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UN CADRE D'OPTIMISATION MULTI-OBJECTIF POUR LES PROBLEMES 

DE PLANIFICATION DES INSPECTIONS AVEC PRISE EN COMPTE DES 

INCERTITUDES ET DEFFAILLANCES  

 

RESUME : Dans les systèmes manufacturiers de plus en plus complexes, les 

variations du processus de fabrication et de ses paramètres opératoires 

ainsi que leurs effets sur l’ensemble du système doivent être maîtrisés, 

mesurés et contrôlés. Cette thèse propose un cadre d’optimisation pour 

l’élaboration d’un plan d’inspection optimal qui permet une prise de 

décision opérationnelle afin d’assurer la satisfaction des objectifs 

stratégiques (réduction des coûts, amélioration de la qualité, 

augmentation de la productivité, …). La prise de décision se divise en trois 

questions : Quoi contrôler ? Comment contrôler ? Quand contrôler ? Le 

manque d'informations fiables sur les processus de production et 

plusieurs facteurs environnementaux est devenu un problème important 

qui impose la prise en compte de certaines incertitudes lors de la 

planification des inspections. Cette thèse propose plusieurs formulations 

du problème d’optimisation de la planification du processus d'inspection, 

dans lesquelles, les paramètres sont incertains et les machines de 

production sont sujettes aux défaillances. Ce problème est formulé par des 

modèles de programmation mathématique avec les objectifs : minimiser le 

coût total de fabrication, maximiser la satisfaction du client, et minimiser 

le temps de la production totale. En outre, les méthodes Taguchi et Monte 

Carlo sont appliquées pour faire face aux incertitudes. En raison de la 

complexité des modèles proposés, les algorithmes de méta-heuristiques 

sont utilisés pour trouver les solutions optimales. 

Mots clés : Systèmes de Production Multi-échelle, Problème de 

Planification des Inspections, Optimisation Multi Objectif, Modèles de 

Programmation Mathématique, Incertitude, Défaillance, méta-

heuristiques. 
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1. Introduction 

Ce résumé étendu en français ne reprend pas l’ensemble des items 

détaillés dans le manuscrit principal en anglais. Seuls les aspects 

qualitatifs et les résultats sont abordés dans le résumé. Les modèles 

mathématiques et les détails d’implémentation ne sont pas détaillés 

dans le résumé étendu en français. Cette thèse a été réalisée en 

cotutelle entre l’Université de Téhéran et l’Ecole Nationale Supérieure 

d’Arts et Métiers. 

Dans les systèmes manufacturiers de plus en plus complexes, les 

variations du processus de fabrication et de ses paramètres opératoires 

ainsi que leurs effets sur l’ensemble du système doivent être maîtrisés. Au 

regard de la conception du produit, la « vérification » est ce qui permet de 

confirmer (ou non) le maintien du processus de fabrication dans un état 

stable et le respect des spécifications et exigences du produit. La tendance 

de ce jour à l’automatisation dans les industries demande une vérification 

plus stricte et une meilleure organisation de celle-ci. 

La « vérification » est ce qui permet de confirmer (ou non) le 

maintien du processus de fabrication dans un état stable et le respect des 

spécifications et exigences du produit. La tendance de ce jour à 

l’automatisation dans les industries demande une vérification plus stricte 

et une meilleure organisation de celle-ci. 

La version 2008 de la certification ISO 9001 indique aussi la 

nécessité d’inspection et d’organisation de celle-ci, la définition du plan 

d’inspection : « L’organisme doit déterminer les activités de surveillance et 

de mesure à entreprendre et les dispositifs de surveillance et de mesure 

nécessaires pour apporter la preuve de la conformité du produit aux 

exigences déterminées ... L’organisme doit établir des processus pour 

assurer que les activités de surveillance et de mesure peuvent être 

effectuées de manière cohérente par rapport aux exigences de surveillance 

et de mesure ». En résumé, ce qui nous incite à mener des activités de 

vérification est donc la « variation » au sens large. L’inspection comprend 

la vérification de l’aptitude du processus et le suivi du « résultat » de 

processus sur le produit ou le service, « qualité ». Pour suivre l’effet de ces 

variations sur le produit et ces exigences, le meilleur moyen reste 
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l’inspection par le biais des mesures, « un mal nécessaire que l’on doit 

réduire le plus possible » (Pillet et al. 2007). 

La conformité du produit est assurée grâce à la fonctionnalité et le 

comportement de tous ces composants. Leur conformité par rapport aux 

exigences est vérifiée (pour être acceptée ou rejetée) par le contrôle de la 

qualité du produit. D'autre part la non-conformité pour le client peut être 

due à une dérive du procédé de fabrication. C'est pourquoi la surveillance 

préventive est parfois nécessaire pour maîtriser un système de 

production. Une politique de maintenance préventive peut assurer 

l’efficacité des moyens de production et peut réduire également le coût 

d’intervention lié à la dégradation ou la défaillance des moyens de 

production. Réduire le nombre de ces interventions que ce soit le contrôle 

de conformité ou le suivi de fabrication, augmente également la 

productivité du système. Réduction des coûts et augmentation de la 

productivité ont toujours été les principaux intérêts des industriels. 

La génération d’un plan d’inspection se fait en règle générale à la 

suite de la conception du produit et de son processus de fabrication. Le 

développement des systèmes de « Computer Aided Inspection Planning 

(CAIP) » est donc la suite logique des travaux de recherche en Computer 

Aided Tolerancing (CAT) et Computer Aided Process Planning (CAPP). 

Les objectifs (ou contraintes) fondamentaux sont : réduction des 

coûts, diminution des risques, amélioration de la qualité, de la 

productivité, et de la satisfaction de client … Afin d’accroitre l’efficacité des 

plans d’inspection, il est nécessaire d’exploiter l’interdépendance des 

caractéristiques (l’ensemble des tolérances, des spécifications des 

composants, et des exigences fonctionnelles ou non-fonctionnelles du 

produit, ainsi que les paramètres opératoires de processus de fabrication) 

et leurs variations. 

 

2. Cadre d’une méthodologie pour la génération d’un plan 

d’inspection 

 

D’après (Peters 1977), le besoin de la métrologie précise et exacte a 

émergé dans le monde industriel initialement dans le but de réduire les 

activités d’assemblage et de garantir l’interchangeabilité des composants. 

La métrologie passive, la vérification de satisfaction des exigences après 
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les opérations de fabrication n’a pas été souvent défendable d’un point de 

vue économique. L’apparition de la métrologie active a déclenché une 

tendance à la réalisation des mesures plus proche des opérations de 

fabrication tout au long du processus afin de pouvoir intervenir le plus 

rapidement possible dans le cas d’une dérive au niveau du processus. Les 

pratiques de la maîtrise de qualité dont l’inspection ont également évolué, 

comme évoqué par (Pillet 1993), de l’artisanal à l’industriel dans un 

premier temps et ensuite d’une vision purement orientée produit, à une 

vision orientée vers l’ensemble produit, processus, ressource. 

La métrologie productive (Kunzmann et al., 2005) assure non 

seulement la satisfaction du client final mais également se fonde sur des 

arguments économiques, en fournissant de la connaissance pour une 

meilleure prise de décision tout au long de la conception du produit, son 

processus de fabrication et le plan d’inspection. Ce dernier comprend les 

activités de la maîtrise du processus (vérification intermédiaire) et celles 

de la vérification finale de la conformité du produit. 

Pour la planification d’inspection, les entreprises sont aussi 

contraintes par la disponibilité des moyens de production et ceux de 

l’inspection ainsi que leurs critères de performances (le coût de la 

métrologie, l'incertitude de l’inspection ou de la pertinence des mesures 

liée à la précision et à l'exactitude, la capabilité de production etc.) pour 

garantir la qualité. De multiples critères et objectifs sont soulignés ci-

dessus qui doivent être intégré lors la prise de décision pour la génération 

du plan d’inspection. Selon (Pfeifer 2002) lorsqu’on planifie les activités 

d’inspection, d’une manière générale certaines questions doivent être 

posées :  

 What to test ?  

 When to test ?  

 How to test ?  

 How much to test ?  

Nous avons résumé la problématique par trois grandes questions :  

 Quoi contrôler ?  

 Comment contrôler ?  

 Quand contrôler ?  
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qui pilotent le cadre de la prise de décision. 

Ainsi un cadre méthodologique est proposé qui se décompose en 

quatre sous-activités (Figure 1) : (A00) identifier les critères de la prise de 

décision, (A01) identifier les caractéristiques clés liées au 

produit/processus à contrôler/suivre, (A02) identifier le moyen 

d’inspection, et (A03) identifier les points d’insertion des activités 

d’inspection. 

Les objectifs opérationnels de ces activités sont la co-conception du 

plan de contrôle de conformité du produit et des pièces, et le suivi du 

processus de fabrication. C’est-à-dire qu’une activité d’inspection peut être 

destinée à : 

– la surveillance des paramètres opératoires du processus de 

fabrication, par l’application des mesures au niveau du 

processus même, ou par l’application des mesures sur des 

spécifications au niveau de la pièce fabriquée par le processus 

(mais toujours dans le but de maintenir le processus sous 

surveillance), 

– le contrôle de conformité des spécifications des composants au 

regard de leur conception et de leurs limites de tolérance, et 

– le contrôle de conformité des fonctionnalités ou exigences 

attendues du produit selon le cahier des charges. 

 

3. Modèle de coût 

Dans la planification des inspections, le but est non seulement 

l’allocation des activités d’inspection, mais aussi une évaluation de la 

performance, notamment l’évaluation conjointe du coût et de la qualité 

(qualité pondérée par le coût) (Etienne, 2007), assurés par la détection ou 

la prévention de la défaillance survenue au niveau du produit ou du 

processus.  
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Figure 1. Les sous-activités de la prise de décision sous le formalisme 

IDEF0 (Mirdamadi, 2014) 

 

La dimension économique devient un critère de la génération des 

processus ou gamme d’inspection.  

Malgré la réputation non productive de la métrologie dans les 

industries, Kunzmann et al. (2005) approuvent le rôle de cette dernière 

comme un générateur de valeur aux yeux de chacun : l’ingénieur de 

production et le métrologue industriel. La métrologie productive assure 

non seulement la satisfaction du client final mais également se fonde sur 

des arguments économiques, en fournissant de la connaissance pour une 

meilleure prise de décision tout au long de la conception du produit, son 

processus de fabrication et le plan d’inspection. Ce dernier comprend les 

activités de la maîtrise du processus (vérification intermédiaire) et celles 

de la vérification finale de la conformité du produit. D'un point de vue 

économique, Kunzmann et al. (2005) démontre l'évolution du coût de la 

prévention de la défaillance, l'objectif de la surveillance du processus, et 

celui de la détection et de l'élimination de la défaillance, ainsi que l'objectif 

de contrôle de conformité des produits, tout au long du cycle de vie du 
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produit. Que ce soit par la détection ou la prévention de la défaillance, la 

génération d'un plan d'inspection a pour but d’assurer la conformité du 

produit au client (qualité perçue en externe) pour un moindre coût 

d'inspection (objectif en interne). 

La dimension économique grandissante de la qualité fournie, a 

ouvert la voie aux travaux d’estimation et d’optimisation du bénéfice 

attendu d’un processus de qualité, le contrôle de conformité ou le suivi de 

fabrication. Le choix d’inspection ne garantit pas uniquement le niveau de 

la qualité mais peut optimiser à la fois le bénéfice. Les travaux de 

recherche ont contribué à une meilleure formulation (plus proche de la 

pratique) de ce problème d’optimisation (Hunter and Kartha, 1977 ; 

Bisgaard et al., 1984). Ils ont également démontré l’impact des erreurs (le 

rejet dû à l’erreur d’inspection) ou la précision d’inspection (maximale 

lorsque l’erreur tend vers zéro) sur le bénéfice (Carlsson, 1989). Lorsque 

le contrôle d'un processus de fabrication est nécessaire, l'outil commun est 

souvent la maîtrise statistique des procédés (MSP). La conception de 

cartes de contrôle se réfère à la spécification de la taille de l'échantillon, la 

fréquence d'échantillonnage et des limites de contrôle de la carte. Dans le 

passé, toutefois, les facteurs économiques ont été exploités après la mise 

en place des cartes de contrôle. Lall et al. (1991) propose d’intégrer la 

dimension économique dans le modèle de calcul des limites de contrôle. 

Mesurant l’intérêt de la dimension économique dans la génération ou 

sélection des processus d’inspection, la section suivante expliquer le 

modèle du coût prenant en compte les spécificités des activités 

d’inspection (contrôle de conformité et suivi de fabrication). La Section 3.1 

détaille les travaux existants sur les modèles de coût et plus 

particulièrement sur les modèles de cout orienté « qualité ».  

Duret et Pillet (2011) décomposent le coût de la non-qualité en coût 

de gestion de la qualité et en coût de la défaillance. Les coûts sont donc 

décomposés de manière suivante : 

 Coût de gestion de la qualité : 

o Coût de la prévention : Le coût des actions visant à éviter  la non 

– qualité, le suivi de fabrication, la maintenance préventive, … 
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o Coût de la détection : Le coût des activités de vérification de la 

qualité, la mesure et l’observation des résultats par inspections 

et tests… 

 Coût de la défaillance : 

o Coût de la défaillance interne : Le coût engendré par des 

activités telles que la reproduction des produits défectueux, le 

maintien des produits défectueux dans la chaîne de production 

jusqu'à la détection, la réduction de productivité… 

o Coût de la défaillance externe : Le coût engendré par la perte de 

parts de marché, la maintenance de produit externe, la 

réclamation du client, … 

Parmi les catégories de méthodes d’estimation de coût, cet état de 

l’art se focalise donc sur les méthodes analytiques et paramétriques. Afin 

de comprendre les forces et les faiblesses de ces catégories, Etienne 

(2007) propose une comparaison de leur aptitude dans le contexte 

particulier de la maîtrise des variations : 

3.1. Méthodes paramétriques 

Méthodes paramétriques : Cette catégorie comprend les méthodes 

d'évaluation des coûts en utilisant des relations mathématiques reliant 

l’indicateur de coût à d'autres paramètres quantifiables, tels que le volume 

de produit, le temps, etc., rassemblés comme des méthodes paramétriques. 

Parmi les nombreuses références disponibles dans la littérature, trois 

étapes majeures pour cette catégorie sont identifiées ; 

 La première étape, consiste à identifier et collecter tous les 

paramètres et données considérés comme ayant une influence sur 

l'indicateur de coût. Cette activité de sélection de paramètres peut 

être effectuée subjectivement (expérience ou savoir-faire) ou 

objectivement (analyse des composants principaux). 

 L'étape suivante essaie de trouver à partir de plusieurs modèles 

mathématiques celui qui démontre le mieux la relation existante 

liant l'indicateur de performance, et le coût,  aux paramètres 

sélectionnés par l'étape précédente. 
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 La dernière étape consiste à valider le modèle mathématique en 

faisant face à plusieurs cas connus. 

En conclusion, la méthode paramétrique est en soi rapide et facile à 

utiliser une fois les valeurs paramétriques recueillies. Mais contrairement 

aux méthodes analytiques, elle est difficilement déployée dans un 

environnement industriel où les paramètres d'entrée sont à la fois 

contextuels et les liens entre eux complexes. À savoir que les paramètres 

dépendent souvent des ressources disponibles et sont propres à chaque 

entreprise et à chaque problème. En effet, le choix des paramètres et le 

modèle de relation mathématique ont une validité limitée puisqu'ils 

dépendent de plusieurs caractéristiques (la localisation de l'entreprise, le 

matériel, les machines, les conditions de coupe, …). En outre, l'évaluation 

de ces paramètres est coûteuse en termes de temps et en ressources. 

3.2. Méthodes analytiques 

Méthodes analytiques : Les approches analytiques ont pour but 

également d’évaluer le coût d'une solution en analysant les tâches et 

activités nécessaires au cours de l'ensemble de son cycle de vie 

(conception, fabrication, recyclage ...). Les activités principales sont 

responsables de coûts directs ou indirects et de variations. Parmi les 

différentes solutions analytiques disponibles, tel que la méthode des form 

features (Feng et al., 1996) et l’entité coût, ce document se concentre 

uniquement sur la méthode Activity Based Costing (ABC). La méthode ABC 

a été principalement développée dans les années 1980 (Johnson and 

Kaplan, 1987). Elle consiste à effectuer un « Break down » des activités 

engagées à la réalisation des objectifs d’une façon directe (productive) ou 

indirecte (non-productive). La méthode ABC identifie les liens de la 

consommation et de la causalité entre les produits, les activités, et les 

ressources. Ces liens sont quantifiés et font émerger le coût avec trois 

inducteurs : 

 Inducteur de ressource qui est utilisé pour allouer les ressources 

entre les activités. Cet inducteur facilite l'évaluation des coûts. 

 Inducteur de coût décrivant le niveau de performance de l'activité et 

sa consommation de ressources. 
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 Inducteur d'activité qui est égal à l'unité de travail. Cet inducteur 

permet de répartir les coûts des activités entre les objets de coûts. 

Cette méthode évalue, d’une façon relativement précise et simple à la 

fois (contrairement aux méthodes paramétriques souvent associées aux 

modèles mathématiques complexes), le coût du produit réel car il prend 

en compte les coûts indirects. Néanmoins, la méthode ABC, qui semble être 

une approche assez puissante et générique, doit faire face à des enjeux 

majeurs. En effet, la difficulté d'identifier et d'évaluer les inducteurs reste 

le principal inconvénient de cette méthode.… 

3.3. Modèles de cout orienté « qualité » 

Etienne (2007) a établi un modèle d’estimation où l’efficacité de 

l’ensemble d’une allocation de tolérance et de son processus de fabrication 

est mesurée par « le coût pondéré qualité » (Éq. I). Il met en avant la 

flexibilité de ce modèle et la possibilité d’enrichissement de ce dernier par 

d’autres coûts (logistiques, environnementaux, …) et d’autres facteurs 

d’efficacité. 

𝐶𝑜𝑢𝑡 =
𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑃(𝑂𝐾)
+ 𝐶𝑟𝑒𝑡𝑟𝑎𝑖𝑡𝑒𝑚𝑒𝑛𝑡. 𝑃(𝑁𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑒)

+ 𝐶𝑟é𝑎𝑠𝑠𝑜𝑟𝑡𝑖𝑚𝑒𝑛𝑡. 𝑃(𝑁𝑜𝑛𝑀𝑜𝑛𝑡𝑎𝑏𝑙𝑒) + ⋯ 
(I) 

 

Le modèle se décompose en trois parties : 

 Le coût de production des produits satisfaisant l’ensemble des 

contraintes, spécifications, ou exigences. Il est considéré que le coût 

de production est pondéré par l’efficacité du processus employé, 

 Le coût de retraitement des pièces ou produits non-conformes, 

 Le coût de réassortiment des produits dû à une inadéquation entre 

les spécifications et les exigences fonctionnelles ou d’assemblage. 

Moroni et al. (2011) présentent une méthodologie pour l’estimation 

du coût d’inspection des tolérances géométriques dès les étapes 

préliminaires de la conception. Il considère le coût d’inspection comme la 

somme des coûts de mesures et d’incertitudes. Le coût de mesure dépend 

en soi de la stratégie de mesure, la mise en place du poste de mesure, et le 
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temps de mesure (qui varie selon les instruments de mesure discrète ou 

les instruments de mesure continue) qui sont généralement fixes et 

estimables d’une manière ponctuelle. L’estimation du coût lié aux 

incertitudes de mesure est ensuite proposée par une approche 

probabiliste. L’objectif est l’optimisation du coût d’inspection (en fonction 

des limites de spécification) étant donné les facteurs qui pourraient 

entraîner des effets opposés sur les deux parties du coût total ou même 

entre eux comme la taille de l’échantillon qui diminue l’incertitude de 

mesure et donc son coût relatif et qui augmente le coût de mesure. 

Savio (2012) propose une estimation du coût d’inspection associée 

par un seul modèle au coût de processus de fabrication pour l’évaluation 

d’impact économique de la métrologie sur l’ensemble des décisions 

relatives au processus de fabrication et à l’inspection. Il met en avant un « 

cost-benefit model », bien que la nature des bénéfices, tels que 

l'amélioration de la fiabilité du produit et la réduction relative des coûts de 

garantie, rende difficile leurs quantifications. Par ce modèle, il propose 

avant tout l’évaluation économique d’investissement par le coût initial de 

l'investissement, le taux d’intérêt, …. Ensuite se décompose le bénéfice 

d’inspection en : 

 L’économie de la réduction de la fabrication inefficace en raison des 

activités à valeur ajoutée sur les pièces défectueuses, 

 L’économie de la réduction des coûts de garantie des produits 

défectueux entrés sur le marché, 

 L’économie rendue possible par l'augmentation du savoir-faire, par 

exemple, une meilleure compréhension de la fonctionnalité des 

produits, élargissement de la zone de tolérance, meilleure 

connaissance des processus de fabrication,  

 … . 

L’estimation de tous ces coûts s’ajoute aux coûts directs du processus 

d’inspection comme celui engendré par l’erreur d’inspection, calculé en 

fonction de la capabilité du processus et des limites de tolérance. 
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Les deux dernières méthodologies Moroni et al. (2011) et Savio 

(2012), peuvent être complémentaires puisqu’elles partagent la même 

vision en ce qui concerne la décomposition des coûts. 

L’ensemble des modèles d’estimation de coût proposés par la 

littérature tendent non seulement à estimer le coût, mais aussi à étudier 

l'efficacité des solutions, que ce soit sur l'allocation des tolérances, le 

processus ou le plan d'inspection, et les origines de la non-efficacité. 

Indépendamment du stade de la conception et du niveau de précision de 

l'information, il est nécessaire d'évaluer la pertinence des alternatives de 

la conception. Puisqu’il est insuffisant de traiter uniquement la dimension 

financière de leur performance, ces modèles proposent un point de vue 

multicritères, la satisfaction du client et le coût. Une analyse multi-niveaux 

se présente également par le biais des facteurs intervenant : taux de non-

conformité de produit, fréquence de maintenance préventive inhérente au 

processus, taux de non-détection des moyens d’inspection, … Il existe 

également dans la littérature, des travaux visant l’estimation de coût des 

risques (Mirdamadi et al., 2013, 2014 ; Hassan, 2010). 

 

4. Formalisation Mathématique du problème de planification des 

activités d’inspection 

 

Cette section explique le problème fondamental de cette thèse. Dans 

la section 4.1, une introduction générale détaille la planification de 

l'inspection dans le système de production. Dans la section 4.2, le 

problème est détaillé avec les décisions correspondantes. Les contraintes 

et les objectifs sont expliqués dans la section 4.3.  

4.1. Planification de l'inspection dans un système de production  

Pour la quasi-totalité des systèmes de production, les matières 

premières passent sous une série d'étapes de traitement distinctes et sont 

transformés en produits finals. Dans de tels systèmes, la sortie de chaque 

étage de traitement (pas la dernière) est l'entrée pour l'étape suivante. En 

raison de conditions de production non idéales et la nature stochastique 

des processus de production, à chaque étape, des écarts par rapport aux 

spécifications de conception se produisent qui conduisent à des produits 

de moindre qualité. 
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L’inspection de qualité dans les systèmes de production multi-étapes 

(MPSs) est devenue une question difficile étant donné que le MPS présente 

différentes possibilités pour l'inspection. Dans de tels systèmes, 

l'inspection de la qualité correspond généralement à identifier les 

éléments non conformes qui sont réparables et à supprimer les éléments 

irréparables. Ces activités augmentent le coût de production puisque 

certaines ou la totalité des étapes de fabrication doivent être dupliquées. 

D'autre part, le passage des éléments non conformes détectés à des étapes 

ultérieures de la fabrication augmente les coûts de production en 

augmentant le nombre d'étapes de reprise nécessaires pour restaurer une 

qualité à travers de multiples étapes de fabrication. 

Il peut y avoir deux stratégies différentes, premièrement, la 

localisation d'une station d'inspection après chaque étape de fabrication et 

de détecter les objets non conformes immédiatement après l'opération 

correspondante de cette phase. Cela permettrait de réduire la probabilité 

de propagation des articles défectueux dans la suite du processus de 

production. Cependant, le coût de l'inspection après chaque étape de 

fabrication dans le processus de production pourrait être plus que les 

économies obtenues par la détection précoce d'éléments non conformes. 

Deuxièmement, l'inspection pourrait être déployée après l'étape de 

production finale et à aucun autre emplacement. Bien que cette stratégie 

diminue le coût des activités d'inspection, mais si une non-conformité 

dans le produit final correspond à la première étape, il pourrait être 

nécessaire de répéter toutes les étapes de fabrication, qui conduisent à 

l'augmentation du coût de la production totale. Afin de minimiser le coût 

de fabrication, en termes de production, d'inspection, et d’ajustement, il 

est essentiel de faire un bilan des différents coûts et de trouver une 

stratégie d'inspection optimale. 

Le problème de trouver le meilleur plan d'inspection est un 

«problème de planification des inspections". Un problème typique de 

planification des inspections dans MPS est d’ (i) identifier les positions et 

les caractéristiques de qualité qui doivent être inspectés et, 

simultanément, de (ii) déterminer le meilleur type et la stratégie pour 

chaque inspection, afin de minimiser le coût total de fabrication.  

Le type d'inspection se compose de deux principaux : «conformité» 

et "Surveillance". L'inspection de la conformité (CI) est un terme 
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générique utilisé pour un certain nombre d'activités (par exemple, les 

tests, l'inspection et la certification) qui analyse si le produit satisfait les 

spécifications. L’inspection de surveillance (MI) est souvent utilisée afin de 

détecter si un processus de fabrication est exécuté dans des conditions 

normales. Dans MI, les paramètres de processus sont surveillés. Si l'un de 

ces paramètres s’écartent de sa tendance normale, un arrêt du système de 

production est opéré et les paramètres sont re-réglés. En plus des types 

d'inspection, la stratégie d’inspection peut comprendre « pas d'inspection 

programmée », une inspection complète, ou une inspection 

d'échantillonnage. 

En plus des préoccupations énumérées des fabricants concernant la 

planification de l'inspection, le manque d'information sur les processus de 

production et sur plusieurs facteurs environnementaux sont devenus 

d'importants défis. Ces situations ont imposé un degré d'incertitude sur 

les paramètres de planification, qui affectent directement les autres 

décisions du processus d'inspection. Bien que, dans toutes les industries, 

la qualité des produits est diminuée en raison des variations de 

fabrication, tels que la dégradation de la performance, non-conformité aux 

spécifications, le coût élevé des ajustements, les méthodes classiques 

considèrent les conditions déterministes lors de la planification d'un 

processus d'inspection, tandis que la fabrication processus sont 

naturellement stochastique. Par conséquent, un pour cent du produit 

manufacturé ne sont pas conformes aux spécifications de conception et 

leurs processus est sensible aux variations de fabrication. 

Traditionnellement, les tolérances serrées ou de mauvaises capabilités des 

processus de fabrication sont sources de rebus et des coûts énormes de 

fabrication. Par conséquent, les fabricants sont intéressés par des 

procédés de fabrication moins sensibles. Ces procédés de fabrication sont 

des processus robustes, qui sont relativement insensibles à la modification 

des paramètres incertains. 

D'une manière générale, plus d’inspections strictes feront 

évidemment augmenter la qualité du produit en termes de satisfaction des 

spécifications de conception de produits et empêchant les produits non 

conformes d'être livré aux clients, mais aussi conduisent à des coûts plus 

élevés de l'inspection et d’ajustement. De plus, l'incertitude dans les 

processus de production pourrait affecter les décisions finales concernant 
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les plans d'inspection. La modélisation de ce problème et donc d'étudier 

les moyens de trouver un plan d'inspection optimale et insensible à la 

modification des paramètres incertains est au cœur de cette recherche. 

4.2. Détails du problème 

Comme énumérés à la section 4.1, les décisions simultanées dans un 

problème de planification des inspections sont triples: (i) quelles 

caractéristiques de qualité doivent être inspectés, (ii) quel type 

d'inspection doit être effectuée pour les caractéristiques de qualité 

sélectionnés, et (iii) où ces inspections devraient être effectuées. Il y a 

aussi une autre décision comme "comment inspecter?". La décision de 

comment correspond à la sélection de l'outil d'inspection. 

En conséquence, la procédure de prise de décision dans un problème 

de planification des inspections, constitué d'une caractéristique de qualité, 

i type d'inspection et n étapes de fabrication a été schématisé à la Figure I. 

Initialement, on vérifie que si l'inspection est nécessaire pour chaque 

caractéristique de la qualité. Le produit peut être transféré à l'étape 

suivante ou au client final si une caractéristique de qualité n’a pas besoin 

d’une opération d’inspection. Ensuite, le produit est inspecté et déclaré 

conforme ou non conforme aux spécifications de conception. Le produit 

est envoyé à l'étape suivante en cas de conformité avec les spécifications 

de conception, mais en cas de produit non conforme, différentes décisions 

peuvent être prises : (a) il peut être retraité et repassé au contrôle, (b) il 

peut être transféré à l'étape suivante en tant que produit dégradé; ou (c) 

qui peuvent être enlevé. 

Bien que la planification d'un processus d'inspection constitue un 

coût supplémentaire, mais il permet d'augmenter la satisfaction du client. 

Dans de tels cas, le coût associé de l'inspection est couvert par les 

bénéfices réalisés par la détection des produits non conformes. 

Il faut noter que, l'inspection après chaque étape de fabrication va 

augmenter les coûts des déchets, retraitement et d’ajustement, et va éviter 

les produits non conformes d'arriver chez les clients. Mais d'autre part, les 

inspections inutiles constituent un énorme coût d'équipement, de 

personnel, de temps et d'espace. Par conséquent, si les inspections sont 

effectuées inutilement, le coût total est considérablement augmenté. 
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Figure 2. Inspection planning problem in a MPS 

 

Le problème de planification des inspections peut être généralisé en 

un problème plus complexe et plus réaliste en tant que multi-produits MPS 

avec l'allocation de la machine et de l'outil d'inspection (PSMIA). Dans 

PSMIA, d'autres objectifs importants sont considérés en plus du coût de 

fabrication telle que la satisfaction du client et le temps de fabrication. 

Il faut noter que le coût minimum de fabrication est idéal pour le 

fabricant, alors que le maximum de satisfaction des clients et le temps 

minimum de fabrication sont souhaités pour les clients. Bien que les 

fabricants souhaitent diminuer les couts, mais aussi ils souhaitent 

atteindre un niveau acceptable de qualité et de production des articles en 

un temps minimal. Par conséquent, ces objectifs sont en conflit : une 

augmentation de la satisfaction de la clientèle génère une augmentation du  

coût de fabrication; une diminution du temps de fabrication génère une 

augmentation du coût de fabrication; et une diminution du coût de 

fabrication conduit à une baisse de la qualité. 
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Tableau I. Détails du problème principal et problème étendu 

Détail Problème 

problème principal problème étendu 

Caractéristiques  Mono-produit 

 Mono-objectif 

 inspection complète 

 inspection complète 

 complète d'inspection 

 Multi-produits 

 Multi- objectifs 

 inspection complète  

 L'inspection d'échantillons 

 Deux types d'inspection 

 Allocation de la machine 

 Allocation de l'outil d'inspection 

 Capacité de production 

 La capacité d'inspection 

 

Décisions  Lesquels les caractéristiques de qualité 

 Quels types d'inspection 

 Où effectuer une inspection 

 Lesquels les caractéristiques de qualité 

 Quels types d'inspection 

 Où effectuer des inspections 

 Quelles machines pour faire fonctionner  

 Quels outils pour inspecter 

Des objectifs  Minimiser les coûts de fabrication  Minimiser les coûts de fabrication 

 Maximiser la satisfaction du client 

 Minimiser le temps de fabrication 
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En résumé, cette thèse propose un modèle de planification des 

activités d’inspection mono-objectif pour déterminer quelles 

caractéristiques de qualité ont besoin de quel type d'inspection et où ces 

inspections devraient être effectuées dans le processus de fabrication. 

Ensuite, il est proposé une généralisation de ce problème en PSMIA : 

optimisation multi objectif. Pour une meilleure compréhension, le détail 

de ces problèmes a été fourni au tableau I, et son expression est détaillée 

dans la section suivante. 

Le cadre considéré a les propriétés suivantes : fabrication de 

produits multiples ; chaque étape correspond à une opération et chaque 

opération porte sur un ensemble de caractéristiques de qualité. Le coût de 

fabrication considéré se compose du coût de production, des coûts fixes et 

variables de l'inspection, et des coûts de garantie quand un élément non 

conforme est chez le client. Bien que la satisfaction du client est un facteur 

naturellement qualitatif, mais dans cette thèse, en minimisant le nombre 

d'éléments non détectés qui sont expédiés aux clients est considéré 

comme un facteur quantitatif  à minimiser. Enfin, le temps de fabrication 

comprend le temps de production, le temps d'inspection, et le temps que 

les éléments en cours de fabrication, doivent attendre de recevoir des 

opérations (opérations de fabrication ou d’inspection). Dans le système 

considéré tous les éléments non conformes sont supposés non réparables 

et ils seront mis au rebut une fois qu'ils sont détectés. En d'autres termes, 

les procédures de reprise ne sont pas considérées dans cette thèse. 

L'opération d'inspection de chaque caractéristique de qualité peut être 

effectuée seulement après les étapes spécifiques à travers l'ensemble du 

processus de production. Par exemple, le processus ne peut être arrêté ou 

l'accessibilité à cette caractéristique est impossible. 

 

4.3. Cadre de l'optimisation 

Considérons un système de production en série avec N étapes dans 

lesquelles in-process les pièces passent successivement depuis l’étage 1 

vers l'étape N et les inspections des unités sont effectuées aux m locations 

(𝑚 ≤ 𝑁). Il faut noter que chaque étape est une opération et un ensemble 

d'opérations peut être effectuée sur la même machine. A chaque étape, une 

pièce (sortie de l'étage immédiatement précédente) rentre dans l'étage de 

production où une opération de fabrication est effectuée sur elle. La 
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production de cette opération est transférée vers un poste d'inspection ou 

de l'étape suivante de production. 

Supposons qu'une pièce ait des caractéristiques qui permettent de 

qualifier chaque étape de production. Toutes les caractéristiques de la 

pièce d’une même étape sont traitées simultanément. Si un CI est effectuée 

entre la i et (i + 1) ième opérations de production, les pièces non 

conformes provenant de l'opération i ou des opérations précédentes sont 

détectées et supprimées et aucun reprise est considérée. En outre, si un MI 

est effectuée entre la i-ième et (i + 1) ième opération de production, les 

caractéristiques de traitement sont suivis par échantillonnage, cette 

opération de MI permet de détecter un déréglage et ne contrôle pas la 

conformité du produit, elle impactera les capabilités de nos process. Les  

opérations d'inspection sont sujettes à des erreurs de type I et II. 

L’idée portée par la conception robuste est de concevoir un produit 

ou un processus moins sensible aux incertitudes plutôt que de supprimer 

les causes de ces variations. C'est-à-dire que les incertitudes sont 

acceptées tant que leurs effets sont maîtrisés. Plusieurs définitions de la 

conception robuste ont été proposées dans la littérature. Dans une revue 

bibliographique sur la conception robuste, (Park et al., 2006) définit la 

conception robuste comme une conception insensible aux variations des 

paramètres intervenant dans le cycle de vie du produit. Il est possible de 

traduire la robustesse du processus d’inspection grâce à l’écriture d’une 

fonction objectif modélisant les coûts associés au processus. La robustesse 

consiste alors à évaluer l’écart du coût réel par rapport au coût nominal.  

La formulation de la fonction objectif dans le cas l’optimisation robuste 

porte sur deux variables : la moyenne et l’écart-type de la fonction objectif 

du modèle déterministe. Nous cherchons à minimiser le cout et sa 

variabilité. La nouvelle formulation de la fonction objectif robuste est 

basée sur une pondération linéaire entre la minimisation de la moyenne 

de la fonction objectif 𝜇𝑓 et son écart-type 𝜎𝑓. Nous considérons nos 

incertitudes comme des variables aléatoires et nous évaluons les 

moyennes et écart type par simulation de Monte Carlo. 

Les modèles mathématiques et leurs résolutions sont détaillés dans 

le manuscrit en anglais. Nous ne détaillerons dans le résumé étendu en 

français que le cas d’étude et les résultats obtenus.  
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5. Illustration 

Pour illustrer la validité des modèles mathématiques proposés et 

l'efficacité des approches robustes et de solutions proposées, un cas 

industriel est considéré comme de la société CERTA Renault 

correspondant à une pompe hydraulique illustrée en Figure 3 avec 15 

caractéristiques de qualité est étudié dans cette thèse. 

La raison du choix des cas d'étude est principalement la disponibilité 

des données industrielles. La définition géométrique de ces produits ainsi 

que leurs gammes de fabrication sont connues. Ils font l’objet de la 

génération d’un plan d’inspection conformément au positionnement du 

travail de recherche présenté dans ce mémoire de thèse. Dans ce travail de 

recherche nous avons limité l’étude à des spécifications géométriques, 

mais la démarche est évidement valable pour d’autres contextes. 

 

 
Figure 3. La pompe 

Notre étude se focalise sur le carter principal de la pompe dont le 

processus de production comporte 15 opérations qui sont décrites dans le 

Tableau 2 Chaque opération est caractérisée par ces capabilités et la 

fenêtre d’insertion des activités d’inspection relatives aux caractéristiques 

de cette opération.   
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Figure 4. Le Carter CPHC 

 

Tableau 2. Descriptif du processus de fabrication du carter. 
Operation 
Number 

Operation Name Details  
PT Cp Pp AP 

1 Rough milling PL100 0.148 2 1.50 1→13 
2 Rough milling PL100 0.166 2 1.50 2→14 
3 Rough milling PL101 0.133 2 1.66 3→15 
4 Boring CY110 0.154 1.60 1.33 4→10 
5 Rough drilling CY108 & CY109 0.09 2 1.66 5→10 
6 Chamfering CY108 & CY109 0.25 2 1.66 6→6 
7 Chamfering CY100 & CY101 0.257 1.50 1.20 7→15 
8 Boring CY100 0.257 1.50 1.20 8→15 
9 Boring CY101 0.122 1.66 1.30 9→12 
10 Rough drilling CY102 & CY103 0.109 1.66 1.40 10→12 
11 Rough drilling CY111 0.134 1.66 1.40 11→15 
12 Boring CY108 & CY109 0.122 1.30 1.10 12→15 
13 Boring CY102 & CY103 0.122 1.30 1 13→15 
14 Boring CY111 0.117 1.66 1.33 14→15 
15 Finish milling PL100 0.129 1.66 1.33 15→15 

 

La Figure 5 synthétise l’ensemble des résultats  de cette étude de cas. 

La première solution correspond à la solution du modèle déterministe 

sans considération des incertitudes et donc sans considération des 

décentrages et déréglages possibles. Cette première solution ne comporte 

que des activités de surveillance et aucune activité de contrôle de 

conformité. Les solutions suivantes correspondent à des solutions de 

l’optimisation robuste qui pour les premières se focalisent uniquement sur 

un paramètre incertain et pour la dernière l’ensemble des paramètres 

incertains.  Cette étude de cas montre que le principal paramètre incertain 
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qui impacte la solution est le décentrage ou déréglage du système de 

production, que les erreurs de type I et II n’impactent pas la solution avec 

des amplitudes de variations de 20% de leur valeur (cette variation 

correspond à une probabilité d’avoir une pièce mauvaise qui soit déclarée 

bonne de l’ordre de 10-7). La présence de ces incertitudes génère des 

contrôles de conformité qui sont principalement placés à la fin du 

processus de production. Les solutions optimales identifiées sont proches 

des solutions pratiquées dans le secteur de l’automobile suite à des 

préséries.    

 

 

Figure 5. Les processus d’inspection obtenus 

 

Le modèle précédent était relatif à une ligne de production. Une 

extension de celui-ci a été proposée afin de pouvoir traiter la planification 

des opérations d’inspection dans le cas d’un système de production 

flexible par ilots. Le modèle inclut les trois objectifs cités dans la section 4 

et 4 postes de contrôle flexibles avec des files d’attente ; la Figure 6 illustre 

les résultats obtenus dans ce cas. Cette solution permet un équilibrage des 

charges entre les 4 postes. 

Les solutions robustes sont analysées en procédant à une analyse de 

sensibilité locale des principaux paramètres sur les valeurs prises par les 

fonctions objectifs, les couts et les changements de solution. La figure 7 

synthétise les résultats de cette analyse de sensibilité locale. Ces résultats 
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nécessitent une interprétation supplémentaire en calculant les ratios de 

variations : le plus grand ratio est celui du décentrage (36,8%) et le plus 

faible celui de l’erreur de type II (0,1%). Ce constat sur cette étude de cas 

ne permet de conclure sur des tendances génériques. 

 

 

Figure 6. Les processus d’inspection avec 4 postes de métrologie 

 

 

Figure 7. Sensibilité locale du cout  au regard des variations des 

paramètres principaux. 

 

La robustesse du processus d’inspection a un cout. Afin de compléter 

l’analyse de sensibilité, une analyse de l’augmentation du cout inhérent 

aux modifications du processus d’inspection a été faite, elle est synthétisée 

dans la figure 8. Cette analyse prend comme référence le cout du 

processus d’inspection identifié pour le problème déterministe.  La 

conclusion est identique qu’avec l’analyse de sensibilité, le déréglage est le 

paramètre incertain qui coute le plus cher. 
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Figure 8. Cout des modifications inhérentes à la prise en compte de 

certaines incertitudes 

 

Les études précédentes ont montré que le déréglage était le 

paramètre incertain le plus impactant. Une analyse de sensibilité sur 

plusieurs points (plusieurs valeurs de déréglage) a été réalisée. Cette 

analyse montre que la sensibilité n’est pas linéaire mais quadratique 

(Figure 9). 

 

 

Figure 9. Analyse de sensibilité du déréglage 
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6. Conclusion 

 

Au terme de ce travail, nous nous proposons de rappeler la 

problématique, les objectifs, et la méthodologie de recherche suivie. Un 

bilan de ce qui a été réalisé et apporté en réponse aux attentes, est ensuite 

établi. 

A ce stade la problématique peut être reformulée ainsi : 

« Comment générer un plan d’inspection optimal par une prise de 

décision multicritères, via la co-planification robuste des activités de 

contrôle de conformité du produit et de suivi de fabrication du processus ? 

» 

A l’issue des premières sections, le contexte global a été introduit 

notamment par la définition des concepts relatifs à ces travaux. Cela nous 

a permis de justifier le rôle de l’inspection des caractéristiques pour 

garantir la qualité. Le concept d’inspection se décline en deux facettes 

perçues par les industriels : le contrôle de conformité du produit et le suivi 

de fabrication du processus. 

Pour optimiser ces plans d’inspection nous nous sommes intéressés 

à leurs objectifs stratégiques en particulier le cout afin de formuler un 

modèle mathématique. 

Une expérimentation à dimension industrielle nous a permis de 

valider l’applicabilité, de comparer différentes stratégies et de comparer 

différents algorithmes d’optimisation. 

Les perspectives principales sont déclinées comme suit, selon leurs 

rôles et les limites tirées du bilan qui doivent être dégagées : 

- Extension du modèle pour la prise en compte d’autres aspects du 

monde industriel, 

- La prise en compte de la précision des connaissances des experts 

et l’évaluation de la robustesse des solutions au regard de ces 

méconnaissances, 

- La planification de l’ensemble des activités de qualité (inspection, 

plan d’expérience, AMDEC, …). 
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1.0. Chapter purpose and outline 

This Chapter provides a general view of under study problem and there is no 

intention to provide in-depth details on the models and approaches discussed, but 

rather to introduce some of the underlying assumptions and novelties used 

throughout this thesis, and to position the thesis subject in its research domain. 

Accordingly, Section 1.1 provides an informative introduction on the problem and 

the necessity of this research. Section 1.2 describes the problem and represents the 

underlying assumptions and the main decisions that should be made in the problem. 

The scope of this problem and main objectives are outlined in Section 1.3 following 

by solution methodology to solve the problem and achieve the objectives in Section 

1.4. Section 1.5 explains the contributions and novelties of this study and the 

organization of the thesis will be presented in Section 1.6.  

 

1.1. Introduction 

In recent decades, the egregious importance of total quality management has 

been completely clarified to all industries. In order to maintain profitable and stay in 

a competitive edge, reaching to high quality level of products, processes and services 

has been nowadays a vital issue in many organizations, while they cannot survive 

without providing high quality products. For this aim, manufacturers are applying a 

variety of tools to improve quality throughout the production process such as Six 

Sigma, statistical process control (SPC), process improvement, inspection, robust 

design, etc. 

Through technologically incapable production processes, manufacturers 

encounter different external factors resulting in quality problem such as inefficient 

design of products, incapable production techniques, defective equipment and 

inferior raw materials. Accordingly, production managers are attempting to provide 

a quality control system to achieve high-quality products in the presence of such 

pesky external factors. The achievement of quality involves many different aspects, 

yielding different fields of study: designing quality, manufacturing quality, servicing 

quality and managing quality. In this thesis, focus is on a specific tool for achieving 

high manufacturing quality: quality inspections. 

Inspection can be defined as “an organized examination or formal evaluation 

exercise. Inspection involves examination, measurement, testing, gauging, and 

comparison of materials or items. An inspection determines if the material or item is 

in proper quantity and condition, and if it conforms to the applicable or specified 

requirements” (Winchell, 1996). 

Inspecting the quality of products to remove nonconforming items before 

delivering to the customers is comprehensively performed in every production 
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system, in which the quality characteristics of a product are evaluated possibly at 

several phases in its production process. If a nonconforming item is found, it can 

either be reworked or scrapped. The domain of quality inspection of production 

processes studies the costs and benefits related to these efforts for obtaining 

manufacturing or service quality. 

In almost all production systems, raw materials undergo a series of distinct 

processing stages and are transformed into the finish products. In such systems, the 

output of each processing stage (not the last) is the input for the next stage. Due to 

non-ideal production conditions and stochastic nature of the production processes at 

each stage, deviations from design specifications occur that lead to lower quality of 

products.  

Quality inspection in multistage production systems (MPSs) has become a 

challenging issue and this is because the MPS presents various possibilities for 

inspection. In such systems, quality inspection is generally corresponds to rework for 

nonconforming items which are repairable and to scrap the unrepairable items. 

These activities increase the cost of production since some or all of the processing 

stages must be duplicated. On the other hand, passing the undetected nonconforming 

items through subsequent manufacturing stages increases production costs by 

increasing the number of rework stages needed to restore a unit back through 

multiple manufacturing stages.  

There might be two different strategies, first, locating an inspection station 

after each manufacturing stage and detect nonconforming items immediately after 

corresponding operation of that stage. This would reduce the likelihood of shipping 

defective items across the production process. However, the cost of inspecting after 

each manufacturing stage in the production process might be more than the savings 

obtained by the early detection of nonconforming items. Second, inspection could be 

used after the final processing stage and at no other location. Although this strategy 

would decrease the cost of the inspection activities, but if there would be a 

nonconformance in the finish product corresponding to stage one, it might be 

necessary to repeat all manufacturing stages, that lead to increase in total production 

cost. In order to minimize the manufacturing cost, in terms of production, inspection, 

scrap and rework, it is vital to make a balance in different costs and find an optimal 

inspection strategy. 

The problem of finding the best inspection plan is an “inspection planning 

problem”. A typical inspection planning problem in a MPS is to (i) identify the 

locations where the quality characteristics should be inspected and simultaneously 

(ii) determine the best type and strategy for each inspection, in order to minimize 

total manufacturing cost. Inspection type consists of two main “Conformity” and 

“Monitoring” inspections. Conformity inspection (CI) is a collective term used for a 

number of activities (e.g., testing, inspection and certification) to specify whether a 

product has met the designed characteristics. Monitoring inspection (MI) is often 

employed in order to detect whether a manufacturing process is running under 

normal conditions. In MI, the process parameters are watched over by the plant 
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operators. If one of these parameters deviates from its normal trend, a faulty 

condition is alarmed and the parameters are adjusted. In addition to inspection 

types, inspection strategy includes no inspection, full inspection, or sampling 

inspection (see Chapter 2 for more information). 

In addition to enumerated concerns of manufacturers regarding to inspection 

planning, lack of information about production processes and several environmental 

factors have become important challenges. These situations have imposed a degree 

of uncertainty to the planning parameters, which directly affect other decisions of 

inspection process. Although, in all industries, quality of products is decreased due to 

manufacturing variations such as performance degradation, non-conformance to 

specifications, high cost of redesign or scrap and failure, classical methods consider 

deterministic conditions during the planning of an inspection process, while 

manufacturing processes are stochastic in nature. Consequently, a percent of the 

manufactured product do not conform design specifications and their processes is 

sensitive to manufacturing variations. Traditionally, tight tolerance or a higher 

precision manufacturing process was applied to solve this issue, which leads to huge 

manufacturing cost. Hence, manufacturers are interested in less sensitive 

manufacturing processes. These manufacturing processes are robust processes, 

which are relatively insensitive to alteration of uncertain parameters. 

Broadly speaking, more and strict inspections will obviously increase the 

product quality in terms of reaching product design specifications and preventing 

nonconforming items from reaching the customers, but will also leads to higher costs 

of inspection, scrap and rework. Furthermore, uncertainty in production processes 

might affect final decisions regarding to inspection plans. Modeling this trade-off and 

thus investigating ways of finding an optimal inspection plan that is insensitive to 

alteration of uncertain parameters is at the heart of this research. 

 

1.2. Problem statement 

As enumerated at Section 1.1, the main simultaneous decisions in an 

inspection planning problem in a MPS are threefold: (i) which quality characteristics 

need to be inspected, (ii) what type of inspection should be performed for selected 

quality characteristics, and (iii) where these inspections should be performed. There 

would be also another decision like how to inspect. The how decision usually 

corresponds to selection of the inspection tool. Accordingly, the procedure of making 

decisions in an inspection planning problem in a MPS, consisting of k quality 

characteristic, i type of inspection and n processing stages has been shown 

schematically in Figure 1.1. Initially, it is checked that whether inspection is needed 

for quality characteristic k. The product may be transferred to the next stage or to the 

final customer unless at least one quality characteristic needs inspection. Next, the 

product is inspected and it may conform or not to the design specifications. The 

product will be sent to the next stage in case of conformance with design 

specification, but in case of nonconforming product, different decisions may be made 

including: (a) they may be reworked and undergo the inspection again, (b) they may 
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be transferred to the next stage as downgraded products; or (c) they may be 

scrapped.  

Although planning an inspection process in a MPS constitutes an additional 

cost, but in imperfect manufacturing systems, specific level of inspection will 

decrease total cost of manufacturing as well as increase the customer satisfaction. In 

such cases, the associated cost of inspection will be covered by the benefits realized 

through the detection of nonconforming products.  

 

 
Figure 1.1. Inspection planning problem in a MPS 

 

It must be noted that although considering inspection after every 

manufacturing stage will decrease the scrap, reworking, and downgrading costs and 

prevent nonconforming products from reaching the customers, but on the other 

hand, unnecessary and often too inspections constitute huge cost of equipment, staff, 
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possible plans for inspecting the product, when the complete enumeration method 

becomes impractical.  

The problem therefore is to determine which quality characteristics need 

what kind of inspection and where these inspections should be performed 

throughout the manufacturing process (i.e., main decisions) to make a balance 

between minimizing the total cost, by preventing nonconforming products from 

reaching the customer and maintaining the required level of quality. This inspection 

planning is the main problem this thesis tries to model and solve. But this typical 

problem is generalized as follow. 

The under study inspection planning problem can be generalized into more 

complex and more realistic multi-product MPS with machine and inspection tool 

allocation (PSMIA). In PSMIA, other important objectives raise beside to 

manufacturing cost including customer satisfaction and manufacturing time. It is 

noteworthy that minimum manufacturing cost is ideal for manufacturer, while 

maximum customer satisfaction and minimum manufacturing time are desired for 

customers. Although manufacturers eager to cost less, but reaching acceptable 

quality level as well as producing items in lower time to satisfy the customers forces 

manufacturers to cost more. Accordingly, these objectives are in conflict where 

higher customer satisfaction needs higher manufacturing cost; lower manufacturing 

time needs higher manufacturing cost; and lower manufacturing cost may lead to 

lower quality (i.e., lower manufacturing time may need to ignore time-consuming 

inspection activities and this event leads to lower quality and consequently lower 

customer satisfaction).      

Summarized, this thesis first proposes and solves a single-objective inspection 

planning model to determine which quality characteristics need what kind of 

inspection and where these inspections should be performed throughout the 

manufacturing process. Hereafter, the first part is named the Main Problem. Next, it is 

tried to generalize the Main Problem into PSMIA, namely Extended Problem. For 

better understanding, the detail of these problems has been provided as Table 1.1. 

 

1.3. Scope and objectives 

The purpose of this thesis is to develop a framework that addresses the 

inspection planning problem (see Table 1.1) to mainly determine which quality 

characteristics need what kind of inspection and where these inspections should be 

performed throughout the manufacturing process as well as to allocate machines to 

process the products and assign tools for inspections in a MPS in order to minimize 

manufacturing cost, maximize customer satisfaction, and minimize manufacturing 

time. In addition and due to the stochastic nature of production systems, the 

framework in considered under uncertainty and finally a framework is developed 

that is insensitive to the variability of the production system. Accordingly, an 

optimization framework is developed to achieve the objectives.   
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Table 1.1. Details of Main Problem and Extended Problem 

Detail Problem 

Main Problem Extended Problem 

Features  Single-product 

 Single-objective 

 Full inspection 

 Two inspection types 

 Multi-product 

 Multi-objective 

 Full inspection 

 Sampling inspection 

 Two inspection types 

 Machine allocation 

 Inspection tool allocation 

 Production capacity 

 Inspection capacity 

 

Decisions  Which quality characteristics 

 What types of inspection 

 Where to perform inspection 

 Which quality characteristics 

 What types of inspection 

 Where to perform inspections 

 Which machines to operate 

 Which tools to inspect  

 

Objectives  Minimizing manufacturing cost  Minimizing manufacturing cost 

 Maximizing customer satisfaction 

 Minimizing manufacturing time 

 

The scope under consideration is a MPS processing multiple products, where 

each stage corresponds to one operation and each operation deals with a set of 

quality characteristics. The considered manufacturing cost consists of the cost of 

production, fixed and variable costs of inspection, and warranty costs when a 

nonconforming item reach customers. Although customer satisfaction is a qualitative 

factor in nature, but in this thesis, minimizing the number of undetected items that 

are shipped to the customers is considered to maximize the customer satisfaction. 

Finally, manufacturing time includes production time, inspection time, and the time 

that in-process items must wait to receive services (i.e., operation or inspection 

services). In the system considered all nonconforming items are assumed to be no 

repairable and they will be scrapped once they are detected. In other words, rework 

procedures are not considered in this thesis. The inspection operation of each quality 

characteristic can be performed only after specific stages across the overall 

production process. For example, the process cannot be stopped or accessibility to 

that characteristic is impossible unless some furthers specific stages.  

 

1.4. Research methodology 

According to Section 1.3, this thesis proposes an optimization framework that 

addresses the inspection planning problem to mainly determine which quality 

characteristics need what kind of inspection and where these inspections should be 

performed throughout the manufacturing process as well as to allocate machines to 
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process the products and assign tools for inspections in a MPS processing multiple 

products. The aim is to minimize manufacturing cost, maximize customer 

satisfaction, and minimize manufacturing time.  

The above research is realized through a methodology with following steps: 

 

 Step 1: Specification of needs, specification of problem scope, specification of 

computation requirements, extensive bibliographic analysis of the scientific 

approaches and problem definition. 

 Step 2: Problem formulation and development of models, approaches and 

concepts. Qualitative comparisons with the existing approaches and concepts. 

 Step 3: Solving the models and implementing various approaches. 

 Step 4: Efficiency assessment, approaches comparison and conclusions. 

 

1.5. Thesis contribution 

There are several researches that have studied quality inspection problem in 

MPS, namely Inspection allocation problem. In these problems, the goal is 

determining the location of inspection stations throughout the production system as 

well as determining the inspection strategy in order to minimize total manufacturing 

cost (Chakravarty and Shtub, 1987; Yum and McDowell, 1987; Emmons and 

Rabinowitz, 2002; Shiau, 2002, 2003a, 2003b; Hanne and Nickel, 2005; Shiau et al., 

2007; Agrawal, 2007; Azadeh et al., 2012). These studies have developed a cost 

model including production, inspection, rework and penalty costs, and tried to solve 

the model with different methods consisting of heuristics, meta-heuristics and 

mixed-integer linear programming approaches.  

This research has been defined under a joint program between “School of 

industrial engineering” from University of Tehran (Iran) and LCFC1 laboratory from 

Ecole Nationale Supérieure d'Arts et Métiers-ENSAM (France). This work is the 

continuation of previous works done by Etienne (2007), Hassan (2010) and 

Mirdamadi (2014) in the LCFC laboratory.  

The contributions that differentiate this research from those of previously 

published in the literature, are as follows: 

 Making simultaneous decision regarding to the quality characteristics that needs 

inspection, the location of inspection of each quality characteristic and the type 

of inspections, 

 Considering different locations to perform the inspection of each quality 

characteristic throughout the manufacturing system, 

 Developing mixed-integer linear and non-linear programming models to 

optimally solve the inspection planning problem, 

 Designing a multi-objective mathematical model in order to minimize total 

manufacturing cost, maximizing customer satisfaction, and minimizing 

manufacturing time. 

                                                           
1 Laboratoire de Conception, Fabrication Commande 
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 Considering different machines for processing each quality characteristic, where 

different machines have different features such as failure rate, production time, 

production cost, capacity, etc. 

 Considering different tools for performing inspection of each quality 

characteristic, where different tools have different features such as detection 

rate, inspection time, inspection cost, capacity, etc., 

 Taking capacity constraint for both machines and inspection tools into account, 

 Analyzing and considering the waiting time of machines and inspection tools and 

its effect of time objective function, 

 Utilizing queuing theory to model the waiting time of machines and inspection 

tools,  

 Assuming that machines and inspection tools are subject to disruption and may 

stochastically fail for a period of time, 

 Developing tailored meta-heuristic algorithms for both single and multi-

objective mathematical models. 

 

1.6. Organization of the thesis 

Following the general introduction in Chapter 1, the literature on the earlier 

researches done in the area of inspection planning problem is comprehensively 

reviewed in Chapter 2. Chapter 3 presents the proposed mathematical models for 

Main Problem and Extended Problem as well as the solution approach and developed 

meta-heuristic algorithms. Chapter 4 first explains the case study following by 

experiments and computational results. In addition, a comprehensive sensitivity 

analysis is done in Chapter 4. In order to generalize mathematical model and solution 

approaches in other domains, a part of our findings are applied in transportation 

network design problem. This extension is provided in Chapter 5 by proposing 

mathematical models and solution approaches. Chapter 6 shows the results in 

transportation network design problem. Finally, concluding remarks are presented 

in Chapter 7 as well as future research directions and limitations of this study.  
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2.0. Chapter purpose and outline 

In the Chapter 1, the general framework of the inspection planning problem 

including the main assumption, main decisions, and new ideas were outlined. This 

Chapter reviews the literature on the proposed models and solution approaches, 

applied in quality inspection perspective, to determine optimal inspection plans in 

MPSs. After an introduction in Section 2.1 and providing a comprehensive 

terminology of inspection planning problems, different studies are reviewed whether 

their models have made decisions regarding the location, type and time of 

inspections separately or simultaneously, in Sections 2.2 and 2.3, respectively. 

Finally, Section 2.4 provides a gap analysis based on the papers reviewed in Sections 

2.2 and 2.3.  

 

2.1. Introduction 

In any manufacturing system, reducing variations is one of the most effective 

ways to meet design specifications and reach a high level of product quality. This 

reduction is investigated among different paths through the manufacturing system 

from design to sale phases. The implementation of an optimal inspection plan is one 

of these paths. Effective inspection plans guaranty the product quality while 

minimizing total inspection cost. Obviously, more and tighter inspections lead to 

higher product quality but also induce higher costs of inspection, scrap and rework. 

An optimal inspection plan will balance these aspects.  

In a single-stage production system, inspection plan deals with determining 

the number of inspections as well as the inspection strategy (i.e., no inspection, full 

inspection, sampling inspection). Therefore, the inspection planning problem 

separately investigates an optimal combination of these inspection parameters for 

each stage that minimizes total inspection cost (Van Volsem, 2006). Contrary, in MPSs, 

there are different decisions that must be made for all stages at the same time 

including the number and location of inspection operations throughout the 

production system as well as inspection strategies. 

Accordingly, in typical MPSs the following main decisions are made: 

 

 The number of inspection operations, 

 The location of inspection stations, 

 The inspection strategies. 

 

Developing the optimal inspection plans in MPSs deals with determining these 

main decisions at the same time. In some cases, the decision regarding to the 

inspection tool selection and the question of how to inspect can be made through the 
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inspection plan. This issue makes the problem more complex and leads to a 

simultaneous optimization problem. Although separate optimization has been widely 

studied and well implemented in the literature, the simultaneous optimization has 

not been subject to intense research. 

Before reviewing relevant papers based on separate and simultaneous 

optimizations, some criteria are defined in the subsequent sections to better classify 

the papers. Subsection 2.1.1 discusses the characteristics of the production system 

such as production structure, production flow, inspection type, inspection strategy, 

inspection errors, failure type and rate, and nonconforming strategy. In subsection 

2.1.2, we discuss the methodologies to model the inspection planning problem 

strategy as well as the associated solution methods.  

 

2.1.1. Production system characteristics  

In any industry, a production system can be categorized from the following 

seven major points of view: 1) production structure; 2) production/inspection flow; 

3) inspection type; 4) inspection strategy; 5) inspection errors; 6) failure type and 

rate; and 7) nonconforming strategy. Each of these major categories is described and 

will be divided into sub-categories as well. These categories have been also 

illustrated in detail in Figure 2.1. 

 

Production structure  

According to the reviewed papers and the research of Mandroli et al. (2006), 

most of papers have studied multistage production systems (MPSs) with different 

structures. Accordingly, there are three major production structures based on the 

item flow passing through the MPSs:  

i. Serial structure: in a serial structure, all items pass through the same 

successive stages sequentially.  

ii. Convergent structure: in a convergent structure, each item passes through a 

specific set of successive stages sequentially. In this structure, different paths 

may be converged in a specific stage. On the other hand, each manufacturing 

stage has at most one successor but many predecessor stages. Assembly 

process is an example of this structure. 

iii. Nonserial structure: in a nonserial structure, each item passes through 

different stages sequentially. In this structure, each manufacturing stage may 

have several successors and predecessor stages. 

 

Production/inspection flow 

According to Mandroli et al. (2006), either a single type of product or multiple 

types of products from the same product family can be produced in a production line. 

On the other hand, inspections of a production line can be performed per item or per 

batch (or a lot). Therefore, four possibilities are provided as:  

i. Single production/single inspection, 

ii. Single production/batch inspection, 
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iii. Mixed production/single inspection, 

iv. Mixed production/batch inspection. 

 

Inspection type 

Through inspection planning problem, two different kinds of inspection, 

namely conformity (CI) and monitoring (MI) inspections, are integrated with 

production processes.  

 

i. Conformity inspection: CI is the collective term used for a number of activities 

(e.g., testing, inspection and certification) to specify whether a product has met 

the designed characteristics. In other words, CI determines that a product has 

been correctly manufactured based on the process plan and is in compliance with 

the design requirements. In CI, no deviations from the design specifications are 

allowed where non-conformed items may have to be reproduced or reworked in 

order to bring them into conformance. Therefore, the main aim of CI in 

production is to minimize the risk of manufacturing products that have to be 

rejected instead of being sold (Hinrichs, 2011). In CI, the production process is 

interrupted and the products are checked whether the most important 

characteristics can meet standard specifications.  

ii. Monitoring inspection: since stopping the production process may not be cost-

effective, MI can be taken into account as a process status indicator where 

corresponding features of the process (e.g., feed speed of a drilling machine, force 

and temperature) are checked, not to deviate from their set value. Manufacturing 

process monitoring attracted a considerable amount of attention over the years 

(Liang et al., 2004; Abellan-Nebot and Subirón, 2010). The reason for this is that 

when machining is done within the right tolerances, the required quality of the 

produced part is achieved and hence the monitoring of the machining process 

contributes greatly to the manufacturing quality assurance. MI is needed to 

obtain not only higher productivity and better product quality, but also to identify 

the risks of severe damage to workpieces or machine-tool components. This is 

because the operator reaction time has become insufficient during an emergency, 

and the use of high speeds can cause serious damages (Ritou et al., 2014). 

 

Inspection strategy 

As enumerated in Section 1, different inspection strategies have been adopted 

by the researchers as: 

i. No inspection: In this strategy, some quality characteristics are not inspected. 

ii. Full inspection: In this strategy, if we decide to inspect a quality characteristic, all 

items are inspected. 

iii. Sampling inspection: In this strategy, if we decide to inspect a quality 

characteristic, a sample of items is inspected. 
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Inspection errors 

An inspection operation may involve errors of two types:  

i. Error type I: misclassification of a conforming component as non-conforming 

ii. Error type II: and nonconforming one as conforming (type II error). 

 

Failure rate and type 

Failure rate is the proportion of defective items among all items produced by 

a manufacturing stage (Mandroli et al., 2006). In the literature, a known constant 

failure rate for all operations has been considered by some authors, whereas others 

have considered either a possible range of failure rates or random failure following 

certain distribution. From another aspect, two single and multiple failure types have 

been assumed by researchers. In single type failure, there is only one failure rate 

corresponding to the failure type, while in multiple types, a vector of failure rates are 

associated with each type of failure (Mandroli et al., 2006). Therefore, four potential 

combinations are as follows: 

i. Constant rate/single type, 

ii. Random rate/single type, 

iii. Constant rate/multiple type, 

iv. Random rate/multiple type. 

 

Nonconforming strategy 

Once a nonconforming item is detected during inspection, this item is 

repaired, replaced, or scrapped. The proper action depends not only on the cost 

associated with that subsequent action but also on knowledge of whether the 

nonconformance is reparable since certain types of nonconformance must be 

scrapped.  

Accordingly, researchers have assumed a level of scrapping for nonconforming 

parts (Mandroli et al., 2006). This level can be either deterministic or probabilistic. A 

deterministic level means that for a given type of nonconformance, the scrapping 

level is given and involves three different possibilities as all, none, or some of the 

nonconforming items are scrapped. On the other hand, others have considered a 

probabilistic level for scrapping. This strategy assumes that a nonconforming item is 

scrapped with a given probability. It means that some of items may have a chance to 

be repaired. Based on these explanations, nonconforming strategy is divided into for 

subcategories as follows: 

i. Scrapping all (deterministic), 

ii. Scrapping some (deterministic), 

iii. No scrap (deterministic), 

iv. Probabilistic. 

 

2.1.2. Methodology  

According to the vast literature on inspection planning problems, most of 

researchers have solved the problem through an optimization formulation. Almost all 
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objective functions have been to minimize the total cost including the costs of 

inspection, scrap, rework, warranty, and so on. In this section, different components 

of the cost objective function are discussed first; next, the three fundamental parts of 

an optimization formulation as (i) objective function; (ii) constraint; and (iii) solution 

approach, are discussed. The category of methodology has been illustrated in detail 

in Figure 2.2. 

 

Cost components 

In almost all researches, the authors have considered specific components for 

the cost objective function including production, inspection, and failure costs. The 

failure cost itself contains internal and external cost.  An internal failure cost is 

incurred when nonconforming items are detected before reaching the customers. 

This cost specially reflects the costs associated with reworking, replacing, or 

scrapping a nonconforming item. External failure costs are all costs that 

manufacturer faces with when a nonconforming product is sold and delivered to the 

customers. These costs may be a certain penalty or compensation, as well as the lost 

sales and costs for restoring the reputation of the product. The external failure costs 

have not been taken into account in every research. 

On the other hand, the inspection cost involves two fixed and variables costs. 

The fixed inspection cost corresponds to fixed amount of capital for providing 

inspection tools and the variable cost directly depends on the frequency and number 

of inspected items. The variable inspection cost has been often considered as a linear 

function, in which, the total variable inspection cost is the number of items inspected 

multiplied by the variable inspection cost per item. Some other researchers have 

treated this cost as a quasi-concave function (Britney, 1972).  

 

Objective functions 

The most common form of objective functions in the literature is minimizing 

total expected cost to optimize the inspection plans. Another common treatment is 

expected unit cost, instead of the total expected cost. However there are different 

ways to determine the units. Some papers have computed the expected unit cost as 

total cost divided by the number of input items; i.e., (𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡) (𝑖𝑛𝑝𝑢𝑡 𝑖𝑡𝑒𝑚𝑠)⁄ . 

Another version is dividing total cost by number of output; i.e., 

(𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡) (𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑡𝑒𝑚𝑠)⁄ . Another idea for the second form is dividing total cost 

by the number of conforming outputs; (𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡) (𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑡𝑒𝑚𝑠)⁄ .  

There are only a few authors considering maximization formulations in their 

studies. The maximization objectives have mainly proposed in inspection scheduling 

problems besides to classical inspection planning problem. To the best of our 

knowledge, there is no study that has considered minimizing total manufacturing 

time as well as maximizing customer satisfaction.  
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Constraints 

The constraints in typical inspection planning problem are mostly related to 

the type of production structure, the type of nonconformance, the type of inspection. 

The authors have derived other constraints such as: (i) an upper bound for 

inspection time; (ii) limited number of inspection stations; (iii) limited number of 

rework and the times that an inspection can be repeated; (iv) limited budget for 

manufacturing and inspection actions; (v) a limited places that an inspection can be 

performed, and (vi) a lower bound requirement on throughput or production 

capacity (Mandroli et al., 2006). It is noteworthy that constraints (i) and (ii) can be 

categorized as a special form of constraints (vi) and (iv), respectively. 

Other constraints in inspection plans could be the dependency between 

different quality characteristics that need to be inspected. For example, two quality 

characteristics must be inspected at the same time or vice versa. Besides to quality 

characteristics dependency, operations that realize the characteristics might be 

dependent and there is no possibility to stop a specific operation to inspect a 

characteristic and we have to wait once the second operation is terminated. For more 

information regarding to operation dependency, interested readers are referred to 

the work done by Mirdamadi (2014). There may be other constraints applicable in 

domain of inspection planning problems that have not gained lot of attention such as 

limited capacity of operating machines and inspection tools to treat the items.  

 

Solution approaches 

The authors have proposed a wide variety of approaches for solving small and 

large size instances. In small size instances, approaches such as dynamic 

programming (DP), integer programming (IP) and nonlinear programming (NLP) 

have been utilized. Among these, DP has gained more popularity due to multistage 

structure of production systems following by NLP and IP methods in lower 

popularity.   

An important limitation of these approaches is their incapability of solving 

medium and large size problems due to requirement of high computational time and 

memory. This limitation led to arise of heuristic and metaheuristics algorithms in this 

domain such as Simulated Annealing (SA) and Genetic Algorithms (GAs), while they 

provide near optimal solutions in considerable low computational time. Another 

optimization approach includes using simulation to solve the problem. 
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Figure 2.1. Criteria of production system characteristics  
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Figure 2.2. Criteria of methodology  
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In the following, the literature is first reviewed based on two main categories 

described in Section 2.1 as separate and simultaneous optimizations; next, the 

surveyed papers are analyzed to drag the gaps. 

 

2.2. Separate optimization 

Inspection planning problems have been studied by many researchers since 

the 1960s. As the first attempt, Lindsay and Bishop (1964) proposed a basic 

conceptual model and considered perfect inspection accuracy for workstations of 

attribute data (WAD), in which all nonconforming items were scrapped. They also 

assumed that the inspection station could only check the outcome of the immediately 

preceding workstation. They tried to determine optimal inspection allocation along a 

serial multistage and constant rate production system and perfect inspection. They 

applied dynamic programming approach to solve the model and concluded that this 

solution approach produces expected results. Their important finding is that the total 

cost will only be minimized by an extreme-point solution, such that, at each 

production stage, the cost of optimal inspection level is either 0 (no inspection) or 1 

(full inspection).  

The extension of their study was proposed by White (1966) where the 

nonconforming items are replaced with conforming ones. By adopting the finding of 

Lindsay and Bishop (1964), White (1966) proposed shortest route models to 

determine the optimal inspection allocation in order to minimize the costs of 

inspection, replacement and non-detected defective items (i.e., external failure cost). 

Britney (1972) also extended the work of Lindsay and Bishop (1964) for an n-stage 

nonserial production process. Britney (1972) proposed the optimal level of screening 

at every potential inspection station to minimize total expected cost of inspection, 

repair cost and cost of undetected items. The author reported that for the proposed 

quasi-concave cost structure (i.e., nonlinear inspection cost function), the optimal 

screening program employed either zero or 100% effective screening throughout. 

Finally, a standard branch and bound “backtrack” strategy was developed identify 

optimal screening programs for the proposed unconstrained (0, 1) nonlinear integer 

programming problem.  

Hurst (1973) and Eppen and Hurst (1974) first planned an inspection process 

by investigating the effect of type I and type II inspection errors on the optimal 

inspection allocation decisions. Eppen and Hurst (1974) modeled an inspection 

allocation problem with full inspection strategy by assuming that the inspection 

error probabilities are known at each stage and the probability of detecting a 

defective item is independent of the type of error or the stage where the defect was 

produced. They concluded that their cost objective function is concave and piecewise 

linear. Finally, a dynamic programming based approach was developed to solve the 

model and provide inspection policies for the production system. 

Peters and Williams (1984) investigated the performance of five heuristic 

algorithms to aid in the location of quality inspection stations within a production 



Chapter II: Literature Review 

 

20 
 

line. Their research tried to identify the relations between various cost and process 

characteristics and the operative condition of the heuristics. The five heuristics are 

based on five rules of thumb including: 1) allocating the inspections before to all 

manufacturing stages, 2) allocating the inspections before those high cost 

manufacturing stages, 3) allocating the inspections before those manufacturing 

stages that may make the later detection of defective items more difficult and costly, 

4) allocating inspection after those manufacturing stages with higher probability of 

producing defective items, and 5) allocating inspections at the end of production line. 

The authors examined the performance of the heuristics on an example with 13 

manufacturing stages and concluded that the cost of processing had no significant 

effect of the performance of heuristics, while the production constraints on the 

operating conditions significantly affected the performance of the four heuristics.  

Chakravarty and Shtub (1987) investigated the effect of setup and inventory 

carrying costs on the inspection strategy (i.e., "all or none" versus partial inspection). 

They suggested a shortest path heuristic to determine the strategic location of 

inspection activities and the production lot sizes. Verduzco et al. (2001) presented a 

real-time inspection allocation that is based on the information gained by inspecting 

one additional component. They modeled the selection of which components to be 

inspected as an information maximization problem.  

Saxena et al. (1990) evaluated the performance of four inspection station 

allocation heuristics on the basis of job completion time in serial production systems 

under different operating conditions. The main goal of this paper was to find 

parameters that significantly affect both the performance of the heuristics and cost 

function. The core decision of these heuristics can be stated as 1) performing 

inspections before the manufacturing stages with the longest processing time and 

performing an inspection at the end of the production line, 2) informing inspections 

after manufacturing stages that were more likely to product nonconforming items 

and performing an inspection at the end of the production line, 3) performing 

inspections after each manufacturing stages, and 4) performing an inspection at the 

end of the production line. The authors applied simulation methods to simulate the 

production system and adopted full inspection strategy (i.e., 100% inspection). They 

finally reported the time as the most significant parameter affecting the performance 

of the heuristics. They suggested inspections after each manufacturing stage, when 

the inspection time is high comparing to processing time. On the other hand, 

inspections are recommended after the manufacturing stage that are most likely to 

produce nonconforming items, when the inspection time is low comparing to the 

processing time.  

In addition to decisions regarding the location of inspections, determining the 

optimal sample size and sampling frequency of inspections has been extensively 

studied in terms of Statistical Process Control (SPC) and its applications. Recent 

studies in this field have been oriented towards the investigation of economic 

benefits of adaptive versus control charting as well as towards adaptive sample size 
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and sampling frequency. Other contributors in this field are Montgomery et al. 

(1994), Keats et al. (1997), and Del Castillo and Hurwitz (1997).  

Taneja and Viswanadham (1994) concerned with the problem of location of 

inspection station in a MPS. They developed a cost function that included inspection, 

manufacturing and scrapping cost at each stage of the production process as well as 

penalty cost when a defective item reaches customers. The authors developed a 

genetic algorithm based approach to determine the location of inspection station 

resulting in a minimum expected total cost. Finally, a set of test problems were 

solved using this algorithm. This problem with the same assumptions was solved 

using simulated annealing algorithm in another work by Taneja et al. (1994). 

In a similar work to Taneja and Viswanadham (1994), Viswanadham et al. 

(1996) were concerned with the problem of location of inspection stations in a MPS. 

The authors present two stochastic search algorithms for solving this problem, one 

based on simulated annealing and the other on genetic algorithms. These algorithms 

are developed to determine the location of inspection stations resulting in a 

minimum expected total cost in a multistage manufacturing system. The total cost 

includes inspection, processing and scrapping cost at each stage of the production 

process. A penalty cost is also included in it to account for a defective item which is 

not detected by the inspection scheme. A set of test examples are solved using these 

algorithms. The authors also compare performance of these two algorithms. 

Narahari and Khan (1995) considered re-entrant manufacturing systems 

(such as semiconductor fabrication facilities) with inspections at various stages of 

processing. The authors considered three policies respecting to inspected items, 

namely accept, reject, or rework at some previous stage. The authors proposed re-

entrant lines with probabilistic routing as models for such systems and presented an 

efficient analytical technique based on mean value analysis (MVA) to predict mean 

cycle times and throughput rates. They evaluated the performance of the method 

using several numerical experiments and simulation. They finally concluded that 

performing small number of strategically allocated inspection stations perform 

better than large number of poorly located inspection stations. 

Rabinowitz and Emmons (1997) considered a single inspection facility that 

can be quickly switched among multiple inspection tasks. They introduced their 

study to be used (for example) for detecting malfunction (or down state) production 

stages in a MPS. They assumed that a properly working (or up state) production 

stage moved to a down state in any period with fixed probability. Then, stage stood 

down until it was inspected and immediately restored back to an up state. The 

authors purposed a model to schedule inspections among the different production 

stages so as to maximize the fraction of good items produced. They provided optimal 

inspection schedule for a two stage production system and developed four heuristics 

for the general case of more than two stages. They finally concluded that the 

proposed dynamic schedule was easy to derive, always feasible, and outperformed 

the static schedules.  
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Accordingly, Tagaras (1996, 1998) developed a dynamic programming model 

for the optimization of statistical process control for finite production runs, while a 

dynamic chart allows all three parameters, namely the sampling interval; sample size 

and control limit location.  The major conclusion of this research was that significant 

cost savings may be realized through the application of dynamic control charts and 

even greater benefits may be obtained by investing in process understanding and 

improvements. 

Van Volsem and Van Landeghem (2003) investigated the effect of various cost 

parameters on selection of an optimal inspection policy (i.e., no inspection, full 

inspection, sampling inspection) in a MPS with constant production and inspection 

rates, error-free inspection and perfect rework. Their developed cost function 

included inspection, rework and penalty costs. They used simulation to solve the cost 

function and considered two different problems. The first problem included fixed 

inspection cost but variable rework and penalty costs and the second problem 

consisted of fixed inspection and penalty costs with variable rework cost.  

 

2.3. Simultaneous optimization 

The studies discussed in the Section 2.2 are all limited to single-issue 

optimization. In order to make the main inspection decisions at the same time along 

a MPS, simultaneous or combined optimization approaches are necessary. Since this 

section reviews the most related papers, interested readers are invited to read the 

review of other papers in Appendix 1. 

Bai and Yun (1986) studied an economic design of inspection allocation plan 

for a serial MPS, in which, a product consists of many identical components, only a 

limited number of inspection stations are available, and the rate of production is 

restricted by the rate of inspection. They proposed a cost model and a method of 

finding optimal locations of inspection stations and inspection level (i.e., sampling 

inspection). They also proposed a solution procedure based on dynamic 

programming for solving small size problems and for large size instances a heuristic 

allocation algorithm was presented.  The authors concluded that the developed 

method obtains optimal or near optimal solutions in less computational time even for 

large enough instances. 

Tang (1991) presented an inspection-production model for planning an 

inspection process in an N-stage production system, where each stage performs 

manufacturing operations that are followed by a potential inspection location. The 

proposed model attempts to simultaneously find the inspection location, the number 

of testers at each inspection location and the number of machines at each production 

stage. The model can be used for budget planning, while it makes a trade-off analysis 

between the initial investment and total operating cost.  

Raz and Kapsi (1991) presented an integrated approach to the problem of 

allocation of inspection stations in MPSs. This research addressed multiple 

inspection operations, different disposition policies and inspection (i.e., no 
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inspection, full inspection, sampling inspection), production and repair errors. The 

authors developed quality and cost transfer functions to model production 

operations and different types of inspection operations in a unified manner and to 

facilitate the recursive computations required to evaluate alternative system 

configurations. They formulated the combined inspection location and sequencing 

problem as a nonlinear mathematical programming problem and solved it with a 

branch and bound technique, using a heuristic to generate a feasible solution and 

upper bound. Finally, the authors conducted the developed model on a numerical 

example and showed the performance of the proposed algorithm. 

Veatch (2000) studied the problem of inspection allocation to find inspection 

strategies in a MPS with time varying quality. This research formulated an economic 

cost of quality model with multiple inspection locations and sampling. The model 

was applied to a thermal printer for digital photographs to determine when 

inspection of incoming material should be performed. The authors concluded that 

inspection is cost effective only for parts that were produced with low quality or a 

very high unit cost. In addition, it was reported that sampling inspection was costly 

efficient when there was a significant variation in the defect rate between lots. They 

finally recommended their model to wide range of assembly processes. 

Verduzco et al. (2001) presented inspection allocation that is based on the 

real-time Automated Visual Inspection (AVI) in the electronics assembly industry. 

The problem in this research was determining which components to be inspected at 

each one of the AVI stations such that the available inspection time was used in an 

optimal way. Accordingly, this paper presented a real-time inspection allocation that 

was based on the information gained by inspecting one additional component. The 

authors modeled this problem as an information maximization problem. Besides, a 

modified knapsack greedy heuristic method was used to find near-optimal solutions 

to this optimization problem within the required time constraints. 

The study of Emmons and Rabinowitz (2002) dealt with the layout and 

operation of an inspection system used for detecting malfunctioning processors in a 

MPS. Their problem involved three inter-related decisions including: (i) the overall 

inspection capacity; (ii) the assignment of inspection tasks to inspectors; and (iii) the 

scheduling of the inspector's tasks. Their study ensured a trade-off between the cost 

of inspectors and the loss associated with non-conforming products. In order to 

support these three related decisions, a hierarchical heuristic solution procedure was 

proposed. They reported the performance of the proposed heuristic by comparing 

the results with a lower bound. They finally declared that their results might be 

applicable to any organization, which inspects and maintains a variety of 

characteristics of its branches or activities. 

Kogan and Raz (2002) studied the problem of simultaneously managing the 

intensity, sequence and timing of inspection processes in an N-stage production 

system with M inspection activities possible at each stage. They proposed a cost 

function to be minimized constituting of the sum of the inspection costs and the 
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penalties caused by undetected defects. By means of the maximum principle, they 

proved several properties of the optimal solution that lead to reduction of the 

continuous-time inspection effort allocation problem to a combinatorial one. 

Zhou and Zhao (2002) concerned a problem that involved the selection of 

quality tools and assignment of the tools and quality operations to machine centers 

or inspection stations. They used mathematical modelling approach to minimize the 

total cost respecting customer demands and resource constraints. The authors 

developed five heuristic algorithms based on a tripartite graph representation of the 

original problem, namely random search algorithm, cubic greedy algorithm, edge 

greedy algorithm, single matching algorithm, and double matching algorithm. Based 

on experimental results, the authors showed that the proposed algorithms were 

effective and efficient in terms of computational performance. 

Shiau (2002) studied inspection resource assignment in a multi-stage 

manufacturing system that considering inspection errors. They considered a limited 

number of inspection stations of each inspection station class to solve the inspection 

allocation problem when inspection errors happened due to rapid changes of 

tolerances to satisfy customer requirements. Since determining the optimal 

inspection allocation plan seemed impractical as the problem size became quite 

large, the author developed two heuristic methods by considering the defective rate 

to solve the model, namely earliest stage assignment method and hybrid weighting 

assignment method. Shiau (2002) measured the performance of each method in 

comparison with the enumeration method that generates the optimal solution. The 

higher performance of the hybrid weighting assignment method was reported 

comparing to the earliest stage assignment method in terms of computation. 

As an extension of the work by Shiau (2002), Shiau (2003a) studied the 

problem of allocating inspection stations throughout a MPS with inspection errors 

and limited inspection resources. The author took manufacturing and inspection 

capabilities and tolerances into account in the cost model. In order to solve the 

model, two heuristic methods were developed based on two criteria as sequence 

order of workstations and tolerance interval. Shiau (2003a) measured the 

performance of each method in comparison with the enumeration method that 

generates the optimal solution. The author reported the higher performance of the 

heuristic method based on time efficiency sequence order in comparison with 

tolerance interval method. 

Similarly, Shiau (2003b) studied inspection-allocation planning (IAP) for a 

multiple quality characteristic manufacturing system, in which the production 

recourses are restricted and the limited number of inspection stations, of each 

inspection station class, is considered for solving IAP. This paper solved IAP using a 

unit cost model, in which the manufacturing capability, inspection capability, and 

tolerance specified are simultaneously considered as well as situation of the 

unbalanced tolerance design. 
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Hanne and Nickel (2005) developed a multi-objective inspection planning 

model to find the optimal allocation of inspection station throughout the MPS within 

a software development (SD) project. The authors considered three objectives as (a) 

the quality of the product measured by the eventual overall number of defects of the 

documents produced during a project, (b) the makespan of the project (its duration), 

and (c) the costs or total effort of the project. The developed model of SD processes 

included different phases as coding, inspection, test, and rework and comprised the 

assignment of operations to persons and the generation of a project schedule. For 

solving the proposed multi-objective model, the authors designed an evolutionary 

algorithm combined with some additional scheduling heuristics. The application of 

the algorithm to test instances of the problem showed significant improvements in 

most cases with respect to all of the objectives compared to a first-come first-serve 

solution implicitly used within the original simulation model. 

Feng and Kapur (2006) investigated the economic and statistical effects of 

inspection error on the design of specifications due to imperfect measurement 

systems. In this study, three different models were developed under 100% 

inspection assumption (i.e., full inspection strategy) including: 1) assuming error-

free inspections 2) assuming error for inspections but constant inspection cost, and 

3) assuming error for inspections and variable inspection cost. The objective of all 

three models was to minimize sum of inspection, scrap and quality loss costs. The 

authors proposed a genetic algorithm to optimally solve the models. Finally, 

numerical examples were given to illustrate the applicability of the presented models 

for the disposition of the output of any process for quality improvement. 

Van Volsem et al. (2007) studied the problem of inspection planning for a 

given MPS in order to minimize the total inspection cost, while still assuring a 

required output quality. The problem was modelled as a simultaneous optimization 

to determine the inspection location, type and inspection strategies (i.e., no 

inspection, full inspection, sampling inspection) in order to minimize the sum of 

inspection, rework and penalty costs. The authors suggested a fusion between a 

discrete event simulation to model the multi-stage process subject to inspection and 

to calculate the resulting inspection costs, and an Evolutionary Algorithm (EA) to 

optimize the inspection strategies. The experimental results showed the 

effectiveness and efficiency of the proposed EA algorithm in optimizing the 

inspection planning problem. 

As a remarkable example of simultaneous optimization, Shiau et al. (2007) 

integrated production process and inspection planning problems while higher 

performance of a production industry can be realized if process planning and 

inspection planning become integrated to cope with the limited manufacturing 

resources. On the other hand, since the product variety in batch production or job-

shop production are increased for satisfying the changing requirements of various 

customers, the specified tolerance of each quality characteristic vary from time to 

time. Accordingly, except for finite manufacturing resource constraints, the authors 
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considered the manufacturing capability, inspection capability, and tolerance 

specified by customer requirement for a customized manufacturing system. Due to 

complexity of the proposed model, a genetic algorithm was applied with the realistic 

unit cost embedded to solve the model. The performance of genetic algorithm was 

measured in comparison with the enumeration method. The authors concluded that 

a near-optimal manufacturing resource allocation plan could be determined 

efficiently for meeting the changing requirement of customers as the problem size 

became quite large. 

In a similar work, Penn and Raviv (2008) again studied unreliable serial 

production lines with known failure probabilities for each operation. The aim of this 

research was to simultaneously decide where and if to allocate inspection stations 

throughout the production system and to determine the production rate, so as to 

maximize the steady state expected net profit per time unit from the system. They 

did not consider a specific distribution for arrival rate of jobs and considered holding 

costs equal to zero. Similarly, they proposed two O(N2) and O(N2) time dynamic 

programming algorithms to solve cost minimization and profit maximization models. 

The authors recommended the branch-and-bound algorithm when the holding costs 

are high. They finally reported the high efficiency of their algorithms.  

Rau and Cho (2009) studied the inspection allocation problem in a reentrant 

production system, in which, it is difficult to inspect some defects after they are 

covered by the next layer. They proposed a genetic algorithm (GA) for solving the 

inspection allocation problem. Based on the declaration of the authors, this algorithm 

was very suitable for solving such problem and led to near optimal solutions 

comparing to complete enumeration, because the codes used in the chromosome of 

the GA approach were exactly the same as the representation of the inspection 

allocation policy for workstations in the production system.  

In a new work, Ferreira et al. (2009) studied the problem of determining the 

inspection interval of condition monitoring in a MPS. In their problem, the decision 

variable was represented by the time of next inspection of condition monitoring. The 

authors tried to optimize the model from different points of view by proposing a 

decision model, which could simultaneously determine inspection intervals for 

condition monitoring regarding the failure behavior of equipment to be inspected, 

features of maintainability and decision maker preferences about cost and downtime. 

The proposed model was based on delay time analysis assumptions and a multi-

criteria framework. The authors applied their model in an electric power distribution 

company. By this application, they highlighted the suitability and practicality of the 

model.  

Van Volsem (2010) studied the allocation of inspection stations in a MPS as a 

joint optimization problem by making decision regarding to all inspection 

parameters such as inspection location, inspection type, inspection limits and 

sampling characteristics, in order to obtain an efficient inspection strategy that 

resulted in the lowest total inspection cost. The authors proposed a metaheuristic 
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solution approach, namely an evolutionary algorithm (EA) to solve the model. They 

also used simulation to calculate the inspection costs for every candidate solution.  

Korytkowski (2011) considered a multiproduct MPS in case of allocating 

inspection stations throughout the production system. In the proposed model, part 

types competed with each other for common production resources. In such 

environment, it is important to consider factors such as throughput time variability 

and to include the corresponding queuing aspects into the model. The author 

modeled each workstation as a GI/G/c queue. Finally, the optimal allocation was 

determined by using a genetic algorithm with tournament selection, one–point 

crossover and uniform mutation. 

In a different work, Mousavi et al. (2015) studied the problem of selecting 

important quality characteristics to be inspected in order to minimize inspection cost 

while assuring a high level of quality for the final products. The authors considered 

uncertainty in their selection model by modifying the classical methods. To cope with 

uncertainty of the input parameters, this research introduced a distance-based 

decision model for the multi-attributes analysis by considering the concepts of 

intuitionistic fuzzy sets (IFSs), grey relations and compromise ratio approaches. The 

authors first developed a weighting method for the attributes based on a generalized 

version of the entropy and IFSs along with experts׳ judgments. Then, a new grey 

relational analysis was introduced to analyze the extent of connections between two 

potential scenarios by an intuitionistic fuzzy distance measurement. Finally, an 

intuitionistic fuzzy compromise ratio index to prioritize the scenarios was proposed 

by considering the weight of the strategy for the maximum group utility in 

intuitionistic fuzzy grey environment. Finally, the authors illustrated the feasibility 

and practicability of the proposed selection method by implementing it in a real case 

study to the inspection planning for the oil pump housing from Renault automobile 

manufacturing. 

 

2.4. Conclusion and gap analysis 

According to the elaborated criteria in Section 2.1, the reviewed papers in 

Sections 2.2 and 2.3 are classified into different categories associated with each of the 

criterion. Tables 2.1 and 2.2 represent a summary of the classifications respecting to 

the criteria proposed in subsections 2.1.1 and 2.1.2; i.e., production system 

characteristics and methodology, respectively. Furthermore, Figures 2.3 and shows 

the number of different papers studying each production system characteristic. 

Similarly, Figure 2.4 depicts the number of papers in each sub-category of 

methodology in the inspection planning problem. Regarding to the comprehensive 

survey in domain of inspection planning problems, the following gaps were 

investigated and each of these gaps can be a research direction for future studied.  
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Beightler and Mitten 1964 √    √   √    √   √  √   √    

Lindsay and Bishop 1964 √    √   √    √   √ √      √  

White 1965 √    √   √    √   √ √    √    

Pruzan and Jackson 1967 √    √   √    √   √   √    √  

Brown 1968 √    √   √    √   √ √    √    

White 1969 √    √   √    √   √   √   √   

Ercan 1972 √    √   √    √   √ √    √    

Garey 1972 √   √    √   √    √ √      √  

Woo and Metcalfe 1972 √    √   √   √    √   √    √  

Britney 1972   √ √    √   √    √   √   √   

Hurst  1973 √    √   √    √ √ √  √      √  

Dietrich and Sanders 1974 √    √   √   √    √  √     √  

Eppen  1974 √    √   √    √ √ √  √      √  

Ercan et al. 1974 √    √   √    √   √ √    √    

Trippi 1974 √    √   √    √   √   √   √   

Enrick 1975 √    √   √    √ √ √  √     √   

Trippi 1975 √    √   √    √   √   √  √    

Yum and McDowell 1981   √  √   √   √  √ √  √    √    

Ballou and Pazer 1982 √    √   √    √ √ √  √      √  

Hsu 1984 √    √   √    √   √ √    √    

Peters and Williams 1984 √    √   √    √   √ √     √   

 



Chapter II: Literature Review 

 

29 
 

Table 2.1. Classification of literature based on the production system characteristics (continue) 
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Garcia-Diaz et al. 1984  √  √    √   √   √  √    √    

Ballou and Pazer 1985 √    √   √    √ √ √  √      √  

Gunter and Swanson 1985  √  √    √   √    √ √      √  

Bai and Yun  1986 √     √  √    √ √ √    √    √  

Chakravarty and Shtub 1987 √      √ √    √   √   √     √ 

Lee and Rosenblatt 1987 √   √    √   √  √     √  √    

Peters and Williams 1987 √    √   √    √ √     √    √  

Yum and McDowell 1987 √    √   √    √ √ √  √     √   

Tayi and Ballou 1988 √    √   √    √   √ √    √    

Saxena et al. 1990 √   √    √   √     √      √  

Barad 1990 √    √   √    √ √ √    √     √ 

Foster et al. 1990 √   √    √   √  √ √  √      √  

Kang et al. 1990 √    √   √   √  √ √  √     √   

Raz and Kaspi 1991 √   √    √   √  √ √  √       √ 

Tang 1991 √   √    √   √    √ √      √  

Villalobos and Foster 1991 √   √    √   √  √ √  √      √  

Villalobos et al. 1993 √   √    √   √  √ √  √      √  

Taneja & Viswanadham 1994 √  √ √    √   √  √ √  √      √  

Jewkes 1995 √   √    √   √    √ √    √    

Rebello et al. 1995 √   √    √   √   √    √   √   

Shin 1995 √   √    √   √   √  √    √    
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Table 2.1. Classification of literature based on the production system characteristics (continue) 
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Deliman and Feldman 1996 √   √    √   √   √  √       √ 

Gurnani et al. 1996 √    √   √    √   √ √    √    

Viswandham et al. 1996 √ √   √   √   √  √ √  √      √  

Narahari and Khan 1996   √ √    √   √    √ √       √ 

Chevalier and Wein 1997 √   √    √   √  √ √     √ √    

Rabinowitz and Emmons 1997   √ √    √   √    √ √      √  

Chen et al. 1998 √    √   √   √    √  √   √    

Lee and Unnikrishnan 1998 √      √ √    √ √ √    √   √   

Yao and Zheng 1999a √    √   √   √    √  √   √    

Yao and Zheng 1999b √    √   √   √    √    √ √    

Chen and Thornton 1999   √   √  √   √    √   √   √   

Hassan and Pham 2000 √   √    √   √  √ √  √       √ 

Veatch 2000 √   √ √   √   √   √   √   √   √ 

Zheng 2000  √   √   √   √    √    √ √    

Verduzco et al. 2001  √    √  √    √ √ √    √    √  

Zhou and Zhao  2002 √   √    √   √    √ √      √  

Shiau 2002 √    √   √    √ √ √   √    √   

Emmons and Rabinowitz 2002   √   √  √    √   √ √      √  

Avinadav and Raz 2003 √    √   √   √  √ √   √     √  

Oppermann et al. 2003 √   √    √   √  √ √    √    √ √ 

Van Volsem & Van Landeghem 2003 √   √    √   √    √ √     √   
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Table 2.1. Classification of literature based on the production system characteristics (continue) 
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Shiau 2003a √    √   √    √ √ √   √    √   

Shiau 2003b √    √   √    √ √ √   √    √   

Kakade et al. 2004 √   √    √   √    √   √   √   

Valenzuela et al. 2004 √   √    √   √    √   √   √   

Rau and Chu 2005 √   √    √   √    √   √   √   

Hanne and Nickel 2005 √   √    √   √    √ √     √   

Feng and Kapur 2006 √   √    √  √ √  √ √  √      √  

Shiau et al. 2007 √    √   √   √  √ √  √      √  

Penn and Raviv 2007 √   √    √   √    √   √    √  

Van Volsem et al. 2007 √    √   √   √    √ √     √   

Penn and Raviv 2008 √     √  √   √    √ √      √  

Vaghefi and Sarhangian 2009 √   √    √    √ √ √  √     √   

Ferreira et al.  2009 √   √    √    √   √ √      √  

Rau and Cho 2009 √   √    √   √    √ √     √   

Azadeh and Sangari 2010 √   √    √   √    √ √      √  

Van Volsem 2010 √   √    √   √  √ √   √    √   

Korytkowski 2011 √    √   √   √    √ √      √  

Rau and Cho 2011 √   √    √   √    √ √      √  

Azadeh et al. 2012 √   √    √    √   √ √     √   

Azadeh et al. 2014 √   √    √    √ √ √  √     √   

Mousavi et al. 2015 √   √    √ √   √ √ √  √      √  
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Table 2.2. Classification of literature based on the methodology 
Author Year Cost component Objective 

Function 

Constraint Solution Approach 

Internal 

Failure 

External 

Failure 

Insp. Cost P
ro

d
u

ctio
n

 C
o

st 

T
o

tal/in
p

u
t 

T
o

tal/o
u

tp
u

t 

T
o

tal/C
o

n
f. o

u
tp

u
t 

In
sp

. tim
e 

N
o

. o
f In

sp
. Statio

n
 

N
o

. o
f rep

eated
 

In
sp

.  

B
u

d
get 

D
y

n
am

ic P
ro

g. 

In
teger P

ro
g. 

N
o

n
lin

ear P
ro

g. 

H
eu

ristics &
 

M
etah

eu
ristics 

Sim
u

latio
n

 

R
ew

o
rk

 

R
ep

lace 

Scrap
 

D
efect D

ep
. 

D
efect In

d
. 

F
ixed

 

Variable 

L
in

ear 

N
o

n
 

lin
ear 

Beightler and Mitten 1964     √  √  √ √       √     

Lindsay and Bishop 1964   √    √   √       √     

White 1965  √   √  √   √       √     

Pruzan and Jackson 1967     √ √ √  √ √       √     

Brown 1968   √  √  √   √       √     

White 1969 √ √ √  √ √ √  √ √    √   √     

Britney 1972 √    √   √  √        √    

Ercan 1972 √  √  √  √   √        √ √   

Garey 1972       √  √ √       √     

Woo and Metcalfe 1972   √  √  √     √     √     

Hurst 1973   √    √   √            

Dietrich and Sanders 1974     √  √  √ √          √  

Eppen 1974   √  √  √   √       √     

Ercan et al. 1974 √ √ √  √  √   √            

Trippi 1974 √  √ √  √ √   √    √     √   

Enrick 1975 √  √  √  √  √ √       √     

Trippi 1975  √  √  √ √   √        √    

Yum and McDowell 1981 √ √   √  √   √        √    

Ballou and Pazer 1982   √  √  √     √       √   

Garcia-Diaz et al. 1984 √    √  √   √       √     

Hsu 1984   √  √  √   √       √     
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Table 2.2. Classification of literature based on the methodology (continue) 
Author Year Cost component Objective 
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Peters and Williams 1984 √  √ √  √ √  √ √         √   

Ballou and Pazer 1985     √   √ √ √         √   

Gunter and Swanson 1985   √  √ √ √    √      √     

Bai and Yun  1986   √   √ √   √    √   √     

Chakravarty and Shtub 1987 √  √ √  √ √  √ √       √  √   

Lee and Rosenblatt 1987      √ √  √  √        √   

Peters and Williams 1987   √   √ √  √   √     √     

Yum and McDowell 1987 √ √ √  √  √   √        √    

Tayi and Ballou 1988 √  √  √  √  √ √         √   

Saxena et al. 1990   √    √  √ √          √  

Barad 1990 √ √ √  √  √  √ √          √  

Foster et al. 1990   √  √  √   √   √       √  

Kang et al. 1990 √  √  √ √ √  √ √           √ 

Raz and Kaspi 1991 √  √  √  √  √  √       √    

Tang 1991   √   √ √  √ √      √ √     

Villalobos and Foster 1991   √  √  √   √       √     

Villalobos et al. 1993   √  √  √   √   √    √     

Taneja & Viswanadham 1994   √   √ √  √ √    √ √     √  

Jewkes 1995 √    √  √  √ √         √   

Rebello et al. 1995 √  √ √   √  √   √    √    √  

Shin 1995 √      √   √            
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Table 2.2. Classification of literature based on the methodology (continue) 
Author Year Cost component Objective 

Function 

Constraint Solution Approach 

Internal 

Failure 

External 

Failure 

Insp. Cost P
ro

d
u

ctio
n

 C
o

st 

T
o

tal/in
p

u
t 

T
o

tal/o
u

tp
u

t 

T
o

tal/C
o

n
f. o

u
tp

u
t 

In
sp

. tim
e 

N
o

. o
f In

sp
. Statio

n
 

N
o

. o
f rep

eated
 

In
sp

.  

B
u

d
get 

D
y

n
am

ic P
ro

g. 

In
teger P

ro
g. 

N
o

n
lin

ear P
ro

g. 

H
eu

ristics &
 

M
etah

eu
ristics 

Sim
u

latio
n

 

R
ew

o
rk

 

R
ep

lace 

Scrap
 

D
efect D

ep
. 

D
efect In

d
. 

F
ixed

 

Variable 

L
in

ear 

N
o

n
 

lin
ear 

Deliman and Feldman 1996 √  √  √  √  √ √         √   

Gurnani et al. 1996 √      √   √       √     

Narahari and Khan 1996 √ √        √         √   

Viswandham et al. 1996 √  √  √  √  √ √    √      √  

Chevalier and Wein 1997 √    √  √   √         √   

Rabinowitz and Emmons 1997       √   √        √    

Chen et al. 1998 √    √  √   √       √     

Lee and Unnikrishnan 1998 √   √   √  √ √   √      √   

Chen and Thornton 1999   √   √   √ √          √  

Yao and Zheng 1999a √    √  √   √       √     

Yao and Zheng 1999b √   √   √   √       √     

Hassan and Pham  2000 √  √  √  √  √  √         √  

Veatch 2000   √ √   √  √  √         √  

Zheng 2000 √   √   √   √       √     

Zhou and Zhao  2002   √ √   √  √   √    √    √  

Emmons and Rabinowitz 2002       √  √ √          √  

Shiau 2002 √ √ √  √  √  √ √    √      √  

Oppermann et al. 2003 √  √  √    √ √       √     

Avinadav and Raz 2003    √  √ √    √         √  

Van Volsem & Van Landeghem 2003 √    √ √ √   √           √ 

Shiau 2003a √ √ √  √  √   √    √      √  
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Table 2.2. Classification of literature based on the methodology (continue) 
Author Year Cost component Objective 

Function 

Constraint Solution Approach 

Internal 

Failure 

External 

Failure 

Insp. Cost P
ro

d
u

ctio
n

 C
o

st 

T
o

tal/in
p

u
t 

T
o

tal/o
u

tp
u

t 

T
o

tal/C
o

n
f. o

u
tp

u
t 

In
sp

. tim
e 

N
o

. o
f In

sp
. Statio

n
 

N
o

. o
f rep

eated
 In

sp
.  

B
u

d
get 

D
y

n
am

ic P
ro

g. 

In
teger P

ro
g. 

N
o

n
lin

ear P
ro

g. 

H
eu

ristics &
 

M
etah

eu
ristics 

Sim
u

latio
n

 

R
ew

o
rk

 

R
ep

lace 

Scrap
 

D
efect D

ep
. 

D
efect In

d
. 

F
ixed

 

Variable 

L
in

ear 

N
o

n
lin

ear 

Shiau 2003b √ √ √  √  √   √    √      √  

Kakade et al. 2004 √   √   √     √        √  

Valenzuela et al. 2004     √       √        √  

Rau and Chu 2005 √  √ √  √ √  √ √          √  

Hanne and Nickel 2005 √  √   √ √  √ √          √  

Feng and Kapur 2006   √   √ √  √ √            

Shiau et al. 2007 √  √   √ √   √    √      √  

Penn and Raviv 2007      √ √  √ √       √     

Van Volsem et al. 2007 √   √  √ √   √          √  

Penn and Raviv 2008   √   √ √    √         √  

Vaghefi and Sarhangian 2009 √  √  √ √ √  √ √           √ 

Ferreira et al.  2009 √  √  √ √ √   √          √  

Rau and Cho 2009 √ √ √    √  √ √          √  

Azadeh and Sangari 2010      √ √   √          √  

Van Volsem 2010 √  √  √ √ √   √          √ √ 

Korytkowski 2011      √ √   √   √       √  

Rau and Cho 2011 √  √   √ √   √          √  

Azadeh et al. 2012 √  √  √ √ √   √          √  

Azadeh et al. 2014 √  √  √ √ √   √          √ √ 

Mousavi et al. 2015   √  √  √  √ √          √  



Chapter II: Literature Review 

 

36 
 

 

 

 

 
Figure 2.3. Papers in category of production system characteristics 
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Figure 2.4. Papers in category of methodology
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 A few of papers have considered multi-product manufacturing system with 

different quality characteristics. 

 Only three of papers have considered inspection tool selection, while this 

assumption makes the model more real and provides more flexible inspection 

plan. By this assumption, manufacturer can purchase inspection tools with 

higher precision and reduce non-detected items that reach customers and 

consequently increase customer satisfaction. 

 To the best of our knowledge, there is no paper in the literature considering 

machine selection. By considering machine selection assumption, 

manufacturer can purchase machine with high capability to obtain high 

quality level for important design characteristics.  

 No paper has design a multi-objective inspection planning model by 

considering other criteria to be optimized. Other objectives can be maximizing 

customer satisfaction as well as minimizing total manufacturing time. 

 By considering time as an objective, one important issue that comes up is 

waiting time of items through the production system. Different items must 

wait before each machinery or inspection station to receive services. These 

waiting times should be analyzed and taken into account in the final decisions. 

 To the best of our knowledge, no paper has considered the reliability of 

production system. Since production systems are stochastic in nature and are 

affected by different unpredictable environmental factors, machines and 

inspection tools are subjected to disruption. Any breakdown in the production 

system not only increases the manufacturing cost, but also significantly affects 

the quality of final products. Therefore, considering reliability issue of 

production system and investigate the effect of unreliable machines and 

inspection tools on the final inspection planning could be an interesting 

research direction. 

 Almost all of the authors have ignored manufacturing constraint in their 

studies. Some of these constraints could be capacity of machines and 

inspection tools, an upper bound for total production time, low capital for 

initial investment and limited places for performing inspections and so on. 

Considering these constraints provides more real and applicable inspection 

plans. 

 Developing more efficient metaheuristic algorithms for solving inspection 

planning models could be also another gap in the literature. 
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3.0. Chapter purpose and outline 

In the Chapter 2, a comprehensive survey was done on the domain of 

inspection planning problem and literature gaps were extracted. This Chapter 

provides a comprehensive optimization framework to model the studied inspection 

planning problem and propose an efficient solution approach to solve the model. The 

proposed framework attempts to fill the gaps elaborated in Section 2.4. Section 3.1 

describes the general characteristics of the under-study inspection planning problem 

in detail. Sections 3.2 and 3.3 will proposed the mathematical models for the Main 

Problem and Extended Problem, respectively (see Table 1.1). Each of Sections 3.2 and 

3.3 contains the main assumptions, notations, mathematical formulation and robust 

approach for their corresponding models. After providing the optimization 

framework for both Main and Extended Problems, two meta-heuristic algorithms are 

proposed in Section 3.4 to solve the models. Finally, Section 3.5 provides a summary 

of the chapter.  

 

3.1. Problem statement 

As discussed in the previous chapters, the problem considered in this 

research is mainly to determine an optimal inspection plan so as to minimize total 

manufacturing cost for a given serial multistage production system (MPS) to obtain a 

desired quality level of final products. Through an inspection plan, considering a part 

with an initial set of quality characteristics, three main simultaneous decisions 

should be made including: (i) which quality characteristics should be inspected, (ii) 

what type of inspection should be performed for the selected quality characteristics, 

and (iii) where these inspections should be performed. There would be also another 

decision like how to inspect that usually corresponds to selection of the inspection 

tool. Although there is a vast number of characteristics belongs to a part, but only a 

few of them are key characteristics that represent the quality level of the part. 

Accordingly, there is no need to potentially consider all the characteristics, while 

some of them can be filtered. So, the initial set is better to contain the most important 

characteristics. There are different techniques in the literature to select the key 

characteristics but the most recent work by Mirdamadi (2014) can be applied to 

provide the initial set of quality characteristics. Therefore, the results of the work of 

Mirdamadi (2014) could be an input for the problem that is addressed by this thesis. 

The specific features of the production system include the number of different 

quality characteristic, the number of manufacturing stages, the failure rate of each 

stage in producing nonconforming items, inspection errors for each quality 

characteristic, the inspection strategy (i.e., no inspection, full inspection, sampling 

inspection) and the costs associated with manufacturing and inspection activities.  
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As an example for such production systems, consider a MPS as Figure 3.1 with 

k quality characteristic, i type of inspection and n processing stages. Initially, it is 

checked that whether inspection is needed for quality characteristic k. The part may 

be transferred to the next stage or to the final customer unless at least one quality 

characteristic needs inspection. Next, at least one type of inspection (i.e., CI and MI) is 

performed. Not important what type of inspection is performed, in-process parts 

must wait until the inspection is finished. After inspection, items are sent to the next 

stage in the case of no nonconformance in terms of items or processing features. In 

presence of any nonconformity in the items, different decisions may be made 

including: (a) they may be reworked and undergo the inspection again, (b) they may 

be repaired and be transferred to the next stage as downgraded products; or (c) they 

may be scrapped.  

In this thesis, the operation of a conformity inspection may involve errors of 

two types: misclassification of a conforming item as non-conforming (error type I) 

and nonconforming one as conforming (error type II). For more information about 

these errors, please read the Appendix 2.  

Although planning an inspection process in a MPS constitutes an additional 

cost, but in imperfect manufacturing systems, specific level of inspection will 

decrease total cost of manufacturing as well as increase the customer satisfaction. In 

such cases, the associated cost of inspection will be covered by the benefits realized 

through the detection of nonconforming products.  

It must be noted that although considering inspection after every 

manufacturing stage will decrease the scrap, reworking, and downgrading costs and 

prevent nonconforming products from reaching the customers, but on the other 

hand, unnecessary and often too inspections constitute huge cost of equipment, staff, 

time, and space as well as interrupt the overall process that might lead to extra work 

in-progress (WIP) and flow. Accordingly, if inspections are performed unnecessarily, 

then greater total costs will incur.  

In a MPS as Figure 3.1, after the processing stage i, there is a possibility to 

inspect the quality characteristics that have been realized by previous stages and 

have not been inspected before. It is noteworthy that inspection of each quality 

characteristic can be performed only in some specific allowed stages.  

The above-mentioned problem is solved to obtain the optimal inspection plan 

with the objective of minimizing the total manufacturing cost. This cost includes 

production cost, fixed and variable costs of inspection, scrap cost, and penalty cost of 

nondetected nonconforming products that reach the customers. The difference 

between this problem and those of in the literature is that not only almost all of the 

papers have considered the inspection as a general term and have not specified 

different quality characteristics, but also they have not considered the possibility of 

inspecting the quality characteristics in different stages. 
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Figure 3.1. Inspection of quality characteristics in a serial MPS  

  

This thesis also tries to generalize the classic inspection planning into more 

complex and more realistic multi-product MPS with machine and inspection tool 

allocation (PSMIA). In PSMIA, other important objectives raise beside to 

manufacturing cost including customer satisfaction and manufacturing time. It is 

noteworthy that minimum manufacturing cost is ideal for manufacturer, while 

maximum customer satisfaction and minimum manufacturing time are desired for 

customers. Although manufacturers eager to cost less, but reaching acceptable 

quality level as well as producing items in lower time to satisfy the customers forces 

manufacturers to cost more. Accordingly, these objectives are in conflict where 

higher customer satisfaction needs higher manufacturing cost; lower manufacturing 

time needs higher manufacturing cost; and lower manufacturing cost may lead to 

lower quality (i.e., lower manufacturing time may need to ignore time-consuming 

inspection activities and this event leads to lower quality and consequently lower 

customer satisfaction).  

As enumerated in Section 3.1, due to uncertainty in environmental production 

parameters, a percent of the manufactured products do not conform design 

specifications and their processes are sensitive to manufacturing variations. 

Accordingly, manufacturers are interested in robust processes, which are relatively 

insensitive to alteration of uncertain parameters. 

Summarized, this chapter first proposes a single-objective inspection planning 

model for the Main Problem. Next, the Extended Problem is modeled. In addition, the 

robustness of both Main and Extended problems are investigated.  
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3.2. Main Problem (MP) 

Consider a serial MPS with N stages, in which in-process parts pass 

sequentially from stage 1 to stage N and inspections of units are performed at m 

(𝑚 ≤ 𝑁) locations. It should be noted that each stage can be an operation and a set of 

operations can be performed on the same machine. At each stage, a part (output of 

the immediately preceding stage) enters the processing stage where a manufacturing 

operation is performed on it. Output of this operation is transferred to an inspection 

station or to the next processing stage. Suppose that a unit consists of K quality 

characteristics and all characteristics of the part are simultaneously operated 

throughout the production system. If a CI is performed between the ith and (i+1)th 

processing stations, nonconforming parts originated at the ith operation or at some 

of the earlier operations are detected and scrapped and no rework is considered. 

Besides, If an MI is performed between the ith and (i+1)th processing stations, the 

processing features are monitored after a specific number of parts. Inspection 

operations subjects to both errors type I and II.  

This model of Main Problem attempts to plan an inspection process under a 

twofold decision as 1) which quality characteristics need what kind of inspection (i.e., 

which-what decision) and 2) when the inspection of these characteristics should be 

performed (i.e., when decision). For which-what decision, although characteristics 

that have more impact on product functionality and significantly affect customer 

satisfaction should be chosen; however, all the characteristics cannot be inspected 

while inspection cost is highly increased. The when decision regarding the location of 

inspection is also challenging, in which inspection of a characteristic can be done only 

at specific stages across the overall process. For example, the process cannot be 

stopped or accessibility to that characteristic is impossible unless some furthers 

specific stages. In addition, finding and removing nonconforming parts at initial 

stages is desired, in which nonconforming produced parts do not pass through next 

stages and the cost of production is consequently decreased. Although it is desire to 

detect nonconforming parts exactly after their operation and before the next 

operation starts, but the number of inspection stations and interruptions in the 

overall process as well as the total cost of inspection are increased. For better 

understanding, consider a situation that each characteristic is inspected exactly after 

its operation. Since each inspection activity includes three steps as: 1) removing the 

part from the machine, 2) inspecting and 3) setting up the part for the next 

operation; hence, these steps are repeated for each characteristic. On the opposite 

site when a set of characteristics is inspected at a same allowable stage, the removing 

and set up steps are needed once. Therefore, making which-what and when decisions 

are challenging issues and this paper attempts to address (Mohammadi et al., 2015). 

 

3.2.1. Assumption  

This section provides the assumptions for the Main Problem as follows: 

 The system has N manufacturing stages arranged serially and processes one part 

type with K different quality characteristics.  
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 Different quality characteristics may be processed in a same manufacturing stage. 

 Nonconformities are generated only at the manufacturing processes and other 

activities such as movement, setup and inspection activities do not make 

nonconformity. 

 Each manufacturing stage has a failure rate of producing nonconforming items.  

 Two types of conformity (CI) and monitoring (MI) inspections are considered, 

while considering MI for a manufacturing stage decreases the failure rate of that 

stage. 

 CI subjects to both errors type I and II. 

 Two inspection strategies may be taken at each manufacturing stage as no 

inspection and full inspection.  

 The frequency of MI is fixed. 

 MI affects the mean value of process capability statistics such as Ppk.  

 We estimate the scrap rate without misadjustment in the deterministic model. 

 Detected nonconforming items from CI are directly scrapped and no rework or 

repair operation is considered. 

 A unit scrap cost is imposed to the system in case of detecting a nonconforming 

item. The scrap cost depends on both the number of manufacturing stage and the 

quality characteristics. 

 The production system reaches a steady state and system breakdown is not 

assumed. 

 Input parameters of the problem are considered under uncertainty. 

 In the robust model, we consider misadjustment that affects Cpk and Ppk as well as 

failure and scrap rates. 

 

3.2.2. Notations  

Before the mathematical model is presented, necessary notations are first 

provided in this section. 

 

Sets: 

𝑝, 𝑝′ ∈ {1,2, … , 𝑃 + 1} Set of manufacturing operations 

𝑘 ∈ {1,2, … , 𝐾} Set of different quality characteristics 

 

 

Parameters: 

𝑓𝑟𝑝𝑘
1  Failure rate of operation p for characteristic k with monitoring inspection. 

𝑓𝑟𝑝𝑘
2  Failure rate of operation p for characteristic k without monitoring 

inspection. 

𝑑𝑝𝑘 Detection rate of conformity inspection assigned to operation p for 

characteristic k. 

𝛼𝑝𝑘 Type I error of conformity inspection assigned to operation p for 

characteristic k. 
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𝛽𝑝𝑘 Type II error of conformity inspection assigned to operation p for 

characteristic k (𝛽𝑝𝑘 = 1 − 𝑑𝑝𝑘). 

𝑛𝑇  Total number of parts fed to the production process. 

𝑝𝑐𝑝 Unit production cost per time for operation p. 

𝑝𝑡𝑝 Production time of operation p. 

𝑠𝑐𝑝 Scrap cost of parts after operation p. 

𝑛𝑐𝑘 Cost of nonconforming part in the market due to characteristic k. 

𝑓𝑚𝑝𝑘 Fixed cost of an MI station after operation p for characteristic k. 

𝑓𝑐𝑝𝑘 Fixed cost of a CI station after operation p for characteristic k. 

𝑣𝑚𝑝𝑘 Unit variable cost of MI per time stationed after operation p for 

characteristic k. 

𝑣𝑐𝑝𝑘 Unit variable cost of CI per time stationed after operation p for 

characteristic k. 

𝑚𝑡𝑝𝑘 Time of MI stationed after operation p for characteristic k. 

𝑐𝑡𝑝𝑘 Time of CI stationed after operation p for characteristic k. 

𝑓𝑠𝑝 Fixed independent space cost per part of establishing any inspection 

station (i.e., CI or MI) after operation p. 

𝜁𝑝′𝑝 Is 1 if two operations 𝑝′ and p are dependent; and 0, otherwise. 

𝜓𝑝𝑘 Is 1 if characteristic k belongs to operation p; and 0, otherwise. 

𝑚𝑓𝑘 Monitoring frequency for characteristic k. 

𝑐𝑓𝑘 Conformity frequency for characteristic k. 

M A big number. 

 

Decision Variables: 

𝑁𝑃𝑝𝑘 Number of nonconforming parts due to characteristic k from operation 

p. 

𝑌𝐶𝑝𝑘 1 if operation p needs CI for characteristic k; and 0, otherwise. 

𝑌𝑀𝑝𝑘 1 if operation p needs MI for characteristic k; and 0, otherwise. 

𝑋𝐶𝑝′𝑝
𝑘  1 if CI of operation 𝑝′ for characteristic k is performed after operation p 

(𝑝′ ≤ 𝑝); and 0, otherwise. 

𝑋𝑀𝑝′𝑝
𝑘  1 if MI of operation 𝑝′ for characteristic k is performed after operation p 

(𝑝′ ≤ 𝑝); and 0, otherwise. 

𝑁𝑝 Number of parts entering operation p. 

𝑁𝑀𝑝𝑘 Number of MIs performed between operations p and p+1 for 

characteristic k. 

𝑁𝐶𝑝𝑘 Number of CIs performed between operations p and p+1 for 

characteristic k. 

𝑁𝑆𝑝 Is 1 if there is an inspection station between operations p and p+1. 

𝒮𝑝𝑘 Number of the scrapped part between operations p and p+1 due to 

characteristic k. 

𝑆𝑝 Total number of the scrapped parts between operations p and p+1. 
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𝑂𝐹𝑉𝐷_𝑀𝑃 Deterministic objective function value of the Main Problem. 

 

3.2.3. Mathematical formulation  

This section proposes a single-objective mixed-integer mathematical 

formulation for the Main Problem. Mirdamadi et al. (2013) have proposed different 

cost components in a manufacturing industry. Accordingly, the objective of this 

model is to minimize the total cost of manufacturing which can be separated into the 

sum of total costs of production (TCP), scrap (TCS), inspection (i.e., fixed (TCIF) and 

variable costs (TCIV)) (TCI=TCIF+TCIV), and warranty (TCW) when a nonconforming 

product is sold. Through a full inspection strategy, two different approaches are 

adopted. First approach considers that all quality characteristics need inspection and 

only one kind of MI or CI should be performed. In the second approach, it is 

considered that none, one and both of MI and CI can be performed for each quality 

characteristic. Hereafter, the first and second inspection approaches are called MI-or-

CI and MI-and-CI strategies, respectively.  

 

3.2.3.1. Formulation of MI-or-CI strategy 

 

 Objective Function (OFV) 

The objective function of this Main model consists of total cost of production 

(TCP), total cost of scrap (TCS), total cost of inspection that itself includes total fixed 

cost of inspection (TCIF) and total variable cost of inspection (TCIV), and total cost of 

warranty (TCW). Hereafter, the sum 𝑇𝐶𝑃 + 𝑇𝐶𝑆 + 𝑇𝐶𝐼𝐹 + 𝑇𝐶𝐼𝑉 is called as total 

internal cost. Accordingly, total manufacturing cost is calculated as Equation 3.1. 

 

𝑂𝐹𝑉𝐷_𝑀𝑃 = min{𝑇𝐶𝑃 + 𝑇𝐶𝑆 + 𝑇𝐶𝐼 (𝑇𝐶𝐼𝐹 + 𝑇𝐶𝐼𝑉) + 𝑇𝐶𝑊} (3.1) 

 

where, 

 

𝑇𝐶𝑃 = ∑𝑝𝑐𝑝𝑝𝑡𝑝𝑁𝑝

𝑃

𝑝=1

 (3.2) 

𝑇𝐶𝑆 =∑𝑠𝑐𝑝𝑆𝑝

𝑃

𝑝=1

 (3.3) 

𝑇𝐶𝐼𝐹 =∑∑𝑓𝑐𝑝𝑘𝑁𝐶𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑓𝑚𝑝𝑘𝑁𝑀𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑𝑓𝑠𝑝𝑁𝑆𝑝𝑁𝑝

𝑃

𝑝=1

 (3.4) 

𝑇𝐶𝐼𝑉 =∑∑𝑐𝑓𝑘𝑐𝑡𝑝𝑘𝑣𝑐𝑝𝑘𝑁𝑝𝑋𝐶𝑝′𝑝
𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑚𝑓𝑘𝑚𝑡𝑝𝑘𝑣𝑚𝑝𝑘𝑁𝑝𝑋𝑀𝑝′𝑝
𝑘

𝐾

𝑘=1

𝑃

𝑝=1

 (3.5) 

𝑇𝐶𝑊 =∑∑𝑛𝑐𝑘(𝑁𝑃𝑝𝑘𝑌𝐶𝑝𝑘𝛽𝑝𝑘 + 𝑁𝑃𝑝𝑘 × 𝑌𝑀𝑝𝑘)

𝐾

𝑘=1

𝑃

𝑝=1

 (3.6) 
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 Constraints  

The constraints of the Main model have been provided as Constraints (3.7) to 

(3.17).  

∑ 𝜁𝑝′𝑝𝑋𝐶𝑝′𝑝
𝑘

𝑃

𝑝=𝑝′

= 𝜓𝑝′𝑘𝑌𝐶𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.7)  

∑ 𝜁𝑝′𝑝𝑋𝑀𝑝′𝑝
𝑘

𝑃

𝑝=𝑝′

= 𝜓𝑝′𝑘𝑌𝑀𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.8)  

𝑌𝐶𝑝′𝑘 + 𝑌𝑀𝑝′𝑘 = 𝜓𝑝′𝑘 ∀𝑝′, 𝑘 (3.9)  

𝑁𝑃𝑝𝑘 = 𝑁𝑝 × 𝑌𝑀𝑝𝑘𝑓𝑟𝑝𝑘
1 + 𝑁𝑝 × 𝑌𝐶𝑝𝑘𝑓𝑟𝑝𝑘

2  ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.10)  

𝒮𝑝𝑘 ≥ [𝑋𝐶𝑝′𝑝
𝑘 ×𝑁𝑃𝑝′𝑘 × 𝑑𝑝𝑘]

+ [𝑋𝐶𝑝′𝑝
𝑘 ×𝑁𝑝 × 𝛼𝑝𝑘 − 𝑋𝐶𝑝′𝑝

𝑘 × 𝑁𝑃𝑝′𝑘

× 𝛼𝑝𝑘] − [𝑋𝐶𝑝′𝑝
𝑘 × 𝑁𝑃𝑝′𝑘 × 𝛽𝑝𝑘] 

∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′

≤ 𝑃 
(3.11)  

𝑆𝑝 ≥ 𝒮𝑝𝑘 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.12)  

𝑁𝑝 = 𝑁𝑝−1 − 𝑆𝑝−1 ∀𝑝; 𝑝 ≤ 𝑃 + 1 (3.13)  

𝑁0 = 𝑛𝑇   (3.14)  

𝑁𝑀𝑝𝑘 ≥ ∑ 𝑋𝑀𝑝′𝑝
𝑘

𝑃

𝑝′=1

 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.15)  

𝑁𝐶𝑝𝑘 ≥ ∑ 𝑋𝐶𝑝′𝑝
𝑘

𝑃

𝑝′=1

 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.16)  

𝑀 ×𝑁𝑆𝑝 ≥ ∑ ∑(𝑋𝐶𝑝′𝑝
𝑘 + 𝑋𝑀𝑝′𝑝

𝑘 )

𝐾

𝑘=1

𝑃

𝑝′=1

 ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.17)  

 
Equations (3.7) and (3.8) ensure that CI and MI of a quality characteristic 

should be done for all part only in one stage, respectively. Equation (3.9) forces that 

one kind of inspection is needed for each quality characteristic. This equation is 

directly related to the MI-or-CI strategy. Equation (3.10) calculates the number of 

nonconforming parts based on the decision whether the MI is considered for that 

characteristic or not. Constraints (3.11) and (3.12) calculate the number of scraps 

after each inspection stage based on errors type I and type II. Constraints (3.13) and 

(3.14) determine the in-process part after each operation, where the number of parts 

is decreased in presence of any inspection due to scrap detection and removal. 

Equations (3.15) and (3.16) calculate total number of MIs and CIs throughout the 

whole production system. Constraint (3.17) calculates different inspection stage 

among the whole process. 
 

 

 



Chapter III: Mathematical Formulation & Solution Approaches 

 

48 
 

 Linearization  

As it can be seen, the objective function and some of the constraints include 

nonlinear terms and this issue may make the model harder to solve. For this aim, a 

linearization technique is applied to linearize the nonlinear terms. In this technique, 

the product of each pair of variables is replaced by a new auxiliary variable and three 

extra constraints are added to the model for each pair. It must be noted that this 

technique is used when at least one of the variables is binary variable. For example, 

consider a binary variable X and a real variable Y. The problem is to linearize the 

product of these two variables (i.e., 𝑋 × 𝑌). Therefore, a new real auxiliary variable Z 

is considered. Next, the term 𝑋 × 𝑌 is replaced by Z in the whole model. Finally, the 

following three constraints are added to the model to make relationship between the 

variables. 

 

𝑍 ≤ 𝑀 × 𝑋,  

𝑍 ≤ 𝑌,  

𝑍 ≥ 𝑌 −𝑀(1 − 𝑋).  

 

Before linearizing the model, necessary auxiliary variables are provided. 

 

Auxiliary variables: 

𝔸𝑝′𝑝
𝑘  Linear form of 𝑋𝐶𝑝′𝑝

𝑘 × 𝑁𝑝′ . 

𝔹𝑝′𝑝
𝑘  Linear form of 𝑋𝑀𝑝′𝑝

𝑘 × 𝑁𝑝′ . 

𝔻𝑝′𝑝
𝑘  Linear form of 𝑋𝐶𝑝′𝑝

𝑘 × 𝑁𝑃𝑝′𝑘. 

𝔼𝑝𝑘 Linear form of 𝑁𝑃𝑝𝑘 × 𝑌𝐶𝑝𝑘. 

𝔽𝑝𝑘 Linear form of 𝑁𝑃𝑝𝑘 × 𝑌𝑀𝑝𝑘. 

𝕃𝑝 Linear form of 𝑁𝑆𝑝 × 𝑁𝑝. 

𝕌𝑝𝑘 Linear form of 𝑁𝑝 × 𝑌𝐶𝑝𝑘. 

𝕍𝑝𝑘 Linear form of 𝑁𝑝 × 𝑌𝑀𝑝𝑘 . 

 

After adding the linearization constraints (i.e., Constraints (3.21) to (3.44)) to 

the model, the final single-objective mixed-integer linear programming model for the 

main problem (SMILP_MP) under MI-or-CI strategy is proposed as follows: 
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SMILP_MP (MI-or-CI): 

min𝑂𝐹𝑉𝐷_𝑀𝑃 =∑𝑝𝑐𝑝𝑝𝑡𝑝𝑁𝑝

𝑃

𝑝=1

+∑𝑠𝑐𝑝𝑆𝑝

𝑃

𝑝=1

+∑∑𝑓𝑐𝑝𝑘𝑁𝐶𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑐𝑓𝑘𝑐𝑡𝑝𝑘𝑣𝑐𝑝𝑘𝔸𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑓𝑚𝑝𝑘𝑁𝑀𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑚𝑓𝑘𝑚𝑡𝑝𝑘𝑣𝑚𝑝𝑘𝔹𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑𝑓𝑠𝑝𝕃𝑝

𝑃

𝑝=1

+∑∑𝑛𝑐𝑘(𝔼𝑝𝑘𝛽𝑝𝑘 + 𝔽𝑝𝑘)

𝐾

𝑘=1

𝑃

𝑝=1

 

(3.18) 

s.t.   

∑ 𝜁𝑝′𝑝𝑋𝐶𝑝′𝑝
𝑘

𝑃

𝑝=𝑝′

= 𝜓𝑝′𝑘𝑌𝐶𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.7)  

∑ 𝜁𝑝′𝑝𝑋𝑀𝑝′𝑝
𝑘

𝑃

𝑝=𝑝′

= 𝜓𝑝′𝑘𝑌𝑀𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.8)  

𝑌𝐶𝑝′𝑘 + 𝑌𝑀𝑝′𝑘 = 𝜓𝑝′𝑘 ∀𝑝′, 𝑘 (3.9)  

𝑆𝑝 ≥ 𝒮𝑝𝑘 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.12)  

𝑁𝑝 = 𝑁𝑝−1 − 𝑆𝑝−1 ∀𝑝; 𝑝 ≤ 𝑃 + 1 (3.13)  

𝑁0 = 𝑛𝑇   (3.14)  

𝑁𝑀𝑝𝑘 ≥ ∑ 𝑋𝑀𝑝′𝑝
𝑘

𝑃

𝑝′=1

 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.15)  

𝑁𝐶𝑝𝑘 ≥ ∑ 𝑋𝐶𝑝′𝑝
𝑘

𝑃

𝑝′=1

 ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.16)  

𝑀 ×𝑁𝑆𝑝 ≥ ∑ ∑(𝑋𝐶𝑝′𝑝
𝑘 + 𝑋𝑀𝑝′𝑝

𝑘 )

𝐾

𝑘=1

𝑃

𝑝′=1

 ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.17)  

𝑁𝑃𝑝𝑘 = 𝕍𝑝𝑘𝑓𝑟𝑝𝑘
1 + 𝕌𝑝𝑘𝑓𝑟𝑝𝑘

2  ∀𝑝, 𝑘; 𝑝 ≤ 𝑃 (3.19) 

𝒮𝑝𝑘 ≥ [𝔻𝑝′𝑝
𝑘 × 𝑑𝑝𝑘] + [𝔸𝑝′𝑝

𝑘 × 𝛼𝑝𝑘 −𝔻𝑝′𝑝
𝑘 × 𝛼𝑝𝑘]

− [𝔻𝑝′𝑝
𝑘 × 𝛽𝑝𝑘] 

∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.20) 

𝔸𝑝′𝑝
𝑘 ≤ 𝑀 × 𝑋𝐶𝑝′𝑝

𝑘  ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.21) 

𝔸𝑝′𝑝
𝑘 ≤ 𝑁𝑝′ ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.22) 

𝔸𝑝′𝑝
𝑘 ≥ 𝑁𝑝′ −𝑀(1 − 𝑋𝐶𝑝′𝑝

𝑘 ) ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.23) 

𝔹𝑝′𝑝
𝑘 ≤ 𝑀 × 𝑋𝑀𝑝′𝑝

𝑘  ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.24) 

𝔹𝑝′𝑝
𝑘 ≤ 𝑁𝑝′ ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.25) 
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𝔹𝑝′𝑝
𝑘 ≥ 𝑁𝑝′ −𝑀(1 − 𝑋𝑀𝑝′𝑝

𝑘 ) ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.26) 

𝕍𝑝′𝑘 ≤ 𝑀 × 𝑌𝑀𝑝′𝑘 ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.27) 

𝕍𝑝′𝑘 ≤ 𝑁𝑝′  ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.28) 

𝕍𝑝′𝑘 ≥ 𝑁𝑝′ −𝑀(1 − 𝑌𝑀𝑝′𝑘) ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.29) 

𝕌𝑝′𝑘 ≤ 𝑀 × 𝑌𝐶𝑝′𝑘 ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.30) 

𝕌𝑝′𝑘 ≤ 𝑁𝑝′  ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.31) 

𝕌𝑝′𝑘 ≥ 𝑁𝑝′ −𝑀(1 − 𝑌𝐶𝑝′𝑘) ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.32) 

𝔻𝑝′𝑝
𝑘 ≤ 𝑀 × 𝑋𝐶𝑝′𝑝

𝑘  ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.33) 

𝔻𝑝′𝑝
𝑘 ≤ 𝑁𝑃𝑝′𝑘 ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.34) 

𝔻𝑝′𝑝
𝑘 ≥ 𝑁𝑃𝑝′𝑘 −𝑀(1 − 𝑋𝐶𝑝′𝑝

𝑘 ) ∀𝑝, 𝑝′, 𝑘; 𝑝, 𝑝′ ≤ 𝑃 (3.35) 

𝔼𝑝′𝑘 ≤ 𝑀 × 𝑌𝐶𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.36) 

𝔼𝑝′𝑘 ≤ 𝑁𝑃𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.37) 

𝔼𝑝′𝑘 ≥ 𝑁𝑃𝑝′𝑘 −𝑀(1 − 𝑌𝐶𝑝′𝑘) ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.38) 

𝔽𝑝′𝑘 ≤ 𝑀 × 𝑌𝑀𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.39) 

𝔽𝑝′𝑘 ≤ 𝑁𝑃𝑝′𝑘 ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.40) 

𝔽𝑝′𝑘 ≥ 𝑁𝑃𝑝′ −𝑀(1 − 𝑌𝑀𝑝′𝑘) ∀𝑝′, 𝑘; 𝑝′ ≤ 𝑃 (3.41) 

𝕃𝑝 ≤ 𝑀 × 𝑁𝑆𝑝 ∀𝑝; 𝑝 ≤ 𝑃 (3.42) 

𝕃𝑝 ≤ 𝑁𝑝 ∀𝑝; 𝑝 ≤ 𝑃 (3.43) 

𝕃𝑝 ≥ 𝑁𝑝 −𝑀(1 − 𝑁𝑆𝑝) ∀𝑝; 𝑝 ≤ 𝑃 (3.44) 

𝑋𝐶𝑝′𝑝
𝑘 , 𝑋𝑀𝑝′𝑝

𝑘 , 𝑁𝑆𝑝, 𝑌𝑝, 𝑌𝐶𝑝′𝑘, 𝑌𝑀𝑝′𝑘 ∈ {0,1} ∀𝑝, 𝑝′; 𝑝, 𝑝′ ≤ 𝑃 (3.45) 

𝒮𝑝𝑘, 𝑆𝑝, 𝔻𝑝′𝑝
𝑘 , 𝑁𝑀𝑝𝑘, 𝑁𝐶𝑝𝑘, 𝔸𝑝′𝑝

𝑘 , 𝔹𝑝′𝑝
𝑘 , 𝑁𝑃𝑝𝑘𝔼𝑝′𝑘, 𝔼𝑝′𝑘, 𝕃𝑝, 𝑁𝑝

≥ 0 

∀𝑝′, 𝑝, 𝑘; 𝑝′, 𝑝

≤ 𝑃 
(3.46) 

 

where, Constraints (3.45) and (3.46) are domain constraint. 

 

3.2.3.2. Formulation of MI-and-CI strategy 

This section develops a SMILP_MP for the MI-and-CI strategy. The notations 

and most of the constraints are same as MI-or-CI with only difference in one 

constraint. Accordingly, the final SMILP_MP under MI-and-CI is proposed as follows: 
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SMILP_MP (MI-and-CI): 

min𝑂𝐹𝑉𝐷_𝑀𝑃 = ∑𝑝𝑐𝑝𝑝𝑡𝑝𝑁𝑝

𝑃

𝑝=1

+∑𝑠𝑐𝑝𝑆𝑝

𝑃

𝑝=1

+∑∑𝑓𝑐𝑝𝑘𝑁𝐶𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑐𝑓𝑘𝑐𝑡𝑝𝑘𝑣𝑐𝑝𝑘𝔸𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑓𝑚𝑝𝑘𝑁𝑀𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑚𝑓𝑘𝑚𝑡𝑝𝑘𝑣𝑚𝑝𝑘𝔹𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑𝑓𝑠𝑝𝕃𝑝

𝑃

𝑝=1

+∑∑𝑛𝑐𝑘(𝔼𝑝𝑘𝛽𝑝𝑘 + 𝔽𝑝𝑘)

𝐾

𝑘=1

𝑃

𝑝=1

 

(3.18) 

s.t. 
Constraints (3.7), (3.8), (3.12)-(3.17), (3-19)-(3-46). 

 

𝑌𝐶𝑝′𝑘 + 𝑌𝑀𝑝′𝑘 ≤ 2𝜓𝑝′𝑘 ∀𝑝′, 𝑘 (3.47) 
 

3.2.4. Robust Optimization  

As mentioned in Section 3.1, lack of information about production processes 

and several environmental factors have imposed a degree of uncertainty to the 

design parameters which directly affect other decisions of production.  

One of the most important effects of production variations and uncertainty in 

any industry is increasing the number and cost of scraps. Scrap cost is a 

manufacturing reality affecting organizations across all industries and product lines. 

No matter why scrap occurs, its impacts on an organization are always wasted time 

and money, while no organization wants to admit it, these expenses add up quickly 

and negatively impact the bottom line. Although it is near-impossible to eliminate 

scrap completely, managers can reduce the amount of scrap in their organization by 

optimizing the way they produce the products. Therefore, manufacturers can reduce 

the scraps by carefully and consistently monitoring the parameters of the process to 

know how products are made. As a consequence of this monitoring, parameters with 

higher variation are being controlled and consequently the number of scraps is 

decreased. 

Two of the main resources of variation in the production processes are 

misadjustment and dispersion of an operation. Figures 3.2 and 3.3 show how 

misadjustment and dispersion of an operation directly affect the failure rate and the 

amount of scraps. In fact, the higher the values of misadjustment and dispersion are, 

the higher the value of failure rate and the amount of scraps are. Besides, the failure 

rate of each operation is one of the most significant parameters that affect the quality 

of the products.  

There are other parameters besides to misadjustment and dispersion in the 

proposed SMILP_MP that are affected by environmental factors and may fluctuate 

over the time. These parameters are production and inspection times, errors type I 

and type II of the CI, costs of manufacturing, inspection as well as warranty. 

Uncertainty in type I and type II errors directly affect the number and cost of scraps 
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and may influence the warranty cost. In this section, the variation of misadjustment 

and dispersion is considered first. 

Manufacturers are interested in less sensitive manufacturing processes by 

taking into account the effect of manufacturing variations on the products during the 

design phase. These manufacturing processes are robust processes which are 

relatively insensitive to alteration of uncertain parameters. It is noteworthy that in 

the robust manufacturing processes, the effect of uncertainty in the system is 

minimized without eliminating the sources of uncertainty. 

In the following, it will be shown that how failure rate variations indirectly 

affect the objective function of the proposed model. The objective of the proposed 

mathematical model is to minimize the total cost which is the sum of the 

manufacturing (i.e., 𝑇𝐶𝑃 + 𝑇𝐶𝑆 + 𝑇𝐶𝐼 (𝑇𝐶𝐼𝐹 + 𝑇𝐶𝐼𝑉)) and the warranty costs 

(𝑇𝐶𝑊). It can easily be proved that these two parts of the objective function are in 

conflict in terms of the number of conformity inspections (𝑁𝐶), where having higher 

NC increases the manufacturing cost and at the same time decreases the warranty 

cost. This directly relates to the amount of scraps; where considering CIs in the 

process increases the cost of inspections (i.e., 𝑇𝐶𝑆 + 𝑇𝐶𝐼𝐹) but decreases the 

warranty cost. Hence, uncertainty in the failure rate, which directly affects the 

amount of scraps, makes tangible changes in the objective function. 

 

 
Figure 3.2. Effect of misadjustment on failure rate 

 

 

 
Figure 3.3. Uncertainty in dispersion 
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In order to investigate the effect of failure rate in the result of the proposed 

model, the pseudo tradeoff diagram of manufacturing and warranty costs are 

illustrated in Figures 3.4 to 3.6. Vertical and horizontal axes show cost and 𝑁𝐶, 

respectively. Figure 3.4 demonstrates the tradeoff diagram for deterministic 

problem, in which no alteration in the parameters has been considered. Since, in the 

deterministic problem, the increase rate of the manufacturing cost is more than the 

decrease rate of the warranty cost; therefore, the minimum total cost belongs to a 

solution with no conformity inspection (i.e., 𝑁𝐶 = 0). It is obvious that alteration in 

failure rate significantly affects the amount of scraps as well as the value of warranty 

cost. Figure 3.5 depicts the tradeoff cost diagram for a problem with little increase in 

misadjustment which consequently increases the failure rate. As it can be seen, the 

decrease rate of warranty cost is initially more than the increase rate of the 

manufacturing cost for 𝑁𝐶 ≤ 𝑁2
∗ and vice versa for > 𝑁2

∗ . Therefore, the minimum 

total cost occurs for a solution with = 𝑁2
∗ . Similarly, Figure 3.6 illustrates the tradeoff 

cost diagram for a problem with higher increases in misadjustment compared to the 

problem in Figure 3.5. The optimal 𝑁𝐶 in the problem with higher uncertainty in 

misadjustment is equal to 𝑁3
∗.  

It can also be inferred from Figures 3.5 and 3.6 that the higher the uncertainty 

in the misadjustment, the higher the 𝑁𝐶 is (i.e., 𝑁3
∗ > 𝑁2

∗). It should be noted that 

Figures 3.4 to 3.6 have been conceptually illustrated based on the proposed 

mathematical model, however, the curve of manufacturing and warranty cost is not 

so simple in the industries, while the general results and trends are similar. For 

better supporting the effect of failure rate’s uncertainty, several experiments have 

been done in Chapter 4. 

 

 
Figure 3.4. Deterministic trade-off cost diagram 
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Figure 3.5. Trade-off cost diagram with lower uncertainty 

 
Figure 3.6. Trade-off cost diagram with higher uncertainty 

 

Several methods have been proposed to take manufacturing variations and 

uncertainty in input parameter into account in order to design a robust 

manufacturing process (Arvidsson and Gremyr, 2008; Hans-Georg and Sendho, 2007; 

Wei et al., 2007; Xiaoping and Chen 2000; Torben et al., 2009; Beiqing and Du, 2006; 

Gyung-Jin and Hee-Lee, 2002; Michael, 2013). In this paper, we apply a special case of 

Taguchi’s method (Jin and Sendhoff, 2003) to cope with the uncertainty of the 

misadjustment and in order to design a robust inspection process plan. Robustness 

of an optimal solution can usually be discussed from the following two perspectives: 

 The optimal solution is insensitive to any variations of the design variables. 

 The optimal solution is insensitive to any variations of the environmental 

parameters. 

 

In order to increase the robustness of the solutions, two methods have been 

mostly used as follows (Das, 2000; Beyer et al., 2002): 

Total Cost

No. of Conformity Inspections

Warranty Cost

Manufacturing Cost

Cost
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 Optimization of the expected value of the objective functions under different 

alteration in the uncertain input parameters.  

 Minimization of the objective function variance under different alteration in the 

uncertain input parameters. 

 

It has been mentioned that although the expectation based measure does not 

sufficiently take care of variations of the objective function while these variations are 

symmetric around the average value; on the other hand a purely variance based 

measure also does not take the absolute value of the solution into account. Hence, we 

formulate a single objective optimization problem which minimizes both expected 

value and variance of the objective function to search for robust optimal solutions. 

For this purpose, two different combinations of expected and variance values, 

namely Taguchi methods 1 and 2 (i.e., T1 and T2) are considered as Equations (3.48) 

and (3.49) that must be minimized (Gyung-Jin et al., 2006). First, necessary notations 

are provided as bellow. 

 

Parameters: 

MCR Number of Monte Carlo sample iterations. 

𝜔 Weight factor of standard deviation in the Taguchi method. 

𝐶𝑃𝑝 Process Capability. A simple and straightforward indicator of process 

capability. 

𝐶𝑃𝑘𝑝 Process Capability Index. Adjustment of CP for the effect of a non-centered 

distribution. 

𝜌𝑀𝐼  Uncertainty factor of the process misadjustment under MI. 

𝜌𝐶𝐼 Uncertainty factor of process misadjustment under CI. 

𝜌σ Uncertainty factor of process dispersion. 

𝜌𝑇𝑃 Uncertainty factor of production time. 

𝜌𝑇𝑀𝐼  Uncertainty factor of MI time. 

𝜌𝑇𝐶𝐼 Uncertainty factor of CI time. 

𝜌𝑒−𝐼 Uncertainty factor of type I error. 

𝜌𝑒−𝐼𝐼 Uncertainty factor of type II error. 

 

Variables: 

𝜇𝑂𝐹𝑉 Expected value of the objective function. 

𝜎𝑂𝐹𝑉 Standard deviation of the objective function. 

𝑂𝐹𝑉𝑇1
𝑅  Objective function value of Taguchi method 1. 

𝑂𝐹𝑉𝑇2
𝑅  Objective function value of Taguchi method 2. 

 

𝑂𝐹𝑉𝑇1
𝑅 = 𝜇𝐶𝑜𝑠𝑡 + 𝑘𝜎𝐶𝑜𝑠𝑡 (3.48) 

𝑂𝐹𝑉𝑇2
𝑅 = (𝜇𝐶𝑜𝑠𝑡 − 𝑂𝐹𝑉

𝐷_𝑀𝑃)2 + 𝜋𝜎𝐶𝑜𝑠𝑡
2  (3.49) 
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The purpose of the objective function (3.48) is merely to minimize variation 

through expected value and standard deviation; while the objective function (3.49) 

not only tries to reduce variation through expected value and standard deviation, but 

also attempts to shift the mean value to a target value (i.e., deterministic value).   

Now, we first need to vary the misadjustment in its variation interval; next, 

calculate the expected and standard deviation values through different variations. 

This procedure is repeated for each solution. Finally, a solution with the minimum 

value of objective functions (3.48) or (3.49) would be the most robust one.  

 

Table 3.1. Variation intervals of the uncertain parameters 

Parameters Uniform Fluctuation Interval 

m
isad

ju
stm

en
t 

𝐹𝑅𝑝𝑘
𝑀𝐼  

[⟦1 − 𝑃{𝑧 ≤ 3 × 𝐶𝑃𝑝} + 𝑃{𝑧 ≤ −3 × 𝐶𝑃𝑝}⟧, ⟦1 − 𝑃{𝑧 ≤ 3 × 𝐶𝑃𝑝 − 𝜌𝑀𝐼}

+ 𝑃{𝑧 ≤ −3 × 𝐶𝑃𝑝 − 𝜌𝑀𝐼}⟧] 

𝐹𝑅𝑝𝑘
𝐶𝐼  

[⟦1 − 𝑃{𝑧 ≤ 3 × 𝐶𝑃𝐾𝑝} + 𝑃{𝑧 ≤ −3 × 𝐶𝑃𝐾𝑝}⟧, ⟦1 − 𝑃{𝑧 ≤ 3 × 𝐶𝑃𝐾𝑝 − 𝜌𝐶𝐼}

+ 𝑃{𝑧 ≤ −3 × 𝐶𝑃𝐾𝑝 − 𝜌𝐶𝐼}⟧] 

d
isp

ersio
n

 

𝐹𝑅𝑝𝑘
𝑀𝐼  

[⟦1 − 𝑃 {𝑧 ≤ 3 ×
𝐶𝑃𝑝

1 − 𝜌σ
} + 𝑃 {𝑧 ≤ −3 ×

𝐶𝑃𝑝

1 − 𝜌σ
}⟧ , ⟦1 − 𝑃 {𝑧 ≤ 3 ×

𝐶𝑃𝑝

1 + 𝜌σ
}

+ 𝑃 {𝑧 ≤ −3 ×
𝐶𝑃𝑝

1 + 𝜌σ
}⟧] 

𝐹𝑅𝑝𝑘
𝐶𝐼  

[⟦1 − 𝑃 {𝑧 ≤ 3 ×
𝐶𝑃𝐾𝑝

1 − 𝜌σ
} + 𝑃 {𝑧 ≤ −3 ×

𝐶𝑃𝐾𝑝

1 − 𝜌σ
}⟧ , ⟦1 − 𝑃 {𝑧 ≤ 3 ×

𝐶𝑃𝐾𝑝

1 + 𝜌σ
}

+ 𝑃 {𝑧 ≤ −3 ×
𝐶𝑃𝐾𝑝

1 + 𝜌σ
}⟧] 

𝑇𝑃𝑝  [𝑇𝑃𝑝(1 − 𝜌𝑇𝑃), 𝑇𝑃𝑝(1 + 𝜌𝑇𝑃)] 

𝑇𝑀𝐼𝑝𝑘  [𝑇𝑀𝐼𝑝𝑘(1 − 𝜌𝑇𝑀𝐼), 𝑇𝑀𝐼𝑝𝑘(1 + 𝜌𝑇𝑀𝐼)] 

𝑇𝐶𝐼𝑝𝑘  [𝑇𝐶𝐼𝑝𝑘(1 − 𝜌𝑇𝐶𝐼), 𝑇𝐶𝐼𝑝𝑘(1 + 𝜌𝑇𝐶𝐼)] 

𝛼𝑝𝑘 [𝛼𝑝𝑘(1 − 𝜌𝑒−𝐼), 𝛼𝑝𝑘(1 + 𝜌𝑒−𝐼)] 

𝛽𝑝𝑘 [𝛽𝑝𝑘(1 − 𝜌𝑒−𝐼𝐼), 𝛽𝑝𝑘(1 + 𝜌𝑒−𝐼𝐼)] 

U
n

certain
ty

 in
 m

isad
ju

stm
e

n
t 

&
 d

isp
ersio

n
 

𝐹𝑅𝑝𝑘
𝑀𝐼 

[⟦1 − 𝑃 {𝑧 ≤ 3 ×
𝐶𝑃𝑝

1−𝜌σ
} + 𝑃 {𝑧 ≤ −3 ×

𝐶𝑃𝑝

1−𝜌σ
}⟧ , ⟦1 − 𝑃 {𝑧 ≤ 3 ×

𝐶𝑃𝑝

1+𝜌σ
− 𝑟𝑀𝐼} +

𝑃 {𝑧 ≤ −3 ×
𝐶𝑃𝑝

1+𝜌σ
− 𝑟𝑀𝐼}⟧]  

𝐹𝑅𝑝𝑘
𝐶𝐼  

[⟦1 − 𝑃 {𝑧 ≤ 3 ×
𝐶𝑃𝐾𝑝

1−𝜌σ
} + 𝑃 {𝑧 ≤ −3 ×

𝐶𝑃𝐾𝑝

1−𝜌σ
}⟧ , ⟦1 − 𝑃 {𝑧 ≤ 3 ×

𝐶𝑃𝐾𝑝

1+𝜌σ
− 𝑟𝐶𝐼} +

𝑃 {𝑧 ≤ −3 ×
𝐶𝑃𝐾𝑝

1+𝜌σ
− 𝑟𝐶𝐼}⟧]  

 

To generate different values for uncertain parameters, a Monte Carlo 

simulation technique is utilized. In a special case, in order to generate random values 

of misadjustment, it must be regarded that the quality characteristic k of operation p 

needs monitoring or conformity inspection. Based on the type of inspection, the 
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failure rate in presence of monitoring (𝐹𝑅𝑝𝑘
𝑀𝐼) and conformity (𝐹𝑅𝑝𝑘

𝐶𝐼 ) inspections are 

calculated differently (Kane, 1986).   

The variation intervals of the input parameters under uncertainty have been 

tabulated in Table 3.1, in which the value of the parameters is generated uniformly 

over the intervals (Kane, 1986) and 𝑃{𝑧 ≤ 𝑍} stands for the cumulative probability of 

standard normal distribution. It is noteworthy that Table 3.1 shows the distinct 

variation intervals; however, in case of simultaneous uncertainty in misadjustment 

and dispersion, the value of failure rate is calculated as two last row of Table 3.1. 

As an example when the failure rate is uncertain, the flowcharts of T1 and T2 

robust methods have been provided as Figures 3.7 and 3.8, respectively. For more 

explanation, consider a sample production system with p operations and one quality 

characteristic corresponding to each operation. For each operation, the value of 

failure rate depends on the decision that is whether the related characteristic needs 

MI (while we have assumed that MI affects the mean value of Cpk and Ppk). After 

calculating the failure rate based on Table 3.1, the objective function of the sample 

solution is calculated and archived. The following calculations are repeated for the all 

MCR iterations. Finally, Equations (3.48) and (3.49) are calculated based on the 

archived values of the objective function. 

  

 
Figure 3.7. Flowchart of the T1 method 

 

Individual solution j=1 p=1
If operation 

p needs MI 

Calculate FRCI for 

operation  p

No

Calculate FRMI for 

operation  p
Yes

p=p+1

If p<P No

Calculate OFV of 

solution (f)

Yes

Cost(j)=fj=j+1If j<MCR 

No

μ(i)=mean{j, Cost(j)}

σ(i)=std{j, Cost(j)}
Yes

OFV(i)=μ(i)+ωσ(i)
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Figure 3.8. Flowchart of the T2 method 

 

3.3. Extended Problem (EP) 

This section developed the Extended Problem by considering new assumption, 

new objective functions, and new constraints. The Extended Problem includes two 

main parts. At the first part, a bi-objective version of the proposed SMILP_MP is 

developed with the same assumptions, same constraint, and same robust approach. 

Second, a multi-objective inspection planning model is proposed with the 

assumptions as of Table 1.1.  

 

3.3.1. Bi-objective model 

As studied in Section 3.2, the proposed SMILP_MP model tries to minimize the 

sum of manufacturing and warranty costs, while, through Figures 3.4 to 3.6, it was 

conceptually demonstrated that these costs are naturally in conflict. Accordingly, this 

section proposes a bi-objective mixed-integer linear programming (BMILP_EP) 

model. The first objective function is to minimize manufacturing cost and second 

objective tries to minimize warranty costs. It can be declared that the second 

objective indirectly relates to the customer satisfaction, while minimizing the 

number of nonconforming products through the second objective function will 

increase the customer satisfaction.  

Since the assumptions of the BMILP_EP are the same as of SMILP_MP, the 

section of assumption is ignored. In the following, necessary notations and 

mathematical formulations are proposed.   

 

3.3.1.1. Notations  

There is only one parameter besides to those of Section 3.2.2, that is the 

importance of each quality characteristic for the customers to be conforming. By 

other word, nonconformity in different quality characteristics has different effects on 

the customers. Accordingly, we have: 

Individual solution j=1 p=1
If operation  

p needs MI 

Calculate FRCI for 

operation  p

No

Calculate FRMI for 

operation  p
Yes

p=p+1

If p<P No

Calculate OFV of 

solution (f)

Yes

Cost(j)=fj=j+1If j<MCR 

No

μ(i)=mean{j, Cost(j)}

σ(i)=std{j, Cost(j)}
Yes

OFV(i)=sqr[μ(i)-OFVD]+ωsqr[σ(i)]
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Parameters: 

𝐺𝑘 Relative importance of quality characteristic k. 

 

Variables: 

𝑂𝐹𝑉𝜏
𝐷−𝐸𝑃 Deterministic value of 𝜏th objective function for the Extended Problem 

(𝜏 = 1,2). 

 

3.3.1.2. Mathematical formulation  

This section proposes a bi-objective mixed-integer mathematical formulation 

for the Extended Problem. The objectives are to minimize the sum of total production 

cost (TCP), total scrap cost (TCS), total inspection cost (i.e., fixed (TCIF) and variable 

costs (TCIV)) (TCI=TCIF+TCIV), and to minimize total warranty cost (TCW). Despite 

of the Main Problem, only the MI-and-CI approach is adopted.  

 

 Objective Functions (OFVs) 

First and second objective functions are proposed as Equations (3.50) and 

(3.51). 

 

𝑂𝐹𝑉1
𝐷−𝐸𝑃 = min{𝑇𝐶𝑃 + 𝑇𝐶𝑆 + 𝑇𝐶𝐼𝐹 + 𝑇𝐶𝐼𝑉} (3.50) 

𝑂𝐹𝑉2
𝐷−𝐸𝑃 = min{𝐺𝑟𝑎𝑣𝑖𝑡𝑦 × 𝑇𝐶𝑊} (3.51) 

 

 Constraints  

The constraints of the BMILP_EP are the same as those of Section 3.2.3.2.  

 

After developing new objective functions, the final BMILP_EP under MI-and-CI 

strategy is proposed as follows: 

 

BMILP_EP (MI-and-CI): 

min𝑂𝐹𝑉1
𝐷−𝐸𝑃 =∑𝑝𝑐𝑝𝑝𝑡𝑝𝑁𝑝

𝑃

𝑝=1

+∑𝑠𝑐𝑝𝑆𝑝

𝑃

𝑝=1

+∑∑𝑓𝑐𝑝𝑘𝑁𝐶𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑐𝑓𝑘𝑐𝑡𝑝𝑘𝑣𝑐𝑝𝑘𝔸𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑓𝑚𝑝𝑘𝑁𝑀𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

+∑∑𝑚𝑓𝑘𝑚𝑡𝑝𝑘𝑣𝑚𝑝𝑘𝔹𝑝

𝐾

𝑘=1

𝑃

𝑝=1

+∑𝑓𝑠𝑝𝕃𝑝

𝑃

𝑝=1

 

(3.52) 

min𝑂𝐹𝑉2
𝐷−𝐸𝑃 =∑∑𝐺𝑘𝑛𝑐𝑘(𝔼𝑝𝑘𝛽𝑝𝑘 + 𝔽𝑝𝑘)

𝐾

𝑘=1

𝑃

𝑝=1

 (3.53) 

s.t. 

Constraints (3.7), (3.8), (3.12)-(3.17), (3-19)-(3-47). 
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3.3.1.3. Robust Optimization  

The procedure of the robust optimization approach for the BMILP_EP is the 

same as SMILP_MP with difference in the number of robust objectives. In addition, 

only Taguchi method 1 (T1) is applied. Accordingly, the following two robust 

objective functions (3.56) and (3.57) are developed to be minimized. Necessary 

notations are first provided. 

  

Variables: 

𝜇𝜏
𝑂𝐹𝑉 Expected value of the 𝜏th objective function. 

𝜎𝜏
𝑂𝐹𝑉  Standard deviation of the 𝜏th objective function. 

𝑂𝐹𝑉𝜏
𝑅 Value of 𝜏th robust objective function. 

𝑂𝐹𝑉1
𝑅 = 𝜇1

𝑂𝐹𝑉 + 𝑘𝜎1
𝑂𝐹𝑉 (3.56) 

𝑂𝐹𝑉2
𝑅 = 𝜇2

𝑂𝐹𝑉 + 𝑘𝜎2
𝑂𝐹𝑉 (3.57) 

 

3.3.2. Multi-objective model 

This section extends the proposed BMILP_EP model by considering a MPS 

with different products, different quality characteristics, and different machine and 

inspection tools with a new objective to minimize the total manufacturing time for 

each product. In this model and besides to which-what and where decisions, 

machines to operate and tools to inspect the items need to be determined. There are 

different machines with specific features such as production cost, production time 

and process capability. It is obvious that decision regarding equipment (i.e., machines 

and inspection tools) selection directly affect other decisions as well as final quality 

of products. For example, consider a manufacturer who has targeted high quality 

products to increase the customer satisfaction; therefore, the company needs to cost 

more to purchase/utilize machines with high capability and inspection tools with 

lowest errors. An obstacle in this way is the limited budget of companies. 

Accordingly, the manufacturer must simultaneously make which-what and where 

decisions and decide to utilize which equipment not to exceed the budget constraint 

but reach a good level of customer satisfaction and produce each product in a 

reasonable time. Decisions in such a complex manufacturing environment are what 

this section tries to address. 

The main assumptions are first provided following by necessary notations and 

mathematical formulation. 

 

3.3.2.1. Assumptions  

This section provides the assumptions for the Extended Problem as follows: 

 The system has N manufacturing stages arranged serially and processes P types 

of products with K different quality characteristics.  

 Different quality characteristics may be processed in a same manufacturing stage. 

 Nonconformities are generated only at the manufacturing processes and other 

activities such as movement, setup and inspection activities do not make 

nonconformity. 
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 Each manufacturing stage has a failure rate of producing nonconforming items.  

 Two types of conformity (CI) and monitoring (MI) inspections are considered, 

while considering MI for a manufacturing stage decreases the failure rate of that 

stage. 

 CI subjects to both errors type I and II. 

 Two inspection strategies may be taken at each manufacturing stage as no 

inspection and full inspection.  

 The frequency of MI is fixed. 

 Detected nonconforming items are directly scrapped and no rework or repair 

operation is considered. 

 A unit scrap cost is imposed to the system in case of detecting a nonconforming 

item. The scrap cost depends on both the number of manufacturing stage and the 

quality characteristics. 

 Different machines with specific features (i.e., time, cost, capability, etc.) exist to 

operate the items and machine can operate a set of quality characteristics. 

 Only one machine is allocated for operating each quality characteristics. 

 Different inspection tools with specific features (i.e., errors, detection rate, time, 

cost, etc.) exist to inspect the items and these tools can inspect a set of quality 

characteristics. 

 Only one inspection tool is allocated for inspecting each quality characteristic. 

 In-process items must wait in a queue to receive services (i.e., machinery or 

inspection). Therefore, Machines and Inspection tools are modeled as a M/M/1 

queuing system. 

 The production system reaches a steady state but machines and inspection tools 

are subject to disruption and breakdown. 

 In case of disruption, the processing and inspection rates are degraded to 0.  

 Machines and inspection tools are disrupted with a random rate and are retrieved 

again with a random rate.  

 A capacity constraint is assumed for both machines and inspection tools. 

 

3.3.2.2. Notations  

Before the mathematical model is presented, necessary notations are first 

provided in this section. 

 

Sets: 

𝑜, 𝑜′ ∈ {1,2, … , 𝑂 + 1} Set of operations 

𝑝 ∈ {1,2, … , 𝑃} Set of products 

𝑚 ∈ {1,2, … ,𝑀} Set of Machines 

𝑖 ∈ {1,2, … , 𝐼} Set of inspection tools 

𝑘 ∈ {1,2, … , 𝐾} Set of quality characteristics 
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Parameters: 

𝑓𝑟𝑜𝑘𝑝𝑚
1  Failure rate of operation o for quality characteristic k for product p on 

machine m with monitoring inspection. 

𝑓𝑟𝑜𝑘𝑝𝑚
2  Failure rate of operation o for quality characteristic k for product p on 

machine m without monitoring inspection. 

𝑑𝑜𝑘
𝑝𝑖  Detection rate of conformity inspection assigned to operation o for quality 

characteristic k in product p using inspection tool i. 

𝛼𝑜𝑘
𝑝𝑖  Type I error of conformity inspection assigned to operation o for quality 

characteristic k in product p using inspection tool i. 

𝛽𝑜𝑘
𝑝𝑖  Type II error of conformity inspection assigned to operation o for quality 

characteristic k in product p using inspection tool I (𝛽𝑜𝑘
𝑝𝑖 = 1 − 𝑑𝑜𝑘

𝑝𝑖 ). 

𝐺𝑘
𝑃 Relative importance of quality characteristic k in product p. 

𝑛𝑇
𝑝  Total number of raw parts of product p fed to the production process. 

𝑝𝑐𝑜𝑝
𝑚  Unit production cost per time for operation o in product p on machine m. 

𝑝𝑡𝑜𝑝
𝑚  Unit production time of operation o in product p on machine m. 

𝑠𝑐𝑜
𝑝 Scrap cost of nonconforming items detected between operations o and o+1 

in product p. 

𝑛𝑐𝑘
𝑝 Cost of nonconforming items in the market due to quality characteristic k in 

product p. 

𝑓𝑚𝑜𝑘
𝑝𝑚𝑖 Fixed cost of an MI between operations o and o+1 for quality characteristic 

k in product p on machine m using inspection tool i. 

𝑓𝑐𝑜𝑘
𝑝𝑚𝑖 Fixed cost of an CI between operations o and o+1 for characteristic k in 

product p on machine m using inspection tool i. 

𝑓𝑝𝑚 Fixed cost of utilizing machine m. 

𝑓𝑎𝑜𝑝
𝑚  Fixed cost of performing operation o in product p using machine m. 

𝑐𝑝𝑖 Fixed cost of utilizing inspection tool i. 

𝑐𝑎𝑜𝑘
𝑝𝑖  Fixed cost of conformity inspection of quality characteristic k in operation o 

in product p using inspection tool i. 

𝑣𝑚𝑜𝑘
𝑝𝑚𝑖 Unit variable cost of MI per time between operations o and o+1 for quality 

characteristic k in product p on machine m using inspection tool i. 

𝑣𝑐𝑜𝑘
𝑝𝑚𝑖 Unit variable cost of CI per time between operations o and o+1 for quality 

characteristic k in product p on machine m using inspection tool i. 

𝑚𝑡𝑜𝑘
𝑝𝑖  Unit time of MI between operations o and o+1  for quality characteristic k in 

product p on machine m using inspection tool i. 

𝑐𝑡𝑜𝑘
𝑝𝑖  Unit time of CI between operations o and o+1  for quality characteristic k in 

product p on machine m using inspection tool i. 

𝜇𝑝𝑜𝑝
𝑚  Production rate of machine m for performing operation o in product p 

(𝜇𝑝𝑜𝑝
𝑚 = 1 𝑝𝑡𝑜𝑝

𝑚⁄ ). 

𝜇𝑐𝑜𝑘
𝑝𝑖  CI rate (part/time) of inspection tool i for quality characteristic k of 

operation o in product p (𝜇𝑐𝑜𝑘
𝑝𝑖 = 1 𝑐𝑡𝑜𝑘

𝑝𝑖⁄ ). 

𝜇𝑚𝑜𝑘
𝑝𝑖  MI rate (part/time) of inspection tool i for quality characteristic k of 

operation o in product p (𝜇𝑚𝑜𝑘
𝑝𝑖 = 1 𝑚𝑡𝑜𝑘

𝑝𝑖⁄ ). 



Chapter III: Mathematical Formulation & Solution Approaches 

 

63 
 

𝑓𝑝𝑜𝑝
𝑚  Breakdowns rate of machine m for performing operation o in product p. 

𝑟𝑝𝑜𝑝
𝑚  Retrieve time rate of machine m for performing operation o in product p. 

𝑓𝑐𝑜𝑘
𝑝𝑖  Breakdowns rate of inspection tool i for performing CI of quality 

characteristic k of operation o in product p. 

𝑟𝑐𝑜𝑘
𝑝𝑖  Retrieve time rate of inspection tool i for performing CI of quality 

characteristic k of operation o in product p. 

𝑓𝑚𝑜𝑘
𝑝𝑖  Breakdowns rate of inspection tool i for performing MI of quality 

characteristic k of operation o in product p. 

𝑟𝑚𝑜𝑘
𝑝𝑖  Retrieve time rate of inspection tool i for performing MI of quality 

characteristic k of operation o in product p. 

𝑓𝑠𝑜
𝑝 Fixed space cost per part of performing inspection between operations o 

and o+1 in product p. 

𝜁
𝑜′𝑜

𝑝
 Is 1 if two operations 𝑜′ and o are dependent in product p and 0 otherwise. 

𝜓𝑜𝑘
𝑝  Is 1 if quality characteristic k belongs to operation o in product p and 0 

otherwise. 

𝑚𝑓𝑘
𝑝

 Monitoring frequency for quality characteristic k of operation o in product 

p. 

𝑐𝑓𝑘
𝑝 Conformity frequency for quality characteristic k of operation o in product 

p. 

ℳ A big number. 

 

Decision Variables: 

𝑁𝑃𝑜𝑘
𝑝  Number of nonconforming items due to characteristic k from operation o 

in product p. 

𝑌𝐶𝑜𝑘
𝑝  1 if operation o in product p needs CI for characteristic k; and 0, 

otherwise. 

𝑌𝑀𝑜𝑘
𝑝  1 if operation o in product p needs MI for characteristic k; and 0, 

otherwise. 

𝑋𝐶
𝑜′𝑜

𝑘𝑝𝑖
 1 if CI of operation 𝑜′ for characteristic k in product p is performed 

between operations o and o+1 using inspection tool i (𝑜′ ≤ 𝑜); and 0, 

otherwise. 

𝑋𝑀
𝑜′𝑜

𝑘𝑝𝑖
 1 if MI of operation 𝑜′ for characteristic k in product p is performed 

between operations o and o+1 using inspection tool i (𝑜′ ≤ 𝑜); and 0, 

otherwise. 

𝑁𝑜
𝑝 Number of in-process parts entering operation o in product p. 

𝑁𝑀𝑜𝑘
𝑝𝑖  Number of MIs performed using inspection tool i between operations o 

and o+1 for quality characteristic k in product p. 

𝑁𝐶𝑜𝑘
𝑝𝑖  Number of CIs performed using inspection tool i between operations o 

and o+1 for quality characteristic k in product p. 

𝑁𝑆𝑜
𝑝 Is 1 if there is an inspection station between operations o and o+1 in 

product p. 

𝒮𝑜𝑘
𝑝  Number of scrapped part between operations o and o+1 due to quality 
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characteristic k in product p. 

𝑆𝑜
𝑝

 Total number of scrapped parts between operations o and o+1 for 

product p. 

𝑍𝑚 Number of machine m that must be purchased/utilized. 

𝑍𝑖  Number of inspection tool i that must be purchased/utilized. 

𝑈𝑜𝑝
𝑚  Is 1 if operation o in product p is performed on machine m. 

𝑊𝑃𝑜𝑝
𝑚 Waiting time of parts for performing operation o of product p on machine 

m. 

𝑊𝐶𝑜𝑘
𝑝𝑖  Waiting time during a CI of quality characteristic k of operation o in 

product p using inspection tool i. 

𝑊𝑀𝑜𝑘
𝑝𝑖  Waiting time during a MI of quality characteristic k of operation o in 

product p using inspection tool i. 

𝑂𝐹𝑉𝜏
𝐷−𝐸𝑃 Deterministic value of the 𝜏th objective function for the Extended Problem 

(𝜏 = 1,2,3). 

 

Auxiliary variables: 

𝔸
𝑜′𝑜

𝑘𝑝𝑖
 Linear form of 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
×𝑁

𝑜′
𝑝

. 

𝔹
𝑜′𝑜

𝑘𝑝𝑖
 Linear form of 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖
×𝑁

𝑜′
𝑝

. 

𝔻
𝑜′𝑜

𝑘𝑝𝑖
 Linear form of 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
×𝑁𝑃

𝑜′𝑘

𝑝
. 

𝔼
𝑜′𝑘

𝑝
 Linear form of 𝑁𝑃

𝑜′𝑘

𝑝
× 𝑌𝐶

𝑜′𝑘

𝑝
. 

𝔽
𝑜′𝑘

𝑝
 Linear form of 𝑁𝑃

𝑜′𝑘

𝑝
× 𝑌𝑀

𝑜′𝑘

𝑝
. 

𝕃𝑜
𝑝 Linear form of 𝑁𝑜

𝑝 × 𝑁𝑆𝑜
𝑝. 

𝕌
𝑜′𝑘

𝑝
 Linear form of 𝑁

𝑜′
𝑝
× 𝑌𝐶

𝑜′𝑘

𝑝
. 

𝕍
𝑜′𝑘

𝑝
 Linear form of 𝑁

𝑜′
𝑝
× 𝑌𝑀

𝑜′𝑘

𝑝
. 

 

3.3.2.3. Mathematical formulation  

This section proposes a three-objective mixed-integer nonlinear 

programming model for the Extended Problem (TMINLP_EP). The objectives are to 

minimize the sum of total production cost (TCP), total scrap cost (TCS), total 

inspection cost (i.e., fixed (TCIF) and variable costs (TCIV)) (TCI=TCIF+TCIV), total 

machine purchasing/utilizing cost (TCM), to minimize total warranty cost (TCW), and 

to minimize the maximum manufacturing time for each product (𝑇𝑀𝑇𝑝). Like 

BMILP_EP, only the MI-and-CI approach is adopted.  

 

 Objective Functions (OFVs) 

First, second and third objective functions are proposed as Equations (3.58) to 

(3.60). 

 

𝑂𝐹𝑉1
𝐷−𝐸𝑃 = min{𝑇𝐶𝑃 + 𝑇𝐶𝑆 + 𝑇𝐶𝐼𝐹 + 𝑇𝐶𝐼𝑉 + 𝑇𝐶𝑀} (3.58) 

𝑂𝐹𝑉2
𝐷−𝐸𝑃 = min{𝑇𝐶𝑊} (3.59) 
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𝑂𝐹𝑉3
𝐷−𝐸𝑃 = min {max

𝑝
{𝑇𝑀𝑇𝑝}} (3.60) 

 

The value of 𝑇𝐶𝑃, 𝑇𝐶𝑆, 𝑇𝐶𝐼𝐹, 𝑇𝐶𝐼𝑉, 𝑇𝐶𝑀, and 𝑇𝐶𝑊 are calculated as 

Equations (3.61) to (3.66). Calculating the value of 𝑇𝑀𝑇𝑝 is described next.  

 

𝑇𝐶𝑃 =∑∑∑ 𝑝𝑐
𝑜𝑝
𝑚 𝑝𝑡

𝑜𝑝
𝑚 𝑁𝑜

𝑝𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑∑ 𝑓𝑎
𝑜𝑝
𝑚 𝑈𝑜𝑝

𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

 (3.61) 

𝑇𝐶𝑆 =∑∑ 𝑠𝑐𝑜
𝑝𝑆𝑜

𝑝

𝑂

𝑜=1

𝑃

𝑝=1

 (3.62) 

𝑇𝐶𝐼𝐹 =∑∑∑∑∑(𝑓𝑐
𝑜𝑘
𝑝𝑚𝑖𝑁𝐶𝑜𝑘

𝑝𝑖
+ 𝑓𝑚

𝑜𝑘
𝑝𝑚𝑖𝑁𝑀𝑜𝑘

𝑝𝑖 )

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑ 𝑓𝑠
𝑜
𝑝𝕃𝑜

𝑝

𝑂

𝑜=1

𝑃

𝑝=1

+∑ 𝑐𝑝
𝑖
𝑍𝑖

𝐼

𝑖=1

 (3.63) 

𝑇𝐶𝐼𝑉 =∑∑∑∑∑∑(𝑐𝑓
𝑘
𝑝𝑐𝑡𝑜𝑘

𝑝𝑖
𝑣𝑐𝑜𝑘

𝑝𝑚𝑖
𝔸
𝑜′𝑜

𝑘𝑝𝑖
+ 𝑚𝑓

𝑘
𝑝𝑚𝑡𝑜𝑘

𝑝𝑖
𝑣𝑚𝑜𝑘

𝑝𝑚𝑖
𝔹
𝑜′𝑜

𝑘𝑝𝑖)𝑈𝑜𝑝
𝑚

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜′=1

𝑂

𝑜=1

𝑃

𝑝=1

 (3.64) 

𝑇𝐶𝑀 =∑ 𝑓𝑝
𝑚
𝑍𝑚

𝑀

𝑚=1

 (3.65) 

𝑇𝐶𝑊 =∑∑∑∑ 𝐺𝑘
𝑃𝑛𝑐𝑘

𝑝(𝔼𝑜𝑘
𝑝
𝛽
𝑜𝑘
𝑝𝑖 + 𝔽𝑜𝑘

𝑝 )

𝐾

𝑘=1

𝐼

𝑖=1

𝑂

𝑜=1

𝑃

𝑝=1

 (3.66) 

 

The rest of this section is dedicated to the explanations to propose third 

objective function. 

Due to limited capacity of manufacturing equipment, all parts entering a 

machine to undergo their corresponding operations cannot be processed at the same 

time and need to wait for their turn to be processed. This issue is the same for 

inspection operations and parts must wait to be inspected. Therefore, the total 

manufacturing time for final products is the sum of actual production and inspection 

times and the time spent at the machines and inspection stations. The recourse 

limitation and limited capacity of machines and inspection tools cause part delays if 

the average arrival rate gets closer to the service rate. These delays are increased as 

more and more parts are fed to the system or machines and inspection tools with 

lower capacity are purchased/utilized to decrease total cost of manufacturing. As 

these delays significantly affect the manufacturing time requirement, spent time at 

the machines and inspection stations should be calculated and taken into account. 

Several studies have been conducted in the field of modeling manufacturing 

systems during last decade including scheduling and production planning problems. 

In most of these problems, it is assumed that all parameters concerning the 

manufacturing equipment have constant and known values in advance. However, 

manufacturing systems in the real world are subject to many sources of variability or 

randomness caused by human or workplace events, such as unexpected machine 
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breakdowns, changes in due dates, releases of unexpected jobs, imprecise processing 

times, out of stock conditions, and operator unavailability (Elyasi and Salmasi, 2013). 

These variability and randomness lead to uncertainty in the part flow between 

operations. In order to design and control manufacturing systems that operate 

effectively in this environment, analytical models that capture the effects of 

randomness are necessary (Cruz et al., 2010; Hulett and Damodaran, 2011; Li et al., 

2009; Wu, 2005; Asmundsson et al., 2009). In such systems, queuing approach is an 

efficient method to take uncertainty into account (Hulett and Damodaran, 2011; Yang 

et al., 2007; Omar and Kumar, 2008; Connors et al., 1996; Park et al., 2000; Narahari 

and Khan, 1996; Saboo et al., 1989; Pradhan et al., 2008; Pradhan and Damodaran, 

2009). Figure 3.9 illustrates the manufacturing time at each stage in presence of 

inspection. 

 

 
Figure 3.9. Manufacturing time at a stage 

 

Accordingly in this thesis, a queuing system is considered to analyze the 

waiting time of parts at the machines and inspection stations. In this way, accounting 

for uncertain amount of parts and calculation of waiting times through queue theory, 

makes the proposed model more attractive in practice. For this aim, a Poisson 

distribution is considered for modeling the waiting times of entering parts to the 

machines and inspection stations. This allows us to model the queue formed by part 

as an M/M/1 queuing system. Due to non-ideal internal and external condition and 

unpredictable events, consider that the queue systems at machines and inspection 

stations are stochastically disrupted and again retrieved with specific rates. In the 

case of M/M/c queue system, service times are assumed to be independent and 

identically distributed exponentials with rate 𝜇. During disruptions, the number of 

operational servers decreases from c to 𝑐′ and the service rates of all servers drop 

from 𝜇 to 𝜇′ ≥ 0. As soon as the hub is retrieved, the number of working servers and 

their service rates are restored to c and 𝜇, respectively. We assume that breakdowns 

arrive according to a Poisson process with rate f, and the retrieve times are i.i.d. 

exponentials with rate r. The parts arrivals are in accordance with a homogeneous 

Poisson process with intensity 𝜆.  

In this thesis, a M/M/1 queue system is considered for all machines and 

inspection stations, in which the mean waiting time, W, at machines and inspection 

Machine Inspection…..

W_queue_M

…..

W_queue_I

Machinery Time (per part) = W_queue_M + T_Machinery Inspection Time (per part) = W_queue_I + T_inspection

Total Time of Stage (per part) = Machinery Time (per part) + Inspection Time (per part)

Parts Parts

T_InspectionT_Machinery
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stations, when 𝜇′ = 0, can be derived from the generating function (3.67) as equation 

(3.68) (Baykal-Gursoy et al., 2009).  

 

𝐺(𝑧) =
(𝑟𝜇 − (𝑟 + 𝑓)𝜆)(−𝜆𝑧 + 𝜆 + 𝑟 + 𝑓)

(𝑟 + 𝑓)(𝜆2𝑧2 − 𝜆(𝜆 + 𝑟 + 𝑓 + 𝜇)𝑧 + 𝜇(𝜆 + 𝑟))
 (3.67) 

𝑊 =

[
d𝐺(𝑧)
d𝑧

]
𝑧=1

𝜆
=

(𝑟 + 𝑓)2 + 𝜇𝑓

(𝑟 + 𝑓)(𝑟(𝜇 − 𝜆) − 𝜆𝑓)
 

(3.68) 

 

According to equation (3.68), the waiting time of parts entering the machines 

(𝑊𝑃𝑜𝑝
𝑚) and the waiting time of parts that undergo conformity (𝑊𝐶𝑜𝑘

𝑝𝑖) and 

monitoring (𝑊𝑀𝑜𝑘
𝑝𝑖 ) inspections are calculated as Equations (3.69) to (3.71), 

respectively. 

 

𝑊𝑃𝑜𝑝
𝑚 =

(𝑟𝑝𝑜𝑝
𝑚 + 𝑓𝑝𝑜𝑝

𝑚 )
2
+ 𝜇𝑝𝑜𝑝

𝑚 𝑓𝑝𝑜𝑝
𝑚 𝑍𝑚

(𝑟𝑝𝑜𝑝
𝑚 + 𝑓𝑝𝑜𝑝

𝑚 )[𝑟𝑝𝑜𝑝
𝑚 (𝜇𝑝𝑜𝑝

𝑚 𝑍𝑚 − 𝜆) − 𝜆𝑓𝑝𝑜𝑝
𝑚 ]

 (3.69) 

𝑊𝐶𝑜𝑘
𝑝𝑖
=

(𝑟𝑐𝑜𝑘
𝑝𝑖
+ 𝑓𝑐𝑜𝑘

𝑝𝑖
)
2
+ 𝜇𝑐𝑜𝑘

𝑝𝑖
𝑓𝑐𝑜𝑘

𝑝𝑖
𝑍𝑖

(𝑟𝑐𝑜𝑘
𝑝𝑖
+ 𝑓𝑐𝑜𝑘

𝑝𝑖
)[𝑟𝑐𝑜𝑘

𝑝𝑖
{𝜇𝑐𝑜𝑘

𝑝𝑖
𝑍𝑖 − 𝜆} − 𝜆𝑓𝑐𝑜𝑘

𝑝𝑖
]
 (3.70) 

𝑊𝑀𝑜𝑘
𝑝𝑖
=

(𝑟𝑚𝑜𝑘
𝑝𝑖
+ 𝑓𝑚𝑜𝑘

𝑝𝑖
)
2
+ 𝜇𝑚𝑜𝑘

𝑝𝑖
𝑓𝑚𝑜𝑘

𝑝𝑖
𝑍𝑖

(𝑟𝑚𝑜𝑘
𝑝𝑖
+ 𝑓𝑚𝑜𝑘

𝑝𝑖
)[𝑟𝑚𝑜𝑘

𝑝𝑖
{𝜇𝑚𝑜𝑘

𝑝𝑖
𝑍𝑖 − 𝜆} − 𝜆𝑓𝑚𝑜𝑘

𝑝𝑖
]
 (3.71) 

 

where the value of 𝜆 is calculated as Equation (3.72). In this equation, it is considered 

that arrival rate of the parts through the production system is equal to the minimum 

service rate among manufacturing and inspection stages. Accordingly, the stage with 

minimum service rate is called as bottleneck stage.  

 

𝜆 =

{
 

 
min
𝑜,𝑝

(∑𝜇𝑝𝑜𝑝
𝑚𝑈𝑜𝑝

𝑚

𝑚

) , min
𝑜′′<𝑜
𝑜,𝑘,𝑝

{
 

 
( ∑ ∑𝑋𝑀

𝑜′,𝑜−1
𝑘𝑝𝑖

𝜇𝑚𝑜𝑘
𝑝𝑖

𝑖𝑜′

𝑜′≤𝑜′′

)𝑌𝑀𝑜𝑘
𝑝

+ℳ(1 − 𝑌𝑀𝑜𝑘
𝑝
)

}
 

 
, min
𝑜′′<𝑜
𝑜,𝑘,𝑝

{
 

 
( ∑ ∑𝑋𝐶

𝑜′,𝑜−1
𝑘𝑝𝑖

𝜇𝑚𝑜𝑘
𝑝𝑖

𝑖𝑜′

𝑜′≤𝑜′′

)𝑌𝐶𝑜𝑘
𝑝
+ℳ(1 − 𝑌𝐶𝑜𝑘

𝑝
)

}
 

 

}
 

 
 

(3.72) 

 

According to Equations (3.60) and (3.69) to (3.71), the value of 𝑇𝑀𝑇𝑝 is 

provided as Equation (3.73). 

 

𝑇𝑀𝑇𝑝 =∑∑(𝑝𝑡𝑜𝑝
𝑚 +𝑊𝑃𝑜𝑝

𝑚)𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

𝑂

𝑜=1

+∑∑∑(𝑐𝑡𝑜𝑘
𝑝𝑖 +𝑊𝐶𝑜𝑘

𝑝𝑖)𝑌𝐶𝑜𝑘
𝑝𝑖

𝐼

𝑖=1

𝐾

𝑘=1

𝑂

𝑜=1

+∑∑∑(𝑚𝑡𝑜𝑘
𝑝𝑖 +𝑊𝑀𝑜𝑘

𝑝𝑖)𝑌𝑀𝑜𝑘
𝑝𝑖

𝐼

𝑖=1

𝐾

𝑘=1

𝑂

𝑜=1

 

(3.73) 
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 Constraints  

Although the most constraints of the TMINLP_EP are the same as those of 

Section 3.2.3.2, but all the constraints with new notations are presented as follows. 

 

∑ ∑𝜁
𝑜′𝑜

𝑝
𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖

𝐼

𝑖=1

𝑂

𝑜=𝑜′

= 𝜓
𝑜′𝑘

𝑝
𝑌𝐶

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂; 𝑝 (3.74) 

∑ ∑𝜁
𝑜′𝑜

𝑝
𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖

𝐼

𝑖=1

𝑂

𝑜=𝑜′

= 𝜓
𝑜′𝑘

𝑝
𝑌𝑀

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.75) 

𝑌𝐶
𝑜′𝑘

𝑝
+ 𝑌𝑀

𝑜′𝑘

𝑝
≤ 2𝜓

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘, 𝑝 (3.76) 

𝑁𝑃𝑜𝑘
𝑝 = 𝕍𝑝𝑘 ∑(𝑓𝑟𝑜𝑘𝑝𝑚

1 𝑈𝑜𝑝
𝑚 )

𝑀

𝑚=1

+ 𝕌𝑝𝑘 ∑(𝑓𝑟𝑜𝑘𝑝𝑚
2 𝑈𝑜𝑝

𝑚 )

𝑀

𝑚=1

 
∀𝑜, 𝑘; 𝑜

≤ 𝑂, 𝑝 
(3.77) 

𝒮𝑜𝑘
𝑝 ≥ [𝔻𝑝′𝑝

𝑘 × 𝑑𝑜𝑘
𝑝𝑖 ] + [𝔸𝑝′𝑝

𝑘 × 𝛼𝑜𝑘
𝑝𝑖 −𝔻𝑝′𝑝

𝑘 × 𝛼𝑜𝑘
𝑝𝑖 ]

− [𝔻𝑝′𝑝
𝑘 × 𝛽𝑜𝑘

𝑝𝑖 ] 

∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′

≤ 𝑂, 𝑝 
(3.78) 

𝑆𝑜
𝑝 ≥ 𝒮𝑜𝑘

𝑝  ∀𝑜, 𝑘; 𝑜 ≤ 𝑂, 𝑝 (3.79) 

𝑁𝑜
𝑝 = 𝑁𝑜−1

𝑝 − 𝑆𝑜−1
𝑝  ∀𝑜; 𝑜 ≤ 𝑂 + 1, 𝑝 (3.80) 

𝑁0
𝑝 = 𝑛𝑇

𝑝 ∀𝑜 (3.81) 

𝑁𝑀𝑜𝑘
𝑝𝑖 ≥ ∑ 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖

𝑜

𝑜′=1

 ∀𝑝, 𝑖, 𝑘, 𝑜; 𝑜 ≤ 𝑂 (3.82) 

𝑁𝐶𝑜𝑘
𝑝𝑖 ≥ ∑ 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖

𝑂

𝑜′=1

 ∀𝑝, 𝑖, 𝑘, 𝑜; 𝑜 ≤ 𝑂 (3.83) 

ℳ×𝑁𝑆𝑜
𝑝 ≥ ∑ ∑∑(𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
+ 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖
)

𝐼

𝑖=1

𝐾

𝑘=1

𝑜

𝑜′=1

 ∀𝑜, 𝑜′; 𝑜, 𝑜′ ≤ 𝑂, 𝑝 (3.84) 

∑ 𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

= 1 ∀𝑜; 𝑜 ≤ 𝑂, 𝑝 (3.85) 

∑ ∑∑(𝑐𝑓𝑘
𝑝𝑐𝑡𝑜𝑘

𝑝𝑖𝔸
𝑜′𝑜

𝑘𝑝𝑖
𝑈𝑜𝑝
𝑚 +𝑚𝑓𝑘

𝑝𝑚𝑡𝑜𝑘
𝑝𝑖𝔹

𝑜′𝑜

𝑘𝑝𝑖
𝑈𝑜𝑝
𝑚 )

𝑂

𝑜=1

𝑂

𝑜′=1

𝑃

𝑝=1

≤ ℾ𝑘
𝑖 𝑍𝑖 ∀𝑘, 𝑖 (3.86) 

∑∑𝑝𝑡𝑜𝑝
𝑚𝑁𝑜

𝑝𝑈𝑜𝑝
𝑚

𝑃

𝑝=1

𝑂

𝑜=1

≤ ℚ𝑚𝑍𝑚 ∀𝑚 (3.87) 

𝑁𝑀𝑜𝑘
𝑝𝑖 ≤ ℳ𝑍𝑖  ∀𝑜, 𝑘; 𝑜 ≤ 𝑂, 𝑝, 𝑖 (3.88) 

𝑁𝐶𝑜𝑘
𝑝𝑖 ≤ℳ𝑍𝑖 ∀𝑜, 𝑘; 𝑜 ≤ 𝑂, 𝑝, 𝑖 (3.89) 

𝔸
𝑜′𝑜

𝑘𝑝𝑖
≤ℳ ×𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.90) 

𝔸
𝑜′𝑜

𝑘𝑝𝑖
≤ 𝑁

𝑜′
𝑝

 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.91) 

𝔸
𝑜′𝑜

𝑘𝑝𝑖
≥ 𝑁

𝑜′
𝑝
−ℳ(1 − 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
) ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.92) 

𝔹
𝑜′𝑜

𝑘𝑝𝑖
≤ℳ × 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖
 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.93) 
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𝔹
𝑜′𝑜

𝑘𝑝𝑖
≤ 𝑁

𝑜′
𝑝

 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.94) 

𝔹
𝑜′𝑜

𝑘𝑝𝑖
≥ 𝑁

𝑜′
𝑝
−ℳ(1 − 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖
) ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.95) 

𝕍
𝑜′𝑘

𝑝
≤ 𝑀 × 𝑌𝑀

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.96) 

𝕍
𝑜′𝑘

𝑝
≤ 𝑁

𝑜′
𝑝

 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.97) 

𝕍
𝑜′𝑘

𝑝
≥ 𝑁

𝑜′
𝑝
−ℳ(1 − 𝑌𝑀

𝑜′𝑘

𝑝
) ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.98) 

𝕌
𝑜′𝑘

𝑝
≤ ℳ × 𝑌𝐶

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.99) 

𝕌
𝑜′𝑘

𝑝
≤ 𝑁

𝑜′
𝑝

 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.100) 

𝕌
𝑜′𝑘

𝑝
≥ 𝑁

𝑜′
𝑝
−ℳ(1 − 𝑌𝐶

𝑜′𝑘

𝑝
) ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.101) 

𝔻
𝑜′𝑜

𝑘𝑝𝑖
≤ ℳ × 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.102) 

𝔻
𝑜′𝑜

𝑘𝑝𝑖
≤ 𝑁𝑃

𝑜′𝑘

𝑝
 ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.103) 

𝔻
𝑜′𝑜

𝑘𝑝𝑖
≥ 𝑁𝑃

𝑜′𝑘

𝑝
−ℳ(1 − 𝑋𝐶

𝑜′𝑜

𝑘𝑝𝑖
) ∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′ ≤ 𝑂, 𝑝, 𝑖 (3.104) 

𝔼
𝑜′𝑘

𝑝
≤ℳ × 𝑌𝐶

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.105) 

𝔼
𝑜′𝑘

𝑝
≤ 𝑁𝑃

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.106) 

𝔼
𝑜′𝑘

𝑝
≥ 𝑁𝑃

𝑜′𝑘

𝑝
−ℳ(1 − 𝑌𝐶

𝑜′𝑘

𝑝
) ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.107) 

𝔽
𝑜′𝑘

𝑝
≤ ℳ × 𝑌𝑀

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.108) 

𝔽
𝑜′𝑘

𝑝
≤ 𝑁𝑃

𝑜′𝑘

𝑝
 ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.109) 

𝔽
𝑜′𝑘

𝑝
≥ 𝑁𝑃

𝑜′𝑘

𝑝
−ℳ(1 − 𝑌𝑀

𝑜′𝑘

𝑝
) ∀𝑜′, 𝑘; 𝑜′ ≤ 𝑂, 𝑝 (3.110) 

𝕃𝑜
𝑝 ≤ℳ ×𝑁𝑆𝑜

𝑝 ∀𝑜; 𝑜 ≤ 𝑂, 𝑝 (3.111) 

𝕃𝑜
𝑝 ≤ 𝑁𝑜

𝑝 ∀𝑜; 𝑜 ≤ 𝑂, 𝑝 (3.112) 

𝕃𝑜
𝑝 ≥ 𝑁𝑜

𝑝 −ℳ(1 − 𝑁𝑆𝑜
𝑝) ∀𝑜; 𝑜 ≤ 𝑂, 𝑝 (3.113) 

𝑋𝐶
𝑜′𝑜

𝑘𝑝𝑖
, 𝑋𝑀

𝑜′𝑜

𝑘𝑝𝑖
, 𝑁𝑆𝑜

𝑝
, 𝑌𝐶

𝑜′𝑘

𝑝
, 𝑌𝑀

𝑜′𝑘

𝑝
, 𝑈𝑜𝑝

𝑚 , ∈ {0,1} 
∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′

≤ 𝑂, 𝑝, 𝑖 
(3.114) 

𝒮𝑜𝑘
𝑝 , 𝑆𝑜

𝑝, 𝔻
𝑜′𝑜

𝑘𝑝𝑖
, 𝑁𝑀𝑜𝑘

𝑝𝑖 , 𝑁𝐶𝑜𝑘
𝑝𝑖 , 𝔸

𝑜′𝑜

𝑘𝑝𝑖
, 𝔹

𝑜′𝑜

𝑘𝑝𝑖
, 𝑁𝑃

𝑜′𝑘

𝑝
, 

𝔼
𝑜′𝑘

𝑝
, 𝔽
𝑜′𝑘

𝑝
, 𝕃𝑜
𝑝, 𝑁𝑜

𝑝 ≥ 0 

∀𝑜, 𝑜′, 𝑘; 𝑜, 𝑜′

≤ 𝑂, 𝑝, 𝑖 
(3.115) 

𝑍𝑖 , 𝑍𝑚 ≥ 0, Integer ∀𝑖,𝑚 (3.116) 

 

Equations (3.74) and (3.75) ensure that CI and MI of a quality characteristic 

should be done for all part just in one inspection stage, respectively. Equation (3.76) 

forces that one kind of inspection is needed for each quality characteristic. This 

equation is directly related to the MI-and-CI strategy.  

Equation (3.77) relates that the failure rate of an operation to the decision 

whether the MI is considered for that characteristic or not. Constraints (3.78) and 

(3.79) calculate the number of scraps after each inspection stage based on type I and 

type II errors. Constraints (3.80) and (3.81) determine the in-process part after each 

operation, where the number of parts is decreased in presence of any inspection due 

to scrap detection and removal. Equations (3.82) and (3.83) calculate total number of 

MIs and CIs after operation. Constraint (3.84) calculates different inspection stage 

among the whole process. Equation (3.85) imposes that each operation of each 

product can be performed only on one machine. Constraints (3.86) and (3.87) 
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indicate the capacity limitations of inspection tools and machines, respectively. 

Constraint (3.88) provides the maximum manufacturing time among different 

products. Constraint (3.88) and (3.89) enforce that inspections can be performed if 

and only if there is a tools for that. Constraints (3.90) to (3.113) are provided to 

linearize the product of some variables. Constraints (3.114) to (3.116) are domain 

constraints. 
 

Finally, the proposed TMINLP_EP is as follow: 

 

TMINLP_EP (MI-and-CI): 

min𝑂𝐹𝑉1
𝐷−𝐸𝑃 = ∑∑ ∑ 𝑝𝑐𝑜𝑝

𝑚 𝑝𝑡𝑜𝑝
𝑚𝑁𝑜

𝑝
𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑ ∑ 𝑓𝑎𝑜𝑝
𝑚 𝑈𝑜𝑝

𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑𝑠𝑐𝑜
𝑝
𝑆𝑜
𝑝

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑ ∑∑∑(𝑓𝑐𝑜𝑘
𝑝𝑚𝑖

𝑁𝐶𝑜𝑘
𝑝𝑖
+ 𝑓𝑚𝑜𝑘

𝑝𝑚𝑖
𝑁𝑀𝑜𝑘

𝑝𝑖
)

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

+∑∑𝑓𝑠𝑜
𝑝
𝕃𝑜
𝑝

𝑂

𝑜=1

𝑃

𝑝=1

+∑𝑐𝑝𝑖𝑍𝑖

𝐼

𝑖=1

+∑∑ ∑ ∑∑∑(𝑐𝑓𝑘
𝑝
𝑐𝑡𝑜𝑘
𝑝𝑖
𝑣𝑐𝑜𝑘

𝑝𝑚𝑖
𝔸
𝑜′𝑜
𝑘𝑝𝑖

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜′=1

𝑂

𝑜=1

𝑃

𝑝=1

+𝑚𝑓𝑘
𝑝
𝑚𝑡𝑜𝑘

𝑝𝑖
𝑣𝑚𝑜𝑘

𝑝𝑚𝑖
𝔹
𝑜′𝑜
𝑘𝑝𝑖
)𝑈𝑜𝑝

𝑚 + ∑ 𝑓𝑝𝑚𝑍𝑚

𝑀

𝑚=1

 

 

(3.117) 

min𝑂𝐹𝑉2
𝐷−𝐸𝑃 = ∑∑∑∑𝐺𝑘

𝑃𝑛𝑐𝑘
𝑝
(𝔼𝑜𝑘

𝑝
𝛽𝑜𝑘
𝑝𝑖
+ 𝔽𝑜𝑘

𝑝
)

𝐾

𝑘=1

𝐼

𝑖=1

𝑂

𝑜=1

𝑃

𝑝=1

 

 
(3.118) 

min𝑂𝐹𝑉3
𝐷−𝐸𝑃 = 𝛷  (3.119) 

s.t.   

∑ ∑(𝑝𝑡𝑜𝑝
𝑚 +𝑊𝑃𝑜𝑝

𝑚)𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

𝑂

𝑜=1

+∑∑∑(𝑐𝑡𝑜𝑘
𝑝𝑖
+𝑊𝐶𝑜𝑘

𝑝𝑖
)𝑌𝐶𝑜𝑘

𝑝𝑖

𝐼

𝑖=1

𝐾

𝑘=1

𝑂

𝑜=1

+∑∑∑(𝑚𝑡𝑜𝑘
𝑝𝑖
+𝑊𝑀𝑜𝑘

𝑝𝑖
)𝑌𝑀𝑜𝑘

𝑝𝑖

𝐼

𝑖=1

𝐾

𝑘=1

𝑂

𝑜=1

≤ 𝛷 

∀𝑝 (3.120) 

Constraints (3.74) to (3.116).   

 

3.3.2.4. Robust Optimization  

The robust optimization approach for the proposed TMINLP_EP is similar to 

those of Section 3.3.1.3 with three objectives. Therefore, explanations are neglected 

in this section. 
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3.4. Solution algorithms: Meta-heuristics 

The main goal of this chapter is to develop two tailored solution methods to 

solve the mathematical models proposed through the Sections 3.2 and 3.3. These 

solution methods are based on genetic algorithm (GA) and differential evolution (DE) 

algorithm to solve the Main Problem and the Extended Problem, respectively.  

In order to solve the proposed inspection models with stochastic complexity, 

the solution algorithm must be capable of obtaining the optimal or near optimal 

solution within the reasonable time. There are several methods in the literature such 

as simplex and dynamic programming based optimization algorithms for providing 

an optimal solution for small size problems (Taha 2006; Shukla et al., 2013). 

However, most of the real world problems have large sizes and solving them by 

mathematical programming approaches takes considerable computational time. 

Therefore, to cope with this challenging issue, well-known evolutionary algorithms, 

namely genetic algorithm (GA) and differential evolution (DE) algorithm are 

proposed in this chapter to solve the Main Problem and Extended Problem, 

respectively. It has been shown that evolutionary algorithms such as genetic 

algorithms (Holland, 1975) or evolution strategies (Back et al., 1991) are efficient 

and robust approaches to solve a wide range of optimization problems. Application 

of these algorithms in the area of inspection planning and allocation can be found in 

Hanne and Nickel (2005), Shiau (2003b), Alam et al. (2033) and Shiau et al. (2007). 

In order to avoid explanation of general concepts, this section only deals with 

new solution representations for both Main and Extended Problems in Sections 3.4.1 

and 3.4.2, respectively. Interested readers are invited to study Appendix 3 for more 

information regarding to the GA and the use of DE to solve multi-objective problems. 

 

3.4.1. Solution representation: Main Problem 

The solution representation at each genetic algorithm should be as compact as 

possible but with complete expression of a solution to the problem. A compact 

representation contains only the information needed to represent a solution to the 

problem. A complete representation contains enough information to represent any 

solution to the problem. If a representation contains more information than is 

needed to uniquely identify solutions to the problem, the search space will be larger 

than necessary. 

One important issue to be noted is that, if possible, the representation should 

not represent infeasible solutions. If a chromosome is able to represent an infeasible 

solution, a penalty value must be considered in the objective function to remove 

infeasible solutions from reproduction procedures. Generally, it is much netter to 

propose a mechanism that can only represent feasible solutions within the objective 

function measures only optimality, not feasibility. Otherwise, representing the 

infeasible solutions leads to bigger size of the search space, wherein the searching 

becomes more difficult. 

Hereafter, a minimal representation for solving the Main Problem is proposed 

that does not represent infeasible solutions. Each chromosome of the proposed GA to 
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solve the Main Problem must contain information about which-what and when 

decisions. For this aim, a new solution representation is developed which includes 

two different parts representing 1) which-what and 2) when decisions. For example, 

consider a problem with 6 quality characteristics with which-what and when 

decisions as shown in Figures 3.10 and 3.11, respectively.  

In Figure 3.10, each column represents a quality characteristic. Moreover, at 

each column, value 1 at the first row means that the related quality characteristic 

needs monitoring inspection and value 1 in the second row indicates the need for 

conformity inspection. Accordingly, in Figure 3.10, quality characteristics number 1, 

2 and 4 need CI, quality, characteristic number 3 needs both MI and CI and quality 

characteristic number 5 and 6 need MI. In Figure 3.11, the columns explain the 

operations and the rows signify the quality characteristics. Therefore, value 1 at each 

array indicates that the inspection of related characteristic (i.e., the row number of an 

array) is performed after the determined process (i.e., the column number of an 

array). For instance, MI for characteristic numbers 3, 5 and 6 is carried out after 

operation number 3, 6 and 6, respectively. Besides, CI of characteristic number 1, 2, 3 

and 4 are carried out after operation number 3, 6, 6 and 6, respectively. 

 
 Quality Characteristics 

 1 2 3 4 5 6 
Monitoring 0 0 1 0 1 1 
Conformity 1 1 1 1 0 0 

Figure 3.10. Which-What decision 
 

  Operations 
  1 2 3 4 5 6 

Q
u

ality
 

C
h

aracteristic
s 

1 0 0 1 0 0 0 
2 0 0 0 0 0 1 
3 0 0 1 0 0 1 
4 0 0 0 0 0 1 
5 0 0 0 0 0 1 
6 0 0 0 0 0 1 

Figure 3.11. When decision 
 

3.4.2. Solution representation: Extended Problem 

Each chromosome of the proposed DE to solve the Extended Problem must 

contain information about all decisions consisting of: which-what, when, machine 

selection and allocation (see 𝑍𝑚 and 𝑈𝑜𝑝
𝑚  in Section 3.3.2.2), inspection tool selection 

and allocation (see 𝑍𝑖 , 𝑋𝐶𝑜′𝑜
𝑘𝑝𝑖

, and 𝑋𝑀
𝑜′𝑜

𝑘𝑝𝑖
 in Section 3.3.2.2). Solution representation 

for which-what decisions is similar to Section 3.4.1 with a modification as Figure 

3.12. Figure 3.12 contains a (2𝑃 × 𝐾) matrix wherein each pair of consecutive rows 

belongs to a product. Accordingly in Figure 4.6, there is a production system with 

two products, six quality characteristics and three inspection tools. It can be easily 

shown that in product number 1, e.g., quality characteristic number 5 needs both MI 

and CI using inspection tools number 2 and 1, respectively. In addition, quality 

characteristic number 3 in product number 2 needs only CI using inspection tool 
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number 1. It is also obvious that all three inspection tools have been selected. 

Representation of the when decision is similar to Figure 3.11, but this part is 

repeated for each product.  

 
  Quality Characteristics 

  1 2 3 4 5 6 

Product 1 
Monitoring 0 0 1 0 2 1 
Conformity 2 2 1 2 1 0 

Product 2 
Monitoring 0 3 0 2 0 1 
Conformity 0 1 1 0 0 1 

Figure 3.12. Which-What, inspection tool selection and allocation decisions 

 

The decisions regarding machine selection and allocation have been integrated 

in a (𝑂 × 𝑃) matrix wherein each array represent the machine that has been used for 

performing the corresponding operation from the corresponding product. Figure 

3.13 represents a machine selection and allocation decision with four operations, 

three products and three machines. According to Figure 3.13, operations number 1 to 

4 in product number 1 are performed by machines number 1, 3, 1 and 3, respectively. 

The value zero in the matrix means that the corresponding product does not need 

that operation. It can be also concluded that only machines number 1 and 3 have 

been selected. 

 
  Products 
  1 2 3 

Operations 

1 1 3 3 
2 3 3 3 
3 1 0 1 
4 3 0 1 

Figure 3.13. Machine selection and allocation decision 
 

3.5. Discussion and Summary 

The optimization framework for designing an inspection plan as well as 

solution algorithms were described in this chapter. Through the optimization 

framework, two problem called Main Problem and Extended Problem were studied in 

detail. In the Main Problem, the purpose is to design a robust single-objective 

mathematical model that is less sensitive to production variations and makes 

decisions regarding to which quality characteristics needs what kind of inspection 

and where the inspections should be performed. In order to extend the Main Problem 

to a more real and applicable model, we attempted to develop a new variant of 

inspection planning problem with machine and inspection tool allocation as well as 

capacity constraints for both machines and inspection tools (i.e., Extended Problem). 

In addition, a multi-product serial MPS was considered the Extended Problem. The 

problem was modeled through a mixed-integer nonlinear programming model with 

multiple objectives such as minimizing total manufacturing cost, maximizing 

customer satisfaction, and minimizing the maximum manufacturing time through 

different products. In the third objective function and besides to actual production 
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time, the waiting time of in-process items to receive machinery or inspection services 

was also took into account. Machines and inspection tools were modeled as a M/M/c 

queuing system, while they subject to disruption and breakdowns may happen 

during their activities. These breakdowns affect the waiting time and should be 

computed in the third objective function.  

For the robust approach, Taguchi and Monte Carlo techniques were applied to 

propose models that are less sensitive to manufacturing and environmental 

variations. 

Next chapter will propose experimental designs as well as computational 

experiments in order to validate the proposed mathematical models in this chapter. 

After formulizing the proposed problems, the main focus of this chapter has 

been on developing two tailored meta-heuristic algorithms, namely genetic and 

differential evolution algorithms, to solve problems in order to find near optimal 

solutions. The proposed GA is to solve the single-objective Main Problem, while the 

DE algorithm has been developed to solve bi-objective and three-objective Extended 

Problems.  

 The next chapter will provide comprehensive experiments and computational 

results. The following paragraphs try to explain an important issue regarding to the 

proposed mathematical models and solution approaches. This issue relates to the 

applicability and the possibility of implementation of the proposed mathematical 

models and solution approaches in other domains.  

The studied inspection planning problem in this thesis is categorized into 

domain of supply chain management (SCM) and especially the problems related to 

the production party. The production party is involved into all problems regarding to 

the production. Another party in the supply chain that significantly affects the 

performance of the whole supply chain is distribution party. The main problems in 

distribution centers are inventory and transportation related problem.  

The domain of transportation problems have been selected to apply the 

proposed models and solution approaches. Among different transportation related 

problems, Hub Location Problem (HLP) has been selected to be studied.  

HLPs have been involved in network design planning in transportation, 

telecommunication, and computer systems, where hub-and-spoke topologies are 

applied to efficiently route shipments between many origin and destination (O-D) 

nodes through intermediate nodes, called hubs. Hub nodes are consolidation, 

switching, or transshipment facilities to connect a large number of O-D pairs by using 

a small number of links. Fewer links not only simplify the network structure but also 

transfer large amounts of flow on interhub links, enabling economies of scale and 

reducing set-up and operational costs. Hub location models typically try to determine 

where to locate the hubs among a set of candidate sites and how to allocate spokes to 

the hubs, so that the total cost can be minimized or the total profit can be maximized 

(e.g., Alumur and Kara, 2008; Campbell et al., 2012; Zanjirani Farahani et al., 2013; 

Mohammadi et al., 2014a).  
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One of the most studied models in the HLP area is the so-called capacitated 

hub location problem (CHLP). In the CHLP, we are given a set of O-D nodes (i.e., 

spokes) with mutual flows, a set of candidate locations, the cost of opening a hub at 

each location, the cost of routing the flow through the network, and capacity of each 

candidate location in processing flows (i.e., consolidation, switching and 

transferring) as well as capacity of the connection links. The objective is to open a set 

of hub nodes from the candidate locations and assign each spoke to an open hub so 

as to minimize the total hub opening and flow routing costs by respecting the 

capacity of hubs and connection links.  

In order to justify the application of the findings of this thesis in HLPs, some of 

the similarities between the proposed inspection problem and transportation 

problems are elaborated as Table 3.2. The hub location problem is modeled using 

these similarities in Chapter 5.   

 

Table 3.2. Similarities between inspection problem and HLP 
Feature Inspection Problem Hub Location Problem 
Objectives  Minimizing total cost of manufacturing 

 Minimizing the maximum production 
time among different products 

 Maximizing customer satisfaction 

 Minimizing total cost of transportation 
 Minimizing the maximum transportation 

time among different flows 
 Maximizing customer services 

   

Constraints  Machine capacity 
 Inspection tool capacity 

 Hub capacity 
 Vehicle capacity 

   

Location  Determining the location of inspection 
stations (i.e., after which 
manufacturing stage, the inspections 
should be performed)  

 Determining the location of hubs 

   

Allocation  Allocating the inspection of the parts 
to the located inspection stations 

 Allocating the spokes to the located hubs 

   

Mode 
selection 

 Which kind of inspections should be 
selected (i.e., MI and/or CI) 

 Which transportation mode should be 
selected 

   

Disruption  Machines and inspection tools are 
subject to disruption 

 Hubs and connection links are subject to 
disruption 

   

Congestion  Machines and inspection tools may 
become overloaded 

 Hubs and connection links may be 
overloaded 

   

Queuing  Machines and inspection tools are 
modeled as queuing systems 

 Queuing systems are subject to 
disruption 

 Hubs are modeled as queuing systems 
 Queuing systems are subject to disruption 

   

Uncertainty  Most of the production related 
parameters are uncertain 

 Most of the transportation related 
parameters are uncertain 

   

Robustness  Production related parameters are 
stochastic with no specific distribution 
function 

 A robust inspection plan is desired 

 Transportation related parameters are 
stochastic with no specific distribution 
function 

 A robust transportation network is 
desired 

   

Solution 
algorithm 

 Metaheuristic algorithms are being 
used to solve large scale problems 

 Metaheuristic algorithms are being used 
to solve large scale problems 
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4.0. Chapter purpose and outline 

The main goal of this chapter is to solve the proposed mathematical models in 

Chapter 3 using developed metaheuristic algorithms in Section 3.4. In order to 

validate the proposed models and solutions approaches, computational experiments 

are conducted on a real industrial case and valuable sensitivity analyses are drawn. 

Accordingly, Section 4.1 explains the real industrial case and provides the 

experimental design of the metaheuristic algorithm. Computational experiments 

including sensitivity analyses for Main and Extended Problems are presented in 

Sections 4.2 and 4.3, respectively. Finally, Section 4.4 provides a short summary of 

the whole chapter.  

 

4.1. Experiments 
  

4.1.1. Case study 

To illustrate the validity of the proposed mathematical models (i.e., Main 

Problem and Extended Problem) and the effectiveness of the proposed robust and 

solution approaches, an industrial case is considered from the CERTA Renault 

company related to a part with 15 quality characteristics is studied in this thesis. This 

real case contains a special part of a car manufacturer with 15 different quality 

characteristics. Figures 4.1 and 4.2, respectively, show the solid frame of the part and 

labeled quality characteristics. Accordingly, some required deterministic information 

of the industrial case has been tabulated in Table 4.1, in which the first to sixth 

columns explain name of the operations, production time, process capabilities Cp and 

Pp and failure rates with and without monitoring inspection, respectively. Besides, 

the allowable places (AP) that inspections (i.e., CI and MI) of each quality 

characteristic can be stationed have been listed in the last column. For example, for 

characteristic number 4 which belongs to operation number 4, MI or CI can be 

performed at any place after operations number 4 to 10 and not anywhere else. 
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Figure 4.1. Solid frame of the industrial part 

 

 
Figure 4.2. Labeled operations of the industrial part 

 
Table 4.1. Information of the industrial case 

Operation 
Number 

Operation Name Details 
PT Cp Pp FR1 FR2 AP 

1 Rough milling PL100 0.148 2 1.50 1.97e-9 6.79e-6 1→13 
2 Rough milling PL100 0.166 2 1.50 1.97e-9 6.79e-6 2→14 
3 Rough milling PL101 0.133 2 1.66 1.97e-9 6.35e-7 3→15 
4 Boring CY110 0.154 1.60 1.33 1.58e-6 6.60e-5 4→10 
5 Rough drilling CY108 & CY109 0.09 2 1.66 1.97e-9 6.35e-7 5→10 
6 Chamfering CY108 & CY109 0.25 2 1.66 1.97e-9 6.35e-7 6→6 
7 Chamfering CY100 & CY101 0.257 1.50 1.20 6.79e-6 3.18e-4 7→15 
8 Boring CY100 0.257 1.50 1.20 6.79e-6 3.18e-4 8→15 
9 Boring CY101 0.122 1.66 1.30 6.35e-7 9.61e-5 9→12 
10 Rough drilling CY102 & CY103 0.109 1.66 1.40 6.35e-7 2.66e-5 10→12 
11 Rough drilling CY111 0.134 1.66 1.40 6.35e-7 2.66e-5 11→15 
12 Boring CY108 & CY109 0.122 1.30 1.10 9.61e-5 9.66e-4 12→15 
13 Boring CY102 & CY103 0.122 1.30 1 9.61e-5 2.69e-3 13→15 
14 Boring CY111 0.117 1.66 1.33 6.35e-7 6.60e-5 14→15 
15 Finish milling PL100 0.129 1.66 1.33 6.35e-7 6.60e-5 15→15 
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4.1.2. Experimental setup 

The performance of the proposed GA and DE algorithms strongly depend on 

the level of their parameters. The parameter settings used in the proposed GA and DE 

algorithm have been summarized in Table 4.2. All algorithms are compiled in 

MATLAB software and are executed on a Pentium 4 CPU with 3.4 GHz processor and 

4 GB of memory and 10 times for each problem. 

 
Table 4.2. Parameter settings used in the proposed GA and DE 

Parameter GA DE 
Population size 120 80 
Number of iteration 200 150 
Selection operator Binary tournament Binary tournament 
Crossover operator see Figure A3.2* see Equation (A3.10)* 
Mutation operator see Figure A3.3* see Equation (A3.2)* 
Crossover rate 0.8 - 
Mutation rate 0.2 - 
*A3 stands for Appendix 3. 

 
4.2. Computational results: Main Problem 

In this section, the Main Problem is solved using the proposed genetic 

algorithm (see Appendix 3) with specific experiments setting as Table 4.2. This 

section also provides comprehensive analyses for each problem. 

  
4.2.1. Main Problem results 

This section provides the results of implementing the mathematical model of 

the Main Problem on the real industrial case. First, the effect of uncertainty of the 

parameters in which-what and when decisions in the Main Problem is investigated for 

both MI-or-CI and MI-and-CI strategies. In addition, since the failure rate is affected 

by both misadjustment and dispersion, the effect of uncertainty in both of these 

parameters is also examined on the inspection decisions. Finally, a global robust 

inspection plan is obtained by considering all parameters under the uncertainty. The 

results have been tabulated in Table 4.3, in which the first to fourth columns, 

respectively, show different sources of uncertainty, uncertainty factor, inspection 

strategy, and total cost (per part) of manufacturing. The fifth to eleventh columns 

explain the details of different costs of the objective function as a percent of the total 

cost.  

The robust inspection plan for each row of Table 4.3 has been illustrated in 

Figures 4.3 and 4.4 for MI-or-CI and MI-and-CI strategies, respectively. For example, 

in Figure 4.3 and when misadjustment and dispersion are simultaneously uncertain, 

quality characteristics number 1-3, 5 and 6 need MI after operation number 6; 

quality characteristics number 9 and 10 need MI after operation number 10; and 

quality characteristics number 4, 7, 8 and 11-15 need CI after operation number 15. 

On the other hand, in Figure 4.4 and when misadjustment and dispersion are 

simultaneously uncertain, quality characteristics number 3, 4 and 6 need MI after 
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operation number 6; quality characteristics number 9-11 need MI after operation 

number 11; and quality characteristics number 7, 8 and 12-15 need CI after 

operation number 15. In this plan, quality characteristics number 1, 2 and 5 do not 

need any kind of inspection. 

According to Figures 4.3 and 4.4, uncertainty in type I and type II errors and 

dispersion have no effect on the final inspection plan. This issue points out that at the 

current level of uncertainty factors of type I and type II errors and dispersion, the 

final decisions are not changed meaning that the company does not need to 

determine a precise value for these parameters, while estimating precise values for 

these parameters or decreasing their variations is not cost-efficient. 

  

Table 4.3. Costs for different sources of uncertainty: Main Model 

Source of 

Uncertainty 

U
n

certain
ty

 F
acto

r 

Strategy
 

Cost 

T
o

tal (€
 P

e
r 

P
art) 

Detail Costs (% of Total Cost) 

P
ro

d
u

ctio
n

 

Scrap
 

F
ixed

 C
I 

F
ixed

 M
I 

V
ariab

le C
I 

V
ariab

le M
I 

W
arran

ty
 

Deterministic 0.0 
M

I-o
r-C

I 
5.16 93 0 0 0.20 0 6 0.8 

Type I error 0.2 5.16 93 0 0 0.20 0 6 0.8 

Type II error 0.2 5.16 93 0 0 0.20 0 6 0.8 

Time 0.1 5.37 90 0 0 0.16 0 9.34 0.5 

Misadjustment * 6.08 79 0.04 0.06 0.09 17 3.50 0.31 

Dispersion 0.05 5.16 93 0 0 0.17 0 6.00 0.83 

Misadj. & Dis.* - 6.40 75 0.04 0.04 0.10 16 8.00 0.82 

All parameters - 6.50 75 0.04 0.05 0.08 15 9.50 0.33 

Deterministic 0.0 

M
I-an

d
-C

I 

5.07 94 0 0 0.14 0 4.00 1.86 

Type I error 0.2 5.08 94 0 0 0.12 0 4.00 1.88 

Type II error 0.2 5.07 94 0 0 0.13 0 4.00 1.87 

Time 0.1 5.17 93 0 0 0.09 0 6.00 0.91 

Misadjustment * 6.00 80 0.04 0.07 0.03 17 1.50 1.36 

Dispersion 0.05 5.08 94 0 0 0.11 0 4.00 1.89 

Misadj. & Dis.* - 6.25 76 0.04 0.05 0.06 17 5.00 1.85 

All parameters - 6.41 75 0.04 0.05 0.06 16 8.00 0.85 
*𝜌𝑀𝐼 ∈ [0,1], 𝜌𝐶𝐼 ∈ [0,2], Misadj. & Dis.: Misadjustment & Dispersion. 
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Figures 4.3. Robust inspection plan of Main Problem for MI-or-CI strategy 

 

 
Figures 4.4. Robust inspection plan of Main Problem for MI-and-CI strategy 

 

There are some characteristics which impose more variation to the objective 

function, and it can be proved that performing CI for them will reduce the variation. 

Regarding this proof, it can be easily conceived that 𝐹𝑅𝑝𝑘
𝑀𝐼 and 𝐹𝑅𝑝𝑘

𝐶𝐼  have an inverse 

relationship with process capabilities (i.e., 𝑃𝑝𝑘, 𝐶𝑃𝐾𝑝). Therefore, lowering the values 

of 𝐶𝑃𝑘𝑝 and 𝐶𝑃𝑝 may increase the values of 𝐹𝑅𝑝𝑘
𝑀𝐼 and 𝐹𝑅𝑝𝑘

𝐶𝐼 , respectively. According 

to what was mentioned in Section 3.2.4, more numbers of inspections are needed 

once the failure rate of operations is increased. Since in the in-hand industrial case, 
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the cost of the conformity inspection for all the operations is the same, an operation 

with the lowest value of CP is selected and goes under conformity inspection, then 

this selection is continued for the next lowest values of CPs until the total cost 

reaches its global minimum. Since the ascending order of 𝐶𝑃 for the operations of the 

industrial case is like 𝐶𝑃12 = 𝐶𝑃13 < 𝐶𝑃7 = 𝐶𝑃8 < 𝐶𝑃4 = 𝐶𝑃9 = 𝐶𝑃10 = 𝐶𝑃11 =

𝐶𝑃14 = 𝐶𝑃15 < 𝐶𝑃1 = 𝐶𝑃2 = 𝐶𝑃3 = 𝐶𝑃5 = 𝐶𝑃6, the results under MI-or-CI strategy, 

when both misadjustment and dispersion are uncertain, contain six conformity 

inspections for operations number 7, 8 and 12 to 15. As a result, since operations 

number 7, 8, 12 to 15 have the lowest process capability, they are selected for 

performing CI in any case of uncertainty.  

In the following, Figures 4.5 and 4.6 illustrate the warranty and total internal 

costs (see Section 3.2.3.1) for different sources of uncertainty and both inspection 

strategies. It is noteworthy that lower values of the total internal and warranty costs 

correspond to higher efficiency and responsiveness of the production system. 

Efficiency and responsiveness are defined based and the desire of the manufacturers 

and customers. By the other words, although manufacturers are interested in more 

efficient production systems (i.e., lower total cost), customers are likely to contact 

with more responsive production systems (i.e., lower warranty cost). It can be seen 

from Figures 4.5 and 4.6 that the MI-or-CI strategy is more responsive; however, the 

MI-and-CI strategy is more efficient. In the MI-or-CI strategy, the worst cases in terms 

of responsiveness and efficiency belong to situations with no uncertainty and 

uncertainty in all parameters, respectively. On the other hand, in the MI-and-CI 

strategy, the worst cases in terms of responsiveness and efficiency belong to 

situations with uncertainty in both misadjustment and dispersion and uncertainty in 

all parameters, respectively. Hence, parameter variations and specially 

misadjustment has significant effect on the inspection plan and needs to be precisely 

determined and their variation should be decreased as much as possible.  

 

 
Figure 4.5. Warranty cost vs. different source of uncertainty 
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Figure 4.6. Internal cost vs. different source of uncertainty 

 

In another analysis, the impact of each source of uncertainty (in %) has been 

illustrated in Figure 4.7, for both strategies. The maximum increase percentage 

belongs to a situation when all parameters are uncertain with increase around up to 

24% for both strategies. In addition errors type I and II and dispersion, separately, 

have no impact on the total cost in their current values of uncertainty factor in MI-or-

CI strategy. It can be also seen that impact of uncertain factors on the total cost for 

the MI-and-CI strategy is more than the MI-or-CI strategy in almost all cases. Besides, 

Figure 4.8 illustrates the same results as Figure 4.7 but shows the monetary values of 

uncertainty. For instance, when all parameters are uncertain and we try to design a 

robust inspection plan, we need to spend extra 1.340€ and 1.341€ costs for the final 

price of each product at MI-or-CI and MI-and-CI strategies, respectively. 

 

 
Figure 4.7. Total cost increase vs. different source of uncertainty 
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Figure 4.8. Price increase per part vs. different source of uncertainty 

 

Additionally, the sensitivity of robustness cost versus alteration in uncertain 

parameters are investigated for the MI-or-CI strategy as shown in Figure 4.9 to 4.12. 

It should be noted that in Figures 4.9 to 4.12, the lower bound of the uncertainty 

intervals for all parameters are considered equal to their current real value and only 

the upper bound is changed.  

Figure 4.9 illustrates the effect of alteration in errors type I and type II in the 

cost of robustness. The vertical axis shows the price of robustness per part. The 

vertical axis determines the increase in the errors type I and II. For instance, the 

value 7 in the vertical axis means that the errors become 7 times greater than their 

mean values. As it can be seen, type I error has no effect on the robustness cost once 

𝜌𝑒−𝐼 ≥ 5, e.g., for 𝜌𝑒−𝐼 = 9, the robustness cost is equal to 0.25€ per part. Despite of 

error type I, error type II has no effect even for 𝜌𝑒−𝐼𝐼 ≅ 15. Therefore, it can be 

resulted that the manufacturer should pay more attention to error type I rather than 

error type II. Since 𝜌𝑒−𝐼 is equal to 0.2 in the industrial case, it can be increased even 

to 5 with no increase in the total cost. On the other words, by increasing error type I, 

the inspection plan remains robust. On the other hand, the inspection plan remains 

robust when error type II becomes even 15 times greater.  

Figure 4.10 depicts the alteration in robustness cost versus increase in the 

production time’s uncertainty factor. The vertical axis shows the percent increase in 

the production time. It is noteworthy that by increasing the uncertainty factor of time 
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model decides to decrease the amount of parts through the process. Consequently, 
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the amount of parts is to perform CI through the process. Therefore, for values higher 
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by increasing the misadjustment, the cost of creating a robust plan is extremely 

increased. It is noteworthy that the value of misadjustment can be increased up to 

0.25σ with no increase in robustness cost. Finally, Figure 4.12 illustrates the impact 

of increase in dispersion on the cost of robustness. As it is obvious, for values of 𝜌σ 

lower than 0.1, the robust plan is not changed. Since decreasing dispersion in 

manufacturing processes is too expensive, hence, in the real industrial case, a 

manufacturer can let dispersion to be increased to 0.1.    

 

 
Figure 4.9. Cost of robustness vs. increase in 𝜌𝑒−𝐼 and 𝜌𝑒−𝐼𝐼 

 

 

 
Figure 4.10. Cost of robustness vs. increase in the production time 
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Figure 4.11. Cost of robustness vs. increase in the misadjustment 

 

 
Figure 4.12. Cost of robustness vs. increase in the dispersion 
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objective functions for deterministic model. Similarly, fourth and fifth columns show 

the values of the first and second objective functions for uncertain model. 

Accordingly, twenty one and six Pareto solutions were obtained for deterministic and 

uncertain parameters, respectively.  

 

Table 4.4. Pareto solutions of BMILP_EP model 
Pareto solution  Deterministic model  Uncertain model (Robust) 

 𝑂𝐹𝑉1 𝑂𝐹𝑉2  𝑂𝐹𝑉1 𝑂𝐹𝑉2 
1  6077043 20900  6288260 44440 
2  6076760 30800  5342750 322410 
3  6076160 32340  5219250 1649230 
4  6075560 55220  5130050 2328370 
5  5970993 142670  5029200 5473050 
6  5240900 165440  5014600 6467010 
7  5240300 166980  - - 
8  5185450 170060  - - 
9  5164850 171600  - - 
10  5154250 179300  - - 
11  5143650 190740  - - 
12  5143050 213620  - - 
13  5138450 302500  - - 
14  5097000 412830  - - 
15  5066400 546150  - - 
16  5055800 877470  - - 
17  5054200 1357290  - - 
18  5039600 2351250  - - 
19  4964950 3630610  - - 
20  4929750 5561930  - - 
21  4910150 6555890  - - 

 

 
Figure 4.13. Pareto frontiers for deterministic and uncertain models 

 

The results of Table 4.4 have been illustrated in Figure 4.13 wherein dash and 

solid lines represent the Pareto frontier of deterministic and uncertain models, 
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Figure 4.14. Inspection plans of the Pareto solutions for the robust BMILP_EP 

 

The inspection plans for different six Pareto solutions of the uncertain model 

have been depicted in Figure 4.14. As it can be seen, solutions with lower value of the 

total internal cost, e.g.,  solutions number 1 and 2, include inspection plans with less 

number of MI and CI inspections. This is because of that the total internal cost is 

decreased by decreasing the cost of inspections, while lower inspection cost deals 

with less numbers of inspections. On the other hand, solutions with lower values of 

the warranty cost relate to those inspection plans wherein the minimum 

nonconforming items reach the customers. Accordingly, more numbers of 

inspections are performed in these plans. These different plans show the conflict of 

the total internal and warranty costs and highlight the applicability and validity of 

the proposed BMILP_EP.  

The contribution of each uncertain parameter in the increase of objective 

functions has been depicted as Figure 4.15. As it can be seen, misadjustment and 

dispersion have the highest effect on the both objective functions. In addition, 

misadjustment has higher effect on objective function 1 rather than objective 

function 2 and vice versa for dispersion. Therefore, companies who eager to 

minimize manufacturing cost should determine exact value for misadjustment and 

try to omit variation in it as much as possible. On the other hand, companies who 

attempt to keep their customers satisfied should control both misadjustment and 

dispersion and determine exact value for them in their plans. 

Respecting the validation of our results, Adragna et al. (2010) and Thornton 

(2004) have also proved the significant impact of misadjustment and dispersion in 

calculating inertial tolerancing and process capability index. 
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Figure 4.15. Effect of uncertain parameters on the objective functions  

 

4.3.2. TMINLP_EP model 

This section provides the results of the proposed TMINLP_EP model. In order 

to apply the proposed TMINLP_EP model on the real industrial case, there are other 

parameters besides to those in the BMILP_EP model that need to be provided. Due to 

limited access to the industrial party, the new parameters are randomly generated 

based on expert’s idea and near to real settings. In this section, the same multistage 

production system as the real industrial case (see Section 4.1.1) is studied with four 

products (i.e., P1 to P4), three choices for machines at each stage, and three choices 

for inspection tools for inspecting each quality characteristic. There are 10, 12, 8, and 

15 quality characteristics to be inspected for P1 to P4, respectively. The 

characteristics utilize the same machine and inspection tools. In generating the data, 

following logical rules are respected: 

 

 Machines with higher cost have higher process capability and consequently have 

lower failure rate. 

 Machines with higher fixed cost have lower unit production time as well as lower 

unit production cost. 

 Machines with higher cost have lower breakdown rate, lower retrieve time, and 

higher production rate. 

 Machines with higher cost have higher fixed and variable monitoring inspection 

(i.e., MI) cost.  

 Machines with higher cost have higher production capacities.  

 Inspection tools with higher cost have higher failure detection and consequently 

have lower values of error type I and II for CI. 

 Inspection tools with higher fixed cost have lower unit inspection time as well as 

lower unit inspection cost for both MI and CI. 

 Inspection tools with higher cost have lower breakdown rate, lower retrieve time, 

and higher inspection rate for both MI and CI. 
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 Inspection tools with higher cost have higher inspection capacities for both MI and 

CI. 

After generating new data for the real industrial case, the proposed 

TMINLP_EP model is solved using the proposed MODE algorithm. It should be noted 

that all parameters are considered under uncertainty and the same robust approach 

as BMILP_EP model is utilized. After solving the model, fifteen and ten Pareto 

solutions have been obtained for deterministic and uncertain models, respectively, as 

Table 4.5. The first column shows the number of Pareto solutions. The second and 

third columns show the first, second and third objective function values for the 

deterministic problem. Besides, fourth and fifth columns represent the first, second 

and third objective function values for the uncertain problem. 

 

Table 4.5. Pareto solutions of TMINLP_EP model 

Pareto 
solution 

Deterministic model Uncertain model (Robust) 
𝑂𝐹𝑉1(106€) 𝑂𝐹𝑉2(105€) 𝑂𝐹𝑉3(𝑠) 𝑂𝐹𝑉1(106€) 𝑂𝐹𝑉2(105€) 𝑂𝐹𝑉3(𝑠) 

1 44.245 1.256 6364 48.581 1.445 7009 
2 43.015 1.686 6024 47.239 2.343 6537 
3 41.842 2.128 6226 46.235 4.932 6639 
4 40.486 4.326 5912 45.208 7.457 6045 
5 39.278 6.325 5521 43.402 13.601 4235 
6 38.602 9.586 5837 42.647 16.773 5420 
7 38.206 12.264 5348 38.388 25.876 5140 
8 37.708 16.333 4853 37.388 32.776 4242 
9 37.198 20.268 4631 36.677 42.866 4409 
10 36.548 21.671 4428 35.138 58.452 3681 
11 35.319 23.985 4712 - - - 
12 34.914 27.334 4381 - - - 
13 34.342 33.419 3831 - - - 
14 33.849 40.843 3003 - - - 
15 33.658 50.128 3305 - - - 

 

It is obvious that the objective function values are increased by proposing the 

robust solutions. The mean increases are 8%, 12%, and 8% for the first, second, and 

third objective functions, respectively. These values show that the second objective 

function is more sensitive to the uncertainty of the parameters.  

The inspection plan for the Pareto solution number 5 of the uncertain model 

has been depicted in Figure 4.16. For example in product number 4 (i.e., P4), quality 

characteristic number 6 needs MI after operation number 6. In addition, quality 

characteristics number 7, 8, 11 and 15 need MI after operation number 15. Besides, 

quality characteristics number 7, 8, and 11 to 15 need CI after operation number 15.  
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Figure 4.16. Inspection plan for Pareto solution number 5 

 

The information regarding to the machines and inspection tools selection has 

been presented in Table 4.6. It can be seen that all three types of machines and 

inspection tools have been utilized through manufacturing these four products. For 

instance, the operation number 1 is performed by the machine number 2 for P1, P2, 

and P2, and the same operation is performed by machine number 3 in P4. In addition, 

the MI for quality characteristic number 8 is performed by inspection tools number 

1, 1, 3, and 3, for P1, P2, P3, and P4, respectively. Furthermore, the CI for quality 

characteristic number 8 is performed by inspection tools number 3, 1, and 1, for P1, 

P3, and P4, respectively. It is noteworthy that the inspections of those quality 

characteristics that their corresponding operations are performed on the machines 

with lower capability are performed by inspection tools with higher capability as 

well as lower errors type I and II. For instance, the CI of the quality characteristic 

number 8 in P1 is performed by inspection tool number 3 that has higher capability. 

This issue is due to that the corresponding operation which realizes the quality 

characteristic number 8 in P1, is performed on machine number 1 that has lower 

capability regarding to the machines with higher numbering index.  

 

Table 4.6. Machines and inspection tools selection 
Product Selection Quality Characteristics & Operations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
P1 Machines 2 1 1 1 2 1 1 1 2 1 2 1 2 2 2 
P2 2 3 1 1 1 1 2 2 2 1 1 1 2 2 2 
P3 2 3 1 1 1 1 1 1 2 1 2 1 2 2 2 
P4 3 3 2 3 2 1 1 1 2 1 1 1 1 1 1 
                 

P1 Inspection 
Tools (MI) 

 1 1 2  2 2 1        
P2   1 1 2 1  1  1 1 1    
P3   2 2 1 1 3 3        
P4      2 3 3   2    1 
                 

P1 Inspection 
Tools (CI) 

   3  3 3 3        
P2    2 2 2    3 3 3    
P3      1 1 1        
P4       1 1   3 3 2 2 2 

 

In the production system, the usage percentages of machines number 1, 2, and 

3 are 53%, 38% and 5%, respectively. On the another hand, the usage percentages of 

the monitoring inspection tools number 1, 2, and 3 are 52%, 32% and 16%, 
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respectively. These percentages are 25%, 30% and 45% for the conformity 

inspection tools number 1, 2, and 3, respectively. 

Among P1 to P4, the maximum manufacturing time (i.e., 𝑂𝐹𝑉3
𝑅−𝐸𝑃) is equal to 

5132 seconds and this value belongs to P4 with 15 quality characteristics. From this 

value, 3747 seconds (73%) is spent for production and the rest 1385 seconds (27%) 

is spent for the waiting time of the items to be processed or be inspected.  

  

4.3.3. Sensitivity analysis 

This section investigates the sensitivity of the objective functions in the 

TMINLP_EP model regarding to the input parameters such as misadjustment, 

dispersion, capacity of machines and inspection tools, production time, production 

and inspection rates as well as breakdown rate and retrieve time. In all of the 

following analyses, the sensitivity of the objective functions has been calculated 

based on the based deterministic scenario.   

Figure 4.17 represents the sensitivity of the objective functions to the increase 

in misadjustment value. As it can be seen, although all the objective functions 

increase once the misadjustment increases, but the second objective function is more 

sensitive to the misadjustment variation. In addition, the third objective function is 

less sensitive to the misadjustment variation. Figure 4.17 highlights this issue that 

manufacturers, who are customer satisfaction oriented, need to control the variation 

of the misadjustment. 

Figure 5.18 illustrates the sensitivity of the objective functions to the increase 

in dispersion of the production processes. Similar to the results of Figure 5.17, all the 

objective functions are increased once the dispersion is increased, wherein the 

highest and lowest sensitivities belong to the second and the third objective 

functions. These results also impose more attention to the uncertainty of the 

dispersion and the need to control this variation.   

 

 
Figure 4.17. Objective function increase vs. increase in misadjustment 
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Figure 4.18. Objective function increase vs. increase in dispersion 

 

Figure 4.19 investigates the effect of increasing the capacity of machines and 

inspection tools on the objective function values. As it was previously assumed in 

Section 4.3.2 (i.e., logical rules), machines and inspection tools with higher capacity 

have also have higher service rate as well as lower failure rate. Accordingly, 

increasing the capacity increases the first objective function, while decreases the 

second and the third objectives. It is obvious that the third objective function is more 

sensitive to capacity of machines and inspection tools. This sensitivity can be 

considered as the effect of the waiting time on the total manufacturing time. By the 

other words, increasing the capacity as well as increasing the service rate of 

machines and inspection tools will definitively lead to lower waiting time and lower 

total manufacturing time.  

 

 
Figure 4.19. Objective function increase vs. increase in capacity 
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To demonstrate this declaration, another analysis was done by increasing the 

capacity without increasing the service rate and decreasing the failure rate and it was 

observed that only the first objective function is increased without ant sensitivity on 

the second and the third objectives. 

Following the sensitivity analyses, Figure 4.20 depicts the sensitivity of the 

objective functions versus increase in the production time without any change in the 

service rates. It can be shown that increase in the production time only increases the 

value of the first and the third objective functions. In Figure 4.20, a constant increase 

in the objectives is seen by increasing the production time, since the first and the 

third objectives are linear functions of the production time.  

 

 
Figure 4.20. Objective function increase vs. increase in production time 

 

Regarding to the effect of service rate of the machines and the inspection 

tools, Figures 4.21 and 4.22 illustrate the sensitivity of the objective function by 

increasing the value of the production rate and inspection rate, respectively. In these 

analyses, the purchase cost of the machines and the inspection tools are considered 

to be independent to the value of the service rates. After the experiment, it was 

obtained that the first and the third objectives are the only objectives that are 

sensitive to the variation of the service rates. Although the values of the both first and 

third objectives are decreased by increasing the value of the service rates, but the 

third objective is more sensitive to this variation. 
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Figure 4.21. Objective function decrease vs. increase in production rate 

 

As it can be seen in Figure 4.21, increase in production service rate leads to 

higher decrease in the first objective rather than the third objective. This decrease is 

due to the higher contribution of the production cost in the first objective function 

comparing to the contribution of the production time in the third objective. This 

result is inversed for the analysis based on the increase in the inspection rate. 

According to Figure 4.22, increase in the inspection rate leads to higher decrease in 

the third objective comparing to the first objective, while increase in the inspection 

rate not only decreases the total inspection time, but also decreases the total waiting 

time of the products. Therefore, the variation of the inspection rate mainly affects the 

third objective. 

Figures 4.23 and 4.24 illustrate the effect of the breakdown rate and retrieve 

time on the third objective value. It has been shown in Figure 4.23 that once the 

breakdown rate is increased (retrieve rate is fixed), the total manufacturing time (i.e., 

third objective function) is also increased. It is noteworthy that increase in 

breakdown rate directly increases the waiting time of the products. Similar to Figure 

4.23, Figure 4.24 shows the same trend for the total manufacturing time once the 

retrieve time is also increased.  
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Figure 4.22. Objective function decrease vs. increase in inspection rate 

 

 
Figure 4.23. Third objective increase vs. increase in breakdown rate 

 

 
Figure 4.24. Third objective increase vs. increase in retrieve time 
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both breakdown rate and retrieve time are getting worse, the total manufacturing 

time is increased exponentially. Therefore, the manufacturer needs to control these 

parameters and decreases them as much as possible. Among both, the retrieve time 

is more likely to be decreased while the breakdown rate is somehow impossible to be 

predicted due to the influence of several external and internal environmental factors. 

 

 
Figure 4.25. Third objective increase vs. simultaneous increase in breakdown rate 

and retrieve time 

 

In Figures 4.17 to 4.25, the sensitivity of the objectives was investigated based 

on the uncertainty of the input parameters separately. Accordingly, Figure 4.26 

provides and global sensitivity analysis when all the input parameters are uncertain 

and vary simultaneously and shows the contribution of each parameter in the 

increase of each objective function, while the sum of the contribution percentages is 

equal to 100%. In Figure 4.26, the terms MA, Dis, EI, EII, Ca, PT, PR, IR, BR, and RT 

stand for misadjustment, dispersion, error type I, error type II, capacity, production 

time, production rate, inspection rate, breakdown rate, and retrieve time, 

respectively.  

 

 
Figure 4.26. General sensitivity analysis 
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As it can be seen from Figure 4.26, the first objective function is affected by 

the uncertainty in almost all parameters except error type II, wherein the most 

effective parameters are misadjustment, production time and production rate. 

Besides, the second objective function is affected by the uncertainty in only 

misadjustment, dispersion and errors type I and II, in which, the most effective 

parameters are misadjustment and dispersion. Similar to the first objective function, 

the third objective function is affected by the uncertainty in almost all parameters 

except capacity wherein the most effective parameters are inspection rate, 

production rate and retrieve time. Remarkably, the effective parameters need to be 

controlled in order to decrease the value of the objective functions due to the 

uncertainty. 

 

4.3.4. Computational time complexity 

In the rest of this section, the mathematical relation between Problem Size 

(i.e., number of products, number of manufacturing stages, number of quality 

characteristics, number of machines and inspection tools) and required CPU-time is 

found using a fitting (linear regression) algorithm by the SPSS software. So, you can 

see the rate of increase of CPU-time regarding to the increase of the size of the 

problem. The models summary and parameter estimates can be seen in Table 4.7. It 

should be noted that among different fitting models (i.e., Linear, Logarithmic, 

Quadratic, Cubic, Compound, Growth, and Exponential), the Cubic model better fits 

for all the parameters. The estimated Cubic function with its parameters is as 

Equation (4.1). Equation (4.1) can be rewritten by replacing the value of coefficients 

β with those obtained coefficients of SPSS software as Equations (4.2) to (4.6). 

 

Table 4.7. Cubic model summary and parameter estimates 

Parameter* 
Model summery  Parameter estimates 
R square F df1 df2 Sig.  Constant b1 b2 b3 

PN .992 156.88 3 4 .000  -.363 .126 .002 -1.8E-5 
SN .992 161.10 3 4 .000  .037 .250 -.002 6.9E-6 
QN .998 613.78 3 4 .000  1.074 .120 -1.5E-4 1.8E-7 
MN .999 1075.6 3 4 .000  -1.789 .595 -.015 1.3E-4 
IN .997 479.79 3 4 .000  .009 .375 -.004 1.6E-5 
*PN: Product No., SN: Stage No., QN: Quality Characteristic No., MN: Machine No., IN: Inspection Tool No. 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖
1 + 𝛽2𝑥𝑖

2 + 𝛽3𝑥𝑖
3 (4.1) 

𝐶𝑃𝑈_𝑇𝑖𝑚𝑒𝑃𝑁 = −.363 + .126(𝑃𝑁)1 + .002(𝑃𝑁)2 − .000018(𝑃𝑁)3 (4.2) 

𝐶𝑃𝑈_𝑇𝑖𝑚𝑒𝑆𝑁 = −.037 + .250(𝑆𝑁)1 − .002(𝑆𝑁)2 + .0000069(𝑆𝑁)3 (4.3) 

𝐶𝑃𝑈_𝑇𝑖𝑚𝑒𝑄𝑁 = 1.074 + .120(𝑄𝑁)1 − .00015(𝑄𝑁)2 + .00000018(𝑄𝑁)3 (4.4) 

𝐶𝑃𝑈_𝑇𝑖𝑚𝑒𝑀𝑁 = −1.789 + .595(𝑀𝑁)1 − .015(𝑀𝑁)2 − .00013(𝑀𝑁)3 (4.5) 

𝐶𝑃𝑈_𝑇𝑖𝑚𝑒𝐼𝑁 = −.009 + .375(𝐼𝑁)1 − .004(𝐼𝑁)2 − .000016(𝐼𝑁)3 (4.6) 
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4.3.5. Model uncertainty 

All of the previous analyses were to investigate the effect of uncertainty in the 

parameters on the objective function. However, another important analysis is going 

to be done to investigate the effect of uncertainty in the parameters on the solutions. 

This kind of uncertainty is called as model uncertainty. It is noteworthy that 

uncertainty in some parameters only affects the value of the objective function(s) 

and do not impact the structure of the solution. In almost all industries, 

manufacturers try to discover those parameters that affect the production plans as 

well as the structures of the production systems.  

Accordingly, the effect of the input parameters (i.e., misadjustment, 

dispersion, errors type I and II, capacity of machines and inspection tools, production 

time, production and inspection rates as well as breakdown rate and retrieve time). 

Figure 4.27 shows both the model uncertainty and objective sensitivity 

regarding to the uncertainty of the input parameters. The model uncertainty is 

calculated by the number of modifications that occur in the solutions representations 

(see Chapter 3) once the input parameters are changed through a given variation 

interval. 

 

 
Figure 4.27. Model uncertainty & objective sensitivity vs. parameters uncertainty 

 

In Figure 4.27, those parameters that significantly affect the objective function 

value are misadjustment, production time and rate, inspection rate, capacity and 

dispersion. But among these parameters, the only parameters that affect the 

structure of the solutions as well as inspection plans are misadjustment, dispersion, 

error type I, capacity, breakdown rate, and retrieve time. For example, by increasing 

the production time or production rate up to 50% and 150%, the objective function 

value is only increased with no changes in the solution structure or final inspection 

plan. This analysis discovers that objective function sensitivity analysis may lead to 

incorrect results regarding to the important parameters, while model uncertainty 

analysis provides more reliable results. 
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At the end of this section, another important analysis is done in order to 

validate different cost terms in the first objective function. As explained in Section 

3.3.2.3, the first objective function includes different parts as 𝑇𝐶𝑃, 𝑇𝐶𝑆, 𝑇𝐶𝐼𝐹, 𝑇𝐶𝐼𝑉 

and 𝑇𝐶𝑀 and different cost term in each part. This analysis is to investigate the 

necessity of each cost term and to explore the possibility of omitting a term from the 

objective function. Accordingly, the proposed TMINLP_EP is solved and at each run, 

one cost term of the objective function is omitted and the problem is solved again. 

During this procedure, the model uncertainty and the number of modifications in the 

solution’s structure are the metrics to show the effectiveness of each cost term. 

Figure 4.28 illustrates the effectiveness percentage of each cost term in the proposed 

TMINLP_EP model wherein the higher percentage relates to the higher effectiveness 

of the corresponding cost term. First, different cost terms are identified as Table 4.8.  

 

Table 4.8. Cost terms identification 
ID Cost Term Explanation 

PC ∑ ∑ ∑ 𝑝𝑐𝑜𝑝
𝑚 𝑝𝑡𝑜𝑝

𝑚 𝑁𝑜
𝑝

𝑈𝑜𝑝
𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

 Variable production cost 

FA ∑ ∑ ∑ 𝑓𝑎𝑜𝑝
𝑚 𝑈𝑜𝑝

𝑚

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

 Fixed production cost 

SC ∑ ∑ 𝑠𝑐𝑜
𝑝

𝑆𝑜
𝑝

𝑂

𝑜=1

𝑃

𝑝=1

 Scrap cost 

FC ∑ ∑ ∑ ∑ ∑ 𝑓𝑐𝑜𝑘
𝑝𝑚𝑖

𝑁𝐶𝑜𝑘
𝑝𝑖

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

 Fixed conformity cost 

FM ∑ ∑ ∑ ∑ ∑ 𝑓𝑚𝑜𝑘
𝑝𝑚𝑖

𝑁𝑀𝑜𝑘
𝑝𝑖

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜=1

𝑃

𝑝=1

 Fixed monitoring cost 

FS ∑ ∑ 𝑓𝑠𝑜
𝑝

𝕃𝑜
𝑝

𝑂

𝑜=1

𝑃

𝑝=1

 Fixed inspection cost 

CP ∑ 𝑐𝑝𝑖𝑍𝑖

𝐼

𝑖=1

 Fixed inspection tool utilizing cost 

CF ∑ ∑ ∑ ∑ ∑ ∑ 𝑐𝑓𝑘
𝑝

𝑐𝑡𝑜𝑘
𝑝𝑖

𝑣𝑐𝑜𝑘
𝑝𝑚𝑖

𝔸
𝑜′𝑜

𝑘𝑝𝑖
𝑈𝑜𝑝

𝑚

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜′=1

𝑂

𝑜=1

𝑃

𝑝=1

 Variable conformity cost 

MF ∑ ∑ ∑ ∑ ∑ ∑ 𝑚𝑓𝑘
𝑝

𝑚𝑡𝑜𝑘
𝑝𝑖

𝑣𝑚𝑜𝑘
𝑝𝑚𝑖

𝔹
𝑜′𝑜

𝑘𝑝𝑖
𝑈𝑜𝑝

𝑚

𝐾

𝑘=1

𝐼

𝑖=1

𝑀

𝑚=1

𝑂

𝑜′=1

𝑂

𝑜=1

𝑃

𝑝=1

 Variable monitoring cost 

FP ∑ 𝑓𝑝𝑚𝑍𝑚

𝑀

𝑚=1

 Fixed machine utilizing cost 

 

As it can be seen from Figure 5.28, all the cost terms in the objective function 

of the proposed TMINLP_EP model are effective. Therefore, the cost objective 

function is justified and the necessity of its corresponding terms is clarified. The 

highest effectiveness percentages belong to the variable production cost, scrap cost, 

variable conformity cost, and variable monitoring cost. 



Chapter IV: Experimental Results 

 

101 
 

 
Figure 4.28. Cost terms effectiveness in the model 

 

4.4. Summary 

In this chapter, the inspection planning models (i.e., Main and Extended 

Problems) proposed in Chapter 3 were solved by two tailored metaheuristic 

algorithms developed in Appendix 3. In order to validate the correctness of the 

proposed models and solution approaches, a real industrial case vase solved to 

obtain near optimal solutions.  

To solve the Main Problem, the industrial case represents a multistage serial 

manufacturing system including 15 different quality characteristics and one 

manufacturing stage for each quality characteristic wherein inspection and 

production related parameters are uncertain. For solving the problem, two 

inspection strategies as MI-or-CI and MI-and-CI were considered. Under each 

inspection strategy and each source of uncertainty, the model was solved by the 

proposed genetic algorithm and near optimal solutions was obtained. It was resulted 

that these strategies are different in terms of effectiveness and responsiveness and 

lead to different manufacturing and warranty costs. Through a comprehensive 

experiment, the sensitivity of the objective function was also investigated regarding 

to the input parameters. 

The second part of this chapter has been dedicated to solve the Extended 

Problem that involves the two proposed bi-objective and three-objective models. 

Each model was solved by the proposed multi-objective differential evolution 

algorithm and the experiments were conducted on the extended industrial case. For 

both models, Pareto solutions were obtained and comprehensive sensitivity analyses 

were done on the input parameters. Next, the complexity of the proposed models in 

terms of computational time was investigated and the relation between the size of 

problem and the required computational time was obtained. Finally, in order to 

investigate the effect of different parameters on the structure of the solutions (i.e., 

inspection plan) and to justify the importance of different cost terms in the cost 

objective function, several experiments were done and important parameters and 

cost terms were reported. 
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5.0. Chapter purpose and outline 

As mentioned in Chapter 4, the studied inspection planning problem in this 

thesis is categorized into domain of supply chain management (SCM) and 

especially the problems related to the production party. Another party across the 

supply chain that significantly affects the performance of the whole supply chain is 

distribution party. The main problems in distribution centers are inventory and 

transportation related problem. 

The domain of transportation problems have been selected to apply the 

proposed models and solution approaches. Among different transportation related 

problems, Hub Location Problem (HLP) has been selected to be studied. 

The similarities between inspection planning problem and HLP have been 

elaborated in Table 4.1. This chapter attempts to model a HLP based on these 

similarities. Accordingly, Section 5.1 introduces the hub location problem with 

specific assumptions in Table 4.1. Section 5.2 reviews the related works in domain of 

HLPs considering uncertainty and disruption. Section 5.3 describes the 

reliability and uncertainty in HLPs and tries to model these uncertainties. Bi-

objective non-linear mathematical formulation is proposed in Section 5.4 following 

by a linearization technique to linearize the model in Section 5.5. Sections 5.6 to 5.8 

present novel solution approaches to solve the proposed model. Experiments and 

computational results are presented in Sections 5.9 and 5.10, respectively. 

Furthermore, in order to validate the proposed model and solution approaches, a 

real case is studied based in Section 5.11. Finally, Section 5.12 provides conclusion 

and future research directions. 

 

5.1. Introduction 

Hub location problems (HLPs) have been part of network design planning in 

transportation, telecommunication, and computer systems, where hub-and-spoke 

topologies are applied to efficiently route shipments between many origins and 

destinations (O-D) nodes through intermediate nodes, called hubs. Hub nodes are 

consolidation, switching, or transshipment facilities to connect a large number of O-D 

pairs by using a small number of links. Fewer links not only simplify the network 

structure but also transfer large amounts of flow on inter-hub links, enabling time 

and cost discount factors and reducing setup and operational costs. Hub location 

models typically try to determine where to locate the hubs among a set of candidate 

sites and how to assign spokes to the hubs, so that the total cost can be minimized or 

the total profit can be maximized (e.g., Alumur and Kara, 2008; Campbell et al., 2012; 

Zanjirani Farahani et al., 2013; Mohammadi et al., 2014a; Martins de Sá et al., 2015; 

Mohammadi et al., 2010, 2011b). Most models in the literature have treated the 
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components of the hub-and-spoke network as if they would never fail; in other 

words, they are completely reliable. We will relax this assumption in this chapter. 

One of the most studied models in this area is the so-called capacitated hub 

location problem (CHLP). In the CHLP, we are given a set of O-D nodes (i.e., spokes) 

with mutual flows, a set of candidate sites, the cost of locating a hub at each site, the 

cost of routing the flow through the network, and capacity of each candidate site in 

processing flows (i.e., consolidation, switching and transferring). The objective is to 

locate a set of hub nodes from the candidate sites and allocate each spoke to a located 

hub to minimize the total hub location and routing costs while considering the 

capacity of hubs. 

The CHLP and its generalizations are NP-hard problems and there are no 

polynomial-time algorithms to find an optimal solution. There is a large number of 

papers studying these NP-hard HLPs, and many solution approaches (e.g., 

mathematical programming, heuristic and meta-heuristics algorithms, 

approximation algorithms, etc.) have been suggested in the last two decades. One 

common underlying assumption in these papers is that the input parameters of the 

problems (flows, costs, times, hub capacities, etc.) are deterministic. However, such 

assumptions may not be valid in many realistic applications because many input 

parameters in the model are uncertain due to unavoidable environmental variations. 

The uncertainties in HLPs can be generally categorized into hub-side 

uncertainty, spoke-side uncertainty, and connection-link uncertainty. Hereafter, 

these uncertainties are called hub, spoke and link uncertainties. The hub uncertainty 

may be represented as the randomness in hub capacity and the reliability of hubs, 

etc.; the spoke uncertainty captures the randomness in flows; and the link 

uncertainty can be the random travel time, random transportation cost, unreliable 

routes, etc. Most papers studying HLPs under uncertainty focus on a limited number 

of spoke and link uncertainties such as uncertain flows, transportation costs and 

times (see Zanjirani Farahani et al., 2013 and the references therein). In hub and link 

uncertainties, it is commonly assumed that the topology of the hub-and-spoke 

network is not changed once the hubs are located and spokes are assigned to the 

hubs. However, this is not a valid assumption anymore if the located hubs and 

established transportation links are subject to disruption. On the other hand, 

disruptions at hubs and connection links are twofold: complete or partial 

disruptions.  

When a hub node is completely disrupted, that hub becomes unavailable and 

spokes originally allocated to it have to be re-allocated to other (operational) hub 

nodes that usually require higher connection costs (i.e., re-allocation cost). Similarly, 

if a link is subject to complete disruption, an alternative link or an alternative 

transportation mode is utilized. In partial disruption case, although the hub node 

may still be available, the service rate or the capacity of the hub is degraded to a 

lower level. In case of service rate degradation, hubs become congested and incoming 

flow must spend more time and wait to be processed. In case of capacity degradation, 

flows are being limited to enter the hub (i.e., capacity of the hub is decreased). 



Chapter V: Hub Location Problem 

 

105 
 

Similarly, any disruption at connection links directly affects the designed capacity of 

the link, hence the capacity of the link is reduced to a lower level. In this situation, the 

flows exceed the capacity of the link and the congestion at links consequently 

increases the transportation time of flows. Therefore, disruptions at hub network can 

strongly affect the performance of the network.  

The importance of the link uncertainty is more highlighted when the hub-and-

spoke network acts as a shipment delivery system. Nowadays in all shipment 

delivery systems, most of customers are looking for companies which offer fast and 

reliable delivery service as well as guarantee that when deliveries will be made. A 

delivery hub-and-spoke network consolidates shipments from origin spokes, 

transports sorted shipments between hub nodes and finally distributes shipments to 

the destination spokes. The configuration of the hub-and-spoke network will 

determine the company's ability to meet or exceed service requirements.  

In this chapter, we address both complete and partial disruptions of hubs, and 

partial disruptions of links. Also, the effect of these uncertainties on the hub-and-

spoke topology and ability of the network to meet delivery requirements of the 

shipments are investigated. The uncertainties are modeled by an individual and 

independent failure probability inherent in each hub and link. Although each spoke 

needs to be served by one operational hub only, in case of complete disruption, the 

spoke should be allocated to a group of hubs that are ordered by levels: in the event 

of the lowest-level hub becomes unavailable, the spoke can then be served by the 

next level hub that is available; and so on until it is served by a non-failable hub. The 

objectives are thus: a) to minimize the total cost including transportation cost and 

expected failure cost, and b) to minimize the maximum transportation time between 

each pair of O-D nodes. This problem will be referred to as the bi-objective 

capacitated reliable hub location problem (BOCRHLP). 

The BOCRHLP is clearly NP-hard because it generalizes the CHLP. We propose 

an efficient approximation approach to provide lower bound for the optimal Pareto-

frontier of the model. We also develop a hybrid meta-heuristic algorithm to solve the 

bi-objective model and obtain near optimal Pareto-frontier, while its performance is 

benchmarked by developed approximation approach. Designing approximation and 

meta-heuristic algorithms for the CHLP and its variations has recently received 

considerable attention from the research community. However, to the best of our 

knowledge, this thesis presents the first approximation algorithm for the bi-objective 

capacitated reliable hub location problem with hub and link uncertainties. 

 

5.2. Literature review 

Studying impact of uncertainty in decision making has been done in a number 

of researchers to address hub location models (e.g., Alumur and Kara, 2008; 

Campbell et al., 2002; Zanjirani Farahani et al., 2013). However, as we pointed out in 

the Section 6.1, the most of the recently published papers have mainly considered 

uncertainty in the spoke and link related parameters such as demand, time, etc. This 
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includes Contreras et al. (2011), Alumur et al. (2012), and Mohammadi et al., 2014a, 

among others. 

In this section, the most related literature of papers which have considered 

disruption in their model is reviewed. Most of the previous paper studying disruption 

in the network takes its roots in the classical p-median (Tansel et al., 1983) and the 

uncapacitated fixed-charge location problems (Nemhauser and Wolsey, 1988). Both 

these problems locate facilities and allocate customers to located facilities to 

minimize the total transportation cost while all facilities are assumed to be totally 

available and reliable. The first model of reliability facility location was proposed by 

Snyder and Daskin (2005), where the authors assume that some facilities are 

perfectly available while others are subject to failure and become unavailable with 

the same probability. In their model, each customer is allocated to a primary facility 

and a number of backup facilities, in which at least one facility must be available. If 

the current facility fails, the customer is served by the next available backup facility. 

They proposed a linear integer programming model to formulate their problem and 

developed a Lagrangian relaxation solution method. No approximation algorithm has 

been proposed in Snyder and Daskin (2005). 

A recent paper by Cui et al. (2010) relaxes the uniform failure probability 

assumption in Snyder and Daskin (2005) and allows the failure probabilities to be 

facility-specific. The authors proposed a compact mixed integer program formulation 

and a continuum approximation model to solve the model that seeks to minimize 

initial setup costs and expected transportation costs in normal and failure scenarios. 

The continuum approximation model predicts the total system cost without details 

about facility locations and customer assignments, and it provides a fast heuristic to 

find near-optimum solutions. Their computational results show that for large-scale 

problems, the continuum approximation method is very effective algorithm, and it 

avoids prohibitively long running times.  

Cui et al. (2010) presented two related models as reliable p-median problem 

and reliable uncapacitated fixed-charge location problem. Both models consider 

heterogeneous facility failure probabilities, one layer of supplier backup, and facility 

fortification within a finite budget. The authors formulated both model as nonlinear 

integer programming models and proved to be NP-hard. They also developed 

Lagrangian relaxation-based solution algorithms and demonstrate their 

computational efficiency. Similar to Cui et al. (2010), Aboolian et al. (2012) 

considered reliable facility location models in which facilities are subject to 

unexpected failures, and customers may be reassigned to facilities other than their 

regular facilities. Their main effort was to derive Lower bounds for reliable 

uncapacitated fixed-charge location problem (RUFLP) and introduce a class of 

efficient algorithms for solving the RUFLP problem.  

Peng et al. (2011) introduced the p-robustness criterion so that the designed 

network performs well in both disrupted and normal conditions. The authors 

presented a mixed-integer programming model which tries to minimize the nominal 

cost (i.e., the cost when no disruptions occur) while reducing the disruption risk 
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using the p-robustness criterion that bounds the cost in disruption scenarios. They 

proposed a hybrid meta-heuristic algorithm that is based on genetic algorithms, local 

improvement, and the shortest augmenting path method. They also proved the 

superiority of their heuristic algorithm comparing to CPLEX in terms of solution 

speed, while still delivering excellent solution quality. Shen et al. (2011) studied a 

reliable facility location problem wherein some facilities are subject to failure from 

time to time. If a facility fails, customers originally allocated to it have to be re-

allocated to other (operational) facilities. They formulated this problem as a two-

stage stochastic program and then as a nonlinear integer program. Several heuristics 

that can produce near-optimal solutions were proposed for this NP-hard problem. 

For the special case where the probability of facility failure is constant (independent 

of the facility), they provided an approximation algorithm with a worst-case bound of 

4. Li et al. (2013) presented two related models (i.e., reliable p-median and reliable 

uncapacitated fixed-charge location) for the design of reliable distribution networks. 

Both models are formulated as nonlinear integer programming and considered 

heterogeneous facility failure probabilities, one layer of supplier backup, and facility 

fortification within a finite budget. The NP-hardness of the models was also proved. 

To the best of our knowledge, there are just two studies dealing with the hub 

network design problem and taking hub disruptions into account. Parvaresh et al. 

(2012) formulated a bi-level multiple allocation p-hub median problem under 

intentional disruptions by a bi-level model with bi-objective functions at an upper 

level and a single objective at a lower level. In their model, the leader aims at 

identifying the location of hubs so that normal and worst-case transportation costs 

are minimized while normal and failure conditions are taken into account. Finally, 

the worst-case scenario is modeled in a lower level, where the follower’s objective is 

to identify the hubs the loss of which would most diminish service efficiency. 

Additionally, they developed two multi-objective meta-heuristics based on simulated 

annealing and tabu search to solve their proposed model. In a similar work, 

Parvaresh et al. (2013) developed a multiple allocation p-hub median problem under 

intentional disruptions using different definitions of a failure probability of the hub 

in comparison to their previous work. All of reviewed papers have considered 

complete disruption for facilities. 

Regarding to studies dealing with spoke uncertainty, Mohammadi et al. 

(2011a, 2015) and Sedehzadeh et al. (2014, 2015) studied a HLP with uncertain 

demand as a Poisson distribution, where limited number of flows can enter a hub. 

They presented a M/M/c queuing system to handle the uncertainty of demands 

between each pair of O-D nodes. Similarly, Contreras et al. (2011) studied stochastic 

uncapacitated HLPs in which uncertainty is associated to demands and 

transportation costs. They showed that the stochastic problems with uncertain 

demands or dependent transportation costs are equivalent to their associated 

deterministic expected value problem, in which random variables are replaced by 

their expectations.  
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Finally, to the best of our knowledge, this research is the first that has 

considered all hub, link and spoke uncertainties in designing a reliable hub-and-

spoke network. we depart from common assumptions in the literature by 

considering  complete and partial disruptions in the hubs, and partial disruptions in 

connection links.   

 
5.3. The reliability hub location problem  

In this section we discuss a hub location model that simultaneously a) 

minimizes the sum of operating cost (the transportation cost when all hubs are 

operational) and the expected failure cost (the expected transportation cost, taking 

into account random hub failures), and b) minimizes the expected maximum travel 

time between each pair of O-D nodes when hubs and links are subject to disruption. 

In this section, all uncertainties including hub, link and spoke uncertainties are 

independently taken into account. In hub uncertainty, each hub is disrupted in three 

ways as follows: 1) hub is completely disrupted and no spoke can be served, 2) 

capacity of hub is partially disrupted and the capacity is degraded to a lower level, 

and 3) service rate of the hub is stochastically disrupted and subsequently retrieved 

with specific rates. Each hub is disrupted with a given probability, and multiple hubs 

may be disrupted (i.e., completely or partially) simultaneously. Certain hubs may be 

designated as “non-failable.” The non-failable hubs represent those locations in 

favorable environmental conditions, and deemed to have a negligible probability of 

failure.  

In spoke uncertainty, flow between each pair of O-D nodes is considered to be 

uncertain. Finally in link uncertainty, connection links are subject to partial 

disruption where 1) capacity of each link is stochastically degraded, and 2) 

transportation time over some partially disrupted links may be increased due to 

stochastic degradation.  

Uncertainties in HLP are first formulated in the following subsections 3.1 to 

3.3 as “Partial disruptions in hubs and links”, “Uncertainty of transportation time due 

to stochastic degradation”, and “Stochastic disruption of hub’s service rate”. We first 

introduce the main assumptions that will be considered throughout the paper.  

 

 The number of hubs that must be located is given, 

 Each spoke can be allocated to exactly on hub at each level, 

 Graph of hubs is a complete graph, 

 A limited volume of flows can enter a hub (i.e., hub capacity limitation), 

 A limited volume of flows can be transferred through a link (i.e., link capacity 

limitation) 

 Flows entering a hub need specific operations before being transferred (i.e., 

unloading, sorting, loading, etc.), 

 All types of disruptions (i.e., complete and partial) happen independently with a 

given probability.  
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5.3.1. Partial disruptions in hubs and links 

As mentioned previously, capacity of hubs and connection links become 

partially disrupted and degrade to a lower level, in which, the flows entering the hub 

or traversing a link will exceed the realized capacity of the hub or the link by certain 

probability. It is desirable to ensure that the probability of such an occurrence to be 

lower than a specified or satisfactory level. This section introduces the hub and link 

capacity reliability as the probability of the flows entering a hub or traversing a link 

exceeds the capacity of the hub or the link, referred to as the capacity exceedance 

probability (1 − 𝜂) and (1 − 𝜗), respectively, in which 𝜂 and 𝜗 are partially 

disruption probability in hubs and links. It is obvious that higher probability of 

disruption leads to lower probability of respecting the capacity. The hub capacity 

reliability can be mathematically written by: 

 

𝑃{𝛤 ≤ 𝐸𝐹} ≤ (1 − 𝜂) (5.1) 

 

where EF and 𝛤 are flows entered the hub and the designed capacity of the hub, 

respectively. It should be noted that the hub capacity reliability requirement can be 

different for different hubs. In (5.1), 𝛤 is a random variable specified by a particular 

probability density function (PDF). The left-hand side (LHS) of inequality (5.1) can be 

considered as a cumulative distribution function (CDF) of 𝛤, written by: 

 

𝐹𝛤(𝐸𝐹) = 𝑃{𝛤 ≤ 𝐸𝐹} (5.2) 

 

Using equation (5.2), equation (5.1) can be rewritten by: 

 

𝐹𝛤(𝐸𝐹) ≤ (1 − 𝜂) (5.3) 

 

Since the CDF are monotonic one-to-one functions, one can take the inverse of 

inequality (5.3) and write the following inequality (5.4). 

 

𝐸𝐹 ≤ 𝐹𝛤
−1(1 − 𝜂) (5.4) 

 

By specifying the CDF of the hub capacity Γ and the acceptable capacity 

exceedance probability (1 − 𝜂), inequality (5.4) becomes a deterministic constraint. 

For simplicity, in this section, we assume that the hub capacity follows a uniform 

distribution defined by an upper bound (i.e., design capacity) and a lower bound (i.e., 

worst-degraded capacity). Generalizing the consideration to other probability 

distributions (e.g., Gamma and truncated Gamma) can be accomplished with the 

Mellin Transform technique as discussed in the work by Lo et al. (2006). Noteworthy, 

several papers (Chen et al., 2002; Lo and Tung, 2003; Luo, 2004 ; Lo et al., 2006) have 
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considered uniform distribution that is more applicable in transportation domain 

affected by disruption.  

It should be mentioned that other distribution functions (e.g., Gamma and 

truncated Gamma) model the capacity degradation.  Furthermore, we consider the 

lower bound to be a fraction θ of the design capacity. For a uniform distribution, the 

inverse CDF of Γ can be written as: 

 

𝐹𝛤
−1(𝜂) = 𝜃𝛤 + (1 − 𝜂)𝛤(1 − 𝜃) = 𝛤[𝜃 + (1 − 𝜂)(1 − 𝜃)] (5.5) 

 

where 𝛤 is the design capacity of the hub that has a deterministic value. Applying 

equation (5.5) to inequality (5.4), we obtain the following hub capacity reliability: 

 

𝐸𝐹 ≤ 𝛤[𝜃 + (1 − 𝜂)(1 − 𝜃)] (5.6) 

 

Similar to hub capacity disruption, the link capacity disruption is presented as 

inequality (5.7). 

 

𝐿𝐹 ≤ 𝜉̅[𝛿 + (1 − 𝜗)(1 − 𝛿)] (5.7) 

 

where LF, 𝜉̅ and 𝜗 are flows traversing the link, designed link capacity, probability of 

partial disruption in the link. Besides, in case of disruption, capacity of the link (𝜉̅) 

degrades to a lower level with fraction 𝛿. 

 

5.3.2. Uncertainty of transportation time due to stochastic degradation 

As mentioned before, transportation time over some links may be increased 

due to stochastic degradation. In this section, the Burea roads link performance 

function (Lo and Tung, 2003) is presented as equation (5.8) to cope with the 

stochastic alteration of transportation time.  

 

𝑇(𝐿𝐹, 𝜉) = 𝑡 [1 + 𝛽 (
𝐿𝐹

𝜉
)
𝜁

] (5.8) 

 

where t and T are link free-flow travel time and variable transportation time of the 

link with flow 𝐿𝐹, respectively; 𝛽 and 𝜁 are constant parameters. Besides, 𝜉 is a 

random capacity variable of the link specified by a particular PDF. According to 

equation (5.8), the mean and variance of T are calculated as equations (5.9) and 

(5.10): 

 

𝐸(𝑇) = 𝑡 + 𝛽𝑡𝐸 [(
𝐿𝐹

𝜉
)
𝜁

] (5.9) 

𝑉(𝑇) = 𝛽2𝑡2𝑉 [(
𝐿𝐹

𝜉
)
𝜁

] (5.10) 
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By assuming t as deterministic parameter and 𝜉 as independent random 

variable from amount of flow LF, 𝐸(𝑡) = 𝑡 and 𝑉(𝑡) = 0 and the mean and variance of 

1 𝜉⁄  are derived as follows by assuming the uniform distribution for the link capacity. 

 

𝐸 (
1

𝜉𝜁
) = ∫

1

𝜉𝜁
1

(𝜉̅ − 𝛿𝜉)̅

�̅�

𝛿�̅�

𝑑𝜉 =
1 − 𝛿1−𝜁

𝜉̅𝜁(1 − 𝛿)(1 − 𝜁)
 (5.11) 

𝐸 (
1

𝜉2𝜁
) = ∫

1

𝜉2𝜁
1

(𝜉̅ − 𝛿𝜉)̅

�̅�

𝛿�̅�

𝑑𝜉 =
1 − 𝛿1−2𝜁

𝜉̅2𝜁(1 − 𝛿)(1 − 2𝜁)
 (5.12) 

𝑉 (
1

𝜉𝜁
) = 𝐸 (

1

𝜉2𝜁
) − (𝐸 (

1

𝜉𝜁
))

2

=
1 − 𝛿1−2𝜁

𝜉̅2𝜁(1 − 𝛿)(1 − 2𝜁)
− (

1 − 𝛿1−𝜁

𝜉̅𝜁(1 − 𝛿)(1 − 𝜁)
)

2

 (5.13) 

 

where 1 (𝜉̅ − 𝛿𝜉̅)⁄  is probability density function (PDF) of the uniform distribution 

with upper bound 𝜉̅ and lower bound 𝛿𝜉̅. Using (5.11) to (5.13), the mean and 

variance of T are, respectively:  

 

𝐸(𝑇) = 𝑡 + 𝛽𝑡𝐿𝐹𝜁
1 − 𝛿1−𝜁

𝜉̅𝜁(1 − 𝛿)(1 − 𝜁)
 (5.14) 

𝑉(𝑇) = 𝛽2𝑡2𝐿𝐹2𝜁 [
1 − 𝛿1−2𝜁

𝜉̅2𝜁(1 − 𝛿)(1 − 2𝜁)
− (

1 − 𝛿1−𝜁

𝜉̅𝜁(1 − 𝛿)(1 − 𝜁)
)

2

] (5.15) 

 

Equations (5.14) and (5.15) state that for a specific designed capacity 𝜉̅, both 

mean and variance of transportation time are increased by flow LF traversing the 

link. Therefore, the variability of travel time in heavy traffic is higher than that in the 

light traffic. On the contrary, variance is equal to zero when there is no flow. 

 

5.3.3. Stochastic disruption of hubs’ service rates 

In this section, we assume flows entering a hub undergo a set of operations 

such as loading, sorting, unloading, etc. Due to resource limitations at the hub(s), all 

flows cannot be processed at the same time and need to wait for their turn to be 

processed. Therefore, the total travel time between each pair of O-D nodes is the sum 

of transportation time on the links and the time spent at the hub(s). The resource 

limitation at the hub(s) causes significant delays if the average arrival rate gets closer 

to the service rate at these operations. These delays are increased as more and more 

flows are attracted to the hub to take advantage of the economies of scale. As these 

delays significantly affect the delivery time requirement, time spent at the hubs 

should be calculated and taken into account. 

Since the flow between each pair of O-D nodes has been considered as 

uncertain parameter (i.e., spoke uncertainty), a queuing approach is an efficient 

method to analyze the waiting time at the hubs. In this way, accounting for uncertain 

amount of flows and calculation of waiting times through queue theory, makes the 

proposed model more attractive in practice. 



Chapter V: Hub Location Problem 

 

112 
 

Hereafter, the queuing model proposed in Section 3.3.2.3 is applied to model 

the waiting time of flows entering a hub. Similar to Section 3.3.2.3, hubs act as 

machines and inspection tools wherein flows in the transportation network look like 

products in the production system. 

 
5.4. Mathematical formulation 

This section tries to mathematically model the BOCRHLP considering 

uncertainty formulations of subsections 5.3.1 to 5.3.3. In the BOCRHLP, we are to 

locate P hubs in the network and allocate spokes to the located P hubs. Each spoke is 

assigned to up to 𝑅 ≥ 1 hubs (𝑅 ≤ 𝑃) and can be serviced by these and only these 

hubs, in which spokes are served by next backup hub once a hub is disrupted at the 

lowest level. In addition, spokes are allocated to different hubs level by level once 

they are served by a non-failable hub at a certain level.   

Except for  few authors (see, e.g., Correia et al, 2010; Elhedhli and Wu, 2010; 

Contreras et al., 2012), hub capacity in the literature is considered exogenous. Hub 

capacities can have a determining impact on hub-and-spoke related decisions, and 

thus on the overall transportation cost. Therefore, capacity selection should ideally 

be considered as part of the decision process. Consequently, in order to develop a 

more realistic and flexible hub-and-spoke network, multiple hub capacity levels is 

considered where one and only one capacity level at each hub is allowed. The higher 

the level of capacity at hubs, the higher the amount of flow they can process. Another 

important aspect in designing hub networks which has been traditionally overlooked 

is the choice of transportation mode. It is often assumed that there is only one type of 

transportation mode in most of the hub location models presented in the literature. 

However, there are usually alternative choices among air, road and rail 

transportation modes. Since different transportation modes are subject to different 

disruptions with different probabilities, designing multimodal hub-and-spoke 

network allows companies to choose specific transportation modes with lower 

probability of disruption to transfer the flows.  

Before proposing the BOCRHLP with multiple capacity levels, necessary 

notations are provided as follows.  

 

Sets:  
𝑖, 𝑗 ∈ {1,2, … , 𝑁} Set of nodes (hereafter, non-hub nodes are called as spokes). 
𝑘, 𝑙 ∈ 𝐻;𝐻 ∈ 𝑁 Set of hubs. 
𝑚 ∈ {1,2, … ,𝑀} Set of transportation modes; 𝑚 = 1 is road mode.  
𝑠 ∈ {1,2, … , 𝑆} Set of hub capacity levels. 
𝑟, 𝑣 ∈ {1,2, … , 𝑅} Set of allocation levels. 

 
Parameters: 
𝑤𝑖𝑗  Flow between spokes i and j. 

𝑐𝑖𝑗
𝑚 Transportation cost of a unit of flow between spokes i and j using transportation mode m. 

𝑜𝑐𝑘
𝑚𝑠  Unit operational cost at hub k with capacity level s using transportation mode m. 

𝐹𝐻𝑘
𝑚𝑠 Fixed cost of locating a hub at node k with capacity level s using transportation mode m. 

𝐹𝐿𝑘𝑙
𝑚  Fixed cost of link between hubs k and l using transportation mode m. 

𝛼𝑐𝑖𝑗
𝑚 Cost discount factor between hubs k and l using transportation mode m.   
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𝛼𝑡𝑖𝑗
𝑚 Time discount factor between hubs k and l using transportation mode m. 

𝛤𝑘
𝑠𝑚 Designed capacity of hub k with capacity level s using transportation mode m. 

𝜉�̅�𝑙
𝑚 Designed capacity of the link between hubs k and l using transportation mode m. 
𝑞𝑘  Failure probability of complete disruption of hub k. 
P Number of hubs to be located. 

𝑂𝑖 =∑𝑤𝑖𝑗
𝑗

 Total flow originating from spoke i. 

𝐷𝑖 =∑𝑤𝑗𝑖
𝑗

 Total flow with destination of spoke i. 

𝜇𝑘
𝑚𝑠 Service rate of hub k with capacity level s using transportation mode m. 
𝑓𝑘
𝑚𝑠 Disruption rate of hub k with capacity level s using transportation mode m. 
𝑟𝑘
𝑚𝑠  Retrieval time rate of hub k with capacity level s using transportation mode m. 
𝜂𝑘
𝑚𝑠  Disruption probability at hub k with capacity level s using transportation mode m. 
𝜃𝑘
𝑚𝑠 Capacity disruption factor at hub k with capacity level s using transportation mode m. 
𝜗𝑘𝑙
𝑚 Disruption probability at link between hubs k and l using transportation mode m. 
𝛿𝑘𝑙
𝑚 Capacity disruption factor at link between k and l using transportation mode m. 
𝑡𝑖𝑗
𝑚 Free-flow travel time between nodes i and j (spokes/hubs) using transportation mode m 

(𝑡𝑖𝑗
𝑚 is a deterministic parameter). 

 
Variables: 
𝑋𝑖𝑘
𝑟  1 if spoke i is allocated to hub k at level r; 0 otherwise. 

𝑍𝑘
𝑚𝑠  1 if a hub is established at node k with capacity level s using transportation mode m; 0 

otherwise. 
𝑌𝑖𝑘𝑙𝑗
𝑚  1 if the flow originated at spoke i destined to spoke j uses the hub link {k,l} from hub k to 

hub l with transportation mode m; 0 otherwise. 
𝐿𝑘𝑙
𝑚  1 if there is a link between hubs k and l with transportation mode m; 0 otherwise. 
𝑈𝑘  1 if a hub is located at node i. 
𝑃𝑖𝑘
𝑟  Probability that hub k serves spoke i at level r. 
𝑃𝑋𝑖𝑘

𝑟  Linear form of 𝑃𝑖𝑘
𝑟 × 𝑋𝑖𝑘

𝑟 . 
𝑃𝑌𝑖𝑙𝑘𝑗

𝑚𝑟  Linear form of 𝑌𝑖𝑙𝑘𝑗
𝑚 × 𝑃𝑗𝑘

𝑟 . 

𝐸𝐹𝑘
𝑚 = 𝜆𝑘

𝑚 =∑∑∑𝑤𝑖𝑗𝑌𝑖𝑙𝑘𝑗
𝑚

𝑙
𝑙≠𝑘

𝑗
𝑗≠𝑖

𝑖

 
Flow entering the hub k using transportation mode m. 

𝐿𝐹𝑘𝑙
𝑚 =∑∑𝑤𝑖𝑗𝑌𝑖𝑘𝑙𝑗

𝑚

𝑗𝑖

 Flow passing the link between hubs k to l using transportation mode m. 

𝐸(𝑊𝑘
𝑚𝑠) Mean expected value of the stochastic operational time (waiting time + processing time) at 

hub k with capacity level s for transportation mode m. 
𝑉(𝑊𝑘

𝑚𝑠) Variance value of the stochastic operational time (waiting time + processing time) at hub k 
with capacity level s for transportation mode m. 

𝑊𝑘
𝑚𝑠  Operational time (waiting time + processing time) at hub k with capacity level s for 

transportation mode m (𝑊𝑘
𝑚𝑠~(𝐸(𝑊𝑘

𝑚𝑠), 𝑉(𝑊𝑘
𝑚𝑠))). 

𝐸(𝑇𝑖𝑗
𝑚) Mean expected value of the stochastic travel time between nodes i and j using 

transportation mode m. 
𝑉(𝑇𝑖𝑗

𝑚) Variance value of the stochastic travel time between nodes i and j using transportation 
mode m. 

𝑇𝑖𝑗
𝑚 Transportation time between nodes i and j using transportation mode m 

(𝑇𝑖𝑗
𝑚~(𝐸(𝑡𝑖𝑗

𝑚), 𝑉(𝑡𝑖𝑗
𝑚))).  

 
The proposed BOCRHLP model is as follow: 
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min ℤ1 = ∑∑∑𝐹𝐻𝑘
𝑚𝑠𝑍𝑘

𝑚𝑠

𝐿

𝑠=1

𝑀

𝑚=1

𝑁

𝑘=1

+ ∑ ∑ ∑𝐹𝐿𝑘𝑙
𝑚𝐿𝑘𝑙

𝑚

𝑁+1

𝑙=1
𝑙>𝑘

𝑀

𝑚=1

𝑁+1

𝑘=1

+∑∑∑𝑤𝑖𝑗

[
 
 
 

∑∑𝑐𝑖𝑘
1 𝑃𝑋𝑖𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑖

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑖=1

𝐿

𝑠=1

+ ∑ ∑∑∑∑(𝑜𝑐𝑘
𝑚𝑠 + 𝛼𝑐𝑘𝑙

𝑚𝑐𝑘𝑙
𝑚 + 𝑜𝑐𝑙

𝑚𝑠)𝑃𝑖𝑘
𝑟 𝑃𝑗𝑙

𝑟′𝑌𝑖𝑘𝑙𝑗
𝑚

𝑅

𝑟′=1

𝑅

𝑟=1

𝑁+1

𝑙=1
𝑙≠𝑘

𝑁+1

𝑘=1

𝑀

𝑚=1

+ ∑∑𝑐𝑘𝑗
1 𝑃𝑋𝑗𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑗 ]

 
 
 

 

(5.16) 

𝑀𝑖𝑛 ℤ2 = 𝛹  (5.17) 
s.t.   

∑𝑋𝑖𝑘
𝑟

𝐻

𝑘=1

+∑𝑋𝑖(𝐻+1)
𝑣

𝑟

𝑣=1

+ 𝑈𝑖 = 1 ∀𝑖, 𝑟 (5.18) 

∑𝑋𝑖(𝐻+1)
𝑟

𝑅

𝑟=1

+ 𝑈𝑖 = 1 ∀𝑖 (5.19) 

𝑋𝑖𝑘
𝑟 ≤ 𝑈𝑘  ∀𝑖, 𝑘 (5.20) 

∑𝑍𝑘
𝑚𝑠

𝑠

≤ 𝑈𝑘  ∀𝑘,𝑚 (5.21) 

∑𝑍𝑘
𝑚𝑠

𝑠

= 1 ∀𝑘,𝑚 (5.22) 

∑𝑈𝑘
𝑘

= 𝑃  (5.23) 

𝐿𝑘𝑙
𝑚 ≤∑𝑍𝑘

𝑚𝑠

𝑠

 ∀𝑘, 𝑙: 𝑘 < 𝑙,𝑚 ∈ 𝑀\{1} (5.24) 

𝐿𝑘𝑙
𝑚 ≤∑𝑍𝑙

𝑚𝑠

𝑠

 ∀𝑘, 𝑙: 𝑘 < 𝑙,𝑚 ∈ 𝑀\{1} (5.25) 

𝐿𝑘𝑙
1 ≤∑∑𝑍𝑘

𝑚𝑠

𝑠𝑚

 ∀𝑘, 𝑙: 𝑘 < 𝑙 (5.26) 

𝐿𝑘𝑙
1 ≤∑∑𝑍𝑙

𝑚𝑠

𝑠𝑚

 ∀𝑘, 𝑙: 𝑘 < 𝑙 (5.27) 

∑𝑌𝑖𝑘𝑙𝑗
𝑚

𝑚

≥ 𝑋𝑖𝑘
𝑟 + 𝑋𝑗𝑙

𝑣 − 1 ∀𝑖, 𝑗, 𝑘, 𝑙: 𝑖 ≠ 𝑗; 𝑘 ≠ 𝑙; 𝑟, 𝑣 (5.28) 

𝑌𝑖𝑘𝑙𝑗
𝑚 + 𝑌𝑖𝑙𝑘𝑗

𝑚 ≤ 𝐿𝑘𝑙
𝑚  ∀𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁: 𝑖 ≠ 𝑗 (5.29) 

𝑃{(𝑇𝑖𝑘
1 +𝑊𝑘

𝑚𝑠 + 𝛼𝑡𝑘𝑙
𝑚𝑇𝑘𝑙

𝑚 +𝑊𝑙
𝑚𝑠 + 𝑇𝑙𝑗

1)𝑌𝑖𝑘𝑙𝑗
𝑚 ≤ 𝛹} ≥ 𝛾 ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑠: 𝑖 ≠ 𝑗 (5.30) 

∑∑∑∑𝑤𝑖𝑗𝑃𝑌𝑖𝑙𝑘𝑗
𝑚𝑟

𝑟𝑗𝑙𝑖

≤∑�̅�𝑘
𝑚𝑠[𝜃𝑘

𝑠𝑚 + (1 − 𝜂𝑘
𝑚𝑠)(1 − 𝜃𝑘

𝑠𝑚)]𝑍𝑘
𝑚𝑠

𝑠

 ∀𝑘,𝑚 (5.31) 

∑∑∑∑𝑤𝑖𝑗𝑌𝑖𝑘𝑙𝑗
𝑚

𝑣𝑟𝑗𝑖

𝑃𝑖𝑘
𝑟 𝑃𝑗𝑙

𝑣 ≤ 𝜉�̅�𝑙
𝑚[𝛿𝑘𝑙

𝑚 + (1 − 𝜗𝑘𝑙
𝑚)(1 − 𝛿𝑘𝑙

𝑚)]𝐿𝑘𝑙
𝑚  ∀𝑘, 𝑙, 𝑚 (5.32) 

𝑃𝑖𝑘
1 = 1 − 𝑞𝑘 ∀𝑖, 𝑘 ∈ {1, … , 𝐻 + 1} (5.33) 

𝑃𝑖𝑙
𝑟 = (1 − 𝑞𝑙)∑

𝑞𝑘
1 − 𝑞𝑘

𝑃𝑋𝑖𝑘
𝑟−1

𝐻

𝑘=1

 ∀𝑖, 𝑙 ∈ {1,… , 𝐻 + 1}, 𝑟 ∈ {2, … , 𝑅} (5.35) 

𝑃𝑋𝑖𝑘
𝑟 ≤ 𝑃𝑖𝑘

𝑟  ∀𝑖;  𝑘 ∈ {1,… , 𝐻 + 1}; 𝑟 (5.35) 
𝑃𝑋𝑖𝑘

𝑟 ≤ 𝑋𝑖𝑘
𝑟  ∀𝑖;  𝑘 ∈ {1,… , 𝐻 + 1}; 𝑟 (5.36) 

𝑋𝑖𝑘
𝑟 + 𝑃𝑖𝑘

𝑟 − 𝑃𝑋𝑖𝑘
𝑟 ≤ 1 ∀𝑖;  𝑘 ∈ {1,… , 𝐻 + 1}; 𝑟 (5.37) 

𝑃𝑌𝑖𝑙𝑘𝑗
𝑚𝑟 ≤ 𝑃𝑗𝑘

𝑟  ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑟 (5.38) 
𝑃𝑌𝑖𝑙𝑘𝑗

𝑚𝑟 ≤ 𝑌𝑖𝑙𝑘𝑗
𝑚  ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑟 (5.39) 

𝑌𝑖𝑙𝑘𝑗
𝑚 + 𝑃𝑗𝑘

𝑟 − 𝑃𝑌𝑖𝑙𝑘𝑗
𝑚𝑟 ≤ 1 ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑟 (5.40) 

𝑋𝑖𝑘
𝑟 , 𝑍𝑘

𝑚𝑠 , 𝐿𝑘𝑙
𝑚 , 𝑈𝑘 , 𝑌𝑖𝑙𝑘𝑗

𝑚 ∈ {0,1} ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑠, 𝑟 (5.41) 
𝑃𝑋𝑖𝑘

𝑟 ,𝑊𝑘
𝑚𝑠, 𝑇𝑘𝑙

𝑚, 𝛹 ≥ 0 ∀𝑖, 𝑘, 𝑙, 𝑚, 𝑠, 𝑟 (5.42) 
 

Objective function (5.16) minimizes total expected transportation and 

operation cost in the hub network. Objective function (5.17) and chance constraint 



Chapter V: Hub Location Problem 

 

115 
 

(5.30) minimize the maximum transportation time between each pair of O-D nodes. 

Equation (5.18) enforces that for each spoke i and each level r, either i is allocated to 

a regular hub at level r or is allocated to the non-failable hub 𝐻 + 1 at certain level 

𝑣 ≤ 𝑟 (taking ∑ 𝑋𝑖,𝐻+1
𝑣𝑟

𝑣=1 = 0 if 𝑟 = 1). Constraint (5.19) requires each spoke to be 

allocated to the non-failable hub at a certain level. Constraint (5.20) ensures that a 

spoke must be allocated to a valid hub. Constraints (5.21) and (5.22) guarantee that 

just one capacity level is allowed for each located hub. Constraint (5.23) ensures the 

number of hubs should be equal to a pre-defined value P. Constraints (5.24) and 

(5.25) show that specific capacity levels in both hubs k and l for mode m must be 

established if there is a link between them with mode m. Constraints (5.26) and 

(5.27) explain that any hub constructed for mode 𝑚 ≥ 2 can be utilized also for mode 

m equal to 1. In this model, mode equal to 1 is considered as road transportation. 

Constraints (5.28) and (5.29) create valid route between each pair of O-D nodes. 

Constraints (5.31) and (5.32) are the hub and the link capacity constraints, 

respectively. Constraints (5.33) and (5.34) are the “transitional probability” 

equations. 𝑃𝑖𝑘
𝑟 , the probability that hub k serves spoke i at level r, is just the 

probability that k remains open if 𝑟 = 1. For 2 ≤ 𝑟 ≤ 𝑅, 𝑃𝑖𝑘
𝑟  is equal to 

(𝑞𝑙 (1 − 𝑞𝑘) (1 − 𝑞𝑙)⁄ )𝑃𝑖𝑙
𝑟−1 given that hub l serves spoke i at level r. Constraints 

(5.35) to (5.37) and (5.38) to (5.40) make the terms of 𝑋𝑖𝑘
𝑟 × 𝑃𝑖𝑘

𝑟  and 𝑌𝑖𝑙𝑘𝑗
𝑚 × 𝑃𝑗𝑘

𝑟  linear. 

Finally, constraints (5.41) and (5.42) are domain constraints. 

In order to transform chance constraint (5.30) to a standard form, consider: 

 

𝒦 = 𝑇𝑖𝑘
1 +𝑊𝑘

𝑚𝑠 + 𝛼𝑡𝑘𝑙
𝑚𝑡𝑘𝑙

𝑚 +𝑊𝑙
𝑚𝑠 + 𝑇𝑙𝑗

1  

 

Mean expected and variance values of 𝒦 can be stated as (5.43) and (5.44), 

respectively. It should be noted that transportation time between spoke nodes to the 

hubs (i.e., 𝑇𝑖𝑘
1  and 𝑇𝑘𝑗

1 ) are considered as deterministic parameters. 

 

𝐸(𝒦) = 𝑡𝑖𝑘
1 + 𝐸(𝑊𝑘

𝑚𝑠) + 𝛼𝑡𝑘𝑙
𝑚𝐸(𝑇𝑘𝑙

𝑚) + 𝐸(𝑊𝑙
𝑚𝑠) + 𝑡𝑙𝑗

1  (5.43) 

𝑉(𝒦) = 𝑉(𝑊𝑘
𝑚𝑠) + 𝛼𝑡𝑘𝑙

𝑚2𝑉(𝑡𝑘𝑙
𝑚) + 𝑉(𝑊𝑙

𝑚𝑠) (5.44) 

  

Therefore, we can express the chance constraint (5.30) for path i → k → l → j 

with mode m as below (Mohammadi et al., 2013): 

𝛹 ≥ [𝐸(𝒦) + 𝑧𝛾√𝑉(𝒦)]𝑌𝑖𝑘𝑙𝑗
𝑚 , 

 

where 𝑧𝛾 is the z-value corresponding to the100 𝛾-th percentile from the standard 

normal distribution. (With the service-level parameter 𝛾 reasonably assumed to be at 

least 0.5, 𝑧𝛾 is non-negative.) It follows that constraint (5.30) can be rewritten as 

constraint (5.45): 

 

𝛹 ≥ [𝑡𝑖𝑘
1 + 𝐸(𝑊𝑘

𝑚𝑠) + 𝛼𝑡𝑘𝑙
𝑚𝐸(𝑡𝑘𝑙

𝑚) + 𝐸(𝑊𝑙
𝑚𝑠) + ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑠: 𝑖 ≠ 𝑗 (5.45) 
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𝑧𝛾√𝑉(𝑊𝑘
𝑚𝑠) + 𝛼𝑡𝑘𝑙

𝑚2𝑉(𝑡𝑘𝑙
𝑚) + 𝑉(𝑊𝑙

𝑚𝑠) + 𝑡𝑙𝑗
1 ] 𝑌𝑖𝑘𝑙𝑗

𝑚   

 

According to Section 3.3.2.3, 𝐸(𝑊𝑘
𝑚𝑠), 𝑉(𝑊𝑘

𝑚𝑠), 𝐸(𝑇𝑘𝑙
𝑚), and 𝑉(𝑇𝑘𝑙

𝑚) are 

calculated as equations (5.46) to (5.49). 

 

𝐸(𝑊𝑘
𝑚𝑠) =

(𝑟𝑘
𝑚𝑠+𝑓𝑘

𝑚𝑠)
2
+𝜇𝑘

𝑚𝑠𝑓𝑘
𝑚𝑠

(𝑟𝑘
𝑚𝑠+𝑓𝑘

𝑚𝑠)(𝑟𝑘
𝑚𝑠(𝜇𝑘

𝑚𝑠−𝜆𝑘
𝑚)−𝜆𝑘

𝑚𝑓𝑘
𝑚𝑠)

  (5.46) 

𝑉(𝑊𝑘
𝑚𝑠) =

2𝜆𝑘
𝑚(𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠)−𝜇𝑘
𝑚𝑠𝑟𝑘

𝑚𝑠)

(𝜇𝑘
𝑚𝑠(𝜆𝑘

𝑚+𝑟𝑘
𝑚𝑠)+𝜆𝑘

𝑚2
−𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠+𝜆𝑘
𝑚+𝜇𝑘

𝑚𝑠))
2 −

𝜆𝑘
𝑚(2𝜆𝑘

𝑚−(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠+𝜆𝑘
𝑚+𝜇𝑘

𝑚𝑠))
2
(2𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠)−2𝜇𝑘
𝑚𝑠𝑟𝑘

𝑚𝑠)

(𝜇𝑘
𝑚𝑠(𝜆𝑘

𝑚+𝑟𝑘
𝑚𝑠)+𝜆𝑘

𝑚2
−𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠+𝜆𝑘
𝑚+𝜇𝑘

𝑚𝑠))
3 −

2(2𝜆𝑘
𝑚2

−𝜆𝑘
𝑚(𝑓𝑘

𝑚𝑠+𝑟𝑘
𝑚𝑠+𝜆𝑘

𝑚+𝜇𝑘
𝑚𝑠))(𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠)−𝜇𝑘
𝑚𝑠𝑟𝑘

𝑚𝑠)

(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠)(𝜇𝑘
𝑚𝑠(𝜆𝑘

𝑚+𝑟𝑘
𝑚𝑠)+𝜆𝑘

𝑚2
−𝜆𝑘

𝑚(𝑓𝑘
𝑚𝑠+𝑟𝑘

𝑚𝑠+𝜆𝑘
𝑚+𝜇𝑘

𝑚𝑠))
2 −

(
(𝑟𝑘
𝑚𝑠+𝑓𝑘

𝑚𝑠)
2
+𝜇𝑘

𝑚𝑠𝑓𝑘
𝑚𝑠

(𝑟𝑘
𝑚𝑠+𝑓𝑘

𝑚𝑠)(𝑟𝑘
𝑚𝑠(𝜇𝑘

𝑚𝑠−𝜆𝑘
𝑚)−𝜆𝑘

𝑚𝑓𝑘
𝑚𝑠)
)
2

  

(5.47) 

𝐸(𝑇𝑘𝑙
𝑚) = 𝑡𝑘𝑙

𝑚 + 𝛽𝑡𝑘𝑙
𝑚𝐿𝐹𝑘𝑙

𝑚𝜁 1−𝛿𝑘𝑙
𝑚1−𝜁

�̅�𝜁(1−𝛿𝑘𝑙
𝑚)(1−𝜁)

  (5.48) 

𝑉(𝑇𝑘𝑙
𝑚) = 𝛽2𝑡2𝐿𝐹2𝜁 [

1−𝛿𝑘𝑙
𝑚1−2𝜁

�̅�2𝜁(1−𝛿𝑘𝑙
𝑚)(1−2𝜁)

− (
1−𝛿𝑘𝑙

𝑚1−𝜁

�̅�𝜁(1−𝛿𝑘𝑙
𝑚)(1−𝜁)

)

2

]  (5.49) 

 

5.5. Linearization of the model: A piecewise function 

Since the proposed BORCHLP model is a non-linear model because of 

constraint (48) and due to its high complexity, finding an optimal solution, even for 

some small-size instances of this problem, is not possible. In this section, we develop 

a piecewise function to approximately linearize the constraint (48). Recently, many 

approaches have been developed in terms of mixed integer linear programming 

(MILP) models in order to solve non-linear problems by using efficient techniques to 

linearize non-linear functions of one or more variables. One of these efficient 

approaches is the piecewise linear approximation of such functions (D'Ambrosio et 

al., 2010). 

Let f(ω) be the piecewise linear approximation of a single variable function by 

considering a number 𝛱 of sampling coordinates 𝜔1, … , 𝜔𝛱 on the ω axis 

(breakpoints) on which the function is evaluated. The function is then approximated 

by the linear term [(𝜔𝜋, 𝑓(𝜔𝜋)), (𝜔𝜋+1, 𝑓(𝜔𝜋+1))] (𝜋 = 1,… ,𝛱 − 1). Therefore, for 

any given ω value, where 𝜔𝜋 ≤ �̅� ≤ 𝜔𝜋+1, the function value 𝑓≈(�̅�) is approximated 

as equation (5.50) and (5.51). 

 

�̅� = 𝜕𝜔𝜋 + (1 − 𝜕)𝜔𝜋+1 (5.50) 

𝑓≈(�̅�) = 𝜕𝑓(𝜔𝜋) + (1 − 𝜕)𝑓(𝜔𝜋+1) (5.51) 
 

where 𝜕 is a (unique) value in [0,1]. 
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In order to use the above technique in the proposed model, it is necessary to 

include in the model variables and constraints that force any ω value to be associated 

with the proper pair of consecutive breakpoints. Since four terms of 𝐸(𝑊𝑘
𝑚𝑠), 

𝑉(𝑊𝑘
𝑚𝑠), 𝐸(𝑇𝑘𝑙

𝑚) and 𝑉(𝑇𝑘𝑙
𝑚) are nonlinear, four piecewise linear approximations are 

needed. Let ϒ𝜋 be a continuous variable for each breakpoint 𝜋, such that 

ϒ𝜋 ∈ [0,1]; (𝜋 = 1,… ,𝛱). In addition, 𝒻𝜋 is a binary variable associated with the πth 

interval [𝜔𝜋, 𝜔𝜋+1] (𝜋 = 1, … , 𝛱 − 1), where 𝒻0 = 𝒻𝛱 = 1 at the extremes. Finally, the 

approximate value 𝑓≈ can then be obtained by imposing the following constraints by 

introducing special ϒ𝜋 and 𝜉𝜋 corresponding to each nonlinear term. Hence, 

following notations are first presented, then additional constraints are presented to 

linearize the non-linear terms of constraint (5.45). 

 
Parameters: 

𝜔𝜋
𝐻,𝑘𝑚 𝜋th breakpoint of arrival flow to the hub k by transportation mode m. 

𝜔𝜋
𝐿,𝑘𝑙𝑚  𝜋th breakpoint of hub link flow k to l by transportation mode m. 

𝑓𝐸𝑊(𝜔𝜋
𝐻,𝑘𝑚) Expected waiting time value of flow 𝜔𝜋

𝐻,𝑘𝑚. 

𝑓𝑉𝑊(𝜔𝜋
𝐻,𝑘𝑚) Waiting time variance value of flow 𝜔𝜋

𝐻,𝑘𝑚. 

𝑓𝐸𝑇(𝜔𝜋
𝐿,𝑘𝑙𝑚) Expected waiting time value of flow 𝜔𝜋

𝐿,𝑘𝑙𝑚 . 

𝑓𝐸𝑇(𝜔𝜋
𝐿,𝑘𝑙𝑚) Waiting time variance value of flow 𝜔𝜋

𝐿,𝑘𝑙𝑚 . 

G An arbitrary large number. 
  
Variables: 

ϒ𝜋
𝑊,𝑘𝑚𝑠  Continuous variable for breakpoint 𝜋 associated with 𝐸(𝑊𝑘

𝑚𝑠). 

ϒ𝜋
𝑇,𝑘𝑙𝑚 Continuous variable for breakpoint 𝜋 associated with 𝐸(𝑇𝑘𝑙

𝑚). 

𝒻𝜋
𝑊,𝑘𝑚𝑠 Binary variable for breakpoint 𝜋 associated with 𝐸(𝑊𝑘

𝑚𝑠). 

𝒻𝜋
𝑇,𝑘𝑙𝑚  Binary variable for breakpoint 𝜋 associated with 𝐸(𝑇𝑘𝑙

𝑚). 

 
 

∑𝒻𝜋
𝑊,𝑘𝑚𝑠

𝛱−1

𝜋=1

= 1 ∀𝑘,𝑚, 𝑠 (5.52) 

ϒ𝜋
𝑊,𝑘𝑚𝑠 ≤ 𝒻𝜋−1

𝑊,𝑘𝑚𝑠 + 𝒻𝜋
𝑊,𝑘𝑚𝑠  ∀𝑘,𝑚, 𝑠, 𝜋 ∈ 𝛱 (5.53) 

∑ ϒ𝜋
𝑊,𝑘𝑚𝑠

𝛱

𝜋=1

= 1 ∀𝑘,𝑚, 𝑠 (5.54) 

∑∑∑∑𝑤𝑖𝑗𝑃𝑌𝑖𝑙𝑘𝑗
𝑚𝑟

𝑟𝑙
𝑙≠𝑘

𝑗
𝑗≠𝑖

𝑖

= ∑ ϒ𝜋
𝑊,𝑘𝑚𝑠

𝛱

𝜋=1

𝜔𝜋
𝐻,𝑘𝑚 ∀𝑘,𝑚, 𝑠 (5.55) 

𝐸(𝑊𝑘
𝑚𝑠) = ∑ ϒ𝜋

𝑊,𝑘𝑚𝑠

𝛱

𝜋=1

𝑓𝐸𝑊(𝜔𝜋
𝐻,𝑘𝑚) ∀𝑘,𝑚, 𝑠 (5.56) 

𝑉(𝑊𝑘
𝑚𝑠) = ∑ ϒ𝜋

𝐸𝑊,𝑘𝑚𝑠

𝛱

𝜋=1

𝑓𝑉𝑊(𝜔𝜋
𝐻,𝑘𝑚) ∀𝑘,𝑚, 𝑠 (5.57) 

𝐸(𝑊𝑘
𝑚𝑠) ≤ 𝐺𝑍𝑘

𝑚𝑠  ∀𝑘,𝑚, 𝑠 (5.58) 
𝑉(𝑊𝑘

𝑚𝑠) ≤ 𝐺𝑍𝑘
𝑚𝑠  ∀𝑘,𝑚, 𝑠 (5.59) 

∑𝒻𝜋
𝑇,𝑘𝑙𝑚

𝛱−1

𝜋=1

= 1 ∀𝑘, 𝑙, 𝑚 (5.60) 

ϒ𝜋
𝑇,𝑘𝑙𝑚 ≤ 𝒻𝜋−1

𝑇,𝑘𝑙𝑚 + 𝒻𝜋
𝑇,𝑘𝑙𝑚  ∀𝑘, 𝑙, 𝑚, 𝜋 ∈ 𝛱 (5.61) 
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∑ ϒ𝜋
𝑇,𝑘𝑙𝑚

𝛱

𝜋=1

= 1 ∀𝑘, 𝑙, 𝑚 (5.62) 

∑∑∑∑𝑤𝑖𝑗𝑌𝑖𝑘𝑙𝑗
𝑚

𝑣𝑟𝑗𝑖

𝑃𝑖𝑘
𝑟 𝑃𝑗𝑙

𝑣 = ∑ ϒ𝜋
𝑇,𝑘𝑙𝑚

𝛱

𝜋=1

𝜔𝜋
𝐿,𝑘𝑙𝑚  ∀𝑘, 𝑙, 𝑚 (5.63) 

𝐸(𝑇𝑘𝑙
𝑚) = ∑ ϒ𝜋

𝑇,𝑘𝑙𝑚

𝛱

𝜋=1

𝑓𝐸𝑇(𝜔𝜋
𝐿,𝑘𝑙𝑚) ∀𝑘, 𝑙, 𝑚 (5.64) 

𝑉(𝑇𝑘𝑙
𝑚) = ∑ ϒ𝜋

𝑇,𝑘𝑙𝑚

𝛱

𝜋=1

𝑓𝑉𝑇(𝜔𝜋
𝐿,𝑘𝑙𝑚) ∀𝑘, 𝑙, 𝑚 (5.65) 

ϒ𝜋
𝑊,𝑘𝑚𝑠 ,ϒ𝜋

𝑇,𝑘𝑙𝑚 ∈ [0,1] ∀𝑘, 𝑙, 𝑚, 𝜋 ∈ 𝛱 (5.66) 
𝒻𝜋
𝑊,𝑘𝑚𝑠, 𝒻𝜋

𝑇,𝑘𝑙𝑚 ∈ {0,1} ∀𝑘, 𝑙, 𝑚, 𝜋 ∈ 𝛱 (5.67) 

 

where 𝑓𝐸𝑊(𝜔𝜋
𝐻,𝑘𝑚) and 𝑓𝑉𝑊(𝜔𝜋

𝐻,𝑘𝑚) are calculated by substituting the value 𝜔𝜋
𝐻,𝑘𝑚 in 

equations (5.46) and (5.47), respectively. A similar approach is carried out for 

obtaining 𝑓𝐸𝑇(𝜔𝜋
𝐿,𝑘𝑙𝑚) and 𝑓𝑉𝑇(𝜔𝜋

𝐿,𝑘𝑙𝑚) by substituting the value 𝜔𝜋
𝐿,𝑘𝑙𝑚 in equations 

(5.48) and (5.49), respectively. Although the non-linearity of the model is 

significantly decreased, there still remains the non-linear term of product of two 

continuous variables in the objective function (5.16), constraint (5.32) and equation 

(5.63). This issue is handled during solution algorithm (see Section 5.6). Finally, the 

BORCHLP model is presented as follow: 

 

min ℤ1 =∑∑∑𝐹𝐻𝑘
𝑚𝑠𝑍𝑘

𝑚𝑠

𝐿

𝑠=1

𝑀

𝑚=1

𝑁

𝑘=1

+∑ ∑ ∑𝐹𝐿𝑘𝑙
𝑚𝐿𝑘𝑙

𝑚

𝑁+1

𝑙=1
𝑙>𝑘

𝑀

𝑚=1

𝑁+1

𝑘=1

+∑∑∑𝑤𝑖𝑗 [∑∑𝑐𝑖𝑘
1 𝑃𝑋𝑖𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑖

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑖=1

𝐿

𝑠=1

+ ∑ ∑∑∑∑(𝑜𝑐𝑘
𝑚𝑠 + 𝛼𝑐𝑘𝑙

𝑚𝑐𝑘𝑙
𝑚 + 𝑜𝑐𝑙

𝑚𝑠)𝑃𝑖𝑘
𝑟 𝑃𝑗𝑙

𝑣𝑌𝑖𝑘𝑙𝑗
𝑚

𝑅

𝑣=1

𝑅

𝑟=1

𝑁+1

𝑙=1
𝑙≠𝑘

𝑁+1

𝑘=1

𝑀

𝑚=1

+∑∑𝑐𝑘𝑗
1 𝑃𝑋𝑗𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑗

] 

(5.16) 

𝑀𝑖𝑛 ℤ2 = 𝛹  (5.17) 
s.t: (5.18)-(5.29), (5.31)-(5.42), (5.45)-(5.49), (5.52)-(5.67).   

 

In this following sections, a novel solution approach is developed to solve the 

proposed BORCHLP. This approach includes: 1) exact approximation of the proposed 

BORCHLP, 2) multi-objective lower bound procedure, and 3) multi-objective meta-

heuristic algorithm. In Section 4.1, we develop an approximated mixed-integer 

program (AMIP), in which the non-linear term 𝑃𝑖𝑘
𝑟 × 𝑃𝑗𝑙

𝑣  is substituted with a given 

value (Aboolian et al., 2012). In Section 4.2, we present an efficient multi-objective 

lower bound (MOLB) approach to find a tight Pareto lower bound frontier of the 

AMIP. The proposed MOLB provides near optimal lower bound for the optimal 

Pareto-frontier of BORCHLP, while finding bounds for a multi-objective problem is 
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desirable. On the other hand, finding feasible and near optimal feasible solutions are 

obtained by developing an efficient multi-objective meta-heuristic algorithm (see 

Section 4.3), while its efficiency will be demonstrated in comparison with MOLB.   

 

5.6. Approximated BOCRHLP (AMIP) 

As shown in the proposed model, spokes are re-allocated to other hubs in 

higher levels when any lower-level hub fails to provide services. In the case of failing 

all of hubs for a spoke, there is a non-failable hub, denoted by 𝐻 + 1, that has no fixed 

cost with failure probability 𝑞𝐻+1 = 0 and a transportation cost 𝑐𝑖,𝐻+1
1 = 𝜙𝑖 for spoke 

i. 

Let 𝑞[1] ≤ 𝑞[2] ≤ ⋯ ≤ 𝑞[ℎ−1] ≤ 𝑞[ℎ] be an ordering of failure probabilities in H. 

An optimistic version of 𝑃𝑖𝑘
𝑟  can be provided as ℒ𝑘𝑟 that is calculated as following 

equations (5.68) and needs to be proved that ℒ𝑘𝑟  is a lower bound for 𝑃𝑖𝑘
𝑟 , which has 

been demonstrated by Aboolian et al. (2012). Therefore, since ℒ𝑘𝑟 ≤ 𝑃𝑖𝑘
𝑟 , AMIP 

provides lower bound for the main problem BORCHLP.  

 

ℒ𝑘𝑟 =

{
 
 

 
 (∏𝑞[ℎ]

𝑟

ℎ=1

) (1 − 𝑞𝑘)        𝑘 ∈ 𝐻,

∏𝑞[ℎ]

𝑟−1

ℎ=1

                     𝑘 = 𝐻 + 1.

 (5.68) 

 

According to equations (5.68), the AMIP can be presented as follow. 
 

min ℤ1 =∑∑∑𝐹𝐻𝑘
𝑚𝑠𝑍𝑘

𝑚𝑠

𝐿

𝑠=1

𝑀

𝑚=1

𝑁

𝑘=1

+∑ ∑ ∑𝐹𝐿𝑘𝑙
𝑚𝐿𝑘𝑙

𝑚

𝑁+1

𝑙=1
𝑙>𝑘

𝑀

𝑚=1

𝑁+1

𝑘=1

+∑∑∑𝑤𝑖𝑗 [∑∑𝑐𝑖𝑘
1 ℒ𝑘𝑟𝑋𝑖𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑖

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑖=1

𝐿

𝑠=1

+ ∑ ∑∑∑∑(𝑜𝑐𝑘
𝑚𝑠 + 𝛼𝑐𝑘𝑙

𝑚𝑐𝑘𝑙
𝑚 + 𝑜𝑐𝑙

𝑚𝑠)ℒ𝑘𝑟ℒ𝑙𝑣𝑌𝑖𝑘𝑙𝑗
𝑚

𝑅

𝑣=1

𝑅

𝑟=1

𝑁+1

𝑙=1
𝑙≠𝑘

𝑁+1

𝑘=1

𝑀

𝑚=1

+∑∑𝑐𝑘𝑗
1 ℒ𝑘𝑟𝑋𝑖𝑘

𝑟

𝑅

𝑟=1

𝑁+1

𝑘=1
𝑘≠𝑗

] 

(5.69) 

𝑀𝑖𝑛 ℤ2 = 𝛹 
 

(5.17) 

s.t: (5.18)-(5.29), (5.41), (5.42), (5.45)-(5.49), (5.52)-(5.54), (5.56)-(5.62), (5.64), 
(5.67). 

 

∑∑∑∑𝑤𝑖𝑗ℒ𝑘𝑟𝑌𝑖𝑙𝑘𝑗
𝑚

𝑟𝑗𝑙𝑖

≤∑𝛤𝑘
𝑚𝑠[𝜃𝑘

𝑠𝑚 + (1 − 𝜂𝑘
𝑚𝑠)(1 − 𝜃𝑘

𝑠𝑚)]𝑍𝑘
𝑚𝑠

𝑠

 ∀𝑘,𝑚 (5.70) 

∑∑∑∑𝑤𝑖𝑗𝑌𝑖𝑘𝑙𝑗
𝑚

𝑣𝑟𝑗𝑖

ℒ𝑘𝑟ℒ𝑙𝑣 ≤ 𝜉�̅�𝑙
𝑚[𝛿𝑘𝑙

𝑚 + (1 − 𝜗𝑘𝑙
𝑚)(1 − 𝛿𝑘𝑙

𝑚)] ∀𝑘, 𝑙, 𝑚 (5.71) 
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∑∑∑∑𝑤𝑖𝑗ℒ𝑘𝑟𝑌𝑖𝑙𝑘𝑗
𝑚

𝑟𝑙
𝑙≠𝑘

𝑗
𝑗≠𝑖

𝑖

= ∑ ϒ𝜋
𝑊,𝑘𝑚𝑠

𝛱

𝜋=1

𝜔𝜋
𝐻,𝑘𝑚 ∀𝑘,𝑚, 𝑠 (5.72) 

∑∑∑∑𝑤𝑖𝑗𝑌𝑖𝑘𝑙𝑗
𝑚

𝑣𝑟𝑗𝑖

ℒ𝑘𝑟ℒ𝑙𝑣 = ∑ ϒ𝜋
𝑇,𝑘𝑙𝑚

𝛱

𝜋=1

𝜔𝜋
𝐿,𝑘𝑙𝑚  ∀𝑘, 𝑙, 𝑚 (5.73) 

 

5.7. Multi-objective lower bound approach (MOLB) 

In this section, a solution algorithm is proposed based on augmented e-

constraint method (Mavrotas, 2009; Mavrotas and Florios, 2013) and lower bound 

approach proposed by Mohammadi et al. (2014a) to provide Pareto lower bound 

frontier for the proposed AMIP. Before presenting the augmented e-constraint, a 

brief review of the traditional one is presented; next, the proposed method by 

Mohammadi et al. (2014a) and Vahdani and Mohammadi (2015) is modified to be 

adapted in the proposed AMIP.  

Consider the following multi-objective problem with minimized objectives: 

 
min 𝑓𝑝(𝑥)  

(5.74) 

s.t.  
𝑓1(𝑥) ≤ 𝑒1  
f2(x) ≤ 𝑒2  
…  
𝑓𝑝−1(𝑥) ≤ 𝑒𝑝−1  

𝑥 ∈ 𝑅  

 

where 𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑝−1) is the vector of satisfaction levels which stipulates the 

maximum allowance on the constrained objectives. Solutions can be obtained by 

parametrical variations of satisfaction levels of vector e in the right side of 

constraints. The interested readers are referred to Deb (2001) and Ehrgott (2005) 

for more information on this method. Since solving these series of models with 

optimization software with obtained solutions are usually not efficient (Mavrotas, 

2009). In order to guarantee the efficiency of the obtained solutions, the proposed 

AUGMECON method by Mavrotas (2009) is revised to be used in model (5.74). 

The revised method transforms inequality constraints of model (5.74) into 

equality constraints by introducing non-negative slack variables or surplus variables 

and then reduces the objective function with the weighted sum of these slack or 

surplus variables. Accordingly, the model (5.74) is rewritten as follow: 

 

min 𝑓𝑝(𝑥) + 𝜑(𝑠1 𝜁1⁄ + 𝑠1 𝜁1⁄ + ⋯+ 𝑠𝑝−1 𝜁𝑝−1⁄ )  

(5.75) 

s.t.  
𝑓1(𝑥) + 𝑠1 = 𝑒1  
𝑓2(𝑥) + 𝑠2 = 𝑒2  
…  
𝑓𝑝−1(𝑥) + 𝑠𝑝−1 = 𝑒𝑝−1  

𝑥 ∈ 𝑅 and 𝑠𝑖 ∈ 𝑍
+, 𝑖 ∈ [1, … , 𝑝 − 1]  

 

where 𝜑 is an adequately small number usually between 10-3 and 10-6 and 𝜁𝑖 , 

𝑖 ∈ [1, … , 𝑝 − 1], is the range of ith objective function. Applying model (5.75), the 
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proposed bi-objective AMIP reduces to a single-objective AMIP (SAMIP), in which by 

altering the vector e, the Pareto-frontier of the AMIP model is obtained.  

Mohammadi et al. (2014a) and Zahiri et al. (2014) presented a lower bound 

procedure for a single objective sustainable hub location problem (SHLP) and an 

organ transplant network, respectively, while we develop the multi-objective variant 

of their approach by adding some modification and integrating their lower bound 

approach by the proposed augmented e-constraint method to find Pareto lower 

bound frontier for the AMIP. For this aim, at each variation of vector e to find Pareto 

solutions, the lower bound approach is utilized with this exception that visited nodes 

are removed from the solution space in order to reduce the computational time. 

In the MOLB, once the vector e varies, a lower bound value is found using 

partial relaxation of a sub-problem of the original SAMIP model. It should be noted 

that any sub-problem of the original problem 𝑃SAMIP can be created by dividing the 

set of hubs distinctly. It means that any two sets of hub locations, 𝑈𝜙 and 𝑈𝜏, are 

distinct if there is at least one hub 𝑘 ∈ 𝑈𝜙  and 𝑘 ∉ 𝑈𝜏. Hence, for each vector e of the 

SAMIP model, there will be 𝐶𝑃
|𝐻| = 𝐻! ((𝐻 − 𝑃)! 𝑃!)⁄  number of distinct hub sets in a 

network. For each selected set of hubs in SAMIP, corresponding location decision 

variables 𝑈𝜙 are fixed at 1, and the original problem is then reduced to a mixed 

integer sub-problem (𝑆𝑃SAMIP
𝜙

) over the binary decision variables 

𝑋𝑖𝑘
𝑟 , 𝑍𝑘

𝑚𝑠 , 𝐿𝑘𝑙
𝑚 , 𝑌𝑖𝑙𝑘𝑗

𝑚 , 𝜉𝜋
𝑊,𝑘𝑚𝑠, 𝜉𝜋

𝑇,𝑘𝑙𝑚. Now let 𝑃𝑅(𝑆𝑃SAMIP
𝜙

) be the partial relaxation of 

𝑆𝑃SAMIP
𝜙

 that relaxes the integrality of some binary variables, i.e., we assume that: 

0 ≤ 𝑋𝑖𝑘
𝑟 , 𝑌𝑖𝑙𝑘𝑗

𝑚 , 𝜉𝜋
𝑊,𝑘𝑚𝑠, 𝜉𝜋

𝑇,𝑘𝑙𝑚 ≤ 1. Besides, let 𝑍
𝑃𝑅(𝑆𝑃SAMIP

𝜙
)
 be the objective function 

value for this partial relaxation. This values can be stated as a lower bound for the 

optimal value of
 
𝑆𝑃SAMIP. Now, we can obtain different 𝐶𝑃

|𝐻| solutions among the 

possible hub sets. It should be noted that may only some sets of hubs are feasible 

through all 𝐶𝑃
|𝐻| possible hub sets. Afterward, the minimum value between the values 

among the feasible hub sets determines a lower bound for the optimal value of the 

original problem 𝑃SAMIP where 𝑍𝐿𝐵(𝑃SAMIP) = min𝜙 𝑍𝑃𝑅(𝑆𝑃SAMIP
𝜙

)
. This solution also can 

be stated as one of the solutions of Pareto lower bound frontier of the AMIP model. 

Accordingly, the vector e varies and another solution from the Pareto lower bound 

frontier of the AMIP model is obtained. Finally, it can be easily stated that the 

proposed MOLB approach provides the Pareto lower bound frontier for the main 

BORCHLP model.    

 

5.8. Multi-objective meta-heuristic algorithm 

In this section, we proposed a hybrid meta-heuristic algorithm based on new 

self-adaptive non-dominated genetic algorithm II (SNSGA-II) and variable 

neighborhood search (VNS) algorithm, namely SGV-II, in order to find non-

dominated front (NF) near to optimal Pareto frontier (PF) of the proposed BORCHLP. 
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For this purpose, a new solution representation scheme in a matrix form and special 

solution procedures are proposed. 

 

5.8.1. Solution representation scheme 

One important decision in designing a meta-heuristic algorithm is to decide 

how to represent the solution in an efficient way to the search space. In this section, 

we use continuous representation instead of discreet points. The proposed solution 

scheme includes the following phases: 

 

 

 

5.8.1.1. Hub location (Phase 1)    

The first matrix corresponds to the location decision presented by a 

(𝟏 × 𝑯 + 𝟏) matrix, in which 𝑯 denotes the number of potential hubs. This matrix is 

filled with random numbers belong to [0,1]. In this matrix, the first maximum 

𝑃 numbers are considered as located hubs. For example, consider a network with six 

potential hubs nodes and 𝑃 = 3. The matrix of hub location is a (𝟏 × 𝟕) matrix as 

Figure 5.1, in which, three of six potential hub nodes must be located. Therefore, first, 

fourth and sixth nodes in the hub set are located as hubs. It should be noted that the 

last array of the matrix that corresponds to the non-failable hub must be equal to 1.  

 

5.8.1.2. Hub capacity level (Phase 2)    

This part of solution represents the capacity level considered for each located 

hub. Similar to Phase 1, a (𝟏 × 𝑯) matrix is generated with random numbers belong 

to[0,1]. Next, the matrix is multiplied by the number of capacity levels (S) and 

rounded up. Figure 5.2 shows that located hubs in Phase 1 have first, third and 

second levels of capacity.  

 

5.8.1.3. Spoke allocation (Phase 3)    

This section represents the allocation of the spokes to the located hubs. 
Spokes are allocated to failable hubs level by level once they are allocated to the non-
failable hub at a certain level. This part of solution contains a (𝑵 × 𝑯 + 𝟏 ) matrix 
that is filled by random numbers belongs to [0,1]. First of all, each row of the matrix 
is multiplied by the location matrix (Phase 1). Next, each spoke is allocated to its 
biggest corresponding non-zero column as a first level of allocation and this value is 
replaced by 1. Moreover, the spoke is allocated to the next big value for the next level 
of allocation and this value is replaced by 2.  

This procedure continues R times (i.e., maximum number of allocation levels) 
once the spoke is allocated to the non-failable hub at the last column. In a situation 
that the spoke has not been allocated to the non-failable hub at (𝑅 − 1)th level, that 
spoke is intentionally allocated to the non-failable hub at level R. For this aim, the last 
column of that spoke is replaced by R. Figure 5.3 shows the spoke allocation for 
previous example with 𝑅 = 3.   
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Potential Hub Nodes Non-failable 
hub 1 2 3 4 5 6 

0.94 0.45 0.02 0.67 0.11 0.59 0.41 

P=3 
 

  

1 0 0 1 0 1 1 

Figure 5.1. Hub location representation 

 
 

Potential Hub Nodes 
1 2 3 4 5 6 

0.14 0.65 0.72 0.84 0.01 0.59 

⌈× 𝑆 = 3⌉ 
 

 

1 2 3 3 1 2 

Figure 5.2. Hub capacity level 
 

 
 

  Potential Hub Nodes  
  1 2 3 4 5 6 Non-failable hub 

Location of Hubs 1 0 0 1 0 1 1 
         

Hub 1 0.51 0 0 0.79 0 0.60 0.67 
Spoke 2 0.40 0 0 0.85 0 0.03 0.75 
Spoke 3 0.72 0 0 0.15 0 0.27 0.74 

Hub 4 0.91 0 0 0.03 0 0.04 0.39 
Spoke 5 0.63 0 0 0.84 0 0.99 0.65 

Hub 6 0.09 0 0 0.93 0 0.12 0.17 
         

Hub 1 - - - - - - - 
Spoke 2 - - - 1 - - 2 
Spoke 3 - - - - - - 1 

Hub 4 - - - - - - - 
Spoke 5 - - - 2 - 1 3 

Hub 6 - - - - - - - 

Figure 5.3. Spoke allocation 
 

In Figure 5.3, for instance, spoke number 2 has been allocated to failable hub 
number 4 at the first level and allocated to the non-failable hub at second level. 
Furthermore, spoke number 3, has been only allocated to the non-failable hub at 
level one. Besides, spoke number 5, has been allocated to failable hubs number 6 and 
4 and the non-failable hub for first, second and third levels of allocation, respectively. 

 
5.8.1.4. Transportation mode (Phase 4)    

This part of solution representation contains a (𝑯 + 𝟏 × 𝑯 + 𝟏 ) matrix that 
illustrates transportation mode assignment between hub nodes. This matrix also is 
first filled by random numbers belongs to [0,1], then is multiplied by number of 
transportation modes (M) and is rounded up. In Figure 5.4, for example, modes 
number 3, 2 and 1 have been assigned to the links between hub pairs 1 to 4, 1 to 6 
and 1 to non-failable hub.  

 
  Potential Hubs 
  1 2 3 4 5 6 Non-failable hub 

P
o

te
n

ti
a

l 
H

u
b

s 1 0.81 0.27 0.95 0.79 0.67 0.41 0.81 
2 0.90 0.54 0.48 0.95 0.75 0.03 0.90 
3 0.12 0.95 0.80 0.65 0.74 0.27 0.12 
4 0.91 0.96 0.14 0.03 0.39 0.24 0.11 
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5 0.63 0.15 0.42 0.84 0.65 0.09 0.63 
6 0.65 0.09 0.98 0.19 0.88 0.54 0.35 

Non-failable hub 0.43 0.29 0.86 0.59 0.72 0.19 0.48 
  ⌈× 𝑀 = 3⌉      

P
o

te
n

ti
a

l 
H

u
b

s 1 - - - 3 - 2 3 
2 - - - - - - - 
3 - - - - - - - 
4 3 - - - - 1 1 
5 - - - - - - - 
6 2 - - 1 - - 3 

Non-failable hub 2 - - 2 - 1 - 

Figure 5.4. Transportation mode allocation 
 
 

5.8.2. The Proposed algorithm  

This section presents a detailed description of the proposed SGV-II algorithm, 

including the whole algorithmic flow and various features borrowed from NSGA-II 

and VNS algorithms.  

5.8.2.1. Self-adaptive NSGA-II  

In this section, a new variant of NSGA-II, namely self-adaptive NSGA-II 

(SNSGA-II), is proposed to obtain near optimal Pareto solutions of the proposed 

approximated AMIP in comparison with pure NSGA-II. In the SNSGA-II, a self-

adaptive version of crossover and mutation operators is applied. In the literature, 

several crossover (e.g., one point, two points, three points, uniform, cycle crossover 

and etc.) and mutation (e.g., Swap, insertion, reversion and etc.) operators have been 

introduced while using all of them simultaneously in an algorithm extremely 

increases the computational time. Therefore, many researches have just used a few of 

them to search the solution space. In the proposed SNSGA-II, several crossover and 

mutation operators are simultaneously applied without increasing the computational 

time. Accordingly, the SNSGA-II includes an initialization phase where each crossover 

and mutation operator obtains a score rather than other operators if it could be able 

to find better solution at each iteration. At the end of the initialization phase which is 

limited by a predefined number of iterations, a selection probability (SP) metric is 

calculated for each crossover and mutation operator by dividing the obtained score 

by number of iterations, in which sum of all selection probabilities is equal to 1. 

When the initialization phase is finished, the main phase of SNSGA-II is started 

including searching the solution space using self-adapted crossover and mutation 

operators and VNS algorithm. The crossover operators applied in this thesis consist 

of one point, two points, three points, uniform and three parent crossover operators 

and mutation operators include swap, insertion and reversion operators 

(Sivanandam and Deepa, 2008). The Pseudo code of the initialization phase of the 

proposed SNSGA-II has been shown as Figure 5.5. 

 
5.8.2.2. SGV-II algorithm’s framework 

The flowchart of the proposed SGV-II is depicted as Figure 5.6. The 

optimization process begins with initializing the SNSGA-II based on Figure 5.5. The 
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initial population of the proposed SGV-II is randomly generated. After population 

initialization, each individual is evaluated by the value of objective functions and is 

ranked based on non-dominated sorting procedure. Afterward, Pareto solutions are 

archived. A set of genetic operators, including binary tournament selection, self-

adapted crossover, and self-adapted mutation, is then performed on the evaluated 

and ranked population. Next, the Pareto archive is updated. Thereafter, the Pareto 

solutions are considered for VNS initialization. The local search procedure of VNS (to 

be detailed in Section 5.8.2.3) is then applied to each individual in the Pareto frontier. 

Finally, the results from both SNSGA-II and VNS are combined and the final Pareto 

frontier is extracted. The evolution process is repeated until the stopping criterion is 

met. 
Set the parameters (𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)   
𝑆𝑋𝑂(𝑖) = 0 (𝑖 ∈ All Crossovers-XOs) 
𝑆𝑀(𝑗) = 0 (𝑗 ∈ All Mutations-M) 
Iter = 0 
Create Initial Population 
Calculate 𝑂𝐹𝑉𝑠 for each Solution (ℤ1, ℤ2) 
While (Terminate=false) do 
   

 Choose Parents (Binary Tournament Selection) 

Self-ad
ap

tiv
e C

ro
sso

v
er 

 Apply all Crossover Operators 
 a. One Point XO (No.1) 
 b. Two Point XO (No.2) 
 c. Three Point XO (No.3) 
 d. Uniform XO (No.4) 
 e. Three Parent XO (No.5) 
 Calculate OFVs of Obtained Solutions (ℤ1, ℤ2) 
 𝐈𝐟 Sol𝑋𝑂(𝑖′) 𝐃𝐨𝐦𝐢𝐧𝐚𝐭𝐞𝐬 𝑋𝑂(𝑖), 𝑖

′ ≠ 𝑖  𝐭𝐡𝐞𝐧 

 𝑆𝑋𝑂(𝑖′) = 𝑆𝑋𝑂(𝑖′) + 1 
 EndIf 
   

 Choose a Sample Solution Randomly 

Self-ad
ap

tiv
e 

M
u

tatio
n

 

 Apply all Mutation Operators 
 a. Swap (No.1) 
 b. Insertion (No.2) 
 c. Reversion (No.3) 
 Calculate OFVs of Obtained Solutions (ℤ1, ℤ2) 
 𝐈𝐟 Sol𝑋𝑂(𝑗′) 𝐃𝐨𝐦𝐢𝐧𝐚𝐭𝐞𝐬 𝑋𝑂(𝑖), 𝑗

′ ≠ 𝑖  𝐭𝐡𝐞𝐧 

 𝑆𝑀(𝑗′) = 𝑆𝑀(𝑗′) + 1 
 EndIf 

   
If Iter ≥ Max Iteration then 

Terminate = True 
EndIf 
Iter= Iter+1 

EndWhile 

Calculate Selection Probabilties (𝑆𝑃(𝑖)
𝑋𝑂 =

𝑆𝑋𝑂(𝑖)

∑ 𝑆𝑋𝑂(𝑖)𝑖
, 𝑆𝑃𝑗

𝑀 =
𝑆𝑀(𝑖)

∑ 𝑆𝑀(𝑖)𝑖
) 

Figure 5.5. Pseudo code of SNSGA-II’s initialization phase 
 

5.8.2.3. Intensification using VNS 

It has been proven that genetic algorithms are generally very good at 

diversifying the solution space but fail to intensify the search in local regions. 

However, hybridization with local search methods may cope with this weakness and 

lead to powerful search algorithm. Hence, VNS is hybridized by the proposed SNSGA-
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II to balance global exploration and local exploitation during the evolutionary 

process (Wen et al., 2011). The main steps of the proposed VNS are described in 

Figure 5.7.  

In order to locally search the Pareto solutions in the proposed VNS, three 

types of move have been proposed, namely HubChange, AssignmentChange, and 

ModeChange. Using a HubChange move, the locations of a hub and a spoke are 

alternatively substituted. Using the AssignmentChange move, the assignments of 

some spokes are randomly changed. The move ModeChange is used whenever the 

mode type between a pair of hubs is changed. The performance of these moves has 

been illustrated in Figure 5.8. 
 

 
Figure 5.6. Flowchart of the proposed SGV-II 

 
Extract the set of the Pareto solutions (SPS) obtained by SNSGA-II  
Select the set of neighborhood structures ℕℎ (ℎ = 1,2,… , ℎ𝑚𝑎𝑥) 
For each individual x in the SPS Do 

ℎ =  1 
While (Terminate = false) do 

Sub-optimality avoidance: Randomly generate a solution 𝑥′ from the hth neighborhood of x 
Local search: Search 𝑥′ locally to obtain possible better local optimum solution ← 𝑥′′ 
If 𝑥′′ is better than x Then  

Substitute  x by 𝑥′′ (x ← 𝑥′′) 
ℎ = 1 

Else 
ℎ = ℎ + 1 

EndIf 
If ℎ ≥  ℎ𝑚𝑎𝑥 Then 

Terminate = True 
EndIf 

EndWhile 
EndFor 
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Figure 5.7. Main steps of VNS in the SGV-II algorithm 
 

5.8.2.4. Termination criteria 

Dual termination criteria are used in the SGV-II algorithm. The first criterion 

limits the number of iterations in both SNSGA-II and VNS algorithm. This criterion is 

set to 30 for the local search in the proposed VNS, while its value for SNSGA-II 

depends on the size of the problem and varies from 100 to 500. The second criterion 

is considered only for the proposed VNS algorithm that sets the maximum number of 

iterations without improvement to 5. 

 

 
Figure 5.8. Performance of the proposed local searches 

 

Table 5.1. Sources of random data generation 

Parameters 
Problem size 

Small Medium Large 
N 5 ≤ 𝐼 ≤ 15 20 ≤ 𝐼 ≤ 40 50 ≤ 𝐼 ≤ 70 
H 1 ≤ 𝐻 ≤ 3 2 ≤ 𝐻 ≤ 5 4 ≤ 𝐻 ≤ 6 
M 1 ≤ 𝑀 ≤ 2 1 ≤ 𝑀 ≤ 3 1 ≤ 𝑀 ≤ 3 
P 2 ≤ 𝑀 ≤ 5 4 ≤ 𝑀 ≤ 8 6 ≤ 𝑀 ≤ 16 
R 2 ≤ 𝑅 ≤ 𝑃 3 ≤ 𝑅 ≤ 𝑃 4 ≤ 𝑅 ≤ 𝑃 
S 1 ≤ 𝑆 ≤ 3 1 ≤ 𝑆 ≤ 3 1 ≤ 𝑆 ≤ 3 
𝑤𝑖𝑗 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(150) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(300) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(500) 

𝑐𝑖𝑗
𝑚 𝑈~(40,60) 𝑈~(100,300) 𝑈~(400,1000) 

𝑜𝑐𝑘
𝑚𝑠 𝑈~(5,10) 𝑈~(10,25) 𝑈~(15,30) 

𝐹𝐻𝑘
𝑚𝑠 𝑈~(1000,2500) 𝑈~(2000,4000) 𝑈~(5000,15000) 

𝐹𝐿𝑘𝑙
𝑚  𝑈~(200,500) 𝑈~(400,1000) 𝑈~(500,1500) 

𝑡𝑖𝑗
𝑚 𝑈~(20,50) 𝑈~(40,100) 𝑈~(50,150) 

𝛼𝑐𝑖𝑗
𝑚 0.95 0.90 0.85 

𝛼𝑡𝑖𝑗
𝑚 0.90 0.85 0.80 

�̅�𝑘
𝑠𝑚 𝑈~(1000,2000) 𝑈~(5000,8000) 𝑈~(10000,15000) 

𝜉�̅�𝑙
𝑚 𝑈~(300,800) 𝑈~(1000,2000) 𝑈~(3000,6000) 
𝑞𝑘 𝑈~(0.01,0.05) 𝑈~(0.05,0.1) 𝑈~(0.05,0.2) 
𝜇𝑘
𝑚𝑠 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(600) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1200) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2000) 
𝑓𝑘
𝑚𝑠 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(150) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(300) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(500) 
𝑟𝑘
𝑚𝑠 𝐸𝑥𝑝(10) 𝐸𝑥𝑝(30) 𝐸𝑥𝑝(50) 
𝜂𝑘
𝑚𝑠 𝑈~(0.01,0.05) 𝑈~(0.05,0.1) 𝑈~(0.05,0.2) 
𝜃𝑘
𝑚𝑠 𝑈~(0.80,0.95) 𝑈~(0.70,0.90) 𝑈~(0.70,0.80) 
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𝜗𝑘𝑙
𝑚 𝑈~(0.01,0.05) 𝑈~(0.05,0.1) 𝑈~(0.05,0.2) 
𝛿𝑘𝑙
𝑚 𝑈~(0.80,0.95) 𝑈~(0.70,0.90) 𝑈~(0.70,0.80) 

 

5.9. Experiments 

 

5.9.1. Test problems 

To illustrate the validity of the proposed BORCHLP model and the effectiveness of 

the proposed solution approaches, several numerical experiments in small, medium 

and large sizes are carried out and the related results are reported in this section. 

The details of parameters and the size of test instances are listed in Table 5.1. 

 

5.9.2. Experimental setup 

The performance of the proposed SGV-II algorithm is compared with those of the 

other three state-of-art multi-objective algorithms, including MOICA (Mohammadi et 

al., 2013; Mohammadi et al., 2014b), MOIWO (Niakan et al., 2015), and NSGA-II 

(Mohammadi et al., 2013). The parameter settings used in the proposed SGV-II and 

other algorithms in comparison are summarized in Table 5.2. Unless otherwise 

specified, the following values are used in our comparative evaluation. All algorithms 

are compiled in MATLAB software and are executed on a Pentium 4 CPU with 3.4 GHz 

processor and 4 GB of memory and 10 times for each problem. 

 

Table 5.2. Parameter settings used in the proposed SGV-II 
Parameter SGV-II MOICA MOIWO NSGA-II 
Population size 80S*, 150M*,200L* 80S, 150M,200L 80S, 150M,200L 80S, 150M,200L 
Number of iteration 150S, 250M,500L 150S, 250M,500L 150S, 250M,500L 150S, 250M,500L 
Selection operator Binary tournament Power-based selection Power-based selection Binary tournament 
Crossover operator See Figure 5.8 Assimilation Random local search Random one-point 
Mutation operator See Figure 5.8 Revolution - Random mutation 
Crossover rate 0.8 0.8 - 0.8 
Mutation rate 0.2 0.2 - 0.2 

*S: Small size; M: Medium size; L: Large size. 

 

5.9.3. Performance metrics 

To validate the proposed SGV-II, we used the methodology normally adopted in 

the evolutionary multi-objective optimization literature. The five common metrics 

used to compare SGV-II with other multi-objective evolutionary algorithms (MOEAs) 

are (1) quality metric (QM), (2) convergence metric (CM), (3) divergence metric 

(DM), (4) spacing metric (SM), and (5) mean ideal distance (MID) metric. They 

represent both quantitative and qualitative comparisons with MOEAs. For these 

metrics we need to know the true Pareto front. For more detail, the readers are 

referred to Deb et al. (2001). 

 

5.10. Results and discussion 

We coded the proposed BOCRHLP model and MOLB approach at the GAMS 

software utilizing Cplex solver. We compared our MOLB approach with optimal value 

in small and some medium size instances in terms of performance metrics (see 

Section 5.9.3) to show the tightness of MOLB, while for larger size of the problem, the 
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optimal solution cannot be obtained due to NP-hard nature of the problem and 

limited memory of the GAMS software. It is obvious that the value of QM for MOLB is 

equal to 1 because NF obtained by MOLB absolutely dominates the optimal PF. 

Therefore, we neglect QM in the comparison between optimal solutions and those 

obtained by MOLB. Hereafter, the optimal solutions are called solutions obtained by 

“Cplex” and those of obtained by MOLB are called “MOLB”. It should be mentioned 

that the results of Cplex have been obtained by solving the main BOCRHLP without 

any relaxation and approximation. The results have been tabulated in Table 5.3 to 

5.5, respectively, for small, medium and large size instances.  

Considering Tables 5.3 and 5.4, the computational time of optimal PF is 

significantly increased from 88 to 16894 seconds with the increase of problem size. 

While the CPU time for the proposed MOLB remains below 3580 seconds for the 

largest corresponding instances. In Table 5.4, the last optimal PF was obtained for 

problem number 14 with CPU time close to 5 hours (16894 seconds). For larger 

medium-size instances, the GAMS solver cannot find a solution due to high required 

memory. According to CM metric for the first 14 problems, it can be concluded that 

the mean tightness of the proposed MOLB is equal to 1.05%. It means that the gap 

between the NF of MOLB and optimal PF is equal to 1.05%. Over small and medium 

size instances, the effectiveness (quality of solution) of the proposed MOLB approach 

can be shown in terms of low gap (closeness to optimal solution), and its efficiency 

can be demonstrated by low CPU time. Finally, in Table 5.5, NF of MOLB is obtained 

for the largest problem with computational time up to approximately 3.4 hour 

(12345 seconds). Since Tables 5.3 to 5.5 shows the quantitative results, finally, 

Figures 5.9a to 5.9d illustrate qualitative results by illustrating the obtained NFs and 

optimal PFs for four samples of problems.  

 

Table 5.3. Results of small size instances 
Problem 
No 

Cplex  MOLB 
DM SM MID CPU (s)  CM DM SM MID CPU (s) 

1 0.721 0.549 0.851 88  0.587 0.875 0.315 0.774 52 
2 0.612 0.681 0.769 157  0.892 1.058 0.441 0.621 99 
3 0.481 0.429 0.821 324  0.792 1.117 0.286 0.553 157 
4 0.395 0.514 0.763 459  0.991 0.984 0.416 0.671 220 
5 0.510 0.629 0.660 894  0.769 1.159 0.333 0.452 301 
6 0.518 0.549 0.696 1227  0.681 1.146 0.417 0.513 456 
7 0.346 0.661 0.719 1767  0.885 1.261 0.353 0.447 568 
8 0.298 0.842 0.749 2960  1.174 0.976 0.413 0.542 974 
9 0.379 0.749 0.806 4016  1.188 0.917 0.331 0.468 1288 
10 0.519 0.798 0.942 5663  1.246 1.224 0.601 0.468 1641 

 

Table 5.4. Results of medium size instances 
Problem 
No 

Cplex  MOLB 
DM SM MID CPU (s)  CM DM SM MID CPU (s) 

11 0.557 0.842 0.914 7649  1.423 1.103 0.341 0.587 2138 
12 0.496 0.691 0.865 9792  1.372 0.886 0.271 0.601 2645 
13 0.671 0.713 0.911 12578  1.219 1.076 0.457 0.628 3164 
14 0.659 0.000 0.879 16894  1.483 1.137 0.149 0.419 3580 
15 - - - -  - 1.425 0.553 0.497 4103 
16 - - - -  - 1.022 0.379 0.446 4723 
17 - - - -  - 1.341 0.289 0.557 5249 
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18 - - - -  - 1.108 0.401 0.671 5968 
19 - - - -  - 0.994 0.314 0.492 6398 
20 - - - -  - 0.948 0.370 0.409 6851 

 

A paired t test was conducted to see whether the significant difference exists 

between NF obtained by the proposed MOLB and the optimal PF by GAMS or not 

considering CM, DM, SM and MID comparison metrics. Let Di equals to difference 

between the calculated values of two approaches for test problem i. So the statistics 

are: 

 

t =
√n × D̅

SD
 where D̅ =

∑ D̅

n
 and SD = √

∑(Di − D̅)
2

n − 1
 (5.76) 

 

Table 5.5. Results of large size instances  
Problem 
No 

Cplex  MOLB 
DM SM MID CPU (s)  CM DM SM MID CPU (s) 

21 - - - -  - 1.234 0.298 0.416 7298 
22 - - - -  - 1.247 0.168 0.351 7652 
23 - - - -  - 0.983 0.332 0.419 8197 
24 - - - -  - 0.893 0.265 0.335 8987 
25 - - - -  - 1.354 0.331 0.438 9391 
26 - - - -  - 1.541 0.316 0.339 9779 
27 - - - -  - 1.319 0.451 0.518 10592 
28 - - - -  - 0.996 0.213 0.571 11012 
29 - - - -  - 0.946 0.441 0.349 11786 
30 - - - -  - 1.112 0.238 0.437 12345 

 

We conducted the paired t test by 14 test problems in the SPSS software. By 

referencing to t table, for 13degrees of freedom the significances (2-tailed) are closed 

to 0.000. The detailed statistics are shown in Table 5.6. These tests show that there 

are not statistical significant differences between solutions obtained by MOLB and 

those of the Cplex in terms of SM, DM, and MID metrics while MOLB obtains solutions 

in considerably lower CPU time.  

 

Table 5.6. Detailed statistics of paired t test 

 Paired Differences 

t df 

Sig. 
(2-

tailed) Metric Mean 
Std. 

Deviation 
Std. Error 

Mean 

95% Confidence Interval 
of the Difference 

Lower Upper 

DM -0.554 0.179 0.048 -0.658 -0.451 -11.56 

13 

0.00 

SM 0.252 0.168 0.045 0.154 0.349 5.593 0.00 

MID 0.257 0.119 0.032 0.189 0.326 8.118 0.00 

 
Hereafter, we perform an additional experiment to validate the performance 

and the efficiency of the proposed SGV-II algorithm comparing to MOLB approach, 

MOICA, MOIWO, and NSGA-II in terms of CM, DM, SM and MID comparison metrics. 

The experiment is designed to determine whether the proposed SGV-II algorithm 

really provides high-quality NF. The results for small, medium and large instances 

are shown in Tables 5.7 to 5.9, respectively. It should be noted that the value of CM, 
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DM, SM and MID metrics for meta-heuristics has been obtained comparing to MOLB 

approach. 

The results from Tables 5.7 to 5.9 show the higher performance of the 

proposed SGV-II comparing to the well-known meta-heuristic algorithms considering 

obtained lower values for CM, DM, and MID metrics and higher value of DM metric. In 

addition, the efficiency of the proposed SGV-II can be shown by lower computational 

time to obtain non-dominated solutions. The high performance of the proposed SGV-

II is demonstrated according to QM metric where the NF by SGV-II completely 

dominates NFs of other algorithms in almost all problem instances. Considering CM 

metric, the mean gap between the proposed SGV-II and MOLB is equal to 2.03%. By a 

simple calculation, it can be concluded that the mean gap between the NF of SGV-II 

and optimal PF is equal to 0.98% (i.e., 2.03-1.05). This value is equal to 3.5%, 3.92%, 

and 3.65% for MOICA, MOIWO, and NSGA-II, respectively. The CPU time for the meta-

heuristic algorithms is increased from 15 to 2543 seconds, 17 to 2843 seconds, and 

13 to 2610 for MOICA, MOIWO, and NSGA-II, respectively, while this time for the 

proposed SGV-II is 12 seconds for the smallest size instance and is increased 

modestly to 1319 seconds for the largest instance. 

 

  
a) Optimal PF by GAMS and NF by MOLB on problem #1 

 
b) Optimal PF by GAMS and NF by MOLB on problem 
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Figure 5.9. Optimal PF by GAMS and NF by MOLB 

  

 

 

 

 

 

 

 

Table 5.7. Results of small size instances 
Problem 
No 

SGV-II  MOICA 
QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 

1 0.50 0.649 0.994 0.221 0.558 12  0.30 0.967 0.813 0.349 0.689 15 
2 0.70 0.942 1.124 0.319 0.486 19  0.10 1.177 0.876 0.485 0.667 24 
3 1 0.894 1.276 0.318 0.437 27  0 1.135 0.816 0.476 0.746 32 
4 0.85 1.113 1.234 0.284 0.437 36  0.05 1.258 1.008 0.389 0.619 49 
5 0.80 0.812 1.286 0.296 0.529 45  0.10 1.082 1.104 0.512 0.712 65 
6 1 0.773 1.319 0.331 0.412 56  0 1.082 0.943 0.498 0.557 89 
7 1 1.187 1.186 0.419 0.378 68  0 1.291 0.974 0.678 0.539 113 
8 1 1.498 1.343 0.289 0.443 74  0 1.867 0.873 0.389 0.694 148 
9 0.90 1.749 1.221 0.297 0.311 88  0.10 1.301 1.017 0.446 0.584 181 
10 1 1.489 1.471 0.476 0.402 102  0 1.985 1.110 0.647 0.671 218 
 MOIWO  NSGA-II 
 QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 
1 0 1.258 0.776 0.296 0.713 17  0.20 1.009 0.740 0.298 0.614 13 
2 0 1.368 1.029 0.398 0.558 26  0 1.288 0.558 0.469 0.735 22 
3 0.10 1.590 1.213 0.467 0.648 39  0.10 1.412 0.889 0.429 0.665 28 
4 0 1.636 0.819 0.459 0.571 53  0.10 1.158 1.114 0.578 0.710 41 
5 0 1.279 1.537 0.572 0.843 74  0.10 1.566 0.935 0.619 0.706 60 
6 0 1.613 0.971 0.519 0.643 102  0 1.489 1.005 0.458 0.623 92 
7 0 2.404 0.729 0.643 0.573 143  0 2.261 0.976 0.713 0.571 121 
8 0 2.867 0.833 0.571 0.737 188  0 2.436 1.022 0.513 0.713 158 
9 0 2.598 0.910 0.519 0.648 236  0 2.431 1.078 0.648 0.632 215 
10 0 2.486 1.102 0.446 0.715 281  0 2.371 0.941 0.571 0.741 234 

 

Figure 5.10 schematically shows the CPU time of different algorithms is 

increased by increasing the size of the problem. The higher efficiency of the proposed 

SGV-II algorithm can be followed in Figure 5.10 where the CPU time stays low even 

for larger size instances comparing to other state-of-art algorithms. 
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Figure 5.10. CPU time of different algorithms for different problems 

 

 

 

 

 

Table 5.8. Results of medium size instances 
Problem 
No 

SGV-II  MOICA 
QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 

11 1 1.865 1.123 0.221 0.558 123  0 2.592 0.691 0.349 0.689 259 
12 1 1.942 1.101 0.319 0.486 144  0 2.951 0.770 0.485 0.667 299 
13 1 1.768 1.186 0.318 0.437 169  0 2.192 0.873 0.476 0.746 341 
14 1 1.668 1.024 0.284 0.437 181  0 2.618 0.927 0.389 0.619 389 
15 1 1.852 1.285 0.296 0.529 201  0 2.944 1.104 0.512 0.712 442 
16 1 1.789 1.131 0.331 0.412 234  0 2.808 1.007 0.498 0.557 521 
17 1 2.013 1.261 0.419 0.378 264  0 3.199 1.032 0.678 0.539 594 
18 1 1.896 1.437 0.289 0.443 294  0 2.844 0.838 0.389 0.694 665 
19 1 1.889 1.233 0.297 0.311 344  0 2.569 1.159 0.446 0.584 723 
20 1 2.011 1.547 0.476 0.402 394  0 2.995 1.254 0.647 0.671 801 
 MOIWO  NSGA-II 
 QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 
11 0 2.443 0.892 0.713 0.855 336  0 2.545 0.784 0.542 0.736 285 
12 0 3.210 1.234 0.521 0.591 389  0 3.185 0.513 0.636 0.815 332 
13 0 2.239 0.913 0.429 0.817 441  0 2.058 0.791 0.559 0.778 384 
14 0 2.552 0.819 0.585 0.759 492  0 2.568 0.980 0.606 0.972 435 
15 0 3.307 0.927 0.474 1.087 561  0 2.815 1.428 0.843 0.994 494 
16 0 2.582 1.097 0.560 0.861 613  0 2.419 0.834 0.608 0.865 576 
17 0 3.640 0.707 0.765 0.722 689  0 2.997 0.907 0.770 0.631 643 
18 0 2.749 0.741 0.788 0.928 764  0 3.090 0.858 0.523 0.912 711 
19 0 3.550 1.019 0.608 0.753 812  0 3.285 0.971 0.748 0.821 774 
20 0 3.584 1.143 0.698 0.765 901  0 3.432 0.922 0.631 0.878 842 

 

Table 5.9. Results of large size instances 
Problem 
No 

SGV-II  MOICA 
QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 

21 1 2.514 1.381 0.493 0.502 461  0 5.455 0.739 0.328 0.751 892 
22 1 2.471 0.946 0.447 0.505 523  0 4.892 0.831 0.611 0.873 968 
23 1 2.615 1.352 0.594 0.610 594  0 4.759 1.030 0.637 1.074 1087 
24 1 2.715 0.860 0.323 0.667 643  0 6.245 1.084 0.525 0.903 1286 
25 1 2.915 1.323 0.446 0.549 689  0 6.179 1.115 0.578 0.875 1496 
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26 1 3.165 1.549 0.413 0.457 783  0 6.219 0.976 0.468 0.785 1638 
27 1 3.421 1.664 0.698 0.727 846  0 6.328 1.022 0.935 0.716 1974 
28 1 3.619 1.696 0.367 0.531 962  0 7.762 0.888 0.385 0.923 2284 
29 1 3.762 1.501 0.486 0.576 1207  1 7.911 1.193 0.611 0.889 2541 
30 1 3.894 1.201 0.566 0.714 1319  0 8.060 1.254 0.808 0.852 2943 
 MOIWO  NSGA-II 
 QM CM DM SM MID CPU (s)  QM CM DM SM MID CPU (s) 
21 0 4.034 1.061 0.777 1.068 1108  0 4.133 0.838 0.651 0.839 986 
22 0 4.741 1.034 0.693 0.750 1197  0 4.353 0.548 0.664 0.623 1099 
23 0 5.388 0.922 0.549 0.866 1289  0 5.227 0.759 0.709 0.811 1186 
24 0 6.354 0.859 0.926 0.796 1348  0 6.197 1.058 0.696 0.710 1294 
25 0 6.598 0.927 0.678 1.173 1467  0 6.034 1.499 0.918 1.083 1387 
26 0 7.680 0.986 0.737 1.076 1593  0 6.779 0.775 0.832 1.063 1476 
27 0 7.753 0.763 0.848 0.895 1822  0 6.883 1.015 1.008 0.744 1642 
28 0 8.432 0.766 0.929 1.030 2112  0 7.545 0.823 0.753 0.921 1894 
29 0 8.271 0.869 0.814 0.963 2486  0 8.089 0.903 0.927 0.919 2341 
30 0 9.562 1.188 0.974 0.940 2843  0 8.559 1.014 0.731 1.274 2610 

 

In order to schematically show the high performance of the proposed SGV-II 

in obtaining quality solutions, the NFs of different algorithms are illustrated in 

Figures 5.11 and 5.12 for instances number 5 and 30, respectively.  

In order to study whether there is a significant difference between NF 

obtained by MOLB and NFs obtained by meta-heuristic algorithms, a paired t test is 

conducted considering CM, DM, SM and MID comparison metrics as shown in Table 

5.10. Similar analysis is conducted to compare the performance of the proposed SGV-

II approach and other meta-heuristic algorithms, as listed in Table 5.11. The results 

of Table 5.10 shows that there is no significant difference between the proposed SGV-

II and MOLB approach, while significant difference exists between other meta-

heuristic algorithms and MOLB. This means that the proposed SGV-II leads to near 

optimal solutions. On the other hand, Table 5.11 demonstrates that the proposed 

SGV-II obtains high quality non-dominated solutions compare to other meta-heuristic 

algorithms. 
 

 
Figure 5.11. NFs of different meta-heuristics fro problem number 5 
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Table 5.10. Paired t test for comparison between MOLB and meta-heuristics 

Metric Pair 

Paired Differences 

t df Sig. 
Mean Std. 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 
CM 

MOLB 

SGV-II 

0.122 0.188 0.034 0.051 0.191 3.54 

59 

.001 
DM 0.162 0.225 0.041 0.078 0.246 3.96 .003 
SM 0.028 0.148 0.027 -0.027 0.083 1.05 .002 

MID -0.012 0.159 0.029 -0.072 0.047 -0.42 .009 
CM 

MOICA 

1.581 1.322 0.241 1.087 2.074 6.54 .512 
DM -0.135 0.221 0.040 -0.218 -0.053 -3.35 .018 
SM 0.171 0.160 0.029 0.111 0.231 5.86 .673 

MID 0.220 0.195 0.036 0.147 0.293 6.17 .205 
CM 

MOIWO 

2.017 1.487 0.271 1.462 2.572 7.43 .698 
DM -0.153 0.256 0.047 -0.249 -0.057 -3.27 .003 
SM 0.282 0.229 0.042 0.197 0.368 6.76 .025 

MID 0.312 0.229 0.042 0.226 0.397 7.46 .000 
CM 

NSGA-II 

1.745 1.270 0.232 1.271 2.220 7.52 .610 
DM -0.1968 0.230 0.042 -0.283 -0.111 -4.68 .002 
SM 0.305 0.185 0.034 0.237 0.375 9.04 .093 

MID 0.304 0.220 0.040 0.221 0.386 7.55 .012 

 

 
Figure 5.12. NFs of different meta-heuristics fro problem number 30 

 
Table 5.11. Paired t test for comparison between SGV-II and meta-heuristics 

Metric Pair 

Paired Differences 

t df Sig. 
Mean Std. 

Std. 
Error 
Mean 

95% Confidence 
Interval 

Lower Upper 
CM 

SGV-II 

MOICA 

-1.459 1.407 0.257 -1.984 -0.934 -5.67 

59 

.429 
DM 0.298 0.218 0.039 0.216 0.379 7.48 .120 
SM -0.143 0.083 0.015 -0.174 -0.112 -9.43 .319 

MID -0.232 0.096 0.018 -0.268 -0.196 -13.19 .338 
CM 

MOIWO 

-1.895 1.559 0.285 -2.478 -1.314 -6.66 .643 
DM 0.316 0.281 0.051 0.211 0.421 6.14 .312 
SM -0.254 0.153 0.028 -0.311 -0.197 -9.07 .313 

MID -0.324 0.154 0.028 -0.381 -.0266 -11.55 .419 
CM 

NSGA-II 

-1.624 1.341 0.245 -2.125 -1.123 -6.63 .519 
DM 0.359 0.266 0.048 0.260 0.458 7.40 .187 
SM -0.277 0.124 0.023 -0.324 -0.231 -12.24 .418 

MID -0.316 0.160 0.029 -0.376 -0.256 -10.80 .504 

 

5.11. Case study 
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With an efficient SGV-II algorithm at hand, we are now able to solve the 

problem on the original French transportation network (FTN) to validate the 

performance of the proposed model and the solution approaches. Transportation in 

France relies on one of the densest networks in the world with 146 km of road and 

6.2 km of rail lines per 100 km2. The transportation sector includes such dynamic 

companies as the National Society of French Railways-SNCF, the state-owned 

railways operator, and Air France, the national airline. Closely allied are 

manufacturers of transport equipment and the civil engineering concerns 

responsible for constructing new infrastructure. Generally, France benefits from a 

dense and diversified transport network, limited only by its still excessive focus upon 

the capital city (Encyclopedia Britannica Online, 2015). FTN utilizes different modes 

of transportation including road, rail, air and waterways (i.e., inland and marine) 

modes. There are 1,000,960 km of roads in France, accounting for 85% of passenger 

travel. There is also a total of 64,900 kilometers of railway in France. However, the 

railway system is a small portion of total travel, accounting for less than 10% of 

passenger travel. The French natural and man-made waterways network is the 

largest in Europe extending to over 8,500 kilometers. Waterway transportation in 

France includes two main inland and marine modes of transportation. Inland mode 

has made up of 3,800 kilometers of canals and 2,900 kilometers of navigable rivers 

often to transport goods and cargos. On the other hand, France operates over 1,400 

ships. Each year, 305 million tons of goods and 15 million passengers are transported 

by sea. Besides, marine transport is responsible for 72% of France's imports and 

exports (EU transport in figures, 2014). In addition, transportation in France has had 

turnover totally equal to 103 billion € at 2010, in which the contribution of road, rail, 

air and waterway modes of transportation is equal to 56 (i.e., 54.4%), 19 (i.e., 

18.5%), 18 (i.e., 17.5%), and 10 (i.e., 9.6%) billion €, respectively (EU transport in 

figures, 2014). We use a special instance on cargo and passenger transportation 

network in France between 48 cities (see Figure 5.13). In this case, three rail, roads 

and air transportation modes have been considered. 
 

http://www.britannica.com/EBchecked/topic/551809/Societe-Nationale-des-Chemins-de-Fer-Francais-SNCF
http://www.britannica.com/EBchecked/topic/10706/Air-France
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Figure 5.13. France cities 
 

The unit transportation cost (𝑐𝑖𝑗
𝑚), fixed cost of connection links (𝐹𝐿𝑘𝑙

𝑚 ) and 

travel time (𝑡𝑖𝑗
𝑚) for both road and air modes can be calculated based on the distance 

between cities. We also considered 𝛼𝑐𝑖𝑗
𝑚 and 𝛼𝑡𝑖𝑗

𝑚  equal to 0.8 and 0.75, respectively. 

We extended the FTN dataset by defining three levels for designed capacity of the 

hub nodes (𝛤𝑘
𝑠𝑚) as: small (𝑠 = 1), medium (𝑠 = 2), and large (𝑠 = 3). Two cases 

have been also considered for the designed capacities, namely tight capacity and 

excess capacity. The designed capacity of hubs (𝛤𝑘
𝑠𝑚) for each level, designed capacity 

of connection links (𝜉�̅�𝑙
𝑚), fixed cost of locating hubs (𝐹𝐻𝑘

𝑚𝑠), unit operational cost at 

hubs (𝑜𝑐𝑘
𝑚𝑠), and service rate at hubs (𝜇𝑘

𝑚𝑠) for tight and excess levels are as Table 

5.12, where �̅� = ∑ 𝑤𝑖𝑗𝑖,𝑗>𝑖 , 𝐹𝐻̅̅ ̅̅ 𝑘 and 𝑜𝑐̅̅ ̅𝑘 are the data obtained from FTN, and m = 1, 2 

and 3 are for road, rail and air transportation modes.  

The parameters are set to lead to different system characteristics with two 

levels (i.e., tight and excess levels) and two values of P. Consequently, 4 real cases are 

investigated, namely ℙ1: (Tight capacity, 𝑃 = 5), ℙ2: (Tight capacity, 𝑃 = 6), 

ℙ3: (Excess capacity, 𝑃 = 3), and ℙ4: (Excess capacity, 𝑃 = 4). After implementing the 
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proposed model and solution approaches on the FTN data set, the results obtained by 

SGV-II algorithm have been illustrated in Figures 5.14 to 5.17 for ℙ1 to ℙ4, 

respectively. Part a of Figures 5.14 to 5.17 illustrates the NF of the corresponding 

real case. Part b shows the hubs’ structure of the extreme Pareto solution with 

minimum value of ℤ1 and maximum value of ℤ2, part c depict the hubs’ structure of a 

Pareto solution in the middle of PF, and part d shows the hubs’ structure of the 

extreme Pareto solution with minimum value of ℤ2 and maximum value of ℤ1.  

In addition, the modes of transportation utilized in each problem have been 

also provided in Figures 5.14 to 5.17 for different Pareto solutions. As shown, in 

solutions with minimum value of ℤ1 (i.e., efficient solutions), road transportation 

mode is more used than other modes due to lower utilization cost, while air mode of 

transportation is highly utilized in solutions with lower value of ℤ2 (i.e., responsive 

solutions) due to it lower transportation time and lower congestion. In addition, in 

lower cost solutions, hubs with lower capacity levels (i.e., lower costs) are located 

that leads to higher congestion as well as higher value of ℤ2. Besides, in higher cost 

solutions, hubs with higher capacity levels (i.e., higher costs) are located that leads to 

lower congestion as well as lower value of ℤ1.  

On the other hand, there are other solutions in the middle of the NF that are 

more desired for decision makers. In these solutions, rail mode of transportation is 

utilized more than other modes, while rail mode benefits from lower transportation 

time and lower congestion with medium transportation cost comparing to road and 

air modes. It can also be calculated that for efficient solutions, approximately 52%, 

41% and 7% of connection links utilize road, rail and air modes of transportation, 

respectively. Contrarily, in responsive solutions, approximately 3%, 52% and 45% of 

connection links utilize road, rail and air modes of transportation, respectively. 

Finally, in the middle solutions, approximately 16%, 60% and 14% of connection 

links utilize road, rail and air modes of transportation, respectively. It can be totally 

included that 24%, 51% and 22% of connection links in FTN database utilize road, 

rail and air modes of transportation, respectively. The higher percentage of rail 

modes refers to the efficiency of high-speed trains, called TGV in France, as well as its 

high responsiveness. 

  

 

Table 5.12. Parameters for each capacity level 
Parameter Tight capacity  Excess capacity 

Small (𝑠 = 1) Medium (𝑠 = 2) Large (𝑠 = 3)  Small (𝑠 = 1) Medium (𝑠 = 2) Large (𝑠 = 3) 

𝛤𝑘
𝑠𝑚 

1

𝑃 ×𝑚
�̅� 

𝑃 − 1

𝑃 ×𝑚
�̅� 

𝑃 + 1

𝑃 ×𝑚
�̅�  

1

𝑚
�̅� 

2

𝑚
�̅� 

3

𝑚
�̅� 

𝜉�̅�𝑙
𝑚 

𝑚 × (𝑃 − 1)

𝑃
�̅� 

𝑚 × (𝑃 − 1)

𝑃
�̅� 

𝑚 × (𝑃 − 1)

𝑃
�̅�  2𝑚�̅� 2𝑚�̅� 2𝑚�̅� 

𝐹𝐻𝑘
𝑚𝑠 𝑚𝐹𝐻̅̅ ̅̅ 𝑘 𝑚√𝑃 − 2 × 𝐹𝐻̅̅ ̅̅ 𝑘 𝑚√𝑃 × 𝐹𝐻̅̅ ̅̅ 𝑘  𝑚√𝑃 × 𝐹𝐻̅̅ ̅̅ 𝑘 𝑚√2𝑃 × 𝐹𝐻̅̅ ̅̅ 𝑘 𝑚√3𝑃 × 𝐹𝐻̅̅ ̅̅ 𝑘 

𝑜𝑐𝑘
𝑚𝑠 𝑚𝑜𝑐̅̅ ̅𝑘 𝑚√𝑃 − 2 × 𝑜𝑐̅̅ ̅𝑘 𝑚√𝑃 × 𝑜𝑐̅̅ ̅𝑘  𝑚√𝑃 × 𝑜𝑐̅̅ ̅𝑘 𝑚√2𝑃 × 𝑜𝑐̅̅ ̅𝑘 𝑚√3𝑃 × 𝑜𝑐̅̅ ̅𝑘 

𝜇𝑘
𝑚𝑠 (1 +

𝑃 − 1

2𝑚
)
�̅�

𝑃
 (1 +

𝑃

2𝑚
)
�̅�

𝑃
 (1 +

𝑃 + 1

2𝑚
)
�̅�

𝑃
  (1 +

𝑃 − 1

𝑚
)
�̅�

𝑃
 (1 +

𝑃

𝑚
)
�̅�

𝑃
 (1 +

𝑃 + 1

𝑚
)
�̅�

𝑃
 

𝑞𝑘 [0,0.20] [0,0.20] [0,0.20]  [0.20,0.5] [0.20,0.5] [0.20,0.5] 
𝜂𝑘
𝑚𝑠 [0,0.15] [0.10,0.20] [0.20,0.30]  [0,0.15] [0.10,0.20] [0.20,0.30] 
𝜗𝑘𝑙
𝑚 [0,0.20] [0.15,0.25] [0.25,0.35]  [0,0.20] [0.15,0.25] [0.25,0.35] 
𝑃 5,6 5,6 5,6  3,4 3,4 3,4 
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𝑅 4 4 4  3 3 3 
𝑓𝑘
𝑚𝑠(1 ℎ⁄ ) [0.40,0.60] [0.50,0.80] [0.70,1]  [0.80,1.20] [1.00,1.60] [1.60,2.00] 
𝑟𝑘
𝑚𝑠(1 ℎ⁄ ) [4,6] [5,8] [7,10]  [8,12] [10,16] [16,20] 
𝜃𝑘
𝑚𝑠 0.90 0.80 0.70  0.80 0.70 0.60 
𝛿𝑘𝑙
𝑚 0.80 0.70 0.60  0.70 0.60 0.50 

 

In order to show the performance of the proposed mathematical model, the 

current structure of the transportation network in France is analyzed respecting to 

ℤ1 and ℤ2 and congestion in the hubs. Figure 18 shows the current transportation 

network in France with 3 hubs at Paris, Lyon and Rennes, total cost (i.e., ℤ1) equal to 

61.4 Billion $, maximum transportation time between each pair of OD nodes (i.e., ℤ2) 

equal to 25 hours, and mean congestion at equal to 5.5, 4.8 and 3.9 hours at Paris, 

Lyon and Rennes, respectively. It is noteworthy that the congestion at hubs is 

considered equal to mean time that flows must spend to be processed, where the 

higher the congestion in hubs, the higher the waiting time that must be spent. 

According to Figure 19, the proposed mathematical model not only provides 

solutions with lower values for both objective functions, but also provides better 

balance for congestion at hubs with mean waiting times up to 3.5 hours in the most 

congested hubs.  

 

5.11.1. Sensitivity analysis 

To do the sensitivity analysis, firstly, the sensitivity of second objective 

function with changes of flow (w), designed capacity of hubs (𝛤), designed capacity of 

connection links (𝜉), service rate of hubs (𝜇), and disruption related parameters 

including failure probability of complete disruption at hubs (q), disruption rate at 

hubs (f), retrieval time rate at hubs (r), disruption probability at hubs (𝜂), capacity 

disruption factor at hub (𝜃), disruption probability at connection links (𝜗), and 

capacity disruption factor at connection links (𝛿) is investigated. Next, the sensitivity 

of the first objective function is investigated with changes of parameters including w, 

𝛤, 𝜉, q, 𝜂, 𝜃, 𝜗, and 𝛿. The results of the current network are presented in Tables 5.13 

and 5.14, respectively for second and first objective functions, in which the results 

are shown based on changes according to the base scenario. In Tables 5.13 and 5.14, 

negative values relate to decrease in the value of objective function. It should be 

noted that the best values of objective functions in ℙ2 is considered as the base 

scenario with the values equal to 45.84 (Billion €) and 8.58 (h) for ℤ1 and ℤ2, 

respectively.  
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a) PF  

   
3→5: Road; 3→24: Rail; 3→35: Road; 3→46: Road; 5→3: 
Road; 5→24: Rail; 5→35: Air; 5→46: Rail; 24→3: Rail; 
24→5: Road; 24→35: Road; 24→46: Road; 35→3: Rail; 
35→5: Air; 35→24: Rail; 35→46: Road; 46→3: Road; 
46→5: Road; 46→24: Rail; 46→35: Air 

24→29: Road; 24→30: Air; 24→35: Rail; 24→46: Road; 
29→24: Road; 29→30: Rail; 29→35: Rail; 29→46: Rail; 
30→24: Rail; 30→29: Road; 30→35: Road; 30→46: Air; 
35→24: Air; 35→29: Rail; 35→30: Rail; 35→46: Air; 
46→24: Rail; 46→29: Rail; 46→30: Air; 46→35: Air; 

24→25: Rail; 24→35: Air; 24→41: Air; 24→46: Rail; 25→24: 
Rail; 25→35: Air; 25→41: Air; 25→46: Road; 35→24: Rail; 
35→25: Air; 35→41: Rail; 35→46: Air; 41→24: Rail; 41→25: 
Air; 41→35: Rail; 41→46: Rail; 46→24: Rail; 46→25: Rail; 
46→35: Air; 46→41: Air; 

b) Network structure for Sol. A c) Network structure for Sol. B d) Network structure for Sol. C 

Figure 5.14. Results of ℙ1 
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a) PF 

   
10→24: Road; 10→27: Road; 10→30: Road; 10→35: 
Rail; 10→46: Road; 24→10: Road; 24→27: Road; 
24→30: Air; 24→35: Rail; 24→46: Rail; 27→10: Road; 
27→24: Road; 27→30: Air; 27→35: Rail; 27→46: Road; 
30→10: Road; 30→24: Rail; 30→27: Rail; 30→35: Road; 
30→46: Road; 35→10: Road; 35→24: Rail; 35→27: Rail; 
35→30: Road; 35→46: Rail; 46→10: Road; 46→24: Rail; 
46→27: Road; 46→30: Rail; 46→35: Rail; 

5→24: Rail; 5→29: Rail; 5→30: Air; 5→35: Air; 5→46: 
Road; 24→5: Rail; 24→29: Rail; 24→30: Air; 24→35: 
Rail; 24→46: Rail; 29→5: Rail; 29→24: Road; 29→30: 
Rail; 29→35: Rail; 29→46: Rail; 30→5: Air; 30→24: 
Rail; 30→29: Rail; 30→35: Rail; 30→46: Road; 35→5: 
Air; 35→24: Rail; 35→29: Rail; 35→30: Road; 35→46: 
Air; 46→5: Road; 46→24: Rail; 46→29: Rail; 46→30: 
Rail; 46→35: Air; 

24→25: Rail; 24→29: Rail; 24→30: Air; 24→35: Air; 24→46: 
Rail; 25→24: Rail; 25→29: Rail; 25→30: Air; 25→35: Air; 
25→46: Rail; 29→24: Rail; 29→25: Rail; 29→30: Rail; 29→35: 
Rail; 29→46: Rail; 30→24: Rail; 30→25: Air; 30→29: Rail; 
30→35: Rail; 30→46: Rail; 35→24: Air; 35→25: Air; 35→29: 
Rail; 35→30: Rail; 35→46: Air; 46→24: Rail; 46→25: Road; 
46→29: Rail; 46→30: Air; 46→35: Air;  

b) Network structure for Sol. A c) Network structure for Sol. B d) Network structure for Sol. C 

Figure 5.15. Results of ℙ2 
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a) PF 

   
24→30: Road; 24→35: Rail; 30→24: Rail; 30→35: Rail; 
35→24: Rail; 35→30: Road; 

24→30: Rail; 24→35: Air; 30→24: Rail; 30→35: Rail; 
35→24: Rail; 35→30: Rail; 

1→30: Air; 1→35: Air; 30→1: Rail; 30→35: Rail; 35→1: Air; 
35→30: Rail; 

b) Network structure for Sol. A c) Network structure for Sol. B d) Network structure for Sol. C 

Figure 5.16. Results of ℙ3 
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a) PF 

   
24→35: Rail; 24→46: Road; 24→47: Rail; 35→24: Road; 
35→46: Road; 35→47: Road; 46→24: Road; 46→35: 
Rail; 46→47: Rail; 47→24: Road; 47→35: Rail; 47→46: 
Road; 

24→27: Rail; 24→35: Rail; 24→41: Rail; 27→24: Rail; 
27→35: Air; 27→41: Rail; 35→24: Rail; 35→27: Air; 
35→41: Rail; 41→24: Rail; 41→27: Rail; 41→35: Road; 

24→30: Air; 24→35: Air; 24→46: Rail; 30→24: Air; 30→35: 
Rail; 30→46: Air; 35→24: Air; 35→30: Rail; 35→46: Air; 
46→24: Rail; 46→30: Air; 46→35: Air; 

b) Network structure for Sol. A c) Network structure for Sol. B d) Network structure for Sol. C 

Figure 5.17. Results of ℙ4 
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Table 5.13. Second objective function changes vs. changes in parameters 
Parameter 
Increase (%) 

Objective function value changes (%) 
w Γ ξ μ q f r η θ 𝜗 δ 

10 12 -5 -3 -6 4 8 6 5 9 3 6 
15 18 -8 -5 -10 9 13 10 9 12 6 8 
20 25 -16 -11 -18 14 18 15 14 21 11 16 
25 31 -20 -16 -28 17 23 19 19 30 15 19 
30 40 -28 -19 -34 21 28 23 25 41 19 19 
35 48 -30 -19 -42 25 36 30 32 41 24 28 
40 53 -30 -23 -45 34 41 35 32 41 27 34 
45 65 -30 -25 -49 39 49 39 39 53 27 38 
50 78 -30 -25 -53 46 58 45 42 58 35 43 
55 90 -30 -25 -57 52 64 52 42 69 35 49 
60 105 -30 -25 -60 56 72 60 50 76 42 54 

 

Table 5.14. First objective function changes vs. Changes in parameters 
Parameter 
Increase (%) 

Objective function value changes (%) 
w Γ ξ q η θ 𝜗 δ 

10 12 -5 -3 4 5 9 3 6 
15 18 -8 -5 9 9 12 6 8 
20 25 -16 -11 14 14 21 11 16 
25 31 -20 -16 17 19 30 15 19 
30 40 -28 -19 21 25 41 19 19 
35 48 -30 -19 25 32 41 24 28 
40 53 -30 -23 34 32 41 27 34 
45 65 -30 -25 39 39 53 27 38 
50 78 -30 -25 46 42 58 35 43 
55 90 -30 -25 52 42 69 35 49 
60 105 -30 -25 56 50 76 42 54 

 

Figure 20 illustrates the results of Table 13, while increase in flow (w) and 

increase in disruption probability at connection links (𝜗) have the highest and the 

lowest effect on increase of the second objective function, respectively; and increase 

in service rate of hubs (𝜇) and increase in designed capacity of connection links (𝜉) 

have the highest and the lowest effect on decrease in the second objective function.  

Figure 21 illustrates the results of Table 14, while increase in failure 

probability of complete disruption at hubs (q) and increase in disruption probability 

at connection links (𝜗) have the highest and the lowest effect on increase of the first 

objective function, respectively; and increase in designed capacity of hubs (𝛤) and 

increase in designed capacity of connection links (𝜉) have the highest and the lowest 

effect on decrease in the second objective function.  

 



Chapter V: Hub Location Problem 

 

145 
 

 

Figure 5.18. Current transportation network in France 
 

 

Figure 5.19. Current network vs. non-dominated Pareto fronts 
 

 

Figure 5.20. Increase in ℤ2 vs. Increase in parameters 
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Figure 5.21. Increase in ℤ1 vs. Increase in parameters 

 
 

 
Figure 5.22. Increase of Γ, ξ and μ vs. decrease in ℤ1 and ℤ2 

 

In Figure 5.20, since w, 𝜃, f, r, and μ have the highest effect on the second 
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importance of analyzing congestion in HLP. On the other hand and based on Figure 

5.21, since q, 𝜃, and Γ have the highest effect on the first objective function, the high 

importance of complete and partial disruption can be easily shown. Remarkably, 

analyzing congestion and considering complete and partial disruptions in the hub 

network are important issues that this thesis tried to address. 
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effect on both objective functions. Figures 5.22 and 5.23 again demonstrate the 

importance of studying disruption and congestion in HLPs.   

 

 
Figure 5.23. Increase in parameters vs. Increase in ℤ1 and ℤ2 

 

5.12. Summery 
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is categorized into domain of supply chain management (SCM) and especially 

the problems related to the production party. Another party across the supply chain 

that significantly affects the performance of the whole supply chain is distribution 

party. The main problems in distribution centers are inventory and transportation 
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objective meta-heuristic algorithm based on GA and VNS algorithm, namely SGV-II.  

The computational results generally demonstrated the importance of studying 
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networks as well as the high performance of the proposed approximated solution 
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outperforms the other well-known NSGA-II, MOIWO and MOICA algorithms 

considering QM, CM, SM, DM, and MID comparison metrics. In addition, a real 

transportation case in France was studied to demonstrate the high performance of 

the proposed model and solution approaches in handling large and real size 

instances. Finally, a numerous sensitivity analyses were done to investigate the effect 

of important parameters on the objective functions and valuable managerial insights 

were extracted. 
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6.0. Chapter purpose and outline 

In this Chapter, Section 6.1 presents a summary of the research conducted in 

this thesis. First, a general conclusion is provided based on the similarities between 

both inspection planning and hub location problems in Section 6.1.1. After the 

general conclusion, several concluding comments are also explained based on the 

proposed models and experimental results for both inspection planning and hub 

location problems in Sections 6.1.2 and 6.1.3, respectively. Finally, future research 

directions are provided in Section 6.2. 

 

6.1. Concluding comments 

 

6.1.1. General conclusion 

In this thesis, the main goal has been to provide an optimization framework 

dealing with two main parties in every supply chain, called production and 

distribution parties. It should be mentioned that this thesis is not to integrate the 

production and distribution parties in the supply chain, but it is to study the basic 

problems in each party by finding similarities between the problems and using the 

same tools and approaches to solve them.  

Accordingly, two inspection planning problem and hub location problem were 

considered from production and distribution parties, respectively. These two 

problems remarkably affects the performance of the whole supply chain as well as 

the customer satisfaction. That is, inspection planning directly deals with the quality 

of the products which might be the most important factor for the customers; and hub 

location problem relates to transportation activities and delivery service 

requirements which are also important factors for both the customers and 

companies.  

As mentioned before in Section 3.5 (see Table 3.2), there are several 

similarities between the inspection planning and the hub location problems 

corresponding to the formulation techniques as well as similar uncertainties and 

solution approaches. In the both problems, we considered the same objective 

functions for minimizing total cost and maximizing customer satisfaction. Regarding 

to the formulations, we made location, allocation and selection decisions. In the 

inspection planning problem, we located the inspection stations, allocate the quality 

characteristics to the located stations and select the machines and inspection tools to 

perform the production and inspection tasks. On the other hand and in hub location 

problem, we made decision regarding to the locating the hub nodes, allocating the 

spokes to the located hubs and select the transportation modes in the network. 
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In both problems, we considered the capacity on the components of the 

problem such as production machines and inspection tools as well as hub facilities 

and connection links. Disruption and congestion were taken into account in both 

problems and similar queuing systems were applied to model the congestion. In 

order to provide more applicable models, the effect of uncertainty of the parameters 

on the models and solutions was investigated in the both problems and we tried to 

provide robust models and solutions. Finally, similar solution approaches such as 

meta-heuristic algorithms were employed to solve the large-sized problems. 

In the following, some of the main concluding remarks are presented for both 

the inspection planning and hub location problems. 

 

 Fixed and variable costs should be considered in the cost objective functions 

while the sum of them provide better estimation of the total cost of the 

problem. 

 Total manufacturing and transportation costs are in conflict with customer 

satisfaction, wherein minimum total cost increases the efficiency of the 

solution but decreases the effectiveness. By other words, minimum total cost 

leads to lower quality in the inspection problem as well as longer delivery 

time in the transportation network. 

 In the both problems, it was concluded that by only a little increase in the cost, 

a huge improvement is obtained in the customer satisfaction. 

 Regarding to the location decision, it was concluded that by locating higher 

numbers of inspection station or hub facilities, customer satisfaction is 

increased. For instance, higher numbers of inspections lead to higher quality 

and higher numbers of hubs lead to lower delivery time. 

 Decisions regarding to how to inspect or how to transport significantly affect 

the customer satisfaction. These decisions not only affect the congestion, but 

also impact the quality of the products or the delivery service requirements. 

 It was concluded that the capacity of the inspection tools or hub facilities 

remarkably impact the solution structure as well as objective function values. 

Where, higher capacity increases the total cost but decreases the congestion 

of the flows of the products or shipments in the inspection planning and the 

hub location problems, respectively. These results highlight the importance of 

capacity planning problems in the supply chain, wherein, the decision makers 

should determine an efficient level of capacity in order to make a trade-off 

between cost and customer satisfaction. 

 One important result was the effect of uncertainty on the solutions and the 

objective functions. Generally, uncertainty increases the objective functions 

and impact the structure of the solutions. As an important result, the 

uncertainty of those parameters that directly affects the performance of the 

solution (e.g., misadjustment in inspection planning and disruption factors in 

hub location problem) have more impact on the solutions. On the other hand, 
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some parameters like cost and time usually increase the objective functions 

values and not the structure of the solutions, while the parameters like 

misadjustment and disruptions factor not only affect the objective function 

(Objective uncertainty) but also impact the solution structure (Model 

uncertainty). Therefore, we can conclude that parameters can be divided into 

two category as performance parameters and objective parameters. 

Performance parameters (e.g., misadjustment and disruptions factor) leads to 

both objective and model uncertainties, while objective parameters (e.g., cost 

and time) only lead to objective uncertainty. 

 In the both inspection planning and hub location problems, disruptions 

significantly affect both objective function values and solution structures. In 

the both problems, higher customer satisfaction is achieved by more reliable 

solutions. Reliable solution in inspection planning is the solution that has 

considered the inspection tools and machine with lower disruption factor as 

well as lower retrieve time. In the hub location problem, spokes are more 

likely to be assigned by hubs with lower probability of disruption to provide 

more reliable solution. 

 

In the next two Sections 6.1.2 and 6.1.3, the detail conclusions are provided 

for inspection planning problem and hub location problem, respectively. 

 

6.1.2. Inspection planning problem 

Recently, the egregious importance of total quality management has been 

completely clarified to all industries. In order to maintain profitable and stay in a 

competitive edge, reaching to high quality level of products, processes and services 

has been nowadays a vital issue in many organizations, while they cannot survive 

without providing high quality products. For this aim, manufacturers are applying a 

variety of tools to improve the quality throughout the production process such as Six 

Sigma, statistical process control (SPC), process improvement, inspection, robust 

design, etc. 

In this thesis, we focused on a specific tool for achieving high manufacturing 

quality as quality inspections and providing effective inspection planning. Inspection 

the quality of products to remove nonconforming items before delivering to the 

customers is comprehensively performed in every production system, in which the 

quality characteristics of a product are evaluated possibly at several stages in its 

production process.  

Through this research, three main simultaneous decisions in an inspection 

planning problem in a multi-stage production system (MPS) were: (i) which quality 

characteristics need to be inspected, (ii) what type of inspection should be 

considered for the selected quality characteristics, and (iii) where these inspections 

should be performed. These decisions are made to reach different objectives such as 

minimum manufacturing cost, maximum customer satisfaction as well as minimum 

manufacturing time. 
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For this aim, this thesis modeled the inspection planning problem through a 

main and an extended problems. The Main Problem was a single-objective inspection 

planning model to determine which quality characteristics need what kind of 

inspection and where these inspections should be performed throughout the 

manufacturing process in order to minimize total cost of manufacturing.  

On the other hand, the Extended Problem is a generalized version of the Main 

Problem and was proposed as a multi-objective inspection planning model to 

determine which quality characteristics need what kind of inspection and where 

these inspections should be performed through a multi-product multi-stage 

production system. In such system, the products has their own quality characteristics 

and manufacturing stages. In the Extended Problem, other decisions regarding the 

machine and inspection tools selection are also taken into account. The objectives of 

the Extended Problem were minimizing total manufacturing cost, minimizing total 

warranty cost as well as minimizing the maximum manufacturing time of each 

product. It was also considered that the manufacturing time of each product is the 

sum of production time and waiting time. The waiting time is the time that products 

must spend to receive services at the machines and inspection tools. 

In addition, it was assumed that the machines and inspection tools are 

unreliable and are subject to breakdown. These breakdowns occur stochastically and 

a retrieve time is required to return the machines and inspection tools to their 

functioning situations. These factors affect total manufacturing time of each product.  

Besides to inspection planning decisions, it was considered that input 

parameters such as misadjustment and dispersion of the processes, production time, 

inspection time, errors type I and II, capacity, breakdown rate and retrieve time are 

uncertain and the effect of uncertainty on the inspection plans were investigated in 

this thesis. For this goal, a robust optimization technique was applied to find the less 

sensitive plan to the variations. Finally, to solve the proposed Main and Extended 

models, to well-known genetic and differential evolution algorithms were developed.  

After solving the Main and the Extended Problems, the following concluding 

remarks were elaborated: 

 

 Main Problem: 

 Under any inspection strategy (i.e., MI-or-CI and MI-and-CI), operations with 

lower process capability (i.e., CP) as well as higher failure rate are more likely 

to go under conformity inspection. 

 Under any inspection strategy (i.e., MI-or-CI and MI-and-CI), operations with 

higher process capability (i.e., CP) as well as lower failure rate are more likely 

to go under no or at most monitoring inspection. 

 MI-or-CI strategy is more responsive; however, the MI-and-CI strategy is more 

efficient.  

 Under the MI-or-CI strategy, the worst cases in terms of responsiveness and 

efficiency belong to situations with no uncertainty and uncertainty in all 

parameters, respectively.  
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 Under the MI-and-CI strategy, the worst cases in terms of responsiveness and 

efficiency belong to situations with uncertainty in both misadjustment and 

dispersion and uncertainty in all parameters, respectively. 

 As a general conclusion, providing robust inspection plan needs to spend 

more cost. This cost would be the robustness cost. Cost of robustness is 

around 24% of the total cost for both inspection strategies. 

 Among different parameters, misadjustment has significant effect on the 

inspection plan and needs to be precisely determined and its variation should 

be decreased and controlled as much as possible. 

 Despite of misadjustment, separate variation in errors type I and II and 

dispersion have a little impact on the total cost. However, variation in error 

type I has higher effect on the total cost as well as final inspection plan. 

 The MI-and-CI strategy is more sensitive to parameters’ variation comparing 

to the MI-or-CI strategy. Therefore, it could be concluded that MI-or-CI is 

more robust. 

 Extra 1.340€ and 1.341€ (per part) are needed to be spent under MI-or-CI 

and MI-and-CI strategies, respectively, when all parameters are uncertain and 

we try to design a robust inspection plan. 

 The value of misadjustment can be increased up to 0.25σ with no increase in 

robustness cost. In addition, dispersion can be increased up to 0.1 with no 

increase in the total cost. 

 

 Extended Problem: 

 Customer satisfaction can be increased indirectly by decreasing the warranty 

cost. 

 Manufacturing cost and warranty costs are in conflict in terms of the total 

inspection cost. 

 Solutions with lower values of the manufacturing cost (or higher values of 

warranty cost) correspond to those plans with lower number of inspections as 

well as higher number of nonconforming products that reach the customers. 

These inspection plans are more efficient from the manufacturer’s point of 

view. 

 Solutions with lower values of the warranty cost (or higher values of 

manufacturing cost) correspond to those plans with higher number of 

inspections as well as lower number of nonconforming products that reach 

the customers. These inspection plans are more responsive from the 

customer’s point of view. 

 Variation of misadjustment and dispersion have the highest effect on the both 

objective functions, wherein misadjustment has higher effect on the objective 

function 1 (i.e., total manufacturing cost) rather than objective function 2 (i.e., 

total warranty cost) and vice versa for dispersion.  
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 Companies who eager to minimize manufacturing cost should determine exact 

value for misadjustment and try to omit variation in it as much as possible.  

 Companies who attempt to keep their customers satisfied should control both 

misadjustment and dispersion and determine exact value for them in their 

plans. 

 The objective function values are increased by proposing the robust solutions 

and making the inspection plans robust.  

 After providing the robust inspection plans, the first, second, and third 

objective functions are increased by 8%, 12%, and 8%, respectively. These 

values show that the second objective function is more sensitive to the 

uncertainty of the parameters. 

 Machines and inspection tools allocation significantly affect the total cost as 

well as final inspection plans. 

 Inspections of those quality characteristics that their corresponding 

operations are performed on the machines with lower capability are 

performed by inspection tools with higher capability and lower values of 

errors type I and II. 

 Breakdown rate and retrieve time of the machines and the inspection tools 

significantly affect the third objective function (i.e., maximum manufacturing 

time of the products). 

 Although all the objective functions are increased once the misadjustment is 

increased, but the second objective function is more sensitive to the 

misadjustment variation, while the third objective function is less sensitive to 

the misadjustment variation. 

 All the objective functions are increased once the dispersion is increased, 

wherein the highest and lowest sensitivities belong to the second and the 

third objective functions. These results also impose more attention to the 

uncertainty of the dispersion and the need to control this variation. 

 Increasing the capacity of machines and inspection tools increases the first 

objective function, while decreases the second and the third objectives.  

 The third objective function is more sensitive to the capacity of the machines 

and the inspection tools. This sensitivity is due to the effect of the waiting time 

on the total manufacturing time. By the other words, increasing the capacity 

as well as increasing the service rate of machines and inspection tools will 

definitively lead to lower waiting time and lower total manufacturing time.  

 Increase in the production time only increases the value of the first and the 

third objective functions. 

 By considering the direct dependency between the purchase cost of the 

machines and the inspection tools and the value of the service rates (i.e., 

higher service rate leads to higher purchasing cost), the first and the third 

objectives are the only objectives that are sensitive to the variation of the 

service rates, wherein the third objective is more sensitive to this variation. 
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 Increase in the inspection rate leads to decrease in the third objective 

comparing to the first objective, while increase in the inspection rate not only 

decreases the total inspection time, but also decreases the total waiting time 

of the products. Therefore, the variation of the inspection rate mainly affects 

the third objective. 

 Once the breakdown rate is increased (retrieve time is fixed), the total 

manufacturing time (i.e., third objective function) is increased. It is 

noteworthy that increase in breakdown rate directly increases the waiting 

time of the products. 

 The first objective function is affected by the uncertainty in almost all 

parameters except error type II, wherein the most effective parameters are 

misadjustment, production time and production rate.  

 The second objective function is affected by the uncertainty in only 

misadjustment, dispersion and errors type I and II, in which, the most 

effective parameters are misadjustment and dispersion.  

 Similar to the first objective function, the third objective function is affected 

by the uncertainty in almost all parameters except capacity wherein the most 

effective parameters are inspection rate, production rate and retrieve time. 

 As an important result, parameters that affect the value of the objective 

functions may have no effect on the structure of the inspection plans. 

Therefore, variation in these parameters could be neglected. 

 Those parameters that significantly affect the objective functions value are 

misadjustment, production time and rate, inspection rate, capacity and 

dispersion. But among these parameters, the only parameters that affect the 

structure of the solutions as well as inspection plans are misadjustment, 

dispersion, error type I, capacity, breakdown rate, and retrieve time.    

 

6.1.3. Hub Location problem 

The studied inspection planning problem in this thesis is categorized into 

domain of supply chain management (SCM) and especially the problems related to 

the production party. The production party is involved into all problems regarding to 

the production. Another party in the supply chain that significantly affects the 

performance of the whole supply chain is distribution party. The main problems in 

distribution centers are inventory and transportation related problem.  

The domain of transportation problems was selected to apply the the same 

assumptions and considerations like inspection planning problem. Among different 

transportation related problems, Hub Location Problem (HLP) has been selected to 

be studied.  

HLPs have been involved in network design planning in transportation, 

telecommunication, and computer systems, where hub-and-spoke topologies are 

applied to efficiently route shipments between many origin and destination (O-D) 

nodes through intermediate nodes, called hubs. Hub nodes are consolidation, 
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switching, or transshipment facilities to connect a large number of O-D pairs by using 

a small number of links. Fewer links not only simplify the network structure but also 

transfer large amounts of flow on interhub links, enabling economies of scale and 

reducing set-up and operational costs. Hub location models typically try to determine 

where to locate the hubs among a set of candidate sites and how to allocate spokes to 

the hubs, so that the total cost can be minimized or the total profit can be maximized. 

In this thesis, the underlying concern was that hub transportation networks 

are greatly vulnerable to uncertainties caused by natural disasters, terrorist attacks, 

or man-made deficiencies. In this thesis, we focused on the reliability issues of hubs 

and links uncertainties. We investigated the effect of these uncertainties on the hub-

and-spoke topology and ability of the network to meet delivery requirements of the 

shipments through a new bi-objective mathematical model where the hub-side and 

link uncertainties were modeled independently. The proposed model was clearly NP-

hard and consequently we proposed an efficient approximation approach to provide 

lower bound for the optimal Pareto-frontier of the model. We also developed a 

hybrid self-adaptive multi-objective meta-heuristic algorithm based on GA and VNS 

algorithm, namely SGV-II.  

The computational results generally demonstrated the importance of studying 

and considering hub-side uncertainty and link uncertainty in designing hub location 

networks as well as the high performance of the proposed approximated solution 

approach and meta-heuristic algorithm. Through benchmarking with the 

approximated non-dominated lower bound, the proposed SGV-II strongly 

outperforms the other well-known NSGA-II, MOIWO and MOICA algorithms 

considering QM, CM, SM, DM, and MID comparison metrics. In addition, a real 

transportation case in France was studied to demonstrate the high performance of 

the proposed model and solution approaches in handling large and real size 

instances. Finally, a numerous sensitivity analyses were done to investigate the effect 

of important parameters on the objective functions and valuable managerial insights 

were extracted. 

To the best of our knowledge, our effort is the first to present bi-objective 

reliable capacitated HLP with hub and link uncertainties as well as approximation 

algorithm and lower bound approach for a bi-objective mathematical model. It is our 

hope that this study could inspire additional in-depth research and discussions on 

this topic.  

Finally, our results lead us to these conclusions: 

 In the cases of dominant transportation costs, total costs decrease as the 

number of hubs increases. This is because adding another hub provides more 

flow routing options. It is also observed that adding one hub reduces total 

costs because an extra open hub reduces the overall congestion. However, in 

the case of dominant fixed costs, the total cost increases as the number of hub 

increases. It seems that the reduction in transportation and congestion costs 

achieved by adding an extra hub is less than its fixed cost. In this research, due 
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to dominant congestion and transportation cost, adding an extra hub to the 

network is recommended. 

 The amount of flow plays a significant role in network performance. Increase 

in flow will highly increase total costs as well as congestion at hubs and 

connection links. Congestion at the network significantly affects delivery 

requirement of the companies. Accordingly, the amount of flows should be 

accurately determined or estimated. 

 Considering a major part of travel time is due to waiting time at hubs, 

disruptions at hubs has higher effect on the travel time than disruptions at 

connection links. On the other hand, locating hubs with higher service rates 

significantly decreases travel time and congestion at the network. 

Accordingly, locating extra hubs is recommended to significantly decrease the 

travel time. 

 When a hub node is completely disrupted, that hub becomes unavailable and 

spokes originally allocated to it have to be re-allocated to other (operational) 

hub nodes that usually require higher re-allocation cost. Accordingly, 

complete disruption at hubs contributes to a major part of total cost in case of 

dominate re-allocation cost. In the studied France transportation network, it 

was shown that re-allocation costs dominate other costs. Therefore, locating 

hubs at nodes with lower probability of disruption is recommended for the 

France transportation network. 

 In the studied France transportation network, the rail mode has been widely 

used through the network and railways have been mostly allocated to hub 

nodes with lower disruption probability. This issue is due to high cost of re-

allocation. 

 In case of lower costs for higher capacity levels, the capacity of hubs plays an 

important role in delivery service requirements. By selecting higher capacity 

hubs, total delivery times are significantly decreased, due to reduction in 

congestion. In the studied France transportation network, due to high cost of 

higher capacity, locating hubs with low and medium capacity is 

recommended. 

 If a hub is more likely to be disrupted, fewer spokes should be allocated to this 

hub. If a hub is disrupted too often, then it will be closed frequently, and the 

spokes originally served by the hub will be re-allocated to other open hubs, 

hence, increasing the cost.  

 If retrieval process of a hub is slow, fewer spokes should be allocated to this 

hub. Therefore, hubs are more likely to be located at sites with quick retrieval, 

and spokes are more likely to be served by hubs with lower retrieval time. 

 Significant cost savings may be realized if disruptions are considered during 

the hub network design phase, especially if the hubs or connection links are 

often unavailable. 
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6.2. Future research directions 

In this section, some directions for the future research of the inspection 

planning problem is provided as follows:  

 

 Integrating inspection planning problem with production and capacity 

planning problems in order to provide more comprehensive model. 

 Considering rework and repair activities for the nonconforming parts. 

 Considering priority for the parts in both machining and inspection tasks and 

using multi-priority queuing systems to analyze the congestion and to 

calculate the waiting time of different parts. 

 Employing other evolutionary algorithms to solve the model. 
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A1.0. Appendix purpose and outline 

This appendix reviews more paper in the category of simultaneous 

optimization in Chapter 2. More papers have been reviewed in Section A1.1.  

 

A1.1. Literature Review: Simultaneous optimization 

Tannock (1995, 1997) proposed a simulation approach to the investigation of 

control chart economics in a single-stage production system to provide guidance on 

chart design issues such as sample size, sampling interval and the use of alternative 

chart alarm rules. These studies compared the cost of different inspection strategies 

(i.e., no inspection, full inspection, sampling inspection) based on simulated quality 

data for different values of production capabilities, Cp and Cpk). They emphasized the 

importance of process capability in the choice of quality control strategy and 

demonstrated the economic advantages of control charting where special or 

assignable causes exist.  

Lee and Unnikrishnan (1998) developed a mathematical model for solving the 

inspection allocation and assignment problems in a multistage manufacturing 

system, in which part types are processed with distinctive machine visitation 

sequences and inspections can be performed on one of the several inspection 

stations with possible inspection errors. The authors take into account different costs 

to be minimized including manufacturing, inspection, internal and external failure 

costs. In order to solve large size instances, they developed three heuristic solution 

methods, namely sequential plan selection method (SPS), time constraint solution 

method (TCS), and manufacturing cost and nonconforming probability selection 

method (CNS). These algorithms were effective in obtaining near optimal solutions 

with considerable savings in computational effort when compared with the 

optimization method based on complete enumeration. They finally compared the 

heuristics using simulated data for a production system with six manufacturing 

stages, three inspection stations and four part types. The TCS method completely 

outperformed SPS and CNS in terms of near optimality of the solutions as well as 

required computational time.  

Chen (1999) applied two approaches to analyze the optimal inspection plan 

for a multistage assembly process. This thesis mainly focused on how to choose an 

inspection plan to remove the most variation at the lowest cost, in which the optimal 

inspection plan balances the cost of inspection and rework against the cost of 

increased quality. This thesis describes an empirical analysis and prototype software 

that employs Monte Carlo simulation and simulated annealing to identify the optimal 

inspection plan. The authors used Monte Carlo technique to predict the expected 

inspection plan cost and applied simulated annealing to simultaneously find the 
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optimal allocation of inspection stations, inspection limits and whether the products 

need rework or should be scrapped. An aircraft wing case was studied to test the 

performance of the proposed model. Chen (1999) finally reported that a quantitative 

inspection plan can be successfully developed by applying the proposed approach. 

Hassan and Pham (2000) employed the simulated annealing algorithm to 

solve the problem of inspection planning in MPSs. The authors proposed a cost 

function based on the work of Raz and Kapsi (1991) and used simulated annealing 

algorithm to solve it. They also described the representation of the solutions in a 

binary form, the re-configuration mechanism, and the evaluation of the objective 

functions based on empirically found cooling schedule. Finally the results of 

optimization experiments were presented and compared to those obtained by 

Branch and Bound technique found earlier in the literature. They concluded that the 

cooling schedule was the most significant factor affecting the quality of the solutions. 

Rabinowitz and Yahalom (2001) studied the problem of determining the 

inspection capacity, frequency of inspecting each attribute and inspection schedule in 

a production system. Based on a tradeoff between the cost of inspectors and the loss 

associated with reaching of nonconforming items to the customers, the authors 

introduced, analyzed and solved three models. In the first model, they assumed that 

inspection and restoration are perfect, product attribute is up (down) when the 

system attribute is up (down), and restoration is immediate. The assumptions of 

perfect inspection and restoration and the assumption of immediate restoration 

were relaxed in the second and third models, respectively. The authors provided an 

efficient heuristic method to solve these models and analyzed the sensitivity of the 

solution to system parameters. Based on several numerical experiments, they 

concluded that process imperfection had the most effect on the inspection plan. The 

negative effect of inspection duration on inspection plan was also reported when this 

duration contributed the major portion of manufacturing duration. 

Opperman et al. (2003) attempted to propose an inspection process for a 

surface mount technology (SMT) production line with the objective of minimizing 

quality cost in the production system. They described quality cost models to compare 

the quality behaviors of different technological processes and of different inspection 

strategies (no inspection, full inspection, and statistical process control (SPC)). The 

quality costs in their models are the costs of "measurement system" to compare the 

different inspection strategies with each other, in which the costs are calculated by 

the use of mathematical models. Finally, the authors suggested dynamic 

programming as a possible solution approach. 

Given a fixed sequence of unreliable inspection operations with known costs 

and type I and type II inspection errors probabilities, Avinadav and Raz (2003) 

developed a model for selecting the set of inspections in order to minimize expected 

total sum of inspection and penalty costs. For optimally solve the model, the authors 

presented a branch and bound algorithm combined by two greedy heuristics to 

obtain good solutions at a O(n2) computational complexity.  
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Kakade et al. (2004) proposed an optimization model for allocating inspection 

efforts at each stage in a serial multistage assembly line producing printed circuit 

board (PCBs) using surface mount technology. Their model explicitly considered the 

economic tradeoff between product yield and inspection accuracy. The proposed cost 

function included costs of inspection, rework and penalty cost. This research also 

showed that the use of simulated annealing algorithm combined by branch-and-

bound was effective and efficient for solving the inspection allocation model. In order 

to evaluate the performance of the proposed heuristic, problem instances were 

developed using real production and visual inspection data provided by a local high-

volume electronics manufacturer. They finally reported that the proposed heuristic 

significantly outperformed simple simulated annealing algorithm, while the 

proposed heuristic was able to obtain near optimal solutions for small and medium 

size instances. 

Rau and Chu (2005) considered inspection allocation problems for an MPS 

with two types of workstations, workstation of attribute data (WAD) and 

workstation of variable data (WVD). The authors also considered three possibilities 

for the treatment of detected nonconforming items as repair, rework and scrap. 

Assuming these considerations, a profit model, involving processing, inspection, 

rework, repair, scrap, and penalty costs, was developed for optimally allocating 

inspection stations. In order to solve the model, a heuristic solution method was 

developed based on those of Peters and Williams (1984) and it was proved to have 

much less computation time, compared with an optimization method based on 

complete enumeration, especially as the number of workstations increases.  

As an extension of the work previously done by Rau and Chu (2005), Rau et al. 

(2005) developed a mathematical model considering layered fabrication to find the 

optimal solution for allocating inspections in re-entrant production systems, in 

which, workstations of variables data is only considered. In addition, this research 

assumed three repair, rework and scrap possibilities for the treatment of detected 

non-conforming items. Moreover, a heuristic algorithm was proposed based on those 

of Peters and Williams (1984) in order to improve the optimization method 

comparing to complete enumeration method, which suffers from a large amount of 

computation time, especially as the number of workstations increases. The authors 

concluded that the proposed mathematical model was highly extensible and 

applicable, so it could serve as a production-planning tool to solve the inspection 

allocation problem in re-entrant production systems. 

Penn and Raviv (2007) studied unreliable serial production lines with known 

failure probabilities for each operation. The aim was to decide on the allocation of the 

quality control stations (QCSs) within the assembly line, so as to maximize the 

expected profit of the system. The authors tried to determine the QCS configuration 

and the production rate simultaneously. For this aim, the authors developed a cost 

minimization model under specific assumptions and included the holding costs in the 

objective function by assuming exponentially distributed processing times, Poisson 

arrival process of jobs into the system. The novel feature of their model was to 
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incorporate holding costs in the model. In order to solve the cost minimization 

problem, the authors developed an O(N2) time dynamic programming algorithm by 

considering exponential and Poisson distributions for processing time and jobs 

arrival, respectively, where N stands for the number of operations. On the other hand 

and under the same assumption, an O(N4) time branch-and-bound algorithm was 

developed for the profit maximization model. The performance of the developed 

algorithms was tested on the several numerical experiments. Finally, the efficiency 

and applicability of these algorithms in wide range of manufacturing environment 

were reported.  

Vaghefi and Sarhangian (2009) developed a new mathematical model to 

optimize inspection plans by minimizing total inspection cost for a MPS with possible 

misclassification errors. Due to the complexity of the proposed mathematical model, 

the authors proposed a simulation algorithm to model the MPS subject to inspection 

and to estimate the resulting inspection costs. They used the popular Arena 

simulation software to implement the simulation algorithm and then they utilized 

OptQuest, Arena’s builtin optimization package, to find the optimal inspection plan.  

Rau and Cho (2011) used the particle swarm optimization (PSO) method for 

solving the inspection allocation problem in reentrant production systems. The 

authors added new features to the original PSO to escape from local optimums. For 

this aim, they considered the mutation scheme borrowed from the genetic algorithm 

(GA) method for searching the position of optimal fitness function value from each 

particle. A comparison between the original PSO and PSO with mutation was made in 

terms of solution performance. In addition, the authors compared the proposed 

method with the GA method discussed in the literature for the inspection allocation 

problem in reentrant production systems. The authors finally concluded that the 

proposed PSO method almost could find the optimal solution, and its execution time 

was less than that of the GA method. 

Azadeh and Sangari (2010) studied optimization of inspection strategies in a 

serial multistage process. The authors developed a solution algorithm using a 

metaheuristic method, i.e., simulated annealing, to find the optimal inspection 

strategy for a serial multistage process by making decisions regarding the allocation 

of inspection stations, the acceptance limits and the extent of inspection. The 

objective of the model was minimizing the total inspection cost. They illustrated the 

practicality of the proposed solution algorithm through a numerical example.  

In a similar work to Azadeh and Sangari (2010), Azadeh et al. (2012) 

proposed a particle swarm optimization (PSO) algorithm to determine the optimal 

inspection policy in serial MPS. The policy consisted of three decision parameters to 

be optimized; i.e. the stages in which inspection occurs, tolerance of inspection, and 

size of sample to inspect. The authors considered total inspection cost as the 

performance measure of the algorithm. A numerical example was investigated in two 

phases, i.e. fixed sample size and sample size as a decision parameter, to ensure the 

practicality and validity of the proposed PSO algorithm. It was shown that PSO gives 

better results in comparison with two other algorithms proposed by earlier works. 
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As an extension of Azadeh et al. (2012), Azadeh et al. (2014) addressed the 

problem of finding optimal inspection policies in serial MPS to minimize total 

inspection cost where the cost components were described by the use of fuzzy 

numbers. The authors made decision on the type of inspection in each stage, the 

acceptance limits, and the size of sample to be inspected. They assumed that 

inspectors are not error-free. In order to optimally solve the model, a solution 

algorithm was proposed based on particle swarm optimization, and simulation. The 

authors reported the applicability and efficiency of the proposed approach by several 

numerical experiments. 
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A2.0. Appendix purpose and outline 

This appendix provides general and comprehensive explanations regarding to 

errors type I and II.  

 

A2.1. Errors Type I & II 

During a hypothesis test, two types of errors are possibly occurred as errors 

type I and type II. The level of significance and the power for the test determine the 

errors, while these errors are inversely related. These errors are unavoidable since a 

hypothesis test is not 100% certain, when the test is based on probabilities and there 

is always a possibility for incorrect conclusions (Sarkar and Saren, 2016; Duffuaa and 

El-Gaaly, 2015; Lin et al., 2011). Table A2.1 shows the situations that errors type I 

and II occur. 

 

 Type I error 

When the null hypothesis is true and we reject it, we make a type I error. More 

generally, a Type I error occurs when a significance test results in the rejection of a 

true null hypothesis. The probability of making a type I error is α, which is the level 

of significance you set for your hypothesis test. For example, an α equal to 0.05 

indicates that there is a 5% chance to wrongly reject the null hypothesis. The lower 

the value for α, the lower the value of this risk. On the other hand, setting lower 

values for α means that we will be less likely to detect a true difference if one really 

exists. 

Here, we provide more precise definition for value of α. The above definition 

might be incorrect and it is more valid to say that α is the probability of a type I error 

given that the null hypothesis is true. If the null hypothesis is false, then it is 

impossible to make a type I error. 

 

 Type II error 

Despite of error type I, error type II corresponds to a situation when the null 

hypothesis is false and we fail to reject it. The probability of making a type II error is 

β that depends on the power of the test. Ensuring that the test has enough power will 

decrease the risk of making a type II error. The power of a test is increased by 

ensuring that the sample size is large enough to detect a practical difference when 

one truly exists. The power of a test is shown as 1–β that is the probability of 

rejecting the null hypothesis when it is false. 
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Table A2.1. Errors type I and II 

Decision Null Hypothesis 
True False 

Accept Correct Decision (probability = 1-α) Type II Error - fail to reject the null 
when it is false (probability = β) 

Reject Type I Error - rejecting the null when 
it is true (probability = α) 

Correct Decision (probability = 1-β) 
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A3.0. Appendix purpose and outline 

The main goal of this Appendix is to explain the solution methods that are based 

on genetic algorithm (GA) and differential evolution (DE) algorithm to solve the Main 

Problem and the Extended Problem, respectively. After a general introduction in 

Section A3.1, proposed genetic algorithm is described in detail through Sections A3.2 

and A3.3 including basic concepts of GA and Ga’s operators. Section A3.4 provides 

explanations about multi-objective optimization and Pareto optimality. Furthermore, 

Sections A3.5 to A3.7 explain DE algorithm, solution representation for Extended 

Problem, and DE’s operators.  

 

A3.1. Introduction 

In order to solve the proposed inspection models with stochastic complexity, 

the solution algorithm must be capable of obtaining the optimal or near optimal 

solution within the reasonable time. There are several methods in the literature such 

as simplex and dynamic programming based optimization algorithms for providing an 

optimal solution for small size problems (Taha 2006; Shukla et al., 2013). However, 

most of the real world problems have large sizes and solving them by mathematical 

programming approaches takes considerable computational time. Therefore, to cope 

with this challenging issue, well-known evolutionary algorithms, namely genetic 

algorithm (GA) and differential evolution (DE) algorithm are proposed in this chapter 

to solve the Main Problem and Extended Problem, respectively. It has been shown that 

evolutionary algorithms such as genetic algorithms (Holland, 1975) or evolution 

strategies (Back et al., 1991) are efficient and robust approaches to solve a wide range 

of optimization problems. Application of these algorithms in the area of inspection 

planning and allocation can be found in Hanne and Nickel (2005), Shiau (2003b), Alam 

et al. (2033) and Shiau et al. (2007). 

 

A3.2. Genetic Algorithm (GA) 

The principles of genetic algorithm are well known. GA is an adaptive heuristic 

search method based on population genetics and Darwin’s theory of natural selection. 

Holland (1975) first proposed the basic concepts and De Jong (1975) and Goldberg 

(1989) first applied these concepts for solving complex optimization problems. The 

first step in any GA is representing solutions or population members. Typically, this 

representation is done in a form of a string or chromosome (see Section 4.1.1). Each 

bit of this string is referred to a gene. Both binary and non-binary representations have 

been favored by many GA researchers (Bean, 1994). 

The implementation of a GA starts with initializing a population (i.e., the first 

generation) of chromosomes, which is described in Section A3.3. The number of 
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individuals in the population is referred to an integer value as Pop_Size. Next, the 

fitness value of the individuals of the initial population is determined. After that, the 

population undergoes specific operators to reproduce new individuals wherein more 

chances are given to find better solutions regarding the fitness function value. Next 

generation is formed by three operators, namely elitism, crossover and mutation 

operators. In elitism operator, a number of best individuals (i.e., Elit_P) in terms of 

fitness function value are transferred directly to the next generation. By this method, 

individuals with relatively good fitness levels are more likely to survive and reproduce, 

with the expectation that fitness levels throughout the population will improve as it 

evolves. 

A number of the next generation individuals is reproduced by crossover 

operator (i.e., Cross_P), in which, a pair of individuals (parents) are selected to create 

two new (child) individuals. Subsequently, the mutation operator is applied to the 

genotypes of some of the current individuals or the newly reproduced children (i.e., 

Mutate_P). After computing the fitness of each child individual, if the children are 

better than their corresponding parents in the population, the parents in the 

population are replaced by the new reproduced children. Doing so, we obtain the next 

generation to which we again apply the elitism, crossover and mutation operators. 

This process is repeated for a pre-specified number of generations (or iteration) which 

is denoted as Max_Itr. This process is illustrated in Figure A3.1. 

 

 
Figure A3.1. Genetic algorithm flowchart 

 

Generally, the implementation of the genetic algorithms is independent of the 

problems to which they are applied. Although the genetic operators are heuristics and 

Start

Initialize Population

Calculate Fitness Function

Select Parents for Mating

Cross the Parents & Reproduce the Children

Mutate the Children 

Create Next Generation  

Is Termination True?

No

Finish
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they are commonly expected to operate in the space defined by the problem itself, but 

genetic operators typically operate in the space defined by the actual representation 

of a solution (i.e., solution representation). In addition, other operators of any genetic 

algorithm are heuristic including an operator to select the parents that will mate 

(selection operator), and an operator to determine which individuals will survive to 

the next generation (replacement operator). The GAs’ operators are some 

representation-dependent and some are representation neutral. For instance, the 

initialization, crossover, and mutation are representation-dependent operators. On 

the other hand, selection, replacement, and termination are all representation-

independent operators. In the context of the proposed inspection planning problems 

in this thesis, the solution representation is a tailored representation, but in most of 

the papers in the literature, a general representation has been used with many 

different variations of the inspection problem. 

One critical decision in each genetic algorithm that significantly affects the 

performance of the algorithm is how to represent the solutions and tailoring of genetic 

operators. Although the selection and replacement operators are representation-

independent, but the representation and genetic operators determine how the 

selection and replacement actions will be performed. An important performance 

criterion for each genetic algorithm is the robustness of the algorithm. The robustness 

of genetic algorithm strongly depends on the hardness of the problem while some 

genetic algorithms appear to be more robust than what they actually are only because 

they are used to relatively easy problems. These genetic algorithms when are used for 

large-scale problems wherein especially the ratio of the number of feasible solutions 

to the number of infeasible solutions is low, the algorithm may get caught in local 

optima and consequently the robustness is decreased. Accordingly, it must be noted to 

properly represent the solutions and define the operators, otherwise the genetic 

algorithm will perform no better than a random search. Therefore, proper design of 

genetic algorithm will make balance between exploration and exploitation and 

consequently the algorithm will be able not only in avoiding local optima in global 

search, but also find small improvements in local search (Gruninger, 1996). 

In each genetic algorithm, one important issue in making balance between 

exploration and exploitation is developing an operator to measure similarity between 

solutions in order to maintain clusters of similar solutions. This operator helps to keep 

the population divers. By this operator, the algorithm has a higher chance to explore 

the search space and to prevent from premature convergence that is a common 

problem in genetic algorithms. The premature convergence happens when all of the 

individuals reach the same representation. In this situation, the algorithm cannot find 

better solutions and if the optimal solution has not been found, then the convergence 

is, by definition, premature (Wall, 1996).  
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A3.3. Genetic operators 

Applying each GA needs developing an initialization, selection, crossover, and 

mutation operators specific to the solution representation. These operators are 

explained as follows. 

A3.3.1. Initialization 

Lots of researchers have done several experiments with randomly generated 

initial population, with an initial population of structured solutions, and with an initial 

population with both random and structured solutions (Baker and Ayechew, 2003). 

They resulted that an initial population of structured solutions leads to high-quality 

solutions in a relatively small number of generations of the GA. However, the initial 

population in this thesis is generated randomly. 

 

A3.3.2. Selection operator 

A binary tournament selection procedure has been applied for selecting 

solutions for both the crossover and mutation operators. For applying this procedure, 

first, two solutions from the population are selected, and then the best solution in 

terms of the objective function value is selected. This procedure is repeated until the 

required number of solutions is reached. 

 

A3.3.3. Crossover operator 

In this step, individuals (parents) are sharing their information by using 

crossover operator to create better offspring (child). Individuals with better fitness 

function value have more chance than others for sharing their information under a 

binary tournament selection. For applying crossover on the solutions, three different 

kinds of crossover are separately adopted on both which-what and when 

representations, including: (i) one-point crossover, (ii) two-points crossover, and (iii) 

three-point crossover. Figure A3.2 illustrates the crossover operators for a sample 

which-what representation.  

 

Parent 1 
0 0 1 0 1 1  

Offspring 1 
0 0 1 1 1 0 

1 1 1 1 0 0  1 1 1 1 0 1 
            

Parent 2 
1 1 0 1 1 0  

Offspring 2 
1 1 0 0 1 1 

0 0 1 1 0 1  0 0 1 1 0 0 
          One-point crossover  
               

Offspring 1 
0 0 0 1 1 1  

Offspring 1 
0 1 1 0 1 1 

1 1 1 1 0 0  1 0 1 1 0 0 
         

Offspring 2 
1 1 1 0 1 0  

Offspring 2 
1 0 0 1 1 0 

0 0 1 1 0 1  0 1 1 1 0 1 
  Two-point crossover     Three-point crossover  

Figure A3.2. Crossover operators 

 

A3.3.4. Mutation operator 

In order to release from local minima, some random selected individuals 

undergo the mutation operator. For applying this operator on both parts (i.e., which-

what and what parts) of each solution, three different procedures are utilized 
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including: (i) swap, (ii) reversion and (iii) insertion operators as they have been shown 

in Figure A3.3. In the swap operator, a random part of a solution is selected and its 

permutation is reversed. In the reversion operator, places of two random selected bits 

are exchanged. Finally, in the insertion operator, two bits are selected and the second 

one is inserted next to the first bit. Finally, the Pseudo code of the proposed GA is 

illustrated as Figure A3.4. 

 

Solution 
0 0 1 0 1 1 

Swap 
0 1 0 1 0 1 

1 1 1 1 0 0 1 0 1 1 1 0 
                
  Selected Bit 1 Selected Bit 2         
                

Reversion 
0 1 1 0 0 1 

Insertion 
0 0 1 1 0 1 

1 0 1 1 1 0 1 1 0 1 1 0 

Figure A3.3. Mutation operators 

 

Set the parameters (𝑃𝑜𝑝_𝑆𝑖𝑧𝑒, 𝑀𝑎𝑥_𝐼𝑡𝑟, 𝐸𝑙𝑖𝑡_𝑃, 𝐶𝑟𝑜𝑠𝑠_𝑃, 𝑀𝑢𝑡𝑎𝑡𝑒_𝑃 )   
𝐼𝑡𝑒𝑟 =0 
Create Initial Population (Pop1) ← 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 
Calculate the fitness of each Solution (𝑂𝐹𝑉) 
Transform the Best Individuals to Next Generation (Pop2)  ← 𝐸𝑙𝑖𝑡_𝑃 
While (Terminate=false) do 
   

 For i =1:𝑟𝑜𝑢𝑛𝑑(𝐶𝑟𝑜𝑠𝑠_𝑃 × 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒) C
ro

sso
v

e
r O

p
e

ra
to

r 

 Choose Parents (Binary Tournament Selection) 
 Apply One Crossover Operator Randomly 
 a. One Point XO 
 b. Two Point XO 
 c. Three Point XO 
 Calculate OFV of Created Offspring 
 Archive New Offspring (Pop3)   
 EndFor 

   

 For j =1:𝑟𝑜𝑢𝑛𝑑(Cross_P × 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒) M
u

ta
tio

n
 O

p
e

ra
to

r 

 Choose a Sample Solution Randomly 
 Apply One Mutation Operator Randomly 
 a. Swap  
 b. Insertion  
 c. Reversion  
 Calculate OFV of Mutated Solution 
 Archive New Solution (Pop4)   
 EndFor 

   

 Merge Pop1, Pop3 and Pop4 

Next Generation  
 Sort the Merged Population Based On OFVs  
 Select the first (𝑃𝑜𝑝_𝑆𝑖𝑧𝑒 − 𝐸𝑙𝑖𝑡_𝑃)s Solutions (Pop5) 
 Create Next Generation by Merging Pop2 and Pop5 

   

 If 𝐼𝑡𝑒𝑟 ≥ 𝑀𝑎𝑥_𝐼𝑡𝑟 then 
Termination Criterion  Terminate = True 

 EndIf 

  
𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 +1 
 

EndWhile 

Figure A3.4. GA’s Pseudo code 
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In the following sections, a well-known evolutionary algorithm is developed, 

namely differential evolution (DE), in order to solve the Extended Problem. It has been 

demonstrated that evolutionary algorithms (e.g., DE (Storn and Price, 1997)) or 

evolution strategies (Back et al., 1991) are capable and robust approaches to solve a 

wide range of optimization problems. 

Since the Extended Problem is in the form of a multi-objective optimization 

model, we will obtain a set of solutions (i.e., Pareto solutions) instead of a single one. 

In Section 4.5, we will explain the concepts of multi-objective optimization and Pareto 

optimality. 

 

A3.4. Multi-objective optimization algorithm 

The main difference between single and multi-objective optimization problems 

is the number of obtained optimal solutions. In a single-objective optimization 

algorithm, decision maker (DM) is looking for one and only one optimal solution, while 

in multi-objective optimization problems, a set of solutions depending on non-

dominance criterion are found that is named the Pareto sense. In this section, a 

summary of some basic definitions is presented to better understand the multi-

objective optimization problem. A multi-objective problem (MOP) can be described as 

follows. 

 

min
𝑥

   [𝑓
1
(𝑥), 𝑓

2
(𝑥), … , 𝑓

𝑘
(𝑥)]

𝑇
 

s.t.  

𝑥 ∈ 𝑆,  

 

where k is the number of objectives, 𝑓𝑖(𝑥) is the ith objective function (𝑖 = 1, 2, . . . , 𝑘) 

and S is the feasible region. 

 

 Definition 1: 

Let 𝑧1 = (𝑓1(𝑥1), 𝑓2(𝑥1), … , 𝑓𝑘(𝑥1)) and 𝑧2 = (𝑓1(𝑥2), 𝑓2(𝑥2), … , 𝑓𝑘(𝑥2)) ∈ 𝑅𝑘 

be two objective vectors. Then, 𝑧1 dominated 𝑧2 if and only if 𝑧1 ≤ 𝑧2 and 𝑧1 ≠ 𝑧2 (i.e., 

𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) for all i and 𝑓𝑖(𝑥1) ≠ 𝑓𝑖(𝑥2) for at least one i). 

 

 Definition 2:  

A feasible solution 𝑥𝑒 of the MOP is called to be locally optimal in the Pareto 

sense if there exist a real 𝜀 > 0 such that there is no solution 𝑥𝑙  that dominates the 

solution 𝑥𝑒 with 𝑥𝑙 ∈ 𝑅𝑘 ∩ 𝐵(𝑥𝑒 , ε), where 𝐵(𝑥𝑒 , ε) shows a bowl with center of 𝑥𝑒 and 

of radius ε. 

 

 Definition 3: 

A solution 𝑥𝑒 is globally optimal in the Pareto sense if there does not exist any 

vector 𝑥𝑙   such that 𝑥𝑙   dominates the vector 𝑥𝑒 . The main difference between this 
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definition and the definition of local optimality lies in the fact that we do not have a 

restriction on the set 𝑅𝑘 anymore. 

As it is obvious, the solutions within the Pareto frontier do not dominate each 

other. Accordingly, in order to compare the solutions in a same frontier, crowding 

distance metric is used (Mohammadi et al., 2013). The crowding distance is a measure 

of the density of solutions. Value of the crowding distance presents an estimation of 

density of solutions surrounding a particular solution. This metric is calculated as 

Equation (A3.1). The solutions having a higher value of the crowding distance are 

preferred over solutions with a lower value of the crowding distance. 

 

(A3.1) 𝐶𝐷𝑖 = ∑
𝑓𝑗,𝑖+1

𝑃 − 𝑓𝑗,𝑖−1
𝑃

𝑓𝑗.𝑡𝑜𝑡𝑎𝑙
𝑃.𝑚𝑎𝑥 − 𝑓𝑗.𝑡𝑜𝑡𝑎𝑙

𝑃.𝑚𝑖𝑛

𝑘

𝑗=1

 

 

where k is the number of objective functions, 𝑓𝑗,𝑖+1
𝑃 is the jth objective function of the 

(i+1)th solution and 𝑓𝑗,𝑖−1
𝑃  is the jth objective function of (i-1)th solution after sorting 

the population according to crowding distance of the jth objective function. Also, 

𝑓𝑗.𝑡𝑜𝑡𝑎𝑙
𝑃.𝑚𝑎𝑥 and 𝑓𝑗.𝑡𝑜𝑡𝑎𝑙

𝑃.𝑚𝑖𝑛  are the maximum and minimum value of objective function j, 

respectively. 

 

A3.5. Differential evolution algorithm 

Like other evolutionary computational algorithms, DE involves the evolution of 

a population of solution vectors with a size of Pop_Size using specific operators 

(Calegari et al., 1999). Unlike GA, in which chromosomes are combined to create child 

individuals, DE uses the "differences" between chromosomes to reproduce a child. 

Therefore, as the population converges to the global minimum and the differences 

between individuals decrease, the search space in which children are reproduced 

decreases simultaneously. In addition, the DE algorithm does not use probability 

functions to control evolutionary operations like mutation and selection; while the 

population of individuals is evolved using given arithmetic operators. By this, finding 

the optimal combination of parameters used to control the operation of DE algorithm 

becomes easier and so DE can be easily applied to optimize a variety of problems 

therein GAs are more complex to be implemented and controlled. 

In DE algorithm, the initial population is often randomly generated over the 

variables domain and the child solutions are created from parent solutions using two 

main arithmetic operators. These operators are: a) recombination (which is similar to 

the crossover operator used by GAs) and b) mutation. In the following sections, the 

steps of the proposed DE algorithm are elaborated. 

 

A3.6. DE operators 

Applying each DE needs developing an initialization, mutation, crossover, and 

selection operators specific to the solution representation. These operators are 

explained as follows. 



Appendix 3: GA & DE 

 

176 
 

A3.6.1. Initialization 

Like GA, the first step of the DE algorithm is initializing the population of the 

individual solution vectors. Typically, the matrixes of the solution representation are 

filled with random values belong to [0,1] interval. 

 

A3.6.2. Mutation 

The DE algorithm precedes utilizing three basic operators including: mutation, 

crossover and selection. After the population is initialized, these operators create the 

population of the next generation 𝑃𝐺+1 by using the current population 𝑃𝐺 . During the 

algorithm, each solution vector in the population has to be selected once as the target 

vector so that totally Pop_Size competitions take place in one generation. A new 

solution vector is generated by DE’s mutation operator, in which, the weighted 

difference between two solution vectors is added to the third vector. Hence, this 

algorithm is named as differential evolution. Note that these three vectors are 

randomly selected and must be different from the target vector; therefore, Pop_Size 

must be at least 4. Let 𝑒𝑖, 𝑖 = 1, … , 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒, be the target vector, a mutated vector is 

generated according to the following equation. 

 

𝜇𝑖 = 𝑒𝑣1 + 𝐹(𝑒𝑣2 − 𝑒𝑣3) (A3.2) 

 

where 𝑣1, 𝑣2, and 𝑣3 are mutually different random indices taking from 

{1,2, . . . , 𝑃𝑜𝑝_𝑆𝑖𝑧𝑒}, and are not equal to 𝑖. 𝐹 in Equation (A3.2) is a constant real value 

∈ [0, 2], which controls the amplification of the differential variation between the 

second and third randomly chosen population vectors (i.e., 𝑒𝑣2 − 𝑒𝑣3).  

There are several strategies that can be employed for mutating the solution 

vectors as Equations (A3.3) to (A3.9) (Storn, 1996). One may choose another strategy 

instead of that proposed in Equation (A3.2).  

 

𝜇𝑖 = 𝑒𝑏𝑒𝑠𝑡 + 𝐹(𝑒𝑣2 − 𝑒𝑣3) (A3.3) 

𝜇𝑖 = 𝑒𝑣1 + 𝜌(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑣3) + 𝐹(𝑒𝑣2 − 𝑒𝑣3) (A3.4) 

𝜇𝑖 = 𝑒𝑏𝑒𝑠𝑡 + 𝐹(𝑒𝑣1 + 𝑒𝑣2 − 𝑒𝑣3 − 𝑒𝑣4) (A3.5) 

𝜇𝑖 = 𝑒𝑣5 + 𝐹(𝑒𝑣1 + 𝑒𝑣2 − 𝑒𝑣3 − 𝑒𝑣4) (A3.6) 

𝜇𝑖 = 𝑒𝑏𝑒𝑠𝑡 + 𝐹(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑣1) (A3.7) 

𝜇𝑖 = 𝑒𝑏𝑒𝑠𝑡 + 𝐹(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑣1 − 𝑒𝑣2 − 𝑒𝑣3) (A3.8) 

𝜇𝑖 = 𝑒𝑏𝑒𝑠𝑡 + 𝜌(𝑒𝑏𝑒𝑠𝑡 − 𝑒𝑣1) + 𝐹(𝑒𝑣1 − 𝑒𝑣2) (A3.9) 

 

where 𝑒𝑏𝑒𝑠𝑡 is the best vector of the current generation (i.e., a Pareto solution with the 

highest crowding distance). 

 

 

 



Appendix 3: GA & DE 

 

177 
 

A3.6.3. Crossover 

In this step, each mutated vector shares its information with a target vector 

using the crossover operation in order to create new solution 𝜏𝑖 = {𝜏𝑖1, … , 𝜏𝑖𝑗, … , 𝜏𝑖𝐷} 

as follows.  

 

𝜏𝑖𝑗 = {
𝜇𝑖𝑗if 𝑟𝑎𝑛𝑑(𝑗) ≤ 𝐶𝑅 and 𝑗 = rnbr(𝑖)

𝑒𝑖𝑗if 𝑟𝑎𝑛𝑑(𝑗) > 𝐶𝑅 and 𝑗 ≠ rnbr(𝑖)
 (A3.10) 

 

where 𝑟𝑎𝑛𝑑(𝑗) is the j-th component of a D-dimensional uniform random number ∈

[0, 1] and 𝑟𝑛𝑏𝑟(𝑖) is a randomly chosen index ∈ {1, . . . , 𝐷} to ensure that at least one 

mutated dimensional value is used in the new created solution. 

 

A3.6.4. Selection 

After creating the new solution vectors, the selection operator is applied to 

choose the individuals that are going to compose the population in the next generation. 

In the selection operator, if the new created solution vector dominates the target 

vector, then the new solution is replaced by the target vector in the next generation. If 

not, the solution with higher crowding distance between new created solution and 

target vector remains in the population. Otherwise, the current solution vector is 

transferred directly to the next generation. Finally, the algorithm can be terminated 

with a pre-specified maximum number of generations and/or a pre-specified 

maximum number of function evaluations. The DE procedure has been illustrated in 

Figure A3.5. 
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Figure A3.5. Genetic algorithm flowchart 
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UN CADRE D'OPTIMISATION MULTI-OBJECTIF POUR LES PROBLEMES DE 

PLANIFICATION DES INSPECTIONS AVEC PRISE EN COMPTE DES 

INCERTITUDES ET DEFFAILLANCES  

RESUME : Dans les systèmes manufacturiers de plus en plus complexes, les variations du 

processus de fabrication et de ses paramètres opératoires ainsi que leurs effets sur l’ensemble 

du système doivent être maîtrisés, mesurés et contrôlés. Cette thèse propose un cadre 

d’optimisation pour l’élaboration d’un plan d’inspection optimal qui permet une prise de décision 

opérationnelle afin d’assurer la satisfaction des objectifs stratégiques (réduction des coûts, 

amélioration de la qualité, augmentation de la productivité, …). La prise de décision se divise en 

trois questions : Quoi contrôler ? Comment contrôler ? Quand contrôler ? Le manque 

d'informations fiables sur les processus de production et plusieurs facteurs environnementaux 

est devenu un problème important qui impose la prise en compte de certaines incertitudes lors 

de la planification des inspections. Cette thèse propose plusieurs formulations du problème 

d’optimisation de la planification du processus d'inspection, dans lesquelles, les paramètres 

sont incertains et les machines de production sont sujettes aux défaillances. Ce problème est 

formulé par des modèles de programmation mathématique avec les objectifs : minimiser le coût 

total de fabrication, maximiser la satisfaction du client, et minimiser le temps de la production 

totale. En outre, les méthodes Taguchi et Monte Carlo sont appliquées pour faire face aux 

incertitudes. En raison de la complexité des modèles proposés, les algorithmes de méta-

heuristiques sont utilisés pour trouver les solutions optimales. 

Mots clés : Systèmes de Production Multi-échelle, Problème de Planification des Inspections, 

Optimisation Multi Objectif, Modèles de Programmation Mathématique, Incertitude, Défaillance, 

méta-heuristiques. 

 

A MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR AN INSPECTION 

PLANNING PROBLEM UNDER UNCERTAINTY AND BREAKDOWN 

ABSTRACT: Quality inspection in multistage production systems (MPSs) has become an issue 

and this is because the MPS presents various possibilities for inspection. The problem of finding 

the best inspection plan is an “inspection planning problem”. The main simultaneous decisions 

in an inspection planning problem in a MPS are: 1) which quality characteristics need to be 

inspected, 2) what type of inspection should be performed for the selected quality 

characteristics, 3) where these inspections should be performed, and 4) how the inspections 

should be performed. In addition, lack of information about production processes and several 

environmental factors has become an important issue that imposes a degree of uncertainty to 

the inspection planning problem. This research provides an optimization framework to plan an 

inspection process in a MPS, wherein, input parameters are uncertain and inspection tools and 

production machines are subject to breakdown. This problem is formulated through several 

mixed-integer mathematical programming models with the objectives of minimizing total 

manufacturing cost, maximizing customer satisfaction, and minimizing total production time. 

Furthermore, Taguchi and Monte Carlo methods are applied to cope with the uncertainties. Due 

to the complexity of the proposed models, meta-heuristic algorithms are employed to find 

optimal or near-optimal solutions. Finally, this research implements the findings and methods of 

the inspection planning problem in another application as hub location problem. General and 

detail concluding remarks are provided for both inspection and hub location problems. 

Keywords : Inspection Planning, Multistage Production System, Optimization Framework, 

Robust Optimization, Uncertainty, Breakdown, Mathematical Programming.  


