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Résumé

La microdi�raction Laue permet l'estimation des déformations élastiques à l'échelle du

micron. La procédure d'analyse standard, bien établie, utilisée pour extraire les déforma-

tions élastiques des images de Laue est limitée par deux sources d'erreurs : la détermination

de la positions des taches de Laue sur le détecteur, et la sensibilité aux paramétres de cal-

ibration du montage. Pour améliorer la procédure, nous avons développé une procédure

appelée Laue-DIC qui utilise la très bonne résolution de la technique de corrélation d'images

numériques (DIC). Cette méthode utilise, pour la détermination de l'incrément de déforma-

tion élastique et de rotation, le déplacement des pics entre deux con�gurations mécaniques,

estimé par DIC, au lieu de leur position. Nous montrons que cette méthode donne un pro-

�l de contrainte en meilleur accord avec les solutions analytiques et numériques, pour des

échantillons monocristallins déformés en �exion 4-points. Nous proposons également une

méthode Laue-DIC améliorée, dans laquelle les paramètres de calibration sont estimés à

chaque point de mesure, simultanément à la déformation élastique.

En paralléle à la formulation de la méthode Laue-DIC (améliorée), nos e�orts ont

porté sur l'estimation de l'incertitude obtenue sur les déformations élastiques. Nous avons

développé un modèle de bruit pour les images de Laue mesurées en rayonnement syn-

chrotron, qui a été validé sur des séries de données, et qui nous a permis d'estimer les

erreurs statistiques de la DIC, à partir d'images de Laue synthétiques. Ces erreurs ont

ensuite été propagées dans la méthode Laue-DIC a�n d'estimer les incertitudes sur les

déformations élastiques, que l'on trouve en bon accord avec la �uctuation des contraintes

locales estimées
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Abstract

Laue microdi�raction is a powerful technique to characterize the intragranular elastic

strain �eld at the scale of micrometer. Although a standard procedure extracting elastic

strain and crystal orientation from Laue image has been well-established, it can su�er from

two sources of uncertainties: the determination of peaks' positions and the sensitivity to

calibration parameters. In light of the high accuracy of digital image correlation (DIC), we

developed the so-called Laue-DIC method which used the peaks' displacements measured

by DIC instead of peaks' positions to determine the elastic strain increment and rotation

between two mechanical con�gurations. This method has been proved more e�cient than

the standard procedure in terms of stress pro�les of bended beam. We also developed the

enhanced version of Laue-DIC. By using the term "enhanced", we mean that we attempt to

obtain both lattice matrices and calibration parameters of two con�gurations rather than

solely the elastic strain increment and rotation from peaks' displacements.

Aside from the formulation of Laue-DIC, we also developed a procedure of statistically

estimating the errors of elastic strain/stress resulted from DIC errors and calibration ac-

curacy. We have �rst validated a classical noise model, Poissonian-Gaussian model, from

di�raction images acquired at synchrotron radiation facility. With the noise model, we

could statistically estimate the DIC errors by synthesizing arti�cial spots. The estimated

DIC errors were further transmitted into the errors of Laue-DIC through statistical tests.

Keywords : Laue microdi�raction, digital image correlation, synchrotron radiation,

error analysis, in situ mechanical test
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Introduction

Figure 1: The crush of Schenectady tanker

On 16 January 1943, a tanker called Schenectady was docking quietly at Swan Island,

US, in calm weather. Suddenly, without warning, a earsplitting, audible for at least a mile,

sound came, and the bulk of the tanker cracked almost by half. This was not the �rst of

the merchant �eet to fracture in this way in World War II - there had been ten other major

incidents before, and several more would follow - but it was perhaps the most in�uential;

it happened right under the noses of Portland's citizens, and was widely reported by the

press even during the war.

Although later research inferred that the steel of the tanker became highly brittle due to

low ambient temperature, exacerbating any existing faults and becoming more vulnerable

to fracture, the cause of such accident within service life was not fully understood at that

time. Because material fatigue or fracture, unlike other materials' properties, e.g. sti�ness,

strength, thermal conductivity, yield strength, depends heavily on the local characteristics

of microstructure (lattice distortion, void, impurities, grain boundary), rather than average
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INTRODUCTION

attributes of microstructure such as mean grain size, phase volume fractions, impurity ratio,

etc [McDowell 2010].

Nowadays, when large machines (airplanes, rockets, submarine) and megastructures

are increasingly emerging in our life, engineers have to be cautious with designing and

manufacturing them in order to avoid an accident as aforementioned and economize the

cost as well. Traditional paradigms of material selection based on macroscopic strength

theory needs to be revolutionized, because an increase in a machine/structure size intro-

duces new complexities, and it is not simply scaling up an existing machine/structure but

redesigning with new material, new manufacturing to some degree. Sometimes, it may be

more demanding if a machine/structure has to work under extreme conditions, for exam-

ple, a satellite must function in vacuum, and the structure of submarine must withstand

high pressure deep under the sea. These urgent needs from industry and engineering have

fostered a new subject - "material design" aiming at tailoring materials' properties to meet

the requirements of materials' application [McDowell 2001].

Figure 2: The hierarchy of structure in polycrystalline material [McDowell 2010]

For polycrystalline materials, there exist three intermediate levels in the hierarchy

from atomistic level (∼ 10−10 m) to macroscopic level (∼ 10−3 m) [McDowell 2010]: dis-

crete dislocation level (∼ 10−8 m), dislocation pattern level (∼ 10−7 m), polycrystal level

(∼ 10−5 m) (see Fig. 2). While it sounds possible to employ �rst principle to simulate

materials' behavior at each level, and there have been some e�orts towards this direction

[Gonze et al. 2002], this approach is impracticable and costly when dealing with levels
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INTRODUCTION

higher than atomistic level, not only due to the huge amount of calculation involved, but

also due to the tremendous amount of degree-of-freedoms and boundary conditions to be

fed in. Therefore, it is very compelling if we could develop a multiscale modeling method to

bridge the gap from atomistic scale to macroscopic scale [Liu et al. 2006]. Thanks to the

advancement of computer's performance and numerical methods, material scientists have

developed corresponding methods for simulation at higher level: �nite element method

(FEM) [Li et al. 2008; Zhang et al. 2012], fast Fourier transformation (FFT) method

[Suquet et al. 2012] and cellular automation (CA) [Jin and Cui 2012] for macroscopic level

and polycrystal level, dislocation dynamics (DD) [Gaucherin et al. 2009] for dislocation

pattern level, molecular dynamics (MD) [Raabe 2004] for discrete dislocation level, etc.

The improvements of these numerical methods need observations and validations from

experiment, therefore it is imperative to have experimental tools probing materials' behav-

ior at the corresponding scale, so that the results of numerical simulations and experimental

measurements can be cross-checked and hence both numerical method and experimental

measurements can be promoted. However, at present, one cannot bridge the gap between

the simulation results and experimental observation when it comes to predicting material's

behavior at microscale. In [Hoc et al. 2003], the comparison between calculated and mea-

sured strain �eld has been found to be highly in�uenced by local behavior of material, and

in [Magid et al. 2009], the stress �uctuations within Cu monocrystal measured by X-ray

di�raction is found to be of the order of GPa, a result which is unrealistic. This gap is

either due to the inadequacy of simulation method, the �aws in experimental observation,

or the limited knowledge of material's behavior at �ne scale. Therefore, concerted e�orts

from experts of both numerical simulation and experimental characterization are needed

in order to have a more reliable predictive methodology to have insight into material's

properties at a �ne scale.

This thesis is under the framework of ANR project "MICROSTRESS" aiming at im-

proving the experimental characterization of material at the scale of micrometer. This

project is dedicated to two experimental techniques: HR-EBSD (High angular Resolution

Electron Back Scattered Di�raction) and Laue microdi�raction, both of which enable the

measurement of elastic strain �eld and hence stress �eld. The stress �eld, along with the
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INTRODUCTION

Figure 3: (a) Polycrystal's microstructure obtained by OIM; (b) The deformation �eld
obtained by applying DIC to SEM images; (c) The stress of material is unknown. (a) and
(b) are from [Héripré et al. 2007]

microstructure obtained by OIM (Orientation Image Microscopy) and the total strain �eld

obtained by DIC (Digital Image Correlation), will provide insight into the constitutive

behavior of material (see Fig. 3). In this project, one PhD student, Emeric Plancher,

is working on the development of HR-EBSD, and this thesis is dedicated to improve the

precision of stress characterization by Laue microdi�raction. The whole thesis is organized

as follows:

1. Chapter I presents the background and fundamentals of this thesis, including the

heterogeneity of stress, the di�raction technology, and the calculation of elastic strain

from di�raction image.

2. Chapter II �rst presents the so-called Laue-DIC method, i.e. the application of DIC

into di�raction image treatment, and the analysis of Laue-DIC uncertainty arising

from image noise.

3. Chapter III presents an enhanced version of Laue-DIC, which enables the acquisition

of both lattice matrices and geometrical parameters. And numerical tests will be

given to test its e�ciency and its robustness against DIC errors.

4. Chapter IV applies the standard method presented in Chapter II, Laue-DIC method

presented in Chapter II, and enhanced Laue-DIC method presented in Chapter III,

to di�raction images collected from Laue microdi�raction experiments, carried out
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in beamline BM32 of ESRF during in situ mechanical tests. We will compare the

results with analytical solution and discuss their discrepancies.
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Chapter 1

Bibliography

1.1 Motivation

It is well-known that homogeneous strain/stress �elds at the macroscopic scale might

exhibit heterogeneities at a �ner scale, and such heterogeneities may give rise to microplas-

ticity [Tatschl and Kolednik 2003; Zhang et al. 2005] and crack initiation [Sangid 2013;

Bach et al. 2014]. The ignorance of the heterogeneity of strain/stress �eld may lead

to the failure of mechanical components (for example, the crush of Schenectady tanker,

see Fig. 1). The heterogeneity of strain/stress �eld usually arises from the heterogene-

ity of the microstructure. Thanks to recent developments of experimental techniques and

data treatment, scientists now have various technologies available to characterize materi-

als' morphology at various scale: at atomic scale, for example, we have scanning tunneling

microscopy (STM), transmission electron microscopy (TEM) and atomic force microscopy

(AFM), and at polycrystal and macroscopic scale, we have di�raction contrast tomography

(DCT), scanning electron microscopy (SEM), orientation imaging microscopy (OIM), and

optic microscopy. The images acquired by these techniques, together with image process-

ing algorithm such as DIC (Digital Image Correlation) [Sutton et al. 2009b], reveal the

kinematics of materials at di�erent scale [Doumalin and Bornert 2000; Hild and Roux

2006; Héripré et al. 2007; St-Pierre et al. 2008].

To fully explore the constitutive model of materials, stress of materials is also required

aside from morphology and kinematics of materials. Stress can be considered as the ten-

dency to push material back to its equilibrium state. For crystalline material, stress arise
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1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD

from the distortion of lattice, therefore di�raction methods, such as X-ray di�raction, neu-

tron di�raction, or electron di�raction, o�er non-destructive ways to detect the lattice

distortion and hence the stress at the scale of lattice. For non-crystalline material such

as rubber, the characterization of stress can be accomplished by thermal analysis, such as

TSA (thermographic stress analysis) [Zhang et al. 1990]. One can gain an insight into

material's constitutive model by superimposing stress map to strain map.

This thesis will be dedicated to the development of Laue microdi�raction aiming at

measuring elastic strain, and this chapter will lay the scienti�c foundations relevant to

this thesis. The whole chapter is structured in the following sequence: (i) in �1.2, we

introduce the concept of evaluation of stress by di�raction and compare three mainstream

of stress evaluation method based on di�raction (X-ray di�raction, neutron di�raction, and

electron di�raction); (ii) in �1.3, we will present the basic concepts in X-ray di�raction;

(iii) in �1.4, we will discuss the commonly used X-ray di�raction technique and introduce

Laue microdi�raction; (iv) and in �1.5, we introduce the standard Laue treatment to obtain

elastic strain from Laue microdi�raction data.

1.2 Evaluation of elastic strain by di�raction method

Evaluation of elastic strain by di�raction falls into the category of non-destructive

analysis of material. When electromagnetic wave propagate through crystal, both con-

structive interference and destructive interference of waves would occur when the incident

electromagnetic wave and atoms spacing meet certain conditions. This phenomenon is

called di�raction. Given the actual inter-atom spacing in real matters, the electromagnetic

wave chosen to probe material is usually X-ray, whose spectrum is within the range of

0.01− 100Å. Due to the wave-particle duality, the interaction of matters with neutrons or

electrons can also produce visible di�raction pattern at certain conditions, hence electron

di�raction and neutron di�raction are used to analyse material properties as well. Bear in

mind that all the three method do not directly measure stress but the distortion of lattice

from its equilibrium state.
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1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD

1.2.1 Neutron di�raction

For neutron di�raction, the most appealing feature is that neutrons carries no charge

therefore neutron di�raction has the deepest penetration depth compared to electrons and

X-ray as the propagation of neutron is rarely impeded by electromagnetic forces inside

material. Moreover, neutron di�raction is widely used in studying magnetic materials and

organic materials. For magnetic material, this is due to the fact that neutrons carry mag-

netic moments and can be scattered magnetically. For organic materials, X-ray di�raction

image will be strongly blurred by Compton e�ect (see �1.3.1), because Compton e�ect is

very pronounced when photons are di�racted by light elements, e.g. carbon, oxygen, and

hydrogen, which constitute the majority of organic materials [Cullity 1956b]. In contrast,

neutrons, which interact with nucleus of atoms, demonstrate less Compton e�ect. How-

ever, the bottleneck of neutron di�raction at present is the availability of neutron source,

which can be either a radioactive material, a nuclear reactor, e.g. LLB in Saclay or ILL in

Grenoble, or a spallation source, e.g. ISIS in UK or the future ESS in Sweden. Low �ux

of neutron sources is also a factor hindering the usage of neutron di�raction.

1.2.2 Electron di�raction

Electron di�raction works in either transmission mode or backscatter mode. The former

is mentioned as TEM (transmission electron di�raction) and the latter is mentioned as

EBSD (electron backscatter di�raction, available in a SEM device). Due to the super�cial

penetration depth of electron into matters, TEM is only limited to study thin �lms with a

thickness of ∼ 100 nm and EBSD is only limited to surface characterization of materials.

Aside from the limited penetration of electrons, electron di�raction is also limited by

the following factors:

1. The sample must be put in a vacuum, otherwise electron beam's energy would dis-

sipate in the air. Usually the size of vacuum chamber limits the size of sample and

experimental equipment in case of in situ tests.

2. The surface of sample must be extremely smooth and clean. For non-conductive

materials, its surface must be coated with conductive materials, otherwise too much
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charges will accumulate on the surface and repel the incident electrons.

Figure 1.1: Kikuchi pattern from a Ge sample [Britton et al. 2010]

However, the most obvious advantage of electron di�raction is its �ne spatial resolution,

as its beam size is merely of the order of 30 nm in EBSD, therefore it is often used to

analyze the intragranular misorientation [Maurice et al. 2012]. The spatial resolution can

be ∼ 1Åin TEM, which is suitable to study interatomic behavior of material. The elec-

tron/matter interaction is a rich source of information concerning the crystal's orientation,

chemical composition, surface morphology, etc:

backscattered electrons Due to wave-particle duality, electrons could be scattered by

all sets of lattice planes which satisfy the di�raction condition, and form Kikuchi

pattern (see Fig. 1.1).

secondary electrons The incident electron beam could ionize the atoms on the mate-

rial's surface. The ionized atoms will release electrons. These electrons are called

"secondary electrons", and the amount of electrons is related to the surface morphol-

ogy.

characteristic X-ray The incident beam may strike a bound electron in an atom. After

the electron has been ejected, the atom is left with a vacant energy level, and an

outer-shell electron then falls into the inner shell, releasing characteristic X-ray with

24



1.2. EVALUATION OF ELASTIC STRAIN BY DIFFRACTION METHOD

a certain wavelength. The released characteristic X-rays may be scattered by all sets

of lattice planes which satisfy the di�raction condition, and form a Kossel pattern

(see Fig. 1.2).

Kossel pattern su�ers from a poor signal-to-noise ratio, though some work has been

done to analyze Kossel line [Bouscaud et al. 2014]. The material characterization by

EBSD is mainly accomplished by analyzing Kikuchi pattern, which is actually the gnomonic

projection of the crystal lattice plane.

Figure 1.2: Kossel pattern from a Cu alloy [Maurice and Fortunier 2008]

1.2.3 X-ray di�raction

Unlike neutrons, X-ray photons are mainly scattered by electrons in matter instead of

nucli. The penetration of X-ray beam in matter depends strongly on the photons' energy -

higher energy gives deeper penetration depth except at X-ray absorption edges, where the

X-ray photons will be absorbed entirely and trigger �uorescence of material.

The X-ray can be generated either from the characteristic radiation of atoms, as

we have mentioned in the formation of Kossel pattern in �1.2.2, or from the accelera-

tion/deceleration of any charged particle. Therefore the X-ray source can be very versa-

tile. The simplest X-ray source involves sealed X-ray tube and rotating anode generator,

in which electrons are emitted from the cathode and are accelerated by high voltages (typ-
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ically 40 kV) between the cathode and anode. When the electrons reach the anode made

by a selected metal, they stop instantaneously and radiate X-ray at all directions with a

broad spectrum. This kind of radiation is called Bremsstrahlung radiation. Aside from

Bremsstrahlung radiation, the interaction between electrons and anode material will also

emit characteristic radiation, which is monochromatic unlike Bremsstrahlung radiation.

The wavelength of the characteristic radiation depends on the element of anode material.

The most frequently used characteristic radiations include Kα line and Kβ line of copper.

[He 2009a].

More advanced X-ray source is synchrotron radiation source. Like Bremsstrahlung

radiation, synchrotron radiation comes from the acceleration/deceleration of any charged

particle. The resulted electric �eld by the acceleration/deceleration of a charged particle

is given as [Jackson 1999]:

E =
Q

4πε0c2‖r‖
r̂ × [(r̂ − v/c)× v̇]

(1− v · r̂/c)3
, (1.1)

where Q is the amount of electric charge of the particle, r is the position vector originated

from the particle, r̂ is its unit vector, and v is the speed of particle. If the particle moves

periodically, the consequent electric �eld will vary periodically and produce electromagnetic

waves.

In the beginning, synchrotron radiation was just a byproduct of particle accelerator in

the experiment of high-energy physics. Soon, it found its application in material science,

since it o�ered incomparable high intensity and high energy X-ray beam, well suited for

probing into the interior of materials non-destructively. The demand of spectrum more

concentrated in certain wavelength led to the development of magnetic insertion devices

called wigglers and undulators regulating the motion of the charged particles (see Fig. 1.3).

Together with optical equipments adapted to synchrotron radiation, e.g. Kirkpatrick-Baez

mirror, monochromator, etc [Ice 1997; Ice et al. 2000; Liu et al. 2005; Ice 2007],

researchers can have X-ray beam whose sizes are just of the order of nm. Thanks to

these advantages of synchrotron radiation, a powerful material characterization technology,

Laue microdi�raction, was developed during the past decades, and we will elaborate this

technology in �1.4.
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Figure 1.3: Bending magnets in a wiggler or undulator in a synchrotron radiation source
[Jackson 1999]

To sum up, X-ray di�raction excels in availability compared to neutron di�raction, and

in versatility compared to electron di�raction. Thanks to the development of synchrotron

radiation and optical technology, material scientists can have X-ray beam of high bril-

liance at micrometer scale. We will detail the principle and technology of X-ray di�raction

hereinafter.

1.3 Principle of X-ray di�raction

1.3.1 The X-ray/matter interaction

X-rays belong to a portion of the electromagnetic spectrum encompassing longer wave-

lengths than γ rays and shorter wavelengths than ultraviolet. Material scientists should

choose the spectrum of X-ray in vicinity of the interatomic spacing in crystals so as to

generate detectable di�raction.

The X-ray/matter interactions are listed in Fig. 1.4. The scattered X-rays include

coherently scattered (Thomson scattering) and incoherently scattered (Compton scatter-

ing). In Thomson scattering, the photons retain their energies after scattered while in

Compton scattering, there are energy transfers between photons and electrons. Most of

time, Compton scattering would increase the wavelength of X-ray (corresponding to lower

energy). Compton scattering cannot be explained by classical electromagnetism, which

consider X-ray merely as a wave, because it is due to the particle nature of X-ray (see Fig.

1.5).
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Figure 1.4: The X-ray/matter interaction [Cullity 1956b]

From the theory of quantum mechanics, the relation between photon's energy E and

wavelength λ can be expressed as:

E =
hc

λ
, (1.2)

where h is Planck's constant, c is the light speed. If E is expressed in the unit of keV, and

λ is expressed in the unit of Å, their relation is:

E =
12.398

λ
.

The di�erence between the incident wavelength λ0 and scattered wavelength λ in Comp-

ton scattering follows the following relation:

∆λ = λ− λ0 =
h

mc
(1− cos 2θ), (1.3)

where m is the electron mass, and c is the light speed. h
mc ≈ 2.43 × 10−3 nm is called

"Compton wavelength".

In general, tightly bounded electrons tend to scatter photons coherently, and loosely

bounded electrons tend to scatter photons incoherently. However, when X-rays interact

with crystals, where the atoms are spaced periodically, coherently scattered X-ray un-

dergoes reinforcement in certain directions and cancellation in other directions, whereas
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Figure 1.5: Compton scattering [Waseda et al. 2011]

incoherently scattered X-rays are not direction-dependent. Thus when we consider the

di�raction of X-ray by crystals, incoherent scattering is usually ignored [Woolfson 1997].

1.3.2 Bragg's Law

d

θ θ

d sin θ

Figure 1.6: The incident X-ray and re�ected X-ray make an angle of θ symmetric to the
normal of crystal plane.

Of all the models describing di�raction phenomenon, Bragg's law is the simplest and

most intuitive (see Fig. 1.6). Suppose that a monochromatic plane wave of X-ray impinges

on aligned planes of lattice points at angle θ, and the lattice plane re�ects the X-ray like a

mirror. There will be a phase di�erence between the rays that are re�ected by two adjacent

lattice planes whose Miller indexes are denoted as (hkl). The phase di�erence of the two

di�racted rays, say ∆φ, is

∆φ = 2π
2dhkl sin θ

λ
,

where λ is the wavelength, d is the distance between each adjacent lattice plane (d-spacing).

Only when the phase di�erence ∆φ is an integer, say n, times 2π, is the interference of two
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rays constructive. Therefore, the condition of di�raction is

nλ = 2dhkl sin θ.

When di�raction occurs, θ is called the Bragg angle. Waves with various wavelengths can

satisfy Bragg's condition given the same d-spacing and Bragg angle according to the integer

n, and these waves corresponding to di�erent n are called harmonic waves. For brevity,

we designate n to be 1. For the nth order harmonic wave di�racted by (hkl) lattice plane,

we regard the beam di�racted by the (nhnk nl) lattice plane. In that case, Bragg's law is

written into

λ = 2dhkl sin θ. (1.4)

Although Bragg's law successfully reveals the relation between crystal structure and

di�raction pattern, it is just a phenomenological model describing the kinematics of di�rac-

tion. For example, in Bragg's model, X-rays appear to be di�racted by nuclei of atoms.

In fact X-rays are di�racted by electrons of atoms. Nevertheless, Bragg's law earns its

applications due to its simplicity. The complete di�raction theory is described by the

"dynamic" theory, which aims at solving Maxwell's equations given certain boundary con-

ditions [Schwartz and Cohen 1987b].

1.3.3 Reciprocal lattice

Despite the brevity of Bragg's law, it is more convenient to describe di�raction phe-

nomenon in the reciprocal lattice. The Ewald's sphere provides a graphical interpretation

useful in some applications of di�raction. We introduce the concept of reciprocal lattice

below. For the sake of brevity, we will use Einstein summation convention in the following

expressions.

We �rst denote vectors starting from the origin of lattice to [100], [010], and [001] lattice

point as l1, l2, and l3 respectively, e.g.

l1
.
=

 l11

l12

l13

 , l2
.
=

 l21

l22

l23

 , and l3
.
=

 l31

l32

l33

 .
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And we can assemble the three vectors into a 3× 3 matrix, l˜:
l˜ .= [l1, l2, l3]T =

 l11 l12 l13

l21 l22 l23

l31 l32 l33

 ,
and we call this matrix as lattice matrix.

The lattice vectors of reciprocal lattice is de�ned as below:

l∗1
.
=

l2 × l3
det l˜ ,

l∗2
.
=

l3 × l1
det l˜ ,

l∗3
.
=

l1 × l2
det l˜ ,

,

or, more speci�cally,

l∗1i
.
=

εijkl2jl3k
det l˜ ,

l∗2i
.
=

εijkl3jl1k
det l˜ ,

l∗3i
.
=

εijklj1l2k
det l˜ ,

(1.5)

where i = 1, 2, 3, εijk is the Levi-Civita symbol de�ned as follows:

εijk
.
=


+1, if (ijk) is (123), (231), or (312)
−1, if (ijk) is (132), (213), or (321)

0, otherwise.

and det l˜ is the determinant of l˜ de�ned as:

det l˜ .= εijkl1il2jl3k. (1.6)

From Eqns. 1.5 and 1.6, we can conclude that:

li · l∗j = likl
∗
jk = δij , (1.7)

where δij is the Kronecker symbol de�ned as:

δij
.
=

{
1, if i = j
0, if i 6= j

.

Eqn. 1.7 is equivalent to

l˜ · l˜∗T = 1˜,
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Therefore, the relation between the direct lattice and the reciprocal lattice is expressed as,

l˜−T = l˜∗. (1.8)

Fig. 1.7 gives a visual contrast between the direct lattice and the reciprocal lattice.

Direct lattice is drawn with solid lines, and reciprocal lattice is drawn with dotted lines.

Except the origin, each lattice point in direct space is denoted by a set of integers u, v,

w within brackets, i.e. [uvw], whilst each reciprocal lattice point is denoted by a set of

integer h, k, l within brackets marked by a star, i.e. [hkl]∗.

Figure 1.7: The relationship between the direct lattice and the reciprocal lattice. Direct
lattice is drawn with solid lines, and reciprocal lattice is drawn with dotted lines.

A reciprocal lattice vector r∗hkl drawn from the origin to the reciprocal lattice point

[hkl]∗ is given by

r∗hkl
.
= hl∗1 + kl∗2 + ll∗3. (1.9)

If we take the dot product of this vector with vectors in the (hkl) plane, say l2/k− l1/h
and l3/l − l1/h, according to Eqn. 1.7 we have

(l2/k − l1/h) · r∗hkl = 0
(l3/l − l1/h) · r∗hkl = 0.

32



1.3. PRINCIPLE OF X-RAY DIFFRACTION

As r∗hkl is perpendicular to two vectors in the plane (hkl), it is perpendicular to the plane.

Hence, we can represent the vector perpendicular to a lattice plane in terms of reciprocal

lattice vectors.

As for the magnitude of r∗hkl, r
∗
hkl/‖r∗hkl‖ is the unit vector perpendicular to the plane

(hkl). And the projection of the vector l1/h onto r∗hkl/‖r∗hkl‖ is the d-spacing of (hkl)

plane, i.e.

dhkl =
r∗hkl
‖r∗hkl‖

· l1
h
.

Expanding the equation above with Eqn. 1.7, we have

‖r∗hkl‖ =
1

dhkl
. (1.10)

Then the magnitude of r∗hkl is equal to the reciprocal of d-spacing of the (hkl) space.

Therefore, each reciprocal lattice point [hkl]∗ corresponds a set of lattice planes (hkl)

in lattice of direct space. The position of the point in the reciprocal lattice de�nes the

orientation and d-spacing of the lattice planes in the direct lattice. The more distant a

reciprocal lattice point is from the origin, the smaller is the d-spacing of the corresponding

lattice planes.

1.3.4 Laue's Equation and Ewald's Sphere

With the concept of reciprocal lattice, the Bragg's law can be equivalently transformed

in Laue's equation. For di�raction by the (hkl) lattice plane, the Bragg's law (Eqn. 1.4)

can be equivalently written as:
1

dhkl
=

2 sin θ

λ
. (1.11)

From Eqn. 1.10, we can see that the left hand side of Eqn. 1.11 equals the magnitude

of reciprocal lattice vector r∗hkl, i.e. ‖r∗hkl‖. And the right-hand side of Eqn. 1.11 equals

to magnitude of di�erence between incident- and di�racted wavevectors from Fig. 1.8, kf

and ki, whose lengths are both 1/λ in case of coherent di�raction, i.e. 2 sin θ
λ = ‖kf − ki‖,

therefore, we have

‖r∗hkl‖ = ‖kf − ki‖.

On the other hand, Bragg's law implicitly implies that the direction of kf − ki is perpen-
dicular to the lattice plane (hkl), which is the same as that of r∗hkl. Thus, by de�ning the
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ki

kf

θ

θ

|ki| = |kf| = 1

λ

Figure 1.8: Incident and di�racted beams at a Bragg angle of θ.

di�raction vector q as:

q
.
= kf − ki, (1.12)

we have Laue's equation equivalent to Bragg's law,

r∗hkl = q. (1.13)

O

[hkl]∗

C 2θ

ki

kf

Figure 1.9: Ewald's sphere, the points all belong to the reciprocal lattice.

Laue's equation can be visually illustrated by Ewald's sphere. In Fig. 1.9, the monochro-

matic incident beam, with a wavelength of λ, impinges upon a crystal. The magnitude of

the incident wavevector, ki, is 1/λ. We translate ki so that its endpoint lies at the origin

of reciprocal lattice, O, and its startpoint is moved to a point, say C. In case of coherent
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di�raction, the di�racted wavevector must also have a magnitude of 1/λ, therefore we draw

a sphere with a radius of 1/λ and with its center at C, and this sphere is called Ewald's

sphere. The surface of Ewald's sphere represents all possible di�raction direction. Only

when a reciprocal lattice point [hkl]∗ lies upon Ewald's sphere can the incident beam be

di�racted by the (hkl) lattice plane in direct space.

1.3.5 Structure Factor

The Bragg's law (Eqn. 1.4), or Laue's equation (Eqn. 1.13) is the necessary condition

for di�raction to occur. However, the occurrence of di�raction is also governed by a so-

called structure factor, and we will elaborate it in this section.

Let us �rst de�ne atomic scattering factor f : the amplitude of the wave di�racted by

a single atom relative to that di�racted by a single electron:

f =
Amplitude of the wave di�racted by a single atom

Amplitude of the wave di�racted by a single electron
,

where f is a complex number with imaginary part which corresponds to the phase di�erence

between the incident and di�racted wave.

For a crystal, the di�raction is the collective e�ect of di�raction from all unit cells within

crystal. And the net e�ect of di�raction by a unit cell can be expressed as a summation of

di�raction from all atoms in a unit cell:

F
.
=

N∑
1

fne
2πiq·rn ,

where N is the total number of atoms within the unit cell, fn is the atomic scattering factor

of the nth atom, rn is the radius vector of the nth atom, and q is the di�raction vector.

If the di�raction comes from the (hkl) lattice plane, then from Eqn. 1.13, we de�ne the

structure factor of (hkl) lattice plane, Fhkl:

Fhkl
.
=

N∑
1

fne
2πir∗hkl·rn , (1.14)

For the occurrence of the di�raction by (hkl) lattice plane, it must be satis�ed that

Fhkl 6= 0, otherwise, the di�racted waves by all the atoms with a unit cell will cancel

out. For example, for a bcc cell containing two atoms, one of them is located at a certain
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position, say the origin, and the other is distanced by a vector 1
2 l1 + 1

2 l2 + 1
2 l3. hence Eqn.

1.14 become:

Fhkl = f [1 + eπi(h+k+l)].

If h+ k+ l is odd, then Fhkl = 0 and we will not detect any di�raction by the (hkl) lattice

plane, even if Bragg's law or Laue's equation is met.

1.4 Laue Microdi�raction

1.4.1 The principle of Laue microdi�raction

Figure 1.10: Various sample stages of Bruker AXS [He 2009c].

The di�raction will occur if and only if Bragg's law (Eqn. 1.4) or Laue's equation

(Eqn. 1.13) is satis�ed. The occurrence of di�raction depends on both the incident angle

θ impinging lattice plane and the wavelength λ. The essence of any di�raction technique

is by varying either the incident angle or the wavelength to meet Bragg/Laue condition.
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Therefore, existing di�raction techniques can be classi�ed into two categories according to

which quantities are �xed or varied (see Tab. 1.1).

λ θ

Rotating method Fixed Varied
Laue method Varied Fixed

Table 1.1: Two mainstreams of di�raction techniques

In rotating method, the wavelength of monochromatic beam usually corresponds to the

characteristic radiation lines of a certain anode, and the unwanted white radiations and

characteristic lines are further �ltered out by a monochromator, therefore the monochro-

mality of incident beam is well guaranteed [He 2009a]. A sample is �rst mounted onto the

sample stage of di�ractometer(see Fig. 1.10). Then user can position and rotate the sample

by manipulating the stage to trigger di�raction with incident monochromatic beam. The

di�racted beam is recorded either by a point detector or area detector. A typical example

of the rotating method is the sin2 ψ method [Macherauch 1966], adapted for macroscopic

stress analysis.

In Laue method, the incident beam is a white beam with a given spectrum, and the

incident angle is �xed. The idea of using white beam to probe crystals was �rst proposed

by Max von Laue in order to answer two fundamental questions: (i) What is the nature of

X-rays and (ii) does a crystal really consist of periodically spaced atoms. Max von Laue

then won the Nobel Prize of Physics in 1914 due to this pioneering work.

Compared to Laue method, experimenters using the rotating method have to take pain

to rotate sample, detector, or incident beam to capture di�raction's peak, because, as

demonstrated in Fig. 1.9, the chance for a reciprocal lattice point to lie on Ewald's sphere

is very small. By contrast, Laue method uses white beam with a certain energy band pass,

thus each Ewald sphere of a certain photon energy is superimposed to form a �nite volume

(see the red area of Fig. 1.11). Every reciprocal lattice points located within this volume

will trigger di�raction as long as its structure factor is not zero. And the volume is decided

by maximum wavelength and the minimum wavelength in the incident beam, λmax and

λmin. Therefore, Laue method can economize the time required for rotation.
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O

‖kimax‖ =
1

λmin

‖kimin‖ =
1

λmax

Figure 1.11: Volume for possible di�raction

Moreover, a disadvantage of rotating method is the uncertainty of rotating center (see

Fig. 1.12), because in rotating method, it is very hard to ensure that the center of rotation

of the goniometer coincides with the region of interest, otherwise the illumination will drift

away from the region of interest after rotation. Besides, a goniometer may have multi-axis

of rotation, and it is di�cult to ensure that they intersect at one point. The uncertainty

of their intersection is called sphere of confusion. In practice, the sphere of confusion of

goniometer is at best 20µm. Furthermore, due to the penetration of X-ray, it is impossible

to maintain a constant illuminated volume at di�erent incident angle except for the case

that the entire sample is smaller than the beam size so that the sample can be bathed

in the beam. By contrast, these di�culties do not exit in Laue method. Like electron

Figure 1.12: Variation of illumination volume introduced by rotation [Chung and Ice 1999]

di�raction mentioned in �1.2.2, Laue di�raction also works in either transmission mode or
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(a) Backscatter Laue di�raction (b) Transmission Laue di�raction

Figure 1.13: Two modes of Laue microdi�raction [Cullity 1956a]

backscatter mode (see Fig. 1.13). Unlike TEM, Laue transmission allows for the analysis

of bulk material when using high energy photon [Hofmann et al. 2012].

Both transmission and backscatter Laue di�raction will generate Laue spots on an area

detector. The main di�erence is that the spots of transmission Laue di�raction seem to lie

on ellipses while those of backscatter Laue di�raction seem to lie on hyperbolas (see Fig.

1.14).

It is worth noting that Laue method is incapable of measuring the volume of a unit

lattice cell, as an isotropic dilatation will not change the Bragg angle. This shortage can

be overcome by inserting an energy dispersive detector into experimental setup [Robach

et al. 2011] or by switching to monochromatic mode, in that case, at least the energy of

one spot, say (hkl), is known, say Ehkl. From Eqn. 1.2, the wavelength of spot (hkl) is

hc/E. From Eqn. 1.2 and 1.4, we have:

dhkl =
hc

2 sin θhklEhkl
, (1.15)

hence, with the energy of at least one spot, we can obtain the d-spacing of direct lattice

plane (hkl), and consequently the volume of lattice.

Nowadays with the development of optical technology and synchrotron radiation tech-

nology, Laue methods have experienced a renaissance as researchers can scale down the

beam size to the order of tens of nm with a brilliance (energy passing through a unit area
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(a) Spots of backscatter Laue
di�raction

(b) Spots of transmission Laue
di�raction

Figure 1.14: Spots of backscatter and transmission Laue di�raction [Cullity 1956a]

of surface within a unit solid angle in unit time and for a unit bandwidth) which is about

104 times that from an X-ray tube [Schwartz and Cohen 1987a]. To distinguish the Laue

method with beams produced by X-ray tube, we call the Laue method with micrometric

(or even sub-micrometric) beam size Laue microdi�raction. Laue microdi�raction is very

suitable for studying intragranular material behavior, as its beam size is smaller than grain

size. And also thanks to its penetration, it also enable researchers to gain an in-depth

insight into the material by developing a technique called DAXM (Di�erential Aperture

X-ray Microscopy) [Yang et al. 2004; Ice et al. 2006].

There are a number of synchrotron radiation facilities worldwide that can perform

Laue microdi�raction, such as ESRF (Grenoble, France), SLS (Villingen, Switzerland),

ALS (Berkeley, CA, USA), APS (Chicago, IL, USA), etc. We will introduce BM32 at

ESRF as an example to further elaborate Laue microdi�raction technology in �4.2.1.

However, given the high brilliance of synchrotron radiation, we also need to bear in

mind that such dosage of radiation might damage the sample [Ice et al. 2009; Holton

2009], or at least, elevate the thermal vibration of atoms within materials, giving rise to

temperature-di�use scattering [Cullity 1956b].
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1.4.2 Laue microdi�raction vs. HR-EBSD

As we have mentioned in the introduction of this thesis, this thesis is under the frame-

work of ANR project "MICROSTRESS" which targets the developments of HR-EBSD

(High angular Resolution EBSD) and Laue microdi�raction. HR-EBSD is a technology

initiated by [Troost et al. 1993], and further developed in [Wilkinson 1996; Wilkinson

et al. 2006; Villert et al. 2009]. HR-EBSD allows for an angular resolution of 0.01◦ and

hence elastic strain of 10−4. Such improved resolution compared to traditional EBSD is

thanks to a current image processing technique called cross-correlation technique. The prin-

ciple of HR-EBSD can be generalized in the following two steps: (i) use cross-correlation

technique to compare the Kikuchi pattern under scrutiny to a reference pattern, which can

either be a simulated pattern or originated from a known lattice (ii) calculate the rela-

tive deformation gradient with respect to the reference pattern. Another PhD student in

"MICROSTRESS" project is working on HR-EBSD.

Both HR-EBSD and Laue microdi�raction are very promising material characterization

methods at the scale of micrometer and complementary to each other (see Tab. 1.2).

Laue microdi�raction HR-EBSD
spatial resolution µm nm

in-depth resolution Yes No

accessibility
requires synchrotron beam-
line, less accessible

requires electron microscopy,
more accessible

versatility more versatile
must be in vacuum environ-
ment, less versatile

sample preparation less laborious
requires surface polishing,
more laborious

Table 1.2: Laue microdi�raction vs. HR-EBSD

1.5 Standard Laue Treatment to Obtain Elastic Strain

1.5.1 General Procedure

The elastic strain of crystal arises from lattice distortion, therefore measurement of

elastic strain is actually measurement of lattice matrix l˜. With Laue di�raction, we do

not directly measure the lattice matrix in direct space but in reciprocal space. The lattice
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matrix in reciprocal space can be transferred to the one in direct space with Eqn. 1.8.

From the acquired Laue images, e.g. Fig. 1.18, the sequence of determining lattice matrix

can be summarized as following:

1. Locate the Laue peaks on the 2D image, and get their position precisely.

2. Translate the peaks' rectangular positions on the area detector into their angular

positions.

3. Index these peaks, i.e. �nd which (hkl) lattice plane they correspond to.

4. Get the lattice matrix.

The procedure mentioned above has been standarized and implemented in several aca-

demic software, such as LaueTools [LaueTools], LaueGo, Xmas, etc. In their implementa-

tion, the positions of Laue peaks are usually determined by �tting the intensity distribution

of gray level with some analytical function, e.g. Gaussian function, Lorentzian function.

Fig. 1.15 shows the panel of �tting a Laue spot from XMAS.

Figure 1.15: The panel of peak study from XMAS [Valek 2003]
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Figure 1.16: Description of calibration parameters of experimental setup

1.5.2 Formulation

We acquire from the area detector the rectangular coordinates of Laue peaks, i.e. the

xy coordinates of peaks on the detector screen. However, we actually use angular coor-

dinates of Laue peaks to calculate elastic strain and orientation of lattice. Therefore, it

is important to transfer the rectangular coordinates of Laue peaks into the corresponding

angular coordinates. In the following, we will de�ne �ve calibration parameters which

associate 2D position of Laue peaks with their angular positions.

The relative spatial relation between incident beam and area detector can be charac-

terized by two angles. Let us �rst establish an absolute coordinate system (referred to as <
hereinafter) upon which we will base our calculation (see Fig. 1.16), and a detector frame

that lies parallel to the x- and y- axis of < when the angle β and γ de�ned below are zero.

The y axis of < is collimated with the incident beam. O is the illuminated point at the

specimen surface, and P is the orthogonal projection of O onto the detector plane, then x

axis is de�ned as

ex
.
=

ey ×
−→
OP

‖ey ×
−→
OP‖

,

and z axis is de�ned as

ez
.
= ex × ey.
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We characterize the experimental setup with �ve parameters: xc, yc, β, γ, and d

[Robach et al. 2011]. d is the distance between illuminated point O and detector plane,

i.e. d = ‖−→OP‖. β and γ characterize the spatial relation between < and the detector

plane: the �rst angle β is around x− axis, and the second one γ is around the detector's

normal OP. xc, yc are the coordinates of P on the detector plane. These parameters

are crucial in translating the peak representation from rectangular coordinate system to

angular coordinate system.

Figure 1.17: Angular coordinate system

The calculation of strain/stress is actually carried upon using the angular position of

peak position, 2θ, χ (see �gure 1.17), where 2θ is the apex angle twice the Bragg angle θ,

and χ is the azimuthal angle. Here we establish the mathematical formulation translating

between peak's angular coordinate (2θ, χ) and rectangular coordinates on the detector

plane (x, y). Let kf denote the wavevector of the di�racted beam. The unit vector of kf,

k̂f, expressed by the angular position (2θ, χ), is

[k̂f] = [− sin 2θ sinχ, cos 2θ, sin 2θ cosχ]T. (1.16)

The superscript ˆ represents unit vector. Then, we have,

[k̂f] =

 − sin 2θ sinχ
cos 2θ

sin 2θ cosχ

 =
1

r

 cos γ sin γ 0
− cosβ sin γ cosβ cos γ sinβ
sinβ sin γ − sinβ cos γ cosβ

 x− xc
y − yc
d

 , (1.17)

where

r
.
=
√

(x− xc)2 + (y − yc)2 + d2. (1.18)
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The matrix on the right hand of Eqn. 1.17 represents the translation from detector

coordinate system to the absolute coordinate system, we represent its transpose by [g˜],
[g˜] .=

 cos γ − cosβ sin γ sinβ sin γ
sin γ cosβ cos γ − sinβ cos γ

0 sinβ cosβ

 . (1.19)

Therefore, Eqn. 1.17 can be written into:

[g˜] · [k̂f] =
1

r
[x− xc, y − yc, d]T,

hence r = d/(kfig3i) and

x = d
k̂fig1i

k̂fig3i

+ xc,

y = d
k̂fig2i

k̂fig3i

+ yc.

(1.20)

The equation above can be equivalently written as:

x = d
kfig1i

kfig3i
+ xc,

y = d
kfig2i

kfig3i
+ yc.

(1.21)

From �gure (1.8), it is found out that the relation between the unit di�raction vector

q̂ and Bragg angle θ is

q̂ = (k̂f − k̂i)/(2 sin θ), (1.22)

sin θ = −q̂ · k̂i. (1.23)

Because k̂i .= [0, 1, 0]T according to the de�nition of absolute coordinate system, <, Eqn.
1.23 can be written as:

sin θ = −q̂2. (1.24)

From Eqn. 1.9 and 1.13, we have:

q = l˜∗ · h,
where h is de�ned as:

[h]
.
= [h, k, l]T.

Then, the unit vector of q, q̂ is:

q̂ =
l˜∗ · h‖l˜∗ · h‖ .
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or,

q̂i =
l∗ijhj√

l∗pmhml∗pnhn
. (1.25)

Combining the equation above with Eqn. 1.24, we have:

sin θ = −
l∗2jhj√

l∗pmhml∗pnhn
, (1.26)

Substituting Eqn. 1.25 and 1.26 into Eqn. 1.22, we have,

k̂fi =
l∗pmhml

∗
pnhnδ2i − 2l∗2jhjl

∗
ishs

l∗pmhml∗pnhn
. (1.27)

Let's de�ne a new vector, ξ whose components are just the numerator of the right hand

side of Eqn. 1.27:

ξi
.
= l∗pmhml

∗
pnhnδ2i − 2l∗2jhjl

∗
ishs. (1.28)

Then, Eqn. 1.21 can be written as:

x = d
ξig1i

ξig3i
+ xc

y = d
ξig2i

ξig3i
+ yc

. (1.29)

ξ only depends on the reciprocal lattice matrix and the hkl index of lattice plane,

whereas [g˜], xc, yc, and d de�ne the calibration of the experiment.

1.5.2.1 Determination of calibration parameters

In order to determine the �ve parameters d, xc, yc, β, and γ described previously,

it is mandatory to obtain a Laue pattern from a well known strain-free monocrystal, for

example Ge monocrystal, located exactly at the same position as the region of interest to

be analyzed. Then the di�raction peaks' positions are determined by analytical �tting.

With a �rst estimation of the �ve parameters and a rough understanding of the orientation

of the calibration monocrystal, we index each Laue peak to �nd the (hkl) index of each

spot. This calibration monocrystal is usually glued on the sample (see Fig. 4.7).

With indexations of Laue spots, the procedure used in LaueTool to determine precisely

the calibration parameters is as follows [Labat et al. 2011]:

1. First, the ratio of distances between Laue peaks on the area detector are used to

determine the β angle.
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2. Second, d, the distance between the region of interest and area detector, is deduced

from the distances among the Laue peaks and the pixel size of the camera.

3. Adjust the coordinate (xc, yc) and the γ angle to minimize the simulated peaks'

positions and �tted peaks' position.

The experimental di�raction peak's position is obtained by an analytical �t of the

measured spots on the area detector. Usually, the calculated peak's position deviates a

little bit (about 0.2 pix in average) from the �tting peaks' position. This is usually due

to the imperfect pixel grid permutation on the area detector, errors in estimating peak's

position or the simpli�ed model in which the scattering volume is viewed as a point [Labat

et al. 2011].

1.5.3 Indexation of peaks

There are a wealth of literature dedicated to peaks' indexation, indexation e.g. by

Hough transformation [Wenk et al. 1997], by template matching [Gupta and Agnew

2009; Labat et al. 2011]. Here we present the method by template matching. The basic

idea is to compare the experimental angular distances among normals of lattice planes and

the theoretical ones. With the unit vector pointing to a peak, kf, we can calculate the

vector normal to the corresponding lattice planes by:

n =
kf − ki
‖kf − ki‖

.

The experimental angles between di�erent normals of lattice plane are determined from

the scalar product of di�erent k. With N Laue spots, we have N(N − 1)/2 angles among

each pair of Laue spots. Then, a list of theoretical angles is calculated according to the

crystal structure under investigation and the energy band pass of the incident white X-ray

beam. Finally, for a triplet of experimental angles, the indexation code will search for the

matches among the triplets of theoretical angles so as to give index to each spots among

the triplet. Note that it is important to set a angular tolerance between experimental

angle and theoretical angle, because lattice distortion, �tting errors, calibration errors,

etc may contribute to the discrepancy of experimental angle and theoretical angle. After

a match of experimental triplet and theoretical triplet is found, the indexation code will
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proceed to calculate a full list of theoretical angular positions of each index, and compare

the calculated angular positions to the experimental ones. The match which gives the least

discrepancy among the theoretical angular positions and theoretical positions is the best

match. It is worth noting that, due to the symmetry of crystal, the indexation of spots is

not unique, i.e. the numbers in the indexation can be permuted arbitrarily as long as the

angular distances among spots remain constant.

Figure 1.18: For a triplet of Laue spots, we can calculate the angular distances among each
spot, and �nd matches of theoretical angular distances within a given angular tolerance.

If the Laue image contains spots coming from 1 ∼ 10 grains due to, for example,

penetration of X-ray or small grain size, [Chung and Ice 1999] have presented an automated

routine to �nd the pertained crystal of each spots and index them. However, we will

not elaborate this algorithm here because our treatment is con�ned to Laue images from

monocrystal.

1.5.4 The determination of elastic strain and orientation

After the spots are indexed, it is possible to calculate the lattice matrix and hence the

corresponding elastic strain and orientation. Here we present the procedure of [Chung and

Ice 1999]. Without any information about the volume of a unit cell, it is only possible to

calculate the ratios among components of reciprocal lattice matrix, hence there are eight
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degrees of freedom (x and y) in terms of lattice matrix in case of ignorance of lattice

volume. Because each spot has two degrees of freedom, at least four spots are needed to

calculate the lattice matrix.

Suppose the directions of four Laue spots are measured and denoted as ni, (i =

1, 2, 3, 4). And the reciprocal lattice vectors associated to the four Laue spots are denoted

as r∗i . Here n̂i are related to r∗i through scale factors si, which are de�ned as

r∗1 = s1s3n1,
r∗2 = s2s3n2,
r∗3 = s3n3,
r∗4 = c1r

∗
1 + c2r

∗
2 + c3r

∗
3,

where ci are determined by the indexes of spots, and s3 is the overall unit-cell scale factor

which cannot be determined without energy measurements. To �nd s1 and s2, we use
ex · r∗4
ez · r∗4

=
(c1s1n1 + c2s2n2 + c3n3) · ex
(c1s1n1 + c2s2n2 + c3n3) · ez

ey · r∗4
ez · r∗4

=
(c1s1n1 + c2s2n2 + c3n3) · ey
(c1s1n1 + c2s2n2 + c3n3) · ez

.

The two equations above are used to solve for the two unknown ratios s1 =
‖r∗1‖
‖r∗3‖

and

s2 =
‖r∗2‖
‖r∗3‖

. Once s1 and s2 are known, the direction and magnitudes (represented in the

Figure 1.19: Unit cell of lattice and a Cartesian coordinate system attached, used by
[Chung and Ice 1999]

unit of s3) of any reciprocal lattice vector can be determined in the laboratory reference

frame, and consequently the reciprocal lattice matrix. And with Eqn. 1.8, we can obtain

the lattice matrix l˜ in direct space, we proceed to extract strain from lattice parameters.

The essence of calculating strain is isolating lattice distortion from lattice rotation.

There are many methods of handling this matter, and the convention method [Chung
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and Ice 1999] is given below. Consider, for example, a unit cell with lattice parameters

‖li‖, i = 1, 2, 3 and αi, i = 1, 2, 3 and a Cartesian coordinate system ui, i = 1, 2, 3, which is

attached to the lattice (see �gure 1.19). Their relations are given as: the vector l1 coincides

with the u1 axis, l2 is in the u1 ⊗ u2 plane, and u3 is perpendicular to the u1 ⊗ u2 plane:

u1
.
=

l1
‖l1‖

,

u3
.
=

l1 × l2
‖l1 × l2‖

,

u2
.
=

l3 × l1
‖l3 × l1‖

.

(1.30)

In this manner, a lattice direction [uvw] can be expressed in the attached Cartesian

coordinate system as well:

ruvw = ul1 + vl2 + wl3 = uB1iui + vB2juj + wB3kuk, (1.31)

where Bij is the component of the matrix B˜ :
[B˜ ]

.
= [u1, u2, u3]T · [l1, l2, l3] =

 ‖l1‖ ‖l2‖ cosα3 ‖l3‖ cosα2

0 ‖l2‖ sinα3 −‖l3‖ sinα2 cosα∗1
0 0 1/‖l∗3‖

 . (1.32)

Here, l∗i and α
∗
i , i = 1, 2, 3 (i = 1, 2, 3) are the reciprocal lattice vectors and their angles.

Denote U˜ as:

[U˜ ]
.
= [u1, u2, u3].

Obviously, U˜ is an orthogonal matrix, therefore Eqn. 1.32 can be written into

U˜ ·B˜ = l˜, (1.33)

where U˜ represents the orientation of the lattice, and B˜ represents the shape and volume

of the lattice. Since the lattices of the materials under scrutiny are all cubic lattice, for

lattice without distortion, the lattice parameters should be:

|B1| = |B2| = |B3|;
α1 = α2 = α3 = π/2.

(1.34)

As we are ignorant of the lattice's volume without measuring Laue spots' energy, we only

get the shape of the lattice:

B̂˜ =
B˜

3
√

detB˜ .
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In this manner, the elastic strain of the lattice, represented in lattice frame, should be

expressed as:

ε˜lattice .= c
B̂˜ + B̂˜T

2
− 1˜,

where c is a constant relating to the dilatation of lattice. With ε˜, we are able to calculate

the stress in lattice frame,

σ˜lattice = C˜̃ : ε˜lattice.
where C˜̃ is the elastic tensor expressed in the lattice frame.

The stress in the lattice frame needs to be further rotated into laboratory frame by,

σ˜ = U˜ · σ˜lattice · U˜T.
However, it is worth noting that in practice, Laue microdi�raction cannot measure the

c, therefore we can only get the deviatoric part of ε˜lattice, say ε˜′, whose trace is designated
to be zero, i.e. ε˜′ : 1˜ = 0. Will the absence of volumetric strain, say ε˜vol, contribute to

errors to the evaluation of deviatoric stress, say σ˜′? That depends on the values of C˜̃ , if
C˜̃ : 1˜ = λ1˜, (1.35)

where λ is a certain constant, then it is safe to declare that:

σ˜′ = C˜̃ : ε˜′. (1.36)

1.6 Summary

In the beginning of this chapter, we have presented the context of the thesis, three

commonly used di�raction method (neutron di�raction, electron di�raction, and X-ray

di�raction), their advantages and disadvantages. Under the framework of ANR project

"MICROSTRESS", two di�raction techniques: HR-EBSD and Laue microdi�raction will

be developed, not only because they are well adapted to material characterization at mi-

croscale, but also because they are complementary in terms of spatial resolution, in-depth

resolution, accessibility, versatility, and readiness of sample preparation. This thesis is

dedicated to the development of Laue microdi�raction.
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Then we have introduced the principle of Laue microdi�raction, including the kinematic

theory of X-ray di�raction, advantages of Laue di�raction by using white beam rather than

monochromatic beam, and the renaissance of Laue di�raction thanks to the developments

in synchrotron radiation and optics.

Finally, we have narrated the standard Laue Treatment of obtaining the elastic strain

and orientation from Laue microdi�raction image. We will improve the procedure with the

aid of DIC (Digital Image Correlation), which will be presented in the next chapter.
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Chapter 2

Laue-DIC and its Precision

2.1 Motivation

From the previous chapter, we can conclude that the determination of elastic strain and

crystal orientation basically rests upon locating the positions of peaks on the area detector.

For example, for a steel sample undergoing a tensile test (see Fig. 2.1), reaching an accuracy

Figure 2.1: A steel monocrystal sample undergoes a tensile test.

of 10 MPa on the tensile stress (equivalent to an accuracy of 5× 10−5 on the elastic strain)

typically requires determining di�racted beam directions with an angular resolution of the

order of 0.05 mrad. That angular resolution further corresponds to an accuracy of ∼ 0.1 pix

in locating peak's position if the sample-detector distance d = 165 mm and the pixel size

1 pix = 80.6µm. That is to say, it is imperative to locate peaks' positions with a subpixel

resolution if we wish to attain an accuracy of 10 MPa on the stress, or an accuracy of
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5× 10−5 on the elastic strain.

The standard Laue treatment described in the previous chapter, although plausible,

su�ers from the following approximations:

1. as described in �1.5.2, the calibration parameters are obtained by matching the Laue

pattern obtained from a calibration monocrystal. In this process, the distortions of

the area detector grid may give rise to the inaccuracies of measurements of di�raction

peaks.

2. Moreover, the di�raction peaks are usually obtained by �tting the spots with an

analytical function, e.g. Gaussian function, Lorentz function, etc. Typically, the

theoretical peaks' positions deviate on average about 0.1 pix from the �tted peaks'

position [Poshadel et al. 2012].

3. Shifting the illumination from the calibration monocrystal to the region of interest

would introduce some errors due to the inaccuracies of motor's motion, no matter

how careful the experimenter shifts the illumination. Moreover, the di�erence in the

penetration depth between the calibration monocrystal and the sample of interest

would contribute to the uncertainties of calibration parameters as well.

4. The di�raction peaks from the region of interest on the sample is determined by

analytical �tting as well. The mainstream codes of treating Laue di�raction image

requires the ellipticity of spots, because the analytical functions employed, either

Gaussian function or Lorentzian function, are elliptically shaped. Although there

exist Laue spots which take on elliptical shapes (see Fig. 1.15), some spots exhibit

irregular shapes and can hardly be described by an analytical function (see Fig. 2.2).

These deviations from ellipticity can be attributed to various reasons, for example,

the existence of geometrical necessary dislocations (GND) would streak the Laue

spots [Barabash et al. 2001]; for pure crystal undergoing bending each Laue spot

would be accompanied by a satellite spot due to dynamic e�ect [Yan and Noyan

2006].

These error sources mentioned above will eventually accumulated into the evaluation of
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elastic strain, and hence stress. For example, it is found that stress �uctuations of the

order of 1 GPa in a single crystal of pure Cu [Magid et al. 2009], a result which might not

be physically relevant as it far exceeds the yield limit of Cu.

Figure 2.2: Irregular spots in di�raction image of Si.

To solve these problems, J. Petit introduced digital image correlation (DIC) technology

into the treatment of Laue di�raction image [Petit et al. 2012, 2015]. The new treatment

will be denoted as Laue-DIC hereinafter. The basic idea behind Laue-DIC is borrowed from

HR-EBSD (see �1.4), i.e. use the peaks' displacements between two images (see Fig. 2.3),

instead of peaks' absolute positions, to obtain relative deformation gradient. This requires

that the spots of two di�raction images carry some resemblance. The idea of using peaks'

displacements is superior to using peaks' absolute positions in the following way:

1. The uncertainty of DIC is of the order of 0.01 pix [Bornert et al. 2009; Amiot

et al. 2013], much less than that of analytical �tting, which is of the order of 0.1 pix

[Poshadel et al. 2012].

2. DIC is insensitive to spots' shapes, as long as the two correlated spots carry re-

semblance. The resemblance can be quanti�ed by a parameter called correlation

coe�cient, which will be mentioned in �2.2.1. Thanks to the concept of correlation

coe�cient, we can a posteriori verify the resemblance of spots by investigating the

correlation coe�cient.

To give a visual impression about the improved accuracy with DIC compared to ana-
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Figure 2.3: Displacement �eld of Laue spots on the area detector, for a specimen undergoing
deformation.

lytical �tting, we present an experimental investigation done by acquiring successive Laue

patterns on a Ge monocrystal translating in a direction almost parallel to the incoming

beam, i.e. almost parallel to the area detector (see Fig. 2.4) [Petit et al. 2012, 2015].

The detector used in the test was MarCCD detector. The distance that the Ge monocrys-

tal traveled matches approximately the size of one pixel of the detector screen (80.5µm),

and 100 Laue patterns were recorded at regular intervals in course of the translation of

Ge monocrystal. The Laue patterns are expected to be displaced rigidly by an amount

equal to the imposed translation of the specimen. Therefore, the DIC's accuracy can be

expected by comparing the spots displacements measured by DIC and the one prescribed

to the specimen.

This analysis enables the investigation of both systematic error and random error of

spots' displacements. The systematic error is expressed as the discrepancy of the average

displacements of all Laue spots and the prescribed displacements, and provides a measure

of the overall displacement error resulting from the DIC technique. The random error

is the standard deviation of the displacements measured for all Laue spots and provides

an estimation of the displacement �uctuation as DIC does not guarantee the uniformity

of measurements of spots' displacements when they are measured independently. In this

analysis, 75 spots were taken into consideration and biquintic gray level interpolation was
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Figure 2.4: A Ge monocrystal is translated along the incident X-ray for evaluating DIC
accuracy of Laue spots' displacements
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Figure 2.5: Systematic and random errors of DIC over 85 spots with subpixel translation.
Both applied displacements and errors are expressed in pixel unit.

used (see �2.2.1 for more details of DIC).

Fig. 2.5 shows the results of systematic and random errors of spots' displacements.

The systematic error recovered an S-shape curve as indicated by [Bornert et al. 2009;

Amiot et al. 2013] with a maximum values of ∼ 0.03 pix and an average (of the absolute

value of errors) of 0.018 pix. The random error is slightly larger with a maximum error of

0.07 pix and an average of 0.054 pix. For comparison, we also gave the systematic error and

random error when the displacements were obtained by analytical �tting of the absolute

positions (Fig. 2.5). Obviously, both systematic and random errors are larger than those

by DIC.

Now that we have presented the improved accuracy of peaks' displacements acquired
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by DIC than peaks' absolute position acquired by analytical �tting,in the following, we

will �rst introduce the principle of DIC and the calculation of Laue-DIC. To go one step

further, one needs to evaluate the accuracy of DIC when applying it to Laue images.

As this accuracy is largely in�uenced by the image noise, we will introduce the classical

Poissonian-Gaussian model for describing image noise and test it with experimental images

in order to validate this model and estimate the parameters of the model as well. Then, we

investigate the error of DIC with synthetic spots' images. Finally, we study how the DIC

errors is culminated into the errors of elastic strain using Laue-DIC by numerical tests.

2.2 Laue-DIC

2.2.1 Principle of DIC

Digital image correlation (DIC) belongs to the category of optical full-�eld measurement

techniques. Compared to other optical technique, e.g. photoelasticity, moiré, holographic,

speckle interferometry, grid method, etc, the procedure of DIC is more straightforward

and simple.It originates from the research activities in arti�cial intelligence and robotic

to develop vision-based algorithms and stereo-vision methodologies in parallel with pho-

togrammetry applications for aerial photographs [Sutton et al. 2009a]. However, gradu-

ally, it lent its application to the realm of mechanics, because it o�ers a non-contact and

non-destructive method to measure material's displacement/deformation �eld [Peters and

Ranson 1982; Wattrisse et al. 2001; Abanto-Bueno and Lambros 2002; Wang and Cuitiño

2002; Bergonnier et al. 2005].

The procedure of DIC consists in recording some digital images of a specimen in course

of its deformation with a camera and treating these images with an image correlation

code. The image correlation code will match the subsets in a series of images to provide

a measurement of the displacement �eld. Thanks to the constant shrinkage of costs of

digital cameras and computers, this technology is becoming more and more available to

both industry and academic society. We will elaborate on this technique by introducing

several vital concept in DIC.
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Correlation Window Correlation window is a region within the whole image, usually a

rectangle. It is the displacement �eld of the correlation window that DIC code will track.

Correlation Coe�cient Correlation coe�cient is a quanti�cation of subset resem-

blance. DIC code tracks the displacement �eld of one correlation window in a sequence of

images by seeking an extremum of correlation coe�cient. Various forms of correlation co-

e�cients are available Amiot et al. [2013]: zero mean normalised cross-correlation (ZNCC),

normalised sum of squared di�erence (NSSD), sum of squared di�erences (SSD), and nor-

malised cross-correlation (NCC). The simplest form of correlation coe�cient is SSD and

NCC:

CSSD =
∑

(fi − gi)2,
CNCC =

∑
figi,

where fi and gi are the gray levels at the ith pixel of the two investigated images. The

smaller CSSD is, the more resemblance exists between two compared correlation windows,

while it is opposite with CNCC.

In practice, though ZNCC is much more complex than SSD and NCC, it is insensitive

to the uniform o�set and scale changes in the gray level of image, and gives the best

results compared to other correlation coe�cient in terms of displacement measurement

Tong [2005]. Its expression is:

CZNCC = 1−
∑

(fi − f)(gi − g)√∑
(fi − f)2

∑
(gi − g)2

. (2.1)

Shape Function The displacement �eld within the correlation window is usually ap-

proximated by a linear combination of several analytical expression, usually polynomial.

These analytical functions are called shape function. The most used shape function is

second order polynomial, given by

u(X,Y ) = au1 + au2∆X + au3∆Y + au4∆X∆Y
+au5∆X2 + au6∆Y 2 + au7∆X2∆Y · · ·
· · ·+ au8∆X∆Y 2 + au9∆X2∆Y 2

v(X,Y ) = av1 + av2∆X + av3∆Y + av4∆X∆Y
+av5∆X2 + av6∆Y 2 + av7∆X2∆Y · · ·
· · ·+ av8∆X∆Y 2 + av9∆X2∆Y 2

(2.2)
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where ∆X = X −X0, ∆Y = Y −Y0, (X0, Y0) being the center of correlation window. The

order of shape function re�ects its capability to describe complex deformation mode. The

simplest shape function is zero order polynomial associated with pure translation, i.e. only

au1, av1 6= 0.

Gray Level Interpolation Correlation computations often needs evaluation of gray

levels at non-integer pixel location in order to get a subpixel resolution. For that end,

correlation code will interpolate adjacent integer pixel to estimate the gray level at non-

integer location. Interpolation methods used by DIC include: polynomial interpolation,

B-spline interpolation, Fourier or wavelet transforms.

The principle of DIC can also be extended to explore out-plane motion (3D-DIC [Sutton

et al. 2009c]) and motion underneath surface (Volumetric-DIC [Sutton et al. 2009d]).

These extensions often require additional image acquisition equipment.

2.2.2 Calculation of Relative Deformation Gradient

Like in HR-EBSD (see �1.4), we use the displacements of Laue spots to evaluate the

relative deformation gradient from one lattice whose matrix, L˜, is supposed to be known, to
another lattice whose matrix, l˜, is to be determined. We refer to the lattice whose matrix

is known as reference lattice, and the con�guration whose lattice is to be determined as

current con�guration. Once we have determined the reciprocal relative deformation gradi-

ent between two con�gurations, F˜∗, the reciprocal lattice matrix in current con�guration,

l˜∗, can be calculated by:

l˜∗ = F˜∗ · L˜∗,
where L˜∗ represents the reciprocal lattice matrix of reference con�guration.

Although in [Petit et al. 2012, 2015] F˜ was calculated by minimizing the dicrepancy

between the simulated displacements of spots and those measured by DIC, i.e.∑
hkl

‖∆Xsim(F˜ |l˜0, hkl)−∆Xhkl
dic ‖2,

it is more straightforward to use linear regression to calculate a least-square solution of

F˜∗, and we will demonstrate this method in the following. Since we can not determine the
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absolute value of lattice matrix, we can impose arbitrarily any component of lattice matrix

to be 1, as long as this component is not zero in laboratory system. Here, with no loss of

generality, we prescribe the xx component of reciprocal relative deformation gradient, F ∗11,

to be one, and determine the least square solution of the reciprocal lattice matrix.

For reference con�guration, since its lattice matrix is known a priori, the unit vector

of the normal of lattice plane (hkl) can be calculated as:

nrefhkl =

 L∗11 L∗21 L∗31

L∗12 L∗22 L∗32

L∗13 L∗23 L∗33

 h
k
l


∥∥∥∥∥∥
 L∗11 L∗21 L∗31

L∗12 L∗22 L∗32

L∗13 L∗23 L∗33

 h
k
l

∥∥∥∥∥∥
.

Then, with Eqn. 1.20 and 1.22 (note that nrefhkl = q̂ as the di�raction vector must be

normal to the di�raction plane), we can transform the unit vector nrefhkl into Laue spot's

position (xrefhkl, y
ref
hkl). And we can further get the spot's position at current con�guration

with the spot's displacement (∆xdichkl,∆y
dic
hkl), measured by DIC from reference con�guration

to current con�guration:

xcurhkl = xrefhkl + ∆xdichkl
ycurhkl = yrefhkl + ∆ydichkl.

Laue spot's position (xcurhkl, y
cur
hkl) in current con�guration can be transformed into unit

vector ncurhkl by Eqn. 1.17. In this way, we get the unit vectors of Laue spots in reference

and current con�guration, the relation are given as:

 (ncuri )1

(ncuri )2

(ncuri )3

 =
1

ρi

 1 F ∗21 F ∗31

F ∗12 F ∗22 F ∗32

F ∗13 F ∗23 F ∗33

 (nrefi )1

(nrefi )2

(nrefi )3

 , (2.3)

where the subscript i represents the ordering of Laue spots, and ρi is the normalization
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factor to ensure both sides of Eqn. 2.3 to be unit vectors. Eqn. 2.3 can also be written as:

 (nrefi )2 (nrefi )3 0 0 0 0 0 0 −(ncuri )1

0 0 (nrefi )1 (nrefi )2 (nrefi )3 0 0 0 −(ncuri )2

0 0 0 0 0 (nrefi )1 (nrefi )2 (nrefi )3 −(ncuri )3





F ∗12

F ∗13

F ∗21

F ∗22

F ∗23

F ∗31

F ∗32

F ∗33

ρi


=

 −(nrefi )1

0
0

 .
(2.4)

If there are N Laue spots taken into account, Eqn. 2.4 can be assembled into:

 P˜1 Q˜ 1

...
...

P˜n Q˜n




F ∗12

F ∗13

F ∗21

F ∗22

F ∗23

F ∗31

F ∗32

F ∗33

ρ1
...
ρN



=

 R˜1
...
R˜n

 (2.5)

where

[P˜ i] =

 (nrefi )2 (nrefi )3 0 0 0 0 0 0
0 0 (nrefi )1 (nrefi )2 (nrefi )3 0 0 0
0 0 0 0 0 (nrefi )1 (nrefi )2 (nrefi )3

 ,

[Q˜ i] =


0 · · · 0 −(ncuri )1 0 · · · 0
0 · · · 0 −(ncuri )2 0 · · · 0
0︸︷︷︸
1

· · · 0︸︷︷︸
i−1

−(ncuri )3︸ ︷︷ ︸
i

0︸︷︷︸
i+1

· · · 0︸︷︷︸
N

 ,
and

[R˜ i] =

 −(nrefi )1

0
0

 .
With N reciprocal points, there are totally 3N equations and 8 + N variables, so at

least 4 reciprocal points are needed to get the deformation gradient.
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If N ≥ 4, a least-square solution can be obtained. More speci�cally,

[S˜] =



F ∗12

F ∗13

F ∗21

F ∗22

F ∗23

F ∗31

F ∗32

F ∗33

ρ1
...
ρN



= ([C˜ ]T[C˜ ])−1[C˜ ]T[R˜ ] (2.6)

where

[C˜ ] =

 P˜1 Q˜ 1

...
...

P˜N Q˜N
 and [R˜ ] =

 R˜1
...
R˜N


Only the �rst eight terms of the solution [S˜] is of our concern, which is just the rest eight

component of the reciprocal relative deformation gradient F˜∗. F˜∗ can be conveniently

transformed into relative deformation gradient in real space by

F˜ = (F˜∗)−T, (2.7)

and together with the reference lattice matrix, which is supposed to be known, we can

calculate the current lattice matrix.

The introduction of DIC is supposed to have improved the precision of elastic strain

measurement. To have a visual idea of the di�erence of original Laue-DIC and standard

Laue treatment, we scanned the Si monocrystal in four-point bending test (see Fig. 4.5)

along x-axis to get a sequence of Laue microdi�raction images, and plotted in Fig. 2.6

the trajectories of spots with indexes of (371) and (117) of the sequence. We compared

the trajectories by analytical peak �tting and DIC: the blue trajectory was determined

entirely by analytical �tting of the absolute position of spot, and the green trajectory was

determined by �rst obtaining absolute position of spot in one image by analytical �tting

and then measuring the displacements of the spots in other images of the same sequence

by DIC. It is obvious that the green trajectory, which is determined with the aide of DIC,

displays less �uctuation that the blue one.
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Figure 2.6: Comparison between trajectories on the detector screen determined by �tting
and DIC

In the bending test mentioned above, the strain pro�le along the scanning line (see

Fig. 4.5) is supposed to vary linearly along x-axis [Rand and Rovenski 2005]. Fig. 2.7a

and 2.7b are the results of εyy pro�le obtained from the same series of di�raction images,

which are taken along the central line of the sample, but are treated di�erently, i.e. Fig.

2.7a is the result of Laue-DIC, while Fig. 2.7b is the result of standard Laue treatment

elaborated in �1.5. It is obvious that the strain pro�le obtained by Laue-DIC exhibits much

less �uctuation than its counterpart obtained by standard Laue treatment.

(a) [Petit et al. 2012] (b) [Hofmann 2011]

Figure 2.7: The εyy pro�le obtained by (a) Laue-DIC and (b) standard Laue treatment
(see �1.5).
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2.3 Introduction to Poissonian-Gaussian noise model in syn-

chrotron radiation experiment

Laue-DIC, drawing on the relative displacements of Laue spots instead of the absolute

positions of Laue spots, turns out to be a promising method to obtain local elastic strain.

However, the precision of Laue-DIC method is limited by several factors: the noise of

di�raction image, uncertainties of calibration parameters, etc. It is well-known that image

noise, usually characterized by Poissonian-Gaussian model [Faraji and MacLean 2006;

Boulanger et al. 2010; Foi et al. 2008], would give rise to random error [Wang et al.

2009] in DIC. In this section, we will �rst introduce Gauss-Poisson model to describe the

noise property. Then, we will apply this model to di�raction images from Si, Ge, and Cu,

and 316 stainless steel. In the end, we will analyze the accuracy of DIC measurements of

spot displacement with arti�cial images and the impact of noise on the accuracy of elastic

strain.

2.3.1 Terminologies characterizing the performance of a detector

Nowadays, electronic area detectors are overwhelmingly used in recording �ux spatial

distribution in replacement of photographic �lms. This is because the digital information

recorded by electronic area detector is more convenient to process and to transmit than the

analogue information recorded by photographic �lms. Various types of area detectors are

emerging recently to cater for more demanding requirements of X-ray �ux measurements,

such as hybrid pixel array detectors [Ponchut et al. 2007; Henrich et al. 2009; Basolo

et al. 2008; Teyssier et al. 2011; Le Bourlot et al. 2012], coupled-charged device

(CCD) based area detector [Westbrook and Naday 1997], etc. Several common criteria,

independent of the technology and the application, have been widely acknowledged by the

scienti�c community to facilitating comparing and choosing a detector. These criteria will

be introduced in the following.

Gain The gain g is usually de�ned as the output signal so per unit input signal si,

g =
so
si
.
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Relative variance, detective quantum e�ciency, and energy range The relative

variance R is de�ned as the ratio of variance of signal σ2 to the square of signal s2,

R = σ2/s2,

and Detective quantum e�ciency (DQE) is referred to as the ratio of relative variance of

input signal to that of output signal,

DQE =
Ri

Ro

=
(so/σo)

2

(si/σi)2
=

(σi/si)
2

(σo/so)2
.

If the output signal were strictly proportional to input signal, the DQE would be 100%.

Failure to detect certain signal and additional noise would decrease the DQE. A detector's

DQE is a�ected by various factors, e.g. incident X-ray photon energy, transmission of

the detector window, geometrical design, etc. The dependence of the DQE on the X-ray

photon energy de�nes the energy range of a detector. The DQE drops signi�cantly if the

X-ray photons' energies are out of the energy range [He 2009b].

Dynamic range, encoding range The dynamic range is de�ned as the ratio of max-

imum signal within the linear range to the minimum detectable signal, and is generally

expressed in bits (logarithm base 2).

The encoding range is generally referred to as the bits of output digital signal. Larger

encoding ranges can be achieved at the expense of readout speed [Ponchut 2006].

Dark signal, dark signal non-uniformity, and read-out noise Dark signal is the

non-zero signal at output when the input signal is zero. The cause of dark signal depends

on the mechanism of the detector. The dark signal usually increases with integration time

[Ponchut 2006], hence the dark signal can generally be quanti�ed from the accumulation

of gray levels without X-ray exposure.

The variance of �uctuation exhibited by dark signal, σ2
d, is indicative of dark signal

noise level, and consisted of random read-out noise σ2
r and non-random dark signal non-

uniformity (DSNU) σ2
DSNU:

σ2
d = σ2

r + σ2
DSNU.
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Fortunately, most area detectors provide online dark-�eld subtraction, thereby only read-

out noise is left in the corrected image with DSNU cancelled out.

2.3.2 Principle of charged-coupled device

The type of detector we used in our experiment is X-ray 11 megapixel VHR (Very High

Resolution) CCD camera, especially customised for BM32 ESRF by Photonic Science.

This is a coupled-charge device (CCD) based detector, and more than 90 % of the X-ray

2D detectors on ESRF beamlines are of this type [Ponchut 2006]. The hegemony of CCD-

based area detector in ESRF is due to their extreme versatility, with spatial resolutions

ranging from submicrometric to millimetric, and the high reliability of commercial CCD

cameras and systems [Ponchut 2006].

Bulk silicon

1 pixel Depletion region

Photon

Polysilicon gate

Oxide insulator

Figure 2.8: The mechanism of photon detection of CCD chip (schematic from [He 2009b])

Figure (2.8) explains the mechanism of photon detection by CCD chip. A photon passes

through the polysilicon gate and oxide insulator, and reaches the depletion region of the

chip, generating electron-hole pairs, which are then separated by the internal electric �eld.

The electrons are stored in the potential wells at each pixel site, and then their voltages

are read out.

However, in the practice of synchrotron radiation imaging, the �uence of synchrotron

radiation is so high that CCD chips can hardly adapt to such high counting rate [Arndt,

1978]. Therefore, most of detectors used for X-ray imaging detect the �uorescence stimu-
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m2

Phosphor Scintillator Fiber-optic taper

m3

CCD chips

m4

A/D ConverterIncident X-ray photons

N

Figure 2.9: The cascading process of a detection event

lated by X-ray photons.

2.3.3 Cascading structure of X-ray photon detector

Fig. 2.9 is a schematic of the cascading structure of detector, indicating that a detection

event is naturally described by a chain of signal transmission, with output at one stage

feeding into the input of the next. The transmission of signal can be segmented into four

stages:

1. The incident X-ray photons arrive at the screen of the detector.

2. The incident X-ray photons interact with the phosphor scintillator of the screen, and

the scintillator will emit visible photons.

3. The visible photons travel through the �ber optic taper (FOT), which bridges the

phosphor scintillator of the screen and the CCD chip.

4. The visible photons will trigger electron-hold pairs on the CCD chip.

Of course, each stage has its own source of uncertainty, that is subject to a probability

distribution. Tab. 2.1 lists all parameters characterizing the stochastic nature of each

stage.

68



2.3. INTRODUCTION TO POISSONIAN-GAUSSIAN NOISE MODEL IN
SYNCHROTRON RADIATION EXPERIMENT

Stage Statistical distribution Parameter(s) Speci�cations

0 Poisson N
Mean number of incident X-
ray photons

1 Binomial g1

Fraction of incident X-ray
photons that interact with
phosphor

2 Normal
g2

Mean photon yield per X-ray
photon on phosphor

σ2
g2

Variance of photon yield

3 Binomial g3

Fraction of photons traveling
through FOT and absorbed by
CCD chip

4 Normal
g4

Mean yield of electron-hole
pairs per photon on CCD chip

σ2
g4

Variance of yield of electron-
hole pairs

Table 2.1: Signal transmission of a detection event [Waterman and Evans 2010].

The consequent mean electron-hole pairs deposited on a certain pixel due to the reaction

chain is

m = Ng1g2g3g4 +md. (2.8)

where md is the mean quantity of thermally accumulated electron-hole pairs, which give

rise to the dark signal, and the meanings of N , g1, g2, g3 and g4 are explained Tab. 2.1.

2.3.4 Errors involved in the cascading detection

The users of detector wishes that the output image honestly tells the distribution of

incident X-ray �ux. Unfortunately, every stage of the signal transmission is prone to errors

due to its statistical nature, and the �nal error of the output signal is the accumulated

result of all previous errors. Errors are mainly classi�ed into systematic errors, which

in�uence the accuracy of the results, and random error, which in�uence the precision of

the results. It is important to distinguish between the terms accuracy and precision. The

accuracy of a result refers to a measure of how close the result is to the true value. The

precision refers to a measure of how well the result has been determined, without reference

to its agreement with the true value. The precision is also indicative of the reproducibility

of result [Bevington and Robinson 2003].
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2.3.4.1 Systematic errors

The e�ect of systematic errors manifests itself by biasing the result from the true

value unilaterally with certain degree of �uctuations. Since the true value is never known,

systematic errors cannot be detected by statistical analysis. The systematic errors with

CCD-based detectors are mainly:

Gain inhomogeneity The gains of the whole pixels of a detector surface varies one by

one. A map of gain variations is usually obtained by either exposing the detection area

to a perfectly homogeneous beam, which may be unpractical for a large-area system, or

performing a time-consuming detector surface scanning with a perfectly stable or precisely

monitored beam. For di�raction systems a gain inhomogeneity of ±1% with respect to the

average value is deemed acceptable [Ponchut 2006].

Geometric distortion of FOT The FOT serves to transport the photons released

from the phosphor scintillator to the much smaller CCD chip. The ideal FOT should be

a zooming optical device, evenly scaling down the image on the phosphor side. However,

due to the errors in manufacturing and assembling FOT, the demagni�cation ratio is not

uniform, thereby distortions occur on the CCD side, so-called "grid distortion".

The correction of distortion usually requires a mask with regular spaced nodes in front

of the detector as a reference. Several algorithm are proposed to correct this distortion

based on the distortion of the mask image [Paciorek et al. 1999].

Dark signal In CCD detector, the dark signal, mentioned in �2.3.1, is due to thermally

produced electron-hole pairs, which accumulate in the potential well with time. The dark

current now becomes the dominant error source for long exposures, and can be decreased

by cooling the detector [He 2009b].

As mentioned before, systematic errors are di�cult to detect by statistical method.
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2.3.4.2 Random errors

The reproducibility of a result depends on the random errors. The �uctuation of the

result is usually quanti�ed by the variance or relative variance. In an image acquisition

event, incident photons need to pass through 5 stages to reach at the A/D converter �nally

(see Tab. 2.1), and the relative variances of each stage, labeled as Ri, i = 0, 1, 2, 3, 4 are

given according to their own statistical properties:

R0 =
1

N
, R1 =

1

g1

− 1, R2 =
σ2
g2

g2
2

,

R3 =
1

g3

− 1, R4 =
σ2
g4

g2
4

.

(2.9)

According to [Arndt and Gilmore 1979; Stanton et al. 1992; Waterman and Evans 2010],

the relative variance of the induced electron-hole pairs can be evaluated by the following

empirical formula:

R = R0 +
R1

N
+

R2

Ng1

+
R3

Ng1g2

+
R4

Ng1g2g3

=
1

Ng1

(
1 +

σ2
g2

g2
2

+
1

g2g3

− 1

g2

+
σ2
g4

g2g3g
2
4

)
.

(2.10)

The relative variance of the number of electron-hole pairs on the CCD chips is converted

into the actual variance of this quantity, σ2
m, by multiplying the squared output signal for

the combined cascade stages, (Ng1g2g3g4)2, and adding the dark current variance,

σ2
m = Ng1(g2g3g4)2

(
1 +

σ2
g2

g2
2

+
1

g2g3

− 1

g2

+
σ2
g4

g2g3g
2
4

)
+ σ2

md. (2.11)

The voltage triggered by the electron-hole pairs, m, is converted into digital signal by

multiplying by a coe�cient, say, analogue-digital gain gAD, and digitalizing the result,

p = gADm, (2.12a)

p = p+ d, (2.12b)

where d is the error introduced by digitalization, p is the digitalized gray level, and p is

the gray level before digitalization. Strictly speaking, the distribution of d should depend

on the distribution of the number of electron-hole pairs. Nevertheless, it is customary to
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assume it to be independent and obey uniform distribution with a range of 1 analogue-to-

digital unit (ADU) [Widrow et al. 1996]. In that case, the variance of error of digitalization

is 1/12.

The resulted variance of p, σ2
p, by combining equation (2.11) and (2.12), should be

σ2
p = g2

ADσ
2
m +

1

12

= Ng1(g2g3g4gAD)2

(
1 +

σ2
g2

g2
2

+
1

g2g3

− 1

g2

+
σ2
g4

g2g3g
2
4

)
+ g2

ADσ
2
md +

1

12
.

(2.13)

The gain of the detector for each absorbed X-ray photon is given by G = g2g3g4gAD

[Leslie 1999; Waterman and Evans 2010]. Using this de�nition of G given, the above

expressions 2.12a, 2.12b, and 2.13 can be given as

p = Ng1G+ gADmd,

σ2
p = Ng1G

2

(
1 +

σ2
g2

g2
2

+
1

g2g3

− 1

g2

+
σ2
g4

g2g3g
2
4

)
+ g2

ADσ
2
md +

1

12
.

(2.14)

Generally, these parameters can hardly be measured individually, we prefer to fold the

terms into a cascade factor γ and pixel factor ψ [Waterman and Evans 2010]. With

equation 2.8, and denoting dark signal in unit of ADU as pd = gADmd, we have

σ2
p = (p− pd)γ + ψ, (2.15)

with

γ = G

(
1 +

σ2
g2

g2
2

+
1

g2g3

− 1

g2

+
σ2
g4

g2g3g
2
4

)
, (2.16a)

ψ = g2
ADσ

2
md +

1

12
. (2.16b)

2.4 Experimental study of the noise of di�raction images

2.4.1 Validation of Poissonian-Gaussian model and estimation of its pa-
rameters

In this section, we will test the validity of Poissonian-Gaussian model on the exper-

imental data, and identify the parameters of the model, γ, ψ, and pd. For doing this,

we collect stacks of 100 Laue microdi�raction images from several specimens. During the
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acquisition of each image stack, we should endeavor to maintain the experimental setup to

ensure that the only factor leading to the variation of gray levels in the same stack is image

noise. With each pixel of one stack, we calculate the average and standard deviation of its

gray level to validate the presented noise model and estimate its parameters.

Although di�raction images, acquired from experiments, contains huge amount of pixels

(in our case, there are 2 594×2 774 pixels), fortunately only a small portion of pixels where

the di�racted X-rays intersect with the area detector are of our interests. Therefore, the

primary step of data treatment is to extract the rectangular windows containing individual

Laue spots from the background which contains nothing but noise. Since the sizes, the

shapes of Laue spots vary according to the spots' energies, angular projection, defects of

materials, etc, we need to adaptively select the windows' sizes, aspect ratio to best �t the

spots. The algorithm we adopted in this work is shown in Fig. 2.10, and three realizations

of this algorithm is shown in Fig. 2.11.

We �rst look at an image stack collected from a Si monocrystal sample. To analyze

the relation between the gray levels and their variances, we plot pairs of the averages and

standard variance of gray level for each pixel, (p, σ2
p), of a subimage of a spot (Fig. 2.12).

Visual impression of the average-variance distributions indicates a linear relationship

between the average and variance of gray level as revealed by Eqn. 2.15. To test the

linearity of the distribution, we used the linear regression method, in which the linearity

was quanti�ed by linear correlation coe�cient (LCC) r de�ned as:

r =

n
∑
n

xiyi −
∑
n

xi
∑
n

yi√√√√n
∑
n

x2
i −

(∑
n

xi

)2
√√√√n

∑
n

y2
i −

(∑
n

yi

)2
. (2.17)

The value of r is in the range −1 ≤ r ≤ +1. r = ±1 means that the data pairs are perfectly

linearly related. The smaller |r|, the weaker the linear relationship between the data pairs.

In Fig. 2.13, we plotted the distribution of LCCs of all spots in the same image stack.

Most of the LCCs are distributed within the range of 0.9 and 1.0, indicating a strong linear

relationship between p and σ2
p, thereby further con�rming the soundness of equation 2.15.

Applying linear regression to every spot would give us a series of lines, whose slope is
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De�ne a 3 × 3 pix2

correlation window
centering around
the pixel encom-
passing the peak

spot's image
the pixel en-
compassing the
peak

set a threshold of gray
level according to the
gray level of back-
ground (about 120)

calculate the means
of gray level of
four boundaries

push the boundary,
whose mean of

gray level is higher
than the threshold,
outward by 1 pix

is the mean of gray
level on any boundary

smaller than the
threshold?

stop, the correlation
window is de�ned

no

yes

Figure 2.10: Algorithm for determining the optimum window containing a Laue spot
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(a) (b) (c)

Figure 2.11: Three realizations of the algorithm in Fig. 2.10
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Figure 2.12: p vs. σ2
p of gray levels. Treat these spots with linear regression, we get a line

with slope being the estimation of the cascade factor γ, and the interception with y axis
being the estimation of ψ − pdγ

the estimation of γ, and whose interception on the y axis is the estimation of ψ − pdγ.
Plotting all pairs of estimated (γ, ψ − pdγ) for all Laue spots would enable us to estimate

ψ and pd by linear regression (Fig. 2.14).

From the results of linear regression, we �nd the linear correlation coe�cient to be

−0.94, indicating a high linear correlation. The rest parameter are found to be

pd = 118.7 and ψ = 4.3.

Note that the estimated pd is slightly higher than the average gray level of background

of the image (about 101.1), however we are not clear about this phenomenon. After all,
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Figure 2.13: The distribution of LCCs for the spots of one Si di�raction image
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Figure 2.14: Plot of pairs (γ, ψ − pdγ) of each Laue spot. Obviously, the pairs are highly
linearly correlated with LCCs r = −0.94.

the transmission of signal from incident photons to digital images is too complex to be

fully described by Poissonian-Gaussian model. Fortunately, the precision of DIC is not

a�ected by pd as long as the correlation coe�cient is zero-mean normalized cross-correlation

(ZNCC) coe�cient [Tong 2005].

We applied the same procedure to image stacks collected from other Si samples, Ge

samples, Cu samples, and 316 steel samples, and we found that for most image stacks the

averages of LCCs were above 0.9, showing a strong linear correlation between the variance

and the average of gray levels. However, there were two exceptions: one came from Ge

sample, and another came from 316 steel sample. We will talk about the two exceptions

in �2.4.3.

Note that, in Fig. 2.14, we plotted all the (γ, ψ − pdγ) pairs collected in a single
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Figure 2.15: Plot of pairs (γ, ψ − pdγ) of each Laue spot. Obviously, the LCC of these
pairs is −0.92.

di�raction image to estimate the background noise, each pair corresponding to a Laue spot.

Of course, more pairs would give a better estimation of background noise parameters, i.e.

pd and ψ. On the other hand, the detector, as an apparatus to detect photons, should

be ignorant of the di�racted material. Therefore, we will plot all the (γ, ψ − pdγ) pairs of

di�erent materials in a single XY -plot to estimate the background parameters. These pairs

were collected from all the di�raction images that we had taken (each pair corresponds to a

spot, and a total of 316 spots investigated), among which the spots with a LCC lower than

an empirical threshold, 0.9, were excluded. The LCC for these pairs are −0.92, pd = 147.3

and ψ = 7.3 in our estimation. The estimated pd is much larger than the background of

image, but this parameter is a trivial one since it would not in�uence neither the precision

of pinpointing peak by analytical �tting nor the precision of displacement measurement by

DIC. Moreover, the estimation of pd is meaningless because in reality pd is not uniformly

distributed on the area detector due to the in�uence of di�use X-ray.

2.4.2 The dependence of cascade factor γ on photons' energy

The performance of detector should be independent of the material under scrutiny.

Likewise, the cascade factor γ should be function of incident photon's energy rather than

the lattice parameters of the crystal di�racting. In order to reveal the relation between the

cascade factor and incident photons' energy, we plotted all the (γ,E) pairs for all spots

under consideration in Fig. 2.16, where E is the energy of the energy of incident spot. E
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can be calculated from Eqn. 1.15:

Ehkl =
hc

2dhkl sin θ
,

where the subscript hkl represent the index of lattice plane from which the spot is di�racted,

and dhkl is the d-spacing of the lattice plane, c is the light speed, and h is the Planck's

constant (we used a di�erent font of h so as not to be confused with the index of lattice

plane hkl). From Eqn. 1.10, for cubic lattice, dhkl is given as:

dhkl =
1

‖r∗hkl‖
=

1
1
a

√
h2 + k2 + l2

=
a√

h2 + k2 + l2
,

where a is the side length of the cubic lattice. Therefore, for cubic lattice, the energy of

photon di�racted by (hkl) lattice plane is:

E =
hc
√
h2 + k2 + l2

2a sin θ
.
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Figure 2.16: γ vs. E

From Fig. 2.16, we do not see any clear relation between spot energy E and cascade

factor γ, and therefore we could only estimate the range of cascade factor from this �gure.

We will implicitly assume γ = 0.125 if there is no further speci�cation hereinafter.

2.4.3 Issues with the Same Dataset

Poissonian-Gaussian noise model applies for most image stack collected in our experi-

ment. However, in �2.4.1 we mentioned that there were two exceptions: one came from a

316 steel sample, and another came from a Ge sample.
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Figure 2.17: The distribution of LCCs of spots of the exception from a 316 steel sample.

We �rst talked about the exception from the 316 steel sample. We plotted its LCCs

in Fig. 2.17, and we observed that most LCCs were below 0.7, indicating a poor linear

relationship between p and σ2
p. To further investigate the origin of this failure of the

linearity implicated in Eqn. 2.15, we plotted the three di�erent images of one spot in Fig.

2.18, we observed an intense �uctuation of spot intensity distribution. The causes of this

�uctuation is not known yet. One possible explanation is the occurrence of instabilities

during the experiment, e.g. like external vibration, thermal expansion of the equipment,

instability of beam, etc.

Figure 2.18: The �uctuation of one spot in a stack of di�raction images of 316 steel sample.

We then talked about the exception from the Ge sample. For this Ge sample, we

had collected image stacks at three di�erent sample-detector distance to investigate the

in�uence of spot's resolution upon the image noise, and we plotted their histograms of
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LCCs in Fig. 2.19.
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Figure 2.19: The distribution of LCCs of spots of the exception from a Ge sample.

The LCCs of the exception from Ge sample were larger than those of exception from

316 steel sample. We also plotted three di�erent images of one spot in Fig. 2.20, but we

did not observed any strong �uctuation of spot intensity distribution.

Figure 2.20: The �uctuation of one spot in a stack of di�raction images of a Ge sample.

When we plot the pairs of the averages and standard variance of gray level of each pixel

of the spot in Fig. 2.21, we found that the trend of spot distribution tended to split at

some point. The split of distribution may indicate a heterogeneous distribution of cascade

factor γ among the region of spot. The reason for this heterogeneous distribution is not

known yet.
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Figure 2.21: The pairs of the averages and standard variance of gray level of each pixel for
three spots from Ge sample I

2.5 Numerical Tests of Laue-DIC

The uncertainties on DIC will be ultimately transmitted to the calculation of relative

deformation gradient F˜ . Alongside the uncertainties from DIC are the uncertainties of

calibration parameters (see �1.5.2). It is di�cult to derive an analytical formula to gener-

alize the in�uence of each parameters onto the �nal accuracy of F˜ , therefore here we used
numerical tests to achieve this. Similar work has been done by [Hofmann et al. 2011;

Poshadel et al. 2012].

2.5.1 The Accuracy of Displacement by DIC

The principle of Laue-DIC is acquiring the precise relative displacement of Laue spots

on the area detector thanks to DIC technique. Therefore, the accuracy of displacement

measurement by DIC is crucial to obtain highly reliable results. Although it is relatively

straightforward to compare the mechanical imposed displacements with those measured

by DIC, as presented in �2.1, it is di�cult to experimentally prescribe well-controlled

displacement �eld whose precision must be of at least one order of magnitude better than

the one of DIC, as the imposed displacements �eld also depends on motor's precision,

alignment of detector, stability of experimental setup, etc.

One possible approach to impose a displacement �eld between two images of Laue spots
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can be taking a real image from real experiment and to numerically transform it by a know

displacement �eld. The transformation is accomplished either in the frequency domain by

applying Fourier transformation according to the shift theorem, or in the space domain by

interpolating at subpixel positions. Although this approach can retain all characteristics of

images taken under experimental circumstances, the numerical transformation itself would

introduce some error to the transformed images [Amiot et al. 2013], depending on the

speci�c algorithm under usage.

In this section, we attempt to estimate the error of DIC and the in�uence of image noise

by fabricating and operating on arti�cial images by a multi-resolution approach [Doumalin

and Bornert 2000] in order to evade both the uncertainties of experimental equipment and

the errors introduced by numerical transformation of images.

2.5.1.1 Fabrication of noiseless arti�cial spots

It is customary to characterize the intensity distribution of a Laue spot by an ana-

lytical function, e.g. 2D Gaussian, Lorentzian, or Pearson function. It was said that a

2D Lorentzian function typically gives the best �t of peak position [Valek 2003], but in

treating the image sequences of Chapter 4, it was found that the residual error resulted

from Gaussian �tting was smaller than that resulted from Lorentzian �tting. Therefore

spots were described by a Gaussian function in my study.

The analytical function of 2D Gaussian distribution is given as:

I(x, y) = A exp
{
−
[
C1(x− x0)2 + C2(x− x0)(y − y0) + C3(y − y0)2

]}
+ pd,

C1 =
1

2

(
cos2 θ

r2
X

+
sin2 θ

r2
Y

)
,

C2 = sin θ cos θ

(
− 1

r2
X

+
1

r2
Y

)
,

C3 =
1

2

(
sin2 θ

r2
X

+
cos2 θ

r2
Y

) (2.18)

where A represents the amplitude of the spot, x0 and y0 represent the center of the spot,

rX and rY are the width of spot along two main axis at the 1/
√
e of the maximum height,

θ represent the rotation angle of main axis of Gaussian function with respect to the pixel

grid, and pd is the dark signal as mentioned in �2.3. Note that as the value of pd does not

in�uence the result of DIC when ZNCC (see Eqn. 2.1) is used [Tong 2005], therefore it
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Figure 2.22: The red rectangulars represent the original pixels subdivided into N ×N sub-
pixels, and the blue pixel represents the pixel after being moved by a subpixel displacement.
In my study, N = 100.

can be set arbitrarily. Here we set it to be 100.

The essence of the multi-resolution approach consist in the following steps:

1. Subdivide each pixel into N ×N subpixels. N represents the resolution of subpixel

step. The larger N is, the �ner the resolution is.

2. Calculate the gray level for each subpixel by performing the integration of Eqn. 2.18

within each subpixel.

3. To obtain the gray level of each pixel after a displacement of (nxN ,
ny
N ) (nx and ny are

integers), we only have to move the pixel in two dimensions by nx and ny substeps

(see Fig. 2.22, the blue rectangular represent the pixel after displacements). Then,

we bin together subpixels within the moved pixel, and have its gray level.

In this manner, the only source of error in constructing the displaced image is digital-

ization. Here, we choose N to be 100, then the resolution of subpixel displacement is 0.01.

Fig. 2.23a and 2.23b depict the spots before and after a subpixel displacement of 0.5 pix

along both x and y direction.
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(a) Initial spot (b) After moved by 0.5 pixel in each di-
mension

Figure 2.23: Spots before and after displacement

2.5.1.2 Precision of displacement measurements of noiseless spot

We used in-house DIC software CMV [Doumalin and Bornert 2000] to study the

precision of displacement acquisition with noiseless spot. By "noiseless", we meant that the

spot and background were not polluted by random �uctuation, and the only source of error

was digitalization. CMV uses ZNCC (see Eqn. 2.1) as its correlation coe�cient so that it

is robust against the uniform o�set and scale changes in the gray level of image. We tested

the performance of the lowest and the highest orders of interpolations in CMV, i.e. bilinear

interpolation and biquintic interpolation respectively. The parameters characterizing the

spot used for this study are tabulated in Tab 2.2 which come from analytical �tting a real

spot. The meaning of these parameters are given in Eqn. 2.18.

A rX rY θ

572.65 2.54 1.75 173.18◦

Table 2.2: Parameters characterizing a spot

Because spots are just rigidly displaced in two images, therefore there would be no

errors in mismatch of shape functions if we use zero order shape function, the only error

of DIC we will encounter is the "ultimate error" of DIC [Bornert et al. 2009; Amiot et al.

2013]. Note that because the spot that we fabricated was central symmetrical, a subpixel

translation along x or y axis with the distance u is equivalent to a translation opposite to
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x or y axis with distance u, which is itself equivalent to a translation along x or y axis with

distance 1 − u. Therefore, the error curves without noise should be central symmetrical

with respect to the point (0.5, 0.5).
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Figure 2.24: Error distribution with bilinear interpolation as the function of x and y
displacement
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Figure 2.25: Error distribution with biquintic interpolation as the function of x and y
displacement

To obtain the dependence of displacements' error upon the imposed displacements, we

�rst translated the spot's image by a certain amount (fraction of a pixel size), then we

performed DIC between the initial and the translated spots' images, with which we could

have the measured displacements and compare them with the imposed ones. Fig. 2.24

and 2.25 are the distribution of errors in x and y directions with bilinear and biquintic
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interpolation respectively. In these �gures, the (x, y) coordinate represents the imposed

displacements, and the z coordinate represent the error in x or y directions, which is de�ned

as the measured x or y displacement minus the imposed x or y displacements respectively:

ex = xdic − ximposed, ey = ydic − yimposed.
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Figure 2.26: Average x (or y) displacement error over di�erent y (or x) displacements

It was shown that:

• The coupled dependence of errors on x and y subpixel displacement turned out to be

weak, i.e. the ex (or ey) displacement depends mainly on x(or y) displacement and

poorly on y (or x) displacement. Therefore, we can turn Fig. 2.24 and Fig. 2.25,

which are 3D plots, into 2D plots by plotting the average of ex (or ey) with the same

x (or y) displacement but di�erent y (or x) displacement in Fig. 2.26.

• Either from the 3D plots Fig. 2.24 and Fig. 2.25 or from the 2D plot Fig. 2.26, we

found that the amplitude of error curve of biquintic interpolation was smaller than

that of bilinear interpolation. This means that biquintic interpolation gives better

results that bilinear interpolation.

• In Fig. 2.26, the error curves are all S-shaped, with their minimum located at 0 pix,

0.5 pix, and 1 pix.

• The amplitude of error curve for y displacement was smaller than that for x dis-

placement in both biquintic case and bilinear case. This was because the spot was
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Figure 2.27: max |ex| and max |ey| for spots with di�erent amplitudes A.

more streaked in x direction, therefore the gray level was more evenly distributed

in x direction, resulting less contrast in x direction. There is a simple formula to

demonstrate in 1D DIC and with linear interpolation of gray level how the contrasts

of gray level in�uence a�ect the error of DIC [Sutton et al. 2009b]:

e = −
∑

(gi − fi)∇fi∑
(∇fi)2

,

where fi represents the gray level of the ith pixel on the current image, ∇fi represents
its gradient of gray level, and gi represents the interpolated gray level of of the ith

pixel on the translated reference image. It is obvious from this equation that the

error of 1D DIC decreases with the gradient of gray level. For the case of 2D DIC

with images polluted by Gaussian noise, the formulas are much more complex [Wang

et al. 2009].

• The minimum error level occurs at around 0, 0.5, and 1 displacements, while the

maximum error level occurs at around 0.25 and 0.75 displacements.

To investigate the in�uence of amplitude A on the accuracy of DIC, we fabricated spots

with six di�erent amplitudes: 100, 300, 500, 700, 900, and 1100. The accuracy of DIC was

characterized by the maximum absolute value of errors, max |ex| and max |ey|. The results
of max |ex| and max |ey| with di�erent A are given in Fig. 2.27.

It was shown that the error level will decrease as the spot's amplitude increase both for

x displacement and y displacement. This is because that increasing the spot's amplitude
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will increase the gradient of gray level in Eqn. 2.18, and hence the contrast of gray levels

with respect to neighboring pixels after digitalization. Another factor is that the error

introduced by digitalization of gray level will become less signi�cant compared to the

increased contrasts of gray level.

2.5.1.3 Fabrication of noisy arti�cial spots

The real experimental spots are more or less �uctuated due to the image noise intro-

duced in �2.3.4. We formulated a normal distribution to describe the �uctuation of gray

level, and con�rmed the distribution with several samples in �2.4. We fabricated the noisy

spot in the following procedure:

1. Calculate the noise-free, non-digitalized gray level p with the procedure stated in

�2.5.1.2.

2. Add noise to the gray level by generating a normally distributed random number p′

with its mean being p, and variance being γ(p − pd) + ψ, where γ is cascade factor

and ψ is pixel factor.

3. Digitalize the random number p′ to get the �nal gray level p.

2.5.1.4 Precision of displacement measurements of noisy spot

To study the �uctuation of DIC errors due to the �uctuation of gray levels, we generated

100 random Laue spots for each displacement. We only studied the error distributions

with biquintic interpolation because the study in �2.5.1.2 had demonstrated that biquintic

interpolation gave the best results in terms of maximum error. The pixel factor ψ we chose

to fabricate these noisy pixels was 7.3 according to �2.4.1, and the cascade factor γ was set

to be 0.125. The rest of spot parameters were listed in Tab. 2.2

Fig. 2.28 and 2.29 depict the averages and standard deviations of errors at all the

displacements, representing the systematic errors and random errors respectively. Again,

we see that the coupled dependence of systematic errors on x and y subpixel displacement

turns out to be weak. The amplitude of systematic error curve for y displacement, 0.008,
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Figure 2.28: Average displacement errors with biquintic interpolation
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Figure 2.29: Standard deviation of displacement errors with biquintic interpolation

is smaller than that for x displacement, 0.012. But compared to the case of noiseless spots

(see �2.5.1.2), the levels of errors increased signi�cantly due to the introduction of noise.

In terms of random errors, the coupling between x and y subpixel still turned out to be

weak. The amplitude of random error curve for y displacement, 0.014, is smaller than that

for x displacement, 0.02 as there is more contrast in y direction rendering measurements

on y direction more robust against noise. Similar to the curve of systematic errors, the

minimum error level occurs at around 0, 0.5, and 1 displacements, while the maximum

error level occurs at around 0.25 and 0.75 displacements. Compared to Fig. 2.24 and 2.25,

the errors increase signi�cantly with the introduction of image noise, therefore, image noise
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Figure 2.30: Average errors in x and y dimensions.

is one limiting factor of DIC.

Because the coupling between the errors in x and y dimension is very weak, it is possible

to turn Fig. 2.28 and 2.29 into 2D plots, i.e. Fig. 2.30, as we have plotted Fig. 2.26 to

facilitate . In Fig. 2.30a, it is found that the error curves appear much noisy than those

of Fig. 2.26, and they deviate from S-shape curve, the reason for such deviation is not

known yet. In Fig. 2.30b, it is found that the random errors are smaller near integer pixel

displacement, and they quickly reach a plateau as the imposed displacement deviate from

integer pixel.

To study the collective in�uence of cascade factor γ and spots' peak A, we studies the

systematic errors and random errors of spots with di�erent combinations of γ and A. The

range of A was 100, 300, 500, 700, 900, and 1100, while the range of γ, according to Fig.

2.15, was set to 0.075, 0.1, 0.125, 0.15, 0.175, 0.2. The level of errors were quanti�ed by the

maximum values with various displacements. The results of systematic errors and random

errors were given in Fig. 2.31 and 2.32 respectively.

From Fig. 2.31 and 2.32 we could draw several conclusions:

1. The systematic error is mainly governed by the amplitudes of spots, i.e. spots with

larger amplitudes give lower systematic error. The systematic error slightly increases

with the cascade factor γ.
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Figure 2.31: Maximum systematic errors with with biquintic interpolation
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Figure 2.32: Maximum random errors with with biquintic interpolation

2. For random error, the error level is governed by both the amplitude of spot and

cascade factor. Random error will increase with decreasing the amplitude of spot or

increasing the cascade factor γ.

3. Both systematic error and random error in y direction are lower than their counter-

parts in x direction. There is due to the fact that there is more gray level gradient

in y direction.

4. The level of random error is larger than that of systematic error. This may be related

to the value of cascade factor � lower cascade factor will render random error smaller

than systematic error. For intense peak, errors are of the order of 0.01 pix, and it
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can increase up to ∼ 0.05 pix for peaks with small amplitudes. Such accuracy is well

adapted for our application.

2.5.2 Laue-DIC's Uncertainties

From �2.5.1, we gained a quantitative idea about the errors of DIC. Now we proceed to

investigate the collective in�uence of uncertainties by DIC and by calibration parameters.

It is di�cult to quantify the errors on the deformation gradient F˜ because it has nine

components and is in�uenced by volumeric changes which is beyond the capability of Laue

di�raction. Therefore we use the following steps to de�ne the errors on F˜ :
1. rescale each component of F˜ by the cube root of the determinant of F˜ in order to

get rid of the uncertainty on the volume of crystal lattice, i.e.

F̂˜ .
=

F˜
3
√

detF˜ ,
2. the error on F˜ is de�ned as

εF
.
=

∑3
i=1

∑3
j=1 |F̂ cal

ij − F̂ exa
ij |

9
,

where the superscript cal represents the calculated value, and the superscript exa

represents the exact value.

In case of statistical tests where multi random cases are treated, we de�ne the sys-

tematic error εF and random error σεF of F˜ as:

εF
.
=

∑3
i=1

∑3
j=1 |F̂

cal

ij − F̂ exa
ij |

9
,

σεF
.
=

∑3
i=1

∑3
j=1 σF̂ cal

ij

9
,

where the overline on the right hand of equations means the average, and the σ on

the right hand of equations means the standard deviation.

The procedure of numerical tests goes as following (see Fig. 2.33, where the superscript

dis means the values disturbed by noise):
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Figure 2.33: Flowchart of numerical tests

1. Give the lattice matrices and calibration parameters of both reference and current

con�gurations.

2. Deviate the calibration parameters of current con�guration a little bit from their

values according to normal distribution with given deviations,

3. Simulate the spots' displacements, and add noise to the spots' displacements to rep-

resent to DIC errors.

4. Use the spots' displacements to calculate the relative deformation gradient, and com-

pare it to the exact value.

In our numerical test, we use the real data from one of our experiment as the exact

values to make our tests more realistic. The exact values for geometrical parameters are

listed in Tab. 2.3, and the exact values for L˜∗ is
[L˜∗] =

 1 −7.74× 10−3 1.66× 10−2

8.03× 10−3 −0.654 −0.758
1.61× 10−2 0.758 −0.653

 (2.19)

We considered three cases, in which the relative deformation gradients are given by F˜∗,
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d/mm xc/pix yc/pix β γ

59.799 1365.75 943.97 0.344◦ 0.517◦

Table 2.3: Exact values of calibration parameters in Fig. 2.33

σd/mm σxc/pix σyc/pix σβ σγ

0.004 0.16 0.26 0.005◦ 0.005◦

Table 2.4: Uncertainties of calibration parameters [Poshadel et al. 2012] (pixel size: 31µm)

(F˜∗)2, and (F˜∗)3 respectively, and the exact value for F˜∗ is
[F˜∗] =

 1 3.33× 10−4 −3.55× 10−4

9.15× 10−6 1 −4.49× 10−4

−3.36× 10−4 2.42× 10−4 1

 (2.20)

The three cases, namely case I, II, and III, represent increasing deformations in a row.

For each cases, we tested three subcases, in which the numbers of Laue spots captured by

the area detector were 40, 25, and 10, respectively.

We will perform the numerical tests in two aspects:

Variation of uncertainties with the level of DIC errors From �2.5.1, we know that

the maximum error is usually of the order of 0.1 pix, the average of error would be of

the order of 0.05 pix. In this section, we will add zero-mean Gaussian errors to the

spots' displacements to investigate the in�uence of noise upon the precision of strain

and geometrical parameters. We will impose all the input displacements of spots in

the same Laue image with zero-mean Gaussian errors whose deviations are 0.005 pix,

0.01 pix, 0.015 pix, 0.02 pix, 0.025 pix, 0.03 pix, 0.035 pix, 0.04 pix, 0.045 pix, 0.05 pix.

In terms of the level of calibration parameter, they are tabulated in Tab. 2.4. The

reason for why there is more uncertainty in yc than in xc is that the penetration depth

in y-axis contributes to the uncertainty (remember that the incident beam is always

parallel to the y-axis according to the de�nition of absolute coordinate system). For

each deviation level, we generated 500 random cases and then calculate the average

errors of lattice matrices.
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Variation of uncertainties with the level of calibration errors We vary the level of

calibration error by uniformly scaling the deviations of calibration parameters tabu-

lated in Tab. 2.4 by a scaling factor, say, α. The scaling factor α we set are 0, 0.25,

0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5. For the sake of brevity, we only consider

the case where the deviations of spots' displacements are 0.01 pix for both x and y

directions of all the spots. The rest settings of tests are the same as in the previous

aspect of tests.

The variations of systematic and random errors with imposed zero-mean Gaussian noise

are displayed in Fig. 2.34, and those with the level of calibration errors are displayed in

Fig. 2.35. We can draw several conclusions:

• Both systematic and random errors of F˜ decreases with increasing the number of

Laue spots. This justi�es the strategy of using as many spots as possible to perform

Laue-DIC.

• Systematic errors of F˜ increases abruptly with instilling the zero-mean Gaussian

errors either to the spots' displacements or to the calibration parameters. However,

the systematic errors become stable with further increasing the deviation of errors.

• The random errors slightly increases with increasing the deviation of errors on the

spots' displacements despite �uctuations. By contrast, the increments of random

errors with the deviation of errors on the calibration parameters are very obvious,

and they depend almost linearly on the scaling factor α.

• The curves of random error seem to be insensitive to the imposed relative deforma-

tion gradient, while the systematic error decreases with larger imposed deformation

(the imposed deformation gradients of case I, II, and III are F˜ , F˜2, and F˜3 respec-

tively). This is probably due to the fact that larger amplitude of deformation will

engender larger spots' displacements, and hence reduce the relative errors of spots'

displacement.

• The systematic and random errors of F˜ are of the order of ∼ 10−4, well adapted for

our study.
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(e) Systematic error in case III
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(f) Random error in case III

Figure 2.34: In�uence of imposed zero-mean Gaussian error to the measurements
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Figure 2.35: In�uence of perturbations of calibration parameters to the measurements
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As we have mentioned above, the random errors seem to increase linearly with the

scaling factor α, while they seem more stable with the deviations of the displacement errors.

This may indicate that at present the dominant factor governing the random errors should

be the scaling factor α. This may lead us postulate that the deviations of displacement

errors may become the dominant one if they are further increased. To prove this point,

we further extend the range of the abscissa of Fig. 2.34b, 2.34d, and 2.34f to 0.16 pix, and

plot the variation of error curves with multiple αs in Fig. 2.36. To save space, here we

only consider the case with the deformation gradient F˜2 and 25 spots considered.
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Figure 2.36: Variation of error curves with the scaling factor α

In Fig. 2.36, it is obvious that all curves asymptotically converge to certain curves if

we further increase the deviations of displacement errors. When α = 0, i.e. the calibration

parameters are exactly given, the errors increases almost linear with the deviations of

errors. As we increase α, a basin in which the errors increase slightly with the deviation

of displacement errors is formed, and the range of the basin increases with α. This implies

that the errors of calibration parameters in�uence the error of deformation gradient as well

as the displacement errors.
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2.6 Summary

In this chapter, we have introduced the principle of Laue-DIC, and analyzed its un-

certainty by numerical tests. The originality of Laue-DIC, compared to standard Laue

treatment (see �1.5), is: (i) that Laue-DIC uses peaks' displacements measured by DIC

rather than peaks' absolute positions; (ii) that Laue-DIC calculates the relative deforma-

tion gradient between two con�gurations. However, it is worth to mention that Laue-DIC

shares the same limitation with HR-EBSD: both need reference con�gurations which has

been known a priori. This limitation will be discussed in the next chapter.

The error of Laue-DIC originates from the errors of calibration parameters and the

errors of displacements measured by DIC. The errors of calibration parameters depends

on the stability of experimental equipment, the precision of motor's movement, and the

accuracy of the acquisition of calibration parameters. Errors of DIC can be classi�ed into

two categories: systematic error and random error. Systematic error originates from the

"ultimate error" of DIC [Bornert et al. 2009; Amiot et al. 2013], and random error

originates from the noise of di�raction images, which is usually characterized by a simple

but e�cient noise model - Poissonian-Gaussian model (see �2.3). We have collected image

stacks, each of which contains 100 images, in our experiment to check the validity of

Poissonian-Gaussian model and to �t the parameters of this model, and found that most

image stacks con�rm this model despite several exceptions. We postulate that the incident

beams or experimental equipments underwent stabilities when we were collecting these

image stacks. In future, it is always a good idea to check regularly the stabilities of beam

or equipments before any image acquisition by a similar process of image noise evaluation.

Considering the complexity of errors involved in Laue-DIC, we performed numerical

tests to estimate the uncertainties of Laue-DIC in two steps:

1. estimate the uncertainties of displacements by operating upon the arti�cial spots

with imposed displacements. In our case, the simulated error of displacement is of

the order of 0.05 pix;

2. estimate the uncertainty of relative deformation gradient by randomly perturbing
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the spots' displacements and calibration parameters. To this end, we impose zero-

mean Gaussian error to simulated spots' displacements and pre-known calibration

parameters to investigate their in�uence upon relative deformation gradient, and the

simulated error of relative deformation gradient is of the order of 10−5 when 25 Laue

spot are considered.
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Chapter 3

Enhanced Laue-DIC and its Precision

3.1 Motivation

In �2.2.2, we have presented the principle of Laue-DIC and have demonstrated that

Laue-DIC method is capable of improving the accuracy of elastic strain measurement,

because it draws on a more reliable source of information � the displacements of spots

rather than the absolute positions of spots. Although this is a good start point towards

improving the evaluation of orientation and elastic strain from Laue microdi�raction, it

su�ers from several drawbacks:

• The evaluation of elastic strain needs a reference con�guration whose lattice matrix

is known. This ignorance of lattice matrix of reference con�guration would add up to

the uncertainty of the evaluation of elastic strain, or limit the application of Laue-DIC

to circumstances where the elastic strain and orientation of reference con�guration

is straightforward, e.g. the neutral �ber in bending test, in which the normal stress

in the direction of longitude is supposed to be zero.

• Aside from lattice rotation and distortion, any perturbation of calibration param-

eters from reference con�guration to current con�guration may contribute to the

spot displacements, which may be confused with the displacements caused by lattice

distortion/rotation.

• Even the acquisition of relative deformation gradient requires the lattice matrix and

calibration parameters to be known accurately, as shown in Eqn. 2.4, where the
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3.2. ENHANCED LAUE-DIC

calculation of nrefi needs the lattice matrix and calibration parameters of reference

con�guration.

This chapter is dedicated to provide an enhanced version of Laue-DIC to solve the problems

mentioned above. We will present the formulation of enhanced Laue-DIC in the �rst place,

and then we will run numerical tests in order to: (i) investigate the proper optimization

algorithm, (ii) the performance of enhanced Laue-DIC.

3.2 Enhanced Laue-DIC

We will refer to the Laue-DIC mentioned in the previous chapter as original Laue-DIC

hereinafter in order to distinguish it from the enhanced version which will be presented in

this chapter. Like its original version, enhanced Laue-DIC still needs two di�raction images

and to treat them by DIC. The novelty of enhanced Laue-DIC compared with the original

one rests in treating both the lattice matrices of reference con�guration and calibration

parameters as unknowns. For brevity, we use lowercase letter to represent parameters in

current con�guration, and uppercase letter to represent parameters in reference con�gu-

ration. Tab. 3.1 tabulates the symbols for the parameters. The spots' displacements in

Con�guration Current Reference
Reciprocal lattice matrix l˜ L˜Sample-detector distance d D

The nearest point on the area detector to the illumination (xc, yc) (Xc, Yc)

Pitch angle of detector β B

Yaw angle of detector γ Γ

Detector orientation matrix (Eqn. 1.19) g˜ G˜
Scaled di�raction vector (Eqn. 1.28) ξ Ξ

Table 3.1: Symbols for parameters

di�erent con�guration are mainly due to: (i) the lattice distortion and (ii) perturbation

of experimental setup. In real practice, the two causes happen simultaneously, therefore

a sound evaluation of lattice distortion must take perturbation of experimental setup into

consideration. For a spots with a given index hkl, its displacement is a function of recip-
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3.2. ENHANCED LAUE-DIC

rocal lattice parameters and calibration parameters:{
x(l˜∗, d, xc, β, γ, hkl)− x(L˜∗, D,Xc, B,Γ, hkl) = ∆xhkl

y(l˜∗, d, yc, β, γ, hkl)− y(L˜∗, D, Yc, B,Γ, hkl) = ∆yhkl
(3.1)

Substitute Eqn. 1.29 into Eqn. 3.1, we have:
d
ξhkli g1i

ξhkli g3i
+ xc −D

Ξhkli G1i

Ξhkli G3i
−Xc = ∆xhkl

d
ξhkli g2i

ξhkli g3i
+ yc −D

Ξhkli G2i

Ξhkli G3i
− Yc = ∆yhkl

Denote ∆xc = xc −Xc and ∆yc = yc − Yc, we have
d
ξhkli g1i

ξhkli g3i
−DΞhkli G1i

Ξhkli G3i
+ ∆xc = ∆xhkl

d
ξhkli g2i

ξhkli g3i
−DΞhkli G2i

Ξhkli G3i
+ ∆yc = ∆yhkl

(3.2)

Notice that Laue di�raction will not resolve isotropic dilation of lattice without ad-

ditional information, e.g. spot's energy [Robach et al. 2011], we can therefore resolve

only eight degrees of freedom of lattice from Laue di�raction. Without loss of generality,

we exclude the component of reciprocal lattice matrix, whose index is 11, from our opti-

mization, in other words, we keep it �xed throughout the optimization. Therefore if we

are provided a series of spots' displacements by DIC, there are totally 24 unknowns to be

solved from Eqn. 3.2: 8 parameters for l˜∗, 8 parameters for L˜∗, and calibration parameters

d, D, ∆xc, ∆yc, β, γ, B, Γ. We denote the parameters to be optimized by P. Note that
it is impossible to determine xc, yc, Xc, or Yc from Eqn. 3.2, because the left hand side of

Eqn. 3.2 is irrelevant to the any of them, only ∆xc and ∆yc can be determined.

If the lattice parameters and calibration parameters are given, we can uniquely deter-

mine any spot's displacement with equation 3.2. Now the question is, given twelve spots'

displacements, can we determine the sixteen lattice matrix components and eight calibra-

tion parameters? The answer is, according to implicit function theorem, as long as the

Jacobian matrix of Eqn. 3.2 has full rank, we can determine the 24 parameters (denoted

as P hereinafter) from at least 12 spots' displacements, i.e.:

det[J˜] = det

[
∂(∆x1,∆y1,∆x2,∆y2, · · · ,∆x12,∆y12)

∂P

]
6= 0, (3.3)
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To illustrate the role of Jacobian matrix [J˜], we raise an examples in which di�erent

sets of 24 parameters give the same displacements of spots. If the parameters of current

con�guration are the same with their counterparts in reference con�gurations except d,

then for any spot we have from Eqn. 3.2:

∂∆x

∂d
=
ξig1i

ξig3i
=

ΞiG1i

ΞiG3i
= −∂∆x

∂D
,

∂∆y

∂d
=
ξig2i

ξig3i
=

ΞiG2i

ΞiG3i
= −∂∆y

∂D
.

From the equation above, we see that the column of the Jacobian matrix [J˜] corresponding

to the partial derivatives with respect to d is opposite to the column corresponding to the

partial derivatives with respect to D, hence det[J˜] = 0. Therefore, even if we were able to

get more than 12 displacements, we could obtain nothing from these data if the Jacobian

matrix were not full ranked. In fact, we can arbitrarily increase or decrease d and D by

the same amount without changing the resulted displacement �eld, as long as d−D is kept

constant.

In real practice, we can obtain more than 12 spots' displacements, our problem becomes

minimizing an objective function:

Π =
∑
hkl

W hkl
x

(
d
ξhkli g1i

ξhkli g3i
−DΞhkli G1i

Ξhkli G3i
+ ∆xc −∆xhkldic

)2

+
∑
hkl

W hkl
y

(
d
ξhkli g2i

ξhkli g3i
−DΞhkli G2i

Ξhkli G3i
+ ∆yc −∆yhkldic

)2

,

(3.4)

where W hkl
x and W hkl

x are the weight for x- and y- displacements of the (hkl) spots respec-

tively (in �4.4, we will give one de�nition of weights), the subscript dic represents that the

spots' displacements are measured by DIC, and the unit of Π is pix2.

In order to save CPU time of minimization, we do not optimize β, γ, B, and Γ directly,

we rather optimize tan β
2 , tan γ

2 , tan B
2 , and tan Γ

2 , in that case, the parameters to be

optimized become

P = {l˜∗, L˜∗, d,D,∆xc,∆yc, tan
β

2
, tan

γ

2
, tan

B

2
, tan

Γ

2
}. (3.5)

The original formulation of cost function, Eqn. 3.4, becomes

Π =
∑
hkl

W hkl
x

(
d
ξhkli t1i

ξhkli t3i
−DΞhkli T1i

Ξhkli T3i
+ ∆xc −∆xhklDIC

)2

+
∑
hkl

W hkl
y

(
d
ξhkli t2i

ξhkli t3i
−DΞhkli T2i

Ξhkli T3i
+ ∆yc −∆yhklDIC

)2

,

(3.6)
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where

[t˜] = [g˜] · (1 + tan2 β
2 )(1 + tan2 γ

2 )

=

 (1 + tan2 β
2 )(1− tan2 γ

2 ) −(1− tan2 β
2 ) tan γ

2 4 tan β
2 tan γ

2

2(1 + tan2 β
2 ) tan γ

2 (1− tan2 β
2 )(1− tan2 γ

2 ) −2 tan β
2 (1− tan2 γ

2 )

0 2 tan β
2 (1 + tan2 γ

2 ) (1− tan2 β
2 )(1 + tan2 γ

2 )

 ,

and

[T˜ ] = [G˜ ] · (1 + tan2 B
2 )(1 + tan2 Γ

2 )

=

 (1 + tan2 B
2 )(1− tan2 Γ

2 ) −(1− tan2 B
2 ) tan Γ

2 4 tan B
2 tan Γ

2

2(1 + tan2 B
2 ) tan Γ

2 (1− tan2 B
2 )(1− tan2 Γ

2 ) −2 tan B
2 (1− tan2 Γ

2 )

0 2 tan B
2 (1 + tan2 Γ

2 ) (1− tan2 B
2 )(1 + tan2 Γ

2 )

 ,

In this manner, we manage to avoid trigonometric calculations in each iteration of opti-

mization.

Although we usually provide the initial guess of P by standard Laue treatment, en-

hanced Laue-DIC essentially uses spots' displacements as input. The �owchart of enhanced

Laue-DIC is given in Fig. 3.1: image enhanced Laue-DIC as a black box, the inputs of

the black box are spots' displacements measured by DIC and spots' indexes (for example,

obtained by LaueTools [LaueTools]), and the outputs are lattice matrices and calibration

parameters of both current and reference con�gurations; to facilitate the calculation, an ini-

tial estimation of lattice matrices and calibration parameters are provided by other means,

e.g. standard Laue treatment (see �1.5).

The original Laue-DIC, introduced in the previous chapter, is actually a special case of

enhanced Laue-DIC, and it corresponds to the case in which the lattice matrix of reference

con�guration, the calibration parameters of both reference and current con�gurations are

known, only the relative deformation gradient, or more precisely, the lattice matrix of

current con�guration, will be calculated. As we have shown in �2.2.2, solving a system

of linear equations of Eqn. 2.6 would su�ce to obtain the relative deformation gradient.

However, in enhanced Laue-DIC, P, the set of unknowns to be inquired, is more complex

than in original Laue-DIC. Therefore, we need to employ some more advanced numerical

methods, and we will cover the topic in the next section.
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Figure 3.1: Flowchart of enhanced Laue-DIC

3.3 Numerical Tests of Enhanced Laue-DIC

Now our problem is to minimizing Π(P) by manipulating P. Prior to dealing with

experimental data, we �rst run some numerical tests with simulated data for the following

purpose:

• investigating the variation of Π(P) with its variables.

• �nding the most e�cient optimization algorithm.

• investigating how the uncertainties of DIC in�uence the minimization of Π(P).

The procedure of numerical test goes as following (see Fig. 3.2):

1. Given the exact values of lattice matrices and calibration parameters for two con�g-

urations, generate theoretical peak positions on detector plane with Eqn. 1.29 and

subsequently their displacements.

2. Deviate the simulated peaks' positions and calibration parameters a little bit from

their exact values according to normal distribution. The deviation of peak's position
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is 0.1 pix in both x and y direction to represent the uncertainties of �tting Laue spot

[Poshadel et al. 2012], and the deviation of calibration parameters are tabulated in

Tab. 2.4.

3. Use, for example, the standard Laue treatment to calculate lattice matrices for the

two con�gurations with the deviated peaks' positions and deviated calibration pa-

rameters as estimation of lattice matrices.

4. If we wish to study the in�uence of errors on spots' displacements, deviate the input

displacements a little bit from their theoretical values.

5. Run the optimization to investigate whether we can recover the exact values of lattice

matrices and calibration parameters using the simulated displacements as input and

deviated parameters as initial guess.

For calibration parameters, their errors are quanti�ed by their discrepancies between

calculated values and the exact ones:

εx = |xcal − xexa|, x ∈ {d,D,∆xc,∆yc, β, B, γ,Γ},

where the superscript cal represents the result after optimization, and the superscript exa

represents the exact value which is known in advance. As for the quanti�cation of the

errors on lattice matrices, l˜ and L˜, we use similar de�nition of errors as that of relative

deformation gradient in �2.5.2:

1. dividing each component of lattice matrix by the cube root of the determinant of the

lattice matrix in order to get rid of the uncertainty on the volume of unit lattice, i.e.

l̂˜ .
=

l˜
3
√

det l˜,
L̂˜ .

=
L˜

3
√

detL˜
(3.7)

2. the errors on l˜ and L˜ are de�ned as

εl
.
=

∑3
i=1

∑3
j=1 |l̂calij − l̂exaij |

9
,

εL
.
=

∑3
i=1

∑3
j=1 |L̂calij − L̂exaij |

9
.
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Dexa, Xexa
c , Y exa

c , Bexa,Γexa

L˜exa
l˜exa

dexa, xexac , yexac , βexa, γexa

(Xexa
hkl , Y

exa
hkl )

(xexahkl , y
exa
hkl )

(∆Xexa
hkl ,∆Y

exa
hkl )

Ddis, Xdis
c , Y dis

c , Bdis,Γdis

ddis, xdisc , ydisc , βdis, γdis

(Xdis
hkl, Y

dis
hkl )

(xdishkl, y
dis
hkl)

L˜dis

l˜dis

Add noise Add noise

Add noise
Add noise

enhanced Laue-DIC
Estimation

(∆Xdis
hkl,∆Y

dis
hkl )

Add noise

Input

output
dcal, Dcal, βcal, Bcal, γcal,Γcal,∆Xcal

c ,∆Y cal
c

l˜cal, L˜cal
Figure 3.2: Flowchart of numerical tests
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In case of statistical tests where multi random cases are treated, we de�ne the sys-

tematic and random errors of l˜ and L˜ as:

εl
.
=

∑3
i=1

∑3
j=1 |l̂

cal

ij − l̂exaij |
9

,

σεl
.
=

∑3
i=1

∑3
j=1 σl̂calij

9
,

εL
.
=

∑3
i=1

∑3
j=1 |L̂

cal

ij − L̂exaij |
9

,

σεL
.
=

∑3
i=1

∑3
j=1 σL̂cal

ij

9
.

(3.8)

where the overline on the right hand of equations means the average, and the σ on

the right hand of equations means the standard deviation.

We will perform two types of numerical tests in the following: the �rst type uses the

peaks' displacements which are accurately given, and the purpose of this type is to �nd

out an e�cient optimization algorithm; and the second types uses displacements which

are polluted by zero-mean Gaussian noise, and the purpose of this type is to evaluate the

systematic and random errors of enhanced Laue-DIC. As for the exact values of lattice

matrices, we deal with case I of �2.5.2 with the �rst type of tests; and we deal with all

three cases of �2.5.2 with the second type of tests. In both types of tests, the calibration

parameters and their uncertainties are given in Tab. 2.3 and 2.4 respectively.

3.3.1 Numerical tests with accurate spots' displacements as input

Let us �rst grasp some visual impression about the properties of the cost function Π(P)

(see Eqn. 3.6). Because Π(P) contains 24 parameters, it is di�cult to plot Π(P) on paper.

What we do is to investigate the variation of Π(P) by altering one parameter of P while

keeping the rest �xed. The lattice matrices used in this program is the same as those in

the case I of �2.5.2.

Fig. 3.3 depicts the variation of Π(P) with lattice parameters. For brevity, we only

plotted the dependence on one diagonal and one o�-diagonal components of lattice matrix

l˜ and L˜, i.e. L22, L23, l22, and l23. Fig. 3.4 depicts the variation of Π(P) with calibration

parameters. In the two �gures, the black curves represent the case where the rest parame-
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Figure 3.3: Variation of Π(P) by altering L22, L23, l22, and l23 while keeping the rest �xed

ters are kept in their exact values, while the colored curves represents the cases where the

rest parameters are deviated from their exact values but kept �xed. We can see that:

1. If we only varied one parameter, we could �nd only one minimum point.

2. The position of the minimum point is in�uenced by other parameters, speci�cally,

any deviation of other parameters from their exact values would deviate the minimum

point from its exact value.

Since there is only one minimum if we vary one parameter while keeping the rest

constant, it is straightforward for us to minimize each parameters one by one, and then

iterate the process. After each minimization of one parameter, the cost function Π(P) will

decrease, and will eventually converge to zero if we keep on iterating the process. Although

it sounds plausible, in practice, it requires a lot of CPU time. In my case, it requires 20 000
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Figure 3.4: Variation of Π(P) by altering one calibration parameter while keeping the rest
�xed
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Figure 3.5: Π/Π0 vs. iteration counts using L-BFGS-B algorithm, the peaks' displacements
are accurately given.

iterations (about �ve minutes on a standard laptop) to reach an order of error of 10−6 in

lattice matrices (see Eqn. 3.7 for the de�nition of error). Therefore, it is worthwhile to use

some more advanced optimization methods to �nd the minimum of Π(P).

The candidate algorithms in our test were: Powell's algorithm (requires no derivatives

of Π, see [Powell 1964]), L-BFGS-B algorithm (requires the gradient of Π, see [Byrd et al.

1995]), and Trust-Region algorithm (requires both the gradient and Hessian matrix of Π,

see [Byrd et al. 1987]). The analytical expressions of gradient and Hessian matrix of Π are

given in Appendix A.2 and A.3 respectively. The halts of these algorithms are controlled

by the iteration counts.

Of course, increasing the iteration counts would asymptotically decrease the value of Π

to zero if the peaks' displacements were free of errors. Fig. 3.5 depicts the decrease of cost

function Π with the iterations of the implementation of L-BFGS-B algorithm, in which Π0

represents the initial value of cost function. It can be seen that the value of Π decreases

signi�cantly with increasing the iteration; however, when the iteration count exceeds 20,

further iteration will not signi�cantly reduce the cost function Π. Similar trend is also

observed in other algorithms investigated. Therefore, for each algorithm, we will stop the

iteration when the decrease of the cost function is less than 5% of its previous value. Tab.

3.2 lists the performances of the mentioned algorithms.

It is evident from Tab. 3.2 that though Trust-Region and L-BFGS-B algorithms can
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Trust-Region L-BFGS-B Powell Initial value

εl 0.05 5.40× 10−5 9.57× 10−5 6.77× 10−5

εL 0.05 6.03× 10−5 9.60× 10−5 8.58× 10−5

εd/mm 2.9× 10−3 3.33× 10−3 1.44× 10−3 4.22× 10−3

εD/mm 1.3× 10−3 1.41× 10−3 1.46× 10−3 3.95× 10−3

ε∆xc/pix 6.6× 10−2 0.17 2.38× 10−4 0.23
ε∆yc/pix 3.7× 10−2 0.03 2.20× 10−3 0.38
εβ/
◦ 5.5× 10−2 1.24× 10−3 6.42× 10−4 5.12× 10−3

εB/
◦ 5.4× 10−2 2.06× 10−3 4.09× 10−3 5.12× 10−3

εγ/
◦ 0.51 6.45× 10−4 6.52× 10−4 4.90× 10−3

εΓ/
◦ 0.51 6.25× 10−4 4.10× 10−3 5.07× 10−3

Π
Π0
× 100% 7.7% 12.1% 20.2% 100%

Table 3.2: Performance of each individual algorithm, Π0 being the initial value of cost
function

reduce the objective function Π, several indexes indicating the deviation from real value in-

crease signi�cantly after optimization. This phenomenon may signify that we have attained

local minimum rather than global minimum. And Powell algorithm is very time-consuming

(about 45 sec per iteration), perhaps due to the fact that Powell algorithm does not use any

derivative of cost function. Though there are global minimization algorithm available, e.g.

simulated annealing algorithm, genetic algorithm. These algorithms entail large mount of

calculation, but in this work we do not have su�cient time to dig into them. Here, we

tried to use partial optimization rather than full optimization.

To improve the procdure, we �rst subdivided all parameters P into lattice matrices L =

{l˜, L˜}, and calibration parameters, denoted as C = {d,D,∆xc,∆yc, β, B, γ,Γ}. Because

there is more uncertainty in L than in C (the uncertainty in lattice matrices comes from

uncertainties in calibration parameters plus those in peaks' positions), we �rst optimize L
while keeping C �xed. Once the optimization of L is �nished, we optimize C while keeping
L �xed. We iterate this procedure until the decrease of the cost function is less than 5%

of its previous value.

We tested all the combinations of optimization algorithms to investigate which com-

bination gave the best results in terms of εx, x ∈ {l, L, d,D,∆xc,∆yc, β, B, γ,Γ}. As the

calibration parameters are randomly deviated, we optimized 500 random cases for each
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combination to make the results statistically signi�cant. The statistical performance of

each combination was evaluated by the average of εx, x ∈ {l, L, d,D,∆xc,∆yc, β, B, γ,Γ}
of all cases (the average is denoted as ε). The results of numerical test were given in Tab.

3.3, we found that the result of the combination "L-BFGS-B"-"Powell" approached the

real values of L most: the accuracies of L and C are one order magnitude better than

simply using Powell's algorithm. The calculation of enhanced Laue-DIC hereinafter will

use this combination if there were no other speci�cation, which will cost ∼ 30 sec for a

single optimization.

3.3.2 Numerical tests with erroneous spots' displacements as input

We discussed the minimization of Π(P) when the spots' displacements are accurately

given as input in the previous section. However, in real case, the spots' displacements are

prone to errors as demonstrated in the previous chapter. Just as in �2.5.2, we will perform

the numerical tests in two aspects:

• Varying the deviations of spots' displacements while maintaining the deviations of

calibration parameters. The deviations imposed to spots' displacements are 0.005 pix,

0.01 pix, 0.015 pix, 0.02 pix, 0.025 pix, 0.03 pix, 0.035 pix, 0.04 pix, 0.045 pix, 0.05 pix,

while the deviations of calibration parameters are tabulated in Tab. 2.4.

• Vary the deviations of calibration parameters while maintaining the deviations of

spots' displacements. The deviations of calibration parameters are obtained by uni-

formly scaling the deviations tabulated in Tab. 2.4, and the scaling factors are 0,

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5. The deviations of spots' displacements

are 0.01 pix for both x and y directions of all the spots.

For each setting of deviations of spots' displacement and calibration parameters, we

generate 500 random cases and then calculate the average errors of lattice matrices and

calibration parameters. We applied the test to the case I, II, and III of �2.5.2, and the

three cases represent increasing deformation in a row. Besides, in �2.5.2 we have also

demonstrated that the number of spots considered will also a�ect the accuracy. Therefore

we will also run the numerical tests with three di�erent numbers of spots: 12, 25, and 45.
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Algorithm for L Trust-Region Trust-Region Trust-Region
Initial value

Algorithm for C Trust-Region L-BFGS-B Powell

εl 0.14 6.8× 10−2 0.17

Same as in Tab. 3.2

εL 0.14 6.8× 10−2 0.17
εd/mm 4.4× 10−3 1.9× 10−3 4.4× 10−3

εD/mm 3.3× 10−3 6.0× 10−3 3.8× 10−2

ε∆xc/pix 0.60 0.33 7.9× 10−2

ε∆yc/pix 0.76 0.41 0.85
εβ/
◦ 0.36 7.3× 10−3 7.0× 10−4

εB/
◦ 1.33 1.4× 10−2 5.4× 10−4

εγ/
◦ 0.36 1.2× 10−2 7.4× 10−3

εΓ/
◦ 1.34 1.5× 10−2 8.2× 10−3

Π
Π0
× 100% 5.9% 10.1% 18.2% 100%

Algorithm for L L-BFGS-B L-BFGS-B L-BFGS-B
Initial value

Algorithm for C Trust-Region L-BFGS-B Powell

εl 1.4× 10−4 2.4× 10−3 6.1× 10−6

Same as in Tab. 3.2

εL 2.2× 10−5 2.4× 10−3 8.4× 10−6

εd/mm 1.1 3.1× 10−3 1.9× 10−4

εD/mm 1.1 1.8× 10−3 1.6× 10−4

ε∆xc/pix 0.30 0.16 9.1× 10−3

ε∆yc/pix 0.22 0.25 1.5× 10−2

εβ/
◦ 6.1× 10−3 3.6× 10−2 4.3× 10−4

εB/
◦ 3.4 5.5× 10−3 6.3× 10−4

εγ/
◦ 5.6× 10−2 4.8× 10−2 2.5× 10−4

εΓ/
◦ 3.4 6.7× 10−3 1.2× 10−4

Π
Π0
× 100% 7.2% 9.0% 8.0% 100%

Algorithm for L Powell Powell Powell
Initial value

Algorithm for C Trust-Region L-BFGS-B Powell

εl 7.7× 10−5 1.0× 10−4 1.2× 10−4

Same as in Tab. 3.2

εL 5.3× 10−5 6.8× 10−5 3.4× 10−5

εd 5.6× 10−3 1.3× 10−3 1.6× 10−3

εD 1.1× 10−3 8.1× 10−4 3.6× 10−3

ε∆xc/pix 0.14 5.7× 10−2 6.9× 10−2

ε∆yc/pix 0.07 0.18 1.10
εβ/
◦ 0.11 9.0× 10−2 7.0× 10−3

εB/
◦ 3.10 2.2× 10−2 6.7× 10−3

εγ/
◦ 0.11 9.6× 10−2 8.5× 10−4

εΓ/
◦ 3.10 4.0× 10−2 9.5× 10−4

Π
Π0
× 100% 13.9% 17.2% 23.6% 100%

Table 3.3: Performance of algorithm combinations
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(f) Random error with 12 spots

Figure 3.6: Variations of systematic and random errors of lattice matrices with the devia-
tions of displacements in case I.

116



3.3. NUMERICAL TESTS OF ENHANCED LAUE-DIC

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0.00000754

0.00000756

0.00000758

0.00000760

0.00000762

0.00000764

0.00000766

0.00000768

0.00000770

ǫL

ǫl

(a) Systematic error with 40 spots

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0

1

2

3

4

5

6
1e−8+1.362e−5

σǫL

σǫl

(b) Random error with 40 spots

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0.000287

0.000288

0.000289

0.000290

0.000291

0.000292

0.000293

0.000294

ǫL

ǫl

(c) Systematic error with 25 spots

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0.0004546

0.0004548

0.0004550

0.0004552

0.0004554

0.0004556

0.0004558

0.0004560

0.0004562

0.0004564

σǫL

σǫl

(d) Random error with 25 spots

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0.00022

0.00023

0.00024

0.00025

0.00026

0.00027

0.00028

ǫL

ǫl

(e) Systematic error with 12 spots

0.0 0.5 1.0 1.5 2.0 2.5

Scaling factor α
0.00580

0.00585

0.00590

0.00595

0.00600

0.00605

0.00610

σǫL

σǫl

(f) Random error with 12 spots

Figure 3.7: Variations of systematic and random errors of lattice matrices with the devia-
tions of calibration parameters in case I.
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We �rst investigate the systematic and random errors on l˜ and L˜ of case I, with 40

spots, 25 spots, and 12 spots taken into account. In Fig. 3.6 and 3.7 we plot the variations

of l˜ and L˜ relative to the errors of displacements and calibration parameters respectively,

and we have the following conclusions:

• Both systematic and random errors of lattice matrices and calibration parameters

increase with the deviations of spots' displacements.

• The systematic and random errors of l˜ and L˜ increase if the number of spots consid-

ered is reduced.

• The systematic errors seem more stable with the deviations of calibration parameters;

this may be due to the fact that enhanced Laue-DIC has taken calibration parameters

into consideration and become more robust against the errors in initial calibration

parameters.

• When 12 spots are considered, the random error seems to increase linearly with the

deviations of calibration parameters, while the random errors seem more stable with

the deviations of calibration parameters when 40 or 25 spots are considered. This

may be explained by the fact that the random error is also a function of number

of spots considered, the in�uence of deviations of calibration parameters may be

mitigated by increasing the number of spots considered. With less spots, the results

of enhanced Laue-DIC are more prone to the errors of displacements and more likely

to converge to wrong values.

• The random errors in lattice matrices are much higher than the corresponding sys-

tematic errors.

• Both systematic and random errors in lattice matrices increases with decreasing the

number of spots taken into account.

• Despite the discrepancies between l˜'s and L˜'s systematic or random errors, the error

curves of l˜ and L˜ are almost identical, that is to say, the errors of l˜ and L˜ increase al-

most at the same pace when increasing the deviations of displacements or calibration

parameters.
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• By comparing the evolution of the curves of random errors with the number of spots,

we �nd that the curves of random errors appear to be more linearly shaped. When

only 12 spots are considered, the curve loses the linearity.

The same trend has been observed in case II and case III.

Let us investigate the in�uence of deformation levels upon systematic and random

errors of l˜ and L˜. For the sake of brevity, we only plotted the results with 25 spots taken

into consideration to illustrate this point, and we found that the curves of both systematic

and random errors of l˜and L˜ do not vary signi�cantly among the three cases corresponding

to three levels of deformation F˜ , F˜2, and F˜3: compare the systematic and random errors

of case II and III in Fig. 3.8 with Fig. 3.6c and 3.6d, corresponding to the systematic and

random errors of case I. The similar feature has also been found with other numbers of

spots.

Now, we study the variations of systematic and random errors of calibration parameters

with the deviations of displacements. We plotted the systematic and random errors of

calibration parameters in case I with 25 spots considered in Fig. 3.9. We investigate two

factors in�uencing the error curves:

numbers of spots considered In Fig. 3.10, we plotted the the variations of systematic

and random errors of d and D with the deviations of displacements, with 12 and 40

spots considered in case I, and we found that it was not obvious that the errors of d

and D would decrease as the number of spots increased unlike those of l˜ and L˜. The
same feature has also been identi�ed with other calibration parameters. Therefore,

we concluded that the systematic and random errors on calibration parameters were

less sensitive to the number of spots considered than those on lattice matrices.

levels of deformation To investigate the in�uence of deformation level, we plotted sys-

tematic and random errors of d and D in case II and III with 25 spots considered in

Fig. 3.11. Again, we found that the relations between errors and levels of deformation

did not seem obvious in d and D, nor in the rest of the parameters.

We also plotted the variation of systematic and random errors of calibration parameters
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(c) Systematic errors of case III
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(d) Random errors of case III

Figure 3.8: Variations of systematic and random errors of lattice matrices with the devia-
tions of displacements in case II and III with 25 spots considered.
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Figure 3.9: Variations of systematic and random errors of calibration parameters with the
deviations of displacements in case I with 25 spots considered.
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(a) Systematic error with 40 spots (b) Random error with 40 spots

(c) Systematic error with 12 spots (d) Random error with 12 spots

Figure 3.10: Variations of systematic and random errors of d and D with the deviations of
displacements in case I.

with the deviations of calibration parameters in case I with 25 spots considered in Fig. 3.12.

Like the errors of l˜ and L˜ in Fig. 3.7, the systematic errors seem stable with the deviations

of calibration parameters, and the random errors seem to increase linearly with deviations

of calibration parameters except the random errors of ∆xc and ∆yc. This may probably

indicate that only ∆xc and ∆yc are accurately calculated since they appear insensitive to

the variations of calibration parameters. Similar trend has also been found in cases II and

III with other number of spots.

3.4 Summary

In this chapter, we have come up with an enhanced version of Laue-DIC. We �rst

presented the limitation of the original Laue-DIC (see �3.1), which: (i) requires a reference

con�guration with a known lattice matrix, and (ii) requires the knowledge of calibration

parameters of both current and reference con�gurations. Then, we presented its enhanced
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(a) Systematic error of case II (b) Random error of case II

(c) Systematic error of case III (d) Random error of case III

Figure 3.11: Variations of systematic and random errors of d and D with the deviations of
displacements in case II and III with 25 spots considered.

version, referred to as enhanced Laue-DIC (see �3.2). By "enhanced", we mean that the

method uses solely spots' displacement measured by DIC as input, and the output includes

not only the lattice matrices of two con�gurations but also the calibration parameters at

two con�gurations. And this method is feasible as long as the Jacobian matrix (Eqn. 3.3)

has full rank. In the end, we performed numerical tests with enhanced Laue-DIC in order

to:

• try di�erent optimization methods to �nd a proper optimization method; to this end,

we �rst used accurate spots' displacements as input to check whether and how much

we can recover the accurate lattice matrices and calibration parameters (see �3.3.1).

So far the most e�cient optimization algorithm among those we have tested is: op-

timizing the lattice matrices with L-BFGS-B method and optimizing the calibration

parameters with Powell method.

• investigate the uncertainties of enhanced Laue-DIC from four dimensions: (i) the

123



3.4. SUMMARY

(a) Systematic error (b) Random error
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Figure 3.12: Variations of systematic and random errors of calibration parameters with
the deviations of calibration parameters in case I with 25 spots considered.
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errors of spots' displacement, to this end, we added to spots' displacements with zero-

mean Gaussian errors with incremental deviations from 0 to 0.05 pix; (ii) the errors of

calibration parameters, to this end, we also added to the exact calibration parameters

zero-mean Gaussian errors whose deviations came from scaling the deviations of Tab.

2.4 by a factor increasing from 0 to 2.5; (iii) the number of spots considered, 12, 25,

and 40; (iv) the amplitude of deformation, F˜ , F˜2, and F˜3 where F˜ is de�ned in Eqn.

2.20.

And the e�ects of the four aspects are summarized as following:

Errors of displacements Both systematic and random errors increase with the errors of

displacements.

Errors of calibration parameters The systematic and random errors of lattice matrices

seem more stable with the variation of calibration parameters, this may be due to

the fact that enhanced Laue-DIC has taken the uncertainty of calibration parameters

into account. The systematic errors of calibration parameters are also stable with the

variation of calibration parameters, and the random errors of calibration parameters

seem to increase linearly with the errors of calibration parameters except those of

∆xc and ∆yc, which appear stable.

Number of spots considered Both systematic and random errors of lattice matrices

increases if the number of spots were reduced. However, the relationships between

the errors of calibration parameters and number of spots is not very obvious.

Amplitude of deformation The relation between the errors and the amplitudes of de-

formation is not obvious in our study yet.

In the next chapter, we will use standard Laue treatment, original Laue-DIC, and

enhanced Laue-DIC to treat experimental data collected from in-situ four point bending

test.
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Chapter 4

Applications

4.1 Introduction

In this chapter, we applied the standard Laue treatment mentioned in Chapter 1, the

original Laue-DIC method mentioned in Chapter 2, and the enhanced Laue-DIC mentioned

in Chapter 3 to experimental images, which were collected in BM32, ESRF. We will �rst

present the context of the experiments, including an introduction of BM32, ESRF, and

the processes of experiments. We will then compare the results by the three methods with

analytical solutions or numerically simulated values and comment on that.

4.2 Description of Experiments

4.2.1 Introduction to Beamline BM32, ESRF

Figure 4.1: Sketch of the beamline [Ulrich et al. 2011]
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In our experiments, we used the X-ray Laue microdi�raction equipments at beamline

BM32 at ESRF, Grenoble. The full name of BM32 is Bending Magnet 32, and that of ESRF

is European Synchrotron Radiation Facility. BM32 at ESRF is a Collaborative Research

Group beamline by French institutes and specially dedicated to Surface X-ray Di�raction

(SXRD), microdi�raction, and X-ray absorption spectroscopy (XAS). It ful�lled its duty

in several experiments ( [Villanova et al. 2010], [Desgranges et al. 2010], [Kirchlechner

et al. 2011], [Hofmann et al. 2011]) and proved to be operational and fruitful.

BM32 consisted of optical hutch and experimental hutch as described in [Ulrich et al.

2011]. The optical hutch works in a 1 : 1 mode where the synchrotron source-to-optics

distance typically equals the optics-to-sample distance so as to keep an unitary demagni-

�cation ratio of synchrotron source at the sample position (see Fig. 4.1). Bending magnet

source feeds the optical hutch with white beam, which will successively passes through en-

trance slit, �rst mirror, monochromator, second mirror, and �nally exits the optical hutch

through wide aperture micro-slit (�gure 4.2). Before reaching the sample, the beam is fur-

ther focused by Kirkpatrick-Baez mirror (hereinafter referred to as KB mirror) to achieve

a size of 0.5× 0.5µm2 and to stabilize its position to better than 0.2µm. The KB mirrors

in BM32 ESRF has been changed from mechanically-bent mirrors into pre�gured mirrors

by the time we did our experiments, because pre�gured mirrors including di�erentially

pro�led mirrors are lighter and less sensitive to thermal gradients than mechanically-bent

mirrors. Actual issues to such state-of-art setup include the damage to the mirrors during

the exposure to radiation and the aging of the mirrors can a�ect the long-term performance

of the mirrors [Ice et al. 2009].

BM32 o�ers two modes: monochromatic beam and white beam, from which users can

choose by adjusting the angle and distance of the two crystals of the monochromator. In

the case of Laue microdi�raction, the mode of white beam should be chosen. The spectral

band we used was 5− 22 keV. However, the spectral brightness of synchrotron sources can

hardly be characterized by single formula or diagram, since it depends on various factors,

e.g., ring current, magnet �eld strength, beamline optics, etc (brightness is de�ned as the

number of photons passing through a surface having unit solid angle per unit time [He

2009a]). We can have a general idea of spectral brightness from Fig. 4.3.
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Figure 4.2: Optical system of BM32, ESRF

4.2.2 Specimens

In our experiments, we investigated three materials: Si, Ge, and 316 stainless steel (re-

ferred to as 316L hereinafter). Si and Ge are elastic material and do not deform plastically.

Their di�erence lies in their penetration depth: Si has a larger penetration depth than

Ge; for example, for X-ray photon generated by Kβ1 line of Cu (∼ 8 keV), the absorption

coe�cient of Si is 110.7 cm−1, while that of Ge is 272.4 cm−1 [Maslen 2004]. 316L is a

more industrial material than Si and Ge, and it will deform plastically.

4.2.2.1 Si specimens

We have prepared three Si monocrystals of di�erent orientations to investigate the

in�uence of orientation, namely Si sample I, Si sample II, and Si sample III. The sizes of

the three samples are 2.42×7.97×35 mm3 (see Fig. 4.4), and the approximate orientation

of three samples are tabulated in Tab. 4.1 The surfaces of the three Si samples were

mechanically polished at ESRF to a mirror �nish with negligible roughness.
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Figure 4.3: Spectral brightness distribution for the BM32, ERSF [Ulrich et al. 2011]

(hkl) 〈uvw〉
Sample I [100] [010]
Sample II [110] [001]
Sample III [110] [110]

Table 4.1: Approximate orientations of three Si samples. The (hkl) and 〈uvw〉 are speci�ed
in Fig. 4.4.

4.2.2.2 Ge specimens

We have experimented on one Ge monocrystal, whose size is 2.42 × 7.97 × 35 mm3.

The Ge sample was oriented so that its [100], [010], and [001] directions were aligned

approximately parallel to the three edges of sample. The surfaces of the Ge sample was

mechanically polished to a mirror �nish with negligible roughness.

4.2.2.3 316L specimens

We have also experimented on a 316L monocrystalline sample, whose size is 0.52 ×
4.80 × 30 mm3. The 316 sample was oriented so that its [100], [010], and [001] directions

were aligned approximately parallel to the three edges of sample. 316 sample was �rst

mechanically polished to a mirror �nish with negligible roughness, and then chemically
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Figure 4.4: A sample's orientation

polished to remove the damaged surface layer.

4.2.3 Procedure of Experiments

The experiments we conducted were in situ four-point bending test (see Fig. 4.5).

Four-point bending test (hereinafter referred to as FPB test) is a very classical test to

explore the mechanical properties of materials, e.g. constitutive relation ( [Hollenberg

et al. 1971], [Belouettar et al. 2009]), crack growth ( [Ma 1997], [Cuitiño and Ortiz

1996]), etc. FPB test wins its popularity in the community of solid mechanics because

(i) the boundary conditions in FPB test are rather simple; (ii) the deformation modes

in FPB test are multiple, including tension, compression, and sometimes shear, and the

induced strain gradient within the beam is controllable, rendering it suitable for studying

constitutive relation.

Ll
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Figure 4.5: Four point bending test

The in situ test was carried out in the experimental hutch of BM32. Figure 4.7 is

an example of the embedment of in situ test equipment into the beamline. Right above

the experimental setup, there is an area detector to receive the di�raction pattern. In

our experiment, we used X-ray Very High Resolution (VHR) CCD detector (see Fig. 4.8),
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manufactured by Photonic Science Ltd. Some parameters of this detector are given in Tab.

4.2. A small Ge monocrystal with a known orientation is glued by wax on the surface of

the sample to enable the calibration of the experimental setup. The calibration procedure

runs as follow: (i) take di�raction image of Ge; (ii) manipulate the calibration parameters

until the simulated Laue pattern coincide with the experimental one (see Fig. 4.6 for

determining the calibration parameters in LaueTool).

Figure 4.6: The panel of LaueTool to obtain the calibration parameters from di�raction
image. The void circles represent the simulated spots, while the �lled circles represent
measured spots.

Figure 4.7: The embedment of FPB test into the beamline

For safety concerns, during experiment, when the beam entered the experimental hutch,

people were not allowed to stay in the experimental hutch. The motion of experimental
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Pixel size Pixel array Encoding range
31× 31µm2 4008× 5344 12 bit

Table 4.2: Parameters of the VHR detector in our experiments

equipment was remotely controlled by SPEC, a software at ESRF. We used the DEBEN

300 N tensile machine (kindly lent by Damien Faurie of Lab LSPM) to perform FPB test by

inserting four pins (see Fig. 4.9). As the FPB test proceeded, the four pins intermittently

bent the sample (see Fig. 4.5, in which Lr = 8.5 mm and Ll = 3 mm). During each interval

of loading, we took di�raction images in the following sequence:

1. moved the sample so that the incident X-ray illuminated the Ge crystal glued on the

sample to obtain the calibration parameters.

2. translated the sample to scan the middle line of the sample (the yellow line along

the x-axis in Fig. 4.9) while maintaining the calibration parameters, and obtaining

a sequence of images.

Figure 4.8: VHR CCD detector [VHR]
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Figure 4.9: The in situ test carried out in BM32, ESRF

4.3 References for Results of Data Treatment

4.3.1 Analytical Solution of Elastic material

For Si and Ge, which deform elastically, the analytical solution [Rand and Rovenski

2005] of stress distribution in the central line of the beam under FPB test is independent

from the sample's orientation and elastic constants if the sample is homogeneous:


σyy =

FLr
2Iz

(x− X

2
),

σxx = σzz = 0,
τxy = τyz = τzx = 0,

(4.1)

where F and Lr are de�ned in Fig. 4.5, X is the sample size in x-axis of sample coordinate

system (see Fig. 4.9 for the de�nition of x-axis), and Iy is the moment of inertia of the

y-cross section de�ned as

Iy =
ZX3

12
,

where Z is the sample size in the direction parallel to pins. From the given analytical

solution, we can conclude that the maximum normal stress will be attained at X edges

and in y direction:

maxσyy =
FLrX

4Iz
. (4.2)
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For its deviatoric components, the analytic solution should be:


σ′yy =

FLr
3Iz

(x− X

2
),

σ′xx = σ′zz = −FLr
6Iz

(x− X

2
),

τxy = τyz = τzx = 0,

(4.3)

With the equation above, we can calculate a reference solution for the measurements.

But in reality, due to the inaccuracy of force sensor, the calculated reference solution

may not exactly match the true stress distribution. Here, given the linearity of stress

distribution, we would rather apply linear regression to measured values to calculate a

reference solution.

Although the stress pro�le is independent from material's elastic constants for a given

prescribed moment and perfect geometry assumed, here we give the elastic constants of Si

and Ge in Tab. 4.3 [Teodosiu 1982] because they relate elastic strain to stress.

C11/GPa C12/GPa C44/GPa

Si 165.8 63.9 79.6
Ge 128.5 48.3 66.8

Table 4.3: Elastic constants of Si and Ge

C11, C12, and C44 are de�ned in Eqn. 4.4, where σ and ε represent stress and elastic

strain respectively, and the superscript lattice represent component expressed in lattice

coordinate system.



σlatticexx

σlatticeyy

σlatticezz

σlatticeyz

σlatticezx

σlatticeyz


.
=



C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44





εlatticexx

εlatticeyy

εlatticezz

2εlatticeyz

2εlatticezx

2εlatticeyz

 (4.4)

It is obvious that the elastic constants of Si and Ge satisfy Eqn. 1.35. Therefore it is

safe to calculate the deviatoric stress with merely deviatoric strain by Eqn. 1.36.
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4.3.2 FEM Model for Elastoplastic Material

Because 316 stainless steel sample is an elastoplastic material, it is di�cult to obtain

the analytical solutions of stress distribution, therefore we use FEM simulation to provide

references to measurements. The FEM simulation was performed by ABAQUS (see Fig.

4.10), we used the element C3D20 (second order full integration element), and we densi�ed

the mesh near the contacts between pins and beam to better handle the contact between

the pins and sample. Due to the symmetrical nature of the FEM model, it is possible

to model only one quarter of the sample while imposing boundary condition of symmetry

to the symmetrical face. The pins were modeled as analytical rigid bodies. We used a

simpli�ed Johnson-Cook law to model the hardening of 316 stainless steel, in which the

in�uences of temperature and strain rate are ignored:

σY = A+Bεnp (4.5)

where σY represents the yield stress, εp represents the equivalent e�ective plastic strain, and

A, B, n are material parameters. These parameters and elastic parameters are tabulated

in Tab. 4.4 [Palengat et al. 2013].

Young's modulus (GPa) Poisson's ratio A (MPa) B (MPa) n

192 0.3 242 1295 0.61

Table 4.4: Parameters of 316 stainless steel

4.4 Image Treatment

After each scan, we obtained a series of di�raction images corresponding to di�erent

positions on the scanning line. We performed DIC to these images in two sequences adapt-

ing to original Laue-DIC and enhanced Laue-DIC. For original Laue-DIC, the sequence

goes as below:

1. Obtain the calibration parameters from the di�raction image of Ge crystal.

2. Index and obtain the lattice parameters from the di�raction image taken at the center

of the scanning line with standard Laue treatment.
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Figure 4.10: FEM model of ABAQUS, only one quarter of the sample was modeled thanks
to the symmetry of model

3. Use DIC to obtain the displacements of spots between the image taken at the neutral

�ber and all the other images (see Fig. 4.11).

4. Calculate the relative deformation gradient according to the procedure described in

�2.2.2.

The sequence for enhanced Laue-DIC goes as below:

1. Obtain the calibration parameters as in original Laue-DIC.

2. Index and obtain the lattice parameters from the di�raction images taken at the

scanning line either by standard Laue treatment, or original Laue-DIC.

3. Subdivide the di�raction images into several pairs. Use DIC to obtain the displace-

ments of spots between images in the same pair. Fig. 4.12 gives several possible

organizations of pairs, and here we use the �rst one: grouping two adjacent illumina-

tion sites (separated by about 0.01 mm) into one pair because (i) the spots collected

from the two adjacent illumination sites usually coincide most in terms of spots' in-

dexes; and (ii) two spots with the same index usually hold the largest resemblance if

they come from two adjacent sites.
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4. Re�ne the lattice parameters and calibration parameters using the displacements

obtained in step 3 as input, and calibration parameters obtained in step 1 and lattice

parameters obtained in step 2 as initial guess (see Fig. 3.1).

N
2

N
2 + 1 N

2 + 2 N
2 + 3N

2 − 1N
2 − 2N

2 − 3

Figure 4.11: Correlation pairs of original Laue-DIC. N is the total number of illumination
sites, and assumed even.

i− 1 i i+ 1 i+ 2

i− 1 i i+ 1 i+ 2

i− 1 i i+ 1 i+ 2

Figure 4.12: Correlation pairs of enhanced Laue-DIC

The DIC software we adopted here was CMV, as in �2.5.1.2. For the two images in

the same pair, spots with the same index bore resemblance after the displacement, and

these resemblances could be validated by the values of correlation coe�cients, because

correlation coe�cient was a quanti�cation of resemblance as shown in Eqn. 2.1. In the

image correlations done in �4.5, the correlation coe�cients are of the order of 10−3 ∼ 10−2.

Fortunately, for pure crystals that we dealt with, there was few dislocations, and for

metals, the loading was within the elastic range and spots' shape evolved little. Therefore

the error arising from mismatch of shape function [Schreier and Sutton 2002] could be

ignored even if we used zero order polynomial shape function associated with rigid 2D

translation. The main source of DIC error that we encountered was the "ultimate error"

[Amiot et al. 2013] which has been characterized in �2.5.1. The interpolation of gray level

(see �2.2.1) that we chose was biquintic interpolation.

The size of correlation window (see �2.2.1) is an important issue a�ecting displace-
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ment measurement. The information that DIC utilizes is the contrast of gray level within

the correlation window. For ordinary DIC treatment (using DIC to analyze displace-

ment/deformation of object's surface), if there were no mismatch of shape function, larger

correlation window usually would mean more contrast was incorporated into the window,

hence less random error. However, in treating Laue spots, the contrast of gray level would

drop dramatically if the pixel were located in the background region of di�raction image.

These pixel would introduce little information but noise into correlation window, increas-

ing the random error. Therefore, DIC user should adapt the window closely to the spot's

shape. We used the same algorithm demonstrated in Fig. 2.10 to determine the correlation

window adapted to spot's shape.

In minimizing the cost function Eqn. 3.6, we need to assign weight to each spot. Here,

we designated each spot the weight:

W hkl
x = W hkl

y = 1− Chkl,

where Chkl is the correlation coe�cient of the spot with index (hkl) de�ned in Eqn. 2.1.

Higher resemblance between spots usually means more credibility in the measurement of

displacements. Other possible weight function could have been de�ned with respect to the

peak's amplitude (for example, Fig. 2.31 and 2.32 show that peak with higher amplitude

gives lower systematic and random errors.), but this has not been attempted yet.

We will present in the following section the results of image treatment of the specimens

by standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC, and comment

on them.

4.5 Results of Image Treatment

4.5.1 Si samples

We �rst talk about the sample I. We scanned the sample at three di�erent loadings:

3.92 N, 46.76 N, 88.57 N, and 199.43 N, and the corresponding maximum σyy are 2.14 MPa,

25.55 MPa, 48.39 MPa, and 108.95 MPa according to Eqn. 4.2. The number of spots

considered in these analysis is ∼ 35. The approximate values of calibration parameters

during these scanning was tabulated in Tab. 4.5.
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d/mm xc/pix yc/pix β/◦ γ/◦

59.8 1365.4 945.4 0.38 0.50

Table 4.5: Approximate calibration parameters when Si sample I was scanned.

The treatments of images of scanning sequence at the loading of 199.43 N by standard

Laue treatment, original Laue-DIC, and enhanced Laue-DIC, are given in Fig. 4.13. We

can see that the stress pro�les by standard Laue treatment appear very noisy, specially for

the shear components, while those by original and enhanced Laue-DIC exhibit much less

�uctuation.

A more quantitative comparison lies in calculating the root mean square (RMS) of

discrepancy between the measured values and the theoretical values, i.e. a linear �t:

RMS =

√∑
n(σmeas

(i) − σtheo(i) )2

n
.

σ′x σ′y σ′z τyz τzx τxy

Standard Method 3.22 2.02 2.67 13.71 9.79 11.82
Original Laue-DIC 1.83 1.19 1.30 8.74 4.54 4.78
Enhanced Laue-DIC 2.12 1.85 2.21 8.97 4.76 5.00

Table 4.6: RMSs of discrepancies of di�erent components when Si sample I is bent at
199.43 N (unit: MPa)

We tabulated the RMS of di�erent component in Tab. 4.6, and we found that both

original and enhanced Laue-DIC had signi�cantly reduce the RMS. However, the RMS of

discrepancies by enhanced Laue-DIC is slightly higher than by original Laue-DIC. Aside

from the loading of 199.43 N, we have also bent the sample at the loading of 88.57 N,

46.76 N, and 3.92 N while trying to maintain the same calibration parameters. Here for

the sake of brevity, we only plotted their σ′y components by the three methods in Fig.

4.14. We also tabulated the RMS of discrepancies at the loadings of 88.57 N and 46.76 N

in Tab. 4.7 and 4.8, and found that the contrary to the case at the loading of 199.43 N,

at the loading of 88.57 N and 46.76 N, the RMSs of discrepancies by enhanced Laue-DIC

were slightly lower than those by original Laue-DIC. Moreover, we found that the RMSs

of discrepancies in the shear components were larger than those in normal components of
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(c) Enhanced Laue-DIC

Figure 4.13: Stress pro�le of Si sample I at the loading of 199.43 N.
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stress for all image sequences investigated.

σ′x σ′y σ′z τyz τzx τxy

Standard Method 6.50 4.02 3.13 20.61 9.74 9.00
Original Laue-DIC 4.53 2.45 2.36 7.63 5.78 3.66
Enhanced Laue-DIC 3.94 2.13 2.21 7.66 5.41 3.59

Table 4.7: RMSs of discrepancies of di�erent components when Si sample I is bent at
88.57 N (unit: MPa)

σ′x σ′y σ′z τyz τzx τxy

Standard Method 5.42 3.20 2.58 17.09 11.16 10.63
Original Laue-DIC 3.29 1.95 1.53 6.40 6.58 3.86
Enhanced Laue-DIC 3.07 1.80 1.40 5.83 6.18 3.74

Table 4.8: RMSs of discrepancies of di�erent components when Si sample I is bent at
46.76 N (unit: MPa)

To investigate the in�uence of orientation upon the stress pro�le, we treated the images

of scanning sequence of Si sample II by standard Laue treatment, original Laue-DIC, and

enhanced Laue-DIC, but only plotted the results of enhanced Laue-DIC in Fig. 4.15 for

the sake of brevity. The sample was bent at the loading of 200.26 N and we tried to

maintain the calibration parameters as in Si sample I. As we compare Fig. 4.15 with Fig.

4.13c, we found that the stress pro�les were almost identical, and this has corroborated

the statement of [Rand and Rovenski 2005] that the stress pro�les are independent from

sample's orientation when a homogeneous anisotropic material is bent.

For Si sample III, we have only scanned at the loading of 200.56 N, but at three di�erent

detector-sample distances, 59.84 mm, 101.73 mm, and 143.75 mm. At a higher distance,

we will have a better resolution of individual spots, and hence better precision on spots'

displacement. However, we will collect less spots on the detector, decreasing the coverage

of pole �gure. At the distance of 59.84 mm, ∼ 35 spots were considered, at the distance

of 101.73 mm, ∼ 18 spots were considered, and at the distance of 143.75 mm, ∼ 9 spots

were considered. For the distance of 59.84 mm and 101.73 mm, we treated the images with

standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC, and plotted the

results in Fig. 4.16 and 4.17 respectively, while for the distance of 143.75 mm, we only
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Figure 4.14: σ′y component by di�erent methods.
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Figure 4.15: Stress pro�le of Si sample II at the loading of 200.26 N, treated by enhanced
Laue-DIC.
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treated the images with standard Laue treatment and original Laue-DIC, since enhanced

Laue-DIC required no less than 12 spots considered, and we plotted the results in Fig. 4.18.

It is obvious from visual impression that as we raise up the detector, the measured stress

pro�les by all methods become more and more �uctuated, that is to say, higher resolution

for individual spot cannot compensate for the decrease of the number of spots considered.

Another important aspect of enhanced Laue-DIC is that it allows for the calculation

of calibration parameters as well. We can also characterize the perturbation of calibration

parameters in the course of scanning, and we use the superscript cal to present the calculated

calibration parameters. As we have mentioned in �4.2.3, we carefully glued a piece of Ge

monocrystal on the sample to determine the calibration parameters of the experiment,

say nominal calibration parameters, and use the superscript nom to present them. The

perturbations of calibration parameters are characterized by two terms: (i) mean deviation

of calculated parameter from nominal one, i.e. εx = |xcal − xnom|; (ii) standard deviation

of calculated parameter, i.e. σx, where x ∈ {d,∆xc,∆yc, β, γ}. Note that ∆xnomc and

∆ynomc are supposed to be zero because the nominal xnomc and ynomc are assumed to be kept

constant for all images in a series of scanning, therefore the their nominal increments from

one con�guration to another should be zero.

Here, we tabulated the εx and σx of scanning Si sample I at the loading of 199.43 N in

Tab. 4.9, corresponding to the stress pro�les in Fig. 4.13, and those of other scanning are

of similar values.

εd/mm ε∆xc/pix ε∆yc/pix εβ/
◦ εγ/

◦

2.8× 10−3 1.3× 10−3 4.6× 10−3 7.7× 10−4 2.6× 10−3

σd/mm σ∆xc/pix σ∆yc/pix σβ/
◦ σγ/

◦

4.9× 10−3 9.1× 10−3 1.5× 10−3 3.3× 10−4 4.2× 10−3

Table 4.9: The perturbation of calibration parameters in scanning Si sample I at the loading
of 199.43 N

Comment From the �gures and tables we listed above, we can draw several conclusions:
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(c) Enhanced Laue-DIC

Figure 4.16: Stress pro�le of Si sample III at the distance of 59.84 mm.
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Figure 4.17: Stress pro�le of Si sample III at the distance of 101.73 mm.

146



4.5. RESULTS OF IMAGE TREATMENT

0.0 0.5 1.0 1.5 2.0 2.5

x/mm
−300

−200

−100

0

100

200

300
Experimental value of σ′

y  (MPa)

Experimental value of σ′
x  (MPa)

Experimental value of σ′
z  (MPa)

Experimental value of τyz (MPa)

Experimental value of τzx (MPa)

Experimental value of τxy (MPa)

Analytical value of σ′
y  (MPa)

Analytical value of σ′
x  (MPa)

Analytical value of σ′
z  (MPa)

Analytical value of shear components (MPa)

(a) Standard Laue treatment

0.0 0.5 1.0 1.5 2.0 2.5

x/mm
−150

−100

−50

0

50

100

150
Experimental value of σ′

y  (MPa)

Experimental value of σ′
x  (MPa)

Experimental value of σ′
z  (MPa)

Experimental value of τyz (MPa)

Experimental value of τzx (MPa)

Experimental value of τxy (MPa)

Analytical value of σ′
y  (MPa)

Analytical value of σ′
x  (MPa)

Analytical value of σ′
z  (MPa)

Analytical value of shear components (MPa)

(b) Original Laue-DIC

Figure 4.18: Stress pro�le of Si sample III at the distance of 143.75 mm.

• Compared to the results of standard Laue treatment, both original and enhanced

Laue-DIC can substantially reduce the �uctuation of pro�les.

• At the loading level of 200 N, the RMS of discrepancies of enhanced Laue-DIC are

slightly larger than those of original Laue-DIC, while at the loading level of 50 N

and 100 N, the RMS of discrepancies of enhanced Laue-DIC were slightly lower than

those of original Laue-DIC.

• Shear components of deviatoric stress exhibits more �uctuations than normal com-

ponents.

• Though raising up a detector could increase the resolution of individual spot, this

usually came at the cost of reducing the number of spots considered, and the cost

outweighs the bene�t.

• Comparing the uncertainties of calibration parameters listed in Tab. 4.9 with Tab.

2.4 which gives the uncertainties estimated by Poshadel et al. [2012], we �nd that we
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have much better control over the perturbation of the experimental setup than the

experiment of Poshadel.

4.5.2 Ge sample

We applied two loadings on the sample, 99.69 N and 140.35 N, and the correspond-

ing maximum σyy are 54.5 MPa and 76.7 MPa respectively. For each loading, we scanned

the central line at three di�erent detector-sample distances: 59.83 mm, 101.97 mm, and

143.77 mm, and we collected ∼ 40 spots, ∼ 20 spots, and ∼ 10 spots respectively. We plot-

ted the stress pro�les at the loading of 140.35 N with a detector-sample distance 59.83 mm

in Fig. 4.19. A visual impression about Fig. 4.19 was that there was no signi�cant dis-

tinction among the stress pro�les by the three methods. We tabulated their RMSs of

discrepancies in Tab. 4.10, and we also found quantitatively that the distinctions among

the results by the three methods were very small. A possible explanation is that the Laue

spots of Ge is more elliptically shaped thanks to the shallower penetration depth compared

to Si, for example, Fig. 4.20 demonstrated two spots di�racted from Ge, and they appeared

more elliptically shaped than those di�racted from Si in Fig. 2.2.

σ′x σ′y σ′z τyz τzx τxy

Standard Method 1.72 2.01 0.88 3.56 1.97 3.11
Original Laue-DIC 1.95 2.25 1.05 3.80 1.76 3.21
Enhanced Laue-DIC 1.23 1.92 1.39 3.98 1.64 3.32

Table 4.10: RMSs of discrepancies of di�erent components when Ge sample is bent at
140.35 N with a distance of 59.83 mm (unit: MPa).

Given the similarities of the results by the three methods, we will only plot the results

by enhanced Laue-DIC for distance of 59.83 mm, 101.97 mm, and the results by original

Laue-DIC for distance of 143.77 mm due to the scarcity of spots at such distance. We

plotted the stress pro�les at the loading of 140.35 N in Fig. 4.21, and stress pro�les at

the loading of 99.69 N in Fig. 4.22. It is obvious from the visual impressions of these

�gures that the stress pro�les become more noised when the detector is elevated. However,

the τyz component of Fig. 4.21b seems abnormally tilted, and we are unclear about such

abnormality.
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(c) Enhanced Laue-DIC

Figure 4.19: Stress pro�le of Ge sample at the loading of 140.35 N with distance 59.83 mm.

Figure 4.20: Spots in di�raction image of Ge.
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(b) At the distance 143.77mm, by original Laue-DIC

Figure 4.21: Stress pro�le of Ge sample at the loading of 140.35 N with distance 101.97 mm
and 143.77 mm.

Comment We can draw several conclusions from �gures and tables above:

• Standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC give very sim-

ilar stress pro�le. This is because the Laue spots of Ge sample have more elliptical

shapes than those of Si samples so that analytical �tting of spots can give reasonable

estimation of di�raction peaks.

• The stress pro�le taken at a higher detector-sample distance invariably exhibits more

�uctuation as in the case of Si sample.

• For stress pro�les at the loading of 140.35 N taken at 143.77 mm (see Fig. 4.21b),

we observed that the pro�le of stress components seemed deviating from analytical

pro�le, especially for the τyz component, which was supposed to be zero. The reason

for this abnormality is not known so far.
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(c) At the distance 143.77mm, by original Laue-DIC

Figure 4.22: Stress pro�le of Ge sample at the loading of 99.69 N.
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4.5.3 316L sample

We examined the stress distribution at the load of 1.00 N, 2.01 N, 3.00 N, 4.01 N, 4.98 N,

5.99 N, 6.50 N with a detector-sample distance of 59.80 mm, and for the load of 3.00 N, we

scanned the central line with an additional very short detector-sample distances: 38.83 mm.

For the images taken at the distance 59.80 mm, the number of spots considered is ∼ 15,

and for the images taken at the distance 38.83 mm, the number of spots considered is ∼ 25.

In Fig. 4.23, we plotted the results by the three methods at the loading of 3.00 N and

the distance 38.83 mm, and in Fig. 4.24, we plotted the results by the three methods at the

loading of 3.00 N and the distance 59.80 mm. Again, from visual impression, we found that

the stress pro�les taken at the distance 38.83 mm exhibited less �uctuations than those

taken at the distance 59.80 mm. We also found that the results of the three methods gave

similar results as in �4.5.2, and if we compared the shapes of spots di�racted from 316L

(see Fig. 4.25) with those di�racted from Si sample (see Fig. 2.2), it was obvious that the

spots di�racted from 316L sample were more elliptically shaped than those from Si sample,

therefore the introduction of DIC would not improve signi�cantly. Perhaps, if we further

loaded the sample, the misorientation within it would become more pronounced and spots

would become streaked or even splitted, as indicated in [Hofmann 2011].

Given the similarities of the results by the three methods, we will only plot the results

by enhanced Laue-DIC for the rest of loading in Fig. 4.26, 4.27, 4.28, 4.29, 4.30, and 4.31,

corresponding to the loading of 1.00 N, 2.01 N, 4.01 N, 4.98 N, 5.99 N, 6.50 N respectively.

We can see that the sample begins to yield at the loading 4.01 N. As the loading was

further applied incrementally, the τzx component gradually deviated from zero (see Fig.

4.29, 4.30, and 4.31). However, our FEM simulation failed to predict this phenomenon, and

it might be due to the isotropic elasticity and plasticity that we assumed in the simulation

(Tab. 4.4) which did not �t reality.

Comment For the �gures above, we can draw several conclusions:

• At the loading of 3.00 N, we scanned the sample at the distance of 38.83 mm and

59.80 mm, and collected ∼ 25 and ∼ 15 spots respectively. And we have found that
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(c) Enhanced Laue-DIC

Figure 4.23: Stress pro�le of 316L sample at the loading of 3.00 N and the distance of
38.83 mm.
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Figure 4.24: Stress pro�le of 316L sample at the loading of 3.00 N and the distance of
59.80 mm.

Figure 4.25: Spots in di�raction image of 316L.
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Figure 4.26: Stress pro�le of 316L sample at the loading of 1.00 N.
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Figure 4.27: Stress pro�le of 316L sample at the loading of 2.01 N.

reducing the number of spots would increase the �uctuations of stress pro�les.

• Standard Laue treatment, original Laue-DIC, and enhanced Laue-DIC give very sim-

ilar stress pro�le. This is because the Laue spots of 316L sample have more elliptical

shapes than those of Si samples so that analytical �tting of spots can give reasonable

estimation of di�raction peaks as in the cases of Ge sample (�4.5.2).

• The yield occurred at the load of 4.01 N.

4.6 Error Analysis based on Numerical Tests

In last section, we observed that the calculated stress pro�les were more or less �uctu-

ated. In this section, we run the same numerical tests as in �2.5.2 and �3.3.1 to calculate

the error bars of stress pro�les and investigate whether the calculated error bar match the

observed �uctuation of curve.

The error bar is calculated by the following procedure:

155



4.6. ERROR ANALYSIS BASED ON NUMERICAL TESTS

0.0 0.1 0.2 0.3 0.4 0.5 0.6

x/mm
−100

−50

0

50

100
Experimental value of σ′

y  (MPa)

Experimental value of σ′
x  (MPa)

Experimental value of σ′
z  (MPa)

Experimental value of τyz (MPa)

Experimental value of τzx (MPa)

Experimental value of τxy (MPa)

Simulated value of σ′
y  (MPa)

Simulated value of both σ′
x  and σ′

z  (MPa)

Simulated value of shear components (MPa)

Figure 4.28: Stress pro�le of 316L sample at the loading of 4.01 N.
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Figure 4.29: Stress pro�le of 316L sample at the loading of 4.98 N.

1. Fit each spot to get their parameters of Eqn. 2.18: A, rX , rY , and θ.

2. For each spot, use those �tted parameters in the last step to fabricate an arti�cial

spot, and perform statistical tests as in �2.5.1.4 to calculate the systematic and

random error of the displacement of the spot. The imposed displacement for the

spot is the one measured by DIC in real images, and the sample size of the statistical

test is 100.

3. For all spots, add to their displacements measured by DIC from real image Gaussian

noises, whose means and deviations are the corresponding systematic and random

errors estimated from the last step, and perform statistical tests to calculate the

�uctuation of deviatoric stress components, and hence the error bar. The sample

size of the statistical tests is 100.

Of all the scanning sequence of elastic sample (Si and Ge) we have treated, we analyzed

the error distribution of Si sample III at the loading of 200 N and at detector-sample

distance of 101.73 mm and plotted the error bar in Fig. 4.32, because at such condition,
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Figure 4.30: Stress pro�le of 316L sample at the loading of 5.99 N.
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Figure 4.31: Stress pro�le of 316L sample at the loading of 6.50 N.

the stress pro�les by both original and enhanced Laue-DIC (see Fig. 4.17b and 4.17c)

exhibit the largest deviation from analytical results compared to other stress pro�les. Of

all the scanning sequence of elastoplastic sample (316L) we have treated, we analyzed

the error distribution of 316L sample at the loading of 5 N and plotted the error bar in

Fig. 4.33, because (i) at such condition, the stress pro�les by both original and enhanced

Laue-DIC (see Fig. 4.29) exhibit the largest deviation from simulated results compared to

other stress pro�les; (ii) compared to stress pro�les at other loadings, the sample begins

to deform plastically at the loading of 5 N.

In Fig. 4.32 and 4.33, we plotted the error bars at 1
5 ,

2
5 ,

3
5 ,

4
5 of the scanning distance,

in which the numbers of spots considered are about 14 ∼ 18. From Fig. 4.32 and 4.33,

we found that error bars calculated by the proposed procedure could well describe the

�uctuations of stress pro�les. Note that in Fig. 4.32b and 4.33b, two error bars are

presented at each location, this is because that enhanced Laue-DIC calculates the stresses

of two con�gurations.

To gain a more quantitative impression about the �uctuations of each components of
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(a) Error bar of original Laue-DIC
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(b) Error bar of enhanced Laue-DIC

Figure 4.32: Error bar of stress pro�le of Si sample III.
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(a) Error bar of original Laue-DIC
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Figure 4.33: Error bar of stress pro�le of 316L sample.
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stress, we tabulated the average length of error bars for each component of stress in Tab.

4.11. And it is found that the �uctuations of the shear components usually are of the

same magnitude as those of the normal ones. This is a bit di�erent from the conclusion of

[Poshadel et al. 2012]: the shear components should exhibit larger �uctuations than normal

ones. This di�erence be attributed to the orientation of crystal: at certain orientation, the

spots' positions may be more sensitive to shear stress, while at other orientation, they may

be more or equally sensitive to normal stress.

σ′xx σ′yy σ′zz τyz τxz τxy

Fig. 4.32a 27.0 30.3 28.6 32.2 32.4 15.2
Fig. 4.32b 29.9 31.7 24.0 31.7 45.8 13.1
Fig. 4.33a 12.5 13.9 10.8 13.7 10.7 24.3
Fig. 4.33b 12.7 12.8 11.2 14.6 10.6 13.5

Table 4.11: Average length of error bars for each component of stress (unit: MPa)

4.7 Summary

In this chapter, we applied the standard Laue treatment, original Laue-DIC, and en-

hanced Laue-DIC to three materials: Si, Ge, and 316 stainless steel. We prepared cuboid

samples for these material, and performed in situ four point bending tests. For each sam-

ple, we scanned the central line and used standard Laue treatment, original Laue-DIC, and

enhanced Laue-DIC to obtain the stress pro�le. We have two main conclusions:

• For Si sample, the stress pro�les by either original Laue-DIC or enhanced Laue-DIC

exhibit less �uctuations than those by standard Laue treatment, and the results of

original Laue-DIC and enhanced Laue-DIC are very similar. However, for Ge and

316L sample, the results of the three methods were very similar due to the fact that

their spots (see Fig. 4.20 and 4.25) were more elliptically shaped than those of Si

samples (see Fig. 2.2) hence analytically �tting could give reasonable estimation of

di�raction direction.

• By comparing the stress pro�les taken at di�erent sample-detector distance, we found

that the stress pro�les taken at the closest distance demonstrated the least �uctua-
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tion. This was due to the fact that the area detector could collect more spots at a

closer sample-detector distance. Although spots taken at a larger distance would have

better resolutions, they come at a cost of reducing the number of spots considered,

and the improvement in spots' resolutions would not compensate for the reduction

of the number of spots considered.

In �4.6 we proposed a procedure to estimate the uncertainties of stress evaluations,

which traced the source of uncertainties from the uncertainties of the measurement of

displacements by DIC. The calculated error bars turned out to be �t for the �uctuations

of stress pro�les.
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Chapter 5

Conclusions and Perspectives

The characterization of intragranular elastic strain/stress by Laue microdi�raction has

been well-established and implemented in several academic codes, e.g. LaueTool, XMAS,

etc. However, the standard method used in these codes may lose its precision when �tting

non-elliptical Laue spot to get the di�raction peak, because the analytical functions used

for �tting implicitly assume the ellipticity of Laue spot. In the work presented here, we

sought to improve the precision of elastic strain/stress characterization by applying digital

image correlation (DIC) into di�raction image treatment, since DIC is insensitive to spot's

shape. Compared to analytical �tting of spots, DIC does not measure peaks' 2D position,

but rather peaks' displacements between two con�gurations by taking advantage of spots'

resemblances, which can be quanti�ed by the so-called "correlation coe�cient".

A previous attempt of combining Laue microdi�raction and DIC has been shown to

improve the intragranular elastic strain/stress evaluation, and the new method is called

Laue-DIC. In this approach, we �rst locate a position within the crystal whose orientation

and elastic strain are known in advance, and label it as reference con�guration. Then,

we treat the position within the crystal whose orientation and elastic strain are under

investigation as current con�guration, and measure the displacements of spots between

reference and current con�gurations by DIC. Finally, we use, for example, least square

method to calculate the relative deformation gradient between the two con�gurations.

Despite the success of Laue-DIC, it still su�ers from two insu�ciency: (i) it is di�cult

to locate a reference con�guration whose elastic strain and orientation are known; (ii) when
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the illumination of X-ray is shifted from reference con�guration to current con�guration,

it is di�cult to maintain the calibration parameters constant due to factors such as the

imprecision of experimental machine, specimen's roughness, etc. To solve this problem, we

proposed an enhanced version of Laue-DIC. The novelty of enhanced Laue-DIC compared

with the original one rests in treating both the lattice matrices of reference con�guration

and calibration parameters as unknowns. The procedure of enhanced Laue-DIC can be

explained by Fig. 3.1: (i) index each spot and measure the displacement of spot between

two con�gurations; (ii) use, for example, standard Laue treatment, to calculate the lattice

matrices and calibration parameters of two con�gurations, and use them as initial guess

to minimize the discrepancy between measured spots' displacements and theoretical ones.

The feasibility of enhanced Laue-DIC depends on the rank of Jacobian matrix of Eqn.

3.2: if it is full ranked, then with the displacements of 12 spots, we can obtain the lattice

matrices and calibration parameters of two con�gurations which consists of a total of 24

unknowns. Enhanced Laue-DIC excels original Laue-DIC in two aspects: (i) it solves the

deviatoric lattice matrices rather than their increment; (ii) it takes calibration parameters

into consideration, therefore it is more robust against any errors in calibration parameters.

We applied the standard method, original Laue-DIC, and enhanced Laue-DIC to the

treatment of image sequence of scanning bent monocrystals (Si, Ge, and 316L steel). It

was found that: for Ge, 316L samples, whose spots' shapes appeared close to elliptic, the

three methods gave similar curves, while for Si samples, whose spots were elongated, both

original and enhanced Laue-DIC gave better match to the reference solutions than standard

method.

Aside from the formulation of enhanced Laue-DIC, we also developed a procedure of

statistically estimating the errors of elastic strain/stress resulted from DIC errors. Prior

to that procedure, we need to characterize the noise of di�raction image in the �rst place.

In our approach, the noise is described by a classical model: Poissonian-Gaussian noise

model. This model is validated by collecting stacks of 100 image under the same condition

and hence its parameters are obtained by linear regression.

With the noise model and its parameters, we are able to estimate the errors of original

and enhanced Laue-DIC. This is accomplished in two steps: (i) synthesize arti�cial spot
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image, add noise to each pixel, and perform numerical tests to investigate the distributions

of DIC errors; (ii) add DIC errors to spots' displacements, and perform numerical tests

to investigate the distributions of the results of original and enhanced Laue-DIC. Main

conclusions of these numerical tests include that: (i) increasing the number of spots can

decrease the errors; (ii) the random errors are usually larger than systematic errors; (iii)

enhanced Laue-DIC is more robust against the errors of calibration parameters than original

Laue-DIC.

Given the work presented above, in future, it is possible to expand the work in the

following aspects:

1. �nd a more e�cient algorithm to minimize the cost function Eqn. 3.6. The algorithm

adopted in �3.3.1 can probably be further optimized in terms of e�ciency.

2. develop another version of enhanced Laue-DIC. In my opinion, it is also possible

to measure the lattice matrix of one illumination position by taking two di�raction

images under di�erent sets of calibration parameters. In that case, we have 16 un-

knowns to be optimized: 8 for the lattice matrix, and the rest for the calibration

parameters.

3. explore the possibility of applying enhanced Laue-DIC to scanning the sample with

rough surface. In current Laue microdi�raction, it is imperative to prepare sample

with smooth surface in order to maintain calibration parameters. However, enhanced

Laue-DIC is more robust against variation of calibration parameters.

4. Both original and enhanced Laue-DIC consist of two steps: (i) use DIC to obtain

spots' displacements; (ii) use spots' displacements to calculate deformation gradient

in original Laue-DIC or lattice matrices and calibration parameters in enhanced Laue-

DIC. However, it would be worth a try to combine the two steps into one single step,

more speci�cally, instead of correlating spots' images individually, we formulate one

single cost function, whose input is all spots' images, and the output is no longer

spots' displacements but the parameters under investigation. We could call this

approach global Laue-DIC.
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Appendix A

Gradient and Hessian Matrix of

Objective Function Eqn. 3.6

A.1 Objective function

Eqn. 3.6 can be written into:
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n∑
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W (s)
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A.2. GRADIENT

and

h˜(s) .
= [h(s), k(s), l(s)]T. (A.5)

A.2 Gradient
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Détermination du champ de contraintes dans les matériaux cristallins par
microdiffraction Laue

RéSUMé : La microdiffraction Laue permet l'estimation des déformations élastiques à l'échelle
du micron. La procédure d'analyse standard, bien établie, utilisée pour extraire les déformations
élastiques des images de Laue est limitée par deux sources d'erreurs : la détermination de la
positions des taches de Laue sur le détecteur, et la sensibilité aux paramètres de calibration du
montage. Pour améliorer la procédure, nous avons développé une procédure appelée Laue-
DIC qui utilise la très bonne résolution de la technique de corrélation d'images numériques
(DIC). Cette méthode utilise, pour la détermination de l'incrément de déformation élastique et de
rotation, le déplacement des pics entre deux configurations mécaniques, estimé par DIC, au
lieu de leur position. Nous montrons que cette méthode donne un profil de contrainte en
meilleur accord avec les solutions analytiques et numériques, pour des échantillons
monocristallins déformés en flexion 4-points. Nous proposons également une méthode Laue-
DIC améliorée, dans laquelle les paramètres de calibration sont estimés à chaque point de
mesure, simultanément à la déformation élastique.

En parallèle à la formulation de la méthode Laue-DIC (améliorée), nos efforts ont porté sur
l'estimation de l'incertitude obtenue sur les déformations élastiques. Nous avons développé un
modèle de bruit pour les images de Laue mesurées en rayonnement synchrotron, qui a été
validé sur des séries de données, et qui nous a permis d'estimer les erreurs statistiques de la
DIC, à partir d'images de Laue synthétiques. Ces erreurs ont ensuite été propagées dans la
méthode Laue-DIC afin d'estimer les incertitudes sur les déformations élastiques, que l'on
trouve en bon accord avec la fluctuation des contraintes locales estimées.

Mots clés : Microdiffraction Laue, corrélation d'images numériques, rayonnement synchrotron,
analyse d'erreurs, essai mécanique in situ.

Determination of the stress field in crystalline materials by Laue microdiffraction

ABSTRACT: Laue microdiffraction is a powerful technique to characterize the intragranular
elastic strain field at the scale of micrometer. Although a standard procedure extracting elastic
strain and crystal orientation from Laue image has been well-established, it can suffer from two
sources of uncertainties: the determination of peaks’ positions and the sensitivity to calibration
parameters. In light of the high accuracy of digital image correlation (DIC), we developed the so-
called Laue-DIC method which used the peaks’ displacements measured by DIC instead of
peaks’ positions to determine the elastic strain increment and rotation between two mechanical
configurations. This method has been proved more efficient than the standard procedure in
terms of stress profiles of bended beam. We also developed the enhanced version of Laue-DIC.
By using the term “enhanced”, we mean that we attempt to obtain both lattice matrices and
calibration parameters of two configurations rather than solely the elastic strain increment and
rotation from peaks’ displacements.

Aside from the formulation of Laue-DIC, we also developed a procedure of statistically
estimating the errors of elastic strain/stress resulted from DIC errors and calibration accuracy.
We have first validated a classical noise model, Poissonian-Gaussian model, from diffraction
images acquired at synchrotron radiation facility. With the noise model, we could statistically
estimate the DIC errors by synthesizing artificial spots. The estimated DIC errors were further
transmitted into the errors of Laue-DIC through statistical tests.

Keywords : Laue microdiffraction, digital image correlation, synchrotron radiation, error
analysis, in situ mechanical test.
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