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Co-encadrant de thèse : Pierre Mahé

Jury
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toujours dans mes décisions.
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Abstract

Using high-throughput technologies in Mass Spectrometry (MS) and Next-Generation
Sequencing (NGS) is changing scientific practices and landscape in microbiology. On
the one hand, mass spectrometry is already used in clinical microbiology laboratories
through systems identifying unknown microorganisms from spectral data. On the other
hand, the dramatic progresses during the last 10 years in sequencing technologies allow
cheap and fast characterizations of microbial diversity in complex clinical samples, an
approach known as “metagenomics”. Consequently, the two technologies will play an
increasing role in future diagnostic solutions not only to detect pathogens in clinical
samples but also to identify virulence and antibiotic resistance.

This thesis focuses on the computational aspects of this revolution and aims to
contribute to the development of new in vitro diagnostics (IVD) systems based on
high-throughput technologies, like mass spectrometry or next generation sequencing,
and their applications in microbiology. To deal with the volume and complexity of data
generated by these new technologies, we develop innovative and versatile statistical
learning methods for applications in IVD and microbiology. The field of statistical
learning is indeed well-suited to solve tasks relying on high-dimensional raw data that
can hardly be manipulated by medical experts, like identifying an organism from an
MS spectrum or affecting millions of sequencing reads to the right organism.

Our main methodological contribution is to develop and evaluate statistical learning
methods that incorporate prior knowledge about the structure of the data or of the
problem to be solved. For instance, we convert a sequencing read (raw data) into a
vector in a nucleotide composition space and use it as a structured input for machine
learning approaches. We also add prior information related to the hierarchical structure
that organizes the reachable microorganisms (structured output).
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Résumé

L’utilisation des technologies haut débit de spectrométrie de masse et de séquençage
nouvelle génération est en train de changer aussi bien les pratiques que le paysage
scientifique en microbiologie. D’une part la spectrométrie de masse a d’ores et déjà
fait son entrée avec succès dans les laboratoires de microbiologie clinique au travers de
systèmes permettant d’identifier un microorganisme à partir de son spectre de masse.
D’autre part, l’avancée spectaculaire des technologies de séquençage au cours des dix
dernières années permet désormais à moindre coût et dans un temps raisonnable de
caractériser à la fois qualitativement et quantitativement la diversité microbienne au
sein d’échantillons cliniques complexes (approche désormais communément dénommée
métagenomique). Aussi ces deux technologies sont pressenties comme les piliers de
futures solutions de diagnostic permettant de caractériser simultanément et rapidement
non seulement les pathogènes présents dans un échantillon mais également leurs facteurs
de résistance aux antibiotiques ainsi que de virulence.

Cette thèse vise donc à contribuer au développement de nouveaux systèmes de
diagnostic in vitro basés sur les technologies haut débit de spectrométrie de masse et
de séquençage nouvelle génération pour des applications en microbiologie.

L’objectif de cette thèse est de développer des méthodes d’apprentissage statis-
tique innovantes et versatiles pour exploiter les données fournies par ces technologies
haut-débit dans le domaine du diagnostic in vitro en microbiologie. Le domaine de
l’apprentissage statistique fait partie intégrante des problématiques mentionnées ci-
dessus, au travers notamment des questions de classification d’un spectre de masse ou
d’un “read” de séquençage haut-débit dans une taxonomie bactérienne.

Sur le plan méthodologique, ces données nécessitent des développements spécifiques
afin de tirer au mieux avantage de leur structuration inhérente: une structuration en
“entrée”lorsque l’on réalise une prédiction à partir d’un“read”de séquençage caractérisé
par sa composition en nucléotides, et un structuration en “sortie” lorsque l’on veut
associer un spectre de masse ou d’un “read” de séquençage à une structure hiérarchique
de taxonomie bactérienne.
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Chapter 1

Introduction

In this chapter, we provide an overall background and technical notations related to

the main concepts studied in this thesis, namely microbiology and supervised learning.

Microbiology is the study of all microorganisms and so includes disciplines like

bacteriology, mycology or virology. In medical microbiology, the diagnosis of infectious

diseases relies on the study of pathogens characteristics. The identification of the

infectious agent may involve more than a standard physical examination. For instance,

sophisticated techniques (such as polymerase chain reaction [173] or mass-spectrometry

[144]) are used to detect abnormalities induced by the presence of a pathogen agent,

at a molecular level.

Supervised learning allows to infer a rule between features/measurements and an

outcome of interest. This rule is inferred using noisy input observations, called training

examples, for which we also know the corresponding output response variable. Once

the rule is inferred, it can be used to predict the output of any new input data. For

instance, automatic microbial identification based on high-throughput data aims at

linking large amount of microorganisms characteristics to their identity, and can be

cast as a learning problem. Detailed introduction to supervised learning are given in,

e.g, [70, 170].

This chapter is organized as follows. Section 1.1 is related to microbiology and in

vitro diagnostics applications. Section 1.2 provides an overview on supervised learning

and more precisely on classification in Section 1.3. In Section 1.4, we detail how we

correctly compare and evaluate the different methods. Finally, Section 1.5 provides a

presentation of the contributions of this thesis.

1.1 Microbiology and in vitro diagnostics

In vitro diagnostics (IVD) tests are comprised of reagents, instruments and systems

used to analyze the content of biological samples of interest in the process of a medical

diagnosis. For instance, IVD tests are commonly used in a clinical context for measur-

ing base compounds in the body, indicating the presence of biological markers (HIV,
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tumor) or detecting disease-causing agents. The same tests are also used for industrial

purposes, like food safety or sterility testing, in agri-food, cosmetic, pharmaceutic in-

dustries. However, the focus of our research work is restricted to clinical applications.

More than 70% of the US medical decisions draw upon the results of an IVD test [66],

yet only 2% of the US$2 trillion spent annually on healthcare goes to diagnostics [65].

According to [182], there exists more than 4,000 different tests available for clinical

use and about 7 billions of IVD tests are performed each year. They are critical for

medical decision-making, allowing to identify infections and diseases, and have a huge

impact in terms of lives saved and reduced health care budget thanks to low-cost de-

vices for the costly diseases, like cardiovascular diseases, cancer or infectious diseases

(HIV, tuberculosis, influenza, etc.)

During my thesis, I spent most of my time working for bioMérieux, the world leader

in IVD tests for microbiology. IVD companies, like bioMérieux, are massively investing

to develop the future diagnostics solutions based on high-throughput technologies.

1.1.1 Diagnostics for infectious diseases

Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses,

fungi or parasites. Microbial identification, a problematic in IVD, aims at identifying

the microorganism causing the disease from clinical samples such as blood, urine or

saliva. Identifying a pathogen is a crucial step in the diagnostics workflow and there is

still a need for faster and more reliable tests to help clinicians prescribe an appropriate

treatment. The other crucial step in diagnostics for infectious diseases is the antibiotic

susceptibility testing (AST) [76]. The main goal of AST is to determine which antibiotic

treatment will be most successful in vivo. The combination of a correct identification

of the pathogen agent and its relevant antibiotic sensitivity represents the ideal clinical

therapy. Here, the focus of this thesis is on the development of innovative strategies

for microbial identification.

Most existing microbial identification technologies require a culture step. Most

bacteria will grow overnight, whereas some mycobacteria require as many as 6 to 8

weeks [13]. Microorganisms present in the sample are isolated on a culture medium

that recreates favorable growth conditions. After a few hours, colonies will appear

on the medium; each colony only contains replicates of an initially isolated microbe.

Thus, this culture step acts like a signal amplification step, multiplying microbiological

material in the sample in order to collect enough material from each colony to perform

the identification step.

A great variety of identification systems have been proposed, which are sometimes

categorized into phenotypic, genotypic and proteotypic methods [160]. Phenotypic

methods like, for instance, active pharmaceutical ingredient (API) [4], typically base

their identification on the results of several chemical reactions revealing metabolic char-

acteristics of the microorganism.
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Genotypic identification relies on the genetic material (DNA, RNA) of the microor-

ganism and involves sequencing a specific genetic marker, like the 16S rRNA which is

often considered as the gold-standard for bacterial identification [46]. These technolo-

gies have been commonly used in research laboratories for decades, yet they only started

to change the IVD market in the 1990s due to the need for validations [23] by agencies

like the US Food and Drug Administration (FDA). The adoption of those complex tests

also requires specific training for clinicians and healthcare providers, in particular to in-

terpret the results. More recently, so-called proteotypic methods have been introduced

as well. These methods base their identification on measurements of the cell content.

They include for instance RAMAN spectroscopy [36], fluorescence spectroscopy [21]

and Matrix-Assisted Laser Desorption Ionization Time of Flight mass-spectrometry

(MALDI-TOF MS) [47].

1.1.2 A new paradigm in microbial identification: high-throughput

technologies

Mass-spectrometry for microbial identification

Until recently, clinical microbiology has mainly relied on conventional phenotypic and

biochemical techniques [167]. After a traditional culture step, standardized test sys-

tems such as the Phoenix R© system (Becton, Dickinson Diagnostics, Sparks, MD),

Microscan Walkaway R© (Dade-Behring MicroScan, Sacramento, CA), API R© and VITEK R©

2 (bioMérieux, Marcy l’Etoile, France), have so far been used to speed up microbial

identification: the average time needed for a reliable identification ranges from 6h to

18h [60]. In the last few years, PCR methods have complemented the biochemical

approaches, decreasing time-to-results with no mandatory culture step and even be-

coming in some cases the reference method [175]. However, PCR methods rely on the

design of new oligonucleotide primers requiring the analysis of the genome of each clin-

ically relevant microorganism. The efficiency of such approaches can also be reduced

by unexpected mutations or unknown variants. Additionally, PCR sensitivity can be

too high for some applications, detecting a microbe that is present at non-pathogenic

levels [106].

Even if it requires a culture step, MALDI-TOF MS can identify the genus and

species of a microorganism after a rapid (few minutes) and simple MS experiment. It

is now broadly accepted by the clinical microbiology community as a routine testing

tool for microbial identification at the level of species [53, 96, 168].

Generally, MS technologies rely on an instrument that takes a sample, ionizes it, for

example by bombarding with a laser energy, and converts electric signals to intensity

peaks [155]. MALDI-TOF is often referred to as a soft-ionization technology, because

of the small amount of energy used, and low risk of bound ruptures. Indeed, fragile

biomolecules such as proteins are protected by matrix crystallized molecules from a

direct ionization source. Charged particles created by ionization pass through a vacuum

3



tube playing the role of analyzer. Ions are simply discriminated according to their mass-

to-charge ratio (m/z), with a shorter time-of-flight for the smaller ions. At the end

of the analyzer, a detector measures, at each impact, the intensity and the mass of

the charged particles, leading to an intensity peak profile, also called a mass-spectrum.

The whole process is illustrated in Figure 1.1.

Matrix + sample

Time of flight tube 
(vacuum)

Detector

Laser

Electric field 
generator

Figure 1.1: MALDI-TOF mass-spectrometry. The sample is mixed with a matrix
that protects fragile biomolecules. A ionization source, like a laser, is used to pulverized
the mixture. Then, ions pass through a vaccum tube where small ions are faster than
heavy ones. At the end of the time of flight tube, a detector measures impacts intensity
and returns a mass-spectrum profile.

The output of an MS experiment can be represented by a large number of param-

eters, like m/z peak positions and their associated intensities. In diagnostic systems

based on mass spectra in microbiology, like the Biotyper (Bruker Daltonics, Germany),

or VITEK R©-MS, the interpretation of raw data is not performed by clinicians, but

relies on mathematical algorithms. The major commercially available mathematical

systems are the Bruker Main Spectrum analysis (MSP) and the bioMérieux SuperSpec-

trum and Advanced Spectra Classifier (ASC). For those algorithms, the extraction of

the intensity peaks and the comparisons of spectra are entirely automated [43]. Each

measured spectrum is compared to the spectra in a reference database, and the system

converts a similarity score into one or more microbial species names. Indeed, proteins

contained in a microorganism are peculiar to their biological species and can be used

to identify a microbe observed in a biological sample.

Despite differences in the reference databases, both systems address the large ma-

jority of clinically relevant species found in routine clinical practice, including the 20

bacteria that represent > 80% of isolates recovered from human clinical samples. Com-

pared to conventional biochemical tests, MALDI-TOF achieves comparable identifica-
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tion results for a vast majority (∼ 95%) of the isolates and in case of discordance

between the two approaches, 16S rRNA sequencing confirmed MALDI-TOF in 63% of

discordant cases [17].

Next-generation sequencing and metagenomics

The study of metagenomes, also called metagenomics, consists in analyzing genetic

material recovered from environmental samples. While in traditional microbiology,

genome sequencing and genomics rely upon cultivated cultures, metagenomics does not

require pure clonal cultures of individual organisms. From an environmental sample,

one can estimate its microbial diversity using conserved and universally present markers

such as ribosomal RNA [181] and clones specific genes (mostly the bacterial 16S rRNA

gene, but 25-30 highly conserved genes are listed in [45]). Such targeted approaches

revealed that the majority of microbial biodiversity had been missed by cultivation-

based methods [78]. It is estimated that more than 99% of microorganisms observable

in nature typically are not cultivable by using standard culture techniques [6, 126].

Recent advances in genome sequencing technologies and metagenome analysis pro-

vide a broader understanding of microbes and highlight differences between healthy and

disease states. Metagenome studies have recently increased in number and scope due

to the rapid advancements of high-throughput Next Generation Sequencing (NGS)

technologies such as GS FLX system from 454 Life Sciences, a subsidiary of Roche

[112], the IonTorrent’s Personal Genome Machine (PGM) [142], the Illumna MiSeq

and HiSeq [19], and the Pacific Biosciences RS (PacBio) [59]. These modern sequenc-

ing technologies give us access to a new way of analyzing clinical samples, because

they are culture-independent and randomly sequence all microorganisms present in an

environment.

1.1.3 Hierarchical organization of microorganisms

Microorganisms are diverse, but share biological properties and evolutionary history.

It is therefore useful to group them in a hierarchical structure, called a taxonomy,

to organize this diversity. A taxonomic tree is a rooted structure that links groups

(taxa) from top and bottom according to general properties (top) to specific properties

(bottom): two children taxa sharing the same parent taxon have common features

contained in the parent taxon while each sibling taxon has specific characteristics,

unshared with its siblings. The taxonomy concept is not proper to the biology field (e.g.,

semantic Web), but plays an important role in life sciences knowledge organization.

Numerous phylogenetic taxonomies are available online, such as NCBI taxonomy [178],

UniProt knowledge base [107]. In the in vitro diagnostics context, it is possible to design

a polyphasic taxonomic tree as a combination of phylogenetic and phenotypic levels

representing successive decision rules used in medical and clinical analysis, as defined

for instance in Bergey’s Manual of Bacteriology [74] and shown in Figure 1.2. According
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Figure 1.2: Example of a polyphasic taxonomy. Top levels (e.g., Gram stain-
ing) correspond to phenotypic classification tests and low levels support phylogenetic
information.

to the classification proposed by Carl von Linné [104], the finest and lowest level of the

taxonomic tree is the species level. The higher ranks are called, from the lowest to the

most generic: Genus, Family, Order, Class, Phylum, Kingdom, Domain, as summarized

in Figure 1.3. To underline the general character of the higher taxonomic levels, note

that there are only three known (and accepted) domains that are Archea, Bacteria and

Eukaryota. The last one regroups all organisms made of cells with a genetic material

enclosed by a nuclear envelope, including all animals, plants and fungi.

In microbiology, one often considers a level below the species level, called the strain

level. A microbial strain is a particular member of a species that differs from the other

members by a minor but significant variation [179]. These genetic variations may have

a large impact on the expressed characteristics, or phenotypes of the microorganism.

For instance, the microbial species Escherichia coli is the most abundant commensal

bacteria in the human gastrointestinal track [89] and it coexists with the host with

mutual benefit, such as the use of gluconate permease in the colon [161]. However,
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Figure 1.3: Taxonomic structure of the Tree of Life. Top levels are the most
generic and the bottom levels are the finest.

several E.coli strains have acquired virulence mechanisms allowing a rapid colonization

of new environments and causing deadly syndromes, like bloody diarrhea in the recent

2011 E.coli O104:H4 outbreak in Europe [120]. Hence, strains from the same species

can have different biological properties related to virulence or drug resistance.

The concept of bacterial species is slightly different from the numerous eukaryota

definitions [141], like interbreeding population [115] or other sexual characterizations.

The current gold-standard criterion proposed in [122] measures a cross-hybridization

proportion between two DNA strands coming from different organisms. The DNA-

DNA hybridization (DDH) threshold for considering that two organisms belong to the

same species is at least 70%. Because cross-hybridization experiments are not easily

applicable to all the bacterial environments, alternative approach based on a conserved

gene marker, 16S rRNA, has been proposed in [157]. Results in [93] suggest that a

97% 16S rRNA gene sequence identity is easier to measure with DNA sequencing tech-

nologies and is equivalent to the previous 70% DDH threshold. The classification of

species has been affected by the gold-standard changes and the technological revolu-

tions: from the precipitation assays for blood plasma in 1950’s, to the DDH [150] in the

1970’s, to the recent DNA sequencing. Reorganizations in the phylogenetic taxonomy

have been induced at all the classification levels and this tree is still being modified by

taxonomists, based on recent findings.

Another issue with the taxonomic organization of the species is the problem of taxa

in disguise [87]. They are taxonomic units that have evolved from another unit of

similar rank making the parent unit paraphyletic. It means that phylogenetically, all

descendants of the parent unit are identical from an evolution point of view but not

taxonomically. In general, this paraphyly can be solved by moving the taxon in disguise
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under the parent unit. However, in microbiology, reorganizing and renaming taxonomic

units may induce confusion over the identity of microorganisms with a medical impact,

like pathogens. For instance, the Shigella genus is an “E.coli in disguise” [97] that de-

velops a characteristic form of pathogenesis residing on the pInv plasmid [67]. Shigella

members are the cause of a severe infectious disease killing hundreds of thousands peo-

ple each year: the bacillary dysentery or shigellosis [159]. Because E.coli can also cause

similar symptoms, the current taxonomic classification will not change to avoid confu-

sion in a medical context. Another example is the species belonging to Bacillus cereus

group. They present 16S rRNA sequence similarities around 99-100% [15], higher than

the previously described 97% threshold and should be regrouped in a single taxonomic

entity. For medical reasons including the pathogenicity of some members, like Bacillus

anthracis, responsible for anthrax disease, they will not be merged in the taxonomic

tree.

1.2 Supervised learning

Generally speaking, the field of machine learning can be defined as the construction of

powerful informatics systems that can learn from observations and measures, instead

of following a list of instructions.

In this thesis, we focus on methods for supervised learning. Supervised learning

consists in the estimation of a rule between some input and output data. This rule is

inferred using noisy observations, called training examples for which we also know the

corresponding response variable. The objective is to infer the unknown relation from

training data and then, use this rule to correctly predict the output of any new input

data. Depending on the nature of the response, one can distinguish two main classes

of problem. If the output variable is discrete and represents categories, the problem is

called classification, while it is called regression when the response is a continuous real

number.

This section first provides general background and notations for supervised learning.

Then, we discuss an important concept in learning, the trade-off between approximation

and estimation. In the last part of this section, we introduce the regularization concept

for learning model under constraints.

1.2.1 Supervised learning: notations

In supervised learning, our goal is to make a model to predict an output Y in an output

space Y given an input X in an input space X . The output variable is also often called

the response variable. For the output space, we typically take Y = R for regression

tasks, or Y = {−1; +1} for binary classification problems. Regarding the input, we

will restrict ourselves to data represented by p numerical descriptors or features, hence

consider an input space X ⊆ Rp. The model is learned from the observation of a set of
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n input-output pairs, (xi, yi)i=1,...,n ∈ (X × Y)n called the training set. For clarity, it is

convenient to merge the observed inputs into a n-by-p matrix X = (xi,j)i=1,...n;j=1,...,p,

where each row is an input and each column corresponds to a feature. Similarly, we

merge the outputs into a n-dimensional vector Y = (yi)i=1,...,n ∈ Yn.

To model the input-output relationship, it is standard in statistical learning to

assume that the training examples (xi, yi)i=1,...,n are realizations of random variables

(Xi, Yi)i=1,...,n independent and identically distributed (i.i.d.) according to an unknown

joint distribution P(X, Y ) on X×Y , and that future observation will also be realizations

of independent random variables distributed according to P. Note that this unknown

distribution can be written as the product of the marginal distribution P(X), which

describes how the inputs are distributed, and of the conditional distribution P(Y |X),
which describes how an output is related to an input.

Given a function f : X → Y that deterministically predicts an output f(x) ∈ Y
for any input x ∈ X , we would like to measure its quality by how “well” it predicts

the response variable on unseen examples. For that purpose, it is useful to introduce a

loss function l : Y ×Y → R+ to measure the disagreement l(ŷ, y) between a predicted

response ŷ and a true response y, small loss values corresponding to good predictions.

We will discuss in more details standard loss function in Section 1.2.3. Given a loss

function, the risk of a predictor f : X → Y can now be defined as the expected loss it

will incur on unseen examples, namely

R(f) =
∫
l(f(X), Y )dP(X, Y ) . (1.1)

The goal of statistical learning can then be summarized as the task of using the training

set to estimate a predictor f̂ : X × Y with the smallest possible risk R(f̂).

1.2.2 Empirical risk minimization, approximation and estima-

tion errors

Ideally, the goal of statistical learning is therefore to find the predictor f ∗ that minimizes

the risk R(f) over all possible measurable functions f : X → Y , by solving the risk

functional minimization problem [169]

f ∗ = arg min
f

R(f). (1.2)

Unfortunately, since the joint probability P(X, Y ) is unknown, the risk R(f) is not

computable and f ∗ is not reachable. Instead of R(f), what we can compute from the

training data is the empirical risk :

Remp(f) = 1
n

n∑
i=1

l(f(xi), yi) , (1.3)
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which for each f is an unbiased estimate of R(f). To estimate a predictor f̂ from the

training data, the empirical risk minimization (ERM) estimator is the predictor that

minimizes the empirical risk over a pre-defined set of candidate predictors F :

f̂ = arg min
f∈F

Remp(f). (1.4)

The choice of the set of candidates F is of uttermost importance for learning. Roughly

speaking, if F is too large, for example if we consider all possible measurable functions,

then we may find complicated functions (in fact any function passing through all the

points in the training set) with minimal empirical risk, which may however make terrible

predictions on unseen examples. This phenomenon is called overfitting, and can be

controlled by reducing the set of candidates F . On the other hand, if F is too small,

then it may be the case that no predictor in F is a good model for the input-output

relationship, leading to poor predictors too. This situation is called underfitting. To

characterize the role played by F in controlling overfitting, it is useful to decompose

the excess risk of f̂ compared to the optimal risk of f ∗ as follows:

R(f̂)−R(f ∗) = [R(f̂)−min
f∈F

R(f)] + [min
f∈F

R(f)−R(f ∗)] (1.5)

= estimation error + approximation error. (1.6)

Here, the estimation error is due to the difficulty of approximating the true risk by

the empirical risk with a limited amount of training data, while the approximation

error is induced from approximating f ∗ with a restricted model space F that does not

necessarily contain f ∗. Intuitively, this error decomposition is similar to the classical

bias-variance trade-off with the estimation error playing the role of the variance and

the approximation error playing the role of bias. In this setting, a model selected in a

restricted set F does not fit the data well and is biased. On the other hand, a model

selected on a complex and large set of functions does not generalize its predictions if

small changes to the data distribution occur: this is a high-variance solution. Figure 1.4

illustrates the evolution of training error (red) and generalization error on new data

(blue), as functions of the estimated model complexity. The error on the training data

can always be decreased by using complex models that overfit the dataset, inducing

poor generalization performances. We represent with a black dot, the optimal model

in the sense that it minimizes the test error which is our goal. With high-dimensional

data, the estimation error can easily dominate the approximation error if F is not

drastically controlled. This explains to some extent why simple models such as linear

predictors are popular and successful in many applications of machine learning, and are

the standard models in many algorithms such as linear regression, logistic regression,

or support vector machines [50].
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Figure 1.4: Bias-Variance trade-off. The prediction error on the training data
(dotted red line) monotonically decreases with more complex models. For those models,
the error made on new data (blue) illustrates the problem of overfitting with high error
values for “too complex” models. An optimal model in terms of a trade-off between
bias and variance could be the one with the minimal generalization error (black dot).

1.2.3 The choice of a loss function

The definitions of the risk (1.1) and of the empirical risk (1.3) depend on the choice

of a loss function l, which we now discuss. Perhaps the most intuitive notion of risk,

particularly for classification problems, is to count the number of mistakes made by

the model when predicting outputs for new data. The corresponding loss function is

called “gold-standard” or “0-1” loss and can be formulated as follows

l0−1(y, f(x)) =

0 if f(x) = y,

1 otherwise.

Although this loss function is intuitively appealing, it is rarely used because it leads to

computationally difficult optimization problems when we want to solve the empirical

minimization problem (1.4), due to its non-convexity. Instead, it is common to con-

sider convex surrogate loss functions, which lead to empirical risks which are convex

functionals of f and can efficiently minimized. Remember that a function h : Z → R

11



over a convex set Z is convex if [137]

∀z1, z2 ∈ Z,∀t ∈ [0, 1] : h(tz1 + (1− t)z2)) ≤ th(z1) + (1− t)h(z2). (1.7)

In the case of binary classification (Y = {−1,+1}), the hinge loss is defined as

lhinge(y, f(x)) = max(0, 1− yf(x)). (1.8)

It is a convex loss used in particular in the support vector machine algorithm [50].

More details are given in Section 1.3.1.

Another convex loss function, commonly used in classification, is called logistic,

because its empirical risk is linked to the log-likelihood of the logistic regression. It is

defined as

llog(y, f(x)) = ln(1 + exp(−yf(x))). (1.9)

The hinge and logistic loss functions are convex surrogates for the l0−1 function in

binary classification. For regression (Y = R), let us mention the popular squared error

loss function, because of its importance in linear regression problems, such as least

squares regression. It is defined as

lsquared(y, f(x)) = (y − f(x))2. (1.10)

Note that the squared error loss can also be used in classification settings, for example,

by rounding an estimated output to its closest integer.

Figure 1.5 shows the four loss functions described, as a function of the margin

m = yf(x). Apart from the squared loss which is clearly different, the hinge and

logistic loss functions behave as convex versions of the 0-1 loss. We also note that the

logistic loss is softer than the hinge loss which is non-differentiable for yf(x) = 1.

1.2.4 Regularized methods and model interpretability

In Section 1.2.2, we explained the need to restrain the set of candidate functions F in

order to avoid overfitting and balance the estimation and approximation errors. We

also mentioned that linear predictors are frequently used in machine learning problems,

for their simplicity and performance. For that reason, we consider these models in the

following sections. Formally, a function f(x) is a linear function of x = (x1, . . . , xp) ∈
Rp if it can be written as

fw(x) = w>x =
p∑
i=1

wixi

for a weight vector w ∈ Rp. In this setting, the empirical risk minimization problem

(1.4) is equivalent to

ŵ = arg min
w∈W

Remp(fw) , (1.11)
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Figure 1.5: Loss functions. The squared (gold), logistic(red), hinge (blue) and 0-1
(black) losses are depicted in this figure.

where the set W is a subset of Rp. A standard way to define W is through a

penalty/regularizer function Ω : Rp → R, as follows:

ŵ = arg minw∈Rp Remp(w)
s.t. Ω(w) ≤ µ ,

(1.12)

where µ ∈ R+. Interestingly, under weak assumptions on the convexity of the loss

function l and of the penalty Ω, the Lagrange multiplier theory [25, Section 4.3] tells

us that if ŵ is the solution of (1.12) for a certain µ > 0, there exists λ ≥ 0 such that

ŵ is also a solution of the regularized problem:

min
w∈Rp

Remp(w) + λΩ(w). (1.13)

This result allows some flexibility in the way to present the problem (1.11): the con-

strained and the regularized formulations. Even if there is no direct mapping between

the two constants µ and λ, they play an inverse role in the regularization of w. When

µ = +∞ (resp. λ = 0), there is not constraint on w and W = Rp. On the contrary, if

µ = 0 (resp. λ = +∞), the only feasible solution is the zero vector. In the following

paragraphs, we detail some regularization approaches inducing suitable properties on
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w, such as smoothness, sparsity, or more complex structured constraints.

Rigde regression

We recall that the least squares estimator which minimizes

min
w∈Rp

1
2

n∑
i=1

(fw(xi)− yi)2 = min
w∈Rp

1
2‖Y −Xw‖2

2

is given by (X>X)−1X>Y, and that the problem is ill-posed when p > n in the sense

that it has multiple solutions. Ridge regression was proposed by [72] to solve the least

squares problem when p > n, by adding a `2-norm penalty to the standard least squares

problem:

ŵ = arg min
w∈Rp

1
2‖Y −Xw‖2

2 + λ

2

p∑
i=1

w2
i . (1.14)

The solution of the problem (1.14) is indexed by the regularization parameter λ and is

now seen to be

ŵridge = (X>X + λIp)−1X>Y, (1.15)

where Ip denotes the identity matrix in Rp×p. Although the main motivation for ridge

regression was historically to reduce numerical issues when inverting X>X by adding a

positive ridge on the diagonal of the matrix, it is also beneficial for statistical reasons

by controlling the estimation/approximation error balance with the penalty function

Ω(w) = ‖w‖2
2. This regularization has also been applied to classification learning tasks

with other loss function, like support vector machines in the case of the hinge loss [50].

Sparsity-inducing penalties

The trade-off between model complexity and its generalization to new data has also

been studied through feature selection and sparse models, that is, by estimating pre-

dictors that only take into account a subset of the features. Sparse models are popular

because the selection of a smaller feature set can make the model more interpretable,

but also because constraining a model to use only a limited number of features is a way

to fight overfitting by controlling the complexity of the class of candidate models. A

popular formulation to infer sparse linear models in a computationally efficient frame-

work is the Least Absolute Shrinkage and Selection Operator (Lasso) method [165],

which is similar to the ridge regression (1.14) but regularizes the squared error by an

`1-norm regularization instead of an `2-norm:

ŵLasso = arg min
w∈Rp

‖Y −Xw‖2
2 + λ

p∑
i=1
|wi|, (1.16)

where λ ≥ 0 and |.| denote the absolute value function. Like for ridge regression, the

Lasso solution converges to the least squares solution when λ goes to zero. Figure 1.6
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shows the Ridge (left) and Lasso (right) geometrical interpretations in dimension 2. In

each panel, the grey region corresponds to the constraint set {‖w‖ ≤ 1} and the ellip-

tical contours are the least squares error for different solutions. The optimal solution

of the constrained problem is represented with a red dot, as the first contour meeting

the constraint set. For the Lasso regression, the diamond shape of the constraint set

leads to a solution at a corner, where the first coordinate w1 is equal to zero, while it

can not be the case for the ridge regression, due to its circular shape.

●
ω OLS

●

ω ridge

●
ω OLS

●

ω Lasso

Figure 1.6: Geometry of Ridge and Lasso regressions. Left: the Ridge constraint
w2

1 + w2
2 ≤ 1. Right: the Lasso constraint |w1|+ |w2| ≤ 1. The elliptical contours rep-

resent some residual sums of squares. the minimization of the residual sum of squares
according to the constraint corresponds to the contour tangent to the grey shape. In
the Lasso case, the solution (red) occurs sometimes at a corner and corresponds to a
zero coefficient in w (here, the first coordinate).

Although Lasso is performing optimally in high-dimensional settings [22], it is

known to have stability problems in the case of strong correlations between the fea-

tures [186]. For instance, the Lasso will randomly select one variable among a group

of highly correlated variables.

Recently, many methods have been proposed to incorporate more information about

the underlying structure linking the variables. To name a few, the elastic net [186]

combines the `1 and `2 norms to ensure the joint selection of the correlated features,

but does not explicitly take into account the actual correlation structure if it is known.

The group Lasso [185] and its overlapping version [81] consider pre-defined subgroups

of features and regularize the sum of the `2 norms of these groups. These approaches

require a prior knowledge on the groups composition. If the correlation structure is

suspected but unknown, the k-support norm was proposed by [9] as an extension of

the elastic net, that consider all the possible overlapping groups of size k.

In Chapter 3, we introduce a new regularized approach useful when looking for
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orthogonal or disjoint groups of features through multiple classification tasks.

1.2.5 Solving the empirical risk problem

The empirical risk minimization problem (1.4) aims to find a model w that minimizes

the average loss on the training examples. In this section we discuss practical algorithms

to solve this problem, when the loss function is convex. While any convex optimization

problem may in theory be solved by general-purpose techniques like interior point

methods, such techniques are computationally heavy in high dimensions and first-

order methods such as gradient or stochastic gradient techniques are often preferred

in machine learning. For simplicity, we consider unregularized problems where Ω ≡ 0
in this section, the extension to regularized problem being relatively straightforward

[147].

Gradient descent (GD)

In order to solve this optimization problem, several papers, like [143], proposed a

gradient descent minimization. Considering that the gradient of the empirical risk

(1.3) is available for each training point, each iteration updates the weight vector w

from the previous step:

wt+1 := wt −
γt
n

n∑
i=1
∇wl(w>t xi, yi), (1.17)

where γt is a constant or decreasing parameter. Results in [55] demonstrate that,

under conditions on the starting point w0 and the choice of γt, this algorithm can

achieve linear convergence rates to the optimum (i.e., the distance between wt and

w∗ decreases like exp(−t)). Although the convergence is slower than second-order

methods like Newton-Raphson in terms of number of iteration, first-order methods

that only require a gradient estimation at each iteration are faster in practice.

Stochastic gradient descent (SGD)

Stochastic Gradient Descent can be thought of as a simplification of classical gradient

descent, particularly useful when the number of training examples n is very large [26].

Indeed, in the gradient descent scheme, each iteration (1.17) relies on the computation

of an average value over all the examples taking a time proportional to n, which can be

prohibitive when n is very large. At each iteration, SGD estimates the gradient using

a single and randomly picked example instead of computing a gradient on the whole

training set:

wt+1 := wt − γt∇wl(w>t xt, yt), (1.18)

where (xt, yt) is the training point randomly picked at the step t. Very often, the

training set is randomly permuted and the training examples are picked cyclically.
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Those cycles are also called passes or epochs.

In terms of convergence speed, this approach is slower than the classic gradient

descent with a convergence speed in 1
t

at best [101]. Intuitively, SGD is able to converge

as fast as gradient descent to an optimal neighborhood, but the gradient estimation on

a single training point induces some variations around the optimum. However, each

SGD iteration is very fast and efficient to implement, since it only requires looking at

one training point at a time. In addition, the large amount of data available in many

domains (e.g., health care, public sector administration, personal location data,...[111])

keeps increasing and some recent works (e.g., [131]) even consider that the training set

is virtually infinite. In this setting, on-line learning algorithms consider the training

set as a data streaming and perform a single pass over the available examples. With a

infinite number of examples and an allowed training time tmax, one can run SGD on as

many training points as possible before the imparted time, or one can select a subset

of the training set that can be processed by a standard gradient descent, in memory

and time. Theoretical results proposed in [28] indicate that the most efficient option

is to use the maximal number of different examples with an on-line algorithm. Indeed,

even if the convergence of the GD algorithm is better than SGD, the total number

of examples considered by SGD will be higher than GD. Interestingly, considering a

infinite training set is equivalent to drawing the examples according to the unknown

probability distribution P(X, Y ). So, instead of minimizing an empirical risk Remp with

a finite training set, the on-line learning algorithm will directly minimize the expected

risk R. We refer the interested reader to a detailed study of the GD and SGD properties

[27].

1.3 Classification

In this section, we continue our introduction to machine learning with a particular focus

on classification problems, and review in particular various techniques that implement

or not the regularized empirical risk minimization principle.

1.3.1 Binary classification

We first consider the simple case of discriminating only two classes, meaning that the

output space Y is restrained to {−1,+1}. The goal of binary classification is to find a

decision rule which may be used to separate the inputs Xi belonging to the different

class labels Yi. This can be interpreted as computing the posterior probabilities p(y|x)
for y ∈ {−1,+1} and choosing the maximal value.

Fisher Linear Discriminant

The Fisher Linear Discriminant described in [124] is one of the simplest classification

algorithms. The idea is to find the best direction w which maximizes the interclass
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variability and minimizes the intraclass variability. The variability between the classes

SB is defined as (µ−1− µ+1)(µ−1− µ+1)>, where µ−1 (resp. µ+1) is the mean value for

the class “-1” (resp. class “+1”). The variability within the classes SW is defined as

SW =
∑

C∈−1,+1

∑
i∈C

(xi − µC)(xi − µC)>. (1.19)

Finding the optimal direction w is equivalent to solve the following problem

ŵ = arg min
w∈Rp

w>SBw

w>SWw
, (1.20)

which can be computed by using a simple procedure based on the Lagrangian formu-

lation. To predict a new data point with Fisher Linear Discriminant, one calculates

the distance from the point to the means of the projections of the training classes on

the direction ŵ and returns the closest class. There is also a weighting scheme that

minimizes the bias induced by unbalanced training classes.

k Nearest Neighbours

The k Nearest Neighbours (k-NN)[51] relies on a more local classification than the

Fisher Linear Discriminant. A new data point is classified according to the predomi-

nantly represented label in a neighbourhood of size k. The k closest neighbours depend

of the choice of a suitable distance, which by default it often the Euclidean distance.

Nearest Prototype

In the presence of a large training dataset, computing all the distances between a

new point and the training examples can be computationally expensive for the k-NN

algorithm. An alternative proposed in [42] and called Nearest Prototypes consists in

summarizing each class label by a small subset of training points: the prototypes. It

is also possible to define a class centroid as the average prototype (Nearest Centroid

approach). Here, the classification of a new data point only requires the computation

of a distance value per class.

Decision tree

The Decision Tree method [33] constructs a tree structure by recursively separating

the training points in subsets. In each non-terminal node, the algorithm determines,

on the subset of training data affected to this node, a decision rule of the form Xi < ci,

where Xi corresponds to a particular variable describing the input data and ci is a

constant threshold value. There also exists some extensions that consider decision rule

with linear combinations of the input variables, instead of a single variable. Based on

this rule, each training point can be affected to one of the two children nodes, until it

comes to a leaf node, where the prediction is made. The optimization of each decision
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rule generally relies on a criterion which maximizes the homogeneity within each child

node and the heterogeneity between the two children nodes. Let us introduce some

more notations to described such criteria. We denote by Nm the number of training

observations affected to the node m, by Rm ⊂ Rp the subspace described by the decision

rule at the node m, and by pmk, the proportion of training points belonging to the class

k and affected to the node m:

pmk = 1
Nm

∑
xi∈Rm

I(yi = k). (1.21)

The predominantly represented class in the node m is denoted by k(m) = arg maxk pmk.
The main criteria used to optimize the decision rules at each node include:

• Misclassification error:
1
Nm

∑
xi∈Rm

I(yi 6= k(m)) = 1− pmk(m)

• Gini index [63]:
∑
k 6=k′

pmkpmk′ =
K∑
k=1

pmk(1− pmk)

• Cross-entropy/deviance:−
K∑
k=1

pmk log pmk.

Random Forests

Random forests [32] is a learning method that combines multiple decision trees. For

each tree construction, a subset of training examples is randomly sampled, as it is done

in Bagging [31], and considered as the new training set for this tree. In addition, the

cut at each node is usually optimized over a random subset of the features. For the

prediction of a new data point, the data is passed through all decision trees, each voting

once, and the output is the most popular class.

Naive Bayes Classifier

A Naive Bayes (NB) classifier is based on applying Bayes’ theorem assuming that all

features in the input space are independent of each other. To label a new data point x,

the posterior probability of class Ci ∈ {−1,+1} given x is P (Ci|x). The decision rule

of the Bayes classifier is to choose the class Ĉ, with the largest posterior probability.

Ĉ = arg max
i

P (Ci|x). (1.22)

Applying the Bayes rule, the posterior probabilities P (Ci|x) can be calculated by:

P (Ci|x) = P (x|Ci)× P (Ci)
P (x) , (1.23)

where P (x|Ci) is the probability of observing x in the class Ci, P (Ci) is the prior

probability of observing class Ci and P (x) is the unconditional probability of observing
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x. Because P (x) is the same for each Ci, the problem (1.22) is equivalent:

Ĉ = arg max
i

P (x|Ci)× P (Ci). (1.24)

Assuming conditional independence between each feature, the class-conditional proba-

bility is the product of p individual probabilities:

P (x|Ci) =
p∏
j=1

P (xj|Ci). (1.25)

In the case of discrete features (like the ones in document classification), those individ-

ual probabilities P (xj|Ci) correspond to the maximum-likelihood solution of a multi-

nomial model [132] and are typically estimated by counting the overall proportion of

each feature xj in the Ci class members:

P (xj|Ci) = #{xj ∈ Ci}
#{x ∈ Ci}

. (1.26)

Generally, one estimates P (Ci) as the proportion of examples belonging to the class

Ci in the training set. Under the assumption that all (P (Ci))i are equal, the scoring

function (1.24) can be simplified :

Ĉ = arg max
i

p∏
j=1

P (xj|Ci). (1.27)

Support vector machine (SVM)

SVM have met significant success in numerous real-world learning tasks, including text

classification [50, 85]. In its original form, the SVM algorithm is a binary classification

algorithm. It aims at building a classification rule allowing to classifying instances from

a space X as positive or negative. In other words, the SVM algorithm seeks to build a

hyperplane separating the space X in two half-spaces. In the following we will consider

the usual case where X is a standard Euclidean vector space, but we note that SVM

can be generalized to non-vector spaces (e.g., sequences or graphs) using kernels [3].

To learn the function f , the SVM algorithm seeks to correctly classify the training

data while maximizing the margin of the hyperplane, which is inversely proportional

to the norm of the vector w. These two criteria are hard to fulfill simultaneously, and

in practice the SVM algorithm achieves a trade-off between these two objectives. This

trade-off is controlled by a parameter usually denoted as C, and the SVM solution is
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obtained by solving the following optimization problem:

min
w,b,ξ

1
2‖w‖

2 + C
n∑
i=1

ξi (1.28)

such that : (1.29)

ξi ≥ 0, ∀i (1.30)

yi(〈w, xi〉+ b) ≥ 1− ξi, ∀i, (1.31)

where (ξi)i are called slack variables and take values greater than 1 only for misclassified

points. The standard SVM formulation is a regularized problem (1.2.4), where the

penalty is the `2-norm and the loss function is the hinge loss. The C parameter plays

the same role as 1/λ.

In Chapter 2, we describe more complex and structured SVM formulations em-

bedding a regularization based on a hierarchical tree distance between the different

classes.

1.3.2 Multiclass extension

One may consider a more complex case, where the possible affectations for a input

x belong to an extended set of labels Y = {1, ..., K} Interestingly, all the previously

described approaches can be extended to the multiclass case [5]. In some cases, like

for example for k-NN or decision tree classifiers, this extension is natural and simply

replacing the set of labels {−1,+1} by 1, ..., K is sufficient. In other cases, some specific

strategy must be implemented, as summarized in the rest of this section.

Multiclass SVM

For the SVM approach, reformulations of the binary problem (1.28) have been proposed

to handle the multiclass case [176, 30, 52, 166]. However, the formulations in [176, 30]

result in a single constrained problem that can be unfeasible for a large K, while those

in [52, 166] are more efficient for a large number of classes. These approaches generally

learn simultaneously a set of class specific weight vectors wk ∈ Rp, for k = 1, ..., K. To

do so, the idea is to learn the weight vectors from the training dataset such that the

highest scores are given by the scoring functions of the appropriate class. Formally, we

want to achieve the following criterion:

〈wyi
, xi〉 ≥ 〈wk, xi〉 for k ∈ Y \ yi, and i = 1, ..., N,

where “\” is the set exclusion operator. To efficiently solve this problem, we adopt a

SVM-like formulation where we enforce a margin in the above constraints

〈wyi
, xi〉 ≥ 〈wk, xi〉+ 1 for k ∈ Y \ yi,
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but tolerate margin violations

〈wyi
, xi〉 ≥ 〈wk, xi〉+ 1− ξi with ξi ≥ 0, for k ∈ Y \ yi.

Altogether, this gives the following optimization problem [52]:

min
{wk}k=1..K ,ξ

1
2

K∑
k=1
‖wk‖2 + C

n∑
i=1

ξi (1.32)

such that : (1.33)

ξi ≥ 0, ∀i (1.34)

〈wyi
, xi〉 ≥ 〈wk, xi〉+ 1− ξi, ∀i, ∀k ∈ Y \ yi. (1.35)

Note that the prediction step uses the decision rule Ĉ(x) = arg maxk〈wk, x〉.
This extension of the binary SVM to a multiclass setting requires to change the

original formulation and in some cases, there is no evidence that a single mathematical

function correctly separates all the represented classes [2]. Furthermore, the most

standard and easiest way to address multiclass classification problems with SVMs is to

combine binary classifiers into a multiclass classification rule, as explained below.

One-versus-all (OVA)

The one-versus-all scheme [135] consists in learning a set of K binary SVMs trained to

separate each of the K classes from the K−1 other ones, leading to a set of hyperplanes{
wk
}
k=1,...,K

, and the class predicted for the instance x is the one obtaining the highest

score, as in the multiclass formulation. Compared to the multiclass scheme, we end up

withK problems instead of a single optimization problem, with however a lesser number

of constraints than the unique multiclass problem. The benefit that can be expected

by the multiclass formulation with respect to the OVA scheme is to obtain better

classification performances due to a better calibration of the K scoring functions used

to make the prediction. Indeed, in the one-versus-all scheme, no mechanism explicitly

enforces the scoring functions of a given class to be higher to those of other classes

(and in particular to similar ones). However, [136] provides performances comparable

to multiclass approaches.

One-versus-one (OVO)

The one-versus-one scheme [69] is also called pairwise classification. A set of
K(K − 1)

2
binary SVMs is trained to distinguish between every pair of classes, and the class

predicted for an instance x is the one obtaining the highest number of votes (a number

between 0 and K − 1) according to these classifiers. Results in [75] suggest that this

approach can perform better than the OVA formulation.

22



Error-Correcting Output-Coding (ECOC)

This approach uses the concept of error-correcting codes detailed in [56]. It works by

training a fixed N number of binary classifier that is greater than K. Each class is then

represented by a different binary code of length N . The class codes can be summarized

in a binary matrix in {0, 1}K×N , where each row is a class code. For each column of

this matrix, a classifier is learned using the zero-labeled classes as negative examples

and the other ones as positive examples. The label prediction of a new data point is

done by putting the N predictions into a binary code and by returning the closest class

in terms of Hamming distance [68] between the class codes and the predicted code.

Results reported in [56] show a better generalization ability of ECOC over the OVA

and OVO formulations.

Error-Correcting Tournaments (ECT)

The multiclass formulations presented above have a running time which is O(K) [135]

and does not scale very well with large K classification problem. An alternative to these

strategies is described in [20] and is called Error Correcting Tournament (ECT). This

approach operates in two phases, described in the Figure 1.7. The first step consists in

m single-elimination tournaments over the K labels. For each tournament, labels are

paired at the first round and the winners of each round play a second round, and so

on. At the end of a tournament, there is a single winner: the predicted label for this

tournament. Then, given the m predicted labels, there is an “All-Star” tournament in

order to decide which winner label is the final prediction returned by the algorithm.

1 2 3 4 5 6 7 8 

1 4 6 7

7641

1 4

4 6

Winner: 1

Winner: 4

Final: 4

Figure 1.7: Error-Correcting Tournaments. This is an example of m = 2 elimi-
nation tournaments with K = 8 classes. Each tournement has its own tree structure,
leading to different winners for the same data point ot classify. A final round between
the different tournaments winners allows to select the predicted label.
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Interestingly, this approach provides a complexity for training and test steps in

O(log(K)) which is well suited to classification problems with large number of classes.

As a side effect, the gain in computation speed for ECT is counterbalanced by decreas-

ing accuracy performances [44].

However, there is no clear evidence that, in general, a formulation is better than

the others. This suggests that the best multiclass strategy is problem dependent.

1.4 Model evaluation

In order to efficiently compare the different machine learning approaches, one needs

standard evaluation rules. In this section, we describe some of them that are used in

the next three chapters. As stressed in Section 1.2.2, a good predictive model should

demonstrate high generalization on a new data set.

1.4.1 Accuracy measures

Let us assume that we have a so-called test set of n input-output pairs that was not used

to train a predictor f̂ . Here we discuss how it can be used to estimate the performance

of f̂ on future data.

The performance indicators we consider obviously depend on the learning task. In

a regression context, like in Section 3.6.1, we can compute the average l2 loss error,

also called Mean Squared Error (MSE)

MSE(Y, Ŷ ) = 1
n

n∑
i=1

(ŷ − y)2, (1.36)

where Y = (y1, ..., yn) is the vector of actual responses and Ŷ = (ŷ1, ..., ŷn) is the vector

of values estimated by the predictive model.

For the classification tasks evaluation, we may consider several indicators. First, a

common measure is the correct classification rate, also called micro accuracy [146, 110].

It is defined as the proportion of correctly labeled examples for a given dataset and

directly involves the “0-1” loss

1
n

n∑
i=1

I(ŷi, yi), (1.37)

where I is the indicator function equal to 1 if the compared terms are equal and 0

otherwise. In the multiclass classification context, unbalanced class sizes may induce

a bias in the micro-accuracy score: large classes dominate small classes in the overall

correct classification rate. To put similar weights on small classes, [110] proposed a

macro accuracy score
1
K

∑
c∈C

1
Nc

∑
i∈c

I(ŷi, yi), (1.38)
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where K is the number of classes in C and Nc is the number of data points belonging

to the class c. In Chapter 4 experiments, we also use an alternative indicator by using

a median value which is less sensitive to the outliers.

medianc∈C

(
1
Nc

∑
i∈c

I(ŷi, yi)
)
. (1.39)

Other specific performance indicators are considered in the following chapters,

where they embed problem structure, like a tree distance in Section 2.4 or sparsity

patterns in Section 3.6.2. Details are given in the corresponding sections.

1.4.2 Model selection and model assessment

As described in Section 1.3, there exists a plethora of methods to build predictive

models from a training set of input-output pairs. Finding the best predictive model

among all the possible models and the corresponding hyper-parameters is an important

step called model selection. In general, if the amount of available data is large enough,

one should split the dataset in independent parts [70, Chap. 7] to avoid overfitting

described in Section 1.2.2. The holdout method considers three disjoint subsets: the

training set, the validation set and the test set. The training set is used to learn

different models corresponding to different methods or parameters. An estimation of

the prediction error is made on the validation set and an optimal model is selected.

During this evaluation, the test set is kept aside and is used at the end to estimate the

generalization error of the selected model.

This approach has two main drawbacks, as discussed in [91]. Under the assumption

that the more data an algorithm processes, the higher the accuracy is, the holdout

method is a pessimistic estimator because only a fraction of the available data, com-

monly 2/3, is used to train the models. In addition, the holdout method relies on

a single random split and the estimation of the error rate can be misleading given a

fortunate or unfortunate split.

1.4.3 Cross-validation procedures

Other approaches have been proposed to better use the available data and estimate the

prediction error of models. Probably the most widely used method is cross-validation,

where the dataset is split in N balanced and exclusive folds, and we operate a rotation

over these subsets with N − 1 folds used for learning and one fold for evaluating, as

illustrated in Figure 1.8. This procedure returns N estimated accuracy values that

are averaged to obtain the final prediction error. However, this value is estimated on a

single split of N folds. The complete cross-validation estimation [91] is the average over

all possible N folds splits and is too expensive. For practical reasons, one commonly

consider multiple random splits. A particular case where N = n is known as leave-

one-out (LOO) and presents a low bias with respect to the actual prediction error but
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a possible high variance. Indeed, the N training sets only differ of one single instance

and are very similar. In addition, learning n different models over the whole dataset

can be a computational burden. Good compromise values, like N = 5 or N = 10 are

proposed in [34, 91].

N

Figure 1.8: Cross-validation for model selection. This is an example of N = 5
folds cross-validation strategy. The dataset is splitted in N subsets and by rotation
over these subsets, N different models are learned using N − 1 folds and an estimation
of the prediction error is computed on the remaining fold.

In the classification context on unbalanced datasets, unfortunate random splits can

lead to remove all the members of a given class from some training folds. To overcome

this issue, one may consider a stratified N -fold cross-validation, where the different folds

contain approximately the same proportions of class members as the whole dataset.

1.5 Contribution of this thesis

1.5.1 Microbial identification based on mass-spectrometry data

Identification of microorganisms using proteomics fingerprints obtained with mass-

spectrometry experiments can be viewed as a multiclass classification problem. The

goal of a trained model is to correctly discriminate hundreds of different microbial

species present in a reference database made of labeled mass-spectrometry data. When

using a VITEK-MS instrument, each raw mass-spectrum is pre-processed and repre-

sented as a vector of intensity peaks belonging to a high-dimensional space of more

than thousand variables. These data cannot be analyzed by human experts due to the

large amount of parameters. Previous works [54] have already proved that building

a smart microbial identification system by using machine learning algorithm is a rel-
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evant approach. In this first study, we evaluate the potential of structured machine

learning approaches by embedding the taxonomic organization of the microbial species

and compare them to standard learning methods. On a challenging internal real-world

dataset, we investigate the gain in accuracy when adding a priori information.

1.5.2 Jointly learning tasks with orthogonal features or dis-

joint supports

Common multi-task learning problems involve learning several related predictive mod-

els, enforcing some form of similarities between the different models.

In this second study, we investigate the opposite problem where one constrains the

different models to be orthogonal. This way, we jointly learn unrelated tasks. Previous

works demonstrate the relevance of such approaches for emotion detection on human

faces [139].

We investigate the regularization developed in [184] and propose more general for-

mulations involving non-convex penalties. We provide an evaluation on synthetic and

real-world datasets. A natural extension of the previous approach consists in combin-

ing orthogonality and sparsity constraints. It leads to models with disjoint supports,

meaning that if a feature belongs to a model task, it is not used by the others models.

1.5.3 Taxonomic assignation of sequencing reads from metage-

nomics samples

Metagenomics characterizes the microbial diversity by sequencing of DNA directly from

an environmental sample. Due to the large volume of metagenomics datasets, one

of the main challenging steps is the taxonomic sequence assignment, also called bin-

ning. In this work, we investigate the potential of modern, large-scale machine learning

implementations for taxonomic affectation of next-generation sequencing reads. The

resulting models are competitive with well-established alignment tools for problems

involving a small to moderate number of candidate species, and for reasonable amount

of sequencing errors. Our results suggest, however, that compositional approaches are

still limited in their ability to deal with problems involving a greater number of species.

We finally confirm that compositional approach achieve faster prediction times.
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Chapter 2

Benchmark of structured machine

learning methods for microbial

identification from

mass-spectrometry data

This chapter has been submitted under a slightly different form as [172], a joint work

with Pierre Mahé, Jean-Baptiste Veyrieras and Jean-Philippe Vert.

Abstract

Microbial identification is a central issue in microbiology, in particular in the

fields of infectious diseases diagnosis and industrial quality control. The concept

of species is tightly linked to the concept of biological and clinical classification

where the proximity between species is generally measured in terms of evolution-

ary distances and/or clinical phenotypes. Surprisingly, the information provided

by this well-known hierarchical structure is rarely used by machine learning-based

automatic microbial identification systems. Structured machine learning meth-

ods were recently proposed for taking into account the structure embedded in

a hierarchy and using it as additional a priori information, and could therefore

allow to improve microbial identification systems.

We test and compare several state-of-the-art machine learning methods for

microbial identification on a new Matrix-Assisted Laser Desorption/Ionization

Time-of-Flight mass spectrometry (MALDI-TOF MS) dataset. We include in

the benchmark standard and structured methods, that leverage the knowledge

of the underlying hierarchical structure in the learning process. Our results show

that although some methods perform better than others, structured methods do

not consistently perform better than their “flat” counterparts. We postulate that

this is partly due to the fact that standard methods already reach a high level
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of accuracy in this context, and that they mainly confuse species close to each

other in the tree, a case where using the known hierarchy is not helpful.
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Résumé

L’identification microbienne est une étape clé en microbiologie, et tout par-

ticulièrement dans les domaines du diagnostic de maladies infectieuses et du

contrôle qualité en industrie. Le concept d’espèces microbiennes est étroitement

lié à la notion de classification biologique et clinique, où la proximité entre les

espèces se mesure généralement en termes de distances évolutives et/ou de phé-

notypes cliniques. Étonnamment, l’information fournie par de telles structures

hiérarchiques est rarement utilisée lors de la construction de systèmes automa-

tiques d’identification microbienne. Récemment, des approches structurées d’ap-

prentissage statistique ont été proposées pour prendre en compte la structure

hiérarchique qui organise les classes et l’utiliser comme une information a priori

afin d’améliorer les systèmes d’identification microbienne. Dans cette étude, nous

avons évalué plusieurs approches d’apprentissage faisant références, sur un jeu

de données contenant des spectres de masse issus de la technologie MALDI-TOF

(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight). Nous donnons les

détails sur la manière de comparer au mieux des approches standards et struc-

turées, qui incorporent la connaissance d’une organization taxinomique dans le

processus d’apprentissage. Bien que nos résultats montrent que certaines mé-

thodes ont de meilleures perfomances, utiliser des méthodes structurées n’amé-

liore pas les résultats sur le jeu de données considéré. Nous supposons que cela

provient du fait que les méthodes standards atteignent un très bon niveau de

performance dans ce contexte, où les confusions dans la classification concernent

généralement des couples d’espèces taxinomiquement proches. Ce type d’erreur

n’est pas corrigé par les méthodes structurées considérées dans cette étude.

2.1 Introduction

Microbial identification is the task of determining to which species a microorganism

isolated from a clinical or industrial sample belongs. It plays a central role in the

diagnosis of infectious diseases and industrial quality control. In the clinical setting,

identification is often the first step towards a finer characterization of the microorgan-

ism, aiming in general to establish its virulence and/or antibiotic resistance profiles,

which is ultimately used by the clinician to prescribe a therapy.

Since the proof of concept of bacterial identification with MALDI-TOF MS [8], ,

this high-throughput technology has been improved up to a genuine paradigm breaking

technology in microbiology, allowing to quickly, cheaply and efficiently characterize a

microorganism [24, 43, 62, 162]. Starting from an isolated colony of the targeted mi-

croorganism, MALDI-TOF MS provides a snapshot of its proteomic content. Such a

proteomic fingerprint is highly species specific, and can be used to identify a microor-

ganism by matching it with a reference database of annotated fingerprints [167].

At the basis of MALDI-TOF MS identification system is therefore a software com-

ponent in charge of finding the closest match between the fingerprint of the unknown
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microorganisms and the reference fingerprints of the database. From the data analysis

perspective, this can be formalized as a multiclass classification task. This learning

task presents several challenging issues. First, MALDI-TOF mass spectra are mea-

sured on several tens of thousands of mass to charge channels, and although they are

generally pre-processed in order to extract their predominant peaks [49], the resulting

peak lists are still high-dimensional vectors. Moreover, current commercial systems

like the Biotyper (Bruker Daltonics, Germany), LT2 (Andromas, France), or VITEK-

MS (bioMérieux, France) address several hundreds of species [113], which constitutes

a relatively massive multiclass problem. Finally, the number of observations per class,

that is, of representative strains per species, is often limited, which leads to strongly

unbalanced datasets. On the other hand, the classes of the problem correspond to

microbial species which can be organized into well known hierarchical structures, gen-

erally defined in terms of evolutionary distances and/or phenotypic differences. Such

tree structures provide a rich source of information that could be added as prior knowl-

edge within the training of automatic microbial identification systems. Several “struc-

tured”machine learning methods were indeed recently proposed for taking into account

the structure embedded in a hierarchy and using it as additional a priori informa-

tion [73, 166, 158, 58], and could potentially be used to train microbial identification

systems. Surprisingly, however, this possibility has not been investigated to our knowl-

edge, and current systems implement “flat” multiclass classification algorithms that do

not take into account the known tree structure. In this paper, we evaluate the relevance

of structured machine-learning methods in the context of microbial identification from

MALDI-TOF mass spectra. For that purpose, we use the MicroMass dataset [108] to

benchmark several “flat” and “structured” machine learning techniques.

2.2 Benchmark dataset

The dataset considered in this benchmark is described in Table 2.1. It involves 20

Gram positive and negative bacterial species covering nine genera. Pathogen strains of

Bacillus cereus cause foodborne illness, but this bacterium is also use as probiotics for

animals. Bacillus thuringiensis is a non-human pathogen and produces toxins which

are very useful in insecticides design. Both Citrobacter braakii and Citrobacter freundii

are opportunistic pathogens that represent around 30% of nosocomial infections [177].

The bacterium Clostridium difficile is known to survive in clinical environments be-

cause of a resistance to alcohol and most hospital disinfectants [57], and thus responsi-

ble of around 30% of nosocomial diarrhea [99]. Some Enterobacter cloacae strains are

known pathogens in respiratory track infections, in particular for ventilator-associated

pneumonia. Escherichia coli is a very common bacteria covering 80% of the human

intestinal aerobic flora. However, some strains are virulent and cause urinary track

infections, kidney failures and hemorrhagic diarrhea. Although they are very close to

Escherichia coli, all Shigella genus members are human-only pathogens and causative
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agents of shigellosis (dysentery). In developed countries, Shigella sonnei is responsible

of 70% of shigellosis cases [148]. Haemophilus influenzae is an opportunistic pathogen

causing otitis and meningitis, while Haemophilus parainfluenzae is a commensal mi-

crobe of the human mouth, rarely pathogen. Among the 10 Listeria genus members,

Listeria monocytogenes and Listeria ivanovii are the two bacterial species known to be

pathogen. While the first one can cause listeriosis in human, the second one is mostly

found in ruminants. The two Streptococcus genus members are known to be genetically

close, belonging to the Streptococcus mitis group [90], even if Streptococcus mitis is a

commensal microbe in the human mouth and Steptococcus oralis is an opportunistic

pathogen. Finally, Yersinia enterocolitica is the most frequent agent causing yersiniosis

and Yersinia frederiksenii is a rarely pathogen bacteria that may cause gastrointestinal

infections [37].

Table 2.1: MicroMass dataset. This table describes the MicroMass dataset content,
in terms of used bacterial genera and species. It also provides information on the
number of bacterial strains and mass-spectra for each species.
Species name Species ID Number of strains Number of spectra
Bacillus cereus BAC.CEU 10 26
Bacillus thuringiensis BAC.THU 8 11
Citrobacter braakii CIT.BRA 9 26
Citrobacter freundii CIT.FRE 10 28
Clostridium difficile CLO.DIF 7 14
Clostridium glycolicum CLO.GLY 9 16
Enterobacter asburiae ENT.ASB 10 29
Enterobacter cloacae ENT.CLC 16 52
Escherichia coli ESH.COL 20 60
Haemophilus influenzae HAE.INF 18 50
Haemophilus parainfluenzae HAE.PAR 9 21
Listeria ivanovii LIS.ISI 9 29
Listeria monocytogenes LIS.MNC 10 31
Shigella boydii SHG.BOY 9 18
Shigella flexneri SHG.FLX 10 32
Shigella sonnei SHG.SON 10 31
Streptococcus mitis STR.MIT 10 26
Streptococcus oralis STR.ORA 9 24
Yersinia enterocolitica YER.ETC 10 27
Yersinia frederiksenii YER.FRD 10 20

This dataset was extracted from the reference database embedded in the commercial

VITEK-MS system and made public through the UCI machine learning repository1 .

Each species is represented by 11 to 60 mass spectra obtained from 7 to 20 bacterial

strains, leading altogether to a dataset of 213 strains and 571 spectra. These spectra

were obtained according to the standard workflow used in clinical routine in which

the microorganism was first grown on an agar plate from 24 to 48 hours, before some

1http://archive.ics.uci.edu/ml/datasets/MicroMass
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Figure 2.1: MicroMass hierarchical tree structure (Gram + bacteria). This
tree shows the hierarchical organization of the bacterial panel considered in this bench-
mark, that belong to the Gram + bacteria. The leaves of the tree correspond to the 8
species and their parent to the 4 genera. Internal nodes correspond to either phenotypic
(e.g. aerobic and anaerobic at the top of the tree) or taxonomic attributes.

colonies were picked, spotted on a MALDI slide and a mass spectrum was acquired.

The 20 bacterial species involved in this study and the underlying hierarchical tree

are shown in Figures 2.1 and 2.2.

We note that the tree considered in this study involves both phenotypic and evo-

lutionary traits, its uppermost level separating species into Gram positive and Gram

negative, and its two lowest levels corresponding to the species and genus taxonomic

ranks. Such a hybrid hierarchical definition is common in the context of clinical micro-

biology, where manual identification involves a succession of tests to establish several

phenotypic and metabolic properties of the microorganism to identify (e.g., Gram +/-

or aerobe/anaerobe). These properties correspond to the upper levels of the tree,

while the lower ones correspond to standard phylogenetic ranks (e.g., family, genus

and species). We also note that this dataset contains several pairs of groups of species

known to be hard to discriminate in general. This is for instance the case of the Bacillus

cereus and Bacillus thuringiensis species, which are known to belong to the Bacillus

cereus group [71], as well as the Escherichia coli species and the species of the Shigella

genus, which are often considered to belong to the same species [97]. Accordingly,

Escherichia coli and the three Shigella species involved in this dataset were gathered
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Figure 2.2: MicroMass hierarchical tree structure (Gram - bacteria). This tree
shows the hierarchical organization of the bacterial panel considered in this benchmark,
that belong to the Gram - bacteria. The leaves of the tree correspond to the 12 species
and their parent to the 5 genera. Internal nodes correspond to either phenotypic (e.g.
aerobic and anaerobic at the top of the tree) or taxonomic attributes.

in a common genus.

We note finally that we have considered in this study a peak-list representation in

which a mass spectrum is represented by a vector x ∈ Rp, where p is the numbers of

bins considered to discretize the mass to charge range, and each entry of x is derived

from the intensity of the peak(s) found in the corresponding bin. While several schemes

have been proposed to define such a peak-list representation [49], we have relied here on

the approach embedded in the VITEK-MS system, which provides a peak-list represen-

tation of dimension p = 1300, with typically between 50 and 150 peaks per spectrum.

Further details about this dataset are available in [108].

Figure 2.3 represents a clustered version of the MicroMass dataset, where the rows

correspond to 571 mass-spectra ordered according to their genus label and the columns

are the 1300 intensity peaks grouped by an unsupervised clustering step. Interestingly,

we remark block structures suggesting that some features uniquely belong to one genus

class.

2.3 Structured classification methods

In this section we provide a brief description of the various classification strategies

considered in this study. The multiclass formulation detailed in Section 1.3.2 opens

way to the development of cost-sensitive multiclass classifiers and of so-called structured
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Figure 2.3: MicroMass dataset visualization. The heatmap shows the dataset
organisation of the mass-spectra considered in our benchmark. The rows correspond
to 571 spectra ordered according to the 9 different genera/colors. The columns are the
1300 intensity peak variables grouped by an unsupervised clustering step. Each black
dot is a non-zero value in the dataset, while the light grey zones have a null signal.

classifiers, that we introduce in the two following sections.

2.3.1 Cost-sensitive multiclass SVMs

For practical applications, different errors can have different impact: it can be less

severe to mistake class A for class B than class A for class Z for instance. This is

notably the case for microbial identification which can orient therapy before antibi-

otic susceptibility results are available. Cost-sensitive classifiers distinguish between

the various types of classification errors and penalize them differently in the learning

process. The multiclass formulation can be easily modified to accommodate such a

cost-sensitive mechanism [166]. Indeed, assume that a loss function ∆ : Y × Y → R is

available2 such that ∆(y, y′) quantifies the loss, or severity, of predicting class y′ if the

true class is y, ∆(y, y′) > 0 for y 6= y′ and ∆(y, y) = 0. Such a loss function can be

leveraged in the training process through a redefinition of the constraints involved in

the underlying optimization problem, according to one of the following re-definitions

of the constraints 〈wyi
, xi〉 ≥ 〈wk, xi〉+ 1− ξi in Equation (1.32) as:

• 〈wyi
, xi〉 ≥ 〈wk, xi〉+ ∆(yi, k)− ξi in the so-called “margin-rescaling” formulation,

• 〈wyi
, xi〉 ≥ 〈wk, xi〉+ 1− ξi

∆(yi,k) , in the so-called “slack-rescaling” formulation.

Both redefinitions have the effect of adjusting the strength of the constraints according

to the loss function. In the margin-rescaling formulation, the value of the margin be-

comes proportional to the loss while in the slack-rescaling formulation, we keep a unity

2Note that in practice this loss function can be summarized as a K ×K matrix.
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margin but penalize more strongly margin violations associated to a high loss. Note

that the standard formulation corresponds to using a binary loss function: ∆(y, y′) = 1
for y 6= y′ and ∆(y, y) = 0. For practical applications, this cost-sensitive formulation

allows to leverage the training process prior information about the relationship between

the classes and/or requirements about the classification performances expected. In this

study we call this approach TreeLoss and use ∆(y, y′) as the length of the shortest

path connecting the two species in the considered tree.

2.3.2 Hierarchy structured SVMs

The structured SVM formulation of [166] enables to make a further use of the hier-

archical structure underlying the microbial identification multiclass problem. Indeed,

it does not only allow to leverage a loss function in the learning process to penalize

misclassifications involving hierarchically distant species, but it also introduces new

variables that can be further exploited by the algorithm. For the sake of clarity and

to highlight the differences between the approaches, we start by casting the multiclass

SVM model (Section 1.3.2) in the structured SVM framework.

For that purpose, we concatenate the weight vectors wk ∈ Rp for k = 1, ..., K
into a single vector W = [w1w2...wK ] ∈ Rp×K and introduce a mapping function

Λ : {1, ..., K} → RK defined as:

Λ(k) =
(

1(k = j)
)
j=1,...,K

,

where the function 1(.) is equal to one if its argument is true and zero otherwise. This

function therefore maps a label k ∈ Y = {1, .., K} to a binary vector of length K with

all but the k-th entry, which is set to 1, set to 0. Based on this function Λ, a joint

input-output representation Ψ(x, y) of the (feature vector,class label) pair (x, y) can be

defined as:

Ψ(x, y) = x⊗ Λ(y) ,

where ⊗ denotes the tensor-product operator which is defined as:

⊗ : Rp × RK → Rp×K , such that(a⊗ b)i+(j−1)p = aibj.

The above definition of Λ induces a block structure in the vector Ψ(x, y), which consists

of K repetitions of the feature vector x, with all but the y-th block set to zero, as

represented in Figure 2.4.

It is then relatively easy to see that 〈wk, x〉 = 〈W,Ψ(x, k)〉, hence that the original
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Figure 2.4: Joint mapping or Multiclass SVM. Given a example x ∈ Rp and the
associated label y, we derive a joint representation Ψ(x, y) by using the tensor product
between the input representation and the output representation. This new represen-
tation has a sparse block structure with copy of x only for the block corresponding
to label y (red). It allows to cast the multiclass SVM formulation into the structured
SVMs framework.

multiclass optimization problem ((1.32)) can equivalently be written as:

min
W=[w1w2...wK ],ξ

1
2 ||W ||

2 + C
N∑
i=1

ξi (2.1)

such that:

ξi ≥ 0, ∀i
〈W,Ψ(xi, yi)〉 ≥ 〈W,Ψ(xi, k)〉+ ∆(yi, k)− ξi, ∀i, ∀k ∈ Y \ yi,

with ∆(y, y′) = 1 for y 6= y′ and ∆(y, y) = 0.

Then the classification rule becomes:

G(x) = arg max
k
〈W,Ψ(x, k)〉, k ∈ Y = {1, ..., K} . (2.2)

Interestingly, this approach can be generalized to build predictive models consider-
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ing an output space Y presenting an arbitrary structure, thereby dramatically increas-

ing the scope of the problems that can be addressed by this approach. Owing to the

structured nature of the output space, the term structured SVMs was coined in [166].

Generally speaking, to carry out such a structured SVM approach, one has to define:

• the joint feature representation Ψ(x, y),

• the loss function ∆(y, y′) quantifying the severity of mistaking pairs of instances

of the output space,

• the algorithm in charge of computing argmaxy〈W,Ψ(x, y)〉, which is needed both

at the prediction step and during the training step. Indeed, the cutting-plane

algorithm that is typically used to solve the optimization problem underlying

structured SVMs relies on this operation to navigate in the space of constraints

that the model needs to satisfy.

In practice, the main difficulty resides in this latter step, which can be challenging if

the cardinality of the output space is large.

We now introduce a hierarchy structured-SVM formulation (Structured) that has

been applied to classifications of text documents [73, 166] or next-generation sequencing

reads [128], and that can be used for our purpose to leverage a hierarchical structure

reflecting the proximity of the bacterial species considered. We still assume that our

identification problem involves K distinct species, the classes of the above multiclass

problems, which correspond to the leaves of a taxonomy made of T > K taxa. The

output space Y considered corresponds to the whole set of taxa: Y = {1, ..., T} and its

feature representation Λ : Y → RT is defined as:

Λ(y) =
(

1(j ∈ A(y))
)
j=1,...,T

,

where the function 1(.) is equal to one if its argument is true and zero otherwise, and

A(y) denotes the set of ancestors of the taxon y: it contains the indexes of the taxa

found on the path connecting the taxon y to the root of the taxonomy. By convention,

we also include y in A(y): a taxon belongs to its set of ancestors.

In other words, the feature representation Λ(y) of the taxon y is a binary vector of

length T , in which the entries corresponding to the taxa belonging to the path from the

root to y are set to one, the other entries being set to zero. With this representation,

the output space Y can equivalently be seen as the set of paths of the taxonomy. As

shown in Figure 2.5, the joint input-output representation Ψ(x, y) = x⊗Λ(y) therefore

produces vectors of size p× T , and, as in the multiclass case because of the definition

of Λ(y) and the use of the tensor-product operator, the vector Ψ(x, y) has a block

structure. It consists of T “blocks” obtained by T repetitions of the input-space feature

representation x, where only the blocks corresponding to the entries of Λ(y) which are

equal to one are not null.
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Figure 2.5: Joint mapping for Structured SVM. Given a taxonomic tree structure
and a couple (x, y), we derive an output-space representation with a binary vector Λ(y)
where non-zero weights are the taxa presented in the y path (blue). Combined with
the input x, we obtain the joint representation Ψ(x, y) by using the tensor product
operator. This new represenation has a block structure with copies of x in the blocks
corresponding to taxa in y path, and null vectors otherwise.

Coming back to Figure 2.1, we note that nodes with a single child do not bring

any additional information than that brought by their child. In practice, they need

not to be considered in this joint feature representation and one can resort to a pruned

taxonomy in which they are discarded to reduce the computational cost. We emphasize

however than the original taxonomy should be used to define the loss function ∆. Last

but not least, we need an algorithm to compute:

arg max
y∈Y

〈W,Ψ(x, y)〉 .

Fortunately, in our case this is relatively straightforward. Indeed the cardinality

of Y is finite and relatively small: a large microbial taxonomy may involve at most

a few hundred nodes which would remain manageable in a brute-force approach to

compute the scores. Moreover, because of the block structure of Ψ(x, y), the scores can

be computed recursively in a transverse depth-first-search of the taxonomy. Indeed,
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the score of the node v ∈ {1, ..., T} is equal to the score obtained at its parent node

plus its own contribution, which is given by 〈x,wv〉, if W = [w1w2...wT ]. As a result,

recursively computing the T scores has a complexity barely above T×p, the cost needed

to compute the contribution to the overall scores of each individual node.

This approach, which we refer to as Structured below, and the cost-sensitive mul-

ticlass formulation introduced above have in common to leverage a loss function to take

into account the severity of the classification errors. This property can be expected to

increase the quality of the predictions made by these algorithms, which will be trained

to avoid “severe”, that is, high loss, classification errors. As in Section 2.3.1, we define

∆(y, y′) as the length of the shortest path connecting nodes y and y′ in the taxonomy,

hence directly define the notion of severity as the taxonomic distance.

The hierarchical extension provides however two important differences with respect

to the multiclass formulation. First, it works with an enriched joint input-output

feature representation in which additional feature variables are shared by output classes

(i.e., nodes of the taxonomy) whenever they are on the same path, and the longer they

remain on the same path, the more variables they share. This property allows to

share information between classes, which we can expect to be beneficial to the training

algorithm. Moreover, this extension offers the possibility to modify the nature of the

output space itself by considering the whole taxonomy and not the species level only.

This property should allow to algorithm to carry out prediction at various taxonomic

ranks, and hopefully classify an unknown microorganism at an upper rank than the

species one, instead of making an hazardous prediction at the species level. We note

however that this latter property is not mandatory and that one can consider leaf nodes

only to carry out prediction at the species level.

2.3.3 Cascade approach

The last SVM-based strategy we consider is a divide and conquer approach where a

SVM classifier is learned at each internal node of the tree to assign a spectrum to one of

its children. A top-down approach is then used to classify a spectrum to a leaf node by

this cascade of classifiers [158, 58]. Although any type of classifier can be considered at

each node, we chose to rely on SVM in this study. Formally, we focus on classifiers f(x)
that are built on SVM-OVA classifiers w1, . . . , wm. Training set for a given classifier

wi is made of all examples belonging to a species descending from taxon i. For the

predictions of new data, we use the recursive procedure described in [184]:

f(x) =


initialize i := 0

while node i has children

i := arg maxj∈children(i) w
T
j x

return i


(2.3)
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With the definition (2.3), the procedure always leads to predictions at leaves level that

corresponds, in our case, to species. Finally, following [18],we consider a variant of this

approach in which the tree used to define the cascade is obtained in a preliminary step

of unsupervised clustering carried out from species-specific prototypes. We refer to

this approach as Dendrogram-SVMs (DSVM) as opposed to Cascade-of-Classifiers (CoC)

when the original hierarchy is used.

2.3.4 Other benchmarked methods

Finally, we consider three methods not based on SVMs in this benchmark. Random

forest (RF) and similarity-based approaches have indeed already been successfully used

in the context of MS data classification [54, 163]. We therefore include in the benchmark

the RF method described in [32], referred to as RF, which consists in learning many

decision trees and predicting with a majority vote strategy. We also evaluate two

similarity-based approaches: a 1-nearest-neighbour (1-NN) and a 1-nearest-centroid (1-

Centroid) approach. In the 1-NN method, a new spectrum is classified in the same

class as its closest spectrum in the training set. The same classification rule is applied

in the nearest-centroid approach, the centroid of a given species being defined as its

median spectrum. These three approaches were described in Section 1.3.

2.4 Experimental setting

We evaluate the classification performance of the various methods by cross-validation,

described in Section 1.4.3. To define the cross-validation folds we take into account

the strain information. Indeed, the dataset consists of 571 spectra obtained from 213

strains, with in average less than 3 and up to 6 spectra per strain. The variability ob-

served within the replicate spectra of a given strain is purely technical, and is therefore

lower than the level of variability that is expected in clinical routine, where an addi-

tional level of biological variability is expected due to the fact that the microorganisms

to identify differ from that used to learn the classification model. To mimic this setting,

hence to avoid optimistic evaluation of classification performance, we therefore affect

spectra of a given strain to the same cross-validation fold. In this study, we actually

resort to a leave one strain out cross-validation strategy in which a single strain is kept

aside at each step, thus leading to a 213-fold cross-validation set up.

To assess the classification performance, we primarily consider an accuracy criterion.

However, since each species of the dataset is represented by a varying number of strains

and each strain by a varying number of spectra, we adopt a nested definition of accuracy

criterion, instead of classical proportion of correct classifications. We first define a

strain-level accuracy as the proportion of spectra that are correctly classified for each

strain, and a species-level accuracy as the average strain-level accuracy for each species.

The overall accuracy indicator is then defined as the average species-level accuracy. In
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order to compare the benchmarked approaches, we rely on the two-sample Kolgomorov-

Smirnov test [92, 151] applied on vectors of 20 accuracies at the species level.

As can be read from Figure 2.1, this loss can vary in this study from 2 to 12, when

a species is respectively mistaken for a species of the same genus or of the other Gram.

Because these types of errors are easier to interpret than summary statistics of the tree

loss distribution, we report the proportion of errors that fall in the following categories:

“within-genus error” (∆ = 2), “outside genus but same Gram error” (2 < ∆ < 12),

“distinct-Gram error” (∆ = 12).

The regularization (C) parameter of the various SVM formulations considered in

this study was optimized within each fold of the leave one strain out cross-validation

process by an inner 10 fold cross-validation. As before, spectra of the same strain

are systematically affected to the same fold. The grid of candidate values was set to

{10−6, 10−2, ..., 102, 106} and the value was chosen to maximize the nested accuracy in-

dicator defined above. The standard and cascade SVM approaches (SVM-OVA, SVM-OVO,

CoC and DSVM) were implemented using the R package LiblineaR3. For the two cas-

cade approaches (CoC and DSVM), one-versus-all classifiers were trained at each internal

node of the hierarchy. The tree involved in the DSVM method was generated by the

hclust function of the R package stats, with a complete linkage clustering method.

The Multiclass SVM implementation relies on the C library SVM-light [84]. The

cost-sensitive (TreeLoss) and Structured SVM formulations were implemented based

on the C library SVM-struct [86]. We have relied on the slack-rescaling approach to

integrate the loss function ∆ in the learning process. We have moreover considered a

precision of ε = 0.1 on the solution and used the 1-slack algorithm operating in the

dual (option w=3).

The hyperparameters of the alternative strategies were set from preliminary exper-

iments. We relied on the R package randomForest to build RF models. The number of

trees (ntree) and variables per tree (mtry) of the random forest were respectively set

to the default value of 500 and to 36, according to the standard heuristics mtry = √p.
Preliminary experiments revealed that these parameters had little influence on the re-

sults as long as they were sufficiently high, especially ntree. Regarding similarity-based

methods, the number of neighbours to consider in the nearest neighbours was set to

1 and the Euclidean distance was used. The choice of the distance criterion had little

influence on the results but performance decreased when the number of neighbours

increased. The Euclidean distance was used for the nearest centroid approach as well.

We note finally that the feature vectors were systematically scaled to unit Euclidean

norm.
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method accuracy # correct # within-genus # within-Gram # distinct-Gram

1-NN 76.8 442 119 6 4
1-Centroid 78.8 445 104 7 15
RF 84.0 494 63 12 2
SVM-OVO 86.6 506 52 13 0
SVM-OVA 88.9 514 50 4 3
Multiclass 88.9 516 47 4 4

Treeloss 89.3 517 47 3 4
Structured 89.4 517 47 4 3
CoC 88.6 505 55 11 0
DSVM 87.1 507 56 2 6

Table 2.2: Cross-validation results on MicroMass dataset. This table summa-
rizes the cross-validation results obtained for each benchmarked method. The accuracy
measure corresponds to the nested accuracy definition. The four following figures ex-
plicitly give the numbers of correct prediction, of within-genus errors (for which a
species was mistaken for a species of the same genus), of within-Gram errors (for which
a species was mistaken for a species of another genus of the same Gram) and of distinct-
Gram errors (for which a species was mistaken for another species of the other Gram).
Method names are specified in the main text of section 2.3.

2.5 Results and discussion

The results of the benchmark experiment described in the previous sections are summa-

rized in Table 2.2. Considering the overall accuracy obtained by the various methods,

we first note that SVM classifiers, with an accuracy ranging from 86.6 to 89.4%, out-

perform random forests (accuracy of 84%) and similarity-based approaches (accuracy

of 76.8% and 78.8% for the nearest neighbour and nearest centroid approaches respec-

tively). In both cases, these differences are significant (P -value < 0.05). Among the

different SVM formulations, we see that the best structured SVM (Structured), with

an accuracy of 89.4%, outperforms the best “flat” SVMs (SVM-OVA and Multiclass),

which reach an accuracy of 88.9%. This difference, however, is not significant (P -value

> 0.05), suggesting that the more elaborate structured SVMs are not particularly useful

for this application.

This being said, a closer look at the nature of the misclassifications, given in Table

2.2, reveals some slight differences between the various SVM strategies. We note indeed

that while SVM-OVA, Multiclass, TreeLoss and Structured make fewer errors than

SVM-OVO and CoC (54 to 57 versus 65 to 66), some of these errors involve mistaking a

species for a species of the other Gram, which never occur with SVM-OVO and CoC. This

however comes at the price of an increased proportion of errors involving mistaking a

species for another one of the same Gram but of another genus, and therefore suggests

that a trade-off between the number and the severity of the classification errors can be

3http://cran.r-project.org/web/packages/LiblineaR/
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achieved. In a similar spirit, we observe some discrepancies between the results provided

by the two cascade approaches (CoC and DSVM): while the two approaches lead to a

similar number of classification errors, DSVM leads to a higher rate of uncorrect Gram

errors for a lower rate of distinct genus but same Gram errors. These two methods only

differ in the tree considered, which therefore suggests that its structure has indeed an

important role in the learning process and that it could be optimized [152].

Finally, a striking observation that can be made from Table 2.2 is that the great

majority of errors involve predicting a species for a species of the same genus, for any

considered method. While this makes sense from a biological point of view, this raises

at least two hypotheses to explain why the structured methods considered in this bench-

mark, and in particular those derived from the structured SVM formalism (TreeLoss

and Structured), did not bring any improvement over their “flat” counterparts. First,

we note that with a loss function ∆(y, y′) defined as the length of the shortest path

between species y and y′ in the tree, this type of error is the less penalized one. While

this is indeed a natural and relevant definition, it can mainly be expected to limit the

number of errors involving remote pairs of species, and hardly to improve over a “flat”

strategy that does a limited number of errors of this kind, as this is the case for SVM-OVA

for instance. On the other hand, it may also be the case that the tree considered in this

study is not informative below the genus level. As mentioned previously, the dataset

considered in this study involves several pairs or groups of species that are known to

be hard to discriminate in general, and by MALDI-TOF MS in particular.

Figure 2.6 shows the counts of the most common types of misclassifications ob-

tained across all the methods considered. It reveals that five pairs or groups of species

proved to be particularly challenging: Bacillus cereus / B. thuringiensis, Streptococcus

mitis / S. oralis, Enterobacter asburiae / E. cloacae, Citrobacter braakii / C. freundii,

and the group defined by E. coli and the three Shigella species. It also shows that

E. coli and Enterobacter cloacae, that do not belong to the same genus but both to

the Enterobacteriaceae family, are relatively often mistaken. The biological proximity

within some of these pairs or groups of species may in fact be beyond what can be

captured by the MALDI-TOF technology. The B. cereus and B. thuringiensis species

are for instance known to belong to the Bacillus cereus group, which is sometimes

considered to define a single species [71] and other studies indeed suggest that they

cannot be discriminated by MALDI-TOF [100]. Streptococcus mitis and Streptococcus

oralis are also part of similar group comprising more than 99% 16S rRNA similarity

[90], and MALDI-TOF mass-spectrometry is known to be hardly able to distinguish

them properly [180].

Figure 2.7 illustrates the fact that mass spectra obtained in this study from B. cereus

and B. thuringiensis are hardly distinguishable, at least when they have undergone the

process of peak extraction, as opposed to the spectra obtained from Clostridium difficile

and C. glycolicum, that are almost never mistaken one for the other.

To confirm the results obtained at the species level, we evaluate SVM-based methods
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Common misclassifications in the benchmarked methods
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Figure 2.6: MicroMass dataset: Common classification errors. Each bar rep-
resents one of the most frequent confusions observed across all evaluated classification
approaches.
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Figure 2.7: MicroMass dataset: Mass-spectra clustering at the genus level.
Left: Bacillus genus. Right: Clostridium genus. Mass-spectra (rows) belonging to a
given genus are clustered according to their peak lists (columns). For clarity purpose,
we removed features equal to zero among all the genus mass-spectra.
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Methods Accuracy(%) Methods Accuracy(%)

SVM-OVO 99.1 Treeloss 98.6
SVM-OVA 99.2 CoC 98.9
Multiclass 99.3 DSVM 98.3

Table 2.3: Performances of benchmarked methods at genus levels. This table
gives strain-level accuracy scors obtained for several benchmarked approaches. Meth-
ods are divided in two columns: classical flat methods (left) versus hierarchy-based
approaches (right). All method name abbreviations are given in the section 2.3.

at the genus level and put accuracy values in the following Table 2.3. As expected,

the prediction performances are near perfect and we better understand what happens

a rank above the species level.

2.6 Conclusion

We evaluated several structured methods in the microbial identification context, using

mass-spectrometry data. Our results suggest that methods exploiting the underlying

bacterial hierarchical structure perform as well as standard “flat” methods. We noted

in particular that the majority of classification errors obtained by all the methods

considered in this benchmark are within-genus misidentifications. We postulate that

the structured methods considered in this benchmark are not tailored to improve flat

methods for this type of errors. Unfortunately, a larger panel of strains with a careful

definition of the reference identification would be required to validate this hypothesis.

[184] recently proposed a structured regularization method specifically designed to cope

with this issue, and it would therefore be interesting to evaluate its relevance in this

context.

47



48



Chapter 3

On learning matrices with

orthogonal columns or disjoint

supports

This chapter has been published in a slightly different form in [171], as joint work

with Pierre Mahé, Alexandre d’Aspremont, Jean-Baptiste Veyrieras, and Jean-Philippe

Vert.

Abstract

We investigate new matrix penalties to jointly learn linear models with or-

thogonality constraints, generalizing the work of Xiao et al. [184] who proposed

a strictly convex matrix norm for orthogonal transfer. We show that this norm

converges to a particular atomic norm when its convexity parameter decreases,

leading to new algorithmic solutions to minimize it. We also investigate concave

formulations of this norm, corresponding to more aggressive strategies to induce

orthogonality, and show how these penalties can also be used to learn sparse

models with disjoint supports. We evaluate these approaches on synthetic and

real datasets.

Résumé

Nous nous intéressons à de nouvelles pénalités matricielles pour apprendre

conjointement des modèles linéaires avec des contraintes d’orthogonalité, géné-

ralisant ainsi les travaux de Xiao et al. [184] qui proposent une norme strictment

convexe pour induire du transfert orthogonal. Nous montrons que cette fonc-

tion converge vers une norme atomique particulière lorsque son paramètre de

convexité décrôıt. Cette équivalence avec une norme atomique donne accès à de

nouvelles solutions algorithmiques pour la minimiser. En continuant à décrôıtre

la convexité de la norme, nous avons également évalué des formulations concaves
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qui correspondent à des stratégies plus agressives pour obtenir de l’orthogona-

lité. Nous proposons une extension naturelle de cette approche au cas où nous

souhaitons apprendre des modèles parcimonieux avec des supports disjoints. Ces

approches sont évaluées sur des données simulées, ainsi que des jeux de données

réelles.

3.1 Introduction

Learning several models simultaneously instead of separately, a framework often re-

ferred to as multitask or transfer learning, is a powerful setting to leverage information

across related but different problems [40, 164, 16, 11, 61]. In particular it has been

empirically shown that when different tasks share some similarity, such as learning

binding models for similar proteins [82], predicting exams score for students of differ-

ent schools [11, 61] or learning models for semantically related concepts in a hierarchy

[116, 38], jointly learning the models with a multitask strategy leads to better perfor-

mance. In all aforementioned examples (and many others), the underlying assumption

is that the tasks share some similarity, and the multitask strategies exploit this as-

sumption by, e.g., imposing shared parameters estimated jointly across the tasks, or

penalizing differences between the models learned in the tasks.

Alternatively, in some situations we would like to solve different tasks under the

opposite assumption, namely, that the models are different, e.g., that they use different

features or should be orthogonal to each other. This is the case for example when we

want to learn unrelated tasks, such as recognizing the identity and the emotion of a

person on a picture, where we know from literature that these two recognition problems

depend on different and uncorrelated features of the same image [39, 139]. In structured

learning such as classification in a hierarchical taxonomy, it has been proposed to learn

local models at each node of the hierarchy and to encourage the classifier at each node

to be different from the classifiers at its ancestors, in order to better reflect the natu-

ral coarse-to-fine nature of the classifiers at different levels of the hierarchy [184, 64].

Several approaches have been proposed recently to learn such different models. [184]

proposed to penalize a weighted `1 norm of the off-diagonal entries of the covariance

matrix between the tasks, in order to promote sparsity of inner products hence orthog-

onality between tasks; however some extra ridge term must be added in order to make

the penalty convex and amenable to efficient optimization, leading to potentially un-

wanted over-regularization. [139] proposed also a convex penalty to learn two groups of

tasks based on orthogonal subspaces; again, due to the non-convex nature of the norm

applied to inner products between vectors, an extra ridge term is needed to make the

penalty convex. Finally, [64] proposed a method to learn a tree of metrics, enforcing

disjoint sparsity between the different metrics. The convex penalty of [64], though, only

promotes sparsity for non-negative vectors, such as the diagonals of metric matrices,

and can not easily be extended to enforce disjoint sparsity on general vectors.
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In this work, we extend the work of [184] in two directions. First, we investigate

generalization of the penalty proposed by [184] when we decrease its convexity, in

order to make it more “aggressive” in promoting orthogonality. Our main findings

can be visualized in Figure 3.1, which shows the level sets of penalties we consider.

Starting from the strictly convex penalty of [184], corresponding to a strictly convex

unit ball with singularities at matrices with orthogonal columns (left), we show that by

reducing its convexity it converges to a convex atomic norm [41], whose unit ball is the

convex hull of the singularities of the first ball. This shows that for particular choices of

parameters the penalty of [184] is “optimal” to learn matrices with pairwise orthogonal

columns, in the sense that it is the tightest convex function which is equal to the

Frobenius norm on the subset of matrices that we are interested in. This observation

has also algorithmic consequences: while [184] propose an optimization scheme that

only works when the penalty is strictly convex, we show that the dual norm in the limit

case of the atomic norm can be estimated efficiently by solving a small semidefinite

program (SDP), leading to new algorithmic solutions to use this norm as regularizer in a

learning problem. We also propose and investigate empirically more concave extensions

of this norm in order to increase the propensity to learn matrices with orthogonal

columns (right). Our second extension is to show how these penalties can be modified

to learn sparse models with disjoint supports, a particular case of orthogonal models

which is relevant when different tasks are know to involve different features.

Figure 3.1: Level sets of the penalty ΩK defined in (3.2) for 2-by-2 symmetric matrices

parametrized as

(
x y
y z

)
, when K =

(
γ 1
1 γ

)
and we vary γ from γ = 2 (left),

which corresponds to a strictly convex penalty proposed by [184], to γ = 1 (center),
which is a limit case where the penalty is convex but not strictly convex and turns out
to be an atomic norm (Theorem 3.2.1), and to γ = 1/2 (right), which corresponds to
a non convex penalty.
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3.2 An atomic norm to learn matrices with orthog-

onal columns

We consider the problem of learning a d×T matrix W = (w1, . . . , wT ), where each col-

umn wi is a d-dimensional vector corresponding to a task such as a linear classification

model at a node of a taxonomy. We call such a matrix scaled orthogonal if W>W is

diagonal, i.e., if all columns of W are orthogonal to each other, and denote by O the

set of d×T scaled orthogonal matrices. Note that this should not be confused with the

stronger concept of orthogonal matrix often used in mathematics, which means that W

is square and W>W is the identity, i.e., that the columns form an orthonormal basis.

A general approach to estimate W from observations is to formulate the inference

as an optimization problem:

min
W

f(W ) + λ

2 Ω(W )2 , (3.1)

where f(W ) is an empirical risk which measures the fit to data like those described in

Section 1.2.1, Ω(W ) is a penalty that enforces some constraints on the solution such as

sparseness or low-rankness, and λ > 0 is a parameter adjusting the tradeoff between

these two objectives. When f(W ) and Ω(W ) are convex functions, then (3.1) is a

convex optimization problem that can often be solved efficiently and lead to a unique

solution. Classical examples of penalties Ω(W ) include the `1 norm to promote sparsity

in W [165], the nuclear norm to learn low-rank matrices [156], and the `1/`2 norm to

perform joint feature selection across tasks [125].

Suppose we know that some or all of the columns of W should be orthogonal to

each other. [184] proposed an orthogonal regularizer of the form
∑
i,jKij|w>i wj|, where

Kij is a non-negative weight to enforce more or less the orthogonality between wi and

wj. This is however not a convex function of W , and [184] propose to define a convex

penalty by adding ridge terms to this regularizer, namely:

ΩK(W )2 =
T∑
i=1

Kii||wi||2 +
∑
i 6=j

Kij|w>i wj| , (3.2)

where K is an hyperparameter matrix representing structure among different models.

[184] give a sufficient condition on K to ensure that (3.2) is convex, but there remains

a lot of freedom in the choice of K.

Let us consider the case where we choose Kii = 1 and Kij > 0 in (3.2). Then we

see that for scaled orthogonal matrices W ∈ O the penalty (3.2) boils down to the

Frobenius norm:

∀W ∈ O , ΩK(W )2 =
T∑
i=1
||wi||2 = ||W ||2F .

The extra terms Kij|w>i wj| in (3.2) ensure that, in addition, the penalty is not differ-

entiable at scaled orthogonal matrices, allowing under some conditions the recovery of
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such matrices when (3.2) is plugged into (3.1) [10, 41].

There are however many penalties, including (3.2), that are convex, singular on O
and which equal the Frobenius norm in O. Among them, we propose to consider the

tightest one, namely, the atomic norm in the sense of [41] induced by the set of atoms

A = {W ∈ O : ||W ||F = 1}. This norm, which we denote below by ΩO(X) for any

d× T matrix X, can be expressed as

ΩO(X) = inf
{∑
Y ∈A

λY : X =
∑
Y ∈A

λY Y, λY ≥ 0
}
. (3.3)

In other words, this last expression writes ΩO(X) as the `1 norm of the vector of

coefficients λ in a decomposition of X into atoms, namely, scaled orthogonal matrices

of unit Frobenius norms. Plugging (3.3) into (3.1) provides a convex problem to infer

an atom, or a sparse combination of atoms. Note that, contrary to ΩK (3.2), ΩO is

always convex without technical conditions. In addition, since both norms are equal

on the atoms A, the tangent cone of ΩO at any scaled orthogonal matrix W ∈ O is

contained in the tangent cone of ΩK at the same point, suggesting that the recovery

and inference of a scaled orthogonal matrix through the convex procedure (3.1) is easier

with ΩO than with ΩK [41].

The following result shows that, surprisingly, the norms ΩK with adequate weights

and ΩO coincide on matrices with two columns. This theorem is illustrated in Fig-

ure 3.1, where we show the unit ball of ΩK when we change K. The ball at the center

corresponds to a limit situation where ΩK is still convex, but not strictly convex any-

more. We see in this picture that the ball can equivalently be defined as the convex

hull of two circles, which correspond precisely to the set of matrices with orthogonal

columns and unit Frobenius norm; i.e., that ΩK in this case is precisely the atomic

norm induced by these atoms.

Theorem 3.2.1. For any d ≥ 1 and any d× 2 matrix W = (w1, w2), it holds that:

ΩO(W ) = ΩK(W ) , (3.4)

with

K =
 1 1

1 1

 . (3.5)

Proof. Since K in (3.5) is entry-wise non-negative, and since the companion matrix

K̄ =
 1 −1
−1 1


is positive semidefinite, we know from [184, Theorem 1] that Ω2

K is convex in this

case. Since (3.4) obviously holds for W ∈ O, and since ΩO is the tightest convex

function such that (3.4) holds on O, we directly get that ΩO(W ) ≤ ΩK(W ) for any
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W ∈ Rd×2. To prove the converse inequality, it suffices to find, for any W ∈ Rd×2,

a decomposition of the form W = λU + (1 − λ)V , with U, V ∈ O, λ ∈ [0, 1], such

that ΩK(U) = ΩK(V ) = ΩK(W ). Geometrically, this would mean that any point on

the unit ball of ΩK lies on a straight segment that connects two atoms on this ball,

meaning that the unit ball of ΩK is precisely the convex hull of the unit ball restricted

to the atoms. The following lemma, which can be proved by direct calculation, shows

that this is indeed possible by explicitly providing such a decomposition.

Lemma 3.2.2. For any W = (w1, w2) ∈ Rd×2, let:

• if w>1 w2 ≥ 0, U = (w1 + w2, 0) and V =
(
w1 − w>

1 w2
‖w2 ‖2w2,

(
1 + w>

1 w2
‖w2 ‖2

)
w2

)
,

• if w>1 w2 < 0, U = (w1 − w2, 0) and V =
(
w1 − w>

1 w2
‖w2 ‖2w2,

(
1− w>

1 w2
‖w2 ‖2

)
w2

)
,

and let λ = |w>
1 w2 |

|w>
1 w2 |+‖w2 ‖2 . Then it holds that:

• U, V ∈ O ,

• λ ∈ [0, 1] and W = λU + (1− λ)V ,

• ΩK(W ) = ΩK(U) = ΩK(V ) .

Theorem 3.2.1 can be easily generalized (with a different set of atoms) when K is

any 2-by-2 symmetric, positive semidefinite matrix with non-negative entries and with

0 as eigenvalue, corresponding to the limit case where ΩK is convex but not strictly

convex: it is then always an atomic norm. The extension of Theorem 3.2.1 to more than

2 columns, however, is not true. Atoms of ΩO are matrices with all columns orthogonal

to each other, so using ΩO as a penalty on matrices with T > 2 columns may either lead

to such an atom, or to a sparse linear combination of atoms, which would in general

have no pair of column orthogonal to each other. The following theorem, which is a

simple consequence of Theorem 3.2.1, shows that for some choices of K in the T > 2
case, the penalty ΩK can be written as a sum of ΩO that penalizes pairs of columns.

Theorem 3.2.3. For any T ≥ 2, let K be a symmetric T -by-T matrix with non-

negative entries and such that, for any i = 1, . . . , T ,

∀i = 1, . . . , T Kii =
∑
j 6=i

Kij .

Then, for any d ≥ 1 and any d× T matrix W = (w1, . . . , wT ), it holds that:

ΩK(W ) =
∑
i<j

KijΩO((wi, wj)) ,

where (wi, wj) ∈ Rd×2 is the matrix with columns wi and wj.
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Proof. LetA =
 1 1

1 1

. By Theorem 3.2.1, we know that ΩA((wi, wj)) = ΩO((wi, wj))

for al i 6= j, therefore:

∑
i<j

KijΩO((wi, wj)) =
∑
i<j

KijΩA((wi, wj))

=
∑
i<j

Kij

(
||wi||2 + ‖wj ‖2 + 2|w>i wj|

)

=
T∑
i=1

∑
j 6=i

Kij

 ‖wi ‖2 +
∑
i 6=j
|w>i wj|

= ΩK(W ) .

3.3 The dual of the atomic norm

In this section we consider the atomic norm ΩO for matrices with 2 columns, and show

that we can efficiently compute its dual and a subgradient of its dual by solving a

6-dimensional SDP. This can be useful to provide simple duality gaps and stopping cri-

teria to learn with convex but not strictly convex penalties ΩK , which are in particular

not amenable to optimization with the method of [184].

Remember that the dual of a norm Ω(X) is

Ω∗(X) = sup
Y : Ω(Y )≤1

Tr(X>Y ) .

Since ΩO is an atomic norm induced by the atom set A, its dual satisfies [41]:

Ω∗O(X) = sup
Y ∈A

Tr(X>Y ) , (3.6)

and in addition any atom Y ∈ A which achieves the maximum in (3.6) is a subgradient

of Ω∗O at X. We now show that computing Ω∗O(X) and a subgradient can be done

efficiently:

Theorem 3.3.1. For any d ≥ 1 and X ∈ Rd×2, a solution to

Ω∗O(X) = sup
Y ∈A

Tr(X>Y ) (3.7)

can be obtained from the solution of a SDP over matrices of size 6× 6.

Proof. From the definition of A we can reformulate (3.7) as:

Ω∗O(X) = maximize Tr(Y >X)
subject to Y >Y diagonal

‖Y ‖F = 1,

in the variable Y ∈ Rd×2. Because −Y is a feasible point whenever Y is, this problem
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is equivalent to

Ω∗O(X)2 = maximize Tr(Y >X)2

subject to Y >Y diagonal

‖Y ‖F = 1,
(3.8)

which is a non-convex quadratic program in Y . We first reformulate this problem in

vector terms and write z = vec(Y ) ∈ R2d, so that z> = (z>1 , z>2 ) with z1 = Y1 and

z2 = Y2. Problem (3.8) becomes

maximize (X>1 z1 +X>2 z2)2

subject to z>1 z2 = 0
‖z1‖2

2 + ‖z2‖2
2 = 1,

which is again

maximize (vec(X)>z)2

subject to z>
(

0 I
I 0

)
z = 0

z>z = 1 .

Following the classical lifting technique derived by [149, 105], we can produce a semidef-

inite relaxation of this last problem by changing variables, setting Z = zz>, and drop-

ping the implicit rank constraint on Z, to get

maximize Tr
(
vec(X) vec(X)>Z

)
subject to Tr

((
0 I
I 0

)
Z

)
= 0

Tr(Z) = 1, Z � 0,

(3.9)

which is a SDP in the matrix variable Z ∈ S2d. The quadratic convexity results of [35]

(see also [14], §II.14), also known as the S-procedure or Brickman’s theorem, tells us

that the optimal value of the semidefinite program (3.9) is equal to the optimal value

of the non-convex quadratic problem (QP) in (3.8), and a solution Y to (3.8) can be

constructed from an optimal solution Z of (3.9) (see, e.g., [29] App. B.3 for an explicit

recursive procedure).

Problem (3.9) is an SDP over 2d × 2d matrices, which can be prohibitive in prac-

tice as soon as d gets large. Let us now show that a simple decomposition allows to

reformulate the problem as a SDP of fixed dimension 6. We can compute the QR

decomposition of X written X = QR2 where Q ∈ Rd×d is an orthogonal matrix and

R2 ∈ Rd×2 with R2 = (R>, 0)> where R ∈ R2×2 is an upper triangular matrix. This

means that without loss of generality, the original problem of computing Ω∗(X) can be

rewritten
maximize Tr(Y TQR2)
subject to Y TQQTY diagonal

‖QTY ‖F = 1 ,
(3.10)
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which is equivalent to

maximize Tr(Y TR2)
subject to Y TY diagonal

‖Y ‖F = 1 ,

in the variable Y ∈ Rd×2. This means that we can always assume that X is block

upper diagonal with lower block equal to zero. This program can be rewritten

maximize (vec(R2)T z)2

subject to zT
(

0 Id
Id 0

)
z = 0

zT z = 1 ,

in the variable z = vec(Y ) ∈ R2d. Now notice that

 0 Id
Id 0

 =
 0 1

1 0

⊗ Id = (P T diag(−1, 1)P )⊗ Id ,

where P = 1√
2

 −1 1
1 1

 is an orthogonal matrix. Let us write S = P ⊗ Id (also an

orthogonal matrix), w = Sz and b = S vec(R2), we can rewrite the QP above as

maximize (vec(R2)TSTw)2

subject to wT
(
−Id 0

0 Id

)
w = 0

wTw = 1 ,

in the variable w ∈ R2d. Now b = S vec(R2) means

b = (P ⊗ Id) vec(R2) = vec(R2P ) ,

so if R2 = (RT , 0)T where R ∈ RT×T as above, then b = vec((P TRT , 0)T ) hence the b

has only four nonzero coefficients at indices J = {1, 2, d + 1, d + 2}. This means that

the QP can be reformatted as

maximize wTJ (bJbTJ )wJ

subject to wTJ

(
−I2 0

0 I2

)
wJ = yT1 y1 − yT2 y2

wTJwJ + yT1 y1 + yT2 y2 = 1 ,

in the variables wJ ∈ R4 and y1, y2 ∈ Rd−2, where we have defined zT1 = (w3, . . . , wd)
and zT1 = (wd+3, . . . , w2d). By symmetry, we can assume, without loss of generality,

that the coefficients of the vectors y1 and y2 are uniformly equal to scalars y1, y2 ∈ R,
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so the last problem is equivalent to

maximize wTJ (bJbTJ )wJ

subject to wTJ

(
−I2 0

0 I2

)
wJ = (d− 2)y2

1 − (d− 2)y2
2

wTJwJ + (d− 2)y2
1 + (d− 2)y2

2 = 1 ,

which is now a QP of dimension 6 in the variables wJ ∈ R4 and y1, y2 ∈ R. This last

problem can then be lifted as above, to become

maximize TrW
(

bJbTJ 0
0 0

)

subject to TrW


−I2 0 0

0 I2 0
0 0 diag(−(d− 2), (d− 2))

 = 0

TrW
(

I4 0
0 (d− 2)I2

)
= 1, W � 0,

(3.11)

which is a semidefinite program in the variable W ∈ S6. The optimal values of pro-

grams (3.10) and (3.11) are equal and a solution to (3.10) can be constructed from an

optimal solution to (3.11). Because (3.11) is a semidefinite program of fixed dimension

6, it can be solved efficiently independently of the dimension d. All we need is the QR

decomposition of X which can be formed with cost O(d) when X ∈ Rd×2.

3.4 Algorithms

In order to learn with the penalty ΩK we need to solve problems of the form

min
W

f(W ) + λ

2 ΩK(W )2 . (3.12)

When ΩK is strictly convex, [184] propose a regularized dual averaging (RDA) method

based on subgradient descent, and show that a subgradient of ΩK(W ) in that case is

given by G = (g1, . . . , gt) where

gi = Kiiwi +
∑
j 6=i

sign
(
w>i wj

)
Kijwj , (3.13)

with the convention sign(0) = 0. When ΩK is not strictly convex, e.g., when it is a

sum of atomic norms as in Theorem 3.2.3 or when it is not even convex (as on the

right-hand plot of Figure 3.1), the RDA methods can not be used anymore. In that

case, we propose to use a classical subgradient descent scheme, using the subgradient

(3.13), and a step size decreasing with t−1/2 where t is the iteration. Note that [184]

only prove that (3.13) is a valid subgradient when ΩK is convex; we keep the same

formula in the general case since ΩK is differentiable almost everywhere. In the non-
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convex case, subgradient descent will converge to a stationary point, so one may run

it several times with random initializations before taking the best solution. In the

experiments below, we always run subgradient descent starting from the null matrix,

and observed empirically that it often leads to a good solution compared to multiple

random initializations.

Let us now discuss another possible optimization scheme when K satisfies the con-

ditions of Theorem 3.2.3, i.e., when the penalty is a linear combination of nuclear norms

over pairs of columns. In that case, by Theorem 3.2.3 the optimization problem has

the form:

min
W

f(W ) + λ

2
∑
i<j

KijΩO((wi, wj))2 . (3.14)

We can then write an equivalent dual problem amenable to optimization. Let us first

consider the simple case of T = 2 columns, in which case (3.14) boils down to

min
W

{
f(W ) + λ

2 Ω2
O(W )

}
(3.15)

in the variable W ∈ Rd×2. Remember that for any norm, if h(x) = ‖x‖2/2 then the

Fenchel dual of h is h∗(y) = ‖y‖2
∗/2 [29, §3.3.1]). Then [25, Th. 3.3.5 ] shows that the

dual of (3.15) is written

sup
Z

{
−f ∗(Z)− 1

2λ (Ω∗O(Z))2
}

(3.16)

in the variable Z ∈ Rd×2. Under mild technical conditions, the optimal values of both

problems are equal. Back to the general case (3.14), note that the conjugate of the

function ΩO((wi, wj)), which we write Ω̃∗ij(W ), is given by

Ω̃∗ij(W ) =

 Ω∗O((Wi,Wj)) if Wl = 0 for l 6= i, j

+∞ otherwise.

Then, using the following inf-convolution result [138, Th. 16.4]:

(f1 + . . .+ fs)∗(y) = inf
y1,...,ys

{f ∗1 (y1) + . . .+ f ∗s (ys) : y1 + . . .+ ys = y},

we obtain that the Fenchel dual of problem (3.14) is written

sup
Z

−f
∑
i<j

Zij

−∑
i<j

1
2λKij

Ω̃∗ij(Zk)2

 (3.17)

in the variables (Zij)i<j ∈ Rd×T . Note that the definitions of Ω̃∗ij mean that each Zij

only has two nonzero columns at positions i and j. Now, note that by Theorem 3.3.1,

the function to be optimized in (3.17) can be efficiently estimated and a subgradient

can be computed. Any value of (3.17) provides a lower bound to (3.14), thus giving
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a duality gap that can be used to monitor convergence of the subgradient descent

method.

3.5 Learning disjoint supports

An interesting particular case of learning orthogonal vectors is the situation where we

seek sparse vectors with disjoint supports. In this section we briefly discuss how ΩK

can help in this situation, too. For simplicity we only discuss the case of T = 2 vectors,

an extension to the general case being straightforward. The matrix W ∈ Rd×2 has

columns with complementary supports if, for i = 1, . . . , d,

W1,i 6= 0 =⇒ W2,i = 0 and W2,i 6= 0 =⇒ W1,i = 0 ,

or in other words W1 ◦W2 = 0 where ◦ denotes the Hadamard (entrywise) product of

matrices. If we denote by |W | the matrix whose entries are the absolute values of the

entries of W , then we further observe that |W1 ◦W2| = |W1| ◦ |W2|, so W1 ◦W2 = 0 if

and only if |W1| ◦ |W2| = 0. Interestingly, if V ∈ Rd×2 is a matrix with non-negative

entries, then V1 ◦ V2 = 0 is equivalent to V T
1 V2 = 0; this shows that W has columns

with complementary supports if and only if |W1| and |W2| are orthogonal.

This suggest a general way to learn a matrix with disjoint supports, by solving a

problem of the form:

min
W

f(W ) + λ

2 ΩK(|W |)2 , (3.18)

where ΩK is a penalty that induces orthogonality among columns. To solve (3.18),

we introduce a non-negative matrix V such that −V ≤ W ≤ V (where ≤ refers to

element-wise comparisons), and solve the following problem:

min
−V≤W≤V

f(W ) + λ

2 ΩK(V )2 . (3.19)

At the optimum of (3.19), we have V = |W | which shows that (3.19) is indeed equivalent

to (3.18). Since a subgradient of (3.19) in (V,W ) can easily be computed, we propose

to solve (3.19) by a projected subgradient scheme, where at each iteration we update

V and W along a subgradient, and then project the new point to the constraint set

−V ≤ W ≤ V and V ≥ 0.

3.6 Experiments

In this section, we present numerical experiments on two simulated datasets. We

benchmark the following methods:

• Xiao: this is the method described in [184] where we solve (3.1) with the penalty (3.2).

We consider both convex and non-convex versions, by changing the matrix K
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in (3.2).

• Disjoint Supports: this is the approach where we solve (3.18), with non-convex

and convex versions.

• Ridge Regression: this standard method corresponds to learning the tasks inde-

pendently by ridge regression and is described in Section 1.2.4.

• LASSO: this is the classical approach inducing sparsity over all tasks, without

sharing information across the tasks and is described in Section 1.2.4.

In all experiments involving ΩK , we consider a symmetric matrix K parametrized by

its diagonal value γ,

K =


γ 1

. . .

1 γ

 . (3.20)

Based on the conditions for the convexity of ΩK studied by [184], we control the

convexity of ΩK used in the Xiao and Disjoint Supports approaches with the following

rule on γ:

• γ > T − 1 leads to a strictly convex ΩK function as described in [184],

• γ = T−1 is the the limit case where ΩK satisfies the conditions of Theorem 3.2.3,

i.e., where it is a sum of atomic norms over pairs of columns:

ΩK(W ) =
∑
i<j

ΩO((wi, wj)) , (3.21)

• γ < T − 1 corresponds to the case where ΩK is not convex.

We test the different methods on regression problem where, given a matrix of covariates

X ∈ Rn×d and a matrix of T response variables Y ∈ Rn×T , we seek to minimize the

squared error f(W ) = ‖Y −XW‖2.

3.6.1 The effect of convexity

We use simulated data to test whether theoretical differences between ΩK ,ΩO and

concave formulations have an impact on analytical performances. In particular, by

playing with γ in (3.20), we investigate to what extent the convexity constraint imposed

by [184] is restrictive in terms of performance.

For that purpose, we randomly generate models W consisting of T = 10 tasks in

d = 10 dimensions, such that all tasks are orthogonal to each other. The training set

Xtrain is composed of n = 50 instances, each element of Xtrain being sampled from a

normal distributionN (0, 1). We simulate the response variable Ytrain ∈ Rn×T according

to Ytrain = XtrainW + ε, where ε is a noise matrix of i.i.d. centered Gaussian variables
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with variance σ2. We estimate the performance of each model on a test set of 1000
samples generated similarly. We also measure how orthogonal the models are, by the

mean absolute difference between the angle between two columns of W and π/2. For

each value of γ we estimate the Xiao model with different regularization parameters

λ over a grid of 21 values in {10−4, ..., 101} and regularly spaced after log transform;

the grid was set to ensure that it covered good parameters for all methods. For each

γ, we report the performance of the best λ in terms of test MSE. We repeat the full

procedure 100 times and report the average results over the 100 repeats.

Figure 3.2 shows the performance of the methods in terms of test error (top), and

in terms of how far the models learned are from orthogonal models (bottom). On

each plot, the horizontal axis is the γ parameter on the diagonal of K defined in

(3.20), and the vertical dotted line corresponds to the atomic norm (3.21) and is the

transition from convex (to its right) to non-convex (to its left). From left to right,

we show results corresponding to increasing noise in the response variable, with the

variance of ε set respectively to 1, 2.5 and 4. We see that in the small noise regime

(left), non-convex formulations perform better while with high noise (right), the convex

formulations are more adapted. Inbetween (middle), the best performance is reached

for slightly non-convex penalties. In all cases, the models learned are similar in terms of

how non-orthogonal they are; we see that non-convex formulations lead to significantly

more orthogonal models than convex formulations. Overall, these results suggest that

restricting ourselves to strictly convex penalties may be restrictive and sub-optimal in

some cases; they show that non-convex penalties can allow to learn more orthogonal

models with better performance.

3.6.2 Regression with disjoint supports

As a second proof of concept, we check the relevance of the formulation presented in

Section 3.5 to jointly learn linear models with disjoint supports. For that purpose,

we simulate data as in Section 3.6.1, with the additional constraint that the columns

of W are orthogonal and have disjoint supports. Since d = T = 10, this means that

W is simply diagonal. We fix the noise level at σ2 = 1, and simulate training sets

of increasing size between 10 and 50 samples, repeating the full procedure 100 times.

We compare four methods: (i) the Xiao model with varying parameter γ according

to (3.20), leading to orthogonal but non-sparse vectors, (ii) our new method (3.18)

again with convex and non-convex formulations by varying γ in (3.20), (iii) a baseline

ridge regression model and (iv) a LASSO regression model leading to sparse but not

necessarily orthogonal vectors. For each model, a 5-fold cross-validation is performed

on the training set to select an optimal regularization parameter λ, which is then used

to train the model on the full training set before doing a prediction on an independent

test set. We assess the performance of each method on the test set in terms of accuracy

(measured by the MSE), and in terms of disjoint support recovery, measured as the
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Figure 3.2: The effect of convexity. Test MSE (top) and deviation from pairwise
orthogonality (bottom) as a function of the convexity parameter γ, from low to high
noise regimes (from left to right: σ2 ∈ {1, 2.5, 4}). On each plot, the horizontal axis
is the γ parameter on the diagonal of K defined in (3.20). The vertical dotted line
corresponds to the atomic norm (3.21).

proportion of features which are correctly selected in a single column of W .

The results are shown in Figure 3.3, where for sake of clarity we only report the

results of Xiao and Disjoint Supports for the optimal diagonal value γ, which in both

cases is equal to 0.1, corresponding to a very non-convex penalty. In terms of per-

formance, we see that Xiao is a bit better than Ridge regression for n = 50 training

points, which is coherent with the observation made in Section 3.6.1 in the small-noise

regime, although for less than 30 samples, Ridge regression is better. Both methods

are outperformed by LASSO, which in this case benefits from the very sparse struc-

ture of W . Interestingly, the new Disjoint Support model significantly outperforms all

other methods for all training set sizes (P -value < 10−3). As for the ability of different

methods to correctly recover the disjoint supports, we see that Disjoint Supports shows

increasing support recovery score for large training set size, and outperforms LASSO

which induces global sparsity but is not able to affect features to an unique column.

Ridge Regression and Xiao are not shown because they do not achieve any sparsity in

the model they learn. In summary, this simulation shows that the Disjoint Supports

model has the potential to outperform other methods when the model to learn is sparse

with disjoint supports.
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Figure 3.3: Sparse regression with disjoint supports. Test MSE for training set
of increasing size (left), and proportion of correctly affected features (right). Ridge
regression and Xiao are not shown on the right plot because they are not sparse.

3.6.3 Learning two groups of unrelated tasks

We use the Japanese Female Facial Expression (JAFFE) database ([88]). It is com-

posed of 213 images of T2 = 10 subjects displaying a range of T1 = 7 mutually exclu-

sive expressions. We seek to learn a model that predicts the emotion expressed in an

unlabelled picture. For this purpose, each image was preprocessed with the method

described in [139], leading to a d = 203 dimensional representation. To avoid some bias

due to some subjects, we consider that features which are useful for identifying subjects

should not be used in expression recognition tasks. We can formulate this problem in

the disjoint learning framework: there is a group of 10 tasks related to subjects (W2)

that is different to the group of 7 emotions tasks (W1). In this configuration, the con-

straint matrix K contains orthogonality constraints only between columns of different

groups and is given by (3.22):

K =



K11 0 1 . . . 1
. . . . . .

0 K77 1 . . . 1
1 . . . 1 K88 0

. . . . . .

1 . . . 1 0 K1717


. (3.22)

The method OrthoMTL described in [139] aims to affect features to group of tasks

with an orthogonality assumption. For this reason, we were interested in evaluating

our method on JAFFE. We compare Xiao’s approach to Ridge regression, OrthoMTL

and OrthoMTL-EN using the same design: we select randomly m instances in training
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set and the remaining ones in test set. Then we select, by 5-folds cross-validation, the

best regularization parameter λ = 10k, where k ∈ {−2, ..., 2} and obtain a misclassifi-

cation rate on test set. Note that for Xiao’s approach, we also optimize the diagonal

values of (Kii)i on the {0.1, 0.5, 1, 8.37, 17} grid, where we only consider the case where

K11 = ... = K1717 = γ. The value 8.37 (∼
√
T1 × T2) corresponds approximately to

the minimal γ value leading to a positive semidefinite K matrix and to the atomic

norm in (3.21). For OrthoMTL approaches, we also optimize, by cross-validation, the

parameters described in [139], ρ ∈ {10−2, ..., 102} for convexity, λ ∈ {104, ..., 107} for

orthogonality, and γ ∈ {10−4, ..., 102} for sparsity. We have repeated the described

experiment 50 times. The different learning curves are averaged over repeats and rep-

resented in Figure 3.4. The two approaches proposed in [139] have better performances

on this dataset that contains two groups of tasks. We note that the Xiao penalty induc-

ing orthogonality between W1 and W2 slightly outperforms standard Ridge regression

approach. Interestingly, the optimal diagonal value for Xiao is 8.37 meaning that the

atomic norm formulation is well suited for this problem. According to cross-validation

on OrthoMTL and OrthoMTL-EN, the optimal parameters lead to select model with

orthogonality between the two groups but no sparsity property (γ ∼ 0). For this γ

value, both OrthoMTL and OrthoMTL-EN are equivalent, explaining why the learning

curves are similar. Given that observation, we do not evaluate Disjoint supports on

this dataset.

In addition of the classification performances, we also investigate in Fig 3.5 the cor-

relation pattern in the matrix product [W1,W2]>[W1,W2], observed in models learned

for the different approaches. We observe that for the Ridge regression (top left), there

is no correlation structure within the two groups of tasks. However, the three others

graphics (OrthoMTL, Xia and Disjoint supports) show block structures between the

two groups of tasks that correspond to orthogonality constraints. Interestingly, for

these three methods, correlation values are higher for the 10 subjects block (top right);

it can be explained by the choice of a constant diagonal value for the K matrix between

the two groups. Given the different group sizes, there can be a stronger weight on the

Subjects constraints.

3.6.4 Disjoint supports for Mass-spectrometry data

We use MicroMass data for the final test of disjoint supports learning. This mass-

sepctrometry dataset is described in Section 2.2. We recall that it consists in a refer-

ence panel of 571 spectra covering 9 bacterial genera. According to results shown in

Section 2.5, genus-level classification is not a difficult task (good classification rate over

98%). Because of the relative high-dimensionality of the mass-spectra1, we propose to

use disjoint supports learning for feature selection. We aim to learn 9 orthogonal tasks

(one for each genus) with genus-specific peaks, meaning that a peak will be discrimi-

1Each spectrum is a list of d = 1300 peaks.
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Figure 3.4: JAFFE dataset: learning curves. Misclassification rate function of
training set size. Comparison between Xiao (green) penalty and Ridge regression (pur-
ple), OrthoMTL (blue), OrthoMTL-EN (red).

native for a genus against the other ones. In this case, the constraint matrix K ∈ R9×9

contains orthogonality constraints between all columns and is given by (3.23):

K =


K11 1

. . .

1 K99

 . (3.23)

We evaluate our method in the same way we did for 6-columns synthetic data in

Section 3.6.1: we consider several diagonal values (0 to 10) covering non-convex and

convex ΩK and a regularization parameter grid λ = 10k, where k ∈ {−3, ..., 2}. For

each possible diagonal value, we learn models in 5-folds cross-validation and choose the

best model according to good classification rate. It appears that the optimal accuracy

of Disjoint supports is very similar (98.6%) to standard approaches benchmarked in

Table 2.3 and is obtained in a non-strictly convex case. In addition, we also represent

in Figure 3.6, the model structure learned with the sparsity inducing LASSO and our

approach, Disjoint supports. These figures have a structure similar to the heatmap

in Section 2.3 that represents the MicroMass dataset. Each line is a W column and
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Figure 3.5: JAFFE dataset: correlation in learned models. Given a learned
matrix W , we represent the matrix product [W1,W2]>[W1,W2] with high correlation in
red and orthogonality in blue, corresponding to no correlation. Comparison between
Ridge (top left), OrthoMTL (top right), Xiao (bottom left) and Disjoints supports
(bottom right).

corresponds to a specific genus-level model, and each column represents a feature weight

in the different models. The 9 different colors correspond to the features affected to

an unique genus and the black blocks are features that are present in at least two W

columns. The white space on the right illustrates the number of features that are not

used in any model and that are put to zero in all W columns. Interestingly, we observe

that learning with Disjoint supports allows to affect a larger proportion of the features

to a single model, while the LASSO model shows numerous features that are either

used by two or more models, either discarded from the models.
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Figure 3.6: MicroMass dataset: structured sparsity. Comparison between Lasso
(top) and Disjoint supports (bottom) approaches.

3.7 Conclusion

We have extended the work of [184] in two directions: on the one hand, we have in-

vestigated the possibility to work with non-strictly convex or non-convex formulations,

leading to more aggressive control of model orthogonality, and on the other hand we

have shown how models to learn orthogonal columns can be extended to learn sparse

models with disjoint supports. In the two-columns case, we have proved that the

penalty of [184] is an atomic norm derived from the set of scaled orthogonal matrices,

and for the general case T > 2 we have shown that for suitable choices of parameters

it can be written as a linear combination of atomic norms applied to pairs of columns.

In terms of algorithms, the RDA algorithm proposed by [183] is only suitable to solve

the problem (3.12) in the strictly convex case, and we have shown that in the limit

case where ΩK is convex but not strictly convex we can solve iteratively with a series

of 6-dimensional SDP. Our simulations show that considering non-convex versions of
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the penalty can be relevant, in particular for small noise regimes. Interestingly, we

observed that non-convex formulations lead to more orthogonal models than convex

formulations, and that the Disjoint Support model significantly outperformed all other

models when the disjoint support hypothesis was met. We also evaluate described

approaches on real datasets: JAFFE and MicroMass. On the first one, results show

that the structure learned by Xiao approach is comparable to methods that are only

dedicated to the specific case of two groups of unrelated tasks. For the second dataset,

Disjoint supports achieves correct classification rate at the genus-level, similar to pre-

viously benchmarked Support Vector Machines. However the learned model shows

interesting block structure with features uniquely affected to a given genus. In the

future, we plan to investigate the relevance of these approaches on other classifica-

tion problems, such as hierarchical document classification [184] or spoken letter-name

identification with different speakers, like in ISOLET dataset [48].
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Chapter 4

Large-scale Machine Learning for

Metagenomics Sequence

Classification

This chapter has been submitted under a slightly different form as [?], a joint work with

Pierre Mahé, Maud Tournoud, Jean-Baptiste Veyrieras and Jean-Philippe Vert.

Abstract

Metagenomics characterizes the taxonomic diversity of microbial communi-

ties by sequencing DNA directly from an environmental sample. One of the

main challenges in metagenomics data analysis is the binning step, where each

sequenced read is assigned to a taxonomic clade. Due to the large volume of

metagenomics datasets, binning methods need fast and accurate algorithms that

can operate with reasonable computing requirements. While standard alignment-

based methods provide state-of-the-art performance, compositional approaches

that assign a taxonomic class to a DNA read based on the k-mers it contains

have the potential to provide faster solutions. In this work, we investigate the po-

tential of modern, large-scale machine learning implementations for taxonomic

affectation of next-generation sequencing reads based on their k-mers profile.

We show that machine learning-based compositional approaches benefit from in-

creasing the number of fragments sampled from reference genome to tune their

parameters, up to a coverage of about 10, and from increasing the k-mer size to

about 12. Tuning these models involves training a machine learning model on

about 108 samples in 107 dimensions, which is out of reach of standard softwares

but can be done efficiently with modern implementations for large-scale machine

learning. The resulting models are competitive in terms of accuracy with well-

established alignment tools for problems involving a small to moderate number

of candidate species, and for reasonable amounts of sequencing errors. We show,

however, that compositional approaches are still limited in their ability to deal

with problems involving a greater number of species, and more sensitive to se-

quencing errors. We finally confirm that compositional approach achieve faster
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prediction times, with a gain of 3 to 15 times with respect to the BWA-MEM

short read mapper, depending on the number of candidate species and the level

of sequencing noise.

Résumé

La métagénomique permet de caractériser la diversité taxinomique de com-

munités microbiennes, directement en séquena̧nt un échantillon brut, sans étape

de culture. Un des principaux défis en métagénomique est l’assignation de chaque

séquence à une entité taxinomique. Les larges volumes considérés dans les don-

nées métagénomiques font que des algorithmes efficaces et rapides sont requis

pour cette étape d’affectation. Alors que les approches classique par similarité

offrent des performances de référence, les approches dites compositionnelles as-

signent une classe taxonomique à chaque séquence d’ADN en se basant sur son

contenu en k-mers et ont le potentiel de fournir des solutions plus rapides. Dans

cette étude, nous évaluons le potentiel d’approches modernes et grande échelle

de classification pour l’affectation taxonomique de ’reads’ en se basant sur leurs

profils en k-mers. Nous montrons que les approches compositionnelles utilisant

l’apprentissage statistique tirent avantage du grand nombre de fragments extraits

de génomes de référence utilisés pour estimer leurs paramètres, jusqu’à une cou-

verture de 10, ainsi que de longs k-mers, jusqu’à une longueur de 12. Construire

ces modèles requiert une étape d’apprentissage sur environ 108 exemples repré-

sentés par des vecteurs de dimension 107, ce qui est hors de portée des algo-

rithmes classiques, mais peut être efficacement avec des implémentations mo-

dernes à grande échelle. Ces modèles ont des performances comparables aux

outils bio-informatiques standards utilisant l’alignement de séquences, pour des

problèmes impliquant un nombre restreint d’espèces microbiennes et un niveau

raisonnable de bruit de séquena̧ge. Cependant, nos résultats suggèrent que les

approches compositionnelles sont limitées lorsqu’il s’agit de considérer un très

grand nombre d’espèces et sont plus sensibles à de hauts niveaux de bruit de

séquena̧ge. Nous confirmons également que les approches compositionnelles pré-

sentent un net avantage en terme de temps de prédiction par rapport à une

méthode d’alignement. Notre approche est entre 3 et 15 fois plus rapide que

BWA-MEM : cela dépend du nombre d’espèces considérées et du niveau de bruit

de séquena̧ge.

4.1 Introduction

Recent progress in next-generation sequencing (NGS) technologies allow to access large

amounts of genomic data within a few hours at a reasonable cost [154]. In metage-

nomics, NGS is used to analyse the genomic content of microbial communities by

sequencing all DNA present in an environmental sample [134]. It gives access to all

organisms present in the sample even if they do not grow on culture media [77], and
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allows us to characterize with an unprecedented level of resolution the diversity of the

microbial realm [129].

The raw output of a metagenomics experiment is a large set of short DNA se-

quences (reads) obtained by high-throughput sequencing of the DNA present in the

sample. There exist two main approaches to analyze these data, corresponding to

slightly different goals. On the one hand, taxonomic profiling aims to estimate the

relative abundance of the members of the microbial community, without necessarily

affecting each read to a taxonomic class. Recent works like WGSQuikr [95] or GA-

SIC [?] proved to be very efficient for this purpose. Taxonomic binning methods, on

the other hand, explicitly affect each read to a taxonomic clade. This process can be

unsupervised, relying on clustering methods to affect reads to operational taxonomic

units (OTU), or supervised, in which case reads are individually affected to nodes of

the taxonomy [109]. While binning is arguably more challenging that profiling, it is a

necessary step for downstream applications which require draft-genome reconstruction.

This may notably be the case in a diagnostics context, where further analyses could

aim to detect pathogen micro-organisms [121] or antibiotic resistance mechanisms [145].

In this chapter we focus on the problem of supervised taxonomic binning, where we

wish to assign each read in a metagenomics sample to a node of a pre-defined tax-

onomy. Two main computational strategies have been proposed for that purpose: (i)

alignment-based approaches, where the read is searched against a reference sequence

database with sequence alignment tools like BLAST [79] or short read mapping tools

(e.g., BWA, [103]), and (ii) compositional approaches, where a machine learning model

such as a naive Bayes (NB) classifier [174, 127] or a support vector machine (SVM,

[118, 128]) is trained to label the read based on the set of k-mers it contains. Since

the taxonomic classification of a sequence by compositional approaches is only based

on the set of k-mers it contains, they can offer significant gain in terms of classifi-

cation time over similarity-based approaches. Training a machine learning model for

taxonomic binning can however be computationally challenging. Indeed, compositional

approaches must be trained on a set of sequences with known taxonomic labels, typ-

ically obtained by sampling error-free fragments from reference genomes. In the case

of NB classifiers, explicit sampling of fragments from reference genomes is not needed

to train the model: instead, a global profile of k-mer abundance from each reference

genome is sufficient to estimate the parameters of the NB model, leading to simple and

fast implementations [174, 140, 127]. On the other hand, in the case of SVM and re-

lated discriminative methods, an explicit sampling of fragments from reference genomes

to train the model based on the k-mer content of each fragment is needed, which can

be a limitation for standard SVM implementations. For example, [128] sampled ap-

proximately 10,000 fragments from 1768 genomes to train a structured SVM (based on

a k-mer representation with k = 4, 5, 6), and reported an accuracy competitive with

similarity-based approaches. Increasing the number of fragments sampled to train a

SVM may improve its accuracy, and allow us to investigate larger values of k. However
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it also raises computational challenges, as it involves machine learning problems where

a model must be trained from potentially millions or billions of training examples, each

represented by a vector in 107 dimensions for, e.g., k = 12.

In this work, we investigate the potential of compositional approaches for taxonomic

label assignment using modern, large-scale machine learning algorithms.

4.2 Linear models for read classification

In most of compositional metagenomics applications, a sequence is represented by its k-

mer profile, namely, a vector counting the number of occurrences of any possible word

of k letters in the sequence. Only the A, T, C,G nucleotides are usually considered

to define k-mer profiles, that are therefore 4k-dimensional vectors, like illustrated in

Figure 4.1.

Figure 4.1: From sequencing read to vector space representation. The left side
represents a nucleotide sequence that is changed into k-mer count vector (here k = 2).
This k-mer profile (right) is used as a vector space representation for machine learning
approaches.

Although the size of the k-mer profile of a sequence of length l increases exponen-

tially with k, it contains at most l− k+ 1 non-zero elements since a sequence of length

k contains l − k + 1 different k-mers.

Given a sequence represented by its k-mer profile x ∈ R4k
, we consider linear models

to assign it to one of K chosen taxonomic classes. A linear model is a set of weight

vectors w1, . . . , wK ∈ R4k
that assign x to the class

arg max
j=1,...,K

w>j x ,

where w>x is the standard inner product between vectors. To train the linear model,
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we start from a training set of sequences x1, . . . , xn ∈ R4k
with known taxonomic labels

c1, . . . , cn ∈ {1, . . . , K}. A NB classifier, for example, is a linear model where the

weights are estimated from the k-mer count distributions on each class. Another class

of linear models popular in machine learning, which include SVM, are the discriminative

approaches that learn the weights by solving an optimization problem which aims to

separate the training data of each class from each other. More precisely, to optimize

the weight wj of the j-th class, one typically assigns a binary label yi to each training

example (yi = 1 if ci = j, or yi = −1 otherwise) and solves an optimization problem of

the form

min
w

1
n

n∑
i=1

`(yi, w>xi) + λ‖w‖2 , (4.1)

where `(y, t) is a loss function quantifying how “good” the prediction t is if the true

label is y, and λ ≥ 0 is a regularization parameter to tune, helpful to prevent overfitting

in high dimension, as detailed in Section 1.2.4. A SVM solves (4.1) with the hinge loss

`(y, t) = max(0, 1 − yt), but other losses such as the logistic loss `(y, t) = log(1 +
exp(−yt)) or the squared loss `(y, t) = (y − t)2 are also possible and often lead to

models with similar accuracies. These models have met significant success in numerous

real-world learning tasks, including compositional metagenomics [128]. In this work,

we use the squared loss function and choose λ = 0, a setting that seemed appropriate

from preliminary experiments.

4.2.1 Large-scale learning of linear models

Although learning linear models by solving (4.1) is now a mature technology imple-

mented in numerous softwares, metagenomics applications raise computational chal-

lenges for most standard implementations, due to the large values that n (number

of reads in the training set), p = 4k (dimension of the models) and K (number of

taxonomic classes) can take.

The training set is typically obtained by sampling fragments from reference genomes

with known taxonomic class. For example, [128] sampled approximately n = 10, 000
fragments from 1, 768 genomes to train SVM models based on k-mer profiles of size

k = 4, 5, 6. However, the number of distinct fragments that may be drawn from a

genome sequence is approximately equal to its length (by sampling a fragment starting

at each position in the genome), hence can reach several millions for each microbial

genome, leading to potentially billions of training sequences when thousands of refer-

ence genomes are used. While considering every possible fragment from every possible

genome may not be the best choice because of the possible redundancy between the

reads, it may still be useful to consider a significant number of fragments to properly

account for the intra and inter species genomic variability. Similarly, exploring models

with k larger than 6, say 10 or 15, may be interesting but requires (i) the capacity

to manipulate the corresponding 4k-dimensional vectors (415 ∼ 109), and (ii) large

training sets since many examples are needed to learn a model in high dimension. Fi-
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nally, real-life applications involving actual environmental samples may contain several

hundreds microbial species, casting the problem into a relatively massive multiclass

scenario out of reach of most standard implementations of SVM.

To solve (4.1) efficiently when n, k and K take large values, we use a dedicated

implementation of stochastic gradient descent (SGD) described in Section 1.2.5 and

available in the Vowpal Wabbit software (VW, [98, 1]). In short, SGD exploits the

fact that the objective function in (4.1) is an average of n terms, one for each training

example, to approximate the gradient at each step using a single, randomly chosen

term. Although SGD requires more steps to converge to the solution than standard

gradient descent, each step is n times faster and the method is overall faster and more

scalable. In addition, although the dimension p = 4k of the data is large, VW exploits

the fact that each training example is sparse, leading to efficient memory storage and

fast updates at each SGD step. In practice, VW can train a model with virtually no

limit on n as long as the data can be stored on a disk (they are not loaded in memory).

As for k, VW can handle up to 232 distinct features, and the count of each k-mer is

randomly mapped to one feature by a hash table. This means that we have virtually no

limit on k, except that when k approaches or exceeds the limit (such that 4k = 232, i.e.,

k = 16), collisions will appear in the hash tables and different k-mers will be counted

together, which may impact the performance of the model.

4.3 Data

We simulate metagenomics samples by generating reads from three different reference

databases, which we refer to below as the mini, the small and the large databases.

The mini reference database contains 356 complete genome sequences covering 51

bacterial species, listed in Table 4.1. We use this database to train and extensively

vary the parameters of the different models. To measure the performance of the differ-

ent models, we generate new fragments from 52 genomes not present in the reference

database, but originating from one of the 51 species1.

The small and large databases are meant to represent more realistic situations,

involving a larger number of candidate bacterial species and a larger number of reference

genomes. To define the reference and validation databases that will respectively be used

to build and evaluate the predictive models, we first downloaded the 5201 complete

bacterial and archeal genomes available in the NCBI RefSeq database as of July 2014

[130], by means of a functionality embedded in the Fragment Classification Package

(FCP) [127]. We then filtered these sequences according to a criterion proposed in

[127]: we only kept genomes that belong to genera represented by at least 3 species.

We also removed genomes represented by less than 106 nucleotides in order to filter

draft genome sequences, plasmids, phages, contigs and other short sequences. The 2961

1Two genomes are indeed available for the Francisella tularensis species, one of which originating
from the novicida subspecies.
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Table 4.1: List of the 51 microbial species in the mini reference database.
Species name Species name
Acetobacter pasteurianus Methylobacterium extorquens
Acinetobacter baumannii Mycobacterium bovis
Bacillus amyloliquefaciens Mycobacterium tuberculosis
Bacillus anthracis Mycoplasma fermentans
Bacillus subtilis Mycoplasma genitalium
Bacillus thuringiensis Mycoplasma mycoides
Bifidobacterium bifidum Mycoplasma pneumoniae
Bifidobacterium longum Neisseria gonorrhoeae
Borrelia burgdorferi Propionibacterium acnes
Brucella abortus Pseudomonas aeruginosa
Brucella melitensis Pseudomonas stutzeri
Buchnera aphidicola Ralstonia solanacearum
Burkholderia mallei Rickettsia rickettsii
Burkholderia pseudomallei Shigella flexneri
Campylobacter jejuni Staphylococcus aureus
Corynebacterium pseudotuberculosis Streptococcus agalactiae
Corynebacterium ulcerans Streptococcus equi
Coxiella burnetii Streptococcus mutans
Desulfovibrio vulgaris Streptococcus pneumoniae
Enterobacter cloacae Streptococcus thermophilus
Escherichia coli Thermus thermophilus
Francisella tularensis Treponema pallidum
Helicobacter pylori Yersinia enterocolitica
Legionella pneumophila Yersinia pestis
Leptospira interrogans Yersinia pseudotuberculosis
Listeria monocytogenes

remaining sequences originate from 774 species, among which 193 are represented by at

least 2 strains. We split the sequences of these 193 species into two parts. We randomly

pick one strain within each of these 193 species to define a validation database, that

will be used to estimate classification performance, through the sampling of genomic

fragments or the simulation of sequencing reads. The remaining sequences of these

193 species define a first reference database, referred to as small below. In addition

we define a larger reference database by adding to the small database described above

the genomes originating from the 774 − 193 = 581 species represented by a single

genome. The larger database, referred to as large below, therefore involves the 774

species available after filtering the NCBI database, and not solely the 193 represented

in the validation database.
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4.4 Results

4.4.1 Proof of concept on the mini database

In this section we present a proof of concept on the mini dataset aiming to evaluate the

impact of different Vowpal Wabbit parameters, like the number of passes and the hash

table size. For that purpose, we learn several classification models based on fragments

of length L = 200 or L = 400 sampled from the 356 reference genomes in the mini

reference database, represented by k-mers of size in {4, 6, 8, 10, 12}.
Once the VW parameters are optimized, we consider increasing the number of

fragments used to train the model as well as the length of the k-mers considered. The

number of fragments used to learn the models is gradually increased by drawing several

“batches” of fragments in order to cover, on average, each nucleotide of the reference

genomes a pre-defined number of times c. We vary the coverage c between 0.1 to its

maximal value, equal to the length of the fragments considered. This leads to learning

models from around n = 2.7×105, for c = 0.1 and L = 400, up to around n = 1.1×109

fragments, when c reaches its maximal value. This is way beyond the configurations

considered for instance in [128], where SVM models were learned from approximately

104 fragments drawn from 1, 768 genomes.

To assess the performance of these models we consider two sets of 134, 319 frag-

ments, of respective length 200 and 400, drawn from the 52 complete genomes that

are not in the reference database used to train the models. Performance is measured

by first computing, for each species, the proportion of fragments that are correctly

classified, and considering its median value across species. In a multiclass setting, this

indicator is indeed less biased towards over-represented classes than the global rate of

correct classification.

Loss functions and classification strategies

There are multiple ways to formulate a multiclass classification problem solved by

linear predictors, like previously described in Section 1.3.2. We evaluate OVA and ECT

classification strategies and three loss functions, described in Section 1.2.3, on the mini

datasets with a mean coverage c equal to 1 for the training step. We report results in

Figure 4.2. These figures show the median accuracy at species level as a function of k-

mer size and loss function for OVA multiclass strategy (left) and ECT strategy (right).

We only report results for fragments of length 400, but comparable performances were

observed on fragments of length 200. For both OVA and ECT, we note that squared

loss and hinge loss achieve comparable performances while logistic loss function is less

adapted to our problem. Interestingly, we observe that OVA model provides slightly

better performances than ECT for all loss functions and k-mer sizes considered. As

explained in Section 1.3.2, ECT achieves faster computation but usually leads to less

accurate model. Based on these results, we consider a OVA multiclass strategy with a
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squared loss function in following experiments.
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Figure 4.2: Loss functions and classification strategies. Left: One Versus All
(OVA) strategy. Right: Error Correcting Tournament (ECT) strategy. These figures
give median accuracy at species level for different loss functions: squared (red), hinge
(blue) and logistic (purple). Performances are reported as a function of the k-mer sizes
on fragments of length 400.

Number of training passes

As explained in Section 1.2.5, most of algorithms based on SGD, like Vowpal Wabbit,

may require multiple passes over the training examples to achieve good convergence

rate. Figure 4.3 shows the results obtained in terms of median accuracy at species level

as a function of number of passes on the training set. For two mean coverage values

c = 0.1 (left) and c = 1 (right), we note that the number of passes does not affect

performances for any values of k. However, the training time for a classifier is directly

linked to the number of passes, so we put it equal to one for the next experiments.

Features collisions in the hash table

In order to efficiently parse the k-mer content of each sequence fragment, algorithms like

Liblinear or Vowpal Wabbit build a hash table [114] matching any possible k-mer with

a hash key, acting as a feature index. Given the short read length we consider (< 1000),

this step provides a sparse representation of each example in the training and evaluation

sets. One reason for Vowpal Wabbit efficiency is the optimized feature hashing step,

directly computing an hash table from the input bag-of-words, or here bag-of-kmers,

representation. However, even an efficient hashing step leads to collisions in the table

when two or more values receive the same key. Interestingly, we can illustrate hash

table collisions by using the birthday paradox [119]: if 40 keys are randomly hashed

into 365 slots, there is approximately a 90% chance that at least two of them end up

hashed to the same slot. To limit collisions in its hash table, Vowpal Wabbit can be
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Figure 4.3: Number of passes during the training step. Left: Mean coverage=0.1.
Right: Mean coverage=1. These figures give median accuracy at species level for
different k-mer sizes: k = 6 (purple) and k = 10 (red). Performances are reported as
a function of the number of passes on the training set for fragments of length 400. For
clarity purposes, we only report results for two k-mer sizes (k = {6, 10}), but other k
values lead to similar results.

parameterized with an hash table size from 1 to 232 entries. Note that, in the multiclass

case, VW stores one model for each different class. Given the dictionary size and the

number of classes K in our problem, an upper bound of the required number of slots

is given by 4k ×K. Considering a hash table size equal to this upper bound, one can

compute the expected collision rate as the ratio between number of slots with collisions

and total number of slots. For b slots, the probability that a key among n keys receives

exactly the same slot than another particular key is given by 1 −
(
b− 1
b

)n−1

. Then,

the collision counting is equal to the sum of this probability function over all n keys,

that is,
n∑
k=1

1−
(
b− 1
b

)k−1
 = n− b+ b

(
b− 1
b

)n
.

Interestingly, where n = b, the collision rate is around 36.8% corresponding to the

probability for an instance of ending up in the test data in bootstrap setting described

in [70, Chapter 7].

We evaluate the impact of different hash table sizes on classification performances

and report results in Figure 4.4. These two figures (left: k = 8, right: k = 10) represent

median accuracy by taxon and collision rate as a function of hash table size. Results are

obtained on fragments of length 400 for a mean coverage c = 0.1. The purple dashed

line corresponds to the expected number of features, given k. Interestingly, we note

that performances drop with hash tables smaller than log2(4k×K) bits. It is correlated

with high collision rates (> 50%), which means that half of hash table slots have at

least 2 keys pointing on it. In addition, there is no negative effect on performances for
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hash tables larger than log2(4k×K) bits. So, if there is no limitation due to computer

memory access, we propose to keep the hash table size equal to 231. On this dataset,

52 models have to be stored in the hash table, which reduces the number of entries

available per model to 232/52 ∼ 232−6 = 413.
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Figure 4.4: Features collisions and accuracy in Vowpal Wabbit hash table
Left: k = 8. Right: k = 10. These figures give median accuracy by taxon (blue) and
collision rate (orange) for different hash table sizes from 18 bits (default) to 31 bits
(maximal value allowed by Vowpal Wabbit). Dashed purple lines represent expected
number of features (log2(4k ×K)). Performances are obtained on fragments of length
400 with a mean coverage c = 0.1.

Influence of the mean coverage value

Figure 4.5 shows the performance reached by models based on fragments of length 200

(left) or 400 (right), for different values of k (horizontal axis) and different coverages

(different colors). We first note that for c = 0.1, that is, for a limited number of

fragments, the classification performance starts by increasing with the size of the k-

mers (up to k = 8 and k = 10 for fragments of length 200 and 400, respectively), and

subsequently decreases. This suggests that the number of fragments considered in this

setting is not sufficient to efficiently learn when the dimensionality of the feature space

becomes too large. Note that twice as many fragments of length 200 as fragments of

size 400 are drawn for a given coverage value, which may explain why performance still

increases beyond k = 8 with smaller fragments. Increasing the number of fragments

confirms this hypothesis : performance systematically increases or remains steady with

k for c ≥ 1, and for k ≥ 8, the performance is significantly higher than that obtained

at c = 0.1, for both length of fragments. Increasing the coverage from c = 1 to c = 10
has a positive impact in both cases, although marginally for fragments of length 400.

Further increasing the number of fragments does not bring any improvement.

Altogether, the optimal configuration on this mini dataset involves k-mers of size

81



4 6 8 10 12

0
20

40
60

80
10

0

L = 200

k−mer size

m
ed

ia
n 

sp
ec

ie
s−

le
ve

l a
cc

ur
ac

y

cov=0.1
cov=1
cov=10
cov=100
cov=200

4 6 8 10 12

0
20

40
60

80
10

0

L = 400

k−mer size

m
ed

ia
n 

sp
ec

ie
s−

le
ve

l a
cc

ur
ac

y

cov=0.1
cov=1
cov=10
cov=100
cov=400

Figure 4.5: Increasing the number of fragments and the k-mer size on the
mini datasets. Left: L = 200bp fragments. Right: L = 400bp fragments. These
figures show median accuracy at species level for linear predictors trained with Vowpal
Wabbit from fragments covering each reference genome with a mean coverage c from
0.1 (red) to L (purple). Performances are reported as a function of k-mer sizes.

12 and drawing fragments at a coverage c ≥ 10 for the two lengths of fragments

considered. Further increasing the size of the k-mers did not bring improvements,

and actually proved to be challenging. Indeed, as mentioned above, VW proceeds

by hashing the input features into a vector offering at most 232 entries. This hashing

operation can induce collisions between features, which can be detrimental to the model

if the number of features becomes too high with respect to the size of the hash table.

This issue is even more stressed in a multiclass setting, where the number of hash table

entries available per model is divided by the number of classes considered. On this

dataset, 51 models have to be stored in the hash table, which reduces the number of

entries available per model to 232/51 ∼ 232−6 = 413. We have empirically observed that

performance could not increase for k greater than 12 and actually decreased for k-mers

greater than 15, as shown in Figure 4.6.

Comparison with reference approaches

We now compare these results to two well-established approaches: a comparative ap-

proach based on the BWA-MEM sequence aligner [102] and a compositional approach

based on the generative NB classifier [140]. The NB experiments rely on the FCP im-

plementation [127] and are carried out in the same setting as VW: we compute profiles

of k-mers abundance for the 356 genomes of the reference database, and use them to

affect test fragments to their most likely genome. BWA-MEM is configured to solely

return hits with maximal score (option -T 0). Unmapped fragments are counted as

misclassifications, and a single hit is randomly picked in case of multiple hits, in order

to obtain a species-level prediction. This random hit selection process is repeated 20
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Figure 4.6: Large k-mer sizes and collisions in hash table. Mean species accuracy
(right) and median species accuracy (left) given as a function of the k-mer size and the
mean coverage.

times and the performance indicator reported below corresponds to its median value

obtained across repetitions. Results are shown in Figure 4.7. We first note that k-mer

based approaches, either generative or discriminative, never outperform the alignment-

based approach. Comparable results are nevertheless obtained for k ≥ 10 with VW,

and k = 12 with the NB. Performances obtained for shorter k-mers are markedly lower

than that obtained by BWA-MEM. We note finally that VW generally outperforms

the NB classifier, except for small k-mers and short fragments (k ≤ 6 and L = 200).

In summary, these experiments demonstrate the relevance and feasibility of large-

scale machine learning for taxonomic binning: we obtain a performance comparable to

that of the well-established alignment-based approach, provided a sufficient number of

fragments and long enough k-mers are considered to learn the k-mers based predictive

models.

4.4.2 Evaluation on the small and large reference databases

We now proceed to a more realistic evaluation involving a larger number of candidate

microbial species and a larger number of reference genomes, using the small and large

reference databases. We learn classification models according to the configuration

suggested by the evaluation on the mini database: we consider k-mers of size 12 and

a number of fragments allowing to cover each base of the reference genomes 10 times

in average. We limit our analysis to fragments of length 200, which leads to learn

models from around n = 1.38 × 108 and n = 2.56 × 108 fragments for the small

and large reference databases, respectively. Note that due to the larger number of

species involved, around 232−8 = 412 and 232−10 = 411 entries of the VW hash table

are available per model for each of these reference databases. Based on the results

with the mini database, this should be compatible with k-mers of size 12. We evaluate
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Figure 4.7: Comparison between Vowpal Wabbit and reference methods on
the mini datasets. Left: L = 200bp fragments. Right: L = 400bp fragments.
These figures give median accuracy by taxon for linear predictors (purple solid line)
trained with VW from fragments covering each reference genome with a mean coverage
equal to 10. Performances are reported as a function of k-mer sizes. Our approach
is compared to standard compositional Naive Bayes approach (green dotted line), and
alignment-based methods BWA (grey dotted line).

the performance of the models on fragments extracted from the 193 genomes of the

validation database and draw a number of reads necessary to cover each base of each

genome once in average, which represents around 3.5×106 sequences. Results obtained

by VW are again compared to that obtained by the two baseline approaches involved in

the previous proof of concept, namely BWA-MEM and NB, and are shown in Table 4.2.

We first note that for the small reference database, the performance of VW and BWA-

MEM are very similar (median species-level accuracy of 92.4% and 93%, respectively).

The NB classifier, on the other hand, has a significantly lower performance, with 8% less

in median accuracy than the alignment-based approach. Considering a larger number

of candidate species in the large reference database has little impact on the alignment-

based approach, where we observe a performance drop of only 1% (91.9% vs 93%). It

impacts more severely compositional approaches, with both NB and VW accuracies

dropping by about 5%. This suggests that k-mer based approach are still limited in

their ability to deal with problems involving more than a few hundreds of candidate

species.

4.4.3 Robustness to sequencing errors

The evaluation performed in the previous sections is based on taxonomic classification

of DNA fragments drawn from reference genomes without errors. In real life, sequencing

errors may alter the read sequences and make the classification problem more challeng-

ing. To evaluate the robustness of the classifiers to sequencing errors, we generate new
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Table 4.2: Performance on the small and large reference databases. This
table gives median accuracy by taxon for Vowpal Wabbit (VW), Naive Bayes (NB) and
BWA-MEM by using the two reference databases smallDB and largeDB. Compositional
approaches (VW and NB) performances are reported for a kmer length k equal to 12.
VW performances are reported for a mean coverage c = 10.

smallDB largeDB
Vowpal Wabbit 92.4 87.7
Naive Bayes 85.1 79.8
BWA-MEM 93.0 91.9

reads simulating sequencing errors using the Grinder read simulation software [7]. We

consider two types of sequencing errors models: homopolymeric stretches, which are

commonly encountered in pyrosequencing technologies (e.g., Roche 454), and general

mutations (substitutions and insertions/deletions). In order to be able to compare the

results of the fragment- and read-based evaluations, we systematically simulate reads

of length 200 (exactly), and simulate around 3.5× 106 sequences as well.

Homopolymeric error models.

To evaluate the impact of homopolymeric errors, we consider the three error models

implemented in Grinder : Balzer [12], Richter [133] and Margulies [112]. Results are

shown in Figure 4.8. We first note that this kind of errors has a very limited impact

on BWA-MEM: only the Margulies model turns out to be detrimental, with a drop

of less than 1% for both the small and large reference databases. The Balzer and

Richter models have a limited impact on the compositional approach as well: a drop

of less than 1% is observed as well in most cases (except with the NB classifier, where

a drop of almost 2% is observed using the large reference database and the Richter

model). The Margulies model, on the other hand, has a much more severe impact on

the performance of k-mer based approaches. While a relatively limited performance

drop of around 1.5% is observed with VW using the small reference database, the

NB shows a drop of more than 5%. Considering the large reference database, both

approaches show a drop of almost 8%, which therefore leads to a gap of more than

10% and up to 20%, for VW and NB respectively, compared to the performance of the

alignment-based approach. This discrepancy is therefore significantly higher than the

one observed from fragments, where VW and NB have performance lower than that

of BWA-MEM by around 4% and 12%, respectively, on the large reference database.

Analyzing the error profile of the reads obtained by Grinder reveals that both the

Balzer and Richter models lead to a median mutation rate of 0.5% (meaning that

half of the 200 bp simulated reads show more than one modified base), while this

rate raises to 3% with the Margulies model. While this can readily explain why this

latter model had a stronger impact, it suggests that what may be seen as a relatively

moderate modification of the sequences (6 bases out of 200) can have a severe impact

on compositional approaches.
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Mutation error model.

To study the impact of general mutation errors, we consider the 4th degree polynomial

proposed by [94] and implemented in Grinder. Using the default values proposed

by Grinder, we empirically observe a median mutation rate of 10.7%. This value is

much more important than what is expected by current NGS technologies, and is

probably due to the fact that this model was calibrated from shorter reads. Indeed,

the median mutation rate decreases to around 1.5% when we reduce the length of

the reads to 30, in agreement with the results of the original publication [94]. To

investigate in details the impact of mutations within reads of length 200, we modify

the parameters of the error model in order to gradually increase the median mutation

rate from 1% to 10%, by 1%. This therefore leads to simulating 11 datasets, since we

consider in addition the default Grinder configuration. Results are shown in Figure

4.9. We first note that this type of errors has a very limited impact on alignment-based

approach: even at the higher rate of mutation considered (median mutation rate of

10.7%), the performance drops by around 1% with respect to the performance obtained

with fragments, for both the small and large reference databases. On the other hand,

the performance obtained with compositional approaches steadily decreases when the

mutation rate increases. Using the small reference database, the impact is more severe

for NB than for VW : a drop of up to 10% is observed in the former case (from 85.1%
for fragments down to 75.2% for a mutation rate of 10.7%) and almost 6% in the latter

(from 92.4% down to 86.7%). The drop is even more severe using the larger database in

both cases. Interestingly while it remains relatively constant around 10% for mutation

rate greater than 4% with NB (hence twice the gap observed between the small and

large datasets using fragments), it keeps increasing with VW and reaches 24% at the

highest mutation rate considered. As a result, VW is outperformed by NB using the

large reference database for mutation rates greater than 8%. Although these extreme

configurations are not realistic regarding the current state of the NGS technologies, we

emphasize, in agreement with the previous experiment on homopolymeric errors, that

significant drops are observed with compositional approaches for moderate mutation

rates, especially for large number of candidate species. For instance, with a mutation

rate of 2%, the performances of VW and NB drop respectively by 4 and 5% with

the large reference database, while this has no impact on the alignment approach.

In this more realistic setting, the alignment-based approach shows markedly higher

performances: it provides a median species-level accuracy of 91.7%, while VW and the

NB classifier reach 83.9% 74.8%, respectively.

4.4.4 Classification speed

Last but not least, we now turn to the comparison of the comparative and compositional

approaches in terms of prediction time. This aspect is indeed of critical importance

for the analysis of the large volumes of sequence data provided by next-generation
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Figure 4.8: Evaluation on FCP dataset: homopolymer-based models. Top:
smallDB reference. Bottom: largeDB reference. These figures give median accuracy by
taxon for VW (purple), NB (green) and BWA (grey). Each approach has been evalu-
ated on three datasets simulated according to three different error models: Balzer [12],
Richter [133], and Margulies [112].

sequencing technologies, and constitutes the main motivation of resorting to k-mer

based approaches. To perform this evaluation we measure the time taken by BWA-

MEM and the k-mer based approaches to process the 30 test datasets involved in

the previous experiments (1 fragments dataset, 3 reads datasets with homopolymeric

errors and 11 reads datasets with mutation errors, for the two reference databases

considered). This allows us to investigate the impact of the number of species involved

in the reference database, as well as the amount of sequencing noise in the reads. We

do not make a distinction between the two compositional approaches: both involve

computing a score for each candidate species, defined as a dot product between the

k-mer profile of the sequence to classify and a vector of weights obtained by training the

model. To compute this dot-product efficiently, we implemented a procedure described

in [153]. With this procedure, each A, T, G, C nucleotide is encoded by two bits, which

allows to directly convert a k-mer as in integer between 0 and 4k − 1. Provided that

the weight vector is loaded into memory, the score can be computed “on the fly“ while

evaluating the k-mer profile of the sequence to be classified, by adding the contribution

of the current k-mer to the score. The drawback of this procedure lies in the fact that

the vectors of weights defining the classification models need to be loaded into memory,

which can be cumbersome in a multiclass setting. For 193 and 774 species and k-mers

of size 12, this amounted to 12 and 48 gigabytes, respectively.

Computation times are measured on a single CPU (Intel XEON - 2.8 Ghz) equipped

with 250 GB of memory, and summarized in Figure 4.10. The time needed to classify

each read or fragment dataset by the k-mer approach shows little variation, for a given
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reference database. The median value obtained across test datasets reaches 5.4 and

9.1 minutes, using the small and large reference database, respectively, hence about a

two-fold difference. This therefore amounts to classifying around 6.5×105 and 3.9×105

reads per minute, respectively. BWA-MEM shows a different behavior. We observe

that the time varies more across reads and fragment datasets, and tends to increase

with the amount of sequencing noise. On the other hand, the size of the reference

database has a lesser impact, with at most an increase of 20% between the time needed

to process a test dataset with the small or large reference databases. The compositional

approach systematically offers shorter prediction times, with an improvement of 3 to

almost 15 times, depending on the configuration.

4.5 Discussion

In this work, we investigate the potential of modern, large-scale machine learning ap-

proaches for taxonomic binning of metagenomics data. We extensively evaluate their

performance when the scale of the problem increases regarding (i) the length of the k-

mers considered to represent a sequence, (ii) the number of fragments used to learn the

model, and (iii) the number of candidate species involved in the reference database. We

also investigate in details their robustness to sequencing errors using simulated reads.

We consider two baselines for this evaluation: a comparative approach based on the

BWA-MEM sequence aligner and a compositional approach based on the generative

NB classifier. We demonstrate in particular that increasing the number of fragments

used to train the model has a significant impact on the accuracy of the model, and

allows to estimate models based on longer k-mers. While this could be expected and

is already highlighted by previous studies, the resulting configurations are out of reach

of standard SVM implementations. We also show that discriminatively trained com-

positional models usually offer significantly higher performances than generative NB

classifiers. The resulting models are competitive with well-established alignment tools

for problems involving a small to moderate number of candidate species, and for rea-

sonable amounts of sequencing errors. Our results suggest, however, that compositional

approaches, both discriminative and generative, are still limited in their ability to deal

with problems involving more than a few hundreds species. In this case, indeed, com-

positional approaches exhibit lower performance than alignment-based approaches and

are much more negatively impacted by sequencing errors. Finally, we confirm that

compositional approach achieve faster prediction times. This is indeed systematically

the case in the various configurations listed above, with predictions obtained 3 to 15

times faster by compositional approaches, and, interestingly, depends on the number of

candidate species and the level of sequencing noise. We emphasize, however, that fast

predictions can only be obtained provided that the classification models are loaded in

memory, hence for a memory footprint that scales linearly with the number of candidate

species and exponentially with the size of the k-mers, which can become important for
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large reference databases and long k-mers.

At least three simple extensions could be envisioned to make compositional ap-

proaches more competitive in accuracy with the alignment-based approach, faster, and

to limit their memory footprint. First, the robustness to sequencing errors may be

improved by learning models from simulated reads instead of fragments. This could

indeed allow to tune the model to the sequencing technology producing the reads to be

analyzed, provided its error model is properly known and characterized. Second, intro-

ducing a sparsity-inducing penalty while learning the model would have the effect of

reducing the number of features entering the model, hence to reduce the memory foot-

print required to load the model into memory. Finally, alternative strategies, known as

error correcting tournaments [20], could be straightforwardly considered to reduce the

number of models to learn, hence to store into memory during prediction, to address

a multiclass problem. Our results indeed suggest that addressing these issues is criti-

cal to build state-of-the-art compositional classifiers to analyze metagenomics samples

that may involve a broad spectrum of species. We emphasize however that such large

scale models can remain competitive for realistic amounts of sequencing errors and a

moderate number of species (around 200 in our study), hence can already be useful in

cases where the number of species that can be encountered is limited, which may in

particular be the case for diagnostic applications involving specific types of specimens.
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Chapter 5

Discussion

In this chapter, I propose an overall discussion on some points that came to my mind

these past three years, regarding the different problems I tackled, like the choice of a

performance indicator or the concept of microbial species. I also give some thoughts

on possible extensions of the studies presented, like using orthogonality constraints in

hierarchically structured learning tasks.

Performance indicator for classification tasks. When conducting MS and metage-

nomics studies, we select multiple performance indicators and observe that conclusions

change from one indicator to another. In our case, there was a large class imbalance

for MS data (and also for metagenomics), with the largest class (Escherichia coli) rep-

resented by 5 times more mass-spectra than the smallest class (Bacillus thuringiensis).

Because we use a cross-validation strategy for model learning, the bias in class represen-

tation is reflected in the final accuracy score. For medical applications, one may argue

that imbalance in the training reference database mimics the clinical interest for some

micro-organisms more than for others. In this context, a indicator like overall good

classification rate, also called micro-accuracy, could be favorable. Indeed, if most of the

database is covered by pathogens, a predictive model that achieves a high percentage

of well-identified data will be efficient for diagnostics purposes.

However, often the class imbalance in a reference database is not representative of a

particular clinical interest, but more a result of many factors such as the availability of

sequenced genomes. Therefore we relied on other performance indicators (see Section

1.4) in our studies involving MS and metagenomics for bacterial identification. We con-

sidered indicators that measure the mean behavior of a predictive model, putting the

same weight to all classes. We did not use any prior knowledge, like class importance

from a clinical point of view. Interestingly, we observed that SVM-based approaches

allow to apply different weights during the optimization process (e.g., by considering

class-specific C regularization constants), which allows to both inject prior and con-

trol dataset class imbalance. Moreover, we recalled that cost-sensitive penalized SVMs

(Treeloss and Structured) use variable class-to-class penalization contained in a dis-

tance matrix ∆. We empirically observed that one can manually tune this matrix to
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arbitrarily bias the predictive model. For instance, in the intra-genus confusions (e.g.,

Bacillus genus), increasing the ∆ matrix weight related to Bacillus cereus and Bacillus

thuringiensis, from 2 (tree distance) to a large value (e.g., 100) leads to a classifier that

will always predict Bacillus cereus when the input data belongs to the genus Bacillus.

In this case, Bacillus cereus is a known pathogen agent where Bacillus thuringiensis

is not harmful for human. These preliminary experiments could be extended to every

case where confusions between pathogen and non-pathogen micro-organisms. From a

clinical standpoint, mistaking a non-pathogen microbe for a pathogen is a less severe

error than the reverse case.

The concept of microbial species and its impact on classification tasks. In

the supervised learning context, and in particular for classification tasks, algorithms

rely on a given dataset made of example-label pairs (x,y). In Chapters 2 and 4, we

consider the information at the species-level for class labeling. In each study performed

in this thesis, we rely on microbial taxonomies, like NCBI RefSeq, and consider the

taxonomic nodes for our classes definition. However, conclusions made in MicroMass

dataset about intra-genus confusions underline that, sometimes, microbial species can

be close enough to be mistaken by using a given type of data (e.g., proteomics, ge-

nomics). For instance, the particular case of the confusions between Escherichia coli

and Shigella genus is a good illustration. Indeed, those two genera are distinguished by

their pathogenicity and actually belong to the same genus [187]. This raises the more

general question of how to define a microbial species. Can one use the same rule for

microbes and multicellular organisms ? There is a large scale difference between those

two worlds and the diversity covered by known microbes is greater than all the animals

and plants. Furthermore, our understanding of the microbial world is barely bounded

to cultivable organisms and we do not know how much it can be extrapolated. Today,

naming conventions for microbial species rely on a strict formalism based on thresh-

olds on similarities computed on 16S rRNA marker or DNA-DNA Hybridization (DDH,

[117]). This system is very convenient and forms a common way to describe microbes.

However, it appears that such arbitrary cut-offs (DDH> 70% or 16S rRNA> 97%) are

not well-suited and should change in function of micro-organisms. For instance, [83]

demonstrated that a threshold value equal to 99% of 16S rRNA similarity should be

used, instead of 97%. Another issue met in current taxonomies is the over-specification

of certain microbial species based on phenotypic or pathotypic characteristics. His-

torically, Ferdinand Cohn (1872) demonstrated that the paradigm proposed by Carl

Linnaeus for animals and plants could be applied to bacteria and that they could be

divided into genera and species. At the beginning of microbial taxonomy, most of re-

search was dedicated to medical concerns. One may observe that the most popular

pathogen agents were discovered during the 19th century. During this period, microbi-

ologists used features like pathogenic potential for identifying a new microbial species.

This second problem can be illustrated by the Bacillus anthracis, Bacillus cereus and
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Bacillus thuringiensis case. Here, one bacterium is a potential biological weapon caus-

ing the fatal disease anthrax, the second one is a soil bacterium and an opportunistic

pathogen through food poisoning and the last one is used in pesticides production. It

has been demonstrated [71] that these 3 distinct bacterial species are actually members

of the same group following DDH criterion, but due to their different pathogenicity and

thus a variable clinical interest, 3 different species names have been created. In sum-

mary, modern molecular techniques have enabled to measure finer distinctions between

micro-organisms, but the microbiology community has still not agreed on a set of tests

required to describe a new microbial species. Furthermore, the fact that some new

micro-organisms do not grow on culture media is not yet taken into account in the

standard criteria. In the classification context, it could be relevant to consider a post-

treatment of the defined classes, according to primary results, and eventually, merge

the classes that are too close to be discriminated by the technology that acquires the

data.

Using orthogonality constraints in a hierarchical scheme. Considering orthog-

onality constraints during the model learning is not necessarily very straightforward. In

the work present in Chapter 3, we began with the study of [184] and focus on the use of

their penalty in a hierarchical classification context. They propose to add orthogonality

constraints in a divide-and-conquer setting, where the predictors are tree-structured,

and claim that their formulation avoids low-rank confusions, like the within-genus clas-

sification errors we observed in Chapter 2. However, I think that the way they are

penalizing their predictors is not the most intuitive. Indeed, they enforce predictors

belonging to the same tree path (e.g., parent and child nodes) to share the less possible

information and features. Given that such a hierarchical structure, like a taxonomy,

relies on generalization-specialization relations, I think that a better formulation could

be the following one. Instead of considering one model w at each node that is able to

predict one of its children nodes, I would rather consider a model matrix W at each

tree node, where each column corresponds to a binary classifier for each child node. By

enforcing orthogonality between the columns of each W matrix, the learning process

would lead to classifiers at a given node that rely on features specific to one child node.

Taxonomic binning and clinical applications. Taxonomic binning does not nec-

essarily consist in assigning sequencing reads to the taxonomic species level, as we do

in Chapter 4. Indeed, most binning approaches proposed so far proceed with a so-

called rank-flexible affectation mechanism, meaning that each sequencing read can be

assigned to the most suitable taxonomic rank according to multiple alignment hits for

instance. Most studies which compare such rank-flexible approaches conclude that a

vast majority of affected reads are assigned to high taxonomic ranks, such as phylum

or class. Even if clinical metagenomics studies demonstrate links between diseases and

presence/absence of a whole phylum (e.g., Firmicutes and inflammatory bowel disease
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[123]), we consider that the first clinical use of metagenome sequencing data would

be a precise analysis of the microbial species present in the sample. In particular, we

propose a read-by-read affectation at the species-level in order to reduce the compu-

tational burden for the next steps. These steps mostly rely on aligning each read to

a reference genome database, in order to detect signs of drug resistance or virulence

factors. In addition, rank-flexible approaches are also useful in a ’novelty detection’

context, where one expects that some micro-organisms present in the sample are absent

of the reference genome database. This mainly occurs when studying environmental

samples, such as ocean samples [80], and leads to the addition of new high-rank nodes

(e.g., class) in the taxonomy. However, this will be rarely the case in clinical studies,

because most of the known pathogenic agents have already been sequenced. Even if

a new micro-organism is present in a clinical sample, it will likely be a member of

an already known genus and an affectation at the species level will not be a severe

classification error.
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[141] Ramon Rosselló-Mora and Rudolf Amann. The species concept for prokaryotes.

FEMS microbiology reviews, 25(1):39–67, 2001.

[142] Jonathan M Rothberg, Wolfgang Hinz, Todd M Rearick, Jonathan Schultz,

William Mileski, Mel Davey, John H Leamon, Kim Johnson, Mark J Milgrew,

Matthew Edwards, et al. An integrated semiconductor device enabling non-

optical genome sequencing. Nature, 475(7356):348–352, 2011.

[143] DE Rumelhart, GE Hinton, and RJ Williams. Learning internal representa-

tions by error propagation, parallel distributed processing, explorations in the

microstructure of cognition, ed. de rumelhart and j. mcclelland. vol. 1. 1986,

1986.

[144] Sascha Sauer and Magdalena Kliem. Mass spectrometry tools for the classification

and identification of bacteria. Nature Reviews Microbiology, 8(1):74–82, 2010.

[145] Robert Schmieder and Robert Edwards. Insights into antibiotic resistance

through metagenomic approaches. Future microbiology, 7(1):73–89, 2012.

[146] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM

computing surveys (CSUR), 34(1):1–47, 2002.

[147] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l 1-regularized

loss minimization. The Journal of Machine Learning Research, 12:1865–1892,

2011.

[148] Beletshachew Shiferaw, Sue Shallow, Ruthanne Marcus, Suzanne Segler, Dana

Soderlund, Felicia P Hardnett, Thomas Van Gilder, et al. Trends in population-

based active surveillance for shigellosis and demographic variability in foodnet

sites, 1996–1999. Clinical infectious diseases, 38(Supplement 3):S175–S180, 2004.

[149] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer

and Systems Sciences, 25(6):1–11, 1987.

[150] Charles G Sibley and Jon E Ahlquist. The phylogeny of the hominoid primates, as

indicated by dna-dna hybridization. Journal of molecular evolution, 20(1):2–15,

1984.

110
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Méthodes d’apprentissage structuré pour la microbiologie:
spectrométrie de masse et séquençage haut-débit.

RÉSUMÉ: L’utilisation des technologies haut débit est en train de changer aussi bien les pratiques que le paysage

scientifique en microbiologie. D’une part la spectrométrie de masse a d’ores et déjà fait son entrée avec suc-

cès dans les laboratoires de microbiologie clinique. D’autre part, l’avancée spectaculaire des technologies de

séquençage au cours des dix dernières années permet désormais à moindre coût et dans un temps raisonnable

de caractériser la diversité microbienne au sein d’échantillons cliniques complexes. Aussi ces deux technologies

sont pressenties comme les piliers de futures solutions de diagnostic.

L’objectif de cette thèse est de développer des méthodes d’apprentissage statistique innovantes et versatiles pour

exploiter les données fournies par ces technologies haut-débit dans le domaine du diagnostic in vitro en microbiolo-

gie. Le domaine de l’apprentissage statistique fait partie intégrante des problématiques mentionnées ci-dessus, au

travers notamment des questions de classification d’un spectre de masse ou d’un “read” de séquençage haut-débit

dans une taxonomie bactérienne.

Sur le plan méthodologique, ces données nécessitent des développements spécifiques afin de tirer au mieux

avantage de leur structuration inhérente: une structuration en “entrée” lorsque l’on réalise une prédiction à partir

d’un “read” de séquençage caractérisé par sa composition en nucléotides, et un structuration en “sortie” lorsque

l’on veut associer un spectre de masse ou d’un “read” de séquençage à une structure hiérarchique de taxonomie

bactérienne.

Mots-clés: Apprentissage statistique, Diagnostic in vitro, Microbiologie, Spectrométrie de masse, Séquençage

haut-débit.

Structured machine learning methods for microbiology: mass
spectrometry and high-throughput sequencing.

ABSTRACT: Using high-throughput technologies is changing scientific practices and landscape in microbiology.

On one hand, mass spectrometry is already used in clinical microbiology laboratories. On the other hand, the last

ten years dramatic progress in sequencing technologies allows cheap and fast characterization of microbial diversity

in complex clinical samples. Consequently, the two technologies are approached in future diagnostics solutions.

This thesis aims to play a part in new in vitro diagnostics (IVD) systems based on high-throughput technologies,

like mass spectrometry or next generation sequencing, and their applications in microbiology.

Because of the volume of data generated by these new technologies and the complexity of measured parameters,

we develop innovative and versatile statistical learning methods for applications in IVD and microbiology. Statistical

learning field is well-suited for tasks relying on high-dimensional raw data that can hardly be used by medical

experts, like mass-spectrum classification or affecting a sequencing read to the right organism.

Here, we propose to use additional known structures in order to improve quality of the answer. For instance, we

convert a sequencing read (raw data) into a vector in a nucleotide composition space and use it as a structured

input for machine learning approaches. We also add prior information related to the hierarchical structure that

organizes the reachable micro-organisms (structured output).

Keywords: Machine learning, in vitro diagnostics, Microbiology, Mass spectrometry, High-throughput sequencing.
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