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Abstract

In the avionics industry, Automatic Code Generators (ACG) are increasingly
used to produce parts of embedded software automatically from model-based spec-
ifications. Since the generated code is part of critical software that can endanger
human lives, safety standards require an extensive and thorough verification of
ACGs called qualification. In this thesis in collaboration with AdaCore, we investi-
gate the testing of ACGs which is a major aspect of qualification, with the objective
of reducing the effort required by testing activities while maintaining a high error
detection capability necessary for qualification.

In a first part of this work, we investigate the aspect of the exhaustiveness of
test data which is typically ensured by unit testing techniques. Acknowledging
the practical difficulties in applying unit testing in code generation chains, we pro-
pose a methodology aiming at ensuring the high exhaustiveness of unit testing,
but using only integration tests which are easier to carry out. To this end, we as-
sume that the ACG is specified in the ATL model transformation language, and
propose first a translation of ATL to the theory of Algebraic Graph Transforma-
tions (AGT). Relying on existing theoretical results in AGT, we define a translation
of postconditions expressing the exhaustiveness of unit testing into equivalent
preconditions on the input of the ACG. This translation is based on the construc-
tion of weakest liberal preconditions (wlp) that we extend and refine to our context of
ATL transformations. The preconditions thus constructed allow the production of
integration tests that ensure the same level of exhaustiveness as unit tests. We pro-
vide formal definitions and proofs of our extensions of the AGT theory, along with
simplification strategies to optimise the highly complex implementation of our
analysis. Finally, an experimental validation of our proposals is carried out with
a focus on the assessment of the effectiveness of our simplification strategies. The
contributions of this part of the thesis are available in the form of an Open Source
tool called ATLAnalyser1.

The second part of the research investigates the oracles of the integration tests of
an ACG, i.e. the means of validating the code generated by a test execution. Given
the large number of tests required by qualification, we seek automatic test ora-
cles capable of verifying the validity of the code generated by a test execution. To
this end, we propose a language for the specification of simple textual constraints

1ATLAnalyser, https://github.com/eliericha/atlanalyser
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defining the expected patterns of source code. We can then validate the result of
a test automatically by checking the conformance of the generated code with the
expected patterns. This approach is experimentally assessed on a real Simulink® to
Ada/C code generator called QGen2 developed at AdaCore.

Keywords: qualification, automatic code generation, analysis of model transforma-
tions, testing, ATL, OCL, algebraic graph transformation, nested graph conditions,
weakest precondition, model-to-text test oracles

2QGen, http://www.adacore.com/qgen
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Résumé

Dans l’industrie de l’avionique, les générateurs automatiques de code (GAC) sont
de plus en plus utilisés pour produire automatiquement des parties du logiciel em-
barqué à partir d’une spécification sous forme de modèle. Puisque le code généré
fait partie d’un logiciel critique dont dépendent des vies humaines, les standards de
sûreté exigent une vérification extensive et approfondie du GAC: la qualification.
Dans cette thèse en collaboration avec AdaCore, nous abordons la problématique
du test des GACs qui est un point clé de leur qualification, et nous cherchons des
moyens de réduire l’effort exorbitant des activités de test tout en assurant le niveau
élevé de détection d’erreurs nécessaire à la qualification.

Dans un premier volet de cette thèse, nous abordons le sujet de l’exhaustivité
des données de test qui est habituellement assurée par le test unitaire du GAC.
Vu la difficulté de mise en œuvre du test unitaire pour les GACs, nous proposons
une méthodologie visant à garantir le niveau d’exhaustivité du test unitaire en
n’utilisant que des données de test d’intégration qui sont plus faciles à produire
et à maintenir. Pour cela nous supposons que le GAC est spécifié dans le langage
de transformation de modèles ATL, et nous proposons une traduction de ATL
vers la théorie des Transformations Algébriques de Graphes (AGT). En se bas-
ant sur des résultats théoriques existants en AGT, nous définissons une traduction
de postconditions exprimant l’exhaustivité du test unitaire en des préconditions
équivalentes sur l’entrée du GAC. Cette traduction se base sur la construction du
weakest liberal precondition (wlp) que nous augmentons et adaptons à nos besoins
dans le contexte ATL. Les préconditions ainsi construites permettent à terme la
production de tests d’intégration qui assurent le même niveau d’exhaustivité que
le test unitaire. Nous fournissons les définitions et les preuves formelles de nos
extensions de la théorie AGT, ainsi que des stratégies de simplification visant
à optimiser l’algorithme fortement complexe de notre analyse. Enfin, une vali-
dation expérimentale de nos propositions est effectuée avec une attention partic-
ulière à l’évaluation de l’efficacité de nos stratégies de simplification. L’ensemble
de nos contributions est disponible sous forme d’un outil Open Source appelé
ATLAnalyser3.

Le second volet du travail concerne les oracles des tests d’intégration, c’est à dire
le moyen de valider le code généré par le GAC lors d’un test. Etant donné le grand
nombre de tests nécessaires à la qualification, nous cherchons des oracles automa-
tiques de test capables de vérifier la validité du code généré lors d’un test. Nous
proposons ainsi un langage de spécification de contraintes textuelles simples ex-

3ATLAnalyser, https://github.com/eliericha/atlanalyser
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primant les patrons de code source attendus. Nous pouvons alors valider automa-
tiquement le résultat d’un test en vérifiant la conformité du code généré avec les
patrons attendus. Cette approche est déployée expérimentalement à AdaCore dans
le cadre de la qualification de QGen4, un générateur de code Ada/C à partir de
modèles Simulink®.

Mots-clés: qualification, génération automatique de code, analyses de transforma-
tions de modèles, test, ATL, OCL, transformations algébriques de graphes, nested
graph conditions, weakest precondition, oracles de tests model-to-text

4QGen, http://www.adacore.com/qgen
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1 Contexte

1.1 Certification de Systèmes Critiques et Qualification d’Outils

Les logiciels embarqués dans les avions, les trains ou les voitures sont dit critiques
en raison des conséquences catastrophiques que peut engendrer leur défaillance.
Etant donné l’enjeu important, les logiciels critiques sont soumis à des standards
de sureté stricts tel que le standard de certification DO−178C dans le domaine de
l’avionique. Ce standard règlemente tous les aspects du développement du logi-
ciel tel que la planification, l’organisation, le développement et la vérification. Par
conséquent, le développement de logiciels critiques certifiés est extrêmement cou-
teux, notamment en raison des vérifications poussées requises sur l’ensemble des
artéfacts de développement.

Etant donné le coût élevé de la vérification, les industriels cherchent à éliminer
certaines activités de vérification portant sur le code source en utilisant des Généra-
teurs Automatiques de Code (GACs) et en montrant que ceux-ci produisent du
code source présentant par construction les propriétés de correction désirées. Cela
est possible lorsque le GAC est lui-même développé conformément au standard de
qualification d’outils DO−330.

La qualification d’un GAC est aussi rigoureuse et couteuse que la certification
d’un logiciel critique embarqué. Cependant le coût élevé de la qualification est
compensé par l’utilisation de l’outil à plusieurs reprises durant le cycle de vie du
système critique, notamment durant la phase de maintenance. Ainsi à chaque util-
isation du GAC, les vérifications évitées grâce à la qualification représentent un
retour sur l’investissement initial dans la qualification de l’outil. Pour cette rai-
son la qualification d’outils est un sujet de recherche très actif dans les milieux
académique et industriel des systèmes critiques aujourd’hui.

Les fournisseurs d’outils tel que le partenaire industriel de cette thèse, AdaCore,
doivent adopter des méthodologies efficaces de développement et de vérification
des GACs de sorte à pouvoir proposer aux constructeurs de systèmes critiques
des outils qualifiés rentables. Cette thèse se concentre en particulier sur les as-
pects de test des GACs qui s’avère être très couteux en raison des critères élevés
d’exhaustivité et de couverture requis par le standard de qualification.

2 © 2016 Elie RICHA



2. Etat de l’Art

1.2 Chaines de Transformations de Modèles et Génération de Code

Dans le contexte industriel de cette thèse, nous nous intéressons en particulier au
générateur de code QGen5 développé par AdaCore. QGen prend en entrée des
modèles Simulink®6 et génère du code C ou Ada, selon le choix de l’utilisateur.
Comme beaucoup d’outils manipulant des modèles, QGen est implémenté sous
forme d’une chaine de transformations de modèles. Ainsi le travail de cette thèse porte
sur les problématiques de test des chaines de transformation de modèles. La section
suivante rappelle les principaux résultats existant autour de ce sujet, notamment la
méthodologie générale typiquement adoptée dans l’état de l’art pour le test des
transformations de modèles.

2 Etat de l’Art

De nombreux travaux existants traitent de la vérification de transformations de
modèles, notamment par le test. L’analyse de ces travaux nous a mené à extraire un
même processus sous-jacent commun à la majorité des approches de test existantes.

La première partie du processus est la sélection d’un critère d’adéquation, illus-
tré dans la Figure 1. Ce critère peut prendre en entrée une variété de sources
d’information telles que le métamodèle d’entrée de la transformation, sa spécifi-
cation, ou même son implémentation dans certains cas. Les critères d’adéquation
proposés par les différentes approches de test existantes diffèrent dans le choix
des sources d’information et dans la manière dont les informations sont combinées
[Fleurey et al., 2004; Brottier et al., 2006; Fleurey et al., 2007; Mottu et al., 2012;
Sen et al., 2009; Guerra, 2012; Guerra and Soeken, 2015; González and Cabot, 2012;
González and Cabot, 2014]. Bien que des terminologies différentes sont employées,
le rôle d’un critère d’adéquation est toujours de générer un ensemble de contraintes
que nous désignons par exigences de test (test requirements). Les exigences de test
visent à partitionner le domaine d’entrée de la transformation: chaque exigence de
test définit un sous-ensemble du domaine d’entrée. Afin d’assurer l’exhaustivité
au sens du critère d’adéquation choisi, il faut donc s’assurer que chaque exigence
de test (càd chaque contrainte) soit satisfaite au moins une fois durant la campagne
de test.

Dans la deuxième partie du processus, l’ensemble des exigences de test obtenu
peut être utilisé de deux manière. Si l’on dispose déjà d’un ensemble de modèles de
test existants, nous pouvons évaluer le nombre d’exigences de test satisfaites par

5QGen, http://www.adacore.com/qgen
6Simulink, http://www.mathworks.com/products/simulink
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cet ensemble et déterminer ainsi un score d’adéquation. Si l’on ne dispose pas déjà
d’un ensemble de modèles de test, nous pouvons donner l’ensemble d’exigences
de test en entrée à un processus de génération automatique de modèles afin de pro-
duire un ensemble de modèles qui satisfait toutes les exigences de test par construc-
tion. Plusieurs approches proposent déjà des techniques de génération de modèles
[Brottier et al., 2006], dont les plus récentes et les plus prometteuses repose sur des
solveurs SAT ou SMT de contraintes [Sen et al., 2008; Sen et al., 2009; Sen et al., 2012;
Mottu et al., 2012; Guerra, 2012; Guerra and Soeken, 2015; Aranega et al., 2014].

Test Adequacy 
Criterion

Transformation 
Specification 
(black-box)

Transformation 
Implementation 

(white-box)

Input Metamodel 
(black-box)

Test 
Requirements

Assessment of 
Test Set

Set of 
Test Models Adequacy 

Score

Model 
Generation

trj

Mi

Set of 
Test Models

Mi

Tester Knowledge

Figure 1: Processus générique du critère d’adéquation et de la génération de tests

Enfin, la dernière partie du processus de test concerne la validation des résultats
de test par un oracle de test. Comme illustré par la Figure 2, le rôle d’un oracle de test
est de décider si le résultat d’un test est un succès (PASS) ou un échec (FAIL). Divers
types d’oracles sont proposés dans l’état de l’art [Mottu et al., 2008] et diffèrent par
le type d’information utilisé pour valider la sortie d’un test. Les oracles simples
consistent par exemple à comparer la sortie de chaque test avec un résultat attendu
validé manuellement au préalable. Cependant les oracles les plus intéressants sont
ceux qui reposent sur une spécification sous forme de contraintes exprimant les car-
actéristiques que doit exhiber la sortie du test en relation avec les caractéristiques de
ses entrées (i.e. un contrat) [Cariou et al., 2004; Guerra et al., 2010; Cariou et al., 2009;
Guerra et al., 2013; Guerra and Soeken, 2015].

3 Problématique

Après avoir présenté les aspects principaux du test des GACs et un aperçu des
techniques de test existantes, nous identifions à présent deux problèmes précis qui
sont traités dans le cadre de ce travail.
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Test 
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Transformation 

Under Test

Test 
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Figure 2: Processus générique des oracles de test

3.1 Test Unitaire et Test d’Intégration des Chaines de Transformations
de Modèles

3.1.1 Test Unitaire et Test d’Intégration

La qualification requiert deux genres de vérification: le test unitaire et le test
d’intégration. Le test unitaire considère chaque composant de l’outil indépendam-
ment du reste et vise à vérifier la bonne implémentation de ses fonctionnalités. En
revanche le test d’intégration considère l’outil en entier et cherche à vérifier le bon
fonctionnement de l’outil de bout en bout. Pour un GAC ayant l’architecture illus-
trée dans la figure 3, un composant de l’outil est une étape de transformation Ti.
Le test unitaire consiste alors à produire des modèles de test Mi,j dans le langage
intermédiaire MMi, à exécuter Ti sur ces modèles de test, et à valider les modèles
de sortie Mi+1,j par un oracle adéquat. Par ailleurs, le test d’intégration s’intéresse
à la chaine complète et consiste à produire des modèles de test M0,j dans le langage
d’entrée MM0 de la chaine, à exécuter la chaine complète, et à valider le résultat
final MN,j par un oracle adéquat.

Bien que les deux sortes de tests sont requis par les standards de qualification,
nous observons en réalité que le test d’intégration est largement préféré par rapport
au test unitaire. Pour des projets tels que le générateur de code QGen développé à
AdaCore ou le compilateur GCC qui présente une architecture en chaine similaire,
nous observons que la vaste majorité des tests sont des tests d’intégration alors que
les tests unitaires sont presque inexistants. Cette observation est aussi confirmée
par des travaux existants [Stuermer et al., 2007] qui soulignent la difficulté de mise
en œuvre du test unitaire pour les GACs.
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Unit TestingInput Output

Integration Testing
Input Output

M0 Ti−1 TiMi Mi+1 MN. . . . . .Ti+1

Figure 3: Test unitaire et test d’intégration d’une chaine de transformation de mod-
èles

Ces observations s’expliquent par le fait que le test unitaire nécessite des don-
nées de test développées dans les langages intermédiaires de la chaine. Ces lan-
gages internes sont typiquement très complexes et ne disposent pas d’outils d’édition
et de visualisation dédiés (étant internes à l’outil), ce qui rend la production manuelle
des données de test difficile. Bien qu’une production automatique soit possible
grâce à plusieurs travaux existants [Sen et al., 2008; Sen et al., 2009; Sen et al., 2012;
Mottu et al., 2012; Guerra, 2012; Guerra and Soeken, 2015; Aranega et al., 2014], elle
résulte souvent en un très grand nombre de tests dont la maintenance reste problé-
matique. En effet les langages internes de l’outil peuvent évoluer au cours du cycle
de développement et l’identification des données de test affectées et leur mise à
jour n’est pas triviale.

En revanche, les tests d’intégration sont avantageux car ils utilisent des données
de test exprimées dans le langage d’entrée de la chaine. Ce langage, qui est celui
employé par les utilisateurs de l’outil, est ainsi plus simple et propose un niveau
d’abstraction élevé. Il s’agit souvent d’un langage stable qui évolue peu et qui
dispose d’un bon éditeur. L’ensemble de ces aspects facilitent donc la production
et la maintenance des tests d’intégration. Il serait donc souhaitable de n’utiliser que
des tests d’intégration pour la vérification des GACs.

Cependant le test unitaire joue un rôle très important dans la qualification de
l’outil et ne peut être simplement évité. En effet, il permet de cibler des fonctionnal-
ités précises de chaque composant et d’atteindre ainsi l’exhaustivité élevée requise
par les standards de qualification. Se pose alors la question suivante: comment
peut on assurer le même niveau d’exhaustivité que le test unitaire en n’utilisant
que des tests d’intégration?

3.1.2 Assurer l’Exhaustivité du Test Unitaire par le Test d’Intégration

En s’inspirant des travaux de [Bauer et al., 2011], nous proposons d’assurer
l’exhaustivité du test unitaire en n’utilisant que des tests d’intégrations. Nous il-
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lustrons cela pour une chaine de 3 transformations T0, T1 et T2. Nous considérons
tout d’abord chaque transformations séparément, et nous appliquons les méthodes
traditionnelles de sélection de critère d’adéquation et production d’un ensemble
d’exigences de test unitaire. Nous désignons par tri,j l’exigence de test j de la trans-
formation Ti. Nous supposons que cette étape produit 3 exigences de test pour
T0, 2 exigences de test pour T1 et 2 exigences de test pour T2 qui sont regroupées
dans le Tableau 1. Ensuite, en considérant toujours chaque transformation séparé-
ment, nous appliquons les méthodes traditionnelles de sélection d’oracles de tests
unitaires, et nous supposons que nous sommes capables de spécifier un oracle au-
tomatique toi pour chaque transformation Ti. Chaque oracle toi est une contrainte
sur l’entrée et la sortie de Ti permettant de valider la bonne exécution de la trans-
formation.

Test Requirements and Oracles

Integration
Test Models

T0 T1 T2

tr0,0 tr0,1 tr0,2 to0 tr1,0 tr1,1 to1 tr2,0 tr2,1 to2

M0,0 T F F T F T T F F T

M0,1 F T F T T F T T F T

M0,2 F F T T F T T F T T

Table 1: Tests d’intégration assurant l’exhaustivité du test unitaire

A présent, au lieu de procéder avec des techniques classiques de génération de
modèles de test unitaire, nous considérons plutôt un ensemble de modèles de test
d’intégration que nous supposons exister déjà. Il s’agit des modèles M0,0, M0,1 et
M0,2 du Tableau 1. Nous exécutons alors la chaine complète sur chaque modèle de
test d’intégration M0,k et nous procédons comme suit:

1. Avant l’exécution de chaque transformation Ti nous évaluons toutes ses exi-
gences de test unitaire tri,j sur les modèles intermédiaires Mi,k et nous sauveg-
ardons les résultats d’évaluation dans le tables 1 où “T” indique la satisfaction
de l’exigence de test et “F” indique le contraire.

2. Après l’exécution de chaque transformation Ti nous évaluons son oracle de
test toi afin de valider l’exécution de chaque étape.

Par ce procédé nous pouvons constater dans le tableau 1 que toutes les exigences
de test unitaires ont été satisfaites en n’utilisant que des tests d’intégration.

Cependant que se passe-t-il lorsque nous détectons une exigence de test unitaire
qui n’est jamais satisfaite durant la campagne de test? Ce scénario est illustré dans
le Tableau 2. Il faudrait dans ce cas produire un nouveau test d’intégration qui
mènerait à la satisfaction de l’exigence de test unitaire. L’approche de [Bauer et al.,
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2011] à la base de notre méthode de test ne propose pas de moyen de production de
ce nouveau test d’intégration. Nous arrivons ainsi au problème central traité dans
cette thèse: Comment produire a nouveau test d’intégration pour couvrir une exigence de
test unitaire non-satisfaite?.

Test Requirements and Oracles

Integration
Test Models

T0 T1 T2

tr0,0 tr0,1 tr0,2 to0 tr1,0 tr1,1 to1 tr2,0 tr2,1 to2

M0,0 T F F T F T T F F T

M0,4 F T F T F F T T F T

M0,2 F F T T F T T F T T

Table 2: Identification d’exigences de test non-satisfaites

3.1.3 Problème: Production de Modèles de Test d’Intégration pour Couvrir des
Exigences de Test Unitaire

Le problème identifié est illustré par la Figure 4: Etant donné une exigence de
test tri,j non-satisfaite, comment produire un modèle de test d’intégration M0 qui
mènerait à la satisfaction de l’exigence de test? Nous explorons dans ce qui suit des
pistes de solutions existantes de l’état de l’art et nous expliquons pourquoi elles ne
sont pas satisfaisantes.

Figure 4: Satisfaction des exigences de test unitaire

Une première piste illustrée par la flèche 1 de la Figure 5 consiste à considérer
le problème comme un Problème de Satisfaction de Contrainte (CSP). Nous pouvons
alors appliquer un solveur de contraintes (SAT ou SMT) pour obtenir un modèle
Mi satisfaisant. Cependant il s’agit d’un modèle dans un langage intermédiaire
de la chaine or nous cherchons un modèle dans le langage d’entrée de la chaine.
D’autres approches de l’état de l’art permettent d’inclure dans le CSP la définition
des transformations précédentes Ti−1 ◦ · · · ◦ T1 ◦ T0 à travers la notion du trans-
formation model [Büttner et al., 2012b] ce qui permet en théorie (flèche 3) d’obtenir
le modèle M0 recherché. Cependant le CSP devient dans ce trop complexe et les
solveurs de contraintes rencontrent alors des problèmes de passage à l’échelle.
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Mi�1 MiTi�1 Ti
. . .. . . Ti�2M0

Solver
Solver

tri,j

12
3

??. . . 4

Figure 5: Solutions existantes de génération de modèles

Nous recherchons plutôt une solution itérative illustrée par la flèche 4. Cette
solution nécessite de développer une analyse qui prenne en entrée une contrainte et
qui produise en sortie une contrainte également, de manière à permettre un traite-
ment itératif, étape par étape, du problème. Par une telle analyse nous pourrions
traduire l’exigence de test non-satisfaite étape par étape en amont le long de la
chaine, jusqu’à une contrainte équivalente au niveau du langage d’entrée de la
chaine. Là, les approaches classiques de génération de modèles peuvent fournir
le modèle M0 recherché. Ainsi le premier problème traité par cette thèse est for-
mulé de la manière suivante:

Traduction d’une exigence de test non-satisfaite, en arrière le long d’une chaine de
transformations de modèle, en une contrainte équivalente sur le langage d’entrée de la

chaine.

Après cette première partie où nous avons cherché à couvrir les exigences de
test unitaire à l’aide de tests d’intégration, nous allons nous intéresser en seconde
partie aux oracles de ces tests d’intégration.

3.2 Oracles de Test des Transformations Model-to-Code

Dans la partie précédente nous avons proposé une approche de test basée sur
l’exécution de tests d’intégration exclusivement. A présent nous nous intéressons
aux oracles de ces tests, c’est à dire le moyen de décider si le résultat d’un test est un
succès ou un échec. Un test d’intégration considère l’outil testé comme une boite
noire, c’est à dire que l’entrée du test est un modèle de test et la sortie est le Code
Source (CS) généré automatiquement. L’oracle d’un tel test devra inspecter l’entrée
et la sortie du test, et valider si le code source généré implémente correctement la
sémantique du modèle d’entrée.

Figure about integration test oracle

Figure 6: Oracle d’un test d’intégration
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Lorsque l’on cherche à valider le CS il faut s’intéresser à deux aspects: la syntaxe
du CS, c’est à dire sa structure, et la sémantique du CS, c’est à dire son comportement
à l’exécution. Ayant constaté que la validation sémantique du CS est déjà traitée
de manière satisfaisante par l’état de l’art [Sturmer and Conrad, 2003; Stuermer et
al., 2007], nous choisissons de nous concentrer sur la validation syntaxique du CS.
Nous avons là aussi deux moyens de considérer la structure du CS:

1. Considérer le CS sous la forme de son arbre de syntaxe abstraite.

2. Considérer le CS sous la forme de sa syntaxe concrète textuelle.

Nous choisissons de considérer le CS sous la forme de sa syntaxe concrète pour
la raison suivante. Dans le contexte de qualification les oracles de test doivent
nécessairement se baser sur une spécification précises des exigences de l’outil. Ces
exigences font partie des documents de qualification présentés aux autorités de
certifications et validés par celles ci. Il est donc judicieux d’adopter une notation
simple et facile à comprendre par un large éventail de profils de personnes. Dans
ce contexte la forme textuelle du CS est plus connue et plus facile à comprendre
que la forme en arbre de syntaxe abstraite qui est habituellement connue par les
spécialistes de compilation. C’est donc pour cette raison que nous choisissons de
construire nos oracles de tests de manière à valider le CS sous sa forme textuelle.

Une conséquence de ce choix est que le générateur de code testé devient une
transformation Model-to-Text: il prend en entrée un modèle et produit en sortie
des artefacts textuels dont nous cherchons à valider le contenu. L’état de l’art con-
tient peu de travaux concernant la spécification d’oracles de test de transformations
Model-to-Text [Wimmer and Burgueño, 2013], ce qui nous a poussé à traiter ce
problème dans le contexte particulier de la qualification de générateurs de codes à
AdaCore. Ainsi le second problème traité dans cette thèse est formulé de la manière
suivante:

Proposer une approche de spécification d’oracles de tests de générateurs de code qui se
focalise sur la syntaxe textuelle du code généré.

Nous avons ainsi défini les deux problèmes traités dans cette thèse. Le pre-
mier problème concerne la traduction d’exigences de test unitaire non-satisfaites en
contraintes équivalentes sur le langage d’entrée d’une chaine de transformations,
le but étant d’assurer une exhaustivité équivalente au test unitaire en n’utilisant
que des tests d’intégration. Le second problème s’intéresse aux oracles de ces tests
d’intégration et consiste à proposer une approche de spécification d’oracles qui
valident la syntaxe textuelle du code généré lors d’un test. Nous présentons dans
la suite les solutions que nous proposons pour résoudre ces problèmes.
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4 Contributions

4.1 Traduction Arrière des Exigences de Test Unitaire

4.1.1 Principe Général

Dans la première partie de la thèse nous avons démontré qu’il est possible de
couvrir les exigences de test unitaire à l’aide de tests d’intégration, et nous nous
sommes concentré sur le problème de la production de nouveaux tests d’intégration
ciblant la couverture d’exigences de test non-satisfaites. Nous avons ensuite con-
clu qu’il était nécessaire de traduire une exigence de test unitaire non-satisfaite
d’une étape intermédiaire de la chaine en une contrainte équivalente sur le lan-
gage d’entrée de la chaine, ce qui permettrait la production d’un nouveau test
d’intégration. Pour réaliser cette traduction arrière, nous proposons l’approche
illustrée par la Figure 7. Etant donné une exigence de test unitaire non-satisfaite
tri,j de l’étape Ti, nous proposons de considérer tri,j comme une postcondition de
l’étape précédente Ti−1. Nous définissons alors une construction que nous ap-
pelons Post2Pre qui transforme la postcondition en une précondition équivalente
garantissant la satisfaction de la postcondition. Nous appelons cette précondition
etri,j,i−1 l’exigence de test équivalente de tri,j à l’étape Ti−1.

La précondition étant elle aussi une contrainte, nous pouvons à nouveau la con-
sidérer comme une postcondition de l’étape précédente, et répéter ainsi le même
raisonnement pour toutes les étapes précédentes jusqu’à obtenir une exigence de
test etri,j,0 sur le langage d’entrée de la chaine. Un nouveau modèle de test M0 sat-
isfaisant etri,j,0 peut alors être produit automatiquement à l’aide de techniques exis-
tantes de génération de tests. Etant donné que chaque application de Post2Pre pro-
duit une précondition garantissant la satisfaction de la postcondition, nous avons
la certitude que le nouveau modèle de test M0 aboutit à la satisfaction de l’exigence
de test de départ tri,j lors de l’exécution du test, ce qui résout ainsi le problème
initial.

4.1.2 Réalisation à l’aide de la Théorie des Transformations Algébriques de
Graphes

Dans notre recherche des moyens de définir la construction Post2Pre nous nous
sommes intéressé aux notions de postcondition et de précondition introduites dans
[Hoare, 1969] comme un outil pour la preuve de correction de programmes. Ces
notions définies initialement pour des programmes impératifs classiques similaires
à C et Java ont par la suite été réutilisés dans [Habel et al., 2006a] et [Poskitt, 2013]
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M0 Ti−2 Ti−1Mi−1 Mi. . . Ti . . .

tri,jetri,j,i−1 Post2PrePost2Pre. . .etri,j,0

Model 
Generation

Figure 7: Traduction arrière étape par étape des exigences de test

pour la preuve de correction de programmes transformant des graphes dans le con-
texte de la théorie des Transformations Algébriques de Graphes (AGT). En particulier,
des travaux existants ont proposé la construction de la plus faible précondition ou
weakest precondition (wp) comme un moyen de traduire une postcondition d req-
uise en sortie d’une transformation de graphes P, en une précondition wp(P, d)
à l’entrée de P qui garantit la satisfaction de la postcondition. Comme les trans-
formations de modèles s’apparentent beaucoup à des transformations de graphes,
et puisque la construction du wp fournit les propriétés que nous cherchons, nous
avons trouvé judicieux de baser notre solution sur cette théorie.

Cependant comme la théorie AGT n’est pas adaptée au développement de généra-
teurs de code en contexte industriel, nous avons opté pour le langage ATL [Jouault
and Kurtev, 2006] pour la spécification des transformations de modèles de la chaine,
et OCL [OMG, 2014] pour la spécification des exigences de test à satisfaire. Dans
certains contextes ATL est utilisé pour implémenter des outils de génération de
code pour des systèmes embarqués critiques [Cadoret et al., 2012] ce qui justifie
davantage notre choix.

Comme illustré par la Figure 8, notre solution consiste alors à transposer le prob-
lème dans la théorie AGT. Une première étape ATL2AGT traduit la transformation
de modèle ATL en un transformation de graphes AGT. Ensuite, l’étape OCL2NGC
traduit l’exigence de test OCL à satisfaire en une contrainte équivalente sous forme
de Nested Graph Constraints (NGC) dans la théorie AGT. Enfin, l’étape Post2Pre con-
sidère la contrainte NGC comme une postcondition de la transformation de graphe,
et la traduit en une précondition équivalente. Post2Pre sera basée sur les principes
de la construction wp enrichie par des constructions supplémentaires qui seront
détaillée par la suite.

Dans la suite nous donnons un aperçu des différentes parties de notre solution
en identifiant les contributions apportées dans chacune.
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Figure 8: Traduction en AGT et traduction arrière des exigences de test avec
Post2Pre

4.1.3 Traductions ATL et OCL vers AGT – ATL2AGT et OCL2NGC

Nous proposons tout d’abord une traduction du sous ensemble déclaratif d’ATL
vers le formalisme théorique AGT. La difficulté principale de ce travail réside dans
le support des mécanismes de résolution (default and non-default resolve mechanisms)
d’ATL qui n’ont pas d’équivalent dans la sémantique AGT. Les mécanismes de ré-
solutions permettent à chaque règle de transformation ATL de référencer des objets
créés par d’autres règles lors de la création de références entre les objets constitu-
ant le modèle de sortie. L’un des cas d’utilisation les plus intéressants est celui où
une règle R1 référence des objets créés par une règle R2, et vice versa R2 référence
des objets créés par R2. En revanche la sémantique AGT ne fournit pas ce genre de
mécanismes et le seul moyen pour une règle AGT ρ1 de référencer des objets créés
par une règle ρ2 est en ordonnançant ρ2 avant ρ1 lors de l’exécution de la transfor-
mation. Cela complexifie le support du scénario du référencement mutuel de deux
règles.

Schéma général de la traduction Nous résolvons ce problème en traduisant une
transformation ATL en une transformation AGT organisée en deux phases succes-
sives:

1. La phase d’instanciation se compose de règles d’instanciations AGT qui créent les
objets du modèle de sortie sans les connecter. Ces règles créent également des
objets de trace qui lient les éléments d’entrée de chaque règle aux éléments de
sortie. Ainsi chaque règle ATL se traduit en une règle d’instanciation AGT.

2. La phase de résolution se compose de règles de résolution AGT qui créent des
liens entre les objets du modèle de sortie et qui initialisent leurs attributs.
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Ces règles se basent sur les objets de trace créés par la première phase afin
d’émuler les mécanismes de résolution de ATL. Ainsi, chaque affectation
d’attribut ou de référence (une binding) dans une règle ATL se traduit en une
(ou plusieurs) règle(s) de résolution.

En construisant la transformation résultante de cette manière, notre traduction
transpose une transformation ATL en une transformation AGT équivalente à l’exécution
qui prend en charge les mécanismes de résolution conformément à la sémantique
ATL. Cette première contribution de notre travail constitue une formalisation de
la sémantique ATL à l’aide de la théorie AGT. Cette formalisation nous permettra
dans un second temps de mettre en œuvre l’analyse Post2Pre portant sur les con-
traintes de transformation, mais elle pourrait être exploitée au delà du contexte de
cette thèse pour l’analyse formelle de transformations ATL à l’aide du formalisme
AGT.

1 rule R1 {
2 from s : IN!A
3 (s.refB->exists(b | b.name = ’Hodor’))
4 to t1 : OUT!D
5 (name <- s.name + ’1’,
6 refD <- t2,
7 refE <- s.refB),
8 t2 : OUT!D
9 (name <- s.name + ’2’) }

10
11
12
13 rule R2 {
14 from s : IN!B
15 to t : OUT!E
16 (refD <- thisModule.resolveTemp(s.refA, ’t2’) ) }

Figure 9: Exemple de transformation ATL

Par exemple, la transformation ATL de la Figure 9 est traduite par notre ap-
proche en la transformation AGT suivante:

TAGT =R1Inst ↓; R2Inst ↓; R1t1,name
Res ↓; R1t1,refD

Res ↓; R1t1,refE
Res ↓; R1t2,name

Res ↓; R2t,refD
Res ↓

où les règles R1Inst et R1t1,refE
Res sont représentées graphiquement dans la Figure 10.

Traitement des expressions OCL et préservation de l’ordre Une seconde contri-
bution de notre travail concerne la traduction des expressions OCL utilisées dans
les règles de transformation ATL en des Nested Graph Conditions (NGC) équiva-
lentes jouant le rôle de conditions d’application des règles d’instantiation de de
résolution AGT. Pour cette partie du travail, nous nous sommes basés sur des
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Figure 10: Règle d’instantiation R1Inst et règle de résolution R1t1,refE
Res

travaux existants de traduction de OCL vers NGC [Radke et al., 2015b]. Cependant,
constatant que les traductions existantes ne permettent pas la prise en charge des
ensembles ordonnés (OrderedSets) OCL, nous avons abordé ce problème en parti-
culier. Notre contribution fut alors de compléter les traductions existantes par des
éléments supplémentaires assurant le respect de l’ordre des objets d’un ensemble
ordonné lors de leur traitement.

Ces deux premières contributions relatives à la traduction d’ATL et de OCL vers
la théorie AGT ont fait l’objet d’une publication [Richa et al., 2015] qui a reçu le Prix
du Meilleur Article à la conférence internationale ICMT’15.

4.1.4 Traduction des Postconditions en Préconditions – Post2Pre

Ayant définit la traduction des transformations ATL et des contraintes OCL vers
la théorie AGT, nous passons à la définition de la traduction d’une postcondition
en une précondition équivalente. Pour cela nous nous sommes basés sur les déf-
initions relatives à la construction weakest precondition (wp) [Radke et al., 2015a;
Ehrig et al., 2012a; Habel et al., 2006a], en particulier à la construction weakest liberal
precondition (wlp) de la plus faible précondition libérale, afin de définir l’analyse
Post2Pre dont nous avons besoin.

La première difficulté de ce travail est que pour les transformations de graphes
que nous traitons (celles correspondant à des transformations ATL) la construc-
tion wlp est théoriquement infinie. C’est pourquoi nous proposons une version
bornée de cette construction qui conserve des propriétés similaires au wlp. Pour
ce faire, nous introduisons un nouveau concept théorique de l’itération bornée pour
lequel nous définissons une construction wlp bornée et nous prouvons formelle-
ment ses propriétés. En analysant alors une version bornée de la transformation,
nous obtenons une construction wlp bornée qui fournit les propriétés désirées.
Cependant le résultat d’une telle analyse est uniquement applicable à la version
bornée et non plus à la transformation d’origine. C’est pourquoi nous définis-
sons une nouvelle construction appelée scopedWlp qui ajoute au wlp une condition
supplémentaire et nous prouvons formellement que scopedWlp est valable pour la
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transformation non-bornée tout en étant une construction finie. Il faut toutefois
noter qu’à la différence de wlp, scopedWlp fournit une précondition libérale qui
n’est pas la plus faible, mais qui assure les propriétés que nous recherchons.

Notre contribution fournit les définitions formelles de tous les concepts intro-
duits ainsi que les preuves formelles de leurs propriétés. Il est important de noter
que bien que ce travail soit illustré sur des transformations ATL, nos définitions et
preuves ne sont pas spécifiques à ATL et sont donc applicables à des transforma-
tions de graphes arbitraires au delà du contexte de cette thèse.

4.1.5 Stratégies de Simplification de la Construction de Préconditions

Lorsqu’on vient à implémenter les analyses que nous proposons, il faut s’attarder
sur le passage à l’échelle de ces analyses. En effet, la construction wlp se base sur
l’énumération de tous les recoupements (graph overlaps) possibles entre les graphes
constituant les règles de transformation et les graphes constituant la postcondition.
Cette énumération combinatoire a une complexité algorithmique très importante
que nous estimons à au moins O(2N) où N est le nombre d’éléments des graphes
composant la postcondition et les règles. Concrètement cela se manifeste par une
croissance exponentielle de la taille de la précondition au fur et à mesure que
l’analyse progresse dans le traitement des règles de transformation. Ainsi, même
pour des transformations et des postconditions de petite taille, l’analyse se termine
le plus souvent par l’épuisement de la mémoire vive après plusieurs heures de cal-
cul.

Pour atténuer la complexité élevée de wlp nous avons développé plusieurs straté-
gies de simplification de la construction qui consistent à éliminer le plus tôt possible
les recoupements qui ne contribuent pas à la satisfaction de la postcondition afin de
limiter la croissance de la précondition calculée. Pour identifier les recoupements
à éliminer nous exploitons les propriétés des transformations analysées. Par ex-
emple lorsque l’analyse porte sur des transformations ATL exogènes7 nous savons
qu’il est impossible que le modèle d’entrée de la transformation contienne des élé-
ments du métamodèle de sortie. En appliquant ce principe aux différentes règles
à analyser, nous pouvons éliminer les parties de la précondition qui contiennent
des éléments du métamodèle de sortie et empêcher l’accroissement inutile de cette
précondition. De manière similaire nous pouvons également identifier les recoupe-
ments mettant en œuvre des nœuds de trace dans des situations que nous savons
être impossibles dans la sémantique ATL.

7Une transformation est dite exogène lorsque le métamodèle d’entrée est différent du métamodèle
de sortie.
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En outre, nous proposons une version alternative du wlp basée sur une con-
struction que nous appelons Post2Le f t qui est équivalente aux constructions de
l’état de l’art mais qui permet d’appliquer les simplifications proposées dès que
possible. Cela permet d’éviter de faire une grande portion de calculs inutiles. Il est
important de noter que la construction Post2Le f t ainsi que la plupart des stratégies
que nous proposons ne sont pas spécifiques à ATL. Ainsi nos contributions pour-
raient être utiles à l’analyse de transformations AGT arbitraires au delà du contexte
de cette thèse.

Grâce aux stratégies de simplification que nous proposons, une grande partie
des exécutions qui auparavant se terminaient par l’épuisement de la mémoire ar-
rive désormais à l’aboutissement de l’analyse en moins d’une minute et fournit des
résultats. Cependant, comme le détaillera la section 5, ces gains de performance
sont observables pour des données de taille modeste, et pour des cas plus réal-
istes l’analyse retrouve son comportement exponentiel et ne fournit pas de résul-
tats utilisables. Néanmoins, nos contributions apportent des gains de performance
significatifs et élargissent les limites de calculabilité de l’analyse.

4.1.6 Outillage et Implémentation

Nous avons implémenté l’intégralité de nos contributions sous forme d’un outil
Open Source appelé ATLAnalyser8. Pour les traductions ATL2AGT et OCL2NGC,
nous avons choisi le langage Henshin comme cible de la traduction car ce langage
applique la sémantique AGT au même environnement Eclipse Modeling Frame-
work (EMF) de ATL. Cela a facilité par la suite la validation de notre approche qui
sera présentée en Section 5. L’analyse Post2Pre est également implémentée sur la
base de l’outillage Henshin et peut prendre en entrée des transformations Henshin
résultant de la traduction ATL2AGT ainsi que des transformations Henshin arbi-
traires.

Nous concluons à présent la présentation des contributions relatives à la pre-
mière partie de la thèse qui porte sur la production de nouveaux d’intégration, et
nous passons à présent à la seconde partie qui porte sur les oracles de ces tests
d’intégration.

4.2 Spécification et Oracles de Tests de Transformations Model-to-Text

4.2.1 Principe Genéral: Patrons de Spécification

Le second problème traité dans cette thèse est de concevoir une approche pour
la spécification d’oracles de tests d’intégration d’un Générateur Automatique de

8ATLAnalyser, https://github.com/eliericha/atlanalyser
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Code (GAC) visant à valider la syntaxe textuelle du code généré. Pour cela nous
proposons de spécifier le code attendu en sortie du GAC au moyen de la notion de
patrons de spécification (specification template).

Un patron de spécification décrit une portion du code généré. Il exprime une
contrainte simple de la forme suivante:

condition d’application ⇒ ∃ (patron de texte)

Concrètement, un patron de spécification prend la forme suivante:

Listing 1: Structure générale d’un patron de spécification

1 [template templateName (input0 : type0, input1 : type1 ...) ? (oclGuard)]
2 verbatim text, interleaved with [oclQueries/] between brackets,

3 %<regularExpressions>% between percent delimiters

4 and loop statements expressing repeating patterns:

5 [for ( iterator | collection )]

6 This text repeats for all elements of the collection.

7 We can use [oclQueriesInvolvingIterator] here.

8 [/for]

9 [/template]

Un patron de spécification se compose ainsi des éléments suivants:

(1) Des éléments d’entrée: un ensemble d’éléments du métamodèle d’entrée de
la transformation qui influe la portion de code à spécifier. Ces éléments sont
déclarés entre parenthèses à la première ligne de la définition du patron.

(2) Une garde: une contrainte sur les éléments d’entrée qui définit une condi-
tion d’applicabilité du patron. Cette condition est spécifiée après le symbole
?.

(3) Un patron de texte qui doit exister lorsque la garde est satisfaite: le patron
de texte est défini à l’aide de quatre types de contenu:

a. du texte verbatim (en rouge ci-dessus)

b. des requêtes OCL portant sur le modèle d’entrée, délimitées par les sym-
boles [ et /] (en noir ci-dessus)

c. des expressions regulières délimitées par les symboles %< et >% (en bleu
ci-dessus)

d. des structures de répétition (commandes [for ...][/for])

Ainsi, les éléments (1) et (2) expriment la partie condition d’application de la con-
trainte, et les éléments de (4) constituent le patron de texte de la contrainte. La spé-
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cification de la sortie attendue de l’ACG s’exprime alors sous forme d’un ensemble
de patrons définissant les portions de codes qui doivent exister dans le code généré.
Nous expliquons dans la section suivante comment comment cette spécification est
utilisée comme oracle de test.

4.2.2 Oracles de Tests

En pratique, nous utilisons le langage Acceleo [Acceleo, accessed 2015] pour ex-
primer les patrons de spécification définis dans la section précédente ce qui permet
d’obtenir une spécification exécutable. Comme illustré par la Figure 11, nous con-
sidérons un test du GAC dont l’entrée est un modèle de test et la sorte est le code
généré. Le but est donc de détérminer si le code généré est valide, c’est à dire s’il
correspond à la spécification.

Pour ce faire, les patrons de spécification sont exécutés sur le modèle de test.
Pour chaque patron de spécification dont la condition d’application est satisfaite,
les requêtes OCL et les commandes de répétition sont exécutées sur le modèle
d’entrée pour produire un pattern attendu composé de texte verbatim et d’expressions
régulières. Le résultat de l’exécution de l’ensemble des patrons de spécification est
donc un ensemble de patterns attendus, chacun décrivant une portion de code qui
doit exister dans le code généré. Nous pouvons alors déterminer la validité de la
sortie du test en recherchant la correspondance des patterns attendus dans la sortie
du test par des opérations de Match d’expressions régulières. Si tous les patterns
attendus ont une correspondance dans la sortie du test, le résultat du test est un
Succès, sinon le résultat du test est un Echec.

Deployment & ValidationApproach: Specification TemplatesProblem Statement

Expected 
Patterns

Expected 
Patterns

Automated Model-to-Text Test Oracles

41

Test Model Test  
Output

Expected 
Patterns

Automatic 
Code Generator

Executable 
Specification 

Templates
Matcher Pass/Fail

Test Oracle

Approach: Specification Templates

Figure 11: Utilisation des patrons de spécification comme oracles de tests

4.2.3 Example d’Utilisation: QGen

Nous avons appliqué notre approche de test à un générateur de code appelé
QGen [AdaCore, accessed 2015] développé par AdaCore, le partenaire industriel
de cette thèse. QGen prend en entrée des modèles Simulink et produit en sortie du
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code C et/ou Ada. Nous avons développé l’outillage nécessaire à notre approche
et nous avons spécifié le code attendu en sortie de QGen pour un sous-ensemble
du langage d’entrée Simulink à l’aide de patrons de spécification. Par example, les
trois patrons de spécification suivants définissent une partie du code généré pour
un élément d’entrée Simulink de type UnitDelay.

Listing 2: Patrons de spécification de l’élément UnitDelay

1 [template public Compute(block : Block)

2 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar())]

3 [block.OutVar()/] = [block.MemVar().Optional_Cast()/];

4 [/template]

5
6 [template public Compute(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector())]

8 for (i = 0; i <= [block.OutDataType().NumElements() - 1/]; i++) {

9 [block.OutVar().at(’i’)/] = [block.MemVar().at(’i’)/];

10 }

11 [/template]

12
13 [template public Compute(block : Block)

14 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix())]

15 for (i = 0; i <= [block.OutDataType().NumElements() - 1/]; i++) {

16 for (j = 0; j <= [block.OutDataType().NumElements() - 1/]; j++) {

17 [block.OutVar().at(’i’, ’j’)/] = [block.MemVar().at(’i’, ’j’)/];

18 }

19 }

20 [/template]

Les patrons de spécification font appels à des fonctions réutilisables telles que
Optional_Cast() qui retourne une expression régulière décrivant l’utilisation po-
tentielle d’un conversion de donnée. Cette fonction est définie de la manière suiv-
ante.

1 [template public Optional_Cast(exp : String) post (trim())]

2 %<(>%(([Any_Type()/]) [exp/])%<|>%[exp/]%<)>%

3 [/template]

4
5 [template public Any_Type(arg : OclAny) post (trim())]

6 %<(GAINT8|GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|GABOOL)>%

7 [/template]

L’utilisation des expressions régulières permet de simplifier les patrons de spé-
cification en éliminant des détails jugés non primordiaux. Par exemple le premier
patron de spécification de UnitDelay décrit l’existence d’une affectation de variable
qui comprend éventuellement une conversion de données. Cependant les condi-
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tions précises menant à l’existence de la conversion de données n’ont pas à être
explicitées car cet aspect est jugé non primordial dans cette partie de la spécifica-
tion. Ainsi, grâce aux expressions régulières nous avons pu éviter de détailler les
conditions d’occurrence de la conversion de données et nous avons obtenu une
spécification simple.

En appliquant notre approche à un sous-ensemble des éléments Simulink pris
en compte par QGen, nous avons pu obtenir des oracles de tests automatiques que
nous avons appliqués à une base de tests existante. Les résultats de cette expéri-
mentation concrète de notre approche seront présentés en Section 5.3.

5 Résultats Expérimentaux

Après avoir présenté les contributions principales de la thèse dans la section précé-
dente, nous nous attardons à présent sur la validation et l’évaluation expérimentale
des approches proposées. Pour rappel, le premier volet de la thèse a porté sur la
problématique du test unitaire et du test d’intégration d’une chaine de transforma-
tion de modèles. Afin de produire un modèle de test d’intégration étant donné une
exigence de test unitaire non-satisfaite, nous avons proposé de traduire l’exigence
de test en amont le long de la chaine jusqu’au langage d’entrée. En supposant une
spécification en ATL des transformations de la chaine, nous avons ainsi proposé
une approche en deux étapes:

1. ATL2AGT: Traduction de la transformation dans la théorie des Transforma-
tions Algébriques de Graphes (AGT)

2. Post2Pre: Traduction arrière de la contrainte exprimant l’exigence de test uni-
taire en une précondition équivalente à l’aide de la construction théorique
Weakest Liberal Precondition (wlp)

Ensuite, le second volet de la thèse s’est attardé sur les oracles de tests d’intégration
d’un Générateur Automatique de Code (GAC), la problématique étant de concevoir
un moyen de spécifier le code attendu en sortie du GAC au regard de sa structure
textuelle. Nous avons alors proposé une approche de spécification à base de patrons
de spécification décrivant les portions de code à générer. L’exécution des patrons de
spécification sur un modèle de test permet de déterminer automatiquement si la
sortie du test contient les portions de code spécifiées et constitue alors un oracle de
test automatique.

Dans les sections suivantes nous résumons la validation expérimentale des ap-
proches proposées.
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5.1 Validation de ATL2AGT

ATL2AGT traduit des transformations ATL en des transformations AGT équiva-
lentes. Pour valider notre traduction nous l’implémentons en Java et nous adop-
tons une approche de vérification par test illustrée par la Figure 12. Plusieurs
transformations ATL provenant de sources variées sont considérées lors de cette
validation. Tout d’abord chaque transformation est traduite en AGT. Ensuite un
ensemble de modèles de test est donné en entrée des deux versions ATL et AGT
de la transformation. Les modèles résultants sont comparés avec EMFCompare9.
Cette comparaison prend en compte l’ordre des éléments ce qui permet de valider
les aspects de traduction relatifs au traitement des ensembles ordonnés.

Test 

Model

ATL 

Transformation

AGT 

Transformation

Oracle 

Result

Actual 

Result

EMFCompare
PASS/

FAIL
ATL2AGT

Figure 12: Validation de ATL2AGT

Pour cette validation nous avons considéré 3 catégories de transformations ATL:

1. Des transformations sélectionnées du Zoo ATL [ATL Zoo, accessed 2015]

(Families2Persons, Class2Relational) et de publications existantes de l’état de
l’art [Büttner et al., 2012b]).

2. SimpleCMG: une version simplifiée d’une étape de transformation du généra-
teur de code QGen développé par AdaCore. QGen n’est pas développé en
ATL mais nous avons modelé cette étape de transformation en ATL.

3. Des transformations créées spécifiquement pour tester des fonctionnalités
spécifiques d’ATL ou de la traduction vers AGT.

Par cette approche de validation nous avons montré que ATL2AGT traduit
fidèlement les transformations ATL en des transformations AGT qui se compor-
tent de manière identique à l’exécution. Les détails de la validation sont présentés
dans le tableau Table 3 où nous indiquons pour chaque transformation de test les

9EMFCompare, https://www.eclipse.org/emf/compare/
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fonctionnalités ATL employées ainsi que des métriques concernant le nombre de
règles ATL en entrée et le nombre de règles AGT en sortie.

Families2-
Persons

Class2-
Relational

ER2REL QGen Code
Generation

Metrics
ATL rules 2 6 6 6
ATL bindings 2 22 13 30
Instantiation rules 2 6 6 6
Resolving rules 8 23 15 32

ATL Features
Default Resolve X X X X
resolveTemp X
if-then-else X
Helpers X X X
Attribute binding X X X X
Reference binding X X X
OrderedSet{} X X
union() X X X
select() X X
collect(), at() X

Table 3: Liste des transformations de test et des fonctionnalités testées

A présent nous passons à la validation de la traduction de postconditions en
préconditions: Post2Pre.

5.2 Validation de Post2Pre

Post2Pre est un ensemble de constructions qui transforment une postcondition d
d’une transformation T en une précondition qui assure la satisfaction de la post-
condition. Comme la construction Weakest Liberal Precondition wlp est théorique-
ment infinie, nous avons proposé les constructions wlp(T≤N , d) et scoperWlp(T≤N , d)
comme constructions alternatives bornées et nous avons démontré leurs propriétés
théoriques. Nous avons également proposé des stratégies de simplification visant
à améliorer le passage à l’échelle de nos constructions. Nous avons implémenté
ces constructions en Java, et nous avons réalisé deux types de validations que nous
présentons dans cette section: la validation fonctionnelle et l’analyse de passage à
l’échelle.

5.2.1 La Validation Fonctionnelle

La validation fonctionnelle a deux objectifs. Premièrement il s’agit de vérifier
que les préconditions calculées par notre implémentation exhibent bien les pro-
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priétés théoriques de wlp et scopedWlp. Deuxièmement, il faut montrer que les
stratégies de simplification que nous proposons n’affectent pas la validité du résul-
tat de l’analyse.

Puisque nos travaux sur Post2Pre sont limités aux aspects structurels des trans-
formations et des contraintes, nous considérons pour cette validation les trois trans-
formations ATL suivantes qui ne mettent pas en œuvre des manipulations d’attributs
scalaires (i.e. entiers, chaines de caractères etc..):

1. SimpleATL: Une transformation ATL simple composée de 2 règles ATL.

2. PointsToLines: Une autre transformation ATL simple composée de 3 règles
ATL qui transforme un ensemble de points en un un ensemble de lignes con-
nectant les points.

3. SimpleCMG: Une version simplifiée d’une étape de transformation de QGen,
le générateur de code de Simulink vers C/Ada développé à AdaCore. Bien
que QGen lui-même n’est pas développé en ATL nous avons modelé cette
étape de transformation en ATL.

Pour chacune des transformations ci-dessus, nous avons considéré plusieurs
postconditions pour lesquelles nous avons calculé les préconditions. Comme les
constructions que nous validons sont définies en fonction d’un paramètre N, nous
avons considéré différentes valeurs de N lorsque cela ne pose pas de problèmes
de passage à l’échelle. Les caractéristiques des tests de validation considérés sont
résumé dans le tableau 4.

T Nombre de
règles ATL

Nombre de
règles AGT

N Nombre de
postconditions

SimpleATL 2 5
1 13
2 1
3 1

PointsToLines 3 7
1 1
2 2

SimpleCMG 6 24 1 2

Table 4: Tests de validation fonctionnelle de Post2Pre

Pour chacune des postconditions d considérées nous calculons wlp(T≤N , d) et
scopedWlp(T≤N , d) et nous validons par inspection manuelle que les préconditions
obtenues correspondent aux définitions théoriques. Cette première validation est
effectuée sans utiliser nos stratégies de simplification. Ensuite dans une seconde
étape, nous activons nos stratégies de simplification une à une et nous effectuons
de nouveau les analyses en vérifiant que les préconditions calculées sont identiques
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ou équivalentes. Nous vérifions ainsi que nos stratégies de simplification ne détéri-
orent pas la validité du résultat de l’analyse.

Après cette validation fonctionnelle, nous passons à présent à l’évaluation du
passage à l’échelle de notre analyse, notamment du gain de performance apporté
par nos stratégies de simplification.

5.2.2 L’Analyse de Passage à l’Echelle

Nous avons proposé dans cette thèse les quatre stratégies de simplifaction suiv-
antes:

S1. Propriétés standards des Nested Graph Conditions (NGC) et de la logique
de permier ordre.

S2. Selection des règles contribuant à la postcondition.

S3. Elimination des conditions en contradiction avec la sémantique ATL. Nous
appelons cette stratégie le filtre ATLSem.

S4. Elimination des conditions contenant des éléments qui ne peuvent pas exis-
ter en précondition des règles en raison de la nature exogène de la transfor-
mation. Nous appelons cette stratégie le filtre ElemCr.

Afin de quantifier l’effet de nos stratégies, nous procédons à des exécutions dif-
férente de la même analyse en activant et désactivant les stratégies et en mesurant
des métriques concernant la taille des préconditions calculées et le nombre de cal-
culs nécessaires à l’analyse. Pour cela nous considérons la transformation T et la
postcondition Post1 suivantes et nous calculons wlp(T, 1≤,Post1):

T = SimpleATL = R1Inst ↓; R2Inst ↓; R1t1,refD
Res ↓; R1t1,refE

Res ↓; R2t,refD
Res ↓

Post1 = ∃
(

d:D e:E
refE

)

Nous effectuons 5 exécutions différentes de la construction avec les configura-
tions suivantes des stratégies de simplification.

Identifiant de l’exécution S1 S2 S3 S4
ExNoFilters X × × ×
ExATLSem X × X ×
ExElemCr X × × X

ExBoth X × X X

ExAll X X X X

S1 est toujours activée dans toutes les exécutions car cette stratégie n’est pas
configurable dans notre implémentation. S3 et S4 sont évaluées séparément en
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ExATLSem et ExElemCr puis ensemble en ExBoth. Et enfin ExAll permet d’évaluer
S2.

Etant donné que le but des stratégies de simplifications est de réduire le nombre
de calculs de recoupements de graphes (graph overlaps), nous mesurons durant
chaque exécution le nombre de calculs NOv effectué pour chaque règle de la trans-
formation analysée.
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Figure 13: Nombre de calculs de recoupements de graphes NOv

Nous représentons les résultats des mesures de NOv dans le graphe de la Fig-
ure 13. Les courbes en traits pleins représentent le nombre de calculs effectués pour
chaque règle durant l’exécution tandis que les courbes en traits pleins représentent
le pourcentage de calculs sur l’ensemble d’une exécution par rapport à l’exécution
sans filtres ExNoFilters. Nous observons que pour ExBoth seulement 15.4% des cal-
culs sont effectués pour aboutir au même résultat final ce qui constitue une ré-
duction significative. L’effet est encore plus prononcé dans ExAll où le résultat est
calculé avec uniquement 0.4% des calculs. Cela indique que nos stratégies sont très
efficaces puisqu’elles permettent une réduction significative du nombre de calculs
à faire durant l’analyse.
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Par ailleurs, nous constatons que certaines exécutions qui sans l’intervention de
nos stratégies mènent à l’épuisement de la mémoire après plus de 10 minutes, sont
achevés en quelques secondes avec l’activation de nos stratégies avec une utilisa-
tion maximale de 15% de la mémoire totale, ce qui représente une amélioration
significatives des performances de l’analyse.

Néanmoins, lorsque nous passons à des transformations et des postconditions
plus grandes les performances ne sont pas toujours aussi satisfaisants. Ainsi avec
une postcondition composée de 4 nœuds et 3 connections, et une transformation
composée de 15 règles, l’analyse ne peut aboutir et se termine par la saturation
de la mémoire malgré l’activation de nos stratégies. Ainsi dans la Figure 14 nous
observons que malgré l’augmentation exponentielles du nombre de recoupements
éliminés par nos filtres au fur et à mesure de l’avancement de l’analyse (l’échelle
verticale est exponentielle), la taille de la précondition et le nombre de recoupe-
ments effectués conserve une évolution également exponentielle. Cela indique que
malgré leur efficacité démontrée dans les paragraphes précédents, nos filtres ne
modifient pas la nature exponentielle de l’algorithme et ne permettent pas un vrai
passage à l’échelle.
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Figure 14: Métriques de l’exécution de wlp pour SimpleCMG

Une analyse plus détaillées des résultats ainsi qu’une discussion concernant la
parallélisation de l’analyse et la gestion de la mémoire sont disponibles dans le
chapitre 10 du manuscrit en Anglais. A présent nous passons à la validation de
la seconde partie de cette thèse qui a porté sur les oracles automatiques de tests
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d’intégration des générateurs de code.

5.3 Validation de l’Approche de Spécification et d’Oracles de Test Model-
to-Text

Pour valider notre approche d’oracles de tests de transformations model-to-text,
nous l’avons déployée au sein de l’équipe de développement du générateur de
code QGen à AdaCore. Pour ce faire nous avons conçu et déployé un outil appelé
TOR Toolkit basé sur l’environnement Eclipse et notamment la technologie Acceleo.
A l’aide de cet outil 3 membres de l’équipe ont écrit les patrons de spécification
décrivant le code requis en sortie de l’outil pour un sous-ensemble du langage
d’entrée de l’outil. Ainsi, pour 38 types de blocs Simulink10 nous avons obtenu
une spécification que nous avons utilisé comme oracle automatique de test.

Au moment du déploiement de l’approche, l’équipe disposait déjà d’une base
de tests significative contenant un large ensemble de modèles de test Simulink.
Pour le sous-ensemble de tests concernant les 38 types de blocs considérés pour
notre validation expérimentale, nous avons utilisé l’exécution des patrons de spé-
cification et le Match des patterns attendus avec la sortie de l’outil pour valider les
résultats de tests. Les oracles automatiques de notre approche ont ainsi permis la
détection de plusieurs erreurs dans l’implémentation de QGen. Par exemple pour
certaines configurations des blocs Simulink, les oracles ont détecté des incompati-
bilités entre le code généré et les patrons exigés par la spécification, ce qui a mené
à la mise en évidence d’erreurs dans l’implémentation des blocs en question.

Cependant ce déploiement expérimental a aussi mis en évidence plusieurs lim-
ites de notre approche. Tout d’abord, l’application à Simulink a nécessité l’énumération
manuelle d’un très grand nombre de patrons de spécification pour chaque type de
bloc Simulink afin de tenir compte de tous les paramètres de configuration affec-
tant la sémantique du bloc et donc le code à générer. Cette tâche est difficile à faire
manuellement et est hautement sujette à l’erreur. C’est pourquoi pour envisager
un déploiement réel de nos propositions dans l’avenir, il sera nécessaire de traiter
l’aspect de la variabilité du langage d’entrée en s’inspirant par exemple des travaux
de [Dieumegard et al., 2012; Dieumegard et al., 2014b; Dieumegard et al., 2014a].

10au moment de la rédaction QGen prend en charge environ 120 types de blocs Simulink différents
en entrée
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6 Conclusion

Cette thèse a traité du sujet de la qualification des générateurs de code automatique
(GACs), un sujet de grand intérêt dans le domaine de l’avionique aujourd’hui en
raison de la réduction de coûts que la qualification peut apporter à la production
de logiciels avioniques critiques. En effet, générer le code source d’une application
critique avec un GAC qualifié permet l’élimination des vérifications coûteuses du
code source généré. Cependant, la qualification des ACGs reste à ce jour un pro-
cessus très coûteux qui impose de nombreuses contraintes sur le développement
du GAC et nécessite des activités de vérification approfondie. Dans ce processus,
nous avons mis l’accent en particulier sur la problématique du test des GACs et
nous avons cherché à proposer des techniques de test efficaces autant par leur au-
tomatisme que par leur rigueur afin d’être compatibles avec les standards de qual-
ification.

6.1 Rappel des Problématiques

Dans la première partie de la thèse nous avons cherché à assurer le même niveau de
détection d’erreurs des tests unitaires dans les chaînes de transformation de mod-
èles en n’utilisant que des tests d’intégration qui sont de mise en œuvre plus facile.
Nous avons déterminé que cela est possible avec des techniques existantes perme-
ttant d’extraire des exigences de tests unitaires et des oracles de tests unitaires, et
de vérifier leur satisfaction durant l’exécution des tests d’intégration. Cependant,
une fois que des exigences de tests non satisfaites sont identifiées, les approches
existantes ne fournissent pas un moyen de créer de nouveaux tests d’intégration
pour les satisfaire. Ainsi, le premier problème abordé par cette thèse était de pro-
poser une approche de traduction arrière des exigences de tests unitaires en des
contraintes équivalentes sur l’entrée de la chaine de transformation permettant la
création de nouveaux tests d’intégration.

Ayant investigué la production des tests d’intégration dans la première partie de
la thèse, la deuxième partie s’est intéressé aux oracles de ces tests. Compte tenu du
contexte de qualification et de certification, nous avons déterminé que ces oracles
doivent être basés sur une spécification syntaxique du code source généré, qui est
facilement compréhensible par les différentes parties prenantes. Par ailleurs, étant
donné le grand nombre de tests nécessaires, il était nécessaire d’adopter des oracles
automatiques. Ainsi, le deuxième problème abordé par cette thèse était de proposer
une approche syntaxique d’oracles de test automatiques pour les GACs.
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6.2 Résumé des Contributions

6.2.1 Traduction Arrière des Exigences de Test

Dans la première partie de la thèse, nous avons proposé une approche de traduc-
tion arrière des exigences de test unitaires d’une transformation en des contraintes
équivalentes sur l’entrée de la transformation. Pour ce faire, nous nous sommes
basés sur les concepts théoriques existants de la théorie des Transformations Al-
gébriques de Graphes (AGT) [Ehrig et al., 2006]. En supposant que la transforma-
tion est spécifiée dans le langage de transformation de modèle ATL [Jouault et al.,
2008], notre approche est composée de deux étapes:

1. Traduire la transformation ATL en un transformation équivalente dans la
théorie AGT.

2. Considérer l’exigence de test comme une postcondition de la transformation,
et la traduire en une précondition grâce à une analyse que nous appelons
Post2Pre basée sur la construction théorique de weakest liberal precondition
(wlp) en AGT.

Dans ce cadre général nous avons apporté plusieurs contributions:

Traduction ATL vers AGT
Nous avons définit une traduction du sous-ensemble purement déclaratif
d’ATL vers le formalisme AGT. La difficulté de ce travail réside dans le traite-
ment des mécanismes de resolving d’ATL ainsi que les ensembles ordonnés
en OCL car ces sémantiques n’ont pas d’équivalents directs dans la théorie
AGT. Cette contribution a fait l’objet d’une publication [Richa et al., 2015] qui
a reçu le Prix du Meilleur Article à la conférence internationale ICMT’15.

Traduction de Postconditions en Préconditions
Nous avons définit un ensemble d’analyses appelées Post2Pre basées sur la
construction théorique wlp, pour les transformations purement structurelles.

Constatant que wlp peut être théoriquement infinie, nous avons proposé une
nouvelle notion d’itération bornée et nous avons défini la construction wlp qui
lui correspond afin d’obtenir une construction finie. Ensuite nous avons in-
troduit une nouvelle construction scopedWlp qui rend le résultat de la con-
struction bornée applicable à la transformation analysée qui contient des itéra-
tions non bornées. Pour tous les nouveaux concepts introduits, nous avons
fourni les définitions et preuves théoriques qui ne sont pas limitées au seul
contexte d’ATL, mais s’appliquent à des transformations AGT arbitraires.
Par conséquent, ces résultats théoriques représentent une contribution à la
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théorie AGT qui pourrait avoir des applications au delà du contexte de ce
travail.

Stratégies de Simplification
Reconnaissant la complexité de calcul élevé de la construction wlp, nous avons
proposé plusieurs stratégies pour y remédier. La complexité se manifeste con-
crètement par des préconditions calculées dont la taille augmente rapidement
et finit par épuiser la mémoire disponible. Par conséquent, nous avons pro-
posé tout d’abord des stratégies de simplification permettant l’élimination
des parties non pertinentes des conditions calculées pour réduire leur taille.
Certaines de ces stratégies sont spécifiques à ATL tandis que d’autres peuvent
s’appliquer à des transformations AGT arbitraires. Ensuite, nous avons pro-
posé une version alternative et équivalente de wlp qui permet d’appliquer
les stratégies de simplification le plus tôt possible dans le calcul et évite de
réaliser des opérations inutiles. Grâce à ces propositions, plusieurs analyses
Post2Pre qui auparavant aboutissaient à l’épuisement de la mémoire parvi-
ennent à s’exécuter correctement lors de notre évaluation expérimentale.

L’ensemble de nos contributions a été validé expérimentalement et nos implé-
mentations sont disponibles sous forme d’un outil Open Source appelé ATLAnalyser11.

6.2.2 Oracles de Test des Transformations Model-to-Code

Dans le cade de la seconde partie de cette thèse, nous avons proposé une ap-
proche d’oracles de tests de générateurs de code (ou transformations Model-to-
Code) basée sur un nouveau concept de patrons de spécification. Chaque patron de
spécification décrit un pattern de code que la transformation doit générer. Ce pat-
tern est exprimé grâce à la juxtaposition de portions de texte verbatim, de requêtes
au modèle d’entrée et d’expressions régulières. Cela permet de spécifier la struc-
ture du code généré de par sa syntaxe textuelle concrète.

L’exécution des patrons de spécification sur un modèle d’entrée de test produit
un ensemble de patterns attendus. Ainsi une opération de Match de ces patterns
attendus avec le code généré par l’exécution du test permet de valider le résultat et
ainsi de déterminer la conformité de l’outil avec sa spécification.

Nous avons déployé et évalué cette approche au sein de l’équipe de développe-
ment du générateur de code QGen à AdaCore.

11ATLAnalyser, https://github.com/eliericha/atlanalyser
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6.3 Perspectives de Poursuite

Dans les perspectives de poursuite de ces travaux, l’analyse des transformations
ATL est une piste prometteuse. En effet notre traduction d’ATL au formalisme
AGT permet l’application de plusieurs analyses de la théorie AGT aux transforma-
tions ATL telles que la détection de conflits entre règles de transformation [Ehrig et
al., 2012b] et la preuve formelle de correction [Pennemann, 2009; Habel and Penne-
mann, 2009; Poskitt, 2013].

Enfin, après s’être intéressés à la qualification d’un outil dans cette thèse, il sera
intéressant de se pencher sur la question de la qualification d’une ligne de produit
plutôt que d’un seul outil, ou encore à la qualification d’un outil non seulement
pour le domaine de l’avionique, mais aussi pour d’autres domaines critiques tels
que l’automobile et le ferroviaire. En effet les fournisseurs d’outils tels que Ada-
Core doivent avoir des propositions satisfaisants des besoins très différents chez
des clients d’industries variées. Malgré les avancées techniques de l’ingénierie des
lignes de produits [Pohl et al., 2005] le contexte du logiciel critique nécessite de
prendre en compte les aspects de certification et de qualification ce qui soulève des
questions de recherche difficiles [Hutchesson and McDermid, 2013]. Il serait in-
téressant d’intégrer ces facteurs dans la modélisation des lignes de produit afin de
concevoir une famille d’outils qualifiés variant non seulement de par leurs fonc-
tionnalités mais également de par les standards de sureté ciblés par leur qualifica-
tion.
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Chapter 1. Introduction

1.1 General Context

Software embedded in aircrafts, trains and cars is said to be critical because its mal-
function can have catastrophic consequences and endanger human lives. Given
the high stakes, critical software is subject to strict safety standards such as the
DO−178C certification standard in the avionics domain. This standard regulates
all aspects of the development of the software, including planning, organisation,
development and verification activities. As a result, developing certified critical
software has a very high cost, the bulk of which resides in the extensive verification
activities that are required for all development artifacts throughout the process.

Given the high cost of verification, manufacturers seek to eliminate some of the
verification activities related to the source code by using Automatic Code Gener-
ators (ACGs) and showing that they produce source code exhibiting the required
correctness properties by construction. This is only possible if the ACG itself is
developed in conformance with the DO−330 tool qualification standard.

Qualifying an ACG is as rigorous and demanding as certifying critical embed-
ded software. However the cost of qualification is compensated by its repeated use
in the life cycle of a critical system, particularly in maintenance phases. At each use
of the ACG the verifications avoided represent a return on the initial investment in
the qualification of the tool. As a result, tool qualification is today a highly active
topic of research and discussion within the community of critical system manufac-
turers.

Tool providers such as AdaCore, the industrial partner of this thesis, need to
adopt efficient methodologies in the development and verification of ACGs in or-
der to provide cost effective qualified tools. In this thesis, we focus in particular on
the aspects of testing which proves to be highly expensive given the high criteria
of thoroughness and coverage required for qualification.

In the next section, we identify the precise problems tackled by our work in the
scope of testing ACGs for their qualification.

1.2 Problem Statement

Within the context of testing ACGs we identify two specific problems based on
concrete observations in the practice of code generator development.
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1.2.1 Unit Testing v/s Integration Testing

An ACG is typically designed as a Model Transformation Chain (MTC) which ap-
plies a series of model transformation steps sequentially. Testing such an ACG for
its qualification requires both unit testing of each step of the MTC in isolation and
integration testing of the complete tool as a whole. However industrial practice in
code generator and compiler development1 shows that unit testing is tedious to
perform because of the complexity of the required test data (models at their inter-
mediate representation) and stubs [Stuermer et al., 2007]. Conversely integration
testing is easier to carry out because it does not require stubs and test models are
simpler to produce and maintain.

Fortunately, existing research suggests that it is possible to achieve the confi-
dence of unit testing in a MTC using solely integration test data [Bauer et al., 2011].
Combining this study with other existing works on the testing of model transfor-
mations, we can extract from each model transformation of the MTC a set of unit
test requirements and a unit test oracle. Unit test requirements are constraints over the
internal intermediate representations that the MTC operates on, characterising dif-
ferent test cases to be covered. The test oracle is an automatic procedure to validate
the result of a unit test. With these two concepts, we can consider only integration
tests, execute them, and assess the coverage of unit test requirements and the va-
lidity of oracle outputs automatically. This method provides the same confidence
of unit testing by relying on oracles for unit tests, but uses only integration test
models.

However, when non-satisfied unit test requirements are identified, the method
stops short of providing a way to create new integration tests to satisfy them. Pro-
ducing such tests manually is not straightforward because a unit test requirement
expresses a constraint over an internal language of the MTC while the integration
test model should be in the input language of the chain. Therefore producing such a
model requires reasoning inversely over several steps of the MTC which is difficult
to achieve manually.

Consequently the first problem tackled in this thesis is:

Translating a non-satisfied unit test requirement backwards along a model transformation
chain into an equivalent constraint over the input language of the chain.

If we can propose a solution to this problem, then with the support of existing
test generation approaches, we can produce new integration tests that satisfy the
remaining non-covered unit test requirements. As a result, we would be able to

1compilers also consist of chains and raise issues similar to ACGs
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provide a complete testing strategy that complies with the coverage requirements
of qualification, provides the same confidence as unit testing, and uses solely inte-
gration test data.

1.2.2 Specification-based Oracles of Code Generator Integration Tests

Having so far discussed the production of integration test models, we also need to
investigate the corresponding test oracles i.e. the means to determine if an integra-
tion test passes or fails. Since integration tests aim at covering unit test require-
ments of all the transformations involved in the MTC, then there will likely be a
large number of tests. It is therefore desirable if not necessary to have automatic
test oracles determine the validity of test outputs.

In an integration test of an ACG the input is a model and the output is source
code. In the literature we find that most test oracle approaches aim at validating
the semantics of source code, i.e. verifying that the behavior of the generated code
is compatible with the semantics of the input model. However in the context of
qualification and certification, the syntax of the generated source code is also of im-
portance and must be shown to comply with the applicable code standard. This
syntactic aspect is less developed in the literature of ACG testing. Additionally, the
qualification standard requires test oracles to be based on the specification, which in
turn is subject to several reviews by different stakeholders. As a result, it is impor-
tant that this specification be readable and easily understandable. Consequently,
the second problem that we tackle in our work is the following:

Devising a specification and automatic test oracles approach focusing on the syntax of the
generated source code and the readability of the specification.

Having defined the two main problems tackled by this study, we present in the
next section a summary of the solutions that we propose to address them.

1.3 Summary of Contributions

To address the first problem of backward translation of test requirements we pro-
pose to transpose it to the formal framework of Algebraic Graph Transformation
which provides the means to translate and reason on constraints. As for the second
problem of determining the verdict of integration tests, we propose a specification
and test oracles approach based on the textual concrete syntax of the generated
source code. In the following sections we develop our solutions and the conceptual
and concrete contributions that they provide.
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1.3.1 Backward Translation of Test Requirements

Concerning the first problem of backward translation of test requirements, we note
first that MTCs can include several steps (e.g. typically∼15 for code generation). As
a result we propose an iterative approach that performs the backward translation of
test requirements step by step. Solving the sub-problem of backward translation for
one model transformation step of the chain would theoretically unlock the solution
for the complete chain.

In the scope of this thesis, we propose and validate an approach to the one-step
backward translation of a unit test requirement into an equivalent constraint over
the input of the preceding transformation. To do so, we propose to rely on existing
theoretical concepts in the formal framework of Algebraic Graph Transformation
(AGT) [Ehrig et al., 2006]. Assuming that the transformation is specified in the ATL
model transformation language [Jouault et al., 2008], our approach is composed of
two steps:

1. Translate the preceding transformation from ATL to the formal framework of
AGT.

2. Consider the unit test requirement as a postcondition, i.e. a constraint on the
output of the transformation, and translate it into an equivalent precondition,
i.e. a constraint over the input of the transformation. The translation uses a set
of analyses called Post2Pre that we propose based on the formal construction
of the weakest liberal precondition (wlp) in AGT.

With these two steps, we obtain a constraint over the input of the preceding
transformation that ensures the satisfaction of the unit test requirement. Since the
result is a constraint, it can again be considered as a postcondition of its preceding
transformation, and thus the analysis can be iterated.

In this general approach, we put forward several contributions:

Translation of ATL to AGT
We define a translation of purely declarative ATL transformations to equiva-
lent AGT transformations. The challenge in this translation is to support se-
mantical features such as the ATL resolving mechanisms and OCL2 ordered
sets which do not have direct equivalents in the AGT framework. This contri-
bution was the subject of a publication at ICMT’15 [Richa et al., 2015] which
received the Best Paper Award of the conference.

Translation of Postconditions to Preconditions
We define a set of analyses called Post2Pre based on the theoretical construc-

2OCL, http://www.omg.org/spec/OCL/
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tion of wlp, within the scope of purely structural transformations. As a result
this contribution does not yet support the transformation of object attributes.

Noting that wlp can in fact be theoretically infinite, we propose a new bounded
iteration construct and define its corresponding wlp construction to obtain
a finite construction for a bounded version of the analysed transformation.
Then we introduce a new construction called scopedWlp which extends the
previous one and makes it applicable to unbounded iteration. Thus with
scopedWlp we obtain a finite precondition that ensures the satisfaction of the
postcondition for the original unbounded transformation. For all these new
concepts we provide formal definitions and proofs of correctness that are not
limited to ATL but also apply to arbitrary AGT transformations. As a result,
this set of theoretical results constitutes a contribution to the theory of AGT
that can have applications beyond the context of this work.

Simplification Strategies
Acknowledging the high computational complexity of the wlp construction,
we put forward several strategies to alleviate it. The complexity concretely
manifests through very large computed preconditions that ultimately exhaust
the available memory. Consequently, we first propose simplification strate-
gies allowing the elimination of irrelevant portions of computed precondi-
tions to reduce their size. Some of these strategies are specific to ATL while
others can apply to arbitrary AGT transformations. Then we propose a mod-
ified construction of wlp which is equivalent to the original one but allows
early simplification of conditions and avoids unnecessary computations. With
the combination of these proposals, we manage to successfully perform anal-
yses which were previously infeasible due to the high complexity.

Our proposals are validated experimentally in this thesis and their implementa-
tion is available in the form of a tool called ATLAnalyser3.

With this first set of contributions, we have tackled the general problem of pro-
ducing new integration tests to cover particular unit test requirements. We now
move to the solution of the second problem which is determining the outcome of
these integration tests with specification-based automatic test oracles.

1.3.2 Specification and Test Oracles of Model-to-Code Transformations

To address the second problem raised in this thesis, we introduce the concept of
specification templates and propose a specification approach based on it. Specifica-
tion templates express the patterns of code that should be generated in terms of

3ATLAnalyser, https://github.com/eliericha/atlanalyser
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verbatim textual code interspersed with queries to the input model and regular ex-
pressions. This allows to specify the structure of the generated code in terms of its
concrete syntax, and thus satisfies the needs of qualification.

We propose a test oracles approach based on the execution of the specification.
Executing a specification templates over an input model yields so-called expected
patterns which are automatically matched in the output of the test to determine
if the test passes. Beyond the automation of test oracles, this approach is very
appealing in the context of qualification because it establishes the specification as
the direct decider of the outcome of tests.

At the request of AdaCore, the industrial partner of the thesis, this solution was
developed and implemented for the specific needs of the Simulink® 4 to C code
generator, QGen5, developed within the company. Our proposals were validated
through an experimental deployment of the approach within the QGen develop-
ment team. The proposals were not generalised beyond that context in the scope
of this thesis, however we believe that the core concepts of our approach can be
extended to arbitrary model-to-text transformations.

1.4 Document Organisation

The remainder of this document is organised as follows.

Background and Current Advances
First in Chapter 2 we give an overview of the industrial context of qualifica-
tion and certification and the relationship between the two processes, high-
lighting the challenges of testing in qualification. Then in Chapter 3 we report
on the current advances in the testing of model transformations and model
transformation chains to identify approaches that are relevant to our context
and assess their adequacy to our needs.

Problem Statement and General Approach
In Chapter 4 we define precisely the two problems tackled in our work con-
cerning the production of integration tests and the specification-based test
oracles of these tests. We highlight the main challenges and explain why ex-
isting techniques do not provide satisfactory solutions. Then in Chapter 5 we
give an overview of the solutions we proposed to the identified problems.

Contributions
The contributions addressing the first problem in this thesis are detailed in 3

4Simulink®, http://www.mathworks.com/products/simulink
5QGen, http://www.adacore.com/qgen
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chapters. Chapter 6 presents the translation of ATL transformations to AGT
transformations. Then in Chapter 7 we present the analysis that we propose
for the resulting AGT transformations. We detail the constructions involved
in Post2Pre and demonstrate their theoretical properties. In Chapter 8 we
investigate the implementation of the analysis and propose simplification
strategies to tame its complexity.

As for the contribution addressing the second problem, it is presented in
Chapter 9 which details the syntactic specification and test oracles approach
that we propose.

Experimental Validation
The experimental validation of our proposals is detailed in Chapter 10. First
we validate the translation of ATL to AGT by comparing ATL and AGT exe-
cutions of transformations. Then we assess the translation of postconditions
to preconditions, first with a functional validation focusing on the correct-
ness of the resulting preconditions, and then with a scalability analysis as-
sessing the efficiency of our simplification strategies. Finally, our syntactic
specification and test oracles approach is assessed through an experimental
deployment within the team developing the code generation technology at
AdaCore.

42 © 2016 Elie RICHA



Chapter 2

Background: Qualification and
Certification in the Avionics Domain

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Certification of Critical Airborne Software . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Planning and Development Processes . . . . . . . . . . . . . . . . . . . 45

2.2.2 Verification Activities and Verification Objectives . . . . . . . . . . . . 46

2.3 Claiming Certification Credit with Qualified Tools . . . . . . . . . . . . . . . 47

2.4 Qualifying an ACG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Coupling of Certification and Qualification – Qualifiable Tools . . . . . 49

2.4.2 Tool Qualification Planning . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.3 Tool Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.4 Tool Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Requirements-Based Testing in Qualification . . . . . . . . . . . . . . . . . . 53

2.6 Scope of the Research: Model Transformation Chains . . . . . . . . . . . . . 55

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

43



Chapter 2. Background: Qualification and Certification in the Avionics Domain

2.1 Introduction

Software embedded in aircrafts trains and cars is said to be critical because its mal-
function can have catastrophic consequences and endanger human lives. For this
reason critical software is subject to strict safety standards that regulate all aspects
of its development. In our work we focus particularly on the avionics domain
where the safety standard in effect is the DO−178C certification standard. Certifi-
cation requires extensive verifications of all development artifacts to ensure that
no errors are introduced during the process. This includes independent reviews of
artifacts and extensive requirements-based testing that are very costly to perform
and constitute the bulk of the overall cost of certification.

The verification cost can be reduced by producing development artifacts auto-
matically with tools that guarantee that their result is correct by construction. For
example, the specification of the critical software can be defined in the form of
models given as input to an Automatic Code Generator (ACG) which automati-
cally produces the implementation source code. In that case the verification of the
generated source code can be avoided by verifying instead that the ACG ensures by
construction that the generated code is correct. This verification of the ACG itself is
called qualification and is also regulated by a standard, the DO−330 tool qualification
standard, in the avionics domain.

Qualifying an ACG is as demanding and rigorous as certifying critical embed-
ded software. The qualification standard regulates all aspects of the tool develop-
ment process including organisational and technical aspects. Like certification, it
also requires extensive verification of all development artifacts of the ACG includ-
ing independent reviews and thorough requirements-based testing. AdaCore, the
industrial partner of this thesis, is developing a qualifiable1 Simulink to C source
code ACG called QGen. This thesis was launched in that context with the objec-
tive of investigating techniques to support the qualification process. Ultimately we
focused on the specific aspect of the testing involved in the qualification of code
generators which is particularly costly.

In the following sections we will give an overview of the certification and qual-
ification processes and their relationship, emphasizing lastly the main focus of this
thesis which is the testing of code generators for their qualification.

1as will be explained, a tool cannot be qualified independently of its usage context
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2.2 Certification of Critical Airborne Software

Critical avionics software must be developed in conformance with the DO−178C
certification standard. The standard regulates all aspects of the development pro-
cess, defining the roles involved, the development and verification activities that
must be carried out, as well as the artifacts and documents that must be produced
as certification evidence. This evidence is assessed by a certification authority to
verify that all aspects of the standard were applied, and a certificate is issued al-
lowing the software to be deployed. Certification authorities are for example the
Federal Aviation Administration (FAA) for the USA and the European Aviation
Safety Agency (EASA) for Europe.
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O3: Compliance and robustness 
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Figure 2.1: Simplified DO−178C compliant development process

2.2.1 Planning and Development Processes

Certification starts with the planning process which defines and coordinates all de-
velopment and verification activities. Among other things this phase defines a set
standards to be followed during the development. The Code Standard will be of par-
ticular interest in our context. It is a set of constraints on the way source code will
be developed, defining complexity restrictions on the degree of coupling between
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software components, the nesting levels of control structures and the complexity
of logical and numeric expressions. These restrictions must be followed during
coding and we will discuss verification activities addressing that aspect.

After the planning process, the development process outlined in Figure 2.1 is
started. The first development activity is the specification of High-Level Require-
ments (HLR) of the software which describe all the required functionality of the
software. The second step is the design of the software which results in a Soft-
ware Architecture (SA) and a set of Low-Level Requirements (LLR) which specify the
component architecture and the interfaces and the detailed functionalities of each
component. Then architecture and requirements are implemented into Source Code
(SC). Compiling the SC results in the final Executable Object Code (EOC) which is the
actual embedded software.

2.2.2 Verification Activities and Verification Objectives

Verification activities are carried out after or concurrently with the development
process when appropriate. Verification activities which are depicted by dashed ar-
rows in Figure 2.1 concern all development artifacts. In general, each artifact should
be verified (looping arrows) for accuracy, consistency and conformance to the de-
sign standards defined earlier in the planning phase of the life cycle. Artifacts must
also be verified for compliance with the artifacts from which they were developed
(upward arrows). We will focus particularly on the verifications concerning the SC
and the EOC. The objectives of these verifications include many aspects such as
the compliance with the LLR and SA, conformance to code standards, stack and
memory usage, fixed point arithmetic overflow and resolution etc. We will focus
particularly on the following verification objectives, also highlighted in Figure 2.1:

O1. Compliance of the SC with LLR must be shown typically via independent re-
view of the SC. Independence is achieved when the verifier is a different
person than the developer of the item being verified.

O2. Conformance of the SC with the Code Standard must be shown typically with a
combination of analysis tools and manual reviews.

O3. Compliance and robustness of the EOC with the LLR must be shown via LLR-
based testing. Testing is conducted by analysing the LLR and developing
test cases. Each test case defines a range of inputs (or specific inputs) to the
software component under test, and the expected output or behavior. Both
normal range test cases and robustness test cases must be developed. The
former use inputs within normal ranges defined by requirements while the
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latter use abnormal inputs to test the response of the software to abnor-
mal conditions (which should also be specified by robustness LLRs). Test
cases should exercise equivalence classes and boundary values of numeric
inputs.

Testing is subject to a Structural Coverage Analysis which determines which
code structures were actually executed. For the highest levels of criticality,
the criteria of this coverage analysis is the Modified Condition/Decision Cov-
erage MC/DC criteria.

The Modified Condition/Decision Coverage Criteria This coverage criteria is
used on several occasions in the standard when dealing with decisions expressed
as boolean formulas over conditions. For example, for a decision D = (a ∧ b) ∨ c is
composed of 3 conditions a, b and c. The MC/DC criteria states that three require-
ments must be satisfied:

1. The decision must take all possible outcomes (true and false) at least once.

2. Each condition of the decision must take all possible outcomes at least once.

3. Each condition must be shown to independently affect the outcome of the de-
cision, i.e. varying the condition alone while keeping the others fixed affects
the outcome of the decision.

In general, for a decision composed of N independent conditions the criteria
can be satisfied with N + 1 test cases [Hayhurst et al., 2001]. Applying MC/DC
criteria to source code consists in analysing the decisions controlling the flow of
execution of the program (if statements, while statements etc.) and analysing the
outcomes that they take during the execution of tests to determine whether the
above requirements of the MC/DC criteria are met. This is typically done using
specialised coverage analysis tools.

Industrial experience shows that the bulk of the cost of certification resides in
verification activities such as the above due to the thoroughness required to ensure
the safety of the critical software. Consequently industrials seek to reduce this
cost. Focusing on the above verification activities, we discuss next how they can be
eliminated or reduced by using a qualified automatic code generator.

2.3 Claiming Certification Credit with Qualified Tools

When the SC is developed manually, the verification activities must all be per-
formed. However the situation is different when the SC (or part of it) is generated
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automatically using an Automatic Code Generator (ACG). For example, to generate
code from the LLR, they must be expressed in a precise and machine-readable for-
malism. In this thesis we consider a Model-Driven Engineering (MDE) approach
where LLR are expressed as models with precise structure and semantics. LLR
models can then be automatically implemented into SC via model transformation
by an ACG. This scenario is depicted in Figure 2.2.
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O1: Compliance of the 
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Figure 2.2: Simplified DO−178C compliant development process with a qualified
ACG

Using an ACG naturally reduces the development cost, however our aim is to
reduce the verification cost which is more significant by eliminating some verifi-
cation activities. In DO−178C if a tool is used to produce artifacts of the software
and its output is not verified, then the tool must be qualified to show that the tool
ensures by construction the properties to be verified, thus eliminating the need of
verification. This is called claiming certification credit for a verification objective from
the use of a qualified tool. For example, in Figure 2.2 if the ACG is used to claim
credit for the conformance of the SC with the Code Standard (O2) and its compli-
ance with the LLR (O1), then its qualification must demonstrate that the generated
SC always conforms with the Code Standard and always complies with the LLR. If
the compliance of the EOC with the LLR (O3) is also to be removed, then the qual-
ification must also cover that aspect. Therefore as we will detail later, qualification
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activities depend on the claimed certification credit.

At this stage, to avoid confusion between the software to be certified and the
tool to be qualified we distinguish them with the following terminology:

– the application is the embedded software that must be certified.

– the tool (an ACG in our case) is qualified in order to eliminate verification ac-
tivities in the certification of an application.

– In qualification, the term operational (e.g. operational context, operational re-
quirements) refers to the usage context of the tool which is the certification of
the application.

In the avionics domain, tool qualification must be performed according to the
DO−330 qualification standard. The qualification process is very similar to the
certification process, and for ACGs it is arguably as demanding and rigorous as
certification. However the cost of qualification is justified by the reduced certifica-
tion cost. In fact when coding is done manually, it is not uncommon to perform
SC verifications multiple times during the life cycle of the certified software. This
can occur in advanced stages of the process if verifications (e.g. integration testing)
uncover errors requiring code alterations. In that case SC verifications have to be
performed again after each modification or set of modifications. Moreover, in the
maintenance phase following deployment, code modifications may also occur and
would also require reverification of the SC. As a result, SC verification is often a
recurrent activity. Replacing the recurrent verification with a one-shot qualifica-
tion of an ACG provides a significant reduction of the certification cost. In the next
section we detail the qualification process of an ACG.

2.4 Qualifying an ACG

Tool qualification is defined by the DO−330 qualification standard. Like certifi-
cation, the standard defines planning, development and verification activities that
must be carried out, and artifacts and documents to be provided as qualification
evidence that the standard was applied faithfully.

2.4.1 Coupling of Certification and Qualification – Qualifiable Tools

The purpose of qualification is to obtain certification credit for the verification activ-
ities eliminated in the application life cycle. This credit can only be granted within
the context of the certification of the application. This means that a tool may not be
qualified on its own. It is only qualified in the context of a project certification and
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for a precise certification credit. If a subsequent project uses the same tool without
any change, then the previous qualification evidence may be reused as is, provided
that the new usage context is shown to be equivalent to that of the previous qual-
ification. Otherwise, if the usage context is different or if changes are needed in
the tool, an impact analysis of the changes must be performed to determine any
needed re-verification activities.

Consequently, tool vendors such as AdaCore cannot provide qualified tools in-
dependently of a specific certification project. Instead they can provide qualifiable
tools for which most of the qualification evidence has been developed by the tool
vendor with assumptions regarding the usage context. When an avionics construc-
tor acquires a qualifiable tool and its qualification evidence, he needs to assess that
his usage context is compatible with the existing qualification evidence, and take
necessary action otherwise. This may include modifications to the qualification
documents or even the tool itself, and may trigger re-verification activities.

2.4.2 Tool Qualification Planning

The first phase of qualification is the planning, starting with the assessment of the
role of the tool in the application life cycle and the precise identification of the
claimed certification credit. This determines a Tool Qualification Level (TQL) speci-
fying the level of rigor (TQL–1 the highest, to TQL–5 the lowest) required in the
qualification. Certain verification activities are required for TQL–1 but not in TQL–
5. In our context, the tool is an ACG whose output is part of the airborne software.
The ACG must be qualified at TQL–1, the most rigorous level, since it may intro-
duce errors in the critical software, and all verification activities are necessary.

The planning process also defines the tool development standards to be fol-
lowed. A Tool Requirements Standard specifies the methods, notations and tools
used to develop the various requirements of the qualified tool. A Tool Code Stan-
dard specifies the programming languages used as well as coding rules, naming
conventions, complexity constraints etc.. Requirements and code must be devel-
oped in conformance with these standards and verification activities will be de-
ployed to verify this conformance.

2.4.3 Tool Development

Then the tool development process is initiated. It is depicted in Figure 2.3 and is
evidently very similar to the certification process. First, the Tool Operational Require-
ments (TOR) are defined. They specify the required operation of the tool as a black

50 © 2016 Elie RICHA



2.4. Qualifying an ACG

box from the user’s perspective. TORs must include enough detail regarding the
functionality of the tool to support the claim of certification credit for the elimi-
nated certification activities. For example, if credit is claimed for the compliance
of the SC with LLR in the certification process of Section 2.2, then the TOR must
describe precisely what the generated code structure should be and how elements
of input LLR models should be implemented by the ACG into the generated SC.

The second step is the development of Tool Requirements (TR) which also de-
scribe the function of the tool but this time in a more detailed manner, addressing
nominal and failure modes. Each TR should trace to one or more TORs. However
there may be so-called derived TRs that do not trace to TORs and that specify for
example additional tool functionality unused in the operational context.
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Tool 

Architecture

Tool Source 

Code

Tool Executable 

Object Code

Tool Low-Level 

Requirements

Tool 

Requirements

Development Activity

Verification Activity

Testing

Figure 2.3: DO−330 compliant tool development process

Then the Tool Architecture (TA) is defined and specifies the various software com-
ponents of the tool and their interfaces, and the Tool Low-Level Requirements (TLLR)
specify the functionality of each component. TA and TLLR are defined in a way to
jointly achieve the functionality required in the TR. If needed, there can be several
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levels of requirements refinement before reaching the final TLLR level. Each TLLR
must trace back to one or more TRs such that all components functionality serves
higher level tool functionalities and there is no unintended functionality. Finally,
the TA and TLLR are implemented into the Tool Source Code (TSC) which when
compiled and linked yields the Tool Executable Object Code (TEOC) i.e. the actual
resulting tool.

Traceability is an important aspect in this development process. Each artifact is
required to have trace links of some form to the artifacts from which it was devel-
oped. Trace data is then used in various ways by verification activities to show that
no unintended (i.e. untraceable) artifacts were inadvertently introduced, but also
to support impact analyses when artifacts need to be modified.

2.4.4 Tool Verification

Several verification activities must be conducted on the development artifacts and
are depicted as dashed arrows on Figure 2.3. Like in the certification process, each
artifact should be verified for accuracy and consistency, and conformance with the
requirements and code standards defined in the planning phase. This kind of verifi-
cation is depicted as looped dashed arrows. Artifacts must also be verified for com-
pliance with the artifacts from which they were developed (relying on trace data).
These verifications are depicted as upward dashed arrows. For the TEOC the verifi-
cation of compliance with TLLR, TR and TOR is performed through requirements-
based testing.

Many of the above verifications must be performed with independence. In all
verifications of compliance, the person verifying an artifact must be different from
the person who developed the artifact. Independence may be achieved granularly
over individual artifacts. For example, the person implementing a component A
of the SC can review a component B of the TSC for compliance with the TLLR if
he/she did not participate in the coding of B.

Tool Operational Verification and Validation

In the aforementioned verifications, those concerning the TOR are of particular
importance and constitute the Tool Operational Verification and Validation (TOV&V).
TOV&V includes the following objectives:

1. The TORs are sufficient to automate the operational development activities
and eliminate the operational verification activities within the claimed certi-
fication credit.

52 © 2016 Elie RICHA



2.5. Requirements-Based Testing in Qualification

2. The TEOC complies with the TORs.

Consequently, TOV&V depends on the claimed certification credit. For exam-
ple, if credit is claimed for the compliance of the generated code with a Code Stan-
dard (objective O2 in Section 2.2), then first a review of the TOR must ensure that
the specification of the TOR complies with the Code Standard. Then, TOR-based
testing should verify that the generated code complies with the TOR, and by tran-
sitivity with the Code Standard.

However if credit is claimed for the compliance of the EOC with LLR (objective
O3 in Section 2.2) then the TOV&V is more complex. In a traditional certification
process, O3 is demonstrated with LLR-based testing that must satisfy the MC/DC
structural coverage criteria. If LLR-based testing is to be removed, it must be re-
placed with an equivalent verification in TOV&V. For O1 the reviews of the TOR
must ensure that the generated code as specified by the TOR implements the model
semantics correctly, and for O3 TOR-based testing should be equivalent to LLR-
based testing, i.e. it should involve compiling the generated code itself using the
same compiler used for the certified application, executing the generated EOC itself
to show its compliance with the model from which it was generated, and perform a
coverage analysis to show MC/DC structural coverage of the generated EOC. Only
then can the LLR-based testing be confidently eliminated.

Given the complexity of the testing involved in tool qualification the next section
will detail this aspect further.

2.5 Requirements-Based Testing in Qualification

Testing is one of the most costly aspects in qualification. This is because the stan-
dard requires high levels of exhaustiveness in the selection of test cases as well as
in the coverage of the software structure. For this reason we have decided to focus
this thesis on this specific aspect. Given its large scope of applicability, the stan-
dard does not require specific representations for requirements and test artifacts
since this can vary greatly depending on the qualified tool. However it provides
the general steps that should be followed and the artifacts that should be produced.

Test Cases Development

In line with the requirements-centered philosophy of qualification, the selection
of test cases and the definition of expected results is based solely on the require-
ments: TOR, TR and TLLR. From each requirement a set of test cases is developed
where each test case identifies the set of inputs to the tool or the tested component,
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and the expected result or the pass/fail criteria. As with all qualification artifacts,
test cases must be traced to the requirements from which they were developed. The
development of test case is required to be systematic and thorough.

For requirements involving numeric data, equivalence classes and boundary
values should be used for the definition of test cases. To give a rough example, if a
requirement relies on a numeric parameter p and distinguishes different behaviors
if p < 0, p = 0 or p > 0, then 3 test cases must be developed, one for each range of
p. For requirements involving logic formulas the MC/DC criteria applies to these
formulas: test cases should be developed in a way to show that each individual
condition independently affects the outcome of the logic formula. Robustness test
cases must also be developed using inputs outside of the nominal ranges of the tool
to test the capability of the tool to handle abnormal inputs and issue appropriate
error messages. For example for an ACG it is very important that the tool avoids
generating wrong or partial output in the event of errors.

All test cases are implemented into test procedures which specify how the testing
environment is setup, how stubs are setup, how the test is executed and how the
pass/fail verdict is determined. As explained in the previous section, TOR-based
testing depends on the claimed certification credit. When claiming credit for com-
pliance of the compliance of EOC with LLR in the operational context, then TOR-
based test procedures should include compilation and execution of the generated
code itself, and not only of the tool.

Analysis of Requirements-based Testing

After executing all tests, an analysis of the test results and the trace data is per-
formed. First test failures are investigated to determine and correct errors. Then the
trace data is analysed to ensure that all test procedures are executed and that test
coverage of all requirements is achieved: each requirement is associated to at least
one test case, and normal and robustness test cases were defined in the manner
explained earlier.

Then structural coverage analysis of the TSC is performed to determine if there
are code structures that were not exercised by the requirements-based testing. The
coverage criteria required for source code is also MC/DC. When non-covered code
structures are found, analysis should determine the reason. If the non-covered code
is due to a shortcoming in the definition of test cases, then additional test cases
should be developed. If the non-covered code corresponds to dead code or unused
functions of the tool, it must either be removed or justified by explaining why it
does not affect the functionality of the tool.

54 © 2016 Elie RICHA



2.6. Scope of the Research: Model Transformation Chains

Tooling

We have discussed that the standard does not require specific representations for
requirements and test artifacts as long as they comply with the definitions of the
standard. This opens the door to using structured representations of requirements
and test cases allowing to apply systematic methodologies in testing activities and
even automatic tools to support the generation of test cases and test data. Such tools
may need to be qualified themselves depending on their role and the confidence put
in their output. However since they do not contribute to the actual software, these
tools would be qualified at a much less rigorous TQL than the ACG which is not
very costly.

Given these possibilities and the high cost involved in testing, we have decided
to focus this thesis on investigating methodologies and tooling to support the test-
ing activities involved in the qualification of ACGs. First in the next section we will
present the general scope and assumptions that we adopt for this investigation be-
fore proceeding in Chapter 3 to an overview of existing works within the identified
scope.

2.6 Scope of the Research: Model Transformation Chains

QGen

On the industrial side, the context of this work is the QGen toolkit which is a
code generation and model verification toolkit developed at AdaCore for Simulink
and Stateflow models. It supports a wide subset of Simulink and Stateflow ele-
ments that are relevant for the development of critical software. The main product
of the toolset is an ACG targeting C and Ada source code which can be config-
ured with optimisation options and custom behavior. QGen also integrates this
code generation tool with other AdaCore compiler, emulation, and static analysis
technology to support testing the generated code on target architectures as well as
performing static analysis of Simulink/Stateflow models.

More specifically, the context of this thesis is the ACG of the QGen toolset.
AdaCore seeks to provide a qualifiable ACG of Simulink models to C source code.
This means providing customers with not only the tool, but also the evidence (or a
significant part of it) necessary for its qualification, including planning documents,
requirements documents and verification documents complete with test cases, test
execution results etc. Many difficult questions arise in that context. The needs of
customers can differ, requiring potentially different configurations of the tool and
as a result different artifacts in the qualification evidence. How different qualifi-
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cation evidence can be produced in a flexible and efficient process that remains
compliant with the standard is a very difficult research question that we do not
try to answer in this thesis. Instead we will assume a smaller objective which is the
qualification of one configuration of the ACG and investigate ways to optimise that
process, focusing specifically on the testing activities. In the remainder of the the-
sis, we will use the term QGen to refer to the Simulink to C code generator intended
for qualification.

Model Transformation Chains

User-visible Language Intermediate Representations

conforms to

MMi MMi+1MM0

M0 Ti−1 TiMi Mi+1 MN. . . . . .Ti+1

Figure 2.4: Model transformation chain

Even though the industrial context of our work is QGen, our work will not be
limited to that tool but will extend to the general family of code generators and
other software sharing the same kind of architecture. Like many model-based tools,
an ACG is typically designed as a Model Transformation Chain (MTC). The kind of
MTCs that we will study have the structure depicted in Figure 2.4. A chain takes
as input a model M0 conforming to the metamodel MM0 used by the users of the

chain, and applies a series of transformations Mi
Ti−→ Mi+1. The input model is

thus transformed step by step into intermediate models conforming to internal in-
termediate metamodels which are not exposed to the user. Finally, the last trans-
formation produces the output MN of the chain which in the case of an ACG is the
source code.

In the literature, MTCs can have more complex structures with for example al-
ternative branches implementing configurable behaviors of the software. However
we adopt this simpler form because it corresponds better to the context of qual-
ified tools. As explained earlier an ACG is qualified in a specific context with a
particular set of requirements. Therefore there is no need to consider configuration
aspects. Additionally, given the high cost involved in qualification, it is advisable
to simplify as much as possible the qualified tool.
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In our MTCs we assume that transformations are model-to-model meaning that
they transform an input model into an output model, except for the last transfor-
mation which is model-to-text. Since the input of the chain is often a text file, the
first transformation is typically a text-to-model parsing transformation, however we
will not consider that kind of transformations and will assume that the chain starts
with a parsed model.

A transformation is said to be endogenous if the input and output metamodels
are the same and it is exogenous if the input and output metamodels are different.
Both kinds of transformations can be involved in an ACG. For example the QGen
chain starts with a series of endogenous transformations involving flattening of
nested structures, resolving of references, and various refinements of the Simulink
model while remaining within the same metamodel. Then an exogenous transfor-
mations translates the Simulink model to a so-called code model which is similar to
the abstract syntax tree of source code. The code model is again refined by a series
of endogenous transformations including expansion and optimisation of the model
before the ultimate model-to-text printing transformation.

Given this scope and assumptions, in the next chapter we proceed to a review
of existing work in the literature that is relevant to our context. Namely, we are
interested in strategies and methodologies for the testing of model transformations
and model transformation chains.

2.7 Conclusion

In this chapter we have set the stage for the research conducted in this thesis. Crit-
ical airborne software is subject to the rigorous constraints of the DO−178C certifi-
cation standard. This makes their development extremely costly due to the exten-
sive verification and testing activities that are required, in particular the reviews
of source code and the low-level requirements-based testing. Manufacturers seek
to reduce the cost of certification by using a qualified Automatic Code Generator
(ACG) that provides enough confidence in the generated code allowing to elimi-
nate part or all of its verification.

Qualifying an ACG is also a rigorous process defined by the DO−330 standard
and arguably as costly as certification. It requires deploying a heavy requirements-
driven process involving traceability and verification of all development artifacts.
A significant portion of the cost of qualification is related to the extensive testing
required on the ACG, including the development of a large number of carefully
designed test cases with high criteria of requirements and source code coverage to
satisfy. This lead us to focus this thesis on the investigation of testing techniques
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and methodologies for ACGs which essentially consist of model transformation
chains. As a result, the next chapter will be dedicated to a literature review of
the current scientific advances on the testing of model transformations and model
transformation chains.
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Literature Review on the Testing of Model
Transformations and Code Generators
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Chapter 3. Literature Review on the Testing of Model Transformations and Code Generators

3.1 Introduction

Having identified the testing of model-based code generators as the focus of this
thesis, we present in this chapter a literature review covering existing works on the
testing of Model Transformations (MTs) and Automatic Code Generators (ACGs).

Before we proceed with the literature review, it is important to acknowledge that
testing is one way to verify the correctness of model transformations, but correct-
ness can also be shown via formal methods relying on mathematical abstractions.
So it is interesting to explain first the distinction between the two verification meth-
ods and justify why only testing is considered in our work.

Formal verification consists in using a mathematical model of the transformation
to be verified and demonstrating the desired correctness property either for
all possible inputs of the transformation (i.e. unbounded verification) or for
a subset of the possible inputs (i.e. bounded verification). In both cases, the
verification is exhaustive meaning that correctness is shown for all possible
elements of the verification scope.

Testing consists in selecting particular instances (i.e. test models) from the set
of possible inputs of the transformation under test and verifying that the
transformation executes correctly for these instances. The verification is non-
exhaustive, hence the underlying hypothesis is that if the test models are suffi-
ciently varied and representative of the set of possible inputs, then the trans-
formation is assumed to be correct for any instance of the set.

Compared to testing which validates a transformation using selected instances
of the input domain (i.e. the set of all possible inputs), formal verification is in a
sense stronger than verification by testing because the correctness is demonstrated
for all instances of the verification scope and not only for some selected test in-
stances. However often in practice the formal verification result can be compro-
mised by implementation factors. This is because formal verification tools reason
on the mathematical model of the transformation which may differ from the actual
implementation of the transformation: the execution engine may include bugs or
hidden divergences from the formal semantics of the language. Therefore the result
of the formal verification is only valid as long as the execution engine is true to the
language semantics and is bug free. In that regard testing has the advantage that
it exercises the actual implementation and not a formal representation of it. The
verification result is therefore undeniably valid (on the test instances) for the final
software.
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For this reason, in the industrial context of qualification, even though formal
methods may be applied in certain cases, testing remains the preferred and most
trusted verification method, and strict coverage criteria are required to ensure its
thoroughness.

As a result, the first section of this chapter gives a brief overview of the formal
verification of MTs while the rest of the chapter is dedicated to their testing.

3.2 Formal Verification of Model Transformations

Formal verification approaches typically consist in deriving a mathematical model
of the relationship between the input and output domains of a transformation
based on its semantics. Various mathematical models have been proposed differing
in the underlying formalisms and the abstractions used [Anastasakis et al., 2007b;
Cabot et al., 2010b; Büttner et al., 2011; Büttner et al., 2012b; Büttner et al., 2012a]. For
example several of these works rely on the notion of a transformation model [Bézivin
et al., 2006] which is composed of the union of the input and output metamodels
of the transformation, with trace links relating input and output elements. The
transformation model includes a set of constraints expressing the relationship be-
tween input and output elements according to the semantics of the transformation.
Such a formal model is then submitted to a bounded or unbounded verification
tool with a target property to be verified. Various properties can be verified includ-
ing functional correctness, i.e. checking that a postcondition always holds on the
output model under the assumption of a precondition on the input model, or other
properties such as determinism or bijectivity.

Bounded verification uses tools such as Alloy [Alloy, accessed 2015] based on
SAT1 solvers and EMFtoCSP [Gonzalez et al., 2012] based on constraint logic pro-
gramming. Such tools can check if a property is always satisfied within a bounded
scope and can provide counter examples if the property is violated. Roughly, the
scope of the verification is defined by the maximum number of objects in the input
and output models.

Unbounded verification employs tools such as ocl2smt [Soeken et al., 2010] rely-
ing on automatic theorem provers, i.e. SMT2 solvers, or interactive theorem provers
such as HOL–OCL [Brucker and Wolff, 2008] which allows an assisted proof of cor-
rectness guided by the user.

1SAT: boolean satisfiability problem; finding an assignment of boolean variables that satisfies a
given boolean formula.

2Satisfiability Modulo Theories
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The SAT and SMT solvers that support formal verification often suffer from scal-
ability issues when dealing with large formal models comprising many concepts
and constraints. This hinders the application of formal analysis to large scale in-
dustrial use cases at the current stage. As for interactive proof approaches, they re-
quire a special kind of expertise in highly theoretical concepts, which is not widely
available in the industry. Finally as explained in the introduction, the correctness
result is only valid as long as the execution technology is compatible with the the-
oretical model used for the verification, which may not be the case in the event of
implementation bugs or corner cases. The risk of discrepancy increases when the
verification model undergoes transformations in the purpose of analysis [Leveque
et al., 2011], which may alter its semantics and jeopardise the applicability of the
verification result to the actual executed software.

For all these reasons, formal verification is not yet popular in the industry, and
testing remains the preferred verification method. Consequently, the rest of this
chapter will be dedicated to the testing of MTs.

3.3 Model Transformation Testing Foundations

Testing a MT consists in (i) producing a set of input test models, (ii) executing the
transformation over each model, and (iii) checking that the resulting model is cor-
rect with respect to a certain specification. If the transformation behaves correctly
during testing, it is then assumed to behave correctly for all possible inputs. Evi-
dently, this claim only holds if the set of test models is sufficiently rich and repre-
sentative of all possible inputs, and it is highly important to ensure that the test set
exhibits these properties. As a result, 3 activities are necessary in the testing of MTs
[Baudry et al., 2010]:

1. Producing test models: The first step in MT testing is producing test models to
be used as input to the transformation under test. Test models must conform
to the input metamodel and must satisfy any validity constraints associated
with the metamodel. This is a challenging task given the complexity of meta-
models and associated constraints which makes manual production tedious
and error prone. Even automatic production is not straightforward as it can
be both time and memory consuming for complex metamodels.

2. Defining test adequacy criteria: It is not possible to test a MT with all possible
inputs. A test adequacy criterion [Zhu et al., 1997] helps select a set of test
models, i.e. a subset of all possible inputs, which is considered sufficient for
testing. Such a criterion should ensure that the test set is sufficiently rich and
representative of the input domain, or that it exercises different execution
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scenarios of the transformation. A test set that satisfies the chosen criterion
is said to be adequate. Various criteria may be used. For example, given a MT
consisting of a set of transformation rules, a simple rule coverage criterion may
be used stating that each rule should be activated at least once by the test
set. More complex criteria assess the effectiveness of the test set at detecting
errors. For example the so-called mutation criterion consists in introducing
intentional errors in the transformation under test and assessing whether the
test set is able to detect these errors [Mottu et al., 2006]. The assumption here
is that if a test set is capable of detecting intentional errors, then it is likely to
detect non-intentional errors as well and is therefore an effective test set. A
test adequacy criterion can be used either to assess the quality of an existing
test set, or alternatively to drive the generation of a test set which would be
adequate by construction.

3. Test oracles: The third challenge in MT testing is determining the verdict of
tests, i.e. assigning a PASS or FAIL verdict to each test execution. Test oracles
can take various forms. For example, a simple form of oracles consists in
comparing the test output with an expected output, manually validated as
being correct. Other more complex oracles may check correctness properties
expected to hold on the output such as the existence or the absence of certain
model elements in the result.

The body of work on MT testing is organised around these three challenges, and
our presentation of existing works is organised accordingly. First we present works
addressing the definition of test adequacy criteria in Section 3.4, then we present
works on test model generation in Section 3.5, and finally works addressing test
oracles in Section 3.6. Some works addressing two or more of the challenges jointly
may be mentioned in more than one section, each time focusing on a different part
of their contribution.

Before moving to the presentation of existing works, we find it relevant to define
common general concepts that can be found in several works, often with different
names. We thus present the following two general schemes that we extracted based
on existing works.

3.3.1 General Scheme for Test Adequacy Criteria and Test Generation

Several works addressing the first two aspects of test adequacy criteria and test
model generation implicitly share a common underlying process illustrated in Fig-
ure 3.1. On the left side of the figure, the first step is to define a test adequacy
criterion as a procedure that takes as input a variety of sources of information (or
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a combination of them). A test adequacy criterion is said to be black-box if it is
based only on information from the specification of the transformation under test,
and it is said to be white-box if it considers information from the implementation.
The result of applying a test adequacy criterion is a set of so-called test requirements
that expresses concretely the constraints that a test set should satisfy in order to be
adequate.

Test Adequacy 
Criterion

Transformation 
Specification 
(black-box)

Transformation 
Implementation 

(white-box)

Input Metamodel 
(black-box)

Test 
Requirements

Assessment of 
Test Set

Set of 
Test Models Adequacy 

Score

Model 
Generation

trj

Mi

Set of 
Test Models

Mi

Tester Knowledge

Figure 3.1: General scheme for test adequacy criteria and test generation

A test requirement is a constraint over input models of the transformation which
must be satisfied at least once during testing. Test requirements express combi-
nations of objects and attribute values that are required to exist in the set of test
models. If a test set contains all such combinations, then it is considered adequate
with respect to the test adequacy criteria. It is not necessary to have a one-to-one re-
lationship between test requirements and test models. One test model could satisfy
multiple test requirements, and one test requirement could be satisfied by multiple
test models, as long as each test requirement is satisfied at least once.

Test requirements can be expressed in various forms. In some approaches they
take the form of so-called model fragments (detailed in Section 3.4.2) which express
combinations of objects and specific ranges for scalar numeric or string attributes.
In other approaches test requirements are OCL constraints that express more com-
plex patterns that are required to exist in test models (detailed in Sections 3.4.3 and
3.4.4).

Once a set of test requirements is obtained it can be used in two ways. The
first, depicted by the upper branch of the process in Figure 3.1, is to consider an
existing set of test models and assess whether each test requirement is satisfied by
at least one test model. An adequacy score is then computed as the ratio of satisfied
test requirements over the total number of test requirements. A test set is adequate
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with respect to the criteria if all test requirements are satisfied. The second use of
test requirements, depicted in the lower branch of the process in Figure 3.1, is to
guide the automatic generation of test models. Several techniques exist and will
be detailed in Section 3.5. Roughly model generation techniques take as input a
test requirement and automatically generate a test model that satisfies it. Thus the
resulting test set is adequate by construction.

The general process of Figure 3.1 for the assessment or the generation of test
sets applies to most test adequacy criteria except for the mutation criterion which is
detailed in Section 3.4.1. The reason is that the mutation criterion assesses a test set
by evaluating its ability to detect errors intentionally introduced in the transforma-
tion under test. This cannot be easily expressed as a set of test requirements and
therefore the mutation criterion follows a fundamentally different process that will
be detailed in Section 3.4.1.

3.3.2 General Scheme for Test Oracles

Test 

Model

Transformation 

Under Test

Test 

Output

Expected 

Output

Transformation 

Contract 

Specification

Test Oracle

· · ·

Test Verdict 

PASS/FAIL

Figure 3.2: General scheme for test oracles

With the aspects of test adequacy criteria and test model production covered by
the previous scheme, the last aspect is the test oracles which validate the output of
a test execution. Approaches addressing test oracles follow the general scheme of
Figure 3.2 based on [Mottu et al., 2008] which defines and compares several forms
of test oracles for MT. Each test model is given as input to the transformation under
test, and the role of a test oracle is to decide whether the test output is valid or not,
yielding the verdict of the test accordingly: PASS or FAIL. As discussed in [Mottu et
al., 2008] several kinds of oracles can be used. Oracles may be simple, consisting of
a comparison with an expected output manually validated to be correct, or rely on

© 2016 Elie RICHA 65



Chapter 3. Literature Review on the Testing of Model Transformations and Code Generators

a contract-based specification of the transformation which can be evaluated over
the pair (Test Model, Test Output) to assess whether the result complies with the
specification. The most prominent approaches of test oracles will be detailed in
Section 3.6.

Having laid down a general terminology for test adequacy criteria, test model
generation and test oracles, we now proceed with the review of existing works on
MT testing starting with approaches that propose test adequacy criteria.

3.4 Test Adequacy Criteria

3.4.1 Mutation Criterion

As mentioned previously in Section 3.3.1, the mutation criterion does not adhere
to the general scheme of test adequacy criteria presented earlier. However we start
with this criterion because it is subsequently used in several other approaches as a
way to assess the quality of other test adequacy criteria.

Basic Principle

Mutation analysis is a testing technique originally proposed for general purpose
software as a way to estimate the quality of a test set in terms of its fault revealing
power, i.e. its ability to detect faults. In [Mottu et al., 2006] the authors adapt mu-
tation analysis to the testing of MTs. The approach consists in inserting intentional
errors in the transformation under test to create faulty versions of the transforma-
tion called mutants. Each mutant is the original transformation modified by the
injection of a single fault. Then each test model is given as input to the original
transformation and to each mutant and the outputs are compared. A mutant is
said to be killed if for some test the output of the mutant is different than the out-
put of the original transformation, i.e. the test set was able to reveal the fault in
the mutant. Conversely, a mutant is said to be alive if no tests reveal a difference
between its output and the output of the original transformation, i.e. the test set
was not able to reveal the fault in the mutant or the mutant is equivalent to the
original transformation. The more mutants are killed by the test set, the better the
test set is at revealing faults. It is then assumed that if the test set is able to de-
tect intentional faults, then it is likely to detect real involuntary errors. A mutation
score is computed for the test set as the proportion of revealed mutants among the
non-equivalent mutants.
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Mutation Operators

For the generation of mutants, [Mottu et al., 2006] proposes a set of mutation op-
erators dedicated to MTs. Mutation operators represent typical errors that MT de-
velopers may introduce. For example, the Collection Filtering Change with Deletion
(CFCD) operator deletes a filter on a collection, thus modeling the situation where
a developer forgets to add a filter on a collection before using it in the transforma-
tion. The fact that mutation operators model real developer errors reinforces the
pertinence of mutation analysis as an assessment of a test set’s ability of detecting
involuntary errors. The proposed mutation operators are language independent
making the analysis applicable to any MT language. A precise modelling of muta-
tion operators was later proposed in [Aranega et al., 2014] which allowed to extend
mutation analysis with a method to generate new test models to improve the mu-
tation score. We will detail this extension later in Section 3.5.3 when we discuss
model generation techniques.

Mutation Analysis as a Metric

Beyond assessing a particular test set, mutation analysis is often used to assess
other test adequacy criteria and automated test generation approaches associated
with them. A criterion is assessed by evaluating the mutation scores of test sets
generated based on it. In this way different test adequacy criteria can be compared
with each other as will be mentioned in the following sections.

Discussion

Despite its scientific value, mutation analysis cannot be used in the context of
qualification as a main method for the monitoring of testing quality. In a qualifi-
cation process tests are developed based on the requirements of the software, i.e.
high-level Tool Operational Requirements (TOR), Tool Requirements (TR) and Tool
Low-Level Requirements (TLLR). The main criteria for assessing the quality of test-
ing is a coverage criteria: all requirements should be covered by tests, logical formu-
las in requirements should have MC/DC coverage, and source code should have
MC/DC coverage. Even if mutation analysis is used to provide more confidence in
the test set, it may not replace the coverage-based criteria required by the standard.

However, it would be interesting to compare the quality of coverage oriented
testing in qualification with mutation driven testing in terms of the fault revealing
power. Even though we have not conducted such a study, experimental data in a
coverage oriented approach in [Mottu et al., 2012] tends to show that a coverage-
based approach based on a detailed specification of the software under test results
in a hight fault revealing power. This confirms that the thoroughness of coverage
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criteria required in qualification is necessary to ensure the quality of testing. This
aspect will be further detailed once we present coverage-based criteria in the next
section.

3.4.2 Input Metamodel Coverage Criteria

Input domain coverage is a classical criteria in the testing of general software. In
[Fleurey et al., 2004; Brottier et al., 2006; Fleurey et al., 2007] the authors define sev-
eral coverage criteria for the input metamodel of a model transformation. These
approach adhere to the general scheme of test adequacy criteria that we presented
in Section 3.3.1. In that scheme, a test adequacy criteria is a procedure that takes as
input information from various sources (e.g. the input metamodel, the MT specifi-
cation etc.) and generates a set of test requirements to be satisfied. The set of test
requirements is then used either to assess the quality of an existing test set or to
drive the generation of a test set from scratch.

In all the approaches detailed next, the main idea is to ensure that all elements
of the metamodel are instantiated at least once in the test set, and that there is a
sufficient variety in the way objects are related and in the values assign to their
attributes in the test models.

Partitioning

The approaches start with a partition analysis inspired from the category-partition
method of testing classical programs [Ostrand and Balcer, 1988]. The method con-
sists in dividing the input domain of a program into non-overlapping subsets called
equivalence classes. The set of equivalence classes is called a partition. A test set can
then be built by selecting one test datum from each equivalence class. The assump-
tion is that if the program executes correctly for the selected datum, it should also
execute correctly for any other instance of the equivalence class. This technique is
first adapted to metamodels in [Fleurey et al., 2004] where partitioning is applied
to scalar attributes of metaclasses and for reference multiplicities. For example an
integer attribute attr of a metaclass C yields a partition of 3 equivalence classes:
{{< 0} , {0} , {> 0}}. Similarly, references yield partitions in terms of the num-
ber of objects contained in the reference. This partitioning is arbitrary and may
not be relevant for the transformation under test. For this reason a better suited
knowledge-based partitioning is also proposed which relies on singular values of par-
ticular significance to the transformation. Such values are either provided by the
tester or automatically extracted from literals in the specification of the transforma-
tion (e.g. its pre- and post-conditions). For example if the precondition compares
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attr with a literal value of 3, then the following partition is more relevant for the
transformation: {{< 3} , {3} , {> 3}}.

Model Fragments

Considering each partition independently on its own is not sufficient. This is
why after partition analysis, the identified equivalence classes are selected and
combined into so-called model fragments. A model fragment is a set of equivalence
classes selected from the partitions identified earlier. A model fragment indicates
that at least one of the test models must contain objects with attribute values and
references that are part of the selected equivalence classes. Each model fragment is
therefore a constraint that must be satisfied by at least one test model: it represents
a test requirement in the general scheme that we proposed.

Black-box Adequacy Criteria

In [Fleurey et al., 2007] model fragments are generated automatically according
to different strategies. Each strategy combines equivalence classes in a different
way and constitutes a different test adequacy criterion. All the proposed criteria
are black-box because they are only based on the input metamodel and not on the
implementation of the MT.

The AllRanges criteria is the simplest and requires simply that each equivalence
class be satisfied once, yielding one model fragment for each equivalence class. An-
other simple criteria, AllPartitions, requires all equivalence classes of each partition
to be satisfied in the same model, yielding one model fragments per partition such
that all equivalence classes of the partition are selected in the model fragment. This
ensures the co-existence of equivalence classes of the same partition in the same
model, but does not guarantee the interaction of different partitions. Eight other
more complex criteria are proposed to combine equivalence classes of different par-
titions derived from the same metaclass or from different metaclasses, taking into
account inheritance relationships.

White-box Footprint-driven Criterion

In contrast with the above black-box criteria which are only based on the in-
put metamodel, in [Mottu et al., 2012] a different coverage criterion is proposed
based on a white-box static analysis of the implementation of the transformation.
A footprint of the transformation is extracted from its implementation and identifies
metamodel features that are closely related because they are used jointly within the
same operation of the transformation. The idea is then to build model fragments
by combining partitions of closely related features based on the footprint.
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Assessment of a Test Set

Once the set of model fragments is generated based on a black-box or a white-
box coverage criteria, it can be used either to assess the quality of an existing test
set, or to generate a new test set from scratch. We only discuss the former aspect of
assessment at this stage while the latter model generation for Section 3.5.

The assessment of a test set is performed by the Metamodel Coverage Checker
(MMCC) tool discussed in [Fleurey et al., 2007]. In fact the tool implements several
aspects of the approach: (1) it performs the partitioning of a metamodel, (2) it gen-
erates model fragments according to the adequacy criteria discussed above, and (3)
it assesses whether each model fragments is satisfied at least once in a set of test
models.

Comparison of Coverage Criteria

In [Sen et al., 2009] automatic test generation is performed guided by the All-
Ranges and AllPartitions criteria and mutation analysis is used to assess the quality
of the resulting test sets in terms of their fault revealing power. Both criteria were
found to yield relatively close mutation scores on average ( 82%), both higher than
a random unguided test generation approach. In [Mottu et al., 2012] the white-
box footprint-based criterion was compared to the previous two criteria and found
to yield significantly higher mutation scores reaching 98%. This indicates that a
partitioning and coverage criteria combined with detailed information of the trans-
formation under test (e.g. a white-box footprint) can yield a high quality test set.

Discussion

This body of work explores the notion of metamodel coverage to a large extent,
providing several criteria to define metamodel coverage and the means to achieve
it. Such criteria can be very useful in the industrial context of qualification because
they focus on the notion of partitioning and coverage which is central to the test-
ing philosophy of qualification processes. For example the qualification standard
explicitly requires testing boundary values of integer parameters which is what the
presented approaches do. Such approaches are therefore good candidates to drive
the testing of qualified software.

In particular, the white-box approach of [Mottu et al., 2012] showed a 98% mu-
tation score, a higher score than black-box approaches. However in qualification
the production of tests is based on requirements, and thus is necessarily black-box.
Does this mean that we cannot benefit from the white-box criteria in qualification?
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In fact we believe that the high score reached by the white-box approach is due
to the combination of two factors: (1) an input domain partitioning method and
(2) detailed knowledge of the software under test driving the combination of par-
titions. Qualification demands a high level of detail in the specification of require-
ments, a level close to that of the implementation. Therefore we believe that the
knowledge in (2) can be extracted from the requirements instead of the implemen-
tation, yielding a black-box approach compatible with qualification and with a high
fault revealing power.

In line with that last idea, we present in the next section criteria based on the
specification of a MT.

3.4.3 Specification-based Criteria

Specification Language

In [Guerra, 2012; Guerra and Soeken, 2015] the authors propose to use the spec-
ification of the MT to guide its testing. The approach deals jointly with all three
aspects of testing: test adequacy criteria, test model generation and test oracles;
however we focus on the first aspect at this stage. This approach also adheres to
the general scheme presented in Section 3.3.1 whereby a test adequacy criteria gen-
erates a set of test requirements that should be satisfied by the test set. In this case,
the input of the test adequacy criteria is the specification of the MT.

The specification language in this approach is PAMOMO [Guerra et al., 2010], a
formal pattern-based declarative language. The specification is composed of three
kinds of elements:

1. Preconditions that all input models should satisfy.

2. Postconditions that all output models should satisfy.

3. Invariants that express a different kind of postconditions that should be satis-
fied jointly by the input model and the output model after the transformation.
Invariants are composed of a source pattern and a target pattern and express
properties of the form: if the source pattern appears in the input model then the
target pattern should exist (or should not exist) in the output model.

All the above specification elements are represented as graph patterns option-
ally accompanied with OCL constraints.
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Specification Coverage Criteria

Since postconditions only concern the output model and preconditions must be
satisfied by all input models, only invariants are considered for defining the speci-
fication coverage criteria. The approach proposes to extract from each invariant the
source pattern concerning the source model and translate it to an OCL constraint
requiring the existence of the source pattern. This OCL constraint is called a prop-
erty and the result of this first step is a set of properties ei. Then seven levels of
coverage criteria are proposed, each criteria combining the extracted properties in
a different way.

We illustrate a few of the specification coverage criteria in Table 3.1 where we list
for each criteria the resulting set of test requirements, assuming there are 3 proper-
ties in the specification. The first criteria, property coverage, is the simplest because it
requires that each property should be satisfied at least once by a test model. In con-
trast, t-way coverage requires that all possible combinations of t properties should
be covered jointly. This ensures that the interaction between different parts of the
specification is tested and verified to be correctly implemented. The so-called closed
versions of the criteria complement the set of test requirements with the negation
of each test requirement.

property closed property 2-way closed 2-way . . .
e1 e1 e1 and e2 e1 and e2
e2 e2 e1 and e3 e1 and e3
e3 e3 e2 and e3 e2 and e3

not e1 not e1
not e2 not e2
not e3 not e3

Table 3.1: Test requirements for different specification coverage criteria applied to
3 properties (excerpt from [Guerra, 2012] )

Assessment and Comparison of Criteria

As customary, mutation analysis is performed in [Guerra and Soeken, 2015] to
compare the quality of test sets generated with the above criteria: property cover-
age, closed property coverage, 2-way coverage and closed 2-way coverage. Since
these criteria are specification-based, a particular aspect of this assessment is that it
considers how the degree of completeness of the specification affects the quality of
the resulting test sets. It is found that when the specification is incomplete, closed
versions of the criteria outperform the other versions, but for complete specifica-
tions, the criteria were found to yield test sets of identical quality. This highlights

72 © 2016 Elie RICHA



3.4. Test Adequacy Criteria

the importance of ensuring a complete and detailed specification when adopting a
specification-based testing approach.

Additionally, the highest attained mutation score across all criteria is 84%, how-
ever this metric is to be considered with care. The mutation analysis set up for
this evaluation is slightly different than the classical mutation analysis presented in
Section 3.4.1. In addition to the specification-based adequacy criteria, this approach
also proposes specification-based oracles that will be detailed in Section 3.6.2. As a
result the mutation analysis conducted in this work uses these specification-based
oracles instead of the classical comparison with the non-mutated transformation.
Therefore the resulting metric assesses the quality of both the test adequacy criteria
and the test oracles simultaneously. This prevents a comparison with the scores of
other test adequacy criteria of the literature such as the ones based on input do-
main coverage that we presented in Section 3.4.2. In fact, the authors explain that
the score of 84%, which is relatively low compared to the 98% reached with the
white-box footprint-based metamodel coverage criteria of Section 3.4.2, is due to
the inability of the oracles to detect mutants rather than to the quality of the test
set itself. This aspect will be further detailed when we discuss test oracles in Sec-
tion 3.6.2.

Discussion

This kind of approach seems very interesting from the industrial qualification
viewpoint because it is based on the specification which is the underlying philos-
ophy of requirements-based testing in qualification. The approach seems to be ap-
plicable beyond the PAMOMO specification language since the proposed criteria
could be applied to any form of specification organised as a collection of rules or
invariants. The combinatorial nature of the proposed criteria is interesting from
a qualification perspective because it allows to exercise the interaction of different
parts of the specification jointly, thus pushing the coverage of requirements to a
further extent.

The quality of test sets resulting from such a specification-based approach is ev-
idently sensitive to the level of detail and completeness of the specification. Given
the multi-level requirements scheme in qualification, i.e. high-level TORs, interme-
diate TRs and low-level TLLRs, we expect TLLRs to have the necessary complete-
ness and level of detail necessary to ensure the quality of testing in this approach.

Finally, the choice of OCL to express test requirements in this approach is more ex-
pressive than the model fragments used in the approaches of Section 3.4.2. It allows
in particular expressing negative constraints prohibiting the existence of certain el-
ements which was not possible with model fragments. In addition we believe OCL
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is a good candidate for describing test cases in a qualification process because its
expressiveness would allow the combination of automatic and manual specifica-
tion of test cases. Since test cases are expected to characterise both the input and
the output of a test, OCL test requirements can represent the characterisation of the
input within a test case.

In the next section we discuss approaches that propose coverage criteria based
on OCL expressions that occur either in the specification (black-box) or in the im-
plementation (white-box).

3.4.4 OCL Structural Coverage Criteria

General Principle

In [González and Cabot, 2012; González and Cabot, 2014] the authors propose
to analyse OCL expressions to identify the various ways in which an OCL expres-
sion may be executed and ensure that testing covers all possible executions. For
example, the expression obj.ref->select(e|e.someAttr) where ref is a reference
to objects of type T could be tested under several situations:

1. There are no objects of type T:
T::allInstances()->isEmpty()

2. There are objects of type T but none have someAttr set to true:
T::allInstances()->select(e|e.someAttr)->isEmpty()

3. There are objects of type T and some of them have someAttr set to true:
T::allInstances()->select(e|e.someAttr)->notEmpty()

4. . . .

Each of the listed constraints is a test requirement that should be satisfied at
least once in the test set.

Two different analyses are proposed in [González and Cabot, 2012] and [González
and Cabot, 2014] for the generation of test requirements. In [González and Cabot,
2012] the analysis is inspired from traditional control flow and data flow coverage
strategies [Myers et al., 2011] involving the construction and traversal of a depen-
dency graph constructed for OCL expressions (similar to a control flow graph for
traditional programs). Classical strategies such as Condition Coverage and Multiple-
Condition Coverage are used in the traversal of the graph to generate a set of test
requirements.

In [González and Cabot, 2014] an ad-hoc analysis of OCL constraints is pro-
posed to partition the input domain of the transformation based on a similar un-
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derlying principle: enumerating the different ways in which an OCL constraint
can be satisfied, each corresponding to a different region of the input domain. Test
requirements are then generated based on different strategies to combine regions.

White-box/Black-box

In [González and Cabot, 2012] the approach is white-box because the analysed
OCL expressions are taken from the implementation of the transformation whereas
in [González and Cabot, 2014] OCL metamodel invariants are analysed making the
approach black-box. However both approaches may be black-box or white-box
depending on the origin of the analysed OCL expressions.

Discussion

From a qualification viewpoint only a black-box usage of these OCL analy-
ses would be useful since testing should be solely requirements-based. Moreover
the Condition Coverage and Multiple-Condition Coverage (MCC) criteria discussed
in these approaches are closely related to the Modified Condition/Decision Coverage
(MC/DC) criteria required in qualification.

The MC/DC criteria that we presented in Section 2.2.2 is in fact a simplified ver-
sion of the MCC criteria (also known as exhaustive testing) [Hayhurst et al., 2001].
For a decision composed of N independent conditions, MCC requires 2N tests
which is very difficult to achieve for large decisions. This lead to the adoption
of MC/DC which requires only N + 1 and still ensures a high combination of con-
ditions.

In qualification, MC/DC is required for source code, but also in the definition
of test cases based on requirements expressed as boolean formulas. The OCL cov-
erage approaches that we discussed in this section are therefore highly relevant
if requirements involve OCL expressions since they would allow to automatically
ensure the level of coverage required by the standard.

This concludes the review of test adequacy criteria proposed in the literature.
We now move to the review of test model generation approaches which are typi-
cally guided by the test requirements produced based on test adequacy criteria.

3.5 Test Model Generation

In this section we give an overview of test model generation approaches of the lit-
erature. The first two approaches in Section 3.5.1 and Section 3.5.2 adhere to the
general scheme for model generation that we described in Section 3.3.1. According
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to that scheme a model generation approach takes as input a set of test require-
ments, and generates a set of test models that satisfy each test requirement at least
once. The third approach of Section 3.5.3 does not adhere to that scheme because it
is based on the mutation criteria.

3.5.1 Ad-hoc Model Generation Based on Model Fragments

One of the first model generation algorithms was proposed in [Brottier et al., 2006]

to generate models satisfying test requirements expressed as model fragments.
Given a set of model fragments derived from a metamodel coverage criteria (see
Section 3.4.2), the algorithm generates a set of models that satisfy the model frag-
ments. Several configuration parameters control the size and characteristics of the
generated models. For example the maximum number of objects in each model
and the minimum number of model fragments to be included in the same model
can be specified.

However, this algorithm does not take into account metamodel validity con-
straints and transformation preconditions. There is no guarantee that models pro-
duced by the algorithm will satisfy both the metamodel constraints and the pre-
conditions, and models violating these constraints cannot be used for testing. If
such violating models are encountered, the tester must manually investigate the
model fragments that produced them to determine if the fragments are in conflict
with validity constraints and preconditions and should be discarded. This manual
activity is highly inconvenient. Furthermore, another limitation of this approach is
the limited expressiveness of model fragments when it comes to generating mod-
els to satisfy constraints manually provided by the tester. Model fragments cannot
express arbitrary constraints (such as the absence of object patterns) which limits
the scope of testing knowledge that the tester can manually introduce. Both limi-
tations led to the wide spread adoption of model generators based on Constraint
Satisfaction Problem (CSP) solvers which are presented next.

3.5.2 Model Generation with Constraints Satisfaction Problem Solving

Several approaches propose to describe model generation as a Constraint Satisfac-
tion Problem (CSP) and use SAT solving and SMT3 solving. The main advantage of
such approaches is the ability to include any needed constraints to the model generation
such that generated models are guaranteed to satisfy all constraints simultaneously.

3satisfiability modulo theories: SAT with predicates on non-boolean variables subject to a set of
rules called a theory, e.g. linear arithmetics for real numbers, arrays, lists etc.
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This allows to drive the model generation with knowledge combined from various
sources:

– Metamodel structure and semantics (i.e. multiplicity constraints, containment
references constraints etc.)

– Metamodel validity constraints (OCL)

– Transformation preconditions (OCL)

– Test requirements automatically generated based on a test adequacy criteria (e.g.
model fragments for metamodel coverage in Section 3.4.2, OCL test requirements
for specification coverage in Section 3.4.3 and Section 3.4.4)

– Arbitrary testing constraints provided manually by the tester

Several such approaches exist relying on various CSP paradigms and technolo-
gies. The underlying principle is to encode the structure of the metamodel in
the CSP paradigm. Then all constraints over the metamodel are transformed into
equivalent constraints over the CSP structure. This includes both metamodel va-
lidity constraints and transformation preconditions. Finally, each test requirement
is translated to a constraint in the CSP and the solver is invoked to find an instan-
tiation of the structure that satisfies all constraints: the test requirement as well as
the validity constraints and transformation precondition. If a solution is found,
it is translated from the CSP paradigm back to a model. If a solution is not found,
then either there is a conflict between the test requirement and the other constraints
making their combination unsatisfiable, or the bounds (if any) chosen for the solver
to limit the search space are too restrictive.

Several such tools were proposed in the literature based on various technologies.
The following is a non exhaustive list:

1. Pramana [Sen et al., 2008] based on Alloy [Alloy, accessed 2015] and SAT
solvers.

2. EMFtoCSP [Gonzalez et al., 2012] (formerly UMLtoCSP) based on the ECLiPSe

Constraint Programming System4 [ECL, accessed 2015].

3. UML2Alloy [Anastasakis et al., 2007a] based on Alloy and SAT solvers.

4. Snapshot generation in the UML-based Specification Environment (USE) [Gogolla
et al., 2005]

5. ocl2smt model finder based on SMT solvers [Soeken et al., 2010].

In the context of our work, we have mostly investigated the first approach based
on the Alloy language and tool. This approach has been applied in several works,

4not to be confused with the Eclipse IDE platform
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each combining testing knowledge from different sources and formalisms: [Sen et
al., 2008; Sen et al., 2009; Sen et al., 2012; Mottu et al., 2012]. Testing knowledge is
combined into a CSP expressed in Alloy [Alloy, accessed 2015] and the Alloy Ana-
lyzer is invoked to find model instances satisfying the various constraints simulta-
neously. Next, we outline the principles of constraints satisfaction in Alloy.

Bounded Model Finding in Alloy

Alloy is a language allowing to describe a model as a core structure and associated
constraints which implicitly define a set of possible instantiations of the structure
(i.e. those satisfying the constraints). Then the Alloy Analyzer can be used to enu-
merate instances of the structure satisfying the constraints, which is referred to as
model finding. At a first glance the Alloy language has a semantics close to an object
oriented language. An Alloy model is defined as a collection of signatures (sim-
ilar to classes) with extension relationships (similar to inheritance) between them,
where each signature can have relations (similar to inter-class references) to other
signatures with multiplicity constraints. An Alloy model is to a certain extent simi-
lar to a metamodel. However at a lower abstraction level the semantics is in fact set
theoretical. Signatures are sets, and extension relationships indicate the inclusion
of one signature/set in another. A relation between two signatures is in fact a bi-
nary relation between the corresponding sets, and arbitrary n-ary relations can be
defined in Alloy. Based on this core structure of signatures and relations, an Alloy
model also includes the definition of facts which are structural constraints that must
always be true. The language used to specify facts is based on first-order logic, with
the addition of a (reflexive) transitive closure operator.

Given a model composed of a structure and a set of constraints, the Alloy An-
alyzer can find instances of the structure that satisfy all constraints. The analysis
operates by transforming the Alloy model into a corresponding boolean logic for-
mula and then invoking a SAT-solver to find a solution to the formula which is
then translated back to an instance of Alloy model. In order to ensure the finite-
ness of the analysis, Alloy performs model finding within a restricted user-defined
scope. The user specifies bounds to the number of elements in each signature of the
model.

Alloy-based Test Generation

Test generation is performed by translating the problem to an Alloy model. The
metamodel structure is translated to a set of Alloy signatures and relations, with
facts enforcing metamodel semantics such as containment references (i.e. an object
can only exist in one containment relationship and there cannot be containment cy-
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cles). Metamodel validity constraints and transformation preconditions are trans-
lated manually from OCL to Alloy facts. Automatic translation of OCL to Alloy is
possible but was not conducted in these approaches because it raises a number of
challenges. The translation was however tackled in other works [Anastasakis et al.,
2007a; Anastasakis et al., 2010]. Then to this core of necessary constraints, we can
add testing knowledge to guide the model finding.

In [Sen et al., 2009; Mottu et al., 2012] testing knowledge is automatically pro-
vided in the form of model fragments derived from metamodel coverage criteria
or from transformation footprinting as detailed in Section 3.4.2. Model fragments
are translated to Alloy constraints and incorporated in the CSP. For each model
fragment, the Alloy Analyzer is invoked to find a model that satisfies the model
fragment and all other metamodel and precondition constraints. In [Sen et al., 2008]

testing knowledge is added manually. The tester describes patterns of objects that
he deems interesting to test directly in the form of Alloy constraints to drive the
model finding. In [Sen et al., 2012] a radically different approach is proposed for
tester’s manual input of testing knowledge. The idea is that instead of designing
full test models, the tester can specify only the interesting part of the test model in
the form of a partial model which is less tedious to construct. Each partial model
is translated to an Alloy constraint, and the analyzer completes the partial model
into a full test model satisfying also validity and precondition constraints. Using
mutation analysis, the authors go on to show that tests based on partial models
are sufficient and comparatively effective to tests developed fully manually. This
semi-automatic approach is made possible by the versatility of CSP model genera-
tion which can incorporate arbitrary constraints in the model finding.

Other Approaches

The specification-based criteria approach of PAMOMO (see Section 3.4.3) has
used EMFtoCSP5 with SAT solving at first in [Guerra, 2012] and then moved to
ocl2smt with SMT solving in [Guerra and Soeken, 2015]. In both approaches PAMOMO

preconditions are compiled to OCL, and combined with OCL test requirements au-
tomatically generated based on a specification coverage criteria. The resulting OCL
constraint is given as input to EMFtoCSP or ocl2smt to guide the model finding.

Bounds Issues

SAT-based model finders operate within bounds on the size of the considered
models so that the search always terminates. When a SAT-based model finder can-
not find a model instance satisfying all the given constraints, it is either because the

5UMLtoCSP at the time
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set of constraints is unsatisfiable, or because the chosen bounds are too restrictive.
In the former situation it means that the test requirement chosen to drive the model
generation contradicts metamodel constraints or transformation preconditions and
should be discarded. In the latter situation, more appropriate bounds should be
used. Determining which situation is the culprit is not an easy task despite the
feedback given by tools such as Alloy6. Moreover, finding appropriate bounds is
not straightforward since they must be minimal (to avoid a very large search space)
and compatible with the metamodel structure.

Discussion

The main benefit of the CSP-based model generation approach is its flexibility.
Testing knowledge can be incorporated from various sources while always hon-
oring metamodel validity constraints and transformation preconditions. This is a
major advantage over the ad-hoc approach in Section 3.5.1 which did not take into
account validity constraints and preconditions. This flexibility is made possible by
the expressiveness of CSP languages (typically first-order logic with additional fea-
tures) which allows a large spectrum of testing knowledge to be incorporated in the
model generation. However, with bounded SAT-based solvers finding appropriate
bounds is still a manual and non-straightforward task. Despite the limitations,
these model generation approaches would be interesting in a qualification process
to reduce the cost of manually producing the large quantity of test models needed
to achieve the required coverage criteria.

3.5.3 Semi-Automatic Model Generation based on Mutation Analysis

In [Aranega et al., 2014] a significant extension to the mutation analysis presented
in Section 3.4.1 is proposed. While classical mutation analysis only assesses the
mutation score of a test set, this work proposes a method to create new test models
to improve a test set’s mutation score if it is deemed insufficient.

Improved Mutation Analysis

As in the classical analysis, mutation operators are applied to the transformation
under test to create mutants which differ from the original transformation by the
introduction of a single fault. However in this approach, a precise modelling of the
mutation operators is defined in a transformation-language-independent manner
based on the metamodels manipulated by the transformation. Then, a sophisti-
cated traceability model is introduced to keep track of the analysis process: each

6Alloy provides a so-called minimal UNSAT core which is a minimal, but still often large and
tedious to investigate, subset of unsatisfiable constraints
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test model is traced to the mutants it manages to kill and to the mutation opera-
tors that these mutants resulted from. Both mutation operator modelling and the
mutation traceability model serve the generation of new test models in the next
step.

Generation of New Test Models

After the first analysis step, the remaining alive mutants are considered, and
an approach is proposed for the semi-automatic production of new test models
targeting the remaining mutants. A set of patterns and heuristics based on the
traceability model are proposed. Patterns represent known situations preventing
mutants from being killed. Each pattern also proposes recommendations on how
an existing model can be modified to potentially kill the mutant. When known
patterns are detected in the analysis results, the associated recommendations can
sometimes be applied automatically to create new test models. Otherwise, analysis
indications and modification suggestions are reported to the tester to assist him in
manually creating a new test model, hence the semi-automatic nature of the process.
The new test models allow to kill the remaining alive mutants and thus increase the
fault revealing power of the test set.

Discussion

This approach pushes mutation analysis beyond the simple assessment of test
sets towards the generation of new test models. However, the approach relies on
an existing test set and cannot be used on its own to create a test set from scratch.
Nonetheless, the method can be easily combined with other automatic model gen-
eration approaches as a way to improve a test set initially produced with another
automatic method.

However, as previously discussed in Section 3.4.1, in a qualification process the
criteria required for testing are coverage-based and mutation-based approaches can
only be complementary but may not be used as a main criteria.

3.6 Test Oracles

The purpose of a test oracle is to validate the output model resulting from a test
execution and determine the outcome of the test: PASS or FAIL. As explained in
the general scheme of test oracles in Section 3.3.2, a test oracle may be based on
various information and [Mottu et al., 2008] details and compares several kinds of
oracles. We will highlight the most prominent ones. The first test oracle is the
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classical one based on manually inspected expected results. The second test oracle
is based on a contract specification.

3.6.1 Manually Validated Expected Results

The simplest form of test oracles consists of comparing the actual model generated
by the test execution with an expected model known to be correct. Therefore one
expected model per test is necessary. The expected model must be provided man-
ually by the tester which is highly inconvenient given the typical large number of
tests that is necessary. A popular workaround is to run each test a first time when
no expected model is initially available, and validate the result by manually verify-
ing it is correct. If found correct, this result is saved as the expected model. While
this eliminates the manual production of expected models, manual validation is te-
dious and highly error prone when models are large and complex as is usually the
case.

Furthermore, MTs can evolve during their development. Assuming at a certain
point a test suite using expected results as oracles has been developed, modifying
the behavior of the transformation often requires updating a large number of the
expected results to reflect the new correct behavior. Updating expected models is
just as tedious and impractical as producing them for the same reasons mentioned
earlier.

3.6.2 Contracts as Partial Oracles

Applying the classical principles of software design by contract, several approaches
have proposed contracts for MTs [Cariou et al., 2004; Guerra et al., 2010] as a means
of specification. As will be explained contracts may then act as automatic partial or-
acles [Cariou et al., 2009; Guerra et al., 2013; Guerra and Soeken, 2015] with several
benefits that will be discussed shortly.

Contracts typically consist of three parts:

1. Preconditions: constraints that should be satisfied by the input model in order
for the transformation to be applicable.

2. Postconditions: constraints that should be satisfied by the output model for
any execution of the transformation.

3. Transformation constraints7 relating the input and output models: constraints
describing the relationship between elements of the output model and ele-

7these are called invariants in the PAMOMO specification approach of [Guerra et al., 2010] that we
already discussed in Section 3.4.3
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ments of the input model. For refinement transformations that perform in-
place transformation of elements, these constraints describe the evolution of
model elements as a result of applying the transformation.

Given this specification, a transformation implementation is correct if for any input
model satisfying the precondition, it produces an output model that satisfies the
postconditions and the transformation constraints.

OCL Contracts

In [Cariou et al., 2004] contracts are written as OCL constraints which makes it
possible to execute them as automatic test oracles [Cariou et al., 2009]. Given an
input test model and the output model resulting from the test execution, the OCL
contract can be executed to automatically determine whether the pair of models
honors all constraints and is therefore correct with respect to the specification. Va-
lidity constraints of the output metamodel (irrespective of the particular transfor-
mation) may also be checked. If a constraint is violated, this indicates a discrepancy
between the transformation implementation and its specification: the test fails.

Pattern-based Contracts in PAMOMO

As previously introduced in Section 3.4.3, PAMOMO [Guerra et al., 2010] is a for-
mal pattern-based language for the specification of MT contracts. Apart from pre-
conditions and postconditions, so-called invariants correspond to the transformation
constraints described above in (3) and express specification constraints roughly in
the form: if a certain source pattern appears in the input model then a certain target
pattern should exist (or should not exist) in the output model. In [Guerra et al., 2010;
Guerra and Soeken, 2015] the authors propose to compile PAMOMO specifications
to a semantically equivalent set of OCL constraints over the input and output mod-
els of the transformation. They can thus be evaluated automatically by a standard
OCL evaluator to serve as an automatic oracle function. In [Guerra et al., 2013] an
alternate compilation of PAMOMO to QVT is proposed so that contracts are not
only checked, but detailed feedback is provided regarding which constraints were
violated (if any) and the location of the violating elements.

Advantages

Contract-based oracles have several advantages. First, no separate test oracles
needs to be developed since the specification itself plays that role. Moreover the
specification is a single test oracle that applies to all tests. Second, if the transfor-
mation needs to be modified, its specification is necessarily updated (if a proper
development process is followed), therefore no additional maintenance is required
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for the test oracle. And finally, since testing mainly aims to show the conformance
of an implementation with its specification, then using the specification itself to
validate test executions is clearly a powerful test oracle.

Partial Oracles and Effectiveness

Contract-based oracles are called partial oracles because they only assess the
properties that have been formalized in the contract. Any other properties not in-
cluded in the contract will not be checked. Therefore this kind of oracles is only as
good as the level of detail of the specification. This is experimentally observed in
[Guerra and Soeken, 2015] where several test generation criteria (that we detailed
in Section 3.4.3) are assessed via mutation analysis using contracts as test oracles.
The maximum attained mutation score is 84% which seems relatively low com-
pared to the maximum score of 98% reached with with metamodel coverage-based
approaches detailed in Section 3.4.2.

In fact, the mutation analysis of metamodel coverage-based approaches em-
ployed a different test oracle which was a model comparison with the output of
a reference implementation considered to be correct. Therefore the slightest diver-
gence could be detected. Conversely, in [Guerra and Soeken, 2015] the authors
trace the low mutation score to the inability of their contract-based oracles to detect
a particular class of faults because of lacking constraints in the PAMOMO specifi-
cation. Furthermore they go on to show that complementing the contract with the
missing constraints allows to obtain a mutation of 100% i.e. all introduced faults are
detected. We conclude that the fault revealing power of contract-based test oracles
highly depends on the completeness and thoroughness of the specification.

Discussion

Qualification requires test oracles to be based on requirements. Since require-
ments can be specified as contracts, then the contract-based test oracles presented
in this section are very interesting for a qualification process. Qualification also
requires intensive verification (through review) of the completeness and thorough-
ness of requirements. If conducted properly, this verification would ensure that the
situation discussed above, where the incompleteness of the specification caused
errors not to be detected, is avoided.

3.7 Testing of Model Transformation Chains

So far we have reviewed a first set of works on MT testing, and we concluded
in the various discussions that several of the existing approaches would be very
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interesting in a qualification process. The coverage-oriented test adequacy criteria
seem relevant and similar to the MC/DC requirements and code coverage criteria
demanded in qualification. Automatic CSP-based model generation driven by such
coverage criteria (or a combination of them) would allow to considerably reduce
the testing effort and increase the confidence in the testing quality because of the
systematic and exhaustive nature of the approaches. And finally, the cost of manual
test oracles may be avoided with specification-based test oracles, provided that
enough detail is included in the specification.

However, all of these approaches consider one MT in isolation. In contrast,
complex model-based tools such as code generators typically consists of a chain of
transformations rather than a single one. For this reason we now investigate works
that have tackled MT chains to identify the challenges and existing solutions in that
context.

3.7.1 Test Suite Quality for Model Transformation Chains

In [Bauer et al., 2011] the authors propose an approach to assess the quality of a test
suite for a Model Transformation Chain (MTC). The chains considered in this work
are composed of several transformations. Each transformation takes as input the
output of a preceding transformation, however the structure of the chain may have
several branches as depicted in Figure 3.3.

M2

M4T2

M0 T0

M1 M3T1

Test 
Requirements

trj

Figure 3.3: Example model transformation chain handled in [Bauer et al., 2011]

The first step of the approach consists in deriving a set of test requirements for
each transformation of the chain. Test requirements are derived from a combination
of metamodel coverage criteria (similar to Section 3.4.2), contract coverage criteria
(similar to Section 3.4.3) and manually written test requirements (in OCL). In a way,
the test adequacy criteria here is a combination of several criteria applied to each
transformation of the MTC. The result is the set of test requirements

{
trj
}

visible
in Figure 3.3.
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tr1 tr2 tr3

test case 1 0 1 0
test case 2 2 1 0 }

← redundant test requirement
test case 3 2 1 0
test case 4 1 2 0

↑
unsatisfied test requirement

Table 3.2: Footprint analysis for test suite quality assessment

The second step is to consider an existing test set and assess its adequacy with
respect to the set of test requirements. Each test case is a pair < M0, M1 > of models
given as input to the chain. During each test, the models manipulated in the chain
(Mi for 0 ≤ i ≤ 4) are inspected (automatically) to assess if they satisfy any test re-
quirements and whether a test requirement is satisfied multiple times by the same
model. This information is recorded in a so-called footprint8 shown in Table 3.2.
For each test case, the footprint is a vector of integer counters corresponding to
the number of times each test requirement is satisfied during the execution of the
test case. Each footprint constitutes a rough summary of the behavior of the cor-
responding test case. Analysing this information determines the following quality
aspects of the test suite:

1. Adequacy: the test suite must satisfy each test requirement at least once to be
considered adequate. Unsatisfied test requirements can be identified by look-
ing for counters that are always 0 in all footprints i.e. the corresponding test
requirements have never been satisfied.

2. Minimality: If two footprints have the exact same counters for all test require-
ments, then they are likely to exercise the same execution paths in the chain.
They are thus considered redundant since they test the same functionality,
and one of the them can be safely discarded. The test suite is minimal when
it no longer contains redundant test cases.

Discussion

This work is highly relevant in our context since code generators typically con-
sist of a chain of MTs. A qualification process applied to a chain of MTs typically
yields a large number of test requirements to cover. It is therefore very convenient
to automate the coverage analysis of test requirements as proposed in this work.

However, there are two aspects that this method does not address. First, the
approach assesses an existing test suite but does not propose a way to create such a

8this notion of footprint is different from the transformation footprint used in Section 3.4.2
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test suite from scratch. Second, when an unsatisfied test requirement is identified,
the approach does not propose a way to generate new test models to cover that test
requirement. It is entirely up to the tester to manually analyse the unsatisfied test
requirement and design a new test model. That can be very tedious when dealing
with a large transformation chain. As will be detailed in Chapter 4, this is one of
the main problems tackled by this thesis.

3.8 Testing Code Generators

Several works of the literature address Automatic Code Generators (ACGs) specif-
ically, therefore it is important to review them. We identified two prominent works
that consider different aspects of source code: the first considers the semantics of
source code while the second one considers its syntax.

3.8.1 Semantic Testing of Code Generators

The output of an ACG is executable source code. One way to verify the correctness
of the generate code is by verifying its execution semantics, i.e. that it behaves
correctly upon execution. When the input model of the ACG also has execution
semantics, then the aim of this kind of testing is to show that the generated code has
the same (or sufficiently similar) execution semantics as the input model. Therefore
the test oracle of such approaches relies on comparing the executions of the input
model and the output source code.

In [Sturmer and Conrad, 2003; Stuermer et al., 2007] a general test architecture
is proposed for model-based ACGs and illustrated for the optimisation part of a
Simulink to C/Ada ACG. The approach is a semantical one, relying on the com-
parative execution of the input Simulink model and the generated source code.

First-Order Testing

The approach, illustrated in Figure 3.4 roughly consists in two levels of testing.
First a partitioning analysis is conducted based on a specification of the ACG to
produce a set of so-called first-order test cases. First-order test cases are Simulink
models containing combinations of computation elements with parameter values
chosen according to the partition analysis to trigger different optimisation rules in
the specification. The ACG is invoked for each first-order test case to automatically
generate the corresponding source code. At this point, the oracle that validates the
generated source code is in fact a set of second-order test cases.

© 2016 Elie RICHA 87



Chapter 3. Literature Review on the Testing of Model Transformations and Code Generators

Code 
Generator 

Specification

Analysis 
and Test Model 

Generation

First-order 
Test 

Model

Code 
Generator Under 

Test

Source 
Code

Model 
Coverage 
Criteria

Code 
Coverage 
Criteria

Second-order Test 
Vectors

Compilation & 
Host Execution

Cross Compilation 
& Target Execution

Simulation Simulation 
Output

Host 
Output

Target 
Output

Signal 
Comparison Pass/Fail

First-order Testing

Second-order Testing

Figure 3.4: Testing model-based code generators

Second-Order Testing

Second-order testing consists of a comparative execution of the first-order Simulink
test model and its corresponding generated source code over the same numerical
input. Consequently second-order test cases are vectors of numerical data given as
input to both a simulation of the Simulink input model and the generated code.

As depicted in Figure 3.4, second-order test cases are generated automatically
using white-box structural coverage criteria on both the Simulink test model and
the corresponding generated code. This ensures that all the model structure and all
the generated code structure is executed during second-order testing since model
and code may have different structures due to optimisations.

The same test vectors are given as input to model simulation and the generated
code executed on the host modeling/development platform and/or on a separate
embedded platform (to take into account target platform specificities). The output
is compared with an acceptance threshold ε that masks differences due to known
factors such as heterogeneous numerical precisions across the simulation and exe-
cution platforms. If second-order testing passes, then the corresponding first-order
test passes: the generated code has the same execution semantics as the model from
which it was generated.
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If differences are detected between the simulation and the generated code exe-
cution(s), they must be analysed manually to determine the reasons which can be
manifold:

1. an error in the implementation of the code generator.

2. a problem in the environment of the code generator e.g. operating system
primitives or hardware.

3. an error in the test model.

4. an error in the simulator of the test model.

5. an error in the specification of the code generator.

Discussion

These works are highly interesting in the context of the qualification of code
generators because they address one of the major objectives of qualification: show-
ing that the code generator translates the model semantics into the generated code
faithfully. What is particularly interesting is the thoroughness of the second-order
testing which demonstrates the behavioral equivalence of source code with original
models taking into account both model and code coverage criteria. Furthermore,
the generated code is cross-compiled and executed on the embedded target plat-
form which provides increased confidence that the model semantics is preserved
on the target platform even after cross-compilation. As explained in Section 2.4.4
the qualification standard requires the involvement of the cross-compiler in the
loop to claim certification credit for, and thus eliminate, the testing of the gener-
ated code.

Even though showing that the behavioral semantics of input models is pre-
served in the generated source code is a highly valuable result, this approach does
not address the aspects of code structure. Indeed, as will be detailed in Chapter 4,
the syntactical structure of source code is important for certification, and as a result
it is important to show that the code generator generates source code that conforms
to specific syntactical constraints. Since code with different structure can have the
same semantics, then the above behavioral-oriented testing approach is insufficient
to address structural aspects. For this reason, the structural aspects of code gener-
ator verification will be one of the main problems tackled in this thesis as detailed
in Chapter 4.

The syntactic aspect of source code is also investigated in the next ACG testing
approach.
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3.8.2 Syntactic Testing of Code Generators

Most approaches of MT testing have considered model-to-model transformations.
In contrast in [Wimmer and Burgueño, 2013] the authors propose an approach to
specify contracts for model-to-text (M2T) and text-to-model (T2M) transformations.
When we consider an ACG as an M2T transformation, then this approach allows
to specify and verify the syntax of the generated source code. In contrast with the
previous syntactic work, this approach only covers the aspect of test oracles and
not of test model generation and test adequacy criteria.

The approach proposes a generic metamodel to represent any kind of text arti-
facts: it describes a hierarchy of Folders and Files composed of Lines of text. With this
generic metamodel, the model-to-text (and text-to-model) specification problem is
transposed back to a model-to-model specification problem, and contracts similar
to the ones presented in Section 3.6.2 can be written to specify the transformation.
The approach thus proposes to use OCL to write contracts specifying all aspects of
the generated files such as the folder hierarchy, file naming patterns, and textual
content.

For example the following contract excerpt for a UML to Java code generation
transformation specifies that for each Class a File with the same name should exist
with the extension ’java’, and that for each derived Attribute of the Class, only a
getter method should be generated, named after the Attribute’s name. Note that
regular expressions are used to specify patterns of text. This contract specifies syn-
tactic aspects of the source code such as the existence of a method with a particular
name.

Listing 3.1: UML to Java M2T contract excerpt from [Wimmer and Burgueño, 2013]

1 Class.allInstances->forAll(c | File.allInstances->exists(f |

2 f.name = c.name and f.extension = ’java’ and

3 c.attributes->select( a | a.isDerived)->forAll(a |

4 not f.content().matchesRE(a.type + ’.*?’ + a.name + ’.*?;’)

5 and f.content().matchesRE(a.type + ’\\s+get’ + toFirstUpper(a.name)))))

The OCL M2T contracts are then used as automatic test oracles, in combination
with a simple parser that transforms the hierarchy of text files resulting from a test
execution into a model conforming to the aforementioned generic text metamodel.
Once the actual test result is parsed, a regular OCL evaluator can assess if the OCL
contracts are satisfied and determine the PASS/FAIL verdict.
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Discussion

This approach is appropriate for the specification and testing of the syntactic as-
pects of an ACG. In Section 2.4.4 we discussed that when qualification aims to claim
certification credit for the compliance of the generated code with a code standard,
then testing needs to address syntactic aspects of the source code. In that context
the model-to-text contracts approach is relevant.

In fact as will be explained in Chapter 4, the syntactic specification of source
code is one of the main problems tackled in this thesis. However we approach
this problem from the specific needs of the qualification of QGen, the Simulink to
C code generator developed at AdaCore (see Section 2.6). The solution that we
propose in Chapter 5 bears some similarities with the approach of Wimmer et al.
presented above, and a comparison will be discussed. Moreover, the approach of
Wimmer et al. was published in late 2013, well after the inception of this thesis in
early 2012. Therefore even though similarities exist, the two works were developed
independently, both conceptually and in their tooling.

3.9 Conclusion

In this chapter we have given an overview on the body of existing works related to
the testing of model transformations (MTs), model transformation chains (MTCs)
and Automatic Code Generators (ACGs). Existing approaches target the three ma-
jor challenges in testing which are (1) defining test adequacy criteria, (2) generating
test models and (3) deciding the verdict of tests with test oracles.

Several of these approaches were found highly interesting and useful in the con-
text of qualification. The test adequacy criteria based on metamodel and specifica-
tion coverage are similar to the testing criteria required by qualification. These
approaches can help automatically assess the adequacy of tests to the criteria of
qualification. Automatic model generation approaches based on constraint solv-
ing reduce the effort needed to create test models. Finally, specification-based test
oracles were found highly appealing given the strong requirements-based philos-
ophy of testing in qualification. Additionally, we have identified relevant work
addressing the testing of MTCs which are often the basis of code generators. The
identified approach allowed to assess the adequacy of a test set with respect to all
the transformations of a MTC instead of only one transformation in isolation. As
for the specific case of ACGs, we identified an approach which verifies the seman-
tics of the generated source code by comparing its execution with a simulation of
the input model in very thorough manner. As for the syntax of source code, we
identified an approach which proposes model-to-text contracts as a test oracle for
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ACGs. Overall, we conclude that several existing approaches already address var-
ious testing challenges in qualification.

However we identified two areas of improvement in the literature. The first
one pertains to the testing of MTCs. Even though existing work allows to identify
non-satisfied test requirements of a MTC, it lacks a method for producing new test
models to cover these test requirements. The other area of improvement was in the
syntactic specification of ACGs where we expressed a need for a solution specific
to the qualification of QGen at AdaCore.

In the next chapter we define the precise problems that we chose to tackle in this
thesis, explain how the existing approaches identified above can help address them
and where new solutions are needed.
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4.1 Introduction

In Chapter 2 we explained the challenges of the qualification of Automatic Code
Generators (ACGs) and decided to focus this thesis on the issues of testing. In
Chapter 3 we gave an overview of the existing body of work on the testing of Model
Transformations (MTs), Model Transformation Chains (MTCs) as well ACGs. In
this chapter, we detail the concrete problems that we chose to address in this the-
sis, explaining where existing approaches can be reused and highlighting the key
issues that we tackle.

Our work addresses two main challenges that are detailed in turn in Section 4.2
and Section 4.3.

4.2 Unit Testing and Integration Testing of Model Transfor-
mation Chains

Qualifying an Automatic Code Generator (ACG) requires extensive testing to show
the compliance of the implementation with its requirements. Both the testing of
components in isolation (i.e. unit testing) and the testing of the tool as a whole (i.e.
integration testing) are required. As will be explained in the following sections, a
code generator typically consists of a chain of successive model transformations
which makes unit testing particularly difficult to conduct. Conversely integration
testing is easier to apply. Since both are required for the qualification of the ACG,
the problem is then to design a testing approach relying solely on integration test-
ing but providing the same confidence as unit testing. The next sections will moti-
vate these claims and detail the problem further.

4.2.1 Unit Testing and Integration Testing in Qualification

In a qualification process testing should be based on the requirements developed
at all refinement stages of the tool design: Tool Operational Requirements (TORs),
Tool Requirements (TRs) and Tool Low Level Requirements (TLLRs). For simplifi-
cation let us consider two of these stages, TOR and TLLR1.

Integration Testing and Unit Testing of a MTC

TORs consider the tool as a whole. Therefore tests based on TORs define test
data given as input to the tool and validate the output of the tool. We will refer

1depending on the complexity of the qualified tool, it is acceptable to omit the Tool Requirements
stage if deemed unnecessary

94 © 2016 Elie RICHA



4.2. Unit Testing and Integration Testing of Model Transformation Chains

to such tests as integration tests since they exercise the tool as a whole. Conversely,
TLLRs specify subcomponents or units of the tool which have a specific role in
the overall operation. Tests based on TLLRs define test data given as input to a
subcomponent and validate the output of that subcomponent. We will refer to such
tests as unit tests since they exercise one subcomponent. Both unit and integration
tests are required for the qualification of an ACG.

User-visible Language Intermediate Representations

conforms to

MMi MMi+1MM0

M0 Ti−1 TiMi Mi+1 MN. . . . . .Ti+1

Figure 4.1: Model transformation chain

As shown in Figure 4.1 an ACG is typically designed as a chain of N model

transformations Mi
Ti−→ Mi+1 for 0 ≤ i < N where an input model M0 is pro-

cessed by N successive transformation steps Ti into intermediate models Mi, and
ultimately into the final output model MN which is in fact source code in the case
of an ACG. M0 conforms to the input metamodel of the chain MM0 which is the
language exposed to the users of the ACG. The intermediate models Mi conform
to intermediate metamodels MMi which are internal to the tool. For several trans-
formation steps Ti, we can have MMi = MMi+1 meaning that Ti is an endogenous
refinement transformation within the same language.

Unit TestingInput Output

Integration Testing
Input Output

M0 Ti−1 TiMi Mi+1 MN. . . . . .Ti+1

Figure 4.2: Unit testing and integration testing of a model transformation chain

Given that architecture of the ACG, a unit is a transformation step Ti. As de-
picted in Figure 4.2 Unit testing then consists of producing test models Mi,j in the
intermediate language MMi, executing Ti over these test models, and validating
the resulting models Mi+1,j with a suitable oracle. Conversely, integration testing
considers the complete chain, producing test models M0,j in the input language
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MM0, executing the complete chain, and validating the final result MN,j with a
suitable oracle.

Observations in Practice

While both unit and integration testing are required by qualification standards
and general best practices, we observe in development practice that integration
testing is widely preferred to unit testing which is perceived as tedious and cum-
bersome. This feedback comes from developers of the QGen code generator at
AdaCore as well as developers of the GCC compiler toolchain which has a similar
chain-based architecture. In both projects, the vast majority of tests are integra-
tion tests while unit tests are nearly non-existent. Additionally, this problem is
confirmed in existing work on code generator testing in [Stuermer et al., 2007] (de-
tailed in Section 3.8) where the authors highlight the difficulty of unit testing for
code generators due to the difficulty of providing test stubs and drivers for the
kind of components involved in code generators.

The main reason for the unpopularity of unit testing is that it relies on test data
in the intermediate languages of the chain. Intermediate languages typically be-
come more and more complex down the transformation chain, making it difficult
to produce and maintain unit test models. This is because the ACG starts with the
high-abstraction user model M0 and transforms it step by step into intermediate
models Mi with increasing detail and decreasing abstraction level. One element
in the input model, e.g. a Simulink computation block, is typically transformed
into several elements in the intermediate representation that together implement
its semantics, e.g. a variable to store the result and several code statements that
perform the computation. Moreover, intermediate languages typically do not have
dedicated editors since they are internal representations. Producing, validating and
maintaining unit test models manually is therefore a tedious and error-prone task.

As was detailed in Section 3.4 and Section 3.5 existing approaches can automat-
ically generate test models based on test adequacy criteria. However they typically
yield a very large number of test models which remain difficult to maintain because
they are in the intermediate languages. Maintaining unit test models is an issue be-
cause intermediate languages often evolve during the development life cycle of the
tool. Therefore assuming that a set of unit test models was produced, whenever the
intermediate representation changes, identifying which unit tests are affected and
propagating the necessary changes is not trivial.

In contrast, integration testing is widely preferred because it relies on test mod-
els expressed in the input language of the chain. The input language is the one used
by users of the ACG, therefore it typically has a high level of abstraction, a good
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editor, and does not evolve often. Producing test models, even manually, is there-
fore conceivable and the maintenance problem is reduced thanks to the stability of
the language.

We conclude from the above observations that unit testing is a major hindrance
in the verification process of an ACG and that it would be desirable to perform
only integration testing. However how can we achieve the same confidence as unit
testing to adhere to qualification requirements? Let us investigate in detail the steps
required by unit testing and whether we can ensure them with integration testing.

4.2.2 Formalising Unit Testing

In this section we aim to formalise the steps and artifacts needed for the unit testing
of each transformation step Ti of the MTC. This will allows us to discuss in a later
stage whether we can achieve the same level of confidence of unit testing through
other means.

Step 1: Defining Unit Test Requirements

Considering a transformation Ti, the first step of unit testing is to produce a set
of unit test requirements that characterise the inputs with which the transformation
should be tested.

Definition 4.1 (Unit Test Requirement). A unit test requirement2 tr of a transfor-
mation step Ti is a constraint over its input language which must be satisfied at least
once during the testing campaign. Assuming MMi is the set of input models of Ti,
we formalise a test requirement as a predicate indicating whether a given model
M ∈ MMi exhibits a particular characteristic expressed by the test requirement.

tr : MMi −→ B = {True, False}
M 7−→ tr(M)

A test requirement tr is said to be satisfied or covered by a model M if tr (M) =

True. This is denoted as M |= tr.

As explained in Section 3.3.1, test requirements are a way to express what situ-
ations should be tested in order to ensure the compliance with a certain test adequacy
criteria. We presented various test adequacy criteria in Section 3.4, some based on

2the prefix unit is often omitted for convenience
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the partitioning and coverage of the input model, and others based on coverage
of the specification. With these well defined, test requirements can be generated
automatically. If each test requirement is satisfied at least once during the testing
campaign, then we have satisfied the test adequacy criteria.

It is not necessary to satisfy test requirements independently. This means that
multiple test requirements can be satisfied by the same test model. If two test re-
quirements express properties that need to be tested independently, then this must
be explicit in each of them: each test requirement should contain the negation of
the other test requirement to enforce independent testing.

Test requirements may also be specified manually by the tester based on his
knowledge of the transformation. If the tester would like to test a particular feature,
he can express the conditions that trigger it into a test requirement.

The result of this first step is a set of unit test requirements that must be satisfied:
UTRi =

{
tri,j
}

Step 2: Defining Unit Test Oracles

A test oracle is a procedure to determine if the verdict of a test is PASS or FAIL.
As discussed in Section 3.6 several forms of test oracles exist, and the preferred
form in qualification is specification-based oracles.

Definition 4.2 (Unit Test Oracle). We assume that each transformation Ti has an
executable contract-based specification that constitutes its test oracle toi. Therefore
we assume that all unit tests of Ti are validated with the same test oracle toi. We
formalise this test oracle as a predicate over the input test model and its corre-
sponding output model that determines if the pair complies with the specification
of the transformations:

toi : MMi ×MMi+1 −→ B

〈Min, Mout〉 7−→ toi (Min, Mout)

Step 3: Developing Unit Test Models

Unit test models are created either manually by the tester or automatically with
model generation approaches from the literature detailed in Section 3.5. The goal of
this step is to satisfy all unit test requirements, however one test model can satisfy
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multiple test requirements at the same time, as explained earlier. The result is a set
of unit test models: UTMi = {Mi,k}

Step 4: Executing Unit Tests and Evaluating Oracles

The transformation Ti is executed for each test model Mi,k to produce a result
T (Mi,k). The validity of this result is determined by evaluating toi (Mi,k , T (Mi,k))

and the PASS/FAIL verdict of the test is decided accordingly.

Objective and Effectiveness of Unit Testing

After performing unit testing of all transformations of the MTC, the general
objective is to cover all test requirements and ensure that all tests pass. If the
above steps are followed systematically for each transformation, then this objec-
tive should be ensured for the complete MTC. We formalise it as follows.

Definition 4.3 (Objective of Unit Testing of a MTC). The objective of unit testing
for a complete MTC is to ensure that each unit test requirement is satisfied at least
once and that all tests pass.

∀ i ∈ [0, N[ .

(
∀ tr ∈ UTRi . ∃M ∈ UTMi . M |= tr

∧ ∀M ∈ UTMi . to (M, Ti (M)) = True

)

Having formalised the steps and general objective of unit testing, we note the
following. Unit testing is effective at detecting errors because test requirements
are generated using systematic test adequacy criteria and test oracles are based on
the detailed specification of each transformation step. This ensures thoroughness
of both the test data and the test oracles. However we argue that developing unit
test models can be avoided while maintaining the confidence provided by unit test
requirements and oracles. We develop this argument in the next section.

4.2.3 Achieving Unit Testing Confidence Through Integration Tests

Taking inspiration from the work in [Bauer et al., 2011] introduced in Section 3.3
we notice the following: an integration test exercises the complete tool, i.e. all in-
termediate transformation steps Ti. During the execution of an integration test, the
intermediate models Mi manipulated along the way can cover unit test cases of the
intermediate transformations. This interesting property of transformation chains
would allow us to use only integration testing to cover unit test cases.
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Covering Unit Test Cases with Integration Tests

Test Requirements and Oracles

Integration
Test Models

T0 T1 T2

tr0,0 tr0,1 tr0,2 to0 tr1,0 tr1,1 to1 tr2,0 tr2,1 to2

M0,0 T F F T F T T F F T

M0,1 F T F T T F T T F T

M0,2 F F T T F T T F T T

Table 4.1: Integration testing with unit testing confidence

This is illustrated in Table 4.1 where we consider a chain of 3 transformations T0,
T1 and T2. We assume that only the first two steps of unit testing of these transfor-
mations was done, and yielded 3 test requirements for T0, 2 test requirements for T1

and 2 test requirements for T2, as well as a unit test oracle for each each transforma-
tions. We also assume that 3 integration test models M0,0 , M0,1 and M0,2 have been
developed in the input language of the chain MM0. We execute the complete chain
over each model, as part of integration testing. However, during each execution
over M0,k we do the following:

1. Before executing each transformation step Ti we evaluate all of its unit test re-
quirements tri,j over the input intermediate model Mi,k, and record the results
of the evaluation.

2. After executing each transformation step Ti, we evaluate its unit test oracle
toi on the pair 〈Mi,k , Ti (Mi,k)〉.

The evaluations may also be done a posteriori by dumping the intermediate models
computed by each step of the MTC and evaluating test requirements and oracles
after the execution. In any case, we record the results of these evaluations in a so-
called footprint3 of the execution. In Table 4.1 each row corresponds to the footprint
of an integration test execution. "T" indicates a result True of the evaluation and "F"
indicates False.

We can observe in Table 4.1 that all test requirements are satisfied at least once,
and all test oracles always evaluate to True. This means that even though unit test
models have not been explicitly identified as in unit testing, we have achieved the
objective of unit testing defined in Definition 4.3. Therefore we have performed
a testing campaign based solely on integration test models, and ensured the same
confidence as unit testing.

3the concept is similar to the footprints in [Bauer et al., 2011]
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Identifying Non-Satisfied Test Requirements

We now consider a different scenario where instead of the integration test model
M0,1 we use a model M0,4. The execution footprint of M0,4 is shown in Table 4.2
and we can see that tr1,0 is not satisfied. By analysing the footprints of all tests, we
determine in fact that tr1,0 is never satisfied during the testing campaign. In this
case we need to develop a new integration test model that leads to the satisfaction
of tr1,0. The approach of [Bauer et al., 2011] that was the basis for this analysis does
not provide a way to produce such a model. This brings us to the core problem that
we try to solve in this thesis: How can we produce a new integration test model to cover
a non-satisfied unit test requirement? We develop this problem next.

Test Requirements and Oracles

Integration
Test Models

T0 T1 T2

tr0,0 tr0,1 tr0,2 to0 tr1,0 tr1,1 to1 tr2,0 tr2,1 to2

M0,0 T F F T F T T F F T

M0,4 F T F T F F T T F T

M0,2 F F T T F T T F T T

Table 4.2: Identification of non-satisfied test requirements

4.2.4 The Problem: Producing Integration Test Models to Cover Unit
Test Cases

We have demonstrated in the previous sections that based on existing work in the
literature, it is possible to assess the satisfaction of unit test requirements during
the execution of integration tests, and identify non-satisfied unit test requirements.
We now need a way to produce new models to cover these unit test requirements.
Given a non-satisfied test requirement tri,j in Figure 4.3 how can we produce a test
model M0 in the input language of the chain such that upon execution of the test,
tri,j is satisfied?

Figure 4.3: Satisfying unit test requirements

Producing M0 manually would require the tester to start with tri,j and reason
in reverse on all the preceding transformation steps. This is a difficult task because
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there may be many preceding transformation steps (the typical length of the chain
is ∼15 steps) which are often non-bijective and therefore non-reversible. Therefore
we have to turn to automation.

To automate this task, we first notice that it is in essence a Constraint Satisfaction
Problem (CSP) where tri,j is a constraint that we wish to satisfy with an appropriate
model instance. Using the approaches detailed in Section 3.5.2, we can encode
the model generation problem in the form of a CSP. Different solvers (SAT/SMT-
Solvers) may then be used to generate an instance Mi in the intermediate language
MMi that satisfies tri,j. This is shown by arrow 1 in Figure 4.4. However this is
not what we are looking for because we do not want to maintain unit test models
in intermediate languages. Instead, we want to produce a model M0 in the input
language of the chain.

In the literature we find approaches dealing with bidirectional transformations
[Stevens, 2008] that provide a backward execution of transformations which would
allow to produce M0. However the transformations of our chain are not bidirec-
tional by nature and are not designed as such, therefore their backward execution
is not feasible.

Mi�1 MiTi�1 Ti
. . .. . . Ti�2M0

Solver
Solver

tri,j

12
3

??. . . 4

Figure 4.4: Existing model generation solutions

We turn to the notion of a transformation model that we briefly discussed in Sec-
tion 3.2 of our literature review where we gave an overview of formal verification
approaches. Even though originally designed for verification, this concept can be
useful in solving our problem. A transformation model combines the input and
output metamodels of the transformation and trace elements linking input and out-
put metaclasses, with a set of constraints describing the relationship between input
and output elements according to the semantics of the transformation. In [Büttner
et al., 2012b] the transformation model is translated to a CSP in Alloy, and the Alloy
Analyzer (relying on a SAT solver) is used to find instances of the transformation
model that violate a postcondition. Such an instance includes the input model that
leads to the violation of the postcondition. Therefore what this approach has es-
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sentially managed to do is find an input model which leads to the satisfaction of a
constraint4 on the output model.

Going back to our problem, this means that by encoding the transformation
Ti−1 itself as a transformation model in a CSP and specifying tri,j as a constraint
on the output, we can generate an instance Mi−1 that leads to the satisfaction of
tri,j. This approach is illustrated by arrow 2 in Figure 4.4. However this is still not
satisfactory because the instance is in the intermediate language MMi−1 while we
seek test models in the input language of the chain. Moreover, having obtained the
instance Mi−1, we cannot iterate the transformation model approach again for Ti−2

because what we need as input to the CSP solver is a constraint and not an instance.

With a similar approach, we could theoretically generalize the notion of the
transformation model to include more than one transformation. This means that in-
stead of modeling only Ti−1 in the transformation model, we could model all of the
preceding chain of transformations: Ti−1 ◦ · · · ◦ T1 ◦ T0. In this manner we could
include all preceding steps in the resulting CSP which would theoretically allow us
to generate a satisfactory M0 as shown by arrow 3 in Figure 4.4. However given
the large number of steps in the chain the resulting size of the CSP would prevent
a realistic analysis since CSP solvers have well known scalability issues.

What we need instead is an iterative solution which can tackle the problem step
by step instead of dealing with all preceding transformation steps at once. This
requires an analysis that takes as input a constraint and produces also a constraint
as shown by arrow 4 in Figure 4.4 allowing for an iterative reasoning. With such
an analysis we would be able to propagate the test requirement step by step back-
wards along the chain, up to an equivalent test requirement over the input lan-
guage. Then using classical model generation techniques we can produce an in-
tegration test model M0 which upon execution of the chain covers the unit test
requirement.

Hence the first problem that we tackle in this thesis is:

Translating a non-satisfied unit test requirement backwards along a model transformation
chain into an equivalent constraint over the input language of the chain.

This concludes the discussion of the first problem which stemmed from the gen-
eral goal of ensuring the coverage of unit test cases with integration tests. We now
move to the second problem which concerns the oracles of these integration tests.

4the negation of the postcondition
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4.3 Specification-based Test Oracles for Model-to-Code Trans-
formations

In the previous section we advocated the use of integration tests to cover unit test-
ing needs and focused on the problem of producing them. We now move to the
second part of this thesis where we focus on the problem of defining the oracles of
these integration tests in the case of a code generation chain. As will be explained
this is closely related to the problem of specifying requirements in the DO−330
qualification process.

Before we proceed with our presentation, it is important to note the following.
This thesis is a CIFRE5 collaboration with the company AdaCore. For AdaCore,
qualification is a critical aspect in the development of QGen, the Simulink to C
code generator. As a result, this second part of the thesis was explicitly required to
focus on specific needs of the qualification of QGen. Consequently the challenges
identified in the upcoming presentation and the solutions proposed in subsequent
chapters are less general than the previous discussions and more specific to the
qualification of QGen.

Several exiting works on test oracles for model-to-code and model-to-text trans-
formations have been presented in Chapter 3, however the context of qualification
raises specific issues. As will be detailed next, qualification requires test oracles
to be based on the requirements of the tested software, therefore we seek an ap-
proach that combines requirements specification and requirements-based test ora-
cles. Given the certification credit that we target by the qualification of the code
generator, the requirements must address the syntax as well as the semantics of the
generated code. Since the semantic aspect is sufficiently covered in the literature we
focus on syntactic specification and test oracles of code generation. The following
sections detail and motivate these claims.

4.3.1 Test Oracles and Requirements in Qualification

As previously detailed in Chapter 2, the qualification process of a tool such as an
ACG is strongly centered around requirements. They specify the required operation
of the tool and are the basis for its design and implementation as well as its testing.
In testing activities, the results of tests should be decided based on the requirements
which specify the required behavior and outputs of the software. For this reason
when discussing test oracles in a qualification process, it is necessary to consider

5Convention Industrielle de Formation par la REcherche
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requirements-based test oracles, also referred to as specification-based test oracles in the
academic literature.

We are concerned with so-called integration tests of an ACG as defined in Sec-
tion 4.2: they exercise the ACG as a whole. The requirements that specify the tool
as a whole and that should be the basis for these tests are the Tool Operational Re-
quirements (TORs). As detailed in Section 2.4, TORs describe the operation of the
tool as a whole and are the main justification for the elimination of a posteriori ver-
ification activities of the output of the tool. For this reason TORs must include a
specification of the output of the tool, precise enough to justify the elimination of
verification activities.

Even though certification and qualification processes traditionally rely on tex-
tual requirements in natural language, there is no actual constraint on the represen-
tation chosen for requirements as long as it is justified and well defined in the Tool
Requirements Standard. Given the level of detail required for TORs and the fact that
they are the basis of integration test oracles, we would like to explore the idea of
formalising TORs in a precise and machine readable representation that can sup-
port automatic TOR-based test oracles. Now let us investigate what aspects should
be specified by the TORs.

4.3.2 Requirements Specification of a Code Generator

In the qualification of an ACG, TORs are the main justification for the elimination
of verifications of the output of the ACG. Therefore the content of the TORs and
the subsequent TOR-based review and testing activities depend on the eliminated
verifications, i.e. the certification credit claimed from the qualification of the ACG. In
general, the TORs must specify the behavior of the tool and define the generated
Source Code (SC). In some cases only the syntactic aspect of SC is relevant while in
other cases both syntactic and semantic aspects of SC are important.

To illustrate this, we recall the following verification objectives for which certi-
fication credit may be claimed through the qualification of the ACG, as detailed in
Section 2.2.2:

O1. Conformance of the Source Code (SC) with the Code Standard

O2. Compliance of the Source Code (SC) with Low-Level Requirements (LLR)6

and the Software Architecture

O3. Compliance and robustness of the Executable Object Code (EOC) with the
Low-Level Requirements (LLR)

6the LLR are formalised as the input model of the ACG
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For objective O1, what is important is the syntax of the generated code. The Code
Standard describes syntactic rules such as constraints over the level of nesting of
control structures (loop and conditional constructs) or the number of statements al-
lowed in subprograms. If the qualification of the tool claims credit for O1, then the
TORs must include a precise syntactic specification of the generated code allowing
to justify its compliance with the Code Standard. TOR-based testing of the ACG
should also focus on syntax: test oracles of the ACG should inspect the generated
code and show that it conforms to the syntactic specification of the TORs.

For objectives O2 and O3, it is necessary to consider the semantics of the SC, i.e.
its behavior. In O2 the compliance of the SC with the input model (LLR) encom-
passes both the syntax and the semantics of the SC. The goal is to show that the be-
havior of the SC implements the behavior expressed by the LLR which is typically
done by an independent7 manual review. In O3 it is only semantics that matters
since the EOC results from the compilation of the SC, at which point syntax is no
longer relevant. O3 is demonstrated via LLR-based testing. When O2 and/or O3
are to be eliminated through the qualification of the ACG, then the TORs must spec-
ify the semantics of the generated code and TOR-based testing of the ACG should
encompass semantics: test oracles of the ACG should verify that the behavior of
the generated code conforms to the semantics of the input model.

4.3.3 Semantic and Syntactic Test Oracles

Semantic Test Oracles

In the context of our work the input of the ACG is a Simulink model and the out-
put is C SC. To claim credit for objectives O2 and O3 we need to demonstrate the
semantic compliance of the generated code with Simulink. In that task, the ACG
testing approach proposed in [Sturmer and Conrad, 2003; Stuermer et al., 2007]

and detailed in Section 3.8.1 does a very thorough job. In this approach, for each
Simulink test model SC is automatically generated, and the test oracle consists in
executing the generated SC over vectors of numerical data (so-called second-order
tests) and comparing the computation results of the SC with the computation re-
sults of the Simulink simulator. With this approach, the test oracle demonstrates
that the behavior of the SC generated by the ACG complies with the semantics
of the input Simulink model. The approach also takes into account model and
SC coverage as well as different execution platforms during second-order testing
which makes for a thorough verification that we consider sufficient for qualification
needs.

7the reviewer is a different person than the developer of the reviewed artifact
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Note that the above approach is not strictly specification-based as required by
the qualification standard because nowhere was the Simulink semantics actually
specified. In fact the original problem is that the Simulink semantics is only spec-
ified in the extremely verbose natural language form of the Simulink user doc-
umentation. For this reason the Simulink simulator is widely regarded as the
reference for the Simulink execution semantics, as was done in the approach de-
scribed above. This lack of formal specification of Simulink and of data flow lan-
guages in general is an open problem from an academic and a qualification point
of view and is actively investigated in works such as [Dieumegard et al., 2014a;
Dieumegard et al., 2014b; Dieumegard et al., 2012]. Nonetheless, we consider that
from a testing viewpoint, the works on semantic test oracles presented above are
sufficient and we focus on syntactic test oracles.

Syntactic Test Oracles

There are two ways to consider the syntax of source code:

(a) Consider SC as a structured artifact based on its Abstract Syntax Tree (AST)

(b) Consider SC as plain text based on its Concrete Syntax

In (a) SC is viewed as a model consisting of its AST and conforming to an
appropriate metamodel of its AST. The ACG becomes a model-to-model trans-
formation of the input model to the output code model and we can apply exist-
ing specification-based test oracle approaches such as the ones presented in Sec-
tion 3.6.2. TORs can be expressed as contracts of the transformation: precondi-
tions, postconditions and transformation invariants relating input and output ele-
ments. Given an input test model and its corresponding output via the ACG, such
TORs can be executed to determine if the contract is honored, thus constituting a
specification-based automatic test oracle.

However such an approach is not compatible with the readability needs of qual-
ification. TORs are the subject of several reviews by different stakeholders. When
a tool is qualified in the context of a certified project, the certification applicant, i.e.
the tool user, has the responsibility of reviewing the TORs and ensuring they justify
the claimed certification credit. The AST of SC is a complex structure and contracts
expressed on this AST will undoubtedly grow complex and become incomprehen-
sible to non-experts of the technology. Thus we believe that specifying TORs in
terms of the AST of the generated SC is not a suitable approach.

In that regard, (b) is a more promising investigation track because it considers
code in its most common and well known form: the concrete syntax. This implies
considering the ACG as a model-to-text transformation and applying model-to-text
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test oracle techniques. To the best of our knowledge, only one approach has pro-
posed model-to-text test oracles in [Wimmer and Burgueño, 2013]. We detailed this
approach in Section 3.8.2 and explained that it consists in viewing the generated
textual artifacts as a rough model composed of Folders containing Files containing
Lines. However the generated content is not modeled beyond this level of detail to
preserve its textual nature. Based on this general model, contracts can be written to
specify the generated SC in terms of portions of actual code that should be gener-
ated verbatim, combined with regular expressions expressing textual patterns that
should be found in the generated code. TORs can thus be written as model-to-
text contracts which can also be executed to determine whether the output of a test
complies with the specification, thus constituting a specification-based automatic
test oracle.

While this approach enhances readability for non-experts because it presents
code in its textual form, we believe it needs to be adapted to our context before
it can be used. Contracts in this approach are OCL constraints that can arbitrar-
ily mix constraints over input elements with constraints over output artifacts and
their content in a manner that can again compromise readability. It is therefore
necessary to organise contract specification with guidelines and usage patterns to
ensure uniformity in TORs and allow their presentation as a formal qualification
document.

Moreover, at the time of inception of this thesis, the work of Wimmer et al. was
not yet published. As a result, it could not be applied to our context at the time
leading us naturally to seek our own solution to this problem that specifically tar-
gets the needs of AdaCore in qualification. Even though our approach bears some
conceptual similarities with the approach of Wimmer et al., it does not purpose-
fully reuse aspects from that approach. A comparison of both approaches will be
discussed in Chapter 9.

4.3.4 The Problem: Devise a Syntactic Specification and Test Oracles Ap-
proach for an ACG

The analysis in the previous sections has shown that test oracles of integration tests
of an ACG are strongly related to the specification of TORs in the context of qualifi-
cation. We’ve explained that both semantic and syntactic aspects of code generation
are important. While the former semantic aspect already has a satisfying solution in
the state of the art, the latter syntactic aspect does not have a readily usable solution
that satisfies the readability needs of qualification. Therefore the second problem
tackled in this thesis is:
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Devising a specification and automatic test oracles approach for ACGs, focusing on the
syntax of the generated source code and the readability of the specification.

4.4 Conclusion

In this chapter we have defined the main problems tackled by this thesis. Noticing
the difficulties of conducting unit testing for model transformation chains such as
Automatic Code Generators (ACGs), we have shown that with existing works it is
possible to achieve the confidence of unit testing using only integration test models
that are easier to develop and maintain. However, even though existing approaches
can identify non-satisfied unit test requirements, producing new integration tests
targeting the non-satisfied test requirements remains an open problem. We have
determined that this can be done by propagating non-satisfied unit test require-
ments into equivalent constraints over the input language of the chain, something
that is not straightforward with the current state of the art. This lead us to tackle
this particular problem as a first challenge in this thesis:

Translating a non-satisfied unit test requirement backwards along a model transformation
chain into an equivalent constraint over the input language of the chain.

Having advocated the use of integration tests, we then investigated the ora-
cles of such tests and determined that they must be based on the specification of
the ACG defined by the Tool Operational Requirements (TORs) of the qualifica-
tion process. While TORs and their associated tests must cover both semantic and
syntactic aspects of code generation, we have determined that existing work on
the semantic aspect is sufficient while existing work on the syntactic aspect does
not correspond to the needs of qualification. In particular, TORs must be readable
because they are presented as qualification evidence that is subject to thorough re-
views. Since TOR specification is a critical aspect of the qualification of QGen for
AdaCore, the second challenge tackled in this thesis is specific to that context:

Devising an ACG specification approach focusing on the syntax of the generated source
code and the readability of the specification, and supporting automatic test oracles.

In the next chapter, we give an overview of the solutions we propose to each of
the identified challenges and highlight the main contributions of this thesis.
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Chapter 5. General Approach

5.1 Introduction

In this chapter, we give an overview of the approaches we propose to address the
challenges identified in the previous chapter. In a first part we propose an approach
to the backward translation of test requirements, and in a second part we propose
a syntactic specification and test oracles approach for model-to-code transforma-
tions. As explained earlier, the first part of our work targets the general scope of
model transformation chains that was discussed in previous chapters, while the
second part is focused on the needs of AdaCore in the context of the qualification
of QGen.

5.2 Backward Translation of Test Requirements

The first problem tackled in this thesis emerged in the context of the relationship
between unit testing and integration testing of a model transformation chain. In the
previous chapter we explained that it is possible to satisfy unit testing needs using
only integration tests. This can be done by extracting from each transformation
of the chain a set of unit test cases, each characterised by a test requirement. Then
using only integration tests, it becomes possible to assess the satisfaction of unit test
requirements during the execution of integration tests and to identify non-satisfied
unit test requirements. At this stage we need to produce a new integration test that
satisfies the unit test requirement.

We determined that producing new tests can be done by propagating the non-
satisfied test requirement step by step backwards along the chain, into an equiva-
lent constraint over the input language of the chain. This is the main problem that
we address in the next sections.

5.2.1 Core Principle : Backwards Translation of Constraints

We propose to solve the problem with the approach illustrated in Figure 5.1. Given
a non satisfied test requirement tri,j, we propose to consider tri,j as a postcondition
of the previous transformation step Ti−1, and design a construction Post2Pre that
transforms the postcondition into an equivalent precondition that ensures the satis-
faction of the postcondition. We call this precondition the equivalent test requirement
etri,j,i−1 of tri,j at step Ti−1.

The resulting precondition is also a constraint, therefore the same construction
can be iterated again for preceding steps until an equivalent test requirement etri,j,0

over the input language of the chain is reached. At that point existing constraint
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M0 Ti−2 Ti−1Mi−1 Mi. . . Ti . . .

tri,jetri,j,i−1 Post2PrePost2Pre. . .etri,j,0

Model 
Generation

Figure 5.1: Step by step advancement of test requirements

solvers can be used to produce a test model M0 that satisfies etri,j,0. Given that
Post2Pre produces at each step a precondition ensuring the satisfaction of the post-
condition, then executing the chain over M0 yields an intermediate model Mi that
satisfies the test requirement tri,j. In the following paragraphs we detail this ap-
proach and demonstrate how it solves the problem.

Formally, Post2Pre should have the following property.

Definition 5.1 (Post2Pre). Given a model transformation T from metamodel MMin

to metamodel MMout and a constraint Post over MMout, Post2Pre (T, Post) is a con-
straint over MMin such that:

Min |= Post2Pre(T, Post) ⇔ Mout = T (Min) |= Post

Given a non-satisfied test requirement tri,j, applying Post2Pre iteratively as in
Figure 5.1 yields the following results at each iteration:

etri,j,i−1 = Post2Pre
(
Ti−1, tri,j

)
etri,j,i−2 = Post2Pre

(
Ti−2, etri,j,i−1

)
...

etri,j,1 = Post2Pre
(
T1, etri,j,2

)
etri,j,0 = Post2Pre

(
T0, etri,j,1

)
Once we reach the constraint etri,j,0 over the input language and apply a con-

straint solver, we produce a satisfying test model M0 |= etri,j,0. When executing the
chain over this model, the properties of Post2Pre give us the following:
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M0 |= etri,j,0 ⇔ M1 = T0 (M0) |= etri,j,1

⇔ M2 = T1 (M1) |= etri,j,2

...

⇔ Mi = Ti−1 (Mi−1) |= tri,j

Executing the chain over the test model M0 leads to the satisfaction of tri,j. We
have thus demonstrated that with this approach we are theoretically able to pro-
duce integration test models to satisfy unit test requirements of intermediate steps
of the chain. The problem is now to design a Post2Pre construction that satisfies
Definition 5.1.

5.2.2 Weakest Precondition of Algebraic Graph Transformations

In our search for a satisfactory Post2Pre construction, we have turned to the notions
of postconditions and preconditions. These notions were originally introduced in
[Hoare, 1969] as a tool to prove the correctness of programs. Postconditions and
preconditions are predicates or constraints on the state space of a program. Later
[Dijkstra, 1975] introduced predicate transformers, in particular the weakest precondi-
tion transformer denoted as wp(P, d) where P is a program and d is a postcondition.
wp transforms the postcondition d into a necessary and sufficient precondition that
must be satisfied by the initial state to guarantee the termination of P and the sat-
isfaction of the postcondition d in the final state. This precondition is called the
weakest because it is the least constraining, meaning that it encompasses all inputs
that lead to the satisfaction of the postcondition. In these seminal works, programs
consisted of assignment statements, alternative choice statements, and repetition
statements manipulating numeric variables.

More recently, similar work has been done for graph manipulation programs
in the theory of Algebraic Graph Transformation (AGT) in [Habel et al., 2006a] and
[Poskitt, 2013]. Instead of numeric variables, such programs manipulate typed
graphs. According to the definitions in [Habel et al., 2006a] given a non-deterministic
graph program P and a postcondition d on resulting graphs the properties of the
wp construction are such that for all input graphs G such that G |= wp(P, d), we
have:

1. For all possible result graphs H, H |= d.

2. There exists some result graph H.

3. P terminates when executed with G as input.
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Assuming P is deterministic, the above properties can roughly be simplified as
follows:

∀G, G |= wp(P, d) ⇔ ∃H, H = P(G) |= d

The above properties of wp are similar to the ones we are looking for in Post2Pre.
Consequently we propose to formalise the model transformations of our chain as
algebraic graph transformations, and use constructions similar to the ones in the
weakest precondition construction as the basis for the Post2Pre construction in our
approach to the generation of integration tests. This proposal is depicted in Fig-
ure 5.2.

AGT Theory

tri,j

Mi−1 MiTi−1

PostPre

Post2Pre

Model 
Generation

Graph 
Transformation

Post2Pre

Pre

. . .

M0 . . .

Figure 5.2: Backwards advancement of test requirements

Before we explain the details of this proposal, it is important to highlight some
assumptions and choices that we make in our work.

5.2.3 Assumptions and Scope of the Contributions

So far we have presented our ideas with little assumptions on the nature of the
transformations and their underlying formalisms. At this point it is important to
formulate some assumptions and define the scope that will be addressed within
this thesis.

The key to the iterative step-by-step solution that we proposed is the Post2Pre
construction which deals with one step of the model transformation chain. There-
fore performing this construction for one transformation unlocks the solution for
the complete chain. Within this thesis and from this point forward, we focus on
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defining and validating Post2Pre for one model transformation and not the com-
plete chain.

In Section 2.6 we explained that the scope of our research encompasses model
transformation chains involving endogenous (refinement within the same meta-
model) and exogenous (translation from a metamodel to another) model transfor-
mations. At this point it is important to specify that our work on the one-step
backwards translation focuses on exogenous model transformations. We make this
choice because the formal AGT framework that we base our work upon is funda-
mentally endogenous making this kind of transformations easier to address. As a
result we tackle the less straightforward exogenous kind of transformations.

As for the choice of languages and technologies, we select ATL [Jouault and
Kurtev, 2006] for the specification of the model transformations that we consider
because it is a popular language both in academia and in the industry. ATL’s most
common use is for exogenous transformations, but since it also supports an en-
dogenous refinement mode, this would allow to extend our work to endogenous
transformations in the future.

We select OCL [OMG, 2014] as a constraints language for test requirements be-
cause its expressiveness allows considering various sources of test requirements.
OCL test requirements can be specified manually by the tester, or generated au-
tomatically based on test adequacy criteria using existing approaches detailed in
Section 3.4.

Finally, we select Henshin [Biermann et al., 2012] as an implementation of the
theoretical AGT framework because it applies the formal AGT semantics to EMF
models which are also the basis of the ATL tooling. This allows for an easy imple-
mentation and experimentation of our proposals.

Having clarified the assumptions and choices defining the scope of our work,
we present our main contributions in the next section.

5.2.4 Contributions

We propose a translation of ATL transformations and OCL test requirements to
equivalent concepts in the AGT theory where we use existing theoretical results
to define Post2Pre. As depicted in Figure 5.3, ATL transformations and OCL test
requirements are translated respectively to Graph Transformations and Nested Graph
Conditions (NGC) which are constraints in the AGT framework that will be defined
and detailed in upcoming chapters. Then Post2Pre is applied on the graph trans-
formation and the postcondition to produce an equivalent precondition based on
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the constructions of weakest preconditions in the AGT theory. We published an
overview of this approach at the AMT’14 workshop in [Richa et al., 2014]. Within
this general approach we put forward several contributions that are detailed next.

AGT Theory

tri,j

Mi−1 MiTi−1

PostPre

Post2Pre

Graph 
Transformation

ATL

OCL

NGC
Henshin

ATL2AGT OCL2NGC

Figure 5.3: Translation to AGT and advancement of test requirements with Post2Pre

Translation of ATL and OCL to AGT – ATL2AGT and OCL2NGC

We propose a translation of ATL transformations to AGT called ATL2AGT. This
is an original contribution as no translations of ATL to AGT exist in the literature
to the best of our knowledge.

The challenge in this work is mapping the rich semantics of ATL, namely the
resolve mechanisms, to the simpler rewriting semantics of AGT where no such mech-
anisms exist. Our translation addresses this challenge by organising the AGT trans-
formation in 2 phases similarly to the ATL execution semantics, and using explicit
trace nodes to emulate the resolving mechanisms. Since ATL embeds OCL as a
sub-language for constraints and queries, ATL2AGT relies on the translation of
OCL.

OCL2NGC is based on an existing translation of general OCL constraints to
NGC [Radke et al., 2015a]. However since this and other existing translations are
limited to the support of non-ordered sets, we propose an extension allowing the
support of ordered sets in the context of ATL2AGT.

The challenge in this extension is making sure that output elements are placed
in output sets in the same order as their corresponding input elements, as per the
ATL semantics. Existing translations of OCL to NGC do not ensure this property
because the graph matching semantics of AGT does not consider order. We ad-
dress this challenge by extending the existing translations with additional NGCs
dedicated to ensuring the orderly matching of elements.
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In this thesis, OCL2NGC is presented in the context of ATL2AGT because our
contributions on the support of ordered sets are specific to that context.

Our contributions of ATL2AGT and OCL2NGC were the subject of a peer-
reviewed publication [Richa et al., 2015] which received the Best Paper Award at
the ICMT’15 conference. Both these contributions are the focus of Chapter 6.

Translation of Postconditions to Preconditions – Post2Pre

We defined Post2Pre based on the AGT theoretical definitions related to the
weakest precondition construction [Habel and Pennemann, 2005; Habel et al., 2006a;
Poskitt, 2013]. Specifically, we identified the weakest liberal precondition (wlp) as the
construction that is suitable for our needs. This part of our work is developed
within the scope of purely structural transformations and does not yet support the
manipulation of object attributes.

The first challenge in this work is that wlp is theoretically infinite for the kind of
transformations that we analyse. To address this problem, we propose to anal-
yse a bounded version of the transformations by introducing a new construct,
bounded iteration, and defining its wlp construction which is finite. Since this result
is only valid for bounded transformations, we propose a new construction called
scopedWlp which extends the previous one and makes the result applicable to the
original unbounded transformations. Depending on the desired properties of the
precondition, Post2Pre can then consist of either wlp or scopedWlp.

For all the above new concepts, we provide formal definitions and proofs of
correctness that are not limited to ATL, making them a contribution to the theory
of AGT with potential applications beyond this thesis. This part of our work is the
focus of Chapter 7.

Simplification Strategies

The wlp construction has a high computational complexity that prevents it from
scaling for large transformations and postconditions. It is necessary to address this
challenge to make the Post2Pre analysis feasible for ATL transformations.

We propose several simplification strategies allowing to eliminate irrelevant
portions of computed precondition in order to reduce their size and avoid the com-
binatorial explosion of the construction. Some of these strategies are specific to
ATL while others apply to arbitrary AGT transformations. We also propose a mod-
ified construction of wlp which is equivalent to the original one but allows an early
application of the simplification strategies. This helps avoiding unnecessary com-
putations early on. With the combination of these proposals, we are able to success-
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fully perform analyses that were previously infeasible due to the high complexity.
These contributions are the focus of Chapter 8.

Implementation and Validation

Our contributions are all implemented as components of our Java and EMF-
based tool called ATLAnalyser1. The validation of our conceptual contributions and
their implementation is detailed in Chapter 10.

ATL2AGT and OCL2NGC are validated by translating several ATL transforma-
tions to AGT transformations and executing both ATL and AGT versions over the
same input models. We verify that the models resulting from ATL and AGT are the
same, including the order of elements in ordered sets, to validate the correctness of
our translation.

The correctness of Post2Pre is established by formal proof in, but its imple-
mentation is validated by considering AGT transformations obtained automati-
cally with ATL2AGT, and postconditions written manually. The resulting pre-
conditions are interpreted manually to confirm that they exhibit the theoretically
expected properties.

And finally, the simplification strategies are first validated functionally by verify-
ing that their application does not compromise the correctness of the result. Then
scalability is assessed by considering larger transformations and postconditions,
and evaluating the impact of our strategies on the performance of the analysis.
As will be discussed in Chapter 10, despite remaining scalability issues our sim-
plification strategies prove to be highly efficient and allow performing previously
infeasible analyses.

This concludes the presentation of our approach to solving the first problem
tackled in this thesis: the backward translation of unit test requirements through
a model transformation chain. We proposed a step-by-step iterative analysis and
focused specifically on one step of the analysis. The iteration of this analysis allows
to translate the unit test requirement into an equivalent constraint over the input
language of the chain, where a satisfactory integration test can finally be generated.
Determining the verdict of such integration tests with suitable test oracles is the
focus of second problem tackled in this thesis. We develop the solution that we
propose in the next section.

1ATLAnalyser, https://github.com/eliericha/atlanalyser
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5.3 Syntactic Specification of Model-to-Code Transformation

The second problem tackled by this thesis is devising a test oracles approach for
the integration tests of an ACG in the context of its qualification. We determined
that for the needs of qualification, the test oracles need to be based on a specifica-
tion of the ACG focusing on the syntax of the generated code. Readability was an
important factor to consider because that specification formalises Tool Operational
Requirements (TORs) which are part of the qualification evidence of the tool. Thus
we determined that we need a way to specify the generated code in terms of its
textual concrete syntax which is its most common and widely known form.

In the following we give an overview of our proposed approach. As previously
indicated, the solution is largely specific to the QGen Simulink to C code gener-
ator, as requested by AdaCore, the industrial partner of this thesis. However the
core principles that we propose can be generalised to arbitrary model-to-text trans-
formations. Even though this generalisation is not performed in this thesis, we
provide hints about it where relevant.

5.3.1 Core Principle: Specification Templates

We propose to consider code generation as a general model-to-text transformation
and propose a specification approach based on the notion of specification templates
to define the generated textual artifacts. A specification template is composed of
the following elements:

1. Input elements: objects of the input metamodel of the transformation

2. A guard: a constraint over the input elements defining when the template is
applicable

3. A pattern of text that should be generated when the guard is satisfied: the
pattern of text is an arbitrary concatenation of the following four kinds of
content:

a. verbatim text

b. queries to the input model (enclosed in brackets [ and /])

c. regular expressions (enclosed in %< and >%)

d. repetition statements ([for ...] statements)

Concretely, a specification template is represented as follows:
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Listing 5.1: General structure of a specification template

1 [template templateName (inputElement : inputType) ? (guard)]
2 verbatim text, interleaved with [inputModelQueries/] between brackets,

3 %<regularExpressions>% between percent delimiters

4 and loop statements expressing repeating patterns:

5 [for ( iterator | collection )]

6 This text repeats for all elements of the collection.

7 We can use [queriesInvolvingIterator] here.

8 [/for]

9 [/template]

The semantics of a specification template is that for each element of the input
model that satisfies the guard of the template, a portion of text corresponding to
the specified pattern should be generated at some location in the generated arti-
facts. A specification template is therefore a simple positive constraint requiring
the existence of a pattern of text in the generated artifacts. This constraint may be
simply expressed as follows:

application condition ⇒ ∃ (textual pattern)

where the application condition is defined by the input elements of the specification
template and its guard, while the textual pattern is described by the content of the
specification template.

In our specific application to Simulink to C code generation, the location in the
generated artifacts where the pattern of a specification template should be gener-
ated is hard coded with a simple naming convention. This is because the C code
generated for a Simulink model has a fixed structure with well defined separate
code sections. The name of a specification template indicates to which code section
it applies.

This aspect of the approach is evidently specific to our code generator however
we believe it is possible to generalise the proposal to arbitrary model-to-text trans-
formations by introducing other specification constructs that specify the structure
of generated artifacts (i.e. folders and files) and specify where each specification
template should match in that structure. Further constructs could also be intro-
duced for example to define negative specification templates that prohibit patterns
of text instead of requiring their existence. We believe that such a generalisation
would allow the specification of arbitrary model-to-text transformations, however
this is not done in this thesis.
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Next we explain how the proposed specification templates can be used as auto-
matic test oracles.

5.3.2 Automatic Test Oracles

Specification templates are executable. Figure 5.4 illustrates how the execution
of specification templates constitutes an automatic specification-based test oracle.
Given an input test model, each specification template is executed only for input el-
ements that satisfy its guard. The template is executed by evaluating the queries it
contains and replacing them with the evaluation results in the textual pattern. This
yields a so-called expected pattern composed of verbatim text (where queries have
been replaced by query results) and regular expressions. Essentially the expected
pattern is a large regular expression that should be matched in the actual output
of the tested transformation. An expected pattern and the actual output are given
as input to a Matcher which looks for a match of the expected pattern in the actual
output. The delimiters %< %> of regular expressions allow the Matcher to escape ver-
batim text to prevent special characters such as * and ? from being interpreted as
regular expression commands outside of the delimiters.

The execution of a complete specification over an input test model yields mul-
tiple expected patterns, one per executed specification template. Each expected
pattern should have a match in the actual output of the tested transformation. If all
expected patterns have a match, the test passes, otherwise the test fails.

Test Model

Actual 

Output

Expected 

Patterns

M2T 

Transformation

Executable 

Specification 

Templates

Matcher Pass/Fail

Figure 5.4: Specification-based test oracles for model-to-text transformations

As mentioned earlier, in the context of our Simulink to C code generator, the
structure of the generated code is fixed and the location where a specification tem-
plate should match is predefined based on a naming convention. In a generalisation
of this approach the structure of the generated artifacts (i.e. folders, files, file names
etc.) and the location of specification templates in that structure would be part of
the specification and the matching operation would be more complex.

122 © 2016 Elie RICHA



5.3. Syntactic Specification of Model-to-Code Transformation

Having presented the aspects of specification and automatic oracles of our ap-
proach, we now discuss the aspect of readability of the specification and its role as
qualification evidence.

5.3.3 Readability and Generation of Qualification Documents

From qualification viewpoint, we propose to consider each specification template
as a Tool Operational Requirement (TOR). This gives requirements a uniform struc-
ture:

1. Scope of the requirement (input of the template and guard)

2. Required output (the textual source code pattern)

Additionally, we’ve already emphasized that exhibiting the code generation pat-
terns in the well known concrete textual syntax of the source code language makes
the specification understandable by a wider audience. As for queries to the input
model, they can be expressed in an Object-Oriented query language (such as OCL)
which is also an intuitive and widely known notation. Regular expressions can be
encapsulated in helper functions of the query language to avoid exposing them in
requirements. In fact the regular expressions used in code generation requirements
often consist of similar forms of expressions which makes their factorisation into
reusable helper functions convenient and even necessary.

Test Model

Actual 

Output

Expected 

Patterns

M2T 

Transformation

Executable 

Specification 

Templates

Matcher Pass/Fail

Qualification 

Document

Document 

Generator

Figure 5.5: Generation of qualification documents

Additionally, thanks to the well defined structure of specification templates,
we propose to translate specification templates into a document format such as
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Sphinx2 or LATEX3 or any other document management system used for the qual-
ification evidence, as shown in Figure 5.5. This enhances the readability of TORs
during review and eases their integration with the rest of the qualification docu-
ments.

5.3.4 Implementation Technology: Acceleo

We have selected Acceleo4 as a template language and execution framework for
specification templates. Acceleo is a model-to-text transformation language based
on templates and in fact the representation we proposed in Listing 5.1 already uses
the Acceleo syntax. The guards of Acceleo templates and the queries to the in-
put models (between brackets [, /]) are expressed in OCL. Additionally, Acceleo
allows the definition of reusable queries which can be invoked in the OCL expres-
sions constituting guards and model queries which allows to encapsulate common
regular expressions or specification patterns and enhance the readability of the re-
quirements.

From a tooling perspective, Acceleo provides a template editor in the Eclipse
environment, with syntax highlighting and auto-completion features that help sup-
port the requirements writing process.

The Matcher of expected patterns with actual test output was implemented in
Python using a standard regular expressions library. As mentioned earlier, the
Matcher also implements hard coded logic to determine the location where an ex-
pected pattern should be matched based on a convention specific to our Simulink
to C code generator.

5.3.5 Contributions

Our contributions in the scope of model-to-text specification and test oracles are
summarised as follows. They will be discussed in more detail in Chapter 9.

Conceptual Contributions

1. A model-to-text specification approach based on the notion of specification
templates which specify the generated text in terms of verbatim text, queries
to the input model, regular expressions and repetition statements.

2Sphinx, http://sphinx-doc.org/
3https://www.latex-project.org/
4Acceleo, https://www.eclipse.org/acceleo
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2. Specification-based automatic test oracles relying on the execution of spec-
ification templates over an input test model, and the matching of resulting
expected patterns in the actual output of the tested transformation.

Implementation and Validation

The implementation of our approach is specific to the qualification of QGen:
the Simulink to C code generator developed at AdaCore. Acceleo was used as
a host language and execution framework for our specification templates, and a
minimal Matcher of expected patterns was implemented. The document generation
component was implemented as a higher-order transformation written in Acceleo,
and taking as input Acceleo specification templates.

The above components of our implementation were integrated in a tool called
TOR Toolkit that was deployed within AdaCore’s development team for assessment
of the approach. The outcome of this assessment will be detailed in Chapter 10.

5.4 Conclusion

In this chapter we have given an overview of the contributions of this thesis. The
first set of contributions addresses the first problem tackled by this thesis which is
the backward translation of non-satisfied test requirements up to equivalent con-
straints over the input language of a model transformation chain. We propose to
perform this translation step-by-step with an iterative analysis called Post2Pre that
considers the non-satisfied test requirement as a postcondition of the preceding
transformation and translates it into an equivalent precondition. The analysis can
thus be iterated for all preceding steps of the chain until a constraint over the input
language is reached.

Focusing on one iteration of the backward translation, we propose to define
Post2Pre in the theoretical framework of Algebraic Graph Transformation (AGT) where
existing work proposes translations of postconditions to preconditions. Assuming
transformations are specified in ATL and test requirements in OCL, we propose
translations ATL2AGT and OCL2NGC to transpose the problem into the AGT the-
ory. Then the Post2Pre backward translation is defined using the existing construc-
tions of weakest liberal preconditions (wlp) in AGT. Given the computational com-
plexity of wlp, simplification strategies are provided to reduce the complexity and
avoid unnecessary computations.

After this first set of contributions that work towards producing integration
tests, we tackle the second problem of this thesis which is determining the verdict
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of these integration tests in the case of an ACG. Given the context of qualification,
we need test oracles based on a syntactic specification of the ACG in terms of the
textual concrete syntax of the generated code.

We propose an approach based on the notion of specification templates where
the generated code is specified in terms of textual patterns composed of verbatim
text, queries to the input model, regular expressions and repetition statements. Ex-
ecuting specification templates over test models provides expected patterns which
should be matched in the test output, thus constituting an automatic test oracle. As
for qualification needs, specification templates are amenable to document genera-
tion which enhances their readability and eases their integration with other quali-
fication documents.

The next chapters detail our proposals and the challenges that they tackle. First,
ATL2AGT and OCL2NGC are the focus of Chapter 6. Then, the theoretical aspects
of Post2Pre are detailed in Chapter 7 while the simplification strategies addressing
its scalability are presented in Chapter 8. The syntactic specification and test or-
acles approach is detailed in Chapter 9. Finally, the experimental validation and
assessment of all our contributions is presented in Chapter 10.
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6.1 Introduction

This chapter details the first contribution of this thesis, the translation of ATL trans-
formations to Algebraic Graph Transformations with equivalent semantics. As will
be explained, we address two challenges in this work: the translation of the ATL
resolve mechanisms which do not have an equivalent in the AGT semantics, and
the translation of OCL constraints and queries of ATL rules into Nested Graph
Conditions in AGT. To solve the first challenge, we propose to use a 2-phase AGT
transformation with explicit trace nodes. To solve the second challenge we reuse
and extend existing translations of OCL to NGC. Since these approaches only sup-
port non-ordered sets, we supplement them with support for ordered sets in the
context of the ATL translation.

The chapter is organised as follows. First we give an overview of the semantics
of ATL and AGT in sections 6.2 and 6.3, and then discuss the challenges of translat-
ing the former into the latter in Section 6.4. In Section 6.5 we tackle the first part of
our translation which deals essentially with the ATL resolve mechanisms. In Sec-
tion 6.6 we tackle the second aspect, the translation of OCL to NGC, recalling first
the general principles of existing translations and then presenting our contribution
regarding the support of ordered sets. Section 6.7 discusses the implementation of
our proposals and finally, Section 6.8 recalls relevant related work.

6.2 Semantics of ATL

ATL [Jouault and Kurtev, 2006] is a model-to-model transformation language com-
bining declarative and imperative approaches in a hybrid semantics. ATL transfor-
mations are primarily out-place, i.e. they produce an output model different from
the input model (though both may be in the same language), and a so-called refin-
ing mode allows for in-place model refinement transformations. In the scope of our
work, we focus only on the declarative features of ATL in the standard out-place
mode.

An ATL transformation consists of a set of declarative matched rules, each spec-
ifying a source pattern (the from section) and a target pattern (the to section). The
source pattern is a set of objects of the input metamodel and an optional OCL
[OMG, 2014] constraint acting as a guard. The target pattern is a set of objects of
the output metamodel and a set of bindings that assign values to the attributes and
references of the output objects. For example in Figure 6.1, R1 has one source pat-
tern element s and two target pattern elements: t1 with 3 bindings and t2 with 1
binding.

128 © 2016 Elie RICHA



6.2. Semantics of ATL

1 rule R1 {
2 from s : IN!A
3 (s.refB->exists(b | b.name = ’Hodor’))
4 to t1 : OUT!D
5 (name <- s.name + ’1’,
6 refD <- t2,
7 refE <- s.refB),
8 t2 : OUT!D
9 (name <- s.name + ’2’) }

10
11
12
13 rule R2 {
14 from s : IN!B
15 to t : OUT!E
16 (refD <- thisModule.resolveTemp(s.refA, ’t2’) ) }

Figure 6.1: Example of ATL transformation

An ATL transformation is executed in two phases. First, the matching phase
searches in the input model for objects matching the source patterns of rules (i.e.
satisfying their filtering guards). A tuple of source objects is only allowed to match
with one rule. For this reason ATL rules always have either source patterns with
different types of elements, or non-overlapping guards to ensure that input ele-
ments only match one rule. For each match of a rule’s source pattern, the objects
specified in the target pattern are instantiated. Then in a second stage, the target
elements’ initialization phase executes the bindings for each triggered rule.

A binding defines a target property which is an attribute or a reference on the
left side of the <- symbol, and an OCL query on the right side of the symbol. A
binding maps a scalar value to a target attribute (line 5), target objects (instantiated
by the same rule) to a target reference (line 6), or source objects to a target reference
(line 7). In the latter case, a resolve operation is automatically performed to find the
rule that matched the source objects, and the first output pattern object created by
that rule is used for the assignment to the target reference. This is referred to as the
default resolve mechanism. For example in Figure 6.1, the binding at line 7 resolves
the objects in s.refB into the output objects of type E created by R2, and assigns
them to t1.refE.

Another non-default resolve mechanism allows resolving a (set of) source object(s)
to an arbitrary target pattern object instead of the first one as in the default mecha-
nism. It is invoked via the following ATL standard operations:
thisModule.resolveTemp(obj, tgtPatternName)

thisModule.resolveTemp(Sequence{obj1, ...}, tgtPatternName)

The former is used to resolve with rules having one source pattern element while
the latter is used to resolve with rules having multiple source pattern elements. For
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example, the execution of the binding on line 16 in rule R2 will retrieve the target
object t2 (instead of t1 as with the default resolve) that was created by R1 when it
matched s.refA.

6.3 Semantics of AGT

Algebraic Graph Transformation (AGT) [Ehrig et al., 2006] is a formal framework that
provides mathematical definitions to model graph transformations. We will be us-
ing the Henshin [Henshin, accessed 2015] graph transformation framework which
applies the theoretical semantics to standard EMF models in the Eclipse platform.
The details of the formal foundations of Henshin can be found in [Biermann et al.,
2012] and are only briefly recalled here. A graph transformation is composed of
two main elements: a set of transformation rules, and a high-level program defining
the sequencing of rules.

Figure 6.2: Henshin graphical representation of an AGT rule

An AGT rule consists of a Left-Hand Side (LHS) graph and a Right-Hand Side
(RHS) graph both depicted on the same diagram as in Figure 6.2. LHS elements
are annotated with «preserve» or «delete» while RHS elements are annotated with
«preserve» or «create». Roughly, a rule is executed by finding a match of LHS in
the transformed graph, deleting the elements of LHS− RHS («delete»), and creat-
ing the elements of RHS− LHS («create»). Elements of LHS ∩ RHS are preserved
(«preserve»). A rule transforms elements matched by the LHS into the RHS, there-
fore an AGT is an in-place rewriting of the input model. For example, rule R in
Figure 6.2 matches nodes x of type X and y1 of type Y and edge re f Y in the trans-
formed graph, deletes the node matched by y1 and the edge matched by re f Y, and
creates node z2 of type Z and the edge re f Z.

Matches of a rule may be restricted with additional constraints by assigning
attribute values to nodes. For example the rule in Figure 6.2 can only match an
object x when x.name = ”Jon Snow”. Moreover, attribute values may be stored
in rule parameters such as in y1.name = p1 where the name attribute of the object
matched by y1 is stored in the rule parameter p1. Finally, a rule may assign new
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values to attributes such as in z2 where z2.name is initialized to p1 concatenated to
the string ” Stark”.

In Henshin, edges typed by a multi-valued ordered reference (i.e. with upper bound
higher than 1) can be labeled with an index. This feature will play an important role
in the handling of the ATL resolve mechanisms and the support of ordered sets in
Section 6.6. A literal integer index such as re f [2] represents a matching constraint:
only the object at index 2 may be matched by the rule. A rule parameter index such
as re f [i] allows to read an object’s index in the ordered reference and store it in the
parameter. For example in Figure 6.2, re f Y[i] indicates that the index of y1 is stored
in i. Edge indexes are zero-based.

An AGT rule can have an application condition (AC) which constrains its possible
matches. An AC is a Nested Graph Condition (NGC) over the LHS. Formally, a NGC
over a graph P is of the form true or ∃(a | γ, c) where a : P ↪−→ C is an injective
morphism, γ is a boolean expression over rule parameters and c is a NGC over C.
A match p : P ↪−→ G of P in a graph G satisfies an AC ∃(a | γ, c) if there exists a
match q : C ↪−→ G of C in G such that p = q ◦ a and γ evaluates to true under
the parameter assignment defined by p and q satisfies c. Boolean formulas can be
constructed such as the negation¬c , the conjunction

∧
i ci and the disjunction

∨
i ci

of NGCs ci over P. We use short notations ∀(a, c) and c1 =⇒ c2 for ¬∃(a,¬c) and
¬c1 ∨ c2 respectively. For example the AC in Figure 6.3 defined for rule R requires
the existence of a node y2 whose name attribute is “Arya” and forbids the existence
of a node z1 with the same name as y1. The boolean expression i <= 1 constrains
the rule to match only for the first two objects in the ordered reference x.re f Y. Note
that P is omitted from the notation when it can be inferred from the context, and
so are γ and c when they are true. The AC is graphically represented in Figure 6.2
using the annotations «require» and «forbid», however this is only possible for one
level of nesting in the AC. For complete NGCs the full notation of Figure 6.3 is
necessary. In Section 6.6 we will translate OCL guards and bindings into suitable
ACs of AGT rules.

∃
(

x : X
re f Y−−→ y2 : Y

name = “Arya”
|i <= 1

)
∧ ¬∃

(
x : X

re f Z−−→ z1 : Z
name = p2

|p1 = p2

)

Figure 6.3: Example of a Nested Graph Condition

Finally an AGT transformation is defined by a so-called high-level program which
specifies in which order AGT rules are applied. A program can be:

1. elementary, consisting of a rule r,

2. the sequencing of two programs P and Q denoted by (P; Q), or

© 2016 Elie RICHA 131



Chapter 6. Translating ATL Transformations to Algebraic Graph Transformations

3. the iteration of a program P as long as possible, denoted by P ↓, which is
equivalent to a sequencing (P; (P; (P · · · ) until the program P can no longer
be applied.

6.4 Challenges of the Translation

Having presented ATL and AGT, we now tackle the translation of the former into
the latter. To avoid confusion, we will use the notation "ruleATL" to denote ATL
rules, and "ruleAGT" to denote AGT rules. There are several challenges to the trans-
lation of ATL to AGT:

1. The first challenge is that the ATL transformations we consider are out-place
whereas AGT transformations are in-place. Therefore an ATL transformation
will have to be translated as a rewriting of the input model (or rather a copy
of it in order to preserve the input model intact).

2. The second challenge is dealing with the ATL resolve mechanisms. In AGT
no such mechanisms exist, and any objects that a ruleAGT needs to use must
already exist in the transformed graph and must be matched by the ruleAGT’s
LHS. If a ruleAGT R1 needs to use an object created by ruleAGT R2, then R2
must be executed before R1. But as demonstrated by the example ATL trans-
formation in Figure 6.1, rulesATL can mutually use objects created by each
other. This case cannot be solved with simple ruleAGT sequencing and there-
fore a more complex scheme is required. Moreover, the non-default resolve
mechanism of ATL requires to relate output objects to output pattern iden-
tifiers so that we can retrieve the object corresponding to a specific output
pattern identifier given as argument to the resolveTemp operation.

3. The third challenge is translating OCL expression in ruleATL guards and bind-
ings into graphs and NGCs in AGT. Several works [Arendt et al., 2014; Radke
et al., 2015b; Bergmann, 2014] have tackled this challenge and we have based
our translation on these existing works. However in all existing works or-
dered sets are not supported, because the AGT frameworks used in these
works do not provide the semantic concepts necessary to deal with ordering.
This lead us to tackle this particular aspect using the feature of edge indexing
of the AGT framework that we are using.

In the following we introduce our translation of ATL to AGT. The next section
focuses on the first two challenges while Section 6.6 addresses the third challenge
separately.
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6.5 Translating ATL to AGT

This section details our proposed translation of ATL transformations to AGT trans-
formations. We will use the example ATL transformation of Figure 6.1 to illustrate
the translation as it is developed.

6.5.1 General Translation Scheme

Given the out-place nature of the ATL transformations we consider and in-place na-
ture of AGT we propose to model the ATL transformation in AGT as a refinement
of the input model which only adds the elements of the output model without
modifying the input elements. The AGT transformation is organised similarly to
the ATL execution semantics, as two main sequential phases: an instantiation phase
followed by a resolving phase. Moreover, we introduce trace nodes that maintain
the relationship between input and output elements. Finally, we add an optional
cleanup phase which deletes all input elements and trace nodes leaving only the
output model.

TAGT = Instantiation ; Resolving ; Cleanup

The first phase applies a sequence of instantiation rulesAGT that create output ob-
jects without initializing their attributes and references, and relate them to input
objects through trace nodes. Each ruleATL, e.g. R1 from Figure 6.1, yields one instan-
tiation ruleAGT R1Inst that matches the same objects as R1. R1Inst is iterated as long
as possible so that all matches in the input model are processed. The order of appli-
cation of instantiation rulesAGT is irrelevant as they do not interfere with each other
since objects are allowed to match for only one ruleATL, as per the ATL semantics.

The second phase of the transformation applies a set of resolving rulesAGT which
initialize references and attributes of output objects. Each binding in a ruleATL is
translated to one or more resolving rulesAGT as will be discussed shortly. For ex-
ample, R1 yields 4 resolving rulesAGT R1t1,name

Res , R1t1,refD
Res , R1t1,refE

Res and R1t2,name
Res . Re-

solving rulesAGT navigate the input model and rely on the trace nodes created in the
instantiation phase to perform the resolving and retrieve the corresponding output
objects if needed. Like instantiation rulesAGT, resolving rulesAGT are also iterated
as long as possible so that bindings are applied to all output objects.

The third phase of the transformation applies two cleanup rules. The first rule
DeleteInObjs deletes all objects of the input model, and the second rule DeleteTra-
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ceNodes deletes all trace nodes. Iterating both rules yields a final model containing
only the output elements.

The resulting AGT transformation is the following:

TAGT =R1Inst ↓; R2Inst ↓; R1t1,name
Res ↓; R1t1,refD

Res ↓; R1t1,refE
Res ↓; R1t2,name

Res ↓; R2t,refD
Res ↓;

DeleteInObjs↓; DeleteTraceNodes↓

This scheme addresses the highlighted challenges (1) and (2) regarding the trans-
lation of the out-place ATL semantics to the in-place semantics of AGT, and the
handling of ATL resolve mechanisms: separating the creation of output objects
from their use allows resolving rulesAGT to use any output object even in the case
of mutual resolve dependencies. Moreover, the trace nodes maintain the informa-
tion required to perform the resolving as explained next.

6.5.2 Translating the ATL Resolve Mechanisms

Trace Nodes

Our translation supports ATL resolve mechanisms using explicit trace nodes
that conform to a trace metamodel generated specifically for each ATL transforma-
tion. We assume that both the input and output metamodels define a root abstract
metaclass from which all other metaclasses inherit directly or transitively1 and refer
to them respectively as RootIn and RootOut. The trace metaclasses are produced as
follows. First, an abstract metaclass Trace is defined with a from reference to RootIn
and a to reference to RootOut (Figure 6.4). For each ruleATL, e.g. R1, a so-called
typed trace metaclass named R1_Trace inheriting the abstract Trace metaclass is cre-
ated. For each input and output pattern element of the ruleATL, a reference with the
same name is created from the typed trace to the type of the pattern element. For
R1 this yields references s, t1 and t2 in Figure 6.4.

Figure 6.4: Trace metamodel

1if it is not the case, such a root abstract metaclass can be added automatically
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Instantiation RulesAGT

Each ruleATL, R1 for example, yields one instantiation ruleAGT, R1Inst, which
matches the same objects as R1 and creates the output objects as well as a typed
trace node. As can be seen in Figure 6.5, the instantiation ruleAGT is constructed
by creating a «preserve» node for each input pattern element (node s : A). Then
the OCL ruleATL guard is translated to an AC as per Section 6.6. This yields the
«require» navigation to node b : B with name = p1 and p1 = ”Hodor”. Then, a
«create» node is created for each output pattern element (nodes t1 : D, t2 : D) as
well as a typed trace node (tr : R1_Trace). The trace node is connected to input
nodes with generic from references and typed references (s) and to output node
with generic to references and typed references (t1 and t2). The order of input
and output pattern elements is preserved in from and to references by indexing the
created edges accordingly (from[0], to[0] and to[1]). This will allow resolve rulesAGT

to retrieve the first output object (to[0]) for the default resolve mechanism or any
arbitrary output object (t1 or t2) for the non-default resolve mechanism.

Figure 6.5: Instantiation ruleAGT R1Inst

Finally, since a ruleATL only applies once per match, we add a negative AC
applyOnceR1 preventing the application of the ruleAGT if another trace node tr2 with
the exact same from elements already exists. That AC is as follows:

applyOnceR1 =¬∃


s:A tr2 : Trace

from[0]

,

exactFrom(tr2)︷ ︸︸ ︷
¬∃

:RootIn tr2 : Trace
from




(6.1)
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≡¬∃


s:A tr2 : Trace

from[0]

,¬∃


s:A tr2 : Trace

:RootIn

from[0]

from




(6.2)

To understand the meaning of exactFrom (not visible on Figure 6.5) we have
shown in (6.2) a less succinct form of the AC with equivalent semantics. exactFrom(tr2)

means that s : A should be the only node in tr2. This is needed to express the fact
that s : A is allowed to participate in another ruleATL if there are other objects in
the source pattern, i.e. the complete set of from elements is not exactly the same. To
illustrate this situation let us add to the transformation the following third ruleATL:

1 rule R3 {

2 from a : IN!A,

3 b : IN!B

4 to e : OUT!E }

Objects of type A can now match both in R1 and in R3. However this does not
violate the fact that ATL should be independent because the object matches in R1 on
its own and in R3 with another object of type B. The role of exactFrom in applyOnceR1

is to allow this behavior. Likewise, exactFrom appears also in R3Inst as follows:

LHSR3Inst = a : A b : B

applyOnceR3 = ¬∃


a : A tr2 : Trace

b : B

f rom[0]

f rom[1]
, exactFrom(tr2)


exactFrom is reused for resolving rulesAGT in the following sections.

Resolving RulesAGT with Default Resolving

Each binding in a ruleATL is translated to at least one resolving ruleAGT. A resolv-
ing ruleAGT matches the same elements as the OCL query of the binding, performs
resolving if needed, and initializes the target attribute/reference of the binding. Let
us consider a binding of the following general shape:

tgtObj : tgtType ( tgtProp <- oclQuery )

A binding involving default resolving or no resolving at all is translated to a
resolving ruleAGT RtgtObj,tgtProp

Res according to the algorithm presented in Table 6.1.
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The translation depends on the type of the target property tgtProp hence the tabu-
lar presentation. Note that multi-valued target attributes are not supported at the
current stage.

Binding tgtObj : tgtType ( tgtProp <- oclQuery )

Single-valued
Attribute

tgtAtt ≡ tgtProp

Single-valued
Reference

tgtRef ≡ tgtProp

Multi-valued
Reference

tgtRef ≡ tgtProp

Step
1

Initialize LHS with : <ruleName>_Trace
tgtObj−−−→ tgtObj : tgtType

Step
2

Translate oclQuery as per Section 6.6. This will complement the LHS
with the required navigations and ACs and return a result.

Result is an
expression expr over
ruleAGT parameters

Result is a node qNode
representing the query
result

Result is a node qNode
representing one ele-
ment of the result set

Step
3

Not Applicable.
Step 3 is specific
to reference target
properties.

If the node is a source model element,
perform a default resolve by matching a trace
node with the exact from object using the
following in the LHS:

qNode
from[0]←−−− tr :Trace

to[0]−−→ rNode : type(tgtRef )

and the AC exactFrom(tr)

If not, let rNode ≡ qNode

Step
4

Create the following
attribute in the RHS

tgtObj
tgtAtt = expr

Create tgtObj
tgtRef−−−→ rNode in the RHS

Step
5

Add a negative AC to force the application of the rule once per match

¬∃


tgtObj

tgtAtt = p1
|

p1 = expr

 ¬∃
(

tgtObj
tgtRef−−−→ rNode

)

Table 6.1: Translation of an ATL binding with default resolving

Figure 6.6 shows the steps of the translation of binding t1:D(refE<-s.refB)

in R1 (Figure 6.1) to ruleAGT R1t1,refE
Res . Note that to[0] in Step 3 allows to retrieve

the first target pattern element as per the default resolve semantics. Moreover, for
multivalued target references such as t1.refE, the translation is a sort of a flattening
whereby the result elements of the OCL query s.refB are not handled all at once
but one by one. Each application of R1t1,refE

Res matches one element in s.refB and
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appends the corresponding output object to the target reference t1.refE. However,
since there are no guarantees in AGT on the order in which elements are matched,
R1t1,refE

Res as presented in Figure 6.6 is only correct if refB is a non-ordered reference.
This will be detailed and addressed in Section 6.6.

Step 1 Step 2

Step 3 Steps 4 and 5

Figure 6.6: Construction of resolving ruleAGT R1t1,refE
Res

We have thus presented the translation of bindings involving default resolving
or no resolving at all. We now present the translation of the last kind of bindings,
those involving non-default resolving.

Resolving RulesAGT with Non-Default Resolving

Bindings with non-default resolving have the following shape2:

tgtObj : tgtType ( tgtRef <-

thisModule.resolveTemp(Sequence{navExp1, . . ., navExpN}, tgtPat))

The construction of the resolving ruleAGT RtgtObj,tgtRef
Res operates in the same steps

as Table 6.1 except for steps 2 and 3 which are presented in Table 6.2. The difference
here is that the trace node that is added in step 3.a to perform the resolving now
has multiple from elements to account for rulesATL that have multiple source pattern
elements. Additionally, its outgoing to edge does not have an index, meaning that
any output object can be retrieved, not necessarily the first one as was the case with
default resolving. It is in step 3.c that we add the edge tgtPat that determines which
one of the output objects is the result of the resolve operation.

2The case where the first parameter of resolveTemp is an object is treated in the same way as a
Sequence containing only that object.
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resolveTemp(Sequence{navExp1, . . ., navExpN}, tgtPat)

Step
2

Translate each navExpi as per Section 6.6. This will complement the LHS
with the required navigations and ACs and return as a result a set of
nodes qNodei representing the navigated objects

Step
3.a

Perform a non-default resolve by matching a trace node with the exact from
tuple. Differently than for the default resolve, to is not indexed.

qNode1

qNode2 tr : Trace rNode : type(tgtRef )

qNodeN

...

from[0]

from[1]

from[N−1]

to

and add the AC exactFrom(tr)

Step
3.b

Compute CRules as the set of all candidate rulesATL that have N source
pattern elements and tgtPat as one of their target pattern elements.

Step
3.c

Add to the ruleAGT’s AC the following disjunction:∨
cRule∈CRules

∃
(

tr : <cRule>_Trace
tgtPat−−−→ rNode

)
Table 6.2: Translation of an ATL binding with non-default resolving

6.5.3 Final Cleanup Phase

At this stage, we have explained how instantiation and resolving rulesAGT create
the elements of the output model. The final phase of the transformation is the
cleanup phase which deletes the trace nodes used for resolving, and the input
model to leave only the output model. This is done by iterating the cleanup rules
DeleteInObjs which deletes input objects and DeleteTraceNodes which deletes trace
nodes. These rulesAGT are depicted in Figure 6.7. Note that these rulesAGT only
delete objects and not references between them. This is because Henshin automat-
ically deletes edges incoming to a deleted node. In other AGT frameworks which
do not have this automatic behavior, it could be necessary to add cleanup rules that
delete each kind of source and trace edge explicitely.

<< delete >>
: RootIn

DeleteInObjs

<< delete >>
: Trace

DeleteTraceNodes

Figure 6.7: Cleanup rules
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6.6 Translating OCL Guards and Binding Expressions

So far we have presented the general translation scheme producing instantiation,
resolving, and cleanup rulesAGT. As explained previously, one of the steps in this
translation consisted of translating OCL ruleATL guards and binding expressions
to ACs of respectively instantiation and resolving rulesAGT. Despite the consid-
erable difference between NGC and OCL, NGC has been shown to be expres-
sively equivalent to first order logic [Poskitt, 2013] which is the core of OCL. Trans-
lations of subsets of OCL to NGC have been proposed in [Arendt et al., 2014;
Radke et al., 2015b] with a highly theoretical approach and in [Bergmann, 2014]

with a wider supported OCL subset and an experimental approach. We have based
our translation on the one in [Radke et al., 2015b], however since both existing
works do not support ordered sets, we have extended the translation with sup-
port of ordered sets in the context of ATL transformations. The next section recalls
the basic principles of the existing OCL to NGC translation and illustrates it on
concrete examples in the context of the ATL to AGT translation. For the general
translation schemes we refer the interested reader to [Radke et al., 2015b] (and the
long version of the publication [Radke et al., 2015a]). Section 6.6.2 will then detail
our own contribution addressing ordered sets.

6.6.1 General Principles of the Existing Translation

The subset of OCL supported by our translation is the one defined in [Radke et
al., 2015b] which includes basic navigation of references of all multiplicities and
single multiplicity attributes, first order logic constructs and Set as the only col-
lection type. Basic set operations such as exists(), forAll(), select(), collect(),
union(), intersection() are supported. In the following we illustrate the transla-
tion of some of these constructs on concrete examples.

OCL RuleATL Guards

The main idea is to translate OCL guards into NGC application conditions that
are satisfied under the same conditions and OCL queries into graphs that match
the objects in the query’s result set. Starting with OCL guards, let us consider the
guard of rule R1 from Figure 6.1 recalled on the first row of Table 6.3.

Table 6.3 shows the step by step translation of this guard into an application
condition of the instantiation ruleAGT R1Inst. The translation proceeds along the
abstract syntax tree of the OCL expression. Accessing the variable s yields the
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Guard: from s:IN!A ( s.refB->exists(b | b.name = ’Hodor’))

s ∃
(

s : A
)

s.refB ∃
(

s : A
re f B−−→ r : B

)
s.refB->exists(b |

...)
∃
(

s : A
re f B−−→ r : B , ∃

(
r : B

))
s.refB->exists(b |

b.name ...)
∃
(

s : A
re f B−−→ r : B , ∃

(
r : B

name = p

))
s.refB->exists(b |

b.name = ’Hodor’)
∃
(

s : A
re f B−−→ r : B , ∃

(
r : B

name = p
, p = ”Hodor”

))

Table 6.3: Step-by-step translation of an OCL guard to a NGC application condition

creation of a node s : A mapped to its counterpart in the LHS of the rule. The nav-

igation of a reference s.refB yields the creation of a reference s
re f B−−→ r : B where

r represents one object in s.refB. Then exists() yields a new nesting level in the
NGC where the iterator b is mapped to node r in the upper nesting level. Finally,
the attribute navigation b.name = ’Hodor’ is translated by creating a rule parame-
ter p assigned to the name attribute in node b and a condition p = ”Hodor”. The
resulting NGC is the application condition associated with the instantiation ruleAGT

R1Inst as depicted in Figure 6.5.

OCL Object Queries

OCL queries in ruleATL bindings are handled similarly to OCL guards except
that along with the resulting application condition, a node or an expression is re-
turned as a result. For object queries, a node representing objects in the result set
of the query is returned by the translation. This result node is then used by the
algorithms in Table 6.1 and Table 6.2 to construct resolving rulesAGT. Since bind-
ings in the example transformation of Figure 6.1 are all simple, we illustrate this
translation over the following query where s is the source pattern object of type A

from rule R1:
s.refB->select(b | b.name = ’Sansa’)

Table 6.4 shows the step-by-step translation of this query into an application
condition. Note that the result of the OCL query is a set of elements while the
result of the translation is a single node r : B . This node represents one element of
the result set, and it is the iteration of the resolving ruleAGT that allows to process
all elements of the query, one after the other.
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Query: s.refB->select(b | b.name = ’Sansa’)

s.refB ∃
(

s : A
re f B−−→ r : B

)
s.refB->select(b |

...)
∃
(

s : A
re f B−−→ r : B , ∃

(
r : B

))

s.refB->select(b |

b.name = ’Sansa’)

∃
(

s : A
re f B−−→ r : B ,

∃
(

r : B
name = p

, p = ”Sansa”

))

Result node is r : B

Table 6.4: Step-by-step translation of an OCL object query

OCL Attribute Queries

Finally for attribute queries, an expression involving rule parameters and con-
stants is returned and used to initialize the target attribute in the resolving ruleAGT

constructed by the algorithm in Table 6.1. This is shown in Table 6.5 for the query
s.name + ’1’. The resulting expression p + ”1” is then used by the translation al-
gorithm of Table 6.1 to initialize a target attribute of an output object.

Query: s.name + ’1’

s.name ∃
(

s : A
name = p

)

s.name + ’1’ ∃
(

s : A
name = p

)
Result is the expression: p + ”1”

Table 6.5: Step-by-step translation of an OCL attribute query

6.6.2 Supporting Ordered Sets

The translation presented in the previous section and on which we have based our
work does not support ordered sets. As a result we cannot ensure that the seman-
tics of ATL regarding ordered references is preserved in the AGT transformation.
This is concretely observed by a difference in the ordering of elements in models
resulting from the ATL and AGT versions of the same transformation. Since or-
dering can be very important in transformations involved in code generation (e.g.
the order of code statements), we have extended the existing translation of OCL to
NGC with support for ordered sets in the context of our translation of ATL trans-
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formations. The ordering problem occurs in several situations that we detail in the
following.

Problem 1: Navigation of Ordered References

The first problem is dealing with the navigation of ordered references. We illus-
trate this problem with the following binding from R1 in Figure 6.1:

t1 : OUT!D ( refE <- s.refB )

refB is a multivalued reference (i.e. upper bound larger than 1). We have previ-
ously shown the translation of this binding in Figure 6.6 under the assumption that
refB is a non-ordered reference. As explained previously, the navigation s.refB is
flattened, meaning that the elements of the collection are not handled all at once,
but rather one by one thanks to the iteration of R1t1,refE

Res . According to AGT graph
matching, objects in a multivalued reference may be matched in any order3, so
R1t1,refE

Res may be applied to objects in s.refB in any order. Therefore objects in
t1.refE may end up in a different order than their counterparts in s.refB. If refB
and refE are ordered references, then this constitutes a divergence from the ATL
semantics which honours the order of objects in collections. Therefore we need a
way to force the matching of objects in s.refB in an orderly fashion.

Solution to Problem 1: The Ordering Application Condition

We propose to complement the regular translation of navigation expressions
[Radke et al., 2015b] with an additional NGC forcing objects to be matched in the
correct order. Intuitively, this NGC should express the fact that an object in s.refB

should be matched only if all preceding objects in s.refB have already been han-
dled by the resolving ruleAGT. This corresponds to the following NGC:

orderingAC = ∃
(

s : A
refB[i]−−−→ qNode : B ,

∀
(

s : A
refB[j]−−−→ qNode1 : B | j < i, wasResolvedt1,refE

R1 (qNode1)
))

Where:

– i : index of the object qNode currently being handled.

– j : index of the object qNode1 which iterates over objects preceding qNode.

– wasResolvedt1,refE
R1 (n) : A NGC which evaluates to true if node n has already

been handled by the resolving ruleAGT.

3the multivalued reference is in fact represented as several references in the graph, and any of
them may be matched with no particular ordering priority
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Now we need to define wasResolvedt1,refE
R1 (n). We can determine that a node n has

been already handled by checking if the node to which it resolves exists in the target
reference t1.refE. Therefore the following definition is suitable: wasResolvedt1,refE

R1 (n) =

∃
(

n
from[0]←−−− tr :Trace

to[0]−−→ : E
refE←−− t1 : D , exactFrom(tr)

)

With the above definitions, adding orderingAC as an application condition of
R1t1,refE

Res ensures that objects in s.refB are processed in the correct order, thus hon-
oring the ATL semantics.

Let us now generalize this reasoning to the case where the navigation is filtered
with a select operation:

t1 : OUT!D ( refE <- s.refB->select(e | body(e) )

Now an object in s.refB should be matched only if it satisfies the select condi-
tion, and if all preceding objects in s.refB which also satisfy the select condition
have been handled by the resolving ruleAGT. Therefore the AC that would ensure
the orderly processing of objects is the following:

orderingAC = ∃
(

s : A
refB[i]−−−→ qNode : B , trbody(qNode)

∧
∀
(

s : A
refB[j]−−−→ qNode1 : B | j < i,

trbody(qNode1) =⇒ wasResolvedt1,refE
R1 (qNode1)

))

Where trbody(n) is the NGC resulting from the translation of the OCL constraint
body(e), applied to a node n.

This solution can be further generalized to more complex expressions such as
chained navigation (s.refB->collect(b | b.refA)->collect(a | a.refB)). The gen-
eralisation is not yet formalised at this stage, however it has been implemented to
a considerable extent in the prototype discussed in the next section which allowed
an experimental validation of the core ideas of our solution.

Problem 2: Aggregating Queries

A second challenge concerning ordering is the handling of bindings that aggre-
gate results of several queries. This is the case of the following binding shapes
where in (1) resolved objects in tgtRef should be in the same order as the source
objects in the OrderedSet, and in (2) oclQuery1 should be resolved before oclQuery2.
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tgtRef<- OrderedSet{oclQuery1, oclQuery2 . . . oclQueryN} (1)

tgtRef<- oclQuery1->union(oclQuery2) (2)

Solution to Problem 2: Sequential Rules

To preserve the ordering of elements, we propose to translate such bindings as
separate successive bindings: tgtRef <- oclQuery1, tgtRef <- oclQuery2, . . . Each such
binding results in a separate resolving ruleAGT and the rulesAGT are sequenced in
the same order as the queries in the original binding. Consequently objects are ap-
pended to tgtRef in the right order at run-time. Therefore (1) is translated to N se-
quential resolving rulesAGT and (2) is translated to 2 sequential resolving rulesAGT.

This concludes the conceptual presentation of our translation of ATL to AGT. We
have emulated the ATL default and non-default resolve mechanisms by organising
the AGT translation in 2 phases, instantiation and resolving, and by using trace
nodes. We have translated OCL ruleATL guards and binding queries to ruleAGT

application conditions with support for ordered sets by extending existing works.
We now discuss the concrete implementation of this translation.

6.7 Implementation

We have implemented our translation of ATL to AGT in ATLAnalyser as two Java
components, ATL2AGT and OCL2NGC addressing respectively the aspects of re-
solving and OCL expressions with support for ordered sets. Both rely on the EMF
API based on the abstract syntax metamodel of ATL which embeds the abstract
syntax metamodel of OCL, and the metamodel of Henshin graph transformations.
The translation operates in the following general steps:

1. Parse the input ATL transformation using the ATL compiler API.

2. For each ATL ruleATL create an instantiation ruleAGT. Use OCL2NGC to trans-
late OCL guards into an NGC application conditions.

3. For each ATL binding create a resolve ruleAGT. Use OCL2NGC to translate
OCL queries into NGC application conditions.

4. Create the final cleanup rules.

5. Create the resulting graph transformation consisting of the iteration and se-
quencing of Instantiation, Resolve and Cleanup rules.
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6.8 Related Work

Though translations of OCL to NGC have been conducted [Radke et al., 2015b;
Bergmann, 2014], no previous work has proposed a translation of ATL to AGT to
the best of our knowledge. In [Poskitt et al., 2014] the authors propose to translate
model transformations from the Epsilon language family (arguably similar to ATL
and OCL) to AGT to show through formal proof that a given pair of unidirectional
transformations forms a bidirectional transformation. However this work is still at
an early stage and an automatic translation is not yet proposed.

In the broader context of the analysis of model transformations several exist-
ing works have translated ATL to other formalisms. In [Büttner et al., 2012b] ATL
transformations are translated to a transformation model, a representation in first-
order predicate logic used for the formal verification of model transformations4 as
discussed in Section 3.2. In [Troya and Vallecillo, 2011] ATL transformations are
translated to a Maude specification with a rewriting logic arguably similar to our
graph rewriting transformation. It is interesting to note that both these translations
rely on trace nodes similar to the trace nodes in our approach. On the contrary, the
translation to first-order predicate logic in [Büttner et al., 2012a] does not use trace
nodes because it targets SMT-solvers which were found to perform badly when
the encoding involves trace nodes. Instead, resolving mechanisms are encoded di-
rectly as logic formulae over input and output elements without intermediary trace
elements. A similar trace-less approach could be considered for the translation to
AGT if it shows benefits in that context. This is yet to be investigated in future
work.

In terms of the scope of the existing translations, we find that most approaches
handle a subset of ATL similar to ours (i.e. the declarative out-place subset) except
for the translation to MAUDE which covers a wider subset including imperative
constructs (i.e. do blocks), lazy and called rules, and the refining in-place mode.
Supporting these features is part of the future evolutions of our translation. Even
though it is certainly not straightforward, we do not foresee major obstacles to
supporting these advanced features in AGT.

It is also important to note that our translation of ATL to AGT opens the door to
applying analyses of AGT to ATL transformations. While some of these analyses
such as the (interactive or automatic) formal proof of Hoare-style correctness can
already be performed with existing formalisations of ATL, others such as the con-
struction of preconditions are not possible with existing translations of ATL. The

4transformation models are also used for the verification of other transformation languages, not
just ATL
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latter will of course be demonstrated shortly in Chapter 7. Other analyses of the
AGT theory can be useful for ATL translations and are made possible by our novel
translation. This will be the subject of future work as discussed in Chapter 11.

6.9 Conclusion

In this chapter we have detailed the second contribution of our work: the transla-
tion of ATL transformation to AGT transformations. The two main challenges in
this contribution are the handling of ATL resolve mechanisms which do not have
equivalents in the AGT semantics, and the translation of OCL guards and queries
into application conditions of AGT rules. For the first challenge we proposed to
build the resulting AGT transformation as 2 phases: an instantiation phase which
creates output elements and trace nodes, and a resolving phase which creates links
between output elements and initializes their attributes. Resolving mechanisms
were then implemented in the resolving phase relying on trace nodes created in
the instantiation phase. For the second challenge we have relied on an existing
translation of OCL to NGC [Radke et al., 2015b] and extended it with support for
ordered sets in the context of our translation. The validation of these proposals will
be detailed in Chapter 10.

Having presented the translation of ATL transformations to AGT, we now move
to the second contribution of this thesis: translating postconditions to precondi-
tions using the AGT framework.
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7.1 Introduction

In the previous chapter we have translated ATL transformations into equivalent
AGT transformations. In this chapter, we define analyses that reason on AGT trans-
formations and transform a postcondition into a precondition that guarantees the
postcondition. The transformation of postconditions to preconditions is a know
subject in the literature of AGT. In particular, the construction wlp of the weakest
liberal precondition is proposed in existing work in the context of the formal proof
of correctness of graph transformations. The main challenge of using this construc-
tion is that when the graph transformation involves iterations, wlp can theoretically
be an infinite construction.

In this chapter, we propose an approach to guarantee that wlp is always finite.
To do so we introduce a new bounded iteration construct to replace unbounded it-
eration in AGT transformations. We propose a finite wlp construction for this new
construct and prove formally the correctness of the proposed construction. The
computed precondition is only valid within a scope defined by the bounds chosen
for bounded iterations. For this reason we propose an alternate scopedWlp con-
struction which embeds the validity scope into the precondition itself. The result-
ing precondition becomes applicable to the original unbounded transformation.
We also prove this result formally. This set of formal contributions is not specific to
ATL and is applicable to arbitrary structural AGT transformations.

Given the complexity of the theoretical concepts involved in the wlp construc-
tion, we have chosen to consider solely structural aspects of transformations and
graph constraints (i.e. scalar object attributes are not supported). Extending our
proposals beyond this scope remains for future work.

The chapter is organised as follows. First Section 7.2 recalls the background of
precondition construction in AGT and defines the scope of our work. Then Sec-
tion 7.3 recalls the formal foundations of AGT that will be the basis for our def-
initions and proofs. In Section 7.4 we present the properties of different kinds of
preconditions and explain why we choose to rely on the wlp construction, then Sec-
tion 7.5 presents the details of this construction. Section 7.6 introduces our theoret-
ical contributions regarding the finiteness of wlp and the scopedWlp construction.
Finally Section 7.7 discusses related work, in particular an alternative approach to
construct preconditions which was proposed for OCL.
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7.2 Background and Scope

In general, postcondition to precondition transformation in the AGT theory has
been proposed under several forms and variants in existing works of this field.
Earlier works in [Ehrig et al., 2006; Habel et al., 2006a; Habel and Pennemann, 2009;
Ehrig et al., 2012a] proposed the construction for structural graph conditions (i.e.
no scalar attributes of nodes or edges). More recent works [Poskitt and Plump,
2013; Poskitt, 2013; Deckwerth and Varró, 2014] have extended the construction to
conditions involving node and/or edge attribution and are therefore better suited
to our needs. However as stated previously, we will focus on structural aspects,
and will therefore use the earlier works on this topic.

In comparison with the AGT framework used in Chapter 6, restricting our work
to structural aspects roughly means that transformation rules do not have rule pa-
rameters and cannot match and manipulate object scalar attributes (e.g. Strings, In-
tegers). Similarly nested graph conditions will not include constraints over scalar
rule parameters and will only consist of the purely structural morphism part. In-
dexing edges with literal values will be supported because it is needed by the ATL
resolving mechanisms. However indexing edges with variables (i.e. rule param-
eters) will not be supported which means that ordered sets cannot be supported.
The next section will define precisely the AGT concepts that we will use in their
purely structural form.

7.3 Fundamentals of AGT

In the following we recall the main concepts required to define the wlp construc-
tion. The definitions are based on, and often identical to, the ones in [Ehrig et al.,
2012a] and [Radke et al., 2015a] however we will sometimes take shortcuts for less
relevant aspects. Part of this presentation is somewhat redundant with the infor-
mal introduction of AGT previously made in Chapter 6 however it is necessary to
redefine the concepts formally as they will be necessary for the definition of our the-
oretical contributions. We will first define Graphs and Graph Morphisms, followed
by Nested Graph Conditions and Graph Constraints, and finally Graph Transformations.

Definition 7.1 (Graph (informal definition)). As previously introduced and exten-
sively used in this thesis, a graph G is composed of nodes and directed edges con-
necting the nodes. A graph is typed by a metamodel (or type graph in the AGT the-
ory). A metamodel is itself a graph where nodes are metaclasses and directed edges
are either references between metaclasses or inheritance relationships between meta-
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classes. Each node in a graph is typed by a metaclass of the metamodel, and each
edge is typed by a reference. A metaclass X is a child of another metaclass Y if it
inherits directly or transitively from Y.

Edges of a graph which have an ordered reference as a type can have an index
which is an integer value. Edges of the same type, outgoing from the same node,
are thus ordered according to their indexes.

Contrarily to the graphs used in Chapter 6, nodes here do not have scalar at-
tributes such as strings and integers.

Example 7.1 (Graph). In all examples of this chapter we use the metamodel re-
sulting from the combination of the input, output and trace metamodels that were
used in Chapter 6 where an example ATL transformation was translated to AGT.
We recall this metamodel in a purely structural form in Figure 7.1.

Figure 7.1: Example metamodel

The following two graphs are instances of this metamodel. The integers appear-
ing between brackets in the graph on the right are indexes that define an order
relationship between edges of the same type outgoing from the same node.
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d1:D e:E

d2:D

refD

refE

refD

d1:D

a:A tr:R1_Trace

d2:D

s

to[0]

to[1]

Next we define the notion of a graph morphism which is a mapping from a
source graph to a target graph. Graph morphisms will then be the basis to define
graph conditions and constraints, and transformation rules.

Definition 7.2 (Graph Morphism (informal definition)). A graph morphism m :
O −→ I is a mapping from an origin graph O to an image graph I that preserves
sources and targets of edges. This means that if an edge in O is mapped to an
image edge in I, then its source and target nodes are respectively mapped to the
source and target nodes of the image edge. A morphism also honors typing: an
origin node can only be mapped to an image node having the same metaclass, or a
child metaclass. And finally, a morphism honors edge indexing meaning that if an
edge in O has an index, then its image edge must have the same index in I.

A morphism can be partial, meaning that not all elements of O have an image in
I. We denote by dom(m) ⊆ O the domain of m i.e. the set of elements (nodes and
edges) in O mapped by m. We denote by codom(m) ⊆ I the codomain of m i.e. the
set of elements in I that have origin elements in O via m. A morphism is total if
dom(m) = O, meaning that all elements (nodes and edges) of O are mapped by the
morphism to images in I.

A morphism is injective if it preserves distinctness. That is if x1 and x2 are two
nodes or two edges in O, then x1 6= x2 ⇒ m(x1) 6= m(x2). In that case the mor-
phism is denoted as m : O ↪−→ I.

A morphism is surjective if all elements in the image graph have a corresponding
origin element in the origin graph. That is if y represents a node or an edge in I,
then ∀y ∈ I, ∃x ∈ O, m(x) = y.

A morphism that is both total and injective is called a match of O in I because it
means that there is a subgraph in I that has the same structure as O. A morphism
that is both injective and surjective is called an isomorphism.
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The mapping of nodes is graphically represented by assigning mapped nodes
the same identifiers in the origin and target graphs.

Example 7.2 (Graph Morphisms). The following morphism is injective and non-
surjective.

a1:A a2:A b:B
refB

↪−−−→ a1:A a2:A b:B b1:B
refB

The following morphism is non-injective and surjective. Note that it honors
edge indexing because refB does not have an index in the origin graph.

a1:A a2:A b:B
refB

↪−−−→ a1,a2:A b:B
refB[1]

The following morphism is injective and surjective (an isomorphism).

a1:A a2:A b:B
refB

↪−−−→ a1:A a2:A b:B
refB

Now we use the notion of graph morphism to define Nested Graph Condi-
tions and Graph Constraints which express constraints on graphs. We will later
use graph constraints to express post- and pre-conditions.

Definition 7.3 (Nested Graph Condition). A Nested Graph Condition (NGC) over
a graph P is one of the following:

– true.

– a basic condition over P : ∃(a, c)
where a : P ↪→ C is an injective morphism and c is a NGC over C. P is called
the host of the condition, and C is its conclusion.

– a boolean formula of NGCs over P : the negation ¬c, the conjunction
∧

i ci

and the disjunction
∨

i ci where c and ci are NGCs over P.
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The following notational shortcuts are used:

f alse ≡ ¬ true

∃a ≡ ∃(a, true)

∀(a, c) ≡ ¬∃(a,¬ c)

c1 ⇒ c2 ≡ ¬ c1 ∨ c2

∃(C, c) ≡ ∃(P ↪→ C, c) when P is the empty graph φ

or is known from the context i.e. it is the conclusion

of the containing condition

Now we explain the meaning of NGCs and under which circumstances they are
satisfied.

Definition 7.4 (Semantics of NGCs). Given graphs P and G, and a match p : P ↪−→
G of P in G, p satisfies a NGC d over P (denoted as p |= c) under the following
semantics:

– if d = true then p always satisfies c, that is ∀p, p |= true.

– if d = ∃(a, c) where a : P ↪−→ C and c is a NGC over C, then p |= d if there
exists a match q : C ↪−→ G such that q ◦ a = p and q |= c, as depicted in the
following diagram:

P C c

G
p

a

= q

J
|=

p |= ∃(a, c) ≡ ∃ q : C ↪−→ G, q ◦ a = p ∧ q |= c

A rough explanation of this semantics is that P expresses a structure of nodes
and edges that have been matched via morphism p in G. C contains the
same structure as P (mapped via a) and adds further elements to be matched.
Therefore p satisfies the condition if it can be complemented with matches of
the additional elements in C to form q, such that q also satisfies the nested
condition c.

– Negation, conjunction and disjunction have the usual semantics.
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We have seen that NGCs define constraints over matches of one graph in an-
other. We can also define a special case of NGCs called graph constraints which
express constraints over all graphs and not over particular matches. Graph con-
straints are used to represent postconditions and preconditions.

Definition 7.5 (Graph Constraint and Post-/Pre-condition). NGCs over the empty
graph φ are called graph constraints. A graph G satisfies a graph constraint c if the
morphism φ ↪−→ G satisfies c.

G |= c ≡ φ ↪−→ G |= c

As illustrated by the diagram below this definition means that for basic condi-
tions, G satisfies ∃(φ ↪−→ C, c′) if there exists a match of C in G that satisfies c′, as
illustrated by the diagram below.

φ C c′

G
p

a

= q

J
|=

As their name indicates, graph constraints are a way to express constraints over
graphs and not over particular matches. As such, they are used to express postcon-
ditions and preconditions of transformations which are constraints over the trans-
formed graph respectively after and before the application of a transformation.

Example 7.3 (Graph Constraint). The following graph constraint requires the exis-
tence of 2 objects of types D and E connected with a reference refE.

Post1 = ∃
(

d:D e:E
refE

)
≡ ∃

(
φ ↪−→ d:D e:E

refE
)

The following graph constraint requires the existence of 2 objects of types D and
E connected with mutual references refE and refD.
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Post2 = ∃

 d:D e:E

refE

refD


The following slightly more complex constraint requires that every object of

type D should have a refE reference to an object of type E.

Post3 = ∀
(

d:D , ∃
(

d:D e:E
refE

))

Using the definitions of morphisms and NGCs, we can now define transforma-
tion rules which manipulate graphs.

Definition 7.6 (Rule). A rule ρ = 〈p, acL〉 is composed of a plain rule
p =

〈
LHS

r
↪−→ RHS

〉
where r is an injective morphism, and an application condi-

tion acL which is a NGC over LHS.

acL LHS RHSI r

Definition 7.7 (Applicability and Application of a Rule). The first step of applying
a rule ρ on a graph G is finding a match of its LHS in G. For every match g :
LHS ↪−→ G the rule is applicable if the match satisfies the application condition acL

and satisfies a so-called dangling condition. The dangling condition specifies that
the application of a rule cannot leave dangling edges in the event of node deletion.
In our context, rules translated from ATL never delete nodes/edges. Therefore
we simplify the applicability of a rule to the simple satisfaction of its application
condition acL.

When a rule ρ is applicable with a match g, its application results in a graph H.
This is denoted as G ⇒ρ,g H or G ⇒ρ H.

g |= acL ⇔ ∃H, G ⇒ρ,g H

Applying the rule consists of constructing the so-called pushout of r and g as
illustrated by the following diagram. H is the resulting pushout object. A pushout is
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a formal construction defined in category theory that provides a formal definition
to the manipulation of graphs. We will not detail the formal definition but will
explain it practically.

acL LHS RHS

=

G H

g

I r

h

|=

Roughly, H is constructed by performing a kind of a union of graphs G and RHS,
where the elements in g(LHS) and in r(LHS) are unified in H. This means that:

– elements of G that are not matched by g are kept untouched in H. That is, G \
g(LHS) is preserved in H1.

– matched elements in g(LHS) that are also mapped by r to nodes in the RHS are
preserved. That is, g(LHS ∩ dom(r)) is preserved in H.

– matched elements in g(LHS) that are not mapped by r to nodes in the RHS are
deleted2. That is, g(LHS \ dom(r)) is deleted and does not exist in H.

– elements in RHS that are not mapped by r are new elements that are created in
H. That is, h(RHS \ codom(r)) are new elements created in H.

g and h are respectively referred to as the match and comatch of the rule applica-
tion.

Example 7.4 (Rule).
We recall rule R1t1,refE

Res from Figure 6.6 where R1t1,refE
Res =

〈〈
LHS

r
↪−→ RHS

〉
, acL

〉
where r and acL are as follows.

s:A tr:R1_Trace t1:D s:A tr:R1_Trace t1:D

qNode:B tr1:Trace rNode:E qNode:B tr1:Trace rNode:E

refB

s t1

refB

s t1

refE

r
↪−−−→

from[0]
to[0]

from[0]
to[0]

1the symbol "\" expresses set difference applied to sets of graph elements
2though this is never the case in rules translated from ATL
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acL = ¬∃

 t1:D

rNode:E

refE

 ∧ ¬∃


qNode:B tr1:Trace

:RootIn

from[0]

from



This rule is applicable when the pattern of its LHS is matched and no refE ref-
erence already exists between t1 and rNode, and tr1 does not contain other objects
than qNode in its from reference. The application of the rule preserves all matched
elements (all the LHS is mapped to the RHS) and creates refE between t1 and rNode.

We have defined the core of graph manipulation with rules and rule applica-
tions. But to build graph transformations we need to sequence the application of
rules and apply rules multiple times. This is done with the notion of a high-level
program.

Definition 7.8 (Graph Transformation (High-level Program) [Habel et al., 2006a]).
A high-level program specifies in which order AGT rules are applied. A program can
be one of the following:

– Skip which is a program that does nothing.

– a rule ρ.

– the sequencing of two programs P and Q denoted by (P; Q).

– the iteration of a program P as long as possible, denoted by P ↓, which is
equivalent to a sequencing (P; (P; (P · · · ) until the program P can no longer
be applied.

The previous definition specifies the semantics of high-level programs in an in-
formal way. However in subsequent contributions, we will need to perform formal
proofs which require the following formal definition of the semantics of high-level
programs.

Definition 7.9 (Semantics of High-level Programs [Habel et al., 2006a]). The se-
mantics of a program P is a binary relation JPK ⊆ G × G where G is the (infinite)
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set of all graphs. JPK contains all pairs of graphs 〈G, H〉 such that executing P on G
yields H. JPK is defined as follows:

– JSkipK = {〈G, G〉 | G ∈ G}

– for a rule ρ,
JρK =

{
〈G, H〉 | G ⇒ρ H

}
– for a sequence (P; Q),

J(P; Q)K = JQK ◦ JPK

– for an as-long-as-possible iteration P↓,
JP↓K = {〈G, H〉 ∈ JPK∗ | ¬∃M. 〈H, M〉 ∈ JPK}
where JPK∗ is the reflexive transitive closure of JPK.
Roughly, the semantics includes all pairs 〈G, H〉 where H results from the
repetitive application of P, such that P can no longer be applied over H.

When a program P is able to completely execute over a graph G resulting in a
graph H, we denote this with G ⇒P H ⇔ 〈G, H〉 ∈ JPK.

Having laid down the foundations of graph transformation, we can now start
defining the transformation of postconditions to preconditions.

7.4 Properties of Preconditions

We propose to rely on existing work on precondition construction for graph trans-
formation programs and graph constraints in [Habel et al., 2006a; Habel et al., 2006b;
Radke et al., 2015a; Ehrig et al., 2012a]. Based on the definitions in [Habel et al.,
2006a], given a program P and a condition d, a condition c is said to be a precondi-
tion for P relative to d if for all graphs G |= c, the following 3 properties hold:

(1) All resulting graphs H satisfy d
∀H. 〈G, H〉 ∈ JPK ⇒ H |= d

(2) There exists at least one resulting graph, or in other terms, P can be executed
on G
∃H. 〈G, H〉 ∈ JPK

(3) The execution of P over G terminates.

A condition c is a liberal precondition if for all graphs G |= c, at least (1) is satisfied. c
is a termination precondition if for all graphs G |= c, at least (1) and (3) are satisfied. A
precondition c is the weakest precondition if it is implied by all other preconditions.
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The weakest liberal precondition and the weakest termination precondition are defined
similarly.

In our context, we will focus on the weakest liberal precondition and assume that
the programs that we analyse are always executable and terminating. This assump-
tion is valid for the ATL transformations that we analyse because:

1. The high-level program representing an ATL transformation always relies on
as-long-as-possible iteration of rules. This means that even if there are no
matches, the execution where no rules are actually executed is still a valid
execution which results in an empty output model. As a result, high-level
programs representing ATL transformations are always executable.

2. In a high-level program representing an ATL transformation, AGT rules are
all equipped with negative application conditions forcing them to apply only
once per match of elements in the input model. Since the input model is
finite, then there is always a point where rules are no longer applicable and
as-long-as-possible iteration terminates. As a result, high-level programs rep-
resenting ATL transformations are always terminating.

For the above reasons, our work will be based on liberal preconditions and the
weakest liberal precondition. However, despite these assumptions, since the aspects
of existence of results and termination are defined in [Habel et al., 2006a] in terms of
the weakest liberal precondition, it is easy to extend our work to encompass these
aspects as well.

Before going further, we give the formal definitions of liberal preconditions and
of the weakest liberal precondition according to [Habel et al., 2006a].

Definition 7.10 (Liberal Precondition [Habel et al., 2006a]). Given a program P
and a graph constraint d, a graph constraint c is a liberal precondition of P relative to
d if for all graphs G:

G |= c ⇒ ∀H. 〈G, H〉 ∈ JPK ⇒ H |= d

Given P and d, more than one liberal precondition of P relative to d can exist.

Definition 7.11 (Weakest Liberal Precondition [Habel et al., 2006a]). Given a pro-
gram P and a graph constraint d, there is a graph constraint wlp (P, d) called the
weakest liberal precondition of P relative to d such that for all other liberal precondi-
tions c, we have c⇒ wlp (P, d).
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This definition is equivalent to saying that for all graphs G:

G |= wlp (P, d) ⇔ ∀H. 〈G, H〉 ∈ JPK ⇒ H |= d

Note that the difference between this definition and the former definition of
liberal preconditions is that in this definition the relation is an equivalence⇔while
in the former one it is an implication⇒.

In the following, Section 7.5 will present the wlp construction and it will become
evident that this construction can theoretically be infinite for high-level programs
involving as-long-as-possible iteration. For this reason in Section 7.6 we will pro-
pose an alternate bounded high-level program which partially represents the un-
bounded program and yields a finite construction.

7.5 Weakest Liberal Precondition Construction

The weakest liberal precondition construction wlp relies on a number of basic trans-
formations of NGCs. We will first present the basic transformations defined in
[Radke et al., 2015a] and [Ehrig et al., 2012a] and then present the wlp construction
as defined in [Habel et al., 2006a]. In our presentation we only detail the construc-
tions and refer the readers to the original publications for the formal proofs that the
constructions exhibit the necessary properties.

The core of the wlp construction is handling rules. Given a rule ρ and a postcon-
dition d the construction is roughly done in 3 steps:

1. Transform the postcondition into an equivalent right application condition
over the RHS of the rule. This will be transformation A and will be defined in
terms of another transformation called Shift. The right application condition
is:
A(ρ, d)

2. Transform the right applicable condition into an equivalent left application
condition over the LHS. This will be transformation L and the left application
condition is:
L(ρ, A(ρ, d))

3. Construct a precondition that ensures that all valid matches of the rule also
satisfy the above left application condition, and by virtue of the previous
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transformations ensure the satisfaction of the postcondition. This is trans-
formation C∀, and the precondition is:
C∀(ρ, acL ⇒ L(ρ, A(ρ, d)))

Next we define the basic transformations Shift, A, L and C∀.

7.5.1 Basic NGC Transformations

Definition 7.12 (Shift of NGCs over injective morphisms). Given a NGC c over P
and an injective morphism b : P ↪→ P′, there is a Shift3 construction which trans-
forms c via b into a NGC Shift(b, c) over P′ such that for each match n : P′ ↪→ H of
P′ in a graph H:

n ◦ b |= c ⇔ n |= Shift(b, c)

c P P′ Shift(b, c)

H

I b

n◦b n

J

|= |=

Construction. The Shift construction is defined as follows:

P P′

(1)

C C′

c

b

a a′

b′

N

– Shift(b, true) = true
– Shift(b, ∃(a, c)) =

∨
(a′,b′)∈F ∃(a′, Shift(b′, c))

where F =

{(a′, b′) | (a′, b′) jointly surjective, a′ and b′ injective, (1) commutes}
if F 6= ∅, and f alse otherwise.

– Shift(b,¬ c) = ¬ Shift(b, c)
Shift(b,

∧
i ci) =

∧
i Shift(b, ci)

Shift(b,
∨

i ci) =
∨

i Shift(b, ci)

Shift performs a so-called overlapping, or gluing of graphs P′ and C, and C′ is
referred to as the overlap graph. (a′, b′) jointly surjective means that each element
e ∈ C′ is mapped either to an element eC ∈ C via b′, or to an element eP′ ∈ P′ via a′,
or both to eC and to eP′ . In the latter case, we say that eC and eP′ have been overlapped
or glued or identified. The set F is composed of all possible overlaps C′ differing by
the overlapped elements.

We refer to the pair (a, b) as the anchor of the overlapping and to P as the anchor
graph. This is because if an element e ∈ P is mapped simultaneously by a and b,

3This corresponds to the Shift’ construction over injective morphisms in [Radke et al., 2015a]
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then a(e) and b(e) are necessarily overlapped in C′. This is because (1) commutes,
i.e. a′ ◦ b = b′ ◦ a ⇒ a′(b(e)) = b′(a(e)). Therefore F contains all overlaps where
the elements anchored by (a, b) are always glued and the rest of the elements may
be glued or not. When P = φ, no nodes are forced to be overlapped and F contains
all possible overlaps of P′ and C.

To summarise, the Shift construction allows to enumerate all overlaps of two
graphs where certain elements of the two graphs all forced to always overlap. An
example of this will be shown shortly, after we present the use of the construction
in the context of wlp.

The first step of wlp is to transform the postcondition graph constraint into a right
application condition over the RHS of the rule. This is denoted as the construction A
which is based on Shift.

Definition 7.13 (A: Transforming a postcondition to a right application condi-
tion). Given a rule ρ =

〈〈
LHS

r
↪−→ RHS

〉
, acL

〉
, a graph constraint d = ∃(φ ↪→

C, c) is transformed to an equivalent right application condition over the RHS via
the construction A(ρ, d). A is such that any rule application G ⇒ρ,g H where the
comatch h satisfies A(ρ, d) yields a result graph H that satisfies the constraint d.

h |= A(ρ, d) ⇔ H |= d

acL LHS RHS acR = A(ρ, d) ⇔ H |= d

=

G H

g

I r

h

J

|= |=

Construction. d is a graph constraint of the form d = ∃(φ ↪−→ C, c). A(ρ, d) is
constructed by shifting the constraint d over the morphism φ ↪−→ RHS. The above
properties of A are provided by virtue of the properties of Shift.

acR = A(ρ, d) = Shift (φ ↪−→ RHS, φ ↪−→ C)

Essentially, A consists in enumerating all the possible ways the rule may con-
tribute to the satisfaction or non-satisfaction of the postcondition. This is techni-
cally done by enumerating all overlaps of the RHS with the postcondition thanks
to the Shift construction. Each overlap represents one way in which the elements
involved in the rule may be involved in the satisfaction of the postcondition.
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φ RHS

Post1

b

a

d:D

e:E

refE

s:A tr:R1_Trace t1:D

qNode:B tr1:Trace rNode:E

s t1

refB refE
from[0]

to[0]

s:A tr:R1_Trace t1=d:D

qNode:B tr1:Trace rNode=e:E

s t1

refB refE
from[0]

to[0]

s:A tr:R1_Trace t1=d:D

qNode:B tr1:Trace rNode:E e:E

s t1

refB refE
from[0]

to[0]

refE

s:A tr:R1_Trace t1:D d:D

qNode:B tr1:Trace rNode=e:E

s t1

refB refE
from[0]

to[0]
refE

s:A tr:R1_Trace t1:D d:D

qNode:B tr1:Trace rNode:E e:E

s t1

refB refE
from[0]

to[0]

refE

a′1

a′2

a′3

a′4

b′1

b′2

b′3

b′4

Figure 7.2: Enumerating overlaps of Post1 and the RHS of R1t1,re f E
Res

Example 7.5 (A: Transforming a postcondition to a right application condition).
Considering, R1t1,re f E

Res from Example 7.4 and Post1 from Example 7.3, the graphical
construction of A

(
R1t1,re f E

Res , Post1

)
is depicted in Figure 7.2 with all pairs of overlap

morphisms.
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The construction yields 4 overlaps characterized by the overlap pairs (a′1, b′1),
(a′2, b′2), (a′3, b′3) and (a′4, b′4). Therefore, the right application condition is:

acR = A
(

R1t1,re f E
Res , Post1

)
= ∃ a′1 ∨ ∃ a′2 ∨ ∃ a′3 ∨ ∃ a′4

We have thus far transformed the postcondition into an equivalent right appli-
cation condition of the rule ρ. The next step is to translate the right application
condition into a left application condition over the LHS. This is the construction L.

Definition 7.14 (L: Transforming a right to a left application condition). Given a
rule ρ and a right application condition acR over RHS, L(ρ, acR) is an equivalent
condition over LHS such that for any rule application G ⇒ρ,g H

g |= L(ρ, acR) ⇔ h |= acR

L(ρ, acR) LHS RHS acR

=

G H

g

I r

h

J
|= |=

Construction. L is defined using another construction Left as follows:

L(ρ, acR) = Left(LHS ↪→ RHS, acR)

Given b : L ↪→ R and c′ a NGC over R, Left(b, c′) is an equivalent condition over L
defined as follows:

L R

C′ C

Left(b′, c) c

b

a′ a

b′

N N

– Left(b, true) = true
– Left(b, ∃(a, c)) = ∃(a′, Left(b′, c)) if the

pushout complement (a′, b′) of (b, a) exists
and f alse otherwise.

– Left(b,¬ c) = ¬ Left(b, c)
Left(b,

∧
i ci) =

∧
i Left(b, ci)

Left(b,
∨

i ci) =
∨

i Left(b, ci)

The pushout complement is a theoretical categorical construction that in our
context corresponds to reversing the effect of a hypothetical rule 〈L ↪−→ R〉 on the
graph C yielding C′. Therefore L(ρ, acR) roughly corresponds to reversing the effect
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of the rule ρ from acR. When the reversal cannot be performed for part of the NGC
(i.e. the pushout complement does not exist), the result of L for that part is f alse.
This indicates that the rule could never contribute to the satisfaction of that part of
the right application condition.

Example 7.6 (L: Transforming a right to a left application condition). In Exam-
ple 7.5 we had constructed a right application condition acR = ∃ a′1 ∨ ∃ a′2 ∨ ∃ a′3 ∨
∃ a′4. Now we apply L:

L(ρ, acR) = Left(r, a′1) ∨ Left(r, a′2) ∨ Left(r, a′3) ∨ Left(r, a′4)

We will only show the construction of Left(r, a′1) which is the following:

s:A tr:R1_Trace t1:D

qNode:B tr1:Trace rNode:E

s t1

refB
from[0] to[0]

r
s:A tr:R1_Trace t1:D

qNode:B tr1:Trace rNode:E

s t1

refB refE
from[0] to[0]

s:A tr:R1_Trace t1=d:D

qNode:B tr1:Trace rNode=e:E

s t1

refB refE
from[0] to[0]

s:A tr:R1_Trace t1=d:D

qNode:B tr1:Trace rNode=e:E

s t1

refB
from[0] to[0]

a′1l′1

r′1

As a result, Left(r, a′1) = ∃ l′1 which is obtained by reversing the effect of the rule,
i.e. removing the edge refE between nodes t1 and rNode. The same is done for the
other conditions:

Left(r, a′2) = ∃ l′2
Left(r, a′3) = ∃ l′3
Left(r, a′4) = ∃ l′4
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The left application condition is therefore:

L(ρ, acR) = ∃ l′1 ∨ ∃ l′2 ∨ ∃ l′3 ∨ ∃ l′4

The final step is transforming the left application condition into a precondition
graph constraint with the construction C∀.

Definition 7.15 (C∀: Transforming a left application condition to a graph con-
straint). A left application condition acL of a rule ρ can be transformed to a graph
constraint C∀(ρ, acL) expressing that all matches of the LHS satisfy acL. For any
graph G:

G |= C∀(ρ, acL) ⇔ ∀ g : LHS ↪→ G, g |= acL

Construction. The construction consists in simply nesting acL into a ∀ condition
based on the LHS as follows:

C∀(ρ, acL) = ∀(LHS, acL)

Note that the original definition of C∀ in [Habel et al., 2006a] is different because
it takes into account the dangling condition (see Definition 7.6) which is not needed
when dealing with ATL transformations. Nonetheless, the remainder of our work
is still valid for arbitrary transformations as long as C∀ is replaced with its original
definition if the dangling condition is necessary.

7.5.2 The wlp Construction

Having defined all the necessary basic transformations, we can now define the wlp
construction as per [Habel et al., 2006a].

Definition 7.16 (wlp: Construction of the Weakest Liberal Precondition). For any
rule ρ, programs P and Q, and graph constraint d, wlp is defined inductively as
follows:
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wlp(Skip, d) = d
wlp(ρ, d) = C∀(ρ, acL ⇒ L(ρ, A(ρ, d)))
wlp( (P; Q) , d) = wlp(P, wlp(Q, d))
wlp(P↓, d) =

∧∞
i=0 wlp(Pi, wlp(P, f alse)⇒ d)

Where P0 = Skip and Pi+1 = (Pi; P) for i ≥ 0.

The proof that this construction provides the necessary properties of wlp (Defi-
nition 7.11) is done by induction over the structure of programs in Appendix D of
[Habel et al., 2006b].

Example 7.7 (wlp construction). In Example 7.6 we had transformed postcondition
Post1 into an equivalent left application condition L(ρ, A(ρ, Post1)). We can now
construct the weakest liberal precondition:

wlp(ρ, Post1) = C∀(ρ, acL ⇒ L(ρ, A(ρ, Post1)))

∀

LHS,

acL︷ ︸︸ ︷
¬∃

 t1:D

rNode:E

refE

 ∧ ¬∃


qNode:B tr1:Trace

:RootIn

from[0]

from


⇒ (∃ l′1 ∨ ∃ l′2 ∨ ∃ l′3 ∨ ∃ l′4)︸ ︷︷ ︸

L(ρ,A(ρ,Post1))



Having defined the wlp construction for arbitrary AGT high-level programs,
we now notice that it can be infinite for programs involving as-long-as-possible
iteration. This is the focus of our first contribution detailed in the next section: an
approach to ensure the finiteness of the wlp construction for a bounded version of
the high-level program.
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7.6 Bounded Programs and Finite Liberal Preconditions

When we have as-long-as-possible iteration P↓ in a transformation T, then wlp(T, d)
may theoretically be infinite as per Definition 7.16 of the wlp construction. If we are
to automate this construction we need a way to make the construction finite. This is
a well known problem in the context of weakest preconditions for general purpose
programming languages. It is a complex problem that is not yet completely solved
in the literature. Some solutions exist typically involving so-called loop invariants,
manually provided by the programmer or automatically computed for particular
kinds of programs. Other solutions perform an unrolling of loops into equivalent
loop-less programs.

With the exception of manual loop invariants that have been used in [Habel
et al., 2006a], solutions to the problem of loops have not yet been explored in the
context of AGT programs because the study of weakest preconditions in AGT is
relatively recent. Because the study of loop invariants is a complex matter, and
given the timing constraints of this thesis, we have pursued a solution similar to
loop unrolling for general purpose programs. However due to fundamental differ-
ences between AGT programs and general purpose programs, it was not possible
to reuse existing work.

The solution we propose is to replace as-long-as-possible iteration with a new
form of bounded iteration that has a finite wlp construction. In the following sec-
tions we first define the semantics of the proposed bounded iteration construct,
and propose its corresponding finite wlp construction that we prove to be indeed
the weakest liberal precondition. Then we discuss the scope of validity of the con-
structed weakest liberal precondition: it is valid only for the bounded transforma-
tion but not always for the original unbounded transformation. Finally we propose
a variant of wlp called scopedWlp that embeds the scope of validity into the precon-
dition. We prove that the result is a (non-weakest) liberal precondition that is valid
for the original unbounded transformation. Even though we illustrate our pro-
posals on ATL transformations, the proposed constructions and the corresponding
formal proofs are valid for arbitrary AGT programs.

7.6.1 Bounded Iteration with Finite wlp

We propose to replace as-long-as-possible iteration P ↓ with a bounded iteration
P↓N . Instead of executing P as long as possible, P↓N executes P as long as possible and
up to N times.
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Definition 7.17 (Bounded Iteration of Graph Programs). For any high-level pro-
gram P and integer N > 0, we define P ↓N as the iteration of program P as long as
possible, up to N times. After N iterations of P the execution stops even if P is still
applicable.

The semantics of P↓N is:

JP↓NK =

{
〈G, H〉 ∈

N−1⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}
∪ JPNK

Where P0 = Skip and Pi+1 = (Pi; P) for i ≥ 0.

The semantics is similar to that of P ↓ up to N − 1 because it includes pairs
〈G, H〉where H results from the repetitive execution of P, such that P can no longer
be applied again on H. However, after the Nth iteration the program stops even
though P may still be applicable, hence including all of JPNK.

Having defined this new form of programs, we now propose a wlp construction
for it and prove that this construction yields a weakest liberal precondition.

Theorem 7.1 (wlp for Bounded Iteration). For any program P, condition d, and
integer N > 0, the following construction wlp(P ↓N , d) is the weakest liberal pre-
condition of program P↓N relative to d.

wlp(P↓N , d) =
N−1∧
i=0

wlp
(

Pi, wlp(P, f alse)⇒ d
)
∧ wlp

(
PN , d

)

The construction that we propose is finite, and the proof that it yields weakest
liberal preconditions is the following.

Proof. For any graph G, program P, integer N > 0 and condition d:

G |= wlp(P ↓N , d)

⇔ ∀H. (〈G, H〉 ∈ JP ↓NK⇒ H |= d)
(

wlp Def. 7.11
)

⇔ ∀H.

(((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

)

∨
(
〈G, H〉 ∈ JPNK

))
⇒ H |= d

) (Def. JP ↓NK)
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⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

)
⇒ H |= d

∧
(
〈G, H〉 ∈ JPNK

)
⇒ H |= d

)
(

a ∨ b⇒ c

≡ a⇒ c ∧ b⇒ c

)

⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

)
⇒ H |= d

)
∧ ∀H.

(
〈G, H〉 ∈ JPNK⇒ H |= d

)
(

∀x.A ∧ B

≡ ∀x.A ∧ ∀x.B

)

⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

)
⇒ H |= d

)
∧ G |= wlp

(
PN , d

)
(

Def. wlp
)

⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ∀M.¬ (〈H, M〉 ∈ JPK)

)
⇒ H |= d

)
∧ G |= wlp

(
PN , d

)
(

¬∃x.A

≡ ∀x.¬A

)

⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ ∀M. (〈H, M〉 ∈ JPK⇒ f alse)

)

⇒ H |= d

)
∧ G |= wlp

(
PN , d

)


¬A

≡ ¬A ∨ f alse

≡ A⇒ f alse



⇔ ∀H.

((
〈G, H〉 ∈

N−1⋃
i=0

JPiK∧ H |= wlp(P, f alse)

)
⇒ H |= d

)
∧ G |= wlp

(
PN , d

)
(

Def. wlp
)

⇔ ∀H.

(
〈G, H〉 ∈

N−1⋃
i=0

JPiK⇒ (H |= wlp(P, f alse)⇒ H |= d)

)
∧ G |= wlp

(
PN , d

)
(

A ∧ B⇒ C

≡ A⇒ (B⇒ C)

)

⇔ ∀H.

(
〈G, H〉 ∈

N−1⋃
i=0

JPiK⇒ H |= (wlp(P, f alse)⇒ d)

)
∧ G |= wlp

(
PN , d

)
(
(H |= A)⇒ (H |= B)

≡ H |= (A⇒ B)

)

⇔ ∀H.

((
N−1∨
i=0
〈G, H〉 ∈ JPiK

)
⇒ H |= (wlp(P, f alse)⇒ d)

)
∧ G |= wlp

(
PN , d

)
(

Def. ∪
)

⇔ ∀H.
N−1∧
i=0

(
〈G, H〉 ∈ JPiK⇒ H |= (wlp(P, f alse)⇒ d)

)
∧ G |= wlp

(
PN , d

)
(

a ∨ b⇒ c

≡ a⇒ c ∧ b⇒ c

)

⇔
N−1∧
i=0
∀H.

(
〈G, H〉 ∈ JPiK⇒ H |= (wlp(P, f alse)⇒ d)

)
∧ G |= wlp

(
PN , d

)
(

∀x.A ∧ B

≡ ∀x.A ∧ ∀x.B

)
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⇔
N−1∧
i=0

G |= wlp
(

Pi, wlp(P, f alse)⇒ d
)
∧ G |= wlp

(
PN , d

) (
Def. wlp

)

⇔ G |=
(

N−1∧
i=0

wlp
(

Pi, wlp(P, f alse)⇒ d
)
∧ wlp

(
PN , d

)) (
G |= A ∧ G |= B

≡ G |= (A ∧ B)

)

7.6.2 wlp of Bounded Programs

Having defined the finite wlp construction for bounded iteration, we now apply it
to AGT programs. To illustrate our proposal we will consider ATL transformations,
even though the approach is applicable to arbitrary AGT programs.

When considering ATL transformations translated to AGT, we can ignore the
final Cleanup phase of these transformations since it only affects elements of the
input model and trace nodes and therefore does not affect the postcondition which
only concerns the output model. As a result, the transformations considered for
precondition construction have the following general form:

T = R1Inst ↓ ; R2Inst ↓ . . . R1...
Res ↓ ; R2...

Res ↓ . . .

Since in the above we have as-long-as-possible iteration of rules, the wlp con-
struction can theoretically be infinite. As proposed, we avoid this by analysing a
bounded version of the transformation obtained by replacing all unbounded itera-
tions with iterations bounded to an arbitrary number N > 0 as follows:

T≤N = R1Inst ↓N ; R2Inst ↓N . . . R1...
Res ↓N ; R2...

Res ↓N . . .

Then wlp becomes a finite construction and we can compute wlp (T≤N , d). We
notice in the above that we only have iterations of rules, so before moving to exam-
ples, let us expand the construction wlp (r↓N , d) in the specific case of the iteration
of a rule ρ as this will ease subsequent explanations.

Definition 7.18 (wlp for bounded rule iteration). For any rule ρ = 〈LHS ↪−→ RHS, acL〉,
integer N > 0 and graph constraint d:

wlp (ρ, f alse) = C∀(ρ, acL ⇒ L(ρ, A(ρ, f alse))) (wlp Def. 7.16)

= ∀(LHS, acL ⇒ f alse) (A, L, C∀ Def. 7.13, 7.14, 7.15)

= ∀(LHS, ¬acL) (A⇒ f alse ≡ ¬A ∨ f alse ≡ ¬A)

= ¬∃(LHS, acL) (∀ Def. 7.3)
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And therefore:

wlp (ρ↓N , d) =
N−1∧
i=0

wlp
(

ρi, wlp(ρ, f alse)⇒ d
)
∧ wlp

(
ρN , d

)
=

N−1∧
i=0

wlp
(

ρi, ¬∃(LHS, acL)⇒ d
)
∧ wlp

(
ρN , d

)
=

N−1∧
i=0

wlp
(

ρi, ∃(LHS, acL) ∨ d
)
∧ wlp

(
ρN , d

)

After applying Pre = wlp (T≤N , d), the weakest liberal precondition Pre should
be a constraint over the input metamodel. However as seen in the construction
above, the condition will contain the LHS graphs of rules. These graphs may con-
tain trace nodes and elements of the output metamodel. But input models of the
transformation can only contain elements of the input metamodel and could never
contain trace nodes or elements of the output metamodel. Therefore conditions
nested in Pre that contain trace nodes or elements of the output metamodel can
never be satisfied : they may be replaced with f alse and Pre can be simplified ac-
cordingly. This simplification does not alter the semantics of Pre and is not needed
in theory, however without it Pre would be unnecessarily complex, both for human
interpretation as well as for machine processing. Next we show some examples of
wlp (T≤N , d).

Example 7.8 (wlp of a bounded ATL transformation). We consider a modified ver-
sion of the example from Figure 6.1 where we remove attribute-related aspects and
only keep structural aspects. The considered ATL transformation is therefore the
following:

1 rule R1 {

2 from s : IN!A

3 (s.refB->exists(b | true))

4 to t1 : OUT!D

5 (refD <- t2,

6 refE <- s.refB),

7 t2 : OUT!D }

8 rule R2 {

9 from s : IN!B

10 to t : OUT!E

11 (refD <- thisModule.resolveTemp

12 (s.refA, ’t2’) ) }
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Then we translate this purely structural ATL transformation to the following
AGT transformation:

T = R1Inst ↓; R2Inst ↓; R1t1,refD
Res ↓; R1t1,refE

Res ↓; R2t,refD
Res ↓

By choosing N = 1, we consider a bounded version of the transformation where
there no longer is unbounded iteration:

T≤1 = R1Inst ↓1; R2Inst ↓1; R1t1,refD
Res ↓1; R1t1,refE

Res ↓1; R2t,refD
Res ↓1

Next, we consider a postcondition and construct its corresponding weakest lib-
eral precondition.

Post0 = ∃

 d1:D

d2:D

refD



Pre0 = wlp (T≤1, Post0) = ∃

 s:A , ∃

 s:A

b:B

refB




︸ ︷︷ ︸
a

︸ ︷︷ ︸
b

Note that this precondition and all the ones shown in subsequent examples were
obtained with our implementation of wlp that will be discussed later in this chap-
ter. To explain the precondition intuitively, we notice that the ATL rule R1 produces
2 instances of D that satisfy the postcondition. Therefore to ensure the postcondi-
tion we must ensure that R1 is triggerred at least once. Indeed, Pre0 requires the
existance of R1’s source pattern (part a) such that the guard is satisfied (part b). This
ensures that R1 is triggerred and that the postcondition is satisfied.

Example 7.9 (wlp with ATL resolve mechanism). With the same transformation of
Example 7.8, we now consider the postcondition Post1 and apply wlp:

Post1 = ∃
(

d:D e:E
refE

)
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Pre1 = wlp (T≤1, Post1)

Pre1 = ∧



∃


s:A , ∃



s:A

b:B

refB





∀



s:A , ∨



¬∃



s:A

b:B

refB



∧



∃
(

s:A s:B

)

∀


s:A s:B , ∃



s:A

s:B

refB







In the representation of Pre1, the coloring of nodes is used to represent the mor-
phisms between nesting levels of the condition. Two nodes in two different nesting
levels are represented with the same color when they are mapped by the morphism
from the upper nesting level to the lower nesting level.

To be able to interpret this precondition and assess its validity, we need to notice
a particular recurring pattern in its structure. In several places, notably at the root
of the condition, we observe the following form:

∃ (C, c)

∧ ∀ (C,¬c ∨ d)

Since both the ∃ and ∀ of the conjunction have the exact same conclusion graph
C, then we can conjunct the nested condition of ∀ into the ∃ as follows:

∃ (C, c ∧ (¬c ∨ d))

∧ ∀ (C, ¬c ∨ d)
≡

∃ (C, c ∧ d)

∧ ∀ (C,¬c ∨ d)
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Rewriting Pre1 in the above form gives the precondition in Figure 7.3 which
is easier to understand. In the upper part of the condition, we notice that part a
requires the existence of the source pattern of R1 such that its guard is verified thus
ensuring that R1 is triggered. Similarly, part b ensures that R2 is triggered and that
a resolve between R1 and R2 is possible based on refB. These conditions combined
ensure that:

1. R1 will produce an object d:D.

2. R2 will produce an object e:E.

3. The resolve mechanism will create refE from d to e.

As a result, Pre1 guarantees that Post1 will be satisfied in the output model.

Example 7.10 (wlp of unsatisfiable postcondition). With the same transformation
of Example 7.8 ,we now consider another postcondition, Post2:

Post2 = ∃


d:D

e:E

refErefD


Applying the analysis we obtain wlp(T≤1, Post2) = f alse indicating that no in-

put model could ever lead to the satisfaction of the postcondition. In the ATL trans-
formation, R1 creates objects t1:D and t2:D, and creates refE outgoing from t1. R2

performs a non-default resolve and uses t2 instead of t1 to initialize refD, therefore
the cycle in Post2 could never be produced by this transformation, which justifies
the precondition f alse.

7.6.3 Scope of the Bounded Weakest Liberal Precondition

wlp (T≤N , d) is the weakest liberal precondition of T≤N relative to d, but not neces-
sarily that of T. While exceptions may exist, in general wlp (T≤N , d) 6= wlp (T, d).
However wlp (T≤N , d) can still be useful for reasoning about T within a certain
scope. In T≤N , N is the maximum number of times each rule is iterated. In T, it-
erations are not bounded, but for all executions of T where each rule is executed
less than or exactly N times, T is equivalent to T≤N , i.e. T ∼ T≤N . Only in that
case is wlp (T≤N , d) valid for T. For this reason the interpretation and usage of
wlp (T≤N , d) for T is not straightforward. We distinguish two situations:
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Pre1 =

∧



∃



s:A , ∧



a︷ ︸︸ ︷

∃



s:A

b:B

refB


b︷ ︸︸ ︷

∃


s:A s:B , ∃



s:A

s:B

refB





∀


s:A s:B , ∃



s:A

s:B

refB







∀



s:A , ∨



¬∃



s:A

b:B

refB



∧



∃


s:A s:B , ∃



s:A

s:B

refB





∀


s:A s:B , ∃



s:A

s:B

refB







Figure 7.3: Pre1 = wlp (T≤1, Post1)

1. wlp (T≤N , d) = f alse

2. wlp (T≤N , d) 6= f alse
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When the Precondition is f alse

wlp (T≤N , d) = f alse means that it is impossible to satisfy the postcondition with
T≤N . However the postcondition may in fact be satisfiable with a higher bound
M > N. To illustrate this, let us consider the ATL transformation from Example 7.8
and the postcondition Post3 = ∃

(
: D : D : D

)
which requires the existence of

3 objects of type D in the output model. In the transformation, objects of type D
are only created by R1: each application of R1 produces 2 instances of D. Setting
the bound N = 1 forces R1Inst (and by consequence R1) to be triggered only once,
therefore T≤1 can only produce up to 2 instances of D. Under these constraints the
postcondition can never be satisfied hence wlp (T≤1, Post3) = f alse. Setting N = 2
would give a different precondition which ensures that R1 is triggered twice and
ensures by consequence the satisfaction of Post3. However in other cases such as
Example 7.10 a postcondition that is unsatisfiable with T≤N may also be unsatisfi-
able with T.

To work around this problem, when wlp (T≤N , d) = f alse we can try to increase
the bound N to see if we can construct a different precondition. If not, then we
must manually analyse the postcondition and the transformation to determine if
the postcondition is indeed unsatisfiable with T.

When the Precondition is Non- f alse

Let us consider wlp (T≤N , d) 6= f alse and assume that an input model G was
produced such that G |= wlp (T≤N , d). If we execute T (not T≤N) to obtain a result
graph H, there are 2 possible execution scenarios:

1. Each rule is triggered less than (or exactly) N times. In that case T ∼ T≤N and
we are sure that H |= d.

2. Some rules are triggered M times where M > N. In that case T � T≤N and we
cannot claim for sure that H satisfies d. Therefore it is necessary to evaluate d
over H to check that it is satisfied. We note that it is likely that H |= d because
wlp (T≤N , d) is likely to be effective with T as well.
If however H 2 d, then we can compute wlp (T≤M, d) and produce an input
model G′ |= wlp (T≤M, d). The same reasoning is then iterated with G′ to
make sure that the result satisfies d.

We illustrate this situation with the following example.

Example 7.11 (Scope-sensitive Precondition). A simple way to illustrate the scop-
ing problem is with the following postcondition stating that there should not exist
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3 or more objects of type E i.e. there should exist at most 2 objects of type E in the
output model.

Post4 = ¬∃
(

e1:E e2:E e3:E

)

Computing wlp we find that wlp (T≤1, Post4) = wlp (T≤2, Post4) = true mean-
ing that any input model given to T≤1 and T≤2 leads to the satisfaction of the post-
condition. This is because R2 can never be triggered beyond 2 times in these trans-
formations, so there can never be more than 2 objects of type E in the output model
regardless of the input model. However this is surely not the case for T.

If we consider the transformation T with the input graph G = b1 : B b2 : B b3 : B ,
R2 will be triggered 3 times and the output model will contain 3 objects of type E.
Therefore the postcondition will be violated even though the precondition was sat-
isfied. This is because this execution is beyond the scope of validity of wlp (T≤1, Post4)

and wlp (T≤2, Post4).

Given that R2 was triggered 3 times in that execution, we can iterate the anal-
ysis with N = 3 and compute wlp (T≤3, Post4) 6= true. In that case we get G 2
wlp (T≤3, Post4) which means that the postcondition cannot be satisfied with G.

7.6.4 From Bounded wlp to Non-Bounded Liberal Preconditions

In the previous section, we have ensured the validity of wlp (T≤N , d) for T by check-
ing a posteriori of execution that H |= d. Now we propose to ensure the applicabil-
ity of wlp (T≤N , d) to T a priori by complementing wlp (T≤N , d) with a constraint
that limits the number of possible triggers of each rule to N. In this way we en-
sure that for any model that satisfies the precondition, we have T ∼ T≤N and
therefore the precondition is valid for T. We propose to call such a construction
scopedWlp (T≤N , d) because it encodes the scope of validity in the precondition it-
self. We will then show that scopedWlp (T≤N , d) is a (non-weakest) liberal precon-
dition of T which is definite formal proof that the scoped precondition is valid for
T.

Naturally, scopedWlp is largely the same as wlp except for the handling of bounded
program iteration P ↓N . We complement wlp (P↓N , d) with a condition that pre-
vents the program from executing more than N times. From [Habel et al., 2006a]
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we know that for any program P, the condition ¬wlp (P, f alse) ensures the exis-
tence of a result i.e. the applicability of the program P. In formal terms, for any
graph G:

G |= ¬wlp (P, f alse) ⇔ P is executable over G ⇔ ∃H. 〈G, H〉 ∈ JPK

G |= wlp (P, f alse) ⇔ P is not executable over G ⇔ ¬∃H. 〈G, H〉 ∈ JPK

To illustrate wlp (P, f alse) we expand the construction for rules in the following
example.

Example 7.12 (Existence of a result for rules). The condition ensuring the existence
of a result for a rule ρ = 〈LHS ↪−→ RHS, acL〉 expands as follows:

¬wlp (ρ, f alse) = ∃ (LHS, acL) (expansion details in Def. 7.18)

We observe that a result exists (i.e. the rule is executable) when there exists a
match of the LHS that satisfies the application condition acL. Conversely, a result
doesn’t exist (i.e. the rule is not executable) when there doesn’t exist such a match.
This reasoning is specific to rules and is generalised to arbitrary programs P with
wlp (P, f alse).

Therefore to ensure that a program P cannot apply beyond N times, we can use
the condition wlp

(
PN+1, f alse

)
. To convince ourselves of this, we can prove the

following theorem.

Theorem 7.2 (Executability beyond N). For all graphs G, programs P, integers N >

0

G |= wlp
(

PN , f alse
)
⇒ G |= wlp

(
PN+1, f alse

)
≡ PN is not executable on G ⇒ PN+1 is not executable on G

And by induction over N we can state that:

G |= wlp
(

PN , f alse
)
⇒ ∀M > N. G |= wlp

(
PM, f alse

)
≡ PN is not executable on G ⇒ ∀M > N. PM is not executable on G
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Proof.

G |= wlp
(

PN , f alse
)

⇔ ¬∃H. 〈G, H〉 ∈ JPNK

⇒ ∀H1.
(
¬∃H.

(
〈G, H〉 ∈ JPNK ∧ 〈H, H1〉 ∈ JPK

))
⇒ ∀H1.

(
¬ 〈G, H1〉 ∈ JPNK ◦ JPK

)
⇒ ∀H1.

(
¬ 〈G, H1〉 ∈ JPN+1K

)
⇒ ¬∃H1.

(
〈G, H1〉 ∈ JPN+1K

)
⇒ G |= wlp

(
PN+1, f alse

)

With the above theorem, we have shown that condition wlp
(

PN+1, f alse
)

en-
sures that P cannot be applied beyond N times. We thus define scopedWlp as fol-
lows.

Definition 7.19 (Liberal precondition with scoping). For any graph constraint d,
rule ρ, programs P, Q and integer N > 0, scopedWlp is defined inductively over
the structure of programs as follows:

scopedWlp (Skip, d) = wlp (Skip, d)
scopedWlp (ρ, d) = wlp (ρ, d)
scopedWlp ( (P; Q) , d) = wlp ( (P; Q) , d)
scopedWlp (P↓N , d) = wlp (P↓N , d) ∧ wlp

(
PN+1, f alse

)

Now we prove that scopedWlp (T≤N , d) is a (non-weakest) liberal precondition
of T relative to d which means that it ensures the satisfaction of d as a postcondition
of the unbounded T.

Theorem 7.3 (scopedWlp is a liberal precondition of T). For any program T, integer
N > 0 and graph constraint d, scopedWlp (T≤N , d) is a liberal precondition of T. In
formal terms, for all graphs G:

G |= scopedWlp (T≤N , d) ⇒ G |= wlp (T, d) ⇒ ∀H. 〈G, H〉 ∈ JTK⇒ H |= d
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Proof. For all kinds of programs except iteration, the proof entails from the fact that
scopedWlp ≡ wlp. For iteration we need to prove that the scoped precondition of
bounded iteration is a (non-weakest) liberal precondition of unbounded iteration,
i.e. for all graphs G:

G |= scopedWlp (P↓N , d) ⇒ G |= wlp (P↓, d)

First we recall the definitions of JP↓K and JP↓NK:

JP↓K = {〈G, H〉 ∈ JPK∗ | ¬∃M. 〈H, M〉 ∈ JPK}

=

{
〈G, H〉 ∈

∞⋃
i=0

JPKi | ¬∃M. 〈H, M〉 ∈ JPK

}

=

{
〈G, H〉 ∈

∞⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

=

{
〈G, H〉 ∈

N⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

∪
{
〈G, H〉 ∈

∞⋃
i=N+1

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

JP↓NK =

{
〈G, H〉 ∈

N−1⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}
∪ JPNK

Next we deduce the consequences of G |= wlp
(

PN+1, f alse
)

on JP↓K and JP↓NK.

G |= wlp
(

PN+1, f alse
)

⇒ G |= wlp
(

PN+1, f alse
)
∧ ∀M > N + 1. G |= wlp

(
PM, f alse

)
(Thm. 7.2)

⇒ ∀M ≥ N + 1. G |= wlp
(

PM, f alse
)

⇒ ∀M ≥ N + 1. ¬∃H. 〈G, H〉 ∈ JPMK

⇒ ∀M ≥ N + 1.
{
〈G, H〉 ∈ JPMK

}
= φ

⇒
{
〈G, H〉 ∈

∞⋃
i=N+1

JPiK

}
= φ

⇒ {〈G, H〉 ∈ JP↓K} =
{
〈G, H〉 ∈

N⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

And

G |= wlp
(

PN+1, f alse
)
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⇔ ¬∃M. 〈G, M〉 ∈ JPN+1K (wlp Def. 7.11)

⇔ ¬∃M. 〈G, M〉 ∈ JPNK ◦ JPK

⇔ ¬∃M.
(
∃H.

(
〈G, H〉 ∈ JPNK∧ 〈H, M〉 ∈ JPK

))
⇔ ∀M.

(
¬∃H.

(
〈G, H〉 ∈ JPNK∧ 〈H, M〉 ∈ JPK

))
⇔ ∀M.

(
∀H.

(
¬ 〈G, H〉 ∈ JPNK∨ ¬ 〈H, M〉 ∈ JPK

))
⇔ ∀H.

(
¬ 〈G, H〉 ∈ JPNK∨ ∀M. (¬ 〈H, M〉 ∈ JPK)

)
⇔ ∀H.

(
¬ 〈G, H〉 ∈ JPNK∨ ¬∃M. 〈H, M〉 ∈ JPK

)
⇔ ∀H.

(
〈G, H〉 ∈ JPNK⇒ ¬∃M. 〈H, M〉 ∈ JPK

)
⇒ {〈G, H〉 ∈ JP↓NK} =

〈G, H〉 | 〈G, H〉 ∈
N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

∨ 〈G, H〉 ∈ JPNK


⇒ {〈G, H〉 ∈ JP↓NK} =

〈G, H〉 | 〈G, H〉 ∈
N−1⋃
i=0

JPiK∧ ¬∃M. 〈H, M〉 ∈ JPK

∨ 〈G, H〉 ∈ JPNK ∧ ¬∃M. 〈H, M〉 ∈ JPK


⇒ {〈G, H〉 ∈ JP↓NK} =

{
〈G, H〉 ∈

N⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

Therefore

G |= wlp
(

PN+1, f alse
)
⇒

{〈G, H〉 ∈ JP↓K} = {〈G, H〉 ∈ JP↓NK} =
{
〈G, H〉 ∈

N⋃
i=0

JPiK | ¬∃M. 〈H, M〉 ∈ JPK

}

And finally, we can prove that scopedWlp is a liberal precondition as follows.

G |= scopedWlp (P↓N , d)

⇔ G |= wlp (P↓N , d) ∧ G |= wlp
(

PN+1, f alse
)

⇔ ∀H. 〈G, H〉 ∈ JP↓NK⇒ H |= d ∧ G |= wlp
(

PN+1, f alse
)

⇒ ∀H. 〈G, H〉 ∈ JP↓K⇒ H |= d

184 © 2016 Elie RICHA



7.6. Bounded Programs and Finite Liberal Preconditions

⇒ G |= wlp (P↓, d)

Next we illustrate scopedWlp over some of the previous examples.

Example 7.13 (Scoped liberal precondition). We consider the same postcondition
from Example 7.11.

Post4 = ¬∃
(

e1:E e2:E e3:E

)

In Example 7.11 we had obtained wlp (T≤1, Post4) = wlp (T≤2, Post4) = true,
but that precondition was not always valid for T. We now apply scopedWlp. The
result scopedWlp (T≤1, Post4) is the following.

scopedWlp (T≤1, Post4) =

∧



¬∃



s:A , ∧



∃


s:A

b:B

refB



∨


∃

 s:A s:A , ∃


s:A s:A

b:B

refB




∃
(

s:A s:B , ∃
(

s:A s:B s:B

) )


¬∃
(

s:B , ∃
(

s:B s:B

) )

Since the precondition obtained with wlp was true, the above precondition ob-
tained with scopedWlp expresses solely the scoping condition: rules should not be
triggered more than once. It expresses the fact that there should not be 2 objects of
type A that satisfy R1’s application condition and there should not be 2 objects of
type B that trigger R2. This is what ensures that each rule can never be triggered
more than once.
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As illustrated by the example, scopedWlp (T≤N , d) is more constraining that
wlp (T≤N , d) because it adds the scoping condition. The scoping condition essen-
tially limits the maximum size of input models to ensure that iterated programs
cannot be triggerred beyond N times. This ensures that the behavior of T is iden-
tical to the behavior of T≤N and therefore ensures the validity of the bounded pre-
condition for the unbounded transformation T.

7.6.5 Discussion

In this section we have shown 2 finite precondition constructions:

(1) wlp (T≤N , d) computes the weakest liberal precondition of T≤N relative to d,
however this precondition may not always apply to the unbounded trans-
formation T i.e. there may be input models that satisfy the precondition but
do not ensure the postcondition after execution of T. For this reason it is
necessary to verify the satisfaction of the postcondition a posteriori of execu-
tion.

(2) scopedWlp (T≤N , d) is similar to the first construction but complements it
with a scoping constraint that ensures that it produces a (non-weakest) lib-
eral precondition of T. This means that this construction always guarantees
the satisfaction of the postcondition for the unbounded transformation T.
However the precondition it produces is more constraining than that of con-
struction (1) because it imposes bounds on the size of input models.

For the usage in the context of test generation construction (1) may be a bet-
ter choice because it guides test generation without constraining test models too
much. However a posteriori verification of the result is necessary. In comparison,
construction (2) requires no a posteriori verification because it guarantees the valid-
ity of resulting models, but the precondition it produces is more constrained than
construction (1) and imposes size limits over input models. The consequence for
test generation is that in certain situations no test model can be found if the pre-
condition is too constraining. For timing constraints, it was not possible to assess
both constructions thoroughly with respect to the targeted usage context of test
generation. This comparison is left as future work.

Beyond the context of test generation, the constructions presented and the ac-
companying formal proofs constitute a solid basis for formal analyses of model
transformations in future work. As will be detailed in Chapter 11, such analyses
include manual and automated formal proof of correctness of model transforma-
tions.
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Before moving to the next chapter which will discuss the implementation and
scalability of the proposed constructions, we discuss related work in the next sec-
tion.

7.7 Related Work

Many works in the field of formal proof of correctness of traditional imperative pro-
grams have proposed ways to transform postconditions into preconditions starting
with their original introduction in [Hoare, 1969]. The considered programs manip-
ulate numeric variables and even pointers to memory locations. While it is possible
to encode model transformation in this manner and transform conditions with tra-
ditional methods, we have found the AGT framework to be more suitable for the
problem at hand because it acknowledges the graph-like nature of models and de-
fines condition transformations accordingly.

Within the field of AGT, an alternate construction to the classical theoretical one
that we used has been proposed in [Cabot et al., 2010a]. This work considers trans-
formations consisting of AGT rules but considers application conditions, postcon-
ditions and preconditions in OCL instead of NGC as classically done. OCL post-
conditions of a rule are then transformed to preconditions in two steps. First the
rule is analysed to extract so-called atomic updates that the rule performs such as
(roughly) the deletion/creation of links and the deletion/creation of objects. Then,
a set of textual replacement patterns are applied to the OCL precondition. For each
atomic update performed by the rule, the textual replacement patterns rewrite the
postcondition into a corresponding precondition.

Conceptually, this OCL-based approach bears several similarities with the NGC-
based approach that we presented in this chapter. In essence, the OCL textual re-
placement patterns undo the effects of the atomic updates of the rule from the post-
condition, which is similar to step L in the NGC-based construction. Additionally,
the textual replacement patterns consider all possible ways in which an atomic up-
date may affect expressions in the postcondition, which is similar to enumerating
the overlaps of the rule RHS with the postcondition in step A of the NGC-based
construction. However, being tailored to OCL, this approach supports more expres-
sive postconditions involving constraints on numerical attributes and cardinalities
of collections. Support of some of these constraints has been introduced to the
NGC-based translation in different ways such as in [Poskitt, 2013] and [Deckwerth
and Varró, 2014] however the theoretical concepts involved are fairly complex and
we did not tackle them in the scope of this thesis.
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Nonetheless, the NGC-based translation provides other advantages. It is proven
to be complete and correct while the OCL-based approach does not provide a proof
of completeness and correctness yet. Moreover, the fact that the NGC-based ap-
proach represents conditions as graphs will allow us to easily introduce simplifi-
cations based on the ATL semantics in the following chapter. This will be detailed
further in Section 8.5.

7.8 Conclusion

In this chapter we have detailed the transformation of a postcondition of an AGT
transformation into a precondition ensuring the satisfaction of the postcondition.
This transformation was based on the weakest liberal precondition constructions wlp
of the AGT framework. Since its application to programs involving iteration may
yield an infinite construction, we have proposed a way to make the construction
finite by bounding the number of iterations. To do so we have introduced a new
bounded iteration construct and its corresponding finite wlp. The precondition com-
puted in this manner is not always valid for the initial unbounded transformation.
For this reason we have introduced an alternate scopedWlp construction that yields
a liberal precondition that is not the weakest, but that is always valid for the un-
bounded transformation and that always guarantees the satisfaction of the post-
condition. For all these new concepts we have proposed formal definitions and
have proven their properties. This set of formal contributions is not specific to ATL
and is applicable to arbitrary structural AGT transformations.

In the next chapter, we will discuss the implementation of the proposed con-
structions and introduce strategies to address their computational complexity.
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Chapter 8. Implementation and Simplification Strategies for wlp

8.1 Introduction

In the previous chapter we presented the theoretical translation of postconditions
to preconditions using the wlp construction. This chapter focuses on its implemen-
tation and the complexity issues that arise. The core of the wlp construction is the
Shift operation which relies on enumerating all possible ways in which the trans-
formation can contribute to the satisfaction of the postcondition. The combinatorial
nature of this construction yields very large and complex preconditions that grow
exponentially as the successive rules of the transformation are analysed.

To address this problem we propose several strategies that jointly help reduce
combinatorial explosion. Some of these strategies are specific to ATL transforma-
tions while others can be applied for arbitrary AGT transformations. We also pro-
pose a modified construction of wlp which is equivalent to the original one but
allows an early application of the proposed simplification strategies. This helps
avoiding unnecessary computations early on. Finally, we propose a parallel imple-
mentation and a memory management strategy allowing the algorithm to perform
faster and avoid memory exhaustion. Except for the ATL-specific simplification
strategies, all of these contributions are generally applicable to arbitrary structural
AGT transformations.

In the following sections we start by detailing the implementation of graph over-
lapping which is the basis of the Shift construction in Section 8.2 and we discuss
the complexity of this operation in Section 8.3. Then we propose our simplification
strategies in Section 8.4 and our alternate construction in Section 8.5. Finally we
discuss parallelisation and memory management aspects in Section 8.6.

8.2 Implementing Graph Overlapping

The core of wlp is the Shift construction which enumerates all possible overlaps of
two graphs. Implementing this enumeration into an algorithm is not straightfor-
ward. We have taken inspiration from an existing overlapping algorithm in the
AGG framework [AGG, accessed 2015] and adapted it to the Henshin framework
taking particular care to the aspects of node type inheritance as will be explained.

Let us consider the construction of Shift(A
a1

↪−→ G1, A
a2

↪−→ G2).
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A G1

(1)

G2 Oi

a1

a2 bi
1

bi
2

As explained in the definition of Shift, the anchor (a1, a2) specifies which nodes
should necessarily be identified in all overlaps Oi. Let Ganchored

1 = {a1(e); e ∈
dom(a1) ∩ dom(a2)} be the set of anchored elements in G1, i.e. the images through
a1 of the elements of A that are mapped simultaneously by a1 and a2.

The idea is to enumerate all subgraphs of G1 which contain the anchored ele-
ments Ganchored

1 . For each such subgraph Gj
1, we construct the inclusion rj : Gj

1 ↪−→
G1 and a temporary graph transformation rule Rj =< rj, true >. Then we con-
struct a partial morphism mj which maps each anchored element to its counterpart
in G2. Next, we use the Henshin execution engine to complete mj by matching the
remaining elements of Gj

1 to G2. If a complete morphism cannot be found, the sub-
graph Gj

1 is discarded and we move to the next subgraph. If a complete morphism
mi

j is found, it constitutes a match of the rule Rj in G2. Executing Rj with a match mi
j

complements G2 with the remaining elements G1 − Gj
1 resulting in an overlap Oi.

Iterating the process for all matches mi
j and all subgraphs Gj

1 produces all overlaps
Oi.

Gj
1 G1

G2 Oi

rj

mi
j bi

1

bi
2

This algorithm works when all nodes of G2 have types that inherit the types of
nodes in G1. If it is not the case, i.e. if a node m in G1 has a type that is a child type of
a node n in G2, then these nodes could never be overlapped by the above algorithm
whereas they should be in theory. We have therefore modified the algorithm to deal
with such cases. The solution was to upgrade the type of m in Gj

1 to the type of n
which allows the nodes to be matched. Then once Oi is constructed, we downgrade
the type of m (in Oi) back to its original type yielding the correct overlap.
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8.3 Complexity of Graph Overlapping

The graph overlapping algorithm has a very high complexity and typically gen-
erates a large number of overlaps. Without making an exact calculation, we can
estimate the complexity by noting that enumerating subgraphs, which is needed in
the overlapping algorithm, is similar to enumerating subsets. For a set of size N
the number of subsets is 2N . For a graph of N nodes, the number of subgraphs is
greater than 2N due to the existence of edges which may or may not be included in
a subgraph. We therefore estimate that the number of overlaps grows very quickly
with the size of the overlapped graphs. As a result, the precondition produced by
wlp can typically be very large.

Another complexity factor is the recursive nature of wlp. For program sequenc-
ing and looping the result of a wlp application is used as input for the next one:
wlp ((P; Q) , d) = wlp (P, wlp (Q, d)). Therefore the large number of overlaps pro-
duced by the first application is then overlapped with other graphs in the next
application of wlp yielding an even larger precondition. Consequently, as the con-
struction progresses through the rules of the transformation one by one, the pre-
condition grows very large and does so very quickly.

We propose in the next section several strategies which jointly reduce this growth
by simplifying conditions as they are constructed and eliminating useless compu-
tations.

8.4 Simplification Strategies for Taming Combinatorial Ex-
plosion

8.4.1 NGC and Standard Logic Properties

The first and most straightforward strategy is determining statically the NGCs that
always evaluate to true or f alse, and simplify boolean formulas according to stan-
dard properties of boolean connectives. The simplification rules are the following:

1. If a is an isomorphism, then ∃(P
a

↪−→ C, c) ≡ c′

Where c′ is the translation of condition c into the exact same condition over P
through the isomorphism a−1.

Intuitively, since a is an isomorphism, then all elements of C have origin el-
ements in P and there are no other non-mapped elements in C. Therefore C
does not add further constraints to the condition, and the nested condition
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c can directly be applied to P. This simplification is particularly interesting
when c = true since in that case ∃(P

a
↪−→ C, true) = true.

2. ∃(a, f alse) ≡ f alse

3. For any NGC c

a. ¬¬c ≡ c

b. c ∧ true ≡ c

c. c ∧ f alse ≡ f alse

d. c ∨ f alse ≡ c

e. c ∨ true ≡ true

The above simplification rules allow to greatly reduce the size of conditions by
eliminating unnecessary nesting levels and short-circuiting branches of conditions.

8.4.2 Rule Selection

The second strategy consists in skipping rules that are irrelevant to the analysis to
reduce unnecessary complication of the precondition. A postcondition expresses
a constraint over nodes and edges of particular types. If a rule ρ does not create
nodes or edges of the types involved in the postcondition (or their children types),
then it cannot affect the satisfaction or non-satisfaction of that postcondition. In that
case it is useless to apply wlp for that rule, and ρ can be skipped in the analysis to
avoid complicating the precondition unnecessarily. As a result instead of analysing
T≤N , we propose to analyse an alternate transformation T select

≤N where only rules
that create elements of the types involved in the postcondition (or their children
types) are kept. Formally, we speculate that:

wlp
(

T select
≤N , d

)
⇔ wlp (T≤N , d)

This claim is only an intuition at this stage and we do not yet have a formal justi-
fication for this proposal. However our experiments showed that in the majority of
the cases that we considered (∼ 70%) we obtained wlp

(
T select
≤N , d

)
= wlp (T≤N , d).

In the minority of cases where the preconditions were different, manual analysis
showed that the preconditions were equivalent despite the structural differences.
This experimental evidence tends to support our intuition and we may be able to
provide formal evidence in future work.

Note that the equivalence does not hold for scopedWlp because it involves the
scoping condition which is necessarily different depending on the rules selected in

© 2016 Elie RICHA 193



Chapter 8. Implementation and Simplification Strategies for wlp

T select
≤N . However our intuition is that in the same way that non-contributing rules

can be skipped in wlp, such rules can also be eliminated from the scoping condition
while maintaining the validity of the resulting precondition, i.e. the result is still a
liberal precondition that guarantees the satisfaction of the postcondition.

To state our intuition formally, we believe that scopedWlp
(
T select
≤N , d

)
is a liberal

precondition that is weaker than/less constraining than/implied by scopedWlp (T≤N , d),
and yet remains a liberal precondition of the unbounded transformation T. There-
fore, not only is T select

≤N easier to analyse because it involves less rules, the result
is also a less constraining precondition that still guarantees the satisfaction of the
postcondition.

scopedWlp (T≤N , d) ⇒ scopedWlp
(

T select
≤N , d

)
⇒ wlp (T, d)

Example 8.1 (Rule selection for wlp construction). We consider the ATL transfor-
mation from Example 7.8 which is translated to the following bounded AGT trans-
formation:

T≤1 = R1Inst ↓1; R2Inst ↓1; R1t1,refD
Res ↓1; R1t1,refE

Res ↓1; R2t,refD
Res ↓1

And we consider postcondition Post1 from Example 7.9:

Post1 = ∃
(

d:D e:E
refE

)

The postcondition only contains nodes of type D and E, and edges of type refE.
We can therefore only consider the rules of the transformation that create elements
of these types (or their children types) and analyse the following transformation
instead.

T select
≤1 = R1Inst ↓1; R2Inst ↓1; R1t1,refE

Res ↓1

Comparing the results of the analysis, we find indeed that wlp
(
T select
≤1 , Post1

)
=

wlp (T≤1, Post1)

8.4.3 ATL Semantics

The third strategy we propose is specific to ATL. It consists in using of the ATL
semantics to statically determine if certain NGCs are equivalent to f alse. Due to
the properties of Trace nodes we know for a fact that certain graph patterns can
never be produced by the AGT rules translated from ATL. If such patterns occur in
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a NGC, we know that the NGC can never be satisfied and could be simply replaced
with f alse.

A first property of the ATL semantics is that every target object is instantiated by
one, and only one, ATL rule. Any target object can never have multiple incoming to
edges from different trace nodes. Therefore we know statically that any condition
∃(P ↪→ C, c) where C contains a target object with multiple incoming to edges as
in the following diagram will never be satisfied by any graph along all possible
executions of the transformation. Such a condition can therefore be replaced by
f alse.

∃


tr1:Trace

:RootOut

tr2:Trace

to

to

 ≡ATL f alse

Another property is that there cannot be two trace nodes which have the same
ordered set of objects in their from reference. This is ensured by the assumption that
application conditions of instantiation rules which come from guards of ATL rules
are mutually exclusive i.e. a set of objects never satisfies the guards of multiple ATL
rules simultaneously. As a result, any condition ∃(P ↪→ C, c) where C contains two
(or more) trace nodes with the same ordered set of objects in their from references
can never be satisfied by any graph along all possible executions of the transfor-
mation. Such a condition can therefore be replaced by f alse. This the case of the
following condition for example:

∃


:A tr1:Trace

:B tr2:Trace

from[0]

from[1]

from[1]

from[0]


≡ATL f alse

Definition 8.1 (ATL-based NGC filtering). We formalize this strategy as a filtering
predicate which returns False if its input morphism violates the ATL semantics.

isValidATL : M−→ B = {True, False}

P ↪→ C 7−→

False if C violates the ATL semantics

True otherwise

When the filter returns True the condition is preserved. When it returns False,
the condition is eliminated and replaced with f alse.
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8.4.4 Element Creation

The last strategy we propose is presented in the context of ATL, but can be applied
to arbitrary exogenous AGT transformations if they exhibit the necessary proper-
ties.

In ATL transformations each resolving rule creates an edge of a specific type. In
certain transformations it may occur that a type ref of edges is only created by one
(or a small number of) resolving rule(s) R. This means that before the execution or
iteration of this rule, the transformed graph can never contain edges of the type ref.
As a result, in the precondition wlp (R↓N , d) any NGC ∃(P ↪→ C, c) where C con-
tains edges of type ref can never be satisfied and can therefore be replaced by f alse.
A similar strategy could also be applied to instantiation rules based on the types of
nodes they create, however it is less straightforward since each instantiation rule
often creates more than one type of nodes.

Definition 8.2 (Element creation NGC filtering). For this strategy we define for a
node or reference type t the following filtering function that determines if a condi-
tion contains elements of type t or not.

notContainst : M−→ B = {True, False}

P ↪→ C 7−→

False if C contains elements of type t

True otherwise

When the filter returns True the condition is preserved. When it returns False,
the condition is eliminated and replaced with f alse.

The strategy could be generalised to arbitrary exogenous AGT transformations
where a particular type of elements is only created by a well identified part of the
transformation. The precondition of that part of the transformation can be simpli-
fied with the method above. The transformation must be exogenous because the
strategy relies on the fact that elements of the target metamodel cannot exist in
input models. We do not perform this generalisation here and remain within the
specific context of ATL.
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Example 8.2 (Element creation NGC filtering). As an example we consider the
ATL transformation of Example 7.8 that was translated to the following AGT pro-
gram for its analysis with wlp:

T≤N = R1Inst ↓N ; R2Inst ↓N ; R1t1,refD
Res ↓N ; R1t1,refE

Res ↓N ; R2t,refD
Res ↓N

Looking at the resolving rules, we notice that only R1t1,refE
Res creates references

of type refE. Therefore after computing wlp(R1t1,refE
Res ↓, d) we can apply the filter

notContainsre f E and replace all NGCs that contain references of type refE with f alse.

To illustrate this, we consider the postcondition Post1 of Example 7.7 for which
we had constructed:

wlp
(

R1t1,re f E
Res , Post1

)
= ∀

(
LHS, . . . ⇒

(
∃l′1 ∨ ∃l′2 ∨ ∃l′3 ∨ ∃l′4

) )
Using notContainsre f E eliminates all conditions that contain re f E, which leaves

only ∃l′1 in the condition and greatly simplifies it:

wlp
(

R1t1,re f E
Res , Post1

)
= ∀

(
LHS, . . . ⇒

(
∃l′1 ∨ f alse ∨ f alse ∨ f alse

) )
= ∀

(
LHS, . . . ⇒ ∃l′1

)

Optional Reordering of Rules for ATL

Based on the element creation strategy, it is possible to go further in the case of
ATL. We notice that wlp processes sequences in reverse i.e. wlp ((P; Q; R), d) =

wlp (P, wlp (Q, wlp (R, d))) starts with processing the last program of the sequence
R and moves towards the first one. It is therefore desirable to apply the simplifica-
tion strategy as early as possible, from the first rule R if possible.

Fortunately, because ATL rules are independent, their corresponding AGT rules
can be reordered without affecting the semantics of the transformation. Thus for
the previous example, it is possible to move R1t1,refE

Res to the end of the sequence
so that the simplification strategy can be performed early to avoid unnecessary
computations:

T≤N = R1Inst ↓N ; R2Inst ↓N ; R1t1,refD
Res ↓N ; R2t,refD

Res ↓N ; R1t1,refE
Res ↓N
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In the above example the reordering is not particularly interesting because each
type of reference is created by only one rule1. However in transformations where
a type of reference is created by more than one rule, it is possible to group and
reorder resolving rules according to the type of references that they create. For
a general ATL transformation, we propose to create for each reference ref in the
target metamodel, a program Crre f which is the sequencing and iteration of rules
that create references of type ref.

Crre f = R1
Res ↓N ; R2

Res ↓N ; . . . where Rk
Res creates references of type re f

Then we sequence the programs Crre f by descending number of rules involved
in each program. We thus reorganise the transformation into the following form:

T = Instantiation ; Crre f1 ; Crre f2 . . .

where
i < j ⇒ |Crre fi | ≥ |Crre f j |

|P| being the number of rules in the program P.

By organising the transformation in this manner, we can eliminate all NGCs that
contain edges of type re f after the completion of each wlp(Crre f , d) computation.
Since the programs Crre f with a smaller number of rules are sequenced last in the
transformation, they are processed first by wlp. Therefore the simplification can be
applied as early as possible and we can limit the growth of the precondition early
in the computation.

A similar grouping and reordering can be done for nodes creation in instanti-
ation rules. However since each instantiation rule can instantiate multiple target
metaclasses, we cannot always organise them into programs Crclass because each
instantiation may be placed in more than one Crclass programs. Nonetheless, for
metaclasses only instantiated by one rule, filtering can be performed. This is no-
tably applicable to typed trace nodes: each instantiation rule RInst is the only one
to instantiate nodes of type R_Trace. Therefore after processing wlp (RInst ↓N , d) we
can apply the filter notContainsR_Trace.

This concludes the presentation of the simplification strategies that we propose
in order to eliminate irrelevant parts of the conditions resulting from the wlp con-
struction. In the next section we propose to integrate some of these strategies into
the wlp construction to apply simplifications early on and avoid unnecessary com-
putations.

1the same name refD was used for D::refD and E::refD, but they are different types
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8.5 Combining A and L for Early Simplification – Post2Le f t

wlp relies internally on two constructions A (Definition 7.13) and L (Definition 7.14).
We propose to combine the two constructions into a single construction called
Post2Le f t. This combined construction applies the filtering functions defined in
the previous strategies as soon as overlaps are computed which allows to eliminate
irrelevant overlaps early on and avoid useless computations. While all existing the-
oretical approaches always define A and L separately for the sake of formal proofs,
this is to our knowledge the first proposal combining both constructions in the in-
terest of scalability concerns.

Definition 8.3 (Post2Le f t combined construction). Given an arbitrary morphisms
r : L ↪→ R and b : P ↪→ R, and an NGC e over P, the combined construction
Post2Le f t(r, b, e) is defined such that it is equivalent to the combined application
of A and L.

Given a rule ρ =

〈
LHS

p
↪−→ RHS, acL

〉
, the morphism i : φ ↪−→ RHS and a

postcondition d, the combined construction, we have:

L(ρ, A(ρ, d)) = Post2Le f t (p, i, d)

LHS RHS φ

Post2Le f t (p, i, d) d

p

N
i

N

As a result, the precondition for ρ can be constructed using Post2Le f t instead of
A and L:

wlp (ρ, d) = C∀ (ρ, acL ⇒ Post2Le f t (p, i, d))

Construction. The construction Post2Le f t(r, b, e) is defined as follows, where isValidATL

and notContainst are defined respectively in definitions 8.1 and 8.2.

– Post2Le f t(r, b, true) = true

– Post2Le f t(r, b,¬ c) = ¬ Post2Le f t(b, c)
Post2Le f t(r, b,

∧
i ci) =

∧
i Post2Le f t(r, b, ci)

Post2Le f t(r, b,
∨

i ci) =
∨

i Post2Le f t(r, b, ci)
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L R P

(1)

C′′ C′ C

Post2Le f t(r′, b′, c) c

r

a′′ a′

b

a

r′

N
b′

N

– Post2Le f t(r, b, ∃(a, c)) =
∨

(a′,b′,a′′,r′)∈F ∃(a′′, Post2Le f t(r′, b′, c))
where F = {(a′, b′, a′′, r′) |

(a′, b′) jointly surjective,
a′ and b′ injective,
(1) commutes,
isValidATL(a′) = True,
the pushout complement (a′′, r′) of (r, a′) exists,
notContainst(a′′) = True if a filter notContainst is applicable }

and f alse if F = ∅

In this construction, (a′, b′) pairs are constructed just like with Shift. However
when an overlap yields a′ such that the pushout complement does not exist or
isValidATL(a′) = False or notContainst(a′′) = False (when applicable), then we do
not process the nested condition c for that overlap. In comparison, the conven-
tional Shift construction c was always systematically applied to c. Our construction
allows to make early simplifications and avoid making useless overlapping com-
putations over c. Keeping in mind that the nested condition c can be a very large
condition resulting from a previous wlp computation, avoiding the processing of c
for irrelevant overlaps is a major improvement.

Discussion

It is important to note that this alternate construction Post2Le f t is useful beyond
ATL transformations. If the analysed transformation is not an ATL transformation,
the filters isValidATL and notContainst can simply be replaced with vacuous fil-
ters that always return True. Or alternatively, the filters can be replaced with other
filters implementing other simplification strategies. This could be useful if the anal-
ysed transformation has other semantical properties that allow filtering and elim-
inating conditions like we have shown for ATL. In this manner semantical knowl-
edge about the analysed transformation can be introduced into the wlp construc-
tion to avoid unnecessary computation and help with scalability. In that spirit, our
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implementation of Post2Le f t applies filtering in a modular fashion. ATL-specific
filters are implemented as modular filters that can easily be removed, composed or
replaced with other filters.

Additionally, it is interesting to recall at this point the comparison that we dis-
cussed in Section 7.7 between our NGC-based construction of preconditions, and
the OCL-based construction proposed in [Cabot et al., 2010a]. The OCL-based con-
struction is based on a set of textual replacement patterns performed on the post-
condition to transform it into a precondition. This approach had the advantage
of supporting more expressive postconditions because it relied directly on OCL
(which is more expressive than AGT). However, because its replacement patterns
also need to consider all possible ways in which a rule may affect the postcondition,
we find this to be similar to the graph overlapping operation in the NGC-based con-
struction. Therefore we suspect that the OCL-based approach suffers also from the
problem of combinatorial explosion that we faced in the NGC-based approach.

As a result, an advantage of our NGC-based approach is the possibility of eas-
ily introducing simplifications construction as was demonstrated in this section,
something that is not straightforward with the OCL-based approach. Thanks to
the graph nature of NGCs, we were able to easily characterise graphs that violate
the ATL semantics and eliminate them. This semantic knowledge of ATL would be
harder to introduce in the textual replacement patterns of the OCL-based construc-
tion because OCL does not provide the same level of abstraction as graphs.

Having proposed Post2Le f t for the early filtering of conditions as a way to avoid
unnecessary computations, we now turn to parallelisation and memory manage-
ment aspects of the implementation.

8.6 Parallelisation and Memory Management

Parallelising wlp

Given the high complexity of the wlp construction and the rapid growth in the
size of the computed conditions, it is necessary to parallelise its implementation in
order to obtain results in a reasonable time. The bulk of the computation resides in
Post2Le f t(r, b, ∃(a, c)) where the graph overlapping occurs while the handling of
the other forms of conditions is straightforward.

In Post2Le f t(r, b, ∃(a, c)), for each overlap result (a′, b′, a′′, r′) ∈ F we need to
perform a new computation Post2Le f t(r′, b′, c) over the nested condition c. Assum-
ing c is composed of negations, conjunctions and disjunctions of a set of M condi-
tions, then for each overlap pair we need to perform M computations Post2Le f t(r′, b′, ∃(ai, di)
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which are independent of each other. We therefore propose to run them as parallel
jobs.

Since each parallel job will also result in new jobs for its nested conditions, then
we can expect that a large number of jobs will be created. For this reason, we do
not start parallel jobs as soon as they are created to avoid overloading computing
resources. Instead we have opted for an architecture with a job queue serving a
thread pool of fixed size. New jobs are placed in the job queue, and dequeued as
worker threads of the pool become available. This allows to have a fixed number
of parallel jobs running at any point in time.

Managing Memory Usage

As wlp processes rules of the transformation, preconditions and graphs become
very large and quickly exhaust the available memory. We have therefore propose
to use a mechanism that dumps intermediate results of the computation to files
on the disk and reload them into memory as they become needed. This allows
for the computation to keep going without ever exhausting the memory (assuming
unlimited disk space).

To allow for partial results to be dumped on disk, it was necessary to fragment
conditions into separate resources. Even though existing tools propose generic
model fragmentation solutions (i.e. Neo4EMF2 and EMF-Fragments3), it was not
possible to apply them to Henshin conditions due to the existence of manually
written Henshin components preventing the generic fragmentation mechanisms.
As a result, we implemented a custom fragmentation and dumping mechanism for
Henshin conditions built into the wlp implementation. While far from being ideal,
this solution allowed to reduce memory usage considerably. In the future better
solutions from the research domain of model scalability should be investigated.

8.7 Conclusion

In this chapter we have focused on the scalability of the wlp construction. Given the
high complexity of the graph overlapping operation at the heart of the construction,
we have proposed several simplification strategies allowing to avoid unnecessary
computations and reduce the size of the resulting conditions. First we proposed 4
simplification strategies:

(1) NGC and Standard Logic Properties

2Neo4EMF, http://www.neo4emf.com
3EMF-Fragments, https://github.com/markus1978/emf-fragments
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(2) Rule Selection

(3) ATL Semantics

(4) Element Creation

Strategies (1) and (2) are general to arbitrary AGT transformations. Strategy (3)
is specific to ATL, and strategy (4) was presented in the specific context of ATL but
can be generalised to arbitrary exogenous AGT transformations if the necessary
properties hold.

Then we proposed a new modified construction Post2Le f t for wlp that allows to
apply the above strategies early and avoid performing unnecessary computations.
Finally we proposed parallelisation and memory management strategies to provide
reasonable performance despite the high computational complexity.

The experimental assessment of all these proposals will be presented in Chap-
ter 10, where we will demonstrate that our simplification strategies are highly ef-
ficient. Meanwhile, we move onto the third and final contribution of this thesis
in Chapter 9: a syntactic specification and test oracles approach for model-to-code
transformations.
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9.1 Introduction

The previous chapters focused on the first problem tackled by this thesis which was
the backwards translation of test requirements in the final purpose of producing
integration tests of a model transformation chain. We now move to the second
problem which is determining the verdict of these integration tests in the case of a
code generation chain with suitable test oracles. We determined that for the needs
of qualification, the test oracles need to be based on a specification of the ACG
focusing on the syntax of the generated code.

Consequently we proposed an approach for the specification and test oracles of
model-to-test transformations. At the heart of this approach is the notion of specifi-
cation templates which allow specifying the generated source code in terms of its tex-
tual concrete syntax. These templates are composed of a combination of verbatim
text, queries to the input model, regular expressions and repetition statements. The
execution of this specification over a test model provides expected patterns which
should be matched in the test output, thus consisting an automatic test oracle. Fi-
nally to address qualification needs, we proposed automatic document generation
as a way to produce a document consistent and easily integrated with the rest of
the qualification evidence.

We explained previously that our approach is tailored for the qualification of
QGen, the Simulink to C code generator developed at AdaCore, and in this chapter
we detail our proposals in this context. In Section 9.2, we give an overview on the
code generation strategy of QGen to understand what we aim to specify. Then in
Section 9.3 we introduce the notion of specification templates which are the founda-
tion of our approach.

Defining code generation for Simulink requires a complex specification which is
why we propose to factorise common definitions and specification elements such
as complex regular expressions into libraries of reusable queries. As a result we
present this organisation of the specification and its libraries in Section 9.4.

Once the supporting libraries are laid out, we present in Section 9.5 how Tool
Operational Requirements (TORs) are formalised as specification templates, and
demonstrate in Section 9.6 how they are used as test oracles.

Finally we discuss document generation in Section 9.7, and recall related work
in Section 9.8. In particular, we compare our approach with the model-to-text spec-
ification approach of [Wimmer and Burgueño, 2013].
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9.2 Use Case: Simulink to C Code Generation in QGen

9.2.1 Semantics of Simulink Models

A Simulink model consists of computation blocks each having inports and outports
which are connected via signals. Each block reads data from its inport(s), performs
a computation, and makes the result available on its outport(s) for successor blocks.
Each block has a type which defines the computation that is performed. For exam-
ple a block of type Sum computes the sum of its inputs while a block of type Gain
multiplies its input by a constant. A block may also have parameters which are ei-
ther numeric values used in the computation or enumeration values that configure
the computation. For example we will explain shortly that a UnitDelay block delays
its input signal by one iteration, meaning that for the initial iteration an arbitrary
value must be used and is specified via a block parameter named InitialCondition.

Inports and outports are typed with a data type. A data type is defined by 2
aspects:

– The base type which can be one of: double, single, int8, uint8, int16, uint16,
int32, uint32.

– The dimensions which are either non-existent for scalar data types, an integer
n for a vector data type of size n or a pair of integers [m, n] for a matrix of m
rows and n columns.

Figure 9.1: Example of a Simulink model

A Simulink model has a graphical representation depicted in Figure 9.1. Blocks
are represented as boxes, often using different shapes for different block types. In
this example, In1 and In2 are blocks of type Inport and Out is a block of type Out-
port because they represent respectively the inports and the outport of the contain-
ing system. Unit Delay 1 is a block of type UnitDelay and the circle-shaped block
is a block of type Sum with a (non-visible) name Sum 1.

Signals are represented as lines connecting blocks. Inports and outports are
not explicitly depicted but correspond to the start point and end point of signal
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arrows. Block parameters are not always depicted graphically and are usually in-
spected and modified via a separate window in the user interface. For example, the
UnitDelay block has the InitialCondition parameter set to 0 but this is not depicted
graphically.

Port types are also not depicted graphically and can be set via a separate win-
dow in the user interface. In the example of Figure 9.1 the port types are as follows:

Port Base Type Dimensionality
Outport of In1 int16 scalar
Outport of In2 int16 vector of size 2
Inport of Unit Delay 1 int16 vector of size 2
Inport 1 of Sum 1 int16 scalar
Inport 2 of Sum 1 int16 vector of size 2
Outport of Sum 1 int16 vector of size 2
Inport of Out int16 vector of size 2

The set of blocks and signals specifies a computation algorithm. Simulink mod-
els have a synchronous data flow execution semantics consisting of an iterative
periodic execution of the computation algorithm. At each iteration, data values
are read from the inports of the system and routed along signals to computation
blocks. Each computation block reads its input data, performs the computation
defined by its type (i.e. sum, multiplication etc.) and outputs the result on its out-
port for successor blocks. Some computation blocks store internal persistent state
which is preserved between iterations of the algorithm. For example, a block of
type UnitDelay produces as output the value of its input at the previous iteration
step. Therefore at each iteration, the input value of a UnitDelay block is stored
in the persistent state to be used at the next iteration. Note that blocks may have
complex semantics that depends on the dimensions of the data they handle. For
example in Figure 9.1, Sum 1 performs the sum of a scalar with a vector by adding
the scalar to each component of the vector.

9.2.2 Implementation of Simulink Semantics in Source Code

The semantics of Simulink models can be implemented in several ways into C
source code. The implementation strategy chosen in QGen is such that for an input
Simulink model, two files are generated: a C header file providing an interface to
invoke the generated code, and a C implementation file containing the implemen-
tation. The implementation is composed of the following elements:

1. A set of module-level persistent variables to store persistent data if any.

2. An init() function which sets the initial values of the persistent variables.
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3. A compute(args...) function which performs one cycle of computation of
the model. The inports and outports of the system correspond to input and
output arguments of the compute function.

a. For each outport of a computation block, a local variable is created.

b. A first chunk of code statements named the “compute section” contains, for
each computation block, the code statements that implement it.

c. The sequencing of code statements should honor the data flow defined by
the signals in the model: the code statements of a block should always appear
before the code statements of all its successors.

d. A second chunk of code statements named the “update section” contains
statements that store persistent data in the module-level persistent variables.

Based on the above implementation scheme, the code that should be generated
in the C implementation file for the Simulink model in Figure 9.1 is shown in List-
ing 9.1. The header file is trivial and only contains the declarations of the functions
in the listing.

Listing 9.1: C Implementation of a Simulink model

1 /* my_system.c */

2
3 GAINT16 Unit_Delay_1_memory[2];

4
5 void init() {

6 Unit_Delay_1_memory[0] = 0;

7 Unit_Delay_1_memory[1] = 0;

8 }

9
10 void compute(GAINT16 In1, GAINT16 const In2[2], GAINT16 Out[2]) {

11 GAINT16 Unit_Delay_1_out[2];

12 GAINT16 Sum_1_out[2];

13 GAUINT8 i;

14
15 /* Compute Section */

16 for (i = 0; i <= 1; i++) {

17 Unit_Delay_1_out[i] = Unit_Delay_1_memory[i];

18 }

19
20 for (i = 0; i <= 1; i++) {

21 Sum_1_out[i] = In1 + Unit_Delay_1_out[i];

22 }

23
24 for (i = 0; i <= 1; i++) {

25 Out[i] = Sum_1_out[i];
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26 }

27 /* End Compute Section */

28
29 /* Update Section */

30 for (i = 0; i <= 1; i++) {

31 Unit_Delay_1_memory[i] = In2[i];

32 }

33 /* End Update Section */

34 }

The above code is ultimately destined to be embedded in a real-time architec-
ture which calls init once at the initialisation of the system and then calls compute

periodically, thus implementing the synchronous data flow semantics of Simulink.

9.2.3 General Structure of the Generated Code

In our work we will focus on the implementation file which is the most interesting
part. As was explained the implementation file has a fixed structure with well
identified code sections. That structure is shown in the following listing where the
code sections are indicated between brackets.

Listing 9.2: General structure of C code generated by QGen

1 [Persistent Variables]

2
3 void init() {

4 [Init Statements]

5 }

6
7 void compute(...) {

8 [Local Variables]

9
10 /* Compute Section */

11 [Compute Statements]

12 /* End Compute Section */

13
14 /* Update Section */

15 [Update Statements]

16 /* End Update Section */

17 }

In this fixed structure, the content of each section depends on the model ele-
ments in the input model. For each computation element in the input model the
ACG generates code elements in one or more of the sections to implement the se-
mantics of the model element. Section contents are as follows:
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Persistent Variables
If a block retains internal persistent state, code variables are generated in this
section to store this state. These persistent variables store data between invo-
cations of the compute function. If a block does not retain persistent state, it
does not contribute any persistent variables.

Init Statements
If a block retains internal persistent state, it contributes statements in this
section to initialize its persistent variables.

Local Variables
Generally each outport of a block results in a variable declaration in this sec-
tion. A block may also contribute additional variables necessary for its com-
putation, for example to store parameter values or an intermediate result.

Compute Statements
Each block contributes code statements implementing its semantics in this
section.

Update Statements
When a block retains persistent state, statements are generated in this section
to update the content of persistent code variables in preparation of the next
compute invocation.

In the remainder of this chapter we will focus on specifying the content of each
of the above sections. Namely, we will specify for each Simulink block type, the
code statements that it contributes in each of the above 5 sections. Not all aspects
of code generation will be covered by this specification. For example we will not
specify how the sequencing of the generated code statements is determined. We
assume that our specification should be complemented with other specifications
defining the other aspects of code generation. From the perspective of tool qualifi-
cation, our specification represents only part of the Tool Operational Requirements
(TORs).

In the next section we introduce the notion of specification templates which are
the heart of our specification approach.

9.3 Specification Templates and Queries

We propose the concept of specification templates as a basis for the specification of
model-to-text transformations, and we propose to use Acceleo as an implementa-
tion technology of specification templates. A specification template has the follow-
ing general form:
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Listing 9.3: General structure of a specification template in Acceleo

1 [template templateName (input0 : type0, input1 : type1 ...) ? (oclGuard)]
2 verbatim text, interleaved with [oclQueries/] between brackets,

3 %<regularExpressions>% between percent delimiters

4 and loop statements expressing repeating patterns:

5 [for ( iterator | collection )]

6 This text repeats for all elements of the collection.

7 We can use [oclQueriesInvolvingIterator] here.

8 [/for]

9 [/template]

A specification template is composed of the following elements:

1. Input elements: objects typed by metaclasses of the input metamodel of the
transformation. Most often templates will have one input, but in certain uses
they will have multiple inputs.

2. A guard: an OCL constraint over the input elements that defines when the
template is applicable

3. A pattern of text that should be generated when the guard is satisfied: the
pattern of text is an arbitrary concatenation of the following four kinds of
content:

a. verbatim text

b. OCL queries to the input model (enclosed in brackets [ and /])

c. regular expressions (enclosed in %< and >%)

d. repetition statements ([for ...] statements)

Conceptually, a specification template expresses a simple constraint of the fol-
lowing form:

application condition ⇒ ∃ (textual pattern)

where the application condition is defined by the input elements of the specification
template and its guard, while the textual pattern is described by the content of the
specification template.

Thus, a specification template applies when its input elements satisfy the guard.
In that case, the pattern of text describes the content that should be generated in
the output of the model-to-text transformation. Verbatim text should exist as is,
literally. OCL queries should be evaluated, and their results should exist in the
transformation output. For regular expressions, the corresponding generated text
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can by any text that matches the regular expression. As for repetition statements
[for ...], they express patterns of text that should appear multiple times in the
output. As customary with loop statements of programing languages, repetition
statements define an iterator that ranges over a collection created or retrieved from
the input model using an OCL expression. The iterator can then be referenced in
OCL queries of the body of the repetition statement.

To avoid specification templates from becoming too complex, we will need to
encapsulate specification elements such as common regular expressions and code
patterns into reusable functions. Some of these elements will be encapsulated in
templates, and others will be encapsulated in Acceleo queries which are operations
taking objects as input and returning a result of a specific type. Essentially queries
are similar to operations declared for metaclasses in the input metamodel, and they
can be invoked in OCL expressions in the same way. Queries have the following
structure:

Listing 9.4: General structure of Acceleo queries

1 [query queryName ( arg0 : type0, arg1 : type1 ...) : returnType =

2 oclExpression
3 /]

type0 is the context of the query. Therefore in any OCL expression with an object
obj of type type0, the query is invoked like an operation over the type:
obj.queryName(...)

We have thus defined the basic elements of our specification approach. Next, we
present the general organisation of the specification based on these basic elements.

9.4 Organisation of the Specification

The specification is based on an input metamodel representing Simulink models.
However besides the mere representation of Simulink models, there are many se-
mantic properties and terminologies of Simulink that will be referenced in many
places of the specification. For example, a matrix data type where the first dimen-
sion is 1 has only one row and is therefore referred to as a row matrix in Simulink. It
is useful to define an operation type.IsRowMatrix() to formalise this terminology
and use it in the specification. This terminology can be encoded in the metamodel,
however we propose to define it as part of the specification in the form of Acceleo
queries. This allows to develop the terminology as the requirements are being de-
veloped instead of having to update the metamodel which would be more tedious.
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Additionally, it makes it easier to integrate this terminology in the TORs document
in the document generation step of our overall approach.

Similarly, certain common definitions and regular expressions will be used in
many places in the specification and will be encapsulated in reusable queries and
templates. Besides factorisation, this avoids exposing complex regular expressions
in the TORs and keeps them readable.

TORs as 
Specification 

Templates

SimpleSimulink 
Metamodel

Library of Simulink 
Concepts

Library of Common 
Definitions and 

Regular Expressions

uses

Figure 9.2: Organisation of the specification

As a result, the specification will be organised into the 4 components depicted
in Figure 9.2:

SimpleSimulink Metamodel
A simple metamodel describing the structure of input Simulink models.

Library of Simulink Concepts
A library of reusable queries encapsulating common Simulink concepts and
terminology defined over the input metamodel.

Library of Common Definitions and Regular Expressions
A library of reusable queries and templates encapsulating common defini-
tions and regular expressions, defined using the input metamodel and the
library of Simulink-specific concepts.

Tool Operational Requirements (TORs)
The TORs formalised as Acceleo specification templates, based on the above
components.

In the next sections we detail each of the 4 component of the specification.
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9.4.1 SimpleSimulink Metamodel

The first step in our approach is defining a metamodel to represent the Simulink
input language. We choose to only include in the metamodel the basic generic
concepts of Simulink and not specific block types and their parameters. This is to
obtain a simple core metamodel that does not change as block types are added to to
the specification. Block types and their specific information is defined later as part
of the specification in Acceleo without having to modify the metamodel. To avoid
clutter, SimpleSimulink is presented in two separate diagrams: Figure 9.3a shows
all metaclasses and all inheritance links and Figure 9.3b shows references between
metaclasses, omitting inheritance links and non-essential metaclasses.

Here are the main characteristics of SimpleSimulink.

– Despite the usual convention of camelCase for attribute and reference names
in EMF, SimpleSimulink follows the naming conventions of Simulink where
relevent. For example, we use the attribute Dimensions in the metaclass Type
instead of the conventional dimensions because the former spelling is the one
used in Simulink.

– A System is composed of Blocks. Blocks have Inports representing input data
and Outports representing output data. Signals connect Outports to Inports of
Blocks in the Systems.

– Only a generic Block metaclass is defined, but not specific block types (e.g.
Sum, Gain etc.). Parameters of a Block are stored in a EStringToDataParame-
terMap where keys of the map are names of block parameters (e.g. InitialCon-
dition, Gain etc.) and values are instances of DataParameter. The EOperation
get_param(EString)1 retrieves a parameter from the map given its name.

– A Block’s type and its name are stored alongside all parameters in the param-
eter map. EOperations BlockType() and Name() are provided as shortcuts to
retrieve the corresponding values. Roughly,

BlockType()= get_param(’BlockType’).Value->at(1)

Name()= get_param(’Name’).Value->at(1)

– Regardless of dimensionality (i.e. scalar, vector, matrix), numeric parameter
values are represented like in Simulink with a unidimensional array in the
EAttribute Value. It is the Type element with its Dimensions EAttribute that
determines the dimensionality of the stored value and how the unidimen-

1it is named get_param after a function in the standard Matlab API with similar functionality
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(a) Inheritance links

(b) Reference links (omitting unnecessary metaclasses and inheritance links)

Figure 9.3: SimpleSimulink metamodel

sional array should be indexed. The indexing of parameter values will be
defined in the library of Simulink concepts. For example:
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Simulink Parameter
Value

EMF DataParameter
Value Type.Dimensions

0 Sequence{’0’} Sequence{}

0.0 Sequence{’0.0’} Sequence{}

[1 2 3] Sequence{’1’, ’2’, ’3’} Sequence{3}

[1 2 3;

4 5 6]

Sequence{’1’, ’4’, ’2’,

’5’, ’3’, ’6’}

Sequence{2, 3}

Having defined the input metamodel, we now define the second component of
the specification: the library of common Simulink concepts.

9.4.2 Library of Simulink Concepts

The Simulink concepts defined in this library concern type-related notions of di-
mensionality, equivalence of type dimensions, base types etc. The main purpose
of this library is defining functions such as IsMatrix() and IsScalar() allowing to
write OCL expressions such as the following to express properties of block ports
and parameter values:

block.Outport().IsMatrix()and block.InitialCondition().IsScalar()

The library is defined as a module of Acceleo queries. We define these concepts
in Acceleo rather than in the metamodel to allow developing the terminology as
the requirements are being developed instead of having to update the metamodel
continuously which is more tedious. Additionally, this makes it easier to integrate
these definitions in the Tool Operational Requirements (TORs) document in docu-
ment generation.

There are many concepts defined in this library, therefore we only give examples
of two kinds of such definitions in the following.

Type Dimensionality

The following queries define a terminology related to type dimensions.

1 [** A type is scalar when no dimensions are specified. /]

2 [query public IsScalar(t : Type) : Boolean =

3 t.Dimensions->size() = 0 /]

4
5 [** A type is a vector when it has exactly one dimension. /]

6 [query public IsVector(t : Type) : Boolean =

7 t.Dimensions->size() = 1 /]

8
9 [** A type is a matrix when it has exactly two dimensions. /]

10 [query public IsMatrix(t : Type) : Boolean =
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11 t.Dimensions->size() = 2 /]

12
13 [** The number of rows of a non-scalar type is the first dimension. /]

14 [query public NRows(t : Type) : Integer =

15 if t.Dimensions->size() >= 1 then t.Dimensions->at(1)

16 else 0

17 endif /]

18
19 [** The number of columns of a non-scalar type is the second dimension.

20 /]

21 [query public NColumns(t : Type) : Integer =

22 if t.Dimensions->size() >= 2 then t.Dimensions->at(2)

23 else 0

24 endif /]

Indexing Numeric DataParameters

As mentioned earlier, parameter values are stored as a unidimensional array of
strings and it is the associated Type object that determines how to index the value
array. The following queries define that indexing so that the values of a vector
DataParameter param could be indexed in a manner similar to OCL collections as
param->at(i), and the values of a matrix DataParameter could be indexed as param

->at(i, j).

1 [** Get value of parameter at index i, assuming parameter is a vector. /]

2 [query public at(c : Set(DataParameter), i : Integer) : String =

3 let param : DataParameter = c->any(true) in

4 param.Value->at(i) /]

5
6 [** Get value of parameter at index (row, col), assuming parameter is a

7 matrix. /]

8 [query public at(c : Set(DataParameter), row : Integer, col : Integer) :

String =

9 let param : DataParameter = c->any(true) in

10 param.Value->at((col - 1) * param.NRows() + row) /]

Having defined the library of common Simulink concepts, we now move to the
third component of the specification: the library of regular expressions.

9.4.3 Library of Common Definition and Regular Expressions

Common Definitions

Common definitions consist of naming conventions of variables and types in
the generate code defined into reusable queries invoked in the specification. The
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following listing contains a few examples of common definitions used often in the
specification.

Listing 9.5: common/Definitions.mtl

1 [** RemoveSpaces() replaces all whitespace in a String with the ’_’

2 character /]

3 [query public RemoveSpaces(s : String) : String =

4 s.replaceAll(’[ \t\n]+’, ’_’) /]

5
6 [** Name of the output variable of all blocks /]

7 [query public OutVar(block : Block) : String =

8 block.Name().RemoveSpaces() + ’_out’ /]

9
10 [** The name of the input variable ’i’ is the name of the output

11 variable of the preceding block connected to inport ’i’ /]

12 [query public InVar(block : Block, i : Integer) : String =

13 block.Inports(i).InSignal.SrcPort.ParentBlock.OutVar() /]

14
15 [** As a shortcut, block.InVar() refers to block.InVar(1) /]

16 [query public InVar(block : Block) : String =

17 block.InVar(1) /]

18
19 [** The translation of a \simulink/ basetype to a C code type /]

20 [template public TypeInCode(baseType : BaseType)]

21 ...

22 [/template]

Regular Expressions

In our approach, we propose to use regular expressions in specification tem-
plates in order to abstract parts of the specification deemed out of scope or too
complex to detail. This is useful when we want to specify some aspects of the gen-
erated code structure, but leave out other aspects that are too complex to detail and
are specified by other parts of the specification.

For example, if we wish to specify that an assignment statement of variable B

into variable A should be generated, a type cast may occur in that statement if A

and B have different types. However we do not want to detail the conditions under
which the cast appears. Instead, we only want to express the fact that the cast may
optionally appear. This can be specified with the following specification template:

A = %<(B|\([a-zA-Z0-9_]+\) B)>%

The regular expression surrounded with the symbol "%" expresses the fact that
the specification allows a cast to appear in the assignment expression but does not
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detail precisely under what conditions the cast appears. The specification is thus
kept simple and we have expressed the potential existence of a cast in an abstract
way. Since such regular expressions will be used a lot across the specification, we
propose to encapsulate them in reusable queries or Acceleo templates in the fol-
lowing way (the definition of Optional_Cast will be given shortly):

A = [Optional_Cast(’B’)/]

In the following, we give an example of a few regular expressions commonly
used in the specification. Special characters of regular expressions (e.g. "(", ")",
"?") are surrounded with the symbol "%" so that in a later step of the approach a
pattern matcher can distinguish parts of the specification that should be interpreted
as regular expressions from parts that should be interpreted as static verbatim text.

Types

Any_Type() matches all possible types in the generated code. Note that the in-
dication post (trim()) following the declaration of the template means that the
result of the template is always trimmed from leading and trailing whitespace char-
acters.

1 [template public Any_Type(arg : OclAny) post (trim())]

2 %<(GAINT8|GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|GABOOL)>%

3 [/template]

Casting

Optional_Cast(exp : String) matches either exp as is, or an expression that
casts exp into another type.

1 [template public Optional_Cast(exp : String) post (trim())]

2 %<(>%(([Any_Type()/]) [exp/])%<|>%[exp/]%<)>%

3 [/template]

Indexing and Casting

The following set of at(...) templates allow to match expressions that access
an array source code variable at a specific index, with an optional casting of the
read value. For example, if the source code contains a bidimensional array variable
MyVar, then using [’MyVar’.at(1,1)/] in a specification template would match any
of the following expressions in the code:

MyVar[1][1]

((GAINT8) MyVar[1][1])
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((GAREAL) MyVar[1][1])

Thus the following regular expressions are used to match the above expressions
in the case of unidimensional and bidimensional arrays.

1 [template public at1(variableName : String, idx1 : Integer) post (trim())

]

2 %<(>%(([Any_Type()/]) %[variableName/][’[’/][idx1/][’]’/])%<|>%[

variableName/][’[’/][idx1/][’]’/]%<)>%

3 [/template]

4
5 [template public at(variableName : String, idx1 : Integer, idx2 :

6 Integer) post (trim())]

7 %<(>%(([Any_Type()/]) %[variableName/][’[’/][idx1/][’]’/][’[’/][idx2/][’]

’/])%<|>%[variableName/][’[’/][idx1/][’]’/][’[’/][idx2/][’]’/]%<)>%

8 [/template]

At this stage we have defined common Simulink concepts and common defini-
tions and regular expressions. We are now ready to specify the generated code.

9.5 Tool Operational Requirements

Specifying the generated code consists in defining for each Simulink block type,
the code that is generated in each of the 5 code sections of the generated code: per-
sistent variables, init statements, local variables, compute statements and update
statements. For each block type, a directory named after the block type is created
<block type>/ to contain all its specification artifacts.

The generated code depends on the configuration of a block. Each block type
has a different set of configuration parameters. For example the UnitDelay block
type is configured with the InitialCondition parameter while the Gain block type is
configured with the Multiplication and Gain parameters. Therefore we first need to
define for each block type its configuration parameters, in order to reference them
in the specification.

9.5.1 Defining Configuration Parameters

Block parameters are defined as Acceleo queries in the module <block type>/Parameters.mtl.
These queries return instances of DataParameter for numeric parameters, or directly
Strings for string parameters. Parameter queries call the EOperation Block::get_param(String)
to retrieve a parameter’s value from the generic parameter map defined in the
metamodel.
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For example, the UnitDelay block type has a numeric parameter called Initial-
Condition that specifies the output value of the block on the first iteration of the
computation algorithm. We define this parameter with the following query.

Listing 9.6: UnitDelay/Parameters.mtl

1 [query public InitialCondition(block : Block) : DataParameter =

2 block.get_param(’InitialCondition’) /]

9.5.2 Specifying Code Patterns

The generated code is specified in terms of the content of the code sections iden-
tified in the general code structure. For each block type, the content of each sec-
tion is specified by a module named after the code section. A module <block

type>/Definitions.mtl may contain definitions specific to the block type that are
used across multiple code sections, and the following modules specify the content
of code sections:

<block type>/Persistent_Variables.mtl

<block type>/Init.mtl

<block type>/Local_Variables.mtl

<block type>/Compute.mtl

<block type>/Update.mtl

Each module contains one or more specification templates having the same
name, but different guards. Each guard describes a different configuration of the
block, and thus each specification template defines a different pattern of code for
each configuration.

We illustrate this specification scheme for the UnitDelay block type.

Example 9.1 (Specification of UnitDelay).

Definitions A set of definitions specific to the UnitDelay type is first defined in
UnitDelay/Definitions.mtl.

Listing 9.7: UnitDelay/Definitions.mtl

1 [** Name of the persistent variable /]

2 [query public MemVar(block : Block) : String =

3 block.Name().RemoveSpaces() + ’_memory’ /]
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Then, the content of each code section is specified in a separate module as fol-
lows.

Persistent Variables

Listing 9.8: UnitDelay/Persistent_Variables.mtl

1 [** A persistent variable of the same type as the outport shall be

2 declared /]

3
4 [** When the output data type is scalar, the persistent variable is

5 scalar /]

6 [template public Persistent_Data(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar()]

8 [block.OutDataType().BaseType.TypeInCode()/] [block.MemVar()/];

9 [/template]

10
11 [** When the output data type is a vector, the persistent variable is

12 a unidimensional array of the same size as the vector. /]

13 [template public Persistent_Data(block : Block)

14 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector()]

15 [block.OutDataType().BaseType.TypeInCode()/] [block.MemVar()/][’[’/][

block.OutDataType().NumElements()/][’]’/];

16 [/template]

17
18 [** When the output data type is a matrix, the persistent variable is

19 a bidimensional array of the same size as the matrix. /]

20 [template public Persistent_Data(block : Block)

21 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix()]

22 [block.OutDataType().BaseType.TypeInCode()/] [block.MemVar()/][’[’/][

block.OutDataType().NRows()/][’]’/][’[’/][block.OutDataType().NColumns

()/][’]’/];

23 [/template]

Init

Listing 9.9: UnitDelay/Init.mtl

1 [template public Init(block : Block)

2 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar())]

3 [block.MemVar()/] = [block.InitialCondition().at(1)/];

4 [/template]

5
6 [template public Init(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector())]

8 [for (it : Integer | Sequence{0..block.OutDataType().NumElements() - 1})]
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9 [block.MemVar().at(it)/] = [block.InitialCondition().at(1 + it) /];

10 [/for]

11 [/template]

12
13 [template public Init(block : Block)

14 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix())]

15 [for (r : Integer | Sequence{0..block.OutDataType().NRows() - 1})]

16 [for (c : Integer | Sequence{0..block.OutDataType().NColumns() - 1})]

17 [block.MemVar().at(r,c)/] = [block.InitialCondition().at(1+r, 1+c) /]

;

18 [/for]

19 [/for]

20 [/template]

Note that the indexing operation at in the above templates introduces optional
casts that avoid cluttering the specification with details regarding the casting of
expressions. The aspects of casting are specified separately, outside the scope of
this specification.

Additionally, note that the for construct above is an Acceleo loop and not a
C language loop. This indicates that the initialisation of the memory variable is
not done using a C loop but rather using multiple assignment statements, one for
each index of the variable. There is no loop statement in the generated code. The
absence of a loop is one of the important pieces of information that this specification
conveys regarding the structure of the generated source code.

Local Variables

Listing 9.10: UnitDelay/Local_Variables.mtl

1 [template public Local_Variables(block : Block)

2 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar())]

3 [block.OutDataType().BaseType.TypeInCode()/] [block.OutVar()/];

4 [/template]

5
6 [template public Local_Variables(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector())]

8 [block.OutDataType().BaseType.TypeInCode()/] [block.OutVar()/][’[’/][

block.OutDataType().NumElements()/][’]’/];

9 [/template]

10
11 [template public Local_Variables(block : Block)

12 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix())]

13 [block.OutDataType().BaseType.TypeInCode()/] [block.OutVar()/][’[’/][

block.OutDataType().NRows()/][’]’/][’[’/][block.OutDataType().NColumns

()/][’]’/];
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14 [/template]

Compute

Listing 9.11: UnitDelay/Compute.mtl

1 [template public Compute(block : Block)

2 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar())]

3 [block.OutVar()/] = [block.MemVar().Optional_Cast()/];

4 [/template]

5
6 [template public Compute(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector())]

8 for (i = 0; i <= [block.OutDataType().NumElements() - 1/]; i++) {

9 [block.OutVar().at(’i’)/] = [block.MemVar().at(’i’)/];

10 }

11 [/template]

12
13 [template public Compute(block : Block)

14 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix())]

15 for (i = 0; i <= [block.OutDataType().NumElements() - 1/]; i++) {

16 for (j = 0; j <= [block.OutDataType().NumElements() - 1/]; j++) {

17 [block.OutVar().at(’i’, ’j’)/] = [block.MemVar().at(’i’, ’j’)/];

18 }

19 }

20 [/template]

Note that in the above, the for construct is a C loop and not an Acceleo loop.
Therefore the generated code should contain a for statement (in the case of vectors
and matrices).

Update

Listing 9.12: UnitDelay/Update.mtl

1 [template public Update(block : Block)

2 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsScalar())]

3 [block.MemVar()/] = [block.InVar()/];

4 [/template]

5
6 [template public Update(block : Block)

7 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsVector())]

8 for (i = 0; i <= [block.OutDataType().NumElements() - 1/]; i++) {

9 [block.MemVar().at(’i’)/] = [block.InVar().at(’i’)/];

10 }

11 [/template]
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12
13 [template public Update(block : Block)

14 ? (block.BlockType() = ’UnitDelay’ and block.OutDataType().IsMatrix())]

15 for (i = 0; i <= [block.OutDataType().NRows() - 1/]; i++) {

16 for (j = 0; j <= [block.OutDataType().NColumns() - 1/]; j++) {

17 [block.MemVar().at(’i’, ’j’)/] = [block.InVar().at(’i’, ’j’)/];

18 }

19 }

20 [/template]

We have thus specified the code generation strategy for the UnitDelay block us-
ing the C concrete syntax, OCL queries to the input model and regular expressions
encapsulated in reusable operations.

Having presented our specification approach and illustrated it over an example,
we now explain how such a specification can be used as an automatic test oracle.

9.6 Automatic Test Oracles

9.6.1 Determining Test Outcomes

Specification templates are executable. As illustrated in Figure 9.4, the execution
of specification templates over input test models yields so-called expected patterns
of text to be matched in the actual output to determine whether it complies with
the specification. Given an input test model, each specification template is exe-
cuted only for input elements of the template that satisfy its guard. A template is
executed by evaluating all the OCL expressions and replacing them with the eval-
uation results, thus producing the so-called expected pattern. An expected pattern
is a block of text composed of verbatim text (where queries have been replaced by
query results) and regular expressions. Essentially the expected pattern is a large
regular expression that should be matched in the actual output of the test.

In our application of the approach to QGen, each Simulink block in an input test
model yields a set of expected patterns, one for each code section: Persistent_Variables,
Init, Local_Variables etc. As previously explained, the location where each ex-
pected pattern should match in the actual output is hard coded in the Matcher. The
Matcher locates each code section in the actual output, and matches expected pat-
terns in their intended code section. If all expected patterns have a match, the test
passes, otherwise the test fails and the non-matching expected patterns and the
corresponding specification templates are reported.
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Figure 9.4: Model-to-text specification-based automatic test oracles

Each expected pattern is composed of portions of verbatim text and regular ex-
pressions. The %< >% delimiters of regular expressions allow the Matcher to escape
verbatim text to prevent special characters such as * and ? from being interpreted
as regular expression commands outside of the delimiters.

A final implementation note is that Simulink test models are not directly com-
patible with the Eclipse Modeling Framework (EMF) and therefore cannot be given
as input to Acceleo directly. We developed a simple translation from the Simulink
representation to the SimpleSimulink EMF metamodel of Section 9.4.1 in the form of
a Matlab script called Simulink2EMF executed in the Simulink environment. There-
fore the actual implementation of our approach is depicted in Figure 9.5.
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Figure 9.5: Automatic test oracles for Simulink code generation

Now we illustrate our test oracles approach on the example of the UnitDelay
block type.

Example 9.2 (Automatic test oracle for UnitDelay). We recall the Simulink model
from Figure 9.1 which was the following:
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The data types were the following:

Port Base Type Dimensionality
Outport of In1 int16 scalar
Outport of In2 int16 vector of size 2
Inport of Unit Delay 1 int16 vector of size 2
Inport 1 of Sum 1 int16 scalar
Inport 2 of Sum 1 int16 vector of size 2
Outport of Sum 1 int16 vector of size 2
Inport of Out int16 vector of size 2

Executing the specification templates for the above test model yields the follow-
ing expected patterns for block Unit Delay 1:

Persistent Data

GAINT16 Unit_Delay_1_memory[2];

Init

%<(\(\((GAINT8|GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|

GABOOL)\))?>%Unit_Delay_1_memory[0]%<\)?>% = %<(\(\((GAINT8|

GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|GABOOL)\) )?(>%

0%<|>%0.0%<|>%0.0E+00%<|>%GAFALSE%<)\)?>%;

%<(\(\((GAINT8|GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|

GABOOL)\) )?>%Unit_Delay_1_memory[1]%<\)?>% = %<(\(\((GAINT8|

GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|GABOOL)\) )?(>%

0%<|>%0.0%<|>%0.0E+00%<|>%GAFALSE%<)\)?>%;

Local Variables

GAINT16 Unit_Delay_1_out[2];

Compute

for (i = 0; i <= 1; i++) {
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Unit_Delay_1_out[i] = %<(\(\((GAINT8|GAINT16|GAINT32|GAUINT8|

GAUINT16|GASINGLE|GAREAL|GABOOL)\) )?>%Unit_Delay_1_memory[i]

%<\)?>%;

}

Update

for (i = 0; i <= 1; i++) {

%<(\(\((GAINT8|GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|

GABOOL)\) )?>%Unit_Delay_1_memory[i]%<\)?>% = %<(\(\((GAINT8|

GAINT16|GAINT32|GAUINT8|GAUINT16|GASINGLE|GAREAL|GABOOL)\) )?

>%In1[i]%<\)?>%;

}

The actual code for this test model was presented in Listing 9.1. It is given along
with the expected patterns as input to the Matcher which checks that all of the above
patterns match in the generated code. In this instance, all patterns match indicat-
ing that the generated code conforms to the specification regarding the UnitDelay
block type for this test model. If the expected patterns of all block types involved
in the test model also match, then the test passes.

9.6.2 Resolving Failed Tests

When expected patterns don’t match in the generated code, the test is marked as
failed indicating a discrepancy between the implementation and the specification.
The matcher reports the expected patterns that did not match as well as well as the
corresponding specification templates and the input blocks. The developer then
needs to compare the specification with the actual code and determine what the
discrepancy is.

For obvious cases such as a missing statement or a wrong type in a variable dec-
laration, finding the discrepancy is pretty easy. For more subtle differences such
as missing parentheses in expressions, the discrepancy can be hard to find. The
developer may inspect the expected patterns to find the culprit, however as seen in
Example 9.2, expected patterns involving regular expressions can be very complex.
As will be detailed in Chapter 10, this is one of the limitations that has become evi-
dent in the experimental evaluation of our approach with developers at AdaCore.

A possible solution would be to adopt a more sophisticated algorithm in Matcher.
Instead of matching the complete pattern at once, the matcher could divide the pat-
tern into subparts, and try to match them one after the other. When a subpart does
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not match, the matcher would indicate the non-matching subpart, thus giving more
precise feedback to the developer regarding the location of the discrepancy.

9.7 Document Generation: a Higher-Order Transformation

Our specification approach formalises Tool Operational Requirements (TORs) into
precise specification templates. TORs must ultimately be integrated with other doc-
uments and presented to a certification authority as qualification evidence. To this
end, we propose to implement automatic document generation to transform our
Acceleo-based specification into another representation suitable for integration in
a document.

Thanks to the choice of Acceleo as a host language for the specification, docu-
ment generation is in fact easy to implement. The Acceleo framework provides an
API to parse Acceleo modules and obtain a structured EMF model of the specifi-
cation. This model conforms to a metamodel of the Acceleo concrete syntax and
exposes templates, guards and OCL expressions in a well structured manner. Doc-
ument generation is then a matter of developing a model-to-text transformation to
generate the document corresponding to the specification.

We have chosen Sphinx2 as a target document format because it is the language
used for other qualification documents at AdaCore. We have implemented doc-
ument generation in Acceleo itself. This means that our document generator is a
higher-order transformation implemented in Acceleo, that takes as input other Ac-
celeo transformation i.e. the TORs formalised as specification templates. This is de-
picted in Figure 9.6. The document generator is implemented such that the result-
ing document is consistent with other manually written qualification documents
and is easily integrated with them.

EMF Model of 

Specification 

Templates

Qualification 

Document

Acceleo 

Parser

TORs as Acceleo 

Specification 

Templates

Acceleo 

Document 

Generator

AcceleoAcceleo SphinxAcceleo

Figure 9.6: Generation a qualification document from the Acceleo-based specifica-
tion

2Sphinx, http://sphinx-doc.org/
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9.8 Related Work

To the best of our knowledge there is only one existing approach proposed in [Wim-
mer and Burgueño, 2013] for the problem of model-to-text specification and test or-
acles. We have detailed this approach in Section 3.8.2. Now that we presented our
approach, we would like to highlight the similarities and differences with respect
to the approach of Wimmer et al.. First and foremost we should recall that our ap-
proach is not yet generalised to arbitrary model-to-text transformations while the
approach of Wimmer et al. is a general one. However it is still useful to consider
a hypothetical generalisation of our approach and draw some useful comparative
conclusions.

Recalling the approach of Wimmer et al., it consists in viewing the generated
textual artifacts as a rough model composed of Folders containing Files containing
Lines. However the generated content is not modeled beyond this level of detail to
preserve its textual nature. Based on this general model, the specification problem
is brought back to model-to-model problem, and OCL contracts can be written to
specify the generated source code in terms of portions of actual code that should be
generated verbatim, combined with regular expressions expressing textual patterns
like in our approach.

First, the approaches are similar in the fact that they consider text as unstruc-
tured content (except for folder and file organisation). Both approaches use por-
tions of verbatim text and regular expressions to specify the generated text. How-
ever our approach combines verbatim text with regular expressions into a spec-
ification template while the approach of Wimmer et al. embeds them into OCL
constraints. To illustrate the difference, we consider a simple example of a UML
to Java code generation and consider a portion of the specification stating that for
each non-derived Attribute of a UML Class, a setter method should be generated
with a specific name (omitting details about the specific file in which the setter
should be generated). Listing 9.13 formalises this requirement in the approach of
Wimmer et al. where f.contents() returns the content of the File f as a string, and
str.matchesRE(regexp) returns true if the string str matches the regular expres-
sion regexp. Listing 9.14 formalises the same requirement in our approach using a
specification template. In both listings, the regular expressions \s* and \s+ respec-
tively match 0 or more and 1 or more whitespace characters.
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Listing 9.13: Wimmer et al. M2T specification example

1 Attribute.allInstances()->select(a | a.isDerived)->forAll(a |

2 File.allInstances()->exists(f | f.contents().matchesRE(

3 a.type + ’\\s+set’ + a.name.toFirstUpper())))

Listing 9.14: M2T specification template example

1 [template AttributeGetters(a : Attribute) ? (a.isDerived)]

2 %<\s*>%[a.type/]%<\s+>%set[a.name.toFirstUpper()/]

3 [/template]

We notice that the approach of Wimmer et al. is very expressive since arbitrary
OCL constraints can be used by the specification. In comparison, an isolated spec-
ification template as above is not very expressive because it can only specify the
existence of one pattern. However a generalisation of our approach could embed
specification templates into a richer constraint language that can achieve an expres-
siveness comparable to OCL. If such a generalisation is achieved to reach equiva-
lent expressiveness, it would then be interesting to compare other factors such as
the ease of use of both approaches in the specification of the same transformation.

However, in our context of qualification the limited semantics of specification
templates plays to our advantage. The fact that our approach uses a guard sep-
arated from the textual pattern isolates the conditions of applicability of the pat-
tern clearly, while in the approach of Wimmer et al. conditions and patterns can
be mixed arbitrarily. The simplicity of specification templates makes them easy
to understand and presentable as TORs. That would be difficult to achieve with
the approach of Wimmer et al. and would require defining rules and guidelines
to prevent the use of arbitrary OCL constraints and keep constraints to a simple
form. This is not unusual and is customary when applying a general approach to
a specific context. It would be interesting to apply a constrained version of the ap-
proach of Wimmer et al. to our use case, and compare it with our approach from
the perspective of suitability for qualification.

Finally, it should be noted that the approach of Wimmer et al. also allows the
specification of text-to-model parsing transformations. This is beyond the scope of
our work, and we believe this would not be feasible even with a generalisation of
our approach.
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9.9 Conclusion

In this chapter we have detailed our specification and automatic test oracles ap-
proach for model-to-text transformations, applied to the QGen Simulink to C code
generator developed at AdaCore. We introduced the notion of a specification tem-
plate which is at the core of our approach and allows the specification of code in
terms of its textual concrete syntax. We proposed to implement specification tem-
plates in the Acceleo template language. Applying our approach to QGen required
to define a metamodel to describe input Simulink models and to decompose the
specification into a library of Simulink-specific concepts and a library of common
definitions used across the specification. Finally, we specified part of the TORs of
QGen using specification templates to define the code patterns corresponding to
each type of Simulink blocks.

Based on this executable specification we have proposed an automatic test oracle
approach that executes specification templates to obtain expected patterns which
are then matched in the actual output of a test. A test passes when all the expected
patterns are successfully matched, indicating that the tested transformation com-
plies with its specification for that particular test.

Finally, we have proposed to generate qualification documents from the Acceleo-
based TORs by implementing a higher-order model-to-text transformation: the
document generator is implemented in Acceleo and takes as input Acceleo tem-
plates. This allows to obtain a TORs document that is consistent with other qualifi-
cation documents and easily integrated with them.

This concludes the presentation of all the contributions of this thesis which were
detailed throughout chapters 6, 7, 8 and 9. We now move to the experimental eval-
uation of our proposals in Chapter 10.
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10.1 Introduction

In this thesis we have tackled two main problems in the context of the testing of
model transformation chains. The first problem stemmed from the observation that
integration testing of model transformation chains is easier to carry out than unit
testing, even though both are necessary for qualification. With existing approaches
of the state of the art it is possible to assess the coverage of unit test requirements
with existing integration tests, but what is missing is a way to produce new inte-
gration tests targeting non-covered unit test requirements. This led us to the first
problem of this thesis which is the translation of unit test requirements which are
constraints over intermediate representations within the chain, into equivalent con-
straints over the input of the chain. We have determined that the key to solving this
problem is to reason step-by-step on each transformation of the chain, and we have
thus proposed an analysis that transforms a postcondition of a transformation into
an equivalent precondition over its input. Starting with a specification of the model
transformation in the ATL language our approach is composed of 2 steps:

1. ATL2AGT: Translate the ATL transformation to the theoretical framework of
Algebraic Graph Transformation (AGT)

2. Post2Pre: Use the theoretical construction of Weakest Liberal Precondition
(wlp) to transform the postcondition into an equivalent precondition

Having advocated for the use of integration tests in this first part of the thesis, in
the second part we approached the problem of the oracles of these tests. At the re-
quest of AdaCore, the industrial partner of the thesis, the problem was approached
in the specific context of a Simulink to C code generator called QGen developed at
the company. We determined that existing approaches cover the semantical aspect
of testing sufficiently. For this reason we chose to focus on the syntactical aspect of
code which was less investigated in the literature. Given the context of qualification
it was important that our test oracles be based on the Tool Operational Require-
ments (TORs) which constitute the specification of the code generator and are part
of the qualification evidence. The problem was therefore to devise a TOR specifica-
tion approach focusing on the syntax of the generated source code and supporting
automatic test oracles. We proposed such an approach by introducing the notion of
executable specification templates which describe the syntax of generated code in a
manner compatible with qualification needs and that serve as automatic test oracles
in integration testing.

Having detailed our solutions in the previous chapters, we now present the
validation activities that we carried out to assess our proposals. Section 10.2 will
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focus on ATL2AGT, Section 10.3 on Post2Pre and Section 10.4 will address the
specification and test oracles approach.

10.2 Validation of ATL2AGT

ATL2AGT translates ATL transformations into equivalent AGT transformations.
In our work we considered the declarative subset of ATL, and identified two major
challenges: the translation of ATL resolve mechanisms which do not have an equiv-
alent in the AGT semantics, and the translation of OCL expressions into equivalent
Nested Graph Conditions (NGC) in AGT with support for ordered sets in ATL
bindings. We proposed a translation that solves both challenges, building on ex-
isting work on the translation of OCL to NGC, and we implemented it targeting
the Henshin AGT framework. The objective of the validation presented next is to
verify that the resulting AGT transformation has the same execution semantics as
the ATL transformation.

10.2.1 Functional Validation Using Back-to-Back Testing

Back-to-Back Testing

ATL2AGT is essentially a model transformation where the input and the out-
put are executable. In Section 3.8.1 of our literature review, we had discussed that
a common way to verify this kind of transformations is through so-called back-to-
back testing. We have adopted this method in the testing of ATL2AGT as depicted
in Figure 10.1. We have considered several test ATL transformations from various
sources. Each ATL transformation is translated to an AGT equivalent transforma-
tion using our Java implementation ATL2AGT. The resulting AGT is validated by
so-called second-order testing. In second-order testing, a set of test models is cre-
ated and given as input to both ATL and AGT versions of the transformation, and
the output models are compared using EMFCompare1. The comparison takes into
account the ordering of elements in ordered references so that our solution to the
element ordering problem is also validated. Second-order testing is thus the test
oracle of our testing approach.

Test Data

The ATL test transformations were selected or created manually. They are of 3
categories:

1EMFCompare, https://www.eclipse.org/emf/compare/

© 2016 Elie RICHA 237

https://www.eclipse.org/emf/compare/


Chapter 10. Experimental Validation

Test 

Model

ATL 

Transformation

AGT 

Transformation

Oracle 

Result

Actual 

Result

EMFCompare
PASS/

FAIL
ATL2AGT

Figure 10.1: Validation of ATL2AGT

(1) Transformations taken from the ATL Zoo [ATL Zoo, accessed 2015] (e.g.
Families2Persons, Class2Relational) or from existing papers in the literature
(e.g. ER2REL [Büttner et al., 2012b]).

(2) SimpleCMG: A simplified version of a step called Code Model Generation in
QGen, the Simulink to C code generator developed at AdaCore. QGen itself
is not developed in ATL but we modeled this step in ATL.

(3) Transformations written manually or obtained by modifying the above trans-
formations to test specific ATL features.

In our selection of ATL test transformations, particularly in (3), we were careful
in identifying the ATL and OCL features involved in these transformations (e.g.
default and non-default resolving, use of complex OCL features such as nested
iterators etc.). This is to ensure that all features are correctly supported, both on
the conceptual and implementation level. For each test transformation, the set of
test models used in second-order testing was also selected or created manually.
Similarly, the selection/creation of test models was driven by the targeted features
of ATL and OCL to ensure these features are indeed exercised by second-order
tests.

Implementation of the Validation

Concretely we have implemented this validation scheme using the JUnit frame-
work2. For each transformation we have created one JUnit test case that executes
ATL2AGT and verifies that no errors have occurred during the translation (e.g.
unsupported language constructs encountered or unexpected runtime exceptions).
Then in second-order testing, for each test model a JUnit test case is created which
invokes the ATL and AGT transformations in turn and invokes EMFCompare over

2JUnit, http://junit.org/

238 © 2016 Elie RICHA

http://junit.org/


10.2. Validation of ATL2AGT

the output models to check for differences. The creation of JUnit test cases is dy-
namic meaning that adding a new test transformation or a new test model is a sim-
ple matter of adding the transformation/model file at the appropriate location in
the test data hierarchy. This allows to easily extend the test set with manual test
data as well as automatically generated test data in the future. Finally, the JUnit
framework allowed to easily execute the complete test set and monitor results for
non-regression as the prototype was being developed.

Validation Results

Our prototype was successfully validated with all test transformations of which
a subset is reported in Table 10.1. For each transformation the table shows the num-
ber of ATL rulesATL and bindings, and the number of resulting instantiation and re-
solving rulesAGT. As stated earlier we have listed the key ATL features supported
by ATL2AGT and identified in which test transformation they occur in order to
make sure all features are tested. The platform used for the experiments is a stan-
dard laptop hosting a 3 GHz Intel Core i7 (dual core) and 6 GB of memory allocated
to the Java Virtual Machine.

Families2-
Persons

Class2-
Relational

ER2REL QGen Code
Generation

Metrics
ATL rules 2 6 6 6
ATL bindings 2 22 13 30
Instantiation rules 2 6 6 6
Resolving rules 8 23 15 32

ATL Features
Default Resolve X X X X
resolveTemp X
if-then-else X
Helpers X X X
Attribute binding X X X X
Reference binding X X X
OrderedSet{} X X
union() X X X
select() X X
collect(), at() X

Timing
Translation time 230ms 83ms 70ms 819ms
ATL run time 397ms 459ms 377ms 476ms
AGT run time 1.3s 1.4s 1.2s 1.6s

Table 10.1: List of test transformations and tested features
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We note first in Table 10.1 that in Families2Persons, the number of resolving rules
is high given that they result from only 2 bindings. This is due to the translation
scheme that we chose for nested conditional if-then-else expressions in bindings.
The translation scheme consists in flattening the nested conditional expressions by
conjuncting the conditions of each nesting level and creating multiple resolving
rules, one for each conditional branch. As a result, a bindings with 1 level of nested
if-then-else statements yields 4 resolving rules, and 2 such bindings yield the 8
resolving rules that we observe. An alternate translation scheme may be adopted
in future work by creating a single resolving rule, and performing the flattening of
nested conditions within its application condition. Even though both translation
schemes have the same execution semantics, they may have a different impact on
the analysis of the resulting AGT. For example in the Post2Pre analysis, reducing
the number of rules may yield a faster analysis and a result that is easier to interpret.
In a broader scope, an interesting future research topic would be investigating how
different translation strategies could affect aspects of the analysis of the resulting
AGT.

10.2.2 Discussion on the Thoroughness of Validation

We have adopted a validation approach based on testing. As was discussed on
several occasions in this thesis, the quality of the test data is essential to the quality
of testing, and it is ensured by assessing the test set with respect to an appropriate
test adequacy criteria. However in our validation we were unable to apply such a
systematic strategy mainly for lack of time and manpower. As a result we wonder
if the lack of thoroughness of our validation hinders the use of our approach.

We use ATL2AGT for the generation of integration tests targeting the coverage
of unit test cases of model transformation chains. In that context the consequences
of an error in ATL2AGT are not critical because during the execution of integration
tests, unit test cases are evaluated to confirm that they have been covered. In other
words, we always confirm the quality and relevance of an integration test after
its creation. This safety net reduces the need for strong correctness guarantees on
ATL2AGT and alleviates the lack of systematic validation.

However the use of ATL2AGT in a different context than the one in this thesis
may require a stronger validation of its correctness. For example, if a formal proof
of correctness is performed on the AGT transformation resulting from ATL2AGT
and the correctness of the original ATL transformation is claimed by extension, then
a more thorough validation of ATL2AGT would be necessary.
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In any case, the implementation of our testing strategy discussed earlier allows
an easy integration with systematic criteria-driven test generation approaches if
deemed necessary in the future.

10.2.3 Discussion on Performance

In Table 10.1 we have provided rough measurements of the time taken by the trans-
lation itself as well as the execution of ATL and AGT transformations in second-
order testing. The measurements of the translation time indicate that there is no
major performance cost involved in ATL2AGT. As for second-order testing, we
notice that AGT transformations are consistently around 3 times slower than their
ATL counterparts. The performance aspects of resulting AGT transformations are
not a major concern in our work since the purpose of the translation is the analysis
of resulting AGT transformations and not their execution. Nonetheless, it is inter-
esting to make a few remarks regarding the potential causes of the slowness of our
AGT transformations.

1. The translation of OCL expressions to NGC application conditions as per
[Radke et al., 2015b] sometimes results in application conditions that are sub-
optimal in terms of execution performance. Simplification of conditions into
equivalent and more efficient ones is also proposed in [Radke et al., 2015b]

but was not implemented in our work.

2. The ordering application conditions that we added to support ordered sets
have a performance overhead because of the nested ∀ condition which must
be evaluated at each candidate match and potentially requires the iteration of
the entire ordered set.

orderingAC = ∃
(

s : A
refB[i]−−−→ qNode : B ,

∀
(

s : A
refB[j]−−−→ qNode1 : B | j < i, wasResolvedt1,refE

R1 (qNode1)
))

3. Rule matching and internal trace management in the ATL virtual machine
that we used (EMFTVM [EMFTVM, accessed 2015]) is highly optimised whereas
in our AGT transformations it is explicit and non-optimised.

4. The test models that we used have a small size and therefore the initializa-
tion durations of the ATL and Henshin execution engines have a high signif-
icance in the measurement. Henshin embeds a JavaScript engine to evaluate
attribute conditions, which we suspect to have a high initialization overhead.

At this stage the above factors are merely hypothetical as no precise perfor-
mance analysis was performed. In any case, we reiterate that the more important
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aspect of ATL2AGT in the scope of this thesis is the analysis of the resulting AGT
transformation which is discussed in the next section dedicated to Post2Pre.

10.3 Validation of Post2Pre

Post2Pre is a set of constructions that transform a postcondition d of a transforma-
tion T into a precondition that ensures that satisfaction of the postcondition. The
constructions are based on the formal Weakest Liberal Precondition construction
wlp (T, d) defined in the literature on AGT. Since this construction can theoretically
be infinite, we proposed to consider a bounded version of the transformation T≤N

where N is an arbitrary bound over the number of iterations of rules in the transfor-
mation and we introduced the theoretical construction wlp (T≤N , d) that is always
finite. To make the result applicable to the original unbounded transformation T,
we also proposed a new construction, scopedWlp (T≤N , d) that is a liberal (but non-
weakest) precondition of T and thus ensures the satisfaction of the postcondition
d. Since the above constructions have high complexities due to their combinato-
rial nature, we proposed several simplification strategies to tame the combinatorial
explosion.

The above constructions and simplification strategies were implemented in a
Java tool based on the Henshin framework. The validation discussed in the follow-
ing sections is twofold:

Functional Validation aims at verifying that the preconditions computed by our
implementation exhibit the theoretical properties of wlp and scopedWlp de-
fined in Chapter 7. To do so we considered ATL transformations translated to
AGT with ATL2AGT, and a set of postconditions of these transformations for
which we computed preconditions with our implementation. The verification
consisted in manually interpreting and analysing each precondition with re-
spect to the transformation and the postcondition. For this reason functional
tests consist of small transformations (up to 3 ATL rules), small N ≤ 3 and
small postconditions (up to 2 levels of nesting) to allow manual interpretation
of the result. As will be detailed shortly, visualisation and evaluation utilities
were developed to assist the manual inspection.

Functional validation also aims at verifying that the simplification strategies
that we introduced to limit combinatorial explosion do not affect the correct-
ness of the result. This verification consisted in computing preconditions with
and without the strategies and verifying that the results are equivalent.
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Scalability Analysis aims at understanding the behavior of the implementation
with larger data and assess the efficiency of our proposed strategies in tam-
ing the combinatorial nature of the algorithm. These tests consist of either
larger transformations (up to 6 ATL rules), or the same small transformations
of functional tests considered with larger N or more complex postconditions.
In this case the resulting preconditions are too complex to be inspected man-
ually. Instead we will be interested in collecting metrics during the execution
and analysing them.

In the following functional validation is the subject of the first section, while
scalability analysis will require more discussion and will be developed over the
remaining sections.

10.3.1 Functional Validation

Since our work on Post2Pre was limited to structural aspects, we only considered
transformations that do not involve any manipulation of scalar attributes (i.e. inte-
gers, strings etc.). Each test in our validation is a triplet 〈T, N, d〉 based on one of
the following ATL transformations:

1. SimpleATL: The simple ATL transformation used in all examples of Chapter 7.

2. PointsToLines: Another simple ATL transformation which takes as input a set
of points, and produces as output lines connecting all pairs of points.

3. SimpleCMG: A simplified version of a step called Code Model Generation in
the Simulink to C code generation chain of QGen. QGen itself is not devel-
oped in ATL but we modeled this step in ATL.

Table 10.2 summarises the characteristics of the tests based on the above transfor-
mations. Most of our tests are based on SimpleATL.

T Number of
ATL Rules

Number of
AGT Rules

N Number of
Postconditions

SimpleATL 2 5
1 13
2 1
3 1

PointsToLines 3 7
1 1
2 2

SimpleCMG 6 24 1 2

Table 10.2: Functional validation tests of Post2Pre
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Validation of Core Constructions

What we consider to be the core construction is the wlp (ρ, d) computation for
one rule ρ and one postcondition d. It is composed of the graph overlapping algo-
rithm, the pushout complement algorithm, and the navigation and construction of
nested conditions. We validated each of these sub-parts with sets of small inputs
for which we could verify the result manually. Then we also manually validated
wlp (ρ, d) with individual rules and small postconditions, and even for the sequenc-
ing of 2 rules wlp (ρ1, wlp (ρ2, d)) for which manual validation was still possible.
Beyond that, manual validation was not feasible and it was necessary to execute
wlp for complete transformations in order to reach understandable results.

Validation with Complete Transformations

To validate our implementation for complete transformations, we considered all
tests 〈T, N, d〉 in Table 10.2, computed wlp (T≤N , d) and manually interpreted the
results to ensure that each precondition ensures the satisfaction of the postcondi-
tion within the chosen bound. This interpretation is similar to the ones we pre-
sented in the examples 7.8, 7.9, 7.10, 7.11 and 7.13 detailed in Chapter 7. In fact, the
preconditions discussed in these examples are all taken from the functional tests of
Table 10.2 and produced with our implementation. We provide some more exam-
ples in Annex A. Since scopedWlp yields larger results that are difficult to interpret
manually, only the smallest tests were considered for its validation.

To assist with the manual interpretation of preconditions, we have developed a
translation of Henshin nested graph conditions to a graphical representation using
LATEX3 and GraphViz4. The examples of Chapter 7 and of Annex A are all produced
thanks to this visualisation utility. Additionally Post2Pre also generates wrapper
programs that allow evaluating a postcondition and the computed precondition
over input and output models of the transformation to help with the manual inter-
pretation.

For all the considered tests, the manual validation showed that the precondi-
tions produced with the implementation conformed to the theoretical specifications
of wlp and scopedWlp. All tests were executed with the simplification strategies
enabled which means that this validation also covers the strategies. However we
have also performed a separate validation targeting only the simplification strate-
gies. We detail this validation next.

3LATEX, https://www.latex-project.org/
4GraphViz, http://www.graphviz.org/
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Validation of Simplification Strategies

In Section 8.4 of this thesis we introduced the following 4 simplification strate-
gies to tame the combinatorial nature of the Post2Pre constructions:

S1. NGC and Standard Logic Properties

S2. Rule Selection

S3. ATL Semantics

S4. Element Creation

It is essential to validate that these strategies do not alter the correctness of the
resulting precondition. To do so we have performed two kinds of executions for
each test: executions with simplification strategies disabled and executions with
strategies enabled. For each pair of executions we have verified that the precondi-
tions resulting from both executions are exactly the same using automatic model
differencing in EMFCompare. We have applied this approach to strategies S3 and
S4 together because they do not affect the resulting precondition. However we
have considered S2 separately because as explained in Section 8.4.2 the resulting
precondition may be different, in which case we manually analysed the results to
understand the differences. As for S1, the strategy is deeply integrated in the im-
plementation and it was not possible to enable/disable it separately.

First we considered the strategies S3 and S4. While keeping strategy S2 deacti-
vated, we considered a subset of 13 functional tests (first line of Table 10.2) and ran
them with and without the strategies. Automatic differencing with EMFCompare
showed that in all tests the resulting preconditions were always exactly the same,
confirming that these strategies do not affect the result.

Having validated S3 and S4 we kept them activated to get faster executions and
considered strategy S2. Similarly, we considered the same subset of functional tests
and ran them with and without strategy S2. The result with the simplification strat-
egy is wlp

(
Tselect
≤N , d

)
while the result without the strategy is wlp (T≤N , d). Out of 13

considered tests, 8 yielded identical results and 5 exhibited structural differences.
In the latter 5 cases manual inspection showed that wlp

(
Tselect
≤N , d

)
also ensures the

satisfaction of the postcondition and is therefore a valid result.

Additionally, in the 5 cases of structural differences, we were able to confirm
experimentally the theoretical property speculated in Section 8.4.2 which is that
despite structural differences, we have wlp (T≤N , d) ⇔ wlp

(
Tselect
≤N , d

)
. However

this is only observed experimentally and not yet proven theoretically. Noticing also
that wlp

(
Tselect
≤N , d

)
is always simpler than (or identical to) wlp (T≤N , d), this means

that the strategy S2 of rule selection produces a simpler and yet equivalent result.
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In future work it would be interesting to formally prove the speculated theoretical
result so that it may be used with confidence.

With these functional tests we have validated that our implementation yields
correct results. We now move to the second part of the validation which is the
assessment of the scalability of the implementation.

10.3.2 Overview of the Scalability Problem and Current Status

In Section 8.4 we had explained that the graph overlap operation involved in wlp is
highly combinatorial which results in a significantly larger precondition after pro-
cessing a rule of the analysed transformation. Since wlp is recursive, this leads to a
larger number of overlap operations in the processing of the next rule, cycling back
to a larger precondition, and so on. As a result, we observe concretely that more
memory is required to store the growing preconditions and more time is required
to operate on them, resulting ultimately in an exhaustion of all available memory
before the computation can terminate. In the original wlp construction without our
simplification strategies, the growth of preconditions is only countered by the elim-
ination of conditions that do not have a pushout complement, or in other words,
conditions that cannot be satisfied by valid executions of the transformation. How-
ever this elimination generally occurs in an advanced stage of wlp, a stage that is
never reached because memory is exhausted before.

From this overall description of the behavior of the algorithm we extract 3 issues
and tackle them separately:

Prob1. The graph overlapping operation generates large preconditions containing
many nested conditions.

Prob2. Memory is depleted due to storing and processing large preconditions.

Prob3. The analysis takes a long time.

We have tackled each of these issues with a proposal:

Sol1. We proposed simplification strategies to avoid generating large precondi-
tions. Two of these strategies consist of elimination filters based on the ATL
semantics which act like the pushout complement filter but can eliminate
condition at an early stage of the computation.

Sol2. We proposed a fragmentation scheme for conditions allowing to dump parts
of the precondition on disk when memory is saturated,

Sol3. We proposed a parallelisation scheme for wlp allowing to execute indepen-
dent parts of the algorithm concurrently.
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The current status of the implementation and validation of these proposals is
the following. Sol1 has been implemented completely and validated thoroughly.
Sol2 has been largely implemented but still suffers from implementation errors pre-
venting a complete validation at this stage. Sol3 has been completely implemented
and but validated only broadly because it interacts with Sol2 which is not mature
enough yet (memory consumption increases with parallelisation).

In the following sections we will first observe the manifestation of the scalability
issues Prob1-3 on a concrete execution where our solutions have been deactivated.
Then we will investigate Sol1 and quantify and compare the benefits of our pro-
posed simplification strategies. Finally we will report on Sol2 and Sol3 which are
not thoroughly validated at this stage.

10.3.3 Concrete Observation of Scalability Issues

To observe the identified scalability issues, we will consider the ATL transformation
T = SimpleATL and postcondition Post1 that we used in Example 7.9 of Chapter 7.

T = SimpleATL = R1Inst ↓; R2Inst ↓; R1t1,refD
Res ↓; R1t1,refE

Res ↓; R2t,refD
Res ↓

Post1 = ∃
(

d:D e:E
refE

)

In Example 7.9 we had computed wlp (T≤1, Post1) with a bound N = 1 and
interpreted the result. We now attempt to compute wlp (T≤2, Post1) with bound
N = 2 while keeping our simplification strategies, memory fragmentation and
parallelism schemes deactivated5. During this execution we monitor the following
parameters:

1. The size of each postcondition d and the computed intermediate precondi-
tion wlp (R↓2, d) in terms of the number of nested conditions ∃(C, c) in the
post/pre-conditions.

2. The number of graph overlapping computations performed during the ex-
ecution. This number is reset to 0 after each completion of wlp (R↓2, d) for
each rule R. This metric gives an idea of the amount of computation required
for each rule.

3. Memory consumption in terms of the percentage of allocated memory in the
total available memory (6 GB in this execution).

5except for the simplifications based on simple first-order logic properties which cannot be dis-
abled independently in our implementation
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The first observation is that we were forced to interrupt the execution prema-
turely because it reaches a point where the memory becomes saturated and the
computation is unable to continue. This occurs during the processing of the 4th
rule iteration, after successfully processing 3 rule iterations R ↓2. For these first 3
successful computations, the sizes of the computed preconditions are as follows:

Rule Iteration Size of Postcondition Size of Precondition

R2t,refD
Res ↓2 1 427

R1t1,refE
Res ↓2 427 430

R1t1,refD
Res ↓2 430 37843

R2Inst ↓2 37843 Memory Saturated

Except for the second rule, we observe a rapid growth of the size of the precon-
dition. As a result the amount of processing needed for each rule grows during the
execution. We can observe this in Figure 10.2 where we have plotted the number
of overlap computations performed during the execution, and that number is reset
to 0 upon the completion of wlp (R↓2, d) for each rule. In that graph the first rule
is not visible because it only requires 404 overlap operations in total and thus ends
too quickly to be visible in the metrics. Because of the large precondition resulting
from this first rule, the second and third rules require respectively ∼150000 and
∼75000 overlap operations which are large numbers compared to the first rule. Fi-
nally, the processing of the forth rule goes up to ∼650000 overlap operations and
never completes because we interrupt the execution at that point due to memory
saturation as explained next.

We observe that towards the end of the execution in Figure 10.2 the slope of the
curve decreases, meaning that the advancement of the computation slows down.
This is because at that point the amount of allocated memory reaches ∼90% as
shown by Figure 10.3 which causes the Java garbage collector to trigger too often.
As a result, the computation is slowed down by the repeated interruptions of the
garbage collector. Continuing the execution beyond that stage is pointless because
the computation will keep getting slower and slower until ultimately memory is
completely exhausted and the program crashes. Finally, we observe that the overall
execution lasted about∼25 minutes, which is significantly long given the simplicity
of the processed example.

Moreover, we have attempted the same experiment on a larger platform of about
70 GB of memory and have observed the same behavior. In that case the execution
progresses farther and reaches a larger number of graph overlap operations, but ul-
timately we observe the same stalling effect when the amount of allocated memory
reaches ∼90% and the program crashes once the memory is completely exhausted.
This indicates that simply increasing the computation power of the platform does
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Figure 10.2: Number of overlap operations during wlp (T≤2, Post1)

not solve the problem.

These observations lead us to the 3 problems formulated earlier, Prob1-3: the
large size of the precondition, the exhaustion of memory and the long duration
of the overall analysis. In the next section we tackle Prob1 with the simplification
strategies of Sol1 and quantify the reduction that they provide in terms of the size
of the precondition and the amount of computation required for the analysis.

10.3.4 Assessment of Simplification Strategies

The combinatorial enumeration involved the graph overlap operation yields large
preconditions. To reduce the size of preconditions, we proposed in Section 8.4 the
following 4 simplification strategies:

S1. NGC and Standard Logic Properties.

S2. Selection of rules contributing to the postcondition.

S3. Eliminating conditions that violate ATL semantics. We refer to this strategy
as the ATLSem filter.

S4. Eliminating conditions that contain elements that can no longer exist in
graphs. We refer to this strategy as the ElemCr filter.
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Figure 10.3: Memory usage during wlp (T≤2, Post1)

Now we would like to assess the efficiency of our solutions. To quantify the
effect of these strategies we proceed similarly to functional validation, by enabling
and disabling filters in different executions and by comparing metrics measured
during executions. As mentioned previously, S1 is not configurable in our imple-
mentation, which means it will remain enabled in all executions.

Experimental Protocol

We perform 5 executions of wlp (T≤1, Post1) configured as follows6:

Execution Identifier S1 S2 S3 S4
ExNoFilters X × × ×
ExATLSem X × X ×
ExElemCr X × × X

ExBoth X × X X

ExAll X X X X

Since S3 and S4 are of similar nature, we study them separately, while S2 will
only be activated in the last execution. During each execution we measure the fol-
lowing parameters:

6we choose N = 1 because as seen in the previous section, with N = 2 and without simplification
strategies the execution ends with memory saturation, preventing a complete comparison
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SPre The size of each computed intermediate precondition wlp (R↓2, d) de-
fined as the number of nested conditions ∃(C, c) in the precondition.

NOv The total number of graph overlap operations performed during
wlp (R↓2, d) of each rule R.

We also measure the number of conditions eliminated during the enumeration of
overlaps, classified by the reason of their elimination. We measure this number for
each rule R separately:

ElPo A pushout complement could not be found for the condition (in
ExNoFilters)

ElATLSem The condition violates ATL semantics regarding trace nodes (in Ex-
ATLSem)

ElElemCr The condition contains elements that can no longer exist in conditions
(in ExElemCr)

All experiments are conducted on the same machine: a standard laptop hosting
a 3 GHz Intel Core i7 (dual core) and 16 GB of memory of which 6 GB are allocated
to the Java Virtual Machine executing the analyses.

Analysis of Experimental Results

First we analyse SPre, the size of the intermediate preconditions which is in di-
rect relation with memory consumption. Figure 10.4 plots SPre for each of the 5
executions. Noting that the vertical scale is logarithmic, the linear curve that we
observe for ExNoFilters indicates an exponential increase of the size of the precon-
dition during the execution. In ExATLSem the growth is reduced, but still evolves
exponentially. It is in ExElemCr and ExBoth that the exponential growth is really
prevented, leading us to believe that the element creation filter is more effective
than the ATL semantics filter. Evidently the best result is achieved in ExAll when
all simplifications are activated. Note that in ExAll only rules that create elements
involved in the postcondition are processed, and they are indicated by the dotted
frame. Processing less rules means performing less overlap operations and avoid-
ing the growth of the precondition. By the time we reach the last rule in ExAll, the
size of the precondition is divided by 100 compared to ExNoFilters which is a signif-
icant reduction directly resulting in a drop in memory consumption. We conclude
that our strategies are highly effective since they allow a reduction of memory con-
sumption by orders of magnitude.
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Figure 10.4: Size of intermediate preconditions SPre

It should be noted that the size of the precondition at the end of the all execu-
tions in the graph is not the size of the actual wlp result. The final precondition is
filtered one last time by eliminating all conditions containing elements of the target
metamodel. This is because the precondition can only contain elements of the in-
put metamodel since the transformation is exogenous. The final size indicated on
the graphs is prior to the ultimate filtering whereas after that filtering all executions
yield the exact same result7 of size 7 which was presented in Example 7.9. Based on
this, the last precondition in ExNoFilters of size 1101 is ultimately filtered down to
a precondition of size 7 indicating that a large portion of the computations was in
fact useless. Our filters ExATLSem and ExElemCr allow to avoid these useless com-
putations early on and prevent accumulating useless results in the intermediate
preconditions.

We now move to Figure 10.5 where we plotted NOv, the number of overlaps
performed to process each rule which is an indication of the amount of computa-
tion and the amount of time required to process each rule. We also plot the total

7Though not always the case, the activation of rule selection in ExAll yields the same result in this
particular example

252 © 2016 Elie RICHA



10.3. Validation of Post2Pre

N
O

v

R2t,refD
Res #1 R1t1 ,refE

Res #1 R1t1 ,refD
Res #1 R2Inst #1 R1Inst #1

%
 o

f C
om

pu
ta

tio
ns

 re
la

tiv
e 

to
 E

xN
oF

ilt
er

0.0%

100.0%

N
um

be
r o

f O
ve

rla
p 

Co
m

pu
ta

tio
ns

0

250

500

750

1000

ExNoFilters ExATLSem ExElemCr
ExBoth ExATLSem ExElemCr
ExBoth ExAll ExAll

1 2 5
1

283

48

137

744

1

643

72

227

1000

15.4%

31.9%

62.4%

0.4%

�1

Figure 10.5: Number of overlap computations during execution NOv

amount of computation in each execution as the percentage of the total number of
overlaps relative to the total number of overlaps in ExNoFilters to get an assessment
of each complete execution. In ExBoth we observe a significant drop in the amount
of computation, with only 15.4% of computation needed to compute wlp. This is a
substantial decrease directly resulting in a major reduction of the execution time of
the analysis. This is even more extreme in ExAll where we manage to compute the
same result with only 0.4% of the amount of computation.

However it should be noted that the extreme gain in ExAll is due to strategy S2
of rule selection which is only efficient when the number of selected rules is small.
If the postcondition involves more metamodel elements and requires for example
the selection of all rules, then S2 brings absolutely no benefit and the execution
would be equivalent to ExBoth, which still exhibits a significant gain.

Finally, we plot in Figure 10.6 the number of eliminated conditions in each ex-
ecution to compare the elimination due to our filters with the inherent elimination
due to the non-existence of a pushout complement. We notice that without our
filters pushout-elimination only occurs in the last two rules. In fact on other ex-
amples we observe generally that pushout-elimination only occurs once we start
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Figure 10.6: Overlaps eliminated by pushout and ATL semantics filters

processing the instantiation phase of the ATL transformations. By that time the in-
termediate preconditions would have already reached very large sizes. With our
filters we observe that elimination starts early at the second rule, and in significant
numbers, which allows to prevent the growth of preconditions as early as possible.
This is why we manage to obtain the significant reduction in memory consumption
and execution time observed earlier.

10.3.5 Larger Examples and Discussion on Complexity

We now go back to the earlier example of wlp
(
SimpleATL≤2, Post1

)
which lead to

memory saturation in Section 10.3.3 without our simplification strategies. We now
carry out the same analysis with the strategies S1, S3, S4 enabled and S2 (rule selec-
tion) disabled (same configuration as ExBoth) and on the same execution platform,
a 3 GHz Intel Core i7 (dual core) with 6 GB of memory allocated to the Java Virtual
Machine. With our strategies, the analysis completes successfully after 37 seconds
with a maximum memory usage of 15%. The execution with all strategies, includ-
ing rule selection (same configuration as ExAll) completes in under 2 seconds with
no significant memory usage which is an impressive result.
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We also obtain good results with the SimpleCMG transformation which is a sim-
plified version of a code generation step in QGen, the Simulink code generator
developed at AdaCore. This transformation consists of 6 instantiation rules and 18
resolving rules. With a small postcondition containing 3 nodes and 2 edges and all
simplification strategies, we are able to compute the precondition wlp

(
SimpleCMG≤1, d

)
with a bound N = 1 in 20 seconds. Thanks to rule selection this execution actually
operates on only 10 rules of the transformation (6 resolving rules and 4 instantiation
rules) instead of the total of 24 rules.
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Number of ATLSem Eliminations Number of ElemCr Eliminations

�1

Figure 10.7: Metrics of wlp execution for SimpleCMG

However when considering a slightly larger postcondition of 4 nodes and 3
edges, the number of selected rules increases to 15 (10 resolving rules and 5 in-
stantiation rules). In that case the analysis cannot complete successfully and we
run into memory saturation again. Figure 10.7 plots the metrics of the execution
and we can see an exponential increase (the vertical scale is logarithmic) of both
the size of the intermediate preconditions as well as the number of overlap oper-
ations, despite significant eliminations in our filters. Carrying out the experiment
on a larger platform of 70 GB of RAM leads to the same outcome: an exponential
increase of the number of overlap operations ending with memory exhaustion and
a crash. We conclude that even though our filters are highly effective and push the
limits of computability further than the original construction, they do not change
the exponential nature of the algorithm and do not allow a true scalability for trans-
formations and postconditions of arbitrary size.
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In the future it would be interesting to investigate strategies that can have a
greater impact on the complexity of the algorithm. For example as discussed in
Section 8.4, the size of the graphs involved in nested conditions in terms of the
number of nodes and edges plays a significant role in the exponential nature of
the algorithm: we conjecture that if E is the number of elements in the overlapped
graphs, the number of computed overlaps is a function of 2E. We also observe that
during the processing, the graphs of conditions first increase in size (in terms of
the number of nodes and edges) during the resolving phase and then decrease in
size during the instantiation phase. As a result it may be interesting to exploit this
property and process rules of the instantiation phase sooner than we do currently
do. Such an optimisation would act on the size of graphs which plays a significant
role in the complexity of the construction, and would perhaps provide better results
in conjunction with the simplification strategies proposed in this thesis.

And finally, the notion of loop invariants should be investigated in the future
because it allows to avoid iterating over looped rules as we currently do. A loop
invariant is typically provided manually by the user and allows to short-circuit the
loop by avoiding to iterate the construction over it and using the loop invariant
instead. This problem is not yet investigated much in AGT, but it is well known
in traditional imperative programing languages. In the latter context, the literature
indicates that loop invariant are difficult to generate automatically for arbitrary
loops, but for loops with a particular form or exhibiting particular properties, au-
tomatic loop invariants are feasible. Since in our AGT transformations (translated
from ATL) loops only contain rules and these rules have a specific well known form
(instantiation and resolving rules), then we believe that it may be possible to pro-
pose an automatic construction of loop invariants. If feasible, this would certainly
be a promising solution to the scalability issues of wlp.

We now move to the final aspects of the implementation which are its paralleli-
sation and the management of the memory.

10.3.6 Parallelism and Memory Management

In Section 8.6 we had proposed to parallelise the implementation of the wlp con-
struction to allow the concurrent execution of independent graph overlapping op-
erations. Parallelisation was successfully implemented and we have observed sig-
nificant reduction of the overall execution time of the analysis. In Figure 10.8 we
show the execution time for wlp

(
SimpleATL≤2, Post1

)
for increasing values of the

number of parallel computation threads, measured on a machine with 16 proces-
sors. We can see that parallelism reduces execution time up to 4 threads beyond
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which the execution time no longer improves. This is because at that point all inde-
pendent overlapping operations have been run in parallel and the threads added
beyond 4 essentially do not have jobs to perform. However in larger problems
such as SimpleCMG where a larger number of overlap operations needs to be per-
formed, we can observe improvement of execution time beyond 4 threads and up
to 16 threads.
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Figure 10.8: Evolution of the execution time with the number of parallel threads

In Section 8.6 we had also raised the issue of the high memory consumption of
the implementation and proposed the solution of fragmenting the computed data
into separate resources. This allows to dump portions of temporarily unneeded
data on the disk when memory is close to saturation. When the dumped data is
subsequently needed again, it is automatically reloaded on demand. Even though
existing tools propose generic fragmentation solutions for EMF, they were not di-
rectly applicable to the Henshin framework that we use in our implementation. As
a result, we implemented custom fragmentation/dumping/loading mechanisms
for Henshin conditions built into our wlp implementation.

At the current stage the implementation of these mechanisms is not yet robust
enough and still exhibits runtime errors that are still under investigation. As a
result all of the experiments presented in this section were conducted with mem-
ory management mechanisms disabled to avoid the aforementioned errors. How-
ever we indicate that the errors encountered concern implementation details and
we believe that the proposed memory management solution, once implemented
correctly, can allow the analysis to handle larger problems without memory ex-
haustion. In fact, early observations indicate that before the occurrence of errors,
memory consumption is indeed significantly reduced by our memory management
mechanisms.
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10.3.7 Concluding Remarks

In this section we have validated several aspects of Post2Pre. First we verified that
our implementation complies with the theoretical constructions and their proper-
ties. Then we analysed the scalability of our approached and showed that the sim-
plification strategies that we proposed improve significantly the scalability of our
analysis: inputs that caused memory exhaustion after close to an hour of compu-
tation can now be successfully processed in seconds thanks to our simplification
strategies.

In particular, we had introduced filters eliminating irrelevant parts of precondi-
tions based on knowledge of the ATL semantics of the analysed transformations.
It is interesting to note that we were able to introduce this semantical knowledge
into the analysis and achieve significant performance improvement without com-
promising the theoretical correctness of the analysis. This is thanks to the fact
that conditions are expressed using graphs in AGT, which allows to easily char-
acterise conditions that violate ATL semantics and eliminate them without loss of
correctness. This is an advantage with respect to existing precondition synthesis
approaches based on OCL [Cabot et al., 2010a] where identifying OCL conditions
that are incompatible with ATL semantics would be significantly harder.

Finally, despite our simplification strategies and the parallelism and memory
management mechanisms, the fact remains that at the current stage, the construc-
tion is still exponential in complexity and cannot yet truly scale to real world trans-
formations and conditions. We believe that a step towards true scalability would
be through the investigation of loop invariants that would avoid the complex parts
of the construction.

This concludes the validation of the second set of contributions of this thesis
which aimed at transforming a postcondition of a transformation into an equiv-
alent precondition. This was the key to transforming unit test requirements of a
transformation chain up to equivalent constraints on the input of the chain and ul-
timately into integration tests that satisfy unit testing needs. We now focus on the
latter integration tests and move to the validation of the third and final contribu-
tion of this thesis which proposed a specification approach supporting automatic
test oracles for integration tests of a code generation chain.

258 © 2016 Elie RICHA



10.4. Validation of Model-to-Code Specification and Test Oracles Approach

10.4 Validation of Model-to-Code Specification and Test Or-
acles Approach

The last contribution of this thesis is a model-to-text specification and test oracles
approach for the specification of Tool Operational Requirements in the context of
the qualification of QGen, the Simulink to C code generator developed at AdaCore.
The approach relied on the concept of specification templates that we introduced to
specify the generated code in terms of its concrete syntax. Specification templates
consisted of portions of verbatim concrete code interspersed with queries to the
input model, regular expressions expressing general expected patterns, and repeti-
tion statements expressing the repetition of code patterns. Executing specification
templates over test models provided expected patterns which should be matched
in the generated code, thus constituting an automatic specification-based test or-
acle. Finally, a document generator was proposed to transform this specification
into a document suitable for integration with the qualification evidence of the code
generator.

To validate our proposals, we deployed this approach within the team develop-
ing the QGen toolset at AdaCore and collected feedback on its use. In the following
we discuss this deployment and report on the received feedback.

10.4.1 Deployment of the Approach

Our approach was deployed in the form of an integrated Eclipse plugin called the
TOR Toolkit encapsulating all of the components of the approach that we detailed in
Chapter 9: the SimpleSimulink metamodel formalising input Simulink models and
the libraries of Simulink definitions and common regular expressions used in the
specification. Based on these elements the TORs would be written in the form of
specification templates using the Acceleo editor. The TOR Toolkit also provided
the functionalities of executing existing integration tests and validating their re-
sults with our TOR-based test oracles approach. Finally the toolkit also allowed to
automatically transform the TORs written in Acceleo into a qualification document.

This experiment was launched in a relatively advanced stage of the develop-
ment of QGen which was initially based on a combination of pseudo-formal and
natural language specifications. At that stage a significant part of the implementa-
tion was completed and a considerable set of Simulink test models was available.
The users of the TOR Toolkit had the tasks of writing TORs based on the existing
informal specification, and applying the automatic TOR-based test oracles to the
existing tests.
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Three people (including the author of this thesis) were involved in the experi-
ment and provided feedback on various aspects of the approach. Out of the ∼100
Simulink block types supported by QGen, 38 block types were specified with our
approach, with varying degrees of completeness as will be explained in the next
section. We considered block types with varying degrees of complexity in terms
of the number of configuration parameters of each block type and in terms of the
complexity of the generated code.

10.4.2 Feedback and Lessons Learned

In the following we detail the feedback gathered throughout the experiment and
present it in terms of advantages and shortcomings (Pros/Cons) organised accord-
ing to the three main aspects of our approach: TOR specification, TOR-based auto-
matic test oracles and automatic document generation. Many of the observations
are qualitative and lack support with quantitative data. This is because of the sub-
jective nature of certain aspects of the problem, but also because the experiment
was interrupted before significant quantitative data could be gathered. In fact the
experiment was discontinued upon reaching the conclusion that even though our
approach performs well for its intended scope, other problems should also be ad-
dressed before it can be realistically adopted. This will be detailed as we present
the feedback of the experiment next.

In the following, Pros and Cons are interspersed to allow comparing advantages
with closely related shortcomings.

TOR Specification

Pro1. A precise specification language and terminology

Compared to natural language specification, our approach had the advan-
tage of providing a precise language and terminology yielding concise and
unambiguous requirements. However this is an advantage of model-driven
specification approaches in general and is not specific to our approach.

Pro2. Inclusion of natural language

In the context of qualification where TORs may be reviewed in later stages
by non-experts, the ability to easily attach natural language explanations as
comments to the precise specification was a major advantage.

Pro3. Concrete syntax of generated code

Writing requirements in terms of the patterns of code to be generated was
perceived by users as a convenient way to express requirements. When the
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approach was presented to qualification experts at AdaCore and in other
organisations, they also found it is an appropriate format to present to qual-
ification authorities.

Con1. Verbatim text can hinder readability

Verbatim text, in particular whitespace characters, can be tricky to use in
the specification. One whitespace character in the specification means that
exactly one whitespace character is required in the output. This prevents
the user from adding whitespace between code elements to improve the
readability of the specification.

A possible solution would be to change the semantics of specification tem-
plates such that any number of consecutive whitespace characters in the
specification implicitly means that one or more whitespace characters are
required in the output. This semantics would have to be also implemented
in our test oracles machinery. Such a solution makes sense in the specific
context of C code generation since in C any number of whitespace charac-
ters can be used to separate syntax elements. For arbitrary model-to-text
transformations this solution may not apply.

Pro4. Enumeration of supported configurations

The limited scope of each specification template defined by the guard of the
template required users to enumerate all supported configurations of each
Simulink element into individual specification templates. This allowed in
several cases to identify configurations missing or wrongly handled in the
implementation because the initial informal specification was not detailed
enough.

For example, block types such as Compare To Constant, Unit Delay and
Delay support taking a scalar input and automatically/implicitly convert it
to vector or matrix output. QGen already supported these configurations
however when they were explicitly enumerated in the TORs, the specifier
realised that these configurations should not be supported according to an
informal user requirement that implicit dimension conversions should not
be allowed for input signals. As a result these configurations were removed
from the supported configurations in the TORs8 and QGen was updated to
reject these configurations even though they could be supported technically.

However despite its benefits, the enumeration of supported configuration
was extremely tedious and error-prone as discussed next.

8they were moved to a list of configurations to be rejected by QGen
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Con2. Combinatorial enumeration is tedious and error-prone

In Section 9.5 we had anticipated that our approach requires enumerating all
possible configurations for each Simulink block type into distinct specifica-
tion templates. As foreseen, this proved to be a tedious and error prone task.
For blocks with many configuration parameters the number of possible con-
figurations grows large and it is difficult to enumerate them manually with-
out making mistakes. As a result, the specification for complex block types
was often lacking configurations and even deliberately abandoned because
of the large number of configurations to be addressed. For example, for the
most complex blocks the number of configurations to be enumerated could
reach around 25, which is not easy to perform manually. This is a major ob-
stacle to the realistic adoption of our approach. For this reason we discuss
this aspect and potential solutions in further detail in Section 10.4.3.

Automatic TOR-based Test Oracles

Pro5. Detection of errors

Our automatic test oracles successfully detected discrepancies between the
actual generated code and the TORs specification that were traced back to
implementation errors. The errors included for example wrong typing of
generated variables (i.e. using a bidimensional array while a unidimensional
array was required). This confirms that the core ideas of our approach are
valid.

Not many errors were detected overall, but this is not due to a shortcom-
ing of the test oracles per se, but rather a result of the incompleteness of the
specification and of the available test set as will be discussed in Con4.

Con3. Error feedback of test oracles is insufficient

When a test fails, the feedback given to the developer is not sufficiently de-
tailed to support his investigation. In case of failure the test oracle reports
the expected patterns that could not be matched in the output of the test
as well as the corresponding specification templates. The developer then
needs to compare the specification with the actual code and determine what
the discrepancy is. For obvious cases such as a missing statement or a wrong
type in a variable declaration, this is pretty easy. However for more subtle
differences such as misplaced parentheses in expressions, the discrepancy
can be hard to find. The developer may inspect the expected patterns to
find the culprit, however as seen in Example 9.2, expected patterns involve
regular expressions that can be very complex.
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A possible solution would be to adopt a more sophisticated algorithm in
the Matcher component of test oracles which is responsible for matching an
expected pattern in the test output. Instead of matching the complete pat-
tern at once, the Matcher could divide the pattern into subparts, and try
to match them one after the other. When a subpart does not match, the
matcher would indicate the non-matching subpart, thus giving more pre-
cise feedback to the developer regarding the location of the discrepancy.

Pro6. Requirements-based test results

Using the requirements themselves as test oracles is a strong argument from
a qualification perspective because it establishes requirements as the direct
deciders of the result of the verification. Any divergence between the specifi-
cation and the implementation introduced by a modification of the former or
the latter, is immediately detected by the test oracles. However as discussed
next, this argument alone is not sufficient: the quality of error detection de-
pends on the completeness of the specification and the quality of the test set.

Con4. Error detection is sensitive to the completeness of the specification and to the quality
of the test set

Overall, not many errors were uncovered by our test oracles. This was
mainly due to two issues (a) the incompleteness of the specification men-
tioned in Con2 and (b) the incompleteness of test models in terms of cov-
erage of possible configurations. An example of (a) is when a test model
contains a configuration that is not included in the specification, a warning
can be issued indicating this fact but the result cannot be validated: errors
may be missed. Conversely in (b) if the specification contains a configura-
tion that never occurs in any test model, that configuration is never tested:
errors may be missed. At the time of deployment of the experiment, the test
set was not mature enough which prevented errors from being detected.

Issue (b) can be solved with the test coverage analysis framework that we
discussed in the first part of this thesis for the coverage of unit test require-
ments with integration tests. The framework introduced in Section 4.2.3 is
originally based on [Bauer et al., 2011] and verifies that for each test require-
ment, both unit and integration test requirements, there is at least one test
model that satisfies it. Therefore to solve issue (b), we can opt for the simple
test adequacy criteria that each specification template should be covered by
at least one test, i.e. we produce (probably automatically) one test require-
ment for each specification template. Then the coverage analysis framework
would automatically report non-covered test requirements for which new
test models would be created. This coverage framework was not imple-
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mented within this thesis, but once implemented and deployed, it can solve
issue (b).

As for issue (a), i.e. the incompleteness of the specification, it is a well-
known problem inherent to specification-based test oracle approaches in
general. As discussed in Section 3.6.2 of the state of the art, we encounter
this aspect in existing specification-based test oracle approaches [Guerra
and Soeken, 2015] where incompleteness of the specification also prevents
errors from being detected. We believe there is no general way to ensure
the completeness of any kind of specification, and that this problem should
be dealt with in a manner specific to the application context. In our con-
text of Simulink code generation we will discuss possible solutions in Sec-
tion 10.4.3.

Document Generation

Pro7. Flexibility of the generated document format

In our experiment we tried different formats and organisations of the TORs
in the generated document. No definite format was ultimately retained mainly
because we focused on the more important issues highlighted above. How-
ever the ease in which the document format could be modified thanks to
the implementation of the document generator as an Acceleo transformation
was a clear advantage.

Conclusions of the Feedback

In light of the reported feedback, we conclude that for the scope of problems
initially targeted by our work, our specification and test oracles approach performs
well. The original goal was to provide a specification language for writing TORs
destined for qualification and an associated automatic test oracles approach, and
in that scope our proposals were found appropriate. For the shortcomings Con1
and Con3 which fall within that scope, we mentioned possible improvements to
address the use of whitespace in the specification and improve the feedback of test
oracles.

However Con2 and Con4 uncovered the following problems which are beyond
the original scope and that should be addressed for a realistic adoption of our ap-
proach:

(1) In the context of Simulink, our approach requires the manual enumeration
of a large number of configurations which is a tedious and error prone op-
eration.
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(2) As a result of (1) we cannot ensure the completeness of the specification,
which is essential to obtain a high fault revealing power.

(3) The test set must cover all configurations identified in the specification to
ensure they are all exercised.

Problem (3) already has a solution with the coverage analysis framework dis-
cussed in Section 4.2.3 to support the first part of the thesis regarding the coverage
of unit test requirements with integration tests. Solving (3) is therefore a matter of
implementing that framework which was not done within this thesis. As for prob-
lems (1) and (2), they have potential solutions based on existing work discussed in
the next section.

10.4.3 Addressing the Variability and Completeness of the Specification

We have seen in our experiment that the completeness of the specification is es-
sential to the detection of errors with specification-based test oracles. Ensuring the
completeness of the specification can be difficult when dealing with languages with
high variability, i.e. language elements can have many different semantics based on
their configuration. This is the case of Simulink.

Each block type in Simulink has parameters controlling its behavior. The types
and dimensions (i.e. scalar, vector, matrix) of input and output data can also affect
that behavior. Each combination of parameter values and data dimensions defines
a configuration of the block that can have a different semantics. In extreme cases9,
a block can have at most as many different configurations as the cartesian product
of the sets of possible parameter values and data dimensions.

In our specification it was necessary to enumerate all possible configurations of
each block type, identifying valid an invalid ones. Given its combinatorial nature,
this task was very tedious and highly error prone since it is easy to forget config-
urations, or include configurations that are invalid. Most importantly, ultimately
there is no guarantee that this specification is complete and that no configurations
were omitted.

This is a known problem that was studied in existing research concerning Simulink
and dataflow languages with high variability in general [Dieumegard et al., 2012;
Dieumegard et al., 2014b; Dieumegard et al., 2014a]. These works target seman-
tic specification and not the syntactic specification that we sought in our work.
However they do address the aspect of variability with an approach inspired from
variability modeling in Software Product Line (SPL) approaches. They propose to

9some combinations of the cartesian product may be invalid
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specify the configuration parameters of each language element as variation points
in a variability model, along with constraints on valid combinations of variation
points. This model can then be used in several ways:

(1) Configurations are enumerated manually and an automatic verification based
on the variability model checks if the set of configurations is complete and
reports missing configurations.

(2) Configurations are generated automatically based on the model.

In (1) the user can group configurations together into equivalence classes if the
specification handles them in a similar fashion. In (2) configurations are gener-
ated systematically and the resulting set of configurations may contain a number
of separate but equivalent configurations. Additionally, the user has to write a
specification template with the pattern of generated code for each enumerated con-
figuration. Therefore he would have to write a large number of such specification
templates which may still be tedious. Given this factor we believe that option (1)
may be a better solution as it allows to combine similar configurations.

These problems remain to be investigated as future work. We believe that an
SPL-based approach combined with our syntactic specification approach would
solve the issues that were raised in the experimental deployment of our proposals.

10.5 Conclusion

In this chapter we have detailed the experimental validation of the three main con-
tributions of this thesis. First we validated ATL2AGT with a testing approach that
considers a variety of ATL test transformations and translates them to AGT. As an
oracle of this testing strategy we used second-order testing where we compared the
execution of both ATL and AGT versions of the transformation over the same input,
and verified the results are identical using systematic model differencing with EM-
FCompare. With this strategy we confirmed that ATL2AGT produces AGT trans-
formations that are semantically equivalent to the original ATL transformations.

Then we discussed the validation of Post2Pre, which consisted of two parts.
The first part was functional validation and aimed at showing that our implemen-
tation complies with the theoretical properties of wlp and scopedWlp. We showed
this by considering a set of small transformations and postcondition, and by man-
ually verifying that the preconditions produced with our implementation ensure
indeed the satisfaction of the postconditions. The second part was the analysis of
the scalability of our implementation for larger problems and the assessment of the
simplification strategies that we proposed as a way to allow scalability. First we
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identified and observed the main issue which is the large size of the intermediate
preconditions computed during the analysis which ultimately leads to an exhaus-
tion of the available memory. Then we proceeded to a systematic assessment of our
proposed simplification strategies in terms of the reduction in the size of interme-
diate preconditions and in the amount of computation required to produced them.
The analysis showed that our strategies are highly efficient at eliminating irrelevant
parts of preconditions early in the analysis and ultimately achieve a reduction by
two orders of magnitude in the size of preconditions. This greatly reduced mem-
ory consumption and avoided large amounts of useless computations, allowing our
implementation to analyse problems that were previously impossible to complete
due to memory saturation.

However the fact remained that our strategies do not alter the exponential na-
ture of the construction that was still observable on larger problems. Even though
further simplification strategies targeting more critical parameters of the algorithm
such as the size of the analysed graphs could be sought, we believe that a more
promising research track would be the investigation of loop invariants which would
short-circuit the processing of loops and perhaps avoid the exponential parts of the
analysis altogether.

Finally, we discussed the experimental deployment of our last contribution, the
model-to-code specification and test oracles approach, within the team developing
the QGen toolset at AdaCore. The conclusions drawn from that experiment were
that the core concept of specification templates that we proposed and the associated
automatic test oracles and document generator are a good fit for the set of targeted
problems. However we also found that deploying the approach without providing
the means to ensure the completeness of the specification and the completeness of
the test with respect to the coverage of that specification greatly diminishes its ben-
efit in practice. The completeness of the specification can be accomplished with ex-
isting approaches to Simulink-based specifications based on variability modeling,
while the completeness of the test set can be addressed with the integration/unit
test coverage framework discussed in the first contributions of this thesis but not
yet implemented in practice.

In conclusion, the validation of each of our contributions uncovered remaining
open points for which we have identified promising solutions to be investigated.
We believe that in the future, combining our contributions into an integrated ap-
proach would constitute a solid answer to the challenges of testing model transfor-
mation chains and would provide strong arguments regarding the coverage and
exhaustiveness of testing in a qualification driven process.
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11.1 Summary of Contributions

This thesis was conducted on the subject matter of the qualification of Automatic
Code Generators (ACGs), a topic of high interest in the avionics domain today be-
cause of the cost reduction that it can bring to the manufacture of critical airborne
software. Indeed generating the source code of a critical application with a qual-
ified ACG allows the elimination of costly verifications of the generated source
code. However the qualification of ACGs remains to this day a high-priced process
that imposes many constraints on the development of the ACG and requires thor-
ough verification activities. Within this process we have focused in particular on
the issues of testing and aimed at proposing efficient testing techniques that would
provide the high confidence required for qualification.

The first part of the thesis focused on achieving the confidence of unit testing in
Model Transformation Chains (MTCs) through integration testing which is easier to
carry out. We determined this can be done with current advances by extracting unit
test requirements and unit test oracles and assessing their satisfaction throughout
integration testing. However once non-satisfied test requirements are identified,
the existing approaches stop short of providing a way to create new integration
tests targeting them. Thus the first problem tackled by this thesis was to propose
an approach to the backward translation of unit test requirements into equivalent
constraints on the input of the MTC that can support the creation of new integration
tests.

While the first part of the thesis focused on the production of integration tests
for MTCs, the second part investigated the corresponding oracles of these tests in
the case of ACGs. Given the context of qualification and certification, we deter-
mined that these oracles need to be based on a syntactic specification of the gener-
ated source code, that is easily understandable by different stakeholders. Thus the
second problem tackled by this thesis was to propose such a syntactic specification
and test oracles approach.

The following sections summarise the solutions that we proposed to the identi-
fied problems and the main contributions of this thesis in that context.

11.1.1 Backward Translation of Test Requirements

To address the first problem, we proposed an iterative approach that performs the
backwards translation of test requirements step by step over the model transfor-
mations of the chain. Thus in the scope of this thesis we focused on defining and
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validating one step of this analysis: backward translation of constraints through
one model transformation.

Our solution was based on the formal framework of Algebraic Graph Transfor-
mation (AGT) which provides the means to manipulate and reason on constraints.
Based on an ATL specification of the transformation, we proposed an approach in
two steps:

1. Translate the ATL transformation to an Algebraic Graph Transformation (AGT).

2. Consider the unit test requirement as a postcondition of the transformation
and translate it into an equivalent precondition using the formal construc-
tions of the weakest liberal precondition (wlp) in AGT.

With this analysis we obtain a constraint over the input of the transformation,
which can again be processed by the same analysis. Iterating the approach for
all transformations of the MTC would allow to reach the input language and create
a new integration test that covers the non-satisfied unit test requirement.

In that approach several original contributions were put forward:

Translation of ATL and OCL to AGT
We defined a translation of the purely declarative subset of ATL to the formal
framework of AGT. The main challenge of this work was to support the ATL
resolve mechanisms which do not have an equivalent in the AGT framework.
We addressed this challenge by organising the resulting AGT in 2 steps, in-
stantiation and resolving, and relying on trace nodes to emulate the resolve
mechanisms.

As for the handling of OCL, existing translations to AGT did not support
ordered sets since the semantics of graph matching in AGT do not guarantee
ordered matching. We addressed this limitation in the context of ATL binding
queries by supplementing the existing translations with additional conditions
ensuring the orderly matching of elements in ordered sets.

This work allowed us to achieve backward propagation of constraints in this
thesis, and we believe it has applications beyond this scope because it enables
the use of other AGT analyses on ATL transformations, as will be discussed
in future work.

The translation of ATL and OCL to AGT was the subject of a publication
at ICMT’15 [Richa et al., 2015] which received the Best Paper Award of the
conference.

Translation of Postconditions to Preconditions
In the translation of postconditions to preconditions, we found that the wlp
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construction can be theoretically infinite for the transformations that we anal-
yse. To address this problem we proposed to analyse a bounded version of
the transformation by introducing the new construct of bounded iteration
P↓N and defining its corresponding finite wlp construction.

Since this result is obtained with the bounded version of the transformation,
it is not always valid for the unbounded original transformations. Thus we
defined an alternate construction scopedWlp that turns the bounded weakest
liberal precondition into a non-weakest liberal precondition applicable to the
original unbounded transformation.

With these proposals, we successfully translated postconditions of ATL trans-
formations into preconditions, thus achieving the backwards translation of
test requirements. Moreover, the formal concepts that we introduced were
defined and proven formally for arbitrary AGT transformations. They can
thus be used beyond the scope of ATL transformations.

Simplification Strategies for wlp
Finally we proposed simplification strategies to tame the computational com-
plexity of wlp. Some of the strategies were applicable to arbitrary AGT trans-
formations while others relied on the ATL semantics to eliminate irrelevant
results and avoid useless computations. What was notable in that context
was the possibility of introducing semantical knowledge of ATL into the con-
struction without compromising its correctness.

With these proposals we were able to successfully perform analyses which
were previously infeasible due to the high complexity.

The above contributions were validated experimentally and implemented in the
form of a tool called ATLAnalyser1.

11.1.2 Specification-based Test Oracles for Integration Tests

After focusing on the creation of test requirements in the first part of the thesis,
the second part was dedicated to determining the verdict of these tests. We thus
proposed a syntactic specification and test oracles approach allowing to specify and
verify the concrete syntax of the generated code. At the heart of this approach is
the concept of specification templates whose execution provides the means to validate
test outputs.

The main contributions of this work were:

1ATLAnalyser, https://github.com/eliericha/atlanalyser
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Specification Templates
We proposed the concept of specification templates as a way to specify tex-
tual patterns in terms of verbatim test, queries to the input model, regular
expressions, and repetition statements. This allows to describe the generated
source code in terms of its concrete textual syntax.

Automatic Test Oracles
We proposed an automatic test oracles procedure based on the execution of
specification templates. Given an input test model, executing specification
templates provides expected patterns that are matched in the test output to
determine its compliance with the specification.

Generation of Qualification Document
We provided a way to transform our specification into a requirements doc-
ument consistent and easy to integrate with the rest of the qualification evi-
dence.

Our approach was developed for and deployed experimentally in the specific
context of QGen, the Simulink to C ACG developed at AdaCore. Nonetheless we
believe the core concept of specification templates and its associated oracle proce-
dure can be generalised to arbitrary model-to-text transformations.

11.2 Summary of Scope of Applicability

Having recalled the main contributions of our work, we now recall the scope of
applicability of each part of our approach in the following set of tables. The symbol
X indicates that a feature is supported, and the symbol × indicates that a feature is
not supported.

Translation of ATL to AGT

Scope
Transformation Kind X Exogenous

ATL Execution Modes
X Normal mode
× Refining mode

ATL Subset X Purely declarative subset

ATL Rules
X Matched rules
× Called rules
× Lazy rules
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Rule Blocks
X from/to blocks
× do blocks

Bindings
X Bindings of references of all multiplicities
X Bindings of attributes of single multiplicity
× Bindings of attributes of non-single multiplicity

Resolve Mechanisms
X Default resolve mechanism
X Non-default resolve mechanism: resolveTemp

Other Features X Non-recursive ATL helpers

Translation of OCL to NGC

The supported OCL subset is Essential OCL which is detailed in [Radke et al.,
2015b], in addition to the support of ordered sets within ATL binding expressions.
The following table gives a non-exhaustive summary of this subset.

Scope

Basic Types
X Predefined types Integer, Real, String, Boolean
X Metamodel-defined classes

Collection Types
X Set

X OrderedSet within ATL binding expressions
× Sequence and Bag

Navigation
X References of all multiplicities
X Attributes of single multiplicity
× Attributes of non-single multiplicities

Collection Operations

X size, isEmpty, notEmpty, includes, excludes,
includesAll, excludesAll, union, intersection,
-, symmetricDifference, including, excluding,
exists, forAll, select, reject, collect

Logic
X 2-valued First Order Logic
× null value

Ordering Features
X Order preservation in ATL bindings
X at operation after reference navigation

Other Features X if-then-else expressions
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Translation of Postconditions to Preconditions

Scope

Transformations
Purely structural transformations:
X Node (object) and edge (reference) manipulation
× Attribute manipulation

Post/Pre-conditions X Full Nested Graph Conditions

Simplification Strategies for Postcondition to Precondition Translation

Scope
Standard NGC and Logic Properties X All transformations

Rule Selection X All transformations

ATL Trace Node Semantics X ATL transformations

Element Creation X Exogenous transformations

Post2Le f t Combined Construction X All transformations

Specification and Test Oracles for Model-to-Text Transformations

Scope
Transformations X Model-to-text transformations

Expressiveness

X Simple positive constraints:
condition ⇒ ∃ (textual pattern)

× Negation, conjunction, disjunction of textual patterns
× Specifying location of textual pattern within

generated artifacts

11.3 Limitations and Future Work

The solutions that we proposed address for the large part the issues raised in this
thesis, however they suffer from several limitations that we develop next with pos-
sible future improvements.

Translation of ATL to AGT

Even though the translation that we proposed is currently limited to purely
declarative ATL transformations, we do not see a major obstacle in extending it to
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imperative features of ATL such as do-blocks and lazy rules. Support for these fea-
tures can be provided by exploiting to a larger extent the imperative features of se-
quencing and iteration in AGT. This would probably require enriching trace nodes
with additional information to support the new features. Moreover, in the transla-
tion of OCL, the solution that we proposed for ordered sets can easily be extended
to support arbitrary order relationships specified with the operation sortedBy().

However we acknowledge that supporting the full semantics of OCL would be
very difficult, if not impossible to achieve in AGT. For example advanced OCL fea-
tures such as iterate() and closure() operations, and corner cases of the seman-
tics such as exception elements invalid and null would be very hard to emulate in
AGT. In fact the latter two elements make of OCL a four-valued logic [Brucker et al.,
2014] which would be difficult to emulate in the two-valued logic of NGC. How-
ever the necessity of such advanced notions in the highly constrained development
environment of qualified tools is still an open discussion point.

Translation of Postconditions to Preconditions

In the translation of postconditions to preconditions, a first conceptual limita-
tion of our approach is the fact that it requires a bound N. We also did not provide
a way to determine a relevant value for this bound. We believe that a first solu-
tion would be to provide heuristics based for example on the number of elements
of each type in the postcondition and the number of instances of these types cre-
ated by each rule of the transformation. Additionally the bound N for all iterations
could be replaced by a set of bounds Ni, one for each iterated rule, to provide finer
scoping of the analysis.

However we believe that a more promising research track is the investigation of
loop invariants which would eliminate the need for the bound N completely. Invari-
ants have been investigated in AGT and shown to be difficult to obtain automat-
ically for arbitrary programs [Pennemann, 2009], which is why other approaches
require users to provide them manually for loops [Poskitt, 2013]. However, re-
search on classical programing languages like C, Ada and Java, indicates that for
programs with particular properties, loop invariants can be inferred automatically
[Furia and Meyer, 2010]. In our analysis of ATL transformations translated to AGT,
loops have a specific form and role, which suggests that it may be possible in the
future to infer their invariants automatically.

From an implementation perspective, another limitation of our approach is its
current inability to scale for real-size use cases and complete code generation chains.
Indeed despite the efficiency of our simplification strategies demonstrated in the
experimental validation, real-size transformations and postconditions could not be
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processed by our prototype. We believe that loop invariants could also be the key
to enabling the scalability of our analysis as they avoid the recursive application of
the analysis to loops.

Syntactic Model-to-code Specification and Test Oracles

A first limitation of our syntactic specification approach is its limited expres-
siveness. The approach was designed specifically for the needs of QGen and was
sufficient for the large part. However we believe that extending the specification
language and its semantics with more constructs (e.g. the creation of files, the con-
junction/disjunction of specification templates etc.) would allow generalising the
approach to arbitrary model-to-text transformations.

Another limitation of our approach was that when applied to Simulink, it re-
quired the manual enumeration of a large number of configurations. This proved
to be a tedious and error prone operation, with no guarantee regarding the com-
pleteness of the resulting set of configurations. In that context we have identified
relevant work in the literature [Dieumegard et al., 2012; Dieumegard et al., 2014b;
Dieumegard et al., 2014a] that can help ensure completeness by modeling the vari-
ability of Simulink elements with appropriate formalism such as feature models. This
work could also be the basis for an interactive specification approach where the
user is assisted by the tool in the identification of configurations, making the spec-
ification less tedious and less error prone.

11.4 Long-term Perspectives

Long-term perspectives of the research conducted in this thesis include applica-
tions of its contributions beyond the original scope, as well as larger research ques-
tions in the industry of safety-critical systems.

AGT Analyses and Formal Proof of Correctness for ATL

Our translation of ATL to AGT enables the application of AGT-based analyses
other than the translation of postconditions that we applied. For example critical
pair analysis [Ehrig et al., 2012b] could allow to statically detect conflicts between
ATL rules, which correspond in fact to errors in the specification.

Additionally, the weakest precondition construction that we developed in the
context of testing model transformation chains can be used for its original purpose:
conducting the formal proof of correctness of programs [Dijkstra, 1975], i.e. prov-
ing that under the assumption of a precondition, a program always guarantees its
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postcondition. This method has been successfully applied to AGT programs [Pen-
nemann, 2009; Habel and Pennemann, 2009; Poskitt, 2013]. Therefore our work
on translating ATL to AGT and implementing weakest precondition construction
enables the formal proof of correctness of ATL transformations.

Additionally, in [Pennemann, 2009] theorem provers based on AGT were shown
to be more efficient than classical first-order logic theorem provers. This suggests
that the AGT-based proof of correctness of ATL transformations and model trans-
formations in general would be more efficient than existing correctness approaches
which are based on first-order logic theorem provers [Büttner et al., 2012a].

However it should be noted that AGT-based theorem provers are still at an early
stage of development. The prover used in [Pennemann, 2009] did not support
scalar object attributes such as integers and strings which is a strong limitation.
Therefore even though on the long run AGT-based provers would be efficient, they
must support a wider range of semantics before they can be realistically applied to
model transformations.

Safety-Critical Product Lines

In this thesis we investigated the problem of qualifying one development tool.
However tool providers like AdaCore have multiple customers, each with differ-
ent needs requiring slightly different versions of the same general functionality.
For this kind of situations, software engineering advances have proposed Software
Product Line (SPL) engineering [Pohl et al., 2005] as a paradigm to develop a set of
software products sharing common features, with reduced development cost and
increased quality.

The application of SPL engineering in a safety-critical context regulated by strict
standards raises difficult questions [Hutchesson and McDermid, 2013]. Moreover,
in this thesis we only discussed the standards DO−178C and DO−330 of the avion-
ics domain. The automotive and railway domains also have their own safety stan-
dards that bear many similarities with the standards that we studied. That factor
could also be included as an aspect of variability in the product line, allowing a
tool provider to provide qualified tools not only with varying functionality, but
also targeting different safety standards.
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A.1 Reminder of the ATL Transformation

The ATL transformation SimpleATL used in examples 1 to 3 is the following:

1 rule R1 {

2 from s : IN!A

3 (s.refB->exists(b | true))

4 to t1 : OUT!D

5 (refD <- t2,

6 refE <- s.refB),

7 t2 : OUT!D }

8
9 rule R2 {

10 from s : IN!B

11 to t : OUT!E

12 (refD <- thisModule.resolveTemp

13 (s.refA, ’t2’) ) }
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A.2 Example 1

Post5 =∀

 e:E , ∃


e:E

d:D

refD




wlp (SimpleATL≤1, Post5) =

∧



∨


∃

 s:A , ∃


s:A

b:B

refB




¬∃
(

s:B

)

∀



s:A , ∨



¬∃


s:A

b:B

refB



∀



s:A s:B , ∧



∨



∃


s:A

s:B

refB



∃


s:B

s:A

refA



∀


s:A

s:B

refB , ∃


s:A

s:B

refBrefA







The precondition requires that:

(1) either there exist no objects of type B

(2) or that for all objects of type B, there is an object of type A connected to it with
references refA and refB

(1) means that R2 is never triggerred, and there are no object E in the output
model. This means that the ∀ statement of the postcondition is satisfied vacuously.
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(2) means that for all objects B triggerring R2, there is a corresponding trigger of
R1 (because of the existence of object A refB) and the non-default resolve can execute
(because of refA) yielding reference refD. Therefore this ensure the satisfaction of the
postcondition.

Given the above, the precondition ensures the satisfaction of the postcondition.
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A.3 Example 2

Post6 =∃


d:D

e:E

refD


wlp (SimpleATL≤1, Post6) =

∧ 

∃ 
s:A

,∃ 
s:A

b:B refB 


∀ 

s:A
,∃ 

s:A

b:B refB 
⇒

∧ 

∃ (
s:A

s:B )

∀ 

s:A
s:B

,∧ 

∨ 

∃ 
s:As:B refB 

∃ 
s:B

s:A refA 

∀ 
s:As:B refB

,∃ 
s:As:B

refBrefA 


 

The precondition states that:
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(1) There exists an object A such that the application condition of R1 is satisfied
(there is a reference refB)

(2) and for all objects A, there exists an object B that is connected to A with refA

The combination of both conditions ensures that R1 and R2 are both triggered,
and the non-default resolve can be performed thanks to the existence of refA. This
ensures that objects D and E are created and connected with refD due to the non-
default resolve. Hence the precondition ensure the satisfaction of the postcondi-
tion.
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A.4 Example 3

Post8 =∀

 d:D , ∃


d:D

e:E

refE





wlp (SimpleATL≤1, Post8) = ¬∃

 s:A , ∃


s:A

b:B

refB




Rule R1 always produces two objects of type D:

1. The first object is connected to an instance of E through refE thanks to the
default resolve

2. The second object is not connected to an instance of E

Since the second object violates the postcondition, then the only way to ensure
the satisfaction of the postcondition is with a precondition that prohibits the execu-
tion of rule R1. Indeed the precondition states that there are no objects A that have
a refB which ensures that R1 can never trigger and that the postcondition is always
satisfied.
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