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Abstract

We address in this thesis some of the issues raised by the emergence of social ap-

plications on the Web, focusing on two important directions: efficient social search in

online applications and the inference of signed social links from interactions between

users in collaborative Web applications.

We start by considering social search in tagging (or bookmarking) applications. This

problem requires a significant departure from existing, socially agnostic techniques.

In a network-aware context, one can (and should) exploit the social links, which can

indicate how users relate to the seeker and how much weight their tagging actions

should have in the result build-up. We propose an algorithm that has the potential to

scale to current applications, and validate it via extensive experiments.

As social search applications can be thought of as part of a wider class of context-

aware applications, we consider context-aware query optimization based on views,

focusing on two important sub-problems. First, handling the possible differences in

context between the various views and an input query leads to view results having un-

certain scores, i.e., score ranges valid for the new context. As a consequence, current

top-k algorithms are no longer directly applicable and need to be adapted to han-

dle such uncertainty in object scores. Second, adapted view selection techniques are

needed, which can leverage both the descriptions of queries and statistics over their

results.

Finally, we present an approach for inferring a signed network (a "web of trust")

from user-generated content in Wikipedia. We investigate mechanisms by which rela-

tionships between Wikipedia contributors - in the form of signed directed links - can

be inferred based their interactions. Our study sheds light into principles underlying

a signed network that is captured by social interaction. We investigate whether this

network over Wikipedia contributors represents indeed a plausible configuration of

link signs, by studying its global and local network properties, and at an application

level, by assessing its impact in the classification of Wikipedia articles.

Keywords
Social applications, collaborative applications, social search, threshold algorithms,

context-aware search, query processing, cached results, views, signed networks, Wiki-

pedia, link inference/prediction, Web-scale algorithms.
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Resumé

Nous abordons dans cette thèse quelques-unes des questions soulevées par l’éme-

rgence d’applications sociales sur le Web, en se concentrant sur deux axes importants:

l’efficacité de recherche sociale dans les applications Web et l’inférence de liens so-

ciaux signés à partir des interactions entre les utilisateurs dans les applications Web

collaboratives.

Nous commençons par examiner la recherche sociale dans les applications de “tag-

ging”. Ce problème nécessite une adaptation importante des techniques existantes,

qui n’utilisent pas des informations sociaux. Dans un contexte ou le réseau est im-

portante, on peut (et on devrait) d’exploiter les liens sociaux, ce qui peut indiquer

la façon dont les utilisateurs se rapportent au demandeur et combien de poids leurs

actions de “tagging” devrait avoir dans le résultat. Nous proposons un algorithme qui

a le potentiel d’évoluer avec la taille des applications actuelles, et on le valide par des

expériences approfondies.

Comme les applications de recherche sociale peut être considérée comme faisant

partie d’une catégorie plus large des applications sensibles au contexte, nous etudions

le probleme de repondre au requetes a partir des vues, en se concentrant sur deux

sous-problèmes importants. En premier, la manipulation des éventuelles différences

de contexte entre les différents points de vue et une requête d’entrée conduit à des

résultats avec des score incertains, valables pour le nouveau contexte. En conséquence,

les algorithmes top-k actuels ne sont plus directement applicables et doivent être adap-

tées aux telle incertitudes dans les scores des objets. Deuxièmement, les techniques

adaptées de sélection de vue sont nécessaires, qui peuvent s’appuyer sur les descrip-

tions des requêtes et des statistiques sur leurs résultats.

Enfin, nous présentons une approche pour déduire un réseau signé (un "réseau de

confiance") à partir de contenu généré dans Wikipedia. Nous étudions les mécan-

ismes pour deduire des relations entre les contributeurs Wikipédia - sous forme de

liens dirigés signés - en fonction de leurs interactions. Notre étude met en lumière

un réseau qui est capturée par l’interaction sociale. Nous examinons si ce réseau en-

tre contributeurs Wikipedia représente en effet une configuration plausible des liens

signes, par l’étude de ses propriétés globaux et locaux du reseau, et en évaluant son

impact sur le classement des articles de Wikipedia.

Mots clés
Applications sociales, applications collaboratifs, receherche sociale, algorithmes de

seuil, vues, reseaux signées, Wikipedia, algorithmes de grande echelle.







Resumé en Français

La possibilité d’interroger et d’analyser la quantité sans précédent de données
présentes sur le World Wide Web, par des algorithmes rapides et efficaces, a
largement contribué à la croissance rapide de l’Internet, ce qui en fait tout sim-
plement irremplaçable dans notre vie quotidienne. Un développement récent
sur le Web est représentée par le Web social, c’est à dire, les applications qui
sont centrées autour des utilisateurs, leurs relations et leurs données.

En effet, les grandes communautés en ligne ou les utilisateurs contribuent et
partagent leur contenu, font aujourd’hui une partie importante et très qualita-
tive du Web. Elles peuvent être construites comme explicitement sociales (Face-
book, Google+, Flickr ou Twitter), ou comme des applications dans lesquelles
les communautés sociales représentent le “moteur” de la création de contenu
(Wikipedia). Pour ces deux types d’applications Web, la présence des interac-
tions entre utilisateurs est un élément crucial de leur succès. Pour ne citer que
deux chiffres éloquents, dans les 3 dernières années, le nombre total des utilisa-
teurs sur Facebook est passé d’environ 400 millions à près d’un milliard, tandis
que le nombre de tweets par jour sur Twitter a augmenté de 40 millions à 340
millions. Avec des bases d’utilisateurs plus larges, plus de participation et de
plus grands volumes de données vient la nécessité de garanties fraÃőcheur
et la pertinence des données, la nécessité de conduire pour une récupération
rapide et une analyse efficace. En effet, les techniques de recherche et de la
croissance du Web sont clairement inter-dépendants.

Malgré leur promesse, le potentiel des outils fournis par le Web social d’au-
jourd’hui n’est pas encore pleinement réalisé. Systèmes de recherche dans
lequel les relations entre les utilisateurs d’un site Web sont pris en compte sont
encore relativement rares, et ils utilisent principalement des simples approches
de filtrage afin de servir le contenu. La recherche sur les mesures de réputation
dans les applications sociales qui permettent des sémantiques entre liens qui
sont plus riches, au-delà de modeles liaison / non-liaison, comme la similitude
et antagonisme dans les réseaux signés, est encore dans une phase très embry-
onnaire. En outre, le manque d’outils contributeurs, tels que les classificateurs
capables de différencier les contributeurs valables de ceux sans valeur (par ex-
emple, les vandales) est l’une des raisons possibles derrière le déclin lent de
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l’activité contributeur sur la Wikipédia.

Cela indique que, pour réaliser le potentiel du Web social et collaboratif, il

ya un réel besoin de systèmes de gestion des données sociales, et en particulier

pour des techniques capables de: (i) déduire des liens utilisateur, éventuelle-

ment avec des semantiques plus riches, même dans des applications où ces

liens n’existent pas, (ii) classifier les utilisateurs ou les collaborateurs du réseau

social, pour une utilisation dans les systèmes de recommandation, dans des

meilleurs modèles de classement de contenu, et (iii) classer et servir efficace-

ment le contenu, en tenant en compte le fait que le classement des contenus ne

dépend pas seulement des proprietes des données – comme c’est le cas dans

les systemes IR – mais aussi sur la relation entre l’utilisateur demandant des

données et les propriétaires ou producteurs de contenu pertinent.

Dans cette thèse, nous nous concentrons principalement sur deux des trois

aspects mentionnés ci-dessus: la déduction des liens sociaux implicits et le

problème de la recherche efficace dans les applications sociales, avec des tech-

niques qui représentent aussi les premiers pas vers le classement pertinent des

donnees, ou vers des systemes de recommandation precises.

Donc, nous abordons trois problèmes importants dans le domaine de la ges-

tion des données sociales:

1. Nous étudions le problème de la recherche sociale, dans son interpréta-

tion centre reseau. Les scénarios de recherche dans lequel le réseau est

une partie intégrante du modèle de classement contenu exigent des algo-

rithmes qui vont au-delà de simples adaptations des algorithmes top-k

courants. La sémantique des requêtes change de maniere fondamentale:

le modèle de notation doit prendre en compte non seulement les mots clés

de la requête, mais aussi l’identite de l’utilisateur qui a initie la requête.

Ce fait nécessité d’algorithmes adaptés, capables de calculer efficacement

des réponses à ces requêtes. Plus important encore, ils doivent être ro-

bustes en présence des mises à jour dans le réseau d’utilisateurs et de

leurs données.

2. Deuxièmement, comme une extension naturelle du problème ci-dessus,

nous étudions le scénario où les résultats des recherches peuvent être mis

en cache, une fonctionnalité importante pour tous les types d’applications

de recherche. Nous étudions les requetes top-k en présence de résultats

requête précalculées (que nous appelons vues), dans le cadre plus vaste

des systemes sensibles au contexte, couvrant non seulement la recherche

sociale, mais aussi la recherche spatiale. Contrairement aux algorithmes

top-k classiques qui utilisent les vues, dans notre contexte les données



dans les vues ne peuvent pas être utilisés tel que. Le contexte dans lequel
les vues ont été calculées doitêtre transposé dans le contexte de la requête
actuelle. Cela introduit une incertitude dans les scores des données dans
les vues, et conduit a des nouveaux semantiques de requête et des algo-
rithmes.

3. Troisièmement, nous étudions le problème de l’inférence des liens soci-
aux a partir des interactions, en allant au-delà de prédiction lien simple.
Nous étudions les reseaux signes dans lesquels les liens peuvent avoir non
seulement une une interpretation positive de l’attitude inter-utilisateurs,
mais aussi un cÃt’té négatif. Plus précisément, nous montrons qu’il ex-
iste un reseau signe implicite des contributeurs de Wikipedia, et nous
decrivons une approche de la déduire. La sémantique plus riche des liens
dans ce réseau signé, que nous appelons WikiSigned, peut aider à des
tÃćches comme la classification des contributeurs, des pages ou meme
du contenu. Comme une preuve de concept, nous montrons que le classe-
ment des articles de Wikipedia peut être considérablement améliorée par
la prise en compte du réseau signé des contributeurs.

Recherche sociale

Une classe importante d’applications sociales sont les applications de mar-
quage collaboratif, aussi connus comme des applications de bookmarking,avec
des exemples populaires, y compris Delicious, StumbleUpon ou Flickr. Leur
fonctionnement général est le suivant:

• former les utilisateurs dans un réseau social, ce qui reflète peut-être la
proximité, similitude, l’amitié, la proximité, etc,

• des éléments d’une archive publique d’articles (par exemple: un docu-
ment, des URL, des photos, etc) sont marqués par les utilisateurs avec des
mots clés, à des fins telles que la description et la classification, ou pour
faciliter la récupération ultérieure,

• des utilisateurs recherchent des articles ayant certains mots clés (tags) ou
qu’ils sont des recommandations, basées sur la proximité dans le reseau.

Les applications de marquage collaboratif et les applications sociales en général
- peuvent offrir une perspective entièrement nouvelle à la façon dont on recherche
et retrouvent les informations. La raison principale de ceci est que les utilisa-
teurs peuvent (et le font souvent) jouer un rÃt’le aux deux extrémités de la



circulation de l’information, en tant que producteurs et aussi en tant que de-
mandeurs d’information. Par conséquent, trouver le articles les plus pertinents
qui sont marqués avec quelques mots clés doit être fait d’une sensible au re-
seau. En particulier, les éléments qui sont marqués par les utilisateurs qui sont
“plus proches” de l’origine devraient avoir plus de poids que les articles qui
sont marqués par plusieurs utilisateurs distants.

Dans ce travail, nous etudions le problème de la récupération top-k dans
les systèmes de marquage collaboratif. Bien que l’accent sur les applications
de bookmarking peut paraÃőtre restrictif, ceux-ci représentent une bonne ab-
straction pour d’autres types d’applications sociales, à laquelle nos techniques
peuvent etre appliques directement.

Nous étudions ce problème en mettant l’accent sur l’efficacité, les techniques
de ciblage qui ont le potentiel de passage a l’échelle pour les applications
actuels sur le Web, dans un contexte, les données de marquage et même les
préférences de recherche des demandeurs peuvent changer à tout moment.
Dans ce contexte, un des principaux sous-problème pour requetes top-k que
nous devons considerer est le calcul de scores candidats pour le top-k par con-
siderer non seulement les éléments les plus pertinents à l’égard de la requête,
mais aussi (ou surtout) en consultant les utilisateurs les plus proches et de
leurs articles marquees.

Nous associer à la notion de réseau social une interprétation assez générale,
sous forme de utilisateurs dont les liens sont marqués par des scores soci-
aux,qui donnent une mesure de la proximité ou de la similitude entre deux
utilisateurs. Ceux-ci sont ensuite exploitables dans les recherches, car ils disent
à quel point les actions marquage doivent etres relevants. Par exemple, même
pour les applications de marquage où si un réseau social explicite n’existe pas
ou n’est pas exploitable, on peut utiliser l’histoire de marquage pour construire
un réseau de similarité.

Example 1. Dans la reuseau de la figure, les utilisateurs ont associées des documents
et ils sont reliés entre eux par des liens sociaux. Chaque lien est marquée par son score
social,dans l’intervalle [0, 1]. Prenons l’utilisateur Alice dans le rÃt’le du chercheur.
Le graphe n’est pas complète, comme le montre la figure, et seuls deux utilisateurs ont
un score sociale explicite en ce qui concerne Alice. Pour ceux qui restent : Danny,
. . . , Jim, seulement un score social implicite pourrait être calculée à partir des liens
existants si une mesure précise de leur pertinence par rapport a la requete d’Alice est
donnee.

Supposons qu’Alice cherche les deux premiers documents qui sont marqués avec
”news“ et ”site“. En regardant les voisins immédiats d’Alice et de leurs documents
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respectifs, intuitivement, D3 doit avoir un score plus élevé que D4,puisque le premier

est marqué par une utilisateur plus pertinent (Bob, ayant le score maximal sociale par

rapport à Alice). Si nous étendrons la recherche à l’ensemble du graphe, le score de D4

peuvent toutefois bénéficier du fait que les autres, comme Holly, ont également marqué

des documents avec ”news“ ou ”site“. En outre, des documents tels que D2 et D1 peut

également être pertinent pour le meilleur résultat top-2, même si elles ont été marqués

uniquement par les utilisateurs qui sont indirectement liés à Alice.

Sous certaines hypothèses a être clarifiés prochainement, le top-2 pour la requête

d’Alice sera D4 et D2. Nous allons détailler le modèle sous-jacent et les algorithmes

qui nous permettent de construire cette réponse dans ce qui suit.

L’algorithme NRA de Fagin s’appuye sur des listes inversees précalculées

avec des scores exacts de chaque terme de la requête (dans notre contexte, un

terme est une étiquette). Fans la Figure 1.1, nous avons deux listes inversés

IL(news) = {D4 : 7, D2 : 2, D1 : 2, D3 : 1, D6 : 1, D5 : 1} et IL(site) = {D2 :

5, D4 : 2, D3 : 1, D6 : 1, D1 : 1, D5 : 1}, qui donne le nombre de fois qu’un

document a été marque.

Lorsque la proximité utilisateur est un élément supplémentaire dans le top-k,

un adaptation de l’algorithme de seuil et ses variantes auraient besoin de listes

inverses précalculées pour chaque paire (utilisateur, mot-clé). Par exemple, si

nous interprétons les liens explicites dans le graphe comme l’amitié, ignorant

les scores lien et consideront le marquage uniquement par des amis directs les



listes sont ILAlice(news) = {D4 : 1, D6 : 1} et ILAlice(site) = {D3 : 1, D6 : 1}.

18 autres listes seraient exigees et, évidemment, cela aurait un espace prohibitif

et des coûts d’execution trop grands dans un contexte reel. Amer-Yahia et al.

est le premier à répondre à cette question mais dans un maniere simplifiée.

Les auteurs considèrent une extension des algorithmes top-k classiques dans

laquelle la proximite utilisateur est considérée comme une fonction binaire (0-1

proximité): seul un sous-ensemble des utilisateurs du réseau sont sélectionnés

et peuvent influencer let top-k. Cela introduit deux fortes restrictions et sim-

plifications: (i) seuls les documents etiquetes par les utilisateurs sélectionnés

doivent être pertinents pour la recherche, et (ii) tous les utilisateurs ainsi sélec-

tionnés sont egalement importants. La solution de base de est à conserver

pour chaque paire de utilisateur-etiquette, au lieu des listes détaillées, seule-

ment une valeur limite supérieure sur le nombre de tagueurs. Par exemple,

la limite supérieure de (news, D4) serait de 2, puisque pour n’importe quel

utilisateur il ya au plus deux voisins qui taggént D4 avec news. C’est ce qu’on

appelle le algorithme GLOBAL-UPPERBOUND. Une version plus raffinée, qui

echange l’espace pour l’efficacité, garde de la limite supérieure des valeurs au

sein des communites d’utilisateurs, au lieu du réseau dans son ensemble.

Seulement dans Schenkel et al., le problème de récupération sensible au

réseau pour le marquage collaboratif est considérée selon une interprétation

générale, celle que nous avons également adopte dans ce travail. Il estime que

même les utilisateurs qui sont indirectement liés à l’origine peut être perti-

nents pour le top-k Leur algorithme ContextMerge suit l’intuition que les util-

isateurs les plus proches du demandeur ont plus d’influence dans le score d’un

élément, et donc ils maximizent la chance que l’article restera dans le top-k fi-

nal.Les auteurs décrivent une approche hybride dans laquelle, à chaque étape,

l’algorithme choisit soit de consulter les documents marqués par le plus proche

utilisateur ou sur les listes inversees pour chaque etiquette. Afin d’obtenir le

prochain utilisateur l’algorithme précalcule à l’avance la valeur de proximité

pour toutes les paires possibles d’internautes. Ces valeurs sont ensuite stock-

ées dans des listes classées (une liste par l’utilisateur), et un incrément pointeur

permet d’obtenir le prochain utilisateur concerné.

Example 2. Considérons le réseau de la figure. 1,1. En ce qui concerne le demandeur

Alice, la liste des utilisateurs selon leur indice de proximité serait {Bob : 0, 9, Danny :

0, 81, Charlie : 0, 6, Frank : 0, 4, Eve : 0, 3, George : 0, 2, Holly : 0, 1, Ida : 0, 1, Jim :

0, 05},avec la proximité entre deux utilisateurs construits comme le produit maximal

de liens sur un chemin entre eux (formalisée dans la section 2.2.1).



Les principaux inconvénients de sont la scalabilite et l’applicabilité. De toute
évidence, le précalcul d’une fermeture transitive pondérée sur l’ensemble du
réseau a un coût élevé en termes d’espace et de calcul en même modérée de
taille des réseaux sociaux. Plus important encore, le maintien de ces proximité
listes à jour quand ils reflètent la similitude de marquage, serait tout simple-
ment impossible dans le monde réel, très dynamique. (Nous revisitons ces
considérations en section 2.6.)

Contributions Nous proposons un algorithme top-k dans le application mar-
quage collaboratif, qui a le potentiel de passer a l’échelle pour les applications
actuelles et au-delà, dans un contexte où les changements du réseau et des
actions marquage sont fréquents. Pour cet algorithme, nous avons aborde
un aspect essentiel: l’accès efficace les utilisateurs les plus proches pour un
chercheur donné. Nous décrivons comment cela peut être fait à la volée - (sans
des calculs préalables) pour une grande famille de fonctions pour le calcul de
proximité dans un réseau social, y compris les plus naturel. L’intérêt de le faire
est triple:

• nous pouvons avoir une personnalisation complete de notation, où chaque
utilisateur peut definir sa propre voie d’exécuter des requêtes, grÃćce à
des paramètres et des choix de fonctions de score,

• nous pouvons itérer sur les utilisateurs concernés de manière plus effi-
cace, car un réseau typique peut facilement entrer dans la memoire princi-
pale ce qui peut épargner les volumes de disque potentiellement énormes
exigés par l’algorithmed (voir section 2.6), tout en ayant la potentiel de
s’executer plus rapidement,

• les mises de liens social ne sont plus un problème, par exemple, si elle est
fondée sur la similitude des actions de marquage.

Nos algorithmes sont correctes et complets. Nous montrons que, lorsque la
recherche se fonde exclusivement sur le poids social de ces données, il est op-
timale dâĂŹinstance pour une grande classe des algorithmes. Des expériences
approfondies sur des données réelles montrent que notre algorithme s’execute
beaucoup mieux que les techniques existantes, avec jusqu’à 50% d’amélioration
(voir section 2.7).

Pour plus d’efficacité encore, nous considérons alors des statistiques pour
des résultats approximatifs. Nos approches présentent les avantages de la con-
sommation de mémoire négligeable (ils s’appuient sur des statistiques concises



sur le réseau de l’utilisateur) et les frais généraux de calcul réduite. En plus,

ces statistiques peuvent être tenus à jour avec un effort limité, même quand

le réseau social est construit sur la base de l’histoire de marquage. Les ex-

périences montrent que les techniques de recherche approximatives peuvent

considérablement améliorer le temps de réponse, pour atteindre environ 25%

du temps de fonctionnement de l’approche exacte, sans sacrifier la précision.

L’objectif principal de notre travail est sur les aspects sociaux de la recherche

top-k dans les applications de marquage collaboratif et nos techniques sont

conçus pour un meilleur reponse dans des scenarios où les actions marquage

sont pour la plupart (sinon exclusivement) vue à travers le prisme de la perti-

nence sociale.

Reseaux signées

Une tendance importante dans les plates-formes sociales vise à exploiter les re-

lations d’utilisateurs déjà existants, les liens entre les utilisateurs (par exemple,

les liens sociaux), afin d’améliorer les fonctionnalités de base du système. Ceci

est particulièrement le cas lorsque les liens peuvent être considérés comme

étant signé,indiquant une attitude positive ou négative; les significations pos-

sibles des liens positifs pourrait être la confiance, l’amitié ou de la similitude,

tandis que les liens négatifs pourraient representer la méfiance, de l’opposition

ou d’antagonisme. Dans les situations où des relations explicites n’existent pas,

sont rares ou sont des indicateurs inadéquats des attitudes envers les autres

membres de la communauté, il devient donc important de découvrir connex-

ions implicites, des liens positifs ou négatifs, a partir des activités d’utilisateurs

concernés et de leurs interactions.

Contributions Ce travail représente une étude sur les modes d’interaction en-

tre les contributeurs de Wikipedia et des relations qui peuvent être déduites

de leur activite.

Nous avons extrait le réseau signée par l’historique de révision totale de la

Wikipédia en anglais, et nous présentons aussi une étude sur une plus pe-

tite échelle - une collection de 563 articles du domaine politique. A partir de

l’historique des révisions, nous étudions les mécanismes par lesquels les rela-

tions entre les contributeurs - sous forme de liens dirigés signés - peuvent être

déduites de leurs interactions. Nous prenons en compte les modifications plus

souvent par des auteurs des articles, des activités telles que la voix pour les

postes d’administrateur, la restauration d’un article à une version antérieure,



ou l’attribution d’un barnstar (un prix, tout en reconnaissant les contributions

précieuses).

Vu que Wikipédia en anglais contient environ 5 million d’articles et plus de

260 millions de révisions, les algorithmes d’extraction décrits dans notre tra-

vail doivent être adapté à un environnement distribué, comme le paradigme

MapReduce et son implementation open-source, Hadoop . En outre, les primi-

tives importantes telles que l’enumeration de triangles dans le graphe et algo-

rithmes d’apprentissage machine ont besoin des algorithmes adaptés.

Le réseau signé que nous construisons est basé sur un modèle local pour les

relations utilisateur: une paire ordonnée entre des membres de la communauté

en ligne - entre le générateur et le destinataire - assigne une valeur positive ou

négative, quand cette valeur peut être déduite. Cela pourrait être interprété

comme la confiance subjective / méfiance dans la capacité d’un editeur pour

améliorer la Wikipedia, et nous appelons l’ensemble de ces valeurs dans le

réseau le "web de confiance". En bref, notre approche vise à transformer les

interactions en indicateurs d’affinité d’utilisateur ou de compatibilité: pour

donner une breve intuition, la suppression de texte ou restauration des modifi-

cations d’un autre editeur (retour en arrière dans le thread des versions) serait

favorable à une relation négative, tandis que la modification du texte ou la

restauration d’une version précédente conduit vers une expérience positive.

Example 3. Pour illustrer, prenons six editeurs des articles de Wikipedia, ayant inter-

agi sur le texte de l’article de la manière indiquée dans le tableau 1.1. Nous détaillons

dans la section 4.2 comment ces données agrégées interaction est construit en vecteurs

d’interaction.

Generateur Destinataire Interactions inserées effacés remplancés

Dodo19 Loopy 10 247 0 10

Capt_Jim Zscout370 5 6 120 0

99.227.60.251 VolkovBot 1 0 1 0

En regardant la première paire de contributeurs (Dodo19, Loopy), on peut noter que,

à travers 10 interactions, Dodo19 a ajouté 247 mots près du texte rédigé par Loopy,

alors que seulement 10 mots on ete modifiees. Intuitivement, cela laisse entendre que

Dodo19 considere le texte de Loopy comme relevant. Par conséquence, un lien dirige

positif pourra être crée à de Dodo19 à Loopy.

La deuxième paire de contributeurs, (Capt_Jim, Zscout370) illustre la situation

inverse. Dans 5 interactions, Capt_Jim a supprimé 120 mots de Zscout370’s alors

quâĂŹil a insere seulement 6 mots. Il peut être raisonnablement dit (voir la section 4.4

pour une évaluation empirique de cet argument) que le premier contributeur se méfie



en général (ou n’aime pas) le texte de la deuxième contributeur. Dans ce cas, un lien

dirige négatif pourrait être créé entre CaptJim et Zscout3709.

A cas où aucun lien ne peut être créé avec une bonne confiance est illustré par la

troisième paire de contributeurs, (99.227.60.251, VolkovBot). Dans ce cas, comme

une seule interaction composée d’un mot supprimé a eu lieu, il n’y a pas assez de

preuves pour décider de l’existence et de la polarité d’un lien.

Outre les interactions sur le texte Wikipedia, d’autres types d’interactions

existent entre les contributeurs, par exemple, des votes ou des prix , et pour une

interprétation positive ou négative, ils sont également pris en considération

pour étayer ces liens signés.

Notre travail fournit des informations précieuses sur les principes qui sous-

tendent signé un réseau qui est capturée par les interactions sociales. Nous ex-

aminons si le réseau sur Wikipedia contributeurs, appelé ci-après WikiSigned,

représente en effet une configuration plausible des signes des lien. Tout d’abord,

nous évaluons les connexions aux théories sociales telles que l’équilibre struc-

turel et de l’état, qui ont été testés dans les mêmes communautés en ligne

. Deuxièmement, nous évaluons le WikiSigned la précision d’une méthode

d’apprentissage pour la prédiction des liens signes. Cela revient à exploiter

les liens existants - en particulier les triades lien - pour déduire de nouveaux

liens et pourrait être considéré comme la propagation des relations signés. En

utilisant des techniques d’apprentissage automatique qui ont été appliquées

dans la littérature précédente , dans des reseaux signes explicites, comme:

• Slashdot, dans lequel les utilisateurs peuvent étiqueter les autres comme

des amis ou des ennemis,

• Epinions, dans lequel les utilisateurs peuvent indiquer si la confiance ou

la méfiance dans dâĂŹautres utilisateurs,

• élection adminship Wikipedia, où les cotisants peuvent soutenir ou s’opposer

à l’élection dâĂŹun autre contributeur à des postes de responsabilité plus

élevés dans Wikipedia,

on obtient une bonne précision sur le réseau WikiSigned (meilleur que celle

obtenu avant dans une reseau election Wikipedia). Par cross-validations, nous

obtenons des preuves solides que notre réseau révèle vraiment une configura-

tion signe implicite et que ces réseaux ont des caractéristiques similaires au

niveau local, même si WikiSigned est inférée à partir des interactions tandis

que les autres réseaux sont explicitement déclarées.



Il existe de nombreuses possibilités qui présentent à nous pour exploiter un
tel réseau au niveau de l’application, par exemple, dans les tÃćches de gestion
des contributeurs. Nous discutons une application qui sâĂŹappuye également
sur les lecteurs, specifiquement le classement des articles de Wikipedia par or-
dre d’importance et de qualité. L’intuition est que ces caractéristiques dâĂŹun
article dépendra de la façon contributeurs se rapportent les uns aux autres.

La contribution de base de ce travail est une thèse: les interactions des util-
isateurs des applications sociales en ligne peuvent fournir de bons indicateurs
de relations implicites - dans un sens plus riche que des simples relations
génériques - et devraient être exploitées comme telles.
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1. Introduction

The ability to query and analyze the unprecedented amount of data present on the
World Wide Web, by fast and effective algorithms, has largely contributed to the rapid
growth of the Web, making it simply irreplaceable in our every day life. A recent
development to the Web is represented by the social Web, i.e., applications that are
centered around users, their relationships and their data.

Indeed, large online communities that contribute and share content account nowa-
days for a significant and highly qualitative portion of the data on the Web. They may
be built as explicitly social (Facebook1, Google+2, Flickr3 or Twitter4) or as applications
in which social communities represent the “engine” creating content (Wikipedia5). For
both these types of Web applications, the presence of user-to-user interactions is a cru-
cial part of their success, with one quantifiable measure of this being the tremendous
extent to which they have expanded lately. To give just two telling figures, in the last
3 years, the total number of users on Facebook has grown from around 400 million
to almost a billion, while the number of tweets per day in Twitter has grown from
40 million to 340 million [76]. With larger user bases, more participation and larger
volumes of data comes the need for freshness guarantees and data relevance, driving
the need for fast retrieval and effective analysis. Indeed, search techniques and the
growth of the Web are undoubtly inter-dependent, as few would publish data on the
Web if it could not be found in relevant searches.

For all their promise, the potential of tools provided by today’s socially-enabled
Web applications is not yet fully realized. Search systems in which the relationships
between the users of a website are taken into account are still relatively rare, and they
mainly use simple filtering approaches in order to serve content [33]. Research on
reputation measures in social applications that allow for richer link semantics, beyond
link/no-link models, like similarity and antagonism in signed networks [75, 60], is still
in a very incipient phase. Moreover, the lack of contributor tools, such as classifiers
able to differentiate worthwhile contributors from the worthless ones (e.g., vandals)
is one of the possible reasons behind the slow decline in contributor activity on the

1http://www.facebook.com
2http://www.google.com/plus
3http://www.flickr.com
4http://www.twitter.com/
5http://www.wikipedia.org
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1. Introduction

Wikipedia [73] 6.
This indicates that, in order to fulfill the potential of the social and collaborative

Web, there is a real need for social data management systems, and especially for tech-
niques able to: (i) infer implicit user links, possibly supporting richer, more informative
semantics, even in applications where links do not exist, (ii) effectively rank and clas-
sify the users or contributors in the social network, for use in better recommendation
systems and content ranking models, and (iii) efficiently and effectively rank and serve
content, accounting for the fact that the ranking of content does not depend only on
its data – as is the case in document based IR systems [56] – but also on the relation-
ship between the user requesting data and the owners or producers of relevant content.

In this thesis, we focus mainly on two of the three aspects outlined above: the inference of im-
plicit social links and the problem of efficient search in social applications, with techniques that
also represent first steps towards relevance or reputation ranking for recommendation systems.

More precisely, we approach three important problems in the area of social data
management:

1. First, we study the problem of social search, in its network-aware interpretation.
Search scenarios in which the network is an integral part of the scoring model
require algorithms that go beyond simple adaptations of the current top-k pro-
cessing techniques [43, 84]. The semantics of queries changes fundamentally:
the scoring model needs to take into account not only the keywords of the query,
but also the identity of the user who initiated the query. This brings the need for
adapted algorithms that are able to efficiently compute answers for such query-
seeker pairs. More importantly, they need to be robust in the presence of massive
update rates in the network of users and their data.

The relevant publications for this work are [MCA12] and the corresponding demonstra-
tion [MC12].

2. Second, as a natural extension of the above problem, for efficiency and scalabil-
ity, we study the scenario where results of searches can be cached, an important
functionality supported by all types of search applications. We investigate top-
k query answering in the presence of precomputed query results (that we call
views), in the larger scope of context-aware search systems, covering not only so-
cial keyword search but also spatial search. Unlike context-unaware top-k com-
putations using views [23, 49], in context-aware scenarios, the data in the views
can not be used as is. Crucially, the context in which the views were computed

6The amount of content on the Wikipedia continues to increase, but the number of content creators is
declining.
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1.1. Social-Aware Search

has to be transposed to the context of the current query. This introduces uncer-
tainty in the views’ data, calling for new query semantics and algorithms.

The relevant publication for this work is [MC13].

3. Third, we study the problem of link inference from interactions in social appli-
cations, going beyond simple link prediction. We study signed networks [52] in
which links admit not only a positive interpretation of the inter-user attitude, but
also a negative one. More precisely, we show that there exists an implicit signed
network of contributors in Wikipedia, and describe an approach to infer it, at the
scale of the full English Wikipedia. The richer semantics of links in the result-
ing signed network, that we call WikiSigned7, can help with tasks like classifying
nodes (contributors), pages, or more fined grained content in the network. As a
proof-of-concept, we show that the classification of articles in Wikipedia can be
significantly improved by taking into account the signed network of contributors.

The relevant publications for this work are [MCA11] and [MAC11].

We continue in the next three sections by giving an overview of the motivations and
our contributions to these problems, and we detail them in the subsequent chapters.

1.1. Social-Aware Search

An important class of social applications are the collaborative tagging applications, also
known as social bookmarking applications, with popular examples including Delicious8,
StumbleUpon or Flickr. Their general setting is the following:

• users form a social network, which may reflect proximity, similarity, friendship,
closeness, etc,

• items from a public pool of items (e.g., document, URLs, photos, etc) are tagged
by users with keywords, for purposes such as description and classification, or
to facilitate later retrieval,

• users search for items having certain keywords (i.e., tags) or they are recommended
items, e.g., based on proximity at the level of tags.

Collaborative tagging – and social applications in general – can offer an entirely new
perspective to how one searches and accesses information. The main reason for this
is that users can (and often do) play a role at both ends of the information flow, as
producers and also as seekers of information. Consequently, finding the most relevant

7http://perso.telecom-paristech.fr/~maniu/wikisigned/
8http://www.delicious.com
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1. Introduction

items that are tagged with some keywords should be done in a network-aware manner.
In particular, items that are tagged by users who are “closer” to the seeker – where
the term closer depends on model assumptions that will be clarified shortly – should
be given more weight than items that are tagged by more distant users.

We consider in this work the problem of top-k retrieval in collaborative tagging systems.
While the focus on bookmarking applications may seem restrictive, these represent a good ab-
straction for other types of social applications, to which our techniques could directly apply.

We investigate this problem with a focus on efficiency, targeting techniques that
have the potential to scale to current applications on the Web9, in an online context
where the social network, the tagging data and even the seekers’ search preferences
can change at any moment. In this context, a key sub-problem for top-k retrieval
that we need to address is computing scores of top-k candidates by iterating not only
through the most relevant items with respect to the query, but also (or mostly) by
looking at the closest users and their tagged items.

We associate with the notion of social network a rather general interpretation, as
a user graph whose edges are labeled by social scores, which give a measure of the
proximity or similarity between two users. These are then exploitable in searches, as
they say how much weight one’s tagging actions should have in the result build-up.
For example, even for tagging applications where an explicit social network does not
exist or is not exploitable, one may use the tagging history to build a network based
on similarity in tagging and items of interest.

Example 1. Consider the collaborative tagging configuration of Figure 1.1. Users have associ-
ated lists of tagged documents and they are interconnected by social links. Each link is labeled
by its (social) score, assumed to be in the [0, 1] interval. Let us consider user Alice in the role
of the seeker. The user graph is not complete, as the figure shows, and only two users have
an explicit social score with respect to Alice. For the remaining ones, Danny, . . . , Jim, only
an implicit social score could be computed from the existing links if a precise measure of their
relevance with respect to Alice’s queries is necessary in the top-k retrieval.

Let us assume that Alice looks for the top two documents that are tagged with both news
and site. Looking at Alice’s immediate neighbors and their respective documents, intuitively,
D3 should have a higher score than D4, since the former is tagged by a more relevant user
(Bob, having the maximal social score relative to Alice). If we expand the search to the entire
graph, the score of D4 may however benefit from the fact that other users, such as Eve or even
Holly, also tagged it with news or site. Furthermore, documents such as D2 and D1 may also
be relevant for the top-2 result, even though they were tagged only by users who are indirectly
linked to Alice.

9The most popular ones have user bases of the order of millions and huge repositories of data; today’s
most accessed social Web application, which also provides tagging and searching functionalities, has
almost reached a billion registered users.

10



1.1. Social-Aware Search

!"#$!"#$ !%#$%$&!

!&#$%$&!'(!"#$

!&#$%$&!

!'#$%$&!'(!"#$

!(#$%$&!

!%#$!"#$

!&#$%$&!

!(#$!"#$

!)#$%$&!'(!"#$

!(#$%$&!

!%#$!"#$

!&#$%$&!'(!"#$

!%#$%$&!'(!"#$

!&#$%$&!

!%#$!"#$

!&#$%$&!'(!"#$

!%#$!"#$

!"#$%$&!

!&#(%$&!

!"#$%

&'(

)*+,"#%

-+../

01%

2,+.3

4%',5%

6'""/

78+

9#:

)*+

)*,

)*-

)*,

)*+

)*-

)*-

)*-

)*-

)*.

)*.-

)*/

Figure 1.1.: A collaborative tagging scenario and its social network.

Under certain assumptions to be clarified shortly, the top-2 documents for Alice’s query will
be, in descending score order, D4 and D2. We will detail the underlying model and algorithms
that allow us to build this answer in the following.

Relation to the most relevant research Classic top-k retrieval algorithms, such as
Fagin’s threshold algorithm [31] and the no random access (NRA) algorithm, rely
on precomputed inverted-index lists with exact scores for each query term (in our
setting, a term is a tag). Revisiting the setting in Figure 1.1, we would have two per-
tag inverted lists IL(news) = {D4 : 7, D2 : 2, D1 : 2, D3 : 1, D6 : 1, D5 : 1} and
IL(site) = {D2 : 5, D4 : 2, D3 : 1, D6 : 1, D1 : 1, D5 : 1}, which give the number of
times a document has been tagged with the given tag.

When user proximity is an additional ingredient in the top-k retrieval process, a
direct network-aware adaptation of the threshold algorithm and variants would need
precomputed inverted-index lists for each (user, tag) pair. For instance, if we interpret
explicit links in the user graph as friendship, ignoring the link scores, and only tagging
by direct friends matters, Alice’s lists would be ILAlice(news) = {D4 : 1, D6 : 1} and
ILAlice(site) = {D3 : 1, D6 : 1}. Other 18 such lists would be require and, clearly,
this would have prohibitive space and computing costs in a real-world setting. Amer-
Yahia et al. [4] is the first to address this issue, considering the problem of network-
aware search in collaborative tagging sites, though by a simplified flavor. The authors
consider an extension to classic top-k retrieval in which user proximity is seen as a
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1. Introduction

binary function (0-1 proximity): only a subset of the users in the network are selected
and can influence the top-k result. This introduces two strong simplifying restrictions:
(i) only documents tagged by the selected users should be relevant in the search, and
(ii) all the users thus selected are equally important. The base solution of [4] is to keep
for each tag-item pair, instead of the detailed lists per user-tag pair, only an upper-
bound value on the number of taggers. For instance, the upper-bound for (news, D4)
would be 2, since for any user there are at most two neighbors who tagged D4 with
news. This is called the Global Upper-Bound strategy. A more refined version, which
trades space for efficiency, keeps such upper-bound values within clusters of users,
instead of the network as a whole.

Only in Schenkel et al. [69], the network-aware retrieval problem for collaborative
tagging is considered under a general interpretation, the one we also adopt in this
work. It considers that even users who are indirectly connected to the seeker may be
relevant for the top-k result. Their ContextMerge algorithm follows the intuition that
the users closest to the seeker will contribute more to the score of an item, thus max-
imizing the chance that the item will remain in the final top-k. The authors describe
a hybrid approach in which, at each step, the algorithm chooses either to look at the
documents tagged by the closest unseen user or at the tag-document inverted lists (a
seeker agnostic choice). In order to obtain the next (unseen) closest user at any given
step, the algorithm precomputes in advance the proximity value for all possible pairs
of users. These values are then stored in ranked lists (one list per user), and a simple
pointer increment allows to obtain the next relevant user.

Example 2. Consider the network of Fig. 1.1. With respect to seeker Alice, the list of users
ranked by proximity would be {Bob : 0.9, Danny : 0.81, Charlie : 0.6, Frank : 0.4, Eve :
0.3, George : 0.2, Holly : 0.1, Ida : 0.1, Jim : 0.05}, with proximity between two users built
as the maximal product of scores over paths linking them (formalized in Section 2.2.1).

The main drawbacks of [69] are scalability and applicability. Clearly, precomputing
a weighted transitive closure over the entire network has a high cost in terms of space
and computation in even moderate-size social networks. More importantly, keeping
these proximity lists up to date when they reflect tagging similarity10 (as advocated
in [69]), would simply be unfeasible in real-world settings, which are highly dynamic.
(We revisit these considerations in Section 2.6.)

Contributions We propose an algorithm for top-k answering in collaborative tagging,
which has the potential to scale to current applications and beyond, in an online con-
text where network changes and tagging actions are frequent. For this algorithm, we

10Tagging similarity may indeed be a more pertinent proximity measure than friendship for top-k search
in bookmarking applications.
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first address a key aspect: accessing efficiently the closest users for a given seeker. We
describe how this can be done on-the-fly (without any pre-computations) for a large
family of functions for proximity computation in a social network, including the most
natural ones (and the one assumed in [69]). The interest in doing this is threefold:

• we can support full scoring personalization, where each user issuing queries
can define her own way to rank items, through parameters and score function
choices – see also Section 2.7 for a detailed description,

• we can iterate over the relevant users in more efficient manner, since a typical
network can easily fit in main-memory11; this can spare the potentially huge
disk volumes required by [69]’s algorithm (see Section 2.6), while also having
the potential to run faster.

• social link updates are no longer an issue; for example, if it is based on similarity
in tagging actions, we can keep it up-to-date and, by it, all the proximity values
at any given moment, with little overhead.

Based on the on-the-fly visit of the relevant network space, our top-k algorithm
TOPKS is sound and complete. We show that, when the search relies exclusively on
the social weight of the data, it is instance optimal within a large and important class
of algorithms. Extensive experiments on real world data show that our algorithm
performs significantly better than existing techniques, with up to 50% improvement
(see Section 2.8).

For further efficiency, we then consider directions for approximate results. Our
approaches present the advantages of negligible memory consumption (they rely on
concise statistics about the user network) and reduced computation overhead. More-
over, these statistics can be maintained up to date with limited effort, even when the
social network is built based on tagging history. Experiments show that approximate
search techniques can drastically improve the response time, reaching around 25% of
the running time of the exact approach, without sacrificing precision.

The main focus of our work is on the social aspects of top-k retrieval in collabora-
tive tagging applications, and our techniques are designed to perform best in settings
where tagging actions are mostly (if not exclusively) viewed through the lens of social
relevance.

1.2. Context-Aware Query Processing Using Views

Retrieving the k best data objects for a given query, under a certain scoring model, is
one of the most common problems in database systems and on Web. In many applica-

11In our view, social networks, excluding the data published by their users, are not “Big Data”, since the
extent of their growth has obvious limits.
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tions, and in particular in current Web search engines, tens of thousands of queries per
second need to be answered over massive amounts of data. Significant research effort
has been put into addressing the performance of top-k processing, towards optimal al-
gorithms – such as TA and NRA [31, 43] – or highly-efficient data structures [84] (e.g.,
inverted lists). In recent research, the use of pre-computed results (also called views) has
been identified as a promising avenue for improving efficiency [49, 23].

At the same time, with the advent of location-aware devices, geo-tagging, bookmark-
ing applications, or online social applications in general, as a way to improve the result
quality and the user experience, new kinds of top-k search applications are emerging,
which can be simply described as context-aware. The context of a query may represent
the geographic location where the query was issued or the identity – within a social net-
work – of the user who issued it. Indeed, the setting described in the previous section,
i.e. network-aware social search, is an example of a context-aware search application.

More generally, a context could represent certain score parameters that can be de-
fined or personalized at query time. For example, a query for top-class vegetarian
restaurants should not give the same results if issued in Paris or in Berlin, as it should
not give the same results if issued within a social community of culinary reviewers or
within a student community.

Unsurprisingly, taking into account a query context in top-k processing represents a
new source of complexity, and many of the common approaches employed in context-
agnostic scenarios need to be revisited [22, 69, 55]. In context-aware scenarios, query
processing usually entails an exploration of a “neighborhood” space for the closest
or most relevant objects, which is often interleaved with some of the classic, context
independent top-k processing steps, such as scans over inverted lists.

Consequently, materializing and exploiting in searches the results of previous queries
can play an even more important role for efficient, online processing of queries with
context. However, in this direction, a broader view-based answering problem than
in the context-agnostic setting needs to be addressed, in which the cached results are
modeled as unranked lists of objects having only uncertain scores or score ranges, in-
stead of exact scores. The rationale is that, even when the cached results in views do
have exact scores with respect to one context, we should expect these to evolve into
score ranges when a context transposition is necessary. For example, answers to the pre-
vious query, for the Paris context, may be useful – but only to a certain extent – when
the same query is issued in a nearby Versailles context, as one has to adapt the scores
of restaurants from the parisian perspective to the versaillaise one; this, inherently,
introduces uncertainty.

The potential impact of view-based algorithms that can cope with such uncertainty
is highly relevant but not limited to the context-aware setting. Indeed, even when
queries are not parameterized by a context, some of the most efficient algorithms,
such as NRA or TAZ [31] can support early-termination and output unranked results
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with only score ranges (instead of a precise ranking).
We give next two example scenarios – mostly self-explanatory – from location-aware

and social-aware search. They illustrate, on one hand, the fact that previous (cached)
results pertaining to one context may be interpretable only as uncertain, by score in-
tervals, when dealing with a new query and a new context. On the other hand, they
illustrate the fact that it may be possible to corroborate such uncertain descriptions (of
scores of objects) from different views, in order to build a most refined or informative
approximation of the top-k result that would be obtained by looking at the actual data
instead of the views.

Motivation 1: Location-aware search. Let us consider the spatial-search scenario in
Figure 1.2, in which we have objects at various locations in an euclidian space (objects
o1, . . . , o5 in the figure, as gray dots). Each object (e.g., a Web document) is character-
ized by a bag of attributes. For instance, o5 has attributes t1 and t2, both with a single
occurrence.

Now, users located at various points request the top-k objects with respect to a set
of attributes. In response, objects are ranked by a combination between the distance of
the object w.r.t. the seeker’s location and the object’s content. While the details of the
spatial ranking model will be clarified in Section 3.7, let us assume in the following
that the location relevance of an object contributes 30% to the score of an object. The
remaining 70% represent the weight of the textual score (e.g., tf-idf measures).

Consider a new query Q in the system, asking for the top-2 items for attributes
{t1, t2} at the point marked by a white dot in the figure. Intuitively, spatial search al-
gorithms [22], by using indices such as the R-tree [36], would proceed by incrementally
increasing the search distance until enough objects are found. However, an alternative
execution plan may be possible, if we assume access to cached results of previous
queries (initiated at the black dots).

For example, let us assume that v1 gives the top-3 documents for {t1, t2}, as the
ranked list {o5 = 1.062, o4 = 1.029, o2 = 1}. Also, sharing the same location, we
have v2 and v3. The former gives the top-4 for {t1} as {o2 = 0.946, o3 = 0.575, o5 =

0.425, o4 = 0.262}. The latter gives the top-4 for {t2} as {o4 = 0.962, o1 = 0.437, o5 =

0.425, o2 = 0.246}.
Since v1, v2 and v3 are closer to Q than any of the objects, it would be tempting to

use their lists of pre-computed results, instead of looking for the actual objects.
In particular, one may resort to using only the results of v1, as it is the closest to

Q both spatially and textually. For that, we need first to perform a change of con-
text, to account for the fact that objects that were close to v1 may be even closer to
Q, as they may be farther. This will introduce uncertainty in the scores of v1’s re-
sult set. More precisely, knowing that the normalized distance between Q and v1 is
0.175, for Q’s perspective, v1’s list should now have objects with score intervals, as fol-
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Figure 1.2.: Context-aware search scenarios.

lows: {o5 ∈ [1.062− 0.3× 0.35, 1.062+ 0.3× 0.35], o4 ∈ [1.029− 0.3× 0.35, 1.029+ 0.3×
0.35], o2 ∈ [1− 0.3× 0.35, 1+ 0.3× 0.35]} = {o5 ∈ [0.957, 1.167], o4 ∈ [0.924, 1.134], o2 ∈
[0.895, 1.105]}.12

We can see that v1’s result is not sufficient to answer Q with certainty, since any
object among the three candidates may be in the top-2. Yet the solution can come
from v2 and v3, albeit more distant, if we corroborate their results with the ones of
v1. Knowing that v2 and v3 are at a normalized distance of 0.25 the transposed scores
would be, for v2 {o2 ∈ [0.871, 1], o3 ∈ [0.5, 0.65], o5 ∈ [0.35, 0.5], o4 ∈ [0.187, 0.337]} and
for v3 {o4 ∈ [0.887, 1.037], o1 ∈ [0.362, 0.512], o5 ∈ [0.35, 0.5], o2 ∈ [0.171, 0.321]}.

Aggregating the three result sets, after accounting for the context transposition,
would allow us to identify the top-2 objects for Q as {o4 ∈ [1.074, 1.135], o2 ∈ [1.043, 1.106]},
since all other objects have scores of at most 1.043.13 We can output this result, without
having to compute the exact locations and scores of o4 and o2.

Motivation 2: Social-aware search. As a second motivating example, we consider the
setting of collaborative bookmarking applications (such as Flickr or Del.icio.us). In
these applications, users bookmark (or tag) objects from a common pool of objects
(e.g., Web sites). Users form a social network, in which relationships are weighted
(e.g., a similarity or proximity value). Such a setting is illustrated in Figure 1.2. For
example, user u1 has tagged object o1 with t1 and t2, and o2 with t1, and it is 0.9-close
(or similar) to u2.

We use the social ranking model introduced by Amer-Yahia et al. [4] and extended
by Schenkel et al. [69] and ourselves in [MC12]. Intuitively, under this model, the
score of an object for a given tag is proportional to the sum of the proximities of the
taggers w.r.t. the seeker. The score of an object for a set of tags is then computed by

120.35 is obtained as 0.175 + 0.175, since the query has two tags.
13For example, o4 has a minimal score obtained as max(0.887 + 0.187, 0.924).
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aggregating the per-tag scores, e.g., by summation.
Let us now assume that the top-3 items for {t1, t2} are requested by user s (the

seeker). As in location-aware search, early termination algorithms [69] for social search
would incrementally explore the most promising users (and their objects) until the top-
k is found. This may lead to the visit of a non-negligible fraction of the network. For
our query, an exploration of the network would need to go as far as u2 to establish a
top-3 as {o1, o2, o5}.

Yet an alternative, more efficient processing approach may rely on pre-computed
results. Let us assume that users v1 and v2 have such data: v2 has obtained the
top-4 for {t1}, as {o1 = 1.71, o5 = 1.63, o2 = 0.5, o4 = 0.5}, and the one for {t2}
as {o1 = 1.71, o5 = 1, o2 = 0.9, o3 = 0.81}. v1 has obtained the top-5 for {t1, t2} as
{o1 = 3.42, o5 = 2.63, o2 = 1.35, o4 = 1, o3 = 0.81}.

Knowing that the distance between s and v1 is equal to 0.9, in manner similar to the
spatial-aware search scenario, the context transposition from v1 to s (the formal rank-
ing model will be described in Section 2.2) leads to the following result set for {t1, t2}:
{o1 ∈ [3.07, 3.8], o5 ∈ [2.27, 2.81], o2 ∈ [1.21, 1.5], o4 ∈ [0.9, 1.11], o3 ∈ [0.72, 0.9]}. Sim-
ilarly, knowing the distance between v2 and s is 0.8, transposing the context leads to
the results for {t1}: {o1 ∈ [1.36, 2.13], o5 ∈ [1.3, 2.03], o2 ∈ [0.4, 0.62], o4 ∈ [0.4, 0.62]}.
and {t2}: {o1 ∈ [1.36, 2.13], o5 ∈ [0.8, 1.25], o2 ∈ [0.72, 1.12], o3 ∈ [0.64, 1.01]}.

It can hence be seen that, after visiting just the neighbors v1 and v2, the search for
s’s query can give the top-3 objects as {o1 ∈ [3.07, 3.8], o5 ∈ [2.27, 2.81], o2 ∈ [1.21, 1.5]}.

The general goal of this study is to enable efficient context-aware top-k retrieval through
techniques that exploit exclusively the views. The rationale for this is that in many prac-
tical applications, access methods may be extensively optimized for views, the size of
cached results may be much less important than the one of the complete data (e.g., of
the inverted lists), and view results (pre-computed for groups of attributes) may be
much more informative towards finding the result for the input query. For instance,
a user may go through a sequence of query reformulations, for which result caching
may be highly beneficial. View results may even be bound to main-memory, in certain
scenarios.

Contributions We formalize and study in this work the problem of context-aware
top-k processing based on possibly uncertain precomputed results, in the form of
views over the data.

We start by investigating top-k processing after the context transposition has been per-
formed, for a given input query and its context. The problem of answering such top-k
queries using only the information in views, inevitably, requires an adaptation to the
fact that these views may now offer objects having uncertain scores. Consequently,
there might exist view instances from which an exact top-k cannot be extracted with
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full confidence. When this is the case, it would be unsatisfactory to simply refute the
input query, or to consider alternative, more expensive execution plans (e.g., by going
through the per-attribute lists). Instead, it would be preferable to provide a most in-
formative answer, in terms of (i) objects G that are guaranteed to be in the top-k result,
and (ii) objects P that may appear in the top-k result.

We formalize this query semantics and describe two adaptations of TA and NRA,
called SR-TA and SR-NRA. They support precomputed lists with score ranges and the
above described query semantics and are sound and complete, i.e., they output the
(G, P)-answer. Intuitively, they implement the corroboration principle illustrated be-
fore, based on a linear programming formulation.

Given that in many applications the set of views may be very large – think of social
applications in which many users may have pre-computed results – we also consider
optimizations for SR-TA and SR-NRA, based on selecting some (few) most promising
views. Obviously, with fewer views, the most informative answer (G, P) may no longer
be reached, and we are in general presented a trade-off between the number of selected
views – which determines the cost of the top-k algorithms SR-NRA and SR-TA – and
the “quality” of the result (a distance with respect to the most informative answer
given by all the views). Importantly, we also show that SR-NRA and SR-TA, when
selecting views, are complete and instance optimal for an important family of view spec-
ifications. Complementing our top-k retrieval through view selection, we also show
how a final refinement step allows us to reach the most informative result.

As a last level of service that can be provided to users, we then consider a sampling-
based approach by which, from the most informative result, a probabilistic interpreta-
tion can also lead to a most likely top-k answer to the input query.

Importantly, our algorithms provide a one-size-fits-all solution for many search appli-
cations that are context-dependent, and we show how they can be directly applied in
our two motivating applications scenarios for context-aware search. For both scenar-
ios, we also describe the necessary step of context transposition, transforming scores or
ranges thereof, valid in one initial context, to ranges that are valid in a new context,
for ranking models combining textual and location dimensions.

Extensive experiments on both synthetic and real-world datasets illustrate the poten-
tial of our techniques – enabling high-precision retrieval and important running-time
savings. More generally, they illustrate the potential of top-k query optimization based
on cached results in a wide range of applications.

1.3. Inferring Signed Social Networks

An important trend in social platforms aims at exploiting the already existing user
relationships, links between users (e.g., social links), in order to improve core function-
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alities in the system.
This is especially the case when links can be viewed as being signed, indicating a pos-

itive or negative attitude; possible meanings for positive links could be trust, friendship
or similarity, while negative links could stand for distrust, opposition or antagonism.
In settings where explicit relationships do not exist, are sparse or are inadequate in-
dicators of one’s attitude towards fellow members of the community, it becomes thus
important to uncover implicit user inter-connections, positive or negative links, from
relevant user activities and their interactions.

Contributions This work represents a study of the interaction patterns between Wiki-
pedia contributors and of the relationships that can be inferred from them.

We extracted the signed network from the entire revision history of the English
Wikipedia, and we also present a study on a smaller scale – a collection of 563 ar-
ticles from the politics domain14. Starting from the revision history, we investigate
mechanisms by which relationships between contributors - in the form of signed di-
rected links - can be inferred from their interactions. We take into account edits over
commonly-authored articles, activities such as votes for administrator positions, the
restoring of an article to a previous version, or the assignment of barnstars (a prize,
acknowledging valuable contributions).

Since the English Wikipedia contains around 5 million articles and over 260 mil-
lion revisions, the extraction algorithms described in our work need to be adapted
to a distributed setting, such as the MapReduce paradigm [24] and its open-source
implementation, Hadoop [7]. Moreover, important primitives such as graph triangle
counting and machine learning algorithms need algorithms that are adapted to a dis-
tributed setting [74, 21].

The signed network we build is based on a local model for user relationships: for a
given ordered pair of members of the online community - the link generator and the
link recipient - it will assign a positive or negative value, whenever such a value can
be inferred. This could be interpreted as subjective trust / distrust in a contributor’s
ability to improve the Wikipedia, and we call the set of such values in the network the
“web of trust”. In short, our approach aims at converting interactions into indicators
of user affinity or compatibility: to give a brief intuition, deleting one’s text or revert-
ing modifications (backtracking in the version thread) would support a negative link,
while surface editing text or restoring a previous version would support a positive
one.

Example 3. To exemplify, let us consider six contributors editing Wikipedia articles, having
interacted on article text in the manner shown in Table 1.1. We detail in Section 4.2 how such
aggregated interaction data is built (in interaction vectors).

14http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Politics
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Generator Recipient Interactions Words inserted deleted replaced

Dodo19 Loopy 10 247 0 10
Capt_Jim Zscout370 5 6 120 0

99.227.60.251 VolkovBot 1 0 1 0

Table 1.1.: Interaction vectors for three pairs of Wikipedia contributors.

Looking at the first pair of contributors Dodo19− Loopy, one can note that, through 10
interactions, Dodo19 has added 247 words near the text authored by Loopy, while only mod-
ifying 10 words. Intuitively, this hints that Dodo19 regards the text of Loopy as valuable.
Hence, a positive directed link could be created from Dodo19 to Loopy.

The second pair of contributors, Capt_Jim − Zscout370 illustrates the opposite situation.
Over 5 interactions, Capt_Jim has deleted 120 words of Zscout370’s while only inserting 6
words. It can be reasonably argued (see Section 4.4 for an empirical evaluation of this argument)
that the first contributor generally distrusts (or dislikes) the text of the second contributor. In
this case, a negative directed link could be created from Capt_Jim to Zscout370.

A case in which no link can be created with good confidence is illustrated by the third pair
of contributors, 99.227.60.251−VolkovBot. In this case, as only one interaction consisting of
one deleted word took place, there is not enough evidence to decide the existence and polarity of
a link.

Besides interactions on Wikipedia text, other kinds of interactions between contributors, e.g.,
through votes or prizes, allowing a negative or positive interpretation, are also taken into
account to support such signed links.

Our work provides valuable insight into principles underlying a signed network that
is captured by social interactions. We look into whether the network over Wikipedia
contributors, called hereafter WikiSigned, represents indeed a plausible configuration
of link signs. First, we assess connections to social theories such as structural balance
and status, which have been tested in similar online communities [52]. Second, we eval-
uate on WikiSigned the accuracy of a learning approach for edge sign prediction. This
amounts to exploiting existing links - in particular link triads - to infer new links and
could be viewed as propagation of signed relationships. Using machine learning tech-
niques that have been applied in previous literature [51] on explicit signed networks,
namely

• Slashdot, in which users can tag other users as friends or foes,

• Epinions, in which users can indicate whether they trust or distrust other users,

• Wikipedia adminship election, in which contributors support or oppose or the
election of other contributors to positions of higher responsibility in Wikipedia,
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we obtain good accuracy over the WikiSigned network (better than the one achieved
in [51] over a Wikipedia adminship election network). By cross training-testing we
obtain strong evidence that our network does reveal an implicit signed configuration
and that these networks have similar characteristics at the local level, even though Wik-
iSigned is inferred from interactions while the other networks are explicitly declared.

There are many opportunities that present to us for exploiting such a network at the
application level, e.g., in the management tasks of contributors. We discuss one appli-
cation that also impacts the readers, namely the classification of Wikipedia articles by
importance and quality. The intuition here is that such article features depend on how
contributors relate to one another.

A core contribution of this work is a thesis: user interactions in online social appli-
cations can provide good indicators of implicit relationships – in a richer sense than
simply indicating generic relationships – and should be exploited as such.
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In this chapter, we detail our approach to the first problem introduced in Chapter 1,
the problem of efficient social search. We concentrate on a kind of applications that
represent a good abstraction of online social applications in general: the collaborative
tagging networks. After an overview of the related work in Section 2.1, we start
by formalizing, in Section 2.2, the general setting and the first contribution of this
work: the principle behind the on-the-fly computation of proximities between the
given seeker and relevant users in the network.

Using the on-the-fly computation of proximities enables the design of efficient, even
instance optimal algorithms for the exclusively social case, and we present our approach
for this case in Section 2.3. The general case is detailed in Section 2.4.

To achieve further efficiency, we then show how using two simple statistics on dis-
tances can drastically increase the performance of our algorithms in Section 2.5. An
analysis of both memory requirements and time performance, in comparison with the
state of the art (the ContextMerge algorithm [69]), in Section 2.6, shows that our al-
gorithm has the potential to be significantly more efficient than approaches that use
precomputed distances. We also present the implemented system, Taagle, with the
personalized search functionalities it offers, in Section 2.7.

Finally, we validate our approaches via extensive experiments, for both efficiency
and effectiveness, in Section 2.8.

2.1. Related Work

Social search The topic of search in a social setting has received increased attention
lately. Studies and models of personalization of social tagging sites can be found
in [77, 39, 27, 80]. Other studies have found that including social knowledge in scoring
models can improve search and recommendation algorithms. In [16], personaliza-
tion based on a similarity network is shown to outperform other personalization ap-
proaches and the non-personalized social search. A study on a last.fm dataset in [48]
has found that incorporating social knowledge in a graph model system improves the
retrieval recall of music track recommendation algorithms. Another study on a MSN
Messenger network [71] has found that people that chat more are more likely to have
common interests, and, moreover, people that have a friend in common are also more
similar.
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The architecture of a question answering search system based on human input was
described in [40]. Another architecture for social data management is given in [5, 6],
along with a framework for information discovery and presentation in social content
sites.

Ranking resources in tagging environments Another approach to rank resources in
social tagging environments is CubeLSI [12], which uses a vector space model and ex-
tends Latent Semantic Indexing to include taggers in the feature space of resources, in
order to better match queries to documents. FolkRank [41] proposes a ranking model
in social bookmarking sites, for recommendation and search, based on an adaptation
of PageRank over the tripartite graph of users, tags and resources. It follows the in-
tuition that a resource that is tagged with important tags by important users becomes
important itself and, symmetrically, for tags and users. An alternative approach to
social-aware search, using personalized PageRank, was presented in [10]. There, the
same tripartite model of annotators, resources and annotations is used to compute
measures of similarities between resources and queries, and to capture the social pop-
ularity of resources.

Social search algorithms Using shortest-path based approaches to infer distances
between users that are not directly connected has an intuitive reason: if people can
“reach” each other faster, they are more likely to be closer in term of data scope and in-
terests. This assumption is first used in Amer-Yahia et al. [4] and the ContextMerge

algorithm of [69]. More recently, shortest path distance oracles were used in a dis-
tributed setting to answer social top-k queries [9].

Social scoring models A scoring model in which both the content of the documents
and the relationship between the searcher and the users contributing to the documents
is considered is studied in [34]. The scoring model we use in this chapter is also used
in [69, 4] in the same collaborative tagging network setting. It is revisited in [82], where
a textual relevance and a social influence score are combined in the overall scoring of
items, the latter being computed as the inverse of the shortest path distance between
the seeker and the document publishers. Combining context-aware scores with textual
scores is not exclusive to the social setting. Such a scoring model can be used in the
context of top-k retrieval of spatial web objects [14], where a prestige-based relevance
score is computed by combining the overall relevance of an object with its spatial
distance.
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2.2. General Setting

We consider a social setting in which we have a set of items (could be text documents,
URLs, photos, etc) I = {i1, . . . , im}, each tagged with one or more distinctive tags from
a dictionary of tags T = {t1, t2, . . . , tl} by one or more users from U = {u1, . . . , un}.
We assume that users form an undirected weighted graph G = (U , E, σ) called the
social network. In G, nodes represent users and σ is a function that associates to each
edge e = (u1, u2) a value in (0, 1], called the proximity (or social) score between u1 and
u2.

Given a seeker user s, a keyword query Q = (t1, ..., tr) (a set of r distinct tags) and an
integer value k, the top-k retrieval problem is to compute the (possibly ranked) list of the k
items having the highest scores with respect to the seeker and query.

We describe next the score model for this problem.
Extending the model for social tagging systems presented in [4], we also assume the

following two relations for tags:

• tagging: Tagged(v, i, t): says that a user v tagged the item i with tag t,

• tag proximity: SimTag(t1, t2, λ): says that tags t1 and t2 are similar, with similar-
ity value λ ∈ (0, 1).

We assume that a user can tag a given item with a given tag at most once. We first
model for a user, item and tag triple (s, i, t) the score of item i for the given seeker s
and tag t. This is denoted score(i | s, t). Generally,

score(i | s, t) = h( f r(i | s, t)) (2.2.1)

where f r(i | s, t) is the overall term frequency of item i for seeker s and tag t, and h can
be any a positive monotone function.

The overall term frequency function f r(i | s, t) is defined as a combination of a
network-dependent component and a document-dependent one, as follows:

f r(i | s, t) = α× t f (t, i) + (1− α)× s f (i | s, t). (2.2.2)

The former component, t f (t, i), is the term frequency of t in i, i.e., the number of times
i was tagged with t. The latter component stands for social frequency, a measure that
depends on the seeker.1

If we consider that each user brings her own weight (proximity) to the score of an
item, we can define the measure of social frequency as follows:

s f (i | s, t) = ∑
v∈{v | Tagged(v,i,t))}

σ(s, v). (2.2.3)

1The linear combination of Eq. (2.2.2) is one that is widely used when a local retrieval score and a global
one are to be combined, e.g., in spatial search [14] or in social search [69]. However, any monotone
combination of the two score components can be used in these approaches, as in ours.
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Then, given a query Q as a set of tags (t1, . . . , tr), the overall score of i for seeker s and
query Q,

score(i | s, Q) = g(score(i | s, t1), . . . , score(i | s, tr)),

is obtained using a monotone aggregate function g over the individual scores for each
tag. In this work, the aggregation function g is assumed to be a summation, g =

∑tj∈Q score(i | s, tj).
Extended proximity. The above scoring model takes into account only the neigh-

borhood of the seeker (the users directly connected to her). But this can be extended
to deal also with users that are indirectly connected to the seeker, following a natural
interpretation that user links (e.g., similarity or trust) are (at least to some extent) tran-
sitive. We denote by σ

+ an extended proximity, which is to be computable from σ for
any pair of users connected by a path in the network. Now, σ

+ can replace σ in the
definition of social frequency we consider before (Eq. (2.2.3)), yielding an overall item
scoring scheme that depends on the entire network instead of only the seeker’s vicin-
ity. We discuss shortly possible alternatives for σ

+ by means of aggregating σ values
along paths in the graph. In the rest of this chapter, when we talk about proximity we
refer to the extended one.

For a given seeker u, by her proximity vector we denote the list of users with non-zero
proximity with respect to u, ordered in descending order of these proximity values.

Remark 1. In Eq. (2.2.2), the α parameter allows to tune the relative importance of
the social component with respect to classic term frequency. When α is valued 1, the
score becomes network-independent. On the other hand, when α is valued 0 the score
depends exclusively on the social network.

Remark 2. Note that a network in which all the user pairs have a proximity score of
1 amounts to the classical document retrieval setting (i.e., the result is independent of
the user asking the query).

Remark 3. Tag similarity can be integrated into Eq. (2.2.3), e.g., by setting a threshold
τ s.t. if SimTag(t, t′, λ), with λ above τ, and Tagged(v, i, t′), we also add σ(u, v) to
s f (i | u, t). For the sake of simplicity this is ignored here, but remains an integral part
of the model.

Remark 4. Note that queries are not assumed to use only tags from T . For any tag
outside this dictionary, items will obviously have a score of 0.

2.2.1. Computing Extended Proximities

We describe in this section a key aspect of our algorithm for top-k search, namely on-
the-fly computation of proximity values with respect to a seeker s. The issue here is
to facilitate at any given step the retrieval of the most relevant unseen user u in the
network, along with her proximity value σ

+(s, u). This user will have the potential to
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contribute the most to the partial scores of items that are still candidates for the top-k
result, by Eq. (2.2.1) and (2.2.3).

We start by discussing possible candidates for σ
+, arguably the most natural ones,

drawing inspiration from studies in the area of trust propagation for belief statements.
We then give a wider characterization for the family of possible functions for proximity
computation, to which these candidates belong.

Candidate 1( fmul). Experiments on trust propagation in the Epinions network (for
computing a final belief in a statement) [66] or in P2P networks show that (i) multi-
plying the weights on a given path between u and v, and (ii) choosing the maximum
value over all the possible paths, gives the best results (measured in terms of precision
and recall) for predicting beliefs. We can integrate this into our scenario, by assum-
ing that belief refers to tagging with a tag t. We thus aggregate the weights on a path
p = (u1, . . . , ul) (with a slight abuse of notation) as

σ
+(p) = ∏

i
σ(ui, ui+1).

For seeker Alice in our running example, we gave in the previous section (Example 2)
the proximity values and the ordering of the network under this candidate for σ

+.
Candidate 2( fmin). A possible drawback of Candidate 1 for proximity aggregation

is that values may decrease quite rapidly. A σ
+ function that avoids this could be

obtained by replacing multiplication over a path with minimal, as follows:

σ
+(p) = min

i
{σ(ui, ui+1)}.

Under this σ
+ candidate, the values with respect to seeker Alice would be the fol-

lowing: {Bob : 0.9, Danny : 0.9, Charlie : 0.6, Frank : 0.6, Eve : 0.5, George : 0.5, Harry :
0.5, Ida : 0.25, Jim : 0.25}.

Candidate 3( fpow). Another possible definition for σ
+ we consider relies on an aggre-

gation that penalizes long paths, i.e., distant users, in a controllable way, as follows:

σ
+(p) = λ

−∑i
1

σ(ui ,ui+1) .

where λ ≥ 1 can be seen as a “drop parameter”; the greater its value the more
rapid the decrease of proximity values. Under this candidate for σ

+, for λ = 2,
the rounded values w.r.t seeker Alice would be {Bob : 0.46, Charlie : 0.31, Danny :
0.21, Eve : 0.077, Frank : 0.0525, George : 0.013, Ida : 0.003, Harry : 0.003, Jim : 0.0007}.

The key common feature of the candidate functions previously discussed is that they
are monotonically decreasing over any path they are applied to, when σ draws values
from the interval [0, 1]. More formally, they verify the following property:
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Property 1. Given a social network G and a path p = {u1, . . . , ul} in G, we have
σ
+(u1, . . . , ul−1) ≥ σ

+(u1, . . . , ul).

We then define σ
+ for any pair of user (s, u) who are connected in the network by

taking the maximal weight over all their connecting paths. More formally, we define
σ
+(s, u) as

σ
+(s, u) = maxp{σ

+(p) | s
p
❀ u}. (2.2.4)

Note that when the first candidate (multiplication) is used, we obtain the same
aggregation scheme as in [66], which is also employed in [69] in the context of top-k
network aware search.

Example 4. In our running example, if we use multiplication in Eq. (2.2.4), for the seeker
Alice, for α = 0 (hence exclusively social relevance), by Eq.( 2.2.2) we obtain the following
values for social frequency: SFAlice(news) = {D4 : 2.6, D2 : 1.01, D1 : 0.7, D6 : 0.6, D3 :
0.1, D5 : 0.05} and SFAlice(site) = {D4 : 1.11, D2 : 1.1, D3 : 0.9, D6 : 0.6, D1 : 0.05, D5 :
0.05}.

We argue next that to all aggregation definitions that satisfy Property 1 and apply
Eq.(2.2.4) a greedy branch and bound approach is applicable. This will allow us to
browse the network of users on the fly, at query time, visiting them in the order of
their proximity with respect to the seeker.

More precisely, by generalizing Dijkstra’s algorithm [26], we will maintain a max-
priority queue, denoted H, whose top element top(H) will be at any moment the
most relevant unvisited user2. A user is visited when her tagged items are taken into
account for the top-k result, as described in the following sections (this can occur at
most once). At each step advancing in the network, the top of the queue is extracted
(visited) and its unvisited neighbours (adjacent nodes) are added to the queue (if not
already present) and are relaxed . Let ⊗ denote the aggregation function over a path
(one that satisfies Property 1). Relaxation updates the best proximity score of these
nodes, as described in Algorithm 1.

Algorithm 1: Relax(s,u,v)

if σ
+(s, u)⊗ σ(u, v) > σ

+(s, v) then

σ
+(s, v) = σ

+(s, u)⊗ σ(u, v)
end if

It can be shown by straightforward induction that this greedy approach allows us
to visit the nodes of the network in decreasing order of their proximity with respect to
the seeker, under any function for proximity aggregation that satisfies Property 1.

2 Dijkstra’s classic algorithm [26] computes single-source shortest paths in a weighted graph without
negative edges.
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We describe in the following section and in Section 2.4 how this greedy procedure
for iterating over the network is used in our top-k social retrieval algorithm. With-
out loss of generality, in the rest of the chapter, consistent with social theories and
with previous work on social top-k search, proximity will be based on Candidate 1
(multiplication).

2.3. Top-k Algorithm for the Social Case

As the main focus of this work is on the social aspects of search in tagging systems,
we detail first our top-k algorithm, TOPKS, for the special case when the parameter α

is 0. In this case, f r(i | s, t) is simplified as

f r(i | s, t) = s f (i | s, t).

For each user u and tag t, we assume a precomputed projection over the Tagged relation
for them, giving the items tagged by u with t; we call these the user lists. No particular
order is assumed for the items appearing in a user list.

We keep a list D of top-k candidate items, sorted in descending order by their mini-
mal possible scores (to be defined shortly). An item becomes candidate when it is met
for the first time in a Tagged triple.

As usual, we assume that, for each tag t, we have an inverted list IL(t) giving the
items i tagged by it, along with their term frequencies t f (t, i)3 in descending order of
these frequencies. Starting from the topmost item, these lists will be consumed one
item at a time, whenever the current item becomes candidate for the top-k result. By
CIL(t) we denote the items already consumed (as known candidates), by top_item(t)
we denote the item present at the current (unconsumed) position of IL(t), and we use
top_t f (t) as short notation for the term frequency associated with this item.

We detail mostly the computation of social frequency, s f (i | u, t), as it is the key
parameter in the scoring function of items. Since when α = 0 we do not use metrics
that are tag-only dependent, it is not necessary to treat each tag of the query as a
distinct dimension and to visit each in round-robin style (as done in the threshold
algorithm or in ContextMerge). It suffices for our purposes to get at each step, for
the currently visited user, all the items that were tagged by her with query terms (one
user list for each term).

For each tag tj ∈ Q, by unseen_users(i, tj) we denote the maximal number of yet
unvisited users who may have tagged item i with tj. This is initially set to the maxi-
mal possible term frequency of tj over all items (value that is available at the current
position of the inverted list of IL(tj), as top_t f (t)).

3In TOPKS, even though the social frequency does not depend on t f scores, we will exploit the inverted
lists and the t f scores by which they are ordered, to better estimate score bounds. In particular, as
detailed later, this allows us to achieve instance optimality.
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Each time we visit a user u who tagged item i with tj we can (a) update and approx-
imation of s f , s̃ f (i | s, tj) (initially set to 0) by adding σ

+(s, u) to it, and (b) decrement
unseen_users(i, tj).

When unseen_users(i, ti) reaches 0, the social frequency value s f (i | s, tj) is final,
i.e., s f (i | s, tj) = s̃ f (i | s, tj) This also gives us a possible termination condition, as
discussed in the following.

At any moment in the run of the algorithm, the optimistic score MaxScore(i | s, Q)

of an item i that has already been seen in some user list will be estimated using as
social frequency for each tag tj of the query the following value:

top(H)× unseen_users(i, tj) + s̃ f (i | s, tj).

Symmetrically, the pessimistic overall score, MinScore(i | s, Q), is estimated by the
assumption that, for each tag tj, the current social frequency s̃ f (i | s, tj) will be the
final one. The list of candidates D is sorted in descending order by this lowest possible
score.

An upper-bound score on the yet unseen items, MaxScoreUnseen is estimated
using as social frequency for each tag tj the value top(H)× top_t f (t)).

When the maximal optimistic score of items that are already in D but not in its
top-k is less than the pessimistic score of the last element in the current top-k of D
(i.e., D[k]), the run of the algorithm can terminate, as we are guaranteed that the top-k
can no longer change. (Note however that at this point the top-k items may have only
partial scores and, if a ranked answer is needed, the process of visiting users should
continue.)

We present the flow of TOPKS in Algorithm 2. Key differences with respect to
ContextMerge’s social branch are (i) the on-the-fly computation of proximity values,
in lines 1-7 and 29-31 of the algorithm, and (ii) the consuming of inverted list positions,
when they become candidates, in lines 20-28. For clarity, we first exemplify a TOPKS
run without the latter aspect (this would correspond to a ContextMerge run).

Example 5. Revisiting Example 1, recall that we want to compute the top-2 items for the query
Q = {news, site} from Alice’s point of view. To simplify, let us assume that score(i | u, t) =
s f (i | u, t) and g is addition. We consider next how the algorithm described above runs.

At the first iteration of the line 8 loop in the algorithm, we visit Bob’s user lists, adding D3
to the candidate buffer. At the second iteration, we visit Danny’s user lists, adding D2 and D4
to the candidate buffer. At the third iteration (Charlie’s user list) we add D6 to the candidate
list. D1 is added to the candidate list when the algorithm visits Frank’s user lists, at iteration
4. Recall that top_t f (news) = 7 and top_t f (site) = 5.

The 6th iteration of the algorithm is the final one, visiting George’s user lists, finding D2
tagged with news, site and D4 tagged with site. D4 and D2 are the top-2 candidates, with
MinScore(D4, Q) = 2.61 and MinScore(D2, Q) = 2.21. The closest candidate is D6,
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Algorithm 2: TOPKSα=0: top-k algorithm for α = 0
Require: seeker s, query Q = (t1, . . . , tr)

1: for all users u, tags tj ∈ Q, items i do

2: σ
+(s, u) = −∞

3: s̃ f (i | s, tj) = 0
4: set IL(tj) position on first entry; CIL(tj) = ∅

5: end for

6: σ
+(s, s) = 0; D = ∅ (candidate items)

7: H ← max-priority queue of nodes u (sorted by σ
+(s, u)), initialized with {s}

8: while H 6= ∅ do

9: u=extract_max(H);
10: for all tags tj ∈ Q, triples Tagged(u, i, tj) do

11: s̃ f (i | s, tj)← s̃ f (i | s, tj) + σ
+(s, u)

12: if i 6∈ D then

13: add i to D
14: for all tags tl ∈ Q do

15: unseen_users(i, tl)← top_t f (tl)(initialization)
16: end for

17: end if

18: unseen_users(i, tj)← unseen_users(i, tj)− 1
19: end for

20: while ∃tj ∈ Q s.t. i = top_item(tj) ∈ D do

21: t f (tj, i)← top_t f (tj) (tj’s frequency in i is now known)
22: advance IL(tj) one position
23: ∆ ← t f (tj, i)− top_t f (tj) (the top_tf drop)
24: for all items i′ ∈ D \ CIL(tj) do

25: unseen_users(i′, tj)← unseen_users(i′, tj)− ∆

26: end for

27: add i to CIL(tj)

28: end while

29: for all users v s.t. σ(u, v) ∈ E do

30: Relax(s,u,v)
31: Update(v,H)
32: end for

33: if MinScore(D[k], Q) > maxl>k(MaxScore(D[l], Q)) and

MinScore(D[k], Q) > MaxScoreUnseen then

34: break

35: end if

36: end while

37: return D[1], . . . , D[k]
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with MinScore(D6, Q) = 1.2 and MaxScore(D6, Q) = 1.2 + 6× 0.1 + 4× 0.1 = 2.2.
Also, MaxScoreUnseen(Q) = 7× 0.1 + 5× 0.1 = 1.2. Finally, MaxScore(D6, Q) <

MinScore(D2, Q) and since we have MaxScoreUnseen(Q) < MinScore(D2, Q), the
algorithm stops returning D4 and D2 as the top-2 items.

We discuss next the interest of consuming of inverted list positions, when these
become candidates (illustrated in Example 6). In lines 20-28, we aim at keeping to a
minimum the worst-case estimation of the number of unseen taggers. More precisely,
we test whether there are top-k candidates i (i.e., items already seen in user lists) for
which the term frequency for some tag tj of Q, t f (tj, i), is “within reach” as the one
currently used (from IL(tj)) as the basis for the optimistic (maximal) estimate of the
number of yet unseen users who tagged candidate items with tj. When such a pair
(i, tj) is found, we can do the following adjustments:

1. refine the number of unseen users who tagged i with tj from a (possibly loose)
estimate to its exact value; this is marked when i is added to the CIL list of tj

(line 27), and from this point on the number of unseen users will only change
when new users who tagged i with tj are found (line 18).

2. advance (at the cost of a sequential access) beyond i in the inverted list of tj, to the
next best item; this allows us to refine (at line 25) the estimates unseen_users(i′, tj)

for all candidates i′ for which the exact number of users who tagged with tj is
yet unknown.

(We found in the experimental evaluation (Section 2.8) that this aspect has the potential
to drastically improve the cost of the search. Since tf-values in inverted lists fall quite
rapidly in most practical settings, we witnessed significant cost savings, while using
relatively few such list position increments.)

Example 6. Let us now consider how the choice of advancing in the inverted lists when possible
influences the number of needed iterations. At first, top_t f (news) = 7, top_item(news) =

D4, and top_t f (site) = 5, top_item(site) = D2.
The first iteration only introduces D3 and thus we cannot advance in any of the two inverted

lists. However, the discovery of D2 and D4 in step 2 allows us to fix their exact tf values and
advance the inverted lists. The new positions are: top_t f (news) = 2, top_item(news) =

D1, and top_t f (site) = 1, top_item(site) = D6. D6’s discovery in iteration 3 allows us
to advance further in the inverted lists. Finally, in step 4, the discovery of D1 allows the
algorithm to advance in the inverted lists to top_t f (news) = 1, top_item(news) = D5,
and top_t f (site) = 1, top_item(site) = D5 (the only undiscovered item). This allows for
some drastic score estimation refinements. We have the same top-2 candidates, D4 and D2
having MinScore(D4, Q) = 1.81 and MinScore(D2, Q) = 1.21. The closest item is again
D6 having MinScore(D6, Q) = MaxScore(D6, Q) = 1.2, since we know that we have
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visited all users who tagged D6. MaxScoreUnseen(Q) = 1× 0.3 + 1× 0.3 = 0.6, since
the maximal unseen document, D6 is tagged only once with each tag. MaxScore(D6, Q) <

MinScore(D2, Q) and MaxScoreUnseen(Q) < MinScore(D2, Q) allows us to exit the
loop, two steps before the unrefined algorithm, returning the exact top-2: D4 and D2.

We can prove the following property of our algorithm:

Property 2. For a given seeker s, TOPKSα=0 visits the network in decreasing order of the σ
+

values with respect to s.

As a corollary of Property 2, we have that TOPKSα=0 visit users who may be relevant
for the query in the same order as ContextMerge [69]. More importantly, we prove
in Section 2.3.1 that our algorithm visits as few users as possible, i.e., it is instance
optimal with respect to this aspect. Moreover, the experiments show that TOPKS can
drastically reduce the number of visited user lists in practice (see Section 2.8).

2.3.1. Instance Optimality

We will use the same definition of instance optimality as in [31]. For a class of al-
gorithms A, a class of legal inputs (instances) D, cost(A,D) denotes the cost of run-
ning algorithm A ∈ A on input D ∈ D. An algorithm A is said to be instance op-
timal for its class A over inputs D if for every B ∈ A and every D ∈ D we have
cost(A,D)=O(cost(B,D)).

Let cUL be the abstract cost of accessing the user list - a process which involves the
relatively costly operations of finding the proximity value of the user and retrieving
the items tagged by the user with query terms - and let users(A,D) be the number of
total user lists needed for establishing the top-k for algorithm A on input D. Let cS

be the abstract cost of sequentially accessing the data in ILt, and let seqitems(A,D) be
the total number of sequential accesses to IL for algorithm A on input D. In practice,
cUL ≫ cS is a reasonable assumption, hence, for two algorithms A and B, we have

users(A,D)× cUL + seqitems(A,D)× cS

users(B,D)× cUL + seqitems(B,D)× cS
≈

users(A,D)

users(B,D)
.

Therefore, for a fair cost estimate in practical social search settings, a reasonable
assumption is to consider

cost(A,D) = users(A,D).

Let us now define the class of “social” algorithms S to which both TOPKSα=0 and
ContextMerge (when α = 0) belong. These algorithms correctly return the top-k
items for a given query Q and seeker s, they do not use random accesses to IL(t)
indexes in order to fetch a certain t f value, and they do not include in their working
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buffers (e.g., candidate buffer D) items that were not yet encountered in the user
lists. The last assumption could be seen as a “no wild guess” policy, by which the
algorithm cannot guess that an item might be encountered in some later stages. This
is a reasonable assumption in practice, as the number of items needed for computing
a top-k result for a given seeker should in general be much smaller than the total
number of items tagged by query terms.

The class D of accepted inputs consists of the inputs that respect the setting de-
scribed in Section 2.2.

Theorem 1. TOPKSα=0 is instance optimal over S and D, when the cost is defined as cost(A,D) =

users(A,D).

Proof. Since on each access to a user list, all items tagged by the respective user with
any of the query terms are retrieved, the position in the proximity vector at any step
in the run of the algorithm is not tag-dependent. So cost(A,D) is equal to the position
p in the seeker’s proximity vector at the moment of A’s termination. Throughout the
proof, we use the subscript p to denote the value of a given variable at step p in the
execution of A. We will use a proof argument similar in style to the one for NRA [31].

Let us assume that TOPKSα=0 does not stop at position p (in the proximity vector)
and that there exists an algorithm A 6= TOPKSα=0 that does.

Since TOPKSα=0 does not stop at position p, there exists an item r 6∈ {Dp[1], . . . ,
Dp[k]} having MaxScorep(r, Q) > MinScorep(Dp[k], Q), and MinScorep(r, Q) 6

MinScorep(Dp[i], Q), ∀i ∈ {1, . . . , k}. If MinScorep(r, Q) = MinScorep(Dp[k], Q)

then necessarily MaxScorep(r, Q) 6 MaxScorep(Dp[k], Q) (ties for pessimistic scores
are broken by the optimistic ones, then arbitrarily for the optimistic scores).

In D, we assume that at step p we have with TOPKSα=0 in the current (unconsumed)
position in each of the |Q| inverted lists IL(tj) an item vj, necessarily not yet candidate.
By definition, for any algorithm A ∈ S, for any tag tj of the input Q, A is at most as
advanced in the inverted list IL(tj) as TOPKSα=0. Without loss of generality, let us
assume A is as advanced as TOPKSα=0.

Towards a contradiction, showing that A is not sound over all possible inputs, we
will construct an instance D′, which is equal to D up to position p. We consider the
following two possible cases:

Case 1: A outputs r as one of the top-k items, i.e., there do not exist k items having a
higher score than r.

In constructing D′, we start from what A could have already read and used, includ-
ing the items vj = top_itemp(tj) and the value topp(H) (the proximity value of the
p + 1 user).
D′ will be such that Score(r, Q) = MinScorep(r, Q), and Score(Dp[i], Q) =

MaxScorep(Dp[i], Q), ∀i ∈ {1, . . . , k}. Now, for each Dp[i], if MaxScorep(Dp[i], Q) >

MinScorep(Dp[i], Q), i.e., we do not have Dp[i]’s final score at step p, we assume the
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following in D′. For each tj ∈ Q for which t f (Dp[i], tj) is unknown, we assume that
we have Dp[i] in IL(tj) after vj, with t f (Dp[i], tj) = top_t fp(tj). Also, for every tj ∈ Q
we set in the proximity vector, after p + 1, the next xij = unseen_users(Dp[i], tj) values
to topp(H), making also Dp[i] present in each of these users’ lists for tj. By doing so,
the exact score of each Dp[i], i ∈ {1, . . . , k}, is equal to the maximal possible one at
step p; after maxi,j(xij) steps, all these k scores Score(Dp[i], Q) would be computed.
For item r, for each tj ∈ Q for which we do not have t f (r, tj), since r must come later
in IL(tj) (after vj), we can assume that t f (r, tj) = partial_t f (r, tj) (this makes
unseen_users(r, tj) = 0). Also, for every tj ∈ Q for which we do know t f (r, tj), after
the required maxi,j(xij) proximity values set as described previously, we set the next
unseen_users(r, tj) in the proximity vector to 0, with each of these users having tagged
r with tj. All this ensures that MinScorep(r, Q) = Score(r, Q).

We can now contradict the correctness of algorithm A, showing that Score(r, Q) <

Score(Dp[i], Q) for all i.
We have the following inequalities:

MinScorep(Dp[k], Q) > MinScorep(r, Q) (2.3.1)

MinScorep(Dp[k], Q) 6 MinScorep(Dp[i], Q), ∀i (2.3.2)

MinScorep(Dp[i], Q) 6 MaxScorep(Dp[i], Q), ∀i (2.3.3)

If MinScorep(r, Q) < MinScorep(Dp[k], Q) then it follows from Eq. (2.3.1), (2.3.2),
(2.3.3) that

Score(r, Q) < Score(Dp[i], Q), ∀i.

If MinScorep(r, Q) = MinScorep(Dp[k], Q) then, for each i ∈ {1, . . . , k}, if:

1. MinScorep(Dp[k], Q) = MinScorep(Dp[i], Q): we have MaxScorep(r, Q) >

MinScorep(Dp[k], Q) and MaxScorep(r, Q) 6 MaxScorep(Dp[i], Q); it follows
that Score(r, Q) < Score(Dp[i], Q),

2. MinScorep(r, Q) < MinScorep(Dp[k], Q): we have MinScorep(Dp[k], Q) <

Score(Dp[i], Q); it follows that Score(r, Q) < Score(Dp[i], Q).

Hence, in any possible configuration, r is not in the top-k result over D′. But since D′

and D are indistinguishable by algorithm A, which stops at step p outputting r in the
result, this contradicts A’s correctness.

Case 2: A does not output r as a top-k item, which means that A assumes that the final
score of r, Score(r, Q) is not in the top-k scores for D.
D′, undistinguishable from D up to position p, will now be such that Score(r, Q) =

MaxScorep(r, Q) and Score(Dp[i], Q) = MinScorep(Dp[i], Q), for each Dp[i] ∈ Dp

s.t. Dp[i] 6= r.
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If r’s score at step p is not already the final one, i.e., MaxScorep(r, Q) =

MinScorep(r, Q), we assume the following in D′: for each tag tj ∈ Q for which t f (r, tj)

is yet unknown, we assume that r comes later (after vj) in IL(tj), having t f (r, tj) =

top_t fp(tj). Then, for every tj ∈ Q we set in the proximity vector, after the p + 1
position, the next xj = unseen_users(r, tj) values to topp(H), making also r present in
each of these users’ lists for tj.

By this, the exact score of r is equal to the maximal possible one at step p; after
maxj(xj) steps, the score Scorer, Q) would be computed.

Symmetrically, for each each Dp[i] ∈ Dp s.t. Dp[i] 6= r, and each tj ∈ Q for which
t f (Dp[i], tj) is yet unknown, we assume that Dp[i] comes later (after vj) in IL(tj), hav-
ing t f (Dp[i], tj) = partial_t f (Dp[i], tj) (hence unseen_users(Dp[i], tj) = 0). Then, for
every tj ∈ Q for which we know t f (Dp[i], tj), after the maxj(xj) values set as described
previously in the seeker’s proximity vector, we set the next yij = unseen_users(Dp[i], tj)

values to 0, making also Dp[i] present in each of these users’ lists for tj. This construc-
tion ensures that, the exact score of each Dp[i] is equal to the minimal possible one at
step p; after maxi,j(yij) steps, all these scores Score(Dp[i], Q) would be computed.

Since we have that

Score(r, Q) = MaxScorep(r, Q) > MinScorep(Dp[k], Q)

and MinScorep(Dp[k], Q) = Score(Dp[k], Q), given that for every item Dp[l], l > k
s.t. Dp[l] 6= r we have Score(Dp[l], Q) 6 MinScorep(Dp[k], Q), r should be among
the top-k items in D′. But since D′ and D are indistinguishable by algorithm A, which
stops at step p without outputting r in the result, this contradicts A’s correctness.

In this proof, we have ignored MaxScoreUnseen(Q) in the inequalities. The unseen
items can be simulated by adding one virtual item iv to D, which does not exist and
will never be encountered in user lists, with MinScore(iv, Q) = 0 and
MaxScore(iv, Q) = MaxScoreUnseen(Q). Then, the same proof argument applies to
these items.

2.4. Algorithm for the General Case

For the general case, in which α ∈ [0, 1], we adapt the ContextMerge [69] algorithm
to include the on-the-fly processing of user proximities.

At each iteration, the algorithm can alternate, by calling ChooseBranch(), between
two possible execution branches: the social branch (lines 8-31 of Algorithm 2) and the
textual branch, which is a direct adaptation of NRA.

As in the exclusively social setting of the previous section, we will read term fre-
quency scores t f (tj, i) from the inverted lists, on a per-need basis, either as in line
21 of TOPKSα=0, or when advancing on the textual branch. Initially, all unknown
tf-scores are assumed to be set to 0.
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The optimistic overall score MaxScore(i, Q) of an item i that is already in the can-
didate list D will now be computed by setting f r(i | s, t), defined in Eq. (2.2.2), to

f r(i | s, t) = (1− α)× top(H)× unseen_users(i, t) + (1− α)× s̃ f (i | s, t) +

α×max( t f (t, i), top_t f (t) ).

The last term accounts for the textual weight of the score, and uses either the exact
term frequency (if known), or an upper-bound for it (the score in the current position
of IL(t)).

Symmetrically, for the pessimistic overall score MinScore(i, Q), the frequency f r(i | u, t)
will be computed as

f r(i | s, t) = (1− α)× s̃ f (i | s, t) + α×max( t f (t, i) , partial_t f (t) ),

where partial_t f represents the count of visited users who tagged i with tj, which is
used as lower-bound for t f (tj, i) when this is not yet known.

The upper-bound for the score on the yet unseen items, MaxScoreUnseen, is esti-
mated using as overall frequency for each tag tj the following value:

f r(i | s, t) = α× top_t f (t) + (1− α)× top(H)× top_t f (t)).

We present the flow of the general case algorithm in Algorithm 3. Method Initial-
ize() amounts to lines 1-6 of TOPKSα=0, and method ProcessSocial() amounts to lines
8-31 of TOPKSα=0 (modulo the straightforward adjustment for the count partial_t f ).

The difference between the α = 0 case and the general case is the processing of the
inverted lists (textual branch), which is done as in the NRA algorithm (see lines 7-13
of Algorithm 3). We discuss how the choice of the branch to be followed is done, by
the ChooseBranch() subroutine, in Section 2.4.1.

2.4.1. Choosing Between the Social and Textual Branches

The TOPKSα=0 algorithm, in which only the social branch matters, is instance optimal
(see Theorem 1), with the cost being estimated as users(TOPKSα=0,D). As the NRA
algorithm [31], when only the textual branch matters, TOPKSα=1 is instance optimal,
with the cost being estimated as seqitems(TOPKSα=0,D).

When α is not one of the extreme values, under a cost function as a combination of
the two above, of the form

users(TOPKSα=0,D)× cUL + seqitems(TOPKSα=1,D)× cS,

a key role for efficiency is played by ChooseBranch().
In [69], the choice between the textual branch or the social one was done by esti-

mating the maximum potential score of each, in round-robin manner over the query
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dimensions. For a query tag tj, the maximal contribution of the social branch would
be estimated as MaxSocial(tj) = (1− α)×max_t f (tj)× top(H), where max_t f (tj) is
the maximum tf for tj (i.e., the number of taggers for the item that has been tagged
the most with tj). For the textual part, the maximal potential contribution would be
estimated by setting MaxTextual(tj) = α × top_t f (tj). Then, if MaxSocial(tj) >

MaxTextual(tj) the social branch was chosen, otherwise the textual branch is chosen.

Algorithm 3: TOPKS: top-k algorithm for the general case
Require: seeker s, query Q = (t1, . . . , tr)

1: Initialize()
2: while H 6= ∅ do

3: ChooseBranch()
4: if social branch then

5: ProcessSocial()
6: else

7: for all tags tj ∈ Q, item i = top_item(tj) do

8: if i 6∈ D then

9: add i to D and CIL(tj)

10: end if

11: t f (tj, i)← top_t f (tj)

12: advance IL(tj) one position
13: end for

14: end if

15: if MinScore(D[k], Q) > maxl>k(MaxScore(d[l], Q) and

MinScore(D[k], Q) > MaxScoreUnseen then

16: break

17: end if

18: end while

19: return D[1], . . . , D[k]

We use a different heuristics for the branch choice. At any point in the run of TOPKS,
unless termination is reached, we have at least one item r with MaxScore(r, Q)

> MinScore(D[k], Q). We consider the item r = D[argmaxl>k(MaxScore(D[l], Q)],
which has the highest potential score, and we choose the branch that is the most likely
to refine r’s score (put otherwise, the branch that counts the most in the MaxScore

estimation for r). The intuition behind this branch choice mechanism is that it is more
likely to advance the run of the algorithm closer to termination.

For each tag tj ∈ Q, we set MaxTextual(tj) to α× topt f (tj) if the term frequency
t f (tj, r) is not yet known, or to 0 otherwise. For the social part of the score, we set

MaxSocial(tj) = (1− α)× unseen_users(tj, r)× top(H).

Then, we follow the social branch if, for at least one of the tags, MaxSocial is greater
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Figure 2.1.: Examples on the evolution of proximity values.

than MaxTextual.
Note that we deal with the tags of the query “in bulk”, and advance simultaneously

on their inverted lists when the textual branch is followed.
Remark. We have adopted so far a “disjunctive” interpretation for queries, in which

items can score on each tag-dimension individually. However, our approach can be
adapted in straightforward manner to a “conjunctive” interpretation: the pessimistic
score should be maintained at 0 until the item’s scores – at least partial ones – are
known for all tags.

2.5. Efficiency by Approximation

The algorithm described in the previous section is sound and complete, and requires
no prior (aggregated) knowledge on the proximity values with respect to a certain
seeker (e.g., statistics); this was also the assumption in [69]’s ContextMerge algorithm.
Moreover, it is instance optimal in the exclusively social setting (our main focus in this
work) with respect to the number of visited users. While we improve the running time
in both this setting and the general one (more on experimental results in Section 2.8),
in practice, however, the search may still visit a significant part of the user network
and their item lists before being able to conclude that the top-k answer can no longer
change.

But if some statistics about proximity are known at query time (i.e., on how the
values in a proximity vector variate from the most relevant user to the least relevant
one), this may enable us to use more refined termination conditions, and thus to
minimize the gap between the step at which the final top-k has been established and
the actual termination of the algorithm. Indeed, the experiments we performed on
Del.icio.us data showed that, in average, the last top-k change occurs much sooner,
hence there is a clear opportunity to stop the browsing of the network earlier.

We take a first step in this direction, discussing two possible approaches for using

39



2. Efficient Social-Aware Search

score estimations based on proximity statistics, which trade accuracy for efficiency
(in terms of visited users). More specifically, in Algorithm 3, the MaxScore, MaxS-
coreUnseen and MinScore bounds have all used the safest possible values for the
proximities of yet unseen users: either the top (maximum) value of the max-priority
queue (top(H)) for the first two bounds, or its minimal possible value (zero) for the
third one. In practice, however, any of these extreme configurations is rarely met. For
illustration, we give in Figure 2.1 the proximity vectors for some randomly sampled
users. Observe that these fall rapidly, and this may be the case in many real-world
similarity or proximity networks.

Hence one possible direction for reducing the number of visited users is to pre-
compute and materialize a high-level description (more or less complex, more or less
accurate) of users’ proximity vectors (of their distribution of values). This would allow
us to use a tighter estimation for the remaining (unseen) users, instead of uniformly
associating them the extreme score (top(H) or 0). In doing so, we may obviously
introduce approximations in the final result, and our approximate techniques provide
a trade-off between accuracy drop on one hand and negligible memory consumption
and reduced running time on the other hand.

2.5.1. Estimating Bounds using Mean and Variance

We first consider as a proximity vector description one that is very concise yet generally-
applicable and effective, keeping for a given seeker two parameters: the mean value of
the proximities in the vector and the variance of these values. We adopt here the sim-
plifying assumption that the values in the seeker’s vector are independent, essentially
interpreting the proximity vector as a random one.

At any step in the run of the algorithm, using the mean and variance, for the remain-
ing (yet unvisited) unseen_users(i, t) for a given item i and tag t ∈ Q, we can derive (a)
lower bounds for the average of their proximity values, for MinScore estimations, or
(b) upper bounds for the average of their proximity values, for MaxScore estimations.
The guarantees of these bounds can be controlled (in a probabilistic sense) via a preci-
sion parameter δ ∈ (0, 1], by which lower values lead to higher precision and 1 leads
to a setting with no guarantees.

More precisely, let p be the current position in the proximity vector and let σ
+
p: (s)

be the vector containing the remaining (unseen) values of σ
+(s). Knowing the overall

mean and variance of the entire proximity vector σ
+(s), and having the proximity

values seen so far (denoted σ
+
0:p(s)), we can easily compute the average and variance

of the remaining proximity values (those in σ
+
p: (s)).

Then, the mean and variance of the average of unseen_users(i, t) randomly chosen
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proximity values from the remaining ones can be obtained as follows:4

Exp[σ+
p: , unseen_users(i, t)] = E[σ+

p: ],

Var[σ+
p: , unseen_users(i, t)] =

Var[σ+
p: ]

unseen_users(i, t)
.

When the input query contains more than one tag, its size |Q| needs to be taken into
account in the estimations. In order to avoid computational overhead, we uniformly
chose a non-optimal per-tag probabilistic parameter δ

′ that ignores per-tag score dis-
tributions, as follows:

δ
′ = 1− (1− δ)1/|Q|. (2.5.1)

EstMax(p, δ) represents, for each query tag, the upper bound of the expected value of
the average of unseen_users(i, t) values drawn from σ

+
p: (s), which holds with probabil-

ity at least 1− δ
′. Similarly, EstMin(p, δ) represents the lower bound of the expected

value of the average of unseen_users(i, t) values drawn from σ
+
p: (s), which holds with

probability at least 1− δ
′. For estimating MinScore when i 6∈ CIL(t), the fact that we

have no information about the difference between t f (i, t) and partial_t f (t, i) (the users
who tagged item i with t so far) means that we cannot assume that other users may
have tagged i, so we keep this estimation as in the initial (exact) algorithm.

By using Chebyshev’s inequality [58], these bounds can be computed as follows:

EstMax(p, δ) = E[σ+
p: (s)] +

√
Var[σ+

p: (s)]
unseen_users(i, t)× δ′

EstMin(p, δ) = E[σ+
p: (s)]−

√
Var[σ+

p: (s)]
unseen_users(i, t)× δ′

We give the score estimations, changed by generalizing the proximity estimations, in
Table 2.1. We present in the experimental results the effect of this approximate ap-
proach on running time, showing significant overall improvement. In our experiments,
even for δ = 0.9, the returned top-k answers had reasonable precision levels (around
90%).

We discuss in the next section another approach for tighter score estimates, using
more detailed descriptions of proximity vectors. We conclude this section with a dis-
cussion on how these concise descriptions of proximity vectors could be maintained
up-to-date in dynamic environments, in Section 2.5.3.

2.5.2. Estimating Bounds Using Histograms

The advantage of the approach described the previous section is twofold: low memory
requirements and estimation bounds that are applicable for any value distribution.

4This is possible under independence assumptions that may not entirely hold, but turn out to be rea-
sonable in practice (see Section 2.8).
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Table 2.1.: Optimistic and pessimistic estimations of f r(i | t, u) at step p (general case).

score i ∈ CIL(t) estimation

MinScore(i,t) yes α× t f (i, t) + (1− α)× (s f (i | s, t)+
EstMin(p, δ)× unseen_users(i, t))

no α× partial_t f (t, i) + (1− α)× s f (i | s, t)

MaxScore(i,t) yes α× t f (i, t) + (1− α)× (s f (i | s, t)+
EstMax(p, δ)× unseen_users(i, t))

no α× top_t f (t) + (1− α)× (s f (i | s, t)+
EstMax(p, δ)× unseen_users(i, t))

MaxScoreUnseen(t) α× top_t f (t)+
(1− α)× EstMax(p, δ)× top_t f (t)

However, it may offer estimation bounds that are too loose in practice, and hence not
reach the full potential for efficiency of approximate score bounds. To address this
issue, we can imagine – as a compromise between keeping only these two statistics
and keeping the entire pre-computed proximity vector – an approach in which we
describe the distribution at a finer granularity, based on histograms.

More precisely, for a seeker s, we denote this histogram as h(σ+(s)). It consists
of b buckets, each bucket bi, for i ∈ {1, . . . , b}, containing ni items in the interval
(lowi, highi] (the 0 values are assigned to bucket b). Then, the probability that there
exists a proximity value x greater than lowi, knowing the histogram h(σ+(s)), is

Pr[x > lowi | h(σ+(s))] =
i

∑
j=1

nj/n.

At any step p in the run of the algorithm, we maintain a partial histogram denoted
as h(σ+

p: (s)), obtained by removing from h(σ+(s)) the p already encountered proximity
values.

Similar to the previous approach, we can drill down the overall δ parameter to a δ
′

one for each query tag. Then, EstMax(p, δ) can be given by the minimal value in the
partial histogram, such that the resulting estimation of MaxScore(i, t) holds with at
least probability 1− δ

′. Conversely, EstMin(p, δ) is given by the maximal value in the
partial histogram, such that the resulting estimation of MinScore(i, t) holds with at
least probability 1− δ

′.
In manner similar to Eq.(2.5.1), we need to take into account the fact that a number

of unseen_users(i, t) such estimated values lead to an overall approximate estimation,
for both EstMin and EstMax. Therefore, each of these values is uniformly estimated
using a stronger probabilistic parameter δ

′′(i, t), depending on unseen_users(i, t), as
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follows:

δ
′′(i, t) = 1− (1− δ

′′)1/unseen_users(i,t).

Formally, having h(σ+
p: (s)) and δ

′′(i, t), we estimate EstMax(p, δ) and EstMin(p, δ)

as follows:

EstMax(p, δ) = min{lowi | Pr[x > lowi | h(σ+
p: (s))] ≤ δ

′′(i, t)},

EstMin(p, δ) = max{lowi | Pr[x > lowi | h(σ+
p: (s))] ≥ 1− δ

′′(i, t)}.

(2.5.2)

The space needed for keeping such histograms is linear in the number of users and
buckets. For instance, by setting the latter using the square-root choice, the memory
needed is O(n

3
2 ). Also, as a consequence of the on-the-fly computation of proximity

values, we can easily update the histogram of the seeker by merging the partial, “fresh”
histogram obtained in the current run (until termination) with the remaining values
from the existing (pre-computed) histogram.

2.5.3. Maintaining the Description of the Proximity Vector

Since social tagging applications are highly dynamic in nature, we need to take into
account the fact that the statistics we keep are likely to change quite often. While
we can hope that mean, variance and even histogram descriptions are less subject
to change than individual proximity values, we should still strive to maintain these
statistics as fresh as possible. Recomputing them from scratch, at certain intervals, is
an obvious option to consider, though one that may still be too expensive, knowing
that we want to avoid keeping the n × n materialized proximity matrix, as well as
naïve re-computation of mean and variance pairs.

A more suitable alternative would be to rely on approximate techniques to maintain
fully dynamic all-pairs shortest path information in the network, equivalent to the
Dynamic-APSP problem [68]. We give a short description of such an approach in the
following.

Since our proximity metric relies on path multiplication, we can reformulate the
computation of proximity values into a problem of computing shortest paths in a
network with (a) the same set of vertices and edges, and (b) edge weights valued
w(u, v) = − log σ(u, v), where σ(u, v) is the user proximity from the original network.

A (2+ ǫ)-approximate algorithm was given in [11], which handles fully-dynamic up-
dates in a graph in Õ(e) (almost linear) time. It exhibits a query time of O(log log log n)
(the query returns an estimation of the shortest distance between two nodes), without
the need of keeping a distance matrix. We could directly rely on this algorithm in
the transformed − log σ(u, v) graph. Mapping back the distances thus queried to our
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setting would give us an estimation σ
+
est(u, v) that verifies the inequality:

σ
+(u, v) > σ

+
est(u, v) > σ

+(u, v)2+ǫ.

For a given seeker s, we could thus compute an approximation of its proximity vec-
tor in O(n log log log n) time, and then compute the approximate statistics efficiently.

2.6. Scaling and Performance

We argue in this section that, in a real-world setting, our algorithm TOPKS outper-
forms the one from existing literature [69] both in terms of memory requirements and
execution time. We discuss its practical impact in experiments in Section 2.8.

Memory requirements Let us consider, as an illustrating example, one of the most
popular bookmarking applications, Del.icio.us, which currently has probably around
107 users. Unsurprisingly, this social network is quite sparse, with an average degree of
about 100. If a similar graph configuration would be maintained when weights (the σ

function) are associated to the edges of the network (e.g., based on tagging proximity
or some other measure) the size of an index that would precompute the extended
proximity value for each pair of connected users in the network (the σ

+ function)
would be roughly of 700 terabytes (i.e., (107)2 × 7 bytes, considering that 3 bytes are
necessary for an user Id and 4 bytes are necessary for the float value of proximity).
On the other hand, the weighted graph would require memory space of roughly 7
gigabytes (as 107 × 100× 7 bytes), and could easily fit in the RAM space of an average
commodity workstation.5 More, existing techniques for network compression [19]
might allow us to reduce the space required to store the network by a factor of 10− 15
while still supporting efficient updates and random access on compressed data.

The difference in memory requirements for the two alternatives becomes much more
drastic when assuming a user base of the order of Facebook’s social network, which
currently consists of roughly 9× 108 users (and is still growing at a fast pace). Precom-
puted lists for extended proximity go up to about 9 exabytes of memory space, while
the network itself requires only about one terabyte.

Performance analysis We next discuss general performance aspects, which in prac-
tice may be as impacting as the memory and updatability advantages that our algo-
rithm presents.

5We stress that, for the sake of generality, this is not assumed nor exploited in our algorithms, and is
not accounted for in the experimental results for TOPKS (in both abstract cost and running time).
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Table 2.2.: Computational costs for processing a query Q, when α = 0.

Algorithm Disk access RAM access

RA SA

ContextMerge 1 n (|Q|− 1)× n
TOPKSα=0 0 0 O(n lg n + e) + (|Q|− 1)× n + n + e

Let n denote the number of users and let e denote the number of edges in the net-
work. We assume without loss of generality that the query consists of a single tag (for
multiple-tag queries, all dimensions can share the results of a single σ

+ computation).

For our algorithm, let us assume that the social network resides in main memory,
e.g., by means of adjacency lists: for each vertex, we have a list of its neighbors and
their associated weights (we can safely assume the list comes presorted descending
by weight). For one top-k query execution, we will need at most n + e operations to
visit the entire network (we are guaranteed to take each vertex only once). For the
proximity computation we can use a Fibonacci-heap based max-priority queue, since
our graph is likely to be very sparse [61]. Each insertion into the heap takes O(1)
amortized time, each extraction takes O(lg n) and each increase of a key (a relaxation
step) takes O(lg n), for an overall queue complexity of O(n lg n + e).

ContextMerge requires no computations for proximity at query time. However, it
uses disk accesses to read the precomputed proximity values: one random access to
locate the seeker’s list and n sequential disk accesses to read this list. (It suffices to
do this just for one query term, and then keep and access a shared copy of this list in
main memory.)

If we value the latency of a memory access as 1 and the one of a sequential disk ac-
cess as t (usually about five orders of magnitude slower than RAM access), with minor
simplifications, our algorithm has the potential to perform better than ContextMerge

when the following holds: t > lg n + e
n . So the network sparseness should verify the

following inequality:

e < n× (t− lg n),

which is a very plausible assumption in real applications.

A summary of this comparison on execution time is given in Table 2.2. Note
that in this analysis we omitted initialization costs: the overhead necessary for Con-
textMerge to compute σ

+ values for all user pairs and the overhead to load in main-
memory the social network, for our algorithm.
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Figure 2.2.: Taagle system architecture.

2.7. System Implementation

Figure 2.2 gives an overview of the general architecture of Taagle, our system imple-
mentation of the TOPKS class of algorithms.

Architecture The entry point of the application is a GWT [32] servlet via which users
formulate top-k queries, using the various options and parameters available. The
queries and corresponding parameters are then sent asynchronously, via RPC calls,
to the server-side application, which handles the top-k processing. The server-side
application is an implementation of the TOPKS algorithm and its variants. The results
are sent back to the client servlet, which displays them along with relevant meta-data
(e.g., statistics).

TOPKS uses data from precomputed tables and handles the on-the-fly computation
of social proximities. At initialization, it loads the social network into main-memory.
The system uses pre-computed projections of the Tagged relation: the per-tag inverted
lists in ItemList, total tag frequencies in TagFreq (used for idf values), per-user item
lists; it also uses per-user materialized views: the description in CacheQuery and the
resulting items with their score ranges in CacheItems. A per-user item list is only ac-
cessed when the algorithm visits the respective user. Finally, the TOPKS approximate
version uses a high-level description of each per-user proximity list, stored in UserMVar

(mean and variance) and UserHist (histograms).
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Figure 2.3.: Taagle’s search interface.

User experience After logging in, Taagle visitors identify with one of the members
of the network, and are able to formulate queries from that perspective (as the seeker).
They are able to fully customize their search experience using the interface in Fig-
ure 2.3, having access to (i) a selection of ways to compute similarity measures (used
for proximity computations) such as tag, item or item-tag similarity, (ii) various prox-
imity aggregation functions (path multiplication, minimum, the parameterized func-
tion with drop parameter λ, or enter their own), (iii) tools for comparing the results
and the behavior of the various algorithms implemented in the system (TOPKS, the
exact algorithm; TOPKS/MVar and TOPKS/Hist, approximate algorithms using high-
level descriptions of proximities, controlled by a precision parameter; TOPKS/Views,
exact algorithm that may exploit precomputed results of other seekers).

The results window, for which a capture is given in Figure 2.4, presents the top-k
items, together with an explanation of the item scores and algorithm statistics: running
times, number of users and documents processed, threshold values and termination
parameters, interactive plots of the social proximities that were generated and accessed
during execution.

2.8. Experimental Results

Dataset and testing methodology We have performed our experiments on a publicly
available Del.icio.us dataset [78], containing 80,000 users tagging 595,811 items with
198,080 tags. As this dataset does not give information regarding links between users,
we have generated three similarity networks:

• Item similarity network. This network was constructed by computing the Dice
coefficient of the common items bookmarked by any two users, resulting in a
network of 49,038 users and 3,329,540 links.

• Tag similarity network. This network was generated by computing the Dice coeffi-
cient of the common tags used by any two users. Since this computation results
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Figure 2.4.: Results page of Taagle.

in a network that is too dense, we have filtered out the users who used less than
10 distinct tags in their tagging activity. The final networks thus contains 40,319
users and 8,335,544 links.

• Item-tag similarity network. This network was constructed by computing the Dice
coefficient of the common items and tags bookmarked by any two users, result-
ing in a network containing 40,353 users and 1,849,898 links.

We computed the top-10 and top-20 answers, generating a number of 20 two and
three-tag semantically coherent queries, from tags that have a medium frequency (i.e.,
between 3,000 and 5,000 in our dataset). For each similarity network, 10 random users
were also randomly chosen in the role of the seeker.

Testing was performed using two ranking functions (the h-function from our model).
The first one is the standard tf-idf ranking function:

score(i | u, t) = f r(i | u, t)× id f (t).

The second one is the BM15 ranking function used in [69]:

score(i | u, t) =
(k1 + 1) f r(i | u, t)

k1 + f r(i | u, t)
× id f (t),

where inverse frequency id f (t) is defined in standard manner as

id f (t) = log
|I|− |{i | Tagged(v, i, t)}|+ 0.5

|{i | Tagged(v, i, t)}|+ 0.5
.

and the aggregation function g is summation.
While these are two of the most commonly used ranking functions in IR literature,

they have different properties when used in approximate approaches as the ones we
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describe. More precisely, since tf-idf is a linear function, both the maximal and mini-
mal estimates over f r scores lead to valid estimates for the overall scores. This is not
necessarily the case for BM15: since it is a concave function, only the maximal overall
score can be estimated. This was taken into account in the experiments.

We used a Java implementation of our algorithms, on a machine with a 2.8GHz Intel
Core i7 CPU, 8GB of RAM, running Ubuntu Linux 10.04 and PostgreSQL 9.0.

As our focus is on optimizing the social branch of the top-k retrieval, we report here
our results for α ∈ {0, 0.1, 0.2, 0.3}. As [69], multiplication over the paths was chosen as
the proximity aggregation function, as the best suited candidate for predicting implicit
similarities.

Remark. The relevance of personalized query results is a topic that has been exten-
sively treated ([77, 27, 48]). The relevance of social search results was also extensively
evaluated in [69], over Del.icio.us data, in a setting (including ranking model) similar
to ours. While it is not our focus, we give an experimental evaluation of relevance
using two ground truth experiments in this section.

Efficiency results For the testing environment described previously, we report on
efficiency for both exact and approximate algorithms, and on precision for the latter.

For efficiency, we report on two measures: the abstract cost of the algorithms and
their wall clock running times. Abstract cost, which is the standard measure for early-
termination algorithms that depend on database accesses, is computed as defined in
Section 2.4.1, by choosing cUL, the cost of accessing a user lists, as valued 100 (a very
conservative upper-bound), and cS, the cost of sequentially accessing an item in an
inverted lists, valued 1. More formally,

cost(A, D) = 100× users(A, D) + seqitems(A, D).

We ignore differences in favor of TOPKS that are hard to account for, namely we do
not distinguish between the user accesses by ContextMerge (which in a real setting
would be to external memory) and the ones by TOPKS (which would be to main
memory).

Figures 2.5, 2.6 and 2.7 present the comparison of abstract costs and running times
for the BM15 and tf-idf ranking functions, for each of the three similarity networks. In
each subfigure, the first pair of columns gives the abstract cost of [69]’s ContextMerge

algorithm, the second pair of columns the one of TOPKS, the third pair of columns the
cost of TOPKS/MVar (approximate approach based on mean and variance of proximi-
ties, described in Section 2.5.1) and the fourth pair of columns the cost of TOPKS/Hist
(approximate approach based on histograms, described in Section 2.5.2). For each al-
gorithm, the average running times were recorded, and are represented by the black
line in the plots (one dot indicates the average running time between the top-10 and
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Figure 2.5.: Abstract cost and running time comparison over the tag-similarity network
and the fmul proximity function (red: top-10, yellow: top-20).

the top-20). One can notice there that abstract cost closely captures the actual perfor-
mance of the algorithms. However, running time optimization was not the focus of
the present work, and many alternatives remain to be explored in that direction (e.g.,
tuning the database).6

First, we can see that in general TOPKS drastically improves efficiency when com-
pared to ContextMerge, in terms of both running time and abstract cost. For example,
in the item-tag similarity network, when α = 0, the running time and abstract cost are
around 50% of that of ContextMerge.

Moreover, our approximate approaches lead to further improvements, which sup-
port the intuition that even limited statistics (such as mean and variance) can render
the termination conditions more tight.

The abstract costs of TOPKS/MVar and TOPKS/Hist in the figure were obtained
for the probabilistic threshold δ = 0.9. Even though this represents a quite weak guar-
antee, we found that it still yields a good precision/efficiency trade-off. For a better
understanding of this trade-off, we show in Figure 2.8 the impact of δ on precision.
When α > 0, visiting the per-term inverted lists in parallel to the proximity vector
helps in deriving tighter score bounds for unseen items, leading to a faster termina-
tion of the approximate approaches. These tighter score bounds also help in achieving

6Note that we cannot compare with [4]’s approach, as it only extends classic top-k retrieval by inter-
preting user proximity as a binary function (0-1 proximity), by which only users who are directly
connected to the seeker can influence the top-k result.
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Figure 2.6.: Abstract cost and running time comparison over the item-similarity net-
work and the fmul proximity function (red: top-10, yellow: top-20).
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Figure 2.7.: Abstract cost and running time comparison over the item-tag similarity
network and the fmul proximity function (red: top-10, yellow: top-20).
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Table 2.3.: Comparison between ContextMerge and TOPKSα=0.

Network ContextMerge TOPKSα=0

users seqitems users seqitems

item 21878 0 15588 65
item-tag 13028 0 6898 54

tag 18718 0 15581 68
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Figure 2.8.: Precision rates versus speedup relative to TOPKS, when α = 0.

better precision levels when α > 0, as Figure 2.9 shows.
Furthermore, our branch choice heuristic in TOPKS (in both the exact and approxi-

mate variants) brings significant improvements overall (for instance, consider the dif-
ference between the cost savings for α = 0 and α = 0.1, in the tag similarity network).
Finding even more effective heuristics for this aspect of the algorithm remains an in-
teresting direction for future research.

We discuss next how the instance optimality of TOPKSα=0 reflects in the perfor-
mance results. Table 2.3 reports the number of visited users by ContextMerge and
TOPKSα=0 (columns users), for the three similarity networks. One can see that TOPKSα=0

achieves good savings (in terms of visited users), while relying only on very few se-
quential accesses in the inverted lists (column seqitems).

Finally, we consider the impact of the probabilistic parameter δ on precision and
speedup in the approximate algorithms. We define precision as the ratio between the
size of the exact result (by TOPKS) and the number of common items returned by the
respective approximate approach and TOPKS, i.e.,

precision =
|TTOPKS/app ∩ TTOPKS|

|TTOPKS|
,

where TTOPKS/app is the set of items returned as top-k by the approximate algorithms
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Figure 2.9.: Precision rates vs. α, when δ = 0.9.

(either TOPKS/MVar or TOPKS/Hist), and TTOPKS is the set of items returned by the
exact algorithm.

The relative speedup is defined as

speedup =
cost(TOPKS, D)

cost(TOPKS/app, D)
− 1.

We present in Figure 2.8 the results for both approximate approaches, TOPKS/MVar
and TOPKS/Hist. For TOPKS/MVar, one can notice that δ has a limited influence on
precision (with a minimum of 0.997 for δ = 1), while ensuring reasonable speedup.
The speedup potential is greater when using TOPKS/Hist and histograms, while rea-
sonable precision levels are obtained (for instance, precision of around 0.805 when
δ = 0.9, for a speedup of around 2.5). For values of δ > 0.9, we notice however a
rapid drop in precision. The fact that MVar achieves better precision than Hist may
seem counter-intuitive, since histograms give a more detailed description of proximity
vectors. This difference in precision is due to looser bounds for MVar, as they directly
influence the termination condition of the algorithm, result in a longer run and hence
to better chances of returning a more refined top-k results.

We also considered the influence of the α parameter on precision, while setting
the probabilistic parameter to δ = 0.9 (see Figure 2.9). We have measured both
precision@10 (i.e., when requesting the top-10) and precision@20 for both TOPKS/MVar
and TOPKS/Hist. We observed that the precision levels for TOPKS/MVar are quite
stable for all values of α. For TOPKS/Hist, the lowest values of precision are witnessed
when α = 0, but they stabilize to high values (above 0.97) for α > 0.

Evaluating relevance We report now on two “ground-truth” experiments we have
performed to test the bookmark prediction power of the exclusively social queries.

For the first experiment, we have selected (user, tag) pairs from users that have
bookmarked between 5 and 10 items using tags that were used globally at least 1000
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times. The objective of this experiment was to estimate the power of personalized
results to predict items that are tagged using relatively popular tags.

Then, 1000 pairs were randomly selected. For each pair and for k ∈ {1, 2, 5, 7, 10},
we computed the following top-k result, using as query the tags corresponding to the
distinct user-ids: the network-unaware top-k, and, setting the user-id as the seeker, the
personalized top-k (for α = 0) for each of the following aggregation functions: fmul ,
fmin, and fpow with λ ∈ {1.1, 2}. For each personalized query, the items belonging to
the seeker were ignored (so as not to influence positively the precision of the results).

An item was considered as “predicted” if it appeared in the resulting top-k and was
also tagged by the seeker userid with the query tags. We traced the proportion of pairs
for which at least one such item has been predicted.

The results are presented in Figure 2.10. One can note that, for the item and item-tag
similarity networks, personalization is considerably better at predicting bookmarked
items than the “global” top-k, for all functions, except fmin and, to a lesser extent, fpow

(λ = 1.1). Moreover, the tag similarity network seems to not be such a good predictor,
no matter the personalization function used, as the other two networks. This might
indicate the fact that, in the case of tag similarity, one needs to go beyond simple set
similarities and include more complex relationships between tags, like synonymy and
polysemy.

For the second experiment, we have selected (user, item, tag) triples resulting from
items that have been tagged only by few people in the network (between 5 and 10).
The objective of this experiment was to estimate the power of personalizing results
to predict items that are unpopular, i.e., the “long tail”. The tests and the measures
tracked are identical to the setup of the first experiment.

The results are presented in Figure 2.11. They are similar to a good extent to those
of the first experiment, with two main differences: (i) personalization fails completely
in the tag similarity network, (ii) in the item and item-tag similarity networks person-
alization achieves considerably higher prediction performance than in the case of pre-
dicting items tagged with popular tags. This is because, in the case of long-tail items,
the functions that are skewed towards the closest users, i.e., fmul and fpow, λ = 2, will
rank higher the items belonging to the closest users.

2.9. Conclusions

We considered in this chapter top-k query answering in social bookmarking applica-
tions, proposing algorithms that have the potential to scale in real applications, in an
online context where the social network, the tagging data and even the seekers’ search
ingredients can change at any moment. Our solutions address the main drawbacks
of previous approaches. With respect to applicability and scalability, we avoid expen-
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Figure 2.10.: Predicting bookmarks tagged with semi-popular tags.
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sive and hardly update-able pre-computations of proximity values, by an on-the-fly
approach. We show that it is applicable to a wide family of functions for proximity
computation in a social network. With respect to efficiency, we show that TOPKS is in-
stance optimal in the exclusively social context and, via extensive experiments, that it
performs significantly better than the algorithm from previous literature. We also con-
sidered widely-applicable approximate techniques, showing they have the potential to
drastically reduce computation costs, while exhibiting high accuracy.
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In this chapter, we consider the problem of using precomputed results – that will be
called views – for answering context-aware top-k queries.

In context-aware scenarios, unlike scenarios in which queries do not depend on
a context or are computed in the same context, in order to be able to answer top-k
queries originating at arbitrary users (in the case of social search) or locations (in the
case of spatial search), the views – and thus the object scores contained in them –
need to be transposed to the context of the seeker (the query initiator). Revisiting the
example presented in Chapter 1, for spatial search and a query issued in Paris, a result
precomputed in the Versailles context is more useful than one computed in the Berlin
context. However, the results from the Versailles perspective have to be adapted to the
parisian one. Therefore, even the closest views will contain after the transposition step
lists of objects having non-exact (or uncertain) scores, in the form of lower and upper
bounds. Consequently, a new query semantics and tailored algorithms for dealing
with objects having uncertain scores are needed. In particular, a reliable approach
that selects a subset of the views that are most promising, towards minimizing the
uncertainty of the resulting top-k, is needed.

We detail these problems and a novel query semantics in Section 3.2, and present the
context-aware adaptations of the threshold algorithms TA and NRA in Section 3.3. As
these algorithms can only output uncertain answers – in terms of objects guaranteed
to be in the top-k and objects that might belong to it – in Section 3.4 we discuss one
approach to find the most probable top-k result, by using sampling.

We introduce our formulation of the view selection problem in Section 3.5, followed
by the study of the instance optimality properties of the adaptations of TA and NRA,
in Section 3.6.

We bridge this formal study to practical applications by detailing how to transpose
the context in two important scenarios, location-aware keyword search and social-
aware search, in Sections 3.7 and 3.8.

Finally, view selection and the two context-aware search scenarios are evaluated
experimentally in Section 3.9.
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3.1. Related Work

In this section, we overview the related work in the areas of top-k processing algo-
rithms, top-k processing using views and location-aware keyword search. The main
related work is presented in more detail after the model is described, in Section 3.2.

Data structures and algorithms for top-k query processing The efficient processing of
top-k queries is an important research topic in recent IR literature, leading to advance-
ments in both data structures and query processing algorithms. The most common
data structure for top-k processing is the inverted index file (for a general survey on
indexing for top-k processing see [84]). For this data structure, a key challenge is to
optimize response time, mainly via index compression techniques [81, 83, 70, 85].

In terms of algorithms, among the most widely cited and used are the early ter-
mination threshold algorithms TA and NRA of [31], which provide a very important
property of top-k algorithms: that of instance optimality. In short, instance optimal algo-
rithms are as efficient as any other algorithm from its class – within a constant factor –
over all possible inputs. Many other top-k aggregation algorithms have been proposed
in the literature, both for XML [57, 17] and relational databases, for which we refer the
interested reader to the excellent survey of Ilyas et al. [43] and the references therein.

Using views for top-k query processing The use of precomputed results, either as
previous answers to queries [23, 42] or as cached intersection lists [49], has been iden-
tified as an important direction for efficiency. A linear programming formulation of
the computation of scores over views is first introduced in [23] and extended in [49].
In [72], the authors study top-k processing when only score ranges are known, in-
stead of exact ones, define a probabilistic ranking model based on partial orders and
introduce several semantics for ranking queries, but do not deal with aggregation of
uncertain scores over multiple dimensions.

Location-aware keyword search In the area of location-aware retrieval, Cong et al. [22]
introduce the concept of LkT queries, for which they include in the ranking model both
the distance of a document’s location relative to the query point, and the textual fea-
tures of the document. They propose the IR-tree index, consisting of an R-tree [36] in
which each node has an inverted list of relevant documents. Other models for top-k
location-aware keyword querying have been proposed, for selecting either groups of
objects that collectively satisfy a query [15], or the k-best objects scored by the features
in their neighborhood [67], or the top-k objects in a given query rectangle [20]. Vari-
ous approaches for combining textual inverted lists and spatial indexes for keyword
retrieval were also studied in [20].
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3.2. Formal Setting and Problems

Context-aware score model. We assume a finite collection of objects O and a count-
able collection of attributes T . Under a given context parameter C – an application-
dependent notion – objects o are associated to certain attributes t, by an object-attribute
score function sc(o, t | C).

Under a context C, a query Q consists of a set of attributes {t1, . . . , tn}; its answer is
given by objects o ∈ O having the highest scores sc(o, Q | C), computed via a monotone
aggregation function h (e.g., sum, max, avg) over the object-attribute scores:

sc(o, Q | C) = h(sc(o, t1 | C), . . . , sc(o, tn | C)).

We can formalize the top-k retrieval problem as follows:

Problem 1. Given a query Q = {t1, . . . , tn} ⊂ T , a context C, an integer k, and a score
model specification (sc, h), retrieve the k objects o ∈ O having the highest scores sc(o, Q | C).

In certain applications, the context may always be empty or may simply be ignored
in the sc scores, and, when necessary, we indicate this in our notation by the ‘⊥’ context.
We use sc(o, Q) as short notation for sc(o, Q | ⊥).

Threshold algorithms We revisit here the class of early termination top-k algorithms
known as threshold algorithms. These algorithms, applicable in a context-agnostic set-
ting, find the top-k objects for an input query Q by scanning sequentially (for each
attribute) and in parallel (for the entire attribute set of Q), relevant per-attribute lists
that are ordered descending by sc values – with inverted lists being a notable example
– denoted in the following L(t), as the list for attribute t. During a run, they maintain
a set D of already encountered candidate objects o, bookkeeping for each candidate
the following values:

1. an upper-bound on sc(o, Q), the best possible score that may still be obtained for
o, denoted hereafter bsc(o, Q),

2. a lower-bound on sc(o, Q), the worst possible score, denoted hereafter wsc(o, Q),

with the objects being ordered in D by their worst scores.
At each iteration, or at certain intervals, threshold algorithms may refine these

bounds and compare the worst score of the kth object in D, wsc(D[k], Q), with the
best possible score of either (i) objects o in D outside the top k, bsc(o, Q), or (ii) not yet
encountered objects, denoted bsc(∗, Q).

When both these best scores are not greater than the worst score of D[k], the run can
terminate, outputting the objects D[1], . . . , D[k] as the final top-k.
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A key difference between the various threshold algorithms, and in particular be-
tween TA and NRA, resides in the way they are allowed to access the per-attribute
lists. TA is allowed random accesses to lists, as soon as an object o has been encoun-
tered while sequentially accessing one list among the |Q| relevant ones. These random
accesses can complete the scores of objects o from a guaranteed range to an exact value.
In comparison, NRA is not allowed to use random accesses in the per-attribute lists,
but only sequential ones, and each object o in the final top-k may only be given a score
range, [wsc(o, Q), bsc(o, Q)]. (Various hybrid algorithms with respect to TA and NRA
are also possible and have been extensively studied in the literature.)

TA was shown to be instance optimal among algorithms that do not make “wild
guesses” or probabilistic choices. Within this same class of algorithms, NRA was
shown to be instance optimal for algorithms in which only sequential accesses are
allowed.1

Views and precomputed results We extend the classic top-k retrieval setting of TA/NRA
by assuming access to precomputed query results, called in the following views. Each
view V is assumed to have two components: (i) a definition, de f (V), which is a pair
query-context de f (V) = (QV , CV) and (ii) a set ans(V) of triples (oi, wsci, bsci), repre-
senting the answer to query QV under context CV . Each such triple says that object oi

has a score sc(oi, QV | CV) within the range [wsci, bsci].
Since we are dealing with cached query results, all objects not appearing in ans(V) –

represented explicitly in ans(V), to simplify presentation, by one final wildcard ∗ object
– have with respect to query QV and context CV a worst score of wsc∗ = 0 and a
best possible score of either bsc∗ = min{wsci | (oi, wsci, bsci) ∈ ans(V)}, if V’s result is
complete, in the sense that enough objects had a non-zero score w.r.t. QV , or otherwise
0.

Context transposition Intuitively, when a view V and the to-be-answered query Q
do not share the same context, a transposition of the exact scores or score ranges in
ans(V) is necessary, in order to obtain valid ranges for sc(oi, QV | C) from those for
sc(oi, QV | CV). In particular, in the case of spatial or social search, this transformation
will inevitably yield a coarser score range. We will detail the specific operation of
context transposition for these two application scenarios in Section 3.7.

Exploiting views. Given an input query Q and a context C, from a set of views V

sharing the same context – as in de f (V) = (. . . , C) – a first opportunity that is raised
by the ability to cache results is to compute for objects o ∈ O tighter lower and upper

1This is an important family of algorithms for performance, given that random accesses can be orders
of magnitude more costly.
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V1({a},⊥) V2({c},⊥) V3({a, b},⊥) V4({b, c},⊥)

o ws bs o ws bs o ws bs o ws bs

o3 7 8 o3 8 8 o5 16 16 o5 11 11
o5 6 7 o4 3 7 o6 10 10 o3 10 11
o6 4 4 o6 2 4 o3 10 10 o6 9 11
o7 3 5 o10 2 3 o10 6 9 o10 8 9
o9 3 4 o7 2 2 o2 6 6 o2 6 7

o10 1 3 o8 1 3 o7 6 6 o1 5 7
o2 1 2 o9 1 2 o1 5 8 o7 4 4
o1 1 1 o5 1 1 o9 4 5 o4 3 8
∗ 0 1 ∗ 0 1 ∗ 0 4 ∗ 0 3

Table 3.1.: An example set V of views.

bounds over sc(o, Q | C)). This may be useful in threshold algorithms, as a way to
refine score ranges. We formalize this task next.

Problem 2. Given a query Q = {t1, . . . , tn} ⊂ T , a context C, an integer k, a score model
specification (sc, h) and a set of views V sharing the same context with Q, given an object
o ∈ O, compute the tightest lower and upper bounds on sc(o, Q | C) from the information in
V .

In this work, consistent with the most common ranking models for context-aware
search, we will assume that the aggregation function h is summation. Under this
assumption, Problem 2 could be modeled straightforwardly by the following mathe-
matical program, whose variables are given in bold:

min ∑
ti∈Q

sc(o, ti | C) (3.2.1)

max ∑
ti∈Q

sc(o, ti | C) (3.2.2)

wsc ≤ ∑
tj∈QV

sc(o, tj | C), ∀V ∈ V s.t. (o, wsc, bsc) ∈ ans(V)

∑
tj∈QV

sc(o, tj | C) ≤ bsc, ∀V ∈ V s.t. (o, wsc, bsc) ∈ ans(V)

sc(o, tl | C) ≥ 0, ∀tl ∈ T

Example 7. Let us consider the views in Table 3.1. We have access to the results of four views,
defined by the sets of attributes {a}, {c}, {a, b} and {b, c}. We assume the empty context
C = ⊥ for the views and for the to-be-answered query, which is Q = {a, b, c}. Considering o6,
for example, we know that:
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sc(o6, {a}) ≥ 4 (V1)

sc(o6, {c}) ≥ 2 (V2)

sc(o6, {a}) + sc(o6, {b}) ≥ 10 (V3)

sc(o6, {b}) + sc(o6, {c}) ≥ 9 (V4)

sc(o6, {a}) ≤ 4 (V1)

sc(o6, {c}) ≤ 4 (V2)

sc(o6, {a}) + sc(o6, {b}) ≤ 10 (V3)

sc(o6, {b}) + sc(o6, {c}) ≤ 11 (V4)

Then, the lower bound on sc(o6, Q) is obtained as also

wsc(o6) = min(sc(o6, {a}) + sc(o6, {b}) + sc(o6, {c})) = 13

by combining the worst scores of V1 and V4. Similarly, the upper bound on sc(o6, Q) is
obtained as

bsc(o6, Q) = max(sc(o6, {a}) + sc(o6, {b}) + sc(o6, {c})) = 14

by combining the best scores of V2 and V3.

We now formulate the problem of answering input top-k queries Q using only the
information in views, whose semantics needs to be adapted to the fact that views may
offer only a partial image of the data. When an exact top-k cannot be extracted with full
confidence, a most informative result would consist of two disjunctive, possibly-empty
sets of objects from those appearing in V ’s answer:

• a set of all the objects guaranteed to be in the top-k for Q

• a set of all objects that may also be in the top-k for Q.

Problem 2 provides a way to properly define and identify objects of the former kind –
the guaranteed ones – as the objects ox for which

min ∑
ti∈Q

sc(ox, ti | C) ≥ max ∑
ti∈Q

sc(∗, ti | C) (3.2.3)

and at most k− 1 objects oy can be found such that

min ∑
ti∈Q

sc(ox, ti | C) < max ∑
ti∈Q

sc(oy, ti | C). (3.2.4)
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Similarly, we can identify objects of the latter kind – the possible ones – as the objects ox

that are not guaranteed and for which at most k− 1 objects oy can be found such that

min ∑
ti∈Q

sc(oy, ti | C) > max ∑
ti∈Q

sc(ox, ti | C). (3.2.5)

We formalize the top-k retrieval problem using views as follows.

Problem 3. Given a query Q = {t1, . . . , tn} ⊂ T , a context C, an integer k, and a score
model specification (sc, h), given a set of views V sharing the same context with Q, retrieve
from V a most informative answer of the form (G, P), with

• G ⊂ O consisting of all guaranteed objects (as in Eq. (3.2.3) and (3.2.4), when h is
summation); they must be among those with the k highest scores for Q and C.

• and P ⊂ O consisting of all possible objects outside G (as in Eq. (3.2.5), when h is
summation); they may be among those with the k highest scores for Q and C, i.e., there
exist data instances where these appear in the top-k.

In order to solve Problem 3, a naïve computation of upper and lower bounds for all
objects o appearing in the views would suffice, but would undoubtedly be too costly
in practice. Instead, we show in Section 3.3 how we can solve Problem 3 in the style
of threshold algorithms, by extending NRA and TA.

Over any data instance, the exact top-k can be thought of as the set G plus the top-k′

items from P, for k′ = k − |G|. To give a most likely result, in a probabilistic sense,
based on the G and P object sets, we discuss in Section 3.4 possible approaches for
estimating the probability of possible top-k′ sets from P.

Going further, even when the most promising candidate objects are considered first
in SR-TA or SR-NRA, their corresponding instances of the mathematical programs
in Eq. (3.2.1) and Eq. (3.2.2) may still be too expensive to compute in practice (even
when we are dealing with LPs, as in Example 7): the set of views may be too large –
potentially of the order 2|T | – and each view contributes one constraint in the program.
In our best-effort approach, which would first select some (few) most promising views
Ṽ ⊂ V for the input query (Section 3.5), we are presented a trade-off between the
size of the subset Ṽ – which determines the cost of the top-k algorithms SR-NRA and
SR-TA – and the “quality” of the result, namely its distance with respect to the most
informative answer given by all the views. We quantify the distance between the most
informative result by Ṽ , denoted (G̃, P̃), and the most informative answer (G, P) by V

as the difference in the number of possible top-k combinations:

∆ =

( ˜|P|

k− ˜|G|

)
−

(
|P|

k− |G|

)
. (3.2.6)
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We also show in Section 3.5 how a final refinement step over (G̃, P̃), based on random
accesses in the entire V set, allows us to reach ∆ = 0, i.e., the most informative result
by V .

Main related work We have already introduced TA and NRA, as reference algorithms
for early-termination top-k retrieval. Techniques for top-k answering using views have
been proposed in recent literature: the LPTA algorithm [23] and generalizations of
the NRA and TA algorithms [49], both applicable in settings where the aggregation
functions are linear combinations of the per-attribute scores. These two approaches
make however significant simplifying assumptions: (i) the scores in each view are
assumed exact, i.e., wsci = bsci, ∀(oi, wsci, bsci) ∈ ans(V), ∀V ∈ V , and (ii) one can
compute the score for the input query Q by composing (in a predefined way) the scores
from a subset of the views that are selected in advance (usually the single-attribute
inverted lists). In comparison, we consider also views that may only give score ranges
instead of exact scores and ranks in the top-k result. In our more general setting, the
exact top-k may not be obtainable will full confidence and, instead of simply refuting
input queries that cannot be fully answered, we describe algorithms that can support
a more general type of result from the views, in terms of guaranteed and possible
objects for the top-k.

Regarding view selection, the work closest in spirit to ours is [23], whose focus is on
finding the optimal top-k execution based on a selection of precomputed views, with
all the per-attribute lists being assumed to be part of the view space. Their approach
simulates the run of a threshold algorithm over histograms of views. The setting
of [23] is fundamentally different from ours. First, any viable selection of views must
output the exact, ranked top-k result, which represents a strong limitation for practical
purposes. Therefore, while their focus is on optimizing the top-k computation, we
are confronted with a different perspective over the view selection problem, towards
minimizing the uncertainty of the result, in terms of Eq.(3.2.6)’s distance measure.

3.3. Threshold Algorithms

We start this section by presenting our adaptation of TA, called SR-TA, which can be
applied when the input lists consist of objects with score ranges; SR-TA will allow us
to solve Problem 3.

Each of the input lists are assumed to be available in two copies, one ordered de-
scending by the score lower-bound and one ordered descending by the score upper-
bound. SR-TA will read sequentially in round-robin manner from the former group of
lists and, similar to TA, maintains a candidate set D of the objects encountered during
the run. At each moment, the read heads of the latter group of lists must give objects
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that are not yet in D (unseen objects), and sequential accesses are performed in SR-TA
whenever necessary in order to maintain this configuration.

D is also ordered descending by the score lower-bounds. The algorithm stops when
the score of any of the unseen objects – the threshold τ – cannot be greater than the
one of the kth object in the candidate set D.

In our setting, the threshold τ is obtained as the solution of the following mathemat-
ical program, taking into account from each view V the score upper-bound of objects
from ans(V)− D:

τ = max ∑
ti∈Q

sc(o, ti | C) (3.3.1)

∑
tj∈QV

sc(o, tj | C) ≤ max(bsci), ∀V ∈ V , oi 6∈ D s.t.

(oi, wsci, bsci) ∈ ans(V)

sc(o, tl | C) ≥ 0, ∀tl ∈ T

One can note that when (i) we have only views that give answers to singleton queries,
and (ii) the wsci = bsci for each object oi (i.e., the lists contain exact scores), we are in
the setting of the TA family of algorithms over inverted list inputs. Relaxing condition
(i), we have the setting of top-k answering using views investigated in [49, 23]. Both
these settings and their corresponding algorithms can guarantee that, at termination,
the exact top-k is returned.

Our more general setting, however, cannot provide such guarantees, as witnessed
by the following example.

Example 8. Let us revisit Example 7, for the top-5 query Q = {a, b, c}. We will not detail the
complete run of the algorithm on this example, instead showing what happens at termination.
The algorithm stops at the 6th iteration. The threshold value is either obtained by combining
the best scores in V1 and V4 of the unseen (not in D) item o1, or by combining the best score
in V2 of o8 and the best score in V3 of o1. Both result in τ = 8. The worst score of the 5th
item, o7, is also 8, enabling termination. This ensures that all the possible candidates for top-k
are already present in the list D (see Table 3.2). Within this candidate list, there does not exist
a combination of 5 objects that represents the top-k and, instead, we can only divide D into
three sets:

1. the set G = {o3, o5, o6, o10} of guaranteed result objects,

2. the set P = {o7, o4} of possible result objects,

3. the remaining objects: {o2, o9}.
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obj o3 o5 o6 o10 o7 o2 o9 o4

wsc 18 17 13 9 8 7 5 3
bsc 18 17 14 12 8 7 7 9

Table 3.2.: Candidates (D) at termination, for Q={a, b, c}, k=5.

Algorithm 4 details SR-TA. Its general flow is similar to the one of TA, with the
notable addition of the generalized computation of bounds and of the threshold value.

We now discuss our adaptation of NRA, called SR-NRA. Now, the exclusively se-
quential nature of accesses to views means that the per-view scores will only be par-
tially filled (the random accesses in line 4 of SR-TA are no longer possible).

Algorithm 4: SR-TA(Q, k,V)
Require: query Q, size k, views V

1: D = ∅

2: loop

3: for each view V ∈ V in turn do

4: (oi, wsci, bsci)← next tuple by sequential access in V
5: read by random-accesses all other lists V ′ ∈ V for tuples (oj, wscj, bscj) s.t.

oi = oj

6: wsc ← solution to the MP in Eq. (3.2.1) for oi

7: bsc ← solution to the MP in Eq. (3.2.2) for oi

8: add the tuple (oi, wsc, bsc) to D
9: end for

10: τ ← the solution to the MP in Eq. (3.3.1)
11: wsct ← lower-bound score of kth candidate in D
12: if τ ≤ wsc(D)

t then

13: break

14: end if

15: end loop

16: {G, P}=Partition(D, k)
17: return G, P

At any moment in the run of SR-NRA, seen(o,V) ⊆ V gives the views in which
o has been encountered already through sequential accesses. We say that an object
is fully known if seen(o,V) = V , and partially known otherwise. Then, for views V ∈

seen(o,V) we keep the same constraints as in the MPs (3.2.1), (3.2.2). For each view
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V 6∈ seen(o,V), we adjust the corresponding constraint as

0 ≤ ∑
tj∈QV

sc(o, tj|C) ≤ max{bsci|(oi, bsci, wsci) ∈ V, oi 6∈ D} (3.3.2)

Algorithm 5: SR-NRA(Q, k,V)
Require: query Q, size k, views V

1: D = ∅

2: for object o ∈ O do

3: seen(o,V) = ∅

4: end for

5: loop

6: for each view V ∈ V in turn do

7: (oi, wsci, bsci)← next tuple by sequential access in V
8: seen(oi,V)← seen(oi,V) ∪V
9: wsc ← solution to the MP in Eq. (3.2.1), with Eq. (3.3.2)

10: bsc ← solution to the MP in Eq. (3.2.2), with Eq. (3.3.2)
11: if oi 6∈ D then

12: add the tuple (oi, wsc, bsc) to D
13: else

14: update the existing tuple (oi, .., ..) from D
15: end if

16: end for

17: maintain D sorted descending by wsc values
18: τ ← the solution to the MP in Eq. (3.3.1)
19: bscrest = max{bscj|oj 6∈ D[1..k], seen(oj,V) 6= V}

20: wsct ← lower-bound score of kth candidate in D
21: if τ ≤ wsct and bscrest ≤ wsct then

22: break

23: end if

24: end loop

25: {G, P}=Partition(D, k)
26: return G, P

The termination conditions need to keep track, besides the threshold value, of the
maximum upper-bound score of partially known objects that not in the current top-k
of D, denoted bscrest. Objects that are fully known are ignored in this estimate, since
their scores are fully filled and they might be candidates for P. The general flow of
SR-NRA is given in Algorithm 5.
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Partition for most informative result. Once the main loop of SR-TA or SR-NRA
terminates, candidates D are passed as input to a sub-routine whose role is to partition
it into sets G and P (line 14 in SR-TA, line 25 in SR-NRA). Algorithm 6 details this step:
for each object o in D we test the conditions of Eq. (3.2.3), (3.2.4), (3.2.5).

At the termination of both SR-TA and SR-NRA, we are guaranteed that G and P are
sound and complete, in the following sense:

Property 3. An object o is in the output set G of Partition(D, k) iff in all possible data
instances o is the top-k for Q, C.

An object o is in the output set P of Partition(D, k) iff in at least one possible data instance
o is in the top-k for Q, C.

Note that the size of G is at most k, while the one of P is at most |O|, hence the need
for completeness, maximizing |G| and minimizing |P|.

Remark. We have only detailed here the adaptation of TA and NRA, the reference
algorithms for early-termination top-k retrieval. More generally, any early-termination
algorithm, as the ones following a hybrid approach between the two, can be adapted
in similar manner to the setting with cached results having score ranges.

3.4. Extracting a Probable Top-k

As discussed previously, the actual (inaccessible) top-k answer for the input query
could be seen as being composed of two parts: the guaranteed objects G plus a top k′

over P, for k′ = k− |G|. By definition, G and P give the most informative certain result
that can be obtained from the views: there can be no deterministic way to compute a
certain top-k′ over the P objects, nor a way to further prune the search space towards
a more refined P set.

Therefore, one can only hope to improve the quality of the result by a more detailed
probabilistic description of the result, in which a most likely top-k could be identified
from G and P. Since for each object in P we have a lower and upper bound on its
exact score, let us assume a known probability density function (e.g, uniform one) for
scores within the known bounds. Based on this, we can reason about the likelihood of
a top-k′ selection over P.

A naïve way to obtain the most likely top-k′ would be the following: enumerate
all possible subsets of P of size k′, and compute for each the probability of being the
top-k′. Each of these (|P|k′ ) probability values can be easily enumerated.

Example 9. Returning to Example 8, recall P = {(o7, 8, 8), (o4, 3, 9)}, and G consists of
4 objects. To complete the requested top-5 answer, we need to estimate the top object from
P, the one that is most likely to have the highest score. Denoting this top object t, we can
see that Pr[t = {o7}] = Pr[o7 > o4] and Pr[t = {o4}] = Pr[o4 > o7]. If we assume
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that each score is uniformly distributed within its known [wsc, bsc] interval, we have that
Pr[o7 > o4] = 0.833 and Pr[o4 > o7] = 0.166. Overall, the most likely top-5 answer to the
input query is thus {o3, o5, o6, o10, o7}, with a probability of 0.833.

Algorithm 6: Partition(D, k)
Require: candidate list D, parameter k

1: G ← ∅ the objects guaranteed to be in the top-k
2: P ← ∅ the objects that might enter the top-k
3: for each tuple (o, bsc, wsc) ∈ D, o 6= ∗ do

4: x ← |{(o′, bsc′, wsc′) ∈ D | o′ 6= o, bsc′ > wsc}|
5: wsct ← lower-bound score of kth candidate in D
6: if x ≤ k and for (∗, wsc∗, bsc∗) ∈ D, bsc∗ ≤ wsc then

7: add o to G
8: else if bsc > wsct then

9: add o to P
10: end if

11: end for

12: return G, P

A much more efficient approach than the naïve enumeration is to use techniques
from research in top-k evaluation in probabilistic databases [72, 65].

Using well-studied sampling approaches as “black boxes”, we describe in Algo-
rithm 7 a tractable approach for estimating the most likely top-k′ over a set of triples
(oi, wsci, bsci), under the assumption that sampling can be done in polynomial time
as well. We use an encoding-decoding pair of functions that map sets of objects to
numerical keys, and vice-versa: key = encode(S) is the key representing the set S, and
S = decode(key) gives the opposite mapping.

We proceed in Algorithm 7 as follows. We first initialize a hash table T for the
domain of keys (range of encode). For a given number of sampling rounds, at each
round l we go through the objects of P and generate for each a score based on its range;
we then order the objects based on these scores into a list Pl (sample_scores subroutine).
We obtain through encode the key for the set consisting of the top k′ objects in Pl , and
we increment the value corresponding to that key in T. At termination, we return the
decoding of the key having the highest count in T.

3.5. View Selection

We consider now the view selection problem, which may improve the performance of
our threshold algorithms SR-NRA and SR-TA, possibly at the risk of yielding results
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Algorithm 7: Estimate(P, k′, r)

Require: objects P, parameter k′, r sampling rounds
1: initialize hash table T
2: for rounds l = {1, . . . , r} do

3: Pl ← sample_scores(P)
4: key = encode({Pl [1], . . . , Pl [k′]})
5: if key 6∈ T then

6: T[key] = 0
7: end if

8: T[key] = T[key] + 1
9: end for

10: key = argmaxi(T[i])
11: return decode(key)

that are less accurate. To address this issue, we discuss at the end of this section how
results obtained through view selection can be refined to the most informative one.
Throughout this section, we remain in the setting where the query and views are assumed to
have the same context.

We argue first that view selection comes as a natural perspective in the computation
of score bounds. Recall that, for a given object o ∈ O, Problem 2 could be modeled
straightforwardly by the mathematical programs (3.2.1) and (3.2.2). Put otherwise, we
have as the dual of the minimization problem 3.2.1 the following packing LP:

max
|V|

∑
i=1,

(o,wsc,..)∈ans(Vi)

wsc× li s.t. ∑
t∈Q

Vj

lj ≤ 1, ∀t ∈ Q (3.5.1)

∑
t∈Q

Vj

lj = 0, ∀t 6∈ Q

and we have as the dual the maximization problem (3.2.2) the following covering LP:

min
|V|

∑
i=1,

(o,..,bsc)∈ans(Vi)

bsc× ui s.t. ∑
t∈Q

Vj

uj ≥ 1, ∀t ∈ Q (3.5.2)

∑
t∈Q

Vj

uj = 0, ∀t 6∈ Q

Based on the programs (3.5.1) and (3.5.2), for each object o, in order to obtain its most
refined bounds, we would need to first fractionally select views from V – as opposed to
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integral selection – such that the linear combinations of o’s scores with the coefficients
ui and li are optimal. In other words, for computing the worst score or best score of
each object, it would suffice to select and take into account only the views Vi ∈ V such
that (i) li 6= 0, for worst scores, or (ii) ui 6= 0, for best scores.2

Example 10. Let us consider the views in Table 3.1, using the LPs (3.5.1) and (3.5.2) to
illustrate view selection for object o6.

For the worst score, we need to optimize

max 4l1 + 2l2 + 10l3 + 9l4, s.t.

l1 + l3 ≤ 1, l3 + l4 ≤ 1, l2 + l4 ≤ 1.

The optimal is reached when l1 = 1, l2 = 0, l3 = 0 and l4 = 1, i.e., relying on the worst
scores of o6 from views V1 and V4.

For the best score, we need to optimize

min 4l1 + 4l2 + 10l3 + 11l4 s.t.

l1 + l3 ≥ 1, l3 + l4 ≥ 1, l2 + l4 ≥ 1.

The optimal is reached when l1 = 0, l2 = 1, l3 = 1 and l4 = 0, i.e., relying on the best
scores of o6 from views V2 and V3.

Solving the LPs (3.5.1) and (3.5.2) for each object, as a means to select only the useful
views, would obviously be as expensive as solving directly the MPs (3.2.1) and 3.2.2.
Instead, it would be preferable to solve these LPs and select some most relevant views
independently of any object, i.e., only once, before the run of the threshold algorithm.
Instead of per-object wsc and bsc values, in an approximate version of the two LPs,
each view Vi could be represented by two unique values, wsc(V) and bsc(V). Our
optimization problems would then simplify as follows:

2Restricting the domain of the u and l values to integers would lead to an NP-hard view selection
problem. More precisely, Eq. (3.5.2) would reduce to an instance of the weighted set cover problem,
and Eq. (3.5.1) would reduce to an instance of the k-dimensional perfect matching problem (where
k = max(|Q(V)|), ∀V ∈ V). In our setting, however, the restriction to the integer domain is not
necessary, and there exist tractable methods for efficiently solving the above LPs in their fractional
form.

71



3. Context-Aware Search Using Views

max
|V|

∑
i=1

wsc(Vi)× li s.t. ∑
t∈Q

Vj

lj ≤ 1, ∀t ∈ Q (3.5.3)

∑
t∈Q

Vj

lj = 0, ∀t 6∈ Q

min
|V|

∑
i=1

bsc(Vi)× ui s.t. ∑
t∈Q

Vj

uj ≥ 1, ∀t ∈ Q (3.5.4)

∑
t∈Q

Vj

uj = 0, ∀t 6∈ Q

and this would enable us to select the “good” views in the initialization step of the top-
k algorithm, those participating to the computation of the optimal, i.e., views having
non-zero u and l coefficients.

Furthermore, for each object o encountered in the run of Algorithms SR-TA and SR-
NRA, we can now replace Eq. (3.2.1) and (3.2.2) (lines 5-6 in SR-TA) by the following
estimates that use only the selected views Ṽ :

w̃sc =
|Ṽ |

∑
i=1

(o,wsc,..)∈ans(Vi)

wsc× li ; b̃sc =
|Ṽ ′ |

∑
i=1

(o,..,bsc)∈ans(Vi)

bsc× ui

This is possible since, by the duality property [63], we are guaranteed that the feasi-
ble solutions for Eq. (3.5.3), (3.5.4) represent safe bounds for o’s scores, i.e., w̃sc ≤ wsc
and b̃sc ≥ bsc. We can similarly simplify Eq. (3.3.1), for the threshold value (for line 8
in SR-TA).

Candidates for wsc(V) and bsc(V) We follow the described approach – approximat-
ing view selection – in two distinct ways.

First, per-view score bounds wsc(V) and bsc(V) could be based solely on the view’s
definition QV , and we experimented in this work with bounds that are defined as
wsc(V) = bsc(V) = |QV |. for each V ∈ V . The intuition for this choice is that object
scores in a view V are proportional to the number of attributes in QV .

Second, we consider and experiment with in Section 3.9 the natural per-view mea-
sures that are based on the views’ answers: (i) the average value of scores, (ii) the
maximum value of scores, and (iii) the median values of scores.

Using the attribute-query graph An important optimization that can always be per-
formed before the actual view selection is to filter out all views that cannot influence
the score of objects w.r.t. the input query. For that, we can build an undirected graph
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of queries, in which we have (i) a node for the input query Q, and (ii) one node for
each of the views in V . Two nodes are connected by an edge if they have at least one
attribute in common. It is then easy to see that we can filter out all the views that
are not in the connected component of the input query, as their objects’ scores will be
useless for computing an answer to Q.

3.5.1. Retrieving (G, P) After View Selection

We now discuss how the most informative result (G, P) – that can be obtained from the
complete set of views V – can still be retrieved by refining a result (G̃, P̃) obtained on
a selection of views Ṽ . We only need to adopt the following modifications in instances
of SR-TA or SR-NRA running over a selection of views:

1. when the main loop terminates, compute the optimal bounds for all objects in P̃
by random-accessing their scores in all the views in V ,

2. run for a second time the partition subroutine.

It can be easily shown that, in this way, we obtain the most informative result, i.e., we
reach ∆ = 0. Therefore, the “bulk” of the work could be done only on a selection of
views and its result, potentially few candidate objects from the P set, could just be
refined at the end using the complete V . We describe in Section 3.9 the impact of this
optimization on the running time of SR-TA and SR-NRA.

To summarize, we have described two variants of SR-TA and SR-NRA: without view
selection, denoted SR-TAnosel and SR-NRAnosel , and with view selection, denoted SR-
TAsel and SR-NRAsel . For the view selection variant, our notation convention will be
to replace the sel superscript by a de f , max or avg one, depending on the selection
method being used.

3.6. Formal Guarantees

We study in this section the formal properties of our algorithms, focusing on instance
optimality.

Let A be the class of algorithms, including SR-TA and SR-NRA, that deterministi-
cally output the sound and complete sets P and G, and do not make “wild guesses”.
For a given set of views V , we denote by D(V) the class of all instances of answers in
those views, i.e., ans(V), V ∈ V .

Given two algorithms A1 ∈ A and A2 ∈ A, we write A1 � A2 iff, for all sets of
views V , A2 is guaranteed to cost at least as much as A1 – in terms of I/O accesses
(sequential, random or a linear combination of the two) – over all instances in D(V).
Conversely, we write A1 6� A2 iff there exists at least one view set V and an instance
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3. Context-Aware Search Using Views

in D(V) over which A2 costs less than A1. We say that an algorithm A ∈ A is instance
optimal over A iff A � B, ∀B ∈ A.

We first consider the question whether one of the two variants of SR-TA or SR-NRA
is guaranteed to perform better that the other, for all views and answers. The answer
to this question is far from obvious: on one hand, SR-TAsel or SR-NRAsel should use
fewer views to compute the P and G sets, but they might either go too deep in the
selected views or might need additional accesses in other views on the other hand,
SR-TAnosel or SR-NRAnosel may go through views that are useless for deriving optimal
bounds. We can prove the following:

Lemma 1. SR-NRAsel 6� SR-NRAnosel 6� SR-NRAsel .

Lemma 2. SR-TAsel 6� SR-TAnosel 6� SR-TAsel .

Proof. Recall that any algorithm only needs to use the views contained in the con-
nected component to which Q belongs, from the attribute-query graph introduced in
Section 3.5. We denote the set of views contained in this connected component, ex-
cept the query Q, as VC(Q). We also denote as relevant combinations of views the set
V(Q) = {V1(Q), . . . ,Vr(Q)}, composed of distinct (but not necessarily disjoint) sets
Vi(Q) ⊆ VC(Q) of views which can be used to compute [wsc, bsc] intervals for any
object o.

We start by proving that the nosel variant of the two algorithms may perform unnec-
essary accesses.

Let us consider the following instance of the data and the set of views, V . Assume
that for a given query Q, the set of relevant combinations V(Q) contains all the views
in VC(Q). Furthermore, the set of relevant combinations consists of two disjoint sets
V1(Q) and V2(Q). We also assume w.l.o.g. that |V1(Q)| = |V2(Q)| = s. The case where
they have different sizes follows a similar reasoning, but would clutter the presentation
unnecessarily.

Let us construct the following database: all the objects in the views of V1(Q) are
present in V2(Q) at the same depths. Each such object o is constructed to ensure that
wsco(V1(Q)) ≥ wsco(V2(Q)) and bsco(V1(Q)) ≤ bsco(V2(Q)),i.e., that the best bounds
are always obtained from V1(Q).

Now, let us assume that SR-TAnosel or SR-NRAnosel stop at depth d, encountering
a ≤ sd distinct objects, and returning P and G as desired. They have thus performed
the following number of accesses: (i) 2sd sequential accesses for SR-NRAnosel and
SR-TAnosel , and (ii) (2sd − 1)a random accesses for SR-TAnosel . The accesses to the
V1(Q)’s bestscore lists would be h1 ≤ sa, and h2 ≤ sa to V2(Q)’s for a total of h1 + h2.

Then, algorithms SR-TAnosel or SR-NRAnosel that only accesses the views in V1(Q)

would encounter the same number a of distinct items, since V1(Q) and V2(Q) have
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the same objects at the same depths. They would also stop at the same depth d as
the no selection algorithms, as they would obtain the same bounds for the a objects,
and the same value for the threshold. Hence SR-TAnosel and SR-NRAnosel would need
only sd sequential accesses. In addition, SR-TAnosel would only need (sd− 1)a random
accesses. The same reasoning holds for accesses into bestscore lists: both algorithms
need only the h1 accesses detailed above.

We turn next to proving that the sel variant of the two algorithms can perform
unnecessary accesses.

Let us construct the following database, for a given k and query Q. The set V(Q) of
relevant views is composed, as above, of two disjoint sets of views V1(Q) and V2(Q)

that both can give valid bounds for Q. Again, assume w.l.o.g. |V1(Q)| = |V2(Q)| = s.

Then, on the first k positions in V1(Q) we insert k objects s.t., for any such object
o, wsco(V1(Q)) = δ and bsco(V1(Q)) = δ + 2. In the following k positions, we insert
objects x s.t. wscx(V1(Q)) = δ− 1 and bscx(V1(Q)) = δ + 1. The rest of the objects,
denoted ∗ are constructed s.t. bsc∗(V1(Q)) = δ− 1.

For V2(Q), the same k objects are inserted s.t. wsco(V2(Q)) = δ− 1 and bsco(V2(Q)) =

δ + 1. In the next k positions, we insert the same objects x as above, s.t. wscx(V2(Q)) =

δ− 1 and bscx(V2(Q)) = δ. The rest of the objects ∗ are constructed as above.

We analyze now the accesses needed for the algorithms using all views. Both algo-
rithms will stop at depth k, since the threshold value is τ = δ and the lowest worstscore
of the k items is δ. Hence, the first k objects are in G and P = ∅. SR-NRAnosel would
perfom 2sk sequential accesses in the worstscore lists and 2sk accesses to the bestscore
lists. SR-TAnosel would perfom the same number of sequential accesses as TA and also
(2s− 1)k random accesses.

SR-NRAsel , using either V1(Q) or V2(Q), would only be able to stop at depth 2k, thus
performing 2sk sequential accesses in the worstscore lists and 2sk accesses in bestscore
lists. It would also return P containing all 2k objects, as the bestscores of the bottom k
objects are greater than the worstcores of the top k objects, and G = ∅. Hence, a score
refinement step would need to be perfomed. If we still assume that only sequential
accesses are allowed, the refinement step would need another ks sequential accesses
into the “opposite” set of views, to establish that P = ∅ and G is composed of the
objects in the first k positions. Hence it would need ks more sequential accesses than
SR-NRAnosel .

For SR-TAnosel , the stopping condition would also hold at depth 2k. The same num-
ber of 4sk sequential accesses would be needed, and 2k(s− 1) random accesses. For
refining the scores and returning the sets P and G, another 2ks accesses to the other
views would also be needed. Hence it would need k(2s − 1) more random accesses
than SR-TAnosel .
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Lemmas 1 and 2 tell us that neither of the two variants of SR-TA or SR-NRA can be
instance optimal for all possible sets V . However, we describe next a restricted class
of views for which: (i) no refinement step is necessary after selecting a subset of the
views, and (ii) SR-TAsel and SR-NRAsel become instance optimal.

Let V be the class of sets V of pairwise disjoint views, i.e., s.t. QVi ∩QVj = ∅, ∀Vi, Vj ∈

V , Vi 6= Vj. We say an algorithm A ∈ A is instance optimal over A and V if A � B, ∀B ∈ A

and ∀V ∈ V . We can prove the following:

Theorem 2. SR-TAsel is instance optimal over A and V. SR-NRAsel is instance optimal over
A and V, when only sequential accesses are allowed.

The proofs closely follow the flow of the NRA and TA optimality proofs in [31].
Intuitively, for this class of views, the only way to obtain bounds for a query Q is

the following: (i) for lower-bounds, only the views V that have QV ⊆ Q are taken
into account, while (ii) for upper-bounds all views V that verify QV ∩Q 6= ∅ are used.
Note that this method is in effect the view selection algorithm for the class of pairwise
disjoint views. Note also that the setting of [31], i.e. per-attribute lists of exact scores,
is strictly subsumed by V.

3.7. Context Transposition

We have discussed until now how queries can be answered by exploiting pre-computed
results from views, with the important assumption that these share the same context
with the input query. We remove now this restriction, and consider also views that
may have been computed in a different context. We show how we can still answer
input queries by the techniques discussed so far, by pre-processing views in order to
place them in the context of the input query. We call this step the context transposition.

We give in this section the details on context transpositions for our two motivating
application scenarios: location-aware search and social-aware search. In both applica-
tions, one view V’s context CV can be seen as consisting of

1. a location (or start point) CV .l, e.g., geo-coordinates in a multidimensional space
for location-aware search, or the social identity of a seeker in social-aware search,

2. a contextual parameter CV .α, which basically parameterizes the influence of the
spatial or social aspect in scores.

Given an input query Q, a context C – with C.l and C.α – and a view V with a dif-
ferent context (either the location or α may differ, or both), in order to be able use
pre-computed results from V, we need to derive from the existing ans(V) tuples
new score bounds: for each (o, wsc, bsc) ∈ ans(V) we want to obtain a new tuple
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Figure 3.1.: Intuition for start point transpositions.

(o, fw(wsc), fb(bsc)). The functions fw and fb represent the core of the context transpo-
sition, their role being to map the worst scores and best scores of objects from ans(V)

to new guaranteed bounds for context C. We detail them next for our application
scenarios.

3.7.1. Location-Aware Search

In location-aware or spatial top-k querying [22], a user having a certain location is
interested in the top-k objects that are relevant textually and close spatially.

We revisit here one of the most common ranking models [22, 14], in which the per-
attribute score of an object is a linear combination of spatial relevance and textual
relevance. Each object o consists of a bag of attributes o.A and a location o.l. Given
an input query Q, with context C having location and C.l and parameter C.α, the
per-attribute score is obtained as follows:

sc(o, t | C) = (1− C.α)(1−
D(C.l, o.l)
maxDist

) + C.α
TF(t, o.A)

maxTF(t)
(3.7.1)

where D gives the euclidean distance between Q’s location (start point) and o’s loca-
tion, maxDist is the maximal distance,
TF(t, o.A) is the term frequency of t in o.A, and maxTF(t) is a maximal term frequency
of t over all objects.

We now detail how context transposition is performed. For ease of exposition, we
first describe how the location component of the
context is transposed. Then, we describe the transposition for α.

Recall that we are in a setting where we are presented only with partial information,
in each view V, in the form of tuples (o, wsc, bsc), and we have access neither to
D(C.l, o.l) nor to TF(t, o.A). The bounds may be tight, i.e., wsc = bsc, as in [22, 20], or
may be loose.
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Transposing the location. Given a query Q of context C, with location C.l, given
of view V of context CV , with location CV .l, for any object o ∈ ans(V), there are two
extreme locations at which o can be situated, relative to C.l (see Figure 3.1), as follows:

1. on the segment between C.l and CV .l, or on the line connecting C.l and CV .l,
beyond C.l, resulting in

D(C.l, o.l) = |D(CV .l, C.l)− D(CV .l, o.l)|

2. on the line connecting C.l and CV .l, beyond CV .l, giving

D(C.l, o.l) = D(CV .l, C.l) + D(CV .l, o.l).

We can now derive the following new bounds for each object o from a tuple (o, wsc, bsc) ∈
ans(V), which would be valid in a context C ′ defined by the query’s location C.l and
the view’s CV .α:

sc(o, Q | C ′) ≥ wsc− CV .α× |QV |×
D(CV .l, C.l)

maxDist
= wsc′

sc(o, Q | C ′) ≤ bsc + CV .α× |QV |×
D(CV .l, C.l)

maxDist
= bsc′ (3.7.2)

Transposing the parameter α. We consider now the transposition for the α com-
ponent, from CV .α to C.α, by which are obtained bounds that are valid for the input
query context C.

Let in Eq. (3.7.1)

x = 1−
D(C.l, o.l)
maxDist

, y =
TF(t, o.A)

maxTF(t)
.

From the intermediary context C ′ introduced by the transposition of location, for any
tag t ∈ QV and object o ∈ ans(V), we have:

sc(o, t | C ′) = (1− CV .α)× x + CV .α× y

sc(o, t | C) = (1− C.α)× x + C.α× y

This leads to
sc(o, t | C) = sc(o, t | C ′)− (C.α− CV .α)× (x− y)

Since x ∈ [0, 1] and y ∈ [0, 1], we have that

max(x− y) = 1, min(x− y) = −1,

therefore:

sc(o, t | C ′)− |C.α− CV .α| ≤ sc(o, t | C) ≤ sc(o, t | C ′) + |C.α− CV .α|
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Summing over all t ∈ QV , replacing the l.h.s. with wsc′ and the r.h.s. with bsc′, we
obtain:

sc(o, Q | C) ≥ wsc′ − |QV |× | C.α− CV .α |= fw(wsc)

sc(o, Q | C) ≤ bsc′ + |QV |× | C.α− CV .α |= fb(bsc) (3.7.3)

We present in Section 3.8 the generic algorithm that, for an input query Q and set of
views, filters out the views that are certainly useless for Q, performs the necessary con-
text transposition steps, then may select views, and finally runs one of the threshold
algorithms.

3.7.2. Social-Aware Search

We consider now the social-aware setting. For illustration, we use the collaborative
bookmarking applications – popular examples include Del.icio.us and Flickr – which
represent a good abstraction for search with a social context .

For this setting, we revisit the ranking model developed in [69, 4]. Besides objects
and attributes, we have a set of users U = {u1, . . . , un} who can bookmark (or tag) ob-
jects with attributes. Also, users form a social network, seen as an undirected weighted
graph: a link between two users u1 and u2 has a weight, σ(u1, u2) ∈ [0, 1], which could
stand for proximity, similarity, affinity, etc. For pairs of users for which an explicit
edge (and proximity) is not given, an extended proximity σ

+(u1, u2) ∈ [0, 1] can be
computed in the graph by aggregating (e.g., by multiplication) the weights over each
path connecting u1 and u2, and taking the maximal aggregated score over all paths:3

σ
+(u1, u2) = maxp=(u1,...,u2) ∏

k−1
i=0 σ(ui, ui+1).

A query context C consists now of a seeker C.l (the issuer of the query) and the
parameter C.α. In manner similar to location-aware search, the per-attribute score is
a linear combination between the “social location” of the seeker with respect to the
taggers of an object and the classic textual score (e.g., tf/idf or BM25).

Unlike the location-aware setting, we do not deal with objects that are “located” at
certain points in the search space, but with user-object-attribute tuples (u, o, t), i.e.,
users u who tagged o with t. The social component of the score is computed as the
sum of the proximity values of taggers of o with respect to the seeker, while the textual
component is the number of taggers who tagged object o with attribute t:

sc(o, t | C) = (1− C.α)× ∑
u tagged o

with t

σ
+(C.l, u) + C.α× TF(o, t) (3.7.4)

3This is reminiscent of how trust or similarity can propagate, if interpreted as transitive measures.
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Transposing the location. For a query Q and seekers CV .l and C.l, let u be a tagger
for which we need to use σ

+(C.l, u) in score bounds. As illustrated in Figure 3.1, the
path with the highest score connecting C.l to u may either

1. go through CV .l, and in that case we have:

σ
+(C.l, u) = σ

+(C.l, CV .l)× σ
+(CV .l, u),

2. not go through CV .l, and in that case we have:

σ
+(C.l, u) ≤ σ

+(C.l, CV .l)−1 × σ
+(CV .l, u).

Now, the influence of the social component in the score of o in ans(V) varies inversely
with CV .α. Therefore, the transposition that accounts for the location change should be
weighted by its importance in the sc(o, t | CV) formula, determined by CV .α as follows:
when CV .α = 1, the lower and upper bounds should not be affected by the location
change, while when CV .α = 0, they should be affected with weight σ

+(C.l, CV .l) and
σ
+(C.l, CV .l)−1 respectively. We can model this by a coefficient function c(w, α), which

applies to a weight w and value α, and is defined as

c(w, α) = α(1− w) + w.

(Note that it verifies c(w, 0) = w and c(w, 1) = 1, as needed.)
For each object o of a tuple (o, wsc, bsc) ∈ ans(V), we can now derive the follow-

ing valid bounds for a context C ′ defined by the query’s seeker C.l and the view’s
parameter CV .α.

sc(o, t | C ′) ≥ c(σ+(C.l, CV .l), CV .α)× wsc = wsc′

sc(o, t | C ′) ≤ c(σ+(C.l, CV .l)−1, CV .α)× bsc = bsc′ (3.7.5)

Transposing the parameter α. We consider now the transposition for the α component,
from CV .α to C.α, yielding valid bounds for the new context, C. Here, the transposition
depends on the relationship between C.α and CV .α, and we obtain the following fw and
fb:

1. if C.α < CV .α, fw(wsc) = C.ff
CV.ff ×wsc′, fb(bsc) = bsc′

2. if C.α > CV .α, fw(wsc) = wsc′, fb(bsc) = C.ff
CV.ff × bsc′

We arrive at these bounds by the following steps. In Eq. (3.7.4), let

x = ∑
u tagged o

with t

σ
+(C.l, u), y = TF(o, t).
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From the intermediary context C ′ introduced by the transposition of location, for any
tag t ∈ QV and object o ∈ ans(V), we have:

sc(o, t | C′) = (1− CV .α)× x + CV .α× y

sc(o, t | C) = (1− C.α)× x + C.α× y

Writing y in terms of sc(o, t | C ′) and x in the first equation we get

y =
sc(o, t | C ′)− (1− CV .α)× x

CV .α
.

Then, by plugging y into the second equation, we obtain:

sc(o, t | C) = (1−
C.α
CV .α

)× x +
C.α
CV .α

× sc(o, t | C ′).

Since we know that x ≤ sc(o, t | C ′) (due to the fact that x ≤ y, by definition), we can
derive the following bounds:

sc(o, t | C) ≤
C.α
CV .α

sc(o, t | C ′) i f C.α > CV .α

sc(o, t | C) ≥
C.α
CV .α

sc(o, t | C ′) i f C.α < CV .α

By subtraction, we also have that:

sc(o, t | C) = sc(o, t | C ′) + (C.α− CV .α)(y− x)

Unlike the location-aware setting, we do not have a bound on the difference between
y and x, but we know that (y− x) ≥ 0, and therefore we can obtain:

sc(o, t | C) ≥ sc(o, t | C ′) i f C.α > CV .α

sc(o, t | C) ≤ sc(o, t | C ′) i f C.α < CV .α

Putting everything together, over all t ∈ QV , we obtain the fw and fb transposition
functions given previously.

3.8. Putting It All Together

We put together the techniques discussed so far into a generic algorithm for top-k
answering using views with uncertain scores (Algorithm 8). It starts by transposing
the various contexts CV to the one of the input query, and selects some views. Either
SR-TA or SR-NRA can then be used to find an answer (G̃, P̃), in terms of guaranteed-
possible objects for the top-k. We can then use the sampling procedure (Algorithm 7)
to find a most likely top-k answer.
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Algorithm 8: ProcessQueryViews(V , Q, C, k, r)
Require: query Q, views V , context C, top k required, r rounds

1: for V ∈ V do

2: transpose the context CV to C

3: end for

4: Ṽ ← view selection on V for Q
5: {G, P}← SR-TA(Q, k, Ṽ) or SR-NRA(Q, k, Ṽ)
6: E = Estimate(P, k− |G|, r)
7: return G ∪ E

In the experiments, we give a detailed comparison between this approach and (i) an
existing early-termination algorithm for spatial-aware search, the IR-Tree of [22], and
(ii) the early-termination algorithm ContextMerge of [69], for social-aware search.
Remark 1. An advantage of the bounds derived in Eq. (3.7.3) and (3.7.5) is that they
do not depend on the individual objects: in scores, we only add-substract or multiply-
divide with some object-independent values. This gives us the opportunity to use
certain implementation “tricks”: instead of recomputing the score bounds of all object
in the ans(V) lists, we can use these score changes as

1. additive (location-aware search) or multiplicative (social-search) coefficients di-
rectly in per-view statistics for view selection,

2. coefficients for the linear programs in Eq. (3.2.1) and (3.2.2), during the run of
SR-TA or SR-NRA.

Remark 2. While we focused in the previous two sections on reference ranking
models for context-aware search from previous literature, the same reasoning can be
adapted to more involved ranking models, as long as they are monotonic relative to
both the textual and the context-aware components of scores.

3.9. Experiments

We performed our experiments on a single core of a i7-860 2.8GHz machine equipped
with 8GB of RAM. We implemented our algorithms in Java, and we used this imple-
mentation for our tests on synthetic data and social data. We also implemented them
in C++, for a more reliable comparison with IR-Tree, for spatial data.

Context-agnostic setting with complete views Our first series of tests, over synthetic
data, concerns a setting in which the input queries and the views share the same
context (i.e., context plays no role and is ignored in the computation). We generated

82



3.9. Experiments

k=10 k=50 k=100
0

0.2

0.4

0.6

ru
n

n
in

g
-t

im
e

co
e
ff

.

Relative running-time of view selection

k=10 k=50 k=100

0.5

1

1.5
·105

se
q

u
e

n
ti

a
l

a
cc

.

Sequential accesses

k=10 k=50 k=100
0

2

4

6

8
·105

ra
n

d
o

m
a

cc
.

Random accesses

Uniform distribution

k=10 k=50 k=100
0

0.2

0.4

0.6

0.8

ru
n

n
in

g
-t

im
e

co
e
ff

.

Relative running-time of view selection

k=10 k=50 k=100
0

0.5

1

1.5

2

2.5

·105

se
q

u
e

n
ti

a
l

a
cc

.

Sequential accesses

k=10 k=50 k=100
0

0.2

0.4

0.6

0.8

1

·106

ra
n

d
o

m
a

cc
.

Random accesses

Exponential distribution

Figure 3.2.: Performance comparison between SR-TA variants over synthetic data with
uniform and exponential distribution.

nosel std=5 avg std=5 max std=5 def std=5 nosel std=10 avg std=10 max std=10 def std=10

exact scores in the range [0, 100] for 100,000 objects and 10 attributes, with exponential
or uniform distributions. Then, we generated all possible combinations of 2 and 3
attributes, each representing one view. For each of the views, we computed the exact
(aggregated) scores over all objects; the views are complete in that sense. We then made
these lists uncertain by replacing each exact value by a score range, using the gaussian
distribution with mean equal to the exact value and standard deviation (std, in short)
equal to either 5, 10 or 20. Over the sets of views obtained in this way, we used 100
randomly-generated input queries consisting of 5 distinct attributes.

We compare in Figure 3.2 the SR-TA variants over the two data distributions, for
the std values 5 and 10 (to avoid clutter, the plots for std 20 are not given). We have
recorded (i) the relative running-time of the algorithms that use view selection w.r.t.
the algorithm using all the views – three selection criteria per two std values, for six
plot lines, (ii) the number of sequential accesses by all four variants – with the two std
values, for eight plot lines, and (iii) the number of random accesses by all four variants
– with the two std values, for eight plot lines.
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Figure 3.3.: Performance comparison between SR-NRA variants over synthetic data
with uniform and exponential distribution.

84



3.9. Experiments

Sel. + Dist. Rel. running-time Min. precision |P|

10 50 100 10 50 100 10 50 100

avg + uni 0.576 0.676 0.712 0.57 0.69 0.72 10 36 64
def + uni 0.350 0.446 0.544 0.57 0.69 0.72 10 36 64
max + uni 0.296 0.395 0.446 0.57 0.69 0.72 10 36 64

avg + exp 0.732 1.128 1.287 0.60 0.63 0.64 10 46 86
def + exp 0.531 0.771 1.003 0.60 0.63 0.64 10 46 86
max + exp 0.456 0.684 0.827 0.60 0.63 0.64 10 46 86

Table 3.3.: Comparison between SR-TA and TA (exact scores), for uniform and expo-
nential distributions, for std 5.

One can note that the algorithms with view selection achieve significant savings in
terms of both running-time and I/O accesses. The algorithm based on max-statistics,
SR-TAmax, achieves better performance than the one based on view definitions, SR-
TAde f , which in turn does better than the one based on average-statistics, SR-TAavg.
Furthermore, we can observe that the relative running-time of these algorithms does
not depend on the value of k, and the influence of the interval coarseness (by standard
deviation) is more important in the exponential distribution. One can also note a
“clustering” effect, by standard deviation, in the case of sequential-access measures;
this is likely due to the fact that top-k processing on noisier data needs to go deeper
in the views to reach termination.

The same measurements were performed for the SR-NRA variants (see Figure 3.3),
in which random-accesses are not allowed. We can observe similar behavior to the
SR-TA variants, in terms of running-time. However, we have a much lower relative
running-time for SR-NRAsel , less than 0.1 of that of SR-NRAnosel . This is due to the
fact that the overhead induced by solving the LPs for score bounds is much more
notable in this case (in the case of SR-TA, it was dominated by the cost of the random
accesses).

We also compared the performance of SR-TA, over score ranges with low noise (std
of 5), with the one of Fagin’s TA over the exact per-attribute inverted lists. We trace
two measures: the relative running-time and the minimum precision. The latter is
computed as |G|/k, i.e., the ratio between the size of the guaranteed set and the re-
quired k. The results are presented in Table 3.3. One can note that SR-TAsel can have a
running-time that is a low fraction of that of TA (as low as 0.296, with a precision@10
of 0.577). This is mainly due to the fact that, although inexact, we have aggregated
scores pertaining to 2 or 3 query terms, while the noise levels are rather low. While
using exact lists of aggregated data for top-k processing would certainly improve effi-
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Sel. Std Overhead |G|− |G̃| |P|− |P̃| ∆

avg 5 0.031 38 -208 1.96× 1070

avg 10 0.033 35 -734 4.14× 10129

avg 20 0.119 15 -4828 2.65× 10212

def 5 0.040 37 -206 2.76× 1069

def 10 0.038 34 -727 1.96× 10129

def 20 0.138 15 -4749 5.93× 10211

max 5 0.041 35 -179 5.54× 1064

max 10 0.041 33 -575 6.38× 10119

max 20 0.117 15 -3592 7.96× 10200

Table 3.4.: Running-time overhead and ∆ difference, for SR-TAsel with final refinement
versus SR-TAsel without refinement , for k=100 and exponential distribution.

ciency, as shown in [49], our experiments show that even relatively noisy aggregated
data can lead to improvements, with reasonable precision.

Finally, we give in Table 3.4 the overhead of the refinement step discussed in Sec-
tion 3.5, which uses random-accessing to refine a result (G̃, P̃) to the most informative
one, (G,P). Overhead is measured as the ratio between the running-time of the base
algorithm and the one of the refined algorithm. We also report on the ∆ measure.
Note that, while the number of possible combinations that are “avoided” increases
exponentially with the standard deviation, the overhead of additional I/O accesses is
small (range 3%-13%).

Location-aware search The dataset used in this setting is the PolyBot one, provided
by the authors of [20]. It consists of 6,115,264 objects (documents) and their coordinates
in a 2D space, and a total of 1,876 attributes (terms). We have generated 20 views
defined by 2-term queries at 5 different locations, varying the size of their ans lists (500,
1000 and 2000 entries). We used 10 to-be-answered queries at 5 locations (different to
the ones of views) and we varied k ∈ {10, 20} and α ∈ {0.7, 0.8, 0.9}. For the α values,
we used values close to those indicated by the authors of [22].

The algorithm we use as baseline in our evaluation is our implementation of the
IR-tree of [22]. It is based on R-tree indices [36], whose nodes are enriched with
inverted lists consisting of the documents located inside the rectangle defined by the
node. The algorithm maintains a priority queue, containing either objects and their
scores, or tree nodes and the maximum scores in their inverted list. The algorithm
alternates between visiting nodes and adding objects to the candidate list. It stops
when k objects have been retrieved. Our implementation of this algorithm achieves
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Figure 3.4.: Location-aware search: performance and precision of SR-TAsel versus exact
early-termination algorithm (IR-tree), for various α values and list sizes
(grey=top-10, white=top-20).

very similar running-time to the one reported in [22].
We present in Figure 3.4 the results for relative running-time and precision. The

relative running-time is computed as the ratio between the running-time of SR-TA and
the one of IR-tree. Precision is computed as the percentage of top-k items returned by
SR-TA that also appear in the output of IR-tree. Here, we used the sampling method
from Section 3.4 to obtain the most likely top-k from the (G,P) answer, through 1,000
rounds of uniform sampling.

One can note that, for high values of α and low values of k, the response time
of SR-TA is significantly lower than that of the IR-tree (in practice, of the order of
milliseconds), with reasonably high precision levels (between 0.86 and 0.92). This is
because the top-k answer is based on a large set G of guaranteed objects, which reduces
the overhead of the sampling procedure. When the uncertainty introduced by coarser
score ranges in views leads to larger sets P instead, the sampling procedure is more
costly, but overall the running-time remains a small fraction of the one of the IR-tree,
with a precision around 0.8.

Social-aware search For this application scenario, we used the publicly-available De-
licious bookmarking data of [78]. We extracted a random subset of it, containing 80,000
users, their tagging behavior on 595,811 objects (items) with 198,080 attributes (tags).
For assigning weights to links between users, we generated three similarity networks,
by computing the Dice coefficients of either (i) common tags in a tag similarity net-
work, (ii) common items in an item similarity network or (iii) common item-tag pairs
in an item-tag similarity network.

For each of the three similarity networks, we randomly chose 5 seekers for our tests.
Then, a number of 10 users were randomly chosen, among those having a link with
weight of at most 0.66 to any of the 5 seekers (to ensure that no view is too “useful”,
having too strong an influence on the running-time and precision). For each of these
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Figure 3.5.: Social-aware search: performance and precision of SR-TAsel versus exact
early-termination algorithm (ContextMerge), in three similarity networks
(grey=top-10, white=top-20).

users and for α ∈ {0.0, 0.1, 0.2, 0.3}, we generated 40 views of 1 and 2-tag queries, each
containing 500 entries.

The tests were made on a set of 10 3-tag queries for each of the 5 seekers, varying
α ∈ {0.0, 0.1, 0.2, 0.3} and k ∈ {10, 20}.

The baseline algorithm we used for the performance comparison is a direct adap-
tation of the ContextMerge algorithm of [69]. In short, depending on the value of
α, ContextMerge alternates between per-attribute inverted lists of objects and an
inverted list containing users ordered descending by their proximity relative to the
seeker. When the algorithm visits a user, her relevant objects – those that were tagged
by her with attributes appearing in the input query – are retrieved and added to the
candidate list. In manner similar to NRA, the algorithm keeps a threshold value rep-
resenting the maximal possible score of objects, based on the maximal scores from
the inverted lists and the proximity value of not yet visited users. The termination
condition is very similar to that of NRA.

Similar to the location-aware search, we present in Figure 3.5 the results in terms of
relative running-time and precision. One can note that the running-time is still a low
fraction of the one of the exact algorithm, while the precision levels are considerably
higher than in the case of location-aware search. As expected, the lowest precision
levels are obtained when the search relies exclusively on the social component of the
score. This is due to the fact that the bounds computed by Eq. (3.7.5) yield coarser
score ranges when α = 0, which are source of more uncertainty in the scores and the
top-k result. Moreover, due to the skew in proximity values in the network, even when
α has low non-zero values, the textual component has a strong influence in scores, and
thus leads to significant improvements in the top-k estimates (the most likely result).

88



3.10. Conclusions

3.10. Conclusions

We formalized and studied in this chapter the problem of context-aware top-k pro-
cessing based on uncertain precomputed results, in the form of views over the data.
This problem is motivated on one hand by search applications in which query results
depend on a context, and any result caching or pre-computation mechanism needs
to perform certain transformations – what we call a context transposition – in order to
answer new queries, which may pertain to new contexts. On the other hand, even
in context-agnostic search scenarios, some of the most common threshold algorithms,
such as NRA, for more efficiency, may output results with score ranges instead of exact
scores.

We introduced the query semantics needed for dealing with objects of uncertain
scores and describe two algorithms, SR-TA and SR-NRA that support this semantics
and are sound and complete, i.e., they output what we call the most informative result: (i)
all the guaranteed objects, and (ii) all and only the objects that may appear in the top-k
in some data instance. We also consider optimizations for SR-TA and SR-NRA, based
on selecting some (few) most promising views, instead of using the entire, potentially
very large, set of views. From the most informative result, a probabilistic interpretation
can also lead to a most likely top-k answer to the input query. Extensive experiments, on
both synthetic and real-world data, for spatial and social search, illustrate the poten-
tial of our techniques – enabling high-precision retrieval and important running-time
savings. More generally, they illustrate the potential of top-k query optimization based
on cached results in a wide range of applications.

Importantly, our algorithms provide a one-size-fits-all solution for many search appli-
cations that are context-dependent, with the only application-dependent aspect being
the context transposition.
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We present in this chapter our study on the interaction patterns between contributors
in Wikipedia, focusing on the inference and evaluation of an implicit signed network.

The first part of this chapter details the general methodology for extracting the
signed network and presents its evaluation on a small subset of the Wikipedia articles.
We start by detailing how one can extract interactions from the revision history of
Wikipedia articles and other community interactions in Section 4.2. The resulting
interaction vectors can then be transformed into positive and negative links, using
the methodology described in Section 4.3. We motivate our assumptions about the
interpretation assigned to each type of interaction by empirically evaluating them in
Section 4.4.

There are two possible avenues for evaluating the inferred signed network: by study-
ing the global properties of the network and assessing if they are similar to the proper-
ties of explicit signed network (i.e., Epinions, Slashdot), and by measuring the benefits
of using the information present in a signed network at the application level. We
show that our network exhibits similar characteristics as the explicit networks, both
for global properties and edge sign prediction accuracy, in Section 4.5. At the applica-
tion level, we show in Section 4.6 how using the information about the signed network
of users can improve the prediction of two important measures of articles: quality and
importance.

The second part of this chapter presents the extraction of the signed network for the
entire Wikipedia article corpus in Section 4.7.

4.1. Related Work

Signed networks The study of signed networks (or “webs of trust”) in the context of
online social networks is a relatively recent research development. Among the first to
mention “trust” in an online context, we have studies concentrating on the Semantic
Web [66], P2P networks [47], and web spam detection [37], and mainly dealing with a
global notion of trust. This work is concerned with a local notion of trust in a network,
in which nodes (representing users, resources, etc.) establish negative or positive links
with other nodes. Examples of such explicit signed networks already exist on the
Web, and their structure and properties were recently studied: for the Epinions review
site [59] and Slashdot [50]. In Wikipedia, Brandes et al. [13] deal with interactions

91



4. Inferring Signed Networks

between contributors of Wikipedia articles, using the concept of an “edit network” to
measure the degree of polarization in articles. Leskovec et al. [52] study the properties
of Epinions, Slashdot and the Wikipedia election graph, through the lens of two social
theories, balance [38] and status.

Several papers deal with edge sign prediction – an extension of the link prediction
problem [53] – having an existing signed network as input. Guha et al. [35] use a “trust
propagation” model based on four atomic operators: trust transitivity, trust coupling,
co-citation and transpose trust. Leskovec et al. [51] use a logistic regression model for
link prediction, based on a feature vector consisting of the types of directed triads a
link is involved in. More recently, Chiang et al. [18] go beyond triangles, and find that
using longer cycles can improve edge sign prediction accuracy.

User reputation in Wikipedia There have been several approaches to measure the
worthiness of contributors to Wikipedia. In [2, 1], a contributor reputation system
and a measure of trustworthiness of text are derived based on their interactions over
Wikipedia content. Another paper that experiments with reputation systems using the
editing interactions between contributors is [44].

To the best of our knowledge, this is the first study on inferring an implicit signed
network directly from user interactions. The work that is closest in spirit to ours uses a
semi-supervised approach and existing links to build a predictor of trust-distrust from
interactions in Epinions [54]. More recently, a study on the positive and negative votes
in Wikipedia [64] and the co-editorship pattern was shown to increase the precision of
detecting controversial articles.

4.2. Extracting Interactions from Wikipedia

The main context of interaction in Wikipedia is the collaborative editing of text on
articles. However, the community itself is not restricted to such interactions. In order
both to keep a minimum editorial standard and to limit the actions of low-quality
contributors in the community, the contributors of Wikipedia participate in high-level

!"#$%& %$'()*$ +$($&$ %$,$%&%$#&-%$ #.''-%& -''-#$ /)%"#&)%

! ! !!
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Figure 4.1.: The interaction vector (from a generator to a recipient).
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interactions that are not directly related to the editing of articles. Project pages, user
pages, administrator elections, etc., can serve the purpose of raising the quality level
of Wikipedia articles.

We can thus separate the interactions into two main categories: interactions on article
content (text) and the community interactions. We present the extraction methodology
for each of them next.

Interactions on article content For measuring the interactions on article content we
have extracted the following measures: the amount of words inserted, deleted and
replaced in the text of the article and the number of article revisions (i.e., versions)
that have been restored or reverted/discarded.

For establishing these interaction metrics we have extracted the full revision history
of a corpus of 563 articles from the Politics domain of the English Wikipedia, com-
posed of 910,209 total revisions and a total of 197,798 unique contributors (we have
not filtered the anonymous contributors or the Wikipedia bots in this extraction).

The revision of a given article A at time t can be seen as a triple:

Rt
A = (autht

A, txtt
A, commt

A)

composed of the author (or the contributor) who issued the changes on the article, the
text resulted from the modification and the comment used by the author to describe
the modification.

A contributor autht
A has two actions at her disposal: she can either edit the text of

an article or revert the text to a previous version of it. We consider these two actions as
independent and mutually exclusive (i.e., the author cannot, at time t, both edit and
revert the article).

In order to quantify the interactions between authors, we establish, for each revi-
sion, the ownership at word level based on the text difference between two consec-
utive revisions of an article. This is represented as a list Ot of triples of the form
(owner, ∆start, ∆end) for each revision Rt, consisting of the owner id and the span of her
ownership (encoded as deltas in words from the start of the document). This list is
created using a text diff algorithm that outputs a list of the operations needed to reach
txtt from txtt−1. These operations represent the amount of text (in words) that autht

has either deleted, inserted, replaced or kept unchanged. Following this, we establish
the new ownership list, as follows:

1. for text inserted and replaced, the new author is autht and the deltas are the new
positions resulted from the text difference algorithm,

2. for deleted text, the previous author and its positions are removed from Ot and
the remaining offsets are updated to account for the missing text.
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The interaction thus formed is between the author of the current revision and the
owners of the text in the previous revision, as follows:

textt
autht,a = (inst

autht,a, delt
autht,a, rept

autht,b)

where the components represent a count of the words in each interaction, and a ∈ Ot.
By parsing the text of commt we can have an indication of the revision Rt being in fact

a reversion to a past revision Rt−x. When this is the case, we can form new interactions
between contributors. First, a restore interaction is defined as the interaction between
autht and autht−x. Then, the ownership list is reverted to Ot−x. Finally, we establish
revert interactions between autht and the authors {autht−x−1, ..., autht−1}. For each
possible pair of contributors a and b we represent their interaction at time t in this
dimension, as follows:

rev_rest
a,b = (revertt

a,b, restoret
a,b)

where the components encode how many times each type of interaction has occurred.
In our case, the total number of content interactions (textual and reverts-restores)

that were established using this model was 30,670,861.

Community interactions Using the list of unique contributors, resulted from extract-
ing the article history, we can further crawl the pages of Wikipedia that are not articles
(in some sense, the metadata of Wikipedia) to retrieve the contributor user pages. We
can thus establish if they have participated in the Wikipedia “Requests for Adminship”
elections (RFAs), either as voters or as candidates. This list of community interactions
is by no means exhaustive, as contributors can participate in a variety of other interac-
tions. An important one represents the debates between the contributors, present on
the talk pages attached to the articles. One could also exploit such interactions (e.g.,
by means of natural language processing and sentiment detection). This goes beyond
the scope of this work, but we may follow this direction in future research.

By crawling the pages for RFAs (filtering out the pages for which the candidate
is not in our contributor list), we can track the votes cast by the contributors from
our list, votes that can be either positive or negative. This election interaction will be
represented as follows:

electiona,b = (vote+a,b, vote−a,b)

where a is the voter and b is the candidate for adminship.
Finally, by crawling the user pages of all the contributors in our list, we can retrieve

the Wikipedia barnstars. Barnstars are prizes that users can give to each other for per-
ceived valuable contributions and are usually present on the receiver’s page. We have
thus retrieved the user profile pages of all our contributors and extracted this infor-
mation, resulting in the barnstarsa,b measure which denotes the number of barnstars
given by contributor a to contributor b.
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Aggregating the interactions For representing the global interaction between a pair
of contributors, we have used an aggregation over the interactions. The aggregation
was performed by summing the interactions on article content, as follows:

texta,b = (∑
t

insa,b, ∑
t

dela,b, ∑
t

repa,b)

rev_resa,b = (∑
t

revertt
a,b, ∑

t
restoret

a,b)

(Note that we do not need to aggregate the content interactions, as by definition they
give the number of times the respective interaction occurred.)

This aggregation yielded a total number of 17,262,082 interactions.

4.3. Building The Signed Network

The four types of interactions presented previously (edits, reverts-restores, election
votes and barnstars) can be viewed as an interaction vector from a generator to a
recipient. This vector will form the basis for inferring signed edges between users.
We describe next how these are further organized and then interpreted as positive or
negative units.

Our approach is the following: we give each of the atomic interactions previously
identified (text insert, delete and replace; reverts and restores; votes cast and barnstars)
a positive or negative interpretation. For instance, for edits on text, we interpret inserts
as positive while replacements and deletions of text are seen as negative. Then, the
restores of a revision are interpreted as positive interactions, while conversely the
reverts of a revision are negative ones. The votes cast in an election are recorded
accordingly as positive or negative interactions, while the presence of barnstars is
seen as a positive interaction.

Figure 4.1 summarizes the components of this interaction vector and the sign inter-
pretation of each (positive or negative).

Note that these vectors denote directed interactions, from a generator to a recipient,
and the presence of interactions in one direction does not necessary imply that inter-
actions in the other direction exist.

Then, for deciding a final link sign, for a given pair (a, b) of contributors, we used the
following straightforward heuristic. Each atomic interaction votes with its weight (or
its magnitude) by the positive or negative interpretation of the higher-level interaction.

For determining the vote of the textual interactions, we have used Kendall’s τ coef-
ficient as follows:

τtext =
insa,b − (dela,b + repa,b)

insa,b + dela,b + repa,b
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network nodes edges positive negative

WikiSigned k=2 138,592 740,397 87.9% 12.1%
WikiSigned k=3 131,544 590,505 86.2% 13.8%
WikiSigned k=4 126,559 497,196 84.5% 15.5%
WikiSigned k=5 123,070 439,644 83.0% 17.0%

textual inter. k=2 73,723 568,488 96.2% 3.8%
non-text inter. 90,188 178,354 60.5% 39.5%

Table 4.1.: WikiSigned features for varying k values.

giving us a measure within the [−1, 1] interval. In order to better control the link for-
mation for textual interactions, we have used a threshold (both positive and negative)
on the τtext coefficient for deciding the vote of the textual interaction. We also recorded
the size of the textual interaction, sizea,b representing the number of different revisions
over which the two contributors interacted. We used a parameter k which acts as a
threshold on sizea,b and regulates when the vote of textual interactions is taken into
account. (Note that if one would only be interested in the sign of the interaction on
text, computing the difference between the number of words inserted and the number
of words replaced and deleted would suffice.)

Reverts and restores vote for the sign of rev_resa,b and adminship votes for the sign
of electiona,b. The barnstars can only vote positively or be absent from the vote.

Finally, these votes are aggregated into a link sign from a generator to a receiver, by
the sign of the sum of the votes of each interaction type.

In our experiments, we have used a threshold value of 0.5 on τtext, a threshold of 10
for the minimum number of words interacted upon and we variated k. We chose as our
most representative network the one given by k = 2 (the median value for the number
of interactions in our entire corpus is 1, meaning that over half of the contributor pairs
interacted on text only once).

The WikiSigned network obtained in this way has 138,592 nodes and 740,397 edges,
of which 87.9% are positive (a link proportion that is very similar to the ones of the
existing signed networks). Please note that our mined election network (which can
be seen as an explicit signed network) could not have skewed the results, as the to-
tal number of election interactions extracted represents less that 10% of the links of
WikiSigned.

We present in Table 4.1 network for k = 2 and, for comparison, the ones for other
values of k (3, 4 and 5). Also, to better understand the provenance of WikiSigned links,
we describe the networks obtained when ignoring the textual interactions or when,
instead, using only these interactions (for a value of k = 2).
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4.4. A Taxonomy of Delete and Replace Interactions in

Wikipedia

We turn now our attention to the study of delete and replace interactions in Wikipedia,
in order to evaluate the correctness of the assumption that they support a negative
interpretation of the interactions in which they appear.

We start by establishing a taxonomy of the possible reasons that may lead to a
contributor deleting or replacing the text of another contributor. Depending on the
goal of such interactions, we can differentiate the following classes:

1. Vandalism and anti-vandalism:

• vandalism: this kind of interaction usually occurs when contributors replace
either the entire text of an article with something unrelated to the article, or
replace sentences with nonsensical or out-of-context facts,

• anti-vandalism: representing the replacement of vandalised content with
new content, without reverting the article to a previous revision,

2. Deletion of content in an article:

• deletion of entire sentences/paragraphs: deletions of significant parts of an arti-
cle, deemed irrelevant by the deleting contributor,

• deletion of single words: i.e., the deletion parts of sentences to improve read-
ability;

3. Replacement of content:

• reformulations: used for changing the meaning of a sentence or sequence of
words, without deleting it entirely,

• updating content: for cases in which content becomes obsolete, e.g., team
rosters for sports teams, episode lists for TV shows, discography lists for
artists;

• grammar/spelling correction: small changes that do not change the meaning
of a sentence;

4. Meta-changes

• layout and style changes: usually, changing the formatting of the article, e.g.,
putting links to other articles, changing date formats, changing header for-
mats,

• tag removal or update: for instance, removing a protected or redirect tag for
an article, adding or changing article categories.
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Class Subclass Number True. neg. Prop.

vandalism vandal 10 10 1.000
anti-vandal 7 7 1.000

total 17 17 1.000

text change reformulation 19 19 1.000
update contents 19 16 0.842
grammar/spelling 8 4 0.500

total 46 39 0.847

text delete whole sentence/paragraph 20 20 1.000
single words 8 7 0.875

total 28 27 0.964

meta change style/layout 4 1 0.250
article tags 5 2 0.400

total 9 3 0.333

total 100 86 0.86

Table 4.2.: Classification of delete and replace text interactions.

We then performed a manual validation over a random sample of delete and replace
interaction. We select, via sampling without replacement, 100 such interactions. We
then assign each interaction to a class and subclass, from the ones presented above,
and establish if the interaction allows a negative interpretation, by looking at the dif-
ference between the texts of the two contributors in the sampled interaction. We call an
interaction that allows a negative interpretation a true negative interaction. The results
of the manual evaluation are presented in Table 4.2.

One can see that the overall ratio of true negative interactions is 0.86, having a cor-
responding 0.95 confidence interval [79] within [0.778, 0.914]. This suggests that it
is indeed very likely that such an interaction would allow a negative interpretation.
Furthermore, it can be seen that the “meta-change” class has a lower than average
true negative rate (indeed, it is more likely for it to contain false negatives than true
negatives), as do interactions representing grammar or spelling corrections. This indi-
cates that a reliable way to detect and remove such interactions when constructing the
signed network may improve significantly the true negative rate.
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triad count P(+) lrn bal stat

t1 2,513,952 0.98 0.1646
t2 125,765 0.88 -0.1589
t3 2,581,081 0.96 0.0197
t4 81,353 0.85 -0.0300 X
t5 130,225 0.52 -0.3062
t6 44,530 0.32 -0.4268 X
t7 77,673 0.44 -0.4093
t8 39,642 0.34 -0.1849 X
t9 3,705,565 0.96 0.0186
t10 81,629 0.75 -0.2683
t11 387,386 0.89 -0.0546 X
t12 48,940 0.71 0.0575 X
t13 147,869 0.87 0.0201 X
t14 112,412 0.63 -0.2011 X
t15 60,768 0.79 0.0817 X
t16 33,920 0.38 -0.1388 X X

Table 4.3.: Statistics on triads. The X symbol marks a contradiction with theory.

4.5. Empirical Validation

We present in this section our analysis of the WikiSigned network, testing mainly
whether its structural properties are consistent with a signed network. For that, we
rely on social theories on the formation of links between individuals, which have been
tested in similar online communities, and on comparison with explicit networks. First,
at the global level, we studied the properties of WikiSigned in relation to the theories
of structural balance and status. Then, at the local level, we studied how accurate
an edge sign prediction can be performed on WikiSigned. Finally, we considered the
indegree and outdegree distributions of contributors and look into how well they fit
into a power-law distribution.

Global properties of WikiSigned We first analyzed the global properties of Wik-
iSigned, checking whether overall it represents a plausible configuration of link signs.
For that, we study the role of “link triads” in our signed network. We used a method-
ology that has already been employed on explicit networks, in [52, 51], allowing us to
compare the properties of our network with the existing ones.

A triad represents the composition between the link from A to B and the possible
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Epinions Slashdot Elections WikiSigned

Epinions 0.926 0.905 0.787 0.765
Slashdot 0.929 0.806 0.792 0.716
Elections 0.922 0.895 0.814 0.775

WikiSigned 0.882 0.839 0.755 0.852

Table 4.4.: Predictive accuracy in training on the row data and testing on the column
data.

links to a third party node X. Depending on the direction and sign of the link connect-
ing A, and B, with X, there are sixteen such types of triads.1 Some of the triads are
representations of well-known social scenarios: t6 is a representation of “the enemy of
my enemy”, t1 of “trust transitivity”, t9 is a triad in which X points positively to both
A and B. Figure 2 illustrates these triads.

We looked at the distribution of link triads and the proportion of positive A − B
links in each type of triad. We found that both measures are very similar with the
ones reported in [52] (see columns count and P(+) in Table 4.3).

Next, we studied the configuration of our network in comparison with two social
theories, status and balance, theories that aim to define and predict the formation of
links between individuals. Structural balance theory posits that triads which are “bal-
anced” (i.e., have either one or three positive link signs, in an undirected sense) are
more prevalent in real-world networks that the other types of triads [38]. Status posits
that a directed negative link between A and B means that A regards B as having lower
“status”, while a positive link mean that A regards B as having higher “status” [35].
As such, for the network to have the same properties as the ones predicted by balance
theory, in triads t1, t3, t6, t8, t9, t11, t14 and t16 the A− B link should be positive, while
it should be negative in the rest of the triad types. For a network to be in line with
status, triads t1, t4, t13, t16 should have a positive A− B link and triads t6, t7, t10, t11

should have a negative one.2

Link prediction in signed networks has been studied in [51], by training a link pre-
diction model using logistic regression learning on a feature vector consisting of the
total number of triads of each type that the link participates in. We have used the same
methodology for training the model on WikiSigned, with 10-fold cross-validation and
a balanced set of negative and positive links with a minimum link embededness of

1As in [52], we encode them by a summation starting at 1 and adding 8 for the A−X link if it is pointing
backwards then 4 if the link is negative; for the X − B link we add 2 if the link is backward and 1 if
the link is negative. This gives us the id of the triad.

2Status predicts link signs only for these triads.
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Figure 4.2.: The concept of directed link triad.

25 (i.e., the total number of triads in which each link participates). Since the positive
links represent a large majority of the link signs, naively predicting all link signs as
positive would have an accuracy of 0.879 (i.e., the proportion of the positive links in
the network). To avoid this bias, we have randomly selected as our training set 5000
edges for each link sign, via reservoir sampling.

The signs of the coefficients of the trained model are an indication of the influence
that each triad type has on the final link sign. Hence, we can compare these signs with
the predictions of the two social theories. We perform this comparison on WikiSigned,
counting the contradictions with these theories, i.e., the differences between the sign
of the learned coefficients for each triads and the prediction of the two social theories.
We find that at a global level our interaction-based network is more consistent with
the theory of status (two contradictions with the theory, in t4 and t16) similar to what
has been observed in [52] on the Wikipedia election network (see columns lrn, bal and
stat in Table 4.3; X marks a contradiction with the social theory in the column).

Local properties of WikiSigned For the local properties analysis of WikiSigned, using
the same link prediction model, we tested the accuracy of predicting link signs. The
predictive accuracy thus obtained was of 0.852 with an AUC of 0.924.

Furthermore, to better understand how WikiSigned relates structurally to the ex-
plicit networks, we have also applied this learning methodology over the three ex-
plicit networks considered in [51], asking the following question: how well a predictor
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learned on one network performs when applied on another network (see Table 4.4).
First, one can notice that our results that use and apply to explicit networks are almost
identical to the ones reported in [52]. WikiSigned performs better than the election
network, in that prediction on itself is worse than self-prediction over Epinions and
Slashdot, while learning the predictor on WikiSigned and applying it on both Epin-
ions and Slashdot yields good prediction rates, the inverse performing slightly worse.
All this indicates that these networks have quite similar characteristics at the local
level, even though our network is inferred from interactions while the other three are
explicitly declared by users.

Fitting into power-law distributions Previous work has found that the distribution
of outdegrees and indegrees of nodes in online social networks generally follows a
power-law curve [61]. We measured a similar aspect, defining an absolute degree of a
node as the difference between the positive and negative links pointing to or from that
node. For inlinks or outlinks only, we have the related concepts of absolute indegree and
absolute outdegree.

We have plotted the complementary cumulative distribution functions (CCDF) on
a log-log scale for the two explicit networks of Epinions and Slashdot and for Wik-
iSigned. The results are presented in Figure 4.3.

One can see that all the tested networks exhibit power-law characteristics, with var-
ious exponents. In the case of WikiSigned, one can see that the distribution follows
closely the ideal power-law fit (the dotted line), while in real networks, for big abso-
lute indegrees and outdegrees the curve is below the ideal fit. In our view, this could
be due to the fact that the link inference for WikiSigned is based on voting, without
including potentially complex link formation conditions that may occur in explicit
networks (for instance, the formation of links using the knowledge about other links).

4.6. Exploiting WikiSigned at the Application Level

We also investigated the usefulness of having the signed network in applications, by
considering how link structure can be exploited in the classification of articles. There
are two article features that are explicit on the homepage of the Wikipedia Politics
project3: the article quality and the article importance (or priority). In our dataset, we
have articles that span the top 5 article qualities (Featured Articles, Great Articles, A-
class Articles, B-class articles and C-class articles) and all the importances (Top, High,
Mid, Low).

For our experiments, we have separated the article qualities and importances into
two classes (top-tier and bottom-tier). For the article importance, we have considered

3http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Politics
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Absolute outdegree: WikiSigned, Epinions and Slashdot.

Absolute indegree: WikiSigned, Epinions and Slashdot.

Figure 4.3.: Absolute indegree and outdegree power-law fits and CCDFs for different
signed networks.

the Top, High, Mid as the top tier and the Low importance as the bottom tier, randomly
sampling 150 articles for each. As the A-class of articles contains only 8 articles, we
have excluded this class for the training, and we have randomly sampled 50 articles
from each remaining class. Furthermore, we have categorized as top-tier the FA and
GA articles and the B and C-class articles as bottom-tier. This resulted in two equally
balanced datasets: 100 for each article quality tier, and 150 for each article importance
tier.

We have used the following set of features for each article: the number of authors;
three features (total, positive and negative) for each of the following: outgoing links
(links from the authors towards other contributors), incoming links (the links from other
contributors towards the authors) and inside links (links from authors to authors); and
the following information about the contributors in the article: the number of incoming
total positive and negative links (in the entire networks) for the contributors of the
article, how many of them have more positive links than negative and vice-versa. The
same information is also extracted for outgoing links, giving us a total of 18 features
for our article prediction model.

We report the predictive accuracy we obtained via logistic regression in Table 4.5.
Following the intuition that more important articles have a larger participation and
thus more links, we tested the predictive power of these two values (contributors and
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type Importance Quality

contributors 0.691 0.518
contribs.+links 0.743 0.835

contribs.+ soc links 0.749 0.895
contribs.+ soc links + rep. 0.756 0.935

Table 4.5.: Predictive rates for article importance and article quality.

contribs.+links) alone. We found that, while using knowledge about positive or negative
links in separation does not provide better accuracy, their combination yields better
results (contribs.+soc. links). This suggests that the characteristics of an article are not
defined solely by the number of contributors, but also by their relationships with
other Wikipedia contributors. When we also introduce the information about the
contributors (contribs.+ soc links + rep.), we see further improvement, especially in the
case of quality, which seems to support the intuition that the quality of an article is
determined by the “quality” of its contributors.

4.7. Extracting WikiSigned from the Complete History of

Wikipedia

We present in this section the extension of the approach previously described, to the
entire article corpus of the English Wikipedia, discussing in particular the scalability
challenges of such an analysis at an unprecedented scale.

The English Wikipedia contains around 27 million pages, each having an average of
19 revisions4. Obviously, this amount of revisions cannot be feasibly processed on a
single machine, sequentially. Hence, for processing this amount of data, we have to
use distributed computing frameworks, such as MapReduce. Figure 4.4 presents the
sequential chain tasked with building WikiSigned from a list of articles. It is composed
of the following jobs:

1. Extracting the text interactions. The first job in the MapReduce chain is the
extraction of text interactions, using the methodology presented in Section 4.2.
Starting from an input consisting of a list of articles, each mapper is tasked with
extracting the entire revision history of an article, via API calls. Then, via the
previously described procedure, interactions between contributor pairs are com-
puted for each revision. The mapper then presents two inputs to the reducers:

4http://en.wikipedia.org/wiki/Special:Statistics
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Figure 4.4.: MapReduce chain for extracting WikiSigned.

one containing contributor pairs and their interaction on a revision, and a list of
contributors detected by the mapper.

One reducer is then tasked with the aggregation of the interactions for each user
pair, while the second generates a list of unique contributors to be used in the
next job of the chain.

2. Extracting the barnstars and election data. The second job in the chain takes
as input the contributor list, and then parses the HTTP sources of election and
contributor profile pages 5, thus establishing the community interaction vector.
As in the case of the text interactions, the reducer aggregates, via summation,
the interactions of unique contributor pairs.

3. Computing WikiSigned. Finally, the text and community interactions are given
as an input to the final job, consisting of a reducer that implements the methodol-
ogy described in Section 4.3, applying the described thresholds and parameters
to output the final WikiSigned network.

We have extracted the English Wikipedia corpus starting from the article list pub-
licly available on Wikipedia, using a MapReduce cluster on the Amazon Web Services
platform and our own cluster of 32 machines. Starting from a list of 5,263,187 articles,
we have extracted a number of 261,663,028 revisions, resulting in 8,003,495,285 interac-
tion vectors. For these vectors, WikiSigned networks were built for various thresholds,
and we present in Table 4.6 the properties of the resulting WikiSigned networks, for
k ∈ {2, . . . , 5}. One can note that the signed networks are around two orders of mag-
nitude bigger than the ones built from the Politics dataset.

For the prediction of edge signs, the single-machine algorithms we have used for the
smaller scale networks are no longer usable for such network sizes. To deal with this,
we have modified the distributed triangle counting algorithm for undirected graphs,
presented in [74], to handle directed signed edges. For the logistic regression algo-
rithm, we have implemented the one presented in [21].

5User profile, barnstar and election data are not available via API calls, so they have to be extracted
separately.
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k nodes edges positive negative

2 13,820,607 99,357,735 88.2% 11.8%
3 12,446,260 72,327,442 84.9% 15.1%
4 11,538,482 57,255,302 81.6% 18.4%
5 10,933,199 48,578,600 78.7% 21.3%

Table 4.6.: WikiSigned properties for the entire corpus of English articles.

While the full-scale evaluation of this network is under way, we can already report
that, even for this network size, the logistic regression model for edge sign prediction
still maintains a reasonable precision of 0.789.

4.8. Conclusion

We have presented in this chapter our approach to extract an implicit signed network
of Wikipedia contributors, by considering the various interactions they are involved in.
We have shown that the implicit signed network extracted from a subset of Wikipedia
articles, named WikiSigned, constitutes a plausible signed network – it has similar
properties as explicit signed networks on the Web. We have also studied the link
prediction capabilities of WikiSigned, by cross training and testing with the explicit
signed networks. Furthermore, we have shown that the presence of a signed network
can significantly contribute to the accuracy of predicting important article features,
such as quality and importance.

Finally, we have taken first steps towards the extraction and validation of the signed
network for the editors of the entire Wikipedia corpus, establishing the processing
chain for computing a network of such unprecedented size and showing that the edge
sign prediction accuracy remains at a reasonable level (only 5% less accurate that the
small-scale network).
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In this chapter, we discuss some of the most promising research directions stemming
from the research performed during this thesis, for the three main problems studied
in this thesis: social search, context-aware search using views, and signed social net-
works.

5.1. Social Search

Other similarity functions for computing user proximities A next step in this re-
search is to exploit more involved social functions for the computation of the seeker-
dependent proximities (or similarities). Random-walk like approaches are another
natural candidate for this type of functions, as they provide a principled definition for
the notion of proximity/similarity between two users.

One research avenue is to also include in the model measures from the literature, like
Personalized PageRank [46] and SimRank [45]. Adapting such measures to our setting
represents a significant challenge, stemming from the fact that top-k algorithms exploit
the access to already sorted lists of scores to achieve early termination. A shortest-path
algorithm, as used in our approach to social search, allows the adaptation of such
algorithms, as it generates sorted lists of proximities as needed. It is not clear whether
the two measures cited (or similar ones) could be adapted to fit such a requirement.
Exact computations are probably unfeasible, but fast approximate algorithms (as in [8],
for instance) seem more feasible.

Community search in a social-aware interpretation We are also interested in the
search scenario in which one wishes to compute the representative social-aware top-
k for communities of users. In this case, an aggregation of the social-aware top-k
results for the members of the targeted community needs to be computed, a problem
related to the well-known rank aggregation problem [28, 30, 29]. The main challenge
to applying rank aggregation in the social-aware context is that one is not presented
with full rankings, as their computation can be expensive (it may, for instance, involve
visiting a large portion of the social network). Instead, rank aggregation has to be
computed in a dynamic, online manner. Inevitably, the aggregated top-k would be an
approximation, preferably with controllable parameters, of the aggregation of the full
rankings.
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5.2. Context-Aware Search Using Views

Optimal context-aware top-k algorithms We have identified a sufficient class of views
for which the instance optimality properties of the threshold algorithms hold even in
the case of context-aware views. It is, however, not clear whether this class of views is
also necessary for instance optimality. Hence, a thorough study of optimal algorithms
in the context of the uncertainty induced by the views would be interesting to pursue.
Instance optimality, as defined by Fagin et al. [31] might be hard to achieve in this
context. However, it would be interesting to see if relaxing the optimality definition,
to allow for non-constant factors, would lead to reasonable guarantees.

5.3. Signed Networks

Applications for signed networks While detecting the existence of an implicit signed
network, be it a trust or a similarity/dissimilarity network, is an interesting result in
itself, the bigger challenge lies in finding applications that can fully use the power of
such networks. Examples include recommendation systems, content appraisal or even
search. In order to support such applications, a first step is to establish a principled
approach to the problems of ranking and classifying nodes or data in a signed graph.
Two directions seem promising:

1. Ranking nodes in signed networks. This direction requires a revisit of current algo-
rithms for ranking nodes, like PageRank or TrustRank, and several approaches
that have been proposed lately for this problem (see [75, 60]) may constitute a
starting point.

2. Clustering nodes in signed networks. This direction strongly resembles the prob-
lem of Correlation-Clustering [62], an optimization problem known to be
NP-complete. While the study of this problem is quite mature, with several ap-
proximation algorithms proposed in recent years [25, 3], the majority of these
algorithms would not scale to Web-sized (or Wikipedia-sized) graphs. Moreover,
it is still not clear whether the direct application of such algorithms to signed
networks would reflect real-world social communities.

Social search in signed networks A natural way of bridging our studies on social
search, on one hand, and signed networks, on the other hand, is to consider social
search in a setting where relationships may be signed. In this case, relevance of results
becomes a key issue, as it remains to be clarified how negative edges can guide the
search towards more relevant results. Adapting graph algorithms to the signed net-
work setting, and more generally to social settings, going beyond link/no-link models,
raises many research challenges.
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Other Collaborations

S-Cores: Degeneracy Based Evaluation of Trust in Signed Directed Graphs [CGM+13]

While many algorithms for mining social networks have been proposed in the past, the
concept of degeneracy in the context of community evaluation in signed networks has
been ignored so far in the literature. This paper introduces the S-core, a novel exten-
sion of the k-core structure for modelling degeneracy in signed graphs.

We define various network metrics based on S-cores, which can be used for the
evaluation of robustness and other trust-based measures. Additionally, we define reci-
procity in the context of signed networks.

We present an extensive experimental evaluation, on both existing signed networks
in Web applications and signed networks inferred from interactions among editors
of the Wikipedia. We evaluate trust in different thematic domains of Wikipedia, by
looking at their editors’ S-core features. Our experimental results indicate that S-cores
can be a robust tool for evaluating trust in signed networks.

This work is the result of a collaboration with C. Giatsidis, M. Vazirigiannis of LIX, École
Polytechnique and D. Thilikos of National and Kapodestrian University of Athens.

Search Behaviour on Photo Sharing Platforms [MOA+13] The behaviour, goals, and
intentions of users while searching for images in large scale online collections are not
well understood. There has been some work on the analysis of image search logs, yet
the insights that they can provide are limited, due to the fact that one does not have
access to all the user actions after querying.

We study user behaviour while searching for photos in a large photo-sharing plat-
form, characterise the types of behaviour when searching in such a platform, and
provide insights into user behavior during image search. In particular, we show how
user click behaviour is influenced by the type of the query, going beyond the clicking
on result images. We show how classes of users of the platform display significantly
different characteristics, both in click and querying behaviour. Finally, we provide an
analysis on how users behave when they reformulate their queries.

This work is the result of collaborating with the Social Media Engagement team of Yahoo!
Research Barcelona, during a summer research internship.
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