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Chapter 1

Introduction

1.1 Estimating the state of a dynamical system

Estimating unknown state of a dynamical system from indirect and imprecise measure-
ments is essential in almost all technological fields. Navigation of aircrafts, weather fore-
cast, autonomous vehicles control, underwater exploration, oil drilling and medical imag-
ing to cite a few. From a mathematical point of view, if the state changes over time due to
human intervention or physical laws, the problem is usually set down under the following
general form:

d
dt

X = fu(X ,w),

Y = h(X ,V ).
(1.1)

X is the information of interest, that is, the state: orientation and position of a flying
aircraft, air masses situation in meteorology, environment of a vehicle in robotics, etc. Its
evolution over time, represented by the function f , depends on its current value X , some
additional known parameters u, and some unknown, unpredictable, erratic elements de-
noted by w. If X is the state of a plane (its heading, velocity, position, etc.), f can represent
the (known) laws of Mechanics, u the (known) velocity of the propeller and w all the uncer-
tainties over movements: wind variations, imperfect operating of the piloting commands,
approximate knowledge of the aerodynamics of the aircraft, etc.

Y denotes here all the measured variables. Through h, they are defined as a func-
tion of X , i.e. of the state of interest. Y can be for example a GPS signal received by a
plane: it gives only the position, from which course and attitude have still to be deduced.
Moreover, this observation also depends on a set of unsteady and unpredictable param-
eters denoted by V (GPS errors). The two main approaches to this kind of problems are
probabilistic filtering and deterministic observers.

1.2 Probabilistic filtering

Probabilistic filtering is a branch of stochastic process theory that has been strongly
driven by applications in control and signal processing. It aims at computing the expecta-
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tion (or mean value) X̂ of the state X defined above conditioned on the past information,
which requires estimating its whole probability density function (p.d.f.). In the particular
case where the system is linear and corrupted by independent white Gaussian process
and observation noises, this function is Gaussian. This implies it can be fully described
by its mean value and covariance matrix. The evolution of these two variables follows the
equations of the celebrated Kalman filter [65]. Yet, when the system is non-linear there is
no general method to derive efficient filters, and their design has encountered important
difficulties in practice. Indeed, general filtering equations describing the evolution of the
p.d.f. (see e.g., [27] and references therein) concern a function and cannot be reduced
to a finite-dimensional computation.

For this reason, many approximation-based solutions have been proposed. In engi-
neering applications the most popular of them is the extended Kalman filter (EKF). This
method amounts to linearize the system around the estimated trajectory, and build a
Kalman filter for the linear model, which can in turn be implemented on the non-linear
model. One merit of the EKF is to convey an estimation of the whole density probability
of the system through a mean state X̂t and an approximation of the covariance matrix
Pt of the error. These can be used to draw "uncertainty ellipsoids", that is, sets likely to
contain the true value of X . They have to be seen as the confidence of the algorithm in
its estimate X̂(t): the true state is not supposed to be exactly X̂(t) but at least to be in
the area defined by the ellipsoid. They are hoped to be representative of the reality (i.e.
to contain the true value of the state), but as they are obtained by ways of linearization,
this has no reason to be true. A good illustration of this issue is given by Simultaneous
Localization and Mapping (SLAM) problem. This problem consists for a robot in building
a map of its environment while localizing itself in this map. A theoretical study performed
in [61], as well as convincing simulations [8], showed that for this problem the EKF even-
tually becomes inconsistent, in the sense that the true state has excessive probability to
be outside the trusted ellipsoid. This may be harmful as it may for instance result in a
collision by misestimating the distance from the robot to an obstacle. In particular, the es-
timated uncertainty over heading decreases although the general orientation of the map
and robot are not observable.

In order to capture more closely the distribution, several rather computationally ex-
tensive methods have recently attracted growing interest. Unscented Kalman Filter [62]
proposes to compute the covariance matrices appearing in the EKF using a smart deter-
ministic sampling. In most cases (see [107]) the results obtained are better than those of
the EKF but [8] showed it does not fix the problems of EKF SLAM inconsistency. Particle
filters [28,50] generate a random set of points (the "particles") following a procedure mak-
ing the result (almost) equivalent to a direct sampling of the p.d.f of interest. Then, the
expectation of any useful quantity (the state for instance) can be evaluated as its mean
value on the obtained points. With a sufficient number of particles, the result can be made
as accurate as wanted. The main drawback of such an approach is the growing size of
the sample needed as the dimension of the system increases. In particular, too a sparse
sampling compared to the dimensionality of the problem leads to a type of degeneracy:
no particle matches the data, even approximately, and the weights vanish. Several solu-
tions have been proposed to tackle this issue, the two main ideas being either to use the
observations to smartly propagate the particles [100], or to sample only a reduced set
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of relevant variables then use a classical filtering method for each particle to marginalize
out the remaining variables. Of course, both can be used simultaneously. The latter is
known as the Rao-Blackwellized Particle Filter [39]. Only some of the variables forming
the state X are sampled, so that the evaluation of the remaining variables boils down to a
linear problem. This residual estimation can be performed using classical Kalman filter-
ing. This is the solution proposed in [84] to the non-linearity issues arising in SLAM: only
the heading of the robot is sampled, and for each obtained value a Kalman filter builds
the map and localizes the robot.

Filtering on manifolds If the system is naturally defined on a manifold (consider for
instance 3D attitude estimation, where the state of the system is a rotation matrix), many
works have sought to avoid parameterization and the implied distortions and singularities
[41, 60, 88]. The specific situation where the process evolves in a vector space but the
observations belong to a manifold has also been considered, see e.g. [40, 90] and more
recently [95]. For systems on Lie groups powerful tools to study the filtering equations
(such as harmonic analysis [73, 89, 109, 111]) have been used, notably in the case of
bilinear systems [110] and estimation of the initial condition of a Brownian motion in [42].

Minimum energy filtering A somewhat different but related approach to filtering con-
sists of finding the path that best fits the data in a deterministic setting, which is equivalent
to compute the state maximizing the likelihood of the data. It is thus related to optimal
control theory where geometric methods have long played an important role [25]. A cer-
tain class of least squares problems on the Euclidean group has been tackled in [53].
This approach has also been used to filter inertial data recently in [93], [76]. Note that
for linear systems with Gaussian noises, this definition of the optimal estimate coincides
with the previous one and is again given by the Kalman Filter.

1.3 Deterministic observers

The other route to estimate the value of an unknown dynamical system is the design of
a deterministic observer. This general concept denominates a variable whose evolution
has been chosen by the practitioner as a function of the available data, in a way ensuring
the convergence to zero of the error X(t)− X̂(t) where X̂(t) denotes the estimate of the
true state X(t) of the dynamical system under consideration. The fundamental difference
with the filtering approach is that it does not take into account the noise directly, that is
we assume the noise is always turned off (w = 0 and V = 0 in the above equations). The
very structure of the general form of observers (most of them are made of a copy of the
dynamics plus a correction term) is built to make it perturbation- or noise-resistant, but
the theoretical study focuses on its convergence only when noise is turned off. Although
less intuitive, this simplification allows more powerful convergence results in some cases,
and the rationale is that a globally convergent observer should be robust even to large
noises as the error tends to return to zero no matter its size.

For linear systems, the problem of designing observers is now well understood and the
celebrated Luenberger observer [74] allows to assign the velocity at which the estimation
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error should exponentially return to zero. Its tuning is experimental, and depends on
the level of noises, the idea being that for large noises the convergence velocity should
not be too high, as the incoming data cannot be fully trusted. For non-linear systems,
there is no general method to design observers, but, there has been very interesting
solutions introduced for certain classes of systems. Systems known as linearizable by
output injection [52] can be reduced to the linear case where usual methods apply. For
system having observability normal form with triangular structure, high-gain observers
are appropriate [2–5,49,85].

The Kalman filter as an observer An interesting property of the Kalman filter is to
be also a convergent deterministic observer. Indeed, if the data are noiseless (i.e.
V = 0,w = 0), and the equations are linear, for any choice of positive definite covari-
ance matrices for the trusted noises (here they should be referred to as tuning matrices
Q,R since we assume there is no noise) the estimate X̂ converges to the true state X
under natural assumptions [38]. In the non-linear case, the EKF does not possess any
convergence guarantee, and its efficiency is aleatory. Indeed, its main flaw lies in its very
nature: the Kalman gain is computed assuming the estimation error is sufficiently small
to be propagated analytically through a first-order linearization of the dynamics about the
estimated trajectory. When the estimate is actually far from the true state variable, the
linearization is not valid, and results in an ill-adapted gain that may amplify the error. In
turn, such positive feedback loop may lead to divergence of the filter. This is the reason
why most of the papers dealing with the stability of the EKF (see [23,24,92,102]) rely on
the highly non-trivial assumption that the eigenvalues of the Kalman covariance matrix
P(t) computed about the estimated trajectory are lower and upper bounded by strictly
positive scalars. Under this assumption, the error as long as it is sufficiently small can
not be amplified in a way that makes the filter diverge. To the author’s knowledge, only a
few papers deal with the stability of the EKF without invoking this assumption [69]. It is
then replaced by second-order properties whose verification can prove difficult in practi-
cal situations. This is also due to the fact that the filter can diverge indeed in a number
of applications. Moreover, the lack of guarantees goes beyond the general theory: there
are few engineering examples where the EKF is proved to be (locally) stable.

1.4 Autonomous error equations

Both Luenberger observer and Kalman filter allow to build estimation methods with con-
vergence guarantees for deterministic linear problems defined by the general equations:

d
dt

Xt = AtXt +Btut ,

Ytn = HnXtn ,

where Xt ∈ Rn is a vector and At , Bt , Hn are matrices with appropriate dimensions. Note
that we removed the noises Vn and wt from the equations (see explanations above).
These filters share the general form:
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Propagation:
d
dt

X̂t = At X̂t +Btut , tn−1 < t < tn,

Update:
X̂+

tn = X̂tn +Kn
(
Yn−HnX̂tn

)
, t = tn,

where X̂t is the estimate, the superscript + is used to denote the value of the estimate
just after the update and Yn is the observation at time tn. Matrix Kn, called "gain", is
defined differently depending on the chosen method. But in any case, the estimation
error et = Xt − X̂t has the following evolution:

d
dt

et = Atet ,

e+tn = (Id−KnHn)etn .

The estimate X̂t and true state Xt do not appear in these equations. This property is
the founding principle of all the convergence results of these methods. Indeed, it makes
the analysis of the error et independent from a specific trajectory of the system. One of
the contributions of the present work is to study non-linear systems offering the same
advantage. In more mathematical terms, the properties we are interested in are the
following:

Definition 1 (Autonomous error equation). Consider an observer providing an esti-
mate X̂t defined by the two usual steps:

Propagation:
d
dt

X̂t = fut (X̂t), tn−1 < t < tn,

Update:
X̂+

tn = ψ
(
X̂tn ,h(Xtn),(us)s6tn

)
, t = tn,

where ψ is a function of the current estimate, the observation and the past inputs.
The error variable et = ε(Xt , X̂t) is told to follow an autonomous equation if there exist
two functions g and ψe such that for any couple of solutions X , X̂ of respectively the
system and the observer (or filter) dynamics, the error et = ε(X , X̂) verifies at each
step:

Propagation:
d
dt

et = gut (et), tn−1 < t < tn,

Update:
e+tn = ψ

e (etn ,(us)s6tn) , t = tn.

The terminology "fully autonomous error variable" will be used if the function ψe is in
addition totally independent from the inputs.
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Note that the terminology "autonomous" above is slightly abusive at it allows the error
equation to depend on the time through the inputs, this is why we introduce the concept of
"fully autonomous" which corresponds to the standard notion of autonomy in the ordinary
differential equations literature.

A natural question is whether or not non-linear systems offering such an error variable
exist. A first answer is given by the theory of invariant observers.

1.5 Invariant observers

Invariant observers are a class of deterministic observers meant to be appropriate to
dynamical systems possessing symmetries. Roughly speaking, a dynamical system pos-
sesses symmetries, if it “looks” the same after having undergone a certain transformation.
For instance, the motion of a car looks the same whether it is heading west or north. How-
ever, a badly tuned extended Kalman filter meant to estimate the motion of the car, might
behave differently in both cases. Invariant observers remedy this issue: their general form
is such that the estimation is identical for the transformed system. They were introduced
to our best knowledge in [1] and well developed in [15,19] (see also e.g. [10,106]). Such
observers do not have any guaranteed convergence properties. However, for a system
living on a Lie group and having enough symmetries, namely a left-invariant dynamics
with right-equivariant output (and vice versa), the estimation error between the true state
and the state estimated by an invariant observer has an autonomous evolution [16]. This
property has been discovered independently and leveraged by many authors in various
theoretical and applicative contexts (see e.g. [51,70,77,105,106]). The idea of taking ad-
vantage of the properties of Lie groups to design convergent observers (see also [78–80])
is surprisingly new if compared to the wide literature dedicated to the subject of bringing
the symmetries or Lie group structure to bear on the design of controllers, dating back
to the 1970’s [64]. The popularity of the approach has persisted [26, 63] and has lead to
very interesting and relatively recent methods [46,86,87].

1.6 Contributions of the present thesis

The present work has been made possible by previous research on invariant observers
initiated in [16,19]. We believe the breakthrough of this theory was to show that observers
combining a non-linear error variable (error between true and estimated state) with a non-
linear innovation (that is, correction) term could lead to an autonomous error equation.
The same authors also suggested to linearize the introduced non-linear invariant error
and to use Kalman equations to make it decrease, leading to the theory of the Invariant
EKF (IEKF), see [14,17]. By the time this PhD started, some questions were however left
unanswered:

1. Invariant systems are generally not linear and linear system are generally not invari-
ant, but they share the property of having an error variable with autonomous error
equation. Is there a more general class of systems containing both but preserving
their main characteristics ?
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2. Beyond the IEKF, what properties should one expect from an EKF which is meant
to make a linearized non-linear error variable decrease, that is a general function
ε(X , X̂) rather than the usual linear state error X̂−X ?

Industrial motivations The starting point of the present work is industrial applications
to inertial navigation and aircraft geo-localization. Indeed, the present PhD was done
in partnership with the company SAGEM, the No. 1 company in Europe and No. 3
worldwide for inertial navigation systems (INS). Half of the time was spent within the
company. The initial goal was to apply the theory of symmetry-preserving (or invariant)
observers for the problem of geo-localization. This came with two constraints:

1. Current state estimation in SAGEM’s products essentially relies on extended Kalman
filtering. Indeed, the EKF has proved to be reliable for a wide range of aerospace
applications for a long time now (starting with the Apollo program). Industrialists
are conscious of its potential shortcomings; but generally trust its performances
and appreciate its easiness of implementation and low computational requirements
(compared to sampling based state of the art particle filters). The novel algorithms
developed should be essentially based on extended Kalman filtering as well to be
industrially acceptable and lead to commercial products. Last but not least, the high
rate of inertial measurements and the discrete nature of other measurements (GPS,
altimeter, etc.) favored the use of continuous-time EKFs with discrete observations.

2. Even the simple system of an aircraft or Unmanned Aerial Vehicle (UAV) navigating
on flat earth equipped with accelerometers and gyrometers does not define a left-
invariant system on a Lie group, and thus does not fit into the framework of [16] that
allows for an autonomous error equation, a key property being at the heart of our
present work. Yet the true navigation equations as used by SAGEM engineers are
even much more complicated than this. This raised the question of extending the
approach to systems that were neither left nor right invariant systems on Lie groups.

For those reasons, the present work essentially focuses on the Invariant EKF (which
is a form of EKF) on Lie groups for state estimation, with continuous time dynamics and
discrete observations, and seeks to broaden the class of systems for which such a tool
may prove useful.

The IEKF as a stable observer for a broad class of systems The main contribution
of the present work is to characterize the class of systems defined on Lie groups such
that in the absence of measurements, the (invariant) error between the true state and
the estimated state (that is, any other solution to the dynamical system in question) fol-
lows an autonomous equation (to be more precise an equation that may depend on the
system’s inputs but which does not explicitly depend on the true nor estimated system’s
state). Those systems include left and right invariant dynamics, but also a combination of
both, linear dynamics and some more complicated systems also. We further show that,
for this class of systems the logarithm of the invariant error follows a linear differential
equation in the Lie algebra, although the system is totally non-linear (the dynamics is
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non-linear and the state space is not a vector space). The very unexpected latter prop-
erty is leveraged to prove that for this class of systems on Lie groups, the IEKF viewed
as a deterministic observer (that is turning all noises to zero) converges around any tra-
jectory under standard observability conditions. This is a very remarkable feature as it
is unusual to be able to design non-linear observers that converge around any trajectory
for challenging non-linear systems of engineering interest, and here the linearized error
system is time-dependent (through the system’s inputs and the linearization around the
estimated state) which makes it a challenge to stabilize. Many systems of engineering
interest modeling the behavior of a body flying in space fit into the proposed framework,
and the IEKF inherits the local convergence properties derived in the general case.

Stochastic convergence properties of invariant observers Then, the present the-
sis investigates the stochastic properties possessed by estimators with the autonomous
error equation property. More precisely, we consider invariant observers (with constant
non-linear gains) such that the estimation error follows a fully autonomous equation (that
is does not even depend on the inputs). Even if the design is made by assuming noise
is turned off, we turn the noise on and study how the observer behaves. In this case,
the estimation error becomes a time-homogeneous Markov chain due to the autonomy of
the error. We then show that under some assumptions, the error’s distribution (as a ran-
dom variable) converges asymptotically to some fixed probability distribution. This is an
unusual result in the theory of filtering on Lie groups, and from a practical viewpoint, it al-
lows to tune the gains so as to minimize the dispersion of the asymptotic distribution, that
can be evaluated empirically through Monte-Carlo simulations. The gain tuning can thus
possess some optimality properties although assessed in advance, i.e. independently
from the actual measurements, a surprising and remarkable property.

Non-linear state errors for EKF-SLAM The last important contribution of the present
work is to attempt to generalize the invariant approach, or in other terms attempt to un-
derstand at a more general level what makes it so appealing. Concretely, we raise the
issue of the use of general non-linear state errors when devising EKFs, not necessarily
on Lie groups. We wonder : what is the virtue of non-linear estimation errors rather than
linear errors (beyond being able to prove some convergence properties) ? For example,
given that one can devise two types of invariant errors on Lie groups (right-invariant and
left-invariant, see [15]) which one should one prefer ? We propose two answers to those
questions.

The first answer deals with the issue of observability. Indeed, if some variables (or
some combination of variables) are not observable, then an observer, or an EKF should
not try to estimate those variables. However, the EKF sometimes does not “see” those
variables are not observable, and due to linearization it starts thinking it could estimate
them. This leads to inconsistency of the EKF estimates (that is over-optimism with respect
to its estimates) in the problem of [61] for example. A simple way to remedy this issue,
is to devise a non-linear state error such that the non-observable directions are always
the same for this error, independently of the state X . This is in general impossible to
achieve, but becomes feasible when on can produce an error whose evolution is relatively
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independent of the trajectory (ideally is autonomous). Note that, such a problem does
not arise in linear systems as the non observable directions are the same whatever the
state X . For this reason, we have managed to devise an EKF for the SLAM (simultaneous
localization and mapping) problem that solves a part of the very well-known inconsistency
issues in the EKF-SLAM [8, 31, 57–59, 61] . This is a novel result to our knowledge, and
we believe it is a fundamental result in estimation theory and robotics.

The second approaches the problem from the other end: in many applications of the
EKF (and especially in SLAM) some function of the state is observable with extreme pre-
cision while the remaining part is still uncertain. This is what happens for example if a
robot travels for a long time with little heading information. It is able to build an accurate
map of its close environment but has no idea of the absolute orientation of this map.
The covariance matrix P of the EKF is then almost singular. When this kind of situation
arises in a linear problem, the Kalman filter still works perfectly and its updates are con-
tained in the "authorized" space, i.e. in the vector space spanned by the eigenvectors
of P having non-zero eigenvalues. In our (non-linear) SLAM example, the corresponding
property would be the local map to be only rotated by a heading update resulting from
a late heading measurement (but without shape distortion of the map). We will show
this is not verified at all by a classical EKF. But with an appropriate error variable and a
modified update discussed in this document, an EKF natively ensuring this property can
be obtained without any patchwork forcing the constraint.

Industrial contributions The theory developed in this document was successfully ap-
plied to some estimation problems arising in inertial navigation. This field aims at using
inertial measurements coming from accelerometers and gyroscopes to compute the po-
sition, velocity and attitude of a vehicle. Merging the data provided by these sensors with
other sources of information is usually performed using an EKF and gives a natural appli-
cation to the class of filters we study here. As the current methods are already efficient,
we focused on the situations where they reach their limits.

• The first one is the transitory phase of the convergence where the estimation error
is possibly large. An EKF failing in this situation to achieve acceptable performance,
some methods involving preliminary coarse estimation steps are currently in use.
Their design is not trivial and has to be adapted to each new situation. Moreover,
the coarse estimation phase extends the duration of the initialization, which can be
critical in practice. The enhanced EKF we implemented preserves its performance
even for very large initial errors and allows to skip the coarse estimation steps.
The implementation and adaptation become straightforward, the time required for
initialization is reduced and some constrained imposed to the pilot can be loosened.
This method has been industrially approved and adopted by SAGEM to replace their
state of the art EKF algorithm on a wide-spread commercial military device.

• The second one is the case of a quasi-static pose, with constant heading but pol-
luted by a specific pattern of movement. If the EKF maintains its estimate using
as an observation the fact that the position is approximately constant, a system-
atic error appears on the long run, due to the issue of false observability explained
further down this document. This can be solved by some patch-up work designed
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precisely to solve this problem, but raising also new issues. The method developed
during the thesis for this filtering situation solved the encountered problem although
not being specifically tuned for that.

1.7 Organization of the document

Chapter 2 is a brief tutorial giving the basic notions about Lie groups required to read this
document. We divided the sequel into three parts. To some respect, the parts can be
read independently. Note, this comes at the price of several repetitions throughout the
manuscript.

Part I is dedicated to the IEKF. We first characterize in Chapter 3 a large class of sys-
tems on Lie groups where an error having autonomous propagation can be designed.
This novel framework, containing left-invariant dynamics, right-invariant dynamics, com-
binations of both, linear dynamics, and some systems arising in inertial navigation, is
shown to ensure novel and striking linearity properties. An IEKF for this extended class
of systems is then presented in Chapter 4, along with new stability properties applied
to a long list of examples. The benefits of the approach are illustrated in Chapter 5 by
industrial applications and comparison with tried and tested commercial softwares.

Part II introduces a fully probabilistic framework and then considers the whole probabil-
ity density function of the state of the system as the quantity of interest. The framework of
stochastic processes on Lie groups is used in Chapter 6 to write the evolution of the error
as a Markov chain (more precisely a Harris chain) and we show under proper conditions
the almost global convergence property of the deterministic state error with noise turned
off leads to a convergence in distribution of the error when noise is turned on. Still in
a probabilistic framework, yet studying a quite different approach, a practical sampling
method (that is particle filter) taking advantage of the autonomy property of the error, is
proposed in Chapter 7, and applied to a non-Gaussian navigation problem.

Part III extends the use of non-linear error variables to the general design of an EKF and
proves its dramatic implications. The exposure starts with the classical example of SLAM:
Chapter 8 shows that the widely acknowledged flaw of the EKF for this problem is only
due to the (classical yet arbitrary) linear error variable. A well chosen non-linear definition
of the error is shown to solve the problem. The study is then generalized in Chapter 9
and novel properties are derived, which do not rely on first-order approximations (that
is, some more global properties of EKFs based on alternative state errors are outlined).
They are illustrated on another (non-SLAM) example which can be seen as a simplified
version of the industrial applications described earlier, and provides physical insight into
the EKFs based on non-linear state errors.
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Chapter 2

Mathematical preliminaries

In this document we will have to design some error variables adapted to the different
non-linear systems we will consider. A very convenient way to define an error is to start
from an existing group operation. For this reason, the notion of matrix Lie group will be
extensively used:

Definition 2. A matrix group G is a set of square invertible matrices of size n×n on
which matrix multiplication and inversion can be safely used without going outside
the set. In other words, the following properties are verified:

Id ∈ G, ∀g ∈ G,g−1 ∈ G and ∀a,b ∈ G,ab ∈ G.

An example of matrix group is given by the group of 2D rotations SO(2):{(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,θ ∈ R

}
.

To obtain a Lie group, we also need a tangent space g about identity Id, defined as the
matrix subspace spanned by all possible first-order variations inside G around Id. For
rotation matrices, Id corresponds to θ = 0. For theta small, the first-order variation of the
rotation matrix is: (

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= Id +θ

(
0 −1
1 0

)
+◦(θ).

Thus, if G = SO(2), g is the one-dimensional matrix space spanned by
(

0 −1
1 0

)
. Note

that G was parameterized by a single coordinate, and g is one-dimensional. Of course
this no coincidence, the dimension of g is also the minimum number of real numbers
needed to parameterize G, and is called the dimension of the Lie group G. Another way
to see g is to consider all processes γ(t) taking values in G and starting from γ(0) = Id. g
is then the space of all possible values of ( d

dt γ)(0). This definition makes the derivation of
g more convenient in the following example:
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Example 1. G = SO(3) = {H ∈M3(R),HT H = Id,det(H) > 0}. Consider a process γ(t)
on G and assume γ(0) = Id. We have ∀t > 0,γ(t)T γ(t) = Id. Deriving this expression
we get: ( d

dt γ)(t)T γ(t)+ γ(t)T ( d
dt γ)(t) = 0. At t = 0 and denoting ( d

dt γ)(0) by ξ we obtain
ξ T + ξ = 0, i.e. ξ is skew-symmetric matrix. Reciprocally, any skew-symmetric matrix
is the derivative at zero of a process taking values in G as the solution of the equation
M0 = Id, d

dt Mt = Mtω× stays in SO(3) for t > O if ω× is a skew-symmetric matrix. Finally, g
is here the space of skew-symmetric matrices.

If this tangent space about identity is defined, it can also be defined about any ele-
ment g of G as the possible derivatives at zero of a process γ(t) starting from γ(0) = g.
Its characterization is obvious as the processes g−1γ(t) and γ(t)g−1 start from Id. We
obtain:

Proposition 1. For g ∈ G, the tangent plan to G about g has the two equivalent
characterizations g ·g and g ·g.

An interesting consequence of Proposition 1 is the property

g ·g ·g−1 = g.

In other words, for any g ∈ G and ξ ∈ g we have gξ g−1 ∈ g. The latter property defines
for any g ∈ G a linear function from g to g. It is called adjoint operator and denoted by
Adg : g→ g. The differential of the operator Ad at identity is denoted ad, which means that
if we consider a smooth process gt taking values in G and verifying g0 = Id, d

dt gt = ξ ∈ g
then we have:

d
dt

Adgt |t=0 = adξ .

An equivalent notation for adξ1ξ2 is [ξ1,ξ2], usually called the Lie bracket of ξ1 and ξ2. This
multiplicative operation endows g with the structure of an algebra, and is the reason why
g is often called the Lie algebra of G. As it proves useful to identify g to Rdimg, a linear
mapping Lg : Rdimg→ g will often be used. The mapping is defined below for the matrix
Lie groups considered in this document, but it is a mere convention and any choice of a
mapping Lg would be equivalent. An interesting property of the matrix exponential is the
following:

Proposition 2. Let expm denote the matrix exponential:

expm(A) =
+∞

∑
i=1

Ak

k!
.

Then we have:
expm(g)⊂ G.

This gives a simple way to map g to G (the rest of the document will give new argu-
ments supporting the use of this function for estimation purposes). As well, Rdimg can
be mapped to G through a function exp defined by exp(ξ ) = expm(Lg(ξ )). For all matrix
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Lie groups considered in this document, no matrix exponentiation is actually needed as
there exist closed formulas, given thereafter. The following property of the exponential
mapping will be useful:

Proposition 3. The functions Ad and exp commute in the following sense:

∀g ∈ G,∀ξ ∈ g,exp(Adgξ ) = gexp(ξ )g−1.

We give now a short description of the most useful matrix Lie groups for our purpose.

2.1 Group of direct planar isometries SE(2)

We have here G = SE(2) and g= se(2), where :

SE(2) =
{(

R(θ) x
01,2 1

)
,

(
θ

x

)
∈ R3

}
,

so(2) =


0 −θ u1

θ 0 u2
0 0 0

 ,

θ

u1
u2

 ∈ R3

 ,

Lso(2)

θ

u1
u2

=

0 −θ u1
θ 0 u2
0 0 0

 ,

R(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
denoting the rotation of angle θ , and the exponential mapping

is:

exp

θ

u1
u2

=

 θ

Re(z)
Im(z)

 , where z = (u1 + iu2)
eiθ −1

iθ
.

2.2 Group of rotation matrices SO(3)

G is here the group of rotation matrices SO(3) and g the space of skew-symmetric matri-
ces so(3):

SO(3) =
{

R ∈M3(R),RRT = Id,det(R) = 1
}
,

so(3) =
{

A ∈M3(R),A =−AT} ,
Lso(3)

ξ1
ξ2
ξ3

=

ξ1
ξ2
ξ3


×

=

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 .

The notation (·)× just defined will be used throughout this document. The exponential
mapping is given by the formula:

exp(ξ ) = I3 +
sin(||ξ ||)
||ξ ||

(ξ )×+2
sin(||ξ ||/2)2

||ξ ||2
(ξ )2
×.
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2.3 Group of direct spatial isometries SE(3)

G is here the group of rigid motions SE(3) and g= se(3) its Lie algebra:

SE(3) =
{(

R x
01,3 1

)
,R ∈ SO(3),x ∈ R3

}
,

se(3) =
{(

(ξ )× x
01,3 1

)
,ξ ,x ∈ R3

}
,

Lse(3)

(
ξ

x

)
=

(
(ξ )× x
01,3 0

)
.

The exponential mapping is given by the formula:

exp
(

ξ

x

)
= I4 +S+

1− cos(||ξ ||)
||ξ ||2

)S2 +
||ξ ||− sin(||ξ ||)

||ξ ||3
S3,

where S = Lse(3)

(
ξ

x

)
.

2.4 Group of double direct isometries SE2(3)

We introduce here a matrix Lie group proving very useful for inertial navigation and we
call it "group of double direct isometries", with the notation SE2(3), for lack of existing
conventions (to our best knowledge). Its Lie algebra will be denoted se2(3) and we have:

SE2(3) =


 R v x

01,3 1 0
01,3 0 1

 ,R ∈ SO(3),v,x ∈ R3

 ,

se2(3) =


(ξ )× u y

01,3 0 0
01,3 0 0

 ,ξ ,u,y ∈ R3

 ,

Lse2(3)

ξ

u
y

=

(ξ )× u y
01,3 0 0
01,3 0 0

 ,

exp

ξ

u
y

= I5 +S+
1− cos(||ξ ||)
||ξ ||2

)S2 +
||ξ ||− sin(||ξ ||)

||ξ ||3
S3,

where S = Lse2(3)

ξ

u
y

.
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Table 2.1 – Formulas for most frequent matrix Lie groups in navigation

G SO(3) (Rdimg = R3) SE(3) (Rdimg = R6)

Embedding of G R ∈M3(R),RT R = I3

(
R v

0 1

)
,R ∈ SO(3),u ∈ R3

Embedding of g A3 : ψ ∈M3(R),ψT =−ψ

(
ψ u

0 0

)
,ψ ∈ A3,u ∈ R3

Lg ξ → (ξ )×

(
ξ

u

)
→

(
(ξ )× u

0 0

)

x→ Adx R→ R

(
R

T

)
→

(
R 0

(T )×R R

)

ξ → adξ ξ → (ξ )×

(
ξ

u

)
→

(
(ξ )× 0

(u)× (ξ )×

)
exp exp(x) = I3 +

sin(||x||)
||x|| (x)× exp(x) = I4 +(x)×+

[1−cos(||x||)]
||x||2 (x)2

×

+ 1
||x||2 (1− cos |x|)(x)2

× + 1
||x||3 (||x||− sin ||x||)(x)3

×
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Part I

Invariant Kalman Filtering
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Chapter 3

Autonomous error equations

Part of this chapter has been merged to Chapter 4 and submitted to a journal. The paper
is currently under revision.

Chapter abstract In the present chapter we characterize dynamical systems on Lie
groups that are such that the error (that is the difference in the sense of group multipli-
cation) between two solutions follows an autonomous equation, a key property for the
convergence results of the filters introduced in the next chapters. Previous publications
noticed the error equation was autonomous for invariant systems [16, 19, 70] but did not
try to characterize the systems having this property. We furthermore prove that for those
systems the error surprisingly follows a linear differential equation, although the system
at hand is non-linear. The two latter contributions are novel to our best knowledge.

3.1 Introduction

As stated in the introduction chapter, finding an error variable following an autonomous
equation is very desirable in an estimation problem. The theory of invariant observers
[16], starting from considerations regarding the symmetries of a system, has brought to
bear the use of group operations on obtaining such a property. Consider indeed a system
of the form:

d
dt

χt = χtωt ,

Ytn = χtn ·bn,

where χt belongs to a matrix Lie group G, the input ωt to the associated Lie algebra g,
bn ∈ Rp is a known vector, and "·" a group action. The reader feeling uncomfortable with
this notion can assume "·" is the classical product of a matrix and a vector. Define the
error variable as et = χ

−1
t χ̂t and the update as χ̂

+
tn = χ̂tnKn(χ̂

−1
t Ytn) where Kn can be any

function of Rp→ G. The evolution of et reads now:

d
dt

et =−ωtet + etωt ,

e+tn = etnKn(e−1
tn ·bn).
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We see the evolution of et is independent from the estimate. Thus, we are now able to
characterize two families of systems on which an error variable with autonomous equation
is defined: linear and invariant systems. Note that to obtain autonomous error equation,
the innovation has been defined in a specific way: z = χ̂

−1
t ·Y = e−1

tn · bn, making it only
a function of the error. Remark 1 below should convince the reader that a new class
of estimation problems allowing autonomous error equation must exist, and contain both
invariant and linear systems.

Remark 1. Additive linear systems of the form d
dt Xt = ut are translation-invariant, but gen-

eral linear systems are not a specific case of invariant systems, not more than invariant
systems are a specific case of linear systems.

Inspired by the latter example, we consider in this chapter systems defined on Lie
groups and error variables of one of the two following forms:

et = η
L
t = χ

−1
t χ̂t (left invariant), (3.1)

et = η
R
t = χ̂t χ

−1
t (right invariant). (3.2)

The superscripts L and R refer to "left-invariant" and "right-invariant" as in [12]. We will
characterize a broad class of systems (containing invariant and linear systems) where
the innovation and error propagation depend only on the error variable. We look for them
under the following general form:

d
dt

χt = fut (χt),

Yn = h(χtn),
(3.3)

where χt is the state of the system and Y the observation. Definition 1 has the drawback
to refer to a specific observer. Yet, the property of autonomous error equation can sur-
prisingly be stated only as a characteristic of the system and the error variable. This is
what we show now, defining first the two following properties:
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Definition 3 (Autonomous error propagation, Autonomous innovation). Let Xt be a
state vector having an evolution of the form:

d
dt

Xt = fut (Xt),

where ut is a sequence of inputs, and let h be an observation function measured at
instants (tn)n>0:

Yn = h(Xtn).

An error variable et is defined as a function ε of the true state Xt and the estimate X̂t :
et = ε(Xt , X̂t), smooth and invertible with respect to each of its variables and equal to
zero (or to the identity element on a Lie group) if its two arguments are identical. We
define as follows two desirable properties of ε:

Autonomous error propagation: ε is told to have autonomous propagation if there
exist a function g such that for any couple of solutions X , X̂ of the dynamics,
et = ε(X , X̂) verifies:

d
dt

et = gut (et).

Autonomous innovation: ε is told to ensure autonomous innovation if there exist
two functions ψ1 and ψ2 such that for any couple of states (Xt , X̂t) we have:

ψ1
(
X̂t ,h(Xt)

)
= ψ2

(
ε(Xt , X̂t)

)
,

ψ1 being invertible with respect to its second variable.

Remark 2. The idea of autonomous error propagation is quite transparent: the evolution
of the error et in the absence of observation depends on X̂t and Xt only through the
value of et itself. But the introduction of an "autonomous innovation" may deserve more
explanation. Innovation measures the discrepancy between the expected observation
h(X̂t) and the true observation h(Xt). We denote it by ψ1(X̂t ,h(Xt)) (instead of simply
ψ1
(
h(X̂t),h(Xt)

)
) to allow any additional dependency in the known variable X̂t . We define

this innovation function as "autonomous" if the result depends on X̂t and Xt only through
the value of et . The point of introducing this notion here is to remove any reference
to a specific observer. Instead, we defined the two basic ingredients allowing to build
observers having autonomous error equation.

In the context of multiplicative errors, definitions 3 and 1 are equivalent in the sense
of Proposition 4:

Proposition 4. If a system has autonomous error propagation and autonomous inno-
vation as defined in Definition 3 then an observer having autonomous error equation
can be build. If an observer having autonomous error equation can be build then the
system has autonomous error propagation and autonomous innovation as defined in
Definition 3.
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Proof. The error is assumed right-invariant (ε(χt , χ̂t) = χ̂t χ
−1
t ), the proof being similar

for a left-invariant error. Assume the system verifies the properties introduced in Defi-
nition 3. Then an observer with update step of the form χ̂

+
tn = K (ψ1(χ̂t ,h(χt)))χ̂tn has

autonomous error equation. To show the converse, let ψ and ψe denote the update func-
tions of definition 1(we removed the inputs, any sequence can be chosen here). Auton-
omy of the update step reads: ψ (χ̂t ,h(χt))χ

−1
t = ψe(χ̂t χ

−1
t ). Thus function ψ1 (χ̂t ,h(χt)) =

ψ(χ̂t ,h(χt))χ̂
−1
t appears to be an autonomous innovation function:

ψ(χ̂t ,h(χt))χ̂
−1
t = ψ(χ̂t ,h(χt))χ

−1
t χt χ̂

−1
t = ψ

e(e)e−1.

The characterization of dynamics fut having autonomous error propagation on one
hand, and the observation functions h ensuring autonomous innovation on the other
hand, are independent and will be dealt with separately, in Section 3.2 for autonomous
innovation, then Sections 3.3, 3.4 3.5 for autonomous propagation. Section 3.3 gives
a first characterization, surprisingly simple although not allowing an exhaustive classifi-
cation. Section 3.4 derives a fundamental log-linearity property of the systems having
autonomous propagation. It will be advantageously leveraged in Chapter 4, but first used
in Section 3.5 to link our study of the systems having autonomous propagation to the
classification of Lie algebra homomorphisms.

Remark 3. The reader could be wondering how restrictive is the framework we just
adopted to study autonomous error equations. Although we don’t claim perfect rigor here,
we will try to give an argument showing Lie group structures and multiplicative errors arise
quite naturally if error variables are at issue. Here the state χ belongs to any space X and
we introduce an additional property of the error function: for any χ1,χ2,χ3,γ1,γ2,γ3 ∈X
we assume

ε(χ1,χ2) = ε(γ1,γ2) and ε(χ2,χ3) = ε(γ2,γ3)⇒ ε(χ1,χ3) = ε(γ1,γ3). (3.4)

This property means that you can deduce the error between χ1 and χ3 from the error
between χ1 and χ2 on one hand, χ2 and χ3 on the other hand, without knowing the value
of χ1, χ2 or χ3. In other words the errors can be composed defining a group law: for
any errors e1 and e2 we choose any element χ1 of X , another one denoted by χ2 such as
ε(χ1,χ2) = e1 (whose existence is ensured by the invertibility of ε w.r.t. its second variable)
and a third one denoted by χ3 such as ε(χ2,χ3) = e2. The product e1 · e2 is then defined
by ε(χ1,χ3). Hypothesis (3.4) ensures the result is independent from the choice of χ1 and
χ2. Error zero is the identity element, the inverse is defined by ε(χ1,χ2)

−1 = ε(χ2,χ1) and
associativity is obtained considering a sequence of four elements χ1,χ2,χ3,χ4. This law
is then transported on the state space X : we can choose any point χ0 as a reference
to embed the state space into the error space using the bijection φ : χ → ε(χ0,χ). The
error becomes ε(χ1,χ2) = ε(χ1,χ0) · ε(χ0,χ2) = ε(χ0,χ1)

−1 · ε(χ0,χ2) = χ
−1
1 · χ2 and takes

the general form introduced above.
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3.2 Autonomous innovation functions

Characterization of the observation functions ensuring autonomous innovation is the eas-
ier part of the problem as shown by theorem 1 below:

Theorem 1. The observation functions h(χ) ensuring the existence of an autonomous
innovation for the error e = χ−1χ̂ (resp.e = χ̂χ−1), i.e. two functions ψ1 and ψ2 such
that

∀χ, χ̂ ∈ G,ψ1(χ̂,h(χ)) = ψ2(χ
−1

χ̂), (3.5)

are the left-actions (resp. right-actions) of G on a space Y . Moreover, the associated
autonomous innovation is then defined by ψ(χ̂,Y ) = χ̂−1Y (resp. ψ(χ̂,Y ) = χ̂Y ).

To prove Theorem 1 we need the following lemma:

Lemma 1. Let Y denote any set and ψx : Y →Y a function from Y to Y defined for any
x ∈ G (with ψId = Id). If for an element y0 ∈ Y the relation ∀a,b ∈ G,ψa(ψb(y0)) = ψba(y0)
is verified then ψ is a right action of G over ψG(y0).

Proof. The proof is straightforward: let y ∈ ψG(y0) and c ∈ G such that y = ψc(y0). For
any a,b ∈G we have ψa(ψb(y)) = ψa(ψb(ψc(y0))) = ψa(ψcb(y0)) = ψcba(y0) = ψba(ψc(y0)) =
ψba(y).

Now we can prove Theorem 1:

Proof. Let Y denote the observation space and h : G → Y the observation function.
Assume h ensures the existence of an autonomous innovation. Then for any χ, χ̂ ∈ G we
have ψ1(χ̂,h(χ)) = ψ2(χ

−1χ̂). In particular, χ = Id gives

∀χ̂,ψ1(χ̂,h(Id)) = ψ2(χ̂). (3.6)

Thus ψ2(χ) can be replaced by ψ1(χ,h(Id)) for any χ ∈G and, denoting ψ1(χ,y) by ψχ(y)
in (3.5) then applying (3.6) the condition becomes:

∀χ, χ̂,ψχ̂(h(χ)) = ψχ−1 χ̂(h(Id)). (3.7)

For χ̂ = Id we get ψId(h(χ)) = ψχ−1(h(Id)) thus h(χ) = ψ
−1
Id ◦ψχ−1 ◦ h(Id). Reintroducing

this equality in (3.7) it becomes:

∀χ, χ̂,ψχ̂ ◦ψ
−1
Id ◦ψχ−1 ◦h(Id) = ψχ−1 χ̂ ◦h(Id).

Thus ∀χ, χ̂,(ψ−1
Id ◦ψχ̂)◦(ψ−1

Id ◦ψχ−1)◦h(Id) = (ψ−1
Id ◦ψχ−1 χ̂)◦h(Id) which makes ψ→ψ

−1
Id ◦

ψχ a right-action of G over Im(h) (see Lemma (3.7)), and h a left-action over Im(h). The
proof for the right-invariant error e = ηR = χ̂χ−1 is similar.
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3.3 Autonomous error propagation

To obtain autonomous error equations, the second property we seek is autonomy of the
errors evolution, i.e. the existence of a function gut (independent from χ or χ̂) such that
the error evolution reads d

dt et = gut (et), with et defined as either χ
−1
t χ̂t or χ̂t χ

−1
t . It is

verified by a very specific class of systems, as shown by Theorem 2. We recall before
the property we are seeking:

Definition 4. The left-invariant and right-invariant errors are said to have autonomous
propagation if they satisfy a differential equation of the form d

dt et = gut (et).

Note that, in general the time derivative of et is a complicated function depending on
ut and both χ

−1
t and χ̂t in a way that does not boil down to a function of et . The following

result allows to characterize the class of systems of the form (3.3) for which the property
holds.

Theorem 2. The three following conditions are equivalent for the dynamics (3.3):

1. The left-invariant error has autonomous propagation

2. The right-invariant error has autonomous propagation

3. For all t > 0 and a,b ∈ G we have (in the tangent space at ab):

fut (ab) = fut (a)b+a fut (b)−a fut (Id)b. (3.8)

Moreover, if one of these conditions is satisfied we have

d
dt

η
L
t = gL

ut
(ηL

t ) where gL
ut
(η) = fut (η)− fut (Id)η , (3.9)

d
dt

η
R
t = gR

ut
(ηR

t ) where gR
ut
(η) = fut (η)−η fut (Id). (3.10)

Proof. Assume we have d
dt ηL

t = gut (η
L
t ) for a certain function gut and any process of the

form ηL
t = χ

−1
t χ̂t , where χt and χ̂t are solutions of (3.3). We have:

gut (χ
−1
t χ̂t) =

d
dt
(χ−1

t χ̂t)

=−χ
−1
t

[
d
dt

χt

]
χ
−1
t χ̂t +χ

−1
t

d
dt

χ̂t

=−χ
−1
t fut (χt)η

L
t +χ

−1
t fut (χ̂t)

gut (η
L
t ) =−χ

−1
t fut (χt)η

L
t +χ

−1
t fut (χtη

L
t ). (3.11)

This has to hold for any χt and ηt . In the particular case where χt = Id we obtain:

gut (η
L
t ) = fut (η

L
t )− fut (Id)η

L
t . (3.12)
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Re-injecting (3.12) in (3.11) we obtain:

fut (χtηt) = fut (χt)ηt +χt fut (ηt)−χt fut (Id)ηt .

The converse is trivial and the proof is similar for right-invariant errors.

The class of systems defined by Equation (3.8) has many similarities with linear sys-
tems, as will be shown in the sequel. It generalizes them in a way that preserves some
interesting properties.

Remark 4. The particular cases of left-invariant and right-invariant dynamics, or the com-
bination of both as follows, verify the hypothesis of Theorem 2. Let fvt ,ωt (χ) = vt χ + χωt .
We have indeed:

fvt ,ωt (a)b+a fvt ,ωt (b)−a fvt ,ωt (Id)b =(vta+aωt)b+a(vtb+bωt)−a(vt +ωt)b

= utab+abωt

= fvt ,ωt t(ab).

Remark 5. In the particular case where G is a vector space with standard addition as the
group composition law, the condition (3.8) boils down to fut (a+b) = fut (a)+ fut (b)− fut (0)
and we recover the affine functions.

3.4 A log-linearity property of errors having autonomous prop-
agation

The general solution of a linear system of the form d
dt Xt = AtXt +Bt is notoriously the sum

of a particular solution X̄t and a solution ξt of the homogeneous linear system d
dt ξt = Atξt .

In the broader case defined by Theorem 2, a surprising generalization can be derived:
the general solution of the system is the product of a specific solution by the exponential
of the solution of a linear homogeneous system (Corollary 1).

In the sequel, we will systematically consider systems of the form (3.3) with the addi-
tional property (3.8), i.e. systems defined by

d
dt

χt = fut (χt),

where ∀(u,a,b) fu(ab) = a fu(b)+ fu(a)b−a fu(Id)b.
(3.13)

For such systems, Theorem 2 proves that the left (resp. right) invariant error is a
solution to the equation d

dt ηt = gut (ηt) where gut is given by (3.9) (resp. (3.10)). For small
errors ηt , that is ηt close to Id, the error system can be linearized as follows. As we
have gut (Id)≡ 0, the Lie derivative of the vector field gut along any other vector field only
depends on the value of the vector field at Id. It can thus be identified to a linear operator
(thus a matrix) in the tangent space at Id, and will be denoted by Dgut (Id). Furthermore,
a small error ηt can be identified to an element of Rdimg through the exponential map,
that is ηt = exp(ξt) (see Chapter 2 for a definition of the exponential map). The linearized
error equation thus reads d

dt ξt = Dgut (Id)ξt . The next striking result proves this first order
Taylor expansion of the non linear error system captures in fact the whole behavior of the
error propagation.
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Theorem 3. Consider the left or right invariant error η i
t as defined by (3.1) or (3.2)

between two trajectories of (3.13), the superscript i denoting indifferently L or R, and
assume η i

t is in the image of the exponential mapping (this image is the whole group
G in all the examples considered in this document). Let ξ i

0 ∈ Rdim g be such that
exp(ξ i

0) = η i
0. If ξ i

t is defined for t > 0 by the linear differential equation in Rdimg

d
dt

ξ
i
t = Ai

tξ
i
t , where Ai

t := Dgi
ut
(Id),

then we have:
∀t ≥ 0 η

i
t = exp(ξ i

t ).

Recalling the definition of the invariant errors, the following corollary illustrated by Fig. 3.1
is easily derived.

Corollary 1. Let χ̂t denote a particular solution of (3.13). If the exponential mapping
is surjective then the general solution of the system has the two following characteri-
zations:

• χt = exp(FR
t ξ0)χ̂t , where FR

t is defined by FR
0 = Id and d

dt FR
t = DgR

ut
(Id)FR

t .

• χt = χ̂t exp(FL
t ξ0), where FL

t is defined by FL
0 = Id and d

dt FL
t = DgL

ut
(Id)FL

t .

Figure 3.1 – Example illustration of the log-linear property of the error propagation. Cen-
tral plot: a cloud of points centered on χ̂t0 having the property of being a Gaussian in the
tangent space at χ̂t0 with covariance matrix P is transported by the flow (3.13) over the
matrix group. Right plot: the cloud in the tangent space loses its Gaussianity due to the
nonlinearity of the flow. Left plot: when using the exponential to map the tangent space
to the manifold, we see at t = t1 the cloud remains a Gaussian centered at χ̂t1 , and the
covariance matrix becomes Ft1PFT

t1 where Ft1 is defined in Cor 1.

The last two properties are trivial in the linear case as the exponential associated
to the additive structure is the identity function. But they show that a wide range of
nonlinear problems (see examples of Chapter 4 Section 4.3) can lead to linear error
equations provided the error variable is correctly chosen. The result implies that the
propagation step of an EKF making use of the exponential mapping and the invariant
errors is expected to reflect the true evolution of the error variable. This will be extensively
used in Chapter 4 to prove stability properties of Invariant Extended Kalman Filters.
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The proof of Theorem 3 is based upon the following lemmas.

Lemma 2. Consider the system (3.13) and let χ̂t denote a particular solution. Consider
the condition

∀a,b ∈ G, gu(ab) = agu(b)+gu(a)b. (3.14)

We have the following properties:

• The function gR
u (η) = fut (η)−η fut (Id) verifies (3.14) and all the solutions of (3.13)

have the form χt = ηR
t χ̂t , where ηR

t verifies d
dt ηR

t = gR
ut
(ηR

t ).

• The function gL
ut
(η) = fut (η)− fut (Id)η verifies (3.14) and all the solutions of (3.13)

have the form χt = χ̂tη
L
t , where ηL

t verifies d
dt ηL

t = gL
ut
(ηL

t ).

The verification of these two properties is trivial. The functions gut governing the errors
propagation turn out to possess an interesting property:

Lemma 3. Let Φt be the flow associated to the system d
dt ηt = gut (ηt), where gut verifies

(3.14). Then:
∀η0,η

′
0 ∈ G,∀p ∈ Z,Φt(η0η

′
0) = Φt(η0)Φt(η

′
0).

Proof. We simply have to see that Φt (η0)Φt (η
′
0) is solution of the system d

dt ηt = gut (ηt):

d
dt

[
Φt (η0)Φt

(
η
′
0
)]

= gut (Φt(η0))Φt
(
η
′
0
)
+Φt (η0)gut

(
Φt
(
η
′
0
))

= gut

(
Φt (η0)Φt

(
η
′
0
))

.

An immediate recursion gives then:

Lemma 4. For any η0 ∈ G and p ∈ Z we have:

Φt
(
η

p
0

)
= Φt (η0)

p .

Lemmas 3 and 4 indicate the behavior of the flow infinitely close to Id dictates its
behavior arbitrarily far from it, as the flow commutes with exponentiation (exponentiation
in the sense of the iterated multiplication of an element of a group by itself). The use
of the exponential (map) thus allows to derive an infinitesimal version of the Lemma 4,
which is an equivalent formulation of Theorem 3 and its corollary.

Theorem 4. Let Φt be the flow associated to the system d
dt ηt = gut (ηt) satisfying

(3.14). As we have gut (Id) = 0, the Lie derivative of gut along a vector field ν verifying
ν(Id) = ξ0 only depends on ξ0 and will be denoted by Dgut ξ0. We have:

Φt (exp(ξ0)) = exp(Ftξ0) .

where Ft is the solution of the matrix equation F0 = Id, d
dt Ft = Dgut Ft .
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Proof. Thanks to Lemma 4 we have

Φt

(
eξ0
)
= Φt

([
e

1
n ξ0
]n)

= Φt

(
e

1
n ξ0
)n

=
[
e

1
n DΦt |Idξ0+rt( 1

n ξ0)
]n
,

where rt
(1

n ξ0
)

is a quadratic term, which ensures in turn
[
e

1
n DΦt |Idξ0+rt( 1

n ξ0)
]n

= eDΦt |Idξ0+
1
n rt(ξ0).

Letting n→∞ we get Φt

(
eξ0

)
= eDΦt |Idξ0 . We then introduce a parameterized curve ψh (Id)

on G such that ψ0 (Id) = Id and d
dh ψh (Id) = ξ0. We then depart from the definition of the

flow Φt starting at ψh (Id) :

d
dt

∣∣∣∣
t=s

[Φt (ψh(Id))] = gus (Φs (ψh(Id))) .

Using d
dh Φt (ψh(Id)) = DΦt |Idξ0 and d

dh gus (Φs (ψh(Id))) = DgusDΦs|Idξ0 we get the final de-
sired result

d
dt

DΦt |Id = Dgut DΦt |Id ,

letting Ft be equal to DΦt |Id .

3.5 A complete characterization of systems with autonomous
errors

Relation (3.8) can be easily checked and is thus a satisfactory alternative definition of
systems having autonomous error propagation. But it is not a characterization as it does
not give a complete list of the vector fields f verifying

∀a,b, f (ab) = f (a)b+a f (b)−a f (Id)b. (3.15)

This set will be denoted F and its characterization is the purpose of the present section.

Proposition 5. Relation (3.15) being linear, the classical addition of vector fields
makes F a vector space.

To formulate the next result, we need to introduce some new objects and definitions.

Definition 5 (Lie algebra homomorphism). Given a Lie algebra a with Lie bracket
[·, ·]a, an homomorphism a of a is a linear and invertible function from a to a ensuring:

∀ξ1,ξ2 ∈ a, [aξ1,aξ2] = a[ξ1,ξ2].

The homomorphisms of a Lie algebra a constitute a Lie group A′ whose operation is
the operators composition.

The group of homomorphisms of g will be denoted by G′, and its Lie algebra by g′. These
notations allow us to give a full characterization of the vector fields f verifying (3.15):
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Theorem 5. Assume G is connected. The functions FL and FR below are two linear
injections of F into g×g′:

FL : F → g×g′ , FL : f → ( f (0),D|x=0 [ f (x)− x f (0)]) ,

FR : F → g×g′ , FR : f → ( f (0),D|x=0 [ f (x)− f (0)x]) .

• If G is simply connected then FL and FR are bijections.

• Otherwise, for any element A ∈ (g×g′) there exists a vector field f defined on a
neighborhood of Id such that FL( f ) = A (resp. FR( f ) = A), and verifying (3.15)
for a and b small enough.

If defined, the result of the inverse operator F−1
L

(
α, ᾰ

)
(resp. F−1

R

(
α, ᾰ

)
) is the vector

field x→ xα +Dexplogx (ᾰ logx) (resp. x→ αx+Dexplogx (ᾰ logx)).

If G is Rn (n > 0) with the vector sum as group operation, we have g = R, G′ = Gln(R)
(group of invertible matrices of size n× n) and g′ = Mn(R) (space of matrices of size
n×n). Theorem 5 boils down to the proposition stated in example 2:

Example 2. The vector fields f on Rn verifying ∀a,b∈Rn, f (a+b) = f (a)+ f (b)− f (0) are
the functions of the form:

f (X) = AX +B,

with A ∈Mn(R) and B ∈ Rn.

We see again that vector fields verifying (3.15) are very similar to affine functions,
although defined on a general Lie group instead of Rn.

The proof of theorem 5 is done here only for FL, it would be similar for FR. It consists
of two steps:

1. The operator FL( f ) : f →
(

f (0),gL
)
, where gL is defined as in Lemma 2 by ∀x ∈

G,gL(x) = f (x)− x f (Id), is a bijection from F to
(
g×G

)
, where G is the space of

vector fields verifying (3.14).

2. The derivative at Id is an injection of G into g′

1 is verified easily. To show 2 we first characterize the flows Φt induced by the vector
fields verifying (3.14). Lemma 3 shows that Φt is a group homomorphism of G at any
t > 0. As a consequence we have:

Proposition 6. At any time t > 0, the differential DΦt |Id = Ft is a Lie algebra homo-
morphism of g, i.e. verifies:

∀ξ1,ξ2 ∈ g, [Ftξ1,Ftξ2] = Ft [ξ1,ξ2].

Proof. Lemma 3 shows that Φt is a group homomorphism of G at any t > 0. As a con-
sequence, Ft is a Lie Algebra homomorphism of g. This result can be either obtained
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replacing Φt in Lemma 3 by its exponential form given in Theorem 4, then developing the
Baker-Campbell-Hausdorff (BCH) formula up to the second-order, or found directly in [67]
for instance.

We just showed that DΦt |Id is in G′. As it is also solution of d
dt DΦt |Id = Dg|IdDΦt |Id , the

differential Dg|Id is its left-trivialized derivative and is thus in g′. To show the differential at
Id is injective we consider a vector field g ∈ G verifying Dg|Id = 0. According to Theorem
4 the flow of g is constant over time in an open neighborhood of Id. As this flow is a
group homomorphism the property extends to the whole group out of connexity. Deriving
the flow w.r.t. the time we get ∀x ∈ G,g(x) = 0 which proves the injectivity. To obtain
the reciprocal we first consider an element α of g′ and define the (linear) flow At by
A0 = Id, d

dt At = ᾰAt . At is an homomorphism of g. For x ∈ G close to Id we consider now
Φt(x) = exp(At log(x)). If x1,Atx1,Atx2 and x2 are in the convergence radius of exp we have:

Φt(x1)Φt(x2) = exp
(
At log(x1)

)
exp
(
At log(x2)

)
= exp

(
BCH (At log(x1),At log(x2))

)
= exp

(
AtBCH(log(x1), log(x2))

)
= exp

(
At log(x1x2)

)
= Φt

(
x1x2

)
.

We used here the fact that At , as an homomorphism of g, commutes with all the terms
of the BCH formula. The last step is simply to derive Φt w.r.t. time to obtain a function
of G defined around Id. The result extends to the whole group G only if the exponential
map associates a Lie group homomorphism of G to each homomorphism At of g. This is
ensured if G is connected and simply connected (see Theorem 3.41 of [67] for instance).

3.6 Conclusion

This chapter characterized a class of problems for which the error variable can be de-
signed to have autonomous propagation. For these systems, the error variable was
showed to have even linear propagation if re-defined through a logarithmic map. Some
concrete examples of such systems, mostly related to navigation, are described in Chap-
ter 4. The advantages of such an approach are obvious, regardless of the chosen estima-
tion method. If an observer relies on pre-computed gains, the dependence on the specific
trajectory has to be made as weak as possible. If the error equation is linearized for an
EKF-like on-line gain tuning, this operation becomes independent from the estimated
state and deriving stability properties becomes possible (see Chapter 4). Moreover, the
discrepancy between the system linearized over its true trajectory and the system lin-
earized on the current estimate disappears, which Chapter 9 will prove to be of dramatic
importance. An EKF for this class of systems will be studied in the next chapter.
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Chapter 4

Invariant Extended Kalman Filtering

Chapter abstract The previous chapter proved a certain class of estimation problems
to be of specific interest as they allow designing observers ensuring the evolution of the
error variable to be fully independent from the estimate. In this chapter, we consider a
deterministic setting, and we use a first-order expansion of the error to derive a general-
ization of the Invariant Extended Kalman Filter (IEKF) introduced in [14]. The terminology
IEKF is retained although it is designed for a larger class of systems, and we allow for the
tuning matrices (interpreted as noise covariance matrices) to depend on the filter’s tra-
jectory, as opposed to [14, 17] that presuppose fixed covariance matrices. The resulting
IEKF is thus more suited to real implementation where the covariance of the noises may
depend on the trajectory. We derive a novel local convergence result of the IEKF viewed
as an observer, building upon the log-linearity property derived in Section 3.4 of Chapter
3. We provide a long list of challenging navigation examples and for each of them the
IEKF is proved to converge around any trajectory under standard observablity conditions,
a generally difficult to prove property in a non-linear setting.

4.1 Introduction

The multiplicative difference between two solutions χt and χ̂t of the systems introduced
in Chapter 3, defined as χ

−1
t χ̂t or χ̂t χ

−1
t , has been shown to have extremely convenient

properties. In this Chapter, we put them to good use extending the IEKF (proposed in [14]
for invariant systems) to this broader class, and improving it by the introduction of an ex-
ponential mapping in the update step (see Chapter 2), whose benefits will be discussed
at length in Chapters 9 and 10. A novel stability result based on the property obtained in
Section 3.4 of Chapter 3 is derived for this EKF-like method, whose assumptions are ex-
actly those used in [38] for linear Kalman filtering. Of course, the computations involved
in the proof proposed in this latter paper have been of great help here. The difference
with the linear case is that global convergence is replaced by local stability. Yet, only first-
order observability assumptions are necessary. This is a decisive difference with most
of the previous work on convergence of the EKF, where hypotheses regarding higher or-
ders of the system and/or global behavior of the estimated error covariance matrix are
involved [23, 24, 92, 102]. Their verification is usually extremely difficult on concrete sys-
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tems, to the opposite of the result derived here, easily applied to a long list of examples.
We divided the exposure into two sections. Section 4.2 defines the framework, derives
the equations of the IEKF then gives a novel stability property based on the results of
Chapter 3. Section 4.3 details the computations in several specific cases corresponding
to classical navigation problems, and applies each time the result of 4.2 to guarantee
stability of the method.

4.2 Full noisy system

We first consider a noisy equation on a matrix Lie group G⊂ RN×N of the form:

d
dt

χt = fut (χt)+χtwt , (4.1)

where wt is a continuous white noise belonging to g (the Lie algebra of G) whose covari-
ance matrix is denoted by Qt (for a proper discussion on multiplicative noise for systems
defined on Lie groups, see Chapter 6), ut is an input and fut verifies for any value of ut the
relation:

∀a,b ∈ G, fut (ab) = a fut (b)+ fu(a)b−a fut (Id)b.

Guided by the results of Chapter 3, we assume there exists an action · of G on a space
Y . The observations we are interested in are :

1. Left-invariant observations: Y = h̃(χ · b0,V ) (with V a noise and h̃(.,v) invertible for
any v).

2. Right-invariant observations: Y = h̃(χ−1 · b0,V ) (with V a noise and h̃(.,v) invertible
for any v).

In each case, h̃ is smooth and verifies h̃(x,0) = x. Before proceeding with the derivation
of the filter we give some examples of such observation functions:

Example 3. The attitude of a vehicle is usually represented by a rotation matrix R ∈ G =
SO(3). It is the rotation matrix mapping a vector expressed in the vehicle frame to a
vector expressed in a fixed frame. The following observations have the general form just
defined:

• Y = RT b+V , where V ∈ R3 is a random (unknown) noise and b is a vector known
in the fixed reference frame, for instance the gravity vector observed in the vehicle
frame by an accelerometer. Here, the space Y is R3, the action of G on Y is simply
the product of a matrix and a vector and the observation is of the right-invariant
kind.

• Y =

(
RT b1 +V1
RT b2 +V2

)
, where V1,V2 ∈R3 are two random noises and b1,b2 are two vectors

known in the fixed reference frame, for instance the gravity vector and earth mag-
netic field observed in the vehicle frame by an accelerometer. Here, the space Y is
R6, the action of G on Y is defined by R ·

(
y1 y2

)
=
(
Ry1 Ry2

)
and the observation

is of the right-invariant kind.
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• Y = Ru+V , where V ∈ R3 is a random noise and u is a vector known in the vehicle
reference frame, for instance an axis attached to a quadrotor but measured by a
fixed camera. Here, the space Y is R3, the action of G on Y is again the product
of a matrix and a vector and the observation is of the left-invariant kind.

• Y = RV , where V ∈ SO(3) is a random noise (note the values of V are rotation matri-
ces). The observation is here the full state, resulting for instance from a reconstruc-
tion algorithm using a set of fixed cameras. Here, the space Y is SO(3), the action
of G on Y is the product of matrices and the observation is of the left-invariant kind.
Moreover, the element b0 is here the identity matrix.

To make the description of the filters more concrete, we consider only the case where
observations are vectors, and the group action is simply the multiplication of an element
of G by a sequence of vectors. There is no specific difficulty in the extension of the
approach to the general case. In this modified framework, the two kinds of observations
are:

Left-invariant observations This family of outputs writes:

Y 1
tn = χtn(d

1 +B1
n)+V 1

n , . . . , Y k
tn = χtn(d

k +Bk
n)+V k

n ,

where (di)i≤k are known vectors and the (V i
n)i≤k, (Bi

n)i≤k are noises with known charac-
teristics. The Left-Invariant Extended Kalman Filter (LIEKF) is defined here through the
following propagation and update steps:

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t ≤ tn (propagation), (4.2)

χ̂
+
tn = χ̂tn exp

[
Ln

χ̂
−1
tn Y 1

tn −d1

. . .

χ̂
−1
tn Y k

tn −dk

] (update), (4.3)

where the function Ln :RkN→Rdimg is to be defined in the sequel using error linearizations.
A left-invariant error between true state χt and estimated state χ̂t can be associated to
this filter:

η
L
t = χ

−1
t χ̂t .

During the Propagation step, as χt and χ̂t are two trajectories of the system (4.1) with
noise turned off i.e. wt ≡ 0, Theorem 2 states that the evolution of the error is independent
from the estimate χ̂t (or alternatively from the true state χt). During the Update step, the
evolution of the invariant error variable merely reads:

(
η

L
tn

)+
= χ

−1
tn χ̂

+
tn = η

L
tn exp

Ln

(ηL
tn)
−1d1−d1 + χ̂

−1
tn V 1

n +B1
n

. . .

(ηL
tn)
−1dk−dk + χ̂

−1
tn V k

n +Bk
n

 . (4.4)

We see that, as long as output noise V j
n is turned off, i.e. ∀n, j V j

n ≡ 0, the nice geometrical
structure of the LIEKF allows the updated error (ηL

tn)
+ to be only a function of the error

just before update ηL
tn , i.e. to be independent from the estimate χ̂tn .
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Right-invariant observations This family of observations has the form:

Y 1
tn = χ

−1
tn (d1 +V 1

n )+B1
n , . . . , Y k

tn = χ
−1
tn (dk +V k

n )+Bk
n,

with the same notations as in the previous section. The Right-Invariant EKF (RIEKF) is
defined here as:

d
dt

χ̂t = fut (χ̂t), tn−1 < t < tn (propagation), (4.5)

χ̂
+
tn = exp

Ln

χ̂tnY
1

tn −d1

. . .
χ̂tnY

k
tn −dk

 χ̂tn (update). (4.6)

A right-invariant error can be associated to this filter:

η
R
t = χ̂t χ

−1
t .

During the update state, the evolution of the invariant error variable reads:

(ηR
tn )

+ = χ̂
+
t χ
−1
t = exp

Ln

ηR
tn d1−d1 +V 1

n + χ̂tnB1
n

. . .
ηR

tn dk−dk +V k
n + χ̂tnBk

n

η
R
tn .

Once again, due to Theorem 2, we see that when noise is turned off, the evolution of the
error does not depend on the state of the system, for both Propagation and Update steps.

The case of full state observation An observation of the full state with multiplicative
noise can be seen either as a left or as a right-invariant observation:

Ytn =VnχtnBn or Ytn = B−1
n χ

−1
tn V−1

n .

A wise choice is to keep the formulation which provides the more independent noisy error
equation. We provide details for the first formulation (Ytn = VnχtnBn), left and right playing
a symmetrical role here. The LIEKF is defined here as:

d
dt

χ̂t = fut (χ̂t), tn−1 < t < tn (propagation), (4.7)

χ̂
+
tn = exp

[
Ln exp−1(χ̂−1

tn Ytn)
]

χ̂tn (update), (4.8)

and here we have Ln : Rdim g 7→Rdim g. A left-invariant error can be associated to this filter:

ηt = χ
−1
t χ̂t .

During the update state, the evolution of the invariant error variable reads:

η
+
tn = χ

−1
tn χ̂

+
tn = ηtn exp

[
Ln exp−1

(
(χ̂−1

tn Vnχ̂tn)η
−1
tn Bn

)]
. (4.9)

If there is no noise on the left side ( i.e. Vn = Id) this evolution is independent from the
estimate χ̂tn . In the case Bn = Id the right-invariant filter is to be preferred.
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4.2.1 Gain tuning and IEKF equations

As in a conventional EKF, the error equation has to be assumed to be small (here close
to Id) so that the error system can be linearized to compute the gains Ln (the error is Id if
χ̂t = χt). By definition, the Lie algebra g represents the infinitesimal variations around Id
of an element of G. Thus the natural way to define a vector error variable ξt in Rdim g is
(see Chapter 2):

ηt = exp(ξt) = expm

(
Lg(ξt)

)
. (4.10)

During the Propagation step, that is for tn−1 ≤ t < tn, elementary computations based on
the results of Theorem 2 show that for the noisy model (4.1) we have

d
dt

η
L
t = gL

ut
(ηL

t )−wtη
L
t ,

d
dt

η
R
t = gR

ut
(ηR

t )− (χ̂twt χ̂
−1
t )ηR

t . (4.11)

Defining ŵt ∈ Rdimg by Lg(ŵt) = −wt in the first case and Lg(ŵt) = −χ̂twt χ̂
−1
t (i.e. ŵt =

−Adχ̂t L
−1
g (wt)) in the second case, and using the superscript i to denote indifferently L

or R we end up with the linearized error equation in Rdimg:

d
dt

ξt = Ai
ut

ξt + ŵt , (4.12)

where Ai
ut

is defined by gi
ut
(exp(ξ ))=Lg

(
Ai

ut
ξ
)
+©

(
‖ξt‖2

)
(This expression makes sense

because the state is embedded into a matrix space, otherwise we should have to com-
pose the left-hand side by D log |exp(ξ ) ; see Section 3.3 for a more precise definition) and
where we have neglected terms of order©(‖ξt‖2) as well as terms of order©(‖ŵt‖‖ξt‖).
Note that, Theorem 3 states that the first order Taylor expansion D log |exp(ξ )gi

ut
(exp(ξ )) =

Lg(Ai
ut

ξ ) is in fact totally exact, i.e. all higher order terms are identically null. This implies
the following result (illustrated by Figure 3.1):

Proposition 7. With noise turned off, i.e. wt ≡ 0, if ξt is defined as the solution to the
linearized error system (4.12) and ηt is defined as the solution to the nonlinear error
system (4.11), then the equality (4.10) is verified at all times, even for arbitrarily large
errors.

To derive the equations we consider for instance the case of left-invariant observa-
tions, and define ξtn through the exponential mapping (4.10), i.e. exp(ξtn) = ηL

tn . Moreover,
for 1 ≤ i ≤ k let V̂ i

n denote χ̂
−1
tn V i

n. To linearize the update equation (4.4) we proceed as
follows. For 1≤ i≤ k we have

(ηtn)
−1di−di = expm(Lg(ξtn))

−1di−di +V̂ i
n +Bi

n

= expm(−Lg(ξtn))d
i−di +V̂ i

n +Bi
n

= (I−Lg(ξ )tn)d
i−di +V̂ i

n +Bi
n +©

(
‖ξtn‖2)

=−Lg(ξ )tndi +V̂ i
n +Bi

n +©
(
‖ξtn‖2) ,
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using a simple Taylor expansion of the matrix exponential map. Expanding in the same
way equation (4.4) yields:

I +Lg(ξtn)
+ = I +Lg(a)+©

(
‖ξtn‖2) , with a = Ln

−Lg(ξtn)d
1 +V̂ 1

n +B1
n

. . .
−Lg(ξtn)d

k +V̂ k
n +Bk

n

 . (4.13)

Neglecting terms of order©
(
‖ξtn‖2

)
we finally get the following linearized error equation

in Rdimg :

ξ
+
tn = ξtn +Ln(Hξtn +V̂n +Bn), (4.14)

where H ∈ RkN×dimg, V̂n ∈ RkN and Bn ∈ RkN are defined by

Hξ =

−Lg(ξ )d1

. . .
−Lg(ξ )dk

 , V̂n =

V̂ 1
n
. . .
V̂ k

n

 , Bn =

B1
n

. . .
Bk

n

 .

Note that, contrarily to the Propagation step (4.12), equation (4.14) is only a first-order
approximation of the true error update (4.4). Let Q̂t denote the covariance of the modified
process noise ŵt , and N̂n denote the covariance of the modified measurement noise
V̂n +Bn. Note that, equations (4.12) and (4.14) mimic those of a Kalman filter designed
for the following auxiliary linear system with discrete measurements: d

dt xt = Aut xt + ŵt ,
yn = Hxtn +V̂n+Bn. The standard Kalman theory thus states that if Ln is computed through
the following Riccati equation:

d
dt

Pt = Aut Pt +PtAT
ut
+ Q̂t , Sn = HPtnHT + N̂n,

Ln = PtnHT S−1, P+
tn = (I−LnH)Ptn ,

(4.15)

the dispersion of the linearized error ξt is minimized at each step, indicating that χ̂t should
be a good estimate of χt despite the noise, as long as χ̂t and χt are sufficiently close.
Moreover, Kalman theory states that the solution ξt to the linearized system (4.12)-(4.14)
is a centered Gaussian with covariance matrix Pt ∈ Rdimg×dimg. Thus the true error ηt =
χ
−1
t χ̂t is approximately distributed as follows

P(ηt ∈ exp([ζ ,ζ +dζ ])≈ 1
(2π)N/2|Pt |1/2 e−

1
2 ζ T P−1

t ζ dζ , (4.16)

where [ζ ,ζ +dζ ] is a volume element.
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4.2.2 Summary of IEFK equations

Gathering all the results above, the IEKF equations can be compactly written as follows

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t ≤ tn

χ̂
+
tn = χ̂tn exp

Ln

χ̂
−1
tn Y 1

tn −d1

. . .

χ̂
−1
tn Y k

tn −dk

 (LIEKF)

or

χ̂
+
tn = exp

Ln

χ̂tnY
1

tn −d1

. . .
χ̂tnY

k
tn −dk

 χ̂tn (RIEKF)

(4.17)

where the LIEKF (resp. RIEKF) is to be used in the case of left (resp. right) invariant
outputs. The gain Ln is obtained in each case through a Riccati equation:

d
dt

Pt = Aut Pt +PtAT
ut
+ Q̂t , tn−1 < t < tn,

Sn = HPtnHT + N̂n, Ln = PtnHT S−1, P+
tn = (I−LnH)Ptn .

(4.18)

As concerns the LIEKF, Aut is defined by gL
ut
(exp(ξ )) = Lg(Aut ξ )+©(‖ξ‖2), and H ∈

RkN×dimg is defined by Hξ =
(
−Lg(ξ )d1, . . . ,−Lg(ξ )dk

)T , Q̂t ∈ Rdim g×dim g denotes the
covariance of the modified process noise ŵt =−L −1

g (wt) and N̂n the covariance matrix of
the noise V̂n+Bn, V̂n and Bn being defined as: V̂n = (χ̂−1

tn V 1
n , . . . , χ̂

−1
tn V k

n )
T , Bn = (B1

n, . . . ,B
k
n)

T .
As concerns the RIEKF, Aut is defined by gR

ut
(exp(ξ )) = Lg(Aut ξ ) +©(‖ξ‖2), H ∈

RkN×dimg is defined by Hξ =
(
Lg(ξ )d1, . . . ,Lg(ξ )dk

)T , Q̂t denotes the covariance of the
modified process noise ŵt = −Adχ̂t L

−1
g (wt) and N̂n the covariance matrix of the noise

Vn + B̂n, Vn and B̂n being defined as: Vn = (V 1
n , . . . ,V

k
n )

T , B̂n = (χ̂tnB1
n, . . . , χ̂tnBk

n)
T .

4.2.3 Stability properties

The aim of the present section is to study the stability properties of the IEKF as a de-
terministic observer. Throughout the section, the noise is thus systematically turned off.
Contrarily to the EKF, the IEKF has strong stability properties relying on the state trajec-
tory independence of the deterministic part of the error equation. The stability of a filter
is defined as its ability to recover from a perturbation or an erroneous initialization:

Definition 6. Let (x0, t0, t)→X t
t0(x0) denote a continuous flow on a space X endowed

with a distance d. A flow (z, t0, t)→ X̂ t
t0(z) is an asymptotically stable observer of X

about the trajectory
(
X t

t0(x)
)

t≥t0
if there exists ε > 0 such that:

d
(
x, x̃
)
< ε ⇒ d

(
X t

t0(x), X̂
t
t0(x̃)

)
→ 0 when t→+∞
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Theorem 7 below is a consequence of Theorem 4 of Section 3.3. To maintain the in-
dependence of the different sections, and not to interrupt the flow of reading, its fairly
technical proof has been removed to the Appendix. J. J. Deyst and C. F. Price have
shown in [38] the following theorem, stating sufficient conditions for the Kalman filter to
be a stable estimator for linear (time-varying) systems.

Theorem 6 (Deyst and Price, 1968). Consider the deterministic linear system d
dt xt =

Atxt , ytn = Hxtn and let Φt
t0 = Id +

∫ t
t0 Audu. If there exist α1, α2, β1, β2, δ1, δ2, δ3, M > 0

such that:

1. (Φ
tn+1
tn )T Φ

tn+1
tn � δ1I � 0

2. ∃q ∈ N∗,∀s > 0,∃Gs ∈ Rq×dimg,Qs = GsQ′ where Q′ � δ2Iq � 0

3. Nn � δ3I � 0

4. α1I ≤
∫ tn

s=tn−M
Φ(t,s)QsΦ(t,s)T ≤ α2I

5. β1I ≤ ∑
n−1
i=n−M Φ(tn, ti+1)

T HT N−1
n HΦ(tn, ti+1)≤ β2I

Then the linear Kalman filter tuned with covariance matrices Q and N is asymptoti-
cally stable. More precisely there exist γmin,γmax > 0 such that γminI � PtI � γmaxI for
all t and (x̂t − xt)

T P−1
t (x̂t − xt) has an exponential decay.

The main theorem of this section is the extension of this linear result to the non-linear
case when the Invariant Extended Kalman Filter is used for systems of Section 3.3.

Theorem 7. Suppose the stability conditions of the linear Kalman filter given in The-
orem 6 are verified about the true system’s trajectory χt (i.e. are verified for the linear
system obtained by linearizing the system (3.13) with left (resp. right) invariant out-
put about χt). Then the Left (resp. Right) Invariant Extended Kalman Filter χ̂t is an
asymptotically stable observer of χt in the sense of Definition 6. Moreover, the con-
vergence radius ε > 0 is valid over the whole trajectory (i.e. is independent of the
initialization time t0).

Proof. The full proof is technical and has been removed to Appendix A.1. The rationale
is to compare the evolution of the logarithmic error ξt defined as ηt = exp(ξt), with its lin-
earization. For the general EKF, the control of second-order terms in the error equation
is difficult because: 1) they depend on the inputs ut , 2) they depend on the lineariza-
tion point χ̂t , 3) the estimation error impacts the gain matrices. For the IEKF, the main
difficulties vanish for the following reasons:

• Due to Theorem 3 the linear propagation d
dt ξt = Aut ξt of the logarithmic error ξt is

exact : all the non-linearity is contained in the update step.

• Due to the specific form of the IEKF update step, the non-linear rest rn, defined (here
for the left-invariant filter) as: exp

[
(I−LnH)ξn−rn(ξ )

]
= exp

[
ξ
]

exp
[
−LnH(exp[ξ ]b−

b)
]

is second-order in ξ , uniformly over n if Ln is bounded.
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• Due to the error equation of the IEKF, the Riccati equation depends on the estimate
only through the noise matrices Q̂t and N̂t which affect stability in a minor way, as
shown by Theorem 6.

In the detailed proof of Appendix A.1 we introduce the flow Ψt
t0 of the linear part of the

equations governing ξt (that is, Ψ
t0
t0 = Id, d

dt Ψt
t0 = Aut Ψ

t
t0 , Ψ

t+
t0 = (I−LnH)Ψt

t0) and de-
compose the solution ξt as:

∀t ≥ 0, ξt = Ψ
t
0ξ0 + ∑

tn<t
Ψ

t
tnrn(ξtn). (4.19)

All we have to verify is that the apparition of the second-order terms rn(ξtn) at each update
is compensated by the exponential decay of Ψt

t0 (Theorem 6).

The result displayed in Theorem 7 is in sharp contrast with the usual results available
on the EKF which essentially assume the linearized system around the estimated trajec-
tory is well-behaved. This is almost impossible to predict as when the estimate is (even
slightly) away from the true state, the Kalman gain becomes erroneous, which can in
turn amplify the discrepancy between estimate and true state. On the other hand, when
considering an actual system undergoing a realistic physical motion (see the examples
below), if sufficiently many sensors are available, the linearized system around the true
trajectory is expected to posses all the desired properties. The following consequence
proves useful in practice.

Theorem 8. Assume the system linearized around the true trajectory has the follow-
ing properties : the propagation matrix At = A is constant, there exist matrices B,D
such that Q̂t = BQ̄tBT and N̂n = DN̄nDT with Q̄t and N̄n upper- and lower-bounded over
time, with (A,H,B,D) detectable and reachable. Then the conditions of Theorem 7
are satisfied and the IEKF is asymptotically stable.

4.3 Examples

Each example can be read and implemented independently from the rest of the chapter,
which is used only to prove the stability of the proposed algorithm. The computations
require the basic notions about matrix Lie groups recalled in Chapter 2.

4.3.1 Simplified car or unicycle

Original model

Consider a (non-holonomic) car evolving on the 2D plan. Its heading is denoted by an
angle θt ∈ [−π,π] and its position by a vector xt ∈R2. They follow the classical equations:

d
dt

θt = utvt +wθ
t ,

d
dt

x1
t = cos(θt)(vt +wl

t)− sin(θt)wtr
t ,
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d
dt

x2
t = sin(θt)(vt +wl

t)+ cos(θt)wtr
t ,

where vt is the velocity measured by an odometer, ut (a function of) the steering angle, wθ
t

the differential odometry error, wl
t the longitudinal odometry error and wtr

t the transverse
shift. Two kinds of observations are considered:

Ȳn = xtn +Vn, (4.20)
or

Ȳ k
n = R(θtn)

T (xtn− pk)+V̄ k
n , k ∈ [1,K], (4.21)

where R(θ) is a rotation of angle θ , Vn and V̄ k
n are random noises in R2. (4.20) rep-

resents a noisy position measure (GPS for instance) and has been considered in [43]
where a classical EKF has been proposed, but without convergence guarantees. (4.21)
represents a range-and-bearing observation of a sequence of known features located at
pk ∈ R2 for k ∈ [1,K]. This observation models the navigation of a robot in a known envi-
ronment. Even in recent papers such as [47], the EKF is considered the best suited to a
robot having low computation capacities. As opposed to previous work based on EKF, the
IEKF will be shown to possess local convergence properties for the considered problem,
and this under mild conditions and for a large class of noise covariances. Chapter 10 will
be entirely dedicated to the discussion of this precise example, as it gives a simple and
visual understanding of what shifting from EKF to IEKF concretely changes regarding the
behavior of the filter.

Matrix form

This system can be embedded in the matrix Lie group SE(2) [87] (see Chapter 2) using
the following matrices:

χt =

cos(θt) −sin(θt) x1
t

sin(θt) cos(θt) x2
t

0 0 1

 , νt =

 0 −utvt vt

utvt 0 0
0 0 0

 ,

wt =

 0 −wθ
t wl

t 1
wθ

t 0 wtr
t

0 0 0

 .
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The equation of the system becomes:

d
dt

χt = χt(νt +wt), (4.22)

and the observations (4.20) and (4.21) respectively have the equivalent form:

Yn =

(
xtn +Vn

1

)
= χtn

(
02×1

1

)
+

(
Vn

0

)
, (4.23)

Y k
n =

(
RT

tn(xtn− pk)
1

)
+

(
V̄ k

n
0

)
=−χ

−1
tn

(
pk
1

)
+

(
V k

n
1

)
. (4.24)

The reader can verify relation (3.8).

IEKF equations and stability for the left-invariant output (4.20)

The LIEKF (4.17) equations for the system (4.22), (4.23) write:

d
dt

χ̂t = χ̂tνt , χ̂
+
tn = χ̂tn exp

(
Ln

[
χ̂
−1
tn Yn−

(
02×1

1

)])
.

As the bottom element of
[

χ̂
−1
tn Yn−

(
02×1

1

)]
is always zero we can use a reduced-dimension

gain matrix L̃n defined by Ln = L̃n p̃ with p̃ = (I2,02,1). To compute the gains, we write the
left-invariant error ηt = χ

−1
t χ̂t whose evolution is:

d
dt

ηt = ηtνt −νtηt −wtηt ,

η
+
tn = ηtn exp

(
L̃n p̃

[
η
−1
tn

(
02×1

1

)
−
(

02×1
1

)
+ χ̂

−1
tn

(
Vn

0

)])
.

(4.25)

To linearize of this equation we introduce the linearized error ξt defined as ηt = I3 +
Lso(2)(ξt). Introducing ηt = I3+Lso(2)(ξt), η

+
t = I3+Lso(2)(ξ

+
t ), exp(u) = I3+Lso(2)(u) and

η
−1
t = I3−Lso(2)(ξt) in (4.25) and removing the second-order terms in ξt , Vn and wt we

obtain:
d
dt

ξt =−

 0 0 0
0 0 −utvt

−vt utvt 0

ξt −

wθ
t

wl
t

wtr
t

 ,

ξ
+
tn = ξtn− L̃n[(02,1, I2)ξt −R(θ̂tn)

TVn],

The gains L̃n are thus computed using the Riccati equation (4.18) with:

At =−

 0 0 0
0 0 −utvt

−vt utvt 0

 , H = (02,1, I2), Q̂t =Cov

wθ
t

wl
t

wtr
t

 ,

N̂ = R(θ̂tn)Cov(Vn)R(θ̂tn)
T .
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Proposition 8. If there exists vmax,vmin > 0 such that the displacement satisfies

‖xtn+1− xtn‖ ≥ vmin > 0,

and the input velocity satisfies ut ≤ vmax then the IEKF is an asymptotically stable
observer.

The proof is a verification of the hypotheses of 7 and has been removed to Appendix
A.2. Note that it seems very difficult to improve on the assumptions: if ‖xtn+1−xtn‖= 0 the
system becomes non-observable (the heading θt cannot be known), and if ut is arbitrary
high a large move between two observations makes the covariance of the propagation
step infinite due to the uncertainty in the heading. In practice an arbitrary high velocity is
anyway unfeasible.

IEKF equations and stability for the right-invariant output (4.21)

The RIEKF equations (4.17) for the system (4.22), (4.24) write:

d
dt

χ̂t = χ̂tνt , χ̂
+
tn = exp

(
Ln

[
χ̂tnY

1
n +

(
p1
1

)
; . . . ; χ̂tnY

K
n +

(
p1
1

)])
χ̂tn .

As the bottom element of
[

χ̂
−1
tn Y k

n +

(
pk

1

)]
is always zero we can use a reduced-dimension

gain matrix L̃n defined by Ln = L̃n p̃ with:

p̃ =

[I2,02,1]
. . .

[I2,02,1]

 .

To compute the gains L̃n we derive the evolution of the right-invariant error variable ηt =
χ̂t χ

−1
t :

d
dt

ηt =−(χ̂twt χ̂
−1
t )ηt ,

η
+
tn = exp(L̃n p̃

[
−ηtn

(
p1
1

)
+

(
p1
1

)
+ χ̂tnV

1
n ; . . . ;−ηtn

(
pk
1

)
+

(
pk
1

)
+ χ̂tnV

k
n

]
)ηtn .

(4.26)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3+Lso(2)(ξt).
Introducing ηt = I3 +Lso(2)(ξt), η

+
t = I3 +Lso(2)(ξ

+
t ), exp(u) = I3 +Lso(2)(u) and η

−1
t =
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I3−Lso(2)(ξt) in (4.26) and removing the second-order terms in ξt , Vn and wt we obtain:

d
dt

ξt =−

 1 01,2
(x̂t)2
−(x̂t)1

R(θ̂t)

wθ
t

wl
t

wtr
t

 ,

ξ
+
tn = ξtn− L̃n



(
−p1

2 1 0
p1

1 0 1

)
. . .(

−pk
2 1 0

pk
1 0 1

)
ξtn−

R̂tnV
1
n

. . .
R̂tnV

k
n


 .

The gains are thus computed using the Riccati equation (4.18) with At ,H, Q̂ and N̂ defined
as:

At = 03,3, H =


(
−p1

2 1 0
p1

1 0 1

)
. . .(

−pk
2 1 0

pk
1 0 1

)
 ,

Q̂ =

 1 01,2
(x̂t)2
−(x̂t)1

R̂t

Cov

wθ
t

wl
t

wtr
t

 1 01,2
(x̂t)2
−(x̂t)1

R̂t

T

,

N̂ =

R̂tnCov(N1)R̂tn 0
. . .

0 R̂tnCov(Nk)R̂tn

 .

Proposition 9. If at least two distinct points are observed then the IEKF is an asymp-
totically stable observer about any bounded trajectory.

Proof. According to Theorem 8 it is sufficient to show that in this case the observation
matrix H is full-rank, i.e. of rank 3. This is obvious as the position and the heading are
easily computed from the observation of two vectors at known locations.

4.3.2 Attitude estimation

Original model

The following example has been considered in numerous articles. An IEKF has already
been built in [11], but a proof of stability is still lacking. There are well-known non-linear
observers ensuring almost global convergence of the attitude estimate to the true state in
the absence of noise. This property is retained by some variants ensuring simultaneous
estimates of quantities of interest such as biases [79] or camera to IMU rotation param-
eters [97] to cite a few, which have flourished over the last decade. However, to our best
knowledge those approaches rely on observers with time-invariant gain functions. They
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cannot adapt easily to large prior uncertainty or statistics of the noise as do usual Gaus-
sian approximation-based methods. The latter are detailed in [36] in the specific context
of attitude estimation and include Multiplicative EKF, Additive EKF, UKF and backward
smoothing. To the opposite of fixed-gains methods they have no proved convergence
properties but can more easily take into account prior uncertainty or noise statistics. In
the following we allow for any covariance matrix of the noises (note that even time-varying
ones can be handled) which may result in gains depending on the trajectory (see Propo-
sition 10). Contrarily to those previous works this ensures 1- first-order optimality around
the estimated state, as a Kalman filter is used to handle the error system as in the stan-
dard EKF philosophy, 2- a tuning based on the trusted actual noises covariances, and
3- at the same time we still prove local convergence around the true trajectory, a feature
which is in general very hard if not impossible to prove when using a standard EKF.

In [7], a complementary filter was tested, without convergence properties and in [79],
gyro biases were taken into account and global convergence was achieved for constant
gains. We would like to mention also that some near-optimality results using a different
approach, yet based on a Riccati equation, have also been obtained in [75].

Consider the attitude of a vehicle, represented by the rotation matrix Rt ∈ SO(3) map-
ping the coordinates of a vector expressed in the vehicle frame to its coordinates in the
static frame. The vehicle is endowed with gyrometers giving an angular velocity ωt . The
equation of the dynamics reads:

d
dt

Rt = Rt(ωt +wt)×, (4.27)

where (b)× is the anti-symmetric matrix associated to vector b and wt is a noise (see [11]
for a discussion on the noise). Two kinds of observations are considered:

Yn = RtnVn, (4.28)
or

Yn = (RT
t g+V g

n ;RT
t b+V b

n ), (4.29)

where Vn is a noise in SO(3), g and b two vectors of R3 (the gravity and magnetic fields
for instance) and V g

n ,V b
n two noises in R3. (4.28) represents a full observation of the

attitude returned for instance by an image processing algorithm. The noise Vn on the
right side corresponds to an uncertainty known in (attached to) the camera frame. (4.28)
represents the measurement in the vehicle frame of known vectors of the fixed frame (e.g.
using an accelerometer under the quasi-static hypothesis, and a magnetometer), where
g et b are assumed non-collinear. This process is already defined on a matrix Lie group
(see Chapter 2). The reader can verify relation (3.8).
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IEKF equations and stability for the left-invariant output (4.28)

The LIEKF (4.17) for the system (4.27), (4.28) is defined by:
d
dt

R̂t = R̂t(ωt)× , R̂+
tn = R̂tn exp(Ln exp−1[R̂−1

tn Yn]).

To compute the gains Ln we define the left-invariant error as ηt = RT
t R̂t and its evolution

reads:
d
dt

ηt =−(ωt)×ηt +ηt(ωt)×− (wt)×ηt , η
+
tn = ηtn exp(Ln exp−1(η−1

tn Vn)). (4.30)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3 +(ξt)×.
Introducing ηt = I3+(ξt)×, η

+
t = I3+(ξ+

t )×, exp(u) = I3+(u)× , η
−1
t = I3− (ξt)×, exp−1[I3+

(u)×] = u and exp−1(ab) = exp−1(a)+ exp−1(b) in (4.30) and removing the second-order
terms in ξt , Vn and wt we obtain:

d
dt

ξt =−(ωt)×ξt −wt , ξ
+ = ξ −Ln(ξ −Ṽn). (4.31)

The gains Ln are thus computed using the Riccati equation (4.18) with matrices At ,H, Q̂
and N̂ defined as:

At =−(ωt)×, H = I3, Q̂ =Cov(wt), N̂ =Cov(Vn).

Proposition 10. The conditions of Theorem 7 being obvious, the IEKF for the system
(4.27), (4.28) is an asymptotically stable observer.

IEKF equations and stability for the right-invariant output (4.29)

The RIEKF (4.17) for the system (4.27), (4.29) is defined by:
d
dt

R̂t = R̂t(ωt)× , R̂+
tn = exp(Ln[R̂tnYn− (g;b)])R̂tn ,

with the notation R(x1;x2) = (Rx1;Rx2) for R ∈ SO(3) and x1,x2 ∈ R3. To compute the gains
Ln we write the evolution of the right invariant error ηt = R̂tRT

t :
d
dt

ηt =−(R̂twt)×ηt , η
+
tn = exp(Ln[ηtg−g+ R̂tV g

n ;ηtb−b+ R̂tV b
n ])ηtn . (4.32)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3 +(ξt)×.
Introducing ηt = I3 + (ξt)×, η

+
t = I3 + (ξ+

t )×, exp(u) = I3 + (u)× , η
−1
t = I3 − (ξt)× and

exp−1[I3+(u)×] = u in (4.32) and removing the second-order terms in ξt , V g
n , V b

n and wt we
obtain:

d
dt

ξt =−R̂twt , ξ
+
tn = ξtn−Ln

[(
(g)×
(b×)

)
ξtn−

(
R̂tnV

g
n

R̂tnV
b
n

)]
.

The gains Ln are thus computed using the Riccati equation (4.18) where matrices At ,H, Q̂
and N̂ defined as:

At = 03,3, H =

(
(g)×
(b×)

)
, Q̂ = R̂tCov(wt)R̂T

t , N̂ = R̂tnCov(Vn)R̂T
tn .
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Proposition 11. The IEKF for the attitude estimation system (4.27), (4.29), with
observation of two non-collinear vectors is an asymptotically stable observer, as a
straightforward application of Theorem 8.

4.3.3 Gyrocompass

Original model

Consider the attitude of a gyrocompass, represented by the rotation matrix Rt ∈ SO(3)
mapping the coordinates of a vector expressed in the gyrocompass frame to its coor-
dinates in the static frame. The vehicle is endowed with gyrometers giving an angular
velocity ωt , and precise enough to measure the earth rotation. This situation did not re-
ceive much attention from academics due to the high cost of the IMU required, but is of
decisive importance in inertial navigation and led to a great deal of patents. Up to our
knowledge, none of them was interested in convergence properties although instability of
the EKF can occur for this problem as shown on true data in Chapter 5. This is due to the
false observability issues explained in Chapters 8 and 9. The equation of the dynamics
reads:

d
dt

Rt = (Ω)×Rt +Rt(ωt +wt)×, (4.33)

where Ω is the earth rotation vector and wt is a noise. An accelerometer gives moreover
the gravity field in the reference frame of the gyrocompass (quasi-static hypothesis):

Yn = RT
t g+V g

n . (4.34)

This process is already defined on a matrix Lie group (see Chapter 2). The reader can
verify the relation (3.8).

IEKF equations and stability for the right-invariant output (4.34)

The RIEKF (4.17) for the system (4.33), (4.34) is defined by:

d
dt

R̂t = (Ω)×R̂t + R̂t(ωt)× , R̂+
tn = exp(Ln[R̂tnYn−g])R̂tn .
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The invariant error is ηt = R̂tRT
t and its evolution reads:

d
dt

ηt = (Ω)×ηt −ηt(Ω)×− (R̂twt)×ηt , η
+
tn = exp

(
Ln
[
ηtg−g+ R̂tV g

n
])

ηtn . (4.35)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3 +(ξt)×.
Introducing ηt = I3 + (ξt)×, η

+
t = I3 + (ξ+

t )×, exp(u) = I3 + (u)× , η
−1
t = I3 − (ξt)× and

exp−1[I3+(u)×] = u in (4.35) and removing the second-order terms in ξt , V g
n , V b

n and wt we
obtain:

d
dt

ξt = (Ω)×ξt − R̂twt , ξ
+
tn = ξtn−Ln

[
(g)×ξtn− R̂tnV

g
n
]
.

The gains Ln are computed using the Riccati equation (4.18) and matrices At ,H, Q̂ and N̂
defined as:

At = (Ω)×, H =−(g)×, Q̂ = R̂tCov(wt)R̂T
t , N̂ = R̂tnCov(Vn)R̂T

tn .

Proposition 12. The IEKF for the gyrocompass problem (4.33), (4.34) is an asymp-
totically stable observer if g and Ω are non-collinear.Note that, if g and Ω are collinear
(in other word the gyrocompass is on the north or south pole), the heading is anyway
not observable.

Proof. According to Theorem 8 we only have to show that the pair (At ,H) is observable.

The corresponding observability matrix for two successive observations reads
(

(g)×
(g)×RΩ

)
, with RΩ = exp

(
Ω×(tn+1− tn)

)
. The rank is not increased if this matrix is multiplied on the

left by
(

I3 03×3
03×3 RT

Ω

)
. We obtain

(
(g)×

RT
Ω
(g)×RΩ

)
=

(
(g)×

(RT
Ω

g)×

)
. This is the same observation

matrix as in the case where vectors g and RT
Ω

g are observed. This matrix is of rank 3 if g
and RT

Ω
g are non-collinear, i.e. if g and Ω are non-collinear.

4.3.4 Depth camera motion

Original model

The question of filtering poses computed from a depth camera has been investigated
for navigation relying on scan matching [9, 54]. It is relevant also for image denoising
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purposes, which can require to work on stabilized images. Some methods avoid re-
construction of camera pose, like [83] where the motion is estimated using a window of
several frames then represented as a vector field on the image. Some other resort to
filtering methods to maintain a pose estimate, such as particle filtering in [113]. Anyway,
no stability proof has been proposed for now. Here, we adopt an approach close to [9]
and [54] but use the previous results to study the stability of the method. We consider thus
the problem of a hand-held depth-camera in a known environment, and an assumption of
slow displacement. The attitude is denoted by the rotation matrix Rt and the position by
the 3-dimensional vector xt . The equations read:

d
dt

Rt = (wR
t )×Rt ,

d
dt

xt = (wR
t )×x+wx

t , (4.36)

where wR
t and wx

t are noises. The process noise is assumed known in the static frame,
as whatever the camera orientation is, the horizontal velocity is generally higher than the
vertical one, resulting in a covariance linked to the static frame axes. We assume an
algorithm returns the whole state (see e.g. [54]).

Y R
n = RT

tnV
R
n , Y x

n = RT
tn(x+V x

n ). (4.37)

Matrix form

The system can be embedded in the matrix Lie group SE(3) (see Chapter 2) :

χt =

(
Rt xt

01×3 1

)
, wt =

(
(wR

t )× wx
t

01×3 0

)
,

Yn =

(
Y R

n −Y x
n

01,3 1

)
, Vn =

(
V R

n −V x
n

01,3 1

)
.

Equations (4.36), (4.37) become:
d
dt

χt = wt χt , (4.38)

Yn = χ
−1
tn Vn. (4.39)

IEKF equations and stability for the right invariant output (4.39)

The RIEKF (4.17) for the system (4.38), (4.39) is defined by:

d
dt

χ̂t = 04,4 , χ̂
+
tn = exp(Ln[exp−1(χ̂tnYn)])χ̂tn ,

The right-invariant error is ηt = χ̂t χ
−1
t and its evolution reads:

d
dt

ηt =−ηtwt , η
+
tn = exp(Ln[exp−1(ηtnVn)])ηtn . (4.40)

To linearize this equation we introduce the linearized error ξt defined as ηt = I4+Lse(3)(ξt)
and the linearized observation noise defined as Vn = I4 +Lse(3)(vn). Introducing ηt =
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I4+Lse(3)(ξt), η
+
t = I4+Lse(3)(ξ

+
t ), exp(u) = I4+Lse(3)(u) , η

−1
t = I4−Lse(3)(ξt), exp−1[I4+

Lse(3)(u)] = u and exp−1(ab) ≈ exp−1(a) + exp−1(b) in (4.40) and removing the second-
order terms in ξt , exp−1(Vn) and wt we obtain:

d
dt

ξt =−wt , ξ
+
tn = ξtn−Ln(−ξtn− vn).

The gains Ln are computed using the Riccati equation (4.18) and matrices At ,H, Q̂ and N̂
defined as:

At = 03,3, H =−I6, Q̂ =Cov(wt), N̂ =Cov(exp−1(Vn)).

Proposition 13. The IEKF for the movement estimation problem (4.38), (4.39) is an
asymptotically stable observer, as a straightforward application of Theorem 8.

4.3.5 3D pose and velocity estimation

Original Model

We consider here the more complicated model of a vehicle evolving in the 3D space
and characterized by its attitude Rt , velocity vt and position xt . The vehicle is endowed
with accelerometers and gyroscopes whose measures are denoted respectively by ut and
ωt . The equation of the dynamics reads:

d
dt

Rt = Rt(ωt +wω
t )× ,

d
dt

vt = g+Rt(ut +wu
t ) ,

d
dt

xt = vt . (4.41)

Two kinds of observations are considered:

Yn = xn +Vn, (4.42)
or(

Y 1
n , . . . ,Y

K
n
)
=
(
RT

tn(p1− x1)+V 1
n , . . . ,R

T
tn(p1− x1)+V K

n
)
, (4.43)

where Vn, V 1
n , . . . ,V

K
n are noises in R3. (4.42) represents a position measure given by a

GPS. IMU-GPS data fusion is of decisive industrial interest and EKF is a well-established
method for this purpose [29, 45, 91, 108]. Yet, no convergence property has been ob-
tained. Invariant methods have been proposed for inertial navigation [10, 18], only in the
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simplified situation where the system is reduced to attitude and velocity and assuming
the GPS provides an absolute velocity measure. The resulting model is a combination
of left- and right-invariant dynamics matching the usual theory. The extended frame-
work proposed by the present document, combined with the introduction of a relevant
group structure (see 2.4) makes straightforward the design of an IEKF for the whole
attitude/velocity/position system although it does not verify the hypotheses required by
invariant techniques. We don’t have knowledge of an observer for this problem having
convergence properties on uniformly observable trajectories, but the benefits of the IEKF
below go beyond its nice theoretical guaranties. It is the core of a pool of patented meth-
ods developed for industrial purposes, whose results are presented in Chapter 5. They
take into account many additional variables including bias and drifts and inherit largely of
the global properties illustrated in Chapter 10.

(4.43) represents the measure of the relative position of known features (using for
instance a depth camera): (p1, . . . , pK) denote the position of the features in the static
frame. The issue of merging IMU data with range and bearing measurements has been
raised by the use of stereo cameras. Batch optimization has been used [68] but the
most widespread approach is probably visual odometry followed by Kalman filtering (see,
e.g., [30,68,98,106] for recent publications). In the last years, the same question received
a renewed attention due to the evolution of depth cameras and LiDAR [56,66]. Theoretical
stability of EKF-based methods used for this purpose have not been studied yet, but they
can be obtained for the IEKF we propose as will be shown below.

Matrix form

As already noticed in the preliminary work [13], the system (4.41) can be embedded in
the group of double homogeneous matrices (see Chapter 2) using the matrices χt , wt and
function fω,u:

χt =

 Rt vt xt

03,1 1 0
03,1 0 1

 , wt =

(wω
t )× w f

t 03,1
01,3 0 0
01,3 0 0

 ,

fω,u :

 R v x
03,1 1 0
03,1 0 1

→
R(ω)× g+Ru v

03,1 0 0
03,1 0 0

 .

The equation of the dynamics becomes:

d
dt

χt = fωt ,ut (χt)+χtwt , (4.44)

and the observations (4.42) and (4.43) find respectively the equivalent forms:

Yn = χtn

(
04,1
1

)
+

(
Vn

02,1

)
, (4.45)

(Y 1
n , . . . ,Y

K
n ) =

χ
−1
tn

p1
0
1

+V 1
n , . . . ,χ

−1
tn

pK

0
1

+V K
n

 . (4.46)
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Proposition 14. The matrix function fωt ,ut is neither left or right invariant, nor a com-
bination of both, but verifies condition (3.8). The demonstration is straightforward.

IEKF equations for the left-invariant output (4.42)

The LIEKF (4.17) for the system (4.44), (4.45) reads:

d
dt

χ̂t = fωt ,ut (χ̂t) , χ̂
+
t = χ̂t exp(Ln(χ̂

−1
t Yn)). (4.47)

As the two last entries of matrix χ̂
−1
t Yn are always zero one we can use a reduced-

dimension gain matrix L̃n defined by Ln = L̃n p̃ with p̃ = (I3,03,2). The left-invariant error is
ηt = χ

−1
t χ̂t and its evolution reads:

d
dt

ηt = fω,u(ηt)− fω,u(I5)ηt −wtηt , (4.48)

η
+
tn = ηtn exp

(
L̃n p̃

[
η
−1
tn

(
04,1
1

)
+ χ̂

−1
tn

(
Vn

02,1

)])
. (4.49)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3+Lse(3),2(ξt).
Introducing ηt = I3 +Lse(3),2(ξt), η

+
t = I3 +Lse(3),2(ξ

+
t ), exp(u) = I3 +Lse(3),2(u) and η

−1
t =

I3−Lse(3),2(ξt) in (4.48) and removing the second-order terms in ξt , Vn and wt we obtain:

d
dt

ξt =

−(ωt)× 03,3 03,3
−(ut)× −(ωt)× 03,3

03,3 I3 −(ωt)×

ξt −wt ,

ξ
+
tn = ξtn− L̃n

[(
03,3 03,3 I3

)
ξtn− R̂T

tnVn

]
.

The gains L̃n are computed using the Riccati equation (4.18) and matrices At ,H, Q̂ and N̂
defined as:

At =

−(ωt)× 03,3 03,3
−(ut)× −(ωt)× 03,3

03,3 I3 −(ωt)×

 , H =
(
03,3 03,3 I3

)
,

Q̂ =Cov(wt), N̂ =Cov
(
R̂−1

t (Vn)
)
.

Deriving a stability result of the IEKF for this system under the assumption the accelera-
tion varies (as the state is not observable if the acceleration is constant) goes beyond the
scope of the present work. However, due to the theoretical developments above, stability
can be conjectured, and it is left for future work.

IEKF equations and stability for the right invariant output (4.43)

The RIEKF (4.17) for the system (4.44), (4.46) reads:

d
dt

χ̂t = fωt ,ut (χ̂t) , χ̂
+
tn = exp

Ln

 χ̂tnY
1
n

. . .
χ̂tnY

K
n

 χ̂tn .
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As the two last entries of each matrix χ̂
−1
tn Y k

n are always zero, one we can use a reduced-

dimension gain matrix L̃n defined by Ln = L̃n p̃ with p̃ =

[I3,03,2]
. . .

[I3,03,2]

. The

right-invariant error is ηt = χ̂t χ
−1
t and its evolution reads:

d
dt

ηt = fω,u(ηt)−ηt fω,u(I5)−
(
χ̂twt χ̂

−1)
ηt , (4.50)

η
+
tn = exp


L̃n p̃



ηtn

p1
0
1

+ χ̂tn

(
Vn

02,1

)
. . .

ηtn

pK

0
1

+ χ̂tn

(
Vn

02,1

)




ηtn . (4.51)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3+Lse(3),2(ξt).
Introducing ηt = I3 +Lse(3),2(ξt), η

+
t = I3 +Lse(3),2(ξ

+
t ), exp(u) = I3 +Lse(3),2(u) and η

−1
t =

I3−Lse(3),2(ξt) in (4.50), (4.51) and removing the second-order terms in ξt , Vn and wt we
obtain:

d
dt

ξt =

 03,3 03,3 03,3
(g)× 03,3 03,3
03,3 I3 03,3

ξt −

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

wt ,

ξ
+
tn = ξtn− L̃n

(p1)× 03,3 −I3
. . .

(pK)× 03,3 −I3

ξtn−

R̂tnV
1
n

. . .
R̂tnV

K
n

 .
The gains L̃n are computed using the Riccati equation (4.18) and matrices At ,H, Q̂ and N̂
defined as:

At =

 03,3 03,3 03,3
(g)× 03,3 03,3
03,3 I3 03,3

 , H =

(p1)× 03,3 −I3
. . .

(pK)× 03,3 −I3

 ,

Q̂ =

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

Cov(wt)

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

T

,

N̂ =

R̂tnCov(V1)R̂T
tn

. . .
R̂tnCov(VK)R̂T

tn

 .

Proposition 15. If three non-collinear points are observed, then the IEKF is an
asymptotically stable observer about any bounded trajectory.
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Proof. According to theorem 8 we only have to ensure the couple (A,H) is observable. In-
tegrating the propagation on one step we obtain the discrete propagation matrix Φ = I3 03×3 03×3

t(g)× I3 03×3
1
2 t2(g)× tId3×3 I3

. The observation matrix is denoted H. We will show that

[H;HΦ] has rank 9. We can keep only the rows corresponding to the observation of
three non-collinear features p1, p2, p3. and denote the remaining matrix by H1. Matrices
H2 and H3, obtained using elementary operations on the columns of H1, have a rank
inferior or equal to the rank of H1:

H1 =



(p1)× 03×3 −I3
(p2)× 03×3 −I3
(p3)× 03×3 −I3

(p1)×− 1
2 t2(g)× −tI3 −I3

(p2)×− 1
2 t2(g)× −tI3 −I3

(p3)×− 1
2 t2(g)× −tI3 −I3

 , H2 =



(p1)× 03×3 −I3
(p2)× 03×3 −I3
(p3)× 03×3 −I3

−1
2 t2(g)× −tI3 03×3

−1
2 t2(g)× −tI3 03×3

−1
2 t2(g)× −tI3 03×3



H3 =


(p1− p3)× 03×3 03×3
(p2− p3)× 03×3 03×3

1
2 t2(g)× tI3 03×3
(p3)× 03×3 −I3


The diagonal blocks

(
−(p1− p3)× 03×3
−(p2− p3)× 03×3

)
, tI3 and I3 have rank 3 thus the full matrix has

rank 9.

4.4 Conclusion

The methodology of the IEKF has been applied to the systems defined in Chapter 3,
whose unusual properties have been used to derive stability guaranties under the same
assumptions as in the linear case. These hypotheses have been easily checked for a
long list of simple navigation examples. More complicated situations arising in industrial
applications are presented in the next Chapter, along with results obtained on real and
simulated data.
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Chapter 5

Industrial applications

The methods used in this chapter are adaptations of those described in Chapter 4. They
led to the registration of two patents (n° 15-00654 and 14-01535) and the present results
have been partially presented at the 2014 21st Saint Petersburg International Conference
on Integrated Navigation Systems. Note that, throughout the chapter, the level of details
is limited by confidentiality of the results.

Chapter abstract When dealing with high precision navigation problems, in order to
accurately estimate the position of the body, slowly time-varying biases affecting the gy-
roscopes and accelerometers measurements need be estimated online. Although the
theory developed in the previous chapters does not readily apply to this extended prob-
lem, we show how to handle in practice the estimation of such additional variables. Then,
we present some industrial results obtained in partnership with SAGEM. The IEKF is
shown to outperform the conventional EKF on real experimental data for three different
navigation problems.

5.1 Introduction

The present PhD thesis has been partly funded by the aerospace and defense company
SAGEM (part of the Safran group), to improve its inertial navigation techniques. We
give here a brief description of the specific problems motivating the theory presented in
this document, as well as a methodology adopted to approach some applications of a
higher degree of complexity than those mentioned in other chapters. Even if the following
chapter is of reduced length and the exposure is limited by confidentiality requirements,
it has been the object of many experiments, simulations, and hard work, and the results
have been considered convincing enough to use the proposed algorithms in a currently
developed military device. As such, it constitutes a key - if not the main - output of this
PhD thesis.

This chapter is divided into two sections. Section 5.2 discusses a generalized frame-
work allowing to face most of the industrial problems encountered and Section 5.3 presents
some inertial navigation issues and the striking improvements allowed by the algorithms
implemented.
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5.2 Autonomous error equations in practice

The perfect situation studied in chapter 4 is quite general, as illustrated by the various
examples treated, but omits to simultaneously estimate biases in the inertial measure-
ments. When it comes to high precision navigation, bias estimation is paramount. Of
course, as there is no Lie group structure dictating the form of an EKF meant to simulta-
neously estimate biases, there is a great deal of freedom to devise such an EKF. What
we propose is as follows.

5.2.1 A more general framework

The main idea allowing application of the EKFs described in this work to more compli-
cated systems is to build an error following an autonomous equation for a simpler system
with comparable behavior, then use it for the true system although most of the theoreti-
cal properties are lost. This approach is more justified than using a classical linear EKF
which is, as already mentioned, an arbitrary and parameterization-dependent choice. To
illustrate this approach we embed now the class of systems studied in the previous chap-
ters into an environment impacting the dynamics and the observations:

d
dt

Θ = l(Θ),

d
dt

χt = f(Θt ,ut)(χt),

Y = h(χt ·b,Θ) or h(χ−1
t b,Θ).

(5.1)

The core of the dynamics is still a function f verifying (3.13) but the inputs and ob-
servation function are both related to an additional vector variable Θt ∈Rp. Moreover, the
observation involves an additional function h possibly reducing the observability of the
system. This framework can be used to describe most of the navigation problems.

5.2.2 "Imperfect" IEKF

The most straightforward way to extend the IEKF to the generalized situation (5.1) is to
copy its error variable and add the errors regarding Θ as simple vector differences Θt−Θ̂t :

et = (χ−1
t χ̂t ,Θt − Θ̂t).

The matrices involved in the Riccati equation take the general form:

At =

(
Aχ AΘ,χ

0 AΘ

)
, Hn = Dh

(
Hχ ,HΘ

)
,

where Dh denotes the differential of h at
(
χ̂tn ·b,Θ̂tn

)
. This method apparently sacrifices all

the interesting properties of the IEKF, but its fundamental benefits are actually preserved.
The theoretical properties of an EKF using this kind of non-linear error variable will be
extensively discussed in Part III of this document.
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5.2.3 Fast Riccati integration

In this paragraph we underline some tricks to lower the numerical burden of gain compu-
tation. A common approximation in the integration of the Riccati equations appearing in
Kalman filtering is: ∫ tn+1

tn
F tn+1

s Qs(F tn+1
s )T ≈ (tn+1− tn)Qtn+1 ,

where F t
s = DΦt

s|X̂s
is the differential of the flow associated to the dynamics. This leads to

the simplified equation:
Ptn+1 = FnPtnFT

n +(tn+1− tn)Qtn+1 ,

where Fn = F tn+1
tn . This makes the complexity of the integration depend only on the dynam-

ics of the system, not on the error variable chosen, as shown by the following remark:

Remark 6. Integration of the Jacobian Fn is of equal difficulty for the left- and right-
invariant error as their Jacobian are related through the relation:

F tn+1R
tn = Adχ̃tn+1

F tn+1L
tn Ad

χ̃
−1
tn
,

where χ̃t is any particular solution of the dynamics (note that the inversion of χ is trivial in
all the examples given).

Proof. Let χ̃t denote a particular solution of the dynamics and (ΦL,ΦR) the flows associ-
ated to the left- and right- invariant errors. For any other solution χt , with the usual nota-
tions ηL

t = χ
−1
t χ̃t and ηR

t = χ̃t χ
−1
t we have ηR

tn+1
= χ̃tn+1ηL

tn+1
χ̃
−1
tn+1 = χ̃tn+1Φ

tn+1L
tn (ηL

tn)χ̃tn+1(η
R
t ) =

χ̃tn+1Φ
tn+1L
tn (χ̃−1

tn ηR
tn χ̃tn)χ̃tn+1 . A first-order expansion in ηR

t gives exactly:

F tn+1R
tn = Adχ̃tn+1

F tn+1L
tn Ad

χ̃
−1
tn
.

Example 4. Consider the Riccati equation obtained in example 4.3.1. The Jacobian of
the left-invariant error follows the equation:

d
dt

F tL
tn =

 0 0 0
0 0 −utvt

−vt utvt 0

F tL
tn .

The estimate χ̂t is a particular solution over [tn, tn+1], and the solution of the simplified
Riccati equation associated to the right-invariant matrix is trivial (F tR

tn = Id). We can thus
compute instantaneously the solution for the right-invariant error:

F tn+1L
tn = Adχ̂tn+1

Ad
(χ̂

+
tn )
−1 .

Going back to the general case (5.1), the Jacobian of the full system is the solution
of:

F0 = Id ,
d
dt

Ft =

(
Aχ AΘ,χ

0 AΘ

)
Ft .
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The solution takes the form Ft =

(
Fχ FΘ,χ

0 FΘ

)
. The method described above allows to

optimize the computation of the top left block. Depending on the situation, the other
blocks can become either trivial, or well approximated by a trivial solution. This can
be illustrated by biased dynamics of the form d

dt χt = f (χt)+ χtb, for which the Jacobian
describing the evolution of the left-invariant error is well approximated by:

Ft ≈
(

Fχ ∆T × Id
0 Id

)
.

Remark 7. In this section, we gave some directions of the way to take advantage of the
properties of systems having an error variable with autonomous error equation, when
these are only part of a more complicated environment as in most engineering appli-
cations. The main interest of the theory thus appears to provide the practitioner with
relevant error variables for the use of the non-linear state error based EKFs as presented
in Chapter 9. Even if they lose their autonomy property due to the increased complexity
of the system, a linear error variable has no reason to be preferred to them a priori.

To be more specific, if a first system has observability properties comparable to those
of a second system for which an error variable with autonomous equation is available,
then this error should be also used for the first system. This heuristic finds a rigorous
justification in the case described by Theorem 20 of Chapter 9: recycling the non-linear
error variable of a simpler system can be sufficient to get rid of a dangerous non-linear
effect described in details in Chapter 8 and known as false observability.

Another route to take advantage of the particular structure of a part of the state is
to use sampling-based methods. The sampling space can thus be reduced by a Rao
- Blackwellization procedure benefiting from the specificities of the Riccati equation in-
volved in the Invariant Extended Kalman Filter as shown in Part II of the present thesis.
The strong convergence properties of this latter method can be expected to have inter-
esting consequences on the accuracy of the obtained sampling. No result in this direction
is given here but addressing this issue seems an interesting research avenue.

5.3 Industrial applications

5.3.1 Inertial navigation

The basic function of an inertial navigation system is to produce real-time information
about the attitude, velocity and position of a vehicle (aircraft, ship, submarine, car, etc.).
It relies on an Inertial Measurement Unit, consisting of a set of accelerometers and gy-
roscopes (generally 3 of each). An accelerometer measures the projection over one axis
of the sum of vehicle acceleration and gravitation. This vector is fully measured by three
accelerometers forming a basis of the space. A gyroscope measures the projection of the
angular rate of the vehicle over one axis, three non-coplanar gyroscopes measure the full
instantaneous rotation vector. These measures are polluted by a noise whose modeling
is a difficult problem in itself. In the design of filtering methods for inertial navigation, it is
generally divided into two parts: a systematic error called "bias" or "drift", constant over
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time or having a well modeled behavior, and an additional perturbation having erratic be-
havior and assimilated to a white noise. The general equations in an inertial reference
frame read:

d
dt

Rt = Rt(ωt +dt +wω
t )×,

d
dt

vt = Rt( ft +bt +w f
t )×+G(xt),

d
dt

xt = vt ,

(5.2)

where Rt ∈ SO(3) denotes the attitude in an inertial reference frame, vt ∈ R3 denotes the
velocity, xt ∈ R3 the position, ωt ∈ R3 the measurements of the gyroscopes, ft ∈ R3 the
measurements of the accelerometers, dt ∈ R3 and bt ∈ R3 the biases of the gyroscopes
and accelerometers respectively, wω

t and w f
t the white additional noises and G : R ∈R3→

R ∈ R3 the gravity field.
Owing to its nature, inertial navigation faces two major drawbacks. First it allows to

maintain an estimate of attitude, velocity and position only if their initial value is known.
Second, the sensor errors accumulate and make the estimate drift on the long run. Note
that due to roundness of the Earth, an acceleration error does not lead to a position error
growing quadratically over time [99] as could be expected. Anyway, coupling inertial navi-
gation with another information is the usual way to circumvent these flaws. Three different
situations where an IEKF has been successfully tested on real data are described in this
chapter.

5.3.2 Static alignment

As previously mentioned, an initial guess of the attitude, velocity and position of the vehi-
cle is necessary to start an inertial navigation. Finding position and velocity is generally
the easy part, as the starting point of a mission is known quite precisely and can be given
manually to the IMU. Concerning the velocity, the vehicle is likely to be stationed when
the IMU is turned on. Finding the attitude is more tricky as no sensor can measure it
accurately (a magnetic compass is subject to large errors incompatible with the require-
ments of inertial navigation). Fortunately, a stationed vehicle knowing it is stationed need
not more information to estimate its attitude if the accuracy of its gyros is sufficient to
make out the Earth rotation, whose projection over the horizontal plan (given by the ac-
celerometer) is the north direction. Obviously, the procedure cannot be that simple as the
possible rotations of the vehicle during alignment have to be taken into account. More-
over, some sensors bias are observable, some can be or not depending on the attitude
changes during the alignment, some correlate with the attitude, and this information has
to be encoded to improve future navigation. It makes this problem a perfect candidate for
application of an EKF: the dynamics is given by the equations of inertial navigation where
sensor biases are modeled (5.2) and the observation can be either position or velocity:

Yn = xtn +V x
n or Yn = vtn +V v

n .

Note that no velocity nor position sensor is actually used: Yn is the inertial position or ve-
locity of the geographical point where the vehicle lies, Vx or Vv being the small variations
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of position and velocity around these reference values. This kind of virtual measurement
is usually called ZUPT (Zero velocity UPdaTe). The Kalman filtering framework proves
extremely convenient here: the algorithm stays the same although the observability prop-
erties of the problem vary depending on the situation as mentioned above. This made
EKF the classical approach to this problem. Unfortunately, application of this local method
requires an accurate initialization. Thus, a procedure consisting of three steps is usually
implemented:

Vertical direction search: over a few seconds, the accelerometer measures are cor-
rected from rotations thanks to the gyro then averaged to obtain a first guess of the
vertical.

Coarse alignment: an approximate but reliable estimate of the attitude is computed.
Here different methods can be used, for instance building an approximate but linear
modeling of the system and applying a classical Kalman filter.

Fine alignment: starting from a coarse estimate of the attitude (error within a few de-
grees), the EKF is applied on the full non-linear system to compute an estimate of
all variables (including biases), as well as the covariance matrix of the errors.

Implementation of this procedure is heavy, as handling transitions between the different
phases is not straightforward: the instant they are performed has to ensure the desired
precision is achieved, at the risk of jeopardizing the final result. But waiting too much also
means increasing the duration of the alignment. As the systems under consideration are
embedded, having several phases also implies a more complicated validation process.

A way to circumvent these difficulties is IEKF. The problems caused here by large
initial errors are similar to the one exposed in Chapter 10: state estimation error is mainly
caused by one single variable (heading uncertainty) and the true state is thus (almost)
constrained in a one-dimensional (non-linear) manifold. This constraint is natively pre-
served by the estimate of the IEKF, but not by the one of the EKF as shown in Chapter
10, for which the authorized manifold is left after the first update and never reached again
(see Figure 10.6 of Chapter 10). Thus, the convergence radius of the IEKF is extremely
large, which makes possible to use it without needing a first guess of the attitude. The
alignment procedure then boils down to one step: applying an IEKF.

The method has been tested on real data from an IMU put in a car at stand, but with
running engine producing small movements. The results are displayed on Figure 5.1.
The blue line is the heading estimate of the IEKF, the green line the estimate of the clas-
sical method. The vertical line is a consequence of the three-steps procedure: although
already computed during the coarse alignment phase, the heading estimate is displayed
here only from the beginning of the fine alignment. The transition from a memorized
value creates this artifact. As the experiment is performed in real conditions, no ground
truth is available. Checking the validity of the method thus requires the assumption that
the classical algorithm implemented in the software of the IMU is also correct. Looking
at Figure 5.1, two conclusions can be drawn for the specific situation considered in the
experiment:

1. The IEKF converges to the correct value of the heading, or at least to the same
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Figure 5.1 – Static alignment of an IMU planted in a car at stand with engine running.
The blue line is the heading estimate of the IEKF, the green line the estimate of the
commercial software. The vertical line is a consequence of the three-steps procedure:
although already computed during the coarse alignment phase, the heading estimate
is displayed here only from the beginning of the fine alignment. The transition from a
memorized value creates this artifact. We see that the IEKF converges to the same value
as the classical method although starting very far (120 degrees) from the true value.

value as the commercial software, although the initial heading error is extremely
large (around 120 degrees here).

2. The coarse estimation steps being avoided, the convergence is much faster.

5.3.3 Prolonged static pose

Chapter 8 will explain in details the problem of “false observability”: due to updates of
the linearization point the observability properties of the linearized system used by the
EKF can differ from those of the true system. IEKF is an efficient response to this issue
as shown by Remark 17 in chapter 9. A convincing illustration is given by the follow-
ing problem encountered in operational situations. A vehicle keeps the same pose for
several hours while undergoing small zero-mean translation movements, and maintains
its attitude estimate using the ZUPT mentioned above. In this case, no information can
ever be obtained concerning the projection of the gyro biases over the west direction. To
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be more specific, distinguishing between a variation of this value and a variation of the
heading is impossible. Yet, on the long run, the EKF creates artificial information as in
the SLAM problem exposed in Chapter 9 and the estimated heading drifts as displayed
on Figure 5.2 (purple plot). An EKF re-implemented from scratch and used on the same
data encounters the exact same problem (black plot), which proves this is not due to a
bug in the software.

A first solution to the problem is the Observability-Constrained EKF (OC-EKF) pro-
posed in [57]. Once the false observability issue has been identified and the dimension of
the non-observable subspace analytically computed, the linearization is tuned to ensure
the non-observable subspace to keep the right dimension. The results of this algorithm
are displayed on Figure 5.2 (green plot). We see that the problem is solved: the drift of
the heading estimate disappeared. But the filter has been explicitly "told", by a user pos-
sessing side information on the experiment the IMU is undergoing, to maintain a given
dimension of the non-observable subspace. This can be worrying regarding possible un-
expected consequences, and brings an additional issue: if a true attitude change occurs,
making the problematic direction observable, it has to be detected to allow transition to a
classical EKF.

An IEKF has been implemented for the same problem, but no constraint regarding
non-observability was added. The results are displayed on Figure 5.2 (red plot): this also
solves the problem and leads to the same estimate as the OC-EKF, but without ah-hoc
patch-up. The blue plot is a second IEKF, modeling only attitude, position and velocity
which prevents of course false observability as all its variables are observable. We see
that the IEKF modeling the full system (red plot) gives the same results and thus is not
perturbed by non-observability. Moreover, a procedure detecting the problematic situation
in order to trigger the OCEKF is not required anymore. Nevertheless, note that the OC-
EKF has the advantage of being easily added to an existing system, which is not the case
of the IEKF.

5.3.4 In-flight alignment

The last practical situation considered in this document is the initialization of the nav-
igation performed while the vehicle is moving, using a GPS aid instead of the "small
movement" information. Here again, this functionality is usually achieved through a grad-
ual fine-tuning possibly demanding operational constraints. The results of the software in
use in Sagem’s IMUs are not going to be displayed here. Yet, the benefits of the IEKF can
be easily illustrated first through a comparison with the standard EKF on real data, then
through a statistical analysis of the results over a large sample of simulated trajectories.

Figure 5.3 displays the estimation error of an EKF and an IEKF, tuned with the exact
same parameters, for a GPS-INS alignment using real inertial measurements. We see
the estimate of the EKF deteriorates rapidly as the initial value of the heading error grows.
Of course, this specific plot is not representative of the behavior of an operational system
as the EKF is not used until a reliable first guess of the attitude has been obtained (see
above). It simply illustrates why a much more complicated procedure is required, usually
limiting the movements of the vehicle during the alignment. On the other hand, as in the
static case, the convergence of the IEKF is not disturbed by large initial errors, which
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Figure 5.2 – Prolonged static pose during which a "small movement" measure is pro-
vided to the EKF. This information is sufficient to maintain the yaw estimate thanks to
the earth rotation. The true yaw is constant, but a specific pattern of small translations
of the IMU makes the linearization point of the EKF move slightly at each update. The
resulting linearized system has a non-observable subspace of smaller dimension than
the true system. This has dramatic consequences on the yaw estimate: it drifts over
time (purple plot) although the true yaw is constant. To make sure this is not due to a
bug in the software, an EKF has been re-implemented from scratch with the exact same
results (black plot). An engineer proposed and successfully implemented the OC-EKF
introduced in [58]: the dimension of the non-observable subspace is analytically derived
and the linearization point of the EKF is modified to preserve it (green plot). A method
based on the IEKF, designed without taking into account the possible false observability
issue, has been used on the same data (red plot): it did not encounter the problem. Su-
perposed with the red plot is the result of a similar method, but where only the observable
part of the system is modeled. The results are almost equivalent. This proves that the
first method, like linear filters, is not perturbed by the addition of non-observable states.
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allows a great simplification of the general method: the successive fine-tuning steps can
be skipped.

Results of Figure 5.4 were extracted from a simulations campaign aiming at the im-
plementation of the IEKF on a commercial product. One of its goals was to verify the
coherence of the estimation errors with the covariance matrix provided by the filter. Some
results are displayed here but this time, the physical quantities estimated are not given,
nor the units. 1000 sequences of increments are generated and the initializations are
randomly distributed. We can see that the error over time exactly matches the 3−σ en-
velopes, as in the linear case. This is a good argument confirming that the performances
of the method are close to optimality. After thousands of simulations including those pre-
sented here, the decision was made to shift from EKF to IEKF, at least for the considered
product.

5.4 Conclusion

We gave in this chapter the most decisive applications of the theoretical results presented
in the rest of the document, and the general form of the equations involved. The existence
of commercial products based on the EKF allows a fair comparison with a method relying
on the IEKF. In several crucial situations, the second one results in dramatic improve-
ment, possibly allowing a great simplification of the algorithms in use, of their design and
validation process, as well as better performance and more flexibility for the user.

This closes the first part of the thesis, devoted to the introduction and study of a class
of estimation problems generalizing both invariant and linear systems.
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Figure 5.3 – In-flight alignment: comparison of an EKF and IEKF with same parameters.
They are equivalent for small initial errors, but the convergence of the EKF deteriorates
much faster with the increase of the initial error. It makes it useless during the transitory
phase, to the contrary of the IEKF.
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Figure 5.4 – Simultaneous alignment of an IMU and estimation of some physical param-
eters. A set of 1000 random values has been sampled and corresponding increments
generated by a proven simulator. The 3−σ envelopes of the errors on the physical pa-
rameters are displayed over time, together with the true errors for the 1000 simulations.
We see the filter gives consistent estimates although the initial attitude errors are possibly
large.
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Part II

Probabilistic invariant filtering
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Chapter 6

Stochastic properties of invariant
observers

The present chapter has been published in IEEE Transactions on Automatic Control.

Chapter abstract In the present chapter we address the problem of filtering in the con-
text of an autonomous error equation: the state is now seen as a random process and
the quantity of interest becomes its density over time. The interpretation of the stochastic
equations involved (Ito or Stratoniovitch) is discussed. The error variable is shown to be
a time-homogeneous Harris chain (a Markov chain taking values in a continuous space).
We show that if the estimation error almost globally converges for noise turned off, then
when noises are turned on the error converges in law to a distribution that is independent
of the initial error density. This novel result is illustrated on concrete examples, and lever-
aged to optimize non-linear gains through the asymptotic error distribution they produce.
The transitory phase is then studied and a gain tuning relying on particle sampling is
proposed.

6.1 Introduction

In this chapter, the state of the system is studied as a stochastic process, which requires
some clarifications regarding the sense of the equations involved (Itô or Stratonovitch).
Because of this additional difficulty, the generalized framework built in Part I is temporar-
ily dropped in favor of simplified equations. This makes all the computations much more
readable as the dynamics appears under a concrete matrix form instead of involving a
function fut assumed to verify a given property. This is a handicap regarding the direct
application of the results to some inertial navigation problems mentioned earlier, but the
properties derived here would actually hold in the general framework under similar hy-
potheses. This simplification is used only in the present chapter.

Its contributions and organization are as follows. In Section 6.2, the problem of
stochastic filtering on Lie groups with a continuous-time noisy model and discrete-time
observations is rigorously posed. The problem is then transformed into a complete
discrete-time model. The discretization is not straightforward because unlike the linear
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case, difficulties arise from non-commutativity. We propose in Section 6.3 a class of
natural filters appearing as a loosening of the IEKF presented in Chapter 4, where the
gains are allowed to be tuned by any other method than a Riccati equation. The pro-
posed class is very broad and the tuning issue is far from trivial. Sections 6.4 and 6.5
explore two different routes, depending on if we are interested in the asymptotic or tran-
sitory phase. In Section 6.4, we propose to hold the gains fixed over time. As a result,
the error equation becomes a homogeneous Markov chain. We first prove some new
results about global convergence in a deterministic and discrete-time framework. Then,
building upon the homogeneity property of the error, we prove that if the filter with noise
turned off admits almost global convergence properties, the error with noise turned on
converges to a stationary distribution. Mathematically this is a very strong and to some
extent surprising result. From a practical viewpoint, the gains can be tuned numerically to
minimize the asymptotic error’s dispersion. This allows to “learn" sensible gains for very
general types of noises. The theory is applied to two examples and gives convergence
guarantees in each case. First an attitude estimation problem using two vector measure-
ments and a gyroscope having isotropic noise (Section 6.4.2), then the construction of
an artificial horizon with optimal gains, for a non-Gaussian noise model (Section 6.4.3).
Each application is a contribution in itself and can be implemented without reading the
whole thesis. In Section 6.5, we propose to optimize the convergence during the transi-
tory phase using Gaussian approximations. We first stick to the general purpose of this
thesis manuscript and adapt the IEKF studied in previous chapters to this discrete situ-
ation. As the linearizations always occur around the same point, the linearized model is
time-invariant and thus the Kalman gains, as well as the Kalman covariance matrix, are
proved to converge to fixed values (note that when on-board storage and computational
resources are very limited, this advantageously allows to replace the gain with its asymp-
totic value. The IEKF is compared to the well-known MEKF [34, 71] and UKF [33, 62] on
the attitude estimation problem, and simulations illustrate some convergence properties
that the latter lack. In the case where the error equation is fully autonomous, we intro-
duce a new method based on off-line simulations, the IEnKF, which outperforms the other
filters in case of large noises by capturing very accurately the error’s dispersion.

6.2 Problem setting

6.2.1 Considered continuous-time model

Consider a state variable χt taking values in a matrix Lie group G with neutral element Id ,
and the following continuous-time model with discrete measurements:

d
dt

χt = (υt +wt)χt +χtωt , (6.1)

Yn = h(χtn ,Vn), (6.2)

where υt and ωt are inputs taking their values in the Lie algebra g (i.e. the tangent
space to the identity element of G), wt is a continuous white Langevin noise with diffusion
matrix Σt , whose precise definition will be discussed below in Subsection 6.2.3. (Yn)n>0
are the discrete-time observations, belonging to some measurable space Y and Vn is a
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noise taking values in Rp for an integer p > 0. We further make the following additional
assumption:

Assumption 1 (left-right equivariance) The output map h is left-right equivariant, i.e.
there exists a left action of G on Y such that we have the equality in law:

∀g,χ ∈ G, h(χg,Vn)
L
= g−1h(χ,Vn), (6.3)

and h(χg,0) = g−1h(χ,0). (6.4)

The reader who is not familiar with stochastic calculus and Lie groups can view χt

as a rotation matrix, and replace the latter property with the following more restrictive
assumption:

Assumption 1 bis For any n > 0 there exists a vector b such that:

h(χ,Vn)=χ
−1(b+Vn).

The assumptions could seem restrictive but are verified in practice in various cases
as shown by the following examples, which will provide the reader with a more concrete
picture than the formalism of Lie groups.

6.2.2 Examples

Attitude estimation on flat earth

Our motivating example for the model (6.1)-(6.2) is the attitude estimation of a rigid body
assuming the earth is flat, and observing two vectors:

d
dt

Rt = Rt(ωt +wω
t )×,

Yn = (RT
tnb1 +V 1

n ,R
T
tnb2 +V 2

n ),
(6.5)

where as usual Rt ∈ SO(3) represents the rotation that maps the body frame to the earth-
fixed frame, and where ωt ∈ R3 is the instantaneous rotation vector, and wω

t ∈ R3 is a
continuous Gaussian white noise representing the gyroscopes’ noise. We have let (x)× ∈
R3×3 denote the skew matrix associated with the cross product with a three dimensional
vector, i.e., for a,x ∈ R3, we have (x)×a = x× a. (Yn)n≥0 is a sequence of discrete noisy
measurements of two vectors b1,b2 of the earth fixed frame verifying b1×b2 6= 0, and V 1

n
and V 2

n are sequences of independent isotropic Gaussian white noises. Note that the
noise wω

t is defined, as the input ωt , in the body frame (in other words it is multiplied
on the left). Thus equations (6.5) do not match (6.1)-(6.2) which correspond to a noise
defined in the earth-fixed frame. This can be remedied in the particular case where the
gyroscope noise is isotropic, a restrictive yet relevant assumption in practice.

Definition 7. A Langevin noise wt of g is said isotropic if w̃t := gwtg−1 L
= wt for any

g ∈ G.
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Note that for a noise taking values in so(3) this definition corresponds to the physical
intuition of an isotropic noise of R3. With this additional assumption the equation can be
rewritten:

d
dt

Rt = (w̃ω
t )×Rt +Rt(ωt)×,

Yn = (RT
tnb1 +V 1

n ,R
T
tnb2 +V 2

n ),

which corresponds to (6.1)-(6.2).

Remark 8. If the gyrometer noise is not isotropic the new noise w̃ω
t is related to Rt by

w̃ω
t =Rtwω

t RT
t . Depending on the degree of anisotropy this can prevent the use of methods

based on the autonomy of the error (see 6.4) but not of the discrete-time IEKF (see 6.5.1).

Attitude estimation on a round rotating Earth

Another interesting case is attitude estimation on SO(3) using an observation of the ver-
tical direction (given by an accelerometer) and taking into account the rotation of the
earth. Whereas the flat earth assumption perfectly suits low-cost gyroscopes, precise
gyroscopes can measure the complete attitude by taking into account the earth’s rotation.
We define a geographic frame with axis North-west-up. The attitude Rt is the transition
matrix from the body reference to the geographic reference. The earth instantaneous
rotation vector υ ∈R3 and the gravity vector g∈R3 are expressed in the geographic refer-
ence. Both are constant in this frame. The gyroscope gives a continuous rotation speed
ωt , disturbed by an isotropic continuous white noise wω

t . The equation of the considered
system reads:

d
dt

Rt = (υ)×Rt +Rt(ωt +wω
t )×,

Yn = RT
tn(g+Vn).

As wω
t is supposed isotropic the equation can be rewritten:

d
dt

Rt = (υ + w̃ω
t )×Rt +Rt(ωt)×,

Yn = RT
tn(g+Vn),

which corresponds to (6.1)-(6.2).

Attitude and velocity estimation on a flat Earth

We give here an example on a larger group. Consider the attitude Rt ∈ SO(3) and
speed vt ∈ R3 of an aircraft evolving on a flat earth, equipped with a gyroscope and
an accelerometer. The gyroscopes give continuous increments ψt ∈ R3 with isotropic
noise wψ

t ∈ R3, and the accelerometers give continuous increments at ∈ R3 with isotropic
noise wa

t ∈ R3. The aircraft has noisy speed measurements in the earth reference frame
Yn = vtn +Vn, where Vn is a supposed to be a Gaussian isotropic white noise. The equa-
tions read:

d
dt

Rt = Rt(ψt +wψ

t )×,

d
dt

vt = Rt(at +wa
t )+g,
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where Rt is the rotation mapping the body frame to the earth-fixed frame, vt is the velocity
expressed in the earth fixed frame, and g is the earth gravity vector, supposed to be
(locally) constant. Using the matrix Lie group SE(3) we introduce:

At =

(
RT

t RT
t vt

0 1

)
, ωt =

(
0 g
0 0

)
,

υt =

(
−(ψt)× at

0 0

)
, wt =

(
(wψ

t )× wa
t

0 0

)
,

The problem can then be rewritten under the form (6.1)-(6.2):

d
dt

At = (υt +wt)At +Atωt ,

Ytn = A−1
tn

(
Vn

1

)
.

6.2.3 Interpretation of Langevin noises on Lie Groups

This present subsection provides some mathematical considerations about white noises
on Lie groups. It can be skipped by the uninterested reader who is directly referred to the
model (6.6).

Equation (6.1) is actually a Langevin equation that suffers from poly-interpretability
because of its non-linearity, and its meaning must be clarified in the rigorous framework
of stochastic calculus. Stratonovich stochastic differential equations on a Lie group can
be intrinsically defined as in e.g. [72]. A somewhat simpler (but equivalent) approach
consists of using the natural embedding of the matrix Lie group G in a matrix space and
to understand the equation in the sense of Stratonovich, see e.g. [94]. The mathematical
reasons stem from the fact that the resulting stochastic process is well-defined on the Lie
group, whereas this is not the case when opting for an Ito interpretation as underlined by
the following easily provable proposition.

Proposition 16. If the stochastic differential equation (6.1) is taken in the sense of
Itô, for G = SO(3) embedded in R3×3, an application of the Itô formula to χT

t χt shows
that the solution almost surely leaves the submanifold G for any time t > 0.

Besides, the physical reasons for this stem from the fact that the sensors’ noise are never
completely white, and for colored noise the Stratonovich interpretation provides a better
approximation to the true solution than Ito’s, as advocated by the result of Wong and
Zakai [112].

6.2.4 Exact discretization of the considered model

To treat rigorously the problem of integrating discrete measurements we need to dis-
cretize the continuous model with the same time step as the measurements’. Unlike the
general case of non-linear estimation, the exact discrete-time dynamics corresponding to
Equation (6.1) can be obtained, as proved by the following result:
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Theorem 9. Let χn = χtn . Then the discrete system (χn,Yn) satisfies the following
equations:

χn+1 = ϒnWnχnΩn,

Yn = h(χn,Vn),
(6.6)

where Wn is a random variable with values in G and whose law depends on the
values taken by υt for t ∈ [tn, tn+1] and on the law of wt for t ∈ [tn, tn+1], and ϒn and Ωn

are elements of G which only depend on the values taken respectively by υt and ωt

for t ∈ [tn, tn+1].

Proof. For n ∈N consider the value of the process χt is known until time tn. Let ϒt and Ωt

be the solutions of the following equations:

ϒtn = Id ,
d
dt

ϒt = υtϒt ,

and Ωtn = Id ,
d
dt

Ωt = Ωtωt .

Let Wt be the solution of the following (Stratonovich) stochastic differential equation:

Wtn = Id ,
d
dt

Wt = ϒ
−1
t wtϒtWt .

Note that ϒ
−1
t wtϒt being in g, Wt is ensured to stay in G. Define the process χt|tn =

ϒtWt χtnΩt . We will show that for t > tn the processes χt and χt|tn verify the same stochastic
differential equation. Indeed:

d
dt

χt|tn =

(
d
dt

ϒt

)
Wt χtΩt +ϒt

(
d
dt

Wt

)
χtΩt +ϒtWt χt

(
d
dt

Ωt

)
= υtϒtWt χtΩt +wtϒtWt χtΩt +ϒtWt χtΩtωt

= (υt +wt)χt|tn +χt|tnωt .

Thus the two processes have the same law at time tn+1, i.e. χn+1 and Wtn+1ϒtn+1 χtnΩtn+1

have the same law. Letting ϒn = ϒtn+1 , Ωn = Ωtn+1 and Wn =Wtn+1 we obtain the result.

Remark 9. In many practical situations (for instance examples 6.2.2 and 6.2.2), the
Langevin noise wt is isotropic and we have thus ϒ

−1
t wtϒt

L
= wt . Note that, the variable

Wt depends also only on the law of wt for t ∈ [tn, tn+1].

In the sequel, for mathematical reasons (the equations do not suffer from poly-interpretability),
tutorial reasons (the framework of diffusion processes on Lie groups needs not be known),
and practical reasons (any filter must be implemented in discrete time), we will system-
atically consider the discrete-time model (6.6). Moreover, the noise Wn will be a general
random variable in G, not necessary a solution of the stochastic differential equation
d
dt Wt = ϒ

−1
t wtϒtWt .
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6.3 A class of discrete-time intrinsic filters

6.3.1 Proposed intrinsic filters

Inspired by the theory of continuous-time symmetry-preserving observers on Lie groups
[20] and the IEKF described in Chapter 4 we propose a class of multiplicative filters
defined by:

χ̂n+1 = ϒnχ̂
+
n Ωn, (6.7)

χ̂
+
n+1 = Kn+1 (χ̂n+1Yn+1) χ̂n+1, (6.8)

where the superscript + denotes the value of the estimate after the update and Kn+1(•)
can be any function of Y →G, ensuring K(h(Id ,0)) = Id . The multiplicative error does not
change:

ηn = χnχ̂
−1
n , η

+
n = χn

(
χ̂
+
n
)−1

. (6.9)

We have the following striking property, that is similar to the linear case:

Theorem 10. The error variables ηn and η+
n are Markov processes, and are inde-

pendent of the inputs (Ωn)n>0.

Proof. The equations followed by ηn and η+
n read:

ηn+1 = χn+1χ̂
−1
n+1 = ϒnWnχnΩnΩ

−1
n
(
χ̂
+
n
)−1

ϒ
−1
n = ϒnWnη

+
n ϒ
−1
n , (6.10)

and:
η
+
n+1 = χn+1χ̂

−1
n+1Kn+1(χ̂n+1Yn+1)

−1

= ηn+1Kn+1(χ̂n+1h(χn+1,Vn+1))
−1

L
= ηn+1Kn+1(h(ηn+1,Vn+1))

−1,

(6.11)

thanks to the equivariance property of the output.

The most important consequence of this property is that if the inputs υt are known in
advance, or are fixed, as it is the case in the two first examples of 6.2.2, the gain functions
Kn can be optimized off-line, independently of the trajectory followed by the system. In
any case, numerous choices are possible to tune the gains Kn and the remaining sections
are all devoted to various types of methods to tackle this problem.

6.4 Fixed gains filters

In certain cases, one can build an (almost) globally convergent observer for the associ-
ated deterministic system, i.e., with noise turned off, by using a family of constant gain
function Kn(•) ≡ K(•). If the filter with noise turned off has the desirable property of for-
getting its initial condition, convergence to a single point is impossible to retain, because
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of the unpredictability of the noises that “steer" the system, but convergence of the dis-
tribution can be expected, assuming as in the linear case that ϒn is independent of n.
Indeed in this section we prove that, when noise is turned on, the error forgets its initial
distribution under mild conditions. The results are illustrated by an attitude estimation
example for which we propose an intrinsic filter having strong convergence properties.

It should be noted that in practice, the convergence to an invariant distribution allows
in turn to pick the most desirable gain K(•) among the family based on a performance
criterion, such as convergence speed, or filter’s precision (that is, ensuring low error’s
dispersion). This fact will be illustrated by the artificial horizon example of Subsection
6.4.3.

6.4.1 Convergence results

Here the left-hand inputs ϒn are assumed fixed. This, together with constant gains Kn,
makes the error sequence ηn a homogeneous Markov chain. Thus, under appropriate
technical conditions, the chain has a unique stationary distribution and the sequence
converges in distribution to this invariant distribution. Let d denote a right-invariant dis-
tance on the group G. We propose the following assumptions:

1. Confinement of the error: there exists a compact set C such that ∀n ∈ N,ηn ∈C a.s.
for any η0 ∈C.

2. Diffusivity: the process noise has a continuous part with respect to Haar measure,
with density positive and uniformly bounded from zero in a ball of radius α > 0
around Id .

3. Reasonable output noise:

∀g ∈ G,P
[
gK(h(g,Vn))

−1 ∈Bo

(
gK(h(g,0))−1,

α

2

)]
> ε

′ for some ε
′ > 0.

The second assumption implies, and can in fact be replaced with, the more general tech-
nical assumption that there exists ε > 0 such that for any subset U of the ball Bo(Id ,α) we
have P(Wn ⊂U) > εµ(U) for all n ≥ 0 where µ denotes the Haar measure. Those noise
properties are relatively painless to verify, whereas the confinement property although
stronger is automatically verified whenever G is compact, e.g. G = SO(3). Intuitively, the
last two assumptions guarantee the error process is well approximated by its dynamics
with noise turned off, followed by a small diffusion. In the theory of Harris chains, the
latter diffusion step is a key element to allow probability laws to mix at each step and
eventually forget their initial distribution.
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Theorem 11. For constant left-hand inputs ϒn ≡ ϒ, consider the filter:

χ̂n+1 = ϒχ̂
+
n Ωn, (6.12)

χ̂n+1 = K(χ̂ ′n+1Yn+1)χ̂ ′n+1. (6.13)

Suppose that Assumptions 1)-2)-3) are verified, where the compact set satisfies C =
cl(Co), cl denoting the closure and o the interior. When noises are turned off, the
error equation (6.10)-(6.11) becomes:

γn+1 = ϒγ
+
n ϒ
−1,

γ
+
n+1 = γn+1Kn+1(h(γn+1,0))−1.

(6.14)

Suppose that for any γ0 ∈C, except on a set of null Haar measure, γn converges to
Id . Then there exists a unique stationary distribution π on G such that for any prior
law µ0 of the error η0 supported by C, the law (µn)n≥0 of (ηn)n≥0 satisfies the total
variation (T.V.) norm convergence property:

‖µn−π‖T.V. −→
n→∞

0.

Corollary 2. When the group G is compact, The convergence results of Theorem 11
hold globally, i.e. without the confinement assumption 1).

Theorem 12. Under the assumptions of Theorem 11, assuming only h(γn,0)→ 0
instead of almost global convergence of (γn)n≥0, that G is compact, the set K = {g ∈
G,h(g,0)= h(Id ,0)} connected and h(ϒ,0)= h(Id ,0), the results of Theorem 11 are still
valid. Moreover, if Wn is isotropic, we have π(ϒ̃V ) = π(V ) for any ϒ̃ ∈ K commuting
with ϒ (ϒ̃ϒ = ϒϒ̃).

The proofs of the results above have all been moved to Appendix B.1.

6.4.2 Application to attitude estimation

Consider the attitude estimation example of Subsection 6.2.2. In a deterministic and con-
tinuous time setting, almost globally converging observers have been proposed in several
papers (see e.g. [76,96]) and have since been analyzed and extended in a number of pa-
pers. In order to apply the previously developed theory to this example, the challenge is
twofold. First, the deterministic observer must be adapted to the discrete time and proved
to be almost globally convergent. Then, the corresponding filter must be proved to satisfy
the assumptions of the theorems above in the presence of noise. In discrete time, the
system equations read:

Rn+1 =WnRnΩn,

Yn = (RT
n b1 +V 1

n ,R
T
n b2 +V 2

n ),
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with the notations introduced in 6.2.2. We propose the following filter on SO(3):

R̂n+1 = R̂+
n Ωn,

R̂+
n+1 = K(R̂n+1Yn+1)R̂n+1,

with K(y1,y2) = exp(k1(y1×b1)+ k2(y2×b2)),

k1 > 0, k2 > 0, k1 + k2 6 1.

(6.15)

Proposition 17. With noise turned off, the discrete invariant observer (6.15) is al-
most globally convergent, that is, the error converges to Id for any initial condition
except one.

The proof has been moved to the Appendix, only the main idea is given here. For the
continuous-time deterministic problem it is known, and easily seen, that E : γ→ k1||γT b1−
b1||2+k2||γT b2−b2||2 is a Lyapunov function, allowing to prove almost global convergence
of the corresponding observer. In the discrete time deterministic case, the function above
remains a Lyapunov function for the sequence (γn)n≥0, allowing to derive Proposition 17.
This is not trivial to prove, and stems from the more general following novel result:

Proposition 18. Consider a Lie group G equipped with a left-invariant metric 〈., .〉,
and a left-invariant deterministic discrete equation on G of the form:

γn+1 = γn exp(−k(γn)).

Assume there exists a C2 function E : G→ R≥0 with bounded sublevel sets, a global
minimum at Id , and a continuous and strictly positive function u : G→ R>0 such that:
∀x∈G,k(x) = u(x)[x−1.gradE(x)]. If the condition ∀x∈G, | ∂k

∂x |6 1 (for the operator norm
associated to the left-invariant metric) is verified, for any initial value γ0 such that Id is
the only critical point of E in the sublevel set {x ∈ G | E(x)≤ E(γ0)} we have:

γn →
n→∞

Id .

The proof has been moved to Appendix B.2.1. Note that, the latter property is closely
related to Lemma 2 of [104]. Using Theorem 11 and Proposition 17 we finally directly
get:

Theorem 13. The distribution of the error variable of the invariant filter (6.15) con-
verges for the T.V. norm to an asymptotic distribution, which does not depend on its
initial distribution.

6.4.3 Learning robust gains: application to the design of an artificial hori-
zon

As proved in 6.4.1, under appropriate conditions the error variable is a converging Markov
chain whose asymptotic law depends on the gain function but not on the trajectory fol-
lowed by the system (which is a major difference with most nonlinear filters, such as the
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EKF). Hence a fixed gain can be asymptotically optimized off-line, leading to a very low
numerical cost of the on-line update.

A classical aerospace problem is the design of an artificial horizon using an inertial
measurement unit (IMU). An estimation of the vertical is maintained using the observa-
tions of the accelerometer (which senses the body acceleration minus the gravity vector,
expressed in the body frame) and the stationary flight assumption according to which the
body’s linear velocity is constant. The problem is that this approximation is not valid in
dynamical phases (take-off, landing, atmospheric turbulence), which are precisely when
the artificial horizon is most needed. The problem is generally stated as follows:

d
dt

Rt = Rt(ωt +wt)×,

Yn = RT
tng+Vn +Nn,

where Rt is the attitude of the aircraft (the rotation from body-frame coordinates to inertial
coordinates), ωt is the continuous-time gyroscope increment and Yn is the observation of
the accelerometer. The sensor noises wt and Vn can be considered as Gaussian, and Nn

represents fluctuations due to accelerations of the aircraft that we propose to model as
follows: Nn is null with high probability but when non-zero it can take large values. The
Nn’s are assumed to be independent as usually.

Convergence results

Consider the following class of filters:

R̂n+1 = R̂+
n Ωn,

R̂+
n+1 = K(R̂n+1Yn+1)R̂n+1,

with K(y) = exp( fk,λ (y))

(6.16)

where fk,λ (x) = k.min(angle(x,g),λ ) x×g
||x×g|| if x×g 6= 0 and fk,λ (x) = 0 otherwise.

The rationale for the gain tuning is as follows: if the accelerometer measures a value
y, we consider the smallest rotation giving to g the same direction as y. Conserving the
same axis, the angle of this rotation is thresholded (hence the parameter λ ) to give less
weight to outliers (without purely rejecting them, otherwise the filter couldn’t converge
when initialized too far). Then we choose as a gain function a rotation by a fraction of the
obtained angle. We begin with the following preliminary result:

Lemma 1. For any 0 < k 6 1 and 0 < λ 6 π the output error ‖Yn− R̂T
n g‖ associated to the

observer (6.16) with noise turned off converges to 0.

Proof. Let us consider the error evolution when the noise is turned off. It writes γn+1 =
γn exp(− fk,λ (γ

−1
n g)), thus we have γ

−1
n+1g = exp( fk,λ (γ

−1
n g))γ−1

n g. As for any n∈N, fk,λ (γ
−1
n g)

is orthogonal to g and γ−1
n g, γ

−1
n+1g stays in the plane spanned by g and γ

−1
0 g, as well

as the whole sequence (γ−1
n g)n>0. Let φn = angle(γ−1

n g,g). The dynamics of (φn) writes:
φn+1 = φn−k.min(λ ,φn). Thus φn goes to 0, i.e: γ−1

n g →
n→∞

g, i.e. the observation error goes
to 0.

The following result is a mere consequence of Lemma 1 and Theorem 12.
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Proposition 19. The error variable associated to the filter defined by (6.16) con-
verges to a stationary distribution for the T.V. norm, which does not depend on its
initial distribution.

Numerical asymptotic gain optimization

To each couple (k,λ ) we can associate an asymptotic error dispersion (computed in the
Lie Algebra) associated to the corresponding stationary distribution, and try to minimize
it. As all computations are to be done off-line, the statistics of all distributions can be
computed using particle methods. Table 6.1 gives the parameters of the model used
in the following numerical experiment. Figure 6.1 displays the Root Mean Square Error
RMSE =

√
E(η∞g−g), computed over a grid for the parameters (k,λ ). The minimum

is obtained for k = 0.1202 and λ = 0.0029. If we compare it to a MEKF, we observe a
huge difference. For our asymptotic invariant filter we get RMSE = 8.02× 10−4. For the
MEKF, the observation noise matrix giving the best results leads to the value RMSE =
4.3×10−3. This result is not surprising due to the fact that the outliers significantly pollute
the estimates of the Kalman filter (see Fig. 6.1). This illustrates the fact that when the
noise is highly non-Gaussian, an asymptotic gain with some optimality properties can still
be found.

Table 6.1 – Artificial horizon: experiment parameters

Standard Deviation of the model noise 0.01◦ = 1.75 ·10−4 rad
Standard Deviation of the regular observations 0.1◦ = 1.75 ·10−3 rad

Standard Deviation of the outliers 30◦

Probability of the outliers to occur 0.01

6.5 Gaussian filters

The present section focuses more on the transitory phase, and the gain is computed at
each step based on Gaussian noise approximations and linearizations. Beyond the local
optimization underlying the gain computation, the two following filters have the merit to
readily convey an approximation of the extent of uncertainty carried by the estimations.
We first derive in discrete time the IEKF described in Part I. Then we introduce the
IEnKF, which computes the empirical covariance matrix of the error using particles. As
all computations can be done off-line, it is easily implementable, as long as the gains can
be stored, and is shown to convey a better indication of the error’s dispersion for large
noises. Simulations illustrate the results.

6.5.1 The discrete-time Invariant EKF

In the present section we give the equations of the IEKF in the simplified situation of
this chapter. As in Chapter 4 and standard EKF theory, the idea is to linearize the error
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Figure 6.1 – Artificial horizon example. Top plot: off-line optimization of the parameters of
the asymptotic invariant filter (axis x→ λ ; axis y→ k ; axis z→ Root Mean Square Error).
The highest values are not displayed to improve visualization. The performance is optimal
for k = 0.1202,λ = 0.0029. Bottom plot: error evolution of three artificial horizons : the
invariant filter with optimized gain functions (black), a MEKF ignoring outliers (red), and a
MEKF where the observation noise covariance matrix has been numerically adjusted to
minimize the RMSE (dashed line). We see that the MEKF cannot filter the outliers and at
the same time be efficient in the absence of outliers, contrarily to the proposed invariant
filter.

equation (6.10)-(6.11) assuming the noises and the state error are small enough, use
Kalman equations to tune the gains on this linear system, and implement the gain on
the nonlinear model. As in the heuristic theory of the IEKF in continuous time [14] [21]
the gains and the error covariance matrix are proved to converge to a fixed value. In
particular this allows (after some time) to advantageously replace the gain by its constant
final value leading to a numerically very cheap asymptotic version of the IEKF.
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Linearization of the equations and IEKF formulas

We consider here the error equations (6.10)-(6.11). Assuming errors and noises are
small, we introduce their projection in the tangent space at the identity Id (the so-called
Lie algebra g of the group) using the matrix exponential map exp(.) (see Chapter 2). As
the matrix vector space g can be identified with Rdimg using the linear mapping Lg (see
Table 2.1) we can assume exp : Rdimg→ G. This function is defined in Table 2.1 for usual
Lie groups of mechanics. Its inverse function will be denoted by exp−1. We thus define
the following quantities of Rdimg:

ξn = exp−1(ηn), ξ
+
n = exp−1(η+

n ), wn = exp−1(Wn).

The gain is designed as previously using a function which is linear in Rdimg, then an
exponential mapping:

Kn : y→ exp[Ln(y−h(Id ,0))]

Equations (6.10) and (6.11) mapped to Rdimg become:

ξn+1 = exp−1 (exp(Adϒnwn)exp
(
Adϒnξ

+
n
))

,

ξ
+
n+1 = exp−1(exp(ξn+1)exp[−Ln(h(exp(ξn+1,Vn+1))−h(Id ,0))]).

As in Chapter 4, the gains Ln are tuned on the linearized system through the classical
Kalman theory. Within our current simplified framework, this first-order expansion reads:

ξn+1 = Adϒnwn +Adϒnξ
+
n ,

h(exp(ξn+1),Vn+1) = h(Id ,0)+Hξ ξn+1 +HVVn+1,

ξ
+
n+1 = ξn+1−Ln+1(Hξ ξn+1 +HVVn+1).

The computation of the gains is then straightforward using the Kalman theory in Rdimg,
which is a vector space. It is described in Algorithm 1.

Convergence of the gains

The main benefit of the filter is with respect to its convergence properties. Indeed, under
very mild conditions, the covariance matrix Pn and the filter’s gain Kn are proved to con-
verge to fixed values [65]. The practical consequences are at least twofold: 1-the error
covariance converges to a fixed value and is thus much easier to interpret by the user
than a matrix whose entries keep on changing (see Fig. 6.2) 2-due to computational lim-
itations on-board, the covariance may be approximated by its asymptotic value, leading
to an asymptotic version of the IEKF being numerically very cheap.

Theorem 14. If the noise matrices Qw
n = Var(wn), QV

n = Var(Vn) and the left inputs
ϒn are fixed, the pair (Adϒn ,Hξ ) is observable and Qw

n has full rank, then Pn and Kn

converge to fixed values P∞ and K∞, as in the linear time-invariant case.
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Algorithm 1 Invariant Extended Kalman Filter

Returns at each time step χ̂n, Pn such that χn ≈ exp(ξn)χ̂n, where ξn is Gaussian and
var(ξn) = Pn. χ̂0 and P0 are inputs.
Hξ ,HV defined by:

h(exp(ξn),Vn) = h(Id ,0)+Hξ ξn +HVVn +©(‖ξn‖2)+©(‖Vn‖2).

Set n = 0.
loop

Compute the value Mtn+1 solving the equation

Mtn = 0,
d
dt

Mt =Var(wt)+adυt MtadT
υt
.

The process noise covariance Qw
n =Var(Adϒnwn) is equal to Mtn+1

(
if wn is isotropic or

if υt ≡ 0, merely set Qw
n =Var(wn)(tn+1− tn)

)
,

QV
n+1 =Var(Vn+1),

Pn+1|n = AdϒnPnAdT
ϒn
+Qw

n ,
Sn+1 = HV QV

n+1HT
V +Hξ Pn+1|nHT

ξ
,

Ln+1 = Pn+1|nHT
ξ

S−1
n+1,

Pn+1 = (I−Ln+1Hξ )Pn+1|n,
χ̂n+1 = ϒnχ̂+

n Ωn,
χ̂
+
n+1 = exp(Ln+1[χ̂n+1Yn+1−h(Id ,0)])χ̂n+1,

n← n+1.
end loop
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Algorithm 2 IEnKF

Define H by h(exp(ξ ),0) = h(Id ,0)+Hξ +©(‖ξ‖2).
Sample M particles (η i

0)16i6M following the prior error density.
for n = 0 to N−1 do

for i = 1 to M do
η i

n+1 =W i
nϒη i+

n ϒ−1,
yi

n+1 = h(η i
n+1,V

i
n+1),

end for
Pn+1 =

1
M ∑

M
i=1 exp−1(η i

n+1)exp−1(η i
n+1)

T ,
Sn+1 =

1
M ∑

M
i=1 yi

n+1(y
i
n+1)

T ,
Ln+1 = Pn+1HT S−1

n+1,
for i = 1 to M do

η
i+
n+1 = η i

n+1 exp(−Ln+1[yi
n+1−h(Id ,0)]),

end for
Store the gain matrix Ln+1.

end for
The prior estimation χ̂0 is an input.
for n = 0 to N−1 do

χ̂n+1 = ϒχ̂+
n Ωn,

χ̂
+
n+1 = exp(Ln+1[χ̂n+1Yn+1−h(Id ,0)])χ̂n+1.

end for

6.5.2 The discrete-time Invariant EnKF

When the error equation is independent of the inputs, the exact density of the error vari-
able can be sampled off-line. This allows to radically improve the precision of the quan-
tities involved in the Kalman gains computation of Section 6.5.1. We propose here the
Invariant Ensemble Kalman filter (IEnKF) described in Algorithm 2. The idea is to com-
pute recursively through Monte-Carlo simulations a sampling of the error density and to
use it, instead of linearizations, to evaluate precisely the innovation and error covariance
matrices used to compute the gains in the Kalman filter. The procedure is described in
Algorithm 2.

6.5.3 Simulations

We will display here the results of Algorithms 1 and 2 for the attitude estimation problem
described in Section 6.2.2:

d
dt

Rt = Rt(ωt +wω
t )×,

Yn = (RT
tnb1 +V 1

n ,R
T
tnb2 +V 2

n ),

where Rt ∈ SO(3) represents the rotation that maps the body frame to the earth-fixed
frame, and ωt is the instantaneous angular rotation vector which is assumed to be mea-
sured by noisy gyroscopes. (Yn)n≥0 is a sequence of discrete noisy measurements of
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the vectors b1 and b2 (for instance the gravity and the magnetic field), V 1
n and V 2

n are se-
quences of independent isotropic white noises. A simulation has been performed using
the parameters given in Table 6.2. In this case the IEKF equations are described by Algo-
rithm 3. As the state-of-the-art methods for this particular problem are the Multiplicative
Extended Kalman Filter (MEKF, see e.g. [34]) and the USQUE filter [33] (a quaternion
implementation of the Unscented Kalman Filter), the four methods are compared. The
evolution of the gains is displayed on Fig. 6.2 and shows the interest of the invariant
approach. The error variable is expressed in the Lie algebra and its projection to the first
axis is given on Fig. 6.3 for each method (the projections on other axes being very sim-
ilar, they are not displayed due to space limitations). All perform satisfactorily, but some
differences are worthy of note. First we can see that the MEKF and the IEKF yield compa-
rable performances but only the gains of the IEKF converge. Moreover, the linearizations
lead the MEKF and the IEKF to fail capturing accurately the error dispersion through a
3σ -envelope. To this respect, the USQUE performs better than the two latter filters but
still does not succeed in capturing the uncertainty very accurately. On the other hand,
the envelope provided by the EnKF is very satisfying. This result is not surprising: this
envelope has been computed using a sampling of the true density of the error, there is
thus no reason why it should not be a valid approximation as long as there are sufficiently
many particles. This method is thus to be preferred to the other ones when the user is
willing and able to perform extensive simulations, and has the capacity to store the gains
over the whole trajectory.

Algorithm 3 Invariant Extended Kalman Filter on SO(3)

Returns at each time step R̂n, Pn such that Rn ≈ exp(ξn)R̂n, where ξn is a centered
Gaussian and var(ξn) = Pn.
R̂0 and P0 are inputs.

Hξ =

(
(b1)×
(b2)×

)
, HV = I6,

QV =

(
Var(V 1) 0

0 Var(V 2)

)
, Qw =

∫ tn+1
tn Var(wω

s )ds.

Set n = 0.
loop

Let Ωn be the solution at tn+1 of Ttn = I3, d
dt Tt = (ωt)×.

Pn+1 = P+
n +Qw,

Sn+1 = HV QV HT
V +Hξ Pn+1HT

ξ
,

Ln+1 = Pn+1HT
ξ

S−1
n+1,

P+
n+1 = (I−Ln+1Hξ )Pn+1,

R̂n+1 = R̂+
n Ωn,

R̂+
n+1 = exp

(
Ln+1

[(
R̂n+1Y 1

n+1
R̂n+1Y 2

n+1

)
−
(

b1
b2

)])
R̂n+1,

n← n+1.
end loop
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Figure 6.2 – Evolution over time of the coefficients of the gain matrix for MEKF, IEKF,
USQUE and IEnKF. The coefficients of the MEKF and USQUE have an erratic evolution,
whereas those of the IEKF are convergent, allowing to save much computation power
using asymptotic values. Moreover, in this case, only 4 of the 18 coefficients are not
equal to zero for the IEKF, allowing sparse implementation.

Table 6.2 – Observation of two vectors: parameters

Parameter b1 b2 QV1 QV2

Value (1,0,0) (0,1,0) 0,08732I3 0,08732I3

Parameter P0 Qw N Simulations

Value 0.52362I3 0,017452I3 50 1000

6.6 Conclusion

This chapter has introduced a proper stochastic framework for some filtering problems
on Lie groups having autonomous error equation. This implies to consider not any more
a classical dynamical system, but a full probability density function. Several methods to
tune the gains have been proposed. When they are held fixed, the estimation error has
the remarkable property to provably converge in distribution. Yet, the results obtained
can look restricted compared to the difficulty of the corresponding proofs (see B.1). The
deterministic properties derived for example in Chapter 4 where much more general and
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Figure 6.3 – Evolution of the error variable, projected on the first axis, for 1000 simulations
using MEKF, IEKF, USQUE and IEnKF. The MEKF and the IEKF give similar results. The
USQUE is doing slightly better but is outperformed by the IEnKF. Only the latter captures
the error dispersion satisfactorily, as the 3σ envelope contains 99 % of the simulated
trajectories.

have been easily applied to a large variety of examples. This shows the extreme com-
plexity of the study of stochastic systems and explains the prevalence of the deterministic
approach in the theory of estimation, as well as in the present work.
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Chapter 7

Sampling-based methods

Part of the content of this chapter has been presented at the 2014 IEEE Conference on
Decision and Control and led to the registration of a patent (n° 14-01535).

Chapter abstract This Chapter proposes to approach the discrepancy between actual
systems and the ideal situation studied in Chapter 4 through sampling. We transpose the
idea of Rao-blackwellized particle filtering [39], where only a subset of the variables is
sampled and the rest is marginalized out using (if possible) linear Kalman filters running
in parallel for each value of the sampled variables. Here, the remaining system is sought
to have the form allowing its conditional density to be estimated using IEKFs running in
parallel. Under proper conditions leading to autonomy of a partial error, the gains are
identical for all particles, allowing an extremely cheap implementation of the particle filter.

7.1 Introduction

In this short chapter, we present two specific cases of 5.1 where sampling-based methods
can be an interesting approach. We first discuss in Section 7.2 a property of biased
dynamics. Then we develop in Section 7.3 the idea of introducing a sampling to reduce
a complicated problem to the form studied in Part I. Of course, the procedure requires
some hypotheses on the form of the equations. To make the understanding of the idea
easier, we will start with two IEKFs running in parallel, without selection among them,
and discuss the benefits of the situation over the general case of two EKFs. Then we
introduce the full method, which resorts to a possibly large number of IEKF estimates. In
Section, 7.4, we detail the example of a GPS-aided inertial navigation handling jumping
biases in the position provided by the GPS.

7.2 Sampling biased dynamics

This section is a mere remark about dynamics of the form 5.1, where the additional
variables gathered in Θt actually take the form of a bias b on the dynamics. The result
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presented is very easy but has to be taken into account in any method requiring sampling-
based propagation of a p.d.f. The equation considered takes the form:

d
dt

χt = fut (χt)+χtb, (7.1)

where f verifies relation (3.13) and b is an unknown element of the Lie algebra g. A nice
separation principle is verified:

Proposition 20. Let b̂ ∈ B denote a particular value of b and χ̂t a corresponding
particular solution of Equation (7.1). If (χt ,b) is another couple of solutions, ηL

t =
χ
−1
t χ̂t the left-invariant error of the χ component and ∆b = b− b̂ the linear error of the

b component we have:
η

L
t = η

χ

t η
b
t ,

with:
η

χ

0 = η0,
d
dt

η
χ

t = gL
ut
(η

χ

t )+η
χ

t b̂,

η
b
0 = Id,

d
dt

η
b
t = gL

ut
(ηb

t )+η
b
t b̂+η

b
t (∆b),

where gL
ut

is defined by Equation (3.9).

Verification is trivial. This result means the evolution of the error due to the initial per-
turbation ηL

0 and the one due to the bias perturbation ∆b = b− b̂ can be fully decoupled
and contained in separate variables (ηχ

t and ηb
t ) , which is usually true only up to the first

order for nonlinear systems. Once again, we managed to retrieve a property of the linear
case. For a given value of b̂t the dynamics d

dt χt = f (χt)+χt b̂ verifies (3.13) as the sum of
two functions verifying (3.13)(see 5). Thus the first-order approximation of the evolution
of η

χ

t is actually exact (see Theorem 4) and the only approximations in a first-order prop-
agation of ηL

t come from second order terms in the integration of the bias. For instance, if
sigma-points are sampled (see [62]), only those corresponding to a variation of the biases
seem really necessary. Moreover, the remaining sigma-points are really required only if
the second-order influence of biases is sufficiently important.

This is also true for particle filtering: a sampling of the full density requires to integrate
χt for each sampled bias but then, all the values of χt for this bias and different initial-
izations are contained in one particular solution and the first-order expansion of the error
(Corollary 1). The cost of maintaining a representative sampling of the density thus goes
down from edimG+dimb to edimb(dimG)2.

Next section gives a second way to leverage autonomous error properties for sampling-
based methods.

7.3 The invariant Rao-Blackwellized filter

7.3.1 A conditional invariance hypothesis

Assume the considered system can be divided into a set of variables gathered in a vector
Θt , and an element χt of a matrix Lie group G, such (Θ,χt) verifies an equation of the
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form:

d
dt

Θt = ϕ(Θt ,νt), (7.2)

d
dt

χt = fut (Θt ,χt)+χtwt , (7.3)

Ytn = ψΘtn
(χtn ·d +Vn), (7.4)

where wt and νt are Langevin noises, ψΘ : Y →Y is invertible for any Θ and f·(·, ·) verifies
3.8 as well as the additional hypothesis:

∀u,Θ,η , fu(Θ,η)− fu(Θ, Id)η = fu(0,η)− fu(0, Id)η . (7.5)

The additional parameter Θ can affect the observation as in the example of Section 7.4
and/or the dynamics. An example of the latter case is given by the attitude χt (here a
rotation matrix) of a body endowed with a gyroscope undergoing the combination of a
bias Θ and an isotropic white noise, the stochastic evolution of the bias being possibly
complicated.

7.3.2 Invariant Extended Kalman Filters running in parallel

We first illustrate the idea in a simplified situation where we consider two distinct trajec-
tories (Θ1

t )t≥0 and (Θ2
t )t≥0 of (7.2) and let two Invariant Extended Kalman Filters run in

parallel to filter the subsystem (7.3)-(7.4) where Θt is considered as an input.

Proposition 21. Let (Θ1
t )t≥0 and (Θ2

t )t≥0 be two solutions of (7.2). The equations
(7.3)-(7.4) define then two different systems, one associated to Θ1

t and the other to
Θ2

t . If these systems are filtered by two IEKFs (χ̂ i
t )i=1,2 of the form:

d
dt

χ̂
i
t = fut

(
Θ

i
t , χ̂

i
t
)
, (7.6)

χ̂
i+
tn = χ̂

i
tn exp

(
Ki

n

[
(χ̂ i

t )
−1

ψ
−1
Θi

t
(Yn)−d

])
, (7.7)

then the Kalman gains Ki
n are identical for both systems.

Proof. It suffices to write the error equation associated to (7.6)-(7.7) and use (7.5) to
obtain:

d
dt

η
i
t = fut (0,η

i
t )− fut (0, Id)η

i
t −wtη

i
t , (7.8)

η
i+
tn = η

i
tn exp

[
Kn

((
η

i
tn

)−1 ·d−d +Vn

)]
, (7.9)

which is independent of Θi
t . The linearization can be performed as in Chapter 4.
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7.3.3 Invariant Rao-Blackwellized algorithm

Inspired by the Rao-Blackwellized particle Filter, the Invariant Rao - Blackwellization con-
sists of fully exploiting the conditional invariance property in the following way. The state
being partitioned into (Θt ,χt), the variable Θt can be sampled using particles (Θ j

t )1≤ j≤Np ,
each particle having a weight w j reflecting its likelihood assigned to it. There are numer-
ous sampling methods that we will not detail here. Each time a new observation Yn is
available, the weight is updated and a re-sampling step may take place. The distribution
of the state conditioned on the past outputs can then merely be factored using the chain
rule as follows:

P(χt ,Θt |Y1, . . . ,Yn) = P(Θt |Y1, . . . ,Yn)P(χt |Θt ,Y1, . . . ,Yn).

This distribution can be approximated combining particle filters and IEKFs to approximate
P(Θt |Y1, . . . ,Yn) and P(χt |Θt ,Y1, . . . ,Yn) in the following way:

• P(Θt |Y1, . . . ,Yn) is computed using a particle filter, that is, is approximated by the
distribution ∑

Np
j=1 w jδΘ j(Θ j).

• P(χt |Θ j
t ,Y1, . . . ,Yn) is approximated by a normal law with mean and covariance output

by an IEKF.

Using Proposition 21 we see that as soon as the system satisfies the conditional invari-
ance property, the Kalman gains and covariances are identical for all particles, leading to
a much decreased numerical complexity.

7.4 Application to navigation with jumping GPS

The method described above will now be used to integrate an advanced non-Gaussian
and non-white GPS noise model into a localization algorithm. The problem of inertia/GPS
fusion has been addressed using several kinds of Kalman filters [35, 55, 82], but most of
them rely on Gaussian approximations. In [82] for instance, the GPS error is a Gaussian
white noise, in [35] it is modeled as the sum of a bias following a small random walk and
a white noise. Here, the GPS estimates are assumed to be polluted not only by white
noise, but also by an offset that abruptly jumps at unknown times. Such a model reflects
the realistic effects of highly correlated noises in GPS and the way we propose to handle
it opens the door to the efficient integration of an even more sophisticated noise model.

7.4.1 Model

The inertial sensors delivering estimates at high rate, and the GPS at a much lower rate,
we opt for the following continuous-time model with discrete observations, based on the
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equations of a rigid body moving on a flat earth:

d
dt

Rt = Rt(ωt +wω
t )×, (7.10)

d
dt

vt = Rt(at +wa
t )+g, (7.11)

d
dt

xt = vt , (7.12)

Ytn = xtn +btn +Vn, (7.13)

where for u∈R3, (u)× is the skew-symmetric matrix such that ∀z∈R3,(u)×z = u×z, Rt en-
codes the orientation of the body, vt its velocity, xt its position, bt is the (jumping) GPS bias,
g the gravitation vector, Ytn the GPS measurement, ωt ∈ R3 the gyroscope measurement,
at ∈ R3 the accelerometer measurement, wω

t the gyroscope noise, wa
t the accelerome-

ter noise (the covariance matrix of the concatenated noise (wω
t ,w

a
t ) will be denoted by

Q), and Vn the GPS noise, assumed to be isotropic (see Remark 10) with variance r2Id .
The bias bt is modeled as follows: there exist a sequence of times (τk)k>0 independent
of other variables and unknown to the user such that bt is constant on [τk,τk+1[ and bτk

is a centered Gaussian variable with variance σ2
b Id , independent of the past. The time

elapsed between τk and τk+1 follows an exponential law with known intensity, and we let
pJ denote the probability of the bias to have jumped at leas once between two consecu-
tive observations (pJ is constant here because we assume the GPS information arrives
at a constant rate but all the computations hold if pJ is a function of (tn− tn−1)).

Remark 10. The isotropic GPS noise assumption is not really restrictive as the method
still works if the noise Vn is isotropic in the horizontal directions x,y only, and larger along
axis z. This hypothesis is classical in GPS models.

7.4.2 IEKF for known biases

In this preliminary subsection we assume the bias sequence b̃n = bt1 , . . . ,btn to be known.
In this case the biases can be removed from the sequence of GPS measurements Ỹn =
Yt1 , . . . ,Ytn and the obtained system is the one described in 4.3.5. Using the same matrix
embedding χ̂t and letting the error be ηt = χ

−1
t χ̂t we have

d
dt

ηt = gut (ηt ,ωt ,at) = fut (ηt)− fut (I5)ηt ,

and the matrices used in the gains computation are the same as in 4.3.5:

At =

−(ωt)× 03×3 03×3
−(at)× −(ωt)× 03×3

03×3 I3 −(ωt)×

 , H =

03×3
03×3

I3

 . (7.14)

For χt close to χ̂t the Gaussian error approximation reads:

P
(
exp−1(χ−1

tn χ̂tn) = ξ
∣∣b̃n,

(
Ỹn
))
≈N (ξ ,Ptn ,0),

where N (x,Σ,µ) is the value at x of the Gaussian density of mean µ and covariance
matrix Σ.
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Remark 11. There are two remarkable features of this filter. First, the Kalman gains do
not depend on the bias btn . This is logical but it will play an important role in the sequel.
Then, around a large and relevant class of trajectories defined by constant inputs ωt ,at ,
the Riccati equation followed by the error covariance matrix is time-independent, and the
Kalman gains are thus expected to converge.

7.4.3 Description of the proposed particle filter

The basis of the algorithm (and more generally of approximate Rao - Blackwellized Par-
ticle Filters) is the assumption that for a given sequence of bias values b̃n and an instant
t ∈]tn, tn+1] the marginal density P(χt |b̃n,Ỹn) is well approximated by a Gaussian with mean
and covariance output by an IEKF. Thus, only the sequence of bias values has to be
sampled, using Np particles. As we are interested in the density of the current bias, each
particle only stores the last bias b j

t and conditional mean χ̂
j

t (the conditional covariance
matrix is computed using the invariant error equation). If the b j

t are i.i.d sampled particles
an empirical estimate of the posterior distribution P

(
bt ,χt

∣∣Ỹn
)

of the whole current state
(bt ,χt) then writes:

P
(
bt ,χt

∣∣Ỹn
)
=

1
Np

Np

∑
j=1

δb j
t
(bt)P

(
χt
∣∣b̃ j

n
)
.

As it is impossible to sample efficiently from the posterior distribution, we use importance
sampling that weights the particles according to their likelihood. The following steps are
thus repeated over time:

Propagation: the conditional estimates χ̂
j

t evolve following the deterministic part of (7.10),
(7.11), (7.12) and the Riccati equation defined by (7.14) is integrated.

Re-sampling: when a measure Yn is available the bias of each particle is re-sampled
following the law P(bn|b̃ j

n−1,Ỹn).

Re-weighting: the weight attached to each particle is multiplied by P(Yn|b̃ j
n−1,Ỹn−1), then

the weights are normalized. A re-sampling can be performed.

Marginal density update: the conditional mean χ̂
j

tn associated to each particle is up-
dated using (4.47) and the sampled bias b j

n. The (particle independent) invariant
covariance matrix Ptn is updated.

The detailed particle filter is described by Algorithm 4 and the various derivations leading
to it are described in the following subsection.

7.4.4 Main formulas derivation

To implement the procedure we should be able to:

1. Compute P(χtn |b̃
j
n,Ỹn) from P(χtn−1 |b̃

j
n−1,Ỹn−1), bn, Yn.

2. Compute P(Yn|b̃ j
n−1,Ỹn−1) from Ptn , b j

n−1 and χ̂
j

tn .

3. Compute P(bn|b̃ j
n−1,Ỹn) from Ptn , b j

n−1 and χ̂
j

tn .
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Computation of P(χtn |b̃
j
n,Ỹn)

We obtained in Section 7.4.2 that P(φ−1(χ−1
tn χ̂tn) = ξ |b̃n,Ỹn)≈N (ξ ,Ptn ,0). We can extract

the relation P(xtn = x|b̃ j
n,Ỹn)≈N (x, R̂ j

tnHPtnHT R̂ jT
tn , x̂ j

t ) that will prove useful in the sequel.

Computation of P(Yn|b̃ j
n−1,Ỹn−1)

Let Jn be the event “the bias jumps between tn and tn+1". This event is independent of
χtn+1 . We let pJ denote its prior probability, and J̄ its opposite. If J occurs, according to
(7.13), Yn is the sum of three independent Gaussian vectors: xtn , btn and Vn. Thus

P(Yn|J, b̃ j
n−1,Ỹn−1) = N (Yn, RT

tnHT PtnHRtn +σ
2
b I3 + r2I3, x̂

j
tn).

If J̄ occurs, Yn is the sum of two independent Gaussian, xtn and Vn, and a known vector
btn . Thus

P(Yn|J̄, b̃ j
n−1,Ỹn−1) = N (Yn, RT

tnHT PtnHRtn + r2I3, x̂
j
tn +b j

tn).

We can conclude introducing the quantities Π1 and Π2:

Π1 = pJN (Yn, RT
tnHT PtnHRtn +σ

2
b I3 + r2I3, x̂

j
tn),

Π2 = (1− pJ)N (Yn, RT
tnHT PtnHRtn + r2I3, x̂

j
tn +b j

tn),

yielding P(Yn|b̃ j
n−1,Ỹn−1) = Π1 +Π2.

Computation of P(bn|b̃ j
n−1,Ỹn)

This probability decomposes as follows:

P(bn|b̃ j
n−1,Ỹn) = P(J|b̃ j

n−1,Ỹn)P(bn|J, b̃ j
n−1,Ỹn)+P(J̄|b̃ j

n−1,Ỹn)P(bn|J̄, b̃ j
n−1,Ỹn).

Conditioning on Yn we have:

P(J|b̃ j
n−1,Ỹn) = Π1/(Π1 +Π2),

P(J̄|b̃ j
n−1,Ỹn) = Π2/(Π1 +Π2).

If J occurs using the fact bn is a Gaussian and Yn− x̂ j
n a noisy measurement of it, the

linear Kalman equations yield:

P(bn = b|J, b̃ j
n−1,Ỹn) = N (b, R̂ jT

tn Pb
n R̂ j

tn , R̂
jT
tn Kb

n R̂ j
tn(Yn− x̂ j

n)),

with Kb
n = σ2

b (H
T PtnH +σ2

b I3 + r2I3)
−1 and Pb

n = σ2
b (I3−Kb

n ). If J̄ occurs the bias does not
change : P(bn = b|J̄, b̃ j

n−1,Ỹn) = δ
j

bn−1
(b). Finally P(bn = b|b̃ j

n−1,Ỹn) writes:

Π1N (b, R̂ jT
tn Pb

n R̂ j
tn , R̂

jT
tn Kb

n R̂ j
tn(Yn− x̂ j

n))+Π2δbn−1(b).

Remark 12. To sample from this law (see Algorithm 4) we first choose if the bias jumps
(for instance comparing Π1 to a uniform variable). Then, if it is the case, we use a
Cholesky decomposition Pb

n = (Lb
n)(L

b
n)

T and let b j
n+1 =R jT

tn Kb
n R j

tn(Yn− x̂ j
tn)+R jT

tn Lb
nX where X

is sampled following a standard three dimensional normal law. Note that a direct Cholesky
decomposition of the variance R jT

tn Lb
nRtn would be a bad choice as the computation would

have to be done for each particle.
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Algorithm 4 Invariant Rao - Blackwellization
The prior estimation χ̂0 and variance P0 are supposed known.
for n = 1 to T do

Solve R0 = I3,
d
dt Rt = Rtωtn+t on [0,∆t].

Compute v∆t =
∫

∆t
0 Rtatn+t and x∆t =

∫
∆t
0 vt .

Solve d
dt Pt = FtPt +PtFT

t +Q.
Compute Sn = HPtnHT + r2I3 and Kn = PtnHT S−1

n .
Compute Kb

n = σ2(HT PtnH +σ2I3 + r2I3)
−1, Pb

n = σ2(I3−Kb
n ).

Compute Lb
n such that (Lb

n)(L
b
n)

T = Pb+
n .

for j = 1 to Np do
R j

tn+1 = R j+
tn R∆t , v j

tn+1 = v j+
tn +R j+

tn v∆t +(∆t)g.
x j

tn+1 = x j+
tn +(∆t)v j

tn +R j+
tn x∆t +

1
2(∆t)2g.

Compute Π1 = P(Y |Jn) and Π2 = P(Y |J̄n).
Sample c ∈ [0,1] following an uniform law.
Update the weight: w j+ = (Π1 +Π2)w j.
if c < Π1/(Π1 +Π2) then

Sample X following a 3-dimensional normal law.
b j = RT

tnKn
b RtnYn +RT

tnLb
nX .

end if
Build χ

j
tn+1 using R j

tn+1 , v j
tn+1 and x j

tn+1 .
χ

j+
tn+1 = χ

j
tn+1 exp(L (KnR jT

tn+1(Yn−b j− x j
tn+1))).

Extract R j+
tn+1 , v j+

tn+1 and x j+
tn+1 from χ

j+
tn+1 .

end for
Compute P+

tn = (I9−KnH)Ptn .
Normalize weights and possibly re-sample.
Compute the mean position x̃t = ∑

Np
j=1 w j+x j+.

end for
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7.4.5 Some remarks about bias observability

Before the first GPS jump A constant bias is not observable. Thus, the best one can
do before the bias has jumped is to efficiently filter the GPS and inertial sensors noise to
reconstruct the state up to a position offset.

After one jump As the inertia gives an accurate short-term estimation of the trajectory,
the bias jumps can be detected and the value updated using the difference between the
estimated position and the GPS observation. But the residual centered noise Vn of the
GPS (after bias correction) affects this first estimation and can be handled only using
future GPS measurements. Hence the interest of sampling several values of the new
bias then selecting those which best fit the observations to come.

After many jumps As the bias is assumed centered, it can be recovered asymptotically.
Indeed in the proposed algorithm, the re-weighting will eventually eliminate the particles
whose sequence of bias has a mean far from zero. This prevents the position to diverge
from the GPS trajectory in the long run, this discrepancy being erroneously explained by
a large non-centered estimated bias.

7.4.6 Results

Algorithm 4 has been implemented with the parameters given in table 7.1. The initial
state is known. Then the estimate deviates from the true trajectory due to gyroscope,
accelerometer and GPS noise. As a small set of parameters is sampled (the compo-
nents of the GPS bias) using moreover an optimal sampling the filter gives reasonable
results even with one particle. The accuracy of the localization is measured using the
total Root Mean Square Error (RMSE) of the position over the whole trajectory. Its per-
formance improves as the number of particles grows but stabilizes fast (see table 7.2) as
the sampled variable is only 3-dimensional. The computation time is also displayed in
table 7.2, for a naive Matlab implementation using "for" loops and it can be seen that the
cost of 10 particles is only around twice the cost of one particle. Considering Algorithm
4 in detail the reader could even expect a much smaller difference between the cost of
1 and 10 particles but the result we obtain is affected by Matlab’s poor ability to deal
with loops over the particles. The end of the trajectory estimated by the Invariant Rao -
Blackwellization is drawn on Figure 7.1 and compared to the true one. The apparent gap
in the GPS observations is due to a bias change. We see that the filter is able to manage
the non-Gaussian noise model of the GPS with an accuracy improved as the number of
particles increases.

7.5 Conclusion

This chapter has introduced the idea of using autonomous errors variables to sample
from a lower dimensional distribution in particle filtering. A class of system has been pre-
sented, for which the combination of invariant and particle filtering brings decisive prop-
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Figure 7.1 – Zoom on the end of the trajectory estimated by the Invariant Rao - Black-
wellization with 1 and 100 particles, illustrating the usefulness of sampling. The beginning
is not informative as the IMU gives an accurate estimation on the short run in both cases.
As an accurate near-optimal sampling is performed, a unique particle provides already a
reasonable estimate. Sampling 100 particles improves the performance and, due to the
properties of invariant filtering, is not much more expansive

Table 7.1 – Parameters of the simulation

Duration 1000s
Variance of the gyroscope noise 10−8rad/s2

Variance of the accelerometer noise 10−6m2/s5

Probability of a GPS bias jump 10−3s−1

Frequency of the GPS observations 10Hz
Variance of the regular GPS observations 1m2

Variance of the GPS bias 100m2

erties in terms of computational burden. The realism of the proposed model has been
proved by the implementation of the method on a concrete non-linear localization prob-
lem with non-white noise. The strong convergence properties of the Invariant Extended
Kalman Filter can be expected to have interesting consequences on the accuracy of the
obtained sampling, but no result in this direction has been given here and the question is
left for future work.

In Part III we come back to a deterministic setting, and step back a little to study, from
a more general point of view, the benefits of an EKF based on a non-linear error variable.

Table 7.2 – Results of the simulation : RMSE of the error

Number of particles 1 10 30 100 1000
RMSE (m) 105,62 96,31 75,73 70,37 66,59

Computation time (s) 1,29 2,61 5,64 15,59 150,52
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Part III

Nonlinear state error based EKFs
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Chapter 8

Remedying EKF-SLAM
inconsistency

Chapter abstract In this chapter, we first recall one of the main reasons why, although
very well suited to loop closures and as such very appealing, the EKF SLAM has been
essentially abandoned. It is known as “EKF-SLAM inconsistency” [8, 31, 59, 61], that is,
the over-optimism of the EKF covariance matrix due to linearizations. Then, we show
the problem can be fully solved by choosing to linearize a certain nonlinear state error
variable inspired by Chapter 4. To our best knowledge, this result is entirely novel.

8.1 Introduction

The problem of a robot discovering a new environment, and trying to map it while estimat-
ing its own position on the map, is known as "Simultaneous Localization and Mapping".
The probabilistic formulation of this problem introduced in [101], and its resolution using
Extended Kalman filtering recommended by the authors of the paper, has been a great
success. This is due to the impossibility to neglect the correlations between the different
variables [32]. They have to be encoded one way or another and to this end, the Kalman
filtering framework is difficult to avoid. Yet, further work [8,31,59,61] showed the limits of
the EKF SLAM: the non-linearity of the problem makes the filter inconsistent, in the sense
that the error covariance matrix it provides is extremely optimistic, or in other words the
estimation error is far beyond its (alleged) the 3-σ envelope. This has been related to a
problem known as "false observability": the filter believes it has enough information to im-
prove its estimate of some variables being actually non-observable. For instance, a robot
using only relative measurements of unknown landmarks eventually considers its head-
ing is known whereas an overall rotation of the system yields the entire observations se-
quence unchanged ans thus cannot be distinguished. To circumvent this drawback some
work proposed to chose a linearization point forcing the non-observable subspace of the
system to keep the right dimension [57, 58]. But in general, EKF was mostly abandoned
in favor of two kinds of approaches: batch optimization and particle methods deriving
from FastSlam. FastSLAM [84] is a sampling-based estimation method that carries a set
of hypothetical trajectories along with weights. It performs data association jointly with
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localization and mapping, and thus is very robust to erroneous feature identification. Yet,
it comes at a price: the FastSLAM tends to become over confident in some trajectories
and discard some other, less likely at a given time although proving more relevant once
more information is obtained. In particular, when a loop closure occurs (that is, the same
scene is viewed a long time after having been seen for the first time) the filter can fail
to properly take it into account as the only thing it can do is increase the weight of the
most likely hypothetical trajectories he has kept. On the other hand, the EKF-SLAM is
very good at closing loops by maintaining full correlation between the features through
the covariance matrix. Its weaknesses come from the linearization step which induces
over confidence in the estimates and leads the filter to fail returning relevant estimates.
Batch optimization takes as argument a large part of the trajectory [37]. These methods
allows re-linearization of the whole sequence, which the EKF cannot make.

Here, we will carefully analyze the problem of false observability and show that it is
strongly coordinate-dependent, in the sense that simply changing the definition of the
error variable can make it vanish. This strange phenomenon is better grasped once the
error variable has been understood as a local state-dependent basis. First, we introduce
in the Section 8.2 the tools required to study observability issues arising in the context of
the EKF. We use them in Section 8.3 to develop an analysis of EKF SLAM inconsistency
mainly relying on existing ideas [31,61] yet presenting them, we believe, in a much simpler
way. Then we show in Section 8.4 how to solve this problem through the choice of the
error variable and we finally give in Section 8.5 and 8.6 an equivalent approach allowing
a more physical understanding of the mechanisms at play.

8.2 Kalman filter and observability

8.2.1 Observability

Observability is a classical concept of the automatic control theory, whose definition is
quite transparent. Consider a general dynamical system Xt ∈ Rn

t , associated to a se-
quence of observations (Yn)n>0.

d
dt

Xt = fut (Xt), (8.1)

Yn = h(Xtn), (8.2)

where f is the function describing the evolution of the system Xt , ut an input and h the
observation function. Between the instants t1 and t2 the differential equation moves any
vector X to a to a new position denoted by Φ

t2
t1(X), where the function Φ is called the

"flow" associated to f. This denomination is visual: if the system lets itself be driven by
the equation d

dt Xt = fut (Xt) and is at X at time t1, then it is at Φ
t2
t1(X) at t2. Note that we

can have t1 > t2, in which case the flow is traced back from t2 to t1. In more mathematical
terms we have Φ

t2
t1(X) =

[
Φ

t1
t2

]−1
(X).
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Definition 8 (non-observable transformation). We say a transformation φ : Rn→ Rn

of the system is non-observable if for any X0 ∈ Rn and n > 0 we have:

h
(
Φ

tn
0 [φ(X0)]

)
= h

(
Φ

tn
0 (X0)

)
.

It concretely means that if the transformation is applied to the initial state then none of
the observations Yn are going to be affected. As a consequence, there is no way to guess
this transformation has been applied. This notion has an infinitesimal counterpart strongly
related to the notion of infinitesimal observability [48] that we define as follows:

Definition 9 (non-observable direction). Let (Xt)t>0 denote a solution of (8.1). A
vector δX0 ∈ Rn is said to span a non-observable direction around X0 if we have:

∀n > 0,HnδXtn = 0,

where Hn is the linearization of h around Xtn and δXtn = DΦ
tn
0 (X0)δX0 is the first-

order propagation of the perturbation δX0 until tn (DΦ
tn
0 (X0) being the differential of

Φ
tn
0 around X0).

The denomination δXt for a vector aims here at highlighting it has to be understood as an
infinitesimal perturbation of the trajectory. This definition, in a more common language,
could be reformulated as follows: if the initial state was X0 +δX0 instead of X0, we would
not see any difference on the sequence of observations up to the first order. The condition
HnδXtn = 0 means h(Xtn +δXtn) = h(Xtn), still up to the first order. If f and h are linear these
notions are equivalent: a direction δX0 is non-observable if and only if the translation
of the system by the vector δX0 is non-observable. An estimation method providing the
uncertainty of its own result (as the EKF does) should be able to detect that a direction is
not observable, as obtaining an estimate accurate along this direction is impossible. This
is the question studied in the rest of this section.

8.2.2 Kalman filtering and Extended Kalman filtering

Consider the specific case of a process Xt following a linear dynamics, polluted by Gaus-
sian white noise wt :

d
dt

Xt = AtXt +Bt +wt ,

where matrices At and Bt are known and wt is a random Gaussian white noise with co-
variance matrix Qt . The value of this process is estimated using a sequence of linear
observations Yn, also polluted by a white noise Vn having covariance matrix Rn:

Yn = HnXtn +Vn.

If the distribution of the initial state X0 is Gaussian with mean X̂0 = E
[
X0
]

and covariance
matrix P0 = Cov(X0) = E

[
(X0− X̂0)(X0− X̂0)

T
]
, then the exact expected value X̂t of Xt , as

well as the conditional covariance matrix Pt given the past observations, are given by the
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equations of the Kalman filter. We recall them here, in a way allowing to establish the
terminology we are going to use in the rest of this document.

Propagation (while no observation is available):

d
dt

X̂t = At X̂t +Bt ,

d
dt

Pt = AtPt +PtAT
t +Qt , tn−1 < t < tn. (8.3)

Update (and each time an observation Yn appears):

• Computation of the innovation zn and its covariance matrix Sn :

zn = Yn−HnX̂tn ,

Sn = HnPtnHT
n +Rn. (8.4)

• Estimation of the error ∆X :
Kn = PtnHT

n S−1
n ,

∆X = Knzn.

• Update of the mean and covariance matrix:

X̂+
tn = X̂tn +∆X ,

P+
tn = [I−KnHn]Ptn .

This is the exact solution to the problem of filtering in the linear case: we have
P(Xt |(Yn)tn<t) = N (Xt , X̂t ,Pt) where N denotes the multivariate Gaussian density :

N (x,µ,Σ) =
1√

(2π)k|Σ|
exp
(
(x−µ)T

Σ
−1(x−µ)

)
,with k the dimension of x.

If we come back to the general non-linear case, the p.d.f. conditioned on the observations
does not stay Gaussian and its exact description cannot be derived in a close form. The
usual way to deal with this issue is simply to use a first-order linearization of the error
Xt − X̂t to maintain an approximation of the mean and covariance matrix of the system,
denoted again by X̂t and Pt . This approach, called extended Kalman filtering, consists of
the following steps:

Propagation (while no observation is available):

d
dt

X̂t = fut (X̂t),

d
dt

Pt = AtPt +PtAT
t +Qt , tn−1 < t < tn,

where At is the Jacobian matrix ∂ f
∂X computed at X̂t , and Qt =

(
∂ f
∂w |X̂tn

)
Cov(wt)

(
∂ f
∂w X̂tn

)T

is the first-order covariance matrix of the noise perturbing the evolution of Xt .
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Update (each time an observation Yn appears):

• Computation of the innovation zn and its covariance matrix Sn :

zn = Yn−HnX̂tn ,

where Hn is the Jacobian matrix ∂h
∂X computed at X̂tn .

Sn = HnPtnHT
n +Rn,

where Rn = ( ∂h
∂V |X̂tn

)Cov(Vn)(
∂h
∂V |X̂tn

)T is the observation noise covariance matrix
computed at X̂t .

• Estimation of the error ∆X :
Kn = PtnHT

n S−1
n ,

∆X = Kn(Yn−HnX̂tn).

• Update of the mean and covariance matrix:

X̂+
tn = X̂tn +∆X ,

P+
tn = [I−KnHn]Ptn .

The obtained estimate X̂t and covariance matrix Pt stem now from approximations and
their behavior is not obvious. In particular, if a direction is not observable, this should be
encoded one way or another in Pt , meaning the filter "knows" it has no information along
this direction. Failure to correctly handle this situation has been shown to be a major
cause of failure of the EKF, especially in SLAM applications [8, 58, 61]. The property we
seek is defined now more rigorously.

8.2.3 Error Covariance matrix and non-observability

The covariance σ2
C of any scalar scalar variable C defined as the projection of Xt over a

known vector u∈Rn is given by Cov(C) = uT Ptu. If u is the projection over coordinate i then
we obtain σ2

C = Pi,i
t : the diagonal coefficients of Pt are the covariances of the components

of Xt . The uncertainty of C is then usually represented through the standard deviation

σC =
√

σ2
C, as this value is homogeneous to C. If the system is linear, σ2

C is the exact

covariance of the estimation error over the direction u. But if it is non-linear, then X̂t and Pt

have been obtained through approximations and their validity has to be discussed. This
is where the standard deviation σC (derived from the computed Pt) proves very useful.
Indeed, the difference between the estimate and the true state does not carry any useful
information because 1) the notion of “large” difference has to be defined 2) an error due to
non-observability does not mean the method is not working but only that the filter has not
been given enough information. However, comparing the actual error with the computed
standard deviation σC is meaningful as it is a test of the ability of the filter to estimate
its own uncertainty. For instance, having frequently an error superior to 3σC is a good
indicator of failure as the probability of having such an error should be less than 3.10−3.
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Note that this uncertainty information can also be very useful to the user or the robot,
typically for safety issues: an accurate uncertainty estimation will prevent some risky
decisions that could for instance lead to a collision.

Now we would like to translate the (deterministic) notion of non-observability in terms
of covariance matrix. If a scalar component X i

t , or more generally a scalar variable
C = uT Xt is non-observable, its estimated covariance defined as uT Ptu should stay large
in a certain sense. If not, we can conclude there is a problem with the estimation method.
In this kind of analyses, remarks such as "the estimated covariance of the variable C
decreases although this direction is not observable" are common but should not be un-
derstood literally. It would be erroneous to expect the covariance over a non-observable
direction to be always decreasing as shown by the following linear counter-example:

Example 5. Consider a linear system consisting of a state (v,x1
t ,x

2
t )

T ∈ R3 following the
equation:

d
dt

vt = 0,
d
dt

x1
t = v,

d
dt

x2
t = v,

and assume one observes y = h(v,x1,x2) = x2 +V , where V is a white noise. A Kalman
filter is run on this simple linear problem with initial covariance matrix I3 and observation
covariance Cov(V ) = r = 1. The results are displayed on the left plot of Figure 8.1. We
see that the covariance of x1 is not always increasing although x1 is not observable. The
explanation is simple: as the velocity v is unknown, the covariance of x1 grows, then
reduces as v is observed through x2, but stays larger than its initial value. This shows
that increasing covariance is not the property we seek. Note however that the covariance
along this direction is lower bounded by its initial value which is logical.

For the linear system of the previous example, we see that x1 defines a non-observable
direction as two solutions defined by the initial conditions (v0,x1

0,x
2
0)

T and (v0, x̃1
0,x0

2)T with
x̃1

0 6= x2
0 yield the same output trajectory (note that the direction (0,1,0) spanned by their

difference lies in kerHx, with Hx : (v,x1,x2)→ x2). However, we see that the covariance
matrix projected along this direction can decrease. As the system is linear, we know this
not due to an approximation of in the computation of the covariance.

On the other hand, the inverse of the covariance matrix, the so-called information
matrix, is actually much more suited to the notion of observability: its value is always de-
creasing along non-observable directions for any Kalman filter tuned with arbitrary noise
covariance matrices as shown by the following result.
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Figure 8.1 – Covariance and information over the non-observable direction x1 for the
simple linear system d

dt v = 0, d
dt x1 = v, d

dt x2 = v with observation y = x2 +V . The variable
x1 is not observable. Yet the variance of x1 conditioned on the outputs (i.e. P2,2

t if the
chosen order is v,x1,x2) can decrease as it is correlated to x2 through the fact they have
the same velocity (left plot). Note on the other hand the information over x1 (defined as
(P−1

t )2,2) never increases, which is consistent with the fact it is not observable.

Proposition 22. Consider the linear system

d
dt

Xt = AtXt +wt , Ytn = HnXtn +Vn,

and assume the direction δX0 is non-observable, i.e., we have at all observation time
tn:

δXtn ∈ kerHn,

where δXt verifies d
dt δXt = AtδXt .

For arbitrary choices regarding the covariance matrices Qt and Rn involved in the
propagation and update steps of the Kalman filter (8.4)-(8.4), and keeping the nota-
tion Pt for the covariance matrix they compute, then the information (δX)T

t P−1
t (δX)t

along the considered direction (δXt)t≥0 is monotonically decreasing.

Proof. During the propagation step using the standard Kalman filter equations and the
well-known fact that d

dt P−1
t =−P−1

t ( d
dt Pt)P−1

t we have:

d
dt
(δX)T

t P−1
t (δX)t =(At(δX)t)

T P−1
t (δX)t +(δX)T

t P−1
t At(δX)t

− (δX)T
t P−1

t
(
AtPt +PtAT

t +Qt
)
P−1

t (δX)t

=− (δX)T
t P−1

t QtP−1
t (δX)t 6 0.

And at the update step (written here in information form as, e.g., in [103]) we have:

(δX)T
tn(P

+
tn )
−1(δX)tn = (δX)T

tn

[
P−1

tn +HT
n R−1

t Hn
]
(δX)tn = (δX)T

tnP−1
tn (δX)tn ,
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as Hn(δX)tn = 0. Thus the information (δX)T
tn(P

+
tn )
−1(δX)tn is always decreasing.

The remarks of this section allow us to give a mathematical definition of a good be-
havior of an EKF regarding non-observable directions:

Definition 10. An EKF preserves the non-observable direction δX0 if the quan-
tity (δXt)

T P−1
t (δXt) is always decreasing, where δXt follows the differential equation

d
dt δXt = AtδXt , At denoting the Jacobian matrix ∂ f

∂X computed at X̂t .

Remark 13. An immediate consequence of Proposition 22 is that a non-observable di-
rection δXt of the non-linear system is preserved by an EKF if it is also a non-observable
direction of the system linearized over the estimated trajectory X̂t . This not surprising:
the EKF "sees" only the linearized system and computes its uncertainty consequently.

The next section approaches a famous false observability problem and proposes a
new solution involving no complicated patch-up job.

8.3 SLAM inconsistency

It is now well-known, thanks to the works of [8, 58, 61], that the EKF-SLAM algorithm
with relative observation of unknown features tends to gain information, especially on the
heading uncertainty, although this variable cannot ever be inferred (a rotation of the full
system is non-observable). This is essentially due to the changes in the linearization point
over the observation sequence, which is a typically nonlinear problem, and has been well
analyzed [57, 61]. In this section, we advocate part of the EKF-SLAM inconsistency can
be remedied by choosing appropriate estimation error variables when designing an EKF.
This will first be shown on the standard "steered" bicycle model [43]. The state is defined
as:

χt = (ωt ,Xt , pt) ,

where θt ∈ R denotes the heading, Xt ∈ R2 the 2D position of the vehicle, pt ∈ R the
position of an unknown feature and χt a synthetic notation for the state of the system. Its
dynamics reads:

d
dt

θt = ωt ,

d
dt

Xt = R(θt)

(
vt

0

)
,

d
dt

pt = 0,

(8.5)

where ωt ∈ R denotes the angular velocity of the vehicle, vt the odometric velocity and
R(θ) is the matrix encoding a rotation by an angle θ :

R(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.
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Note that we simplified the notations: ωt can be expressed as a function of the veloc-
ity, wheel base and steer angle but keeping the formulas as simple as possible looked
preferable. The observation of feature can be any function defined in the reference frame
of the vehicle:

Yn = h
[
R(θt)

T (p−Xtn)
]
, (8.6)

where Yn ∈ Rp is the observation of the feature at time tn and h is a function of R2→ Rp.

Remark 14. Note that the observation model (8.6) encompasses the usual range and
bearing observations used in the SLAM problem as they read:

Yn = hr,b
(
R(θt)

T (p−Xtn)
)
,

with: hr,b

(
y1
y2

)
=

 √
y2

1 + y2
2

arctan
(

y2
y1

) .

If we choose h
(

y1
y2

)
= arctan

(
y2
y1

)
instead, we obtain monocular SLAM, another classical

model. Note also we do not provide any form for the noise in the output: this is because
the properties we are about to prove only depend on the deterministic part of the system
so they are insensitive to the way the noise enters the system.

All the measures being in the reference frame of the vehicle, an initial rotation and/or
translation of both the vehicle and the map (i.e. the set of features) is non-observable. We
will now examine the system linearized around an estimated trajectory (θ̂t , X̂t , p̂t)t>0 to see
if an infinitesimal rotation of the vehicle and map is ensured to be a non-observable direc-
tion of this linear system, i.e., ensured to be considered non-observable by an extended
Kalman filter.

Integration of the dynamics gives a discrete evolution between two observation times:

θn+1 = θn + ω̄n,

Xn+1 = Xn +R(θn)v̄n,

with ω̄n =
∫ tn+1

tn ωt ∈R and v̄n ∈R2 the solution at time tn+1 of the following equation starting

at tn: v̄tn = (0,0)T , d
dt v̄t = R

(∫ t
tn ωtdt

)(vt

0

)
. We also used the short-hand notations θn = θtn

and Xn = Xtn . The same notations will be used for the estimates: θ̂n = θ̂tn , X̂n = X̂tn , p̂n = p̂tn
and χ̂n = χ̂tn . The propagation and observation functions can be linearized around an
estimate X̂n: θn+1− θ̂n+1

Xn+1− X̂n+1
p− p̂n+1

≈ Fn

θn− θ̂n

Xn− X̂n

p− p̂n

 ,

h

θn

Xn

p

−h

θ̂n

X̂n

p̂n

≈ Hn

θn− θ̂n

Xn− X̂n

p− p̂n

 ,
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with:

Fn =

 1 01,2 01,2

JR
(
θ̂n
)

v̄n I2 02,2
02,1 02,2 I2

 , Hn =
(
Dhχ̂n

)(p̂n− X̂n)
T R(θ̂n)J

−R(θ̂n)

R(θ̂n)

T

, (8.7)

where J =
(

0 −1
1 0

)
and Dhχ̂n denotes the Jacobian of h computed at the point R(θ̂n)

T
[
p̂n− X̂n

]
∈

R2.
Now, let us define carefully the linear error system "seen" by the EKF for a sequence

of estimates (χ̂n, χ̂
+
n )n>0. Note that we distinguish intentionally the estimates before the

update (χ̂n) and after the update χ̂+
n . Indeed, in the EKF, the dynamics is linearized

around the updated estimate χ̂+
n although the observation is linearized around the esti-

mate before update χ̂n (as the updated value is not known yet). The linear system "seen"
by the EKF is defined by the sequence of propagation and observation matrices:

Fn =

 1 01,2 01,2

JR(θ̂+
n )v̄n I2 02

02,1 02 I2

 ,

Hn =
(
Dhχ̂n

)(p̂n− X̂n)
T R(θ̂n)J

−R(θ̂n)

R(θ̂n)

T

.

Thus, following definition 9, a direction is non-observable for the linearized system if we
have for any m > 0:

Hm+1 (Π
m
n=0Fn)δX0 = 0. (8.8)

The initial perturbations we are interested in here correspond to overall rotations of the
system. They are defined in Proposition 23 below:

Proposition 23. Let χ̂ =

θ̂

X̂
p̂

 be an estimate of the state. The first-order perturba-

tion of the estimate corresponding to an infinitesimal rotation of the system through

an angle δα around the origin reads

 1
JX̂
J p̂

δα, with J =

(
0 −1
1 0

)
.

Proof. The first-order perturbation is computed considering a rotation through an angle
δα of the overall system then keeping only the first-order terms. The heading changes
as follows:

θ̂ → θ̂ +δα.

The position of the vehicle changes as follows:

X̂ →
(

cos(δα) −sin(δα)
sin(δα) cos(δα)

)
X̂ ≈ δα

(
0 −1
1 0

)
X̂ .
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The position of the feature changes as follows:

p̂→
(

cos(δα) −sin(δα)
sin(δα) cos(δα)

)
p̂≈ δα

(
0 −1
1 0

)
p̂.

Stacking these results we obtain the first-order variation of the full state vector:θ̂

X̂
p̂

→
θ̂

X̂
p̂

+

 1
JX̂
J p̂

δα.

Denoting by δ χR
0 =

 1
JX̂0
J p̂0

δα such a perturbation of the initial state we come to the main

result of this section:

Proposition 24. Overall rotations of the system are non-observable. But once the
equations have been linearized, the observability of δ χR

0 for the linearized system
depends on the linearization points:

1. If the linearization point χ̂tn is propagated over time but never updated (∀n, χ̂+
n =

χ̂n) then δ χR
0 is a non-observable direction of the linearized system.

2. In general, δ χR
0 is not a non-observable direction of the system linearized on

(χ̂n, χ̂
+
n )n>0.

Result 1 confirms [57]: linearizing the system on the prior trajectory prevents false ob-
servability. But result 2 is quite impractical as an EKF does not "see" anything else than
the system linearized on (χ̂n, χ̂

+
n )n>0. Moreover, it appears in the proof of Proposition 24

we give now that δ χR
0 being non-observable for the system linearized on (χ̂n, χ̂

+
n )n>0 is

highly unlikely, as soon as updates are involved.

Proof. δ χR
0 is a non-observable direction of the linearized system if for any m> 0 equation

(8.8) is verified:
Hm+1 (Π

m
n=0Fn)δ χ

R
0 = 0.

Let us develop this expression:

Π
m
n=0Fn = Π

m
n=0

 1 01,2 01,2

JR
(
θ̂+

n
)

v̄n I2 02
02,1 02 I2


=

 1 01,2 01,2

J ∑
m
n=0 R

(
θ̂+

n
)

v̄n I2 02
02,1 02 I2

 ,

109



where we recursively used the easily verified property: 1 0 0
a1 1 0
b1 0 1

 1 0 0
a2 1 0
b2 0 1

=

 1 0 0
a1 +a2 1 0
b1 +b2 0 1

 . (8.9)

We have thus:

Π
m
n=0Fn =

 1 01,2 01,2
J ∑

m
n=0
(
X̂n+1− X̂+

n
)

I2 02
02,1 02 I2


=

 1 01,2 01,2
J
(
X̂m+1− X̂0−∑

m
n=1 X̂+

n − X̂n
)

I2 02
02,1 02 I2

 ,

where the last equality is a mere re-ordering of the terms appearing in the sum(Note that
X+

0 = X0 as the observations start at n = 1). Re-injecting in (8.8) we obtain:

Hm+1 (Π
m
n=0Fn)δ χ

R
0 = Hm+1

 1 01,2 01,2
J
(
X̂m+1− X̂0−∑

m
n=1 X̂+

n − X̂n
)

I2 02
02,1 02 I2

 1
JX̂0
J p̂0

δα

= Hm+1

 1
J
(
X̂m+1−∑

m
n=1 X̂+

n − X̂n
)

J p̂0

δα

=
(
Dhχ̂m+1

)(p̂m+1− X̂m+1)
T R(θ̂n)J

−R(θ̂m+1)

R(θ̂m+1)

T  1
J
(
X̂m+1−∑

m
n=1 X̂+

n − X̂n
)

J p̂0

δα

=−
(
Dhχ̂m+1

)
JR(θ̂m+1)

(
p̂m+1− p̂0 +

m

∑
n=1

X̂+
n − X̂n

)
δα.

In one particular case, the last parenthesis on the right side of this equation is zeros
and the expression is ensured to be null: if the updates of X̂ and p̂ are always zero.
This proves the first result. This is logical: the observability properties of the system are
defined on a trajectory without updates. If no assumption is made on the updates (which
can take any value depending on the noise), the latter expression can be non-zero and
an initial rotation of the system is observable on the linearized system.

This update issue is the basic mechanism of false observability making EKF acquire
false information. Blue plot of Figure 8.2 displays the heading covariance estimated by an
EKF for this problem where h is taken as Identity and one landmark is observed at each
time step. As can be seen, the filter believes it improves its accuracy over time although
it has physically no way to do better than its first guess. Red plot is not important for now.
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Figure 8.2 – Plot of the estimated heading variance (in rad2) over time for a vehicle with
known position, unknown heading, and one landmark. A sequence of estimates has
been computed using the conventional EKF-SLAM algorithm. The blue solid curve corre-
sponds the covariance matrix computed by this EKF. On the same sequence of estimates,
the system has been linearized using a non-linear error variable (red dashed line). With
a linear error variable, the second measurement at t1 = 200 induces large decrease in
the heading uncertainty, and the following measurements every 100 time steps keep de-
creasing the heading variance although the system has physically no way to acquire this
information. On the other hand the heading variance remains at level when using the
alternative nonlinear error variable as advocated in this paper. This simulation confirms
again that the error variable chosen does change the result of the Riccati equation as
soon as non-zero updates are involved.

8.4 Solving false observability through the choice of the error
variable

We will show here that the way the error is defined has a dramatic impact on the Ric-
cati equation as soon as the trajectory involves updates (if not, obviously, all the error
variables are equivalent). Previous derivation linearized the evolution of an error defined
as:

en =

θn− θ̂n

Xn− X̂n

p− p̂n

 .

Now we perform the same computation for an error inspired by the theory of symmetry-
preserving observers [15, 19] and introduced for the SLAM problem in [22] (to derive
an autonomous error equation but without observability considerations) and which has a
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slightly different definition:

en =

 θn− θ̂n

R
(
θ̂n−θn

)
Xn− X̂n

R
(
θ̂n−θn

)
p− p̂n

 . (8.10)

Considering again a sequence of estimates (χ̂n, χ̂
+
n ), the firs-order system is defined

by the first-order approximations around this trajectory: θn+1− θ̂n+1

R(θ̂n+1−θn+1)Xn+1− X̂n+1

R(θ̂n+1−θn+1)p− p̂n+1

≈ Fn

 θn− θ̂+
n

R(θ̂+
n −θn)Xn− X̂+

n
R(θ̂+

n −θn)p− p̂+n

 ,

h[R(θn)
T (p−Xn)]−h[R(θ̂n)

T (p̂− X̂n)]≈ Hn

 θn− θ̂n

R(θ̂n−θn)Xn− X̂n

R(θ̂n−θn)p− p̂n

 .

This leads to the following values of Fn and Hn:

Fn = Id,

Hn =
(
Dhχ̂

) 01,2

−R(θ̂n)

R(θ̂n)

T

,

where Dhχ̂ is the Jacobian of h computed at R(θ̂n)
T (p̂n− X̂n). The expression of the lin-

earized system has become much simpler, and showing preservation of the non-observable
directions is going to be easy. First we have to write the infinitesimal error corresponding
to a small rotation of angle α of the whole system.

Proposition 25. Let χ̂ =

θ̂

X̂
p̂

 be an estimate of the state. The first-order perturba-

tion of the error (8.10) around zero corresponding to an infinitesimal rotation of the

system through an angle δα around the origin reads

 1
02,1
02,1

δα.

Proof. The first-order perturbation is computed considering a rotation through an angle
δα of the overall system then keeping only the first-order terms. As shown by Proposition
23, the rotated system reads(up to the first order): θ̂ +δα

X̂ +δαJX̂
p̂+δαJ p̂

 .

The error (defined by (8.10)) with the non-perturbed system reads: δα

R(−δα)(X̂ +δαJX̂)− X̂
R(−δα)(p̂+δαJ p̂)− p̂

≈
 δα

(I2−δαJ)(X̂ +δαJX̂)− X̂
(I2−δαJ)(p̂+δαJ p̂)− p̂

 .
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And removing the second-order terms: δα

R(−δα)(X +δαJX)−X
R(−δα)(p+δαJp)− p

≈
δα

02,1
02,1

 .

With this modified error variable, an initial perturbation corresponding to an infinitesimal
rotation is thus simply

δ χ
R
0 =

 1
02,1
02,1

δα.

Now we can study the observability of such a perturbation for the linearized system using
condition (8.8). For any number m of observations we have immediately:

HnΠ
m
n=0Fnδ χ

R
0 =

(
Dhχ̂n

) 0
−R(θ̂n)

T

R(θ̂n)
T

T  1
02,1
02,1

= 02,1.

As well, an infinitesimal translation of the whole system has the form δ χu
0 =

0
u
u

 with

u ∈ R2 and we have:

Hm+1 (Π
m
n=0Fn)δ χ

u
0 =

(
Dh|χ̂m+1

) 01,2

−R(θ̂n)

R(θ̂n)

T 0
u
u

= 02,1.

This proves the following Theorem:
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Theorem 15. The SLAM problem defined by equations (8.5)-(8.6) and linearized on
a trajectory (χn,χ

+
n )n>0 using error variable

en =

 θn− θ̂n

R(θ̂n−θn)Xn− X̂n

R(θ̂n−θn)pn− p̂n

 ,

boils down to the following propagation and observation matrices:

Fn = I3 , Hn =
(
Dhχ̂

) 01,2

−R(θ̂n)

R(θ̂n)

T

.

Regardless of the linearization points (χn,χ
+
n )n>0, the non-observability condition

∀m > 0,Hm+1 (Π
m
n=0Fn)δ χ0 = 0

is verified for the following values of the initial perturbation δ χ0:

δ χ0 = δ χ
R
0 =

 1
JX̂tn
J p̂tn

 , δ χ0 = δ χ
1
0 =


0
1
0
1
0

 , δ χ0 = δ χ
2
0 =


0
0
1
0
1

 .

They correspond to rotations and translations of the whole system.

Application of Proposition 22 gives then immediately
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Theorem 16. Let (Pn)n>0 denote the solution of the Riccati equation obtained lin-
earizing the SLAM problem (8.5)-(8.6) around any trajectory (χn,χ

+
n )n>0 with error

variable

en =

 θn− θ̂n

R(θ̂n−θn)Xn− X̂n

R(θ̂n−θn)pn− p̂n

 ,

and choosing arbitrary noise covariance matrices Qn and Rn.
(Pn)n>0 verifies:

∀n > 0,

Pn = Fn−1Pn−1Fn−1 +Qn−1,

Kn = PnHT
n
(
HnPnHT

n +Rn
)−1

,

P+
n = (I−KnHn)Pn,

(8.11)

with matrices Fn and Hn defined as in Theorem 15 above. Let δ χ0 denote a linear
combination of the infinitesimal rotations and translations δ χR

0 ,δ χ1
0 ,δ χ2

0 of the whole
system, defined as in Theorem 15 above. Then the non-observability of δ χ0 is pre-
served in the sense of Definition 10, regardless of the linearization points. We recall
the meaning of this property, which takes a very simple form here due to the trivial
form of Fn:

(δ χ0)
T P−1

n (δ χ0) decreases over time.

Red plot of Figure 8.2 displays the heading covariance computed on the same se-
quence of estimates as the blue one, but with the non-linear error variable. As proved
by Theorem 15 the false observability issue disappeared. Before going further into the
building of an EKF based on a non-linear error variable we give in the next section an
alternative way to solve false observability problems, looking more natural than the use
of a non-linear error variable but turning out to be strictly equivalent.

8.5 A different approach to the same result

8.5.1 A visual approach to the problem

Previous section explained the problem of false observability through computations. Fig-
ures 8.3 and 8.4 illustrate the same phenomenon through a drawing for a 2-dimensional
non-linear system. It shows the fundamental difference between propagation step and
update step in the EKF. During the propagation, the estimate changes (following equa-
tion d

dt χt = fu(χt) or its discrete form) while the covariance matrix changes in a coherent
way (involving the Jacobian Fn of the flow of f ). This preserves the non-observability
of a move along the black line representing a non-linear non-observable transformation,
because the Jacobian of the flow maps non-observable directions of an instant tn to the
non-observable directions of an instant tn+1. During the update step, the covariance ma-
trix is updated using a first-order expansion around the current estimate χtn+1 and the
result P+

tn+1 is coherent with the non-observable directions around χ̂tn+1 . But the state is
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1) Estimate and uncertainty el-
lipsoid at time tn if the filter has
worked correctly: the ellipsoid is
elongated in the non-observable
direction.

2) Propagation of the estimate
until tn+1.

3) First-order propagation of the
covariance: the direction esti-
mated as "uncertain" sticks to
the true non-observable direc-
tion.

Legend.

Figure 8.3 – Basic mechanism of false observability: propagation step. The estimate
changes, but the Riccati equation propagates the covariance matrix so that the non-
observable directions are mapped to non-observable directions. No false observability is
created here, unlike in the update step described on Figure 8.4.
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4) The updated state X̂+
tn+1 is

computed using linearizations at
X̂tn+1 .

5) The updated covariance
matrix P+

tn+1 is computed us-
ing linearizations at X̂tn+1 : its
elongation expresses the non-
observability at X̂tn+1 .

6) The non-observable direction
at X̂+

tn+1 has no reason to corre-
spond to the non-observable di-
rection at X̂tn+1 .

Legend.

Figure 8.4 – Basic mechanism of false observability: update step. The estimate moves
to X̂+

tn+1 and the covariance is updated. But all the computations performed to update Pn+1
rely on a linearization at X̂tn+1 . Thus, the filter cannot "guess" the non-observable direction
around X̂+

tn+1 . This is the moment where false observability is created.
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updated and obviously, as shown by the last drawing, there is no reason for the non-
observable directions around χ

+
tn+1 to coincide with the non-observable directions around

χtn+1 .

8.5.2 Mathematical derivation

The natural reaction at the sight of the problem occurring in the update step is: "the
ellipsoid should turn !". This is precisely the simple idea discussed now. The short-
hand subscript n instead of tn will be used again. Mimicking the propagation step, we
introduce a matrix L(χ̂n, χ̂

+
n ) mapping the non-observable directions around χ̂n to the

non-observable directions around the updated step χ̂+
n to transform P+

n into a re-updated
matrix P++

n . The Riccati equation becomes for any n > 0:

Pn = Fn−1Pn−1Fn−1 +Qn−1,

P+
n = (I−KnHn)Pn with Kn = PnHT

n
(
HnPnHT

n +Rn
)−1

,

P++
n = L(χ̂n, χ̂

+
n )P+

tn L(χ̂n, χ̂
+
n )T ,

(8.12)

where the function L(χ̂n, χ̂
+
n ) : Rdim χ → Rdim χ has been chosen to map non-observable

directions around χn to non-observable directions around χ+
n . Applied to our SLAM prob-

lem, this principle will lead to Theorem 17:

Theorem 17. The SLAM problem (8.5), (8.6) linearized using the classical linear
error variable gives the propagation and update matrices Fn and Hn defined by (8.7).
Assume they are used in Equation 8.12 and let Pn denote the obtained solution,
where L is defined as:

L
(
χ̂n,χ

+
n
)
=

 1 01,2 01,2
J
(
X̂+

n − X̂n
)

I2 02,2
J (p̂+n − p̂n) 02,2 I2

 .

Let δ χ0 denote a linear combination of the infinitesimal rotations (defined in Propo-
sition 23) and translations of the whole system. Then the non-observability of δ χ0
is preserved in the sense of Definition 10, regardless of the linearization points. We
recall the meaning of this property:

(δ χn)
T P−1

n (δ χn) decreases over time,

where δ χn is the propagation of χ0 defined by:

∀n > 0, δ χn+1 = Fnδ χn.
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The rest of this section shows how L is found and proves Theorem 15. The first-order
rotations δ χR

0 (see Proposition 23) and translations χ1
0 ,χ

1
0 are defined as follows:

δXR =

 1
JX̂tn
J p̂tn

 , δX1 =


0
1
0
1
0

 , δX2 =


0
0
1
0
1

 .

The reader can verify that the matrix L(χ̂n, χ̂
+
n ) defined below maps δXR

0 ,δX1
0 ,δX2

0 on the
same vectors defined around χ̂+

n . Note that δX1
0 and δX2

0 stay the same but δXR
0 becomes

δXR =

 1
JX̂+

n
J p̂+n

.

L(χ̂n,χ
+
n ) =

 1 01,2 01,2
J(X̂+

n − X̂n) I2 02,2
J(p̂+n − p̂n) 02,2 I2

 .

The modified Riccati equation resulting of the introduction of L is easily studied, as L,
used after the classical covariance update and before the next propagation step, plays the
exact same role as the Jacobian of the propagation. Thus, considering again a sequence
of estimates (χn,χ

+
n ), the linear system "seen" by the EKF is defined by the modified

propagation matrix F̃n and the observation matrix Hn associated to the linear error (see
8.7):

F̃n = Fn.L(χ̂n, χ̂
+
n )

=

 1 01,2 01,2

JR(θ̂+
n )v̄n I2 02,2

02,1 02,2 I2

 1 01,2 01,2
J(X̂+

n − X̂n) I2 02,2
J(p̂+n − p̂n) 02,2 I2

 ,

Hn =
(
Dhχ̂n

)(p̂n− X̂n)
T R(θ̂n)J

−R(θ̂n)

R(θ̂n)

T

.

To prove preservation of the non-observability of infinitesimal rotations and translations
we want to show for any m > 0:

Hm+1
(
Π

m
n=1F̃n

)
F0δX0 = 0,

where δX0 is either an infinitesimal rotation or translation. Although looking maybe com-
plicated at the beginning, the computation is going to simplify as out of magic, to the
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contrary of the Riccati equation without correction studied in 8.3. We have:

(Πm
n=1F̃n)F0 =

(
Π

m
n=1FnL

(
χ̂n, χ̂

+
n
))

F0

= FmΠ
m−1
n=0 L(χ̂n+1, χ̂

+
n+1)Fn

= FmΠ
m−1
n=0

 1 01,2 01,2
J(X̂+

n+1− X̂n+1) I2 02,2
J(p̂+n+1− p̂n+1) 02,2 I2

 1 01,2 01,2

JR(θ̂+
n )v̄n I2 02,2

02,1 02,2 I2


= FmΠ

m−1
n=0

 1 01,2 01,2

J(X̂+
n+1− X̂n+1 +R(θ̂+

n )v̄n) I2 02,2
J(p̂+n+1− p̂n+1) 02,2 I2


= FmΠ

m−1
n=0

 1 01,2 01,2
J(X̂+

n+1− X̂+
n ) I2 02,2

J(p̂+n+1− p̂+n ) 02,2 I2

 . (8.13)

To obtain the last equality we used the propagation equations of X̂n (X̂n+1 =X+
n+1+R(θ̂+

n )v̄n)
and p̂ ( p̂n+1 = p+n ). An iterated application of (8.9) on the result (8.13) gives:

(Πm
n=1F̃n)F0 = Fm

 1 01,2 01,2
J(X̂+

m − X̂+
0 ) I2 02,2

J(p̂+m− p̂+0 ) 02,2 I2


=

 1 01,2 01,2
J(X̂m+1− X̂+

0 ) I2 02,2
J(p̂m+1− p̂+0 ) 02,2 I2

 .

And finally:

Hm+1(Π
m
n=1F̃n)F0δ χ0 =

(
Dhχ̂m+1

)(p̂m+1− X̂m+1)
T R(θ̂m+1)J

−R(θ̂m+1)

R(θ̂m+1)

T  1 01,2 01,2
J(X̂m+1− X̂+

0 ) I2 02,2
J(p̂m+1− p̂+0 ) 02,2 I2

δ χ0

=
(
Dhχ̂m+1

)
R(θm+1)

−(X̂0− p̂0
)T J

−I2
I2

T

δ χ0.

We recall the three values of δX for which we want to obtain Hm+1(Π
m
n=1F̃n)F0δ χ0 = 0 are:

δ χ
R
0 =

 1
JX̂tn
J p̂tn

 , δ χ
1
0 =


0
1
0
1
0

 , δ χ
2
0 =


0
0
1
0
1

 .

Verification is obvious. We just proved Theorem 17.
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8.6 Equivalence of the two approaches

We provided two ways to solve the problem of false observability of global translations
and rotations in the SLAM problem. The second one is the most intuitive but could look
artificial. The first one inspires more confidence as the procedure is exactly the same
as in the classical EKF, only the definition of the error changes, and the problem being
non-linear there is no reason why the linear error χt − χ̂t should prevail, on the contrary
we advocate throughout the present thesis that it may be an inappropriate choice. But
the physical sense of changing the error variable is not necessarily obvious. The answer
is Proposition 26: choosing an error variable means precisely choosing a way to make
the confidence ellipsoids "turn".

Proposition 26. Solutions proposed in Sections 8.4 and 8.5 are equivalent in the
following sense:

Let us denote by
(
Q̃n, P̃n

)
and (Qn,Pn) the covariance matrices appearing in Equa-

tion (8.11) and (8.12) respectively, and by Deχ̂ the Jacobian matrix of the non-linear
error defined by the first-order expansion:

en =

 θn− θ̂n

R(θ̂ −θ)Xn− X̂n

R(θ̂ −θ)pn− p̂n

≈ DeX̂

θn− θ̂n

Xn− X̂n

pn− p̂n

 .

If Qn and Q̃n are coherent regarding the definition of the non-linear error en, i.e., linked
by the relation:

Q̃n =
(
Deχ̂n

)
Qn
(
Deχ̂n

)T
,

then the solutions of Riccati equations (8.11) and (8.12) are always linked by the
relations:

P̃n =
(
Deχ̂n

)
Pn
(
Deχ̂n

)T
,

P̃+
n =

(
Deχ̂

+
n

)
P++

n

(
Deχ̂

+
n

)T
.

Proof. While no update is performed the equivalence is obvious: the same differential
equation is simply written in two different bases. Consider the update step. The Jacobian
matrices corresponding to the linear and non-linear variable are denoted respectively by
Hn and H̃n. We write the update of Pn and P̃n in the information form:

(P++
n )−1 = L(χ̂n, χ̂

+
n )−T (P+

n )−1L(χ̂n, χ̂
+
n )−1

= L(χ̂n, χ̂
+
n )−T (P−1

n +HT
n R−1

n Hn)L(χ̂n, ĉhi+n )
−1,

(P̃+
n )−1 = P̃−1

n + H̃T
n R̃−1

n H̃n.

We want to show that if we have P̃n =
(
Deχ̂n

)
Pn
(
Deχ̂n

)T before the update then we want
to obtain after the update:

P̃+
n =

(
Deχ̂

+
n

)
P++

n

(
Deχ̂

+
n

)
. (8.14)
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This becomes easy if we notice the relations:

Hn = H̃nDeχ̂
+
tn

and L(χ̂+
tn , χ̂tn) = (Deχ̂

+
tn
)−1Deχ̂tn

. (8.15)

To prove these relations we have to compute Deχn : θn− θ̂n

R(θ̂ −θ)Xn− X̂n

R(θ̂ −θ)pn− p̂n

≈
 (

θn− θ̂n
)(

Xn− X̂n
)
−
(
θn− θ̂n

)
JX̂n

(pn− p̂n)−
(
θn− θ̂n

)
J p̂n

 ,

i.e. : Deχn =

(
1 01,2 01,2
−JX̂n 01,2 01,2− J p̂n 01,2 01,2

)
.

We only have to replace P++
tn by its value in (8.14) and use 8.15 to obtain the result.

Remark 15. The same proof works for any system and any error variable: a non-linear
error variable can be used virtually, adding only a correction L(χ̂n, χ̂

+
n ) at each update.

Figure 8.5 explains differently why choosing an error variable is equivalent to choosing
a way to make the covariance matrix "turn" after each update.

8.7 Conclusion

In this chapter we proposed an analysis of the classical problem of EKF SLAM incon-
sistency, and showed it could be solved by the mere use of a non-linear error variable.
As this statement could seem surprising, we explained the physical meaning of using a
non-linear error variable: this is a way to make the estimation error covariance matrices
"turn" after each update to match the new non-observable subspace. Note that for now,
we only discussed the Riccati equation associated to a given sequence of linearization
points. Next chapter builds upon the important results obtained to discuss the properties
of an EKF relying on a non-linear error variable.
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(a) A linear error variable implicitly defines a ba-
sis of the state space, this basis is independent
from the estimate

(b) A non-linear error variable implicitly defines a
basis of the state space, this basis depends on
the estimate

(c) With a linear error variable the covariance of
the state is the same as the covariance of the er-
ror. As P+

tn+1
represents the covariance of the er-

ror, it also represents the covariance of the state

(d) With a non-linear error variable the covari-
ance of the state is not the covariance of the er-
ror. For a given covariance of the error the co-
variance of the state depends on the estimate.
As a consequence, each time the filter updates
its estimate, an implicit modification of the state
covariance is performed.

Figure 8.5 – Relation between non-linear error variables and correction of the covariance
matrix. A first-order perturbation of the state around a given value creates a first-order
perturbation of the error around zero. Thus, a correspondence can be established be-
tween a basis of the error space and a basis of the state space. For a linear error, the
basis of the state space depends only of the basis of the error space. For a non-linear
error, it depends also on the point of the state space around which the perturbations are
considered. It means that a non-linear error variable implicitly maps a basis around a
point of the state space to a different basis around another point of the state space. The
covariance matrix P+

tn+1 is computed in the basis defined by the error. Thus, if the estimate
is updated, the ellipsoid representing P+

tn+1 turns with the basis. If the error variable is
linear, the same behavior can be emulated with the covariance correction presented in
Section 8.5.
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Chapter 9

EKF based on a non-linear error

Chapter abstract This chapter extends the results obtained for the problem of SLAM
to a general non-linear system and discusses the possibility of design of an EKF based
on a non-linear error variable. We also propose a non-linear update step inspired by
the exponential map of Lie groups and show that deriving some global properties for the
EKF is possible, assuming the error variable and update procedure have been properly
chosen. The novel properties obtained are to our knowledge among the few dealing with
the global behavior of an EKF in a general enough non-linear context.

9.1 Introduction

We generalize now the results of Chapter 8. Note the use of non-linear errors to devise
EKF has already been explored in various contexts, such as attitude filtering [36, 81],
but our goal here is not anymore to find an error variable allowing the design of a better
Kalman-like method, but to the discuss the implications of such a choice. Section 9.2
builds an EKF based on a non-linear error variable and shows that its update step is not as
straightforward as could be expected. A method inspired by the theory of Lie groups and
called "exponential update" is introduced and compared with more natural approaches. In
sections 9.3 and 9.4, novel global properties of EKFs based on non-linear error variables
are derived. Section 9.5 links the error variable issues with filtering on manifolds and
explains the hidden choices underlying the classical EKF. Finally, Section 9.6 proposes
the systems studied in Part I as a guideline to find relevant error variables.

9.2 Building an EKF upon a non-linear error variable

9.2.1 Transposition of the classical equations

We transpose the procedure of the EKF, described in Section 8.2.2, to the case where
the error variable has been defined by a non-linear function:

et = ε(χ̂t ,χt),
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with ε : Rn×Rn→ Rn (n being the dimension of the state x) which verifies ε(x,x) = 0 and
which is locally invertible with respect to each of its variables around ε = 0.

Indeed, in a nonlinear setting there is no reason why the linear error χt − χ̂t should
prevail. We thus define some kind of Jacobian matrices Ae

χ (χ̂tn), Ae
w (χ̂tn), He

χ (χ̂tn) and
He

χ (χ̂tn) through a first-order approximation of the error evolution and of the measurement
error as follows:

d
dt

et = Ae
χ (χ̂tn)et +Ae

w (χ̂tn)wt +◦(et)+◦(wt) , (9.1)

Yn−h(χ̂tn ,0) = He
χ (χ̂tn)etn +He

V (χ̂tn)Vn +◦(etn)+◦(Vn) . (9.2)

Note that we used notations letting appear the dependency in the estimate χ̂t of matrices
Ae

χ ,A
e
w,H

e
χ ,H

V
χ . As previously, one can use the linear Kalman theory to derive an esti-

mate ê+tn of the error as follows. Assuming an uncertainty matrix Ptn−1 of et at time tn−1 is
available:

Propagation:

d
dt

Pt = Ae
χ(χ̂t)Pt +PtAe

χ(χ̂t)
T +Ae

w(χ̂t)QnAe
w(χ̂t)

T , tn−1 < t < tn, (9.3)

and Pt represents an approximation to the covariance of the error variable according
to the Kalman filter.

Update:
Sn = He

χ(χ̂tn)PtnHe
χ(χ̂tn)

T +He
V (χ̂tn)RnHe

V (χ̂tn)
T ,

Kn = PtnHe
χ(χ̂tn)

T S−1
n ,

ê+tn = Kn
[
Yn−h(χ̂tn ,0)

]
.

(9.4)

This done, deriving a new estimate χ̂
+
tn consistent with the estimated error ê+tn is not

straightforward as in the linear case. It requires a mapping ψ taking the previous
estimate χ̂tn and the estimated error as argument, and giving an updated estimate:

χ̂
+
tn = ψ

(
χ̂tn , ê

+
tn

)
, (9.5)

and the error attached to χ̂
+
tn has covariance P+

tn :

P+
tn = (I−KnHe

χ(χ̂tn))Ptn .

When the error is defined as the classical vector difference, the issue of the update func-
tion ψ does not have to be raised as adding the computed error to the estimated state
looks quite natural. In the non-linear case the answer is much less clear as shown by the
different possibilities discussed in the next section.
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9.2.2 The issue of the update method

All the steps of the classical EKF but one have been straightforwardly transposed to the
case of a non-linear error variable. The only problem arises with the computation of the
new update. Assume an estimate e+tn of the error variable has been obtained after the
observation step. An updated estimate χ̂

+
tn has to be computed out of e+tn and χ̂tn . The

most natural way, but which will turn out to be the least relevant (see Proposition 27 and
Figure 9.5), is the following:

Definition 11 (Implicit update). Given an estimate χ̂tn and estimated error e+tn , the
implicit update consists in choosing as a new estimate χ̂

+
tn = ψ

(
χ̂tn , ê

+
tn

)
the one which

best fits the error, i.e. solving for χ̂
+
tn the equation:

e+tn = ε(χ̂+
tn , χ̂tn).

This method can look interesting, but has the major drawback of relying on the second-
order terms of the error function. A consequence for our SLAM example as introduced
in Chapter 8 is that the obtained EKF gives different results if the whole system (car and

features) is shifted by a vector U ∈R2. Indeed, assume a correction e+tn =
(

eθ

eX

)
has been

computed and is applied to two copies of the system separated by the shift U . We use
the notations introduced in 8 and skip the parts of the equations related to p. Without the
shift the implicit update is obtained solving:(

θ̂+
n − θ̂n

R(θ̂+
n − θ̂n)X+

tn − X̂n

)
=

(
eθ

eX

)
.

It gives:
X̂+

n = R(eθ )(X̂n + eX).

The same computation replacing X̂n with X̂n +U gives:

X̂+
n = R(eθ )(X̂n + eX)+R(eθ )U,

where we would like to have:

X̂+
n = R(eθ )(X̂n + eX)+U.

Note that the difference can be as large as wanted if U is chosen large enough. We
showed the following result:

Proposition 27. An EKF for the SLAM problem described in 8.4 relying on the non-
linear variable (8.10) gives different results if the general system is shifted.

This disturbing property makes the implicit update unacceptable in practice. Note that
the issue is typically non-linear: it does not occur for linear system although the classical
update is a linear form of implicit update. Thus, we introduce here two better choices:
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Definition 12 (First-order update). Given an estimate χ̂tn and estimated error e+tn , the
first-order update consists in choosing as a new estimate the one which best fits the
first-order expansion of the error, i.e. solving for χ̂

+
tn the equation:

e+tn = Deχ̂tn
(χ̂+

tn − χ̂tn),

with Deχ̂tn
being defined by the first-order expansion:

ε(χ̂tn +δ χ, χ̂tn)≈ Deχ̂tn
δ χ.

This method makes our EKF SLAM translation-invariant but we can do better, as the
sequel will show, using a more sophisticated update that we introduce here and that is
inspired by the exponential update we introduced in [11]:

Definition 13 (exponential update). Given an estimate χ̂tn and estimated error e+tn , let
χ̃s denote the solution of the differential equation:

d
ds

χ̃s = Dx(χ̃s)e+tn ,

with initialization χ̃0 = χ̂tn and where Dx is defined by the first-order expansion:

ε(χt ,χt +Dx(χt)δe)≈ δe.

It is the first-order expansion of the true state about χt w.r.t. a variation of the error
about 0.

The exponential update consists then in choosing as a new estimate χ̂
+
tn = χ̃1

(solution of the equation for s = 1).

Another way to see the exponential update is the following:

Proposition 28. Assume the implicit or first-order update has been chosen, but in-
stead of applying directly the formula χ̂

+
tn = ψ

(
χ̂tn ,e

+
tn

)
, the error is divided by n then

the operation χ → ψ

(
χ,

e+tn
n

)
is iterated n times. For n→ ∞ the new estimate ob-

tained is independent from the mapping ψ (implicit or first-order) and is precisely the
one resulting from the exponential mapping. This is the reason why we propose this
terminology: exponential update is the infinite iteration of an elementary update.

Note that solving a differential equation at each update is in practice not required as in
most situations a close-form solution is available. This is due to the relation between error
variables and Lie groups emphasized in the next chapters. For our SLAM problem, the

reader can verify that the exponential update, for e+tn =

eθ

eX

ep

, is equivalent to:

θ̂
+
tn = θ̂tn + eθ ,
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X̂+
tn =

(
− sin(eθ )

eθ

cos(eθ )−1
eθ

1−cos(eθ )
eθ

− sin(eθ )
eθ

)
eX +R(eθ )X̂tn ,

p̂+tn =

(
− sin(eθ )

eθ

cos(eθ )−1
eθ

1−cos(eθ )
eθ

− sin(eθ )
eθ

)
ep +R(eθ )p̂tn .

Figure 9.5 shows the difference between the three updates.
Section 9.4 emphases an interesting property of the exponential update, confirming

figure 9.5 and making it possibly decisive in SLAM applications. But we first summarize
the ideas proposed so far.

9.3 Non-linear error and false observability

This section generalizes the results obtained in Chapter 8. The chosen error variable is
shown to determine the observability properties of the system linearized on a trajectory
involving updates (i.e. jumps). Remark 16 explains again the idea illustrated on figure
8.5: the error variable basically is a local basis, and two bases turning differently when
the estimate "jumps" lead to two different linearized systems.

Remark 16. The nonlinear error ε(χ̂,χ) induces a basis of dimension n about any point
χ̂ given by the columns of the Jacobian matrix

(
Dε(χ̂, .)|χ̂

)−1. The non-linear error is
expressed in this coordinate system in the sense that up to second order terms we have

δε := ε(χ̂, χ̂ +δx) = 0+Dε(χ̂, .)|χ̂δx and thus δx =
(
Dε(χ̂, .)|χ̂

)−1
δε.

Note also that, the matrices Ae
x and He

x are expressed in this basis, that is, they take as
inputs vectors whose components are coordinates in this basis. Similarly, Pt is defined in
this basis which depends on the estimate χ̂t . This is the key feature of all this chapter (and
actually of all this document): the error variable is not just a parameterization allowing to
do the computations of the EKF, it is the choice of a correspondence between first-order
perturbations about two different points χ1 and χ2. As well, the update function is a
way to translate a perturbation about a given point χ1 as a new point χ2. Geometric
interpretations of Section 9.5 will try to show that any attempt of an intrinsic definition
of the EKF on a smooth manifold boils down to the same questions: - How to map the
tangent plan about one point to the tangent plan about another point ? - How to map the
tangent plan about one point to the state space.

We are now ready to prove the main result of this section, that characterizes a set
of non-observable directions expressed at each point in the basis defined by a given
non-linear error (see Remark 16) and then proves that the information decreases indeed
along those directions for any EKF based on the corresponding modified nonlinear.
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Figure 9.1 – The relative observa-
tions correlate the heading of the
car with the position of the fea-
ture. If the heading is updated due
to new information, the position of
the feature is updated in a coher-
ent way up to the first order.

Figure 9.2 – If the update is
large, implicit and first-order up-
dates give different results. But
none of them moves the feature
along a circle as would be ex-
pected.

Figure 9.3 – If the update takes
into account only an half of the er-
ror but is performed twice sequen-
tially, the results of the two up-
date methods come closer to each
other, and closer to the circle.

Figure 9.4 – If the error is divided
by n instead of 2, the update func-
tions ψ become equivalent when n
becomes large. The limit value is
equal to the exponential update.

Figure 9.5 – We consider here a car making relative range and bearing observations of
a feature. After a few observations, the position of the feature is known in the reference
frame of the car. Thus, if the heading is updated then the estimate of the feature should
follow a circle around the car. In the case of SLAM, only the exponential update has this
behavior
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Theorem 18. Consider a non-linear error et and the matrices Ae
χ(χ) and He

χ(χ) de-
fined by (9.1) and (9.2). Assume that a linear subspace V ⊂ Rn ensures ∀χ ∈
Rn,Ae

χ(χ)V ⊂V and ∀χ ∈ R,V ⊂ ker(He
χ(χ)) then:

• V defines a set of directions of non-observability.

• Any EKF based on the error et , and with state error covariance matrix Pt , is
such that the information along those directions always decreases i.e., for any
ξ ∈V if we let ξ0 = ξ , d

dt ξt = Ae
χξt the information along this direction ξ T

t (Pt)
−1ξt

monotonically decreases.

Proof. The result is trivial: if a vector space V is in kerHe
χ for any χ and stable by Fe

χ for
any χ then it is true in particular on the estimated trajectory and V is a non-observable
subspace of the linearized system and Proposition 22 can be applied.

The EKF defined in this section has been applied to the problem of a car navigating
using range-and-bearing measurements (Algorithm 6), and compared to the classical
EKF (Algorithm 5). The latter is known to fail even in this convenient situation [61], which
is confirmed by the results displayed on Figure 9.6 where the uncertainty ellipsoids are
over-optimistic. The figure also shows that the EKF with modified error variable does
not encounter the same problem as could be expected from the properties previously
derived. Figure 9.7 is also interesting, as it precisely illustrates the results of this chapter.
The information over the non-observable direction (rotation of the full system) is displayed
and the difference between the two filters is striking: this quantity is decreasing only if the
proper error variable is chosen.

Figure 9.6 – Comparison for the metric SLAM problem (8.5)-(8.6) (h = Id) of the estima-
tions of a standard EKF-SLAM described by Algorithm 5 and an alternative EKF-SLAM
algorithm based on a different nonlinear estimation error variable and described by Algo-
rithm 6.
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Figure 9.7 – Coefficient of the information matrix corresponding to heading for classical
(left plot) and modified (right plot) error equation. Theorem 18 is illustrated: the informa-
tion decreases over time as expected if the proper non-linear error variable is chosen.

Next section explores another issue: the ability of the filter to include certain infor-
mation, that is, to handle singular covariance matrices. This is not at all a degenerated
situation due to numerical error, as some variables of a system can come to be known
with high precision while others are still unknown.

9.4 Nonlinear exponential update and singular information

In a filtering problem, one can be confronted to the issue of an information becoming
extremely precise. It happens for instance if a robot observes a large number of times
the same set of features with centered noise (with heading and range information). As
the features don’t move, the knowledge of the local map in the robot frame eventually
becomes exact. This kind of information takes the form of a function of the state h̃(χ) to
be known, that is:

h̃(χt)≡ c, t > t0.

If an EKF has worked properly during the observation phase, its absolute confidence in
the value of h̃(χ) is encoded by a first-order relation:

H̃e
χ̂tn

PtnH̃eT
χ̂tn

= 0, (9.6)

where H̃e
χ̂t

is defined by:
h̃(χ)≈ h̃(χ̂)+ H̃e

χ̂
e+◦(e). (9.7)

e = ε(χt , χ̂t) being the non linear error associated with the covariance matrix Pt . H̃e
χ̂

is the
classical Jacobian of h̃ if the error is linear. Two properties seem essential to ensure then
a sound behavior of the filter:

1. No update can change the relation H̃χ̂tn
PtnH̃T

χ̂tn
= 0. Indeed, this would mean the new

observation made the filter "forget" the value of h̃. Worse, as rank P+
tn 6 rank Ptn , the

filter would still consider some directions as certain. But not the right ones.

2. No update can change the value of h̃(χ̂tn)
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Algorithm 5 EKF with linear error variable (θ − θ̂ ,X− X̂ , p− p̂)

R is known, Q =

q2
ω 0 0

0
0

Qv

 are known parameters

θ0 = 0,x0 = (0,0),P0 =

σ2
cap 0 0
0 0 0
0 0 0


for i = 2 to N do

x̂i = x̂i−1 +∆t.R(θ̂i−1)vi

θ̂i = θ̂i−1 +∆t.ωi

F =


1 0 0 0 0

−∆t sin(θ̂)v1−∆t cos(θ̂)v2 1 0 0 0
∆t cos(θ̂)v1−∆t sin(θ̂)v2 0 1 0 0

0 0 0 1 0
0 0 0 0 1


Pi = F.Pi−1.FT +Q
if Observation Yi available then

H =

((
0 1
−1 0

)
R(θ̂)T (p̂− x̂),−R(θ̂)T ,R(θ̂)T

)
S = HPHT +R
K = PiHT S−1

e+ = K
[
Yi−R(θ̂)T (p̂− x̂)

]
dθ = e+1 , dx = (e+2 ;e+3 )

T , d p = (e+4 ;e+5 )
T

θ̂
+
i = θ̂i +dθ

x̂+i = x̂i +dx
p̂+i = p̂i +d p
P+

i = (I−KH)Pi

end if
end for
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Algorithm 6 EKF with error variable
(
θ − θ̂ ,X−R(θ − θ̂)X̂), p−R(θ − θ̂)p̂

)
and exponen-

tial update

R is known, q2
ω and Qv are known parameters

θ0 = 0,x0 = (0,0),P0 =

σ2
cap 0 0
0 0 0
0 0 0


for i = 2 to N do

x̂i = x̂i−1 +∆t.R(θ̂i−1)vi

θ̂i = θ̂i−1 +∆t.ωi

F = I5, Q̂ =

 q2
ω 01,2 01,2

02,1 R(θ̂)QvR(θ̂)T 02,2
02,1 02,2 02,2


Pi = F.Pi−1.FT +Q
if Observation Yi available then

H =
(
02,1 −I2 I2

)
S = HPHT +R
K = PiHT S−1

e+ = K
[
R(θ̂)Yi− (p̂− x̂)

]
dθ = e+1 , dx = (e+2 ;e+3 )

T , d p = (e+4 ;e+5 )
T

δx = 1
dθ

(
sin(dθ)dx1 +(cos(dθ)−1)dx2
sin(dθ)dx2− (cos(dθ)−1)dx1

)
δ p = 1

dθ

(
sin(dθ)d p1 +(cos(dθ)−1)d p2
sin(dθ)d p2− (cos(dθ)−1)d p1

)
θ̂
+
i = θ̂

+
i +dθ

x̂+i = R(dθ)x̂i +δx
p̂+i = R(dθ)p̂i +δ p
Pi = (I−KH)Pi

end if
end for
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Note that these properties are verified in the linear case: a Kalman filter runs perfectly
with singular covariance matrix, the estimate being confined inside a subspace of the
state space. They also turn out to be verified in some non-linear situations, but require
the use of an exponential update as we are about to prove.

Theorem 19. Assume we have built an EKF based on a non linear error ε(., .) through
the equations (9.3), (9.4), (9.5), such that for a given function h̃ and a time tn the two
following relations are verified:

h̃(χ̂tn) = c,

∀χ ∈ Rn, H̃e(χ)PtnH̃e(χ)T = 0,

where H̃e is defined by (9.7). Then, if any new measurement is processed through
an EKF update (9.4), (9.5) where ψ is exponential (see Definition (13)), the same
relations hold after the update:

h̃
(
χ̂
+
tn

)
= c,

∀χ ∈ Rn, H̃e(χ)P+
tn H̃e(χ)T = 0.

Proof. Property 1 is verified as follows. For χ ∈ Rn, as Ptn is symmetric, H̃e
χPtnHe

χ = 0
implies H̃e

χPtn = 0. Thus:

H̃e
χP+

tn H̃eT
χ = H̃e

χ(I−KnHn)PtnH̃eT
χ = 0.

Property 2 is obtained using simply definition 13. With the same notations we have:

d
ds

h̃(χ̃s) = (Dh)
χ̃s

(
Dxχ̃s

)
PtnHeT

χ̂tn
S−1 = H̃χ̃sPtnHeT

χ̂tn
S−1 = 0.

Thus, for s = 1, h(χ̂+) = h(χ̃0) = h(χ̂).

An immediate implication is preservation of a local map. Assume the software of the
car has been able to build a very accurate local map in the reference frame of the car,
when a large heading update is applied (due to loop closure for example). A desirable
property of the EKF SLAM would be the local map to stay unchanged in the frame of the
car, and the non-zero directions of its covariance Pt to be still aligned with the level sets
of the local map. To show this is verified for the EKF SLAM with error variable (8.10),
all we need is to check according to Theorem 19 that the "Jacobian" of the function
h(θ ,X , p) = R(θ)T (p−X) w.r.t. the error variable e has the same kernel on any point of
the state space. We have:

R(θ)T (p−X)≈ R(θ̂)T (p̂− X̂)−δθR(θ̂)T J(p̂− X̂)+R(θ̂)T
δ p−R(θ̂)T

δX

= R(θ̂)T [ep− eX ],

with (eθ ,ep,eX) the components of e (we recall the first-order expansions ep = δ p− J p̂δθ

and eX = δX−JX̂δθ ). Thus He
χ = R(θ̂)T [02,1,−I2, I2] has a kernel independent from χ. Plot

9.8 displays the result of a heading update after acquisition of a local map, for an EKF
SLAM based on a linear error variable and on error (8.10).
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Heading measurement and Lin-
ear update: the estimated fea-
tures move tangentially to a cir-
cle centered on the car. But they
follow straight lines and the dis-
tances are modified.

Heading measurement expo-
nential heading update: the es-
timated features follow the cir-
cle centered on the car and dis-
tances are preserved.

Figure 9.8 – Preservation of local maps by an EKF SLAM algorithm based on error vari-
able (8.10), depending on the update method used. A static car (black cross) maps its
environment with no information about its heading. Four features, arranged as a square
around the car, have been observed a large number of times. Thus, their positions are
known up to the heading of the car to which they are highly correlated. We assume here
this correlation is correctly encoded by the covariance matrix Pt . The blue circles indi-
cate the estimated positions of the features. Then, an accurate heading observation is
provided to the system, producing a large counter-clockwise variation of the estimated
heading. Because of the correlation encoded by Pt between heading and features posi-
tions, those move in a way coherent with the heading update, i.e., they “turn” with the car.
In other words, the car has accurate information in its own reference frame, which has
no reason to be modified by a heading update: the estimated local map should turn as
information is obtained regarding the general orientation of the system. On the left plot,
the red circles are the new features estimates if a first-order update is used. They turned
counter-clockwise as wanted, but only up to the first order. Then they followed straight
lines, tangentially to the circle centered on the car. As a consequence, the estimated map
underwent a more complicated transformation than the simple rotation we expected. On
the right plot, the red circles are the new features estimates if an exponential update is
used. The result is very different: the transformation is this time a true rotation. The posi-
tions of the estimates in the estimated reference frame of the car are the same as before
the update, only the general orientation has changed. This property is the preservation
of a local map mentioned at the end of Section 9.4. Note that a classical EKF encounters
in this situation the exact same problem as the EKF using non-linear error variable but
first-order update.
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Figure 9.9 – EKF on the sphere: the updated state and covariance matrix are both defined
in the tangent plan to the previous estimate. Thus, defining a mapping is necessary to
bring them back to the state space.

9.5 A geometric interpretation

The reason why the question of the error variable chosen for SLAM has not been studied
before is probably that working in a vector space gives the illusion of a "natural" way to
associate perturbations about a point χ1 with perturbations about another point χ2 (the
vector translation). As a toy, yet illustrative example, we now assume the state to be
estimated lives on a sphere (as can be the case when one tries to estimate a direction of
motion in the 3D space for instance). Recall the update step of the conventional EKF is
defined by:

χ̂
+
tn = χ̂tn + ê+tn = χ̂tn +Kn

[
Yn−h(χ̂tn ,0)

]
, P+

tn = (I−KnH(χ̂tn))Ptn

Its implementation is usually considered as straightforward, but we see it is actually not.
On the sphere, no addition is defined, so the update step which is inherently an addition,
is thus naturally performed in the tangent plane to χ̂, which is a vector space, as illustrated
on Figure 9.9. The updated state χ̂

+
tn has a covariance matrix P+

tn attached to it, and both
are now defined in the tangent plan to χ̂tn . In order to define the updated state χ̂

+
tn as

an element of the sphere (that is, the state space) with a covariance matrix attached
to it (that is, in geometric terms an uncertainty ellipsoid defined in the tangent plane,
see Fig. 9.9), at least two additional tools are needed: a function ψ mapping the new
estimate from the tangent plane at χ̂tn to the sphere, then a correspondence between
vectors tangent to χ̂tn and those tangents to χ̂

+
tn allowing to define the new uncertainty

ellipsoid. The latter is equivalent to having a basis of the tangent plane at χ̂
+
tn in which

P+
tn is defined. Defining this new basis is precisely the sense to be given to the design

of an error variable. The crucial issue is that this choice does have an influence on the
filter. If the sphere (or a part of it) was parameterized, the problem would become 2-
dimensional and the issues raised above would apparently disappear: a classical EKF
could be implemented straightforwardly, and a filter devised using Euler angles would
be wholly different from a filter based on e.g. stereographic projection. Of course, the
problems are only hidden. The choice of a parameterization implicitly defines a choice
of mapping ψ and a basis around any point (the one inherited from differentiation with
respect to each coordinate). This is the basic influence of the coordinate system on the
results of an EKF. But there is no reason a priori to assume a given parameterization
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Figure 9.10 – Influence of a measurement on the trusted covariance matrix P, depending
whether the system is linearized at p̂ = p1 or p̂ = p2 (the position of the car is assumed
known for simplicity). Assume the position p1of the landmark is measured in the robot’s
frame. Considering the linearized system variables at p̂ = p1, the measurement yields an
information about the projection of p onto the vertical axis x2, and neither the heading θ

nor the projection of p onto the horizontal axis x1 are observed, but both variables become
correlated (a future observation of the heading will yield information about the position of
the landmark in the x1 direction). In a similar way, considering the system linearized
around p̂ = p2 we see a measurement will yield an information gain in the projection of p
onto z2, and will infer a correlation of the projection of p2 over z1.

defines a good mapping and good local bases. For different non-linear systems, the
issue of mapping and local bases still exists, and we believe is the major cause of the
failure of EKF SLAM. We think the new EKF-like SLAM algorithm introduced previously is
based on the best possible such choices. We close this chapter with a visual explanation
of false observability in SLAM (Figure 9.10 then 9.11) illustrating again the problem of
bad shift of a vector.

9.6 Link with Invariant Kalman filtering on Lie groups

We described until now the properties we can expect from an EKF based on a non-linear
error variable. But the most difficult issue is the choice of this error variable. This question
will not be fully answered, but Remark 17 below suggests that the situations studied in
Part I can give a hint.

Remark 17. The linearized propagation and observation matrices used in the IEKF are
the same as those computed on any trajectory of the system. Thus, the observability
properties of the linearized system are precisely the first-order observability properties of
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Figure 9.11 – Mechanism of metric SLAM inconsistency illustrated. The position of the
car is assumed known for simplicity, but the heading is not. Each time a relative position
to landmark measurement is available, the system is linearized on the current estimate.
Refer to Figure 9.10 for the probabilistic consequences of one update. Here, this op-
eration is repeated and creates false heading uncertainty reduction. We let x1,x2,z1,z2
denote the projections of p over the different plotted directions.(b) A new measurement
is provided. (c) The system is linearized on the previous estimate. As explained on Fig.
9.10, after the update the Kalman covariance P encodes a reduced variance of x2 and a
correlation between x1 and the heading. (d) As a consequence, the projection of p over
the axis z2 is (weakly) correlated with the heading, as z2 is not orthogonal to x2. (e) Now,
a new estimate is computed through the Kalman state update. (f) A new relative mea-
surement is available. (g) The system is linearized on the last estimate: as explained on
Fig. 9.10, the variable z2 is directly observed. As P encodes a correlation between z2 and
θ , the information obtained along z2 reduces the variance of θ after the update. But as
only relative measurements are available, no information should be ever gained on the
orientation θ with respect to the fixed frame.
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the true system. In particular, false observability cannot occur.

But finding the good error variable from scratch is difficult for the reason explained in
remark 18:

Remark 18. For the systems described in Chapter 4, an EKF built upon their multiplicative
error variable is not exactly an IEKF. The difference is the innovation term. Considering
for example the observation has the form χtnb the innovation term is:

• zn = Yn−χtnb for the EKF based on the error variable χ
−1
tn χ̂tn .

• zn = χ
−1
tn Yn−b for the IEKF.

Yet, the resulting covariance matrices and estimates are strictly equal: the modification of
the innovation term is automatically compensated by a modification of the gain. But the
consequence of this difference is that the matrix H depends on the estimate in the first
case and the independence of the Riccati equation from the estimate is not visible.

As a consequence of this remark, finding a good error variable without starting from
one of the perfect cases described in Chapter 4 is out of reach. Fortunately, most of
navigation problems take the generalized form (5.1) and inherit some properties of the
system they are based on as shown by Theorem 20 below:

Theorem 20. If the simplified system:

d
dt

χt = fut (χt),

Ytn = χtnb,

has a space V verifying the hypotheses of Theorem 18 for any sequence of inputs
(as in SLAM for instance) then these directions are still non-observable in the full
system and are preserved by the imperfect IEKF.

Proof. We have to verify that
(

V
0p,1

)
is stable through the flow and is in kerH. We have:

F =

(
Fχ FΘ,χ

0 FΘ

)(
ξ

0p,1

)
=

(
Fχξ

0p,1

)
,

thus
(

V
0p,1

)
is stable. We have also:

H
(

ξ

0p,1

)
= Dh[Hχ ,HΘ]

(
ξ

0p,1

)
= DhHχξ = 0.

Thus Theorem 18 applies and V is a non-observable subspace preserved by the filter.

Example 6. The SLAM problem (8.5)-(8.6) studied in chapter 9 has the form (5.1) where
the core system is the simplified car studied in section 4.3.1 with observation (4.21). Thus
the non-observability of general rotations and translations is preserved by an EKF using
right-invariant error variable.
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Example 7. Consider following the monocular SLAM problem:

d
dt

Rt = αRtωt ,
d
dt

xt = βRt(vt +b),
d
dt

pt = 0,

Y = angle(RT
t (xt − pt)).

The rotations and translations of the whole system are non-observable, as well as a
general scaling of xt , p and β . An EKF based upon the error variable

et =

(
R̂tR−1,(x̂t − R̂tR−1

t xt),(p̂t − R̂tR−1
t pt),

α̂

α
,
β̂

β
,(b̂−b)

)
,

preserves the non-observability of global translations and rotations, but not the non-
observability of the scaling factor.

9.7 Conclusion

We detailed in this chapter the difficulties related to the design of an EKF relying on
a non-linear error variable, and gave a physical meaning to these methods (in an EKF
context at least): choosing an error variable is choosing a local basis around each point
of the system. This choice is unimportant as long as the linearization trajectory is con-
tinuous. If "jumps" in the estimate occur, due to the updates, different error variables
produce different observability properties. A result preventing the classical problem of
false observability to occur was derived. The exponential update, inspired by the the-
ory of Lie groups, was introduced and proved to ensure novel global properties, namely
preservation of some deterministic side information about the state. The latter will be
"experimentally" verified in the next chapter.
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Chapter 10

Illustration by a tutorial example

Chapter abstract This Chapter clarifies the articulation between the methods described
previously using the problem described in Section 4.3.1 (GPS-aided odometry for the
non-holonomic car). Departing from the IEKF, we remove its specificities one by one to
obtain 3 algorithms ranging from the IEKF to the conventional EKF. The superiority of the
IEKF over the EKF even for this extremely simple low-dimensional and barely non-linear
example is puzzling, both in terms of convergence and (especially) in terms of "rationality"
of the behavior. Beyond proving the benefits of the IEKF, this tutorial example has been
chosen to provide the reader with a physical/geometrical understanding of the limits of
the EKF in high-performance navigation.

10.1 Introduction

In this chapter we study a navigation problem involving perfect knowledge of the dynam-
ics (the process noise Q is turned off in the true world and in the filter parameters). This
artificial situation is of decisive importance as a limit case of high-accuracy navigation.
The IMUs used on aircrafts and ships give almost perfect propagation for several min-
utes, and even some cheap odometers can also achieve very accurate estimation of the
trajectory on hundreds of meters. Regarding Kalman filtering, it means the gains can be
large at the beginning if the prior information is inaccurate, but then decrease to zero. It
does not prevent convergence of the estimate in the linear case but it is very different if
the system is non-linear. In the example presented here the EKF converges for no initial-
ization, except if the error is zero from the beginning. Although it manages to make the
error decrease, the convergence is slowed down by non-linearities, and eventually not
fast enough to counterbalance the decrease of the gains: the error stabilizes at a non-
zero value. This extreme situation does not occur on true systems as the process noise Q
is never zero. But the convergence speed can be so deteriorated that the result does not
match the requirements of the system anymore. In particular, this is what happens during
the transitory phase of an inertial navigation, known as alignment, where the algorithm
starts with no information about the state of the system. Complicated procedures men-
tioned in Chapter 5 are then required to ensure the EKF starts with a good first guess of
the state of the system. Note that the solution consisting in adding artificial process noise
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(Q) also greatly degrades performance. Besides, we consider only EKF-like methods.
Any attempt to explicitly use the fact that the dynamics is exact would be irrelevant here
as what we are interested in is the limit behavior of these methods when the process
noise Q goes to zero.

This chapter is organized as follows. Section 10.2 introduces the system, Section
10.3 derives the equations of the classical EKF, Section 10.4 those of the IEKF, Section
10.5 discusses the differences between these filters and proposes to test intermediary
methods allowing to understand what is the most important difference between EKF and
IEKF. One of them is discussed in the same section, the other one in Section 10.6. All the
methods are compared in Section 10.7, and finally the results displayed are explained in
Section 10.8 through theoretical arguments.

10.2 Perfect dynamics

The system we consider is the one described in Section 4.3.1 where the noise on the
dynamics has been put to zero:

d
dt

θt = utvt ,

d
dt

x1
t = cos(θt)vt ,

d
dt

x2
t = sin(θt)vt ,

(10.1)

where θt is the heading of the car, x1
t ,x

2
t are the components of the position vector, ut is

(a function of) the steering angle and vt is the velocity computed through odometry. The
GPS observation takes the form:

Yn =

(
x1

t
x2

t

)
+Vn, (10.2)

where Vn is an i.i.d. Gaussian noise with covariance matrix R. We focus thus on the be-
havior of the EKF in the degenerated case where the initial position of the car is perfectly
known but its heading is not. This is modeled by a singular initial covariance matrix (the
first variable is heading, the two others are position):

P0 =

π/2 0 0
0 0 0
0 0 0

 .

Of course, after a few time steps the position becomes also uncertain due to the initial
heading error. The next sections describe different filters for this dynamics. The results of
EKF and IEKF in terms of position error are displayed on Figure 10.1. They show that as
soon as the initial heading error is non-zero, the EKF can improve the position error but
never bring it to zero as opposed to the IEKF (left plot). We verified this letting the filter
run long enough (right plot). Although the observation covariance matrix R is non-zero
we fed the filter with perfect observations (whitch is a more favorable situation for the EKF
than using noisy data) to obtain clean curves.
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Figure 10.1 – Influence of singular information. Left plot : position error of the EKF for
GPS and perfect odometry, with initial position known and initial heading unknown. We
see the estimate is never converging, whatever be the initial heading error (except exactly
zero). Right plot: after a very long time the results of the EKF have stabilized at a non-
zero value while those of the IEKF converge even with maximum initial heading error.

10.3 Classical EKF equations

The EKF with classical error variable et =

θt − θ̂t

x1
t − x̂1

t
x2

t − x̂2
t

 for our system is defined by the

following propagation and update steps:

Propagation:
d
dt

θ̂t = utvt ,

d
dt

x̂1
t = cos(θ̂t)vt ,

d
dt

x̂2
t = sin(θ̂t)vt ,

tn−1 < t < tn,

d
dt

Pt = AtPt +PtAT
t , tn−1 < t < tn, (10.3)

with

At =

 0 0 0
−sin(θ̂t)vt 0 0
cos(θ̂t)vt 0 0

 .

Note that Equation (10.3) contains no process noise (usually denoted by Qt). It has
been put to zero here to study the extreme case of a very accurate dynamics.

Update: The update step consists of the following operations:

• Computation of the gains:

Kn = PtnHT (HPtnHT +R
)−1

,
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with H =

(
0 1 0
0 0 1

)
.

• Computation of the innovation:

z = Y −
(

x̂1
tn

x̂2
tn

)
.

• Computation of the new estimate: θ̂tn
+

(x̂1
tn)

+

(x̂2
tn)

+

=

θ̂tn
x̂1

tn
x̂1

tn

+Knz.

• Update of the covariance matrix:

P+
tn = (I−KnH)Ptn .

10.4 IEKF equations

The Left-invariant IEKF for our system uses the error variable: θ̂ −θ

R(θ)T
(

x̂1
t − x1

t
x̂2

t − x2
t

) .

The algorithm is defined by the propagation and update steps derived in Section 4.3.1
and recalled here:

Propagation:
d
dt

θ̂t = utvt ,

d
dt

x̂1
t = cos(θ̂t)vt ,

d
dt

x̂2
t = sin(θ̂t)vt , tn−1 < t < tn

d
dt

Pt = AtPt +PtAT
t , tn−1 < t < tn, (10.4)

with

At =

 0 0 0
0 0 utvt

−vt −utvt 0

 .

Again, the equation contains no process noise.

Update: The update step consists of the following operations:
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• Computation of the gains:

Kn = PHT (HPtHT +R
)−1

,

with H =−
(

0 1 0
0 0 1

)
.

• Computation of the innovation:

z = R(θ̂)T
(

Yn−
(

x̂1
tn

x̂2
tn

))
.

• Computation of the new estimate:(
R(θ̂+) x̂+

01×2 1

)
=

(
R(θ̂) x̂
01×2 1

)
exp(−Knz)

where exp : R3→ R3 is the exponential map of SE(2) defined in Chapter 2.
• Update of the covariance matrix:

P+
tn = (I−KnH)Ptn .

10.5 Differences between the two filters

There are essentially three differences between the EKF and IEKF described here:

• The definition of the innovation is different.

• The computation of the new estimate is different.

• The error variable is different.

An interesting question now is to study the influence of each of these differences on the
results. To isolate them, we build in the next section a third filter: an EKF having the
same (non-linear) error variable as the IEKF, but using the implicit update instead of the
exponential update of the IEKF. But before, we settle the issue of the innovation term by
Proposition 29 below.

Proposition 29. Applying a linear function to the innovation term of an EKF before
computing the gains does not change the results of the filter.

Proof. The innovation term zn is a function of the error etn and the observation noise Vn.
It defines the matrices He

n and HV
n through the first-order expansion zn = He

nen +HVVn.
If a different innovation term is defined as z′n = Lnzn with Ln being any invertible ma-
trix possibly depending on the estimate X̂tn and having the dimension of zn, matrices
He

n and HV
n become He

n
′ = LnHe

n and HV
n
′
= LnHV

n . The covariance matrix of z′n becomes
S′n = He

n
′PnHe

n
′T +HV

n
′RHV

n
′T

= LnSnLT
n with Sn the covariance matrix of zn. The new gains

are K′n = PtnHe
n
′T S′n

−1 = PtnHe
n

T S−1
n L−1

n = KnL−1
n and we finally obtain K′nz′n = Knzn. Thus the

updated state is going to be the same (regardless of the update method). The updated
covariance matrix is defined as (I−K′nHe

n)Pn =
(
I−KnL−1

n LnHe
n
)

Pn and this step is also
unchanged by the use of z′n.
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10.6 Non-linear EKF using implicit update

We give here the equations of an "intermediate" filter. It uses the error variable of the

IEKF

 θ̂ −θ

R(θ)T
(

x̂1
t − x1

t
x̂2

t − x2
t

) along with an implicit update. The algorithm is defined by the

following propagation and update steps:

Propagation:
d
dt

θ̂t = utvt ,

d
dt

x̂1
t = cos(θ̂t)vt ,

d
dt

x̂2
t = sin(θ̂t)vt , tn−1 < t < tn

d
dt

Pt = AtPt +PtAT
t , tn−1 < t < tn, (10.5)

with

At =

 0 0 0
0 0 utvt

−vt −utvt 0

 .

Again, the equation contains no process noise.

Update: The update step consists of the following operations:

• Computation of the gains:

Kn = PHT (HPtHT +R
)−1

,

with H =−
(

0 cos
(
θ̂tn
)
−sin

(
θ̂tn
)

0 sin
(
θ̂tn
)

cos
(
θ̂tn
) ) .

• Computation of the innovation:

z = Yn−
(

x̂1
tn

x̂2
tn

)
.

• Computation of the new estimate (implicit update):

θ̂
+
tn = θ̂tn− êθ ,

(
x̂1

x̂2

)+

=

(
x̂1

x̂2

)
−R

(
θ̂
+
tn

)(êx1

êx2

)
,

with

 êθ

êx1

êx2

= Knzn.

• Update of the covariance matrix:

P+
tn = (I−KnH)Ptn .
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10.7 Experimental comparison

The error variable used in the IEKF leads to a Riccati Equation independent from the
estimated trajectory. As a consequence, a false estimate does not create false gain
matrices. In particular, the observability properties which can be read on the covariance
matrix Pt are those of the true system. This is true independently from the chosen update
function. A natural question here is whether a good error variable is sufficient to improve
performance and the exponential update is a detail, or the exponential update is required
also. From a theoretical point of view, propagating correctly singular information requires
exponential update (see Section 9.4). This aspect will be developed in Section 10.8.
For now we add an experimental argument implementing the three filters to study the
improvement. The results of the EKF with the two different error equations are displayed
on Figure 10.2. The initial error is here 90 degrees to emphasis the difference. Left
plot shows the true trajectory of the car and the estimates of the two filters over time.
Right plot shows the heading error over time. Improvement is clear. Then, the EKF with

Figure 10.2 – Result of an EKF tracking the car, with linear and non-linear error variables.
The true trajectory of the car is a straight line (red), going from the bottom to the top of
the left plot. The initial position estimates are the true initial position, but the headings
are directed to the left instead of the top (90 degrees initial error). We see the non-linear
error variable improves the results, especially regarding the heading estimation, although
the exponential update recommended in Chapter 9 is not yet used on this figure.

non-linear error variable is compared with the same algorithm where only the update
method has been changed from implicit to exponential update. Figure 10.3 displays the
estimates given by the two filters: trajectories on the left plot and heading error on the
right plot. A second clear improvement is obtained. The interesting conclusion we can
draw from this comparison is that exponential is required for the EKF to fully benefit from
a non-linear error variable. Next section explains the physical phenomenon behind the
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Figure 10.3 – Result of an EKF tracking the car, with non-linear error variable, depending
if the exponential update recommended in Chapter 9 is used or not. The true trajectory
of the car is a straight line (red), going from the bottom to the top of the left plot. The
initial position estimates are the true initial position, but the headings are directed to the
left instead of the top (90 degrees initial error). We see the introduction of the exponential
update here brings a new dramatic improvement of the performance.

failure of the EKF, here and in most situations where an accurate navigation system has
to be initialized.

10.8 Explanation

The specificity of a navigation using accurate dynamics and known initial position but
unknown initial heading is that the true dimensionality of the problem is much less than
the dimension of the state space. Regarding our car, the state space dimension is 3
(heading and the two components of position). But the only unknown being the initial
heading, the set of possible states of the car is only a one-dimensional manifold at any
time. For example, if the car drives a straight line from a known point, its position at any
time is on a circle centered on the starting point. If the estimate leaves this manifold (the
circle) its probability to reach it again is zero. We will see in the sequel (figure 10.5) that
the EKF brings the estimate "outside the circle",i.e., too far from the starting point. The
EKF with the right non-linear error but implicit update, to the opposite, brings the estimate
too close to the starting point. But in both cases, nothing can bring them back to the right
distance. What we will show in this section using Theorem 19, is that the IEKF keeps
the estimate in the manifold of physically possible states (the circle). It means the search
space of the IEKF is one-dimensional and contains the true state. In this situation, having
the update steps pushing to the right side is almost sufficient to converge. Figures 10.4
and 10.5 illustrate this result: the distance between the IEKF estimate and the starting
point is the same as for the true state, and the estimate has always the starting point
exactly in its back, as the true space has. Proposition 30 below gives a mathematical
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sense to these considerations. Its proof relies on Theorem 19 of Chapter 9.

Proposition 30. Let bt be defined by the differential equation

b0 =

(
0
0

)
,

d
dt

bt =−
(

0 −utvt

utvt 0

)
bt −

(
vt

0

)
.

The relation

R(θt)bt +

(
x1

t
x2

t

)
=

(
0
0

)
, (10.6)

is always verified by the true state of the car, but also by the estimate of the IEKF.
Thus, these two variables are restricted in a one-dimensional space which changes
at each time step. In some sense, the IEKF understands it has to work in a reduced-
dimension search space, what the classical EKF does not do.

The states verifying Equation (10.6) constitute, at a given time step, a one-dimensional
manifold containing the true state regardless of the true value of the initial heading ( note
that this manifold varies over time). Proposition 30 means the estimate of the IEKF is
confined inside this manifold. In the specific case of an odometer indicating straight line
and constant velocity, the estimate of the IEKF always verifies the property "the starting
point is exactly behind the car, at a distence proportional to the time gone by". This links
the position and heading, the remaining uncertainty being in what direction the car is
going. Figures 10.4 and 10.5 illustrate this result, but also show it is neither verified for
EKF using linear error variable nor the proper non-linear error variable if it is not going
along with an exponential update. This is extremely important. The relevant search
space if the odometer indicates straight line is a circle and an EKF-like method involving
singular covariance matrix cannot afford to leave it. Indeed, singularity of Pt makes the
states accessible to the filter one-dimensional at each step and nothing can ensure a
priori that the true state is within this space, or even close to this space. For the IEKF, it
is ensured by Proposition 30. We give now its proof.

Proof. The perfect knowledge of the initial position takes the following form:(
x1

0
x2

0

)
=

(
0
0

)
.

we have:

d
dt

[
R(θt)bt +

(
x1

t
x2

t

)]
= R(θt)

[
−utvtJbt −

(
vt

0

)]
+

[
utvtR(θt)J

]
bt +R(θt)

(
vt

0

)
=

(
0
0

)
,

where J =

(
0 −1
1 0

)
. This means that, due to deterministic dynamics, this constraint on

the initial state propagates over time to become R(θt)bt +

(
x1

t
x2

t

)
= 0. We denote now this

known function by h̃t(θt ,x1
t ,x

2
t ) = R(θt)bt +

(
x1

t
x2

t

)
and show the two following properties are

verified for any time t > 0:

149



• h̃t(θt ,x1
t ,x

2
t ) = (0,0)T .

• H̃e
t Pt(H̃e

t )
T = 0, where H̃e

t is defined by the first-order expansion:

h̃t(θt ,x1
t ,x

2
t ) = h̃t(θ̂t , x̂1

t , x̂
2
t )+ H̃e

t et +◦(et),

et being the error variable of the IEKF.

The proof is in two steps: propagation and update. But first, we need the expression of
H̃e

t . We have:

h̃t(θt ,x1
t ,x

2
t )− h̃t(θ̂t , x̂1

t , x̂
2
t ) =−JR(θ̂t)bt

(
θ̂t −θt

)
−R(θ̂t)R(θt)

T
(

x̂1
t − x1

t
x̂2

t − x2
t

)
+◦(et)

Thus: He
t =−R(θ̂t) [Jbt , I2].

Propagation: Preservation of h̃t(θ̂ , x̂1, x̂2) = (0,0)T is obtained deriving this function, the
computation is the same as the one already done for the true state. Preservation of
H̃e

t Pt(H̃e
t )

T = 0 can be verified deriving H̃e
t Pt
(
H̃e

t
)T :

d
dt

[
H̃e

t Pt
(
H̃e

t
)T
]
=

(
d
dt

H̃e
t

)
Pt
(
H̃e

t
)T

+
(
H̃e

t
)( d

dt
Pt

)(
H̃e

t
)T

+
(
H̃e

t
)

Pt

(
d
dt

H̃e
t

)T

=

[
d
dt

H̃e
t + H̃e

t At

]
Pt
(
H̃e

t
)T

+
(
H̃e

t
)

Pt

[
d
dt

H̃e
t + H̃e

t At

]T

.

we compute each term:

d
dt

H̃e
t =−utvtR(θ̂t)J [Jbt , I2]−R(θ̂t)

[
−J2utvtbt − J

(
vt

0

)
,02

]
= R(θ̂t)J

[(
vt

0

)
,−utvtI2

]

He
t At =−R(θ̂t) [Jbt , I2]

 0 0 0
0 0 −utvt

−vt utvt 0

= R(θ̂t)

[
J
(

vt

0

)
,−Jutvt

]
.

We obtain d
dt He

t Pt (He
t )

T = 0.

Update: This part is shown using Theorem 19. The hypothesis we have to verify is that
kerHe

t is independent from the point θ̂t , x̂1
t , x̂

2
t where it is computed. But we have

kerHe
t = ker [Jbt , I2] thus the result is obvious.

we conclude this study plotting the position estimates and 50% uncertainty ellipsoids
at the moment of the first update for all the three filters (Figure 10.6). To avoid having
totally flat ellipsoids we added a small uncertainty on the initial position. The result is
a mere confirmation of the results of this chapter but gives a good visual interpretation
of the benefits of IEKF. On both plots a circle has been drawn, centered on the initial
position and having the traveled distance (given by the odometer) as radius. The left
plot is obtained just before the first update. All the filters give the exact same estimate
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and uncertainty ellipsoid (they are superposed on the plot so only one of them is visible).
This confirms what was told throughout Chapter 8: in the absence of update all the error
variables are equivalent. The position uncertainty is mainly due to heading, thus the
ellipsoids are stretched tangentially to the circle. But from the first update, the filters have
very different reactions. The classical EKF (blue) moves its estimate tangentially to the
circle and keeps an ellipsoid encoding the uncertainty of the system linearized on the last
estimate before the update. The EKF having the right error variable but implicit update
has a more complicated evolution, but still leaves the circle. Yet, its uncertainty ellipsoid
is consistent with its new estimate as the non-linear error variable made it "turn" properly.
The IEKF finally, stays on the circle and has an uncertainty ellipsoid making sense with
the physics of the problem. Here actually, it is not exactly on the circle as the uncertainty
over initial position authorizes updates in any direction. But it simply confirms that the
nice properties derived in this chapter for the limit case of a known initial position give a
good idea of what happens on a true system.

10.9 Conclusion

This chapter illustrated on a very simple example a phenomenon at play in high-precision
navigation: the set of likely values of the true state reduces, due to the information ob-
tained, to the neighborhood of a non-linear sub-manifold of the state space. The estimate
of an EKF not using both a relevant error variable and the exponential update introduced
in Chapter 9 can very easily leave this region, and never reach it again. This issue makes
the IEKF decisive in some applications like those presented in Chapter 5.3. In order to
make sure the choice of the error variable was not the only ingredient making the per-
formance of the IEKF, we implemented this method without the exponential update. The
results obtained allow to conclude that the benefits of the exponential update are not
simply theoretical.
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Figure 10.4 – Illustration of Proposition 30. The true trajectory of the car is a straight line
(red), going from the bottom to the top of each plot. The estimates over time of several
filters are displayed. Their initial position is the true one, but their heading is directed
to the left (90 degrees initial error). Between two updates, the position is propagated
using the odometer, which indicates straight line. Each time an update is performed, the
estimate jumps. The initial position error covariance matrix is zero: the filters know exactly
their initial position. Top left and bottom left: position of the different estimates over time.
As the odometer indicates straight line and the initial position is known, the estimated
heading and (thus) the propagation of the estimate should always be radial with respect
to the starting point. The same plots are reproduced on the top and bottom right, but
for the estimate of the EKF using non-linear error variable and exponential update, the
trajectory of the estimate between consecutive updates has been extended (black lines)
to show it always reaches the starting point. This is obviously not verified by the other
filters.
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Figure 10.5 – Illustration of Illustration of Proposition 30. Difference between the distance
of each estimate to the starting point, and the odometric distance. As the odometer is not
noisy it should always be zero. We see that the IEKF ensures this property on the whole
estimation process but the other filters do only until the first update.

Figure 10.6 – Estimates and uncertainty ellipsoids for the three filters considered in this
chapter. The circle is the set of possible states given the measures of the odometer. Up to
the small uncertainty over initial position we added for this example, the true state has to
be on this circle. Left plot: before the first update all the filters give the same results. Right
plot: after the first update, both classical EKF (blue) and EKF using the right non-linear
error variable (purple) but not the exponential update have left the circle. The EKF having
non-linear error variable keeps an uncertainty ellipsoid consistent with its new position,
to the opposite of the classical EKF which put itself in a very bad situation. The EKF
with proper non-linear error variable and exponential update (IEKF) sticks naturally to the
circle and moves its uncertainty ellipsoid in accordance with the update of the state.
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Chapter 11

Conclusion of the thesis

This work investigated the role of the error variable in EKF and proved it to be of decisive
importance for several classical problems related to navigation.

A new class of dynamical systems defined on a Lie group G has been characterized,
considered as "perfect" in the sense that an error variable having autonomous equa-
tion can be built. It contains in particular linear equations, left-invariant dynamics, right-
invariant dynamics, combinations of both, and some other equations appearing in inertial
navigation. The algebraic logarithm of the error is shown to have linear evolution for these
systems, which is also a novel result. This property is leveraged to prove the stability of
the IEKF in this case even with changing gains. The hypotheses (first-order uniform ob-
servability) are the same as those required for linear systems, which contrasts with most
previous results on the convergence of the EKF. The theory is applied to a long sequence
of classical navigation problems and brings each time a stability guarantee.

The success of this approach led to a general study of non-linear errors in the EKF.
The main question "What does choosing a non-linear error variable physically means
?" has been answered by the interpretation of the error as 1) a local basis and 2) an
operation making the covariance matrix of an EKF "turn" after each update. This suggests
in particular that there is no reason to approach EKF on linear spaces differently from EKF
on manifolds. The classical problem of "false observability" in SLAM has been revisited,
linked to the general topic of this work and proved to be solvable by the mere choice of a
non-linear error variable. The implications of such a result in practice constitute probably
the subject on which we will next devote our best efforts. The questions raised by the
idea of an EKF based on a non-linear error variable have been discussed. This led to the
introduction of the "exponential update" inspired by the theory of Lie groups. The issue
of global behavior of the EKF, i.e., with large estimation errors, has been approached
not in terms of global convergence, but in terms of preservation of physical constraints.
To the question "My robot has good information of its close environment, is the EKF
able to preserve it after an update ?" the answer is "yes" for linear systems and "No" in
general. But novel properties have been derived regarding this issue, when non-linear
error variable and exponential update are jointly used. Their possibly decisive importance
has been illustrated through simulations.

These reflections having focused on the value of the estimate in the context of EKF,
the properties of the whole p.d.f. of the estimation error have then been tackled in a sim-
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plified framework. This required to discuss stochastic differential equations on Lie groups,
whose rigorous meaning is non-trivial. Some sampling-based methods have been pro-
posed, either to reduce a complicated system to a simpler one where the present theory
applies, or to improve the fidelity of the covariance matrices used by Kalman-like ap-
proaches. These ideas are transpositions of existing methods: the Rao-blackwellized
particle filter and Ensemble Kalman filter respectively. The study of fixed-gains filters has
been related to the theory of Harris chains, which allowed to prove, under proper condi-
tions that the p.d.f. of the estimation error converges to a limit distribution not depending
on the initial density. This novel result allowed designing and optimizing highly non-linear
gains for an outlier-resistant observer.

Much time was also devoted to implementation and tests for application to commercial
navigation systems. Methods derived from the results summed up above were shown
to allow substantial improvement in terms of simplicity of the development phase, final
performance and operational flexibility. The results displayed in this document include
real-data experiments, comparison with tried and tested softwares, and a campaign of
realistic simulations. A program developing a navigation system for military purposes
already shifted to this technology.

Further work will focus on SLAM applications as a priority. Due to the large amount of
time devoted to inertial navigation, the properties derived for EKF SLAM have been the
subject of minimalist simulations. They were only intended to illustrate the main result:
non-linear error variables solve false observability issues. It gives a reasonable argument
to come back to EKF SLAM, it does not prove the method can compete with state-of-the-
art algorithms involving batch optimization or particle sampling. There is still much work
before answering this question, especially as our approach can be combined with one
of them, for example through a back-and-forth smoothing [6] based on non-linear error
variable. Anyway, SLAM is a household where real experiments prevail : no applica-
tive conclusion can be drawn before having achieved extensive simulation and real-data
testing, which will be part of our future work.
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Appendix A

Proofs of the results of Chapter 4

A.1 Proof of theorem 7

A.1.1 Review of existing linear results

Consider a linear time-varying Kalman filter and let Ψt
t0 denote the flow of the error vari-

able ξs. It is proved in [38] that if the parameters of the Riccati equation verify conditions
(1) - (5) then there exist γmax > 0 and γmin > 0 such that γmaxI � Pt � γminI. This piv-
otal property allows to prove the solution of the linear error equation Ψt

sξs verifies for
V (P,ξ ) = ξ T P−1ξ :

V
(

P+
tn+N

,Ψtn+N
tn (ξ+

tn )
)
≤V (P+

tn ,ξ
+
tn )−β3||Ψtn+N

tn (ξ+
tn )||

2 (A.1)

where β3 only depends on α1,α2,β1,β2,δ1,δ2,δ3,N. Of course, the proof given in [38]
holds if the inequalities are only verified on an interval [0,T ]. We will also use the direct
consequence:

V
(

P+
tn+1

,Ψ
tn+1
tn (ξ+

tn )
)
<V

(
P+

tn ,ξ
+
tn

)
(A.2)

A.1.2 Preliminary lemmas

The proof of Theorem 7 is displayed in the next subsection. It relies on the final Lemma 8,
which is proved step by step in this section through lemmas 5, 6 and 7. The time interval
between two successive observations will be denoted ∆t. P̃(t) will denote the Kalman
covariance about the true state trajectory.

Lemma 5. [modified constants for closeby trajectories] If the conditions (1) to (5) are
satisfied about the true trajectory, then for any k > 1 there exists a radius ε such that
the bound ∀s ∈ [0, t], ||ξt0+s|| < ε ensures the conditions (1) to (5) are also verified about
the estimated trajectory, with the modified constants δ̂1 = δ1, δ̂2 = 1

k2 δ2, δ̂3 = 1
k2 δ3, α̂1 =

1
k2 α1, α̂2 = k2α2, β̂1 =

1
k2 β1, β̂2 = k2β2. Moreover, if 1

k P̃t0 ≤ Pt0 ≤ kP̃t0 then 1
k P̃t0+s ≤ Pt0+s ≤ kP̃t0+s

holds on [0, t].
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Proof. The Riccati equation computed about the true trajectory reads:

d
dt

P̃(t) = At P̃(t)+ P̃(t)At +Q1 +Adχ−1Q2AdT
χ−1

P̃+(t) = P̃(t)− P̃(t)HT
(

HP̃(t)HT +N1 +χ
−1N2χ

−T
)−1

HP̃(t)

This formulation allows to cover both cases of left and right observations. The Riccati
equation computed on the estimated trajectory is obtained replacing χt with χ̂t . Recalling
the error ηt and the properties of the Ad, the idea of the proof is simply to rewrite the
Riccati equation computed about χ̂t as a perturbation of the Riccati equation computed
about χt :

d
dt

P(t) = AtP(t)+P(t)At +Q1 +Adη−1

[
Adχ−1Q2AdT

χ−1

]
AdT

η−1

P+(t) = P(t)−P(t)HT
(

HP(t)HT +N1 +η
−1
[
χ
−1N2χ

−T
]
η
−T
)−1

HP(t)

Controlling the perturbation is easy: let Lξ : x→ e−ξ x and Aξ : Rdimg→ Rdimg,x→ Ade−ξ x.
As these functions are continuous and equal to Id for ξ = 0 there exists a real ε > 0 de-
pending only on k such that ||ξ || ≤ ε ensures 1

k N2 � LT
ξ

N2Lξ � kN2 and 1
k Q2 � AT

ξ
Q2Aξ �

kQ2. It ensures consequently 1
k

(
Q1+Adχ−1Q2AdT

χ−1

)
�Q1+Adχ̂−1Q2AdT

χ̂−1 � k
(

Q1+Adχ−1Q2AdT
χ−1

)
and 1

k

(
N1 + χ−1N2χ−T

)
� N1 + χ̂−1N2χ̂−T � k

(
N1 + χ−1N2χ−T

)
, and a mere look at the

definitions of the constants of Theorem 6 yields the modified constants.
The inequality 1

k P̃t0+s ≤ Pt0+s ≤ kP̃t0+s follows from the matrix inequalities above on the
covariance matrices, by writing the Riccati equation verified by kPt and 1

k Pt and using
simple matrix inequalities.

Lemma 6. [first-order control of growth] Under the same conditions as in Lemma 5 (in-
cluding 1

k P̃t0 ≤ Pt0 ≤ kP̃t0) and ||ξt0+s|| bounded by the same ε for s ∈ [0,2M∆T ] (i.e. over
2M time steps, where M is defined as in Theorem 6), there exists a continuous function
l1 depending only on k ensuring ||ξt0+s|| ≤ l1(||ξt0 ||) for any s ∈ [0,2M∆T ] and l1(x) = O(x).

Proof. Using Lemma 5 and then Theorem 6 we know there exist two constants γmin > 0
and γmax > 0 such that γmaxI � Pt � γminI. The non-linear rest rtn(ξ ) introduced in (4.19) is
defined by exp(ξ )exp(Ln(eξ b−b−Hξ )) = exp((I−LnH)ξ + rtn(ξ )). The Baker-Campbell-
Hausdorff (BCH) formula gives rtn(ξ ) = O(||ξ ||.||Lnξ ||) but Ln is uniformly bounded over
time by γmax||H||

δ3
as an operator. Thus ||rn|| is uniformly dominated over time by a sec-

ond order: there exists a continuous function l̃k (depending only on k and on the true
trajectory) such that l̃k(x) = O(x2) and ||rtn(ξ )|| ≤ l̃k(||ξ ||) for any n such that tn ≤ 2M∆T .

Now we can control the evolution of the error using l̃k. The propagation step is linear,
thus we have the classical result d

dt Vt(ξt) < 0. It ensures ||ξt+s|| <
√

γmax
γmin
||ξt || as long as

there is no update on [t, t+s]. At each update step we have V+
tn (ξ

+
tn )

1/2 =V+
tn

(
[I−LnH]ξtn +
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rn(ξtn

)1/2
≤V+

tn

(
[I−LnH]ξtn

)1/2
+V+

tn

(
rn(ξtn

)1/2
≤Vtn

(
ξtn

)1/2
+V+

tn

(
rn(ξtn)

)1/2
using the tri-

angular inequality. Thus: ||ξ+
tn || ≤

√
γmax
γmin

(
||ξtn ||+ ||rn(ξtn)||

)
≤
√

γmax
γmin

(
||ξtn ||+ l̃k(||ξtn ||)

)
.

Reiterating over successive propagations and updates over [0,2M∆T ], we see ||ξt+s|| is
uniformly bounded by a function l1(||ξt ||) that is first order in ||ξt ||.

Lemma 7. [second-order control of the Lyapunov function] Under the same conditions
as in Lemma 5 (including 1

k P̃t0 ≤ Pt0 ≤ kP̃t0) and for ||ξt0+s|| bounded by the same ε for
s ∈ [0,2M∆T ] (2M time steps), there exists a continuous function l2 depending only on k
ensuring Vt0+s

(
ξt0+s

)
≤ Vt0+s(Ψ

t0+s
t0 ξt0)+ l2(||ξt0 ||) ≤ Vt0(ξt0)+ l2(||ξt0 ||) for any s ∈ [0,2M∆t]

with ł2(x) = O(x2). We also have Vtn
(
ξ
+
tn

)
≤ V+

tn ((Ψ
tn
t0)

+ξt0)+ l2(||ξt0 ||) ≤ Vt0(ξt0)+ l2(||ξt0 ||)
for t0 ≤ tn ≤ t0 +2M∆T .

Proof. The result stems from the decomposition (4.19) as:

Vt0+s(ξt0+s)
1/2 =Vt0+s

(
Ψ

t0+s
t0 ξt0 + ∑

t0<tn<t0+s
Ψ

t0+s
tn rn(ξtn)

)1/2

≤Vt0+s

(
Ψ

t0+s
t0 ξt0

)1/2
+ ∑

t0<tn<t0+s
Vt0+s

(
Ψ

t0+s
tn rn(ξtn)

)1/2
(triangular ineq.)

≤Vt0+s

(
Ψ

t0+s
t0 ξt0

)1/2
+ ∑

t0<tn<t0+s
Vtn

(
rn(ξtn)

)1/2
(using (A.2))

≤Vt0+s

(
Ψ

t0+s
t0 ξt0

)1/2
+ ∑

t0<tn<t0+s

√
γmax

γmin
||rn(ξtn)||1/2 (from the def. of V )

≤Vt0+s

(
Ψ

t0+s
t0 ξt0

)1/2
+ ∑

t0<tn<t0+s

√
γmax

γmin
(l̃k ◦ lk

1)(||ξt0 ||)1/2 (from Lemma 6)

As we have (l̃k ◦ lk
1)(x) = O(x2), we obtain the result squaring the inequality and using

Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)
≤Vt0

(
ξt0

)
≤ γmax

γmin
||ξt0 || to control the crossed terms.

Lemma 8. [final second order growth control] Under the same conditions as in Lemma 5
(including 1

k P̃t0 ≤ Pt0 ≤ kP̃t0) and for ||ξt0+s|| bounded by the same ε for s ∈ [0, t], there exist
two functions lk

1(ξ ) = O(||ξ ||2) and lk
2 = o(||ξ ||2) and a constant β k ensuring the relation:

Vt0+s(ξt0+s)≤Vt0(ξt0)+ lk
1(ξt0)−

J−1

∑
i=0

[
β

k||ξtn0+iM∆t ||2− lk
2(ξtn0+iM∆t)

]
+ lk

1(||ξ+
tnmax
||) (A.3)

where nmax is the last update before t0+s ( i.e. nmax =max{n, tn≤ t0+s}), J is the maximum
number of successive sequences of M updates in [t0+M∆t, tnmax ] (i.e. J =max{ j, tnmax− jM ≥
t0}−1) and n0 = nmax− JM. If t0 + s = tnmax the last term can be removed.

Proof. For lk
1 we choose the same function as in Lemma 7. There is nothing more

to prove for s < 2M∆t. Let s ≥ 2M∆t. We have Vt0+s(ξt0+s)−V+
t0 (ξ

+
t0 ) =

(
Vt0+s(ξt0+s)−
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V+
tnmax

(ξ+
tnmax

)

)
+

(
V+

tnmax
(ξ+

tnmax
)−V+

tn0
(ξ+

tn0
)

)
+

(
V+

tn0
(ξ+

tn0
)−Vt0(ξt0)

)
. The first and third terms

are upper bounded using Lemma 7. The second term is controlled as follows:

V+
tnmax

(ξ+
tnmax

)−V+
tn0
(ξ+

tn0
) =

J−1

∑
i=0

[
V+

tn0+(i+1)M
(ξ+

tn0+(i+1)M
)−V+

tn0+iM
(ξ+

tn0+iM
)

]
≤

J−1

∑
i=0

[
V+

tn0+(i+1)M
(Ψ

tn0+(i+1)M+
tn0+iM ξ

+
tn0+iM

)−V+
tn0+iM

(ξ+
tn0+iM

)+ l2(ξ+
tn0+iM

)

]
And we conclude using (see [38]):

V+
tn0+(i+1)M

(Ψ
tn0+(i+1)M+
tn0+iM ξ

+
tn0+iM

)−V+
tn0+iM

(ξ+
tn0+iM

)≤−β̃
k||Ψ

tn0+(i+1)M+
tn0+iM ξ

+
tn0+iM
||2

≤−β̃
k(

γmin

γmax
δ1)

M||ξ+
tn0+iM
||2

for a β̃ k depending only on the modified constants of Lemma 5. The last inequality is
obtained using Ψ

tn+
t0 = (P+

n P−1
n )Ψtn

t0 and an obvious recursion over M time steps. We finally
set β = β̃ k( γmin

γmax
δ1)

M.

Remark 19. The control we have obtained on ξt0+s is verified if ||ξt0+s|| is already in a ball
of radius ε over the whole interval [t0, t0+ t]. We now prove the result holds assuming only
that ξt0 is sufficiently small.

A.1.3 Proof of theorem 7

Applying Lemma 8 with t0 + s = tnmax gives for 1
k P̃t0 ≤ Pt0 ≤ kP̃t0 and ||ξt0+s||< ε on [0, t] :

||ξ+
tnmax
||2 ≤ γmax

γmin
||ξt0 ||2 + γmaxlk

1(||ξt0 ||)−
γmax

γmin

J−1

∑
i=0

[
β

k||ξ+
tn0+iM
||2− l2(ξ+

tn0+iM
)

]
There exist K > 0 and ε ′ > 0 such that for x < ε ′, we have l2(x) <

β k

2 x and γmaxlk
1(x) < Kx

(as l1(x) = O(x)) which gives: ||ξ+
tnmax
||2 ≤

(
γmax
γmin

+K
)
||ξ0||2. Thus, for ||ξt0 ||< ε ′√

γmax
γmin

+K
:

||ξt0+s||2 ≤
(

γmax

γmin
+K +K

(γmax

γmin
+K

))
||ξ0||2−

γmax

γmin

J−1

∑
i=0

β k

2
||ξ+

tn0+iM
||2 (A.4)

which finally ensures

||ξt0 ||<
1
2

ε
′/

(
γmax

γmin
+K +K

(γmax

γmin
+K

))
⇒ ||ξt0+s|| ≤ ε

′/2

Reducing ε ′ if necessary to have ε ′ ≤ ε, we have obtained ||ξt0+s|| < ε ′ for s ∈ [0, t]⇒
||ξt0+s|| ≤ ε ′/2 for sufficiently small ||ξt0 || (as Lemma 8 applies). Letting t = inf{s, ||ξt0+s|| ≥
3
4 ε ′} for sufficiently small ||ξt0 || we end up with a contradiction if we suppose t <+∞, which
proves t =+∞. All the previous results thus hold only for sufficiently small ||ξt0 ||.

Moreover, (A.4) shows that ∑
J−1
i=0

β k

2 ||ξ
+
tn0+iM ||

2 is bounded and has positive terms thus
||ξ+

tn0+iM ||
2 goes to zero. Note also that ||Pt − P̃t || −→

t→+∞
0 as a byproduct.
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A.2 Proof of proposition 8

Only conditions (1) and (5) are non-trivial. Let Φ denote the flow of the dynamics. We

have d
dt

[
(Φt

tn)
T Φt

tn

]
= (Φt

tn)
T

 0 0 −vt

0 0 0
−vt 0 0

Φt
tn � vmax(Φ

t
tn)

T Φt
tn thus (Φ

tn+1
tn )T Φ

tn+1
tn � exp

(
−

vmax(tn+1− tn)
)

and (1) is verified. The difficult part of (5) is the lower bound. Denoting
Cov(Vn) by N we will show:

∃β1,∀n ∈ N,β1I3 ≤ R̂T
tnN−1R̂tn +(Φ

tn+1
tn )T (01,2 I2

)T R̂T
tn−1

N−1R̂tn−1

(
01,2 I2

)
Φ

tn+1
tn

That is to say that we want a lower bound on the quadratic form:

M
(

θ

u

)
=

(
θ

u

)T

R̂T
tnN−1R̂tn

(
θ

u

)
+

(
θ

u

)T

(Φ
tn+1
tn )T (01,2 I2

)T R̂T
tn−1

N−1R̂tn−1

(
01,2 I2

)
Φ

tn+1
tn

(
θ

u

)

We decompose Φ
tn+1
tn as Φ

tn+1
tn =

(
1 0 0

δVn Tn

)
. To simplify the writing we introduce the

norms ||x||2N = xT N−1x and the associated scalar product < ., . >N . There exists α > 0 such

that ∀x ∈ R2, ||x||N ≥ α||x||. For any
(

θ

u

)
∈ R3 we have M

(
θ

u

)
= ||R̂tnu||2N + ||θ R̂tn−1δVn +

R̂tn−1Tnu||2N = ||R̂tnu||2N +θ 2||R̂tn−1δVn||2N +2θ < R̂tn−1δVn, R̂tn−1Tnu >N +||R̂tn−1Tnu||2N and for λ ∈
]0,1] we have:

M
(

θ

u

)
=||R̂tnu||2N +(1−λ

2)θ 2||R̂tn−1δVn||2N

+λ
2
θ

2||R̂tn−1δVn||2N +2θ < R̂tn−1δVn, R̂tn−1Tnu >N +||R̂tn−1Tnu||2N
=||R̂tnu||2N +(1−λ

2)θ 2||R̂tn−1δVn||2N

+ ||λθ R̂tn−1δVn +
1
λ

R̂tn−1Tnu||2N +(1− 1
λ 2 )||R̂tn−1Tnu||2N

≥α

[
||R̂tnu||2 +(1−λ

2)θ 2||R̂tn−1δVn||2

+ ||λθ R̂tn−1δVn +
1
λ

R̂tn−1Tnu||2 +(1− 1
λ 2 )||R̂tn−1Tnu||2

]
≥α

[
||u||2 +(1−λ

2)θ 2||δVn||2 +(1− 1
λ 2 )||u||

2
]

≥α

[
(2− 1

λ 2 )||u||
2 +θ

2 +[
1−λ 2

2− 1
λ 2

||δVn||2−1]θ 2
]

≥α(2− 1
λ 2 )

(
||u||2 +θ

2 +[
1−λ 2

2− 1
λ 2

v2
min−1]θ 2

)
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As 1−λ 2

2− 1
λ2
−→

λ→ 1√
2
−
+∞ there exists λ0 such that: M

(
θ

u

)
≥ α(2− 1

λ 2
0
)

∣∣∣∣∣
∣∣∣∣∣θu
∣∣∣∣∣
∣∣∣∣∣
2

and the result is

true for β1 = α(2− 1
λ 2

0
).
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Appendix B

Proofs of the results of Chapter 6

B.1 Proofs of the results of Section 6.4.1

We first introduce here the basic notions about Harris Chains that we will need, to prove
the stochastic convergence properties of the invariant filters.

Definition 14. (First hitting time) Let S be a measurable space and (Xn)n>0 a Markov
chain taking values in S. The first hitting time τC of a subset C ⊂ S is defined by
τC = infn>0 {Xn ∈C}.

Definition 15. (Recurrent aperiodic Harris chain) Let S be a measurable space and
(Xn)n>0 a Markov chain taking values in S. (Xn)n>0 is said to be a recurrent aperiodic
Harris chain if there exist two sets A,B⊂ S satisfying the following properties:

For any initial state X0 the first hitting time of A is a.s. finite.

1.2. There exists a probability measure ρ on B, and ε > 0 such that if x ∈ A and
D⊂ B then P(X1 ∈ D|X0 = x)> ερ(D).

3. There exists an integer N > 0 such that: ∀x ∈ A,∀n > N,P(Xn ∈ A|X0 = x)> 0.

The somewhat technical property 2 means that any given area of B can be reached
from each point of A with non-vanishing probability.

Theorem 21. [Harris, 1956] A recurrent aperiodic Harris chain admits a unique sta-
tionary distribution ρ∞ and the density of the state Xn converges to ρ∞ in T.V. norm for
any distribution of X0.

Proof. See [44], Theorems 6.5 and 6.8

In other words, if for any initialization we can ensure that the process will come back with
probability 1 to a central area A where mixing occurs, we have a convergence property.
The following technical result is a cornerstone to demonstrate the theorems of Subsection
6.4.1.
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Lemma 2. Let G be a locally compact Lie group provided with a right-invariant distance
d, and C ⊂ G be a measurable compact set endowed with the σ -algebra Σ. Consider a
homogeneous Markov chain (η+

n )n>0 defined by the relation

η0 ∈C, η
+
n+1 = qz(η

+
n )

where z ∈Z is some random variable belonging to a measurable space. Let 0 denote a
specific point of Z . Let Q : (C,Σ)→ R+, denote the transition kernel of the chain, that is
Q(x,V ) = P(qz(η

+
n ) ∈V | η+

n = x). We assume that

1. there exist real numbers α,ε > 0 such that for any x ∈C and V ⊂Bo(q0(x),α), the
latter denoting the open ball center q0(x) and radius α, we have Q(x,V )=P(qz(η

+
n )∈

V | η+
n = x)> εµG(V ) where µG is the right-invariant Haar measure.

2. q0 admits a fixed point x0 ∈C, i.e. q0(x0) = x0.

Let U0 = {x0}. Define the sets (Un)n>0 recursively by U ′n = {x ∈ G,d(x,Un) <
α

2 }∩C and
Un+1 = q−1

0 (U ′n). If there exists an integer N > 0 such that UN = C, then the p.d.f. of η+
n

converges for the T.V. norm and its limit does not depend on the initialization.

More prosaically, z denotes the cumulative effect of the model and observation noise,
and it is assumed that 1- the noiseless algorithm has some global convergence properties
and 2- there are sufficiently many small enough noises so that there is an ε chance for
η+

n to jump from x to any neighborhood of the noiseless iterate q0(x) with a multiplicative
factor corresponding to the neighborhood’s size. It then defines a sequence of sets, by
picking a fixed point of q0, dilating it, and taking its pre-image. Dilatation and inversion
are then reiterated until the whole set C is covered. In this case, forgetting of the initial
distribution is ensured.

Proof. We will demonstrate the property trough three intermediate results:

1. There exists a sequence ε1, · · · ,εN such that: P(η1 ∈Un|η0 ∈Un+1)> εn > 0.

2. The first hitting time of U1 is a.s. finite.

3. (η+
n )n≥0 is an aperiodic recurrent Harris chain with A =U1 and B =U ′0.

The conclusion will then immediately follow from Theorem 21. We give first a quali-
tative explanation of the approach. We have by assumption a sequence of sets (Un)n>0.
Intermediate result 1) states that starting from a set Un+1 the chain has a non-vanishing
chance to jump to the “smaller" set Un at the next time step. Intermediate result 2) states
that starting from Un+1, because of the non-vanishing property 1), the chain cannot avoid
Un forever and eventually reaches Un, Un−1 and finally U1. Intermediate result 3) brings
out the fact that, A =U ′0 being totally included in the ball of radius α centered on any of its
points, the chain can go from any given point of its pre-image B =U1 to any area of A with
controlled probability, which is the last property needed to obtain a recurrent aperiodic
Harris chain.
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1. Consider the closure U ′n of U ′n. For any x ∈U ′n the set Bo(x,α)∩Un is open and non-
empty (as d(x,Un)6 α

2 by definition of U ′n) so µG(Bo(x,α)∩Un)> 0. The function f :
x→ µG(Bo(x,α)∩Un)> 0 is continuous (since µG is a regular and positive measure)
on the compact set U ′n, so it admits a minimum mn > 0. We get: P(η1 ∈ Un|η0 ∈
Un+1) ≥ P(η1 ∈ Bo(q0(η0),α)∩Un|η0 ∈ Un+1) = P(η1 ∈ Bo(q0(η0),α)∩Un|q0(η0) ∈
U ′n) ≥ εmn using the fact that, by assumption (1), Q(x,V ) ≥ εµG(V ) for x ∈ C and
V ⊂Bo(q0(x),α). We set εn = εmn to prove intermediate result 1).

2. We will prove by descending induction on n the property Pn : P(τn < ∞) = 1. PN is
obvious as UN =C. Now assume Pn+1 is true for n> 1. Due to homogeneity, we can
construct a strictly increasing sequence of stopping times (νp)p>0 such that: ∀p >
0,ηνp ∈Un+1. But P(ηνp+1 ∈Un|ηνp ∈Un+1)> εn by intermediate result 1). Thus letting
Tk denote the event {∀i 6 k,ηi /∈Un} = {k < τn}, we have for any n > 0: P(Tνp+1) =
P(Tνp)P(Tνp+1|Tνp)6P(Tνp)(1−εn). Thus P(Tνp+1)6P(Tνp+1)6P(Tνp)(1−εn). A quick
induction and a standard application of Borel-Cantelli Lemma prove there exists a.s.
a rank p such that Tνp is false. In other words, Pn is true. In particular, P1 is true:
the first hitting time of U1 is a.s. finite.

3. Define A = U1 and B = U ′0 = Bo(x0,
α

2 )∩C . For any V ⊂ B and x ⊂ A we have
V ⊂Bo(q0(x),α), thus Q(x,V ) > εµG(V ) by assumption (1). Thus (η+

n )n>0 verifies
property 2) of Definition 15. As A =U1 the intermediate result 2) shows that (η+

n )n>0
verifies the property 1) of Definition 15. As there exists a.s. a rank k such that
ηk ∈U1 by intermediate result 2), there exists an integer M such that P(ηM ∈U1)> 0.
As U1 ∩U ′0 ⊂ Bo(q(x),α) for any x ∈ U1 (by definition of U ′0 and U1) Assumption
(1) gives immediately P(ηM+1 ∈U1∩U ′0) > P(ηM ∈U1)εµG(U1∩U ′0). Using only the
definition of U ′0 and U1, and Assumption (2), we see easily that both contain x0.
Thus the set U ′0 ∩U1 is non-empty and open. We have then µG(U1 ∩U ′0) > 0 and
P(ηM+1 ∈U1 ∩U ′0) > 0. By an obvious induction on m, P(ηm ∈U1 ∩U ′0) > 0 for any
m > M. As U1∩U ′0 ⊂ A we get P(ηm ∈ A) > 0 for any m > M and the property iii) of
Definition 15 is also verified. We finally obtain that (η+

n )n>0 is an aperiodic recurrent
Harris chain.

Using Theorem 21 we can conclude that the density of η+
n converges in T.V. norm to its

unique equilibrium distribution for any initialization.

Building upon the previous results, the proof of Theorem 11 is as follows. The Markov
chain defined by equations (6.10) and (6.11) with fixed ϒ can be written under the form
η ′n+1 = qz(η

′
n) = q1,z ◦ q2,z(η

′
n) with z = (Wn,Vn) ∈ G×Rp, q1,z(x) = ϒWnxϒ−1 and q2,z(x) =

xK(h(x,Vn))
−1. Let 0 = (Id ,0). We will show that (η ′n)n>0 has all the properties required in

Lemma 2.
Let α,ε,ε ′ be defined as in 6.4.1. Let α ′ such as Bo(Id ,α

′) ⊂ ϒBo(Id ,
α

2 )ϒ
−1 and

ε ′′ = ε ′|Adϒ−1 |ε, where |Adϒ−1 | is the determinant of the adjoint operator on g. For any
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x ∈C and V ⊂Bo(q0(x),α ′) = Bo(Id ,α
′)q0(x) we have:

P(qz(x) ∈V )> P(qz(x) ∈V,q2,z(x) ∈Bo(q2,0(x),
α

2
))

> P(q2,z(x) ∈Bo(q2,0(x),
α

2
))×

P(ϒWnq2,z(x)ϒ−1 ∈V |q2,z(x) ∈Bo(q2,0(x),
α

2
))

i.e. P(qz(x) ∈ V ) > ε ′P(Wn ∈ ϒ−1V ϒq2,z(x)−1|q2,z(x) ∈ Bo(q2,0(x), α

2 )). Assuming q2,z(x) ∈
Bo(q2,0(x), α

2 ) we have:

ϒ
−1V ϒq2,z(x)−1 ⊂ ϒ

−1Bo(Id ,α
′)q0(x)ϒq2,z(x)−1

⊂Bo(Id ,
α

2
)ϒ−1q0(x)ϒq2,z(x)−1

⊂Bo(Id ,
α

2
)q2,0(x)q2,z(x)−1

⊂Bo(Id ,
α

2
+

α

2
)

As Wn is independent from the other variables we obtain:

P(Wn ∈ ϒ
−1V ϒq2,z(x)−1|q2,z(x) ∈Bo(q2,0(x),

α

2
))> εµG(ϒ

−1V ϒq2,z(x)−1)

> εµG(ϒ
−1V ϒ)

> εµG(V )|Adϒ−1 |

And finally:
P(qz(x) ∈V )> ε

′|Adϒ−1 |εµ(V ) = ε
′′
µ(V )

As q0 has Id as a fix point we only have to verify that the sets Un as defined in
Lemma 2 eventually cover the whole set C. It suffices to consider for any n > 0 the
set Dn = {x ∈ C,∀k > n,qk

0(x) ∈ U ′0}. As we have qn
0(x) → Id almost-everywhere on C

we get: µG(∪n>0Dn) = µG(C). As the sequence of sets (Dn)n>0 increases we have:
µG(Dn) −→

n→∞
µG(C). We introduce here the quantity vmin = minx∈C µG(Bo(x, α ′

2 )∩C) (the

property C = cl(Co) and the regularity of µG ensure that we have vmin > 0). Let N ∈ N be
such that µG(DN)> µG(C)−vmin. We have then: ∀y∈C,d(y,DN)<

α ′

2 (otherwise we would
have µG(DN) 6 µG(C)− vmin). As we have DN ⊂UN we obtain ∀y ∈ C,d(y,DN) <

α ′

2 thus
U ′N =C and UN+1 = q−1

0 (U ′N) = q−1
0 (C) =C. So all the conditions of Lemma 2 hold and we

can conclude convergence in T.V. norm to a stationary distribution which doesn’t depend
on the prior, provided that its support lies in C. Theorem 11 is proved.

Corollary 2 follows directly from the case C = G.
Theorem 12 can be proved as follows. Let C = G. Let K = {x ∈ G,h(x,0) = h(Id ,0)}.

Note that the left-right equivariance assumption ensures that K is a subgroup of G. First
we show that there exists an integer N1 such that K ⊂UN1 . As we have ∀x ∈ K q0(x) =
ϒxϒ−1 the sequence of sets Qn = ϒ−nUnϒn∩K is growing and we have: {x ∈ K, d(x,Qn)<
α

2 } ⊂ Qn+1.The set Q∞ = ∪∞
n=1Qn is open in K as an union of open sets, but we have

∀x ∈ Q∞,Bo(x, α

2 )∩K ⊂ Q∞ thus ∀x ∈ K \Q∞,Bo(x, α

4 )∩K ⊂ K \Q∞. This implies that Q∞

and K \Q∞ are both open in K. As K is connected (see assumptions of Theorem 12) we
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obtain Q∞ = K. As K is compact (as a closed subset of a compact) the open cover ∪∞
i=1Qn

has a finite subcover and there exists an integer N1 such that QN1 =K, i.e. ϒN1Kϒ−N1 =UN1 .
As K is a subgroup of G (see above) containing ϒ we obtain K ⊂UN1 . Now we have to
prove that the sets (Un)n>0 eventually cover the whole set C. For any x ∈ G we have
h(qn

0(x),0)→ h(Id ,0). Thus there exists a rank n such that ∀k > n,qk
0(x) ∈U ′N (otherwise we

could extract a subsequence from (qn
0(x))n>0 which stays at a distance > α

2 from K, as G
is compact we could extract again a convergent subsequence and its limit q∞

0 (x) would be
outside K, thus we would have h(qn

0(x)) 6→ h(Id ,0)). Here we can define as in the proof of
Theorem 11 the sets Dn = {x ∈C,∀k > n,qk

0(x) ∈U ′N1
} (note that U ′1 has been replaced by

U ′N1
in this definition of Dn). As for almost any x ∈ G there exists a rank n such that x ∈ Dn

we have µG(Dn)→ µG(C) and as in the proof of Theorem 11 the sets Un eventually cover
the set C.

The second part of the property (invariance to left multiplication) is easier. Consider
the error process ζn = ϒ̃ηn. The propagation and update steps read:

ζn+1 = ϒ̃ηn+1 = ϒ̃ϒWnη
+
n ϒ
−1 = ϒϒ̃Wnη

+
n ϒ
−1 L

= ϒWnϒ̃η
+
n ϒ
−1

L
= ϒWnζ

+
n ϒ
−1

ζ
+
n+1 = ϒ̃ηn+1Kn+1(h(ηn+1,Vn+1))

−1

L
= ϒ̃ηn+1Kn+1(h(ϒ̃ηn+1,Vn+1))

−1

L
= ζn+1Kn+1(h(ζn+1,Vn+1))

−1

where we have used the property:

h(ηn+1,Vn+1)
L
= η

−1
n+1h(Id ,Vn+1)

L
= η

−1
n+1h(ϒ̃,Vn+1)

L
= h(ϒ̃ηn+1,Vn+1)

We see that the law of the error process is invariant under left multiplication by ϒ̃, thus
the asymptotic distribution π inherits this property.

B.2 Proofs of the results of Section 6.4.2

B.2.1 Proof of Proposition 18

We define the continuous process γ̃t : R→ G as follows:

∀n ∈ N, γ̃n = γn

∀n ∈ N,∀t ∈ [n,n+1[,
d
dt

γ̃t =−γ̃tk(γ̃n)
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We obtain immediately that γ̃t is continuous. Besides, for any n ∈ N and t ∈]n,n+ 1[ one
has:

| d
dt
〈k(γ̃t),k(γ̃n)〉|= |〈

d
dt

k(γ̃t),k(γ̃n)〉|

6 | d
dt

k(γ̃t)||k(γ̃n)|

6 | d
dt

γ̃t ||k(γ̃n)| (due to |∂k
∂x
|6 1 )

6 |k(γ̃n)|2 (as
d
dt

γ̃t =−γ̃tk(γ̃n) )

Thus:
〈k(γ̃t),k(γ̃n)〉> 〈k(γ̃n),k(γ̃n)〉− (t−n)|k(γ̃n)|2 > 0

proving in the Lie algebra that 〈k(γ̃t),k(γ̃n)〉 > 0. As u is a positive function we have thus
u(γ̃t)

−1〈γ̃tk(γ̃t),−γ̃tk(γ̃n)〉6 0 immediately proving 〈gradE(γ̃t),
d
dt γ̃t〉6 0. The latter result be-

ing true for every t ∈ R\N and the function E(γ̃t) being continuous, it decreases and thus
converges on R≥0. As we have supposed the sublevel sets of E are bounded (and closed
as E is continuous), γ̃t is stuck in a compact set. Let γ∞ an adherence value of γ̃n. By con-
tinuity of E we have E(γ̃∞) = E(γ̃∞ exp(−k(γ̃∞)). Thus the function t→ E(γ̃∞ exp(−tk(γ̃∞))) is
decreasing on [0,1] and has the same value at 0 and 1. Thus it is constant, its derivative
at 0 is null proving γ∞ = Id . (γ̃n)n>0 being confined in a compact set and having Id as
unique adherence value we finally get γn = γ̃n→ Id .

B.2.2 Proof of Proposition 17

Let γn = RnR̂T
n be the invariant error. Its equation reduces to:

γn+1 = γn.exp(−k1(γ
T
n b1)×b1− k2(γ

T
n b2)×b2)

Let k(γ) = k1(γ
T b1)× b1 + k2(γ

T b2)× b2 and E : γ → k1||γT b1− b1||2 + k2||γT b2− b2||2. To
apply Proposition 18 we will first verify that 1) ∀γ ∈ SO(3),γ.k(γ) = gradE(γ) 2) | ∂k

∂γ
| 6 1.

To prove 1) consider the dynamics in ∈ SO(3) defined by d
dt γt = γt(ψt)× for some rota-

tion vector path ψt . We have d
dt E(γt) = k1(γ

T
t b1− b1)

T d
dt γT

t b1 + k2(γ
T
t b2− b2)

T d
dt γT

t b2. Us-
ing triple product equalities this is equal to 〈k1(γ

T
t b1)×b1 + k2(γ

T
t b2)×b2,ψt〉 = 〈k(γt),ψt〉 =

〈γt .k(γt),
d
dt γt〉. Thus γ.k(γ) = gradE(γ). To prove 2) we analogously see that d

dt k(γt) =

−[k1(b1)×(γ
T
t b1)×+ k2(b2)×(γ

T
t b2)×]ψt . Thus | d

dt k(γt)| 6 (k1 + k2)|ψt | and finally | ∂k
∂γ
| 6 1.

Now, except if initially γ0 is the rotation of axis b1×b2 and angle π, the function E is strictly
decreasing, and Id is the only point in the sublevel set {γ ∈ SO(3) | E(γ)≤ E(γ0)} such that
gradE(γ) = 0. Applying Proposition 18 allows to prove Proposition 17.
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