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Résumé, Abstract

Résumé

Le traitement d'images numériques a suivi l'évolution de l'électronique et de l'informatique.
Il est maintenant courant de manipuler des images à valeur non pas dans {0, 1}, mais dans
des variétés ou des distributions de probabilités. C'est le cas par exemple des images
couleurs où de l'imagerie du tenseur de di�usion (DTI). Chaque type d'image possède
ses propres structures algèbriques, topologiques et géometriques. Ainsi, les techniques
existantes de traitement d'image doivent être adaptés lorsqu'elles sont appliquées à de
nouvelles modalités d'imagerie. Lorsque l'on maniuple de nouveaux types d'espaces de
valeurs, les précédant opérateurs peuvent rarement être utilisés tel quel. Même si les
notions sous-jacentes ont encore un sens, un travail doit être mené a�n de les exprimer
dans le nouveau contexte.
Cette thèse est composée de deux parties indépendantes. La première, � Morpholo-

gie matématiques pour les images non standards �, concerne l'extension de la morpholo-
gie mathématique à des cas particuliers où l'espace des valeurs de l'image ne possède
pas de structure d'ordre canonique. Le chapitre 2 formalise et démontre le problème de
l'irregularité des ordres totaux dans les espaces métriques. Le résultat principal de ce
chapitre montre qu'étant donné un ordre total dans un espace vectoriel multidimension-
nel, il existe toujours des images à valeur dans cet espace tel que les dilatations et les
érosions morphologiques soient irrégulières et incohérentes. Le chapitre 3 est une tentative
d'extension de la morphologie mathématique aux images à valeur dans un ensemble de
labels non ordonnés.
La deuxième partie de la thèse, � Estimation de densités de probabilités dans les espaces

de Riemann � concerne l'adaptation des techniques classiques d'estimation de densités non
paramétriques à certaines variétés Riemanniennes. Le chapitre 5 est un travail sur les
histogrammes d'images couleur dans le cadre de métriques perceptuelles. L'idée principale
de ce chapitre consiste à calculer les histogrammes suivant une approximation euclidienne
local de la métrique perceptuelle, et non une approximation globale comme dans les espaces
perceptuels standards. Le chapitre 6 est une étude sur l'estimation de densité lorsque les
données sont des lois Gaussiennes. Di�érentes techniques y sont analysées. Le résultat
principal est l'expression de noyaux pour la métrique de Wasserstein.

Mots clés:

Morphologie Mathématique, Ordres Totaux, Traitement d'Image, Estimation de Densités,
Géometrie Riemannienne, Métrique de Fisher, Métrique de Wasserstein, Histogrammes
d'Images
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Abstract

Digital image processing has followed the evolution of electronic and computer science. It
is now current to deal with images valued not in {0, 1} or in gray-scale, but in manifolds
or probability distributions. This is for instance the case for color images or in di�usion
tensor imaging (DTI). Each kind of images has its own algebraic, topological and geometric
properties. Thus, existing image processing techniques have to be adapted when applied
to new imaging modalities. When dealing with new kind of value spaces, former operators
can rarely be used as they are. Even if the underlying notion has still a meaning, a work
must be carried out in order to express it in the new context.
The thesis is composed of two independent parts. The �rst one, "Mathematical mor-

phology on non-standard images", concerns the extension of mathematical morphology to
speci�c cases where the value space of the image does not have a canonical order struc-
ture. Chapter 2 formalizes and demonstrates the irregularity issue of total orders in metric
spaces. The main results states that for any total order in a multidimensional vector space,
there are images for which the morphological dilations and erosions are irregular and in-
consistent. Chapter 3 is an attempt to generalize morphology to images valued in a set of
unordered labels.
The second part "Probability density estimation on Riemannian spaces" concerns the

adaptation of standard density estimation techniques to speci�c Riemannian manifolds.
Chapter 5 is a work on color image histograms under perceptual metrics. The main idea of
this chapter consists in computing histograms using local Euclidean approximations of the
perceptual metric, and not a global Euclidean approximation as in standard perceptual
color spaces. Chapter 6 addresses the problem of non parametric density estimation when
data lay in spaces of Gaussian laws. Di�erent techniques are studied, an expression of
kernels is provided for the Wasserstein metric.

Key words:

Mathematical Morphology, Total Orders, Image Processing, Density Estimation, Rieman-
ninan Geometry, Fisher Metric, Wasserstein Metric, Image Histograms
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1. Introduction

Résumé

Ce chapitre présente les motivations et les thèmes abordés dans cette thèse. L'augmentation
progressive de la mémoire disponible et l'évolution des dispositifs physiques d'acquisition
ont permis l'apparition d'images de plus en plus complexes. Les techniques existantes
de traitement doivent être adaptées à chaque nouvelle modalité d'image. Deux probléma-
tiques sont abordées dans cette thèse. La première concerne la morphologie mathématique,
dans des cas particuliers où l'espace des valeurs de l'image ne dispose pas intrinsèquement
d'une structure de treillis. La seconde concerne l'estimation de densité dans des variétés
Riemanniennes. Ce problème apparaît notamment lors de la construction d'histogrammes
d'images à valeurs dans des variétés Riemanniennes.

1.1. Motivation: Non standard images

Since its origins, digital signal processing follows the evolution of electronic technology. In
the sixties, with the development of computers, image processing has become a discipline
in itself. For technological reasons, �rst computers could only handle images composed
of two distinct levels, 0 and 1. Thus, the �rst techniques of image processing including
mathematical morphology where developed for binary images. Since the sixties, the devel-
opment of sensors and computers has widened digital image processing to numerous new
forms of images. The nature of images evolves on two levels. On the one hand, the spatial
support has evolved from a regular grid of pixels to an arbitrary graph. On the other hand,
the value contained in each pixel or node of the graph takes more and more complex forms.
The increase of available memory has �rst enabled the transition from binary to gray-scale
images. The memory is now su�cient to describe a signi�cant amount of manifolds such as
colors or probability distributions. Di�usion tensor imaging (DTI) is a typical case of non
standard images. A physical device measures the motion of water molecules and models
it by a centered 3-dimensional Gaussian distribution. The set of 3-dimensional Gaussian
distributions are a 6-dimensional manifold, naturally represented by the 3 × 3 symmetric
positive de�nite matrices. Another case of images valued in distributions arise from the
popularization of superpixels. In order to simplify images, neighbor pixels can be gath-
ered according to a given criterion, to form a set of superpixels. Usually a single value is
chosen to represent a superpixel. However, it is sometimes interesting to preserve more
information and to assign a distribution of values to each superpixel instead of a single
value.
Each kind of images has its own algebraic, topological and geometric properties. These

properties depend on the graph of pixels, on the value space, and on the nature of the
observed objects. In this thesis, we leave aside the problem of the graph of pixels and
focus on the value space and its structure. Usually, an image processing operator depends
on the structure of the image. Some of them have a certain generality. For instance, the

1



1. Introduction

mean and the median �lters are de�ned on a large variety of spaces. However the de�nition
of the �lters depends on the value space of the image: the mean and the median, originally
de�ned using addition, division and an order, have been reformulated in metric spaces.
When dealing with new kind of value spaces, former operators can rarely be used as they
are. Even if the underlying notion has still a meaning, a work must be carried out in order
to express it in the new context.

1.2. Statistics in non-Euclidean spaces

The adaptation of standard quantities of statistic to new spaces is an important problem.
For instance, the expected value was �rst de�ned using the algebraic structure of R. This
de�nition is naturally extended to random phenomena valued in Rn. Consider a distri-
bution µ, taking values on the surface of the earth S, for instance the distribution of the
population in a country. The notion of mean or expected value has an intuitive mean-
ing but can not be de�ned from algebraic operations. One has to �nd the counterpart
of the previous notion based on the only intrinsic structure of S: the notion of distance
d(x ∈ S, x′ ∈ S). Without entering uniqueness problems, the following quantities

ES = argminx

∫
x′∈S

d(x, x′)2dµ,

ESemp(n) = argminx
∑
i

d(x, xi)
2.

correspond to the original expected value and empirical expected value in R when replacing
the distance on S by the distance on R. Furthermore, they verify similar convergence
properties (ESemp(n)→ ES) for many standard distances d. A mean formalized according
to this de�nition is called a Fréchet mean. The situation is similar for the space of colors.
The set of colors has intrinsically no algebraic structure, but posses intrinsic metrics. Thus
a mean between colors should be a Fréchet mean.
In this thesis we are not speci�cally interested in the notion of mean but in the notion

of density of a distribution. Unlike the mean where the de�nition must be adapted, the
de�nition of the density is not a problem as long as the value space has a reference measure.
However the estimation of a probability density from a set of samples strongly depends on
the context. Consider a space X and two metrics d1 and d2 on X . The most straightforward
way of estimating a density is to use a tilling of the space. Estimating a density consists
in counting a number of samples in each bin of the tilling and dividing by their surface.
Finding good tilling is a di�cult problem that has to be studied for each case (X , di).
The same holds for every density estimation techniques. Chapter 6 studies deeply density
estimation on spaces of Gaussian and multivariate Gaussian distributions.

1.3. Mathematical morphology for non standard images

Similarly to statistics, it is possible to observe how mathematical morphology have pro-
gressed with the evolution of the value spaces of images. Mathematical morphology is one
of the �rst sound theories of digital image processing. When dealing with binary images,
three neighborhood operators naturally arise: replacing the value of a pixel by the major-
ity, the minimal or the maximal value in the neighborhood. Replacing the value of a pixel

2



1.4. Thesis organization and main results

by the majority value in a neighborhood is called a median �lter. The two other operators
called erosion, ε, and dilation, δ, respectively form the famous couple of operators at the
origin of mathematical morphology. This pair of operators present remarkable stability
properties. For a suitable choice of neighborhood, the operator formed by the composition
of an erosion and a dilation is stable after one iteration, that is to say ε ◦ δ = ε ◦ δ ◦ ε ◦ δ.
By symmetry, or by duality in the morphological vocabulary, the same holds for δ ◦ ε. The
composition ε◦δ is called a closing and δ◦ε an opening. This stability property, also called
idempotency, together with the scale-space semigroups of openings and closings, are at the
heart of morphological image �ltering. The erosion and the dilation can be extended to
grey-scale images by taking the minimal and maximal value in the neighborhood according
to the standard order on reals. This generalization preserves the fundamental properties of
stability. The theory is now generalized in terms of complete lattice theory, a lattice being
a partially ordered set where couples of elements have a unique supremum and in�mum.
Pairs of erosion and dilation verifying a pseudo-inverse property called �adjunction� gen-
erate idempotent compositions. In this framework, the value space of the image has to be
endowed with a complete lattice structure in order to use morphological operators. This is
natural for grey-scale images but often problematic for images valued in multidimensional
spaces. Colors can be represented in a three dimensional vector space. Standard lattice
structures used to process colors all have important drawbacks. Partial orders tend to
introduce false colors while total orders are not compatible with the Euclidean distance as
Chapter 2 shows.
The idea of formulating the �best� total order for a given image is the object of Chapter 2.
Several parallel works to this thesis aim at de�ning morphological operators without

the notion of complete lattice. Chapter 3 proposes a morphological framework not based
on lattices, for images valued in a set of independent categories. Approach introduced
by Gronde and Roerdink (2015) proposes to drop the associative law of the lattice structure.
Unlike the proposition of chapter 3 their framework enables to work in a continuous space,
however the idempotence of openings and closings no longer holds. Meanwhile, work by
Carlinet and Géraud (2015) build a tree of shapes on multivariate images without requiring
an order structure.

1.4. Thesis organization and main results

This thesis was originally focused on mathematical morphology. In the chapter �Unsuper-
vised Morphology" of the PhD thesis Velasco-Forero (2012), the author proposes to build
an order on the value space of an image from the distribution of the values using a notion
of statistical depth. In theory, there is no need to compute a density associated to the
point cloud of values in order to compute the statistical depth. Indeed, the statistical
depth is de�ned directly from the point cloud of values. However estimating the density
of the distribution of the values has an interest in term of computation time of the statis-
tical depth. Trying to apply this idea to order DTI data, we encountered the problem of
density estimation of symmetric positive de�nite matrices. This problem took a growing
importance and gradually led to an autonomous part of the thesis on density estimation
on Riemannian spaces. Meanwhile our development of mathematical morphology changed
direction and the original idea of ordering DTI data according to a statistical depth has
been abandoned.
The thesis is thus composed of two independent parts. The �rst part named �Mathe-

3



1. Introduction

matical morphology on non-standard images� is composed of two chapters:

� Chapter 2 formalizes and demonstrates the irregularity issue of total orders in metric
spaces, its main result being the lemma 2.3.1. This problem has been known for a
while in the mathematical morphology community, see pioneering work by Chanussot
and Lambert (1998) or more recently, by Flórez-Revuelta (2005). The problem is
reformulated so as to better take into account the needs of mathematical morphology.
Our original formal result states that any total order on a multidimensional space
possesses a form of irregularity that generates inconsistent and irregular erosions and
dilations. A method is proposed to build total orders adapted to each image, by
minimizing the irregularity of the order.

� n-ary images refer in the thesis to images valued in a set of n elements or categories,
with no speci�c mathematical structure. Each value is called a label. n-ary images
appear when the studied objects have equivalent semantic levels. Consider for in-
stance a tra�c image with blue, red and yellow cars. Blue, red and yellow represent
objects of the same semantic level. In this situation, distances and orders on col-
ors present an arbitrary character: saying that blue is closer to yellow than red or
saying that blue<yellow<red has no meaning in terms of the studied objects. This
situation often appears in pixelwise classi�ed images. It is di�cult to address data
that are intrinsically unordered using standard morphological operators. Chapter 3
is an attempt to generalize morphology on binary images to discrete n-ary images.
The previous considerations already have motivated several works, see Busch and
Eberle (1995) and Ronse and Agnus (2005), but led to di�erent directions. The main
originality of this work is the introduction of multiple erosions and dilations. The
main results of the chapter are,

� The de�nition of an erosion εi and a dilation δi per label;

� A proof of the idempotence of γi = εi ◦ δi and ϕi = δi ◦ εi. Recall that this
results is standard in the binary case by adjunction theory;

� A proof of semigroup εi,R1 ◦ εi,R2 = εi,R1+R2 . In other words, an erosion with a
ball of radius R1 composed by a erosion with a ball of radius R2 is equivalent
to an erosion with a ball of radius R1 + R2. The result also holds for dilation
but is directly deducted from the binary case. This enables to express the n-ary
operations as �ow propagations or operator composition;

� The operator F = (ϕ1 ◦ ... ◦ ϕn), involving di�erent labels, is no longer idem-
potent. However, Fk = (ϕ1 ◦ ... ◦ ϕn)k is stable when k goes to in�nity. F is a
good candidate to �lter out image objects with shape/shape criteria;

� A �rst extension to the continuous n-ary case.

The second part entitled �Probability density estimation on Riemannian spaces� is com-
posed of three chapters:

� Chapter 4 introduces a background on probability and geometry for a typical reader
from image processing community.

� Chapter 5 addresses the issue of image histogram computation. A formalization of the
notion of image histogram in term of density estimation is �rst proposed. The second
part of the chapter is a study on perceptual color image histograms. The perceptual

4



1.4. Thesis organization and main results

metric on colors is assumed to be Riemannian. Local scalar products are provided
by standard ellipse or ellipsoid datasets, such as the MacAdam ellipses. Usually
perceptual histograms are built according to the Euclidean structure of perceptual
spaces such as the Lab space. The use of local Euclidean approximations enables to
follow more precisely the Riemannian metric without increasing the computational
complexity.

� Chapter 6 is a guide to non parametric probability density estimation on spaces of
multivariate Gaussian distributions. In other words it provides methods to estimate a
density when the set of samples {xi} is a set of Gaussian distributions. This situation
is more and more common in signal and image processing. The case of Gaussian
distributions also includes the space of positive de�nite matrices and the hyperbolic
space of dimension two. The construction of the estimated density depends on the
choice of a metric. The metrics studied in this chapter are the main standard metrics
on Gaussian distributions: the Fisher metric, the Wasserstein metric and Euclidean
metrics on parameters. The main results are,

� An expression of kernels for kernel density estimation on multivariate Gaussian
distributions when the space is endowed with the Wasserstein metric;

� An expression of kernels for kernel density estimation on multivariate centered
Gaussian distributions when the space is endowed with the Fisher metric. This
result is not entirely original, the di�erent factors composing the kernel are
already present in the specialized literature, but are here systematically devel-
oped;

� The study of partial quantities (mean, eigenvalues and rotation) under the dif-
ferent metrics.

5



Part I.

Mathematical morphology on non

standard images

6



2. The irregularity issue of total orders on

metric spaces and its consequences for

mathematical morphology

Résumé

Nous nous intéressons dans ce chapitre au problème de l'irrégularité des ordres totaux dans
les espaces métriques pour la morphologie mathématique. Nous donnons tout d'abord une
formulation rigoureuse du problème. Une nouvelle approche est proposée pour y faire
face, en adaptant l'ordre à l'image à traiter. Étant donné une image et un ordre total,
nous dé�nissons une fonction de coût évaluant l'importance des con�its lors des opérateurs
morphologiques. L'ordre proposé est alors une minimisation de cette fonction de coût. Un
des atouts de cette méthode est sa généralité : le seul ingrédient nécessaire à la construction
de l'ordre est un graphe des distances entre les valeurs présentes dans l'image. L'ordre peut
donc être calculé pour toute les images à valeur dans des espaces métriques où l'expression
des distances est connue. Nous présentons quelques résultats sur des images couleurs, sur
l'imagerie du tenseur de di�usion (DTI), et sur des images à valeur dans le demi plan
supérieur de Poincaré.
Ce chapitre est principalement adapté de Chevallier and Angulo (2015).

Abstract

We address in this chapter the problem of irregularity of total orders in metric spaces and
its implications for mathematical morphology. We �rst give a rigorous formulation of the
problem. Then, a new approach is proposed to tackle the issue by adapting the order
to the image to be processed. Given an image and a total order, we de�ne a cost that
evaluates the importance of the con�ict for morphological processing. The proposed order
is then built as a minimization of this cost function. One of the strength of the proposed
framework is its generality: the only ingredient required to build the total order is the
graph of distances between values of the image. The adapted order can be computed for
any image valued in a metric space where the distance is explicitly known. We present
results for color images, di�usion tensor images (DTI) and images valued in the hyperbolic
upper half-plane.
This chapter is mainly adapted from Chevallier and Angulo (2015).

2.1. Introduction

Since its emergence in the sixties, mathematical morphology has become one of the major
theory of nonlinear image processing. Originally used for binary images in Matheron
(1974), the theory has followed the technical evolution of computer science which has

7



2. The irregularity issue of total orders

enabled the manipulation of more and more complex images, see Serra (1982). The set
theory was su�cient to study binary images. Later, the emergence of gray-scale images
required the introduction of the notion of order. From the works by Serra (1988) and
Heijmans and Ronse (1990), the theory of mathematical morphology is now fully based
on the lattice theory. Value spaces endowed with a total order form the most comfortable
framework for morphological processing. However, if it is natural to endow gray-scale
images with a total order, the task is more di�cult when the pixel values do not have a
one-dimensional structure, see Serra (1993) for a pioneering discussion on the topic. Indeed,
we show that the information contained in a total order is too weak to completely represent
the value space. In many situations, the use of a partial order such as a product order on
a vector space is preferred. Using a product order is equivalent to processing components
independently. Then this order structure becomes natural but some information about the
geometry of the original value space is lost. Both choices present a loss of information.
The interest of product orderings in mathematical morphology is still a matter of recent

research, see for instance Gronde and Roerdink (2013) and Burgeth and Kleefeld (2013),
mainly by considering the geometric and invariant properties of the underlying space.
Other recent works on partial ordering for morphological operators on vector images

were motivated by the need of taking into account some prior information to order vectors:
either by learning the order from training samples in Velasco-Forero and Angulo (2011) or
by building the order according to the outlier distribution in Velasco-Forero and Angulo
(2012). Therefore, partial ordering can become image adaptive and consequently leads to
more relevant morphological operators.
On the other hand, the study of total orders remains mainly limited to lexicographic

orders, see Hanbury and Serra (2001); Angulo (2007, 2010); Aptoula and Lefèvre (2007).
Since the emergence of multivariate images, very few papers have addressed the problem
of total orders in a general way. Previous approaches of total ordering mainly focused
on building regular orders on hypercubes see Chanussot and Lambert (1998) and Flórez-
Revuelta (2005). Beyond the theoretical result, the two ideas of the present work are the
following. Firstly, given an image we restrict the value space to the values that are actually
present in the image. This idea is already present in Lezoray et al. (2008) where they order
the values present in the image according to a Hamiltonian path. Although the motivation
is di�erent, the idea is also present in Ledda and Philips (2005). Secondly, we take into
account the locations of the values in the image. Given an image, these considerations
enable to �nd more regular orders. One can therefore consider our approach as an image
adapted total ordering. We formulate this task as an optimization problem which cannot be
solved using classical optimization techniques. Thus, we introduce a hierarchical recursive
algorithm aiming at �nding an approximated solution.

The chapter is organized as follows.

� Section 2.2 provides a background on notations and basic notions.

� A discussion on existing ordering strategies on vector spaces is given in Section 2.3.
In particular, a strong theoretical result points out the limitation of total orderings
in terms of discontinuity of vector morphological operators.

� Section 2.4 gives the motivation for introducing an order adapted to a given image.
A cost function is introduced to measure the quality of a total order regarding the
topological con�ict.
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2.2. Notations and recalls

� The recursive algorithm developed to minimize the cost function is fully described in
Section 2.5.

� A short discussion on the invariance properties of the adapted order is given in
Section 2.6.

� Section 2.7 presents some results of morphological image processing using the image
adapted total order. We present results for color images, di�usion tensor images
(DTI) and images valued in the hyperbolic upper half-plane.

� Conclusions and perspectives close the chapter in Section 2.8.

2.2. Notations and recalls

We set here a few notations and recall elementary operators of mathematical morphology,
see for instance Serra (1982); Soille (2004). Let us consider an image I as a function:

I :

{
Ω→ V
p 7→ I(p)

where Ω is the support space of pixels p: typically Ω ⊂ Z2 or Z3 for discrete images. The
pixel values of the image belong to the space V. Typically we have V ⊂ R for grey-scale
images, V ⊂ Rn for multivariate vector images, or V ⊂ M for manifold valued images.
We address here images where V is any metric space. Points in V will generally be called
colors. We denote by I(Ω) ⊂ V the set of colors of V present in the image I(p).
Unlike linear processing mainly based on linear convolution (i.e., weighted average),

mathematical morphology is based on sup and inf-convolution. The numerous choices of
convolution kernels lead to a large variety of processing. Thus, the two basic operators of
mathematical morphology are the erosion and the dilation of an image I(p), I : Ω → R,
by B ⊂ Ω given respectively by

εB(I)(p) = inf
q∈B(p)

{I(q)} , (2.1)

δB(I)(p) = sup
q∈B̌(p)

{I(q)} , (2.2)

where the set B de�nes the structuring element (the equivalent of the convolution kernel),
B̌ is the transpose of B (i.e., symmetric set with respect to the origin), and B(p) de�nes
the neighborhood of p according to the shape of B. Note that here we only focus on �at
structuring elements. Other morphological �lters, such as the opening γB(I) and closing
ϕB(I), are obtained by composition of dilation and erosion; i.e,

γB(I) = δB (εB(I)) , (2.3)

ϕB(I) = εB (δB(I)) . (2.4)

More evolved �lters and transforms are obtained from composition of openings/closings.
Another nonlinear operator particularly useful in image denoising, also based on ordering,
is the median �lter:

mB(I)(p) = med
q∈B(p)

{I(q)} . (2.5)
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2. The irregularity issue of total orders

Figure 2.1.: The metric space X is here a rectangle of the Euclidean plan

2.3. Existing total orders

The problem of total ordering for multivariate images is a relatively well known problem in
mathematical morphology. The essential di�culty is that the topology induced by a total
order on a multidimensional space cannot reproduce the natural topology of the vector
space, see discussion in Chanussot (1998). Arising as a milestone limitation, we have the
following theoretical result.

Lemma 2.3.1 Let (X, d) be a metric space endowed with a total order ≤. Suppose that

there exist a positive real number R and three points x1, x2, x3 ∈ X such that d(xi, xj) > R
for i 6= j and that the complementary BC(xi, R) of each ball B(xi, R) is connected, as in

Fig. 2.1. Then for all r > 0, there exist three points a, b and c in X such that
a ≤ b ≤ c,
d(a, b) ≥ R,
d(a, c) ≤ r.

Proof We can assume that x1 < x2 < x3. We argue by contradiction and assume that
there exists r > 0 such that for all a, b, c ∈ X one at least of the three above conditions
doesn't hold. The idea of the proof is to show that under this assumption, we have either
∀y /∈ B(x2, R), y < x2 or ∀y /∈ B(x2, R), y > x2. This would contradict the existence of
the triple (x1, x2, x3) with x1 < x2 < x3. By our assumption, for any triple (a, b, c) of
points in X, the three inequalities a ≤ b, d(a, b) ≥ R and d(a, c) ≤ r imply c < b. Consider
the set E of points a in BC(x2, R) such that a ≤ x2. Recall that a topological space B
is connected i� the only open and closed subsets A of B are A = ∅ and A = B. We use
this de�nition with B = BC(x2, R) and A = E to exhibit a contradiction. The considered
topology is now the induced topology on BC(x2, R). Making use of our assumption with
the triple (a, b, c), where a is in E, b = x2 and c ∈ B(a, r) ∩BC(x2, R), we see that for all
a in E, B(a, r)∩BC(x2, R) ⊂ E. Since B(a, r)∩BC(x2, R) is a ball of BC(x2, R), E is an
open subset of BC(x2, R). Again by our assumption, if a point c ∈ BC(x2, R) is not in E
then B(c, r) ∩ BC(x2, R) cannot contain a point a ∈ E, otherwise the point c which is in
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B(a, r), would be in E. It follows that BC(x2, R) \E is also an open subset of BC(x2, R),
hence E is an open and closed subset of BC(x2, R). Since BC(x2, R) is connected, the
open and closed subsets E and BC(x2, R) \ E cannot be both nonempty, a contradiction
with the existence of the points x1 and x3.

The order is going back and forth between point a, point b and point c. Note that in
the particular case where X = Rn>1, this result is not a corollary of the fact that there
is no continuous bijection between Rn>1 and R. Indeed, not every order on Rn>1 can be
represented by a bijection on R (this would contradict the least-upper-bound property).
This lemma tells us that for any total order in Rn, functions supremum of two points, Rn×
Rn → Rn : (x, y) 7→ sup(x, y) and in�mum inf(x, y) present high irregularities with respect
to the Euclidean metric, i.e. for any r,R > 0 there exists x0, x1, y0, y1 ∈ Rn such that
||(x0, y0)−(x1, y1)|| < r and R < || sup(x0, y0)−sup(x1, y1)||. Let I be an image composed
of two objects of distinct colors with smooth boundaries. The �rst object is composed of
two values x0 and x1 with d(x0, x1) < r. Points x0 and x1 are two versions of a color Cx. The
second object is composed by an unique value y with R < d(x0, y), representing color Cy.
Assume that sup(x0, y) = x0 and sup(x1, y) = y. Regarding the object, the morphological
dilation and erosion are inconsistent and might introduce aliasing on boundaries. The
lemma is valid in any metric space and has strong negative implications. Namely, given a
total order, it is always possible to �nd an image where the erosion and dilation introduce
important irregularities. An illustration of this phenomenon is given by the following toy
example depicted in Fig. 2.2. The RGB image is composed of 3 di�erent colors. Two close
black (Cx) represented by a = (0, 0, 0) and b = (1, 0, 0), and a blue (Cy) represented by
c = (0, 0, 255). According to the lexicographic ordering on coordinates, we are precisely
in the situation described in the lemma. Fig. 2.2 shows us the result of a dilation using a
3× 3 square as structuring element.

(a) (b) (b)

Figure 2.2.: (a) Original image, (b) grey-scale representation of the lexicographic order, (c)
lexicographic dilation.

Through the study of space �lling curves, see Sagan (1994), the work Chanussot and
Lambert (1998) proposes several total orders on Zn that preserve as far as possible the
notion of neighbourhood. For each point of the discretized multidimensional vector space,
the spatial neighbourhood and the neighbourhood in the chain of the order are compared,
as shown in Fig. 2.3 extracted from Chanussot and Lambert (1998).
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Figure 2.3.: Quantitative evaluation of the topological distortion (�gure extracted from
Chanussot and Lambert (1998)). Five white dots are included in the gray
square, the weight assigned to the black point is 5/8. These weights are aver-
aged over all the points of the region of interest, as the RGB cube for color
images.

The average comparison between the spatial neighbourhood and the neighbourhood in
the chain of the order gives a measure of the preservation of the neighbourhoods. This
measure enables us to compare every total orders on Zn. Chanussot and Lambert (1998)
shows that the neighborhoods are signi�cantly better preserved by the Peano curve and the
bit-mixing paradigm than by the lexicographic order. Despite the fact that the Peano curve
gives slightly better results than the bit-mixing strategy paradigm, authors of Chanussot
and Lambert (1998) chose not to use the Peano curve because this order does not preserve
the vectorial structure; i.e., in two dimensions, the point (0, 8) can be greater than the
point (15, 15).
In the present work we chose to focus the study only on topological considerations,

without taking into account the algebraic structure of the value space. Note that the
algebraic structure is often present by default without link with the physical quantity.

2.4. An order adapted to a given image

2.4.1. Motivation

As we have discussed above, it is not possible to create a total order that preserves neigh-
bourhood on a multidimensional space. The philosophy of Chanussot and Lambert (1998)
and Flórez-Revuelta (2005) is to try to minimize the di�erence between spatial neighbour-
hoods and neighbourhoods in the space of order. However it is possible to push this idea
further. Even for the best total order in the sense of the measure de�ned in Fig. 2.3, our
lemma tells us that the processing of a particular image can give highly irregular results.
As a consequence, it might be more interesting to look for the best order being given an
image, instead of looking for the best order in general. Indeed, restricting the evaluation
of a total order to a particular image, largely enhance the potential quality of the order.
An order on a multidimensional space can present important jumps that might not a�ect
the processing of a particular image.
Firstly, given a speci�c image, the evaluation of a total order only gives importance to

colors that lay in the image. Introduction of other (false) colors is due to the use of partial
ordering. With total ordering, the values are chosen among the vectors of the input and
as such there is no new colors. Indeed, no other colors are introduced by �at erosion or
dilation. Decreasing the size of the set to be ordered can lead to more regular orders. More
precisely, it becomes easier to �nd orders that avoid having two points close in the color
space and far in the order. Secondly, problematic triplets of values described in the lemma
can be tolerated to the extend that values do not occur in same zones of the image. Indeed,
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if two values never occur simultaneously in a structuring element, there relative position
in the order will not a�ect the processing.
As explained in Chanussot and Lambert (1998), it is clear that if points are close in

the color space, they should remain close in the order. However, the reverse is not always
required. Let us consider a binary image represented on the real line, where black and
white are not represented by 0 and 1 but by 0 and 10. This situation presents two points
close in the order chain and distant regarding the metric of the color space. However, this
does not introduce any irregularity in the morphological operators. Thus the cost de�ned
in Fig. 2.3 penalizes situations that are not problematic for mathematical morphology.
In order to transpose this topological intuition of closeness both in value space and

in spatial space should imply closeness in the order, we introduce a cost function to be
minimized by the total ordering.
Both works Ledda and Philips (2005) and Lezoray et al. (2008) proposed to restrict the

order to values present in the image. Authors of Ledda and Philips (2005) propose to
order values according to their importance in the histogram of the image. While being a
natural idea, it does not rely on any geometrical consideration on the value space. Authors
of Lezoray et al. (2008) propose to build local orders based on optimal Hamiltonian path.
They do not order the entire set of values of the image, and the associated dilation and
erosion are not strictly speaking morphological operators. However the present work is in
the continuation of their idea. We try here to build an order on the full value set present
in the image, optimal with respect to a topological criteria.

2.4.2. Cost function

Given an image, we would like to de�ne a cost function that measures the quality of the
order regarding rank based operators. We �rst need to quantify the criteria of the previous
section. We de�ne the following notion of co-occurrence of values a and b:

CI(a, b) = Card{p ∈ Ω | ∃q ∈ B(p), (I(p), I(q)) ∈ {(a, b), (b, a)}}. (2.6)

The computation of co-occurrences involves that one has �xed a typical size/shape of the
structuring element B which will be used in subsequent processing. The motivation for
introducing a notion of co-occurrence in the cost function is the following: if two colors are
not present in the same zones of the image, they cannot produce aliasing. Let a and c be
two close points in V according to a given metric distance d(a, c), such that a < c. a and c
are two versions of a �rst color C1. Let b be a third point far from a and c. b represents a
second color C2, distinct from C1. If CI(a, b) = 0 or CI(c, b) = 0, no irregularity is created
by the triplet a, b, c regardless of the chosen order. Indeed in the image the color C2 is in
presence of at most one version of the color C1. However if CI(a, b) and CI(c, b) are both
signi�cant, the color C2 is neighboring of the two versions of C1. It is then important that
a < c < b or b < a < c. Thus the quality of a total order can be measured by evaluating
to what extend the following property is respected:

a < c
CI(a, b) and CI(c, b) signi�cant

d(a, c) small
d(a, b) signi�cant

=⇒ a < c < b or b < a < c

(2.7)
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Adjectives �signi�cant� and �small� induce an increasing or decreasing behavior of the
cost function with respect to the di�erent quantities. Let us endow I(Ω) with a total order
≤. We can de�ne the following quantity:

PI(≤) =
∑

a, b, c ∈ I(Ω),
a < c < b

g(a, b, c) · (CI(c, a) ∧ CI(c, b)), (2.8)

where ∧ stands for min, with,

g(a, b, c) = f ((d(c, a) ∧ d(c, b)), d(a, b)) ,

and f(·, ·) an increasing function according to the �rst variable and decreasing according
to the second.
Given an image I(p), this adapted cost function is more tolerant for some speci�c orders

than the cost function de�ned in Chanussot and Lambert (1998). The cost function PI
has been designed to represent as well as possible what is expected of an order. One of
its main advantage is to take into account the above condition, see Eq. (2.7), weaker than
the one required in Chanussot and Lambert (1998), see Fig. 2.3. However, as a standard
image often contains more than ten thousand di�erent colors, this cost function presents
the serious drawback of not being computable. Thus, given two orders, it is di�cult to
compare them using this cost function. Nevertheless, it is possible to try to minimize this
cost function using a recursive procedure, without computing globally the cost for the full
set of points.

2.5. Minimisation of the cost function

2.5.1. Overview of the algorithm

The idea is to divide the set I(Ω) into a collection C of clusters and to compute an op-
timal order on C considering each cluster as a single point. Then each cluster is ordered
individually. The orders on individual clusters are merged according to the order on C to
obtain an order on I(Ω). The point of the clustering is to make this operation possible by
reducing the number of parameters of the minimization. Here are the main steps of the
algorithm.

� Perform a clustering of the data I(Ω) in a given number n of clusters: {Clusteri}1≤i≤n.

� Order the n clusters according to C(i, j), D(i, j), and the corresponding cost function
P where

� D(i, j) represents the minimum distances between clusters i and j.

� C(i, j) represents the co-occurrence of clusters i and j in di�erent structuring
elements.

� Perform the same procedure recursively on each cluster.

� After a given threshold, stop the recursion. For each remaining cluster, order all its
points according to a criterion based on distances to previous and next clusters.
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� Merge the orders: for x in Clusteri and y in Clusterj , x < y if and only if Clusteri <
Clusterj , or i = j and x < y in Clusteri.

In this short description we did not mention a signi�cant source of complications. Indeed,
when the recursive procedure is applied to Clusteri, one has to take into account neighbour
clusters. Indeed, at the �rst step of the recursion, nothing has to be taken into account
except the considered set of colors I(Ω). However, unlike the set I(Ω), Clusteri can no
longer be considered as isolated from the rest of the color values. If there exist colors ck
in Clusteri and colors cl in Clusterj such that d(ck, cl) is small, then it is not possible
to order Clusteri without taking into account Clusterj . To order Clusteri, one needs
to know the set of its neighbour clusters and their relative ordering. These are the main
ingredients of the recursive algorithm. The algorithm uses �ve functions.

� A function Neighbour

input: a list S1 of clusters and a Clusterindex in S1

output: a sublist Sneighbour of Nneighb elements of S1

The elements of Sneighbour are selected from the list S1 according to their co-occurrence
with Clusterindex. The co-occurrence between the clusters are computed from the
image Ĩ where Ĩ(p) = i if and only if I(p) ∈ Clusteri. We impose Clusterindex ∈
Sneighbour. Nneighb is an arbitrary parameter of the algorithm, see the result section.

� A function IndexCutting

input: a list S1 of clusters and a Clusterindex in S1

output: a list SClusterindex of NClust sub-clusters
of Clusterindex. NClust is an other arbitrary constant of the algorithm, see the result
section.

Call the function Neighbour to replace S1 by the shorter list Sneighbour. For each
cluster Clusteri in Sneighbour, �nd the point ci in Clusterindex that minimizes the
distance to Clusteri. If i = index, let ci be the barycentre of Clusterindex. The set
{ci} is completed with random points in Clusterindex to reach a minimum number
of points. Perform a clustering of Clusterindex using a k-means algorithm initialized
with the {ci}. Return SClusterindex the new set of clusters.

� A function MainOrder (To be used when the recursion depth is ≤ threshold)
input: a list S1 of clusters with an order <1, a Clusterindex in S1 and a list
SClusterindex of sub-clusters of Clusterindex
output: an order <2, on
the list S2 = S1 ∪ SClusterindex \ Clusterindex.

Perform a minimization of P on S2, using the co-occurrences of clusters C(Clusteri, Clusterk)
and the distance D(Clusteri, Clusterk), such that the new total order <2 is compat-
ible with the initial order <1. If Clusteri and Clusterj are in S1,

(Clusteri <1 Clusterj)⇒ (Clusteri <2 Clusterj)

Furthermore, for Clusteri in SClusterindex and Clusterj in S′1 = S1 \ Clusterindex,

Clusteri <2 Clusterj ⇔ Clusterindex <1 Clusterj

The situation is summarized in Fig. 2.4.
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Figure 2.4.: Construction of <2 (see description of the algorithm).

� A function SimpleOrder (To be used when the recursion depth is > threshold)
input: a list S1 of clusters with an order and a Clusterindex in S1

output: an order on Clusterindex.

Select in S1 the nearest neighbour of Clusterindex greater than Clusterindex and the
nearest neighbour lower than Clusterindex. Order elements of Clusterindex according
to their distance to the two clusters selected during the previous step.

� A function FuncRecursive

FuncRecursive;
input : An ordered list of clusters (S1, <1) , an Index Cluster Clusterindex, a

depth D
output: An order on Clusterindex given by a list

if D > threshold then
SimpleOrder (Clusterindex)

else

S′1 ← Neighbour(S1, Clusterindex);
Sindex ← IndexCutting(Clusterindex);
S2 ← S′1 ∪ Sindex\Clusterindex;
(<2)← MainOrder(S′1, Clusterindex, Sindex);
listorder ← empty list;
for all the sons in Sindex taken increasingly for <2 do

listorder ← Concat (listorder, FuncRecursive (S2, son,D + 1))
end

end

The main program is simply the function FuncRecursive called with the list S1 reduced
to I(Ω) with
Clusterindex = I(Ω) and D = 0.

Fig. 2.5 presents the di�erent steps on a simple example.
The non-deterministic aspect of the clustering step induces that two successive mini-

mizations of the cost function do not necessarily produce identical orders. Furthermore,
the order de�ned on ε(I)(Ω) is not necessarily induced by the order de�ned on I(Ω). Thus,
in order to preserve standards properties of mathematical morphology such as the idempo-
tence of composed dilation and erosion, ε◦δ, one has to use the same order for all operators
on the complete processing chain.
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(a) (b)

(c) (d)

Figure 2.5.: This example shows the successive steps of the algorithm launched with
threshold = 2. (a) Initial point cloud; (b) depth = 1 ; (c) depth = 2; (d)
depth = threshold : points in each cluster are ordered according to their
distance to neigbhour clusters.

2.5.2. Optimization over the permutation space

We note that, according to this algorithm the set to be ordered is no longer the set of
all colors present in the image, but the set of clusters S at each level of recursion. The
cost function P can be calculated if the cardinal n of S is reasonable. If the set S does
not exceed n = 9 elements, it is conceivable to calculate the cost P of each permutation
and select the minimum. However, this procedure requires an important computational
time. An alternative solution consists in optimizing the cost function iteratively. It is well
known that from a permutation it is possible to reach any other permutation by composing
transpositions. Given a permutation, we select the transposition that minimizes the cost
function, and we repeat the process until we fall in a minimum. As there is no proof that
the cost function is convex, the minimum might only be a local minimum. However, under
n = 9 elements it is possible to compare the result with the global exploration. In all
tested situations with n = 9 elements, the optimization by transposition does not fall in a
local minimum.

2.5.3. Computational cost

Given an order, the computation of the cost function P involves a sum over(
n
3

)
=
n(n− 1)(n− 2)

6
,

terms where n is the number of points. If NClust is the number of clusters produced by the
function IndexCutting, the minimization of P is performed in (NClust)

depth times. Our
Matlab code launched on a standard computer gives 1, 25.10−2s for a single computation
of P and 1.8 for its minimization over a set of 10 points (the second �gure is an average
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over 50 runs). The choice of the clustering algorithm might induce signi�cant variation in
the global computational cost. Using a k-means algorithm, Nclust = 10, Nneighb = 15 and
depth = 2, our Matlab code requires 8 minutes to process an image of size 256×256 pixels
composed of 40000 di�erent colors.

2.6. Order invariances

The cost function P (I) does not depend on the coordinates of colors but only on their
mutual distances and their co-occurrences. As the notion of co-occurrences remains un-
changed under bijective transformations, the cost P (I) is invariant under any isometric
transformation. Note that this is not the case for the lexicographic and the bit-mixing
order. However, the choice of a particular function f(·, ·) has an in�uence on the class of
invariances. For instance, the function

f(mini,j , d(ci, cj)) =
mini,j
d(ci, cj)

, (2.9)

where mini,j = d(c, ci) ∧ d(c, cj) also provides invariance of P (I) under homothetic trans-
formations. We can also note that for the function

f(mini,j , d(ci, cj)) =
minαi,j
d(ci, cj)β

, (2.10)

homothetic transformations simply result in the multiplication of P (I) by a positive con-
stant. Consequently, as the notion of minimum is invariant under increasing transforma-
tion, the minimization of P (I) should remain relatively stable. If T is an isometric (or
homothetic) transformation of the value space V, and φ a morphological operator {Ω,V} →
{Ω,V}, then T and φ commute for any image I, i.e.,

φ(T (I)) = T (φ(I)).

2.7. Results of morphological image processing

For each image, the minimization is launched with the following parameters:

� Function f :

f(x, y) = x ·G(y), (2.11)

where G(.) is a gate function with linear decrease, see Fig. 2.6. The parameter of the
gate G is set to 1/10 of the diameter of the value space V.
The cost P becomes:

P =
∑

a < c < b

(d(a, c) ∧ d(a, b))×G(d(a, b))× (CI(c, a) ∧ CI(c, b)). (2.12)

� At each level of the recursion, the set S is divided into n ≤ 10 clusters, assuming
that its size allows it.

� The number of neighbors selected by the function Neighbour is set to 15 at most,
depending on the number of existing clusters. During the MainOrder function the
cost P is evaluated on set of size 25 at most.

� The recursion is stopped when depth = 2.
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Figure 2.6.: The function f(x, y) used in the experiment is of the form x · G(y). The
parameter r0 of the gate G is related to the parameter r of the Lemma. Triplet
of values a < b < c such that d(a, c) ≥ r0 has no in�uence in the cost function.

2.7.1. 2D point sets

Before going into morphological operations on images, we present here a comparison of the
lexicographic, the bit-mixing, and the adapted order on a few sets of points in a square
of R2, without introducing the notion co-occurrences. Fig. 2.7 presents an example of
ordering of 20 points, according to the lexicographic order, the bit-mixing order, and the
adapted order. The adapted order is directly minimized over the set of permutations,
without going through the clustering step.
Over a set of 200 points, the cost P can still be computed, which enables the comparison

between the di�erent orders. The in�uence of the number of clusters, the depth of the
recursion and the spatial con�guration is studied in Fig. 2.8. Each experiment focuses on
a speci�c geometric pattern. Points are randomly drawn around the geometric patterns.
The image adapted order is computed for a recursion depth varying from 1 to 4. At each
depth, the adapted order and its cost are computed for a number of clusters varying on
odd numbers from 2 to 12. For each con�guration, the costs of the di�erent total orders are
averaged over 20 runs. The second column of Fig. 2.8 presents the costs depending on the
depth. At each depth, the cost is averaged over the choice of the number of clusters. The
third column represents the evolution of the cost according to the number of clusters at
depth = 2. Fig. 2.8 enables to draw several conclusions. Except exceptional situations, the
recursive minimization provides better results than the lexicographic and the bit-mixing
orders. It succeeds in adapting to each situation. The decrease of the cost function with
the depth lays mainly during the two �rst steps of the recursion. This fact motivated the
choice of depth = 2. Fig. 2.8 illustrates that the quality of the di�erent orders strongly
depends of the con�guration of the point cloud. Indeed, although the lexicographic order
seems to be the less interesting order, it is possible to �nd con�gurations where it performs
better than the bit-mixing and the adapted order. The behavior of the adapted order
with respect to the number of clusters is more di�cult to handle that the in�uence of the
depth. For rectilinear distributions, increasing the number of cuts of the point set seems to
slightly decrease the quality of the adapted order. When the geometrical con�guration has
an intrinsic number of clusters, overestimating the number of clusters does not guarantee
to obtain optimal results. In case of uniform distribution of the points, the cost seems to be
globally decreasing with the number of clusters. The absence of assumption on the spatial
con�guration pushes to chose a signi�cant number of clusters. In the next experiments
on images, 10 clusters has been judged as the best compromise between accuracy and
computation time.
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2. The irregularity issue of total orders

(a) (b) (c)

Figure 2.7.: A set of 20 points is ordered according to the lexicographic order in (a), the
bit-mixing order in (b), and the adapted order in (c).
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Figure 2.8.: Each row corresponds to a spatial distribution. The �rst column represents a
typical point cloud. The second column represents the average dependence of
the depth of the recursion. The third column represents the in�uence of the
number of clusters at depth = 2. In the di�erent plots, the lexicographic order
is in red, the bitmixing in green and the adapted order in blue.
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2. The irregularity issue of total orders

2.7.2. Color Imaging

Unfortunately unlike the previous 2D point sets, the set of colors in a standard image is
too large to enable the computation of the cost of a total order. It is then not possible
to numerically evaluate the performance of the optimization. However, in the following
examples the dependence on the order of the irregularities produced by the morphological
processing is visually appreciable.
We present results of morphological color processing obtained for two di�erent RGB im-

ages. The �rst one is a microscopic blood vessel from a �uorescence microscope, the second
one is a natural color image. For both of them P is minimized by the recursive algorithm
discussed in previous sections. The distance d(., .) between colors is the Euclidean distance
of the RGB color space.

(a) (b)

(c) (d)

Figure 2.9.: Projection of the total order on the image support: (a) original RGB image
I(p); (b) lexicographic order (R→ G→ B); (c) bit-mixing order; (d) our image
adapted total order.

Fig. 2.9 represents the RGB color image together with projections of the total orders
on the image support for the three studied total orders. As we can see, the blue spots are
totally invisible to the lexicographic ordering. Note that the lexicographic ordering starts
with red, and ends with blue. The bit-mixing paradigm and the image adapted total order
give di�erent results but are both coherent with the original image.
Using each total order, we can compute morphological color operators. Fig. 2.10 gives

the corresponding openings and closings using as structuring element a square of 7 × 7
pixels. As expected, the lexicographic ordering produces important aliasing around the
blue spots. The bit-mixing paradigm and the image adapted total order give di�erent
results but both preserve the regularity of boundaries.
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2.7. Results of morphological image processing

(a) (b) (c)

(d) (e)

Figure 2.10.: Morphological processing of image from Fig. 2.9: openings (top row) γB(I)
and closings (middle row) ϕB(I) using lexicographic order in (a), bit-mixing
order in (b) and our image adapted total order in (c). Structuring element is
B is a square of 7×7 pixels. Zoom on aliasing introduced by the lexicographic
order in (d) and (e).

The same study is performed on the second example. Fig. 2.11 provides the original
RGB image and the image representation of the three orders. Unlike the previous ex-
amples, lexicographic order is able to distinguish all the interesting objects of the image.
Furthermore, it seems to give an order smoother than the bit-miximg paradigm and the
image adapted total order. As we can observe on Fig. 2.12, which gives the result of me-
dian �ltering, the regularity of the grey-scale projection of the lexicographic order is only
�an illusion�. Opening and closing operators of size 9 × 9 are depicted in Fig. 2.13 and
Fig. 2.14. Both lexicographic and bit-mixing order present aliasing on blue and yellow
boundaries. The adapted order presents a slight aliasing in the background, which is not
present with lexicographic and bit-mixing orders. However on this example, our image
adapted total order is the only one of the three orders that provides satisfying results in
terms of regularity for opening and closing.
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(a) (b)

(c) (d)

Figure 2.11.: Projection of the total order on the image support: (a) original RGB image
I(p); (b) lexicographic order; (c) bit-mixing order; (d) our image adapted
total order.

(a) (b) (c)

Figure 2.12.: Median �ltering Fig. 2.11 using lexicographic order in (a), bit-mixing order
in (b) and our image adapted total order in (c).
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2.7. Results of morphological image processing

(a) (b) (c)

Figure 2.13.: Closings of image from Fig. 2.11, using lexicographic order in (a), bit-mixing
order in (b) and our image adapted total order in (c). The structuring element
is a square of size 9×9. Top row: closings, bottom row: zoom on main aliasing
zones.

(a) (b) (c)

Figure 2.14.: Openings of image from Fig. 2.11, using lexicographic order in (a), bit-mixing
order in (b) and our image adapted total order in (c). The structuring element
is a square of size 9 × 9. Top row: openings, bottom row: zoom on main
aliasing zones.
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2.7.3. Di�usion Tensor Imaging (DTI)

We recall that in DTI, each pixel of the image contains a 3× 3 symmetric positive de�nite
matrix, that is a point in the space SPD(3). A matrix of SPD(3) can be represented as an
ellipsoid, thus DTI image can be visualized using ellipsoids, see the example in Fig. 2.15.

Figure 2.15.: Example of DTI image.

Morphological processing of DTI data often requires a transition to uni-dimensional data,
see for instance the approach introduced in Rittner and de Alencar Lotufo (2009). The
use of Loewner order was introduced in Burgeth and Kleefeld (2013), so as to preserve the
matrix information. The Loewner order presents the important drawback of not inducing a
lattice. Accepting to lose standard properties of mathematical morphology, it was proposed
in Burgeth and Kleefeld (2013) a reasonable de�nition of the supremum and the in�mum
which enables the construction of a dilation and an erosion. The proposed supremum and
in�mum are continuous however the Loewner order is only a partial order. Gronde and
Roerdink (2015) recently proposed a new morphological framework to address DTI data.
However, this new framework is also based on partial order relationships. Similarly to the
color section, we restrict the comparison of the irregularities to total orders.
As the matrix is symmetric, it can be parametrized by the 6 upper-diagonal coe�cients,

see Fig. 2.16.

Figure 2.16.: Standard parametrization of a symmetric matrix.

This parametrization of SPD(3) induces a lexicographic and a bit-mixing order, named
respectively LEX1 and BMIX1 in what follows. Another approach consists in repre-
senting SPD(n) matrices with rotations and eigenvalues. A symmetric matrix can be
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2.7. Results of morphological image processing

diagonalized in an orthonormal basis. Then each SPD(3) matrix can be represented by
3 eigenvalues and a rotation matrix. Using any angular representation of the rotation
matrix, the SPD(3) matrix can be represented by 3 eigenvalues and 3 angles. Let us con-
sider such a parametrization where the eigenvalues are sorted decreasingly. The associated
lexicographic order is named LEX2 and the bit-mixing order BMIX2.
Using our framework, the image adapted total order is calculated according to two

metrics:

� the metric associated with the Frobenius scalar product, i.e., 〈A,B〉 = tr(ABt);

� the Log-Euclidean metric introduced in Arsigny et al. (2006), i.e., d(A,B) = ‖ log(A)−
log(B)‖.

In every processing example, the structuring element B is a square of 5 × 5 pixels.
Fig. 2.17 and Fig. 2.18 show respectively the results of openings and closings for the di�erent
total orders. As in standard morphological processing, opening and closing removes small
objects respectively from the image foreground and background.

(a) (b) (c)

(d) (e) (f)

Figure 2.17.: Morphological opening of a DTI image (original image in Fig. 2.15): using
LEX1 in (a), LEX2 in (b), BMIX1 in (c), BMIX2 in (d), image adapted
total order using Frobenius norm in (e), and using Log-Euclidean norm in
(f).
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(a) (b) (c)

(d) (e) (f)

Figure 2.18.: Morphological closing of a DTI image (original image in Fig. 2.15): using
LEX1 in (a), LEX2 in (b), BMIX1 in (c), BMIX2 in (d), image adapted
total order using Frobenius norm in (e), and using Log-Euclidean norm in
(f).

(a) (b) (c)

(d) (e) (f)

Figure 2.19.: Morphological reconstruction of a DTI image (reference image in Fig. 2.15
and marker images are the openings in Fig. 2.17): using LEX1 in (a), LEX2
in (b), BMIX1 in (c), BMIX2 in (d), image adapted total order using
Frobenius norm in (e), and using Log-Euclidean norm in (f).
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2.7. Results of morphological image processing

(a) (b) (c)

(d) (e) (f)

Figure 2.20.: Median �ltering of a DTI image (reference image in Fig. 2.15 and marker
images are the openings in Fig. 2.17): using LEX1 in (a), LEX2 in (b),
BMIX1 in (c), BMIX2 in (d), image adapted total order using Frobenius
norm in (e), and using Log-Euclidean norm in (f).

Using the openings from Fig. 2.17 as markers, the geodesic reconstruction Soille (2004)
has also been computed. The results are depicted in Fig. 2.19 and as expected, this operator
based on geodesic dilations will recover the contours of the objects which have not been
suppressed by the opening.
Finally, the comparative result of median �ltering is presented in Fig. 2.20.
Visually, the image adapted total orders give results at least as good as other orders,

and better ones in several situations. The choice of the Euclidean or log-Euclidean metric
does not seem to introduce important changes.
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2. The irregularity issue of total orders

2.7.4. Total order in the Poincaré upper half plane

As discussed in previous sections, the proposed order is based only on the notion of distance,
independently from the algebraic structure. This framework suits perfectly to the case of
images whose pixels lies in a Riemannian manifold, where the distance is known. We
present here a situation where the image is valued in such a manifold.
Mathematical morphology for images valued in uni-dimensional Gaussian laws has al-

ready been studied in Angulo and Velasco-Forero (2014). One of the most common dis-
tances on Gaussians is the distance induced by the Riemannian metric called the Fisher
metric. This is a simple example where the value space is not a vector space. In the case
of one dimensional Gaussian parametrized by their means µ and their standard deviation
σ, the distance between two Gaussians G1 and G2 is given by:

d(G1, G2) = cosh−1(1 +
1
2(µ1 − µ2)2 + (σ1 − σ2)2

2σ1σ2
).

In the mean/standard deviation half-plane, the shortest paths of the Fisher metric are
half ellipses centered on the µ-axis. The mean/standard deviation half-plane endowed with
the Fisher metric is a Poincaré upper half plane of curvature −1

2 .
The studied example is a time lapse sequence of grey-scale images from a retina. At

each pixel, we dispose of 20 successive acquisitions. By assuming a Gaussian distribution
on the successive acquisition, we obtain a Gaussian valued image represented in Fig. 2.21.
The observation of the distribution of Gaussians in the upper half plane presented in
Fig. 2.21(c) strongly suggests to endow the space of Gaussian laws with the Fisher metric.
The proposed solution to obtain total orders is currently the only total order framework
that takes the geometry of the space into account.

30



2.7. Results of morphological image processing

(a) (b)

(c)

Figure 2.21.: Time lapse sequence of images from the retina: (a) mean image, (b) stan-
dard deviation image, (c) corresponding point cloud in the uni-dimensional
Gaussian laws space.

Note that to minimize P in this case study, one has now to perform a clustering on the
hyperbolic upper half plane. We choose to use the model centroids proposed in Galperin
(1993) which enables a simple implementation of the k-means algorithm. The adapted
order is computed with respect to the Euclidean and the Fisher metric. Figures 2.22- 2.25
show that the Riemannian framework might lead to better results. The central black spot
of the image, one of the anatomical elements of the retina, is for instance easier extracted
using Riemannian framework, see Fig. 2.24 and 2.25.

(a) (b)

Figure 2.22.: Visualization of order map: (a) total order projection using Euclidean metric,
(b) total order projection using Fisher metric.
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(a) (b)

Figure 2.23.: Top row: mean image, Bottom row: standard deviation image. (a) Closing
in the Euclidean framework, (b) closing in the Riemannian framework.

(a) (b) (c)

Figure 2.24.: Top row: mean image, Bottom row: standard deviation image. (a) Original
image, (b) closing by reconstruction in the Euclidean framework, (c) closing
by reconstruction in the Riemannian framework.
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(a) (b)

Figure 2.25.: Residue image of the closing by reconstruction working on the Euclidean
framework in (a), and on the Riemannian framework in (b).

2.8. Conclusions and Perspectives

To our knowledge, this work is the �rst study that rigorously formulates and demonstrates
the irregularity issue of total orders in metric spaces. Given a total order, the introduced
Lemma tells us there are always images where morphological operators introduce irregular-
ities and aliasing. Given an image and a total order, we exhibit the problematic triplets of
values. The identi�cation of problematic triplets leads us to a cost function measuring the
quality of a total order regarding the back and forth problem. Due to the restriction of the
problem to a speci�c image and to a precise identi�cation of the problematic situations,
we know that the order minimizing the cost function produces less irregularities than the
existing propositions, namely Chanussot and Lambert (1998); Flórez-Revuelta (2005).
As the cost function is not explicitly computable due to the size of the set to be ordered,

we propose a recursive minimization procedure based on successive clustering of the set
to order, so as to �nd a total order adapted to the image. Future work might be led on
boundaries regularity measurement so as to provide a quantitative measure of the quality of
the minimization. A reasonable lead would be to evaluate the irregularity of the level-sets
channel-wise and merge the results.
A strength of the proposed framework is its generality. Indeed, for a large majority of

images, the value space is equipped with a metric. The image adapted order can thus be
computed for almost any image. Note that for a given type of images, the adapted metric
is often open to debate, see for instance Ledoux et al. (2013).
We have shown the interest of our method on some examples, however the bit-mixing

total order proposed in Chanussot and Lambert (1998) remains an interesting solution
in the Euclidean case. Indeed our current minimization procedure does not yet provide
average results signi�cantly better than the bit-mixing, while the latter is independent
from the image and requires no pre-processing.
The minimization of the cost function is subject to several potential improvements, on

its accuracy on the one hand, and on the computation speed on the other hand. The use
of techniques such as evolutionary algorithms might for instance enable to signi�cantly
enhance the number of clusters at each step of the recursion, see Flórez-Revuelta (2015).
Thus our future research will be essentially focused on the minimization of the cost function.
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3. N-ary morphology

Résumé

La morphologie mathématique pour les images binaires peut être entièrement d'écrite
dans le cadre de la théorie des ensembles. Cependant, cette théorie n'est pas su�sante
pour d'écrire la morphologie des images en niveau de gris. Ce type d'images requiert
l'introduction de la notion d'ordre. Plus généralement, la morphologie mathématique est
maintenant d'écrite à l'aide de la notion de treillis. Depuis quelques décennies, plusieurs
travaux visent à appliquer des opérateurs morphologiques aux images multivariées telles
que les images couleurs. Ces travaux ce basent principalement sur la notion d'ordre vecto-
riels. Cependant, aucune de ces tentatives n'a donné de résulats entièrement satisfaisants.
Au lieu de viser directement le cas multivarié, nous proposons ici une extension de la mor-
phologie binaire à une situation intermédiaire : les images à valeur dans un ensemble �ni
de labels non ordonnés. Nous proposons ensuite une extension à un cas continu.
Ce chapitre est principalement extrait de Chevallier et al. (2015a).

Abstract

Mathematical morphology on binary images can be fully described by set theory. However,
it is not su�cient to formulate mathematical morphology for grey scale images. This type
of images requires the introduction of the notion of partial order on grey levels, together
with the de�nition of sup and inf operators. More generally, mathematical morphology
is now described within the context of the lattice theory. For a few decades, attempts
are made to use mathematical morphology on multivariate images, such as color images,
mainly based on the notion of vector order. However, none of these attempts has given
fully satisfying results. Instead of aiming directly at the multivariate case we propose �rst
an extension of binary mathematical morphology to an intermediary situation: images
composed of a �nite number of independent unordered labels. We propose then a second
extension to a continuous case.
This chapter is mainly adapted from Chevallier et al. (2015a).

3.1. Introduction

The philosophy of the previous chapter was to adapt the data to the theory of mathemati-
cal morphology. The aim was to put an interesting structure on data, a total order in this
case, that would enable the use of morphological operators. However in the multivariate
case, addressing data only through an order, partial or total, is often not fully compatible
with the original structure. Product orders for instance are equivalent to marginal pro-
cessing. Lemma 2.3.1 shows that total orders on Rn>1 are never compatible with distance
information in morphological processing.
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Instead of adapting the structure of the data to the mathematical morphology theory,
one could try to adapt the theory to the data. This chapter do not aim directly at the
full multivariate case. We propose to adapt the morphological framework �rstly to images
valued in n independent categories and secondly to images valued in mixtures of this
categories.
Let us start by quoting Serra (1982). �Objects in space generally have three dimensions,

which are reduced to two dimensions in a photograph or on the retina. In this projection
the luminance of the point located along a line oriented directly away from the viewer are
not summed, because most physical objects are not translucent to light rays, in the way
they would be to X ray but are opaque. Consequently, any object that is seen hides those
that are placed beyond it with respect to the viewer: this self-evident property is a basic
one. In fact it serves as a starting point for mathematical morphology, since, whenever we
wish to describe quantitatively phenomena in this domain, a set-theoretic approach must
be used.�. Here is one of the main di�erences between (nonlinear) image processing and
sound processing. In sound processing, audio sources of the same environment are summed,
whereas opaque objects of a 3D scene hide themselves. In image processing we might not
want to mix colors of neighbor objects, as does the linear convolution, because this mix
might have no meaning in terms of objects. Thus this key idea can be reformulated by
saying that mathematical morphology is based on the reduction and the extension of the
surface of the di�erent objects over their neighbors. That leads naturally to the two basic
morphological operators in binary images.

Binary images. In such images, there are only two kinds of objects: black or white
objects. Two dual and adjoint operators have been de�ned: the erosion and the dilation.
The erosion extends the black objects over the white objects, the dilation extend the white
objects over the black objects. Formally, a binary image can be seen as a support set Ω,
and X a subset of Ω. Set X represents the white points of the image and the complement
{X = Xc the black ones. We assume here that Ω is a subset of Rn, which is generally
the case. Let B be a subset of Ω called the structuring element. We assume that Ω has
a translation operation. The erosion εB(X) and the dilation δB(X) of X according to a
structuring element are de�ned as follows, see Matheron (1974):

εB(X) =
⋂
y∈B

X−y = {p ∈ Ω : Bp ⊂ X} =
{
x : ∀p ∈ B̌, x ∈ Xp

}
, (3.1)

δB(X) =
⋃
y∈B

Xy = {x+ y : x ∈ X, y ∈ B} =
{
p ∈ Ω : X ∩ B̌p 6= ∅

}
, (3.2)

where X̌ = {−x : x ∈ X} is the transpose of X (or symmetrical set with respect to the
origin O) and Xp = {x+ p : x ∈ X} the translate of X by p. We note that erosion and
dilation correspond respectively to the Minkowski substraction and addition of set X by
B; i.e., εB(X) = X 	B and δB(X) = X ⊕B. For the sake of simplicity, we limit the rest
of our notation to symmetric structuring elements: B = B̌.

Grey-scale images. With the appearance of grey-scale images, mathematical mor-
phology was reformulated in terms of inf and sup convolution where the kernel is the
structuring element B, see Serra (1982). That corresponds to the so-called �at case, where
the kernel is just a �shape�. It is also possible to use structuring functions, but this is out
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3. N-ary morphology

of the scope of this work. An image is now considered as a function I de�ned as

I :

{
Ω→ V
p 7→ I(p)

where V is the set of grey-levels, which can be generally assumed as a subset of the real
line V ⊂ R. Grey-scale �at erosion and dilation of I by structuring element B are now
de�ned as follows:

εB(I)(p) = inf
q∈Bp

{f(q)} , (3.3)

δB(I)(p) = sup
q∈Bp

{f(q)} . (3.4)

In this classical framework, each grey-level is not fully considered as an independent label
(i.e., a di�erent category) but simply as an intermediary level between black and white.
This point of view is actually justi�ed when interesting objects of the images are local
extrema. A mathematical way to see this formalism is to note that �at erosion and dilation
commute with processing upper level set by upper level set, that is operators (3.3) and (3.6)
are respectively equivalent to

εB(I)(p) = sup
{
h ∈ R : p ∈

(
X+
h (I)	B

)}
, (3.5)

δB(I)(p) = sup
{
h ∈ R : p ∈

(
X+
h (I)⊕B

)}
, (3.6)

where X+
h (I) denotes the upper level set at height h of function I; i.e.,

X+
h (I) = {p ∈ Ω : I(p) ≥ h} .

(a) (b) (c)

Figure 3.1.: Grey-level morphological processing: (a) original image I, (b) closing ϕB(I),
(c) opening γB(I).

Let us see what happens in the situation depicted in Fig. 3.1. It corresponds to process
a rather simple grey-level by a closing and an opening. We recall that the closing of I by
B is the composition of a dilation followed by a erosion; i.e., ϕB(I) = εB (δB(I)). The
opening is just the dual operator; i.e., γB(I) = δB (εB(I)). Closing (resp. opening) is
appropriate to remove dark (resp. bright) structures smaller than the structuring element
B. This behavior is based on the fact that the dilation �reduces� dark structures by B
while the erosion �restores� the dark structures which are still present.
In the current example, it is not possible to remove the central grey spot using erosion

and dilation with B larger than the spot size. This grey spot is not considered as an
interesting object in itself but simply as an intermediary value between the black object
and the white object. If this assumption is often coherent, this is not always the case.
Let consider the grey-scale image in Fig. 3.2(a). In this image, each grey level has the

same semantic level: each represents a di�erent component, sometimes called a phase.
However, in the morphological grey-scale framework, the grey is processed as an interme-
diary level. It is possible to replace each grey level by a color, see Fig. 3.2(b). We would
like then to process both images using the same approach.
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(a) (b) (c)

Figure 3.2.: (a) A three independent grey-level image and (b) the same image where the
grey values has been replaced by colors. (c) Example of multivariate (color)
image.

Multivariate images. For multivariate images, no canonical framework has yet ap-
peared. Most processing consist in endowing the structure with a partial order relationship.
The structure has to be a complete lattice in order to de�ne erosion and dilation in terms
of inf and sup. The notion of order induces the notion of intermediary level as in the
precedent framework. It is rather intuitive to consider grey as an intermediary between
black and white. The situation is di�erent for colors: using the product ordering in the
RGB space red is an intermediary color between black and white. This assumption often
has no meaning in term of image processing. In an image, the color red usually has the
same semantic level as black or white: the color red represents a class of objects, it is not
a transition between black objects and white objects. If the phenomenon already exists
in the grey-scale framework, it turns out now to be a signi�cant problem, see example in
Fig. 3.2(c). As the red usually has a real signi�cation in terms of a particular class of
objects, it is very natural to try to remove the red spot, which is not possible using generic
classical morphology. The more the image has a complex semantic structure, such as a
color image, the more it is di�cult to �nd a lattice structure which makes every interesting
object an extremum.

(a) (b)

Figure 3.3.: From binary morphology to multivariate morphology: (a) classical framework,
(b) need of the intermediate n-ary morphology.

Aim and chapter organization. The historical way of extending the mathemati-
cal morphology theory from binary to multivariate images is summarized in Fig.3.3(a).
However, the gap between grey-scale and multivariate is much more signi�cant than the
gap between binary and grey-scale. As discussed previously, the grey-scale structure only
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enables to de�ne intermediary levels between two references. This structure is obviously
too weak to describe a multivariate information. Avoiding the notion of order becomes
one of the goals of recent developments of mathematical morphology. Authors of Gronde
and Roerdink (2015) propose to lighten the lattice structure, while authors of Carlinet
and Géraud (2015) build a tree of shapes on multivariate images without requiring a total
orders. Although very di�erent from these propositions, our work is based on the same
underlying idea.
Before extending mathematical morphology to multivariate images, we might �rst want

to de�ne a coherent approach for mathematical morphology with n independent unordered
labels, without considering them as intermediary levels. This is the aim of the �rst part of
the chapter. The di�erence between the frameworks can be interpreted in term of a change
of metric on the value space:

� grey-scale framework: ∀(i, j), d(labeli, labelj) = |i− j|;

� n−ary framework: ∀(i, j), d(labeli, labelj) = 1.

This work is not the �rst to consider the problems of classical mathematical morphology
for images composed of independents labels. Authors of Busch and Eberle (1995) and
Ronse and Agnus (2005) have very similar motivations but the development we propose is
di�erent. In contrast to operators proposed in Busch and Eberle (1995), Ronse and Agnus
(2005) or labeled openings from Hanbury and Serra (2001), we are interested in �lling gaps
left by anti-extensive operators. We note that the theory of morphological operators for
partitions introduced in Ronse (2013) and hierarchies of partitions in Meyer (2011) are not
compatible with our framework.
The second part of the chapter aims to extend the morphology de�ned in the �rst

part on independent (discrete) labels to a continuous case. This part of the theory is
less elaborated than the discrete case but provides already the key ingredients for future
developments. The continuous setting involves to work with images valued in the (n− 1)-
simplex. The approach adopted here will be based on a fuzzy representation and limited
initially to the edges of the simplex, i.e., only two labels (or categories) contributes at
each pixel. We should point out that our fuzzy framework is not related to the theory of
fuzzy morphology as developed for instance by Deng and Heijmans (2002); Bloch (2009).
In parallel to the approach considered here for the (n − 1)-simplex, another recent work
by Franchi and Angulo (2015) has considered the extension of morphological operators
using partial orders on this space.
The rest of the chapter is organized as follows.

� A proposition of n-ary morphological operators and a study of their theoretical prop-
erties is done in Sections 3.2 and 3.3.

� Some applications to image �ltering are discussed in Section 3.4.

� Section 3.5 proposes a continuous extension of n-ary morphology for images arising
from fuzzy classi�cations.

� Section 3.6 concludes and closes the chapter.
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3.2. n-ary morphological operators

3.2. n-ary morphological operators

Let us come back to the key idea of mathematical morphology is to reduce and extend
objects over their neighbors. In the case of binary images, two operations were introduced:
the erosion extends the black over the white and the dilation extends the white over the
black. In a general way, we would like to allow to reduce and extend the surface of each
label of object. This makes four theoretic operations in the binary case, reduced to two
in practice due to the coincidence of certain operations: reducing the black is the same as
extending the white and conversely. This duality is one of the basic principle of binary
morphology.

3.2.1. Dilation and erosion of label i

Let I be an n-ary image de�ned as

I :

{
Ω→ {1, 2, · · · , n}
p 7→ I(p)

In the n−ary case, it seems natural to try to introduce the corresponding pair (εi, δi)
of operators for each label i. Erosion εi is the operator that reduces the surface of the
objets of label i, and dilation δi the operator that extends the label i. Above n > 2, we
unfortunately lose the duality between operations, such that the number of elementary
operators is then equal to 2n. Let us formulate more precisely these operators.
The dilation of label i on image I by structuring element B presents no di�culty:

δi(I;B)(x) =

{
I(x) if ∀p ∈ Bx, I(p) 6= i
i if ∃p ∈ Bx, I(p) = i

(3.7)

Operator δi(I;B) implies that if the label i is not present in the structuring element Bx,
I(x) is not modi�ed. Thus δi(I;B) extends objects of label i over their neighbors. The
case of the erosion presents more theoretical di�culties. Indeed, if we want to reduce the
objects of label i, we need to decide how to �ll the gaps after the reduction, see problem
in Fig. 3.4.

(a) (b)

Figure 3.4.: (a) Original image, (b) image after applying the �blue erosion�: one needs to
decide how to �ll the gap.

Let us �rst de�ne the erosion for pixels where there are no ambiguities. Thus the erosion
of label i on image I by structuring element B is given by

εi(I;B)(x) =


I(x) if I(x) 6= i
i if ∀p ∈ Bx, I(p) = i
θ(x, I) otherwise

(3.8)
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3. N-ary morphology

We will address later de�nition of θ(x, I). Sections 2.2 and 2.3 are independent of θ.
Although the image is a partition of Ω the proposed framework di�ers from Ronse and
Agnus (2005) and Ronse (2013).

3.2.2. Opening and closing of label i

Once the dilation and erosion have been de�ned, we can introduce by composition of these
two operators the opening and the closing on I by B of label i respectively as

γi(I;B) = δi ◦ εi = δi (εi(I;B);B) , (3.9)

ϕi(I;B) = εi ◦ δi = εi (δi(I;B);B) . (3.10)

Let us set a few notations used in the following. If φ is an operator, let φk be φ ◦ .... ◦ φ
the iteration of φ, k times. Let φ|A be the restriction of φ to the subset A. Let us set
EIi = I−1(i). To simplify, 1EIi will be noted 1Ii .
Due to the fact that operators (3.7) and (3.8) are not adjoint, classical theory of open-

ing and closing by adjunction, see Serra (1988); Heijmans (1994), does not apply to our
framework. Hence, we need to explore which properties still hold and in particular, if
operators (3.9) and (3.10) are idempotent. Indeed, we have such a property of stability.

Proposition 3.2.1 Opening and closing of label i are idempotent operators, i.e.,

γi(I;B) = γ2
i (I;B),

ϕi(I;B) = ϕ2
i (I;B).

Proof Since the binary opening is idempotent, one has Eγi(I)i = E
γ2
i (I)
i . Furthermore

we have that Eγi(I)j ⊂ E
γ2
i (I)
j , for all j 6= i. Since sets (Ei)i from a partition of the

support space, necessarily Eγi(I)j = E
γ2
i (I)
j , ∀j. Indeed, if all the elements of a partition are

extensive, then they all remain stable. Then γi = γ2
i .

Properties cannot directly be transported by duality, as in binary morphology, however
the property remains true for the closing. We �rst show the binary property εδε = ε. The
binary erosion and opening can be written as

εB(X) = ∪Bx⊂X{x}, and γB(X) = ∪Bx⊂XBx.

Then ε(γ(X)) = ∪Bx⊂γ(X){x}. Since {Bx ⊂ γ(X)} = {Bx ⊂ ∪Bx⊂XBx} = {Bx ⊂ X},
then ε(γ(X)) = ε(X). Thus, εδε = ε and by duality, δεδ = δ. Then Eδii = Eδiεiδii . It
can be shown that Eδij ⊂ Eδiεiδij for all j 6= i. Using the same reasoning as in the proof

for the opening, we have that for all j, Eδij = Eδiεiδij . In other words, δiεiδi = δi. Thus
εiδiεiδi = εiδi, or equivalently ϕi = ϕ2

i .

3.2.3. Composed n-ary �lters

We can now try to de�ne label �lters from the openings and the closings of label i. In
binary morphology, the simplest �lters are of the following form: γ ◦ φ and φ ◦ γ. In the
n-ary framework, with n = 2, they can be rewritten as

γ1 ◦ γ2 = φ2 ◦ φ1, and γ2 ◦ γ1 = φ1 ◦ φ2.
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3.2. n-ary morphological operators

(a) (b) (c)

Figure 3.5.: Opening and closing on a 3-ary image: (a) original image I, (b) opening of red
color γred(I;B), (c) closing of black color ϕblack(I;B).

The opening removes peaks smaller than the structuring element and the closing removes
holes, which are dual notions in binary morphology. However, peaks and holes are no
longer a dual notion in n-ary morphology with n > 2. Fig. 3.5 illustrates the di�erence
between openings and closings on a 3-ary image: three colors, black, white and red. The
structuring element is a square whose size is half of the width of the red line. Removing
the red line using φblack requires a structuring element twice bigger than with γred.
As a good candidate to �lter out small object of a labeled image I, independently of

the label of the objects, we introduce the operator ψ, named composed n-ary �lter by

structuring element B, de�ned as

ψ(I;B) = γn(I;B) ◦ γn−1(I;B) ◦ · · · ◦ γ1(I;B). (3.11)

Unfortunately on the contrary to γ◦φ in binary morphology, ψ is generally not idempotent.
Worst, the sequence ψk do not necessarily converge. However we still have a stability
property for relevant objects. Let us be more precise.

Proposition 3.2.2 Let Ω be a �nite set. Given a structuring element B, the interior with

respect to B of the composed n-ary �lter ψ(I;B) converges for any image I, i.e.,

∀i, ε(Eψ
k

i ) converges .

Proof Since ε = ε ◦ δε, ∀i, ε(Eψ
k

i ) = ε(Eγi◦ψ
k

i ). Furthermore, since ε(Eψ
k

i ) ⊂ ε(E
γj◦ψk
i ),

we have that ∀i, ε(Eψ
k

i ) ⊂ ε(Eψ
k+1

i ). Since Ω is a �nite set, ε(Eψ
k

i ) converges.

This property ensures that the variations between ψk and ψk+1 do not a�ect the interior
of objects and is only limited to boundaries. Nevertheless, as we shown in section 4, ψk is
almost always stable after a few iterations.

3.2.4. n-ary geodesic reconstruction

The binary reconstruction can be transposed in the n-ary framework as follows. The
proposition of reconstruction is similar to the one proposed in Ronse and Agnus (2005).
Given two labeled images R and M , for each label i,

� Perform a binarisation of the reference R and the markerM between i and {i, which
correspond respectively to binary images Xi and Yi.

� Compute γrec(Xi;Yi), that is the binary geodesic reconstruction of the marker in the
reference.

41



3. N-ary morphology

Then, the n-ary geodesic reconstruction of the reference R by the marker M is given by

γrec(R;M)(x) =

{
i if x ∈ γrec(Xi;Yi)
M(x) if ∀i, x /∈ γrec(Xi;Yi)

Fig.3.6 illustrates the di�erence between classical geodesic reconstruction and the pro-
posed n-ary reconstruction. For the classical reconstruction, the 3-label image is simply
viewed as a grey-scale image.

(a) (b) (c) (d)

Figure 3.6.: Geodesic reconstruction of a 3-ary image: (a) reference image R, (b) marker
image M , (c) classical grey-scale reconstruction, (d) n-ary reconstruction
γrec(R;M).

The aim of this de�nition is to symmetrize labels. In Fig.3.6 (d), the grey object is
considered as an object in itself. The proposed reconstruction is a connected operator in
the sense of Salembier and Serra (1995)

3.2.5. n-ary morphological gradient

The classical symmetric morphological gradient of a binary or grey-scale image I is de�ned
as the di�erence between the dilation and the erosion:

grad(I)(x) = δB(I)(x)− εB(I)(x),

where B is typically the unit ball. This concept can be extended to an n−ary image I by
the following formulation of the n-ary morphological gradient :

grad(I)(x) =
(
1δ1(I;B)(x),1δ2(I;B)(x), · · · ,1δn(I;B)(x)

)
. (3.12)

where 1δi(I;B)(x) stands for 1
E
δi(I;B)
i

(x) and grad(I)(x) is an element of {0, 1}n. As

the standard gradient, a large part of its information is contained in its norm. Here,
‖grad(I)(x)‖1 =

∑
i 1δi(I)(x) tells us how many di�erent labels lays in the neighbourhood

of each point x.
Fig. 3.7 shows the di�erences between the classical morphological gradient and the n-ary

morphological gradient of a labeled image. We note that for the classical color gradient,
the involved dilation/erosion are computed using a lexicographic (total) ordering. Both
gradients have similar aspect. However, their respective grey levels have di�erent meanings.
In the classical framework, the intensity represents a di�erence of position in the order,
whereas in the n-ary framework, the intensity represents the local variety of labels.
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3.3. On the choice of an erosion of label i

(a) (b) (c) (d)

Figure 3.7.: Computing the gradient of a color image: (a) original n-ary image, (b) pro-
jection of a total color order on a grey-scale image, (c) classical morphological
gradient based on order represented by (b), (d) L1 norm of the n-ary morpho-
logical gradient ‖grad(I)(x)‖1.

3.3. On the choice of an erosion of label i

Before any application, we need to come back to the erosion problem. More precisely, we
need to de�ne a consistent rule to �ll the space created by the erosion operation.
First of all, we note that the de�nition in Eq. (3.8) of the erosion εi of label i does not

indicate how to behave on the following set:

A = {x | I(x) = i and ∃p ∈ Bx such that I(p) 6= i} .

For points x ∈ A we have to decide by which label to replace label i and therefore to de�ne
εi on A, i.e.,

εi(I;B)(x) =


I(x) if I(x) 6= i
i if ∀p ∈ Bx, I(p) = i
? if x ∈ A

(3.13)

Many alternatives are possible. Two criteria have to be taken into account: (i) the direct
coherence in terms of image processing, and (ii) the number of morphological properties
veri�ed by the erosion, such as εi(I; kB) = εki (I;B) where kB = {kx | x ∈ B} (i.e., homo-
thetic of size k). Let us consider in particular the three following rules for x ∈ A:

1. Fixed-label erosion: Erosion always �lls the gaps with label 1 (or any other �xed
label):

εi(I;B)(x) = 1. (3.14)

2. Majority-based erosion: Erosion takes the value of the major label di�erent from
i in the structuring element B:

εi(I;B)(x) = min(argmax
j 6=i

(Card {p ∈ Bx|I(p) = j})). (3.15)

3. Distance-based erosion: Erosion replaces label i by the closest label on the support
space Ω:

εi(I;B)(x) = min(argmin
j 6=i

djx). (3.16)

where djx = inf {‖x− p‖Ω | p ∈ Ω, I(p) = j}.
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3. N-ary morphology

The majority-based erosion (3.15) and distance-based erosion (3.16) are initially not de�ned
in case of equality. Hence the apparition of the min. Obviously, �xed-label erosion (3.14)
satis�es εi(I; kB) = εki (I;B), but is not coherent in terms of image processing.

(a) (b) (c) (d) (e)

Figure 3.8.: Comparison of erosions of black color: (a) original image I, (b) erosion
εblack(I;B) using majority-based formulation (3.15), (c) erosion εblack(I;B)
using distance-based formulation (3.16). Let l be the width of the red line, the
structuring element B is a square whose size is now between l and 2l. (d) it-
erated black erosion ε2

black(I;B) using majority-based formulation, (e) erosion
εblack(I; 2B) using majority-based formulation.

Majority-based erosion and distance-based erosion both look potentially interesting in
terms of image processing; however, as shown in the basic example of Fig. 3.8, majority-
based erosion (to compare Fig. 3.8(b) to Fig. 3.8(c)) can produce unexpected results. The
same example, now Fig. 3.8(d) and Fig. 3.8(e), shows that majority-based erosion do not
satis�es εi(I; kB) = εki (I;B).
Let us formalize the iterative behavior of the distance-based erosion by the following

result on isotropic structuring elements.

Proposition 3.3.1 Let (Ω, d) be a compact geodesic space and I a n-ary image on Ω. For

any R1, R2 > 0 the distance-based erosion of label i satis�es:

εi(I;BR1+R2) = εi(I;BR2) ◦ εi(I;BR1).

where BR is the open ball of radius R.

Proof For the sake of notation, let X = EIi and Xj = EIj , for j 6= i. Let X ′ = {x ∈
X|d(x, {X) ≥ R1}, X ′ is the binary eroded of X. Let projX(a) = {b|b ∈ {X, d(a, b) =
d(a, {X)} with A the closure of A. Let P = {Xj} and for a ∈ Ω, IPa = {j|∃b ∈ projX(a)∩
Xj}. Let X ′j = {a /∈ X ′|projX(a) ∩ Xj 6= ∅} and P ′ = {X ′j}. Using the property of the

min function, min(A∪B) = min({min(A),min(B)}), it can be shown that IPa = IP
′

a for
all a ∈ X ′ implies proposition 3.3.1.

� Let j ∈ IPa . Thus, ∃b ∈ projX(a) ∩ Xj . Let γ be a geodesic joining a and b
with γ(0) = b and γ(d(a, b)) = a. Let c = γ(R1). For all x ∈ γ([0, R1[), x /∈ X ′ and
b ∈ projX(x). Hence x ∈ X ′j and c ∈ X ′j . The triangle inequality gives c ∈ projX′(a).

Indeed, assuming that c /∈ projX′(a) easily leads to b /∈ b ∈ projX(x). Thus, j ∈ IP ′a .

� Let j ∈ IP ′a . Thus, ∃c ∈ projX′(a) ∩X ′j . By de�nition of the closure, ∃cn → c, cn ∈
X ′j . cn ∈ X ′j ⇒ (∃dn ∈ projX(cn), dn ∈ Xj). The compact assumption enables us to

consider that dn → d (it is at least valid for a sub-sequence). d ∈ Xj . By continuity,
d(d, c) = lim(dn, cn) = lim({X, cn) = d({X, c). Thus, d ∈ projX(c). Proposition
3.3.2 tells us that d ∈ projX(a). Hence j ∈ IPa .

Thus, IPa = IP
′

a .
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Proposition 3.3.2 Using the notation introduced in the demonstration of proposition

3.3.1:

∀a ∈ X ′, ∀c ∈ projX′(a), ∀d ∈ projX(c), d ∈ projX(a).

Proof Let a ∈ X ′, c ∈ projX′(a), d ∈ projX(c).

� Since X ′ is closed, {X ′ is open and the existence of geodesics implies that c /∈ {X ′.
Hence c ∈ X ′ and d(c, {X) ≥ R1. Since c is a projection on {X ′, we have c ∈ {X ′,
d(c, {X) ≤ R1. Hence d(c, {X) = R1 and d(c, d) = R1.

� Let b ∈ projX(a) and γ a geodesic such that γ(0) = a and γ(d(a, b)) = b. Let
c′ = γ(sup{t|γ(t) ∈ X ′}). Since X ′ is closed, c′ ∈ X ′. We have d(c′, {X) ≥ R1.
Since c′ ∈ {X ′, d(a, c′) ≥ d(a, {X ′) = d(a, c). Thus, d(a, b) = d(a, c′) + d(c′, b) ≥
d(a, c) + d(c′, {X) = d(a, c) + d(c′, {X) ≥ d(a, c) + R1 = d(a, c) + d(c, d) ≥ d(a, d).
Hence d ∈ projX(a).

Note that in a compact subset of a vector space, since proposition 3.3.1 is valid for any
norm, the property holds for any convex structuring element. Note also that result 3.3.1
is based on a metric de�nition of the erosion. For vector spaces norms, this erosion is
identical to the translation based erosion. Proposition 3.3.1 strongly links the distance-
based erosion to a wave-front propagation. Without entering the details, we present the
general idea of wave-front propagation and the relation with n-ary morphology. Let the
curve C0(s) = (x0(s), y0(s)) be the contour of a planar shape S. Let C(s, λ) be the curve
de�ned by the following partial di�erential equation:{

∂C(s,t)
∂t = α

−→
N (s, t)

C(s, 0) = C0(s)
(3.17)

where N is the normal vector at C(s, t). Authors of Arehart et al. (1993) and Sapiro
et al. (1993) point out that C(s, λ) corresponds to the dilated or the eroded, depending
on the choice α = 1 or α = −1, of S by a ball of radius λ. The underlying idea is that a
dilation (resp. erosion) can be decomposed into a succession of in�nitesimal dilations (resp.
erosion). The situation is slightly more complicated in the n-ary case, see Fig.3.9. The
propagation of each labels j 6= i in the gap left by label i during εi is up to a certain point
described by a proper wave-front propagation following Eq.(3.17), see Fig.3.9(b). However
note that in Fig.3.9(b), if Front 1 follows Eq.(3.17), it is not the case of Front 2. Front 2
is elongated following the trace left by the point p.
According to this discussion, in all what follows we adopt the distance-based erosion.

3.4. Applications to image �ltering

In the �rst case study, depicted in Fig. 3.10 and Fig. 3.11, we consider the behavior and
interest of the composed n-ary �lter ψ(I;B). The aim is to �lter out objects smaller than
the structuring element B of the 4-ary labeled image Fig. 3.10(a). Results in Fig. 3.10(b)
and (c) are respectively the classical color operator γB ◦ϕB and ϕB ◦γB obtained by using
total order of Fig.3.7(b). Then, we compare in Fig. 3.11 four alternative composed n-ary
�lter ψ(I;B), which correspond to di�erent permutations of the composition of openings
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(a) (b) (c)

Figure 3.9.: (a) Original labeled image I, (b) �rst propagation regime (c) second propaga-
tion regime.

(a) (b) (c)

Figure 3.10.: Morphological �ltering of a 4-ary image: (a) original color image I and struc-
turing element B, (b) color operator γB ◦ ϕB using a color order, (c) color
operator ϕB ◦ γB using same order.

of label i. On the one hand, note that in all the cases, the iterated �lter converges rather
fast to a stable (idempotent) result and that the di�erence between the �rst iteration and
the �nal result are rather similar. On the other hand, the di�erent permutations produce
di�erent results, however in all the cases, the small objects seems better removed than in
the case of the classical color order operators.
The second example, given in Fig. 3.12 attempts to regularize the 3-ary image, by

removing small objects without deforming the contours of the remaining objects. More
precisely, Fig. 3.12(a) represents the electron microscopy image of a ceramic eutectic, with
three di�erent phases after segmentation. The �ltering process is composed of two steps:
morphological size �lter followed by geodesic reconstruction. We compare the results of
�ltering of the color image according to two pipelines: (i) color total order framework,
Fig. 3.12(b), where the �lter is an opening by reconstruction composed with a closing by
reconstruction; (ii) n-ary framework, Fig. 3.12(c), where the marker is a n-ary �lter ψ(I;B)
followed by a n-ary geodesic reconstruction. In the case of the color ordering, black and
blue are extreme color whereas red is the intermediary color. As we can observe, using
the order-based approach all red objects that lay between black and blue objects are not
extracted. Both n-ary and color total order frameworks give the same results for the blue
grains. This corresponds to the fact that, in the color order, blue is an extreme color
whereas red is an intermediary. Therefore the n-ary framework provides a more symmetric
processing of all the labels.
The last example is a classi�cation image from the brain. Fig. 3.13 (a) is a result of
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(a) (b) (c) (d)

Figure 3.11.: n-ary processing of Fig. 3.10 (a). �rst row: composed n-ary �lter ψ(I;B),
second row: iterated composed n-ary �lter ψk(I;B) until convergence, third
row: convergence speed w.r.t. to k. Column (a) ψ(I;B) = γ1 ◦ γ2 ◦ γ3 ◦ γ4,
(b) ψ(I;B) = γ2 ◦ γ1 ◦ γ3 ◦ γ4, (c) ψ(I;B) = γ3 ◦ γ4 ◦ γ1 ◦ γ2, (d) ψ(I;B) =
γ4 ◦ γ3 ◦ γ2 ◦ γ1.

a classi�cation where the red represents the grey matter, the green represents the white
matter and the blue represents the cerebrospinal �uid. The processing is same as for
the second example. The miss-classi�ed white matter around the brain and some miss-
classi�ed grey matter spots around the cerebrospinal �uid are successfully removed by the
n-ary framework, whereas they remain after the classical processing.

3.5. A �rst extension to a fuzzy case

A natural candidate space to generalize n-ary morphology is the (n−1)-simplex, that is to
say the space of discrete probability distributions on n elements. Instead of assigning one
and only one label per pixel, we assign now a discrete probability distribution representing
a local mixture of classes.
In this setting, an image is a function of the form:

I :

{
Ω→ {(a1, · · · , an), ai ≥ 0,

∑
i ai = 1}

p 7→ I(p)

The aim of this section is to adapt to the continuous n−ary setting, the de�nitions of the
dilation and erosion per label as in (3.7) and (3.8).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.12.: Image size-regularization: (a) original image I, (b) classical order-based �l-
tering, (c) n-ary based �ltering, (d) zoom-in (a), (e) zoom-in (b), (f) zoom-in
(c) , (g) residue between (d) and (e), (h) residue between (d) and (f). See
the text for details.

As we have pointed out in the introduction, the approach developed here has no direct
link with the classical grey-scale fuzzy morphology, see for instance Deng and Heijmans
(2002); Bloch (2009) as relevant works on the latter topic.

3.5.1. Basic operators and their properties

Similarly to (discrete) n-ary case the dilation is more straightforward than the erosion. Let
I(p)i be the i-th element of I(p), and Ii be the real valued image associated to the i-th
component. A natural way to dilate the component i is to perform a grey-scale dilation
of the component i, followed by a rescaling of the other components in order to belong to
the (n− 1)-simplex:

δi(I;B)(x)j =


δ(Ii;B)(x) if j = i

1−δi(I;B)(x)i
1−I(x)i

.I(x)j if j 6= i
(3.18)
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3.5. A �rst extension to a fuzzy case

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.13.: Image size-regularization: (a) original image I, (b) classical order-based �l-
tering, (c) n-ary based �ltering, (d) zoom-in (a), (e) zoom-in (b), (f) zoom-in
(c), (g) zoom-in (a), (h) zoom-in (b),(i) zoom-in (c). See the text for details.

with

1− δi(I;B)(x)i
1− I(x)i

= 1, when δi(I;B)(x)i = I(x)i = 1.

One could be tempted to de�ne the erosion the same way, that is to erode the component
i and rescaling the other components. In the n-ary case this is equivalent to leaving the
gap of Fig.3.4(b) empty. The surface of the label i is reduced, but not replaced by a
speci�c label, which is not entirely satisfying neither consistent with the discrete case.
Furthermore, contrary to the dilation the rescaling is impossible when I(x)j = 0 for all
j 6= i.
The amount to be �lled is I(x)i − ε(Ii;B)(x), where ε(Ii;B) stands for the classical

erosion of the partial domain de�ned function Ii. One has to decide with which label or
set of labels to complete the distribution. Unlike in section 3.2.2, the stability properties
of composed operators of the form ϕi = εi ◦ δi or γi = δi ◦ εi strongly depends on that
choice.
Following the philosophy from Section 3.3, the components used to �ll the gaps should
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3. N-ary morphology

be chosen among components present in the local structuring element Bx. The di�culty
is that many of the possible choices do not provide idempotence of ϕi and γi.
Consider for instance the following erosion rule. A grey-scale erosion is performed on

component i. At x, let j 6= i be the index of the component with the highest value in Bx.
When j is not uniquely determined, j is chosen as small as possible. I(x)i − ε(Ii;B)(x) is
added to the component j. More formally, the erosion can be written as:

εi(I;B)(x)i = ε(Ii, B)(x)

εi(I;B)(x)j = Ij(x) + Ii(x)− ε(Ii, B)(x) for j = min(arg mink 6=i(δ(Ik, B)))

εi(I;B)(x)k = Ik(x) for k 6= i, j

(3.19)

This rule is an interesting candidate of erosion εi, however it does not provide idempo-
tency of ϕi and γi. Indeed we did not �nd a satisfying rule providing the stability of ϕi
and γi without restricting the generality of the framework. The �rst restriction consist
in working only on the edges of the simplex, that is to say with distribution composed of
two components at most, i.e., only two values of the mixture (a1, · · · , an) can be di�erent
from 0. If this set of distribution can not longer deal with �triple points�, it is still enough
to describe transitions between two objects. The second restriction makes the �lling rule
depending on the location on the image. Consider the following rule. A grey-scale erosion
of the component i is performed. When at x, i is the majority component and when there
exists a component j 6= i majority at p ∈ Bx, the value of the component j becomes
1−ε(Ii, B)(x) and all other components are set to 0. If i is not the majority component at
x, or if there is no other majority component in Bx, the remaining component are rescaled.
Formally, the restricted erosion is given by



εi(I;B)(x)i = ε(Ii, B)(x)

if Ii(x) > 0.5 and maxk 6=i (δ(Ik, B)) > 0.5
εi(I;B)(x)j = 1− ε(Ii, B)(x) for j = min (arg maxk 6=i(δ(Ik, B)))
εi(I;B)(x)k 6=i,j = 0

else,

εi(I;B)(x)k 6=i = 1−εi(I;B)(x)i
1−I(x)i

.I(x)k

(3.20)

As mentioned in Section 3.2.3 and illustrated Fig. 3.5, the opening operator γi = δi ◦
εi tends to be more interesting than the closing in the n-ary framework. The intuitive
considerations about the openings and closings are con�rmed by the fact that morphological
properties are easier to recover for openings than for closings. It was the case for the n-ary
�lter introduced in Eq.(3.11), and it is now the case for the stability properties.

Proposition 3.5.1 In the case of the n-ary continuous dilation of component i as in (3.18)
and the restricted n-ary continuous erosion of component i, we have the following stability

of the n-ary continuous opening:

γ2
i (I;B) = γ3

i (I;B).

Proof Let Iεij = εi(I;B)j . The grey-scale morphology gives Iγii = I
γ2
i
i . Let us �rst show

that for all j, if Iγij (x) > 0.5 then Iγij (x) = I
γ2
i
j (x). The result is clear for j = i. For j 6= i,
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3.5. A �rst extension to a fuzzy case

since Iγii (x) is not the majority component of Iγi(x), the j-th component is simply rescaled
after εi. Thus I

εi◦γi
j (x) ≥ Iγij (x) > 0. Since δi a�ects the components di�erent from i only

by a rescaling, and that Iδi◦εi◦γii (x) = Iγii (x), we have that Iδi◦εi◦γij (x) = Iγij (x). We will

now show that for Iγij (x) ≤ 0.5, I
γ2
i
j (x) = I

γ3
i
j (x). Iεi◦γij (x) is determined by the majority

components of Iγi(p) for p ∈ Bx. Since the majority components are stable between Iγi

and Iγ
2
i , we have that Iεi◦γij (x) = I

εi◦γ2
i

j (x). Finally since δi only introduce rescaling on

component di�erent from i, Iδi◦εi◦γij (x) = I
δi◦εi◦γ2

i
j (x). Hence the result.

3.5.2. Experimental results

Let us consider the example of Fig.3.15(a), which corresponds to a grey-scale image of a
triphasic material. Each phase is characterized by a range of grey level. On a semantic
level, each phase has an equivalent level. It is then arbitrary to order them according
to their grey level. A fuzzy extension of the n-ary framework is a natural framework to
process these data. The restriction to a two-classes mixture is particularly adapted to
images originally acquired in grey-scale. The two-classes mixture is built following the
�fuzzy classi�cation� of grey-scale described in the diagram Fig.3.14 for n = 3 phases.
Values a, b and c were chosen manually for the experiment but the procedure can easily
be automated.

Figure 3.14.: Fuzzy classi�cation of the grey levels

Fig.3.15(b) is a RGB representation of this fuzzy classi�cation. The information con-
tained in Fig.3.15(a) and (b) only di�ers from the �at zones of Fig.3.14. In Fig.3.15(a) and
(b), intermediate grey levels appear at the transition between the darker phase and the
lighter phase. These grey level are not representative of a phase but are transition artifacts.
Classical grey-scale morphological operators cannot directly address these artifacts. Using
the continuous n-ary framework, zones associated to these artifacts easily erased by an
n-ary opening of the associated component, see Fig.3.15(c). Note that it is in general not
possible to come back to grey-scale image from the fuzzy image.
The initial image of the second example is a color one, see Fig.3.16(a). We start by

considering exclusively the Hue component, which is given in Fig.3.16(b). Then, a 3-
components fuzzy classi�cation is performed on the Hue channel, see Fig.3.16(c). The
Hue channel classi�cation and representation is achieved similarly to the previous example
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3. N-ary morphology

(a) (b)

(c) (d)

Figure 3.15.: Example of continuous n-ary �ltering on grayscale image: (a) triphasic ma-
terial grey-scale image I, (b) fuzzy classi�cation of grey-scale image repre-
sented in the RGB space Ifuzzy , (c) fuzzy n-ary opening of green component
γgreen(Ifuzzy) by a 3× 3 square, (d) fuzzy n-ary opening of green component
γgreen(Ifuzzy) by a 7× 7 square.

except that data lay on a circle instead of a line. The fuzzy n-ary �lter γ1 ◦ γ2 ◦ γ3 is then
applied to Fig.3.16(c) and the result is depicted in Fig.3.16(d).
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3.5. A �rst extension to a fuzzy case

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16.: Example of continuous n-ary �ltering on hue image: (a) original color image
IRGB, (b) Hue channel of IRGB, (c) fuzzy classi�cation from the Hue channel
Ifuzzy represented in the RGB space, (d) fuzzy n-ary �lter of Ifuzzy, (e)
zoom-in (c), (f) zoom-in (d), (g) zoom-in (c), (h) zoom-in (d).
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3. N-ary morphology

3.6. Conclusions and perspectives

We proposed here an approach to extend mathematical morphology to images composed
of n independent labels (or classes). The approach presents two key particularities: �rst,
the number of elementary operators is increased; second, the absence of an indeterminate
class. This absence of indeterminate label transforms the notion of erosion the problem
into a problem of gap �lling.
In our framework, classical theory of morphological adjunction does not apply and conse-

quently, exploring properties of composed operators requires speci�c considerations. Hence,
we proved that some of the elementary properties of standard morphological operators are
preserved, such as the idempotence of openings and closings per label. Despite its quasi
experimental validity, the main lost property is the granulometric semigroup. Beyond the
mathematical properties, one of the natural consequences of this n-ary framework is the
de�nition of a new reconstruction operator. The main application of the proposed opera-
tors is the �ltering of image objects according to their size/shape, the presented examples
demonstrate the relevance of the n-ary operators.
Fuzzy classi�cation is a natural extension of the discrete n-ary framework to the contin-

uous case, by working on the edges of the (n−1)-simplex. Even if theoretical properties are
more di�cult to recover in continuous cases, the result obtained in practice are promising.
Our future research will focus on the improvement of the theoretical framework for the
continuous cases, including in particular a relevant de�nition of geodesic reconstruction,
as well as on the study of more practical case-studies and applications.
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Probability density estimation on

Riemannian spaces
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4. Theoretical notions and notations of

probability and di�erential geometry

Résumé

Ce court chapitre introduit des notions théoriques et les notations nécéssaires à la com-
préhension de la deuxième partie de la thèse. Nous avons choisi de ne pas introduire la
notion de variété. En e�et, mis à part les espaces de rotations, tout les espaces présents
dans la suite de l'étude peuvent être décrits en une unique carte: ils sont tous homéomor-
phes à Rn pour un certain n. Il n'y a donc pas besoin d'introduire une dé�nition abstraite
de plan tangent à partir de classes d'équivalences de courbes. Pour plus de détails sur la
théorie de la mesure, voir Tao (2011), sur la géometrie Riemannnienne voir Berger (2003),
et sur l'analyse harmonique dans les espaces symétriques, voir Helgason (1993).

Abstract

This short chapter introduces theoretical notions and notations necessary for a good under-
standing of the second part of the thesis. We chose not to introduce the notion of manifold.
Indeed, expect spaces of rotations, every space present in the following study can by de-
scribed by a unique chart. In other words, they are homeomorphic to Rn. There is then no
need to introduce an abstract de�nition of the tangent space based on equivalence classes.
The reader interested on a deeper insight into measure theory is referred to Tao (2011),
for more details on Riemannian geometry to Berger (2003) and for a reference on analysis
on symmetric spaces to Helgason (1993).

4.1. Basics on measure theory and probability

Let Ω = ∪{ω} be a set of outcomes. Let P(Ω) be the set of subsets of Ω and A be a subset
of P(Ω). An element of P(A) is called an event. A represents the subset of P(Ω) where
it is possible to quantify the probability. A probability measure is a function µΩ that goes
from A to R+ which associates a probability to each event. Measure µΩ and set A must
verify several properties. First, it is imposed that:

Ω ∈ A, µΩ(Ω) = 1.

Let A,B be in P(Ω) such as A∩B = ∅. If it is possible to quantify the probability of A
and B, that is to say A,B ∈ A then it is possible to quantify the probability of the union:

µΩ(A ∪B) = µΩ(A) + µΩ(B).

As a consequence A∪B ∈ A. The property is extended to any family for disjoint countable
sets (Ai)i∈I⊂N:

∪iAi ∈ A,
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4.1. Basics on measure theory and probability

µΩ(∪iAi) = ΣiµΩ(Ai).

The last property required of A is:

∀A ∈ A, {A ∈ A,

where {A is the complement of A. Under these assumptions, A is called a σ-algebra and µ
a probability measure on Ω. In a more general way, a measure µ is a probability measure
without the constraint µ(Ω) = 1. In a probability space, the measure is used to quantify
the probability of an event. And in a more general way, the measure is used to formalize
the notion of area and volume.
We can now de�ne the notion of random variable. Let V be a space with its own σ-

algebra. Let AΩ and AV be respectively the σ-algebras of Ω and V . A random variable X
is a measurable function from Ω to V . A measurable function is a function such that:

A ∈ AV ⇒ X−1(A) ∈ AΩ.

The measurable hypothesis implies that the variable X can be seen as a transport of the
measure of probability µ from the space Ω to the space V . Indeed, the function µX on AV
de�ned by:

µX(A) = µΩ(X−1(A)),

is a probability measure on V .
The concept of density can now be introduced. Let E be a set and AE a σ-algebra

of E. Let µ1 and µ2 be two measures on E. A measure is a way of measuring volumes.
Consequently, measures play a central role in the notion of integral: the integral of an
indicator function of a set A is equal to its volume, that is to say to its measure. The
integral of an ordinary function is de�ned as the limit of a weighted sum of integral of
indicator functions. The notion of integral depends then on the choice of a reference
measure. We note

∫
fdµ the integral of the function f with respect to the measure µ. We

say that f = dµ1

dµ2
is the density of the measure µ1 with respect to the measure µ2 if we

have

∀A ∈ AE , µ1(A) =

∫
A
fdµ2.

Let µV be a reference measure on V . For some speci�c random variable X, the measure
µX has a density f with respect to the reference measure of V . Then f is called the density
of the random variable X. In a �nite dimensional vector space there is a unique measure,
up to a scaling factor, invariant under translations. The translation invariant measure that
normalizes the unit hyper-cube is called the Lebesgue measure. In the case where V is a
vector space the reference measure µV is often the Lebesgue measure. Fig. 4.1 illustrates
a change of reference measure.
Let E and F be sets equipped with σ-algebras, and f : E → F an application . Any

measure µ de�ned on E can be transformed into a measure f∗(µ) on F by:

f∗(µ)(A) = µ(f−1(A)). (4.1)

The smallest σ-algebra of E × F that contains all the products
U × V, (U, V ) ∈ AE ×AF is called the product σ-algebra of E × F . A product measure µ
on E × F is a measure such that there exist two measures µE and µF respectively on E
and F with:

∀(A,B) ∈ AE ×AF , µ(A×B) = µE(A)µF (B).
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4. Theoretical notions and notations

Figure 4.1.: LetX be a random variable valued in [1, 2]. The blue curve is the density of µX
with respect to the Lebesgue measure of R restricted to [1, 2]. The red curve
is the density of µX with respect to the measure µ([a, b]) = log(b)− log(a).

4.2. Basics of Riemaniann geometry

LetM be a topological space, homeomorphic to an open subset of Rn. An homeomorphism
is a continuous bijection whose converse is also continuous. Let φ be an homeomorphism
from an open subset Uφ ⊂ Rn to M. φ is referred to as a parametrization of M. A
Riemannian metric is a smooth �eld of scalar product on Uφ. In other words, a Riemannian
metric associates a positive de�nite matrix G(x) to each point x ∈ Uφ depending smoothly
on the point, see Fig. 4.2.

Figure 4.2.: Riemannian space.

A smooth path is a map γ : [a, b] →M such that φ−1 ◦ γ is continuously smooth. Let
γ be such a path. The Riemannian metric induces a notion of length on smooth paths as
follows:

L(γ) =

∫ b

a

√
〈(φ−1 ◦ γ)′(t), (φ−1 ◦ γ)′(t)〉(φ−1◦γ)(t)dt, (4.2)
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4.2. Basics of Riemaniann geometry

where 〈·, ·〉(φ−1◦γ)(t) is the scalar product attached to the point (φ−1 ◦ γ)(t). The notion of
shortest path between two points induces a distance onM. The distance d(p, q) associated
with the Riemannian metric is given by

d(p, q) = infγ{L(γ)}, (4.3)

where the in�mum is taken over all the smooth paths from p to q. A path realizing this
minimum is called a geodesic path. Geodesic paths can be seen as straight segments on
M. Geodesics are paths which are locally shortest paths.
Given p ∈M with φ(x) = p, the set of vectors u ∈ Rn attached to x is noted TpM and

is called the tangent space at p. Unlike the case of manifolds where the tangent space is
de�ned as an equivalence class isomorphic to Rn, we simply have here TpM = Rn.
It can be shown that given a < 0, 0 < b, vector u ∈ Rn, there is only one geodesic

γ, [a, b] → M such that γ(0) = p with tangent vector (φ−1 ◦ γ)′(γ−1(p)) = u such that
||(φ−1 ◦ γ)′(t)||(φ−1◦γ)(t) = ||u||x for all t ∈]a, b[. It can be then shown that there exists a
unique geodesic such that γ(0) = p, (φ−1 ◦ γ)′(γ−1(p)) = u and that its domain can not
be extended. This geodesic is noted geodp(u). The exponential map, see Fig. 4.3, is then
de�ned by

expp :

{
TpM → M
u 7→ geodp

(
1
||u||xu

)
(||u||x)

Figure 4.3.: Exponential map.

Note that this exponential has generally no link with the classical exponential applica-
tion. However, they happen to coincide in speci�c cases.
The radius of injectivity rinjp of expp is the largest r such that expp restricted to the

centered ball of radius r is injective. Inside this ball, logp(.) denotes the inverse of expp(.).
Let S be a subset of M homeomorphic to an open subset of Rm with m ≤ n. The

Riemannian metric onM naturally induces a Riemannian metric on S. The metric on S is
called the induced metric. In the expression of the geodesic distance dS(p, q) = infγ{L(γ)},
the in�mum is then taken over all the paths γ that stay in S.
A Riemannian metric also induces a measure. The matrix of the metric G(x) is sym-

metric and can be written G(x) = AAt where A is a n×n inversible matrix and represents

59



4. Theoretical notions and notations

a local linear change of coordinates that induces the new scalar product G(x). The mod-
i�cation of a unitary volume associated with the linear change of coordinates is given by

det(A) =
√
det(G(x)). (4.4)

The density of the Riemannian measure with respect to the Lebesgue measure of Uφ is
given by x ∈ Uφ 7→

√
det(G(x)).

In many situations, given a metric, it is impossible to obtain an analytic expression of
the distance between two points ofM . An isometry ofM is bijection h :M→M such
that d(p1, p2) = d(h(p1), h(p2)). Using the parametrization φ an isometry is indi�erently
seen as an application h : M → M or h : Uφ → Uφ. The set ISO(M, G) of isometries
is a group: i) the composition of two isometries is an isometry and since an isometry is
a bijection, ii) every isometry has an inverse which is also an isometry. Many properties
of the geometry induced by the metric can be deduced from the study of ISO(M, G). A
group action from a group A on a set B is an application act : (A,B) → B compatible
with the left-multiplication of A:

∀a1, a2 ∈ A, b ∈ B, act(a2, act(a1, b)) = act(a2a1, b).

The orbit of an element b ∈ B is de�ned as:

Orb(b0) = {b ∈ B |∃a ∈ A, act(a, b0) = b}.

An action is said transitive when Orb(b) = B. In other words, from a point b in B, it is
possible to reach every point of B through the action act. Note that if Orb(b) = B for one
b in B, it is also true for all the points in B.
Group of isometries ISO(M, G) naturally acts onM:

act(iso, p) = iso(p), iso ∈ ISO, p ∈M.

Riemannian manifoldM is said to be homogeneous if the action of ISO(M, G) is transitive,
i.e., given two points of p1, p2 ∈M, there is always an isometry iso such that p2 = iso(p1).
In a homogeneous space, all the points are similar in term of geometry. Vector spaces and
spheres are examples of homogeneous spaces. However an open disc is not a homogeneous
space: if p and q are two points such that d(0, p) is di�erent from d(0, q), there is no
isometry isodisc of the disc such that q = isodisc(p).
Let p be a point in M. The group Kp of isotropy of p is the subgroup of ISO(M, G)

that �xes p, i.e.,

Kp = {k ∈ ISO(M, G)|k(p) = p}.

M is homogeneous if and only ifM is in bijection with the quotient space ISO(M, G)/Kp.
A spaceM is said to be symmetric if for all p ∈M there exists an element k ∈ Kp such

that:

dk = −id,

where dk is the di�erential of k. In other words, reversing the geodesics starting from
a point p is an isometry: central symmetries are isometries. It can be shown symmetric
spaces are homogeneous.
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SpaceM is said to be isotropic if for all p ∈M and for all couples of vectors u, v ∈ Rn,
there is an element k of the group of isotropy of p such that:

dk(u) = v.

At each point p, an isotropic spaceM �looks the same� in every direction. Very few spaces
are isotropic. However, several spaces like torus are locally isotropic. It can be shown that
isotropic spaces are symmetric and therefore homogeneous.

4.3. Convolution on Riemannian spaces

We introduce now some basic ingredients of analysis on Riemannian spaces. The notion of
convolution f ∗ g of two functionsM→ R is highly related to the notion of homogeneity.
In Rn the convolution is de�ned as follows:

(f ∗Rn g)(p) =

∫
Rn
f(x)g(p− x)dx, p ∈ Rn. (4.5)

Thus, the convolution of a function f by a kernel g consists in the integral of the trans-
lated kernel in each point x of the support space, weighted by f(x). The group law + of
Rn is an isometry that enables to transport the kernel in the whole space.
If the space is not homogeneous, the transport of the kernel might be impossible without

modi�cation of its shape.
Examples. Let g0 be the triangular kernel centered in 0 de�ned on the open unit disc
of R by g(x) = 1 − |x|, x ∈ [−1, 1]. Kernel g cannot be naturally transported at any
other point of the disc. On the other hand if g1 is de�ned on the unit circle of R2 by
g1(eiπθ) = 1 − |θ|, θ ∈ [−1, 1] can easily transported to any point p = eiπθ0 of the circle:
gp(e

iπθ) = g1(eiπ(θ−θ0)).
In an homogeneous space, it is possible to transport a kernel from a reference point to

any other point by an isometry. However, there are often several isometries that send a
point pref on a point q. If iso ∈ ISO(M, G) is such that iso(pref ) = q, then for any
k ∈ Kpref , iso(k(pref )) = q. Since there are several potential candidates to transport
the kernel from pref to q, the convolution kernel g is required to be invariant under the
isotropy group of the reference point. Then the transport of the kernel from pref to q is
independent of the choice of the isometry. Let isoq,pref be any isometry that sends q on pref
such that gq(p) = gpref (isoq,pref (p)). Thus in an homogeneous space M, the convolution
of a function f ∈ L2 and a Kpref -invariant kernel gpref ∈ L2 is naturally de�ned by:

(f ∗M g)(p) =

∫
q∈M

f(q)gq(p)dµ, (4.6)

where µ is the Riemannian measure. Note that the convolutions ∗M, and the standard
convolution on Rn slightly di�er. Indeed, on Rn the isometry used to send p on q is always
the translation of vector q − p so that the classical convolution on Rn does not require an
isotropic kernel.
In Rn the Laplacian of a function f is de�ned as follows:

∆Rnf = div(gradf) =
∑

∂2
i f.
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It is possible to adapt the de�nition of the gradient and of the divergence operators on
(M, G). The expression of the so-called Laplace-Beltrami operator becomes:

∆Mf(x) =
1√

det(G(x))

∑
i,j

∂

∂xi
(
√
det(G(x))gi,j

∂f

∂xj
),

where gi,j are the coe�cient of G(x)−1.
In Rn, the functions involved in the Fourier transform are eigenfunctions of the Laplacian

operator:

∆Rne
i〈ω,.〉 = ||ω||2ei〈ω,.〉, ω, x ∈ Rn.

The generalization of the Fourier transform on symmetric spaces is called the Fourier-
Helgason transform. As trigonometric exponentials, the Helgason functions eω(x) are
eigenfunctions of the Laplace-Beltrami operator. The theoretical construction of Helgason
functions eω(x) (generalization of plane waves) can be found in Helgason (2006). Explicit
expression of these functions are provided when necessary in next chapters. The transform
and the inverse transform are of the form:

H(f)(ω) =

∫
x
f(x)eω(x)dµ1(x), (4.7)

f(x) =

∫
ω
H(f)(ω)eω(x)dµ2(ω). (4.8)

One of the major interests of this transform is that it preserves properties of the Euclidean
Fourier transform regarding convolution. Let f be a real function and g be a Kpref -invariant
kernel. We have for instance the following property

H(f ∗M g) = H(f)×H(g).
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5. Image histograms

Résumé

L'histogramme est l'un des outils les plus simples et les plus importants du traitement
d'image. Il est notament utile dans des problèmes de rehaussement de contraste, de seg-
mentation, de recherche d'image par contenu, etc. La méthode classique de construction de
l'histogramme d'une image consiste à découper l'espace des valeurs en cases régulières et
à compter le nombre de pixels tombant dans chaque case. La densité obtenue présente en
générale d'importantes discontinuités. On préfère donc parfois utiliser d'autres techniques
d'estimation de densité tel que la méthode des noyaux. La section 5.2 est une discussion
générale sur la notion d'histogramme d'image et d'estimation de densité. La section 5.3 est
un travail sur les histogrammes d'image couleurs dans le cadre des métriques perceptuelles.
Cette section est principalement extraite de Chevallier et al. (2015b).

5.1. Introduction

The histogram computation of a scalar image consists in counting the number of pixels
at each di�erent intensity value. This extremely simple approximation to the univariate
density distribution of image intensities is one of the most important image processing tools
to address problems such as contrast enhancement (by histogram linear stretching or using
advanced approaches, see Sapiro et al. (1993)); image segmentation (by 1D clustering);
texture processing, see Portilla and Simoncelli (2000); image retrieval, see Gong et al.
(1996), etc. The standard way of computing a histogram is to cut the value space into
regular bins and to count the number of pixels that fall into each bin. However the obtained
histogram presents important discontinuities. One thus prefers sometimes to use kernel
methods or other density estimation techniques. This chapter starts by a general discussion
on image histograms, in particular Section 5.2 formalizes the notion in terms of density
estimation. Section 5.3 presents a work on perceptual color histograms extracted from
conference paper Chevallier et al. (2015b).

5.2. Image histogram and density estimation

In this section we set the theoretical links and notation between image histograms and
density estimation. Let us consider an image I as the map:

I :

{
Ω → V
p 7→ I(p)

We have for instance V = R for grey-scale images or V = Rn for multispectral images.
Domain Ω is the support space of pixels/voxels, typically a subset of R2 or R3 such as a
rectangle or a parallelepiped.
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5. Image histograms

We endow Ω with a measure µΩ that re�ects its geometry: since the spatial distances
are usually evaluated using Euclidean distance, this measure is typically the Lebesgue
measure. Indeed the prior importance of an area is often proportional to its Lebesgue
measure. Measure µΩ is generally �nite, that is to say µΩ(Ω) <∞.
The application I transports the measure µΩ on V . The image measure on V is noted

I∗(µΩ), see Eq. (4.1). The measure I∗(µΩ) represents the distribution of values. It often
carries a useful synthetic information of the image I. Thus, one might be interested in
the study of this distribution. We have access to a �nite number of evaluations of I in
points p ∈ Ω called pixels, from which we try to deduce information on I∗(µΩ). The value
space V is usually endowed with a reference measure µV . The standard strategy is to
build a density f with respect to µV from the set of observations {I(p), p a pixel } such
that the associated measure approximates I∗(µΩ). Note that in many situations I∗(µΩ)
does not have a density with respect to µV . This is for instance the case for color images
I : [0, 1]2 → R3 when µΩ and µV are Lebesgue measures. Then the density f does not
represent exactly the measure I∗(µΩ).
We assume that pixels p are uniformly distributed with respect to µΩ. Roughly, for

A ⊂ Ω,

1

N

∑
p

1A(p) ≈ µΩ(A),

where N is the number of pixel and 1A the indicator function of A. Then, if µΩ is
normalized, the set of pixels can be considered as a set of N independent realizations of
a random variable of law µΩ. It follows directly that the set {I(p), p a pixel } can be
considered as a set of N independent realizations of a random variable of law I∗(µΩ). The
study of I∗(µΩ) is thus often interpreted as a problem of probability density estimation.
This is for instance the case of color histograms developed in Section 5.3. However, note
that this way of addressing the problem do not take advantage of the speci�city of the
situation.
Let X be a random variable from (Ω, µΩ) to (V, µV ). Assume known a set of independent

realizations X(ωi), {ωi ∈ Ω}. The estimation of the density of X∗(µΩ) with respect to
µV is a very di�cult problem since no assumption is made on X(ω /∈ {ωi}). The amount
of information contained in {X(ωi)} about X∗(µΩ) is extremely weak, on might even say
null. Thus the estimated density cannot be determined with con�dence, but can only be
�guessed�. When building an histogram, the choice of the bin size is an essential parameter
and there is no precise way of determining if two peaks should be gathered in the same
bin.
However, the situation in image processing is di�erent. Unlike the standard case of

random variables, the space Ω often has a metric structure and the function I has regularity
properties with respect to this metric. Thus, knowing the values {I(pi)} brings information
on I(p /∈ {pi}). The set {I(pi)} carries then a signi�cant amount of information about
I∗(µΩ). Assume for instance a rule of interpolation of I(p /∈ {pi}) from {I(pi)}. The
density f of I∗(µΩ) with respect to µV can then be exactly computed using formulas such
as the coarea formula, see Morgan (2009).
We �rst give an almost rigorous formula for I : [0, 1]2 7→ R, where spaces are endowed

with Lebesgue measures. When possible let γh(t) be a unit speed parametrization of
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5.3. Perceptual color histograms

I−1(h). Then we have

f(h) =
dI∗(Leb[0,1]2)

dLebR
(h) =

∫
1

||∇I(γh(t))||2
dt.

For a function φ,Rn 7→ Rk, the k-dimensional Jacobian determinant Jk(x) is de�ned by
the maximal volume of the image of a unit k-dimensional cube by the di�erential of φ.
The general formula for I, [0, 1]n 7→ Rk with k < n is,

f(h) =
dI∗(Leb[0,1]n)

dLebRk
(h) =

∫
I−1(h)

1

Jk(x)
dHn−k(I−1(h)),

where Hn−k refers to the (n− k)-Hausdor� measure, see Morgan (2009).
Note that an interpolation of I : [0, 1]2 7→ R by pieces of linear functions leads to an

elementary computation of the density estimator f . The previous problem of the size of
bins no longer exists, the shape of the computed density f is intrinsic to the interpolated
image. While they did not follow exactly the same line of thoughts, Authors of Du�y et al.
(2013) ended up at the same conclusions. Their work still remains quite undisclosed in the
image processing community. Fig. 5.1 presents histograms of a 16 bits gray-scale image
computed using di�erent methods.

5.3. Perceptual color histograms

One sometimes considers the color space C as a part of a three dimensional Euclidean space
R3. Under this assumption, the histogram of a color image can be built in the same way as
for gray-scale images. However, the distances induced on colors by the human perceptual
system cannot be represented by a Euclidean space structure. Observation showed that the
perceptual relation between colors is better represented in the framework of Riemannian
manifolds.
The local metrics of the Riemannian structure are experimentally measured by a set of

ellipses, such as the MacAdam ellipses introduced in Macadam (1942), BFD-P by Luo and
Rigg (1986) and RIT-DuPont by Berns et al. (1991). This Riemannian structure makes the
construction of the histogram di�cult. On the one hand, except rare situations, there are
no regular tilings of the space. On the other hand, kernel methods have been generalized
to Riemannian manifolds in Pelletier (2005), but requires the knowledge of the geodesics.
We propose here an approach that takes into account the Riemannian structure of C

while keeping the computation in the Euclidean framework. Thus we propose a way of
building histograms for images I : [0, 1]2 → C that respects the perceptual distances better
than histograms built in Euclidean spaces, and without increasing the computation time.

5.3.1. Perceptual metric on colors

Already Riemann used colour as an illustration of the applicability of his geometry in Rie-
mann (1867), and concrete examples of such colour geometries were developed by Helmholtz
(1891), Schrödinger (1920) and Stiles (1946). A scalar product is entirely determined by
its unit ball. Expressed in vector coordinates, the associated unit ball takes the form of
an ellipse in two dimensions or of an ellipsoid in three dimensions. Thus, the Riemannian
metric is given by a �eld of ellipses or ellipsoids.
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5. Image histograms

(a)

(b) (c) (d)

Figure 5.1.: Image (a) is a 16 bits gray-scale image. Graph (b) represents the number of
pixels associated with each of the 216 levels. This is often the quantity used
in image processing. Graph (c) is a kernel density estimate of the distribution
of the gray values. The kernel bandwidth is determined by a cross-validation
technique. Graph (d) is the density computed using the coarea formula. The
computation is achieved using an interpolation of the image by pieces of linear
functions.

5.3.1.1. Ellipses, local metric

The �rst experimental determination of the �eld of ellipses describing the Riemannian
metric of the colour space was performed by Macadam (1942). The experiment consisted
of about 25 000 colour matches with one observer, and the ellipses were derived from the
covariance matrices of the repeated observations. Later, it has become common practice
to denote ellipses obtained in this manner as JND (just noticeable di�erence) ellipses or
ellipsoids.
Later, another type of experiment has become more commonplace. Pairs of colours that

are barely perceptually di�erent, are presented to the observer, who is given the task to
estimate the magnitude of the perceptual distance using a set of standard pairs. Ellipses,
ellipsoids and metrics obtained in this way are normally denoted supra-threshold ellipses.
Examples of supra-threshold color di�erence based data include BFD-P, see Luo and Rigg
(1986) and RIT-DuPont, see Berns et al. (1991).
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5.3. Perceptual color histograms

5.3.1.2. Global model

Data sets of measurements provide information on distances through the local metric or
through distances between speci�c colors. A global model provides an analytic expression
of the distance between two arbitrary colors. The closest the proposed expression is to the
Riemannian perceptual distances, the better the model is. The more conventional proce-
dure for going from a tristimulus space to a space closer linked to a perceptual homogeneous
space typically includes the following steps.

� First, apply a linear transform in the tristimulus space such that the base gets close
to the cone fundamentals of the retina.

� Secondly, perform a non-linear compression of the coordinates (e.g., logarithmic or
cubic root) in order to mimic the non-linear response of the human visual system.

� Finally, perform a linear transformation of the resulting coordinates in order to cor-
respond better to the perceptual attributes of color.

Typically, the �rst coordinate is a weighted sum of the coordinates and represent a lightness
correlate, whereas the two other coordinates are weighted di�erences, and represent color
opponent channels such as, e.g., red�green and blue�yellow.
In order to identify the di�erent parameters of the various transforms, di�erent optimisa-

tion criteria are used. In the CIELAB colour space, see Robertson (1977), the parameters
were optimised so that the lightness should correspond to perceived lightness, and that the
Euclidean metric in the resulting space should correspond to perceptual colour di�erences.
For the IPT colour space, see F Ebner (1998), the parameters were optimised in order to
achieve a constant perceived hue along straight radial lines in cylindrical coordinates. It is
furthermore reasonably well established that in such perceptual spaces, the Euclidean met-
ric is not the one best corresponding to the perceived colour di�erences, and other models
have been proposed, see, e.g., Luo et al. (2001) and Farup (2014). In the hyperbolic models
proposed in Farup (2014), histograms can be computed using adapted kernels, see next
Chapter.

5.3.2. Kernel density estimation

There are various ways of addressing the problem of probability density estimation. In the
Euclidean context the most popular techniques are mainly the histograms, the kernels, and
the characteristic function density estimator. The characteristic function density estimator
consists in the estimation of the Fourier transform or series of the density. In what follows,
we chose to focus on the kernel method. Recall that the kernel method in the Euclidean
case has the following expression for the density estimator:

f(x) =
1

k

∑
pi∈{pixels}

1

λn
K

(
||x− I(pi)||

λ

)
, (5.1)

where λ is a scaling parameter, n the dimension of the space, k the number of pixels, and
K : R+ → R+ a map which obeys the following properties:
-
∫
Rn K(||x||)dx = 1,

-
∫
Rn xK(||x||)dx = 0,

- sup(K(x)) = K(0).
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5. Image histograms

In the present work, we assume a supplementary condition of bounded support K(x >
1) = 0.

5.3.3. Local Euclidean approximations

In general Riemannian manifolds, computing the distance between two arbitrary points
given the metric �eld is a di�cult problem. Indeed, �nding the distance is a minimization
problem over a set of paths. However, for two close points, the local metric provides a
satisfying approximation of the Riemannian distance. A probability density measures the
ratio between the probability of an in�nitesimal volume element and its volume. It is
thus a local notion. The central idea of our contribution is to take advantage of the fact
that histograms mainly involves local phenomena. Since in a Riemannian manifold the
computation of an histogram does not involve computation of long geodesics, the need of
a global model that provides distances between every pairs of colors is of lower importance
than in most applications.
Fig. 5.2(a) shows a set of ellipses in the projective ab plane of the CIELAB color space.

Let us assume that these ellipses represent the local perceptual metric. Let c be a point
where the metric has been measured through the ellipse Ec. In a neighborhood of c,
computing distances using the metric measured at c is a better approximation of the
perceptual distance than using the canonical Euclidean distance of the ab plane. At a
point p where the metric is originally unknown, a metric interpolated from the neighbor
points ci has all the odds of being more relevant than the canonical Euclidean metric of
the map, see Fig. 5.2(c).
Let dR(p, q) be the perceptual distance between color p and color q. dR(p, q) is the

Riemannian distance induced by the �eld of ellipses. Let ||p−q|| be the distance associated
with the canonical scalar product of the ab plane, and ||p− q||c be the distance associated
with the scalar product induced by the ellipse Ec. Let B(c,R) and Bc(c,R) be the respective
balls of center c and radius R. The previous discussion can be formalized as follows. It
can be shown that:

limx→c
||x− c||c
dR(x, c)

= 1,

while if ||.||c 6= ||.||, the equality case being exceptional, thus

limx→c
||x− c||
dR(x, c)

6= 1.

Therefore for such a c there exists A > 0 such that,

∀R > 0, ∃x ∈ B(c,R), A <

∣∣∣∣ ||x− c||dR(x, c)
− 1

∣∣∣∣ . (5.2)

On the other hand there exists a real positive number Rc = Rc,A such that,

∀x ∈ B(c,Rc),

∣∣∣∣ ||x− c||cdR(x, c)
− 1

∣∣∣∣ < A. (5.3)

We have

supB(c,Rc)

(∣∣∣∣ ||x− c||cdR(x, c)
− 1

∣∣∣∣) < A < supB(c,Rc)

(∣∣∣∣ ||x− c||dR(x, c)
− 1

∣∣∣∣) .
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5.3. Perceptual color histograms

Thus for x ∈ B(c,Rc), ||x− c||c is preferred to ||x− c||. Consider a kernel K and a scaling
parameter λ such that

λ ≤ Rc and Bc(c, λ) ⊂ B(c,Rc).

For x ∈ B(c,Rc), K
(
||x−c||c

λ

)
is preferred to K

(
||x−c||
λ

)
. For x /∈ B(c,Rc), K

(
||x−c||c

λ

)
=

K
(
||x−c||
λ

)
= 0. Therefore, under these assumptions on the scaling parameter λ, the

histogram estimator

f(x) =
1

k

∑
pi∈{pixels}

1

λn
K

( ||x− I(pi)||I(pi)
λ

)
, (5.4)

is preferred to the classical histogram. We think that the hypothesis on λ is reasonable in
practice, its validation is a subject of further research. Note that the higher the resolution
of the image is, the smaller λ is and then the more the hypothesis becomes reasonable.

5.3.3.1. Metric interpolation and Euclidean approximation

LetM be topological space, homeomorphic to an open subset of Rn. Let φ be an home-
omorphism from Uφ ⊂ Rn toM. A set of scalar products Gci is given for a set of points
{ci} ∈ M. We consider here the problem of interpolation of the �eld of metrics. Let F1

and F2 be two smooth metric �elds that coincide with the observed ellipses at the points
{ci}. Despite the intuition, if no assumption is made on φ regarding the Riemannian dis-
tance, there are no criteria that enables to prefer F1 or F2. The problem of metric tensor
interpolation is thus a di�cult problem. In this work, we adopt an elementary solution.
Ellipses are represented in the projective ab plane. A Delaunay triangulation with respect
to the canonical Euclidean metric of the plane is performed on the set {ci}, Fig. 5.2(b).
At a point p in the triangle cicjck the parameters of the interpolated ellipse Ep are linearly
interpolated between the parameters of Eci , Ecj , and Eck with respect to the barycentric
coordinates of p. If p does not belong to one of the triangles of the Delaunay triangulation,
we set Ep = Eq where q is the projection of p on the convex hull of the set of centers.

5.3.3.2. Experimental results

The RIT-DuPont dataset from Berns et al. (1991) shows that the perceptual metric is
dependent of the luminance. Nevertheless, for visualization purpose we choose to abandon
the luminance information in order to work with two dimensional data. The MacAdam
ellipses were measured at a �xed luminance, in the CIE chromaticity diagram. The ellipses
are transported in the L = 40 plane of the CIELAB space. Forgetting the luminance
coordinate, one obtains then a transport of the MacAdam ellipses in an ab plane. Remind
that the proposed framework is independent of the dimension and can be used in three
dimensional spaces with standard datasets of ellipsoids.
Fig. 5.3 represents the density of the Riemannian measure with respect to the Lebesgue

density of the plane. Recall that the expression of the density is given by
√
det(G) where

G is the metric tensor derived from the ellipse.
Let us consider the color image given in Fig. 6.2.2(a) and the three alternative color

histograms compared in Fig. 6.2.2. Histograms (b) and (c) aim a studying the density f
with respect to the perceptual Riemannian volume measure. The main di�erence between
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(c) and (d) is that in (d) the shape of the kernel follows the Riemannian metric. The
density with respect to the Euclidean measure is visibly di�erent from the histogram with
respect to the Riemannian measure. The amplitude of the upper spot, representing white
colors, is signi�cantly decreased when using the Riemannian measure. Perceptually, this
results from the fact that the eyes have an higher sensitivity around white than around
blue.

5.3.4. Conclusion and perspectives on perceptual color histograms

Given a set of ellipses representing the perceptual metric on colors, we proposed an ap-
proach for histogram computation that takes into account the Riemannian structure of
the perceptual metric without introducing supplementary computational complexity. In-
deed, the step of ellipses interpolation only has to be achieved once and does thus not
introduce computational complexity. The relevance of the approach is conditioned by the
relevance of the set of perceptual ellipses and the quality of the interpolation. The deep
problem of metric tensor interpolation has been partially left aside and will be subject of
future research. The second topic of our future research will be on the convergence of the
proposed histogram to the density of the underlying random variable with respect to the
interpolated Riemannian metric.

70



5.3. Perceptual color histograms

(a) (b)

(c)

Figure 5.2.: (a) MacAdam ellipses transported in the projective ab plane, (b) Delaunay
triangulation of the space from center of MacAdam ellipses, (c) interpolated
ellipses.
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(a) (b)

Figure 5.3.: (a) Local density change induced by the interpolated ellipses in ab plane, (b)
Zoom adapted to colors present in the color image 6.2.2(a).

(a)

(b) (c) (d)

Figure 5.4.: Example of histogram of image (a) computed using: (b) the canonical Eu-
clidean metric of the ab projective plane, (c) the canonical metric followed by
a division by the local density of the perceptual metric, (d) the formula (5.4).
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6. Non-parametric probability density

estimation on spaces of Gaussian laws

Résumé

Le traitement du signal et de l'image manipulent des données se trouvant dans des espaces
de plus en plus variés. Chaque type de données a ses propres structures algébriques et
géométriques. Les lois Gaussiennes et les matrices symétriques dé�nies positives sont de
plus en plus présentes en traitement du signal et de l'image, d'où l'interêt de l'étude de
la géométrie de ces espaces. Ce chapitre porte sur l'estimation de densités de probabilités
dans le cas de variables aléatoires à valeurs dans les lois gaussiennes. L'étude se place
principalement dans le contexte des géometries induites par les métriques de Fisher et
de Wasserstein. Pour chaqune des métriques et dans chaque espace de lois, di�érentes
techniques d'estimation sont étudiées.

6.1. Introduction

Signal and image processing are dealing nowadays with data laying in more and more
various spaces. Each type of data posses its own geometric and algebraic structures. Data
laying in spaces of Gaussian laws or symmetric positive de�nite matrices SPD(n) are more
and more present in signal and image processing, hence the importance of the study of the
geometry of these spaces.
The most common geometries of Gaussian laws are the Fisher information metric and

the Wasserstein metric. The Fisher metric on multivariate centered Gaussians happens
to be similar to the a�ne invariant metric on SPD(n), that is to say the metric invariant
under the action of invertible matrices Gl(n), i.e.,

G · Σ 7→ GΣGt.

Furthermore the Fisher metric on univariate Gaussians is a hyperbolic metric of dimension
two. Thus understanding the Fisher metric has consequences beyond Gaussian laws. The
Wasserstein metric is another name for the earth mover's distance. Let S be a set of
probability distributions on E. A fundamental di�erence between the Fisher metric and
the Wasserstein metric on S, is that the Fisher metric do not relay on a geometry of E while
the Wasserstein metric does. Indeed, the Wasserstein metric depends on the geometry of
E through a transportation cost. The dependence on the geometry of E constitutes one
of the main speci�cities and interests of the Wasserstein metric.
Median and means are fundamental quantities in signal and image processing. Several

studies already address their de�nition and computation for the Fisher and the Wasserstein
metrics, see for instance Pennec (2004); Yang (2009); Agueh and Carlier (2011); Arnaudon
et al. (2013); Bini and Iannazzo (2013). Although being a secondary problem, density
estimation is an important tool of signal and image processing which is still little studied
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on spaces of Gaussian laws. It is in particular useful, for instance, for segmenting point
clouds or for Bayesian classi�cation. The study of distributions on SPD(n) is subject to
recent studies. In Said et al. (2015), it is proposed for instance a generalization of the
Gaussian distribution on SPD(n). To our knowledge, the existing literature dedicated to
density estimation is mainly restricted to Huckemann et al. (2010), Peter T. Kim and
Donald St. P. Richards (2011) and Asta (2014). These previous works have focussed on
techniques derived from the orthogonal series density estimation for the Fisher metric in
the case of centered multivariate and univariate Gaussian laws.
This chapter is a practical guide to density estimation on spaces on Gaussian laws and

can be summarized as follows.

� Main techniques of density estimation on Riemannian manifolds are reviewed in
Section 6.2.

� Application to each speci�c situation of Gaussian law spaces are discussed in Sec-
tions 6.4-6.13.

� The computation of kernels for the Fisher and Wasserstein metric are provided. The
expression of the di�erent factors constituting these kernels in the case of the Fisher
metric are already known in the literature, see Terras (1988); Wijsman (1990).

� The contributions of Sections 6.6.2 and 6.7.2 consist in presenting a computation
relying on a low level Riemannian geometry and Lie groups, and providing a �ready-
to-use� expression of the kernels. To our knowledge, the expression of kernels for the
Wasserstein metric is new.

� Being an important problem for practical applications, the density estimation of
partial quantities such as mean eigenvalues and rotation is discussed in Section 6.13.

6.2. Non parametric density estimation on Riemannian spaces

Let Ω be a space, endowed with a σ-algebra and a probability measure p. Let X be
a random variable Ω → M with M homeomorphic to U an open subset of Rn. The
homeomorphism is noted φ. M is equipped with a Riemannian metric G. The Riemannian
measure is called vol and the measure onM induced by X is noted µX . We assume that
µX has a density, noted f , with respect to vol, and that the support of X is a compact set
noted Supp. Let (x1, .., xk) ∈Mk be a set of draws of X.
The Dirac measure in point a is de�ned as:

δa(U) :

{
1 if a ∈ U
0 if a ∈ {U

Let µk = 1
k

∑
i δxi denotes the empirical measure of the set of draws. This section

presents the main techniques of estimation of f from the set of draws (x1, .., xk). The
estimated density in x in M is noted f̂k(x) = f̂(x, x1, ..., xk). Observe that f̂k(x) can
be seen as a random variable. The relevance of density estimation technique depends on
several aspects. When the space allows it, the estimation technique should not privilege
speci�c directions or locations. This results in an isotropy and a homogeneity condition.
In the kernel method for instance, a kernel function Kxi is placed at each observation xi.
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Firstly, in order to treat directions equally, the function Kxi should be invariant by the
isotropy group of xi. Secondly, for an other observation xj , functions Kxi and Kxj should
be similar up to the isometries that send xi on xj . These considerations strongly depend on
the geometry of the space: if the space is not homogeneous and the isotropy group is empty,
these indi�erence principles have no meaning. The convergence of the di�erent estimation
techniques is widely studied. Results were �rst obtained in the Euclidean case, and are
gradually extended to the probability densities on manifold, see Hendriks (1990); Pelletier
(2005); Huckemann et al. (2010); Asta (2014). The last relevant aspect, is computational.
Each estimation technique has its own computational framework, which presents pro and
cons given the di�erent applications. For instance, the estimation by orthogonal series
presents an initial pre-processing, but provides a fast evaluation of the estimated density
in compact manifolds.

6.2.1. Estimation from the Euclidean structure of the parametrization

Assume the term
√
det(G(x)) known for all x ∈ U . According to Chapter 4,

dvol

dLeb
(x) =

√
det(G(x)).

If we have an estimator f̂Eucl of the density with respect to the Lebesgue measure of
U , noted LebU , it is possible to obtain an estimator of the density with respect to the
Riemannian measure vol:

f̂ = f̂Eucl
dLebU
dvol

=
1√

det(G(x))
f̂Eucl. (6.1)

The estimation f̂ is a probability density with respect to the Riemannian measure vol.
However the estimation does not respect homogeneity and isotropy considerations. If f̂Eucl

is constructed from an Euclidean kernel K, the �Riemannian shape� of K will di�er from
xi to xj in an uncontrolled way.

6.2.2. Histograms

We provide here an L2 convergence rate of the histogram when the random variable X is
valued on a Riemannian space, as formulated in Section 4.2, and whose support is compact.
We chose not to introduce the notion of manifold in the thesis. The result is however valid
on Riemannian manifolds. Even if this results might already be known, we have not been
able to �nd it in the literature. The closest result we are aware of in can be found in Ge�roy
(1974), where the author provides a condition on the uniform convergence of the histogram
when X is valued in a metric space, without assumptions on its support.
Let (Akj )0≤j≤Jk be a partition of U . Let αj be the number of draws that lays in Akj , i.e.,

αj = Card{xi ∈ Akj }. The histogram of the draws (xi) is the function

f̂k =
1

k

∑
j

1

vol(Akj )
αj1Akj

, (6.2)

where 1E is the indicator function of E. f̂k is an estimator of the density f .
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6. Density estimation on Gaussian laws

We suppose that:
i. The density f is α-Lipschitz with respect to the Riemannian metric;
ii. There exists a constant C such that, for all k and all i,j, one has

vol(Akj )

vol(Aki )
≤ C,

and C will be called the homogeneity factor;
iii. βk = maxj(R

k
j ) goes to zero when k goes to in�nity, where 2Rkj is the diameter of Akj .

Estimator f̂k(x) is seen as a random variable of the set of draws. The quantity

e = E
(∫

Supp
(f(x)− f̂k(x))2dx

)
=

∫
Supp

E((f(x)− f̂k(x))2)dx,

is the mean square error of the estimation. It can be developed as:

e =

∫
Supp

(f(x)− E(f̂k(x))2dx+

∫
Supp

E((E(f̂k(x))− f̂k(x))2)

=

∫
Supp

(f(x)− E(f̂k(x)))2 +

∫
Supp

V ar(f̂k(x))dx

= e1 + e2.

For x in Akj the random variable kvol(Akj )f̂k(x) = αj has a binomial distribution
B(k, µX(Akj )), hence

E(f̂k(x)) =
µX(Akj )

vol(Akj )
,

V ar(f̂k(x)) =
kµX(Akj )(1− µX(Akj ))

(kvol(Akj ))
2

≤
µX(Akj )

kvol(Akj )
2
.

It follows that

e2 ≤
∑
j

∫
Akj

µX(Akj )

kvol(Akj )
2
dx =

∑
j

vol(Akj )
µX(Akj )

kvol(Akj )
2
.

Call Nk the number of bins and V the measure of the support vol(Supp). By the
assumption (ii), CNkvol(A

k
j ) ≥ V, therefore

e2 ≤
∑
j

µX(Akj )

k V
CNk

=
CNk

kV
.

Note that
∑

j µX(Akj ) = 1 since µX is a probability.

Assuming that the Akj are connected for each j, there exists ykj in Akj such that

E(f̂k(x)) =
µX(Akj )

vol(Akj )
=

1

vol(Akj )

∫
Akj

f(x)dx = f(ykj ).
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6.2. Non parametric density estimation on Riemannian spaces

We have

e1 =
∑
j

∫
Akj

(f(x)− E(f̂k(x)))2dx =
∑
j

∫
Akj

(f(x)− f(ykj )2dx,

and since f is α-Lipschitz we obtain

e1 ≤
∑
j

(α.Rkj )2vol(Akj )

≤ (αβk)
2V.

Finally we have

e ≤ CNk

kV
+ (αβk)

2V.

Assume now that there exist positive real numbers C1,C2 such that we have

∀j, C1(Rkj )n ≤ vol(Akj ) ≤ C2(Rkj )n.

When the radius R goes to zero, the volume of a ball BR becomes proportional to Rn,
see Gray (1974). Thus the existence of C1,C2 is an assumption on the isotropy of the
partition. It follows that for all i, j

C1(Rkj )n

C2(Rki )n
≤ C,

which implies that minj(Rkj ) ≥
(
C1
CC2

)1/n
βk = γ1/nβk. Hence

NkC1γβ
n
k ≤ V,

and

e ≤ C

kV
× V
C1γβnk

+ (αβk)
2V =

A

kβnk
+Bβ2

k = F (βk),

where A and B are two constants depending on the geometry and on the density f . Let
βk be the value that minimize the right hand side of the above inequality. We have:

βk =

(
n.A

2Bk

) 1
n+2

,

and therefore the minimum of F is:

min(F ) = D.k
1

n+1 .

The obtained convergence rates are similar to the rates of Euclidean regular multidi-
mensional histograms. The constant D depends on the homogeneity and the isotropy of
the partition through C, C1 and C2. In practice, �nding a partition with satisfying factors
of homogeneity and isotropy can be di�cult. It can be noted that since the bins are �xed,
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6. Density estimation on Gaussian laws

even with ideal factors, C = 1, C1 = C2, the estimation can not be exactly invariant to
isometries.
Compared to other methods, the main advantage of histograms is often the low algorith-

mic complexity and the simplicity of use. The di�erent costs that have to be taken into
account are: the construction of the partition and the cost c(x) of the search of the bin
Akj such that x ∈ Akj . Function c(x) depends on the geometry of the space. The second
technical aspect that has to be taken into account is the nature of the representation of
the partition: list, graph, matrix, etc. Indeed for further processing, the histogram is often
viewed as an image, its structure plays then an important role.

6.2.3. Kernel

This part is mainly based on the work by Pelletier (2005). Let K : R+ → R+ be a map
which veri�es the following properties:
i)
∫
Rd K(||x||)dx = 1,

ii)
∫
Rd xK(||x||)dx = 0,

iii) K(||x|| > 1) = 0,
iv) sup(K(x)) = K(0).
Let p ∈ M and x ∈ U with φ(x) = p. In the general case, given a point p ∈ M, expp

de�nes an injective application only on a neighborhood of 0 ∈ TpM. However in every
studied situations of the present work, the parametrization induced by expp is injective
on the whole space. Recall that when TpM is endowed with the scalar product G(x),
Euclidean distances to p corresponds to Riemannian distance to p. The Lebesgue measure
of TpM is noted Lebp. The function θp de�ned by:

θp : q 7→ θp(q) =
dvol

dexp∗(Lebp)
(q), (6.3)

is the density of the Riemannian measure ofM with respect to the Lebesgue measure Lebp
after the identi�cation ofM and TpM induced by expp, see Fig.6.1.

Figure 6.1.: Volume change θxi induced by the exponential map

Given K and a positive radius r, the estimator of f proposed by Pelletier (2005) is
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6.2. Non parametric density estimation on Riemannian spaces

de�ned by:

f̂k =
1

k

∑
i

1

rn
1

θxi(x)
K

(
d(x, xi)

r

)
. (6.4)

The corrective factor θxi(x)−1 is necessary since the kernel K originally integrates to
one with respect to the Lebesque measure, while we want it now to integrate to one with
respect to the Riemannian measure. It can be noted that this estimator is the usual kernel
estimator is the case of Euclidean space. Under reasonable assumptions on the true density
f , the shape of the kernel does not have a signi�cant impact on the quality of the estimation
in the Euclidean context, see for instance Silverman (1986). Simulations summarized in
Fig. 6.4 experimentally con�rms the result in a speci�c Riemannian situation.

Let rinj = supp∈M(rinjp ). Let δ = supK the supremum of the sectional curvature in
M. For a de�nition of the sectional curvature, see. Carmo (1992). Then, Pelletier (2005)
provides the following result.

Theorem 6.2.1 (Pelletier (2005)) Let xi be an arbitrary point of M. Let µ be a mea-

sure onM whose density with respect to the measure vol is

1

rn
1

θxi(.)
K

(
d(., xi)

r

)
.

For r < min{ rinj2 , π
4
√
δ
} when δ > 0 or r < rinj

2 when δ ≤ 0, xi is an intrinsic mean of µ.

Theorem. 6.2.1 ensures the kernel put on xi is �centered� on xi.
Despite convergence rates provided by Pelletier (2005) are obtained for compact mani-

folds without boundaries, they remain valid for non-compact manifolds when the support
of X is compact. Indeed the double manifold, see Munkres (1966), enable to see a compact
manifold with boundaries as a submanifold of a compact manifold without boundaries.
Assume f two-times di�erentiable with bounded second covariant derivative. See Parker
(2015) for a de�nition of covariante derivative. Pelletier (2005) also provides the following
convergence rates.

Theorem 6.2.2 (Pelletier (2005)) For r satisfying conditions of theorem. 6.2.1, there

exist a constant Cf such that:∫
Supp

E[(f(x)− f̂k(x))2]dµ ≤ Cf (
1

krn
+ r4),

then for r equivalent to k−
1

n+4 :∫
Supp

E[(f(x)− f̂k(x))2]dµ = O(k−
4

n+4 ).

For the expression of the constants see details in Pelletier (2005).

Given a reference point pref ∈M, let

K̃(q) =
1

krn
1

θpref (q)
K(d(pref , q)).
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6. Density estimation on Gaussian laws

Lemma 6.2.3 If φ is an isometry ofM, then θp(q) = θφ(p)(φ(q)).

Recall that µk is the empirical measure of the set of draws.

Theorem 6.2.4 IfM is homogeneous, then f̂k = µk ∗ K̃.

Proof Since d(xi, .) and θp(.) are invariant by the isotropic group of pref , also is K̃. Thus
the convolution is well de�ned. Using notations of Chapter 4, one has

(δi ∗ K̃)(p) =

∫
δi(q)K̃q(p)dµ

= K̃xi(p)

= K̃(isoxi,pref (p))

=
1

krn
(θpref (isoxi,pref (p)))−1K(d(pref , isoxi,pref (p)))

=
1

krn
1

θxi(p)
K(d(xi, p)).

Hence,

µk ∗ K̃ =
∑
i

δi ∗ K̃

=
1

krn

∑
i

(θxi(.))
−1K(d(xi, .))

= f̂k.

Therefore, whenM is homogeneous, the density estimation proposed by Pelletier (2005)
is a convolution. Each location and direction are processed as similarly as possible. As a
result, it can be easily shown that for an isometry α we have:

f̂k(x, x1, ..., xk) = f̂k(α(x), α(x1), ..., α(xk)).

It must be noted that the kernel method requires the existence of explicit expression of
distances and of the function θp, which renders it unusable in several situations. The
kernel density estimation presents better convergence rates than histograms. The only
computational aspect that has to be taken into account is the cost of evaluation of the
density at a point x in M. The computational cost of f̂k(x) is in O(k). The constant
mainly depends on the computational cost of distances. Note that when the number of
evaluations is important, histograms present lower computational cost.

The k-nearest neighbor is an interesting variant of the standard kernel density estimation.
It consists in making the parameter r depend on xi, by setting r as the distance to the
k-th nearest neighbor of xi. This estimator has been studied on Riemannian manifolds in
Henry et al. (2011).
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6.2. Non parametric density estimation on Riemannian spaces

6.2.4. Orthogonal series

Instead of directly studying the density f , the estimation is made from the estimation of
the scalar product between f and a set of orthonormal functions {ej}. Recall that for g
and h in L2(M):

〈g, h〉 =

∫
M
ghdvol,

where x denotes the complex conjugate of x. We have that:

〈f, ei〉 =

∫
fejdvol = E (ej(X)) .

Thus 〈f,ej〉 can be approximated by an estimation of the expectation, i.e.,

E (ej(X)) ≈ 1

k

k∑
j=1

ej (xi)

Or in other words:∫
ejfdvol ≈

∫
ejdµk.

Now, given an integer N , the orthogonal series estimator is de�ned as:

f̂ =
1

k

N∑
j=−N

[
k∑
i=1

ej (xi)

]
ej . (6.5)

The formula becomes an integral when the number of functions ej is uncountable. First
the base has to be ordered such that the norm of the rest of the decomposition, i.e.,∑
|j|>N 〈f, ej〉 ej , decreases as fast as possible for regular functions. Second, in order to

process locations and directions indi�erently, the basis functions must present regularity
properties regarding the metric. Eigenfunctions of the Laplacian operator are very good
candidates. Indeed the Fourier transform on Rn, or the Fourier�Helgason transform on
symmetric spaces, are highly related to the convolution by isotropic kernel. When the ej
functions are Fourier functions, the estimation technique is also called the characteristic
function method.

When the space is compact, the spectrum of the Laplacian operator is discrete. Under the
compact assumption, let {ej} be an orthonormal Hilbert basis given by the eigenfunctions
of the Laplacian. Given T > 0 we de�ne:

FT = {ej |∆ej = λej with λ < T}.

Using this orthogonal series, the density estimator becomes:

f̂ =
1

k

∑
ej∈FT

[
k∑
i=1

ej (xi)

]
ej .

Hendriks (1990) provides the following convergence rates for density estimators based
on eigenfunctions of the Laplacian.
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6. Density estimation on Gaussian laws

Theorem 6.2.5 (Hendriks (1990)) Suppose f is s times di�erentiable with square inte-

grable derivatives. Let T0 > 0. There are constants A (depending onM) and B (depending

on f) such that for T ≥ T0,∫
Supp

E(f(x)− f̂k(x))2dx ≤ AT
n/2

k
+BT−s,

and for a suitable decrease of T ,∫
Supp

E(f(x)− f̂k(x))2dx ≤ O(k
−2s

2s+n ).

Thus, the convergence rate for the orthogonal series is similar to the rate of the kernel
estimation.

The Fourier series on a parallelepiped of Rn are a particular case of decomposition on
eigenfunctions of the Laplacian.
When the space is not compact, the estimator takes an integral form. In the case of a

continuous spectrum,

FT = {es|∆es = λses(y), λs < T, s ∈ S} ,

for some uncountable set S. Then, in this uncountable case, one has

f̂ =
1

k

∫
FT

[
k∑
i=1

es(xi)

]
esd∗s,

where d∗s is the spectral measure on S and in the case of symmetric spaces is the Harish-
Chandra c−function, see Helgason (2001).
The explicit expressions of FT and of the estimators are provided when necessary in the

following sections. For the space of positive de�nite matrices equipped with the metric
invariant by the action of Gl(n) on SPD(n),(G,M) 7→ GMGt, Peter T. Kim and Donald
St. P. Richards (2011) provided convergence rates of the estimator based on the Fourier�
Helgason transform. Helgason functions are eigenvalues of the Laplacian operator, i.e.,

H(∆f)(w) = λωH(f)(w).

Then, ∆σ/2 is de�ned as the operator verifying:

H(∆σ/2f)(w) = λσ/2ω H(f)(w).

Let Hσ(Q) = {f ∈ C∞, ||∆σ/2f || < Q}. We have the following result.

Theorem 6.2.6 (Peter T. Kim and Donald St. P. Richards (2011)) If f ∈ Hσ(Q)
with 2σ > dim SPD(n)∫

Supp
E(f(x)− f̂k(x))2 = O(k−2σ/(2σ+dim SPD(n))).
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6.3. Classical metrics on Gaussian laws

The hypothesis on σ is slightly di�erent but highly related to the di�erentiability hypothesis
of the kernel method. Similar rates on the hyperbolic space of dimension two can be found
here Huckemann et al. (2010).

The Fourier�Helgason method on SPD(n) and on the hyperbolic space are convolutions:

f̂k = µk ∗ H−1(1FT ).

Recall that the Fourier�Helgason of the convolution of a function by a kernel is a product
of transforms when the kernel is invariant by the isotropy group. This can be veri�ed on
expressions in following sections, by showing that H−1(1FT ) is invariant by the isotropy
group SO(n) for SPD(n) and SO(2) for the hyperbolic space. Thus, as for the kernel
method, each location and direction are processed as similarly as possible. The main
drawback of this method in the non-compact case is its computational cost: the estimation
requires the computation of an integral.

6.2.5. Curse of dimensionality

Observe that the convergence rates deteriorate with the dimension in ka/(b+n) where a and b
are constants and n is the dimension of the space. To reach the same precision, the number
of draws (xi) has to increase exponentially with the dimension. Recall that the dimension
of the space of centered n-dimensional Gaussian laws is of dimension 1

2(n2 + n) and that
the dimension of n-dimensional Gaussian laws is of dimension 1

2(n2 +3n). Thus the quality
of the density estimation quickly deteriorates with the dimension of the underlying space.
Fortunately, as shows section. 6.4.1, classical metrics on spaces of Gaussian laws allow to
reduce the dimension by separating the di�erent components of the Gaussian law (mean,
eigenvalues and rotation). Dimension can also be reduced using principal geodesic analysis
on manifolds, see Fletcher and Joshi (2004).

6.3. Classical metrics on Gaussian laws

6.3.1. The Fisher metric

We consider here a set M of probability measures on a measure space (X,σX , µ) home-
omorphic to an open subset of Rn. Let θ = (θ1, ..., θn) ∈ U ⊂ Rn be an homeomorphic
parametrization ofM. The distributions are assumed to have a density f(., θ). The Fisher
matrix G(θ) associated to the parametrization θ is de�ned as follows, see Amari et al.
(2007):

g(θ)i,j = E

[
∂ln(f(x, θ))

∂θi

∂ln(f(x, θ))

∂θj

]
=

∫
x

∂ln(f(x, θ))

∂θi

∂ln(f(x, θ))

∂θj
f(x, θ)dx. (6.6)

The matrix G(θ) is symmetric positive de�nite. The matrices {G(θ), θ ∈ U} induce a
smooth �eld of positive de�nite matrices on U , that is to say a Riemannian metric. It can
be shown that the distances and the geodesic paths induced on M by this Riemannian
metric do not depend on the choice of the parametrization. It is interesting to note that
the Fisher metric do not rely on a metric on X.
Let P and Q be two probability measures. The relative entropy is de�ned as follows:

D(P,Q) =

∫
x
ln

(
dP

dQ
(x)

)
dP.
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6. Density estimation on Gaussian laws

Function D(., .) is not symmetric and is therefore not a distance. The relative entropy is
also called the Kullback�Leibler divergence. The Kullback�Leibler divergence measures an
informational di�erence between P and Q.
Let D(θ, θ0) be the relative entropy between the laws parametrized by θ and θ0. It can

be shown that:

∂D(θ0, θ)

∂θi
(θ0) = 0,

and

∂2D(θ0, θ)

∂θi∂θj
(θ0) = g(θ0)i,j .

Thus, the Fisher matrix is also the Hessian of the Kullback�Leibler divergence.

6.3.2. The Wasserstein metric/ Earth mover's distance

The Wasserstein metric on probability distributions is the metric of optimal transport as
founded by Monge (1781), see Villani (2009) for a modern and complete mathematical
overview of the problem. If the probability distributions are seen as earth heaps, the
Wasserstein distance between two distributions is the minimum cost that is needed to
transform the �rst heap into the second one. The cost of transport of earth depends of
the amount of earth and the traveled distance. Due to this interpretation, the Wasserstein
metric is also called the earth mover's distance.
More formally, let X and Y be two random variables valued in a space S endowed with a

σ-algebra AS . Let µX and µY be the measures induced on S by X and Y . Let Γ(µX , µY )
be the set of measures on S×S such that µX and µY are the �rst and the second marginals,
i.e., for γ ∈ Γ(µX , µY ), one has

γ(A,S) = µX(A), γ(S,B) = µX(B),

for all A,B ∈ AS . Thus Γ(µX , µY ) represents the set of possible transports of the measure
µX on the measure µY . The p-Wasserstein distance between X and Y is then de�ned by:

d(X,Y ) =

[
infγ∈Γ(µX ,µY )

∫
S×S

d(a, b)pdγ

]1/p

. (6.7)

For most families probability distributions, the Wasserstein distance has no explicit
expression. Fortunately, the expression of the 2-Wasserstein distance between Gaussian
laws has a simple form. Given two Gaussian distributions N1, N2 of mean m1, m2 and
covariances Σ1, Σ2 the distance becomes:

d(N1,N2)2 = |m1 −m2|2 + tr(Σ1) + tr(Σ2)− 2tr(

√
Σ

1/2
2 Σ1Σ

1/2
2 ).

Takatsu (2011) has showed that the 2-Wasserstein distance on Gaussian laws is a Rie-
mannian metric distance. We restrict the present study to the case of the 2-Wasserstein
distance.
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6.4. The space of multivariate Gaussian laws

6.4. The space of multivariate Gaussian laws

In this section we study the space of multivariate Gaussian laws under two classical Rie-
mannian metrics: the Fisher metric induced by the Fisher matrix, and the Wasserstein
metric induced by the optimal transport. A Gaussian law is determined by its mean vec-
tor m and its covariance matrix Σ and is noted Nm,Σ. It is well known that the expression
of its density fm,Σ is written as:

fm,Σ(x) =
1

(2π)N/2det(Σ)1/2
e
−1
2

(x−m)tΣ−1(x−m).

The space of n-dimensional Gaussian laws, noted G(n), can be identi�ed with the product
between the vector space Rn and the space of positive de�nite matrices SPD(n). The space
SPD(n) is an open cone included in the vector space of symmetrical matrices Sym(n). Let
{emi}i<n be the canonical basis of Rn and {Ei,j} be the canonical basis of M(n). Let

E
′
i,i = Ei,i, and E

′
i,j =

1√
2

(Ei,j + Ej,i), ifi < j.

Using this parametrization,
{
E′i,j

}
i≤j

forms a basis of the space of symmetric matrices.

The space Sym(n) is identi�ed to R
n(n+1)

2 through the coordinates in the basis
{
E′i,j

}
i≤j

.

The union {xl} = {emi}i<n ∪
{
E′j,k

}
j≤k

is a basis of Rn × Sym(n).

Let consider

φ :

{
Rn × SPD(n) → G(n)

(m,Σ) 7→ Nm,Σ

Since Rn × SPD(n) is an open subset of the vector space Rn × Sym(n) the situation is
identical to the one described in Chapter 4.
The diagonalization Σ = RDRt of Σ induces another parametrization of G(n):

ψ :

{
Rn × Rn+ × SO(n) → G(n)

(m,λ,R) 7→ Nm,(RDλRt)

where Dλ =

λ1

. . .
λn

. In a certain way, (λ,R) are similar to the polar coordinates,

with the di�erence that R is not necessary of determinant 1 in polar coordinates. The
parametrization ψ is not injective, i.e., given Σ ∈ SPD(n) there exists several (λ,R) ∈
Rn+ × SO(n) such that Σ = RDλR

t. If this is not a problem in most of theoretical works,
it is when one comes to applications. Indeed it is important to always use the same
representation of each object.
Let G̃(n) be the set of Gaussian laws Nm,Σ such that Σ has distinct eigenvalues. Note

that the di�erence between G̃(n) and G(n) has a null measure for standard measures. Let
de�ne

E = {λ ∈ Rn+ | ∀0 ≤ i < j ≤ n, λi < λj},

and
H = {Dλ | λ ∈ {+1,−1}n, det(Dλ) = 1}.
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Note that H is a group. The quotient SO(n)/H = {RH,R ∈ SO(n)} can be identi�ed
to the fundamental domain D ⊂ SO(n) where for R ∈ D, the maximal element with the
smallest index element of each column 1 ≤ j < n is positive. In other words

D = {R ∈ SO(n) | ∀j < n,Rmin{argmaxi{Ri,j}},j > 0}.

Then, parametrization

ψ̃ :

{
Rn × E ×D → G̃(n)

(m,λ,R) 7→ Nm,(RDλRt)
is an homeomorphism.
Let α be the change of parametrization α = φ−1 ◦ ψ:

α :

{
Rn × Rn+ × SO(n) → Rn × SPD(n)

(m,λ,R) 7→ (m,RDλR
t)

On any locally compact group there exists, up to a scaling factor, a unique measure
invariant under the group law. Such a measure is called a Haar measure. The Lebesgue
measure is a Haar measure. Since the set of rotations is a compact group, there exist a
Haar measure HaarSO(n) on rotations.
Let µφ be the Lebesgue measure on Uφ = Rn × SPD(n), given by

µφ = LebRn × LebSPD(n).

Let µψ be the product measure between the Lebesgue measure of Rn × Rn+ and the Haar
measure of SO(n), i.e.,

µψ = LebRn × LebRn+ ×HaarSO(n).

We are now interested in the local volume change induced by the application α, that is
to say the ratio between the volume of an in�nitesimal volume element in Rn×Rn+×SO(n)
and its image in Rn × SPD(n). Let us introduce

R0.(m,λ,R) = (m,λ,R0R) and (m,λ,R).R0 = (m,λ,RR0).

Let A ⊂ Rn × Rn+ × SO(n). Since a matrix R ∈ SO(n) is of determinant 1, one has
µφ(α(A)) = µφ(Rα(A)Rt) for any R ∈ SO(n). Since Rα(A)Rt = α(R.A), µφ(α(A)) =
µφ(α(R.A)). By de�nition of the Haar measure, µψ(A) = µψ(R.A). Thus the ratio between
the volumes of in�nitesimal volume elements are independent of the rotation.
Let µψ̃ be the restriction of µψ to Rn ×E ×D. As de�ned in Section 4.1, α∗(µψ̃) is the

transport of µψ̃ on Rn × SPD(n) by α. Thus

dµφ
dα∗(µψ̃)

(m,Σ)

denotes the density of µφ with respect to α∗(µψ̃) at (m,Σ). For Σ = RDλR
t with Dλ ∈

E,R ∈ D, we abuse notation and write dµφ
dα∗(µψ̃)(m,Dλ, R) for dµφ

dα∗(µψ̃)(m,Σ). Following the

previous discussion, dµφ
dα∗(µψ̃)(m,Dλ, R) is independent of the rotation, thus

dµφ
dα∗(µψ̃)

(m,Dλ, R) =
dµφ

dα∗(µψ̃)
(m,Dλ, I)
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6.4. The space of multivariate Gaussian laws

.
The matrix exponential e(.) de�nes an homeomorphism from a neighborhood of the null

matrix in the space of anti-symmetric matrices and a neighborhood of I in D ∈ SO(n).
Let µ̂ψ be the Lebesgue measure on Rn × Rn+ × ASym, where ASym is the set of anti-

symmetric matrices. The computation of dµφ
dα∗(µψ̃)(m,D, I) is made through the following

diagram:

(Rn × Rn+ ×ASym(n), µ̂ψ)

(Rn × Rn+ ×D, µψ̃) (Rn × SPD(n), µφ)

Id2n × e(.)

α̂

α

where α̃(m,λ,A) = (m, eADλ(eA)t). The local volume change induced by α̂ at (m,λ, 0) ∈
Rn×Rn+×ASym(n) is a product between local volume change of Id2n× e(.) and α. Thus,
knowing the volume change induced by α̂ and Id2n×e(.) at (m,λ, 0) is enough to determined
the volume change induced by α. We can normalize the Haar measure on rotations such
that Id2n × e(.) does not introduce local at (m,λ, 0). Then the volume change induced by
α̂ and α are equal and given by the Jacobian determinant of α̂.
Let Ai,j = 1√

2
(Ei,j − Ej,i). The partial derivatives of α̂ at (m,λ, 0) in basis

B = {emi} ∪ {eλi} ∪ {Ai,j} and B′ = {emi} ∪
{
E′i,j

}
,

can easily be computed and are given by

∂α̂

∂emi
(m,λ, 0) = emi ,

∂α̂

∂eλi
(m,λ, 0) = E′i,i,

∂α̂

∂Ai,j
(m,λ, 0) = (λj − λi)E′i,j . (6.8)

Since the E′i,j form an orthonormal system, we have:

dµφ
dα∗(µψ̃)

(m,Dλ, I) =
∏

i<j≤n
|λi − λj |, (6.9)

and thus using independency of rotation:

dµφ
dα∗(µψ̃)

(m,Dλ, R) =
∏

i<j≤n
|λi − λj |, (6.10)

when eigenvalues are distinct. This result can be found in Example 8.7, page 158, of Wi-
jsman (1990).
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6. Density estimation on Gaussian laws

6.4.1. Separation of mean, eigenvalues, and rotation

This section shows that in many classical cases, measures on multivariate Gaussian laws
can be decomposed as a product between a measure on the mean space, a measure on the
eigenvalue space, and a measure on the rotation space. Observe that rotations naturally
act on G(n), i.e.,

R0.Nm,λ,R1 = Nm,λ,R0R1 .

Theorem 6.4.1 Let µ be a measure on G̃(n), invariant under the action of rotations.

Measure µ is equivalent to a product measure,

µ = µmean × µλ × µR,

where µmean is a measure on Rn, µλ is a measure on E and µR is a measure on SO(n).

Proof This is a direct consequence of Theorem 8.2, page 155, of Wijsman (1990).

In most situations, measures µ on G(n) present the desired invariances, and µ(G(n) \
˜G(n)) = 0. Writing µ as a product measure enables to de�ne densities for the mean,

the eigenvalues and the rotations separately, which is not always possible, see Section 6.13.
This is in particular the case for the measures induced by the Fisher metric, the Wasserstein
metric, and the Lebesgue measure of Rn × SPD(n).

6.4.2. The Fisher metric

Unlike multivariate centered and univariate Gaussian laws, the space of multivariate Gaus-
sian laws under the Fisher metric is not a symmetric space. As in the large majority of the
Riemannian manifolds, there is no explicit expression of distances. We only have access to
the expression of the metric. An attempt was made by authors of Lovri¢ et al. (2000) to
symmetrize the space.
Let u and v be vectors of Rn

⊕
Sym(n). Let index m and Σ denote the components

associated to Rn and Sym(n) respectively.
The scalar product of the Fisher metric at (m,Σ) can be rewritten, see Skovgaard (1984),

as

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ). (6.11)

Let GFisherNm,Σ be the matrix of the scalar product in the canonical basis of Rn
⊕
Sym(n).

Let volFisher be the measure associated with the Riemannian metric. The density of the
Fisher volume measure with respect to the Lebesgue measure of Rn × SPD(n) is given by

dvolFisher
dµφ

=
√
det(GFisherNm,Σ ).

The invariance of the Fisher metric under the action of rotations implies the invariance of
the measure, i.e., √

det(GFisherNm,RDRt
) =

√
det(GFisherNm,D ).

Thus the volume change only need to be computed for the case diagonal matrices. Let
D ∈ SPD(n) be a diagonal matrix of eigenvalues λi. Using Expression (6.11), we can now
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6.4. The space of multivariate Gaussian laws

calculate the di�erent scalar product between the vectors of the canonical basis. More
precisely,
∀i, j, k:

< emi , E
′
j,k >

Fisher
Nm,D = 0,

∀i, j:

< emi , emj >
Fisher
Nm,D = δi,jλ

−1
i ,

where δi,j = 1 if i = j and δi,j = 0 if i 6= j. In addition,
∀i, j:

〈E′i,i, E′j,j〉FisherNm,D = δi,jλ
−2
i ,

∀(i 6= j, k 6= l):

〈E′i,j , E′k,l〉FisherNm,D =
1

2
δi,kδj,l(λiλj)

−1,

∀j 6= k:

〈E′i,i, E′j,k〉FisherNm,D = 0.

Thus, one can write
emi E′i,i E′i,j

GFisherNm,D =



1
λ1

. . .
1
λ2

1
λ2

1

. . .
1
λ2
n

1
2λiλj


and now, from GFisherNm,D , we have

dvolFisher
dµφ

=
√
det(GFisherNm,Σ ) =

1

2
n(n−1)

2

√∏
i

1

λn+2
i

=
1

2
n(n−1)

2

det(Σ)−(n+2)/2. (6.12)

As announced in section 6.4.1, the measure induced by the Fisher metric is a product
between a measure on the mean, a measure on eigenvalues and a measure on rotations,
i.e.,

dvolFisher =
√
det(GFisherNm,Σ )

dµφ
dα∗(µψ̃)

dµψ̃

=
1

2
n(n−1)

2

∏
i<j≤n

|λi − λj |
√∏

i

1

λn+2
i

dLebRn dLebRn+ dHaarSO(n).

(6.13)
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6. Density estimation on Gaussian laws

6.4.3. The Wasserstein metric

The 2-Wasserstein metric is a product metric between the space of means and the space
of covariance matrices:

dW2(Nm1,Σ1 ,Nm2,Σ2)2 = dm(m1,m2)2 + dΣ(Σ1,Σ2)2,

with

dm(m1,m2) = |m1 −m2|,

dΣ(Σ1,Σ2) = tr(Σ1) + tr(Σ2)− 2tr(

√
Σ

1/2
1 Σ2Σ

1/2
1 ).

Takatsu (2011) proved that this distance is induced by a Riemannian metric. Let volW be
the measure associated with such Riemannian metric.

6.4.3.1. The Riemannian volume element

The calculation of the volume measure is similar to the calculation of the volume measure
associated with the Fisher metric. Let u and v be vectors of Rn

⊕
Sym(n). Let index

m and Σ denote the components associated to Rn and Sym(n) respectively. The scalar
product at (m,Σ) according to Takatsu (2011) is given by

< u, v >Wm,Σ= utmvm + tr(ũΣΣṽΣ),

with

uΣ = ΣũΣ + ũΣΣ,

vΣ = ΣṽΣ + ṽΣΣ. (6.14)

Let GWNm,Σ be the matrix of the scalar product in the canonical basis of Rn
⊕
Sym(n).

The density of the Wasserstein volume measure with respect to the Lebesgue measure of
Rn × SPD(n) is given by

dvolW
dµφ

=
√
det(GWNm,Σ).

The invariance of the Wasserstein metric under the action of rotations implies the invari-
ance of the measure, i.e., √

det(GWNm,RDRt
) =

√
det(GWNm,D).

Thus the volume change only need to be computed for the case diagonal matrices. Let
D ∈ SPD(n) be a diagonal matrix of eigenvalues λi. Equations. (6.14) can now be solved.
Since,

2λiE
′
i,i = DE′i,i + E′i,iD,

(λi + λj)E
′
i,j = DE′i,j + E′i,jD,

equations (6.14) are equivalent to

uΣ = P (ũΣ),

vΣ = P (ṽΣ),
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6.4. The space of multivariate Gaussian laws

where P is a linear operator of Sym(n) whose matrix form is

P :

E′i,i E′i,j
2λ1

. . .
2λn

(λi + λj)


The di�erent terms of the metric are given by:

∀(i, j ≤ k):

〈emi , E′j,k〉WNm,D = 0,

∀(i, j):

〈emi , emj 〉WNm,D = 1,

∀(i, j):

〈E′i,i, E′j,j〉WNm,D = δi,j
1

4λi
,

where again δi,j = 1 if i = j and δi,j = 0 if i 6= j,
∀(i, j 6= k):

〈E′i,i, E′j,k〉WNm,D = 0,

∀i < j, k < l:

〈E′i,j , E′k,l〉WNm,D = δi,kδj,l
1

2(λi + λj)
.

Thus, we obtain
emi E′i,i E′i,j

GWNm,D =



1
. . .

1
1

4λ1

. . .
1

4λn
1

2(λi+λj)


As for the Fisher measure, we compute

dvolW
dµφ

=
√
det(GWNm,Σ) =

1

2
1
2
n2+ 3

2
n

√∏
i

1

λi

∏
i<j

1

(λi + λj)
, (6.15)

and the measure induced by Wasserstein metric is written as

dvolW =
√
det(GWNm,Σ)

dµφ
dα∗(µψ̃)

dµψ

=
1

2
1
2
n2+ 3

2
n

∏
i

1√
λi

∏
i<j

|λi − λj |√
(λi + λj)

dLebRn dLebRn+ dHaarSO(n).

(6.16)
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6.4.3.2. The volume change of the exponential map

We are interested here in the computation of the following quantity:

θΣ1 : Σ2 7→ θΣ1(Σ2) =
dvolW

dexp∗(LebΣ1)
(Σ2),

that is to say the density of the Riemannian measure of G(n) with respect to the Lebesgue
measure of the parametrization of G(n) induced by expΣ1 . As we have stated, Wasserstein
metric is a product between the Euclidean metric on Rn and a Riemannian metric on
SPD(n). The Euclidean part can be omitted in this section, since it does not a�ect the
volume change.
It has been shown in Takatsu (2011) that the L2-Wasserstein distance on centered Gaus-

sian measure is induced by a Riemannian metric on SPD(n). Furthermore, the application

Π :

{
Gln → SPD(n)
G 7→ GGt

is a Riemannian submersion when GLn is endowed with the scalar product 〈A,B〉 =
tr(ABt) and SPD(n) is embedded with the Riemannian metric. For A ∈ Gl(n) the kernel
of dΠ is called the vertical space, and its orthogonal the horizontal space. For Σ = RDRt ∈
SPD(n), let Σ1/2 = RD(

√
λi)
Rt, such that Π(Σ1/2) = Σ. The horizontal space at Σ1/2,

see Takatsu (2011), is given by:

HΣ1/2 = {XΣ1/2, X ∈ Sym}.

HΣ1/2 can be identi�ed with TΣM via dΠ. Let ΠA(Z) = Π(A + Z). For simplicity
reasons, the exponential map will be expressed in HΣ1/2 . For Z ∈ HΣ1/2 classical results
on Riemannian submersions give that the image by Π of the geodesic Σ1/2 + tZ is the
geodesic expΣ(tZ). Hence, one has

expΣ(Z) = ΠΣ1/2(Z).

Fig. 6.2 sums up the situation. Let Π̃A be the restriction of ΠA to HA. The density of
interest is a product of two factors, i.e.,

dvolW
dexp∗(LebH

Σ1/2
)

=
dvolW

dLebSPD(n)

dLebSPD(n)

dexp∗(LebH
Σ1/2

)
,

where dvolW
dLebSPD(n)

was computed in Eq. (6.15). The computation of
dLebSPD(n)

dexp∗(LebH
Σ1/2

) can

be made through the Jacobian of the exponential application. The computation of the
di�erential of Π̃A gives:

dΠ̃A(XA,X ∈ Sym(n))(Y A, Y ∈ Sym(n)) = (A+XA)(Y A)t + Y A(A+XA)t

= AAtY +XAAtY + Y AAt + Y AAtX

= AAtY + Y AAt +XAAtY + Y AAtX.

The invariance of the Wasserstein metric under the action of rotations enables to restrict
the computation of θΣ1 to θD with D a diagonal matrix. So,

dΠ̃D1/2(XD1/2)(Y D1/2) = DY + Y D +XDY + (XDY )t

= (I +X)DY + Y ((I +X)D)t.

92



6.4. The space of multivariate Gaussian laws

Figure 6.2.: The application Π is a Riemannian submersion for the �at metric on Gl(n)
and the Wasserstien metric on SPD(n). The volume change between the blue
and the red area appears in the expression of kernels.

The following result enables the computation of the volume change of the application
Y 7→ dΠ̃D1/2(XD1/2)(Y D1/2).

Theorem 6.4.2 Let A be a square matrix of order n and

SA :

{
Sym(n) → Sym(n)

Y 7→ Y A+AtY

Then

det(SA) =
∏
i6j

(λi + λj) = 2ndet(A)
∏
i<j

(λi + λj),

where the λi are the complex eigenvalues of A. Furthermore, det(SA) depends only on the

coe�cients of the characteristic polynomial of A

χA(λ) = det(λI −A) =
n∏
i=1

(λ− λi) = λn +

n∏
k=1

(−1)kσn−kλ
k.

1. If n = 2, det(SA) = 4(detA)(traceA);
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6. Density estimation on Gaussian laws

2. If n = 3, det(SA) = 23detA(σ1σ2 − σ3);

3. If n = 4, det(SA) = 24detA(σ1σ2 − σ3 − σ4σ
2
1 − σ2

3);

4. If n ≥ 4, det(SA) can be obtained with the help of standard libraries of mathemat-

ical programming languages using the decomposition on the elementary symmetric

polynomials.

Proof 1. Suppose A is diagonalisable and (Xi)1≤i≤n is a basis of eigenvectors of A.
Then

SA(XiX
t
j +XjX

t
i ) = (λi + λj)(XiX

t
j +XjX

t
i ),

and (XiX
t
j +XjX

t
i )16i6j6n is a basis of Sym(n). Consequently

det(SA) =
∏
i6j

(λi + λj) = 2ndet(A)
∏
i<j

(λi + λj)

2. det(SA) is a symmetric polynomial of the λi. The fundamental theorem of symmetric
polynomial states that any symmetric polynomial can by expressed as a polynomial
function of the elementary symmetric polynomials. Since the coe�cients of the char-
acteristic polynomial of A are the elementary symmetric polynomials in λi, det(SA)
is a polynomial function of the coe�cient of the characteristic polynomial of A.

3. In the general case, any matrix A can be seen as a limit of diagonalizable matrices An.
By continuity we have det(SA) = lim det(SAn) and the coe�cients of the polynomial
χA are the limits of the coe�cients of the polynomials χAn . Therefore the formula
can be extended to any matrix.

The basis B = (E′i≤jD
1/2) of HD1/2 is orthogonal for the scalar product 〈A,B〉 =

tr(ABt), with
〈
E′iiD

1/2, E′iiD
1/2
〉

= λi and
〈
E′i<jD

1/2, E′i<jD
1/2
〉

=
λi+λj

2 . Thus in an

orthonormal basis of HD1/2 , we have

det(B) =

√√√√∏λi
∏
i<j

λi + λj
2

.

Let consider the map

f :

{
HD1/2 → Sym(n)

Y D1/2 7→ Y

Expressed in orthonormal basis, det(f) = det(B)−1. Since dΠ̃D1/2(XD1/2) = S(I+X)D ◦ f ,
the determinant of dΠ̃D1/2 expressed in orthonormal basis is given by

det(dΠ̃D1/2) = det(S(I+X)D)det(f) =
det(S(I+X)D)

det(B)
.

Hence the expression of the volume change is given by,

dLebSPD(n)

dexp∗(LebH
Σ1/2

)
= det(dΠ̃D1/2) =

det(S(I+X)D)

det(B)
. (6.17)
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6.5. Density estimation on multivariate Gaussian laws

Given two matrices Σ0,Σ1 ∈ SPD(n), Takatsu (2011) provides the expression of the
vector Z ∈ H

Σ
1/2
0

:

Z = (Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1 − I)Σ

1/2
0 ,

such that Π
Σ

1/2
0

(Z) = Σ1. Thus,

θD(Σ) =
dvolW

dLebSPD(n)

dLebSPD(n)

dexp∗(LebH
D1/2

)

=
1

2n(n+1)

det(SA)√∏
λΣ
i

∏
i<j(λ

Σ
i + λΣ

j )
√∏

λDi
∏
i<j(λ

D
i + λDj )

,

where (λDi ) and (λΣ
i ) are the eigenvalues of D and Σ respectively, and where

A = Σ1/2(Σ1/2DΣ1/2)−1/2Σ1/2D1/2.

We recall that A corresponds to the matrix (I +X)D of Eq. (6.17).
Finally, using the invariance of the Wasserstein metric under the action of rotations, we

have for Σ0 = RDRt:

θΣ0(Σ1) =
1

2n(n+1)

det(SA)√∏
λΣ1
i

∏
i<j(λ

Σ1
i + λΣ1

j )
√∏

λΣ0
i

∏
i<j(λ

Σ0
i + λΣ0

j )
(6.18)

where (λΣ0
i ) and (λΣ1

i ) are the eigenvalues of Σ0 and RtΣ1R respectively,

A = (RtΣ1R)1/2((RtΣ1R)1/2D(RtΣ1R)1/2)−1/2(RtΣ1R)1/2D1/2,

and det(SA) is given in Theorem 6.4.2.

6.5. Density estimation on multivariate Gaussian laws

Let Ω be a space endowed of with a σ-algebra and a probability measure p. Let X be a
random variable Ω → G(n). We assume that the support of X is a compact set, noted
Supp. The space of Gaussian laws G(n) is equipped successively with the Fisher and
the Wasserstein metric. The Riemannian measure is called vol and the measure on G(n)
induced by X is noted µX . We assume that µX has a density, noted f , with respect to vol,
and that the support of X is a compact set noted Supp. Let (x1, .., xk) ∈ Mk be a set of
draw of X and µk = 1

k

∑
i δxi denotes the empirical measure of the set of draws. To each

point x ∈ G(n) quantities mx and Σx representing the associated mean and covariance are
associated.

6.5.1. The Fisher metric

The expression of distances is unknown, there are no known interesting tilings, and there
is no expression of the eigenfunctions of the Laplace operator. Thus there is no way of
estimating densities based on a fully Riemannian approach. The only option here is to
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6. Density estimation on Gaussian laws

perform a density estimation in an Euclidean context, and to adapt the result to the
Riemannian measure. If X is seen as a random variable in SPD(n) the estimation gives:

f̂Fisher = f̂Eucl
dµφ
dvol

= 2
n(n−1)

2

√∏
i

λn+2
i f̂Eucl, (6.19)

where f̂Eucl is an estimation of the density of X with respect to the measure induced by the
scalar product 〈A,B〉 = tr(ABt). However the estimation does not respect homogeneity
and isotropy considerations.

6.5.2. The Wasserstein metric

As with the Fisher metric, there are no known interesting tiling, and there is no expression
of the eigenfunctions of the Laplace operator. However it is possible to obtain expressions
of kernels. Given a scaling parameter r > 0, the estimator becomes:

f̂ rk (x) =
1

k

∑
i

1

rn
1

θΣxi
(Σx)

K

(
dW2(x, xi)

r

)
, (6.20)

where θΣxi
(Σx) was computed in Eq. (6.18).

6.6. The space of multivariate centred Gaussian laws

We consider speci�cally the study of multivariate Gaussian laws, after adding the property
m = 0. The set of multivariate centered Gaussian laws is noted Gm=0(n). In Gm=0(n), a
Gaussian laws is determined by its covariance matrix Σ only. It elements are noted NΣ.
The expression of its density fΣ is:

fm,Σ(x) =
1

(2π)N/2det(Σ)1/2
e
−1
2

(x)tΣ−1(x).

Everything written in section 6.4 remains valid after removal of the mean. The measures
µφ and µψ become respectively:

µφ = LebSPD(n),

µψ = LebRn+ ×HaarSO(n),

and Gm=0(n) is identi�ed with SPD(n), such that NΣ and Σ are used indi�erently.

The di�erent expressions associated to the Wasserstein metric computed in section 6.4.3
do not change for the case of centered Gaussian laws. Furthermore, space G(n) does not
gain any property after imposing m = 0 in the Wasserstein metric. Thus this section
focuses on the Fisher metric.

The Fisher metric on Gm=0(n) happens to be the metric induced by the Fisher metric
on G(n). On the contrary of G(n), Gm=0(n) is symmetric and is then easier to study. Let
GL(n) be the set of invertible matrices of size n. For any G in GL(n), the application
Σ 7→ GΣGt is an isometry of Gm=0(n). This application corresponds to a coordinate change
for covariance matrices. The action of GL(n) on Gm=0(n) induced by this application is

96



6.6. The space of multivariate centred Gaussian laws

transitive. Indeed, for any Σ ∈ SPD(n), let Σ1/2 ∈ GL(n). The orbit of the identity I is
SPD(n): Σ = Σ1/2IΣ1/2. The stabilizator of I are the orthogonal matrices. Thus Gm=0(n)
can be identi�ed to GL(n)/O(n).
There is an explicit expression of the distance between two laws:

dFisher(NΣ1 ,NΣ2) = ||log(Σ
−1/2
1 Σ2Σ

−1/2
1 )||,

where ||.|| is the norm associated with the scalar product tr(ABt).

6.6.1. The Riemannian volume element

By adapting the calculations done in section 6.4.2, we obtain that the metric GFisherND ex-
pressed in the canonical basis of SPD(n) is given by

E′i,i E′i,j

GFisherND =


1
λ2

1

. . .
1
λ2
n

1
2λiλj


Therefore, using the classical machinery,

dvolFisher
dµφ

=
√
det(GFisherNΣ

) =
1

2
n(n−1)

2

√∏
i

1

λn+1
i

=
1

2
n(n−1)

2

det(Σ)−(n+1)/2. (6.21)

This expression can be found in Terras (1988).
Furthermore, the Riemannian volume element is now

dvolFisher =
√
det(GFisherNΣ

)
dµφ

dα∗(µψ̃)
dµψ̃

=
1

2
n(n−1)

2

∏
i<j≤n

|λi − λj |
√∏

i

1

λn+1
i

dLebRn+ dHaarSO(n).

(6.22)

6.6.2. The volume change of the exponential map

We are interested here in the computation of the following quantity:

θΣ1 : Σ2 7→ θΣ1(Σ2) =
dvolFisher

dexp∗Σ1
(LebSym(n))

(Σ2),

that is to say the density of the Riemannian measure of Gm=0(n) with respect to the
Lebesgue measure of the parametrization induced by expΣ. Since SPD(n) is homogeneous,
the volume change can be computed at the identity matrix I. For the a�ne invariant
metric we have that expI is the classical exponential application on matrices, see Lenglet
et al. (2006). The density is split into two terms:

dvolFisher
dexp∗(LebSym)

=
dvolFisher
dLebSPD(n)

dLebSPD(n)

dexp∗(LebSym(n))
,
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6. Density estimation on Gaussian laws

where dvolFisher
dLebSPD(n)

was already computed in Eq. (6.21). Recall the function de�ned in sec-

tion 6.4:

α :

{
Rn × SO(n)→ Sym(n)
(λ,R) 7→ RDλR

t

Let ˜exp be de�ned as:

˜exp :

{
Rn × SO(n)→ Rn+ × SO(n)
(λ,R) 7→

(
eλi , R

)
The computation of

dLebSPD(n)

dexp∗(LebSym(n))
is made using the following commutation diagram,

(Rn ×Q,µψ̃ = Leb(Rn)×HarrSO(n)) (Rn ×Q,µψ̃)

(Sym(n), µφ = Leb(Sym)) (SPD(n), µφ)

˜exp

α

exp

α

that is to say exp◦α =
α ◦ ˜exp. For the sake of simplicity, µφ is here extended to Sym(n). Knowing the volume
changes induced by α and ˜exp enables the computation of the volume change induced by
exp. The local volume change induced by α was computed in section 6.4 and gives:

dµφ
dα∗(µψ̃)

=
∏
i<j

|λj − λi|.

We address now the volume change
dexp∗(µψ̃)

dµψ̃
induced by ˜exp, where exp∗(µψ̃) denotes

the image measure of µψ̃ by ˜exp.
Let F : Rn ×Q→ R, F (λ,R) = f(λ)g(R) such that∫

Rn×Q
F (λ,R)dexp∗(µψ̃) =

∫
Rn×Q

F ( ˜exp(λ,R))dµψ̃

=

∫
Rn×Q

F (eλ, R)dµψ̃

=

∫
Rn
f(eλ)dλ

∫
Q
g(R)dHaarSO(n)

=

∫
Rn
f(Λ)

n∏
i=1

1

Λi
dΛ

∫
Q
g(R)dHaarSO(n)

=

∫
Rn×Q

F (Λ, R)

n∏
i=1

1

Λi
dµψ̃.

Since the set of separable functions F ∈ L1 is dense in L1, we have that:

dexp∗(µψ̃)

dµψ̃
(λ,R) =

∏ 1

λi
and

dµψ̃
dexp∗(µψ̃)

(λ,R) =
∏

λi.

Using

dµφ
dexp∗(µφ)

(RDeλR
t)
dµφ
dµψ̃

(λ,R) =
dµφ
dµψ̃

(eλ, R)
dµψ̃

dexp∗(µψ̃)
(eλ, R),
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6.6. The space of multivariate centred Gaussian laws

we have that

dµφ
dexp∗(µφ)

(RDeλR
t)
∏
i<j

|λi − λj | =
∏
i<j

|eλi − eλj |e
∑
i λi ,

and when eigenvalues are distinct,

dµφ
dexp∗(µφ)

(RDeλR
t) =

dLebSPD(n)

dexp∗(LebSym(n))
(RDeλR

t) =
∏
i<j

|eλi − eλj |
|λi − λj |

e
∑
i λi . (6.23)

The continuity of the volume change enables to extend the expression everywhere. Let
log(Σ) = RD(log(λi))R

t, where again Σ = RDRt ∈ SPD(n). The application log is the
inverse the exponential application on SPD(n). Combining Eq. (6.23) and Eq. (6.21), we
obtain for Σ ∈ SPD(n):

θI(Σ) =
1

2n(n−1)/2

√
1∏

e(n+1)λi

∏ |eλj − eλi |
|λj − λi|

∏
eλi

=
1

2n(n−1)/2

∏ |eλj − eλi |
|λj − λi|

∏
e(1−n+1

2
)λi

=
1

2n(n−1)/2

∏ 1

|λi − λj |
∏

2e
λi+λj

2
|e
λi−λj

2 − e
λj−λi

2 |
2

∏
e(1−n+1

2
)λi

=
2n(n−1)/2

2n(n−1)/2

∏ 1

|λi − λj |
∏

sinh

(
|λi − λj |

2

)∏
e
λi+λj

2

∏
e(1−n+1

2
)λi

=
∏ 1

|λi − λj |
∏

sinh

(
|λi − λj |

2

)∏
e

(n−1)
2

λi
∏

e(1−n+1
2

)λi

=
∏ sinh

(
|λi−λj |

2

)
|λi − λj |

,

where the λi are the eigenvalues of log(Σ). This expression is not new since the factor in
sinh(.) is known to be the Riemannian volume element in polar coordinates. Let Σ1/2 =
RD(

√
λi)
Rt. Using the invariance of the metric we obtain �nally,

θΣ1(Σ2) = 2n(n−1)/2
∏ sinh

(
|λi−λj |

2

)
|λi − λj |

, (6.24)

where the λi are the eigenvalues of log(Σ
1/2
1 Σ2Σ

1/2
1 ).

6.6.3. Fourier�Helgason transform

The Gm=0(n) is symmetric and there is a Fourier�Helgason transform de�ned on it. This
paragraph is mainly extracted from Peter T. Kim and Donald St. P. Richards (2011). Let

ps :

{
SPD(n) → C

Σ 7→
∏
i |Σ|

si
i

(6.25)

where |Σ|i is the determinant of Σ after removing row and column i.
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6. Density estimation on Gaussian laws

For s ∈ Cn and K ∈ SO(n), the Helgason functions (plane waves) have the following
expression:

es,R :

{
SPD(n) → C

Σ 7→ ps(RΣRt)
(6.26)

Let C∞c be the set of in�nitely di�erentiable functions with compact support. The
Fourier�Helgason transform of f ∈ C∞c is given by:

H(f)(s,R) =

∫
Σ∈SPD(n)

f(Σ)es,R(Σ)dvolFisher, (6.27)

where x denotes the complex conjugate of x.
Let ρ = (1

2 , · · · ,
1
2 ,

1
4(1− n)) ∈ Rn and

Cn(ρ) = {s ∈ Cn|Re(si) = −ρi}. (6.28)

For a, b ∈ C with Re(a), Re(b) > 0, let

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

where Γ is the gamma function. For s ∈ Cn let

cm(s) =
∏

1≤i≤j≤n−1

B(1
2 , si + · · ·+ sj + 1

2(j − i+ 1))

B(1
2 ,

1
2(j − i+ 1))

,

and

ωn =

∏n
j=1 Γ(j/2)

(2iπ)nπn(n+1)/4n!
.

Using this notation, the measure µs on Cn is de�ned as

dµs = ωn|cn(s)|−2ds1 · · · dsn.

For f ∈ C∞c , Terras (1988) and Peter T. Kim and Donald St. P. Richards (2011)
provided the inversion formula,

f(Σ) =

∫
s∈Cn(ρ)

∫
k∈SO(n)/H

H(f)(s,R)es,R(Σ)dkdµs,

where dk stands for the normalized factorization of the Haar measure of SO(n) on SO(n)/H.
Following the discussion of section 6.4.1, the expression can be rewritten as

f(Σ) =

∫
s∈Cn(ρ)

∫
R∈D
H(f)(s,R)es,R(Σ)dHaarSO(n)dµs, (6.29)

where HaarSO(n) is taken such that HaarSO(n)(D) = 1.

6.7. Density estimation on multivariate centred Gaussian laws

Let X be a random variable in Ω → Gm=0(n). Notations of this section are similar to
those of section 6.2. For the reasons explained in the previous section, we are here only
interested in the Fisher metric. The case of the Wasserstein metric is the same studied in
section 6.5.2.
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6.7. Density estimation on multivariate centred Gaussian laws

6.7.1. Histograms

Let (Aj) be a partition of Gm=0(n). Let αj be the number of draws that lay in Aj ,
αj = Card{xi ∈ Aj}. The histogram of the draws (xi) is the function

f̂k =
1

k

∑
j

1

vol(Aj)
αj1Aj ,

where 1E is the indicator function of E. Thus f̂k is an estimator of the density f . In
order to respect the criterion mentioned in section 6.2, bins should be isometric and verify
some isotropy properties. In the Euclidean context, square bins present an interesting
compromise between isotropy and computational simplicity. The main drawback of this
method is the di�culty to obtain a regular partition of the space. A lead is to see Gm=0(n)
as the imaginary part of the Siegel upper half space. See Zelikin (2000) for an introduction
to the Siegel upper half space. Regular polygonal tiling on the hyperbolic space, which
can be extended to the Siegel space, are widely studied and are good candidates for the
histogram bins. However the absence of homothetic transforms makes the adaptation of
the estimation to the scaling factor di�cult.

6.7.2. Kernel density estimation

The explicit expression of the change of volume θp(q) induced by the exponential map
enables us to use the kernel density estimation. Given a scaling parameter r > 0, the
estimation becomes:

f̂ rk =
1

k

∑
i

1

rn
1

θΣxi
(Σx)

K

(
dFisher(x, xi)

r

)
, (6.30)

where θΣxi
(Σx) is given in Eq. (6.24). Thus, we have the following expression for the

Pelletier kernel density estimator

f̂ rk =
1

k

∑
i

2n(n−1)/2

rn

∏
p<q

sinh(
|λp−λq |

2 )

|λp − λq|
K

(
||log(Σ

−1/2
xi ΣxΣ

−1/2
xi )||

r

)
, (6.31)

where the λ. are the eigenvalues of log(Σ
−1/2
xi ΣxΣ

−1/2
xi ).

6.7.3. Orthogonal series density estimation

As discussed in previous section, the symmetry of the space gives rise to a Fourier�Helgason
transform and its inverse. The empirical transform is given by:

Hemp(f)(s,R) =
∑
i

f(Σxi)es,R(Σxi),

where es,R is the plane wave de�ned in Eq. (6.26).
For s ∈ Cn(ρ), see Eq. (6.28), let

rj = sj + sj+1 + · · ·+ sn +
1

4
(n− 2j+ 1) and λs = −(r2

1 + r2
2 + · · ·+ r2

n−
1

48
n(n2− 1)),

then
∆es,R(Σ) = λses,R(Σ).
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6. Density estimation on Gaussian laws

Let Cn(ρ, T ) = {s ∈ Cn(ρ), λs < T}. For a cut-o� parameter T > 0, the associated density
estimator is then given by:

f̂Tk (Σ) =

∫
s∈Cn(ρ,T )

∫
R∈Q
Hemp(f)(s,R)es,R(Σ)dHaarSO(n)dµs. (6.32)

Let 1FT = Cn(ρ, T ) × SO(n). It can be veri�ed that H−1(1FT ) is invariant under the
action of SO(n). Thus, one has

f̂Tk = µk ∗ H−1(1FT ).

In other words, the estimation do not privilege speci�c directions or locations. The main
drawback of this method is its computational cost: one has to evaluate integral (6.32). The
integral present in the transform is due to the non-compactness of the underlying space
SPD(n). In Rn, the assumption that the random variable lays in a parallelepiped P , that
is to say Supp ⊂ P , enables the use of Fourier series instead of the Fourier transform. Then
the estimation involves only a �nite sum. Unfortunately, there are no compact domains
D ⊂ SPD(n) where the eigenfunctions of the Laplacian are known.

6.8. The space of Gaussian laws with �xed rotation

Given a rotation matrix R, we study here the speci�city of the space of Gaussian laws
of the form N(m,RDRt) where D is diagonal matrix, under the Wasserstein metric. We
choose here to represent the Gaussian law N(m,RDRt) by its mean m ∈ Rn and a set of
standard deviation σ ∈ Rn, with σ2

i an eigenvalue of D. In the (m,σ) parametrization,
the expression of the metric found in (6.4.3.1) takes the following form:

emi eσi

GWasserstein
Nm,σ =



1
. . .

1
1

. . .
1


Thus in the (m,σ) parametrization, the metric is Euclidean. The density estimation can

then be achieved using standard techniques.

6.9. The space of Gaussian laws with �xed mean and rotation

Given a mean m and a rotation R, we study here the speci�city of the space of Gaussian
laws of the form Gm,R(n) = {N(m,RDRt),with D diagonal}, under the Fisher metric. The
metric computed in (6.4.2) expressed in the basis {eλi} gives:

eλi

GFisherNm,RDλRt
=


1
λ2

1

.
1
λ2
n


After the change of coordinates γi = log(λi), the metric becomes:
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6.10. The space of Gaussian laws with �xed covariance

eγi

GFisherNm,RDλRt
=

1
.

1


Thus in the γ = log(λ) parametrization, the metric is Euclidean. The density estimation

can then be achieved using standard techniques.

6.10. The space of Gaussian laws with �xed covariance

Given a covariance matrix Σ, we study now the speci�city of the space of Gaussian laws
of the form N(m,Σ), under the Fisher metric. Note that the mean under the Wasserstein
metric follows the canonical Euclidean scalar product. From Eq. (6.11) in G(n):

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ),

and we have that, at a �xed Σ, it is given by

< um, vm >Fisherm = utmΣ−1vm.

The metric on the mean is Euclidean, of scalar product Σ−1. The density estimation
can then be achieved using standard techniques.

6.11. The space of univariate Gaussian laws

This section addresses the case of G(n = 1). Space G(n = 1) is identi�ed with the half
plane R × R+. That means that each normal law N is described by its mean m ∈ R
and its (positive) standard deviation σ ∈ R+. Note that, as in section 6.4.3, there is a
slight change of convention with respect to the previous sections since the equivalent of
the covariance matrix Σ would be the square of the standard deviation σ2. The study is
focused on the Fisher metric since the case of the Wasserstein metric has been analyzed in
section 6.8.

6.11.1. Fisher metric and the Poincaré upper half plane

The Poincaré upper half plane of curvature R is a half plane {x ∈ R, y ∈ R+} endowed
with the following Riemannian metric:

G(x,y) = a2

(
1/y2 0

0 1/y2

)
, (6.33)

with R = − 1
a2 . The Poincaré upper half plane is a model of hyperbolic geometry, see Can-

non et al. (1997). The distance between (x1, y1) and (x2, y2) is given by:

d((x1, y1), (x2, y2)) = a cosh−1

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)
. (6.34)

The Poincaré upper half plane is isotropic: each location and directions are equivalent.
After having considered the change of convention between Σ and σ, the matrix of the

103



6. Density estimation on Gaussian laws

Fisher metric on G(n = 1) can be deduced from Eq. (6.4.2), i.e.,

GFisher(m,σ) =

(
1/σ2 0

0 2/σ2

)
(6.35)

Consider now the application s : (m,σ) 7→ (x, y) = (m,
√

2σ). Solving the equation:

(ds)t.GFisher(x,y) .ds = GFisher(m,σ) (6.36)

where ds is the Jacobian matrix of s, the expression of the metric is obtained in the new
parametrization:

GFisher(x,y) = 2

(
1/y2 0

0 1/y2

)
(6.37)

Thus, under the Fisher metric, the space G(n = 1) is isometric to a Poincaré upper half
plane of curvature −1

2 . Let H denotes just the Poincaré upper half plane of curvature −1
2 .

6.11.2. The Riemannian volume element

In the (x, y) parametrization, the Riemannian volume measure vol has the following ex-
pression:

dvol

dLeb(x,y)
=
√
det(GFisher(x,y) ) =

2

y2
. (6.38)

6.11.3. The volume change of the exponential map

Given a reference point p, any point in polar coordinates (r, α) of the hyperbolic space is
de�ned as the point q(r,α) at distance r of p on the geodesic with initial direction α ∈ S1.
Since the hyperbolic space is isotropic, the expression of the length element in polar coor-
dinates depends only on r, see Anker and Ostellari (2003); Grigoryan (2009). Expressed
in polar coordinates the hyperbolic metric of curvature −1 is:

g = dr2 + sinh(r)2gS1 .

For a hyperbolic space of curvature −1
2 , the expression becomes:

g = 2(dr2 + sinh(r)2gS1).

In the basis
{
er =

dp(r,α)

dr , eα =
dp(r,α)

rdr

}
, the metric takes the following form:

G(r,α) = 2

(
1 0
0 sinh(r)2 1

r2

)
(6.39)

Thus, if we consider vol as a measure on the parametrization (r, α), one has

dvol

dLeb(r,α)
(r, α) =

√
det(G(r,α)) = 2

sinh(r)

r
, (6.40)

where r = d(p, q). The polar coordinates are a polar expression of the exponential map
at p. Indeed the exponential map at p can be de�ned as expp(r(cos(α), sin(α))) = q(r,α).
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6.12. Density estimation on univariate Gaussian laws under the Fisher metric

Therefore, considering now vol as a measure on the Riemannian space, the volume change
of the exponential is just:

dvol

dexp∗(Lebp)
(q(r,α)) = 2

sinh(r)

r
. (6.41)

We obtain then

θp(q) = 2
sinh(d(p, q))

d(p, q)
, (6.42)

where θ is the function used in Eq. (6.3).

6.11.3.1. Fourier�Helgason transform

We have said that G(n = 1) is symmetric, therefore there exists a Fourier�Helgason trans-
form. This paragraph is mainly extracted from Huckemann et al. (2010). Space H is iden-
ti�ed with the complex upper half plane: (1, 0) = 1 and (0, 1) = i. For (s, k) ∈ C×SO(2),
the Helgason functions (plane waves) have in the case the following expression:

es,ku :

{
H → C
z 7→ Im(ku.z)

s = eRe(s) log(Im(ku.z))eiIm(s) log(Im(ku.z))
(6.43)

where Re(.), Im(.) denotes the real and imaginary part,

ku =

(
cos(u) sin(u)
− sin(u) cos(u)

)
,

and

ku.z =
z cos(u) + sin(u)

cos(u)− z sin(u)
.

We have that
∆es,ku = s(s− 1)es,ku

, see Huckemann et al. (2010). Let f ∈ C∞c (H), where C∞c (H) denotes the set of in-
�nitely di�erentiable with compact support. For (s, k) ∈ C×SO(2), the Fourier�Helgason
transform of f is given by:

FH(f)(s, ku) =

∫
H
f(z)es,ku(z)dvol. (6.44)

The inverse transform is given by:

f(z) =

∫
t∈R

∫ u=2π

u=0
FH(f)(

1

2
+ it, ku)e 1

2
+it,ku

(z)
1

8π2
t tanh(πt)dudt. (6.45)

6.12. Density estimation on univariate Gaussian laws under

the Fisher metric

Let X be a random variable in Ω → G(n = 1). Notations of this section are similar
to notation of section 6.2, except for the set of draw which now is (z1, ..., zk), with zi =
(mzi , σzi). For the reasons explained in the previous section we are here only interested in
the Fisher metric.
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6. Density estimation on Gaussian laws

6.12.1. Histograms

The problem has already been partially addressed in section 6.7.1. Recent works on Voronoï
diagrams in the hyperbolic space Nielsen and Nock (2010) might provide alternative solu-
tions through the construction of adaptive bins.

6.12.2. Kernel

The explicit expression of the change of volume θp(q) induced by the exponential map
enables us to use the kernel density estimation. Given a scaling parameter r > 0, the
estimation becomes:

f̂ rk =
1

k

∑
i

1

rn
1

θzi(z)
K

(
dFisher(z, zi)

r

)
, (6.46)

where θzi(z) is given in Eq. (6.42). Then, we have the close expression:

f̂ rk =
1

k

∑
i

1

rn
dFisher(z, zi)

2 sinh(dFisher(z, zi))
K

(
dFisher(z, zi)

r

)
, (6.47)

where here dFisher(z, zi) =
√

2 cosh−1
(

1 +
(mz−mzi )

2+2(σz−σzi )
2

2σzσzi

)
.

6.12.3. Orthogonal series

The symmetry of the space provides a Helgason transform and its inverse. The empirical
transform is given by:

Hemp(f)(s, ku) =
∑
i

f(zi)es,k(zi),

where es,ku is the plane wave de�ned in 6.43.
For a cut-o� parameter T > 0, the associated density estimator is then given by:

f̂Tk (z) =

∫
|t|<T

∫ u=2π

u=0
Hemp(f)(

1

2
+ it, ku)e 1

2
+it,ku

(z)
1

8π2
t tanh(πt)dudt. (6.48)

Let 1FT = [−T, T ] × SO(2). It can be veri�ed that H−1(1FT ) is invariant under the
action of SO(2). Thus,

f̂Tk = Dk ∗ H−1(1FT ),

and, consequently the estimation do not privilege speci�c directions or locations.
The main drawback of this method is its computational cost. Indeed the situation is

similar to that considered in section 6.7.3.

6.13. Partial quantities: mean, eigenvalues and rotation

This section addresses the study of the standard partial quantities that are the mean,
the eigenvalues and the rotation. On the one hand, depending on the application, the
interesting information is sometimes carried by only one or two partial quantities. On the
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6.13. Partial quantities: mean, eigenvalues and rotation

other hand, as mentioned in section 6.2.5 the curse of dimensionality pushes us to reduce
the dimension of the studied objects.
We start the discussion with an example. Let X be a random variable valued in R2 of

density f . Consider the distribution of the radius of the polar coordinates (r, θ). Firstly,
the Lebesgue measure of R2 can be written as a product dLeb = rdθdr. Thus the Lebesgue
measure of R2 induces a measure on radiuses rdr. The density computed with respect to
rdr can be interpreted as an average of f over a slice of constant radius. Secondly, the
metric on R2 induces a natural metric on the space of radius seen as the quotient space
R ∼ R2/θ. The natural quotient metric is the Euclidean metric on R, the associated
measure being the Lebesgue measure dr. Thus this example shows that there is not a
unique way of addressing the density estimation of partial quantities.
Remind the context of section 6.2. Let Ω be a space, endowed of with a σ-algebra

and a probability measure p. Space G(n) is equipped with a Riemannian metric G, the
associated Riemannian measure is called vol. Let X be a random variable, X,Ω 7→ G(n).
The measure on G(n) induced by X is noted µX . We assume that µX has a density, noted
f , with respect to vol. G̃(n) can be identi�ed to the product Rn ×E ×D, see section 6.4.
Recall that vol(G(n) \ G̃(n)) = 0. Under this identi�cation, the measure vol is described
by a product vol = µmean × µλ × µR, see section 6.4.1. Let Xmean, Xλ and XR be the
random variables naturally induced by the identi�cation between G̃(n) and Rn × E × D.
Note that XR is not always properly de�ned. This problem can be neglected given that
vol(G(n) \ G̃(n)) = 0 and that the law of X has a density with respect to vol. Let µXmean ,
µXλ , µXR be the associated measures.

6.13.1. Average over slices

Measure µXmean(A) is the probability that mx ∈ A when x follows µX . Thus,

µXmean(A) = µX(A× E ×D).

Let fmean be the density of µXmean with respect to µmean. Since

µX(A× E ×D) =

∫
A

∫
E

∫
D
fdµRdµλdµmean,

we have,

fmean(m) =

∫
E

∫
D
f(m,λ,R)dµRdµλ.

Let α = (µλ(E)µR(D))−1. Quantity αfmean can be interpreted as an average value of
the original density f over a slice E × D. The same hold for µXλ and µXR . Let µ

Eucl
· be

the measure induced by the canonical Euclidean metric of Rn × Sym(n). Up to a scaling
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factor, we recall here the expression of the di�erent measures:

µEuclmean = Leb,

dµEuclλ =
∏

i<j≤n
|λi − λj |dLeb(λ),

µEuclR = HaarSO(n),

µFishermean = Leb,

µFisherR = HaarSO(n),

µWasserstein
mean = Leb,

dµWasserstein
λ =

∏
i

1√
λi

∏
i<j

|λi − λj |√
(λi + λj)

dLeb,

µWasserstein
R = HaarSO(n),

where HaarSO(n) is restricted to D. The expression of µFisherλ varies between G(n) and
Gm=0(n). When G(n) is the underlying space, we have:

dµFisherλ =
∏

i<j≤n
|λi − λj |

√∏
i

1

λn+2
i

dLeb, (6.49)

and when Gm=0(n) is the underlying space the expression becomes:

dµFisherλ =
∏

i<j≤n
|λi − λj |

√∏
i

1

λn+1
i

dLeb (6.50)

Fig. 6.3 shows several cases of density change for n = 2.

(a) (b) (c)

Figure 6.3.: For n = 2, (a),(b) and (c) are visualizations of dµEuclλ , dµWass
λ and dµFisherλ

(for Gm=0(n)) respectively.

The question of the underlying metric associated to these measures has not yet been
clari�ed. In the absence of underlying metric, the notions of homogeneity and isotropy
disappear. Thus the estimation can be achieved using the approach described section 6.2.1.
Despite the absence of clear argument, the Lebesgue measure and the Haar measure push
to the use of an underlying translation invariant metric.
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6.13. Partial quantities: mean, eigenvalues and rotation

6.13.2. Quotient metric on partial quantities

The space associated to each partial quantity can be seen as a quotient of G(n) by the rest of
the partial quantities. The quotient G(n)/(Rn+×SO(n)) denotes the identi�cation elements
with all those which di�er only in the eigenvalues or the rotation. Thus G(n)/(Rn+×SO(n))
can be interpreted as the space of means. In several cases, the Riemannian metric on G(n)
induces a canonical metric on such quotient space. This metric induces a measure on the
partial quantity, which enable the estimation of density of the associated random variable
X(.).

6.13.2.1. Mean

For the Wasserstein metric and the Euclidean metric of Rn × Sym(n), the quotient space
Rn ∼ G(n)/(Rn+ × SO(n)) inherits naturally of the canonical Euclidean metric. Indeed,
each couple (λ,R) induces the same metric on m. The density estimation can thus be
achieved using standard techniques. Note that the induced Lebesgue measure is similar to
µmean.
Recall the expression of the scalar product of the Fisher metric (6.11):

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ).

Each covariance matrix Σ induces a metric on the space of means. However, the metric
varies when Σ varies. Thus the Fisher metric does not induces a canonical metric on
Rn ∼ G(n)/(Rn+ × SO(n)).

6.13.2.2. Eigenvalues

For λ ∈ Rn, let Dλ be the associated diagonal matrix. Fixing a mean m and a rotation R
induces a metric on eigenvalues:

dm,R(λ1, λ2) = d(Nm,Dλ1
,R,Nm,Dλ2

,R). (6.51)

The group of rotations naturally acts on Gaussian laws by Ra.LeftNm,λ,Rb = Nm,λ,RaRb .
Furthermore for the Euclidean metric of Rn × Sym(n), the Fisher and the Wasserstein
metric, we have that for all R ∈ SO(n):

d(Nm1,λ1,R1 ,Nm2,λ2,R2) = d(R.LeftNm,λ,R1 , R.LeftNm,λ,R1). (6.52)

Thus since dm,R is independent of m and R, the three metrics induce a canonical metric
on the quotient Rn+ ∼ G(n)/(Rn × SO(n)).
On the one hand according to section 6.8, the Wasserstein metric on eigenvalues at �xed

rotation is the canonical Euclidean metric after the change of coordinates σ =
√
λ. On

the other hand, according to section 6.9 the Fisher metric on eigenvalues at �xed mean
and rotation is the canonical Euclidean metric after the change of coordinates γ = log(λ).
Finally, it is easy to see that the quotient metric induced by the Euclidean metric of
Rn × Sym(n), is the Euclidean metric on R+. Note that the associated measures di�ers
from µλ.
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6.13.2.3. Rotation

Given a Gaussian law Nm,λ,R, the Euclidean metric of Rn × Sym(n), the Fisher and the
Wasserstein metric induce a left-invariant metric on Q:

dNm,λ,R(R1 ∈ Q,R2 ∈ Q) = d(R1.LeftNm,λ,R, R2.LeftNm,λ,R). (6.53)

However according to the expressions of the metrics in the basis (E′i≤j) and the di�erential
of α̃, see Eq. 6.8, it can be veri�ed that the left-invariante metric is dependent of the
choice of Nm,λ,R. Thus neither the Euclidean metric of Rn × Sym(n), nor the Fisher nor
the Wasserstein metric induce a canonical quotient metric on SO(n) ∼ G(n)/(Rn × Rn+).
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(a) (b)

Figure 6.4.: (a): Convergence of density estimations using an Euclidean and a Rieman-
nian Kernel, in a Riemannian context, (b): the density is estimated fol-
lowing section 6.2.3 using two standard kernels of the plane, K(||x||) =
3
π (1− ||x||2)21||x||<1 and K(x) = 220

81π (1− ||x||3)31||x||<1.

6.14. Experimental section

Every standard density estimation technique involves a scaling parameter. This scaling
factor controls the in�uence of the observation xi on the estimated density at x, depending
on the distance between x and xi. In the experiments, the scaling factor has been chosen
following the framework proposed in Duin (1976): a cross validation of the likelihood of
the estimator.
This section start with an illustration, see Fig. 6.4(a), of the importance of the underlying

metric on the density estimation method. Points are drawn in the Poincaré upper half plane
according to the following density:

f(z) =
√
dFisher(z, (0, 1))2 − 11dFisher(z,(0,1))<1.

From the draws, �rstly, the density is estimated using an Euclidean kernel method, followed
by an adaptation to the Riemannian measure, as described in section 6.2.1. Secondly, the
density is estimated using a Riemannian kernel, see section 6.2.3. The base kernel is a
quartic kernel K(||x||) = 3

π (1 − ||x||2)21||x||<1. Fig. 6.4(a) shows the convergence of the
two estimations to the true density. The second experiment, see Fig. 6.4(b), illustrates the
limited impact of the shape of the kernel K.

6.14.1. Histograms of multiple grey-scale image acquisition

The studied example is a time lapse sequence of grey-scale images from a retina. At each
pixel, we have 20 successive fast acquisitions. By assuming a Gaussian distribution on the
time series, we obtain a Gaussian valued image represented in Fig. 6.5.
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(a) (b)

Figure 6.5.: Time lapse sequence of images from the retina: (a) mean image, (b) standard
deviation image.

Each pixel of the image contains an univariate Gaussian law. We recall that for univariate
Gaussian laws, the Wasserstein metric is the Euclidean metric of the (m,σ) plane and that
the Fisher metric is the Poincaré metric. Histograms of Gaussian-valued image Fig. 6.5
are computed in Fig. 6.6 with respect the Fisher and the Wasserstein metric, using the
appropriate kernel density estimation.

(a) (b)

Figure 6.6.: Histogram of Gaussian-valued image Fig. 6.5 using the Fisher metric in (a)
and the Wasserstein metric in (b).

6.14.2. Density estimation in structure tensor images

The structure tensor image from a grayscale image is a �eld of symmetric positive de�nite
matrices. Despite the fact that these matrices are not directly covariance matrices of
Gaussian laws, they can be studied under the Fisher and theWasserstein metric of Gm=0(n),
typically n = 2 for 2D images and n = 3 for 3D ones. Fig. 6.7(b)-(g) shows the densities
of the two eigenvalues λ1 ≤ λ2 of the structure tensor �eld computed from Fig. 6.7(a).
For each metric, the densities of eigenvalues are computed following considerations of
section 6.13. For the induced measures µEuclλ , µFisherλ and µWasserstein

λ , the densities are
�rstly estimated using an Euclidean kernel density estimation, followed by an adaptation to
the reference measures, given in section 6.13.1. According to section 6.13.2.2, each quotient
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6.14. Experimental section

metric is Euclidean in the right parametrization. In the adapted parametrizations, the
densities are obtained using an Euclidean kernel density estimation.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.7.: Densities estimated from the structure tensor �eld computed from image (a).
Top row, densities computed from the induces measures µ.λ: (b) Euclidean
metric of Rn × Sym(n), (c) Fisher metric, (d) Wasserstein metric. Bottom
row, densities computed using the quotient metrics: (e) Euclidean metric of
Rn × Sym(n), (f) Fisher metric (note the change of scale), (f) Wasserstein
metric.

Given a set of samples, the watershed transform of the complement of its associated
density provides a non parametric clustering Soille (2004), similar to that of mean-shift
algorithm. When the set of samples are the values taken by an image, the clustering of the
samples can be interpreted as a segmentation of the image. Fig. 6.8 presents an example of
texture segmentation according to the watershed transform of the density of the structure
tensor �eld using measures.
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Figure 6.8.: Texture image segmentation: (a) and (b) are respectively a texture image and
its associated structure tensor �eld. The density of the eigenvalues of the
structure tensors is estimated with respect to the two measures discussed in
section 6.13 induced by the Wasserstein metric: (c) segmentation with respect
to the Lebesgue measure on eigenvalues, and (d) segmentation with respect to
µWass
λ .

6.14.3. Density estimation in Di�usion Tensor Imaging

Di�usion tensor imaging (DTI) data represent an average motion of water molecules in
each voxel of the image, modeled by a three-dimensional centered Gaussian law. Gaussian
laws are therefore parametrized by their covariance matrices. Thus, the resulting image
is valued in SPD(3). Fig. 6.9(a) is a visual representation of a covariance matrix �eld on
a two dimensional slice of a brain. Fig. 6.9(c) is the corresponding fractional anisotropy.
Fig. 6.9(b) is a segmentation of the brain based on the distribution of the largest eigenvalue
of each matrix.
The limiting factor for the use of density estimation is the poor spatial resolution. Indeed,

the spatial resolution is not yet su�cient to enable the estimation of densities on local
spatial neighborhoods.

6.14.4. Radar density estimation on the Poincaré disk

In this section the random variable is not an image I but a set of coe�cients derived from
a radar signal. In particular, the draws (xi) are not explicitly Gaussian laws, but falls into
the Poincaré disk, an analog of the Poincaré upper half plane.
Let us discuss brie�y how radar data are related to hyperbolic space via re�ection coef-

�cients, for more details see Arnaudon et al. (2013). Each radar cell is a complex vector
z = (z0, · · · , zn−1) considered as a realization of a centered stationary Gaussian process
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(a) (b) (c)

Figure 6.9.: DTI segmentation by watershed partitioning of its estimated density (his-
togram): (a) original SPD(3)-valued image, (b) its map of fractional
anisotropy. The density of the largest eigenvalues of each matrix is evaluated
against the Lebesgue measure of Rn and (c) is a segmentation corresponding
to the watershed transform of the complement of the this density.

Z = (Z0, · · · , Zn−1) of covariance matrix Rn = E[ZZ∗]. The matrix Rn has a Toeplitz
structure. For 1 ≤ k ≤ l ≤ n − 1, the k-th order autoregressive estimate of Zl is given
by Ẑl = −

∑k
j=1 a

(k)
j Zl−j , where the autoregressive coe�cients a(k)

1 · · · a
(k)
k are chosen such

that the mean squared error E(|Zl − Ẑl|2) is minimized. In practice, re�ection coe�cients
are estimated by regularized Burg algorithm BARBARESCO and Barbaresco (1996). The

last autoregressive coe�cient a(k)
k is called the k-th re�ection coe�cient, denoted by µk

and which has the property |µk| < 1. The coe�cient for k = 0 corresponds to the power,
denoted P0 ∈ R∗+. The re�ection coe�cients induce a (di�eomorphic) map ϕ between
the Toeplitz Hermitian positive de�nite (HPD) matrices of order n, T n, and re�ection
coe�cients:

ϕ : T n → R∗+ × Dn−1, Rn 7→ (P0, µ1, · · · , µn−1)

where D = {ζ ∈ C : |ζ| < 1} is the open unit disk of the complex plane. Di�eomorphism
ϕ is very closely related to theorems of Trench (1964).
The Riemannian geometry of the space of re�ection coe�cients has been explored in Bar-

baresco (2013) through the Hessian of Kähler potential. The metric appropriate metric on
T n is

ds2 = n
dP 2

0

P 2
0

+
n−1∑
k=1

(n− k)
|dµk|2

(1− |µk|2)2 . (6.54)

According to the metric (6.54) the space T n can be seen as a product of the Riemannian
manifold

(
R∗+, ds2

0

)
, with ds2

0 = n(dP 2
0 /P

2
0 ) (logarithmic metric multiplied by n), and

(n− 1) copies of
(
D, ds2

k

)
1≤k≤n−1

, with ds2
k = (n− k)ds2

D.
(
R∗+ × Dn−1, ds2

)
is a Cartan�

Hadamard manifold whose sectional curvatures are bounded, i.e., −4 ≤ K ≤ 0. This metric
is related to information geometry and divergence functions, see discussion in Barbaresco
(2014). From the product metric, closed forms of the Riemannian distance, arc-length
parameterized geodesic, etc. can be obtained, see Barbaresco (2013); Arnaudon et al.
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(2013). D endowed with the metric ds is called the Poincaré disk. The application

f(z) =
z − i
z + i

,

is an isometry between the Poincaré upper half plan and the Poincaré disk. Thus the
Poincaré upper half plan and the Poincaré disk are isometric. Fig. 6.10 presents the
estimations of the marginal densities coe�cients µk.
Data used in the experimental tests are radar observations from THALES X-band Radar,

recorded during 2014 �eld trials campaign at Toulouse Blagnac Airport for European
FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex hazards mitigation). Data are
representative of Turbulent atmosphere monitored by radar in rainy conditions. Fig. 6.10
and 6.11 illustrate the density estimation of the six re�ection coe�cients on the Poincaré
unit disk. For each coe�cient the dataset is composed of 120 draws.
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µ1, N = 0.18 µ2, N = 2.13 µ3, N = 4.81

µ4, N = 3.83 µ5, N = 5.26 µ6, N = 6.99

Figure 6.10.: Kernel density estimation of the distribution of the 6 �rst coe�cients µk
under rainy conditions, withK(x) = 3

π (1−x2)21x<1. For visualization clarity,

densities are normalized by N = supz∈D{f̂(z)}. Contours correspond to the
watershed transform of the complement of estimated densities.
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µ1, N = 0.007 µ2, N = 1.61 µ3, N = 14.86

µ4, N = 8.82 µ5, N = 17.31 µ6, N = 23.29

Figure 6.11.: Kernel density estimation of the distribution of the 6 �rst coe�cients µk in
normal conditions, with K(x) = 3

π (1 − x2)21x<1. For visualization clarity,

densities are normalized by N = supz∈D{f̂(z)}. Contours correspond to the
watershed transform of the complement of estimated densities.
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6.15. Conclusions and perspectives

The whole theory and corresponding practical solutions to density estimation have been
analyzed for standard spaces underlying Gaussian laws.
Under each space and each metric, four types of density estimation are considered.

The �rst one consists in classical estimations in the Euclidean context of the parameters,
multiplied by a density ratio to obtain a density with respect to the desired measure. This
type of density estimation is possible in each studied space and metric, but does not take
into account the geometry of the space: if two metrics induce the same volume measure
then the estimated density does not depend on the choice of one the metrics. The three
other types of estimation, histograms, kernels and orthogonal series rely more directly on
the geometry. On the one hand, despite their low computational cost, �nding good tiling
make the use of histograms di�cult. On the other hand, �nding an orthogonal basis of
functions adapted to orthogonal series density estimation is also a di�cult problem. In the
few situations where the eigenfunctions of the Laplacian operator are known, the estimator
presents a high computational complexity.
The kernel density estimation seems to be the most adapted in most cases. It presents a

reasonable computational complexity, and expressions of kernels are ready to use in each
studied situations, except the space of multivariate Gaussian laws under the Fisher metric.
To our knowledge, the most original contribution of this work are the expression of

kernels for the case of the Wasserstein metric, and the study of partial quantities. The
latter being particularly useful in practical cases. The results of the chapter is summed up
in tables 6.1-6.4.

multivariate multivariate centered univariate
adaptation
from the
Lebesgue
measure

Eq. 6.12, Eq. 6.13 Eq. 6.21, Eq. 6.22 Eq. 6.38

histograms - Siegel tiling hyperbolic tiling
orthogonal
series

- Eq. 6.32 Eq. 6.48

kernels - Eq. 6.31 Eq. 6.47

Table 6.1.: Density estimation on Gaussian laws under the Fisher metric.

mean eigenvalues rotations (Q)
quotient metric - Euclidean on γ = log(λ) -
product measure Lebesgue Eq. 6.49 or Eq. 6.50 HaarSO(n)

Table 6.2.: Structures on partial quantities under the Fisher metric

Future work will focus mainly on the application of our result to di�erent applications in
image and signal processing. Densities are useful objects in segmentation and classi�cation.
The mean shift algorithm is a standard approach that search maxima of a density associated
with a point cloud and then segment it into modes or classes. This algorithm, proposed
by Fukunaga and Hostetler (1975) has been widely studied in Rn. It is mainly used in
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multivariate multivariate centered univariate
adaptation
from the
Lebesgue
measure

Eq. 6.15, Eq. 6.16 Eq. 6.15, Eq. 6.16 Euclidean
on σ =

√
λ

histograms - - Euclidean
on σ =

√
λ

orthogonal
series

- - Euclidean
on σ =

√
λ

kernels Eq. 6.20 Eq. 6.20 Euclidean
on σ =

√
λ

Table 6.3.: Density estimation on Gaussian laws under the Wasserstein metric

mean eigenvalues rotations (Q)
quotient metric Euclidean Euclidean on σ =

√
λ -

product measure Lebesgue
dµWass
λ

dLeb(λ) =
∏
i

1√
λi

∏
i<j

|λi−λj |√
(λi+λj)

HaarSO(n)

Table 6.4.: Structures on partial quantities under the Wasserstein metric

point cloud segmentation, but also in tracking and smoothing. Hence, point clouds can
be segmented according to the local maxima of an associated density using the mean
shift algorithm. It presents for instance the advantage of not requiring assumptions on
the number of clusters. The corresponding arbitrary quantity is the scaling factor of
the kernels, but unlike the number of clusters, the scaling factor can have a physical
interpretation. Consider the embedding of a signal f : E → F in the product space E×F .
The segmentation of the point cloud in E × F produces edge-preserving smoothing of the
signal. The mean shift algorithm has been studied on Riemannian manifolds in Subbarao
and Meer (2009a). However in order to gain generality authors chose to work with �pseudo�
kernels in the sense that they do not take into account the volume change between the
exponential map and the manifold. Indeed, this term is generally unknown. The study can
thus be resumed for spaces Gaussian laws, except multivariate Gaussians under the Fisher
metric. Especially since this thesis focuses on mathematical morphology and on density
estimation, it is important to point out the similarity between the mean shift algorithm
and the watershed transform of the density. Indeed the mean shift can be interpreted as a
steepest ascent on the density.
Probability densities are also important tools in Bayesian classi�cation. The classi�ca-

tion decision consists in maximizing the probability of a class given an observation. This
requires a priori information on classes and probability densities knowing the class. Our
future research on this topic will study the in�uence of the choice of the metric on clas-
si�cation results. This type of classi�cation has been addressed on SPD(n) in a recent
work Said et al. (2015), where they model conditional densities by (parametric) Gaussian
distributions on SPD(n). We remind that our approach here allows us a non-parametric
density estimation on SPD(n).
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Résumé

Ce chapitre résume les di�érents résultats de la thèse et présente les perspectives associées
à ces résultats.
Le lemme 2.3.1 du chapitre 2 formalise les limites de la qualité des ordres totaux dans

les espaces métriques, en terme de morphologie mathématique. A chaque ordre total,
il est possible de trouver des images pour lesquelles les érosions et les dilatations sont
irrégulières et incohérentes. Il est possible de construire une fonction de coût mesurant la
qualité d'un ordre total. La procédure de minimisation de cette fonction de coût proposé
dans le chapitre 2 permet de construire un ordre adapté à une image donnée. Les résultats
de la procédure de minimisation sont intéressants mais sont encore sans doute sujets à
améliorations. Les limites des ordres totaux ont conduit à s'orienter vers un autre type de
données : les images à valeur dans un ensemble de labels non ordonnés. Un nouveau cadre
morphologique est proposé pour traiter ces images. Une partie importante des propriétés
des opérateurs binaire est conservée dans ce nouveau cadre. Les propriétés théoriques
étant maintenant en majeure partie déterminées, les travaux futurs se concentreront sur
les applications.
La formalisation de la notion d'histogramme d'image en terme d'estimation de densité

suggère l'utilisation de la formule de la coaire. Cette idée à en fait déjà été explorée
dans Du�y et al. (2013) dans le cas des images I,Rp → Rq≤p. Un travail peut-être envisagé
sur le cas des images I,Rp → Rq>p.
L'étude des histogrammes d'images couleurs dans le cadre des métriques perceptuelles

propose de se baser non pas sur une approximation euclidienne globale de la métrique
mais seulement sur une approximation locale. Cela permet d'être plus �dèle à la métrique
perceptuelle, sans augmenter la complexité des calculs. Ce travail soulève le problème
important de l'interpolation d'une métrique riemannienne.
Le chapitre 6 passe en revue plusieurs techniques d'estimation de densités de probabilités

dans le cas où les données sont des lois Gaussiennes. Parmis les méthodes étudiées, la
méthode des noyaux semble la plus adapté à la plupart des situations. Les travaux futurs
se concentreront sur les applications pratiques.

7.1. Conclusions

7.1.1. Part I

Our re�ections on mathematical morphology led to the following results. Lemma 2.3.1 of
chapter 2 formalizes a limitation of the quality of total orders on multidimensional spaces
for mathematical morphology: given a total order, there are always images where mor-
phological operators will introduce irregularities and aliasing on processed images. In this
thesis, the notion of quality of orders and operators is restricted to topological consider-
ations. Given an image it is possible to asses the quality of a total order regarding its
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impact on morphological operators. This quality measure is represented by a cost function
introduced in Chapter 2. Thus given an image it is natural to search orders optimizing this
quality measure. The main drawback of the cost function is its computational complex-
ity. A recursive minimization procedure aiming at minimizing the cost has been proposed.
Results in various contexts have been presented. The orders obtained by our minimization
procedure produce interesting morphological erosions and dilations. However, orders have
to be computed for each images and the minimization of the cost is a time demanding op-
eration. Thus, the minimization framework does not yet an undeniable interest in front of
orders such as the bit-mixing. Indeed the bit-mixing order presents interesting topological
properties while being easy to evaluate and independent from the image.
The idea of n-ary morphology introduced in Chapter 3 has emerged as a circumvention

of the theoretical limits of total orders: a structure based on only two operators can
not properly take into account the geometry of a multidimensional space. On the real
line each element can be approached by only two sides. In multidimensional spaces, the
topological incompatibility exhibited by Lemma 2.3.1 arises from the increase of directions
by which a point can be approached. This corresponds to the connectivity assumption on
the complementary of balls. Hence the idea of introducing multiple pairs of erosions and
dilations appears naturally. Each pair would then be associated with a pole of the space,
each pole playing an equivalent role in the studied image. This underlying idea led to a
formalization of n-ary morphology. Recall that n-ary images refer here to images valued in
a �nite set where no mathematical structure is assumed. In comparison with other works
addressing the same type of images, the two main speci�cities of the present paradigm
are the introduction of multiple operators and the absence of an �indeterminate� label
or category. Several elementary properties of the binary framework are recovered. An
extension to a continuous case has been proposed. Unfortunately theoretical properties
are not recovered as naturally as in the n-ary framework. However, operators produce
promising results in practice.

7.1.2. Part II

The formalization of image histograms in terms of density estimation suggests to address
the estimation using the coarea formula. This approach has already been proposed recently
in Du�y et al. (2013), originally aiming at visualization applications.
Perceptual color spaces like the Lab space are built such that their natural Euclidean

metric is closer to the perceptual metric than the Euclidean metric of other spaces such as
the RGB space. Since density estimation mainly involves local computations, the Rieman-
nian assumption on the perceptual metric on colors suggest to locally adapt computations
using the local scalar product. Indeed, as shown in Chapter 5 this enables to be more
faithful to the Riemannian metric without requiring additional computation cost. The
analyzed example shows the impact of the local adaptation.
Non-parametric probability density estimation has been discussed in Chapter 6 for sev-

eral standard spaces of Gaussian laws, under di�erent metrics. For each case, several
density estimation techniques have been discussed and compared. Expressions of kernels
for kernel density estimation, and functions involved in orthogonal series density estimation
are provided when possible. The most original contributions of this work consists in the
expression of kernels for the Wasserstein metric, and in the study of the structure of partial
quantities (mean, eigenvalues and rotation) under di�erent metrics. Partial quantities play
an important role since studied phenomena often depend on only one or two parameters
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of the Gaussian laws.

7.2. Perspectives

7.2.1. Part I

Our contributions and results on mathematical mathematical morphology lead to the fol-
lowing perspectives:

� The minimization procedure of the measure of irregularities of total order is not yet
fully convincing. However, we are con�dent in the fact that the optimization can be
signi�cantly improved. The use of techniques such as evolutionary algorithms might
for instance enable to signi�cantly enhance the number of clusters at each step of the
recursion, see Flórez-Revuelta (2015). This is currently an ongoing work.

� After having examined the transposition of properties of binary morphology to n-ary
morphology, our future works will focus on applications. The main considered areas
are material science images and pixelwise classi�ed images. The proposed extension of
n-ary morphology to a continuous case is still a preliminary work. Before addressing
applications, future researches will continue investigating new continuous operators,
in particular openings by reconstruction and levelings.

7.2.2. Part II

Ideas explored in Chapter 5 on images histograms provides several avenues for research:

� While more intuitive for functions f : Rp → Rq≤p the coarea formula can also be
formulated of functions f : Rp → Rq>p. The existing work Du�y et al. (2013) only
addresses the case of real valued functions. A work can thus be carried on so as to
extend their proposition to color and multispectral images.

� The preliminary work on perceptual color histograms raises �rstly the problem of
Riemannian metric interpolation. The main di�culty is that despite the primary
intuition, there is no intrinsic criteria that enables to evaluate the quality of an
interpolation. The quality evaluation of an interpolation necessarily depends on the
parametrization. A �rst study must then be carried out in order to understand how
to determine in which parametrization the interpolation should be performed. We
did not �nd - at least, not yet - a clear answer to this question in the literature.
Secondly, it would be interesting to study the convergence of the proposed density
to the true density of the distribution of colors with respect to the interpolated
Riemannian metric.

Chapter 6 describes and gives strategies to estimate densities on spaces of Gaussian laws.
Our future researches will focus on the potential uses of the estimated densities.

� The mean shift algorithm proposed by Fukunaga and Hostetler (1975) can be adapted
to spaces of Gaussian laws using the expressions of kernels computed in Chapter 6.
Given a point cloud, the mean-shift algorithm is a standard mode seeking technique.
This technique is mainly used for point cloud segmentation tracking and smooth-
ing Subbarao and Meer (2009b). When used for segmentation purposes, the mean-
shift algorithm is very similar to a watershed transform of the estimated density of
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the point cloud Paris and Durand (2007). The theoretical properties of the algorithm
on spaces of Gaussian laws and its applications form an interesting subject of future
studies.

� Density estimation is also an important tool in classi�cation. This is the subject
of recent studies on symmetric positive de�nite matrices using parametric density
under the a�ne-invariant metric. Recall that the a�ne-invariant metric is similar
to the Fisher metric on multivariate centered Gaussians. In the recent work Said
et al. (2015), it is proposed to model the distribution of each classes by a parametric
model and to take classi�cation decision according to the estimated probabilities. The
expression of kernels for the Fisher and the Wasserstein metric enables to conduct
similar studies using non-parametric density estimation.
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Morphology, Géométrie et Statistiques en imagerie non-standard.

Résumé : Le traitement d’images numériques a suivi l’évolution de l’électronique et de l’informatique. Il
est maintenant courant de manipuler des images à valeur non pas dans {0, 1}, mais dans des variétés ou des
distributions de probabilités. C’est le cas par exemple des images couleurs où de l’imagerie du tenseur de diffusion
(DTI). Chaque type d’image possède ses propres structures algébriques, topologiques et géométriques. Ainsi,
les techniques existantes de traitement d’image doivent être adaptés lorsqu’elles sont appliquées à de nouvelles
modalités d’imagerie. Lorsque l’on manipule de nouveaux types d’espaces de valeurs, les précédents opérateurs
peuvent rarement être utilisés tel quel. Même si les notions sous-jacentes ont encore un sens, un travail doit être
mené afin de les exprimer dans le nouveau contexte.

Cette thèse est composée de deux parties indépendantes. La première, « Morphologie matématiques pour
les images non standards », concerne l’extension de la morphologie mathématique à des cas particuliers où l’es-
pace des valeurs de l’image ne possède pas de structure d’ordre canonique. Le chapitre 2 formalise et démontre
le problème de l’irregularité des ordres totaux dans les espaces métriques. Le résultat principal de ce chapitre
montre qu’étant donné un ordre total dans un espace vectoriel multidimensionnel, il existe toujours des images
à valeur dans cet espace tel que les dilatations et les érosions morphologiques soient irrégulières et incohé-
rentes. Le chapitre 3 est une tentative d’extension de la morphologie mathématique aux images à valeur dans un
ensemble de labels non ordonnés.

La deuxième partie de la thèse, « Estimation de densités de probabilités dans les espaces de Riemann »
concerne l’adaptation des techniques classiques d’estimation de densités non paramétriques à certaines variétés
Riemanniennes. Le chapitre 5 est un travail sur les histogrammes d’images couleur dans le cadre de métriques
perceptuelles. L’idée principale de ce chapitre consiste à calculer les histogrammes suivant une approximation
euclidienne local de la métrique perceptuelle, et non une approximation globale comme dans les espaces per-
ceptuels standards. Le chapitre 6 est une étude sur l’estimation de densité lorsque les données sont des lois
Gaussiennes. Différentes techniques y sont analysées. Le résultat principal est l’expression de noyaux pour la
métrique de Wasserstein.

Mots clés : Morphologie Mathématique, Ordres Totaux, Traitement d’Image, Estimation de Densi-
tés, Géometrie Riemannienne, Métrique de Fisher, Métrique de Wasserstein, Histogrammes d’Images.

Morphology, Geometry and Statistics in non-standard imaging.

Abstract: Digital image processing has followed the evolution of electronic and computer science. It is now
current to deal with images valued not in {0, 1} or in gray-scale, but in manifolds or probability distributions. This
is for instance the case for color images or in diffusion tensor imaging (DTI). Each kind of images has its own
algebraic, topological and geometric properties. Thus, existing image processing techniques have to be adapted
when applied to new imaging modalities. When dealing with new kind of value spaces, former operators can
rarely be used as they are. Even if the underlying notion has still a meaning, a work must be carried out in order
to express it in the new context.

The thesis is composed of two independent parts. The first one, "Mathematical morphology on non-standard
images", concerns the extension of mathematical morphology to specific cases where the value space of the
image does not have a canonical order structure. Chapter 2 formalizes and demonstrates the irregularity issue of
total orders in metric spaces. The main results states that for any total order in a multidimensional vector space,
there are images for which the morphological dilations and erosions are irregular and inconsistent. Chapter 3 is
an attempt to generalize morphology to images valued in a set of unordered labels.

The second part "Probability density estimation on Riemannian spaces" concerns the adaptation of standard
density estimation techniques to specific Riemannian manifolds. Chapter 5 is a work on color image histograms
under perceptual metrics. The main idea of this chapter consists in computing histograms using local Euclidean
approximations of the perceptual metric, and not a global Euclidean approximation as in standard perceptual
color spaces. Chapter 6 addresses the problem of non parametric density estimation when data lay in spaces of
Gaussian laws. Different techniques are studied, an expression of kernels is provided for the Wasserstein metric.

Keywords: Mathematical Morphology, Total Orders, Image Processing, Density Estimation, Rie-
manninan Geometry, Fisher Metric, Wasserstein Metric, Image Histograms.
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