 rη. With the help of some cut-off functions supported

in Σ±ε (1/5, 2/5) we glue Φ± with the identity, extending it to:

Φ̂± :
(
Σ±ε (1/2 rη)

)c −→ (
Σ±ε (1/2 rη)

)c
.

Finally, we define the mappings Ψ±ε :
(
Σ±(e−ŝ)

)
→ Aε \ A∓c (1

4) by

Ψ± =

 ζ0
cyl ◦

(
ζ±cyl

)
in Σ±ε

(
e−ŝ, 1/4

)
ζ±sp ◦ Φ̂± in (Σ±ε (1/4))

c

and verify that the functions f̆± := f± ◦ Ψ± can be extended by 0 to the entire punctured
CMC spheres Σ±ε \ {p±q } and satisfy f̆± ∈ C0,α

ν−2

(
Σ±ε \ {p±q }

)
.

Step 2 : Contribution of the linear analysis about the pseudo CMC spheres

Making use of Proposition 3.6.1 we find functions w̆±sp ∈ C
2,α
ν

(
Σ±ε \ {p±q }

)
⊕ Dsp and vectors

B±sp ∈ R3 which satisfy

J̃± w̆
±
sp = f̆± − 〈B±sp,Θ〉.

Moreover, w̆±sp can be decomposed as

w̆±sp = ψ̆±sp + c1,±
sp + c2,±

sp µ±sp, (3.53)

where

‖ψ̆±sp‖C2,α
ν (Σ±ε \{p±q }) + |c1,±

sp |+ |c2,±
sp | ≤ C ‖f‖C0,α

ν−2(Aε) and
∣∣B±sp∣∣ ≤ C ‖f‖C0,α

ν−2(Aε).
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Next, we show that in Ω±sp ∪ Ω±glu, the functions

w±sp := w̆±sp ◦
(
Ψ±
)−1

provide approximate solutions to (3.52). This follows from the fact that in these regions the
operator Lε is close to the linearized mean curvature operator J̃± about Σ±ε and the fact that
the mapping Φ± = (ζ±sp)

−1 ◦Ψ±, defined in Step 1, is close to identity.

Indeed, according to Propositions 3.5.4 and 3.5.5, there exists a constant C > 0, such that
for all u ∈ C2,α

ν (Aε), we have∣∣∣Lε u− J̃± u∣∣∣ ≤ C η2 ϑ−4 ‖u‖C2,α
ν (Aε).

Moreover, by the definition of the diffeomorphisms Ψ± and Φ±, in Ω±sp ∪ Ω±glu, we find∣∣∣J̃±w±sp − f + χ± 〈B±sp,Θ〉
∣∣∣ ≤ C ∣∣∣(J̃± ◦ Φ± − J̃±

) (
w±sp
)∣∣∣ ≤ C η2 ϑ−4 ‖f‖C0,α

ν−2(Aε).

This yields ∥∥Lεw±sp − f − χ± 〈B±sp,Θ〉∥∥C0,α
ν−2(Ω±sp∪Ω±glu)

≤ C η
1
2 ‖f‖C0,α

ν−2(Aε). (3.54)

Next, we remark that the functions ψ̆±sp ∈ C
2,α
ν

(
Σ±ε \ {p±q }

)
in the decomposition (3.53)

decay in the neighborhood of p±q as a power of the distance to p±q . For the moment, we leave
the deficiency terms aside and show that we can naturally extend

ψ±sp := ψ̆±sp ◦
(
Ψ±
)−1

to the entire surface Aε by truncating them in the “opposite” gluing region Ω∓glu with the help
of an appropriate cut-off function. More precisely, we introduce the function

ψsp :=
(
1− χ−

)
ψ+
sp + (1− χ)+ ψ−η ∈ C2,α

ν (Aε). (3.55)

Then the estimates∣∣∣∇k ψ±sp(s, φ)
∣∣∣ ≤ c ην (cosh s)−ν ‖f‖C0,α

ν−2(Aε) in Ω∓glu ∪ Ωcat,

together with the fact, that by Proposition 3.5.5 we have∣∣∣η2 cosh2 s
(
Lε − J̃±

)
u
∣∣∣ ≤ c (cosh s)−2 ‖u‖C2,α

ν (Aε) in Ωcat

yield ∣∣∣η2 cosh2 s
(
Lε ψsp − f − χ± 〈B±sp,Θ〉

)∣∣∣ ≤ c ην (cosh s)−ν ‖f‖C0,α
ν−2(Aε). (3.56)
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Step 3: Contribution of the linear analysis about the catenoid

Let the function χ0 ∈ C∞(Λ) be given as in Notation 3.6.1 and consider the function

h := χ0 η
2 cosh2

(
Lε ψsp − f − χ+ 〈B+

sp,Θ〉 − χ− 〈B−sp,Θ〉
)

which, by (3.56), satisfies

‖(cosh s)ν h‖C0,α(R×S1) ≤ C η
ν ‖f‖C0,α

ν−2(Aε).

By Proposition 3.6.2, (where we take δ = −ν), there exists a function

w̆cat ∈ (cosh s)−νC2,α ⊕Dcat

and constants B1
cat and B2

cat such that(
∂2
s + ∂2

φ +
2

cosh2 s

)
w̆cat = h−B1

cat ξ1 −B2
cat ξ2, and Bi

cat =

∫
R×S1

h ξi ds dφ.

Moreover, we have w̆cat = v̆cat + µcat
(
c1
cat + c2

cat s
)

and

‖(cosh s)ν v̆cat‖C2,α(R×S1) + |c1
cat|+ |c2

cat| ≤ C ην ‖f‖C0,α
ν−2(Aε),

∣∣Bi
cat

∣∣ ≤ C ην‖f‖C0,α
ν−2(Aε).

Once again, since v̆cat has exponential decay at ±∞, we can naturally extend it to the
entire surface Aε by truncating for s large enough with the help of some cut-off function. We
introduce:

vcat := χ0 v̆cat, (3.57)

where χ0 is defined as in Notation 3.6.1.

Step 4: Approximate solution to 3.52

Now we need to understand how to extend to Aε the deficiency terms c1,±
sp + c2,±

sp µ±sp coming
from the linear analysis about the punctured CMC spheres Σ±ε \ {p±q }, and the deficiency
terms µcat(c

1
cat + c2

cat s) coming from the linear analysis about the Euclidean catenoid.

Let Γ± be the Green’s functions associated to the operators J̃± with poles at p±q defined
in Lemma 3.4.3, and consider the functions

s 7→ 1− s tanh s and s 7→ tanh s

which are the Jacobi fields corresponding to dilation and vertical translation of the Euclidean
catenoid. We introduce the function

κ := χ+
(
c1,+
sp + c2,+

sp µ
+
sp + k+ Γ+

)
+ χ−

(
c1,−
sp + c2,−

sp µ−sp + k− Γ−
)

(3.58)

+ (1− χ+ − χ−)
(
µcat

(
c1
cat + c2

cat s
)

+ k0 (1− s tanh s) + k1 tanh s
)
,
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where k0, k1 and k± are constants which we would like to choose in such a way that κ is close
to c1,±

sp + c2,±
sp µ±sp + k± Γ± in Ω±glu. In this region we have

1− s tanh s = 1∓ s+O(η
1
2 ), tanh s = ±1 +O(η

1
2 ).

Moreover, with the change of coordinates η cosh s = |y|, we find

Γ±(s, φ) = − log
η

2
∓ s+ c±0 +O(η1/2).

Finally, we choose k0, k1 and k+ and k− to be the unique solution of the system{
k+ = −k0 + c2

cat, k0 + k1 + c1
cat = c1,+

sp + c2,+
sp + k+ log η

2 + k+ c
+
0 ;

k− = k0 k0 − k1 + c1
cat = c1,−

sp + c2,−
sp + k− log η

2 + k− c
−
0 ;

and since |cicat| and |ci,±sp | are bounded by ‖f‖C0,α
ν−2(Aε), we obtain

∥∥κ− (c1,±
sp + c2,±

sp µ±sp + k±Γ±Λ
)∥∥
C2,α
ν−2(Ω±glu)

≤ c η1/2 ‖f‖C0,α
ν−2(Aε).

Next, consider the function

wapp := ψsp + vcat + κ,

where ψsp and vcat are given by (3.55) and (3.57) and the vector Aapp ∈ R8 defined by

Ajapp = (B+
sp)

j , Aj+3
app = (B−sp)

j , j = 1, 2, 3, A7,8
app = B1,2

cat.

By results described in Step 2, Step 3 and Step 4, (wapp, Aapp) satisfies∥∥∥∥∥Lεwapp +
8∑
i=1

Aiapp Φi − f

∥∥∥∥∥
C0,α
ν−2(Aε)

≤ c ην/4 ‖f‖C0,α
ν−2(Aε), (3.59)

for a constant c independent of η. Moreover, there exist constants ` ∈ N and C > 0 indepen-
dent of η and ε, such that

‖wapp‖C2,α
ν
≤ C η−` ν‖f‖C0,α

ν−2(Aε) and |Aapp| ≤ C ‖f‖C0,α
ν−2(Aε).

Step 5: Exact solution

Consider the mappings

f ∈ C0,α
ν−2(Aε) 7→ (wapp(f), Aapp(f)) ∈ C2,α

ν (Aε)⊕ R8, and

R : C0,α
ν−2(Aε) 7→ C0,α

ν−2(Aε), R(f) := Lεwapp(f) +

8∑
i=1

Aiapp(f) Φi − Id(f).
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Then ‖R‖ ≤ c η
ν
4 , so Id + R is invertible for η small enough. Finally, we put

w(f) = wapp

(
(Id + R)−1 (f)

)
and Ai(f) = Aiapp

(
(Id + R)−1 (f)

)
, (3.60)

which yields

Lεw(f) +
8∑
i=1

Ai(f) Φi = f. (3.61)

Moreover,

‖w(f)‖C2,α
ν (Aε) ≤ C η

−` ν‖f‖C0,α
ν−2(Aε) and |A(f)| ≤ C ‖f‖C0,α

ν−2(Aε),

for C > 0 and l ∈ N independent of ε, o, v, η, a. This finishes the proof of Proposition 3.6.3.

3.7 Nonlinear argument

Using the notations introduced in the section 3.5, ideally our goal is to solve the equation

Lεw = 2−Hgε (Aε)−Qε(w).

If the linear operator Lε : C2,α
ν (Aε) → C0,α

ν−2(Aε) were invertible with inverse uniformly
bounded when ε tends to 0, we could use Banach fixed point theorem for contracting map-
pings in a ball of C2,α

ν (Aε), where the radius of the ball would be defined by a constant times
‖L−1

ε ‖ ‖Hgε(Aε)− 2‖C0,α
ν−2(Aε).

However, this is not the case and according to Proposition 3.6.3, for all f ∈ C0,α
ν−2(Aε), we

only can solve the problem
Lεw − f ∈ Kε,

where Kε = span {Φi, i = 1, . . . , 8} is an 8-dimensional space which we refer to as the ap-
proximate kernel of Lε. In the subsection 3.7.1 we explain the Lyapunov-Schmidt reduction
argument, which consists in applying Banach fixed point theorem in the space nearly orthogo-
nal to Kε. Then, we obtain a surface the mean curvature of which is constant up to a element
of the form

∑8
i=1A

i Φi. Finally, in the subsection 3.7.2, we show that we can choose the
parameters o, v, η, a in our construction in such a way that Ai = 0, i = 1, . . . , 8.

3.7.1 Lyapunov-Schmidt reduction argument

Our goal is to solve the problem

Hgε(Aε)− 2 + Lεw +Qε(w) ∈ Kε. (3.62)

As we have mentioned above, the radius of the ball in which we hope to carry out a fixed
point argument depends on the norm of the function H(Aε)− 2. By Corollary 3.5.1, we have

Hgε(Aε) = 2 +H+ χ+〈C+,Θ〉+ χ−〈C−,Θ〉
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where
χ± 〈C±,Θ〉 ∈ Kε, and ‖H‖C0,α

ν−2(Aε) ≤ C η
3
2
−` ν

for constants C > 0 and ` ∈ R independent of ε, o, v, η, a and C∗ appearing in the assumption
3.4.1. So, (3.62) can be reformulated as

H+ Lεw +Qε(w) ∈ Kε.

Proposition 3.7.1. For all ε ∈ (0, ε∗) and all o, v, η, a satisfying the assumptions 3.4.1, there
exists a function w∗ ∈ C2,α

ν (Aε) and a vector A∗ ∈ R8 such that the mean curvature of Aε(w∗)
is constant up to an element of the approximate kernel of the operator Lε. More precisely,

H(Aε(w∗)) = 2 +

8∑
i=1

Ai∗Φi, Φi ∈ Kε, i = 1, . . . , 8. (3.63)

Moreover,

‖w∗‖C2,α
ν (Aε) ≤ C η

3
2
−`ν

for C > 0 and ` ∈ N independent of ε, o, v, η, a.

Proof. Consider the mapping

G : C0,α
ν−2(Aε)→ C2,α

ν (Aε)

defined in (3.60), which to a function f ∈ C0,α
ν−2(Aε) associate the solution w(f) of the equation

Lεw(f) = f −
8∑
i=1

Ai(f) Φi, Φi ∈ Kε.

Next, consider the mapping

w ∈ C2,α
ν (Aε) 7→ G(−H−Qε(w)).

According to Corollary 3.5.1, there exist ` ∈ N and C > 0 independent of η, such that

‖G (H)‖C2,α
ν (Aε) ≤ C η

3
2
−` ν =: r∗.

On the other hand, by Propositions 3.5.4 and 3.5.5, with the assumptions 3.4.1, we obtain∥∥G(Qε(w)
)∥∥
i
≤ C η

1
2
−` ν ‖w‖C2,α

ν (A)
,

∥∥G (Qε(w1))−Gi (Qε(w2))
∥∥
i
≤ 1

2
‖w1 − w2‖C2,α

ν (Aε),

for ν and η small enough and ‖w‖C2,α
ν (Aε) ≤ r∗, ‖wi‖C2,α

ν (Aε) ≤ r∗. By Banach fixed point

theorem for contracting mappings, there exists a function w∗ and a vector A∗ ∈ R8 in the ball
of C2,α

ν (Aε)× R8 of radius 2 r∗, which satisfy

H(Aε(w∗))− 2−
8∑
i=1

Ai∗Φi = 0. (3.64)
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3.7.2 Choice of the parameters

We have now constructed a family Aε(w∗)(o, v, η, a) of surfaces in M whose mean curvature
is constant up to an element of an 8 dimensional space Kε. To summarize, these surfaces are
obtained as small perturbations of connected sums of two pseudo CMC spheres Σ±ε whose
“centers” are located symmetrically on the geodesic passing through the point o ∈ M with
velocity vector v ∈ ToM , ‖v‖g = 1 and a small neck parametrized by the “neck size” η and
the “location” a = (a1, a2) ∈ R2 of its axis in a 2-dimensional geodesic disk Λ.

Next, let ocr be a critical point of the scalar curvature functionR, λ 6= 0 a simple eigenvalue
of HessocrR, and vλ the corresponding unit eigenvector. According to the results of the section
3.4, we have two families of surfaces which satisfy (3.64), the first family embedded and
the second immersed with self intersections. In the following result we show that for all ε
small enough we can find a set of parameters (o, v, η, a) in a neighborhood of (ocr, vλ, 0, 0) for
which Aε(w∗)(o, v, η, a) has constant mean curvature and is embedded or immersed with self
intersections depending on the sign of λ.

Proposition 3.7.2. There exists ε∗ > 0 such that for all ε ∈ (0, ε∗) there exist oε ∈ M ,
vε ∈ ToM with ‖vε‖g = 1, ηε ∈ R+ and aε ∈ R2, such that

Hg
(
Aε(w∗)(oε, vε, ηε, aε)

)
=

2

ε

and

distg(oε, ocr) ≤ C∗ ε2, ∠(vε, vλ) ≤ C∗ ε,
∣∣∣∣ηε − sign(λ)

4πλ ε4

15

∣∣∣∣ ≤ C∗ ε5 and |aε| ≤ C∗ε3

for a constant C∗ independent of ε.

Proof. We would like to use the Schauder’s Fixed point Theorem in a ball of R8 to solve the
system of equations

Ai∗(o, v, η, a) = 0, i = 1, . . . , 8. (3.65)

To this end, we would like to show that the system (3.65) can be written in the form

(Id + F ) (·) = 0 (3.66)

where by F we denote any continuous function bounded uniformly in ε and o, v, η, a for ε
small enough.

Step 1

Let us consider the first 6 equations. By Corollary 3.5.1 and Proposition 3.7.1, the constants
Ai∗, i = 1, . . . , 6 are given by the components of the vectors C± ∈ R3 plus some terms bounded
by a constant times η3/2−` ν . Thus, the equations can be written in the form

− 2π ε3

15
∇gR(o±) +

1

2
ηΘ(p±q ) + ε5F (o, v, η, a) = 0 (3.67)
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where o± correspond to the “centers” of the pseudo CMC spheres Σ±ε and p±q to the poles of
the Green’s functions that we used in construction of the approximate solution.

Since ocr ∈ M is a critical point of the scalar curvature R, we have ∇gR(ocr) = 0. Take
an orthonormal (with respect to the metric g) basis E1, E2, E3 of TocrM , such that E1 = vλ
is the unit eigenvector associated to the eigenvalue λ. Let x1

0, x
2
0, x

3
0 be the coordinates of the

point o in corresponding geodesic normal coordinates centered at ocr.

By construction, the points o± lie on the geodesic passing through the point o ∈ M with
velocity vector v ∈ ToM , ‖v‖g = 1. By the assumption 3.4.1, the coordinates x± of o± satisfy

x± = x0 ± ε v +O(ε2).

We also have

Θ(p±q ) = ∓v +O(ε2) when Aε is embedded;

Θ(p±q ) = ±v +O(ε2) when Aε has self-intersections.

Assume first, that Aε is embedded. Putting expressions found above into (3.67) and projecting
the equations to the direction vλ, we obtain

(
− ε4π

15 λ− 1
2 η
)√

1− (v2)2 − (v3)2 − ε3π
15 λx1

0 + ε5 F1(x0, v, η, a) = 0,(
ε4π
15 λ+ 1

2 η
)√

1− (v2)2 − (v3)2 − ε3π
15 λx1

0 + ε5 F0(x0, v, η, a) = 0.

This can be written in the form{
− ε4π

15 λ− 1
2 η + ε5 F1(x0, v, η, a) = 0,

x1
0 + ε2 F2(x0, v, η, a) = 0,

and in particular, we see that since η > 0, a solution exists only when λ < 0. When λ > 0,
we need to take the immersed version of the approximate solution Aε.

On the other hand, projecting (3.67) on the subspace of R3 orthogonal to vλ, we obtain

ε3π
15 (Hessocr R− λ Id)

 0
x2

0 + ε v2

x3
0 + c ε v3

+ ε5 F3,4(x0, v, η, a) = 0

ε3π
15

(
Hess0̂R− λ Id

) 0
x2

0 − ε v2

x3
0 − c ε v3

+ ε5 F5,6(x0, v, η, a) = 0

We can rewrite this in the form
xi0 = ε2 Fi(x0, v, η, a), i = 1, 2, 3,

vj = ε F3+j(x0, v, η, a), j = 1, 2,

η = sign(λ)4π λε4

15 + ε5 F6(x0, v, η, a),

(3.68)

where Fj are continuous functions bounded by a constant independent of ε, o, v, η and a.
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Step 2

The last two equations can be obtained by taking the L2 orthogonal projection of

H (Aε(w∗))− 2 =

8∑
i=1

Ai∗Φi

to Φ7 and Φ8. To explain why these equation can be written in the form (3.66), we propose
to consider the following example. Taking the change of coordinates

y = η cosh s(cosφ, sinφ),

we find that away from s = 0, we have Φ6+i ≈ η yi

|y|2 , i = 1, 2. Let P0 be the horizontal plane in

R3 and Cη the catenoid scaled by the factor η with vertical axis centered at the origin. Recall,
that Cη can be written as a bi-graph over {y ∈ P0 : |y| > η} of the function

Gη(y) = log
2

η
+ η log |y|+O(η3 |y|−2).

On the other hand, let P± be two planes parametrized as graphs over P0 of the affine functions

u±(y) = ± log
2

η
+ c±1 y

1 + c±2 y
2.

Take ρ > 0 and let D2(ρ) be a unit disk in P0 of radius ρ centered at the origin. We denote
by χ a cut-of function which satisfies

χ ≡ 0 in D2(ρ/2) and χ ≡ 1 in P0 \D2(ρ).

Finally, we remark that the mean curvature of the surface parametrized by(
y, χ(y)u±(y)± (1− χ(y))Gη(y)

)
is equal to 0 everywhere but D2(ρ) \D2(ρ/2). On the other hand, for η small enough, in this

region the largest terms in the projection of the mean curvature to yi

|y|2 are given by∫
D2(ρ)\D2( ρ

2
)
∆
(
χ
(
u+ − u−

)) yi

|y|2
=

∫
∂D2(ρ)

∂r
(
χ
(
u+ − u−

))∣∣
r=2ρ

yi

|y|2
dφ (3.69)

∫
∂D2(ρ)

(
χ
(
u+ − u−

))
∂r

(
yi

|y|2

)∣∣∣∣
r=2ρ

dφ

=
4π

ρ

(
c+
i − c

−
i

)
.

In particular, we see that the largest terms in this projection are determined by the slopes of
the planes P±.
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Let us go back to our construction. The influence of the perturbation being negligible, the
“slopes” in our case will be determined by ∇u±(q), where u± are the function which appear
when we parametrize of the pseudo CMC spheres Σ±ε as normal graphs over Λ. More precisely,
we proceed as follows. The equation

H (Aε(w)) = 2 +
b∑
i=1

Ai∗Φi

can be written in the form

H+ Lεw∗ +Qε(w∗)−
6∑
i=1

Ai∗Φi = A7
∗

cosφ

η2 cosh3 s
+A8

∗
sinφ

η2 cosh3 s
.

We multiply this expression by η2 cosh2 sΦ7,8 and integrate in [−s∗, s∗] × S1 for s∗ large
enough. By Propositions 3.5.4 and 3.5.5, we have

η2 cosh2 sLε =

(
∂2
s + ∂2

φ +
2

cosh2 s

)
+ ε2 L̂1 +

1

cosh2 s
L̂2,

where L̂1 and L̂2 linear partial differential operators with coefficients bounded independently
of ε, o, v, η, a, with support in Ωcat and Aε \ Ωcat respectively. Integrating by parts and using
the estimates for w∗ and Qε(w∗) given in Proposition 3.7.1, we find∫

[−s∗,s∗]×S1

(
Lεw∗ +Qε(w∗)−

6∑
i=1

Ai∗Φi

)
cosφ

cosh s
η2 cosh2 s ds dφ ≤ C η2−` ν ,

for some C > 0 and ` ∈ N independent of the choice of ε, o, v, η, a. On the other hand, making
use of the results of Propositions 3.5.1 and 3.5.2 we obtain∣∣∣∣∣

∫
[−s∗,s∗]×S1

H0
cosφ

cosh s
η2 cosh2 s ds dφ

∣∣∣∣∣ ≤ C η,
for some C > 0 independent of ε, o, v, η, a. Finally, we find∫

[−s∗,s∗]×S1

H1
cosφ

cosh s
η2 cosh2 s ds dφ

=

∫
D2(rη)\D2(rη/2)

∆
(
χ
(
∇u+(q)−∇u−(q)

)i
yi
) ηyi
|y|2

dy1 dy2

=
4π η

rη

(
∇u+(q)−∇u−(q))

)
.

Thus, the system of equations A7,8 = 0 can be written in the form

∇(u+ − u−)(q) + η3/4 F7,8(x0, v, η, a) = 0. (3.70)
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Furthermore, (a1, a2) are the coordinates of the point q in the normal geodesic coordinates
(associated to the metric gε) centered at the point q0, where q0 is a local minimum of the
function u+ and a local maximum of u−. We can write (3.70) in the form

Hessq0
(
u+ − u−

)( a1

a2

)
+ η3/4 F7,8(x0, v, η, a) = 0, (3.71)

and since, by construction, Hessq0 (u+ − u−) is invertible, we find the equations(
a1

a2

)
+ ε3 F7,8(x0, v, η, a) = 0.

Step 3

By the Schauder’s Fixed Point Theorem for every ε small enough there exists a solution
oε ∈M , vε ∈ ToεM with ‖vε‖g = 1, ηε ∈ R+ and aε ∈ R2 of (3.65) in a ball of R8, such that

distg(oε, ocr) ≤ C∗ ε2, ∠(vε, vλ) ≤ C∗ ε, |aε| ≤ C∗ ε3,

∣∣∣∣ηε − sign(λ)
4πε4

15
λ

∣∣∣∣ ≤ C∗ ε5.

Put Sε = Aε(oε, vε, ηε, aε) and let S#(ε, ocr, vλ) be the union of two geodesic spheres of radius
ε, with their centeres located symmetrically from ocr on the geodesic passing through the point
ocr with velocity vector given by vλ. Then we have

Hg(Sε) =
2

ε
, distH(Sε,S#(ε, ocr, vλ)) ≤ c ε2,

where by distH we denote the Hausdorff distance. Finally, Sε is embedded when λ < 0 and
immersed when λ > 0.

3.8 Appendix 1

First, let us find the mean curvature of the unit Euclidean sphere S2 with respect to the metric

(gε)ij = δij +
ε2

3
(Rp)iljl x

k x` +
ε3

6
(Rp)ikjl,m x

k xl xm +Op(ε5).

Recall the standard fact that if Σ ⊂M is an oriented hypersurface with unit inward pointing
normal NΣ, and if Σz is the family of hypersurfaces defined by

Σ× R 3 (q, z) 7→ expq(zNΣ(q)) ∈ Σz

with induced metric gz, then

|HΣ| = −
d

dz
log
√

det gz

∣∣∣∣
z=0

.
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In our case, considering S2 with metric gε, let gεz be the induced metrics on the Euclidean
sphere of radius 1−z. Then if gsp denote the metric induced on S2 from the euclidean metric,
then it follows from (3.2) that

Hgε(S2) = Tr
(
g−1
sp ġz|z=0

)
= 2− ε2

3
Ricp(Θ,Θ)− ε3

4
∇ΘRicp(Θ,Θ) +Op(ε4)

Next, let us prove, that if Π is the L2-orthogonal projection to the space of the restrictions
to the unit sphere S2 ⊂ R3 of coordinate functions. Then

Π

(
1

4
∇ΘRicp(Θ,Θ)

)
=

2π

15
∇R(p).

Let x1, x2, x3 be geodesic normal coordinates centered at the point p ∈M . Then ∇∂xi∂xj |p =
0, so ∇∂xiRicp(∂xj , ∂xk) = ∇∂xi (Ricp(∂xj , ∂xk)). We use the notation Rij,k = ∇kRicij(0) and

let dσ be the volume element of S2. Then

Π (∇ΘRicp(Θ,Θ)) =

(
Rij,k

∫
S2

Θi Θj Θk Θ` dσ

)
Θl

On the other hand,(
Rij,k

∫
S2

Θi Θj Θk Θ` dσ

)
= R``,`

∫
S2

(Θ`)4dσ +
∑
j,k 6=`

R`j,k

∫
S2

(Θ`)2 Θj Θk dσ

+
∑
i,k 6=`

Ri`,k

∫
S2

(Θ`)2 Θi Θk dσ +
∑
i,j 6=`

Rij,`

∫
S2

(Θ`)2 Θi Θj dσ

= R``,`

∫
S2

(Θ1)4 dσ +
∑
i,j

(R`j,j +Ri`,i +Rii,`)

∫
S2

(Θ1)2 (Θ2)2 dσ

− 3R``,`

∫
S2

(Θ1)2 (Θ2)2 dσ =
2πVol(S2)

15
∇`R(0),

where we used
1

3

∫
S2

(Θ1)4 dσ =

∫
S2

(Θ1)2 (Θ2)2 dσ =
Vol(S2)

30
.

Finally, the second Bianchi identity

∇mRij`k +∇`Rijkm +∇kRijm` = 0

at the point p contracted twice with respect to the indexes m, j and i, ` yields

∇`R = 2
∑
j

Rjk,j .
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3.9 Appendix 2

Let Cη denote the Euclidean catenoid scaled by the factor η. Take w ∈ C2,α(R) × S1 with
‖ w

cosh s‖C1,α < 1. And consider the normal (with respect to the Euclidean metric) graph

Cη(w) : (s, φ) ∈ R× S1 7→ Cη(s, φ) + wNcat(s, φ).

Lemma 3.9.1. The mean curvature of Cη(w) with respect to the Euclidean metric satisfies

Hcat(w) =
1

η2 cosh2 s

(
∂2
s + ∂2

φ +
2

cosh2 s

)
w +

1

η3 cosh4 s
Q2
cat(w)

+
1

η4 cosh4 s
Q3
cat(w)

where Qkcat(w) are a non-linear functions of w ∇w and ∇2w, such that for all s ∈ [−sη, sη−1]

∥∥∥Qkcat(w1)−Qkcat(w2)
∥∥∥
C0,α
(

[s,s+1]×S1
) ≤ C max

i=1,2

{(
‖wi‖C2,α

(
[s,s+1]×S1

))k−1
}

(3.72)

× ‖w1 − w2‖C2,α
(

[s,s+1]×S1
)

for a constant C independent of s, η and ε and
∥∥ wi
ε cosh s

∥∥
C1,α(R×S1)

< 1.

Proof of Lemma 3.9.1. Let us denote by Qkcat(w) any non-linear function satisfying the prop-
erty (3.72). The tangent vectors to Cη(w) are given by

Ts(w) = Ts + ∂swN
cat + w ∂sN

cat, Tφ(w) = Tφ + ∂φwN
cat + w ∂φN

cat

where Ts =
(
η sinh s eiφ, η

)
, Tφ =

(
i η cosh s eiφ, 0

)
. Let

gcat = η2 cosh2 s(ds2 + dφ2), hcat = η(−ds2 + dφ2)

be the first and the second fundamental forms of the standard Euclidean catenoid scaled by a
factor η. The induced metric on Cη(w) can be written in the form

gcat(w) = gcat − w

2
hcat +Q2

cat(w).

We look for a normal vector field to Cη(w) in the form

N ](w) = N cat + as(w)Ts + aφ(w)Tφ.

Then the equations

geucl(N
](w), Ts(w)) = 0, g̃eucl(N

](w), Tφ(w)) = 0

yield

ak(w) = − ∂kw

2 η2 cosh2 s
+

1

η3 cosh4 s
Q2
cat(w).
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We find

N(w) := N ](w)/‖N ](w)‖geucl = N cat − ∂sw

2 η2 cosh2 s
Ts −

∂φw

2 η2 cosh2 s
Tφ

+
1

η2 cosh2 s
Q′′2(w)N cat +

1

η2 cosh3 s
Q2
cat(w)T,

where T is a unit tangent vector. Since

∂k∂`C̃η(w) = ∂k∂`Cη +
1

2

(
∂kw ∂`N

cat + ∂kw ∂`N
cat + ∂k∂`wN

cat + w ∂k∂`N
cat
)
,

we find that the second fundamental form satisfy

hcat(w) = hcat + Hess
w

2
− w

2 cosh2 s
Id +

1

2
tanh s

(
−∂sw ∂φw
∂φw ∂sw

)
+

1

η cosh2 s
Q2
cat(w).

Finally, the result of the lemma follows by taking trace with respect to the metric gcat(w).

Now, let us give more details on the proof of Proposition 3.5.5. We need to calculate the
mean curvature of Cη(w) with respect to the metric(

F εΛ,q
)∗
geucl(y

1, y2, z) = geucl +O
(
ε2
(
|y|2 + |z|

))
.

Let us denote by L̂ any bounded linear operator from C2,α(R× S1) in C0,α(R× S1).

The metric induced on Aε(w) can be written in the form

g(w) = gcat(w) +
(
g(0)− gcat

)
+ ε2 η2 cosh2 s L̂w + small nonlinear terms.

Again, we look for a normal vector field in Aε(w) written in the form

N](w) = N(w) + ãs(w)Ts(w) + ãφ(w)Tφ(w).

It follows from the equations(
F εΛ,q

)∗
geucl(N

](w), Ts(w)) = 0,
(
F εΛ,q

)∗
geucl(N

](w), Tφ(w)) = 0

that

N(w) := N](w)/‖N](w)‖(F εΛ,q)
∗
geucl

= N(w) + (N(0)−Ncat) + ε2 L̂ w + small non-linear terms.

Let ∇ε(w) be the Levi-Civita connection corresponding to the metric
(
F εΛ,q

)∗
geucl and taken

along A(w), then we have

∇ε∂k∂`(w) = ∂k∂`Cη(w) +
(
∇ε∂k∂`(0)− ∂k∂`Cη

)
+ ε η cosh2 s L̂w

+ small nonlinear terms.
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The second fundamental form hk`(w) =
(
F εΛ,q

)∗
geucl

(
∇ε∂k∂`(w),N(w)

)
satisfies

h(w) = hcat(w) +
(
h(0)− hcat

)
+ ε η cosh2 s L̂w + small non-linear terms.

and, finally, the result follows when we take the trace with respect to the metric
(
F εΛ,q

)∗
geucl.
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[23] C. Delaunay. Sur la surface de révolution, dont la courbure moyenne est constante.
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Analyse non linéaire, 26 no. 5 (2009), p. 1569-1584.

[113] C. Taubes. Self-dual connections on manifolds with indefinite intersection matrix. J.
Diff. Geom., 19, (1984), pp. 517-560.
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