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Laue microdiraction is a powerful technique to characterize the intragranular elastic strain eld at the scale of micrometer. Although a standard procedure extracting elastic strain and crystal orientation from Laue image has been well-established, it can suer from two sources of uncertainties: the determination of peaks' positions and the sensitivity to calibration parameters. In light of the high accuracy of digital image correlation (DIC), we developed the so-called Laue-DIC method which used the peaks' displacements measured by DIC instead of peaks' positions to determine the elastic strain increment and rotation between two mechanical congurations. This method has been proved more ecient than the standard procedure in terms of stress proles of bended beam. We also developed the enhanced version of Laue-DIC. By using the term "enhanced", we mean that we attempt to obtain both lattice matrices and calibration parameters of two congurations rather than solely the elastic strain increment and rotation from peaks' displacements.

Aside from the formulation of Laue-DIC, we also developed a procedure of statistically estimating the errors of elastic strain/stress resulted from DIC errors and calibration accuracy. We have rst validated a classical noise model, Poissonian-Gaussian model, from diraction images acquired at synchrotron radiation facility. With the noise model, we could statistically estimate the DIC errors by synthesizing articial spots. The estimated DIC errors were further transmitted into the errors of Laue-DIC through statistical tests.
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Résumé

La microdiraction Laue permet l'estimation des déformations élastiques à l'échelle du micron. La procédure d'analyse standard, bien établie, utilisée pour extraire les déformations élastiques des images de Laue est limitée par deux sources d'erreurs : la détermination de la positions des taches de Laue sur le détecteur, et la sensibilité aux paramétres de calibration du montage. Pour améliorer la procédure, nous avons développé une procédure appelée Laue-DIC qui utilise la très bonne résolution de la technique de corrélation d'images numériques (DIC). Cette méthode utilise, pour la détermination de l'incrément de déformation élastique et de rotation, le déplacement des pics entre deux congurations mécaniques, estimé par DIC, au lieu de leur position. Nous montrons que cette méthode donne un prol de contrainte en meilleur accord avec les solutions analytiques et numériques, pour des échantillons monocristallins déformés en exion 4-points. Nous proposons également une méthode Laue-DIC améliorée, dans laquelle les paramètres de calibration sont estimés à chaque point de mesure, simultanément à la déformation élastique.

En paralléle à la formulation de la méthode Laue-DIC (améliorée), nos eorts ont porté sur l'estimation de l'incertitude obtenue sur les déformations élastiques. Nous avons développé un modèle de bruit pour les images de Laue mesurées en rayonnement synchrotron, qui a été validé sur des séries de données, et qui nous a permis d'estimer les erreurs statistiques de la DIC, à partir d'images de Laue synthétiques. Ces erreurs ont ensuite été propagées dans la méthode Laue-DIC an d'estimer les incertitudes sur les déformations élastiques, que l'on trouve en bon accord avec la uctuation des contraintes locales estimées
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Figure 1: The crush of Schenectady tanker On 16 January 1943, a tanker called Schenectady was docking quietly at Swan Island, US, in calm weather. Suddenly, without warning, a earsplitting, audible for at least a mile, sound came, and the bulk of the tanker cracked almost by half. This was not the rst of the merchant eet to fracture in this way in World War II -there had been ten other major incidents before, and several more would follow -but it was perhaps the most inuential; it happened right under the noses of Portland's citizens, and was widely reported by the press even during the war.

Although later research inferred that the steel of the tanker became highly brittle due to low ambient temperature, exacerbating any existing faults and becoming more vulnerable to fracture, the cause of such accident within service life was not fully understood at that time. Because material fatigue or fracture, unlike other materials' properties, e.g. stiness, strength, thermal conductivity, yield strength, depends heavily on the local characteristics of microstructure (lattice distortion, void, impurities, grain boundary), rather than average INTRODUCTION attributes of microstructure such as mean grain size, phase volume fractions, impurity ratio, etc [START_REF] Mcdowell | A perspective on trends in multiscale plasticity[END_REF]].

Nowadays, when large machines (airplanes, rockets, submarine) and megastructures are increasingly emerging in our life, engineers have to be cautious with designing and manufacturing them in order to avoid an accident as aforementioned and economize the cost as well. Traditional paradigms of material selection based on macroscopic strength theory needs to be revolutionized, because an increase in a machine/structure size introduces new complexities, and it is not simply scaling up an existing machine/structure but redesigning with new material, new manufacturing to some degree. Sometimes, it may be more demanding if a machine/structure has to work under extreme conditions, for example, a satellite must function in vacuum, and the structure of submarine must withstand high pressure deep under the sea. These urgent needs from industry and engineering have fostered a new subject -"material design" aiming at tailoring materials' properties to meet the requirements of materials' application [START_REF] Mcdowell | Materials design: a useful research focus for inelastic behavior of structural metals[END_REF]]. 2). While it sounds possible to employ rst principle to simulate materials' behavior at each level, and there have been some eorts towards this direction [START_REF] Gonze | First-principles computation of material properties: the {ABINIT} software project[END_REF]], this approach is impracticable and costly when dealing with levels INTRODUCTION higher than atomistic level, not only due to the huge amount of calculation involved, but also due to the tremendous amount of degree-of-freedoms and boundary conditions to be fed in. Therefore, it is very compelling if we could develop a multiscale modeling method to bridge the gap from atomistic scale to macroscopic scale [START_REF] Liu | Bridging scale methods for nanomechanics and materials[END_REF]]. Thanks to the advancement of computer's performance and numerical methods, material scientists have developed corresponding methods for simulation at higher level: nite element method (FEM) [START_REF] Li | A robust integration algorithm for implementing rate dependent crystal plasticity into explicit nite element method[END_REF][START_REF] Zhang | An eective semi-implicit integration scheme for rate dependent crystal plasticity using explicit nite element codes[END_REF]], fast Fourier transformation (FFT) method [START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]] and cellular automation (CA) [START_REF] Jin | Investigation on dynamic recrystallization using a modied cellular automaton[END_REF] for macroscopic level and polycrystal level, dislocation dynamics (DD) [START_REF] Gaucherin | Crystal plasticity and hardening: A dislocation dynamics study[END_REF]] for dislocation pattern level, molecular dynamics (MD) [START_REF] Raabe | Molecular Dynamics[END_REF]] for discrete dislocation level, etc. The improvements of these numerical methods need observations and validations from experiment, therefore it is imperative to have experimental tools probing materials' behavior at the corresponding scale, so that the results of numerical simulations and experimental measurements can be cross-checked and hence both numerical method and experimental measurements can be promoted. However, at present, one cannot bridge the gap between the simulation results and experimental observation when it comes to predicting material's behavior at microscale. In [START_REF] Hoc | A procedure for identifying the plastic behavior of single crystals from the local response of polycrystals[END_REF]], the comparison between calculated and measured strain eld has been found to be highly inuenced by local behavior of material, and in [START_REF] Magid | Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal[END_REF]], the stress uctuations within Cu monocrystal measured by X-ray diraction is found to be of the order of GPa, a result which is unrealistic. This gap is either due to the inadequacy of simulation method, the aws in experimental observation, or the limited knowledge of material's behavior at ne scale. Therefore, concerted eorts from experts of both numerical simulation and experimental characterization are needed in order to have a more reliable predictive methodology to have insight into material's properties at a ne scale. [START_REF] Héripré | Coupling between experimental measurements and polycrystal nite element calculations for micromechanical study of metallic materials[END_REF] microstructure obtained by OIM (Orientation Image Microscopy) and the total strain eld obtained by DIC (Digital Image Correlation), will provide insight into the constitutive behavior of material (see Fig. 3). In this project, one PhD student, Emeric Plancher, is working on the development of HR-EBSD, and this thesis is dedicated to improve the precision of stress characterization by Laue microdiraction. The whole thesis is organized as follows:

1. Chapter I presents the background and fundamentals of this thesis, including the heterogeneity of stress, the diraction technology, and the calculation of elastic strain from diraction image.

2. Chapter II rst presents the so-called Laue-DIC method, i.e. the application of DIC into diraction image treatment, and the analysis of Laue-DIC uncertainty arising from image noise.

3. Chapter III presents an enhanced version of Laue-DIC, which enables the acquisition of both lattice matrices and geometrical parameters. And numerical tests will be given to test its eciency and its robustness against DIC errors. It is well-known that homogeneous strain/stress elds at the macroscopic scale might exhibit heterogeneities at a ner scale, and such heterogeneities may give rise to microplasticity [START_REF] Tatschl | A new tool for the experimental characterization of microplasticity[END_REF][START_REF] Zhang | Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-d voronoi polycrystal modeling[END_REF]] and crack initiation [START_REF] Sangid | The physics of fatigue crack initiation[END_REF][START_REF] Bach | Crack initiation mechanisms in {AA6082} fatigued in the vhcf-regime[END_REF]]. The ignorance of the heterogeneity of strain/stress eld may lead to the failure of mechanical components (for example, the crush of Schenectady tanker, see Fig. 1). The heterogeneity of strain/stress eld usually arises from the heterogeneity of the microstructure. Thanks to recent developments of experimental techniques and data treatment, scientists now have various technologies available to characterize materials' morphology at various scale: at atomic scale, for example, we have scanning tunneling microscopy (STM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), and at polycrystal and macroscopic scale, we have diraction contrast tomography (DCT), scanning electron microscopy (SEM), orientation imaging microscopy (OIM), and optic microscopy. The images acquired by these techniques, together with image processing algorithm such as DIC (Digital Image Correlation) [Sutton et al. 2009b To fully explore the constitutive model of materials, stress of materials is also required aside from morphology and kinematics of materials. Stress can be considered as the tendency to push material back to its equilibrium state. For crystalline material, stress arise 1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD from the distortion of lattice, therefore diraction methods, such as X-ray diraction, neutron diraction, or electron diraction, oer non-destructive ways to detect the lattice distortion and hence the stress at the scale of lattice. For non-crystalline material such as rubber, the characterization of stress can be accomplished by thermal analysis, such as TSA (thermographic stress analysis) [START_REF] Zhang | Thermographic stress analysis of composite materials[END_REF]]. One can gain an insight into material's constitutive model by superimposing stress map to strain map. This thesis will be dedicated to the development of Laue microdiraction aiming at measuring elastic strain, and this chapter will lay the scientic foundations relevant to this thesis. The whole chapter is structured in the following sequence: (i) in 1.2, we introduce the concept of evaluation of stress by diraction and compare three mainstream of stress evaluation method based on diraction (X-ray diraction, neutron diraction, and electron diraction); (ii) in 1.3, we will present the basic concepts in X-ray diraction;

(iii) in 1.4, we will discuss the commonly used X-ray diraction technique and introduce Laue microdiraction; (iv) and in 1.5, we introduce the standard Laue treatment to obtain elastic strain from Laue microdiraction data.

Evaluation of elastic strain by diraction method

Evaluation of elastic strain by diraction falls into the category of non-destructive analysis of material. When electromagnetic wave propagate through crystal, both constructive interference and destructive interference of waves would occur when the incident electromagnetic wave and atoms spacing meet certain conditions. This phenomenon is called diraction. Given the actual inter-atom spacing in real matters, the electromagnetic wave chosen to probe material is usually X-ray, whose spectrum is within the range of 0.01 -100 Å. Due to the wave-particle duality, the interaction of matters with neutrons or electrons can also produce visible diraction pattern at certain conditions, hence electron diraction and neutron diraction are used to analyse material properties as well. Bear in mind that all the three method do not directly measure stress but the distortion of lattice from its equilibrium state.

EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD

Neutron diraction

For neutron diraction, the most appealing feature is that neutrons carries no charge therefore neutron diraction has the deepest penetration depth compared to electrons and X-ray as the propagation of neutron is rarely impeded by electromagnetic forces inside material. Moreover, neutron diraction is widely used in studying magnetic materials and organic materials. For magnetic material, this is due to the fact that neutrons carry magnetic moments and can be scattered magnetically. For organic materials, X-ray diraction image will be strongly blurred by Compton eect (see 1.3.1), because Compton eect is very pronounced when photons are diracted by light elements, e.g. carbon, oxygen, and hydrogen, which constitute the majority of organic materials [Cullity 1956b]. In contrast, neutrons, which interact with nucleus of atoms, demonstrate less Compton eect. However, the bottleneck of neutron diraction at present is the availability of neutron source, which can be either a radioactive material, a nuclear reactor, e.g. LLB in Saclay or ILL in Grenoble, or a spallation source, e.g. ISIS in UK or the future ESS in Sweden. Low ux of neutron sources is also a factor hindering the usage of neutron diraction.

Electron diraction

Electron diraction works in either transmission mode or backscatter mode. The former is mentioned as TEM (transmission electron diraction) and the latter is mentioned as EBSD (electron backscatter diraction, available in a SEM device). Due to the supercial penetration depth of electron into matters, TEM is only limited to study thin lms with a thickness of ∼ 100 nm and EBSD is only limited to surface characterization of materials.

Aside from the limited penetration of electrons, electron diraction is also limited by the following factors:

1. The sample must be put in a vacuum, otherwise electron beam's energy would dissipate in the air. Usually the size of vacuum chamber limits the size of sample and experimental equipment in case of in situ tests.

2. The surface of sample must be extremely smooth and clean. For non-conductive materials, its surface must be coated with conductive materials, otherwise too much 1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD charges will accumulate on the surface and repel the incident electrons.

Figure 1.1: Kikuchi pattern from a Ge sample [START_REF] Britton | Factors aecting the accuracy of high resolution electron backscatter diraction when using simulated patterns[END_REF] However, the most obvious advantage of electron diraction is its ne spatial resolution, as its beam size is merely of the order of 30 nm in EBSD, therefore it is often used to analyze the intragranular misorientation [START_REF] Maurice | On solving the orientation gradient dependency of high angular resolution {EBSD}[END_REF]]. The spatial resolution can be ∼ 1 Åin TEM, which is suitable to study interatomic behavior of material. The electron/matter interaction is a rich source of information concerning the crystal's orientation, chemical composition, surface morphology, etc: backscattered electrons Due to wave-particle duality, electrons could be scattered by all sets of lattice planes which satisfy the diraction condition, and form Kikuchi pattern (see Fig. 1.1). secondary electrons The incident electron beam could ionize the atoms on the material's surface. The ionized atoms will release electrons. These electrons are called "secondary electrons", and the amount of electrons is related to the surface morphology. characteristic X-ray The incident beam may strike a bound electron in an atom. After the electron has been ejected, the atom is left with a vacant energy level, and an outer-shell electron then falls into the inner shell, releasing characteristic X-ray with 1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD a certain wavelength. The released characteristic X-rays may be scattered by all sets of lattice planes which satisfy the diraction condition, and form a Kossel pattern (see Fig. 1.2).

Kossel pattern suers from a poor signal-to-noise ratio, though some work has been done to analyze Kossel line [START_REF] Bouscaud | Strain resolution of scanning electron microscopy based Kossel microdiraction[END_REF]]. The material characterization by EBSD is mainly accomplished by analyzing Kikuchi pattern, which is actually the gnomonic projection of the crystal lattice plane. 

X-ray diraction

Unlike neutrons, X-ray photons are mainly scattered by electrons in matter instead of nucli. The penetration of X-ray beam in matter depends strongly on the photons' energyhigher energy gives deeper penetration depth except at X-ray absorption edges, where the X-ray photons will be absorbed entirely and trigger uorescence of material.

The X-ray can be generated either from the characteristic radiation of atoms, as we have mentioned in the formation of Kossel pattern in 1.2.2, or from the acceleration/deceleration of any charged particle. Therefore the X-ray source can be very versatile. The simplest X-ray source involves sealed X-ray tube and rotating anode generator, in which electrons are emitted from the cathode and are accelerated by high voltages (typ-1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD ically 40 kV) between the cathode and anode. When the electrons reach the anode made by a selected metal, they stop instantaneously and radiate X-ray at all directions with a broad spectrum. This kind of radiation is called Bremsstrahlung radiation. Aside from Bremsstrahlung radiation, the interaction between electrons and anode material will also emit characteristic radiation, which is monochromatic unlike Bremsstrahlung radiation.

The wavelength of the characteristic radiation depends on the element of anode material.

The most frequently used characteristic radiations include K α line and K β line of copper. [He 2009a].

More advanced X-ray source is synchrotron radiation source. Like Bremsstrahlung radiation, synchrotron radiation comes from the acceleration/deceleration of any charged particle. The resulted electric eld by the acceleration/deceleration of a charged particle is given as [Jackson 1999]:

E = Q 4π 0 c 2 r r × [(r -v/c) × v] (1 -v • r/c) 3 , (1.1)
where Q is the amount of electric charge of the particle, r is the position vector originated from the particle, r is its unit vector, and v is the speed of particle. If the particle moves periodically, the consequent electric eld will vary periodically and produce electromagnetic waves.

In the beginning, synchrotron radiation was just a byproduct of particle accelerator in the experiment of high-energy physics. Soon, it found its application in material science, since it oered incomparable high intensity and high energy X-ray beam, well suited for probing into the interior of materials non-destructively. The demand of spectrum more 1.3 Principle of X-ray diraction 1.3.1 The X-ray/matter interaction X-rays belong to a portion of the electromagnetic spectrum encompassing longer wavelengths than γ rays and shorter wavelengths than ultraviolet. Material scientists should choose the spectrum of X-ray in vicinity of the interatomic spacing in crystals so as to generate detectable diraction.

The X-ray/matter interactions are listed in Fig. 1.4. The scattered X-rays include coherently scattered (Thomson scattering) and incoherently scattered (Compton scattering). In Thomson scattering, the photons retain their energies after scattered while in Compton scattering, there are energy transfers between photons and electrons. Most of time, Compton scattering would increase the wavelength of X-ray (corresponding to lower energy). Compton scattering cannot be explained by classical electromagnetism, which consider X-ray merely as a wave, because it is due to the particle nature of X-ray (see Fig.

1.5).
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Figure 1.4: The X-ray/matter interaction [Cullity 1956b]

From the theory of quantum mechanics, the relation between photon's energy E and wavelength λ can be expressed as:

E = hc λ , (1.2)
where h is Planck's constant, c is the light speed. If E is expressed in the unit of keV, and λ is expressed in the unit of Å, their relation is:

E = 12.398 λ .
The dierence between the incident wavelength λ 0 and scattered wavelength λ in Compton scattering follows the following relation:

∆λ = λ -λ 0 = h mc (1 -cos 2θ), (1.3)
where m is the electron mass, and c is the light speed. h mc ≈ 2.43 × 10 -3 nm is called "Compton wavelength".

In general, tightly bounded electrons tend to scatter photons coherently, and loosely bounded electrons tend to scatter photons incoherently. However, when X-rays interact with crystals, where the atoms are spaced periodically, coherently scattered X-ray undergoes reinforcement in certain directions and cancellation in other directions, whereas Of all the models describing diraction phenomenon, Bragg's law is the simplest and most intuitive (see Fig. 1.6). Suppose that a monochromatic plane wave of X-ray impinges on aligned planes of lattice points at angle θ, and the lattice plane reects the X-ray like a mirror. There will be a phase dierence between the rays that are reected by two adjacent lattice planes whose Miller indexes are denoted as (hkl). The phase dierence of the two diracted rays, say ∆φ, is

∆φ = 2π 2d hkl sin θ λ ,
where λ is the wavelength, d is the distance between each adjacent lattice plane (d-spacing).

Only when the phase dierence ∆φ is an integer, say n, times 2π, is the interference of two 1.3. PRINCIPLE OF X-RAY DIFFRACTION rays constructive. Therefore, the condition of diraction is nλ = 2d hkl sin θ.

When diraction occurs, θ is called the Bragg angle. Waves with various wavelengths can satisfy Bragg's condition given the same d-spacing and Bragg angle according to the integer n, and these waves corresponding to dierent n are called harmonic waves. For brevity, we designate n to be 1. For the nth order harmonic wave diracted by (hkl) lattice plane, we regard the beam diracted by the (nh nk nl) lattice plane. In that case, Bragg's law is written into λ = 2d hkl sin θ.

(1.4) Although Bragg's law successfully reveals the relation between crystal structure and diraction pattern, it is just a phenomenological model describing the kinematics of diraction. For example, in Bragg's model, X-rays appear to be diracted by nuclei of atoms.

In fact X-rays are diracted by electrons of atoms. Nevertheless, Bragg's law earns its applications due to its simplicity. The complete diraction theory is described by the "dynamic" theory, which aims at solving Maxwell's equations given certain boundary conditions [START_REF] Schwartz | The Dynamical Theory of Diraction[END_REF].

Reciprocal lattice

Despite the brevity of Bragg's law, it is more convenient to describe diraction phenomenon in the reciprocal lattice. The Ewald's sphere provides a graphical interpretation useful in some applications of diraction. We introduce the concept of reciprocal lattice below. For the sake of brevity, we will use Einstein summation convention in the following expressions.

We rst denote vectors starting from the origin of lattice to 
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And we can assemble the three vectors into a 3 × 3 matrix, l :

l . = [l 1 , l 2 , l 3 ] T =   l 11 l 12 l 13 l 21 l 22 l 23 l 31 l 32 l 33   ,
and we call this matrix as lattice matrix.

The lattice vectors of reciprocal lattice is dened as below:

l * 1 . = l 2 × l 3 det l , l * 2 . = l 3 × l 1 det l , l * 3 . = l 1 × l 2 det l , ,
or, more specically,

l * 1i . = ijk l 2j l 3k det l , l * 2i . = ijk l 3j l 1k det l , l * 3i . = ijk l j1 l 2k det l , (1.5) 
where i = 1, 2, 3, ijk is the Levi-Civita symbol dened as follows:

ijk . =    +1, if (ijk) is (123), (231), or (312) -1, if (ijk) is (132), (213), or (321) 0, otherwise.
and det l is the determinant of l dened as:

det l . = ijk l 1i l 2j l 3k . (1.6)
From Eqns. 1.5 and 1.6, we can conclude that:

l i • l * j = l ik l * jk = δ ij , (1.7)
where δ ij is the Kronecker symbol dened as:

δ ij . = 1, if i = j 0, if i = j .
Eqn. 1.7 is equivalent to

l • l * T = 1 , 1.3. PRINCIPLE OF X-RAY DIFFRACTION
Therefore, the relation between the direct lattice and the reciprocal lattice is expressed as,

l -T = l * .
(1.8) 

r * hkl . = hl * 1 + kl * 2 + ll * 3 .
(1.9)

If we take the dot product of this vector with vectors in the (hkl) plane, say l 2 /kl 1 /h and l 3 /ll 1 /h, according to Eqn. 1.7 we have

(l 2 /k -l 1 /h) • r * hkl = 0 (l 3 /l -l 1 /h) • r * hkl = 0.
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As r * hkl is perpendicular to two vectors in the plane (hkl), it is perpendicular to the plane. Hence, we can represent the vector perpendicular to a lattice plane in terms of reciprocal lattice vectors.

As for the magnitude of r * hkl , r * hkl / r * hkl is the unit vector perpendicular to the plane (hkl). And the projection of the vector l 1 /h onto r * hkl / r * hkl is the d-spacing of (hkl) plane, i.e.

d hkl = r * hkl r * hkl • l 1 h .
Expanding the equation above with Eqn. 1.7, we have 

r * hkl = 1 d hkl . ( 1 

Laue's Equation and Ewald's Sphere

With the concept of reciprocal lattice, the Bragg's law can be equivalently transformed in Laue's equation. For diraction by the (hkl) lattice plane, the Bragg's law (Eqn. 1.4) can be equivalently written as: 

1 d hkl = 2 sin θ λ . ( 1 
= k f -k i , therefore, we have r * hkl = k f -k i .
On the other hand, Bragg's law implicitly implies that the direction of k f -k i is perpen- dicular to the lattice plane (hkl), which is the same as that of r * hkl . Thus, by dening the

1.3. PRINCIPLE OF X-RAY DIFFRACTION k i k f θ θ |k i | = |k f | = 1 λ Figure 1
.8: Incident and diracted beams at a Bragg angle of θ.

diraction vector q as:

q . = k f -k i , (1.12)
we have Laue's equation equivalent to Bragg's law,

r * hkl = q. (1.13) O [hkl] * C 2θ k i k f Figure 1
.9: Ewald's sphere, the points all belong to the reciprocal lattice.

Laue's equation can be visually illustrated by Ewald's sphere. In Fig. 1.9, the monochromatic incident beam, with a wavelength of λ, impinges upon a crystal. The magnitude of the incident wavevector, k i , is 1/λ. We translate k i so that its endpoint lies at the origin of reciprocal lattice, O, and its startpoint is moved to a point, say C. In case of coherent 1.3. PRINCIPLE OF X-RAY DIFFRACTION diraction, the diracted wavevector must also have a magnitude of 1/λ, therefore we draw a sphere with a radius of 1/λ and with its center at C, and this sphere is called Ewald's sphere. The surface of Ewald's sphere represents all possible diraction direction. Only when a reciprocal lattice point [hkl] * lies upon Ewald's sphere can the incident beam be diracted by the (hkl) lattice plane in direct space.

Structure Factor

The Bragg's law (Eqn. 1.4), or Laue's equation (Eqn. 1.13) is the necessary condition for diraction to occur. However, the occurrence of diraction is also governed by a socalled structure factor, and we will elaborate it in this section.

Let us rst dene atomic scattering factor f : the amplitude of the wave diracted by a single atom relative to that diracted by a single electron: f = Amplitude of the wave diracted by a single atom Amplitude of the wave diracted by a single electron , where f is a complex number with imaginary part which corresponds to the phase dierence between the incident and diracted wave.

For a crystal, the diraction is the collective eect of diraction from all unit cells within crystal. And the net eect of diraction by a unit cell can be expressed as a summation of diraction from all atoms in a unit cell:

F . = N 1 f n e 2πiq•r n ,
where N is the total number of atoms within the unit cell, f n is the atomic scattering factor of the nth atom, r n is the radius vector of the nth atom, and q is the diraction vector.

If the diraction comes from the (hkl) lattice plane, then from Eqn. 1.13, we dene the structure factor of (hkl) lattice plane, F hkl :

F hkl . = N 1 f n e 2πir * hkl •r n , (1.14)
For the occurrence of the diraction by (hkl) lattice plane, it must be satised that F hkl = 0, otherwise, the diracted waves by all the atoms with a unit cell will cancel out. For example, for a bcc cell containing two atoms, one of them is located at a certain 1.4. LAUE MICRODIFFRACTION position, say the origin, and the other is distanced by a vector 1 2 l 1 + 1 2 l 2 + 1 2 l 3 . hence Eqn. 1.14 become:

F hkl = f [1 + e πi(h+k+l) ].
If h + k + l is odd, then F hkl = 0 and we will not detect any diraction by the (hkl) lattice plane, even if Bragg's law or Laue's equation is met. of the rotating method is the sin 2 ψ method [START_REF] Macherauch | X-ray stress analysis[END_REF]], adapted for macroscopic stress analysis.

Laue Microdiraction

In Laue method, the incident beam is a white beam with a given spectrum, and the incident angle is xed. The idea of using white beam to probe crystals was rst proposed by Max von Laue in order to answer two fundamental questions: (i) What is the nature of X-rays and (ii) does a crystal really consist of periodically spaced atoms. Max von Laue then won the Nobel Prize of Physics in 1914 due to this pioneering work.

Compared to Laue method, experimenters using the rotating method have to take pain to rotate sample, detector, or incident beam to capture diraction's peak, because, as demonstrated in Fig. 1.9, the chance for a reciprocal lattice point to lie on Ewald's sphere is very small. By contrast, Laue method uses white beam with a certain energy band pass, thus each Ewald sphere of a certain photon energy is superimposed to form a nite volume (see the red area of Fig. 1.11). Every reciprocal lattice points located within this volume will trigger diraction as long as its structure factor is not zero. And the volume is decided by maximum wavelength and the minimum wavelength in the incident beam, λ max and λ min . Therefore, Laue method can economize the time required for rotation.

LAUE MICRODIFFRACTION

O k i max = 1 λ min k i min = 1 λ max Figure 1.11: Volume for possible diraction
Moreover, a disadvantage of rotating method is the uncertainty of rotating center (see Fig. 1.12), because in rotating method, it is very hard to ensure that the center of rotation of the goniometer coincides with the region of interest, otherwise the illumination will drift away from the region of interest after rotation. Besides, a goniometer may have multi-axis of rotation, and it is dicult to ensure that they intersect at one point. The uncertainty of their intersection is called sphere of confusion. In practice, the sphere of confusion of goniometer is at best 20 µm. Furthermore, due to the penetration of X-ray, it is impossible to maintain a constant illuminated volume at dierent incident angle except for the case that the entire sample is smaller than the beam size so that the sample can be bathed in the beam. By contrast, these diculties do not exit in Laue method. Like electron Both transmission and backscatter Laue diraction will generate Laue spots on an area detector. The main dierence is that the spots of transmission Laue diraction seem to lie on ellipses while those of backscatter Laue diraction seem to lie on hyperbolas (see Fig.

1.14).

It is worth noting that Laue method is incapable of measuring the volume of a unit lattice cell, as an isotropic dilatation will not change the Bragg angle. This shortage can be overcome by inserting an energy dispersive detector into experimental setup [START_REF] Robach | Full local elastic strain tensor from Laue microdiraction: simultaneous Laue pattern and spot energy measurement[END_REF] or by switching to monochromatic mode, in that case, at least the energy of one spot, say (hkl), is known, say E hkl . From Eqn. 1.2, the wavelength of spot (hkl) is hc/E. From Eqn. 1.2 and 1.4, we have: of surface within a unit solid angle in unit time and for a unit bandwidth) which is about 10 4 times that from an X-ray tube [Schwartz and Cohen 1987a]. To distinguish the Laue method with beams produced by X-ray tube, we call the Laue method with micrometric (or even sub-micrometric) beam size Laue microdiraction. Laue microdiraction is very suitable for studying intragranular material behavior, as its beam size is smaller than grain size. And also thanks to its penetration, it also enable researchers to gain an in-depth insight into the material by developing a technique called DAXM (Dierential Aperture From the acquired Laue images, e.g. Fig. 1.18, the sequence of determining lattice matrix can be summarized as following:

d hkl = hc 2 sin θ hkl E hkl , ( 1 
1. Locate the Laue peaks on the 2D image, and get their position precisely.

2. Translate the peaks' rectangular positions on the area detector into their angular positions.

3. Index these peaks, i.e. nd which (hkl) lattice plane they correspond to. We acquire from the area detector the rectangular coordinates of Laue peaks, i.e. the xy coordinates of peaks on the detector screen. However, we actually use angular coordinates of Laue peaks to calculate elastic strain and orientation of lattice. Therefore, it is important to transfer the rectangular coordinates of Laue peaks into the corresponding angular coordinates. In the following, we will dene ve calibration parameters which associate 2D position of Laue peaks with their angular positions.

The relative spatial relation between incident beam and area detector can be characterized by two angles. Let us rst establish an absolute coordinate system (referred to as hereinafter) upon which we will base our calculation (see Fig. 1. 16), and a detector frame that lies parallel to the x-and y-axis of when the angle β and γ dened below are zero.

The y axis of is collimated with the incident beam. O is the illuminated point at the specimen surface, and P is the orthogonal projection of O onto the detector plane, then x axis is dened as The calculation of strain/stress is actually carried upon using the angular position of peak position, 2θ, χ (see gure 1.17), where 2θ is the apex angle twice the Bragg angle θ, and χ is the azimuthal angle. Here we establish the mathematical formulation translating between peak's angular coordinate (2θ, χ) and rectangular coordinates on the detector plane (x, y). Let k f denote the wavevector of the diracted beam. The unit vector of k f , kf , expressed by the angular position (2θ, χ), is

[ kf ] = [-sin 2θ sin χ, cos 2θ, sin 2θ cos χ] T .

(1.16)

The superscript ˆrepresents unit vector. Then, we have,

[ kf ] =   -sin 2θ sin χ cos 2θ sin 2θ cos χ   = 1 r   cos γ sin γ 0 -cos β sin γ cos β cos γ sin β sin β sin γ -sin β cos γ cos β     x -x c y -y c d   , (1.17)
where r .

= (x -x c ) 2 + (y -y c ) 2 + d 2 .
(1.18)
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The matrix on the right hand of Eqn. 1.17 represents the translation from detector coordinate system to the absolute coordinate system, we represent its transpose by [g ], Therefore, Eqn. 1.17 can be written into:

[g ] • [ kf ] = 1 r [x -x c , y -y c , d] T , hence r = d/(k f i g 3i ) and x = d kf i g 1i kf i g 3i + x c , y = d kf i g 2i kf i g 3i + y c .
(1.20)

The equation above can be equivalently written as:

x = d k f i g 1i k f i g 3i + x c , y = d k f i g 2i k f i g 3i + y c .
(1.21)

From gure (1.8), it is found out that the relation between the unit diraction vector q and Bragg angle θ is

q = ( kf -ki )/(2 sin θ), (1.22) 
sin θ = -q • ki .

(1.23)

Because ki .

= [0, 1, 0] T according to the denition of absolute coordinate system, , Eqn.

1.23 can be written as:

sin θ = -q 2 .
(1.24)

From Eqn. 1.9 and 1.13, we have:

q = l * • h,
where h is dened as:

[h] . = [h, k, l] T .
Then, the unit vector of q, q is:

q = l * • h l * • h . 1.5. STANDARD LAUE TREATMENT TO OBTAIN ELASTIC STRAIN or, qi = l * ij h j l * pm h m l * pn h n . (1.25)
Combining the equation above with Eqn. 1.24, we have:

sin θ = - l * 2j h j l * pm h m l * pn h n , (1.26) 
Substituting Eqn. 1.25 and 1.26 into Eqn. 1.22, we have,

kf i = l * pm h m l * pn h n δ 2i -2l * 2j h j l * is h s l * pm h m l * pn h n .
(1.27)

Let's dene a new vector, ξ whose components are just the numerator of the right hand side of Eqn. 1.27:

ξ i . = l * pm h m l * pn h n δ 2i -2l * 2j h j l * is h s .
(1.28) Then, Eqn. 1.21 can be written as:

x = d ξ i g 1i ξ i g 3i + x c y = d ξ i g 2i ξ i g 3i + y c . (1.29)
ξ only depends on the reciprocal lattice matrix and the hkl index of lattice plane, whereas [g ], x c , y c , and d dene the calibration of the experiment.

Determination of calibration parameters

In order to determine the ve parameters d, x c , y c , β, and γ described previously, it is mandatory to obtain a Laue pattern from a well known strain-free monocrystal, for example Ge monocrystal, located exactly at the same position as the region of interest to be analyzed. Then the diraction peaks' positions are determined by analytical tting.

With a rst estimation of the ve parameters and a rough understanding of the orientation of the calibration monocrystal, we index each Laue peak to nd the (hkl) index of each spot. This calibration monocrystal is usually glued on the sample (see Fig. 4.7).

With indexations of Laue spots, the procedure used in LaueTool to determine precisely the calibration parameters is as follows [START_REF] Labat | Local strain measurements : X-ray micro-laue and bragg coherent diraction techniques[END_REF]]:

1. First, the ratio of distances between Laue peaks on the area detector are used to determine the β angle.
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2. Second, d, the distance between the region of interest and area detector, is deduced from the distances among the Laue peaks and the pixel size of the camera.

3. Adjust the coordinate (x c , y c ) and the γ angle to minimize the simulated peaks' positions and tted peaks' position.

The experimental diraction peak's position is obtained by an analytical t of the measured spots on the area detector. Usually, the calculated peak's position deviates a little bit (about 0.2 pix in average) from the tting peaks' position. This is usually due to the imperfect pixel grid permutation on the area detector, errors in estimating peak's position or the simplied model in which the scattering volume is viewed as a point [START_REF] Labat | Local strain measurements : X-ray micro-laue and bragg coherent diraction techniques[END_REF]].

Indexation of peaks

There are a wealth of literature dedicated to peaks' indexation, indexation e.g. by

Hough transformation [START_REF] Wenk | Laue Orientation Imaging[END_REF]], by template matching [START_REF] Gupta | Indexation and misorientation analysis of low-quality Laue diraction patterns[END_REF][START_REF] Labat | Local strain measurements : X-ray micro-laue and bragg coherent diraction techniques[END_REF]]. Here we present the method by template matching. The basic idea is to compare the experimental angular distances among normals of lattice planes and the theoretical ones. With the unit vector pointing to a peak, k f , we can calculate the vector normal to the corresponding lattice planes by:

n = k f -k i k f -k i .
The experimental angles between dierent normals of lattice plane are determined from the scalar product of dierent k. With N Laue spots, we have N (N -1)/2 angles among each pair of Laue spots. Then, a list of theoretical angles is calculated according to the crystal structure under investigation and the energy band pass of the incident white X-ray beam. Finally, for a triplet of experimental angles, the indexation code will search for the matches among the triplets of theoretical angles so as to give index to each spots among the triplet. Note that it is important to set a angular tolerance between experimental angle and theoretical angle, because lattice distortion, tting errors, calibration errors, etc may contribute to the discrepancy of experimental angle and theoretical angle. After a match of experimental triplet and theoretical triplet is found, the indexation code will 1.5. STANDARD LAUE TREATMENT TO OBTAIN ELASTIC STRAIN proceed to calculate a full list of theoretical angular positions of each index, and compare the calculated angular positions to the experimental ones. The match which gives the least discrepancy among the theoretical angular positions and theoretical positions is the best match. It is worth noting that, due to the symmetry of crystal, the indexation of spots is not unique, i.e. the numbers in the indexation can be permuted arbitrarily as long as the angular distances among spots remain constant.

Figure 1.18: For a triplet of Laue spots, we can calculate the angular distances among each spot, and nd matches of theoretical angular distances within a given angular tolerance.

If the Laue image contains spots coming from 1 ∼ 10 grains due to, for example, penetration of X-ray or small grain size, [START_REF] Chung | Automated indexing for texture and strain measurement with broad-bandpass x-ray microbeams[END_REF] have presented an automated routine to nd the pertained crystal of each spots and index them. However, we will not elaborate this algorithm here because our treatment is conned to Laue images from monocrystal.

The determination of elastic strain and orientation

After the spots are indexed, it is possible to calculate the lattice matrix and hence the corresponding elastic strain and orientation. Here we present the procedure of [ 

= s 1 s 3 n 1 , r * 2 = s 2 s 3 n 2 , r * 3 = s 3 n 3 , r * 4 = c 1 r * 1 + c 2 r * 2 + c 3 r * 3
, where c i are determined by the indexes of spots, and s 3 is the overall unit-cell scale factor which cannot be determined without energy measurements. To nd s 1 and s 2 , we use unit of s 3 ) of any reciprocal lattice vector can be determined in the laboratory reference frame, and consequently the reciprocal lattice matrix. And with Eqn. 1.8, we can obtain the lattice matrix l in direct space, we proceed to extract strain from lattice parameters.

       e x • r * 4 e z • r * 4 = (c 1 s 1 n 1 + c 2 s 2 n 2 + c 3 n 3 ) • e x (c 1 s 1 n 1 + c 2 s 2 n 2 + c 3 n 3 ) • e z e y • r * 4 e z • r * 4 = (c 1 s 1 n 1 + c 2 s 2 n 2 + c 3 n 3 ) • e y (c 1 s 1 n 1 + c 2 s 2 n 2 + c 3 n 3 ) • e z
The essence of calculating strain is isolating lattice distortion from lattice rotation.

There are many methods of handling this matter, and the convention method [Chung 1.5. STANDARD LAUE TREATMENT TO OBTAIN ELASTIC STRAIN and Ice 1999] is given below. Consider, for example, a unit cell with lattice parameters l i , i = 1, 2, 3 and α i , i = 1, 2, 3 and a Cartesian coordinate system u i , i = 1, 2, 3, which is attached to the lattice (see gure 1.19). Their relations are given as: the vector l 1 coincides with the u 1 axis, l 2 is in the u 1 ⊗ u 2 plane, and u 3 is perpendicular to the u 1 ⊗ u 2 plane:

u 1 . = l 1 l 1 , u 3 . = l 1 × l 2 l 1 × l 2 , u 2 . = l 3 × l 1 l 3 × l 1 .
(1. [START_REF] St-Pierre | 3d simulations of microstructure and comparison with experimental microstructure coming from o.i.m analysis[END_REF] In this manner, a lattice direction [uvw] can be expressed in the attached Cartesian coordinate system as well:

r uvw = ul 1 + vl 2 + wl 3 = uB 1i u i + vB 2j u j + wB 3k u k , (1.31) 
where B ij is the component of the matrix B :

[B ] . = [u 1 , u 2 , u 3 ] T • [l 1 , l 2 , l 3 ] =   l 1 l 2 cos α 3 l 3 cos α 2 0 l 2 sin α 3 -l 3 sin α 2 cos α * 1 0 0 1/ l * 3   .
(1.32)

Here, l * i and α * i , i = 1, 2, 3 (i = 1, 2, 3) are the reciprocal lattice vectors and their angles. Denote U as:

[U ] . = [u 1 , u 2 , u 3 ].
Obviously, U is an orthogonal matrix, therefore Eqn. 1.32 can be written into

U • B = l , (1.33)
where U represents the orientation of the lattice, and B represents the shape and volume of the lattice. Since the lattices of the materials under scrutiny are all cubic lattice, for lattice without distortion, the lattice parameters should be:

|B 1 | = |B 2 | = |B 3 |; α 1 = α 2 = α 3 = π/2. (1.34)
As we are ignorant of the lattice's volume without measuring Laue spots' energy, we only get the shape of the lattice:

B = B 1.6. SUMMARY
In this manner, the elastic strain of the lattice, represented in lattice frame, should be expressed as:

ε lattice . = c B + B T 2 -1 ,
where c is a constant relating to the dilatation of lattice. With ε , we are able to calculate the stress in lattice frame,

σ lattice = C : ε lattice .
where C is the elastic tensor expressed in the lattice frame.

The stress in the lattice frame needs to be further rotated into laboratory frame by,

σ = U • σ lattice • U T .
However, it is worth noting that in practice, Laue microdiraction cannot measure the c, therefore we can only get the deviatoric part of ε lattice , say ε , whose trace is designated to be zero, i.e. ε : 1 = 0. Will the absence of volumetric strain, say ε vol , contribute to errors to the evaluation of deviatoric stress, say σ ? That depends on the values of C , if

C : 1 = λ1 , (1.35)
where λ is a certain constant, then it is safe to declare that:

σ = C : ε . (1.36)

Summary

In the beginning of this chapter, we have presented the context of the thesis, three commonly used diraction method (neutron diraction, electron diraction, and X-ray diraction), their advantages and disadvantages. Under the framework of ANR project "MICROSTRESS", two diraction techniques: HR-EBSD and Laue microdiraction will be developed, not only because they are well adapted to material characterization at microscale, but also because they are complementary in terms of spatial resolution, in-depth resolution, accessibility, versatility, and readiness of sample preparation. This thesis is dedicated to the development of Laue microdiraction.

SUMMARY

Then we have introduced the principle of Laue microdiraction, including the kinematic theory of X-ray diraction, advantages of Laue diraction by using white beam rather than monochromatic beam, and the renaissance of Laue diraction thanks to the developments in synchrotron radiation and optics.

Finally, we have narrated the standard Laue Treatment of obtaining the elastic strain and orientation from Laue microdiraction image. We will improve the procedure with the aid of DIC (Digital Image Correlation), which will be presented in the next chapter.

Chapter 2

Laue-DIC and its Precision

Motivation

From the previous chapter, we can conclude that the determination of elastic strain and crystal orientation basically rests upon locating the positions of peaks on the area detector.

For example, for a steel sample undergoing a tensile test (see Fig. 2.1), reaching an accuracy The standard Laue treatment described in the previous chapter, although plausible, suers from the following approximations:

1. as described in 1.5.2, the calibration parameters are obtained by matching the Laue pattern obtained from a calibration monocrystal. In this process, the distortions of the area detector grid may give rise to the inaccuracies of measurements of diraction peaks.

2. Moreover, the diraction peaks are usually obtained by tting the spots with an analytical function, e.g. Gaussian function, Lorentz function, etc. Typically, the theoretical peaks' positions deviate on average about 0.1 pix from the tted peaks' position [START_REF] Poshadel | Assessment of deviatoric lattice strain uncertainty for polychromatic X-ray microdiraction experiments[END_REF]].

3. Shifting the illumination from the calibration monocrystal to the region of interest would introduce some errors due to the inaccuracies of motor's motion, no matter how careful the experimenter shifts the illumination. Moreover, the dierence in the penetration depth between the calibration monocrystal and the sample of interest would contribute to the uncertainties of calibration parameters as well. The procedure of DIC consists in recording some digital images of a specimen in course of its deformation with a camera and treating these images with an image correlation code. The image correlation code will match the subsets in a series of images to provide a measurement of the displacement eld. Thanks to the constant shrinkage of costs of digital cameras and computers, this technology is becoming more and more available to both industry and academic society. We will elaborate on this technique by introducing several vital concept in DIC.
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Correlation Window Correlation window is a region within the whole image, usually a rectangle. It is the displacement eld of the correlation window that DIC code will track. 

Correlation Coecient

C SSD = (f i -g i ) 2 , C NCC = f i g i ,
where f i and g i are the gray levels at the ith pixel of the two investigated images. The smaller C SSD is, the more resemblance exists between two compared correlation windows, while it is opposite with C NCC .

In practice, though ZNCC is much more complex than SSD and NCC, it is insensitive to the uniform oset and scale changes in the gray level of image, and gives the best results compared to other correlation coecient in terms of displacement measurement [START_REF] Tong | An evaluation of digital image correlation criteria for strain mapping applications[END_REF]. Its expression is:

C ZNCC = 1 - (f i -f )(g i -g) (f i -f ) 2 (g i -g) 2 .
(2.1) Shape Function The displacement eld within the correlation window is usually approximated by a linear combination of several analytical expression, usually polynomial.

These analytical functions are called shape function. The most used shape function is second order polynomial, given by

               u(X, Y ) = a u1 + a u2 ∆X + a u3 ∆Y + a u4 ∆X∆Y +a u5 ∆X 2 + a u6 ∆Y 2 + a u7 ∆X 2 ∆Y • • • • • • + a u8 ∆X∆Y 2 + a u9 ∆X 2 ∆Y 2 v(X, Y ) = a v1 + a v2 ∆X + a v3 ∆Y + a v4 ∆X∆Y +a v5 ∆X 2 + a v6 ∆Y 2 + a v7 ∆X 2 ∆Y • • • • • • + a v8 ∆X∆Y 2 + a v9 ∆X 2 ∆Y 2 (2.2)

LAUE-DIC

where ∆X = X -X 0 , ∆Y = Y -Y 0 , (X 0 , Y 0 ) being the center of correlation window. The order of shape function reects its capability to describe complex deformation mode. The simplest shape function is zero order polynomial associated with pure translation, i.e. only a u1 , a v1 = 0. These extensions often require additional image acquisition equipment.

Gray Level Interpolation

Calculation of Relative Deformation Gradient

Like in HR-EBSD (see 1.4), we use the displacements of Laue spots to evaluate the relative deformation gradient from one lattice whose matrix, L , is supposed to be known, to another lattice whose matrix, l , is to be determined. We refer to the lattice whose matrix is known as reference lattice, and the conguration whose lattice is to be determined as current conguration. Once we have determined the reciprocal relative deformation gradient between two congurations, F * , the reciprocal lattice matrix in current conguration, l * , can be calculated by:

l * = F * • L * ,
where L * represents the reciprocal lattice matrix of reference conguration.

Although in [START_REF] Petit | Combining laue microdiraction and digital image correlation for improved measurements of the elastic strain eld with micrometer spatial resolution[END_REF][START_REF] Petit | Laue-DIC: a new method for improved stress eld measurements at the micron scale[END_REF] F was calculated by minimizing the dicrepancy between the simulated displacements of spots and those measured by DIC, i.e.

hkl ∆X sim (F |l 0 , hkl) -∆X hkl dic 2.2. LAUE-DIC absolute value of lattice matrix, we can impose arbitrarily any component of lattice matrix to be 1, as long as this component is not zero in laboratory system. Here, with no loss of generality, we prescribe the xx component of reciprocal relative deformation gradient, F * 11 , to be one, and determine the least square solution of the reciprocal lattice matrix.

For reference conguration, since its lattice matrix is known a priori, the unit vector of the normal of lattice plane (hkl) can be calculated as:

n ref hkl =   L * 11 L * 21 L * 31 L * 12 L * 22 L * 32 L * 13 L * 23 L * 33     h k l     L * 11 L * 21 L * 31 L * 12 L * 22 L * 32 L * 13 L * 23 L * 33     h k l   .
Then, with Eqn. 1.20 and 1.22 (note that n ref hkl = q as the diraction vector must be normal to the diraction plane), we can transform the unit vector n ref Laue spot's position (x cur hkl , y cur hkl ) in current conguration can be transformed into unit vector n cur hkl by Eqn. 1.17. In this way, we get the unit vectors of Laue spots in reference and current conguration, the relation are given as:

  (n cur i ) 1 (n cur i ) 2 (n cur i ) 3   = 1 ρ i   1 F * 21 F * 31 F * 12 F * 22 F * 32 F * 13 F * 23 F * 33     (n ref i ) 1 (n ref i ) 2 (n ref i ) 3   , (2.3)
where the subscript i represents the ordering of Laue spots, and ρ i is the normalization
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factor to ensure both sides of Eqn. 2.3 to be unit vectors. Eqn. 2.3 can also be written as:

  (n ref i ) 2 (n ref i ) 3 0 0 0 0 0 0 -(n cur i ) 1 0 0 (n ref i ) 1 (n ref i ) 2 (n ref i ) 3 0 0 0 -(n cur i ) 2 0 0 0 0 0 (n ref i ) 1 (n ref i ) 2 (n ref i ) 3 -(n cur i ) 3                 F * 12 F * 13 F * 21 F * 22 F * 23 F * 31 F * 32 F * 33 ρ i               =   -(n ref i ) 1 0 0   .
(2.4)

If there are N Laue spots taken into account, Eqn. 2.4 can be assembled into:

   P 1 Q 1 . . . . . . P n Q n                       F * 12 F * 13 F * 21 F * 22 F * 23 F * 31 F * 32 F * 33 ρ 1 . . . ρ N                    =    R 1 . . . R n    (2.5)
where

[P i ] =   (n ref i ) 2 (n ref i ) 3 0 0 0 0 0 0 0 0 (n ref i ) 1 (n ref i ) 2 (n ref i ) 3 0 0 0 0 0 0 0 0 (n ref i ) 1 (n ref i ) 2 (n ref i ) 3   , [Q i ] =     0 • • • 0 -(n cur i ) 1 0 • • • 0 0 • • • 0 -(n cur i ) 2 0 • • • 0 0 1 • • • 0 i-1 -(n cur i ) 3 i 0 i+1 • • • 0 N     ,
and

[R i ] =   -(n ref i ) 1 0 0   .
With N reciprocal points, there are totally 3N equations and 8 + N variables, so at least 4 reciprocal points are needed to get the deformation gradient.
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If N ≥ 4, a least-square solution can be obtained. More specically,

[S ] =                    F * 12 F * 13 F * 21 F * 22 F * 23 F * 31 F * 32 F * 33 ρ 1 . . . ρ N                    = ([C ] T [C ]) -1 [C ] T [R ] (2.6)
where

[C ] =    P 1 Q 1 . . . . . . P N Q N    and [R ] =    R 1 . . . R N   
Only the rst eight terms of the solution [S ] is of our concern, which is just the rest eight component of the reciprocal relative deformation gradient F * . F * can be conveniently transformed into relative deformation gradient in real space by

F = (F * ) -T , (2.7)
and together with the reference lattice matrix, which is supposed to be known, we can calculate the current lattice matrix.

The introduction of DIC is supposed to have improved the precision of elastic strain measurement. To have a visual idea of the dierence of original Laue-DIC and standard

Laue treatment, we scanned the Si monocrystal in four-point bending test (see Fig. 

INTRODUCTION TO POISSONIAN-GAUSSIAN NOISE MODEL IN SYNCHROTRON RADIATION EXPERIMENT

Introduction to Poissonian-Gaussian noise model in synchrotron radiation experiment

Laue-DIC, drawing on the relative displacements of Laue spots instead of the absolute positions of Laue spots, turns out to be a promising method to obtain local elastic strain.

However, the precision of Laue-DIC method is limited by several factors: the noise of diraction image, uncertainties of calibration parameters, etc. 2009] in DIC. In this section, we will rst introduce Gauss-Poisson model to describe the noise property. Then, we will apply this model to diraction images from Si, Ge, and Cu, and 316 stainless steel. In the end, we will analyze the accuracy of DIC measurements of spot displacement with articial images and the impact of noise on the accuracy of elastic strain.

Terminologies characterizing the performance of a detector

Nowadays, electronic area detectors are overwhelmingly used in recording ux spatial distribution in replacement of photographic lms. This is because the digital information recorded by electronic area detector is more convenient to process and to transmit than the Gain The gain g is usually dened as the output signal s o per unit input signal s i ,

g = s o s i .
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Relative variance, detective quantum eciency, and energy range The relative variance R is dened as the ratio of variance of signal σ 2 to the square of signal s 2 ,

R = σ 2 /s 2 ,
and Detective quantum eciency (DQE) is referred to as the ratio of relative variance of input signal to that of output signal,

DQE = R i R o = (s o /σ o ) 2 (s i /σ i ) 2 = (σ i /s i ) 2 (σ o /s o ) 2 .
If the output signal were strictly proportional to input signal, the DQE would be 100%.

Failure to detect certain signal and additional noise would decrease the DQE. A detector's DQE is aected by various factors, e.g. incident X-ray photon energy, transmission of the detector window, geometrical design, etc. The dependence of the DQE on the X-ray photon energy denes the energy range of a detector. The DQE drops signicantly if the X-ray photons' energies are out of the energy range [He 2009b].

Dynamic range, encoding range The dynamic range is dened as the ratio of maximum signal within the linear range to the minimum detectable signal, and is generally expressed in bits (logarithm base 2).

The encoding range is generally referred to as the bits of output digital signal. Larger encoding ranges can be achieved at the expense of readout speed [START_REF] Ponchut | Characterization of X-ray area detectors for synchrotron beamlines[END_REF]].

Dark signal, dark signal non-uniformity, and read-out noise Dark signal is the non-zero signal at output when the input signal is zero. The cause of dark signal depends on the mechanism of the detector. The dark signal usually increases with integration time [START_REF] Ponchut | Characterization of X-ray area detectors for synchrotron beamlines[END_REF]], hence the dark signal can generally be quantied from the accumulation of gray levels without X-ray exposure.

The variance of uctuation exhibited by dark signal, σ 2 d , is indicative of dark signal noise level, and consisted of random read-out noise σ 2 r and non-random dark signal non- uniformity (DSNU) σ 2 DSNU :

σ 2 d = σ 2 r + σ 2 DSNU .
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Fortunately, most area detectors provide online dark-eld subtraction, thereby only readout noise is left in the corrected image with DSNU cancelled out.

Principle of charged-coupled device

The type of detector we used in our experiment is X-ray 11 megapixel VHR (Very High The electrons are stored in the potential wells at each pixel site, and then their voltages are read out.

However, in the practice of synchrotron radiation imaging, the uence of synchrotron radiation is so high that CCD chips can hardly adapt to such high counting rate [Arndt, 1978]. Therefore, most of detectors used for X-ray imaging detect the uorescence stimu- 
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Cascading structure of X-ray photon detector

Fig. 2.9 is a schematic of the cascading structure of detector, indicating that a detection event is naturally described by a chain of signal transmission, with output at one stage feeding into the input of the next. The transmission of signal can be segmented into four stages:

1. The incident X-ray photons arrive at the screen of the detector.

2. The incident X-ray photons interact with the phosphor scintillator of the screen, and the scintillator will emit visible photons. The consequent mean electron-hole pairs deposited on a certain pixel due to the reaction chain is
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m = N g 1 g 2 g 3 g 4 + m d . (2.8)
where m d is the mean quantity of thermally accumulated electron-hole pairs, which give rise to the dark signal, and the meanings of N , g 1 , g 2 , g 3 and g 4 are explained Tab. 2.1.

Errors involved in the cascading detection

The users of detector wishes that the output image honestly tells the distribution of incident X-ray ux. Unfortunately, every stage of the signal transmission is prone to errors due to its statistical nature, and the nal error of the output signal is the accumulated result of all previous errors. Errors are mainly classied into systematic errors, which inuence the accuracy of the results, and random error, which inuence the precision of the results. It is important to distinguish between the terms accuracy and precision. The accuracy of a result refers to a measure of how close the result is to the true value. The precision refers to a measure of how well the result has been determined, without reference to its agreement with the true value. The precision is also indicative of the reproducibility of result [START_REF] Bevington | Uncertainties in Measurements[END_REF]].
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Systematic errors

The eect of systematic errors manifests itself by biasing the result from the true value unilaterally with certain degree of uctuations. Since the true value is never known, systematic errors cannot be detected by statistical analysis. The systematic errors with CCD-based detectors are mainly:

Gain inhomogeneity The gains of the whole pixels of a detector surface varies one by one. A map of gain variations is usually obtained by either exposing the detection area to a perfectly homogeneous beam, which may be unpractical for a large-area system, or performing a time-consuming detector surface scanning with a perfectly stable or precisely monitored beam. For diraction systems a gain inhomogeneity of ±1% with respect to the average value is deemed acceptable [START_REF] Ponchut | Characterization of X-ray area detectors for synchrotron beamlines[END_REF]].

Geometric distortion of FOT The FOT serves to transport the photons released from the phosphor scintillator to the much smaller CCD chip. The ideal FOT should be a zooming optical device, evenly scaling down the image on the phosphor side. However, due to the errors in manufacturing and assembling FOT, the demagnication ratio is not uniform, thereby distortions occur on the CCD side, so-called "grid distortion".

The correction of distortion usually requires a mask with regular spaced nodes in front of the detector as a reference. Several algorithm are proposed to correct this distortion based on the distortion of the mask image [START_REF] Paciorek | Geometric distortion corrections for ber-optic tapers in X-ray charge-coupled-device detectors[END_REF]].

Dark signal In CCD detector, the dark signal, mentioned in 2.3.1, is due to thermally produced electron-hole pairs, which accumulate in the potential well with time. The dark current now becomes the dominant error source for long exposures, and can be decreased by cooling the detector [He 2009b].

As mentioned before, systematic errors are dicult to detect by statistical method.
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Random errors

The reproducibility of a result depends on the random errors. The uctuation of the result is usually quantied by the variance or relative variance. In an image acquisition event, incident photons need to pass through 5 stages to reach at the A/D converter nally (see Tab. 2.1), and the relative variances of each stage, labeled as R i , i = 0, 1, 2, 3, 4 are given according to their own statistical properties:

R 0 = 1 N , R 1 = 1 g 1 -1, R 2 = σ 2 g 2 g 2 2 , R 3 = 1 g 3 -1, R 4 = σ 2 g 4 g 2 4 .
(2.9)

According to [START_REF] Arndt | X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources[END_REF][START_REF] Stanton | The detective quantum eciency of CCD and vidicon-based detectors for X-ray crystallographic applications[END_REF]; Waterman and Evans 2010],

the relative variance of the induced electron-hole pairs can be evaluated by the following empirical formula:

R = R 0 + R 1 N + R 2 N g 1 + R 3 N g 1 g 2 + R 4 N g 1 g 2 g 3 = 1 N g 1 1 + σ 2 g 2 g 2 2 + 1 g 2 g 3 - 1 g 2 + σ 2 g 4 g 2 g 3 g 2 4 .
(2.10)

The relative variance of the number of electron-hole pairs on the CCD chips is converted into the actual variance of this quantity, σ 2 m , by multiplying the squared output signal for the combined cascade stages, (N g 1 g 2 g 3 g 4 ) 2 , and adding the dark current variance,

σ 2 m = N g 1 (g 2 g 3 g 4 ) 2 1 + σ 2 g 2 g 2 2 + 1 g 2 g 3 - 1 g 2 + σ 2 g 4 g 2 g 3 g 2 4 + σ 2 md .
(2.11)

The voltage triggered by the electron-hole pairs, m, is converted into digital signal by multiplying by a coecient, say, analogue-digital gain g AD , and digitalizing the result,

p = g AD m,
(2.12a)

p = p + d, (2.12b)
where d is the error introduced by digitalization, p is the digitalized gray level, and p is the gray level before digitalization. Strictly speaking, the distribution of d should depend on the distribution of the number of electron-hole pairs. Nevertheless, it is customary to 2.4. EXPERIMENTAL STUDY OF THE NOISE OF DIFFRACTION IMAGES assume it to be independent and obey uniform distribution with a range of 1 analogue-todigital unit (ADU) [START_REF] Widrow | Statistical theory of quantization[END_REF]]. In that case, the variance of error of digitalization is 1/12.

The resulted variance of p, σ 2 p , by combining equation (2.11) and (2.12), should be

σ 2 p = g 2 AD σ 2 m + 1 12 = N g 1 (g 2 g 3 g 4 g AD ) 2 1 + σ 2 g 2 g 2 2 + 1 g 2 g 3 - 1 g 2 + σ 2 g 4 g 2 g 3 g 2 4 + g 2 AD σ 2 md + 1 12 .
(2.13)

The gain of the detector for each absorbed X-ray photon is given by G = g 2 g 3 g 4 g AD [START_REF] Leslie | Integration of macromolecular diraction data[END_REF][START_REF] Waterman | Estimation of errors in diraction data measured by CCD area detectors[END_REF]. Using this denition of G given, the above expressions 2.12a, 2.12b, and 2.13 can be given as Although diraction images, acquired from experiments, contains huge amount of pixels (in our case, there are 2 594 × 2 774 pixels), fortunately only a small portion of pixels where the diracted X-rays intersect with the area detector are of our interests. Therefore, the primary step of data treatment is to extract the rectangular windows containing individual Laue spots from the background which contains nothing but noise. Since the sizes, the shapes of Laue spots vary according to the spots' energies, angular projection, defects of materials, etc, we need to adaptively select the windows' sizes, aspect ratio to best t the spots. The algorithm we adopted in this work is shown in Fig. 2.10, and three realizations of this algorithm is shown in Fig. 2.11.

p = N g 1 G + g AD m d , σ 2 p = N g 1 G 2 1 + σ 2 g 2 g 2 2 + 1 g 2 g 3 - 1 g 2 + σ 2 g 4 g 2 g 3 g 2 4 + g 2 AD σ 2 md + 1 12 . ( 2 
σ 2 p = (p -p d )γ + ψ, (2.15) with γ = G 1 + σ 2 g 2 g 2 2 + 1 g 2 g 3 - 1 g 2 + σ 2 g 4 g 2 g 3 g 2 4 , (2.16a) ψ = g 2 AD σ 2 md + 1 12 . ( 2 
We rst look at an image stack collected from a Si monocrystal sample. To analyze the relation between the gray levels and their variances, we plot pairs of the averages and standard variance of gray level for each pixel, (p, σ 2 p ), of a subimage of a spot (Fig. 2.12).

Visual impression of the average-variance distributions indicates a linear relationship between the average and variance of gray level as revealed by Eqn. 2.15. To test the linearity of the distribution, we used the linear regression method, in which the linearity was quantied by linear correlation coecient (LCC) r dened as:

r = n n x i y i - n x i n y i n n x 2 i - n x i 2 n n y 2 i - n y i 2 .
(2.17)

The value of r is in the range -1 ≤ r ≤ +1. r = ±1 means that the data pairs are perfectly linearly related. The smaller |r|, the weaker the linear relationship between the data pairs.

In Fig. 2.13, we plotted the distribution of LCCs of all spots in the same image stack.

Most of the LCCs are distributed within the range of 0.9 and 1.0, indicating a strong linear relationship between p and σ 2 p , thereby further conrming the soundness of equation 2.15.

Applying linear regression to every spot would give us a series of lines, whose slope is Plotting all pairs of estimated (γ, ψp d γ) for all Laue spots would enable us to estimate ψ and p d by linear regression (Fig. 2.14).

From the results of linear regression, we nd the linear correlation coecient to be -0.94, indicating a high linear correlation. The rest parameter are found to be p d = 118.7 and ψ = 4.3.

Note that the estimated p d is slightly higher than the average gray level of background of the image (about 101.1), however we are not clear about this phenomenon. After all, the transmission of signal from incident photons to digital images is too complex to be fully described by Poissonian-Gaussian model. Fortunately, the precision of DIC is not aected by p d as long as the correlation coecient is zero-mean normalized cross-correlation (ZNCC) coecient [START_REF] Tong | An evaluation of digital image correlation criteria for strain mapping applications[END_REF]].

We applied the same procedure to image stacks collected from other Si samples, Ge samples, Cu samples, and 316 steel samples, and we found that for most image stacks the averages of LCCs were above 0.9, showing a strong linear correlation between the variance and the average of gray levels. However, there were two exceptions: one came from Ge sample, and another came from 316 steel sample. We will talk about the two exceptions in 2.4.3.

Note that, in Fig. 2.14, we plotted all the (γ, ψp d γ) pairs collected in a single Of course, more pairs would give a better estimation of background noise parameters, i.e.

p d and ψ. On the other hand, the detector, as an apparatus to detect photons, should be ignorant of the diracted material. Therefore, we will plot all the (γ, ψp d γ) pairs of dierent materials in a single XY -plot to estimate the background parameters. These pairs were collected from all the diraction images that we had taken (each pair corresponds to a spot, and a total of 316 spots investigated), among which the spots with a LCC lower than an empirical threshold, 0.9, were excluded. The LCC for these pairs are -0.92, p d = 147.3 and ψ = 7.3 in our estimation. The estimated p d is much larger than the background of image, but this parameter is a trivial one since it would not inuence neither the precision of pinpointing peak by analytical tting nor the precision of displacement measurement by DIC. Moreover, the estimation of p d is meaningless because in reality p d is not uniformly distributed on the area detector due to the inuence of diuse X-ray.

The dependence of cascade factor γ on photons' energy

The performance of detector should be independent of the material under scrutiny.

Likewise, the cascade factor γ should be function of incident photon's energy rather than the lattice parameters of the crystal diracting. In order to reveal the relation between the cascade factor and incident photons' energy, we plotted all the (γ, E) pairs for all spots under consideration in Fig. 2. 16, where E is the energy of the energy of incident spot. E
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can be calculated from Eqn. 1.15:

E hkl = hc 2d hkl sin θ ,
where the subscript hkl represent the index of lattice plane from which the spot is diracted, and d hkl is the d-spacing of the lattice plane, c is the light speed, and h is the Planck's constant (we used a dierent font of h so as not to be confused with the index of lattice plane hkl). From Eqn. 1.10, for cubic lattice, d hkl is given as:

d hkl = 1 r * hkl = 1 1 a √ h 2 + k 2 + l 2 = a √ h 2 + k 2 + l 2 ,
where a is the side length of the cubic lattice. Therefore, for cubic lattice, the energy of photon diracted by (hkl) lattice plane is: factor γ, and therefore we could only estimate the range of cascade factor from this gure.

E = hc √ h 2 + k 2 + l 2 2a
We will implicitly assume γ = 0.125 if there is no further specication hereinafter.

Issues with the Same Dataset

Poissonian-Gaussian noise model applies for most image stack collected in our experiment. However, in 2.4.1 we mentioned that there were two exceptions: one came from a 316 steel sample, and another came from a Ge sample. We rst talked about the exception from the 316 steel sample. We plotted its LCCs in Fig. 2.17, and we observed that most LCCs were below 0.7, indicating a poor linear relationship between p and σ 2 p . To further investigate the origin of this failure of the linearity implicated in Eqn. 2.15, we plotted the three dierent images of one spot in Fig. 2.18, we observed an intense uctuation of spot intensity distribution. The causes of this uctuation is not known yet. One possible explanation is the occurrence of instabilities during the experiment, e.g. like external vibration, thermal expansion of the equipment, instability of beam, etc. 

The Accuracy of Displacement by DIC

The principle of Laue-DIC is acquiring the precise relative displacement of Laue spots on the area detector thanks to DIC technique. Therefore, the accuracy of displacement measurement by DIC is crucial to obtain highly reliable results. Although it is relatively straightforward to compare the mechanical imposed displacements with those measured by DIC, as presented in 2.1, it is dicult to experimentally prescribe well-controlled displacement eld whose precision must be of at least one order of magnitude better than the one of DIC, as the imposed displacements eld also depends on motor's precision, alignment of detector, stability of experimental setup, etc.

One possible approach to impose a displacement eld between two images of Laue spots In this section, we attempt to estimate the error of DIC and the inuence of image noise by fabricating and operating on articial images by a multi-resolution approach [START_REF] Doumalin | Micromechanical Applications of Digital Image Correlation Techniques[END_REF]] in order to evade both the uncertainties of experimental equipment and the errors introduced by numerical transformation of images.

Fabrication of noiseless articial spots

It is customary to characterize the intensity distribution of a Laue spot by an analytical function, e.g. 2D Gaussian, Lorentzian, or Pearson function. It was said that a 2D Lorentzian function typically gives the best t of peak position [START_REF] Valek | X-ray microdiraction studies of mechanical behavior and electromigration in thin lm structures[END_REF]], but in treating the image sequences of Chapter 4, it was found that the residual error resulted from Gaussian tting was smaller than that resulted from Lorentzian tting. Therefore spots were described by a Gaussian function in my study.

The analytical function of 2D Gaussian distribution is given as:

I(x, y) = A exp -C 1 (x -x 0 ) 2 + C 2 (x -x 0 )(y -y 0 ) + C 3 (y -y 0 ) 2 + p d , C 1 = 1 2 cos 2 θ r 2 X + sin 2 θ r 2 Y , C 2 = sin θ cos θ - 1 r 2 X + 1 r 2 Y , C 3 = 1 2 sin 2 θ r 2 X + cos 2 θ r 2 Y (2.18)
where A represents the amplitude of the spot, x 0 and y 0 represent the center of the spot, r X and r Y are the width of spot along two main axis at the 1/ √ e of the maximum height, θ represent the rotation angle of main axis of Gaussian function with respect to the pixel grid, and p d is the dark signal as mentioned in 2.3. Note that as the value of p d does not inuence the result of DIC when ZNCC (see Eqn. can be set arbitrarily. Here we set it to be 100.

The essence of the multi-resolution approach consist in the following steps:

1. Subdivide each pixel into N × N subpixels. N represents the resolution of subpixel step. The larger N is, the ner the resolution is.

2. Calculate the gray level for each subpixel by performing the integration of Eqn. 2.18 within each subpixel.

3. To obtain the gray level of each pixel after a displacement of ( nx N , ny N ) (n x and n y are integers), we only have to move the pixel in two dimensions by n x and n y substeps (see Fig. 2.22, the blue rectangular represent the pixel after displacements). Then, we bin together subpixels within the moved pixel, and have its gray level.

In this manner, the only source of error in constructing the displaced image is digitalization. Here, we choose N to be 100, then the resolution of subpixel displacement is 0.01. Because spots are just rigidly displaced in two images, therefore there would be no errors in mismatch of shape functions if we use zero order shape function, the only error of DIC we will encounter is the "ultimate error" of DIC [START_REF] Bornert | Assessment of digital image correlation measurement errors: Methodology and results[END_REF][START_REF] Amiot | Assessment of digital image correlation measurement accuracy in the ultimate error regime: Main results of a collaborative benchmark[END_REF]]. Note that because the spot that we fabricated was central symmetrical, a subpixel translation along x or y axis with the distance u is equivalent to a translation opposite to
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x or y axis with distance u, which is itself equivalent to a translation along x or y axis with distance 1u. Therefore, the error curves without noise should be central symmetrical with respect to the point (0.5, 0.5). • Either from the 3D plots Fig. 2.24 and Fig. 2.25 or from the 2D plot Fig. 2.26, we found that the amplitude of error curve of biquintic interpolation was smaller than that of bilinear interpolation. This means that biquintic interpolation gives better results that bilinear interpolation.

• In Fig. 2.26, the error curves are all S-shaped, with their minimum located at 0 pix, 0.5 pix, and 1 pix.

• The amplitude of error curve for y displacement was smaller than that for x displacement in both biquintic case and bilinear case. This was because the spot was more streaked in x direction, therefore the gray level was more evenly distributed in x direction, resulting less contrast in x direction. There is a simple formula to demonstrate in 1D DIC and with linear interpolation of gray level how the contrasts of gray level inuence aect the error of DIC [Sutton et al. 2009b]:

e = - (g i -f i )∇f i (∇f i ) 2 ,
where f i represents the gray level of the ith pixel on the current image, ∇f i represents its gradient of gray level, and g i represents the interpolated gray level of of the ith pixel on the translated reference image. It is obvious from this equation that the error of 1D DIC decreases with the gradient of gray level. For the case of 2D DIC with images polluted by Gaussian noise, the formulas are much more complex [START_REF] Wang | Quantitative error assessment in pattern matching: Eects of intensity pattern noise, interpolation, strain and image contrast on motion measurements[END_REF]].

• The minimum error level occurs at around 0, 0.5, and 1 displacements, while the maximum error level occurs at around 0.25 and 0.75 displacements.

To investigate the inuence of amplitude A on the accuracy of DIC, we fabricated spots with six dierent amplitudes: 100, 300, 500, 700, 900, and 1100. It was shown that the error level will decrease as the spot's amplitude increase both for

x displacement and y displacement. This is because that increasing the spot's amplitude will increase the gradient of gray level in Eqn. 2.18, and hence the contrast of gray levels with respect to neighboring pixels after digitalization. Another factor is that the error introduced by digitalization of gray level will become less signicant compared to the increased contrasts of gray level.

Fabrication of noisy articial spots

The real experimental spots are more or less uctuated due to the image noise introduced in 2.3.4. We formulated a normal distribution to describe the uctuation of gray level, and conrmed the distribution with several samples in 2.4. We fabricated the noisy spot in the following procedure:

1. Calculate the noise-free, non-digitalized gray level p with the procedure stated in 2.5.1.2.

2. Add noise to the gray level by generating a normally distributed random number p with its mean being p, and variance being γ(pp d ) + ψ, where γ is cascade factor and ψ is pixel factor.

3. Digitalize the random number p to get the nal gray level p.

Precision of displacement measurements of noisy spot

To study the uctuation of DIC errors due to the uctuation of gray levels, we generated 100 random Laue spots for each displacement. We only studied the error distributions with biquintic interpolation because the study in 2.5.1.2 had demonstrated that biquintic interpolation gave the best results in terms of maximum error. The pixel factor ψ we chose to fabricate these noisy pixels was 7.3 according to 2.4.1, and the cascade factor γ was set to be 0.125. The rest of spot parameters were listed in Tab. 2.2 In terms of random errors, the coupling between x and y subpixel still turned out to be weak. The amplitude of random error curve for y displacement, 0.014, is smaller than that for x displacement, 0.02 as there is more contrast in y direction rendering measurements on y direction more robust against noise. Similar to the curve of systematic errors, the minimum error level occurs at around 0, 0.5, and 1 displacements, while the maximum error level occurs at around 0. is one limiting factor of DIC.

Because the coupling between the errors in x and y dimension is very weak, it is possible to turn Fig. 2.28 and 2.29 into 2D plots, i.e. Fig. 2.30, as we have plotted Fig. 2.26 to facilitate . In Fig. 2.30a, it is found that the error curves appear much noisy than those of Fig. 2.26, and they deviate from S-shape curve, the reason for such deviation is not known yet. In Fig. 2.30b, it is found that the random errors are smaller near integer pixel displacement, and they quickly reach a plateau as the imposed displacement deviate from integer pixel.

To study the collective inuence of cascade factor γ and spots' peak A, we studies the systematic errors and random errors of spots with dierent combinations of γ and A. The range of A was 100, 300, 500, 700, 900, and 1100, while the range of γ, according to Fig. 

A =100 A =300 A =500 A =700 A =900 A =1100
(b) Maximum random errors in y direction Figure 2.32: Maximum random errors with with biquintic interpolation 2. For random error, the error level is governed by both the amplitude of spot and cascade factor. Random error will increase with decreasing the amplitude of spot or increasing the cascade factor γ.

3. Both systematic error and random error in y direction are lower than their counterparts in x direction. There is due to the fact that there is more gray level gradient in y direction.

4. The level of random error is larger than that of systematic error. This may be related to the value of cascade factor lower cascade factor will render random error smaller than systematic error. For intense peak, errors are of the order of 0.01 pix, and it can increase up to ∼ 0.05 pix for peaks with small amplitudes. Such accuracy is well adapted for our application.

Laue-DIC's Uncertainties

From 2.5.1, we gained a quantitative idea about the errors of DIC. Now we proceed to investigate the collective inuence of uncertainties by DIC and by calibration parameters.

It is dicult to quantify the errors on the deformation gradient F because it has nine components and is inuenced by volumeric changes which is beyond the capability of Laue diraction. Therefore we use the following steps to dene the errors on F :

1. rescale each component of F by the cube root of the determinant of F in order to get rid of the uncertainty on the volume of crystal lattice, i.e.

F . = F

3 det F , 2. the error on F is dened as

F . = 3 i=1 3 j=1 | F cal ij -F exa ij | 9 ,
where the superscript cal represents the calculated value, and the superscript exa represents the exact value.

In case of statistical tests where multi random cases are treated, we dene the systematic error F and random error σ F of F as:

F . = 3 i=1 3 j=1 | F cal ij -F exa ij | 9 , σ F . = 3 i=1 3 j=1 σ F cal ij 9 ,
where the overline on the right hand of equations means the average, and the σ on the right hand of equations means the standard deviation.

The procedure of numerical tests goes as following (see Fig. 2 In our numerical test, we use the real data from one of our experiment as the exact values to make our tests more realistic. The exact values for geometrical parameters are listed in Tab. 2.3, and the exact values for L * is 

[L * ] =   1 -7.
[F * ] =   1 3.33 × 10 -4 -3.55 × 10 -4 9.15 × 10 -6 1 -4.49 × 10 -4 -3.36 × 10 -4 2.42 × 10 -4 1   (2.20)
The three cases, namely case I, II, and III, represent increasing deformations in a row.

For each cases, we tested three subcases, in which the numbers of Laue spots captured by the area detector were 40, 25, and 10, respectively. We will perform the numerical tests in two aspects:

Variation of uncertainties with the level of DIC errors From 2.5.1, we know that the maximum error is usually of the order of 0.1 pix, the average of error would be of the order of 0.05 pix. In this section, we will add zero-mean Gaussian errors to the spots' displacements to investigate the inuence of noise upon the precision of strain and geometrical parameters. We will impose all the input displacements of spots in the same Laue image with zero-mean Gaussian errors whose deviations are 0.005 pix, 0.01 pix, 0.015 pix, 0.02 pix, 0.025 pix, 0.03 pix, 0.035 pix, 0.04 pix, 0.045 pix, 0.05 pix.

In terms of the level of calibration parameter, they are tabulated in Tab. 2.4. The reason for why there is more uncertainty in y c than in x c is that the penetration depth in y-axis contributes to the uncertainty (remember that the incident beam is always parallel to the y-axis according to the denition of absolute coordinate system). For each deviation level, we generated 500 random cases and then calculate the average errors of lattice matrices.

Variation of uncertainties with the level of calibration errors

We vary the level of calibration error by uniformly scaling the deviations of calibration parameters tabulated in Tab. 2.4 by a scaling factor, say, α. The scaling factor α we set are 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5. For the sake of brevity, we only consider the case where the deviations of spots' displacements are 0.01 pix for both x and y directions of all the spots. The rest settings of tests are the same as in the previous aspect of tests.

The variations of systematic and random errors with imposed zero-mean Gaussian noise are displayed in Fig. 2.34, and those with the level of calibration errors are displayed in Fig. 2.35. We can draw several conclusions:

• Both systematic and random errors of F decreases with increasing the number of Laue spots. This justies the strategy of using as many spots as possible to perform Laue-DIC.

• Systematic errors of F increases abruptly with instilling the zero-mean Gaussian errors either to the spots' displacements or to the calibration parameters. However, the systematic errors become stable with further increasing the deviation of errors.

• The random errors slightly increases with increasing the deviation of errors on the spots' displacements despite uctuations. By contrast, the increments of random errors with the deviation of errors on the calibration parameters are very obvious, and they depend almost linearly on the scaling factor α.

• The curves of random error seem to be insensitive to the imposed relative deformation gradient, while the systematic error decreases with larger imposed deformation (the imposed deformation gradients of case I, II, and III are F , F 2 , and F 3 respectively). This is probably due to the fact that larger amplitude of deformation will engender larger spots' displacements, and hence reduce the relative errors of spots' displacement.

• The systematic and random errors of F are of the order of ∼ 10 -4 , well adapted for our study. As we have mentioned above, the random errors seem to increase linearly with the scaling factor α, while they seem more stable with the deviations of the displacement errors.

This may indicate that at present the dominant factor governing the random errors should be the scaling factor α. This may lead us postulate that the deviations of displacement errors may become the dominant one if they are further increased. To prove this point, we further extend the range of the abscissa of Fig. 2 In Fig. 2.36, it is obvious that all curves asymptotically converge to certain curves if we further increase the deviations of displacement errors. When α = 0, i.e. the calibration parameters are exactly given, the errors increases almost linear with the deviations of errors. As we increase α, a basin in which the errors increase slightly with the deviation of displacement errors is formed, and the range of the basin increases with α. This implies that the errors of calibration parameters inuence the error of deformation gradient as well as the displacement errors.

2.6. SUMMARY

Summary

In this chapter, we have introduced the principle of Laue-DIC, and analyzed its uncertainty by numerical tests. The originality of Laue-DIC, compared to standard Laue treatment (see 1.5), is: (i) that Laue-DIC uses peaks' displacements measured by DIC rather than peaks' absolute positions; (ii) that Laue-DIC calculates the relative deformation gradient between two congurations. However, it is worth to mention that Laue-DIC shares the same limitation with HR-EBSD: both need reference congurations which has been known a priori. This limitation will be discussed in the next chapter.

The error of Laue-DIC originates from the errors of calibration parameters and the Poissonian-Gaussian model and to t the parameters of this model, and found that most image stacks conrm this model despite several exceptions. We postulate that the incident beams or experimental equipments underwent stabilities when we were collecting these image stacks. In future, it is always a good idea to check regularly the stabilities of beam or equipments before any image acquisition by a similar process of image noise evaluation.

Considering the complexity of errors involved in Laue-DIC, we performed numerical tests to estimate the uncertainties of Laue-DIC in two steps:

1. estimate the uncertainties of displacements by operating upon the articial spots with imposed displacements. In our case, the simulated error of displacement is of the order of 0.05 pix;

2. estimate the uncertainty of relative deformation gradient by randomly perturbing 99 2.6. SUMMARY the spots' displacements and calibration parameters. To this end, we impose zeromean Gaussian error to simulated spots' displacements and pre-known calibration parameters to investigate their inuence upon relative deformation gradient, and the simulated error of relative deformation gradient is of the order of 10 -5 when 25 Laue spot are considered.

Chapter 3

Enhanced Laue-DIC and its Precision

Motivation

In 2.2.2, we have presented the principle of Laue-DIC and have demonstrated that Laue-DIC method is capable of improving the accuracy of elastic strain measurement, because it draws on a more reliable source of information the displacements of spots rather than the absolute positions of spots. Although this is a good start point towards improving the evaluation of orientation and elastic strain from Laue microdiraction, it suers from several drawbacks:

• The evaluation of elastic strain needs a reference conguration whose lattice matrix is known. This ignorance of lattice matrix of reference conguration would add up to the uncertainty of the evaluation of elastic strain, or limit the application of Laue-DIC to circumstances where the elastic strain and orientation of reference conguration is straightforward, e.g. the neutral ber in bending test, in which the normal stress in the direction of longitude is supposed to be zero.

• Aside from lattice rotation and distortion, any perturbation of calibration parameters from reference conguration to current conguration may contribute to the spot displacements, which may be confused with the displacements caused by lattice distortion/rotation.

• Even the acquisition of relative deformation gradient requires the lattice matrix and calibration parameters to be known accurately, as shown in Eqn. 2.4, where the
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i needs the lattice matrix and calibration parameters of reference conguration.

This chapter is dedicated to provide an enhanced version of Laue-DIC to solve the problems mentioned above. We will present the formulation of enhanced Laue-DIC in the rst place, and then we will run numerical tests in order to: (i) investigate the proper optimization algorithm, (ii) the performance of enhanced Laue-DIC.

Enhanced Laue-DIC

We will refer to the Laue-DIC mentioned in the previous chapter as original Laue-DIC hereinafter in order to distinguish it from the enhanced version which will be presented in 3.1: Symbols for parameters dierent conguration are mainly due to: (i) the lattice distortion and (ii) perturbation of experimental setup. In real practice, the two causes happen simultaneously, therefore a sound evaluation of lattice distortion must take perturbation of experimental setup into consideration. For a spots with a given index hkl, its displacement is a function of recip-
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rocal lattice parameters and calibration parameters:

x(l * , d, x c , β, γ, hkl) -x(L * , D, X c , B, Γ, hkl) = ∆x hkl y(l * , d, y c , β, γ, hkl) -y(L * , D, Y c , B, Γ, hkl) = ∆y hkl (3.1) Substitute Eqn. 1.29 into Eqn. 3.1, we have:

       d ξ hkl i g 1i ξ hkl i g 3i + x c -D Ξ hkl i G 1i Ξ hkl i G 3i -X c = ∆x hkl d ξ hkl i g 2i ξ hkl i g 3i + y c -D Ξ hkl i G 2i Ξ hkl i G 3i -Y c = ∆y hkl Denote ∆x c = x c -X c and ∆y c = y c -Y c , we have        d ξ hkl i g 1i ξ hkl i g 3i -D Ξ hkl i G 1i Ξ hkl i G 3i + ∆x c = ∆x hkl d ξ hkl i g 2i ξ hkl i g 3i -D Ξ hkl i G 2i Ξ hkl i G 3i + ∆y c = ∆y hkl (3.2)
Notice that Laue diraction will not resolve isotropic dilation of lattice without additional information, e.g. spot's energy [START_REF] Robach | Full local elastic strain tensor from Laue microdiraction: simultaneous Laue pattern and spot energy measurement[END_REF]], we can therefore resolve only eight degrees of freedom of lattice from Laue diraction. Without loss of generality, we exclude the component of reciprocal lattice matrix, whose index is 11 , from our optimization, in other words, we keep it xed throughout the optimization. Therefore if we are provided a series of spots' displacements by DIC, there are totally 24 unknowns to be solved from Eqn. 3.2: 8 parameters for l * , 8 parameters for L * , and calibration parameters d, D, ∆x c , ∆y c , β, γ, B, Γ. We denote the parameters to be optimized by P. Note that it is impossible to determine x c , y c , X c , or Y c from Eqn. 3.2, because the left hand side of Eqn. 3.2 is irrelevant to the any of them, only ∆x c and ∆y c can be determined.

If the lattice parameters and calibration parameters are given, we can uniquely determine any spot's displacement with equation 3.2. Now the question is, given twelve spots' displacements, can we determine the sixteen lattice matrix components and eight calibration parameters? The answer is, according to implicit function theorem, as long as the Jacobian matrix of Eqn. 3.2 has full rank, we can determine the 24 parameters (denoted as P hereinafter) from at least 12 spots' displacements, i.e.:

det[J ] = det ∂(∆x 1 , ∆y 1 , ∆x 2 , ∆y 2 , • • • , ∆x 12 , ∆y 12 ) ∂P = 0, (3.3) 
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To illustrate the role of Jacobian matrix [J ], we raise an examples in which dierent sets of 24 parameters give the same displacements of spots. If the parameters of current conguration are the same with their counterparts in reference congurations except d, then for any spot we have from Eqn. 3.2:

∂∆x ∂d = ξ i g 1i ξ i g 3i = Ξ i G 1i Ξ i G 3i = - ∂∆x ∂D , ∂∆y ∂d = ξ i g 2i ξ i g 3i = Ξ i G 2i Ξ i G 3i = - ∂∆y ∂D .
From the equation above, we see that the column of the Jacobian matrix [J ] corresponding to the partial derivatives with respect to d is opposite to the column corresponding to the partial derivatives with respect to D, hence det[J ] = 0. Therefore, even if we were able to get more than 12 displacements, we could obtain nothing from these data if the Jacobian matrix were not full ranked. In fact, we can arbitrarily increase or decrease d and D by the same amount without changing the resulted displacement eld, as long as d -D is kept constant.

In real practice, we can obtain more than 12 spots' displacements, our problem becomes minimizing an objective function:

Π = hkl W hkl x d ξ hkl i g 1i ξ hkl i g 3i -D Ξ hkl i G 1i Ξ hkl i G 3i + ∆x c -∆x hkl dic 2 + hkl W hkl y d ξ hkl i g 2i ξ hkl i g 3i -D Ξ hkl i G 2i Ξ hkl i G 3i + ∆y c -∆y hkl dic 2 , (3.4) 
where W hkl x and W hkl x are the weight for x-and y-displacements of the (hkl) spots respectively (in 4.4, we will give one denition of weights), the subscript dic represents that the spots' displacements are measured by DIC, and the unit of Π is pix 2 .

In order to save CPU time of minimization, we do not optimize β, γ, B, and Γ directly, we rather optimize tan β 2 , tan γ 2 , tan B 2 , and tan Γ 2 , in that case, the parameters to be optimized become

P = {l * , L * , d, D, ∆x c , ∆y c , tan β 2 , tan γ 2 , tan B 2 , tan Γ 2 }. (3.5)
The original formulation of cost function, Eqn. 3.4, becomes

Π = hkl W hkl x d ξ hkl i t 1i ξ hkl i t 3i -D Ξ hkl i T 1i Ξ hkl i T 3i + ∆x c -∆x hkl DIC 2 + hkl W hkl y d ξ hkl i t 2i ξ hkl i t 3i -D Ξ hkl i T 2i Ξ hkl i T 3i + ∆y c -∆y hkl DIC 2 , (3.6)
where

[t ] = [g ] • (1 + tan 2 β 2 )(1 + tan 2 γ 2 ) =   (1 + tan 2 β 2 )(1 -tan 2 γ 2 ) -(1 -tan 2 β 2 ) tan γ 2 4 tan β 2 tan γ 2 2(1 + tan 2 β 2 ) tan γ 2 (1 -tan 2 β 2 )(1 -tan 2 γ 2 ) -2 tan β 2 (1 -tan 2 γ 2 ) 0 2 tan β 2 (1 + tan 2 γ 2 ) (1 -tan 2 β 2 )(1 + tan 2 γ 2 )   , and 
[T ] = [G ] • (1 + tan 2 B 2 )(1 + tan 2 Γ 2 ) =   (1 + tan 2 B 2 )(1 -tan 2 Γ 2 ) -(1 -tan 2 B 2 ) tan Γ 2 4 tan B 2 tan Γ 2 2(1 + tan 2 B 2 ) tan Γ 2 (1 -tan 2 B 2 )(1 -tan 2 Γ 2 ) -2 tan B 2 (1 -tan 2 Γ 2 ) 0 2 tan B 2 (1 + tan 2 Γ 2 ) (1 -tan 2 B 2 )(1 + tan 2 Γ 2 )   ,
In this manner, we manage to avoid trigonometric calculations in each iteration of optimization.

Although we usually provide the initial guess of P by standard Laue treatment, en- The original Laue-DIC, introduced in the previous chapter, is actually a special case of enhanced Laue-DIC, and it corresponds to the case in which the lattice matrix of reference conguration, the calibration parameters of both reference and current congurations are known, only the relative deformation gradient, or more precisely, the lattice matrix of current conguration, will be calculated. As we have shown in 2.2.2, solving a system of linear equations of Eqn. 2.6 would suce to obtain the relative deformation gradient.

However, in enhanced Laue-DIC, P, the set of unknowns to be inquired, is more complex than in original Laue-DIC. Therefore, we need to employ some more advanced numerical methods, and we will cover the topic in the next section. • investigating the variation of Π(P) with its variables.

• nding the most ecient optimization algorithm.

• investigating how the uncertainties of DIC inuence the minimization of Π(P).

The procedure of numerical test goes as following (see Fig. 3. Use, for example, the standard Laue treatment to calculate lattice matrices for the two congurations with the deviated peaks' positions and deviated calibration parameters as estimation of lattice matrices.

4. If we wish to study the inuence of errors on spots' displacements, deviate the input displacements a little bit from their theoretical values.

5. Run the optimization to investigate whether we can recover the exact values of lattice matrices and calibration parameters using the simulated displacements as input and deviated parameters as initial guess.

For calibration parameters, their errors are quantied by their discrepancies between calculated values and the exact ones:

x = |x cal -x exa |, x ∈ {d, D, ∆x c , ∆y c , β, B, γ, Γ},
where the superscript cal represents the result after optimization, and the superscript exa represents the exact value which is known in advance. As for the quantication of the errors on lattice matrices, l and L , we use similar denition of errors as that of relative deformation gradient in 2.5.2:

1. dividing each component of lattice matrix by the cube root of the determinant of the lattice matrix in order to get rid of the uncertainty on the volume of unit lattice, i.e.

l . = l 3 det l , L . = L 3 det L (3.7)
2. the errors on l and L are dened as 1. If we only varied one parameter, we could nd only one minimum point.

l . = 3 i=1 3 j=1 | lcal ij -lexa ij | 9 , L . = 3 i=1 3 j=1 | Lcal ij -Lexa ij | 9 . D exa , X exa c , Y exa c , B exa , Γ exa L exa l exa d exa , x exa c , y exa c , β exa , γ exa (X exa hkl , Y exa hkl ) (x exa hkl , y exa hkl ) (∆X exa hkl , ∆Y exa hkl ) D dis , X dis c , Y dis c , B dis , Γ dis d dis , x dis c ,
2. The position of the minimum point is inuenced by other parameters, specically, any deviation of other parameters from their exact values would deviate the minimum point from its exact value.

Since there is only one minimum if we vary one parameter while keeping the rest constant, it is straightforward for us to minimize each parameters one by one, and then iterate the process. After each minimization of one parameter, the cost function Π(P) will decrease, and will eventually converge to zero if we keep on iterating the process. Although it sounds plausible, in practice, it requires a lot of CPU time. In my case, it requires 20 000 To improve the procdure, we rst subdivided all parameters P into lattice matrices L = {l , L }, and calibration parameters, denoted as C = {d, D, ∆x c , ∆y c , β, B, γ, Γ}. Because there is more uncertainty in L than in C (the uncertainty in lattice matrices comes from uncertainties in calibration parameters plus those in peaks' positions), we rst optimize L while keeping C xed. Once the optimization of L is nished, we optimize C while keeping L xed. We iterate this procedure until the decrease of the cost function is less than 5% of its previous value.

We tested all the combinations of optimization algorithms to investigate which combination gave the best results in terms of x , x ∈ {l, L, d, D, ∆x c , ∆y c , β, B, γ, Γ}. As the calibration parameters are randomly deviated, we optimized 500 random cases for each
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combination to make the results statistically signicant. The statistical performance of each combination was evaluated by the average of x , x ∈ {l, L, d, D, ∆x c , ∆y c , β, B, γ, Γ} of all cases (the average is denoted as ). The results of numerical test were given in Tab.

3.3, we found that the result of the combination "L-BFGS-B"-"Powell" approached the real values of L most: the accuracies of L and C are one order magnitude better than simply using Powell's algorithm. The calculation of enhanced Laue-DIC hereinafter will use this combination if there were no other specication, which will cost ∼ 30 sec for a single optimization.

Numerical tests with erroneous spots' displacements as input

We discussed the minimization of Π(P) when the spots' displacements are accurately given as input in the previous section. However, in real case, the spots' displacements are prone to errors as demonstrated in the previous chapter. Just as in 2.5.2, we will perform the numerical tests in two aspects:

• Varying the deviations of spots' displacements while maintaining the deviations of calibration parameters. The deviations imposed to spots' displacements are 0.005 pix, 0.01 pix, 0.015 pix, 0.02 pix, 0.025 pix, 0.03 pix, 0.035 pix, 0.04 pix, 0.045 pix, 0.05 pix, while the deviations of calibration parameters are tabulated in Tab. 2.4.

• Vary the deviations of calibration parameters while maintaining the deviations of spots' displacements. The deviations of calibration parameters are obtained by uniformly scaling the deviations tabulated in Tab. 2.4, and the scaling factors are 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5. The deviations of spots' displacements are 0.01 pix for both x and y directions of all the spots.

For each setting of deviations of spots' displacement and calibration parameters, we generate 500 random cases and then calculate the average errors of lattice matrices and calibration parameters. We applied the test to the case I, II, and III of 2.5.2, and the three cases represent increasing deformation in a row. Besides, in 2.5.2 we have also demonstrated that the number of spots considered will also aect the accuracy. Therefore we will also run the numerical tests with three dierent numbers of spots: 12, 25, and 45. 

NUMERICAL TESTS OF ENHANCED LAUE-DIC

NUMERICAL TESTS OF ENHANCED LAUE-DIC

We rst investigate the systematic and random errors on l and L of case I, with 40 spots, 25 spots, and 12 spots taken into account. In Fig. 3.6 and 3.7 we plot the variations of l and L relative to the errors of displacements and calibration parameters respectively, and we have the following conclusions:

• Both systematic and random errors of lattice matrices and calibration parameters increase with the deviations of spots' displacements.

• The systematic and random errors of l and L increase if the number of spots considered is reduced.

• The systematic errors seem more stable with the deviations of calibration parameters;

this may be due to the fact that enhanced Laue-DIC has taken calibration parameters into consideration and become more robust against the errors in initial calibration parameters.

• When 12 spots are considered, the random error seems to increase linearly with the deviations of calibration parameters, while the random errors seem more stable with the deviations of calibration parameters when 40 or 25 spots are considered. This may be explained by the fact that the random error is also a function of number of spots considered, the inuence of deviations of calibration parameters may be mitigated by increasing the number of spots considered. With less spots, the results of enhanced Laue-DIC are more prone to the errors of displacements and more likely to converge to wrong values.

• The random errors in lattice matrices are much higher than the corresponding systematic errors.

• Both systematic and random errors in lattice matrices increases with decreasing the number of spots taken into account.

• Despite the discrepancies between l 's and L 's systematic or random errors, the error curves of l and L are almost identical, that is to say, the errors of l and L increase almost at the same pace when increasing the deviations of displacements or calibration parameters.

• By comparing the evolution of the curves of random errors with the number of spots, we nd that the curves of random errors appear to be more linearly shaped. When only 12 spots are considered, the curve loses the linearity.

The same trend has been observed in case II and case III.

Let us investigate the inuence of deformation levels upon systematic and random errors of l and L . For the sake of brevity, we only plotted the results with 25 spots taken into consideration to illustrate this point, and we found that the curves of both systematic and random errors of l and L do not vary signicantly among the three cases corresponding to three levels of deformation F , F 2 , and F 3 : compare the systematic and random errors of case II and III in Fig. 3.8 with Fig. 3.6c and 3.6d, corresponding to the systematic and random errors of case I. The similar feature has also been found with other numbers of spots.

Now, we study the variations of systematic and random errors of calibration parameters with the deviations of displacements. We plotted the systematic and random errors of calibration parameters in case I with 25 spots considered in Fig. 3.9. We investigate two factors inuencing the error curves:

numbers of spots considered In Fig. 3.10, we plotted the the variations of systematic and random errors of d and D with the deviations of displacements, with 12 and 40 spots considered in case I, and we found that it was not obvious that the errors of d and D would decrease as the number of spots increased unlike those of l and L . The same feature has also been identied with other calibration parameters. Therefore, we concluded that the systematic and random errors on calibration parameters were less sensitive to the number of spots considered than those on lattice matrices. levels of deformation To investigate the inuence of deformation level, we plotted systematic and random errors of d and D in case II and III with 25 spots considered in Fig. 3.11. Again, we found that the relations between errors and levels of deformation did not seem obvious in d and D, nor in the rest of the parameters.

We also plotted the variation of systematic and random errors of calibration parameters with the deviations of calibration parameters in case I with 25 spots considered in Fig. 3.12.

Like the errors of l and L in Fig. 3.7, the systematic errors seem stable with the deviations of calibration parameters, and the random errors seem to increase linearly with deviations of calibration parameters except the random errors of ∆x c and ∆y c . This may probably indicate that only ∆x c and ∆y c are accurately calculated since they appear insensitive to the variations of calibration parameters. Similar trend has also been found in cases II and III with other number of spots.

Summary

In this chapter, we have come up with an enhanced version of Laue-DIC. We rst presented the limitation of the original Laue-DIC (see 3.1), which: (i) requires a reference conguration with a known lattice matrix, and (ii) requires the knowledge of calibration parameters of both current and reference congurations. Then, we presented its enhanced version, referred to as enhanced Laue-DIC (see 3.2). By "enhanced", we mean that the method uses solely spots' displacement measured by DIC as input, and the output includes not only the lattice matrices of two congurations but also the calibration parameters at two congurations. And this method is feasible as long as the Jacobian matrix (Eqn. 3.3) has full rank. In the end, we performed numerical tests with enhanced Laue-DIC in order to:

• try dierent optimization methods to nd a proper optimization method; to this end, we rst used accurate spots' displacements as input to check whether and how much we can recover the accurate lattice matrices and calibration parameters (see 3.3.1).

So far the most ecient optimization algorithm among those we have tested is: optimizing the lattice matrices with L-BFGS-B method and optimizing the calibration parameters with Powell method.

• investigate the uncertainties of enhanced Laue-DIC from four dimensions: (i) the 3.4. SUMMARY errors of spots' displacement, to this end, we added to spots' displacements with zeromean Gaussian errors with incremental deviations from 0 to 0.05 pix; (ii) the errors of calibration parameters, to this end, we also added to the exact calibration parameters zero-mean Gaussian errors whose deviations came from scaling the deviations of Tab.

2.4 by a factor increasing from 0 to 2.5; (iii) the number of spots considered, 12, 25, and 40; (iv) the amplitude of deformation, F , F 2 , and F 3 where F is dened in Eqn.

2.20.

And the eects of the four aspects are summarized as following:

Errors of displacements Both systematic and random errors increase with the errors of displacements.

Errors of calibration parameters The systematic and random errors of lattice matrices seem more stable with the variation of calibration parameters, this may be due to the fact that enhanced Laue-DIC has taken the uncertainty of calibration parameters into account. The systematic errors of calibration parameters are also stable with the variation of calibration parameters, and the random errors of calibration parameters seem to increase linearly with the errors of calibration parameters except those of ∆x c and ∆y c , which appear stable.

Number of spots considered Both systematic and random errors of lattice matrices increases if the number of spots were reduced. However, the relationships between the errors of calibration parameters and number of spots is not very obvious.

Amplitude of deformation

The relation between the errors and the amplitudes of deformation is not obvious in our study yet.

In the next chapter, we will use standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC to treat experimental data collected from in-situ four point bending test.

DESCRIPTION OF EXPERIMENTS

In our experiments, we used the X-ray Laue microdiraction equipments at beamline 
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Specimens

In our experiments, we investigated three materials: Si, Ge, and 316 stainless steel (referred to as 316L hereinafter). Si and Ge are elastic material and do not deform plastically.

Their dierence lies in their penetration depth: Si has a larger penetration depth than Ge; for example, for X-ray photon generated by Kβ 1 line of Cu (∼ 8 keV), the absorption coecient of Si is 110.7 cm -1 , while that of Ge is 272.4 cm -1 [START_REF] Maslen | X-ray absorption[END_REF]]. 316L is a more industrial material than Si and Ge, and it will deform plastically.

Si specimens

We 

Procedure of Experiments

The experiments we conducted were in situ four-point bending test (see Fig. ). As the FPB test proceeded, the four pins intermittently bent the sample (see Fig. 4.5, in which L r = 8.5 mm and L l = 3 mm). During each interval of loading, we took diraction images in the following sequence:

1. moved the sample so that the incident X-ray illuminated the Ge crystal glued on the sample to obtain the calibration parameters. 

       σ yy = F L r 2I z (x - X 2 ), σ xx = σ zz = 0, τ xy = τ yz = τ zx = 0, (4.1) 
where F and L r are dened in Fig. 4.5, X is the sample size in x-axis of sample coordinate system (see Fig. 4.9 for the denition of x-axis), and I y is the moment of inertia of the y-cross section dened as

I y = ZX 3 12 ,
where Z is the sample size in the direction parallel to pins. From the given analytical solution, we can conclude that the maximum normal stress will be attained at X edges and in y direction:

max σ yy = F L r X 4I z . (4.2) 
For its deviatoric components, the analytic solution should be:

         σ yy = F L r 3I z (x - X 2 ), σ xx = σ zz = - F L r 6I z (x - X 2 ), τ xy = τ yz = τ zx = 0, (4.3) 
With the equation above, we can calculate a reference solution for the measurements.

But in reality, due to the inaccuracy of force sensor, the calculated reference solution may not exactly match the true stress distribution. Here, given the linearity of stress distribution, we would rather apply linear regression to measured values to calculate a reference solution.

Although the stress prole is independent from material's elastic constants for a given prescribed moment and perfect geometry assumed, here we give the elastic constants of Si and Ge in Tab. 4.3 [START_REF] Teodosiu | Fundamentals of the Theory of Elasticity[END_REF]] because they relate elastic strain to stress. 

C
        . =         C 11 C 12 C 12 C 12 C 11 C 12 C 12 C 12 C 11 C 44 C 44 C 44                 ε lattice xx ε lattice yy ε lattice zz 2ε lattice yz 2ε lattice zx 2ε lattice yz         (4.4)
It is obvious that the elastic constants of Si and Ge satisfy Eqn. 1.35. Therefore it is safe to calculate the deviatoric stress with merely deviatoric strain by Eqn. 1.36.

FEM Model for Elastoplastic Material

Because 316 stainless steel sample is an elastoplastic material, it is dicult to obtain the analytical solutions of stress distribution, therefore we use FEM simulation to provide references to measurements. The FEM simulation was performed by ABAQUS (see Fig. 4.10), we used the element C3D20 (second order full integration element), and we densied the mesh near the contacts between pins and beam to better handle the contact between the pins and sample. Due to the symmetrical nature of the FEM model, it is possible to model only one quarter of the sample while imposing boundary condition of symmetry to the symmetrical face. The pins were modeled as analytical rigid bodies. We used a simplied Johnson-Cook law to model the hardening of 316 stainless steel, in which the inuences of temperature and strain rate are ignored:

σ Y = A + Bε n p (4.5)
where σ Y represents the yield stress, ε p represents the equivalent eective plastic strain, and 

Image Treatment

After each scan, we obtained a series of diraction images corresponding to dierent positions on the scanning line. We performed DIC to these images in two sequences adapting to original Laue-DIC and enhanced Laue-DIC. For original Laue-DIC, the sequence goes as below:

1. Obtain the calibration parameters from the diraction image of Ge crystal.

2. Index and obtain the lattice parameters from the diraction image taken at the center of the scanning line with standard Laue treatment. 4. Calculate the relative deformation gradient according to the procedure described in 2.2.2.

The sequence for enhanced Laue-DIC goes as below:

1. Obtain the calibration parameters as in original Laue-DIC.

2. Index and obtain the lattice parameters from the diraction images taken at the scanning line either by standard Laue treatment, or original Laue-DIC.

3. Subdivide the diraction images into several pairs. Use DIC to obtain the displacements of spots between images in the same pair. Fig. 4.12 gives several possible organizations of pairs, and here we use the rst one: grouping two adjacent illumination sites (separated by about 0.01 mm) into one pair because (i) the spots collected from the two adjacent illumination sites usually coincide most in terms of spots' indexes; and (ii) two spots with the same index usually hold the largest resemblance if they come from two adjacent sites.

IMAGE TREATMENT

4. Rene the lattice parameters and calibration parameters using the displacements obtained in step 3 as input, and calibration parameters obtained in step 1 and lattice parameters obtained in step 2 as initial guess (see Fig. 3.1). i - The DIC software we adopted here was CMV, as in 2.5.1.2. For the two images in the same pair, spots with the same index bore resemblance after the displacement, and these resemblances could be validated by the values of correlation coecients, because correlation coecient was a quantication of resemblance as shown in Eqn. 2.1. In the image correlations done in 4.5, the correlation coecients are of the order of 10 -3 ∼ 10 -2 .

N 2 N 2 + 1 N 2 + 2 N 2 + 3 N 2 -1 N 2 -2 N 2 -3
1 i i + 1 i + 2 i -1 i i + 1 i + 2 i -1 i i + 1 i + 2
Fortunately, for pure crystals that we dealt with, there was few dislocations, and for metals, the loading was within the elastic range and spots' shape evolved little. Therefore the error arising from mismatch of shape function [START_REF] Schreier | Systematic errors in digital image correlation due to undermatched subset shape functions[END_REF]] could be ignored even if we used zero order polynomial shape function associated with rigid 2D

translation. The main source of DIC error that we encountered was the "ultimate error" [START_REF] Amiot | Assessment of digital image correlation measurement accuracy in the ultimate error regime: Main results of a collaborative benchmark[END_REF]] which has been characterized in 2.5.1. The interpolation of gray level (see 2.2.1) that we chose was biquintic interpolation.

The size of correlation window (see 2.2.1) is an important issue aecting displace-4.5. RESULTS OF IMAGE TREATMENT ment measurement. The information that DIC utilizes is the contrast of gray level within the correlation window. For ordinary DIC treatment (using DIC to analyze displacement/deformation of object's surface), if there were no mismatch of shape function, larger correlation window usually would mean more contrast was incorporated into the window, hence less random error. However, in treating Laue spots, the contrast of gray level would drop dramatically if the pixel were located in the background region of diraction image.

These pixel would introduce little information but noise into correlation window, increasing the random error. Therefore, DIC user should adapt the window closely to the spot's shape. We used the same algorithm demonstrated in Fig. 2.10 to determine the correlation window adapted to spot's shape.

In minimizing the cost function Eqn. 3.6, we need to assign weight to each spot. Here, we designated each spot the weight:

W hkl x = W hkl y = 1 -C hkl ,
where C hkl is the correlation coecient of the spot with index (hkl) dened in Eqn. 2.1.

Higher resemblance between spots usually means more credibility in the measurement of displacements. Other possible weight function could have been dened with respect to the peak's amplitude (for example, Fig. 2.31 and 2.32 show that peak with higher amplitude gives lower systematic and random errors.), but this has not been attempted yet.

We will present in the following section the results of image treatment of the specimens by standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC, and comment on them.

Results of Image Treatment

Si samples

We rst talk about the sample I. We scanned the sample at three dierent loadings: We tabulated the RMS of dierent component in Tab. 4.6, and we found that both original and enhanced Laue-DIC had signicantly reduce the RMS. However, the RMS of discrepancies by enhanced Laue-DIC is slightly higher than by original Laue-DIC. Aside from the loading of 199.43 N, we have also bent the sample at the loading of 88.57 N, 46.76 N, and 3.92 N while trying to maintain the same calibration parameters. Here for the sake of brevity, we only plotted their σ y components by the three methods in Fig. 4.14. We also tabulated the RMS of discrepancies at the loadings of 88.57 N and 46.76 N in Tab. 4.7 and 4.8, and found that the contrary to the case at the loading of 199.43 N, at the loading of 88.57 N and 46.76 N, the RMSs of discrepancies by enhanced Laue-DIC were slightly lower than those by original Laue-DIC. Moreover, we found that the RMSs of discrepancies in the shear components were larger than those in normal components of 4.5. RESULTS OF IMAGE TREATMENT 0.0 0.5 1.0 1.5 2.0 2.5

3.
x/mm It is obvious from visual impression that as we raise up the detector, the measured stress proles by all methods become more and more uctuated, that is to say, higher resolution for individual spot cannot compensate for the decrease of the number of spots considered.

Another important aspect of enhanced Laue-DIC is that it allows for the calculation of calibration parameters as well. We can also characterize the perturbation of calibration parameters in the course of scanning, and we use the superscript cal to present the calculated calibration parameters. As we have mentioned in 4.2.3, we carefully glued a piece of Ge monocrystal on the sample to determine the calibration parameters of the experiment, say nominal calibration parameters, and use the superscript nom to present them. The perturbations of calibration parameters are characterized by two terms: (i) mean deviation of calculated parameter from nominal one, i.e. x = |x cal -x nom |; (ii) standard deviation of calculated parameter, i.e. σ x , where x ∈ {d, ∆x c , ∆y c , β, γ}. Note that ∆x nom c and ∆y nom c are supposed to be zero because the nominal x nom c and y nom c are assumed to be kept constant for all images in a series of scanning, therefore the their nominal increments from one conguration to another should be zero.

Here, we tabulated the x and σ x of scanning Si sample I at the loading of 199.43 N in Tab. 4.9, corresponding to the stress proles in Fig. 4.13, and those of other scanning are of similar values.

d /mm ∆xc /pix ∆yc /pix β / • γ / • 2.8 × 10 -3 1.3 × 10 -3 4.6 × 10 -3 7.7 × 10 -4 2.6 × 10 -3 σ d /mm σ ∆xc /pix σ ∆yc /pix σ β / • σ γ / •
4.9 × 10 -3 9.1 × 10 -3 1.5 × 10 -3 3.3 × 10 -4 4.2 × 10 -3 • At the loading level of 200 N, the RMS of discrepancies of enhanced Laue-DIC are slightly larger than those of original Laue-DIC, while at the loading level of 50 N and 100 N, the RMS of discrepancies of enhanced Laue-DIC were slightly lower than those of original Laue-DIC.

• Shear components of deviatoric stress exhibits more uctuations than normal components.

• Though raising up a detector could increase the resolution of individual spot, this usually came at the cost of reducing the number of spots considered, and the cost outweighs the benet.

• Comparing the uncertainties of calibration parameters listed in Tab. 4.9 with Tab. Comment We can draw several conclusions from gures and tables above:

• Standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC give very similar stress prole. This is because the Laue spots of Ge sample have more elliptical shapes than those of Si samples so that analytical tting of spots can give reasonable estimation of diraction peaks.

• The stress prole taken at a higher detector-sample distance invariably exhibits more uctuation as in the case of Si sample.

• For stress proles at the loading of 140.35 N taken at 143.77 mm (see Fig. 4.21b), we observed that the prole of stress components seemed deviating from analytical prole, especially for the τ yz component, which was supposed to be zero. The reason for this abnormality is not known so far. reducing the number of spots would increase the uctuations of stress proles.

• Standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC give very similar stress prole. This is because the Laue spots of 316L sample have more elliptical shapes than those of Si samples so that analytical tting of spots can give reasonable estimation of diraction peaks as in the cases of Ge sample (4.5.2).

• The yield occurred at the load of 4.01 N.

Error Analysis based on Numerical Tests

In last section, we observed that the calculated stress proles were more or less uctuated. In this section, we run the same numerical tests as in 2.5.2 and 3.3.1 to calculate the error bars of stress proles and investigate whether the calculated error bar match the observed uctuation of curve.

The error bar is calculated by the following procedure: 4.11. And it is found that the uctuations of the shear components usually are of the same magnitude as those of the normal ones. This is a bit dierent from the conclusion of [START_REF] Poshadel | Assessment of deviatoric lattice strain uncertainty for polychromatic X-ray microdiraction experiments[END_REF]]: the shear components should exhibit larger uctuations than normal ones. This dierence be attributed to the orientation of crystal: at certain orientation, the spots' positions may be more sensitive to shear stress, while at other orientation, they may be more or equally sensitive to normal stress. 

Summary

In this chapter, we applied the standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC to three materials: Si, Ge, and 316 stainless steel. We prepared cuboid samples for these material, and performed in situ four point bending tests. For each sample, we scanned the central line and used standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC to obtain the stress prole. We have two main conclusions:

• For Si sample, the stress proles by either original Laue-DIC or enhanced Laue-DIC exhibit less uctuations than those by standard Laue treatment, and the results of original Laue-DIC and enhanced Laue-DIC are very similar. However, for Ge and 316L sample, the results of the three methods were very similar due to the fact that their spots (see Fig. 4.20 and 4.25) were more elliptically shaped than those of Si samples (see Fig. 2.2) hence analytically tting could give reasonable estimation of diraction direction.

• By comparing the stress proles taken at dierent sample-detector distance, we found that the stress proles taken at the closest distance demonstrated the least uctua-4.7. SUMMARY tion. This was due to the fact that the area detector could collect more spots at a closer sample-detector distance. Although spots taken at a larger distance would have better resolutions, they come at a cost of reducing the number of spots considered, and the improvement in spots' resolutions would not compensate for the reduction of the number of spots considered.

In 4.6 we proposed a procedure to estimate the uncertainties of stress evaluations, which traced the source of uncertainties from the uncertainties of the measurement of displacements by DIC. The calculated error bars turned out to be t for the uctuations of stress proles.

Chapter 5

Conclusions and Perspectives

The characterization of intragranular elastic strain/stress by Laue microdiraction has been well-established and implemented in several academic codes, e.g. LaueTool, XMAS, etc. However, the standard method used in these codes may lose its precision when tting non-elliptical Laue spot to get the diraction peak, because the analytical functions used for tting implicitly assume the ellipticity of Laue spot. In the work presented here, we sought to improve the precision of elastic strain/stress characterization by applying digital image correlation (DIC) into diraction image treatment, since DIC is insensitive to spot's shape. Compared to analytical tting of spots, DIC does not measure peaks' 2D position, but rather peaks' displacements between two congurations by taking advantage of spots' resemblances, which can be quantied by the so-called "correlation coecient".

A previous attempt of combining Laue microdiraction and DIC has been shown to improve the intragranular elastic strain/stress evaluation, and the new method is called Laue-DIC. In this approach, we rst locate a position within the crystal whose orientation and elastic strain are known in advance, and label it as reference conguration. Then, we treat the position within the crystal whose orientation and elastic strain are under investigation as current conguration, and measure the displacements of spots between reference and current congurations by DIC. Finally, we use, for example, least square method to calculate the relative deformation gradient between the two congurations.

Despite the success of Laue-DIC, it still suers from two insuciency: (i) it is dicult to locate a reference conguration whose elastic strain and orientation are known; (ii) when Given the work presented above, in future, it is possible to expand the work in the following aspects:

1. nd a more ecient algorithm to minimize the cost function Eqn. 3.6. The algorithm adopted in 3.3.1 can probably be further optimized in terms of eciency.

2. develop another version of enhanced Laue-DIC. In my opinion, it is also possible to measure the lattice matrix of one illumination position by taking two diraction images under dierent sets of calibration parameters. In that case, we have 16 unknowns to be optimized: 8 for the lattice matrix, and the rest for the calibration parameters.

3. explore the possibility of applying enhanced Laue-DIC to scanning the sample with rough surface. In current Laue microdiraction, it is imperative to prepare sample with smooth surface in order to maintain calibration parameters. However, enhanced Laue-DIC is more robust against variation of calibration parameters. = [h (s) , k (s) , l (s) ] T .
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Figure 2 :

 2 Figure 2: The hierarchy of structure in polycrystalline material [McDowell 2010]

INTRODUCTIONFigure 3

 3 Figure 3: (a) Polycrystal's microstructure obtained by OIM; (b) The deformation eld obtained by applying DIC to SEM images; (c) The stress of material is unknown. (a) and (b) are from [Héripré et al. 2007]

  4. Chapter IV applies the standard method presented in Chapter II, Laue-DIC method presented in Chapter II, and enhanced Laue-DIC method presented in Chapter III, to diraction images collected from Laue microdiraction experiments, carried out INTRODUCTION in beamline BM32 of ESRF during in situ mechanical tests. We will compare the results with analytical solution and discuss their discrepancies.

  ], reveal the kinematics of materials at dierent scale [Doumalin and Bornert 2000; Hild and Roux 2006; Héripré et al. 2007; St-Pierre et al. 2008].

Figure 1 . 2 :

 12 Figure 1.2: Kossel pattern from a Cu alloy [Maurice and Fortunier 2008]

  Figure 1.3: Bending magnets in a wiggler or undulator in a synchrotron radiation source [Jackson 1999]

Figure 1 . 6 :

 16 Figure 1.5: Compton scattering [Waseda et al. 2011]

  [100], [010], and [001] lattice point as l 1 , l 2 , and l 3 respectively, e.g.

Fig. 1 .

 1 Fig. 1.7 gives a visual contrast between the direct lattice and the reciprocal lattice. Direct lattice is drawn with solid lines, and reciprocal lattice is drawn with dotted lines. Except the origin, each lattice point in direct space is denoted by a set of integers u, v, w within brackets, i.e. [uvw], whilst each reciprocal lattice point is denoted by a set of integer h, k, l within brackets marked by a star, i.e. [hkl] * .

  .10) Then the magnitude of r * hkl is equal to the reciprocal of d-spacing of the (hkl) space. Therefore, each reciprocal lattice point [hkl] * corresponds a set of lattice planes (hkl) in lattice of direct space. The position of the point in the reciprocal lattice denes the orientation and d-spacing of the lattice planes in the direct lattice. The more distant a reciprocal lattice point is from the origin, the smaller is the d-spacing of the corresponding lattice planes.

  Figure 1.10: Various sample stages of Bruker AXS [He 2009c].

Figure 1 .

 1 Figure 1.12: Variation of illumination volume introduced by rotation [Chung and Ice 1999]

  Figure 1.14: Spots of backscatter and transmission Laue diraction [Cullity 1956a]

4.

  Get the lattice matrix. The procedure mentioned above has been standarized and implemented in several academic software, such as LaueTools [LaueTools], LaueGo, Xmas, etc. In their implementation, the positions of Laue peaks are usually determined by tting the intensity distribution of gray level with some analytical function, e.g. Gaussian function, Lorentzian function.

Fig. 1 .

 1 Fig. 1.15 shows the panel of tting a Laue spot from XMAS.

Figure 1 .

 1 Figure1.15: The panel of peak study from XMAS[START_REF] Valek | X-ray microdiraction studies of mechanical behavior and electromigration in thin lm structures[END_REF] 

,

  and z axis is dened as e z . = e x × e y .1.5. STANDARD LAUE TREATMENT TO OBTAIN ELASTIC STRAINWe characterize the experimental setup with ve parameters: x c , y c , β, γ, and d [Robach et al. 2011]. d is the distance between illuminated point O and detector plane, i.e. d = -→ OP . β and γ characterize the spatial relation between and the detector plane: the rst angle β is around x-axis, and the second one γ is around the detector's normal OP. x c , y c are the coordinates of P on the detector plane. These parameters are crucial in translating the peak representation from rectangular coordinate system to angular coordinate system.

Figure 1 . 17 :

 117 Figure 1.17: Angular coordinate system

  cos β sin γ sin β sin γ sin γ cos β cos γsin β cos γ

..

  Figure 1.19: Unit cell of lattice and a Cartesian coordinate system attached, used by [Chung and Ice 1999]

Figure 2

 2 Figure 2.1: A steel monocrystal sample undergoes a tensile test.

4.

  The diraction peaks from the region of interest on the sample is determined by analytical tting as well. The mainstream codes of treating Laue diraction image requires the ellipticity of spots, because the analytical functions employed, either Gaussian function or Lorentzian function, are elliptically shaped. Although there exist Laue spots which take on elliptical shapes (see Fig. 1.15), some spots exhibit irregular shapes and can hardly be described by an analytical function (see Fig. 2.2). These deviations from ellipticity can be attributed to various reasons, for example, the existence of geometrical necessary dislocations (GND) would streak the Laue spots [Barabash et al. 2001]; for pure crystal undergoing bending each Laue spot would be accompanied by a satellite spot due to dynamic eect [Yan and Noyan 2006].These error sources mentioned above will eventually accumulated into the evaluation of 54 2.1. MOTIVATION elastic strain, and hence stress. For example, it is found that stress uctuations of the order of 1 GPa in a single crystal of pure Cu[START_REF] Magid | Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal[END_REF]], a result which might not be physically relevant as it far exceeds the yield limit of Cu.
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 22225 Figure 2.2: Irregular spots in diraction image of Si.

Fig. 2 .

 2 Fig. 2.5 shows the results of systematic and random errors of spots' displacements. The systematic error recovered an S-shape curve as indicated by [Bornert et al. 2009; Amiot et al. 2013] with a maximum values of ∼ 0.03 pix and an average (of the absolute value of errors) of 0.018 pix. The random error is slightly larger with a maximum error of 0.07 pix and an average of 0.054 pix. For comparison, we also gave the systematic error and random error when the displacements were obtained by analytical tting of the absolute positions (Fig. 2.5). Obviously, both systematic and random errors are larger than those by DIC. Now that we have presented the improved accuracy of peaks' displacements acquired

  Correlation coecient is a quantication of subset resemblance. DIC code tracks the displacement eld of one correlation window in a sequence of images by seeking an extremum of correlation coecient. Various forms of correlation coecients are available Amiot et al. [2013]: zero mean normalised cross-correlation (ZNCC), normalised sum of squared dierence (NSSD), sum of squared dierences (SSD), and normalised cross-correlation (NCC). The simplest form of correlation coecient is SSD and NCC:

  Correlation computations often needs evaluation of gray levels at non-integer pixel location in order to get a subpixel resolution. For that end, correlation code will interpolate adjacent integer pixel to estimate the gray level at noninteger location. Interpolation methods used by DIC include: polynomial interpolation, B-spline interpolation, Fourier or wavelet transforms.The principle of DIC can also be extended to explore out-plane motion (3D-DIC[Sutton et al. 2009c]) and motion underneath surface (Volumetric-DIC[Sutton et al. 2009d]).

hkl

  into Laue spot's position (x ref hkl , y ref hkl ). And we can further get the spot's position at current conguration with the spot's displacement (∆x dic hkl , ∆y dic hkl ), measured by DIC from reference conguration to current conguration: x cur hkl = x ref hkl + ∆x dic hkl y cur hkl = y ref hkl + ∆y dic hkl .

  Figure 2.6: Comparison between trajectories on the detector screen determined by tting and DIC

  analogue information recorded by photographic lms. Various types of area detectors are emerging recently to cater for more demanding requirements of X-ray ux measurements, such as hybrid pixel array detectors [Ponchut et al. 2007; Henrich et al. 2009; Basolo et al. 2008; Teyssier et al. 2011; Le Bourlot et al. 2012], coupled-charged device (CCD) based area detector [Westbrook and Naday 1997], etc. Several common criteria, independent of the technology and the application, have been widely acknowledged by the scientic community to facilitating comparing and choosing a detector. These criteria will be introduced in the following.

Figure 2

 2 Photon

  Figure 2.9: The cascading process of a detection event

  .14) Generally, these parameters can hardly be measured individually, we prefer to fold the terms into a cascade factor γ and pixel factor ψ [Waterman and Evans 2010]. With equation 2.8, and denoting dark signal in unit of ADU as p d = g AD m d , we have

Figure 2

 2 Figure 2.11: Three realizations of the algorithm in Fig. 2.10

Figure 2 Figure 2

 22 Figure 2.13: The distribution of LCCs for the spots of one Si diraction image

  Figure 2.15: Plot of pairs (γ, ψp d γ) of each Laue spot. Obviously, the LCC of these pairs is -0.92.

Figure 2 . 17 :

 217 Figure 2.17: The distribution of LCCs of spots of the exception from a 316 steel sample.

Figure 2 .

 2 Figure 2.18: The uctuation of one spot in a stack of diraction images of 316 steel sample.

Figure 2 .Figure 2 . 21 :

 2221 Figure 2.20: The uctuation of one spot in a stack of diraction images of a Ge sample.

2. 5 .

 5 NUMERICAL TESTS OF LAUE-DIC can be taking a real image from real experiment and to numerically transform it by a know displacement eld. The transformation is accomplished either in the frequency domain by applying Fourier transformation according to the shift theorem, or in the space domain by interpolating at subpixel positions. Although this approach can retain all characteristics of images taken under experimental circumstances, the numerical transformation itself would introduce some error to the transformed images[START_REF] Amiot | Assessment of digital image correlation measurement accuracy in the ultimate error regime: Main results of a collaborative benchmark[END_REF]], depending on the specic algorithm under usage.

Figure 2 . 22 :

 222 Figure 2.22: The red rectangulars represent the original pixels subdivided into N × N subpixels, and the blue pixel represents the pixel after being moved by a subpixel displacement. In my study, N = 100.

Fig. 2 .

 2 Fig.2.23a and 2.23b depict the spots before and after a subpixel displacement of 0.5 pix along both x and y direction.

  Figure 2.23: Spots before and after displacement

Figure 2 . 24 :Figure 2 . 25 :Figure 2 . 26 :

 224225226 Figure 2.24: Error distribution with bilinear interpolation as the function of x and y displacement

Figure 2

 2 Figure 2.27: max |e x | and max |e y | for spots with dierent amplitudes A.

  The accuracy of DIC was characterized by the maximum absolute value of errors, max |e x | and max |e y |. The results of max |e x | and max |e y | with dierent A are given in Fig. 2.27.

Fig. 2 .

 2 Fig.2.28 and 2.29 depict the averages and standard deviations of errors at all the displacements, representing the systematic errors and random errors respectively. Again, we see that the coupled dependence of systematic errors on x and y subpixel displacement turns out to be weak. The amplitude of systematic error curve for y displacement, 0.008,

Figure 2 .

 2 Figure 2.33: Flowchart of numerical tests

  Figure 2.35: Inuence of perturbations of calibration parameters to the measurements

  errors of displacements measured by DIC. The errors of calibration parameters depends on the stability of experimental equipment, the precision of motor's movement, and the accuracy of the acquisition of calibration parameters. Errors of DIC can be classied into two categories: systematic error and random error. Systematic error originates from the "ultimate error" of DIC [Bornert et al. 2009; Amiot et al. 2013], and random error originates from the noise of diraction images, which is usually characterized by a simple but ecient noise model -Poissonian-Gaussian model (see 2.3). We have collected image stacks, each of which contains 100 images, in our experiment to check the validity of

  this chapter. Like its original version, enhanced Laue-DIC still needs two diraction images and to treat them by DIC. The novelty of enhanced Laue-DIC compared with the original one rests in treating both the lattice matrices of reference conguration and calibration parameters as unknowns. For brevity, we use lowercase letter to represent parameters in current conguration, and uppercase letter to represent parameters in reference conguration. Tab. 3.1 tabulates the symbols for the parameters. The spots' displacements in Conguration Current Reference Reciprocal lattice matrix l L Sample-detector distance d D The nearest point on the area detector to the illumination (x c , y c ) (X c , Y c ) Pitch angle of detector β B Yaw angle of detector γ Γ Detector orientation matrix (Eqn. 1.19) g G Scaled diraction vector (Eqn. 1.28) ξ Ξ Table

hanced

  Laue-DIC essentially uses spots' displacements as input. The owchart of enhanced Laue-DIC is given in Fig. 3.1: image enhanced Laue-DIC as a black box, the inputs of the black box are spots' displacements measured by DIC and spots' indexes (for example, obtained by LaueTools [LaueTools]), and the outputs are lattice matrices and calibration parameters of both current and reference congurations; to facilitate the calculation, an initial estimation of lattice matrices and calibration parameters are provided by other means, e.g. standard Laue treatment (see 1.5).

3. 3 .

 3 Figure 3.1: Flowchart of enhanced Laue-DIC

  3.2): 1. Given the exact values of lattice matrices and calibration parameters for two congurations, generate theoretical peak positions on detector plane with Eqn. 1.29 and subsequently their displacements. 2. Deviate the simulated peaks' positions and calibration parameters a little bit from their exact values according to normal distribution. The deviation of peak's position 3.3. NUMERICAL TESTS OF ENHANCED LAUE-DIC is 0.1 pix in both x and y direction to represent the uncertainties of tting Laue spot [Poshadel et al. 2012], and the deviation of calibration parameters are tabulated in Tab. 2.4.

Figure 3 . 2 :Figure 3 . 3 :

 3233 Figure 3.2: Flowchart of numerical tests
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 25343 Figure 3.4: Variation of Π(P) by altering one calibration parameter while keeping the rest xed 111

Figure 3 . 6 :

 36 Figure 3.6: Variations of systematic and random errors of lattice matrices with the deviations of displacements in case I.

Figure 3 . 8 :Figure 3

 383 Figure 3.8: Variations of systematic and random errors of lattice matrices with the deviations of displacements in case II and III with 25 spots considered.

  Figure 3.11: Variations of systematic and random errors of d and D with the deviations of displacements in case II and III with 25 spots considered.

Figure 3

 3 Figure 3.12: Variations of systematic and random errors of calibration parameters with the deviations of calibration parameters in case I with 25 spots considered.

  Figure 4.2: Optical system of BM32, ESRF

  have prepared three Si monocrystals of dierent orientations to investigate the inuence of orientation, namely Si sample I, Si sample II, and Si sample III. The sizes of the three samples are 2.42 × 7.97 × 35 mm 3 (see Fig. 4.4), and the approximate orientation of three samples are tabulated in Tab. 4.1 The surfaces of the three Si samples were mechanically polished at ESRF to a mirror nish with negligible roughness.

Figure 4

 4 Figure 4.4: A sample's orientation

Figure 4 . 5 :

 45 Figure 4.5: Four point bending test

  Figure 4.7 is an example of the embedment of in situ test equipment into the beamline. Right above the experimental setup, there is an area detector to receive the diraction pattern. In our experiment, we used X-ray Very High Resolution (VHR) CCD detector (see Fig. 4.8), 131 4.2. DESCRIPTION OF EXPERIMENTS manufactured by Photonic Science Ltd. Some parameters of this detector are given in Tab. 4.2. A small Ge monocrystal with a known orientation is glued by wax on the surface of the sample to enable the calibration of the experimental setup. The calibration procedure runs as follow: (i) take diraction image of Ge; (ii) manipulate the calibration parameters until the simulated Laue pattern coincide with the experimental one (see Fig. 4.6 for determining the calibration parameters in LaueTool).

Figure 4 . 6 :

 46 Figure 4.6: The panel of LaueTool to obtain the calibration parameters from diraction image. The void circles represent the simulated spots, while the lled circles represent measured spots.

Figure 4 . 7 :

 47 Figure 4.7: The embedment of FPB test into the beamline
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  . translated the sample to scan the middle line of the sample (the yellow line along the x-axis in Fig.4.9) while maintaining the calibration parameters, and obtaining a sequence of images.

Figure 4

 4 Figure 4.8: VHR CCD detector [VHR]

Figure 4 . 9 :

 49 Figure 4.9: The in situ test carried out in BM32, ESRF

Figure 4 .

 4 Figure 4.10: FEM model of ABAQUS, only one quarter of the sample was modeled thanks to the symmetry of model

Figure 4 .

 4 Figure 4.11: Correlation pairs of original Laue-DIC. N is the total number of illumination sites, and assumed even.

Figure 4 .

 4 Figure 4.12: Correlation pairs of enhanced Laue-DIC

  Figure 4.14: σ y component by dierent methods.

  Figure 4.18: Stress prole of Si sample III at the distance of 143.75 mm.

  Figure 4.19: Stress prole of Ge sample at the loading of 140.35 N with distance 59.83 mm.

Figure 4 .

 4 Figure 4.20: Spots in diraction image of Ge.

  Figure 4.24: Stress prole of 316L sample at the loading of 3.00 N and the distance of 59.80 mm.

Figure 4 . 25 :

 425 Figure 4.25: Spots in diraction image of 316L.

Figure 4 .

 4 Figure 4.27: Stress prole of 316L sample at the loading of 2.01 N.

Figure 4 . 29 :

 429 Figure 4.29: Stress prole of 316L sample at the loading of 4.98 N.

Figure 4 .

 4 Figure 4.31: Stress prole of 316L sample at the loading of 6.50 N.

  image, add noise to each pixel, and perform numerical tests to investigate the distributions of DIC errors; (ii) add DIC errors to spots' displacements, and perform numerical tests to investigate the distributions of the results of original and enhanced Laue-DIC. Main conclusions of these numerical tests include that: (i) increasing the number of spots can decrease the errors; (ii) the random errors are usually larger than systematic errors; (iii) enhanced Laue-DIC is more robust against the errors of calibration parameters than original Laue-DIC.
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	SYNCHROTRON RADIATION EXPERIMENT	
	Stage Statistical distribution Parameter(s) Specications
	0	Poisson	N	Mean number of incident X-ray photons
				Fraction of incident X-ray
	1	Binomial	g 1	photons that interact with
				phosphor
	2	Normal	g 2	Mean photon yield per X-ray photon on phosphor
			σ 2 g 2	Variance of photon yield
				Fraction of photons traveling
	3	Binomial	g 3	through FOT and absorbed by
				CCD chip
	4	Normal	g 4	Mean yield of electron-hole pairs per photon on CCD chip
			σ 2 g 4	Variance of yield of electron-hole pairs

.1: Signal transmission of a detection event [Waterman and Evans 2010].

  EXPERIMENTAL STUDY OF THE NOISE OF DIFFRACTION IMAGESacquisition of each image stack, we should endeavor to maintain the experimental setup to ensure that the only factor leading to the variation of gray levels in the same stack is image noise. With each pixel of one stack, we calculate the average and standard deviation of its gray level to validate the presented noise model and estimate its parameters.

	.16b)
	2.4 Experimental study of the noise of diraction images
	2.4.1 Validation of Poissonian-Gaussian model and estimation of its pa-rameters

In this section, we will test the validity of Poissonian-Gaussian model on the experimental data, and identify the parameters of the model, γ, ψ, and p d . For doing this, we collect stacks of 100 Laue microdiraction images from several specimens. During the 2.4.

  sin θ .
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γ Figure 2.16: γ vs. E From Fig. 2.16, we do not see any clear relation between spot energy E and cascade

  2.15, was set to 0.075, 0.1, 0.125, 0.15, 0.175, 0.2. The level of errors were quantied by the maximum values with various displacements. The results of systematic errors and random errors were given in Fig.2.31 and 2.32 respectively.

	2.5. NUMERICAL TESTS OF LAUE-DIC							
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			Figure 2.31: Maximum systematic errors with with biquintic interpolation
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	From Fig. 2.31 and 2.32 we could draw several conclusions:		
	1. The systematic error is mainly governed by the amplitudes of spots, i.e. spots with
	larger amplitudes give lower systematic error. The systematic error slightly increases
	with the cascade factor γ.											
										90								

  .34b, 2.34d, and 2.34f to 0.16 pix, and plot the variation of error curves with multiple αs in Fig.2.36. To save space, here we only consider the case with the deformation gradient F 2 and 25 spots considered.
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	Figure 2.36: Variation of error curves with the scaling factor α
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	∆xc /pix ∆yc /pix β / • B / • γ / • Γ / • Π Π 0 × 100% 7.7% 6.6 × 10 -2 3.7 × 10 -2 5.5 × 10 -2 5.4 × 10 -2 0.51 0.51	0.17 0.03 1.24 × 10 -3 6.42 × 10 -4 5.12 × 10 -3 2.38 × 10 -4 0.23 2.20 × 10 -3 0.38 2.06 × 10 -3 4.09 × 10 -3 5.12 × 10 -3 6.45 × 10 -4 6.52 × 10 -4 4.90 × 10 -3 6.25 × 10 -4 4.10 × 10 -3 5.07 × 10 -3 12.1% 20.2% 100%

.2: Performance of each individual algorithm, Π 0 being the initial value of cost function reduce the objective function Π, several indexes indicating the deviation from real value increase signicantly after optimization. This phenomenon may signify that we have attained local minimum rather than global minimum. And Powell algorithm is very time-consuming (about 45 sec per iteration), perhaps due to the fact that Powell algorithm does not use any derivative of cost function. Though there are global minimization algorithm available, e.g. simulated annealing algorithm, genetic algorithm. These algorithms entail large mount of calculation, but in this work we do not have sucient time to dig into them. Here, we tried to use partial optimization rather than full optimization.

  11 /GPa C 12 /GPa C 44 /GPaTable 4.3: Elastic constants of Si and Ge C 11 , C 12 , and C 44 are dened in Eqn. 4.4, where σ and ε represent stress and elastic strain respectively, and the superscript lattice represent component expressed in lattice

		Si	165.8	63.9	79.6
		Ge	128.5	48.3	66.8
	coordinate system.		
	       	σ lattice xx σ lattice yy σ lattice zz σ lattice yz σ lattice zx σ lattice yz		

  92 N, 46.76 N, 88.57 N, and 199.43 N, and the corresponding maximum σ yy are 2.14 MPa, 25.55 MPa, 48.39 MPa, and 108.95 MPa according to Eqn. 4.2. The number of spots considered in these analysis is ∼ 35. The approximate values of calibration parameters

	4.5. RESULTS OF IMAGE TREATMENT			
	d/mm x c /pix y c /pix β/ • γ/ •
	59.8	1365.4 945.4 0.38 0.50
	Table 4.5: Approximate calibration parameters when Si sample I was scanned.
	The treatments of images of scanning sequence at the loading of 199.43 N by standard
	Laue treatment, original Laue-DIC, and enhanced Laue-DIC, are given in Fig. 4.13. We
	can see that the stress proles by standard Laue treatment appear very noisy, specially for
	the shear components, while those by original and enhanced Laue-DIC exhibit much less
	uctuation.					
	A more quantitative comparison lies in calculating the root mean square (RMS) of
	discrepancy between the measured values and the theoretical values, i.e. a linear t:
	RMS =	n (σ meas (i) n -σ theo (i) ) 2	.
		σ x	σ y	σ z	τ yz	τ zx	τ xy
	Standard Method	3.22 2.02 2.67 13.71 9.79 11.82
	Original Laue-DIC	1.83 1.19 1.30 8.74 4.54 4.78
	Enhanced Laue-DIC 2.12 1.85 2.21 8.97 4.76 5.00
	Table 4.6: RMSs of discrepancies of dierent components when Si sample I is bent at
	199.43 N (unit: MPa)					
	during these scanning was tabulated in Tab. 4.5.		
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	.9: The perturbation of calibration parameters in scanning Si sample I at the loading
	of 199.43 N
	Comment From the gures and tables we listed above, we can draw several conclusions:
	144

  At the distance 143.77 mm, by original Laue-DIC Figure 4.22: Stress prole of Ge sample at the loading of 99.69 N.

	4.5. RESULTS OF IMAGE TREATMENT 0.0 0.5 1.0 1.5 2.0 x/mm -40 -30 -20 -10 0 10 20 30 40 (a) At the distance 59.83 mm, by enhanced Laue-DIC 2.5 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Analytical value of σ ′ y (MPa) Analytical value of σ ′ x (MPa) Analytical value of σ ′ z (MPa) Analytical value of shear components (MPa) 0.0 0.5 1.0 1.5 2.0 2.5 x/mm -40 -30 -20 -10 0 10 20 30 40 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Analytical value of σ ′ y (MPa) Analytical value of σ ′ x (MPa) Analytical value of σ ′ z (MPa) Analytical value of shear components (MPa) (b) At the distance 101.97 mm, by enhanced Laue-DIC 0.0 0.5 1.0 1.5 2.0 2.5 x/mm -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Analytical value of σ ′ y (MPa) Analytical value of σ ′ x (MPa) Analytical value of σ ′ z (MPa) Analytical value of shear components (MPa) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x/mm -80 -60 -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Simulated value of σ ′ y (MPa) Simulated value of both σ ′ x and σ ′ z (MPa) Simulated value of shear components (MPa) (a) Standard Laue treatment -60 -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Simulated value of σ ′ y (MPa) Simulated value of both σ ′ x and σ ′ z (MPa) Simulated value of shear components (MPa) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x/mm -80 -60 -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Simulated value of σ ′ y (MPa) Simulated value of both σ ′ x and σ ′ z (MPa) Simulated value of shear components (MPa) (c) Enhanced Laue-DIC 4.5. RESULTS OF IMAGE TREATMENT 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x/mm -80 -60 -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Simulated value of σ ′ y (MPa) Simulated value of both σ ′ x and σ ′ z (MPa) Simulated value of shear components (MPa) (a) Standard Laue treatment 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x/mm -80 -60 -40 -20 0 20 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) Experimental value of τ xy (MPa) Simulated value of σ ′ y (MPa) Simulated value of both σ ′ x and σ ′ z (MPa) Simulated value of shear components (MPa) (b) Original Laue-DIC 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x/mm -80 -60 -40 40 60 80 Experimental value of σ ′ y (MPa) Experimental value of σ ′ x (MPa) Experimental value of σ ′ z (MPa) Experimental value of τ yz (MPa) Experimental value of τ zx (MPa) (c) 4.5. RESULTS OF IMAGE TREATMENT 0.0 0.1 0.2 0.3 0.4 0.5 0.6 20 Experimental value of τ xy (MPa) -80 Simulated value of σ ′ y (MPa) x/mm -20 0 Simulated value of both σ ′ x and σ ′ z (MPa) (b) Original Laue-DIC Simulated value of shear components (MPa)
	Figure 4.23: Stress prole of 316L sample at the loading of 3.00 N and the distance of
	38.83 mm.
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	σ xx σ yy	σ zz	τ yz	τ xz	τ xy
	Fig. 4.32a 27.0 30.3 28.6 32.2 32.4 15.2
	Fig. 4.32b 29.9 31.7 24.0 31.7 45.8 13.1
	Fig. 4.33a 12.5 13.9 10.8 13.7 10.7 24.3
	Fig. 4.33b 12.7 12.8 11.2 14.6 10.6 13.5

.11: Average length of error bars for each component of stress (unit: MPa)
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This thesis is under the framework of ANR project "MICROSTRESS" aiming at improving the experimental characterization of material at the scale of micrometer. This project is dedicated to two experimental techniques: HR-EBSD (High angular Resolution Electron Back Scattered Diraction) and Laue microdiraction, both of which enable the measurement of elastic strain eld and hence stress eld. The stress eld, along with the

det B .

, it is more straightforward to use linear regression to calculate a least-square solution of F * , and we will demonstrate this method in the following. Since we can not determine the

The visible photons travel through the ber optic taper (FOT), which bridges the phosphor scintillator of the screen and the CCD chip.

The visible photons will trigger electron-hold pairs on the CCD chip.Of course, each stage has its own source of uncertainty, that is subject to a probability distribution. Tab. 2.1 lists all parameters characterizing the stochastic nature of each stage.

NUMERICAL TESTS OF ENHANCED LAUE-DIC

In case of statistical tests where multi random cases are treated, we dene the systematic and random errors of l and L as:

(3.8)

where the overline on the right hand of equations means the average, and the σ on the right hand of equations means the standard deviation.

We will perform two types of numerical tests in the following: the rst type uses the peaks' displacements which are accurately given, and the purpose of this type is to nd out an ecient optimization algorithm; and the second types uses displacements which are polluted by zero-mean Gaussian noise, and the purpose of this type is to evaluate the systematic and random errors of enhanced Laue-DIC. As for the exact values of lattice matrices, we deal with case I of 2.5.2 with the rst type of tests; and we deal with all three cases of 2.5.2 with the second type of tests. In both types of tests, the calibration parameters and their uncertainties are given in Tab. 2.3 and 2.4 respectively.

Numerical tests with accurate spots' displacements as input

Let us rst grasp some visual impression about the properties of the cost function Π(P) (see Eqn. 3.6). Because Π(P) contains 24 parameters, it is dicult to plot Π(P) on paper.

What we do is to investigate the variation of Π(P) by altering one parameter of P while keeping the rest xed. The lattice matrices used in this program is the same as those in the case I of 2.5.2. 

Ge specimens

We have experimented on one Ge monocrystal, whose size is 2.42 × 7.97 × 35 mm 3 . The Ge sample was oriented so that its [100], [010], and [001] directions were aligned approximately parallel to the three edges of sample. The surfaces of the Ge sample was mechanically polished to a mirror nish with negligible roughness.

316L specimens

We have also experimented on a 316L monocrystalline sample, whose size is 0.52 × 4.80 × 30 mm 3 . The 316 sample was oriented so that its [100], [010], and [001] directions were aligned approximately parallel to the three edges of sample. 316 sample was rst mechanically polished to a mirror nish with negligible roughness, and then chemically 4.5. RESULTS OF IMAGE TREATMENT have much better control over the perturbation of the experimental setup than the experiment of Poshadel.

Ge sample

We applied two loadings on the sample, 99.69 N and 140.35 N, and the corresponding maximum σ yy are 54.5 MPa and 76.7 MPa respectively. For each loading, we scanned the central line at three dierent detector-sample distances: 59.83 mm, 101.97 mm, and 143.77 mm, and we collected ∼ 40 spots, ∼ 20 spots, and ∼ 10 spots respectively. We plotted the stress proles at the loading of 140.35 N with a detector-sample distance 59.83 mm in Fig. 4.19. A visual impression about Fig. 4.19 was that there was no signicant distinction among the stress proles by the three methods. We tabulated their RMSs of discrepancies in Tab. 4.10, and we also found quantitatively that the distinctions among the results by the three methods were very small. A possible explanation is that the Laue spots of Ge is more elliptically shaped thanks to the shallower penetration depth compared to Si, for example, Fig. 4.20 demonstrated two spots diracted from Ge, and they appeared more elliptically shaped than those diracted from Si in Fig. 2 

316L sample

We examined the stress distribution at the load of 1.00 N, 2.01 N, 3.00 N, 4.01 N, 4.98 N, 5.99 N, 6.50 N with a detector-sample distance of 59.80 mm, and for the load of 3.00 N, we scanned the central line with an additional very short detector-sample distances: 38.83 mm.

For the images taken at the distance 59.80 mm, the number of spots considered is ∼ 15, and for the images taken at the distance 38.83 mm, the number of spots considered is ∼ 25.

In Fig. 4.23, we plotted the results by the three methods at the loading of 3.00 N and the distance 38.83 mm, and in Fig. 4.24, we plotted the results by the three methods at the loading of 3.00 N and the distance 59.80 mm. Again, from visual impression, we found that the stress proles taken at the distance 38.83 mm exhibited less uctuations than those taken at the distance 59.80 mm. We also found that the results of the three methods gave similar results as in 4.5.2, and if we compared the shapes of spots diracted from 316L (see Fig. 4.25) with those diracted from Si sample (see Fig. 2.2), it was obvious that the spots diracted from 316L sample were more elliptically shaped than those from Si sample, therefore the introduction of DIC would not improve signicantly. Perhaps, if we further loaded the sample, the misorientation within it would become more pronounced and spots would become streaked or even splitted, as indicated in [START_REF] Hofmann | Probing the Deformation of Ductile Polycrystals by Synchrotron X-ray Microdiraction[END_REF]].

Given the similarities of the results by the three methods, we will only plot the results by enhanced Laue-DIC for the rest of loading in Fig. 4.26, 4.27, 4.28, 4.29, 4.30, and 4.31, corresponding to the loading of 1.00 N, 2.01 N, 4.01 N, 4.98 N, 5.99 N, 6.50 N respectively.

We can see that the sample begins to yield at the loading 4.01 N. As the loading was further applied incrementally, the τ zx component gradually deviated from zero (see Fig. 4.29, 4.30, and 4.31). However, our FEM simulation failed to predict this phenomenon, and it might be due to the isotropic elasticity and plasticity that we assumed in the simulation (Tab. 4.4) which did not t reality.

Comment For the gures above, we can draw several conclusions:

• At the loading of 3.00 N, we scanned the sample at the distance of 38.83 mm and 59.80 mm, and collected ∼ 25 and ∼ 15 spots respectively. And we have found that CONCLUSION the illumination of X-ray is shifted from reference conguration to current conguration, it is dicult to maintain the calibration parameters constant due to factors such as the imprecision of experimental machine, specimen's roughness, etc. To solve this problem, we proposed an enhanced version of Laue-DIC. The novelty of enhanced Laue-DIC compared with the original one rests in treating both the lattice matrices of reference conguration and calibration parameters as unknowns. The procedure of enhanced Laue-DIC can be explained by Fig. 3.1: (i) index each spot and measure the displacement of spot between two congurations; (ii) use, for example, standard Laue treatment, to calculate the lattice matrices and calibration parameters of two congurations, and use them as initial guess to minimize the discrepancy between measured spots' displacements and theoretical ones.

The feasibility of enhanced Laue-DIC depends on the rank of Jacobian matrix of Eqn.

3.2: if it is full ranked, then with the displacements of 12 spots, we can obtain the lattice matrices and calibration parameters of two congurations which consists of a total of 24 unknowns. Enhanced Laue-DIC excels original Laue-DIC in two aspects: (i) it solves the deviatoric lattice matrices rather than their increment; (ii) it takes calibration parameters into consideration, therefore it is more robust against any errors in calibration parameters.

We applied the standard method, original Laue-DIC, and enhanced Laue-DIC to the treatment of image sequence of scanning bent monocrystals (Si, Ge, and 316L steel). It was found that: for Ge, 316L samples, whose spots' shapes appeared close to elliptic, the three methods gave similar curves, while for Si samples, whose spots were elongated, both original and enhanced Laue-DIC gave better match to the reference solutions than standard method.

Aside from the formulation of enhanced Laue-DIC, we also developed a procedure of statistically estimating the errors of elastic strain/stress resulted from DIC errors. Prior to that procedure, we need to characterize the noise of diraction image in the rst place.

In our approach, the noise is described by a classical model: Poissonian-Gaussian noise model. This model is validated by collecting stacks of 100 image under the same condition and hence its parameters are obtained by linear regression.

With the noise model and its parameters, we are able to estimate the errors of original and enhanced Laue-DIC. This is accomplished in two steps: (i) synthesize articial spot 
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Determination of the stress field in crystalline materials by Laue microdiffraction

ABSTRACT: Laue microdiffraction is a powerful technique to characterize the intragranular elastic strain field at the scale of micrometer. Although a standard procedure extracting elastic strain and crystal orientation from Laue image has been well-established, it can suffer from two sources of uncertainties: the determination of peaks' positions and the sensitivity to calibration parameters. In light of the high accuracy of digital image correlation (DIC), we developed the socalled Laue-DIC method which used the peaks' displacements measured by DIC instead of peaks' positions to determine the elastic strain increment and rotation between two mechanical configurations. This method has been proved more efficient than the standard procedure in terms of stress profiles of bended beam. We also developed the enhanced version of Laue-DIC. By using the term "enhanced", we mean that we attempt to obtain both lattice matrices and calibration parameters of two configurations rather than solely the elastic strain increment and rotation from peaks' displacements.

Aside from the formulation of Laue-DIC, we also developed a procedure of statistically estimating the errors of elastic strain/stress resulted from DIC errors and calibration accuracy. Keywords : Laue microdiffraction, digital image correlation, synchrotron radiation, error analysis, in situ mechanical test.