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Chapter 1
Introduction

The ability to experimentally isolate, manipulate, and observe quantum systems at

the single particle level has developed to an important tool in the study of quantum

mechanics. Even though Erwin Schrödinger himself said as late as 1952 that it “is fair

to state that we are not experimenting with single particles, any more than we can

raise Ichthyosauria in the zoo”, only that “in thought experiments, we sometimes

assume that we do” [Schrödinger, 1952], scientist have long begun to study quantum

mechanics on a single particle level. In 2012, the Nobel Prize in physics was awarded to

Serge Haroche and David Wineland for their “ground-breaking experimental methods”

in this field [Haroche, 2013; Wineland, 2013]. Since their pioneering results, one line

of evolution from those fundamental experiments was to extend the investigation

of single quantum systems to ensembles of larger numbers of interacting quantum

particles. This allowed the study of fundamental quantum mechanical effects such as

entanglement, probing e.g. the Bell inequalities [Brunner et al., 2014] or the propagation

of entanglement [Cheneau et al., 2012; Jurcevic et al., 2014].

The outstanding level of experimental control over such multi-particle quantum

systems has furthermore led to a new field of research in quantum physics, the

simulation of physical systems under well controlled conditions. Richard Feynman

[1982] first proposed this idea of a quantum simulator more than 30 years ago,

motivated by the fact that the information one needs to store on a classical computer

for the numerical treatment of a quantum mechanical problem scales exponentially

with the number of particles [Hauke et al., 2012; Georgescu, Ashhab, and Nori, 2014].

For instance, due to the small length scales in condensed matter systems, it is often

impossible to probe microscopic physical properties in situ. Likewise, the theoretical

study of strongly correlated quantum systems on a microscopic level, such as electrons

in a high Tc superconductor, often reaches the limit of what is possible to calculate

numerically on a classical computer, as soon as the system size exceeds a few tens of

particles.

Quantum simulation is an alternative approach to study such effects , which consists

in ‘building’ a well-controllable quantum system, rules by the same many-body
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Hamiltonian as the simulated system, with access to microscopic observables and

phase diagrams in the laboratory. A prime example of this approach is the study of

spin Hamiltonians. Despite their seemingly simple character, they can often be used to

describe the complex dynamics in strongly correlated materials [Auerbach, 2012], yet

for many cases especially the dynamics of the system cannot be computed on classical

computers as soon as the system size exceeds a few tens of spins.

A useful quantum simulator, independent of the chosen system, needs to fulfil three

main technical requirements, assuming already a successful implementation of a given

model, i.e. that there is a direct mapping between the simulated system and the

simulator [Somaroo et al., 1999]. First, the quantum simulator needs to be scalable

to large number of particles, in order to play out its advantage for example over a

numerical simulation on a classical computer. Second, its coherence time needs to be

sufficiently larger than the important timescales of the involved physics, in order to

retain the quantum nature of the simulation. Third, the quantum simulator needs to

be benchmarked, for instance against an analytically known solution or a numerical

calculation in a regime where this is still possible, or a different quantum simulator, in

order to the affirm the validity of a result when simulating a given problem.

The realisation of a fully reconfigurable quantum simulator fulfilling all three

requirements has yet to be demonstrated. However, implementing aforementioned spin

Hamiltonians in the lab has already proven to be successful with various quantum

systems [Georgescu, Ashhab, and Nori, 2014].

Ions, trapped in a combination of static and oscillating electric and / or magnetic

fields, arrange themselves due to their strong Coulomb repulsion, forming a so-called

Coulomb crystal [Britton et al., 2012; Monroe and Kim, 2013]. Both their internal

and external degrees of freedom of the ions can be manipulated with high precision

using lasers or microwave fields. The dynamics of the Coulomb crystal depends on the

applied fields, and can be tuned such that it can be mapped to a spin Hamiltonian,

with tunable, long-range interactions [Blatt and Roos, 2012; Schneider, Porras, and

Schaetz, 2012; Monroe et al., 2015]. Increasing the number of ions also increases

the number of vibrational modes in the crystal, making the experimental control of

the Coulomb crystal increasingly challenging when increasing the number of spins.

However, a recent report claimed the generation of entanglement in a system of more

than 200 ions [Bohnet et al., 2015].

The quantum simulation of spin Hamiltonians with ultra-cold polar molecules is

likewise under investigation [Ortner et al., 2009; Peter et al., 2015], and despite being

technically challenging, large progress has been made in this field recently [Moses

10



et al., 2015].

Another promising platform are single neutral atoms trapped in optical lattices.

The combination of tunnelling and on-site interaction of the atoms for example can be

mapped on an Ising-type Hamiltonian [Simon et al., 2011; Struck et al., 2011]. The

number of spins, i.e. single atoms, can be scaled relatively easily by increasing the size

of the optical lattice, with the arrangement of the atoms being given by the underlying

shape of the optical lattice. Even though complex geometries such as kagome lattices

can be realised [Windpassinger and Sengstock, 2013], the flexibility of the geometry of

optical lattices is somewhat limited. The generally weak interactions of neutral atoms

provide a good isolation from the environment, thus limiting the effects of decoherence

in the quantum system. However, the atom-atom interactions are therefore usually

limited to nearest neighbours.

One possibility to generate interactions among neutral atoms that extend beyond

nearest neighbours is to excite them to so-called Rydberg states, which are states

where one of the electrons of the atom possesses a high principal quantum number n.

In a classical picture of the atom, this corresponds to one electron orbiting far away

from the ionic core on atomic length scales, thus forming an oscillating electric dipole.

Two of such Rydberg atoms can show very strong dipolar interactions over distances

of several tens of microns [Gallagher, 2005; Saffman, Walker, and Mølmer, 2010].

One consequence of those strong long-range interactions, and a major motivation

for the study of Rydberg atoms itself, is the Rydberg blockade. It plays an important

role in numerous proposals for both quantum simulation and its generalisation to any

sort of computational problem [Nielsen and Chuang, 2011] in quantum information

processing. The Rydberg blockade was first proposed for applications in quantum

information by Jaksch et al. [2000] and Lukin et al. [2001]. The Rydberg blockade lies

at the heart of many applications of Rydberg atoms, as for example for the realisation

of quantum gates (see e.g. [Wilk et al., 2010; Maller et al., 2015; Jau et al., 2015],

or [Saffman, Walker, and Mølmer, 2010] for a review) highly non-classical states of

light [Gorniaczyk et al., 2014; Baur et al., 2014], or the study of self-ordered phases of

matter [Schauss et al., 2015].

To picture the concept of Rydberg blockade, we consider an ideal two-level atom,

made up of the ground state |g⟩ and the Rydberg state |r⟩, which are laser coupled

with a coupling strength set by the Rabi frequency Ω. For two of those atoms, if their

interatomic distance R is large, such that the van der Waals interaction VvdW can be

neglected compared to the laser coupling strength, i.e. VvdW ≪ ℏΩ, the atoms can be

seen as independent particles, and thus both can be excited to the Rydberg state at

11



Chapter 1: Introduction
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Figure 1.1: Illustration of the Rydberg blockade in the van der Waals regime. For

large interatomic distances R, the energy shift VvdW(R) can be neglected compared to the

coupling strength �Ω between the ground and the Rydberg state, and the atoms behave

independently from each other. For distances smaller than the blockade radius Rb, the

excitation of |rr〉 is no longer resonant, leading to the blockade of a second Rydberg

excitation. (b) Blockade sphere in an ensemble of atoms, for isotropic interactions.

the same time. On the other hand, for small interatomic distances, the van der Waals

interaction between the Rydberg states can become very strong, and lead to an energy

shift of the state |rr〉 where both atoms are in the same Rydberg state, of magnitude

VvdW(R) = C6/R
6. If this energy shift is larger than the laser coupling strength, i.e.

VvdW(R) � �Ω, then the excitation of the doubly excited state is no longer possible,

as depicted in Figure 1.1(a). This suppression of having more than a single excitation

inside a certain volume is called Rydberg blockade. For the van der Waals interaction,

the extension of the blockade volume is given by the blockade radius, the distance at

which the interaction and the coupling strength are equal,

Rb =
6

√
C6

�Ω
. (1.1)

As the van der Waals interaction scales as C6 ∼ n11, the blockade radius thus

increases as n11/6 with the principal quantum number n. For typical parameters of

our experiment, the blockade radius is usually in a 2− 20μm range. The Rydberg

blockade has been observed experimentally in cold atomic gases [Tong et al., 2004;

Singer et al., 2004; Comparat and Pillet, 2010], optical lattices [Viteau et al., 2011],

Bose-Einstein condensates [Heidemann et al., 2008; Balewski et al., 2013], and for two

single atoms [Urban et al., 2009; Gaëtan et al., 2009; Hankin et al., 2014].
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In this thesis, we present an original and complementary experimental approach

for the quantum simulation of spin-1/2 particles, using single neutral atoms trapped

in arbitrary two-dimensional arrays of microtraps, excited to Rydberg states. We

holographically create 2D arrays of optical single-atom traps in arbitrary geometries,

with trap separations ranging from ∼ 3µm to a few tens of µm. In order to create

strong correlations among the atoms, we coherently couple the ground-state atoms to

Rydberg states. This allows us to observe the Rydberg blockade in systems of up to

15 atoms, having exact knowledge of the initially prepared number of ground state

atoms. In a second set of experiments we reduce the Rydberg blockade radius to a

few lattice sites. We can thereby simulate a system of spin-1/2 particles governed

by the quantum Ising model, in different one- and two-dimensional arrays of up to

30 atoms. We benchmarked the measured Rydberg dynamics and correlations against

a numerical simulation of an equivalent spin-1/2 system.

The results of this thesis have been realised together with Sylvain Ravets and Daniel

Barredo, on an experiment built by Lucas Béguin and Aline Vernier [Béguin, 2013].

During the course of this thesis, we probed the interaction between two and three

atoms, both for the regime of the van der Waals interaction and the regime of resonant

dipole-dipole interaction [Ravets, 2014]. The main goal of my work was to extend the

existing experimental setup to create arrays of single neutral atoms in arbitrary 2D

geometries. The results presented here show that our experiment is an ideal candidate

to study strongly-correlated many-body quantum systems.

This thesis is organised in the following way. In Chapter 2 we give an overview of

the general experimental setup, the cooling and trapping of single atoms, and our

Rydberg excitation scheme. In Chapter 3 we show how we can holographically create

arbitrary arrays of optical microtraps by manipulating the spatial phase of a laser

beam with a spatial light modulator. We thereafter in Chapter 4 present the spatially

resolved state detection and manipulation of trapped single atoms. We present the

main results obtained during this thesis, the collective Rydberg excitation of ensembles

of up to 15 atoms in Chapter 5, and the observed spatial correlations of Rydberg

excitation dynamics in various dimensions and geometries in Chapter 6. In Chapter 7

we probe the Rydberg blockade and the resulting collective enhancement for the case

of resonant dipole-dipole interaction between two single atoms.

13
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Parts of the results obtained during this thesis have been published in the following

publications:

r Single-atom trapping in holographic 2D arrays of microtraps with

arbitrary geometries

Florence Nogrette, Henning Labuhn, Sylvain Ravets, Daniel Barredo, Lucas

Béguin, Aline Vernier, Thierry Lahaye and Antoine Browaeys,

Physical Review X 4, 021034 (2014)

r Single-atom addressing in microtraps for quantum-state engineering

using Rydberg atoms

Henning Labuhn, Sylvain Ravets, Daniel Barredo, Lucas Béguin, Florence

Nogrette, Thierry Lahaye and Antoine Browaeys,

Physical Review A 90, 023415 (2014)

r Demonstration of a strong Rydberg blockade in three-atom systems

with anisotropic interactions

Daniel Barredo, Sylvain Ravets, Henning Labuhn, Lucas Béguin, Aline Vernier,

Florence Nogrette, Thierry Lahaye and Antoine Browaeys,

Physical Review Letters 112, 183002 (2014)

r Coherent excitation transfer in a “spin chain” of three Rydberg atoms

Daniel Barredo, Henning Labuhn, Sylvain Ravets, Thierry Lahaye, Antoine

Browaeys and Charles S. Adams,

Physical Review Letters 114, 113002 (2015)

r Coherent dipole-dipole coupling between two single Rydberg atoms

at an electrically-tuned Förster resonance

Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Béguin, Thierry Lahaye

and Antoine Browaeys,

Nature Physics 10, 914917 (2014)

r Measurement of the angular dependence of the dipole-dipole interac-

tion between two individual Rydberg atoms at a Förster resonance

Sylvain Ravets, Henning Labuhn, Daniel Barredo, Thierry Lahaye and Antoine

Browaeys,

Physical Review A 92, 020701(R) (2015)
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Macr̀ı, Thierry Lahaye and Antoine Browaeys,

accepted for publication in Nature (2016), arXiv preprint 1509.04543v2 (2015)
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Chapter 2
Exciting a single atom to a Rydberg
state

In recent years, research about Rydberg physics has seen an enormous revival. After

the properties of Rydberg atoms had been studied extensively throughout the 20th

century, its possible applications in quantum information, quantum simulation, and

the study of fundamental physics re-sparked a large interest in the beginning of the

21st century [Saffman, Walker, and Mølmer, 2010].

Nowadays, the fields in which the properties of Rydberg states are used and

studied, extend from cold [Mourachko et al., 1998; Singer et al., 2004] and ultra-cold

atoms [Heidemann et al., 2008; Viteau et al., 2011; Schauß et al., 2012] to hot vapours

[Kübler et al., 2010], ions [Feldker et al., 2015], and even excitons in natural copper

oxide crystals [Kazimierczuk et al., 2014]. During the course this thesis, we have

studied Rydberg excitations of arrays of single neutral atoms trapped in individual

optical microtraps.

In this chapter, we will describe the characteristics of Rydberg states which are of

importance for the rest of this thesis. We will then give a brief overview of the general

setup of the experiment, and the mechanism which allows us to isolate a single neutral

atom. We will show how we coherently couple the ground state of the single atom

to a given Rydberg state using a coherent optical two-photon transition, and finally

present the two regimes of the Rydberg-Rydberg interaction which are important in

this thesis.

2.1 The interesting properties of Rydberg atoms

Rydberg atoms are atoms in an electronically highly excited state, meaning that

one of its electrons has a large principal quantum number n, typically in the range

30 < n < 200. They are named after Swedish physicist Johannes Rydberg, who

generalised the empirical formula for the wavelengths of the spectral lines in hydrogen

found by Balmer [Balmer, 1885] to other elements [Rydberg, 1890]. Building upon
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the work of Rydberg, Niels Bohr later found a theoretical model [Bohr, 1913] for the

binding energies in hydrogen,

En = −hcR∞

n2
, (2.1)

which depends solely on the principal quantum number n of the atom, the Planck

constant h, the speed of light c and the Rydberg constant R∞. The Rydberg constant

itself is defined only in terms of fundamental physical constants:

R∞ =
me e

4

8 ε20 h
3 c

, (2.2)

where me is the rest mass of the electron, e the elementary charge and ε0 the vacuum

permittivity. One finds that, just like the binding energy, most properties of the

hydrogen atom follow a characteristic scaling with n.

Alkali atoms, the elements in the first main-group of the periodic table, show a very

similar behaviour, as they, just like hydrogen, posses only one valence electron. The

electrons on the inner shells of the alkali atoms ‘shield’ all but one electric core charge.

In good approximation, the single valence electron effectively only sees a single core

charge, and thus behaves very similar to a hydrogen atom. However, if the valence

electron is in low orbital angular momentum states l ≤ 3, it can penetrate the inner

shells of the atom, and thus see a slightly increased core charge compared to the

valence electron of a hydrogen atom. One can use quantum defect theory [Jungen,

1988; Gallagher, 2005] to correct for this slight modification of the core charge. The

Table 2.1: Selection of scaling laws for properties of Rydberg atoms. The properties

of Rydberg atoms follow universal scaling laws as a function of the effective principal

quantum number n∗ (from [Gallagher, 2005]).

property expression scaling value for 82D

binding energy En (n∗)−2 500GHz
electron orbital radius ⟨r⟩ (n∗)2 0.5µm
lifetime (at T = 300K) τ (n∗)3 200µs

polarisability α (n∗)7 2500MHZ/(V/cm)2

transition dip. matrix element ⟨5P | d̂ |nD⟩ (n∗)−3/2 0.01ea0
energy level spacing En+1 − En (n∗)−3 12GHz

resonant dipole-dipole coupling C3 (n∗)4 25× 104MHZ µm3

van der Waals coefficient C6 (n∗)11 −9× 106MHZ µm6

18
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Rydberg formula then changes to

E = −hc R∗

(n∗)2
, (2.3)

with n∗ = n− δℓ being the effective quantum number of the valence electron, δℓ the

so-called quantum defect, and the effective Rydberg constant R∗ = R∞
1+me/mc

, where me

and mc are the electron and the atomic core mass respectively. The quantum defect is

different for different electronic states, and depends mostly on the orbital angular

quantum number ℓ and becomes small for ℓ ≥ 3. It also depends to a lesser extend to

the total angular momentum quantum number j. Quantum defects for Rubidium have

been measured accurately by millimetre-wave spectroscopy [Li et al., 2003; Han et al.,

2006]. Together, one can easily compute the values of various atomic properties of

different atomic species by using simple scaling laws, with a selection of them shown

in Table 2.1.

We see that the strong scaling with n of both the resonant dipole-dipole interaction

(scaling as 1/R3 with the distance) and the van der Waals interaction (scaling as

1/R6 with the distance) can result in interaction strengths of many MHz for atomic

separations of several µm for high principal quantum numbers, making Rydberg states

an ideal ‘tool’ for our experiment. The Rydberg-state lifetimes in the order of 100µs

are much longer than a typical duration of our experiment of ∼ 3µs. On the other

hand, the strong polarisability of Rydberg states makes them very sensitive to electric

fields, so one needs to take care in the design of the experiment to keep the electric

field as small as possible.

2.2 A short overview of the experimental setup

An experimental apparatus to perform Rydberg experiments with single atoms has to

fulfil several requirements. We need:

r A reservoir of cold atoms, from which we eventually load atoms into the microtrap.

A good loading rate of atoms into the trap is needed to ensure a fast duty cycle

of the experiment.

r An optical dipole trap capable of reliably trapping a single atom.

r Both electric and magnetic field control to compensate for stray fields in the

vicinity of the atoms, in order to achieve long coherence times.

19
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Figure 2.1: Schematics of the experimental vacuum chamber. The dipole trap beam

is focused and recollimated by the pair of aspheric lenses. Its focus with a � 1μm size

is in the centre of a MOT of cold 87Rb atoms. Four electrodes are placed around each

aspheric lens, in order to apply arbitrary electric fields a the position of the atoms. Three

pairs of magnetic field coils are used to define a quantisation axis in z-direction, and to

compensate any transversal magnetic field in x - and y -direction. (The MOT beams, MOT

and magnetic compensation coils in z-direction are not shown.)

� A laser system to coherently couple the ground state of the atom to Rydberg

states.

� An imaging system capable of a spatially resolved state detection of the atoms.

In the following we will see how these points are realised in our experiment. An

overview of the general experimental setup is given in the rest of this chapter. A

more detailed description can be found in the PhD thesis of Lucas Béguin [2013]. The

extension of the experiment to perform Rydberg experiments with arrays of single

atoms, carried out during this thesis, will be described in the following chapters. The

detailed implementation of creating arbitrary multi-trap arrays will be discussed in

Chapter 3, and of the state detection of the atoms in Chapter 4.
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2.2 A short overview of the experimental setup

2.2.1 The experimental apparatus

A schematic overview of the main vacuum chamber is shown in Figure 2.1. A magneto-

optical trap (MOT) is loaded from a Zeeman slower to create our reservoir of cold
87Rb atoms. As the interaction between Rydberg atoms is fairly independent of the

atomic species, we chose to work with 87Rb, since it is an element which is comparably

straightforward to cool and trap. Additionally, since it is an alkali atom, its single

valence electron is only weakly bound and can be excited to Rydberg states with

commercially available lasers systems.

The MOT is placed between a pair of custom aspheric lenses1 with a high numerical

aperture of NA = 0.5 and an effective focal length of f = 10mm, which focuses the

dipole trap beam of wavelength 850 nm down to a waist w0 ≃ 1µm [Sortais et al.,

2007]. The dipole trap beam is recollimated by the second aspheric lens, to image the

trap intensity at the focal plane of the lenses onto a CCD camera.

As the polarisability of Rydberg states scales as n7 with the principal quantum

number, they become more and more sensitive to electric fields as one increases n. In

order to avoid the mixing of Rydberg states due to electric fields, it is important to

reduce the electric field at the position of the atoms as good as possible. In order to

have very low stray fields in the first place, the flat side of the aspheric lenses facing

the atoms is coated with a ≃ 200 nm thick conductive layer of indium tin oxide (ITO)

which is connected to ground.

In order to null any remaining electric fields, or to apply a specific electric field in

any direction if needed, a set of eight electrodes is placed around the two aspheric

lenses. This configuration allows to easily control the amplitude and the direction of

the electric field at the position of the atoms. By performing Stark spectroscopy on

Rydberg states we can compensate for stray electric fields, and achieve residual fields

well below ≃ 5mV/cm. A more detailed description of the electric field control can be

found in the PhD theses of Lucas Béguin [2013] and Sylvain Ravets [2014].

Three independent pairs of Helmholtz coils, centred on the main axis of the vacuum

chamber as shown in Figure 2.1, are used to apply a +6G quantisation field along the

z -direction, while at the same time minimising stray transversal magnetic fields at the

position of the single atoms. The calibration of the magnetic fields was done using

Raman spectroscopy with Rydberg states, as was explained in [Béguin, 2013].

1The aspheric lenses were fabricated by LightPath Technologies.
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Chapter 2: Exciting a single atom to a Rydberg state
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Figure 2.2: Schematics of the light-assisted collisions. The light from the collision

beam (in our case the MOT beams) creates a loosely bound pair of an S- and P -state Rb

atom. After a some time the pair decays back to ground state, with a kinetic energy ∆E

acquired by the atoms.

2.2.2 Trapping a single atom in an optical microtrap

The core of our experimental apparatus is the possibility to trap an individual neutral
87Rb atom in an optical microtrap. This technique was pioneered by Schlosser et al.

[2001] at the Institut d’Optique more than a decade ago.

The optical microtraps are produced by focusing a far red-detuned dipole trap beam

down to a 1/e2-radius of w0 ≃ 1µm, approximately at the centre of our MOT. The

light exerts a dipole force on the atoms, creating a conservative potential

U(R) ∝ I(R)

∆
(2.4)

for the atoms, with the dipole trap intensity I(r) and the detuning ∆ from the atomic

transition [Grimm, Weidemüller, and Ovchinnikov, 2000]. With a typical total power

of P0 ≃ 3.5mW in the trap beam we measure a trap depth of U0 ≃ h× 20MHz ≃
kB × 1mK.

Atoms will continuously enter the trap at random times from the reservoir of atoms

in the MOT around the microtrap. The small volume of our trap, on the order of

∼ 1µm3, allows us to work in a regime where, in timescales relevant to our experiment,

at most one atom is present in the trap at the same time. This is due to inelastic

light-assisted collisions between pairs of atoms in the microtrap. The principle of these

collisions is depicted in Figure 2.2. When a pair of atoms in the 5S ground state is

present in the trap, the MOT cooling light, which is slightly red-detuned from the
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2.3 Atom-light interaction

5S ↔ 5P transition, will photo-associate the atoms to a loosely bound pair, with one

atom in the 5S and the other atom in the 5P state. The pair will pick up kinetic

energy ∆E by approaching the minimum of the potential curve, before radiatively

decaying back to the ground state, after a time given by the lifetime of the bound

state. As ∆E > U0, the two atoms are expelled from the trap2, on a timescale of

∼ 1ms [Fuhrmanek et al., 2012].

In order to have at most one atom in the trap, the two-body loss rate must be larger

than the rate with which the atoms are loaded into the microtrap from the MOT.

This can easily be achieved by adjusting the density of atoms in the MOT [Schlosser,

Reymond, and Grangier, 2002].

2.3 Atom-light interaction

All of the manipulations of our atoms are purely done by optical means. Moreover, the

excitation of the atom to a Rydberg state is done in a coherent way using optical

pulses. We can see the atoms as a two-level system consisting of the ground state |g⟩
and a Rydberg state |r⟩, which is coherently driven by the excitation light field. Such

systems have been studied extensively (see e.g. [Cohen-Tannoudji, Dupont-Roc, and

Grynberg, 1998]). Its dynamics can be described by the optical Bloch equations

ρ̇ = − i

ℏ

[
Ĥ, ρ̂

]
+ L̂[ρ̂], (2.5)

with the Hamiltonian

Ĥ =

(
0 Ω/2

Ω/2 δ

)
. (2.6)

Here Ω and δ are the two-level Rabi frequency and the detuning from the atomic

resonance. Dissipation, in our case mainly due to off-resonant spontaneous emission

through the intermediate state, is taken into account by the Lindblad superoperator

L̂[ρ̂] = γ

2
(2σ̂grρ̂σ̂rg − σ̂rrρ̂− ρ̂σ̂rr), (2.7)

with σrg, σgr being the transition operators between the ground and Rydberg state,

σrr the projection operator on the Rydberg state, and γ a phenomenological damping

rate.

2If the kinetic energy ∆E is shared unevenly among the atoms, it can happen that only one of the
two atoms leaves the trap. We typically observe a probability of one atom remaining in the trap
of ∼ 5%
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Chapter 2: Exciting a single atom to a Rydberg state

One finds that, assuming that at t = 0 the entire population of the atom is in |g⟩,
the probability of a resonantly driven atom (δ = 0) to be in the Rydberg state as a

function of time is given by [Loudon, 2000]

Pr(t) = 1− Ω2

2Ω2 + γ2

[
1 + e−3γt/4

(
cos(Ω̃t) +

3γ

4Ω̃
sin(Ω̃t)

)]
, (2.8)

with Ω̃ =
√

Ω2 + γ2/4. For Ω ≫ γ, the population will thus undergo Rabi oscillations

between the two states |g⟩ and |r⟩, with Rabi frequency Ω.

2.4 Driving coherent optical ground-Rydberg transitions

As soon as a single atom has been detected in the microtrap (for a description of the

state detection of the atoms, see Chapter 4), we dispose of the atomic reservoir by

turning off the MOT light for a few milliseconds, ending up with a single atom in the

microtrap surrounded by vacuum. In this section we will describe how we coherently

excite this isolated single ground state atom to a Rydberg state.

2.4.1 Ground state preparation

In order to coherently excite the trapped atom to a given Rydberg state with high

efficiency, we need to prepare the atom in a well-defined initial ground state. After

the MOT cooling light has been switched off, the MOT repumping light, driving the⏐⏐5S1/2,F = 1
⟩
↔
⏐⏐5P3/2,F

′ = 2
⟩
transition, is left on to trap the atomic state in the

F = 2 hyperfine manifold of the 5S1/2 state. We then apply a |B| = +6.6G magnetic

field along the z -axis to have a well-defined quantisation axis, and optically pump

the atom in the |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
stretched state, by a σ+-polarised laser

beam near-resonant with the
⏐⏐5S1/2,F = 2

⟩
↔
⏐⏐5P3/2,F

′ = 2
⟩
transition.

2.4.2 Coherent two-photon excitation

The transition frequencies between the ground state and Rydberg states are typically

in the ultraviolet. For Rubidium the transition frequency corresponds to a wavelength

of ∼ 297 nm. Coherent Rydberg excitations using single photon transition have been

demonstrated recently [Hankin et al., 2014], but the operation of laser systems with

the appropriate wavelength is not an easy task, which is why we chose to use an
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2.4 Driving coherent optical ground-Rydberg transitions
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Figure 2.3: Relevant atomic states involved in the Rydberg excitation. The atoms

are initially prepared in the ground state |g⟩ =
⏐⏐5S1/2,F = 2,mF = 2

⟩
. A two-photon

transition, off-resonant from the intermediate state |i⟩ =
⏐⏐5P1/2,F = 2,mF = 2

⟩
by

∆ = 2π × 740MHz, couples to the Rydberg state |r⟩ =
⏐⏐nD3/2,mj = 3/2

⟩
. As the

hyperfine structure of Rydberg states is smaller than the linewidth of the laser excitation,

we express the Rydberg state in the fine structure basis (level spacings are not to scale).

off-resonant two-photon excitation scheme instead (see Figure 2.3).

We couple the ground state |g⟩ to the Rydberg state |r⟩ =
⏐⏐nD3/2,mj = 3/2

⟩
,

with a detuning from the intermediate state |i⟩ =
⏐⏐5P1/2,F = 2,mF = 2

⟩
of ∆ =

2π × 740MHz, and single photon Rabi-frequencies ΩR and ΩB for the lower (red) and

upper (blue) transition respectively.

We choose to work with Rydberg D- instead of S-states, since they show stronger

optical coupling strengths, and larger Rydberg-Rydberg interactions, and the anisotropy

in the van der Waals interaction of D states can lead to interesting physics in

itself [Glaetzle et al., 2014]. In addition, we experimentally observe a strongly increased

dephasing of the Rydberg excitation when using S Rydberg state, that we so far

cannot explain.

Since for our laser parameters ΩR, ΩB ≪ ∆, we can describe our two-photon

excitation scheme as an effective one photon excitation of a two-level system, comprising

the ground state |g⟩ and the Rydberg state |r⟩, with an effective two-level Rabi
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Chapter 2: Exciting a single atom to a Rydberg state
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Figure 2.4: Rydberg excitation spectrum and Rabi oscillation. The plots show typical

measurements for a Rydberg excitation, in this case of the
∣∣55D3/2〉 state. (a) Rydberg

excitation probability when scanning the laser detuning from the two-photon ground-

Rydberg resonance. (b) The Rydberg excitation probability as a function of the excitation

time for δ = 0, showing the typical Rabi oscillation between the ground and Rydberg state.

For each data point, the experiment was repeated ∼ 100 times.

frequency and detuning given by

Ω =
ΩRΩB

2Δ

δ = δ2ph −
(
Ω2

R

4Δ
− Ω2

B

4Δ

)
.

(2.9)

Two typical experiments to measure the parameters of the light-atom interaction

with Rydberg states on a single atom are shown in Figure 2.4. We usually perform an

experiment ∼ 100 times for each data point to reconstruct the populations in the

ground and Rydberg state. We can discriminate between ground and Rydberg atoms,

since an atom is lost from the experiment if it was in the Rydberg state at the end

of the excitation pulse, while it remains in its trap if it was in the ground state. A

detailed description of our Rydberg detection scheme is given in Chapter 4. For both

experiments, we start out with the atom in the ground state. Panel (a) shows the

probability of the atom to be excited to the
∣∣55D3/2

〉
Rydberg state, as a function of

the laser detuning δ from the effective two-photon resonance defined in Equation 2.9.

The solid line shows a fit to the data of the function

Pr(δ) = A+B
Ω2

Ω2 + δ2
sin

(τ
2

√
Ω2 + δ2

)2

, (2.10)

with A and B being empirical fit parameters to incorporate the small detection error

and the finite excitation efficiency (see Section 4.1.3 for details). Panel (b) again shows
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2.4 Driving coherent optical ground-Rydberg transitions

the Rydberg excitation probability, this time for a resonant excitation (δ = 0), as a

function of the excitation time. As one expects, the atom undergoes Rabi oscillations

between the ground and the Rydberg state. We typically work with optical Rabi

frequencies between 0.5MHz and 10MHz. Smaller frequencies are limited by the

maximum duration of our experiments of a few µs before we lose too many ground

state atoms (see Section 4.1.3), for larger frequencies the decay from the intermediate

state |i⟩ in the two-photon excitation gets too large.

We observe single atom Rydberg excitation efficiencies of more than 95%, which

is the highest contrast of the Rabi oscillations that we measure on our experiment.

The missing few percent in the contrast are due to an imperfect optical pumping to

the ground state |g⟩, and the spontaneous decay from the intermediate state in the

two-photon excitation, which depends on the detuning ∆ (which is fixed throughout

this thesis), and the single photon Rabi frequency ΩR of the first excitation step.

2.4.3 Excitation lasers

The light for the two-photon excitation is provided by two commercial lasers systems.

For the 795 nm light we use a TOPTICA DL100, giving a total power of ≃ 12mW at

the position of the atoms, for the 474 nm light we use a frequency doubling TOPTICA

TA-SHG-110 laser system, with ≃ 90mW seen by the atoms. Both laser systems are

frequency locked to a commercial ultra-stable ULE reference cavity from Stable Laser

Systems, with a specified finesse of ≥ 20 000 and a free spectral range of 1.5GHz.

By analysing the light reflected from the reference cavity we estimate laser linewidths

of < 10 kHz for both the red and the blue excitation laser on the timescale of a

few milliseconds. A linear drift of the cavity resonance was measured elsewhere to

be ∼ 10 kHz/day [Schauß, 2014], which is compatible with what we observe on our

experiment. A more detailed description of the laser lock can be found in the thesis of

Sylvain Ravets [2014], and a description of the laser optics and pulse shaping in the

thesis of Lucas Béguin [2013].

Since according to Equation 2.9 both the effective Rabi frequency and detuning are

dependent on the red and blue single photon Rabi frequencies, it is desirable to have

the excitation light intensities as homogeneous as possible over a 2D array of atoms.

We therefore use concave-convex cylindrical telescopes to magnify both beams by a

factor ∼ 4 in the axis which is parallel to the atomic plane, before focusing the red

beam with an f = 750mm plano-convex lens, and the blue beam with an f = 300mm

lens doublet (see Figure 2.5).
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Figure 2.5: Shape of the excitation beams. (a) Sketch of the elliptical Rydberg

excitation beams to ensure a homogeneous light intensity of both the 795 nm and

the 474 nm beam even over large 2D arrays of single atoms in the yz-plane. For a

typical Rydberg excitation experiment, with n = 80 and single photon Rabi frequencies

ΩR = 146MHz and ΩB = 32MHz, the expected variations of Rabi frequency (b) and

light shift (c) are shown for a 50× 50μm2 area in the atom plane.

By measuring the two-photon Rabi frequency between the ground and a Rydberg

state for different positions of a single atom in the focal plane of the aspheric lens, we

determined 1/e2-radii of w
(x,z)
R = (70, 230)μm for the red and w

(x,y)
B = (17, 47)μm for

the blue beam. With these measured beam parameters we expect variations of the

effective Rabi frequency below 30%, and variations of the light shift below 10 kHz,

in a 25× 25μm2 square in the atomic plane (see Figure 2.5(b,c)). These remaining

inhomogeneities, especially in the Rabi frequency, are due to the still relatively small

waist wy
B of the blue beam. Having chosen a larger waist would have meant a lower

overall intensity of the blue light, thus smaller achievable Rabi frequencies. Choosing a

higher aspect ratio while keeping the same peak intensity would have led to a very

small wx
B, which would be difficult to achieve due to possible aberrations when focusing

the beam through the viewport. In addition, the beam would be difficult to align on

the atoms and its position would have to be kept stable on a μm scale over several

days.
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2.5 Driving coherent microwave Rydberg-Rydberg transitions

(a) (b)

Figure 2.6: Realisation of Rydberg-Rydberg microwave transitions. (a) We first

optically excite a ground state atom to a |d⟩ =
⏐⏐nD3/2

⟩
Rydberg state. We turn off

the optical light field, and use microwave radiation to drive transitions e.g. to a |p⟩ =⏐⏐(n + 1)P1/2
⟩
state. (b) As our microwave field is unpolarised, we need the microwave

coupling ΩMW to be smaller than the Zeeman splitting ∆ in order to be in the two-level

regime.

2.5 Driving coherent microwave Rydberg-Rydberg transitions

In addition to driving coherent ground-Rydberg transition, it is also possible to drive

coherent population transfers in the Rydberg manifold itself. The frequencies of these

Rydberg-Rydberg transitions are typically a few to a few tens of GHz, making them

convenient to drive with microwave fields from a standard microwave synthesiser. In

our setup, we use a Rohde & Schwartz SMA100A microwave generator, connected to a

simple antenna consisting of a 5mm long end of a wire, positioned outside the vacuum

chamber, just above a large viewport and about 20 cm away from the atoms. Due to

the metallic parts of the aspheric lens mounts close to the atoms, which have spacings

comparable to the microwave wavelength, the polarisation of the microwave field at

the position of the atoms is unknown and is likely to have both circular and linear

components.

To drive a single atom Rydberg-Rydberg transition, we first coherently excite the

atom to a |d⟩ =
⏐⏐nD3/2

⟩
Rydberg state by sending an optical π-pulse as described in

Section 2.4.2. We then send in a coherent microwave pulse to transfer the population

to another Rydberg state. Since we want to restrict the microwave transfer to a

two-level process, it is convenient to drive microwave transitions to P states (see

Figure 2.6(a)), which have a fine-structure splitting of a few hundred MHz, compared to

a fine-structure splitting of around one MHz for F states. As we assume the microwave

field to be unpolarised, we need the Zeeman splitting of the
⏐⏐nD3/2

⟩
state ∆B to
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Figure 2.7: Microwave excitation spectrum and Rabi oscillation. We probe the

microwave transition between the |d〉 =
∣∣62D3/2〉 and the |p〉 =

∣∣63P1/2〉 states. The

atom is initially prepared in the |d〉 state. Probability Pd to find the atom in |d〉 as a
function of (a) the detuning from resonance δMW after sending a 0.1μs microwave pulse

(the absolute transition frequency is 9 131.6MHz), and (b) the microwave pulse length at

δMW = 0. We measure a Rabi frequency of ΩMW � 2π × 4.5MHz without seeing any

noticeable damping of the oscillation.

be larger than the microwave coupling strength ΩMW, in order not to transfer any

population into other Zeeman-sublevels of the D-state, as depicted in Figure 2.6(b).

To detect whether the atom was in the |d〉 or in another Rydberg state at the

end of the experiment, we again shine in another optical π-pulse which transfers

all population in |d〉 back to the ground state |g〉. If the optical down-transfer were

perfect, measuring the population in |g〉 would give the population in |d〉 at the end of

the experiment.

Figure 2.7 shows an experiment probing the microwave transition between the

|d〉 = ∣∣62D3/2

〉
and the |p〉 = ∣∣63P1/2

〉
state. In this case we have a Zeeman splitting

of ΔB ≈ 7.5MHz for the D-state for our magnetic field of |B| = 6.6G. We use an

output power of the microwave synthesiser of about −15 dBm, with which we expect

a Rabi frequency of about 2π × 5MHz for the chosen states. Panel (a) shows the

final population in |g〉 after having shone in a microwave pulse with a 0.1μs duration,

as a function of the detuning δMW from the
∣∣62D3/2

〉 ↔ ∣∣63P1/2

〉
resonance. We
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2.6 Rydberg-Rydberg interactions

find an absolute value of ∆dp ≃ 2π × 9 131.6MHz, close to the calculated value of

2π × 9 131.5MHz using quantum defect theory.

For the same experimental parameters, we tune the microwave frequency to resonance,

i.e δMW = 0, and measure the final population in |d⟩ as a function of the microwave pulse

length. We fit the data by a damped sine, and find a Rabi frequency ΩMW ≃ 4.558MHz.

In contrast to the optical Rabi oscillation, we do not see any measurable damping

in the microwave driven Rabi oscillation. This is because we do not suffer from

the same sources of decoherence, namely that there is no short-lived intermediate

state involved in the transition, and the microwave synthesiser is extremely stable

both in frequency and in power. In addition, we can conclude that the microwave

field is mainly a combination of σ+ and σ− polarisation, as we do not seem to

couple to the
⏐⏐62D3/2,mj = +1/2

⟩
state. If we increase the Rabi frequency such

that ΩMW ≈ 2∆B ≈ 2π × 15MHz, we indeed do see a strong damping of the Rabi

oscillation as we now start to transfer a significant amount of the population into

different Zeeman-sublevels of the |d⟩ state as described above. The finite contrast

of the oscillation is fully attributed to the finite optical excitation and de-excitation

probability.

2.6 Rydberg-Rydberg interactions

The principal motivation to use Rydberg states are their large interaction strengths.

For two Rydberg atoms separated by a few µm, which is the typical interatomic

separation in the experiments in this thesis, the Rydberg-Rydberg interaction is

usually in the order of MHz and thus more than 10 orders of magnitude larger than the

interaction between two ground state atoms at the same distance [Saffman, Walker,

and Mølmer, 2010]. Moreover, one can easily tune the strength of the interaction by

choosing Rydberg states with different principal quantum numbers, or by changing

the distance between the atoms.

Due to the large transition dipole matrix element between Rydberg states, the

dominant interaction between two Rydberg atoms is by far the dipole-dipole interaction,

as long as the atomic separation is larger than the extend of the electronic wave

function, i.e. |R| ≫ n2a0. In a quantum mechanical picture, the interaction between

two Rydberg atoms is described by the dipole-dipole interaction operator

V̂dd(R) =
1

4πϵ0

(
d̂1 · d̂2

R3
− 3(d̂1 ·R)(d̂2 ·R)

R5

)
, (2.11)
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Figure 2.8: Schematic energy levels of atomic pair states. (a) Both atoms prepared

in the state same state |Φ0⟩ = |ϕ0ϕ0⟩, which is coupled by the dipole-dipole interaction

to a state |Φ1⟩ = |ϕ1ϕ2⟩ with an energy difference ∆. (b) The atoms are prepared in two

different Rydberg states, |Φ0⟩ = |ϕ0ϕ1⟩, which is degenerate and thus resonantly coupled

to |Φ1⟩ = |ϕ1ϕ0⟩, where the atoms have exchanged their Rydberg states.

where d̂1 and d̂2 are the electric dipole moment operators of atom one and two

respectively, R the vector connecting the two atoms and R = |R|.

Since the internal electronic dynamics of Rydberg atoms typically happens much

faster than their external dynamics, i.e their motion, we can treat the atomic cores as

fixed in space when calculating the eigenenergies of the interacting system. When

the atomic separation is larger than the spatial extend of the electron wave function,

which is always the case in the experiments presented in this thesis, the two-atom

Hamiltonian can be written as

Ĥ = Ĥ1 ⊗ 1+ 1⊗ Ĥ2 + V̂dd(R), (2.12)

where Ĥ1 and Ĥ2 are the free atom Hamiltonians of the two atoms.

In order to find the eigenenergies of the interacting two-atom system, one can

diagonalise the Hamiltonian numerically. In theory one needs to take into account

all possible atomic pair states for the interaction. However, only pair states that are

energetically close to the original state contribute significantly to the interaction.

Here, in order to gain qualitative insight into the different regimes of the dipole-dipole

interaction, we will consider a simple model system of two atoms with only two possible

pair states |Φ0⟩ and |Φ1⟩, as shown in Figure 2.8. In the pair basis {|Φ0⟩ , |Φ1⟩}, the

32



2.6 Rydberg-Rydberg interactions

Hamiltonian of the system is given by

Ĥ =

(
0 V0/R

3

V0/R
3 ∆

)
, (2.13)

with V0/R
3 = ⟨Φ1| V̂dd(R) |Φ0⟩ being the dipole-dipole coupling strength between the

two pair states, and ∆ their energy difference. The eigenenergies of the system are

given by

E± =
1

2

(
∆±

√
∆2 + 4V 2

0 /R
6

)
. (2.14)

We see that the eigenenergies depend strongly on the distance R between the atoms,

and one can identify two very distinct regimes of the interaction.

r van der Waals interaction (V0/R
3 ≪ ∆):

Let us first consider the case where both Rydberg atoms are initially in the same

state, e.g. |Φ0⟩ = |φ0φ0⟩, where φi are the atomic states in the single atom basis,

as shown in Figure 2.8(a). In most cases, the dipole-dipole coupling strength

V0/R
3 for interatomic distances presented in this thesis is much smaller than the

energy difference ∆ between the different atomic pair states, so the interaction

can be treated as a small perturbation on the eigenenergies of the non-interacting

pair states. The eigenenergies of Equation 2.14 can therefore be approximated by

E+ ≃ ∆+
C6

R6
and E− ≃ −C6

R6
,

with C6 = V 2
0 /∆, leading to the well-known van der Waals interaction with its

R−6 scaling, and increasing with the principal quantum number as C6 ∼ n11.

For typical experimental parameters in our experiment, with the principal

quantum number n ranging between 50 and 100, and interatomic distances

between 3 and 10 µm, the interaction strengths in the van der Waals regime can

range from a few kHz to hundreds of MHz. This demonstrates the versatility of

Rydberg atoms, as it is easily possible for us to tune the interaction strength

between the atoms by a few orders of magnitude only by changing the position

of the atoms or their principal quantum number3. The van der Waals interaction

3For lower principal quantum numbers the finite lifetime of the Rydberg atoms becomes non-
negligible for the timescales of our experiments, whereas for higher ones it gets more and more
difficult to compensate stray electric fields to a satisfactory level, as the polarisability of the
Rydberg states grows with (n∗)7 and gets very large for high lying Rydberg states.
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Chapter 2: Exciting a single atom to a Rydberg state

is the only relevant interaction in the experiments presented in this thesis except

for Chapter 7, as we always couple all the atoms to the same Rydberg state.

r Resonant dipole-dipole interaction (V0/R
3 ≫ ∆):

The second interaction regime occurs when the dipole-dipole interaction couples

two pair states resonantly, i.e. the energy difference ∆ is zero or negligible

compared to the dipole-dipole coupling strength V0/R
3. The eigenenergies of the

pair state from Equation 2.14 then simplify to

E± ≃ ± V0
R3

= ±C3

R3
, (2.15)

with V0 = C3, showing the typical R−3 scaling of the resonant dipole-dipole

interaction. The condition ∆ ≃ 0 can be achieved in two different ways.

Förster resonance: If both atoms are initially in the same Rydberg states, as

shown in Figure 2.8(a), it is still possible to find cases where the interaction

is dominated by the resonant dipole-dipole interaction. This is the case if the

initial pair state is near-degenerate with a second pair state where both atoms

have a different Rydberg state, and both states are coupled via the dipole-

dipole interaction. In general, there exist very few pair states in nature that

fulfil this condition. One can, however, tune two quasi-degenerate pair states

into resonance, for example by applying an electric field [Walker and Saffman,

2005; Anderson, Veale, and Gallagher, 1998; Mudrich et al., 2005], as we have

demonstrated in [Ravets et al., 2014, 2015]. Using electric fields, it is even

possible to find degenerate triple-states, as was demonstrate recently by Faoro

et al. [2015].

Excitation transfer: If the two atoms are in two different Rydberg states, i.e.

|Φ0⟩ = |φ0φ1⟩, there exists another degenerate4 pair state |Φ1⟩ = |φ1φ0⟩ where
the atoms have exchanged their states, depicted in Figure 2.8(b).

The two states are thus coupled resonantly by the dipole-dipole interaction,

as now ∆ = 0, and the system will oscillate between |Φ0⟩ and |Φ1⟩ with a

frequency C3/(hR
3), as we have shown in [Barredo et al., 2015]. The pair

state |Φ0⟩ is naturally still coupled to other off-resonant states by the van der

Waals interaction, but if ∆n = |n1 − n0| ≈ 0 then the resonantly coupled state

completely dominates the interaction and the van der Waals interaction can

usually be neglected.

4Assuming the absence of spatially varying electric or magnetic fields.
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2.7 Conclusion

The effect of the resonant dipole-dipole interaction will be discussed briefly in

Chapter 7.

2.7 Conclusion

In this chapter we presented the setup to trap a single atom in a microtrap created by

the focus of an optical dipole trap beam, and coherent excitation scheme to couple the

atom to a Rydberg state. The strong interaction between Rydberg atoms make them

an ideal tool to engineer strongly interacting many-body quantum systems in the

laboratory. In order to achieve this goal, we need to create not only one, but large

arrays of single-atoms traps. In the following chapter we will see how we can create

arrays of microtraps in arbitrary 2D configurations by manipulating the phase of our

dipole trap beam.
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Chapter 3
Generation of arbitrary 2D arrays of
optical dipole traps

In order to study the many-body physics of interacting Rydberg atoms, it is necessary

to multiply the number of microtraps. In the Rydberg physics community, multiple

approaches have been taken to create arrays of atomic traps containing either one or

an ensemble of atoms. The techniques used range from simply using multiple dipole

trap beams [Béguin et al., 2013; Hankin et al., 2014; Ebert et al., 2015] to optical

lattices [Schauß et al., 2012] and arrays of microtraps created by fixed optics [Maller

et al., 2015].

A drawback of those approaches is the lack of flexibility in the arrangement of

the atoms. One possibility to overcome this limitation is the use of a spatial light

modulator (SLM) to either imprint an intensity pattern on the Rydberg excitation light

[van Bijnen et al., 2015], or to create reconfigurable arrays of microtraps [Bergamini

et al., 2004; Kruse et al., 2010; Schlosser et al., 2011; Nogrette et al., 2014].

For the work of this thesis we chose the latter approach, ‘cloning’ the single microtrap

by imprinting an appropriate spatial phase on the dipole trap beam, allowing us to

create up to ∼ 100 traps in easily reconfigurable 2D geometries.

This chapter is based on our publication [Nogrette et al., 2014]. We will first discuss

the principle of manipulating the spatial phase of a Gaussian beam to change its

intensity distribution in the focal plane of a lens in Section 3.1. In Section 3.2 we

present the actual implementation in the experiment. Finally, we will see how we use

the SLM to correct for aberrations of the trapping beam in Section 3.3, and the use of

a closed feedback loop to achieve uniform trap intensities in Section 3.4.

3.1 Spatial phase manipulation of a Gaussian beam

Holography was originally intended to record both the intensity and the spatial phase

information of a light field [Gabor, 1948]. Only later the technique was used to actively
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manipulate the light-intensity distribution, typically by using a transparent optical

element with a spatially varying index of refraction, and uniform absorption. Such

elements have to be specifically fabricated for a certain desired intensity pattern.

A major evolution of the field was thus the emergence of digital holography and the

use of liquid crystal devices called spatial light modulators (SLMs) [Osten, 2006],

allowing the dynamic manipulation of the spatial phase of the light field. SLMs are

arrays of pixels consisting of bi-refringent liquid crystals, similar to those found in

liquid crystal displays. Each pixel can introduce a polarisation-dependent phase shift

to either a reflected or transmitted light field, depending on the type of SLM, with a

magnitude that can be controlled for each pixel independently. It is therefore possible

to control the local phase of the light field with a resolution equal to that of the pixel

array of the SLM.

There are two different types of SLMs, optically-addressed spatial light modulators

(OASLMs) and electrically-addressed spatial light modulators (EASLMs), the difference

being that the former one uses a control light field to imprint the phase information

on the pixel array, the latter one by applying a computer controlled electric field to

each pixel. For our experiment we use an EASLM, which we will from now on only

refer to simply as SLM. Nowadays SLMs are commercially available with resolutions

up to several megapixels, with a resolution of the phase shift better than 2π/100 on

each pixel and refresh rates of up to more than 100Hz.

SLMs have seen various applications in physics research, ranging from the manipu-

lation of angular momentum states of light [Curtis and Grier, 2003; Gibson et al.,

2004; Bozinovic et al., 2013], trapping of polarisable particles [Grier, 2003], aberration

correction in astronomy [Hardy, 1998], laser pulse shaping [Weiner, 2000], to the

manipulation of degenerate quantum gases [Boyer et al., 2006; Becker et al., 2008] and

creating exotic trap potentials for them [Gaunt and Hadzibabic, 2012].

For all above mentioned applications it is crucial to find an appropriate phase to

imprint on the light field in order to create the desired intensity distribution. One way

this can be achieved will be detailed in the following two subsections.

3.1.1 Optical phase modulation using a spatial light modulator

We will now discuss the working principle to create a desired intensity distribution of

a light field in the focal plane of a lens by altering the spatial phase of a Gaussian

beam. The most simple use of an SLM is shown schematically in Figure 3.1. Note that

the coordinate system (x, y, z) used to describe the light field for the SLM is different
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3.1 Spatial phase manipulation of a Gaussian beam

SLM lens focal plane

z x 

y 

Figure 3.1: Principle of the phase manipulation with an SLM. The SLM imprints

a chosen phase ϕ(x , y) onto the light field. Due to its finite size, the SLM effectively

acts as an aperture, but besides that does not alter the intensity of the light field. The

intensity distribution in the focal plane of a lens depends strongly on the spatial phase of

the collimated beam.

from the coordinate system of the actual experiment. A collimated Gaussian beam

with a uniform spatial phase and a real-valued amplitude Ain(x, y) = |Ain(x, y)| is
incident on the SLM. We assume the SLM to act as a rectangular aperture, with the

size Lx × Ly of the SLM, which modifies the phase of the beam at position (x, y) by

an amount φ (x, y). Immediately after the SLM the complex amplitude of the beam is

then given by

ASLM(x, y) = Ain(x, y)e
iφ(x,y) rect

(
x

2Lx

,
y

2Ly

)
, (3.1)

with rect(·) being the rectangular function making up for the finite aperture of the

SLM. When the beam is now focused by a lens of focal length f , its amplitude in the

focal plane is given by

Ãf(x̃, ỹ) = F [ASLM(x, y)] x̃
λf

, ỹ
λf

. (3.2)

Here λ is the wavelength of the light field and F [·]µ,ν the Fourier transform at

frequencies µ, ν.

Since the result of the Fourier transform in Equation 3.2 can depend strongly on

the phase φ(x, y), we can drastically change the intensity distribution If = |Ãf|2 in the

focal plane of the lens by changing φ(x, y). The easiest way to achieve any arbitrary

intensity distribution in the focal plane would be to take the inverse Fourier transform

of
√
If, and modify the phase and the amplitude of the light field accordingly. This is

not applicable here since the SLM which we use in the experiment only allows the

manipulation of the phase φ, not the amplitude |A0|. It is therefore not possible,
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except for some trivial cases, to find a phase φ which will exactly give a desired target

intensity distribution It such that |Ãf|2 = It. However, it is possible to find phases φ

which will give a good approximation for any given desired intensity distribution in the

focal plane. A trivial case to manipulate the light field will be given in the following,

namely displacing the trap transversally with respect to the optical axis, before

detailing the Gerchberg-Saxton algorithm to find appropriate phases for arbitrary

target intensity distributions.

The most simple manipulation of the phase of the light field is to move a single trap

transversally in the focal plane. This is achieved in general by adding a tilt to the

wavefront of the laser beam, which can be achieved by adding with the SLM a phase

shaped as a blazed grating of the form

φ(x, y) =

(
2π

Λx

x+
2π

Λy

y

)
mod 2π, (3.3)

where Λx and Λy are the fringe periods of the grating in x- and y-direction. Such

a grating can be superimposed on any phase on the SLM in order to shift the

intensity distribution as a whole transversally in the focal plane of the lens by a

quantity (∆x, ∆y) = (fλ/Λx, 1/fλ/Λy), f being the focal length of the lens and λ the

wavelength of the light.

Furthermore, we can display any analytically calculable phase on the SLM. A simple

example is to display two areas of constant phase with a π phase jump between

them, changing the Gaussian beam from a TEM00 to a TEM01 mode. In the focal

plane, this will lead to two sharply separated traps with a peak-to-peak distance of

∼ 1.6µm. This is the fundamental limit of how close we can bring two traps together.

Preliminary experiments showed that the atom-loss probability is significantly increase

for such a small distance, but nevertheless allowed us to perform a two-atom Rydberg

experiment.

3.1.2 The Gerchberg-Saxton phase retrieval algorithm

In order to create arbitrary intensity distributions in the focal plane of a lens

with a phase-only SLM, the algorithm of choice is usually the Gerchberg-Saxton

algorithm [Gerchberg and Saxton, 1972], which is explained schematically in Figure 3.2.

It was originally developed to retrieve the phase information of an electron beam from

its intensity distribution. It can however also be used to find an approximate phase for

a laser beam to generate a desired light intensity in the focal plane of a lens, which is
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z x

y

SLM plane lens's focal plane

incident
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constraint

target
intensity It
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Figure 3.2: Principle of the Gerchberg-Saxton algorithm. In the algorithm, the light

field is repeatedly propagated back and forth between the SLM plane and the focal plane by

Fourier and inverse Fourier transform. In each iteration n of the algorithm, the amplitude

in the SLM plane is replaced by the real incident amplitude A0, and the amplitude in the

focal by the target amplitude
√
It, keeping only the complex phase.

exactly what we are looking for to create arbitrary trap geometries with our SLM.

The principle of the GS algorithm is to virtually propagate the light field back

and forth between the plane of the SLM and the focal plane of the lens, iteratively

converging towards an appropriate phase to create a given intensity distribution. Since

we work in the far field regime, the light field propagation can be done by Fourier and

inverse Fourier transform [Goodman, 1996]. One iteration of the algorithm looks as

follows:

r We start out with the actual real amplitude of the light field Ain, which in our

case is a Gaussian beam having passed through an aperture the size of the SLM.

r The light field is propagated to the focal plane of the lens by Fourier transform,

giving us the amplitude Ã and the phase φ̃ of the focused beam.

r In the focal plane, we replace the calculated amplitude Ã by the amplitude of

the target intensity distribution
√
It, while keeping the calculated phase φ̃.

41



Chapter 3: Generation of arbitrary 2D arrays of optical dipole traps

r We propagate the light field back to the SLM plane by inverse Fourier transform.

r The calculated amplitude in the SLM plane is now replaced by the actual real

amplitude Ain of the incident light field, while keeping again the calculated

phase φ.

r We repeat the algorithm until the calculated amplitude in the SLM plane |Ãeiφ̃|2
does not evolve anymore, usually after a few tens of iterations.

Note that this algorithm only converges to an approximation of the targeted intensity

distribution It, as we are not able to manipulate the amplitude of the light field.

In fact, there exist a large number of different phases that lead to equally good

approximations of It. As the algorithm is completely deterministic, the phase which

is finally found only depends on the initial implementation of the algorithm1. The

numerical implementation of the Gerchberg-Saxton algorithm will be detailed in the

following Section.

3.1.3 Phase retrieval on a discrete grid

In order to calculate an appropriate phase pattern to create a specific microtrap

array, we need to implement numerically the Gerchberg-Saxton algorithm presented in

the last subsection. For this we first have to discretise the light field, as depicted in

Figure 3.3, by describing its complex amplitude A(x, y)eiφ(x,y) in the SLM plane by a

matrix, of dimension Nx ×Ny, with each entry of the matrix standing for the complex

amplitude of the light field in a region of size ∆x ×∆y, giving a total physical size of

the discretised light field of Lx × Ly = Nx∆x ×Ny∆y. Likewise, we describe the field

in the focal plane by a matrix of the same dimension Nx ×Ny, but with different sizes

∆̃x × ∆̃y of the matrix entries and a total physical size L̃x × L̃y = Nx∆̃x ×Ny∆̃y.

Following the thesis of van Bijnen [2013], we will call ∆x ×∆y an SLM unit and

∆̃x × ∆̃y a focal unit. They are important dimensions in the numerical treatment of

the light field, and are related by

∆̃x × ∆̃y =
λf

Lx

× λf

Ly

(3.4)

L̃x × L̃y =
λf

∆x

× λf

∆y

, (3.5)

1We initialise the algorithm with an initial random phase φin of the light field in the SLM plane.
The finally obtained phase is thus slightly different for each initial phase.
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SLM lens focal plane
f 

z 
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y 

Figure 3.3: Illustration of the spatial dimensions in the SLM and focal plane.

When treated numerically, the amplitude ASLM(x , y)e
ϕ(x ,y) is described by a Nx × Ny

matrix, with each entry giving the amplitude for a region of size Δx × Δy , so that the

entire array has the size Lx × Ly = NxΔx × NyΔy . In the focal plane of a lens with focal

length f , the matrix has the same number of entries, but now each entry stands for a

region of different physical size Δ̃x × Δ̃y , with Δ̃x ,y = λf /Lx ,y , λ being the wavelength of

the light field.

with λ the wavelength of the light field and f the focal length of the lens.

To understand the effect of the pixelation, we first approximate the continuous light

field in the SLM plane as a sum of delta-peaks,

ASLM(x, y) �
Nx−1∑

k

Ny−1∑
l

δ(x− kΔx)δ(y − lΔy)Ain(kΔx, lΔy)e
iϕkl . (3.6)

Here Ain is the amplitude in the SLM plane, (kΔx, lΔy) the physical coordinates of

pixel (k, l) and ϕkl the phase delay of that pixel which is imprinted on the incoming

light field Ain(x, y). We now propagate the light field by Fourier transforming the

above equation according to Equation 3.2. The amplitude of the light field in the focal

plane of the lens, on a grid of focal units Δ̃x, Δ̃y, is then given by

Ãf(mΔ̃x,nΔ̃y) =

Nx−1∑
k

Ny−1∑
l

Ain(kΔx, lΔy)e
iϕkle−2πi(km/Nx+ln/Ny), (3.7)

with m ∈ [0,Nx − 1] and with n ∈ [0,Ny − 1]. This shows that the amplitudes of the
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light fields are related by discrete Fourier transform (DFT):

Ãf,nm =
[
DFT[ASLM]

]
nm

=

Nx−1∑
k

Ny−1∑
l

ASLM,kle
−2πi(km/Nx+ln/Ny), (3.8)

with the amplitude just after the SLM being

ASLM,kl := Ain(kΔx, lΔy)e
iϕkl , (3.9)

and the amplitude in the focal plane

Ãf,nm := Ãf(mΔ̃x,nΔ̃y). (3.10)

We see that the pixel size of the discretised amplitudes are the SLM unit and

the focal unit respectively when taking the definition of Equation 3.4. This has two

important implications: (i) To increase the accessible region size in the focal plane

L̃x × L̃x, one needs to increase the resolution in the SLM plane, i.e. decrease Δx ×Δy

while keeping Lx×Ly constant. (ii) To increase the spatial resolution in the focal plane,

one needs to increase the SLM size Lx × Ly, while keeping its resolution constant.

3.2 Implementation of the SLM in the experiment

In the previous section we saw how it is possible to achieve arbitrary intensity

distributions of a Gaussian beam in the focal plane of the lens by only manipulating

its phase before focusing the beam with a lens of focal length f . In this section, we

will show how we implemented the SLM in our experiment, with the goal of creating

arbitrary 2D arrays of microtraps for single-atom trapping.

We use a Hamamatsu X10468-02 liquid crystal on silicon (LCOS) SLM. It has a

792× 600 pixel resolution controlled by a computer via an 800× 600 DVI signal (in

the longer direction, the outer 4 pixels of the signal on each side are not used), with

an 8 bit ‘dynamic phase range’ and a pixel size of 20× 20μm2. The effective size of

the SLM chip is 15.8× 12mm2, with a fill factor of the pixels of 98%.

The pixel value to achieve a 2π phase shift compared to a pixel value of 0 depends

on the wavelength of the light field. For our 850 nm trapping light, a 2π phase shift is

achieved with a pixel integer value of 223 (see Figure 3.4(a)). We can thus manipulate

the phase with a 2π/223 resolution.

As the SLM diffraction efficiency depends strongly on the polarisation of the incident
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Figure 3.4: Characteristics of our Hamamatsu X10468-02 SLM. (a) The phase shift

on the light field as a function of the grey level value displayed on the SLM (data from

Hamamatsu). (b) Intensity modulation of a light field with a misaligned polarisation when

applying a uniform phase shift on the SLM (the fit gives a (3.9± 0.1)π applied phase shift

period). (c) Response of the light field when using the SLM to hide (τoff = 37.7ms) and

unhide (τon = 17.7ms) the light, by displaying and hiding a blazed grating which moves

the sp. (d) Diffraction efficiency of the SLM vs. the spatial frequency of an displayed blazed

grating which moves the focus such that it is blocked by an aperture. (e) Displacement

of the focal spot as a function of the spatial phase frequency of a displayed blazed

grating (points) and the expected displacement (line).

light field, the SLM can act as a waveplate, with a polarisation rotation depending on

the displayed phase, thus distorting the polarisation of the diffracted light field. For a

misaligned polarisation, the intensity of the diffracted light field measured after a

polarisation analyser will thus depend on the phase displayed on the SLM. For an

incident light field with slightly misaligned linear polarisation we detect an amplitude

modulation of ±10%, with a period equalling a phase shift of about 4π displayed on

the SLM (see Figure 3.4(b)). After proper alignment of the polarisation the amplitude

modulation is < 2%.
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Figure 3.5: Visualisation of the pixelation. (a) A given continuous phase, as the blazed

grating here, can only be approximated on the SLM due to the finite size of the SLM

pixels. (b) Discretised phase patterns with a low spatial frequency (left) resemble the

continuous phase more closely than one with a high spatial frequency (right). The SLM

therefore shows a higher diffraction efficiency for low-frequency phase patterns.

The response time of the SLM is limited by the 60Hz refresh rate of DVI protocol

used to control the SLM. To quantify the switching times of the SLM we alternatingly

display a blazed grating which displaces the diffracted beam such that it is blocked

by an aperture (see Figure 3.6), and another blazed grating grating which lets it

pass the aperture. The measured power of the light field right after the aperture is

displayed in Figure 3.4(c), showing that the switching times are close to the expected

(60Hz)−1 = 17ms (see Figure 3.4(c)). However, these switching times are far too

slow to dynamically change the SLM generated trap pattern during our Rydberg

experiments, which have a timescale of a few microseconds.

Finally, we also analyse the effect of the spatial frequency of the displayed phase

pattern on the reflected light field, by displaying blazed gratings with different

frequencies on the SLM and measuring the diffraction efficiency, shown in Figure 3.4(d-

e). The diffraction efficiency decreases with the displayed spatial frequency, because a

rapidly-varying continuous phase can no longer be well approximated by the pixelated

SLM, as depicted in Figure 3.5. The measured diffraction efficiency decreases roughly

linearly with the spatial frequency, being about 66% for a spatial frequency of

0.1× 2π/pixel. For comparison, the typical spatial frequency of a phase pattern to

create a 10× 10 trap array with a 4µm trap spacing is about 0.03× 2π/pixel, which

would correspond to a diffraction efficiency of still about 90%.
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Figure 3.6: Optics setup for the SLM. (a) The Gaussian laser beam, coming from a

single mode fiber, is reflected off the SLM, after which it passes through a telescope,

reducing the beam from a 6mm to a 5mm 1/e2-radius. The inset (b) illustrates the use

of the telescope, imaging the SLM plane onto the aspheric lens aperture, reducing the

effect of clipping on the lens for traps that are not lying on the optical axis (distances not

to scale).

3.2.1 Optics setup

The setup of the optics used to manipulate the phase and focus the dipole trap beam

in order to create 2D arrays of microtraps is shown in Figure 3.6. For the experiments

presented in this thesis we used a Toptica TA Pro diode laser with a tapered amplifier

at a wavelength of 850 nm as a light source. By now the laser has been replaced by a

Ti:sapphire laser to achieve a higher output power, thus allowing larger number of

microtraps in the arrays.

We start out with a beam coming from a single mode, polarisation maintaining

optical fiber, with a 6.7mm 1/e2 radius, clipped by a circular iris with a 12mm

diameter to adapt the beam size to the size of the SLM aperture. We then use a

polarising beamsplitting cube (PBS) to have a clean polarisation of the beam, and a

half-wave plate (λ/2) to adapt the polarisation of the light field to the SLM, as its

diffraction efficiency depends strongly on the polarisation of the incident light field.

After the SLM we use an achromatic telescope with an m = −10/12 transverse

magnification to adapt the beam size to the D = 10mm aperture of the aspheric lens

used to focus the beam in the vacuum chamber. The distances between the SLM and
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Chapter 3: Generation of arbitrary 2D arrays of optical dipole traps

the telescope and the aspheric lens were chosen such that the telescope conjugates

the plane of the SLM with aperture of the aspheric lens, as shown in Figure 3.6(b).

This avoids that light which creates off-axis traps is clipped by the aperture of the

aspheric lens. For example, due to the relatively long distance between the SLM

and the aspheric lens of ℓ ≃ 500mm, a beam that focuses δ = 20µm off the optical

axis would hit the aspheric lens about 1mm off-axis. In the implementation of the

Gerchberg-Saxton algorithm the telescope can be omitted, if we replace the focal

length f of the lens by a lens with an effective focal length feff = f/|m| = 12mm.

An aperture placed in the focus of the telescope allows to block certain parts of a

trap array, as well as all the non-diffracted light.

A Zemax calculation, with a flat mirror replacing the SLM, has been performed to

check the quality of the optical setup, giving a Strehl ratio, i.e. the calculated peak

intensity in the focus of the aspheric lens over the theoretical peak intensity for a

diffraction-limited system, of S ≥ 0.88 over a 20× 20µm2 field in the focal plane.

3.2.2 Numerical implementation

We now describe how we implemented the Gerchberg-Saxton algorithm to calculate

phase patterns for the experiment using Matlab, discretising the light field as a matrix,

as described in Section 3.1.3. The physical size ∆x ×∆y of each entry in the matrix is

given by the actual SLM pixel size ∆x = ∆y = 20µm. The number of entries in the

matrix can be chosen freely, as long as it is larger than the 600× 792 pixel resolution

of the SLM. Note that calculating fast Fourier transforms (FFTs) is much faster with

array sizes of a powers of two [Cooley and Tukey, 1965; MathWorks, 2015].

As the target image, i.e. the desired intensity distribution in the focal plane It in

Figure 3.2, we use an empty matrix, and add traps by setting the pixel which is closest

to the trap maximum to a value corresponding to its relative intensity, and normalise

the matrix such that the sum of all pixels equals 1. From the calculated Nx × Ny

phase matrix, we take the central 600× 792 pixels that correspond to the actual pixels

on the SLM, and use this a the phase pattern φarray to be displayed on the SLM.

According to Equation 3.4, taking a matrix with dimension Nx × Ny = 210 ×
210 = 1024 × 1024 to describe the light field would correspond to a focal unit size

of ∆̃x × ∆̃y ≃ 0.4 × 0.4µm2. We noticed that with such a large focal unit, the

spread of distances between the traps in a given trap array, measured on the CCD

camera, can be relatively high (see Figure 3.7, left panels). We thus increase the

matrix size in the numerical implementation of the Gerchberg-Saxton algorithm to
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Figure 3.7: Effect of the SLM focal unit size on a 5×1 trap array. (a) We set a

5×1 trap array with equal inter-trap spacings Δx = Δx1 = Δx2 = Δx3 = Δx4 as the target

image. For various target trap-spacings Δxtarget (light red vertical lines in d-g) we measure

the obtained trap spacings (black vertical lines in d-g), with the Gerchberg-Saxton loop

run for 40 iterations. We once use a 1024× 1024 matrix (b,d,f), and once a 4096× 4096
matrix (c,e,g) in the calculation, while keeping the physical size of the matrix entries

Δx × Δy in the SLM plane constant, thus increasing the resolution of the target image by

a factor 4, as shown in the sketch in (b,c).
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Figure 3.8: Computation times of the Gerchberg-Saxton algorithm. The timings

to run the Gerchberg-Saxton algorithm for 100 iterations decrease significantly when

running the code on a NVIDIA Quadro K2000 GPU (green lines) instead of an Intel

i5 4570 3.20GHz CPU (blue lines). The increase in calculation speed is even larger for a

4096× 4096 matrix size (b) than for a 1024× 1024 matrix size (a).

Nx × Ny = 212 × 212 = 4096 × 4096 entries, corresponding to a focal unit size of

Δ̃x × Δ̃y � 0.1× 0.1μm2, With this higher resolution for the target image, the created

trap arrays are closer to the given target image, with a smaller distance spread between

the individual traps (Figure 3.7, right panels).

The advantage of the increased focal plane resolution due to the larger matrices

used in the numerical calculation comes at the cost of an increased computation

time, which scales roughly with the number of entries in the matrices, from a few

seconds for a 210 × 210 grid to more than a minute for a 212 × 212 grid. To keep the

computation time at a feasible length for everyday use in the lab, in particular when

using the trap intensity feedback loop (described in Section 3.4), it is possible to

run the Gerchberg-Saxton algorithm on a graphics card (GPU), instead of the main

processor (CPU). The difference between the two processing units is that CPUs are

elaborate general purpose processors, optimised for running linear sets of instructions

very fast. GPUs on the other hand contain up to a few thousand simple processing

units, and are optimised to perform computations on these units in parallel [Texas

Advanced Computing Center, 2010].

As the FFT of a large matrix can be computed very efficiently in parallel, and

MATLAB offers a toolbox to conveniently run code on certain graphics cards, we

could reduce the computation time for calculating phase arrays by up to a factor
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flat
wavefront

aberrated
wavefront

microlens
array

discretised
curvature

Figure 3.9: Principle of a Shack-Hartmann sensor A Shack-Hartmann sensor consists

of a microlens array and a photon sensor (typically a CCD or CMOS chip). For a laser

beam with a flat wavefront (blue dotted lines), the foci of the individual microlenses lie on

their respective optical axis (grey dashed lines). The wavefront of an aberrated laser beam

(red solid lines) can locally be approximated by a plane wave with a tilted wavefront with

an angle Ωi . Each of the foci of the lens array is then displaced by δi = fΩi with respect

to the optical axis, f being the focal length of the lenses. One can therefore reconstruct

the wavefront by measuring the foci displacements δi .

seven when running the calculation on our GPU2 (see Figure 3.8). The 2GB memory

of the GPU limits us to a maximum matrix size of 212 × 212, which is sufficient for

our purposes, as larger matrices do not seem to further improve the quality of the

produced trap arrays.

3.3 Aberration correction

Even with a careful implementation of the SLM and the optical components to bring

the trapping light to the trapping region inside the vacuum chamber, the trap quality

in large trap arrays with a number of traps Ntraps ≳ 10 is no longer satisfactory (see

Figure 3.11(c)). This is due to aberrations of the trap beam introduced by the optical

components in the setup. These aberrations not only decrease the Strehl ratio of the

focused beam, thus decreasing the achievable trap depth for a given laser power.

They also invalidate the assumption in the calculation of the phase pattern of having

an ideal Gaussian beam with a flat wavefront, thereby reducing the quality of the

generated hologram. Especially for large trap arrays, which require more complex

phase patterns with higher spatial frequencies, the latter effect becomes critical.

2The computer to calculate the phase patterns has an Intel i5 4570 four-core 3.20GHz CPU and a
NVIDIA Quadro K2000 graphics card.
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Chapter 3: Generation of arbitrary 2D arrays of optical dipole traps

However, as aberrations are solely the deviations of the actual wavefront from the

ideal wavefront of a laser beam, we can easily correct for the aberrations using the

SLM, as soon as we know the deformation of the wavefront [López-Quesada, Andilla,

and Mart́ın-Badosa, 2009].

Correcting the non-flatness SLM chip surface

The most drastic aberration in the optical setup is introduced by the SLM itself.

In the calculation of the phase patterns, we consider the SLM as a perfect mirror.

Due to the manufacturing process though, its surface is slightly uneven. The SLM

manufacturer provided us with a phase pattern (which we will call φfactory, shown in

Figure 3.12), which corrects for this non-flatness. The SLM chip surface appears to be

slightly curved, with a peak-to-valley deviation of 2.4λ, with λ = 850 nm being the

wavelength of our trap laser.

This factory correction phase pattern φfactory is always added to the phase patterns

that we display on the SLM.

3.3.1 Correcting the aberrations of the optical components

Additional aberrations can be introduced to the trap beam by the remaining optical

components of our setup, whose arrangement is shown in Figure 3.6. In order to

measure the aberrations of the beam (with the factory correction phase pattern

φfactory already applied), we used a Shack-Hartmann sensor [Platt and Shack, 2001].

Such a device can reconstruct the wavefront of an incident laser beam by using a

microlens array and measuring the focus displacement of each microlens due to local

tilts of the wavefront (see Figure 3.9 for further explanations). In our case, we used a

commercial Imagine Optics HASO4 FIRST Shack-Hartmann sensor, with an aperture

of 3.6× 4.6mm2 and an array of 32× 40 lenses.

We analyse the wavefront aberrations by using a single trap, centred on the optical

axis of the aspheric lenses. For this the only phase displayed on the SLM is the

phase correction pattern φfactory to make up for the non-flatness of the SLM chip,

superimposed on a blazed grating φgrating to centre the trap on the optical axis of the

aspheric lens pair. We use an f = 200mm achromatic doublet lens between the vacuum

chamber and the Shack-Hartmann, to slightly focusing the beam to adapt its size to

the aperture of the latter (see sketch in Figure 3.10). The quadratic phase introduced

by the lens can be removed from the detected wavefront after the measurement.
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SLM

Figure 3.10: Measurement of the aberrations with the Shack-Hartmann sensor.

(Note: in this sketch we assume that only the two viewports introduce aberrations)

(a) The wavefront of the trap beam was measured with a Shack-Hartmann sensor behind

the vacuum chamber, using an f = 200mm doublet to adapt the beam size to the

Shack-Hartmann aperture. This measurement may introduce the following error: (b) if

significant aberrations are introduced by the second lens or viewport, they are also taken into

account when correcting them with the SLM. We might thus overcorrect the aberrations

at the position of the atoms.

It is convenient to express aberrations in the form of Zernike polynomials [Zernike,

1934; Born et al., 1999], a set of orthogonal functions on the unit disk3. The first

terms of the Zernike polynomials correspond to aberrations often observed in optical

tests, such as astigmatism, coma, etc. By fitting the Zernike polynomials to the

measured wavefront, one can therefore deduce the types of aberration present in the

optical path by looking at the coefficients of the respective terms. The measured

aberrations are shown in Figure 3.11(a) in terms of Zernike coefficients, giving a total

rms deviation from a flat wavefront of δrms = 0.15λ. Here we ignore the tilt and focus

terms, as they are only introduced by a tilt of the Shack-Hartmann itself and the

achromatic lens doublet before the Shack-Hartmann respectively4. Figure 3.11(b)

3The measured aberrations are discontinuous at the edge of the disk In order to avoid a phase-
discontinuity on the SLM, we run a Gaussian filter over the edge of the aberration correction
phase pattern, without altering the correction pattern itself.

4When using with the Shack-Hartmann without the achromatic doublet lens focus term is indeed
negligible.
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Figure 3.11: Aberration correction with the Shack-Hartmann. (a) The Zernike

coefficients of the wavefront of the trap beam as measured with the Shack-Hartmann.

Tilt and focus are ignored; higher-order coefficients are not shown, as they are much

smaller than the ones that are shown. (b) The aberrations of the trap beam, reconstructed

from the Zernike coefficients, with the beam dimension at the SLM. (c,d) Images of a

4× 4 trap array taken with a CCD camera placed after the vacuum chamber, without (c)

and with (d) the aberration correction phase pattern ϕaberration displayed on the SLM.

(e) Intensity profile along the bottom row of traps, integrated over a width of 3 pixels, as

indicated by the grey dashed lines in (c,d), without (orange) and with (blue) the aberration

correction. At the position of the Shack-Hartman, the rms deviation from a flat wavefront

is reduced from δrms = 0.15λ to δrms = 0.014λ.
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3.3 Aberration correction

Figure 3.12: Composition of the final phase displayed on the SLM. The combined

phase ϕtotal displayed on the SLM is made up of the phase patterns ϕarray creating the actual

array of traps, ϕgrating and ϕFresnel to move the pattern transversally and longitudinally

respectively if needed, ϕfactory to correct for the non-flatness of the SLM chip, and the

measured ϕaberration to correct for aberrations introduced by our optical elements. The

sum is calculated modulo 2π.

shows the reconstructed wavefront using the Zernike polynomials, for a beam size

corresponding to that at the SLM. We see that the main aberrations are astigmatism

and spherical aberration, which we attribute to the viewports of the vacuum chamber.

When subtracting the correction pattern (from now on called ϕaberration) from the

phase pattern displayed on the SLM the rms deviation from a flat wavefront after the

vacuum chamber is reduced by about a factor ten to δrms = 0.014λ.

Ideally, we would like to correct the aberrations at the position of the atoms, in

order to achieve the best trap quality. Unfortunately, we cannot access this position

without opening the vacuum chamber and removing the second aspheric lens. We

therefore place the Shack-Hartmann sensor and measure the wavefront directly after

the beam has passed through the vacuum chamber.

However, correcting the aberrations that we measure after the vacuum chamber

might overcorrect the aberrations at the focus of the aspheric lens, if significant

aberrations are introduced by the optical elements after the focus. This is illustrated

in the sketch shown in Figure 3.10: the aberration-correction phase pattern displayed

on the SLM subtracts the aberrations detected by the Shack-Hartmann from the trap

beam. The beam will therefore have a perfectly flat wavefront at the position of the

Shack-Hartmann, but may still have aberrations in the focus of the aspheric lens. As

we will see later, the aberration correction nevertheless improves the quality of the

traps significantly. The final composition of the various phase patterns to create the

trap array and correct for the aberrations is depicted in Figure 3.12.

We then replace the Shack-Hartmann sensor with a CCD camera in order to see the

effect of subtracting ϕaberration from a phase pattern creating a 4× 4 trap array. We

see that the quality of the trap array increases significantly (see Figure 3.11(c-e)).
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Chapter 3: Generation of arbitrary 2D arrays of optical dipole traps

When looking at a line profile along a row of the trap array, integrating over a width

of 3 pixels, we see that the peak intensity of the traps increases by about a factor 2.

We thus showed that we could significantly reduce the aberrations after the vacuum

chamber. This does not automatically imply that we actually improved the wavefront

at the focus of the aspheric lens. An independent measurement of the wavefront before

the vacuum chamber gives δrms = 0.05λ, showing that most of the aberrations are

indeed introduced by the vacuum viewports and/or the aspheric lenses. We therefore

used a single atom in the central trap of a 3× 1 trap array with a 4µm spacing, at the

focus of the aspheric lens to directly investigate the effect of the aberration correction

phase pattern φaberration on the trap itself by measuring the trap depth and radial

frequency of the atom in the trap.

3.3.2 Quantifying the effect of the aberration correction

The two important parameters here to characterise the microtrap are the trap depth U0

and the frequencies (ωr,ωz) with which the atom oscillates in the trap in radial and

longitudinal direction respectively. If we approximate the microtrap as an harmonic

potential, then these parameters are related by

ωr =

√
4U0

mw2
0

and ωz =

√
2U0

mz2R
, (3.11)

with m the mass of the particle in the trap, w0 the waist of the trap and zR = πw2
0/λ

the Rayleigh length with λ the wavelength of the trapping light.

Measuring the trap depth seen by a single atom

We first measure the depth of the trap as seen by the 87Rb atom. We follow the

same procedure as in [Béguin, 2013] which relied on the method introduced in

the thesis of G. Reymond [2002]. We make use of the fact that the excited state⏐⏐5P3/2,F
′ = 3,mF ′ = 3

⟩
is only marginally shifted in energy by the trapping light.

We can therefore quantify the light shift of the ground state caused by the micro-

trap by measuring the
⏐⏐5S1/2,F = 2,mF = 2

⟩
→
⏐⏐5P3/2,F

′ = 3,mF ′ = 3
⟩
transition

frequency [Darquié, 2005; Tey et al., 2008; Shih and Chapman, 2013], as all Zeeman

sub-levels of the 5P1/2 state are shifted equally in energy for our π-polarised trapping

light.

To measure the transition frequency, we shine σ+-polarised probe light on the atom
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Figure 3.13: Microtrap characterisation with a single atom. We use a single atom

trapped in a microtrap to verify that using the aberration correction phase pattern

ϕaberration (blue diamonds) actually improves the trap quality compared to the uncorrected

beam (orange circles) at the focus of the aspheric lens. (a) The trap depth U0/h as a

function of the power in the trap beam. The aberration correction increases the trap depth

by ∼ 50%. The solid lines are linear fits to the data through the origin. (b) We excite the

atom to a higher monopole mode of the trap, let the atom oscillate for a variable time

Δthold and measure the recapture probability after having switched the trap off again for a

few μs. Solid lines are fits by the empirical function y0 + Ae−Δthold/τ sin(2ωr Δthold). The
trap frequency increases by about 30% for the aberration corrected trap.

in the microtrap, and record the number of scattered photons as a function of the

probe light frequency. The shift of the resonance of the atom in the trap compared

to an atom in free space directly gives us the trap depth U0/h. The measured trap

depths are shown in Figure 3.13(a), for different trap beam powers per trap.

When fitting the measured light shifts by a linear function going through the origin,

we find

uncorrected: U0/Ptrap = h× 4.8
MHz

mW

aberration corrected: U0/Ptrap = h× 7.2
MHz

mW
.

(3.12)

The trap depth as seen by the single atom thus improves by ∼ 50% when correcting

for the aberrations.

Measuring the trap oscillation frequencies

The second important trap parameter is the frequency with which the atom oscillates

in the trap. The experiment to measure the transverse trap frequency [Reymond et al.,

2003] is explained in Figure 3.14 for the one dimensional case. We start the experiment

with a single atom in the centre of the microtrap. We switch the trap off for a time
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tr
ap

Figure 3.14: Sketch in 1D of the experiment to measure the trap frequency.

(a) We start the experiment with a single atom in the microtrap. (b) The trap is turned of

for a time δt1 = 4µs. (c) In this time, the atoms moves away from the trap centre due

to its finite initial velocity v0. When the trap is switched on again, the atom gains the

potential energy ∆U = 1/2mω2(v0 δt1)
2 (with ω the trap frequency and m the mass of

the atom). (d) We hold the atom for a variable time ∆thold during which the atom will

oscillate in the trap. When switching the trap off again, the atom has a kinetic energy

Ekin = (U0+∆U) (1−cos(2ω∆thold))/2. (e) After having turned the trap off a again for a

time δt2 = 12µs , the atom will have moved away from the trap by δx =
√
2Ekin/m · δt2.

The probability to recapture the atom will thus oscillate with twice the trap frequency ω.

δt1 = 4µs to excite it to a higher monopole mode in the trap. We keep the trap on for

a variable time ∆thold, during which the atom will oscillate in the trap. We then probe

the kinetic energy of the atom by looking at the probability to lose the atoms after

switching the trap off again for a time δt2 = 12µs. The loss probability is related to

the kinetic energy, and thus also oscillates with twice the trap frequency ω.

Here we can neglect the longitudinal motion of the atom, since with our trap beam

parameters, according to Equation 3.11, the relation between the radial and transversal

trap frequency is given by

ωz = λ/(
√
2πw0) · ωr ≃ 0.2ωr. (3.13)

For the chosen time δ1 = 4µs, the free expansion along the beam axis thus remains

small, and we can assume that we mainly excite a radial oscillation in the trap.

The result of the measurement is shown in Figure 3.13(b). A fit to the data with a
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damped sine gives the following radial trap frequencies:

uncorrected: ωr = 2π × 68.0 kHz

aberration corrected: ωr = 2π × 86.5 kHz
(3.14)

This corresponds to a 30% increase in the trap frequency, but is still almost 20% smaller

compared to sending the trap beam directly to the aspheric lens without the SLM, as

found by Lucas Béguin [2013] on the same setup with a single trap without the SLM.

This hints that the more complex setup with the SLM slightly increases the waist of

the microtraps.

Together with Equation 3.11 the measured increase in trap depth and frequency

shows that the trap waist w0 does not change when applying the aberration correction.

We however significantly increased the diffraction efficiency of the SLM, giving us

deeper traps for the same amount of light power, which in turn also increases the trap

frequency.

In principle, we could use the single atom measurements as a quality measure to try

to improve the trap quality even further, e.g. by using an evolutionary algorithm [Weise,

2009] on the Zernike coefficients. But as every data point in Figure 3.13 takes about

15 minutes to record, such an optimisation would be very time consuming and very

sensitive to possible slow drifts of experimental parameters as the excitation beam

intensity.

We tried however to use an aberration correction pattern which was constructed

using only half of the measured value of each Zernike coefficient, which would be the

‘correct’ correction if the two viewports would introduce equal aberrations. The result

was marginally worse than taking the full value of the measured Zernike coefficients

measured with the Shack-Hartmann.

For all the results shown in this thesis from here on, the aberration correction phase

pattern is subtracted from the phase displayed on the SLM.

3.4 Feedback for intensity homogeneity

Even when taking care when calculating the phase for a given target intensity

distribution, and taking into account the non-flatness of the SLM chip and the

aberrations introduced by the optics, the trap depths in the resulting trap array

can vary quite significantly from one trap to another, which is detrimental to the

experiment. Having traps that are too deep leads to a light shift so large that the
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trapped atom is shifted too far off-resonant from the MOT-light, and no longer scatters

enough photons to be detected efficiently. In too shallow traps on the other hand it

is no longer possible to trap atoms reliably over the duration of the experiment. It

is therefore important when creating trap arrays that all the microtraps have very

similar trap depths.

As an example we run the Gerchberg-Saxton algorithm for a 10× 10 square trap

array with a trap spacing of 4µm, where all traps have the same target intensity

It. The resulting trap intensities as measured with the CCD camera are shown in

Figure 3.15(b). We measure a rather large dispersion of trap intensities of ±19% rms,

with the most shallow trap having 61% and the deepest trap having 148% of the

mean intensity of the traps in the array.

The inhomogeneities in the trap depths that we see when measured with a CCD

camera after the vacuum chamber (see Figure 3.6) can have various causes:

1. The Gerchberg-Saxton algorithm fails to calculate a phase which gives exactly

equal trap intensities.

2. An imperfect diffraction of the light by the calculated phase pattern, e.g. due to

remaining aberrations in the optics setup.

Both of the above mentioned points occur in our experiment. The first point we

could easily correct for by adapting the target intensity in the numerical calculation

of the phase pattern. The second point can also be corrected for by measuring the

actual depth of the trap created by a given pattern with the CCD camera behind the

vacuum chamber, and adapting the pattern accordingly5.

We thus equalise the trap intensities measured on the CCD camera in the following

way (see Figure 3.15(a)). We run the Gerchberg-Saxton algorithm with the desired

trap array as the target intensity, starting out with a random phase in the calculation.

After a given number of loops, when the calculation has converged, we pause the

algorithm and display the current calculated phase on the SLM. We then measure

the trap intensity Ii of each trap i in the image recorded with the CCD camera, and

adjust its intensity in the target trap array as

I
′
i =

Ī

1−G
(
1− Ii/Ī

) , (3.15)

5Again, we could in principle also measure the trap depths by using single atom measurements, but
as the measurement of the homogeneity of trap depths would take in the order of 15-20 minutes,
the total duration of the optimisation would become intractable in day to day experiments.
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Figure 3.15: Feedback loop for trap intensity homogeneity. (a) For a given target

image, we run the Gerchberg-Saxton algorithm, pause it and display the current phase on

the SLM. We then analyse the trap intensities from this phase pattern as measured on the

CCD camera, and adapt the target trap intensities accordingly, making deep traps shallower

and shallow traps more intense in the target image. We then continue the Gerchberg-Saxton

algorithm with the updated target image. We repeat the intensity feedback until the

coefficient of variation of trap intensities has reached a satisfying level (∼ 2%), typically

after 5-10 feedback iterations. (b) The array after running the Gerchberg-Saxton algorithm

once. The histogram shows that the intensities as measured on the CCD camera have a

large spread, with a standard deviation of 19% of the mean. (c) The same array, this time

using the intensity feedback in the Gerchberg-Saxton. The standard deviation of the trap

intensities is reduced to 1.4%. The insets show the respective images recorded with the

CCD camera.
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Figure 3.16: Intensity variations on the trap-imaging CCD camera. (a) Intensity of

a single microtrap with constant power as measured on the CCD camera, scanned in steps

of 1μm in an area of 60× 60μm2 in the focal plane of the aspheric lens. We see intensity

fringes with a period of about 10μm and an rms around the mean of 5%. (b) Histogram

of the measured trap intensities in (a).

where Ī is the mean intensity of all traps in the CCD image and G and adjustable

gain factor in the feedback. This means that traps that are too weak get enhanced in

the target image, while traps that are too deep get dimmed, proportionally to their

ratio with the mean of the trap intensities. We then continue the Gerchberg-Saxton

algorithm with the updated target image6. The entire process of taking an image with

the CCD camera, measuring all individual trap depths, and adjusting the respective

trap intensities in the phase calculation, is done in an automated way by a computer.

After typically ∼ 5 intensity feedback iterations the standard deviation of the trap

intensities is reduced significantly to ∼ 1%, with the fastest improvement typically

achieved with G � 0.7. A larger gain overshoots the correction, leading to oscillations

of the trap intensities with the trap feedback iterations, while a smaller gain increases

the convergence time. Figure 3.15(c) again shows the 10× 10 trap array, this time

after having run the Gerchberg-Saxton including 20 intensity feedback iterations. The

standard deviation could be reduced to 1.4%, with the most shallow trap now having

96% and the deepest trap having 103% of the mean trap depth.

We recently became aware of spatial variation of the light intensity measured on the

CCD camera, which results in a spatial variations of the measured trap depths, even

for a a homogeneous trap array. The spatial intensity dependence of our CCD camera7

6After the implementation of the intensity feedback loop we realised that a similar technique was
already discussed in [Matsumoto et al., 2012].

7We use a The Imaging Source DMK 41BU02 monochrome industrial CCD camera with 8 bit A/D
dynamic range.
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3.5 Gallery of trap arrays

is shown in Figure 3.16(a). We scan a single microtrap with constant total power

in the transversal plane around the optical axis of the aspheric lens, and measure

its intensity on the CCD camera. We see an oscillating intensity variation of the

microtrap, with a period of about 10µm and an rms about the mean of about 5%

(see Figure 3.16(b)). The origin of these intensity variations is most likely due to an

internal interference of the trap beam in the microlens array in front of the CCD

chip (personal communication, The Imaging Source, 10/07/2015). However, the 5%

intensity variations only slightly broaden the detected distribution of trap depths of

Figure 3.15(b).

All the results presented in this chapter, the careful implementation of the SLM in the

setup, the aberration correction and the feedback loop for homogeneous trap intensities

were crucial to achieve high quality trap arrays with ≳ 5 traps for experiments

presented in the following Chapters of this thesis.

3.5 Gallery of trap arrays

With the methods described in this chapter, one can arrange single neutral atoms in

arbitrary geometries, and change the order with a simple click of the mouse on the

computer. We are able to generate trap arrays with spacings as low a 3µm, containing

up to ∼ 100 traps8.

Figure 3.5 shows a selection of traps arrays that we are able to generate in the lab.

We can simply arrange the atoms in one-dimensional chains, which we have used in

[Barredo et al., 2015], or in a ring (Figure 3.5(b)), realising a quasi-one-dimensional

system with periodic boundary conditions, to study transport [Heidrich-Meisner,

Honecker, and Brenig, 2007], thermalisation [Olmos, Müller, and Lesanovsky, 2010], or

phase transitions [Mattioli, Glätzle, and Lechner, 2015] in one-dimensional systems.

For experiments in 2D, we can generate large non-trivial lattices, from square to

triangular (Figure 3.5(d)), to hexagonal, kagome (3.5(e)) and ‘squagome’ (3.5(f))

lattices, e.g. to study the physics of graphene [Castro Neto et al., 2009] and phenomena

as frustration [Santos et al., 2004; Glaetzle et al., 2014] and topological spin liquids [Yan,

Huse, and White, 2011; Peter et al., 2015; Yao et al., 2015].

It is even possible to put the atoms in aperiodic or completely random positions

(Figure 3.5(c,g)), something that is intrinsically non-trivial for optical lattices [Weit-

enberg et al., 2011], potentially allowing the study of phenomena as many-body

8The number of traps is limited by the total light power that can be sent on the SLM, and the field
of view of the aspheric lens.
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Figure 3.17: Examples of generated trap patterns. From left to right: the target

pattern used as It in the Gerchberg-Saxton algorithm, the calculated intensity of the light

field in the focal plane, the obtained phase pattern, and the trap intensities as measured

with the CCD camera. (a) single trap, (b) circle of 8 traps, (c) arbitrary arrangement,

(d) triangular lattice, (e) kagome lattice, (f) ‘squagome’ lattice, (g) quasi-periodic (Penrose)

pattern.
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3.6 Conclusion

localisation [Anderson, 1958; Hauke and Heyl, 2015] and transport in disordered

networks [Bässler, 1993; Scholak et al., 2011].

3.6 Conclusion

We have shown how we use a spatial light modulator to shape the spatial phase of

our optical dipole trap beam to ‘clone’ the single microtrap. Using this technique, we

are able to create arbitrary 2D geometries of up to ∼ 100 single atoms traps, with

trap spacings as low as 3µm, and array sizes up to ∼ 50× 50µm2. We calculate an

appropriate phase pattern for a given trap arrangement using the Gerchberg-Saxton

algorithm. In order to create high-quality trap array, we have measured the aberrations

in the dipole trap beam, and correct for them using the SLM. In order to create traps

of equal depth, we employ a feedback which measures the depths of the traps, and

automatically corrects the target intensity in the Gerchberg-Saxton algorithm.
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Chapter 4
Spatially resolved state detection
and manipulation in arrays of single
atoms

In the previous chapter we have seen how we can create arbitrary arrays of microtraps by

manipulating the spatial phase of a single trap beam using a Spatial Light Modulator.

In this chapter we will see how we detect the state of the atoms by recording their

scattered photons, spatially resolving each individual atom, on a CCD camera.

Furthermore, we demonstrate our ability to locally address an arbitrary site in the

array to block or uniquely enable the Rydberg excitation of the addressed atom, and

how we can use this addressing capability to manipulate the phase of an entangled

two-atom state.

4.1 Determination of the state of the atoms in the microtraps

The reliable determination of the state of the atoms is crucial for our experiments.

Before launching an experimental sequence, we need to continuously monitor the state

of the microtraps of a given array, in order to launch an experiment as soon as a

certain trigger condition is fulfilled, e.g. having a minimum number of loaded traps. In

addition, at the end of a sequence, we need to detect whether a given atom has been

excited to a Rydberg state or not. In this section, we present the simple but efficient

detection method that we use in the experiment to achieve this.

4.1.1 Detection of the atomic fluorescence

We detect the presence of an atom in a given microtrap by measuring the scattered

light from the 780 nm MOT cooling beams at the position of the traps. We collect

the light via the same aspheric lens which focuses the trap beam (see Figure 4.1),

separating it from the trap light with a dichroic mirror. We then image the trap plane
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Figure 4.1: Overview of the single atom imaging system. We collect the MOT

cooling light scattered by the atoms via the same aspheric lens which focuses the trap

beam. A dichroic mirror separates the fluorescence light from the trap light. An f = 250mm

lens focuses the light at an aperture which reduces slightly the depth of field, and a second

f = 100mm lens images the atoms on the EMCCD chip, with total magnification of 16.

The pixel separation of the EMCCD camera corresponds to 1μm in the trap plane due to

the magnification.

on a 16 bit electron multiplying CCD (EMCCD) camera1, thermoelectrically cooled to

−80 ◦C in order to reduce the noise on the chip. We currently do not use the electron

multiplying mode, as the photon yield from the single atoms at the EMCCD camera

is high enough at about 6 photons/ms, detecting about 2% of photons scattered by

an atom (see [Béguin, 2013] for an estimate of the detection efficiency).

The EMCCD camera has a 512×512 pixel resolution, with a pixel size of 16×16μm2.

We calibrated the magnification of the imaging system to be 16, meaning that every

pixel images a 1× 1μm2 area in the trap plane. The fluorescence of each atom thus

impinges on an area between 1× 1 and 2× 2 pixel, depending on whether it falls in

the centre or on the edge of a pixel.

For all of the experiments presented in this thesis, we used the following parameters

for the EMCCD camera. In order to increase the readout speed of the camera we

used a 100× 100 pixel subset of the CCD chip, and set the exposure time to 50ms,

giving us about 12 frames per second (fps), which we found to be a good trade-off

between a high signal-to-noise ratio of the single atom signal and a high frame rate. A

1We use a Andor iXon Ultra 897 camera.
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4.1 Determination of the state of the atoms in the microtraps

(a)

(b)

(c)

Figure 4.2: Fluorescence signal of atoms in a 3 × 3 trap array. (a) We monitor the

mean fluorescence levels of the pixels indicated by the red squares in the frame in the

bottom left during a 50ms exposure, taking a frame about every 100ms. For each trap, we

see the typical telegraph-like fluorescence signal, with the low and high levels corresponding

to 0 and 1 atoms in the trap respectively. We define a threshold (horizontal grey dashed

lines) separating the two states, in order to create a binary signal (red curves on top of the

fluorescence signal). (b) Number of filled traps obtained from the fluorescence traces.

(c) Frames from the CCD camera taken at the times indicated by the green, orange and

purple line respectively.
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Figure 4.3: Timings of the EMCCD camera frames. We continuously record the

fluorescence of the atoms on the EMCCD camera. When a predefined trigger condition is

fulfilled, in this example the presence of 9 atoms in a 3× 3 trap array, the configuration is

frozen by turning of the MOT, thus stopping the loading process of the traps. We record

another frame to get the initial atom configuration, perform a given experiment, e.g. a

Rydberg excitation, and lastly record the final frame to see which atoms were lost during

the experiment. The delays between the trigger, initial and final frames are set by the

experimental sequence.

high frame rate is desirable, as we want to quickly launch an experiment once a given

triggering condition has been fulfilled, before one of the traps loses its atoms again.

To display and analyse the detected atomic fluorescence on a computer, we developed

a custom software based on the Python library pyqtgraph2. It allows the real time

display of the frames captured by the EMCCD camera, and automatically checks for

the presence of atoms in predefined regions of interest (ROIs). The typical fluorescence

signals for nine ROIs placed at the trap positions in a 3 × 3 trap array are shown

in Figure 4.2. For each fluorescence signal we define a threshold which we use to

binarise the signal to having either zero or one atom in the trap. The Python program

continuously analyses the traces and can trigger an experiment once a pre-chosen

condition, e.g. a minimum number of filled traps, is fulfilled (see Figure 4.3).

We then remove the MOT atoms by switching off the MOT cooling beams

for ∼ 40ms. The loading process of the microtraps is therefore frozen. Without the

MOT around, the lifetime of an atom in a microtrap was measured to be τ1at ≈ 10 s.

The lifetime of any given configuration in an N trap array is thus τNat = τ1at/N .

Before we perform the actual experiment with the single atoms, we acquire an

initial frame, giving us the initial atom configuration. It is not sufficient to just take

2pyqtgraph is a pure-python graphics and GUI library built on PyQt4 / PySide and numpy, aimed
at fast data visualisation, distributed under the MIT open-source license.
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4.1 Determination of the state of the atoms in the microtraps

the triggering frame for the initial atom configuration, as there is a finite probability

for the atom configuration to change while disposing of the MOT. For the 3 × 3

array taken as an example here, in about 50% of the experiments at least one of the

atoms is lost between the triggering and the initial frame for trap loading rates of

Rload ≈ 1 atom/s. Of these 50% ‘failed triggers’, 10% are accounted for by the finite

vacuum lifetime of the configuration. The remaining 40% are accounted for by the

35ms dead time between the end of the trigger frame exposure and the launch of an

experimental sequence, and the ∼ 20ms to remove the MOT atoms.

We then record the final frame after having performed an experiment, from which

we see which atoms were lost during the experiment. As will be shown later, this

allows us to determine the internal state of each single atom individually, whether it

was in the ground or Rydberg state.

We typically see a background on the single atom signal on the EMCCD camera,

which is about 3 to 5 times larger than the fluorescence from a single atom. This

background is due to MOT cooling light being scattered off components inside the

vacuum chamber. The intensity of this speckle field varies in time on each pixel on the

EMCCD camera. In order to still be able to define a threshold to automatically detect

the presence of an atom in the trap, we ‘shake’ the pointing direction of five of the

MOT beams with a few hundred Hz, by placing piezoelectric actuators underneath one

of the mirrors of each of the five beams. This drastically improved the stability of the

background on each pixel of the EMCCD camera, without leading to any noticeable

increase of temperature for the trapped single atoms.

For any remaining fluctuations of the background, the Python program recording

the camera frames can automatically adjust the threshold along with the background

fluctuations in a very reliable way, by monitoring the average ‘high’ and ‘low’ values of

the atomic fluorescence.

4.1.2 Loading statistics

The physics behind our single atom trapping was already briefly explained in Sec-

tion 2.2.2. If a trap is empty, an atom can enter at any random time and stay in the

trap, where it is continuously cooled by the MOT light. If an atom enters into an

already filled trap, the two atoms will undergo a fast inelastic light assisted collision

and will both be expelled from the trap [Schlosser et al., 2001].

Since these two processes, loading an atom into the trap and removing the atom

from the trap, rely on the same cause, namely an atom entering the trap, the expected
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Figure 4.4: Counting statistics of filled traps in a 3 × 3 trap array. We measure

the distribution of the number of filled traps for an array of nine traps for different rates

Rload to load atoms into the trap (purple bars). We fit the distributions by a binomial

distribution to get the occupation probability p of the traps (yellow points). The occupation

probability saturates slightly above p1 = 0.5 for loading rates Rload � 0.5 atoms/s.
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Figure 4.5: Times needed to completely fill an N-trap array. (a) Measured (red

squares) and simulated (blue circles) average times TN to fill an N trap array, in inverse

trap loading rate Rload. The data is the result of a Monte-Carlo simulation. The green line

shows the function TN = T12
Ntraps−1. (b) Same simulated data as in (a), shown as the

ratio of loading times versus the inverse of the trap number, to find the large-N scaling of

the loading times. For large trap numbers, the scaling goes towards TN ≈ 2Ntraps/Rload .

probability to find an atom in the trap at a given time is 50%, if there were no other

loss mechanism present.

Analysing the mean single atom occupation probability p1 for 3× 3 trap array, we

find that above a loading rate of Rload � 0.5 atoms/s into the microtrap we indeed

find p � 0.5 (see Figure 4.4). For very low loading rates the single-atom loss, e.g.

due to background gas collisions, is non-negligible, whereas for high loading rates a

occupation probability larger than p1 = 0.5 is prevented by the high two-body loss

rate [Schlosser, Reymond, and Grangier, 2002]. The loading rate itself was determined

by taking the rate with which the trap state changes, thus ignoring other sources

of atom loss as the R
(vac)
loss � 0.1 s−1 vacuum loss rate. Further increasing the loading

rate Rload to be larger than the light-assisted-collision rate β′−1 ≈ 1ms [Fuhrmanek

et al., 2012] would lead to having more than one atom per trap on. Nevertheless, as

our imaging scheme uses the same MOT beams that are responsible for the light

assisted collisions, it will act as a parity projection of the atom number, again leaving

on average half of the microtraps filled with a single atom.

The fact that we actually see occupation probabilities slightly larger than 0.5 can

be explained by a finite probability p2→1 that when two atoms undergo a light-assisted

collision in the microtrap, only one is expelled and the other one remains in the trap.

It is even possible to significantly increase this probability p2→1 to dominate over the
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two-body loss probability p2→0 by carefully choosing the frequency and power of the

‘collisional beam’ of Figure 2.2. Occupation probabilities of up to 90% have been

achieved this way [Fung and Andersen, 2015; Lester et al., 2015]. Very recently, a first

preliminary test of this technique on our experiment gave occupation probabilities of

p1 ≳ 80%.

With a single atom occupation probability of p1 ≃ 50% we are limited to either

work with trap arrays which are only partially loaded, or to work with small trap

arrays and wait until all traps are occupied by a single atom at the same time.

For the latter, we measured the time to fully charge an array with Ntraps traps

both in the experiment and by doing a Monte-Carlo simulation (Figure 4.5(a)).

On the experiment, waiting for a fully charged array is feasible only for up to ≃ 9

traps. For 9 traps the time to fully load the array is already about one minute for

Rload ≃ 1 atom/s. For higher trap numbers this rapidly increases to several minutes,

rendering the total duration even of a simple experiment challenging. Even with higher

loading rates this time cannot be much improved, as then the lifetime of a given atom

configuration gets too short, and the probability to have the same atom configuration

in the trigger and the initial frame (see Figure 4.3) gets too low.

For the Monte-Carlo simulation of the trap loading times, we start with an empty

trap array. During each time step δt we add an atom to each trap with a probability

δt ·Rload. If a trap contains more than one atom, it is reset to zero. We then measure

the time until all traps are filled at the same time. We average on 10 000 runs, with

δt = 0.01 and Rload = 1, for arrays between 1 and 20 traps.

We see a Nη
traps power-law scaling, with η ≈ 2 when extrapolating to large trap

numbers (see Figure 4.5(b)), and η ≈ 1.7 for Ntraps < 7. Note that this kind of problem

is mathematically speaking equivalent to that of a continuous random walk in a

hypercube, a common problem studied in mathematics [Volkov and Wong, 2008]

4.1.3 Detection of Rydberg excitations

Various techniques exist that aim at the number or position resolved detection of

Rydberg atoms. One can make use of the low binding energy of Rydberg atoms by

either applying a strong static electric field [Schwarzkopf, Sapiro, and Raithel, 2011],

or and ionising laser [Lochead et al., 2013] or ion beam [Manthey et al., 2014] and

then and detecting the resulting Rydberg ions. Another approach lies in detecting the

change of the optical response of a cold atomic gas due to the strong Rydberg-Rydberg

interactions [Gunter et al., 2013]. We use a ‘negative’ detection scheme to determine if
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4.1 Determination of the state of the atoms in the microtraps

an atom has been excited to a Rydberg state, since Rydberg atoms are not trapped by

the microtraps and lost at the end of an experiment. We can thus deduce from the

loss of an atom that it has been excited to the Rydberg state [Johnson et al., 2008;

Miroshnychenko et al., 2010], with a single atom resolution and a > 95% detection

efficiency.

Since the trap laser frequency is far detuned from any transitions involving the

Rydberg state, we can approximate the polarisability α of the Rydberg atom by that

of a free electron [Saffman and Walker, 2005]:

α = − e2

meε0ω2
, (4.1)

where e and me are the charge and mass of the electron respectively, ε0 the vacuum

permittivity and ω/2π the frequency of the trap laser. Thus, since the polarisability

for Rydberg states is negative, and the AC Stark shift proportional to −α [Friedrich,

1991], Rydberg states will be repelled by our 850 nm wavelength microtraps, as long

as the trap light frequency is far away from all atomic resonances of the atom in the

Rydberg state [Miroshnychenko et al., 2010]. A trap with a typical depth of 20MHz

for ground state atoms will lead to an ‘anti-trap’ potential for the Rydberg states with

a ‘height’ of 1MHz, expelling the Rydberg atoms from the trapping region.

Thus, if the Rydberg atom has moved far enough away from the trap region before

it decays back to the ground state, such that it will no longer be detected, we can

use the loss of the atom from the trap during the experiment as a mean to check if

the atom has been excited to a Rydberg state. For Rydberg states with n > 50 the

lifetime is well above 50µs [Branden et al., 2010]. In 50µs, the force on the Rydberg

atoms due to the repulsive potential of the microtraps leads to a displacement of about

3µm [Béguin, 2013]. Adding this to the finite initial velocity of the atoms (typically

∼ 60 nm/µs for T = 30µK), the atoms will be far enough away when decaying to the

ground state to not be recaptured by the trap.

We can therefore use the loss of an atom during the experiment as a signal that it

has been successfully excited to a Rydberg state3. The maximum detected contrast

of a single atom Rydberg Rabi oscillation suggests that this detection efficiency is

larger than 95%. The loss of ground state atoms during the experiment is the most

detrimental effect to the detection efficiency, as will be detailed in the following

3In addition we have a micro-channel plate (MCP) installed in the vacuum chamber to allow
e.g. positive Rydberg detection, but we have not used this in experiments yet, as its detection
efficiency would be much lower than by loss detection, and would not offer a spatially resolved
Rydberg detection.
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Figure 4.6: Release-and-recapture experiment of a single atom. We measure the

recapture probability of a single atom after having switched the trap off for a time δtoff.

The longer we switch off the trap, the higher the probability ε to lose the atom. The green

solid line shows the best fit of the result of a Monte-Carlo simulation, giving a single atom

temperature of (30± 2)μK.

subsection.

4.1.4 Impact of detection errors

Due to the finite temperature of the single atom in the microtrap, the atoms have a

small but finite probability to leave the trap region during the time that the trap is

switched off for the Rydberg excitation, even if they remain in the ground state. We

have measured the temperature of the atoms by a release-and-recapture experiment in

a single trap. We switch the trap off for various durations and measure the probability

to recapture the atom when turning the trap on again. We then fit the the data to the

result of a Monte-Carlo simulation for various temperatures of the atom [Tuchendler

et al., 2008], and get a best fit for a temperature of the single atom of (30± 2)μK (see

Figure 4.6).

For typical experiments we switch the traps off for a few μs, where we have a

probability of ε = (3± 1)% to lose any given atom from its trap without performing

any Rydberg excitation (see inset in Figure 4.6). As we detect the Rydberg atoms by

the absence of fluorescence from its trap, ε thus gives us the probability to falsely

identify a ground state atom as a Rydberg atom due to its loss from the trap.

One can show by a relatively simple mathematical induction that if Pq is the detected
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Figure 4.7: Setup of the single site addressing beam. For single site addressability

we use a far red-detuned 850 nm laser beam which induces a light shift on the ground

state of the addressed atom. We use two crossed AOMs for precise transverse positioning

of the addressing beam (the undiffracted light is blocked by the aperture). We switch the

beam using an electro-optic modulator (EOM) before the optical fiber (not shown). In

the focal plane of the aspheric lens, the addressing beam has a measured 1/e2 radius of

w add
0 = 1.3μm, slightly bigger than the waist of the microtraps.

probability to have excited q Rydberg atoms in an N atom array, and P̃p the actual

probability to have p Rydberg excitations, then

Pq =

q∑
p=0

(
N − p

q − p

)
εq−p(1− ε)N−qP̃p. (4.2)

In principle we could correct our data for these detection error by inverting the

above system of equations. In this thesis we nevertheless present only the uncorrected

raw data.

4.2 Single site resolved addressing

An important feature in experiments for quantum simulation with cold atoms or ions

is the local manipulation of individual qubits. This can either be done by directly
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manipulating the qubit, e.g. by focusing an excitation laser on the chosen qubit [Nägerl

et al., 1999; Kruse et al., 2010; Maller et al., 2015], or by using global operations

that are off-resonant for all but the selected qubit, e.g. by using electric [Lundblad

et al., 2009] or magnetic field gradients [Schrader et al., 2004], or off-resonant laser

fields [Weitenberg et al., 2011; Lee et al., 2013].

This section is based on our publication [Labuhn et al., 2014]. As our Rydberg

excitation beams are larger than the single atom arrays (see Section 2.4.3), it is not

possible to selectively excite individual atoms to the Rydberg state using the excitation

light only. Instead, we implemented the last of the above mentioned approaches, shining

a tightly focused, far red-detuned 850 nm laser beam with a 1.3µm 1/e2-radius, on a

targeted site. Compared to the microtraps the addressing beam has a ∼ 30% larger

waist to reduce the sensitivity to alignment errors, and a 200MHz frequency difference

and an orthogonal polarisation in order to minimise the interference between the two.

Just like the 850 nm light field used for trapping the atom, the addressing beam

induces a frequency shift on the ground state of the addressed atom, due to the AC

Stark effect.

It is not possible for us to dynamically change the trapping light field with the

SLM to address individual sites of the trap array, as in our experiments we need

switching times in the order of a µs, whereas the the switching times of the SLM are

in the order of 100ms (see Figure 3.4). We thus installed an additional beam path for

the single site addressing, which is superimposed with the trap beam with a PBS.

Figure 4.7 shows the optics setup of the single site addressing. We used two crossed

acousto-optic modulators (AOMs) for precise transverse positioning of the beam in

the trap plane. The zero order of the AOMs is blocked by the aperture in the focus of

the SLM telescope. The addressing beam is superimposed on the trap beam with a

PBS, having a slightly smaller collimated waist than the latter to give a slightly larger

spot in the focal plane of the aspheric lens.

In order to characterise the addressing beam, we measure its waist in the trap

plane with a single atom. For this we keep the addressing beam fixed, and place a

single atom at various positions along a line profile through the intensity maximum

of the addressing beam. We then measure the light shift of the Rydberg excitation

frequency compared to a free atom, while the trap is off and the addressing beam is

on (Figure 4.8(a)). We fit a Gaussian curve to the measured light shifts from which

yields a 1/e2 radius of the addressing beam of wadd
0 = (1.3± 0.1)µm (Figure 4.8(b)).

Theoretically, for an ideal Gaussian beam with the measured beam parameters, we

expect that if an atom is addressed with a 10MHz light shift, another atom 3µm
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Figure 4.8: Measurement of the addressing beam profile in the trap plane. (a) We

measure the addressing beam profile of the along the vertical (x) axis, by keeping the

beam position fixed, while moving the position of the microtrap. We measure the light shift

ΔE between |g〉 and the Rydberg state |r〉 =
∣∣82D3/2〉 at the position of the microtrap

for several distances Δx from the addressing beam axis, giving us the local intensity of

the addressing beam at this position. (b) Measured light shifts vs. Δx . Fitting a gaussian

to the data yields a 1/e2 radius of w0 � 1.3μm. (c) The depths of the trap potential

(dashed red curve), the addressing beam potential (red dotted curve), and the sum of the

two (red solid curve). (d) The displacement of the potential minimum from the centre of

the trap as a function of the distance Δx between the trap and the addressing focus. Even

at the ‘worst’ distance (grey dashed line), the potential minimum displacement is at most

60 nm and is thus negligible for the measurement of the addressing beam profile.
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Figure 4.9: Light shift of the single atom due to the addressing beam. For different

powers P in the addressing beam we measure the light shift on the transition between the

ground state |g〉 and the Rydberg state |r〉 =
∣∣82D3/2〉 compared to the atom in free

space. The fit gives a slope of −1.4MHz/mW.

away would experience a light shift of merely 0.2 kHz, which is negligible compared to

all other relevant frequencies in our experiment. When measured, the light shift at a

3μm distance is below the experimental resolution.

In this particular experiment to measure the profile of the addressing beam, the

trap and the addressing beam are on at the same time before and after the Rydberg

excitation. The atom thus sees the combined potential of the two spots (Figure 4.8(c)).

Nevertheless the influence of the addressing beam on the motional state of the atom is

negligible for our experiments. For example, for potential depths of 20MHz and 5MHz

for the trap and the addressing potential, the minimum of the combined potential is

only shifted by 60 nm with respect to the original trap position (Figure 4.8(d)).

As we switch off the trap during the Rydberg excitation, the force on the atom

due to the potential created by the addressing beam might also displace the atom.

Here the trap is off for 3μs. Even if we assume that the atom experiences the force at

the maximum slope of the addressing beam potential during this time, it will only

be displaced by ∼ 100 nm. Therefore, the influence of the addressing beam can be

neglected on the external state of the atom even when the trap is off, as long as the

atoms does not see only the addressing potential for more than a few μs.

We do however see an increase of probability to lose the atom during an experiment

when significantly increasing the addressing beam intensity, thus increasing the force

exerted on the atom and pushing the atoms further away from the trapping region.

However, for light shifts below 40MHz, this loss probability remains below 1%, and is

thus negligible.
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We also measured the light shift induced by the addressing beam on the ground-

Rydberg transition as a function of the total power in the addressing beam, without

moving the addressing beam between the measurements. We indeed measure the

expected linear dependence on the beam power, with a slope of −1.4MHz/mW. Note

that the slope depends strongly on the alignment of the addressing beam with respect

to the addressed microtrap. The measured slope can thus be used as a rough guide,

but it is advisable to measure the exact light shift for each new alignment of the

addressing beam.

4.2.1 Locally blocking Rydberg excitations

As a first application of the single-site addressability, we perform a Rydberg blockade

experiment between two single atoms. This is similar to the experiment done by Urban

et al. [2009], who used site-resolving excitation beams to demonstrate the Rydberg

blockade with two atoms separated by 10µm. Here, we use our global excitation beams

together with the single-site addressability to achieve similar results, for two atoms

separated by only 3µm.

We tune the excitation lasers resonant to the free-space, two-photon transition

between the ground state |g⟩ and the Rydberg state |r⟩ =
⏐⏐59D3/2

⟩
, with a single atom

Rabi frequency Ω = 2π × 1MHz, without addressing any atom (see Figure 4.10(a)).

The Rydberg-Rydberg interaction between two atoms in the 59D3/2 state, separated

by 3µm, is VvdW ≃ h× 300MHz. Since VvdW ≫ ℏΩ, the doubly excited state |rr⟩ is
shifted out of resonance. We thus only excite the symmetric superposition state

|s⟩ = |gr⟩+ |rg⟩√
2

, (4.3)

with the coupling strength to this state being
√
2Ω [Urban et al., 2009; Gaëtan

et al., 2009]. The probability (Pgr + Prg) to find either atom in the Rydberg state

thus oscillates between 0 and 1 with a frequency
√
2Ω. The probability Prr to have

both atoms in the Rydberg state on the other hand is strongly suppressed (left

Figure 4.10(c)).

If we now address atom 2 with a light shift ∆E ≃ 10MHz, it will no longer be

resonant to the Rydberg excitation light (see Figure 4.10(b)). Atom 1 will therefore

behave like an independent particle, oscillating between |g⟩ and |r⟩ with the single

atom Rabi frequency Ω (Figure 4.10(d)). The remaining excitation probability of

atom 2 is accounted for by detection errors [Labuhn et al., 2016], falsely detecting a
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Figure 4.10: Using the addressing beam to exclude one atom from a global

Rydberg excitation. Two atoms, separated by 3μm, are illuminated by light which

resonantly couples the ground state |g〉 to the Rydberg state |r〉 =
∣∣59D3/2〉 with a single

atom Rabi frequency Ω, with (a) both atoms in free space, and (b) atom 2 addressed with

a light shift of ΔE = 10MHz, shifting it off-resonant from the Rydberg excitation.

The time evolution of the populations in the two-atoms states |gg〉, |rg〉, |gr〉 and |r r〉 is
shown, (c) for both atoms in free space, and (d) for atom 2 addressed. The solid lines are

fits of damped sines to the data, the black dashed lines show the expected probability

from an ε = 3%, the dotted red and green lines indicate excitation pulses of π/
√
2 and π

respectively.
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Figure 4.11: Rydberg excitation inside the addressing beam. We measure the

spectrum and the Rabi frequency for the |g〉 ↔ |R〉 =
∣∣100D3/2〉 transition, for the atom

in free space (a,b), and while the atom is trapped by the addressing beam (c,d), leading to

light shift of ΔE = −4.8MHz (fit results of the free space measurement are shown as

dashed light red curves for comparison).

ground state atom as a Rydberg atoms with a ε = 3% probability. We can therefore

claim that we efficiently block atom 2 from being excited to the Rydberg state, without

any measurable cross-talk.

4.2.2 In-trap Rydberg excitation

For certain experiments it may be required to use the addressing beam as an additional

microtrap that can be switched independently from the holographically created

traps. For example, for some experiments we would like to create a state of the form

|ψ(0)〉 = |rgggg...〉 [Olmos, Lesanovsky, and Garrahan, 2012; Schempp et al., 2014].

Such a state can be prepared by switching only switching off the addressing beam

‘trap’ during the excitation, with the excitation beams resonant to the free-space

transition. Another possibility is to switch off the holographically created traps, and

tune the excitation beam resonant to the atom trapped in the addressing beam.

For comparison, we first perform a single-atom Rydberg excitation to the |r〉 =∣∣100D3/2

〉
state, only using the addressing beam as a trap with a depth of U0/h � 20MHz,
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and as usual switching off the trap during the Rydberg excitation. In a second experi-

ment, we first ramp the addressing-beam trap down to a trap depth of U0/h ≃ 5MHz,

but then leave it on during the Rydberg excitation. When measuring the spectrum of

the trapped atom, we see the expected light shift ∆E/h ≃ −4.8MHz of the transition

frequency (see Figure 4.11(a,c)). When measuring the Rabi oscillation between |g⟩
and |r⟩ (Figure 4.11(b,d)), we notice that the measured single atom Rabi frequency Ω

remains the same, but the contrast of the oscillation decreases and the damping gets

more pronounced for the in-trap oscillation. We attribute this to the changing light

shift which the atom sees in the trap. Due to the finite temperature of the atom the

exact position of the atom in the trap is different in each realisation of the experiment,

leading to an inhomogeneous broadening of the Rydberg transition. It is therefore

preferable to perform the Rydberg excitation in free space whenever possible.

4.2.3 Local manipulation of a two-body wave function

Besides locally shifting the Rydberg transition into or out of resonance, it is also

possible to use the addressing beam to manipulate the many-body wave function. We

demonstrate this by again taking two atoms, 3µm apart, in the Rydberg blockade

regime (Vdd ≫ ℏΩ). We shine in an excitation pulse of duration π/(
√
2Ω) (see

Figure 4.12(a)), preparing the atoms in the symmetric ‘bright’ state

|ψ(T = 0)⟩ = 1√
2
(|gr⟩+ |rg⟩). (4.4)

We then turn on the addressing beam on atom 2, shifting the ground state energy by

an amount ∆E (here we neglect the light shift on the Rydberg state). The states |gr⟩
and |rg⟩ therefore also differ in energy by ∆E, leading to a different phase evolution

of the two parts in the wave function in Equation 4.4. After a time T , the two-atom

state will therefore have evolved to

|ψ(T )⟩ = 1√
2
(|gr⟩+ e−i∆E T/ℏ |rg⟩). (4.5)

After a time Tπ = πℏ/∆E the system will have evolved to the antisymmetric ‘dark’

state

|ψ(T = Tπ)⟩ =
1√
2
(|gr⟩ − |rg⟩), (4.6)

which is no longer coupled to the ground state |gg⟩ by the excitation lasers. The
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Figure 4.12: Dark state oscillations. (a) Experimental sequence: we prepare two atoms,

separated by 3μm, in the state (|gr〉+ |rg〉)/√2 with |r〉 =
∣∣82D3/2〉. We then illuminate

atom 2 with the addressing beam for a time T to induce a light shift ΔE, thus changing

the relative phase evolution between |gr〉 and |rg〉. (b) We measure the population in the

ground state |gg〉 after shining a de-excitation pulse on the atoms, for different addressing

beam powers Padd, fitting by a damped sine with a phase offset. (c) The oscillation

frequency scales linearly with the addressing beam power, with a slope of 2.1MHz/mW.
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probability of de-exciting the atoms to |gg⟩ is thus expected to oscillate between 0 and

1 with a frequency fds = ∆E/h.

Figure 4.12(b) shows the probabilities Pgg to de-excite the atoms back to the ground

state |gg⟩ after having addressed atom 2 for a duration T . We indeed observe that the

system oscillates between the bright and the dark state. We extract the oscillation

frequencies by fitting the data with the function y0 + A sin(2πfdsT + ϕ)e−T/τds , and

see the expected linear dependence of fds on the magnitude of the addressing beam

power Padd, i.e. the induced light shift ∆E, shown in Figure 4.12(c).

We see a constant phase offset of the oscillation of ϕ ≃ −0.1π, which we cannot

account for. The imperfect contrast of the oscillation is due to the finite Rydberg

excitation efficiency, the finite detection efficiency, and the finite temperature of the

atoms. The latter has the effect that on one hand atom 2 sees a slightly different light

shift in each experiment, which leads to a slightly different phase evolution between

the two components of the wave function between the excitation and de-excitation

pulse.

On the other hand, also the movement of the atoms between the excitation and

de-excitation leads to dephasing. We actually prepare the initial state |ψ(T = 0)⟩ =
1√
2
(|gr⟩+ eiξ(T ) |rg⟩), with ξ(T ) = k(r1(T )− r2(T )), k being the wave vector of the

excitation light and ri the position of atom i [Wilk et al., 2010]. Due to the change of

r1 and r2 during the experiment this additional phase is not entirely cancelled out

during the de-excitation. The movement of the atoms thus introduced a small, random

phase between |gr⟩ and |rg⟩ in each experiment, also leading to some additional

dephasing of the measured oscillation.

4.3 Conclusion

We have demonstrated our ability to measure the fluorescence of single atoms in the

microtraps in real-time with a sensitive CCD camera. The spatially resolved detection

lets us start experiments on a predefined atom configuration, allowing us to work with

filling fractions of the traps arrays higher than 50% despite the random trap loading

process. We deduce the successful excitation of an atom to a Rydberg state by the loss

of the atom during the experiment, as we know the initial and final atom configuration

of a Rydberg experiment with a fidelity of nearly 100%. The Rydberg detection

efficiency itself is limited by the small probability ε = 3% to lose a ground-state atom

from its trap during an experiment, thus being falsely identified as a Rydberg atom.

An additional addressing beam lets us selectively excite a chosen atoms to a Rydberg
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state while leaving all other atoms in the array in the ground state.

In future work, we hope to reduce the false Rydberg detections by cooling the single

atoms to lower temperatures, for example using Raman sideband cooling [Kaufman,

Lester, and Regal, 2012], and to implement a scheme to achieve loading probabilities

of the microtraps reaching up to 90%, which can be achieved by optimising the

light-assisted collisions [Fung and Andersen, 2015; Lester et al., 2015], or rearranging

the atoms in the traps with the movable addressing beam [Beugnon et al., 2007;

Lengwenus et al., 2010]

In the following two chapters we will use the presented techniques to probe both the

collective enhancement and the spatial correlation of Rydberg excitations in array of

single atoms.
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Chapter 5
The collective enhancement of the
Rydberg excitation in fully
blockaded ensembles

As explained in the introductory chapter, the strong interaction among Rydberg

states can lead to a situation where only atom can be excited to a Rydberg state

within a certain volume at the same time. This mechanism is called Rydberg blockade.

The simultaneous excitation of two atoms to a Rydberg state is prohibited if the

Rydberg-Rydberg interaction VvdW between the atoms leads to an energy shift of the

state |rr⟩, which is larger than the bandwidth of the atomic transition. A characteristic

length scale for Rydberg atoms is the interatomic distance for which the interaction

and the transition linewidth are equal. This length is called the Rydberg blockade

radius. On our experiment, the bandwidth of the ground-Rydberg transition is given

by the single atom Rabi frequency Ω1, so that the blockade radius can be defined as

Rb = 6

√
C6

ℏΩ1

, (5.1)

with the van der Waals interaction VvdW = C6/R
6 being the dominant interaction

here. The blockade radius thus scales as n11/6 with the principal quantum number n.

The concept of the Rydberg blockade is not only valid for two atoms but also

for larger ensembles of atoms, as long as all the atoms in the ensemble are pairwise

blockaded. If this condition is fulfilled, then it is only possible to excite one single atom

in the ensemble to the Rydberg state at the same time. As a consequence, the Hilbert

space reduces from 2N states to just two states. These are the ground state

⏐⏐g(N)
⟩
= |g1g2...gN⟩ , (5.2)

and the state with a single Rydberg excitation, which, since we do not know which
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atom has been excited, is the N -atom superposition state

⏐⏐⏐ψ(N)
1r

⟩
=

1√∑N
i=1 |Ωi|2

N∑

i=1

Ωie
ik·Ri |g1g2 . . . ri . . . gN⟩ , (5.3)

with the Rydberg excitation shared among all the atoms. Here, Ωi is the local Rabi

frequency of atom i, Ri its position and k the wavevector of the excitation laser.

Due to the collectivity of the single Rydberg excitation, the coupling strength

between the ground state
⏐⏐g(N)

⟩
and the collectively excited state

⏐⏐⏐ψ(N)
1r

⟩
is enhanced

compared to that of a single atom, now being

ΩN =

√
N∑

i=1

|Ωi|2. (5.4)

If we assume that all atoms in the blockade sphere have the same single atom Rabi

frequency, i.e. Ωi = Ω1 for all atoms i, then this enhancement1 is exactly
√
N :

ΩN =
√
NΩ1. (5.5)

In addition, if one can ignore the phase factors eik·Ri in Equation 5.3, i.e. the

interatomic distances are small compared to the wavevector k of the excitation light,

we excite the highly symmetric |W ⟩-state

⏐⏐W (N)
⟩
=

1√
N

N∑

i=1

|g1g2 . . . ri . . . gN⟩ , (5.6)

with a multi-partite entanglement among the atoms [Wilk et al., 2010; Haas et al.,

2014; Zeiher et al., 2015]. In the experiments presented in this thesis, the phase factors

do not vanish, since the atomic separations of several micrometer is much larger than

the effective two-photon wavevector k = kR + kB of the red and the blue excitation

light. However, we could in principle map the Rydberg states to a different hyperfine

level of the ground state with a separate optical de-excitation pulse, thus cancelling

out the excitation and de-excitation wavevectors [Wilk et al., 2010]. For 87Rb, the

wavevector of the 6.835GHz hyperfine splitting of the ground state is then negligible

compared to the interatomic spacings.

1Due to the enhanced coupling strength to the collectively excited state, the N atom blockade radius

slightly decreases to R
(N)
b = 6

√
C6

ℏ
√
NΩ

= Rb/
12
√
N . As the effect is quite small – Rb decreases by

25% for 30 atoms – we assume Eq. 1.1 also to be valid for multiple atoms.
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Figure 5.1: Anisotropy of the van der Waals interaction. Effective interaction strength

Veff(θ)/h measured for two atoms, with interatomic distance R = 12.4μm, as a function

of the angle θ between the internuclear axis and the quantisation axis (a), for the

Rydberg states (b)
∣∣82S1/2,mj = 1/2〉, and (c)

∣∣82D3/2,mj = 3/2〉 (radial axes in MHz).

(d) Green dashed line: Calculated effective potential Veff(θ) for the
∣∣nD3/2,mj = 3/2〉

state, adapted from Figure 6(b) in [Vermersch, Glaetzle, and Zoller, 2015]. Red solid line:

Approximation of the calculated effective potential by Veff(θ) = Veff(0) · [1 + 2 cos(θ)4]/3
(data points the same as in (c)). Grey dotted line: Blockade radius Rb (see Equation 5.1).

5.1 The role of the anisotropy of the interaction

The van der Waals interaction among Rydberg states is not necessarily isotropic [Carroll

et al., 2004; Reinhard et al., 2007; Vermersch, Glaetzle, and Zoller, 2015], and therefore

also the blockade volume can deviate from a spherical shape. While the van der Waals

interaction for S Rydberg states is fairly isotropic, D states can show strong anisotropy

in their interaction.

Furthermore, if the angle θ between the interatomic axis and the quantisation axis

is non-zero, the van der Waals interaction can couple all Zeeman sublevels of the

Rydberg state. In our case of Rydberg states j = 3/2, thus describing the van der
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Chapter 5: The collective enhancement of the Rydberg excitation in fully blockaded ensembles

Waals interaction for all Zeeman-sublevel pairs leads to a 16× 16 interaction matrix.

Although the full numerical calculation of the interaction for non-zero angles taking

into account all Zeeman sublevels poses no difficulty for two atoms, it quickly becomes

intractable for an increasing number of atoms. It is therefore helpful to introduce

an effective, anisotropic van der Waals potential Veff(R, θ), which is defined as the

weighted average of the various interaction channels for a given angle θ, reducing

the previous interaction matrix again to a single scalar [Vermersch, Glaetzle, and

Zoller, 2015]. Since there exists no analytical solution for Veff(θ), we use for the sake of

simplicity an heuristic formula

Veff(R, θ) =
C6(0)

R6
· 1 + 2 cos4(θ)

3
(5.7)

to describe the anisotropy of the interaction, which reproduces well the numerical

curve, as shown in Figure 5.1(d). We see that changing θ from 0 to 90◦ reduces the

effective interaction by a factor 3. The anisotropy of the Rydberg blockade radius

is much smaller than for the interaction strength, due to the dominating effect of

the 1/R6 scaling of the van der Waals interaction. The blockade volume defined by

Veff(θ) = ℏΩ1 can be well approximated by a prolate spheroid with an aspect ratio of

about 31/6 ≃ 1.2.

We have measured the angular dependence of both S and D Rydberg states, shown

in Figure 5.1(b,c), by looking at the coherent excitation dynamics of two atoms

separated by R ≃ Rb, as we have described in [Barredo et al., 2014]. The slight

asymmetry observed for the D-state is most likely due to a systematic error: The

effective potential Veff is defined for a vanishing double-excitation probability. However,

to be able to determine the interaction V , we need V ≈ ℏΩ1 (see [Béguin et al., 2013]),

leading to non-negligible double excitation probability. The exact magnitude of these

double excitations was different for positive and negative angles θ, resulting in slightly

different values of the obtained Veff. More details on the anisotropy of the van der

Waals interaction can be found in the thesis of Sylvain Ravets [2014].

We will see later in this chapter that for large number of atoms, the approach of

an effective potential to describe the van der Waals interaction at non-zero angles

becomes questionable in some cases, as the blockade seems to be no longer perfect

when we increase the number of atoms inside the blockade volume.
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5.2 Experimental observation of the Rydberg blockade in a fully blockade ensemble

5.2 Experimental observation of the Rydberg blockade in a fully

blockade ensemble

The collective enhancement of the Rabi frequency in fully blockaded ensembles of

cold atoms have been reported on in a dilute cloud [Heidemann et al., 2007], an

optical dipole trap [Ebert et al., 2014], one-dimensional [Dudin et al., 2012] and

two-dimensional [Zeiher et al., 2015] optical lattices. However, all of these experiment

suffer from uncertainties or spreads in the prepared atom numbers.

Here we present our experimental results on the collective Rydberg excitation of a

fully blockaded ensemble of atoms, with negligible uncertainties in the prepared atom

numbers and complete counting statistics of the Rydberg excitations.

Our measurement was divided into two parts. For the first series experiments with

up to nine atoms, we prepared a trap array with the respective number of traps and

waited until all traps contained exactly one atom before launching the experiment. We

placed the traps on a 3× 3 square grid with a lattice spacing of a = 3µm. Depending

on the desired atom number of the experiment, we put between one and nine traps on

the grid, arranged as shown in the fluorescence images in Figure 5.2. Since there is a

finite probability for the atom configuration to change after the experiment has been

triggered, as described in Section 4.1.1, we post-selected the experiments on those

where the initial frame shows a fully loaded arrays.

For more than nine traps, waiting for all traps in the array to contain one atom is

no longer feasible as mentioned in Section 4.1.2, since the probability to have a fully

loaded array gets too low and the experimental cycle time thus too long2. To probe

the collective enhancement for more than nine atoms, we thus used a 19 trap array in

triangular geometry, which we triggered on having between 8 and 15 atoms in the

traps3. We post sorted the experiments according to the number of atoms in the trap

array in the initial atom configuration. The triangular lattice has a lattice spacing of

3.6µm, as shown in top right of Figure 5.3. The distance between any pair of traps in

the array is smaller than 15µm. We slightly increased the principal quantum number

of the used Rydberg state to n = 100 to ensure full blockade among all atoms. All

important experimental parameters used in each experiment are given in Table 5.1.

Once the experiment has been triggered, the atoms are prepared in the ground state

2For a fully loaded 9-trap array the cycle time of the experiment is around one minute.
3For the experiments on the partially loaded array with 8 and 9 atoms we removed two traps, one
on the very left and one on the very right of the triangular array.
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Chapter 5: The collective enhancement of the Rydberg excitation in fully blockaded ensembles

Table 5.1: Experimental parameters used for the experiments. Parameters of the

trap array and the used Rydberg state for the fully loaded square array on the 3× 3 grid
(Figure 5.2), and the partially loaded triangular trap array (Figure 5.3). The C6 coefficients

are obtained using second-order perturbation theory, as described in [Béguin, 2013].

trap array parameters Rydberg state parameters

experiment spacing a Nt N n C6/h Ω1/(2π) Rb

(µm) (MHzµm6) (MHz) (µm)

fully loaded 3.0 1–9 Nt 82 −8.9× 106 1.5 14
partially loaded 3.6 19 8–15 100 −7.3× 104 1.1 20

(see Section 2.4) ⏐⏐gN
⟩
= |g1g2...gN⟩ . (5.8)

We then switch off the traps for 3µs, and shine in an excitation pulse of duration τ

which is resonant to the single atom transition |g⟩ ↔ |r⟩, with a single atom Rabi

frequency Ω1 ≃ 1.5MHz, and finally count the number of detected Rydberg atoms.

The measured probabilities to have 0, 1 and 2 Rydberg excitations are shown in

Figure 5.2 for the fully loaded arrays, and in Figure 5.3 for the various atom numbers

of partially loaded array. To extract the collective Rabi frequency ΩN , we fit an

asymmetrically damped sine of the form

P (τ) = ae−γτ
(
cos2(ΩNτ/2) + b

)
+ c (5.9)

where a, b, c, γ and ΩN are adjustable parameters of the fit. This functional form was

chosen to account in a simple way for the observed asymmetry in the damping of the

oscillation. We observe a speedup of the oscillation with increasing atom number,

as well as an increase of the damping rate. We also see an increase of the double

excitation probably with excitation time, which seems to depends on the geometry of

the trap array. We will discuss these observations later in this chapter.

We extract the collective N -atom Rabi frequencies between
⏐⏐gN
⟩
and

⏐⏐⏐ψ(N)
1r

⟩
from

the fits to the zero excitation probabilities, i.e. the left panels in Figures 5.2 and 5.3,

and normalise them to the respective single atom Rabi frequencies Ω1, measured

on a single atom in the centre of the array. The obtained enhancement, shown in

Figure 5.4(a), follows quite closely the expected
√
N behaviour. It appears that the

enhancement is slightly lower than expected for the fully loaded array.
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Figure 5.2: Rydberg excitation dynamics in fully loaded trap arrays with one to

nine traps. We show the probabilities to have zero (left), one (middle), or two Rydberg

excitations (right) for fully loaded trap arrays, with one (top) to nine (bottom) traps, on a

3× 3 grid with a 3μm lattice constant. The images at the very right show examples of

trigger images for the respective atom numbers. We use the Rydberg state |r〉 =
∣∣82D3/2〉,

giving a calculated blockade radius of Rb > 10μm in all directions (see fluorescence

image for Nat = 8 atoms). The x-axes are the product of the excitation time τ and the

single atom Rabi frequency Ω1 � 2π × 1.5MHz. The solid lines are fit of asymmetrically

exponentially damped sines (see text). The error bars show the quantum projection noise

for the ∼ 100 repetitions of each experiment.
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Figure 5.3: Rydberg excitation dynamics in a partially loaded 19 trap array. We

show the same plots as in Figure 5.2, for a triangular lattice with 19 traps with a 3.6μm

nearest neighbour spacing, containing between 8 and 15 atoms (top to bottom). We use

the Rydberg state |r〉 =
∣∣100D3/2〉, giving a calculated blockade radius of Rb > 14μm in

all directions (see fluorescence image for Nat = 15 atoms). The x-axes are the product of

the excitation time τ and the single atom Rabi frequency Ω1 � 2π × 1.1MHz. The solid

lines are fit of asymmetrically exponentially damped sines (see text). The error bars show

the quantum projection noise for the ∼ 100 repetitions of each experiment.
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Figure 5.4: Rabi frequency and damping rate of the multi-atom Rabi oscillation.

Parameters extracted from zero excitation dynamics of the fully loaded (red circles) and

partially loaded (blue squares) trap arrays in Figures 5.2 and 5.3. (a) Enhancement of

the collective Rabi frequency ΩN compared to the single atom Rabi frequency Ω1 of

an atom in the centre of the array. The solid line shows the expected
√
N behaviour.

(b) Exponential damping rates in units of the respective single atom Rabi frequencies.

(c) The ratio of the Rabi frequency and the damping rate, showing that the quality of the

oscillations gets worse for more than one atom, but then stays roughly constant. Error bars

(sometimes smaller than the data points) are 1σ statistical uncertainties from the fits.
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Figure 5.4(b) shows the damping rates γN obtained from the fits. One sees that γN

first increases with the number of atoms, although slower than ΩN . This becomes

more apparent when looking at the quality factor of the oscillation, given by the ratio

of the Rabi frequency and the damping rate ΩN/γN , shown in Figure 5.4(c). We see

that the quality factor first decreases for more than one atom, and then seems to

remain constant for larger atoms numbers.

5.3 Analysis of the experimentally observed imperfect blockade

We will now look at various possible sources of noise to account for the increase of the

damping with increasing atom number, and the non-zero double excitation probability.

5.3.1 Analysis of the possible sources of noise

In order to quantify the effect of some of our imperfections, we numerically solve the

time-dependent Schrödinger equation with the Hamiltonian of N two-level atoms

Ĥ =
∑

i

ℏ|Ωi|
2

(eik·Riσ̂(i)
rg + e−ik·Riσ̂(i)

gr ) +
∑

i<j

Vijσ̂
(i)
rr σ̂

(j)
rr +

∑

i

ℏδiσ̂(j)
rr , (5.10)

with Ri the position of atom i, σ̂
(i)
rg = |g⟩⟨r| and σ̂(i)

gr = |r⟩⟨g| the transition operator,

σ̂
(i)
rr = |r⟩⟨r| the projection operator on the Rydberg state, and Vij = C6/|Ri −Rj|6

the van der Waals interaction. In order to keep the calculation tractable, we truncate

the Hilbert space removing all states containing more than 4 Rydberg excitations, and

limit the maximum strength of a pairwise van der Waals interaction4 to max{|VvdW|} =

h× 300MHz.

Inhomogeneous laser couplings: Experimentally we measure slightly different single

atom Rabi frequencies Ω1 for the trap positions in the arrays. For the 3× 3 array,

we measure variations of ±5% with respect to the mean Rabi frequency. For the

19 trap triangular lattice we observe variations of ±10%. These inhomogeneities

are due to the Gaussian intensity profile of the excitation laser beams, as explained

4Very large interactions will shift the respective state far off-resonant. This may cause very fast
oscillations of the population of the state, but with negligible amplitude. Those oscillations have
no contribution to the evolution of the states, but can significantly slow down the numerical
differential equation solver, as it will drastically reduce the time step size to follow those fast
oscillations.
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in Section 2.4.3. According to Equation 5.4, this leads to a small reduction of the

collectively enhanced coupling strength ΩN , but does not increase the probability to

create multiple excitations. For fully loaded arrays, an Ωi varying from site to site will

not introduce any damping or reduce the contrast of the oscillation. For partially

loaded trap arrays however, the sites i participating in an experiment changes for

each realisation of the experiment, and thus also the involved Ωi. The collective Rabi

frequency ΩN will therefore also vary slightly from shot to shot, leading to a small

effective damping of the measured oscillation, which is too small to notice for our

experimental parameters.

Inhomogeneous detunings: Spatial variations of the red and blue Rabi frequencies

ΩR and ΩB among the atoms may lead to variations of the effective detunings

δi = (|Ω(i)
B |2 − |Ω(i)

R |2)/(4∆) of the ground-Rydberg transition. They result in the

different components of |Ψ1r⟩N having different energies, leading to a beating of

several frequencies in the collective Rabi oscillation, which may be interpreted as

damping on the data. A numerical evaluation of the N -atom Schrödinger equation,

with the Hamiltonian from 6.1 and Ωi = Ω1, shows that this only becomes significant

for ⟨|δi|⟩ ≳ 0.2 ⟨Ωi⟩. We measured the individual detunings from |r⟩ to be ⟨|δi|⟩ <
0.05 ⟨Ωi⟩, which leads to no noteworthy modification of the collective Rabi oscillation.

Motion of the atoms: The finite temperature of the atoms of T ≈ 30µK leads

to a residual motion of the atoms during the excitation, with vth =
√
kBT/m ≃

0.06µm/µs. The associated Doppler effect yields a distribution of frequency shifts

σδ = |kR+kB| vth ≃ 2π×0.15MHz. This appears to be similar to the above mentioned

inhomogeneous detunings due to the excitation light shifts. However, the velocity of

the atoms is different in each realisation of the experiment, and thus each time every

atom will see a slightly different Doppler shift. This will show as a true dephasing of

the collective Rabi oscillation over multiple realisations of the experiment.

To numerically simulate the effect of the atomic motion, we modify the Hamiltonian

in Equation 6.1 to include the finite velocity, changing the phase factor5 eik·Ri →
eik·(Ri+vit), the interaction Vij = C6/|Ri −Rj|6 → Vij = C6/|Ri + vit−Rj − vjt|6,
and adding a detuning δi = |(kR + kB)vth|, with vi being the velocity, for each atom

i. Here we set ε = 0, and Ωi = Ω1 for all i. We average over 100 realisations of the

simulation, each time drawing different velocities for the atoms according to the

velocity distribution given by the respective temperature. The small variations in Ri

5The change of k due to the Doppler effect is negligible for the phase factor.
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Figure 5.5: Effect of a finite temperature on the collective oscillation of 9 atoms.

We solve the time dependent Schrödinger equation for a 3× 3 atom array, taking the

same parameters as in the experiment and including the movement of the atoms, for three

different temperatures of the atom, 30μK, 100μK and 300μK (a, b and c). We average

over 100 realisations of the simulation, each time drawing different velocities of the atoms

according to the distribution given by the respective temperature, and taking an ε = 0.

We see that for 30μK, the temperature of the atoms in our experiment, we hardly see any

effect on the collective oscillation. The probability to excite states with multiple Rydberg

excitations is negligible (note the different y -axis of the plots in the right column).

in the order of ∼ 100 nm has no effect on the dynamics, and is not taken into account

here.

The result of the simulation for 9 atoms in the 3× 3 trap array is show in Figure 5.5.

We see that for the temperature of our atoms of T = 30μK the influence of the

motion is hardly visible. The oscillation starts to show some damping only if the

temperature exceeds ∼ 100μK. In addition, we do not see any significant population

in the multiple-excitation states. The same observations also holds true for the other

atoms numbers in the 3× 3 array.

False Rydberg detections: As we have mentioned in Section 4.1.3, there is a finite

probability of falsely detecting a ground state atom as a Rydberg atom. This is

caused by a ground state atom leaving the trapping region during the excitation, thus

being lost from the trap and falsely registered as a Rydberg atom. To picture the

effect of these detection errors, we assume to have no imperfection in the experiment,

including a perfect Rydberg blockade. The probabilities to have 0 or 1 excitation would
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Figure 5.6: Effect of the false Rydberg detection on an ideal collective Rabi

oscillation. Theoretically obtained curves for N = 1, 3, 9 and 15 atoms (top to bottom),

assuming a perfect blockade, i.e. P
(N)
1r (τ) = sin(

√
NΩ1τ/2)

2, for a false Rydberg detection

probability ε = 3%. We show the probability to have 0, 1 or 2 excitations (from left to

right). For ε = 0, P2r would be zero in all cases.

then be P
(N)
0r (τ) = cos(

√
NΩ1τ/2)

2 and P
(N)
1r (τ) = sin(

√
NΩ1τ/2)

2, respectively. All

populations of multiple-excitation states would be zero.

If we now add a finite false Rydberg detection probability, the observed probabilities

will be modified according to the set of Equations in 4.2, and are shown in Figure 5.6

for N = 1, 3, 9 and 15 atoms, for ε = 3% as on the experiment. We notice a decrease

of the oscillation amplitude of P0r and P1r, which in first order of ε is proportional to

the number of atoms. We see and a significant population of the doubly excited state

P2r for larger atom numbers, which in first oder of ε is given by P2r � (N − 1)εP1r.

The effect is constant though for all excitation times τ .

We therefore conclude that we can account for the most part of the decreasing

contrast of the oscillation with the false Rydberg detection, but we so far do not

fully understand the increase of the damping rate when going from one to a few

atoms, nor the increase of P2r with τ , which we observed for some trap configurations.

Overall, the observed damping is comparable to that observed by Zeiher et al. [2015]

on single atoms in an optical lattice, who claim that it “might be due to phase noise

and slow frequency drifts of the laser”, or an incoherent coupling to nearby Rydberg
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states [Ebert et al., 2015]. More work is needed to clarify the imperfect Rydberg

blockade when using Rydberg D-states.

5.3.2 Double-excitation analysis

In the following section we will investigate the observed double excitation events in

the full Rydberg blockade regime.

The non-perfect contrast of the Rabi oscillations between
⏐⏐g(N)

⟩
and

⏐⏐⏐ψ(N)
1r

⟩
in

Figure 5.2 and 5.3 is mostly attributed to our imperfect optical detection, losing

ground state atoms during the excitation and falsely detecting them as Rydberg atoms

with an ε ≃ 3% probability. However, since the time during which we switch off the

trap was the same with 3µs in all experiments, it cannot account for the increased

damping and the increase of double Rydberg excitation probability with time. The

only parameter varying with time in the experiment are the excitation pulses. One

could argue that the excitation pulses might increase the atom loss probability, for

instance due to off-resonant single-photon scattering. We verified that this is not the

case however, by repeating the same experiments as in Figures 5.2 and 5.3, now with

a detuning of δ = 100MHz. Here, we observed no change of the atom loss probability

with the duration of the excitation pulse.

We now take a look at the blockade conditions. For the 3 × 3 trap array the

distance between the traps is a ≃ 3µm, and the smallest pairwise interaction is about

12MHz [Béguin et al., 2013], much larger than the Rabi frequency Ω1/2π = 1.5MHz,

thus being well in the Rydberg blockade regime.

For the 19 trap array, the smallest calculated pairwise interaction is VvdW ≃ 3MHz,

only slightly larger than the single atom Rabi frequency Ω1/2π = 1.1MHz. Nevertheless,

solving the Schrödinger equation with the Hamiltonian given in Equation 6.1 gives

double excitation probabilities below 5%.

If the assumption of an ideal two-level system with an interaction given by the

effective van der Waals potential Veff(θ) were correct, the only other cause to observe

population in the doubly excited states would be the detection efficiency ε. As we have

seen in Figure 5.6, this is not enough to account for the double excitation probabilities

observed in Figures 5.2 and 5.3.

The assumption of ε being the only source of double excitation events is further

refuted if we look at where in the array the double excitations occur (see Figure 5.7).

For this we take all the events, for all excitation times τ , where we detected exactly

two excitation events, and sort them by the distance between the two excitations. We
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Figure 5.7: Spatial correlations of the double excitation events in the 3 × 3 array.

(a) Detected probabilities of double excitations in a 3 × 3 atom array (red points), as

shown in Figure 5.2. The dashed line shows the expected probability of detected double

excitation for a perfect oscillation P2r (τ) � ε · sin(
√
9Ω1τ/2)

2, due to the finite detection

efficiency ε = 3%. (b) Normalised pair distance of the excitations. The histogram shows

the probability to find the double excitation at a given distance, normalised by the number

of configurations containing that distance, as indicated in the insets above the plot. The

values above the distance plots give the respective calculated van der Waals interaction in

MHz. For uncorrelated excitation pairs, all probabilities would be equal.

plot the relative occurrences of each Rydberg pair distance, normalised by the number

of configurations containing the given distance. Thus, if the finite detection efficiency

ε where the only cause for double excitations, all excitation distances would show up

with equal probabilities. We notice however that this is not the case, and see a strong

favouring of large separations of the excitation pair. Even if we consider the enhanced

coupling strength to the singly excited state Ω9 =
√
9Ω1 = 2π × 4.5MHz, we should

still be well blockaded, as confirmed by numerical simulations. Very similar behaviour

is seen for all experiments with both the fully loaded 3 × 3 grid and the partially

loaded 19 trap grid.
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Chapter 5: The collective enhancement of the Rydberg excitation in fully blockaded ensembles

We thus believe that the assumed Rydberg-Rydberg interaction is slightly weaker

than expected. This might be caused by the large number of interacting Zeeman

sublevels [Vermersch, Glaetzle, and Zoller, 2015] of the Rydberg D states. For all atom

pairs not aligned with the quantisation axis, all 16 pair state Zeeman sublevels are

coupled together by the van der Waals interaction. For a large number of atoms, this

may lead to a weak excitation of multiple-excitation states, and hence to a gradual

increase of population of the Rydberg manifold. This assumption is supported by

observations made in Rydberg D-state polaritons [Tresp et al., 2015].

Another possible explanation might be the excitation of Rydberg molecules comprised

of neighbouring Rydberg states, described by Derevianko et al. [2015]. However, for

the molecular state to be resonant with the excitation laser, the distance between the

atoms needs to be precise within a small fraction of a nanometer, which is unlikely to

have happened just by chance on our experiments.

To gain a more quantitative insight into the effect of the large Zeeman manifold of

the blockade will be an important task in view of future applications of the Rydberg

blockade in quantum simulation and quantum computing experiments.

5.4 Conclusion

We have probed the collective enhancement of the Rabi oscillation between the ground

state and a state with a single Rydberg excitation shared among all atoms, in the full

Rydberg-blockaded regime. We observe well-contrasted, coherent collective oscillations,

and measure the expected
√
N -scaling with the atom number N .

The double excitation probabilities seen in the experiments are larger than what

can be explained by our false Rydberg detections. This may be due to an over-

estimation of the van der Waals interaction strength, although in previous experiments

our calculated C6 coefficients were well confirmed by the data [Béguin et al., 2013;

Barredo et al., 2014]. Another explanation could be the weak coupling to Rydberg

pair-states involving the various Zeeman sub-levels of the Rydberg D-states used in

this experiment [Vermersch, Glaetzle, and Zoller, 2015], for atom pairs that are not

aligned along the quantisation axis.

A further investigation of the efficiency of the Rydberg blockade is necessary in

view of using the blockade in high-fidelity quantum-gate operations for quantum

information protocols [Saffman, Walker, and Mølmer, 2010].
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Chapter 6
Realisation of the Quantum Ising
model in 1D and 2D arrays of
Rydberg atoms

One aim of a quantum simulator is to give access to microscopic local observables,

that can neither be accessed in the simulated material nor on a classical computer. In

order for a particular quantum simulator to be credible, it needs to be benchmarked,

which may be accomplished by various means. One can simulate a system with an

analytically known behaviour, or compare the results of a quantum simulation on

different systems. This is why realising a quantum simulator of a given Hamiltonian

using different physical platforms is important. The promising results presented in

the previous chapter thus motivated us to study the quantum Ising model on our

experiment.

Here, we realise the Quantum Ising model on a system with between 8 and ∼ 30

spins, and compare it to the numerical solution of the Schrödinger equation with

the Quantum-Ising Hamiltonian whenever possible. For spin numbers N > 15, the

numerical treatment of the full Hilbert space becomes difficult. The ab initio numerical

simulation of our system was done by Tommaso Macr̀ı from the Universidade Federal

do Rio Grande do Norte, and International Institute of Physics (Brazil), based on a

pseudo-spin 1/2 model with anisotropic, long-range interactions, and a finite Rydberg

detection efficiency ε. In order to keep the numerical calculation tractable, we truncate

the Hilbert space to a given maximum number of spin excitations. More details of the

numerical simulations of this chapter can be found in the supplementary material

in [Labuhn et al., 2016].

We probe the Rydberg excitation dynamics for the case where the blockade radius

extends between one and a few nearest neighbours, for various 1D and 2D geometries

of atom arrays. Our apparatus allow the detection of the exact location of the Rydberg

excitations, giving us direct access to the spatial correlations occurring in cold Rydberg

media. The emergence of spatial correlations of Rydberg excitations in atomic media
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due to their strong interactions has been suggested a decade ago [Robicheaux and

Hernández, 2005]. The theoretical study of such Rydberg systems suggested that

the spatial ordering undergoes phase transitions when changing the excitation laser

parameters [Weimer et al., 2008], even leading to a dynamic crystallisation of the

Rydberg excitations [Pohl, Demler, and Lukin, 2010].

Those spatial correlations have since been indirectly observed experimentally, by

looking at counting statistics and the temporal evolution of the total Rydberg excitation

number [Viteau et al., 2011; Dudin, Bariani, and Kuzmich, 2012; Schempp et al.,

2014; Urvoy et al., 2015]. Only recently the spatial ordering has been observed directly

by a spatially resolved detection of Rydberg atoms by field ionisation [Schwarzkopf,

Sapiro, and Raithel, 2011], and on a quantum gas microscope [Schauss et al., 2015],

even allowing the adiabatic preparation of the crystalline1 ground state [Schauss et al.,

2015].

Our new setup not only allows us to pinpoint the exact positions of the Rydberg

excitation, but also lets us choose the initial ordering of the ground state atoms, in

almost any arbitrary 2D geometry.

We can describe the internal dynamics of a system with N atoms with a ground

state |g⟩ and a Rydberg state |g⟩, which are coupled by the Rabi frequency Ω, by the

Hamiltonian

Ĥ =
ℏΩ
2

N∑

i

(σ̂(i)
rg + σ̂(i)

gr ) +
∑

i<j

Vijσ̂
(i)
rr σ̂

(j)
rr + ℏδ

N∑

i

σ̂(j)
rr . (6.1)

Here σ̂
(i)
rg = |g⟩⟨r| and σ̂(i)

gr = |r⟩⟨g| are the transition operators between the ground

and the Rydberg state of atom i, σ̂
(i)
rr = |r⟩⟨r| the projection operator on the Rydberg

state, Vij = C6/|Ri −Rj|6 the van der Waals interaction between atoms i and j, and

δ the detuning of the excitation lasers from the single atom resonance.

We can now introduce the two spin states |↓⟩ ≡ |g⟩ and |↑⟩ ≡ |r⟩. Following the

spin-1/2 notation, we can map [Schauss et al., 2015] the Hamiltonian in Eq. 6.1 to an

Ising- type Hamiltonian of the form

Ĥ =
ℏΩ
2

N∑

i

σ̂(i)
x +

∑

i,j,i̸=j

Vij
2
σ̂(i)
z σ̂

(j)
z +

N∑

i

[Bi − ℏδ]σ̂(j)
z , (6.2)

with σ̂
(j)
α (α = x, y, z) being the Pauli spin matrices and Bi =

∑
j,j ̸=i Vij/2. The

1However, as recent pre-print rebuts the claim of a true crystalline state [Petrosyan, Mølmer, and
Fleischhauer, 2016]
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6.1 A ring of 8 atoms

first and the last term of the Hamiltonian describe a transverse and a longitudinal

magnetic field respectively. There is a large interest in such Ising-type Hamiltonians

both theoretically [Weimer et al., 2008; Weimer and Büchler, 2010; Lesanovsky, 2011]

and experimentally [Richerme et al., 2014; Jurcevic et al., 2014; Schauss et al., 2015].

On our experiment, we can realise such a Hamiltonian by simply shining the Rydberg

excitation light on an array of ground state atoms, with a given single atom Rabi

frequency Ω and detuning δ from the single atom resonance.

In all of the results presented in this chapter, we choose δ = 0. The spin-Hamiltonian

thus simplifies to

Ĥ =
ℏΩ
2

N∑

i

σ̂(i)
x +

∑

i<j

Vijn̂
(i)n̂(j), (6.3)

with n̂ = (1 + σ̂z)/2 counting the number of Rydberg excitations on a given site,

being either 0 or 1. The spin-spin coupling is given by the van der Waals interaction

Vij = C6(θ)/|Ri −Rj|6 between atoms i and j is anisotropic, as we are still using

Rydberg D-states (see Section 5.1).

6.1 A ring of 8 atoms

We first probe the spatial correlations and dynamics of Rydberg excitations on a

system consisting of eight atoms arranged on a ring. This relatively small system

size allows us to prepare the ring in a deterministic way, so that we can generate an

eight-trap pattern, and trigger the experiment as soon as all the traps are filled2.

Furthermore, we can still numerically solve the time-dependent Schrödinger equation

with the Hamiltonian of Equation 6.3 with the full Hilbert space including all 256

basis states. Despite the anisotropy of the van der Waals interaction of the Rydberg

D-states, we assume translational invariance along the ring, thus realising a quasi-1D

spin chain with periodic boundary conditions.

We can easily investigate different regimes of the range of the blockade radius by

either tuning the interatomic spacing a in the ring, or the blockade radius Rb via the

C6 coefficient by changing the principal quantum number of the used Rydberg state.

Intuitively, we expect independent Rabi oscillations if Rb < a, a Rabi oscillation to a

state with a collective single excitation with an enhanced Rabi frequency if Rb exceeds

the system size as seen in Chapter 5, and a more complicated behaviour for Rb ≈ a.

2This way, the full data acquisition for the intermediate blockade regime in Figure 6.1(b) took
about 24 hours.
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Figure 6.1: Rydberg excitation dynamics for an 8 atom ring. We probe the temporal

evolution of the Rydberg fraction fr for three different regimes of the blockade radius

Rb, and compare it to the solution of the Schrödinger equation with the quantum Ising

Hamiltonian of Equation 6.3 including a finite detection efficiency ε = 3% (solid lines).

The sketches on the right show the positions of the atoms and the respective radii. (a) For

Rb smaller than the atomic separation a the atoms behave independently, and each atom

oscillates between the ground and Rydberg state with the single atom Rabi frequency

Ω1. (b) For Rb � 1.5a the Rydberg fraction shows a damping which we attribute to the

beating of several incommensurate frequencies of the interacting system. (c) For Rb larger

than the trap array, multiple Rydberg excitations are blockaded, and fr oscillates between

0 and 1/8 with a frequency
√
8Ω1. (d) Residuals between the data points and the model.
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6.1 A ring of 8 atoms

Table 6.1: Experimental parameters used for the experiments. Parameters of the

three different experiments shown in Figure 6.1).

trap array parameters Rydberg state parameters

interaction regime spacing a Nat n calculated C6/h Ω1/(2π) Rb α
of Figure 6.1 (µm) (GHzµm6) (MHz) (µm)

independent (a) 6.3 8 54 6.7× 103 1.6 4 0.63
intermediate (b) 6.3 8 61 7.6× 105 1.3 9.1 1.4
fully loaded (c) 3.8 8 100 8.0× 107 0.95 21 5.5

We experimentally realise these three regimes by choosing the experimental pa-

rameters given in Table 6.1. We probe the global excitation dynamics by measuring

the Rydberg fraction fr, i.e. the average number of Rydberg excitations divided by

the total number of atoms N . In the non-interacting regime, with Rb < a, the atoms

behave independently of each other, and thus each atom will undergo Rabi oscillations

between |g⟩ and |r⟩ with the same single atom Rabi frequency3 Ω1. Thus also the

Rydberg fraction oscillates between 0 and 1 with frequency Ω1, as seen in Figure 6.1(a).

The deviation from the expected fr, plotted in Figure 6.1(d), stems from the finite

Rydberg excitation efficiency.

For the other extreme case, the blockade radius Rb being larger than the system

size, we use the Rydberg state to n = 100, and reduce the interatomic spacing to

a = 3.8µm, yielding a calculated Rb ≃ 21µm with an Ω1 = 2π × 0.95MHz. All the

atoms are now pairwise blockaded, leading to an oscillation of the system between

the collective ground state and a strongly correlated state, with a single excitation

symmetrically shared among all eight atoms. Equivalent to the results presented in

Chapter 5, the Rydberg fraction now oscillates with an enhanced frequency
√
8Ω1

between 0 and 1/8, as shown in Figure 6.1(c).

In the intermediate regime, where the blockade radius is comparable to the in-

teratomic spacings, the dynamics becomes less intuitive. We now chose n = 62,

giving a calculated Rb = 9.1µm with an Ω1 = 2π × 1.3MHz, and again taking an

interatomic spacing of a = 6.3µm. We expect a ratio α = Rb/a ≃ 1.4, so nearest

neighbour excitations should now be blockaded, whereas next-nearest neighbours

only show a van der Waals interaction strength of about 0.26MHz and should behave

nearly independently. The observed dynamics of the Rydberg fraction in shown in

3We have measured the Rabi frequencies to be equal within 4% along the ring.
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Figure 6.2: Site-resolved Rydberg excitation probability. The single-site resolved mean

Rydberg excitation probabilities (left), and the pair correlation function g(2)(∆k) (right),

for the data shown in Figure 6.1, with (a) α ≃ 0.63, (b) α ≃ 1.4, and (c) α ≃ 5.5, for
excitation times given in the right panels. The excitation probabilities are homogeneous

among all sites within the error bars. The dashed lines in the left panels show the respective

means, the solid lines in the right panels are guides to the eye. The site numbering is

shown in the inset in (c).

Figure 6.1(b). It shows the beating of the incommensurate frequencies of the several

resonantly or near-resonantly coupled eigenstates of the system, which looks as an

effective damping (for long excitation times, the simulation does show a revival of

the oscillation). We again compare the data to the full numerical solution of the

Schrödinger equation of the spin-1/2 model of Equation 6.3, including an ε = 3%.

The measured data values agree quite well with the model. Only for the second half of

the dataset, with excitation pulse areas > 2π, they start to deviate. This might be

a sign of the limits of the simple two level model for our D-state Rydberg atoms,

especially since the interacting atom pairs are not aligned with the quantisation axis,

thus possibly leading to more involved interaction dynamics, as described in the

previous chapter.

We see that we can easily vary the interaction regime of the system by strongly
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6.1 A ring of 8 atoms

tuning α = Rb/a, the important parameter in this kind of experiment, by almost one

order of magnitude, from a non-interacting α = 0.6 to α = 5.5.

As we measure the atom resolved Rydberg excitation probability, we can directly

probe the spatial Rydberg-Rydberg pairs correlations. Due to the anisotropy of the

interaction the system is not rotationally invariant. However, the important parameter

here is not the interaction strength directly, but the blockade radius Rb. As the range

of the blockade of the varies very little along the ring, we expected the system to

behave translationally invariant. This assumption is supported by the mean Rydberg

excitation probability per site, shown in Figure 6.2, for all three values of α presented

above. We measure an excitation probabilities which are homogeneous on all sites

within the error bars (the same holds true for other excitation times, which are not

shown here).

A structured excitation pattern only becomes visible when computing the Rydberg-

Rydberg pair correlation function

g(2)(∆k, t) =
1

Ntraps

∑

i

⟨ni(t)ni+∆k(t)⟩
⟨ni(t)⟩⟨ni+∆k(t)⟩

, (6.4)

averaged over all sites Here, ni(t) is the Rydberg excitation probability of a ground

state atom at site i, for an excitation time t. The results are shown in the right

panels of Figure 6.2, for the same excitation times as in the site-resolved excitation

probabilities.

In the non-interacting regime with α ≃ 0.63, we as expected do not see any

correlations of the Rydberg excitations, as all atoms behave independently, showing

nearest neighbour interactions of only VvdW ≃ h× 0.1MHz.

In the intermediate regime with α ≃ 1.4, we see strong antiferromagnetic-like

or crystal-like correlations, with a strong suppression of nearest neighbour exci-

tations (∆k = ±1), and a nearly doubled excitation probability for next-nearest

neighbours pairs (∆k = ±2).

In the fully blockaded regime with α ≃ 5.5, we again expect a completely flat

correlation function if the assumption of perfect blockade holds true, as there should

always be at most one single excitation present in the system. The false Rydberg

detection probability ε should only lead to a global offset from zero, as ε was measured

to be equal among all site. However, we notice an increase of g(2) at ∆k = ±4, i.e. for

Rydberg pairs created at opposing sites of the ring. This means that for the occurrence

of double Rydberg excitations, the excitations arrange themselves as far apart as

possible. The occurrence of double excitation in the system is surprising, as even the
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smallest calculated effective interaction strength in the system is Veff ≳ h× 20MHz.

Again this might hint that the effective interaction strength might be an over-simplified

model.

We finally compare the measured pair correlation function g(2)(∆k, Ωτ) for the

intermediate regime of α ≃ 1.4 with that obtained from the solution of the Schrödinger

with the quantum Ising model of Equation 6.3, including the anisotropic interaction,

with and without including ε. In order to take into account a false positive detection

probability of ε = 3%, a standard Monte-Carlo algorithm was run, ‘exciting’ each

ground state atom to the Rydberg state with a probability obtained from the solution

of the time dynamics of the Schrödinger equation. The remaining ground state atoms

are then converted to ‘Rydberg’ atoms with a probability ε = 3%.

As the Rydberg fraction fr in Figure 6.1(b) starts to deviate from the model for

Ω1τ ≳ 2π, we also expect the correlation function to show the ‘correct’ behaviour of

a true spin-1/2 system only up to this point. The results for excitation pulse areas

between 0.2π and 4.2π are shown in Figure 6.3. Overall we notice that the false

detection probability ε only leads to a small reduction of the contrast of the pair

correlations. For small excitation pulse areas of up to Ω1τ ≃ 1π we see a remarkable

agreement between the data and the theory, except for the shortest excitation pulse of

0.2π, where the Rydberg excitation probability of multiple atoms is still too low to

have sufficient events for the calculation of g(2). For excitation pulse areas between 1π

and 2π the data no longer follows the model exactly, but the same pattern of the

correlation is still visible. Only for excitation times larger than 2π the disagreement

becomes more pronounced. Most notably the suppression of next-nearest neighbours

weakens significantly, again suggesting that the idea of the effective van der Waals

potential in Equation 5.7 to model the angular dependence of the interaction begins

to fail. We attribute this deviation to the Zeeman structure of Rydberg D-states,

which is not taken into account in our spin-1/2 model. It may lead to a reduced

Rydberg-Rydberg interaction due to the van der Waals interaction coupling to other

Zeeman sublevels for θ ̸= 0, i.e. atomic pairs not aligned along the quantisation axis,

yielding a decreased efficiency of the Rydberg blockade, as we have already observed

in Chapter 5.

To understand the origin of these increasing deviation from the model, we look at

the time evolution of g(2) for each value of ∆k separately. We see in Figure 6.4 that

for all ∆k the correlations oscillate with time. This is due to the still relatively small

system size, which does not conceal the coherent nature of the Rydberg excitation. For

∆k = 1 there is a roughly linear increase of g(2) on top of the oscillating behaviour.
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Figure 6.3: The Rydberg-Rydberg pair correlation function for the 8 atom ring.

We compare the measured Rydberg-Rydberg pair correlation function to the correlations

obtained from the spin-1/2 model, for the parameters of Figure 6.1(b), as a function of

the excitation pulse length Ω1τ . The solid lines are obtained by numerically solving the

time-dependent Schrödinger equation with the Hamiltonian of Equation 6.3, for perfect

detection (dark green), and including a detection error of ε = 3% (light green).
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Figure 6.4: Time evolution of the pair-correlations. We show g(2)(τ) for Δk ranging

from ±1 to ±4 (a to b). Due to the coherent coupling and the still relatively small system

size g(2) oscillates with the excitation time. For Δk = ±1 the pair correlations increase

with time. The dashed grey line in (a) shows a slope of 0.2/π.

This observation supports the assumption of an imperfect Rydberg blockade, since even

for an interatomic axis perpendicular to the quantisation axis the nearest-neighbour

interaction is still VvdW(θ = 90◦) � h × 4.9MHz, sufficiently larger than the Rabi

frequency Ω1 = 2π × 1.3MHz, thus nearest neighbour excitations should still be

blockaded.

As a possible extension to the experiment presented here, one could perform a sweep

of the laser detuning and Rabi frequency as demonstrated by Schauss et al. [2015]. If

the translational invariance holds true, then due to the periodic boundary conditions

and the even atom number one could adiabatically follow the ground state of the

system to reach the antiferromagnetic state, producing a state of the form

|Ψaf〉 = |↑↓↑↓↑↓↑↓〉+ |↓↑↓↑↓↑↓↑〉√
2

. (6.5)

After local rotations this state is equivalent to the GHZ state [Greenberger, Horne,

and Zeilinger, 1989]

|GHZ〉 = |↑↑↑↑↑↑↑↑〉+ |↓↓↓↓↓↓↓↓〉√
2

. (6.6)
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We measure an overlap of the experimentally produced state after an excitation pulse

of Ω1τ = 1.0π with the antiferromagnetic state of | ⟨Ψaf|Ψexp(1.0π)⟩ |2 = 0.4.

6.2 Partially filled quasi-1D array

In the previous section we have probed the Rydberg-Rydberg pair correlations of eight

atoms arranged along a fully loaded ring. In the intermediate regime of the interaction

we observed strong correlations of the Rydberg excitations, which for excitation times

up to Ω1τ ≃ 1π is very well described by a quantum-Ising type Hamiltonian. We

attribute the increasing deviation from the model for longer excitation times to a

more complex interaction mechanism for atom pairs whose interatomic axis is not

aligned with the quantisation axis.

We therefore modify the trap geometry to a ‘racetrack’-shaped array of Nt = 30 traps,

as shown in Figure 6.5(a). We chose this geometry to (i) have as many atom-pairs

as possible aligned along the quantisation axis while keeping a quasi-1D chain with

periodic boundary conditions, and (ii) to have Rabi frequencies as homogeneous as

possible throughout the array, where the main constraint is the finite extent of the the

474 nm excitation laser along the y-axis.

With our stochastic trap loading we cannot wait until all traps in the array are

filled with a single atom. However, as explained in Section 4.1, we can monitor the

state of each trap in real time, allowing us to trigger the experiment on a minimum

number of present atoms. In order to nevertheless improve the atom number statistics

in the experiment from a binomial distribution centred around Nt/2 = 15 atoms, we

set the trigger condition for the experiment to the presence of ≥ 20 atoms, yielding a

short experimental cycle time of ≈ 2.5 s. Figure 6.5(b) shows the thereby obtained

atom number distribution. We observe a narrow distribution centred around 20 atoms,

corresponding to a filling fraction of 67%. We do not always obtain 20 atoms in the

initial atom configuration, since there is a finite probability for trap to lose or catch an

atom between the triggering frame and the initial frame, as explained in Section 4.1.1.

For very slow trap loading rates, we would observe an atom number distribution with

a sharp peak at N = 20 atoms. In the data presented in this section, we chose not to

post-select on the atom number.

In order to observe strong Rydberg pair correlations despite the partial loading, we

now use the
⏐⏐79D3/2

⟩
Rydberg state, with a calculated C6/h = 6.0× 106GHzµm6.

Using a single atom Rabi frequency Ω1 ≃ 2π × 1.0MHz, we expect a blockade radius

of Rb ≃ 13.5µm. Compared to the lattice spacing a = 3.1µm, we obtain a ratio
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Figure 6.5: Parameters of the partially loaded Racetrack-like trap array. (a) CCD

image of the trap intensities, with an inter-trap distance a = 3.1μm. The numbers

indicate the site labelling, the shaded areas the blockade radii of Rb � 13.5μm for the∣∣79D3/2〉 (red) and Rb � 7.4μm for the
∣∣57D3/2〉 (orange) state. The array has an extent

along the y -axis of 14μm compared to the 1/e2-radius of the blue excitation beam of

w
(y)
B = 47μm, and an extent along the z-axis of 39μm compared to w

(z)
R = 230μm of

the red beam. (b) The experiment is triggered by the presence of N ≥ 20 atoms in the 30

traps. The points show the relative occurrences of obtained number of ground state atoms

in the initial atom configurations. The shaded area shows the expected distribution for

random triggering. (c) Site dependent excitation probability of a ground state atom to

the
∣∣79D3/2〉 state, for an excitation time Ω1τ = 0.64π. The dashed line gives the mean

excitation probability, the shaded grey area the statistical uncertainty.

α = Rb/a � 4.3, which should be sufficient to observe strong correlation even for a

half-filling of the traps.

Along the racetrack, the measured light shifts seen by the atoms due to variations

the excitation light intensity differ by less than 0.06% of the mean Rabi frequency Ω1,

the Rabi frequencies by less than 0.09%. We measure again the site-resolved excitation

probability for a present single atom, for an excitation time of Ω1τ = 0.64π, shown in

Figure 6.5(c). Almost all excitation probabilities are equal within the error bars. Due

to the limited sample size, exciting on average ∼ 3.7 out of the 20 atoms, for 400

realisations at Ω1τ = 0.64π, the statistical uncertainty is relatively large.

The measured Rydberg fraction fr as a function of excitation time is shown in

Figure 6.6(a). We observe initial oscillations which are damped out for longer excitation

times. We compare the data to the theoretical expected dynamics of the Rydberg

fraction, obtained by again numerically solving the Schrödinger equation for the

spin-1/2 Hamiltonian of Equation 6.3 and including an ε = 3% for all sites. The

agreement between the model and the experimentally observed dynamics is remarkable,
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with the residuals (see Figure 6.6(b)) smaller than ±0.02.

We again compute the experimentally observed, time dependent Rydberg-Rydberg

pair correlation function given in Equation 6.4, here with ∆k being the absolute site

distance in either direction. In the case of a partially loaded array, both ni and ni+∆k

are computed from only those experiments where a ground state atom is present in

the initial atom configuration both at site (i) and at site (i+∆k) at the same time.

The result is shown in Figure 6.6(c). We see a strong suppression of g(2)(∆k) for short

distances ∆k ≤ 3. The correlations emerge already at very short times, after which

they show some small dynamics, but reach a quasi-steady state after Ω1τ ≈ 2π.

To further assess the validity of the spin-1/2 model in this system, we want to again

compare the measured pair correlations to the ones obtained from the model. For

the calculation, carried out by Tommaso Macr̀ı, the Schrödinger equation for the

Hamiltonian of Equation 6.3 was solved numerically. The pair correlation function

was computed for various random initial ground state distribution according to the

ones observed experimentally. After several hundred realisations the computed pair

correlation function is well converged.

The comparison between data and theory, shown in Figure 6.7 for a selection of

excitation times, shows a remarkably good agreement. Also the apparently high value

of g(2) for small ∆k is reproduced by the theory. For these small distances ∆k < α, the

small ε actually has a strong influence on the correlation function. In case of perfect

blockade, i.e. ε = 0, g(2) = 0 for small distances. Including a finite ε modifies the pair

correlation computed with Equation 6.4 in the following way. To lowest order in ε, the

numerator ⟨nini+∆k⟩ gives a non-zero value in the blockaded regime only if atom i is

in the Rydberg state (with a probability fr), and atom i+∆k is lost as a ground

state atom (with probability ε = 3%), or vice versa, giving 2εfr. The denominator

⟨ni⟩⟨ni+∆k⟩ gives f 2
r , thus yielding a g(2) ≃ 2ε/fr, which experimentally can be as

large as 0.5. Our observations show that the interaction induces spatial correlations in

the system on a length scale Rb. The damped quasi-oscillatory behaviour of g(2) is

typical of a that of a liquid. It has also been observed in Rydberg excitations on a 2D

optical lattice Schauss et al. [2015].

The improved agreement to the spin-1/2 model compared to the eight-atom ring

presented in the last section is likely due to the fact that many atom pairs are aligned

along the quantisation axis, and only a single excitation in the ‘bend’ of the racetrack

is allowed at the same time, thus making the effects of the anisotropy small.

In order to intentionally increase the effect of the anisotropy by allowing several

excitations in the bend, we would ideally increase the lattice spacing by factor
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Figure 6.6: Excitation dynamics and correlations for large α. (a) The Rydberg

excitation fraction in the racetrack for the
∣∣79D3/2〉 Rydberg state (circles) and the

numerical calculation using the spin-1/2 model (solid line), taking into account a false

detection probability of ε = 3%. (b) The residuals between the data and the model (error

bars are smaller than the symbol size). (c) The Rydberg-Rydberg pair correlation g(2)(Δk)

of Equation 6.4, the dotted line indicates Rb(θ = 0). The dynamics seems to reach a

quasi-steady state after Ω1τ ≈ 2π.
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Figure 6.7: Comparison of the measured pair correlations to the spin-1/2 model.

We compare, for a selection of excitation times, the measured Rydberg-Rydberg pair

correlations for the
∣∣79D3/2〉 state of Figure 6.6, with the numerically obtained pair

correlations of the spin-1/2 model, taking into account a false detection probability of

ε = 3%. The dashed line indicates α = 4.3.
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∼ 2. Unfortunately this is unpractical for us, since then the array size would be

comparable to the spatial extend of the excitation lasers, and Rabi frequencies would

vary significantly among the trap sites. We therefore keep the array size fixed, and

reduce the blockade radius Rb instead, by reducing the principal quantum number to

n = 57. With Ω1 ≃ 2π× 1.7MHz and a calculated C6/h = 2.7× 105MHzµm6, we get

Rb = 7.4µm, giving α = 2.4. As before, we again trigger on the presence of 20 atoms

in the 30 traps.

We perform the same experiment as before with the n = 79 state, shown in

Figure 6.8. Until an excitation time of Ω1τ ≈ 1π the Rydberg fraction fr follows the

course predicted by the spin-1/2 model. For longer excitation times, the measured

Rydberg fraction lies systematically above the calculated curve, meaning that we

again measure more Rydberg excitations than predicted by the model. Finally, the

pair correlations g(2) for the
⏐⏐57D3/2

⟩
state as a function of excitation time is shown

in Figure 6.8(b). The contrast is reduced compared to the previously presented

one, and again a quasi-steady state seems to be reached after a time Ω1τ ≈ 2π. A

numerical calculation of g(2) has not been carried our so far, as the Hilbert space is

now significantly larger compared to the racetrack with the n = 79 Rydberg state,

due to the increased number of possible Rydberg excitations in the system. While

the calculation of fr is still relatively simple by solving once the time dependent

Schrödinger Equation, the calculation of g(2) including the finite ε in Monte-Carlo

simulation requiring ∼ 100 realisation to converge, becomes much more involved.

We have seen a clear distinction between the two realisations of the experiment. For

the larger α = 4.3 the agreement with the spin-1/2 model is exceptional, whereas with

a smaller α = 2.4 a deviation of the Rydberg fraction from the model becomes quickly

visible. Which we attribute to a more pronounced influence of the anisotropy when

decreasing α.

6.3 Partially filled 7x7 square lattice

In the previous section we investigated the Rydberg-Rydberg pair correlations along

a partially loaded, quasi-1D chain of 30 traps with periodic boundary conditions.

When comparing the experimental results to the spin-1/2 model of Equation 6.3, we

observe an excellent agreement for α = Rb/a = 4.3, whereas for α = 2.4 we notice an

increasing discrepancy of the Rydberg fraction for larger excitation times, which may

be caused by a larger influence of the anisotropy of the interaction for atomic pairs

not aligned with the quantisation axis.
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Figure 6.8: Excitation dynamics and correlations for small α. (a) The Rydberg

excitation fraction in the racetrack for the
∣∣57D3/2〉 Rydberg state (squares) and the

numerical calculation using the spin-1/2 model (solid line), taking into account a false

detection probability of ε = 3%. (b) The residuals between the data and the model.

(c) The Rydberg-Rydberg pair correlation g(2)(Δk) of Equation 6.4, the dotted line

indicates Rb(θ = 0). Compared to the experiment with large α the correlation function is

less contrasted, but also seems to reach a quasi-steady state after Ω1τ ≈ 2π.
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Figure 6.9: Parameters of the partially loaded 7x7 square trap array. (a) CCD

image of the trap intensities, with a lattice spacing a = 3.5μm. The blue shaded area

shows the blockade radius of Rb � 9.1μm for the
∣∣61D3/2〉 state, with α = 2.6. (b) The

experiment is triggered on the presence of N ≥ 30 atoms in the 49 traps. The points show

the relative occurrences of obtained numbers of ground state atoms in the initial atom

configurations. The shaded area shows the expected distribution for random triggering.

(c) Single-site resolved Rydberg excitation probability of a ground state atom at position

(i , j) = ( ya ,
z
a ) in the array, for an excitation time Ω1τ = 0.90π. Due to finite size effects

the excitation probability is slightly higher at the edges and corners of the array.

In order to further probe the influence of the angular dependence on the dynamics

of the Rydberg fraction and the Rydberg-Rydberg pair correlations, we now prepare a

two-dimensional 7× 7 square trap array, with a lattice spacing a = 3.5μm. We use the

Rydberg state
∣∣61D3/2

〉
with a calculated C6/h = 7.6× 105 MHzμm6. With a single

atom Rabi frequency Ω1 � 2π × 1.4MHz we expect a blockade radius Rb = 9.1μm,

giving a ratio α = 2.6.

We trigger the experiment on the presence of N ≥ 30 atoms present in the 49 traps,

narrowing and shifting the atom number distribution to higher atom numbers compared

to random triggering (see Figure 6.9(b)). Again we do not post-select the experiments

on the initial atom number. In Figure 6.9(c) we show the Rydberg excitation probability

for each site in the array, for an excitation time Ω1τ = 0.90π. We see the effect of the

finite size of the system, leading to a higher excitation probability along the edges

and in the corners of the array, as those sites have fewer neighbours than the sites in

the bulk, and thus are less often blockaded. Even though the false positive detection

probability ε varies between 2% and 4% among the trap sites, those variations do

not contain any pattern, and would be to small to explain the variation in excitation

probability.

The measured dynamics of the Rydberg fraction fr for the square array, shown in
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Figure 6.10: Time evolution of the Rydberg fraction in the 7x7 square trap array.

Measured Rydberg fraction fr (points) and solution of the Schrödinger equation with the

spin-1/2 Hamiltonian of Equation 6.3 (solid line), taking into account a false detection

probability of ε = 3%.

Figure 6.10, agrees with the spin-1/2 model only for short excitation times below

Ω1τ = 1π, then monotonously increases with the excitation time without showing any

further oscillations. This suggests that already with Nat ∼ 30 atoms, the observed

excitation dynamics resembles that of a many-body system observed in large ensembles

(see e.g. [Löw et al., 2009]), with an initial fast rise followed by a saturation of the

Rydberg fraction. However, if the magnitude of the van der Waals interaction would

just be smaller than expected, the saturation of the Rydberg fraction would occur at a

slightly higher value, but we would not see a slow continuous increase as observed

in the experiment. We thus again attribute the seemingly linear increase of fr for

Ω1τ > π to multilevel effects, which are indeed expected to be strong in this array

where the internuclear axis of many pairs lies at a large angle θ to the quantisation

axis.

In order to study the effect of the finite size of the system and the angular

dependence of the interaction on the Rydberg-Rydberg correlations, we now compute

the two-dimensional pair correlation function

g(2)(Δk, Δl) =
1

Ntraps

∑
i,j

〈ni,jni+Δk,j+Δl〉
〈ni,j〉〈ni+Δk,j+Δl〉 , (6.7)

where ni,j refers to the excitation probability at position (i, j) = (y/a, z/a) of the array,

and the site distances Δk, Δl each ranging from −6 to 6. Both ni,j and ni+Δk,j+Δl are

computed from only those experiments where a ground state atom is present in the
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Figure 6.11: Time evolution of the pair correlation function in the 7x7 array.

Already after very short excitation times a strong suppression of neighbouring Rydberg

pairs emerges in the correlation function, becoming slightly weaker for long excitation

times. Note the unevenly spaced excitation times of the experiment.
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Figure 6.12: Influence of the edge atoms on the pair correlations. Pair correlation

function g(2)(Δk , Δl) of the 7x7 array, for a excitation time of Ω1τ = 1.5π, (a) taking

into account all sites on the array, as shown in Figure 6.11, (b) ignoring correlations where

one atom sits on the edge of the array, and (c) the difference for the two. The same

behaviour is observed for other excitation times.

initial atom configuration both at site (i, j) and at site (i+Δk, j +Δl) at the same

time. Here we omit the explicit time dependence of g(2) for better readability.

The measured Rydberg-Rydberg pair correlations are shown in Figure 6.11. Despite

the finite size of the array, we clearly see the fast emergence of a strong depletion

around each excitation. We already see strong correlations after an excitation pulse

area of only Ω1τ = 0.3π. For excitation times up to Ω1τ ≈ 2π we see an isotropy in

the pair correlations which resembles that of the effective van der Waals potential of

Equation 5.7, which then seems to disappear at later times. This is not yet understood.

Lastly, in order to probe the effect of the finite size of the system, we again compute

the pair correlation function according to Equation 6.7, this time neglecting the sites

which are on the edge of the 7× 7 array, i.e letting i and j only run from 2 to 6 thus

and Δk and Δl from −4 to 4. The obtained g(2), together with that of Figure 6.11

using the full array, are shown in Figure 6.12 for an excitation time Ω1τ = 1.5π.

Except for a slightly increased noise, the results are qualitatively equivalent. The

same holds true for all other measured excitation times. The finite size of the arrays

therefore does not seem to have a large impact on the pair correlations, which is not

surprising as the blockade radius is small compared to the size of the array.

6.4 Conclusion

We have realised the quantum Ising model of a spin-1/2 system both in effective one-

dimensional atom arrays with periodic boundary conditions and in a two-dimensional

atom array. We have benchmarked our implementation of a spin system by comparing
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both the Rydberg fraction fr and the Rydberg-Rydberg pair correlation function g(2)

against a numerical simulation of the quantum Ising model for the experiments where

a numerical treatment was still practical.

We observed an overall good agreement for short excitation times. For long excitation

times, we notice an increase of nearby Rydberg pair-excitations for most cases, which

is not reproduced by the spin-1/2 model. For the racetrack-shaped trap array with a

large blockade radius, where most of the interacting atom pairs are aligned along the

quantisation axis, we observe an exceptional agreement between our experiment and

the spin-1/2 model.

The obtained results are promising in view of the quantum simulation of spin

systems with single Rydberg atoms. Additional work is necessary to e.g. clarify the

role of the Zeeman level-structure of Rydberg D-states as pointed out in Chapter 5, in

order to better understand the cause of the discrepancy between the experiment and

the spin-1/2 model.

126



Chapter 7
The Rydberg blockade in the
resonant dipole-dipole regime

The Rydberg blockade is predominantly studied in the van der Waals regime [Comparat

and Pillet, 2010]. However, a similar type of blockade can be observed for resonant

dipole-dipole interactions [Vogt et al., 2007; van Ditzhuijzen et al., 2008; Reinhard,

Younge, and Raithel, 2008; Maxwell et al., 2013; Gunter et al., 2013; Ravets et al.,

2014].

Although the van der Waals and the resonant dipole-dipole interaction are two

regimes of the same atomic interaction, the characteristics of the blockade can be

somewhat different. In the van der Waals regime, the strong interaction shifts all states

with more than a single excitation out of resonance within a certain blockade volume,

as we have seen in Chapter 5. In the resonant dipole-dipole regime, the blockade

mechanism is a bit more involved, due to the off-diagonal nature of the interaction.

We have previously studied the resonant dipole-dipole blockade by tuning two

different atomic pair states into resonance by applying a specific electric field [Ravets

et al., 2014, 2015], a so-called Förster resonance [Walker and Saffman, 2005].

Here, we present a slightly different approach to observe the Rydberg blockade

between two single atoms in the resonant-dipole regime, by driving coherent Rydberg-

Rydberg transitions using microwaves. By scanning the frequency of the microwave

field, we can excite a symmetric ‘superradiant’ state with a coupling strength enhanced

by the expected factor
√
2, while seeing no coupling to the antisymmetric ‘dark’ state.

7.1 Theoretical description

The principle of the experiment is depicted in Figure 7.1. Two atoms in the |d⟩ =⏐⏐nD3/2

⟩
Rydberg state are placed along the quantisation axis, with an interatomic

distance R. We then shine in a microwave field resonant to the single atom |d⟩ ↔ |p⟩ =⏐⏐(n+ 1)P1/2

⟩
transition with a coupling strength given by the single atom microwave



Chapter 7: The Rydberg blockade in the resonant dipole-dipole regime

R 
0

R 

Figure 7.1: Illustration of the Rydberg blockade in the resonant dipole-dipole

regime. Due to the resonant dipole-dipole interaction, the two-atom state |dp〉 is split into
the bright state |+〉 = (|dp〉 + |pd〉)/√2 and the dark state |−〉 = (|dp〉 − |pd〉)/√2.
For small distances, the microwave transfer is thus blockaded at the single atom resonance

δMW = 0 (dark grey wiggly line). The state |pp〉 may still be excited via a two-photon

excitation (light grey wiggly line), albeit with a reduced coupling strength. (The van der

Waals interaction is neglected here.)

Rabi frequency ΩMW. With the resonant dipole-dipole interaction, the new eigenstates

of the system are now

|dd〉

|+〉 = |dp〉+ |pd〉√
2

|−〉 = |dp〉 − |pd〉√
2

|pp〉 ,

(7.1)

where the superposition states |±〉 are shifted by an amount ±Vres = ±〈dp| V̂dd |pd〉 =
±C3/R

3. With the microwave field tuned to the single atom resonance, i.e. δMW = 0,

the states |±〉 are thus shifted out of resonance if C3/R
3 � ΩMW, and the microwave

transfer of one of the two atoms to the |p〉 state is thus blockaded. On the other

hand, the microwave field can still transfer both atoms at the same time, to the

doubly excited state |pp〉, without populating the states |dp〉 or |pd〉. However, since
this is an off-resonant two photon transition, it has a reduced coupling strength

Ω2ph ≈ �Ω2
MW/Vres when ΩMW � Vres.
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7.2 Microwave spectroscopy of a resonantly interacting two-atom

system

In order to perform this experiment, we need to be able to efficiently excite the atoms

to the initial |dd⟩ state, meaning that the van der Waals interaction of this state

should be small compared to the optical Rabi frequency. At the same time, we want

the resonant dipole-dipole interaction of the |pd⟩ state to be large, in order to shift the

|±⟩ states off-resonant to the microwave field.

We therefore choose an interatomic distance of R ≃ 10.3µm, and the Rydberg

states |d⟩ =
⏐⏐62D3/2

⟩
and |p⟩ =

⏐⏐63P1/2

⟩
. In this case, the van der Waals interaction

of the |dd⟩ state VvdW(10.3µm) ≃ h × 0.7MHz can be neglected compared to the

optical Rabi frequency Ω1 ≃ 2π × 7.8MHz used to prepare the initial |dd⟩ state. We

have previously measured a C3 = 7950± 130MHzµm3 for the resonant dipole-dipole

interaction of the |pd⟩ state [Barredo et al., 2015]. The expected interaction strength

at the chosen distance V
(theo)
res (10.3µm) = h × 7.3 ± 0.1MHz is large compared to

the chosen microwave Rabi frequency ΩMW ≃ 2π × 0.87MHz. The van der Waals

interaction of the |pp⟩ state is VvdW(10.3µm) < h×0.1MHz and is negligible compared

to all other relevant frequencies. As explained in Section 2.5, we measure the final

population in |d⟩ at the end of an experiment by coherently coupling it back to the

ground state |g⟩.
We first use one single atom to calibrate the transition frequency between the |d⟩

and |p⟩ state, and find1 ∆dp/2π ≃ 9132.50MHz, shown in Figure 7.2(a). We then use

two atoms as mentioned above. Figure 7.2(b) shows the probability to find the atoms

in |dd⟩ after sending a microwave pulse with a τMW = 0.4µs duration, when scanning

the microwave detuning δMW. We see a depletion of the population in the |dd⟩ state for
δMW/2π = V

(exp)
res /h = −7.45MHz, corresponding to the excitation of the |+⟩ state,

close to the expected value of V
(theo)
res /h = 7.3± 0.1MHz. The width of the resonance

is about 1.8 times the width of the single atom resonance, larger than the expected

factor
√
2 ≃ 1.414. This broadening is explained by the shot-to-shot fluctuations of the

interatomic distance of ≈ 100 nm due to the finite temperature of the atoms, which in

turn can lead to variations in interaction strength of up to 0.5MHz.

Changing the microwave frequency by the same absolute value but with a positive

detuning should tune the field resonant to the |−⟩ state. However, we do not observe

any transfer away from the |dd⟩ state, since the microwave coupling to this ‘dark’ state

1We still apply a +6G magnetic field along the z axis to define a quantisation axis.

129



Chapter 7: The Rydberg blockade in the resonant dipole-dipole regime

−15 −10 −5 0 5 10 15

microwave detuning δMW/2π (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

P
d

(a)

−15 −10 −5 0 5 10 15

microwave detuning δMW/2π (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

P
d
d

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

microwave pulse duration τMW (μs)

0.0

0.2

0.4

0.6

0.8

1.0

P
d
,P
d
d

(c)

Figure 7.2: Spectroscopy and Rabi oscillation of the p-d microwave transition for

one and two atoms. (a) Spectroscopy of a single atom. We show the probability Pd to find

the atom in the |d〉 state after sending a 400 ns microwave pulse of frequency (Δdp+δMW),

with Δdp/2π = 9132.50MHz. (b) Spectroscopy of two atoms with an interatomic distance

of R = 10.3μm. We measure the probability Pdd to find the atoms in the |dd〉 state
after sending the 400 ns microwave pulse. We find a shift of the superradiant |+〉 state of

δ+/2π � −7.45MHz, whereas we find no population transfer at the expected position of

the subradiant |−〉 state (dashed purple line). The small dip of Pdd at δMW = 0 is caused

by the imperfect state preparation (see text). (c) Microwave driven Rabi oscillations.

We measure a single atom Rabi oscillation (grey circles) of ΩMW = 2π × 0.87MHz for

a detuning δMW = 0. For two atoms and the microwave field tuned resonant to the

|dd〉 ↔ |+〉 transition, i.e. δMW = δ+ (purple diamonds), we measure an enhanced Rabi

frequency Ω+ � 1.41ΩMW.
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is zero. With the microwave field tuned to the single atom resonance, i.e. δMW = 0, we

observe a small dip in the |dd⟩ population. One might think that this is caused by a

two-photon transition to the |pp⟩ state. This not the case however, as the two-photon

Rabi frequency Ω2ph ≈ ℏΩ2
MW/Vres ≃ 0.1MHz is very weak, and with the τMW = 0.4µs

microwave pulse we only expect a population in |pp⟩ of Ppp < 0.02 according to

Equation 2.102. The dip is actually caused by an imperfect initial Rydberg state

preparation. As in some cases only one of the two ground state atoms is excited, thus

preparing the state |gd⟩, the microwave pulse is now resonant again for the single

Rydberg atom, resulting in the final state |gp⟩ and thus a reduced observed population

in |dd⟩.
We now tune the microwave field resonant to the |dd⟩ ↔ |+⟩ transition, i.e. δMW/2π =

−7.45MHz, to drive a coherent Rabi oscillation between the two states. We measure

a collective Rabi frequency of Ω
(2)
MW = 2π × 1.2MHz = 1.4ΩMW, perfectly matching

the expected
√
2 enhancement. We notice a significant increase of damping for the

two-atom oscillation compared to the single-atom oscillation. Again, this is due to the

shot-to-shot fluctuations of the interatomic separation, which can lead to a slightly

off-resonant excitation of the |+⟩ state. Note that for the collective Rabi oscillation in

the van der Waals regime these fluctuations do not play a role. They do change the

exact interaction strength between the atoms from shot to shot, they do not play any

role however, since the exact magnitude of the interaction is not important here, as

long as it is larger than optical Rabi frequency.

7.3 A possible extension to many atoms

We have seen that here, different to the van der Waals Rydberg blockade, there is

interaction between the atoms even if there is only one ‘excitation’ present in the

system. In view of extending the above experiment from two to many atoms, analogous

to the van der Waals regime in Chapter 5, and to further illustrate the difference of

the two regimes, we consider the following ‘gedankenexperiment’. We take a system

of 9 atoms all in the |d⟩ state, arranged in a 3× 3 array, with the quantisation axis

parallel to the plane of the atoms, such that the resonant dipole-dipole interaction is

isotropic in the plane of the atoms. We want to see what to expect when we couple

this state
⏐⏐d(9)

⟩
= |d1d2...dN⟩ to a state with a single |p⟩ excitation.

The eigenenergies of a system whose basis consists of the nine states containing one

2This is confirmed by a numerically solving the Schrödinger equation of the 4-level system, showing
a negligible population of the |pp⟩ state for experimental parameters used here.
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Figure 7.3: Calculated energy spectrum of a 3x3 atom array with a single P

excitation in the resonant dipole-dipole regime. We calculate the eigenenergies of

a 3 × 3 array of Rydberg atoms, with 8 atoms in the |d〉 =
∣∣62D3/2〉 state, and a

single |p〉 =
∣∣63P1/2〉 excitation, with a C3 = 7965MHzμm3, and isotropic in-plane

interactions. The grey dashed lines indicate the eigenenergies of the nine eigenstates∣∣Φ(j)〉, j ∈ [1, 9], as the function of the lattice spacing. The strength of the blue shading

indicates the relative microwave coupling strength to the state
∣∣d (9)〉 = |d1d2...d9〉. The

insets show for each eigenstate the probability amplitudes α
(j)
i =

〈
φi |Φ(j)

〉
to find the

|p〉 excitation at atom i for each eigenstate , with |φi〉 = |d1d2...pi ...dN〉 (atom labelling

indicated in the top right).

single excitation |φi〉 = |d1d2...pi...dN〉, with i ∈ [1, 9], are shown in Figure 7.3. Due

to the resonant dipole-dipole interaction between the single |p〉 excitation and the

remaining |d〉 state atoms, the absolute values of the eigenenergies become large for

small lattice spacings.

We now compute the microwave coupling strength to the various singly excited

eigenstates
∣∣Φ(j)

〉
= 1√

N

∑N
i=1 α

(j)
i |φi〉. The coefficients αi are shown in the insets in

Figure 7.3 for all eigenstates j. We assume that the microwave coupling is equal for

all atoms, i.e. 〈di| d̂ |pi〉 = c for all i, with d̂ being the transition dipole operator,

and c a constant. The coupling strength
〈
Φ(j)

∣∣ D̂ ∣∣d(9)〉 is shown as the strength of

the blue shading on the eigenenergies in Figure 7.3, with D̂ =
∑

i d̂i. We see one
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7.4 Conclusion

strongly superradiant state with an enhanced coupling, although showing a smaller

enhancement than the
√
9 in the van der Waals regime. A second eigenstate is still

weakly coupled, whereas the coupling to all other states is zero. It should therefore be

possible, if one where to spectroscopically probe such a 3× 3 atom array, to find 2

resonances for the microwave transition.

For a fully symmetric system, e.g. all atoms arranged on a ring, all states |ϕi⟩ =
|d1d2...pi...dN⟩ would have the same energy, since it makes no difference at which

site the |p⟩ excitation is. One finds that in this case, there is only one superradiant

state with a
√
N enhanced coupling (N being the number of atoms), the remaining

eigenstates all being dark states. The difficulty in this type of microwave experiment

remains the reliable excitation of the array of ground state atoms to the Rydberg |d⟩
states, i.e. overcoming the van der Waals interaction, while at the same time being

fully blockaded in the resonant dipole-dipole regime.

7.4 Conclusion

We observed the Rydberg blockade in the resonant dipole-dipole regime by shining

a microwave pulse on two single Rydberg atoms. Unlike the van der der Waals

interaction, which only acts perturbatively on interacting pair states, the resonant

dipole-dipole interaction changes the eigenstates of the interacting system, due to its

off-diagonal nature.

By tuning the microwave field resonant to the symmetric ‘bright’ superposition

state we could observe its
√
2-enhanced coupling to the initially prepared Rydberg

pair-state.

Using the resonant dipole-dipole interaction between Rydberg atoms we can

implement an XY spin-Hamiltonian of the form [Barredo et al., 2015]

H =
1

2

∑

i̸=j

Vij(σ
+
i σ

−
j + σ−

i σ
+
j ), (7.2)

allowing the study of dipolar energy transport, which plays for example an important

role in photosynthesis [Collini et al., 2010] and organic semiconductors [Najafov et al.,

2010].
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Chapter 8
Conclusion and outlook

In this thesis I presented my work on probing the dynamics and pair correlations

of Rydberg excitations in 2D arrays of single neutral atoms. Two main technical

advancements of the existing experimental setup [Béguin, 2013; Ravets, 2014] were

necessary to realise such kind of experiments. First, the implementation of a spatial

light modulator to shape the spatial phase of our optical dipole trap beam now allows

us to arrange as many as ∼ 100 single atom traps in any desired 2D pattern, with

trap separations as low as ∼ 3µm, and array sizes as large as ∼ 50× 50µm2. Second,

using a sensitive CCD camera to detect the atomic fluorescence provides the real-time,

single-site resolved monitoring of the filling of the traps.

The combination of these two techniques lets us to perform Rydberg experiments

with any chosen two-dimensional arrangement of ground state atoms, measuring the

site-resolved Rydberg excitation efficiency with an unprecedented ≳ 95% efficiency.

The real-time monitoring of the fluorescence from the traps allows us to trigger

and / or post-sort experiments on any atom configuration, e.g. a given number of

present atoms. We can perform experiments with fully loaded trap arrays with up to

nine traps. For larger trap numbers, we are as of now constrained to partially loaded

arrays, due to the randomness of loading single atoms in the microtraps, which results

in a probability of about 0.5Nt to have a fully loaded Nt-trap array.

Techniques leading to single-trap occupation probabilities up to 90% have been

successfully demonstrated recently by optimising the light-assisted collision pro-

cess [Fung and Andersen, 2015; Lester et al., 2015]. This is comparable to the filling

fraction of single atoms in an optical lattice in the Mott-insulator regime for a defined

pattern [Weitenberg et al., 2011]. A preliminary implementation of this technique in

our experiment gave trap loading probabilities of about 80% (see Figure 8.1).

We measured the collective enhancement of a single Rydberg excitation for up to

N = 15 atoms, in the full blockade regime of the van der Waals interaction, observing

the expected
√
N -scaling. Our single-site resolved atom detection lets us determine the

initially prepared number states with a fidelity close to unity. We measure a double

excitation probability higher than expected from both the simple blockade picture and
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Figure 8.1: Enhanced single atom loading. By adjusting the parameters of the collision

beam, the laser beam photo-associating the atom pair in the inelastic collision, collisions

where only one atom leaves the trap become more probable. In a preliminary test, we

achieve trap loading probabilities up to 80%.

the numerical simulation of the Schrödinger equation. We suggest that this is caused

by the Zeeman-substructure of the used Rydberg D-states, which are coupled by the

van der Waals interaction for atom pairs not aligned with the quantisation axis.

We have measured a similar Rydberg blockade in the regime of resonant dipole-dipole

interactions for two single atoms, using microwave transitions in the Rydberg manifold.

When tuning the microwave field resonant to the superradiant symmetric superposition

state, we again measure the expected
√
2-enhancement of the microwave coupling.

Finally, demonstrating the versatility of the presented setup, we have implemented

the quantum Ising model of a spin-1/2 system, in various one- and two-dimensional

geometries, for up to 30 atoms. We probed the excitation dynamics and Rydberg-

Rydberg pair correlations in the partial blockade regime of the van der Waals

interaction, and compared the results to numerical simulations of the quantum Ising

model wherever possible. We observe a good agreement to the model especially for

short excitation times. If the effect of the anisotropy of the van der Waals interaction

is small, the agreement to the spin-1/2 model is exceptional.

Apart from achieving a higher filling fraction of the traps by optimising the light-

assisted collisions, reducing the temperature of the single atom, e.g. by Raman sideband

cooling [Kaufman, Lester, and Regal, 2012], will be an important task in view of

future experiments. Lower atom temperatures will improve the false Rydberg detection

probability, which will be important when working with even larger atom numbers,

and reduce the Doppler effect during the Rydberg excitation.

The results presented in this thesis are an important step towards the realisation of

Rydberg quantum simulator for spin-1/2 system, of both the quantum Ising model
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presented in this thesis, and the XY -model, which we have already realised in a chain

of three atoms [Barredo et al., 2015].

This experiment will allow to probe strongly correlated mesoscopic quantum systems

with single particle resolution, ranging from the study of topological insulators by effec-

tive spin-orbit coupling [Peter et al., 2015], exotic states of matter [Glaetzle et al., 2014],

thermalisation in closed quantum systems [Ates, Garrahan, and Lesanovsky, 2012], to

the dynamical emergence of entanglement following a quantum quench [Hazzard et al.,

2014].

Following the path of quantum information with Rydberg atoms [Saffman, Walker,

and Mølmer, 2010; Wilk et al., 2010; Isenhower et al., 2010], we can put to test

protocols such as the CNOT-gate [Maller et al., 2015], or creating strongly entangled

GHZ states [Greenberger, Horne, and Zeilinger, 1989; Müller et al., 2009].
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Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries
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We demonstrate single-atom trapping in two-dimensional arrays of microtraps with arbitrary geometries.
We generate the arrays using a spatial light modulator, with which we imprint an appropriate phase pattern
on an optical dipole-trap beam prior to focusing. We trap single 87Rb atoms in the sites of arrays containing
up to approximately 100 microtraps separated by distances as small as 3 μm, with complex structures such
as triangular, honeycomb, or kagome lattices. Using a closed-loop optimization of the uniformity of the
trap depths ensures that all trapping sites are equivalent. This versatile system opens appealing applications
in quantum-information processing and quantum simulation, e.g., for simulating frustrated quantum
magnetism using Rydberg atoms.

DOI: 10.1103/PhysRevX.4.021034 Subject Areas: Atomic and Molecular Physics, Optics

I. INTRODUCTION

The optical trapping of cold atoms [1] allows for a
variety of applications, from the study of quantum gases [2]
to the manipulation of single atoms [3]. Impressive achieve-
ments in the engineering of quantum systems have been
obtained using relatively simple configurations of light
fields, such as single-beam traps [4], crossed optical dipole
traps [5], arrays of microtraps obtained by microlens arrays
[6,7] or holographic plates [8], optical lattices [9,10], or
speckle fields [11].
In the last few years, an interest in more advanced

tailoring of optical potentials has arisen. Several technical
approaches can be considered. A first solution consists
of “painting” arbitrary patterns of light using a time-
dependent light deflector [12,13], over time scales that
are fast compared to the typical oscillation frequency in the
trap. Ultracold atoms then experience an optical potential
corresponding to the time-averaged light intensity. Another
approach relies on the generation of reconfigurable light
patterns using spatial light modulators (SLMs), either in
amplitude or in phase [14–17].
Single atoms held in arrays of microtraps with a spacing

of a few μm are a promising platform for quantum-
information processing and quantum simulation with
Rydberg atoms [18–22]. The realization of an array of
approximately 50 microtraps for single atoms using an
elegant combination of fixed diffractive optical elements
and polarization optics was recently demonstrated
in Ref. [23].

Here, we report on the trapping of single atoms in
reconfigurable 2D arrays of microtraps, separated by dis-
tances down to 3 μm, with almost arbitrary geometries. We
create not only mesoscopic arrays of a few traps but also
regular 2D lattices with up to approximately 100 sites, with
geometries ranging from simple square or triangular lattices
to more advanced ones, such as kagome or honeycomb
structures. Using a closed-loop optimization of the uniform-
ity of the trapdepths allowsus toobtainveryuniform lattices.
As compared to previous approaches using SLMs, this novel
feature opens appealing prospects for quantum simulation
with neutral atoms [24] and eliminates a source of compli-
cation in the theoretical modeling of these systems. For that,
we use a phase-modulating SLM, which has the advantage
of being versatile and easily reconfigurable. Another major
asset of the system lies in the fact that, in combination with
wave-front analysis, the SLM can also be used to correct
a posteriori for aberrations that are inevitably present in the
optical setup, thus improving considerably the optical
quality of the traps.
This article is organized as follows. After giving an

overview of the principles behind our setup, we give a
detailed account of the obtained results.We present a gallery
of examples of microtrap arrays in which we trap single
atoms, and we study the single-atom loading statistics of a
3 × 3 square array. In a second part, we give details about
the implementation of the optical setup and the calculation
of the phase holograms. We then explain how we optimize
the obtained traps using a Shack-Hartmann (SH) wave-front
sensor and present a closed-loop improvement of the
uniformity of the trap intensities.

II. MAIN RESULTS

In this section, after briefly describing our experimental
setup, we demonstrate the trapping of single atoms in
microtrap arrays with various geometries.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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A. Overview of the experimental setup

Figure 1 shows a sketch of the setup we use to trap single
87Rb atoms [25]. It is based on a red-detuned dipole trap
at awavelength λ ¼ 850 nm,with a 1=e2 radiusw0 ≃ 1 μm.
For a power of 3 mW, the trap has a typical depth
U0 ¼ kB × 1 mK, with radial (respectively, longitudinal)
trapping frequencies around 100 kHz (respectively, 20 kHz).
To load atoms into themicrotrap, we produce a cloud of cold
atoms at approximately 50 μK in a magneto-optical trap
(MOT). The dipole-trap beam is focused in the cloud with a
custom-made high-numerical-aperture (NA) aspheric lens
with focal length fasph ¼ 10 mm [26]. We detect single
atoms by measuring their fluorescence signal at 780 nm
(collected by the same aspheric lens) using a cooled, 16-bit
electron-multiplying CCD (EMCCD) camera [27]. We
separate the fluorescence signal from the trapping beam
with a dichroic mirror (DM). A second aspheric lens, facing
the first one in a symmetrical configuration, is used to
recollimate the trapping beam.An8-bit CCDcamera, placed
after thevacuumchamber, is conjugatedwith the plane of the
single atoms for diagnostic purposes.
We generate arrays of microtraps with arbitrary geom-

etries using a phase-modulating SLM [28], which imprints
a calculated phase pattern φðx; yÞ onto the trapping beam
of initial Gaussian amplitude A0ðx; yÞ. The intensity dis-
tribution in the focal plane of the aspheric lens is then given
by the squared modulus of the 2D Fourier transform of

A0 exp ðiφÞ. The phase pattern φ needed to obtain the
desired intensity distribution is determined by the iterative
algorithm described in Sec. III B.

B. Gallery of microtrap arrays

Figure 2 presents a selection of 2D trap arrays that we
have created with the setup described above. For each array,
we show the phase pattern φðx; yÞ used to create it, an
image of the array obtained with the diagnostics CCD
camera behind the chamber, and the average of approx-
imately 1000 images of the atomic fluorescence of single
atoms in the traps (imaged with the EMCCD camera). The
figure illustrates strikingly the versatility of the setup.
We can create small clusters containing approximately
10 traps, useful for the study of mesoscopic systems
[Figs. 2(a)–2(h)]. It is also possible to create larger, regular
lattices of up to approximately 100 traps with varying
degrees of complexity, from simple square [Fig. 2(i)] or
triangular [Fig. 2(j)] lattices to honeycomb [Fig. 2(k)] or
kagome [Fig. 2(l)] structures, which opens, for instance, the
possibility to simulate frustrated quantum magnetism with
Rydberg-interacting atoms. The typical nearest-neighbor
distance a in those arrays is 4 to 5 μm.We have also created
arrays with spacings as small as a≃ 3 μm without observ-
ing a significant degradation in the quality of the arrays.
Other configurations, e.g., aperiodic structures, can be
generated easily.
The total power needed to create an array of N micro-

traps with a depth U0=kB ≃ 1 mK necessary for single-
atom trapping is about 3N mW on the atoms. Because of
the finite diffraction efficiency of the SLM and losses on
various optical components, we find that this needed power
requires us to have slightly below 5N mW at the output
of the fiber guiding the 850-nm light to the experiment,
which remains a very reasonable requirement even for
N ¼ 100 traps.

C. Single-atom trapping in the arrays

We now demonstrate directly single-atom trapping in a
3 × 3 square array [see Fig. 3(a)]. Figure 3(b) shows a
series of snapshots obtained with the EMCCD camera (the
exposure time being 50 ms), showing fluorescence images
of single atoms. As each of the N ¼ 9 traps has a
probability p ∼ 1=2 of containing one atom, we observe
that most images correspond to a sparsely loaded array,
with an average number of atoms present close to
Np ¼ 9=2 and fluctuations corresponding to atoms ran-
domly entering and leaving each trap. To confirm that these
images do correspond to single-atom trapping, we plot the
photon counts per 50 ms in the pixels corresponding to
the positions of each of the nine traps as a function of time
[see Fig. 3(c)]. One observes the characteristic random
telegraphlike signal, with only two fluorescence levels,
which is the hallmark of single atoms loaded into the
microtraps by the collisional blockade mechanism [3,25].

FIG. 1. Generation of an array of microtraps for single-atom
trapping. The SLM imprints the calculated phase pattern φðx; yÞ
on the 850-nm dipole-trap beam. A high-numerical-aperture
aspheric lens under vacuum focuses it at the center of a MOT.
The intensity distribution in the focal plane is ∝ jFTðA0eiφÞj2,
where A0 is the initial Gaussian amplitude profile of the 850-nm
beam and FT stands for Fourier transform. The atomic fluores-
cence at 780 nm is reflected off a DM and detected using an
EMCCD camera. A second aspheric lens (identical to the first
one) recollimates the 850-nm beam. This transmitted beam is
used for trap diagnostics (either with a diagnostics CCD camera
or a SH wave-front sensor).
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By analyzing each of the nine traces, we find that the
occupation probability pi of each trap i is close to 1=2. (We
find probabilities pi ranging from 0.43 to 0.57, with an
average p̄ ¼ 0.53.)
Figure 3(d) is a histogram of the number of atoms

trapped in the 3 × 3 array, obtained by analyzing approx-
imately 2500 images [23]. For an array of N independent
traps, if each trap has the same probability p to be filled, the
probability Pn to have n atoms in the array is given by the
binomial distribution

Pn ¼
N!

n!ðN − nÞ!
pnð1 − pÞN−n: (1)

The dots in Fig. 3(d) correspond to Eq. (1) with N ¼ 9 and
p ¼ p̄ and show good agreement with the data. Therefore,
the assumption that all traps are loaded with the same
probability is a good approximation for estimating the
probability of a given configuration to occur.

III. DETAILED IMPLEMENTATION

In the preceding section, we focused on giving a detailed
presentation of the results obtained. However, obtaining
arrays of traps with as high a quality as what is demon-
strated in Figs. 2 and 3 requires some care in the
implementation of the setup. In this section, we detail
the implementation of both the hardware and the software
parts of the system.

FIG. 2. A gallery of microtrap arrays with different geometries. For each panel, we show the calculated phase pattern φ used to create
the array (left), an image of the resulting trap arrays taken with the diagnostics CCD (middle), and the average of approximately 1000
fluorescence images of single atoms loaded into the traps (right).
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A. Optical layout

Our SLM has an active area of 12 × 18 mm2, with a
resolution of 600 × 800 pixels. It is illuminated by a
collimated Gaussian beam with a 6.7-mm 1=e2 radius
coming from a polarization-maintaining, single-mode fiber
connected to a collimator with a focal length f ¼ 75 mm.
As diffraction-limited operation of the aspheric lens is
obtained for an infinite-to-focus conjugation, with a pupil
diameter D ¼ 10 mm, we use an afocal telescope with a
transverse magnification my ¼ −0.8 to adapt the SLM
active area to the aspheric lens aperture, while maintaining
the collimation of the beam.
The implementation of the full system (vacuum chamber,

dichroic mirror for fluorescence detection, components for
generating the microtrap array) results in a relatively long

distance (l≃ 500 mm) between the SLM and the aspheric
lens. This leads to the following problem [see Fig. 4(a)]:
When generating off-axis traps, the beam diffracted by the
SLM impinges on the lens off center, giving rise to clipping
and field aberrations. These effects decrease the quality of
arrays with a large number of microtraps. We circumvent
this problem using pupil conjugation: We take advantage
of the extra degree of freedom given by the position of
the telescope to conjugate the plane of the SLM with the
aspheric lens, as shown in Fig. 4(b).
The optimization of the system is done with an optical

design software. The simulation includes all the compo-
nents from the optical fiber to the focal plane of the aspheric
lens in the vacuum chamber. The lenses of the telescope
and the lens of the collimator are near-infrared achromatic
doublets used at low numerical aperture and small fields.
The performance of the system over a field of 30 × 30 μm2

in the microtrap plane is satisfactory: The Strehl ratio, i.e.,
the ratio of the actual peak intensity over the theoretical
peak intensity for a diffraction-limited system [29], is
predicted to be S ≥ 0.88 by the calculation.
For the phase-pattern calculation described below, we

replace the telescope and the aspheric lens by a single
equivalent lens with an effective focal length feff ¼
fasph=jmyj ¼ 12 mm and an effective pupil in the SLM
plane with diameter Deff ¼ 12 mm.

B. Gerchberg-Saxton algorithm

We use the Gerchberg-Saxton (GS) algorithm [30] to
calculate the phase pattern φðx; yÞ required to obtain an
intensity distribution in the lens focal plane close to a desired
target intensity It. For the sake of completeness, we briefly
recall below the essential steps of the algorithm (see Fig. 5).

FIG. 3. Single-atom trapping in a 3 × 3 array. (a) Image of the
traps, separated by 4 μm, obtained with the diagnostics CCD
camera. (b) Sample fluorescence images of single atoms trapped
in the array. The exposure time is 50ms. (c) Photon counts per 50ms
at the pixels corresponding to each of the nine trap positions,
as a function of time. The random, telegraphlike signal with only
two fluorescence levels is the signature of single-atom trapping.
(d) Histogram of the occurrences of images with n atoms trapped
(with 0 ≤ n ≤ 9) over a set of approximately 2500 images. The red
dotscorrespond to thebinomialdistribution [Eq. (1)]withp ¼ 0.53.

FIG. 4. Pupil conjugation. (a) Without a telescope, for a given
field y ≠ 0, the dipole-trap beam is clipped and not centered on
the aspheric lens. (b) The implemented telescope adapts the size
of the beam to the aspheric lens pupil; by conjugating the SLM
aperture to the entrance pupil of the aspheric lens, the beam is
well centered, whatever the field.
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We initialize the algorithm using a random phase pattern
φ0 in which each pixel value is given by a uniformly
distributed random variate in the range ð0; 0.2Þ × 2π. The
target image It is a superposition of Gaussian peaks with
1=e2 radii w ¼ 1 μm centered on the desired location of the
microtraps. The amplitude of each Gaussian can be defined
separately, which allows for correcting nonuniformities in
the depths of the microtraps over the array (see Sec. III E).
The incident field on the SLM is modeled as having a

uniform phase and an amplitude A0ðx; yÞ. At each iteration
of the algorithm, we propagate the electric field in the SLM
plane A0eiφn through the effective lens using a fast Fourier
transform (FFT) to calculate the field Af

neiφ
f
n in the focal

plane. If the difference between the calculated intensity
jAf

nj2 and the desired target image It is small enough, the
phase pattern φn is used to drive the SLM; otherwise,
the amplitude of the field in the focal plane is replaced by
the target amplitude

ffiffiffiffi
It

p
. This new field

ffiffiffiffi
It

p
eiφ

f
n is then

propagated back to the SLM plane by an inverse FFT,

giving the field Anþ1eiφnþ1 in the SLM plane. The calculated
phase φnþ1 is kept as the new phase pattern in the SLM
plane, while the amplitude is replaced by the incident one
A0, and another iteration is performed for the field A0eiφnþ1 .
For the patterns shown in Fig. 2, the algorithm converges
(i.e., the calculated phase patterns do not evolve any more)
toward an approximate solution, typically after a few tens
of iterations [31]. The intensity distribution in the lens focal
plane is then a good approximation of It. However, we can
approach the target even closer, as described in Sec. III E.

C. Phase patterns displayed on the SLM

The phase pattern φtot used to drive the SLM includes
several contributions beyond the calculated phase pattern φ
and reads

φtot ¼ φþ φblaze þ φFresnel þ φfactory þ φSH; (2)

where the sum is calculated modulo 2π. In this equation,
(i) φblaze is a blazed grating pattern, allowing us to block

the zeroth-order reflection from the SLM arising from its
nonperfect diffraction efficiency;
(ii) φFresnel is a quadratic phase pattern acting as a Fresnel

lens, which allows us to fine-tune the focusing of the
microtraps;
(iii) φfactory is the correction phase pattern provided by

the SLM manufacturer to correct for the optical flatness
defects of the SLM chip; and
(iv) φSH corrects for aberrations introduced by the setup

and is obtained using a Shack-Hartmann wave-front sensor
as described in Sec. III D below.
Figure 6 gives an example of the composition of the

final phase pattern obtained by summing (modulo 2π) the
various terms described above.

D. Improving the traps by analyzing the wave front
and correcting for aberrations using the SLM

Without the last term of Eq. (2), we observe that the
quality of the obtained microtrap arrays decreases when
the number of traps increases. Indeed, the assumption
of a perfect effective lens used in the calculation of the
hologram is not valid. The imperfections of the optics
(vacuum windows, aspheric lens, etc.) and the residual
misalignments distort the wave front, thus reducing the
depth of the microtraps.

FIG. 5. The Gerchberg-Saxton algorithm. The field in the lens
focal plane is calculated by the FFT of the complex field in
the SLM plane. If the obtained intensity jAf

nj2 does not match the
target intensity It, another iteration must be performed: The
amplitude of the field in the focal plane is forced to the target
amplitude

ffiffiffiffi
It

p
, and this new field is propagated back to the pupil

plane by the inverse FFT, resulting in a new amplitude and a new
phase φnþ1. This new phase is kept as the next SLM phase
pattern, while the amplitude is forced to the incident one A0,
giving a new input field A0eiφnþ1 for the next iteration.

FIG. 6. Composition of the phase pattern φtot displayed on the SLM for generating the trap array of Fig. 2(c). The sum is calculated
modulo 2π.

SINGLE-ATOM TRAPPING IN HOLOGRAPHIC 2D ARRAYS … PHYS. REV. X 4, 021034 (2014)

021034-5



1. Wave-front measurement

In order to correct for the above-mentioned imperfections,
we measure the wave front with a Shack-Hartmann sensor
and use the resultingφSH to drive the SLM [32].We perform
this measurement at the exit of the vacuum chamber, where
the trapping beam has been recollimated by the second
aspheric lens (see Fig. 1). The wave-front sensor [33]
analyzes the wave front corresponding to a single trap
centered in the field where the phase pattern displayed on
the SLM is φblaze þ φfactory. The measured rms deviation
from a flat wave front is δrms ¼ 0.15λ (tilt and focus terms
being removed). After applying the correction phase φSH to
the SLM, wemeasure δrms ¼ 0.014λ. Figure 7 illustrates the
impact of the phase corrections on the trap pattern (as
measured by the diagnostics CCD camera) for a 4 × 4 array:
A comparison between Figs. 7(a) and 7(b) suggests that the
correction increases the trap depth by a factor close to 2.
This wave-front measurement includes the aberrations

induced by the recollimating aspheric lens and the second
vacuum window (see Fig. 1). An independent wave-front
measurement on the trapping beam before the chamber
yields δrms ¼ 0.05λ without correction, showing that the
optics of the vacuum chamber account for most of the
wave-front aberrations. Applying directly the measured
φSH on the SLM thus “overcorrects” aberrations, and one
might fear that at the location of the atoms, the effect of the
correction is actually detrimental. It is therefore desirable
to check directly the actual effect of the correction on the

atoms. For this purpose, we directly measure the trap depth
and frequency with single atoms.

2. Impact on the trap depth

We measure the trap depth using light-shift spectroscopy
with a single atom [34,35]. For that, we shine a σþ-
polarized probe that is quasiresonant with the transition
j5S1=2; F ¼ 2; mF ¼ 2i → j5P3=2; F ¼ 3; mF ¼ 3i on the
atom and we record the number of fluorescence photons
scattered by the atom as a function of probe detuning. The
shift of the resonance with respect to its free-space value
gives directly the trap depth U0 [36]. Figure 8(a), obtained
on the central trap of a 3 × 1 array with a 4-μm separation,
shows that including the Shack-Hartmann correction
actually increases the trap depth by about 50%.

3. Impact on the trap frequency

Another important parameter of the trap is the trapping
frequency. In order to determine the transverse trapping
frequency seen by the atoms, we excite the breathing mode,
as in Refs. [25,37]. For that purpose, the microtrap is
switched off for a few microseconds, during which the atom
leaves the center of the trap. When the trap is switched on
again for a time ΔThold, the atom oscillates in the trap, with
a radial frequency ωr [38]. If the trap is then switched off
again for a short time, the probability to recapture the atom
afterward depends on its kinetic energy at the time of the
last switch-off, and thus oscillates at 2ωr.

FIG. 7. Effect of the Shack-Hartmann correction pattern φSH. A
CCD image of 4 × 4microtraps is shown (a) only with the factory
correction and (b) with both the factory and the Shack-Hartmann
patterns applied. (c) Intensity profiles along the dashed lines on
(a) and (b), with (blue curve) and without (orange curve) the
correction φSH. The arrays are created with the same calculated
phase φ. The laser power and the exposure time of the CCD
camera are the same for both cases.

FIG. 8. (a) Trap depth U0=kB as a function of the trap power,
with (blue diamonds) and without (orange disks) Shack-
Hartmann correction. With the latter, the trap depth increases
by about 50%. (b) Recapture probabilities for an atom oscillating
in the trap as a function of the hold time ΔThold. The trap
frequency increases by about 30% when the Shack-Hartmann
correction pattern is added to the SLM.
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Figure 8(b) shows the results of such a measurement,
for a power of 2.8 mW per trap, again in the 3 × 1 array.
The measured trap frequencies are ωr ¼ 2π × 68.0 kHz
before correction and ωr ¼ 2π × 86.5 kHz with the Shack-
Hartmann correction applied to the SLM. The increase in
trapping frequency comes essentially from the increased
depth of the corrected traps.
Using the single atom as a diagnostics tool, we could, in

principle, test whether one can improve even further the
trap quality by applying to the SLM a phase αφSH (where
0 ≤ α ≤ 1 is an adjustable parameter), in the hope of
correcting only the aberrations “seen” by the atom, i.e.,
not the aberrations induced by the second lens and the
second viewport. A test for α ¼ 1=2 (which would yield the
best correction if both lenses and windows introduce equal
aberrations) gives results slightly worse than for α ¼ 1, and
in the following, we thus keep this choice.

E. Closed-loop optimization of the uniformity
of the trap depths in the array

An important figure of merit to assess the quality of the
arrays is the uniformity of the trap depths. Figure 9(a)

shows the distribution of the trap intensities, inferred from
an analysis of an image of the array obtained with the
diagnostics CCD camera, for a 10 × 10 square lattice with a
spacing a ¼ 4 μm. In this case, the phase applied to the
SLM is obtained by running the GS algorithm with a target
image It for which all traps have the same intensity. One
observes a dispersion in the trap depths of %19% rms
(the minimal and maximal values being Imin ¼ 61 and
Imax ¼ 148, where the average intensity of all traps is
normalized to Ī ¼ 100). This variation in trap depths is
detrimental for loading optimally the trap array with single
atoms. Indeed, if the trap depth is too low, one still traps
single atoms, but with a probability of occupancy signifi-
cantly lower than 1=2. Conversely, if the trap is too deep,
one enters a regime in which the probability to have more
than one atom is not negligible [36].
A way to compensate for this imperfection is to use the

image of the trap array obtained with the diagnostics CCD
to calculate a new target image where the new trap intensity
I0i of trap i is scaled according to the measured one Ii as

I0i ¼
Ī

1 −Gð1 − Ii=ĪÞ
; (3)

where Ī is the average intensity of all traps and G an
adjustable “gain.” In other words, traps that are too weak
get enhanced in the new target image, while the brightest
ones get dimmed. We then run again the GS algorithm with
this new target image as an input and with the previously
obtained phase pattern φ as the initial guess for the phase
(see Fig. 10). We observe that the distribution of the trap
intensities decreases quite drastically after a few iterations.
Choosing G≃ 0.7 gives the best performance. (Lower
values decrease the convergence speed, while higher values
yield overshoots in the correction.) Figure 9(b) shows the

FIG. 9. Improving the uniformity of trap depths in a 10 × 10
square array. (a) Histogram of the maximal intensity levels of the
microtraps Ii, measured with the diagnostics CCD camera (see
the inset), for the trap array obtained after a single use of the GS
algorithm and a target image where all traps have the same
intensity. The standard deviation is 19%. (b) Same as (a) but after
the closed-loop optimization of the uniformity of the trap
intensities. The standard deviation is now 1.4%.

FIG. 10. Closed-loop algorithm used for improving the uni-
formity of trap depths. From the various trap intensities measured
with the CCD camera (red profile), we calculate a new target
intensity It following Eq. (3): The brightest traps are dimmed,
while the dimmest ones are enhanced. We then use this adapted
target as the input for a new iteration of the GS algorithm, with
the previously calculated phase as the initial condition.
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resulting histogram of trap intensities for the 10 × 10
square lattice, after 20 iterations. The array is now very
uniform, with trap intensities varying between 96% and
103% of Ī (peak to peak). This improvement corresponds to
a 15-fold reduction in the dispersion of the trap depths.
The single-atom trapping demonstrated in the arrays of

Figs. 2 and 3 could be achieved only after this closed-loop
optimization is implemented and illustrates strikingly the
efficiency of the method. We believe that such an opti-
mization, which takes full advantage of the reconfigurable
character of the SLM, could prove useful in order to create
very uniform lattices with arbitrary structures for quantum
simulation with ultracold atoms.

IV. CONCLUSION AND OUTLOOK

The simple setup described above is a versatile tool
for creating arrays of microtraps with almost arbitrary
geometries. We have demonstrated single-atom loading in
such arrays, which opens exciting possibilities to engineer
interesting few-atom entangled states using, e.g., a Rydberg
blockade [39], especially in combination with dynamical
addressability using moving optical tweezers [40].
For arrays with a large number of traps, a current

limitation of the system is the nondeterministic character
of the single-atom loading of the microtraps: As each trap
has a probability 1=2 of being filled with an atom, anN-trap
array has, at any given time, only an exponentially small
probability 1=2N to be fully loaded. Implementing quasi-
deterministic loading schemes will thus be needed to take
full advantage of the setup, which implies increasing the
loading probability p per trap beyond 1=2. A first approach
toward this goal consists in using the Rydberg blockade:
Loading probabilities of p ∼ 60% have been recently
demonstrated in a single microtrap [41]. Alternatively,
using a blue-detuned “collision beam,” relatively high
loading probabilities, already in excess of 90%, have been
achieved [42]. This scheme opens the possibility to fully
load an array of 20 traps with a probability of more than
10%. Testing both approaches on our setup will be the
subject of future work.
In combination with the recently demonstrated Raman-

sideband cooling of single atoms trapped in optical
tweezers [43,44], a similar system with smaller distances
between microtraps—which could be achieved using high-
numerical-aperture objectives such as the ones used in
quantum-gas microscopes [45]—could then become an
interesting alternative approach to study the many-body
physics of ultracold atoms in engineered optical potentials,
without using traditional optical lattices [46].
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Single-atom addressing in microtraps for quantum-state engineering using Rydberg atoms
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We report on the selective addressing of an individual atom in a pair of single-atom microtraps separated by
3 μm. Using a tunable light shift, we render the selected atom off-resonant with a global Rydberg excitation laser
which is resonant with the other atom, making it possible to selectively block this atom from being excited to the
Rydberg state. Furthermore we demonstrate the controlled manipulation of a two-atom entangled state by using
the addressing beam to induce a phase shift onto one component of the wave function of the system, transferring
it to a dark state for the Rydberg excitation light. Our results are an important step towards implementing quantum
information processing and quantum simulation with large arrays of Rydberg atoms.
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Cold neutral atoms are a promising platform for quantum
computation and quantum simulation [1]. Their weak interac-
tions in the ground state lead to long coherence times. Using
highly excited Rydberg states allows one to switch on and
off the strong interactions that are necessary for engineering
many-body quantum states [2]. For many of those experiments
it is desirable to confin single atoms at well-define positions
separated by a few micrometers, which can be achieved, e.g.,
using arrays of optical tweezers [3]. Another requirement is
the selective manipulation of individual atoms in the ensemble.
This can be done by applying static fiel gradients, or a
laser beam focused to one single trap site, which induces a
frequency shift at the targeted site. Such techniques have been
demonstrated with trapped ions [4–6] and neutral atoms in
optical lattices [7–13].

In previous work [14,15], we have demonstrated quantum-
state engineering with single atoms held in two and three
optical microtraps, by using the Rydberg blockade mechanism
with global excitation of the atoms. Extending these studies to
a larger number of atoms and to wider classes of quantum
states requires extra tools. A step towards this goal was
our recent demonstration of single-atom trapping in large
arrays of optical microtraps with arbitrary geometries [3].
Combined with global excitation, this already opens the
possibility to generate interesting multiatom entangled states,
such as the W state |W 〉 = (|rgg · · · g〉 + |grg · · · g〉 + · · · +
|ggg · · · r〉)/√N , where |g〉 (|r〉) corresponds to the ground
(Rydberg) state. However, single-site addressing is needed to
engineer other classes of quantum states. For instance, the
realization of the collective controlled-NOT (CNOT) gate of
Ref. [16] that can be used to create the Greenberger-Horne-
Zeilinger state |GHZ〉 = (|gg · · · g〉 + |rr · · · r〉)/√2, requires
the singling out of one control atom whose state determines
the state of the remaining, target, atoms.

Here we demonstrate the selective addressing of one single
87Rb atom among two atoms held in microtraps separated
by 3 μm, by shining a tightly focused, red-detuned 850-nm
laser beam on it. This addressing beam induces a frequency
shift on the ground state of the atom, while leaving its
Rydberg states nearly unaffected. This differential light shift
thus makes the addressed atom off-resonant with the Rydberg
excitation laser, which is resonant for the other atom. This

article is organized as follows. We f rst briefl describe the
implementation of the addressing beam, and characterize its
size and depth in situ using a single atom. We then perform
a global Rydberg excitation in the presence of the addressing
beam, and observe nearly perfect suppression of excitations
for the addressed atom. Finally, we use the addressing beam to
perform a controlled local operation on one atom, coherently
transferring the symmetric entangled state (|rg〉 + |gr〉)/√2
to the antisymmetric, dark state (|rg〉 − |gr〉)/√2.

Our experimental setup, schematically shown in Fig. 1(a),
has been described previously [3,14,15]. We use a spatial
light modulator (SLM) to create two microtraps, separated
by a distance of 3 μm in the focal plane of a high-numerical-
aperture (NA) aspherical lens. The traps, each with a 1/e2

radius of about 1 μm and a depth of U0 ≈ h×20 MHz, are
focused in an 87Rb magneto-optical trap (MOT). Due to fast
light-assisted collisions, we trap only either zero or one atom
per trap [17], and trigger the experiment on the presence of one
atom in each trap. The temperature of the atoms in the traps
is approximately 50 μK. We coherently couple the ground
state |g〉 = |5S1/2,F = 2,mf = 2〉 to the Rydberg state |r〉 =
|nD3/2,mj = 3/2〉 (with n in the range 50–100) via a two-
photon transition, with the wavelengths of the excitation lasers
being 795 and 474 nm. During the excitation, of duration τ , the
traps are switched off to avoid extra broadening arising from
the shot-to-shot fluctuation of the light shift due to the random
positions of the atoms in the traps. The detuning from the
intermediate state |5P1/2,F = 2,mf = 2〉 is 2π×740 MHz.
After the excitation pulse, we measure the states of both atoms.
Repeating the experiment about 100 times, we reconstruct the
populations Pij of the two-atom states |ij 〉, where i and j can
take the values g and r .

The 1/e2 radii of the lasers used for Rydberg excitation
are 100 μm for the 795-nm beam, and 18 μm for the 474-nm
beam. This configuratio prevents the direct addressing of
a single trap. To achieve single-site addressability, we thus
induce an extra light shift on the ground state of the atom at
the targeted site, to selectively control the Rydberg excitation.
As a fast (i.e., on microsecond time scales) reconfiguratio
cannot be achieved with the SLM, we superimpose a second,
independently controlled 850-nm laser beam onto the trapping
beam. Orthogonal polarizations and a frequency difference of

1050-2947/2014/90(2)/023415(4) 023415-1 ©2014 American Physical Society
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In conclusion, we have shown that we can selectively
prevent one single atom in a pair of single-atom traps
from being resonant with Rydberg excitation lasers, with no
measurable cross-talk with a neighboring atom as close as
3 μm. We also demonstrated the use of the addressing beam to
perform a local operation in a system of two atoms. Our scheme
is easily scalable to a larger number of traps. These techniques
will prove useful for a variety of applications in quantum
simulation and quantum information processing with Rydberg
atoms. For instance, they open the possibility of selectively
addressing a single qubit in a larger ensemble, e.g., as a control

atom for realizing collective quantum gates [16], or to excite
a single atom to a different Rydberg state, allowing the study
of the transfer of excitations along a Rydberg chain [21].
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Demonstration of a Strong Rydberg Blockade in Three-Atom Systems
with Anisotropic Interactions
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We study the Rydberg blockade in a system of three atoms arranged in different two-dimensional
geometries (linear and triangular configurations). In the strong blockade regime, we observe high-contrast,
coherent collective oscillations of the single excitation probability and an almost perfect van der Waals
blockade. Our data are consistent with a total population in doubly and triply excited states below 2%. In
the partial blockade regime, we directly observe the anisotropy of the van der Waals interactions between
jnDi Rydberg states in the triangular configuration. A simple model that only uses independently measured
two-body van der Waals interactions fully reproduces the dynamics of the system without any adjustable
parameter. These results are extremely promising for scalable quantum information processing and
quantum simulation with neutral atoms.

DOI: 10.1103/PhysRevLett.112.183002 PACS numbers: 32.80.Ee, 03.67.Bg, 34.20.Cf

Engineering quantum many-body systems with a high
degree of control and tunable interactions is an active field
of research as it is a prerequisite for quantum information
processing [1] and quantum simulation [2]. Recently,
significant achievements have been obtained towards this
goal, e.g., using trapped ions for simulating quantum
magnetism [3–5]. Another platform considered for such
tasks consists of systems of neutral Rydberg atoms inter-
acting via the strong and controllable long-range dipole-
dipole interaction, which is responsible for the Rydberg
blockade [6–9]. Through this mechanism, multiple exci-
tations with a resonant narrow-band laser are inhibited
within a blockade sphere by Rydberg-Rydberg interac-
tions. The dipole blockade provides a way to realize fast
quantum gates and to entangle particles, as demonstrated
for two atoms [10,11]. This mechanism can in principle be
extended to an ensemble of N atoms, with fascinating
applications in quantum state engineering [12].
Although the picture of a blockade sphere has been

remarkably successful at describing many recent experi-
ments [13–22], some theoretical works question this simple
approach. Even for the case of N ¼ 3, some situations
have been identified where nearly resonant dipole-dipole
interactions [23], the nonadditivity of the van der Waals
potentials [24], or the anisotropy of the interactions [25]
lead to the breakdown or reduction of the blockade.
In this Letter, we show that, for experimentally relevant

parameters, the Rydberg blockade is robust in ensembles of
three atoms. In particular, we consider two different
arrangements, namely, a line and an equilateral triangle.
We observe an almost perfect van der Waals blockade and
the coherent collective behavior of Rydberg excitations in
both configurations. To go beyond this observation and
understand the dynamics of the system in detail, we

measure the angular dependence of the effective interaction
energy Veff between two single-atoms excited to jri≡
jnD3=2; mj ¼ 3=2i Rydberg states. Using the measured
two-body interaction strength we demonstrate that it is
possible to fully reproduce the three-atom excitation
dynamics in both the full and partial blockade regimes,
with a model based on a master equation with no adjustable
parameters. With the degree of experimental control dem-
onstrated here, many theoretical proposals envisioning
quantum simulation using Rydberg atoms become realistic.
We consider three atoms, with ground jgii and Rydberg

jrii states coupled with Rabi frequencies Ωi, and interact-
ing via pairwise interactions Vij. The system is thus
described by the Hamiltonian [26]

Ĥ ¼
X3

i¼1

ℏΩi

2
ðσ̂ðiÞrg þ σ̂ðiÞgr Þ þ

X

i<j

Vijσ̂
ðiÞ
rr σ̂

ðjÞ
rr ; (1)

where σ̂ðiÞrg ¼ jriihgij, σ̂
ðiÞ
gr ¼ jgiihrij, and σ̂

ðiÞ
rr ¼ jriihrij. All

parameters of the Hamiltonian can be tuned by a proper
choice of the experimental settings. In particular, choosing
jri ¼ jnD3=2i gives an extra degree of freedom to tune Vij

due to the anisotropy of the interaction. In what follows all
Rabi couplings Ωi ≡Ω are equal within 5%.
A strong blockade is obtained if the interaction strengths

Vij between atom pairs are much greater than the atom-
light coupling ℏΩ [Fig. 1(a)]. In this regime, the states
carrying double and triple Rydberg excitations are off-
resonant with the light field and the system can be described
as a two-level model involving the collective states jgggi
and jΦ1ri¼ðjggriþjgrgiþjrggiÞ=

ffiffiffi
3

p
, coupled by an effec-

tive Rabi frequency
ffiffiffi
3

p
Ω. Here, jijki≡ ji1ijj2ijk3i stands
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for products of the single-atom ground jgi, and Rydberg jri
states for atoms 1, 2, and 3.
Our apparatus, shown schematically in Fig. 1(b), was

previously described in detail [27]. Three single 87Rb atoms
are loaded from amagneto-optical trap into three 1 mK-deep
microscopic optical traps [28], formed by focusing down a
850nmGaussian beam to awaist of1 μm(1=e2 radius) using
a high numerical aperture lens under vacuum [29]. Arbitrary
patterns of traps are obtained by imprinting a calculated
phase pattern on the beam with a spatial light modulator
(SLM) [30]. CCD images of the two trap configurations
used in this work are displayed in Fig. 1(c). In the first
arrangement (top), the three traps are collinear (parallel to the
quantization axis ẑ) and separated by R ¼ 4 μm. In the
second configuration (bottom), the traps form an equilateral
triangle with 8 μm sides.
The same aspheric lens is used to collect the atom

fluorescence from each trap. We trigger the experimental
sequence as soon as one atom is detected in each of the
three traps. The atoms are then optically pumped into
jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i. The quantization axis ẑ is
set by a 3G external magnetic field. For Rydberg excitation
from jgi to jnD3=2; mj ¼ 3=2i, we use a two-photon
process [31]: a π-polarized laser beam at 795 nm, detuned
from the j5P1=2; F ¼ 2; mF ¼ 2i intermediate state by
2π × 740 MHz, and a σþ-polarized 474 nm laser beam.
Both excitation lasers are frequency locked using an
ultrastable cavity providing laser linewidths ∼10 kHz.
During the Rydberg excitation, the dipole traps are
switched off to avoid light shifts. After excitation for a
duration τ, we switch on again the dipole traps and we look
for the fluorescence of the three atoms. Excitation of an
atom to the Rydberg state is inferred from its loss from the
corresponding trap (and thus the absence of fluorescence),

as Rydberg states are not trapped. The eight different
populations Pijk of the three-atom states jijki are then
reconstructed by repeating each sequence ∼150 times [31].
We first consider a one-dimensional array of three

individual atoms aligned along the quantization axis [see
Fig. 1(c) top] and separated by 4 μm. To obtain the single-
atom Rabi frequenciesΩi we measure the probability Pri to
excite atom i to the Rydberg state, with the other two traps
switched off, as a function of the excitation pulse area. We
observe well-contrasted Rabi oscillations [Fig. 2(a)]. A fit
of the data (solid line) gives the same Rabi frequencies
Ωi ≃ 2π × 0.8 MHz for the three atoms (within 5%), as
well as small damping rates γi ≃ 0.3 μs−1 (see below). In
Fig. 2(b) a single atom is loaded in each of the three traps.
In this configuration we expect full blockade, as the single-
atom Rabi frequencies are much smaller than van der Waals
interactions: even for the R ¼ 8 μm distance between the
outermost atoms, extrapolation of the measurement of
Ref. [27] gives V13 ≃ h × 32 MHz. The three atoms are
excited to the collective state jΦ1ri [Fig. 1(a)], and the single
excitation probability P1r ≡ Prgg þ Pgrg þ Pggr shows
oscillations with a frequency of ð1.72� 0.02ÞΩ, compatible
with the expected

ffiffiffi
3

p
Ω. Clear blockade ofmultiple Rydberg

(a) (b) (c)

FIG. 1 (color online). (a) Relevant energy levels of a three-atom
system with van der Waals interactions Vij. In the blockade
regime, the ground state jgggi is resonantly coupled to the
symmetric collective state ðjggriþjgrgiþjrggiÞ=

ffiffiffi
3

p
. (b) Scheme

of the experimental setup. Arbitrary geometries of two-
dimensional arrays of dipole traps are obtained by imprinting
a phase map φ with the SLM. (c) Trap geometry. Three single-
atoms are trapped in microscopic optical tweezers separated by
R ¼ 4 μm in a linear (top) and by R ¼ 8 μm in a triangular
arrangement (bottom). The quantization axis ẑ is set by a 3G
external magnetic field.

P1r

P2r

P3r

atom

P1r

P2r

P3r

(a)

(b)

(c)

FIG. 2 (color online). (a) Representative single-atom Rabi
flopping to the j82D3=2i state for the central atom in the linear
arrangement. Single-atom Rabi frequencies Ω≃ 2π × 0.8 MHz,
and damping rates γ ≃ 0.3 μs−1 for all three atoms are obtained
from fits (solid lines) to the solution of the OBEs for a single two-
level atom. (b) Probability of single (blue circles), double (red
triangles), and triple (green squares) Rydberg excitation as a
function of the excitation pulse area in the linear arrangement.
The collective enhancement of the Rabi frequency by

ffiffiffi
3

p
clearly

appears in the data. Solid lines are the result of the model
described in the text without any adjustable parameter. (c) Same
as (b) but for the triangular geometry.
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excitations is observed in the data, as the populations
P2r ¼ Prrg þ Prgr þ Pgrr (P3r ¼ Prrr) of doubly (triply)
excited states are almost totally suppressed in the system,
with P2r (P3r) never exceeding 9% (1%).
We now show that the actual blockade is even better than

suggested by these values. Indeed, each atom has a small
probability ε to be lost during the sequence, independently
of its internal state [32]. An independent measurement of the
loss probability gives ε ¼ ð5� 1Þ%. Since in our detection
scheme an atom loss is interpreted as an excitation to the
Rydberg state, the observed double excitation P2r differs
from the actual one ~P2r and, to first order in ε, it reads [32]

P2r ¼ ð1 − εÞ ~P2r þ 2ε ~P1r: (2)

If the blockade were perfect, one would have ~P2r ¼ 0, and
the measured P2r would thus oscillate between 0 and 2ε, in
phase with P1r. From the data on Fig. 2(b) we can extract an
upper bound of ∼2% on ~P2r [32].
To gain more insight into the quality of the blockade for

our experimental parameters, we simulate the dynamics of
the system with Hamiltonian (1). A sum of independent
single atom dissipators,

L½ρ� ¼
X

i

γi
2
ð2σ̂ðiÞgr ρσ̂ðiÞrg − σ̂ðiÞrr ρ − ρσ̂ðiÞrr Þ; (3)

is used to account for a small experimental damping γi of
the oscillations (mainly due to off-resonant spontaneous
emission through the intermediate state j5P1=2i; all the γi
are equal within 10%). The results of the simulation, with
no adjustable parameter, are represented by solid lines in
Fig. 2(b), where the loss-error correction (2) is included.
The very good agreement with the data further supports the
quality of the blockade. Our results are compatible with the
prediction of the model of double excitation probability
~Pðtheo.Þ
2r ∼ 10−3 for the same experimental parameters.

Although proving experimentally that the double excitation
is that low would require a more detailed study of
systematic effects, this figure is very encouraging for
high-fidelity generation of three-atom jWi states.
In the results discussed so far, we only considered a one-

dimensional configuration. For scalability to a large num-
ber of atoms, however, two-dimensional arrays of traps are
preferable. In this case, some atom pairs necessarily have
an internuclear axis not aligned along the quantization axis
and the anisotropy of the interaction comes into play, which
might eventually prevent a perfect blockade [23–25]. To
investigate this effect we study the blockade in an equi-
lateral triangle configuration. Here, the anisotropic char-
acter of the D-state orbital plays a role and the interaction
energies between atom pairs V12 ≃ V23 are weaker than
V13, although the atoms are equally separated. Despite this,
Fig. 2(c) shows that the strength of the blockade is not
reduced in the triangular geometry. Double and triple
excitation probabilities are inhibited and the single

excitation probability oscillates at ∼
ffiffiffi
3

p
Ω. This result opens

encouraging prospects for achieving strong blockade over
two-dimensional arrays of atoms.
In order to observe directly the anisotropy of the inter-

action [33]wemeasured the interaction energybetween atom
pairs separated by R ¼ 12 μm as a function of the angle θ
between the internuclear axis and the quantization axis ẑ. The
procedure to extract the effective interaction energy Veff is
similar to the one introduced in Ref. [27]. Working in the
partial blockade regime (ℏΩ ∼ Veff ), wemodel the excitation
dynamics through the solution of the optical Bloch equations
(OBE) involving two-level atoms. Strictly speaking, to
model two atoms in the jnD3=2i state and θ ≠ 0, one would
need to consider all 49 Zeeman sublevels with their different
van der Waals couplings [34]. So as to keep the model
tractable, even for large number of atoms, we model the
system in the simplest nontrivial way, retaining only one
single doubly excited state jrriwith an effective energy shift
VeffðθÞ. All input parameters are obtained from single-atom
Rabi oscillation experiments. The measured dynamics of the
two-atomsystemare then fittedwith the solutionof theOBEs
withVeff as the only fitting parameter. Amore detailed study
of the angular dependence of the van der Waals interaction,
taking into account the full Zeeman structure of the atompair,
is beyond the scope of this Letter and will be the subject of
future work.
The result of this approach is shown in Fig. 3 for the

j82D3=2i state. The anisotropy of the effective interaction is
evident. The energy shift shows a maximum around θ ¼ 0

FIG. 3 (color online). Angular dependence of the effective
interaction energy Veff for two atoms in j82D3=2i at R ¼ 12 μm,
with θ the angle between the internuclear axis and the quantiza-
tion axis ẑ. Red squares indicate the measured energy shifts V13,
V23, and V12 used for the simulation of three-atom dynamics in
the partial blockade regime (see Fig. 4). In the inset, the angular
dependence of the interaction for the spherically symmetric
j82S1=2i state is shown for comparison. Error bars represent
one standard deviation confidence intervals in the fits.
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and decreases for larger angles. A relative change of
interaction strength by a factor ∼3 is measured when θ
varies from θ ¼ 0 to θ ¼ 60°. In contrast, for a spherically
symmetric S-Rydberg state, the interaction energy is iso-
tropic (see inset of Fig. 3) [35] . For theD state, we observe
an unexpected, slight asymmetry in the angular dependence
of Veff , probably due to small systematic effects [36] .
The angular dependence of Veff manifests itself in the

interaction dynamics of the three atoms in the triangular
configuration. By increasing the sides of the triangle to
R ¼ 12 μm, the effective interaction energies become
ðV12; V23; V13Þ≃ h × ð0.9; 1.1; 2.6Þ MHz (see red squares
in Fig. 3), and the blockade is only partial for our chosen
Rabi frequency Ω. In Fig. 4 we show the populations of
doubly (Prrg, Prgr, Pgrr) and triply (Prrr) excited states
for two different Rabi frequencies. In the first data set
[Fig. 4(a)], Ω ¼ 2π × 0.8 MHz and the anisotropy in the
binary interaction (V12 ≠ V13) is directly observed in the
dynamics: the probability Prgr to detect double excitation
of atoms 1 and 3 is almost totally suppressed, while it is
appreciable for Prrg and Pgrr. Those two curves show
almost the same dynamics, as expected. Triple excitations
are totally blocked in this regime. For comparison, we show
also the dynamics when a slightly higher Rabi frequency
Ω ¼ 2π × 1.6 MHz is used [Fig. 4(b)]. This corresponds to
a partial blockade regime where V13 > ℏΩ > V12. In this
case, even triple excitations are not completely blockaded.
Prrg and Pgrr also exhibit similar behavior, while Prgr
shows different dynamics. The populations of states carry-
ing only single excitations also show the anisotropy [32].
Many-body effects have largely been recognized to play

a key role in the modeling of systems in physics and

chemistry [37]. In the case of Rydberg atoms they have
been invoked to explain anomalous broadenings of Förster
resonances [38,39]. To understand the evolution of the
population of the states during excitation and to investigate
to what extent few-atom many-body physics can be
described from pairwise interactions we perform again a
simulation using the OBEs for the three-atom system. In the
model, with no adjustable parameters, the measured inter-
action energies at θ ¼ 0 and θ ¼ 60° (red squares in Fig. 3)
are introduced. As shown by the solid lines in Fig. 4, the
simulation (where atom loss correction is included) fully
reproduces the experimental data. The fact that the simu-
lation can accurately describe the evolution of the triply
excited state Prrr suggests that, for our choice of param-
eters, the pairwise addition of van der Waals level shifts
V123 ¼ V12 þ V13 þ V23 is valid to a very good approxi-
mation. However, this additivity of the potential may not
hold in the case of resonant dipole-dipole interactions.
There, quantum interference between different many-body
interaction channels can influence the dynamics [23]. All
these processes can be studied for Rydberg atoms close to
Förster resonance and will be the subject of future work.
Another interesting line of research will consist in studying
the recently predicted Borromean trimers bound by the
dipole-dipole interaction [40].
In summary, we have investigated the dynamics of a

system of three Rydberg atoms in both full and partial
blockade regimes. We observe a strong van der Waals
blockade of the excitations and coherent Rabi oscillations
for two different spatial configurations. For the same
experimental parameters in the equilateral triangle arrange-
ment, the anisotropy of the interaction potential between
jnDi states does not prevent the observation of a strong van
derWaals blockade, which is a prerequisite for the scalability
of quantum information processing proposals using two-
dimensional arrays of dipole traps. The strong blockade
achieved and the small damping of the oscillations pave the
way for the generation ofmany-atom entanglement with high
fidelity through the Rydberg blockade [12]. In the partial
blockade regime, the angular dependence of the interaction
energy shift between two atoms has been measured for the
j82D3=2i and j82S1=2i Rydberg states. Furthermore, we have
shown that with the measured effective energy shifts it is
possible to reproduce the three-atom dynamics with high
accuracy. This result demonstrates that one can confidently
scale those studies for two-dimensional arrays of more than a
few atoms, enabling the quantum simulation of large-size,
long-range interacting spin systems.
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(a) (b)

FIG. 4 (color online). Probabilities of detection of double
Rydberg excitation Prrg, Prgr, Pgrr, and triple excitation Prrr
versus excitation pulse area Ωτ for driving Rabi frequencies
Ω ¼ 2π × 0.8 MHz (a), and Ω ¼ 2π × 1.6 MHz (b) in the
triangular configuration. The distance between the traps is
R ¼ 12 μm. The ratio between effective pairwise interaction
energies is V13=V12 ∼ 3 for θ ¼ 60°. Solid lines are the solution
of the OBEs without any adjustable parameter.
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We study coherent excitation hopping in a spin chain realized using highly excited individually
addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a
long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing,
C3=R3. The experimental data demonstrate the importance of next neighbor interactions which are manifest
as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited
to large scale, high-fidelity quantum simulation of spin dynamics.
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Spin Hamiltonians, introduced in the early days of
quantum mechanics to explain ferromagnetism, are widely
used to study quantum magnetism [1]. Assemblies of
interacting, localized spins are a paradigm of quantum
many-body systems, where the interplay between inter-
actions and geometry-induced frustration creates a wealth
of intriguing quantum phases.Many other phenomena, such
as coherent energy transfer, photochemistry, or photosyn-
thesis [2], can also be described using spin Hamiltonians.
However, despite this fundamental significance, exact
analytical solutions are known only for the simplest cases,
and numerical simulations of strongly correlated spin
systems are notoriously difficult.
For those reasons, quantum simulation of spin

Hamiltonians by controllable systems raises great interest.
Recently, various approaches were followed to simulate
spin systems using tools of atomic physics [3], such as cold
atoms [4–6] or polar molecules [7] in optical lattices,
interacting via weak exchange or dipole-dipole inter-
actions, or trapped ions with engineered effective inter-
actions [8–10]. As compared to their condensed-matter
counterparts, the spin couplings can be long range, which
gives rise to new properties [11–14].
Rydberg atoms are a promising alternative platform for

quantum simulation [15,16]. In particular, they allow
implementing various spin-1=2 Hamiltonians on two-
dimensional lattices with strong couplings, in the MHz
range [17,18]. Rydberg systems interacting through van
der Waals interactions can be described by Ising-type

Hamiltonians H ¼
P

ijVijσ
z
iσ

z
j where σz is the z-Pauli

matrix acting in the (pseudo-) spin Hilbert space, and
Vij ∼ jri − rjj−6, where ri denotes the position of atom i
[17–21]. On the other hand, spin-exchange, or XY, spin
Hamiltonians of the form H ¼

P
ijVijðσþi σ−j þ σ−i σ

þ
j Þ,

where σ� ¼ σx � iσy are spin-flip operators and
Vij ∼ jri − rjj−3, can be realized by using two different
Rydberg states, interacting directly via the resonant dipole-
dipole interaction. However, in this case, only incoherent
transfer of excitations has been observed so far, due to
the random atomic positions in the ensembles used in
experiments [22–27].
In this Letter, we study the coherent dynamics of a

spin excitation in a chain of three Rydberg atoms. The
dipole-dipole interaction between atoms is given by the
XY Hamiltonian [28]

H ¼ 1

2

X

i≠j

C3

R3
ij
ðσþi σ−j þ σ−i σ

þ
j Þ; ð1Þ

where Rij ¼ jri − rjj is the distance between atoms i and j.
We calibrate the spin-spin coupling between two Rydberg
atoms by investigating the temporal evolution of two
Rydberg atoms prepared in the state j↑↓i, as a function
of distance R between the atoms, up to R≃ 50 μm. We
then use three Rydberg atoms prepared in j↑↓↓i and study
the propagation of the excitation through this minimalistic
spin chain, observing the effect of long-range hopping of
the excitation. The agreement between experimental data
and the XY model without adjustable parameters validates
our setup as a future quantum simulator for systems of
many spins in arbitrary two-dimensional arrays.
The experimental setup, shown in Fig. 1(a), is detailed in

Ref. [30]. Briefly, we focus a red-detuned trapping beam
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with an aspheric lens into a magneto-optical trap of 87Rb, to
a waist ≃1 μm. Multiple traps at arbitrary distances are
created by imprinting an appropriate phase on the trapping
beam with a spatial light modulator [31]. Because of fast
light-assisted collisions in the small trapping volume, at
most one atom is present in each trap. The temperature of
the trapped atoms is approximately 50 μK. A 6 G magnetic
field defines the quantization axis [32].
We encode the two spin states in the Rydberg states

j↑i ¼ j62D3=2; mj ¼ 3=2i and j↓i ¼ j63P1=2; mj ¼ 1=2i
[see Fig. 1(b)]. We trigger an experiment when an atom is
detected in each trap. To prepare the atoms in a desired
spin state, we first optically pump them in jgi ¼ j5S1=2;
F ¼ 2; mF ¼ 2i. We then switch off the traps to avoid
inhomogeneous light shifts, and excite the atoms to
j↑i ¼ j62D3=2; mJ ¼ 3=2i via a two-photon transition
(wavelengths 795 and 474 nm, with polarizations π and
σþ, respectively), detuned from the intermediate state
j5P1=2; F ¼ 2; mF ¼ 2i by Δ≃ 2π × 740 MHz. From
the j↑i state the atom can be transferred to j↓i ¼
j63P1=2; mj ¼ 1=2i using resonant microwaves at
≃9.131 GHz, emitted by an antenna outside the vacuum
chamber.
To read out the state of an atom at the end of a sequence,

we switch on the excitation lasers, coupling only j↑i back
to the ground state. We then turn on the dipole traps to
recapture ground-state atoms, while atoms in Rydberg
states remain untrapped, and detect atoms in jgi by
fluorescence. Therefore if we detect an atom in its trap
at the end of a sequence, we assume it was in j↑i, while a
loss corresponds to the j↓i state. We reconstruct all the 2N

probabilities Pi1…ik…iN of having ik atom in trap k, with
ik ¼ 0 or 1, for our N-trap system (with N ¼ 1; 2, or 3) by
repeating the experiment typically 100 times. For instance
for N ¼ 3, P100 is the probability to recapture an atom
in trap 1, while recapturing none in traps 2 and 3. The
statistical error on the determination of the probabilities
is below 5%. Figure 1(c) illustrates the coherent spin mani-
pulation for a single atom, by showing Rabi oscillations
between j↑i and j↓i: the probability P1 to recapture the
atom oscillates with a frequency ΩMW ≃ 2π × 4.6 MHz.
In 4 μs, we induce more than 35 spin flips without
observing noticeable damping.
We first use two atoms, aligned along the quantization

axis, to directly measure the coupling between two spins
as a function of their distance. The sequence is shown in
Fig. 2(a). We illuminate atom 1 with an addressing beam
[33] which induces a 20 MHz light shift, making it off
resonant to the global Rydberg excitation. Atom 2 is
excited to j↑i, and then transferred to j↓i using micro-
waves. Subsequently, atom 1 is optically excited to the j↑i
state with the addressing beam switched off (atom 2 in j↓i
is not affected by the Rydberg excitation pulse). We let
the system evolve for an adjustable time τ and read out the

(a) (b)

(c) 0

E

0 1 2 3
0

1

Trap
beam

Aspheric
lenses

Microwave
antenna

FIG. 1 (color online). (a) Individual 87Rb atoms in microtraps
aligned along the quantization axis, defined by a B ¼ 6 G
magnetic field. (b) Excitation lasers couple the ground state
jgi¼ j5S1=2;F¼ 2;mF ¼ 2i and the Rydberg state j↑i¼ j62D3=2;
mJ ¼ 3=2i with an effective Rabi frequency Ωopt. Microwaves
couple j↑i to j↓i ¼ j63P1=2; mJ ¼ 1=2i, with Rabi frequency
ΩMW. (c) Microwave-driven Rabi oscillation of a single atom
between j↑i and j↓i, yielding ΩMW ¼ 2π × 4.6 MHz.

FIG. 2 (color online). (a) Sequence to observe spin exchange
between two atoms. (b) Excitation hopping between states j↑↓i
(blue disks) and j↓↑i (red disks) of two atoms separated by
R ¼ 30 μm. Solid lines are sinusoidal fits, with frequency 2E=h.
(c) Interaction energy E (circles) versus R. Error bars are smaller
than the symbols size. The line shows the theoretical prediction
C3=R3 with Cth

3 ¼ 7965 MHz μm3. The shaded area corresponds
to our systematic 5% uncertainty in the calibration of R.
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final state by deexciting j↑i back to jgi. In the absence
of experimental imperfections (see [28], Sec. S.3), P10

(respectively, P01) would give the population of j↑↓i
(respectively, j↓↑i).
The evolution of P10ðτÞ and P01ðτÞ for two atoms

prepared in j↑↓i separated by 30 μm is shown in
Fig. 2(b). The spin excitation oscillates back and forth
between the two atoms, with a frequency 2E=h≈
0.52 MHz. The finite contrast is essentially due to sponta-
neous emission via the intermediate j5P1=2i state during
preparation and readout, which limits the oscillation
amplitude to about 60%, and, to a lesser extent, to the
onset of dipolar interactions during the second excitation
pulse [28]. We then repeat the same experiment for several
values of the distance R between the atoms, and observe
spin-exchange oscillations for distances as large as 50 μm.
Figure 2(c) shows the measured interaction energies as a
function of R, together with the expected C3=R3 behavior
(solid line) for the theoretical value Cth

3 ¼ 7965 MHz μm3

of the C3 coefficient, calculated from the dipole matrix
elements h↑jd̂�1j↓i [30,34]. A power-law fit to the data
(not shown) gives an exponent −2.93� 0.20. Fixing the
exponent to −3 gives Cexp

3 ¼ 7950� 130 MHz μm3. The
agreement between data and theory is excellent.
We now extend the system to a three-spin chain, with a

distance R ¼ 20 μm between the atoms. The sequence is
similar to that in Fig. 2(a) for two atoms, except that we
now use microwave transfer for atoms 2 and 3 to prepare
jg↓↓i. Here, the van der Waals interaction between the two
atoms in j↑i is only ∼10 kHz for R ¼ 20 μm, and thus no
blockade effect arises during excitation. We then excite
atom 1 to prepare j↑↓↓i.

We first analyze theoretically the evolution of the
system. Assuming that the initial state is jψð0Þi ¼
j↑↓↓i, the dynamics induced by the XY Hamiltonian
(1), which conserves the total magnetization

P
iσ

z
i , occurs

within the subspace spanned by fj↑↓↓i; j↓↑↓i; j↓↓↑ig.
Figures 3(a) and 3(b) show the calculated dynamics of
the spin excitation, which moves back and forth between
the extreme sites. Figure 3(a) corresponds to the case
where only nearest-neighbor interactions are retained
in (1). Periodic, fully contrasted oscillations at a frequencyffiffiffi
2

p
C3=R3 are expected for the population of the extreme

sites, while the population of j↓↑↓i oscillates twice as
fast between 0 and 1=2. In contrast, in Fig. 3(b), the full
Hamiltonian (1) is simulated, including the interaction
between extreme sites. One observes a clear signature of
this long-range coupling, as the dynamics now becomes
aperiodic for the populations of j↑↓↓i and j↓↓↑i. The
interplay of the couplings C3=R3 and C3=ð8R3Þ between
nearest- and next-nearest neighbors makes the eigenvalues
of (1) incommensurate. The back-and-forth exchange of
excitation is thus modulated by a slowly varying envelope
due to the beating of these frequencies.
Figure 3(c) shows the experimental results for P100, P010,

and P001 (symbols). We observe qualitative agreement with
Fig. 3(b), in particular the “collapse and revival” in the
dynamics showing the effects of the long-range coupling.
However, one notices differences with the ideal case: (i) the
preparation is imperfect, as one starts with a significant
population in j↓↑↓i, (ii) this, together with imperfect
readout [28], reduces the overall amplitude of the oscil-
lations, and (iii) the oscillations show some damping,
which becomes significant for τ ≥ 4 μs.

FIG. 3 (color online). Spin excitation transfer along a chain of three Rydberg atoms with nearest-neighbor separation of 20 μm.
(a) Theoretical dynamics for a system initially prepared in j↑↓↓i, and evolving under a Hamiltonian similar to (1), but with only nearest-
neighbor interactions. (b) The same as (a), but for the full Hamiltonian (1), including long-range interactions. (c) Experimental data
(points) and prediction of the model taking into account experimental imperfections (see text), with no adjustable parameters. For perfect
preparation and readout, the probabilities P↑↓↓ (respectively, P↓↑↓, P↓↓↑) and P100 (respectively, P010, P001) would coincide.
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Imperfect preparation and readout stem from the fact
that, in addition to the spontaneous emission via the
intermediate state during the optical pulses, the Rabi
frequency for optical excitation (≃5.3 MHz) of atom 1
from jgi to j↑i is not much higher than the interaction
(≃0.92 MHz for R ¼ 20 μm). Thus, during the excitation
of atom 1, the spin excitation already has a significant
probability to hop to atom 2. The damping essentially arises
from the finite temperature of the atoms, which leads to
changes in the interatomic distances, and thus in the
couplings.
To go beyond this qualitative understanding of the

limitations of our “quantum simulator,” we add all known
experimental imperfections to the XY model [28]. The
result, shown by solid lines on Fig. 3(c) accurately
reproduces the data with no free parameters. To obtain
these curves, we simulate the full sequence, i.e., all three
optical (de-) excitation pulses with or without the address-
ing beam, the microwave pulse, and evolution time, by
solving the optical Bloch equations describing the dynam-
ics of the internal states of the atoms, restricted to three
states: jgi, j↑i, and j↓i. Dissipation comes from both off-
resonant excitation of the intermediate j5P1=2i state during
the optical excitation pulse, and from the finite lifetimes
of the Rydberg states (101 and 135 μs for j↑i and j↓i,
respectively [35]). The former effect is treated as an
effective damping of the jgi ↔ j↑i transition, present only
during the optical pulses, and with a damping rate chosen to
match the damping of single-atom Rabi oscillations per-
formed to calibrate the excitation Rabi frequency Ωopt [17].

We then account for the thermal motion of the atoms.
A first consequence of the finite temperature (T ≃ 50 μK)
is that at the beginning of the sequence, the atoms have
random positions (the transverse rms extension of the
thermal motion in each microtrap, of radial frequency
90 kHz, is about 120 nm) and random velocities
(70 nm=μs rms).During the sequence, the traps are switched
off and the atoms are thus in free flight with their initial
velocity. When solving the optical Bloch equations, we thus
first draw the initial positions r0i and velocities v0i of each
atom i according to a thermal distribution, and use time-
dependent dipolar couplings C3=jðr0i þ v0i tÞ − ðr0j þ v0j tÞj3
in Eq. (1) [36]. We then average the results over 100
realizations. This yields a dephasing of the oscillations,
resulting in a significant contrast reduction at long times.
A second effect of the temperature is that an atom has a

small probability εðtÞ to leave the trap region during the
experiment. In this case, we mistakenly infer that it
was in a Rydberg state at the end of the sequence. This
leads to a small distortion of the measured populations Pijk

(i; j; k ¼ 0; 1) [37], that we compute from the actual ones
as described in [17]. We measure εðtÞ (which increases with
the duration t of the sequence, from ∼1% at t ¼ 0 up to
∼20% for t ¼ 7 μs) in a calibration experiment, and then

use it to calculate the expected populations from the
simulated ones [28].
Figure 4 shows how those two consequences of the finite

temperature contribute to the observed damping in the
dynamics of P001: both have sizable effects, but the
dephasing due to fluctuations in the coupling dominates
at long times. Reducing the atomic temperature using, e.g.,
Raman cooling [38,39] would render those effects negli-
gible for our time scales, and allow the realization of a
nearly ideal quantum simulator of spin dynamics.
In summary, we have measured the dynamics of a spin

excitation in a minimal spin chain of three Rydberg atoms.
The evolution of the system is accurately described by
an XY Hamiltonian without any adjustable parameters. The
obtained results are encouraging in view of scaling up
the system to a larger number of spins. In particular, the
residual motion of the atoms and the level of detection
errors would already allow us to observe unambiguously
the back-and-forth propagation of an excitation over a
chain of ∼20 atoms [28]. However, so far, experiments
with more than ∼5 atoms are hampered by the stochastic
loading of the traps by single atoms [31]. In future work,
we will thus explore various quasideterministic loading
schemes that have been demonstrated at the level of a
single [40,41] or a few [42,43] traps. Once this is achieved,
our system will allow us to study the equivalent of an
assembly of hard-core bosons on a 2D lattice with long-
range, anisotropic hopping. We will also study dipolar
interactions involving more than only two Rydberg states
at an electrically tuned Förster resonance [44]. Our
system will be ideal to study exotic phases and frustration
in quantum magnetism, excitation hopping in complex
networks [45,46], or quantum walks with long-range
hopping [47].
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FIG. 4 (color online). Influence of the temperature on P001ðτÞ:
simulated dynamics at zero temperature (black dashed line), and
adding either only atom loss (green dotted line), or only atomic
motion (blue solid line).
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Coherent dipole–dipole coupling between two
single Rydberg atoms at an electrically-tuned
Förster resonance
Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Béguin, Thierry Lahaye
and Antoine Browaeys*

Resonant energy transfers, the non-radiative redistribution of
an electronic excitation between two particles coupled by the
dipole–dipole interaction, lie at the heart of a variety of phe-
nomena1, notably photosynthesis. In 1948, Förster established
the theory of fluorescence resonant energy transfer (FRET)
between broadband, nearly-resonant donors and acceptors2.
The 1/R6 scaling of the energy transfer rate, where R is the
distance between particles, enabled widespread use of FRET
as a ‘spectroscopic ruler’ for determining nanometric distances
in biomolecules3. The underlying mechanism is a coherent
dipolar coupling between particles, as recognized in the early
days of quantum mechanics4, but this coherence has not been
directly observed so far. Here we study, spectroscopically and
in the time domain, the coherent, dipolar-induced exchange of
excitations between two Rydberg atoms separated by up to
15μm, and brought into resonance by applying an electric field.
Coherent oscillation of the system between two degenerate
pair states then occurs at a frequency scaling as 1/R3, the
hallmark of resonant dipole–dipole interactions5. Our results
not only demonstrate, at the fundamental level of two atoms,
the basic mechanism underlying FRET, but also open exciting
prospects for active tuning of strong, coherent interactions in
quantum many-body systems.

The possibility to tune at will coherent interactions inmany-body
systems by changing external parameters is one of the key tools
enabling quantum simulation. For instance, in ultracold quantum
gases, such tuning can be achieved by magnetically-induced
Feshbach resonances6,7. Rydberg atoms are another promising
platform for the quantum simulation of complex many-body
problems, owing to the strong interactions associated with their
large principal quantum numbers8. They have proved to be an
efficient tool for characterizing non-radiative exchange of energy
in resonant collisional processes9, studying collective effects10
and engineering quantum states of matter11. The observation of
Rydberg blockade between individual atoms12,13, where the strong
interaction between Rydberg states inhibits multiple excitations
within a blockade sphere, opens the way towards the development
of Rydberg quantum simulators14. An appealing tool for those
applications is the possibility to tune the strength of the interactions
by external electric fields using Förster resonances15–23. So far, owing
to inhomogeneities in the atomic ensembles used in experiments,
only indirect evidence for the coherent character of the interaction
has been obtained24,25.

Here, we study a system of two single atoms at a Förster
resonance. We first perform a spectroscopic measurement of the
energies of the two-atom states as a function of the applied electric
field, and observe directly the avoided crossing between pair states
induced by the dipole–dipole interaction. The splitting at resonance
is observed to scale as 1/R3 as a function of the distance R between
the atoms. In a second experiment, we prepare the system in a
given pair state away from resonance, and switch to resonance for
a controlled time, revealing the coherent oscillation between the
two degenerate pair states induced by the dipolar interaction. These
results open the way to real-time tuning of interactions for quantum
simulation with Rydberg atoms11,14.

Two atoms located at positions R1 and R2 interact through the
dipole–dipole interaction

V̂dip = 1
4πε0

(
μ̂1 · μ̂2 −3(μ̂1 ·n)(μ̂2 ·n)

R3

)

where μ̂i is the electric dipole moment of atom i (i = 1, 2),
R=R2 −R1 and n= R/R. When the two atoms are prepared in
the same state, V̂dip usually has no effect to first order, as the
average value of the dipolemoment vanishes in an atomic eigenstate.
Second-order perturbation theory gives rise to an energy shift of
the atom pair, which results in the van der Waals interaction26

UvdW ∝R−6. However, resonance effects between two Rydberg atoms
can occur when two pair states are degenerate5, and in this case the
dipolar interaction manifests itself at first order. Such a resonance,
called a ‘Förster resonance’ in analogy with the FRETmechanism at
work in photochemistry, can be achieved using small electric fields
to Stark-tune the energy of the pair states.

In this work, we use the states |p〉 = |61P1/2, mJ = 1/2〉,
|d〉=|59D3/2,mJ =3/2〉 and |f 〉 = |57F5/2,mJ = 5/2〉 of 87Rb. The
pair states |dd〉, |pf 〉 and |fp〉 are almost degenerate (Fig. 1a): their
Förster defect Δ0 = (Epf −Edd)/h, in the absence of an electric field,
is only 8.5MHz (h is Planck’s constant). Using the differential Stark
effect between |dd〉 and |pf 〉, they can be brought to exact resonance
by applying an electric field Fres �32mV cm−1 (Fig. 1b). The small
electric fields at play ensure that we work in a regime of induced
dipoles (even for the highly polarizable f state), as opposed to the
rigid dipoles obtained for larger electric fields. At resonance, the
eigenstates of the interacting system are |±〉 = (|dd〉 ± |p̃f 〉)/√2,
where |p̃f 〉 = (|pf 〉 + |fp〉)/√2. If the system is initially prepared
in |dd〉, it thus oscillates between the two degenerate electronic
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configurations with a frequency given by the dipolar coupling
2
√
2C3/R3 (where C3

√
2/R3 = 〈dd|V̂dip|p̃f 〉). In particular, after

half a period of interaction, the system has evolved to the entangled
state |p̃f 〉.

Our experimental set-up has been described previously26,27. We
trap two single laser-cooled atoms in optical tweezers separated by
a controlled distance R of a few micrometres (Fig. 1c). A set of eight

independent electrodes allows us to apply a controlled electric field
F aligned with the internuclear axis28. A 3G magnetic field, also
aligned along z , is used to split the Zeeman sublevels. We optically
pump the atoms in the ground state |g 〉 = |5S1/2, F = 2,mF = 2〉
(with an efficiency >90%), which we couple, with an effective Rabi
frequencyΩ , to the Rydberg state |d〉 using a two-photon transition
(using two lasers of wavelengths 795 nm and 474 nm, withπ andσ+
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polarizations, respectively). The readout of the states of the atoms is
performed by shining resonant light at 780 nm on the atoms, giving
a fluorescence signal only if the atom is in |g 〉 (an atom in a Rydberg
state, be it |p〉, |d〉, or |f 〉, is lost from the trap during the sequence).
Repeating the same sequence ∼100 times allows us to reconstruct
the four populations Pgg , Pgr , Prg and Prr (where r stands for any of
the Rydberg states p, d and f , which we cannot discriminate directly
with our loss-based detection scheme), with a typical uncertainty
in the measurement of Pij on the order of ±0.05 (see representative
error bars in Figs 2b and 3b).

We first fix R = 8.1 μm and perform a spectroscopic
measurement to find the electric field Fres corresponding to
the Förster resonance. Our laser system couples |gg 〉 to |dd〉 (but
not to |pf 〉 or |fp〉), via the states |dg 〉 and |gd〉. Thus |gg 〉 is partially
coupled to the states |+〉 and |−〉 at resonance. For increasing
values of F , we scan the laser detuning δ (defined with respect to
the transition |gg 〉 to |dd〉, see Fig. 1d) and measure the probability
Prr for both atoms to be in a Rydberg state (Fig. 2a). For F =0, we
observe a single line centred at δ/(2π)≈−5MHz, corresponding
to the attractive van der Waals interaction between the two atoms
out of resonance. For F ≈20mV cm−1, a repulsive branch appears
in the spectrum, a signature of the interaction between |dd〉 and
|p̃f 〉. Increasing the field even further allows scanning across
the avoided crossing until only one peak is visible again. We
reach the Förster resonance (smallest splitting between the two
peaks) at Fres =32±4mV cm−1, where we observe two symmetric
peaks corresponding to |±〉. The spectra also show further small
structures in addition to the two main peaks. However, to extract
the interaction energy in a simple way, we fit the spectra by two
Gaussians with a splitting �E between the two peaks (Fig. 2b).

We then measure the evolution of the spectra at resonance when
varying the distance R. When R increases, the splitting between the
peaks decreases. Figure 2c is a double-logarithmic plot of�E versus
R. The data show a power-law behaviour of exponent −3.2±0.2,
consistent with the expected C3/R3 law. We measure
C3 =2.1±0.1GHz μm3, where the error is statistical. Systematic
effects are an overall ∼5% uncertainty in our calibration of R, a
small bias in the determination of �E due to the choice of double
Gaussian functions to fit the data and possible residual light-shifts
in the two-photon spectroscopy. (To estimate the bias introduced
by our choice of fit function, we fitted simulated spectra, obtained
by solving the optical Bloch equations, by double Gaussians. The
extracted splitting underestimates by �10% the actual splitting
�E.) Theoretical calculations29 give C3,th �2.54GHz μm3.

We now study the coherence properties of the system at
resonance using a sequence (Fig. 3a) reminiscent of pump–probe
spectroscopy.We prepare the system in the state |dd〉 using aπ-pulse
of 200 ns, which transfers each atom from |g 〉 to |d〉. To start in
a pure |dd〉 state, we perform the excitation in the van der Waals
regime above resonance (F ≈64mV cm−1), where the Förster defect
is �(F)≥h× 100MHz and where interactions are weak. We then
turn on the resonant interaction for a variable durationT , by rapidly
switching (risetime below 10 ns) the field to Fres. During this time,
the two-atom system oscillates between |dd〉 and the entangled state
|p̃f 〉, with a frequency fosc = �E/h= 2

√
2C3/(hR3) given by the

dipolar coupling. We then apply a deexcitation π-pulse identical to
the first one to read out the state of the system. The deexcitation
pulse couples the |dd〉 component of the system back to |gg 〉. At the
end of the sequencewemeasure the probabilityPgg to be back in |gg 〉,
thus indirectly measuring the population left in |dd〉 after the pulse
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of electric field. We observe highly contrasted oscillations between
|dd〉 and |p̃f 〉, with a frequency depending on R (Fig. 3b).

The oscillations between two states are a direct proof of
the coherent nature of the coupling underlying Förster energy
transfer, and also allow a more accurate determination of the
interaction energy than the spectroscopic method described above.
We fit the oscillation by a damped sine wave to extract the
oscillation frequency fosc. Figure 3c shows a double-logarithmic
plot of the values of fosc as a function of R. The data shows a
power-law behaviour of exponent −3.0± 0.1, again in excellent
agreement with the expected R−3 behaviour. The measured
C3 =2.39±0.03GHz μm3 is also close to the theoretical value.

The observed damping of the oscillations comes mainly from
dephasing, arising from two effects. First, shot-to-shot fluctuations
in the distance R (on the order of δR� 170 nm), due to the finite
temperature of the atoms in the tweezers, give rise to dephasing,
as the oscillation frequency fosc ∝1/R3 is slightly different for each
realization. This effect dominates at short distances: for instance,
for R�9μm, the corresponding spread δfosc/fosc =3δR/R in relative
frequencies reaches ∼6%, which is enough to reduce the contrast
of the oscillations by more than a factor of two after only four
oscillation periods. Second, the voltages applied to the electrodes
also fluctuate from shot to shot by a few mV, inducing fluctuations
in F and thus in the detuning �(F) from resonance (by a fraction
of a MHz for our parameters). This has negligible impact for small
R, but appreciably contributes to the damping for large R, where the
dipolar interaction is weaker. In principle, both sources of damping
can be strongly decreased by technical improvements in the set-up,
using colder atoms as demonstrated recently30,31 and more stable
voltage sources.

Our results open exciting prospects for real-time tuning of
interactions in systems of Rydberg atoms, in particular to switch
on and off Ryberg blockade on nanosecond timescales. As an
illustration, in the above experiment, when switching F from
64mVcm−1 (away from resonance) to 32mV cm−1 (right on
resonance), the blockade shift between two atoms separated by
R=10 μm varies from U =UvdW ∼ h× 0.2MHz (van der Waals
regime) up to U = �E/2 ∼ h × 4MHz (C3/R3 regime). If the
pair of atoms initially in |gg 〉 were driven with a Rabi frequency
Ω/(2π) ∼ 1MHz, one would observe a strong blockade in the
second case, whereas blockade would be almost totally suppressed
in the first situation. This means that, simply by changing the value
of the electric field by a few mVcm−1, we obtain a twenty-fold
enhancement of the interaction, and the blockade radius is increased
by a factor∼2 in real time, a feature hard to achieve by other means.

A natural extension of this work will consist in measuring the
angular dependence of resonant interactions29, in view of tailoring
even further the interactions between two particles. Extending
our results beyond two particles, to few-body32 and many-body
systems15,16,23, will enable the study of transport of excitations and
generation of entanglement in fully controlled many-body systems.
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Quantum simulation of spin Hamiltonians is currently a very active field of research, using different imple-
mentations such as trapped ions, superconducting qubits, or ultracold atoms in optical lattices. All of these
approaches have their own assets and limitations. Here, we report on a novel platform for quantum simulation
of spin systems, using individual atoms trapped in highly-tunable two-dimensional arrays of optical microtraps,
that interact via strong, anisotropic interactions when excited to Rydberg D-states. We illustrate the versatility
of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty
spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths.
Our data agree well with numerical simulations of the spin-1/2 model except at long times, where we observe
deviations that we attribute to the multilevel structure of Rydberg D-states.

Spin models are the prime example of simplified many-
body Hamiltonians used to model complex, real-world
strongly correlated materials [1, 2]. However, despite their
simplified character, their dynamics often cannot be simu-
lated exactly on classical computers as soon as the number
of particles exceeds a few tens. For this reason, the quantum
simulation [3] of spin Hamiltonians using the tools of atomic
and molecular physics has become very active over the last
years. A first, “top-down” approach consists in using ultra-
cold atoms [4] or molecules [5] in optical lattices. Thousands
of spins can then be studied, in one, two, or three dimensions,
but couplings are weak, access to local observables is chal-
lenging, and geometries are relatively constrained. A second,
“bottom-up” approach uses ions [6]; there, interactions are
tunable and local measurements are easy, but the number of
spins that can be simulated remains moderate, and extension
beyond one dimension, although doable in principle [7], is
technically challenging.

Rydberg atoms have recently attracted a lot of interest
for quantum information processing [8] and quantum simu-
lation [9]. For the simulation of spin Hamiltonians, arrays
of single atoms trapped in optical tweezers and then excited
to Rydberg states hold the promise to bridge the gap be-
tween trapped ions and quantum gases in lattices; moreover,
the possibility to engineer anisotropic interactions using Ryd-
berg states with an angular momentum L > 0 opens exciting
prospects for creating intriguing states of matter [10]. Here,
we demonstrate a scalable quantum simulator of the dynam-
ics of spin Hamiltonians that combines, for up to N ∼ 30
spins, (i) strong, highly-tunable, and anisotropic couplings,
(ii) the possibility to vary at will the geometry of the array,
in one and two dimensions, with e.g. 1D spin chains with
periodic boundary conditions (PBC) and (iii) access to local
observables. In addition, while for short times our observa-
tions validate a model of spin 1/2 particles with anisotropic
interactions, residual deviations at long times show that the
complex multilevel structure of Rydberg atoms [11–13] needs

to be taken into account for future experiments.
By shining on the array lasers that are resonant with the

transition between the ground state |g〉 and a chosen Rydberg

FIG. 1: Experimental platform. (a): An array of microtraps is cre-
ated by imprinting an appropriate phase on a dipole-trap beam. Site-
resolved fluorescence of the atoms, at 780 nm, is imaged on a camera
using a dichroic mirror (DM). Rydberg excitation beams at 795 and
475 nm are shone onto the atoms. (b): Sketch of an experimental
sequence. During loading, the camera images are analyzed continu-
ously to extract the number of loaded traps. As soon as a triggering
criterion is met, the loading is stopped and an image of the initial
configuration is acquired. After Rydberg excitation, a final image is
acquired, revealing the atoms excited to Rydberg states (red disks).
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state |r〉, we implement the Ising-like Hamiltonian

H =
∑

i

~Ω

2
σix +

∑

i<j

Vijn
inj , (1)

which acts on the pseudo-spin states |↓〉i and |↑〉i correspond-
ing to states |g〉 and |r〉 of atom i, respectively. Here, Ω is
the Rabi frequency of the laser coupling, the σiα (α = x, y, z)
are the Pauli matrices acting on atom i, and ni = (1 + σiz)/2
is the number of Rydberg excitations (0 or 1) on site i. The
coupling term Vij arises from the van der Waals interaction
between atoms i and j when they are both in |r〉, and scales
as C6(θ)|ri − rj |−6 with the separation between the atoms.
Moreover, by using |nD3/2,mj = 3/2〉 states for |r〉, the in-
teraction strength is anisotropic [14], varying by a factor ∼ 3
when the angle θ between the interatomic axis and the quanti-
zation axis ẑ changes from 0 to π/2 [11, 15].

Our setup (Fig. 1a) has been described in [16, 17]. We trap
cold (T ' 30 µK) single 87Rb atoms in optical traps with a
1 µm waist. We create arbitrary, two-dimensional arrays con-
taining 1 6 Nt 6 50 traps, separated by distances a > 3 µm,
using a spatial light modulator (SLM) to imprint an appropri-
ate phase on the trapping beam prior to focusing. The atomic
fluorescence at 780 nm is imaged onto a camera. We observe,
in the single-atom regime [18], that the level of fluorescence
for each trap alternates randomly between two levels, corre-
sponding to the presence of 0 or 1 atom. The analysis of these
Nt fluorescence traces allows us to record, with a time reso-
lution of 50 ms, the current number N of single atoms in the
array.

As illustrated in Figure 1b, as soon as N exceeds a pre-
defined threshold, we trigger the following experimental se-
quence. First, the loading of the array is stopped, and a fluo-
rescence image is acquired to record the initial configuration
of the atoms, i.e. which traps are filled. After initializing all
the atoms in |g〉 = |5S1/2, F = 2,mF = 2〉 by optical pump-
ing, a two-photon Rydberg excitation pulse of duration τ (up
to a few microseconds) is shone onto the array; the Rabi fre-
quency (Ω ' 2π×1 MHz) is uniform to within 10% over our
largest arrays. At the end of the sequence, we acquire a new
image, of the final configuration. Atoms excited to |r〉 have
quickly escaped the trapping region, and thus we observe only
the atoms that were in |g〉 after excitation. The atoms gone in
between the initial and final images are thus assigned to Ry-
dberg states (red dots in Figure 1b). This detection method
has a high efficiency: it only gives a small number of “false
positives”, as an atom also has a probability ε ' (3± 1)% to
be lost, independently of its internal state [14].

We first test our system in the conceptually simple situa-
tion of fully Rydberg-blockaded ensembles containing up to
N = 15 atoms. Figure 2a shows, for various arrays, the prob-
ability that all N atoms are in |g〉 at the end of the sequence.
We observe high-contrast coherent oscillations, with a fre-
quency enhanced by a factor

√
N with respect to the single-

atom case (Fig. 2b). This characteristic collective oscillation
is the hallmark of Rydberg blockade [19–21], where multiple
excitations are inhibited within a blockaded volume. Here,
due to the anisotropy of the interactions, the blockade vol-
ume is well approximated by a slightly prolate ellipsoid with

FIG. 2: Collective oscillations in the full Rydberg blockade regime.
(a): Probability P0 for all N atoms to be in |g〉 after an excitation
pulse of area Ωτ . Red points: fully loaded arrays, n = 82; blue
points: partially loaded triangular arrays of Nt = 19 traps, n = 100
(error bars show the quantum projection noise for ∼ 100 repetitions
of the experiment). Solid lines are fits by damped sines of frequency
ΩN [14]. (b): Collective oscillation frequency ΩN/Ω versus N (er-
ror bars —sometimes smaller than the symbol size— are statistical).
The solid line is the expected

√
N enhancement.

a major semi-axis Rb defined by ~Ω = |C6(0)|/R6
b. This ob-

servation is a first step towards the creation of long-lived |W 〉
states in the ground state [8].

The fully blockaded regime remains easy to describe theo-
retically as blockade naturally truncates the size of the Hilbert
space. In contrast, a more challenging regime corresponds
to the Rydberg blockade being effective only between near-
est neighbors, such that for long enough excitation times, the
number of excitations becomes ∼ N/2. It is therefore desir-
able to be able to vary the ratio α = Rb/a of the blockade
radius to the distance a between sites: for very small or large
values of α, the dynamics is simple and the system can eas-
ily be compared to numerics, while, for intermediate values of
α, the dynamics is challenging to calculate and experimental
quantum simulation becomes a method of choice. Our setup
is particularly adapted to this goal, as we can vary easily both
a (reconfiguring the SLM) and Rb (changing the principal
quantum number n, we dramatically tune C6, which scales
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FIG. 3: Tuning interactions in an 8-spin chain with PBC. (a): Independent atoms (Rb < a). The Rydberg fraction fR oscillates between ' 0
and ' 1, with the single-atom Rabi frequency Ω. (b): Strongly correlated regime (Rb ' 1.5a). The Rydberg fraction shows an oscillatory
behavior involving several frequencies. (c): Fully blockaded regime: fR oscillates at

√
NΩ, and reaches a maximum of 1/N (dashed line).

(d): The Rydberg-Rydberg pair correlation function, for the parameters of (b), is shown for increasing values of Ωτ . In all plots, the solid lines
are obtained by numerically solving the time-dependent Schödinger equation, and then including detection errors (ε = 3%). Error bars (often
smaller than symbol size) denote s.e.m. The shaded ellipsoids illustrate the blockade volume.

approximately as n11).
This versatility is illustrated in Fig. 3, where we use a fully

loaded ring-shaped array of N = 8 traps, thus realizing a
small spin chain with PBC. By varying both a and n, we tune
the system all the way from independent atoms (α � 1),
where each atom undergoes a Rabi oscillation at frequency
Ω, resulting in a Rydberg fraction fR (defined as the aver-
age number of Rydberg excitations divided byN ) periodically
reaching ' 1 (Fig. 3a), to a fully blockaded array (α � 1,
Fig. 3c) characterized by collective oscillations at frequency√
NΩ and a maximum fR = 1/N . In between (Fig. 3b, where

α ' 1.5), the evolution of fR(τ) shows oscillations resulting
from the beating of incommensurate frequencies. Our system
allows us to detect the state of each atom, and thus to measure
correlation functions. Figure 3d shows the dynamics of the
Rydberg-Rydberg pair correlation function

g(2)(k) =
1

Nt

∑

i

〈nini+k〉
〈ni〉〈ni+k〉

. (2)

The averaging over all traps does not wash out correlations
despite the fact that the system is not fully invariant by trans-
lation [14]. We observe a strong suppression of g(2)(k)
for k = 1 and k = 7, i.e. a clear signature of nearest-
neighbor blockade. For some times (see e.g. Ωτ = 3.1), an

antiferromagnetic-like staggered correlation function (while
the average density is uniform [14]).

The solid lines in all panels of Figure 3 are obtained by
solving the Schrödinger equation governed by (1) using the
independently measured experimental parameters, and then
including the effects of the finite detection errors ε [14]. One
observes an overall agreement with the data, although some
small discrepancies can clearly be noticed, especially at long
times. We attribute them to the Zeeman structure of Rydberg
D-states, which is not taken into account in our modeling by
a spin-1/2: for θ 6= 0, the van der Waals interaction couples
|r〉 to other Zeeman states, leading to a slow increase in the
number of excitations [14]. The overall agreement between
the data and the numerics, however, suggests that our system
is able to provide us with a correct picture of the dynamics in
larger systems.

We now demonstrate this ability for two larger systems. We
first consider a one-dimensional spin chain with PBC com-
prising Nt = 30 traps and partially loaded with N = 20 ± 1
atoms (Figure 4a). Its ‘racetrack’ shape was chosen to opti-
mize homogeneity of the Rabi frequency over the array. We
chose parameters such that α ' 4.3(1). The Rydberg fraction
fR(τ) shows initial oscillations before reaching a steady state
(Fig. 4b). The pair correlation function (shown in Fig. 4c for
Ωτ ' 2.0) is strongly suppressed for k < α, as expected from
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FIG. 4: Ising dynamics in large spin ensembles. (a): Racetrack-shaped array with Nt = 30 traps, loaded with N = 20 ± 2 atoms. The
blockade radius Rb is about 4.3a (shaded ellipsoid). (b): Time evolution of the Rydberg fraction fR. (c): Rydberg pair correlation function
g(2)(k) for Ωτ ' 2.0, showing a strong depletion for k < Rb, and contrasted oscillations around the asymptotic value 1. Error bars (most
of the time smaller than symbol size) denote the s.e.m. Solid lines are the simulation results without any adjustable parameters (see [14] for
details). (d): Square array of 7 × 7 traps loaded with N = 28 ± 2 atoms. The blockade radius is about 2.6a. (e): Evolution of fR. (f):
Rydberg-Rydberg correlation function g(2)(k, l) for Ωτ = 5.3.

blockade physics, before oscillating towards the asymptotic
value g(2)(k � α) = 1 [22, 23]. A similar liquid-like corre-
lation function has been observed in two dimensions in [24].
The solid lines in Fig. 4b,c give the result of a full numer-
ical simulation, without any adjustable parameters. Here the
agreement with the spin-1/2 model is excellent, as many atom
pairs are aligned along the quantization axis, thus making the
effects of the anisotropy small. We included the finite value of
ε, which has a strong effect for k < α as it increases g(2)(k)
from 0 to 2ε/fR [14].

As a final setting, we use a Nt = 7 × 7 two-dimensional
square array, loaded with N = 28 ± 2 atoms (Fig. 4d).
The blockade is effective between nearest and next-nearest
neighbors (α = 2.6). The dynamics of fR now appears
monotonous, without the initial oscillations seen above for
smaller systems (Fig. 4e). This suggests that already with
N ∼ 30 atoms, the behavior of the system is close to the
many-body one observed in large ensembles (see e.g. [25])
with an initial fast rise of the Rydberg fraction, before it sat-
urates. The simulation captures well the initial rise of fR, but
does not reproduce the slow increase observed at long times,
which we attribute again to multilevel effects (that are indeed
expected to be strong in this array where the internuclear axis
of many pairs lie at a large angle θ). Figure 4f shows the two-
dimensional Rydberg-Rydberg correlation function

g(2)(k, l) =
1

Nt

∑

i,j

〈ni,jni+k,j+l〉
〈ni,j〉〈ni+k,j+l〉

(3)

where ni,j refers to the site with coordinates (ia, ja). Al-
though the system has open boundaries and thus does not

show translational invariance, the averaging over the traps in
Eq. (3) does not wash out correlations as Rb is small com-
pared to the system size. We observe a clear depletion of the
correlation function close to the origin due to blockade. The
anisotropy of the interaction is visible, as the depletion region
is roughly elliptical, with a ratio of principal axes of about 1.2
compatible with the expected ‘flattening’ 31/6 of the surfaces
of constant interaction. The full time evolution of the correla-
tion function is shown in the Supplementary Material [14].

The tunability of geometry and interactions demonstrated
here opens many avenues for the quantum simulation of spin
systems with tens of particles. Our platform is ideal for
studying the transition from few- to many-body physics [26],
thermalization in strongly interacting closed quantum sys-
tems [27], or the dynamical emergence of entanglement fol-
lowing a quantum quench [28]. Using resonant dipole-
dipole interactions between different Rydberg states [29], one
can also implement XY Hamiltonians with long-range cou-
plings [30]. Finally, exploiting the Zeeman structure of Ryd-
berg states holds the promise of implementing more complex
Hamiltonians, to explore for instance the physics of higher
spins [31], or realize topological insulators [32].
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Supplementary material

In this supplementary material, we first give extra details about the experimental setup and procedures, then provide sup-
plemental experimental data for the settings of Figs. 2-4 of main text, and finally describe our theoretical modeling of the
experiments.

S.1. EXPERIMENTAL DETAILS

This section is devoted to the description of experimental details not included in the main text. We first give extra details on
the loading of arrays, then summarize the parameters (array geometry and interactions between chosen Rydberg states) used for
the various experiments described in the main text, and finally we describe quantitatively the effect of the finite detection errors
on the measured quantities.

S.1.1. Loading of trap arrays

In the single-atom loading regime of optical microtraps, the probability to have a given trap filled with a single atom is
p ' 1/2. Therefore, when we monitor the number of loaded traps in view of triggering the experiment, N fluctuates in time
around a mean value Nt/2, with fluctuations ∼ √Nt.

When the number of traps is small, we can impose, as the triggering criterion, to wait until all traps are filled. The average
triggering time TN then increases exponentially with N , as can be seen in Fig. S.1a. We used this ‘full-loading mode’ for the
data of Fig. 1 (1 6 N 6 9) and Fig. 3 (N = 8) of main text. This exponential scaling sets a practical limit of N ∼ 9 for fully
loaded arrays. Already for N = 9, the experimental duty cycle exceeds one minute.

Due to this limitation, for larger Nt we use partially-loaded arrays. We set the triggering threshold in the tail of the binomial
distribution of N , i.e. close to Nt/2 +

√
Nt. This allows us to keep a fast repetition rate for the experiment, on the order of

1 s−1, enabling fast data collection. Figure S.1b shows the distribution of loaded traps for the ‘racetrack’ array with Nt = 30
(respectively, for the Nt = 7 × 7 square array), where we set the triggering condition to N = 20 (resp. N = 30). Using
this triggering procedure, we thus end up with a narrow distribution of atom numbers N = 20 ± 1.5 (resp. N = 28 ± 1.6),
corresponding to a filling fraction of 67% (resp. 57%), significantly above the average Nt/2. These strongly subpoissonian
distributions of atom numbers are such that the variation in N from experiment to experiment has a negligible effect on the
physics studied in Fig. 4 of main text; however, as for each experiment the initial configuration image is saved, one can if needed
post-select experiments where an exact number of atoms was involved (this is how the data in Fig. 2 of main text for N > 10
were obtained).

Recently, several experiments [1, 2] demonstrated quasi-deterministic loading of single atoms in optical tweezers, reaching
p ∼ 90% using modified light-assisted collisions that lead to the loss of only one of the colliding atoms instead of both. A
preliminary implementation of these ideas on our setup gave p ∼ 80% for a single trap. In future work, by using such loading
in combination with the real-time triggering based on the measured number of loaded traps, it seems realistic to reach, even in
large arrays, filling fractions in excess of 0.9, i.e. approaching those obtained in quantum gas microscope experiments using
Mott insulators.

FIG. S.1: Full and partial loading of arrays. (a): Average triggering time TN when the triggering criterion is set to N = Nt: achieving full
loading requires an exponentially long time, limiting in practice the method to Nt 6 9. The triggering times can vary substantially depending
on the density of the magneto-optical trap used to load the array, and the data points shown here correspond to typical conditions used for the
data of main text. (b): Distribution of the number of loaded traps in the partially loaded regime for the 30-trap ‘racetrack’ and the 49-trap
square array (blue dots). The shaded distributions correspond to what would be observed with random triggering.
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Trap array parameters Rydberg state parameters

Figure Spacing a Nt N n Calculated C6/h Ω/(2π) Rb α
(µm) (GHzµm6) (MHz) (µm)

2a (full) 3.0 1–9 Nt 82 −8.9× 103 1.5 14 4.5
2a (partial) 3.2 19 10–15 100 −8.0× 104 1.1 20 6.4

3a 6.3 8 8 54 −6.7 1.6 4.0 0.63
3b 6.3 8 8 61 −7.6× 102 1.3 9.1 1.4
3c 3.8 8 8 100 −8.0× 104 0.95 21 5.5

4abc 3.1 30 20± 1.5 79 −6.0× 103 1.0 13.5 4.3
4def 3.5 49 28± 1.6 61 −7.6× 102 1.4 9.1 2.6

TABLE S.1: Experimental parameters used for the data presented in the main text. Wide tuning of α = Rb/a, over one order of magnitude,
is achieved by a combination of changes in a and n (while Ω is kept almost constant).

S.1.2. Experimental parameters

Table S.1 summarizes the various values of the parameters of the arrays of traps and of the Rydberg states used for the data
presented in the main text, and the resulting values of the dimensionless parameter α. It illustrates the wide tunability offered by
the system.

S.1.3. Finite detection errors

Our way to detect that a given atom has been excited to a Rydberg state relies on the fact that we do not detect fluorescence
from the corresponding trap in the final configuration image. There is however a small probability ε to lose an atom during the
sequence, even if it was in the ground state, thus incorrectly inferring its excitation to a Rydberg state (see Ref. [15] of main
text). These ‘false positive’ detection events affect the measured populations of the N -atom system. One can show that, if Pq is
the observed probability to have q Rydberg excitations, and P̃p the actual probability to have p Rydberg excitations,

Pq =

q∑

p=0

(
N − p
q − p

)
εq−p(1− ε)N−qP̃p. (S1)

In principle, one can invert the above linear system relating the observed and actual probabilities, as described in [3], to correct
the experimental data for the detection errors. Here we have chosen on the contrary to show the uncorrected populations, and to
include detection errors on the theoretical curves instead.

In order to determine the experimental value of ε, we use the initial datapoints (τ = 0) of the data of Fig.2 of main text. Since
no Rydberg pulse is sent, we have P̃0 = 1, and from (S1) the observed probability P0(τ = 0) reads (1− ε)N . Figure S.2a shows
the variation of P0(0) as a function of N , together with a fit which allows us to extract ε = (3 ± 1)%, the value we use for the
theoretical curves in the main text (see below).

Figure S.2b shows the effect of this finite value of ε on the probabilities P0, P1 and P2 in the full blockade regime, for atom
numbers N = 3, 9, 15, clearly illustrating that the ‘false positive’ detection events (i) yield non-zero (and increasing with N )
double excitation probabilities (that oscillate in phase with P1) (ii) multiply the amplitude of P0 by a factor (1 − ε)N and (iii)
reduce the contrast of the P1 oscillations. Globally, the experimental data (see Fig. S.3) shows these features, superimposed with
other imperfections such as damping, not related to the finite value of ε.

Finally, let us mention the effect of the detection errors on the correlation functions. In the fully blockaded region k < α,
one ideally expects a vanishing g(2) for ε = 0. However, to lowest order in ε, this value is increased substantially (see e.g. Fig.
4c of main text) to 2ε/fR where fR is the Rydberg fraction. Indeed, g(2)(k = 1) is given by an average of quantities of the
form 〈nini+1〉/(〈ni〉〈ni+1〉). For ε = 0, the numerator vanishes due to blockade; the only possibility to have a non-zero value
comes from detection errors. To lowest order in ε, the probability to get a nonzero value for nini+1 is that either atom i is in |r〉
(probability fR) and atom i+ 1 is lost (probability ε), or vice-versa. This results in a value 2εfR for the numerator, while for the
denominator we can use the zeroth-order values 〈ni〉 = 〈ni+1〉 = fR, thus giving g2(1) ' 2ε/fR, which experimentally can be
as large as 0.5.
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FIG. S.2: Effect of detection errors. (a): Experimental determination of ε. From the data of the full blockade experiments (Fig. 2 of main
text), we plot the probability P0 to recapture allN atoms for τ = 0. The solid line is a fit to the expected dependence (1−ε)N , giving ε = 3%
(the shaded area corresponds to 2% < ε < 4%). (b): Calculated probabilities to observe 0, 1 or 2 excitations assuming a perfect blockade and
ε = 3%, for atom numbers N = 3, 9, 15.

S.2. ADDITIONAL EXPERIMENTAL DATA

This section is devoted to presenting additional experimental data for the settings of the main text.

S.2.1. Full Rydberg blockade

Figure S.3 shows additional data in the full blockade regime (Fig. 2 of main text). In Figure S.3a, the arrays of 1 to 9 traps
are fully loaded, while in Figure S.3b, the 19-trap triangular array is partially loaded with 10 to 15 atoms. In both panels, the
left column shows the time evolution of the probability P0 to recapture all atoms at the end of the sequence, the middle column
shows P1, and the right column shows P2. The points in Fig. 2a of main text corresponding to N = 8 and N = 9 in partially
loaded arrays were taken in a similar configuration as for N = 10 to 15, but the array contained only Nt = 17 traps. The curves
(not shown here) do not show any noticeable difference with other sets of data.

• We recognize the effects of the finite detection errors ε 6= 0 on the amplitude and contrast of the collective oscillations
discussed in section S.1.3. above;

• In addition, the oscillations exhibit some damping, which seems to increase with N . To quantify this, we fit the data by
the function

P (τ) = ae−γτ
(
cos2(ΩNτ/2) + b

)
+ c, (S2)

where a, b, c, γ and ΩN are adjustable parameters (solid lines). This functional form was chosen to account in a simple
way for the asymmetry in the damping. Figure S.3c shows the damping rates γ, extracted from the probabilities P0 as a
function of N . We observe an initial increase in the damping rates, which then saturates above N = 5. An increase with
N of the damping rate was observed in other similar blockade experiments (see e.g. Refs. [19,20,21] of the main text).

• In addition, we observe that P2 slowly increases over time for some specific values ofN (see in particularN = 4, 6, 9, 13),
corresponding to particular geometries.

We do not have a full understanding of these last two observations, but they may originate from the breaking of the blockade
due to the Zeeman structure of the Rydberg states nD3/2 (see discussion in section S.3.4.).

S.2.2. 8-atom ring

Figure S.4 shows that, within statistical fluctuations, the density of excitations on the 8-atom ring is homogeneous (this
remains true at all times), and that the antiferromagnetic-like or crystal-like features obtained for some times, e.g. for Ωτ = 3.1,
can only be observed in the correlation functions. This illustrates the interest of our setup in which spin chains with PBC can be
realized easily. On the contrary, in a 1D chain with open boundary conditions, ‘pinning’ of the excitations would occur due to
edge effects.
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FIG. S.3: Full dataset for the Rydberg blockade data. (a): Fully loaded arrays of 1 to 9 traps (n = 82). (b): partially loaded array of
Nt = 19 traps, containing from N = 10 to N = 15 atoms (n = 100). The column on the left shows the probability P0 to recapture all atoms,
the center column the probability P1 to lose just one atom out of N , and the column on the right the probability P2 to lose two atoms out of
N . The solid lines are fits by (S2). (c): Damping rate γ extracted from the P0 data as a function of the number of atoms in the array.

FIG. S.4: Homogeneous excitation in the 8-atom ring. (a): For Ωτ = 3.1, we observe strongly contrasted oscillations in the pair correlation
function g2(k). (b): The average density of Rydberg excitations, however, is approximately the same on every site. The horizontal dashed line
indicates the mean over all sites.

S.2.3. Racetrack-shaped array

Figure S.5a shows the full evolution of the time correlation function for the data of Fig. 4abc of the main text (Rb = 4.3a).
Figure S.5b corresponds to the same settings except for the fact that one now has Rb = 2.4a.
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FIG. S.5: Full time evolution of the correlation functions for the 30-trap, racetrack-shaped chain. (a): Same as for Figure 3abc of main text.
The right panel is the time evolution of the pair correlation function, clearly showing that, for times longer than a few Ω−1, the pair correlation
function does not evolve significantly anymore. The vertical dashed line indicates the value of the blockade radius. (b): The principal quantum
number is now n = 57, and the Rabi frequency Ω = 2π × 1.7 MHz, such that Rb = 2.4a. The central panel shows the time evolution of the
Rydberg fraction, and the right panel the time evolution of the pair correlation function. For both (a) and (b), fR approaches, at long times, the
close-packing limit a/Rb of hard rods of length Rb (dashed horizontal lines) [4].

FIG. S.6: Full time evolution of the correlation function for the 7× 7 square array. One observes the blockaded region around (k, l) = (0, 0),
with a slight flattening reflecting the anisotropy of the interaction. After a few Ω−1, the correlation function does not evolve any more.

S.2.4. Square array of 7× 7 traps

Figure S.6 shows the full time evolution of the two-dimensional Rydberg-Rydberg correlation function g(2)(k, l) for the 7× 7
square lattice of Fig. 4def of main text.

S.3. THEORETICAL MODELING

In this section, we first describe the effective, anisotropic van der Waals potential used for modeling the dynamics of the
system in the simplest way. We then give details about our numerical simulations, and then use them to assess to which extent
the assumption of approximate translational invariance discussed in the main text is supported by these simulations. Finally, we
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speculate on possible causes for the deviations observed between our data and the simulation at long times, ascribing them to
small van der Waals couplings to other Zeeman substates that result in an effective loss mechanism.

S.3.1. Anisotropy of the interaction

For a pair of atoms in a nD3/2 Rydberg state with the internuclear axis not aligned with the quantization axis, the rigorous
description of the van der Waals interaction requires to include all various Zeeman sublevels; the interaction then takes the form
of a 16 × 16 matrix. To keep the description of a system of N atoms tractable, one can, in the blockade regime, define an
effective, anisotropic van der Waals potential (Ref. [11] of main text) reducing the previous matrix to a single scalar. For nD3/2

states, the anisotropy reported in Refs. [11,15] of main text is well reproduced by the simple expression

Veff(r, θ) =
C6(0)

r6

(
1

3
+

2

3
cos4 θ

)
(S3)

with θ the angle between the quantization axis and the internuclear axis, giving a reduction by a factor of three in interaction
strength when θ goes from 0 to π/2.

Due to the anisotropy in (S3), the shape of the blockade volume centered on a Rydberg atom is also anisotropic. However, due
to the r6-scaling of the interaction, the surface r(θ) defined by Veff(r, θ) = ~Ω is quite well approximated by a prolate spheroid
with an aspect ratio of 31/6 ' 1.2. In the figures of the main text, the shaded regions depicting the blockade volume have the
polar equation r(θ) = Rb

(
1
3 + 2

3 cos4 θ
)1/6

.

S.3.2. Numerical simulation of the dynamics

Our theoretical description of the system is based on the mapping of its dynamics into a pseudo-spin 1/2 model with
anisotropic long range interactions. We therefore neglect the rich Zeeman structure of the nD3/2 states. The numerical cal-
culations rest on the solution of the Schrödinger equation for the Hamiltonian of Eq. (1) of the main text in a reduced Hilbert
space H. We first write the wave function |ψ〉 of the system with N atoms in terms of states with fixed number of Rydberg
excitations and ground state atoms, which correspond to the eigenstates of the Hamiltonian with vanishing Rabi frequency Ω
(Ref. [22] of the main text and [5]). Then the truncation procedure is based on two complementary steps: first we define the
maximum number of Rydberg excitations Nmax

r that we include in our basis, second we eliminate those states which display
excitations closer than a fixed distance R0. Both Nmax

r and R0 are adjusted to ensure the convergence of the dynamics. For
small samples (Fig. 3 of the main text) we performed simulations including all 256 basis states, whereas for the racetrack con-
figurations we typically set R0 smaller than the lattice constant but include up to Nmath

r = 10 excitations at most, reducing the
dimension of H from 220 ' 106 to

∑Nmax
r

q=0

(
20
q

)
' 6 × 105. For the 7 × 7 square array with 30 atoms, we set R0 = 1.3a

(much smaller than the blockade radius Rb = 2.6a), thus reducing the dimension ofH to ' 3× 106 (the full Hilbert space is of
dimension 230 ' 109, and using only the truncation criterion on the number of excitations would reduce it to about 5× 107, still
intractably large). The Schrödinger equation within the truncated Hilbert space is then solved with standard split-step method
for the two non-commuting parts of the Hamiltonian of Eq. (1) of the main text. All these calculations were repeated for several
realizations of the loading of the arrays (50 realizations for the squared 7 × 7 configurations and 200 realizations for the case
with fewer traps), taking into account the anisotropic interparticle interaction of Eq. (3). The comparison with experimental data
of the average fraction of excitations fR =

∑N
q=0 qPq/N is done by including the “false positive” detection events as described

by Eq. (1).
The calculation of the g(2)(k) correlation function in Fig.3d and Fig.4c of the main text follows the definition of Eq. (4).

However, contrarily to the calculation of the average fraction of the excitations it is not possible to derive an analytical formula
for g(2)(k) to properly take into account the detection efficiency of Rydberg excitations (unless k < α as described in section
S.1.3.). Therefore we implement a standard Monte Carlo algorithm to perform the average of the correlation function over
randomly generated configurations which are weighted in g(2)(k) with the initial (quantum) probability extracted from the
real time dynamics of the Schrödinger equation. For example the state |ri rj〉 which contains Nr = 2 Rydberg excitations and
amplitude ci j(t) can wrongly be dectected as the state |ri rj rq〉 with probability p = ε (1−ε)N−2. If the latter state is generated
from our sampling algorithm then its weight in the correlation function corresponds to |ci j(t)|2. Finally we average over several
hundreds randomly generated configurations to obtain well converged results for the correlation function.
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FIG. S.7: Assessing the validity of the approximation of translational invariance in the 8-atom ring. Calculated pair correlation function
g(2)(k) as a function of the excitation time, for the 8-atom ring. (a): simulation using the experimentally relevant anisotropic interaction,
which breaks translational invariance. (b): simulation with the same parameters as in (a), except that the angular dependence is neglected (we
replace (S3) by its value for θ = 0), thus reestablishing translational invariance. One observes that the contrast in (a) is reduced, as expected,
but only in a marginal way.

S.3.3. Assumption of translational invariance

For the one-dimensional configurations of the main text (8-atom ring of Fig.3b and racetrack-shaped array of 30 traps of
Fig.4a of main text) we plot the spatially averaged pair correlation function

g(2)(k) =
1

Nt

∑

i

〈nini+k〉
〈ni〉〈ni+k〉

, (S4)

where the subscripts label sites. For a system invariant by translation, all terms in the sum are identical, and the averaging over
i simply improves the signal to noise ratio. However, our systems are not translationally invariant, in particular because of the
anisotropy of the interaction, and a natural question to address is whether the averaging reduces the contrast of the correlation
functions. To answer this question, we have calculated the dynamics of the pair correlation function for the 8-atom ring, taking
or not into account the anisotropy of the interaction (Figure S.7). One observes that the contrast reduction due to averaging is
very small, thereby validating our choice to perform it for the data shown in the main text.

S.3.4. Effective loss mechanism arising from anisotropic interactions of D states

The agreement between our measurements and the results of the simulations is not perfect for the largest excitation times, in
particular for some settings (e.g. for some configurations in the full blockade regime, for the 8-atom ring in the partial blockade
regime, and for the 7× 7 square array), where we observe a gradual increase in the number of measured Rydberg excitations.

These effects could be qualitatively reproduced if the detection errors ε would increase in time. However, the main reason for
these losses is due to the fact that the microtraps are switched off during the excitation (to avoid inhomogeneous light-shifts),
and as they are off for a fixed amount of time (3 µs), independent of τ , we do not, at first sight, expect ε to increase in time. One
could imagine however that the presence of the Rydberg excitation lasers may induce extra loss (due to off-resonant scattering for
instance), and in this case one would end up having an ε increasing with τ . We have experimentally ruled out this possibility by
measuring the recapture probability when shining the Rydberg excitation lasers, detuned from the Rydberg line by ∼ 100 MHz,
for the full 3 µs, without measuring any detrimental effect.

A second possible reason would be the motion of the atoms. Due to their finite temperature, the atoms move during free flight
with a velocity v ∼ 50 nm/µs. Now, strictly speaking, the terms corresponding to the laser coupling in Eqn. (1) of main text
are not Ωσix, but Ωeik·ri(t)σi+ + h.c., where k is the sum of the wavevectors of the excitation lasers at 795 and 475 nm, and
ri(t) the position of atom i. Thus, because of the motion, the phase factors of the couplings become time-dependent, which e.g.
yields a dephasing of the spin wave corresponding to |W 〉 states. However, a numerical simulation of this effect shows that the
induced dephasing rates are negligible for our parameters.
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We thus believe that the cause for the observed extra losses lies in the interplay between the large number of interacting
Zeeman sublevels when two atoms are excited to nD3/2 states: for θ 6= 0 all 16 pair state Zeeman sublevels are coupled together
by the van der Waals interaction. For a large number of atoms, this may lead to an effective loss rate from the targeted |r〉 states
into a quasi-continuum comprising all other (weakly interacting) Zeeman states, and hence to a gradual increase of population
of the Rydberg manifold. Qualitatively, this interpretation is corroborated by the fact that the observed increase in the number
of observed excitations seems to depend quite strongly on the array geometry: for instance, the data of the racetrack-shaped
array, for which a majority of interacting atom pairs are almost aligned along the quantization axis z, are well reproduced by
the simulations, unlike in the case of the 8-atom ring or the 7 × 7 square array, for which many interacting pairs have their
internuclear axes strongly inclined with respect to z.

Achieving a quantitative understanding of these observed imperfections, using approaches similar to the ones of
Refs. [10,11,12] of the main text, is a challenging task. However, it will be an important step in view of future applications
of Rydberg blockade for quantum simulation, and will thus be the subject of future work.
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Löw, R., Weimer, H., Krohn, U., Heidemann, R., Bendkowsky, V., Butscher, B.,
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Müller, M., Lesanovsky, I., Weimer, H., Büchler, H. P., and Zoller, P., “Mesoscopic

Rydberg Gate Based on Electromagnetically Induced Transparency,” Physical Review

Letters 102, 170502 (2009).

Nägerl, H. C., Leibfried, D., Rohde, H., Thalhammer, G., Eschner, J., Schmidt-Kaler,

F., and Blatt, R., “Laser addressing of individual ions in a linear ion trap,” Physical

Review A 60, 145–148 (1999).

Najafov, H., Lee, B., Zhou, Q., Feldman, L. C., and Podzorov, V., “Observation

of long-range exciton diffusion in highly ordered organic semiconductors,” Nature

Materials 9, 938–943 (2010).

198

http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevA.82.013405
http://dx.doi.org/10.1126/science.1231298
http://dx.doi.org/10.1126/science.1231298
http://dx.doi.org/10.1126/science.aac6400
http://dx.doi.org/10.1103/PhysRevLett.80.253
http://dx.doi.org/10.1103/PhysRevLett.80.253
http://dx.doi.org/ 10.1103/PhysRevLett.95.233002
http://dx.doi.org/ 10.1103/PhysRevLett.95.233002
http://dx.doi.org/10.1103/PhysRevLett.102.170502
http://dx.doi.org/10.1103/PhysRevLett.102.170502
http://dx.doi.org/10.1103/PhysRevA.60.145
http://dx.doi.org/10.1103/PhysRevA.60.145
http://dx.doi.org/ 10.1038/nmat2872
http://dx.doi.org/ 10.1038/nmat2872


Bibliography

Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information:

10th Anniversary Edition, 10th ed. (Cambridge University Press, New York, NY,

USA, 2011).

Nogrette, F., Labuhn, H., Ravets, S., Barredo, D., Béguin, L., Vernier, A., Lahaye, T.,
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Weimer, H., Löw, R., Pfau, T., and Büchler, H. P., “Quantum Critical Behavior in

Strongly Interacting Rydberg Gases,” Physical Review Letters 101, 250601 (2008).

Weiner, A. M., “Femtosecond pulse shaping using spatial light modulators,” Review of

Scientific Instruments 71, 1929 (2000).

Weise, T., Global Optimization Algorithms, Theory and Application, 2nd ed. (http://it-

weise.de, 2009).

Weitenberg, C., Endres, M., Sherson, J. F., Cheneau, M., Schauß, P., Fukuhara, T.,

Bloch, I., and Kuhr, S., “Single-spin addressing in an atomic Mott insulator,”

Nature 471, 319–324 (2011).

203

http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1038/nphys1178
http://dx.doi.org/10.1103/PhysRevLett.114.203002
http://dx.doi.org/10.1103/PhysRevLett.114.203002
http://dx.doi.org/10.1103/PhysRevA.91.023411
http://dx.doi.org/10.1103/PhysRevLett.107.060402
http://dx.doi.org/10.1103/PhysRevLett.107.060402
http://dx.doi.org/10.1103/PhysRevLett.99.073002
http://dx.doi.org/10.1103/PhysRevLett.99.073002
http://arxiv.org/abs/0711.2675
http://arxiv.org/abs/0711.2675
http://dx.doi.org/ 10.1088/0953-4075/38/2/022
http://dx.doi.org/10.1103/PhysRevLett.105.230403
http://dx.doi.org/ 10.1103/PhysRevLett.101.250601
http://dx.doi.org/10.1063/1.1150614
http://dx.doi.org/10.1063/1.1150614
http://dx.doi.org/http://it-weise.de
http://dx.doi.org/10.1038/nature09827
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Résumé : Dans cette thèse, nous mesurons la dynamique cohérente et les corrélations spatiales des 
excitations Rydberg dans des matrices 2D d’atomes uniques. Nous utilisons un modulateur spatial de 
lumière pour façonner la phase spatiale d'un faisceau laser de piégeage optique avant de le focaliser 
avec une lentille asphérique de grande ouverture numérique. En imprimant une phase appropriée sur 
le faisceau laser, nous pouvons créer des matrices 2D de pièges optiques, de forme  arbitraire et 
facilement reconfigurables, avec jusqu'à 100 pièges séparées de quelques micromètres. Les pièges 
sont chargés à partir d'un nuage d'atomes froids de 87Rb, et due aux collisions assistées par la lumière, 
au plus un seul atome peut être présent dans chaque piège en même temps. Une caméra CCD sensible 
permet en temps réel l'imagerie de la fluorescence atomique émanant des pièges, ce qui nous permet 
de détecter individuellement la présence d'un atome dans chaque piège avec une précision presque 
parfaite. Pour créer des interactions importantes entre les atomes uniques, nous les excitons vers des 
états de Rydberg, qui sont des états électroniques avec un nombre quantique principal élevé. Un 
faisceau supplémentaire d'adressage permet la manipulation individuelle d'un atome sélectionné dans 
la matrice. La connaissance précise, de la fois de la matrice des atomes préparé et des positions des 
excitations Rydberg, nous a permis de mesurer l’augmentation collective de la couplage optique dans 
le régime de blocage Rydberg, où une seule excitation est partagée de façon symétrique entre tous les 
atomes de la matrice. Dans le régime où l'interaction ne s’étend que sur quelques sites, nous avons 
mesuré la dynamique et  les corrélations spatiales des excitations Rydberg, dans des matrices d’atomes 
à une et deux dimensions. La comparaison à une simulation numérique d'un modèle d'Ising quantique 
d'un système de spin-1/2 montre un accord exceptionnel pour les matrices où l'effet de l'anisotropie de 
l’interaction Rydberg-Rydberg est faible. Les résultats obtenus démontrent que les atomes Rydberg 
uniques sont une plate-forme bien adaptée pour la simulation quantique des systèmes de spin.
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Abstract : In this thesis, we measure the coherent dynamics and the pair correlations of Rydberg 
excitations in two-dimensional arrays of single atoms. We use a spatial light modulator to shape the 
spatial phase of a single optical dipole trap beam before focusing it with a high numerical-aperture 
aspheric lens. By imprinting an appropriate phase pattern on the trap beam, we can create arbitrarily 
shaped and easily reconfigurable 2D arrays of high-quality single-atom traps, with trap-spacings of a 
few micrometers for up to 100 traps. The traps are loaded from a cloud of cold 87Rb atoms, and due 
to fast light-assisted collisions of atoms inside the traps, at most one atom can be present in each trap 
at the same time. A sensitive CCD camera allows the real-time, site-resolved imaging of the atomic 
fluorescence from the traps, enabling us to detect the presence of an atom in each individual trap with 
almost perfect accuracy. In order to induce strong, tunable interactions between the atoms in the array, 
we coherently laser-excite them to Rydberg states, which are electronic states with a high principal 
quantum number. An additional addressing beam allows the individual manipulation of an atom at a 
selected site in the array. The precise knowledge of both the prepared atom array and the positions of 
the Rydberg excitations allowed us to measure the collective enhancement of the optical coupling 
strength  in the regime of full Rydberg blockade, where one single excitation is shared symmetrically 
among all atoms in the array. In the regime where the strong interaction only extends over a few sites, 
we measured the dynamics and the spatial pair-correlations of Rydberg excitations, in one- and two-
dimensional atom arrays. The comparison to a numerical simulation of a quantum Ising model of a 
spin-1/2 system shows an exceptional agreement for trap geometries where the effect of the anisotropy 
of the Rydberg-Rydberg interaction is small. The obtained results demonstrate that single Rydberg 
atoms are a suitable platform for the quantum simulation of spin systems.
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