A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, A reliable effective terascale linear learning system, The Journal of Machine Learning Research, vol.15, issue.1, pp.1111-1133, 2014.

B. Aisen, A comparison of multi class svm methods, 2006.

A. Aizerman, M. Emmanuel, L. Braverman, and . Rozoner, Theoretical foundations of the potential function method in pattern recognition learning. Automation and remote control, pp.821-837, 1964.

C. Aldridge, . Jones, . Gibson, . Lanham, . Meyer et al., Automated microbiological detection/identification system, Journal of clinical microbiology, vol.6, issue.4, pp.406-413, 1977.

M. Aly, Survey on multiclass classification methods, Neural Netw, pp.1-9, 2005.

I. Rudolf, W. Amann, K. Ludwig, and . Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiological reviews, vol.59, issue.1, pp.143-169, 1995.

E. Florent, D. Angly, F. Willner, P. Rohwer, G. W. Hugenholtz et al., Grinder: a versatile amplicon and shotgun sequence simulator, Nucleic acids research, vol.40, issue.12, pp.94-94, 2012.

P. John, C. Anhalt, and . Fenselau, Identification of bacteria using mass spectrometry, Analytical Chemistry, vol.47, issue.2, pp.219-225, 1975.

A. Argyriou, R. Foygel, and N. Srebro, Sparse prediction with the k-support norm, Advances in Neural Information Processing Systems, pp.1457-1465, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858954

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing penalties. Foundations and Trends, Machine Learning, pp.1-106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00613125

B. Bakker and T. Heskes, Task clustering and gating for bayesian multitask learning, The Journal of Machine Learning Research, vol.4, pp.83-99, 2003.

S. Balzer, K. Malde, A. Lanzén, A. Sharma, and I. Jonassen, Characteristics of 454 pyrosequencing data--enabling realistic simulation with flowsim, Bioinformatics, vol.26, issue.18, pp.420-425, 2010.
DOI : 10.1093/bioinformatics/btq365

S. Baron, A. John, and . Washington, Principles of diagnosis, 1996.

A. Barvinok, A course in convexity, 2002.
DOI : 10.1090/gsm/054

G. Sergei, Y. P. Bavykin, V. Lysov, . Zakhariev, J. John et al., Use of 16s rrna, 23s rrna, and gyrb gene sequence analysis to determine phylogenetic relationships of bacillus cereus group microorganisms, Journal of clinical microbiology, issue.8, pp.423711-3730, 2004.

J. Baxter, A model of inductive bias learning, J. Artif. Intell. Res.(JAIR), vol.12, pp.149-198, 2000.

C. Benagli, V. Rossi, M. Dolina, M. Tonolla, and O. Petrini, Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Identification of Clinically Relevant Bacteria, PLoS ONE, vol.30, issue.1, p.16424, 2011.
DOI : 10.1371/journal.pone.0016424.t004

Y. Bennani and K. Benabdeslem, Dendogram-based svm for multi-class classification, CIT. Journal of computing and information technology, vol.14, issue.4, pp.283-289, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084652

R. David, S. Bentley, . Balasubramanian, P. Harold, . Swerdlow et al., Accurate whole human genome sequencing using reversible terminator chemistry, Nature, issue.7218, pp.45653-59, 2008.

A. Beygelzimer, J. Langford, and P. Ravikumar, Error-Correcting Tournaments, Algorithmic Learning Theory, pp.247-262, 2009.
DOI : 10.1137/0214009

H. Bhatta, M. Ewa, . Goldys, P. Robert, and . Learmonth, Use of fluorescence spectroscopy to differentiate yeast and bacterial cells, Applied Microbiology and Biotechnology, vol.32, issue.1, pp.121-126, 2006.
DOI : 10.1007/s00253-005-0309-y

J. Peter, . Bickel, . Ritov, and . Tsybakov, Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, pp.1705-1732, 2009.

A. Bignami, Economic potential for clinically significant in vitro diagnostics, 2009.

A. Bizzini and G. Greub, Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification, Clinical Microbiology and Infection, vol.16, issue.11, pp.1614-1619, 2010.
DOI : 10.1111/j.1469-0691.2010.03311.x

M. Jonathan, . Borwein, S. Adrian, and . Lewis, Convex analysis and nonlinear optimization: theory and examples, 2010.

L. Bottou, Online learning and stochastic approximations. On-line learning in neural networks, 1998.

L. Bottou, Large-scale machine learning with stochastic gradient descent, Proceedings of COMPSTAT'2010, pp.177-186, 2010.

L. Bottou and Y. Le-cun, On-line learning for very large data sets Applied Stochastic Models in Business and Industry, pp.137-151, 2005.

S. Boyd and L. Vandenberghe, Convex optimization, 2009.

J. Erin, . Bredensteiner, P. Kristin, and . Bennett, Multicategory classification by support vector machines, Computational Optimization, pp.53-79, 1999.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

L. Breiman, J. Friedman, J. Charles, . Stone, A. Richard et al., Classification and regression trees, 1984.

L. Breiman and P. Spector, Submodel selection and evaluation in regression . the x-random case. International statistical review/revue internationale de Statistique, pp.291-319, 1992.

L. Brickman, On the field of values of a matrix, Proceedings of the American Mathematical Society, pp.61-66, 1961.
DOI : 10.1090/S0002-9939-1961-0122827-1

P. C. , A. M. Buijtels, P. Hfm-willemse-erix, . Petit, . Hp-endtz et al., Rapid identification of mycobacteria by raman spectroscopy, Journal of clinical microbiology, vol.46, issue.3, pp.961-965, 2008.

T. Mary, A. Cafferkey, S. Sloane, C. Mccrae, and . Morain, Yersinia frederiksenii infection and colonization in hospital staff, Journal of Hospital Infection, vol.24, issue.2, pp.109-115, 1993.

L. Cai and T. Hofmann, Hierarchical document categorization with support vector machines, Proceedings of the Thirteenth ACM conference on Information and knowledge management , CIKM '04, pp.78-87, 2004.
DOI : 10.1145/1031171.1031186

J. Andrew, M. Calder, P. Burton, . Miller, W. Andrew et al., A principal component analysis of facial expressions, Vision research, vol.41, issue.9, pp.1179-1208, 2001.

V. Chandrasekaran, B. Recht, A. Pablo, A. S. Parrilo, and . Willsky, The Convex Geometry of Linear Inverse Problems, Foundations of Computational Mathematics, vol.1, issue.10, pp.805-849, 2012.
DOI : 10.1007/s10208-012-9135-7

C. Chang, Finding prototypes for nearest neighbor classifiers. Computers, IEEE Transactions on, vol.100, issue.11, pp.1179-1184, 1974.

A. Cherkaoui, J. Hibbs, S. Emonet, M. Tangomo, M. Girard et al., Comparison of Two Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Methods with Conventional Phenotypic Identification for Routine Identification of Bacteria to the Species Level, Journal of Clinical Microbiology, vol.48, issue.4, pp.1169-1175, 2010.
DOI : 10.1128/JCM.01881-09

A. Choromanska and J. Langford, Logarithmic time online multiclass prediction . CoRR, abs, 1406.

D. Francesca, T. Ciccarelli, C. V. Doerks, . Mering, J. Christopher et al., Toward automatic reconstruction of a highly resolved tree of life, science, issue.5765, pp.3111283-1287, 2006.

E. Jill and . Clarridge, Impact of 16s rrna gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical microbiology reviews, pp.840-862, 2004.

A. Martin, . Claydon, N. Simon, V. Davey, D. B. Edwards-jones et al., The rapid identification of intact microorganisms using mass spectrometry, Nature biotechnology, vol.14, issue.11, pp.1584-1586, 1996.

R. Cole and M. Fanty, Spoken letter recognition, Proceedings of the workshop on Speech and Natural Language , HLT '90, pp.385-390, 1990.
DOI : 10.3115/116580.116725

R. Kevin, . Coombes, A. Keith, . Baggerly, S. Jeffrey et al., Pre-processing mass spectrometry data, Fundamentals of Data Mining in Genomics and Proteomics, pp.79-102, 2007.

C. Cortes and V. Vapnik, Support vector machine, Machine learning, vol.20, issue.3, pp.273-297, 1995.

T. Cover and P. Hart, Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, vol.13, issue.1, pp.21-27, 1967.

K. Crammer and Y. Singer, On the algorithmic implementation of multiclass kernel-based vector machines, The Journal of Machine Learning Research, vol.2, pp.265-292, 2002.

A. Croxatto, G. Prod-'hom, and G. Greub, Applications of malditof mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, pp.380-407, 2012.

B. Katrien-de-bruyne, W. Slabbinck, P. Waegeman, B. D. Vauterin, P. Baets et al., Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning, Systematic and Applied Microbiology, vol.34, issue.1, pp.20-29, 2011.
DOI : 10.1016/j.syapm.2010.11.003

E. John, R. B. Dennis, and . Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, 1983.

G. Thomas, G. Dietterich, and . Bakiri, Solving multiclass learning problems via error-correcting output codes. arXiv preprint cs, 1995.

R. Erik, . Dubberke, N. Dale, D. Gerding, . Classen et al., Strategies to prevent clostridium difficile infections in acute care hospitals, Infection Control, issue.S1, pp.29-81, 2008.

S. Dumais and H. Chen, Hierarchical classification of Web content, Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '00, pp.256-263, 2000.
DOI : 10.1145/345508.345593

J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle et al., Real-Time DNA Sequencing from Single Polymerase Molecules, Science, vol.323, issue.5910, pp.323133-138, 2009.
DOI : 10.1126/science.1162986

U. Eigner, . Schmid, . Wild, A. Bertsch, and . Fahr, Analysis of the Comparative Workflow and Performance Characteristics of the VITEK 2 and Phoenix Systems, Journal of Clinical Microbiology, vol.43, issue.8, pp.433829-3834, 2005.
DOI : 10.1128/JCM.43.8.3829-3834.2005

T. Evgeniou, A. Charles, M. Micchelli, and . Pontil, Learning multiple tasks with kernel methods, In Journal of Machine Learning Research, pp.615-637, 2005.

O. Gaillot, N. Blondiaux, C. Lo¨?ezlo¨?ez, F. Wallet, N. Lema??trelema??tre et al., Cost-Effectiveness of Switch to Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Routine Bacterial Identification, Journal of Clinical Microbiology, vol.49, issue.12, pp.494412-4412, 2011.
DOI : 10.1128/JCM.05429-11

C. Gini, Concentration and dependency ratios, Rivista di Politica Economica, vol.87, pp.769-792, 1997.

K. Grauman, F. Sha, J. Sung, and . Hwang, Learning a tree of metrics with disjoint visual features, Advances in Neural Information Processing Systems, pp.621-629, 2011.

T. Larry and H. , Genetic basis of virulence in shigella species, Microbiological reviews, vol.55, issue.2, pp.206-224, 1991.

W. Richard and . Hamming, Error detecting and error correcting codes, Bell System technical journal, vol.29, issue.2, pp.147-160, 1950.

T. Hastie and R. Tibshirani, Classification by pairwise coupling. The annals of statistics, pp.451-471, 1998.

T. Hastie, R. Tibshirani, J. Friedman, . Hastie, R. Friedman et al., The elements of statistical learning, 2009.

E. Helgason, O. A. Økstad, A. Dominique, . Caugant, A. Henning et al., Bacillus anthracis, bacillus cereus, and bacillus thuringiensisâ ? A ? Tone species on the basis of genetic evidence, Applied and environmental microbiology, issue.6, pp.662627-2630, 2000.

E. Arthur, . Hoerl, W. Robert, and . Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, vol.12, issue.1, pp.55-67, 1970.

T. Hofmann, L. Cai, and M. Ciaramita, Learning with taxonomies: Classifying documents and words, NIPS workshop on syntax, semantics , and statistics, 2003.

J. Holt, . Krieg, and . Sneath, Bergey's manual of systematic bacteriology, 1984.

C. Hsu and C. Lin, A comparison of methods for multiclass support vector machines, Neural Networks IEEE Transactions on, vol.13, issue.2, pp.415-425, 2002.

J. Hudzicki, Kirby-bauer disk diffusion susceptibility test protocol, 2012.

P. Hugenholtz, Exploring prokaryotic diversity in the genomic era

P. Hugenholtz, M. Brett, . Goebel, R. Norman, and . Pace, Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity, Journal of bacteriology, vol.180, issue.18, pp.4765-4774, 1998.

H. Daniel, . Huson, F. Alexander, J. Auch, . Qi et al., MEGAN analysis of metagenomic data, Genome research, vol.17, issue.3, pp.377-386, 2007.

V. Iverson, M. Robert, . Morris, D. Christian, C. T. Frazar et al., Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota, Science, vol.335, issue.6068, pp.335587-590, 2012.
DOI : 10.1126/science.1212665

L. Jacob, G. Obozinski, and J. Vert, Group lasso with overlap and graph lasso, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.433-440, 2009.
DOI : 10.1145/1553374.1553431

L. Jacob and J. Vert, Protein-ligand interaction prediction: an improved chemogenomics approach, Bioinformatics, vol.24, issue.19, pp.2149-2156, 2008.
DOI : 10.1093/bioinformatics/btn409

URL : https://hal.archives-ouvertes.fr/hal-00433572

J. Michael, J. Sharon, and L. Abbott, 16s rrna gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls, Journal of clinical microbiology, vol.45, issue.9, pp.2761-2764, 2007.

T. Joachims, Advances in Kernel Methods: Making large-Scale SVM Learning Practical, 1999.

T. Joachims, Learning to classify text using support vector machines: Methods, theory and algorithms, 2002.
DOI : 10.1007/978-1-4615-0907-3

T. Joachims, T. Finley, and C. Yu, Cutting-plane training of structural SVMs, Machine Learning, pp.27-59, 2009.
DOI : 10.1007/s10994-009-5108-8

R. James and . Johnson, Shigella and escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery? Journal of medical microbiology, p.583, 2000.

M. Kamachi, M. Lyons, and J. Gyoba, The japanese female facial expression (jaffe) database. URL http, 1998.

B. James, . Kaper, P. James, . Nataro, L. Harry et al., Pathogenic escherichia coli, Nature Reviews Microbiology, vol.2, issue.2, pp.123-140, 2004.

Y. Kawamura, X. Hou, F. Sultana, H. Miura, and T. Ezaki, Determination of 16S rRNA Sequences of Streptococcus mitis and Streptococcus gordonii and Phylogenetic Relationships among Members of the Genus Streptococcus, International Journal of Systematic Bacteriology, vol.45, issue.2, pp.406-408, 1995.
DOI : 10.1099/00207713-45-2-406

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, pp.1137-1145, 1995.

A. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, pp.83-91, 1933.

T. Konstantinos, . Konstantinidis, M. James, and . Tiedje, Genomic insights that advance the species definition for prokaryotes, Proceedings of the National Academy of Sciences, vol.102, issue.7, pp.2567-2572, 2005.
DOI : 10.1073/pnas.0409727102

O. Jan, A. Korbel, X. J. Abyzov, N. Mu, P. Carriero et al., Pemer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data, Genome Biol, vol.10, issue.2, p.23, 2009.

D. Koslicki, S. Foucart, and G. Rosen, WGSQuikr: Fast Whole-Genome Shotgun Metagenomic Classification, PLoS ONE, vol.3, issue.3, p.91784, 2014.
DOI : 10.1371/journal.pone.0091784.s001

L. Bernard and . Scola, Intact cell maldi-tof mass spectrometry-based approaches for the diagnosis of bloodstream infections, 2011.

R. Lan, R. Peter, and . Reeves, Escherichia coli in disguise: molecular origins of shigella. Microbes and infection, pp.1125-1132, 2002.

J. Langford, L. Li, and A. Strehl, Vowpal Wabbit open source project, 2007.

M. Joanne, . Langley, C. John, M. Leblanc, O. Hanakowski et al., The role of clostridium difficile and viruses as causes of nosocomial diarrhea in children, Infection Control, vol.23, issue.11, pp.660-664, 2002.

P. Lasch, W. Beyer, H. Nattermann, M. Stämmler, E. Siegbrecht et al., Identification of Bacillus anthracis by Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Artificial Neural Networks, Applied and Environmental Microbiology, vol.75, issue.22, pp.757229-7242, 2009.
DOI : 10.1128/AEM.00857-09

Y. Lecun, L. Bottou, G. B. Orr, and K. Muller, Neural networks-tricks of the trade, Springer Lecture Notes in Computer Sciences, vol.1524, pp.5-50, 1998.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint, 2013.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

L. Carl-von, 1735. systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, & species. Lugduni Batavorum: de Groot, 1964.

L. Lovász and A. Schrijver, Cones of Matrices and Set-Functions and 0???1 Optimization, SIAM Journal on Optimization, vol.1, issue.2, pp.166-190, 1991.
DOI : 10.1137/0801013

M. Ian and . Mackay, Real-time pcr in the microbiology laboratory, Clinical Microbiology and Infection, vol.10, issue.3, pp.190-212, 2004.

M. Magrane and U. Consortium, UniProt Knowledgebase: a hub of integrated protein data, Database, vol.2011, issue.0, p.9, 2011.
DOI : 10.1093/database/bar009

P. Mahé, M. Arsac, S. Chatellier, V. Monnin, N. Perrot et al., Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum, Bioinformatics, vol.30, issue.9, p.22, 2014.
DOI : 10.1093/bioinformatics/btu022

S. Sharmila, . Mande, T. Mohammed, and . Shankar-ghosh, Classification of metagenomic sequences: methods and challenges, Briefings in bioinformatics, p.54, 2012.

D. Christopher, P. Manning, H. Raghavan, and . Schütze, Introduction to information retrieval, 2008.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs et al., Big data: The next frontier for innovation , competition, and productivity, 2011.

M. Margulies, M. Egholm, E. William, S. Altman, . Attiya et al., Genome sequencing in microfabricated high-density picolitre reactors, Nature, vol.2, issue.7057, pp.437376-380, 2005.
DOI : 10.1016/0888-7543(88)90007-9

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464427

D. Martiny, Comparison of the Microflex LT and Vitek MS Systems for Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry, Journal of Clinical Microbiology, vol.50, issue.4, pp.1313-1325, 2012.
DOI : 10.1128/JCM.05971-11

W. D. Maurer and T. Lewis, Hash Table Methods, ACM Computing Surveys, vol.7, issue.1, pp.5-19, 1975.
DOI : 10.1145/356643.356645

E. Mayr, Animal species and evolution. Animal species and their evolution, 1963.

A. Mccallum, R. Rosenfeld, M. Tom, . Mitchell, Y. Andrew et al., Improving text classification by shrinkage in a hierarchy of classes, ICML, pp.359-367, 1998.

B. Mccarthy and E. Bolton, AN APPROACH TO THE MEASUREMENT OF GENETIC RELATEDNESS AMONG ORGANISMS, Proceedings of the National Academy of Sciences, vol.50, issue.1, p.156, 1963.
DOI : 10.1073/pnas.50.1.156

A. C. Mchardy, H. G. Martin, A. Tsirigos, P. Hugenholtz, and I. Rigoutsos, Accurate phylogenetic classification of variable-length DNA fragments, Nature Methods, vol.12, issue.1, pp.63-72, 2007.
DOI : 10.1093/nar/29.1.11

H. Earl and . Mckinney, Generalized birthday problem, American Mathematical Monthly, pp.385-387, 1966.

A. Mellmann, D. Harmsen, A. Craig, E. B. Cummings, . Zentz et al., Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology, PLoS ONE, vol.61, issue.7, p.22751, 2011.
DOI : 10.1371/journal.pone.0022751.s002

R. Miller, V. Montoya, J. Gardy, D. Patrick, and P. Tang, Metagenomics for pathogen detection in public health, Genome Medicine, vol.5, issue.9, p.81, 2013.
DOI : 10.2217/fmb.11.135

L. Moore, E. Moore, R. Murray, E. Stackebrandt, and M. Starr, Report of the ad hoc committee on reconciliation of approaches to bacterial systematics, International Journal of Systematic Bacteriology, pp.463-464, 1987.

C. Xochitl, . Morgan, L. Timothy, H. Tickle, D. Sokol et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol, vol.13, issue.9, p.79, 2012.

F. Donald and . Morrison, Multivariate statistical methods. 3, 1990.

G. Obozinski, B. Taskar, I. Michael, and . Jordan, Joint covariate selection and joint subspace selection for multiple classification problems, Statistics and Computing, vol.8, issue.68, pp.231-252, 2010.
DOI : 10.1007/s11222-008-9111-x

R. Norman and . Pace, A molecular view of microbial diversity and the biosphere, Science, vol.276, issue.5313, pp.734-740, 1997.

D. Parks, N. Macdonald, and R. Beiko, Classifying short genomic fragments from novel lineages using composition and homology, BMC Bioinformatics, vol.12, issue.1, p.328, 2011.
DOI : 10.1038/nmeth0511-367

L. Kaustubh-raosaheb-patil, A. C. Roune, and . Mchardy, The PhyloPythiaS Web Server for Taxonomic Assignment of Metagenome Sequences, PLoS ONE, vol.450, issue.6, p.38581, 2012.
DOI : 10.1371/journal.pone.0038581.s008

J. Peterson, S. Garges, M. Giovanni, P. Mcinnes, L. Wang et al., The nih human microbiome project, Genome research, vol.19, issue.12, pp.2317-2323, 2009.

D. Kim, T. Pruitt, . Tatusova, R. Garth, D. R. Brown et al., Ncbi reference sequences (refseq): current status, new features and genome annotation policy, Nucleic acids research, vol.40, issue.D1, pp.130-135, 2012.

P. Rai, H. Daumé, I. , and S. Venkatasubramanian, Streamed learning: One-pass svms, IJCAI, pp.1211-1216, 2009.

D. Jason, L. Rennie, J. Shih, . Teevan, R. David et al., Tackling the poor assumptions of naive bayes text classifiers, ICML, pp.616-623, 2003.

C. Daniel, F. Richter, . Ott, F. Alexander, R. Auch et al., Metasimâ ? A ? Ta sequencing simulator for genomics and metagenomics, PloS one, vol.3, issue.10, p.3373, 2008.

S. Christian, . Riesenfeld, D. Patrick, J. Schloss, and . Handelsman, Metagenomics: genomic analysis of microbial communities, Annu. Rev. Genet, vol.38, pp.525-552, 2004.

R. Rifkin and A. Klautau, In defense of one-vs-all classification, The Journal of Machine Learning Research, vol.5, pp.101-141, 2004.

R. Rifkin and A. Klautau, Parallel networks that learn to pronounce english text, Journal of Machine Learning Research, pp.101-141, 2004.

R. Tyrrell and R. , Convex analysis. Number 28, 1997.

R. Tyrrell and R. , Convex analysis. Number 28, 1997.

B. Romera-paredes, A. Argyriou, N. Berthouze, and M. Pontil, Exploiting unrelated tasks in multi-task learning, International Conference on Artificial Intelligence and Statistics, pp.951-959, 2012.

L. Gail, . Rosen, R. Erin, . Reichenberger, M. Aaron et al., Nbc: the naive bayes classification tool webserver for taxonomic classification of metagenomic reads, Bioinformatics, vol.27, issue.1, pp.127-129, 2011.

R. Rosselló-mora and R. Amann, The species concept for prokaryotes. FEMS microbiology reviews, pp.39-67, 2001.

M. Jonathan, W. Rothberg, . Hinz, M. Todd, J. Rearick et al., An integrated semiconductor device enabling nonoptical genome sequencing, Nature, issue.7356, pp.475348-352, 2011.

. De-rumelhart, R. Hinton, and . Williams, Learning internal representations by error propagation, parallel distributed processing, explorations in the microstructure of cognition, 1986.

S. Sauer and M. Kliem, Mass spectrometry tools for the classification and identification of bacteria, Nature Reviews Microbiology, vol.23, issue.1, pp.74-82, 2010.
DOI : 10.1038/nrmicro2243

R. Schmieder and R. Edwards, Insights into antibiotic resistance through metagenomic approaches, Future Microbiology, vol.7, issue.1, pp.73-89, 2012.
DOI : 10.2217/fmb.11.135

F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, issue.1, pp.1-47, 2002.
DOI : 10.1145/505282.505283

S. Shalev-shwartz and A. Tewari, Stochastic methods for l 1-regularized loss minimization, The Journal of Machine Learning Research, vol.12, pp.1865-1892, 2011.

B. Shiferaw, S. Shallow, R. Marcus, S. Segler, D. Soderlund et al., Trends in populationbased active surveillance for shigellosis and demographic variability in foodnet sites, Clinical infectious diseases, pp.38-175, 1996.

Z. Naum and . Shor, Quadratic optimization problems, Soviet Journal of Computer and Systems Sciences, vol.25, issue.6, pp.1-11, 1987.

G. Charles, J. E. Sibley, and . Ahlquist, The phylogeny of the hominoid primates, as indicated by dna-dna hybridization, Journal of molecular evolution, vol.20, issue.1, pp.2-15, 1984.

N. Smirnov, Sur lesécartslesécarts de la courbe de distribution empirique (russian, french summary) Matematicheskii Sbornik, pp.3-26, 1939.

L. Song, A. Smola, A. Gretton, and K. M. Borgwardt, A dependence maximization view of clustering, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.815-822, 2007.
DOI : 10.1145/1273496.1273599

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, Large scale multiple kernel learning, The Journal of Machine Learning Research, vol.7, pp.1531-1565, 2006.

W. Weijia-soon, M. Hariharan, P. Michael, and . Snyder, High-throughput sequencing for biology and medicine, Molecular systems biology, vol.9, issue.1, p.2013

O. David-sparkman, Mass spec desk reference, p.25, 2006.

N. Srebro, J. Rennie, and T. S. Jaakkola, Maximum-margin matrix factorization, Advances in neural information processing systems, pp.1329-1336, 2004.

E. Stackebrandt and B. Goebel, Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology, International Journal of Systematic and Evolutionary Microbiology, vol.44, issue.4, pp.846-849, 1994.
DOI : 10.1099/00207713-44-4-846

A. Sun and E. Lim, Hierarchical text classification and evaluation, Data Mining Proceedings IEEE International Conference on, pp.521-528, 2001.

D. Sur, J. Ramamurthy, S. Deen, and . Bhattacharya, Shigellosis: challenges & management issues. The Indian journal of medical research, pp.454-462, 2004.

S. Sutton, Qualification of a microbial identification system, Journal of Validation Technology, vol.17, issue.49, p.46, 2011.

J. Neal, P. Sweeney, . Klemm, A. Beth, E. Mccormick et al., The escherichia coli k-12 gntp gene allows e. coli f-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine, Infection and immunity, vol.64, issue.9, pp.3497-3503, 1996.

K. Tan, . Ellis, . Lee, . Stamper, K. Zhang et al., Prospective Evaluation of a Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System in a Hospital Clinical Microbiology Laboratory for Identification of Bacteria and Yeasts: a Bench-by-Bench Study for Assessing the Impact on Time to Identification and Cost-Effectiveness, Journal of Clinical Microbiology, vol.50, issue.10, pp.503301-3308, 2012.
DOI : 10.1128/JCM.01405-12

B. Vedat-ta¸sk?nta¸sk?n, T. Do?-gan, and . Tamer¨olmez, Prostate cancer classification from mass spectrometry data by using wavelet analysis and kernel partial least squares algorithm, International Journal of Bioscience Biochemistry and Bioinformatics, vol.3, issue.2, p.2013

S. Thrun and L. Pratt, Learning to learn, Learning to learn, 1998.
DOI : 10.1007/978-1-4615-5529-2

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, Large margin methods for structured and interdependent output variables, In Journal of Machine Learning Research, pp.1453-1484, 2005.

A. Van-belkum, M. Welker, M. Erhard, and S. Chatellier, Biomedical Mass Spectrometry in Today's and Tomorrow's Clinical Microbiology Laboratories, Journal of Clinical Microbiology, vol.50, issue.5, pp.1513-1517, 2012.
DOI : 10.1128/JCM.00420-12

. Bh-van-herendael, . Bruynseels, . Bensaid, . Boekhout, . De-baere et al., Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), European Journal of Clinical Microbiology & Infectious Diseases, vol.90, issue.4, pp.31841-848, 2012.
DOI : 10.1007/s10096-011-1383-y

N. Vladimir and . Vapnik, An overview of statistical learning theory, Neural Networks IEEE Transactions on, vol.10, issue.5, pp.988-999, 1999.

V. N. Vapnik and V. Vapnik, Statistical learning theory, 1998.

K. Vervier, P. Mahé, A. D. Aspremont, J. Veyrieras, and J. Vert, On Learning Matrices with Orthogonal Columns or Disjoint Supports, Machine Learning and Knowledge Discovery in Databases, pp.274-289, 2014.
DOI : 10.1007/978-3-662-44845-8_18

URL : https://hal.archives-ouvertes.fr/hal-01101875

K. Vervier, P. Mahé, J. Veyrieras, and J. Vert, Benchmark of structured machine learning methods for microbial identification from mass-spectrometry data, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01151889

J. Gerrit, . Viljoen, H. Louis, . Nel, R. John et al., Molecular diagnostic PCR handbook, 2005.

Q. Wang, M. George, . Garrity, M. James, . Tiedje et al., Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Applied and Environmental Microbiology, vol.73, issue.16, pp.735261-5267, 2007.
DOI : 10.1128/AEM.00062-07

J. Weile and C. Knabbe, Current applications and future trends of molecular diagnostics in clinical bacteriology, Analytical and Bioanalytical Chemistry, vol.14, issue.Suppl 1, pp.731-742, 2009.
DOI : 10.1007/s00216-009-2779-8

J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, ESANN, pp.219-224, 1999.

G. Jason, T. W. Whalen, . Mully, C. Joseph, and . English, Spontaneous citrobacter freundii infection in an immunocompetent patient, Archives of dermatology, vol.143, issue.1, pp.115-126, 2007.

L. David, T. Wheeler, . Barrett, A. Dennis, . Benson et al., Database resources of the national center for biotechnology information, Nucleic acids research, vol.35, issue.1, pp.5-12, 2007.

M. Yulanda, H. Williamson, . Moura, R. Adrian, . Woolfitt et al., Differentiation of streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry, Applied and environmental microbiology, issue.19, pp.745891-5897, 2008.

R. Carl, . Woese, E. George, and . Fox, Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proceedings of the National Academy of Sciences, pp.5088-5090, 1977.

J. Wolcott, C. Schwartz, L. Goodman, and . Group, Laboratory medicine: a national status report, 2008.

L. Xiao, Dual averaging method for regularized stochastic learning and online optimization, Advances in Neural Information Processing Systems, pp.2116-2124, 2009.

L. Xiao, D. Zhou, and M. Wu, Hierarchical classification via orthogonal transfer, Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp.801-808, 2011.

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

G. Zuo, Z. Xu, and B. Hao, Shigella Strains Are Not Clones of Escherichia coli but Sister Species in the Genus Escherichia, Genomics, Proteomics & Bioinformatics, vol.11, issue.1, pp.61-65, 2013.
DOI : 10.1016/j.gpb.2012.11.002