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We must abandon the world view advocated by Einstein, sometimes referred to as

’local realism’. One might ask which of the ideas leading to the Bell inequalities should be

abandoned: locality or realism? For our part, it seems difficult to understand these two

notions as being independent. How could one conceive of independent physical realities

for two spatially separated systems but which were nevertheless able to remain in contact

via an instantaneous, superluminal interaction? It is our view that the nonlocality

of quantum mechanics, often presented as the conclusion to be drawn from

the violation of the Bell inequalities, represents a negation of the whole local

realist view of the world.

Grynberg, Aspect & Fabre 2010, p.432 [62]
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Physical Constants

Speed of light in vacuum c = 2.997 924 58 × 108 m s−1

Atomic mass constant mu = 1.660 539 040 × 10−27 kg

Boltzmann constant kB = 1.380 648 52 × 10−23 J K−1

Electric constant ε0 = 8.854 187 817... × 10−12 F m−1

Electron mass me = 9.109 383 56 × 10−31 kg

Elementary charge e = 1.602 176 6208 × 10−19 C

Magnetic constant µ0 = 12.566 370 614... × 10−7 N A−2

Planck constant h = 6.626 070 040 × 10−34 J s

Planck constant over 2π ~ = 1.054 571 800 × 10−34 J s

Bohr radius a0 = 0.529 177 210 67 × 10−10 m

Bohr magneton µB = 927.400 9994 × 10−26 J T−1

Fine-structure constant α = 7.297 352 5664 × 10−3

Proton mass mp = 1.672 621 898 × 10−27 kg

Nuclear magneton µN = 5.050 783 699 × 10−27 J T−1
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Introduction

In the quantum formalism, the strong correlations between independent measurements

on each particle of an entangled pair can be revealed despite the long separation between

them. Thus, it opposes the relativistic causality principle in which any communication

between particles can not propagate faster than the speed of the light. For this reason,

three physicists Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR), questioning

the completeness of the formalism of quantum mechanics in their famous paper [47] in

1935, proposed to introduce a reasonable, ”local realist”, description of the world in

which each particle carries together, locally, all the properties that produces the results

of any measurement. The collection of these properties make up the particle’s physical

reality. However, the developer of the ”Copenhagen interpretation” of the quantum

theory, Niels Bohr strongly opposed to the proposal putting forward that one can no

longer speak of the individual properties of each particle in an entangled state [16].

Most physicists paid little attention to the debate between Bohr and Einstein be-

lieving that it merely affects one’s interpretation of the quantum formalism and not the

ability of the quantum physics to correctly predict the results of the measurements. But

in 1964, John Stewart Bell, a theorist at CERN, changed the nature of the debate by

showing the controversial predictions of local realism against those of standard quantum

physics in measuring the correlations between particles of the entangled pair [10, 11].

He came up with the inequalities, now known as the Bell’s inequalities, which sets limits

on the predicted correlations for any local realist formalism while these limits are passed

under some measurement settings for quantum mechanics. Then, it suddenly became

possible to put an end to the debate by performing the correlation measurement.

In the following decades, experimentalists have realized many tests [23] reporting

the violation of the Bell’s inequalities and thus showing the completeness of the quan-

tum formalism. But these tests, having at least one ”loophole”, leaves always a room

for a local realist interpretation unless one makes a supplementary hypothesis [36]. The

loopholes can be categorized under two categories: the ”locality loophole” [7, 144] and

the ”detection loophole” [34, 52]. The first one is related to the fact that the measure-

ment on one particle might not be totally independent of the measurement of the other

1



Introduction 2

particle of the pair, a requirement to derive the Bell’s inequalities. The second one is re-

lated to the imperfect detection efficiencies which registers a fraction of the emitted pairs

which might not be a ”fair sample”, another requirement to test the Bell’s inequalities.

Freshly, three teams independently [53, 66, 131] have finalized decades of experimental

efforts by simultaneously closing two loopholes and confirming that we must definitely

renounce to local realism.

Besides testing quantum mechanics, the demonstrations of the quantum nonlocality

open new doors of applications on top of already existing ones in the field of quantum

information and quantum cryptography [1, 27, 39]. An example of such a new potential

door would be the Bell’s inequality test with momentum-correlated massive particles

which would allow to extend fundamental tests of quantum mechanics into domains of

gravitational fields through the direct coupling with particle mass [109]. The massive

particle experiments of the quantum nonlocality [66, 70, 83, 95, 123, 125, 135, 149],

performed so far, exploited internal degrees of freedom of particles but never external

degrees of freedom. Therefore we are motivated to demonstrate the quantum nonlocality

for a momentum-correlated atomic pair following closely the scheme [117] for photons.

The important ingredients of such scheme is the momentum-correlated pair, coherent

control of the pair, and the correlation measurements.

• The ability to create nonclassical sources is at the heart of the experimental ad-

vancements of quantum physics. The cold atoms community is in the develop-

ing stage of nonclassical pair creation and manipulation compared to the mature

quantum optics community. Nevertheless, several promising results were already

obtained in the atomic community concerning the creation of atomic pairs corre-

lated with internal degrees of freedom [19, 59, 91] as well as with external degrees

of freedom [25, 57, 79, 110, 119]. Such atomic sources can provide more degrees

of freedom (internal, external, bosonic and fermionic) and strong non-linearity for

quantum information in contrast to the optical sources. In our group, three meth-

ods of the atomic pair creation have been explored [18, 75, 110] by demonstrating

their nonclassical correlations [81]. Among three methods, the dynamical insta-

bility of Bose-Einstein condensate in a moving optical lattice [18] produces our

atomic pair entangled in momentum. This method offers a possibility to tune the

population and the momentum of particles in a pair.

• The coherent control of the atomic pair in the proposed scheme is realized through

the Bragg diffraction [94] of atoms from an optical periodic potential. By con-

trolling the duration of the optical standing wave one can obtain either an atomic

mirror (π−pulse) or an atomic beamsplitter (π/2−pulse). In addition, the selec-

tivity of the Bragg pulse in momenta can play a role of the filter, while the phase

of the standing wave can be used to imprint a phase on the atoms. The parameters
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of the Bragg pulse can be controlled to a very good degree and it is a vital element

in realizing atom interferometers [12]. We have demonstrated the two particle

interference effect [88] for our atomic pair with an atomic beamsplitter made of

the π/2−pulse. Obtaining non-classical interference effect with massive particles,

we were able to characterize and manipulate them coherently. It has opened an

opportunity for us to test the Bell’s inequality with massive particles correlated in

external degrees of freedom.

• Another important point is the ability to measure correlations of the particles.

The correlation studies, developed by Glauber [54], is at the heart in studying

quantum effects such as the bunching of bosonic particles (the Hanbury Brown

and Twiss effect [64]), the two-particle interference effect (the Hong-Ou-Mandel

effect [71]), and the non-locality of entanglement (the violation of Bell’s inequality

[8]). To carry out the correlation measurements, the detection at single atomic

level is desirable. Today, several single atom resolved imaging techniques exist

such as fluorescence imaging of trapped atoms in the lattice or in an array of

tweezers [9, 132, 145], or again fluorescence resonance imaging with light sheet

[26], or the single atom momentum resolved electronic detection of the metastable

helium atoms by the micro-channel plate (MCP) detector [127] which we employ

in our group.

Thus, we employ the necessary elements of the scheme for the Bell’s inequality test

with massive particles correlated in external degrees of freedom and we can hope to

perform the experiment.

Manuscript organisation

During my first year of thesis work, we performed the correlation measurement

on the collective emission, and I have participated actively on the analysis (in which

I have worked also during my internship before starting my PhD) as well as in the

realisation and acquiring practical skills on the experiment. During the second year

of thesis work, we performed the atomic Hong-Ou-Mandel experiment with my senior

experimental partner Raphael Lopes. I was actively involved in building the setup of

the Bragg beams and running the experiment. During my last year of thesis work

(∼ 8 months), with junior experimental partner Pierre Dussarrat, we have prepared

the scheme for the atomic Bell’s inequality test. At this stage, the important issues we

have tackled with was finding a suitable scheme which allows to control the phase of the

atomic interferometers (important for Bell’s inequality test) and preparing the Bragg

beams to satisfy the selectivity and the phase control.

This manuscript is organized as follows:
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Chapter 1. We will define the correlation function and discuss its meaning for the first

and second order correlations. We will present the collective radiation (the super-

radiance effect [43]) from the Bose-Einstein condensate [89] and its second order

coherence measurement. The superradiance can generate atom-field entanglement

[38] or atom-atom entanglement [24, 113, 114]. The latter one can be revealed

by the correlation measurement on the atoms and it is interesting topic for us to

investigate in the future.

Chapter 2. The theory of the Bell’s inequality will be discussed together with the

scheme to be adopted for the test of the quantum nonlocality with helium atoms.

The underlying theory of the pair production, the Bragg diffraction is visited. We

conclude by presenting the estimation of the quantum prediction for our potential

experiment.

Chapter 3. This chapter is entirely devoted to the experimental tests and preparations

for the Bell’s inequality test. The characterization of the condensate and the

characterization of the resulting pair from loading the condensate in the moving

lattice will be presented. The tests on the Bragg pulse, namely on its selectivity

and phase are found in this chapter.

Chapter 4. Finally, we present the HOM experiment (two-particle interference) per-

formed with the helium atoms and its result exceeding the classical threshold. The

theoretical description with estimations for dip and width of the HOM signal is

shown.



Chapter 1

Second-order coherence of

superradiance from Bose-Einstein

condensate

The milestone experiments such as the bunching of bosonic particles (the Hanbury Brown

and Twiss effect [64]), the two-particle interference effect (the Hong-Ou-Mandel effect

[71]), and the non-locality of entanglement (the violation of Bell’s inequality [8]) have

demonstrated fascinating features of quantum mechanics making it the successful the-

ory in accurately describing the microscopic world over the classical mechanics. More-

over, advancements in understanding these fundamental laws of nature revolutionized

technology creating new domains of applications in precision interferometry [112], quan-

tum information [21, 48] etc. The quantum optics community has been the frontier

in demonstrating the aforementioned experiments but with the realisation of the first

Bose-Einstein condensate in 1995 [2, 42], the atomic optics community is catching up

very rapidly and extending the validity of quantum theory for neutral atoms as well. In

our group, we are interested in such quantum experiments with matter waves and the

correlation studies, developed by Glauber [54], is the essential tool for us in studying

such quantum effects and its importance should be stressed. It was developed initially

in the framework of quantum optics but applies generally to any quantum field. In the

first section of this chapter, we will define the correlation functions which will appear all

over in this manuscript and discuss its importance in demonstrating quantum effects.

Next, in the second section, we will present the mechanism of collective radiation (the

superradiance effect [43]) from the Bose-Einstein condensate [89]. We measured the sec-

ond order correlation of this collective phenomenon during my first year of thesis work.

In addition to being an excellent example of the application of the correlation theory,

this experiment was the direct demonstration of a density fluctuation of radiation from

5
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an a priori complex process. In the last section, the measurement result of the second

order coherence of the superradiance from a coherent source will be presented.

1.1 Correlations and coherence

1.1.1 Definition of correlation function

Let Ψ̂(~r) =
∑

i φi(~r)âi be the quantum field operator where âi is an annihilation operator

of a particle with wave function φi(~r), ~r referring to a considered coordinate (depending

on the situation it may refer to a position, momentum or frequency) and where {φi(~r)}
is an orthonormal basis. The correlation function of Ψ̂(~r) of order n is defined as

G(n)(~r1, . . . , ~rn, ~rn+1, . . . , ~r2n) = 〈Ψ̂†(~r1) . . . Ψ̂†(~rn)Ψ̂(~rn+1) . . . Ψ̂(~r2n)〉 (1.1a)

= Tr
[
ρ̂Ψ̂†(~r1) . . . Ψ̂†(~rn)Ψ̂(~rn+1) . . . Ψ̂(~r2n)

]
. (1.1b)

If ∀i, ~rn+i = ~ri, the correlation function can be expressed in terms of number

operator, or equally an intensity of field N̂(~r) = |Ψ̂(~r)|2 as

G(n)(~r1, . . . , ~rn) = 〈: N̂(~r1) . . . N̂(~rn) :〉 (1.2)

where the notation 〈: . . . :〉 designates normal ordering, i.e. creation operators ordered

on the left of annihilation operators.

The normalised correlation function is obtained by normalising G(n) with the mean

intensity of field 〈N̂(~r)〉 which is nothing but the first order correlation function G(1)(~r, ~r)

at ~r:

g(n)(~r1, . . . , ~rn, ~rn+1, . . . , ~r2n) =
G(n)(~r1, . . . , ~rn, ~rn+1, . . . , ~r2n)√
G(1)(~r1, ~r1) . . . G(1)(~r2n, ~r2n)

. (1.3)

We are interested in the first (n = 1) and second (n = 2) order correlations which will

be discussed in detail in the following.

1.1.2 First order correlation function: phase coherence

The first order normalized correlation function is given by

g(1)(~r1, ~r2) =
〈Ψ̂†(~r1)Ψ̂(~r2)〉√
〈N̂(~r1)〉〈N̂(~r2)〉

(1.4)

and it quantifies the phase coherence of a field and its amplitude |g(1)| is equal to the

contrast of interference of fields at ~r1 and ~r2.

Coherent state. Consider a coherent state |α〉 which is an eigenstate of âi and

which is expressed as a function of the Fock state |p〉 where p is a number of particles
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in the mode φi. It is given by

|α〉 = e−
1
2
|α|2

∞∑
p=0

αp

p!
|p〉 (1.5)

and it describes an ideal monomode laser (i.e. with infinitely thin spectral width) of

intensity I = |α|2. In the framework of atom optics, the equivalent system is the Bose-

Einstein condensate (in the mean-field approximation where all atoms are assumed to

be in the same state) whose mean atom number is 〈N̂〉 = |α|2. For this state, we find

a maximal contrast, i.e. |g(1)(~r1, ~r2)| = 1, ∀~r1, ~r2 meaning that the field does not show

any phase fluctuation which is what we expect from an ideal laser.

Incoherent state. For an incoherent state of a field which shows phase fluctu-

ations we do not expect a flat contrast of an interference as a function of ~r1 and ~r2,

in fact it is a bell shaped function with a characteristic coherence length. To illustrate

this point, consider a thermal light which is described by a statistical mixture with the

density operator

ρ̂ =
∏
i

(1− exp{−~ωi/kBT})
∑
ni

exp{−n~ωi}|ni〉〈ni| (1.6)

where T is the temperature of source and ~ωi is the energy and ni is the number

of photons in the mode φi. If we assume that the distribution of ωi is given by the

Gaussian spectrum (e.g. spectrum of an emission from the Doppler broadened source)

for the thermal light,

F(ωi) =
1√

2π∆ω
e−(ωi−ω̄)2/2∆ω2

(1.7)

where ω̄ is the central frequency of the spectrum and ∆ω its standard deviation, then

one can show that [90]

g(1)(τ) =
Tr[ρ̂Ψ̂†(~t1)Ψ̂(~t2)]√

Tr[ρ̂Ψ̂†(~t1)Ψ̂(~t1)]Tr[ρ̂Ψ̂†(~t2)Ψ̂(~t2)]
= exp{−ıω̄τ − 1

2
(∆ω)2τ2} (1.8)

with τ = t1 − t2. Thus the contrast, |g(1)(τ)|, is not a flat function, in fact, it is a

Gaussian function of τ with the temporal coherence length τ0 = 1
∆ω , proportional to the

inverse of the spectrum width while for an ideal laser (∆ω → 0), the coherence length

is infinite with a contrast of 1 confirming the result stated before.

The interference experiments carried out with matter waves demonstrates nicely a

drop of contrast of fringes when the coherent source is replaced by the thermal source

due to the finite coherence length of thermal cloud [15]. This observation is shown in

the figure 1.1 where matter-wave beams, emitted from two spatially separated regions of

a trapped Bose gas, are made interfere. ( in (a) from coherent source, in (b) from source



Chapter 1. Second-order coherence of superradiance 8

just below the critical temperature Tc, in (c) from thermal cloud at the temperature

above Tc).

Figure 1.1: Interference of matter-wave beams from two spatially separated regions
of a trapped Bose gas at temperatures: (a) well below critical the temperature Tc, (b)

just below Tc, and (c) above Tc (figure extracted from [15])

In the following, the two coherence lengths, spatial and temporal, will be discussed

with classical fields in detail.

Temporal coherence length. Consider a complex electric field E(t) with fixed

polarization entering in one of the input arm of the Mach-Zehnder interferometer in a

perfect plane parallel form as it is shown in Figure 1.2. A Mach-Zehnder interferometer

Light source
       E(t)

BS

BS M

M Ed(t)

E
c
(t

)

z2

z1

Figure 1.2: Mach-Zehnder Interferometer

is made up of two lossless optical beamsplitters with transmission and reflection coef-

ficients given by ts and rs respectively. The fields after the first beamsplitter (tsE(t)
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”horizontally” and rsE(t) ”vertically” in the figure 1.2) travel different paths z1 and z2.

So the field at the output d at instant t is given by:

Ed(t) = rstsE(t− z1

c
) + tsrsE(t− z2

c
). (1.9)

which we will write

Ed(t, τ) = rstsE(t′) + tsrsE(t′ + τ) (1.10)

with t′ = t − z1
c and τ = z1−z2

c . We will consider the average intensity 〈Id(τ)〉 =

ε0c
1
tobs

∫
tobs

dt|Ed(t, τ)|2 over an observation time tobs which can be accessed directly in

an experiment. It is expressed in terms of the input field as

〈Id(τ)〉 = ε0c〈|Ed(t)|2〉 (1.11a)

= ε0c|rs|2|ts|2
(
〈|E(t′)|2〉+ 〈|E(t′ + τ)|2〉+ 2Re

[
〈E∗(t′)E(t′ + τ)〉

])
(1.11b)

= 2|rs|2|ts|2〈I〉
(

1 + Re
[〈E∗(t′)E(t′ + τ)〉
〈E∗(t′)E(t′)〉

])
(1.11c)

= 2|rs|2|ts|2〈I〉
(

1 + Re
[
g(1)(τ)

])
(1.11d)

with stationary input intensity 〈I〉 = ε0c〈|E(t′)2|〉 = ε0c〈|E(t′ + τ)2|〉. Thus the Mach-

Zehnder fringes are characterized by the real part of g(1)(τ) with |g(1)(τ)| contrast of

fringes. For example, taking the result in (1.8), we have

〈Id(τ)〉 = 2|rs|2|ts|2〈I〉
(

1 + e−
1
2

(∆ω)2τ2
cos(ω̄τ)

)
(1.12)

for which the contrast is higher for longer temporal coherence length τ0 = 1
∆ω or equiv-

alently spectrally finer distribution. In fact, the relation between these two is given by

the Wiener-Khintchine theorem [92]:

g(1)(τ) =
1√
2π

∫ ∞
−∞

dωF(ω)e−ıωτ . (1.13)

where F(ω) spectral distribution of an emission. Thus, we can see how the temporal

coherence length is related inversely with the spectral width. Conversely, we have

F(ω) =
1

2π

∫ ∞
−∞

dτg(1)(τ)eıωτ . (1.14)

The relation in (1.13) can be easily established for the case where the electric field

is modeled as a sum of contribution of an emission of N emitters of source with identical

polarization and with parallel propagation direction:

E(t) = E0

N∑
i=1

exp(−ıωit+ ıφi) (1.15)
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where E0 the amplitude, φi the phase and ωi the frequency of the electric field of ith

emitter. The g(1) is then equal to

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉 (1.16a)

=
E2

0

∑N
i,j=1〈exp{ıωit− ıφi − ıωj(t+ τ) + ıφj}〉

E2
0

∑N
i,j=1〈exp{ıωit− ıφi − ıωj(t) + ıφj}〉

(1.16b)

=

N∑
i=1

exp(−ıωiτ) (1.16c)

where to write the last line we used the fact that the terms i �= j average to zero

due to the random phase distribution of an emission of independent emitters. Then,

the last line can be written in a form (1.13) by converting the sum to the integral∑N
i → ∫∞

−∞ dωF(ω).

Spatial coherence length. Let us consider an incoherent, quasi-monochromatic

(centered at wavelength λ) extended source σ. The first order spatial correlation of the

O
r '

S( r ')

P1( r1)

P2( r2)

  r 1 s 1

  r2 s2

so
ur

ce
 

Figure 1.3: The fields at P1(�r1) and P2(�r2) emitted by an incoherent, quasi-
monochromatic, extended source.

fields at points P1(�r1) and P2(�r2), which are situated in the far-zone of the source as

shown in the figure 1.3, is given by [93]

g(1)(�r1 − �r2) = eık(r2−r1)
∫
σ I(�r

′)e−ık̄(�s2−�s1)·�r′ d2�r′∫
σ I(�r

′) d2�r′
(1.17)

where k = 2π
λ and I(�r′) the intensity across the source, and �s1,2 the unit vectors pointing

from the origin O taken in the source region σ to the field points P1,2, i.e. �r1 = r1�s1 and

�r2 = r2�s2. We see that the spatial first-order correlation is given in terms of the Fourier

transform of the intensity I(�r′) across the source and it is referred as the van Cittert-

Zernike theorem. As an example of the theorem, consider the circular source σ, of radius

a, centered at O and of uniform intensity I(�r′) =const. Also, we take r1 = r2 = r. Then

g(1) is reduced to the similar integral that appears in the theory of Fraunhofer diffraction
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at a circular aperture [93] and one finds that

g(1)(~r1 − ~r2) =
2J1(k ard12)

k ard12
(1.18)

where J1 is the Bessel function of the first kind and first order and d12 is the distance

between points P1(~r1) and P2(~r2). The spatial first-order correlation function decreases

from the value 1 for d12 = 0 to the value 0.88 for

d12 = 0.16λr/a (1.19)

defining the spatial coherence length for this particular case. In fact, by measuring this

coherence length one can obtain the angular radius r/a of the source.

1.1.3 Second order correlation function: intensity coherence

The second order normalized correlation function is defined generally as

g(2)(~r1, ~r2, ~r3, ~r4) =
〈Ψ̂†(~r1)Ψ̂†(~r2)Ψ̂(~r3)Ψ̂(~r4)〉√
〈N̂(~r1)〉〈N̂(~r2)〉〈N̂(~r3)〉〈N̂(~r4)〉

. (1.20)

For ~r1 = ~r3 and ~r2 = ~r4, it reduces to

g(2)(~r1, ~r2) =
〈: N̂(~r1)N̂(~r2) :〉
〈N̂(~r1)〉〈N̂(~r2)〉

(1.21)

which quantifies the intensity fluctuation of field or equivalently corresponds to the

joint probability of detecting a particle at ~r1 knowing that another one is at ~r2 if the

corpuscular aspect of a field is invoked.

Measuring coherence length from g(2). In case of incoherent ensemble, by

measuring g(2), one can access its coherence length (valid only for incoherent source).

To illustrate, considering an incoherent ensemble such as the one described by the density

operator in (1.6), one can establish the relation [90] between the first and second order

correlations:

g(2)(τ) = 1 + |g(1)(τ)|2 (1.22a)

= 1 + exp{−(∆ω)2τ2} (1.22b)

Thus the characteristic width of g(2)(τ) is that of g(1)(τ) divided by a factor 1√
2
. Looking

at the intensity correlation rather than the field correlation in determining coherence

length has a practical advantage of being more stable to external effects. It is for this

reason R. Hanbury Brown and R. Twiss looked at the intensity correlation to measure

the angular size of the Sirius star [65]. The phase correlation did not allow precise
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measurement of the angular size of the star due to the turbulence in the atmosphere

which introduces aberrations to the phase of the field by varying the refractive index of

air.

The bunching effect. An interesting point of the second order correlation is the

interpretation of its amplitude. From the equation (1.22b), we see that the amplitude

of the g(2)(τ) function is greater for smaller value of τ and it reaches its maximum value

for τ = 0. This behaviour represents the intensity fluctuation of the field and can be

understood easily with classical fields. An extended incoherent light source produces a

speckle pattern when it is seen on the screen as shown in the figure 1.4. Then, intensity

Figure 1.4: The speckle pattern produced by a spatially incoherent light source (figure
extracted from [127]).

correlation measurement is essentially a speckle measurement whose characteristic size

is of the order of the spatial coherence and whose characteristic time at which this

pattern evolves is of the order of the time coherence. For most sources, the evolution is

sufficiently quick compared to the detector integration time, that the speckle averages

to a homogeneously lighted screen. On the other hand, for the coherent state in (1.5),

one has

g(2)(~r1, ~r2) = 1. (1.23)

implying an absence of intensity fluctuation ∀~r1, ~r2. So far, we discussed the interpreta-

tion of the behaviour of g(2) amplitude with classical fields but the interpretation with

the corpuscular aspect of the quantum field is more surprising. We see an enhanced joint

probability of detection of photons from an incoherent source for the smaller spatial or

temporal intervals. Why these photons from independent sources show such bunching

effect? Consider a photon is detected at the detector D1 and another one is detected at

the detector D2. They are emitted from two independent points A and B of the source

shown in the figure 1.5. There are four processes that contribute to the detection of

two photons (see figure 1.5.a: either two photons arrive on the same detector (first two
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Figure 1.5: (a) Four processes contributing to the detection of two photons. Only last
two lead to the joint detection whose amplitudes interfere due to the indistinguishability
of these two processes. (b) When the distance ∆ between the detectors is large, the
phase difference between the two processes, which interfere, is large. (c) For smaller
distance, the two processes have similar phases and interfere constructively resulting in

the enhanced joint detection. (figure extracted from [124])

processes), or two photons arrive on the separate detectors (last two processes)). In this

case, it is impossible to distinguish the last two processes and they will interfere. The

quantum state on the detector can be written as

|ψ〉 =
1

2

(
eıφ1 |2D1, 0D2〉+ eıφ2 |0D1, 2D2〉+ (1 + eıΦ)|1D1, 1D2〉

)
. (1.24)

The phase difference Φ between two processes that interfere depends on the optical path

differences of two possibilities. Assuming that the distance L between the source and

the detectors is very large compared to the size of the source DS , the phase difference

between two processes for two point sources separated by D ≤ DS and for two detectors

separated by ∆ is

Φ ≈ 2πD∆

λL
(1.25)

where λ is the wavelength of two emitted photons. The joint probability of detecting a

photon at each detector is given by

P (∆) = 〈1, 1|N̂1N̂2|1, 1〉 (1.26a)

= PD1PD2(1 + cos(
2πD

λL
∆)) (1.26b)

where PD1 and PD2 are the probabilities of detection of D1 and D2. The second or-

der normalized correlation function is then obtained by normalizing this probability by
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PD1PD2:

g(2)(∆) = 1 + cos(
2πD

λL
∆). (1.27)

So we observe a modulation whose period depends on the angular separation of two

point sources D/L. To account for all set of possible points A and B, we need to

integrate over the source which averages to 1 for larger separations while for separation

between the detectors smaller than the spatial coherence length, ∆ < λL
DS

, it produces

the bell shaped function with maximum amplitude equal to 2. This demonstrates the

bunching effect of two photons but more generally of bosons. If we realize the same

experiment with fermions, we obtain the inverse effect due to the Pauli principle: while

we approach two detectors, g(2) will decrease. The measurements of the second order

correlation for fermionic particles and bosonic particles were carried out in our group

with the collaboration of the group of V. Wassen in Amsterdam [76, 128] some years

ago before I joined the group and as we can see from the result of the measurement (see

figure 1.6) the expected behaviour (bunching for bosons and antibunching for fermions)

was observed.

4He

3He

Figure 1.6: Second order correlation function measurement for two isotopes
of helium. Helium 4 is a boson and we observe an enhancement of the joint proba-
bility of detection for small separations while for Helium 3 being a fermion, we observe
decrease of the correlation function for the similar separations.(figure is extracted from

[76, 128])

Finally, by looking an intensity correlation function it is possible to reveal the

quantum effects deviating from the classical results which does not happen for the first-

order correlation function. Single photon anti-correlation is one of the example of the

quantum effects for which classical counterparts do not exist. We can measure the

second-order correlation function of a single photon with the setup shown in the figure
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1.7 where a photon is entering from the port 1 of a beamsplitter and the intensity

correlations are measured with the help of detectors at the output ports 3 and 4. So the

N1

Correlator

source

BS

N4

N3

Figure 1.7: An experimental setup to measure the intensity correlation of a single
photon source.

second order correlation at the output ports can be related to the input port 1:

g
(2)
3,4 =

〈: N̂3N̂4 :〉
〈N̂3〉〈N̂4〉

(1.28a)

=
〈N̂1(N̂1 − 1)〉
〈N̂1〉2

(1.28b)

from which it is clear that if a single photon is sent to the beamsplitter, the g
(2)
3,4 dimin-

ishes while for a classical field we expect non-null intensity at the outputs of the 50 : 50

beamsplitter for whatever small value of the input intensity. In the experiment [55],

this quantum effect was measured with the mentioned setup. The single-photon inputs

are obtained from the cascade emission in which two pair photons are emitted in two

different directions. One of them is directly detected and its signal is used to operate

an electronic gate that activates a measurement of the correlation function with the

other photon of the pair. However, ”parasite” photons may enter the apparatus during

the correlation measurement time. So, they measured the second-order correlation as

a function of average number of photons received by the gate detector which has the

same integration time with the ones at the output of the beamsplitter in 1.7. Their

experimental result is shown in the figure 1.8 where the second-order correlation func-

tion is plotted as a function of average number of photons at the gate detector which

is equivalent to number of photons at the input 1 of the beamsplitter in the figure 1.7.

When the integration time is decreased to ensure having a single photon at the input,
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the second-order correlation function indeed drops to zero as it is expected. Other ex-

Figure 1.8: The measured second order correlation between two outputs of the beam-
splitter as a function of mean input photon number sent to the one of the input of the

beamsplitter. (figure extracted from [55])

amples of quantum effects revealed through the intensity correlation are the subject of

the Chapter 2 and 4.

Next, we are going to discuss the superradiance process from the Bose-Einstein

condensate for which we have measured the second-order correlation.

1.2 Superradiance from the Bose-Einsten condensate

Dicke calculated the radiation rate of a spontaneous emission by a collection of two-level

atoms in his seminal paper [43] in 1954. He considered the entire sample of N atoms

as a single quantum system and he found that the atoms prepared in the excited state

can cooperatively decay into the ground state at a rate Γ ∝ NΓ0 much faster than

the independent atom emission rate Γ0. The emission intensity I = NΓ~ω0 with ω0

frequency of the emission, is thereby collectively enhanced by N2 with respect to the

emission intensity of independent emitters which is proportional to N .

The mechanism behind this collective spontaneous emission dubbed as ’superra-

diance’ depends on the size of the sample [43, 61, 108]. For atoms localized in a sub-

wavelength region |r| < λ0, the phase coherence between atomic dipoles builds up and

thus they emit in phase due to the indistinguishability of the dipoles in the spontaneous

emission process of an atomic system. On the other hand, for a spatially extended sample

|r| � λ0, the superradiant emission is associated with the classical constructive interfer-

ence of the radiation field produced by scattering sites in the phase matched direction

which is related to the sample geometry. Therefore, depending upon the relative spatial

phases of the atoms, the radiation into a particular mode could be enhanced (superra-

diance) or suppressed (subradiance) for a spatially extended sample. Superradiance has
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been observed in many systems; hot gases, cold gases, solids and even planetary and as-

trophysical environments [84]. Early experimental works [51, 60, 122, 136] were carried

out on atomic or molecular vapors. But more recently, renewed interest was sparked in

the subject using the Bose-Einsten condensate gas after the pioneering experiment [72].

In this section, I discuss briefly superradiance from a small sample |r| < λ0 (Dicke’s

formalism) to introduce the subject and then I will present a Raman superradiance from

the Bose-Einstein condensate [129, 148] which we observed also in our experiment.

1.2.1 Superradiance from a sub-wavelength sample

We consider an ensemble of N two-level atoms at positions ~ri with i = 1, . . . , N . The

excited state |e〉 is separated by an energy of ~ω0 from the ground state |g〉. We write

the atom-light Hamiltonian in the interaction picture for the stationary atoms (in the

electric dipole approximation) as

ĤDicke =

N∑
j

1

2
~ω0(|e〉j j〈e| − |g〉j j〈g|) +

∑
~k

~ω~kâ
†
~k
â~k

+
∑
~k

(
~g~kâ~k

N∑
j

eı(
~k·~rj−(ωk−ω0)t)|e〉j j〈g|+ h.c.

)
(1.29)

where |e〉j (|g〉j) is the jth atom in the state |e〉 (|g〉), â~k, â
†
~k

are the mode operators of

light for wave-vector ~k and ~g~k = ı

√
~ckd2

0
2ε0V ~εγ ·~εa is the single-atom single photon coupling

constant, εγ,a are the polarization vectors of the photon and the atomic dipole, and V
is the quantization volume.

There are two consequences of considering atoms in a small volume compared to

λ0: firstly the atomic states are symmetrized since the atoms are indistinguishable under

emission process and secondly the N radiators behave as a point-like dipole resulting

from the sum of the N individual dipoles.

Collective dipole operator. If we assume the sub-wavelength condition

eı
~k·~rj ' eı~k·~r0 (1.30)

we can define collective lowering and raising operators

D̂− =

N∑
i

eı
~k·~rj |g〉j j〈e| '

N∑
j

eı
~k·~r0 |g〉j j〈e| (1.31)

D̂+ =
N∑
j

eı
~k·~rj |e〉j j〈g| '

N∑
j

eı
~k·~r0 |e〉j j〈g| (1.32)
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and the collective diagonal operator

D̂z =
N∑
j

1

2
(|e〉j j〈e| − |g〉j j〈g|). (1.33)

These collective operators obey the commutation relations

[D̂+, D̂−] = 2D̂z (1.34a)

[D̂z, D̂
±] = ±D̂±. (1.34b)

In addition, we define the operator

D̂2 =
1

2
(D̂+D̂− + D̂−D̂+) + D̂z. (1.35)

These operators can be used to define the collective electric dipole operator

D =
N∑
j

Dj = (D̂+ + D̂−)~εγ · ~εa (1.36)

which is written as a sum of the jth atom dipole operator Dj = (|e〉j j〈g|+|g〉j j〈e|)~εγ ·~εa.
The fact that we can add up the individual dipole operators demonstrates the phase

coherence between the emitters.

Collective symmetric states. Since the coupling of the atoms to the radiation

field is symmetrical with respect to the exchange of any two atoms in the system, the

atomic system evolution must remain in the space invariant by all atomic permutations.

The elements of this space are given by the collective symmetric states |JM〉 which are

defined by [43]

|JM〉 =

√
(J +M)!

N !(J −M)!

(
D̂−
)(J−M)

|e, e, e . . . e〉 (1.37)

with −J ≤M ≤ J and J = N/2. The |JM〉 state represents the fully symmetrical state

in which J +M atoms are in the upper level |e〉 and J −M in the lower level |g〉. The

|JM〉 states are defined as the eigenstates of D̂z and D̂2:

D̂z|JM〉 = M |JM〉 (1.38)

D̂2|JM〉 = J(J + 1)|JM〉 (1.39)

and we have relations

D̂±|JM〉 =
√

(J ∓M)(J ±M + 1)|JM ± 1〉. (1.40)

System evolution. We assume that all atoms are prepared at time t = 0 in the
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upper level |Ψ(t = 0)〉 = |e . . . e〉. We suppose that all the atoms are motionless and

the subsequent evolution of the system is only due to the coupling of the atoms to the

radiation field (all other causes of evolution are neglected). Under these assumptions,

the atomic system evolution simply appears as a cascade emission down a ’ladder’ of

2J + 1 = N + 1 equidistant levels (see figure 1.9). As the atomic system cascades down,

Figure 1.9: The ’ladder’ of N+1 symmetrical states |JM〉; the atomic system starts at
time t = 0 from the |e, e, e . . . e〉 state and cascades down to the |g, g, g . . . g〉 state.(figure

extracted from [61])

the rate of a photon emission [63]

Γ = Γ0〈D̂+D̂−〉 = Γ0(J +M)(J −M + 1) (1.41)

changes depending on the value of M . For a fully excited state M = J we have Γ = NΓ0

and it increases to Γ = 1
2N(1

2N + 1)Γ0 when the system reaches the half-deexcited state

(M=0). As a result, we understand that the rate of photon emission strongly increases

when the system cascades down the ladder of |JM〉 states and it looses energy with a

maximum rate of emission proportional to N2 obtained for M = 0. Finally, when the

system ends up in the M = −J level, the rate of photon emission vanishes and the

emission terminates.

In order to calculate the intensity of the emission, we solve the equations of motion.

The Dicke Hamiltonian, which is given in terms of the collective operators by

ĤDicke = ~ω0D̂z +
∑
~k

~ω~kâ
†
~k
â~k +

∑
~k

(
~g~kâ~ke

−ı(ωk−ω0)tD̂+ + h.c.
)
, (1.42)

commutes with the operator D̂2, then 〈D̂2〉 is a constant of motion. On the other hand,

[D̂z, ĤDicke] 6= 0 involving the cascade emission. Using the commutation relations (1.34),

one can write the equation of motion for the operators D̂z and D̂−:

d

dt
〈D̂z〉 = −Γ0〈D̂+D̂−〉

d

dt
〈D̂−〉 = −Γ0〈D̂zD̂

+〉. (1.43)
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In the semi-classical approximation (i.e. taking operators as c−numbers), we find the

superradiant emission intensity [33]

I = −Γ0
d

dt
〈D̂z〉 =

N2Γ0

4
sech2

(NΓ0

2
(t− td)

)
(1.44)

with td the delay time resulting from calculation. In the figure 1.10, we compare the

intensity profile of the superradiant emission for three different values of the number of

radiators N = 5, 10, 15 and we see that as the number of radiators increase the emission

takes place in the shorter time showing the enhanced emission rate.

60

40
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0

 I 
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.u
.)
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 N=15

Figure 1.10: The intensity profile of the superradiant pulse for three different values
of number of radiators N . The enhanced emission rate as a function of N is evident.

1.2.2 Raman superradiance from the Bose-Einstein condensate

We are going to consider the collective spontaneous emission from a coherent atomic

source. There are three main differences compared to the classic example of Dicke

superradiance from sub-wavelength sample which we have presented in 1.2.1. They are:

1. the size of the sample is larger than the pump field r � λ,

2. the initial state of atoms is not the excited, they are excited by the optical pump

pulse

3. atoms are in motion getting recoiled or kicked whenever it emits or absorbs a

photon.

Nevertheless, as we are going to see we find the same gain of the superradiation process.

1.2.2.1 Experimental configuration

The shematics of experimental setup is illustrated in Fig. 1.11(a). First a BEC (see

3.2.1 for the BEC of the metastable helium atom) is illuminated by a near-resonant

laser pulse after which it emits in 4π direction, absorbing photons from an incident

pulse. The advantage of using a BEC is due to two reasons; firstly, it is a source free
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Figure 1.11: (a) Sketch of the experiment, (b) Atomic level scheme

from Doppler broadening and secondly, it provides optically dense medium which can

be controlled easily in the experiment by letting the BEC expand after releasing it from

the trap for a duration τ before applying the laser pulse. Initially the BEC is prepared

in the 23S1,m = 1 state confined in a crossed dipole trap with frequencies of 1300 Hz

in the x and y directions and 130 Hz in the (vertical) z direction. The dipole trap

wavelength is 1.5 µm. The atom number is approximately 50000, and the temperature

of the remaining cloud is 140 nK. A 9 − G magnetic field along the y axis defines a

quantization axis. By absorbing σ− photon from a laser pulse of 2.4 W/cm2 tuned 600

MHz to the red of the 23S1 → 23P0 transition at λ = 1083 nm with natural linewidth 1.6

MHz, pulse length 5 µs and linear polarization relative to z axis, atoms are excited to

23P0 state. The corresponding Rabi frequency of the coupling is 56 MHz. From there,

it can decay with equal branching ratios to three sublevels of the ground state as shown

in Fig. 1.11(b). During the pulse, less than 10% of the atoms are pumped into each of

these states. We detect (see Appendix D for the electronic detection of the metastable

helium) only atoms scattered to the magnetic field insensitive m = 0 state and the rest

is swept away by strong magnetic field gradient in the experiment. So, these atoms

are undergoing the Raman spontaneous emission meaning that the initial internal state

(m = 1) is not same as the final state (m = 0). The atoms which fall in the m = 0

sublevel after emitting a single photon, get recoiled and are distributed in momentum

on a sphere with radius of unit recoil momentum krec = 2π/λ because of momentum

conservation. For these atoms multiple scattering is not allowed in principle since they

are not coupled with incident light pulse because of polarization selection rules.

In what follows we are going to look at the theory by considering only atoms making

transition from m = 1 to m = 0 state, in the perturbative regime (no BEC depletion)
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by following closely [38, 100].

1.2.3 Theory of Raman superradiance

We start by writing the Hamiltonian of an atom-light system whose transition is shown

in the figure 1.12 where the classical pump field couples the macroscopically occupied

state |g〉 to the excited state |e〉. The atoms in the excited state then decay to the state

|c〉 by spontaneously emitting a photon at frequency ω�k
. Note that we consider here

a simplified picture by considering the spontaneous emission between |e〉 and |c〉 which
is different from the experimental configuration where atoms allowed to decay to three

substates m = 0, m = +1 and m = −1 competing with each other. In the perturbative

regime where the BEC is far from depletion, the competition between different substates

is not important and the simplified picture is assumed to describe well the process. So,

c
g

e

k  L

Figure 1.12: Atomic transition scheme for the atoms which are pumped by the co-
herent field with frequency ωL from the ground state |g〉 to the excited state |e〉. The
atoms in the excited state then spontaneosly decay into the state |c〉 by spontaneously

emitting a photon at frequency ω�k.

the total Hamiltonian in the interaction picture is

Ĥ =
∑

α=g,e,c

∫
d�r ψ̂†α(�r, t)

[
− �

2

2m
�2
]
ψ̂α(�r, t) +

∫
d�r �ωegψ̂

†
eψ̂g +

∫
d�k �ω�k

b̂†�k b̂�k

−
∫

d�r
�Ω

2Δ
�ψ+
e (�r, t)ψ̂g(�r, t)e

ı(�kL·�r−ωLt) + h.c.

− ı

∫
d�r

∫
d�k g�k b̂

†
�k
(t)ψ̂e(�r, t)ψ̂

†
c(�r, t)e

−ı(�k·�r−ω�k
t) + h.c. (1.45)

where
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• 1. line is the sum of the free atomic hamiltonian and the free radiation hamilto-

nian with ψ̂α(~r, t), b̂~k(t) boson annihilation operators satisfying standard bosonic

commutation relations.

• 2. line is the atom-light coupling between the states |e〉 and |g〉,

• 3. term is the atom-light coupling between the states |e〉 and |c〉 with coupling

constant g~k =
√

ω~k
2~ε0(2π)3 ε̂~k · ~de,g.

Experimentally, the pump laser is detuned far enough from the atomic resonance

∆ = ωeg−ωp = 600 MHz that the excited state population remains negligible, a condition

which requires ∆ � γeg = 1.6 MHz, where γeg is the natural width of the atomic

transition between the states |e〉 and |g〉. In this regime, we can formally eliminate the

excited state atomic field operator. From the Heisenberg equation for ψ̂e and dropping

the kinetic term, we have

ψ̂e(~r, t) ≈ −
~Ω

2∆
ψ̂g(~r, t)e

ı(~kL·~r−ωLt) +
ı

∆

∫
d~kg~k b̂~k(t)ψ̂c(~r, t)e

−ı(~k·~r−ω~kt).

By substituting the expression (1.46) into the equation (1.45) and neglecting the small

light shifts proportional to |Ω|2 and |g~k|2b̂
†
~k
b̂~k, we obtain the following effective Hamil-

tonian:

Ĥeff =
∑
α=g,c

∫
d~r ψ̂†α(~r, t)

[
− ~2

2m
52
]
ψ̂α(~r, t) +

∫
d~k ~ω~k b̂

†
~k
(t)b̂~k(t)

+ ı~
∫

d~r

∫
d~k

Ω

2∆
g~k b̂
†
~k
ψ̂†c(~r, t)ψ̂g(~r, t)e

ı((~kL−~k)·~r−(ωL−ω~k)t) (1.46)

Next, as the number of atoms N in the condensate is very large and it is far from getting

depleted, we neglect its density fluctuation and treat it as a c-number (see subsection

3.2.1.3):

ψ̂g(~r, t) ≈
√
Nϕ0(~r) (1.47)

with ϕ0 the condensate wave function. On the other hand, from momentum conservation

we know that the atoms which undergo spontaneous emission get recoiled by ~q = ~kL−~k.

This suggests us to expand the scattered atomic field operator in terms of momentum

states:

ψ̂c(~r, t) =

∫
d~q

√
Nϕ0(~r)eı(~q·~r−ω~qt)ĉ~q(t) (1.48)

where ω~q = |~q|2
2m . Then the effective Hamiltonian in (1.46) takes the form

Ĥeff =

∫
d~q ~ω~q ĉ†~q(t)ĉ~q(t) +

∫
d~k ~ω~k b̂

†
~k
(t)b̂~k(t)

+ ı~
∫

d~q

∫
d~k N

Ω

2∆
g~kρ0(~kL − ~k − ~q)e−ı(ωL−ω~k−ω~q)tb̂†~k(t)ĉ

†
~q(t) (1.49)
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where we neglected relatively small energy coming from the spatial inhomogeneity of

ϕ0(~r) and where

ρ0(~kL − ~k − ~q) =

∫
d~r |ϕ0|2eı(~kL−~k−~q)·~r (1.50)

is the Fourier transform of the ground state density distribution centered at ~k = ~kL− ~q.
We recognize that the Hamiltonian in the expression (1.49), is the one of the Optical

Parametric Amplifier (OPA) (see 2.2.3.3). In fact, one can look at the superradiance

from BEC as a Four Wave Mixing process (FWM), where a matter wave (BEC) and

a coherent wave (pump) is mixed producing scattered atoms with emitted field. When

the BEC and the pump is treated classically, the FWM becomes equivalent to the OPA

process. Thus, the resulting state is the entangled state between scattered atoms with

emitted field.

We can write the Heisenber equation for b̂~k → b̂~ke
−ωkt:

˙̂
b~k(t) = −ı~

∫
d~q N

Ω

2∆
g~kρ0(~kL − ~k − ~q)e−ı(ωL−ω~k−ω~q)tĉ†~q(t) (1.51)

In the perturbative approach (small number of scattered atom), we assume that b̂~k(t),

ĉ~q(t) and ρ0(~kL −~k− ~q) vary slowly compared to e−ı(ωL−ω~k−ω~q)t. Keeping this in mind,

the integration of (1.51) gives a solution:

b̂~k(t) = −ı~
∫

d~q N
Ω

2∆
g~kρ0(~kL − ~k − ~q)δt(ωL − ω~k − ω~q)ĉ

†
~q(t) (1.52)

where δt is a function converging to a delta function for t→∞. As we can see, the emit-

ted field amplitude is proportional to N and thus the intensity will be proportional to N2

characterizing superradiance behaviour. Here, the collective enhancement is manifested

not by the coherence of the emitting dipoles, but by the coherence between a BEC and

the scattered matter wave where the memory of previous scattering events, stored in the

matter-wave interference fringes, thus enhancing the rate of Raman scattering.

In the experiment we detect the scattered atoms and it can be shown that the rate

of the scattering process is given by [100]

d〈ĉ†~q ĉ~q〉(t)
dt

∝ N2

∫
d~k |g~k|

2|ρ0(~kL − ~k − ~q)|2δ(ωL − ω~k). (1.53)

As we see there is a contribution of dipole term |g~k|2 ∝ sin2 θ where θ is the angle

with respect to the dipole axis and the contribution |ρ0(~kL − ~k − ~q)|2 coming from the

condensate. This function determines the ”phase matching” condition of the superra-

diant emission. For the anisotropic condensate the rate is high along the long axis of

the condensate and the modes in this axis are privileged (so-called ’end-fire’ mode [72])

while for the isotropic case we do not have privileged direction. In anisotropic case, the
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matter wave is efficiently constructed along the highest optical density, thus scattering

is efficient in this direction. In the experiment by expanding the condensate we change

its anisotropy and the density leading to the modification of the gain of the superradiant

process.

1.2.4 Experimental observation of superradiance

In the experiment, atoms fall on the detector after a long time of flight, and we essentially

detect the momentum of the atoms. Two dimensional cuts in yz-plane of such momen-

tum sphere distribution is illustratred in Fig. 1.13 for two values of duration: τ = 500µs

(left panel) and τ ≈ 0µs (right panel). τ is an expansion time of the BEC after release

from dipole trap, it is an experimental button to control density and anisotropy of the

BEC (see section 3.2.1.3). Every point here represents a single atom. In left panel, the

BEC’s density is low enough that we see only ordinary Raman scattering which is a well

known spontaneous emission process. On the other hand, for an optically dense BEC

in the right panel, the emission rate is enhanced resulting in a high gain of emission

compared to ordinary Raman scattering. Total number of atoms in the right panel is

increased by a factor ∼ 5 compared to the left panel although the only difference be-

tween them is the density of the BEC. This is a clear signature of the superradiance

process. Furthermore, we see a strong signal on top and bottom poles of yz cut of the

momentum sphere in right panel corresponding to the end-fire modes. To compare, we

Figure 1.13: Average 2D momentum distribution of scattered atoms in yz plane: left
panel τ = 500µs, right panel τ = 0µs

plot the polar distribution of the yz plane of the right panel in Fig. 1.14. Three plots

are shown, corresponding to three different values of τ . For τ = 500µs where the optical

density is quite low, we see a characteristic sin2(θ) dipole emission pattern with θ = 0, π

corresponding to the orientation of the dipole along y axis. By increasing the density,

we can see clearly how superradiance peaks rise indicating the high gain of the superra-

diant emission. To estimate theoretically the amount of the scattered atoms we need to
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study the decoherence effects due to the Doppler and mean field broadenings [72] which

reduces total number of the scattered atoms. Since our aim was to measure the second

order correlation, we have not look at the decoherence effects and we moved directly to

the second-order correlation measurements.

Figure 1.14: Angular distribution of scattered atoms in the yz plane for different
values of delay τ before the excitation pulse

1.3 Measurement of the second order correlation of super-

radiant peaks

The second-order correlation function is done by counting atoms as a function of their

momentum in three dimension. By measuring the g(2) function, not only we get infor-

mation on the source but also on the emission as long as every single photon emission

corresponds to a recoiled atom. Hence, we are also measuring indirectly the second-order

correlation function of the scattered light resolved in transverse and longitudinal mo-

mentum as well as in polarization. So, why we would like to measure g(2) function. Well,

first of all, to our knowledge nobody has measured directly the second-order correlation

function of a superradiant emission in free space from the coherent source. Secondly, it

is not so obvious what will be the result of this function for such a complex process. The

theory we considered before is the simplified one since we did not give full account of the

process (refer to [61] for a ”complete” theory). On one hand, one can say that it is just

an ordinary spontaneous emission since the process is initiated by vacuum and there-

fore the statistics is thermal. On the other hand, the high gain of superradiance might

suggest a process similar to that of a laser where stimulated emission occurs and thus it

is a coherent source. Taking advantage of the capability of our experimental setup, we

have decided to measure the second order correlation function on superradiant atomic

source and see experimentally what is the true answer.
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The result of the measurement of the normalized second-order correlation function

for τ ≈ 0 of Fig. 1.13 is presented in Fig. 1.15 along z and y axes as a function

of momentum separation (see section 3.2.2 of Chapter 3 for experimental correlation

measurement). The atoms in the endfire modes are considered to be superradiant and

those away from the endfire modes are considered as spontaneously emitting atoms. The

Figure 1.15: Correlation functions along the (a) z and (b) y axis for τ ≈ 0: darker
(blue) circles - superradiant peaks (defined by |kz| > 0.95krec), lighter (orange) circles -
atoms from the scattering sphere away from the superradiant peaks (defined by |kz| <
0.92krec). Solid lines are Gaussian fits constrained to approach unity at large separation.
Filled gray circles correspond to a fraction of the initial condensate transferred to the
m = 0 state via a stimulated Raman transfer. The dashed gray line shows unity. Error

bars denote the 68% confidence interval

result shows that for both superradiant and spontaneously emitting atoms the correlation

function at zero separation produces a value close to 2. This signifies clearly that the

atoms undergoing a superradiant process have statistics comparable to that of a thermal

sample despite strong amplified emission in the endfire modes. This type of statistics

has been observed experimentally on Rydberg atoms coupled to a millimeter-wave cavity

[115] showing thermal mode occupation, also an experiment in a cold atomic vapor in

free space [56] observed a nonflat second-order correlation function. To exemplify the

difference between stimulated and superradiant emission, we have measured a correlation

function of a stimulated Raman scattering by applying the excitation beam together with

another beam polarized parallel to the magnetic field inducing a stimulated Raman

transition. The π-polarized beam is detuned by the Zeeman shift (25 MHz) with respect
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to the σ-polarized beam. The laser intensities were adjusted to transfer a similar number

of atoms to the m = 0 state as in the superradiance experiment. The normalized

correlation functions in this situation, shown in Fig. 1.15, are very nearly flat and equal

to unity as we expect for a BEC [68, 101, 128]. So it is in clear contrast with the

second-order correlation of superradiant atoms having a thermal statistics behaviour.

1.4 Conclusion

In concusion, we have discussed first-order and second-order coherence properties of

chaotic versus coherent sample. The superradiance emission from Bose-Einstein con-

densate and its measurement of second-order coherence is presented. We found that

superradiance, even in the presence of strong gain, shows a correlation function close

to that of a thermal state, just as for ordinary spontaneous emission. An interesting

extension of the techniques used here is to examine enough superradiant Rayleigh scat-

tering of a light pulse short enough and strong enough to populate oppositely directed

modes [130]. It has been predicted that the modes propagating in opposite directions

are entangled [24, 113, 114]. We should be able to reveal such entanglement with a

similar measurement technique in the future.
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We have measured the two-particle correlation function of atoms from a Bose-Einstein condensate participating
in a superradiance process, which directly reflects the second-order coherence of the emitted light. We compare
this correlation function with that of atoms undergoing stimulated emission. Whereas the stimulated process
produces correlations resembling those of a coherent state, we find that superradiance, even in the presence
of strong gain, shows a correlation function close to that of a thermal state, just as for ordinary spontaneous
emission.
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Ever since the publication of Dicke’s 1954 paper [1], the
problem of the collective emission of radiation has occupied
many researchers in the fields of light scattering, lasers, and
quantum optics. Collective emission is characterized by a
rate of emission which is strongly modified compared to
that of individual atoms [2]. It occurs in many different
contexts: hot gases, cold gases, solids and even planetary
and astrophysical environments [3]. The case of an enhanced
rate of emission, originally dubbed superradiance, is closely
connected to stimulated emission and gain and, as such,
resembles laser emission [4]. Lasers are typically characterized
by high phase coherence but also by a stable intensity,
corresponding to a Poissonian noise, or a flat second-order
correlation function [5]. Here we present measurements
showing that the coherence properties of superradiance, when
it occurs in an ultracold gas and despite strong amplified
emission, are much closer to those of a thermal state, with
super-Poissonian-intensity noise.

Research has shown that the details of collective emission
depend on many parameters such as the pumping configura-
tion, dephasing and relaxation processes, sample geometry,
presence of a cavity, etc., and, as a result, a complex
nomenclature has evolved including the terms superradiance,
superfluorescence, amplified spontaneous emission, mirrorless
lasing, and random lasing [2,4,6–9], the distinctions among
which we do not attempt to summarize here. The problem
has recently seen renewed interest in the field of cold
atoms [10–25]. This is partly because cold atoms provide a
reproducible, easily characterized ensemble in which Doppler
broadening effects are small and relaxation is generally limited
to spontaneous emission. Most cold-atom experiments differ in
an important way from the archetypal situation first envisioned
by Dicke: instead of creating an ensemble of excited atoms at
a well-defined time and then allowing this ensemble to evolve
freely, the sample is typically pumped during a period long
compared to the relaxation time and emission lasts essentially
only as long as the pumping. The authors of Ref. [10], however,
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et Marie Curie–École normale supérieure–CNRS, 4 place Jussieu,
75005 Paris, France.

‡christoph.westbrook@institutoptique.fr

have argued that there is a close analogy to the Dicke problem,
and we follow them in designating this process superradiance.

In the literature on superradiance there has been relatively
little discussion about the coherence and correlation properties
of the light. The theoretical treatments we are aware of
show that the coherence of collective emission can be quite
complicated but does not resemble that of a laser [2,13,20,26–
28]. These results, however, were obtained for simple models
that do not include all parameters relevant to laboratory
experiments. Experimentally, a study performed on Rydberg
atoms coupled to a millimeter-wave cavity [29] showed a
thermal mode occupation, and an experiment in a cold atomic
vapor in free space [24] observed a nonflat second-order
correlation function. In the present work, we show that even if
the initial atomic state is a Bose-Einstein condensate (BEC),
the second-order correlation function looks thermal rather than
coherent.

Such behavior, which may seem counterintuitive, can be
understood by describing superradiance as a four-wave mixing
process between two matter waves and two electromagnetic
waves. The initial state consists of a condensate, a coherent
optical pump beam, and empty modes for the scattered atoms
and the scattered photons. If we make the approximation that
the condensate and the pump beam are not depleted and can
be treated as classical fields, the matter-radiation interaction
Hamiltonian is given by

Ĥ =
∑

i

[χi â
†
at,i â

†
ph,i + χ∗

i âat,i âph,i], (1)

where â
†
at,i (âat,i) and â

†
ph,i (âph,i) denote atom and photon

creation (annihilation) operators for a specific pair of momenta
i fixed by energy and momentum conservation and χi is a
coupling constant. Textbooks [30] show that, starting from
an input vacuum state, this Hamiltonian leads to a product
of two-mode squeezed states. When one traces over one of
the two modes, α = {at,i} or {ph,i}, the remaining mode β

has a thermal occupation with a normalized two-particle or
second-order correlator

〈â†
β â

†
β âβ âβ〉

〈â†
β âβ〉2

= 2, (2)

whereas it is unity for a laser. The problem has also been treated
for four-wave mixing of matter waves [31]. We emphasize

1050-2947/2014/90(1)/013615(5) 013615-1 ©2014 American Physical Society
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that, when starting from initially empty modes, the occupation
remains thermal regardless of the gain.

In the experiment, we start from initially nearly motionless
atoms of a BEC and observe their recoil upon photon emission.
To the extent that each recoil corresponds to the emission
of a single photon, we can obtain essentially the same
information about the radiation from such measurements as
by observing it directly. In doing this, we are following the
approach pioneered in experiments such as [10] and [29]
and followed by many others, which uses highly developed
atom detection and imaging techniques to glean most of the
experimental information about the process. We are able to
make time-integrated measurements of the emission, resolved
in transverse and longitudinal momentum as well as in polar-
ization, and reconstruct the two-particle correlation function
of the recoiling atoms or, equivalently, the second-order
correlation function of the scattered light. We show that in the
configuration of our experiment, the second-order correlation
is close to that of a thermal sample and very different from the
correlation properties of the initial, condensed atomic state.

We use helium in the 2 3S1,m = 1 state confined in a crossed
dipole trap [see Fig. 1(a)] with frequencies of 1300 Hz in the
x and y directions and 130 Hz in the (vertical) z direction.
The dipole trap wavelength is 1.5 μm. The atom number is
approximately 50 000, and the temperature of the remaining
thermal cloud 140 nK. A 9-G magnetic field along the y axis
defines a quantization axis. After producing the condensate, we
irradiate it with a laser pulse of 2.4 W/cm2 tuned 600 MHz to
the red of the 2 3S1 → 2 3P0 transition at λ = 1083 nm and with
natural linewidth 1.6 MHz. The excitation beam propagates

(a) (b)

FIG. 1. (Color online) (a) Sketch of the experiment. A 9-G
magnetic field B applied along the y axis defines the quantization
axis. The excitation beam propagates with an angle of 10◦ (not shown)
relative to the x axis and its polarization is linear, with the same
angle relative to the z axis. After emission, the atoms fall 46 cm
to a position-sensitive microchannel plate (MCP). The atom cloud
forms a sphere with enhanced occupation of the endfire modes. (b)
Atomic level scheme. The atoms, initially in the 2 3S1, m = +1 state,
are excited to the 2 3P0 state. From there, they can decay with equal
branching ratios to the three sublevels of the ground state. We detect
only the atoms which scatter into the m = 0 state.

with an angle of 10◦ relative to the x axis and its polarization is
linear, with the same angle relative to the z axis [see Fig. 1(a)].
The pulse length is 5 μs and it is applied with a delay τ after
switching off the trap. The expansion of the cloud during this
delay is a convenient way to vary both the optical density
and the anisotropy of the sample at constant atom number.
The absorption dipole matrix element is of the σ− form and
thus one-half of the laser intensity is coupled to the atomic
transition corresponding to a Rabi frequency of 56 MHz. The
excited atoms decay with equal branching ratios to the three
ground states. During the pulse, less than 10% of the atoms are
pumped into each of these states. Because of the polarization
selection rules, the atoms which are pumped into the m =
0 state cannot reabsorb light from the excitation laser. By
focusing on these atoms, we study the regime of “Raman
superradiance” [15,32], by which we mean that an absorption
and emission cycle is accompanied by a change in the internal
state of the atom. When the trap is switched off, the atoms fall
toward a microchannel plate detector which detects individual
atoms with three-dimensional imaging capability and a 10%
to 20% quantum efficiency [33]. A magnetic-field gradient is
applied to sweep away all atoms except those scattered into
the m = 0 magnetic sublevel. The average time of flight to the
detector is 310 ms and is long enough that the atoms’ positions
at the detector reflect the atomic momenta after interaction with
the excitation laser. Conservation of momentum then requires
that these atoms lie on a sphere with a radius equal to the
recoil momentum krec = 2π/λ. Any additional scattering of
light, whether from imperfect polarization of the excitation
laser or from multiple scattering by the atoms, will result in the
atoms lying outside the sphere. We see no significant signal
from such events, but in order to completely eliminate the
possibility of multiple scattering we restrict our analysis of the
data to the spherical shell with inner radius 0.8 krec and outer
radius 1.2 krec.

We excite atoms in an elongated BEC in such a way
that an allowed emission dipole can radiate along the long
axis. In an anisotropic source, collective emission builds up
more efficiently in the directions of highest optical thickness.
Superradiance is therefore expected to occur along the long
axis of the BEC, in so-called “endfire” modes [10,34]. An
important parameter, then, is the Fresnel number of the
sample [2], F = 2R2

⊥/λRz, where R⊥ and Rz are the horizontal
and vertical Thomas-Fermi radii of the condensate. The
Fresnel number distinguishes between the diffraction limited
(F < 1) and the multimode superradiance regimes (F > 1).
In our case, R⊥ ≈ 5 μm and Rz ≈ 50 μm, yielding a Fresnel
number of about unity.

Typical cuts through the atomic momentum distribution in
the yz plane are shown in Fig. 2, for τ = 500 μs (left) and
τ ≈ 0 (right). In both cases, the spherical shell with radius
1 krec appears clearly. For the short delay, when the atomic
sample remains dense and anisotropic, we observe strong
scattering in the endfire modes at the top and bottom poles
of the sphere. In addition to this change in the profile of the
distribution, we measure an increase in the total number of
atoms on the sphere by a factor of ∼5 from τ = 500 μs to
τ ≈ 0. Because each atom has scattered a single photon, this
increase directly reflects an increase in the rate of emission
in the sample and therefore demonstrates the collective nature
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FIG. 2. (Color online) Momentum distribution of scattered
atoms in the yz plane (containing the emission dipole). Both
panels show the distribution in the yz plane, integrated between
kx = ±0.1 krec and summed over 100 shots. See the Supplemental
Information for a cut in the xz plane [35]. Left: Excitation laser
applied 500 μs after the trap switch-off. Only the radiation pattern
for a y-polarized dipole is visible. Right: Excitation laser applied
immediately after the trap switch-off. Strong superradiance is visible
in the vertical, endfire modes.

of the scattering process. At long delays, the condensate has
expanded sufficiently that the optical thickness and anisotropy
have fallen dramatically, suppressing the collective scattering.
By looking at the number of scattered atoms in the x direction
(perpendicular to the plane in Fig. 2), we have verified that,
away from the endfire modes, the rate of emission varies by
less than 10% for different delays [35].

To see the distribution in a more quantitative way, we show
in Fig. 3 an angular plot of the atom distribution in the yz plane.
Data are shown for three delays τ before application of the

FIG. 3. (Color online) Angular distribution of scattered atoms in
the yz plane (containing the emission dipole) for different values of
the delay τ before the excitation pulse. From bottom to top: light-gray
(green) circles correspond to τ = 500 μs; dark-gray (blue) circles, to
τ = 200 μs; and light-gray (red) circles, to τ = 0 μs. Data for τ =
0 and 500 μs are the same as those shown in Fig. 2. Images were
integrated along the x axis between ±0.1 krec, and only atoms lying
inside a shell with inner radius 0.8 krec and outer radius 1.2 krec were
taken into account. The delays τ = 0, 200, and 500 μs correspond to
peak densities of ≈8, 2, and 0.4×1018 m−3 and to aspect ratios of 10,
5, and 2.5, respectively. The endfire modes are located at ±π/2. The
half-width at half-maximum of the highest peak is 0.14 rad. Error
bars are shown, denoting the 68% confidence interval.

excitation pulse. For the 500-μs delay, the angular distribution
follows the well-known “sin2 θ” linear dipole emission pattern,
with the angles θ = 0 and π corresponding to the orientation
of the dipole along the y axis [35]. For the 200-μs delay, the
superradiant peaks are already visible at the top of the dipole
emission profile. For the shortest delay, the half-width of the
superradiant peaks is 0.14 krec, or 0.14 rad, consistent with
the diffraction angle and the aspect ratio of the source. In the
vertical direction, the superradiant peaks are 10 times narrower
than in the horizontal direction [35].

In the strongly superradiant case, we observe large and
uncorrelated fluctuations of the heights of the two superradiant
peaks on a shot-to-shot basis. These fluctuations directly reflect
the fluctuations of the population of the superradiant modes.
We investigate these fluctuations further by measuring the
normalized two-particle correlation function of the scattered
atoms, defined as

g(2)(
k) = 〈: n̂(k)n̂(k + 
k) :〉
〈n̂(k)〉 〈n̂(k + 
k)〉 . (3)

Here, n̂ is the atomic density and : : denotes normal ordering.
In practice, this function is obtained from a histogram of
pair separations 
k normalized to the autoconvolution of
the average particle momentum distribution [36,37]. Figure 4
shows the experimentally measured correlation functions
integrated over the momentum along two of three axes, both

(a)

(b)

FIG. 4. (Color online) Correlation functions along the (a) z and
(b) y axis for τ ≈ 0. Darker (blue) circles correspond to superradiant
peaks (defined by |kz| > 0.95 krec). Lighter (orange) circles corre-
spond to atoms from the scattering sphere away from the superradiant
peaks (defined by |kz| < 0.92 krec). Solid lines are Gaussian fits
constrained to approach unity at large separation. Filled gray circles
correspond to a fraction of the initial condensate transferred to the
m = 0 state via a stimulated Raman transfer. The dashed gray line
shows unity. Error bars denote the 68% confidence interval.
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for the superradiant peaks and on the scattering sphere away
from the peaks [35].

We see that in both cases the correlation function at zero
separation reaches a value close to 2. This shows clearly
that, despite strong amplified emission in the endfire modes,
the atoms undergoing a superradiant process have statistics
comparable to that of a thermal sample. As emphasized in the
introductory section, these large fluctuations can be simply
understood by modeling the superradiant emission as a four-
wave mixing process; they arise from the fact that the emission
is triggered by spontaneous emission. For the superradiant
peaks, the correlation actually is slightly larger than 2. Similar
behavior has appeared in some models [20,38], but these
models may not be directly applicable to our situation.

Figure 4 also shows that the correlation widths of the
superradiant modes are somewhat broader than those of the
atoms scattered in other modes. The effect is a factor of about
1.5 in the vertical direction and about 1.25 in the horizontal
direction [35]. The broadening indicates that the effective
source size for superradiance is slightly smaller than that for
spontaneous scattering. A decreased vertical source size for
superradiance is consistent with the observations in Refs. [39]
and [40], which showed that the superradiant emission is
concentrated near the ends of the sample. In the horizontal
direction, one also expects a slightly reduced source size
relative to the atom cloud since the gain is higher in the center,
where the density is higher. The fact that the correlation widths
are close to the widths of the momentum distribution [35]
indicates that the superradiant peaks are almost single mode as
expected for samples with a Fresnel number close to unity [2].

The spontaneous superradiant scattering process should
be contrasted with stimulated Raman scattering. In terms of
the model described by Hamiltonian (1), stimulated Raman
scattering corresponds to seeding one of the photon modes
with a coherent state. In this case, vacuum fluctuations do
not initiate the scattering process, and the resulting mode
occupation is not thermal but coherent. To study stimulated
scattering, we applied the excitation beam together with
another beam polarized parallel to the magnetic field and
detuned by the Zeeman shift (25 MHz) with respect to the
σ -polarized beam, inducing a stimulated Raman transition.
The laser intensities were adjusted to transfer a similar number
of atoms to the m = 0 state as in the superradiance experiment.
The normalized correlation functions in this situation, shown
in Fig. 4, are very nearly flat and equal to unity as we expect
for a BEC [36,41,42]. The complementary experiment, seeding

the atomic mode with a coherent state has also been observed
to produce a coherent amplified matter wave [43,44]. As a
side remark, we have also observed that the superradiant atom
peaks are 2.8 times narrower in the vertical direction than the
vertical width of the transferred condensate [35]. We attribute
this to a longitudinal gain narrowing effect [27].

We also investigated the influence of several other ex-
perimental parameters on the second-order coherence of the
superradiant emission: We have excited the atomic sample with
a longer and stronger pulse (10 μs, 3.2 W/cm2), so that the
initial condensate was entirely depleted. We have explored the
Rayleigh scattering regime, in which the atoms scatter back to
their initial internal state. We also changed the longitudinal
confinement frequency of the BEC to 7 Hz, leading to a
much higher aspect ratio. These different configurations led
to two-particle correlation functions which were very similar
to the one discussed above. We believe that similar fluctuations
will occur in superradiance from a thermal cloud provided that
the gain in the medium is large enough. We were unable to
confirm this experimentally in our system, precisely because
of the vastly reduced optical density. However, noncoherent
intensity fluctuations have been observed using magneto-
optically trapped atoms [24]. This seems to confirm our
interpretation that the large fluctuations of the superradiant
mode occupation is an intrinsic property of superradiant
emission, reflecting the seeding by spontaneous emission. The
only way to suppress these fluctuations would be to restrict the
number of scattering modes to one by means of a cavity and
to saturate the gain by completely depleting the atomic cloud.
The occupation of the superradiant mode would then simply
reflect that of the initial atomic sample.

An interesting extension of the techniques used here
is to examine superradiant Rayleigh scattering of a light
pulse short enough and strong enough to populate oppositely
directed modes [45]. It has been predicted [13,14,46] that
the modes propagating in opposite directions are entangled,
similar to those produced in atomic four-wave mixing [47–49].
A similar measurement technique should be able to reveal
them.
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by FCT scholarship SFRH/BD/74352/2010.
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[12] Ö. E. Müstecaplioglu and L. You, Phys. Rev. A 62, 063615
(2000).

[13] N. Piovella, M. Cola, and R. Bonifacio, Phys. Rev. A 67, 013817
(2003).

013615-4



SECOND-ORDER COHERENCE OF SUPERRADIANCE FROM . . . PHYSICAL REVIEW A 90, 013615 (2014)

[14] H. Pu, W. Zhang, and P. Meystre, Phys. Rev. Lett. 91, 150407
(2003).

[15] Y. Yoshikawa, T. Sugiura, Y. Torii, and T. Kuga, Phys. Rev. A
69, 041603 (2004).

[16] N. Bar-Gill, E. E. Rowen, and N. Davidson, Phys. Rev. A 76,
043603 (2007).

[17] T. Wang, S. F. Yelin, R. Côté, E. E. Eyler, S. M. Farooqi, P. L.
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Chapter 2

Bell’s inequality test with massive

particles: theory

In this chapter, the theory of the Bell’s inequality test with momentum correlated parti-

cles will be presented. By following closely [62], we first state the problem raised by Ein-

stein, Podolsky and Nathan (EPR)[47] who did not accept the idea that a measurement

on one particle in an entangled pair could affect the state of the other-distant-particle,

and concluded that quantum formalism is not a complete theory and should be replaced

by ’local realist’ theories. Then we derive the Bell’s inequality which allows to test ex-

perimentally the predictions of local realism against those of quantum physics. Next,

various experiments of Bell’s inequality test will be discussed shortly and the equivalence

of the experimental schemes with sources entangled in internal degrees of freedom and

in external degrees of freedom will be demonstrated. Then we present our experimental

scheme for the Bell’s inequality test with momentum entangled helium atoms. The the-

ories of the pair production and the Bragg pulse which are the main ingredients of this

scheme will be investigated. Finally, we conclude with the evaluation of the prediction

of the quantum mechanics for our atomic source and experimental scheme.

2.1 Bell’s theorem

2.1.1 Joint measurements of polarization correlated photon pairs

We consider a pair of photons ν1 and ν2 emitted simultaneously along directions -z and

+z respectively (see Fig. 2.1). The only unspecified degree of freedom is the polarization

of each photon. The polarization properties of a pair are described by a state |ψ〉 in the

space

E = E1 ⊗ E2 (2.1)

34
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Figure 2.1: The polarization of photons, ν1 and ν2 is analysed by the linear polarizers
I and II, which are oriented along ~a and ~b respectively perpendicular to the z axis. Each
measurement has two possible outcomes, + or −, and one can measure the probabilities
of single or joint measurements at various orientations ~a and ~b. The figure is taken from

[6].

which is the tensor product of the two-dimensional spaces E1 = {|x1〉; |y1〉} and E2 =

{|x2〉; |y2〉} representing the polarizations of photon ν1 and photon ν2 respectively. Here

|x〉 and |y〉 are basis along the axis shown in the figure 2.1. So the space E is four-

dimensional and its basis is given by the four kets,

E = {|x1, x2〉; |x1, y2〉; |y1, x2〉; |y1, y2〉}. (2.2)

Polarization measurements can be realized using polarizers I and II, oriented along

the selected directions a and b (which make angles of θa and θb with respect to the x-

axis). Each polarizer has two output ports marked as + and −, such that if the photon

ν1(ν2) is polarized parallel to a(b) then it will go for sure via port + while photons with

perpendicular polarization to a(b) will go via port −. The + port state |+θa,b〉, and −
port state |−θa,b〉 of the polarizers I and II are expressed relative to the basis {|x〉, |y〉}
as,

|+θa,b〉 = cos θa,b|x〉+ sin θa,b|y〉, (2.3)

|−θa,b〉 = − sin θa,b|x〉+ cos θa,b|y〉. (2.4)

The outcome of a joint measurement on two photons of the same pair can result

in one out of four possibilities (+,+), (+,−), (−,+) and (−,−). The corresponding

probabilities are

P+,+(a,b) = |〈+θa ,+θb |ψ〉|2 (2.5)

P+,−(a,b) = |〈+θa ,−θb |ψ〉|2 (2.6)

and so on.
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2.1.2 Polarization correlation of EPR pairs

Imagine photon pairs in the state

|ψEPR〉 =
1√
2

(|x, x〉+ |y, y〉) (2.7)

The special nature of this state is that we cannot attribute a distinct polarization neither

to photon ν1 nor to photon ν2 in contrast to state such as |x, y〉 which tells us clearly

that a photon ν1 is polarized along x direction whereas a photon ν2 is polarized along y

direction. The EPR state is in the configuration space where two particles are described

globally, and it is less intuitive than the description in real space.

The probabilities of joint detections for the EPR state |ψEPR〉 can be easily calcu-

lated when the polarizers I and II are oriented along a and b, respectively, making angles

θa and θb with the x axis. For instance, using (2.3), (2.5), and (2.7) the probability of

detecting both particles at ports (+,+) is given by

P+,+(a,b) = |〈+θa ,+θb |ψ〉|2 =
1

2
cos2(θa − θb). (2.8)

Similarly, the other three joint detection probabilities are

P−,−(a,b) =
1

2
cos2(θa − θb), (2.9)

P+,−(a,b) = P−,+(a,b) =
1

2
sin2(θa − θb). (2.10)

We note that these probabilities depend only on the difference between two angles θa−θb
which is the angle between the two polarizers.

The probability of having the photon ν1 at + port, without taking care of ν2, is

P+(a) = P+,+(a,b) + P+,−(a,b) =
1

2
. (2.11)

Similarly, the other single detection probabilities are

P−(a) =
1

2
, (2.12)

P+(b) = P−(b) =
1

2
. (2.13)

For both photons it turns out that we have equal probability of detecting at + and − if

each photon is considered separately. Consequently, in the EPR state, each photon taken

independently manifests itself as unpolarized. Nevertheless, there is a strong correlation

between the polarizations of ν1 and ν2. To demonstrate this correlation, we look at the
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correlation coefficient between random variables A(a) and B(b), defined by [107]

E(a,b) =
A(a) · B(b)−A(a) · B(b)(

A2(a)−A(a)
2
)1/2

·
(
B2(b)− B(b)

2
)1/2

(2.14)

where a bar over the top denotes a statistical average. The correlation coefficient takes

a value between +1 and −1 where +1(-1) indicates the perfect correlation (anticorrela-

tion), and 0 indicates no correlation between A(a) and B(b). We will use this definition

to evaluate both the predictions of the quantum mechanics and the local hidden variable

theories that will come later.

We can choose such that the random variables A(a) and B(b) represent the mea-

surement results. Specifically, the random variable A(a) represents the outcome of

measurement of the polarizer I, oriented along a, and it can only assume the values

+1 or −1. Same is true for B(b) which stands for the outcome of measurement of the

polarizer II, oriented along b. From (2.11), (2.12), and (2.13) we imply the probabilities

of outcomes:

P[A(a) = +1] = P[A(a) = −1] =
1

2
, (2.15)

P[B(b) = +1] = P[B(b) = −1] =
1

2
. (2.16)

We now calculate the correlation coefficient in (2.14) for the measurement results

given by the quantum theoretical predictions in relation to the EPR pair, as specified

in (2.8)-(2.10). The statistical averages of A(a) and B(b) are

A(a) = (+1) · P[A(a) = +1] + (−1) · P[A(a) = −1] = 0, (2.17)

B(b) = (+1) · P[B(b) = +1] + (−1) · P[B(a) = −1] = 0. (2.18)

Similarly, we have

A2(a) = (+1)2 · P[A(a) = +1] + (−1)2 · P[A(a) = −1] = 1, (2.19)

B2(b) = (+1)2 · P[B(b) = +1] + (−1)2 · P[B(a) = −1] = 1, (2.20)

and

A(a) · B(b) = P+,+(a,b) + P−,−(a,b)− P+,−(a,b)− P−,+(a,b) (2.21)

= cos 2(θa − θb). (2.22)

Hence, we find the correlation coefficient predicted by quantum mechanics:

EQM (a,b) = A(a) · B(b) = cos 2(θa − θb). (2.23)
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When polarizers are aligned in the same direction, i.e. θa−θb = 0, we find the correlation

coefficient to be equal to unity suggesting a perfect correlation between two measure-

ments. We can thus be confident to find +1(−1) for ν2 whenever we find +1(−1) for ν1,

when the polarizers have the same orientations.

2.1.3 The idea of local hidden variable theories

We have seen that there is a strong correlation between the polarizations of EPR pairs.

As long as no measurement is made, there is an equal probability of finding +1 or −1

for each photon. But as soon as a first measurement has been made and has produced

a result, for example, +1 along a for ν1, its twin photon ν2 is projected instantaneously

into an identical polarization state as of the first one since 1√
2
(|x, x〉 + |y, y〉) = 1√

2
(| +

θ,+θ〉+ | − θ,−θ〉), ∀θ. This is true whatever the distance between the two particles is,

even for the distance which is greater than c|t1 − t2| where c is speed of light, t1 and

t2 are the instants of measurements made by polarizer I and II. This picture does not

fit in the relativistic causality principle, which forbids any information from travelling

faster than the speed of light. Therefore, the quantum picture seemed to be incomplete,

and to be replaced with a better one. This idea was put forward in the EPR paper [47]

which has lead several authors and in particular David Bohm to develop local models

which we are going to discuss next.

The strong polarization correlations of the EPR pairs is rather its intrinsic property

and actually it is what we measure experimentally. The model which can potentially

replace the formalism of quantum mechanics should be able to predict the same cor-

relations found for a photon pair and also satisfy the relativistic causality at the same

time. A toy model we can imagine could be that half of the pairs are produced from

the beginning with a common polarization in the x direction, and the other half with a

polarization in the y direction . When the polarizers are oriented in the x direction, we

recover the same results predicted by quantum mechanics in this configuration, i.e.

P++ = P−− =
1

2
, (2.24)

P+− = P−+ = 0. (2.25)

In this picture not all pairs are identical, for each pair of photons an additional variable

is prescribed during their creation. This variable is referred as the hidden variable and it

may be different from one pair generation to another. To account for all orientations of

the polarizers, an improved model can be developed. For instance, we suppose that the

polarization of a particular pair is well defined from the outset and it has an angle λ with

respect to x axis in the plane perpendicular to z axis. The orientation of the polarization

changes from one pair to another, and λ can be chosen as a random variable with uniform
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probability between 0 and 2π which is characterized by a probability density function

ρ(λ) =
1

2π
. (2.26)

The outcomes of the measurements by polarizer I and II, which make angles θa and θb

respectively with the x axis, can be defined as

A(λ,a) = sign {cos 2(θa − λ)} , (2.27)

B(λ,b) = sign {cos 2(θb − λ)} (2.28)

where sign-function equals +1 or −1 depending on the sign of the cos-function. With

this model it is easy to find the predictions similar to ones in quantum mechanics for

the EPR pairs. For example, the single detection probability of finding +1 by polarizer

I is

P+(a) =

∫ θa+π/4

θa−π/4
dλρ(λ) +

∫ θa+π+π/4

θa+π−π/4
dλρ(λ) =

1

2
. (2.29)

In fact, all the single detection probabilities are equal to 1
2(compare with (2.15),(2.16)).

In addition, the correlation coefficient predicted by this local hidden variable theory

(LHVT) from (2.14) is

ELHV T (a,b) =

∫ 2π

0
dλρ(λ)A(λ,a) ·B(λ,b) = 1− 4

|θa − θb|
π

(2.30)

where

− π

2
≤ θa − θb ≤

π

2
. (2.31)

In the figure 2.2, we compare the correlation coefficients (2.23) and (2.30) as a function

of an angle between the polarizers I and II. They match exactly at angles 0◦, ±45◦

and ±90◦, and stay close for other intermediate angles. One may wonder whether it is

possible to improve the form of (2.26) to be able to match exactly the two curves. The

answer is provided by Bell’s theorem and it is negative!

2.1.4 Bell’s inequalities

The derivation of the Bell’s inequalities is quite general and it applies to not only the

model we discussed before but to all kinds of local hidden variable theories [10]. Broadly

speaking, by introducing a parameter λ which describes the polarization of a photons of

the same pair and which is random from one run to another, we would like to account for

the polarization correlations of a pair. The probability density ρ(λ) is taken as positive
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θ θ

Figure 2.2: Polarization correlation coefficient as a function of the angle between the
polarizers I and II. Comparison between the two theoretical polarization coefficients:
predicted by the quantum mechanics (solid line) and the local hidden variable theory
(dashed line) described in the text. We can see that they produce same results when
two polarizers are perpendicular, parallel and at 45◦ to each other, and stay close at

intermediate angles.

and definite probability, i.e.

ρ(λ) ≥ 0, (2.32)∫
dλρ(λ) = 1. (2.33)

Moreover, the outcomes of the measurements from polarizer I and II for a given pair

with the common parameter λ, can exclusively assume values +1 or −1:

|A(λ,a)| = |B(λ,b)| = 1. (2.34)

The probability of getting +1 and −1 are assumed to be equal, i.e.

∫
dλρ(λ)A(λ,a) =

∫
dλρ(λ)B(λ,b) = 0. (2.35)

From (2.34) and (2.35), we have A(λ,a) = B(λ,b) = 0 and A2(λ,a) = B2(λ,b) = 1.

In the light of these assumptions for the hidden variable model, the correlation

coefficient defined in (2.14) reduces to

ELHV T (a,b) = A(λ,a) · B(λ,b) =
∫

dλρ(λ)A(λ,a)B(λ,b). (2.36)
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To prove the Bell’s inequalities, consider the quantity

s(λ,a,a′,b,b′) = A(λ,a) · B(λ,b)−A(λ,a) · B(λ,b′) (2.37)

+A(λ,a′) · B(λ,b) +A(λ,a′) · B(λ,b′). (2.38)

It can be factorized in a form

s(λ,a,a′,b,b′) = A(λ,a)
(
B(λ,b)− B(λ,b′)

)
(2.39)

+A(λ,a′)
(
B(λ,b) + B(λ,b′)

)
. (2.40)

Since, B(λ,b) = B(λ,b′) or B(λ,b) = −B(λ,b′) from (2.34), we can see that this

quantity amounts to

s(λ,a,a′,b,b′) = ±2, (2.41)

whatever the value of λ. If the quantity (2.41) is averaged over λ, it will be lying between

−2 and +2:

− 2 ≤
∫

dλρ(λ)s(λ,a,a′,b,b′) ≤ 2 (2.42)

We can define a parameter S which is known as the Clauser-Horn-Shimony-Holt (CHSH)

parameter after their discoveries [77]:

S(a,a′,b,b′) =

∫
dλρ(λ)s(λ,a,a′,b,b′) (2.43)

= E(a,b)− E(a,b′) + E(a′,b) + E(a′,b′) (2.44)

where (2.36) is used for the second line of the definition. As we can see the CHSH

parameter is bounded by the inequality (2.42):

− 2 ≤ SLHV T (a,a′,b,b′) ≤ 2 (2.45)

according to the inequality (2.42). This is the Bell’s inequality stated for the local

hidden variable theories compatible with (2.32)-(2.35). But on the other hand, the S

parameter deduced from quantum mechanics can violate the mentioned inequality for

the certain set of angles. To demonstrate it, we will calculate the CHSH parameter

defined in (2.44) using the correlation coefficient given by (2.23) for the following four

sets of angles: {θa − θb = π
8 , θa − θb′ = 3π

8 , θa′ − θb = −π
8 , θa′ − θb′ = π

8 }. The result is

SQM (a,a′,b,b′) = 2
√

2 = 2.828 . . . (2.46)

It turns out that the quantum prediction of the S parameter for the EPR state can

exceed considerably the upper bound set by the Bell’s inequality and thereby contradicts

with the results found by using the LHVT. This result is very surprising because the
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conceptually easier and intuitive local models fail to reproduce same predictions of the

quantum mechanics. Finally, we have a single parameter to be measured in a suitable

experiment in order to put the end to the debate between Einstein and Bohr.

2.1.5 The experimental violation of Bell’s inequality

Since the publication of the Clauser-Horne-Shimony-Holt paper [77] in 1969 which

framed the Bell’s inequalities in a suitable form for real experiments, there has been

generations of experiments which have been tended to get more closer to the ideal

scheme to test the Bell’s inequalities (see for the references [5, 23]). The first generation

of the experiment was carried out in the early 1970 using photon pairs generated by

a decay cascaded down from a calcium atom [36]. Most results were satisfactory with

quantum mechanics but the experimental set-up imperfections such as the low efficiency

of the light sources and in particular, the use of single-channel polarizers giving access

to only the + outcome, made these experiments extremely difficult and far from the

ideal thought experiment. In the early 1980s, the second generation of the experiment

was realized [8] making profit of the progress in laser physics which allowed to have a

highly efficient source of pairs of correlated photons and utilizing two-channel polarizers

as suggested in the ideal EPR gedanken scheme. It produced unambiguous violation of

the Bell’s inequalities by tens of standard deviations, Sexpt = 2.697 ± 0.015, [8] and an

impressive agreement with the quantum mechanics was recorded (calculated quantum

prediction for this experiment is Sexpt = 2.70± 0.05). In the late 1980s, a third genera-

tion of tests were launched with sources of photon pairs based on nonlinear optical effects

[102, 104, 133, 138, 139]. With such a source the experiments were taken one step fur-

ther by allowing the large separation of several tens of kilometres between two correlated

photons and choosing the orientation of each polarizer in a strictly random way during

the time of flight of the photons from the source [7, 144]. Indeed, then the measurement

of each polarizer was totally independent of each other, which is the locality hypothesis

pointed out by Bell. If there is a possible exchange between two polarizers, it is possible

to reconcile the quantum mechanical and the local hidden variable theory results. So

it is absolutely necessary to avoid such a loophole. There is another loophole due to

the limited efficiency of the detectors which was eliminated in the experiment using the

efficient detection of ions instead of photons [123]. The goal of the third generation and

later experiments was to close the loopholes to demonstrate the loophole-free violation

of the Bell’ inequality which has not only a foundational importance in understanding

the nature but also has a critical importance in device-independent quantum security

protocols [1].
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2.1.6 Loopholes in the experimental Bell’s inequality tests

Detection loophole. In real experiments there are losses either between the source

and the detector or losses resulting from the detector itself which has non-unit

efficiency. So, there are three measurement outcomes instead of two; +1, −1 and

the ’no-click’ outcome, denoted as ∅. In general, such ’inconclusive’ data is simply

discarded and only ’valid’ ±1 measurement outcomes are considered to evaluate

the Bell’s expression. Such approach is approved only under the assumption of

’fair sampling’ meaning that the selected set of data are the representative of

the whole ensemble. However, more generally, this fair-sampling assumption fails

in situations where ’no click’ outcome ∅ depends on the choice of measurement

[35, 106] and one should take into account ’no click’ events. When ’no click’ events

are treated, the Bell’s inequality violation becomes possible only with detectors

having efficiency η above a certain threshold η∗. For the EPR state we can estimate

the threshold efficiency as follows. When both detectors click, which happens with

probability η2, the CHSH parameter equals to S = 2
√

2 (maximum quantum

mechanical value). When only one detector clicks, the outcomes are completely

uncorrelated leading to S = 0. Finally, when no detectors click, which happens

with probability (1 − η)2, the outputs are always same (’no click’ for both sides)

achieving the local bound S = 2. The entire data of the experiment must violate

the Bell’s inequality:

η22
√

2 + (1− η)22 > 2 (2.47)

which gives the threshold value of the detector efficiency:

η > η∗ =
2

1 +
√

2
≈ 82.8%. (2.48)

On the other hand, for the partially entangled state of the form |ψθ〉 = cos(θ)|x, x〉+
sin(θ)|y, y〉 (in particular in the limit of a product state θ → 0) it was discov-

ered [45] that the threshold limit of the detector efficiency can be lowered to

η → 2
3 ∼ 0.66%. It is a remarkable result showing that sometimes less entangle-

ment can lead to more nonlocality.

Locality loophole. In deriving the Bell’s inequality it was assumed that the two mea-

surement sites do not communicate which seems well justified if the two sites are

sufficiently separated so that the measurement duration is shorter than the time

taken by a signal traveling at the speed of light, to travel from one site to the other.

In addition to the condition that two measurement sites must be space-like sepa-

rated, the measurement settings must be totally independent from the other side

and especially they should not be correlated with the hidden variables λ. These
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requirements are mathematically written as

A(λ,a,b) = A(λ,a) and B(λ,a,b) = B(λ,a) (2.49)

and

ρ(λ,a,b) = ρ(λ). (2.50)

Failure to satisfy these conditions is known as the locality loophole and experimen-

tally it is closed by using two independent random number generators to control

the measurement settings and by separating the two measurement sites by a large

distance.

Loophole-free Bell’s inequality tests. Closing two loopholes together in one exper-

iment has been achieved only in 2015, since the introduction of Bell’s findings in

1964 by three research teams led by Ronald Hanson at Delft University of Technol-

ogy in the Netherlands [66], Anton Zeilinger at the University of Vienna, Austria

[53], and Lynden Shalm at NIST in Boulder, Colorado [131]. Three teams have

independently confirmed that the local realism should be definitely given up. The

teams at Vienna and NIST based their experiments on the scheme in the figure

2.1 using the entangled photons that are separated by 30 meters in Vienna ex-

periment and more than 100 meters in the Boulder experiment. The alignment

of the polarizers are chosen by the independent random number generators. The

overall detector efficiencies were about 75%. The Delft team on the other hand

used different scheme with the entanglement system which consists of two nitro-

gen vacancies (NV) centers, each located in a different lab. In each NV center,

an electron spin is associated with an emitted photon, which is sent to a common

detection station located between the labs housing the NV centers. Mixing the

two photons on a beam splitter and detecting them in coincidence entangles the

electron spins on the remote NV centers. In cases when the coincidence signal is

detected, the researchers then keep the measurements of the correlations between

the spin components and compare the resulting correlations to Bell’s inequalities.

The detection loophole is closed because for each entangling signal there is a result

for the two spin-component measurements. The impressive distance between the

two labs (1.3 km) allows the measurement directions of the spin components to be

chosen independently of the entangling event, thus closing the locality loophole.

Each discovery pave the way to quite remarkable new prospects. The fact that we

understand more now the properties of quantum correlation has given birth to new ap-

plications such as quantum cryptography, quantum computing, quantum teleportation

etc ([23] and references therein). As we have discussed, the demonstrations of violations

of Bell’s inequalities have been performed with massless photons, but in only a few using
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massive particles [66, 70, 83, 95, 123, 125, 135, 149]. Moreover, these massive particle ex-

periments have been up to now limited to the spin correlation of pairs exploiting internal

degrees of freedom of particles but never external degrees of freedom such as transla-

tional momentum of the type originally considered by Einstein, Podolsky and Rosen.

Such momentum state Bell’s inequality test would allow to extend fundamental tests

of quantum mechanics into domains of gravitational fields through the direct coupling

with particle mass [109]. Therefore we are motivated to demonstrate a Bell’s inequality

violation for a momentum-correlated atomic pair produced from the dynamical insta-

bility of Bose-Einstein condensate in a moving optical lattice [18]. Before focusing on

our experimental setup, the scheme of the experiment for a momentum correlated pair

will be presented and it will be shown that such scheme can be exactly mapped to the

spin-wise correlated pairs scheme that we have discussed so far.

2.2 The Bell’s inequality test with helium atoms correlated

in momentum space

2.2.1 The equivalence between schemes using external and internal

degrees of freedom for the Bell’s inequality test

The Bell’s inequality test can also be demonstrated using a pair correlated in momentum

and indeed such experiment has been realized using two-color photon pairs from the

parametric down conversion within the birefringent crystal by J. G. Rarity and P. R.

Tapster [117]. In what follows, the setup of this kind will be described and the one

to one correspondence with the joint measurements of the spin correlated pairs will be

shown.

S
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Figure 2.3: The Bell’s inequality test scheme in momentum space. The momentum
conjugate pair a and b is produced by a source in the EPR state in momentum space:
|ψEPR〉 = 1√

2
(|+ a,+b〉+ | − a,−b〉). The basis for particle a, emitted to the left in the

figure, is Ea = {|+a〉; |−a〉} and for particle b, emitted to the right, is Eb = {|+b〉; |−b〉}.
These four states are shown explicitly by four paths in the figure. Each particle is
detected at either + or − port after the beamsplitters I and II depending on the angle
between two paths θa − θb. We find one to one correspondence with the setup of the
polarization correlated photons (see Fig. 2.1) in terms of joint measurements (see text).
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In figure 2.3, the source is producing conjugate particles, a emitted to the left and

b emitted to the right. The momentum of these particles are strongly correlated and

they are in the EPR state in momentum space,

|ψEPR〉 =
1√
2

(|+ a,+b〉+ | − a,−b〉) (2.51)

where the momentum bases are Ea = {|+a〉; |−a〉} for particle a and Eb = {|+b〉; |−b〉}
for particle b. So, the momentum basis for a pair is given in four dimensional space by

E = {|+ a,+b〉; | − a,−b〉; |+ a,−b〉; | − a, b〉}. (2.52)

We introduce phase shifts of θa and θb on one of the arms of each direction before

superposing on the identical symmetric 50 : 50 beamsplitters. The input and output

states are related through beamsplitter matrix for a:

(|+ θa〉
| − θa〉

)
=

1√
2

(
1 ı

ı 1

)(
exp(ıθa)|+ a〉
| − a〉

)
(2.53)

and for b: (|+ θb〉
| − θb〉

)
=

1√
2

(
1 ı

ı 1

)(
exp(ıθb)| − b〉
|+ b〉

)
(2.54)

as shown in figure 2.4. This way we define the measurement basis | ± θa,b〉 which is the

analogue of (2.3) and (2.4). Joint measurement probabilities are given as before

P±,±(θa, θb) = |〈±θa ,±θb |ψEPR〉|2 (2.55)

By using (2.53), (2.54) and (2.51) it is easy to show that

P+,+(θa, θb) = P−,−(θa, θb) =
1

2
cos2(

θa − θb
2

) (2.56)

P+,−(θa, θb) = P−,+(θa, θb) =
1

2
sin2(

θa − θb
2

) (2.57)

Thus we recover, up to a factor 2 of the argument of cos-funtion, the same correlation

coefficient with the EPR state in momentum space for quantum prediction as in (2.23)

EQM (θa, θb) = A(λ,a) · B(λ,b) =
∑
A,B

PA,B(θa, θb)A(θa) · B(θb)

= P+,+(θa, θb) + P−,−(θa, θb)− P+,−(θa, θb)− P−,+(θa, θb)

= cos(θa − θb). (2.58)
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On the other hand, the correlation coefficient predicted by the local hidden variable

theories can be written in a form

ELHV T (θa, θb) = A(λ, θa) · B(λ, θb) =

∫
dλρ(λ)A(λ, θa)B(λ, θb). (2.59)

because the conditions given by (2.32)-(2.35) are indeed satisfied with the current

scheme, thus enabling to realize the Bell’s inequality test with external degrees of free-

dom.
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Figure 2.4: Input output relations of a symmetric beamsplitter for particles a and b

The more general calculation can be carried out using the second quantization

quantum formalism. To evaluate the correlation coefficient we need to estimate joint

probabilities P±,±(θa, θb) which are written in terms of coincidence counts C±,±(θa, θb)

that are accessible directly in the experiment:

P±,±(θa, θb) =
C±,±(θa, θb)

C+,+(θa, θb) + C−,−(θa, θb) + C+,−(θa, θb) + C−,+(θa, θb)
. (2.60)

The coincidence count can be written as

C±,±(θa, θb) =
1

4T

∫ 4T/2
−4T/2

ηaηb〈Ψ̂(+)
±a (ta)Ψ̂

(+)
±b (tb + τ)Ψ̂

(−)
±b (tb + τ)Ψ̂

(−)
±a (ta)〉dτ (2.61)

where 4T is finite coincidence gate time, ηa and ηb are detector efficiencies, τ is the time

difference and ta,b is the time of detection, and Ψ̂
(±)
±a,b is the particle creation/annihilation

operator. The evaluation of this parameter depends on the type of state used, the

details of set up, etc. For two-color photons, the found result is as follows (see [117] for

calculation):

C±,±(θa, θb) = C0(R2 +T 2)
[
1+(−1)±1±1V cos

(
θa−θb+(ωa−ωb)

δx

c

)
exp

(
− (δx′)2

σ2

)]
where C0 is a constant related to detector efficiencies and coincidence counting before
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the beamsplitter, V = 2RT/(R2 +T 2) is a visibility which is unity for 50 : 50 beamsplit-

ter (R = T = 0.5), c is the speed of light, ωa,b frequencies of photons, δx is the gross

path-length difference between left and right interferometers, σ is the spectral width

of the photons, and δx′ = δx − c(θa/ωa − θb/ωb). Normally the photon ”coherence” σ

covers many optical cycles while phase delays are less than one cycle and the approxi-

mation δx ≈ δx′ can be made. The coincidence count as a function of gross path-legth

difference δx shows a cosinusoidal oscillation within a Gaussian envelope of width σ.

This behaviour namely the quantum beating phenomenon has already been observed in

[103, 118]. Near zero path-length difference the exponential term becomes unity. Then

we find the same joint measurements formally equivalent to those for a polarization

correlated photon pairs.

The goal of the rest of the chapter is going to be the calculation of the coinci-

dence count in the case of the Bell’s inequality test experiment using external degrees

of freedom of massive particles which is the Helium atoms in our case.

2.2.2 The proposed scheme of the Bell’s inequality test with the helium

atoms

To realize the Bell’s inequality test with the massive particles correlated between exter-

nal degrees of freedom, we should be able to create an atomic source and manipulate

it. In our case, we create a pair of atoms a and b in a conjugate multimode momen-

tum state which is the result of the process of dynamical instability when atoms are

loaded in an optical lattice (section 2.2.3.2). This method has been proven to be ef-

ficient and the nonclassical properties of this source has already been demonstrated

in our group [18]. The output state of a pair of atoms can be put in the EPR state

|ψEPR〉 = 1√
2
(|1kb+ , 1ka−〉 + |1kb− , 1ka+〉) by isolating two conjugate modes, {kb+; ka−}

and {kb−; ka+}, with the help of aperture (A) as shown in figure 2.5. We should also

ensure to have a pair of atom at a time to obtain such a state. The next step is to make

interfere the non-conjugate modes, {kb+; ka+} and {kb−; ka−}, on the two separate beam-

splitters and measure the coincidence counting between outputs of distinct interferome-

ters as a function of phases θ+ and θ− introduced on the interferometers of + modes and

− modes respectively. The manipulating elements: aperture, mirror, beamsplitter and

phase plate are all realized using bragg pulses obtained from superposition of two optical

beams (section 2.2.4). The last step is to look at the coincidences C++(θ+, θ−) = CD1,D3,

C−−(θ+, θ−) = CD2,D4, C+−(θ+, θ−) = CD1,D4 and C−+(θ+, θ−) = CD2,D3 which corre-

spond to coincidence counts between detectors of separate interferometers to estimate

the correlation coefficient as a function of angles θ+ and θ−. In the next two sections

the pair creation method and bragg pulse will be described in detail. The last section is

devoted to the estimation of the correlation coefficient for our experimental setup.
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Figure 2.5: Schematics of the Bell’s inequality test experiment using a pair
of helium atoms correlated in momentum space A pair of helium atoms, a and b,
are emitted in a conjugate multimode momentum state by the source (S) at time t = 0.
Two pair of conjugate modes, {kb+; ka−} (shown in blue) and {kb−; ka+} (shown in red)
are selected by the aperture (A). The non-conjugate modes {kb+; ka+} and {kb−; ka−}
are then made to interfere on two different beamsplitters (BS) at time t = ts with the
help of mirrors (M) applied at t = tm. Two distinct phases θ+ and θ− are introduced
for each interferometer, + and − respectively. Finally, the atoms are detected after
a time of flight and the coincidence counting is made between outputs of separate

interferometers.

2.2.3 The atomic pair creation

2.2.3.1 The dynamical instability

In order to get full insight of the physics of the atomic pair creation process, the summary

of the work by Biao Wu and Qian Niu [146, 147] who studied the effect of the lattice on

the stability of the condensate in one dimension will be presented. Later, we will focus

on the state of the resulting pair considering the nondepleted condensate regime.

Most of the photon pair creation processes necessitate a nonlinear medium. On the

contrary, we do not need an intermediate medium for the atoms, since the nonlinearity

is created through the strong interaction of the atoms between each other. We consider

a system of Bose-Einstein condensate (BEC) of helium atoms in an optical lattice and

look at the dynamical instability resulting from it. Using a BEC provides us with high

density of atoms and with a well defined momentum. The BEC can be considered atomic



Chapter 2. Bell’s inequality test: theory 50

analog of a laser source in optics. The system is governed by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint =

∫
d~r Ψ̂†

[
− ~2∇2

2m
+ V (~r, t)

]
Ψ̂ +

g

2

∫
d~r Ψ̂†Ψ̂†Ψ̂Ψ̂ (2.62)

where g = 4π~2a
m is the interaction coupling constant, fixed by the s-wave scattering

length a, and V (~r, t) is the external potential. In our experiment, the transverse degree

of freedom can be considered as frozen due to the high confinement of the dipole trap

(longitudinal and transverse radial frequencies of the dipole trap are: ωz ∼ 2π× 100 Hz

and ω⊥ ∼ 2π×1300 Hz respectively), thus the problem can be approximately considered

as unidimensional (see [98, 124] for the transverse effects). In the frame of mean-field

theory, the hamiltonian becomes:

H =

∫
dz
{
ψ∗(z)

(
− ~2

2m

d2

dz2
+ V (z, t)

)
ψ(z) +

g

2
|ψ(z)|4

}
(2.63)

In the first place we search for the stationary solutions of the hamiltonian, meaning a

solution which verifies the Gross-Pitaevskii equation:

− ~2

2m

d2ψ

dz2
+ V (z, t)ψ + gn0|ψ|2ψ = µψ (2.64)

with the mean density n0 and the chemical potential µ. In our case, the external potential

is represented by only the periodic potential of the lattice (longitudinal confinement is

neglected). It is created by superposing two laser beams on the atoms (see Chapter 3,

section 3.2.2). In the frame of reference of the lattice, the atoms are subjected to the

time independent periodic potential [40]:

V (z, t) = V (z) =
V0

2
(1− cos(2klatz)) (2.65)

where klat = 2π
λ sin(θ/2), λ is the wavelength of laser beams which make a lattice, and

θ is the angle between these laser beams. The potential depth is given by:

V0 = − ~Γ2I0

2Isat∆
(2.66)

with Γ natural width, I0 is the amplitude of the intensity resulting from the superposition

of two laser beams, Isat the saturation intensity, ∆ is given by 1
∆ = 1

ω−ω0
+ 1

ω+ω0
with

ω0 resonance frequency of atomic transition, and ω is the frequency of the laser.

In order to find the solution of the equation (2.64), we treat the interaction pertur-

batively, in other words, we find first the solutions without the interaction term, these

are given as (in the band theory):

ψq(z) = exp(ıqz)uq(z) (2.67)
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where a function uq(z) has the same periodicity as the potential and can be decomposed

in terms of plane waves:

uq(z) =

∞∑
m=−∞

am(q) exp(−2ımklatz) (2.68)

Then we reinject the found solution for the interaction term, and we search again for

the new solutions of the Gross-Pitaevskii equation but this time including the interaction

term. We repeat this procedure until we get a self-consistent solution.

Next, we study the dynamical stability of the system governed by the time depen-

dent Gross-Pitaevskii equation:

ı~
∂

∂t
ψ(z, t) = − ~2

2m

∂2ψ(z, t)

∂z2
+
V0

2
(1− cos(2klatz))ψ(z, t) + gn0|ψ(z, t)|2ψ(z, t). (2.69)

To study the stability of this equation, we add a perturbation to the fundamental state

of the self-consistent solution found earlier ψ(z, t) = ψq0(z) + δψq0(q, z, t). The form of

the perturbation is chosen as to represent excitations with quasi-momentum q0 + q and

q0 − q :

δψq0(q, z, t) = vq0(z, q, t) exp(ıqz) + w∗q0(z, q, t) exp(−ıqz) (2.70)

with q ∈ [−klat, klat] and vq0(z, q, t), wq0(z, q, t) functions of the same periodicity as the

lattice. We are going to see that when starting with BEC at quasi momentum q0, atoms

at q0 ± q will appear due to the non-linearity [67].

From the equation (2.69), developing up to the first order, we obtain

ı
∂

∂t

(
vq0(z, q, t)

wq0(z, q, t)

)
=Mq0(q)

(
vq0(z, q, t)

wq0(z, q, t)

)
(2.71)

where

Mq0(q) =

(
L(q0 + q) gn0ψ

2
q0(z)

−gn0ψ
∗2
q0 (z) −L(−q0 + q)

)
(2.72)

and

L(q0) = −(
∂

∂z
+ ıq0)2 +

V0

2
(1− cos(2klatz))− µ+ 2gn0|ψq0(z)|2 (2.73)

If the eigenvalues of the matrix Mq0(q) accept an imaginary positive part for the

given q0 and q, the system becomes unstable leading to the exponential growth of the

mode in time. We diagonalize the matrix for each q0 and q and we look at the imaginary

part of the eigenvalue associated to the fundamental band. Then, we can trace the

imaginary part of the energy related to the mode q and the initial momentum q0 = k0 of

the condensate. The curve 2.6 shows the result obtained from the numerical simulations

with the typical value of the lattice depth V0 = 1Er (in units of recoil energy Er =
~2k2

lat
2m )
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in our experiment. According to the curve, for a given value of k0 above a threshold value,

Figure 2.6: Gain(imaginary part of the energy) associated with the quasi momentum
q (in units of klat) of the perturbation and the initial momentum of the condensate k0

(in units of klat). The lattice depth is V0 = 1Er. We see that starting from threshold
value of k0, continuum of conjugate modes with finite width emerges. Figure adopted

from [124]

we see that the imaginary part of the energy is nonzero centered on two modes q and −q.
Therefore, the modes centered at k1 = k0− q and k2 = k0 + q will grow exponentially in

time and it can happen spontaneously without seeding due to the vacuum fluctuations.

There are continuum of conjugate modes with finite width as a function of k0.

This process namely dynamical instability has been studied experimentally by dif-

ferent groups [28, 50, 96]. The loss resulting from the instability as a function of the

momentum of the condensate has been studied in [49]. The authors showed the strong

increase in atomic loss rate starting from a threshold value of the quasi-momentum of

the condensate q0 = k0, as shown in figure 2.7.

2.2.3.2 The dynamical instability as a four wave mixing process

The fact that the two perturbation modes grow up simultaneously suggests that the loss

is pairwise. Indeed, the dynamical instability can be considered as a four wave mixing

process in the presence of a periodic potential which enables the energy and momentum

conservation in one dimension by modifying the dispersion relation with respect to the

free space [67]. To explore it in more detail, reconsider the hamiltonian in (2.62):

Ĥ = Ĥ0 + Ĥint =

∫
d~r Ψ̂†

[
− ~2∇2

2m
+ V (~r)

]
Ψ̂ +

g

2

∫
d~r Ψ̂†Ψ̂†Ψ̂Ψ̂ (2.74)
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Figure 2.7: Loss rate of a condensate in an optical lattice as a function of its quasi-
momentum k0. Increase in the loss rate corresponds with the expected threshold
value(vertical line). When the loss rate is important, the density of the condensate
exhibit a complex structure, indicating the loss of the coherence. Figure extracted

from [49]

Within the framework of the four-wave mixing, the field operator can be decomposed in

pump (Φp1 and Φp2), signal (Φk1) and idle (Φk2) (multi) modes :

Ψ̂(~r, t) = Φp1(~r, t)âp1 + Φp2(~r, t)âp2 + Φk1(~r, t)âk1 + Φk2(~r, t)âk2 (2.75)

with âi the annihilation operator of a particle in mode i. Inserting this decomposition

for the expression of the interaction hamiltonian Ĥint in (2.74) we get numerous terms,

and in particular:

Ĥ4WM =
g

2

∫
d~rΦ∗p1

(~r, t)Φ∗p2
(~r, t)Φk1(~r, t)Φk2(~r, t)â†p1

â†p2
âk1 âk2 + h.c. (2.76)

describing the four wave mixing or in other words, the diffusion of two atoms in pump

modes Φp1 and Φp2 into a pair of modes Φk1 and Φk2 (and the inverse process). The

other terms, in our condition, never satisfy the energy conservation and influence hardly

the evolution of the system.

In order to describe the phase matching condition of the four wave mixing process

of the condensate in the presence of the optical lattice, we consider a condensate with

the quasi-momentum k0, which is loaded into the fundamental band of the shallow
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optical lattice, we wait until the two diffused modes with the quasi-momenta k1 and

k2 are populated, and then we remove the lattice. Loading and unloading atoms are

considered to be adiabatic meaning that the atoms stay in the fundamental band and

the quasi-momenta, defined in the first Brillouin zone, are mapped to the real momenta

in the frame of lattice. Then the momentum and the energy conservation of the four

wave mixing process can be written as (discarding mean field):

k1 + k2 = 2k0 (2.77)

E(k1) + E(k2) = 2E(k0) (2.78)

since the pump modes are degenerate, kp1 = kp1 = k0 representing atoms in the con-

densate. These relations are represented graphically in 2.8, where the phase matching

condition is satisfied for the segment [M1 = (k1, E(k1)),M2 = (k2, E(k2))] on the dis-

persion relation provided that the point M0 = (k0, E(k0)) is placed on the middle of

this segment. We understand that we need a concavity for the dispersion relation to be

Figure 2.8: Examples of phase matching points of the four wave mixing process in
an optical lattice. The quasi-momentums are defined modulo 2klat, the point which is

out of the first Brillouin zone, is folded. Figure extracted from [124]

able to draw such a segment. The concavity is provided by the periodic potential in our

system. Also the existence of such a segment is only possible above a threshold value of

the initial momentum of the condensate k0 ≈ 0.5klat, the exact value of which depends

on the lattice depth and the interaction.

The experimental demonstration of the phase matching condition has been shown
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by the group of Ketterle [29] and studied in more detail including the effects of mean-

field in our group [18]. In both cases, the momentums k1 and k2 are tuned as a function

of the initial momentum of the condensate k0 (see figures 2.9 and 2.10).

Figure 2.9: Absorption images for the different values of the condensate quasimomen-
tum k0. As k0 varied, the k1 and k2 has been changed as expected. Figure extracted

from [29]

2.2.3.3 The four wave mixing in the non-depleted classical pump regime

The four wave mixing hamiltonian given in (2.76) can be written as (only two modes

are considered):

Ĥ4WM =
g

2

[
C(âk0)2â†k1

â†k2
+ h.c.

]
(2.79)

where C is proportional to the overlap of the pump, signal and idle wavefunctions. If the

population Nk0 of the pump is considered as macroscopic and non-depleted, then the

operator âk0 can be treated classically in terms of their mean value âk0(t) =
√
Nk0(t) =√

Nk0(0) exp(
−ıEk0

t

~ ). This approximation is fulfilled in our experiment since the pop-

ulation of the pair is about 2 atoms on average and the pump consists of a condensate

with Nk0 ∼ 105 atoms, and it is far from being depleted so that we can easily neglect

fluctuations of the number of the atoms in the condensate. Then, we can write the
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Figure 2.10: Measured mean momenta k1 and k2 (black dots, in units of klat) as a
function of k0(initial BEC momentum in the lattice frame). The solid line shows the
phase-matching curve expected without interactions, while the dashed line includes the

mean field effect (see [18] for the detail). Figure extracted from [18]

approximative full hamiltonian in a form:

Ĥ =
[
Ek0Nk0 +

∑
i=k1,k2

Eiâ
†
i âi

]
+
g

2

[
CNk0 â

†
k1
â†k2

exp(
−2ıEk0t

~
) + h.c.

]
= Ĥ0 + ĤI (2.80)

with Ĥ0 the free energy of the condensate and atoms in the signal and idle mode in the

periodic potential. This expression is the analogue of the parametric amplifier hamilto-

nian in quantum optics where the pump is usually treated classically and assumed to be

non-depleted.

2.2.3.4 The resulting state and its properties

It can be shown for the hamiltonian Ĥ in (2.80) that the difference of the number

operator between signal and idle modes is a constant of the motion:

[
N̂k1 − N̂k2 , Ĥ

]
= 0 (2.81)

implying that N̂k1(t)− N̂k2(t) = N̂k1(0)− N̂k2(0) = 0 when starting from vacuum. This

relation expresses the fact that the signal and idle atoms are created in pair. In our
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group, the normalized variance of the atom number difference:

V =
〈(N̂k1 − N̂k2)2〉 − 〈N̂k1 − N̂k2〉2

〈N̂k1 + N̂k2〉
(2.82)

was measured [18] to demonstrate the simultaneous creation of atoms in scattered modes.

Ideally, the variance defined above tends to 0 in contrast to the classical process where

the noise of the number difference is limited by the shot noise, or V = 1. For an atomic

pair resulting from the four wave mixing process in a lattice, a variance below unity was

measured indicating sub-Poissonian fluctuations on the number difference. The signal

did not descend to 0 due to the limited detection efficiency. In fact, for the detection

efficiency η, the normalised variance becomes:

Vdet = (1− η) + ηV. (2.83)

Two mode case: solutions of the equations of motion and statistics. The

Heisenberg equation of motion for annihilation operator âk1(t) can be written as:

˙̂ak1(t) =
1

ı~
[âk1(t), Ĥ] (2.84)

= −ıEk1 âk1(t)− ıg
2
CNk0 â

†
k2

(t) exp(−ı2Ek0

~
t) (2.85)

We can simplify this equation by introducing complex amplitudes in a form:

Âk1(t) = âk1(t) exp(ı
Ek1

~
t) (2.86)

Âk2(t) = âk2(t) exp(ı
Ek2

~
t) (2.87)

Then, we have a simpler equation for Âk1(t):

dÂk1(t)

dt
= −ıg

2
CNk0Â†k2

(t) exp(ı
Ek1 + Ek2 − 2Ek0

~
t). (2.88)

If Ek1 + Ek2 = 2Ek0 , we have

dÂk1(t)

dt
= −ıg

2
CNk0Â†k2

(t) (2.89)

dÂk2(t)

dt
= −ıg

2
CNk0Â†k1

(t) (2.90)

The general solutions of these equations can be obtained as

Âk1(t) = Âk1(0) cosh(
g

2
|C|Nk0t)− ı exp(ıθ)Â†k2

(0) sinh(
g

2
|C|Nk0t) (2.91)

Âk2(t) = Âk2(0) cosh(
g

2
|C|Nk0t)− ı exp(ıθ)Â†k1

(0) sinh(
g

2
|C|Nk0t) (2.92)



Chapter 2. Bell’s inequality test: theory 58

where we have written C = |C| exp(ıθ).

In order to calculate the expectation values of the scattered modes, we shall take

the initial state of both signal and idle modes to be the vacuum state |vac〉k1,k2 . Using

the solutions in (2.91) and (2.92) and taking into account the fact Âk1,k2(0)|vac〉k1,k2 = 0,

we can easily show the following relations:

〈N̂k1〉 = 〈Â†k1
(t)Âk1(t)〉 = sinh2(

g

2
|C|Nk0t) = 〈N̂k2〉

〈: N̂2
k1

:〉 = 〈Â†k1
(t)Â†k1

(t)Âk1(t)Âk1(t)〉 = 2 sinh4(
g

2
|C|Nk0t) = 〈: N̂2

k2
:〉

〈: N̂k1N̂k2 :〉 = 〈Â†k1
(t)Â†k2

(t)Âk2(t)Âk1(t)〉 = sinh2(
g

2
|C|Nk0t)[1 + 2 sinh2(

g

2
|C|Nk0t)]

The normalized local correlation g
(2)
loc becomes

g
(2)
loc (k1, k1) =

〈: N̂2
k1

:〉
〈N̂k1〉2

= 2 = g
(2)
loc (k2, k2). (2.93)

Similarly, the cross-correlation g
(2)
cross is:

g(2)
cross(k1, k2) =

〈: N̂k1N̂k2 :〉
〈N̂k1〉〈N̂k2〉

= 2 +
1

sinh2(g2 |C|Nk0t)
. (2.94)

We have found that

〈: N̂k1N̂k2 :〉 = 〈: N̂2
j :〉+ 〈N̂j〉 (j = k1, k2). (2.95)

Finally, the state of the produced pair considering only two modes is given in the

interaction picture as:

|ψ(t)〉 = exp(−ıĤI

~
)|vac〉 (2.96)

A detailed calculation produces [142]:

|ψ(t)〉 =
1

cosh(g2 |C|Nk0t)

∑
n

[
tanh(

g

2
|C|Nk0t)

]n|n, n〉k1,k2 . (2.97)

Mutimode case: perturbative treatment of the state of pair. So far we have

considered only two scattered modes: signal and idle modes. But in general, the pair can

be produced in a multimode state since the phase matching condition can be satisfied

for several modes (width of the gain in the figure 2.6). We can allow the possibility of

having the multimode state by making a plane-wave mode expansion of each field and
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expressing the interaction Hamiltonian ĤI in the form [93]:

ĤI =
1

Lz

∑
k′1,k

′
2

Ak0χ(k0, k
′
1, k
′
2)

∫
Lz

eı(2k0−k′1−k′2)ze
ı
~ (Ek′1

+Ek′2
−2Ek0

)t
â†
k′1
â†
k′2

dz + h.c.

where condensate is treated again classically as plane wave with amplitude Ak0 , Lz is the

active length of the condensate in which the pair production takes place, χ(k0, k
′
1, k
′
2) is

the coupling constant in producing a pair in modes k′1 and k′2. The state produced at

time T is given by:

|Ψ(T )〉 = exp

[∫ T
0 ĤI(t

′) dt′

ı~

]
|vac〉. (2.98)

We can expand the exponential and write the state as

|Ψ(T )〉 =
∑
k′1,k

′
2

|vack′1 , vack′2〉+ L−1
z

1

ı~
∑
k′1,k

′
2

Ak0χ(k0, k
′
1, k
′
2)

[
sin
(

1
2(2k0 − k′1 − k′2)Lz

)
1
2(2k0 − k′1 − k′2)

]

×e
ı
~ (Ek′1

+Ek′2
−2Ek0

)T/2
sin
(

1
2~(Ek′1 + Ek′2 − 2Ek0)T

)
1
2~(Ek′1 + Ek′2 − 2Ek0)

|1k′1 , 1k′2〉

+ . . .

It can be written in more compact form:

|ΨFWM 〉 =
∑
k′1,k

′
2

|vack′1 , vack′2〉+
∑
k′1,k

′
2

f(k′1, k
′
2)|1k′1 , 1k′2〉+ . . . (2.99)

where higher order terms include a greater number of particles. If we assume a time

T which is short compared with the average time interval between successive pair pro-

ductions, we can omit higher order contributions to the state. At the end of the pair

production, we can write the perturbative multimode state of the pair in the laboratory

frame of reference as:

|ΨFWM 〉 ≈ |ΨEPR〉 =
∑
k′a

∑
k′b

fab(k
′
a, k
′
b)|1k′a , 1k′b〉 (2.100)

where fab is chosen by the normalization of the state keeping in mind the phase matching

condition k′a + k′b = 2klat:

〈ΨEPR|ΨEPR〉 =
∑
k′a

∑
k′b

|fab(k′a, k′b)|2 = 1. (2.101)

The validity of the approximation |ΨFWM 〉 ≈ |ΨEPR〉 can be checked in the experi-

ment through correlation measurements. The local and cross correlator (correlations at
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specific momenta k′a = ka and k′b = kb) of the state |ΨEPR〉 are given by:

G(2)
aa (ka, ka) = 〈ΨEPR|N̂ka(N̂ka − 1)|ΨEPR〉 = 0

G
(2)
bb (kb, kb) = 〈ΨEPR|N̂kb(N̂kb − 1)|ΨEPR〉 = 0

G
(2)
ab (ka, kb) = 〈ΨEPR|N̂kaN̂kb |ΨEPR〉 = |fab(k′a, k′b)|2

while for the state |ΨFWM 〉, from equations (2.93), (2.94) we have:

G(2)
aa (ka, ka) = 〈ΨFWM |N̂ka(N̂ka − 1)|ΨFWM 〉 = 2〈N̂ka〉2 (2.102)

G
(2)
bb (kb, kb) = 〈ΨFWM |N̂kb(N̂kb − 1)|ΨFWM 〉 = 2〈N̂kb〉2 (2.103)

G
(2)
ab (ka, kb) = 〈ΨFWM |N̂kaN̂kb |ΨFWM 〉 = N̂ka + 2〈N̂ka〉〈N̂kb〉. (2.104)

The correlators of |ΨFWM 〉 can be approximated to produce the same result of |ΨEPR〉
only when 〈N̂ka〉 → 0 and 〈N̂kb〉 → 0. In other words, we should verify the condition

G(2)
aa (ka, ka)� G

(2)
ab (ka, kb) and G

(2)
bb (kb, kb)� G

(2)
ab (ka, kb) (2.105)

In quantum optics community, photonic sources, produced via parametric down

conversion process, verify easily condition above and thus the state of their source is

approximated well with the state |ΨEPR〉. But in our situation, we need to still check it

experimentally in the low gain regime which is waiting in the to-do list. We have a direct

access to the correlation of the atomic pair source in our experimental configuration as

shown in figure 2.11.a. At time t = 0 an atomic pair is produced (see Chapter 3)

by applying an optical lattice on the Bose-Einstein condensate of meta-stable helium

hold in the crossed optical dipole trap as discussed so far (more details on BEC see

Chapter 3). We consider only the relevant z-axis which is the axis of the gravity. The

produced pair fall on the detector situated below the center of the dipole trap at z =

−H = −46 cm following the paths in z − t diagram shown in figure 2.11.b with the

corresponding diagram 2.11.c in the frame of reference of the center of mass of the

pair. The correlation measurements can be easily carried out by counting atoms on each

beam taking advantage of single atom resolution. The only inconvenience is the long

data acquisition time for such correlation measurement due to the long experimental

cycle duration ∼ 30 s and low detection efficiency of the detector 25% (see Appendix

D).

2.2.4 The bragg pulse

Now we have a pair of atoms, we should be able to manipulate them. In other words,

we need the four compulsory elements to be able to realize an atomic interferometer.
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Figure 2.11: Experimental production of an atomic pair by applying a moving vertical
(z−axis) optical lattice on a BEC hold in a crossed dipole trap which is H = 45 cm
above the detector(a). The produced pair falls on the detector under the effect of
the gravity following the trajectory shown in blue and in red in z − t diagram (b)
with the corresponding trajectories in the frame of the center of mass (c). Correlation

measurements are carried out by counting atoms in each beam.

They are:

1. aperture

2. mirror

3. phase plate

4. beamsplitter

for the atoms. We will see that the Bragg pulse can replace the role of all these elements

at least in our experiment. But first we will work out the principle of coherent control

of the external degrees of the helium atoms using Bragg pulses.

2.2.4.1 Statement of problem

Consider a helium atom with the level scheme shown in figure 2.12 with the resonant

frequency ωeg of the excited level |e〉 = 23S1(m = 0) to the ground level |g〉 = 23P0(m =

0) of the atomic internal state transition (see Appendix A). The atom is illuminated by

counter-propagating laser beams with frequencies ω1L and ω2L. The states are described
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by both internal states and momenta parallel to the laser beams. Hence, the state

|g, p − ~k1L〉 designates that the atom has a momentum p − ~k1L parallel to the laser

beams and its internal state is the metastable state 23S1(m = 0) which is noted as |g〉.
The atom is transferred from the initial state |g, p−~k1L〉 to the final state |g, p+~k2L〉
via the intermediate state |e, p〉. We are going to consider the time evolution of the wave

function

|Ψp(t)〉 = C1(t)|g, p− ~k1L〉+ C2(t)|g, p+ ~k2L〉+ C3(t)|e, p〉. (2.106)

In the limit where the spontaneous emission can be ignored and other nonresonant or

multiple diffraction effects can be neglected, the states |g, p − ~k1L〉, |g, p + ~k2L〉 and

|e, p〉 form a closed family for an atom at specific momentum p and the wave function

is normalized 〈Ψp(t)|Ψp(t)〉 = 1.

1L

2L

|g,p-ℏk1L>
|g,p+ℏk2L>

|e,p>

Figure 2.12: A scheme of the transition of helium atoms from the state |g, p− ~k1L〉
to the state |g, p + ~k2L〉 using a bragg pulse which consists of two laser beams with

frequencies ω1L and ω2L.

2.2.4.2 The equations of motion

The hamiltonian is given by H = HA +Hint where the atomic hamiltonian is

HA =
P 2

2M
+ ~ωeg|e〉〈e| (2.107)
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and the interaction hamiltonian is

Hint = −d ·E(z, t) (2.108)

with d the electric dipole moment operator. The electric field is two travelling waves E1

and E2 counterpropogating along z. The total field becomes:

E(z, t) =
1

2
E1e

ı(k1Lz−ω1Lt+Φ1) +
1

2
E2e

ı(−k2Lz−ω2Lt+Φ2) + c.c (2.109)

One can define the Rabi frequencies Ω1 and Ω2 as

Ωn = −〈g|d ·Ene
−ıΦn |e〉

2~
, n = 1, 2 (2.110)

so that the interaction hamiltonian reduces to

Hint = ~Ω∗1e
ı(k1Lz−ω1Lt)|e〉〈g|+ ~Ω∗2e

ı(−k2Lz−ω2Lt)|e〉〈g|+ h.c. (2.111)

We can substitute the relation

e±ıkjz =

∫
|p〉〈p± ~kj |dp j = 1L, 2L (2.112)

in equation (2.111) to show the fact that an absoprtion or emission of a photon of wave

number kj shifts the atoms momentum by ~kj and thus for given p we have a closed

momentum family as discussed above.

The time-dependent Schrodinger’s equation can be written as

ı~
∂|Ψp(t)〉

∂t
= H|Ψp(t)〉. (2.113)

From this equation it is easy to obtain the time evolution of the coefficients Ci(t),

i = 1, 2, 3:

ı~
∂

∂t


C1(t)

C2(t)

C3(t)

 =


(p−~k1L)2

2M 0 ~Ω1e
ıω1Lt

0 (p+~k2L)2

2M ~Ω2e
ıω2Lt

~Ω∗1e
−ıω1Lt ~Ω∗2e

−ıω2Lt (p)2

2M + ~ωeg



C1(t)

C2(t)

C3(t)

 (2.114)
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If we define Bi, i = 1, 2, 3, as

B1(t) = C1(t) exp

(
ı
(p− ~k1L)2

2M~
t

)
, (2.115)

B2(t) = C2(t) exp

(
ı
(p+ ~k2L)2

2M~
t

)
, (2.116)

B3(t) = C3(t) exp

(
ı

(
p2

2M~
+ ωeg

)
t

)
, (2.117)

it is straightforward to obtain their time evolution relations in a form:

dB1

dt
= −ıΩ1e

−ı∆tB3 (2.118)

dB2

dt
= −ıΩ2e

−ı(∆+δ)tB3 (2.119)

dB3

dt
= −ıΩ∗1eı∆tB1 − ıΩ∗2eı(∆+δ)tB2 (2.120)

with

δ ≡
(

(p− ~k1L)2

2M~
− (p+ ~k2L)2

2M~

)
− (ω2L − ω1L) (2.121)

and

∆ ≡
(

(p)2

2M~
+ ωeg −

(p− ~k1L)2

2M~

)
− ω1L. (2.122)

2.2.4.3 Solution of the equations

The bragg resonance condition corresponds to δ = 0 for the momentum p = p0 given by

ω2L − ω1L =
(p0 − ~k1L)2

2M~
− (p0 + ~k2L)2

2M~
(2.123)

then the detuning for an arbitrary momentum p is δ = −(p − p0)(k1L + k2L)/M . In

order to suppress the spontaneous emission, the detuning ∆ is usually chosen large, i.e,

∆ � |Ω1|, |Ω2|, δ. With this condition, the equation (2.120) can be integrated directly

by ignoring time dependence of B1,2 (it can be justified by the solutions we obtain at

the end). Then, we reinject the expression of B3 in (2.118) and (2.119). Terms that

oscillate at frequency ∆ are neglected, since they contribute less to B1,2 by quickly

getting averaged out. The resulting effective two-level equations are

dB1

dt
= ı

|Ω1|2
∆

B1 + ı
Ω1Ω∗2

∆
B2e

ıδt (2.124)

dB2

dt
= ı

Ω∗1Ω2

∆
B1e

−ıδt + ı
|Ω2|2

∆
B2 (2.125)



Chapter 2. Bell’s inequality test: theory 65

The solutions are given by [99, 116]:

B1(p, t0 + t) = exp

[
ı

[
δ +
|Ω1|2

∆
+
|Ω2|2

∆

]
t

2

]

×
{[

cos
ωt

2
+
ı

ω

[
|Ω1|2

∆
− |Ω2|2

∆
− δ
]

sin
ωt

2

]
B1(t0) +

ı

ω

2Ω1Ω∗2
∆

sin
ωt

2
eıδt0B2(t0)

}
,

B2(p, t0 + t) = exp

[
ı

[
− δ +

|Ω1|2
∆

+
|Ω2|2

∆

]
t

2

]{
ı

ω

2Ω∗1Ω2

∆
sin

ωt

2
e−ıδt0B1(t0)

+

[
cos

ωt

2
− ı

ω

[
|Ω1|2

∆
− |Ω2|2

∆
− δ
]

sin
ωt

2

]
B2(t0)

}

where

ω2 =

[
|Ω1|2

∆
− |Ω2|2

∆
− δ
]2

+ 4
|Ω1|2|Ω2|2

∆2
(2.126)

We can simplify the solutions of B1,2(t) further by

• taking |Ω1| = |Ω2|,

• taking t0 = 0,

• omitting the global phase term exp

[
ı

[
|Ω1|2

∆ + |Ω2|2
∆

]
t
2

]
,

• defining effective Rabi frequency Ωeff =
2Ω1Ω∗2

∆ ,

• taking ω =
√
|Ωeff |2 + δ2

• defining the phase difference between two electric fields ∆Φ = Φ2 − Φ1,

So we have the solution in the compact form:

(
B2(t)

B1(t)

)
=

[ cos
(
ωt
2

)
+ ıδ

ω sin
(
ωt
2

)]
e−ıδt/2

ı|Ωeff |
ω sin

(
ωt
2

)
e−ı(δt/2+∆Φ)

ı|Ωeff |
ω sin

(
ωt
2

)
eı(δt/2+∆Φ)

[
cos
(
ωt
2

)
− ıδ

ω sin
(
ωt
2

)]
eıδt/2

(B2(0)

B1(0)

)

Now imagine that we apply the Bragg pulse on the atoms with the state |Ψp(0)〉eff =

B1(0)|g, ~k〉+B2(0)|g, ~k+ ∆kB〉 with ∆kB = k1L + k2L. The evolution of the effective

two level state |Ψp(t)〉eff is given by

|Ψp(t)〉eff = B1(t)e−ı
(~k)2

2M~ t|~k〉+B2(t)e−ı
(~k+~∆kB)2

2M~ t|~k + ~∆kB〉. (2.127)

where |g〉 is skipped. So, the relation between the initial state and the final state is

expressed through B coefficients in (2.127).
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2.2.4.4 Beamsplitter and mirror matrix

Probabilities of ending up in each state |B1(t)|2 and |B2(t)|2 oscillate with a characteristic

frequency ω as a function of time t. An example of such oscillation at resonance δ = 0

is given in the figure 2.13 where the initial conditions are chosen as |B1(0)|2 = 1 and

|B2(0)|2 = 0. For t = π
|Ωeff | , we see that the values of the probabilities are inversed, i.e.

we started with |B1(0)|2 = 1 and |B2(0)|2 = 0 and we ended up with |B1(t =
π

|Ωeff |)|2 = 0

and |B2(t =
π

|Ωeff |)|2 = 1 meaning that if initially the state |�k〉 is populated, a complete

population inversion can be achieved via the Bragg pulse with duration t = π
|Ωeff | which

is called a π−pulse. So the π−pulse can be employed as an atomic mirror with a reflection

coefficient rm = |B2(t =
π

|Ωeff |)|2 and a transmission coefficient tm = |B1(t =
π

|Ωeff |)|2.
For the resonant atoms (δ = 0), we recover well known mirror matrix with:

( √
tm ı

√
rme−ıφm

ı
√
rmeıφm

√
tm

)
(2.128)

Similarly, we can have an atomic beamsplitter by fixing t = π
2|Ωeff | (called

π
2−pulse)

with a reflection coefficient rs = |B2(t =
π

2|Ωeff |)|2 and a transmission coefficient ts =

|B1(t =
π

2|Ωeff |)|2. The beamsplitter matrix is:

( √
ts ı

√
rse

−ıφs

ı
√
rse

ıφs
√
ts

)
. (2.129)

We notice that the matrices contain phase terms coming from the phase difference of

the Bragg beams. These phases are directly imprinted on the atoms and serve us to

control θ+ and θ− of the interferometers in the scheme 2.5.

π Ω

Figure 2.13: Oscillation of probabilities |B1(t)|2 and |B2(t)|2 of ending up in states
|�k〉 and |�k + �ΔkB〉 respectively as a function of the Bragg pulse duration t for
resonant atoms with initial conditions |B1(0)|2 = 1 and |B2(0)|2 = 0. The oscillation

frequency is equal to the effective Rabi frequency.
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2.2.4.5 Aperture

Consider a Bragg pulse used as an atomic beamsplitter. In general, the coefficients rs

and ts of this beamsplitter are functions of momentum since they depend on detuning

δ = −(p − p0)ΔkB/M which depends itself on momentum p = �k. In the figure 2.14,

the reflection coefficient rs of an atomic beamsplitter is plotted as a function of δ for

two different values of |Ωeff |. Units are given in Erec
�

= �k2rec
2M where krec = 2π

λ with λ

an optical wavelength of Bragg beams. Firstly, we see that it is a sinc−function with

some bandpass in detuning and thus in momentum. This selectivity property can be

used as an aperture in conducting the Bell’s experiment with the scheme in the figure

2.5. Secondly, this bandpass changes with |Ωeff | which allows us to adjust the widths

of the two beamsplitters.

δ

|Ω

|Ω

Figure 2.14: Atomic beamsplitter reflection coefficient rs = |B2(t =
π

2|Ωeff | )|2 as a

function of detuning δ for two different values of the effective Rabi frequency.

According to the scheme in the figure 2.5, we realize a mirror with the help of

single bragg pulse which is not selective in momenta so that the two ” + ” modes and

two ” − ” modes are reflected equivalently by the mirror. There are also two atomic

beamsplitters applied at the same time but addressing different modes of the atomic

pair. We will call the first beamsplitter as S+
π/2 which combines modes {kb+; ka+} and

the second beamsplitter as S−π/2 which combines modes {kb−; ka−}. We ensure that

they are selective enough to isolate modes. In order to illustrate the idea, refer to the

figure 2.15 where we plot probability functions of two beamsplitters superposed on the

vertical momentum distribution of the atomic pair. The resonant modes are chosen to

be symmetrical with respect to the centers of the density distribution.
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S-/2 S+/2

kb+kb-ka+ka-

2 kB

kB

kB

2 kB

Figure 2.15: Schematic representation of the probability functions of the atomic
beamsplitters S+

π/2 and S−
π/2 addressing different vertical modes of the atomic pair.

In the weak gain regime of the pair production, the state given in (2.100) is modified

by the aperture and can be written as:

|ΨEPR〉 =
∑
ka

∑
kb

fab(ka, kb)|1ka , 1kb〉 (2.130)

aperture−−−−−→
|Ψ′EPR〉 =

1√
2

[∑
ka+

∑
kb−

f I
ab(ka+, kb−)|1ka+ , 1kb−〉

+
∑
ka−

∑
kb+

f II
ab (ka−, kb+)|1ka− , 1kb+〉

]
(2.131)

The functions fab, f
I
ab and f II

ab are determined by the normalization of the states |ΨEPR〉,
|Ψ′EPR〉 and the phase matching conditions ka + kb = 2klat, ka+ + kb− = 2klat and

ka− + kb+ = 2klat of the pair production process:

〈ΨEPR|ΨEPR〉 =
∑
ka

∑
kb

|fab(ka, kb)|2 = 1

〈Ψ′EPR|Ψ′EPR〉 =
1

2

(∑
ka+

∑
kb−

|f I
ab(ka+, kb−)|2 +

∑
ka−

∑
kb+

|f II
ab (ka−, kb+)|2

)
= 1.
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We decided to model these functions in terms of gaussian functions as follows:

fab(ka, kb) =

√
2

πσ⊥σq
exp

{
− (ka + kb − 2kLat)

2

2σ2
⊥

}
exp

{
− (kb − ka −∆kB)2

2σ2
q

}
f Iab(ka+, kb−) =

√
2

πσ̃⊥σ̃q
exp

{
− (ka+ + kb− − 2kLat)

2

2σ̃2
⊥

}
exp

{
− (kb− − ka+ −∆kB + δkB)2

2σ̃2
q

}

f IIab (ka−, kb+) =

√
2

πσ̃⊥σ̃q
exp

{
− (ka− + kb+ − 2kLat)

2

2σ̃2
⊥

}
exp

{
− (kb+ − ka− −∆kB − δkB)2

2σ̃2
q

}
which are normalized

∫ ∫
dka dkb|fab(ka, kb)|2 = 1,

∫ ∫
dka+ dkb−|f Iab(ka+, kb−)|2 = 1

and
∫ ∫

dka− dkb+|f IIab (ka−, kb+)|2 = 1 if the limits of the integration are taken very

large with respect to the widths of the gaussian functions. In this modeling, the only

unknown parameters are the widths σ⊥, σq, σ̃⊥ and σ̃q. For the HOM experiment (see

Chapter 4), the width σq is important and can be deduced from the cross correlation

measurement. For the Bell’s inequality test (see Chapter 3 and last section of Chapter

2), the width σ̃q is important and it can be related to the bandpass of the atomic

beamsplitter which is on the same order of magnitude with the mode size measured by

the local correlation function of pair.

2.2.4.6 Parameters of a Bragg pulse

As we have seen, the Bragg pulse can play a role of an aperture, a phase plate, a mirror

or a beamsplitter in realizing the Bell’s inequality test with atoms, i.e,

• duration t−t0 allows to have right coefficients for atomic mirror and atomic 50 : 50

beamsplitter

• phase ∆Φ allows to print a phase on atoms

• Rabi frequency Ωeff allows to choose the size of an aperture

• detuning δ allows to address different modes.

All these parameters can be controlled experimentally by controlling the duration, the

phase difference, intensities, and the frequency difference of the laser beams that make

up a Bragg pulse (see for the experimental tests Chapter 3).

2.2.5 Calculating quantum correlation coefficients

Now we are in a state to evaluate the correlation coefficients for the Bell’s inequality

test experiment with helium atoms using the suggested scheme in the figure 2.5 which

is shown again here. We understand that the aperture is applied by the beamsplitters
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S

M

 kb+

M

M

M

BS

BS

A  kb-

 ka+

 ka-

 +

 -

D1

D2

D3

D4

 t=0  t=tm  t=ts

(repeating figure 2.5) Schematics of the Bell’s inequality test experiment using
a pair of helium atoms correlated in momentum space A pair of helium atoms,
a and b, are emitted in a conjugate multimode momentum state by the source (S) at
time t = 0. Two pair of conjugate modes, {kb+; ka−} (shown in blue) and {kb−; ka+}
(shown in red) are selected by the aperture (A). The non-conjugate modes {kb+; ka+}
and {kb−; ka−} are then made interfere on two different beamsplitters (BS) at time

t = ts with the help of mirrors (M) applied at t = tm. Two distinct phases θ+ and θ−
are introduced for each interferometer, + and − respectively. Finally, the atoms are

detected after a time of flight and the coincidence counting is made between outputs of
separate interferometers.

and the phases θ+ and θ− are imprinted via the phase of the beamsplitter S+
π/2 and the

phase of the beamsplitter S−π/2 respectively.

Ultimately, we wish to calculate the CHSH parameter for four different angles:

S(θ+, θ
′
+, θ−, θ

′
−) = E(θ+, θ−)− E(θ+, θ

′
−) + E(θ′+, θ−) + E(θ′+, θ

′
−) (2.132)

where the correlation coefficient is given by

E(θ+, θ−) = P+,+(θ+, θ−) + P−,−(θ+, θ−)− P+,−(θ+, θ−)− P−,+(θ+, θ−) (2.133)
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with the probability of joint detection

P+,+(θ+, θ−) =
G

(2)
D1,D3

G
(2)
D1,D3 +G

(2)
D2,D4 +G

(2)
D1,D4 +G

(2)
D2,D3

P+,−(θ+, θ−) =
G

(2)
D1,D4

G
(2)
D1,D3 +G

(2)
D2,D4 +G

(2)
D1,D4 +G

(2)
D2,D3

and so on. The cross correlation G
(2)
Di,Dj , i = 1, 2 and j = 3, 4 can be accessed in the

experiment directly and it is defined by:

G
(2)
Di,Dj = η2

∫ ∫
dkDi dkDj〈â†kDi âkDi â

†
kDj

âkDj |Ψ〉 i = 1, 2 and j = 3, 4

= η2

∫ ∫
dkDi dkDj‖âkDi âkDj |Ψ〉‖2

with η the efficiency of the momentum resolved micro channel plate detector (see Ap-

pendix D) which replaces all the detectors Di, Dj in the experiment. Here, we consider

1−dimensional model (vertical axis) and we neglect the gravity which is not important in

the following calculation. The operators are written in the Heisenberg picture and they

annihilate or create a particle with corresponding plane wave momentum. The input-

output relation of annihilation operators through the atomic beamsplitter or mirror is

given by the Bragg matrix:(
d̂

ĉ

)
=

( √
t ı

√
re−ıφ

ı
√
reıφ

√
t

)(
b̂

â

)
(2.134)

where for the atomic mirror: r = rm, t = tm and φ = φm whereas for the atomic

beamsplitter S+
π/2: r = rs, t = tm, φ = θ+ and for the atomic beamsplitter S−π/2: r = rs,

t = tm, φ = θ−. The input and output channels of the beamsplitter is represented

graphically in the figure 2.16.

d

ca

b

Figure 2.16: The beamsplitter input-ouptut channel representation.
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We will express the operators âkDi and âkDj in terms of operators at time t = 0. In

other words, take as an example the operator âkD1
, it is given in terms of an operator

âkb+(t > ts) which is itself is written in terms of âkb+(tm < t < ts) and âkb+−∆kB (tm <

t < ts). Finally, âkb+(tm < t < ts) is given by âkb+−∆kB (t = 0) = âkb+−∆kB and

âkb+−∆kB (tm < t < ts) is given by âkb+(t = 0) = âkb+ . More precisely we have:

âkD2
= âka+(t > ts) = e−ı/~Eka+

(t−ts)
(
Aka++∆kB âka++∆kB +Aka+ âka+

)
âkD1

= âkb+(t > ts) = e
−ı/~Ekb+ (t−ts)

(
Akb+−∆kB âkb+−∆kB +Akb+ âkb+

)
with

Aka++∆kB = ı
√
rmtse

ıφme−ı/~(Eka++∆kB
tm+Eka+

(ts−tm))

Aka+ = −√rmrseı(θ+−φm)e−ı/~(Eka+
tm+Eka++∆kB

(ts−tm))

Akb+ = −√rmrseı(φm−θ+)e
−ı/~(Ekb+ tm+Ekb+−∆kB

(ts−tm))

Akb+−∆kB = ı
√
rmtse

−ıφme
−ı/~(Ekb+−∆kB

tm+Ekb+ (ts−tm))

where Ei =
~2k2

i
2m . For the operators âkD3

and âkD4
we have the same relations with

+ indices replaced by − indices. So the cross-correlations on the detector in terms of

operators at time t = 0 are given by:

G
(2)
D1,D3 = η2

∫ ∫
dkb+ dkb−

×‖Akb+−∆kBAkb−−∆kB âkb+−∆kB âkb−−∆kB |Ψ〉+Akb+Akb− âkb+ âkb− |Ψ〉
+Akb+Akb−−∆kB âkb+ âkb−−∆kB |Ψ〉+Akb+−∆kBAkb− âkb+−∆kB âkb− |Ψ〉‖2

(2.135)

and

G
(2)
D1,D4 = η2

∫ ∫
dkb+ dka−

×‖Aka−+∆kBAkb+ âka−+∆kB âkb+ |Ψ〉+Aka−Akb+−∆kB âka− âkb+−∆kB |Ψ〉
+Aka−Akb+ âka− âkb+ |Ψ〉+Aka−+∆kBAkb+−∆kB âka−+∆kB âkb+−∆kB |Ψ〉‖2

(2.136)

and so on.

EPR state. First we consider the (multimode) EPR state:

|Ψ′EPR〉 =
1√
2

[ ∫ ∫
dka+ dkb−f

I
ab(ka+, kb−)|1ka+ , 1kb−〉+

∫ ∫
dka− dkb+f

II
ab (ka−, kb+)|1ka− , 1kb+〉

]
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with

f Iab(ka+, kb−) =

√
2

πσ̃⊥σ̃q
exp

{
− (ka+ + kb− − 2kLat)

2

2σ̃2
⊥

}
exp

{
− (kb− − ka+ −∆kB + δkB)2

2σ̃2
q

}

f IIab (ka−, kb+) =

√
2

πσ̃⊥σ̃q
exp

{
− (ka− + kb+ − 2kLat)

2

2σ̃2
⊥

}
exp

{
− (kb+ − ka− −∆kB − δkB)2

2σ̃2
q

}
.

It is an ideal state in a sense that it is the approximated state of the four wave mixing

process in the low gain regime where cross correlation of a pair is much larger than the

local correlation (see the discussion on the page 60, Chapter 2).

The cross correlations G
(2)
Di,Dj can now be evaluated by averaging with the ideal

state:

G
(2)
D1,D3 =

η2

2

∫ ∫
dkb+ dkb−

×‖Akb+−∆kBAkb−f
I
ab(kb+ −∆kB, kb−) +Akb+Akb−−∆kBf

II
ab (kb− −∆kB, kb+)‖2

= η2r2
m(rsts)

∫ ∫
dkb+ dkb−|f Iab(kb+ −∆kB, kb−)|2

×
{

1 + cos
(
∆θ − ~

m
(ts − 2tm)∆kB(kb+ − kb−)

)}
where ∆θ = θ+−θ− and f IIab (kb−−∆kB, kb+) = f Iab(kb+−∆kB, kb−). Similarly, we have

G
(2)
D1,D4 =

η2

2

∫ ∫
dkb+ dka−

×‖Akb+−∆kBAka−+∆kBf
I
ab(kb+ −∆kB, ka− + ∆kB) +Akb+Aka−f

II
ab (ka−, kb+)‖2

=
η2r2

m(r2
s + t2s)

2

∫ ∫
dkb+ dka−|f IIab (ka−, kb+)|2

×
{

1− 2rsts
r2
s + t2s

cos
(
∆θ − ~

m
(ts − 2tm)∆kB(kb+ − ka− −∆kB)

)}
If the integration limits are large compared to the width of f Iab and f IIab which can be

assured by taking larger analyse volumes, we can obtain analytical result of the cross

correlations:

G
(2)
D1,D3 = G

(2)
D2,D4 =

η2r2
m(r2

s + t2s)

2

[
V + V cos

(
∆θ − ~

m
(ts − 2tm)∆kBδkB

)
e
− (ts−2tm)2

2σ2
Bell

]
G

(2)
D1,D4 = G

(2)
D2,D4 =

η2r2
m(r2

s + t2s)

2

[
1− V cos

(
∆θ − ~

m
(ts − 2tm)∆kBδkB

)
e
− (ts−2tm)2

2σ2
Bell

]
with visibility

V =
2rsts
r2
s + t2s
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and width

σBell =

√
2m

�ΔkB

1

σ̃�
.

The cross correlations show cosinusoidal oscillation within a Gaussian envelope as a

function of time difference ts − 2tm. We have seen already similar expression with the

photons in the equation (2.62).

We plot G
(2)
D1,D4 as a function of ts−2tm in figure 2.17 where we set Δθ = θ+−θ− =

0, η = 1, rm = 1, ts = rs = 1
2 and β = δkB

σ̃�
= 2, 4 . We set also ΔkB = 0.559krec and

σ̃� = 0.02krec which are reasonable experimental values (see Chapter 3). β = δkB
σ̃�

= 2 can

be easily accessed in the experiment. By measuring the cross correlation as a function

 β=2
β=4

Figure 2.17: Joint detection coefficient G
(2)
D1,D4 between detectors D1 and D4 as a

function of phase related to time difference ts − 2tm for β = δkB

σ̃�

= 2 and β = δkB

σ̃�

= 4

of ts − 2tm we will be able to calibrate the value of the phase θ+ − θ− and to precisely

set ts−2tm = 0. Then the cross correlation reduces to the cos−function resulting in the

quantum correlation coefficient given by cos(θ+−θ−) which is specific to the EPR state.

In addition, the visibility V of the cross correlation function can inform us if the Bell’s

inequality is violated or not. The CHSH parameter is expressed in terms of visibility for

four optimized angles {θ+ − θ− = π
4 , θ+ − θ′− = 3π

4 , θ′+ − θ− = −π
4 , θ

′
+ − θ′− = π

4 } as:

S = 4
V − 1 + 4V cos(π/4)

2 + 2V
(2.137)

and it is bigger than S > 2 for V > 1
2 cos(π/4) = 0.70. Experimentally, the visibility in

the worst case is equal to V ∼ 0.95 (see Chapter 3) resulting in S = 2.7 for which the

Bell’s inequality is violated. On the other hand if one considers the classical source with

relative randomly varying phase, the classical correlation can be stated as [117]:

Gclassical
Di,Dj = 〈IDiIDj〉

= IDiIDj

[
1 +

(−1)i+j

2
cos(θ+ − θ−)

]
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which has the maximum visibility of 50% implying S ≤ 2.

Obviously, if the actual state of an atomic pair can be approximated by the EPR

state, we can expect a violation of Bell’s inequality. The condition is that the cross

correlation of pair should be much larger than the local correaltion of pair. To fulfill

this condition we need to work with very small average population of atomic pair which

can be very time demanding especially with experiments of long cycle duration. One

can search the limit of the low gain regime for which the Bell’s inequality would still

be possible. It can be done using two mode state of the parametric down conversion

process [86].

Two mode parametric down conversion state. We will consider two inde-

pendent parametric state which can be written as (in analogy with equation (2.97)):

|ΨFWM 〉 =
∑
n

tanhn(λ1)

cosh(λ1)

∑
m

tanhm(λ2)

cosh(λ2)
|nka+ , nkb−〉|mka− ,mkb+〉 (2.138)

with sinh2(λ1) = 〈n〉 and sinh2(λ2) = 〈m〉. From the general definition of the cross

correlation in (2.135), we have

G
(2)
D1,D3 = |Akb+−∆kBAkb−−∆kB |2G

(2)
ka+,ka−

+ |Akb+Akb− |2G
(2)
kb+,kb−

+|Akb+Akb−−∆kB |2G
(2)
kb+,ka−

+ |Akb+−∆kBAkb− |2G
(2)
ka+,kb−

+2Re
[
η2Akb+Akb−−∆kBA

∗
kb+−∆kB

A∗kb−〈â
†
ka+

â†kb− âkb+ âka−〉
]

where G
(2)
ki,kj

= η2〈ΨFWM |â†ki âki â
†
kj
âkj |ΨFWM 〉 with i = a+, b+ and j = a−, b−. By

fixing rs = ts = 1
2 and tm = 0, rm = 1, one can show that

G
(2)
D1,D3 = G

(2)
D2,D4 =

1

4

[
G

(2)
kb+,kb−

+G
(2)
ka+,ka−

+G
(2)
kb+,ka−

+G
(2)
ka+,kb−

+2Re
{
η2eı(∆θ−

~
m

(ts−2tm)∆kBδkB)〈â†ka+
â†kb− âkb+ âka−〉

}]
G

(2)
D1,D4 = G

(2)
D2,D3 =

1

4

[
G

(2)
kb+,kb−

+G
(2)
ka+,ka−

+G
(2)
kb+,ka−

+G
(2)
ka+,kb−

−2Re
{
η2eı(∆θ−

~
m

(ts−2tm)∆kBδkB)〈â†ka+
â†kb− âkb+ âka−〉

}]
The autocorrelations G

(2)
kb+,kb−

, G
(2)
ka+,ka−

and cross correlations G
(2)
kb+,ka−

, G
(2)
ka+,kb−

are eas-

ily evaluated (from (2.102)):

G
(2)
kb+,kb−

+ G
(2)
ka+,ka−

= 2η2〈n〉〈m〉 (2.139)

G
(2)
kb+,ka−

+ G
(2)
ka+,kb−

= η2〈n〉(1 + 2〈n〉) + η2〈m〉(1 + 2〈m〉). (2.140)
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For the symmetric average population 〈n〉 = 〈m〉, it is shown [86] that

〈â†ka+
â†kb− âkb+ âka−〉 = 〈n〉(1 + 〈n〉). (2.141)

Finally, the quantum correlation coefficient takes form:

E(θ+, θ−) =
(1 + 〈n〉) cos(θ+ − θ− − ~

m(ts − 2tm)∆kBδkB)

〈n〉(1 + 3〈n〉) (2.142)

leading to the CHSH parameter (for the optimized set of phases θ+, θ− and ts−2tm = 0):

S = 2
√

2
1 + 〈n〉
1 + 3〈n〉 . (2.143)

The threshold value of 〈n〉 to have S bigger than 2 is as small as 0.26. We can reduce

the average population in practice at the cost of the longer integration times. We will

estimate next the reasonable number of repetitions to achieve acceptable signal to noise

ratio.

Error of the CHSH parameter. We can estimate naively the standard error of

the CHSH parameter δS. From the definition of the S parameter:

S(θ+, θ
′
+, θ−, θ

′
−) = E(θ+, θ−)− E(θ+, θ

′
−) + E(θ′+, θ−) + E(θ′+, θ

′
−)

we can write

δS =
√

(δE)2 + (δE)2 + (δE)2 + (δE)2 = 2δE (2.144)

and from the definition of the correlation coefficient:

E(θ+, θ−) =
G

(2)
D1,D3 +G

(2)
D2,D4 −G

(2)
D1,D4 −G

(2)
D2,D3

G
(2)
D1,D3 +G

(2)
D2,D4 +G

(2)
D1,D4 +G

(2)
D2,D3

we can write

(δE
E

)2
=
( 2δG

(2)
Di,Dj

G
(2)
D1,D3 +G

(2)
D2,D4 −G

(2)
D1,D4 −G

(2)
D2,D3

)2
+
( 2δG

(2)
Di,Dj

G
(2)
D1,D3 +G

(2)
D2,D4 +G

(2)
D1,D4 +G

(2)
D2,D3

)2

with (for 〈n〉 � 1)

E =
1 + 〈n〉
1 + 3〈n〉 cos(∆θ) ∼ 1

G
(2)
D1,D3 +G

(2)
D2,D4 −G

(2)
D1,D4 −G

(2)
D2,D3 = 2〈n〉(1 + 〈n〉) cos(∆θ) ∼ 2〈n〉

and

G
(2)
D1,D3 +G

(2)
D2,D4 +G

(2)
D1,D4 +G

(2)
D2,D3 = 2〈n〉+ 6〈n〉2 ∼ 2〈n〉.



Chapter 2. Bell’s inequality test: theory 77

So, the error of the E is

δE =
√

2
δG

(2)
Di,Dj

〈n〉 . (2.145)

The expression of G
(2)
Di,Dj is

G
(2)
Di,Dj =

1

4

{
2〈n〉2 + 2〈n〉(1 + 2〈n〉) + (−1)i+j2〈n〉(1 + 〈n〉) cos(∆θ)

}
∼ 〈n〉

suggesting that

δG
(2)
Di,Dj = δ〈n〉. (2.146)

The standard error of the average population can be written for N experimental real-

izations as

δ〈n〉 =
1

N (〈n2〉 − 〈n〉2)

while the standard error of the detected average population is

δ〈ndet〉 =

√
η2(δ〈n〉)2 +

η(1− η)

N 〈n〉 ∼
√
η(1− η)

N 〈n〉. (2.147)

Finally, the standard error of S can be reduced to:

δS = 2
√

2

√
η(1− η)

N〈n〉 . (2.148)

If we want to have S ± δS = 2.2 ± 0.1, the number of experimental realizations should

be

S = 2
√

2
(1 + 〈n〉)
(1 + 3〈n〉) = 2.2 −→ 〈n〉 = 0.16

δS = 2
√

2

√
η(1− η)

N〈n〉 = 0.1 −→ N ∼ 940.

The total number of realizations is Ntot = 4×N ∼ 4000 where factor 4 is for four set of

phases. It is indeed a reasonable number for us to carry out an experiment amounting

to about one week of data acquisition.

2.2.6 Conclusion

In this chapter we have presented the Bell’s inequalities starting with the experiment

of spin entangled photons. Then we have looked at the scheme of the Bell’s inequality

test experiment based on the correlation of the external degrees of freedom which can

be mapped one to one with the experiment using spin entangled photons. We have

presented also the analogical scheme for the experiment with helium atoms correlated

in momentum. The atom pair production and the manipulation of this source by using

Bragg pulse is presented theoretically in detail. Finally, we have evaluated the quantum
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correlation coefficient using an approximated state |Ψ′EPR〉 which is valid in low gain

regime of the pair production. Low gain regime means long data acquisition to acquire

enough data, so it will not be possible to decrease the gain arbitrarily. In order to

estimate the upper threshold of the low gain regime, the correlation function is evaluated

assuming the state of two independent modes of the parametric down-conversion process

which allows having more than two atoms at a time. We think that it is possible to carry

out the experiment with reasonable data acquisition period to achieve the satisfactory

signal to noise ratio.



Chapter 3

Bell’s inequality test with massive

particles: experimental

preparation

This chapter will be devoted to the experimental preparation of the atomic Bell’s in-

equality test using momentum correlated pair in which I was fully engaged in the last

year of my thesis work in the quantum atom optics team. We have realized plenty of

experimental tests and improved several aspects of the basic elements of the proposed

scheme in the figure 2.5 to check if it is experimentally plausible at all and if we control

all the parameters. After all, in real life, the situation could be more complex than what

is given in the theoretical description of the Chapter 2.

This chapter is organized as follows: in the first section, the overview of the exper-

imental sequence is presented, in the next section the tests on the atomic pair source

is described. The third section is devoted to the tests on the Bragg beam, which plays

the role of aperture, phase shifter, mirror and beamsplitter, and the last section will

describe the perspective.

3.1 Experimental preparation of the protocol of the atomic

Bell’s test experiment

The scheme in figure 3.1 (replica of the figure 2.5 in Chapter 2) for the realisation of

the Bell’s inequality test with helium atoms is not chosen by chance. On the contrary,

it was found to be an optimised scheme specifically in terms of the phase control among

the other possible schemes we have investigated. In addition, this particular scheme

requires minimum modification on top of the existing experimental set-up of the atomic

Hong-Ou-Mandel (HOM) experiment (discussed in Chapter 4). So, what are the basic

79
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Figure 3.1: Top: Schematics of the Bell’s inequality test experiment using a
pair of helium atoms correlated in momentum space and the corresponding
experimental sequence. Initially we prepare a condensate of metastable helium in
the crossed dipole trap which serves as a nonlinear medium to create pairs (BEC).
Then the multimode atomic pair is created through the dynamical instability process
by applying a moving optical lattice on the condensate (S). Later we switch off the trap
and transfer the atomic pair in the magnetic insensitive substate m = 0 by a Raman
process to avoid the deviations of trajectories of atoms due to the stray magnetic field
in the science chamber (Raman). We apply then a single Bragg pulse at t = tm which
is not selective in mode. It will play the role of the atomic mirror (M). At ts, we
apply two simultaneous Bragg pulses which act as a beamsplitter for the two separate
interferometers of the non-conjugate modes (BS). In the end, the particles are detected
and the correlation analysis is made (detection).Bottom: The vertical modes of

the atomic pair addressed by the two beamsplitters.
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ingredients of the proposed experimental protocol for the atomic Bell’s inequality test

in the figure 3.1? They are:

• multi-mode atomic pair,

• aperture,

• mirror,

• phase shifter,

• beamsplitter,

• detector.

Recall that the aperture, phase shifter, beamsplitter and mirror are all taken care by the

Bragg pulse (see 2.2.4). So, we see that the Bragg pulse plays a huge role in realising

the atomic Bell’s test experiments and we should have a good command of it.

The global picture of the experimental sequence as shown in the figure 3.1 is as

follows:

1. Preparation of the BEC in the dipole trap: it is our non-linear medium for

the atomic pair creation

2. Creation of an atomic pair in the crossed dipole trap: we create an atomic

pair through the process of the dynamical instability by applying the moving

optical lattice on the BEC as discussed in the Chapter 2.

3. Releasing pair from the trap and transferring them to the magnetic

field insensitive substate m = 0: we release the pair and the condensate from

the trap simply by switching off the laser beams of the dipole trap and later we

transfer the atomic pair in the magnetic field insensitive substate m = 0 using

Raman beams (discussed in appendix C).

4. Atomic mirror: An atomic mirror is realised with the single Bragg pulse which

is not selective in momentum. Thus, it will shift the momentum of all modes by

the same amount.

5. Atomic beamsplitter: An atomic beamsplitter is realised with the two simulta-

neous Bragg pulses which address different modes. Thus, it serves as an aperture

and allows us to control the phase between the two atomic interferometers.

6. Detection and analysis: At the end of the sequence after long time of flight, the

pair is detected (discussed in appendix D) and the correlation analysis is made.
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In the following, I am going to describe the experimental realisation of the stages

listed above including their experimental characterisation and the tests that validate

the possibility of realising Bell’s experimental protocol in figure 3.1. To do so, in the

next section, the characterization of the condensate of the metastable helium atom in

the crossed dipole trap and the correlation properties of the multimode atomic pair is

discussed. Then following the next section, the Bragg pulse, its selectivity and phase

control will be covered in detail. Refer to the table 3.1 for the list of tests.

Test Section

BEC 3.2.1
Setup of dipole trap beams 3.2.1.1

Dipole trap potential 3.2.1.2
BEC of metastable helium 3.2.1.3

Atomic pair 3.2.2
Setup and calibration of moving lattice 3.2.2.1
Correlation measurement of atomic pair 3.2.2.2

Bragg pulse 3.3
Setup and calibration of Bragg beams 3.3.1

Selectivity test 3.3.2
Phase test 3.3.3

Table 3.1: Reference of experimental tests

3.2 Atomic pair source preparation

3.2.1 BEC in the crossed dipole trap and its characterization

3.2.1.1 The optical beams

The crossed dipole trap consists of two focused beams: vertical and horizontal beams

which are superposed at the center of the science chamber 46 cm above the MCP detector

shown in figure 3.2. Due to the intensity gradient, the atoms feel a potential via the

interaction of the induced dipole and the electromagnetic field [58]. When the light is red

detuned with respect to the atomic transition, the atoms are attracted to the maximum

intensity thus creating a trapping potential. For this purpose, we use an IPG laser with

the output power 5 W at 1550 nm (the atomic transition is at 1083 nm) to create the

dipole trap in which we obtain eventually the BEC of the metastable helium atoms. The

output laser beam is divided in horizontal and vertical arms as shown in figure 3.3. We

introduce 80 MHz of the frequency difference between two arms by using different orders

diffracted by the acousto-optic modulators (AOMs). In this way, we avoid the intensity

modulation at lower frequencies which may lead to the parametric excitation resonances.

In addition, by controlling the strength of the RF signal in AOMs we dictate the optical

power in two arms to adiabatically load, cool atoms by evaporation, to switch off the
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Figure 3.2: Crossed dipole trap inside science chamber(drawing not to scale)

trap rapidly. The photodiodes after the AOMs serve as the feedback for the power

control [74]. The available power on the atoms is 2 W, and the typical power at the

end of the evaporation in the vertical beam is 600 mW and in the horizontal beam is

30 mW. At the entry of the science chamber the two beams are focused with the lenses.

The measurement of the beam waists resulted in ωhor
0 = 58(1) μm and ωvert

0 = 35(1)

μm. To retrieve these values the waist of the beam around the focal point was measured

and fit by

ω(r) = ω0

√
1 +

( r

rR

)2
, r = x, z (3.1)

with Rayleigh length rR =
πω2

0
λ . However, these values are not exactly the same ones

with what atoms really feel. The more precise values for beam waists are obtained by

measuring the trapping frequencies using atoms for different powers of the beam and

deducing the waist which is contained in the relations between these two (for details on

the technique [74, 87]). So the real values are ωhor
0 = 82(4) μm and ωvert

0 = 43.0(5)

μm. The deviation of these latter values from the results of the direct measurement is

possibly due to the aberrations introduced by the science chamber windows.
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Figure 3.3: Optical bench of a vertical and horizontal dipole trap beams.
The laser beam is split into two by a polarization cube and one arm is injected into a
fiber to send it on the horizontal beam optical bench. Both arms are diffracted with an
efficiency of 90% by the acousto-optic modulators (AOM) which are used to control the
power of the two beams. The photodiodes on each path collect 1% of the power to lock
the power of the trapping beams. The two lenses before and after the vertical beam
AOM are used as telescope to optimize the diffraction efficiency. The last lenses on each
path before the science chamber focuses beams on the center of the science chamber.
The horizontal beam makes 8.6◦ with respect to x-axis defined by the magnetic trap.

3.2.1.2 The trapping potential

To load atoms from the magnetic trap to the optical trap, we ramp up the intensity of

the vertical beam up to a full power ≈ 1 W and the intensity of the horizontal beam

to its final power value 30 mW as shown in figure 3.4. At this stage we mainly load

atoms in the vertical beam trap whose potential depth is ∼ 7 μK along the vertical

direction. Typically we transfer 1 − 3 × 105 atoms whose thermalisation temperature

is 3 μK. The magnetic trap is then turned off quickly in 100 μs. We keep however a

bias magnetic field of 3 G in the horizontal direction to maintain the polarisation of the

mj = +1 atoms [105]. The measured lifetime of polarised atoms in the dipole trap is

22 s. The condensation is achieved by adiabatically ramping down the intensity of the

vertical beam according to the formula

I(t) = (I0 − IF )e
−t/τev + IF (3.2)

with the time constant τev = 1 s. The potential created by two superposed beams can
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Figure 3.4: The power ramp of the dipole trap beams in a typical experimental
sequence. Between 0−1 s the atoms are loaded adiabatically in the dipole trap (mainly
with vertical beam) from the magnetic trap, between 1−5 s the intensity of the vertical
beam is decreased adiabatically to evaporate the thermal cloud. The condensation

occurs in the crossed dipole trap at the end of the sequence. (figure credit to [87])

be written as:

U(x, y, z) = Uvert

exp

{
− 2(x2+y2)

w2
vert

(
(
z−z0
zvert

)2+1
)}

(
z−z0
zvert

)2
+ 1

+ Uhor

exp

{
− 2(y2+z2)

w2
hor

(
( x
xhor

)2+1
)}

(
x

xhor

)2
+ 1

−mgz (3.3)

with

Uvert = −3πc2

2ω3
0

2Pvert
πw2

vert

( Γ

ω0 − ωdip
+

Γ

ω0 + ωdip

)
(3.4)

and

Uhor = −3πc2

2ω3
0

2Phor
πw2

hor

( Γ

ω0 − ωdip
+

Γ

ω0 + ωdip

)
(3.5)

where Γ = 2π × 1.6 MHz natural width of the transition 23S1 −→ 23P2, ω0 the fre-

quency of this transition, ωdip the frequency of light, wvert(whor) the waist of the ver-

tical(horizontal) beam, zvert =
πw2

vert
λdip

(xhor =
πw2

hor
λdip

) the vertical (horizontal) beam’s

Rayleigh length, z0 = 2.3 mm the central position of the vertical waist. The potential

profile U(0, 0, z) in z−direction is depicted in the figure 3.5 for the final laser beam

powers. We see two different scales, the big one and the smaller one. The big one is

due to the vertical beam and the gravity. We see that the flat potential appears around

z = 0 meaning that the gravity is compensated by the potential of the vertical beam

(this is actually how z0 is chosen). The smaller potential which is zoomed in the inset is

the real trap potential along z− direction which solely comes from the horizontal beam

with the shallow potential depth of 400 nK. Along the transverse directions x and y,
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the trap potential is dictated by the potential created by the vertical beam as shown in

figure 3.6 with relatively bigger potential depth 19.5 μK.

μ

Figure 3.5: Dipole potential U(0, 0, z) of a crossed beam as a function of position z.
We see two different scales, the first one which is larger is the potential of the vertical
beam which compensates the gravity thus creating flat potential around position 0,
and the smaller one which is the potential trap created by the horizontal beam. It is
the latter one which traps atoms in z-direction with potential depth 400 nK which is

zoomed in inset graph.

μ

Figure 3.6: Dipole potential U(x, 0, 0) of a crossed beam as a function of position x.
The trap created here is solely due to the vertical beam with the potential depth of

19.5 μK.

We have experimentally measured the longitudinal (along z) and transverse (plane

perpendicular to z) frequencies of the dipole trap which can also be deduced from the

Taylor expansion of the expression of the potential in (3.3).

To determine the transverse frequency which is given mainly by the vertical beam,

the intensity of the vertical beam is modulated at variable frequency ωmod. When the

modulation frequency approaches the double of the frequency of the trap, we can excite

atoms by injecting the energy of the modulation and expel them from the trap. By

looking at the distribution of the atoms which stays in the trap one can retrieve the

resonant frequency. The effect is seen both on the momentum distribution of the atoms
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Figure 3.7: Determining the transverse frequency of the dipole trap exper-
imentally. The number of atoms, which stay in the trap when the intensity of the
vertical beam is modulated, is plotted as a function of the modulation frequency(blue
points). The momentum distribution is plotted as a function of the modulation fre-
quency in inset (red points). In both cases, we see the expected resonance frequency at

the multiple integer of the transverse frequency of the trap. (figure credit to [87])

and on the atom number. These two parameters are plotted as a function of ωmod in

figure 3.7 where we clearly see the drastic drop on the number of atoms (blue points)

and expansion of the width of the momentum distribution of the atoms (red points in

the inset) at the expected resonance frequency, ωmod = 2ω⊥ = 2542(15) Hz and also at

ωmod = ω⊥ = 1275(8) Hz with smaller effect. We see also the latter one since, the effect

being maximal for ωmod = 2ω⊥, the parametric resonance can occur at all frequencies

ωmod = 2ω⊥
n with n integral [82]. The measured value of the transverse frequency is

compatible with the theoretically expected value ω⊥ = 2π × 1277 Hz.

On the other hand, to determine the longitudinal frequency, we employ another

method although the first method works fine as well. We give an initial speed to the

atoms in the trap, after which they start oscillating in the trap. We hold the atoms in

the trap for some duration and release them from the trap. We can reconstruct the speed

of the atoms at the time when they are released from the arrival time of the atoms on

the detector. By plotting this speed of the atoms as a function of the holding duration

of the trap, one can easily estimate the longitudinal trap frequency as shown in figure

3.8 where the vertical potential depth is increased by setting Phor = 110 mW. In this

configuration the measured frequency is ωz = 2π×210(1) Hz suggesting ωz = 2π×93(4)

Hz for the typical value of the power of the horizontal beam Phor = 30 mW. Note that

the initial speed is given via Bragg diffraction (Chapter 2).
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Figure 3.8: Determining the longitudinal frequency of the dipole trap ex-
perimentally. The center of mass of the atoms in the dipole trap is put in motion by
giving initial speed. The speed at the moment of release from the trap as a function of
holding duration of trap is plotted. The frequency of the oscillation is the frequency of

the trap along z−direction. (figure credit to [87])

To sum up this subsection, we give the key parameters of the dipole trap beams in

table 3.2.

Parameter Notation Value Unit

Beam wavelength λdip 1550 nm
Horizontal beam power Phor 30 mW

Vertical beam power Pver 585 mW
Horizontal beam waist whor 82 µm

Vertical beam waist wvert 43 µm
Longitudinal trap frequency ωz 2π × 93 Hz
Transverse trap frequency ω⊥ 2π × 1275 Hz

Table 3.2: Parameters associated with the dipole trap beams

3.2.1.3 Bose-Einstein condensate of the metastable helium atom in the

crossed dipole trap

In his famous paper [46] dating back to 1924, Einstein predicted that, below a certain

temperature, a macroscopic occupation of the lowest-energy quantum state take place

for the bosonic particles. The quantum states of the particles at thermal equilibrium

saturate, and any excess particles ’condense’ into the quantum ground state since the

indistinguishable bosons have greater probability to end up in the same state which is

already occupied by other bosons than in initially empty states. The condition for which
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this remarkable phase transition known today as the Bose-Einstein condensation (BEC)

occurs is given by the value

nλ3
dB
∼= 2.61 (3.6)

where n is the central atomic density in three dimensional position space, and λdB is

the thermal de Broglie wavelength, which is defined by

λdB =

√
2π~2

mkBT
(3.7)

at temperature T . The condition in (3.6) states that the quantum statistical effects

appear when λdB is on the order of average separation n−1/3, i.e. when the atomic wave

functions overlap. Note that, for an ideal homogeneous gas at room temperature and

under standard pressure, the quantity nλ3
dB is much less than unity.

One can reach the condensation either by increasing the density n or by decreasing

the temperature T in λdB according to the condition (3.6). However, by increasing the

density one can not avoid forming solids or liquids (n ∼ 1028 m−3)where electromag-

netic interactions such as chemical bonds, van der Waals forces. . . are responsable for

the ordinary phase transitions masking the quantum statistical effect. The solution is

to work with a density below 1018 m−3 and reduce the temperature under the critical

temperature which is in microkelvin range, beyond the accessible range via standard

cryogenic techniques. The Bose-Einstein condensation was achieved experimentally in

1995 under dilute conditions [3] by combining laser cooling and trapping with the evap-

orative cooling as shown in figure 3.9. This experimental success is rewarded by the

Nobel Prize in 2001.

One can identify a Bose-Einstein condensate in an experiment from the thermal

gas by looking at the velocity distribution. Consider a condensate without interactions

in a harmonic trap with cylindrical symmetry in the z−direction. The mean squared

deviation of the velocity is given by [111]

∆V⊥ =
1

2

√
~ω⊥
m

∆Vz =
1

2

√
~ωz
m

(3.8)

while for a cloud at thermal equilibrium the velocity distribution is isotropic and stan-

dard width does not depend on the trap stiffness ωi

∆Vi =

√
kBT

m
. (3.9)

Then in the experiment, if one takes an image of the velocity distribution by releasing

the cloud from the trap and letting it to expand for long time of flight, one will observe

a double structure with an anisotropic central profile and with gaussian wing profile.
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Figure 3.9: The path which leads to the condensation in nλ3
dB space with the bold

line corresponding to the threshold value 2.61. The final density is similar but the gain
in temperature is crucial. (figure credit to [62])

From the wings, one can determine the temperature of the thermal fraction of the atomic

cloud. In case of interacting gas the scales are different but the behaviour is same.

When the average number of particles in the condensate 〈N〉 is very large, the

fluctuations in particle number can be neglected. In this situation one can approximate

the wave function of the condensate by the N−particle classical wave function:

Ψ =
√
Ne−ıϕu0(r)e−ı

µ
~ t (3.10)

where a phase ϕ is the condensate phase, the energy µ is the chemical potential. In

the mean field approximation, each atom feels a time-independent average interaction

potential and u0(r) obeys the nonlinear Schrödinger equation, known as the Gross-

Pitaevski equation:

− ~2

2m
∆u0(r) + V (r)u0(r) +Ng|u0(r)|2u0(r) = µu0(r) (3.11)

with

g =
4π~2

m
a (3.12)

which characterizes the interaction between ultracold atoms by a single parameter, the

scattering length a (for Helium in m = 1 it is 7.5× 10−9 m [97]).

A good approximative solution of the condensate wave function for a large number

of atoms can be obtained by solving the Gross-Pitaevskii equation, neglecting totally the
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kinetic energy term which is small compared with other energies. This has the solution

Ng|u0(r)|2 = µ− V (r) (3.13)

when the right hand side is positive and zero otherwise. In a harmonic potential, the

density profile is an inverted paraboloid vanishing on an ellipsoidal surface with semi-

axes(Thomas-Fermi radii):

R⊥ =
1

ω⊥

(2µ

m

)1/2
and Rz =

1

ωz

(2µ

m

)1/2
(3.14)

with anisotropy ω⊥
ωz

. The chemical potential can be found from the normalization of the

wave function u0(r) and it is equal to

µ =
~ω̄
2

[
15Na

√
mω̄

~

]2/5
(3.15)

where ω̄ = (ωzω
2
⊥)1/3.

Once the trap is switched off, for ωz � ω⊥, the evolution of the Thomas-Fermi

radii is given by [31]:

R⊥(t) = R⊥
√

1 + (ω⊥t)2 (3.16)

Rz(t) = Rz
(
1 + (

ωz
ω⊥

)2
[
ωzt arctan(ωzt)− log(

√
1 + (ωzt)2)

])
(3.17)

If we measure experimentally the Thomas-Fermi radii after time of flight, we can

estimate the chemical potential and therefore the number of atoms in the condensate

according to [31]. But in our experiment the description can not be directly applied due

to two main reasons: first one is that when the trap is switched off, we transfer atoms

in the m = 0 sub-level state in which atoms are immune against stray magnetic fields

and their expansion is not affected by these fields. However, the scattering length is

changed from 7.5 → 5 nm, and it can modify the evolution in a non-trivial way. The

second reason is that our electronic detection saturates when the BEC falls on it. To

avoid saturation, we could transfer only a few percent of the total atoms in m = 0 state

and the rest is swept away by the magnetic field gradient. For the sake of comparison we

measure the Thomas-Fermi radii of the non-saturated distributions after time of flight

along x and z directions as shown in figure 3.10. We extract the Thomas-Fermii radii of

the BEC and the temperature of the thermal cloud by fitting the time of flight density

distribution with the gaussian plus inverted parabola function. The extracted values

are Rz(t) = 1.3 mm and R⊥(t) = 9.7 mm. Also we find the temperature of the residual

thermal cloud to be T ≈ 200 nK.

It is possible to determine independently the number of atoms of BEC on the

detector by simply counting them if the saturation could be avoided. For this purpose,
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Figure 3.10: Time of flight density profiles (circles) of the condensate along
z−axis in a and along x−axis in b. The result of the fit by the gaussian plus inverted

parabola in two directions is represented by the solid lines.

the BEC’s arrival time distribution is broadened by applying a deep moving lattice on

the condensate. The typical profile we obtain is shown in figure 3.11 where we plot the

distribution before broadening and after broadening. Thus the number of atoms in the

BEC is around N = 5× 104 atoms for the detection efficiency estimation η = 0.25(5).

Figure 3.11: Longitudinal density profile of the BEC before and after mo-
mentum broadening to estimate the population of the BEC. The picture on
the left is before broadening and on the right it is after broadening. By broadening the
momentum of the condensate the saturation of the detector is avoided thus allowing to

determine the number of atoms in the BEC.

For N = 5 × 104 we estimate the Thomas Fermi radii Rz(t) = 1.25 mm and

R⊥(t) = 10.8 mm which are not far from the extracted values. The estimated critical

temperature is Tc ≈ N1/3~ω̄/kB = 600 nK where ω̄ = (ωzω
2
⊥)1/3 for the trap frequencies

ω⊥ = 2π × 1275 Hz and ωz = 2π × 93 Hz and N = 5× 104 atoms.

To check the purity of the condensate, we measure the second-order auto-correlation

of the BEC. We expect a flat correlation function for the pure coherent source suggesting

the suppression of the density fluctuations in contrast to the thermal source which is
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characterized by the bell shaped function describing the bunching effect. As before the

saturation is avoided by transferring a small fraction of the atoms in the condensate in

the m = 0 state for the correlation measurements. The second-order autocorrelation

function is obtained experimentally by evaluating the quantity defined in (3.24). The

correlation measurement in y and z directions are depicted in figure 3.12. We see almost

a flat correlation confirming our expectations.

Figure 3.12: The second order normalized auto-correlation function g(2) of
the BEC projected in z and y directions. The fact that it is a flat function with

value 1 shows the purity of the BEC source.

Another important test we make on the condensate is the arrival time fluctuations

of the BEC. When the condensate is hold merely in the vertical dipole trap, it was

observed that the arrival time fluctuated (RMS width of 0.1 ms of the center of the

condensate [17]). It results from the initial speed fluctuation of the condensate and can

reproduce artificial two-body correlations. Also, for our pair production process, the

initial speed of the condensate should be stable to guarantee the stability of the atomic

pair velocities. The crossed-dipole trap was the solution to suppress the arrival time

fluctuations. In such situation, we measure the fluctuation of the RMS width of 0.04(1)

ms (4×10−3 vrec) vertically and transversally we have 700(300) µm (2×10−2 vrec) which

are very close to the resolution of the detector.

In summary, we give the typical parameters of the helium BEC in table 3.3.

Value
Parameters for ω⊥ = 2π × 1275 Hz

ωz = 2π × 93 Hz, N = 5× 104 atoms

Critical temperature Tc (nK) 600
Temperature of residual gas T (nK) 200

Chemical potential µ (kHz) 2π × 6.4
Transverse Thomas-Fermi radii R⊥ (µm) 4.4

Vertical Thomas-Fermi radii Rz (µm) 60

Table 3.3: BEC parameters
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3.2.2 Experimental pair creation and its characterization

3.2.2.1 The set-up and the calibration of 1D-moving optical lattice for the

atomic pair creation

Set-up. As it is mentioned in the Chapter 2, we need a moving 1D-optical lattice with

a velocity above the threshold value to trigger the atomic pair creation via the

dynamical instability. So, the 1D-moving optical lattice is created along the z−
axis by superposing two laser beams at distinct frequencies ωt (top beam) and ωb

(bottom beam) with an angle θ = 166◦ between the two beams along the z−axis

as shown in figure 3.13.a. We apply the moving optical lattice at speed −ωt−ωb
2klat

with klat the wavenumber of the lattice beams, on the condensate which is hold in

the crossed dipole trap. The beam waists are 200 μm which is much larger than

the condensate’s transverse size R⊥ = 4.4 μm to impose transversally uniform

intensity profile on the condensate.
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Figure 3.13: (a) The 1D-moving optical lattice at 1064 nm for an atomic pair creation
is obtained by superposing two laser beams at distinct frequencies ωt (top beam) and
ωb (bottom beam) with angle θ = 166◦ between two beams along the z−axis. (b) The
optical bench of the top beam and the bottom beam. The two beams originate from
the same source and the frequency difference between these two beams is introduced

via acousto-optic modulators (AOMs).

Geometrical alignment of the lattice beams on the atoms. To align geometrically

the moving lattice beams on the atoms we proceed as following: we release the

condensate from the trap and we apply one of the lattice beams with power ∼ 50
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mW and duration ∼ 1 ms on the condensate. Since the beams are blue detuned,

the atoms feel a repulsive dipole force that pushes atoms away from the maximum

of the light. Consequently, one can observe the effect of light easily by looking at

the transverse density distribution of atoms after long time of flight. When the

lattice beams are well centered on the condensate, the repulsive potential creates

a hole at the center of the transverse density distribution in xy− plane as shown

in figure 3.14.

Figure 3.14: Geometrical alignment of the optical lattice beams on the con-
densate. By applying each lattice beams independently on the free-falling condensate,
the repulsive potential is imposed on the atoms due to the blue detuned dipole force
of the light. When a good geometrical alignment is achieved, the repulsive potential
creates a hole on the transversal 2D-density distribution of the atoms. The alignment

of the the top beam in (a) and the bottom beam in (b).

Alignment of the 1D-optical lattice with the vertical axis. In the experiment, all

the physics happen along the z− axis: we create an atomic pair which propagate

along the z−axis, the Bragg pulses interfere along the z−axis, etc. Thus we should

make the 1D-moving optical lattice lie perfectly along the z−axis. Although, the

geometrical alignment method mentioned above is a good indication, it does not

guarantee that the 1D-lattice is along the vertical axis. So, for this purpose we

diffract the free-falling condensate (after transferring in m = 0 by using the Ra-

man transfer) in the Kapitza-Dirac regime using our 1D-lattice. By looking at the

momentum of each diffracted order we retrieve the angle of the optical lattice with

respect to the z − axis (more details on this method is in the Bragg pulse section



Chapter 3. Bell’s inequality test: experimental preparation 96

3.3 where we use the same method to determine the angle of the Bragg lattice with

respect to the vertical axis). We found that the optical lattice makes 0.16◦ degrees

along y−axis with respect to z−axis and 0.34◦ degrees along x−axis with respect

to z−axis according to the coordinate system shown in figure 3.13. Although it

is difficult to know the necessary precision, we can hope that the atomic pair we

create using 1D-moving optical lattice will lie along the z−axis up to sufficient

degree.

Calibrating the depth of the optical lattice. It has been discussed in the Chap-

ter 2 that the lattice depth modifies the dispersion relation and hence the phase

matching condition of the dynamical instability process. Therefore the lattice

depth (V0) should be calibrated and fixed. One can deduce the potential depth

from the intensity of the lattice beams according to the relation:

V0 = − ~Γ2I0

2Isat∆lat
(3.18)

where ∆lat = 2πc
(
1/λ0 − 1/λlat

)
. But the more precise calibration is carried out

by the measurement of the effective Rabi oscillation (Ωeff ) of the Bragg diffraction

by the optical lattice which is directly related to the potential depth of the lattice:

V0 = 2~Ωeff (3.19)

In our case, we work with a shallow potential depth which is set to V0 = 0.8

Elat corresponding to the 13.5 mW of power for each beam of the lattice. The

calibration of the potential depth measuring the Rabi oscillation works fine as long

as we are in the Bragg regime, i.e. V0 < 4 Elat

Adiabatic loading. As it is discussed in Chapter 2, while loading and unloading the

condensate in the moving lattice, the free space momenta of the BEC and the

atomic pair should be mapped with quasi momenta in the fundamental band of

the shallow lattice. It is achieved by switching adiabatically on and off the optical

lattice. In other words, we make sure that the switching time of the optical lattice

is slower then the period related with the inter-band energies. Experimentally,

one can determine easily the time for being adiabatic. It consists of ramping up

linearly the lattice depth to its maximum value with duration τ on the condensate

and ramping down the lattice symmetrically. If the loading and unloading are

non-adiabatic, then diffraction peaks (atoms projected to higher energy bands)

will be observed around the arrival time distribution of the condensate as shown

in figure 3.15. We see that for durations 25 µs and 50 µs the diffraction peaks do

not appear meaning that the adiabatic condition is respected.
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Figure 3.15: Test of the adiabatic switching on and off the optical lattice. For duration
of 25 µs or longer we do not observe the diffraction peaks indicating the satisfaction of

the adiabatic condition. (figure credit to [17]).

Heating by the optical lattice. The potential heating of the atoms results in loss.

Heating may come from different sources: spontaneous emission, modulation of the

lattice potential due to the vibration of the structure holding the lattice beams,

etc. The contribution from the spontaneous emission for a power of 13 mW is [17]:

dE

dt
= 2× Γsp × Erec = 72 nK· s−1 (3.20)

where factor 2 is for two beams,

Γsp =
Γ3P0

πIsatw2
lat∆

2
lat

(3.21)

and wlat = 200 µm. Obviously for a typical duration of the lattice 1 ms, the

spontaneous emission has little effect.

The heating due to the modulation of the lattice potential has been found to be

non-dominant in [17] for a deep potential depth V0 = 18Elat.

3.2.2.2 Correlation property of the produced atomic pair

Momentum distribution of the atomic pair. We create atomic pair by introduc-

ing the frequency difference between the top beam ωt and the bottom beam ωb

which is controlled using AOMs as shown in figure 3.13.b. It is set to δlat =

ωt − ωb = 2π × 100.5 kHz (q0 = −mδlat
2~klat = −0.57klat) and the potential depth is

set to V0 = 0.8Elat. These parameters are chosen in such a way that the produced

pair can be addressed with the Bragg beams (the angle between the Bragg beams

is constraint due to the limited optical access). As it is mentioned before, the pop-

ulation of the atomic pair is controlled by τlatt, the duration of the optical lattice.
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For τlatt = 350 µs, the momentum distribution of the experimentally produced

atomic pair is plotted in figure 3.16. Referring to the momentum profile of the

Figure 3.16: Momentum distribution of the atomic pair. The z−axis density
profile of the atomic pair. We identify pairs centered at ka = 0.73klat and kb = 1.27klat
(bottom row). Corresponding transverse distribution of the pairs at ka and kb where

the high gain of the pair production can be seen at the center (top row).

atomic pair along z−axis in figure 3.16, we can make few remarks.

• Width of the momentum distribution. The momentum width along

z−axis of the atomic pair a and b can be attributed to the finite width σq0 of

the condensate momentum that has been verified through simulation studies

in [87].

• Anisotropy of the pair population. There is an anisotropy between the

population of the cloud a and b. We suspect that the cloud b might undergo

secondary four-wave mixing process with the condensate since it possesses a

quasi-momenta greater than the threshold value to trigger the process. We

believe that it is a physical process rather than an experimental defect because

the same anisotropy has been reported in another group [29].

• Background noise. The atomic population between the pair clouds is more

stronger than what is expected from the theoretical model including trans-

verse modes [17]. Although we do not have a quantitative answer for this

background noise, we suspect that it might result from the collision of the

atoms in a and b with the condensate.
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Variance of the population difference We have measured V (Nka , Nkb), the normal-

ized variance of the population difference of a and b in the equation (2.82):

V (Nka , Nkb) =
〈(N̂ka − N̂kb)

2〉 − 〈N̂ka − N̂kb〉2
〈N̂ka + N̂kb〉

(3.22)

to demonstrate the sub-Poissonian fluctuation of the population difference. To do

so, we evaluate V (Nka , Nkb) as a function of k by counting number of atoms in

the two identical integration volumes ΩV =
[
∆k2
⊥ × ∆kz

]
=
[
0.262 × 0.19

]
k3
rec

where the first one is centered at ka and the second one is at k which is scanned

around kb. The result is plotted in figure 3.17. We measure a variance below unity

when the second integration volume is centered approximately at kb indicating

sub-Poissonian fluctuations on the number difference. The signal did not descend

to 0 due to the limited detection efficiency. In fact, for the detection efficiency η,

the normalised variance becomes:

Vdet = (1− η) + ηV. (3.23)

So, in best case scenario, we can attain Vdet = 1 − η, which is the case with the

experimental data for the estimated detection efficiency η = 25%.
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Figure 3.17: Measured normalized variance of an atom number difference
Vdet(Nka , Nkb) as a function of k where Nka is the atomic population inside a vol-
ume ΩV =

[
∆k2
⊥ ×∆kz

]
=
[
0.262 × 0.19

]
k3
rec centered at ka while Nkb is the atomic

population inside the second identical integration volume which is centered at k. A vari-
ance of below unity is observed around k = kb indicating the sub-Poissonian fluctuation

in atom number difference between two diffused modes.

Second order auto-correlation function. We measured g
(2)
loc , the auto-correlation

function of the atomic beam a or b independently whose two-mode version is eval-

uated in the equation (2.93) where it was found that g
(2)
loc (ka, ka) = g

(2)
loc (kb, kb) = 2.
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For the multi-mode case, we expect that the g
(2)
loc is a bell-shaped function. As-

suming that all modes are equivalent, we can define an integrated version of the

3D auto-correlation function:

g
(2)
loc (∆kx,∆ky,∆kz) =

∫
ΩV

d3k
〈: n̂(k)n̂(k + ∆k) :〉
〈n̂(k)〉〈n̂(k + ∆k)〉 . (3.24)

where the integration volume ΩV is taken to be comparable to the momentum

distribution width of the atomic beams and 〈::〉 indicates normal ordering as before.

The integration over k maximises the signal to noise ratio of the autocorrelation

function. We project the 3D autocorrelation function along one axis by integrating

over small area in the other two axes. For example, along axes y and z we have (x

and y are same since our system is symmetrical transversally)

g
(2)
loc (∆kz) =

∫
Ωz

d∆kx d∆ky

∫
ΩV

d3k
〈: n̂(k)n̂(k + ∆k) :〉
〈n̂(k)〉〈n̂(k + ∆k)〉 , (3.25)

g
(2)
loc (∆ky) =

∫
Ωy

d∆kx d∆ky

∫
ΩV

d3k
〈: n̂(k)n̂(k + ∆k) :〉
〈n̂(k)〉〈n̂(k + ∆k)〉 . (3.26)

These two functions are plotted in figure 3.18 where we see that the amplitudes

rise for the atoms with small momentum difference. Thus they can be attributed

Figure 3.18: Second order auto-correlation function of atomic beams a and
b. Left panel: Auto-correlation functions for a and b along z−axis with the area of
integration Ωz = [Lx × Ly] = [2× 10−2]2k2

lat. Right panel: Auto-correlation functions
for a and b along y−axis with the area of integration Ωy = [Lx × Lz] = [2 × 10−2 ×
1 × 10−2]k2

lat. The solid lines represent the result of the fit by a Gaussian function to
extract the mode sizes.(figure credit to [87])
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to the same mode for which the value 2 for the amplitude is expected. As can be

seen in the figure 3.18, for beam a the amplitude does not reach to 2, which is

not well understood at the moment. When the momentum difference gets larger

the amplitude of the auto-correlation function drops indicating that the modes

are different. This behaviour indicates the fact that the probability of detecting

two atoms in the same mode is enhanced as opposed to the multimode case where

modes are in competition and thus the probability of detecting two atoms in two

different modes at the same time is not expected to get enhanced. So, by measuring

the width of the auto-correlation function we can estimate the mode size in a given

axis. To measure the mode sizes, we fit the auto-correlation functions in figure

3.18 with a Gaussian function with an offset:

g
(2)
loc (∆ki) = Ai exp

{
− ∆k2

i

2σ2
i

}
+ 1 i = x, y, z (3.27)

where Ai the amplitude and σi the half-width at 1/
√
e are the free parameters of

the fit. The solid lines in figure 3.18 correspond to the fit result with the fitted

values given in table 3.4.

Local Cloud a Cloud b

σz (klat) 0.012(2) 0.010(2)
σy (klat) 0.05(1) 0.04(2)
Az 0.7(5) 1.00(5)
Ay 0.7(5) 0.90(5)

Table 3.4: Fitted parameters of the auto-correlation function of atomic beams a and
b (see text)

Estimation of the number of modes. To realise the atomic Bell’s inequality test

experiment we need to have a multi-mode source at our disposal according to the

protocol in figure 3.1. For this purpose we would like to estimate the number

of modes in each atomic beam. We know the single mode size from the auto-

correlation function width and we can measure the width of the momentum dis-

tribution of each atomic beam in figure 3.16. So, the ratio of these two gives an

estimation for the number of modes along different axes. We measure the half-

width (at 1/
√
e) of the density by fitting with a Gaussian function and we get the

following values:

σn(kz) = 0.06(1)klat

σn(k⊥) = 0.08(1)klat.
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So the ratio of the half-widths of the density and the auto-correlation gives number

of modes per atomic beam:

Nmode,z = 4− 8

Nmode,⊥ = 1− 2

We find a small number of modes transversally as expected since the phase-

matching condition of the four-wave mixing process is principally along z−axis.

Also we find longitudinally few modes. This is exactly what we would like to have:

a multi-mode source along z−axis and a single-mode source transversally. Next

point we should check is how the longitudinal modes in the beams a and b are

correlated with each other. In other words, we should verify that the modes at

kb+ is correlated with ka− and kb− is correlated with ka+ in 3.16.

Inter-mode second-order cross-correlation function. The protocol in the figure

3.1 relies on the fact that the source contains conjugate modes {kb+, ka−} and

{kb−, ka+}. In order to show that such conjugate modes exist we looked at the 2D

second-order correlation function of a recent data set along z−axis defined as:

g(2)
cross(kz,a, kz,b) =

〈: n̂(kz,a)n̂(kz,b) :〉
〈n̂(kz,a)〉〈n̂(kz,b)〉

(3.28)

where n̂(kz,i) =
∫

ΩV
d3kin̂(kx,i, ky,i, kz,i), i = a, b with the integration volume

ΩV = [L⊥ × Lz] = [0.4 × 0.025]k2
lat. The 2D plot of the g

(2)
cross(kz,a, kz,b) function

is plotted in the figure 3.19. The fact that the g
(2)
cross(kz,a, kz,b) function has an

elliptic shape with slope of −1 shows that the source contains conjugate modes

{kb+, ka−} and {kb−, ka+} and it is a promising signature of the realisation of the

Bell’s experiment protocol. The amplitude of the g
(2)
cross(kz,a, kz,b) function does

not rise above 2 as predicted by equation (2.94). It is partially due to the size of

the integration volume which is taken relatively large to maximise the signal to

noise ratio. But even taking small integration volume the cross-correlation function

never raised to 2 for the earlier data sets of the atomic pair [87]. It might be due

to the secondary losses on beam b as discussed before.

In order to estimate the characteristic widths of the g
(2)
cross(kz,a, kz,b) function, we

plot 1D projections of the correlation function along the major axis of ellipse:

kz,a+kz,b = 2 krec and the minor axis of ellipse: kz,b−kz,a = 0.55 krec in the figure

3.20. The projections are taken as:

g
(2)
q (kz,b − kz,a) =

1

Lq

∫ Lq
−Lq

g(2)
cross(kz,a, kz,b) d(kz,b + kz,a − 2krec) (3.29)
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and

g
(2)
⊥ (kz,b + kz,a) =

1

L⊥

∫ L⊥
−L⊥

g(2)
cross(kz,a, kz,b) d(kz,b − kz,a − 0.55krec) (3.30)

where L⊥ = Lq = 0.007krec. Then we fit g
(2)
⊥ (kz,b + kz,a) and g

(2)
q (kz,b − kz,a)

with the gaussian function of the form A0,i +Aie
− (k−µi)

2

2σ2
i (solid lines in the figure

3.20) where A0,i, Ai, µi, σi with i =q,⊥ are free parameters of fit. We find µ⊥ =

2.003(1) krec which corresponds to the phase matching condition kz,b+kz,a = 2klat

and µq = 0.573(2) krec which is given by the velocity of the moving lattice and

compatible with the expected value ∼ 0.56 krec. The widths are σ⊥ = 0.0238(1)

krec and σq = 0.072(2) krec. The first one is dictated by the width of the gain of

the pair production process and the second one gives the idea of the length of the

cross correlation between atomic beam a and b. Note that it is on the order of the

width of density of a or b.

kz,a  (krec)

k z
,b

  
(k

re
c)

 

Figure 3.19: Plot of the second order inter-mode 2D cross-correlation function
g

(2)
cross(kz,a, kz,b). The fact that the g

(2)
cross(kz,a, kz,b) function has an elliptic shape with

slope of −1 (dashed line) shows that the source contains conjugate modes {kb+, ka−}
and {kb−, ka+}.

Perspective Up to know we have studied an atomic pair source with average number

of atoms 〈n〉 ∼ 0.8 in the integration volume ΩV = [0.0482 × 0.028]k3
lat per beam.

In order to violate the Bell’s inequality, we should work in the low gain regime
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⊥

Figure 3.20: (top) Plot of g
(2)
�

(kz,b−kz,a) (1D projection of g
(2)
cross(kz,a, kz,b) along the

axis kz,b−kz,a) as a function of kz,b−kz,a and (bottom) g
(2)
⊥ (kz,b+kz,a) (1D projection

of g
(2)
cross(kz,a, kz,b) along the axis kz,b+kz,a) as a function of kz,b+kz,a. The solid lines

are the result of gaussian fit function (see text).

〈n〉 � 1 to reduce the probability of having more than two particles in an atomic

source per realisation. This regime is still to be investigated experimentally. In

this regime, we expect the amplitude of the cross-correlation to increase according

to the equation (2.94).

3.3 Bragg pulse preparation

3.3.1 Realisation of the Bragg pulse

Set-up The Bragg pulse is obtained by superposing two laser beams, whose wavelength

λ0 = 1083 nm, with a 0.8 mm radius flat intensity profile and a relative angle

θB = 32.5◦ (determined by the Kapitza-Dirac method discussed in the following)

along the z−axis. The two laser beams of the Bragg pulse form a 1D optical lattice

and coherently diffract atoms along the z−axis. The momentum transferred to the

diffracted atoms is

ΔkB = 2krec sin(
θB
2
) = 0.559krec (3.31)
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where krec =
2π
λ0
. Both Bragg beams are linearly polarized (π−polarized) and are

red-detuned by 2π× 600 MHz from the atomic transition 23S1− 23P0 as shown in

figure 3.21.

23S1

m=0 

23P0

m=0 

m=1 

m=-1 

600 MHz 

8.2 MHz 

Figure 3.21: Bragg diffraction using off-resonant two π−polarized laser pulses which
are red detuned by 600 MHz from the 23S1(m = 0) → 23P0(m = 0) transition. The
zeeman sublevels of the 23S1 have the energy splitting 8.2 MHz corresponding to a

magnetic bias field ∼ 3 G.

Alignment of the Bragg lattice with the z−axis We need to guarantee that the

lattice created by the Bragg pulse lies along the vertical z−axis as we have done

for the moving optical lattice since we have decided to perform the experiment

along this axis. The alignment is carried out by diffracting condensate into many

diffraction orders in the Kapitza-Dirac regime [78] using a very strong and very

short pulse of the Bragg beams. An example of such a diffraction is illustrated in

figure 3.22. In the top panel we see the momentum distribution on the kzkx−plane

and kzky− plane of the diffracted orders which are spaced by ΔkB along z−axis as

expected. The spacing of the diffracted orders allows us to measure precisely the

ΔkB for which we find 0.559(8)krec. To determine the angle of the lattice created

by the Bragg beams with respect to the vertical axis, we retrieve the average

momentum of each diffracted order along the 3 axes and we make a plot of kx(ky)

vs kz from the retrieved numbers as shown in the bottom panel of the figure 3.22.

The slope of each plot gives the angle of the lattice with respect to the vertical

along the corresponding axis, i.e. the slope of the kx vs kz plot gives the angle

(θB,x) of the lattice along x−axis and the slope of the ky vs kz plot gives the

angle (θB,y) of the lattice along y−axis with respect to the vertical. We measure
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θB,x = 0.79(1)◦ and θB,y = 1.35(1)◦ from the data in figure 3.22. Experimentally,

we could correct these angles by iteratively aligning and measuring the angles with

the mentioned method to obtain a Bragg lattice aligned with vertical.

k z
 (
k r

ec
)

k z
 (
k r

ec
)

kx (krec) ky (krec)

Figure 3.22: Measuring the angle of the lattice, created by the Bragg beams, with
respect to the vertical axis using Kapitza-Dirac diffraction. Momentum distribution of
the diffracted orders of the condensate on the kzkx−plane and kzky−plane (top panel).
Corresponding plots of the average momentum of the diffracted orders (bottom panel).

Slope of these plots give the angle of the Bragg lattice with respect to the z−axis.

Bragg diffraction For the purpose of calibration, we apply the Bragg pulse on the

condensate (N0 atoms) to diffract it from the state |φk0〉 to the state |φk0+∆kB 〉.
As we have seen in Chapter 2, the populations of these states evolves with the

duration of the Bragg pulse, in other words, they will oscillate with the effective

Rabi frequency:

Nk0+∆kB (t) = N0
|Ωeff |2

|Ωeff |2 + δ2
sin2

(√
|Ωeff |2 + δ2

t

2

)
(3.32)

Nk0(t) = N0 −Nk0+∆kB (t). (3.33)

with initial condition Nk0+∆kB (t = 0) = 0 and Nk0(t = 0) = N0. Note that only

at the resonance condition δ = 0 we can have a 100% population exchange. So,
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we should find the resonance which is defined as (from (2.121)):

δ =
(~(k0)2

2m
− ~(k0 + ∆kB)2

2m

)
− (ω1 − ω3) (3.34)

where ω1 and ω3 are the frequencies of the top and bottom Bragg laser beams

respectively. So, the resonance condition (δ = 0) for the atoms with momentum

k0 is given by:

ω1 − ω3 = − ~
2m

∆kB(2k0 + ∆kB) (3.35)

suggesting that the resonance condition depends on the frequency difference be-

tween the two beams of the Bragg pulse which is very well controlled in the ex-

periment. The transfer efficiency of the Bragg pulse ηB is defined as

ηB(t) =
Nk0+∆kB (t)

Nk0+∆kB (t) +Nk0(t)
. (3.36)

In order to find the resonance condition experimentally we look at this quantity

ηB(t = 3π
2|Ωeff |) by fixing the Bragg pulse duration to t = 3π

2|Ωeff | and by scanning

the frequency difference ω1 − ω3 of the Bragg laser beam which is applied just

after the Raman transfer. We expect that at resonance this quantity attains its

maximal value. We predict to find the resonance for k0 = kRaman = 0.2krec (the

momentum acquired during Raman transfer, see Appendix C) at:

ω1 − ω3 = − ~
2m

(
∆kB(2k0 + ∆kB)

)
= −2π × 22.8 kHz

This value is relatively in good agreement with what is found experimentally as

shown in figure 3.23 where we plot ηB(t = 3π
2|Ωeff |) as a function of the ω1 − ω3.

We find the peak centered at −2π × 23.27(6) kHz.

Another important issue regarding the resonance is the gravity. The free-falling

condensate acquires velocity due to the gravitational acceleration. To stay at

the resonance during the Bragg pulse application time we sweep the frequency

difference with the rate g∆kB = 5.0 kHz/ms. We verified this value experimentally

by using the same Bragg pulse above with duration t = 3π
2|Ωeff | but we apply it

2 ms later than before (2 ms after Raman transfer). We look at the diffraction

efficiency ηB(t = 3π
2|Ωeff |) as a function of the rate of the linear chirp which is

plotted in figure 3.24. By fitting the experimental data (red points) by a Gaussian

fit (solid line) we find a rate of the linear chirp 4.96(5) kHz/ms which is in a good

agreement with the predicted rate.

Having established the resonance condition, we look next to the two photon Rabi

oscillation |Ωeff |. For this purpose, we measure ηB(t) defined in equation 3.36 as

a function of t at resonance and compensating the effect of gravity. We apply the
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η
π

Ω

ω ω

Figure 3.23: BEC Bragg diffraction resonance. We measure ηB(t =
3π

2|Ωeff | ) as
a function of the laser beams’ frequency difference ω1−ω3. At the resonance frequency
the quantity ηB(t =

3π
2|Ωeff | ) achieves to its maximum. We see a resonance frequency

at −2π × 23.27(6) kHz with the expected FWHM value of 3.3(2) kHz. Here we are
only interested in the center frequency, the amplitude and width will be studied more
in detail later. (Dots are the experimental data and solid line is the gaussian fit to

retrieve the resonance frequency.)

η
π

Ω

ω ω

Figure 3.24: Compensating Bragg resonance shift due to the gravity. Plot
of the experimental diffraction efficiency ηB(t =

3π
2|Ωeff | ) versus the rate of the linear

chirp of the frequency difference of the Bragg beams. The Bragg pulse is applied 2 ms
after the Raman transfer. The solid line corresponds to the gaussian fit whose center

is at 4.96(5) kHz/ms.
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η

Figure 3.25: Two photon Rabi oscillation with each Bragg laser beam power
at 12 μW. The solid line is the result of the fit function f(t) (see text).

Bragg beams for time t on the condensate by setting their power to 12 μW. The

Bragg beams are applied as square pulse by switching on and off rapidly the beams

using AOMs (measured turn off time ∼ 500 ns). The result is plotted in figure

3.25. Each point is obtained from the single experimental realisation and we have

considered only atoms longitudinally inside (not to be limited by the selectivity of

the Bragg pulse) |k0 +ΔkB| < 0.0025krec and |k0| < 0.0025krec and transversally

we consider all the atoms. To retrieve the Rabi oscillation, we fit the experimental

points by the following function:

f(t) = f0 +A sin(ωt+ φ0)e
−Γdect (3.37)

by leaving parameters f0, A, ω, φ0 and Γdec as free parameters of the fit. We find

the experimental value of the Rabi frequency ω = 2π × 1.25 kHz which is in good

agreement with the theoretical prediction for the given power 12 μW of the Bragg

beams:

|Ωeff | =
Γ2I0d

2
0,0

4IsatΔ
= 2π × 1.26 kHz (3.38)

where the dipole matrix element associated to the transition in the figure 3.21 is

d0,0 = 1√
(3)

. The fact that these two values are compatible shows that the Bragg

beams are well aligned on the atoms. We measure experimental decoherence rate

Γ = 0.19 ms−1 which is greater than the rate of the spontaneous emission of two

Bragg beams:

Γsp = Γ
s

s+ 1 + (2ΔΓ )2
= 0.06 ms−1. (3.39)

The reason of the experimental decoherence is not well established, we know that

it does not depend on the intensity of the beams. But in any case it is encouraging

to see the coherence time going beyond the 4 ms because in the experiment we

are interested in the first oscillation to realise atomic mirror t = π
|Ωeff | and the

beamsplitter t = π
2|Ωeff | . Another interesting point is that experimentally the
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reflection coefficient of the atomic mirror can go up to ηB(t = π
|Ωeff |) = 0.95(6)

(from the fit, we have f0 +A = 0.99(6)).

Controlling the phase. When realizing the atomic Bell’s inequality test experimental

sequence in figure 3.1, we have chosen to apply a single atomic mirror pulse which

is not selective in mode and two simultaneous atomic beamsplitters which are

selective in modes. The reason is that such scheme provides a very easy control

of the phase of the Bragg beams. Specifically, since the atomic mirror is the

same for all modes it does not introduce any phase difference between the two

interferometers in figure 3.1. Therefore, the result of the correlation coefficient

calculation in (2.133) does not depend on the atomic mirror phase meaning that

we do not need to control the phase of the atomic mirror. Experimentally, for the

atomic mirror we inject the frequency ω1 to the Bragg top beam and the frequency

ω3 to the Bragg bottom beam which creates a single optical lattice beam (figure

3.26.(left panel)). On the other hand, we have seen that the correlation coefficient

does depend on the phase difference θ+−θ− between two atomic interferometers in

the scheme 3.1 and this phase difference is given by θ+−θ− = ∆Φ = ∆Φ+
π/2−∆Φ−π/2

which is the phase difference between the two atomic beamsplitters represented by

S+
π/2 and S−π/2 in the figure 2.15. Thus we should control the phase difference

∆Φ. In the experiment, for the atomic beamsplitter we inject two frequencies ω1

(phase ϕ1) and ω2 (phase ϕ2) to the Bragg top beam and the single frequency ω3

(phase ϕ3) to the Bragg bottom beam which creates a double optical lattice (figure

3.26.(right panel)). From now on we represent the lattice created by {ω1, ω3} with

S+
π/2 and by {ω2, ω3} with S−π/2. So, the phase difference is

∆Φ+
π/2 = ϕ1 − ϕ3,

∆Φ−π/2 = ϕ2 − ϕ3,

∆Φ = ∆Φ+
π/2 −∆Φ−π/2 = ϕ1 − ϕ2.

The result says that we have to control just the frequency difference between the

two frequencies in the top beam of the Bragg pulse. Controlling the phase of

an optical beam is not an easy task since changes in temperature, mechanical

vibrations of the optical elements can easily make fluctuate the phase and locking

the phase of the laser beam in some cases gets complicated when the feedback

signal is not easily achievable. But, if the two frequencies coexist in the same

laser beam and they are applied at the same time, all the phase fluctuations are

common during the laser propagation, and it turns out that the phase difference

ϕ1 − ϕ2 is very well controlled.
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atomic mirror (M) atomic beamsplitter (BS)

{ 3, 3}

{ 1, 1} 
{ 2, 2}
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Figure 3.26: Atomic mirror and beamsplitter Bragg pulse. The Bragg pulse
consists of two laser beams with relative angle θB between them which diffracts atoms
along z−axis. The atomic mirror consists of single lattice made of ω1, ω3 while the
atomic beamsplitter is made of two lattices ω1, ω3 and ω2, ω3. For the Bell’s inequality
test, we need to control only the phase difference between the two beamsplitter lattices,

i.e. ϕ1 − ϕ2.

Selectivity of the atomic beamsplitter. Using two Bragg lattices is indeed a good

idea to control the phase but we should make sure that we can address the different

modes of the atomic pair when applying two lattices simultaneously. To clarify this

point, referring to the scheme 3.1, we see that the beamsplitter S+
π/2 is interfering

modes kb+ and ka+ and the beamsplitter S−π/2 is interfering modes kb− and ka−.

The transfer functions of S+
π/2 and S−π/2 are defined as

ηS+
π/2

(δ+) = ηB(t =
π

2|Ωeff |) =
|Ωeff |2

|Ωeff |2 + δ2+
sin2

(√
|Ωeff |2 + δ2+

π

4|Ωeff |
)

ηS−
π/2

(δ−) = ηB(t =
π

2|Ωeff |) =
|Ωeff |2

|Ωeff |2 + δ2−
sin2

(√
|Ωeff |2 + δ2−

π

4|Ωeff |
)

where the resonance condition δ+ = 0 is centered at ka+ implying ω1 − ω3 =

− �

2m

(
ΔkB(2ka+ + kB)

)
and the resonance condition δ− = 0 is centered at ka−

implying ω2 − ω3 = − �

2m

(
ΔkB(2ka− + kB)

)
. The ηS+

π/2
and ηS−

π/2
have a finite

width in momentum and the widths are proportional to the Rabi frequency Ωeff .

The lower the Rabi frequency is, the smaller the widths become. Experimentally,

firstly, we need to avoid the overlap of the transfer functions and secondly, we

need to isolate modes ka+, ka−, kb+, kb− since the Bell’s protocol is based only on

these modes and having additional modes will ruin the signal. The idea is to check

experimentally if we can arrange the width of the transfer function comparable
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to the width of the mode given in the table 3.4. In figure 3.27, we represent

schematically the transfer functions of S+
π/2 and S−π/2 superposed on the vertical

momentum distribution of the atomic pair presented before in the figure 3.16. The

S-/2 S+/2

kb+kb-ka+ka-

Figure 3.27: Schematic representation of the transfer functions of the atomic beam-
splitters S+

π/2 and S−
π/2 addressing different vertical modes of the atomic pair.

rest of this Chapter is devoted to the experimental validation of the phase control

and the selectivity of the atomic beamsplitters.

3.3.2 Atomic beamsplitter: selectivity test

For the purpose of the test of the selectivity we work only with a single beamsplitter

made of ω1 and ω3. The power of each Bragg beam is set to 5 μW corresponding to the

Rabi frequency |Ωeff | = 2π × 0.52 kHz for which we expect a satisfactory selectivity of

the beamsplitter transfer function. To obtain the experimental transfer function of the

beamsplitter, we do the following procedure: we heat the condensate by modulating the

horizontal dipole trap close to the parametric resonance which provides atoms having

sufficiently large momentum distribution but not as large as the momentum distribution

of thermal cloud which would cause a problem in identifying diffracted and non-diffracted

clouds of atoms. Next, we apply the atomic beamsplitter (t = π
2|Ωeff | ∼ 500 μs) and we

measure the transfer function from the population ratio as in equation (3.36) but this

time resolving in momentum, that is counting the number of atoms inside a box of size

0.005 krec. We average ∼ 200 realisations to obtain the experimental transfer function.

We plot it together with its theoretical estimation as a function of the atomic momen-

tum where 0 corresponds to the resonance momentum in the figure 3.28. The theoretical

function is obtained from the equations (3.33) and (3.32) by fixing |Ωeff | = 2π × 0.52

kHz and t = 500 μs. The half-width 0.0210(5) krec at half maximum of the measured

beamsplitter transfer function is small enough to ensure that two beamspiltters will

not overlap when applied on the atomic pair with the density half-width 0.06krec with

ka+ − ka− = kb+ − kb− = 0.12krec. Also, we can expect the amplitude of the transfer

function on average stay between 0.45 and 0.5 for the momentum interval −0.01krec
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η
π

Ω

Figure 3.28: Schematic of the transfer function of the atomic beamsplitter: experi-
mental (in red)(obtained by averaging 200 realisations) and theoretical (in black) as a
function of the vertical momentum kz with 0 corresponding to the resonance momen-

tum.

and 0.01krec which corresponds to the single mode size. So, we have a rather satisfac-

tory result in terms of selectivity. However, we see that the measured transfer function

is enlarged with respect to the theoretically predicted one. We suspected two reasons

of this difference: first it could the intensity of the Bragg beams fluctuate and sec-

ondly the phase of the Bragg beams ϕ1 − ϕ3 could fluctuate and hence change the

resonance position. These effects are also translated to the fluctuation of the amplitude

of the beamsplitter transfer function. The statistical distribution of the amplitude of

the beamsplitter transfer function at the resonance position |kz| < 0.0025 over several

experimental realisations is shown in the figure 3.29. The standard deviation of the

fluctuation equals to 0.085(5). This means that the beamsplitter resonance amplitude

will fluctuate between 0.58 and 0.42.

So we have decided to quantify the intensity and the phase fluctuations of the Bragg

beams. First the optical intensity fluctuation originating mainly from the laser amplifier

will be discussed and later the phase fluctuation due to vibrations of the turbo pumps

will be explained.

3.3.2.1 Intensity fluctuation of the Bragg beams

We measured the intensity fluctuation of the Bragg beams closer to the laser source

since we had a doubt about the laser amplifier. The optical bench of the Bragg beams is

illustrated in the figure 3.30 where we start from a diode laser at 1083 nm. Its frequency

is locked using a helium cell to 200 MHz red detuned from the transition 23S1 − 23P0.

The laser is then amplified and splitted into three: 1 Raman beam and 2 Bragg beams.

2 Bragg beams double pass the AOMs and are sent to the science chamber. It is via
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Figure 3.29: The distribution of the amplitude of the transfer function of an atomic
beamsplitter at resonance momentum. The standard deviation of the distribution

equals to 0.085(5) and its mean value is 0.500(3).
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Figure 3.30: Optical bench of the Bragg laser beams before the implementation of
the intensity lock (see text).
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the AOMs that we control the frequency of the Bragg beams. As it is clear from the

optical bench of the Bragg beams, we did not have initially any intensity lock. So, we

surveyed the laser intensity before and after the laser amplifier at the same time. We

plot the intensity as a function of time in figure 3.31. The intensity of the diode laser

is rather stable and no correlation of the noise between the amplifier and the laser is

apparent. But, we had clearly a big problem with the laser amplifier. It exhibited very

brutal jumps of 20% in relative amplitude and the time constant of intensity jumps were

on the order of ∼ 1 ms. To correct the intensity fluctuation first we maximized the

time  (min)time (min)
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beforerre ampppplifierrrr

Figure 3.31: Intensity survey of the Bragg beams before and after the laser
amplifier. The relative fluctuations in percentage is shown. The intensity of the laser

after amplifier exhibits very brutal jumps of 20% in relative amplitude.

intensity at the input of the laser amplifier. The effect was that the brutal jumps of the

intensity after the amplifier are more smoothed but the slow drift in intensity persists.

So, we decided to lock the output optical intensity of the laser amplifier. For this purpose

the AOM of the frequency lock is removed and placed after the laser amplifier in order

to act on the optical intensity. The new optical bench now looks like as in the figure

3.32. We use the home made proportional-integral controller (PI) [74] to modulate the

intensity of the RF signal of the AOM as a function of the feedback photodiode signal.

The achieved bandwidth of the system is about 1 kHz. The optical intensity is surveyed

independently via the photodiode of the optical interferometer.

We compare the intensity with and without the lock in the figure 3.33 where in the

former case we see that a very impressive stability is established.

Having dealt with the intensity, next we look at the phase fluctuation of the Bragg

laser beams.
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Figure 3.32: Optical bench of the Bragg laser beams after the implementation of the
intensity lock (see text).
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Figure 3.33: Comparison between the intensity surveys with and without the intensity
lock. The optical intensity is surveyed independently by the optical interferometer

photodiode.
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3.3.2.2 Fluctuation of the phase ϕ1 − ϕ3

We measure the fluctuation of ϕ1 − ϕ3 using two methods. The first method consists

in using the optical beating signal collected on the optical bench shown in figure 3.32.

Remember that for these measurements we are not interested in the frequency ω2 and

we inject only ω1 to the top laser beam. The second method consists in using an

atomic interferometer. The phase fluctuations of the laser beam mainly result from

the mechanical vibrations of the optical elements and thus they depend on the position

where the measurement is made. It is the second method which gives the resulting phase

fluctuation imprinted on the atoms.

Both tests can be implemented simultaneously using the experimental sequence

shown in the figure 3.34. We apply two atomic beamsplitters (π2−pulses) with time in-

terval τ2−τ1 on the condensate. We chirp the frequency difference ω1−ω3 to compensate

the gravity.

 t=0  t= 1  t= 2

TOF

 time

 detectionRamanBEC

 t
_
2 -pulse

( 1)

 t
_
2 -pulse

( 2)

Figure 3.34: Experimental sequence for the phase ϕ1 − ϕ3 test.

Beating of the laser beams We register the optical beating signals of the two π
2−pulses.

The first beating signal has a phase Δϕ(τ1) = ϕ1(τ1)−ϕ3(τ1) and the second one

has Δϕ(τ2) = ϕ1(τ2)− ϕ3(τ2). If we do not consider the fluctuations, Δϕ(τ2) can

be deduced from Δϕ(τ1) because the phase relation between the first Bragg pulse

and the second Bragg pulse is maintained experimentally, i.e,

Δϕ(τ2) = Δϕ(τ1) +

∫
τ1−τ2

dtΔω(t). (3.40)

where Δω(t) = ω1 − ω3 depends on time since we chirp the frequency difference

to compensate the gravity effect on the Bragg resonance condition. Δϕ(τ1) is not

controlled in the experiment, it fluctuates between 0 and 2π from one realisation to

another. However, the phase difference Δϕ(τ1)−Δϕ(τ2) is well controlled unless

there are phase fluctuations between τ1 and τ2. So by measuring the standard

deviation of the phase difference std[Δϕ(τ1)−Δϕ(τ2)] as a function of τ1 − τ2 we

get the amplitude of the phase fluctuation due to the external effects. We obtain

Δϕ(τ1) and Δϕ(τ2) by fitting the registered beating signals with sinusoidal function

with chirped frequency. An example of the single realisation picture of such beating

signal with its fit is shown in the figure 3.35. By repeating this procedure over
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many realisations we get the standard deviation of the phase difference σopt =

std[Δϕ(τ1)−Δϕ(τ2)] for a given τ1 and τ2.

t (ms)t (ms)

am
pl

itu
de

(a
.u

.)
am
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itu

de
 (

a.
u.

)

Figure 3.35: Optical beating signal of the Bragg pulses with chirped frequency dif-
ference ω1 −ω3. The signal is fitted (in red) with the chirped sin−function to estimate

the phase difference between two Bragg pulses.

Atomic interference We can also estimate the standard deviation of the phase differ-

ence std[Δϕ(τ1)−Δϕ(τ2)] via atomic (open) interferometer which is accomplished

by appying consecutive π
2−pulses on the condensate as it is illustrated in the figure

3.36. The first Bragg pulse splits the condensate into two: the first cloud centered

at momentum k0 and the second cloud centered at momentum k0 + ΔkB, which

then propagate freely before the second Bragg pulse is applied. Then, it splits each

beams in two resulting in four beams: two at k0 and two at k0 +ΔkB. After long

time of flight two atomic clouds are detected with the density modulation along

the z−axis. The phase of this modulation depends on the phase difference of the

Bragg beams Δϕ(τ1)−Δϕ(τ2) and its fluctuation results in the instability of the

fringes from experimental shot to shot. We will estimate the phase imprinted on

the atoms by the π
2 − π

2 pulse scheme. For this we will neglect the interaction of

the atoms in the condensate and express its wavefunction through the fundamen-

tal state of the harmonic trap with cylindrical symmetry along z−axis. So, in the

momentum space, the BEC wavefunction at time t = 0 is given by (in analogy to

(3.10)):

Ψ̃(p, t = 0) =
√

N0e
−ıφ0 ũ0(p) (3.41)

where φ0 is the initial condensate phase and the momentum dependence is ex-

pressed as [111]:

ũ0(p) =
1

π3/4(c2⊥cz)1/2
e
− p2⊥

2c2⊥ e
− p2z

2c2z (3.42)

with

c⊥ =
√
m�ω⊥, cz =

√
m�ωz.
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Figure 3.36: Schematic representation of the open atomic interferometer using two
successive Bragg pulses. Due to the phase difference accumulated during τ1 − τ2 the

density of each order is modulated

After the first beamsplitter we have:

Ψ̃(p, τ1) =
[
T Ψ̃(p, t = 0) + ıRe−ıΔϕ(τ1)Ψ̃(p+ �ΔkB, t = 0)

]
eı

p2

2m�
τ1

where for an ideal beamsplitter the reflection and transmission coefficients are

equal to R = T = 1√
2
. The common phase factor is not important and will be

omitted in the following. In between the two π
2−pulses, the state evolves to:

Ψ̃(p, t → τ2) = T Ψ̃(p, t = 0)eı
(τ2−τ1)

2m�
(p2⊥+p2z)

+ıRe−ıΔϕ(τ1)Ψ̃(p⊥, pz + �ΔkB, t = 0)eı
(τ2−τ1)

2m�
(p2⊥+(pz+�ΔkB)2).

After the second beamsplitter we have:

Ψ̃(p, τ2) = Ψ̃k0(p, τ2) + Ψ̃k0+ΔkB (p, τ2) (3.43)

with

Ψ̃k0+ΔkB (p, τ2) = ıTRe−ıΔϕ(τ2)Ψ̃(p⊥, pz + �ΔkB, t = 0)eı
(τ2−τ1)

2m�
(p2⊥+p2z)

+ıTRe−ıΔϕ(τ1)Ψ̃(p⊥, pz + �ΔkB, t = 0)eı
(τ2−τ1)

2m�
(p2⊥+(pz+�ΔkB)2).
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and so on for Ψ̃k0(p, τ2). The density of the cloud centered at momentum k0+~∆kB

is then:

nk0+~∆kB (p, tof) = ‖Ψ̃k0+∆kB (p, τ2)eı
(tof−τ2)

2m~ (p2
⊥+(pz+~∆kB)2)‖2 (3.44)

=
N0

2

[
ũ0(p⊥, pz + ~∆kB)

]2 ×
×
(

1 + cos
{

∆ϕ(τ2)−∆ϕ(τ1) +
(τ2 − τ1)∆kB

m
pz +

~(τ2 − τ1)∆k2
B

2m

})
.

The density is modulated by the cos−function which depends on the vertical

velocity vz = pz
m . The fringe separation is

∆vtheorz =
2π

(τ2 − τ1)∆kB
. (3.45)

We compare the theoretically predicted fringe size with the measured one for four

different values of τ2 − τ1 in the figure 3.37. A good agreement between these two

vz (vrec) vz (vrec)

vz (vrec)vz (vrec)

τ2-τ1=0.7 ms
Δvz

meas=0.033(2) vrec

Δvz
theor=0.030      vrec

τ2-τ1=1 ms
Δvz

meas=0.022(1) vrec

Δvz
theor=0.021      vrec

τ2-τ1=1.2 ms
Δvz

meas=0.018(1) vrec

Δvz
theor=0.017     v rec

τ2-τ1=1.5 ms
Δvz

meas=0.015(1) vrec

Δvz
theor=0.014     vrec

Figure 3.37: Density profile along vz of the diffracted atoms of the open atomic
interferometer for four values of τ2−τ1. To obtain the profiles, transversally we integrate
all the atoms and also we average over several realisations ∼ 50. The π

2− pulses have
the duration of 0.1 ms. The red solid curves are the result of the fit function f(vz),
from which we obtain the fringe separations ∆vmeasz that are in good agreement with

the predicted values ∆vtheorz .

has been recorded. The measured values of the fringe size ∆vmeasz are obtained by

averaging several interference patterns ∼ 50 and fitting them by a function

f(vz) = Ae
− v2

z
2σ2
vz

(
1 + C cos(

2πvz
∆vmeasz

+ φ)
)

(3.46)
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where A, σvz , C,Δvmeas
z , φ are free parameters of the fit. Of course this fit function

works up to certain time interval τ2−τ1 since the atomic interferometer is the open

one meaning that the interfering clouds are spatially moving away as a function

of τ2 − τ1. They will not be superposed during the second π/2−pulse for greater

values of τ2 − τ1 while we need a spatial overlap between two atomic clouds in

order to observe an interference. It can be easily seen by switching to the real

space Ψ̃k0+ΔkB (p, τ2) → Ψ̃k0+ΔkB (r, τ2). The separation distance is given by

z − z′ =
�ΔkB(τ2 − τ1)

m
(3.47)

which equals to 0.1 mm for τ2 − τ1 = 2 ms. The fringes are visible as long as the

separation is smaller with respect to the BEC size after expansion Rz(tof) = 1.3

mm.

The absolute value of the phase φ is discussed towards the end of this chapter and

here we will be interested only on the fluctuation of the phase φ. The standard

deviation of the phase σatom = std[φ] which is found from the fit function in (3.46)

is directly related with that of the laser beam σopt = std[Δϕ(τ1) − Δϕ(τ2)]. We

are in a position to compare the measured phase fluctuations σatom and σopt using

two methods. The two quantities are plotted in the figure 3.38 as a function of

τ2 − τ1. There is a very close correlation between the results of the two methods

σ

τ τ

σ
σ

Figure 3.38: Comparison between σopt and σatom as a function of τ2 − τ1

which suggests that optical trajectories between the optical interferometer and the

atomic interferometer do not contribute much to the phase fluctuation ϕ1 − ϕ3.

We see that the two quantities are oscillating at frequency ∼ 830 Hz. We realise

that the source of this fluctuation is due to the turbo pumps but mainly from the

frequency of the turbo pump located in the upper part of the science chamber
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turning at 820 Hz. We model the phase induced by the turbo pump modulates

the phase with a term Φcos(ωpt+ φp) where φp is a random phase:

Δϕ′(τ1) = Δϕ(τ1) + Φ cos(ωpτ1 + φp)

Δϕ′(τ2) = Δϕ(τ1) +

∫ τ2

τ1

dt(ω1 − ω3) + Φ cos(ωpτ2 + φp)

which can be used to estimate the std[Δϕ′(τ2)−Δϕ′(τ1)]:

std[Δϕ′(τ2)−Δϕ′(τ1)] = std
[ ∫ τ2

τ1

dt(ω1 − ω3) + Φ cos(ωpτ2 + φp)− Φcos(ωpτ1 + φp)
]

= std
[
− 2Φ sin(

ωp(τ2 − τ1)

2
) sin(

ωp(τ2 + τ1) + 2φp)

2

]
=

√
2Φ
∣∣∣ sin(ωp(τ2 − τ1)

2
)
∣∣∣

The signal corresponds to the experimental observation in the figure 3.38 from

which we estimate Φ = 20◦. In addition, there is an offset of the quantity

std[Δϕ′(τ2)−Δϕ′(τ1)] indicating that there are other sources of the phase fluctu-

ation. Independently, using an accelerometer device (Analog Devices ADXL335)

we have seen also the vibration of another turbo pump located in the bottom part

of the science chamber which certainly contributes to the offset signal we have

seen.

The values obtained for the average contrast of the single shot fringes is shown

in the figure 3.39. We see that the maximum value can go up to 68% and it

corresponds to the minimum of the phase fluctuation. The contrast never goes

above 68% and we do not understand it well at the moment, neither the drop of

the contrast at long τ2 − τ1 is understood.

τ −τ

Figure 3.39: Average contrast of the single shot fringes as a function of τ2 − τ1.

The effect of the phase fluctuation is that it can lead to the decoherence by shifting

the resonance condition and the effect gets higher for the longer duration of the
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Bragg pulse.

To study the decoherence of the Bragg pulse, we measure the Rabi oscillations as

we have done before for 12 µW power of the Bragg beams. Note that for 12 µW

the decoherence rate was found to be decent and we have seen oscillations going

beyond 4 ms duration of the Bragg pulse. So what is different with 5 µW? Well, the

two photon Rabi frequency |Ωeff |5 µW = 2π × 520 Hz gets closer to the frequency

of the phase fluctuation frequency 2π × 820 Hz and thus the effect of the phase

fluctuation on the decoherence gets amplified as we see from the figure 3.40 where

we plot the Rabi oscillations for three different powers of the Bragg pulse: 12 µW,

7 µW and 5 µW. Each experimental point (red points) is obtained by counting

number of atoms inside 0.005 krec longitudinally (no transverse momentum limit)

and averaging over several experimental realisations. We can see the decoherence

effect can be violent closer to the resonance. By introducing phase fluctuation in

the form Φ cos(ωpτ1 + φp) for the Bragg beams with the earlier estimated value

of Φ and in addition, including the decoherence rate Γ = 0.19 ms−1 which is the

governing decoherence rate away from the resonance and which is independent

of power of the Bragg beams, we simulated the resulting Rabi oscillations by

solving numerically the time-dependent Schrodinger’s equation. The result of the

numerical study are given by solid lines and as we can see it can explain efficiently

what is observed.

The effect of the upper turbo pump could be easily corrected by adding the sinu-

soidal phase to the phase of the RF signal which is sent to the AOM. We have

not implemented it immediately. Instead, we decided to investigate the coherence

properties of the single point in the last graph of 3.40 corresponding to the 500 µs

duration of the 5 µW of Bragg laser beam power which corresponds to our atomic

beamsplitter to be employed for the Bell’s test. So, we need to check the effect

of the phase fluctuation on the beamsplitter transfer and reflection coefficient and

more importantly its effect on the imprinted phase on the atoms. The effect of the

phase fluctuation on the transmission and reflection coefficient of the beamsplitter

is through shifting the resonance condition by Φ
2πωp = 50 Hz over the resonance

half-width ∆ωres = ~
2m∆kB(2 × 0.02krec)/2π = 950 Hz. We estimate that it has

a small effect changing the coefficients by 4%. The important issue for us was to

make sure that the imprinted phase on the atoms by the atomic beamsplitter is

well controlled. This is what we are going to discuss next.

3.3.3 Atomic beamsplitter: phase test

Remember that we apply simultaneously two atomic beamsplitters made of {ω1, ω3} and

{ω2, ω3} which imprint phases ϕ1−ϕ3 and ϕ2−ϕ3 respectively on the atoms. Our aim
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Figure 3.40: Two photon Rabi oscillations, averaged over several realisations, for
three different optical powers of the Bragg beams in order from top graph to bottom
graph: 12 μW, 7 μW and 5 μW . Solid lines represent numerical study including the

phase fluctuation introduced by the vibration of the turbo pump.
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is to check if we control the phase difference ΔΦ = (ϕ1−ϕ3)− (ϕ2−ϕ3) = ϕ1−ϕ2. Up

to know we have studied the phase difference ϕ1 − ϕ3 which is found to be not stable.

However, we can hope that the phase difference ϕ1 − ϕ2 stays stable since the phase

fluctuations of both atomic beamsplitters are common. We are going to verify if this

is indeed the case, but in the first place we explain the electronic control of the phase

difference ϕ1 − ϕ2.

3.3.3.1 RF source for the phase control

AOM of Bragg 
top beam

4

lens

lens

mirror

mixer

RF 
signal

switch switch

mixer

signal generator

sum
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of Bragg top 
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c

cc

V2 , v2V1 , v1

c- V2 , V2
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{ L+ c- V2 , V2}
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{ L+2( c- V2),2 V2}

Figure 3.41: Left panel: Generation of two RF frequencies for the Bragg top beam
using the DDS device whose phase difference ϕV 1 − ϕV 2 between two outputs is com-
manded. Right panel: The AOM double pass configuration of the top Bragg beam.

The phase difference ΔΦ = ϕ1 − ϕ2 is imprinted on the Bragg laser beams via

AOMs, so we need to control the phase difference of the two RF frequencies injected

to the AOM of the top Bragg laser beam. We generate electronically the mentioned

two RF frequencies according to the scheme in the figure 3.41.(left panel). The starting

point is the double digital synthesizer (DDS) device on the base of which lies the two

RF digital generators that are locked in phase. The DDS has been assembled by the

electrician F. Moron in our laboratory and it genererates two frequencies ωV 1 and ωV 2

with their phase difference ϕV 1 −ϕV 2 controlled by a trigger signal. We have measured

the phase difference ϕV 1 − ϕV 2 generated by the DDS as a function of the input phase

difference, the result is plotted in the figure 3.42. We see that there is an inherent

offset of 33.8◦ which might come from the propagation time difference of the digital
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Figure 3.42: Calibrating the phase difference between two outputs of the
DDS device. The measured phase difference ϕV 1 − ϕV 2 versus the input phase dif-
ference ϕV 1 − ϕV 2 is plotted. The linear fit (black solid line) gives a slope of 0.998(2)

and an offset of 33.8(4)◦.

synthesizers to the phase locking unit. We find the slope of 1 indicating that the output

phase difference is indeed controlled. However, unluckily the control happens only 83%

of times and the other 17% of times the phase is shifted by −108◦ from the input value

of ϕV 1 − ϕV 2. It was measured by looking at the statistics of the ϕV 1 − ϕV 2 whose

distribution is shown in the figure 3.43. The reason of such behaviour of the device is

not well established. However the situation is not so dramatic, we can always use the

missed shots as independent set of data since we keep independently track of the phase

ϕV 1 − ϕV 2. A new version of the DDS device is currently developed with the two twin

generators (not with independent generators like with actual one) and we expect that

the imperfections will be corrected with the new device. The half-width at 1/
√
e of the

distribution of ϕV 1 − ϕV 2 is equal to 0.6◦.

Unfortunately, the DDS can not generate more than 80 MHz whereas we use an

AOM centered at 200 MHz. To obtain the required frequency we mix the two output

frequencies of the DDS with the common RF source at frequency ωc, which does not

alter the phase difference ϕV 1 − ϕV 2. After the mixer, we have the sum ωc − ωi and

the difference ωc + ωi frequencies where i = V 1, V 2. We use the AOM as the bandpass

filter since it has a non-zero diffraction efficiency only between 100 MHz and 250 MHz in

double pass. So, we choose ωc = 270 MHz and ωi ∼ 70 MHz to center the ωc−ωi around

200 MHz. We recombine the two useful frequencies ωc − ωV 1 and ωc − ωV 2 by using

combiner (power splitter in inverse configuration) before sending it to the RF amplifier of

the AOM of the top Bragg laser beam. The spectrum of the two coexisting frequencies

centered around 200 MHz with 100 Hz difference after the combiner is shown in the

figure 3.44. Two signals at the designated frequencies appear clearly with the FWHM
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Figure 3.43: Top panel: The distribution of the measured phase difference ϕV 1 −
ϕV 2 = 20.86(1)◦ which happens 83% of times. Bottom panel: The distribution of the
missed phase difference by 108◦, ϕV 1 −ϕV 2 − 108 = 272.72(4)◦, which happens 17% of

times.

of < 5 Hz. The generated two RF frequencies ωc−ωV 1 and ωc−ωV 2 arrive on the AOM

ω ωω ω

Figure 3.44: Spectrum of the coexisting two RF frequencies ωc − ωV 1 and ωc − ωV 2

which are injected on the AOM of the top Bragg beam. The two frequencies are 100
Hz apart and have FWHM < 5 Hz.

of the top Bragg beam as shown in the figure 3.41.(right panel) and the phases ϕV 1 and

ϕV 2 are printed on the laser beams. The top Bragg laser beam is arranged in the double

pass configuration which in turn creates (mainly) three frequencies: ωL + 2(ωc − ωV 1),

ωL+2ωc−ωV 1−ωV 2 and ωL+2(ωc−ωV 2) with ωL the optical frequency (right panel of

the figure 3.41). The double-pass configuration allows us firstly to introduce the detuning

of ∼ 400 MHz from the atomic transition (Bragg beams are diffracted to +1 order in

both ways) to avoid the spontaneous emission. Conversely, having three frequencies is

not a problem in our case, since we choose such that the frequency ωL + 2(ωc − ωV 1) at
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resonance with ka− and kb− and the frequency ωL + 2ωc− ωV 1− ωV 2 at resonance with

ka+ and kb+ and the third frequency ωL+2(ωc−ωV 2) is going to address atoms which we

do not consider. Hence, the third frequency will not intervene. Another way to eliminate

the third frequency is by decreasing the power of RF frequency at ωc−ωV 2 which leaves

us only with two frequencies ω1 = ωL + 2(ωc − ωV 1) and ω2 = ωL + 2ωc − ωV 1 − ωV 2

after the double-pass.

3.3.3.2 Testing ϕ1 − ϕ2 with the atoms

As mentioned before we would like to check if the phase ∆Φ = ϕ1 − ϕ2 is imprinted on

the atoms. For this test, we employ the open atom interferometer sequence employed

before. We fix the time interval between two π
2−pulses to τ1 − τ2 = 1.2 ms. The first

π
2−pulse is made of {ω1 = ωL+2(ωc−ωV 1), ω3} during which ωV 2 is cut by the electronic

switch and the second one is made of {ω2 = ωL+2(ωc−ωV 2), ω3} during which similarly

ωV 1 is cut off. Note that the latter one is the third frequency which we are not going

to employ in the actual test. Nevertheless we have verified the phase stability using the

beating signal between {ω1 = ωL+2(ωc−ωV 2), ω3} and ωL+2ωc−ωV 1−ωV 2. The phase

difference ϕV 1 − ϕV 2 between ωV 1 and ωV 2 is locked and the two atomic beamsplitters

are set on resonance with the condensate. So, the first π
2−pulse has a phase:

∆ϕ(τ1) = (ϕ1 − ϕ3) + Φ cos(ωpτ1 + φp) (3.48)

while the second one has:

∆ϕ(τ2) = (ϕ2 − ϕ3) + Φ cos(ωpτ2 + φp) (3.49)

The density modulation of the diffracted order is given by (see (3.44)):

nk0+~∆kB (p, tof) = ×
(

1 + cos
{

∆ϕ(τ2)−∆ϕ(τ1) +
(τ2 − τ1)∆kB

m
pz +

~(τ2 − τ1)∆k2
B

2m

})
which depends on the aforementioned phase difference ϕ1 − ϕ2 and noise of the turbo

pump. We can control its value directly via the DDS device owing to the relation

ϕ1 −ϕ2 = 2(ϕV 1 −ϕV 2) where factor 2 results from the double pass through the AOM.

So, the idea is to see if the phase of the cos−term in the equation (3.44) is actually

commanded by ϕV 1−ϕV 2. To determine the phase of the density modulation we proceed

as following. Firstly, for a given input value of ϕV 1−ϕV 2 we estimate the average values

of the parameters σvz , C,∆v
meas
z , vz0 by fitting the integrated data of entire experimental

realisations adopting the regular fitting function in a form:

f(A, φ) = Ae
− (vz−vz0)2

2σ2
vz

(
1 + C cos(∆vmeasz vz + φ)

)
. (3.50)
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where all the parameters are free parameters of the fit function. Next, we estime the

phase φ imprinted on the atoms for each experimental realisation letting only A and φ

to be fitted in the fitting function. The result of the measured phase φ as a function of

the commanded angle ϕV 1 −ϕV 2 is plotted in the figure 3.45. The dense data points in

red correspond to the 83% occurrence of the demanded angle ϕV 1 −ϕV 2 and the scarce

data points represent 17% occurrence of the demanded angle shifted by 108◦ due to the

imperfection of the DDS device discussed before. By fitting the data with the linear

function we find the slope of 1.978(17) meaning that the phase printing on the atoms

was successful. It is a very encouraging result. We measure also the offset 266.8(3)◦

which is compatible with the predicted offset angle:

φoffset = 2(ϕV 1 − ϕV 2)offset +
�(τ2 − τ1)Δk2B

2m
= 2 ∗ 33.6◦ + 196.6◦ = 269.8◦. (3.51)

Next, we looked at the standard deviation of the measured angle std[φ] in order to

φ 

ϕ ϕ

Figure 3.45: Imprinted phase on the atoms φ versus commanded phase
ϕV 1 − ϕV 2. The linear fit gives the slope of 1.978(17) and offset angle 266.8(3)◦.

compare it with the preceding results for τ1 − τ2 = 1.2 ms given in the figure 3.38. An

example of the distribution of the phase φ is shown in the figure 3.46 for which the

standard deviation is std[φ] = 0.242(3) rad or ∼ 14◦. The found value is consistent with

the estimated phase fluctuation of the Bragg laser beams (see figure 3.38). Here we

applied two beamsplitters that are temporally separated. In the actual Bell’s inequality

test experiment the two beamsplitters are going to be applied simultaneously and in

such scenario being common for both beamsplitters, the phase fluctuation will cancel

out. This is the great advantage of the scheme 3.1!
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Figure 3.46: Left panel: Distribution of the imprinted phase φ on the atoms. The
standard deviation of the distribution is std[φ] = 0.242(3) rad found by fitting with
gaussian (in red solid line). Right panel: An example of the fit of the atomic fringes to

estimate the phase φ imprinted on the atoms in single realisation.

3.4 Perspective

To sum up, at the moment we dispose experimentally all the necessary elements which

we covered in this chapter to run the Bell’s inequality test with the momentum entangled

atomic pair. The last step before starting the data acquisition of the Bell’s experiment

will be calibrating the timing ts = 2tm of the sequence in the scheme 3.1. It can be

done by two methods, first one is with the HOM type experiment (see Chapter 4) where

the ts is set to the position for which the HOM dip is observed or the second method

consists of following the Bell’s scheme 3.1 and looking at the signal of the correlation

coefficient in equation (2.133) which is expected to exhibit modulation as a function of

ts − 2tm. The advantage of the latter one is that the contrast of the modulation gives

the indication of the violation of the Bell’s inequality and will be the direct realisation

of the scheme 3.1. In addition, we can get also information of the initial value of the

phase ΔΦ in order to fix it later to the preferred values of the four optimized angles for

which the greatest violation is expected.

Although we have shown that the present experimental tools are good enough to

start the first experimental realisation there are always rooms for improvements, namely:

reducing experimental cycle duration: currently the cycle duration is about ∼ 30 s

and it takes a very long data acquisition time especially for Bell-type experiments

where we are in the low gain regime of the atomic pair production. We have two

methods in mind that can be potentially employed to reduce the data acquisition

time, first one is for example recycling the condensate to generate several times

an atomic pair or second one is reducing the cycle duration by utilizing hybrid
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cooling technique for which the experimental proof is already shown achieving

condensation in every 6 s [20].

implementing Bragg pulses with square transfer function: the transfer function

currently we are working with are the sinc−function as we have seen. The disad-

vantage of such functions is that they do not provide flat transfer efficiency for all

momentum class of the atoms addressed by the atomic beamsplitter. The ideal

function would be the square transfer function and it can be generated using the

idea of the adiabatic pulses which exist in the RMN area [13].

measuring cross correlation of pair at lower pair population: finally we have to

measure and verify if the cross correlation of pair is higher than the local correla-

tion function for the lower average population (see 2.2.5).



Chapter 4

Atomic Hong-Ou-Mandel

experiment

In this chapter, the realisation of an atomic Hong-Ou-Mandel (HOM) experiment [88]

in our group using the momentum correlated atomic source we discussed in 2.2.3 will

be described. The successful demonstration of the two-particle quantum interference

effect opens an opportunity to test the Bell’s inequality with massive particles correlated

in momentum. I was engaged in this experiment with my senior experimental partner

Raphael (see his thesis work for further details on the experiment [87]) during the second

year of my thesis work.

This chapter is organised as follows, first we will explain the HOM effect stating

the criteria between quantum and classical threshold. Then the result of our experiment

will be shown with the calculation of the prediction of the HOM signal.

4.1 Description of HOM effect

4.1.1 The HOM effect with two particles

The Hong-Ou-Mandel (HOM) experiment [71] is indeed a landmark experiment revealing

the mysterious properties of quantum mechanics which has no classical counterpart.

It is a wonderful demonstration of the interference between two-particle amplitudes

that is impossible to describe by any classical model. In the HOM experiment two

indistinguishable bosonic particles arriving simultaneously in the input channels of a

beamsplitter always emerge together in one of the output channels. In other words,

consider an input state |1a, 1b〉 at the input channels of a and b of the beamsplitter

illustrated in the figure 4.1, the output state is given by

|1a, 1b〉 = â†b̂†|0, 0〉 →
(

(
√
t)2ĉ†d̂† + (−ı√r)2d̂†ĉ† + (−ı

√
rt)d̂†d̂† + (−ı

√
tr)ĉ†ĉ†

)
|0, 0〉

(4.1)

132



Chapter 4. Atomic Hong-Ou-Mandel experiment 133

d

ca

b

Figure 4.1: The beamsplitter input-ouptut channel representation.

where we used the lossless beamsplitter input-output relations:(
d̂

ĉ

)
=

(√
t ı
√
r

ı
√
r
√
t

)(
b̂

â

)
. (4.2)

Note that the terms
(
(
√
t)2ĉ†d̂† + (−ı√r)2d̂†ĉ†

)
|0, 0〉 cancel each other for a 50 : 50

beamsplitter with t = r = 1
2 and for bosonic particles obeying commutation relations

[ai, aj ] = 0 and [ai, a
†
j ] = 1 ∀i, j. It is this interference effect we are interested in and it

corresponds to the destructive interference between the transmitted and reflected two-

particle amplitudes as shown in the figure 4.2. The output state of the bosonic particles

t

t

r

r

+ = 0

Figure 4.2: The destructive interference between the transmitted and re-
flected two-particle amplitudes.

|ψ〉 =
−ı√

2

(
|2c, 0〉+ |0c, 2d〉

)
(4.3)

is the maximally entangled two-particle state. So the consequence is that the joint

detection of two particles at the output channels of the beamsplitter vanishes i.e. G
(2)
cd =

〈ĉ†d̂†d̂ĉ〉 = 0. In contrast, for the fermionic particles with the anti-commutation relations
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{ai, aj} = 0 and {ai, a†j} = 1 ∀i, j, the resulting state is simply a pure state |ψ〉 =

ĉ†d̂†|0, 0〉 for which we expect maximum value of the joint detection.

The phase of the input state |1a, 1b〉 is totally random. The crucial point of the

two-particle quantum interference effect is that it survives even after averaging out over

random phase of the incoming particles, i.e. G2
cd = 〈ĉ†d̂†d̂ĉ〉 = 0 where the statistical

average is taken over the input state with random phase.

On the other hand, consider the classical waves Ea = E0e
ıφa and Eb = E0e

ıφb with

random phases φa and φb in the input channels a and b of the beamsplitter respectively.

In case where the beams interfere (indistinguishable case), the outcoming waves are

given by

Ec =
1√
2

(
Ea + ıEb

)
Ed =

1√
2

(
Eb + ıEa

)
.

while when the beams do not interfere (distinguishable case), we sum the intensities

instead of the amplitudes (see figure 4.3). The similar classical definition of the joint

Ec=1/√2(Ea+iEb)

E
d
=
1
/√
2
(E
b
+iE
a)

Ea

Eb

Ia

Ib

Ic=1/2(Ia+Ib)

Id
=
1
/2
(Ia+

Ib
)

Indistinguishable 
         case

Distinguishable 
         case

Figure 4.3: Comparison between distinguishable and indistinguishable case
for the classical waves.

detection for the indistinguishable case results in

〈IcId〉 = I2
0 〈sin2(φa − φb)〉 =

I2
0

2
. (4.4)

with the ouptut average intensities 〈Ic〉 = 〈Id〉 = I0, while for the distinguishable case

we have 〈IcId〉 = 〈Ic〉〈Id〉 = I2
0 . An appropriate quantity in comparing the classical

versus quantum scenario is then the visibility of the joint detection [85] when passing
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from distinguishable to indistinguishable particles:

V̄ = 1−
G

(2)
cd,Ind

G
(2)
cd,Dis

. (4.5)

where G
(2)
cd,Ind (G

(2)
cd,Dis) is the joint detection of indistinguishable (distinguishable) par-

ticles.

Hence, classically the visibility of the joint detection can be given as

V̄class = 1− 〈IcId〉〈Ic〉〈Id〉
= 0.5. (4.6)

In fact, 50% of the visibility is the upper bound of what classical models can produce

implying that exceeding this value refers necessarily to the quantum mechanical inter-

ference.

To see the two-particle quantum interference effect, the particles should be indistin-

guishable from each other meaning that they should be in the same state. To illustrate

this point, suppose that the particle a arriving on the beamsplitter has the horizontal

polarization H and the particle b has the vertical polarization V . Then, the output state

is:

|1a,H , 1b,V 〉 = â†H b̂
†
V |0, 0〉 →

(
(
√
t)2ĉ†H d̂

†
V +(−ı√r)2d̂†H ĉ

†
V +(−ı

√
rt)d̂†H d̂

†
V +(−ı

√
tr)ĉ†H ĉ

†
V

)
|0, 0〉

for which obviously the sum (
√
t)2ĉ†H d̂

†
V + (−ı√r)2d̂†H ĉ

†
V will not vanish provided that

the detector can distinguish polarization of particles. Another example where the inter-

ference effect can be degraded is due to the existence of the phase difference between the

terms (
√
t)2ĉ†d̂†|0, 0〉 and (−ı√r)2d̂†ĉ†|0, 0〉. Such phase difference reflects the fact that

the two-particle probability amplitude of the case where both particles are transmitted

is distinguishable from the two-particle probability amplitude of the case where both

particles are reflected that are shown in the figure 4.2. In practice, it is possible to

compensate this phase difference by changing the path difference of the input particles.

Indeed, in the original experiment of C. K. Hong, Z. Y. Ou and L. Mandel in 1987, they

were able to cross from distinguishable case to indistinguishable case by controlling the

optical path of the photons with the beamsplitter position. Their setup is shown in the

figure 4.4.right panel. In the left panel of the figure 4.4 the result of the experiment is

shown which is a plot of the coincidence count of the detectors on the ouptut channels of

the beamsplitter as a function of the beamsplitter position. We see a dip with the visi-

bility as high as 90% suggesting the fully quantum two-photon interference. The authors

attribute the 10% of the visibility loss due to the nonperfect overlap of the photons. The

dip occurred at the position of the beamsplitter ∼ 302 µm where reflected photons were

indistinguishable from the transmitted photons. The width of the dip gives the measure
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dDistinguishable

Indistinguishable

Figure 4.4: The scheme and the result of the experiment by Hong, Ou and
Mandel in 1987 with two photons. Right panel: The setup of the experiment
which consists of two photons generated as a result of parametric down-conversion, a
beamsplitter, detectors and spatial and spectral filters. Left panel: The result of the
experiment which is a plot of the coincidence count of the detectors on the ouptut
channels of the beamsplitter as a function of the beamsplitter position. The dip of the
∼ 90% of visibility has been observed indicating the quantum two-photon interference
effect. Solid line is the theoretical prediction while the dashed line is the attenuated

version of the solid line by factor of 0.9. (Figures are extracted from [71])

of the temporal length of the photon wave packet. It is found to be 16 µm at half height

corresponding to duration of about 50 fs which is what is expected from the passband

of the filters used in the experiment.

Although the HOM effect allows one to measure the duration of short wavepackets

with a good resolution which was the intention of the authors originally, today it has

a wide application in generating entangled states for quantum computing and phase

testing interferometers, in quantifying the purity of the source or the indistinguishability

by measuring the visibility of the dip [14, 126].

4.1.2 The HOM effect with N particles

Consider a (two-mode) input state

|ψ〉in =

N∑
n=0

√
P (n)|n, n〉 (4.7)

where P (n) is some probability function which characterizes the statistics of the state.

We will calculate the visibility V̄ defined in the equation (4.5). The joint detection is

G
(2)
cd = 〈ĉ†d̂†d̂ĉ〉

= ‖d̂ĉ|ψ〉in‖2

where the average is taken over the input state |ψ〉in in the equation (4.7). It can be

shown that the joint probabilities of the indistinguishable case and the distinguishable
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particles are given by [87]:

G
(2)
cd,Ind =

1

4

(
G(2)
aa +G

(2)
bb

)
, (4.8)

G
(2)
cd,Dis =

1

4

(
G(2)
aa +G

(2)
bb

)
+

1

2
G

(2)
ab . (4.9)

where G
(2)
aa = in〈ψ|â†â†ââ|ψ〉in, G

(2)
bb = in〈ψ|b̂†b̂†b̂b̂|ψ〉in and G

(2)
ab = in〈ψ|â†b̂†b̂â|ψ〉in.

Now, we can evaluate the visibility by using a concrete example of the input state |ψ〉in
which is the state of a (two-mode) parametric down-conversion process introduced in

the equation (2.97):

|ψ〉in =
N∑
n=0

tanhn(λ)

cosh(λ)
|n, n〉 (4.10)

where λ is related to the average number of particles 〈n〉 = sinh2(λ). From the equations

(2.93) and (2.94), we obtain

G
(2)
cd,Ind = 2〈n〉2,

G
(2)
cd,Dis = 〈n〉(1 + 2〈n〉)

which produces the visibility of

V̄ = 1−
G

(2)
cd,Ind

G
(2)
cd,Dis

= 1− 1

2 + 1
2〈n〉

. (4.11)

The plot of the visibility V̄ as a function of the average population 〈n〉 is shown in the

figure 4.5. We see that as the average population increases 〈n〉 → ∞ the visibility tends

to the classical limit value 0.5.

So far we considered two-mode input state with equal populations and we have

seen that when the average population per mode increases the visibility approaches

the classical limit. In this regime, we can not talk about quantum effect anymore. This

behaviour is in general true when the input particle population and as well as the number

of modes increase [30, 73, 137].

The visibility V̄ can be related to the Cauchy-Schwarz inequality (CS) which can

be written as [81]

G
(2)
ab ≤

√
G

(2)
aaG

(2)
bb . (4.12)

The CS inequality is omnipresent in physics and mathematics and it is used in the

proofs of the number of theorems. It simply states the fact that the inner product of

two vectors cannot be larger than the product of their lengths or if we apply to classical

fields it states that no classical fields can produce the joint probability of detection at

two different points in space where the mean intensities are equal, greater than that
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quantum

classical

Figure 4.5: The visibility of the HOM dip as a function of the average
population with the source of the two-mode parametric down conversion
process(solid line in red). It converges rapidly to the classical limit 0.5 shown with

black dashed lines, as a function of the average population.

for two detections at the same point. Therefore, violation of the CS inequality is only

possible for nonclassical states such as |1a, 1b〉 for which G
(2)
ab = 1 and G

(2)
aa = G

(2)
bb = 0.

The connection between the CS inequality violation and the entanglement is discussed

in [143].

Using (4.8) and (4.9), the visibility can be rewritten as:

V̄ =
1

1 + δ
C

(4.13)

with

δ =
G

(2)
aa +G

(2)
bb

2

√
G

(2)
aaG

(2)
bb

and

C =
G

(2)
ab√

G
(2)
aaG

(2)
bb

.

Having the value of the CS parameter greater than one (C > 1), indicates the violation

of the CS inequality. Also, we see that the parameter δ is lower bounded δ ≥ 1, since

G
(2)
aa,bb ≥ 0 and it is equal to 1 when G

(2)
aa = G

(2)
bb . The classical limit of 0.5 is obtained

for the minimum value of δ, i.e. for δ = 1. By fixing δ = 1, the visibility is given in

terms of the paramter C:

V̄ =
1

1 + 1
C

. (4.14)

For C ≥ 1, the visibility V̄ goes above 50% as expected. The advantage of expressing

the visibility in terms of the CS parameter C is that one can predict the visibility of the
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HOM dip by measuring the C parameter before carrying out the HOM experiment.

4.2 The atomic HOM signal

The ability to create nonclassical source is at the heart of the experimental advance-

ments of quantum physics. The cold atoms community is in the developing stage of

nonclassical pair creation and manipulation compared to the mature quantum optics

community. Nevertheless, several promising results were already obtained in the atomic

community concerning the creation of atomic pairs correlated with internal degrees of

freedom [19, 59, 91] as well as with external degrees of freedom [25, 29, 110, 141]. Such

atomic sources can provide more degrees of freedom (internal, external, bosonic and

fermionic) and strong non-linearity for quantum information in contrast to the optical

sources. To manipulate atomic pair in the low gain regime which is necessary for the

realisation of HOM type experiments with atoms, the detection at single atomic level is

desirable. Today, several single atom resolved imaging techniques exist such as fluores-

cence imaging of trapped atoms in the lattice or in an array of tweezers [9, 132, 145],

or again fluorescence resonance imaging with light sheet [26], or the electronic detection

of metastable helium atoms (see Appendix D). Possessing the essential experimental

ingredient: the detector with single atom resolution we realised the HOM experiment

using neutral atoms and by manipulating their external degrees of freedom. The other

known example of an HOM-like experiment with neutral atoms in real space is in [80].

Note that for the HOM experiment the atomic pair source is not obligatory but us-

ing the pair source provides good statistics. Moreover, in our case, observing the two

particle interference with our atomic source opens the way to test the Bell’s inequality

involving external degrees of massive particles. The experimental scheme we employ for

the atomic HOM experiment is shown in the figure 4.6 which is very similar to the one

we discussed for the Bell’s experiment. The only difference is that here we do not con-

trol the phase of the interferometer and we are not selective in momentum modes with

the beamsplitter. Thus we apply a single mirror Bragg pulse and a single beamsplitter

Bragg pulse. In order to tune the distinguishability we adjust the application time of the

beamsplitter Bragg pulse. The scheme of the experiment in the figure 4.6 is very similar

to the original experiment (figure 4.4) carried out with photons. The main difference

is that the atomic mirror and beamsplitter translate the momentum distribution while

mirror and beamsplitter for photons make a mirror image of momentum distribution.

The pair of atoms a and b are produced at t ≈ 0 from the dynamical instability process

as explained before. The paths of a and b is made to interfere by applying a mirror

and a beamsplitter. We apply a single π-pulse at time t = tm and a single π/2 pulse at

time t = ts to realize the interferometer. We measure the joint-detection or equivalently
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Figure 4.6: The experimental scheme of an atomic Hong-Ou-Mandel ex-
periment. A pair of atoms a and b is produced at time t = 0, they propagate freely
before the π-bragg pulse (atomic mirror)is applied to superpose them on to the atomic
beamsplitter, π/2-bragg pulse. The joint detection between the outputs at the detector
is measured and it is expected the full suppression of the joint detection when the two

bosonic particles are indistinguishable.

cross-correlation between the two outputs of the beamsplitter on the detector:

G
(2)
cd =

η2

ΩVcΩVd

∫
ΩVc

∫
ΩVd

d3kc d
3kd〈n̂kc n̂kd

〉. (4.15)

where ΩVc , ΩVd
are volumes of analysis centered around mean momenta k̄c and k̄d

respectively. Note that in the real experiment, the MCP detector with efficiency η

registers the atoms resolving in momentum. The quantity G
(2)
cd is measured by counting

the number of atoms inside the volumes of analysis. The result of the measurement of the

experimental cross-correlation G
(2)
cd is plotted as a function of the duration τ = ts−tm in

the figure 4.7. The HOM-dip appears clearly from the experimental data points (filled

circles) at the expected value of duration τ = 550(50)  tm μs for which the two particle

amplitudes become indistinguishable. The error bars denote the standard deviation of

the statistical ensemble. The integration volumes are chosen as to optimize the signal

to noise ratio of the visibility of the HOM-dip and are set to ΩVc = ΩVd
= [L2

⊥Lz] =

[0.0482 × 0.028](k3rec) centered longitudinally around kc = 0.740 krec and kd = 1.275

krec. Each experimental point is averaged over 500 to 1000 repetitions of the experiment

amounting to 10 hours of integration time. The product of the output mean populations
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Figure 4.7: The atomic HOM-dip signal: the cross-correlation function G
(2)
cd

between outputs of the beamsplitter as a function of the duration τ = ts −
tm. The HOM-dip appears clearly from the experimental data points (filled circles)
at the expected value of duration τ = 550(50) µs ' tm for which the two-particle
amplitudes become indistinguishable. Each experimental point is averaged over 500 to
1000 repetitions of the experiment and error bars denote the standard deviation of the
statistical ensemble. A Gaussian fit (blue line) gives the half width at 1/

√
e of 70(30)

µs and the visibility of V̄ = 0.65(7). The measured visibility is two standard deviations
below the estimated classical-to-quantum threshold represented by the red shaded area.

〈nc〉 · 〈nd〉 is kept constant during the two weeks of data acquisition time [87]. We fit

the experimental data with the empirical Gaussian function (blue line) defined as

G(2)(τ) = G
(2)
0

(
1− V̄ e

− (τ−τ0)2

2σ2
hom

)
(4.16)

From the fit result, we obtain the half width at 1/
√
e of σhom = 70(30) µs and the

visibility of V̄ = 0.65(7). The measured visibility is two standard deviations below

the estimated classical-to-quantum threshold represented by the red shaded area. The

threshold value is set to the half of the measured value of G
(2)
cd,Dis. The width of the

threshold band comes from the uncertainty of the measured correlation function.

In the following, we are going to consider a 1-dimensional model (z−axis) and we

will neglect the gravity as it does not play a role here. We will evaluate

G
(2)
cd = η2

∫ ∫
dkc dkd〈â†kc âkc â

†
kd
âkd〉.

= η2

∫ ∫
dkc dkd‖âkc âkd〉‖2

where the operators are written in the Heisenberg picture and they annihilate or create a

particle with corresponding plane wave momentum. We will write the operators âkc(t >
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ts) = âka(t > ts) and âkd(t > ts) = âkb(t > ts) in terms of operators at time t = 0.

In doing so, we will use the atomic beamsplitter input-output relations similar to the

matrix 4.2: (
d̂

ĉ

)
=

( √
t ı

√
re−ıφ

ı
√
reıφ

√
t

)(
b̂

â

)
(4.17)

where for ideal atomic mirror r = rm = 1, t = tm = 0 and φ = φm whereas for ideal

atomic beamsplitter r = rs = 1
2 , t = tm = 1

2 , φ = φs. Here the phase φ comes from the

phase of the optical lattice created by the Bragg beams. So the annihilation operators

on the detector are related to the annihilation operators at time t = 0 by (we did similar

calculation in the Chapter 2 subsection 2.2.5):

âka(t > ts) = e−ı/~Eka (t−ts)
(
Aka+∆kB âka+∆kB +Aka âka

)
âkb(t > ts) = e−ı/~Ekb (t−ts)

(
Akb−∆kB âkb−∆kB +Akb âkb

)
where

Aka+∆kB = ı
√
rmtse

ıφme−ı/~(Eka+∆kB
tm+Eka (ts−tm))

Aka = −√rmrseı(φs−φm)e−ı/~(Eka tm+Eka+∆kB
(ts−tm))

Akb = −√rmrseı(φm−φs)e−ı/~(Ekb tm+Ekb−∆kB
(ts−tm))

Akb−∆kB = ı
√
rmtse

−ıφme−ı/~(Ekb−∆kB
tm+Ekb (ts−tm))

with Ei =
~2k2

i
2m . So the cross-correlation on the detector in terms of operators at time

t = 0 is given by:

G
(2)
cd = η2

∫ ∫
dka dkb

×‖Aka+∆kBAkb âka+∆kB âkb |Ψ〉+AkaAkb−∆kB âka âkb−∆kB |Ψ〉
+AkaAkb âka âkb |Ψ〉+Aka+∆kBAkb−∆kB âka+∆kB âkb−∆kB |Ψ〉‖2. (4.18)

Ideal state. First we consider the ideal state (in analogy with 2.130):

|Ψ〉 =

∫ ∫
dka dkbfab(ka, kb)|1ka , 1kb〉 (4.19)

in which only two correlated atoms at a time is produced and where

fab =

√
2

πσ⊥σq
exp

{
− (ka + kb − 2kLat)

2

2σ2
⊥

}
exp

{
− (kb − ka −∆kB)2

2σ2
q

}
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Inserting this state, the G
(2)
cd becomes:

G
(2)
cd = η2

∫ ∫
dka dkb‖AkaAkbfab +Aka+∆kBAkb−∆kBfab‖2

= r2
m(r2

s + t2s)η
2

∫ ∫
dka dkb|fab|2

{
1− 2rsts

r2
s + t2s

cos(
~
m

∆kB(ts − 2tm)(kb − ka −∆kB))
}

(4.20)

We see that the interference is between two particle amplitudes that are reflected AkaAkb

and transmitted Aka+∆kBAkb−∆kB as it was discussed in the figure 4.2. If the integration

limits Lka and Lkb are large compared to the width of fab, we can obtain analytical result

of the cross correlation:

G
(2)
cd (τ) = η2r2

m(r2
s + t2s)

(
1− V̄ e

− (τ−tm)2

2σ2
hom

)
(4.21)

where τ = ts − tm and the half-width of HOM signal at 1/
√
e is given by

σhom =

√
2m

~∆kB

1

σq
(4.22)

and the visibility is given by

V̄ =
2rsts
r2
s + t2s

. (4.23)

It is exactly the same result of the original HOM experiment with photons.

We assumed that limits of the integrations are large compared to the size of in-

tegrand. However, experimentally we have one of the size of fab (σq = 0.072 krec,

σ⊥ = 0.024 krec) greater than the size of volumes of analyse (Lz = 0.028 krec) and it

should be taken into account. With photons, by varying the delay between two inci-

dent photons, they measured a temporal width which was proportional to the inverse

of passband of temporal filter while with atoms by varying the spatial overlap of atoms

we measure a spatial width which is proportional to the inverse of momentum width

σq. This width can be in general modified by the size of the volumes of analysis and

the selectivity of a Bragg pulse that act as a spatial filter. The spatial filtering effect of

volumes of analysis is taken care by setting the limits of the integration in the equation

4.20 and the spatial filtering effect of the Bragg pulse can be taken care by expressing

the coefficients rm, rs and ts in the equation 4.20 as a probability function of the Bragg

pulse (see Bragg selectivity in the Chapter 3). We simplify the Bragg selectivity by

considering it only for π pulse which is more selective than the π/2 pulse and we model

the reflectivity of a π pulse with a gaussian. In other words, we write

r2
m = exp

{
− (ka − k̄a)2 + (kb − k̄b)2

2σ2
m

}
.
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So,theequation4.20becomes

G
(2)
cd = (r2s+t

2
s)η
2

+Lz/2

−Lz/2

+Lz/2

−Lz/2
dkadkb|fab|

2e
−
(ka−k̄a)

2+(kb−k̄b)
2

2σ2m

× 1−
2rsts
r2s+t

2
s

cos(
m
∆kB(ts−2tm)(kb−ka−∆kB)).

Weintegrateaboveexpressionnumericallyfortwodifferentvaluesoftheintegrationlimit

Lz=0.048krecandLz=0.028krecandweplottheresultinthefigure4.8asafunction

ofτ,thetimeofapplicationoftheπ/2pulsewherewefixthefollowingparameters

totheirexperimentalvalues(seeChapter3andthesis[87]):η=0.25,rs=ts=
1
2,

σ =0.072krec,σ⊥ =0.024krec,σm =0.07krec,∆kB =0.56krec,̄ka=0.74krec

andk̄b=1.3krec. Firstly,weseethattheamplitudeofG
(2)
cd

0.020

0.015

0.010

0.005

0.000

G
c
d(
2)

1.20.80.40.0

τ (ms)

   = 0.048 krec
   = 0.028 krec

scalesproportionalto

Figure4.8: PlotoftheoreticalG
(2)
cd asafunctionofτfortwodifferentintegration

lengthsLz=0.048(krec)andLz=0.028(krec).

theintegrationlimitsizewhichisexpectedsinceweintegratesmallersignalforsmaller

integrationlength.Secondly,G
(2)
cdscalesinverselywiththesizeoflengthofanalyseLz

showingthatthewidthoftheHOMsignalismodifiedessentiallybythesizeofthe

volumeofanalysis.Itisacceptablesincethesizeoftheanalysisisthesmallestlength

scaleintheexperiment.Theestimatedhalf-widthsat1/
√
e(figure4.8)are140µsand

95µsforLz=0.028krecandLz=0.048krecrespectively. Wecomparethesevalueswith

themeasuredvalues[87]σHOM,Lz=0.028=70(30)µsandσHOM,Lz=0.048=45(10)µsfrom

theexperimentaldatawhichisshowninthefigure4.9.Althoughthescalingbehaviour

iscorrect(largerLz→ smallerσHOM ),theexperimentalvaluesofwidthsofHOM

signalisnottotallydescribedbythe1Dtheoreticalmodel. Wesuspectthattransverse

dimensionsplayaroleindeterminingthewidthoftheHOMsignal.Forexample,any

tiltoftheBragglatticefromtheverticalaxistranslatesintoimperfectoverlapofthe

atomicbeamsresultinginathinnerdip.
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Figure 4.9: Experimental HOM dip for two different integration volumes for ΩV =
[0.0482 × 0.028](k3

rec) and ΩV = [0.0482 × 0.048](k3
rec). We see that the width of the

cross correlation scales inversely with length of analyse box.

The theoretical visibility of the HOM dip V̄ is given only in terms of beamsplitter

coefficients rs and ts and it is 100% for the ideal case rs = ts = 1
2 while it is greater

than 90% for non-perfect experimental values of transmission and reflection coefficients

rs = 0.4 and ts = 0.6. Also, the visibility does not depend on the detector efficiency

η. So the observed visibility 0.65(7) does not fit with the description using the ideal

state |Ψ〉 and we knew it already from the experimental measurements of auto and cross

correlation functions where latter one was not higher than the former one to allow the

approximation of pair state with |Ψ〉 (see Chapter 2 subsection 2.2.3.4). For photons,

the approximation of the state of their source by the similar expression as (4.19) is

easily justified because they can reduce the average population of pair to a very small

values, i.e. 〈n〉 � 1 so that the probability of having more than two particles in a pair is

negligible. They can do so thanks to the short experimental repetition duration. On the

other hand, for atoms with our current experimental cycle duration, attaining the same

regime can amount to a quite long data acquisition. In fact, we estimate [87] average

populations 〈na〉 = 0.8(3) and 〈nb〉 = 0.5(3) for our atomic pair.

To understand the visibility and the width of the observed HOM signal, we take

an experimental approach which is described below.

Experimental approach. The real state of our atomic pair contains higher order

terms in population. So, here we will not specify the exact state, instead we will make use

of the relation between the cross-correlation function G
(2)
cd and the CS parameter C which

we can measure experimentally. The expression 4.18 is general and it contains 16 terms

but terms such as 〈â†ka+∆kB
â†kb âka âkb−∆kB 〉, 〈â†ka â

†
kb−∆kB

âka âkb〉, etc. are simplified for
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the pair states (containing terms |n, n〉). The surviving terms are

G
(2)
cd = η2

∫ ∫
dka dkb

×‖Aka+∆kBAkb âka+∆kB âkb |Ψ〉+AkaAkb−∆kB âka âkb−∆kB |Ψ〉‖2

+‖AkaAkb âka âkb |Ψ〉+Aka+∆kBAkb−∆kB âka+∆kB âkb−∆kB |Ψ〉‖2. (4.24)

The interfering term of the second line is proportional to the phase of the Bragg lattice

φs− 2φm which we do not control in the experiment and it will average to zero. So, the

cross-correlation further reduces to:

G
(2)
cd = η2

∫ ∫
dka dkb

×
(

1

4
〈â†ka â

†
kb−∆kB

âka âkb−∆kB 〉+
1

4
〈â†ka+∆kB

â†kb âka+∆kB âkb〉

+
1

4
〈â†ka â

†
kb
âka âkb〉+

1

4
〈â†ka+∆kB

â†kb−∆kB
âka+∆kB âkb−∆kB 〉

−1

2
cos(

~
m

∆kB(ts − 2tm)(kb − ka −∆kB))〈â†ka+∆kB
â†kb−∆kB

âka âkb〉
)

where the last term is equal to the cross correlation for kb −∆kB = ka. Assuming that

the contributions of this term for kb − ∆kB 6= ka can be neglected (phase matching

condition of the pair production corresponds to kb−∆kB = ka), we can cast G
(2)
cd in the

known form:

G
(2)
cd,Ind ≈

1

4

(
G(2)
aa +G

(2)
bb

)
,

G
(2)
cd,Dis ≈

1

4

(
G(2)
aa +G

(2)
bb

)
+

1

2
G

(2)
ab .

and as we have seen before in the equation 4.13 the visibility is given by

V̄ =
1

1 + δ
C

(4.25)

with δ =
G

(2)
aa +G

(2)
bb

2

√
G

(2)
aaG

(2)
bb

and C =
G

(2)
ab√

G
(2)
aaG

(2)
bb

. We measure C as a function of the integration

volume which is plotted in the figure 4.10. For the integration volume of the atomic

HOM-signal, Lz = 0.028 krec and L⊥ = 0.048 krec, we find C = 1.75(2) and δ = 1.15(5).

The expected visibility is then equal to

V̄ = 0.60(1) (4.26)

which agrees with the measured visibility 0.65(7). Therefore, we conclude that the

visibility is constrained by the population of the two incoming beams.
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Figure 4.10: The CS parameter C as a function of the integration volume along a)
longitudinal axis fixing ∆k⊥ = 0.05 krec and b) transverse axis fixing ∆kz = 0.028
krec.The threshold limit between classical and quantum correlations C = 1 is repre-
sented by the red dashed line and the experimental data in red corresponds to the

integration volume of the HOM-dip signal.

In contrast to photons, atoms interact with each other and it is interesting to know

the role of the interactions. The effect of the interactions between atoms in evaluating

the HOM-dip visibility is studied in detail in [4] and their result is shown in the figure

4.11. The relevant parameter is the ratio between the two photon Rabi frequency of the

Bragg pulse and the chemical potential of the pairs which is equal to µ
2~ΩR

= 0.033 for

our experimental parameters [87]. It is obvious that this value is too small to shift the

visibility considerably.

Figure 4.11: Evolution of the HOM visibility as a function of the ratio between the
chemical potential and 2−photon Rabi frequency(figure copied from [4]).

4.3 Conclusion

We can conclude that our atomic pair source is indeed non-classical source and we were

able to characterize and manipulate with it coherently via the HOM experiment. It
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opens an opportunity to test the Bell’s inequality with massive particles correlated in

external degrees of freedom.
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Two-particle interference is a fundamental feature of quantum
mechanics, and is even less intuitive than wave–particle duality for
a singleparticle. In this duality, classical concepts—waveorparticle—
are still referred to, and interference happens in ordinary space-
time. On the other hand, two-particle interference takes place in a
mathematical space that has no classical counterpart. Entanglement
lies at the heart of this interference, as it does in the fundamental
tests of quantum mechanics involving the violation of Bell’s
inequalities1–4.TheHong,OuandMandel experiment5 isaconceptually
simpler situation, in which the interference between two-photon
amplitudes also leads to behaviour impossible to describe using a
simple classical model. Here we report the realization of the Hong,
Ou and Mandel experiment using atoms instead of photons. We
create a source that emits pairs of atoms, and cause one atom of
each pair to enter one of the two input channels of a beam-splitter,
and theother atomtoenter theother input channel.When the atoms
are spatially overlapped so that the two inputs are indistinguishable,
the atoms always emerge together in one of the output channels.
This result opens the way to testing Bell’s inequalities involving
mechanical observables of massive particles, such as momentum,
usingmethods inspiredbyquantumoptics6,7, and to testing theories
of the quantum-to-classical transition8–11.Ourwork also demonstrates
a new way to benchmark non-classical atom sources12,13 that may
be of interest for quantum information processing14 and quantum
simulation15.
A pair of entangled particles is described by a state vector that can-

not be factored as a product of two state vectors associated with each
particle. Although entanglement does not require that the two particles
be identical2, it arises naturally in systems of indistinguishable particles
owing to the symmetrization of the state, which leads to non-trivial,
multiparticle interference.A remarkable illustration is theHong,Ouand
Mandel (HOM) experiment, in which two photons enter the two input
channels of a 50:50 beam-splitter (one photon in each channel) and the
correlation is measured between detectors at the two outputs.
A joint detection at thesedetectors arises from twopossible processes:

either both photons are transmitted by the beam-splitter or both are
reflected (Fig. 1c). For two indistinguishable photons, both processes
lead to the same final quantum state and the probability of joint detec-
tion results from the addition of their amplitudes. Because the beam-
splitter corresponds to a unitary operation, these amplitudeshave same
modulus but opposite signs, thus their sumvanishes and soalso thepro-
bability of joint detection16,17 (see also Methods). To be truly indistin-
guishable, not onlymust the photons have the same energy distribution
and polarization, but their final spatio-temporal modes must be ident-
ical. Thus, the two photonsmust enter the beam-splitter inmodes that
are the exact images of each other. As a result, when measured as a
function of the delay between the arrival times of the photons on the
beam-splitter, the correlation exhibits the ‘HOM dip’, ideally going to
zero at zero delay.
Our experiment is equivalent in all important respects to the HOM

experiment, but is performed with bosonic atoms instead of photons.
We produce freely propagating twin beams of metastable 4He atoms18,
which we then reflect and overlap on a beam-splitter using Bragg scat-
tering on an optical lattice (ref. 19 and Fig. 1). The photon counters

after the beam-splitter are replaced by a time-resolved, multi-pixel
atom-counting detector20, which enables themeasurement of intensity
correlations between the atom beams in well defined spatial and spec-
tral regions. The temporal overlap between the atoms can be continu-
ously tuned by changing themoment when the atomic beam-splitter is
applied.We observe theHOMdipwhen the atoms simultaneously pass
through the beam-splitter. The key technical advance that has enabled

1Laboratoire Charles Fabry, Institut d’Optique Graduate School – CNRS – Université Paris Sud, 2 avenue Augustin Fresnel, 91127 Palaiseau, France.
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Figure 1 | Schematic of the experiment. a, A Bose–Einstein condensate (BEC,
white oval) of metastable 4He atoms is trapped in an elongated optical trap
(red shaded area). A moving optical lattice, here depicted in blue, is
superimposed on the BEC and triggers the scattering of atom pairs along the
z axis. When this lattice and the trap are switched off, the atoms fall towards a
microchannel plate detector located 46 cm below the initial position of the
BEC (drawing not to scale). b, The time diagram shows the evolution of the
twin atoms’ vertical coordinates (blue line for beam a and red line for beam b).
Between t1 and t2, t2 and t3, and after t3, the atomsmove under the sole influence
of gravity (drawing not to scale). At t2, the twin atom velocities are swapped
using Bragg diffraction on an optical lattice. At time t3, when the atomic
trajectories cross again, the same lattice is applied for half the amount of time in
order to realize a beam-splitter. The lines alternately dashed in red and blue
symbolize the indiscernibility of the atoms’ trajectories after the beam-splitter.
The filled red and blue circles indicate the position of the atoms at a given
time before the beam-splitter is applied. c, In the centre-of-mass frame of
reference, the trajectories of the atoms resemble those of the photons in the
Hong–Ou–Mandel experiment. A joint detection arises either when both
atoms are transmitted through the beam-splitter (upper panel) or when both
are reflected (lower panel). If the two particles are indistinguishable, these
processes end in the same final quantum state and the probability of joint
detection results from the addition of their amplitudes. For bosons these
amplitudes have samemodulus but opposite signs, thus their sum vanishes and
so also does the probability of joint detection.
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this work was the improvement of the atom pair production so as to
permit optimal adjustment of the mode populations18.
We begin by producing a Bose–Einstein condensate (BEC) of meta-

stable 4He atoms in the 1s2s 3S1 internal state (herewe represent this by
2 3S1), with the projection of the total electronic angular momentum
m5 1. The BEC contains (5–6)3 104 atoms and is confined in an
elliptical optical trap with its long axis along the vertical (z) direction
(Fig. 1a). The atomic cloud has radii of 58 and 5mm along the longitu-
dinal (z) and transverse (H) directions, respectively. A moving optical
lattice, superimposed on the BEC for 300ms, induces the scattering of
atompairs (hereafter referred to as twin atoms) in the longitudinal direc-
tion throughaprocess analogous to spontaneous four-wavemixing18,21,22

(see alsoMethods).Thismixingprocess resembles thatused in refs 23–25
to generate entangled states in the spin sector, but it involves themotional
degrees of freedom. One beam, labelled a, has a free-space velocity
vz< 12.1 cm s21 in the laboratory frameof reference and theother beam,
labelled b, has a velocity vz< 7.0 cm s21 (Fig. 1b, c). The twin atom
beams clearly appear in the velocity distribution of the atoms, which is
displayed in Fig. 2. The visible difference in population between the
beams is attributed to secondary scattering processes in the optical
lattice, leading to the decay over time of the quasi-momentum states18.
After the optical lattice has been switched off (at time t1), the twin
atoms propagate in the optical trap for 200 ms. At this moment, the
trap itself is switched off and the atoms are transferred to the magnet-
ically insensitive m5 0 internal state by a two-photon Raman trans-
ition (Methods).
From here on, the atoms evolve under the influence of gravity and

continue to move apart (Fig. 1b). At time t25 t11 500ms, we deflect
the beams using Bragg diffraction on a second optical lattice, so as to
make them converge. In the centre-of-mass frame of reference, this de-
flection reduces to a simple specular reflection (Fig. 1c and Methods).
At time t3< 2t22 t1, we apply the same diffraction lattice for half the
amount of time in order to realize a beam-splitting operation on the

crossing atombeams. Changing the time t3 allows us to tune the degree
of temporal overlapbetween the twinatoms.Figure1c shows the atomic
trajectories in the centre-of-mass frame of reference and reveals the
close analogy with a photonic HOM experiment.
The atoms end their fall on a microchannel plate detector located

46 cmbelow the position of the initial BEC, andwe record the time and
transverse position of each atomic impact with a detection efficiency
g< 25% (Methods). The time of flight to the detector is approximately
300ms, long enough for the recorded signal to yield the three compo-
nents of the atomic velocity. By collecting data from several hundred
repetitions of the experiment under the same conditions, we are able to
reconstruct all desired atom number correlations within variable inte-
gration volumes of extentDvz|Dv2\. These volumes play a similar role
to that of the spatial and spectral filters in the HOM experiment and
can be adjusted to erase the information that could allow tracing back
the origin of a detected particle to one of the input channels.
The HOM dip should appear in the cross-correlation between the

detection signals in the output channels of the beam-splitter16 (see also
Methods), G(2)

cd :

G 2ð Þ
cd ~

g

DvzDv2\

� �2ð ð
Vc|Vd

â{vc â
{
vd
âvd âvc

D E
d3vc d

3vd ð1Þ

Here, âv and â{v denote the annihilation and creation operators of an
atom with three-dimensional velocity v, respectively, Æ?æ stands for the
quantum and statistical average and Vc,d designates the integration
volumes centred on the output atom beams c and d (Fig. 1c). We have
measured this correlation as a function of the duration of propagation
t5 t32 t2 between the mirror and the beam-splitter (Fig. 3) and for
various integration volumes (see Methods and Extended Data Fig. 1).
We observe a marked reduction of the correlation when t is equal to
the duration of propagation from the source to the mirror (t32 t2<
t22 t1) and for small enough integration volumes, corresponding to a
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Figure 2 | Velocity distribution of the twin atoms. a, Two-dimensional
velocity distribution of the twin atom beams emitted by the source. The red
shaded area, drawn here only for the lower beam, labelled b in Fig. 1b and c,
shows the integration volume Vb used for computing the correlation function
displayed in Fig. 3. The distribution corresponds to an average over about
1,100 measurements and is not corrected for the limited detection efficiency.
The velocities are given relative to the laboratory frame of reference. The size
of each pixel is 0.24 cm s21 in the transverse directions (x and y) and
0.14 cm s21 in the longitudinal (z) direction and an integration over 2 pixels is
performed along the y direction. b, c, Cuts of the two-dimensional velocity
distribution through the centre of the lower beam along the longitudinal
(b) and transverse (c) directions. The data points result from the average over
2 pixels along the direction perpendicular to the cut. The red shaded area again
shows the integration volume.
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Figure 3 | HOM dip in the cross-correlation function. The correlation G 2ð Þ
cd

between the output channels of the beam-splitter, defined in equation (1), was
measured as a function of the duration of propagation t5 t32 t2 between
the mirror and the beam splitter. The HOM dip is directly visible as a marked
reduction of the correlation when t approximately equals the duration of
propagation between the source and themirror, t22 t1< 500ms. This situation
corresponds to symmetric paths between the source and the beam-splitter, that
is, when one cannot distinguish between the two diagrams of Fig. 1c. A
Gaussian fit (blue line) precisely locates the dip at t5 550(50)ms, with a full-
width at half-maximum of 150(40)ms, where the uncertainty corresponds
to the 68% confidence interval. The fitted value of the background correlation is
0.060(5) and themeasured visibility isV5 0.65(7). It is two standard deviations
beyond the classical-to-quantum threshold represented by the red shaded
area, at half the background correlation value. Each data point was obtained
from an average over about 500 to 1,400 repetitions of the experiment.
Error bars denote the standard deviation of the statistical ensemble. The mean
detected atom number was constant over the range of values of t displayed
here (see Methods and Extended Data Fig. 2).
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full overlap of the atomic wave-packets on the beam-splitter. Fitting
the data with an empirical Gaussian profile yields a visibility:

V~
maxtG

2ð Þ
cd tð Þ{mintG

2ð Þ
cd tð Þ

maxtG
2ð Þ
cd tð Þ

~0:65 7ð Þ ð2Þ

where thenumber inparenthesis stands for the68%confidence interval.
As we shrink the integration volumes, we observe that the dip visibility
first increases and then reaches a saturation value, as is expected when
the integration volumes become smaller than the elementary atomic
modes.Thedatadisplayed inFig. 3wereobtained forDvz5 0.28 cm s21

and DvH5 0.48 cm s21, which maximizes the reduction of the cor-
relationwhile preserving a statistically significant number of detection
events (see Methods and Extended Data Fig. 1).
Thedip in the cross-correlation function cannotbe explained in terms

of classical particles, for which we would have no correlation at all
between the detections in the output channels (Methods). But when
the atoms are viewed as waves, demonstrating the quantum origin of
the dip necessitates a deeper analysis. The reason is that twowaves can
interfere at a beam-splitter and give rise to an intensity imbalance be-
tween the output channels. If, in addition, the coherence time of the
waves is finite, the cross-correlation can display a dip similar to the one
observed in our experiment. But once averaged over the phase differ-
ence between the beams, the classical visibility is bounded from above
and cannot exceed 0.5 (ref. 26 and Methods). In our experiment, this
phase difference is randomized by the shot-to-shot fluctuations of the
relative phase between the laser beams used for Bragg diffraction (Me-
thods). Since ourmeasured visibility exceeds the limit forwaves by two
standard deviations, we can safely rule out any interpretation of our
observation in termsof interference between two ‘classical’matterwaves
or, in other words, between two ordinary wave functions describing
each of the two particles separately.
Two contributions may be responsible for the non-zero value of the

correlation function at the centre of the dip: the detected particles may
not be fully indistinguishable and the number of particles contained in
the integration volumemay exceed unity for each beam (seeMethods).
The effect of the atom number distribution can be quantified by mea-
suring the intensity correlations of the twin atombeamsupstreamof the
beam-splitter (Fig. 1c), which bound the visibility of the dip through
the relation:

Vmax~1{
G 2ð Þ
aa zG 2ð Þ

bb

G 2ð Þ
aa zG 2ð Þ

bb z2G 2ð Þ
ab

ð3Þ

whereG 2ð Þ
aa ,G

2ð Þ
bb andG 2ð Þ

ab are defined by analogy to equation (1) (ref. 26
andMethods) and the integration volumesVa,b have the same extent as
Vc,d. Here, one immediately sees that the finite probability of having
more thanone atomper input channel, which translates to finite values

of the auto-correlationsG 2ð Þ
aa ,G

2ð Þ
bb , leads to a reduced visibility.Wehave

performed the measurement of these correlations following the same
experimental procedure as before, except that we did not apply the

mirror and beam-splitter. We find non-zero values G 2ð Þ
aa ~0:016 5ð Þ,

G 2ð Þ
bb ~0:047 9ð Þ, and G 2ð Þ

ab ~0:048 7ð Þ, yielding Vmax5 0.60(10), where
the uncertainty is the standard deviation of the statistical ensemble. Be-
cause of the good agreement with the measured value of the visibility,
we conclude that the atom number distribution in the input channels
entirely accounts for the visibility of the HOM dip. For the present
experiment, we estimate the average number of incident atoms to be
0.5(1) inVa and 0.8(2) inVb, corresponding to a ratio of the probability
forhaving twoatoms to that forhavingone atomof 0.25(5) and0.40(10),
respectively (Methods). Achievingmuch smaller values is possible, for
instance by reducing the pair production rate, but at the cost of lower
counting statistics.
Although multiparticle interference can be observed with indepen-

dently prepared photons27,28, atoms13 and electrons29,30, twin particle
sources are at the heart of many protocols for quantum information

processing14 andquantumsimulation15. The goodvisibility of theHOM
dip in our experiment demonstrates that our twin atom source pro-
duces beams that have highly correlated populations and arewellmode
matched. This is an important achievement in itself, which may have
the same impact on quantum atom optics as the development of twin
photon sources using nonlinear crystals had for quantum optics.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Twin atom source.The twin atombeams result from a scattering process between
pairs of atoms from the BEC occurring when the gas is placed in a moving one-
dimensional optical lattice. The use of a BEC is dictated primarily by the need to
maximize the atomic density to assure a sufficiently high scattering rate. The exper-
imental set-uphas beendescribed in ref. 18. The lattice is formedby two laser beams
derived from the same source emitting at thewavelength l5 1,064 nm. In contrast
to our previous work, the axis of the optical lattice was now precisely aligned with
the long axis of the optical trap confining the atoms. The laser beams intersect with
an angle of h5 166u, their frequency difference is set to 100.5 kHz and the lattice
depth to 0.8 Erec (see below). This constrains the longitudinal wave vector of the
twin atoms to the values kz,a5 0.75 krec and kz,b5 1.30krec in order to fulfil the con-
servation of quasi-momentum and energy in the frame co-propagating with the
lattice. Here, krec5 2p sin(h/2)/l is the recoil wave vector along the longitudinal
axis gained upon absorption of a photon from a lattice laser and Erec~B2k2rec

�
2m

is the associated kinetic energy, with B the reduced Planck constant andm5 6.64
3 10227 kg themass of a 4He atom.The observed velocities of the twin atombeams
coincide with the expected values above, using the relation v~Bk=m. The optical
lattice is turned on and off adiabatically so as to avoid diffraction of the atoms
during this phase of the experiment. The relative velocities of the pair is such that
during the interferometer sequence, themaximum separation of the beams is only
25mm, smaller than the size of the clouds. This separation, however, plays no role
in the experiment; we need only ensure that the atoms in a pair are distinguishable
by someobservable, in our case themomentum.Thus a second reason touse a BEC
in the experiment is to benefit from its narrow momentum distribution, which
results in well separated pairs in momentum space.
Transfer to the magnetically insensitive internal state. Transfer to the m5 0
state after the optical trap has been switched off is made necessary by the presence
of stray magnetic fields in the vacuum chamber that otherwise would lead to a
severe deformation of the atomic distribution during the long free fall. The transfer
is achievedby introducing a two-photon couplingbetween them5 1 state, inwhich
the atoms are initially, and the m5 0 state using two laser beams derived from a
single source emitting at 1,083nmand detuned by 600MHz from the 2 3S1 to 2

3P0
transition. The frequency difference of the laser beams is chirped across the two-
photon resonance so as to realize an adiabatic fast passage transition (the frequency
change is 300 kHz in 300ms).We have measured the fraction of transferred atoms
to be 94%. The remaining 6% stay in them5 1 state and are pushed away from the
integration volumes by stray magnetic field gradients.
Atomicmirror and beam-splitter. Themirror and beam-splitter are both imple-
mented using Bragg scattering on a second optical lattice. This effect can be seen as
amomentum exchange between the atoms and the laser beams forming the lattice,
a photon being coherently absorbed from one beam and emitted into the other. In
our experiment, the laser beams forming the lattice have a waist of 1mm and are
detuned by 600MHz from the 2 3S1 to 2

3P0 transition (they are derived from the
same source as the beams used for the Raman transfer). In order to fulfil the Bragg
resonance condition for the atom beams, the laser beams are made to intersect at
an angle of 32u and the frequency of one of the beams is shifted by 57 kHz. In addi-
tion to this fixed frequency difference, a frequency chirp is performed to compen-
sate for the acceleration of the atoms during their free fall. The interaction time
between the atoms and the optical lattice was 100ms for the mirror operation (p-
pulse) and 50ms for the beam-splitter operation (p/2-pulse). The resonance con-
dition for the momentum state transfer is satisfied by all atoms in the twin beams
but only pairs of states with a well definedmomentumdifference are coupledwith
each other.Wemeasured the reflectivity of themirror and the transmittance of the
beam-splitter to be 0.95(2) and 0.49(2), respectively. Spontaneous scattering of
photons by the atoms was negligible.
Interactions between atoms can alter the effect of the beam-splitter31. In our

experiment, however, the atomic density at the beam-splitter is so low that the fre-
quency associated with the typical interparticle interaction energy is more than 3
orders of magnitude smaller than the inverse of the time it takes for Bragg scatter-
ing to take place. Thus particle interactions are negligible during the beam splitting
process.
Detection efficiency.Our experiment relies on the ability to detect the atoms indi-
vidually. The detection efficiency is an essential parameter for achieving good sig-
nal to noise ratios, although it does not directly influence the visibility of the HOM
dip.Ourmost recent estimate of the detection efficiency relies on themeasurement
of the variance of the atomnumber difference between the twin beams. For this we
use the same procedure as described in ref. 18, but with an integration volume that
includes the entire velocity distribution of each beam.We find a normalized vari-
ance of 0.75(5), well below the Poissonian floor. Since for perfectly correlated twin
beams themeasured variancewould be 12g, we attribute the lower limit of 25(5)%
toourdetection efficiency. This value forg is a factor of about 2 larger than the lower
boundquoted in ref. 32. The difference is due to the change ofmethod employed for

transferring the atoms from them5 1 to them5 0 state after the optical trap has
been switched off.Wepreviously used a radio-frequency transferwith roughly 50%
efficiency whereas the current optical Raman transfer has close to 100% efficiency.
Distribution of the number of incident atoms.We have estimated the average
number of incident atoms in each input channel of the beam-splitter, na and nb, by
analysing the distribution of detected atoms in the integration volumes Va and Vb.
We fitted these distributions by assuming an empirical Poissonian law for the dis-
tribution of incident atoms and taking into account the independently calibrated
detection efficiency. The values of na and nb given in the main text are the mean
values of the Poissonian distributions that best fit the data. The probabilities for
having one or two atoms in each of the input channels of the beam-splitterwas ob-
tained from the same analysis. The uncertainty on these numbers mostly stems
from the uncertainty on the detection efficiency.
TheHOMeffect.TheHOMeffect appears in the correlator â{vc â

{
vd âvd âvc

D E
of equa-

tion (1). The simplest way to calculate such a correlator is to transform the operators
and the state vector back in the input space before the beam-splitter and to use the
Heisenberg picture. The transformation matrix between the operators âvc t3ð Þ,
âvd t3ð Þ and âva t3ð Þ, âvb t3ð Þ can be worked out from first principles. For the Bragg
beam-splitter, and using a Rabi two-state formalism, we find:

âvc~
1ffiffiffi
2

p i eiwâvazâvb
� �

âvd~
1ffiffiffi
2

p âvazi e{iwâvb
� �

8>><
>>:

wherew is the relative phase between the laser beams forming the optical lattice. In
the ideal case of an input state with exactly one atom in each channel, 1va ,1vbj i, we
therefore obtain:

âvd âvc 1va ,1vbj ik k2~ 1
4

i eiwâ2vazi e{iwâ2vbzâva âvbzi2âvb âva
� 	

1va ,1vbj i



 


2

~
1
4

0z 1zi2
� �

0va ,0vbj i

 

2
~0

meaning that the probability of joint detection is strictly zero. (Herewe use jj...jj to
indicate vector norm.) The detailed calculation abovemakes clear that the perfect
destructive interference between the two-particle state amplitudes associatedwith
the two diagrams of Fig. 1c is at the heart of the HOM effect. By contrast, input
states containing more than one atom per channel are transformed into a sum of
orthogonal states and the interference can only be partial. Taking 2va ,2vbj i, for
instance, yields:

âvd âvc 2va ,2vbj ik k2~ 1
4

i eiwâ2vazi e{iwâ2vbzâva âvbzi2âvb âva
� 	

2va ,2vbj i



 


2

~
1
2

i eiw 0va ,2vbj izi e{iw 2va ,0vbj iz
ffiffiffi
2

p
1zi2
� �

1va ,1vbj i

 

2

~
1
2

eiw 0va ,2vbj ize{iw 2va ,0vbj i

 

2
~1

Finally, we note that losses in one of the incident beams, for instance beam a, can
be modelled by a fictitious beam-splitter with a transmission coefficient T. In the
above calculation, these losses would therefore only manifest by an additional fac-
tor

ffiffiffiffi
T

p
in front of every operator âva , leaving unaffected the destructive interfer-

ence that gives rise to the HOM effect.
Stability of the atomnumber in the output ports.Themean detected atomnum-
ber in the output ports c and d is plotted as a function of t in ExtendedData Fig. 2a
and b. It remains constant within the statistical uncertainty, which confirms the
interpretation of the dip as a destructive two-particle interference. To easily com-
pare the atom number fluctuations with the variation of the cross-correlation
across the HOM dip, the product of the averaged populations Æncæ ? Ændæ and the
cross-correlation G 2ð Þ

cd are displayed together as a function of t in Extended Data
Fig. 2c. In contrast to the cross-correlation, it is impossible to identify a marked
reduction of Æncæ?Ændæ around t5 550ms.
Influenceof the integrationvolumeon thedipvisibility.Thevisibilityof theHOM
dip is plotted in Extended Data Fig. 1 as a function of the longitudinal (Extended
Data Fig. 1a) and transverse (ExtendedData Fig. 1b) integration volumes. The red
dots identify the integration volume used in Fig. 3 of themain text and correspond
to a compromise between signal-to-noise ratio andvisibility amplitude.Aswe shrink
the integration volumes, thedip visibility first increases and then reaches a saturation
value, meaning that the integration volume becomes smaller than the elementary
atomicmodes33–35. Reducing further the integration volumeonly leads to an increase
of the statistical uncertainty.
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The visibilityV is obtained by fitting the cross-correlation functionG 2ð Þ
cd tð Þmea-

sured in the experiment with the empirical function:

f tð Þ~G 2ð Þ
bg 1{V exp { t{t0ð Þ2�2s2� �� �

where the background correlationG 2ð Þ
bg , the centre of the dip t0 and thewidth of the

dip s are all left as free parameters.
Visibility of the HOM dip. A slightly less general form of equation (3) has been
derived in ref. 26 assuming a two-mode squeezed state as an input state. The same
calculation can be performed for an arbitrary input state. Leaving aside the integ-
ration over the velocity distribution, we find that the cross-correlation for indis-
tinguishable particles can be expressed as:

G 2ð Þ
cd

���
indisc:

~
1
4

G 2ð Þ
aa zG 2ð Þ

bb zD
� 	

, D~2g2 Re e2iw â{va â
{
va âvb âvb

D Eh i

whereas that of distinguishable particles reads:

G 2ð Þ
cd

���
disc:

~
1
4

G 2ð Þ
aa zG 2ð Þ

bb z2G 2ð Þ
ab

� 	

Here, the correlators appearing in the right-hand side are taken at time t1, that is,
immediately after the atombeamshave been produced. The termD corresponds to
an interference between single-particle matter waves. It depends on both the rela-
tive phase between the atom beams and the relative phase between the laser beams
used for Bragg diffraction. The latter is counted once for the atomic mirror and
once for the atomic beam-splitter. Twin beams with perfect correlations in their
populationwould have a fully random relative phase. In our experiment however,
thepopulation imbalancebetween the atombeamscouldentail a residual phase coher-
ence. Instead, the relative phase between the laser beamswas left uncontrolled and

its valuewas randomlydistributed between two repetitions of the experiment.As a
result, the termDmust average to zero and the visibility of the HOMdip be given
by equation (3), as observed in the experiment. Following ref. 26, we also note that
equation (3) yields the ultimate bound for waves interfering on the beam-splitter:

because waves must fulfil the Cauchy–Schwarz inequality, G 2ð Þ
ab v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G 2ð Þ
aa G

2ð Þ
bb

q
, the

visibility of the classical dip cannot exceed 0.5 (ref. 36).
The above results hold true for a finite integration over the atomic velocity dis-

tribution provided that two conditions are met: (1) it must remain impossible to
distinguish the atoms entering the beam-splitter through channel a from the atoms
entering through channel b once they have exited the beam-splitter; (2) the trans-
formation matrix of the beam-splitter must keep the same form after integration.
In our experiment, the second condition is naturally satisfied because the Braggdif-
fraction only couples atomic states with a well definedmomentum difference and
we fulfil the first condition by reducing the integration volume as much as it is
necessary.
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Extended Data Figure 1 | HOM dip visibility as a function of the
integration volumes. a, Visibility V as a function of the longitudinal
integration interval Dvz. The transverse integration interval is kept constant at
DvH5 0.48 cm s21. b, Visibility as a function of the transverse integration

interval DvH. The longitudinal integration interval is kept constant at
Dvz5 0.28 cm s21. The red points mark the values discussed in the main text.
Error bars denote the standard deviation of the statistical ensemble.
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Extended Data Figure 2 | Averaged number of incident atoms over the
HOM dip. a, Averaged atom number detected in Vc, nc, as a function of the
propagation time t. Themean value ofnc(t) is 0.20with a standard deviation of
0.01. b, Averaged atom number detected in Vd, nd, as a function of the

propagation time t. Themean value ofnd(t) is 0.19with a standarddeviation of
0.01. c, The cross-correlation between the output ports c and d (solid blue
circles), displaying theHOMdip, is compared to Æncæ ? Ændæ (open grey circles).
Error bars denote the standard deviation of the statistical ensemble.
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Conclusion

The metastable helium experiment of the Charles-Fabry laboratory has been actively

involved in the development in the domain generating nonclassical atomic pair source

in momentum space through correlation studies. The pair creation through dynamical

instabilities allows us to produce a stable and tunable source of atomic pairs in momen-

tum space with non-classical correlations. To perform Bell’s inequality test with matter

waves using this source, we prepared the scheme and characterized main element, the

Bragg beams for the test.

In this thesis, we have described different steps leading to our ultimate goal. In

Chapter 1, the correlation function was introduced which is an essential tool in revealing

quantum effects and studying nonclassical sources. In this chapter, we have presented the

correlation measurement of the collective emission from the Bose-Einstein condensate.

The measurement result demonstrates the thermal statistics of the emission.

In Chapter 2, the theoretical description of the Bell’s inequality is established in

addition to the theoretical descriptions of the pair production, Bragg diffraction. We

conclude this chapter with the evaluation of the prediction of the quantum mechanics

for the CHSH parameter.

Chapter 3 is entirely devoted to the experimental tests and characterization of

the Bell’s inequality experiment. We start with the metastable helium Bose-Einstein

condensate in the crossed dipole trap, which is our coherent source to produce an atomic

pair. Then we present the atomic pair production together with the correlations between

atomic beams in the pair. We also present the scheme we have chosen for the Bell’s

inequality test in which the Bragg beams play an important role. We finalize the chapter

by showing the satisfactory achievements for the Bragg pulse in terms of phase control

and the selectivity.

In Chapter 4, we present the two-particle interference experiment with the same

atomic source. This experiment opened a way to realise the Bell’s inequality by demon-

strating the nonclassical feature of the source.
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Appendix A

Helium atom

Helium was first discovered by the French astronomer Pierre Janssen in 1868 when

observing a solar eclipse in India. Helium can be observed at 587.49 nanometres, corre-

sponding to the yellow spectral emission lines in the spectrum of the chromosphere of

the Sun. Therefore, its name helium was proposed after the Greek name for the sun,

Helios. In 1895, Sir William Ramsay was able to observe it in the lab after treating

cleveite, a uranium mineral, with mineral acids [37].

Helium (chemical element symbol He) is a colorless, odorless, tasteless, non-toxic,

monoatomic gas that takes the first place among the noble gas group in the periodic

table. It is the second lightest element, consisting of two electrons, two protons along

with one (3He) or two neutrons (4He) depending on the isotope. Mainly, helium is

extracted from natural gas, containing up to 7% helium, by fractional distillation method

which is based on the fact that the helium has a lower boiling point than any other

element so that the other gases can be liquefied at low temperature and high pressure.

The isotope 4He is the most abundant 99.999863% in the nature. Apart from scientific

uses, helium is used as a protective gas in growing silicon and germanium crystals since it

is less reactive. Cooling the superconducting magnets in modern MRI scanners, leakage

detection and filling balloons are only few examples of wide applications of helium.

The isotope 4He is a bosonic isotope and the 3He is a fermionic isotope. In our

lab, the 4He atom is used with the energy levels shown in figure A.1. The helium-4

atom is prepared in its triplet metastable state 23S1, 4He∗, for which there exist optical

transitions to the excited states to be able to manipulate helium-4 atoms with lasers .

Throughout the experimental sequence which lasts about ∼ 30 s, the metastable state

23S1 is considered to be the ground state with the lifetime of ∼ 8000 seconds [41]. We

use the transition 23S1 → 23P2 to cool and trap the metastable helium-4 atoms whereas

the transition 23S1 → 23P0 is used for the Bragg diffraction and Raman transfer.

The typical parameters associated with the helium-4 atom is given in the table A.1.
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Figure A.1: Energy levels of 4He for the laser manipulation. The 4He atoms
are prepared in the metastable triplet state 23S1 with the lifetime of ∼ 8000 seconds
and with the stocked internal energy of 19.8 eV. We use the transition from ”ground”
state 23S1 to the excited state 23P2 with optical transition λ = 1.083 µm for cooling
and optical detection of the helium atoms. For Bragg diffraction and Raman transfer

the transition 23S1 → 23P0 is addressed.

Parameter Notation Value Unit

Lifetime of state 23S1 7870(510) s
Mass of 4He m 6.65× 10−27 kg

Wavelength of 23S1 → 23P0,1,2 λ 1.083 µm
Natural linewidth of 23S1 → 23P0,1,2 Γ 2π × 1.6× 106 rad/s

Saturation intensity Isat 0.16 mW/cm2

Recoil velocity vrec 9.2 cm/s
Recoil energy Erec 2.8× 10−29 J

Recoil temperature Trec 2.06 µK

Table A.1: Parameters associated with helium-4 atom



Appendix B

Cooling helium atoms

He jet

turbomolecular
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collimating
    beam

turbomolecular
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 MOT
beams

Zeeman
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transverse
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zeeman 
 slower

science chamber
(MOT, magnetic trap)

Figure B.1: General scheme of the helium experiment apparatus. Figure adapted
from [22]

The short overview of the experimental sequence of the metastable helium BEC

will be discussed in a few words, more details on this subject can be found in the theses

of earlier PhD students who worked on the experiment [22, 120]. Source. The general

overview of the apparatus is shown in figure B.1. The helium-4 atoms initially found

in the fundamental state 11S0 are excited to the metastable state 23S1 by applying 2.3

kV of electric potential difference. The high voltage difference creates a plasma which

consists of the mixture of helium atoms with various excited levels including ionised

particles. A small fraction ≤ 10−2% of useful atoms in the state 23S1 is then addressed

optically at wavelength 1083 nm to select from the rest. This happens as follows: two

transverse retro-reflected near resonant beams are used to collimate the atomic beam

to the science chamber where it is loaded into the Magneto-optical trap (MOT). To

be able to load into the MOT, the atoms should be slowed down before. The liquid
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nitrogen is used to decrease the temperature of the plasma below 77 K which reduces

the longitudinal average velocity to only 1200 m/s. Zeeman slower.So, it is compulsory

to use the Zeeman slower to slow down atoms further. The Zeeman slower reduces the

longitudinal speed of the atomic jet with the help of the radiation force created by a

laser beam which is red detuned by 400 MHz of the atomic transition and sent in the

opposite direction of the atomic jet. Spatially varying magnetic field helps to keep the

laser beam always at resonance by compensating the Doppler shift of the atomic beam

along the 3 m long Zeeman slower. The necessity of such long distance, being unique

for helium atoms among present cold atoms experiments, comes from the fact that the

excited state 23P2 has a very long lifetime 0.1 µs which converts to long distance for

the atoms to undergo necessary number of cycles to bring the velocity 1500 m/s down

to ∼ 100 m/s. MOT. The MOT consists of three laser beams(polarization σ−) which

are retro-reflected (polarization σ+) summing up to six beams on the atoms. These

beams are detuned by 56 MHz to the red of the atomic transition. Together with a

magnetic quadrupole field, the MOT traps and cools the neutral atom. The MOT phase

saturates in 2 s with an atomic flux 108 − 109 at/s. The short molasses phase follow

the MOT phase where atoms are cooled only by optical means reducing temperature of

the atoms down to 300 µK. Magnetic trap. About 108 helium atoms are loaded in a

Ioffe-Pritchard like magnetic trap where in the first place we optically pump the atoms

in the m = 1 sublevel of 23S1 state. Next, a 1D Doppler cooling stage is performed with

a retroreflected low intensity near-resonant optical beam which lasts 6 s. This reduces

the temperature to 150 µK with 1 − 5 × 107 atoms. The last step in the magnetic

trap is the evaporation using radio-frequency RF ramp. It can in principle lead to the

condensation in the magnetic trap which was the way actually how the first BEC of

the metastable helium was achieved [44, 121]. Instead, we choose to evaporate till an

approximate temperature of 15 µK with 5× 106 atoms by ramping from 30 MHz to 6.2

MHz in 6. We condense in a crossed dipole trap where it is more stable in terms of the

arrival time fluctuations.



Appendix C

Raman transfer

The condensate is prepared in the zeeman sublevel m = 1 of the 23S1 state in the crossed

dipole trap. Due to the stray magnetic gradients, we prefer to transfer atoms in the mag-

netic field insensitive sublevel m = 0 to avoid the deformation of the atomic cloud distri-

bution during the time of flight. The transfer is achieved via Raman chirped adiabatic

passage method (RCAP) [32, 134, 140] which has a high efficiency (theoretically > 99%)

in coherent transferring of atomic population between two quantum states. The method

makes use of an off-resonant Raman transition with one π−polarized, monochromatic

and one σ−−polarized, chirped laser pulse as shown in figure C.1. The frequency of the

σ− pulse is chirped linearly by 300 kHz in 300 μs. The two pulses have rectangular form

and are applied at the same time with the same intensity 400 μW.

23S1

m=0 

23P0

m=0 

m=1 

m=-1 

600 MHz 

8.2 MHz 

-

Figure C.1: Raman transfer using off-resonant π and σ− polarized laser pulses be-
tween the zeeman sublevels m = 1 and m = 0 with the energy splitting 8.2 MHz

corresponding to a magnetic bias field of 3 G.

161



Appendix C. Raman transfer 162

When applying the RCAP between two states, it has been shown [134] that the

final probabilities of state 1 and state 2 is given by

P1(∞) = e−π
Ω2

2r P2(∞) = 1− P1(∞) (C.1)

where r is the rate of linear chirping. Here, it is assumed that initally P1(0) = 1 and

P2(0) = 0. To complete the population transfer, we require Ω2 � 2r which turns out to

be the adiabaticity condition.

In our case, if the problem can be treated in terms of two effective states m = 0

and m = 1 with the effective Rabi oscillation Ωeff =
ΩπΩσ−

∆ = Γ2I0
4Isat∆

, we respect the

adiabaticity condition: Ω2
eff ≈ 460 × 109 Hz2 � 2r = 2 × 109 Hz2 and experimentally,

the efficiency of transfer 95% is achieved.

The experimental value of the efficiency was measured by looking at the number of

atoms in m = 1 and in m = 0 since they arrive at different times on the detector due to

the stray magnetic gradient force acting on atoms in m = 1. In addition, the density of

atomic cloud is lowered by expanding the momentum distribution (we heat atoms by an

optical lattice in the vertical direction) in order to avoid the saturation of the detector.

A single shot picture is illustrated in figure C.2. When transferring an atomic cloud to

non-transferred
      atoms

transferred
   atoms

Figure C.2: Raman transfer efficiency

sublevel m = 0, we give a small offset velocity 0.2 (in units of vlat to the ensemble of

atoms along the vertical (axis of gravity) axis due to the small angle between the two

laser beams in vertical direction.

In the experiment, σ−−polarization is not pure and in fact this beam has two

polarization components σ− and σ+ with the same intensity proportion. Because there

is no allowed transition for σ+, it does not affect the atomic cloud.



Appendix D

Electronic detection of the

metastable helium atom

Here, we give the working principle of the MCP detector, more details can be found in

the following thesis works [69, 127].

It has already been stated that a metastable helium atom possess a high internal

energy of 19.8 eV. It allows to extract one or more electrons when a helium atom gets in

contact with the micro-channel plate (MCP) as shown in figure D.1. Later these electrons

are amplified. The principle of the amplification is quite analogous with that of avalanche

photodiode where a single photon creates a small electronic signal by photoelectric effect

which is later amplified by the avalanche process. Similarly, in our case, the extracted

electrons are accelerated through the channel with the help of a high voltage difference

applied at the ends of the plate. Each time the electrons hit the internal surface of the

channel, they extract more electrons which result in an electronic burst at the end of the

channel. The MCP plate is placed 46 cm below the trapping region, inside the vacuum

chamber which reduces the noise due to the residual gas whose rate is estimated to be

as low as 1 cm−2·s−1.

The three-dimensional position (x, y, t) of a helium atom which hits the MCP can

be inferred via the delay lines that are nothing but metallic wires. The electronic burst

at the exit of the MCP channel will produce counter-propagating electric pulses when

they bump into the delay line suited below the MCP. These pulses propagate to the

two extremes of the wire and they are firstly amplified by fast electronics, then they are

treated by the constant fraction discriminator (CFD) which triggers TTL signal when

the amplitude of the pulse is above certain threshold tagging its arrival time. The TTL

signal is then digitalized by a time-to-digital convertor (TDC) with a 275 ps coding

time step and once the atomic cloud detection is completed the data transferred to the

server PC. We install delay lines horizontally in two directions as shown in figure D.2.b

to register four arrival times tx1, tx2, ty1 and ty2 for each atom on the server PC. If the
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energetic
particle

metallic surface 
entrance

metallic surface
exit

resistive tube

high voltage

Figure D.1: (a) Micro-channel plate scheme. (b) The amplification principle in a
micro-channel. Metastable helium atom is capable to extract an electron which then
accelerates and extracts itself other electrons to create a strong pulse of electrons at
the exit of the channel. This macroscopic signal can be used to count an atom, identify

its position and arrival time on the MCP.

total length of the wire is L and the pulse propagation speed is v, we can theoretically

infer the position x, y, t of an atom from the relation:

x =
v

2
(tx1 − tx2) (D.1)

y =
v

2
(ty1 − ty2) (D.2)

t =
1

2
(tx1 + tx2 − L

v
) =

1

2
(ty1 + ty2 − L

v
) (D.3)

In reality, more elaborated algorithm is implemented to deduce the position of an atom

[127]. The initial velocity of an atom (vx, vy, vz) is calculated from its position (x, y, t)

a) b)

Figure D.2: (a) Delay lines scheme. The electron burst generated by the micro-
channel plate falls on the metallic wire called delay line, then the resulting current
signal propagates to the left and to the right. The signals’ arrival times are identified
by the comparator and digitalized by the time-to-digital converter(TDC). Knowing the
speed of the propagation of the current on the delay line and the length of the delay
line one can infer the position of the electron burst from the registered arrival times.
(b) The experimental assembly of delay lines in two dimension which allows to register

four arrival times to infer a position of a particle on a surface.

on the detector and its position (x0, y0, z0) in the trap. During this conversion, we
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assume the ballistic expansion and neglect the accelerations due to the mean-field effect

intervening after the release of atoms from the trap. It is reasonable, since the density

of atoms dilutes rapidly. Furthermore, we consider that all atoms belong to one single

point. We neglect its initial size with respect to the long time of flight expansion which

equals to 308 ms for an atom initially at rest to arrive on the MCP situated 46 cm

below. It is justified for the condensate whose Thomas-Fermii radii after expansion are

Rz(tof) = 1.3 mm, R⊥(tof) = 9.7 mm which are large from the initial Thomas-Fermii

radii Rz(tof) = 0.06 mm, R⊥(tof) = 0.004 mm. MCP detector saturation When

the flux of atoms arriving on the detector is too high the MCP detector saturates whose

signature can be observed on the data collected by the detector. There are three types

of saturation which were observed [17]:

• Local saturation: When a great number of electrons are extracted inside neighbour

channels, the successive detection of an atom becomes impossible. Starting from

the local flux of atoms around 105 at·cm−2·s−1, the drop of the detection efficiency

is observed that demonstrated in the asymmetric form of the temporal profile of

the condensate as in figure D.3.a. It should be noted that this type of saturation

is local, only the zones of the high flux has an impact from which the hole in figure

D.3.b. is resulted. It is not the case for the other types of the saturation where

the total flux plays an important role.

• Electronic saturation: The TDC imposes limit on the atomic flux. The plateau

on the temporal profile of the condensate in figure D.3.c is the clear signification

of the fact that the condensate flux is superior of the limit value 5× 107 at·s−1.

• Reconstruction saturation: To avoid the erroneous reconstruction of the position

of an atom, sometimes we are forced to reject the signals which are very close to

each other. When the cloud is very dense, this selection may become very severe

creating a dip in the temporal profile of the condensate as in figure D.3.d.

MCP detector efficiency The detector efficiency is estimated to be η = 25(5) %

which is a reasonable value if we argue rudely that an atom has a 50 % chance to enter

inside the MCP channel and the extracted electron has also 50 % chance to propagate in

the preferred direction. One way to estimate this value was to look at the amplitude of

the sub-shot noise variance of the population difference of a pair mentioned in Chapter 2.

Assuming that the produced pair has a negligible variance of the population difference,

the lower value of the detection efficiency is estimated to be η = 25(5) %.

MCP detector resolution Transversely the resolution is limited by the width of

the electric pulse which is approximatively 400 µm (1.4×10−2 in vrec) and longitudinally

the resolution is limited by the inclination of the channels (7 − 8◦) which results in
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Figure D.3: Local saturation of the channels results from the high flux of atoms along
z−direction which is the case for the BEC produced in the magnetic trap. We observe
therefore an asymmetry in the profile of the non-reconstructed time of flight (a) and
hole at the center of the reconstructed data of the condensate (b). The condensate
produced in the dipole trap takes the form of horizontal pancake, and it is the flux on
the whole detector which limits: the electronic data treatment leads to the maximum
rate at each of the 4 ports as shown on the non-reconstructed arrival time distribution
(c). Finally, for the strict selection on the events used in the reconstruction, we obtain
the hole on the whole horizontal plane corresponding to the time interval where the

condensate is more dense (from [17]).

resolution of 150 µm (5 × 10−3 in vrec) (see for the details how these resolutions are

estimated [124, 127]).

In summary, although it has relatively lower detection efficiency, the MCP detector

has an advantage over the classical optical imaging where only two dimensional position

of an atomic cloud is accessed while the MCP detector gives access to single atom

resolution with its positions coordinates in space.
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[145] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,

P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms

using rydberg blockade, Physical Review Letters, 104 (2010), p. 010502.

[146] B. Wu and Q. Niu, Landau and dynamical instabilities of the superflow of bose-

einstein condensates in optical lattices, Phys. Rev. A, 64 (2001), p. 061603.

[147] B. Wu and Q. Niu, Superfluidity of bose–einstein condensate in an optical lat-

tice: Landau–zener tunnelling and dynamical instability, New Journal of Physics,

5 (2003), p. 104.



Bibliography 179

[148] Y. Yoshikawa, T. Sugiura, Y. Torii, and T. Kuga, Observation of super-

radiant raman scattering in a bose-einstein condensate, Phys. Rev. A, 69 (2004),

p. 041603.
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Title: Towards testing Bell’s inequality using atoms correlated in momentum  
Abstract:  
     This manuscript describes quantum atom optics experiments using metastable helium atoms with a 
single-atom momentum resolved detector. 
     In the first part of this manuscript, the second order correlation measurement of the superradiance 
from a metastable helium Bose-Einstein condensate is presented. The superradiance effect is the 
collective radiation of dense ensemble where a strong gain of the radiation is expected. We have 
shown the thermal like statistics of the emission even in the presence of the strong gain.  
     The next part of the manuscript is devoted to the quantum nonlocality test using a pair of atoms 
entangled in momentum. The protocol we came up with is inspired from the one of Rarity and 
Tapster with pairs of photons entangled in momentum. The essential ingredients of this protocol are 
the atomic pair produced by dynamical instability of the Bose-Einstein condensate in a moving 
optical lattice, the coherent control of the atomic pair by Bragg diffraction and the correlation 
measurement of the atoms in different output modes of the interferometric protocol. The experimental 
characterization and preparation of coherent control by Bragg diffraction are presented showing the 
proof of principle of such a protocol.  
     The last part of the manuscript discusses the realization of the atomic Hong-Ou-Mandel 
experiment using the same atomic pair with an atomic beamsplitter. The non-classical interference 
result of this experiment has opened an opportunity for us to realize Bell’s inequality test with 
massive particles correlated in external degrees of freedom.  

Keywords: Bose-Einstein condensate, superradiance, correlation, entanglement, atomic four-wave 
mixing, Bragg diffraction, Bell’s inequality test, two-particle interference, indistinguishability  

 

Titre: Vers la réalisation d’un test d’inégalité de Bell avec des atomes corrélés en impulsion  
Résumé: 
     Ce manuscrit décrit des expériences d’optique atomique quantique utilisant un détecteur résolu en 
impulsions d’atomes uniques d’hélium métastable.  
     La première partie du manuscrit décrit la mesure de cohérence de deuxième ordre de la 
superradiance à partir d’un condensat de Bose-Einstein d’helium métastable. Bien que le condensat 
soit cohérent et le gain du processus de superradiance élevé, celle-ci montre toujours une statistique 
thermique comme celle de l’émission spontanée.  
     La suite du manuscrit est dédiée au test de la non localité d’une source atomique corrélée en 
impulsion. Le schéma du test s’inspire d’une réalisation faite par Rarity et Tapster sur des photons 
intriqués en impulsion. Les ingrédients principaux d’un tel schéma sont la source atomique générée 
par instabilité dynamique du condensat dans un réseau optique en mouvement, le contrôle cohérent 
des atomes par diffraction de Bragg et la mesure de la corrélation des atomes dans les différentes 
voies de sortie du schéma interférométrique. Un point clé est le contrôle et la manipulation de la 
phase des ondes atomiques. Le chapitre 3 décrit les tests sur le contrôle cohérent par diffraction de 
Bragg et leurs résultats encourageants.  
     La nature non classique de notre source atomique est démontrée par l’observation d’une 
interférence à deux particules en les envoyant sur une séparatrice atomique. Cet analogue atomique 
de l’expérience de Hong Ou et Mandel est le sujet du dernier chapitre de ce manuscrit. Le résultat de 
cette expérience ouvre la possibilité du test d’inégalité de Bell avec des particules massives corrélées 
sur des degrés de liberté externe.  

Mots clés: condensat de Bose-Einstein, superradiance, corrélation, intrication, mélange à quatre 
ondes, diffraction de Bragg, inégalité de Bell, interférence a deux particules, indiscernabilité 
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