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Abstract

A uniform mobile user quality of service and a distributed use of the spec-
trum represent the key-ingredients for next generation cellular networks. To-
ward this end, physical layer cooperation among the network infrastructure
and the wireless nodes has emerged as a potential technique. Cooperation
leverages the broadcast nature of the wireless medium, that is, the same
transmission can be heard by multiple nodes, thus opening up the possibil-
ity that nodes help one another to convey the messages to their intended
destination. Cooperation also promises to offer a smart way to manage in-
terference, instead of just simply disregarding it and treating it as noise.
Understanding how to properly design such cooperative wireless systems so
that the available resources are fully utilized is of fundamental importance.

The objective of this thesis is to conduct an information theoretic study
on practically relevant wireless systems where the network infrastructure
nodes cooperate among themselves in an attempt to enhance the network
performance in many critical aspects, such as throughput, robustness and
coverage. Wireless systems with half-duplex relay stations as well as sce-
narios where a base station overhears another base station and consequently
helps serving this other base station’s associated mobile users, represent the
wireless cooperative networks under investigation in this thesis.

The first part of the thesis is dedicated to the study of half-duplex relay
networks, where the downlink communication from a base station to a mobile
user is assisted by a series of relay stations, operating in time-division du-
plexing (at each point in time each relay either receives or transmits). First,
the single relay case is analyzed and its channel capacity is studied. In par-
ticular, the exact capacity of the linear deterministic channel is determined
and several transmission strategies are designed. These techniques, when
evaluated for the practically relevant Gaussian noise channel, are proven to
achieve the cut-set outer bound to within a constant gap, uniformly over all
channel gains. This analysis presents interesting insights and might be used
as a guideline to deploy a half-duplex relay station. Then, a network with a

iii



iv Abstract

general number N of half-duplex relays is considered for which fundamental
intrinsic structural properties are indentified that allow for a drastic (from
exponential in N to linear in N) simplification of the analysis. In such a net-
work, since each relay can either transmit or receive, there are 2%V possible
listen / transmit configuration states. It is proven that for any memoryless
half-duplex N-relay network for which the cut-set bound is approximately
optimal to within a constant gap under some conditions (satisfied for ex-
ample by Gaussian noise networks), at most N + 1 states have a strictly
positive probability.

The second part of the thesis focuses on the study of the two-user causal
cognitive interference channel, where two transmitters aim to communicate
independent messages to two different receivers via a common channel. One
source, referred to as the cognitive source, is capable of overhearing the
other source, referred to as the primary source, through a noisy in-band
link and can hence assist in sending the primary’s data. Two different
modes of operation at the cognitive source are considered, namely full-
duplex, that is, when it can simultaneously transmit and receive over the
same time-frequency-space resources, and half-duplex. Different network
topologies are considered, corresponding to different interference scenarios:
the interference-symmetric scenario, where both destinations are in the cov-
erage area of the two sources and hence experience interference, and the
interference-asymmetric scenario, where one destination does not suffer from
interference. Novel outer bounds on the capacity region are derived and sev-
eral transmission strategies are designed. For each topology and mode of
operation at the cognitive source, the outer and inner bounds are evaluated
for the Gaussian noise channel and shown to be a constant number of bits
apart from one another.
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Chapter 1

Introduction

In this chapter, we first briefly intoduce the two network models analyzed
in this dissertation, namely the half-duplex relay network and the causal
cognitive interference channel, or the interference channel with unilateral
source cooperation. We then summarize relevant past information theoretic
results on these two scenarios and finally conclude the chapter with the thesis
outline and the list of contributions.

1.1 Motivation

The next major upgrade of fourth generation cellular networks will consist
of a massive deployment of radio infrastructure nodes, i.e., base stations and
relay stations. Radio infrastructure nodes will come in several flavors, char-
acterized primarily by their available bandwidth and number of concurrent
frequency channels on which they can simultaneously operate (spectrum
aggregation), the capacity of their backhaul links to the operator’s core net-
work (e.g., wireless, high throughput / low-latency wired interconnect, non
carrier-grade wired backhaul), their ability to collaborate with other simi-
lar nodes, and their coverage area and tolerance to interference. Enabling
physical layer cooperation among the infrastructure and the wireless nodes
is envisaged to be the key-ingredient of future cellular networks. The broad-
cast nature of the wireless medium, in fact, allows the same transmission
to be heard by multiple nodes, hence opening up the possibility the nodes
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assist one another to relay their message to the destination. Cooperation
promises to offer smart solutions to cope with and manage the interference,
to guarantee a fair and uniform mobile user quality of service within the
cell and to allow for a distributed and aggressive use of the spectrum. All
these factors are of extreme importance and it becomes therefore critical to
understand how to properly design such cooperative networks.

Since Shannon’s landmark work “A mathematical theory of communi-
cations”, information theory has played a central role in the evolution of
wireless communication systems. The core of information theory for wireless
networks is to provide fundamental insights for several key problems (such
as interference), by determining the ultimate performance limits of these
systems. This then, for many years, has motivated wireless researchers to
design techniques and transmission strategies through which these limits can
be as closely as possible approached.

In this thesis, we conduct an information theoretic study on two prac-
tically relevant classes of cooperative wireless systems, where the various
radio infrastructure nodes (base stations and relay stations), by leveraging
the broadcast nature of the wireless medium, cooperate between themselves
in an attempt to increase the network performance (e.g., throughput, cov-
erage, robustness). In particular, we focus on the half-duplex multi-relay
network and on the Causal Cognitive Interference Channel (CCIC), or the
Interference Channel (IC) with unilateral source cooperation.

The multi-relay network represents a fundamental example of a cooper-
ative wireless system [2]|, where several relay stations assist the over-the-air
communication from a source base station (connected to a network infras-
tructure) to a mobile user. Adding relaying stations to today’s cellular
infrastructure promises, in fact, to boost network performance in terms of
coverage, network throughput and robustness. Actually, relay nodes provide
extended coverages in targeted areas, offering a way through which the base
station can communicate with cell-edge users. Moreover, the use of relay
nodes may offer a cheaper and lower energy consumption alternative to in-
stalling new base stations, especially for regions where deployment of fiber
fronthaul solutions are impossible. Depending on the mode of operation,
relays are classified into two categories: Full-Duplex (FD) and Half-Duplex
(HD). A relay is said to operate in FD mode if it can receive and transmit si-
multaneously over the same time-frequency-space resource, and in HD mode
otherwise. Although higher performances can be attained with FD relays,
in commercial wireless networks the HD modeling assumption is at present
more practical than the FD one. This is so because practical restrictions arise
when a node can simultaneously transmit and receive, such as for example
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how well the self-interference can be canceled, making the implementation
of FD relays challenging [3-5]. It is therefore more realistic to assume that
the relay stations operate in HD mode, either in Frequency-Division Du-
plexing (FDD) or Time-Division Duplexing (TDD). In FDD, the relays use
one frequency band to transmit and another one to receive, while in TDD,
the relays listen for a fraction of time and then transmit in the remaining
time. We first analyze the single relay case, i.e., the classical relay channel
for which we seek to derive the ultimate capacity performance in the spirit
of [6]. Many interesting insights are provided on how the design of a HD
relay station should be properly carried out, which is an important practical
task for future cellular networks. We then consider a general number N of
HD relay stations. For such a network there are 2V possible listen-transmit
configuration states whose probability must be optimized. Due to the pro-
hibitively large complexity of this optimization problem (i.e., exponential in
the number of relays N) it is critical to identify, if any, structural properties
of such networks that can be leveraged in order to find optimal solutions
with limited complexity. By using properties of submodular functions and
Linear Programs (LPs), we seek to show that a practically relevant class
of HD multi-relay networks has indeed structural intrinsic properties which
allow for a remarkable (from exponential in N to linear in N) simplification
of the analysis.

The CCIC, or the IC with unilateral source cooperation, represents a par-
ticular aspect of future wireless networks, namely, a practical application of
the cognitive overlay paradigm [7]. It consists of one primary source PTx
(Primary Transmitter) and one cognitive / capable source CTx (Cognitive
Transmitter) which aim to reliably communicate with two different receivers,
namely the PRx (Primary Receiver) and the CRx (Cognitive Receiver), via
a common channel. Differently from the classical non-cooperative IC, in
the CCIC the CTx (thanks to advanced radio capabilities) is able to over-
hear the PTx through a noisy in-band link; the CTx can therefore exploit
this side information to enhance the rate performance of the two (primary
and cognitive) systems. The major and novel feature of the CCIC is the
concept of causal cognition / source cooperation, which represents both an
interference management tool and a practical model for the cognitive radio
technology. Actually, unilateral source cooperation offers a way to ‘smartly’
manage and cope with the interference. In today’s wireless systems, the
general approach to deal with interference is either to avoid it, by trying
to ‘orthogonalize’ (in time / frequency / space) the users’ transmission, or
to simply treat it as noise. However, these approaches may severely limit
the system capacity since a perfect user orthogonalization is not possible in
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practice '. In contrast, in the CCIC the CTx, which can causally learn the
primary’s data through a noisy link, may protect both its own (by precoding
against some known interference) and the primary’s (by allocating some of
its transmission resources to assist the PTx to convey data to the PRx) in-
formation from interference. Thus, the transmission techniques designed for
the CCIC aim to leverage the structure of the interference, instead of just
simply disregarding it and treating it as noise. The CCIC also represents
a more practically relevant model for the cognitive overlay paradigm, com-
pared to the case where the CTx is assumed to a priori (before the transmis-
sion begins) know the message of the PTx [11], which may be granted only
in limited scenarios. In contrast, in the CCIC the CTx causally learns the
PTx’s data through a noisy link. Thus, the transmission techniques designed
for the CCIC account for the time the CTx needs for decoding and for the
(possible) further rate losses that may incur in decoding the PTx’s message
though a limited capacity and noisy link. We study different deployment
configurations, which correspond to different interference scenarios. In the
interference-symmetric scenario both destinations are in the coverage area
of the two sources; this implies that both destinations are interfered. In
the interference-asymmetric scenario, one destination does not suffer from
interference; in this case one of the interfering links is absent. Due to the
asymmetry in the cooperation, two interference-asymmetric scenarios must
be considered: the Z-channel, where the link from the PTx to the CRx is
non-existent (i.e., the CRx is out of the range of the PTx) and the S-channel,
where the link from the CTx to the PRx is non-existent (i.e., the PRx is out
of the range of the CTx). We further assume two different modes of opera-
tion at the CTx, namely FD (i.e., the CTx can simultaneously receive and
transmit over the same time-frequency-space resource) and HD TDD (i.e.,
in each time slot, the CTx listens for a fraction of time and then transmits

!A well-known example on how ‘treating interference as noise’ severely limits the
system capacity is given by an ad-hoc network where n randomly located pairs of devices
aim to communicate. In [8] the authors showed that, if each node decodes only the signal
of the closest neighbor (by treating all the other signals as noise) the rate per source-
destination pair decreases to zero as O (1/4/n) for dense networks (i.e., when the area is
fixed and n — o0). In [9], this scaling law was proven to be information theoretically
optimal for eztended networks (when n is fixed and the area increases linearly with n) in
high attenuation (i.e., for a path loss exponent o > 4). In [10], Ozgiir et al. showed a
novel scaling law for dense networks and extended networks in low attenuation: if nodes
can cooperate, then the total capacity of the network scales with n, i.e., the rate of each
source-destination pair is not impaired as n increases. This was accomplished through a
novel hierarchical cooperation architecture, where nodes within the same cluster cooperate
in delivering the messages to their destinations.
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in the remaining time). For each topology we study the ultimate capacity
performance in the spirit of [6,12], by deriving novel outer bounds on the
capacity region and by designing transmission strategies which are provably
approximately optimal for the Gaussian noise channel.

1.2 Background

1.2.1 Half-Duplex Relay Networks

The relay channel model, where a source communicates with a destina-
tion with the help of one relay station, was first introduced by van der
Meulen [13] in 1971. Despite the significant research efforts, the capacity
of the general memoryless relay channel is still unknown. In their semi-
nal work [14], Cover and El Gamal proposed a general outer bound, now
known as the max-flow min-cut outer bound or cut-set for short, and two
achievable schemes: Decode-and-Forward (DF) and Compress-and-Forward
(CF). In DF, the relay fully decodes the message sent by the source and
then coherently cooperates with the source to communicate this informa-
tion to the destination. In CF, the relay does not attempt to recover the
source message, but it just compresses the received signal and then sends it
to the destination. The combination of DF and CF is still the largest known
achievable rate for a general memoryless relay channel. The cut-set outer
bound was shown to be tight for the degraded relay channel, the reversely
degraded relay channel and the semi-deterministic relay channel [14], but it
is not tight in general [15]. The pioneering work of [14] has been extended
to networks with multiple relays. In [16], the authors proposed several in-
ner and outer bounds for FD relay networks as a generalization of DF, CF
and the cut-set bound; it was shown that DF achieves the ergodic capac-
ity of a wireless Gaussian network with uniform phase fading if the phase
information is locally available and the relays are close to the source node.

Although more study has been conducted for FD relays, there are some
important references treating HD ones. In [17], the author studied the TDD
relay channel. Both an outer bound, based on the cut-set argument, and
an inner bound, based on Partial DF (PDF), a generalization of DF where
the relay only decodes part of the message sent by the source, were derived.
In [17], the time instants at which the relay switches from listen to transmit
and vice versa were assumed to be fixed, i.e., a priori known by all the nodes;
we refer to this mode of operation as deterministic switch. In [18], Kramer
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showed that higher rates can be achieved by considering a random ? switch
at the relay. In this way the randomness that lies into the switch may be
used to transmit (at most 1 bit per channel use of) further information to the
destination. In [18], it was also shown how the memoryless FD framework
incorporates the HD one as a special case, and as such there is no need to
develop a separate theory for networks with HD nodes.

The exact characterization of the capacity region of a general memoryless
network is challenging. Recently it has been advocated that progress can
be made towards understanding the capacity by showing that achievable
strategies are provably close to (easily computable) outer bounds [6]. As
an example, in [19], the authors studied FD Gaussian relay networks with
N + 2 nodes (i.e., N relays, a source and a destination) and showed that
the capacity can be achieved to within iv:ﬁ25min{Mk,Nk} bits with a
network generalization of CF named Quantize-reMap-and-Forward (QMF),
where M} and Ny are the number of transmit and receive antennas, respec-
tively, of node k. Recently, for single antenna networks with N FD relays,
the 5(N + 2) bits gap of [19] was reduced to 2 x 0.63(N + 2) bits (where
the factor 2 accounts for complex-valued inputs) thanks to a novel ingenious
generalization of CF named Noisy Network Coding (NNC) [20]. The gap
characterization of [20] is valid for a general Multicast Gaussian Network
(MGN) with FD nodes; the gap grows linearly with the number of nodes
in the network, which could be a too coarse capacity characterization for
networks with a large number of nodes. Smaller gaps can be obtained for
more structured networks. For example, a diamond network [21] consists of
a source, a destination and N relays where the source and the destination
can not communicate directly and the relays can not communicate among
themselves. In other words, a general Gaussian relay network with N relays
is characterized by (N + 2)(/N 4 1) generic channel link gains, while a dia-
mond network has only 2N non-zero channel link gains. In [21] the case of
N = 2 relays was studied and an achievable region based on time sharing be-
tween DF and Amplify-and-Forward (AF) was proposed. In [22], the authors
considered two specific configurations of a diamond network with a general
number of relays (agents), where the relay-destination links were assumed
to be lossless; in the first scenario the relays do not have decoding capabili-
ties, while in the second scenario they do. Upper and lower bounds on the
capacity were derived and evaluated for the Gaussian noise channel. More-
over the capacity of the deterministic channel when the relays can decode

2Since the relay’s state (either listen or transmit) is part of the codebook, random
switch can equivalently be referred to as coded switch.
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was characterized. The scenarios of [22] were further studied in [23] under
the assumption of lossy relay-destination links and where each source-relay
link and relay-destination link is a binary-symmetric channel. In [24], the
authors analyzed the Gaussian diamond network with a direct link between
the source and the destination and showed that ‘uncoded forwarding’ at the
relays asymptotically achieves the cut-set upper bound when the number
of relays goes to infinity. This strategy simply requires that each relay de-
lays the input of one time unit and scales it to satisfy the power constraint.
In general, the capacity of the Gaussian FD diamond network is known to
within 2log(N + 1) bits [25], [26], i.e., the simplified (and sparse) diamond
topology allows for a gap reduction from linear [20] to logarithmic [25], [26].
If, in addition, the network is symmetric, that is, all source-relay links are of
the same strength and all relay-destination links are of the same strength,
the gap is less than 3.6 bits for any N [27].

Interestingly, the gap result of [19] remains valid for static and ergodic
fading networks where the nodes operate either in FD mode or in HD mode;
however [19] did not account for random switch in the outer bound. In
[28], the authors demonstrated that the QMF scheme can be realized with
nested lattice codes. Moreover, they showed that for HD networks with N
relays, by following the approach of [18], i.e., by also accounting for random
switch in the outer bound, the cut-set outer bound is achievable to within
N 4+ 450 My, + (2 +1log(2)) 320, Ny bits, with M, and Ny being the
number of antennas used to receive and transmit at the k-th relay; in the
special case of single-antenna nodes this gap reduces to 5N. In [29], the
authors established capacity expressions of the error-free half-duplex line
network, i.e., a relay network where a source, a certain number of relays and
a destination are arranged on a line and communication takes place only
between adjacent nodes. In particular, in [29, Theorem 1] they characterized
the capacity of the line network with a single source-destination pair, in [29,
Theorem 2] they found an explicit capacity expression when the number of
relays goes to infinity and in [29, Theorem 3] they characterized the capacity
of the line network where each relay can act as a source if the rates of the
relay sources fall below certain thresholds. All these capacity results were
proved by using a random switch at each relay. In [30, Theorems 3.1, 3.2],
the capacity of the deterministic line network with two sources, i.e., when
either the second relay (in [30, Theorem 3.1]) or the last relay in the line
(in [30, Theorem 3.2]) is the second source, was characterized; also in these
scenarios the cut-set upper bound is achieved if the relays randomly switch
from listen to transmit. In general, finding the capacity of a single-antenna
HD multi-relay network is a combinatorial problem since the cut-set upper



1.2 Background 9

bound is the minimum between 2V bounds (one for each possible cut in the
network), each of which is a linear combination of 2V relay states (since
each relay can either transmit or receive). For a diamond network with
N = 2 relays, [31] showed that, out of the 2 = 4 possible states, at most
N + 1 = 3 states suffice to achieve the cut-set bound to within less than
4 bits. We refer to the states with a strictly positive probability as active
states. The achievable scheme of [31] is a clever extension of the two-hop
DF strategy of [32]. In [31] a closed-form expression for the aforementioned
active states, by assuming no power control and deterministic switch, was
derived by solving the dual LP associated with the LP derived from the
cut-set bound. The work in [33] studied a Gaussian diamond network with
N = 2 relays and an ‘antisymmetric’ Gaussian diamond network with NV = 3
relays and showed that a significant fraction of the capacity can be achieved
by: (i) selecting a single relay, or (ii) selecting two relays and allowing them
to work in a complementary fashion as in [31]. Inspired by [31], the authors
of [33] also showed that, for a specific HD diamond network with N = 3
relays, at most N 4+ 1 = 4 states, out of the 2V = 8 possible ones, are
active. The authors also numerically verified that for a general Gaussian HD
diamond network with NV < 7 relays, at most N + 1 states are active and
conjectured that the same holds for any number N of relays. In [34], this
conjecture was proved for single-antenna Gaussian HD diamond networks
with N < 6 relays; the proof is by contradiction and uses properties of
submodular functions and LP duality but requires numerical evaluations;
for this reason the authors could only prove the conjecture for N < 6, since
for larger values of N “the computational burden becomes prohibitive” [34].

HD relay networks were also studied in [35], where an iterative algorithm
was proposed to determine the optimal fraction of time each HD relay trans-
mits/receives by using DF with deterministic switch. In [36] the authors
proposed a ‘grouping’ technique to find the relay schedule that maximizes
the approximate capacity of certain Gaussian HD relay networks, including
for example layered networks; since finding a good node grouping is com-
putationally complex, the authors proposed an heuristic approach based on
tree decomposition that results in polynomial-time algorithms; as for dia-
mond networks in [33], the low-complexity algorithm of [36] relies on the
‘simplified’ topology of certain networks.

1.2.2 The Interference Channel with Source Cooperation

The presence of a lossy communication link between the PTx and the CTx
enables the CTx to cooperate with the PTx. The CTx, in fact, through this



10 Chapter 1 Introduction

noisy channel overhears the signal sent by the PTx and gathers information
about the PTx’s message, which serves as the basis for unilateral cooperation
between the two sources. Unilateral source cooperation is a special case of
the IC with generalized feedback, or bilateral source cooperation. The CCIC
also represents a practical scenario for cognitive radios, where one source
has superior capabilities with respect to the other source. Moreover, closely
related to the IC with unilateral source cooperation is the classical output
feedback model, where the received signal is sent back through a perfect or
noisy channel from one receiver to the corresponding transmitter. Lately,
these scenarios have received significant attention, as summarized next.

Non-cooperative IC. The capacity region of the classical non-cooperative
IC is not known in general. The only case for which the capacity is known is
the strong interference regime [37,38], where the interfering / cross links are
of a better quality with respect to the direct links. The largest achievable
rate region is due to Han and Kobayashi [39]. In the transmission strategy
proposed in [39], each source splits its message into two parts, i.e., a common
message, decoded also at the non-intended receiver and a private message,
treated as noise at the non-intended receiver. In [40], the Han-Kobayashi
scheme was shown to be optimal for a class of deterministic discrete mem-
oryless ICs for which the receiver outputs and the interferences are a deter-
ministic function of the channel inputs. In [12], the authors evaluated the
rate region of [39] for the practically relevant Gaussian noise channel. They
showed that, by setting the power of the private message in such a way it is
received at most at the level of the noise at the non-intended receiver, the
corresponding achievable rate region is to within 1 bit of the capacity.

FD IC with bilateral source cooperation. Bilateral source coopera-
tion has been actively investigated recently. Host-Madsen [41] first studied
outer and inner bounds on the capacity for the Gaussian IC with either
source or destination bilateral cooperation. Regarding the outer bound, the
author in [41] evaluated the different cut-set upper bounds and then tight-
ened the sum-rate upper bound by extending the sum-rate outer bounds
originally developed by Kramer [42] for the Gaussian non-cooperative 1C
in weak and strong interference to the cooperative case. The lower bound
region of [41] was derived by designing a scheme based on Gelfand-Pinsker’s
binning [43] (i.e., Dirty Paper Coding (DPC) in Gaussian noise [44]) and
superposition encoding, DF relaying and joint decoding. Tuninetti [45] de-
rived a general outer bound for the IC with bilateral source cooperation by
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extending Kramer’s Gaussian noise sum-rate upper bounds in [42, Theo-
rem 1] to any memoryless IC with source cooperation, and more recently
to any form of source and destination cooperation [46]. Prabhakaran and
Viswanath [47] extended the idea of [12, Theorem 1] to derive a sum-rate
outer bound for a class of Injective Semi-Deterministic (ISD) IC with bilat-
eral source cooperation in the spirit of the work by Telatar and Tse [48],
and evaluated it for the Gaussian channel with independent noises (this as-
sumption is not without loss of generality when cooperation and feedback
are involved). Tandon and Ulukus [49] derived an outer bound for the IC
with bilateral source cooperation based on the dependence-balance idea of
Hekstra and Willems [50] and proposed a novel method to evaluate it for
the Gaussian channel with independent noises.

The largest known achievable rate region for general bilateral source
cooperation, to the best of our knowledge, is the one presented in [51, Section
V]. In [51, Section V] each source splits its message into two parts, i.e., a
common and a private message, as in the Han-Kobayashi’s scheme for the
non-cooperative IC [39]; these two messages are further sub-divided into
a non-cooperative and a cooperative part. The non-cooperative messages
are transmitted as in the non-cooperative IC [39], while the cooperative
messages are delivered to the destinations by exploiting the cooperation
among the two sources. In [51, Section V] each source, e.g. source 1, after
learning the cooperative messages of source 2, sends the common cooperative
message of source 2 and uses Gelfand-Pinsker’s binning [43] against the
private cooperative message of source 2 in an attempt to rid its own receiver
of this interference. The achievable scheme in [51, Section V] uses PDF
for cooperation. A possibly larger achievable region could be obtained by
including CF as cooperation mechanism as in [14] for the relay channel.

For the two-user Gaussian noise IC with bilateral source cooperation, un-
der the assumption that the cooperation links have the same strength, the
scheme of [51, Section V]| was sufficient to match the sum-capacity upper
bounds of [45,47] to within a constant gap [47,52]. In particular, [47] char-
acterized the sum-capacity to within 19 bits of the IC with bilateral source
cooperation under the condition that the cooperation links have the same
strength, but otherwise arbitrary direct and interfering links. The gap was
reduced to 2 bits in the ‘strong cooperation regime’ in [52] with symmetric
direct links, symmetric interfering links and symmetric cooperation links.

FD IC with unilateral source cooperation. Unilateral source coop-
eration is clearly a special case of the general bilateral cooperation case
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where the cooperation capabilities of the two sources are not restricted to
be the same. This case has been specifically considered in [53] where the
cooperating transmitter works either in FD or in HD mode. The authors
of [53] evaluated the performance of two achievable schemes: one that ex-
ploits PDF and binning and a second one that extends the first by adding
rate splitting. It was observed, through numerical evaluations, that the pro-
posed inner bounds are not too far from the outer bound of [49] for certain
Gaussian noise channels. An extension of the IC with unilateral source co-
operation was studied in [54], where it was assumed that at any given time
instant the cognitive source has a non-causal access to L > 0 future chan-
nel outputs. The case L = 0 corresponds to the strictly causal case, while
the case L — oo to the ideal non-causal Cognitive Interference Channel
(CIC) [11]. The authors of [54] derived potentially tighter outer bounds on
the capacity of the CCIC channel (i.e., case L = 0) than those of [45,47]
specialized to unilateral source cooperation; unfortunately it is not clear how
to evaluate these bounds in Gaussian noise because they are expressed as
a function of auxiliary random variables jointly distributed with the inputs
and for which no cardinality bounds on the corresponding alphabets are
known. The achievable region in [54, Corollary 1] is also no smaller than
the region in [51, Section V] specialized to the case of unilateral source co-
operation (see [54, Remark 2, point 6]). Although [54, Corollary 1] is, to
the best of our knowledge, the largest known achievable region for the gen-
eral memoryless IC with unilateral cooperation, its evaluation in general is
quite involved as the rate region is specified by 9 jointly distributed auxil-
iary random variables and by 30 rate constraints. In [54] inner bounds were
compared numerically to the 2 x 2 Multiple Input Multiple Output (MIMO)
outer bound for the Gaussian CCIC; the 2 x 2 MIMO outer bound is loose in
general compared to the bounds in [41,45,47]. Although it was noted in [54]
that, for the simulated set of channel gains, the proposed bounds are not far
away from one another, a performance guarantee in terms of (sum-)capacity
to within a constant gap was not given.

HD IC with source cooperation. HD cooperation can be studied as a
special case of FD cooperation by using the formalism of [18]. This approach
is usually not followed in the literature, often making imprecise claims about
capacity and Gaussian capacity to within a constant gap. In [55], the sum-
capacity of the Gaussian IC with HD source cooperation and deterministic
switch was characterized to within 20 bits and 31 bits for the case of sym-
metric (direct, interference and cooperation links) bilateral and general uni-
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lateral cooperation, respectively. These approximately optimal schemes are
inspired by the Linear Deterministic Approximation (LDA) of the Gaussian
noise channel at high Signal-to-Noise Ratio (SNR). The LDA, first proposed
in [19] in the context of relay networks, captures in a simple deterministic
way the interaction between interfering signals of different strengths. In the
LDA the effect of the noise is neglected and the signal interaction is mod-
eled as bit-wise additions. Thereby, this simplification allows for a complete
characterization of the capacity region in many instances where the capacity
of the noisy channel counterpart is a long standing open problem.

IC with output feedback. In [56], Suh and Tse studied the Gaussian
IC where each source has a perfect output feedback from the intended des-
tination. The authors characterized the capacity of this system to within
2 bits and showed that feedback provides a generalized Degrees-of-Freedom
(gDoF) gain, and thus an unbounded rate gain, with respect to the classical
(i.e., with no feedback) IC. It was proved, see [56, Theorems 2-3], that the
capacity region has constraints on the single rates and on the sum-rate, but
not bounds of the type 2R, + Rc and R, + 2R (where Ry, respectively R,
is the transmission rate for the PTx, respectively CTx), which appear in the
capacity region of the classical Gaussian IC [12]. The authors interpreted the
bounds on 2R, + R. and R, + 2R, in the capacity region of the classical IC
as a measure of the amount of ‘resource holes’, or system underutilizations,
due to the distributed nature of the non-cooperative IC. In other words,
output feedback eliminates these ‘resource holes’ and the system resources
are fully utilized. In [57], the symmetric Gaussian IC with all 9 possible
output feedback configurations was analyzed. The authors proved that the
bounds derived in [56] suffice to approximately (i.e., to within a constant
gap) characterize the capacity of all the 9 configurations except for the case
where only one source receives feedback from the corresponding destination,
i.e., the ‘single direct-link feedback model / model (1000)’. For this model,
in [57] it was shown that an outer bound of the type 2R, + R. is needed to
capture the fact that the second source (whose transmission rate is R.) does
not receive feedback. In the language of [56] we thus have that the ‘single
direct-link feedback’ does not suffice to cover all the ‘resource holes’ whose
presence is captured by the bound on 2R, + R.. The authors of [57] derived
a novel outer bound on 2R, + R for the ISD model (1000) with indepen-
dent noises and showed it is active for the Gaussian noise case. In [58], the
authors characterized the capacity of the two-user ‘symmetric linear deter-
ministic IC with partial feedback’, where only some bits are received at the
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transmitter as feedback from the corresponding receiver. In [59], the same
authors evaluated the bounds for the symmetric Gaussian noise channel and
proved that they are at most 11.7 bits far from one another, universally over
all channel parameters. The capacity characterization was accomplished by
deriving novel outer bounds on 2R, + R. and R, +2R. that rely on carefully
chosen side information random variables tailored to the symmetric Gaus-
sian setting and whose generalization to non-symmetric or non-Gaussian
scenarios does not apper straightforward.

Non-causal cognitive radio channel. The cognitive radio channel is
commonly modeled following the pioneering work of Devroye et al. [11] in
which the superior capabilities of the cognitive source are modeled as perfect
non-causal, i.e., before transmission begins, knowledge of the PTx’s message
at the CTx. For this non-causal model, the capacity is exactly known when
the PRx experiences weak interference [60,61] and in the strong interference
regime [62]. For the other operating regimes, to the best of our knowledge,
the largest known achievable rate region is the one presented in [63, Theorem
7], which in [64] was evaluated for the Gaussian noise case and shown to be
at most 1 bit apart from an outer bound region characterized by constraints
on the single rates and on the sum-rate. In other words, the capacity region
of the non-causal model does not have bounds on 2R, + R. and R, + 2R.,
i.e., the assumption of full a priori knowledge of the PTx’s message at the
CTx allows to fully exploit the available system resources.

1.3 Contributions of this dissertation

In this thesis we analyze two practically relevant wireless channel models
with nodes cooperation, namely the HD relay network and the CCIC, or the
IC with unilateral source cooperation. These two scenarios are studied into
two different parts, namely Part I and Part II, respectively. In particular,
our analysis makes use of information theoretic and graph theoretic tools.
Properties on submodular functions and linear programming are also used.

This thesis resulted in 13 conference papers and 6 journal papers, all
currently under submission or already published by IEEE. Parts of these
works are reprinted next with permission from IEEE.

1.3.1 Part I

In Part I, we study the HD relay network where the communication between
a source and a destination is assisted by IV relay stations operating in HD.
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In particular,

Chapter 2. In Chapter 2, we analyze the practically relevant Gaussian
noise case for N = 1, i.e., the Gaussian relay channel, whose exact capacity
is unknown. We make progress toward determining its capacity by charac-
terizing its gDoF in closed-form and proving a constant gap result. We also
propose a scheme inspired by the LDA, which is provably asymptotically
optimal. Our main contributions can be summarized as follows:

1.

We determine the exact capacity of the LDA channel: we show that
random switch and correlated non-uniform input bits at the relay are
optimal. We also show that deterministic switch is at most 1 bit from
optimal.

. We derive the gDoF for the Gaussian relay channel in closed-form: we

show that both PDF and CF are gDoF optimal, both with determinis-
tic and with random switch at the relay. We also show that a scheme
inspired by the LDA with deterministic switch is gDoF optimal.

. For the Gaussian noise case, we prove that the above transmission

strategies are optimal to within a constant gap, uniformly over all
channel parameters. In particular, PDF is optimal to within 1 bit, CF
to within 1.61 bits, and the scheme inspired by the LDA to within 3 bits.
In all cases, the gap is smaller than the one of 5 bits available in the
literature for the case of one relay [28].

. For the three coding schemes, we obtain a closed-form expression for

the approximately optimal schedule (i.e., duration of the transmit-
and receive-phases at the relay) with deterministic switch. This result
sheds light on the design of a HD relay node in future wireless networks.

. We prove that PDF with random switch is exactly optimal for the

general memoryless line network, i.e., when the direct link between
the source and the destination is absent. A closed-form expression for
the optimal input distribution with random switch policy is however
not available.

Publications related to this chapter are:

[65] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay channels: generalized degrees of freedom and constant gap

result”, in 2013 IEEE International Conference on Communications
(ICC 2013), Budapest (Hungary), June 2013.
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[66] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The capacity
to within a constant gap of the Gaussian half-duplex relay channel”,
in 2013 IEEE International Symposium on Information Theory (ISIT
2013), Istanbul (Turkey), July 2013.

[67] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian half-duplex relay channel”, in IEEE Transactions on Information
Theory, Volume 60, Issue n.5, May 2014, Pages 2542-2562.

A practical implementation of the transmission strategy inspired by the
LDA can be found in

[68] R. Thomas, M. Cardone, R. Knopp, D. Tuninetti, B. T. Ma-
haraja, “An LTE implementation of a novel strategy for the Gaussian
half-duplex relay channel”, to appear in 2015 IEEE International Con-
ference on Communications (ICC 2015), London (United Kingdom),
June 2015.

Chapter 3. In Chapter 3, we study the HD relay network with a general
number N of relays, by following the approach proposed in [18]. Our main
contributions can be summarized as follows:

1.

For the practically relevant Gaussian noise case, we prove that NNC
with deterministic switch achieves the cut-set bound (properly evalu-
ated to account for random switch) to within 1.96(/NV + 2) bits. This
gap is smaller than the 5N bits gap available in the literature [28]. Our
gap result for a HD relay network is obtained as a special case of a
more general result for a HD MGN, which extends the 1.26 bits/node
gap for the FD case [20] to a 1.96 bits/node gap for the HD case. We
also show that this gap result extends to the case of multi-antenna
nodes and is of 1.96 bits per channel use per antenna.

In order to determine the gDoF of the Gaussian channel, one needs
to find a tight high-SNR approximation for the different mutual in-
formation terms involved in the cut-set upper bound. As a result of
independent interest, beyond its application to the Gaussian relay net-
work studied in this chapter, we show that such tight approximations
can be found as the solution of Maximum Weighted Bipartite Matching
(MWBM) problems, or assignment problems [69], for which efficient
polynomial-time algorithms, such as the Hungarian algorithm [70], ex-
ist. As an example, we show that this technique is useful to derive the
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gDoF of Gaussian broadcast networks with and without relays and to
solve user scheduling problems.

3. We prove Brahma et al.’s conjecture [33] beyond Gaussian networks
with a diamond topology. In particular, we show that for any HD net-
work with N relays, with independent noises and for which the cut-set
bound is approximately optimal to within a constant under certain
assumptions, the (approximately) optimal relay policy is simple, i.e.,
at most N + 1 states (out of the 2V possible ones) have a strictly
positive probability. The key idea is to use the Lovész extension and
the greedy algorithm for submodular polyhedra to highlight structural
properties of the minimum of a submodular function. Then, by using
the saddle-point property of min-max problems and the existence of
optimal basic feasible solutions for LPs, an (approximately) optimal
relay policy with the claimed number of active states can be shown.
Gaussian noise relay networks satisfy all the assumptions and thus ad-
mit a simple schedule. More importantly, when the nodes are equipped
with multiple antennas and the antennas at the relays may be switched
between transmit and receive modes independently of one another, the
schedule has at most N +1 active states (as in the single-antenna case),
regardless of the total number of antennas in the system.

4. We finally consider two network examples: for the first scenario, con-
sisting of N = 2 single-antenna relays, we highlight under which chan-
nel conditions a best-relay selection scheme is strictly suboptimal in
terms of gDoF and we gain insights into the nature of the rate gain
attainable in networks with multiple relays; for the second scenario,
consisting of N = 1 relay equipped with 2 antennas, we show that
independently switching the 2 antennas at the relays not only achieves
in general strictly higher rates compared to using the antennas for the
same purpose, but can actually provide a strictly larger pre-log factor.

Publications related to this chapter are:

e [71] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved gap and a connection with the as-
signment problem”, in 2013 IEEE Information Theory Workshop (ITW
2013), Seville (Spain), September 2013.

e [72] M. Cardone, D. Tuninetti, R. Knopp, “On user scheduling for
maximum throughput in K-user MISO broadcast channels”, to ap-
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pear in 2015 IEEE International Conference on Communications (ICC
2015), London (United Kingdom), June 2015.

e [73] M. Cardone, D. Tuninetti, R. Knopp, “The approximate optimal-
ity of simple schedules for half-duplex multi-relay networks”, to appear
in 2015 IEEE Information Theory Workshop (ITW 2015), Jerusalem
(Israel), May 2015.

e [74] M. Cardone, D. Tuninetti, R. Knopp, “Gaussian MIMO half-
duplex relay networks: approximate optimality of simple schedules”, to

appear in 2015 IEEE International Symposium on Information Theory
(ISIT 2015), Hong Kong, June 2015.

e [75] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Gaussian half-
duplex relay networks: improved constant gap and connections with

the assignment problem”; in IEEE Transactions on Information The-
ory, Volume 60, Issue n.6, June 2014, Pages 3559-3575.

e [76] M. Cardone, D. Tuninetti, R. Knopp, “On the optimality of simple
schedules for networks with multiple half-duplex relays”, submitted to
IEEE Transactions on Information Theory, December 2014.

1.3.2 Part I1

In Part I, we study the CCIC, or the IC with unilateral source cooperation,
which consists of two source-destination pairs sharing the same channel and
where the CTx overhears the PTx through a lossy communication link and
can hence allocate some of its transmission resources to assist the commu-
nication of the primary pair. In particular,

Chapter 4. In Chapter 4, we consider FD mode of operation at the cog-
nitive source, i.e., the CTx can receive and transmit simultaneously over
the same time-frequency-space resources. Our main contributions can be
summarized as follows:

1. We develop a general framework to derive outer bounds of the type
2R, + R. and R, + 2R on the capacity of the general ISD CCIC
when the noises at the different source-destination pairs are indepen-
dent; this framework includes for example feedback from the intended
destination. As a special case, we recover and strengthen the bounds
derived in [47,57]. The key technical ingredient is the proof of two
Markov chains.
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2. We design a transmission strategy for the general memoryless CCIC
and we derive its achievable rate region. The proposed scheme uses
superposition and binning encoding, PDF relaying and simultaneous
decoding at the receivers. Since the CCIC shares common features
with the classical non-cooperative IC [39], both common and pri-
vate messages are used. Moreover, we use both cooperative and non-
cooperative messages for the PTx, while the messages of the CTx are
only non-cooperative.

3. We evaluate the outer bound and the achievable rate regions for the
practically relevant Gaussian noise channel. We prove that for the
symmetric case, i.e., when the two direct links and the two cross /
interfering links are of the same strength, for the Z-channel, i.e., when
the link from the PTx to the CRx is absent, and for the S-channel, i.e.,
when the link from the CTx to the PRx is absent, the achievable region
is a constant (uniformly over all channel gains) number of bits apart
from the outer bound region. Interestingly, we show that the capacity
regions of the two asymmetric scenarios (i.e., the Z-channel and the
S-channel) do not have bounds of the type 2R, + R. and Ry + 2R,
i.e., unilateral cooperation allows for a full utilization of the channel
resources. On the other hand, we prove that the two novel outer
bounds of the type 2R, + R and R, +2R. are active for the symmetric
channel in weak interference and when the cooperation link is weaker
than the direct link, i.e., for this regime unilateral cooperation is too
weak and leaves some system resources underutilized.

4. The constant gap results imply the exact knowledge of the gDoF for
the Z-, S- and symmetric channels. We identify the parameter regimes
where the Gaussian CCIC (both with symmetric and asymmetric con-
figurations) is equivalent in terms of gDoF to the non-cooperative
Gaussian IC [12] (i.e., unilateral cooperation might not be worth imple-
menting in practical systems) and to the Gaussian non-causal CIC [64]
(i.e., unilateral causal cooperation attains the ultimate limit of cogni-
tive radio technology). These comparisons shed lights into the param-
eter regimes and network topologies that in practice might provide
an unbounded throughput gain compared to currently available (non-
cognitive) technologies.

Publications related to this chapter are:

e [77] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “Approximate
sum-capacity of full- and half-duplex asymmetric interference channels
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with unilateral source cooperation”, in 2013 Information Theory and
Applications Workshop (ITA 2013), San Diego (USA), February 2013.

[78] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the interfer-
ence channel with causal cognition”, in 2013 IEEE International Con-
ference on Communications (ICC 2013), Budapest (Hungary), June
2013.

[79] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaussian
interference channel with unilateral generalized feedback”, in 6th In-

ternational Symposium on Communications, Control and Signal Pro-
cessing (ISCCSP 2014), Athens (Greece), May 2014.

[80] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capacity
of full-duplex causal cognitive interference channels to within a con-

stant gap”, in 2014 IEEE International Conference on Communications
(ICC 2014), Sydney (Australia), June 2014.

[81] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “New outer
bounds for the interference channel with unilateral source coopera-
tion”, in 2014 IEEE International Symposium on Information Theory
(ISIT 2014), Honolulu (Hawaii), July 2014.

[82] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the capac-
ity of the two-user Gaussian causal cognitive interference channel”, in

IEEE Transactions on Information Theory, Volume 60, Issue n.5, May
2014, Pages 2512-2541.

[83] M. Cardone, D. Tuninetti, R. Knopp, “The two-user causal cogni-
tive interference channel: novel outer bounds and constant gap result
for the symmetric Gaussian noise channel in weak Interference”, sub-
mitted to IEEE Transactions on Information Theory, March 2014.

Chapter 5. In Chapter 5, we consider HD mode of operation at the cog-
nitive source, i.e., in each time slot the CTx listens for a fraction of time
and then transmits in the remaining time. Our main contributions can be
summarized as follows:

1. We characterize the sum-capacity to within a constant gap for the

Gaussian symmetric Z-channel, the Gaussian symmetric S-channel
and the symmetric fully-connected Gaussian HD-CCIC; this is accom-
plished by adapting the sum-capacity outer bounds for FD unilateral
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cooperation in Chapter 4 to the case of HD unilateral cooperation by
using the framework of [18], i.e., by properly accounting for random
switch at the CTx, and by designing novel transmission strategies in-
spired by the LDA of the Gaussian noise channel at high SNR. In
particular, the gap is of 5 bits/user for the symmetric case and of 3
bits/user for the symmetric Z-channel and the symmetric S-channel.
We remark that these gap results not only, differently from [55], are
derived by properly accounting for random switch at the CTx, but
they are also smaller than those derived in [55].

2. Using the LDA model, we obtain a closed-form expression for the
gDoF and for the different optimization variables (e.g., schedule, power
splits, coding schemes and corresponding decoding orders, etc.). This
result sheds light on how the design of the HD CTx should be properly
carried out, which is an important practical task for future wireless
networks.

3. As done for the FD case in Chapter 4, we compare the gDoF of the
Gaussian HD-CCIC with that of: (i) the classical non-cooperative IC,
i.e., where there is no cooperation among the nodes [12], and (ii) the
non-causal CIC, i.e., where the CTx has a non-causal knowledge of
the PTx’s message [64]. In particular, we find the parameter regimes
where HD unilateral cooperation does not yield benefits compared to
the non-cooperative IC [12], and those where it attains the ultimate
performance limits of the non-causal CIC [64]. Interestingly, we show
that in the regimes where the Gaussian HD-CCIC outperforms the
non-cooperative IC the cooperation link must be able to reliably con-
vey a rate larger than the sum-capacity of the corresponding non-
cooperative 1C.

4. We finally identify the regimes where a loss, in terms of gDoF, incurs
by using HD mode of operation at the CTx with respect to the FD
case analyzed in Chapter 4. These losses might motivate the use of a
more expensive CTx with FD capabilities in future wireless networks
in these regimes.

Publications related to this chapter are:

e [84] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “The symmetric
sum-capacity of the Gaussian half-duplex causal cognitive interference
channel to within a constant gap”, in 2013 IEEE International Sym-
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posium on Information Theory (ISIT 2013), Istanbul (Turkey), July
2013.

[85] M. Cardone, D. Tuninetti, R. Knopp, U. Salim, “On the Gaus-
sian interference channel with half-duplex causal cognition”, in IEEE
Journal on Selected Areas in Communications, Volume 32, Issue n.11,
November 2014, Pages 2177-2189.
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Chapter 2

Half-Duplex Relay Channel

In this chapter, we study the HD relay channel. Our main contributions can
be summarized as follows: (i) we determine the exact capacity of the LDA
channel; (ii) we show that, for the Gaussian noise case, the cut-set outer
bound is achievable to within a constant gap by PDF and CF, evaluated both
with deterministic and random switch; (iii) we design an ‘optimal to within
a constant gap’ scheme inspired by the LDA of the Gaussian noise channel
at high SNR; (iv) we prove that PDF with random switch is exactly optimal
when the direct link is absent.

2.1 System model

2.1.1 General memoryless channel

A general memoryless relay network has one source (node 0), one destination
(node N + 1), and N ! relays indexed from 1 to N. It consists of N + 1
input alphabets (X7, , Xn, Xn+1) (here X; is the input alphabet of node 4
except for the source / node 0 where, for notation convenience, we use Xn 1
rather than Ap), N + 1 output alphabets (V1,---, Vn, VYn+1) (here Y is the
output alphabet of node i), and a transition probability }P’y[l: N1 X v
The source has a message W uniformly distributed on [1 : 2"¥] for the

!Even if this chapter focuses on the single relay case, we here define the channel model
for the general case of N relays, since we will adopt the same model in the next chapter.
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(LR )
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Figure 2.1: The general memoryless HD relay channel.

(X 5,)

destination, where n denotes the codeword length and R the transmission
rate in bits per channel use. At time 4, ¢ € [1 : n], the source maps its
message W into a channel input symbol Xy ; (W), and the k-th relay,
k € [1: NJ], maps its past channel observations into a channel input symbol
X (ka_l). The channel is assumed to be memoryless, that is, the following
Markov chain holds for all ¢ € [1 : n]

i—1 i—1
<W7 Y[l:N—I—l]’ X[I:N+1]) = Xpvli — Yt

At time n, the destination makes an estimate of the message W based on all
its channel observations Y,V as W (Y}, ;). A rate R is said to be e-achievable

if, for some block length n, there exists a code such that IP’[W # W] < e for
any € > 0. The capacity is the largest non-negative rate that is e-achievable.

In this general memoryless framework, each relay can listen and transmit
at the same time, i.e., it is a FD node. HD channels are a special case of the
memoryless FD framework in the following sense [18]. With a slight abuse
of notation compared to the previous paragraph, we let the channel input
of the k-th relay, k € [1: N|, be the pair (X, Sk), where X} € X}, as before
and Si € [0 : 1] is the state random variable that indicates whether the
k-th relay is in receive-mode (Sy = 0) or in transmit-mode (Si = 1). In the
HD case the transition probability is specified as IP)Y[I:N+1]‘X[1:N+1]’S[1:N]' In
particular, when the k-th relay, k € [1 : N], is listening (S; = 0) the outputs
are independent of X}, while when the k-th relay is transmitting (Sx = 1)
its output Y} is independent of all other random variables.

For the particular case of N = 1 studied in this chapter, the general
memoryless channel is shown in Figure 2.1, where for notation convenience,
we use the subscripts s for the source, r for the relay, and d for the des-

tination; the memoryless HD channel transition probability for N = 1 is
0
hence defined by PYmYd‘X&Xr,Sr:O = Pg/r)7yd‘X57Sr=0 and PY7-7Y4|X57X7-757>:1 =
(1) M
Yd|X57X7'7$r:1 Yr|Sr:1'
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Figure 2.2: The Gaussian HD relay channel.

2.1.2 The Gaussian noise channel

The single-antenna complex-valued power-constrained Gaussian HD relay
channel, shown in Figure 2.2, is described by the input/output relationship

Y, =VCX, (1-8,)+ Z, €C, (2.1a)
Yy =VSX,+eVIX, S, + Z; €C, (2.1b)

where the real-valued and non-negative channel power gains C, .S, I and the
phase 6 are constant and therefore known to all terminals. Since a node
can compensate for the phase of one of its channel gains, we can assume
without loss of generality that the channel gains from the source to the
other two terminals are real-valued and nonnegative. The channel inputs
are subject to unitary average power constraints without loss of generality,
ie., E[|X,|?] <1, u € {s,r}. The switch random variable S, is binary. In
our model, both X, and S, at any given time, are functions of the past
received channel outputs. The noise (Zy4, Z,) is a zero-mean proper-complex
Gaussian random vector with, without loss of generality, unit entries on the
main diagonal of the covariance matrix. In particular, but not without loss of
generality [86], we assume that Z; and Z, are independent. In the following
we consider the Gaussian HD relay channel for which C' > 0 and I > 0, since
for either C = 0 or I = 0 the relay is disconnected from either the source
or the destination, respectively, so the channel reduces to a point-to-point
channel with capacity equal to the direct-link capacity log(1 + 5).
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2.1.3 The deterministic / noiseless channel

The LDA approximates the Gaussian noise HD relay channel in (2.1) at high
SNR. It is a deterministic channel with input-output relationship

Y, =S X, (1-85,), (2.2a)
Yy =S hax, 4 snhax, S, (2.2b)

for some non-negative integers Bqr, Bsd, Brd, Where the vectors Y;, Yy, X, X,

are of length n := max{f, fsd, Ora} and take value in GF(2) (with GF we
indicate the Galois Field), the sum is understood bit-wise on GF(2), S is
the n x n shift matrix [19], and S, is the relay binary-valued state random
variable. The model has the following interpretation. The source sends
a length-n vector X, whose top Psq bits are received at the destination
(through the source-destination link) and the top fBg bits are received at
the relay (through the source-relay link); similarly the relay sends a length-
n vector X,, whose top [.q bits are received at the destination (through
the relay-destination link). The fact that only a certain number of bits
are observed at a given node is a consequence of the ‘down shift’ operation
through the matrix S. The bits not observed at a node are said to be ‘below
the noise floor’.

2.2 Overview of the main results
The capacity CHP—RC) of the Gaussian HD relay channel in (2.1) is un-
known. Here we make progress toward determining its capacity by first
establishing its gDoF, i.e., an exact “pre-log” capacity characterization in
the limit for high SNR, and then by characterizing its capacity to within a
constant gap at any finite SNR. Consider SNR > 0 and the parameterization

S := SNRP4 source-destination link, (2.3a)
I := SNR’, relay-destination link, (2.3b)
C := SNR?" source-relay link, (2.3c)

for some non-negative real-valued triplet (Bsq, Brd, Bsc)?. We define:

2We use the symbols (Bsd, Brd, Bsr) for both the LDA in (2.2) and the SNR parame-
terization in (2.3) for the channel power gains of the Gaussian HD relay channel in (2.1).
In the former case (Bsda, Brd, fsr) € N3, while in the latter case (Bsds Bra, Bsr) € ]RE”,_. This
choice is motivated by the fact that the capacity of the LDA is related to the gDoF of the
Gaussian HD relay channel.
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Definition 1. The gDoF of the Gaussian HD relay channel is defined as

d(HD—RC) C(HD—RC)

li _— .
SNR 00 log(1 + SNR)

Definition 2. The capacity CHP—RC) s said to be known to within GAP bits
if one can show achievable rates R™ and outer bound R©™) such that

R(in) < C(HD—RC) < R(out) < R(in) + GAP.
Our main results of this chapter are summarized as follows:

Theorem 1. The gDoF of the Gaussian HD relay channel in (2.1) is

(ﬁr 7&5 )(ﬁsr*ﬁs )
d(HDfRC) _ Bsd + (ﬁrdd—ﬁsd(;-‘r(ﬁsr—ﬁ:d) fO’f’ ﬁsr > /Bsd7 Brd > Bsd ’ (2.4>
Bed otherwise

and the cut-set upper bound is achieved to within

Achievable scheme LDAi CF PDF
analytical gap 3 bits 1.61 bits | 1 bit
numerical gap 1.832 bits | 1.16 bits | 1 bit

where LDAi is an achievable scheme inspired by the LDA.

The result of Theorem 1 should be compared to a similar result for the
FD case. The gDoF of the Gaussian FD relay channel is

dFP=RO) — g4 + min{[Bs — Bea] T, [Bea — Bea] T}, (2.5)

and its capacity C(FP~RC) is achievable to within 1 bit by either DF or
CF [19]. We notice that HD achieves the same gDoF of FD if min{S.q4, Bsr} <
Bsd, in which case the relay channel behaves gDoF-wise like a point-to-point
channel from the source to the destination with gDoF given by Bsq. In both
FD and HD the gDoF has a routing interpretation [19]: if the weakest link
from the source to the destination through the relay is smaller than the direct
link from the source to the destination, then direct transmission is optimal
and the relay can be kept silent, otherwise it is optimal to communicate with
the help of the relay, i.e., route part of the information through the relay.

Regarding gaps, we note that Theorem 1 improves on the 5 bits gap
of [28]. Moreover, we note a tradeoff between the coding scheme complex-
ity and the gap, with lower gaps for more complex schemes (for example,
compare the gap of PDF with that of LDAI).

In an attempt to design simple and asymptotically optimal achievable
schemes for the Gaussian HD relay channel, by following the footsteps of [19],
we study the capacity of the LDA. We show:
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Theorem 2. The capacity of the LDA in (2.2) is given by

((HD) _ Psa if Bsa <max { B, Bra}
| Bsat+max e[ 1) min {A () s ¥(Bsr — Bsa) } otherwise
(2.6)

where

L—-1
+ 0% (v) log ——

A(y) = (1-0"(v))log )

_
1—=6(7)
9* (’Y> = 1—max {;—/77} ) L:= 2(6rd_5sd)7

and is achieved with random switch and correlated non-uniform input bits
at the relay. Moreover, a scheme with deterministic switch and independent
and identically distributed (i.i.d.) Bernoulli(1/2) bits at the relay is at most
1 bit from the capacity in (2.6).

2.3 The gDoF for the Gaussian HD relay channel

In this section, by adapting known bounds for the general memoryless FD
relay channel [87] to the HD case with the methodology introduced by [18],
we derive the gDoF of the Gaussian HD relay channel in (2.1).

2.3.1 Cut-set upper bounds

We now prove a number of upper bounds that we shall use for the converse
part of Theorem 1. From the cut-set bound we have:

HD—RC)

Proposition 1. The capacity C( of the Gaussian HD relay channel

s upper bounded as

((HD—RC)

< min {I(X,, X, S,;Yy), [(Xs: Yy, Yol X, S }) 2.7
_Hlln{( s Ty 7 d) ( sy Lr d| r r) (XS>X’V‘75’I‘)NP§(S7XT75T ( a)

< maxmin {H(7) + 71 + (1= 1)L, vEs + (1= 7)1 b = (D) (2.70)

<2+1log(1+5) (1 + (b<1b1—_1)1zr(b(2b2_—1)1)> : (2.7¢)

where:
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o In (2.7a): the distribution PX, x,.s, is the one that mazimizes the
cut-set upper bound, i.e.,

Py x s =arg max min{I(Xs,Xr,Sr;Yd),I(XS;n,YdyXT,ST)}.

Pxg,xr,Sr
e In (2.7b): the parameter v := P[S, = 0] € [0, 1] represents the fraction
of time the relay node listens, H(y) is the binary entropy function
H(7) = —vlog(y) — (1 =) log(1 — ), (2.8)

the maximization is over the set

v €[0,1], (2.9a)
lon | < 1, (2.9b)
(Puo, Pu1) €ERY :yPuo+ (1 —7)Py1 <1, u € {s,r}, (2.9¢)

and the mutual information terms Iy, ...,1, are defined as
= log (1 + 5 PS’Q) ,
—log (1+ SPyy + Py + 2len|y/SPoy TPy1)
(1

= log (C +S5)Psp),

log 1 — ‘041| )S Ps71) .
o In (2.7c): the terms by and by are defined as

log (1 + (VT + \/5)2)

by == 1 si 1 2.14
1 oz (11 5) > 1 since I > 0, (2.14)
log(1+C+5) .
by = 1 C > 0. 2.15
2 log (11 5) > 1 since C' > (2.15)
Proof. The proof can be found in Appendix 2.A. O

The upper bound in (2.7a) will be used to prove that PDF with random
switch achieves the capacity to within 1 bit, the one in (2.7b) to prove that
PDF with deterministic switch also achieves the capacity to within 1 bit and
for numerical evaluations (since we do not know the distribution Py o
that maximizes the cut-set upper bound in (2.7a)), and the one in (2.7¢) for
analytical computations such as the derivation of the gDoF. With the upper
bound in Proposition 1 we can show:
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Proposition 2. The gDoF of the Gaussian HD relay channel is upper
bounded by the Right Hand Side (RHS) of (2.4).

Proof. The proof can be found in Appendix 2.B. O

2.3.2 PDF lower bounds

In this section we prove a number of lower bounds that we shall use for the
direct part of Theorem 1. From the achievable rate with PDF we have:

Proposition 3. The capacity of the Gaussian HD relay channel is lower
bounded as

(/(HD-RC)
> min {I(U; Yol X0, S0) + I(Xs; Yal X0, Sy, U, I(Xs, X, Si Yd)} (2.16)

2 max min {I(()PDF)+715+(1—7)I6,’VI?+(1—’Y)18} =: p(PPF-HD)(2.97)

> log (1 + 9) (1 + (0(161—_1)1150(12_—1)1)) , (2.18)

where:

e In (2.16): we fix the input Py x, x, s, to evaluate the PDF lower
bound; in particular we set Px, x, s, to be the same distribution that

mazximizes the cut-set upper bound in (2.7a) and we choose either
U=X, orU=X,5+Xs(1-25,).

e In (2.17): the parameter y := P[S, = 0] € [0, 1] represents the fraction
of time the relay node listens, the mazimization is over the set (2.9a)-
(2.9¢) as for the cut-set upper bound in (2.7b), the mutual information

terms Is, ..., I3 are
I5 := I, given in (2.10), (2.19)
Is := I3 given in (2.11), (2.20)
I7 :=log (1 + max{C, S} Ps ) < I3 given in (2.12), (2.21)
Ig := 1, given in (2.13), (2.22)
and IéPDF) := I(Sy; Yq) is computed from the density
1—
Fry(t) = ——e7 /o Z— T eltlP/or 4 ¢ C, (2.23)

) U1

with vy = 25 where I5 is given in (2.19), and vi = 26 where Ig is
given in (2.20).
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e In (2.18): the terms c1 and ca are

log(1+1+289)

1 si I 2.24
log (11 5) > 1 since I > 0, (2.24)
log (1 + max{C,S}) )
= 1 . 2.2
log (11 5) > 1 since C' > 0 (2.25)
Proof. The proof can be found in Appendix 2.C. O

The lower bound in (2.16) will be compared to the upper bound in (2.7a)
to prove that PDF with random switch achieves capacity to within 1 bit, the
one in (2.17) with the one in (2.7b) to prove that PDF with deterministic
switch also achieves capacity to within 1 bit and for numerical evaluations,
and the one in (2.18) will be used for analytical computations such as the
evaluation of the achievable gDoF.

Remark 1. In Appendix 2.C, we found that the approximately optimal
schedule for PDF with deterministic switch is

* o (cl — 1)
TPDF 0T o (0 — 1)

€ [0,1],

where c; is given in (2.24) and ¢ is given in (2.25). The expression for 1pp
can be understood as follows. Suppose that min{C, I} > S, otherwise the
relay is not used in the transmission and setting either vppp = 0 or Yppp = 1
is approximately optimal. Notice that v5php is a decreasing function in C
and increasing in I. This implies that the stronger C' compared to I the
lesser the time the relay needs to listen to the channel to (partially) decode
the source message. On the other hand, if C' < I, more time is needed to
learn the message and less time to convey the message to the destination.

With the lower bound in Proposition 3 we can show:

Proposition 4. The gDoF of the Gaussian HD relay channel is lower
bounded by the RHS of (2.4).

Proof. The proof can be found in Appendix 2.D. ]

Propositions 2 and 4 prove that the gDoF of the Gaussian HD relay
channel is given by (2.4) and that PDF achieves the gDoF.

Figure 2.3 shows the difference between the gDoF of the Gaussian FD
relay channel in (2.5) and that of the Gaussian HD relay channel in (2.4) as
a function of Sg and (.4, where without loss of generality we fixed Sgq = 1.
This difference is zero when min {f,q, fsr} < Bsa = 1, in which case both
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Figure 2.3: Difference between the gDoF of the Gaussian FD and of the
Gaussian HD relay channels, for S,q = 1, as a function of Gs and Siq.

the FD and the HD channels are gDoF-wise equivalent to a point-to-point
channel without relay. When min {5,q, fsr} > Bsa = 1, the point-to-point
communication channel is outperformed by the relay channel since now using
the relay to convey the information is optimal. Moreover, as expected, the
difference is always greater than or equal to zero because in the Gaussian
FD relay channel the relay can simultaneously listen and transmit; therefore,
the Gaussian FD relay channel represents an outer bound for the Gaussian
HD relay channel. The largest difference occurs when 8,q = By := Bsq in
which case d(FDi_dRC) = max{1l, o}, while @ = max {1, HTO‘} , in other
words, for o > 1 the rate difference between FD and HD grows unboundedly
as SNR increases. This might motivate the use of more expensive FD relays
in future wireless networks in this regime.

2.4 Capacity of the LDA and a simple achievable
strategy for the (Gaussian noise channel

In the previous section we showed that PDF achieves the gDoF of the Gaus-
sian HD relay channel. PDF is based on block Markov encoding and joint
decoding [87], which can be too complex to realize in practical systems. For
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this reason we seek now to design schemes that are simpler than PDF and
that are still gDoF optimal. In order to do so, we consider the LDA in (2.2).
Based on the many recent success stories, such as [19], we first determine the
capacity achieving scheme for the LDA and we then try to ‘translate’ it into
a gDoF-optimal scheme for the Gaussian HD relay channel. The rational
is the “folk’s theorem” that the capacity of the LDA gives the gDoF of the
corresponding Gaussian noise channel.

2.4.1 Capacity of the LDA

The capacity of the general memoryless deterministic relay channel is given
by the cut-set bound [14]. For the LDA the cut-set bound evaluates to (2.6)
in Theorem 2, which is proved next.

Proof. The capacity of a HD channel is upper bounded by the capacity of
the corresponding FD channel. Therefore for the capacity of the LDA we
have C(HD) < CFD) where CHDP) and CFD) are defined as

CcHDP) .—  max min{I(XS,XT,ST;Yd),I(XS;E,YﬂXT,ST)}

Px, x5,
— max min {H(Yd), H(Y,,YqX,, ST)} (2.26)
Px, x,,5-
CFD) .— nax min {I(XS,XT;Yd),I(XS;YT,Yd|XT)}
Px, x,
= Bsd + min{[ﬁrd - Bsd]_'_a [Bsr - Bsd]_‘_}a (2'27)

where C(FP) in (2.27) is achieved by i.i.d. Bernoulli(1/2) input bits for the
source and the relay [19]. In order to evaluate CHP) we distinguish two
cases:

Regime 1: Brg < Bsq O Bsr < Bsq in which case CHD) < ¢FD) — 5 ;.

Since the rate C(HP) = B 4 can be achieved by silencing the relay and using
i.i.d. Bernoulli(1/2) input bits for the source, we conclude that CHP) =
CFDP) = B4 in this regime.

Regime 2: Brq > Psqa and By > [Bsq. Here we need to evaluate the
expression in (2.26), for which we need to determine the optimal H (Y;) and

H(Yr, Yd|Xr, ST) = ]P)[ST = O]H(Y}, Yd|X7~, S, = 0)
+ IS, = 1H(Y,, Yi| X, Sy = 1)
< ’Ymax{ﬁsrv Bsd} + (1 - V)Bsd

To upper bound H (Yy), we write Yy = [Yy,, Y], where
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e Y, contains the lower (4q bits of Y. These bits are a combination
of the bits of X, and the lower bits of X,. The lower bits of X, are
indicated as X, ;. With reference to Figure 2.4(b), Yy, corresponds to
the portion of Yy containing the “orange bits” labeled by [2].

e Y,;, contains the upper ;g — Bsq bits of Y;. These bits only depend
on the upper bits of X,.. The upper bits of X, are indicated as X, ,,.
With reference to Figure 2.4(b), Yy, corresponds to the portion of Yy
containing the “green bits” labeled a.

Hence we have
H(Yg) = H(Ygu,Yay) < H(Yaw) + H(Yyy) < H(Yaw) + Bsas
since Yy contains fyq bits and where H (Y ,) is computed from

P[Yau = y] = P[S, = 0/P[Yau = y[Sy = 0] + P[S, = 1|P[Yy, = y[S, = 1]
=0[y] + (1 = 7)P[Xpu = ISy = 1],
fOr y € [0 . L - 1], L = 2/8rd_65d > 1’ Whel"e 5[/3/] — 1 lf y = 0 and Jero

otherwise, and where 7 := P[S, = 0]. Let P[X,, = y|S, =1] =p, € [0,1] :
>y Py = 1. Then, we have that

H(Yau) = H( [+ (1= 1)po, (1= Dp1, -, (1= 1)pr-a] )

1-— 1-—
Po 7(1—’7) DPo

<H|[ |v+ (1 =9)po, (1-7)

L—-1""" L—-1
L — 1 times
1 L —
= (1-20)log + 6log . (2.28)
1=6 O lo=(-m)0-po)elo1 -
which is maximized by
1/L —~)*
0" =1 —max{1/L,y} < p}, = [/1_77] (2.29)

Thus, collecting all the bounds, we have that CHP) in (2.26) is upper

bounded as

L-1
9*

CHDP) < B4+ max min {(1 —6%)log

+ 6" log
~v€[0,1]

’ 7(551" - ﬁsd)}'
(2.30)

1—6*
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Figure 2.4: Achievable strategy for the LDA with Syq < Bsr < Bid-

In order to show the achievability of (2.30) consider the following inputs:
the state S, is Bernoulli(1 — «) independent of any other random variable,
and X and X, are independent. The source uses i.i.d. Bernoulli(1/2) bits.
The relay uses ii.d. Bernoulli(0) bits for X, ; and P[X,, = y] = pj if
y =0 and P[X,, = y] = (1 —p§)/(L — 1) otherwise, for pj in (2.29), i.e.,
the components of X, , are neither independent nor uniformly distributed.
Notice that the distribution of X, , in state S, = 0 is irrelevant because its
contribution at the destination is zero anyway, so we can assume that the
input distribution for X, is independent of the state S,.. It is straightforward
to verify that this choice of input distribution achieves the upper bound
in (2.30) thereby showing capacity in this regime. O
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Our motivation to determine the capacity of the LDA was to get ‘inspira-
tion’ to design a simple achievable scheme for the Gaussian HD relay channel.
While proving Theorem 2 we found that the capacity achieving distribution
of the LDA has two fundamental features that can not be straightforwardly
translated into a strategy for the Gaussian HD relay channel, namely: (i)
the relay employs random switch, and (ii) correlated non-uniform inputs at
the relay are optimal. Therefore next we further upper bound the capacity
in (2.30) in the hope to get finally ‘inspired’. Consider

C(HD): max min{H(Yd),H(n7Yd|Xr=S7’)}

Pxy,xr,5r

< max min{H(Yd|ST),H(E,Yd|XT,ST)}+H(Sr)

Pxg,x7,5r

< 'yren[%}i] min{’)'/@sd + (1 _’Y) max{ﬁsda Brd}: v maX{Bsda Bsr} + (1 _7)6sd} +1

= fea + 'YEDA[ﬁsr - 5sd]+ +1, (2'31)

where v p, is the optimal v := P[S, = 0] € [0, 1] obtained by equating the
two arguments within the min and is given by

Yo = { Gty i Bra > Boas Bor > Bua (2.32)
0 otherwise.

We now show that the upper bound in (2.31) is achievable to within 1 bit.
This 1 bit represents the maximum amount of information I(S,;Yy) that
could be conveyed to the destination through a random switch at the relay.
If we neglect this 1 bit we can achieve the upper bound in (2.31) with the
scheme shown in Figure 2.4(a) and Figure 2.4(b) for the case min{f, fra} >
Bsd, which is the case where the upper bound differs from direct transmission
and for which X, # 0. In Phase I / Figure 2.4(a) the relay listens and the
source sends b (of length [sq bits) directly to the destination and by (of
length S — Bsq bits) to the relay; note that by is below the noise floor at the
destination; the duration of Phase I is v, hence the relay has accumulated
~(Bsr — Bsa) bits to forward to the destination. In Phase IT / Figure 2.4(b) the
relay forwards the bits learnt in Phase I to the destination by ‘repackaging’
them into a (of length 5,q — fBsq bits); the source keeps sending a new by (of
length [sq bits) directly to the destination; note that a does not interfere
with by at the destination; the duration of Phase II is such that all the bits
accumulated by the relay in Phase I can be delivered to the destination, i.e.,

V(ﬁsr - /Bsd) = (1 - 7)(ﬁrd - Bsd)a
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giving precisely the optimal 7, in (2.32). The total number of bits decoded
at the destination is 1 - Bsq + ¥ pa - (Bsr — Bsd), which shows that the rate
in (2.31) is achievable to within 1 bit. Notice that the LDA-rate in (2.31),
besides the 1 bit term, looks formally the same as the gDoF in (2.4) after
straightforward manipulations.

The scheme that is optimal within 1 bit for the LDA uses deterministic
switch and i.i.d. Bernoulli(1/2) input bits, similarly to the FD optimal
scheme in [19]; therefore, similarly to the FD case, we are now in the position
to obtain a scheme for the original Gaussian HD relay channel. Before we
describe the scheme for the Gaussian noise channel, let us compare the
results obtained for the LDA. The HD optimal strategy in Figure 2.4(a)
and Figure 2.4(b) should be compared with the FD optimal strategy in
Figure 2.4(c). In Figure 2.4(c), in a given time slot ¢, the source sends by [t]
(of length [Ssq bits) directly to the destination and bo[t 4+ 1] (of length at
most [y — Bsq bits) to the relay; the relay decodes both by[t] and byt + 1]
and forwards by[t + 1] in the next slot; in slot ¢ the relay sends ba[t] (of
length at most B.q — fsq bits) to the destination; the number of bits the
relay forwards must be the minimum among the number of bits the relay
can decode (given by fs — fsq) and the number of bits that can be decoded
at the destination without harming the direct transmission from the source
(given by Brq — Bsa). Therefore, the total number of bits decoded at the
destination is Bgq + min{SBrq — Bsd, Bsr — Bsd }, which formally looks exactly
as the optimal gDoF for the Gaussian FD relay channel in (2.5) in the case
the relay is actually used.

Figure 2.5 compares the capacities of the FD and HD LDA channels;
it also shows some achievable rates for the HD LDA channel. In particu-
lar, the capacity of the FD channel is given by (2.5) (dotted black curve
labeled “FD”), the capacity of the HD channel is given by (2.6) (solid black
curve labeled “HD” obtained with the optimal p{ in (2.29)) and its upper
bound by (2.31) (red curve labeled “HDlda upper”). For comparison we also
show the performance when the source uses i.i.d. Bernoulli(1/2) bits and
the relay uses one of the following strategies: i.i.d. Bernoulli(q) bits and
random switch (blue curve labeled “HDiid q+rand” obtained by numerically
optimizing ¢ € [0,1]), i.i.d. Bernoulli(1/2) bits and random switch (green
curve labeled “HDiid 1/2+rand” obtained with pg = 1/L in (2.28)), and i.i.d.
Bernoulli(1/2) bits and deterministic switch (magenta curve labeled “HDiid
1/2+det” and given by Ssq + min{y[Bs — Bsa]™s (1 — ) [Bra — Bsa] T}). We
can draw some interesting conclusions from Figure 2.5:

e With deterministic switch: i.i.d. Bernoulli(1/2) bits for the relay are
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Figure 2.5: Comparison of the capacities of the LDA for both HD and FD
modes of operation at the relay.

optimal but this choice is quite far from capacity (magenta curve vs.
solid black curve); this choice however is at most 1 bit from optimal

(magenta curve vs. red curve).

e With random switch: the optimal input distribution for the relay is
not i.i.d. bits; i.i.d. inputs incur a rate loss (blue curve vs. solid black
curve); if in addition we insist on i.i.d. Bernoulli(1/2) bits for the relay
we incur a further loss (green curve vs. blue curve).

This shows that for optimal performance the relay inputs are correlated
and that random switch must be used.

2.4.2 LDAIi: an achievable strategy for the Gaussian HD re-
lay channel inspired by the LDA

We mimic the LDA strategy with deterministic switch from Section 2.4.1 so
as to get an achievable rate for the Gaussian HD relay channel. We assume
S < C, otherwise we use direct transmission to achieve R = log(1+.5). The
transmission is divided into two phases (it might help to refer to Figure 2.4(a)

and Figure 2.4(b)):
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e Phase I of duration v: the transmit signals are

— 1
Xs[]-] =Vv1- 6Xbl[1] + \/gbe § = 1_1_753

X, [1]=0.
The relay applies successive decoding of Xj, (1) followed by Xp, from

}/7’[1] = \/6 V1-— 6Xb1[1} + \/a \/gsz + Zr[l]a

which is possible if (rates are normalized by the total duration of the two
phases)

C
Ry, < vlog (1 +C) — ylog <1 + 1_}_5) )

C
< — . .
Ry, < vlog <1+ 1 +S) (2.33)

The destination decodes Xy, 1) treating X3, as noise from

Yd[l] = \/g \% 1-— (SXblm + \/g \/g)(b2 + Zd[l],

which is possible if

S
Ry np < vlog (1+5) —vlog <1 + 1—|—S> . (2.34)
Finally, since we assume S < C, Phase I is successful if (2.33) and (2.34)
are satisfied.
e Phase II of duration 1 — «: the transmit signals are

Xs[2] = Xp, 1)
X'r[2] = Xb27

recall that the bits in @ in Figure 2.4(b) are the exact same bits in by in
Figure 2.4(a) just ‘repacked’ to form a vector with different length, which
we mimic here by setting X, [2] = Xj,.

The destination applies successive decoding of X3, (by exploiting also
the information about by that it gathered in the first phase) followed by
Xb1[2] from

Yy[2] = VSXy, g + e VIXy, + Z4[2],
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which is possible if

I S

< (1—=—"1 14+ —— 1 14+ —— 2.
Ry, <( v)og<+1+5)+vog<+1+s), (2.35)
Ry 91 < (1 —~)log(1+S). (2.36)

e By imposing that the rate Ry, is the same in both phases, that is, that (2.33)
and (2.35) are equal, we get that « should be chosen equal to v*

. log (1+ 55 . (2.37)

log<1+p%s>+log<1+p%) —10g<1+1+i5)

Note that v* in (2.37) tends to vy, in (2.32) as SNR increases by using
the parameterization in (2.3). Moreover we give here an explicit closed
form expression for the optimal duration of the time the relay listens to the
channel.

The rate sent directly from the source to the destination, that is, the
sum of (2.34) and (2.36), is

) S
Ry 1) + B,z = log(1 + 5) — 7" log <1 + 1+S) : (2.38)

€[0,1]

Therefore the total rate decoded at the destination through the two phases
is p(LDAI=HD) . _ Ry, (1] + Ry, 2] + Ry, as in Proposition 5 below:

Proposition 5. The capacity of the Gaussian HD relay channel is lower
bounded as CHP—RC) > (LDAI—HD) "4 isp
I c\_ s \1*
log (1+ 115 ) [tog (1+1%5 ) ~log (1++55)
-
log <1+1J%5> + [log (1—1—1%1) —log (1—1—%)}
(2.39)

p(LPAI=HD) — 1o0(1 4+ ) +

We notice that the rate expression for r(LPAI=HD) in (2.39) (please notice
the operator [-]7), which was derived under the assumption C' > S, is valid
for all C since for C' < S it reduces to direct transmission from the source
to the destination. Moreover we can show that:

Proposition 6. The LDAi strategy achieves the gDoF in (2.4).
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Proof. The proof can be found in Appendix 2.E. O

Remark 2. The LDAIi scheme can be seen as a specialization of PDF with
deterministic switch at the relay combined with the scheduling and power
splits inspired by the analysis of the LDA channel. The specialization con-
sists of the classical PDF with sliding window decoding and without coherent
codebooks [87]. Thus, the same observations drawn for v in Remark 1
also hold for the LDAi schedule v* in (2.37).

Before concluding this section, we point out some important practical
aspects of the LDAI that are worth noticing:

1. The proposed scheme is not the classical block Markov encoding scheme
with backward decoding; in particular, the destination uses sliding
window decoding, which simplifies the decoding procedure and incurs
no delay; a further simplification would be to consider a slot-by-slot
decoding scheme.

2. The destination uses successive decoding, which is simpler than joint
decoding.

3. No power allocation is applied at the source or at the relay across the
two phases; this simplifies the encoding procedure and can be used for
time-varying channels as well. The source uses superposition coding,
i.e., power split, only to ‘route’ part of its data through the relay.

2.5 Analytical gaps

In Sections 2.3 and 2.4 we described upper and lower bounds to determine
the gDoF of the Gaussian HD relay channel. In Section 2.4 we proposed
a scheme inspired by the analysis of the LDA channel that also achieves
the optimal gDoF. We now show that the same upper and lower bounds
are to within a constant gap of one another thereby concluding the proof of
Theorem 1. We consider both the case of random switch and of deterministic
switch for the relay. For completeness we also consider the CF lower bound.

Proposition 7. PDF with random switch is optimal to within 1 bit.
Proof. The proof can be found in Appendix 2.F. O
Proposition 8. PDF with deterministic switch is optimal to within 1 bit.

Proof. The proof can be found in Appendix 2.G. O
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The intuition of why the gap does not improve with random switch is
that there exist channel parameters for which direct transmission is approx-
imately optimal (when min{C, I} < 5); in the case of direct transmission
there are no benefits to use the relay at all and silencing the relay is a case
of deterministic switch.

Proposition 9. LDAi is optimal to within 8 bits.
Proof. The proof can be found in Appendix 2.H. O

For completeness, we conclude this section with a discussion on the gap
that can be obtained with CF. For the Gaussian FD relay channel, it is
known that CF represents a good alternative to PDF in the case when the
link between the source and the relay is weaker than the direct link [87].
The CF achievable rate is presented in Appendix 2.1. By using Remark 5 in
Appendix 2.1 we have:

Proposition 10. CF with deterministic switch is optimal to within 1.61 bits.
Proof. The proof can be found in Appendix 2.J. O

Remark 3. In Appendix 2.1, we found that the approximately optimal sched-
ule with CF and deterministic switch is given by
* <C5 — 1)
= € 10,1,
YCF (65_1)+(06_1) [ ]
_log(1+1+89)

= 1 si 1>0
Cs log ( I S) > 1 since £ > 0,
log(l—i- 102 —i—S)
+og .
= >1 C > 0.
Ce log (1 n S) since C >

Suppose, as in Remark 1 for PDF, that min{C, I} > S, otherwise setting
either v = 0 or &y = 1 is approximately optimal. Notice that, although
the same observations drawn from the analysis of 7ppp in Remark 1 hold,
YGr here also depends on the variance of the quantization noise at the relay,
i.e., of. The schedule 7¢ is an increasing function of ¢, meaning that
the higher 0(2) the longer the time the relay should listen to the channel.
Therefore, differently from PDF, the approximately optimal schedule does
not only depend on the channel gains, but also on the level at which the
signal at the relay is quantized.

Proposition 11. CF with random switch is optimal to within 1.61 bits.
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Proof. Random switch improves on deterministic switch, since at most 1 bit
of further information may be conveyed to the destination by randomly
switching between the transmit- and receive-phases. Thus, it follows that
any rate achievable with deterministic switch is also achievable with random
switch, i.e., random switch can not increase the gap. ]

2.6 Numerical gaps

In this section we show that the gap results obtained in Section 2.5 are
pessimistic and are due to crude bounding of the upper and lower bounds,
which was necessary in order to obtain rate expressions that can be handled
analytically. In order to illustrate our point, we first consider a relay network
without the source-destination link, that is, with S = 0, and then we show
that the same observations are valid for any network.

2.6.1 Gaussian HD relay channel without a source-destination
link (single-relay line network)

Upper Bound: We start by showing that the (upper bound on the) cut-
set upper bound in (2.7b) can be improved upon. Note that we were not able
to evaluate the actual cut-set upper bound in (2.7a) so we further bounded
it as in (2.7b), which for S = 0 reduces to

p(CS=HD)| o= max min {H(’y)+(1—7) log <1+I> , vlog <1+C> } :
vel0.1] 1= ¥
The capacity of the Gaussian FD relay channel for S = 0 is known exactly
and is given by the cut-set upper bound, i.e., CFP)|s_g=log (1+min{C, I}).
C(FD) is a trivial upper bound for the capacity of the Gaussian HD relay
channel. Now we show that our upper bound r(CS_HD)| Ss=0 can be larger
than C(FP)|g_g. For the case C' = 15/2 > I = 3/2 we have

1\ 1 1
p(CS=HD) ¢ > min {”H <2> + 5 log (1+21), S log (1 + 20)}
= log(4) > C"™)|g_y = log (2.5) .

The reason why the capacity of the FD channel can be smaller than our
upper bound 7(¢S=HP)|¢_ is the crude bound I(S,;Yy) < H(S,) = H(v).
As mentioned earlier, we needed this bound in order to have an analytical
expression for the upper bound. Actually for S = 0 the cut-set upper bound
in (2.7a) is tight, as we show next.
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Exact capacity with PDF:

Corollary 1. In absence of direct link between the source and the destination
PDF with random switch achieves the cut-set upper bound.

Proof. The single-relay line network represents an example of degraded relay
channel since X — (X, Sy, Y;) — Yy forms a Markov chain. The capacity of
the general memoryless degraded relay channel is exactly known [14, The-
orem 1], i.e., for this network the cut-set upper bound is tight. Therefore,
our result is a special case of [14, Theorem 1]. O

Improved gap for the LDAi lower bound: Despite knowing the ca-

pacity expression for S = 0 from Corollary 1, its actual evaluation is elusive

as it is not clear what the optimal input distribution Py ¢ in (2.7a) is.

For this reason we next specialize the LDAI strategy to the case S = 0 and

evaluate its gap from the (upper bound on the) cut-set bound in (2.7b).
The LDAI achievable rate in (2.39) with S =0 is

T(LDAi—HD)|S:0 = Iél[%)i] min{ylog (1 +C),(1 —v)log (1 + 1)},
’y ’

where we left intentionally explicit the optimization with respect to ~y, and
where we note that r(MPAI=HD)| o coincides with the PDF lower bound
with deterministic switch at the relay and without optimizing the powers
between the relay transmit- and receive-phases. The gap between the outer
bound and r(LDAi*HD)| s—0 is less than 3 bits since

GAP < T(CS—HD)‘SZO _ T,(LDAi—HD)‘SZO

< max {'ylog (1 + 0) —vlog(1+C),
76[071] Y

HO)+ (1= ) log (14 12 ) = (1= )og (14 1)

<y {ooe (5) o0+ 0= e (5}

— max {7—[(7) +(1—7)log (117> } = 1.5112 bits.

Note that the actual gap is even less than 1.5 bits. In fact, by numerically
evaluating

GAP — min{C’(FD), T(CS_HD)}’S:O - r(LDAi—HD) ’S:O

one can found that the gap is at most 1.11 bits.
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Figure 2.6: Numerical evaluation of the various achievable schemes.

Numerical gaps with deterministic switch: Similarly to what done for
the LDAI, by numerical evaluations one can find that the PDF strategy with
deterministic switch in Remark 4-Appendix 2.C and the CF strategy with
deterministic switch in Remark 5-Appendix 2.1 are to within 0.80 bits and
1.01 bits, respectively, of the improved bound min{C(FP) r(CS=HD)v s
Note that in these cases there is no information conveyed by the relay to the
destination through the switch.

Figure 2.6(a) shows different upper an lower bounds for the Gaussian
HD relay channel for S = 0, C = 15, I = 3 versus v = P[S, = 0]. We
see that the cut-set upper bound (solid black curve) exceeds the capacity
of the Gaussian FD relay channel (dashed black curve). Different achiev-
able strategies are also shown, whose order from the most performing to the
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least performing is: PDF with random switch (red curve with maximum
rate 1.916 bits/ch.use), PDF with deterministic switch (blue curve with
maximum rate 1.68 bits/ch.use), CF with random switch (cyan curve with
maximum rate 1.446 bits/ch.use), CF with deterministic switch (magenta
curve with maximum rate 1.403 bits/ch.use), and LDAi (green curve with
maximum rate 1.333 bits/ch.use). In this particular setting, the maximum
rate using the CF strategy with random switch (cyan curve with maximum
rate 1.446 bits/ch.use) is achieved for P[Q = 0,5, = 0] = 0,P[Q =0, S, =
1] = 0.33,P[Q = 1,5, = 0] = 045,P[Q = 1, S, = 1] = 0.22. This is due to
the absence of the direct link (S = 0) between the source and the destina-
tion. Actually, since the source can communicate with the destination only
through the relay, it is necessary a coordination between the transmissions
of the source and those of the relay. This coordination is possible thanks to
the time-sharing random variable @), i.e., when @ = 0 the source stays silent
while when () = 1 the source transmits.

2.6.2 Gaussian HD relay channel with direct link

Figure 2.6(b) and Figure 2.6(c) show the rates achieved by using the dif-
ferent achievable schemes presented in the previous sections for a channel
with S > 0. In Figure 2.6(b) the channel conditions are such that PDF
outperforms CF, while in Figure 2.6(c) the opposite holds. In Figure 2.6(b)
the PDF strategy with random switch (red curve with maximum rate 11.66
bits/ch.use) outperforms both the CF with random switch (cyan curve with
maximum rate 11.11 bits/ch.use) and the PDF with deterministic switch
(blue curve with maximum rate 11.4 bits/ch.use); then the PDF with de-
terministic switch outperforms the CF with deterministic switch (magenta
curve with maximum rate 10.94 bits/ch.use), which is also encompassed by
the CF with random switch. Differently from the case without direct link,
we observe that the maximum CF rates both in Figure 2.6(b) and in Fig-
ure 2.6(c) are achieved with the choice @ = 0, i.e., the time-sharing random
variable () is a constant. This is due to the fact that the source is always
heard by the destination even when the relay transmits so there is no need
for the source to remain silent when the relay sends.

Figure 2.6(d) shows, as a function of SNR and for Sy = 1, (Sia, Bsr) €
[0,2.4], the maximum gap between the cut-set upper bound #(CS~HP) in (2.7b)
and the following lower bounds with deterministic switch: the PDF lower
bound obtained from rPPF=HD) in (2.17) with ISPDF) = 0, the CF lower
bound in Remark 5 in Appendix 2.1, and the LDAi lower bound in (2.39).
From Figure 2.6(d) we observe that the maximum gap with PDF is 1 bit as
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Figure 2.7: A = pPPFD)| opp) o —rPPFD)| opr) at SNR = 20dB
0 -0 0 -
for Bsq = 1 as a function of (B.q, Br) € [0,2.4].

in Proposition 8, but with CF the gap is around 1.16 bits and with LDAi
around 1.32 bits, which are lower than the analytical gaps found in Propo-
sitions 10 and 9, respectively.

The lower bounds can be improved upon by considering that information
can be transmitted through a random switch. However, this improvement
depends on the channel gains. If the information can not be routed through

the relay because min{C, I} < S, then the system can not exploit the ran-
PDF)

domness of the switch, and so I(() =0 and ISCF) = 0 are approximately
optimal (in this case the relay can remain silent). This behavior for the
PDF strategy is represented in Figure 2.7. In this figure we numerically
evaluate the difference between the analytical gap, i.e., the one computed
with I(()PDF) = 0, and the numerical one, i.e., computed with the optimal

ISPDF) indicated as IgP" (i.e., IgP is the actual value of ISPDF)), at a fix
SNR = 20 dB and by varying (B4, Bsr). We observe that when the infor-
mation can not be conveyed through the relay, i.e., min {f.q, Bsr} < 1, then
I(()PDF) = ( is optimal, since the information only flows through the direct
link. On the other hand, when min {5,q, S5} > 1, random switch outper-
forms deterministic switch. Moreover, from Figure 2.7 we observe that, the
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Figure 2.8: Numerical evaluation of the maximum gap varying the SNR for
Bsa = 1 and (Byq, Bsr) € [1.2,2.4] with deterministic (red curve) and random
switch (blue curve).

stronger the channel gains along the path through the relay the larger the
amount of information conveyed by random switch.

In Figure 2.8 the channel gains are set such that the use of the relay
increases the gDoF of the channel (S = 1 and (8q, Bsr) € [1.2,2.4]). Here
the relay uses PDF. We observe that we have a further improvement in
terms of gap by using a random switch (blue curve) instead of using a de-
terministic switch (red curve). We notice that at high SNR, where the gap
is maximum, this improvement is around 0.1 bits. As mentioned earlier, the
rate advantage of random switch over deterministic switch depends on the
channel gains.

2.7 Conclusions and future directions

In this chapter we considered a system where a source communicates with
a destination across a Gaussian channel with the help of a HD relay node.
We determined the capacity of the LDA of the Gaussian noise channel at
high SNR, by showing that random switch and correlated non-uniform in-
put bits at the relay are optimal. We then analyzed the Gaussian noise
channel at finite SNR; we derived its gDoF and showed several schemes that
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achieve the cut-set upper bound on the capacity to within a constant finite
gap, uniformly for all channel parameters. We considered both the case of
deterministic switch and of random switch at the relay. We showed that
random switch is optimal and for the case without a direct link it achieves
the exact capacity. In general random switch increases the achievable rate
at the expense of more complex coding and decoding schemes. For each
scheme, we determined in closed form the approximately optimal schedule,
i.e., duration of the transmit- and receive-phases at the relay, to shed light
into practical HD relays for future wireless networks.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) designing the switch so that further (at
most 1 bit per channel use) information can be conveyed to the destination
when CF is used; (ii) implementing the LDA-inspired scheme on an LTE
simulation test bench and study the impact of using codes of finite length
and discrete input constellations in contrast to asymptotically large block-
length Gaussian codes in the spirit of [68].

Appendix

2.A Proof of Proposition 1

An outer bound on the capacity of the memoryless relay channel is given by
the cut-set outer bound [87, Theorem 16.1] that specialized to our Gaussian
HD relay channel gives

C(HD*RC) <  max min {I(Xs, [XT, ST]; Yd), I(Xs; Y, Yd‘ [XT’7 Sr])} (2‘403)

Pxg,[Xr,5r]

— max min {I(ST;Yd) +I(XS,XT;Yd\S,,),I(Xs;Yr,Yd]Xr,Sr)} (2.40D)

Pxq,xr,sy

Pxg,xp,5r

< max min {H(Sr) +I(Xs, X2 Yyl S,), I(X: Y, Ya| X, ST)} (2.40¢)
< max min {H(’y)—k'yh—i—(l—'yﬂg,7[3+(1—7)I4} = p(CS=HD) (9 404)
where the different steps follow since:

e We indicate the (unknown) distribution that maximizes (2.40a) as
P%. x,.s, in order to get the bound in (2.7a).

e In order to obtain the bound in (2.40c) we used the fact that, for a
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discrete binary-valued random variable S, we have
I(Sr;Yq) = H(Sr) — H(Sr[Yq) < H(Sr) = H(7),

for some 7 := P[S, = 0] € [0, 1] that represents the fraction of time the
relay listens and where () is the binary entropy function in (2.8).
In (2.40d) the maximization is over the set defined by (2.9a)-(2.9¢) and
is obtained as an application of the ‘Gaussian maximizes entropy’ prin-
ciple as follows. Given any input distribution Py, x, s, , the covariance
matrix of (X, X,) conditioned on S, can be written as

— PSve Ay PS,EPT,E
Sp=0 sz PS,ZPT,€ PT,Z ’

Cov [;ﬁ]

with |ay| < 1 for some (Psg, Ps1,Pro,Pr1) € ]Ri satisfying the av-
erage power constraint in (2.9¢). Then, a zero-mean jointly Gaussian
input with the above covariance matrix maximizes the different mutual
information terms in (2.40c). In particular, we obtain

I(XS,XT; Yd’Sr = 0) <log (1 + SP&Q) =: I,
I(XS7X7‘; Yd’Sr = 1) <

= log (1 + 8P,y + 1P,y +2|on|\/SPs . IPM) :

I(X5; Yy, Yq| Xr, Sy = 0) <log (1 + (C + S)(1 — |ao|*)Pso)
< lOg (1 + (C + S)Ps,(]) =: Ig,
I(X87 YVT’a Yd|XT7 ST = 1) < log (1 + S(l - |a1’2)PS,1) = I4a

as defined in (2.10)-(2.13) thereby proving the upper bound in (2.7b),
which is the same as r(C5~HP) in (2.40d).

Regarding (2.7c), the average power constraints at the source and at
the relay given in (2.9c) can be expressed as follows. Since the source
transmits in both phases we define, for some g € [0, 1], the power split
Pso = %, Ps1 = % Since the relay transmission only affects the
destination output for a fraction (1 —~) of the time, i.e., when S, = 1,
the relay must exploit all its available power when S, = 1; we thus
split the relay power as P.g =0, P.1 = ﬁ The cut-set upper bound
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r(CS—=HD) in (2.40d) can be rewritten as

_ . 55
(CS—HD) _ R <1+>
' (%\061I|I,1%}é[071}3 mln{ (7) 7y 10g )
] L SU=B) g, [ 1 SU-H)
o 7)log<1+1—7+ T e
> S(1—
~log <1+ﬁ+ﬁ> + (1 —~)log <1+(1—]a1|2)(ﬁ)>}
Y ¥ T

< max min {7—[( )+ 7 log < + S)
~v€[0,1]

oo (e 5) )
£ )

= max min {27—[(7)+’ylog (v+S)+(1—7)log (1—7 + <\/f—|—\/§>2> )

~v€[0,1]

H(7) +ylog(v+C+5) + (1 —7)log (1 -7+ 5)}
2
<2+ max min{ylog(l%—S)—i—(l—y)log (1+ (\ﬁ—&- \/§) ),
~v€[0,1]
ylog(1+C+S)+ (1 —~)log(1+S5)}
=2+log(1+59) Iél[%}i min{y+ (1 — )by, vb2 + (1 — )}
’Y 9

=2+log(1+59) <1 —i-’yrél[%?i] min {(1 —~)(by — 1),v(b2 — 1)})

=2+1log(1+59) <1 + (b(lbl—_1)11r(b(2b2_—l)1)> : (2.41)

where we defined b; and by as in (2.14)-(2.15), namely

log (1 + (VT + ﬁ)?)
= 1 si I
b1 log (11 5) > 1 since I > 0,
by := log(1+C+5) > 1 since C' > 0.

log (14 5)

Note that the optimal v is found by e%uatlng the two arguments of

the min and is given by 7¢g 1= m
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2.B Proof of Proposition 2

The upper bound in (2.7¢) implies
_ ) log(1+.5 by —1)(by — 1
diT < i, log(1(+ swze) <1 (b(l —1) : (b, —)1)>
e <1 N [Bra/Bsa — 1" [Bsr/Bsa — 1T )
[Bra/Bsa — Ut + [Ber/Bsa — 1]*
[Bra — Bsal* [Bsx — Bsal
[Brd - ﬁsd]+ + [Bsr - Bsd]Jr’

since by — max{fsd, Bra}/Psa and ba — max{Ss, Bsr}/Psa at high SNR,
which is equivalent to the RHS of (2.4).

:ﬁsd +

2.C Proof of Proposition 3

The PDF scheme in [87, Theorem 16.3] adapted to the HD model gives the
following rate lower bound

CUD=RO) > max min {1(Sy; Ya) + 1(Xe, X0s YalSy),

" Puxg,xp,8r
(U Y, |X,, 8) + (X3 YalU, X, 1) }

P ks + (L= )Ie, v + (1= )s |

—=p(PDF=HD) 3 (9.17),

where for the last inequality we let v := P[S, = 0] € [0, 1] be the fraction
of time the relay listens and, conditioned on S, = ¢, £ € {0,1}, we consider
the following jointly Gaussian inputs

> max min {I(()

)Z 1 Psle Prie 1 Psie Prie
Pui ~NLO, [P 1 e SPge 1 | o
PTT,Z pr|£ O‘z 1 pr|£ @y 1

S,=t
In particular, we use specific values for the parameters {psw, Prits Oég}ge{Q,l},
namely

Lol +0=0, (2.42a)
ap = 0 and either |,05|0|2 =1- \,07«|o!2 =0

or |pyol® = 1= lpgol” =0, (2.42b)
Pt = 0% pop = 1. (2.42¢)
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With these definitions, the mutual information terms IO(PDF), Is,..., I3
in (2.17) are
I(XS,XT; Yd’Sr = 0) = log (1 + SP&()) =I5,
I(X4, X1 YglS, = 1) = log (1 + 8P,y + 1P, +2|os|/SP, 4 IPTJ) = I,

(note Is = I and Ig = Iy because of the assumption in (2.42a)); next, by
using the assumption in (2.42b), that is, in state S, = 0 the inputs X and
X, are independent, and that either U = X, or U = X,., we have: if U = X
independent of X,

I(U; Y, X, Sr = 0) + I(X,: Yy|U, X, S, = 0)
= [(Xs;VCX, 4 Z,| X, S, = 0) + I(Xs; VS X, + Z4g| X5, X, S, = 0)
=log (1+ CPsp),

and if U = X, independent of X

I(U;}/;“|XT‘3 Sy = 0) + I(Xs;Yd|U7 X, Sr = 0)
= I[(X;;VOXs + Z| X, Sp = 0) + [(Xs; VS X, + Zyg| X, Sy = 0)
=log (1+ SPsp);

therefore under the assumption in (2.42b) we have
I(U; Y, | X, S, = 0)+1(Xs; Yg|U, X, S = 0) =log (1+max{C, S} P ) =:1Ir;

next, by using the assumption in (2.42c), that is, in state S, = 1 we let
U = X,, we have

IU;Y,|X,, S, = 1) + I(X: YU, X, S = 1)

= I(X); Zo| X0, Sp = 1) + I(Xs; VS X + Z4| X1, Sp = 1)
= [(Xg;VSXs + Zg| X, Sr = 1)

= log (1 +S(1 - ]a1|2)PS71) =: I3,

(note I7 < I3 and I3 = I); finally

I(Sr;Ya) =E [log ijYdJ —[vlog(vp)+(1—7)log(vi)+log(me)] =: I(SPDF),
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where fy,(-) is the density of the destination output Yy, which is a mixture
of (proper complex) Gaussian random variables, i.e.,

Frat) = et L LT i e

g U1
vo := Var[Yy|S, = 0] = 255, vy := Var[Y,]S, = 1] = 2.
Note that ISPDF) = 1(S;;Yy) < H(S;) = H(y). This proves the lower bound

in (2.17).
Next we show how to further lower bound the rate in (2.17) to obtain
the rate expression in (2.18). With the same parameterization of the powers

as in Appendix 2.A, namely P, = %, P = %, P.o=0, P1= ﬁ, we
have that
p(PDF—HD) _ max in {I(()PDF)—F vlog (1 + BS) +
v€[0,1]|a|<1,5€[0,1] &
S(1-p) I S(1-p) I
—i—(l—y)log(l—l— [ +1—’y+2|a| T 1)
1 S(1—
vlog <1 + S max {Cf, Sﬂ}) + (1 —7)log <1 +(1— \a\Q)(l_f)> }
: BS> ( SQ-p8) 1 )
> max minqvylog | 1+4— | + (1 —~v)log [ 1+ + ,
velo.1],8€[0.1] {’Y © ( y ) T (1= 1-v
1 SA-5)
log <1+max BC, BS > +(1—7)lo (1—1—)}
. ~ max (5,35} ) + (1 =) log 1+ =
> m{fg;i]min{fylog(l +S)+(1—7)log(1+S+1),
'YE b
vlog (1 +max{C,S})+ (1 —~)log(1+5)}
=log (1 +5) max min{y + (1 —v)c1,ye2 + (1 — )}
76[071]
=log (1+5) <1 + max min {(1 —v)(c; — 1),v(c2 — 1)}>
~v€[0,1]
(c1 —1)(c2 — 1) )
=log(1+5)(1 2.43
ox(+5) (14 LM =0 (2.43)

where we defined ¢; and ¢y as in (2.24)-(2.25), namely

- log(1+1+5)
’ log (14 5)
o log (1 + max{C, S})

log (1+95)

> 1 since I > 0,

> 1 since C' > 0.
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Notice that ¢; < b;,i = 1,2, where b;,i = 1,2, are defined in (2.14)-(2.15).

The optimal v, indicated by vppp is given by
* — (Cl 7 1)

YPDF * (01—1)+(02—1)

Remark 4. A further lower bound on the PDF rate r(PPF=HD) iy (2.17) can
PDF)

e [0,1].

be obtained by trivially lower bounding I(() > 0, which corresponds to a

fixed transmit/receive schedule for the relay.

2.D Proof of Proposition 4

The lower bound in (2.18) implies
_ . log(1+ S c1—1)(ea —1
dHPmRO) > SNI%li)nJroo log (1(+ SN)R) <1 (c<1 —1) :f (co —)1)>
—h <1 n [Bea/Bsa — 1T [Bsr/Bsa — 1]* )
’ [Bra/Bsa — 1T + [Bsr/Bsa — 1]
[Bea — Bsa] ™ [Bsr — Bsa]
[Bra — Bsa] ™ + [Bse — Bsal

since ¢; — max{Ssd, Bra}/Psa and ca — max{SBs, Bsr}/Fsa at high SNR,
which is equivalent to the RHS of (2.4).

:/Bsd +

2.E Proof of Proposition 6
The rate in (2.39) can be further lower bounded as

p(LDAIZHD) > 14 10g (14-9) <1 + (0(303—_1)110(464__1)1)> ’

log(1+14S)
log(1+5)

) log (1+ S cs—1)(cqs — 1)
d=z SNI%ILnJroo log (1(—1— SN)R) <1 * (0(3 — 1)+ (ca — 1)>
'y <1 n [Bea/Bsa — 1T [Bse/Bsa — 1] )
° [Bra/Bsa = 1T + [Box/Bsa — 1] T
[Bra — Bsal ™ [Bse — Bsal
[Bra — Bsal ™ + [Bse — Bsal*

since ¢3 — max{Ssd, Bra}/Psa and ¢4 — max{Ssq, Bsr}/Psa at high SNR,
which is equivalent to the RHS of (2.4).

log(1+C+5S)

Tog(118) - The rate above

where c3 := ¢ = and ¢4 := by =

implies

:Bsd"i_
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2.F Proof of Proposition 7

Consider the upper bound in (2.7a) and the lower bound in (2.16). Since
the term I(Xs, X,,Sy;Yy) is the same in the upper and lower bounds, the
gap is given by

GAP <I(Xg;Y,, Yyl X, Sr) — I(U; Y, | X, Sy) — I(Xs; Yyl X, S, U).
Next we consider two different choices for U:

e For C < S we choose U = X, and
GAP < I(Xs§Y:raYd’Xr>Sr) - I(X55Yd‘Xr7Sr>
:I(Xs;Y;“|XT>ST>Yd)
=P[S, = 0](Xs; VCX, + Z| X,, Sy = 0,V S X, + Zy)

+P[S, = I(Xy; Z| Xy, Sr = 1, VSX, + Zg)

CPSO
=P|S, = 0]1 1+ —
[Sy = 0] og( + 1+ 5P,

SPSO
<1-I 1+ —F——
- Og< +1+SP570>

)+IP’[ST:1]-O

<1 bit.

e For C > S we choose U = X,.S, + X5(1 — S;) and
GAP < I(Xs; Y, Yd‘Xm Sr) - I(X’I‘ST + Xs(l - Sr); Y;"XT; Sr)
— (X Y| X,, Sr, X5 4+ X,(1=8,))
:P[ST = 0] (I(Xs; Y;"?Yd‘XT? Sy = 0) - I(Xs§ }/T'|XT7 Sy = O))
+PS, = 1] (1(Xe3 Y3, Yal X, S = 1) = I(Xe Yal X, S = 1))
=P[S, = 0] I(Xy; Yy|X,, S, = 0,Y;) + P[S, = 1] I(Xs; Y, |X,, S, = 1,Yy)
=P[S, = 0]I(X,;VSX, + Z4X,,5, =0,V/CX, + Z,)
+P[S, =1] I(Xs; Z|X,, S, =1, VSX, + Zy)

SP;o
= r = - ]P> 7‘:1 .
P[S, = 0] log <1+1+C’Ps,o>+ [S ]-0
CPSO
<1- 1 RN b
= 1°g< +1+C’P570>

<1 bit.
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2.G  Proof of Proposition 8

Consider the upper bound in (2.7b) and the lower bound in (2.17). Recall
that Iy = I5 Is = Ig I3 > I7 Iy = Iz and therefore

GAP < max {’H(v) Ayl + (1 =)L —yl5 — (1 =),
yIs+ (1 — )y —~vI; — (1 — fy)Is}

<max<1,lo L+ CPyo + 5P
X
- A max{C, S}P;

14+ 2max{C,S}Psp ;
< 1,1 7 =1 .
< maX{ ) Og( 1+ max{C, S} P ¢ )} =i

2.H Proof of Proposition 9

Consider the upper bound in (2.7c¢) and the lower bound in (2.39). We
distinguish two cases:

e Case 1: § > C. In this case r(PAI=HD) — 1o0(1 4 ). The gap is
GAP < p(CS—HD) _ ,.(LDAi-HD)

(by —1)(b2 — 1)
(b1 = 1)+ (b2 — 1)
<2+log(1+5) (b2 — 1)

<2+4log(1+45S)

=2+ log <1+1SS> < 3 bits.

2
e Case 2: § < (C. First, by noticing that log (1 + (\/.7+ \/E)
log (1 + 1+ S)+1, we further upper bound the expression in (2.7¢c) as
<log (1 + H%) + 1) log (1 + H%)
10g(1+1+%> +1+log(1+1+%>

Next we further lower bound 'PA=HD) i (2.39) as

p(CSHD) < 9 4 log (14 S) +

p(LDAI=HD) - log (14 S) + log( LS) <log (1 T 1S ) 1>.
log< %)—Hog( —i—%)
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Hence, with = = log (1 + 14%5) ,y = log (1 + H%), we have

GAP < p(CS-HD) _  (LDAi~HD)

(z+1y zy-—1)
- r+1+y r+y

< 3 bits.

2.1 Achievable rate with CF

Proposition 12. The capacity of the Gaussian HD relay channel is lower
bounded as

CHD=RC) » .(CF-HD) ._ maxmln{ ) 4 Z Yijlo,ij, Z Yij Lo, m}

(4,5)€[0:1]2 (i,9)€[0:1]2
(2.44a)
where the maximization s over
Yij € 0,1] : Z Yij =1, (2.44b)
(i,5)€[0:1]2

Pi>0: > vy Py<l, (2.44¢)

(,5)€[0:1]2
Prij=0: > i Py <1, (2.44d)

(4,5)€[0:1]2

and where the different mutual information terms in (2.44) are defined next.

Proof. The CF scheme in [87, Theorem 16.4] adapted to the HD model gives

HD—-RC . S
CUHPTHO) > max min { 1(X; ¥, Yal[ X, 5,1, Q).
PQPx QP 5 110P D, | 1xy, 501, v7n, @ | RIS2

1(Xe, [Xr, S YalQ) = 1V V2| Xo, [X, 8], Y, Q) }

. max min { 1(X; ¥y, YalQ, Sr, X,),
PQPSHQPXlePXTISr QPy 1%, vr 50,07 1QIS2

10873 Yal Q) + 1(Xs, Xr3 YalSr, Q) = (Y23 Vi X, X, Ya, 51, Q) }
> p(CF=HD) 41y (2.44a), (2.45)

where the mutual information terms {Ig;;, 1045}, (i,7) € [0: 1]*> and I(gCF)
in (2.44a) are obtained as follows. We consider the following assignment on
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the inputs and on the auxiliary random variables for each (i, j) € [0 : 1]?

P[Q =i, S, = j] = vi; such that (2.44b) is satisfied,

), = 0[5 22))
X/ lg=isi=j L0 P

such that (2.44c) and (2.44d) are satisfied,
f’ 1%, Y @=i5r=i = Yo + Zrij)
Zyij ~ N(0, Z]) and independent of everything else,

and in order to meet the constraint that X can not depend on S, conditioned
on () we must impose the constraint that in state ) = ¢,.5, = j the power
of the source only depends on the index i. Then for each (i,7) € [0 : 1]?

Yd’X’HQ 7’ S _])

X, Y,

< ( _§)> P57i> = IlO,ijv (246)
U

sy Xp;

YalQ =i, 8 = j) — I(Yy; V2| X, X0, Y0, Q = i, S, = j)

. 1
= log (1+5Ps;+1jP,,j)—log (1 + (12> =: 1g,ij, (247)
ij
CF)
rydd fY’U 0g vl] oglme
I(8y; Y4l Q) = 1 : ~ log(me)
1
E |1 =0 Ell =1
+ (Yo0+"01) [og Fo) ‘ Q ] + (y10+711) [og ) ‘ Q ] ,
where
Yoo L g vor L e
v N _ o = . o042 " o ", teC,
dlg=0 ~ fo(t) :== Yoo + Yo1 V0o Yoo + Yo1 Vo1
Mo 1 e g2} LI
Yaloor ~ — 10— elPmoy Tl e,
dlo=1~ f1(t) := Y10 + Y11 TU10 Y10 + 711 T

Vij = Var[Yd|Q = Z,ST —j] =1 +S Psi +Ij Prij-

This proves the lower bound in (2. 44) as a function of UU, (i,7) € {0,1}2.

In order to find the optlmal O'U, (i,5) € {0,1}? we reason as follows.
Io,;j in (2.46) is decreasing in ai while Iy ;; in (2.47) is increasing. At the
optimal point these two rates are the same. Let

CPs; 1
C; =1+ —"2 gyi=—, I' =1(5,X,:Y,
(2 + 1+SP571‘, xl 0_1'207 ( T T d‘Q)?
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and rewrite the lower bound in (2.44) as
r(CF=HD) — (355 4 y01) log(1 + SPs0) + (10 + 711) log(1 + SP; 1)
— 00 log (1 + zg) — v10log (1 + 1)
+ min {700 log (1 4+ zoCp) + v10log (1 + z,C1) I’}.

The solution of

min {700 log (1 + z0) + 10 log (1 4 1) }

2
(wo,w1)ERY

subject to oo log (1 + 20Co) + Y10 log (1 + 21C1) = I’

can be found to be x; = [?lc_i;)l(];, i € [1 : 2], with n < 1 such that
700 log (1 + 20Co) + Y10log (1 + 21:Cy) = I'. O

Remark 5. For the special case of Q = S,., that is, ISCF) = I(S;YyQ) =
I(Q;Y4]Q) = 0, the achievable rate in Proposition 12 reduces to

p(CFHD) > max  min {fng + (1 =)o, v + (1 - ’Y)Il?}, (2.48a)

~ (vP)E0.1]?
1
Iy :=log (1+ SPs) — log (1 + 02> , (2.48b)
0
1
L :=log(1+SPs1 +IP,1)—log (1 + 02>, (2.48¢)
1
C
I =1 1+ SPs ——Pso |, 2.48d
11 08;( + ,0+1+U(2) ,0) ( )
112 = IOg (1 + SPS,I) s (2486)
B+1
02 = J[ ——, 01 =400, (2.48f)
(1+A4)'—1
IP, CPsp
= = 2.48
1+SPS’17 1+SPS70’ ( g)
1-— 1
PS,O - é7 Ps71 - 7187 Pr,l - T (248}1)
g 1 —v -y

where the optimal value for o2 in (2.48f) is obtained by equating the two
expressions within the min in (2.48a).

Proposition 13. CF with deterministic switch achieves the gDoF upper
bound in (2.4).



2.I Achievable rate with CF 63

Proof. With the achievable rate in Remark 5 (where here we explicitly write
the optimization with respect to 0(2)) we have that

1
p(CF-HD) > max min {Vlog <1 + ﬁS) —vlog <1 + 2) +
76[071]’0320766[071} Y UO

B (1-75)S I
+(1 7)log<1+ 1= +1—’Y ;
cp Sﬁ) ( (1—5)5>}

log(1l+ ——F%—+— | +1—7)log|1+-———"—
! g( (L+o5)y v (=) los 1—~

f=

27 max min{ylog(1+S)+ (1 —v)log(1+ S+ 1),
7€[0,1],03>0

C 1
’ylog<1+ 2+S>+(1—y)log(1+S)} 'ylog< 2)
1+ 03 on

1
= max [log(l—l—S) min {y + (1—7v)cs,vcs + (1—7)} — vlog <1+2
v€[0,1],03>0 99
lo 1+
T=YE -1 -1 g
>CF max log (1+5) 1+((05 1)126 i) 1— C )
02>0 c5— c6—
0= 5 6 log (1+ Tro2) (19
og=1 (65 — 1)(66 — 1)
> —1+41log(1+5)(1+ : (2.49)
c+9) (14 55 )

where we defined c¢5 and cg as

log(14+1+25)

cp =c1 = log (11 5) > 1 since I > 0 and as in (2.24),
log(1+ Tho? +S>
= 70 1 si C>0
Ce log (1 n 5’) > 1 since C > 0,
and where
(s —1)

er = (cs = 1)+ (c6 — 1) < b

By reasoning as for the PDF in Appendix 2.D, it follows from the last rate
bound that CF also achieves the gDoF in (2.4). O

Remark 6. For the special case of Q = (), i.e., the time-sharing variable
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is a constant, the achievable rate in Proposition 12 reduces to

(CF—HD) max min {I (Xs;fﬁ«,YdISer> ;

PXSPXT’STP?H[XWSW],YT

L(Xy, Xp, 8y Ya) = 1 (Y VIS0 X0, X, Ya) |

: C
> ’YGI[I(}’E}T;QHHH {ylog (1 + S+ . +02> +(1—7)log(1+459),

1
I(Sr;Yq) +vlog(1+S) —~log (1+ 02>

H-tog (1454 )}

With Q = () the source always transmits with constant power, regardless of
the state of the relay, while the relay sends only when in transmitting mode.
Thus with Q = ) there is no coordination between the source and the relay.

2.J Proof of Proposition 10
With CF we have that
GAP < max {H(7) + 711 + (1= 7)o = vly — (1= 7)o,

I3+ (1 =) Iy — vIi1 — (1 — 7)112}

1
<m {7—[ )+ vlog (1+SP;s ) + 7vlog < 02) —vlog (14+5Ps )
0
+ (1—7)log (1+ SP, 1+ IPM)Q)—(l—fy) log (14+SPs1+1P;1),
vlog (1+ (C + S)Psg) + (1 —7)log (1 + SPs 1)+

CP;
_rylog(l—i—SPso—i— 0)—(1—7)10g(1+SP571)}
1—|—UO

1
< max{’H(v)+(1 — )+ ~vlog <1+ 02> ,
0

% Cp
1—1—0'8 5,0

1 —I—SPS,(] +

vlog | 1+

1+ 2CPSO

1

< maX{’H(v) +(1—=7)+~log <1 + 02> ,vlog (1 +03)}
0

< 1.6081 bits,
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) ) H(+1-7) )
where for of we chose the value oj = 2 v by equating the two ar-

guments of the max (this is so because H(y) + (1 — ) + vlog (1 + %) is
0

decreasing in 0(2], while log (1 + 0(2)) is increasing in 02). Numerically one

can find that with the chosen o3 the maximum over « € [0,1] is 1.6081 for

v = 0.3855. Note that by choosing 0(2] = 1 the gap would be upper bounded
by 2 bits.



Chapter 3

The Half-Duplex
Multi-Relay Network

In this chapter, we study HD relay networks where the communication be-
tween a source and a destination is assisted by N HD relays. Our main
contributions can be summarized as follows: (i) we show that, for the Gaus-
sian noise case, the cut-set outer bound is achievable to within a constant
gap by NNC; (ii) we prove that, for any memoryless HD N -relay network
with independent noises and for which the cut-set outer bound is achievable
to within a constant gap under certain assumptions, the (approximately) op-
timal schedule has at most N + 1 states, out of the 2N possible ones, with
a strictly positive probability; (iii) we show that the gDoF of the Gaussian
network is the solution of a LP, where the coefficients of the linear inequality
constraints are the solution of several LPs referred to as the MWBM prob-
lem; this result also allows to characterize the gDoF of broadcast networks
with relays and to solve user scheduling problems; (iv) we apply the results
to networks with multi-antenna nodes, where the antennas at the relays can
be switched between listen and transmit state independently of one another.

3.1 System model

The general multi-relay network, defined in Section 2.1.1, consists of N HD
relay nodes (numbered 1 through N) assisting the communication between a

66
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source (node 0) and a destination (node N+1), through a shared memoryless
channel. The input-output relationship of a multi-antenna complex-valued
power-constrained Gaussian HD relay network generalizes (2.1) as follows !

Y = Hogx + 7 € CmrorFma+)xl (3.1a)
H. = Imtot - S Omtot ><m1\r+1:| H |: S Omtot Xmo (3. 1b)
o OmN+1 XMtot ImN+1 Omo XMtot Imo ’
where

e mg is the number of antennas at the source, mj is the number of
antennas at relay k € [1 : N| with myo := Zszl my (i.e., Mot is the
total number of antennas at the relays), and mpy41 is the number of
antennas at the destination.

e y:=[y1;...;YN;YN+1] € C(miortmn11)x1 ig the vector of the received
signals with y; € C™>*! i € [1 : N + 1] being the received signal at
node i.

® X := [X1;...;XN;XN+1] € C(miot+mo) X1 ig the vector of the transmit-

ted signals where x; € C™*1 i € [0 : N] is the signal transmitted by
node i (xxn4+1 is the channel input of the source).

© z:=[21;...;2ZN;2ZN+1] € Cmiottmn41)X1 g the jointly Gaussian noise
vector which is assumed to have i.i.d. A(0,1) components.

e S is the block diagonal matrix of dimension myq X Mot to account for
the state (either transmit or receive) of the relay antennas; in particular

Sl 0m1><m2 e Om1 Xmpy
Omgxm1 SQ cee 0m2><mN
S := . )
OmNXm1 OmNXmg e SN

S; = diag[Si,l, ey S’L,mz} S [0 : 1]mi,

where S;; = 1 if the j-th antenna of the i-th relay is transmitting
and S;; = 0 if it is receiving, with j € [1 : m;], ¢ € [1 : N]. In this
model the antennas of each relay can be switched independently of one
another to transmit or receive mode for a total of 2"t possible states.

'Recall that, for notation convenience, the input at the source / node 0 is denoted as
Xn~41 rather than Xo.
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o H e Clmn+1tmiot)x(motmiot) ig the constant, hence known to all nodes,
channel matrix defined as

H H
H . — r—r s—>r:| ’ 3.9
|:Hr—>d Hs—)d ( )

where:

— H,_,, € C™wotxMiot jg the block matrix which defines the network
connections among the relays. In particular,

* HLQ . Hl,N
H271 * . H27N
HI‘—)I‘ - . . . . Y
HN,l HN2 e *

)

with H; ; € C™>*™i | (4,5) € [1 : N]?, being the channel matrix
from the j-th relay to the ¢-th relay. Notice that the matrices on
the main diagonal of H,_,, do not matter for the channel capacity
since the relays operate in HD mode.

— Ho = [Hi nvy1; Hong1s ..o s Hy ] € C7etX0 g the matrix
which contains the channel gains from the source to the relays. In
particular, H; y4q € C™*™0 4 € [1 : N]J, is the channel matrix
from the source to the i-th relay.

- H,_q:= [HN+1,1, HN+172, e ,HN+17N:| € C™MN+1XMot jg the ma-
trix which contains the channel gains from the relays to the des-
tination. In particular, Hyy;; € C"N+1X™i 4 ¢ [1 : NJ, is the
channel matrix from the i-th relay to the destination.

— H,_,q € C™N+1X™0 ig the channel matrix between the source and
the destination.

3.2 Background and overview of the main results

In this section we first briefly overview some general definitions and prop-
erties on submodular functions [88], LPs [89] and graph theory [69, 70, 90]
that are crucial for the proof of our main results, which are outlined at the
end of this section.

Definition 3 (Submodular function, Lovész extension and greedy solution
for submodular polyhedra). A set-function f : 2V — R is submodular if
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and only if, for all subsets A1, As C [1 : N|, we have f (A1) + f(A2) >
fFATUA) + f (A1 N Ay) 2,
Submodular functions are closed under non-negative linear combinations.
For a submodular function f such that f(0) = 0, the Lovdsz extension is
the function f: RN — R defined as

f(w) = xreng();) wix, VYweRY, (3.3)

where P(f) is the submodular polyhedron defined as

P(f) := {XERN > @i < f(A), VAC [1:N]}. (3.4)

€A

The optimal x in (3.3) can be found by the greedy algorithm for submodular
polyhedra and has components

Te, = f({m1,...,m}) — f({m,...,miz1}), Vi€ [1: N], (3.5)

where m is a permutation of [1 : N such that the weights w are ordered as
Way > Wry > ... > Wy, and where by definition {my} = 0.
The Lovadsz extension is a piecewise linear convex function.

Proposition 14 (Minimum of submodular functions). Let f be a submod-
ular function and f its Lovdsz extension. The minimum of the submodular
function satisfies

AEH[EIN] FA) = wg[lol:%N fw) = wg[l(irll}N Fw),

i.e., f(w) attains its minimum at a vertez of the cube [0,1].

Definition 4 (Basic feasible solution). Consider the LP

maximize clx

subject to Ax<b x>0,

where x € R™ is the vector of unknowns, b € R™ and ¢ € R" are vectors
of known coefficients, and A € R"™*™ is a known matriz of coefficients. If
m < n, a solution for the LP with at most m non-zero values is called a
basic feasible solution.

2A set-function f is supermodular if and only if — f is submodular, and it is modular
if it is both submodular and supermodular.
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Proposition 15 (Optimality of basic feasible solutions). If a LP is feasible,
then an optimal solution is at a vertex of the (non-empty and convex) feasible
set S = {x € R": Ax < b,x > 0}. Moreover, if there is an optimal solution,
then an optimal basic feasible solution exists as well.

Proposition 16 (Saddle-point property). Let ¢(z,y) be a function of two
vector variables x € X and y € Y. By the minimax inequality we have

max min ¢ (x < min ma T
yejgcwexcﬁ( ,y)_mex y€§<¢( 'Y)

and equality holds if the following three conditions hold: (i) X and ) are
both convex and one of them is compact, (ii) ¢ (x,y) is convex in x and
concave in y, and (i4i) ¢ (x,y) is continuous.

Definition 5 (Bigraph, matching, assignment problem, Hungarian algo-
rithm). A weighted bipartite graph, or bigraph, is a graph whose vertices can
be separated into two sets such that each edge in the graph has exactly one
endpoint in each set. A mon-negative weight is associated with each edge in
the bigraph. The weight matriz B is defined as follows: there is one set of
n1 nodes, where ny is the number of rows in B, and another set of ny nodes,
where ny ts the number of columns in B; the element [B];; is the weight of
the edge between nodes i and j. A matching, or independent edge set, is a
set of edges without common vertices. The MWBM problem, or assignment
problem, is defined as a matching where the sum of the edge weights in the
matching has the maximal value. The Hungarian algorithm is a polynomial
time algorithm that efficiently solves the assignment problem.

In the following we overview our main results on the HD multi-relay
network. In particular, for simplicity of presentation, we state the results
for the particular case of single antenna nodes, i.e., m; = 1, Vi € [0 :
N +1]; however, in the rest of the chapter we show how each of these results
generalizes to the case of multi-antenna nodes. Our main results of this
chapter are summarized as follows °:

Theorem 3. The cut-set upper bound on the capacity of the Gaussian HD
relay network with N relays is achievable by NNC with deterministic switch
to within

GAP < 1.96(N + 2) bits. (3.6)

3We refer to Definition 1 and Definition 2 in Section 2.2 for the concepts of gDoF and
capacity to within a constant gap, respectively.
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Theorem 4. For any general memoryless HD relay network for which:

1. independent inputs are approzimately (i.e., to within a constant gap)
optimal in the cut-set outer bound, that is there exists a product input

distribution
PX[I:N+1]|S[1:N] = H PX [S[1:n] (3~7)
1:N+1]
for which we can bound the capacity CHP—RN) 44

-G < ¢(HD—RN) <C 4Gy, Ci= max min 154 ), (3.8)
Pspy.n| AC[1N]

where G1 and Go are non-negative constants that may depend on N
but not on the channel transition probability and where

I,(fm) =1 (XN+17XAC'YN-I—laYA‘XAaS[l:N]) (3.9)
= D A fi(A (3.10)
se[0:1]N
with
Ao i =PSpa =5 €[0,1]: Y A=1, (3.11)
se[0:1]NV
fs(A) =T (Xny1, Xae; Yng1, YalXa, Spony = ), (3.12)

2. the “noises are independent”, that is

]P)Y[I:N+1]|X[1:N+1]7S[1:N] = H IP)Yi|X[1:N+1],S[1:N]’ (3.13)
i€[1:N+1]
3. the functions in (3.12) are not a function of {\s,s € [0 : ]N}

they can depend on the state s but not on the {\s, s € [0: 1]V},

then simple relay policies are (approximately) optimal in (3.8), i.e., the (ap-
prozimately) optimal probability mass function ]P)S[l:N has at most N + 1
non-zero entries / active states.

]
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Theorem 5. The gDoF dMP—RN) of the Gaussian HD multi-relay network
1s the solution of the following LP

maximize{f’ x} (3.14)
subject to _TA Low x<f, x>0, (3.15)
1L, 0

where xT := [Ayect, dTPENT] with Ayeet 1= [Ns] € RiXZN, 7 .= [O2TN, 1] and
where the entries of the non-negative matriz A € R2%2Y o be found by
solving 2V 1 (2N + 1) independent assignment problems.

Note that, in the theorems above and in the rest of this chapter as well,
we use interchangeably the notation s € [0 : 1]V to index all possible binary
vectors of length N, as well as, s € [0 : 2V — 1] to indicate the decimal
representation of a binary vector of length V.

3.3 Capacity to within a constant gap

This section is devoted to the proof of Theorem 3. We first adapt the cut-
set upper bound [16] and the NNC lower bound [20] to the HD case by
following the approach proposed in [18]. We then show that these bounds
are at most a constant number of bits apart. In particular, since the unicast
Gaussian network with HD relays is a special MGN with K = N + 2 nodes
(one source, N relays, and one destination), we first prove that for a single-
antenna complex-valued MGN with HD power-constrained nodes the cut-set
upper bound can be achieved to within 1.96 bits/node (while for the FD case
the gap is 1.26 bits/node [20, Theorem 4]).

3.3.1 Channel Model

A MGN with K nodes 4 is defined similarly to the multi-relay network
introduced in Section 3.1 except that now each node k € [1 : K|, with
channel input (X, Sk) and channel output Y, has an independent mes-
sage of rate Ry to be decoded by the nodes indexed by D C [1 : K].
The channel input/output relationship of this HD GMN reads Y = (Ix —
diag[S]) H diag[S] X + Z. We let Ciuiticast e the capacity region.

“Here, for notation convenience, we number the nodes from 1 to K, rather than from
0toN +1.
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3.3.2 Inner Bound

The capacity of a HD GMN can be lower bounded by adapting the NNC
scheme for the general memoryless network from [20] to the HD case by
following the approach of [18]. In particular, NNC achieves the rate region

Crulticast = U { Z R; < I(X.AC; }/}A|X.Aa S[l:K}y Q)
ieAc

~I(Yae; Yae |V, X Sk Q)

such that A C [1: K], A° # 0, AOD%(Z)},

where Y}, represents a compressed version of Y, for k € [1 : K], and where
the union is over all input distributions that factorize as

Pq H PkaSk|QP?k|Yk,Xk’Sk:Q
k=1

and satisfy the power constraints. We consider jointly Gaussian inputs so
as to get a rate region similar to [20, eq.(20)]. In all states s € [0 : 1]¥,
we consider i.i.d. N (0,1) inputs, time sharing random variable @ set to
Q = Sn.k (Wlth this choice the nodes can coordlnate) and compressed

channel output Yk =Y.+ Zk, ke [l: K], for Zk ~ N@ 0?) independent
of all other random variables and where the variance of Zj does not depend
on the user index k. With this the NNC achievable region evaluates to

1
I|A|+ H.ASHAS

Cmulticast 2 U Z R; < Z )\ log

i€ A s€[0:1]K

1
—|AC| log <1 + 2)
g

such that A C [1: K], A° # 0, AHD#Q)} , (3.16)

where the union is over all A, := P[S;.) = s] € [0,1], Vs € [0 : 1]¥ :
256[0:1“&\5 = 1 and over all 0> € R", and where the matrix Hy, €

CHAXIT is defined as Ha s := [(Ix — diag[s]) H diag[s]] , .-
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3.3.3 Outer Bound

The cut-set upper bound, adapted to the HD case by following [18], gives

Cmulticast - U { Z RZ < I(X.Acv SAC; YA|XA’ S-A)
i€ A°
such that AC[1: K], A°# 0, AND#0D},

where the union is over all joint input distributions Py« gx and satisfy the
power constraints. Similarly to [20, eq.(19)], we upper bound each mutual
information term as

I(X ac, Sac; Ya|Xa,S4)
= I(Sae; Ya| X, Sa) + I(X ae; YAl X a5 Sixp)

<SH(Sas)+ Y As log [T + Ha K HY | (3.17a)
s€[0:1]K

1
< | A% log(2) + Z s log ‘IA + ; HA’SHJIL{S

s€[0:1]K
1 17 v o A
se[0:1]K max{;, WHAS]}

where: (i) K4, represents the covariance matrix of X 4c conditioned on
Sp:x) = 8; (ii) the inequality in (3.17a) follows since conditioning reduces
the entropy, since the entropy of a discrete random variable is non-negative,
and by using the ‘Gaussian maximizes entropy’ principle; (iii) the inequality
in (3.17b) follows since the entropy of a discrete random variable can be

upper bounded as a function of the size of its support and from [20, Lemma
1] for all v > e — 1. Finally, since the function % in (3.17b) is
decreasing in z, the function in (3.17b) attains its maximum value when

i i ; B A ¥ | I |A]
rank[H 4 ;| is maximum, i.e., when z = rank[Has] = o minf|ALAT) from
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which it thus follows that

Crnulticast g U Z Rz S ’Ac| log(2) + Z )\s log
i€ Ac s€[0:1]K
log (emax {1,% m})
+|A . e
max {? 7min{|A|,|Ac|}}
such that A C [1: K], A°# 0, AND # (i} (3.18)

1
L4+ p” H., HY

holds, where the union is over all Ay := PS5 = s] € [0,1], Vs € [0: 1] :
Zse[m]K As = 1 and where the parameter v > e — 1 can be chosen so as to
tighten the RHS of (3.18).

3.3.4 Gap

We now proceed to bound the worst case gap (over A) between the cut-set
upper bound in (3.18) and the NNC lower bound in (3.16) (recall that the
parameters v and o2 can be chosen so as to tighten the bound). By choosing
— A7
- K

02 =~ —11n (3.16) and by defining p € [0,1], the gap is given by

GAP < mi 1 2y
—_— min max O, E——
K 7 y>e-1pue0,1] poe v—1

ppomin {2 L= Uy (e Lo TR
e I min{s, 1 — p}

< 1.96 bits/node,

where the last inequality follows by numerical evaluations. The gap result
in Theorem 3 follows by substituting K = N + 2.

The difference between the HD and the FD case is the factor 2 (inside the
logarithm) for the HD case. Also notice that the HD gap of 1.96 bits/node
is smaller than (14 1.26) bits/node where 1.26 bits/node is the FD gap [20]
and the extra 1 bit/node is due to random switch.

Remark 7. The gap in Theorem 3 improves on the previously known gap
result of 5N bits [28]. O

Remark 8 (Single relay case). The gap result in (3.6) for N = 1 gives GAP <
5.88 bits, which is greater than the 1.61 bits gap we found in Chapter 2. This
is due to the fact that the bounding steps in the special case of N = 1 are
tighter than those we used here for a general MGN with K nodes. Notice also
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Figure 3.1: Gap in (3.6) (dash-dotted curve), gap in (3.6) specialized to the
HD diamond network (solid curve) and gap in [1] (dashed curve) for the HD
diamond network.

that for a single relay, PDF is optimal to within 1 bit (see Chapter 2). PDF
has been extended to a general HD multi-relay network in [91]. However,
to analytically evaluate this achievable rate and show that it achieves the
cut-set upper bound to within a constant gap seems to be a challenging task,
which is the main motivation for considering NNC here. O

Remark 9 (Diamond networks). A smaller gap than the one in (3.6) may
be obtained for specific network topologies. For example, in [25] and [26]
it was found that for a Gaussian FD diamond network with N relays the
gap is of the order log(NN), rather than linear in N [20]. Moreover, for a
symmetric FD diamond network with N relays the gap does not depend
on the number of relays and it is upper bounded by 3.6 bits [27]. The key
difference between a general relay network and a diamond network is that
for each subset A we have that rank[H 4] < 2; hence in (3.17b) we can use
rank[H 4] < min{|.A|, |.A°|,2}. With this and by numerically evaluating the
resulting gap we obtain the result plotted in Figure 3.1. From Figure 3.1,
we observe that the gap for the HD diamond network is in general smaller
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than the one computed for the general HD relay network; this is in line with
what happens in FD. However, in FD for the diamond network the gap is
logarithmic in N [25], [26], while the gap in Figure 3.1 (solid curve) still
grows linearly with N. This is due to the fact that the HD cut-set outer
bound, as opposed to the FD one, contains the entropy of the state vector,
which is upper bounded by the uniform distribution over all the possible
states; this term contributes linearly in the number of nodes to the overall
gap. Moreover, from Figure 3.1 we observe that our gap (solid curve) is
larger than the gap of order N + 3log(N) from [1] (dashed curve). We
believe that the reason is because our gap has been computed as a special
case of a general HD MGN while the one in [1] has been specifically derived
for HD diamond relay networks. O

Remark 10. We argue here that Theorem 3, valid for Gaussian HD relay
networks with single-antenna nodes, gives a constant gap result also for
the case of multiple-antenna nodes. Actually, Theorem 3 holds for the more
general MGN in which one has K = N +2 HD nodes (N relays, 1 source and
1 destination); thus, we shall argue that the gap result for the general single-
antenna MGN extends to the multiple-antenna case. The key observation
is to consider a MGN with multiple-antenna nodes as a new MGN with
single-antenna nodes, where: (i) each node in the new MGN corresponds to
a different antenna in the original MGN model and (ii) in the new MGN, the
links connecting the nodes corresponding to different antennas at the same
node in the original MGN are of infinite capacity. Now, since our original
gap result applies to the new MGN (as the gap result in Theorem 3 holds
uniformly over all channel gains), then for the original MGN we have that
GAP < 1.96 M.t bits per channel use, with M, being the total number of
nodes in the new MGN, that is the total number of antennas in the original
MGN, i.e., Miot := mg + Miot + MN41-

3.4 Simple schedules for a class of HD multi-relay
networks

The goal of this section is to prove Theorem 4, i.e., to show that simple relay
policies are (approximately) optimal in (3.8).

We start by noting that the capacity CHP—RN) of the HD multi-relay
network is not known in general, but can be upper bounded by the cut-set
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bound
C(HDfRN) < max min I.S“and)7 (319)
PX[l:NJrl]xS[l:N] ACI1:N]
where
< H(S4e) + 19, 5.21)

where Iffx) is defined in (3.9). In particular, Iﬁlrand) in (3.20) is the mutual

information across the network cut A C [1 : N] when a random schedule
is employed, i.e., information is conveyed from the relays to the destination
by switching between listen and transmit modes of operation at random
times [18] (see the term H(S4e) < |A°] < N in (3.21)); Iffx) in (3.9) is the
mutual information with a fized schedule, i.e., the time instants at which a
relay transitions between listen and transmit modes of operation are fixed
and known to all nodes in the network [18] (see the term Sj;.] in the con-
ditioning in (3.9)).
The proof of Theorem 4 consists of the following steps:

1. We first show that the function Iffx) defined in (3.9) is submodular
under the three assumptions in Theorem 4.

2. By using Proposition 14, we show that the problem in (3.8) can be
recast into an equivalent max-min problem.

3. With Proposition 16 we show that the max-min problem is equivalent
to solve a min-max problem. The min-max problem is then shown
to be equivalent to solve IN! max-min problems, for each of which we
obtain an optimal basic feasible solution by Proposition 15 with the
claimed maximum number of non-zero entries.

We now give the details for each step in a separate subsection.

3.4.1 Proof Step 1

We show that Iglx) in (3.9) is submodular. The result in [92, Theorem 1]

showed that f,(A) in (3.12) is submodular for each relay state s € [0 : 1]V
under the assumption of independent inputs and independent noises (the
same work provides an example of a diamond network with correlated inputs
for which the cut-set bound is neither submodular nor supermodular). Since
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submodular functions are closed under non-negative linear combinations (see
Definition 3), this implies that ISIX) = 2 seoay As fs(A) is submodular
under the assumptions of Theorem 4. For completeness, we provide the
proof of this result in Appendix 3.A, where we use Definition 3 as opposed
to the “diminishing marginal returns” property of a submodular function
used in [92].

Example for N = 2: In this setting we have 22 = 4 possible cuts, each of
which is a linear combination of 22 = 4 possible listen/transmission config-
uration states. In particular, from (3.10) we have

A=1, L™ = Mo fo (0) + Aufi (0) + Aafa () + Asfs (0),

A= {1}, ; 5= Xofo ({11) + Aft ({13) + defo ({11) + Aafs ({11),
A= {2}, EQ} = Xofo ({2}) + Aifi ({2}) + Aafe ({2}) + A3 f3 ({2}),
A={1,2}, L9 = dofo({1,2}) + Mf ({1,2})

+A2f2 ({1,2}) + Asfs ({1,2}),

where, Vs € [0 : 3], we have that the functions in (3.12) are given by

fs (0):=1 (X3,X1,X2;Y3’S[1:2] = 3) )
1. {1}) =T (X3, X2; Y3, V1| X1, S = 5)
fs ({2}) =1 (X3, X1; Y3, Ya| Xo, Spyg) = ),
f ({1,2)) 1= T (X3 Y3, Y2, V1| Xo, X1, Sjigy = 5)

and are submodular under the three assumptions in Theorem 4.

3.4.2 Proof Step 2

Given that ISIX) in (3.9) is submodular, we would like to use Proposition 14
to replace the minimization over the subsets of [1 : N] in (3.8) with a mini-

mization over the cube [0 : 1]"V. Since Iéﬁx) =1 (X[1:N+1}5YN+1‘S[1:N]) >0
in general, we define a new submodular function

g (A) =15 — 1§ (3.22)
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and proceed as follows

(fix) (fix)

Ay = i o (A)
) g({m}) —g(0)
:]Q() x) + éﬁ)hf]N[w’” Wry ... Wry) :
g({m,. vy —g({m, . v-1})
(fix) (fix)
(6x) I{ﬂ'l} - [@
=L+ min |w, wg ... wg :
0 WG[O,l]N[ ' ? N} (fix) ' (fix)
{r1ymn}y  A{m1,eTN_1}
_ () _
I@
I(ﬁX) o I(ﬁx)
= min [1 Wry Wy v wﬂ} {m} 0
wel0,1]¥ ! 2 N :
(fix) (fix)
_I{ﬂl,...,er} o I{frl,...,ﬂ'N_l}_
=: mi 1L,wllH, !, 3.23
wé?ol%]v{[,w} g) (3.23)

which implies that the problem in (3.8) is equivalent to

C = ' {1 T H, Avec} 24
max min [L,w" ] Hy fAvect ¢ (3.24)

where Ayect is the probability mass function of Sjy.y) in (3.11), Hy f is defined
as

10 0 0
-1 1 0 ... 0

H,;:=P, 0 -1 1 ... 0|F, ¢ ]R(N-&-l)X?N7 (3.25)
10 0 -1 1]

~~

(N+1)x (N+1)
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w 0 o

Figure 3.2: Lovész extension g(wi,w2) in (3.27), with ¢ ({1}) =3, ¢ ({2}) =
4 and g ({1,2}) = 6.

where P, € ROWHDX(N+1) ig the permutation matrix that maps [1, w1, . . ., wy]
into [1,wys,,...,wsy], and F is defined as
fo(0) e fov_1(0)
Jo({mi}) Jon 1 ({m1})

F,:= fO({ﬂ'l?WQ}) e f2N—1({7T177T2}) € R(N—H)XQN?

f()({ﬂ‘l, PN ,7TN}) e f2N_1({7T1, PN ,7TN})
(3.26)

with fq (A) being defined in (3.12). We thus expressed our original opti-
mization problem in (3.8) as the max-min problem in (3.24).

Example for N =2: With N =2, we have g (A) = Iffx) — Iq()ﬁx),.A Cli:
2] and the Lovész extension (see Definition 3) is

_ f wig({1) +wnlg({1,2)) — g (1)) ifwr > wy
g(w““’”‘{ wng (121) +wr [g (1,2} — g ((2)] ifuwn>wy ~ O

A visual representation of the Lovdsz extension g(wi,ws) in (3.27) on
is given in Figure 3.2, where we considered g ({1}) = 3, ¢({2}) =
g ({1,2}) =6 (recall g(0) = 0).

[0,1]?
4 and



82 Chapter 3 The Half-Duplex Multi-Relay Network

Let
iy = argmax {wy, w2} and iy = argmin {wy, wa}. (3.28)

The optimization problem in (3.23) for N = 2 can be written as

1 0 O
ogwifggmgl [1 Wi wim] —01 _11 (1) F.
_ min {[1 — Wiy, Wiy — Wi, wzm] FW} , (3.29)

= 1
0<w;, Sw;y,; <1
with

fo() f1(0) f2(0) f3(0)
Fr=| fo{im}) fAi{im})  fo({im})  f3({im}) | (3.30)
fO({172}) fl({172}) f2({172}) f3({172})

and finally the optimization problem in (3.24) is

Ao

C/ = max min [1 — Wiy Wiy — Wiy, wim] F7r )\1 (3.31)
Avect 0<wiy, Swiy, <1 A2
A3

3.4.3 Proof Step 3

In order to solve (3.24) we would like to reverse the order of min and max.
We note that the function ¢ (Avect, ) := [1, w?] H fAyect satisfies the prop-
erties in Proposition 16 (it is continuous; it is convex in w by the convexity
of the Lovéasz extension and linear (under the assumption in item 3 in The-
orem 4), thus concave, in Ayect; the optimization domain in both variables
is compact). Thus, we now focus on the problem

C'= mi {1, TIH, (A, } 3.32
i e [0 ) e )

which can be equivalently rewritten as
C'= min min max{ 1,wl] H; )\, } 3.33
7TE'P]\T Wn—e[OZl]N Avect [ W] Trhf ect ( )

~ mi - 1,wl] Hy (A, } 3.34
i, iy Ao B G0
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where Py is the set of all the N! permutations of [1 : N]. In (3.33), for
each permutation m € Py, we first find the optimal Ayect, and then find the
optimal W : wg, > Wg, > ... W, . This is equivalent to (3.34), where again
by Proposition 16, for each permutation m € Py, we first find the optimal
Wr @ Wy, > Wy, > ... Wry, and then find the optimal Ayect-

Let now consider the inner optimization in (3.34), that is, the problem

P - in {1, w0) Hy e . 3.35
| Igii)fwwgl[g)r:ll]fv 1, war] Hy fAvect (3.35)

From Proposition 14 we know that, for a given m € Py, the optimal w, is
a vertex of the cube [0 : 1]¥. For a given 7 € Py, there are N + 1 vertices
whose coordinates are ordered according to m. In (3.35), for each of the
N + 1 feasible vertices of w,, it is easy to see that the product [1, wZ] H, ;
is equal to a row of the matrix F,. By considering all possible N + 1 feasible
vertices compatible with m we obtain all the N 4 1 rows of the matrix F.
Hence, P; is equivalent to

P, : maximize T
subject to  1(n41)7 < Falvect (3.36)
and ]-gN Avect = 1, Avect > Oyn, 7 2 0.

The LP P, in (3.36) has n = 2V + 1 optimization variables (2% values for
Avect and one value for 7), m = N + 2 constraints, and is feasible (consider
for example the uniform distribution of Ayeet and 7 = 0). Therefore, by
Proposition 15, P, has an optimal basic feasible solution with at most m =
N + 2 non-zero values. Since 7 > 0 (otherwise the channel capacity would
be zero), it means that Ayect has at most N + 1 non-zero entries.

Since for each 7 € Py the optimal Ayeet in (3.34) has at most N + 1 non-
zero values, then also for the optimal permutation the corresponding optimal
Avect has at most N+1 non-zero values. This shows that the (approximately)
optimal schedule in the original problem in (3.8) is simple.

This concludes the proof of Theorem 4.

Example for N = 2: For N = 2, we have |Py] = 2! = 2 possible
permutations. From Proposition 14, the optimal w is one of the vertices
(0,0),(0,1),(1,0),(1,1). Let now focus on the case iy = 1 and i = 2 (a
similar reasoning holds for i\ = 2 and i, = 1 as well). Under this condition
Py in (3.35) is the problem in (3.31) with iyy = 1 and 4y, = 2. The vertices
compatible with this permutation are (w1, w2) € {(0,0),(1,0),(1,1)}, which
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result in (1 — wy,w; — we,w2) € {(1,0,0),(0,1,0),(0,0,1)}. This implies
that Py in (3.36) is

maximize T
subject to 7 < fo(D) Ao + fL(D)A1 + f2(D)A2 + f3(0)As,
7 < fo{1HAo + fi{1H A1 + fa({1}) A2 + f3({1})As,
7 < fo({1,2) Ao+ f1({1, 21) A+ f2 ({1, 2}) Ae+ f3({1, 2}) A3,
MF+MF+FX+A3=1, \;>0i¢€ [013], T >0,
(3.37)

where each of the three inequality constraints correspond to a different row
of F, multiplied by Avect = [Ao, A1, A2, A3]T. Therefore, P, in (3.37) has four
constraints (three from the rows of F; and one from Ayect) and five unknowns
(one value for 7 and four entries of Ayect). Thus, by Proposition 15, P» has
an optimal basic feasible solution with at most four non-zero values, of which
one is 7 and thus the other (at most) three belong to Ayect. In particular, in
Appendix 3.B, we show that either Ag or A3 is zero, thus giving the desired
(approximately) optimal simple schedule.

Remark 11. In order to apply the saddle-point property (see Proposition
16) and hence cast our optimization problem as a LP, the proof of Step 3
requires that the matrix F, does not depend on Ayect; this is the reason of
our assumption in item 3 in Theorem 4. In Gaussian noise this assumption
excludes the possibility of power allocation across the relay states because
power allocation makes the optimization problem non-linear in Ayect.

Remark 12. As stated in Theorem 4, our three assumptions provide a set of
sufficient conditions for the existence of an (approximately) optimal simple
schedule. As those conditions are not necessary, there might exist networks
for which these assumptions are not satisfied, but for which the (approxi-
mately) optimal schedule is still simple. Determining necessary conditions
for optimality of simple schedules is an interesting challenging open question.

Remark 13. For FD relays, it was shown in [92] that wireless erasure net-
works, Gaussian networks with single-antenna nodes and their linear deter-
ministic high-SNR approximations are examples for which the cut-set bound
(or an approximation to it) is submodular. Since submodular functions are
closed under non-negative linear combinations (see Definition 3), this implies
that the cut-set bound (or an approximation to it) is submodular when eval-
uated for these networks with HD relays. As a consequence, Theorem 4 holds
for wireless erasure networks, Gaussian networks with single-antenna nodes
and their linear deterministic high-SNR, approximations with HD relays.
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Remark 14. Gaussian relay networks with multi-antenna nodes, where each
antenna at the relays can be switched independently of one another, satisfy
all the conditions in Theorem 4. Actually, as highlighted in Remark 10, the
NNC strategy, which uses independent inputs, achieves the cut-set upper
bound to within a constant gap; moreover, as we shall see in the example in
Section 3.6.2, a constant power allocation across the relay states is optimal to
within a constant gap. As we showed for the single-antenna nodes case, what
dictates the number of active states of the relay scheduling policy is related
to the minimization over A C [1 : N] and not to the maximization over
the 2™t possible relay configurations. This extends the result in Theorem
4 to Gaussian HD multi-relay networks with multi-antenna nodes, i.e., the
(approximately) optimal schedule has at most N 41 active states (out of the
22"* possible ones), independently of the total number of antennas. This
result implies that for Gaussian relay networks, the cut-set upper bound can
be achieved to within a constant gap by employing the NNC strategy with
a time-sharing among the N + 1 active states.

3.5 The gDoF and its relation to the MWBM prob-
lem.

In order to determine the gDoF of the Gaussian HD multi-relay network we
must find a tight high-SNR, approximation for the different MIMO-type mu-
tual information terms involved in the cut-set upper bound (see eq.(3.17a)).
As a result of independent interest beyond the application to the Gaus-
sian HD relay network studied in this chapter, we first show that such an
approximation can be found as the solution of a MWBM problem.

In particular, equipped with the definitions in Definition 5, we now show
the following high-SNR, approximation of the MIMO capacity:

Theorem 6. Let the channel matriz H € RF*" be a full-rank matriz, where
without loss of generality k < n. Let S, 1, be the set of all k-combinations of
the integers in [1 : n] and P, be the set of all k-permutations of the integers
in [1:n]°.

®The k-combinations and the k-permutations of the integers in [1 : n] are defined
as sequences of a fixed length k of elements taken from a given set of size n such that
no elements occurs more than once. Then, over this k-length sequence all the possible
combinations S, and all the possible permutations P, ; are computed. With m (i) we
indicate the element in the i-th position of the permutation © € Py, .
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Then,

k
I, + HH"| = Z Z H’[H§]i,7r(i)

GES, k TEP, f i=1

2 LT SNRMWBM(B)7

where

(3.38)

where B is the SNR-exponent matriz defined as [Bl;j = Bij > 0 : |hij|> =
SNRP: (with hi; being the channel gain from the j-th antenna at the trans-
mitter to the i-th antenna at the receiver), He and B¢ are the square ma-
trices obtained from H and B, respectively, by retaining all rows and the
columns indexed by <, and T is the sum of terms that overall behave as

o (SNRMWEM(E)).

Proof. The proof can be found in Appendix 3.C. The expression in (3.38) is
a possible way of writing the MWBM problem. ]

Theorem 6 establishes an interesting connection between the gDoF of a
MIMO channel (with independent inputs) and graph theory. Notice that
the high-SNR expression found in Theorem 6 holds for correlated inputs
as well, as long as the average power constraint is a finite constant. More
importantly, Theorem 6 allows to move from DoF, where all exponents f3;;
have the same value, to gDoF, where different channel gains have different
exponential behavior. DoF is essentially a characterization of the rank of the
channel matrix; gDoF captures the potential advantage due to ‘asymmetric’
channel gains. In Section 3.7 we will show, through some network examples,
that Theorem 6 is an efficient tool to characterize the gDoF region for any
Gaussian network whose capacity can be approximated to within a constant
gap by linear combinations of log | ... | terms and it also represents an useful
tool to solve user scheduling problems.

With Theorem 6 we can now express the gDoF d(HP—RN) of o HD relay
network as in Theorem 5, where the non-negative matrix A € R2Vx2Y 4y
(3.15) has entries

(Al = lim I(X aeugn+1y; Ya,uv+13 1 X Speny = 55)
ij -

= 3.39
SNR—-+00 log(1 + SNR) ’ (3:39)
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where A; and s; are defined right after Theorem 7. In other words, each row
of the matrix A refers to a possible cut in the network, while each column
of A refers to a possible listening/transmitting configuration state.

By a simple application of Theorem 6 we have that each entry of the
matrix A can be evaluated by solving the corresponding MWBM problem.
More formally

Theorem 7. For the LP in Theorem 5
[Alij = MWBM (B{N+1}u(,4m,4j), {N+1}u(AgmA;.}) :

The notation in eq.(3.39) and in Theorem 7 is as follows. B indicates
the SNR-exponent matrix defined as [B;; = £;; > 0 : |hi;|?> = SNR% | and
the indices (i,j) have the following meaning. Index i refers to a “cut” in
the network and index j to a “state of the relays”. Both indices range in
[1:2V] and must be seen as the decimal representation of a binary number
with N bits. A¢, i € [L : 2IV], is the set of those relays who have a one in
the corresponding binary representation of i — 1 and sj, j € [1 : 2], sets
the state of a relay to the corresponding bit in the binary representation of
j — 1. Finally, we evaluate the MWBM of the bigraph with weight matrix

Iy —diag[s;] On B diag[s;] Oy
0% 1 0% 1 _ .
{NHIUA; { N+ FUAS

= Binijuina,), {N+1IU(ASNAS Y

where the equality follows from the following observation. Among the re-
lays ‘on the side of the destination’ (indexed by .4;) only those in receive
mode matter (indexed by Aj), therefore we can reduce the set of ‘receiv-
ing nodes’ from A; to A; N A;. Similarly, among the relays ‘on the side of
the source’ (indexed by Af) only those in transmit mode matter (indexed
by A;), therefore we can reduce the set of ‘transmitting nodes’ from A{ to
AS N A;. Notice that Byyi13u(4,n4;), {N+1}U(ASNASY does not change if the
roles of i and j are swapped, which implies that [A];; = [A]j;, i.e., the matrix
A is symmetric. To better understand the notation, consider the following
example.

Example: N=3,i=7,andj=5. Fromi—1=6=1-224+1-2"40-20
we have A; = {3} = {1, 2}, meaning that relay 1 and relay 2 lie in the cut
of the source and relay 3 lies in the cut of the destination. From j — 1 =
4 =1-2240-2"40-2" we have s5 = [1,0,0], meaning that relay 1 is
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transmitting, and relays 2 and 3 are receiving (also As = {2,3} = {1}°).
With this we have

[N +1}UA = {4} U{3} = {3,4},

(N +1}UAS = {4} U{1,2} = {1,2,4},
{N+1}u(ATNAj) = {4} U ({1,2} n{1}) = {1,4},
{N+1} U (AN A} ={4; U ({3} N {2,3}) = {3,4},

and
0 0 0 O] |B11 Piz Bz Pua| |1 0 0 0
0 1 0 O] |Bar P2z Paz P2a| |0 0 0 0O
A = MWBM
[Al75 0 0 1 Of B3 P32 B33 Baa| [0 0 0 O
0 0 0 1| [Bar Paz Pag Paa] [0 0 0 1 (3.41.{1,2,4)

= MWBM ({ggl 8 234D = max {f31 + B4, B34 + Bar } -
41 44
Also

P11 P2 P13 Pua

B Po1 Poz Pz Pos

[Al75 = MWBM B31 PBs2 B33 PBsa
Bar Paz Baz Paa (3.4),{1,4}

= MWBM ( {531 ”834]) = max {31 + Ba4, B34 + Bar } .0
Ba1 Paa

3.6 Network examples

In order to gain insights into how relays are best utilized, in this section
we analyze two network examples. In particular, the first example, shown
in Figure 3.3, consists of N = 2 single-antenna HD relays (RN1 and RN2)
assisting the communication between a source (Tx) and a destination (Rx),
while in the second example, shown in Figure 3.5, there is N = 1 relay (RN)
equipped with m, = 2 antennas. For the scenario in Figure 3.3 we seek to
find under which channel conditions a best-relay selection scheme is strictly
suboptimal in terms of gDoF with respect of using both relays, while for
the scenario in Figure 3.5 we aim to show that independently switching the
m, = 2 antennas at the relay not only achieves in general strictly higher
rates compared to using the m, = 2 antennas for the same purpose, but can
actually provide a strictly larger pre-log factor. We now analyze these two
scenarios separately.
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Figure 3.3: Example of a network with N = 2 relays with single-antenna
nodes.

3.6.1 Example 1: HD relay network with N = 2 relays

We consider the network in Figure 3.3 where, in order to increase the read-
ability, the SNR-exponents are indicated as

* Bl Qs1
=B * a2, (3.40)

[log(lhiJP)
a1g g 1

log(SNR) } (i,5)€[1:3]2

where * denotes an entry that does not matter for channel capacity, «ag; is
the SNR-exponent on the link from the source to relay i, i € [1 : 2], ayq is
the SNR-exponent on the link from relay i, ¢ € [1 : 2], to the destination,
B; is the SNR-exponent on the link from relay j to relay i, (i,7) € [1 : 2]?
with j # ¢, and the direct link from the source to the destination (entry in
position (3,3) in (3.40)) has SNR-exponent normalized to 1 without loss of
generality. Notice that in order to consider a network without a direct link
it suffices to consider all the other SNR-exponents to be larger than 1, or
simply replace ‘1’ with ‘0’ in the discussion in the rest of the section.
We next derive the gDoF in both the FD and HD cases.

The full-duplex case: For the FD case, the cut-set bound is achievable
to within 2 x 0.63 x 4 = 5.04 bits with NNC [20]. As a consequence, it can



90 Chapter 3 The Half-Duplex Multi-Relay Network

be verified that the gDoF for the FD case is

dg\I;:D% = min { max {1, as1, g2}, max {ago+aig, fo+1},

max {as1 + agq, f1 + 1}, max {1, a14, aogq} } (3.41)
Note that dS\I;:D% > 1, i.e., the gDoF in (3.41) is no smaller than the gDoF
that could be achieved without using the relays, that is, by communicating
directly through the direct link to achieve gDoF = 1. Notice also that the
gDoF in (3.41) does not change if we exchange g1 with sy, and age with
a4, 1.€., if we swap the role of the source and destination. We aim to iden-
tify the channel conditions under which using both relays strictly improves
the gDoF compared to the best-relay selection policy (which includes di-
rect transmission from the source to the destination as a special case) that
achieves

D)
N=2,best relay

= max {1, min{a,1, o14}, min{es, asg} } € [1,d§\1;:D)]. (3.42)

We distinguish the following cases:

1. Case 1: if

. Qg1 = Qg2 g1 < Qg2
either or
Q1d 2 Qg g < Qg

then, since one of the relays is ‘uniformly better’ than the other, we
immediately see that dS\I;:D% = dg\l;:D% best relay? SO in this regime selecting

the best relay for transmission is gDoF optimal.

2. Case 2. if not in Case 1, then we are in

. Qg1 = Qg Qg1 < Qg2
either or
a1g < Qg Q1q = Qg

Consider the case ago < as1, a1q < aggq (the other one is obtained
essentially by swapping the role of the relays). This corresponds to
an ‘asymmetric’ situation where relay 1 has the best link from the
source but relay 2 has the best link to the destination. In this case we
would like to exploit the inter relay communication links (which are
not present in a diamond network) to create a route source — relayl —
relay2 — destination in addition to the direct link source—destination.

Indeed, in this case dg\E:D% in (3.41) can be rewritten as

dg\l;:D% =min {max {asa+aqq, Bo+1}, max{l, min{as1, Oégd}}}, (3.43)
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where the term max{1l, min{as, aeq}} in (3.43) corresponds to the
gDoF of a virtual single-relay channel such that the link from the
source to the “virtual relay” has SNR-exponent a4 and the link from
the “virtual relay” to the destination has SNR-exponent aoy. We aim to
determine the subset of the channel parameters as < ag1, a1g < Qgg
for which the gDoF in (3.43) is strictly larger than the ‘best relay’
gDoF in (3.42). The case a2 < as1, g < aig subsumes the following

possible orders of the channel gains:

case 1 a1 Qog Qg Qg1

case ii | ayq Q52 Qg Qs1

case iii | aq ) Qg1 Qg

case iv Qg2 Q1 OQog O

case v Qg2 (1 Qg1 Qg

case Vi ) Qg1 Qg Qiad

We partition the set of channel parameters g < g,

follows:

o Sub-case 2a) (all but cases i and vi in the table): if

max{age, v14} < min{asy, aoq},

then

4(FD)
N=2,best relay

- maX{17 Qs2, ald}a

which is strictly less than dE\I;:D% in (3.43) if either

a1g < Q9q as

(3.44)

(3.45)

max{1, as, @14} < min{ag, aeq} < max{as + ag, B2 + 1}

or
{max{asg + aqq, P2+ 1} < min{ozsl,ozgd}} N o°¢
where
O:={f=0,a02+a1g <1} U{ag =0,02+1 < asx}
U{as2 = 0,62 +1 < aa},
that is for

max{1l, as, @14} < min{ag, asy} except in region O.
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e Sub-case 2b) (case iin the table above): if a1g < aog < asg < g,
then the condition

(FD) i (FD)
dN:2,best relay — max{l, a2d} < dN=2

= min { max {asg + a1q, B2 + 1}, max{1, agd}}

is never verified, i.e., in this case dg\l;:D% best relay = dggf%.
e Sub-case 2c) (case vi in the table above): if ago < ag < agq <
a4, then
(FD) . (FD)
dN:2,best relay maX{l? aSl} < dN:Q

= min { max {asy + a1g, B2 + 1}, max{1, asl}}

is never verified, i.e., in this case dg\l;D% best relay = dgg:D;
To summarize, for a 2-relay network where the single-antenna relays operate
in FD, using both relays gives a strictly larger gDoF compared to only
exploiting the best one if

max{1l, g2, @14} < min{as, aeq} except for (3.46a)
O:={fs=0,a50+a1g <1} U{aig=0,02+1< apn}
U {0452 = 07 52 +1 < Oéld}. (346b)

Recall that there is also a regime similar to (3.46) where the role of the
relays is swapped.
In Figure 3.3 consider the case of ag1 = agg = x, @sg = 19 = ¥,
B1 = P2 = z with 0 < y < . With these parameters, the network in Figure
3.3 satisfies the conditions in (3.44). This is an ‘asymmetric’ network, i.e.,
one relay has the best link from the source and the other relay has the best
link to the destination. By exploiting both relays, the system attains

dggzD; = min { max{1,z,y}, max{2z, z + 1}, max{2y, z + 1}}

= min { max{1, 2}, max{2y, z + 1}},

while, by using only the best relay, it achieves

dg\l;:D%,best relay max {1’ min{x, y}} = max {1’ y}
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By (3.46), we have d\\0) > d\2) | . if
1
T > max {1,y} except for {z =0,y < 2} : (3.47)

Note that a non-zero link between relayl and relay2 allows to route the
information through the path source—relayl—relay2—destination, which
leads to an increase in terms of gDoF with respect to the best relay selection
strategy.

The half-duplex case: With HD, the gDoF is given by

dg\l,{DQ) = max min {)\OD§O) + Angl) + )\2D§2) + )\3D§3),
MDY + A DY + 3DP + 2D,
MDY + M DY + 2D + 23D,
MDY + A DY + 2D + )\3fo’)}, (3.48)

where the maximization is over A, Vs € [0 : 1]%, with Ay = P[S[1.9) = 5] > 0,
such that 256[0:3])\8 =X+M+A+A3=16 and

(0) = max {1, as1, as2}, Dgl) = Déo) :=max {1,as},
(3) = max {1, 214, 224}, DgQ) = D:go) :=max {1, asx},
D(l) = max {as1 + agg, 1 + 1}, Dég) = Dil) = max {1, a4},
EQ; = max {as2 + a1q, P2 + 1}, D§3) = DZ(LZ) :=max {1,014},

3 ( ) _ D(l) D( )1

For future reference, if only one relay helps the communication between
the source and the destination then the achievable gDoF is given by (2.4) in
Chapter 2, which with the notation in (3.40)

4UD) [ovss = 1 [avia — 1]7

—1 1L,dWD)).  (3.49
N=2best relay — + 7,1611[?}2(] [Oész _ 1]+ + [ald - 1] [ ’ N:Q] ( )

An analytical closed form solution for the optimal {As} in (3.48) is com-
plex to find for general channel gain assignments. However, numerically it

SRecall that we use interchangeably the notation s € [0 : 1]N to index all possible
binary vectors of length N, as well as, s € [0 : 2" —1] to indicate the decimal representation
of a binary vector of length N.
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is a question of solving a LP, for which efficient numerical routines exist.
Moreover, see Appendix 3.B, we can set, without loss of optimality, either
Ao or Az to zero.

For the example in Figure 3.3 with ag1 = agg = z, a2 = a1g = v,
f1 = P2 = z and 0 < y < x, the (approximately) optimal schedule has
Ao = A3 = 0 without loss of optimality (see Appendix 3.B). By letting
A1 =7 €[0,1] and Ao =1 — v (recall 0 < y < x without loss of generality),
the gDoF in (3.48) can be written as

dg\llifz) = m[ax] min {fymax{l,a;} + (1 —v) max{1,y},
v€l0,1
ymax{2zx,z + 1} + (1 — ),
v+ (1 — v) max{2y, z + 1}}
—1]* 2y — 1
— 1 + mln [x ] ma,X{ y 7Z} ,
[ = 1]" + max{2y — 1,2} — [y — 1]*
max{2z — 1, z} max{2y — 1, 2} (3.50)
max{2r — 1,2z} + max{2y — 1,2} | '
By using only the best relay as in (3.49), we would achieve
(HD) _ [z — 1"y — 1"
dN:2,best relay — + [JJ _ 1]+ + [y . 1]+ . (351)

It can be easily seen that the best relay selection policy is strictly sub-
optimal if (3.47) is verified, as for the FD case. Considerations similar
to those made for the FD case, can be made for the HD case as well.
Figure 3.4 shows, for different values of z, i.e., strength of the links be-

g\I;IEQ),best relay in (351) and dg\lf_lfg n

(3.50). Regarding the curves with y = 0.4, since we have y < % and hence

max{2y — 1,2z} = z,Vz > 0, dg\l,{g) in (3.50) is an increasing function of z.

On the other hand, since y < 1, dg\lffg best relay in (3.51) is always equal to
1, i.e., direct transmission is gDoF optimal. We also notice that for z = 0,

the two curves overlap since the condition in (3.47) holds. Regarding the

curves with y = 1.2, we notice that dS\I,{iDQ) in (3.50) is always strictly greater

tween the two relays, the behaviors of d

than dg\I,{BQ)’beSt relay 111 (3.51), i.e., the channel conditions are such that the

synergies between the two relays bring to an unbounded rate gain with re-
spect to best relay selection. Moreover, dg\l,{:DQ) in (3.50) starts to increase
with z, when min {max{2y — 1, z}, max{2z — 1, 2}} = max{2y — 1,2} = z,

i.e., z = 1.4 and best relay selection is always gDoF-wise greater than direct
transmission, i.e., dg\l,{i) best relay > 1; since min{z,y} > 1.
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1.251

——d{D) x=13y=1.2
e f(HD)
dN=2,best relay’

- (HD) - -
dN:Z,best relay’ x=1.3y=0.4

x=1.3y=1.2

4", x=1.3y=0.4

4(HD-RN)

- - -

Figure 3.4: dg\I,E)Q) in (3.50) and dS\I,EDQ) best relay 111 (3.51) for different values of

z €[0,3] and for z = 1.3, y = 0.4,1.2 in Figure 3.3

3.6.2 Example 2: HD relay network with N = 1 relay equipped
with m, = 2 antennas

We consider the network in Figure 3.5, which consists of a single-antenna
source (Tx), a single-antenna destination (Rx) and N = 1 relay (RN) equipped
with m, = 2 antennas. For readability, we use here a different convention for
the subscripts compared to the rest of the chapter and indicate the input-
output relationship as

o (1 - Sl)hrs,l
yr = [(1 ) xo + Zr, (3.52a)
Zo
Ya = has hara  har2] [S121| + 24, (3.52b)
SQ:L'Q

where: (i) zg and x, = [z1; x2] are the signals transmitted by the source and
the relay, respectively; (ii) y» = [y1; y2| and yg4 are the signals received at the
relay and destination, respectively; (iii) z, = [21; 22] and z4 are the noises
at the relay and destination, respectively; (iv) s, = [S1; So| is the state of
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hds

th,Z

Figure 3.5: Example of network with N = 1 relay with m, = 2 antennas,
and single-antenna source and destination.

the relay antennas; (v) the inputs are subject to the power constraints

Ellzol’] = Y AEllwol’lsr =s] = > APy <1, (3.53a)
s€[0:1]2 s€[0:1]2

E[lx?] =Tr | Y AE[xx[s, =]

s€[0:1]2

P1|s Ps P1|3P2|S
—Tr As Vv <1, 3.53b
Z |:ps V P1|5P2|s P2\s o ( )

s€[0:1]2

where ps : |ps| € [0, 1] is the correlation coefficient among the relay antennas
in state s € [0 : 1]? and Py is the power allocated on zy, k € [0 : 2], in state
s€[0:1]2

In what follows we consider two different possible switching strategies at
the relay: (i) s, € [0 : 1]%: the m, = 2 antennas at the relay are switched
independently of one another, and (ii) s, = S13: S € [0: 1]: the m, = 2
antennas at the relay are used for the same purpose, either transmit or
receive. We now analyze these two cases separately.

1. Case (i): independent use of the relay antennas. For the cut-set upper
bound, two cuts must be considered, namely, A = () (the relay is in
the cut of the source) and A = {1} (the relay is in the cut of the
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destination). In this case the capacity Ccase () is upper bounded as

Cease i) < max min {I (370>Xmsr§yd) aI(xO;yda}’r’X'rasr)}

x(Q,Xr,Sr

<H (Sr) + ]gnax min {I (an Xrs yd‘sr) v (xO; Ya, y7‘|x7‘a ST‘)} )
g%

where the last inequality follows since I (s;;yq) < H (s,) < 2 bits.
Note that, in general, Gaussian inputs are not optimal for Gaussian
networks with HD relays since useful information can be conveyed to
the destination through random switch [18]. However, as seen in Re-
mark 10, to within a constant gap a fixed switching policy between
receive and transmit states is optimal, in which case a Gaussian input
for each state is optimal. Moreover, the optimal choice of the correla-
tion coefficients is pgo = po1 = p1o = 0 and p11 = el“(Mip 1 har2) - With
this we have

I(LU(),XT;yd’Sr) < IggﬁX)

:=mqlog(2) + Ao log (1 + |hds|2P0|00)
+ A log (1 + \hds|2po\01 + | har 2> Pojor)
+ A2 log (1 + ‘hd8’2P0‘10 + !hdr,l\zpmo)

2
s 1og<1+\hd512Pom+(\/rhdr,lPPum\/\hdr,zr‘%11) ) (3.54)

where the term mglog(2) (with mg being the number of antennas at
the destination) accounts for the loss of considering independent inputs
at Tx and at RN. Similarly, we have

fi
I(xﬂ;yd7YT|Xrysr) < I*El?)

::/\0 log( ’hds|2 + ’hrs 1‘2"‘ ‘hrs 2’2)P0|00)

+ )\1 lOg (1 + |hd5’2 + ‘hrs 1| )PO‘Ol)

+ A2 log (1+ (|has|® + |hrs 2] )Po\lo)

+ Aslog (1 + |has|*Popr1) - (3.55)
Note that to determine the NNC achievable rate it suffices to remove
the term I (y,; 9|20, %r,Sr, ya) = mylog(l + 1/0?) from Iy and the
term I (20;y,|9r, Yd, Xr, r) < log(1+ o?) from Ifyy, with o2 being the
variance of the quantization noise. We let 02 = 1 for simplicity. Note
also that the expressions for I(z()ﬁx) and [ gu}() should be optimized with
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respect to the power allocation across the relay states, which makes
the optimization problem non-linear in Ag,s € [0 : 1]™. As pointed
out in Remark 11 (see also the assumption in item 3 in Theorem 4), in
order to apply Theorem 4 (see also Remark 14) we must further bound
the two expressions so that to obtain a new optimization problem with
constant powers across the relay states, i.e., we need to obtain a LP
in {\s}. In Appendix 3.D we show Cgase (i) < GAP + C! where

case (1)

o @) = n}\axmin {Nolog (1 + |hgs|?) + A1 log (1 + [has|® + |har2]?)

case

+A2log (1 + |hgs|® + [har|?)

2
+A3log <1 + |hds|2 + <\/|hd7»71 2+ \/’hdr,2|2> ) ,

Molog (1+ [has|? + [hrsa|® + [hrs2l?) + M log (1+ [has|® + |hrs1|?)
+X21og (1 + |has)? + |hrs2]?) + Azlog (1 + |hasl?) }

and where GAP < 8 bits to account for deterministic switch, indepen-
dent inputs at the source and at the relay, constant power allocation
across the states and NNC transmission strategy. Now, by applying
Theorem 4 (see also Remark 14) C/ (i)’ which can be straightfor-
wardly cast into a LP as in (3.36), has at most N + 1 = 2 active
states.

. Case (ii): same use of the relay antennas. In this case the m, = 2

antennas at the relay are used for the same purpose so it suffices to

set Ay =X =01in C/__ 0 and optimize over \g =1 — X3 =\ € [0, 1].
With this we get that Ceaee iy < GAP 4 C (i) Where
hpsa 2 + |h 2|2
o —log (1+ [hasf2) + A*log (14 s
case i) = 108 (14 [asf) X" log ( T Thas?
2
(\/ |har,1]2+ |hdr,2|2>
log (1 + I+|has[?
T e (s (i)
|har,1[2+4/Rar,2]? s 1 |24 hrs 2]
log (1 + THTFasl? ) +log (1 LN )
and where again GAP < 8 bits. The optimal \* for C’ was found

case (ii)
by equating the two expressions within the max min.
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/

N>

case (i) =

L s (i) i.e., independently switching the antennas at the relay brings achiev-

able rate gains compared to using the antennas for the same purpose, but

that the difference between the two can be unbounded. In other words, at

high SNR C/__ () and C oo iy have different pre-logs / multiplexing gains
/ degrees of freedom.

We now show through some simple examples that not only C

Example 1: let |hgs| = |hrs2| = |hara1] = 0 and |hys1]? = |har2|> =7 >0
in Figure 3.5. With this choice of the channel parameters we get

c’ 0= n}\axmin {Mlog (1+~v)+ Azlog (1 +7),

case

Aolog (14+7) + Arlog (1+7v)} =log(1+7),

where the last equality follows since the optimal choice of Ag is given by
AN)=X=A3=0and \; =1, i.e, thereis 1 < N + 1 = 2 active state. For
Cl o (i) the optimal A is 1/2 and

c _ log(1+7)
case (ii) — 9 :
From the two expressions above not only we have Cf: ase (i) = C:: ase (ii)? Yy > 0,

but independently switching the m, = 2 antennas also provides a pre-log
factor that is twice of the one provided by using the antennas for the same
purpose. This can be interpreted as follows. By independently switching the
m, = 2 antennas at the relay, the achievable rate C.__ ) equals (to within a
constant gap) the capacity of a single-antenna relay channel with a FD relay
with the source-relay and relay-destination channel gains of strength equal
to . On the other hand, by using the m, = 2 antennas for the same purpose,
the achievable rate C.__ (i) reduces to the capacity of a single-antenna HD
relay channel.

Example 2: let |hgs| = 0 and |hys1]? = |hys2|? = |har1]? = [haro* =7 >
0 in Figure 3.5. With this choice of the channel parameters we get

C::ase G) — n}\ax min {)‘1 log (1 + /7) + A2 log (1 + ’7) + A3 log (1 + 4’)/) s

Ao log (1+2v) + Alog (1 +7v) + Az2log (14 7)}
log (1 + 27) log (1 + 4~) }
"log (14 2v) +log (14 47)

(){ log (14 7) if 4 > 0.752

®) max {log (I1+7)

log(1+27) log(14+4~) otherwise s (356)

log(1427)+log(1+47)
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Figure 3.6: C_, (i) iClse (i) Conse (i) Crnso (i) Versus different values of ~.

where the equality in (a) follows since among the ten possible (approxi-
mately) optimal simple schedules A\ (six possible Ay with two active states
plus four possible A with one active state), it is easy to see that only the two
cases \s = [0,0,1,0] and A = [X,0,0,1 = A}, with A = j‘;i()j;‘ggl ol
have to be considered and the equality in (b) follows from numerical eval-
uations. Thus, if v > 0.752 the (approximately) optimal schedule has
1 < N+ 1 = 2 active state (i.e., A2 only), otherwise it has N + 1 = 2

active states (i.e., A\g and A3).

For C’C ase (i) W€ obtain that the optimal A\ = Toa (T Ji%i()igg()l ) and
log (1 4 27) log (1 + 47)
Ci:ase( = (3.57)

log (1 +27) +1log (1 +47)

It hence follows that C/___ W > C oo (i)’ , Vv > 0.752, as can also be observed

from Figure 3.6 (blue dashed line for C/
C/

case (ii)

log (1 4 ) is again twice of the one of C’

case (i) VeTsus red dashed line for

). Moreover, in the high-SNR regime, the pre log factor for C/

case (i) -

1og (14 ). This example

case (ii) ~
(as also Example 1) highlights the importance of smartly switching the relay
antennas in order to fully exploit the available system resources. Figure 3.6

= max, min{]éﬁ %) (ﬁx)} (solid blue

also shows the achievable rates C” Iy

case (i)
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line) and C” (if) (solid red line) obtained by optimizing the powers in IQ()ﬁX)

case
in (3.54) and I gb}() in (3.55) across the different states by Water Filling (WF),
as described in Appendix 3.E. In particular, under the channel conditions
considered in this example, from Appendix 3.E we get that the optimal
power allocation can be found by solving

" _ + +
Ccase 1 — AE[%}S??/ZO {)‘log (’VV) + log (2’77/)}

2
INT 1-2) 1\*
v:Adlv——]| +—|v——) =1,
Y 2 2y
where \; + X2 = A € [0, 1], )\ozkgz%,which is equal to

3A+1 2
Clase (i) = Al
case (i) )\rg[%,}i]{ 0g <2(A—|—1) + A—l—le)

1-A [(3x+1 4
1 .
R Og(/\+1+A+17>}’ (3.58)

which is represented by the blue solid line in Figure 3.6. For case (ii) it

suffices to set A =0 in C/c/ase (i)’ with this we obtain

1
i:/ase (i) = 5 log (1 + 4'7) ) (3.59)

which is represented by the red solid line in Figure 3.6.

From Figure 3.6 we observe that the highest rates are achieved by opti-
mizing the powers across the different states (solid lines versus dashed lines).
However, as also highlighted in Remark 11 (see also the assumption in item 3
in Theorem 4), with optimal power allocation there are no guarantees that
the (approximately) optimal schedule is simple. This is exactly what we
observe in this example for which the optimal A € [0,1] that maximizes
Cl e (1) n (3.58) is neither zero nor one, i.e., the schedule has 3 > N+1 =2
active states. From Figure 3.6 we also notice that the difference between
the solid lines (obtained by optimizing the powers across the states) and the
dashed lines (obtained with a constant / fixed power allocation) is at most
0.1977 bits for case (i) (blue lines) and 0.2636 bits for case (ii) (red lines).
These differences are far smaller than the 3 bits computed analytically in
Appendix 3.D, showing that the theoretical gap of 3 bits is very conservative,
at least for this choice of the channel parameters.
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Average C’Case(i)

= = = Average C’Case(ii

Achievable rate [bits/s/Hz]

Figure 3.7: E {C'

case

different values of d € [0, 1].

(i)} (solid curve) and E [C' (ii)} (dashed curve) versus

case

Example 3: we consider the case of Rayleigh fading, where hgs ~ N (0, afls),
hysi ~ N(O,afs) and hgy; ~ J\/(O,aﬁr) with ¢ € [1 : 2] in Figure 3.5 are
assumed to be constant over the whole slot (block-fading model) and we

]_e‘t O-CQlS = E |:|hd8’2:| = 1%’ 0'2 = E |:’h7’8,1; 2j| = dca and 0’31” = E |:‘th71|2} =

rs

ﬁ, where c is a constant, d € [0, 1] is the distance between the source and

the relay and (1 — d) is the distance between the relay and the destination,
and « > 2 is the path loss exponent.

Figure 3.7 shows the average C/__ 0 (solid curve) and the average C/__ (i)
(dashed curve) versus d € [0,1], with fixed @ = 3 and ¢ = 1. The av-
erage was taken over 5 - 10% different realizations of the channel gains for

each value of d € [0,1]. From Figure 3.7 we observe again that in general
E [ ! )] >E [C’ (ii)} , with a maximum difference of around 0.6 bits at

case (i case
d = 0.5. Note, in fact, that for d = 0.5 we have 02, = 1 and 02, = 02 = 8.

Under these channel conditions, by independently switching the m, = 2
antennas at the relay we (approximately) achieve the FD performance, i.e.,
E [Cfme (i)] ~ log (¢2,) = 3 bits/s/Hz, while by using the m, = 2 antennas
for the same purpose the rate performance reduces to the capacity of a single-
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antenna HD relay channel, i.e., E [C::ase (ii)} R~ % ~ 2.2 bits/s/Hz.

3.7 Applications of Theorem 6

In this section we show that the result in Theorem 6 is an efficient tool
to characterize the gDoF region for any Gaussian network whose capacity
can be approximated to within a constant gap by linear combinations of
log|...| terms and it also represents an useful tool to solve user scheduling
problems. In particular, in what follows, we analyze separately the MIMO
point-to-point channel, the relay-aided Broadcast Channel (BC) and the
Multiple Input Single Output (MISO) BC.

3.7.1 The MIMO point-to-point channel

The gDoF, to the best of our knowledge, has been investigated so far only
for Single Input Single Output (SISO) networks with very few number of
nodes; we believe that the reason is that in these cases one has only to con-
sider equivalent MISO and Single Input Multiple Output (SIMO) channels,
or to explicitly deal with determinants of matrices with small dimensions.
Our result extends the gDoF analysis to any MIMO channel as we explain
through some examples.

MISO and SIMO channels, i.e., the case £k = 1 < n: In a MISO
or SIMO channel, with channel vector h := [hq,...,h,] such that |h;|> =
SNR? i € [1 : n], one trivially has

n SNR>>1
log(1 + ||h|*) = log (1 + ZSNRBZ) = log (SNRmaxieum]{ﬁi}) ‘
=1

The corresponding MWBM problem has one set of vertices A; consisting of
k = |A1| = 1 node and the other set of vertices A consisting of n = |As| > 1
nodes. The weights of the edges connecting the single vertex in A; to the n
vertices in Ay can be represented as the non-negative vector B = [, ..., (]
Clearly, the optimal MWBM(B) = max;c[.,]{ i} assigns the single vertex
in A; to the vertex in Ay that is connected to it through the edge with the
maximum weight.

2 x 2 MIMO channels, i.e., the case £k = n = 2: As another example
from the 2-user interference channel literature, consider the cut-set sum-rate
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upper bound

|

hia  hog v/SNRP14 oif1a  /SNRP24 oif24

_|B1z Pos
— b= [514 524] ’

SNR>1
log ‘12 + HHH‘ = log (SNRmaX{B13+5247523+ﬂ14}) ]

his h23:| _ [\/SNRﬁm elf1s  /SNRP2s ej923]

The corresponding MWBM problem has one set of vertices A; consisting of
k = |Ai| = 2 nodes (for future references let us refer to these vertices as
nodes 1 and 2 — see first subscript in the channel gains) and the other set
of vertices Ay consisting also of n = |A2| = 2 nodes (for future references
let us refer to these vertices as nodes 3 and 4 — see second subscript in
the channel gains). The weights of the edges connecting the vertices in
A1 to the vertices in As can be represented as the non-negative weights
Bji, i € [3:4], j €[1:2]. In this example, one possible matching assigns
node 1 to node 3 and node 2 to node 4 (giving total weight 813 + [24), while
the other possible matching assigns node 2 to node 3 and node 1 to node 4
(giving total weight fa23 + B14); the best assignment is the one that gives the
largest total weight.

Notice that the MWBM is a tight approximation of the 2 x 2 MIMO
capacity only if the channel matrix is full rank, see [47, eq.(5) 1st line], but
it is loose when the channel matrix is rank deficient, see [47, eq.(5) 2nd
line, and compare with eq.(11)]. The reason is that the MWBM can not
capture the impact of phases in MIMO situations. To exclude the case of
a rank deficient channel matrix from our general setting for any value of k
and n, we may proceed as in [93, page 2925]. Namely, we pose a reasonable
distribution, such as for example the i.i.d. uniform distribution, on the
phases 0j;, i € [3:4], j € [1:2], so that almost surely the channel matrix
is full rank.

3.7.2 The relay-aided BC

The relay-aided BC consists of one source communicating with K destina-
tions with the help of L FD relays. The cut-set outer bound on the capacity
region of such a network was shown to be achievable to within O (N log(N))
bits, where N = K + L + 1 is the total number of nodes [94]. This constant
gap result implies the exact knowledge of the gDoF region. As an example
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of application of Theorem 6, we next show how to derive the sum-gDoF of
the relay-aided BC.

Consider a relay-aided BC with one source, K destinations, and L = 1
relay (the result can be straightforwardly extended to the case of multiple
relays, of cooperation among destinations and with generalized feedback at
the source). The source has input Xy, the relay has input X;, the k-th
destination has output

Y=V SNR0 Xo+VSNR:1 %1 X+ 7, ke [1: K],

and the relay has output

Y = VSNRPR X + Zg,

where, since the channel is known to all nodes, each receiving node compen-
sates for the phase of the link from the source. We assume that the phases
{0k1, k € [1: K]} are such that all the involved channel (sub)matrices are
full rank almost surely. Without loss of generality, we let

B0 = kgh’ol%]{ﬁk,o},

i.e., destination 1 has the strongest link from the source. We define the gDoF
of destination k as d;, = limgnr_eo log(lﬁ#l?)’ k € [1 : K]. The capacity
region of this relay-aided BC is to within a constant gap from the cut-set
upper bound [94]. The cut-set outer bound yields for all A C [1 : K|, A # 0,

> Ry < I(Xo, X15Ya), (3.60a)
ke A
> Ry < I(Xo;Ya, Yr|X1). (3.60D)
ke A

The sum gDoF (and similarly for any other bounds) is the minimum of two
terms: the first term from (3.60a) with A =[1: K] is

K Pro  Pia
> dr <MWBM : : = max {f10+0851,80+51.1}, (3.61a)
1 jE[2:K]
Bro Bk
and the second term from (3.60b) with A= [1: K] is
K

D d <MWBM ([B10 ... Bro Br]) =max{Big,Br}, (3.61b)
k=1
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from the assumption 19 > Bro, k € [2 : K]|. The closed-form expression
for the gDoF in (3.61) sheds light into approximately optimal achievable
schemes: if fr < B10 = maxge(1.x{Br0} the sum-gDoF is as for the BC
without a relay (i.e., in practical wireless broadcast networks it might not
be worth using a relay if the source-relay link is weaker than the strongest
source-destination link), while if 51 ¢ < Sgr it is sum-gDoF optimal to serve
at most one extra destination in addition to destination 1 (see eq.(3.61a)).
With L relays, it is sum-gDoF optimal to serve at most L 4 1 destinations;
which subset of destinations to serve can be found by examining the 2%
MWBM-based bounds, in the spirit of (3.61). This simple example shows
that the result in Theorem 6 represents an useful tool to solve user scheduling
problems, i.e., to understand which is the best subset of L + 1 destinations
which has to be served.

3.7.3 The MISO K-user BC

The static K-user MISO BC consists of one source equipped with N an-
tennas and K single-antenna destinations. The source has an independent
message for each of the K destinations. The input-output relationship reads

yp =hgx+ 2, kell: K], (3.62)

where the input x € CV*! is constrained to satisfy the average power con-
straint Tr (E [XXH ]) < 1 (a non-unitary power constraint can be incorpo-
rated into the channel gains), the vector hy € C*¥ contains the channel
gain coefficients from each transmit antenna at the base station to the k-th
user and z is the zero-mean unit-variance proper-complex white Gaussian
noise. We assume N < K, i.e., the number of transmit antennas at the base

station is strictly smaller than the number of users.
The sum-capacity or throughput for the K-user MISO BC is given by the
“Sato’s cooperative upper bound with least favorable noise correlation” [95]
CH)= min max I(x;Hx+2z), (3.63)

0=<8S.: 0=<S;:
[Sz)k,x=1, Tr(S4)<1

Vke[1: K]
where H = [hy;...;hg] € CE*N is the overall channel matrix and z =
[21; .. .; 2] is the overall noise vector with covariance matrix S, = E [zz"] €

CKXK_ By exploiting the Multiple Access Channel (MAC)-BC duality [96-
98], the sum-capacity in (3.63) can be equally obtained by solving C(H) =
maxpep log ‘IN + HYDHY|, where D is the set of K x K non-negative diag-
onal matrices D with Tr(D) <1.




3.7 Applications of Theorem 6 107

We now show that the result in Theorem 6 allows us to find the sum-
gDoF for the K-user MISO BC and inspires a user selection algorithm which
outputs a set of NV users, out of the K possible ones, which has to be served
(recall that we are assuming N < K).

For some SNR > 0 we parameterize the channel gains as |hg,|> =
SNRPn By, > 0, for all k € [1 : K] and n € [1 : N] and assume that
the phases of the fading channel gains are such that all involved channel

(sub)matrices are full rank almost surely. The sum-gDoF, as a function of
{Brn}, is defined as d := limsnr—y00 %.
Since the constraint Tr (D) < 1 implies D < I, we have that the sum-

capacity is upper bounded by
C(H) < log |[Ix + HH"| = log [Iy + H"H|. (3.64)

By applying Theorem 6 to the RHS of (3.64) we immediately find that the
sum-gDoF is upper bounded by

fra ... BN

d < MWBM (B), B = : (3.65)

Bk --- BN

that amounts to solve a MWBM problem with weight matrix B given by
the SNR-exponents {8, k€ [1: K], n€ [1: N]}.

To gain insights into the result in (3.65), we next consider the case N = 2
(the result can be straightforwardly extended to a general N'). Without loss
of generality, let the antennas and the users be numbered in such a way that

|h11] > max |hin| <= P11 > max Bl.ns (3.66)
ke€[1:K], ne[1:N] ke[1:K], ne[1:N]

i.e., the link from antenna 1 to user 1 is the strongest among all links to any

user from any of the antennas; then, by using (3.66) in (3.65), it is easy to

see that

i1 B2
dV=2 < MWBM | : : (3.67)
Br1 Bra
51 1 51 2 :|
— MWBM | 2h 2 3.68
[/Bk*,l Br+ 2 (3.68)

k* == arg kIEI%QB?)f(ﬂ {B11+ Br2: B2+ Bril)s (3.69)
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or in other words, destinations 1 and £* form the best set of N = 2 users to
be served in order to attain the gDoF upper bound in (3.67). Let H, € C2*?2
be the channel matrix that contains the channel gains of user 1 and user k*.
Since the constraint Tr (D) < 1 allows D = 1I, (by allocating equal power
among users 1 and k*), we have that the sum-capacity is lower bounded by

C(H) > log

1
IQ+§HWHf > log [T, +HY H, | —21og(2).

By applying Theorem 6 to the RHS of the above equation we immediately
find that the sum-gDoF dV=2) is lower bounded by (3.68). This implies
that the sum-gDoF d(V=2) is given by (3.68) (the upper and lower bounds
coincide). Thus, from (3.69) it is easy to see that sum-gDoF-wise just serving
N = 2 users, among the possible K, is optimal. Moreover, it is simple to
understand which N = 2 users have to be served: user 1, i.e., the user who
has the strongest link from the source, has to be always served, and the
“second best” user is the one defined in (3.69).

By extending the above reasoning to any N and K, it is straightforward
to prove that the solution of the MWBM problem in (3.65), which outputs
the N = min{N, K} users to be scheduled, represents the sum-gDoF of the
K-user MISO BC as long as the channel matrix is full rank. One appealing
feature of the proposed algorithm is that it runs in polynomial time.

We now numerically assess the performance of the MWBM-based algo-
rithm for different values of N and K. We consider the case of Rayleigh
fading, where hy, ~ N (0,0%), k € [L : K] and n € [1 : N], is assumed to
be constant over the whole slot (block-fading model), i.e.,

hkpn = Ok G, (3.70)
where g, ~ N (0,1). We define

oF = Ellheal? = (3.71)
k

where c is a constant that depends on the model parameters (e.g., base
station’s transmit power), dj is the distance of the k-th user from the base
station and a > 2 is the path loss exponent. We assume a short-term average
power constraint on the inputs. With this model, we start by considering
a dynamic scheduling that depends on ]hk’n|2 (note that our proposed al-
gorithm does not make use of phase information), which later on will be
compared to a static scheduling based on E[|hy ,|*] only. We set

B = 1010810 (Il (3.72)



3.7 Applications of Theorem 6 109

Note that multiplying the weight matrix B in (3.65) by a constant and/or
adding a constant to each matrix entry does not change the nature of the
matching in the MWBM problem. We assume that the K users are inde-
pendently uniformly distributed on an annulus with minimum radius equal
t0 Tmin and maximum radius equal to ryax. Moreover, we consider that
the model parameters are such that the average SNR at the cell edges is
SNR (rmax ), that is, the average SNR at distance dj, is given by

N —a
dk] = N _ SNR (rama) < i ) .
dk’

SNR (dy) :=E [Z e

n=1

2

T'max

Let (X,Y) be the coordinate of the random position of a user; then the

cumulative density function (cdf) of its position is
2 +
{min(l, r?) — E“A]
Fa (z)=P [\/X2+Y2 < rmax] - e (373)
Tmax 1 __ “min

2
Tmax

for x > 0 and hence the probability density function (pdf) is

fa (z)= 27362 for z € [Tmin , 1]. (3.74)

Tmax 1— réﬂ# T'max

Tmax

Figure 3.8 shows the cdf of the throughput for different values of N and
K, with fixed @ = 3, SNR (7min) = 40 dB, and SNR (rnax) = 0 dB. The
cfd was estimated with MATLAB command ecdf with a confidence level of
0.05 (default value) whose input was generated by considering Niter,1 = 100
different user positions (i.e., for each k € [1 : K] we consider Njter,1 = 100
different values of dj in (3.71)), for each of which we considered Niter2 =
K - 103 different realizations of gi, in (3.70), k € [L : K],n € [1 : NJ.
In Figure 3.8, the average throughput E [C'(H)| achieved by our MWBM-
based algorithm is also reported for all values of K and N.

From Figure 3.8, we observe that the throughput performance of our
MWBM-based algorithm is very close to the one of [99] when DPC is used in
both cases (blue dashed lines versus dash-dotted lines). Differently from [99],
our scheduling algorithm does not use the knowledge of the channel phases.
This means that, in a practical scenario, less information has to be fed
back to the base station for the purpose of scheduling users. Once our
MWBM-based algorithm has selected the N users to serve, only the channel
phases of the N selected users need to be fed back to the base station
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in order to implement the DPC strategy. In other words, given a fixed
amount of bits on the feedback link, the base station can get a more accurate
representation of the phases of the N selected users, as opposed to [99] that
requires phases from all the K users. From Figure 3.8 we also observe
that, if Zero Forcing BeamForming (ZFBF) is used instead of DPC, our
algorithm does not perform as well as the one in [99] (red dashed lines
versus dash-dotted lines). This is because ZFBF is most effective when
the selected users have nearly orthogonal channel vectors. Hence, when
ZFBF is used, it becomes essential to schedule those users whose channel
gains are as orthogonal as possible. Thus, the knowledge of the channel
phases becomes critical. Our MWBM-based algorithm, which is based on
a “coarse” approximation of the channel gains (since only the magnitude of
the channel gains is considered while the phases are neglected), does not
capture this aspect. This appears to cost in performance at low-SNR if
ZFBF is employed. Indeed we expect our MWBM-based algorithm to be
nearly optimal at high-SNR, where the phases become negligible; in the
simulated scenario the average SNR, averaged over the random positions of
the users, is

1 2x1—a
E [SNR (d)] = SNR(rmaX)/ = —dx =16.1481 dB,

Tmin 1 _ " min

max Tl?nax

which is far from being in the high-SNR regime, thus explaining the better
performance of [99] if ZFBF is used.

Figure 3.8(d) shows that the throughput increases when the number of
users increases for a fixed value of N. This is due to multiuser diversity:
as K increases for a fixed IV, the base station has a larger pool of users to
choose from and it is therefore more likely to find a subset of users with
‘good’ channels thereby attaining a larger throughput. Figure 3.8(d) also
shows the throughput performance of our MWBM-based algorithm when a
static scheduling is performed, i.e., a schedule which is based only on the
fading expected value. We observe that the dynamic scheduling (dashed
lines) outperforms the static scheduling (dotted lines), since the former is
adapted to each instantaneous channel realization. Figure 3.8(e) and Figure
3.8(f) show that the throughput increases when the number of antennas
increases for a fixed K. This is due to the multiplexing gain: for a fixed K,
as the number of transmit antennas increases (always considering N < K),
more users can be served leading to a throughput’s boost.

Finally, we remark that in Figure 3.8 the black curves represent the sum-
capacity outer bound in (3.64) and not the exact sum-capacity in (3.63).
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Numerically, we notice that the gap between the black curves (outer bounds
to the sum-capacity) and the achievable throughputs grows with K and N.

3.8 Conclusions and future directions

In this chapter we analyzed a network where a source communicates with
a destination and is assisted by NN relays operating in HD mode. For such
networks, the capacity achieving scheme must be optimized over the 2V pos-
sible listen-transmit relay configurations. We first characterized the capacity
of the Gaussian noise network to within a constant gap by using NNC as
achievable scheme and we proved that the gDoF is the solution of a LP,
where the coefficients of the linear inequality constraints are the solution
of several LPs referred to as the MWBM problem in graph theory. More
generally, we showed that the high-SNR approximation of several practically
relevant Gaussian networks, such as the MIMO point-to-point channel, the
MISO BC and the relay-aided BC, can be found by solving several MWBM
problems. We then proved that, if the noises are independent and inde-
pendent inputs are approximately optimal in the cut-set bound, then the
approximately optimal schedule is simple in the sense that at most N +1 re-
lay configurations have a non-zero probability. Finally we showed how these
results generalize to the case of multi-antenna nodes, where the antennas at
the relays can be switched between listen and transmit state independently
of one another. We also analyzed two network examples; for the first sce-
nario with N = 2 single-antenna relays, we showed under which channel
conditions by exploiting both relays a strictly greater gDoF can be attained
compared to a network where best-relay selection is used; for the second
scenario with NV = 1 relay equipped with 2 antennas, we showed that inde-
pendently switching the antennas at the relay can provide a strictly larger
multiplexing gain compared to using the antennas for the same purpose.

With respect to the results presented in this chapter, interesting future
research directions may include: (i) understanding which are the N +1 states
with a strictly positive probability and (ii) determining necessary conditions
for optimality of simple schedules.
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Appendix

3.A Proof that Ifllﬁx) in (3.9) is submodular

Consider two possible cuts of the network represented by Aj, A2 C [1 : N]
and let

BO = .Al N Az, Bl = AI\A27
By = A\A1,  Bs:=[1:N]\(A1UA),

so that, Bj,j € [0: 3] is a partition of [1 : N] and thus

A1 =BoU B, A = ByU By,
A1 N Ay = By, [1 : N]\(Al U.Ag) = Bs.

Let X4 := {X; :4 € A} and X,y :== {X; : i € Bp}, n € [0:3]. We
. fix

write I.,(4 ) =H (YN+1aYA|XA>S[1:N]) - H (YN+1aYA|X[1:N+1]7S[I:N])' We

next show that, under the assumption of “independent noises” in (3.13),

the function h; (A) := H (YN+1,YA|X[1;N+1],5[1;N]) is modular and that,

under the assumption of independent inputs in (3.7), the function ho (A) :=
H (YN+1, Y| X4, S[I:N}) is submodular; these two facts imply that I;ﬁx) in
(3.9) is submodular.

For hi (A) we have

By (Ar) + ha (As) — b1 (AL U As) — hy (A1 1 Ay)

= H (Ynt1, Y0), Yy I X11.v105 Speny) + H (Y, Yoy, Yo Xpav41) Speng)
— H (Yn11, Y0y, Yoy, Yio) X (v, Speny) — H (Y1, Yio) Xpvs1), Spiewy)

= H (Yy[Ynt1, Y0y, Xpi.v1: Speny) + H (Yol Y1, Yoy Xpav41) Spng)
— H (Y1), Vo) Y41, Y0y X[1v1, Sjaewy)

=TI (Y1); Yio)[YN+1, Y0y, X{1:v41) Spieny) = 0,

where the last equality follows because of the assumption of “independent
noises” in (3.13). Therefore hy (A) is modular.
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For hy (A) we have

ha (A1) + ha (A2) — ha (A1 U Ag) — ha (A1 N Az)
= H (Yn+1,Y(0), V| |X(o ( ) S1:ny)
+ H(Yn+1, Y(0), Y2)| X (0), X(2)5 S1:3))
— H(Yn+1,Y(0), Y ,Y(Q)!Xo ) X(1), X(2)5 S[1:v))
— H(YN+1, Y(0)| X(0)5 Spi:n)
= H(Yn+1, Y(0)| X (1), Sy, X(0) + H(Yn+1, Y(0)| X (2)0 Sy X(0))
— H(Yny1, Y0 X)), X(2), Spngs X(0)) — H(Y N1, Y0yl Spevg, X(0))
+ H (Y1) Xy, Spany, Yv+1, X(0)5 Y(0))
+ H(Y ()| X (2), Sp:ng, Ya+1, X(0)5 Y(0))
— H(Yq Y<2>\X X(2)s Speny Y1 X0y, Yo)
= I(YN+17Y @1 X1)s Spnys X(0)) — T(YN+1, Yi0y; X(2)1Sp:n> X(0)
+ 1(Yq); |X 1)> Sp:nys YN+1, X (0), Y(0))
+1(Y2); Y(l) XX 2), Spngs Y1, X(0), Vo))
(X(1) @) 1Sy
+ 1(Y(1); X(2)1 X 1), Sp:ngy Ya+1, X(0), Y0))
—1(Xqy; X2)151:3: X(0)
+ 1(Yay; Yoy, X)X (2)5 Sty Y1, X(0), Y0)
> 0,

X0y, YN+1, Y(0))

where the last inequality follows because the “independent inputs” assump-
tion in (3.7) implies (X (1); X(2)|Sn.n7, X(0y) = 0. This shows that ha (A) is
submodular.

3.B (Approximately) Optimal simple schedule for
N = 2.

In a HD relay network with N = 2, we have 2V = 4 possible states that
may arise with probabilities s, Vs € [0 : 3], with Ay = P[S[1.9) = 5] > 0,
such that 286[0:3])\5 = Ao+ A1+ A2+ A3 = 1. Here we aim to demonstrate
that a schedule with A\gA3 = 0 is optimal.
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Consider the following LP
max{ai,as} + Dy as a 0
max min a2 az + b1+ Dy 0 by A2
A's a1 0 a1+ by + D3 b A
0 by bo max{bl, bg} + Dy A3
(3.75)

where the different quantities (a, by,)
non-negative and will be defined later. S
The proof is by contradiction. Assume that [)\0 Al Ao )\3] is the

optimal solution with Ay > 0. This implies that for any (o, B,7) € [0,1]3
such that o + 8 + v = 1 we must have that

€[1:2],and D,, v € [1:4], are

max{ay,as} + D1 as ay 0 é\o
min a9 as + bl + D2 0 b1 %\2
ay 0 a1 + by + Ds by Al
0 by by max{by,ba} 4+ Dy A3
max{al, a2}+D1 as aq 0 0 T
>min as as+b1+ Dy 0 b1 )\2 +/\0a
= ay 0 a1+bs+Ds bo /\1 Jr)\oﬁ
0 by by max{bl, bg} +Dy /\3+)\O'Y_
holds. Since 5\0 > 0 by assumption, we can rewrite the above problem as
[max{ay,as} + Dy a9 a 0 1 1]
0 = min a2 az + b1 + D2 0 by 0
o a1 0 a1 + by + D3 bo 0
L 0 bl b2 max{bl, bg} + D4_ _0_
‘max{ai,as} + D as a 0 1 T0
> min a2 as + by + Do 0 by «
= a1 0 ay + by + Ds ba B
L 0 by bo max{bl, bg} + D4_ LY
[ ag al O o
— min a9 + bl + D2 0 b1 ﬂ
0 a1 + bs + D3 b
by by max{bl, bg} + Dy v

for all (a,ﬂ, ) [0,1]® such that a + B+~ = 1. If we can find a triplet
v) €10,1]° : a4+ 5+ v =1 for which

al 0 o
a2+b1+D2 0 by 3 <0
a1 + by + D3 by

by max{bl, bg} + Dy v
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holds, we reach a contradiction; hence, for this set of values we must have
Ao = 0. Assume b1by < ajas and define

) 5= by
Cag+by’ T ar by
7:1—04 5_ alag—blbg

- (a1 + bl)(az + bg)’

which is a valid assignment since all coefficients are non-negative and sum
to one. With this we have that

as ai 0 o
max min { |2 o+ Dy 0 by [5]
(a.8,7)€[0,1]3:04 B+7=1 0 a1+ b2+ D3 ba
by by max{bl, bg} + Dy v
[ as ay 0 bjb
. as + by + Do 0 by a2b1 2
= min 0 a1+ by + Dy by w16 bl
b1 bg max{bl, bg} -+ D4 (a1+b1)(az+b2)
bo
= min _a2 a1 0 QQZ;tbQ
[b1 by max{bi,ba} + Dy arab 8,
(a1+b1)(az+b2)

> 0 if (al,ag,bl,bg) =+ (0,0,070).

Hence, for b1by < ajas and (ai,as, by, b2) # (0,0,0,0) we must have o = 0.
A similar reasoning shows that if b1by > ajaz and (a1, az, b1, b2) # (0,0,0,0)
we must have \3 = 0. It is easy to show that if min{aj,as} = 0 then
Ao = 0, without loss of optimality. Similarly if min {b;,b2} = 0 then A3 =0,
without loss of optimality. This is because, under these conditions, one of
the constraints in (3.75) becomes redundant and therefore, by contradiction,
it is easy to show that either Mo =0or \3 =0 is optimal.

We now define the different non-negative quantities (ay,by), v € [1 : 2],
and D,, v € [1 : 4]. From our previous discussion, we restrict attention
to the case min {ay, as, b1,be} # 0. After straightforward manipulations the
cut-set bound, for N = 2, can be further upper bounded as

R(cut—set,NZQ) S 2 10g(2) + EH%X{I(X& }/3|X17 X27 Sla 52)} + eq(375),
1,02

where the term maxg, g, {I(X3; Y3| X1, X2, 51, 92)} < log(1 + |hs3|?) (with
hss being the channel gain from the source to the destination) and where
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al2 = [(X3;Ys|Ys, X1, X5, 51 =0,5 =0),
ch = I(X3;Y2|Ys, X1, X0, 51 = 1,5, =0),
ay = I(X3; Y1|Y3, X1, X2,51 = 0,52 = 0),
dy = I(X3; Y1|¥3, X1, X2,51 =0,5 = 1),
as = max{aj, ch},
a1 = max{a},d}},
1= 1(X1;Y3]X5, 81 = 1,8, = 1),
¢y = I(X1;Y3|Xs,51 = 1,58 =0),
h = I(X2;Y3|X1,51 =1,5 = 1),
L= I(X2;Y3|X1,51 =0,5 =1),
by := max{b}, ]},
be := max{b}, d5},
Dy :=1(X3; Y1, Ya2|Y3, X1, X2,51=0,52=0)
— max {1(X3; Y1|Y3, X1, X2, 51 = 0,52 = 0),
I(X3;Y3|Ys, X1, X2,51 =0,52,=0)},
Dy = I(X1;Y2|Y3, X2,581 = 1,5, =0),
D3 :=I1(Xy; Y1|Y3,X1,51 =0,5 = 1),
Dy = I(X1, X2; Y3|S1 = 1,5 = 1)

— maX{I(Xl;}@,|X2,S1 = 1,SQ = 1),I(X2;Y3|X1,S1 = 1,SQ = 1)} .

If one is interested in the gDoF for the Gaussian noise case, it suffices to
consider

d <1+eq.(3.75),

which is the high-SNR approximation of Rleut—set.N=2) where the direct link
from the source to the destination has SNR-exponent normalized to 1, i.e.,
|h33|? = SNRY, without loss of generality. In this case the different quantities
in (3.75) can be simply found by evaluating the different mutual information
terms above and by using the definition of gDoF in Definition 1. We obtain

ay =cdy=uag :=lasxp— 1|7, d| =d} =a1 :=[asg — 1],
bll :Cll :bl = [ald—1]+, bé:dé:bg = [QQd—1]+,
Dy =0, Dy =0,

1 -
Dy :=max{a1g+ asp — 1, f2} — [a1qg — 1]+ — [os2 — 1]+7
D3 := max {agsg + as1 — 1,51} — [aog — 1]+ — [as1 — 1]+v
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where «g; is the SNR~exponent on the link from the source to relay 4, ¢ €
[1:2], ajq is the SNR-exponent on the link from relay 4, i € [1 : 2], to the
destination and f; is the SNR-exponent on the link from relay j to relay 4,

(i,7) € [1:2]? with j # i.

3.C Proof of Theorem 6

Let S, 1 be the set of all k-combinations of the integers in [1 : n] and P, 4
be the set of all k-permutations of the