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Développement de schémas numériques d’intégration de
méthodes multi-échelles

Résumé: Cette thèse concerne l’analyse et le développement de schémas d’intégration
numérique de la Dynamique des Particules Dissipatives. Une présentation et une anal-
yse de convergence faible de schémas existants est présentée, suivie d’une présentation
et d’une analyse similaire de deux nouveaux schémas d’intégration facilement paral-
lélisables. Une analyse des propriétés de conservation d’énergie de tous ces schémas
est effectuée suivie d’une étude comparative de leurs biais sur l’estimation des valeurs
moyennes d’observables physiques pour des systèmes à l’équilibre. Les schémas sont en-
suite testés sur des systèmes choqués de fluides DPDE, où l’on montre que nos deux nou-
veaux schémas apportent une amélioration dans la précision de la description du com-
portement de tels systèmes par rapport aux schémas facilement parallélisables existants.
Finalement, nous présentons une tentative d’accélération d’un schéma d’intégration de
référence s’appliquant aux simulations séquentielles de la DPDE.

Mots-clefs: Analyse Numérique, Dynamique Moléculaire, Équations Différentielles
Stochastique, Modèles multi-échelles, Modèles de réduction de complexité.

Development of new numerical integration schemes for
multiscale coarse-graining methods

Abstract: This thesis is about the development and analysis of numerical schemes for
the integration of the Dissipative Particle Dynamics with Energy conservation. A presen-
tation and a weak convergence analysis of existing schemes is performed, as well as the
introduction and a similar analysis of two new straightforwardly parallelizable schemes.
The energy preservation properties of all these schemes are studied followed by a com-
parative study of their biases on the estimation of the average values of physical observ-
ables on equilibrium simulations. The schemes are then tested on shock simulations of
DPDE fluids, where we show that our schemes bring an improvement on the accuracy of
the description of the behavior of such systems compared to existing straightforwardly
parallelizable schemes. Finally, we present an attempt at accelerating a reference DPDE
integration scheme on sequential simulations.

Keywords: Numerical Analysis, Molecular Dynamics, Stochastic Differential Equations,
Multiscale models, Coarse-Graining models.
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Notation

Symbol Description

kB Boltzmann’s constant
d Physical dimension of a particle (typically d = 3)
N Number of particles of the considered system
Nd Physical dimension of the whole system (typically Nd = 2dN )
X Set of all possible configurations (position and momentum space in

classical MD)
Nit Number of iterations of the considered numerical scheme
∆t Timestep of the numerical scheme
π Invariant measure of the considered dynamics, unless otherwise mentioned
π∆t Invariant measure of the considered numerical scheme, unless otherwise

mentioned
D Set of infinitely differentiable functions from X to R, whose derivatives grow

at most polynomially
D0 Set of elements of D of null average, i.e functions ϕ ∈ D with

∫
X ϕdπ = 0

D∞ Set of infinitely differentiable functions from X to R with compact support
Π Projection of functions of L1(π) from X to R to functions of null average,

i.e Πϕ = ϕ −
∫
X ϕdπ

Π∆t Equivalent of Π for π∆t , i.e Π∆tϕ = ϕ −
∫
X ϕdπ∆t
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Résumé substantiel

Cette thèse est consacrée au développement et à l’étude de nouveaux schémas d’intégration
numérique d’un modèle multi-échelle nommé Dynamique des Particules Dissipatives
avec conservation de l’Énergie (DPDE).

Un des objectifs du Cea/Dam est l’étude et la compréhension de systèmes choqués de
matériaux complexes. Pour cela, il est nécessaire d’effectuer des simulations numériques
d’ondes de choc pour de tels systèmes. Cependant, ces systèmes d’intérêt impliquent des
phénomènes dont les échelles de temps et de distance sont très différentes, nécessitant
ainsi des modèles multi-échelles afin de pouvoir effectuer des simulations numériques
à des coûts raisonnables en termes de nombre d’opérations flottantes et de temps de
simulation.

Un des modèles choisis est la Dynamique des Particules Dissipatives, dénotée DPD,
dans lequel une ou plusieurs molécules sont représentées par une seule mésoparticule,
interagissant avec les autres mésoparticules non seulement par des forces conservatives
issues d’un potentiel effectif mais aussi par des interactions dissipatives et aléatoires,
nommées interactions de fluctuation/dissipation. Ce modèle a été introduit par Hooger-
brugge et Koelman en 1992 [HK92], et ses fondations théoriques ont été établies en 1995
par Español et Warren [EW95]. Cependant, la DPD est un modèle préservant la tem-
pérature du système mais pas son énergie, et n’est donc pas adaptée à la simulation de
systèmes hors-équilibre.

Afin de pouvoir simuler des systèmes hors-équilibre, il est donc nécessaire d’utiliser
la variante conservant l’énergie de la DPD, dénotée DPDE. Cette dynamique est constru-
ite en ajoutant un degré de liberté aux particules DPD traduisant l’évolution de tous les
degrés de libertés internes de la molécule représentée par une particule DPDE. L’énergie
cinétique dissipée par les interactions de fluctuation/dissipation de la DPD est ensuite
réinjectée dans l’ensemble de ces degrés de liberté s internes. La DPDE préserve donc
par construction une énergie E définie comme la somme de ses trois composantes liées
aux trois types de degrés de liberté du système: l’énergie potentielle, l’énergie cinétique
et l’énergie interne, définie comme la somme des énergies internes des particules. Cette
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énergie s’écrit donc

E(q,p,ε) =U(q) +
N∑

i=1

p2i
mi

+
N∑

i=1

εi ,

oùmi représente la masse de la particule indexée par i etU représente le potentiel conser-
vatif considéré. La Figure 1 illustre le procédé de modélisation de la DPDE en donnant
un sens physique aux différentes variables.

Figure 1 | Illustration du procédé de modélisation de la DPDE: chacune des trois molécules (en
violet) interagissant entre elles par des forces conservatives (lignes droites: continues pour les
interactions à courte portée et en pointillées pour les interactions à longue portée) est représen-
tée par une seule macroparticule DPDE (cercles en pointillés). Chacune de ces macroparticules
interagit avec les autres via des interactions conservatives, dissipatives et aléatoires: les inter-
actions entre particules DPDE ne sont donc plus deterministes mais stochastiques. En plus de
sa position et de son moment, chaque macroparticule DPDE est décrite par une variable sup-
plémentaire qui est l’énergie interne (plus la particule est rouge, plus cette variable est grande)
représentant les degrés de libertés internes de sa molécule associée. L’équilibration des degrés
de libertés internes/externes est faite par des transferts d’énergie liés aux interactions de fluc-
tuation/dissipation (flèches rouges).

Considérons un système de N particules, de positions q ∈ RdN , de moments p ∈ RdN
et d’énergies internes ε ∈ RN , où d représente la dimension de chaque particule (usuelle-
ment, d = 3). La dynamique DPDE pour un tel système s’écrit de la façon suivante :



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γij,tχ(rij,t)vij,t dt +σij,t
√
χ(rij,t)dWij,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv

2
ij,t − d

σ2
ij,t

2
µij


χ(rij,t)dt −σij,t

√
χ(rij,t)vij,t ·dWij,t


 ,

avec
µij =

1
mi

+
1
mj
.
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Dans toutes les applications de cette thèse, nous allons considérer des potentiels de type
Lennard-Jones s’écrivant

U(q) =
∑

1≤i<j≤N
v(rij ), rij = ‖qi − qj‖, v(r) = 4εLJ

((σLJ
r

)12
−
(σLJ
r

)6)
,

où εLJ et σLJ sont des paramètres du potentiel. La fonction χ représente la portée des
interactions de fluctuation/dissipation. Dans cette thèse, nous choisissons

χ(r) =



(
1− r

rcut

)2
, si r ≤ rcut,

0, sinon.

Le terme vij,t = vi,t − vj,t désigne la vitesse relative entre les particules indexées par i
et j , et les termes (Wij,t)1≤i<j≤N sont des mouvements Browniens vérifiant la condition
d’antisymétrie Wij,t = −Wji,t . Les paramètres γij et σij pour 1 ≤ i , j ≤ N représentent
respectivement l’intensité des interactions de fluctuation/dissipation entre les particules
i et j .

Nous pouvons définir une température interne associée à chaque énergie interne.
Considérons une particule DPDE d’énergie interne ε ∈ R+. En supposant que les temps
et distances caractéristiques des degrés de libertés internes de chaque molécule représen-
tée par une particule DPDE sont bien plus petits que ceux des degrés de libertés externes,
nous pouvons supposer que les degrés de libertés sont constamment à l’équilibre, et nous
pouvons donc définir l’équation d’état interne de chaque particule DPDE par

ε =
∫ T (ε)

0
Cv(θ)dθ. (1)

Ici, T (ε) représente la température interne de la particule et Cv sa capacité calorifique
à volume constant. Nous voyons que si Cv est continue et strictement positive sur R+,
(1) est bien posée. En réalité, Cv est croissante sur R+, ce qui, combiné à ce qui précède,
implique

lim
ε→0+

T (ε) = 0, et lim
ε→+∞

T (ε) = +∞.

Une fois définie la température interne de chaque particule, nous pouvons définir l’entropie
s(ε) associée aux degrés de libertés interne par

s′(ε) =
1
T (ε)

,

où s′(ε) représente la dérivée de la fonction s.

Nous remarquons que la DPDE préserve deux invariants que sont le moment total et
l’énergie totale:

d



N∑

i=1

pi


 = 0, et d


U(q) +

1
2

N∑

i=1

pi
mi

+
N∑

i=1

εi


 = 0.
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L’ensemble thermodynamique associé à la DPDE doit donc prendre en compte ces deux
invariants. Nous pouvons construire de façon similaire à l’ensemble microcanonique
associé à la dynamique Hamiltonienne (voir [LRS10] pour le détail de la construction de
cet ensemble), l’ensemble dit "microcanonique" de la DPDE, noté µE0,P0 . Cet ensemble
statistique s’écrit

µE0,P0(dq,dp,dε) = Z
−1
E0,P0δE0(q,p,ε)δP0(p)e

S (ε)
kB dqdpdε,

où ZE0,P0 est une constante de normalisation et S(ε) est l’entropie interne du système,
définie comme la somme des entropies internes des particules

S(ε) =
N∑

i=1

si(εi ).

Cependant, afin de proposer des estimateurs d’observables physiques telles que la tem-
pérature, il est plus simple d’utiliser l’ensemble dit "canonique" de la DPDE s’écrivant

µβ,Cv (dq,dp,dε) = δP0(p)Z
−1
β,Cv

e−βE(q,p,ε)+
S (ε)
kB dqdpdε,

où Zβ,Cv est une constante de normalisation. Dans la suite, nous supposons qu’il existe
une equivalence entre ces deux ensembles. Ceci signifie que, pourvu que Eµβ,Cv

[E] = E0,
nous avons

lim
N→∞

(
E
µ
(N )
E0 ,P0

[ϕ(x1, ..,xk)]−Eµ(N )
β,Cv

[ϕ(x1, ..,xk)]
)
= 0,

pour n’importe quelle fonction ϕ dépendant d’un nombre fini k de variables (x1, ..,xk), où

µ
(N )
E0,P0 et µ

(N )
β,Cv

denotent respectivement les ensembles "microcanonique" et "canonique" de
la DPDE associés à un système de N particules.

Le seul résultat d’ergodicité de la DPD a été prouvé dans un cas réduit unidimension-
nel avec une densité assez élevée [SY06]. En règle générale, aucun résultat d’ergodicité
n’a été prouvé pour la DPDE. Cependant, il peut être montré que, sous réserve que γij et
σij satisfassent

σij = σ, γij =
σ2

4kB

(
1

Ti(εi )
+

1
Tj (εj )

)
,

les mesures de probabilité µE0,P0 et µβ,Cv sont invariantes pour la DPDE. Dans la suite,
nous supposons que la DPDE est ergodique pour µE0,P0 .

De plus amples détails sur la Physique Statistique et ce que sont les Équations Dif-
férentielles Stochastiques ergodiques sont donnés en Section 1.2, et de plus amples dé-
tails sur la DPDE et sa thermodynamique peuvent êtres trouvés en Section 2.1.

Nous considérons dans cette thèse trois schémas numériques d’intégration de la DPDE
existants décrits et analysés en Section 2.2, et notés SVV, SEM et SSA. Le schéma SVV,
pour Stochastic Velocity-Verlet, est l’extension à la DPDE du schéma Velocity-Verlet pour
la dynamique Hamiltonienne. Les schémas SEM, pour Splitting Euler-Maruyama et SSA,
pour Shardlow’s Splitting Algorithm sont eux basés sur une technique dite de splitting sé-
parant l’intégration de la partie conservative et de la partie de fluctuation/dissipation de
la DPDE.
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La partie conservative est donnée par la dynamique Hamiltonienne et s’écrit



dqi,t =M
−1pi,t ,

dpi,t = −∇qiU(qi,t),

dεi,t = 0,

avec M étant la matrice de masse du système (souvent, M = Diag(m1, ..,mN )). Cette
dynamique est toujours intégrée avec un schéma de Velocity-Verlet [Ver67]. La partie de
fluctuation/dissipation s’écrit



dqi,t = 0,

dpi,t = −
N∑

j=1,j,i

γij,tχ(rij,t)vij,t dt +
N∑

j=1,j,i

σ
√
χ(rij,t)dWij,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv2ij,t − d

µijσ
2

2


χ(rij,t)dt −σ

√
χ(rij,t)vij,t ·dWij,t


 .

(2)

La dynamique (2) est discretisée par SEM avec un schéma basique d’Euler-Maruyama,
alors que SSA utilise encore une fois une technique de séparation en la décomposant
en une somme de dynamiques élémentaires associées à chaque couple 1 ≤ i , j ≤ N de
particules s’écrivant



dpi,t = −γij,tvij,tχ(rij,t)dt +σ
√
χ(rij,t)dWij,t ,

dpj,t = −dpi,t ,

dεi,t = −
1
2
d



p2i,t
2mi

+
p2j,t
2mj


 ,

dεj,t = dεi,t .

L’intégration SSA de chaque dynamique élémentaire est effectuée en deux étapes: les
moments sont intégrés avec un schéma d’ordre faible infini et les énergies internes sont
mises à jour en réinjectant l’énergie cinétique dissipée par l’intégration des moments. De
plus amples détails sur cette intégration sont donnés en Section 2.2.3.

Nos deux nouveaux schémas, nommés SER pour Splitting with Energy Reinjection et
Hybrid, décrits et analysés en Section 2.3, utilisent aussi cette séparation de la DPDE en
une dynamique conservative et une dynamique de fluctuation/dissipation, et intègrent
aussi la partie conservative avec un schéma de Velocity-Verlet. La discrétisation de (2)
par SER est faite en intégrant les moments avec un Euler-Maruyama

pn+1i = pni + δp
n
i , δpni =

N∑

j=1,j,i

δpnij ,
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avec n ∈N et δpnij = −γnijχ(rnij )vnij∆t +σ
√
χ(rnij )G

n
ij

√
∆t, puis en remarquant que

∆Kni =
(pn+1i )2

2mi
−
(pni )

2

2mi
,

=
δpni
2mi

(
2pni + δp

n
i

)
,

=
N∑

j=1,j,i

δpnij ·
(
vni +

δpni
2mi

)

︸              ︷︷              ︸
∆jK

n
i

,

La mise à jour des énergies internes se fait ensuite en réinjectant de façon symétrique
les variations d’énergie cinétique de chaque particule dans les énergies internes. Ceci
revient à écrire

εn+1i = εni −
1
2

N∑

j=1,j,i

(
∆iK

n
j +∆jK

n
i

)
,

= εni −
1
2

N∑

j=1,j,i

δpnij ·

vnij +

1
2



δpni
mi
−
δpnj
mj





 .

Le schéma Hybrid quant à lui est, comme son nom l’indique, un mélange entre SSA et
SER, construit de façon à se débarasser des problèmes de parallélisation du SSA en rem-
placant la discrétisation de certaines interactions de fluctuation/dissipation élémentaires
par une discrétisation globale SER n’impliquant que ces interactions en question (voir la
Section 2.3.2 pour plus de détails).

Ces cinq schémas sont ensuite comparés dans la Section 3.1 avec des simulations
de systèmes DPDE à l’équilibre. Nous étudions tout d’abord leurs propriétés de con-
servation d’énergie en calculant l’énergie moyenne dépendant du temps sur Ntraj ≫ 1
trajectoires, i.e

〈Et〉 = Eµβ,Cv
[E(xt)] .

où xt = (qt ,pt , εt) est une solution de la DPDE. En pratique, 〈Et〉 est estimée par

Ên
∆t,Ntraj

=
1

Ntraj

Ntraj∑

m=1

E (xm,n) .

où xm,n est la n-ième configuration de lam-ième trajectoire calculée par le schéma numérique
considéré. Le graphe de gauche de la Figure 2 montre que les énergies moyennes pour
SVV, SSA et SER dérivent linéairement en fonction du temps. Ceci nous permet de cal-
culer les coefficients de dérive en fonction du pas de temps utilisé. Le graphe de droite
de la Figure 2 montre que ces coefficients augmentent polynomialement avec le pas de
temps. Nous observons donc qu’aucun des schémas ne conserve correctement l’énergie
du système, en notant cependant que l’on observe avec SER et SSA des dérives d’un or-
dre de grandeur inférieur à celles obtenues avec SVV. Des simulations supplémentaires
montrent que des dérives linéaires s’observent aussi pour SEM, avec des coefficients de
dérive d’un ordre de grandeur supérieur à ceux de SER et de SSA.
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Figure 2 | Étude des propriétés de préservation d’énergie des schémas SVV, SER et SSA. Gauche:
énergie moyennée sur toutes les trajectoires en fonction du temps. Droite: coefficients de dérive
par rapport au temps de l’énergie moyennée sur toutes les trajectoires en fonction du pas de
temps.

Ces dérives ne permettant pas d’obtenir un état stationnaire bien défini, nous corri-
geons tous les schémas par une renormalisation des énergies internes à l’issue de la dis-
crétisation complète de l’équation, comme proposé dans [LBA11]. Notant (q̃n, p̃n, ε̃n) la
configuration obtenue par une application complète (i.e après les discrétisations des dy-
namiques conservatives et de fluctuation/dissipation) de la procédure de discrétisation
d’un schéma donné sur la configuration de départ (qn,pn, εn), ceci consiste à définir

(qn+1,pn+1, εn+1) =
(
q̃n, p̃n, ε̃n − 1

N
(E(x̃n)−E0)~1N

)
.

Nous calculons ensuite en Section 3.2 les biais des schémas ainsi corrigés sur les estima-
tions de valeurs moyennes d’observables pour des systèmes à l’équilibre. L’hypothèse
d’ergodicité de la DPDE par rapport à µE0,P0 nous permet, pour une observable physique
ϕ donnée, d’estimer sa valeur moyenne EµE0 ,P0 [ϕ] par

ϕ̂Nit
=

1
Nit

Nit∑

n=1

ϕ(xn),

où (xn)n=0,..,Nit
est une solution approchée de la DPDE sur 0,∆t, ..,Nit∆t calculée par le

schéma numérique considéré et Nit est le nombre d’itérations de la simulation. La Fig-
ure 3 présente les estimations des valeurs moyennes des composantes de l’énergie totale
pour les schémas SSA, SEM, SER et Hybrid corrigés. Nous observons que les biais des
schémas SER et Hybrid sont respectivement équivalents à ceux des schémas SEM et SSA,
et que les biais de SSA/Hybrid sont plus petits d’au moins un ordre de grandeur que ceux
de SER/SEM. Nous remarquons aussi que tous les schémas sont cohérents entre eux, et
convergent vers une valeur commune propre à chaque observable lorsque le pas de temps
∆t tends vers 0.

Pour finir, les schémas SER, Hybrid et SEM sont comparés au Chapitre 4 sur des
simulations d’ondes de choc de fluides DPDE. Les fluides sont tout d’abord équilibrés à
T = 1000K pendant t = 5× 10−12s, puis la matière est mise en mouvement à une vitesse
vinit = −2000ms−1 vers un piston composé de particules Lennard-Jones de masse infinie
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Figure 3 | Estimations numériques de biais sur les moyennes des composantes de l’énergie
en fonction du pas de temps. Haut : composante cinétique de l’énergie. Milieu : composante
potentielle de l’énergie. Bas : composante interne de l’énergie.

se trouvant à la gauche de la boîte de simulation. La Figure 4 illustre le procédé utilisé
ainsi que les profils attendus d’observables moyennées sur des tranches normales à la
direction de propagation du choc. De plus amples informations concernant la description
des simulations peuvent se trouver en Section 4.1.

En utilisant un pas de temps ∆t = 10−15s, la simulation SEM présente des phases
choquées et à l’équilibre qui chauffent au fur et à mesure de la simulation, comme le
montrent les graphes du haut de la Figure 5 avec les profils de températures cinétiques
et interne (voir la Section 2.1.2 pour plus de détails sur les différents estimateurs de la
température en DPDE). Ces phénomènes sont accrus lorsque l’on augmente le pas de
temps, ce qui montre que ce sont des artefacts numériques liès à l’utilisation d’un pas
de temps fini. Ces artefacts ne se retrouvent pas dans les simulations effectuées avec
SER et Hybrid, comme le montrent les profils du milieu et du bas de la Figure 5. Ces
résultats montrent donc que nos deux nouveaux schémas apportent une amélioration
dans la qualité de la description du comportement de matériaux sous choc par rapport
aux schémas parallélisables existants.
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Figure 4 | Haut : schéma de la procédure utilisée: après équilibration, le système est mis en
mouvement vers un piston gauche immobile, créant ainsi une onde de choc partant du piston et
se propageant de la gauche vers la droite du système. Bas : profils de chocs attendus, calculés
en moyennant les observables sur des tranches normales à la direction de propagation du choc.
Deux types de profils sont attendus: les observables à temps d’équilibration "rapides" présen-
teront un pic au front de choc puis s’équilibreront vers la valeur d’équilibre de choc (courbe
rouge), alors que les observables à temps d’équilibration "lents" s’équilibreront directement vers
la valeur d’équilibre de choc sans présenter de pic (courbe bleue). L’onde de relaxation à droite
de la figure est due à l’absence de piston à droite de la boîte de simulation, et n’affecte pas le
front de choc tant que les deux ondes ne se rencontrent pas.
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Figure 5 | Profils des températures cinétiques (gauche) et internes (droite) moyennées sur des
tranches normales à la direction de propagation du choc pour un pas de temps ∆t = 10−15s. Haut
: profils obtenus avec des simulations SEM. Milieu : profils obtenus avec des simulations Hybrid.
Bas : profils obtenus avec des simulations SER.
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Context

Molecular Dynamics (MD) is the field of science dedicated to the study of matter at its mi-
croscopic level, using computers to model the interactions between atoms or molecules.
It has many aims, and we consider in this work two of them that are, to the extent of our
knowledge, the most important:

• The first interest consists in using MD as a numerical microscope to observe the be-
havior of matter at microscopic level, thus performing the computer equivalent
of what is traditionally understood as experiments. Physical theories can thus be
tested in "computer experiments", and even help their elaboration by guiding the
physicist’s intuition with the observation of molecular trajectories. It was, for ex-
ample, the motivation of the first molecular simulation performed by Alder and al.
in 1958 [AW58].

• The second major interest of MD consists in computing macroscopic quantities ac-
cording to the theory of Statistical Physics, often obtained as averages of micro-
scopic quantities. In this case, MD can be used for a quantitative description of
matter, allowing to compute phase diagrams for instance.

Molecular Dynamics often considers a system of particles whose positions and mo-
menta are solutions of a system of differential equations. The behavior of the particles
is thus obtained by computing the solutions of this differential system or dynamical sys-
tem. However, in most cases, analytical solutions of these dynamical systems are not
known, and we must compute approximate solutions with computers. Those solutions
are computed over a finite number of times (t1, . . . , tN ) by a discretization of the differential
equations, or numerical scheme.

Computing these approximate solutions at each time t1, .., tN requires many floating
point operations and can be very computationally expensive. The most accurate descrip-
tions in Molecular Dynamics, called Ab-InitioMolecular Dynamics, take into account the
quantum effects in order to describe the interaction forces between the particles. How-
ever, they require a tremendous amount of floating point operations, and today com-
putational capacities do not allow us to simulate systems composed of several hundred
atoms. Less accurate but less expensive descriptions use empirical parameters to describe
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the particle interactions. Nevertheless, even using such empirical descriptions does not
allow to simulate systems of more than several hundred million particles on current su-
percomputers.

One might think that a simulation involving a hundred million atoms is enough to
compute whatever we want to compute, but it is unfortunately not the case. Let us il-
lustrate this by a simple example. A mole consists of around 6× 1023 atoms, and a glass
of water contains 5 moles of water molecules. Therefore, simulating a glass of water
would require to take into account approximately 5× 1016 times the maximal number
of atoms that we can simulate nowadays. This simple example reveals that even very
small systems in our scale of length and time are much too large for our computational
power to simulate using traditional Molecular Dynamics. In practice, it is difficult to de-
scribe systems of length scales greater than several hundreds of nanometers because of
the computational power such simulations require. This upper limit is reduced for some
complex systems. The equation of Hydrodynamics can describe most fluids of length
scale greater than a micrometer: below it, the granular aspect of matter is often neces-
sary to understand their physics. We therefore see that there is a gap in the time and
length scales between systems described by Molecular Dynamics and those described by
the equations of Hydrodynamics, where some hybrid models are required (see Figure 6
for a graph of the length and time scales of different descriptions of matter).

t

r

10−15s 10−12s 10−9s 10−6s 10−3s

10−12m

10−9m

10−6m

10−3m

1m

Quantum Mechanics

Molecular Dynamics

Hydrodynamics

Figure 6 | Approximate scales of length and time of different descriptions of matter. The orange
dashed box represents the domain where coarse-graining models are desirable.

In addition, some systems involve phenomena of different orders of magnitude in
terms of length and time scale. A striking example is the one of polymers in a solvent.
Polymers are very long molecules with a filamentary look, and the solvent is usually com-
posed of much smaller and simpler molecules. In these systems, the characteristic times
for the polymers are one or two orders of magnitude longer than those of the solvent
molecules. Hence, using traditional MD would require to use a time step corresponding
to the smallest characteristic time, thus implying prohibitively long and costly simula-
tions in order to observe any characteristic movement of the polymers. One solution to
model such phenomena in reasonable times and costs is to use coarse-graining models,
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representing the smaller and shorter phenomena in an average manner [Mor65, Zwa73],
thus speeding up the computations by allowing the use of time steps corresponding to
the larger phenomena.

The Dissipative Particle Dynamics, termed DPD, is a coarse-graining model devel-
opped byHoogerbrugge and Koelman in 1992 [HK92], and put in firm theoretical grounds
by Español andWarren in 1995 [EW95]. It represents eachmolecule, or group ofmolecules,
by one single mesoscale particle interacting with the other mesoscale particles by conser-
vative forces deriving from the potential function, but also by friction and random in-
teractions. Dissipative Particle Dynamics has been intensely used for its computational
simplicity compared to classical Molecular Dynamics and many efficient and accurate
numerical discretizations of DPD exist. However, it suffers from two downsides: the first
is its incapacity to control the amplitude of the coarse-graining process (i.e the number
of molecules represented by the DPD particle for instance) in another way than acting
on the conservative potential, and the second is its incapacity of simulating phenomena
outside equilibrium, being a model preserving the temperature and not the energy.

The Cea/Dam is interested in simulating the behavior of shocked particle systems.
These systems are often very large, and require the use of massively parallel simulations.
Shockwave simulations of a hundred million copper and tin atoms have already been per-
formed using Molecular Dynamics [OS12], and codes designed for future architectures
of supercomputers allow to reach similar systems of several hundreds of thousands of
atoms [Cie15]. However, other systems of interest are more complex to simulate and such
length scales cannot be reached. Therefore, coarse-graining models adapted to nonequi-
librium simulations are desirable.

The Dissipative Particle Dynamics with Energy conservation, termed DPDE, is an
energy-conserving variant of the Dissipative Particle Dynamics introduced independently
by Avalos and al. and Español in 1997 [AM97, Esp97]. Its energy preservation allows the
modelling of systems outside equilibrium, and is therefore an interesting option for large
scale numerical simulations of shocked complex systems. In addition to preserving (as its
name indicates) the energy of the system, DPDE takes into account the heat capacity of
the coarse-grained molecules, thus allowing to control in some way the amplitude of the
coarse-graining process in opposition to the isothermal DPD. Where DPD enjoys many
efficient numerical discretizations, DPDE turns out to be harder to integrate: in addition
to being accurate, DPDE discretizations must preserve the invariant of the dynamics,
namely the total momentum and energy. While the preservation of the momentum is
often trivially ensured, preserving the energy is sometimes more difficult.

As said before, in the Cea/Dam objectives, DPDE is destined to be used for large
scale andmassively parallel simulations of shocked systems. Therefore, DPDE numerical
schemes need to be parallelizable in addition to being accurate and energy-preserving.
Up to the extent of our knowledge, no scheme manages to satisfy both conditions so far,
the most promising option being a scheme introduced by Shardlow in 2003 [Sha03], very
efficient but complex to parallelize [LBM+14].

The object of this thesis is therefore to construct straightforwardly parallelizable nu-
merical tools to accurately integrate the DPDE model. We organize this thesis in the
following manner:

3



Development of new numerical integration schemes for multiscale coarse-graining methods

• Chapter 1 is an introductive chapter presenting all the notions needed for the fol-
lowing chapters. Information about the theory of Molecular Dynamics, numerical
schemes to integrate classical particle systems and the theory allowing to compute
macroscopic quantities from microscopic information are provided. The Dissipa-
tive Particle Dynamics being a Stochastic Differential Equation, notions about SDEs,
their integration and their use for computingmacroscopic quantities are then given.
Finally, all of this is applied on a prototypical example similar to DPD called the
Langevin Dynamics.

• In Chapter 2, we present the DPDmodel and its energy conservation variant (DPDE).
We also give details about three existing representative numerical schemes for the
DPDE integration: Shardlow’s scheme (SSA), the most efficient scheme known so
far but difficult to parallelize, and two other remaining options called SVV and
SEM, both parallelizable. Finally, we present the most important contribution of
this work: two new straightforwardly parallelizable numerical schemes integrating
the DPDE. These two schemes are named SER and Hybrid, the last one being a
merge of SER and SSA.

• We then proceed to Chapter 3 with a comparative study of the existing and new
DPDE schemes on equilibrium systems. The energy preservation properties of
all the schemes presented in the previous chapter are studied, and we show that
no scheme manages to correctly preserve the energy and that energy drifts occur
which affects the estimations of other observables. A correction ensuring the en-
ergy preservation is then devised, and we study the biases of the corrected schemes
on the estimations of the average values of physical observables on equilibrium
systems. We show that both new schemes are consistent, and that the accuracy of
Hybrid is similar to the reference SSA scheme.

• In Chapter 4, we validate our new schemes on large scale, massively-parallel simu-
lations of shocked systems. We show that both of our new schemes handle correctly
such simulations and bring a substantial improvement compared to the existing
parallelizable schemes by being able to correctly reproduce the shock propagation,
where SEM, using the same parameters, displays non-physical phenomena.

• The last chapter of this thesis, Chapter 5, presents an attempt at accelerating DPDE
sequential simulations with a variant of the SSA scheme. However, we show that
this variant cannot be extended to parallel simulations, due to the apparition of
artificial phenomena that do not vanish in the limit of infinitely small time steps.
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1
Introduction to Molecular

Simulation

We start this thesis by an introductive chapter presenting notions that will be used through-
out the sequel. Molecular Dynamics and the tools to our disposal to perform numerical
simulations of atomistic systems are presented in this chapter.

Molecular Dynamics (MD) consists in studying microscopic particle systems using
computers simulations instead of experiments. In order to do that, a model of the par-
ticles interaction describing the behavior of the particles must be devised and then nu-
merically integrated. These models often take the form of Differential Equations, thus
requiring schemes to compute approximate solutions of these equations. The quality of
these approximations need then to be assessed, through information about the difference
between approximate and exact solutions, or information about the difference between
their respective distributions.

Molecular Dynamics relies on a microscopic description of matter. This microscopic
information allows to have qualitative information about the behavior of matter: in a
given state of temperature and pressure, does a given crystal melt? Does a chemical
reaction occur? In fact, from this microscopic description, it is also possible to extract
macroscopic information about the system, especially quantitative information, using
the theory of Statistical Physics. This allows to determine for instance the macroscopic
pressure, temperature or heat capacity of the system.

The classical microscopic description of matter accurately describes atomistic sys-
tems for which quantum effects are negligible. We consider in this thesis coarse-grained
models, where some microscopic phenomenons are represented in an average manner,
sometimes by adding random fluctuations to the differential equations satisfied by the
particles, thus turning Ordinary Differential Equations (ODEs, i.e deterministic) into
Stochastic Differential Equations (SDEs). Similarly to ODEs, SDEs can be used both as a
numerical microscope and to compute macroscopic averages. However, the error control
for the integration of SDEs is more complex than for ODEs, and there are several ways of
defining the error between the approximate and true solutions.

We start in Section 1.1 by a description of matter at its microscopic level and of some
tools used to perform numerical simulations of its behavior. We then give in Section 1.2
elements of the theory of Statistical Physics, which links microscopic information to av-
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erage macroscopic quantities, and present methods using ergodic SDEs to compute these
macroscopic averages otherwise impossible to compute by traditional brute-force meth-
ods. We continue by presenting some elements on the discretization of SDEs in Sec-
tion 1.3. Finally, we apply in Section 1.4 the notions introduced in the previous sections
to a prototypical dynamics called the Langevin dynamics. This dynamics is similar to
the main dynamics considered in this thesis and is used as a paradigmatic example to
introduce the notions that we use on the next chapters.

Microscopic description of matter

The fundamental ingredient for any molecular simulation is the description of the in-
teraction between atoms. We consider in this section atomistic systems described by the
position and velocities of the nucleus of the atoms, with particles interacting through con-
servative forces deriving from a potential function. The electron are taken into account
in the potential and are not explicitely represented in the system.

We start in this section by an introduction to the classical description of matter and
then describe the dynamics of these atomistic systems along with some tools to perform
numerical simulations of such systems.

The classical microscopic description of matter

In the classical description of matter, particles are represented by their positions q ∈ Rd ,
and their momenta p ∈ Rd , where d denotes the physical dimension of the system (usually
d = 3). These two quantities are called the degrees of freedom of the particle. The particle’s
mass is denoted by m ∈ R+ and its velocity is obtained from the momenta and mass as
v = p/m ∈ Rd . In general, if we consider a system of N particles, we index each particle
with an integer i ∈ [|1,N |] and denote the corresponding positions, momenta, masses
and velocities by qi , pi , mi and vi respectively. The full set of variables describing a
particle is the vector composed of its position and momenta, and is denoted by xi =
(qi ,pi ) ∈ R2d . We consider in this section an isolated system composed of N particles.
The configuration of the system is denoted by x = (q,p) ∈ R2dN , where q = (q1, . . . , qN ) ∈
RdN and p = (p1, . . . ,pN ) ∈ RdN are respectively the position and momenta vectors of the
particles defining the system. The phase space, or set of configurations, denoted by X , is
the ensemble of all the possible values that q and p can take. It can denote different
ensembles (i.e we might have X ( R2dN ) depending on how the boundaries of the system
are defined (see the discussion on the boundary conditions later on). The mass matrix
is denoted by M ∈ RN×N (usually M = Diag(m1, . . . ,mN )). The knowledge of the three
vectors q, p and m is enough to completely define the configuration of the system under
consideration.

The interactions between particles are accounted for by a function U that is called
the potential function, or potential energy, depending on the positions q only. The kinetic
energy of the particles is defined by a function K(p) = 1

2p ·M−1 ·p. The total energyH(q,p)
of the system is then defined as the sum of its kinetic and potential components:

H(q,p) =
1
2
p ·M−1 · p +U(q). (1.1)

6
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q1,m1

q2,m2

q3,m3

q4,m4

q5,m5
v 1

v 2

v 3

v 4

v
5

Figure 1.1 | Two-dimensional representations of particles in the classical description of matter:
Each particle indexed by i is represented by its position qi , its mass mi and its momentum pi =
mivi (where vi is its velocity).

In the case whereM = Diag(m1, . . . ,mN ), the total energy writes

H(q,p) =
N∑

i=1

p2i
2mi

+U(q).

Potential functions

The potential, or potential energy, U accounts for the interaction of the particles: the
forces applied on each particle due to its interaction with the other particles are de-
scribed by its derivatives. Ideally, it is computed with ab-initio computations [CDK+03].
Ab-initio potentials are non-empirical potentials, i.e they do not depend on empirical pa-
rameters and are supposed to describe exactly the physics of the system. However, their
computation is very expensive, and thus limits the use of ab-initio potentials to systems
of small size (typically N = 100− 1000).

Because of the computational-cost of ab-initio potentials, empirical potentials are
used in practice for the study of larger systems. Empirical potentials are obtained by
assuming a functional form depending on parameters for the interactions. These param-
eters are often tuned by fitting them to ab-initio computations.

A simple example is the Lennard-Jones potential [Jon24], used mostly to describe the
interactions of noble gases. Lennard-Jones (LJ) potentials are called pairwise potentials
because the interactions only depends on the relative distance of each particle pair. The
interaction energy of two Lennard-Jones particles writes

U(q) =
∑

1≤i<j≤N
v(rij ), rij = ‖qi − qj‖, v(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
. (1.2)

The parameter ε represents the minimum energy of the interaction, and the parameter
σ represents the characteristic distance at which the interaction energy reaches 0. The
distance at which the energy reaches its minimum is 21/6σ . An example of a Lennard-
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Jones interaction is given in Figure 1.2. The parameters ε and σ depend on the material

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.4  1.8  2.2

p
o

te
n

ti
a

l 
e

n
e

rg
y
 a

n
d

 f
o

rc
e

reduced interatomic distance

energy
force

Figure 1.2 | Example of a Lennard-Jones potential where the energy and the distance is ex-
pressed in terms of the reference distance σ and the reference energy ε.

described by the potential. For instance, when considering Argon atoms, Lennard-Jones
parameters should be set to ε

kB
≃ 119.8K and σ ≃ 3.405Å. LJ parameters have been fitted

for many different materials (see for instance [WB71] for values of the LJ parameters for
many liquids).

Because of their simplicity, Lennard-Jones potentials are very useful for testing pur-
poses, when one wants to test a new numerical method to compute properties of an
atomistic system. However, they do not describe accurately the atomistic interactions as
soon as systems are more complex than noble gases. Many more elaborate potentials
have been presented in the literature, like the Embedded Atom Model (EAM) poten-
tial [DB83, DB84, FBD86], which was initially elaborated to describe the interactions
between metal atoms like copper. These more elaborate potentials are more accurate
than basic potentials such as Lennard-Jones in certain cases, but their evaluation require
more floating point operations and are thus more computationally expensive.

However, for some applications involving complex systems, common potentials like
LJ or EAM are completely useless, and an accurate description of the physics requires the
development of some very elaborate and extremely computationally expensive potentials
with many parameters. This is the case of reactive systems like Hydrocarbons for in-
stance, where potential like REBO [Bre90], VALBOND [RLC93] or ReaxFF [vDDLWA01]
are used. In order to illustrate the complexity of these potentials, let us mention that
ReaxFF uses 28 parameters and REBO more than 50.
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Cut-off radius, shifted and splined potentials

In theory, the potential energy is computed by calculating the interaction energy of all the
particle couples (i, j), which is extremely expensive. In addition, the interaction energy
v usually tending fast enough towards 0 when r → +∞, most of the computed pairwise
interaction energies are of negligible influence over the final value of U(q). Therefore, in
practice, we introduce what is called a cut-off radius rcut limiting the range of the potential
interactions, i.e

vcut(r) =


v(r), if r < rcut,

0, otherwise.

Introducing a cut-off radius alleviates the need for computing many negligible interac-
tions, thusmaking the potential energy computationmust faster, without great alteration
of the final result. Usually, the cut-off radius is taken two or three times bigger than the
characteristic length of the interaction described by v. E.g, if v is of the form (1.2), a
typical value of the cut-off radius is usually taken as rcut ≃ 3.0σ .

In order to recover the continuity at r = rcut, we shift the potential by subtracting
v(rcut) to the pairwise interaction energy. Similarly, in order to also recover the continuity
of the derivative of v, we add a term proportional to r − rcut so that v′ vanishes at r = rcut.
We denote potentials with all the above corrections by cut, shifted and splined potentials.
They read

veff(r) =

{
v(r)− v(rcut)− v′(rcut) (r − rcut) , if r < rcut,
0, otherwise.

(1.3)

Note that such a cut-off can be used for short-range interactions only. Coulomb inter-
actions for instance are proportional to 1

r , which implies that the long-range interactions
cannot be neglected and must be computed using different techniques that we do not
consider in this thesis (see [Tuc10] for details about such techniques).

Boundary Conditions

Particles are not always allowed to visit the entire space and sometimes boundary condi-
tions must be enforced, depending on what one wants to modelise. Let us denote by Q
the set of all the possible positions.

• For simulations of systems in vacuum, one can define Q = RdN , and particles are
allowed to visit the entire space.

• For some simulations, the particles have to be confined to a specified region of space
Q̃ ( RdN . The restriction can be performed by introducing a wall of fixed particles
(or particles of infinite mass) on the borders of Q̃, thus preventing the particles
inside to go out (see Figure 1.3). Note than in the situation depicted by Figure 1.3,
we still have Q = RdN .

• In many molecular dynamics simulations nowadays, periodic boundary conditions
are used. Periodic boundary conditions allow to avoid boundary effects, therefore
allowing bulk systems to be modeled. With periodic boundary conditions, the sim-
ulation box is replicated in all directions, and particles interact not only with the
particles inside the simulation box but also with their periodic image. Figure 1.4
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x

y particles with m =∞

Figure 1.3 | Illustration of fixed wall boundary conditions.

illustrates these boundary conditions. In a simulation, only the positions of the

1 2 3

4 A

B

C

5 6

7 A 8 9

rcut

L

Figure 1.4 | Example of a two-dimensional simulation box with periodic boundary conditions
applied. Particle B interacts with particle C in the box 5 (main box) but also with the periodic
image of particle A in box 8.

particle of the thickened box (box 5) are computed, and the other particles are ob-
tained by taking the associated periodic images. If L denotes the length of each
simulation box, choosing L > 2rcut allows to compute short-range interactions (e.g
LJ interactions) by considering only one perdiodic image for all the particles in the
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simulation box. In Figure 1.4 for instance, particle B only interacts with particle
C and the periodic image of particle A, and not with particle A itself nor with the
periodic image of particle C.

Note that periodic boundary conditions only apply for short-range interactions.
Long-range interactions are computed normally as the bulk condition of the sys-
tem requires.

Dynamics of isolated systems

We have presented in Section 1.1.1 a microscopic description of matter, and given some
details about how microscopic particle systems can be represented. We now consider
the dynamics followed by the particles, i.e the differential equation satisfied by their
positions and momenta.

Using the same notation as in Section 1.1.1, the time evolution of isolated systems
follows the Hamiltonian dynamics


q̇(t) =M−1p(t),

ṗ(t) = −∇U(q(t)),
(1.4)

where q̇(t) represent the time derivative of q(t). The above equation is a rewriting of
Newton’s equation of motion

M · q̈(t) = −∇U(q(t)),

where q̈(t) represents the second time-derivative of q. Straightforward computations
show that equation (1.4) preserves the total energy H of the system defined by (1.1):

dH
dt

= ṗ(t) ·M−1p(t) + q̇(t) · ∇U(q(t)),

= −∇U(q(t)) ·M−1p(t)−M−1p(t) · ∇U(q(t)),

= 0.

The energy H is called the Hamiltonian energy, and in fact fully describes the dynamics.
Indeed, (1.1) can be rewritten in the following form:


q̇(t) = ∇pH(q(t)),

ṗ(t) = −∇qH(q(t)).

In the sequel, unless otherwise stated, we denote by x(t) = (q(t),p(t)) the general solu-
tion of the Hamiltonian dynamics (1.4) and ϕt(x) the solution of the dynamics equal to
x ∈ X at time 0, where (ϕt) are the flow maps of (1.4).

Time discretization

Although the properties of the Hamiltonian dynamics are well-understood by now [AKN07],
its solutions cannot be computed analytically for a general U . Therefore, we need to
compute approximations of solutions using numerical schemes, also called discretizations
of the dynamics. The integration of the Hamiltonian dynamics is also well-known (see
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[LR04, HLW06] for instance) but we nevertheless give below some useful elements of its
principle. For information about the discretization of Ordinary Differential Equations in
a more general case, one can see [Dor96].

Consider the following general Ordinary Differential Equation (ODE):

ẋ(t) = f (x(t)), (1.5)

where f : Rd → Rd , with d ∈ N, is a locally Lipschitz function so that solutions of the
above ODE are defined everywhere in Rd in a time interval [0,Tmax], with Tmax > 0. In
the sequel, we denote by ‖.‖ any given norm on Rd . Given an integration time T > 0, a
numerical scheme computes an approximation of (x(t))t∈[0,T ] at a finite number of times
t1, . . . , tNit

, where Nit is the number of times when the solution is approximated. Usually,
the approximation times are regularly spaced in [0,T ], and separated by a time step de-
noted by ∆t, i.e ti = i∆t and Nit = ⌊T /∆t⌋. The accuracy of the discrete approximation
of the solution depends on the time step, but every reasonable numerical scheme should
recover the true analytical solution when ∆t goes to zero.

A numerical scheme is defined by a discretization procedure Φ∆t : given a time step ∆t,
it computes an approximate solution of the equation at a time t+∆t from a starting point
x(t) ∈ Rd at time t, i.e

Φ∆t(x(t)) ≃ x(t +∆t).

Let (xn)n=1,..,Nit
be a sequence generated by the successive iterations of Φ∆t :

xn+1 =Φ∆t(x
n). (1.6)

When the sequence starts from x0 = x, such a sequence can also be denoted by xn =
Φ
n
∆t(x). The quality of the approximation (xn) can be estimated by looking at two aspects:

the accuracy of the local estimation Φ∆t compared to the analytical solution, and the
error propagation caused by the successive use of the approximation Φ∆t instead of the
true analytical solution. These two aspects correspond respectively to the notions of
consistency and stability.

Definition 1.1.1. [Stability] Consider two sequences (xn)n=0,..,Nit
and (yn)=0,..,Nit

defined by


xn+1 =Φ∆t(x

n),

yn+1 =Φ∆t(y
n) + δn,

with (δn)n=0,..,Nit
an arbitrary sequence. A scheme is said to be stable if there exists CT > 0

independent of Nit or ∆t alone (but which might depend on T =Nit∆t) such that

max
n=0,..,Nit

∣∣∣yn − xn
∣∣∣ ≤ CT

Nit∑

n=1

|δn| .

In order to study the consistency of a numerical scheme, we have first to define what the
local and global errors are.

12
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Definition 1.1.2. [Local error] The local error of a numerical scheme is the error of its dis-
cretization procedure Φ∆t compared to the analytical solution, i.e

∀y ∈ Rd , e∆t(y) =
∥∥∥ϕ∆t(y)−Φ∆t(y)

∥∥∥ ,

where (ϕt)t∈[0,Tmax] denotes the semigroup formed by the flow maps of (1.5).

Definition 1.1.3. [Global error] Let T > 0 be an integration time. The global error of a
numerical scheme is the maximum difference between the true solution and its approximation
over a time interval [0,T ], i.e

∀y ∈ Rd , E∆t,T (y) = max
0≤n≤Nit

∥∥∥ϕn∆t(y)−Φn
∆t(y)

∥∥∥ .

We now define the notion of local consistency needed later on to obtain the conver-
gence of a scheme.

Definition 1.1.4. [Local consistency] A numerical scheme is said to be locally consistent or
consistent if, for any x ∈ Rd for which a solution to (1.5) exists, we have

lim
∆t→0

e∆t(x)
∆t

= 0.

The global consistency, or convergence, of a numerical scheme is the fact that we recover
the true solutions at any given finite integration time T when the time steps goes to 0, i.e
for any finite integration time T > 0 and any x ∈ Rd for which a solution to (1.5) exists,
we have

lim
∆t→0

E∆t,T (x) = 0.

In order to obtain the convergence, we need the scheme to be stable and locally consis-
tent.

Proposition 1.1.1. A locally consistent and stable numerical scheme is convergent.

The order of accuracy of a numerical scheme gives information on the convergence
rate, i.e how fast the global error goes to 0 with the time step. It is defined through the
local error:

Definition 1.1.5. [Order of a numerical scheme] A numerical scheme is said to be of order
ω if for any y ∈ Rd for which a solution to (1.5) exists, we have

∥∥∥Φ∆t(y)−ϕ∆t(y)
∥∥∥ ≤ Cy∆tω+1,

where Cy > 0 does not depend on the time step ∆t.

Proposition 1.1.2. Let Φ∆t be a stable numerical scheme of order ω > 0. Then for any x ∈ Rd
for which a solution to (1.5) exists, there exists KT ,x > 0 independent of ∆t such that

max
0≤n≤Nit

∥∥∥ϕn∆t(x)−Φn
∆t(x)

∥∥∥ ≤ KT ,x∆tω.
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Remark 1.1.1. If the prefactor KT ,x does not depend on ∆t, it can depend on the integration
time T and the initial condition x. In some cases, KT ,x increases exponentially with T , thus
severely limiting the range of integration times allowing for accurate estimations of x(T ).

Examples of discretizations of the Hamiltonian dynamics

The first numerical scheme that comes to mind for the integration of the Hamiltonian
dynamics is the basic Explicit-Euler scheme (EE), which reads


qn+1 = qn +∆tM−1pn,

pn+1 = pn −∆t∇U(qn).

The EE scheme is explicit and computationally fast, but is of order one of accuracy, and
fails to conserve the energy by exhibiting energy drifts. Other schemes like Runge-Kutta
schemes are of higher order but also suffer from energy drifts. Therefore, such schemes
are not adapted to the integration of the Hamiltonian dynamics.

Symplectic schemes are usually preferred to standard explicit schemes for general
ODEs. They approximately preserve the energy up to a certain order for exponentially
long times under some conditions on the trajectories and on the potential U ([HLW06],
Chapters VI, VIII and IX). Indeed, possibly after some initial transient relaxation, the
energy oscillates around an average valueH∆t =H0+K∆tω for someK ∈ R andω > 0, with
the amplitude of the oscillations being proportional to ∆t2. This means that symplectic
schemes do not yield energy drift, as can be seen in Figure 1.5.
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Figure 1.5 | Energy preservation by the Velocity-Verlet scheme (symplectic, see (1.12)) for time
steps∆t∗ = 0.001 and∆t∗ = 0.005 on an atomistic system described by a Lennard-Jones potential.
After a transition time, the energy stabilizes around an average value close to its initial value.
The difference between the two increases with the time step, as well as the amplitude of the
oscillations around the average stabilized value.
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Splitting techniques are often used to devise symplectic schemes. Indeed, the Hamil-
tonian flow is a symplectic mapping, and the composition of two symplectic mappings
is still symplectic. In our case, the Hamiltonian dynamics can be separated in two sub-
dynamics that are still Hamiltonian, containing respectively the time evolution of the
positions and the momenta:


q̇(t) =M−1p(t),

ṗ(t) = 0.
,


q̇(t) = 0,

ṗ(t) = −∇U(q(t)).
(1.7)

Because each of the above two subdynamics is Hamiltonian, both of their flows are sym-
plectic. In addition, we can analytically integrate these dynamics as


q(t) = q0 + tM

−1p0,

p(t) = p0,
,


q(t) = q0,

p(t) = p0 − t∇U(q0).
(1.8)

Therefore, splitting schemes where each subscheme that corresponds to the above ana-
lytical integrations over a time ∆t are symplectic.

In a Trotter splitting, each part is integrated successively with a full time step ∆t, thus
yielding two integration schemes, called Symplectic Euler algorithms. If the positions are
updated first, we obtain the Symplectic-Euler scheme A, which reads


qn+1 = qn +∆tM−1pn,

pn+1 = pn −∆t∇U(qn+1).
(1.9)

If the momenta are updated first, we obtain the Symplectic-Euler scheme B, which reads


pn+1 = pn −∆t∇U(qn),

qn+1 = qn +∆tM−1pn+1.
(1.10)

Remark 1.1.2. Updating the momenta or the positions first yields similar results, and does
not change the order of accuracy nor the computational cost of the algorithms.

Both SE schemes (1.9) and (1.10) are explicit and have an order 1 of accuracy, just like
the EE scheme.

The order of the Symplectic Euler schemes is increased by symmetrizing the integra-
tion, i.e by integrating twice one equation with time step ∆t

2 , and integrating the other
equation with time step ∆t in between the two half-integrations. This procedure, called
a Strang splitting, yields two schemes called the Symmetric Symplectic Euler algorithms
(SES), or the Stormër-Verlet algorithms. If the positions are updated first, we obtain



qn+
1
2 = qn +

∆t

2
M−1pn,

pn+1 = pn −∆t∇U(qn+
1
2 ),

qn+1 = qn+
1
2 +

∆t

2
M−1pn+1.

(1.11)
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If the momenta are updated first, we obtain the Velocity-Verlet scheme, introduced in
[Ver67], which reads 

pn+
1
2 = pn − ∆t

2
∇U(qn),

qn+1 = qn +∆tM−1pn+
1
2 ,

pn+1 = pn+
1
2 − ∆t

2
∇U(qn+1).

(1.12)

Both SSE schemes (1.11) and (1.12) are explicit, of order 2, and symplectic. The Velocity-
Verlet scheme (1.12) is the most widely used scheme in the Molecular Simulation com-
munity for modeling NVE atomistic systems, because of its higher order accuracy and its
long-time stability.

Going from a microscopic description to a macroscopic one

After having described the matter at the microscopic level, we explain in this section
how macroscopic quantities can be computed from such a microscopic description. This
is done according to the theory of Statistical Physics, which defines macroscopic quanti-
ties, also called physical observables, as expectations of microscopic quantities according
to some probability measures. However, the downside of this approach is that physical
observables are expressed as integrals with respect to a probability measure on spaces
whose dimension is proportional to the number of particles of the system. The complex-
ity of their computation therefore increases extremely fast with the number of particles
considered, which makes standard spatial discretization methods useless. This is called
the "Curse of Dimensionality".

Brute-force deterministic methods being prohibitively expensive, one option is to use
Stochastic Differential Equations (SDEs) to compute the observable expectations using
ergodic limits. Therefore, under appropriate conditions, the many-dimensional integral
corresponding to the observable expectation is transformed into a single dimensional
time integral much simpler to compute.

We organize this section as follows: we start in Section 1.2.1 by giving some elements
on Statistical Physics, and then describe in Section 1.2.2 how and under which conditions
SDEs can be used to compute the observables expectations.

Introduction to Statistical Physics

In the Statistical Physics framework, thermodynamical observables are defined as func-
tions of the configuration (q,p) ∈ X .

ϕ :

{
X −→ R,

(q,p) 7−→ ϕ(q,p).
(1.13)

However, the value ϕ(q,p) does not give any information on the system because it is the
value of ϕ for one specific configuration (q,p) out of the infinite set of possible configu-
rations X . Rather, the macroscopic value corresponding to the observable ϕ, denoted by
〈ϕ〉, is defined in an average manner.
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Definition 1.2.1. [Average value of an observable] Consider an observable ϕ defined by
(1.13). The physical value of ϕ is defined as the expectation of its microscopical values for
configurations distributed according a probability distribution π. I.e

〈ϕ〉π = Eπ [ϕ(q,p)] =
∫
ϕ(q,p)π(dq,dp), (1.14)

The probability distribution π is called the thermodynamic state of the system, also called
thermodynamic ensemble, statistical ensemble, macrostate or macroscopic state of the
system.

In the remainder, we denote by D a set of smooth functions, composed of infinitely
derivable functions whose derivatives grow at most polynomially. Consider a positive
functionW : X → [1,+∞) and define the following weighted space

L∞W =
{
ϕ measurable,

∥∥∥∥
ϕ

W
∥∥∥∥
L∞
< +∞

}
, (1.15)

and the corresponding norm

‖ϕ‖L∞W =
∥∥∥∥
ϕ

W
∥∥∥∥
L∞
. (1.16)

Consider now the family of functionsWm being defined for all m > 0 asWm(x) = 1+ |x|m.
The ensemble D is then defined as

D =
{
ϕ ∈ C∞(X ,R)

∣∣∣∣ ∀m ∈N,∀l ∈NNd s.t. |l | =m, ∃k ∈N,
∥∥∥∂lϕ

∥∥∥
L∞Wk

< +∞
}
, (1.17)

where ∂lϕ = ∂l1

∂x
l1
1

. . . ∂
lNd

∂x
lNd
Nd

and Nd is the dimension of the system (e.g considering a system

composed of N particles, Nd = dN if x = q, or Nd = 2dN if x = (q,p)). In the remainder of
this thesis, observables, unless otherwise stated, are considered to be elements of D.

Remark 1.2.1. The choice of the family of functions (Wm)m∈N : x 7→ (1 + |x|m) in the defini-
tion of D given by (1.17) is arbitrary. Many results presented in this chapter still hold when
(Wm)m∈N is any family of positive scale functions verifyingW0 ≤W1 ≤ . . . ≤Wm ≤ . . .

Thermodynamic ensembles

According to Definition 1.2.1, the physical value of a given observable depends on the
thermodynamic ensemble of the system considered. Several thermodynamic ensembles
can be considered, and we list below two common choices:

• The microcanonical ensemble (NVE): This ensemble describes a system in which
the quantity of matter N , the volume V and the energy E are conserved. Note that
E here denotes the Hamiltonian energy defined by (1.1). This is the ensemble in
which any closed system at equilibrium is. Its corresponding distribution writes

µmc,E0(dq,dp) = Z
−1
mc,E0

δH(q,p)−E0dqdp. (1.18)

The distribution δH(q,p)−E0 can be explicitly constructed as the limit of a uniform
measure on the set of configurations (q,p) ∈ X of energy slightly higher than E0.
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Development of new numerical integration schemes for multiscale coarse-graining methods

Let C(E) be the subset of X of the configurations with energy E0, i.e

C(E0) = { (q,p) ∈ X | H(q,p) = E0} ,

and define
N∆E(E0) =

{
(q,p) ∈ X

∣∣∣ E0 ≤H(q,p) ≤ E0 +∆E
}
.

The set N∆E(E0) is endowed with a uniform measure, and we define δH(q,p)−E0
through the expectations of observables ϕ ∈ D as

∫

C(E)
ϕ(q,p)δH(q,p)−E0(dqdp) = lim

∆E→0

1
∆E

∫

N∆E (E0)
ϕ(q,p)dqdp.

The constant Zmc,E0 is a normalization constant ensuring that µmc,E0 is a probability
measure, i.e

Zmc,E0 =
∫

C(E0)
δH(q,p)−E0(dqdp).

Formore details on the construction of δH(q,p)−E0 , we refer to Section 1.2.3 of [LRS10].

• The canonical ensemble (NVT): This ensemble describes a system at equilibrium
coupled with an infinite energy reservoir. The system can exchange energy with
the reservoir, which thus acts as a thermostat keeping the temperature T of the
system constant. The quantity of matter N and the volume V are also conserved.
The associated probability measure reads

µβ(dq,dp) = Z
−1
β e−βH(q,p)dqdp, (1.19)

where β = 1
kBT

, with T the temperature of the system and kB Boltzmann’s constant.
The term Zβ is a normalization constant called the partition function which is de-
fined as

Zβ =
∫

X
e−βH(q,p)dqdp.

The expression (1.19) of µβ is defined as the probability distribution maximizing,
under constraints of fixed average energy value, the statistical entropy. Consider a
probability measure with density ρ. The statistical entropy G(ρ) corresponding to
this measure is defined as

G(ρ) = −
∫

X
ρ(q,p)lnρ(q,p)dqdp.

It is shown in [BHG06] that the expression given by (1.19) is the probability mea-
suremaximizing G under the constraint of fixed average energy value. I.e, assuming
that e−βU ∈ L1(X ), µβ is the solution of the following optimization problem:

sup
ρ∈L1(X )

{
G(ρ)

∣∣∣∣ ρ ≥ 0,
∫

X
ρ(q,p) = 1,

∫

X
H(q,p)ρ(dqdp) = E0

}
.
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Therefore, β depends on E0. More details about how to choose E0 are given later on
when the equivalence of ensembles is discussed.

There are many more thermodynamic ensembles than the two examples presented. In
fact, the choice of ensemble amounts to choosing which quantities are preserved exactly,
and which are preserved in average. The resulting macrostate is then obtained by max-
imizing the entropy under the chosen constraints, in a way similar to the derivation
performed for the canonical ensemble µβ . Details of the derivation are given in Sec-
tion 1.2.3.3 of [LRS10], and are not reported here.

As we saw previously, thermodynamic ensembles are constructs derived from a "phys-
ical" choice of fixed quantities. We therefore expect the average values they predict to be
consistent one with one another. This is true in the limit of infinite systems (N →∞), as
long as neighborhoods of phase transitions are avoided [Fis64]. Details on the method
for passing between ensembles, outlined below, are given in [LL80, BO].

Consider as an illustration the microcanonical and canonical ensembles. Consider
an observable ϕ ∈ D depending only on a finite number k ∈ N of variables denoted by
(x1, . . . ,xk). It can be shown that

lim
N→+∞

(
E
µ
(N )
mc,E0

[ϕ(x1, . . . ,xk)]−Eµ(N )
β
[ϕ(x1, . . . ,xk)]

)
= 0,

provided Eµβ [H] = E0, where µ(N )
mc,E0

and µ(N )
β are respectively the microcanonical and

canonical measure corresponding to a system with N particle, and H is the Hamiltonian
energy of the system. The equality Eµβ [H] = E0 means that the average value of H in
the canonical ensemble is equal to the chosen value E0 in the microcanonical ensemble.
Rigorous details about the equivalence of statistical ensembles are given in [Rue69].

Example 1.2.1. Define a temperature T such that Eµβ [H] = E0. Consider the virial pressure
of the system defined in [AT87] as

PW (q) = −1
3

N∑

i=1

qi · ∇qiU(q).

If the potential U involves only short-range interactions, PW is expected to be an infinite sum
of terms depending only on a finite number of variables. Indeed, short-range interactions are
limited in range, and each particle is expected to have a finite number of neighbors interacting
with it (see the cut-off radius section of Section 1.1.1). Therefore, for each term of the above
sum, we have

∀i ∈N, lim
N→+∞

(
E
µ
(N )
β

[
qi · ∇qiU

]
−E

µ
(N )
mc,E0

[
qi · ∇qiU

])
= 0.

This implies that the virial pressure has the same average value in the canonical and micro-
canonical ensembles for infinite systems, provided that Eµβ [H] = E.

Curse of dimensionality

We have seen that Statistical Physics allows to obtain macroscopic information from a
microscopic description through the expectations of observables. However, these expec-
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tations are very high-dimensional integrals that are prohibitively expensive to compute.
Standard discretizations procedures are therefore impossible to use. In addition, it is usu-
ally impossible to sample the different macrostates using i.i.d variables. Considering for
instance the canonical measure given by (1.19), its marginal related to the momenta is a
Gaussian distribution which is easy to sample, but the position-related marginal cannot
be sampled directly in the general case.

Two other options exist to compute observables such as defined by (1.14):

• One option is to compute Markov chains realizations and to obtain the thermody-
namic averages as ergodic limits. One example is theMetropolis algorithm [MRR+53]
computing realizations of ergodic Markov chains for the position marginal of the
canonical macrostate.

• One other option is to useMarkov processes defined as solutions of Stochastic Differ-
ential Equations ergodic with respect to the target probability measure.

In this thesis, we only consider the second option and detail it in the sequel.

Computing physical observables with Stochastic Differential Equations

Let us consider the following general diffusion SDE:

dxt = f (xt)dt + b(xt)dWt , (1.20)

where xt ∈ X ⊂ RNd , (Wt)t∈R is a standard m-dimensional Brownian motion [RB06] and
f : RNd → RNd and b : RNd → Rd×m satisfy the following assumption:

Condition 1.2.2. Both f and b are functions of D, and there exists C > 0 such that:



∥∥∥f (x)− f (y)
∥∥∥+

∥∥∥b(x)− b(y)
∥∥∥ ≤ C

∥∥∥x − y
∥∥∥ , ∀(x,y) ∈ X 2, t ≥ 0,

‖f (x)‖+ ‖b(x)‖ ≤ C (1 + ‖x‖) , ∀x ∈ X , t ≥ 0.

The above conditions on f and b ensure the existence and uniqueness of the solution of
(1.20) [KP13, Arn74]. They also ensure the continuous dependence of the solutions with

respect to the initial conditions in the following sense: denoting xt and x
(n)
t the solutions

of (1.20) starting respectively at x0 = y and x(n)0 = yn,

lim
n→∞

∣∣∣yn − y
∣∣∣ = 0 =⇒ lim

n→∞
E

[
sup
0≤t≤T

∣∣∣∣x
(n)
t − xt

∣∣∣∣
2
]
= 0.

Because this section is only an overview on SDEs and their discretizations, we con-
sider all the observables ϕ to be smooth functions whose derivative grow at most poly-
nomially, i.e ϕ ∈ D. We therefore give in the sequel results that are not optimal: most of
them can be extended to larger function spaces. For more optimal results, we refer for
instance the reader to [RB06] or [Kli87] for the ergodic theory of SDEs and to [Arn74] for
the general theory of SDEs.

The evolution operator of an SDE, denoted by St , is the stochastic counterpart of the
flow map of an Ordinary Differential Equation. It maps a function ϕ ∈ L∞(X ) to the
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function mapping x ∈ X to the expectation of ϕ on the solution xt at time t of the SDE
starting from configuration x0 = x.

Definition 1.2.3. [Evolution operator] The evolution operator at time t ∈ R of the dynamics
given by (1.20), denoted by St , is defined as



L∞(X )→ L∞(X ),

ϕ 7→ Stϕ :


X → R,

x 7→ E [ϕ(xt) |x0 = x] ,
(1.21)

where E denotes the expectation over all realizations of the Brownian motion in (1.20).

Under Condition 1.2.2, the family of evolution operators (St)t≥0 satisfies, amongst
others, the following properties for all ϕ ∈ D, x ∈ X , t ≥ 0 and s ≥ 0:



SsStϕ = St+sϕ, semigroup property,

ϕ ∈ D ⇒ Stϕ ∈ D, smoothness and polynomial growth of the solution processes [GS72],

lim
t→0
Stϕ(x) = ϕ(x), No evolution at time t = 0.

Definition 1.2.4. [Infinitesimal generator of an SDE] The infinitesimal generator or gen-
erator of the SDE, denoted by L, is defined as the generator of the semigroup (St)t≥0. Given a
function ϕ regular enough, L is defined as

Lϕ = lim
t→0

Stϕ −ϕ
t

. (1.22)

Its general expression is

L = f (x) · ∇x +
1
2

(
b(x)b(x)T

)
: ∇2x =

Nd∑

i=1

f (x)i∂xi +
1
2

Nd∑

i,j=1

(
b(x)b(x)T

)
i,j
∂xi∂xj .

The operator L is defined where the limit (1.22) exists. For functions ϕ inside its domain
of definition, we have Stϕ = eLtϕ for any t ≥ 0.

Finally, we define the probability transition Pt(x,A) of the dynamics as the probability
for its solution to reach A ⊂ X , starting in t = 0 from x ∈ X :

Pt(x,A) = E
[
1A(xt)

∣∣∣ x0 = x
]
.

where 1A is the indicator function of the set A, equal to 1 if x ∈ A and 0 elsewhere.

Ergodic SDEs

Thermodynamic expectations such as (1.14) can be computed using ergodic SDEs. The
ergodicity of an SDE for a given probability measure π ensures that the time integral of
any function of its solutions converges towards the expectation of this function for π.

21



Development of new numerical integration schemes for multiscale coarse-graining methods

Definition 1.2.5. [Ergodicity] Consider a diffusion SDE given by (1.20). We say that the
SDE is ergodic with respect to π if we have, for π-almost any x0 ∈ X ,

∀ϕ ∈ L1(π), lim
t→+∞

1
t

∫ t

0
ϕ(xt)dt =

∫

X
ϕdπ a.s. (1.23)

Remark 1.2.2. In fact, the above definition has to be contrasted with with the geometric
ergodicity, describing the convergence of the law of the solution processes to the ergodic prob-
ability measure π. However, the geometric ergodicity does not imply the ergodicity as defined
in Definition 1.3.4.

If (1.23) holds, we only have to compute the time average, i.e the left-hand side of the
above relation, which is a one-dimensional integral much faster to compute than the
Nd-dimensional spatial integral of the right-hand side.

In order for (1.23) to hold, we first need the probability measure π to be invariant.

Definition 1.2.6. [Invariant measure] A probability measure π is said to be invariant for the
dynamics if

∀ϕ ∈ D∞,
∫

X
Lϕdπ = 0. (1.24)

where L is the generator of the dynamics and D∞ is the set of C∞ functions with compact
support, also called the set of test functions. Equivalently, we say that π is invariant if

L∗π = 0, (1.25)

where L∗ is the adjoint of L in L2(X ,R), also called the Fokker-Planck operator in physics. It
is defined as

∀(ϕ,ψ) ∈ D2
∞,

∫

X
Lϕ(x)ψ(x)dx =

∫

X
ϕ(x)L∗ψ(x)dx,

If we have the existence of an invariant probability measure π with positive density
for the Lebesgue measure, then we only need some regularity results on the generator L
in order to obtain the ergodicity. If L is elliptic, i.e if b(x)b(x)T is positive definite for all
x ∈ X , then the associated dynamics is ergodic with respect to π. However, if we do not
have the ellipticity of L, we can still obtain the ergodicity by proving that L is hypoelliptic.
An hypoelliptic operator is an operator satisfying the Hörmander condition:

Definition 1.2.7. [Hörmander condition] Assume that there exists M ∈N and a family of
operators (Xi )i=1..M such that L can be rewritten as

L =
M∑

i=1

X∗iXi +X0,

and suppose that {Xi}Mi=0,
{
[Xi ,Xj ]

}M
i,j=0

,
{
[[Xi ,Xj ],Xk]

}M
i,j,k=0

, ... has full rank at every point

x ∈ X , where [·] is the commutator operator defined by

[X,Y ] = XY −YX. (1.26)
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If L satisfies the above Hörmander condition, then L is hypoelliptic (Corollary 7.2 in
[RB06]). Note that all elliptic operators are also hypoelliptic. The following result was
proved by Kliemann in [Kli87].

Theorem 1.2.1. Consider an SDE admitting an invariant probability measure π with a posi-
tive density for the Lebesgue measure, and whose generator L is hypoelliptic. Then the dynam-
ics is ergodic with respect to π.

However, obtaining the existence of an invariant probability measure is nontrivial.
Sometimes, dynamics are devised with the aim of being ergodic for a target thermody-
namic ensemble. Therefore, they are constructed so this target distribution is invariant,
which ensure de facto the existence of an invariant probability measure. The fact that is
has a positive density or not can then be obtained from its definition. In the general case
however, when we do not know any invariant probability measure π, it is still possible to
obtain the existence of π by using Lyapunov functions.

Definition 1.2.8. [Lyapunov functions] A Lyapunov functionW is a function verifying

∀x ∈ X , W (x) ≥ 1, and lim
|x|→+∞

W (x) = +∞.

Consider the two following conditions:

• (C1): The dynamics is irreducible, i.e for any x ∈ X and for any open sets A ⊂ X ,
there exists t0 > 0 such that we have Pt0(x,A) > 0. In words, this means that the SDE
can reach with positive probability any open set A of X starting from any initial
condition x ∈ X in time t0.

• (C2): The transition probability function Pt(x,dy) admits a density pt(x,y) which is
a smooth function of (x,y), i.e pt ∈ D. In particular, this means that the evolution
operator St has a smoothing effect and maps bounded measurable functions into
bounded continuous functions. We say that St is Strong-Feller.

The following theorem (Theorem 8.3 in [RB06]) ensures the existence of an invariant
probability measure for the dynamics.

Theorem 1.2.2. Consider an SDE, whose generator is denoted by L, satisfying (C1) and (C2).
Assume that there exists b > 0, c > 0, a compact set K and a Lyapunov functionW such that

∀x ∈ X , LW (x) ≤ −c + b1K (x).

Then there exists an unique invariant probability measure for the dynamics. This measure
admits a smooth everywhere positive density.

Conditions (C1) and (C2) ensures the uniqueness and the smooth everywhere posi-
tive density of the invariant probability measure if it exists but do not ensure its existence
(Proposition 8.1 in [RB06]). The Lyapunov inequality is therefore necessary to ensure its
existence.

The two first conditions of Theorem 1.2.2 are not easy to obtain when the noise is
too degenerate (see the DPD/DPDE dynamics in the next chapters). However, there are
some tools that allow to obtain them:
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• The irreducibility can be obtained with control theory. A control system of the dy-
namics given by (1.20) is defined as the following deterministic dynamics:

ẋ(t) = f (x(t)) + b(x(t))u(t).

The function u is piecewise constant, and is called a control. A point y ∈ X is said to
be accessible from x ∈ X in time t ≥ 0 if there exists a control u such that the above
deterministic dynamics has solutions (x(u)s )s∈[0,t] satisfying x

(u)
0 = x and x(u)t = y. The

set of accessible points from x in time t is denoted by At(x) ⊂ X . The Stroock-
Varadhan theorem, quoted as Theorem 6.1 in [RB06], implies that

supp(Pt(x, ·)) = At(x).

Therefore, the irreducibility of the dynamics can be obtained by finding the appro-
priate controls for any given points (x,y) ∈ X 2.

• The smoothness of the density of the probability transition function is obtained by
proving some regularity properties on the generator L of (1.20). In particular, if L
is elliptic then (C2) is verified. If L fails to be elliptic, one option is to prove that
it is hypoelliptic, i.e that it satisfies the Hörmander condition (see Definition 1.2.7).
If L is hypoelliptic, then condition (C2) is satisfied.

Therefore, once the irreducibility of the dynamics, the hypoellipticity of its generator
and the Lyapunov condition are proved, we can apply Theorem 1.2.2 in order to obtain
the existence of a positive invariant probability measure for the dynamics. Theorem 1.2.1
then gives us the ergodicity of the dynamics for this probability measure.

Numerical methods for Stochastic Differential Equations

We have presented in Section 1.1 a microscopic description of matter with deterministic
differential equations, and explained in Section 1.2 how macroscopic quantities can be
computed from microscopic information using ergodic SDEs. We now consider how to
compute approximate solutions of SDEs.

In addition of being tools to compute statistical physics expectations, Stochastic Dif-
ferential Equations (SDEs) are often used in Coarse-Graining models as a modeling tool.
Indeed, in some cases, microscopic phenomenons can be represented in an average man-
ner by adding random fluctuations to the dynamics of the particles coupled with some
dissipation terms [Mor65, Zwa73]. Therefore, SDEs can be also used to provide some de-
scription of the matter behavior, often for systems of length and time scales larger than
those described by empirical MD, but still at the microscopic level. Note that the coarse-
graining procedures are often based on intuition and therefore deterministic Hamilto-
nian simulations of fully atomistic systems should always serve as reference simulations
to verify the correctness of the coarse-graining process.

Most of the time we do not know how to compute analytical solutions of SDEs, and
we must rely on discretization procedures to generate Markov chains of finite size that
approximate the analytical solutions in some time interval. Doing so we add errors to
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the estimations that are not related to the finite length of the Markov chains. Estimates
of these errors are of paramount importance.

We start in Section 1.3.1 by giving elements on the discretization of Stochastic Differ-
ential Equations, and present some tools to obtain standard error estimates (weak/strong
errors on finite time intervals). We then consider in Section 1.3.2 the case of errors on
the invariant measure and give some tools to estimate it. Finally, we give in Section 1.3.3
some splitting techniques useful to devise higher order numerical schemes.

Elements on the discretization of Stochastic Differential Equations

A discretization of equation (1.20) is a procedure applied to a given initial condition
x ∈ X approximating the solution at time ∆t of the SDE starting from x. The parameter
∆t is called the time step of the scheme.

Consider an integration time T > 0, a time step∆t > 0 and defineNit = ⌊T /∆t⌋. Denote
by Φ∆t(x,G) the result of a given one-step discretization of (1.20), starting from x ∈ X ,
using a time step ∆t and with G being a random variable. Let us denote by (xn)n∈[|0,Nit|]
the random sequence defined iteratively by

xn+1 =Φ∆t(x
n,Gn), (1.27)

where (Gn)n∈[|0,Nit|] are i.i.d random variables. The initial condition of the above sequence
is taken equal to the initial condition of the analytical solution (xt) we want to approxi-
mate, i.e

x0 = x0 ∈ X .

The sequence (xn)n=0,..,Nit
is aimed to be an approximation of the exact solution (xn∆t)n∈[|0,Nit|]

of (1.20). In the remainder of this thesis, we only consider one-step schemes (i.e schemes
defined by (1.27)) with Gaussian increments

Gn
law
=
W(n+1)∆t −Wn∆t

∆t
∼N (0, Id), n = 0, . . . ,Nit.

The evolution operator, or transition operator, P∆t associated with a numerical scheme
is the discrete counterpart of the evolution operator S∆t = e∆tL. In words, P∆tϕ(x) gives
the average value of one observable after one iteration of the scheme applied to configu-
ration x, with time step ∆t.

Definition 1.3.1. [Evolution operator] Consider a discretization of the dynamics given by
(1.20), with its discretization procedure denoted by Φ∆t . Its associated evolution operator P∆t
is defined as 

L∞(X )→ L∞(X ),

ϕ 7→ P∆tϕ :


X → R

x 7→ EG [ϕ (Φ∆t(x,G))] ,

(1.28)

where EG is the expectation over all the random variables involved in the computation of
Φ∆t(x,G), denoted by G.

An approximation (xn) defined by (1.27) for a specific realization of the random sequence
(Gn) is called a realization of the numerical scheme Φ∆t .

25



Development of new numerical integration schemes for multiscale coarse-graining methods

The random sequence (xn) is in fact a Markov chain whose probability transition func-
tion is given by P∆t . A time-homogeneous Markov chain (xn)n∈N is a sequence in which
each xn+1 is sampled from xn according to a transition probability distribution P(xn,dx)
and independently from the previous samples (x0, . . . ,xn−1). In our case the transition
probability function, abusively denoted by P∆t(x,A) with x ∈ X and A ⊂ X a measurable
subset of X , is obtained by

P∆t(x,A) = P∆t1A(x), (1.29)

where 1A still denotes the indicator of the set A. We say that the scheme is irreducible
with respect to the Lebesgue measure when any open subset of X of nonzero Lebesgue
measure can be reached from any point of X , similarly to the continuous case of Sec-
tion 1.2.2.

Definition 1.3.2. A discretization whose evolution operator is denoted by P∆t is irreducible
with respect to the Lebesgue measure if for all x ∈ X and for every subset A ⊂ X of nonzero
Lebesgue measure, there exists N0 ∈N such that

PN0
∆t 1A(x) > 0.

Similarly to the continuous case of Section 1.2.2, we can define invariant measures
and ergodic properties for the Markov chain generated by P∆t . The invariant probability
measure π∆t of a scheme is a probability measure that is preserved by the evolution
operator P∆t . It means that if xn is distributed according to π∆t , then xn+1 also is.

Definition 1.3.3. Consider a discretization of the SDE given by (1.20) whose evolution op-
erator is denoted by P∆t . A probability measure π∆t is said to be an invariant for P∆t if it
satisfies

∀ϕ ∈ L∞(X ),
∫

X
P∆tϕdπ∆t =

∫

X
ϕdπ∆t .

Similarly to the continuous case, we can define the ergodicity of numerical schemes with
respect to a given probability measure:

Definition 1.3.4. Consider a time step ∆t, and a numerical scheme whose evolution operator
is denoted by P∆t . A numerical scheme is said to be ergodic with respect to a probability
measure π∆t if we have, for π∆t-almost any x0 ∈ X ,

∀ϕ ∈ L1(π∆t), lim
Nit→∞

1
Nit

Nit∑

n=0

ϕ(xn) =
∫

X
ϕdπ∆t a.s.

The following result has been proved in Chapter 17 in [MT93], and give conditions
in order for the Markov chain generated by P∆t to be ergodic with respect to a probability
measure π∆t .

Proposition 1.3.1. Consider a scheme whose evolution operator is denoted by P∆t . Assume
that it is irreducible and that it admits an invariant probability measure π∆t . Then it is ergodic
with respect to π∆t .

However, Proposition 1.3.1 requires the existence of a invariant probability measure π∆t

which, similarly to the continuous case with SDEs, might be a nontrivial result. However,
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we have some tools to prove the existence of an invariant probability measure with the
following theorem, also ensuring its uniqueness.

Theorem 1.3.2. Consider a discretization whose evolution operator is denoted by P∆t . Assume
the following Lyapunov condition to hold: there exists a functionW : X → [1,+∞), K ≥ 0 and
0 < γ < 1 such that

∀x ∈ X , P∆tW (x) ≤ γW (x) +K.

Also assume the following minorization condition: there exists a probability measure ν and
0 < α < 1 such that

∀y ∈ X , inf
x∈C

P∆t(x,dy) ≥ αν(dy),

with C = {x ∈ X |W (x) ≤ R}, for any R > 1+ 2K/(1−γ). Then there exists an invariant proba-
bility measure π∆t satisfying ∫

X
Wdπ∆t < +∞.

Finally, there exists C > 0 and 0 < r < 1 such that

∀ϕ ∈ L∞W , ∀n ∈N,
∥∥∥∥∥P

n
∆tϕ −

∫

X
ϕdπ∆t

∥∥∥∥∥
L∞W

≤ Crn
∥∥∥∥∥ϕ −

∫

X
ϕdπ∆t

∥∥∥∥∥
L∞W

,

where L∞W is defined by (1.15).

The proof of this theorem can be found in [HM11] (and is discussed in Section 2.4 of
[LS16]) and is not reported here.

Remark 1.3.1. Notice that Theorem 1.3.2 not only gives us the existence of an invariant prob-
ability measure, but also gives us the exponential convergence in law of P∆t towards π∆t . This
notion of convergence is called the geometric ergodicity, already mentioned in Remark 1.2.2.

Error estimates for the discretization of SDEs

Similarly to ODEs, once a discretization procedure is devised, we want to know how
"good" it is at describing the solutions of the continuous dynamics it approximates. In
opposition to the deterministic case, a stochastic discretization can be accurate in more
than one way: one can be interested only in the accuracy on the average behavior of the
solutions, or one could also require trajectorial accuracy, i.e that each realization of the
dynamics is correctly approximated by the scheme. We can therefore define two types of
discretization errors:

• Weak errors: Weak errors estimate how accurate the discretization is on the average
behavior of the solutions. They thus compare the expectations of the analytical
solutions and their discrete approximations.

Definition 1.3.5. [Weak errors] There exists ω > 0 such that for any test function
ϕ ∈ D∞ and for any integration time T , we have Kϕ,T > 0 and ∆t∗ϕ,T > 0 that satisfy, for
any time step 0 ≤ ∆t ≤ ∆t∗ϕ,T ,

sup
0≤n≤⌊ T

∆t ⌋

∣∣∣∣E [ϕ(xn)]−E [ϕ(xn∆t)]
∣∣∣∣ ≤ Kϕ,T∆tω, (1.30)
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where the expectation is on the realizations of the Brownian motion in (1.20) for the
analytic expectation, on the realizations the random variables Gn ∼ N (0, Id) involved
in the computations of xn with 0 ≤ n ≤

⌊
T
∆t

⌋
for the discrete one and also on the initial

conditions for both.

Equation (1.30) is called a weak error estimate, and ω is called the weak order of the
numerical scheme P∆t . A scheme is weakly consistent if it has weak errors of order
ω > 0.

• Strong errors in Lk norm: Strong errors are related to the trajectorial accuracy of
the discretization and estimate how well the behavior per-realization of the dynam-
ics is reproduced. In order to define them, we must construct a stochastic process
x̄t that interpolates the discrete sequence (xn). This process can be defined as

x̄t = x
k +

∫ t

k∆t
f (xk)ds +

∫ t

k∆t
b(xk)dWs. (1.31)

We notice that x̄t is a piecewise linear function with random fluctuations passing
through every points of (xn) (see Figure 1.6 for an example of a process equal in law
to x̄t). In practice, one can also interpolate (xn) by a piecewise constant function.

Definition 1.3.6. [Strong errors in Lk-norm] There exists ω > 0 such that for any
integration time T , there isKT > 0 and∆t∗T > 0 for which, for any time step 0 ≤ ∆t ≤ ∆t∗T ,

sup
0≤n≤⌊ T

∆t ⌋
E

[
|x̄n∆t − xn∆t |k

] 1
k ≤ KT∆tω. (1.32)

Equation (1.32) is called a strong error estimate in Lk norm, and ω is called the strong
order in Lk norm of the numerical scheme P∆t . A scheme is strongly Lk-consistent if
it has strong errors in Lk norm of order ω > 0.

Strong errors are more difficult to estimate than weak errors, both theoretically and nu-
merically. In addition, the strong consistency of orderω > 0 implies the weak consistency
of order ω. Indeed, we have E[ϕ(xn)] = E[ϕ(x̄n∆t)], and therefore, for any ϕ ∈ D∞, n ∈N
and k > 1,

|E [ϕ(xn)]−E [ϕ(xn∆t)]| = |E [ϕ(x̄n∆t)−ϕ(xn∆t)]| ,
≤ ‖∇ϕ‖L∞E |x̄n∆t − xn∆t | ,

≤ ‖∇ϕ‖L∞
(
E |x̄n∆t − xn∆t |k

) 1
k ,

≤ ‖∇ϕ‖L∞ sup
n=0,..,Nit

(
E |x̄n∆t − xn∆t |k

) 1
k ,

where we have applied the mean value theorem to go from the first to the second line
and the Cauchy-Schwarz inequality to go from the second to the third line.

Example 1.3.1. [The Euler-Maruyama discretization] The first example of a discretization
of a stochastic dynamics is the Euler-Maruyama scheme (EM). The EM scheme is the stochastic
counterpart of the Explicit-Euler scheme, and approximates (1.20) by

Φ∆t(x,G) = f (x)∆t + b(x)
√
∆tG, (1.33)
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with G ∼ N (0, Id). The Euler-Maruyama scheme is of weak order one and of strong-order 1/2
in the general case [MT04].

-4

-1

 2

 5

 8

 0  5  10  15  20  25  30  35  40

x

t

dxt = xt/(1+xt
2
)dt + σdWt

x
n
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Figure 1.6 | Example of the approximation x̄t defined by (1.31) of the Euler-Maruyama discretiza-
tion of the dynamics dxt =

xt
1+x2t

dt +σdWt , with σ = 3. The dots are realizations of the EM scheme

and the line is a discrete approximation of the process x̄t using a very small time step.

Obtaining weak error estimates

In order to obtain weak error estimates, one can use the stochastic counterpart of Propo-
sition 1.1.2, allowing to obtain the weak order of a numerical scheme from a local error
approximation. Such a process has been introduced by by Mil’shtein in 1986 (see Theo-
rem 2 in [Mil86] or Theorem 2.1 in [MT04]) and we report the result below.

Theorem 1.3.3. Consider the SDE given by (1.20)whose generator is denoted by L, and where
the functions f and b satisfy Condition 1.2.2. Consider a numerical discretization of L whose
evolution operator is denoted by P∆t . Let us assume that, for all ϕ ∈ D, P∆t can be expanded as

P∆tϕ = ϕ +∆tLϕ +
∆t2

2
L2ϕ + . . .+

∆tω

ω!
Lωϕ +∆tω+1r∆t,ϕ , (1.34)

where r∆t,ϕ remains uniformly bounded for small ∆t in some weighted space L∞Wm
for m ∈N,

i.e
∃(m,Cϕ ,∆t∗) ∈N× (R∗+)2, sup

0<∆t≤∆t∗

∥∥∥r∆t,ϕ
∥∥∥
L∞Wm

< Cϕ .

Then the numerical scheme P∆t is of weak order at least ω.

Remark 1.3.2. Theorem 1.3.3 is the stochastic counterpart of the theorem linking the local
error order to the global error order for discretizations of deterministic equations (see Proposi-
tion 1.1.2). Note that (1.34) is equivalent to say that we have

∀ϕ ∈ D, P∆tϕ = e∆tLϕ +∆tω+1r̃∆t,ϕ ,

where the remainder term r̃∆t,ϕ is also uniformly bounded in some weighted space L∞Wm
for

some m ∈N.

As an illustration of the procedure to obtain expansions such as (1.34), we prove
below that the Euler-Maruyama scheme (1.33) satisfies (1.34) at the order ω = 1.
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Proposition 1.3.4. The Euler-Maruyama discretization of the SDE given by (1.20) satisfies
the conditions of Theorem 1.3.3 for ω = 1. This means that its evolution operator PEM

∆t verifies

∀ϕ ∈ D, PEM
∆t ϕ = ϕ +∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ stays uniformly bounded for small ∆t in some weighted space L∞Wm
, i.e

∃(m,Cϕ ,∆t∗) ∈N× (R∗+)2, sup
0<∆t≤∆t∗

∥∥∥r∆t,ϕ
∥∥∥
L∞Wm

< Cϕ .

Proof. The discretization procedure of the EM scheme for the dynamics (1.20) writes

Φ
EM
∆t (x,G) = x +∆tf (x) +

√
∆tb(x)G,

where G ∼ N (0, Id). Denote by h∆t(x,G) = ∆tf (x) +
√
∆tb(x)G, and fix ϕ ∈ D and x ∈ X .

The Taylor formula gives us

ϕ(ΦEM
∆t (x,G)) = ϕ(x) + h∆t(x,G) · ∇ϕ(x) +

1
2
h∆t(x,G)

T · ∇2ϕ(x) · h∆t(x,G)

+
1
6

∑

l∈NNd
|l |=3

(h∆t(x,G))l1 .. (h∆t(x,G))lNd
∂3ϕ

∂xl
(x)

+
1
24

∑

l∈NNd
|l |=4

(h∆t(x,G))l1 .. (h∆t(x,G))lNd
∂4ϕ

∂xl
(x)

+
1

120

∑

l∈NNd
|l |=5

(h∆t(x,G))l1 .. (h∆t(x,G))lNd

∫ 1

0
(1− t)4∂

5ϕ

∂xl
(x + th∆t(x,G)).

Because h∆t(x,G) = O(∆t1/2), the integral term of the above expansion is order at least 5
2

in ∆t. In the sequel, we use the notation

(x1 ⊗ . . .⊗ xn) ⊙ Dnϕ =
Nd∑

i1=1

. . .
Nd∑

in=1

∂nϕ

∂xi1 . . .∂xin
(x)

n∏

k=1

(xk)ik ,

where n ∈N and (x1, ..,xn) ∈ X n is a family of elements of X . The above notation denotes
in fact all the terms of the sum of order n of the expansion of ϕ(ΦEM

∆t (x,G)) containing
occurrences of (x1, ..,xn). Expanding the above expression in powers of∆t therefore yields

ϕ
(
Φ

EM
∆t (x,G)

)
= ϕ(x) +

√
∆tb(x)G +∆t

[
f (x) · ∇ϕ +

1
2
b(x)T · ∇2ϕ(x) · b(x)G2

]

+∆t
3
2

[
b(x)T · ∇2ϕ(x) · f (x)G +

1
2
(b(x)⊗ b(x)⊗ b(x))⊙D3ϕ(x)G3

]
,

+∆t2
[ 1
24

(b(x)⊗ b(x)⊗ b(x)⊗ b(x))⊙D4ϕ(x)G4

+
1
2
(b(x)⊗ b(x)⊗ f (x))⊙D3ϕ(x)G2 +

1
2
f (x)T · ∇2ϕ(x) · f (x)

]
+∆t

5
2 R̃∆t,ϕ(x,G),
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where all the terms of power greater or equal than 5/2 have been regrouped in the re-
mainder term ∆t5/2R̃∆t,ϕ .

We denote by r̃ϕ(x,G) the coefficient of the order 3/2 term in ∆t of the above expres-
sion, and by kϕ(x,G) the coefficient of the order 2 term. This gives

ϕ
(
Φ

EM
∆t (x,G)

)
= ϕ(x) +

√
∆tb(x)G +∆t

[
f (x) · ∇ϕ +

1
2
b(x)T · ∇2ϕ(x) · b(x)G2

]
+∆t

3
2 r̃∆t,ϕ(x,G)

+∆t2
(
kϕ(x,G) +

√
∆tR̃∆t,ϕ(x,G)

)
.

We notice that both terms corresponding to non-integer powers of ∆t have null expecta-
tions, i.e EG[b(x)G] = EG[r̃∆t,ϕ] = 0. In addition, the expectation of the first order term
corresponds to Lϕ(x), where L is the generator of the SDE. Therefore,

PEM
∆t ϕ(x) = EG

[
ϕ(ΦEM

∆t (x,G))
]
= ϕ(x) +∆tLϕ(x) +∆t2EG

[
kϕ(x,G) +

√
∆tR̃∆t,ϕ(x,G)

]

︸                                 ︷︷                                 ︸
r∆t,ϕ(x)

.

It remains to ensure that the remainder term r∆t,ϕ is uniformly bounded when ∆t

goes to zero for some weighted space L∞Wm
withm ∈N. Because (f ,b,ϕ) ∈ D3 and because

k∆t,ϕ(x,G) and R̃∆t,ϕ(x,G) involve only positive powers of ∆t, we have for a given ∆t∗ > 0
and m ∈N that

sup
0<∆t<∆t∗

(∥∥∥EG[kϕ(·,G)]
∥∥∥
L∞Wm

+
∥∥∥EG[R̃∆t,ϕ(·,G)]

∥∥∥
L∞Wm

)
< +∞,

which implies that EG
∣∣∣
√
∆tR̃∆t,ϕ(·,G)

∣∣∣ goes to 0 when ∆t goes to zero. Therefore,

sup
0<∆t<∆t∗

∥∥∥r∆t,ϕ
∥∥∥
L∞Wm

< +∞,

an PEM
∆t satisfies (1.34) at the order ω = 1, which is the desired result.

Errors on the invariant measure

Weak errors quantify the accuracy of a numerical scheme on the average behaviors of
the solutions, and strong errors quantify the accuracy on their trajectories. When doing
Molecular Dynamics, one can also be interested in the accuracy on the estimations of the
average values of physical observables as defined in Definition 1.2.1. These estimations
require stronger assumptions both on the dynamics and on the numerical scheme than
weak or strong error, as made precise in this section.

Consider the dynamics (1.20), and assume that it is ergodic for a macrostate π. Con-
sider a scheme whose evolution operator is denoted by P∆t , and an observable ϕ ∈ D.
Using the same notation than in Section 1.3.1, the estimation ϕ̂Nit,∆t of the average value
Eπ[ϕ] of ϕ reads

ϕ̂Nit,∆t =
1
Nit

Nit∑

n=1

ϕ(xn),
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where (xn)n∈[|1,Nit|] is a sample of the approximated solution generated by the numerical
scheme. We are interested in howwell P∆t estimates the average value of ϕ, i.e the quality
of the approximation of Eπ[ϕ] by ϕ̂Nit,∆t .

The first task is proving the existence of an invariant probability measure for the
numerical scheme, measure that we denote by π∆t , using for instance results such as
Theorem 1.3.2. In the sequel, we assume that P∆t admits a unique invariant probability
measure π∆t and that the scheme is ergodic with respect to this measure. In addition, we
assume that it is weakly consistent, of weak order 1. Denoting by

K∆t,ϕ = Eπ∆t
[ϕ]−Eπ[ϕ],

we have that

ϕ̂Nit,∆t =
1
Nit

Nit∑

n=1

ϕ(xn) = Eπ[ϕ] +
(
Eπ∆t

[ϕ]−Eπ[ϕ]
)
+
(
ϕ̂Nit,∆t −Eπ∆t

[ϕ]
)

︸                 ︷︷                 ︸
R̃∆t,ϕ

,

= Eπ[ϕ] +K∆t,ϕ + R̃∆t,ϕ .

The ergodicity of the numerical scheme tells us that the rightmost term of the right-hand
side of the above equality, denoted by R̃∆t,ϕ , goes to 0 when Nit→ +∞, since

1
Nit

Nit∑

n=1

ϕ(xn) −−−−−−→
Nit→∞

∫

X
ϕdπ∆t = Eπ∆t

[ϕ], π∆t − a.s.

In order to obtain error estimates on the estimation of Eπ[ϕ] by ϕ̂Nit,∆t , we must quantify
the rate of convergence of R̃∆t,ϕ towards 0.

Under some conditions on P∆t and on ϕ, the Central Limit theorem holds for the
Markov chain generated by P∆t (see Theorem 17.4.4 in [MT93] or [LS16] and references
therein) and we have

√
Nit

(
ϕ̂Nit,∆t −Eπ∆t

[ϕ]
) law−−−−−−−→
Nit→+∞

N (0,σ2
∆t,ϕ),

with

σ2
ϕ,∆t = Eπ∆t

[
(Π∆tϕ)

2
]
+2

+∞∑

n=1

Eπ∆t

[
(Π∆tϕ(x

n))
(
Π∆tϕ(x

0)
)]
.

In the above expression, we have denoted by Π∆t the projection operator over the set of
functions of null expectations, i.e

∀ϕ ∈ L1(π∆t), Π∆tϕ = ϕ −Eπ∆t
[ϕ].

It can be shown (see Section 3 in [LS16]) that, under some conditions on the decrease of∥∥∥etL
∥∥∥ in the appropriate norm, the weak consistency of the scheme implies that

√
∆tσ∆t,ϕ →

σϕ when ∆t goes to 0, with σ2
ϕ being the variance of the continuous dynamic expressed

as

σ2
ϕ = 2

∫ +∞

0
Eπ

[(
etLΠϕ

)
(Πϕ)

]
dt,
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with Π being the equivalent of Π∆t for π, i.e

∀ϕ ∈ L1(π), Πϕ = ϕ −
∫

X
ϕdπ.

Therefore, asymptotically (i.e taking ∆t small enough and Nit large enough), we have

ϕ̂Nit,∆t ≃ Eπ∆t
[ϕ] +

ξ∆t,Nit,ϕ√
Nit∆t

,

where ξ∆t,Nit,ϕ is a random variable whose distribution converges in the limit ∆t→ 0 and
Nit∆t → +∞ to a Gaussian random variable of variance σ2

ϕ . We therefore can rewrite
ϕ̂Nit,∆t as

ϕ̂Nit,∆t ≃ Eπ[ϕ] +K∆t,ϕ +
ξ∆t,Nit,ϕ√
Nit∆t

.

Let us consider the right-hand side of the above expression with more attention.

• The first term Eπ[ϕ] is the exact physical value of the observable considered, i.e the
value that we want to estimate.

• The second term Kϕ,∆t is called the perfect sampling bias, i.e the error arising from
the fact that the invariant probability measure π∆t is different from the unique
invariant probability measure π of the SDE.

• The third term is called the finite sampling bias, or statistical error. It is the error aris-
ing from the use of a finite sample sizeNit, i.e the difference between the estimation
ϕ̂Nit

and the target expectation Eπ∆t
[ϕ]. Note that it is inversely proportional to the

square root of the physical time T =Nit∆t.

Therefore, if we take a physical time T large enough so that
σϕ√
T
≪ K∆t,ϕ , then the sta-

tistical error can be neglected and the accuracy of the scheme on the estimation of the
average value of ϕ is given by perfect sampling bias K∆t,ϕ . From a practical point of
view, we show that we have estimates of the form

∣∣∣K∆t,ϕ

∣∣∣ ≤ Kϕ∆tω for a given ω > 0, with
Kϕ > 0 independent of ∆t. Therefore, in order for the statistical error to be negligible,

it is required that T ≫ σ2
ϕ

∆t2ω . Depending on the variance σ2
ϕ of the continuous dynam-

ics, the time step ∆t or the order ω of the perfect sampling bias, this might mean very
(sometimes prohibitively) long simulation times.

Remark 1.3.3. If π∆t = π, i.e if the scheme’s invariant probability measure is the unique
invariant probability measure of the SDE, as for theMetropolis-Hastings algorithms [MRR+53,
Has70], the perfect sampling bias is null. The only difference between the estimation and the
target quantity lies therefore in the statistical error.

Similarly to weak and strong error estimates, we can define estimates of the error on
the invariant probability measure to quantify K∆t,ϕ .

Definition 1.3.7. [Error on the invariant measure] Consider a dynamics given by (1.20) and
a numerical scheme P∆t , and assume that they both admit ergodic probability measures denoted

33



Development of new numerical integration schemes for multiscale coarse-graining methods

respectively by π and π∆t . We say that P∆t has errors on the invariant measure of order ω ∈N
when

∀ϕ ∈ D,
∣∣∣Eπ∆t

[ϕ]−Eπ [ϕ]
∣∣∣ ≤ Kϕ∆tω, (1.35)

with Kϕ > 0 independent of ∆t. The integerω is called the order of the error on the invariant
measure.

It is important to note that error on the invariant measure estimates require the existence
of an invariant probability measure π∆t , whereas weak or strong error estimates do not.
Errors on the invariant measure are closely linked with weak errors. Under ergodicity
assumptions on the dynamics and on the numerical scheme under consideration, Talay
and al. in [TT90] have proved for instance that a weak order ω > 0 implies errors on the
invariant measure of the same order for both the Euler-Maruyama andMil’shtein scheme
[MT04].

In some cases, the order on the invariant measure can be higher than the weak order.
Indeed, assume that expansions as in the proof of Proposition 1.3.4 yield

∀ϕ ∈ D, P∆tϕ = ϕ +L∆t +
ω∑

i=2

∆tiAiϕ +∆tω+1Aω+1ϕ +∆tω+2r∆t,ϕ , (1.36)

with (Ai )i=2,..,ω+1 being function operators and r∆t,ϕ a remainder term uniformly bounded
for small ∆t in some weighted space, i.e

∃(m,Cϕ ,∆t∗) ∈N× (R∗+)2, sup
0<∆t≤∆t∗

∥∥∥r∆t,ϕ
∥∥∥
L∞Wm

< Cϕ .

If we have Ai = 1
i!Li for i = 2, ..,ω, then the scheme is of weak order ω. But sometimes,

one might have Ai = aiLi with ai ,
1
i! . In such cases, the scheme is not of weak order

ω, but we can still have errors on the invariant measures of order ω. In addition, under
some conditions detailed below, it is possible to have the dominant term of the error on
the invariant measure.

In the sequel, we defineD0 as the subset ofD containing the functions of null average
with respect to. π, i.e

D0 =

{
ϕ ∈ D

∣∣∣∣
∫

X
ϕdπ = 0

}
. (1.37)

In opposition to D, we can define the notion of inversibility of differential operators like
L inD0. Indeed, considering anyϕ ∈ D such thatEπ[ϕ] < +∞, we haveLϕ = L(ϕ−Eπ[ϕ]),
which forbids L to be invertible on D, except by imposing a condition on the value of the
expectations. We also define as A† the adjoint in L2(π) of any operator A, i.e

∀(ϕ,ψ) ∈ D2
∞,

∫

X
(Aϕ)ψdπ =

∫

X
ϕ

(
A†ψ

)
dπ.

The following theorem allows to obtain estimates on the order of the error on the
invariant measure and to make the leading error term precise.

Theorem 1.3.5. Consider the SDE given by (1.20), whose generator is denoted by L, and a
numerical scheme whose evolution operator is denoted by P∆t . Assume that L and P∆t satisfy
the following conditions:
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1. The dynamics is ergodic for a probability measure π that integrates all the functionsWm

with m ≥ 0, i.e.

∀m ∈N,
∫

X
Wmdπ < +∞.

In particular, D is dense in L2(π).

2. Both L and L† are invertible on D0, and L−1 and (L†)−1 leave D0 invariant, i.e

∀ϕ ∈ D0,


∃!ψ1 ∈ D0, Lψ1 = ϕ,

∃!ψ2 ∈ D0, L†ψ2 = ϕ.

3. The numerical scheme is ergodic for a probability measure π∆t that integrates all the
functionsWm with m ≥ 0, i.e.

∀m ∈N,
∫

X
Wmdπ∆t < +∞.

In particular, D is dense in L2(π∆t).

4. The evolution operator P∆t can be expanded as in (1.36).

5. The following relation holds for all i = 2, . . . ,ω:

∀i ∈ [|2,ω|], ∀ϕ ∈ D,
∫

X
Aiϕdπ = 0, (1.38)

i.e the operators Ai for i = 2, ..,ω preserve π (but Aω+1 might not). In addition, Ai
leaves D invariant for i = 2, ..,ω.

6. There exists gω+1 ∈ D0 such that

∀ϕ ∈ D,
∫

X
Aω+1ϕdπ =

∫

X
gω+1ϕdπ. (1.39)

In addition, ΠAω+1Π leaves D0 invariant.

Then there exists fω+1 ∈ D0 and ∆t∗ > 0 such that for any 0 ≤ ∆t ≤ ∆t∗,
∫

X
ϕdπ∆t =

∫

X
ϕdπ +∆tω

∫

X
fω+1ϕdπ +∆tω+1R∆t,ϕ , (1.40)

with R∆t,ϕ uniformly bounded for small ∆t, i.e

∃(Cϕ ,∆t∗) ∈ (R∗+)2, sup
0<∆t<∆t∗

∣∣∣R∆t,ϕ

∣∣∣ < Cϕ .

In particular, the numerical scheme P∆t is of order ω on the invariant measure.

Let us comment on the above conditions.

• Assumption 1 is obtained with results such as Theorem 1.2.1, (see Section 1.2.2). In
addition, the integrability of the scale functions Wm with respect to π is satisfied
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by many statistical ensembles. This is the case for the canonical ensemble µβ for
instance. We see in the proof of Theorem 1.3.5 that it allows to have the remainder
term of (1.40) uniformly bounded in L∞(X ).

• Assumption 2 is not trivial to obtain in the general case. It is satisfied if L is elliptic
and the position space is bounded. However, it becomes difficult to prove when
one of the two condition is missing. We discuss later on in Section 1.4.1 the case of
two prototypical example dynamics.

• Assumption 3 is obtained with results such as Proposition 1.3.1 (see Section 1.3.1).

• Assumption 4 is obtained by performing Taylor expansions as in the proof of Propo-
sition 1.3.4.

• Assumption 5 is trivial if the operators Ai are proportional to the powers of the
generator L, i.e Ai ∝ Li . In addition, the operators Ai typically are differential
operators whose coefficients are derived from f and b of (1.20). They are thus all
elements of D if f and b are also elements of D, which is assumed (see Condi-
tion 1.2.2).

• Assumption 6 is easily obtained. Indeed, we see that gω+1 = A†ω+11, where 1 is the
constant function equal to 1 everywhere. Therefore, the only condition for (1.39)
to hold is that Aω+1 stabilizes D0, i.e ϕ ∈ D0 implies Aω+1ϕ ∈ D0. We can usually
check by performing integration by parts that gω+1 ∈ D. In addition, if we consider
(1.39) with ϕ = 1, we have that

∫
X gω+1dπ = 0 ifAω+11 = 0, which is the case ifAω+1

is a differential operator.

Further details about such assumptions are given in [LS16].

Remark 1.3.4. Note that in many cases, a transition operator P∆t satisfying (1.34) at the order
ω also satisfies conditions 4, 5 and 6 of Theorem 1.3.5. Indeed, we see that expansions such
as (1.28) satisfied at the order ω also satisfy (1.36) at the order ω for some operator Aω+1,
defined as the first term of the expansion of P∆t in powers of ∆t that is not equal to L

k

k! for some
k ∈ N. In addition, for many schemes, Aω+1 is a differential operator stabilizing D0, thus
ensuring condition 6 if the functions f and b of the dynamics are smooth enough. The lower
order terms being proportional to powers of L, condition 5 is satisfied. Therefore, provided that
conditions 1, 2 and 3 are satisfied, the weak order ω often imply that (1.40) holds.

Proof. First notice that we can restrain the proof to functions in D0 without loss of gener-
ality. Indeed, assuming that (1.40) holds for any ψ ∈ D0, and taking ϕ ∈ D, we have

∫

X

(
ϕ −

∫

X
ϕdπ

)
dπ∆t = ∆tω

∫

X
fω+1

(
ϕ −

∫

X
ϕdπ

)
dπ +∆tω+1R∆t,ϕ .

Because fω+1 ∈ D0, we have
∫
X fω+1

(∫
X ϕdπ

)
dπ = 0 and therefore

∫

X
ϕdπ∆t =

∫

X
ϕdπ +∆tω

∫

X
fω+1ϕdπ +∆tω+1R∆t,ϕ .

Thus, (1.40) also holds for functions in D.
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We start by proving (1.40) for ϕ ∈ Ran(P∆t − Id). Consider ψ ∈ D. We first determine
the expression of fω+1. For fω+1 given, we have by (1.38) and (1.39),

∫

X

(
P∆t − Id

∆t

)
ψ (1 +∆tωfω+1)dπ = ∆tω

∫

X
(Aω+1ψ + (Lψ)fω+1)dπ

+∆tω+1
∫

X

(
r∆t,ψ +

P∆t − Id−∆tLψ
∆t2

fω+1

)
dπ.

The first term of the right-hand side of the above equality can be rewritten as
∫

X
(Aω+1ψ + (Lψ)fω+1)dπ =

∫

X

(
gω+1 +L†fω+1

)
ψdπ.

Thus, in order for it to vanish, we define fω+1 as the unique solution of −L†fω+1 = gω+1.

By assumption, this means that fω+1 = −
(
L†

)−1
gω+1 = −(L†)−1A†ω+11. With such a choice,

we can write

∀ψ ∈ D,
∫

X

(
P∆t − Id

∆t

)
ψ (1 +∆tωfω+1)dπ = ∆tω+1

∫

X

(
r∆t,ψ +

P∆t − Id−∆tA1ψ

∆t2
fω+1

)
dπ

︸                                           ︷︷                                           ︸
s∆t,ϕ

.

(1.41)
Because the integrand of the right-hand side of (1.41) is bounded in some weighted space,
we have by Assumption 1 that s∆t,ϕ is uniformly bounded for ∆t small enough, i.e

∃(Cϕ ,∆t∗) ∈ (R∗+)2, sup
0<∆t<∆t∗

∣∣∣s∆t,ϕ
∣∣∣ < Cϕ .

Equation (1.41) implies that (1.40) holds for any ϕ ∈ Ran(P∆t − Id).

We now want to extend this result to ϕ ∈ D0, and for that we construct a pseudo-
inverse of P∆t − Id. It can be constructed by truncating the formal series expression of the
inverse of the operator A + ∆tB, with A = L and B = ΠA2Π + . . . + ∆tω−1ΠAω+1Π. The
formal series writes

(A+∆tB)−1 =
∑

n

(−1)n
(
BA−1

)n
A−1.

The pseudo-inverse Q∆t is then defined by removing from the formal series all powers
of ∆t greater than ω. Because L and ΠAiΠ leave D0 invariant for i = 2, . . . ,ω + 1 (due to
(1.38)), Q∆t also leaves D0 invariant. In addition, Q∆t satisfies

∀ψ ∈ D0, Π

(
P∆t − Id

∆t

)
ΠQ∆tϕ = ϕ +∆tω+1r̃∆t,ϕ , (1.42)

with r̃∆t,ϕ uniformly bounded for ∆t small enough. More details about the construction
of Q∆t are given in [LS16].

Now that we have our pseudo-inverse operator Q∆t , we prove (1.34) for ϕ ∈ D0. We
first notice that

(P∆t − Id)Πϕ = (P∆t − Id)
(
ϕ −

∫

X
ϕdπ

)
= (P∆t − Id)ϕ,
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and therefore, if ϕ ∈ D0,

∫

X
(P∆t − Id)Πϕdπ =

∫

X
(P∆t − Id)ϕdπ =

∫

X
P∆tϕ.

Using the two above equality, we can write
∫

X
Π (P∆t − Id)Πϕ (1 +∆tωfω+1)dπ =

∫

X
(P∆t − Id)Πϕ (1 +∆tωfω+1)dπ

−
∫

X

(∫

X
(P∆t − Id)Πϕdπ

)
(1 +∆tωfω+1)dπ,

=
∫

X
(P∆t − Id)Πϕ (1 +∆tωfω+1)dπ

−
∫

X
(P∆t − Id)Πϕdπ

∫

X
(1 +∆tωfω+1)dπ,

=
∫

X
(P∆t − Id)ϕ (1 +∆tωfω+1)dπ −

∫

X
P∆tϕdπ.

In the last line of the above equation, the second term of the right-hand side is obtained
by saying that

∫
X (1 +∆tωfω+1)dπ = 1 since fω+1 ∈ D0 and π is a probability measure (so∫

X dπ = 1). The first term of the above right-hand side is proportional to ∆tω+2 according
to (1.41). Thus,

∀ϕ ∈ D0,

∫

X
Π

(
P∆t − Id

∆t

)
Πϕ (1 +∆tωfω+1)dπ = − 1

∆t

∫

X
P∆tϕdπ +∆tω+1s∆t,ϕ ,

where s∆t,ϕ ∈ D is given by (1.41). We have that ϕ is in D0, therefore Q∆tϕ is also in
D0, and the above equality also holds for Q∆tϕ. Thus, by using Q∆tϕ instead of ϕ in the
above equality and (1.42), we have for any ϕ ∈ D0,

∫

X
ϕ (1 +∆tωfω+1)dπ = − 1

∆t

∫

X
P∆tQ∆tϕdπ +∆tω+1

∫

X

(
s∆t,ϕ + r̃∆t,ϕ (1 +∆tωfω+1)

)
dπ

︸                                      ︷︷                                      ︸
s̃∆t,ϕ

,

(1.43)
with s̃∆t,ϕ uniformly bounded for small ∆t.

In order to compute the last non-remainder term in (1.43), we first prove the follow-
ing relation:

∀ϕ ∈ D0,

∫

X
Π

(
P∆t − Id

∆t

)
Πϕdπ∆t = −

1
∆t

∫

X
P∆tϕdπ, (1.44)

Equation (1.44) is obtained after a small computation using

∀ψ ∈ D,
∫

X
dπ∆t = 1,

∫

X
(P∆t − Id)ψdπ∆t = 0.

The first equality holds because π∆t is a probability measure, and the second because π∆t

is an invariant probability measure of P∆t . Therefore, by replacing ϕ with Q∆tϕ, (1.44)
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gives

∀ϕ ∈ D0,

∫

X
ϕdπ∆t +

∫

X
∆tω+1r̃∆t,ϕdπ∆t = −

1
∆t

∫

X
P∆tQ∆tϕdπ.

Injecting the above equation into (1.43) and grouping the remainder terms gives us the
result for functions ϕ ∈ D0.

Splitting techniques for Stochastic Differential Equations

Splitting techniques consist in decomposing the dynamics of interest into several elemen-
tary subdynamics, which are sequentially integrated. The resulting accuracy depends
both on the accuracy of the subdynamics integration and the order of the splitting for-
mula. Because splitting formulas with arbitrary order exist (see Sections III and V of
[HLW06] for examples), splitting techniques are used for devising higher-order schemes
when the subdynamics are simple, or simpler, to discretize. However, for reaching weak
orders larger than two, integration with negative time steps must be resorted to, which
may alleviate the stability of the scheme. In practice, splitting schemes are a systematic
way of devising weak order two schemes, which is enough for many systems of interest.

Let us consider the SDE represented in its general form in (1.20), whose infinitesimal
generator we denote by L. Let us assume that we can decompose L as the sum of two
subgenerators, i.e

L =A+B.

Let PA
∆t and P

B
∆t be transition operators associated to numerical schemes discretizing the

SDEs associated with A and B respectively, and ∆t the time step. We detail in the sequel
how to construct a transition operator P∆t from PA

∆t and P
B
∆t using splitting techniques,

namely the Trotter splitting and Strang splitting.

Trotter splitting formula

The Trotter formula approximates an evolution operator by composing successively the
evolution operators of each of the reduced parts. It was introduced by H. F. Trotter in
[Tro59], and writes

et(A+B) = lim
∆t→0

(
e∆tAe∆tB

)⌊ t
∆t ⌋ . (1.45)

A splitting scheme using the Trotter decomposition given by (1.45) therefore writes

P∆t = P
A
∆tP

B
∆t . (1.46)

Lemma 1.3.6. Assume that PA
∆t , P

B
∆t e

∆tA and e∆tB stabilize D. Additionally assume that both
associated schemes are of weak order one in the sense that for all ϕ ∈ D,


PA
∆tϕ = e∆tAϕ +∆t2rA

∆t,ϕ ,

PB
∆tϕ = e∆tBϕ +∆t2rB

∆t,ϕ ,

where

∃(a,b,Cϕ ,∆t∗) ∈N2 × (R∗+)2, sup
0<∆t≤∆t∗

(∥∥∥∥rA∆t,ϕ
∥∥∥∥
L∞Wa

+
∥∥∥∥rB∆t,ϕ

∥∥∥∥
L∞Wb

)
< Cϕ .
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Then the scheme P∆t defined by (1.46) satisfies for all ϕ ∈ D:

P∆tϕ = e∆tLϕ +∆t2R∆t,ϕ ,

with
∥∥∥R∆t,ϕ

∥∥∥
L∞Wn

< Kϕ for some Kϕ > 0, n ∈N and any ∆t small enough. In particular, P∆t is

of weak order one.

Proof. The Baker-Campbell-Hausdorff (BCH) formula (see [Bak05, Cam97, Hau06] or
[HLW06]) allows to compute a product of exponential operators as an exponential of
operator. At first order, it formally writes for any operators A and B:

eAeB = eA+B+
1
2 [A,B]+ 1

12 ([A,[A,B]]−[B,[A,B]])+..., (1.47)

where [·, ·] defines the commutator operator given by (1.26). The neglected terms of (1.47)
contain linear combinations of the commutators of A and B of order higher than 3. The
power term of the right-hand side of (1.47) can be written as an infinite sum, where each
term is a composition of the commutators ofA and B. When considering the semigroups
generated by A and B, we formally have

e∆tAe∆tB = e∆t(A+B)+
∆t2
2 [A,B]+...,

for any ∆t > 0. Fixing ϕ ∈ D, this allows us to write

e∆tAetBϕ = e∆t(A+B)ϕ +∆t2r∆t,ϕ , (1.48)

where
∥∥∥r∆t,ϕ

∥∥∥
L∞Wk
≤ Jϕ for some Jϕ ≥ 0, k ∈N and for any ∆t small enough. For a proof of

this result, we refer to [LMS15] or [HLW06].

By assumption, 
PA
∆tϕ = e∆tAϕ +∆t2rA

∆t,ϕ ,

PB
∆tϕ = e∆tBϕ +∆t2rB

∆t,ϕ ,

where

∃(a,b,Cϕ ,∆t∗) ∈N2 × (R∗+)2, sup
0<∆t≤∆t∗

(∥∥∥∥rA∆t,ϕ
∥∥∥∥
L∞Wa

+
∥∥∥∥rB∆t,ϕ

∥∥∥∥
L∞Wb

)
< Cϕ .

Because PA
∆t , P

B
∆t , e

∆tA and e∆tB stabilize D, we have that rA
∆t,ψ ∈ D and rB

∆t,ψ ∈ D for any
ψ ∈ D. Therefore, we have

P∆tϕ = PA
∆tP

B
∆tϕ,

= e∆tAe∆tBϕ +∆t2
(
e∆tArB

∆t,ϕ + rA
∆t,e∆tBϕ

)
+∆t4rA

∆t,rB
∆tϕ
.

(1.49)

Injecting (1.48) into the last line of (1.49), we obtain

P∆tϕ = ϕ + e∆tLϕ +∆t2R∆t,ϕ , (1.50)

where
R∆t,ϕ = r∆t,ϕ + e∆tArB

∆t,ϕ + rA
∆t,e∆tBϕ +∆t2rA

∆t,rB
∆tϕ
.
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It remains to show that R∆t,ϕ is uniformly bounded in some L∞Wm
space for somem ∈N

and any ∆t small enough. We have by assumption and by (1.48) that, for some ∆t∗ small
enough and m ∈N,

sup
0<∆t<∆t∗



∥∥∥r∆t,ϕ

∥∥∥
L∞Wm

+
∥∥∥∥∥∆t

2rA
∆t,rB

∆tϕ

∥∥∥∥∥
L∞Wm

+
∥∥∥∥rA∆t,e∆tBϕ

∥∥∥∥
L∞Wm


 < +∞.

Because e∆tA stabilize D and that rB
∆t,ϕ ∈ D, we have that e∆tArB

∆t,ϕ ∈ D. In addition, we
can write for any ψ ∈ D,

e∆tAψ = ψ +∆tr̃∆t,ψ , (1.51)

with r̃∆t,ψ ∈ D uniformly bounded in L∞Wn
for some n ∈ N and any ∆t small enough.

Therefore,
e∆tArB

∆t,ϕ = rB
∆t,ϕ +∆tr̃

∆t,rB
∆t,ϕ
.

Both rB
∆t,ϕ and r̃

∆t,rB
∆t,ϕ

are uniformly bounded in some weighted space for any ∆t small

enough: rB
∆t,ϕ by assumption and r̃

∆t,rB
∆t,ϕ

by (1.51) and because rB
∆t,ϕ ∈ D. Therefore, R∆t,ϕ

also is and we have the result.

Strang splitting formula

The Strang formula, also called symmetric Trotter formula, was introduced by G. Strang
in [Str68] for linear hyperbolic PDEs. It consists in symmetrizing the Trotter formula
(1.45) and performing two iterations with half of the time step around one central it-
eration with full time step. A splitting scheme using the Strang decomposition writes

P∆t = P
A
∆t
2
PB
∆tP

A
∆t
2
. (1.52)

Lemma 1.3.7. Assume that PA
∆t , P

B
∆t e

∆tA and e∆tB stabilize D. Additionally assume that both
associated schemes are of weak order two in the sense that for all ϕ ∈ D,


PA
∆tϕ = e∆tAϕ +∆t3rA

∆t,ϕ ,

PB
∆tϕ = e∆tBϕ +∆t3rB

∆t,ϕ ,

where

∃(a,b,Cϕ ,∆t∗) ∈N2 × (R∗+)2, sup
0<∆t≤∆t∗

(∥∥∥∥rA∆t,ϕ
∥∥∥∥
L∞Wa

+
∥∥∥∥rB∆t,ϕ

∥∥∥∥
L∞Wb

)
< Cϕ .

Then the scheme P∆t defined by (1.52) satisfies for all ϕ ∈ D:

P∆tϕ = e∆tLϕ +∆t3R∆t,ϕ ,

with
∥∥∥R∆t,ϕ

∥∥∥
L∞Wn

< Kϕ for some Kϕ > 0, n ∈N and any ∆t small enough. In particular, P∆t is

of weak order two.

Proof. The proof of the weak order two of a Strang splitting scheme uses the symmetric
BCH formula formally written as

eA/2eBeA/2 = eA+B−
1
24 [A,[A,B]]− 1

12 [B,[A,B]]+..., (1.53)
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where once again the neglected terms are linear combinations of the commutators of A
and B of order greater than 3.

Similarly to the proof of Lemma 1.3.6, (1.53) allows the following relations to be
satisfied for all ϕ ∈ D:

e∆tA/2e∆tBe∆tA/2ϕ = e∆tLϕ +∆t3r∆t,ϕ ,

with
∥∥∥r∆t,ϕ

∥∥∥
L∞Wk
≤ Jϕ for some Jϕ ≥ 0, k ∈N and for any ∆t small enough.

Fix ϕ ∈ D. By assumption,


PA
∆tϕ = e∆tAϕ +∆t3rA

∆t,ϕ ,

PB
∆tϕ = e∆tBϕ +∆t3rB

∆t,ϕ ,

where

∃(a,b,Cϕ ,∆t∗) ∈N2 × (R∗+)2, sup
0<∆t≤∆t∗

(∥∥∥∥rA∆t,ϕ
∥∥∥∥
L∞Wa

+
∥∥∥∥rB∆t,ϕ

∥∥∥∥
L∞Wb

)
< Cϕ .

A small computation allows to write P∆tϕ as

P∆tϕ = PA
∆t
2
PB
∆tP

A
∆t
2
ϕ,

= e∆t
A
2 e∆tBe∆t

A
2 ϕ +

∆t3

8

(
rA
∆t,e∆tBe∆tAϕ + e∆tArB

∆t,e∆tAϕ + e∆tAe∆tBrA
∆t,ϕ

)

+
∆t6

8

(
rA
∆t,rB

∆t,e∆tAϕ
+ e∆tArB

∆t,rA
∆t,ϕ

+
1
8
rA
∆t,e∆tBrA,ϕ

)
+
∆t9

64
rA
∆t,rB

∆t,rA
∆t,ϕ

,

= e∆t
A
2 e∆tBe∆t

A
2 ϕ +∆t3rA,B

∆t,ϕ ,

= e∆tLϕ +∆t3
(
r∆t,ϕ + rA,B

∆t,ϕ

)
,

where, in passing from the second to the third line in the above computation, we have fac-
torized the other terms than e∆t

A
2 e∆tBe∆t

A
2 ϕ into a power three term in ∆t and a prefactor

denoted by rA,B
∆t,ϕ . Note that rA,B

∆t,ϕ ∈ D because PA
∆t , P

B
∆t , e

∆tA and e∆tB stabilizeD. Denoting
by R∆t,ϕ the remainder term of the above equation, we have, by a similar argument than
for Lemma 1.3.6, that R∆t,ϕ remains uniformly bounded when ∆t goes to zero for some
weighted space L∞Wn

with n ∈N.

Geometric splitting

We have proved that, provided that the discretizations of the subdynamics are of weak
order high enough, Trotter splitting schemes are of weak order one and Strang splitting
schemes of weak order two. However, it is possible to have an arbitrary high order on the
invariant measure with Trotter splitting schemes, provided that the error on the invariant
measure of the subschemes are high enough. Indeed, under conditions similar to those
of Theorem 1.3.5 applying to both subdynamics, the resulting Trotter splitting scheme
satisfies (1.40).

Lemma 1.3.8. Assume that PA
∆t and P

B
∆t stabilize D and that both associated schemes are of

weak order w in the sense that there exists two differential operators Aω+1 and Bω+1 such that
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for all ϕ ∈ D, 
PA
∆tϕ = e∆tAϕ +∆tω+1Aω+1ϕ +∆tω+2rA

∆t,ϕ ,

PB
∆tϕ = e∆tBϕ +∆tω+1Bω+1ϕ +∆tω+2rB

∆t,ϕ ,

where

∃(a,b,Cϕ ,∆t∗) ∈N2 × (R∗+)2, sup
0<∆t≤∆t∗

(∥∥∥∥rA∆t,ϕ
∥∥∥∥
L∞Wa

+
∥∥∥∥rB∆t,ϕ

∥∥∥∥
L∞Wb

)
< Cϕ .

Also assume that there exists (f Aω+1, f
B
ω+1) ∈ D2

0 such that for all ϕ ∈ D,


∫

X
Aω+1ϕdπ =

∫

X
f Aω+1ϕdπ,

∫

X
Bω+1ϕdπ =

∫

X
f Bω+1ϕdπ.

Additionally assume that both L and L† are invertible on D0, that

∀m ∈N,
∫

X
Wmdπ < +∞,

and that both subdynamics preserve the invariant measure π, i.e

∀ϕ ∈ D,
∫

X
Aϕdπ =

∫

X
Bϕdπ = 0.

Note that this means in particular that e∆tA and e∆tB stabilize D.
Then the scheme P∆t defined by (1.46) satisfies equation (1.40), i.e there exists fω+1 ∈ D0

and ∆t∗ > 0 such that for any 0 ≤ ∆t ≤ ∆t∗,

∀ϕ ∈ D,
∫

X
ϕdπ∆t =

∫

X
ϕdπ +∆tω

∫

X
fω+1ϕdπ +∆tω+1R∆t,ϕ ,

with R∆t,ϕ uniformly bounded for small ∆t, i.e
∣∣∣R∆t,ϕ

∣∣∣ < Cϕ for some Cϕ > 0 and for any ∆t

small enough. In particular, the numerical scheme P∆t is of order ω on the invariant measure.

Such schemes are usually called Geometric Splitting Schemes, and, provided both sub-
schemes are accurate enough on the estimations of observables, combine the greater ac-
curacy on observable estimations of Strang splitting schemes and the efficiency and CPU
cost of Trotter splitting schemes. However, the above result is only valid for error on the
invariant measure and has no counterpart for weak nor strong errors.

Proof. We only prove here the result for D0. The extension to D is similar to the one
performed in the proof of Theorem 1.3.5.

Fix ϕ ∈ D0. Similarly to the proofs of Lemma 1.3.6, we show that the expansions of
PA
∆t and P

B
∆t allow us to write

∫

X
P∆tϕdπ =

∫

X
PA
∆tP

B
∆tϕdπ,

=
∫

X
e∆tAe∆tBϕdπ +∆tω+1

∫

X

(
e∆tABω+1 +Aω+1e∆tB

)
ϕdπ +∆tω+2

∫

X
r∆t,ϕdπ,
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with r∆t,ϕ uniformly bonded on L∞Wm
for somem ∈N and for all ∆t small enough. Because

both subdynamics preserve π, we have

∫

X
P∆tϕdπ =

∫

X
ϕdπ +∆tω+1

(∫

X
Bω+1ϕdπ +

∫

X
f Aω+1e

∆tBϕdπ

)
+∆tω+2

∫

X
r∆t,ϕdπ,

= ∆tω+1
(∫

X
f Bω+1ϕdπ +

∫

X
ϕ

(
e∆tB

)†
f Aω+1dπ

)
+∆tω+2

∫

X
r∆t,ϕdπ,

= ∆tω+1
∫

X

(
f Bω+1 +

(
e∆tB

)†
f Aω+1

)

︸                    ︷︷                    ︸
fω+1

ϕdπ +∆tω+2
∫

X
r∆t,ϕdπ.

Therefore, we have

− 1
∆t

∫

X
P∆tϕdπ = ∆tω

∫

X
(−fω+1)ϕdπ −∆tω+1

∫

X
r∆t,ϕdπ.

In addition, B being a differential operator, we have that B1 = 0. Therefore,
∫

X
(e∆tB)†f Aω+1dπ =

∫

X

(
e∆tB1

)
f Aω+1dπ =

∫

X
f Aω+1dπ,

Because (f Aω+1, f
B
ω+1) ∈ D2

0 by assumption, this means that fω+1 ∈ D0.
Consider the projection operator Π on D0 and Q∆t the pseudo-inverse operator of

P∆t−Id
∆t introduced in the proof of Theorem 1.3.5 (see (1.42)). By injecting (1.44) into the

above equation, we have

∫

X
Π

(
P∆t − Id

∆t

)
Πϕdπ∆t = ∆tω

∫

X
(−fω+1)ϕdπ −∆tω+1

∫

X
r∆t,ϕdπ.

Because ϕ ∈ D0, we have that Q∆tϕ ∈ D0. Therefore, by using Q∆tϕ instead of ϕ, relation
(1.42) turns the above equality into

∫

X
ϕdπ∆t = ∆tω

∫

X
(−fω+1)ϕdπ −∆tω+1

∫

X
(r∆t,ϕ + r̃∆t,ϕ)dπ,

where r̃∆t,ϕ is the remainder term of (1.42) and is uniformly bounded on L∞ for all ∆t
small enough.

The fact that R∆t,ϕ = −
∫
X (r∆t,ϕ+r̃∆t,ϕ)dπ is uniformly bounded for all∆t small enough

is given by the fact that L∞Wm
⊂ L1(π) for all m ∈N by assumption. Equation (1.40) there-

fore holds for any ϕ ∈ D0, which gives the result by extending to D as discussed in the
beginning of the proof.

A prototypical example: the Langevin Dynamics

We now apply in this section the results presented in the previous sections on a proto-
typical example called the Langevin dynamics. The Langevin dynamics was originally
developed by Paul Langevin for the description of microscopic particles in a fluid un-
dergoing many collisions [Lan08] (translated in English in [LG97]). These collisions are
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modeled by friction forces slowing the particles and a Brownian motion acting on the
time evolution of the particles, which allows to reinject some energy into the system.

We choose here to present results for the discretization of the Langevin dynamics
since it is now a well-understood dynamics, and that it is structurally very similar the
dynamics which has been the object of study of this thesis. In fact, not only the dynamics
but also the discretization methods considered in the next chapters are adapted from the
numerical methods introduced in this section.

We start in Section 1.4.1 by presenting the Langevin dynamics and some ergodicity
results, and give then in Section 1.4.2 some discretization methods using the splitting
techniques introduced in Section 1.3.

Description of the dynamics

The Langevin dynamics is defined by adding to the Hamiltonian dynamics (1.4) a friction
term proportional to the velocities of the particles and a fluctuation term proportional
to a Brownian motion, where the amplitude of both terms is controlled by two scalar
parameters γ and σ . It writes


dqt =M

−1pt dt,

dpt = −∇U(qt)dt −γM−1pt dt +σdWt .
(1.54)

The term γM−1pt is a friction term dissipating energy, and the term σdWt is a fluctu-
ation term bringing energy into the system to compensate the loss due to the friction
terms, whereWt is a d-dimensional Brownian motion. In the sequel, we assume that the
potential U is such that ∇U satisfies Condition 1.2.2 so the existence and uniqueness of
solutions of (1.54) is obtained, as well as the smoothness of the flow maps.

Remark 1.4.1. Notice however that ∇U satisfying Condition 1.2.2 implies that U should not
have any singularity, which is not the case of Lennard-Jones potentials given by (1.2). Indeed,
LJ potentials have singularities for any (unphysical) configuration where two particles have
the same position. In practice however, particles never collide when one uses reasonable time
steps due to the steep increase of the pairwise interaction potential v(r) when r goes to 0, and
Lennard-Jones potentials can be reasonably safely used in Langevin simulations.

In this thesis, wemainly use the Langevin dynamics as a sampling device of the canon-
ical measure µβ given by (1.19). In order for µβ to be invariant for the Langevin dynamics,
the friction and fluctuation parameters must satisfy the fluctuation/dissipation relation

σ2 =
2γ
β
> 0, (1.55)

where β = 1
kBT

is the inverse equilibrium energy corresponding to the equilibrium tem-
perature T . We prove in the following theorem that in fact, if γ and σ satisfy (1.55), then
the dynamics is ergodic with respect to µβ .

Theorem 1.4.1. [Ergodicity of the Langevin dynamics] Let us suppose that the parameters
γ and σ satisfy (1.55). Then the Langevin dynamics is ergodic for the canonical probability
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measure µβ :

∀(q0,p0) ∈ X , ∀ϕ ∈ L1(µβ), lim
t→+∞

1
t

∫ t

0
ϕ(qt ,pt)dt =

∫

X
ϕdµβ , a.s.

If γ and σ verify (1.55), the Langevin dynamics can be rewritten as



dqt =M
−1pt dt,

dpt = −∇U(qt)dt −γM−1pt dt +
√

2γ
β

dWt .

The proof of Theorem 1.4.1 is now a well-known result [Kli87, RB06, LRS10], and we
detail it below.

Proof. The proof is organized in two steps:

1. We prove that the canonical probability measure µβ defined by (1.19) is invariant
for the Langevin dynamics using (1.55). Note that we do not need σ > 0 for this
result.

2. We prove that the generator L of the Langevin process is hypoelliptic. Here, we need
σ > 0 for the result.

The ergodicity of the Langevin dynamics with respect to µβ is then given by Theorem 1.2.1.
Let us prove point 1, i.e the invariance of the canonical measure (1.19) for the Langevin

dynamics. Let L be the infinitesimal generator of (1.54), which reads

L =M−1p · ∇q −∇U(q) · ∇p −γM−1p · ∇p +
σ2

2
∆p , (1.56)

The adjoint of L on L2(X ,R) writes

∀ψ ∈ D, L∗ψ = −M−1p · ∇qψ +∇qU(q) · ∇pψ +γ∇p ·
(
M−1pψ

)
+
σ2

2
∆pψ. (1.57)

The canonical measure µβ for a separable Hamiltonian satisfies

∇pµβ(q,p) = −βM−1pµβ(q,p),
∇qµβ(q,p) = −β∇U(q)µβ(q,p).

Therefore, when using µβ instead of ϕ in equation (1.57), we have

L∗µβ = −β



−M−1p · ∇U(q) +∇U(q) ·M−1p
︸                                  ︷︷                                  ︸

=0



µβ +γ∇p ·

(
M−1pµβ

)
+
1
2
σ2

∆p

(
µβ

)
,

= γ∇p ·
(
M−1pµβ

)
+
1
2
σ2∇p ·

(
−βM−1pµβ

)
,

=
(
γ − β

2
σ2

)
∇p ·

(
M−1pµβ

)
.

46



Chapter 1 | Introduction to Molecular Simulation

Thus, if parameters γ and σ verify relation (1.55), then L∗µβ = 0 and µβ is invariant for
(1.54).

Let us now assume (1.55). Point 2, i.e the hypoellipticity of the Langevin dynamics,
is obtained by rewriting its generator L as

L =A0 −
N∑

i=1

d∑

k=1

A∗i,kAi,k , (1.58)

where N is the number of particle, d the dimension of each vector qi and pi ,

A0 =M
−1p · ∇q −∇U(q) · ∇p

︸                       ︷︷                       ︸
Aham

−γpT ·M−1∇p , and Ai,k =
√
γ

β
∂pi,k , (i, k) ∈ [|1,N |]×[|1,d |].

We have that

[Api,k ,A0] =
√
γ

β

1
mi

(
∂qi,k −γ∂pi,k

)
.

The fact that
√
γ
β > 0 implies that

{A0, {Ai,k}i=0,..,N,k=1,..,d , {[Ai,k ,A0]}i=0,..,N,k=1,..,d
}
has full

rank. Therefore, L verifies Hörmander condition given by Definition 1.2.7 and is hypoel-
liptic.

It can be proved that the Langevin dynamics satisfy condition 2 of Theorem 1.3.5. A
careful analysis of the proof presented in [Tal02], provided in [Kop15a], gives the result.

Proposition 1.4.2. Both L and L†, denoting respectively the generator of the Langevin dy-
namics and its adjoint on L2(π), are invertible on D0.

Limits of the dynamics for infinite friction: Overdamped Langevin

The Overdamped Langevin Dynamics, also called Brownian dynamics, is a simplified ver-
sion of the Langevin dynamics where only the positions are considered. It has been
developed for mesoscale simulations of particles undergoing several collisions where
momenta are neglected because it is assumed that they oscillate too fast. Their effect
is represented by a Brownian motion acting on the positions. The Overdamped Langevin
dynamics writes

dqt = −∇U(qt)dt +

√
2
β
dWt . (1.59)

Remark 1.4.2. The Overdamped Langevin dynamics, as presented in (1.59), is dimensionally
inconsistent. Indeed, dqt and ∇U(qt)dt do not have the same physical dimension and one
should multiply each term of (1.59) by a parameter of the appropriate dimension equal to 1.
We do not however take this into account in the sequel for clarity purposes.

Notice that equation (1.59) is a basic diffusion SDE, admitting the marginal of the
canonical measure µβ on the position as an invariant probability measure. This marginal,
denoted by νβ , writes

νβ(dq) = Z
−1e−βU(q)dq, (1.60)
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with Z =
∫
X e
−βU(q)dq is a normalization constant. The probability measure νβ is in fact

the unique invariant probability measure of (1.59), since the Overdamped Langevin dy-
namics is ergodic and νβ is invariant.

Theorem 1.4.3. The Overdamped Langevin dynamics given by (1.59) is ergodic for the prob-
ability measure νβ given by (1.60), provided that the potential U is such that ∇U satisfies
Condition 1.2.2.

The proof of the above theorem is done in Section 2.2 of [LRS10]. We however report
it below.

Proof. For any (ϕ,ψ) ∈ (L2(νβ))2, the generator Lover of (1.59) and its adjoint write

Loverϕ = −∇U(q) · ∇ϕ +
1
β
∆ϕ,

(Lover)∗ψ = ∇ (∇U(q) ·ψ) + 1
β
∆ψ.

We clearly have that (Lover)∗νβ = 0 with νβ given by (1.60). In opposition to the Langevin
dynamics, the generator of the Overdamped Langevin dynamics is elliptic, i.e its dif-

fusion matrix σ =
√

2
β Id is positive definite. The Overdamped Langevin dynamics is

therefore ergodic with respect to νβ .

Remark 1.4.3. Overdamped Langevin can be seen as the limit of the Langevin dynamics when
the friction parameter γ goes to infinity, or equivalently when the particles mass m goes to
infinity, hence the use of "Overdamped" in its name. The proof of the convergence is given in
[LRS10], and we do not report it here.

Similarly to the Langevin dynamics, it can be proved that the Overdamped Langevin
dynamics satisfy condition 2 of Theorem 1.3.5. The proof however is simpler than for the
Langevin dynamics if the position space is bounded, the generator of the Overdamped
Langevin dynamics being elliptic (see discussion in Section 1.3.2). The case where the
position space is unbounded is treated in [Kop15b].

Proposition 1.4.4. Both L and L†, denoting respectively the generator of the Overdamped
Langevin dynamics and its adjoint on L2(π), are invertible D0.

Numerical Integration of the Langevin dynamics

We have seen in Section 1.4.1 that the Langevin dynamics is composed of a Hamiltonian
part and a fluctuation/dissipation part. We show in the sequel that its generator can be
decomposed into three subgenerators that can be analytically integrated. Thus, splitting
schemes seem to be a convenient way to integrate the dynamics.

However, when the ergodicity of the splitting schemes cannot be proved as in the
case for dynamics where the position space Q is unbounded, one might turn to implicit
schemes to devise stable schemes [MSH02, Tal02, Kop15a]. The case of implicit schemes
is not considered in this thesis however.
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Splitting of the dynamics

By construction, the Langevin dynamics (1.54) can be decomposed into a Hamiltonian
part and a fluctuation/dissipation part. But we have seen in Section 1.1.2 that the Hamil-
tonian dynamics can further be decomposed into a part related to the positions and a part
related to the momenta. Therefore, the Langevin infinitesimal generator can be written
as follows

L =A+B +γC. (1.61)

The operators A and B are respectively the generators of the position and momenta dy-
namics of the Hamiltonian dynamics (1.4) (see Section 1.1.2 for the expression of their
corresponding dynamics and integration). They write

A =M−1p · ∇q, B = −∇qU · ∇p .

Note that using the notation of the previous section, Aham =A+B. The operator C is the
generator of the fluctuation/dissipation dynamics which writes



dqt = 0,

dpt = −M−1ptdt +
√

2
β
dWt .

(1.62)

As we have seen in Section 1.1.2, the elementary dynamics associated with A and B
can be integrated analytically. In addition, we recognize in equation (1.62) the expres-
sion of an Ornstein-Uhlenbeck process. The action of the semigroup (etC) can therefore be
analytically determined, as states the following lemma:

Lemma 1.4.5. Consider xt a solution of the following dynamics:

dxt = −αxtdt +σdWt , (1.63)

whereWt is a standard Brownian motion and (α,σ) two scalar parameters. Consider an initial
condition x0 ∈ X . Then we have the following equality in law:

xt ∼ e−αtx0 +σ

√
1− e−2αt

2α
G, (1.64)

where G ∼N (0, Id) and xt is the solution of (1.63) starting from x0. In particular,

∀ϕ ∈ D,
(
etC

)
ϕ(x) = EG


ϕ


e
−αtx0 +σ

√
1− e−2αt

2α
G





 .

Proof. An Itô calculus using (1.63) gives

d
(
eαtxt

)
= (αxtdt +dxt)e

αt = σeαtdWt .

Therefore, by integrating the above equation from 0 to t, and by multiplying both sides
of the equation by e−αt , we obtain the analytical expression of an Ornstein-Uhlenbeck
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process as

xt = e−αtx0 +σ
∫ t

0
eα(s−t)dWs.

We have that
∫ t
0
eα(s−t)dWs ∼N

(
0,

∫ t
0
e2α(s−t)ds

)
and

∫ t
0
e2α(s−t)ds = 1−e2αt

2α . We thus have

xt ∼ e−αtx0 +σ

√
1− e−2αt

2α
G,

where G ∼N (0, Id), which is the desired result.

Given xt , (1.64) gives us the law of xt+∆t and therefore allows us to devise a discretization
of (1.63) of infinite weak order as

xn+1 = e−α∆txn +σ

√
1− e−2α∆t

2α
Gn, (1.65)

with Gn ∼N (0, Id).
Transposing the result of Lemma 1.4.5 to the case of the fluctuation/dynamics de-

scribed by (1.62), the law of the momenta of each particle is given by

pi,t ∼ e−
γt
mi pi,0 +

√
mi
β

(
1− e−

2tγ
mi

)
Gi ,

where Gi ≃ N (0, Id) for i = 1, . . . ,N . The analytical integration of the fluctuation/dissipa-
tion dynamics is therefore given by

pn+1i = e−
γ∆t
mi pni +

√
mi
β

(
1− e−

2γ∆t
mi

)
Gn. (1.66)

Thus, all three subdynamics of (1.61) can be integrated analytically if taken sepa-
rately. The weak order of any Langevin splitting scheme is therefore given by the order
of its splitting formula.

Examples of Langevin splitting schemes

Let PA
∆t , P

B
∆t and P

γC
∆t be the evolution operators corresponding to the analytical integra-

tion of respectively A, B and γC, and let P∆t be a splitting scheme applied to L. The
splitting schemes introduced in Section 1.3.3 adapted to the Langevin dynamics (1.54)
are presented below.

• Trotter-splitting algorithms: defined by a successive integration of each subdy-
namics, as

P∆t = P
A
∆tP

B
∆tP

γC
∆t , (1.67)

• Strang-splitting algorithms: obtained by symmetrizing the decomposition of Trot-
ter
schemes, as

P∆t = P
γC
∆t
2
PB∆t

2
PA
∆tP

B
∆t
2
P
γC
∆t
2
. (1.68)
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One can define similar schemes by permuting the order of integration of each subdynam-
ics in the above examples.

Geometric splitting schemes, called Geometric Langevin Algorithms (GLA), can also be
devised for the Langevin dynamics [BRO10]. They consist in splitting the integration be-
tween the conservative part generated by A+B and the fluctuation/dissipation part gen-
erated by γC. The conservative part is integrated using a Velocity-Verlet scheme and the
fluctuation/dissipation part is integrated by the analytical integration presented above
in order to obtain two schemes of weak order two (see Proposition 2.2.3 in Section 2.2.2
for a proof of the weak order two of the Velocity-Verlet integration). By considering all
the permutations in the order of integration such that each part can be integrated at the
order two, we obtain the following four schemes:

P
γC,A,B,A
∆t = P

γC
∆t P

A
∆t/2P

B
∆tP

A
∆t/2, P

γC,B,A,B
∆t = P

γC
∆t P

B
∆t/2P

A
∆tP

B
∆t/2,

P
A,B,A,γC
∆t = PA

∆t/2P
B
∆tP

A
∆t/2P

γC
∆t , P

B,A,B,γC
∆t = PB

∆t/2P
A
∆tP

B
∆t/2P

γC
∆t .

(1.69)

For the example, we write below the GLA scheme corresponding to the above lower right
evolution operator:

P
B,A,B,γC
∆t :



pn+1/2i = pni −
∆t

2
∇qiU(qn),

qn+1i = qni +∆tM−1pn+1/2i ,

p̃n+1i = pn+1/2i − ∆t

2
∇qiU(qn+1),

pn+1i = p̃n+1i + e−
γ∆t
mi p̃n+1i +

√
mi
β

(
1− e−

2γ∆t
mi

)
Gn.

(1.70)

As seen in Section 1.3.3, Lemma 1.3.6 and 1.3.7 tell us that all the Trotter and GLA
schemes are of weak order one, and that the Strang splitting schemes are of weak order
two. Let us now turn to errors on the invariant measure and the conditions of Theo-
rem 1.3.5.

We have seen that the Langevin dynamics satisfy conditions 1 and 2 of Theorem 1.3.5.
Leimkuhler and al. proved in [LMS15] that any of the splitting schemes mentioned above
satisfied the remaining conditions of Theorem 1.3.5. In particular, they proved that all
schemes were ergodic with respect to a probability measure and that expansions such as
(1.34) could be obtained. Therefore, by Theorem 1.3.5 and Lemma 1.3.8, we have that
the above Trotter schemes are of order 1 in the invariant measure, while GLA and Strang
splitting schemes are of order 2.
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2
The Dissipative Particle

Dynamics and its numerical
integration

TheDissipative Particle Dynamics (DPD) [HK92] is a particle-based coarse-grainedmodel
in which atoms, molecules or even groups of molecules are represented by a single
mesoscale DPD particle. The time evolution of the mesoscale particles is governed by
a stochastic differential equation, where dissipative and random forces allow to take into
account some effect of the microscopic variability.

The original DPD model is however an isothermal model, and therefore cannot mod-
elise systems where energy-conserving phenomena occur. An energy-conserving variant
of the model was introduced independently in 1997 by Avalos and al. in [AM97] and Es-
pañol in [Esp97], allowing for such simulations. This variant is called Dissipative Particle
Dynamics with Energy conservation (DPDE).

However, the efficient numerical integration of DPDE still requires some effort. While
numerous efficient schemes were developed for DPD [GW97, PHF98, BVKP00, VKBP02]
(see in particular [LS15] for a careful comparison), their adaption to DPDE leads to nu-
merical schemes for which errors on average properties may be large even for time steps
standardly used to integrate Hamiltonian dynamics [LBM+14], and thus may require the
use of extremely small time steps [Eiy10, Eiy11].

We start this chapter by presenting in Section 2.1 the DPD model and its energy-
conserving variant. We then present in Section 2.2 a review of the principal algorithms
presented in the literature so far. Because of the high computational cost of implicit
schemes, we limit ourselves in this thesis to explicit schemes. Finally, we present in
Section 2.3 two new schemes for the integration of the DPDE.

Let us emphasize that the schemes we develop for DPDE may be of direct interest for
other dynamics with similar structures, such as the Smoothed Dissipative Particle Dy-
namics (SDPD) [ER03]. This stochastic dynamics also preserves the energy of the system,
and can be seen as the superposition of two elementary energy preserving dynamics, a
conservative part and a fluctuation/dissipation part. It is therefore not a surprise that the
numerical methods we develop here can be readily applied for the large scale simulation
of SDPD on parallel architectures.
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The Dissipative Particle Dynamics (DPD)

In this sectionwe consider the Dissipative Particle Dynamicsmodel and its energy-conserving
variant. We first present somemodeling principles of DPD, then introduce the SDE corre-
sponding to the DPD, along with some consideration about the invariance of the canoni-
cal measure and the ergodicity of the dynamics. We then introduce the DPDE model and
present some discussion about its ergodic properties.

Original DPDmodel

In the DPD framework, each particle represents a (group of) molecule(s) that are coarse-
grained into onemesoscale particle centered around the center of mass of themolecule(s),
described by its position qi and momenta pi , i being the index of each (cluster of )
molecule(s). The internal degrees of freedom of the molecule(s) are represented by fric-
tion and random interactions acting on the center of masses of the DPD particles, thus
turning the deterministic differential equation satisfied by the atoms into a Stochastic
Differential Equation satisfied by the center of masses of the DPD particles. Figure 2.1
illustrates the coarse-graining process of DPD by one example, where molecules com-
posed of 4 atoms are coarse-grained into one single particle. Of course, the coarse-

Figure 2.1 | Illustration of DPD coarse-graining process: each of the three molecules (purple
atoms) interacting through conservative forces (straight lines: full for short-range interactions
and dashed for long-range ones) are represented by a single meso-scale DPD particle (dashed
circles) interacting through conservative, friction and random interactions (dashed oscillating
lines). Note that DPD interactions are therefore stochastic and no longer deterministic.

graining process of Figure 2.1 is only one example, and many other can be tried (for
instance grouping several molecules into one DPD particle). DPD was put on a firm the-
oretical ground in [EW95], and was applied to study the properties of various systems
[MNZ09, DOS+07, GMT08]. In the sequel, we only consider the center of masses of the
mesoscale DPD particles that we denote by (qi ,pi ) for each particle indexed with i ∈N,
and no longer consider the coordinates of the atoms.

Presentation of the dynamics

Consider a system of N DPD particles with periodic boundary conditions. Each pair
of particles interacts through (i) conservative forces deriving from a potential energy
function U(q), (ii) friction forces proportional to the relative velocity between the two
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particles and (iii) random fluctuation forces. The time evolution of the configuration
(qi ,pi ) ot the ith particle is given by the following set of equations:



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γijχ(rij,t)
(
vij,t · eij,t

)
eij,t dt +σij

√
χ(rij,t)eij,tdWij,t ,

(2.1)

where eij,t =
qi−qj
‖qi,t−qj,t‖ is the directional vector going from particle i to particle j , and

vij,t = vi,t − vj,t is the relative velocity between particle i and particle j . The Wiener
processes (Wij,t)1≤i<j≤N are independent and verify the antisymmetric condition Wij,t =
−Wji,t . Note that in (2.1), the Wiener processes are unidimensional. The function χ(r)
is a smoothing function limiting the range of the fluctuation/dissipation interactions. In
this thesis, we choose

χ(r) =



(
1− r

rcut

)2
, if r ≤ rcut,

0, otherwise.

(2.2)

In the remainder of this thesis, and unless otherwise mentioned, we assume the potential
U is such that ∇U satisfies Condition 1.2.2.

One can notice that the construction of the DPD dynamics is similar to the one of the
Langevin dynamics (1.54) (see Section 1.4.1): friction and random terms are added to
conservative forces deriving from the potential in the Hamiltonian dynamics. However,
in the DPD framework, the friction and random terms are proportional to the relative
velocities of the particles, thus verifying the Galilean invariance, in opposition to the
Langevin dynamics. In addition, the total momentum P of the system is preserved by
the dynamics, i.e

d



N∑

i=1

pi


 = 0.

Remark 2.1.1. [Control of the Coarse-Graining process] The DPD model regroups several
particles into one mesoscale DPD particle. However, because DPD has no associated param-
eter to this regrouping process, the scale of the coarse-graining has to be controlled through
the potential U(q). Indeed, the effective potential acting on the center of masses of the clus-
ters changes according to the scale of the regrouping performed. Therefore, one must choose
carefully its potential before performing any realistic DPD simulation.

In this thesis, we use a model introduced in [Sto06] where the friction and random
terms are not projected along eij,t and where the friction and random parameters are
taken constant and equal for every couple, i.e

γij = γ, σij = σ, i, j = 1, ..,N , i , j.
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The DPD equations therefore write



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γχ(rij,t)vij,t dt +σ
√
χ(rij,t)dWij,t .

(2.3)

Note that in this framework, the Wij are no longer scalars but d-dimensional Wiener
processes.

Ergodic properties of DPD

The parameters γ and σ respectively control the friction and fluctuation strengths. They
are chosen in order to ensure the correct statistical behavior of the system, i.e in order
for the canonical measure µβ given by (1.19) to be invariant. The following result gives
the invariance of µβ if γ and σ satisfy the same fluctuation/dissipation condition than
for the Langevin dynamics.

Proposition 2.1.1. The canonical distribution (1.19) is invariant for the DPD dynamics (2.1)
if the parameters γ and σ satisfy

σ2 =
2γ
β
. (2.4)

This result can be straightforwardly extended to the specific case of (2.3). Note that
in practice we impose σ > 0, otherwise we would recover the Hamiltonian dynamics.

Proof. We prove the invariance of µβ for the general DPD equation given by (2.1). The
adaptation of the proof to the reduced model given by (2.3) is trivial.

The generator of the DPD dynamics can be written as

L = Lham +
∑

1≤i<j≤N
Lij ,

where Lij is the generator of the elementary subdynamics



dpi,t = −γ(vij,t · eij,t)χ(rij,t)eij,t dt +σ
√
χ(rij,t)eij,t dWij,t ,

dpj,t = γ(vij,t · eij,t)χ(rij,t)eij,t dt −σ
√
χ(rij,t)eij,t dWij,t .

We have shown in Section 1.4.1 that µβ is invariant for Lham. It thus remains to prove its
invariance for the fluctuation/dissipation part, i.e prove that L∗ijµβ = 0 for all i , j , with

(i, j) ∈ [1, ..,N |]2. Under matrix form, the above elementary dynamics writes

dxt = Γ(xt)dt +Σ(xt)dWij,t ,

where x = (pi ,pj ) and

Γ(x) = −γ(eij · vij )χ(rij )
(
eij
−eij

)
, Σ(x) = σ

√
χ(rij )

(
eij
−eij

)
.
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The operator Lij therefore writes

Lij = Γ(x) · ∇+ 1
2
Σ(x)Σ(x)T : ∇2.

A straightforward computation shows that

Lij = χ(rij )
[
−γ(eij · vij )

((
∇pi −∇pj

)
· eij

)
+
σ2

2

(
eij ·

(
∇pi −∇pj

))2
]
.

We now consider the adjoint of Lij writing, for any ψ ∈ L1(X ,R) regular enough,

L∗ijψ = χ(rij )

[
γ
(
eij ·

(
∇pi −∇pj

))(
(eij · vij )ψ

)
+
σ2

2

(
eij ·

(
∇pi −∇pj

))2
ψ

]
.

Applying L∗ij to µβ gives

L∗ijµβ = χ(rij )
[
γ
(
eij ·

(
∇pi −∇pj

))(
(eij · vij )µβ

)
+
σ2

2

(
eij ·

(
∇pi −∇pj

))2
µβ

]
,

= χ(rij )
(
eij ·

(
∇pi −∇pj

))[
γ(eij · vij )µβ −

βσ2

2
(eij · vij )µβ

]
,

= χ(rij )
(
eij ·

(
∇pi −∇pj

))[(
γ − β σ

2

2

)
(eij · vij )µβ

]
.

We notice in the above expression that if (2.4) holds, then L∗ijµβ = 0 for all (i, j) ∈ [|1,N |]2
with i , j , which concludes the proof.

Remark 2.1.2. We notice from the proof of Proposition 2.1.1 that, should the friction and
fluctuation parameters depend on the particle couple (i, j), the fluctuation/dissipation relation
would become

σ2
ij =

2γij
β
, i, j = 1, ..,N , i , j.

So far, the ergodicity of the DPD dynamics for the canonical measure has been proved
only in a one-dimensional case where the density is high enough [SY06]. In the general
case, the irreducibility of the dynamics cannot be proved. Indeed, assume that the posi-
tion space is sufficiently large so there exists a configuration where all particles are iso-
lated, i.e all the distances between particles are bounded from below by rmin > rcut. Also
assume that the particles have the same velocity, i.e T = 0. Because the random interac-
tions are of the same limited range rcut than the conservative force, the time derivative
of the momenta of the particles is null, and the system stays in the same configuration
for ever. Such pathological cases prevent the DPD from being ergodic. Mathematically
speaking, we do not have the hypoellipticity of the DPD generator and thus cannot apply
Theorem 1.2.1.

In the sequel, we nevertheless assume that the ergodicity of the DPD dynamics holds
for the canonical measure conditioned to the Dirac measure of the initial total momen-
tum P0. This Dirac measure δP0 is constructed in a similar way than the microcanonical
measure δmc,E0 of Section 1.2.1. The DPD invariant measure, denoted by µβ,DPD, there-
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fore writes
µDPD,β(dq,dp) = δP0(p)e

−βH(q,p)dqdp. (2.5)

The Dissipative Particle Dynamics with Energy conservation (DPDE)

As we saw in the previous section, DPD intrinsically is an equilibrium model, with a pre-
scribed temperature, fixed through a fluctuation/dissipation relation between the mag-
nitudes of the friction and fluctuation parameters. DPD cannot be used as such to study
nonequilibrium systems, and should be replaced by a dynamics where the fluctuation-
dissipation relation is not fixed a priori, but evolves depending on the physical events
that have happened. DPD with conserved energy (DPDE) is such a model.

In the DPDE framework, mesoparticles have an additional degree of freedom, namely
an internal energy denoted by εi , which accounts for the energy of the missing degrees
of freedom. This allows to define a total energy as

E(q,p,ε) =U(q) +
N∑

i=1

p2i
mi

+
N∑

i=1

εi , (2.6)

where the last sum of the right-hand side of (2.6) is called the internal energy of the sys-
tem. The dynamics on the internal energies is constructed in order for the total energy to
remain constant. This energy conservation allows to use DPDE to simulate nonequilib-
rium phenomena like shock and detonation waves [Sto06, MSS07, MVDS11]. Figure 2.2
builds upon the example of Figure 2.1 and illustrates the additional modifications of
DPDE with the internal/external equilibration.

Figure 2.2 | Illustration of DPDE coarse-graining process: in addition to the DPD coarse-graining
process (dashed lines and circles, see Figure 2.1), the meso-scale particles have internal temper-
atures and energies (the redder the color the hotter the particle). Internal/external equilibration
is done through energy exchanges, turning internal energy into kinetic energy and reversely.
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Presentation of the dynamics

Considering the DPD dynamics (2.3), an Itô calculus on the mechanical energy H(q,p)
allows to write

dH(qt ,pt) =
N∑

i=1

∇qiU(qt) ·dqi,t +
1
mi


pi,t ·dpi,t +

N∑

j=1,j,i

dσ2

2
χ(rij,t)dt


 ,

=
N∑

i=1

N∑

j=1,j,i

vi,t

(
−γχ(rij,t)vij,tdt +σ

√
χ(rij,t)dWij,t

)
+
dσ2

2mi
χ(rij,t)dt,

=
∑

1≤i<j≤N
vij,t

(
−γχ(rij,t)vij,tdt +σ

√
χ(rij,t)dWij,t

)
+
dσ2

2
χ(rij,t)

(
1
mi

+
1
mj

)
dt,

=
∑

1≤i<j≤N

(
−γv2ij,t +

dσ2

2

(
1
mi

+
1
mj

))
χ(rij,t)dt +σvij,t

√
χ(rij,t)dWij,t ,

where, to go from the second to the third line, we used a simple symmetry argument. We
notice that the right-hand side of the above equality can be written as a sum of terms
depending on the fluctuation/dissipation interaction of each particle couple i − j , i.e

dH(qt ,pt) =
N∑

i=1

N∑

j=1,j,i

dEij,t , (2.7)

with

dEij,t =
1
2

[(
−γv2ij,t +

dσ2

2

(
1
mi

+
1
mj

))
χ(rij,t)dt +σvij,t

√
χ(rij,t)dWij,t

]
. (2.8)

Therefore, by defining the time evolution of the internal energy as dεi,t = −
∑
j,i dEij,t ,

we obtain a dynamics preserving the energy E(q,p,ε) defined by (2.6). This dynamics
therefore writes:



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γij,tχ(rij,t)vij,t dt +σij,t
√
χ(rij,t)dWij,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv

2
ij,t − d

σ2
ij,t

2
µij


χ(rij,t)dt −σij,t

√
χ(rij,t)vij,t ·dWij,t


 ,

(2.9)

where we have used the same notation than in Section 2.1.1 and defined

µij =
1
mi

+
1
mj
. (2.10)

Note that, because of the introduction of the internal energy variable, the statistical en-
semble is changed and so must be the fluctuation/dissipation relation (2.4). Note also
that the total momentum

∑N
i=1 pi is still preserved.

Remark 2.1.3. In the above model, the internal energy variations are all due to the friction
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terms of the momenta variations. Physically, these energy variations are interpreted as the
dissipated energy by viscous heating of the system. The original DPDE model [AM97, Esp97]
considers the DPDE particle to also exchange energy through heat conduction, the viscous
heating term being interpreted as the mechanical part of the energy variation. These exchanges
are caused by the temperature difference between the particles, and write

dεcondi =
N∑

j=1,j,i

κijχ(rij,t)

(
1
Ti
− 1
Tj

)
dt +αij

√
χ(rij,t)dW

′
ij,t ,

whereW ′ij,t are one-dimensionalWiener processes independent of theWij,t also verifying dW ′ij,t =
−dW ′ji,t , and (κij ,αij )1≤i,j≤N the parameters controlling the amplitude of the conduction ther-
mal exchanges. With the heat conduction taken into account, the resulting DPDE dynamics
write



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γij,tχ(rij,t)vij,t dt +σij,t
√
χ(rij,t)dWij,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv

2
ij,t − d

σ2
ij,t

2
µij


χ(rij,t)dt −σij,t

√
χ(rij,t)vij,t ·dWij,t




N∑

j=1,j,i

κijχ(rij,t)

(
1
Ti
− 1
Tj

)
dt +αij

√
χ(rij,t)dW

′
ij,t .

(2.11)

Similarly to the DPDE dynamics, the above dynamics preserves the total energy. Figure 2.3
takes the example of Figure 2.2 and illustrates the additional conduction energy exchanges
between DPDE particles.

Figure 2.3 | Incorporating the heat conduction to the DPDE: in addition to the mechanical energy
variations, thermal exchanges occur between particles with different internal temperatures. The
intensity of the heat flows are proportional to the differences between internal temperatures and
are represented by the orange arrows: the larger the arrow the more heat is transferred.

60



Chapter 2 | DPD and its numerical integration

Thermodynamics of the DPDE model

With the introduction of the internal energy ε, we have to also define the internal thermo-
dynamics of the particles. In the DPDE model, internal degrees of freedom are assumed
to relax towards equilibrium at much faster rates than the external ones. They thus are
considered to always be at equilibrium, and we can define the internal equation of state of
each particle as

ε =
∫ T (ε)

0
Cv(θ)dθ, (2.12)

where, Cv(θ) is the internal heat capacity at constant volume of the particle and T (ε)
is its internal temperature. In order for T (ε) to be well-defined by (2.12), we make the
following assumptions:

1. The heat capacity Cv is continuous on R+.

2. The heat capacity Cv is positive on R∗+ and satisfies lim
θ→0+

Cv(θ) = C−v ∈ [0,+∞[.

The two above condition imply that T (ε) exists and is unique for every ε ≥ 0, and positive
when ε > 0. In addition, we see that T (ε) is positive and continuous on R+ (because Cv
also is) and satisfies lim

ε→0+
T (ε) = 0.

Remark 2.1.4. In the classical description of matter, the heat capacity is increasing on R+,
has a null limit when θ goes to 0 (i.e C−v = 0), and tends towards Clim

v < +∞ when θ goes
to infinity. In many physical systems, the limit Clim

v is reached whenever θ is greater than
several hundreds of Kelvin. This is the heat capacity at ambient temperature, for systems
where quantum effects do not apply.

After having defined the internal energy and temperature of a DPDE particle, we now
define its internal entropy, denoted by s(ε). This quantity depends solely on the internal
energy and is defined from the relation

s′(ε) =
1
T (ε)

. (2.13)

Again, we see that s′(ε) is well defined (up to a constant) for every ε > 0 and is strictly
increasing and continuous on R∗+ (because T (ε) > 0 for ε > 0 and is continuous). In
addition, the vanishing limit of T (ε) when ε goes to zero, the continuity and the strict
growth of s(ε) imply

lim
ε→0+

s(ε) = −∞.

The total internal entropy, denoted S , is defined as the sum of the internal entropies of
the particles, i.e

S(ε) =
N∑

i=1

si(εi ).

Note that in the above formula, each particle has a different internal entropy function. In
many applications, the internal heat capacity is assumed to be constant and independent
of the internal temperature, i.eCv,i(θ) = Cv,i = cst. In such cases, the internal temperature
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and energy are proportional, and the internal entropy can be easily computed from (2.13),
i.e

i = 1, ..,N , εi = Cv,iTi , si(εi ) = Cv,i log(εi ).

We see from (2.12) and (2.13) that the knowledge of the internal heat capacity and inter-
nal energy fully determines the internal temperature and entropy.

The original DPDmodel was designed to sample the canonical measure µβ,DPD, given
by (2.5) and defined as the canonical measure µβ conditioned with the Dirac measure
δP0 on the total momentum. For the DPDE framework, the thermodynamical ensemble
should take into account the additional degrees of freedom represented by ε.

The total energy E and the total momentum P are both exactly preserved by the dy-
namics. Therefore, one can define the associated Dirac measures δE0 and δP0 respectively
to a fixed energy E0 and total momentum P0 with the procedure outlined in Section 1.2.1.
The DPDE "microcanonical" macrostate µE0,P0 is then defined as the product of these two
measures, i.e

µE0,P0(dq,dp,dε) = Z
−1
E0,P0δE0(q,p,ε)δP0(p)e

S (ε)
kB dqdpdε, (2.14)

where ZE0,P0 is a normalization constant. The entropy term e
S (ε)
kB comes from the DPDE

coarse-graining process of integrating the missing degrees of freedom into one internal
energy variable.

In the remainder of this thesis, we assume that the DPDE dynamics is ergodic with
respect to µE0,P0 . We give later on in Proposition 2.1.2 a necessary condition on γij and
σij in order to obtain the invariance of µE0,P0 for the dynamics.

Similarly to the microcanonical ensemble, the DPDE "microcanonical" ensemble is
not easy to manipulate for the computations of thermodynamical averages. Therefore,
we can construct a DPDE "canonical" ensemble, which should be equivalent to (2.14) in
the thermodynamical limit, as

µβ,Cv (dq,dp,dε) = δP0(p)Z
−1
β,Cv

e−βE(q,p,ε)+
S (ε)
kB dqdpdε, (2.15)

where Zβ,Cv is a normalization constant. In this thesis, we assume that the equivalence
of ensemble between µE0,P0 and µβ,Cv holds in the thermodynamical limit. According to
Section 1.2.1, this means that, provided β is chosen such that Eµβ,Cv [E] = E0, we have

lim
N→∞

(
E
µ
(N )
E0 ,P0

[ϕ(x1, ..,xk)]−Eµ(N )
β,Cv

[ϕ(x1, ..,xk)]
)
= 0,

for any observable ϕ ∈ D depending on a fixed number k ∈ N of variables (x1, ..,xk),

and where µ(N )
E0,P0 and µ(N )

β,Cv
are respectively the "microcanonical" and "canonical" DPDE

statistical ensembles corresponding to a system of N particles.

Ergodic properties of DPDE

Similarly to the DPD model, there is no result for ergodicity of the DPDE model, and the
same problem arise when one wants to prove the irreducibility of the dynamics. However,
the parameters γij and σij can be chosen so that µE0,P0 is invariant for the dynamics.
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Proposition 2.1.2. Assume that for all (i, j) ∈ [|1,N |]2 with i , j , the parameters γij and σij
satisfy

σij = σ, γij =
σ2

4kB

(
1

Ti(εi )
+

1
Tj (εj )

)
, (2.16)

where σ is a constant. Then the macrostate µE0,P0 defined by (2.14) is invariant for the DPDE
dynamics described by (2.9).

Similarly to DPD, we always impose σ > 0.

Remark 2.1.5. When the heat conduction is taken into account like in (2.11), the parameters
κij and αij can also satisfy a fluctuation/dissipation relation in order to obtain the invariance
of µE0,P0 . This relation reads, for all (i, j) ∈ [|1,N |]2 with i , j ,

αij = α, κij = κ = 2α2. (2.17)

In practice, we also always impose α > 0.

Proof. The proof is organized as follows:

1. We first prove that µβ,Cv is invariant provided that γij and σij satisfy (2.16).

2. We extend the proof to any probability measure of the form

µf ,g (dq,dp,dε) = Z
−1
f ,g f

(
E(q,p,ε)

)
g



N∑

i=1

pi


exp

(
S(ε)

)
dqdpdε, (2.18)

for arbitrary functions f and g sufficiently smooth such that Zf ,g =
∫
X dµf ,g < +∞.

3. We then extend the proof to µE0,P0 by noticing that, for any test function ϕ ∈ D∞,
we have

∫

X
Lϕdµf ,g =

∫ +∞

−∞

∫ +∞

−∞

(∫

X
LϕdµE0,P0

)
f (E0)g(P0)dE0dP0.

Because µf ,g is invariant, we have
∫
X Lϕdµf ,g = 0 for all test functionϕ ∈ D∞, which

implies

∀ϕ ∈ D∞,
∫

X
LϕdµE0,P0 = 0.

This proves the invariance of µE0,P0 .

Let us prove that µβ,Cv is invariant under the assumption that γij and σij satisfy (2.16).
The generator of the DPDE dynamics can be written as

L = Lham +
∑

1≤i<j≤N
Lij ,
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with Lij the generator of the following elementary subdynamics:



dpi,t = −γij,tvij,tχ(rij,t)dt +σij,t
√
χ(rij,t)dWij,t ,

dpj,t = −dpi,t ,

dεi,t =
1
2





γij,tv

2
ij,t − d

σ2
ij,tµij

2


χ(rij,t)dt −σij,tvij,t ·dWij,t


 ,

dεj,t = dεi,t .

From the computations of Section 1.4.1, we obtain that µβ,Cv is invariant for Lham. It thus
remains to prove its invariance for Lij . The operators Lij do not involve the positions,
therefore χ(rij ) can be considered as constant and we do not write it in the remainder of
the proof for clarity purposes.

Under matrix form, the above elementary dynamics writes

dxt = Γ(xt)dt +
d∑

k=1

Σk(xt)dWij,k,t ,

where x = (pi ,pj , εi , εj ) ∈ R2d × R2
+, Wij,k,t is the kth component of the d-dimensional

Wiener processWij,t and

Γ(x) =




−γijvij
γijvij

1
2

(
γijv

2
ij − d

σ2
ijµij
2

)

1
2

(
γijv

2
ij − d

σ2
ijµij
2

)




, Σk(x) = σij




~1d,k
−~1d,k
−vij,k2
−vij,k2



,

where ~1d,k is the d-dimensional vector whose components are equal to 0 except the kth
component equal to 1. The operator Lij therefore writes

Lij = Γ(x) · ∇x +
1
2

d∑

k=1

2d+2∑

a,b=1

(Σk(x))a(Σk(x))b∂a∂b.

A straightforward computation shows that

Lij = −γijvij ·
(
∇pi −∇pj

)
− 1
2


γijv

2
ij − d

σ2
ijµij

2



(
∂εi +∂εj

)

+
σ2
ij

2



(
∇pi −∇pj

)2 − vij ·
(
∇pi −∇pj

)(
∂εi +∂εj

)
+
v2ij
4

(
∂εi +∂εj

)2

 .

(2.19)

Let us define

Ap,ij = ∇pi −∇pj , Aε,ij = ∂εi +∂εj , Aij =Ap,ij −
vij
2
Aε,ij .
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We notice that



Aij (E(q,p,ε)) = 0,

Aij
(∑

pi
)
= 0,

Aij (S(ε)) = −
vij
2

(
s′(εi ) + s

′(εj )
)
= −

vij
2

(
1
Ti

+
1
Tj

)
.

(2.20)

We additionally have that

A2
ij =A2

p,ij −Ap,ij
(vij
2
Aε,ij

)
−
vij
2
Aε,ijAp,ij +

v2ij
4
A2
ε,ij ,

=


A

2
p,ij − vij · Ap,ijAε,ij +

v2ij
4
A2
ε,ij


− d

µij
2
Aε,ij .

We notice that both terms between hooks of (2.19) and the above expression correspond.
This allows us to rewrite Lij as

Lij = −γijvij · Aij +
σ2
ij

2
A2
ij .

We now consider the adjoint of Lij writing, for any ψ ∈ L1(X ,R) regular enough,

L∗ijψ =Aij · (γijvijψ) +Aij · Aij



σ2
ij

2
ψ


 ,

=Aij ·

γijvijψ +Aij



σ2
ij

2
ψ





 ,

=Aij ·

γijvijψ +Aij



σ2
ij

2


ψ +

σ2
ij

2
Aij (ψ)


 .

Using (2.20) yields

Aij (µβ,Cv ) = −
vij
2kB

(
1
Ti

+
1
Tj

)
µβ,Cv .

Therefore, we have

L∗ijµβ,Cv =Aij ·

γijvijµβ,Cv +

1
2
Aij (σ2

ij )µβ,Cv −
σ2
ijvij

4kB

(
1
Ti

+
1
Tj

)
µβ,Cv


 ,

=Aij ·




γij −

σ2
ij

4kB

(
1

Ti(εi )
+

1
Tj (εj )

)vij +
1
2
Aij (σ2

ij )


µβ,Cv .

We notice in the above expression that if we assume (2.16) to hold, we have L∗ijµβ,Cv = 0.

We notice that measures µf ,g of the form (2.18) also satisfyAijρf ,g = −
vij
2kB

(
1
Ti
+ 1
Tj

)
ρf ,g ,

where ρf ,g denotes the density of µf ,g . This gives L∗ijµf ,g = 0 provided that (2.16) holds
and proves the invariance of the probability measures µf ,g of the form (2.18). According
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to point 3 of the plan at the beginning of the proof, this gives the result.

Remark 2.1.6. Equation (2.16) is not the only possibility for measures of the form (2.18) to be
invariant for the DPDE dynamics. However, it is the simplest and most widely used relation.

In order to highlight the similarity with the standard fluctuation/dissipation relation
for Langevin dynamics (see for instance Section 2.2.3 in Ref. [LRS10]), it might be conve-
nient to rewrite the definition of γij and σ as

γij = γ
βij
β
, σ =

√
2γ
β
, (2.21)

with βij =
1
2kB

(
1
Ti
+ 1
Tj

)
and γ a reference friction parameter.

Sampling the DPDE "canonical" measure

We have seen that the ergodicity of the DPDE dynamics cannot be proved, mainly be-
cause the irreducibility of the dynamics seems out of range. However, under some as-
sumptions that we assume to hold without proof, we can devise a procedure to sample
the DPDE "canonical" measure µβ,Cv given by (2.15) by devising ergodic dynamics for its
marginals.

The macrostate (2.15) can be decomposed into a marginal on the positions and mo-
menta (q,p) and a marginal in the internal energies, i.e

µβ,Cv (dq,dp) = µDPD,β(q,p)νβ,Cv (ε)dqdpdε,

where µDPD,β abusively denotes the density of the DPD invariant measure given by (2.5),
and νβ,Cv abusively denotes the density of the probability measure defined as

νβ,Cv (dε) = Z
−1
ε e−β

∑N
i=1 εi+

S (ε)
kB dε =

N∏

i=1

Z−1ε,i e
−βεi+ si (εi )

kB dεi , (2.22)

where Zε is a normalization constant defined as

Zε =
∫ +∞

0
e−β

∑N
i=1 εi+

S (ε)
kB dε =

N∏

i=1

∫ +∞

0
e−βεi+

si (εi )
kB dεi

︸                 ︷︷                 ︸
Zε,i

.

Sampling µDPD,β can be done by the Langevin dynamics presented in Section 1.4.
However, the Langevin dynamics does not preserve the total momentum. The DPD dy-
namics does preserve the total momentum, but we do not have any ergodicity result of
DPD with respect to µDPD,β . Therefore, we must assume that we can sample µDPD,β with
realizations of the trajectories of solutions of the Langevin dynamics, where the configu-
rations are constantly projected onN (P0), where

N (P0) =

(q,p) ∈ Xq,p
∣∣∣∣
N∑

i=1

pi = P0

 ,
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with Xq,p being the configuration space of the momenta and positions, i.e X = Xq,p ×R∗+.
The projection can be done by subtracting αn = 1

N

(∑N
i=1 p̃

n
i −P0

)
to each p̃ni obtained by

the application of one iteration of a given discretization of the Langevin dynamics, i.e

i = 1, ..,N , Φ
proj
∆t,P0

(q,p,G) =


Φ

(q)
∆t (q,p,G),Φ

(p)
∆t (q,p,G)−

1
N



N∑

i=1

Φ
(p)
∆t (q,p,G)i −P0


~1dN


 ,

where Φ∆t =
(
Φ

(q)
∆t ,Φ

(p)
∆t

)
is any given discretization of the Langevin dynamics, Φ

proj
∆t its as-

sociated projected discretization and ~1dN the dN -dimensional vector whose components
are all equal to 1.

Sampling νβ,Cv , is done by considering the Overdamped Langevin dynamics which
reads

dεi,t = −U ′i,β(εi,t)dt +
√

2
β
dBi,t ,

where Bi,t is a one-dimensional Brownian motion independent of the Brownian motion
of the Langevin dynamics and the potential Ui,β is defined as

Ui,β(εi ) = εi −
si(εi )
kBβ

,

with si being the internal entropy functions defined by (2.13). We have seen in Sec-
tion 1.4.1 that the dynamics is ergodic with respect to the probability measure ρ of
density Z−1i e−βUi,β (Zi being a normalization constant), provided that U ′i,β satisfies Condi-
tion 1.2.2. In our case however, the derivative of Ui,β writes

U ′i,β(εi ) = 1− 1
βkBTi(εi )

,

and we have seen that the DPDE internal temperature goes to zero when ε goes to zero,
which forbids ∇Ui,β to satisfy Condition 1.2.2 and might cause instabilities when dis-
cretizing the above dynamics. Nevertheless, we never encountered such problems in our
simulations. By injecting the expression of Ui,β into the dynamics, we obtain

dεi,t =

(
1− 1

βkBTi(εi,t)

)
dt +

√
2
β
dBi,t , (2.23)

and we assume that such a dynamics admits solutions on R∗+ that sample νβ,Cv .

Therefore, under the two previous assumptions, we can sample µβ,Cv by sampling
independently the positions and momenta by a Langevin dynamics projected on N (P0)
and the internal energies by the dynamics described by (2.23).

Temperature estimators in the DPDE context

Assuming the equivalence of the canonical and microcanonical ensembles in the DPDE
context, we can define, for instance, various estimators of the temperature. Each of the
three estimators of the temperature presented below involves only one of the three cat-
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egories of degrees of freedom of the system: the positions q, the momenta p and the
internal energies ε.

• Kinetic temperature: A first estimator is the famous kinetic temperature defined as

Tkin =
1

kBNeff
Eµβ,Cv



N∑

i=1

p2i
mi


 , (2.24)

where Neff represents the effective number of external degrees of freedom of the
system. It is a priori equal to dN but since we fix the total momentum to P0 = 0, we
reduce it to Neff = d(N − 1). This correction is anyway unimportant for sufficiently
large systems. An easy computation shows that for every particle indexed by i =
1, ..,N , we have

Eµβ



p2i
mi


 = z

−1
i,β

∫

R

p2

mi
e−β

p2

2mi dp = β,

where zi,β =
∫
R
e−βp

2/(2mi )dpi =
√
2πmi /β. We therefore have Tkin = T , where T is the

equilibrium temperature corresponding to β. We assume that we still have Tkin = T
when the expectation of (2.24) is on µβ,Cv instead of µβ .

• Potential temperature: Butler and al. proved in [BAJE98] that a second estima-
tor of the temperature could be defined in the canonical ensemble involving only
the positions q. This estimator, called the configurational temperature, or potential
temperature is defined as

Tpot =
1
kB

Eµβ,Cv

[
‖∇U‖2

]

Eµβ,Cv
[∆U ]

. (2.25)

The proof of Tpot = T is done thanks to a simple computation. Assume that U is
such that

∥∥∥∇U(q)e−βU(q)
∥∥∥ −−−−−−−−−→

U(q)→+∞
0, i.e that ‖∇U(q)‖ does not increase too fast

when U(q) increases. We therefore have

∫

Q
∇ ·

(
∇Ue−βU

)
dq = 0,

∫

Q

(
∆U − β ‖∇U‖2

)
e−βUdq = 0,

∫

Q
∆Ue−βUdq = β

∫

Q
‖∇U‖2 e−βUdq,

which means that Eµβ,Cv [∆U ] = βEµβ,Cv [‖∇U‖
2], and therefore that Tpot = T .

• Internal temperature: Mackie and al. noticed in [MAN99] that for every particle
indexed by i = 1, ..,N , an integration by part gives us

E

[
1
Ti

]

µβ,Cv

= z−1β,Cv

∫ +∞

0
s′(ε)e−βε+

s(ε)
kB dε = z−1β,Cv

∫ +∞

0
kBβe

−βε+ s(ε)
kB dε =

1
T
,
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where zβ,Cv =
∫ +∞
0

e−βε+s(ε)/kBdε. We therefore can define a third estimator of the
temperature, involving only the internal degrees of freedom, as

Tint =


Eµβ,Cv



1
N

N∑

i=1

1
Ti







−1

= T . (2.26)

The above three estimators approximate the same thermodynamical average, and there-
fore should converge to the same value for systems at equilibrium. By the equivalence
of µE0,P0 and µβ,Cv , we therefore have three estimators of the temperature in the DPDE
"microcanonical" ensemble in the thermodynamic limit.

Remark 2.1.7. The kinetic temperature Tkin is also sometimes called the external tempera-
ture in the DPDE context by opposition to the internal temperature Tint.

Integrating theDissipative ParticleDynamicswith Energy-conservation:
state of the Art

We have presented both the Dissipative Particle Dynamics framework and its energy-
conserving variant in Section 2.1. We now focus on the existing numerical algorithms
used for the integration of DPD.

Among the currently known schemes for DPDE, one of them turns out to enjoy very
nice properties in terms of energy conservation. It is a splitting scheme inspired from
Shardlow’s splitting scheme for DPD [Sha03], and adapted to the DPDE framework
[Sto06]. The resulting scheme, called SSA in this thesis (Shardlow Splitting Algorithm), is
so far considered as the reference scheme for the numerical integration of DPDE [LBA11].
The main issue with SSA is that particle pairs have to be updated sequentially, thus pre-
venting a simple parallelization of the scheme. The parallelization of SSA is therefore
not an easy task [LBM+14].

The remaining options are whether implicit schemes, or explicit schemes with very
poor stability and energy preservation properties. Implicit schemes are very expensive
computationally because they require the resolution of a fixed point algorithm at each
iteration, which sometimes takes up most of the simulation time. Therefore, we have
discarded implicit schemes in this thesis.

Most of the schemes developed so far are splitting schemes, introduced in Section 1.3
and developed in Section 1.4. These schemes split the DPDE dynamics into a Hamilto-
nian evolution given by (1.4), and a fluctuation/dissipation part given by



dqi,t = 0,

dpi,t = −
N∑

j=1,j,i

γij,tχ(rij,t)vij,t dt +
N∑

j=1,j,i

σ
√
χ(rij,t)dWij,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv2ij,t − d

µijσ
2

2


χ(rij,t)dt −σ

√
χ(rij,t)vij,t ·dWij,t


 .

(2.27)
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The discretization of the Hamiltonian evolution is in all cases performed with a stan-
dard Velocity-Verlet integration [Ver67], detailed in Section 1.1.2. Thus, all the splitting
schemes presented in this section differ only in the discretization of the fluctuation/dis-
sipation part.

We present in this section three representative numerical schemes for the DPDE in-
tegration. As said in the introduction of this chapter, we limit ourselves to explicit algo-
rithms:

• The first scheme is an adaptation to the DPD framework of the well-knownVelocity-
Verlet algorithm called Stochastic Velocity-Verlet (SVV). The SVV scheme is not a
splitting scheme, and has poor invariant conservation properties.

• The second scheme is a basic splitting scheme called Splitting Euler-Maruyama (SEM),
where no particular care is taken to make sure that the energy is preserved by the
discretization of the fluctuation/dissipation part. It is presented for pedagogical
purposes, since the later schemes of Section 2.3 are based upon it, and also for
comparison purposes.

• The third scheme is the Shardlow’s Splitting Algorithm (SSA). As previously said,
SSA has good energy conservation properties, and is considered to be the best per-
forming scheme for DPD and DPDE [LBA11]. However, SSA suffers from paral-
lelization issues, thus making it more difficult to implement for massively-parallel
simulations [LBM+14].

We then give some explanation about the parallelization issue of SSA, and give some
details about its parallelization procedure presented in [LBM+14].

In the following sections, we will use the notion of "uniformly bounded for small
∆t" for remainder terms r∆t,ϕ depending on the time step and on some function ϕ. This
means that there exists ∆t∗ > 0, Cϕ > 0 and m ∈ N such that

∥∥∥r∆t,ϕ
∥∥∥
L∞Wm

< Cϕ for any

∆t ∈ [0,∆t∗].

Definition 2.2.1. Consider a function ϕ : X → R, ∆t > 0 and a function r∆t,ϕ : X → R

depending on ϕ and ∆t. We say that r∆t,ϕ is uniformly bounded for small ∆t if

∃(∆t∗,Cϕ ,m) ∈ (R∗+)2 ×N, s.t (0 < ∆t < ∆t∗) ⇒
∥∥∥r∆t,ϕ

∥∥∥
L∞Wm

< Cϕ .

Stochastic Velocity-Verlet Algorithm (SVV)

The Stochastic Velocity-Verlet algorithm, denoted SVV, is an adaptation to the DPD set-
ting of the well-known Velocity-Verlet algorithm integrating the Hamiltonian dynamics
[Ver67]. It consists in using a Strang splitting of the DPD, where the positions qi are
updated once with a time step ∆t, and the momenta pi are updated twice, both before
and after the position update, with a time step ∆t

2 . Each part (the position and momenta
evolution) is integrated with an Euler-Maruyama discretization.

However, this technique requires the use of a set of random numbers of double size,
which is expensive in terms of computational costs: random numbers are generally much
more expensive to generate than performing a single standard float operation. Fortu-
nately, it can be shown that performing half-updates with a time step ∆t and using the
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same set (Gnij ) in both is also weakly consistent, and of the same weak order. This boils
down to taking out the 1/2 term out of the square root in the random terms and using
the same random numbers in both momenta updates. The SVV for DPD thus writes



pn+1/2i = pni −∇qiU(qn)
∆t

2
+

N∑

j=1
j,i

−γχ(rnij )vnij
∆t

2
+σ

√
χ(rnij )G

n
ij

√
∆t

2
,

qn+1i = qni +∆t
pn+1/2i

mi
,

pn+1i = pn+1/2i −∇qiU(qn+1)
∆t

2
−

N∑

j=1
j,i

γχ(rn+1ij )vn+1/2ij
∆t

2
+σ

√
χ(rn+1ij )Gnij

√
∆t

2
,

where (here and in the sequel) (Gnij )n∈N,1≤i<j≤N is a set of identically and independently
distributed standard d-dimensional Gaussian random variables, verifying Gnij = −Gnji .
Proposition 2.2.1. The SVV discretization of the DPD dynamics is weakly consistent, of weak
order one. In addition, its evolution operator satisfies

∀ϕ ∈ D, PSVV
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ is uniformly bounded for small ∆t in the sense of Definition 2.2.1 and L is the
generator of the DPD dynamics.

Proof. Because the proof is performed for the SVV DPD discretization, X refers for the
duration of the proof to the configuration space of the position q and the momenta p only,
and no longer includes the internal energies ε.

This proof consists in showing that the SVV discretization can be rewritten as a per-
turbation of an Euler-Maruyama discretization, where the expectation of the difference
between the two discretizations is of order ∆t2. Denoting respectively by Φ

SVV
∆t and Φ

EM
∆t

the results of an SVV and an Euler-Maruyama discretization of the DPD dynamics, this
means writing

Φ
SVV
∆t (qn,pn) =Φ

EM
∆t (q

n,pn) + ηn∆t3/2 + rn
∆t∆t

2, (2.28)

where ηn is a term of null average, i.e EGn[ηn] = 0, and rn
∆t is a remainder term satisfying

rn
∆t = O(1 + |Gn|

a) for some a (i.e EGn[r
n
∆t] stays bounded when ∆t goes to zero).

Assuming (2.28), fix ϕ ∈ D and (q,p) ∈ X . We have

EGn
[
ϕ

(
Φ

SVV
∆t (q,p)

)]
= EGn

[
ϕ

(
Φ

EM
∆t (q,p) + η

n
∆t3/2 + rn

∆t∆t
2
)]
,

= EGn
[
ϕ

(
Φ

EM
∆t (q,p)

)
+ ηn · ∇ϕ(ΦEM

∆t (q,p))∆t
3
2

]
+ r̃∆t,ϕ∆t

2,

= EGn
[
ϕ

(
Φ

EM
∆t (q,p)

)]
+ r̃∆t,ϕ∆t

2,

where r̃∆t,ϕ is obtained from the remainder terms of order ∆t2 or greater in the Taylor
expansion of ϕ. Both rn

∆t = O(1 + |Gn|
a) and ϕ ∈ D imply that r̃∆t,ϕ is uniformly bounded

in some weighted space for small ∆t. We thus have

PSVV
∆t ϕ = PEM

∆t ϕ + r̃∆t,ϕ∆t
2. (2.29)
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Applying Proposition 1.3.4 gives us

PEM
∆t ϕ = e∆tL + rEM

∆t,ϕ∆t
2,

where PSVV
∆t and PEM

∆t are the evolution operator respectively associated to φSVV
∆t and Φ

EM
∆t ,

and rEM
∆t,ϕ is uniformly bounded in some weighted space for small ∆t. Therefore, we can

expand PSVV
∆t ϕ as

PSVV
∆t ϕ = e∆tLϕ + r∆t,ϕ∆t

2,

where r∆t,ϕ comes from r̃∆t,ϕ and rEM
∆t,ϕ and is uniformly bounded in some weighted space

for small ∆t. Theorem 1.3.3 then gives us the weak order one of SVV.

It remains to prove (2.28). From now on, we do not make precise the remainder terms,
and use notations like O(∆tω) to denote them. For details on how to handle such terms
more precisely, we refer the reader to the proof of Proposition 1.3.4.

Using the expression of pn+1/2i of the SVV discretization, we can expand qn+1i as

qn+1i = qni +
pni
mi

∆t +




N∑

j=1,j,i

σ
√
χ(rnij )

2
Gnij




︸                    ︷︷                    ︸
ηnq,i

∆t3/2 +O(∆t2). (2.30)

We notice that the order 3/2 term of the above expansion has a vanishing expectation, i.e
EGn[η

n
q,i ] = 0, where EG is the expectation on all the Gaussian increments (Gnij )1≤i,j≤N .

Let us perform a similar expansion for pn+1i . A Taylor expansion on ∇qiU(qn+1) allows
us to write

∇qiU(qn+1) = ∇qiU(qn) +O(∆t). (2.31)

In addition, (2.30) holding for any i = 1, ..,N , we can expand rn+1ij as

rn+1ij =
∥∥∥∥qn+1i − qn+1j

∥∥∥∥ = rnij +

∥∥∥∥vnij
∥∥∥∥

2
∆t +O(∆t3/2),

thus yielding

χ(rn+1ij ) = χ(rnij ) +χ
′(rnij )

∥∥∥∥vnij
∥∥∥∥

2︸        ︷︷        ︸
knχ,ij

∆t +O(∆t3/2). (2.32)

The expression of pn+1/2i given by the SVV discretization gives us

vn+1/2ij = vnij +




N∑

k=1,k,i

σ
√
χ(rnik)

mi
Gnik −

N∑

k=1,k,j

σ
√
χ(rnjk)

mj
Gnjk




︸                                                   ︷︷                                                   ︸
ηnv,ij

√
∆t +O(∆t), (2.33)

72



Chapter 2 | DPD and its numerical integration

where EG[η
n
v,ij ] = 0 for all (i, j) ∈ [|1,N |]2. Therefore, injecting (2.31), (2.32) and (2.33)

into the expression of pn+1i given by the SVV discretization, we obtain

pn+1i = pn+1/2i −∇qiU(qn+1)
∆t

2
+

N∑

j=1,j,i



−γnijχ(rn+1ij )vn+1/2ij

∆t

2
+σ

√
χ(rn+1ij )∆t

2
Gnij



,

= pn+1/2i −
(
∇qiU(qn) +O(∆t)

) ∆t
2

+
N∑

j=1,j,i

[
−γnij

(
χ(rnij ) +O(∆t)

)(
vnij + η

n
v,ij

√
∆t +O(∆t)

) ∆t
2

+σ

√
χ(rnij )∆t + k

n
χ,ij∆t

2 +O(∆t3)
2

Gnij

]
,

= pni −∇qiU(qn)∆t +
N∑

j=1,j,i

[
−γnijχ(rnij )vnij∆t +σ

√
χ(rnij )∆tG

n
ij

]

+




N∑

j=1,j,i

−
γnijχ(r

n
ij )η

n
v,ij

2
+

σknχ,ij

4
√
χ(rnij )

Gnij




︸                                           ︷︷                                           ︸
ηnp,i

∆t3/2 +O(∆t2).

We notice that the order 3/2 term of the above expansion has a vanishing expectation, i.e
EGn[η

n
p,i ] = 0. Combining the above expansions of qn+1i and pn+1i and using thatEGn[η

n
q,i ] =

EGn[η
n
p,i ] = 0, we obtain (2.28).

A "natural" extension of the SVV algorithm to the DPDE framework was given in 2011
by Lisal and al. [LBA11]. It consists in updating the internal energies along the momenta
with an Euler-Maruyama discretization. By denoting γnij = γij (ε

n
i , ε

n
j ), this extension of

SVV for the DPDE, still denoted SVV, writes



pn+1/2i = pni −∇qiU(qn)
∆t

2
+

N∑

j=1
j,i

−γnijχ(rnij )vnij
∆t

2
+σ

√
χ(rnij )G

n
ij

√
∆t

2
,

εn+1/2i = εni +
1
2

N∑

j=1
j,i


γnij (v

n
ij )

2 − d
µijσ

2

2


χ(rnij )

∆t

2
−σvnij

√
χ(rnij )G

n
ij

√
∆t

2
,

qn+1i = qni +∆t
pn+1/2i

m
,

pn+1i = pn+1/2i −∇qiU(qn+1)
∆t

2
−

N∑

j=1
j,i

γn+1/2ij χ(rn+1ij )vn+1/2ij
∆t

2
+σ

√
χ(rn+1ij )Gnij

√
∆t

2
,

εn+1i = εn+1/2i +
1
2

N∑

j=1
j,i


γ

n+1/2
ij

(
vn+1/2ij

)2 − d
µijσ

2

2


χ(rn+1ij )

∆t

2
−σvn+1/2ij

√
χ(rn+1ij )Gnij

√
∆t

2
,

(2.34)
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with µij is defined in (2.10). Note that, again, the same random number is used in the
first and second updates of the momenta. The weak order one of the SVV discretization
of DPDE can be obtained by adapting the proof concerning the SVV discretization of the
DPD dynamics. We however omit the proof.

Proposition 2.2.2. The SVV discretization of the DPDE dynamics is weakly consistent of
weak order one. In addition, its evolution operator satisfies

∀ϕ ∈ D, PSVV
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ is uniformly bounded for small ∆t in the sense of Definition 2.2.1 and L is the
generator of the DPDE dynamics.

Splitting Euler-Maruyama (SEM)

From now on, and unless otherwise stated, L always denote the generator of the DPDE
dynamics given by (2.9).

The SEM scheme integrates the fluctuation/dissipationwith a simple Euler-Maruyama
discretization:

PSEM,fd
∆t :



pn+1i = pni −
N∑

j=1,j,i

γnijχ(r
n
ij )v

n
ij∆t +σ

√
χ(rnij )G

n
ij

√
∆t,

εn+1i = εni +
1
2

N∑

j=1,j,i


γnij (v

n
ij )

2 − d
µijσ

2

2


χ(rnij )∆t −σ

√
χ(rnij )v

n
ij ·Gnij

√
∆t,

(2.35)

Note that no particular care is taken to make sure that the energy is preserved by the
discretization of the fluctuation/dissipation part.

The global SEM discretization is thus characterized by the transition operator

PSEM
∆t = PVV

∆t P
SEM,fd
∆t .

The corresponding numerical scheme reads



pn+1/2 = pn − ∆t

2
∇U(qn),

qn+1 = qn +∆tpn+1/2,

p̃n+1 = pn+
1
2 − ∆t

2
∇U(qn+1),

pn+1i = p̃n+1i −
N∑

j=1,j,i

γnijχ(r
n+1
ij )ṽn+1ij ∆t +σ

√
χ(rn+1ij )Gnij

√
∆t,

εn+1i = εni +
1
2

N∑

j=1,j,i


γnij (ṽ

n+1
ij )2 − d

µijσ
2

2


χ(rn+1ij )∆t −σ

√
χ(rn+1ij )ṽn+1ij ·Gnij

√
∆t.
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Proposition 2.2.3. The SEM discretization of the DPDE dynamics (2.9) is of weak order one.
In addition, its evolution operator satisfies

∀ϕ ∈ D, PSEM
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ stays uniformly bounded for small ∆t in the sense of Definition 2.2.1.

Proof. The SEM is defined as a Trotter splitting of an order two Velocity-Verlet integration
of the conservative part and the simple order one Euler-Maruyama discretization of the
fluctuation/dissipation part given by (2.35). The Euler-Maruyama scheme satisfies (1.34)
at the order ω = 1 (see the proof of Proposition 1.3.4). Let us prove that the Velocity-
Verlet discretization also does and then apply Lemma 1.3.6 in order to obtain the result.

In the framework of Stochastic Differential Equations, the generators of the time evo-
lution of the positions and momenta of the Hamiltonian dynamics, denoted respectively
by A and B, satisfy

A =M−1p · ∇q, B = −∇qU(q) · ∇p .

Here, A is the generator of the left dynamics of (1.7) and B the generator of the right one.
Fix ψ ∈ D and (q,p) ∈ Xq,p. The evolution operators of each subdynamics read


e∆tAψ(q,p) = ψ ◦ϕA

∆t(q,p) = ψ(q +∆tM−1p,p),

e∆tBψ(q,p) = ψ ◦ϕB
∆t(q,p) = ψ(q,p −∆t∇qU(q)),

where ϕAt and ϕBt are respectively the flows of the dynamics generated by A and B.
Consider the discretization given by (1.12) and denotes its evolution operator by PVV

∆t .
We have that PVV

∆t ψ(q,p) = ψ ◦ΦVV
∆t (q,p) where ΦVV

∆t is the discretization procedure of the
Velocity-Verlet scheme, given by (1.12). We clearly see that

PVV
∆t ψ = ψ ◦ϕB

∆t/2 ◦ϕA∆t ◦ϕB∆t/2 =
(
e∆tB/2e∆tAe∆tB/2

)
ψ.

The symmetric BCH formula (see Section 1.3.3) shows us that PVV
∆t satisfies (1.34) at the

order ω = 2, which therefore means that it satisfies it at the order ω = 1 too.

Shardlow Splitting Algorithm (SSA)

SSA, in opposition to SEM, further decomposes the fluctuation/dissipation dynamics (2.27)
into elementary pairwise fluctuation/dissipation dynamics involving only two particles i
and j . In the DPD framework, these elementary dynamics write



dqi,t = dqj,t = 0,

dpi,t = −γvij,tχ(rij,t)dt +σ
√
χ(rij,t)dWij,t ,

dpj,t = γvij,tχ(rij,t)dt −σ
√
χ(rij,t)dWij,t ,

(2.36)

with γ and σ verifying (2.4).
The original DPD algorithm presented by Shardlow in [Sha03] integrates the elemen-

tary dynamics (2.36) using a BBK discretization [BBK84], consisting in one half-step of
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an explicit Euler discretization followed by one half-step of an implicit Euler-Maruyama
discretization. In this particular case, the implicit updates can be rewritten in an ex-
plicit manner, thus yielding a fully explicit discretization of (2.36). However, as noted in
Ref. [SdFEC06], the dynamics on the momenta can be analytically integrated. Indeed, by
subtracting and adding the momenta variables of equation (2.36), we obtain



d
(
pi,t − pj,t

)
= −2γvij,tχ(rij,t)dt +2σ

√
χ(rij,t)dWij,t ,

d
(
pj,t + pj,t

)
= 0.

(2.37)

In the monoatomic case, i.e mi =m for all i = 1, ..,N , we can write

dpij,t = −2
γ

m
χ(rij,t)pij,tdt +2σ

√
χ(rij,t)dWij,t ,

where pij,t = pi,t − pj,t . We recognize the time evolution of an Ornstein-Uhlenbeck pro-
cess. Therefore, following the procedure given in Section 1.4.2 and denoting anij,∆t =
2γχ(rnij )/m, an analytical integration of (2.37) yields



pn+1i + pn+1j = pni + p
n
j ,

pn+1ij = e−a
n
ij,∆tpnij +2σ

√
m

4γ

(
1− e−2a

n
ij,∆t

)
Gnij .

From the above integration, we can recover the expressions of the updated momenta by
adding and substracting pn+1ij and pn+1i + pn+1j with



pn+1i = pni +
1
2

[(
e−a

n
ij,∆t − 1

)
pnij +σ

√
m

γ

(
1− e−2a

n
ij,∆t

)
Gnij

]
,

pn+1j = pnj −
1
2

[(
e−a

n
ij,∆t − 1

)
pnij +σ

√
m

γ

(
1− e−2a

n
ij,∆t

)
Gnij

]
.

The above computation extends to systems with particles of different masses by defin-
ing anij,∆t = γµijχ(r

n
ij )∆t (where µij is defined in (2.10)),



pn+1i = pni +
(
e−a

n
ij,∆t − 1

) vnij
µij

+σ

√√(
1− e−2a

n
ij,∆t

)

2γµij
Gnij ,

pn+1j = pnj −
(
e−a

n
ij,∆t − 1

) vnij
µij
−σ

√√(
1− e−2a

n
ij,∆t

)

2γµij
Gnij .

(2.38)

Indeed, in the polyatomic case, we notice that

dvij,t = −γµijχ(rij,t)vij,tdt +σµijdWij,t .
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Consider the following infinite weak order discretization of vij,t :

vn+1ij = e−a
n
ij,∆tvnij +σ

√√
µij

(
1− e−2a

n
ij,∆t

)

2γ
Gnij .

We notice that we can rewrite pi,t as

pi,t =
(pi,t + pj,t) +mj (vi,t − vj,t)

1 +
mj

mi

.

We still have d(pi,t + pj,t) = 0. Therefore,

pn+1i =
(pn+1i + pn+1j ) +mjv

n+1
ij

1+
mj

mi

,

=

(pni + p
n
j ) +mj



e−a

n
ij,∆tvnij +σ

√
µij

(
1−e−2a

n
ij,∆t

)

2γ Gnij




1+
mj

mi

,

=
(pni + p

n
j ) +mjv

n
ij

1+
mj

mi

+
mj

1+
mj

mi




(
e−a

n
ij,∆t − 1

)
vnij +σ

√√
µij

(
1− e−2a

n
ij,∆t

)

2γ
Gnij



.

Noticing that mj /(1 +mj /mi ) = 1/µij yields

pn+1i = pni +
(
e−a

n
ij,∆t − 1

) vnij
µij

+σ

√
1− e−2a

n
ij,∆t

2γµij
Gnij .

Similar computations for pn+1j allow us to recover the result of (2.38).

Let us now turn to the integration of DPDE. Taking advantage of the energy and
momentum conservations, the DPDE elementary fluctuation/dissipation equations can
be written as 

dpi,t = −γij,tvij,tχ(rij,t)dt +σ
√
χ(rij,t)dWij,t ,

dpj,t = −dpi,t ,

dεi,t = −
1
2
d



p2i,t
2mi

+
p2j,t
2mj


 ,

dεj,t = dεi,t .

(2.39)

The extension of SSA to the DPDE framework [Sto06] updates the momenta first with
a BBK discretization at fixed friction γnij and then updates internal energies in order
to ensure the overall energy conservation. Instead, we use in this thesis the analytical
integration (2.38) with γ = γnij instead. The integration procedure therefore consists in
two steps:

1. We first update the momenta of the dynamics given by (2.39) by fixing the internal
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energies. The resulting equation is the time evolution of an Ornstein-Uhlenbeck
process, and is given by (2.38) where we use γnij = γ(ε

n
i , ε

n
j ) instead of γ . The inte-

gration therefore reads



pn+1i = pni +
(
e−a

n
ij,∆t − 1

) vnij
µij

+σ

√√
1− e−2a

n
ij,∆t

2γnijµij
Gnij ,

pn+1j = pnj −
(
e−a

n
ij,∆t − 1

) vnij
µij
−σ

√√
1− e−2a

n
ij,∆t

2γnijµij
Gnij ,

where anij,∆t = γ
n
ijµijχ(r

n
ij )∆t.

2. We then update the internal energy in order to ensure the energy conservation. We
introduce the kinetic energy variation of the momenta by

∆Knij =
(pn+1i )2

mi
+
(pn+1j )2

mj
−
(pni )

2

mi
−
(pnj )

2

mj
,

and then update the internal energies by



εn+1i = εni −
1
2
∆Knij ,

εn+1j = εnj −
1
2
∆Knij .

Notice that the above procedure is the discrete counterpart of the Itô computation
leading to (2.7).

Combining the two steps gives us the following discretization of (2.39):

P
ij
∆t :



pn+1i = pni +
(
e−a

n
ij,∆t − 1

) vnij
µij

+σ

√√
1− e−2a

n
ij,∆t

2γnijµij
Gnij ,

pn+1j = pnj −
(
e−a

n
ij,∆t − 1

) vnij
µij
−σ

√√
1− e−2a

n
ij,∆t

2γnijµij
Gnij ,

εn+1i = εni −
1
2
∆Knij ,

εn+1j = εnj −
1
2
∆Knij .

(2.40)

We notice that, by construction, the above discretization exactly preserves the total en-
ergy.

The global SSA integration is obtained by a Trotter splitting of the DPDE dynamics
into an Hamiltonian evolution and elementary subdynamics given by (2.39) correspond-
ing to each particle couple, where each elementary dynamics is integrated using (2.40).
Using the notation defined in Section 1.2.2, this means

PSSA
∆t = PVV

∆t P
SSA,fd
∆t , (2.41)
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where
PSSA,fd
∆t = P1,2

∆t . . .P
N−1,N
∆t . (2.42)

Proposition 2.2.4. The SSA discretization of the DPDE dynamics (2.9) is of weak order one.
In addition, its evolution operator satisfies

∀ϕ ∈ D, PSSA
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ is uniformly bounded for small ∆t in the sense of Definition 2.2.1.

Proof. Similarly than for the proof of Proposition 2.2.3, we only need to show that P
ij
∆t

satisfies (1.34) at the order ω = 1 in order to obtain the result. In view of the symmetries
dpi = −dpj and dεi = dεj , it suffices to expand the variables related to particle i.

By expanding pn+1i at order 1 in ∆t, we obtain

pn+1i = pni +
1
2



(
e−a

n
ij,∆t − 1

) vnij
µij

+σ

√
1− e2a

n
ij,∆t

2γijµij
Gnij


 ,

= pni +σ
√
χ(rnij )G

n
ij

√
∆t −γnijvnijχ(rnij )∆t +Cnij∆t3/2 +O(∆t2)

︸                                                               ︷︷                                                               ︸
∆pni

,

with Cnij = −12σγnijµijχ(rnij )Gnij . For εn+1,

εn+1i = εni −
1
4

( (pn+1i )2

mi
+
(pn+1j )2

mj
−
(pni )

2

mi
−
(pnj )

2

mj

)
,

= εni −
1
4

(
2∆pni v

n
ij +µij (∆p

n
i )

2
)
,

= εni −
1
2
σvnij

√
χ(rnij )G

n
ij

√
∆t +



γnij (v

n
ij )

2

2
−
σ2µij
4

(Gnij )
2


χ(r

n
ij )∆t +D

n
ij∆t

3/2 +O(∆t2),

with Dn
ij = −12

(
Cnijv

n
ij −σγnijµijvnijχ(rnij )3/2Gnij

)
.

Let Φ
EM
∆t (x,G) =

(
Φ

EM,p
∆t (p,G),ΦEM,ε

∆t (ε,G)
)
be the result of an Euler-Maruyama dis-

cretization of the fluctuation/dissipation dynamics (2.27) (i.e. the scheme 2.35). The pre-
vious computations show that SSA can be seen as a perturbation of the Euler-Maruyama
scheme: 

pn+1i =Φ
EM,p
∆t (pn,Gn)i +C

n
ij∆t

3/2 +O(∆t2),
εn+1i =Φ

EM,ε
∆t (εn,Gn)i +D

n
ij∆t

3/2 +O(∆t2).

The averages of both Cnij and D
n
ij are equal to zero, and the above expansions agree at

order 1 with the result of a Euler-Maruyama discretization. Using similar procedures
than for the proof of Proposition 2.2.2, we obtain that P

SSA,ij
∆t satisfies (1.34) with Lij

instead of L for ω = 1.

Remark 2.2.1. When linear scaling techniques are used (such as decomposing the system into
cells of size rcut), the order in which the particles are updated might change from one iteration
to the other. From the above proof, we see that Proposition 2.2.4 still holds for any permutation
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ηq of the couples (i, j). This means that for any permutation ηq of the particle couples,

∀ϕ ∈ D,

P

VV
∆t

∏

0≤i<j≤N
P
ηq(i,j)
∆t


ϕ = ϕ +∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ is uniformly bounded for small ∆t in the sense of Definition 2.2.1. However, the
change from iteration to iteration in the update order might depend on the history of the po-
sitions when linear scaling techniques are used, thus removing the Markovian property of the
numerical solutions computed by SSA. Similar considerations apply when using Verlet lists.
Special care must therefore be taken in order to keep the Markovian property of the SSA chains
when using such techniques.

Shardlow Splitting Algorithm parallelization issue

As we saw previously, the SSA discretization of the fluctuation/dissipation dynamics
consists in integrating sequentially each elementary pairwise dynamics given by (2.39).
Therefore, the coordinates of each particle couple have to be updated after each elemen-
tary integration. This causes the processors to constantly modify the coordinates of the
particles.

When domain decomposition techniques are used for parallel simulations, some par-
ticles interact with others allocated to different processors. Therefore, during the corre-
sponding pairwise updates, one must be careful to prevent the processors to access the
coordinates of the same particle simultaneously. This causes many delays due to idle
processors waiting for memory access on a particle dealt with by another processor. In
addition, when integrating a given elementary dynamics, the information on each parti-
cle of the couple must be up-to-date, thus requiring data exchange between processors.
This drastically increases the quantity of information exchange compared to standard
parallelizable schemes, thus slowing down the simulation. Figure 2.4 illustrates this fact
by considering the particles inside the domain allocated to one processor.

A way to parallelize SSA has been presented in 2014 by Larentzos and al. in [LBM+14].
The technique used to avoid additional delays caused by the sequentiality of the integra-
tion is to decompose the integration into 26 steps in 3D to allow sequentially for updates
between a cell and its 26 neighbors, the 26 steps being determined in a manner that
processors never updates couples with a common particle.

Let us explain this procedure in a two-dimensional case. Figure 2.5 displays the four
steps of the integration procedure. Each box represents a space domain allocated to one
single processor. The view is centered around one central domain, enclosed in contin-
uous lines, the zone highlighted in red defining the region of space where the central
processor integrates the elementary fluctuation/dissipation interactions. The same pro-
cedure is performed simultaneously by all the processors. As we can see, the integration
is decomposed in four steps:

1. Stage 1: integration of the interactions where both particles are inside the same
domain.

2. Stage 2: integration of the interactions where one of the particles is in the upper
neighbor domain of the processor.
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internal

frontier

ghost

rcut

rcut

Figure 2.4 | Illustration of the SSA parallelization issue: the enclosed box in the full lines rep-
resents the space domain allocated to a given processor, the exterior region being allocated to
other processors. The dashed boxes of length rcut represent the cells of the linear scaling tech-
niques: a particle on a given cell can only interact with particles in the neighboring cells. The
dashed particles ("ghost" particles) are particles allocated to other processors. The particles at
a distance r > rcut of the frontier ("internal" particles, in red ) never interact with ghost particles:
the sequentiality of the integration does not affect the computation speed because no additional
idle time nor information transfer between processors are needed. The particles at a distance
r < rcut of the frontier ("frontier" particles, in blue) interact with ghost particles: the processor
eventually has to wait before accessing any ghost particle’s data, or wait for another processors
to access its frontier particle’s data, thus generating delays.

3. Stage 3: integration of the interactions where one of the particles is in the right
neighbor domain of the processor.

4. Stage 4: integration of the interactions where one of the particles is whether in the
top-right or bottom-right neighbor domain of the processor.

Of course, between each stage, the updated data of each particle must be sent to its
respective processor.

We can see that, if all processors follow the above procedure, they all consider in-
teractions in distinct regions of space at a given time, thus forbidding simultaneous ac-
cess to particle data and therefore suppressing the SSA parallelization issue. Using the
symmetry of the integration, the above procedures ensures that all the elementary fluc-
tuation/dissipation interactions are integrated. It was shown that this procedure allows
for a scaling efficiency in the number of processors comparable to the scaling of other
reference straightforwardly parallelizable schemes like SVV [LBM+14].

However, if the above procedure allows for efficient parallel DPD/DPDE integra-
tion using SSA, it is valid only for MPI parallelization. If an architecture like OpenMP

(www.openmp.org) is used or another architecture where several processors have access to
some shared memory, this procedure no longer applies, and the same issues arise than
for the sequential case. In addition, Larentzos and al. parallelization procedure requires
work that is not trivial, and a simpler solution for DPDE parallel accurate integration
would be welcome.
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Stage 1

rcut

Stage 2

rcut

Stage 3

rcut

Stage 4

Figure 2.5 | Illustration of the SSA parallelization procedure of [LBM+14] in a two-dimensional
case. Each box represents a space domain allocated to a single processor. The zone highlighted
in red defines the region of space where the central processor integrates the elementary fluc-
tuation/dissipation interactions. The same procedure is used by the other processors in the
neighboring domains (delimited by dashed lines). Between each stage, all the updated particle’s
data are sent to their respective processor.

New parallelizable schemes for the integration of DPDE

As seen from Section 2.2, up to our knowledge, one should choose between difficultly par-
allelizable schemes enjoying good energy preservation properties or straightforwardly
parallelizable schemes that preserve very poorly the energy. In this section, we consider
two new techniques for integrating the DPDE that are both straightforwardly paralleliz-
able.

The two new parallelizable schemes we propose in this section also rely on the split-
ting between the Hamiltonian and the fluctuation/dissipation parts mentioned at the be-
ginning of Section 2.2, but with new strategies to discretize the fluctuation/dissipation
part:

• The first scheme we present is called “Splitting with Energy Reinjection” (termed
SER in the sequel). Its discretization of the fluctuation/dissipation part (2.27) is
similar to SEM but uses a global symmetric reinjection of the kinetic energy varia-
tion into the internal energies, instead of directly discretizing the dynamics of the
internal energies. This allows to automatically preserve the total energy during the
fluctuation/dissipation integration.
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• The second scheme is amix between SSA and SER, and is therefore termed “Hybrid”
in the sequel. As parallel simulations are performed using a spatial repartition of
the simulation box between the processors, the bottleneck for the parallelization
of SSA arises from particles located in different domains [LBM+14]. Therefore, the
idea of the Hybrid scheme is to integrate the elementary fluctuation/dissipations
interactions involving particles located on the same processor by a pass of the SSA
algorithm, while the remaining interactions are taken care of by a SER discretiza-
tion.

Splitting with Energy Reinjection (SER)

The SER integration of the fluctuation/dissipation (2.27) is performed in two steps. First,
momenta are integrated using a simple Euler-Maruyama discretization as

pn+1i = pni + δp
n
i , δpni =

N∑

j=1,j,i

δpnij , (2.43)

with δpnij = −γnijχ(rnij )vnij∆t+σ
√
χ(rnij )G

n
ij

√
∆t. The internal energies εi are then updated in

order to compensate for the energy variation during the update of the momenta. In order
to implement this idea, we need to identify in the global kinetic energy variation of each
particle the contribution of every single pairwise interaction, in order to redistribute the
associated elementary energy variations. In fact, a simple computation shows that

∆Kni =
(pn+1i )2

2mi
−
(pni )

2

2mi
,

=
δpni
2mi

(
2pni + δp

n
i

)
,

=
N∑

j=1,j,i

δpnij ·
(
vni +

δpni
2mi

)

︸              ︷︷              ︸
∆jK

n
i

.

The term ∆jK
n
i represents the contribution of particle j to the kinetic energy variation

of particle i. The internal energies are then updated by reinjecting the elementary varia-
tions ∆jK

n
i in a symmetric manner:

∆εni = −
1
2

N∑

j=1,j,i

(
∆iK

n
j +∆jK

n
i

)
,

= −1
2

N∑

j=1,j,i

δpnij ·

vnij +

1
2



δpni
mi
−
δpnj
mj





 .

(2.44)
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The discretization of (2.39) can therefore be summarized as

PSER,fd
∆t :



pn+1i = pni −
N∑

j=1,j,i

γnijχ(r
n
ij )v

n
ij∆t +

N∑

j=1,j,i

σ
√
χ(rnij )G

n
ij

√
∆t,

εn+1i = εni −
N∑

j=1,j,i

δpnij ·

vnij +

1
2



δpni
mi
−
δpnj
mj





 .

(2.45)

Remark 2.3.1. Let us emphasize that, by construction, SER automatically ensures the exact
conservation of the total energy during the numerical integration of the fluctuation/dissipation
part (2.27) – a very nice feature only enjoyed by SSA among the previously known schemes to
integrate DPDE. On the other hand, in opposition to SSA, SER does not rely on a further
splitting of the fluctuation/dissipation into elementary pairwise interactions, and is therefore
straightforward to parallelize.

From a pratical viewpoint, the presence of both δpnij and δp
n
i in (2.44) requires two

sweeps on the system, a first one to compute δpnij and sum it into δpni , and a second one to
compute the products δpnij · δpni . This seemingly requires to store all increments δpnij (or
at least the Gaussian increments Gnij ), which is somewhat prohibitive. This can however
be avoided if the Gaussian increments Gnij can be exactly regenerated to the value they
had on the first pass of the algorithm when the particle pairs are revisited. The SARU
pseudo-random generator [ASPW13] for instance allows such an easy recomputation.
The pseudo-number generator SARU has been designed for improving computational
cost for parallel DPD computations by saving the cost of transfering the random numbers
between generators. It takes three integer seeds (i1, i2, i3) ∈N3, with i1 < i2, to generate a
pseudo-random integer between −231 and 231. However, the interesting fact of SARU for
DPD calculations is that this number is completely defined by the three seeds (i1, i2, i3).
Therefore, the random numbersGij do not have to be transfered between processors, thus
saving computational time.

The global SER discretization is obtained with a Trotter splitting of DPDE. Therefore,
it writes

PSER
∆t = PVV

∆t P
SER,fd
∆t .

Proposition 2.3.1. The SER discretization of the DPDE dynamics is of weak order one. In
addition, its evolution operator satisfies

∀ϕ ∈ D, PSER
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ stays uniformly bounded for small ∆t in the sense of Definition 2.2.1.

Proof. By the same reasoning as in the proof of weak order one of the previous schemes,
it suffices to prove that PSER,fd

∆t satisfies (1.34) with ω = 1 in order to obtain the result. Let
us prove that the evolution operator of the SER discretization given by (2.45), denoted
by PSER,fd

∆t , of the fluctuation/dissipation dynamics can be expanded as

∀ϕ ∈ D, PSER,fd
∆t ϕ = ϕ +∆tLfdϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ is uniformly bounded when ∆t goes to zero.
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As reported in Section 2.3.1, the momenta are updated with an Euler-Maruyama dis-
cretization writing

pn+1i = pni +
N∑

j=1,j,i

δpnij ,

with
δpnij = −γnijχ(rnij )vnij∆t +σ

√
χ(rnij )G

n
ij

√
∆t.

A simple computation shows that (2.45) implies

εn+1i = εni −
1
2

N∑

j=1
j,i

δεnij +O(∆t2), (2.46)

where
δεnij = −γnij (vnij )2χ(rnij )∆t +σvnij

√
χ(rnij )G

n
ij

√
∆t + ηnij∆t +C

n
ij∆t

3/2.

In this expression, we introduced



ηnij =
1
2
Rnij ·



Rni
mi
−
Rnj
mj


 ,

Cnij = −
1
2


Fnij ·



Rni
mi
−
Rnj
mj


+Rnij ·



Fni
mi
−
Fnj
mj





 ,

with 

Fnij = γnijv
n
ijχ(r

n
ij ), Fni =

N∑

j=1
j,i

Fnij ,

Rnij = σ
√
χ(rnij )G

n
ij , Rni =

N∑

j=1
j,i

Rnij .

The random variables Cnij involve only terms containing one Gaussian random variable.

Therefore, they vanish in average: E
[
Cnij

]
= 0. The random variables ηnij involve terms

containing products of Gaussian variables, but their averages can be easily computed as

E[GnijG
n
kl ] = d

(
δikδjl − δilδjk

)
. A simple computation then shows thatE

[
ηnij

]
= d

µijσ
2

2 χ(rnij ).

The previous computations show that SER can be seen as a perturbation of the Euler-
Maruyama scheme, i.e,



pn+1i =Φ
EM,p
∆t (pn,Gn)i ,

εn+1i =Φ
EM,ε
∆t (εn,Gn)i −

1
2

∑

j=1
j,i


ηnij − d

µijσ
2

2
χ(rnij )


∆t +Cnij∆t

3/2 +O(∆t2).

where we have used the same notation than in the proof of Proposition 2.2.4. By a similar
reasoning as in the proof of Proposition 2.2.2, this implies that PSER,fd

∆t satisfies the above
expansion in powers of ∆t, which gives us the result by the successive applications of
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Lemma 1.3.6 and Theorem 1.3.3.

We have presented a version of SER where the momenta integration is done according
to an Euler-Maruyama discretization, of weak order one. However, we see that the energy
reinjection procedure still applies with any momenta discretization than can be written
under the form

pn+1i = pni +
N∑

j=1,j,i

δpnij .

This could be used to devise higher-order schemes.

A scheme mixing SSA and SER: Hybrid

The Hybrid scheme can be seen as a blending of SER and SSA, where the elementary fluc-
tuation/dissipation interactions involving particles on the same processor are integrated
by a pass of the SSA algorithm, while the remaining interactions are integrated with the
SER scheme.

Let us describe more precisely this algorithm. By using the notation of Section 1.2.2,

we denote by PHybrid
∆t the Hybrid discrete generator and P

SSA,ij
∆t the generator of the SSA

discretization of the elementary dynamics given by (2.40). Note that only the compo-
nents pi ,pj , εi , εj of (q,p,ε) are changed by P

SSA,ij
∆t . Let us denote by Aq the set of particle

couples where both particles are in the same processor, and Acq the remaining couples.
The elements of Aq are denoted by (i1, j1), (i2, j2), . . ., (il , jl ), where l is the number of ele-

ments inAq. Finally, we denote by P
SER,Acq
∆t the discrete generator of the SER discretization

of all the interactions involving the particle couples in Acq. The expression of PHybrid
∆t is

obtained from P
SSA,ij
∆t and P

SER,Acq
∆t as

P
Hybrid,fd
∆t = P

SER,Acq
∆t P

SSA,Aq
∆t , (2.47)

with
P
SSA,Aq
∆t = P

SSA,il jl
∆t P

SSA,il−1jl−1
∆t . . .P

SSA,i1,j1
∆t .

Figure 2.6 illustrates the idea behind the Hybrid scheme. The full Hybrid discretization
is therefore given by

P
Hybrid
∆t = PVV

∆t P
SER,Acq
∆t P

SSA,Aq
∆t . (2.48)

Note that Aq depends on the positions q and therefore might change from one itera-
tion to the other. Hybrid is thus subject to the same considerations regarding the update
order than SSA (see the discussion in Remark 2.2.1). Therefore, in order to prove the

weak consistency of Hybrid, we have to assume that the update order in P
SSA,Aq
∆t does not

depend on the position history.

Proposition 2.3.2. Assume that the update order in P
SSA,Aq
∆t is defined by a systematic pro-

cedure that does not depend on the position history. Then the Hybrid discretization given by
(2.48) is of weak order one. In addition, its evolution operator satisfies

∀ϕ ∈ D, P
Hybrid
∆t ϕ = e∆tLϕ +∆t2r∆t,ϕ ,
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p1 p2
SER

SSA

Figure 2.6 | Illustration of the idea behind the Hybrid scheme for a system decomposed in two
domains associated with two processors p1 and p2. Red interactions are integrated sequentially
according to a SSA discretization, and the remaining blue interactions are dealt with by an SER
sweep.

where r∆t,ϕ is uniformly bounded for small ∆t in the sense of Definition 2.2.1.

Proof. Denote by LAcq the generator of the fluctuation/dissipation DPDE dynamics asso-
ciated with the particles indexed by the elements of Acq. By the same reasoning as in the

proof of weak order one of the previous schemes, it suffices to prove that P
SER,Acq
∆t satisfies

(1.34) with ω = 1 and LAcq used instead of L in order to obtain the result. Fixing q ∈ Q,
the extension of Proposition 2.3.1 to the SER fluctuation/dissipation discretization of the
dynamics generated by LAcq is straightforward because of the pairwise structure of the
friction and random interactions. Therefore, for any ϕ ∈ D,

P
SER,Ac

q

∆t ϕ = e∆tL
Acq
ϕ +O(∆t2).

This gives the result.
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3
Comparative study of
numerical schemes on

simulations at equilibrium

In this chapter, we perform numerical experiments in order to validate the new schemes
proposed in Chapter 2. A good numerical scheme integrating the DPDE should fulfill
two conditions: (i) preserve the invariants of the dynamics and (ii) have biases on average
properties as small as possible.

Considering the first task, while the total momentum conservation is easily ensured,
the energy conservation on the other hand is much more demanding. As said in Chap-
ter 2, the numerical schemes we consider are obtained by a composition of a Verlet
scheme, which approximately preserves the energy, and a discretization of the fluctua-
tion/dissipation dynamics, which may or may not preserve the energy. Even when the
energy is exactly preserved by the integration of the fluctuation/dissipation, the inter-
action between these two integrators may lead to drifts in the total energy, as already
observed in Ref. [LBA11]. This is described in Section 3.1.

All simulations performed in this chapter consider a system of N identical particles,
with pairwise conservative interactions described by a shifted, splined and truncated
Lennard-Jones potential (1.2). The heat capacity is supposed constant, which implies
that equation (2.12) simply reduces to εi = CvTi and that we have s(ε) = Cv log(ε), where
s is the internal entropy function. In addition, we only consider equilibrium average
properties: dynamical properties are considered later on in the next chapter.

We start this chapter by studying in Section 3.1 the conservation of the energy by
all the schemes introduced in Chapter 2. We notice that no scheme manages to keep it
constant and that energy drifts occur. Similar drifts also occur in the components of the
energy, thus making the estimations of observables dependent on the simulation time
chosen, and forbidding the system of entering in a well-defined equilibrium state. In
order to correct this, we devise in Section 3.2 a procedure projecting the system onto a
constant-energy surface after each scheme iteration and compute the biases on equilib-
rium properties for the projected schemes, both on sequential and parallel simulations.
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Energy conservation properties of the schemes

We focus in the numerical tests we present in this section on the study of the conservation
of the energy by all the schemes presented in Sections 2.2 and 2.3. We start by studying
their energy conservation, and quantify the possible drifts that occur. Then, we study the
drifts of each one of the three components of the energy, namely the kinetic, potential
and internal energies. Each one of the components of the energy involves only one type
of the three categories of degrees of freedom of the system: the positions qi , the momenta
pi and the internal energies εi . This therefore allows to assess the quality of the sampling
for each degree of freedom.

We considerN = 343 identical particles, i.emi =m for i = 1, ..,N , and we set d = 3. Ini-
tial conditions are obtained by melting a simple cubic crystal of density ρ = 0.5787 over
a time t = 100, using a SSA scheme with a time step ∆t = 0.005. Such thermodynamical
conditions represents a liquid Lennard-Jones fluid (see Figure 3.1 for a plot of the com-
puted radial distribution function g(r) of the system). The results are given in reduced
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Figure 3.1 | Computed radial distribution function g(r) of the considered fluid at equilibrium. The
radial distribution function represents the probability for each atom to find a neighboring atom
according to a distance r. The above plot represents a liquid, where particles are semi-organized,
yielding peaks of decreasing amplitude that do not touch zero.

units corresponding to the Lennard-Jones potential. This means that every quantity ϕ is
divided by a reference quantity ϕref in order to deal with values around 1, i.e ϕ∗ = ϕ/ϕref,
where ϕ∗ represents the corresponding reduced unit. The reference units are determined
with the energy parameter ε, the characteristic length σ of the LJ potential and the mass
m of the particles. The set of these three quantities allows to define reference values for
any other physical quantity.

In the sequel, X denotes the possible DPDE configurations ensemble (see Section 2.1.2).

Drifts of the total energy

In order to precisely quantify the possible energy drifts and determine in particular the
influence of the time step ∆t on the drift rate, we compute the average evolution of the
energy in time by performing Ntraj = 104 trajectories of time tf = 10 each. The initial
configurations of each trajectories are sampled according to the canonical measure µβ,Cv
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given by (2.15), obtained by the procedure described in Section 2.1.2. The following
procedure is therefore iterated for m = 1, ..,Ntraj:

1. We start from an initial configuration x̃m,0 = (q̃m,0, p̃m,0, ε̃m,0).

2. The internal degrees of freedom are sampled according to the DPDE internal canon-
ical measure (2.22) by integrating the corresponding Overdamped Langevin dy-
namics given by (2.23) for t = 1 and with ∆t = 0.001, using an Euler-Maruyama
discretization defined in Section 1.3.1. The resulting configuration is denoted by
ε̂m,0.

3. The external degrees of freedom are sampled according to the canonical measure
(1.19) by integrating the Langevin dynamics (1.54) for t = 1 and with ∆t = 0.001,
using the GLA algorithm of Section 1.4.2. The resulting configuration is denoted
by (q̂m,0, p̂m,0).

4. We define x̂m,0 = (q̂m,0, p̂m,0, ε̂m,0) as the DPDE configuration composed of the results
of the two previous steps.

5. The internal and external degrees of freedom are then equilibrated for t = 1 with an
integration using the same scheme and time step used for the simulation. The re-
sulting configuration, denoted by xm,0 is the initial configuration of the subsequent
trajectory over which averages are computed.

6. Once the trajectory is computed, we define x̃m+1,0 = x̂m,0.

Figure 3.2 gives a schematic of the above initial conditions sampling procedure.

Remark 3.1.1. We notice that the above procedure is not exactly the procedure described in
Section 2.1.2 because the Langevin equilibration is not projected in order to ensure the conser-
vation of the total momentum. Therefore, this procedure yields initial conditions that do not

have the same total momenta. We sample in fact the measure of density e−βE+
S
kB obtained when

µβ,Cv is not conditioned to δP0 . This is not problematic however because we are interested in
this section in the average drift of the total energy and of its components.

We denote by 〈ϕt〉 the expectation of ϕ(xt) over all realization of the DPDE dynamics
and all the initial conditions x0 ∼ µβ,Cv for any observable ϕ ∈ D, i.e

〈ϕt〉 = Eµβ,Cv
[ϕ(xt)] . (3.1)

In practice, 〈ϕn∆t〉 is approximated by

ϕ̂n
∆t,Ntraj

=
1

Ntraj

Ntraj∑

m=1

ϕ (xm,n) , (3.2)

where xm,n is the n-th configuration of the m-th trajectory. We denote by 〈ϕn〉
∆t the limit

of ϕ̂n
∆t,Ntraj

when Ntraj goes to infinity, i.e

〈
ϕn

〉
∆t = lim

Ntraj→∞
1

Ntraj

Ntraj∑

m=1

ϕ (xm,n) .
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t = 1 t = tf
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x̂0,0 = x̃1,0
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x̂1,0 = x̃2,0
x1,0

x̂2,0 = x̃3,0
x2,0

tCI

Langevin, ∆t = 0.001
&

Overdamped, ∆t = 0.001

Langevin, ∆t = 0.001
&

Overdamped, ∆t = 0.001

Langevin, ∆t = 0.001
&

Overdamped, ∆t = 0.001

Figure 3.2 | Procedure to sample initial configurations according to the DPDE canonical measure
(2.15). The part concerning the generation of the initial conditions are highlighted in red.

Figure 3.3 shows the behavior of the time-dependent energy drift averaged over tra-
jectories as a function of time, for various schemes with ∆t = 0.006. Note that no scheme
manages to keep the total energy constant since linear drifts in time are observed in all
cases, SVV being substantially worse than all the other schemes in terms of energy con-
servation. Figure 3.4 represents the average total energy on equivalent two-dimensional
simulations, with N = 100 and ∆t = 0.006, however using SEM instead of SVV as the
reference scheme. We notice that SEM, similarly to SVV, is substantially worse than the
other schemes. We therefore conclude that both SVV and SEM exhibit very bad energy
conservation properties.

Energy drifts such as those displayed in Figure 3.3 and Figure 3.4 destroy all hope
of sampling the microcanonical DPDE measure µE0,P0 nor the DPDE canonical measure
µβ,Cv : a stable energy is required when computing thermodynamical averages in energy-
preserving statistical ensembles.

Quantification of the total energy drifts

In order to decide whether the drift is acceptable for thermodynamical averages estima-
tions, we quantify in this section the rate of variation of the energy as a function of the
time step ∆t. Figure 3.3 allows us to perform a linear fit of the time-dependent average
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Figure 3.3 | Time-dependent energy drift averaged over trajectories, as a function of time when
∆t = 0.006, for three-dimensional simulations.
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Figure 3.4 | Time-dependent energy drift averaged over trajectories, as a function of time when
∆t = 0.006, for two-dimensional simulations.

energies as 〈En〉
∆t = E0 (1 +α∆tn∆t) , (3.3)

which allows to identify the relative energy drift rate α∆t . Figure 3.5 presents the evolu-
tion α∆t as a function of the time step.

Unsurprisingly, the drift rates for SVV are substantially larger in absolute value than
those of the other two schemes. The energy drift rates of SER are of the same order
of magnitude than those of SSA for small time steps, but they increase much faster for
larger ∆t. The SER scheme therefore seems to be less stable than SSA. In addition, we
notice that the drift rates of SSA and SER schemes are both greater than 1×10−6 for time
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Figure 3.5 | Average energy drift rate α∆t as a function of the time step. A fit α∆t = K∆tω is
superimposed to the data.

steps ∆t ≥ 0.007. This means that, for simulation times longer than tmax = 104, the en-
ergy variation would be greater than 1%, which might be considered as an upper stability
limit in terms of energy conservation. Such simulation times may be long enough to es-
timate equilibrium properties, but they may prove somewhat short to estimate transport
properties.

Moreover, the results of Figure 3.5 suggest that the drift rate α∆t has a polynomial
behavior with respect to ∆t :

α∆t = K∆t
ω.

A least-square fit in a log-log diagram gives ω ≃ 2 for SVV, and ω ≃ 4 for the other
schemes. This fast increase of the drift rate places a severe limitation on the use of larger
time steps in DPDE simulations.

Drifts of the components of the energy

We carefully studied in Section 3.1.1 the total energy drifts. Let us now consider the
behavior of other thermodynamical observables, and consider the intensive observables
corresponding to the three components of the energy involving the three categories of
degrees of freedom of a DPDE system: the positions q, the momenta p and the internal
energies ε. This therefore allows to assess the behavior of the energy for each degree of
freedom.

All the observables considered in this section are normalized by their corresponding
degrees of freedom. Dealing with such intensive observables allows to discard the size
of the system considered when estimating average values (provided the system is large
enough so finite size effects are negligible). The first component is the kinetic energy per
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degree of freedom, depending only on the momenta and given by

Ekin =

〈
1

2dN

N∑

i=1

p2i
mi

〉

µβ,Cv

< (3.4)

Note that we have Ekin = T /2, where T is the equilibrium temperature of the system. The
second component is the potential energy per degree of freedom, depending only on the
positions of the particles and defined as

Epot =
〈 1
dN

U
〉

µβ,Cv

, (3.5)

where 〈·〉µβ,Cv refers to averages with respect to the measure µβ,Cv introduced in (2.15).
The third and last quantity is the internal energy per degree of freedom, depending only
on the particle internal energies ε and defined as

Eint =

〈
1

CvN

N∑

i=1

εi

〉

µβ,Cv

. (3.6)

Note that, because the internal degrees of freedom of each DPDE particle is given by the
heat capaciy Cv , we divided Eint by CvN instead of dN .

The drift rates of the estimators given by (3.5), (3.4) and (3.6) as a function of the time
step are plotted in Figure 3.6. As expected, the drift rates for all components are large for
SVV and small for SSA. SER on the other hand exhibits a non-trivial behavior: its drift
rates are quite large for individual components of the energy, although these large drifts
compensate each other in order for the total energy to drift only slowly.
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Figure 3.6 | Drift rates per unit time of the kinetic (top), potential (middle) and internal (bottom)
energies.
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In fact, we even observed in some situations that the drift of some energy components
was not linear as a function of time. For instance, we noticed that the SER average com-
ponents of the energy are not linear functions of time, as seen in Figure 3.7, in opposition
to those of SSA or SVV. The very notion of drift rate for SER is therefore dubious.
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Figure 3.7 | Time-dependent drift for the kinetic (top), potential (middle) and internal (bottom)
components of the energy, averaged over trajectories, as a function of time when ∆t = 0.006.

Error estimations of equilibrium observables

We have seen in Section 3.1 that no scheme could manage to keep the total energy con-
stant, and that linear drifts of the total energy 〈Et〉 occurred. The amplitude of these
drifts depend on the scheme, and we have seen that SER’s drifts were of the same order
than those of SSA, and far better than those of SVV. However, these drifts require the use
of very small time steps in order to have a stable energy when computing thermodynam-
ical averages, and additionally make the thermodynamical averages dependent on the
integration time as seen in Figure 3.6.

A procedure ensuring the energy conservation is therefore devised in Section 3.2.1,
in order to obtain a well-defined equilibrium state, followed by a discussion about the
precautions needed when using such a projection and some expectations on the numer-
ical results. We then compute in Section 3.2.2 estimations of the three components of
the energy defined in Section 3.1.2. Finally, we perform in Section 3.2.3 numerical tests
ensuring that the Hybrid behavior is consistent with the spatial decomposition of the
simulation box when parallel simulations are performed.

Projection in order to ensure the energy preservation

Previous to any equilibrium simulation aimed at computing thermodynamical observ-
ables, one must first remove the energy drift. A natural approach, already suggested
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in Ref. [LBA11], is to enforce the energy conservation by an appropriate projection on a
surface of constant energy. There are several possible projection procedures.

One possible option is to use a Lagrange multiplier, i.e to replace a configuration
x = (q,p,ε) such that E(x) , E0 by x −λ∇E(x), with λ chosen such that

E
(
q −λ∇qE(x),p −λ∇pE(x), ε −λ∇εE(x)

)
= E0,

or more explicitly

E
(
q −λ∇U(q),p − λ

m
p,ε −λ~1

)
= E0, (3.7)

where ~1 is the N -dimensional vector whose components are all equal to 1. However, the
numerical computation of the parameter λ satisfying (3.7) is a computationally expen-
sive task typically requiring several iterations of a Newton procedure, and hence several
evaluations of the energy per time step. The potential energy U(q) being expensive to
compute in terms of CPU cost, this procedure appears to be prohibitive. Note also that
the total momentum is not preserved, so that this extra conservation law should be sub-
sequently enforced in an appropriate manner.

It is thereforemuchmore convenient from a practical viewpoint to only play on the in-
ternal energies to adjust the total energy – as was also already suggested in Ref. [LBA11].
More precisely, at the end of one iteration of the numerical scheme, the resulting internal
energies are replaced by εn+1i − (En −E0)/N . Considering a given discretization Φ∆t of the
DPDE dynamics, the corresponding projected (or corrected) scheme therefore consists in
the following:

• We start by a configuration xn ∈ X , and we assume it is of energy E(xn) = E0.

• We obtain x̃n =Φ∆t(xn) by the considered DPDE discretization. Note that E(x̃n) , E0
as we saw in Section 3.1.

• We rescale the internal energies proportionnally to the energy variation, i.e

εn+1 = ε̃n − 1
N

(E(x̃n)−E0)~1N ,

and we define (qn+1,pn+1) = (q̃n, p̃n) (i.e we do not change the positions and mo-
menta from the result of the discretization).

Note that this allows to remove energy variations due to the discretization of both the
Hamiltonian and fluctuation/dissipation parts. Enforcing the total energy conservation
allows us to obtain a well-defined steady state, for which average properties can be safely
computed.

In practice however, one has to be careful that internal energies should remain posi-
tive. Indeed, we saw in Section 2.1.2 that the internal thermodynamics of DPDE particles
is not well-defined whenever ε ≤ 0. Nevertheless, many cases can lead to a non-negligible
probability that the result of the discretization at iteration n ∈N yields a particle having
a negative internal energy εi ≤ 0:

• If the time step ∆t is large, biases are therefore also large, which leads to non-stable
behaviors. This might cause negative internal energies.
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• The parameter σ controls the strength of the fluctuation/dissipation dynamics com-
pared to the conservative part. Therefore, when it is large, the oscillations of the
internal energies are also large, thus increasing the probability of one particle to
have a negative internal energy.

• The equilibrium distributions of the internal energies also depends on Cv , as the
definition (2.22) of νβ,Cv indicates. The larger the Cv is the smaller the fluctuations
of the internal energies are proportionally to their average value, therefore reducing
the chances of a particle to have a negative internal energy.

• Finally, we saw in Section 2.1.2 that the internal and external temperatures are
equal at equilibrium. Considering the DPDE internal equation of state (2.12), we
see that particles with low internal temperatures also have low internal energies.
Low temperature systems thus have a higher probability of yielding negative inter-
nal energies than high temperature systems.

Procedures allowing to avoid such problems have not been considered in the simulations
presented in this thesis, but are discussed in the "Perspectives" chapter at the end.

Finally, one should expect the results of the simulations to yield errors on the invari-
ant measure of order one, as proved for each scheme in Chapter 2. However, we can
specificate this by saying that the errors should in fact be proportional to σ2

∆t. Indeed,
we have seen in Section 2.1.2 that the each elementary fluctuation/dissipation generator
writes

Lij = −γijvij · Aij +
σ2

2
A2
ij ,

with
Aij = ∇pi −∇pj −

vij
2

(
∂εi +∂εj

)
.

Therefore, because γij and σ satisfy (2.16), we have Lij = σ2L̃ij , with

L̃ij =
1
4

(
1
Ti

+
1
Tj

)
vij · Aij +

1
2
A2
ij .

We see that L̃ij does not involve any term in σ . Therefore, the elementary DPDE fluctu-

ation/dissipation evolution operator can be rewritten as e∆tLij = eσ
2
∆tL̃ij , and everything

behaves as if σ2
∆t is the effective time step. However, the interaction between the conser-

vative integration and the projection could alter this dependence.

Biases on the average equilibrium properties for projected schemes

In this section, different simulations are carried out using the SEM, SSA, SER and Hy-
brid schemes presented in Section 2.2 and 2.3, corrected by the projection procedure on
the internal energies. Sequential simulations are first performed, followed by parallel
simulations. The Hybrid scheme can only be tested in parallel simulations, otherwise it
reduces to SSA. Therefore, it is considered only for the parallel simulations.

In this section, we consider systems of higher density ρ = 0.8095, corresponding to
liquid Lennard-Jones fluid (see Figure 3.8 for the plot of the computed radial distribution
function of the system). The results are still given in reduced units.
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Figure 3.8 | Computed radial distribution function g(r) of the considered fluid at equilibrium. We
see that the higher density yields oscillations of greater amplitude than in Figure 3.1.

Sequential simulations

The results presented in this section are obtained by computing averages over one long
trajectory of physical time tf = 1000, with the heat capacity of the particles Cv = 50
and the same initial condition obtained by the procedure detailed in Section 3.1. Note
that we do no longer use the procedure described by Figure 3.2 to obtain several initial
conditions because we only perform one trajectory per simulation. The cut-off radius is
set to rcut = 3.

Figure 3.9 shows the average energies obtained from the estimators (3.4), (3.5) and (3.6)
for σ = 4, while results for the smaller fluctuation strength σ = 2 are reported in Fig-
ure 3.10. As expected, the estimations from all the schemes extrapolate to the same
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Figure 3.9 | Numerical estimations of the components of the energy as a function of the time
step for σ = 4. Top: Kinetic energy (3.4) and potential energy (3.5). Bottom: Internal energy (3.6).

value as ∆t→ 0 for all components of the energy. The second point is that the systematic
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Figure 3.10 | Numerical estimations of the components of the energy as a function of the time
step for σ = 2. Top: Kinetic energy (3.4) and potential energy (3.5). Bottom: Internal energy (3.6).

biases depend on the time step ∆t as expected, but also on the value of σ : larger values
of σ lead to much larger errors. As predicted in Section 3.2.1, the biases seem to be pro-
portional to σ2

∆t (see Figure 3.11). The third point is that, in opposition to the biases of
SSA which remain very small even for large values of ∆t and σ , those of SEM and SER
are much larger. For instance, the bias on the estimation of the kinetic energy for SER
and SEM at ∆t = 0.008 and σ = 4 is around 30% of the extrapolated reference value.

Parallel simulations

Thermodynamics averages in this section are computed over a single trajectory of total
time tf = 450, with a lower heat capacity Cv = 10. The cut-off radius is set to rcut = 2.5. A
system of N = 148,500 particles was decomposed on Nproc = 8 processors.

Figure 3.12 presents the energy estimations as a function of the time step for σ = 2,
compared to reference values computed by a sequential SSA simulation of a system of
N = 4000 particles. We see that, similarly to the sequential simulations results, SEM
and SER estimations are very similar and that SSA estimations are significantly smaller
than those of SER and SEM. The Hybrid estimations however have an accuracy similar
to those of SSA. Simulation results for σ = 4 (not reported here), showed greater biases
than for σ = 2 for all the schemes with Hybrid and SSA being significantly more accurate
than SEM, consistently with the sequential simulations. However, SER was found to
yield particles with negative internal energies with very high probability even for small
time steps, thus forbidding to obtain converged estimates (i.e estimates with a negligible
statistical error). This instability is probably due to the SER energy reinjection procedure
leading to larger oscillations of the internal energies compared to SSA or SEM. The fact
that such phenomena was not observed for the sequential simulations is related to the
lower value of Cv used for parallel simulations, as discussed in Section 3.2.1.
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CPU timings are reported in the second column of Table 3.1. For the comparison to be
fair, all the timings have been measured on a single core. We also compare these timings
to reference timings from a sequential SSA simulation (third column of Table 3.1). The
last column of Table 3.1 gives the required CPU time of a simulation of the same system
as in Figure 3.12, using a time step chosen in order to obtain a given accuracy on the
estimation of the kinetic energy. For each scheme, this time step, denoted ∆tlim, is taken
such that the bias of the kinetic energy estimation is equal to elim, where elim is defined
as the largest bias of the Hybrid kinetic energy estimations of Figure 3.12. The biases are
computed as e∆t = |〈Ekin〉∆t − 〈Ekin〉∆t=0|, where 〈Ekin〉∆t=0 is obtained by extrapolating
the results of Figure 3.12 to ∆t = 0. The timings of the last column of Table 3.1, denoted
τEkincpu , are then obtained by multiplying the timings of the second column of Table 3.1
with the number of iterations necessary to reach tf = 100 when using the time step ∆tlim.
The choice of the kinetic energy is arbitrary (as is the choice of elim). However, timings
related to other observables show qualitatively similar results.

scheme tcpu ratio to SSA τEkincpu

SSA 3.72× 10−5 s 1 2.11 s
SEM 3.35× 10−5 s 0.90 10.63 s
SER 7.85× 10−5 s 2.11 24.92 s

Hybrid 6.40× 10−5 s 1.72 2.13 s

Table 3.1 | Column 2: average CPU time per particle per time step and per processor. Column 3:
timings of column 2 divided by the SSA timing. Column 4: Required CPU time corresponding to
simulations with time steps such that the kinetic energy estimation has a given bias. This bias is
chosen to be the largest bias of the Hybrid kinetic energy estimations of Figure 3.12.

Table 3.1 tells us that SER is much slower than SEM, and that using SER takes more
than twice as long as using SEM in order to reach a given accuracy. This sub performance
of SER is to be tempered however with the fact that we consider here all schemes to
be corrected with the projection of Section 3.2.1. We have seen in Section 3.1 that, on
their own, SEM requires time steps much smaller than SER in order to achieve the same
accuracy. As for Hybrid, we see that its increased accuracy displayed in Figure 3.12 more
than compensates the extra computational cost compared to a very simple scheme such
as SEM, as it can be seen in the fourth column of Table 3.1.

Validation of the Hybrid scheme: influence of the parallelization

There are no other parameters than the time step for SSA, SER and SEM schemes. This
is not the case for the Hybrid scheme, where the spatial distribution of the simulation
box between processors affects the computation. It is thus necessary, in order to further
validate the Hybrid scheme, to study the influence of the ratio N/Nproc, where Nproc is
the number of processors used for the simulation. Indeed, the ratio N/Nproc directly
determines the fraction of interactions treated with SER or SSA.

In order to study this influence, Hybrid simulations are performed on Nproc = 8 pro-
cessors for systems in the same thermodynamic state as those of the parallel simula-
tions of Section 3.2.2. The time steps of the simulations range from ∆t = 5 × 10−4 to
∆t = 2.5 × 10−3 and the number of particle from 40 × 10 × 10 to 160 × 10 × 10. Note that
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the parallelization is done according to the x axis, and we only change the number of
particles along this axis. Hybrid averages are presented in Figure 3.13, together with the
reference SSA and SER estimations of Figure 3.12. The N/Nproc ratios according to the
system sizes are displayed in Table 3.2.
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Figure 3.13 | Kinetic energy estimations for Hybrid simulations with a number Nx of particles
along the x axis equal to 40, 100 and 160. The SSA and SER estimations displayed are those
reported in Figure 3.12.

system size N/Nproc

40× 10× 10 500
100× 10× 10 1250
160× 10× 10 2000

Table 3.2 | N/Nproc ratio according to the system size.

We notice in Figure 3.13 that, as expected, Hybrid estimations go from those of SER
towards those of SSA as N/Nproc increases. In the particular situation considered here,
SER and SSA estimations have biases of opposite signs that compensate in the Hybrid
scheme, thus leading to biases smaller than those of SSA. Averages of the internal energy
exhibit similar behaviors as in Figure 3.13. SSA andHybrid biases on the potential energy
are too small in order to conclude anything.
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4
Application of the DPDE to the

simulation of shock waves

After having studied the scheme behavior on equilibrium systems, we now turn in this
chapter to their behavior on systems outside equilibrium, and consider the specific case
of shockwaves.

Shockwaves involve phenomenons of very small time and space scales and large en-
ergies at the shock front and much larger time and space scales and lower energies in
the relaxation of the shocked materials. As an example, in the following simulations, an
increase of approximately 1000K is observed in the local temperature of the particle, go-
ing from 1000K to 2000K in approximately 1.2ps, where the characteristical time for a
Lennard-Jones Argon atom is 2.2ps. Therefore, coarse-graining methods preserving the
energy are much needed.

In the general case, nonequilibrium properties are more difficult to compute than
equilibrium properties because they need to sample trajectories instead of configurations.
In addition, they often require to simulate larger systems than equilibrium properties.
Indeed, equilibrium systems are well represented using periodic boundary conditions,
thus allowing to reduce the size of the system, provided that finite size effects do not
occur. On the other hand, shockwaves, for instance, must propagate from one side of
the simulations box to the other, and some of their dynamical properties are computed
by averaging properties over slabs normal to the shock propagation, or by averaging
properties of the shock front over all the trajectory. Both methods need large systems
that often cannot be simulated with a single processor.

As said in Chapter 2 and shown in Chapter 3, we already have an efficient and accu-
rate scheme for computing average equilibrium properties with SSA. Themain interest of
the development of SER and Hybrid is therefore to be able to perform straightforwardly
massively-parallel DPDE simulations, generally needed for the computations of dynam-
ical properties, outside equilibrium or not. We thus verify in this chapter that the new
schemes presented in Chapter 2 are able to correctly reproduce dynamical behavior. We
compare their results with those of SEM, which is, with SVV, the only straightforwardly
parallelizable DPDE integration scheme known previous to this work.

An important point in this chapter is that we no longer correct the schemes by the
projection of Chapter 3.2.1 since we consider a nonequilibrium system inhomogeneous
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in space. This makes indeed the global energy reinjection dubious. The second important
point is that all numerical simulations in this chapter are parallel simulations performed
on hundreds of processors. Therefore, this chapter is also about demonstrating that the
new schemes presented in Chapter 2 behave correctly on massively-parallel simulations.

Description of the simulations

The system we consider is composed of N = 450,000 DPDE particles. In order for the
numerical values to be easier to interpret from a physical viewpoint, we work in this
chapter in physical units. The Lennard-Jones parameters in (1.2) are those of Argon:
εLJ = 1.65710−21 J and rLJ = 3.40510−10 m, while the masses of the particles are set to
m = 6.634 × 10−26 kg. The initial condition is obtained by melting a face centered cubic
crystal composed of 250× 15× 15 = 112,500 unit cells, at density ρ = 1228 kg.m−3, with
periodic boundary conditions. We use 50 × 2 × 2 = 200 cores for the simulations, and
various time steps ranging from ∆t = 10−15 s to ∆t = 4× 10−15 s (the value ∆t = 10−15 s
corresponds to ∆t∗ = 4.5× 10−4 in reduced units). A time step of ∆t = 10−15 s is similar to
the one used to integrate Hamiltonian dynamics of shock waves in Argon, but is already
one order of magnitude larger than for full atom simulations of molecular systems. With
the notation introduced in (2.21), we set γ = 10−13 kg.s−1 (which corresponds to a fluctu-
ation parameter σ = 5.25× 10−17 kg.m.s−3/2 or σ = 7.35 in reduced units). We also set a
constant heat capacity Cv = 1.38× 10−22 J.K−1 or C∗v = 10 in reduced units.

We equilibrate the system at a given temperature Tref = 1000 K by superimposing to
the DPDE equations a Langevin thermostat on the momenta:



dqi,t =
pi,t
mi

dt,

dpi,t = −∇qiU(qt)dt +
N∑

j=1,j,i

−γij,tχ(rij,t)vij,t dt +σij,t
√
χ(rij,t)dWij,t ,

− γ̃vi,t +
√

2γ̃
β

dBi,t ,

dεi,t =
1
2




N∑

j=1,j,i


γij,tv

2
ij,t − d

σ2
ij,t

2
µij


χ(rij,t)dt −σij,t

√
χ(rij,t)vij,t ·dWij,t


 ,

(4.1)

with γ̃ a scalar parameters verifying the Langevin fluctuation/dissipation (1.55), and
(Bi,t)i=1,..,N d-dimensional Wiener process independent of the (Wij,t)1≤i,j≤N involved in
the DPDE fluctuation/dissipation interactions. The above dynamics can be seen as a
superposition of a Langevin dynamics (1.54) and a DPDE fluctuation/dissipation dy-
namics (2.27). The numerical integration is therefore performed by a Trotter splitting
of (4.1) between these two parts, the Langevin dynamics being integrated by the GLA
scheme given by (1.70) and the DPDE fluctuation/dissipation dynamics by the Euler-
maruyama scheme. We set γ̃ = 10−12 kg.s−1 (which corresponds to a fluctuation parame-

ter σ̃ =
√

2γ̃
β = 1.66× 10−16 kg.m.s−3/2 or σ̃ = 23.27 in reduced units).

Once equilibration is performed, we remove the periodic boundary conditions in the
x direction, and put a wall of fixed Lennard-Jones particles of infinite masses on the left
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side of the simulation box. We next set the system in motion towards the left wall by
adding a velocity equal to vinit = −2000 m.s−1 to all the particles. This leads to the
apparition of a shock wave propagating from the left to the right of the simulation box,
with an average null velocity in the shocked state, as illustrated in Figure 4.1. The

t = 0

m =∞

x = 0

vav ≃ vinit

t > 0

m =∞

x = 0

vav ≃ 0

vshock

vav ≃ vinit

Figure 4.1 | Schematic of the shocked system simulation procedure. At t = 0, we set the equi-
librated system in motion toward the left wall at a velocity vinit = −2000ms−1 (left drawing).
The system is compressed when it reaches the wall, and a shock wave propagates at velocity
vshock > vinit from the left to the right of the simulation box (right drawing). The particles on the
left of the shock front are hotter and more densely distributed than those on the right.

absence of a confining piston at the right end of the system causes the apparition of a
relaxation wave, propagating from the right to the left end of the simulation box. This
relaxation wave however does not affect the shock front until it reaches it, and averages
over slabs at the shock front can safely be computed during the time where both waves
do not encounter.

We present in the following sections shock profiles where thermodynamical quan-
tities are averaged over slabs normal to the shock direction. We expect the profiles to
present two zones delimited by the shock front:

• The zone on the left of the shock front is the shocked zone, where vav = 0 (red zone
in Figure 4.1). In this zone, the slab averages of an arbitrary thermodynamical
quantities ϕ are homogeneous and equal to a shock value ϕshock.

• The zone on the right of the shock front is the equilibrium zone, where the particles
have not yet seen the shock front and therefore are still in the equilibrium state
corresponding to the equilibration procedure given above (pink zone on Figure 4.1).
In this zone, the slab averages of an arbitrary thermodynamical quantities ϕ are
homogeneous and equal to the equilibrium value ϕequ.

During the simulation, the front shock delimiting the two zone will move from the left
to the right of the profile. The behavior of the front shock depends on the observable
considered. Observables with fast response time exhibit profiles with a peak value at
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the shock front and an equilibration towards ϕshock after the passage of the shock front.
Observables with slow response time do not exhibit profiles with high values at the shock
front, and directly start to equilibrate towards the shock value after the passage of the
shock front. The kinetic temperature estimator (2.24) for instance has a much faster
response time than the internal temperature estimator (2.26) if the internal heat capacity
is large enough. Indeed, Cv represents the number of internal degrees of freedom, and
therefore the higher it is the more stable is the internal temperature and the longer it
takes to equilibrate to the shock value. Such phenomenons are illustrated in Figure 4.2.

x

ϕ

0

slow equilibration

fast equilibration

vshock

vrelax

ϕshock

ϕequ

Figure 4.2 | Example of a profile averaged over slabs normal to the shock propagation for an
arbitrary observable ϕ. In this case, the shock propagates along the x axis. The purple line
represents the behavior of an observable ϕ that has a large inertia and slow response time: it
equilibrates after the passage of the shock front towards the shock value. The red line repre-
sents the behavior of an observable ϕ that has little inertia and fast response time: it reaches
a peak at the shock front and then equilibrates towards the shock value. Both observable pro-
duce a relaxation wave that propagates with a velocity vrelax from the right end to the left of the
simulation box. This relaxation wave however does not affect the shock front until both waves
collide.

Numerical Results

The comparative study of the numerical results of the shock simulations are performed
by considering two dynamical properties: the shock profiles and the shock front veloci-
ties.

Study of the shock profile

Instantaneous internal temperature profiles are computed, i.e profiles corresponding to
the state of the system at a given time t of the simulation. Averages are computed over
slabs of size ∆slab ≃ 1.36× 10−9m normal to the shock propagation (in this case normal to
th x-axis). Figure 4.3 displays simulation results obtained with the SEM scheme with a
small time step∆t = 10−15 s. Note that no stationary profile is obtained as both the kinetic
and internal temperature increases in time. This increase is an artifact of the numerical
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Figure 4.3 | Kinetic (left) and internal (right) temperature average on the slabs of the cross-
section (y,z) for the SEM scheme integrated with a time step ∆t = 10−15 s.

scheme: we indeed confirmed by additional simulations reported in Figure 4.4 that the
increase in the temperature is more pronounced for larger time steps.
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Figure 4.4 | Instantaneous kinetic (left) and internal (right) temperature profiles on the slabs of
the cross-section (y,z) for the SEM scheme integrated with time steps ranging from ∆t = 10−15 s
to ∆t = 4× 10−15 s at time t = 4× 10−11s.

On the other hand, for shock simulations performed with the Hybrid or SER schemes,
no such drift is observed. Figure 4.5 presents Hybrid and SER internal and kinetic tem-
perature profiles for various times, for a simulation performed with the same time step
∆t = 10−15 s. We notice that Hybrid and SER yield similar results. We also notice that,
as expected, the kinetic temperature profiles exhibit peaks at the shock front while the
internal temperature profiles do not. The results are very similar for Hybrid and SER
simulations with time steps up to ∆t = 4× 10−15s, as reported in Figure 4.6.

Study of the shock velocity

After having studied the computed shock profiles by all the schemes, we consider the
shock velocities of SEM, SER and Hybrid simulations. In order to define the shock veloc-
ity, we must first define the shock position.

The particles at equilibrium have an average velocity of vinit = −2000ms−1, as ex-
plained in Section 4.1. The particles in the shocked state have a null average velocity

109



Development of new numerical integration schemes for multiscale coarse-graining methods

800

1340

1880

2420

2960

3500

-1.5e-07 -1.24e-07 -9.8e-08 -7.2e-08 -4.6e-08 -2e-08

T
k
in

 (
K

)

x (m)

20ps
30ps
40ps
50ps

800

1020

1240

1460

1680

1900

-1.5e-07 -1.24e-07 -9.8e-08 -7.2e-08 -4.6e-08 -2e-08

T
in

t 
(K

)

x (m)

20ps
30ps
40ps
50ps

800

1340

1880

2420

2960

3500

-1.5e-07 -1.24e-07 -9.8e-08 -7.2e-08 -4.6e-08 -2e-08

T
k
in

 (
K

)

x (m)

20ps
30ps
40ps
50ps

800

1020

1240

1460

1680

1900

-1.5e-07 -1.24e-07 -9.8e-08 -7.2e-08 -4.6e-08 -2e-08

T
in

t 
(K

)

x (m)

20ps
30ps
40ps
50ps

Figure 4.5 | Instantaneous kinetic (left) and internal (right) temperature profiles on the slabs of
the cross-section (y,z) for the Hybrid (top) and SER (bottom) schemes integrated with a time step
∆t = 10−15 s.

because the particles of the left piston are of infinite mass. In the shock front, parti-
cles decelerate very fast, with the average velocity going from vinit to 0, as displayed in
Figure 4.7. The shock front position xshock is defined as the inflection point of the instan-
taneous velocity along the x-axis profiles at time t. However, we see in Figure 4.7 that
the transition from equilibrium to shock is performed in no more than 2 slabs, which
might cause instabilities when approximating the second derivative of the velocity pro-
files. Therefore, we estimate the shock position as n∆slab, where n satisfies

∣∣∣∣v
(n+1)
x − v(n−1)x

∣∣∣∣ ≥
2 |vinit|

3
, (4.2)

with v(n)x being the average on the slab indexed by n of the velocity according to the x-axis,
and ∆slab being the size of the slabs (∆slab ≃ 1.36× 10−9m as said before).

Figure 4.8 shows that the above procedure reveals that the shock front propagates
linearly in time. We thus can apply a linear fit to the estimated positions and define the
velocity of the shock front as the drift of the fit, i.e

xshock(t) = x0 + vshockt.

We display in Table 4.1 the computed shockwave velocities of SEM, SER and Hybrid
schemes for time steps ranging from ∆t = 10−15s to ∆t = 4× 10−15s. We notice that SEM,
in addition to not obtaining a stationary profile, accelerates the shock propagation com-
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Figure 4.6 | Instantaneous kinetic (left) and internal (right) temperature profiles on the slabs of
the cross-section (y,z) for Hybrid (top) and SER (bottom) integrated with time steps ranging from
∆t = 10−15 s to ∆t = 4× 10−15 s at time t = 4× 10−11s.
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Figure 4.7 | Instantaneous velocity on the x-axis profiles averaged on the slabs normal to the
x-axis of an Hybrid simulation or ∆t = 10−15s (SER yields similar results).

pared to SER or Hybrid, whose shock velocities are similar. Additional simulations of
the exact same systems but with a different random seed for the random number genera-
tor showed that the computed shock velocities did not vary of more than 0.5% from the
values presented in Table 4.1.

This shows that the schemes we developed for equilibrium simulations can be used to
simulate dynamical evolutions out of equilibrium, with time steps which are even larger
than the ones used for standard deterministic dynamics of fully atomistic systems.
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Figure 4.8 | Computed shock positions defined by (4.2) for SEM, SER and Hybrid simulations for
∆t = 10−15s. The SER and Hybrid positions are on top of each other while SEM exhibits a slightly
faster shock propagation.

SEM Hybrid SER

∆t = 1fs 2.268kms−1 2.201kms−1 2.202kms−1

∆t = 2fs 2.323kms−1 2.206kms−1 2.208kms−1

∆t = 4fs 2.412kms−1 2.213kms−1 2.206kms−1

Table 4.1 | Velocities of the shock front for SEM, SER and Hybrid simulations with time steps
ranging from ∆t = 10−15s to ∆t = 4× 10−15s. Additional simulations of the exact same systems
but with a different random seed for the random number generator showed that the computed
shock velocities did not vary of more than 0.5% from the above values.
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5
An attempt at accelerating

Shardlow’s Splitting Scheme
at equilibrium

We have seen in Chapter 3 that SSA is the best performing scheme for sequential DPDE
equilibrium simulations, even when SER and Hybrid are taken into account. The elemen-
tary splitting used by SSA for the discretization of the fluctuation/dissipation dynamics
of DPDE thus seems, to the extent of our knowledge, to be much more advantageous
than any global integration scheme presented to the community so far.

In this chapter, we perform an attempt at accelerating SSA estimations of equilibrium
observables. A simple computation following the lines of the derivation of the invariant
measure for DPDE[AM97, Esp97] shows that measures of the form (2.18) are still in-
variant when some fluctuation/dissipation interactions are missing. Therefore, we can
devise a new scheme, that we denote DPDE-, that uses the same splitting strategy than
SSA but randomly discards some elementary fluctuation/dissipation interactions in the
discretization of (2.27). This procedure allows to reduce the computational cost of the
integration of the fluctuation/dissipation dynamics, thus accelerating the simulations.
Figure 5.1 illustrates this idea of randomly discarding some fluctuation/dissipation in-
teractions. However, the dynamical behavior of the system is modified by this procedure:

(1) (2)

(3)

(4)

(5)

(6)

u
34 <

η

u 2
5
<
η

u 1
3
≥ η

u35 ≥ η

u
23 ≥

η

u
56 ≥

η

Figure 5.1 | Illustration of the DPDE- idea: Fluctuation/dissipation interactions (in red) are dis-
carded with a probability η (uij ∼ U (0,1)), while conservative interactions (in purple) are always
considered. The friction and random parameters are rescaled according to the ratio of fluctua-
tion/dissipation interactions discarded.

intuitively, the fluctuation/dissipation part is too weak, and should be strengthened by
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an appropriate rescaling of σ , depending on the fraction of neglected pairwise interac-
tions.

We organize this chapter by starting in Section 5.1 with the presentation of the DPDE-
scheme, and prove that it is of weak order one provided the fluctuation σ is rescaled
appropriately. We then study in Section 5.2 the influence of the discard ratio on DPDE-
simulations results, and compare DPDE- to the other schemes introduced in Chapter 2.

The SSA parallelization problem, as explained in Section 2.2.4, comes from couples
where each of the particles is allocated to a different processor. We could therefore ex-
tend the idea of the DPDE- from a random rejection criterion to a spatial criterion: fluc-
tuation/dissipation between "internal" particles are integrated using a SSA discretization
while fluctuation/dissipation interactions involving one "frontier" particle are neglected
(see Figure 5.2 for an illustration). The friction is then renormalized accordingly to this

internal

frontier

ghost

rcut

rcut

Figure 5.2 | The enclosed box in the full lines represents the space domain allocated to pro-
cessor p, the exterior region being allocated to other processors. Internal-internal or internal-
frontier elementary fluctuation/dissipation interactions are discretized with a SSA interaction.
Frontier-ghost elementary fluctuation/dissipation interactions are neglected.

new criterion. However, we show in Section 5.3 that this spatial rejection criterion pro-
duce numerical artifacts in the frontier between domains that do not vanish in the limit
of infinitely small time steps, and therefore cannot be used.

Discarding some interactions in SSA integration: DPDE-

As mentioned in the introduction of this chapter, the DPDE- scheme consists in apply-
ing a SSA discretization where some elementary fluctuation/dissipation interactions are
randomly discarded. Consider the DPDE elementary fluctuation/dissipation dynamics
given by (2.39) for particles i and j . Let us denote by η ∈ [0,1) the discard probability,
and rη the corresponding rejection function, which reads

rη(u) =


1 if u < 1− η,
0 otherwise.
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Consider γη and ση the friction and fluctuation parameter renormalized according to
η, the renormalization being made precise later on (the parameter γη is defined by the
alternative DPDE fluctuation/dissipation relation given by (2.21)). The result of a DPDE-
discretization of the elementary DPDE interaction (2.39) between particle i and j writes

Φ
DPDE−,ij
∆t,η (x,G,u) = rη(u)Φ

SSA,ij,η
∆t (x,G) + (1− rη(u))x, (5.1)

where x ∈ X , G ∼ N (0, Id), u ∼ U (0,1) and Φ
SSA,ij
∆t,η (x,G) the result of an SSA discetization

of the same elementary dynamics with renormalized parameters γη and ση used instead
of γ and σ . Note that only the components pi ,pj , εi , εj of the configuration of the system
are changed by these one-step iteration maps. The definition (5.1) means that, the vari-
ables (pi ,pj , εi , εj ) are updated according to a SSA scheme with probability 1 − η, while
the configuration is unchanged with probability η.

Respectively denote by P
DPDE-,ij
∆t,η and P

SSA,ij,η
∆t the transition operators associated with

Φ
DPDE−,ij
∆t,η and Φ

SSA,ij
∆t,η . A straightforward computation shows that

P
DPDE−,ij
∆t,η ϕ(x) = ηϕ(x) + (1− η)PSSA,ij

∆t,η ϕ(x). (5.2)

.

Proposition 5.1.1. The DPDE- discretization given by (5.1) is weakly consistent of order 1,
provided that

ση =
σ√
1− η

, and γη =
γ

1− η . (5.3)

In addition, its evolution operator satisfies

∀ϕ ∈ D, P
DPDE−,ij
∆t ϕ = e∆tLijϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ stays uniformly bounded for small ∆t in the sense of Definition 2.2.1 and Lij is the
generator of the elementary DPDE fluctuation/dissipation dynamics given by (2.39).

Using renormalization (5.3), we see that the DPDE fluctuation/dissipation relation (2.16)
still holds, i.e

γij,η = γη
βij
β

=
σ2
η

4

(
1
Ti

+
1
Tj

)
.

Proof. Fix ϕ ∈ D and x ∈ X . We have proved in Proposition 2.2.4 that P
SSA,ij
∆t,η satisfies

P
SSA,ij
∆t,η ϕ(x) = ϕ(x) +∆tLij,ηϕ(x) +O(∆t2),

where Lij,η is the generator of the elementary DPDE fluctuation/dissipation interaction
with parameters γη and ση . We have seen in the proof of Proposition 2.1.2 that

Lij,η = −γij,ηvij · Aij +
σ2
η

2
A2
ij , (5.4)
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with
Aij = ∇pi −∇pj −

vij,t
2

(
∂εi +∂εj

)
.

If ση satisfies (5.3), then we have

P
SSA,ij
∆t,η ϕ(x) = ϕ(x) +

1
1− ηLijϕ(x) +O(∆t

2).

Therefore, applying (5.2) then (5.4) gives us

P
DPDE−,ij
∆t,η ϕ(x) = ηϕ(x) + (1− η)PSSA,ij

∆t,η ϕ(x),

= ϕ(x) + (1− η)∆tLij,ηϕ(x) +O(∆t2),
= ϕ(x) +∆tLijϕ(x) +O(∆t2).

which proves the result.

The full DPDE- scheme uses the same splitting than SSA, and its transition operator
therefore writes

PDPDE−
∆t,η = PVV

∆t

(
PDPDE-,N−1,N
∆t,η . . .PDPDE-,1,2

∆t,η

)
. (5.5)

The proof of the following proposition immediatly derives from Proposition 5.1.1.

Proposition 5.1.2. The DPDE- discretization of the DPDE dynamics is weakly consistent of
order one, provided that

ση =
σ√
1− η

, and γη =
γ

1− η .

In addition, its evolution operator satisfies

∀ϕ ∈ D, PDPDE−
∆t,η ϕ = e∆tLϕ +∆t2r∆t,ϕ ,

where r∆t,ϕ stays uniformly bounded for small ∆t in the sense of Definition 2.2.1.

Remark 5.1.1. [Parallelization of DPDE-] As it stands here, DPDE- obviously suffers from
the same parallelization issues than SSA. Unless using the implementation procedure intro-
duced in [LBM+14], DPDE- cannot be used for parallelization. Extensions of DPDE- for
parallel simulations using a spatial rejection criterion are discussed in Section 5.3.

Numerical results

We now study the behavior of the DPDE- scheme for equilibrium sequential simulations.
We start this validation by considering the influence of the rejection probability η on
estimations of equilibrium observables, and thus define some empirical upper bound for
it. We then compare the DPDE- estimations to the SEM, SER and SSA estimations of
Chapter 3.
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Influence of the rejection probability on DPDE-

In theory, the DPDE- scheme is consistent for any rejection probability η < 1. However,
when η gets close to 1, numerical artifacts can appear, and it is therefore mandatory to
study the DPDE- behavior for different values of η.

We consider here the same systems than in the sequential simulations of Section 3.2.2.
Figure 5.3 presents estimations of the temperature using the estimators (2.24), (2.25) and
(2.26) introduced in Section 2.1.2, for simulations of time tf = 105 with time steps rang-
ing from ∆t = 0.005 to ∆t = 0.025 in reduced units, for DPDE- schemes with the rejection
probability ranging from η = 0.2 to η = 0.8 and for SSA (i.e DPDE- with η = 0). As seen in
Figure 5.3, the DPDE- estimations are very close to those of SSA and exhibit very small
biases, thus requiring very long simulation times in order to obtain the convergence. We
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Figure 5.3 | Numerical estimations of the equilibrium temperature as a function of the time step
for σ = 4, for DPDE- with various rejection probability and SSA. Top: Kinetic temperature (2.24)
(left) and potential temperature (2.25) (right). Bottom: Internal temperature (2.26).

notice that all estimations increase with η. Note however that all the estimations of the
DPDE- biases are similar to those of SSA, except maybe for the estimations using the ki-
netic temperature estimator with η = 0.8. We additionally notice that the configurational
temperature estimations of all the schemes overlap. Potential energy and virial pressure
estimations exhibit a similar behavior with however a weaker overlapping. This seems
to indicate that the DPDE- idea very weakly affects the estimations of position-related
observables. Therefore, the above results show that DPDE- still yields equilibrium ob-
servables estimations similar to those of SSA, for rejection probability up to η = 0.8.
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DPDE- estimations of equilibrium properties

We compare now the DPDE- estimations of the temperature with those obtained with
the SEM, SER and SSA schemes in Section 3.2.2. Similarly to Section 3.2.2, we consider
the schemes to be corrected by the projection procedure of Section 3.2.1, and we use the
same parameters. The DPDE- rejection probability is set to η = 0.5. Figure 5.4 shows
the average temperatures obtained from the estimators (2.24), (2.25) and (2.26) for σ = 4,
while results for the smaller fluctuation strength σ = 2 are reported in Figure 5.5. We
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Figure 5.4 | Numerical estimations of the equilibrium temperature as a function of the time step
for σ = 4 (with η = 0.5). Top: Kinetic temperature (2.24) and potential temperature (2.25). Bottom:
Internal temperature (2.26). Results of DPDE- and SSA are on top of each other.

notice that the difference between DPDE- and SSA estimations are negligible compared
to the differences between the estimations of SSA and those of the other schemes. This
shows that DPDE- is a good alternative to SSA when considering equilibrium sequential
simulations.

The limit of DPDE- in parallel simulations

Randomly discarding some fluctuation/dissipation interactions does not change the in-
variant measure, and, when rescaling appropriately the fluctuation parameter σ , yields
results similar to the ones obtained for SSA equilibrium simulations. However, the DPDE-
idea yields schemes that suffer from the same parallelization problem as SSA.

This can be countered by turning the random discard criterion into a spatial criterion:
elementary fluctuation/dissipation interactions are discarded when the particles under
consideration are allocated to different processors (see Figure 5.2). Such a rejection pro-
cedure would simply remove any problem concerning the parallelization of SSA, because
we simply do not consider the particle couples where the parallelization problems arise.
However, such an approach can introduce spatial heterogeneities in the discretization of
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Figure 5.5 | Numerical estimations of the equilibrium temperature as a function of the time step
for σ = 2 (with η = 0.5). Top: Kinetic temperature (2.24) and potential temperature (2.25). Bottom:
Internal temperature (2.26). Results of DPDE- and SSA are on top of each other.

the dynamics: the "frontier" particles of Figure 5.2 would interact with much less par-
ticles than the internal particles in terms of fluctuation/dissipation interactions. One
therefore has to take into account this heterogeneity when devising the parallel exten-
sions of DPDE-.

Let us give some details about this "parallel DPDE-" scheme. Consider again the
DPDE elementary fluctuation/dissipation dynamics given by (2.39) for particles i and j .
Consider a rejection function Rij (q) no longer depending on a uniform random variable
u but on the positions q, defined as

Rij (q) =


1, if (qi , qj ) are allocated to the same processor,

0, otherwise.

Consider γ ′ and σ ′ the renormalized friction and fluctuation parameters, where the
renormalization procedure is made precise later on. We define the parallel DPDE- dis-
cretization similarly to the random case by

Φ
DPDE−par,ij
∆t (x,G) = Rij (q)Φ

SSA,ij,′
∆t (x,G) + (1−Rij (q))x, (5.6)

where x ∈ X , G ∼ N (0, Id) and Φ
SSA,ij,′
∆t is the SSA discretization of the DPDE elemen-

tary fluctuation/dissipation dynamics with parameters γ ′ and σ ′ instead of γ and σ .
Note that, again, only the components pi ,pj , εi , εj of the configuration of the system are
changed by these one-step iteration maps.

In constrast to the random case, where the renormalization procedure naturally comes
from the definition of the DPDE- scheme, we propose here two renormalization ap-
proaches:
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• Global renormalization. We compute the ratio ηn between the number of dis-
carded elementary interactions and the total number of elementary interactions,
and replace σ and γ with

σn =
σ√

1− ηn
, γn =

γ

1− ηn .

Note that the fluctuation/dissipation relation (2.16) still holds for σn and γn. In
opposition to the random case, the ratio ηn is not constant and depends on the po-
sitions of all particles. The idea is however that, in translation invariant systems
with periodic boundary conditions, the probability for two particles to be on differ-
ent processors should be constant in average. In fact, ηn should not vary much in
time for large homogeneous systems at equilibrium.

• Local renormalization. One may argue that a global rescaling may be too dras-
tic since the random interactions will be too strong in some parts of the system,
while still too weak in others. Indeed, the global renormalization does not take into
account the heteregoneity of the parallel DPDE- integration. Performing a local
renormalization where the fluctuation is enhanced only for particles experiencing
a depleted fluctuation/dissipation environment may lead to weaker perturbations
on the dynamics. In order to formalize this idea, we introduce the ratio ηni between
the number of discarded elementary interactions of particle i with its neighbors
and the number of neighbors of i. There are many ways to generalize (5.3) in order
to renormalize the interaction between particles i and j . We chose for instance to
replace σ with

σ

√
1
2




1
1− ηni

+
1

1− ηnj


.

Note that, from a practical viewpoint, the implementation of DPDE- requires a first quick
pass on the system to compute the ratios of discarded interactions, before actually per-
forming the updates of the momenta and energies in a second pass. Of course, interac-
tions between particles whose distances are larger than the cut-off radius are never taken
into account in the computation of the ratios used for the renormalization.

Unfortunately, both parallel version of the DPDE- scheme yield artificial discrepan-
cies. We consider a system of N = 16,000 DPDE particles alocated to 8 processors, with
a Lennard-Jones conservative potential fitted for Argon, with ρ ≃ 0.579, Cv = 50 and
σ ≃ 16.16. Figure 5.6 displays the kinetic and internal temperature as well as the den-
sity profiles on the slabs of the cross-section (y,z) averaged over the whole trajectory, for
DPDE- simulations using time steps from ∆t = 0.5× 10−3 to ∆t = 1.8× 10−3 in reduced
units. We notice that artificial density peaks occur in the frontier between processors,
and we see that these peaks do not vanish when the time steps goes to 0: they kept the
same amplitude for simulations where the time step was pushed to ∆t ≃ 1.4× 10−4 (not
reported here).

Additional simulations not reported here also showed that the amplitude of these
peaks increase with the density of the system as well as the value of σ . The profiles of
the kinetic and internal estimators seem however unaffected, and the disparity observed
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Figure 5.6 | Averaged virial XX pressure profiles on the slabs of the cross-section (y,z) for the
parallel DPDE- scheme with global renormalization integrated with time steps ∆t ≃ 0.58× 10−3
(violet), ∆t ≃ 1.16× 10−3 and ∆t = 1.74× 10−3 in reduced units. Top: average kinetic (left) and
internal (right) temperature profiles. Bottom: average density (right) profile.

between the average values of the different kinetic temperature profiles of Figure 5.6
are due to the biases related to the time step: as reported in Section 3.2.2, these biases
depend on the time step and on σ , and are much larger for a given ∆t and σ for the
kinetic temperature than for the internal temperature.

The same behavior is observed for the parallel DPDE- scheme with local renormaliza-
tion, as displayed in Figure 5.7.

The fact that both global and local parallel DPDE- schemes yield numerical discrep-
ancies that do not arise from the use of finite time steps but depend on the system con-
figuration (our simulations have exhibited their dependence on the system’s density and
σ , but other factors might come into play) indicate that both schemes are not consistent
and therefore should not be used.
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Figure 5.7 | Averaged virial XX pressure profiles on the slabs of the cross-section (y,z) for the
parallel DPDE- scheme with local renormalization integrated with time steps ∆t ≃ 0.58× 10−3
(violet), ∆t ≃ 1.16× 10−3 and ∆t = 1.74× 10−3 in reduced units. Top: average kinetic (left) and
internal (right) temperature profiles. Bottom: average density (right) profile.
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Perspectives

We have seen in the previous chapters that both new schemes SER and Hybrid behaved
consistently on equilibrium and nonequilibrium systems. Hybrid was found to be the
most accurate scheme, with an accuracy comparable to SSA’s, and the best scheme so
far considering the CPU cost/accuracy ratio, as displayed in Table 3.1, when consid-
ering straightforwardly parallelizable schemes. Both Hybrid and SER schemes have
been found to correctly reproduce the shocked behavior of Lennard-Jones DPDE systems
whereas SEM could not.

However, Hybrid is a blending of SER into SSA, and therefore is cursed with the same
problem as SSA: it is not adapted to thread parallelization. Thread parallelization is a
process where several processor units have access to the same shared memory, in oppo-
sition to MPI parallelization (abusively named parallelization in this thesis), where each
processor unit has its own memory, and every information between processors must be
sent through special routines. The future architectures of supercomputers are architec-
tures mixing thread and MPI parallelization, where nodes consisting of several processor
units sharing the same memory communicate through the MPI standard. It is therefore
desirable that numerical algorithms are adapted to these new architectures. Newtonian
MD has already been adapted to this new standard [Cie15]. As for DPDE, SEM, SVV and
SER schemes are adapted to thread parallelization (we say that such schemes are thread-
able), but Hybrid, while constructed to be straightforwardly MPI parallelizable, is not
threadable because of the sequentiality of its SSA part.

We mentioned in Section 3.2.2 that the SER integration for σ = 4 and Cv = 10 yielded
negative energies even for small time steps due to the energy reinjection procedure. More
generally, additional simulations not reported in this work indicate that SER was more
likely to produce particle with negative internal energies than Hybrid or SSA. In addition,
we saw that the biases estimations of SER simulations, corrected by the energy reinjection
procedure, were an order of magnitude larger than those of SSA or Hybrid. We thus have
with Hybrid an accurate DPDE scheme that isMPI-paralellizable but inadapted to thread
parallelization. On the other hand, we have with SER a threadable scheme, much more
accurate than the remaining parallelizable options previous to this work, but much less
accurate than Hybrid or SSA, and for which particles with negative internal energies are

123



Development of new numerical integration schemes for multiscale coarse-graining methods

more likely to appear.
A fix to this accuracy, stability and thread-parallelization problem could be the con-

struction of a weak order two scheme inspired from the SER integration. The SER-like
integration would be threadable, and the higher accuracy arising from the weak order
two could improve both the accuracy and the stability of the simulations. In order to
devise such a scheme, we could start by devising a weak order two discretization of the
elementary DPDE dynamics. The pairwise structure of the fluctuation/dissipation could
then allow us to extend this discretization to the full fluctuation/dissipation DPDE dy-
namics. The Velocity-Verlet discretization being of order two, a Strang splitting would
then yield a DPDE discretization of weak order two.

The idea behind the construction of a weak order two discretization of (2.39) is to
"evaluate" γij,t+∆t/2 before integrating the momenta from t to t + ∆t with the analytical
integration (2.40) and the evaluated friction parameter. This procedure allows to take
into account the dependence of γij with the internal energies in the discretization of
(2.39), and thus achieve weak order two accuracy. Indeed, in opposition to DPD, the
friction parameter γij is no longer constant in DPDE but depends on Ti and Tj , and
therefore on εi and εj by (2.12). Not taking this into account forbids obtaining a weak
order two accuracy. This is why the adaptation of SSA to the DPDE framework reported
in Section 2.2.3 is of weak order one, in opposition to the original SSA made for DPD
which is theoretically of weak order two (if a Strang splitting is used).

Consider a procedure that estimates γij,t+∆t/2 as

γ̃n+1/2ij = γnij +C
n
√
∆t +Dn

∆t.

The analytical integration (2.40) performed using γ̃n+1/2ij instead of γnij writes



γ̃n+1/2ij = γnij +C
n
√
∆t +Dn

∆t,

pn+1i = pni +
(
e−γ̃

n+1/2
ij µij∆t − 1

) vnij
µij

+σ

√√√
1− e−2γ̃

n+1/2
ij µij∆t

2γ̃n+1/2ij µij
Gnij ,

pn+1j = pnj −
(
e−γ̃

n+1/2
ij µij∆t − 1

) vnij
µij

+σ

√√√
1− e−2γ̃

n+1/2
ij µij∆t

2γ̃n+1/2ij µij
Gnij ,

εn+1i = εni −
1
4

[
µi(p

n+1
i )2 +µj (p

n+1
j )2 −µi(pni )2 −µj (pnj )2

]
,

εn+1j = εnj −
1
4

[
µi(p

n+1
i )2 +µj (p

n+1
j )2 −µi(pni )2 −µj (pnj )2

]
.

(5.7)

Therefore, one should look for terms Cn and Dn such that (5.7) is of weak order two,
according to procedures detailed in Section 1.3.1.

Apart from devising a weak order two scheme, we can devise corrections that can be
used for existing schemes whenever negative internal energies are encountered. Indeed,
even stable scheme can have a nonzero probability of yielding DPDE particles with nega-
tive energies. Therefore, a procedure allowing the simulation to continue whenever such
events occur is desirable.

In a pratical point of view, whenever some particle, indexed by i for instance, has a
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negative internal energy, one might think of several procedures in order to continue the
simulation anyway.

• Kinetic energy can be transformed into internal energy for the i-th particle. If the
kinetic energy is not sufficient, the kinetic energy of its neighbor can also be taken
to compensate. However, this procedure does not preserve the total momentum.

• In order to preserve the total momentum, one can transfer some internal energies
of the neighbors to the i-th particle. However, this method may introduce biases
because it cools down a group of particle in order to warm up a single one. It
thus might increase the probability of another particle having a negative internal
energy, therefore making the procedure unstable. This procedure however ensures
the momentum conservation.

• The third option is to use adaptive time steps: whenever a particle i has its internal
energy turn negative, we reject the move and use a smaller time step ∆t′ < ∆t to
discretize the dynamics of the considered particle and its neighbors over [t, t +∆t].
However, in order for the discretization to remain consistent, one should be cau-
tious to use Gaussian numbers G′ such that

⌊ ∆t
∆t′ ⌋∑

k=1

G′,kij = Gnij ,

for every neighbor j affected by the time step change.

Note that these procedures have not been implemented in the simulations displayed in
this work, and that their mathematical analysis is still missing.
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Conclusion

Previous to this thesis, DPDE lacked accurate and straightforwardly parallelizable schemes
for its integration. The best-performing scheme, named SSA, is accurate but its sequential
nature prevents it from being simply parallelizable. The other two remaining options are
schemes called SEM or SVV that have both very poor energy preservation properties and
thus need prohibitively small time steps in order to correctly integrate DPDE systems.
The main Cea/Dam motivation for the use of DPDE being to perform massively paral-
lel simulations of shocked systems in decent times, accurate and parallelizable DPDE
schemes were desirable.

Two new numerical schemes satisfying both conditions have been introduced in this
thesis. The first one is termed SER and is adapted to the future architecture of super-
computers by being threadable while the second, a merge of SER and SSA appropriately
termed Hybrid, is as accurate as the reference SSA scheme. We have shown that both
schemes bring a substantial improvement compared to SEM or SVV. Indeed, on the first
hand, we have shown that both of them are consistent with other existing schemes and
have significantly better energy conservation properties than SEM or SVV. On the other
hand, we showed that both accurately describe a shock propagation in a DPDE fluid for
parameters at which SEM could not obtain a stationary state. In the negative side, SER
was found to be more unstable than the other schemes by yielding particles with neg-
ative energies with higher probability. As for Hybrid, its blending into SSA makes it
incompatible with thread parallelization. Nevertheless, this thesis defines Hybrid to be
the new best option today for parallel DPDE integration, with an accuracy similar to SSA.
However, SER seems to be the most promising option, and work on a weak second order
scheme adapted from its energy reinjection procedure is currently being performed.

This thesis therefore gives two consistent options for massively parallel DPDE simula-
tions, one adapted to nowadays supercomputers and the second that will allowmassively
parallel accurate DPDE simulations on future supercomputers. This will help the under-
standing of complex shocked systems, which is one of the objectives of the Cea/Dam.
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