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Directeur de thèse: Laurent Najman

Co-Directeur de thèse: Yann LeCun
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Abstract

One of the open questions of artificial computer vision is how to produce

good internal representations of the visual world. What sort of internal

representation would allow an artificial vision system to detect and classify

objects into categories, independently of pose, scale, illumination, conforma-

tion, and clutter? More interestingly, how could an artificial vision system

learn appropriate internal representations automatically, the way animals

and humans seem to learn by simply looking at the world?

Another related question is that of computational tractability, and more

precisely that of computational efficiency. Given a good visual represen-

tation, how efficiently can it be trained, and used to encode new sensorial

data. Efficiency has several dimensions: power requirements, processing

speed, and memory usage.

In this thesis I present three new contributions to the field of computer

vision: (1) a multiscale deep convolutional network architecture to easily

capture long-distance relationships between input variables in image data,

(2) a tree-based algorithm to efficiently explore multiple segmentation can-

didates, to produce maximally confident semantic segmentations of images,

(3) a custom dataflow computer architecture optimized for the computation

of convolutional networks, and similarly dense image processing models. All

three contributions were produced with the common goal of getting us closer

to real-time image understanding.

Scene parsing consists in labeling each pixel in an image with the category of

the object it belongs to. In the first part of this thesis, I propose a method

that uses a multiscale convolutional network trained from raw pixels to

extract dense feature vectors that encode regions of multiple sizes centered

on each pixel. The method alleviates the need for engineered features. In



parallel to feature extraction, a tree of segments is computed from a graph

of pixel dissimilarities. The feature vectors associated with the segments

covered by each node in the tree are aggregated and fed to a classifier which

produces an estimate of the distribution of object categories contained in

the segment. A subset of tree nodes that cover the image are then selected

so as to maximize the average “purity” of the class distributions, hence

maximizing the overall likelihood that each segment contains a single object.

The system yields record accuracies on several public benchmarks.

The computation of convolutional networks, and related models heavily

relies on a set of basic operators that are particularly fit for dedicated

hardware implementations. In the second part of this thesis I introduce

a scalable dataflow hardware architecture optimized for the computation of

general-purpose vision algorithms—neuFlow—and a dataflow compiler—

luaFlow—that transforms high-level flow-graph representations of these al-

gorithms into machine code for neuFlow. This system was designed with

the goal of providing real-time detection, categorization and localization of

objects in complex scenes, while consuming 10 Watts when implemented

on a Xilinx Virtex 6 FPGA platform, or about ten times less than a lap-

top computer, and producing speedups of up to 100 times in real-world

applications (results from 2011).



To my wife, Domitille Farabet.
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Introduction

Central to this thesis is the question: how can we enable computers to automatically

and efficiently understand images? Understand being an ambiguous term, we start with

a few definitions. From the dictionary:

Definition 1 — understand:

(1) to perceive the meaning of; grasp the idea of; comprehend.

(2) to assign a meaning to; interpret.

(3) to have a systematic interpretation or rationale, as in a field or area of knowledge.

Definition 2 — image:

an optical counterpart or appearance of an object, as is produced by reflection from a

mirror, refraction by a lens, or the passage of luminous rays through a small aperture

and their reception on a surface.

From these we can provide our own definition:

Definition 3 — understand an image:

(1) to perceive the meaning behind the formation of the image

(2) to systematically interpret the causes—the physical objects and events—that resulted

in the formation of the image.

This definition is not perfect, but it gives us a scope for this thesis. From this, it is

easy to see how vast the task of understanding an image can be. Given the pixels, one

would have to infer all the causes that led to this image: lighting conditions, exact list

of all objects present in the receptive field, their exact 3D positions, contours, colors,

surface normals. . .

1



1. INTRODUCTION

In this thesis I focus on a subset of these explaining factors, which is commonly

referred to as semantic labeling, or image parsing:

Definition 4 — parse an image:

given an image (an array of pixels), produce a 2D map (in the plane of the image) of

objects, with their precise contour, position, and label (from a pre-defined label set).

The task of image parsing is significantly simpler than the task of full image under-

standing, and yet captures most of its fundamental problems: representation, recogni-

tion, segmentation. . .

The core of my thesis can be broken up into three main contributions:

1. a multiscale deep convolutional network architecture to easily capture long-distance

relationships between input variables in image data. This type of model produces

invariant yet spatially accurate features, which provide a good basis for image

parsing,

2. a tree-based algorithm to efficiently explore multiple segmentation candidates,

to produce maximally confident semantic segmentations of images. This type of

method is computationally efficient, and provides a simple-to-use post-processing

framework for image parsing,

3. a custom dataflow computer architecture optimized for the computation of con-

volutional networks, and similarly dense image processing models. This computer

is fully implemented and functional.

The goal of this introduction is to put each contribution in perspective, and better

understand where they come from, with one section per contribution. I start with a

review of representation learning using deep networks. The second section provides

context on the problem of structured prediction, and the use of segmentation trees.

The third section describes dataflow computers, and why they are particularly well

suited compute models for data-intensive tasks such as image parsing.

2



1.1 Representation Learning with Deep Networks

1.1 Representation Learning with Deep Networks

“Deep learning is just a buzzword for neural nets,

and neural nets are just a stack of matrix-vector

multiplications, interleaved with some

non-linearities. No magic there.”

— Ronan Collobert, 2011 (24)

One of the key questions of Vision Science (natural and artificial) is how to produce

good internal representations of the visual world. What sort of internal representation

would allow an artificial vision system to detect and classify objects into categories,

independently of pose, scale, illumination, conformation, and clutter? More interest-

ingly, how could an artificial vision system learn appropriate internal representations

automatically, the way animals and humans seem to learn by simply looking at the

world? In the time-honored approach to computer vision (and to pattern recognition

in general), the question is avoided: internal representations are produced by a hand-

crafted feature extractor, whose output is fed to a trainable classifier. While the issue

of learning features has been a topic of interest for many years, considerable progress

has been achieved in the last few years with the development of so-called deep learning

methods.

Good internal representations are hierarchical. In vision, pixels are assembled into

edglets, edglets into motifs, motifs into parts, parts into objects, and objects into

scenes. This suggests that recognition architectures for vision (and for other modalities

such as audio and natural language) should have multiple trainable stages stacked on

top of each other, one for each level in the feature hierarchy. Deep neural networks

are particularly well suited to represent hierarchical signals, as the overall function

is naturally decomposed into a hierarchy of simpler, linear functions. Convolutional

neural networks are an extension of deep neural networks, in which each layer imposes

spatial (or temporal) replication of the weights, to exploit the stationarity and locality

of the signal at each layer.

1.1.1 Deep Network Architectures

In this section I review well-known deep network architectures.

3



1. INTRODUCTION

1.1.1.1 Multilayer Perceptrons

The first deep network, or deep learner, was the multilayer perceptron (MLP). An MLP

typically consists of multiple layers of nodes arranged in a directed graph, with each

layer fully connected to the next one. A node, or neuron at each layer is produced by

a non-linear activation function of a linear combination of activations at the previous

layer.

Mathematically, an MLP with L layers can be described by these simple equations:

y = f(x; θ) = hL, (1.1)

hl = actl(Wlhl−1 + bl) ∀ l ∈ {1, . . . , L− 1}, (1.2)

h0 = x, (1.3)

with bl a vector of trainable bias parameters, Wl a matrix of trainable weights, x is the

input vector, y is a vector of output units, θ is a vector that represents all the trainable

parameters {Wl,bl} ∀ l ∈ {1, . . . , L}, and actl is a non-linear activation function at

layer l.

The most commonly used activation function for the hidden units actl ∀ l ∈

{1, . . . , L − 1}) is tanh, but other more exotic transfer functions, such as the rectified

linear unit (ReLU) can be used to effectively train deeper architectures. The output

activation function actL depends on the problem at hand. For regression problems, it

can be a simple linear function, or a log-linear function. For discrimination problems,

the softmax function is the most widely used, for its connection to maximum a poste-

riori probability (MAP) estimation. The softmax normalizes the output units so that

they sum to 1, which turns the MLP into an approximator for the posterior probability

P (Y = tn|xn, θ). When using a softmax activation function, the training procedure

becomes analogous to MAP estimation in the sense that we seek the training parameter

vector θ that maximizes the likelihood over all training samples {xn, tn}.

Note: some textbooks consider the input vector x as a layer. In this thesis I

only count the hidden layers and the output layer. This way, a simple linear model

is considered a one-layer model, whereas the smallest MLP is considered a two-layer

model (with one hidden layer). Effectively, I’m counting each linear projection as a

layer.
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1.1 Representation Learning with Deep Networks

1.1.1.2 Convolutional Networks

Many successful object recognition systems use dense features extracted on regularly-

spaced patches over the input image. The majority of the feature extraction systems

have a common structure composed of a filter bank (generally based on oriented edge

detectors or 2D gabor functions), a non-linear operation (quantization, winner-take-all,

sparsification, normalization, and/or point-wise saturation) and finally a pooling oper-

ation (max, average or histogramming). For example, the scale-invariant feature trans-

form (SIFT (73)) operator applies oriented edge filters to a small patch and determines

the dominant orientation through a winner-take-all operation. Finally, the resulting

sparse vectors are added (pooled) over a larger patch to form local orientation his-

tograms. Some recognition systems use a single stage of feature extractors (28, 60, 87).

Other models like HMAX-type models (77, 93) and convolutional networks use two or

more layers of successive feature extractors.

Put simply, Convolutional Networks (64, 65), or ConvNets are an extension of mul-

tilayer perceptrons, where the basic linear layers are replaced by convolutional layers.

Non-linear activations are commonly followed by a spatial pooling function, which en-

forces low-level shift invariance.

Mathematically, a ConvNet with L layers can be described as an MLP, where we

write the states as matrices (or more precisely arrays, or collections of vectors):

Y = f(X; θ) = HL, (1.4)

Hl = pooll(actl(WlHl−1 + bl)) ∀ l ∈ {1, . . . , L− 1}, (1.5)

H0 = X, (1.6)

with bl a vector of trainable bias parameters, Wl a matrix of trainable weights, X is

the input array of vectors (an image is an array of pixels), Y is an array of output

vectors (each vector encodes a sub-window of the input), θ is a vector that represents

all the trainable parameters {Wl,bl} ∀ l ∈ {1, . . . , L}, actl is a non-linear activation

function at layer l, and pooll is a pooling function at layer l.

The major difference with the MLP is that the matrices Wl are Toeplitz matrices,

therefore each hidden unit array Hl can be expressed as a regular convolution between

kernels from Wl and the previous hidden unit vector Hl−1, squashed through an actl
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1. INTRODUCTION

function, and pooled spatially. More specifically,

Hlp = pool(act(blp +
∑

q∈parents(p)

wlpq ∗Hl−1,q)). (1.7)

The hidden units Hl are commonly called feature vector maps, and Hlp is called

a feature map. Concretely, if the input is a color image, each feature map would be

a 2D array containing a color channel of the input image (for an audio input each

feature map would be a 1D array, and for a video or volumetric image, it would be a

3D array). At the output, each feature map represents a particular feature extracted

at all locations on the input.

From the mathematical description above, we can identify three key building blocks

of ConvNets: the convolutional layer, or filter bank layer, the activation function, or

non-linearity layer, and the pooling function, or feature pooling layer. A typical Conv-

Net is composed of one, two or more such 3-layer stages. The output of a ConvNet

is usually fed into an simple linear classifier, or, more generally into an MLP. From

the training/optimization point of view, the complete stack (ConvNet+MLP) can be

treated as an MLP: for discriminative tasks, the usual softmax activation function is

used as the output activation module, so that the optimization becomes a MAP esti-

mation problem.

We now describe these three building blocks, which are used extensively throughout

this thesis (see Figure 1.1):

Filter Bank Layer - F : the input is a 3D array with n1 2D feature maps of size

n2 × n3. Each component is denoted xijk, and each feature map is denoted xi. The

output is also a 3D array, y composed of m1 feature maps of size m2×m3. A trainable

filter (kernel) kij in the filter bank has size l1× l2 and connects input feature map xi to

output feature map yj . The module computes yj = bj +
∑

i kij ∗ xi where ∗ is the 2D

discrete convolution operator and bj is a trainable bias parameter. Each filter detects a

particular feature at every location on the input. Hence spatially translating the input

of a feature detection layer will translate the output but leave it otherwise unchanged.

Non-Linearity Layer: In traditional ConvNets this simply consists in a pointwise

tanh() sigmoid function applied to each site (ijk). However, recent implementations

have used more sophisticated non-linearities. A useful one for natural image recognition

is the rectified sigmoid Rabs: abs(gi.tanh()) where gi is a trainable gain parameter. The
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Figure 1.1: Common ConvNet Blocks - Architecture of a typical convolutional

network for object recognition. This implements a convolutional feature extractor and a

linear classifier for generic N-class object recognition. Once trained, the network can be

computed on arbitrary large input images, producing a classification map as output.

rectified sigmoid is sometimes followed by a subtractive and divisive local normalization

N , which enforces local competition between adjacent features in a feature map, and be-

tween features at the same spatial location. The subtractive normalization operation for

a given site xijk computes: vijk = xijk−
∑

ipq wpq.xi,j+p,k+q, where wpq is a normalized

truncated Gaussian weighting window (typically of size 9x9). The divisive normaliza-

tion computes yijk = vijk/max(mean(σjk), σjk) where σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2.

The local contrast normalization layer is inspired by visual neuroscience models (74, 87).

Feature Pooling Layer: This layer treats each feature map separately. In its

simplest instance, called PA, it computes the average values over a neighborhood in

each feature map. The neighborhoods are stepped by a stride larger than 1 (but

smaller than or equal to the pooling neighborhood). This results in a reduced-resolution

output feature map which is robust to small variations in the location of features in the

previous layer. The average operation is sometimes replaced by a max PM . Traditional

ConvNets use a pointwise tanh() after the pooling layer, but more recent models do

not. Some ConvNets dispense with the separate pooling layer entirely, but use strides

larger than one in the filter bank layer to reduce the resolution (63, 96). In some recent
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versions of ConvNets, the pooling also pools different features at a same location, in

addition to the same feature at nearby locations (54).

(A Short History of ConvNets)

ConvNets can be seen as a representatives of a wide class of models that we will

call Multi-Stage Hubel-Wiesel Architectures. The idea is rooted in Hubel and Wiesel’s

classic 1962 work on the cat’s primary visual cortex. It identified orientation-selective

simple cells with local receptive fields, whose role is similar to the ConvNets filter

bank layers, and complex cells, whose role is similar to the pooling layers. The first

such model to be simulated on a computer was Fukushima’s Neocognitron (38), which

used a layer-wise, unsupervised competitive learning algorithm for the filter banks, and

a separately-trained supervised linear classifier for the output layer. The innovation

in (63, 64) was to simplify the architecture and to use the back-propagation algorithm

to train the entire system in a supervised fashion. The approach was very successful for

such tasks as OCR and handwriting recognition. An operational bank check reading

system built around ConvNets was developed at AT&T in the early 1990’s (65). It

was first deployed commercially in 1993, running on a DSP board in check-reading

ATM machines in Europe and the US, and was deployed in large bank check reading

machines in 1996. By the late 90’s it was reading over 10% of all the checks in the US.

This motivated Microsoft to deploy ConvNets in a number of OCR and handwriting

recognition systems (18, 19, 96) including for Arabic (1) and Chinese characters (17).

Supervised ConvNets have also been used for object detection in images, including faces

with record accuracy and real-time performance (40, 80, 84, 101), Google recently

deployed a ConvNet to detect faces and license plate in StreetView images so as to

protect privacy (37). NEC has deployed ConvNet-based system in Japan for tracking

customers in supermarket and recognizing their gender and age. Vidient Technologies

has developed a ConvNet-based video surveillance system deployed in several airports in

the US. France Télécom has deployed ConvNet-based face detection systems for video-

conference and other systems (40). Other experimental detection applications include

hands/gesture (82), logos and text (29). A big advantage of ConvNets for detection is

their computational efficiency: even though the system is trained on small windows, it

suffices to extend the convolutions to the size of the input image and replicate the output

layer to compute detections at every location. Supervised ConvNets have also been used

for vision-based obstacle avoidance for off-road mobile robots (67). Two participants
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in the recent DARPA-sponsored LAGR program on vision-based navigation for off-

road robots used ConvNets for long-range obstacle detection (45, 46). In (45), the

system is pre-trained off-line using a combination of unsupervised learning (as described

in section 3.2.2) and supervised learning. It is then adapted on-line, as the robot

runs, using labels provided by a short-range stereovision system (see videos at http://

www.cs.nyu.edu/~yann/research/lagr). Interesting new applications include image

restoration (50) and image segmentation, particularly for biological images (81). The

big advantage over graphical models is the ability to take a large context window into

account. Stunning results were obtained at MIT for reconstructing neuronal circuits

from a stack of brain slice images a few nanometer thick (51).

Over the years, other instances of the Multi-Stage Hubel-Wiesel Architecture have

appeared that are in the tradition of the Neocognitron: unlike supervised ConvNets,

they use a combination of hand-crafting, and simple unsupervised methods to design

the filter banks. Notable examples include Mozer’s visual models (75), and the so-

called HMAX family of models from T. Poggio’s lab at MIT (77, 93), which uses

hard-wired Gabor filters in the first stage, and a simple unsupervised random template

selection algorithm for the second stage. All stages use point-wise non-linearities and

max pooling. From the same institute, Pinto et al. (87) have identified the most

appropriate non-linearities and normalizations by running systematic experiments with

a single-stage architecture using GPU-based parallel hardware.

1.1.1.3 Encoders + Decoders = Auto-encoders

Training deep, multi-stage architectures using supervised gradient back propagation

requires many labeled samples. However in many problems labeled data is scarce

whereas unlabeled data is abundant. Recent research in deep learning (7, 48, 88) has

shown that unsupervised learning can be used to train each stage one after the other

using only unlabeled data, reducing the requirement for labeled samples significantly.

Learning features in an unsupervised manner (i.e. without labels) can be achieved

simply, by using auto-encoders. An auto-encoder is a model that takes a vector input

y, maps it into a hidden representation z (code) using an encoder which typically has

the form:

z = act(Wey + be), (1.8)
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where act is a non-linear activation function, We the encoding matrix and be a vector

of bias parameters.

The hidden representation z, often called code, is then mapped back into the space

of y, using a decoder of this form:

ỹ = Wdz+ bz, (1.9)

where Wd is the decoding matrix and bd a vector of bias parameters.

The goal of the auto-encoder is to minimize the reconstruction error, which is rep-

resented by a distance between y and ỹ. The most common type of distance is the

mean squared error ||y − ỹ||22.

The code z typically has less dimensions than y, which forces the auto-encoder to

learn a good representation of the data. In its simplest form (linear), an auto-encoder

learns to project the data onto its first principal components. If the code z has as many

components as y, then no compression is required, and the model could typically end

up learning the identity function. Now if the encoder has a non-linear form (using a

tanh, or using a multi-layered model), then the auto-encoder can learn a potentially

more powerful representation of the data.

Basic auto-encoders require a number of tricks and know how to properly train

them, and avoid the pitfall of learning the identity function. In practice, using a code y

that is smaller than x is enough to avoid learning the identity, but it remains hard to do

much better than PCA. Techniques like the denoising auto-encoder (DAE), introduced

in (102) can be useful to avoid that.

Using codes that are over-complete (i.e. with more components than the input)

makes the problem even worse. There are different ways that an auto-encoder with an

over-complete code may still discover interesting representations. One common way is

the addition of sparsity: by forcing units of the hidden representation to be mostly 0s,

the auto-encoder has to learn a distributed representation of the data. More advanced

methods, such as Predictive Sparse Coding (PSD) (53), involve learning an encoder

that approximates the exact result of sparse coding. Sparse Coding can be a bit costly,

as it is an iterative procedure, whereas the encoder will predict the sparse code in a

feedforward way.

The auto-encoder loss can be used by itself for purely unsupervised pre-training.

The parameters are then used to initialize the supervised procedure. It can also be
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used in conjunction with the supervised training, to ensure that there is no loss of

information at each layer: if the auto-encoder loss is perfectly minimized, it means

that the top layer representation contains all the information required to rebuild the

input signal. This can be useful for tasks where certain labels have too few training

examples, such that it is dangerous to rely on the label information alone.

1.1.2 Learning: Parameter Estimation

In this thesis I focus on deep networks for discriminative tasks. Therefore, I will only

consider learning (parameter estimation) for discriminative tasks.

1.1.2.1 Loss Function, Objective

From the point of view of parameter estimation, the architecture of the model can

usually be abstracted. In the following, we assume a training set of N training samples

{xn, tn}, with xn an input example, and tn a target value, or label, associated to that

example; tn ∈ {1, . . . ,K}, with K the number of possible target classes. We can write:

yn = f(xn; θ) ∀ n ∈ {1, . . . , N}, (1.10)

l(f ;xn, tn, θ) = l(f(xn; θ), tn) ∀ n ∈ {1, . . . , N} (1.11)

L(f ;x, t, θ) =
∑

n∈{1,...,N}

l(f ;xn, tn, θ) (1.12)

where f is a model with trainable parameters θ, l is a loss function which captures the

per-sample objective to be optimized, and L the global loss function which represents

the overall objective to be optimized.

As described in Section 1.1.1, the use of a softmax output activation function allows

us to turn the learning problem into a likelihood maximization problem, or negative

log-likelihood minimization problem, which gives:

l(f(xn; θ), tn) = − log(P (Y = tn|xn, θ)) (1.13)

= − log(f(xn)). (1.14)

There are several other types of possible loss functions, but the negative log-

likelihood (NLL) provides a simple and consistent parameter estimation framework,

in which the outputs of f are properly calibrated units.
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1.1.2.2 Optimization

Once a model f and a loss function l have been chosen, we can define the task of

learning, or parameter estimation, as minimizing the loss function L over the training

set {xn, tn} ∀ n ∈ {1, . . . , N}. If f and l are differentiable, or at least piece-wise

differentiable, this optimization can be cast as a gradient descent procedure.

The most naive way to go about solving this optimization problem is to compute

the derivative of the loss function with respect to all the trainable parameters (using

the well-known backpropagation algorithm), over the complete training set, and then

follow the opposite direction to update the parameters. It is naive for two reasons: (1)

it only relies on first order information (the gradient), (2) it relies on the entire dataset

to evaluate the gradient (full batch), which is typically extremely inefficient.

The first point can be addressed using parameter normalization, hidden unit nor-

malization, (partial) second-order information. . . Different types of normalizations are

presented throughout this thesis.

The second point is typically addressed using a stochastic approximation of the

gradient, usually referred to as stochastic gradient descent (SGD). The most extreme

form of SGD is when a single sample {xn, tn} is used to estimate the gradient, and

to update the parameters. We usually use the term mini-batch to describe the set of

samples used to evaluate the gradient and update the parameters. The mini-batch size

can vary from 1 (pure SGD) to N (batch method, or exact method).

All the algorithms presented in this thesis rely on some form of stochasticity. Several

studies (11, 12, 13) have shown that even when f is a convex function with respect to the

trainable parameters, SGD yields significantly faster convergence, and when combined

to a proper learning rate schedule and/or validation scheme, reaches the same accuracy

as exact methods. SGD was used extensively in this thesis.

1.2 Hierarchical Segmentations, Structured Prediction

The focus of this thesis is on image understanding, and more precisely on image parsing,

or multi-label segmentation. Although it is theoretically doable to build a deep model

f which can remap a raw image signal X into a map of discrete labels, the use of

heuristics—candidate segmentations—can greatly speedup the learning process, and

the overall consistency of image labelings.
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In this section I provide material and context for Chapter 2. I start with an intro-

duction on hierarchical segmentations, which are used throughout Chapter 2. I then

present the general ideas of structured prediction, a good paradigm for sequence data

and spatial data labeling problems.

1.2.1 Hierarchical Segmentations

An image segmentation is a partitioning of an image into regions corresponding to

different objects. A hierarchical image segmentation is an ensemble of image segmen-

tations where the image segments are arranged in a tree-like structure. The root of the

tree is a single segment that spans all the pixels of the image, and the leaves of the

tree are the individual pixels (one component per pixel). This type of data structure

is particularly useful to explore different levels of candidate segmentations.

In this section, I describe the basics required to build graphs on images, and produce

hierarchical segmentations on these graphs.

1.2.1.1 Graph Representation

A graph G is defined by a set of vertices V and a set of edges E that connect the

vertices. In this thesis, we use the convention of edge-weighted, undirected graphs, to

represent images: a pixel is represented by a vertex, and a link between two pixels is

represented by a weighted edge.

A complete graph over an image is defined when each pixel is connected to every

other pixel in the image. Such graph is typically very costly to represent in memory,

as its number of edges scales quadratically with the number of pixels.

A much more common type of graph is locally connected: each pixel is connected

to its most immediate 4 neighbors (4-connexity) or its 8 immediate neighbors (8-

connexity), as shown on Figure 1.2.

A very simple and natural kind of graph is a gradient graph: such a graph can be

built by setting the connexity to 4, and assigning each edge a weight that is the Eu-

clidean distance between its two neighboring vertices. This graph represents a gradient

map: each edge encodes a distance between pixels, as shown on Figure 1.3.
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Figure 1.2: Graphs with local connectivity - Left: 4-connexity. Right: 8-connexity.
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Figure 1.3: Gradient graph - This type of graph is edge-weighted. Left: vertices,

with weights attached. Right: the edge-weighted gradient graph—each edge has a weight

associated, which is produced by the distance between its two neighboring vertices.
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1.2.1.2 Minimum Spanning Trees

Once a graph is constructed over an image, we can start thinking about trees. A

spanning tree of a graph G is itself a graph T , that contains all the vertices of G but

a subset of the edges in G that span all the vertices. For a given graph G over an

image, there are multiple possible spanning trees. A minimum spanning tree TMST of

an edge-weighted graph G is the subset of edges chosen such that they minimize the

sum of the edge weights. A key property of spanning trees is that they contain no loops

(which is why they are called trees!).
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Figure 1.4: Minimum Spanning Tree of a Graph - Left: highlighting a possible MST

for the graph in Figure 1.2. Right: pruning the graph to only keep the edges belonging to

the MST—these edges cover the graph.

There are multiple well-known algorithms for finding MSTs. One of them is Kruskal’s

algorithm (56, 79), which constructs the MST by sorting all the edges by increasing

weight, and adds them one by one if they do not create cycles. The algorithm main-

tains a list of clusters, and ensures that each time it adds an edge to the MST, the

edge fuses two distinct clusters (if the two neighboring vertices already belonged to

the same cluster, then adding that extra edge would create a cycle). Thus the only

challenge of the Kruskal algorithm is to efficiently keep track of the clusters. Using

disjoint sets and path compression, the overall complexity of the algorithm can be kept

to O(|E|.α(|E|)), where |E| is the number of edges in the graph, and α(.) is the inverse

Ackermann function, a function that grows very slowly with its argument. In other

terms, the Kruskal algorithm is roughly linear in the number of edges, when correctly

implemented.

This is an important conclusion, as it tells us that we can compute minimum span-

ning trees very cheaply.
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1.2.1.3 Dendograms

A minimum spanning tree is an efficient data structure to access a grid of pixels, and

have them organized by increasing edge weights. But the minimum spanning tree is in

fact more informative: it actually captures a full segmentation hierarchy. To see that,

the spanning tree must be visualized using a dendogram. A dendogram is a rooted

binary tree whose leaf nodes consist of the objects being clustered, in our case the

pixels (vertices of the graph). Each internal node of the dendogram represents a cluster

corresponding to all its child leaf nodes. These nodes have a one-to-one correspondance

with the edges of the MST, and the height of each internal node represents the weight

of the edge in the MST! See Figure 1.5.

Concretely, looking at the dendogram of a gradient graph built on an image shows:

(1) high nodes corresponding to strong edges in the image, and (2) low nodes corre-

sponding to flat areas / edge-free areas in the image.
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Figure 1.5: Dendogram of an MST - Left: a subset of the MST in Figure 1.4. Right:

its dendogram. The bottom nodes are the vertices in the original graph; the blue nodes

represent merging levels.

1.2.1.4 Segmentations

Given a dendogram, a single segmentation of the image can be obtained very easily, by

cutting the dendogram at a fixed altitude, or threshold. After cutting the dendogram

at a fixed altitude, we are left with a set of subtrees, called connected components.

These connected components cover the original image (i.e. each node in the original

graph belongs to one and only one component), and represent a possible segmentation

of the image. Intuitively, if the original edge weighting function is a simple Euclidean

distance between neighbors, that segmentation is very brittle, as it depends on very

local edge information.
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Figure 1.6: Cutting the Dendogram = Segmenting - Left: two connected compo-

nents, obtained after thresholding at 0.15. Right: dendogram of MST, any node above the

threshold will be removed. the graph.

Alternatively, the dendogram can be filtered, according to criterions that depend

on the geometry of the underlying component (surface, volume, . . . ). Felzenszwalb &

Huttenlocher (35) proposed an interesting method to produce final components, using a

criterion that compares the maximum weight within a component to each edge between

any two components, and have an adaptive threshold that depends on this ratio. The

method produces balanced segmentations which are robust to local noise. This type of

technique effectively performs a non-horizontal cut of the hierarchy, taking into account

the local morphology of each subtree.

More advanced forms of thresholding criteria can even involve learning. This can

be achieved by defining a function over a neighborhood of pixels, to produce the edge

costs in such a way that graph-cut segmentation and similar methods produce the

best answer. One such objective function is Turaga’s Maximin Learning (100), which

pushes up the lowest edge cost along the shortest path between two points in different

segments, and pushes down the highest edge cost along a path between two points in

the same segment.

In this thesis I was mostly interested in using segmentation hierarchies to explore a

large set of candidate segmentations in an efficient way. The focus of the thesis is thus

more on the use of such trees, as complements to feature learners, rather than on their

production.

1.2.2 Structured Prediction

Structured prediction is a term that describes techniques that involve predicting struc-

tured objects, i.e.considering output labels as inter-dependent, and explicitly modeling

this inter-dependence. One of the earliest structured prediction systems was proposed
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by LeCun et al. (65), to address the problem of labeling scanned documents. The

challenge there is that there is a joint problem of segmentation and recognition: given

a long bitmap of characters, one must jointly find the best segmentation into charac-

ters and classify each character. Any problem that involves labeling sequence data can

be treated with the technique proposed in (65): speech recognition, natural language

processing, handwritten text recognition (OCR), music transcription. . .

For sequence data, one can easily produce all possible segmentations, and compute

a unary cost for each segment. The Viterbi algorithm can then be used to find the

most likely sequence of labels.

For image labeling problems, segmentation becomes problematic, as there is no way

to exhaustively explore all possible segmentation candidates: the graph being loopy,

decoding has to be done in an approximate way, using techniques like loopy belief-

propagation, or graph cuts.

1.2.2.1 Graphical Models

Let us start with a general introduction of undirected graphical models for structured

prediction tasks. We assume a graph G = (V,E) with vertices i ∈ V and edges

e ∈ E ⊆ V × V . The joint probability of a particular assignment to all the variables xi

is represented as a normalized product of a set of non-negative potential functions:

p(x1, x2, . . . , x|V |) =
1

Z

∏

i∈V

φi(xi)
∏

ejk∈E

φejk(xj , xk). (1.15)

There is one node potential function φi for each node i, and one edge potential φe

for each edge e. Each edge connects two nodes, ej and ek. In a complete graph, there

is one edge between each possible pair of nodes. For common applications, such as

computer vision, it’s much more common to have locally connected graphs, i.e. graphs

in which only (small) subsets of nodes are connected via edges (see previous section).

The node potential function φi gives a non-negative weight to each possible value

of the random variable xi. For example, we might set φi(xi = 0) to 0.75 and φi(xi = 1)

to 0.25, which means means that node i has a higher potential of being in state 0 than

state 1. Similarly, the edge potential function φejk gives a non-negative weight to all

the combinations that xj and xk can take.
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1.2 Hierarchical Segmentations, Structured Prediction

The normalization constant Z, or partition function, is a scalar value that forces

the distribution to sum to one, over all possible joint configurations of the variables:

Z =
∑

x1

∑

x2

· · ·
∑

x|V |

∏

i∈V

φi(xi)
∏

ejk∈E

φejk(xj , xk). (1.16)

This normalizing constant ensures that the model defines a valid probability distri-

bution.

Given a graph G, there are three tasks that are commonly performed:

• parameter estimation (learning): the task of computing the potential functions φ

that maximize the likelihood of the training data (or, given a predefined function

φ parametrized by W, finding the optimal parameters W);

• inference: the task of estimating the partition function Z as well as the marginal

probabilities of each node taking each possible state;

• decoding: the task of finding the most likely joint configuration of the variables

(the configuration that has the highest joint probability).

1.2.2.2 Learning: Parameter Estimation

As explained in Section 1.1, if we are only interested in discrimination (classification),

Graphical models can be simplified by considering the negative log likelihood, and ig-

noring the normalization constant Z (which quickly becomes intractable and/or mean-

ingless for large problems). We define the energy E ∝ − log(p):

E(x1, x2, . . . , x|V |) =
∑

i∈V

Φi(xi) +
∑

ejk∈E

Φejk(xj , xk). (1.17)

We assume that Φi and Φe are predefined functions (a linear model, a multilayer

perceptron, or a convolutional network), parametrized by a set of trainable weights w.

For stationary data (images, audio. . . ), it is common to have models that are fixed

across locations, and that only depend on their input xi and the groundtruth label

ti. Since they are constant across locations, we can drop the subscripts i and e, and

rename them φ and ψ, which are now functions of xi, ti and w. We can rewrite the

energy as:

E(x, t;w) =
∑

i∈V

Φ(xi, ti;wφ) +
∑

ejk∈E

Ψejk(xj , xk, tj , tk;wψ), (1.18)
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1. INTRODUCTION

where x is the vector of input nodes, and t is the vector of groundtruth labels for each

node. This energy is also known as the Conditional Random Field (CRF) energy.

The parameter estimation task (learning) becomes a simple minimization problem,

similar to that described in Section 1.1. Reusing the same formulation, and assuming

a training set of pairs {xn, yn} ∀ n ∈ {1, . . . , N}, we have:

l(φ, ψ;xn, tn,w) = E(xn, tn;w) ∀ n ∈ {1, . . . , N} (1.19)

L(φ, ψ;x, t,w) =
∑

n∈{1,...,N}

l(f ;xn, tn,w). (1.20)

Depending on the forms of φ and ψ, the overall objective L might be convex or

not. In the classical CRF literature, the potential functions are usually linear in their

parameters, so the overall problem is indeed convex. Optimization details presented in

Section 1.1.2.2 also apply here. In particular, stochastically estimating the gradients

can tremendously accelerate the learning, as opposed to using more exact methods like

L-BFGS.

More generally, the potential functions can be arbitrarily complex non-convex func-

tions, for example, in the case of image labeling they could be full-blown convolutional

networks, which depend on a neighborhood of input variables. In this case, the over-

all objective function becomes non-convex, and the learning problem challenging. A

simpler solution is to modularize the process of learning, and do it in two steps: (1)

train the unary potentials (the convolutional network) on individual input samples; (2)

freeze the unary potential functions, pre-compute them for all images, and learn the

CRF parameters (a convex problem). That second approach is the basis of Chapter 2.

One of the central results of this thesis is the fact that using a powerful node

potential, such as a multiscale convolutional network (as presented in Chapter 2), can

greatly reduce the need for a top down, global CRF, as each node potential manages

to learn the structure of a large set of input variables.

1.3 Dataflow Computing

The third contribution of this thesis is a custom dataflow computer architecture op-

timized for the computation of convolutional networks (such as the model presented

in Section 2). Dataflow computers are a particular type of processing architecture,

which aim at maximizing the number of effective operations per instruction, which in
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turn maximizes the number of operations reachable per second and per watt consumed.

They are particularly well fit to the computation of convolutional networks, as these

require very little branching logic, and rather require tremendous quantities of basic,

redundant arithmetic operations.

In this section I provide a very quick primer on dataflow computing and architec-

tures. As I suspect most readers of this thesis will come from a software background,

this section is rather high-level, with an emphasis on the compute model rather than

on the specific details of implementation. Chapter 3 extensively describes our custom

dataflow architecture.

Dataflow architectures are a particular type of computer architecture that directly

contrasts the traditional von Neumann architecture or control flow architecture. Data-

flow architectures do not have a program counter, or (at least conceptually) the execu-

tion of instructions is solely determined based on the availability of input data to the

compute elements.

Dataflow architectures have been successfully implemented in specialized hardware

such as in digital signal processing (3, 85), network routing (5), graphics processing (71,

92). It is also very relevant in many software architectures today including database

engine designs and parallel computing frameworks (9, 10).

Before getting into the details of the dataflow architecture, let us look at the Von

Neumann architecture, which should help highlight the fundamental shortcomings of

traditional flow control for highly data-driven applications.

In this type of architecture, the control unit, which decodes the instructions and

executes them, is the central point of the system. A program (sequence of instructions)

is typically stored in external memory, and sequentially read into the control unit.

Certain types of instructions involve branching, while others involve reading data from

the memory into the arithmetic logic unit (ALU), to transform them, and write them

back into external memory.

When executing programs that are highly unpredictable in terms of branching (pro-

grams that have many possible execution paths, with an essentially uniform probability

distribution), this type of architecture is optimal. The control unit loads one instruc-

tion per clock cycle, which either: (1) reads data into the ALU, (2) writes it back to

memory, (3) triggers an ALU operation on data that are already in local registers, or
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1.3 Dataflow Computing

compute logic. When the data streams into the compute logic, computations occur

continuously, and the processed data can be saved back into memory. There is no

fine grained, cycle-accurate control, rather the flows of data themselves trigger the

computations.

The core of the architecture proposed in this thesis relies on this idea of data-driven

computations, complemented by a powerful online hardware re-configuration system,

and a global, macroscopic control flow unit. Figure 1.8 provides an overview of this

architecture.

The most striking aspect of this architecture is the ratio between actual compute

logic and control+caching logic. Caching is essentially nil, as the entire architecture

is designed to work on streams: as the streams produce the computations, there is no

need for caching (there is no latency to hide, as the control unit works asynchronously).

The control logic is very sparse in its activity, as it is only here to reconfigure the grid

of processing tiles (PTs on the figure): before scheduling any new computation, it

configures multiple tiles to perform given operations, and it also configures all the

routes/connections between tiles and global data paths. Once the grid is configured,

streams of data can come into it, and produce thousands, or millions of results, before

a new configuration is required. Configurations can be initiated in parallel with the

computations.

The Processing Tiles (PTs) are passive computers. Each tile can be configured to

do one of several basic arithmetic tasks (including common DSP functions, like dot

products, and convolutions).

Chapter 3 provides a full description of this system.
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tecture.
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2

Image Understanding: Scene

Parsing

2.1 Introduction

Image understanding is a task of primary importance for a wide range of practical

applications. One important step towards understanding an image is to perform a full-

scene labeling also known as a scene parsing, which consists in labeling every pixel in

the image with the category of the object it belongs to. After a perfect scene parsing,

every region and every object is delineated and tagged. One challenge of scene parsing

is that it combines the traditional problems of detection, segmentation, and multi-label

recognition in a single process.

There are two questions of primary importance in the context of scene parsing:

how to produce good internal representations of the visual information, and how to use

contextual information to ensure the self-consistency of the interpretation.

2.2 A Model for Scene Understanding

2.2.1 Introduction

This chapter presents a scene parsing system that relies on deep learning methods

to approach both questions. The main idea is to use a convolutional network (65)

operating on a large input window to produce label hypotheses for each pixel location.

The convolutional net is fed with raw image pixels (after band-pass filtering and contrast

25



2. IMAGE UNDERSTANDING: SCENE PARSING

normalization), and trained in supervised mode from fully-labeled images to produce

a category for each pixel location. Convolutional networks are composed of multiple

stages each of which contains a filter bank module, a non-linearity, and a spatial pooling

module. With end-to-end training, convolutional networks can automatically learn

hierarchical feature representations.

Unfortunately, labeling each pixel by looking at a small region around it is difficult.

The category of a pixel may depend on relatively short-range information (e.g. the

presence of a human face generally indicates the presence of a human body nearby),

but may also depend on long-range information. For example, identifying a grey pixel

as belonging to a road, a sidewalk, a gray car, a concrete building, or a cloudy sky

requires a wide contextual window that shows enough of the surroundings to make an

informed decision. To address this problem, we propose to use a multi-scale convo-

lutional network, which can take into account large input windows, while keeping the

number of free parameters to a minimum.

Common approaches to scene parsing first produce segmentation hypotheses using

graph-based methods. Candidate segments are then encoded using engineered features.

Finally, a conditional random field (or some other type of graphical model), is trained

to produce labels for each candidate segment, and to ensure that the labelings are

globally consistent.

A striking characteristic of the system proposed here is that the use of a large con-

textual window to label pixels reduces the requirement for sophisticated post-processing

methods that ensure the consistency of the labeling.

More precisely, the proposed scene parsing architecture is depicted on Figure 2.1.

It relies on two main components:

1) Multi-scale, convolutional representation: our multi-scale, dense feature

extractor produces a series of feature vectors for regions of multiple sizes centered

around every pixel in the image, covering a large context. The multi-scale convolutional

net contains multiple copies of a simple network (all sharing the same weights) that are

applied to different scales of a Laplacian pyramid version of the input image. For each

pixel, the networks collectively encode the information present in a large contextual

window around the given pixel (184 × 184 pixels in the system described here). The

convolutional network is fed with raw pixels and trained end to end, thereby alleviating
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2.b. Conditional random field over superpixels: a conditional random field

is defined over a set of superpixels. Compared to the previous, simpler method, this

post-processing models joint probabilities at the level of the scene, and is useful to

avoid local aberrations (e.g. a person in the sky). That kind of approach is widely used

in the computer vision community, and we show that our learned multiscale feature

representation essentially makes the use of a global random field much less useful: most

scene-level relationships seem to be already captured by it.

2.c. Multilevel cut with class purity criterion: A family of segmentations

is constructed over the image to analyze the scene at multiple levels. In the simplest

case, this family might be a segmentation tree; in the most general case it can be any

set of segmentations, for example a collection of superpixels either produced using the

same algorithm with different parameter tunings or produced by different algorithms.

Each segmentation component is represented by the set of feature vectors that fall into

it: the component is encoded by a spatial grid of aggregated feature vectors. The ag-

gregated feature vector of each grid cell is computed by a component-wise max pooling

of the feature vectors centered on all the pixels that fall into the grid cell. This pro-

duces a scale-invariant representation of the segment and its surrounding. A classifier

is then applied to the aggregated feature grid of each node. This classifier is trained

to estimate the histogram of all object categories present in the component. A subset

of the components is then selected such that they cover the entire image. These com-

ponents are selected so as to minimize the average “impurity” of the class distribution

in a procedure that we name “optimal cover”. The class “impurity” is defined as the

entropy of the class distribution. The choice of the cover thus attempts to find a con-

sistent overall segmentation in which each segment contains pixels belonging to only

one of the learned categories. This simple method allows us to consider full families of

segmentation components, rather than a unique, predetermined segmentation (e.g. a

single set of superpixels).

All the steps in the process have a complexity linear (or almost linear) in the num-

ber of pixels. The bulk of the computation resides in the convolutional network feature

extractor. The resulting system is very fast, producing a full parse of a 320×240 image

in less than a second on a conventional CPU, and in less than 100ms using dedicated
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hardware, opening the door to real-time applications. Once trained, the system is pa-

rameter free, and requires no adjustment of thresholds or other knobs.

An early version of this work was first published in (34). This journal version reports

more complete experiments, comparisons and higher results.

2.2.2 Multiscale feature extraction for scene parsing

The model proposed in this chapter, depicted on Figure 2.1, relies on two complemen-

tary image representations. In the first representation, an image patch is seen as a

point in R
P , and we seek to find a transform f : RP → R

Q that maps each patch

into R
Q, a space where it can be classified linearly. This first representation typically

suffers from two main problems when using a classical convolutional network, where

the image is divided following a grid pattern: (1) the window considered rarely contains

an object that is properly centered and scaled, and therefore offers a poor observation

basis to predict the class of the underlying object, (2) integrating a large context in-

volves increasing the grid size, and therefore the dimensionality P of the input; given

a finite amount of training data, it is then necessary to enforce some invariance in the

function f itself. This is usually achieved by using pooling/subsampling layers, which

in turn degrades the ability of the model to precisely locate and delineate objects. In

this chapter, f is implemented by a multiscale convolutional network, which allows

integrating large contexts (as large as the complete scene) into local decisions, yet still

remaining manageable in terms of parameters/dimensionality. This multiscale model,

in which weights are shared across scales, allows the model to capture long-range in-

teractions, without the penalty of extra parameters to train. This model is described

in Section 2.2.2.1.

In the second representation, the image is seen as an edge-weighted graph, on which

one or several over-segmentations can be constructed. The components are spatially ac-

curate, and naturally delineate the underlying objects, as this representation conserves

pixel-level precision. Section 2.2.3 describes multiple strategies to combine both repre-

sentations. In particular, we describe in Section 2.2.3.3 a method for analyzing a family

of segmentations (at multiple levels). It can be used as a solution to the first problem

exposed above: assuming the capability of assessing the quality of all the components
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in this family of segmentations, a system can automatically choose its components so

as to produce the best set of predictions.

2.2.2.1 Scale-invariant, scene-level feature extraction

Good internal representations are hierarchical. In vision, pixels are assembled into

edglets, edglets into motifs, motifs into parts, parts into objects, and objects into

scenes. This suggests that recognition architectures for vision (and for other modalities

such as audio and natural language) should have multiple trainable stages stacked on

top of each other, one for each level in the feature hierarchy. Convolutional Networks

(ConvNets) provide a simple framework to learn such hierarchies of features.

Convolutional Networks (64, 65) are trainable architectures composed of multiple

stages. The input and output of each stage are sets of arrays called feature maps. For

example, if the input is a color image, each feature map would be a 2D array containing

a color channel of the input image (for an audio input each feature map would be a 1D

array, and for a video or volumetric image, it would be a 3D array). At the output,

each feature map represents a particular feature extracted at all locations on the input.

Each stage is composed of three layers: a filter bank layer, a non-linearity layer, and a

feature pooling layer. A typical ConvNet is composed of one, two or three such 3-layer

stages, followed by a classification module. Because they are trainable, arbitrary input

modalities can be modeled, beyond natural images.

Our feature extractor is a three-stage convolutional network. The first two stages

contain a bank of filters producing multiple feature maps, a point-wise non-linear map-

ping and a spatial pooling followed by subsampling of each feature map. The last layer

only contains a bank of filters. The filters (convolution kernels) are subject to training.

Each filter is applied to the input feature maps through a 2D convolution operation,

which detects local features at all locations on the input. Each filter bank of a convo-

lutional network produces features that are equivariant under shifts, i.e. if the input is

shifted, the output is also shifted but otherwise unchanged.

While convolutional networks have been used successfully for a number of image

labeling problems, image-level tasks such as full-scene understanding (pixel-wise label-

ing, or any dense feature estimation) require the system to model complex interactions

at the scale of complete images, not simply within a patch. To view a large contextual
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window at full resolution, a convolutional network would have to be unmanageably

large.

The solution is to use a multiscale approach. Our multiscale convolutional network

overcomes these limitations by extending the concept of spatial weight replication to

the scale space. Given an input image I, a multiscale pyramid of images Xs, ∀s ∈

{1, . . . , N} is constructed, where X1 has the size of I. The multiscale pyramid can

be a Laplacian pyramid, and is typically pre-processed, so that local neighborhoods

have zero mean and unit standard deviation. Given a classical convolutional network

fs with parameters θs, the multiscale network is obtained by instantiating one network

per scale s, and sharing all parameters across scales: θs = θ0, ∀s ∈ {1, . . . , N}.

We introduce the following convention: banks of images will be seen as three dimen-

sional arrays in which the first dimension is the number of independent feature maps,

or images, the second is the height of the maps and the third is the width. The output

state of the L-th stage is denoted HL.

The maps in the pyramid are computed using a scaling/normalizing function gs as

Xs = gs(I), for all s ∈ {1, . . . , N}.

For each scale s, the convolutional network fs can be described as a sequence of

linear transforms, interspersed with non-linear symmetric squashing units (typically

the tanh function (66)), and pooling/subsampling operators. For a network fs with L

layers, we have:

fs(Xs; θs) = WLHL−1, (2.1)

where the vector of hidden units at layer l is

Hl = pool(tanh(WlHl−1 + bl)) (2.2)

for all l ∈ {1, . . . , L− 1}, with bl a vector of bias parameters, and H0 = Xs. The ma-

trices Wl are Toeplitz matrices, therefore each hidden unit vector Hl can be expressed

as a regular convolution between kernels from Wl and the previous hidden unit vector

Hl−1, squashed through a tanh, and pooled spatially. More specifically,

Hlp = pool(tanh(blp +
∑

q∈parents(p)

wlpq ∗Hl−1,q)). (2.3)
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The filters Wl and the biases bl constitute the trainable parameters of our model,

and are collectively denoted θs. The function tanh is a point-wise non-linearity, while

pool is a function that considers a neighborhood of activations, and produces one

activation per neighborhood. In all our experiments, we use a max-pooling operator,

which takes the maximum activation within the neighborhood. Pooling over a small

neighborhood provides built-in invariance to small translations.

Finally, the outputs of the N networks are upsampled and concatenated so as to

produce F, a map of feature vectors of size N times the size of f1, which can be seen

as local patch descriptors and scene-level descriptors

F = [f1, u(f2), . . . , u(fN )], (2.4)

where u is an upsampling function.

As mentioned above, weights are shared between networks fs. Intuitively, imposing

complete weight sharing across scales is a natural way of forcing the network to learn

scale invariant features, and at the same time reduce the chances of over-fitting. The

more scales used to jointly train the models fs(θs) the better the representation becomes

for all scales. Because image content is, in principle, scale invariant, using the same

function to extract features at each scale is a reasonable assumption.

2.2.2.2 Learning discriminative scale-invariant features

As described in Section 2.2.2.1, feature vectors in F are obtained by concatenating the

outputs of multiple networks fs, each taking as input a different image in a multiscale

pyramid.

Ideally a linear classifier should produce the correct categorization for all pixel lo-

cations i, from the feature vectors Fi. We train the parameters θs to achieve this

goal, using the multiclass cross entropy loss function. Let ĉi be the normalized pre-

diction vector from the linear classifier for pixel i. We compute normalized predicted

probability distributions over classes ĉi,a using the softmax function, i.e.

ĉi,a =
ew

T
a Fi

∑
b∈classes e

wT
b
Fi

, (2.5)

where w is a temporary weight matrix only used to learn the features. The cross

entropy between the predicted class distribution ĉ and the target class distribution c
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penalizes their deviation and is measured by

Lcat = −
∑

i∈pixels

∑

a∈classes

ci,a ln(ĉi,a). (2.6)

The true target probability ci,a of class a to be present at location i can either be

a distribution of classes at location i, in a given neighborhood or a hard target vector:

ci,a = 1 if pixel i is labeled a, and 0 otherwise. For training maximally discriminative

features, we use hard target vectors in this first stage.

Once the parameters θs are trained, the classifier in Eq 2.5 is discarded, and the

feature vectors Fi are used using different strategies, as described in Section 2.2.3.

2.2.3 Scene labeling strategies

The simplest strategy for labeling the scene is to use the linear classifier described in

Section 2.2.2.2, and assign each pixel with the argmax of the prediction at its location.

More specifically, for each pixel i

li = argmax
a∈classes

ĉi,a. (2.7)

The resulting labeling l, although fairly accurate, is not satisfying visually, as it

lacks spatial consistency, and precise delineation of objects. In this section, we explore

three strategies to produce spatially more appealing labelings.

2.2.3.1 Superpixels

Predicting the class of each pixel independently from its neighbors yields noisy predic-

tions. A simple cleanup can be obtained by forcing local regions of same color intensities

to be assigned a single label.

As in (39, 41), we compute superpixels, following the method proposed by (35), to

produce an over-segmentation of the image. We then classify each location of the image

densely, and aggregate these predictions in each superpixel, by computing the average

class distribution within the superpixel.
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where ‖∇I‖i is the ℓ2 norm of the gradient of the image I at a pixel i. Details on the

parameters used are given in the experimental section.

The CRF energy (2.13) is minimized using alpha-expansions (15, 16). An illustra-

tion of the procedure appears in Figure 2.3.

2.2.3.3 Parameter-free multilevel parsing

One problem subsists with the two methods presented above: the observation level

problem. An object, or object part, can be easily classified once it is segmented at

the right level. The two methods above are based on an arbitrary segmentation of the

image, which typically decomposes it into segments that are too small, or, more rarely,

too large.

In this section, we propose a method to analyze a family of segmentations and

automatically discover the best observation level for each pixel in the image. One special

case of such families is the segmentation tree, in which components are hierarchically

organized. Our method is not restricted to such trees, and can be used for arbitrary

sets of neighborhoods.

In Section 2.2.3.3 we formulate the search for the most adapted neighborhood of

a pixel as an optimization problem. The construction of the cost function that is

minimized is then described in Section 2.2.3.3.

Optimal purity cover We define the neighborhood of a pixel as a connected com-

ponent that contains this pixel. Let Ck, ∀k ∈ {1, . . . ,K} be the set of all possible

connected components of the lattice defined on image I, and let Sk be a cost associated

to each of these components. For each pixel i, we wish to find the index k∗(i) of the

component that best explains this pixel, that is, the component with the minimal cost

Sk∗(i):

k∗(i) = argmin
k | i∈Ck

Sk. (2.16)

Note that components Ck∗(i) form a non-disjoint set that covers the lattice. The

set is always guaranteed to form a cover because of its definition: each pixel is assigned

a component with minimal cost, therefore these components cover the entire image.

Note also that the overall cost S∗ =
∑

i Sk∗(i) is minimal.
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In practice, the set of components Ck is too large, and only a subset of it can

be considered. A classical technique to reduce the set of components is to consider

a hierarchy of segmentations (6, 78), that can be represented as a tree T . This was

previously explored in (34). Solving Eq 2.16 on T consists of the following procedure:

for each pixel (leaf) i, the optimal component Ck∗(i) is the one along the path between

the leaf and the root with minimal cost Sk∗(i). The optimal cover is the union of all

these components. For efficiency purposes, it can be done simply by exploring the

tree in a depth-first search manner, and finding the component with minimal weight

along each branch. The complexity of the optimal cover procedure is then linear in the

number of components in the tree. Figure 2.5 illustrates the procedure.

Another technique to reduce the set of components considered is to compute a

set of segmentations using different merging thresholds. In Section 2.2.4, we use such

an approach, by computing multiple levels of the Felzenszwalb algorithm (35). The

Felzenszwalb algorithm is not strictly monotonic, so the structure obtained cannot be

cast into a tree: rather, it has a general graph form, in which each pixel belongs to

as many superpixels as levels explored. Solving Eq 2.16 in this case consists of the

following procedure: for each pixel i, the optimal component Ck∗(i) is the one among

all the segmentations with minimal cost Sk∗(i). Thus the complexity to produce a cover

on the family of components is linear on the number of pixels, but with a constant that

is proportional to the number of levels explored.

Producing the confidence costs Given a set of components Ck, we explain how

to produce all the confidence costs Sk. These costs represent the class purity of the

associated components. Given the groundtruth segmentation, we can compute the cost

as being the entropy of the distribution of classes present in the component. At test

time, when no groundtruth is available, we need to define a function that can predict

this cost by simply looking at the component. We now describe a way of achieving this,

as illustrated in Figure 2.6.

Given the scale-invariant features F, we define a compact representation to describe

objects as an elastic spatial arrangement of such features. In other terms, an object,

or category in general, can be best described as a spatial arrangement of features,

or parts. We define a simple attention function a used to mask the feature vector

map with each component Ck, producing a set of K masked feature vector patterns
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C7
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min min min min
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Optimal cover:

{C1, C3, C4, C5}

Figure 2.5: Optimal Cover on a Tree: - Finding the optimal cover on a tree. The

numbers next to the components correspond to the entropy scores Si. For each pixel (leaf)

i, the optimal component Ck∗(i) is the one along the path between the leaf and the root

with minimal cost Sk∗(i). The optimal cover is the union of all these components. In this

example, the optimal cover {C1, C3, C4, C5} will result in a segmentation in disjoint sets

{C1, C2, C3, C4}, with the subtle difference that component C2 will be labelled with the

class of C5, as C5 is the best observation level for C2. The generalization to a family of

segmentations is straightforward (see text).

{F
⋂
Ck}, ∀k ∈ {1, . . . ,K}. The function a is called an attention function because

it suppresses the background around the component being analyzed. The patterns

{F
⋂
Ck} are resampled to produce fixed-size representations. In our model the sam-

pling is done using an elastic max-pooling function, which remaps input patterns of

arbitrary size into a fixed G×G grid. This grid can be seen as a highly invariant rep-

resentation that encodes spatial relations between an object’s attributes/parts. This

representation is denoted Ok. Some nice properties of this encoding are: (1) elongated,

or in general ill-shaped objects, are nicely handled, (2) the dominant features are used

to represent the object, combined with background subtraction, the features pooled

represent solid basis functions to recognize the underlying object.

Once we have the set of object descriptors Ok, we define a function c : Ok → [0, 1]Nc

(where Nc is the number of classes) as predicting the distribution of classes present in

component Ck. We associate a cost Sk to this distribution. In this chapter, c is

implemented as a simple 2-layer neural network, and Sk is the entropy of the predicted

distribution. More formally, let Ok be the feature vector associated with component

Ck, d̂k the predicted class distribution, and Sk the cost associated to this distribution.
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Ok

F

Ck

 F⋂Ck  pooling

Figure 2.6: Max Sampling - The shape-invariant attention function a. For each com-

ponent Ck in the family of segmentations T , the corresponding image segment is encoded

by a spatial grid of feature vectors that fall into this segment. The aggregated feature

vector of each grid cell is computed by a component-wise max pooling of the feature vec-

tors centered on all the pixels that fall into the grid cell; this produces a scale-invariant

representation of the segment and its surroundings. The result, Ok, is a descriptor that

encodes spatial relations between the underlying object’s parts. The grid size was set to

3× 3 for all our experiments.

We have

yk = W2 tanh(W1Ok + b1), (2.17)

d̂k,a =
eyk,a

∑
b∈classes e

yk,b
, (2.18)

Sk = −
∑

a∈classes

dk,a ln(d̂k,a), (2.19)

with dk the groundtruth distribution for component k. Matrices W1 and W2 are noted

θc, and represent the trainable parameters of c. These parameters need to be learned

over the complete set of segmentation families, computed on the entire training set

available. The training procedure is described in Section 2.2.3.3.

For each component Ck chosen by the optimal purity cover (Section 2.2.3.3) the

label is produced by:

lk = argmax
a∈classes

d̂k,a Ck ∈ cut. (2.20)

Training procedure Let F be the set of all feature maps in the training set, and

T the set of all families of segmentations. We construct the segmentation collections

(T )T∈T on the entire training set, and, for all T ∈ T train the classifier c to predict the

distribution of classes in component Ck ∈ T , as well as the costs Sk.
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Given the trained parameters θs, we build F and T, i.e. we compute all vector maps

F and segmentation collections T on all the training data available, so as to produce

a new training set of descriptors Ok. This time, the parameters θc of the classifier c

are trained to minimize the KL-divergence between the true (known) distributions of

labels dk in each component, and the prediction from the classifier d̂k (Eq 2.18):

ldiv =
∑

a∈classes

d̂k,aln(
d̂k,a
dk,a

). (2.21)

In this setting, the groundtruth distributions dk are not hard target vectors, but

normalized histograms of the labels present in component Ck. Once the parameters θc

are trained, d̂k accurately predicts the distribution of labels, and Eq 2.19 is used to

assign a purity cost to the component.

2.2.4 Experiments

We report our semantic scene understanding results on three different datasets: “Stan-

ford Background” on which related state-of-the-art methods report classification errors,

and two more challenging datasets with a larger number of classes: “SIFT Flow” and

“Barcelona”. The Stanford Background dataset (42) contains 715 images of outdoor

scenes composed of 8 classes, chosen from other existing public datasets so that all

the images are outdoor scenes, have approximately 320× 240 pixels, where each image

contains at least one foreground object. We use the evaluation procedure introduced

in (42), 5-fold cross validation: 572 images used for training, and 143 for testing. The

SIFT Flow dataset (72) is composed of 2, 688 images, that have been thoroughly la-

beled by LabelMe users, and split in 2, 488 training images and 200 test images. The

authors used synonym correction to obtain 33 semantic labels. The Barcelona dataset,

as described in (98), is derived from the LabelMe subset used in (90). It has 14, 871

training and 279 test images. The test set consists of street scenes from Barcelona,

while the training set ranges in scene types but has no street scenes from Barcelona.

Synonyms were manually consolidated by (98) to produce 170 unique labels.

To evaluate the representation from our multiscale convolutional network, we re-

port results from several experiments on the Stanford Background dataset: (1) a system

based on a plain convolutional network alone; (2) the multiscale convolutional network
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Pixel Acc. Class Acc. CT (sec.)

Gould et al. 2009 (42) 76.4% - 10 to 600s

Munoz et al. 2010 (76) 76.9% 66.2% 12s

Tighe et al. 2010 (98) 77.5% - 10 to 300s

Socher et al. 2011 (97) 78.1% - ?

Kumar et al. 2010 (57) 79.4% - < 600s

Lempitzky et al. 2011 (70) 81.9% 72.4% > 60s

singlescale convnet 66.0 % 56.5 % 0.35s

multiscale convnet 78.8 % 72.4% 0.6s

multiscale net + superpixels 80.4% 74.56% 0.7s

multiscale net + gPb + cover 80.4% 75.24% 61s

multiscale net + CRF on gPb 81.4% 76.0% 60.5s

Table 2.1: Performance of our system on the Stanford Background dataset (42): per-pixel

/ average per-class accuracy. The third column reports compute times, as reported by the

authors. Our algorithms were computed using a 4-core Intel i7.

Pixel Acc. Class Acc.

Liu et al. 2009 (72) 74.75% -

Tighe et al. 2010 (98) 76.9% 29.4%

raw multiscale net1 67.9% 45.9%

multiscale net + superpixels1 71.9% 50.8%

multiscale net + cover1 72.3% 50.8%

multiscale net + cover2 78.5% 29.6%

Table 2.2: Performance of our system on the SIFT Flow dataset (72): per-pixel / av-

erage per-class accuracy. Our multiscale network is trained using two sampling methods:
1balanced frequencies, 2natural frequencies. We compare the results of our multiscale net-

work with the raw (pixelwise) classifier, Felzenszwalb superpixels (35) (one level), and our

optimal cover applied to a stack of 10 levels of Felzenszwalb superpixels. Note: the thresh-

old for the single level was picked to yield the best results; the cover automatically finds

the best combination of superpixels.
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presented in Section 2.2.2.1, with raw pixelwise prediction; (3) superpixel-based pre-

dictions, as presented in Section 2.2.3.1; (4) CRF-based predictions, as presented in

Section 2.2.3.2; (5) cover-based predictions, as presented in Section 2.2.3.3.

Results are reported in Table 2.1, and compared with related works. Our model

achieves very good results in comparison with previous approaches. Methods of (57, 70)

achieve similar or better performances on this particular dataset but to the price of

several minutes to parse one image.

We then demonstrate that our system scales nicely when augmenting the number

of classes on two other datasets, in Tables 2.2 and 2.3. Results on these datasets were

obtained using our cover-based method, from Section 2.2.3.3. Example parses on the

SIFT Flow dataset are shown on Figure 2.9.

For the SIFT Flow and Barcelona datasets, we experimented with two sampling

methods when learning the multiscale features: respecting natural frequencies of classes,

and balancing them so that an equal amount of each class is shown to the network.

Balancing class occurrences is essential to model the conditional likelihood of each

class (i.e. ignore their prior distribution). Both results are reported in Table 2.2.

Training with balanced frequencies allows better discrimination of small objects, and

although it decreases the overall pixelwise accuracy, it is more correct from a recognition

point of view. Frequency balancing is used on the Stanford Background dataset, as it

consistently gives better results. For the Barcelona dataset, both sampling methods

are used as well, but frequency balancing worked rather poorly in that case. This can

be explained by the fact that this dataset has a large amount of classes with very few

training examples. These classes are therefore extremely hard to model, and overfitting

occurs much faster than for the SIFT Flow dataset. Results are shown on Table 2.3.

Results in Table 2.1 demonstrate the impressive computational advantage of convo-

lutional networks over competing algorithms. Exploiting the parallel structure of this

special network, by computing convolutions in parallel, allows us to parse an image of

size 320× 240 in less than one second on a 4-core Intel i7 laptop. Using GPUs or other

types of dedicated hardware, our scene parsing model can be run in real-time (i.e. at

more than 10fps).
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Pixel Acc. Class Acc.

Tighe et al. 2010 (98) 66.9% 7.6%

raw multiscale net1 37.8% 12.1%

multiscale net + superpixels1 44.1% 12.4%

multiscale net + cover1 46.4% 12.5%

multiscale net + cover2 67.8% 9.5%

Table 2.3: Performance of our system on the Barcelona dataset (98): per-pixel / aver-

age per-class accuracy. Our multiscale network is trained using two sampling methods:
1balanced frequencies, 2natural frequencies. We compare the results of our multiscale net-

work with the raw (pixelwise) classifier, Felzenszwalb superpixels (35) (one level), and our

optimal cover applied to a stack of 10 levels of Felzenszwalb superpixels. Note: the thresh-

old for the single level was picked to yield the best results; the cover automatically finds

the best combination of superpixels.

2.2.4.1 Multiscale feature extraction

For all experiments, we use a 3-stage convolutional network. The first two layers of

the network are composed of a bank of filters of size 7 × 7 followed by tanh units

and 2 × 2 max-pooling operations. The last layer is a simple filter bank. The filters

and pooling dimensions were chosen by a grid search. The input image is transformed

into YUV space, and a Laplacian pyramid is constructed from it. The Y, U and V

channels of each scale in the pyramid are then independently locally normalized, such

that each local 15× 15 patch has zero-mean and unit variance. For these experiments,

the pyramid consists of 3 rescaled versions of the input (N = 3), in octaves: 320 ×

240, 160× 120, 80× 60.

The network is then applied to each 3-dimension input map Xs. This input is

transformed into a 16-dimension feature map, using a bank of 16 filters (10 connected to

the Y channel, 6 connected to the U and V channels). The second layer transforms this

16-dimension feature map into a 64-dimension feature map, each map being produced

by a combination of 8 randomly selected feature maps from the previous layer. Finally

the 64-dimension feature map is transformed into a 256-dimension feature map, each

map being produced by a combination of 32 randomly selected feature maps from the

previous layer.

The outputs of each of the 3 networks are then upsampled and concatenated, so

as to produce a 256 × 3 = 768-dimension feature vector map F. Given the filter
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sizes, the network has a field of view of 46 × 46, at each scale, which means that a

feature vector in F is influenced by a 46× 46 neighborhood at full resolution, a 92× 92

neighborhood at half resolution, and a 184 × 184 neighborhood at quarter resolution.

These neighborhoods are shown in Figure 2.1.

The network is trained on all 3 scales in parallel, using stochastic gradient descent

with no second-order information, and mini-batches of size 1. Simple grid-search was

performed to find the best learning rate (10−3) and regularization parameters (L2

coefficient: 10−5), using a holdout of 10% of the training data for validation. The

holdout is also used to select the best network, i.e. the network that generalizes the

most on the holdout.

Convergence, that is, maximum generalization performance, is typically attained

after between 10 to 50 million patches have been seen during stochastic gradient descent.

This typically represents between two to five days of training. No special hardware

(GPUs) was used for training.

The convolutional network has roughly 0.5 million trainable parameters. To ensure

that features do not overfit some irrelevant biases present in the data, jitter – horizontal

flipping of all images, rotations between −8 and 8 degrees, and rescaling between 90 and

110% – was used to artificially expand the size of the training data. These additional

distortions are applied during training, before loading a new training point, and are

sampled from uniform distributions. Jitter was shown to be crucial for low-level feature

learning in the works of (95) and (21).

For our baseline, we trained a single-scale network and a three-scale network as

raw site predictors, for each location i, using the classification loss Lcat defined in

Eq 2.10, with the two-layer neural network defined in Eq 2.9. Table 2.1 shows the clear

advantage of the multi-scale representation, which captures scene-level dependencies,

and can classify more pixels accurately. Without an explicit segmentation model, the

visual aspect of the predictions still suffers from inaccurate object delineation.

2.2.4.2 Parsing with superpixels

The results obtained with the strategy presented in section 2.2.3.1 demonstrate the

quality of our multiscale features, by reaching a very high classification accuracy on all

three datasets. This simple strategy is also a real fit for real time applications, taking
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only an additional 0.2 second to label a 320× 240 image on Intel i7 CPU. An example

of result is given in Figure 2.7.

The 2−layer neural network used for this method (Eq 2.9) has 768 input units, 1024

hidden units; and as many output units as classes in each dataset. This neural network

is trained with no regularization.

2.2.4.3 Multilevel parsing

Although the simple strategy of the previous section seems appealing, the results can

be further improved using the multilevel approach of Section 2.2.3.3.

The family of segmentations used to find the optimal cover could be a simple seg-

mentation tree constructed on the raw image gradient. For the Stanford Background

dataset experiments, we used a more sophisticated tree based on a semantic image

gradient. We used the gPb hierarchies of Arbelaez et al. , which are computed us-

ing spectral clustering to produce semantically consistent contours of objects. Their

computation requires one minute per image.

For the SIFT Flow and Barcelona datasets, we used a cheaper technique, which does

not rely on a tree: we ran the superpixel method proposed by Felzenszwalb in (35) at 10

different levels. The Felzenszwalb algorithm is not strictly monotonic, so the structure

obtained cannot be cast into a tree: rather, it has a general graph form, in which each

pixel belongs to 10 different superpixels. Our optimal cover algorithm can be readily

applied to arbitrary structures of this type. The 10 levels were chosen such that they

are linearly distributed and span a large range.

Classically, segmentation methods find a partition of the segments rather than a

cover. Partitioning the segments consists in finding an optimal cut in a tree (so that

each terminal node in the pruned tree corresponds to a segment). We experimented

with graph-cuts to do so (14, 36), but the results were less accurate than with our

optimal cover method (Stanford Background dataset only).

The 2−layer neural network c from Eq 2.17 has 3 × 3 × 768 = 6912 input units

(using a 3× 3 grid of feature vectors from F), 1024 hidden units; and as many output

units as classes in each dataset. This rather large neural network is trained with L2

regularization (coefficient: 10−2), to minimize overfitting.

Results are better than the superpixel method, in particular, better delineation is

achieved (see Fig. 2.7).
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2.2.4.4 Conditional random field

We demonstrate the state-of-the-art quality of our features by employing a CRF on

the superpixels given by thresholding the gPb hierarchy, on the Stanford Background

dataset. A similar test is performed in Lempitsky et al. (70), where the authors also use

a CRF on the same superpixels (at the threshold 20 in the gPb hierarchy), but employ

different features. Histograms of densely sampled SIFT words, colors, locations, and

contour shape descriptors. They report a ratio of correctly classified pixels of 81.1%

on the Stanford Background dataset. We recall that this accuracy is the best one has

achieved at the present day on this dataset with a flat CRF.

In our CRF energy, we performed a grid search to set the parameters of (2.13)

(β = 20, α = 0.1 γ = 200), and used a grey level gradient. The accuracy of the

resulting system is 81.4, as reported in Table 2.1. Our features are thus outperforming

the best publicly available combination of handcrafted features.

2.2.4.5 Some comments on the learned features

With recent advances in unsupervised (deep) learning, learned features have become

easier to analyze and understand. In this work, the entire stack of features is learned

in a purely supervised manner, and yet we found that the features obtained are rather

meaningful. We believe that the reason for this is the type of loss function we use, which

enforces a large invariance: the system is forced to produce an invariant representation

for all the locations of a given object. This type of invariance is very similar to what

can be achieved using semi-supervised techniques such as Dr-LIM (44), where the loss

enforces pairs of similar patches to yield a same encoding. Figure 2.10 shows an example

of the features learned on the SIFT Flow dataset, for the first layer.

2.2.4.6 Some comments on real-world generalization

Now that we have compared and discussed several strategies for scene parsing based on

our multiscale features, we consider taking our system in the real-world, to evaluate its

generalization properties. The work of (99), measuring dataset bias, raises the question

of the generalization of a recognition system learned on specific, publicly available

datasets.
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We used our multiscale features combined with classification using superpixels as

described in Section 2.2.3.1, trained on the SiftFlow dataset (2,688 images, most of them

taken in non-urban environments, see Table 2.2 and Figure 2.9). We collected a 360

degree movie in our workplace environment, including a street and a park, introducing

difficulties such as lighting conditions and image distortions: see Figure 2.11.

The movie was built from four videos that were stitched to form a 360 degree

video stream of 1280 × 256 images, thus creating artifacts not seen during training.

We processed each frame independently, without using any temporal consistency or

smoothing.

Despite all these constraints, and the rather small size of the training dataset, we ob-

serve rather convincing generalization of our models on these previously unseen scenes.

The two video sequences are available at http://www.clement.farabet.net/research.html#parsing.

Two snapshots are included in Figure 2.11. Our scene parsing system constitutes at

the best of our knowledge the first approach achieving real time performance, one

frame being processed in less than a second on a 4-core Intel i7. Feature extraction,

which represent around 500ms on the i7 can be reduced to 60ms using dedicated FPGA

hardware (32, 33).

2.2.5 Discussion and Conclusions

The main lessons from the experiments presented in this chapter are as follows:

• Using a high-capacity feature-learning system fed with raw pixels yields excellent

results, when compared with systems that use engineered features. The accu-

racy is similar or better than competing systems, even when the segmentation

hypothesis generation and the post-processing module are absent or very simple.

• Feeding the system with a wide contextual window is critical to the quality of

the results. The numbers in table 2.1 show a dramatic improvement of the per-

formance of the multi-scale convolutional network over the single scale version.

• When a wide context is taken into account to produce each pixel label, the role

of the post-processing is greatly reduced. In fact, a simple majority vote of the

categories within a superpixel yields state-of-the-art accuracy. This seems to

suggest that contextual information can be taken into account by a feed-forward
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trainable system with a wide contextual window, perhaps as well as an inference

mechanism that propagates label constraints over a graphical model, but with a

considerably lower computational cost.

• The use of highly sophisticated post-processing schemes, which seem so crucial

to the success of other models, does not seem to improve the results significantly

over simple schemes. This seems to suggest that the performance is limited by the

quality of the labeling, or the quality of the segmentation hypotheses, rather than

by the quality of the contextual consistency system or the inference algorithm.

• Relying heavily on a highly-accurate feed-forward pixel labeling system, while

simplifying the post-processing module to its bare minimum cuts down the infer-

ence times considerably. The resulting system is dramatically faster than those

that rely heavily on graphical model inference. Moreover, the bulk of the com-

putation takes place in the convolutional network. This computation is algorith-

mically simple, easily parallelizable. Implementations on multi-core machines,

general-purpose GPUs, Digital Signal Processors, or specialized architectures im-

plemented on FPGAs is straightforward. This is demonstrated by the FPGA

implementation (32, 33) of the feature extraction scheme presented in this chap-

ter that runs in 60ms for an image resolution of 320× 240.

This chapter demonstrates that a feed-forward convolutional network, trained end-

to-end in a supervised manner, and fed with raw pixels from large patches over multiple

scales, can produce state of the art performance on standard scene parsing datasets.

The model does not rely on engineered features, and uses purely supervised training

from fully-labeled images to learn appropriate low-level and mid-level features.

Perhaps the most surprising result is that even in the absence of any post-processing,

by simply labeling each pixel with the highest-scoring category produced by the con-

volutional net for that location, the system yields near state-of-the-art pixel-wise accu-

racy, and better per-class accuracy than all previously-published results. Feeding the

features of the convolutional net to various sophisticated schemes that generate seg-

mentation hypotheses, and that find consistent segmentations and labeling by taking

local constraints into account improves the results slightly, but not considerably.

While the results on datasets with few categories are good, the accuracy of the best

existing scene parsing systems, including ours, is still quite low when the number of

49



2. IMAGE UNDERSTANDING: SCENE PARSING

categories is large. The problem of scene parsing is far from being solved. While the

system presented here has a number of advantages and shortcomings, the framing of

the scene parsing task itself is in need of refinement.

First of all, the pixel-wise accuracy is a somewhat inaccurate measure of the visual

and practical quality of the result. Spotting rare objects is often more important than

accurately labeling every boundary pixel of the sky (which are often in greater number).

The average per-class accuracy is a step in the right direction, but not the ultimate

solution: one would prefer a system that correctly spots every object or region, while

giving an approximate boundary to a system that produces accurate boundaries for

large regions (sky, road, grass), but fail to spot small objects. A reflection is needed on

the best ways to measure the accuracy of scene labeling systems.

Scene parsing datasets also need better labels. One could imagine using scene

parsing datasets with hierarchical labels, so that a window within a building would be

labeled as “building” and “window”. Using this kind of labeling in conjunction with

graph structures on sets of labels that contain is-part-of relationships would likely

produce more consistent interpretations of the whole scene.

The framework presented in this chapter trains the convolutional net as a pixel la-

beling system in isolation from the post-processing module that ensures the consistency

of the labeling and its proper registration with the image regions. This requires that

the convolutional net be trained with images that are fully labeled at the pixel level.

One would hope that jointly fine-tuning the convolutional net and the post-processor

produces better overall interpretations. Gradients can be back-propagated through

the post-processor to the convolutional nets. This is reminiscent of the Graph Trans-

former Network model, a kind of non-linear CRF in which an un-normalized graphical

model based post-processing module was trained jointly with a convolutional network

for handwriting recognition (65). Unfortunately, preliminary experiments with such

joint training yielded lower test-set accuracies due to overtraining.

A more important advantage of joint training would allow the use of weakly-labeled

images in which only a list of objects present in the image would be given, perhaps

tagged with approximate positions. This would be similar in spirit to sentence-level

discriminative training methods used in speech recognition and handwriting recogni-

tion (65).
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Another possible direction for improvement includes the use of objective functions

that directly operates of the edge costs of neighborhood graphs in such as way that

graph-cut segmentation and similar methods produce the best answer. One such ob-

jective function is Turaga’s Maximin Learning (100), which pushes up the lowest edge

cost along the shortest path between two points in different segments, and pushes down

the highest edge cost along a path between two points in the same segment.

Our system so far has been trained using purely supervised learning applied to a

fairly classical convolutional network architecture. However, a number of recent works

have shown the advantage of architectural elements such as rectifying non-linearities

and local contrast normalization (52). More importantly, several works have shown the

advantage of using unsupervised pre-training to prime the convolutional net into a good

starting point before supervised refinement (53, 54, 55, 69, 89). These methods improve

the performance in the low training set size regime, and would probably improve the

performance of the present system.
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(a) Image (b) Super Pixels

(c) Ground truth (d) Threshold in gPb hierarchy

(e) CRF on gPb threshold (f) MinCover in gPb hierarchy

Legend: building sky grass tree mountain object

Figure 2.7: Scene Parsing Results - Example of results on the Stanford background

dataset. (b),(d) and (f) show results with different labeling strategies, overlayed with

superpixels (cf Section 2.2.3.1), segments results of a threshold in the gPb hierarchy (6),

and segments recovered by the maximum purity approach with an optimal cover (cf 2.2.3.3).

The result (c) is obtained with a CRF on the superpixels shown in (d), as described in

Section 2.2.3.2.
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Figure 2.8: More Scene Parsing Results - More results using our multiscale convolu-

tional network and a flat CRF on the Stanford Background Dataset.

Figure 2.9: Scene Parsing Results with More Classes - Typical results achieved

on the SIFT Flow dataset.
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(a) (b) (c) (d)

Figure 2.10: Learned Filters - Typical first layer features, learned on the SIFT Flow

dataset. (a) to (c) show the 16 filters learned at each scale, when no weight sharing is used

(networks at each scale are independent). (d) show the 16 filters obtained when sharing

weights across all 3 scales. All the filters are 7× 7. We observe typical oriented edges, and

high-frequency filters. Filters at higher layers are more difficult to analyze.
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3

A Hardware Platform for

Real-time Image Understanding

3.1 Introduction

Micro-robots, unmanned aerial vehicles (UAVs), imaging sensor networks, wireless

phones, and other embedded vision systems all require low cost and high-speed imple-

mentations of synthetic vision systems capable of recognizing and categorizing objects

in a scene.

Many successful object recognition systems use dense features extracted on regularly-

spaced patches over the input image. The majority of the feature extraction systems

have a common structure composed of a filter bank (generally based on oriented edge

detectors or 2D gabor functions), a non-linear operation (quantization, winner-take-all,

sparsification, normalization, and/or point-wise saturation) and finally a pooling oper-

ation (max, average or histogramming). For example, the scale-invariant feature trans-

form (SIFT (73)) operator applies oriented edge filters to a small patch and determines

the dominant orientation through a winner-take-all operation. Finally, the resulting

sparse vectors are added (pooled) over a larger patch to form local orientation his-

togram. Some recognition systems use a single stage of feature extractors (8, 28, 60, 87).

Other models like HMAX-type models (77, 93) and convolutional networks use two

more layers of successive feature extractors. Different training algorithms have been

used for learning the parameters of convolutional networks. In (65) and (49), pure

supervised learning is used to update the parameters. However, recent works have
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focused on training with an auxiliary task (4) or using unsupervised objectives (52, 54,

69, 89).

This chapter presents a scalable hardware architecture for large-scale multi-layered

synthetic vision systems based on large parallel filter banks, such as convolutional net-

works. This hardware can also be used to accelerate the execution (and partial learning)

of recent vision algorithms like SIFT and HMAX (60, 93). This system is a data-flow

vision engine that can perform real-time detection, recognition and localization in mega-

pixel images processed as pipelined streams. The system was designed with the goal of

providing categorization of an arbitrary number of objects, while consuming very little

power.

Graphics Processing Units (GPUs) are becoming a common alternative to custom

hardware in vision applications, as demonstrated in (22). Their advantage over custom

hardware are numerous: they are inexpensive, available in most recent computers, and

easily programmable with standard development kits, such as nVidia CUDA SDK. The

main reasons for continuing developing custom hardware are twofold: performance and

power consumption. By developing a custom architecture that is fully adapted to a

certain range of tasks (as is shown in this chapter), the product of power consumption

by performance can be improved by a factor of 100.

3.2 Learning Internal Representations

One of the key questions of Vision Science (natural and artificial) is how to produce

good internal representations of the visual world. What sort of internal representation

would allow an artificial vision system to detect and classify objects into categories,

independently of pose, scale, illumination, conformation, and clutter? More interest-

ingly, how could an artificial vision system learn appropriate internal representations

automatically, the way animals and humans seem to learn by simply looking at the

world? In the time-honored approach to computer vision (and to pattern recognition

in general), the question is avoided: internal representations are produced by a hand-

crafted feature extractor, whose output is fed to a trainable classifier. While the issue

of learning features has been a topic of interest for many years, considerable progress

has been achieved in the last few years with the development of so-called deep learning

methods.
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Good internal representations are hierarchical. In vision, pixels are assembled into

edglets, edglets into motifs, motifs into parts, parts into objects, and objects into scenes.

This suggests that recognition architectures for vision (and for other modalities such

as audio and natural language) should have multiple trainable stages stacked on top of

each other, one for each level in the feature hierarchy. This raises two new questions:

what to put in each stage? and how to train such deep, multi-stage architectures?

Convolutional Networks (ConvNets) are an answer to the first question. Until recently,

the answer to the second question was to use gradient-based supervised learning, but

recent research in deep learning has produced a number of unsupervised methods which

greatly reduce the need for labeled samples.

3.2.1 Convolutional Networks
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Figure 3.1: Architecture of a typical convolutional network for object recognition. This

implements a convolutional feature extractor and a linear classifier for generic N-class

object recognition. Once trained, the network can be computed on arbitrary large input

images, producing a classification map as output.

Convolutional Networks (64, 65) are trainable architectures composed of multiple

stages. The input and output of each stage are sets of arrays called feature maps. For

example, if the input is a color image, each feature map would be a 2D array containing

a color channel of the input image (for an audio input each feature map would be a 1D
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array, and for a video or volumetric image, it would be a 3D array). At the output,

each feature map represents a particular feature extracted at all locations on the input.

Each stage is composed of three layers: a filter bank layer, a non-linearity layer, and a

feature pooling layer. A typical ConvNet is composed of one, two or three such 3-layer

stages, followed by a classification module.

Each layer type is now described for the case of image recognition. We introduce

the following convention: banks of images will be seen as three dimensional arrays in

which the first dimension is the number of independent maps/images, the second is the

height of the maps and the third is the width. The input bank of a module is denoted

x, the output bank y, an image in the input bank xi, a pixel in the input bank xijk.

• Filter Bank Layer - F : the input is a 3D array with n1 2D feature maps of size

n2 × n3. Each component is denoted xijk, and each feature map is denoted xi.

The output is also a 3D array, y composed of m1 feature maps of size m2 ×m3.

A trainable filter (kernel) kij in the filter bank has size l1× l2 and connects input

feature map xi to output feature map yj . The module computes

yj = bj +
∑

i

kij ∗ xi (3.1)

where bj is a trainable bias parameter, and ∗ is the 2D discrete convolution

operator:

(kij ∗ xi)pq =

l1/2−1∑

m=−l1/2

l2/2−1∑

n=−l2/2

kij,m,nxi,p+m,q+n. (3.2)

Each filter detects a particular feature at every location on the input. Hence

spatially translating the input of a feature detection layer will translate the output

but leave it otherwise unchanged.

• Non-Linearity Layer - R,N : In traditional ConvNets this simply consists in a

pointwise tanh function applied to each site (ijk). However, recent implementa-

tions have used more sophisticated non-linearities. A useful one for natural image

recognition is the rectified tanh: Rabs(x) = abs(gi.tanh(x)) where gi is a trainable

gain parameter per each input feature map i. The rectified tanh is sometimes
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followed by a subtractive and divisive local normalization N , which enforces local

competition between adjacent features in a feature map, and between features

at the closeby spatial locations. Local competition usually results in features

that are decorrelated, thereby maximizing their individual role. The subtractive

normalization operation for a given site xijk computes:

vijk = xijk −
∑

ipq

wpq.xi,j+p,k+q, (3.3)

where wpq is a normalized truncated Gaussian weighting window (typically of size

9× 9). The divisive normalization computes

yijk =
vijk

max(mean(σjk), σjk)
, (3.4)

where σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2. The local contrast normalization layer is

inspired by visual neuroscience models (74, 87).

• Feature Pooling Layer - P : This layer treats each feature map separately.

In its simplest instance, called PA, it computes the average values over a neigh-

borhood in each feature map. The neighborhoods are stepped by a stride larger

than 1 (but smaller than or equal the pooling neighborhood). This results in a

reduced-resolution output feature map which is robust to small variations in the

location of features in the previous layer. The average operation is sometimes

replaced by a max operation, PM . Traditional ConvNets use a pointwise tanh()

after the pooling layer, but more recent models do not. Some ConvNets dispense

with the separate pooling layer entirely, but use strides larger than one in the

filter bank layer to reduce the resolution (63, 96). In some recent versions of Con-

vNets, the pooling also pools similar features at the same location, in addition to

the same feature at nearby locations (54).

Supervised training is performed using on-line stochastic gradient descent to mini-

mize the discrepancy between the desired output and the actual output of the network.

All the coefficients in all the layers are updated simultaneously by the learning proce-

dure for each sample. The gradients are computed with the back-propagation method.
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Details of the procedure are given in (65), and methods for efficient training are detailed

in (66).

3.2.2 Unsupervised Learning of ConvNets

Training deep, multi-stage architectures using supervised gradient back propagation

requires many labeled samples. However in many problems labeled data is scarce

whereas unlabeled data is abundant. Recent research in deep learning (7, 48, 88) has

shown that unsupervised learning can be used to train each stage one after the other

using only unlabeled data, reducing the requirement for labeled samples significantly.

In (52), using abs and normalization non-linearities, unsupervised pre-training, and

supervised global refinement has been shown to yield excellent performance on the

Caltech-101 dataset with only 30 training samples per category (more on this below).

In (69), good accuracy was obtained on the same set using a very different unsupervised

method based on sparse Restricted Boltzmann Machines. Several works at NEC have

also shown that using auxiliary tasks (4, 103) helps regularizing the system and produces

excellent performance.

3.2.2.1 Unsupervised Training with Predictive Sparse Decomposition

The unsupervised method we propose, to learn the filter coefficients in the filter bank

layers, is called Predictive Sparse Decomposition (PSD) (53). Similar to the well-known

sparse coding algorithms (83), inputs are approximated as a sparse linear combination

of dictionary elements.

Z∗ = min
Z

‖X −WZ‖22 + λ|Z|1 (3.5)

In conventional sparse coding ( 3.5), for any given input X, an expensive optimization

algorithm is run to find the optimal sparse representation Z∗ (the “basis pursuit”

problem). PSD trains a non-linear feed-forward regressor (or encoder) C(X,K) =

g.(tanh(X ∗k+ b)) to approximate the sparse solution Z∗. During training, the feature

vector Z∗ is obtained by minimizing the following compound energy:

E(Z,W,K) = ‖X −WZ‖22 + λ‖Z‖1 + ‖Z − C(X,K)‖22 (3.6)

where W is the matrix whose columns are the dictionary elements and K = k, g, b

are the encoder filter, bias and gain parameters. For each training sample X, one
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Table 3.1: Average recognition rates on Caltech-101 with 30 training samples per class.

Each row contains results for one of the training protocols (U = unsupervised, X = random,

+ = supervised fine-tuning), and each column for one type of architecture (F = filter bank,

PA = average pooling, PM = max pooling, R = rectification, N = normalization).

Single Stage [64.F9×9 −R/N/P5×5 − logreg]

F−Rabs −N−PA F−Rabs −PA F−N−PM F−PA

U+ 54.2% 50.0% 44.3% 14.5%

X+ 54.8% 47.0% 38.0% 14.3%

U 52.2% 43.3% 44.0% 13.4%

X 53.3% 31.7% 32.1% 12.1%

Two Stages [256.F9×9 −R/N/P4×4 − logreg]

F−Rabs −N−PA F−Rabs −PA F−N−PM F−PA

U+ 65.5% 60.5% 61.0% 32.0%

X+ 64.7% 59.5% 60.0% 29.7%

U 63.7% 46.7% 56.0% 9.1%

X 62.9% 33.7% 37.6% 8.8%

first finds Z∗ that minimizes E, then W and K are adjusted by one step of stochastic

gradient descent to lower E. Once training is complete, the feature vector for a given

input is simply approximated with Z∗ = C(X,K), hence the process is extremely fast

(feed-forward).

3.2.2.2 Results on Object Recognition

In this section, various architectures and training procedures are compared to determine

which non-linearities are preferable, and which training protocol makes a difference.

Generic Object Recognition using Caltech 101 Dataset. Caltech 101 is a stan-

dard dataset of labeled images, containing 101 categories of objects in the wild.

We use a two-stage system where, the first stage is composed of an F layer with 64

filters of size 9 × 9, followed by different combinations of non-linearities and pooling.

The second-stage feature extractor is fed with the output of the first stage and extracts

256 output features maps, each of which combines a random subset of 16 feature maps

from the previous stage using 9 × 9 kernels. Hence the total number of convolution

kernels is 256× 16 = 4096.
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Table 3.1 summarizes the results for the experiments, where U and X denotes unsu-

pervised pre-training and random initialization respectively, and + denotes supervised

fine-tuning of the whole system.

1. Excellent accuracy of 65.5% is obtained using unsupervised pre-training and super-

vised refinement with abs and normalization non-linearities. The result is on par with

the popular model based on SIFT and pyramid match kernel SVM (60). It is clear that

abs and normalization are crucial for achieving good performance. This is an extremely

important fact for users of convolutional networks, which traditionally only use tanh().

2. Astonishingly, random filters without any filter learning whatsoever achieve decent

performance (62.9% forX), as long as abs and normalization are present (Rabs−N−PA).

A more detailed study on this particular case can be found in (52).

3. Comparing experiments from rows X vs X+, U vs U+, we see that supervised fine

tuning consistently improves the performance, particularly with weak non-linearities.

4. It seems that unsupervised pre-training (U , U+) is crucial when newly proposed

non-linearities are not in place.

Handwritten Digit Classification using MNIST Dataset. MNIST is a dataset

of handwritten digits (62): it contains 60, 000 28×28 image patches of digits on uniform

backgrounds, and a standard testing set of 10, 000 different samples, widely used by the

vision community as a benchmark for algorithms. Each patch is labeled with a number

ranging from 0 to 9.

Using the evidence gathered in previous experiments, we used a two-stage system

with a two-layer fully-connected classifier to learn the mapping between the samples’

pixels and the labels. The two convolutional stages were pre-trained unsupervised

(without the labels), and refined supervised (with the labels). An error rate of 0.53%

was achieved on the test set. To our knowledge, this is the lowest error rate ever

reported on the original MNIST dataset, without distortions or preprocessing. The best

previously reported error rate was 0.60% (88).

3.2.2.3 Connection with Other Approaches in Object Recognition

Many recent successful object recognition systems can also be seen as single or multi-

layer feature extraction systems followed by a classifier. Most common feature extrac-
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tion systems like SIFT (73), HoG (28) are composed of filter banks (oriented edge

detectors at multiple scales) followed by non-linearities (winner take all) and pooling

(histogramming). A Pyramid Match Kernel (PMK) SVM (60) classifier can also be

seen as another layer of feature extraction since it performs a K-means based feature

extraction followed by local histogramming.

3.3 A Dedicated Digital Hardware Architecture

Biologically inspired vision models, and more generally image processing algorithms

are usually expressed as sequences of operations or transformations. They can be well

described by a modular approach, in which each module processes an input image bank

and produces a new bank. Figure 3.1 is a graphical illustration of this approach. Each

module requires the previous bank to be fully (or at least partially) available before

computing its output. This causality prevents simple parallelism to be implemented

across modules. However parallelism can easily be introduced within a module, and at

several levels, depending on the kind of underlying operations.

In the following discussion, banks of images will be seen as three dimensional arrays

in which the first dimension is the number of independent maps/images, the second is

the height of the maps and the third is the width. As in section 3.2.1, the input bank

of a module is denoted x, the output bank y, an image in the input bank xi, a pixel in

the input bank xijk. Input banks’ dimensions will be noted n1×n2×n3, output banks

m1×m2×m3. Each module implements a type of operation that requires K operations

per input pixel xijk. The starting point of the discussion is a general purpose processor

composed of an arithmetic unit, a fast internal cache of size SINT , and an external

memory of size SEXT >> SINT . The bandwidth between the internal logic and the

external memory array will be noted BEXT .

The coarsest level of parallelism can be obtained at the image bank level. A module

that applies a unary transformation to produce one output image for each input image

(n1 = m1) can be broken up in n1 independent threads. This is the most basic form of

parallelism, and it finds its limits when n2×n3 becomes larger than a threshold, closely

related to SINT . In fact, past a certain size, the number of pixels that can be processed

in a given time equals BEXT /(2×K) (bandwidth is shared between writes and reads),

assuming that no parallelism is performed at the operation level (the K operations per
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pixel are applied sequentially). In other terms, the amount of parallelism that can be

introduced at this level is limited by BEXT /K.

A finer level of parallelism can be introduced at the operation level. The cost of

fetching pixels from the external memory being very high, the most efficient form of

parallelism can occur when pixels are reused in multiple operations (K > 1). It can

be shown that optimal performances are reached if K operations can be produced in

parallel in the arithmetic unit. In other terms, the amount of parallelism that can be

introduced at this level is limited by BEXT .

If the internal cache size SINT is large enough to hold all the images of the entire

set of modules to compute, then the overall performance of the system if defined by

BINT , the bandwidth between the arithmetic unit and the internal cache. As the size

of internal memory caches grows (following Moore’s law), more data can fit internally,

which naturally pushes performance of computations from K ×BEXT to K ×BINT .

For a given technology though, SINT has an upper bound, and the only part of the

system we can act upon is the internal architecture. Based on these observations, our

approach is to tackle the problem of producing the K parallel operations by rethink-

ing the architecture of the arithmetic units, while conserving the traditional external

memory storage. Our problem can be stated simply:

Problem 1 K being the number of operations performed per input pixel; BEXT being

the bandwidth available between the arithmetic units and the external memory array; we

want to establish an architecture that produces K operations in parallel, so that BEXT

is fully utilized.

3.3.1 A Data-Flow Approach

The data-flow hardware architecture was initiated by (2), and quickly became an active

field of research (30, 47, 59). (20) presents one of the latest data-flow architectures that

has several similarities to the approach presented here.

Figure 3.2 shows a data-flow architecture whose goal is to process homogeneous

streams of data in parallel (32). It is defined around several key ideas:

• a 2D grid of NPT Processing Tiles (PTs) that contain:

– a bank of processing operators. An operator can be anything from a FIFO

to an arithmetic operator, or even a combination of arithmetic operators.
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The operators are connected to local data lines,

– a routing multiplexer (MUX). The MUX connects the local data lines to

global data lines or to neighboring tiles.

• a Smart Direct Memory Access module (Smart DMA), that interfaces off-chip

memory and provides asynchronous data transfers, with priority management,

• a set ofNglobal global data lines used to connect PTs to the Smart DMA,Nglobal <<

NPT ,

• a set of local data lines used to connect PTs with their 4 neighbors,

• a Runtime Configuration Bus, used to reconfigure many aspects of the grid

at runtime—connections, operators, Smart DMA modes. . . (the configurable ele-

ments are depicted as squares on Fig.3.2),

• a controller that can reconfigure most of the computing grid and the Smart DMA

at runtime.

3.3.1.1 On Runtime Reconfiguration

One of the most interesting aspects of this grid is its configuration capabilities. Many

systems have been proposed which are based on two-dimensional arrays of processing

elements interconnected by a routing fabric that is reconfigurable. Field Programmable

Gate Arrays (FPGAs) for instance, offer one of the most versatile grid of processing

elements. Each of these processing elements—usually a simple look-up table—can be

connected to any of the other elements of the grid, which provides with the most generic

routing fabric one can think of. Thanks to the simplicity of the processing elements,

the number that can be packed in a single package is in the order of 104 to 105. The

drawback is the reconfiguration time, which takes in the order of milliseconds, and

the synthesis time, which takes in the order of minutes to hours depending on the

complexity of the circuit.

At the other end of the spectrum, recent multicore processors implement only a few

powerful processing elements (in the order of 10s to 100s). For these architectures, no

synthesis is involved, instead, extensions to existing programming languages are used

to explicitly describe parallelism. The advantage of these architectures is the relative
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simplicity of use: the implementation of an algorithm rarely takes more than a few

days, whereas months are required for a typical circuit synthesis for FPGAs.

The architecture presented here is at the middle of this spectrum. Building a fully

generic data-flow computer is a tedious task. Reducing the spectrum of applications

to the image processing problem—as stated in Problem 1—allows us to define the

following constraints:

• high throughput is a top priority, low latency is not. Indeed, most of the opera-

tions performed on images are replicated over both dimensions of these images,

usually bringing the amount of similar computations to a number that is much

larger than the typical latencies of a pipelined processing unit,

• therefore each operator has to provide with a maximum throughput (e.g. one

operation per clock cycle) to the detriment of any initial latency, and has to be

stallable (e.g. must handle discontinuities in data streams).

• configuration time has to be low, or more precisely in the order of the system’s

latency. This constraint simply states that the system should be able to reconfig-

ure itself between two kinds of operations in a time that is negligible compared

to the image sizes. That is a crucial point to allow runtime reconfiguration,

• the processing elements in the grid should be as coarse grained as permitted, to

maximize the ratio between computing logic and routing logic. Creating a grid for

a particular application (e.g. ConvNets) allows the use of very coarse operators.

On the other hand, a general purpose grid has to cover the space of standard

numeric operators,

• the processing elements, although they might be complex, should not have any

internal state, but should just passively process any incoming data. The task of

sequencing operations is done by a global control unit that simply configures the

entire grid for a given operation, lets the data flow in, and prepares the following

operation.

The first two points of this list are crucial to create a flexible data-flow system.

Several types of grids have been proposed in the past (30, 47, 58), often trying to solve
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the dual latency/throughput problem, and often providing a computing fabric that is

too rigid.

The grid proposed here provides a flexible processing framework, due to the stal-

lable nature of the operators. Indeed, any paths can be configured on the grid, even

paths that require more bandwidth than is actually feasible. Instead of breaking, each

operator will stall its pipeline when required. This is achieved by the use of FIFOs

at the input and output of each operators, that compensate for bubbles in the data

streams, and force the operators to stall when they are full. Any sequence of operators

can then be easily created, without concern for bandwidth issues.

The third point is achieved by the use of a runtime configuration bus, common

to all units. Each module in the design has a set of configurable parameters, routes

or settings (depicted as squares on Figure 3.2), and possesses a unique address on the

network. Groups of similar modules also share a broadcast address, which dramatically

speeds up reconfiguration of elements that need to perform similar tasks.

The last point depicts the data-flow idea of having (at least theoretically) no state,

or instruction pointer. In the case of the system presented here, the grid has no state,

but a state does exist in a centralized control unit. For each configuration of the grid, no

state is used, and the presence of data drives the computations. Although this leads to

an optimal throughput, the system presented here strives to be as general as possible,

and having the possibility of configuring the grid quickly to perform a new type of

operation is crucial to run algorithms that require different types of computations.

A typical execution of an operation on this system is the following: (1) the control

unit configures each tile to be used for the computation and each connection between the

tiles and their neighbors and/or the global lines, by sending a configuration command

to each of them, (2) it configures the Smart DMA to prefetch the data to be processed,

and to be ready to write results back to off-chip memory, (3) when the DMA is ready,

it triggers the streaming out, (4) each tile processes its respective incoming streaming

data, and passes the results to another tile, or back to the Smart DMA, (5) the control

unit is notified of the end of operations when the Smart DMA has completed.

Example 1 Such a grid can be used to perform arbitrary computations on streams

of data, from plain unary operations to complex nested operations. As stated above,

operators can be easily cascaded and connected across tiles, independently managing

their flow by the use of input/output FIFOs.
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Figure 3.3 shows an example of configuration, where the grid is configured to com-

pute a sum of two convolutions followed by a non-linear activation function

y1,i,j = Tanh(
K−1∑

m=0

K−1∑

n=0

x1,i+m,j+nw1,m,n +
K−1∑

m=0

K−1∑

n=0

x2,i+m,j+nw2,m,n). (3.7)

The operator
∑∏

performs a sum of products, or a dot-product between an incom-

ing stream and a local set of weights (preloaded as a stream too). Therefore each tile

performs a 1D convolution, and 3 tiles are used to compute a 2D convolution with a

3×3 kernel. All the paths are simplified of course, and in some cases one line represents

multiple parallel streams.

It can be noted that this last example provides a nice solution to Problem 1. Indeed,

the input data being 2 images x1 and x2, and the output data one image y1, the K

operations are performed in parallel, and the entire operation is achieved at a bandwidth

of BEXT /3.

3.3.2 An FPGA-Based ConvNet Processor

Recent DSP-oriented FPGAs include a large number of hard-wired MAC units and

several thousands of programmable cells (lookup tables), which allows fast prototyping

and real-time simulation of circuits, but also actual implementations to be used in final

products.

In this section we present a concrete implementation of the ideas presented in sec-

tion 3.3.1, specially tailored for ConvNets. We will refer to this implementation as

the Convnet Processor. The architecture presented here has been fully coded in hard-

ware description languages (HDL) that target both ASIC synthesis and programmable

hardware like FPGAs.

A schematic summary of the ConvNet Processor system is presented in Figure 3.4.

The main components of our system are: (1) a Control Unit (implemented on a general

purpose CPU), (2) a grid of Processing Tiles (PTs), and (3) a Smart DMA interfacing

external memory via a standard controller.

In this implementation, the Control Unit is implemented by a general purpose CPU.

This is more convenient than a custom state machine as it allows the use of standard C

compilers. Moreover, the CPU has full access to the external memory (via global data

lines), and it can use this large storage to store its program instructions.
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Figure 3.4: Overview of the ConvNet Processor system. A grid of multiple full-custom

Processing Tiles tailored to ConvNet operations, and a fast streaming memory interface

(Smart DMA).
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3.3.2.1 Specialized Processing Tiles

The PTs are independent processing tiles laid out on a two-dimensional grid. As pre-

sented in section 3.3.1, they contain a routing multiplexer (MUX) and local operators.

Compared to the general purpose architecture proposed above, this implementation is

specialized for ConvNets and other applications that rely heavily on two-dimensional

convolutions (from 80% to 90% of computations for ConvNets).

Figure 3.4 shows this specialization:

• the top row PTs only implement Multiply and Accumulate (MAC) arrays (
∑∏

operators), which can be used as 2D convolvers (implemented in the FPGA by

dedicated hardwired MACs). It can also perform on-the-fly subsampling (spatial

pooling), and simple dot-products (linear classifiers) (31),

• the middle row PTs contain general purpose operators (squaring and dividing are

necessary for divisive normalization),

• the bottom row PTs implement non-linear mapping engines, used to compute all

sorts of functions from Tanh() to Sqrt() or Abs(). Those can be used at all stages

of the ConvNets, from normalization to non-linear activation units.

The operators in the PTs are fully pipelined to produce one result per clock cycle.

Image pixels are stored in off-chip memory as Q8.8 (16bit, fixed-point), transported on

global lines as Q8.8 but scaled to 32bit integers within operators, to keep full precision

between successive operations. The numeric precision, and hence the size of a pixel,

will be noted Pbits.

The 2D convolver can be viewed as a data-flow grid itself, with the only difference

that the connections between the operators (the MACs) are fixed. The reason for

having a full-blown 2D convolver within a tile (instead of a 1D convolver per tile, or

even simply one MAC per tile) is that it maximizes the ratio between actual computing

logic and routing logic, as stated previously. Of course it is not as flexible, and the choice

of the array size is a hardwired parameter, but it is a reasonable choice for an FPGA

implementation, and for image processing in general. For an ASIC implementation,

having a 1D dot-product operator per tile is probably the best compromise.

74



3.3 A Dedicated Digital Hardware Architecture

The pipelined implementation of this 2D convolver (as described in (31)), computes

Equation 3.8 at every clock cycle.

y1,i,j = x2,i,j +

K−1∑

m=0

K−1∑

n=0

x1,i+m,j+nw1,m,n (3.8)

In equation 3.8 x1,i,j is a value in the input plane, w1,m,n is a value in a K × K

convolution kernel, x2,i,j is a value in a plane to be combined with the result, and y1 is

the output plane.

Both the kernel and the image are streams loaded from the memory, and the filter

kernels can be pre-loaded in local caches concurrently to another operation: each new

pixel thus triggers K ×K parallel operations.

All the non-linearities in neural networks can be computed with the use of look-up

tables or piece-wise linear decompositions.

A loop-up table associates one output value for each input value, and therefore

requires as much memory as the range of possible inputs. It is the fastest method to

compute a non-linear mapping, but the time required to reload a new table is prohibitive

if different mappings are to be computed with the same hardware (and the memory

required can be prohibitive as well).

A piece-wise linear decomposition is not as accurate (f is approximated by g, as in

Eq. 3.9), but only requires a couple of coefficients ai to represent a simple mapping such

as a hyperbolic tangent, or a square root (for a limited memory budget, it is therefore

more accurate than a look-up table). It can be reprogrammed very quickly at runtime,

allowing multiple mappings to reuse the same hardware. Moreover, if the coefficients

ai follow the constraint given by Eq. 3.10, the hardware can be reduced to shifters and

adders only (divisions by a powers of 2).

g(x) = aix+ bi for x ∈ [li, li+1] (3.9)

ai =
1

2m
+

1

2n
m,n ∈ [0, 5]. (3.10)

3.3.2.2 Smart DMA Implementation

A critical part of this architecture is the Direct Memory Access (DMA) module. Our

Smart DMA module is a full custom engine that has been designed to allow NDMA

ports to access the external memory totally asynchronously.
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A dedicated arbiter is used as hardware Memory Interface to multiplex and demul-

tiplex access to the external memory with high bandwidth. Subsequent buffers on each

port insure continuity of service on a port while the others are utilized.

The DMA is smart, because it complements the Control Unit. Each port of the

DMA can be configured to read or write a particular chunk of data, with an optional

stride (for 2D streams), and communicate its status to the Control Unit. Although this

might seem trivial, it respects one the foundations of data-flow computing: while the

Control Unit configures the grid and the DMA ports for each operation, an operation is

driven exclusively by the data, from its fetching, to its writing back to off-chip memory.

If the PTs are synchronous to the memory bus clock, the following relationship can

be established between the memory bandwidth BEXT , the number of possible parallel

data transfers MAX(NDMA) and the bits per pixel Pbits:

MAX(NDMA) =
BEXT
Pbits

. (3.11)

For example Pbits = 16 and BEXT = 128bit/cyc allows MAX(NDMA) = 7 simulta-

neous transfers.

3.3.3 Compiling ConvNets for the ConvNet Processor

Prior to being run on the ConvNet Processor, a ConvNet has to be trained offline,

on a regular computer, and then converted to a compact representation that can be

interpreted by the Control Unit to generate controls/configurations for the system.

Offline, the training is performed with existing software such as Lush (61) or Torch-

5 (23). Both libraries use the modular approach described in the introduction of sec-

tion 3.3.

On board, the Control Unit of the ConvNet Processor decodes the representation,

which results in several grid reconfigurations, interspersed with data streams. This

representation will be denoted as bytecode from now on. Compiling a ConvNet for

the ConvNet Processor can be summarized as the task of mapping the offline training

results to this bytecode.

Extensive research has been done on the question of how to schedule data-flow

computations (68), and how to represent streams and computations on streams (59).
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In this section, we only care about how to schedule computations for a ConvNet (and

similar architectures) on our ConvNet Processor engine.

It is a more restricted problem, and can be stated simply:

Problem 2 Given a particular ConvNet architecture, and trained parameters, and

given a particular implementation of the data-flow grid, what is the sequence of grid

configurations that yield the shortest computation time? Or in other terms, for a given

ConvNet architecture, and a given data-flow architecture, how to produce the bytecode

that yields the shortest computing time?

As described in the introduction of section 3.3, there are three levels at which

computations can be parallelized:

• across modules: operators can be cascaded, and multiple modules can be com-

puted on the fly (average speedup),

• across images, within a module: can be done if multiple instances of the required

operator exist (poor speedup, as each independent operation requires its own

input/output streams, which are limited by BEXT ),

• within an image: some operators naturally implement that (the 2D convolver,

which performs all the MACs in parallel), in some cases, multiple tiles can be

used to parallelize computations.

Parallelizing computations across modules can be done in special cases. Example 1

illustrates this case: two operators (each belonging to a separate module) are cascaded,

which speeds up this computation by a factor of 2.

Parallelizing computations across images is straightforward but very limited. Here

is an example that illustrates that point:

Example 2 The data-flow system built has 3 PTs with 2D convolvers, 3 PTs with

standard operators, and 2 PTs with non-linear mappers (as depicted in Figure 3.4, and

the exercise is to map a fully-connected filter-bank with 3 inputs and 8 outputs, e.g. a

filer bank where each of the 8 outputs is a sum of 3 inputs convolved with a different

kernel:

yj =
2∑

i=0

kij ∗ xi for j ∈ [0, 7]. (3.12)
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For the given hardware, the optimal mapping is: each of the three 2D convolvers is

configured to convolve one of the three inputs xi with a kernel kij, and a standard PT

is configured to accumulate those 3 streams in one and produce yj.

Although optimal (3 images are processed in parallel), 4 simultaneous streams are

created at the Smart DMA level, which imposes a maximum bandwidth of BEXT /4 per

stream.

Parallelizing computations within images is what this grid is best at. Example 1 is

a perfect example of how an operation (in that case a sequence of operations) can be

done in a single pass on the grid.

3.3.4 Application to Scene Understanding

Several applications were implemented on neuFlow: from a simple face detector to

a pixel-wise obstacle classifier (25) and a complete street scene parser, as shown on

Figure 3.5. Other example applications can be found at www.neuflow.org.

In this section we focus on the elaboration, training and implementation of a com-

plete street-scene parser. This work extends and is strongly inspired by previous work

from Grangier et al. (43). Scene parsing, as seen in Chapter 2, aims at segmenting

and recognizing the content of a scene: from objects to large structures—roads, sky,

buildings, cars, etc. In other words, the goal is to map each pixel of a given input image

to a unique label.

Grangier et al. (43) showed that using a deep convolutional network with a greedy

layer-wise learning (up to 6 convolutional layers) could yield significantly better results

than simpler 2 or 3-layer systems. In Chapter 2, we showed how a multiscale network

could efficiently encode and describe image patches for this type of task. We followed

a slightly different method here, favoring larger kernels over deeper networks, as these

are easily accelerated with our hardware, but kept the idea of incrementally growing

the network’s capacity.

A subset of the LabelMe dataset (91), containing about 3000 images of spanish

cities 1, was used to train this convolutional network. We removed 10% of the set to be

used for validation (testing). The twenty most occurring classes were extracted, and

the goal was set to minimize the pixel classification error on those classes.

1
http://people.csail.mit.edu/torralba/benchmarks/
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Figure 3.5: Scene Parsing on FPGAs - Street scene parsing: a convolutional network

was trained on the LabelMe spanish dataset (91) with a method similar to (43). The

training set only contains photos from spanish cities; the image above is a picture taken in

Edinburgh. The convolutional network is fully computed on neuFlow, achieving a speedup

of about 100x (500x375 images are processed in 83ms, as opposed to 8s on a laptop).
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All the images were first resized to 500 × 375, then 400 million patches were ran-

domly sampled to produce a 20×1e8×N ×N tensor where the first dimension indexes

the classes, the second indexes patches of which the center pixel belongs to the corre-

sponding class, and the last two dimensions are the height and width of the patch.

The training was done in 3 phases. First: we started with a simple model, CN1

(table 3.2), similar to the one originally proposed in (65). The model has small kernels

(5 × 5) and 3 convolutional layers only. This first model was trained to optimize the

pixel-wise cross entropy (negative log-likelihood) through stochastic gradient descent

over the training set. Minimizing the cross entropy (rather than the mean-square error)

helps promote the categories of rare appearance. Small kernels, and a few layers allowed

the system to see 10 million training patches in a couple of hours, and converge to a

reasonable error fairly quickly. With these parameters, the receptive field of the network

is 32× 32, which only represents 0.55% of the complete field of view;

Second: all the convolutional kernels were then increased to 9× 9, by padding the

extra weights with zeros: CN2 (table 3.3). This increased the receptive field to 60× 60

(about 2% of the image), with the interesting property that at time 0 of this second

training phase, the network was producing the same predictions than with the smaller

kernels;

Third: a fourth layer was added—a.k.a. greedy layer-wise learning—which in-

creased the receptive field to 92 × 92 (5% of the image). This required dropping the

previous linear classifier, and replace it with a new—randomly initialized—larger clas-

sifier.

Performances were evaluated on a separate test set, which was created using a

subset (10%) of the original dataset. Results are shown on Table 3.5.

Once trained, the network was passed over to luaFlow, and transparently mapped

to neuFlow. A key advantage of convolutional networks is that they can be applied to

sliding windows on a large image at very low cost by simply computing convolutions at

each layer over the entire image. The output layer is replicated accordingly, producing

one detection score for every 92 × 92 window on the input, spaced every 4 pixels.

Producing the prediction on one image of that size takes about 8 seconds on a laptop-

class Intel DuoCore 2.66GHz processor; the same prediction is produced in 83ms on

neuFlow, with an average error of 10−2 (quantization noise).
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Layer Kernels: dims [nb] Maps: dims [nb]

Input image 32× 32 [3]

N0 (Norm) 32× 32 [3]

C1 (Conv) 5× 5 [48] 28× 28 [12]

P2 (Pool) 2× 2 [1] 14× 14 [12]

C3 (Conv) 5× 5 [384] 10× 10 [32]

P4 (Pool) 2× 2 [1] 5× 5 [32]

C5 (Conv) 5× 5 [1536] 1× 1 [48]

L (Linear) 1× 1 [960] 1× 1 [20]

Table 3.2: CN1: base model. N: Local Normalization layer (note: only the Y channel

is normalized, U and V are untouched); C: convolutional layer; P: pooling (max) layer; L:

linear classifier.

3.3.5 Performance

Figure 3.6 reports a performance comparison for the computation of a typical ConvNet

on multiple platforms:

• the CPU data was measured from compiled C code (GNU C compiler and Blas

libraries) on a Core 2 Duo 2.66GHz Apple Macbook PRO laptop operating at

90W (30 to 40W for the CPU);

• the FPGA data was measured on both a Xilinx Virtex-4 SX35 operating at

200MHz and 7W and a Xilinx Virtex-6 VLX240T operating at 200MHz and

10W;

• the GPU data was obtained from a CUDA-based implementation running on a

laptop-range nVidia GT335m operating at 1GHz and 40W;

• the ASIC data is simulation data gathered from an IBM 65nm CMOS process.For

an ASIC-based design with a speed of 400MHz (speeds of up to > 1 GHz are

possible), the projected power consumption is simulated at 3W.

The test ConvNet is composed of a non-linear normalization layer, 3 convolutional

layers, 2 pooling layers, and a linear classifier. The convolutional layers and pooling

layers are followed by non-linear activation units (hyperbolic tangent). Overall, it
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Figure 3.6: Compute time for a typical ConvNet (as seen in Figure 3.1).
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Layer Kernels: dims [nb] Maps: dims [nb]

Input image 60× 60 [3]

N0 (Norm) 60× 60 [3]

C1 (Conv) 9× 9 [48] 52× 52 [12]

P2 (Pool) 2× 2 [1] 26× 26 [12]

C3 (Conv) 9× 9 [384] 18× 18 [32]

P4 (Pool) 2× 2 [1] 9× 9 [32]

C5 (Conv) 9× 9 [1536] 1× 1 [48]

L (Linear) 1× 1 [960] 1× 1 [20]

Table 3.3: CN2: second model. Filters are increased, which doubles the receptive field

possesses NKER K ×K learned kernels, NPOOL P ×P learned pooling kernels, and N

200 dimension classification vectors.

Figure 3.6 was produced by increasing the parameters NKER, NPOOL, K and P

simultaneously, and estimating the time to compute the ConvNet for each set of pa-

rameters. The x-axis reports the overall number of linear connections in the ConvNet

(e.g. the number of multiply and accumulate operations to perform).

Note: on the spectrum of parallel computers described in Section 3.3.1.1, GPUs

belong to the small grids (100s of elements) of large and complex processing units (full-

blown streaming processors). Although they offer one of the most interesting ratio of

computing power over price, their drawback is their high power consumption (from

40W to 200W per unit).

Table 3.6 reports a performance comparison for the computation of a typical filter

bank operation on multiple platforms: 1- the CPU data was measured from compiled

C code (GNU C compiler and Blas libraries) on a Core 2 Duo 2.66GHz Apple Macbook

PRO laptop operating at 90W (30W for the CPU); 2- the FPGA data was measured

on a Xilinx Virtex-6 VLX240T operating at 200MHz and 10W (power consumption

was measured on the board) ; 3- the GPU data was obtained from a CUDA-based

implementation running on a laptop-range nVidia GT335m operating at 1GHz and 30W

and on a nVidia GTX480 operating at 1GHz and 220W; 4- the ASIC data is simulation

data gathered from an IBM 45nm CMOS process (5×5mm). For an ASIC-based design

with a speed of 400MHz, the projected power consumption, using post-synthesis data
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Layer Kernels: dims [nb] Maps: dims [nb]

Input image 92× 92 [3]

N0 (Norm) 92× 92 [3]

C1 (Conv) 9× 9 [48] 84× 84 [12]

P2 (Pool) 2× 2 [1] 42× 42 [12]

C3 (Conv) 9× 9 [384] 34× 34 [32]

P4 (Pool) 2× 2 [1] 17× 17 [32]

C5 (Conv) 9× 9 [1536] 9× 9 [48]

C6 (Conv) 9× 9 [1024] 1× 1 [128]

L (Linear) 1× 1 [960] 1× 1 [20]

Table 3.4: CN3: a fourth convolutional layer C6 is added, which, again, increases the

receptive field. Note: C6 has sparse connectivity (e.g.each of its 128 outputs is connected

to 8 inputs only, yielding 1024 kernels instead of 6144).

Model CN1 CN2 CN3

CN Error (%) 29.75 26.13 24.26

CN+MST Error (%) 27.17 24.40 23.39

Table 3.5: Percentage of mislabeled pixels on validation set. CN Error is the pixel-

wise error obtained when using the simplest pixelwise winner, predicted by the ConvNet.

CN+MST Error is the pixelwise error obtained by histogramming the ConvNet’s predic-

tion into connected components (the components are obtained by computing the minimum

spanning tree of an edge-weighted graph built on the raw RGB image, and merging its

nodes using a surface criterion, in the spirit of (35)).

and standard analysis tools is estimated at 5W.

The current design was proven at 200MHz on a Xilinx Virtex 6 ML605 platform,

using four 10×10 convolver grids. At this frequency, the peak performance is 80 billion

connections per second, or 160 GOPs. Sustained performances for typical applications

(such as the street scene parser) range from 60 to 120 GOPs, sustained.

3.3.6 Precision

Recognition rates for standard datasets were obtained to benchmark the precision loss

induced by the fixed-point coding. Using floating-point representation for training
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CPU V6 mGPU IBM GPU

Peak GOPs 10 160 182 1280 1350

Real GOPs 1.1 147 54 1164 294

Power W 30 10 30 5 220

GOPs/W 0.04 14.7 1.8 230 1.34

Table 3.6: Performance comparison. 1- CPU: Intel DuoCore, 2.7GHz, optimized C code,

2- V6: neuFlow on Xilinx Virtex 6 FPGA—on board power and GOPs measurements; 3-

IBM: neuFlow on IBM 45nm process: simulated results, the design was fully placed and

routed; 4- mGPU/GPU: two GPU implementations, a low power GT335m and a high-end

GTX480.

and testing, the following results were obtained: for NORB, 85% recognition rate was

achieved on the test dataset, for MNIST, 95% and for UMASS (faces dataset), 98%.

The same tests were conducted on the ConvNet Processor with fixed-point representa-

tion (Q8.8), and the results were, respectively: 85%, 95% and 98%, which confirms the

assumptions made a priori on the influence of quantization noise.

To provide more insight into the fixed-point conversion, the number of weights

being zeroed with quantization was measured, in the case of the NORB object detector.

Figure 3.7 shows the results: at 8bits, the quantization impact is already significant

(10% of weights become useless), although it has no effect on the detection accuracy.
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Figure 3.7: Quantization effect on trained networks: the x axis shows the fixed point

position, the y axis the percentage of weights being zeroed after quantization.
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Discussion

In this thesis I presented three contributions: (1) a multiscale deep convolutional net-

work architecture to easily capture long-distance relationships between input variables

in image data, (2) a tree-based algorithm to efficiently explore multiple segmentation

candidates, to produce maximally confident semantic segmentations of images, (3) a

custom dataflow computer architecture optimized for the computation of convolutional

networks, and similarly dense image processing models. All three contributions were

produced with the common goal of getting us closer to real-time image understanding.

Contribution (1) was deployed in production at a company I co-founded called

MadBits 1. They are now part of a larger framework that relies on deep networks to

learn rich representations of images, and enable a wide range of features: classification,

text-based search, image-based search (search in model’s feature space), online learning

(using density estimation in feature space), . . .

My co-author Camille Couprie extended this work in (27) by applying it to RGB-D

imagery (image+depth data), to solve the problem of indoor semantic segmentation.

The overall method produced state-of-the-art results on a standard benchmark.

Contribution (3) was used to power several DARPA and ONR projects, and was

successfully integrated into industry-level systems by HRL Laboratories. It was also

tested by multiple companies and research laboratories. In particular, it was fully

implemented as an ASIC, 45nm, IBM technology (86).

Contribution (3) also served as the technological basis for another company called

1 http://www.madbits.com
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TeraDeep 1, which focuses on building high-performance hardware for deep-learning

based applications.

There are several extensions and future directions that shouwld follow this thesis.

Contribution (1) can easily be extended to work on all sorts of other modalities:

video, speech, music. . . The idea of a coarse-to-fine, or simply multiscale representation

with weight-sharing is fairly generic, and can be seen as a powerful regularizer that

exploits the fact that all these signals can be generated at arbitrary scales, such that

features benefit from being learned and extracted at multiple scales. Next, a more

unsupervised approach to feature learning could potentially help produce more generic

features, by exploiting much larger amounts of unlabeled data (obtaining labeled data

for semantic segmentation tasks is very expensive). This was largely unexplored dur-

ing this thesis, mostly because the current benefits of unsupervised pre-training are

still negligible, when compared to the gains obtained with a better model architecture

and/or increased amounts of labeled data.

Contribution (2) can also naturally be applied to other modalities, and in particular

can easily be extended to video data. To do so, the segmentation tree must simply be

constructed on volumes of pixels (by constructing a graph over pixels in space and

time). Couprie et al. (26) proposed a causal graph-based video segmentation which is

perfectly fit for this type of task, and has the benefit of being causal (which means it

can be used to process real-time video streams).

Contribution (3) was mostly limited by in-chip memory at the time of this thesis.

The greatest gains will be achieved by migrating most of the off-chip storage to in-chip,

distributed memory, which will enable one to two orders of magnitude improvement in

both power consumption and processing speed. In a foreseeable future, generic, pro-

grammable, and self-contained circuits will be added to industry-standard processors,

especially mobile ones, to enable efficient computations of basic deep network opera-

tors. This will enable a wide range of recognition applications to be embedded in cheap

mobile devices.

1 http://www.teradeep.com
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