
HAL Id: tel-01346606
https://pastel.hal.science/tel-01346606

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conceptual design of shapes by reusing existing
heterogeneous shape data through a multi-layered shape

description model and for VR applications
Zongcheng Li

To cite this version:
Zongcheng Li. Conceptual design of shapes by reusing existing heterogeneous shape data through a
multi-layered shape description model and for VR applications. Mechanics [physics.med-ph]. Ecole
nationale supérieure d’arts et métiers - ENSAM; Università degli studi (Gênes, Italie), 2015. English.
�NNT : 2015ENAM0025�. �tel-01346606�

https://pastel.hal.science/tel-01346606
https://hal.archives-ouvertes.fr

Arts et Métiers ParisTech - Centre d’Aix-en-Provencce, LSIS, France
Università degli Studi di Genova, CNR-IMATI. Ge, Italia

Presented and defended publicly by

Zongcheng LI

September 28th, 2015

Conceptual design of shapes by reusing existing heterogeneous shape

data through a multi-layered shape description model and for VR applica-

tions

PhD THESIS in cotutelle

to obtain the degrees of

Docteur de

l'Arts et Métiers ParisTech
Spécialité “Conception”

École doctorale no432 “Science des Métiers de l’Ingénieur”

and

Dottore di Ricerca della

Università degli Studi di Genova

Specialità “Ingegneria Meccanica”

Della Scuola di Dottorato in “Scienze e tecnologie per l’ingegneria” ciclo XXVI

Directors of thesis: Jean-Philippe PERNOT
Co-director of these: Bianca FALCIDIENO
Co-supervisors of the thesis: Philippe VÉRON, Franca GIANNINI T

H

È

S

E

 Jury
M. Frédéric NOEL, Professor, G-SCOP, Grenoble-INP Reviewer
M. Umberto CUGINI, Professor, KAEMaRT, Politecnico di Milano Reviewer
M. Simon RICHIR, Professor, LAMPA, Arts et Métiers ParisTech Examiner
Mme Rezia MOLFINO, Professor, PMAR, Università degli Studi di Genova Examiner

2015-ENAM-0025

To those who love me,
and those who I love.

- ACKNOWLEDGMENTS –

First of all, I would like to thank all the members of the jury for the attention they have
paid to my work and the defense presentation, and for their constructive remarks and questions.
More precisely, I thank:

- Simon RICHIR, with his great sense of humor, who made me the honor of being
the examiner and the president of this jury,

- Frédéric NOEL and Umberto CUGINI, who have made great remarks as being the
reviewers of this manuscript,

- Rezia MOLFINO, who has examined carefully this manuscript.

I would like to thank all my dear supervisors. I had a great pleasure to work with them,
although we are from different culture and it took time to have a deep understanding of each
other at the beginning. On the other hand, these sparks of culture brought the opportunity of
combining fantastic ideas, which opened the view of thinking.

For Jean-Philippe PERNOT and Philippe VÉRON, co-director and co-supervisor of my thesis
in France, I would like to express my deep recognition, not only for the scientific quality of
their suggestive remarks which directly hit the point and opened my view, but also for their
passion and motivation during those long discussions we had.

I would like to thank Franca GIANNINI and Bianca FALCIDIENO, respectively my co-super-
visor and co-director of my thesis in Italy, not only for the scientific quality of their remarks but
also for the help during each time of my stay in Genova. Their kindly and warm cares helped
me pass through those difficulties not only in the scientific work but also in my foreign student
life.

I would like also to thank Samir GARBAYA, for the time he spent during the discussions we
had together with my four supervisors.

I would like to thank all the members of the Laboratory of LSIS in France and the Labor-
atory of CNR-IMATI in Italy, not only for the sharing of scientific ideas during my work but
also for the kindness and friendly time we have spent together. I would like to thank Aleksandar
PETROV, Imon BANERJEE, Romain PINQUIé, Yósbel GALAVís ACOSTA, Hao Hu, Feriel
KOCHTBENE, Nouha HICHRI, Meriem HAYANI MECHKOURI, Widad ES-SOUFI, Mohamed Aymen
SAHNOUN and Ahmed AHMED.

And finally, I would like to thank my parents and friends in China, for their endless love,
patience and support all along those years during my studding in Europe.

Zongcheng LI

I

TABLE OF CONTENTS

INTRODUCTION .. 1
- PART A: BACKGROUND AND STATE-OF-THE-ART - .. 5

 RESEARCH METHODOLOGY AND BACKGROUND. .. 7

1.1 Research methodology .. 8

1.1.1 Qualification .. 8
1.1.2 Research method and process .. 8

1.2 Context .. 10

1.2.1 What is design? ... 10
1.2.2 Conceptual design in user-centered design process .. 11
1.2.3 Creative conceptual design .. 13
1.2.4 What is Virtual reality? .. 16
1.2.5 Conceptual design for VR applications ... 18
1.2.6 Shape modeling for developing VR applications .. 20

1.3 Definition of research problem ... 20

 SHAPE REPRESENTATION, DESCRIPTION AND MODELING TOWARDS REUSING

HETEROGENEOUS DATA. ... 23

2.1 Heterogeneous shapes data resources .. 24
2.2 Toward shape modeling by reusing heterogeneous data .. 28

2.2.1 Traditional modeling and representation ... 28
2.2.2 Modeling with heterogeneous data .. 31

2.3 Brief introduction to shape description and useful shape descriptors 35
2.4 A multi-layered shape understanding paradigm... 40
2.5 Modeling tools .. 43
2.6 Conclusion and remarks ... 46

- PART B: CONTRIBUTION - ... 49

 TOWARDS A NEW APPROACH FOR SHAPE SPECIFICATION AND CREATION. 51

3.1 Introduction .. 52
3.2 An Industry example: Lookx ... 52

3.2.1 description ... 52
3.2.2 analysis .. 54

II

3.3 Two projects related to this Ph.D. subject .. 58

3.3.1 The VISIONAIR project ... 58
3.3.2 The Co-DIVE project .. 60

3.4 Purpose of this Ph.D. .. 63
3.5 Conclusion and remarks ... 64

 GENERIC SHAPE DESCRIPTION MODEL. ... 67

4.1 GSDM – A multi-layered framework .. 68
4.2 Data level (Geometry, Structure and Semantics) ... 69

4.2.1 Geometry ... 70
4.2.2 Structure .. 73
4.2.3 Semantics .. 75

4.3 Conceptual level (Component, Group and Relation) ... 76

4.3.1 Component .. 77
4.3.2 Group ... 80
4.3.3 Relation ... 83

4.4 Intermediate level (Key Entity and Constraint) .. 87

4.4.1 Basics .. 87
4.4.2 Key entity .. 90
4.4.3 Constraint .. 101

4.5 General overview .. 110
4.6 Conclusion and remarks ... 110

 MODELING WITH GSDM. ... 111

5.1 Workflow of the modeling process with GSDM .. 112
5.2 Working at the conceptual level .. 113

5.2.1 Creation of components ..113
5.2.2 Make groups and relations ...115

5.3 Working with the intermediate level ... 118

5.3.1 Automatic identification of key entities ..119
5.3.2 Automatic selection of the type of constraint and assign it to the right relation 120
5.3.3 Specification of key entities ... 121

5.4 Constraint Verification ... 122

5.4.1 Introduction to numerical optimization ... 122
5.4.2 Specification of the objective function .. 124

III

5.5 Conclusion and remarks ... 128

 IMPLEMENTATION AND RESULTS. .. 129

6.1 The adopted development environment .. 130
6.2 Overview of the implementation ... 132

6.2.1 Overview of the user interface .. 132
6.2.2 Visualization of heterogeneous data .. 134
6.2.3 Manipulation of a component (or group) .. 136
6.2.4 Visualization of Relation and Constraint ... 142
6.2.5 Symbolic representation and graph view of GSDM .. 142
6.2.6 CSP solving ... 144

6.3 Examples created using the implemented approach ... 145

6.3.1 Example one: Crazy chair ... 146
6.3.2 Example two: Assembly scanned pieces ... 153
6.3.3 Example three: power plant configuration .. 157

6.4 Conclusion and remarks ... 160

SYNTHESIS, CONCLUSIONS AND PERSPECTIVES ... 161
REFERENCES ... 165

IV

1

INTRODUCTION

t is complex, time-consuming, and costly to develop innovative and creative products, espe-
cially for people who have never been involved in a Product Development Process (PDP).

The formalization and manipulation of new ideas and concepts is not straightforward and it is
sometime difficult to come out with concrete and explicit representations of those imaginations.
Most of the time, they evolve over and over again through different stages (e.g. research, anal-
ysis, test, prototyping, re-test) before they reach a satisfactory compromise. However, it has
been recognized that over 80% of the total life cycle cost of a product is committed at the very
early design stage and it is therefore crucial to focus on it [1] [2] [3].

An outstanding concept development is crucial. During this stage, market research, prod-
uct specifications and an economic analysis are carried out. At the end of it, a development
project is outlined. Conceptual design, as an early design phase, plays a very important role
for both generating new ideas and reducing costs [4]. With the current intense market competi-
tion, creativity and innovation are more and more urgently needed in the conceptual design
phase. To support those creative and innovative tasks, Virtual Reality (VR) can play a central
role. As the objects designed for a VR application do not need to be manufactured immediately,
for example video games, films, etc., but to be visualized and integrated by the user, the design
of the shapes of these virtual objects becomes the key to achieve a competitive application.
Thus, new paradigms have to be foreseen to really take advantage of such new technologies.

Methods and tools supporting human creativity with both manual and computational
means have been proposed in the past. Those methods and tools for the design of shapes gen-
erally require the use of very specialized computer graphics knowledge. However, creativity
does not. Many new ideas come from our daily life. Any non-expert can come up with fantastic
ideas for new shapes by usually reusing and mixing existing shapes. With the development
of Internet and smartphones, many different digital data can be easily generated (e.g. by the
digital camera of a smartphone) or found (e.g. through a search in a database). However, few

I

2

tools can combine and integrate them together so as to generate a new shape, as they are in
different dimensions and stored in different data structures. There is always a gap between the
users with creative ideas and the conceptual design tools, a gap between the conceptual model
and the final product.

Moreover, the meanings of “shape” are different depending on the application contexts.
Today, the information associated with shapes has become broader than ever. Mere geometric
descriptions (e.g. CSG1, B-Rep2) cannot satisfy the needs for modeling shapes in different ap-
plications. Structure-based shape descriptors show a higher level of shape features explaining
the part-whole relation or topological relation of the geometry that can be used to analyze and
potentially generate shapes. In the last few years, there has been a considerable increase of
interest in the techniques used to extract and stream knowledge embedded into shapes. The
semantics [5] of shape enables to represent shapes that are both machine-understandable and
human-understandable. In many applications such as medicine, biology, etc., the meaning of
the shape is often more important than the geometry itself. However, the knowledge conveyed
by digital shapes is quite limited as the modeling tools and the data formats are quite centered
on the geometric aspects and have few relations with data interpretation, or optimized only for
one targeted application. Other aspects such as the structural information or the semantic based
information on shapes provide a different point of view of shapes and are very useful in specific
areas. A multi-layered shape description model should be developed from the very beginning
of any shape design process.

Thus, all the above-mentioned statements prove one fact : a more general and efficient
way for the creative conceptual design of shapes by reusing existing heterogeneous shape
data with user-centered approaches through a multi-layered shape description model is
much needed.

This is the general context for the subject of this Ph.D. thesis. The work done in this thesis
has been carried out within the framework of a French national project named Co-DIVE (Con-
ceptual Design In virtual Environment) funded by the ARTS Carnot Institute of Technology
and a European Infrastructure project called VISIONAIR3 (VISION Advanced Infrastructure
for Research).

To better introduce the different parts of the proposed shape description model and the
related methods and tools, this document is organized in two parts:

Part A: Background and state-of-the-art which corresponds to the explanation of the back-
ground together with the state-of-the-art of the existing approaches related to shape modeling,
representation and description. It has been divided into two chapters:

1 Constructive Solid Geometry
2 Boundary Representation
3 Project web page: http://www.infra-visionair.eu

3

• The first chapter (Chapter 1) aims at presenting the background for this thesis, the
description of the problem and the objectives as well as the adopted research approach.
The basic definitions of some key concepts are also introduced in this chapter.

• The second chapter (Chapter 2) gathers together a presentation and analysis of the
existing shape representations, shape descriptors, shape modeling approaches and
tools, trying to highlight the issues and limits existing today in the scientific context
of the subject presented in the previous chapter.

Part B: Contribution that focuses on the proposed shape description model as well as on the
user-centered processing of conceptual design while using this model. It consists in four chap-
ters:

• The third chapter (Chapter 3) presents the Co-DIVE and VISIONAIR projects,
showing a real example of a virtual reality application that has been developed using
the classical shape modeling process. By throwing away the bricks in the classical
process, the first idea of the proposed shape description model is presented.

• The fourth chapter (Chapter 4) introduces the definitions and the specifications of
the new shape description model through three levels: geometry, structure and se-
mantics together with the data structure of each definition in UML4.

• The fifth chapter (Chapter 5) investigates the user-centered modeling workflow us-
ing the proposed shape description model, which enables the storing of shape infor-
mation in the new model in a correct and non-ambiguous way.

• The sixth chapter (Chapter 6) ends this part while presenting a user-centered imple-
mentation as well as some experimentations in different contexts.

A synthesis of the key points in the proposed shape description model and user-centered
modeling process ends this document. Since the proposed concepts and tools are part of a first
exploration step towards solving the problem of user-centered creative conceptual design, they
possess their own limits, but they are a way to start new developments, to open new perspectives
and discussions as sketched in the last part of this manuscript.

4 Unified Modeling Language

4

5

- PART A: BACKGROUND AND STATE-
OF-THE-ART -

HE FIRST PART presents the background for this Ph.D. thesis project and the state
of the art of the existing approaches that can be used for shape representation, de-

scription and modeling. It consists of two chapters.
 The first chapter starts by introducing the research methodology used in this work.
According with the research method chosen, a first step is presented in this chapter that
aims at clearly defining the research problem.
 The second chapter collects together the introduction of the existing shape models,
representations, modeling approaches, shape descriptors and modeling tools used to cre-
ate digital shapes, pointing out the direction towards a multi-layered shape representa-
tion.

T

6

7

.
RESEARCH METHODOLOGY

AND BACKGROUND

CHAPTER OVERVIEW

HE OBJECTIVE OF THE PRESENT CHAPTER is to introduce the methodology applied
during this Ph.D. thesis (Section 1.1), a brief introduction and analysis of the back-

ground (Section 1.2) in order to clearly define the objectives, the research problem and
the literature review directions (Section 1.3).

T

Words do not play any role in my thought; instead, I think in
signs and images which I can copy and combine.

Albert Einstein

8

1.1 RESEARCH METHODOLOGY

This manuscript aims at presenting the research results and proposed solutions for the de-
fined scientific problem. In order to better introduce this work, it is necessary at first to present
the applied methodology.

1.1.1 QUALIFICATION

Depending on its different aspects, research can be qualified in different ways [6], [7], [8]
[9] [10]:

 Quantitative and Qualitative: Quantitative research means gathering objective
numerical data. Statistical models are applied to analyze and explain the collected
information. Qualitative research, instead of numbers, is to describe or interpret
what is being researched. This type of research is using words or visual representa-
tions to provide information.

 Observational and Experimental: Observational research is to directly collect in-
formation without the input from other previous researches. Experimental research
sets the parameters or conditions and is able to change them so as to determine their
effects. It helps researchers understand the meaning of certain variables depending
on different conditions.

 Basic, Applied and Developmental: Basic research is to just determinate what is
true. Applied research is to solve problems using what has been found. Develop-
mental research is more or less the same as applied research while more focusing
on improving existing techniques to generate new ones.

Mainly, in this Ph.D., the research works are of a qualitative, observational and devel-
opmental nature. In the introductory part on implementation, an experimental type of research
can be found comparing different solutions with different parameters (Chapter 6).

1.1.2 RESEARCH METHOD AND PROCESS

As the work presented in this document is not just pure research analyzing existing related
works, but it also includes a development stage, the research method applied in this thesis is
illustrated in Figure 1.1, which is based on the research method introduced by [8]:

9

Figure 1.1 Research process in flow chart from [8]

Step 1: Define research problem corresponds to two phases. The first one is to understand
the problem by selecting the general area of interest or aspect of the subject. The second one is
to rephrase the problem as well as the objective into meaningful terms from an analytical stand-
point. This step is detailed in this first chapter (Chapter 1).

Step 2: Review the literature aims at finding the existing solution (if any) corresponding

10

to the problems indicated in step 1 or presenting the issues which blocks the development of
suitable solutions; a case study is also introduced at this stage. Finally, some criteria are pro-
posed for evaluating the suggested solution. This step corresponds to Chapter 2.

Step 3: Case study and detailed objectives where one or more specific case(s) are ana-
lyzed in order to clearly define the position of the work and list the detailed objectives consid-
ering the results of the literature reviews in step 2. This step is detailed in Chapter 3.

Step 4: Research proposal describes the solutions proposed to answer the defined prob-
lem. A scenario is also designed in order to demonstrate the capacity and feasibility of the pro-
posed solution. This is developed in Chapter 4.

Step 5: Development designates the related activities designed to implement the proposal
into a real application, ready to be tested. The process of implementation is not wholly intro-
duced in this document, but some interesting results are presented in Chapter 5.

Step 6: Analysis corresponds to the step in which the results are analyzed with the criteria
proposed in step 2. This is part of the final section on Chapter 6 and the final Conclusions.

Step 7: Interpret and report is about writing the final document, the Ph.D. manuscript in
the present case.

1.2 CONTEXT

As stated in the introduction, this Ph.D. thesis undertakes to find a more general and effi-
cient way for a creative conceptual design of shapes for virtual reality applications by inte-
grating and merging existing heterogeneous shape data with user-centered approaches
through a multi-layered shape description model.

 This project is related to many different areas including conceptual design, creativity,
virtual reality, heterogeneous shape data, user-centered design and shape description models. A
brief introduction of these areas and their relations is presented in the following subsections.

1.2.1 WHAT IS DESIGN?

In our modern world, there exist lots of applications of design. “Design” is seen from many
different points of view when trying to give its definition. Design can be considered as both a
verb — the process of design — and a noun — the product resulting from the design process,
as Kathryn Best noted in her book [11]:

“Design describes both the process of making things (designing) and the product
of this process (a design). … The activity of designing is a user-centered, prob-
lem-solving process….”—Kathryn Best [11]

There are also some further definitions:

“Design is the craft of visualizing concrete solutions that serve human needs and
goals within certain constraints.”—Kim Goodwin [12]
“Design is directed toward human beings. To design is to solve human problems

11

by identifying them, examining alternative solutions to them, choosing and exe-
cuting the best solution.”—Ivan Chermayeff, confounder of Chermayeff & Geis-
mar

“Design is what links creativity and innovation. It shapes ideas to become prac-
tical and attractive propositions for users or customers. Design may be described
as creativity deployed to a specific end.”—Sir George Cox [13], former Chair-
man of the UK’s Design Council

“Design is an integrative process that seeks resolution—not compromise—
through cross-disciplinary teamwork. Design is intentional. Success by design
simply means prospering on purpose.”—Michael Smythe, winner of the DINZ
(Designers Institute of New Zealand) Outstanding Achievement Award for 2004.
“Design, in its broadest sense, is the enabler of the digital era—it’s a process that
creates order out of chaos that renders technology usable to business. Design
means being good, not just looking good.”—Clement Mok [14]

Design should not be considered as a methodology but a process. Methodology, referring
to a body of knowledge comprising the principles, guidelines, best practices, methods and pro-
cesses relating to a particular discipline [15], is a much broader concept than a process which
is a systematic series of actions directed to some end [16].

1.2.2 CONCEPTUAL DESIGN IN USER-CENTERED DESIGN PROCESS

There are many ways of describing the whole product design process depending on its
different applications. This Ph.D. thesis focuses on the user-centered design (UCD) approach,
which is a broad term to describe design processes where end-users influence how a design
takes shape [17]. The term “user-centered design” originated in Donald Norman’s research la-
boratory at the University of California San Diego (UCSD) in the 1980s and became widely
used after the publication of a co-authored book entitled: User-Centered System Design: New
Perspectives on Human-Computer Interaction [18].

12

Figure 1.2 User-centered Design life cycle

It is important to think carefully about who the users are and how to involve them in the
design process. Eason [19] has identified three types of users: primary, secondary and tertiary.
The primary users are people who actually use the artifact; the secondary users will occasionally
use the artifact or use it through an intermediary; and the tertiary users are the persons who will
be affected by the use of the artifact or make decisions about its purchase. In the book written
by [20] some ways of involving users in the design and development of a product/artifact have
been suggested, still it must be noticed that the involvement of users mainly occurs in the early
phase of the design cycle.

According to [21], the UCD lifecycle can be described as in Figure 1.2 (which is an ab-
straction of the idea presented in [21]). This life cycle comprises three phases: Discovery, De-
sign and Development support. Conceptual design is located at the early Design phase. Once
the target users’ current tasks and workflows are understood, it is important to do conceptual
design (or conceptual modeling) before launching into ideation and detailed design. Conceptual
design is a preliminary design activity that helps to see the product’s concepts, workflows, fea-
tures and language from the users’ viewpoint so as to guarantee that the designed products may
be more consistent, simpler and easier for them to understand and use.

Statement 1: The conceptual design phase is a critical stage in the development of new prod-
ucts.

At this stage, the designers and other members of the development team brainstorm prod-

uct ideas based on research of customers’ needs. They aim to produce initial concepts in the
form of sketches or outline specifications for commercial and technical evaluation. Following
a detailed review, the most promising concepts move forward to detailed design and develop-
ment. It is often a collaborative process, involving people in a multidisciplinary domain.

13

At the end of the conceptual design phase, a conceptual model is created. Jeff Johnson has
given this definition of a “conceptual model”, which shows a general definition but also adapt-
able for shapes:

“A conceptual model … [expresses] the concepts of the intended users’ task do-
main: the data that users manipulate, the manner in which the data are divided
into chunks, and the nature of the manipulations that users perform on the data.
It explains, abstractly, the function of the product and what concepts people need
to be aware of in order to use it. ”—Jeff Johnson [22]

Statement 2: Developing a high-level conceptual model expressing its tasks is an essential
part of the conceptual design phase.

Together, the conceptual model and task scenarios help to generate efficient workflows,

which enable users to successfully complete their tasks and accomplish their actual goals. Prod-
uct development outline becomes clear once the conceptual model has been defined.

Conceptual design is difficult, in particular for complex objects such as aircraft, ships, and
industrial appliances, especially when the requirements are from mixed cultures. The list of
requirements is generally quite long and it often takes a fully-detailed design to assess whether
the proposed solution meets the functional requirements, only to learn in the end that it does
not. Therefore a system that can quickly generate a proposed solution and evaluate whether it
satisfies the defined requirements without extensive detailing effort is strongly needed.

1.2.3 CREATIVE CONCEPTUAL DESIGN

Creativity in general and in design or conceptual design in particular has been a topic of
major attention over the years. With the foreseen economic value and the fascination of crea-
tivity, it is no surprise that a lot of researchers should attempt to understand it, seek factors that
enable or associate creativity in different settings and develop methods to enhance it.

Idea generation techniques can be perceived as the first and most critical part of creative
design. The most innovative ideas are generated by iterating back and forth between multiple
sources. Smith [23], summarized 172 methods for generating ideas. Six of them are very often
used in our daily life including: decomposition, search by relation, structure, combination, re-
arrangement and special resource-based strategies.

Decomposition methods are reductive; they convert an undifferentiated stimulus into one
rich in detail, offering cues for idea generation. It can be from wholes into parts and attributes,
and from ends into means, among others. Relation search methods consciously look for rela-
tions between two or more things, one of which is part of the problem, in hopes of finding
solution ideas. Structure methods organize information to reveal relationships. Combination
asks one to combine elements and attributes together in search of ideas. A less systematic vari-
ation of combination, rearrangement, alters the structure of a situation by rearranging its parts.
Special resource strategies use a specialized outside resource, enabling idea generation to reach

14

beyond a person’s normal mental repertoire.
One well-known example of using these six methods to create new ideas is the LEGO®

brick games as presented in Figure 1.3.
This example shows a part of a farm built from pieces of bricks. Some bricks are different

from one another and they are rearranged and combined together to simulate different objects
depending on the various relations among them. LEGO® brick building is a very good way for
children to develop their creativity.

Figure 1.3 Example of LEGO brick game: Farm5

These methods are also applied to modern conceptual design especially in the furniture
and architecture fields. The Figure 1.4 show some “crazy” designs of furniture combining dif-
ferent ideas together.

Figure 1.46 A few examples of crazy furniture combining ideas. The combined ideas in each
example are: A. lamp with horse, B. orange with table, C. coat hanger with chair, D. octopus

5 Image downloaded from: http://uk.ign.com/articles/2014/08/19/lego-minecraft-sets-to-release-later-this-year
6 A. Designed by Front©: http://www.atomicinteriors.co.uk/product/moooi-horse-lamp
B. Downloaded from http://freshome.com/2007/08/24/orange-slice-table/orange_slice-tablejpg/
C. Designed by Baita Design, downloaded from: http://www.trendhunter.com/trends/reindeer-coat-hanger-chair
D. and E. Downloaded from: http://forum.xcitefun.net/creative-and-modern-chair-designs-t71749.html
F. Design by graemebettlesdesign: http://graemebettlesdesign.blogspot.fr/p/lamps.html

http://uk.ign.com/articles/2014/08/19/lego-minecraft-sets-to-release-later-this-year
http://www.atomicinteriors.co.uk/product/moooi-horse-lamp
http://freshome.com/2007/08/24/orange-slice-table/orange_slice-tablejpg/
http://www.trendhunter.com/trends/reindeer-coat-hanger-chair
http://forum.xcitefun.net/creative-and-modern-chair-designs-t71749.html
http://graemebettlesdesign.blogspot.fr/p/lamps.html

15

with chair, E. flower with chair, and E. child skeleton with lamp.

Actually, the most creative ideas are coming from copying and combining existing things
[24] in an unexpected manner, as Albert Einstein always said about his thoughts:

“Words do not play any role in my thought; instead, I think in signs and images
which I can copy and combine.” —Albert Einstein

From all these examples and the analysis from [23], one can formulate the following state-
ment:

Statement 3: Taking ideas from different resources then combining and rearranging them
together with specific relations and structures is a very common and popular way in creative
conceptual design.

Shai and al. in [25] proposed a multidimensional group of criteria to classify creativity

studies, including:

 Actor complexity
 Product complexity
 Cognitive style or trait
 Cognitive process
 Problem structure
 Design processes, practices, culture or tools.

Actor complexity is showing the number of actors working on the design, their organiza-
tion, e.g. whether collocated or distributed, etc.

Product complexity explains whether the design is using many complex building blocks
or with few simple ones.

Cognitive style or trait is for designers. A cognitive style could be viewed as a cognitive
structure; its complement is the cognitive process which is the process used by designers to
address design problems such as the 172 methods analyzed by [23]. More creative cognitive
styles and processes help to create more creative designs.

Beside the designers’ contribution, the design context plays a major role in design. Prob-
lem structure shows whether the problem is defined for a single device or a complex system.

The design processes, practices, culture or tools reflect the experiences of the designers’
organization. A mature design company has a well-structured organization and powerful tools
which help to develop their creativity. A less experienced design group may see its creativity
limited by its own organization or by the use of less appropriate tools.

Thus, based on these criteria, some symbols to describe the gradation and meaning of them
are proposed by the author as in Table 1.1.

16

Criteria rela-
tive to creative

conceptual design

Degree of criteria

★ ★★ ★★★

Actor complexity Single actor
Small group

(Up to 5 people)
Well-structured

team

Product complexity

Simple
(Up to 3 building
blocks, e.g. shape

of a cup of tea,
shape of a mouse

of a PC)

Medium
(Up to dozens

building blocks,
e.g. shape of fur-
niture, shape of a

bicycle)

Complex
(e.g. airplane, vehi-

cle)

Cognitive style or
trait

Less design
knowledge

With design
knowledge but
few experience

Well experienced
designer

Cognitive process
Simple

(few idea genera-
tion techniques)

Medium
(group of ideas
generation tech-

niques)

Well-defined
(Suitable and well-
structured idea gen-
eration techniques)

Problem structure
Simple

(with few require-
ments)

Medium
(With reasonable

groups of re-
quirements)

Complex
(Complex defined

structure)

Design processes,
practices, culture or

tools.

Simple tools for
personal design

Small studio with
mature design

tools

Big company, well
organized with pow-

erful tools

Table 1.1 List of criteria relative to the creative of conceptual design

For example, the design of an aircraft is classified with three stars for all these criteria. A
logo of a small company designed by one designer is classified with only one star for all criteria.

1.2.4 WHAT IS VIRTUAL REALITY?

Conceptual Modeling has become popular in different areas such as Information Systems,
Web Information Systems, User Interface Modeling, and Software Engineering. However, it
has been less used in domains like 3D Modeling and Virtual Reality (VR).

Often, the virtual world is so close to the real one that people cannot even find the differ-
ences between them. This applies primarily to the various social network phenomena, such as
the Internet – an online network, so firmly established in a person’s everyday life that we can
say that a man today does not live one life, but two, and often even more lives, online (for e.g.
a role in a computer game). Communication, information retrieval, and entertainment are trans-
ferred from the real world into a virtual world. VR’s techniques are applied to the reduction of
the distance between the real world and the virtual one.

17

The term “virtual reality” was coined by Jaron Lanier in the late 1980s, but the origin of
VR technologies can be traced back to Ivan Sutherland’s work on interactive computing and
head-mounted displays in the mid-1960s [26] [27]. In a paper [28] he contributed to the inter-
national Federation of Information Processing Congress in 1965, entitled “The ultimate dis-
play”, he outlined the model for a human-computer interface that has continued to inspire the
thinking about computer-generated virtual environments ever since. In the late 1980s [29],
Jaron Lanier was the first to start attaching the label “virtual reality” to interactive computer-
generated three-dimensional immersive displays.

A. Sevalnikov, a Russian researcher about virtual reality gives his own definition of what
VR is, as seen below:

“A special system of information reflection, which makes the user feel as he or
she is inside the special world created by specific devises” —Sevalnikov [30]

Other definitions can be found as below:

“Virtual reality – is 3D artificial space created by computer means, in which the
user can get into, can change it and fell the real emotion in real time” —Bychkov
[31]
“ A medium composed of interactive computer simulations that sense the partic-
ipant’s position and actions, providing synthetic feedback to one or more senses,
giving the feeling of being immersed or being present in the simulation” —Wil-
liam R. Sherman and Alan B. Craig [32]

There are four key elements of virtual reality experience [32]: virtual world, immersion,
sensory feedback, interactivity. Sherman and Craig have also proposed two definitions of the
virtual world:

“virtual world 1. an imaginary space often manifested through a medium. 2. a
description of a collection of objects in a space and the rules and relationships
governing those objects.” —William R. Sherman and Alan B. Craig [32]

A VR application comprises different components [33], which can be summarized as:

 The scene and the object. The scene is the world where objects are located together
with other virtual elements such as lights, viewpoints and cameras.

 Behaviors. The object may have various behaviors such as moving, rotating and so
on. They also have their own way of actions defined to realize specific tasks.

 Interaction. The users have to be able to interact with the virtual world. For exam-
ple, pick up an object, drag an object to finally realize virtual tasks.

 Communication. Communication corresponds to the interaction between different
users in a similar virtual world.

 Sound. Sound is also involved in VR applications that simulate the real world.

18

Here are four technologies that are crucial for VR [34] [35]:

 The visual (aural and haptic) displays that immerse the user in the virtual world
(virtual environment) and that block out contradictory sensory impressions from
the real world.

 The graphics rendering system that generates, at 20 - 30 frames/second, the ever-
changing images.

 The tracking system that continually reports the position and orientation of the
user’s head and limbs.

 The database construction and maintenance system for building and maintaining
detailed and realistic models of the virtual world.

Among the various elements required for VR experience and the crucial technologies for
VR, one can state that:

Statement 4: A virtual world (namely a virtual environment), which is the content of a given
medium, is the first element that needs to be created for VR applications.

With the increasing development of VR techniques, to represent or create a 3D object as

well as the whole scene will necessarily be more efficient so that other elements can be quickly
developed based on the digital representation of the virtual world. The representation or crea-
tion of the virtual world starts with the design, which has to be improved from the very early
phase: the conceptual design (as presented in the previous section). On the other hand, VR is a
kind of human communication medium in the sense that human will experience in VR applica-
tion interacting with the virtual environment. Therefore the design of the virtual environment
should be driven by the final user. In other words, it should be user-centered.

1.2.5 CONCEPTUAL DESIGN FOR VR APPLICATIONS

As for other domains, introducing a conceptual design phase in the development process
of a VR application may help the VR community in several ways. As conceptual modeling will
introduce a mechanism to abstract from implementation details, it will reduce the complexity
of developing a VR application (for e.g. if the conceptual model is not satisfied then modifica-
tions can be done at this conceptual design stage, which will be much easier than change the
final VR environment). In addition, if well done, such an abstraction layer can also hide the
specific jargon used in VR and then no special VR knowledge will be needed for making the
conceptual design. Therefore, non-technical people (like the customer or the end-user who’s
going to use the VR application to realize their tasks) can also be involved in the development
and this will improve communication between the developers and the other stakeholders. In
addition, by involving the customer more closely in the design process of the VR application,
earlier detection of design flaws is possible. All this could contribute to realize more VR appli-
cations in a shorter time.

19

Statement 5: Customers should be involved in the conceptual design phase.

However, conceptual design for VR faces a lot of challenges since a number of aspects

such as the five components of VR and the crucial techniques presented previously, are abso-
lutely essential. Classical modelling languages such as ER [36], ORM [37] and UML [38] are
too limited for modelling a VR application in an appropriate way as they are lacking modelling
concepts [39] [40] in terms of expressiveness towards VR modelling.

Figure 1.5 Process of conceptual modeling for VR application [41].

In 2007, [41] proposed a general conceptual modelling approach for VR including three
phases: the conceptual specification phase, the mapping phase and the generation phase as pre-
sented in Figure 1.5.The specification phase corresponds to the specification of high-level in-
tuitive modeling concepts.

Statement 6: There is a gap between the conceptual specifications and their VR implemen-
tations

The mapping phase tries to bridge the gap. One concept can consist in mapping to different

VR models. With this step, VR-specialists are needed, especially when 3D models need to be
created. The generation phase is to generate the final VR data format such as X3D or VRML.
For example the concept of a “building” can be mapped to a 3D box which is finally structured
with a mesh in VR application with texture information.

 X3D is an xml based open file standard to represent a 3D scene or 3D objects. The devel-
opment of real-time communication of 3D data across all applications and network applications
has evolved from its beginnings as the Virtual Reality Modeling Language (VRML) to the con-
siderably more mature and refined X3D standard. X3D has a broad structure for saving different
types of VR components which includes 2D/3D graphics, animations, audio and video, user
interactions, navigation, networking, particle systems and so on. There are more than 40 differ-
ent definitions of the architecture and the base components of X3D standards. It is a highly

20

specified standard for VR applications, which is not suitable for conceptual design.

1.2.6 SHAPE MODELING FOR DEVELOPING VR APPLICATIONS

Designing a virtual world comprises the design of each object and the design of the virtual
scene. However, the existing user-centered conceptual design approaches (such as [42]) cannot
really satisfy the increasing needs of a fast virtual world generation system, especially for VR
shape modeling due to the high knowledge requirement of Computer Graphics (CG), VR and
product design.

However, the users, who usually lack this knowledge, are not directly integrated in the
conceptual modeling process.

Statement 7: There is a gap between the user with creative ideas and design tools.

Due to this gap, the time spent on modeling and modifying shapes is much longer compared

with other processes. Shape modeling is the crucial process of the user-centered conceptual
design for VR applications.

Today, digital 3D models used for VR applications contain much broader information than
just the geometry, in order to simulate not only the appearance but also the behavior of the
object. This information can be summarized in four categories:

 Geometry
 Appearance (e.g. color, texture, etc.)
 Physics (e.g. gravity, material, etc.)
 Behavior (e.g. animation, deformation, etc.)

Therefore, different aspects need to be considered in the shape modeling process for de-
veloping VR applications. A better shape description structure will reduce the gap between the
conceptual model and the final implementation; this will also reduce the gap between the user
with creative ideas and the design tools.

1.3 DEFINITION OF RESEARCH PROBLEM

In accordance with the analysis of the background presented in the previous subsection,
the research problem lies in the definition of interest areas and their relations from general to
specific, the description of problems and their objectives, which can be illustrated by Figure
1.6.

Conceptual design, which is an early design phase, plays a very important role in creating
new products. It is much needed by virtual reality applications as there is greater flexibility of
shapes in a virtual environment. Creativity is one of the key requirements of the conceptual
design phase which will help the final design be more attractive. One technique for non-expert
people to create new ideas is to combine existing ones. However there is a gap between these

21

non-expert users with creative ideas and the current design tools which require designers with
a thorough knowledge of computer graphics (CG). On the other hand, the information associ-
ated to shapes in virtual reality applications covers a large range of aspects. There is another
gap between the conceptual specification of shapes and the final data structure in implementa-
tions.

Figure 1.6 Research problem

Taking into consideration all the statements above, from Statement 1 to Statement
7Statement 7, the problems raised by this Ph.D. thesis are listed here:

Problem 1: There is a gap between:
the non-expert people with creative ideas who do not possess the know-how for reusing ex-
isting (by combining or rearranging them) shapes to create new ones, and the design tools
currently available.

Problem 2: There is a gap between:
the conceptual specification of shapes enriched with added information, and the final data
structure in the implementations.

Thus, the main objective of this PhD thesis is to find solutions for a user-centered shape

description model as well as the related methods and tools to reduce the two gaps pre-
sented in Problem 1 and Problem 2.

22

To review the existing situations so as to shed light on the objective, three literature review
directions (described in Chapter 2) have been chosen:

 Shape modeling / representation approaches for reusing heterogeneous shape data. It
focuses on the existing shape modeling / representation techniques towards the reuse of
different shape resources to generate new shapes

 Shape descriptors and information stored in shapes. It does not focus on how to extract
information of shapes but tries to understand what kinds of information are associated
to shapes, what is the use of these information, what kinds of information extracted are
needed to describe a shape or be reused.

 Shape modeling tools using heterogeneous data input

In this chapter, a general description of this subject has been introduced. With the analysis
of the reviewed results to be presented in Chapter 2, a more specific description of some re-
search directions and scientific issues will be highlighted.

23

.
SHAPE REPRESENTATION, DESCRIPTION

AND MODELING TOWARDS
REUSING HETEROGENEOUS DATA

CHAPTER OVERVIEW

HE OBJECTIVE OF THE PRESENT CHAPTER IS to review the related techniques and
tools defined in the three literature review directions indicated at the end of the

previous chapter. It includes four sections. Starting with an introduction about heteroge-
neous shape data (Section 2.1), this chapter reviews the shape modeling approaches by
using heterogeneous data (Section 2.2). Then, shape descriptors are introduced (Section
2.3), pointing out a multi-layer shape information paradigm for understanding shapes
(Section 2.4). A comparison of existing 3D modeling tools is highlighted (Section 2.5).
Finally, a conclusion and some remarks will show the results of this review (Section
2.6).

T

The noblest pleasure is the joy of understanding.
Leonardo da Vinci

24

2.1 HETEROGENEOUS SHAPES DATA RESOURCES

Shape holds a mysterious power for both understanding the world and changing it. As
with one of the earliest cave paintings in the Indonesian island of Sulawesi that dates back to
about 39,900 years, shapes can store information and pass it from generation to generation
(Figure 2.1).

Figure 2.1 Cave paintings on the Indonesian island of Sulawesi7

On the other hand, using shapes is also a very common way to express ideas, especially
from the point of view of creativity and innovation, as we can see in Leonardo DA Vinci’s 1488
design for a flying machine (Figure 2.2).

Figure 2.2 Design of a flying machine by Leonardo da Vinci, 14888

7 Image downloaded from: http://images.nationalgeographic.com/
8 Image downloaded from: http://www.drawingsofleonardo.org/

http://images.nationalgeographic.com/
http://www.drawingsofleonardo.org/

25

With the development of computer graphics, digital shapes have become today another
way of representing the real world as well as the imagined virtual world, especially in the field
of conceptual design, virtual arts and film. Compared with typical two- or three- dimensional
shapes, films and animations extend the dimension of shapes to four, adding one timeline- based
dimension. Thus, the information provided by shapes becomes richer and richer.

As a kind of media resource for storing information, shapes today can be seen almost eve-
rywhere in our daily life. Some of them can easily be found or even created without a vast
knowledge of design or computer graphics. As stated in Statement 3 and Problem 1, the com-
bination of existing shapes so as to imagine new ones is one of the very common ways of
applying creativity to shape design, as targeted in this thesis. These varied range of shape re-
sources are what to be reused.

In this manuscript these resources on shapes in the media are referred to as “Heterogeneous
Shapes data” or “Heterogeneous Data”. A definition is given below:

Definition 2.1: Heterogeneous Shape Data or Heterogeneous Data = the varied range of me-
dia containing shape information.

Some examples are listed below:

 Drawings / Sketches

Drawings or sketches are traditional ways of representing or describing a shape. Especially
in an early design phase, sketches are used to describe the concept of products. They are flexible
so that some innovative and creative ideas are usually expressed by them.

 Digital images

With the increasing development of smartphones, it has become very common today to
take pictures at any time, in any place with a digital camera or a smartphone. Those images are
usually used to represent human faces, foods, animals, attractive places or other objects that
relate to our daily life. The digital camera is one way to generate a digital image, but there are
also many software programs (such as Adobe Photoshop, Corel Painter, etc.) to directly create
digital images, thus apparently replacing traditional drawings/sketches on papers. Scanning pa-
per sheets is another means of obtaining digital images. There are mainly two different types of
digital images: first the raster or pixel images which contain a finite set of digital values, then
the vector images which result from the use of geometric primitives, such as points, lines, curves
and polygons. .

 3D meshes

3D meshes can be considered as the most common 3D data used by designers and artists
for developing 3D games, 3D movies or other visualization-based applications. 3D meshes are
also used for mechanical simulations with Finite Element approaches. One way to create a 3D
mesh is the use of meshing tools such as Autodesk© 3ds Max®, Autodesk Maya 3d®, Blender®,
etc. Another way, which has become extremely popular, is through the use of 3D scanning

26

systems. Indeed a 3D scanner firstly generates point clouds of the surface of the object then a
mesh process is applied to produce a 3D mesh. There are also many other converters, which
can convert other 3D data into a mesh. A 3D surface mesh is stored in a boundary representation
(B-Rep) structure.

 CAD (Computer-Aided Design) modeling

CAD models are generated by CAD software such as Dassault Systèmes© Solidworks®,
Autodesk© AutoCAD®, Dassault Systèmes© CATIA®, etc. Compared with 3D meshes, CAD
models contain information on the mathematical model of geometry. CAD models are mainly
used for industrial product design and manufacturing.

 Texts

There are two different ways to consider texts. First, the text itself is a kind of abstraction
invented by human beings. Second, it can also be used to describe shapes. Currently, texts are
an important way of storing information, including shape information. Depending on the accu-
racy of text, a shape can be very well defined or maybe just merely expressed by some few key
features.

 Audio tracks

Audio is not a direct media of shape resource. However, if the audio document is the oral
description of a shape, it can be considered as an indirect resource of shape information which
is similar to a text.

 Video tracks

Video or animations are higher dimensional resources (2D images plus “time” as the third
dimension, or capture of 3D object plus “time” as the fourth dimension). They can represent
the morphing or the movement of an object along the time. Using digital cameras is the main
way to create videos. They could also be generated via special software programs such as
Adobe© Flash®, Maxon© Cinema 4D®, etc.

The above-mentioned types of data are some examples of media resources containing
shape information. They are considered as “heterogeneous” shape data as they represent or
describe shapes by different ways, different dimensions, and with different data structures.
However, all these kinds can be used to represent or describe shapes with their advantages and
drawbacks.
Criteria for comparing heterogeneous data

To compare heterogeneous data, a list of criteria is proposed below:

 Dimension: This criterion refers to the dimensional space in which the shape is
represented and manipulated.

 Type of Information: some data may contain only geometrical information on a
shape, others will include other information such as assembly, constraints, etc. This
criterion refers to the different types of information stored in the heterogeneous data.

27

 Data structure: refers to the structure used to store the information.
 Descriptive power: shows to what extent the object represented in the heterogene-

ous data is well described. (“well” in the sense that if the descriptive power is high,
then the object is easier to recognize and be reconstructed).

 Generation: This criterion defines the way the data are produced.

To illustrate the criteria proposed above, the Table 2.1 draws a comparison between some
examples of heterogeneous data:

Drawing
/Sketches

Digital
image

3D Mesh CAD Model Text Audio Video
/Animation

Dimen-
sion

2D 2D 3D 3D / / 2D or 3D plus
time

Type of
infor-

mation

Geometry, color, tex-
ture, composition

lines, etc.

Geometry
with topo-
logical in-
formation

Geometry with
mathematical
definition, as-
sembly, con-
straints, etc.

Linguistic ex-
pressions

Geometry,
texture, color,
morphing, au-
dio, time, etc.

Data
structure

No Simple
(Pixels,
vector)

Medium
(B-rep)

Compact and
complex (B-
rep, feature-

based, paramet-
ric, etc.)

Linguistic
grammar

Complex (im-
age sequences

plus time
line)

Descrip-
tion

power

Medium Medium High High Low High

Ways to
generate

Pen plus
paper

Digital
camera,
scanner,
software,

etc.

Software,
scanner,

etc.

software Hardware (Pen
or recorder),

software

Digital cam-
era, software

Ad-
vantages

Easy to
create,
flexible

Easy to
be ob-

tained by
cameras.

Huge
data

available
on line

High di-
mension
with not
complex
structure

High dimen-
sion with prod-
uct level’s in-

formation

Easy to be gen-
erated, flexible

Rich infor-
mation

28

Draw-
backs

Low dimension, spe-
cial skills are needed

(drawing, photo-
graphing, etc.), the

whole object cannot be
visualized

3D modeling skills are
needed, needs to be enriched

by other resources such as
texture information.

No visual rep-
resentation

Special skills
are needed

Table 2.1 Comparison of some heterogeneous shape data resources

Back to Definition 2.1, the term “information on shapes” can be considered as a criterion
designed to check if the data are ‘heterogeneous shapes’ data. However, what the “information
on shapes” designates needs to be further specified (Section 2.4). In the following section, a
review of the existing shape modeling approaches toward the modeling by combining hetero-
geneous data.

2.2 TOWARD SHAPE MODELING BY REUSING HETEROGENEOUS DATA

2.2.1 TRADITIONAL MODELING AND REPRESENTATION

Traditional shape modeling starts from several basic geometric elements, then applies dif-
ferent modeling techniques to define complex geometries and finally represents them in a dig-
ital representation.

GEOMETRIC ELEMENTS

As introduced in [43], four categories of these basic geometric elements based on the dimension
of manifold are listed as below:

 Punctual element (dimension 0): Point and discrete sets (for e.g. voxel, pixel, etc.).
 Linear elements (dimension 1): straight lines or curves (for e.g. Bézier, B-Spline,

etc.)
 Surface elements (dimension 2)

o Implicit surfaces: surfaces defined by an implicit equation.
o Parametric surfaces: surfaces defined by parameters such as cylinder surface,

sphere surface, Bézier surface, B-Spline surface, NURBS surface, and so on.
o Subdivision surfaces: a mesh subdivided by a refinement scheme.

 Volumetric elements (dimension 3): A closed surface without self-intersection such
as a cube, a sphere, and so on.

MODELLING AND REPRESENTATION APPROACHES

Depending on the adopted representation, modelling approaches can be classified into
three categories:

29

 Collection of discrete primitives. Depending on the resolution, a shape can be
simply represented or highly detailed such as pixel images, point clouds and voxels.

Figure 2.3 A. Example of C.S.G modeling, where ∩ for intersection, ∪for union and ―for

subtraction, B. Example of B-Rep modeling9

 C.S.G modelling enables the definition of a geometric model as the result of a suc-
cession of topological operations (union, subtraction and intersection) applied to
elementary primitives such as cube, sphere, cylinders, etc. (e.g. Figure 2.3.A)

 B-Rep modelling is used to express a solid through the set of surfaces defining its
closed boundaries. (e.g. Figure 2.3.B)

Based on the modelling process direction, modelling approaches can also be classified into
other two categories:

 Top-down modelling, [44] it starts with building an overview such as a plan or
sketch that defines component locations, key dimensions, etc. Then the assembly of
the different parts creates the final shape.

 Bottom-up modelling, it starts with lower dimensional geometric elements from
which higher dimensional shapes are created. Four techniques are widely used (Fig-
ure 2.4):
o Extrude: two-dimensional closed geometric elements can be extruded to define

a solid model with a specific distance (Figure 2.4.A).
o Sweep: a solid model is created by sweeping the cross sections along a specific

trajectory (Figure 2.4.B).
o Revolve: a two-dimensional closed geometric element is rotated around an axis

with a specific angle to form a solid model (Figure 2.4.C).
o Loft: surface created by cross several sections and possibly with some guides to

be followed in between the sections (Figure 2.4.D).

9 Image downloaded from : http://en.wikipedia.org/wiki/Constructive_solid_geometry

30

Figure 2.4 A: Example of extrude. B: Example of sweep. C: Example of revolve. D: Example
of loft

To provide more advanced, user friendly way to create shapes which can also better en-
capsulate the intension of the design other approaches have been introduced in CAD design
tools for engineering, styling and animation, such as:

 Feature-based modelling [45], [46] creates shape with feature elements such as slots,
holes, pockets, etc. A form feature is defined as a specific geometric configuration
formed on the surface, edge or corner of a work piece [47] [48].

 Constraint-based modelling refers to specifying shapes with the help of constraints,
when defining shape parameters of each part or assembling different parts. A com-
putation is needed to verify if the shape so defined is over-constrained.

 Morphing-based modelling is another technique for manipulating shapes with spe-
cific rules [49]. Free-form deformation (FFD) is one of the most popular techniques
for aesthetic designs [43]. A totally morphing based modelling example is illus-
trated in Figure 2.5, which is created by a modelling tool called ZBrush.

Figure 2.5 Example of morphing based modeling10

10 Image downloaded from: http://www.zbrushchina.com/

31

In today’s manufacturing-based CAD tools (e.g. Solidworks, CATIA, AutoCAD, etc.),
these approaches are mixed together to design a new shape. Some primitives or parts are firstly
generated with bottom-up approaches then top-down approaches are applied to assemble them
together.

The modelling approaches introduced in this subsection are considered as ‘traditional’, as
they do not use heterogeneous shape resources. There are few approaches today that combine
2D and 3D shape resources to define 3D shapes (such as loft using 2D curves to generate 3D
shapes).

DECLARATIVE AND SEMANTIC BASED MODELLING

To reduce the complexity of traditional procedural modelling approaches, declarative and
semantic modelling approach starts with stating what has to be created instead of how to be
modeled. Some predefined and semantic oriented features are usually used in those systems to
help the user bridge the gap between the declarative model (and the semantic model) and the
final 3D geometry. Such as in the system mentioned in [50], a sketch based interface with high
level features is used to speed a terrain model generation.

2.2.2 MODELING WITH HETEROGENEOUS DATA

Traditional modeling approaches do not refer to really “combining” heterogeneous data,
in the sense that each heterogeneous input is considered as a part of the shape. Some of them
directly define the mathematical models of shape without any other shape resources or “use”
lower dimensional shapes as parameters to specify higher dimensional shapes, as mentioned
previously. Others “reconstruct” lower dimensional input to achieve higher dimensional shapes.
Heterogeneous data are represented at different stages in these approaches. Only in a few situ-
ations they are visualized at the same time to represent the different parts of a shape.

POINT CLOUD AND HYBRID GEOMETRY MESHING

With the development of 3D scanners and 3D printers, efficient techniques related to point
cloud meshing are highly required. Point clouds are considered as input, and then different
meshing approaches are applied to generate a mesh (e.g. Figure 2.6).

Figure 2.6 An example of point cloud meshing11

11 Image downloaded from: http://rd.newdimchina.com/expertise/mesh_processing.html

32

The first algorithm for meshing point clouds was described by [51]. However the problem
deserved little consideration until [52], who mentioned two trends in surface reconstruction: the
Delaunay-based methods where a sub-complex of the Delaunay complex is used to approximate
the surface (e.g. [53], [54]), and the volumetric methods, where surfaces are approximated as a
zero-set of scalar 3D function (e.g. [55]).

Meshing techniques based on hybrid geometry (a combination of point clouds, polygons,
etc.) are developed on the basis of point cloud meshing. However, as the process of converting
an unstructured input polygon soup into a consistent polygonal model requires the solution of
several sub-problems (such as the calculation capacity of huge data, problems with noise, out-
liers and under-sampling, etc.), this problem is really complex. To produce a manifold mesh
with the corresponding topology and geometry is still one of the main issue of surface recon-
struction.

 IMAGE-BASED MODELING

Another way to model shapes using other types of data is image-based modeling, which
reconstructs a 3D mesh from 2D images. Due to the fact that image-based modeling has a good
potential for generating very realistic images, it has gained a lot of attention in graphics com-
munity.

Figure 2.7 Example of image-based modeling

Image-based modeling techniques are usually used on constrained problem of reconstruct-
ing architectural models ([56] [57] [58], e.g. Figure 2.7). In many cases, the most impressive
and accurate results come from those achieved with interactive approaches. Those techniques
have been used in the context of Reverse Engineering to fill in holes in meshes [59] or to sim-
plify triangle meshes [60].

Some techniques take more than one image. These images can be un-calibrated images
(also called “shapes from video”) such as introduced in [61], [62], or oriented images taken
from different views as explored in [63]. Range images are also used to reconstruct 3D models
([64], [65]). There are also some approaches trying to reconstruct a 3D mesh from hybrid im-
ages (e.g. both range and color images) such as introduced in [66], [67].

33

2D IMAGES CONSIDERED AS TEXTURES OF 3D IMAGES

One situation in which both 2D and 3D shapes are used together in the same model consists
in taking a 2D image as texture for 3D models. The related techniques are named as texture
mapping, which is a way of adding surface details, texture (a bitmap or a raster image), or color
to computer generated graphics or 3D models. Its application to 3D graphics was pioneered by
Edwin Catmull in 1974 [68] [69]. Texture mapping has made it possible to simulate near-pho-
torealistic 3D models in real time.

Figure 2.8 3D shape (left) with texture – bump map (middle) to simulate an orange (right)12.

As an example, a bump mapping is shown in Figure 2.8, where the surface of a sphere is
simulated as it was an orange.

As with bump mapping, texture mapping is a solution for reusing 2D image and 3D models.
However, these two types of data are not all used to define the geometry of the shape. Texture
improves only the appearance of a shape such as in the example in Figure 2.8, the surface mesh
of the sphere is not modified by adding mottled notches.

2D PLANAR SURFACES USED IN VIRTUAL ENVIRONMENT

In most 3D video games, 2D planar surfaces with transparent texture (image with RGBA
format) mapping are normally used together with closed 3D surfaces to simulate objects. For
example grass, leaves or trees (e.g. Figure 2.9).

Figure 2.9 Example of tree and grass simulated in 3D environment by 2D planar surfaces13

12 Image downloaded from: http://en.wikipedia.org/wiki/Bump_mapping
13 Image downloaded from: http://image.baidu.com/i?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-

34

For CAD usage, 2D planar surfaces are also used to present different views of the designed
product.

These 2D planar surfaces are positioned freely without defining any specific relations be-
tween them (For CAD 2D views, they are positioned in specific view directions). They are not
usually used to design a shape but simulate it in an approximate way.

TEXT WITH 2D AND 3D SHAPES

Text as a kind of shape is also used together with 2D or 3D shape in VR applications. For
2D shapes, Microsoft Word and Microsoft PowerPoint are very common examples, which en-
able to manipulate texts with 2D shapes. However, these texts are not used to define a shape
but to present information in addition to the underlying context.

3D multiplayer games usually put a text above a character as its name or conversations as
presented in Figure 2.10.

Figure 2.10 Examples of texts used in 3D virtual environment14

They can also be considered as a planar surface that always faces the viewer. However,
similar to other situations presented previously, texts are not used today to design new shapes.

1&fm=result&fr=&sf=1&fmq=1424953536720_R&pv=&ic=0&nc=1&z=&se=1&show-
tab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=3d+%E8%8D%89

14 Image downloaded from: http://image.baidu.com/i?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-
1&fm=result&fr=&sf=1&fmq=1424954101973_R&pv=&ic=0&nc=1&z=&se=1&show-
tab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&word=3d+game+rpg

35

2.3 BRIEF INTRODUCTION TO SHAPE DESCRIPTION AND USEFUL

SHAPE DESCRIPTORS

In the previous sections, some heterogeneous shape data resources have been presented,
from the type of media point of view. This section focuses on reviewing shape descriptors in
order to find out what kind of information are stored in shapes and how to describe them and
which of them are important, as the three literature review directions defined at the end of
Chapter 1. To distinguish among “shape representation”, “shape description” and “shape de-
scriptor”, here their definitions are proposed in this manuscript:

Definition 2.2: Shape representation = a computational model that represents an object in the
digital world which is quantitatively and qualitatively similar to the ‘real-life’ object.
Definition 2.3: Shape description = expression of the meaningful characteristics of a shape
in a specific context.
Definition 2.4: Shape descriptor = meaningful numbers or characters produced to describe a
shape in a specific context.

Compared with the Representation of shapes, the Description of shapes is only qualita-

tively similar. A representation is more detailed and accurate than a description, but without any
meaningful high-level information. A description focuses on the meaning or characteristics of
an object from a specific point of view and it is always calculated based on certain shape rep-
resentations. The importance of the digital representation of an object does not only lie in the
possibility of displaying it - a display can also consist in a particular simulation which is a
simulation of the final appearance of the object- but also in the fact that we can draw some
analyses, carry out simulations and extractions for further data/information-storing purposes,
while the point of using descriptions is to find some meaningful information on the shape that
can be used to classify objects or retrieve shapes. Shape feature descriptors are quantities pro-
duced so as to describe a given shape. Descriptors can be considered as a higher-level means of
description, which uses only numbers to describe a shape in a specific application context (e.g.
volume, area, etc.). From the point of view of the structure of the data, a shape representation
has a fully defined structure called a digital model to save the geometric information of a shape,
while shape descriptions or descriptors use simple data structures to code meaningful infor-
mation.

There is no clear quantitative boundary between shape representation and shape descrip-
tion. They both are ways of describing shapes, and the technologies related to them are often
similar. Therefore, in the current literature, they are usually considered as belonging to the same
research area of shape analysis.

36

Figure 2.11 Classification of 2-D and 3-D shape descriptors by [70]

The review in this section is not focusing on the techniques of how information are ex-
tracted from shapes but what kind of information can be extracted and what kind of information
people are focusing on. Therefore, some existing surveys ([71], [72], [73], [74], [75], [76],
[77], [70]) on shape analysis and shape descriptors have been reviewed from the very beginning
of 1970s until 2013.

There are some general descriptors, such as perimeter [78], area [79] [80] [78] [81], sta-
tistical moments [82] [83] [84] [85], shape signatures [86] [87] [88], polygonal approximation-
based shape descriptors [82] [89], complexity [90]. A recent classification of 2D and 3D shape
descriptors can be found in [70] as presented in Figure 2.11.

Most shape description techniques are extracting information from the contours or the re-
gions of the shape. Others may transform 2D/3D space coordinates into other spaces to get
useful information. Color and light information are also used to describe a shape. The following
Table 2.2 shows other ways to classify shape description and representation techniques for each
ten years starting from the 1970s. (Time for the “proposed classification” in this table is not
referred to the time when the specific technique appeared but the time when it became popular
and considered as a “class”)

From this table, it can be noticed that different shape information was focusing in different
time. Those related algorithms are been developed towards graph based and more meaningful
descriptors. They have grown from simple algorithms dedicated to 2D silhouette feature extrac-
tion only, to multi-scale transforms, graph- based feature extraction for various application do-
mains. As those techniques are typically used for extracting information from a well-defined
shape, their main applications are shape classification and retrieval. However, among these
techniques, there are some whose results can also be potentially used for modeling new shapes
especially graph- or structure - based techniques, which might turn out to be very interesting
for this thesis.

37

Table 2.2 Comparison of shape representations and description techniques

SHAPE SKELETON

Shape skeleton is a thin version of that shape, which is the locus of points that hold the
same distance to its boundaries. There are several mathematical definitions used in the literature
to define a skeleton. Different algorithms have been applied to compute it. In some papers,
skeleton is also named as “topological skeleton” or related to “Voronoi diagram”. The concept
of a skeleton is also interchangeable with “medial axis” and “thinning”. Here some major algo-
rithms for extracting shape skeletons are listed.

Topological thinning based methods [91] extract a skeleton by removing its outer layer
over and over again until a specific thinness. This kind of methods is sensitive to noise and
orientation, however it is quite simple and keep the topological relation of the shape.

Distance transform base methods [92], [93] obtain skeletons by computing for each
point/voxel the distance from the background. However the results are not always connected
and additional methods are needed to get a connected skeleton. However, this kind of method
can always provide a centered skeleton.

38

Figure 2.12 Examples of skeletons: A – 2D, B-3D15

Wavefront propagation based methods [94] find the skeleton by propagating a wavefront
from the root to the outer boundaries of the shape. Skeletons generated using this kind of
method are usually continuous and smooth while very sensible to noise as well. Moreover, the
results are not usually located at the center of the shape.

Voronoi diagrams [95] are generated by partitioning a shape into different regions by a
set of chosen points/ voxels and then linking these points through other algorithms (for e.g.
heuristics based) to get the final skeleton.

REEB GRAPH

Reeb graph [96] [97] calculates the skeleton through the evolution of the level sets of a
real-valued function. Reeb graphs, as they strongly preserve the topological information of a
shape, have been widely used in different areas. If the function used to calculate a Reeb graph
is on a special flat space, then the result forms a polytree, which is also named contour tree.
Reeb graphs are also helpful for image segmentation. An example of a Reeb graph is presented
in Figure 2.13.

Figure 2.13 Example of a Reeb graph calculated from a height function16

15 Image downloaded from： http://en.wikipedia.org/wiki/Topological_skeleton and

http://www.sci.utah.edu/~jtierny/img/pacific_material6.png
16 Image downloaded from : http://en.wikipedia.org/wiki/Reeb_graph

39

Those graph-based shape descriptors have a strong potential usage to define or align
shapes. For example, the one straight segment of a skeleton may represent the major orientation
axis of this shape. If this shape will be used and relocated in another 3D space, then this skeleton
is very useful to set the orientation of this shape.

BOUNDING BOX

Beside of the graph-based shape descriptors, bounding box is another very interesting
shape descriptor, which is useful to merge heterogeneous shape representations.

Bounding box is an enclosing box where a shape can be put inside. Minimum bounding
box is the smallest enclosing box of a shape. Oriented bounding box is one of the enclosing box
of the shape with respect to an orientation constraint. The minimum oriented bounding box
follows the major orientation of a shape, which is useful to locate this shape in a 3D space.

Figure 2.14 Example of a minimum bounding box of a ship17

The word “semantics” has become popular in recent years, and to indicate is a key issue
in image analysis techniques, which is called the “Semantic Gap”. In [98], it is defined as: “the
lack of coincidence between the information that one can extract from the visual data and the
interpretation that the same data have for a user in a given situation”. Semantic-based retrieval
tries to extract the cognitive faculties of human beings to map the low level image features to
high level concepts so as to reduce the semantic gap. One possible solution is to represent image
content with semantic terms, which allow users to access images through text queries, which
are more intuitive, easier and preferred by end users to express their intent compared with using
images [99]. Researchers are moving towards intelligent image retrieval, which supports more
abstraction by understanding the image content in terms of high level concepts.

17 Image downloaded from : http://www.3dmax-tutorials.com/graphics/il_bounding_box.jpg

40

2.4 A MULTI-LAYERED SHAPE UNDERSTANDING PARADIGM

From the feature-extraction point of view, shape representations and description tech-
niques have shown different ways of capturing information from shapes with different aspects.
Those features can also be considered as different characteristics for understanding the infor-
mation associated with shapes. With the development of computer graphics (CG) and its h ap-
plication domains, the meaning of “Shape” has become richer.

In [74], a shape is defined by “Parts” and “Relations” which can be summarized as.

Definition 2.5 : Shape = parts + relations

The approach of decomposing shapes into a set of parts before undertaking other shape
analysis tasks was proposed early in the 1960s. A shape is then seen as a set of parts that are
spatially arranged through the spatial relations among them. A key-issue of applying this defi-
nition is to store the information on the shape parts as well as the relationships among them.
Two solutions could be found in the literature. One is shape grammars [100], which represent
the shape parts with terms and symbols from formal grammars. A shape is then represented as
a string of such symbols. The relations are implicitly represented as juxtapositions of these
symbols. The other solution is to use graphs. The shape parts are associated with graph vertices
while the relations among such parts are represented as edges between vertices.

The spatial relations among the shape parts can be classified in different ways [101] [102].
A possible classification proposed by [103] includes the following three classes:

 Topological relation: this kind of relationship is invariant to rotation and scaling
transform, such as “inside”, “outside” and adjacent.

 Distance relation: this kind of relation is linked to quantitative measures. The mean-
ing that two shapes being “far from” or “close to” each other needs to be further
specified. Fuzzy modeling plays an important role in this issue.

 Directional relation: this kind of relationship is characterized by the orientation of
angle-based aspects following some reference such as the medial axis, or the seg-
ments of the border of a 2D shape.

In 2004, the European project AIM@SHAPE [104] proposed a new way of understand-
ing shapes as can be seen below:

Definition 2.6: Shape = any individual object having a visual appearance which exists in
some (two-, three- or higher– dimensional) space such as pictures, sketches, images, 3D ob-
jects, videos, 4D animations …

 Shapes have a geometry (the spatial extent of the object),
 They can be described by structures (object features and part-whole decomposition),

41

 They have semantics (meaning, purpose), and they may also have some interaction
with time (e.g., history, shape morphing, animation, video).

 They have attributes (colors, textures, names, attached to an object, its parts and/or
its features).

Compared with Definition 2.5, this definition shows a broader view of shape. The shape

parts and their relations in Definition 2.5 can be considered as the structure of shape. Their
appearance features such as their colors, textures etc. are grouped as the attributes of the shape.
This definition also associates semantics to shapes, which can be used for semantic- based re-
trieval processes. With this definition, the information associated with shapes is mainly struc-
tured into three different layers including geometric, structural and semantics-based levels (see
an example presented in Figure 2.15).

Figure 2.15 Form [104]. A digital shape represented by a point cloud (a); a geometric model
of the point cloud, defined as a triangle mesh (b); the structure of the hand model, defined as
the configuration of protrusion-like features (c); the model has been semantically annotated,

using its structure.

42

Figure 2.16 AIM@SHAPE Bottom-Up approach [104]

Figure 2.17 AIM@SHAPE Top-Down approach [104]

43

The general AIM@SHAPE modelling approach is catalogued into two classes. One is a
bottom-up approach that extracts morphological structures from low-level geometry and cap-
tures the implicit semantic information digital shapes (Figure 2.16).

The other one is a top-down approach, which computes the feature-based structure from
given high-level semantics to finally reshape the geometric models (Figure 2.17).

If all the shape data in the database are structured using this paradigm, then content-based
image retrieval and semantic-based shape retrieval will be easier as it groups the information
related to shape into different layers. However, today there is no standard format that can sup-
port this kind of shape paradigm since different tools are used to capture the information on
different layers and store them separately while no one can combine all this information into a
single data structure. This is mainly because the shape-generation approaches used today are
almost based on the geometric layer only. As a result of the process of generation, the formats
typically include geometric information only with some simple semantic information. The
standard VRML (a subset of X3D) [X3D, 2013] for virtual reality models can be considered as
a most popular standard for 3D applications that embeds additional information along with ge-
ometry into 3D models including color, texture, material, environment, etc. However, no mor-
phological structural information has been included. New modeling concepts should be devel-
oped to support this shape definition from the very early phase of shape modeling, leading to
conceptual design.

2.5 MODELING TOOLS

The objective of this subsection is to review existing 3D shape modeling or VE modeling
tools to check how heterogeneous data are used and how the user is involved. To this goal, six
criteria are proposed to compare different modeling tools or modeling processes:

Criteria
Gradation of criteria

☆ ★ ★★ ★★★

End-user
driven

No Less
In some cases (e.g.
for texture provided

by the end-user)
Totally

Adapted to
non-expert

user
No Less For simple design Well suited

Workflow
complexity

Non de-
fined

Linear Concurrent Complex, Mixed

Input hetero-
geneous data

No Simple type
2 or 3 types such as
text with image or

image with 3D mesh

Multiple resources (text,
image, 3D mesh, video,

audio, etc.)

44

Use of heter-
ogeneous

data

Non di-
rectly
used

Simple use
(e.g. tex-

ture)

Not all used to de-
scribe shapes

All used to describe
shapes

Time con-
suming

Very
high

High Medium Low

Table 2.3 Criteria for modeling tools or process

Based on these criteria, some tools are here reviewed. Most of the values the criteria are
set according to the experience of the author while some of them are given by the comparison
between different tools18. The comparison is presented below:

End User

driven

Suited to a
non-expert

user

Work flow
complexity

Input of het-
erogeneous

data

Use of heter-
ogeneous

data

Time con-
suming

Not-manufacturing design based (for modeling, animation, video games, lighting, rendering)

3ds Max19 ★ ☆ ★★ ★★ ★ ★

Blender20 ★ ☆ ★ ★★ ★ ★

Cinema
4D21

★ ☆ ★★ ★★ ★ ★

Maya3D22 ★ ☆ ★★ ★★ ★ ★

Swift 3D23 ★ ★ ★★ ★★ ★ ★

ZBrush24 ★ ★ ★ ★★ ★ ★

LightWave
3D25

★ ☆ ★★ ★★ ★ ★

CAD based

18 http://software.toptenreviews.com/
19 http://www.autodesk.com/products/3ds-max/overview
20 http://www.blender.org/
21 http://www.maxon.net/products/cinema-4d-studio/who-should-use-it.html
22 http://www.autodesk.com/products/maya/overview
23 http://www.erain.com/
24 http://www.zbrush.com/
25 https://www.lightwave3d.com/

45

Sketchup26 ★ ★ ★ ★ ★ ★★

Solid-
Works27

★ ☆ ★★★ ★ ★ ★

CATIA
V528

★ ☆ ★★★ ★ ★ ★

AutoCAD29 ★ ☆ ★★★ ★ ★ ★

Pro/ENGI-
NEER30

★ ☆ ★★★ ★ ★ ★

VE modeling based

Unity3D31 ★ ★ ★★★ ★★★ ★★ ★★

Game-
Ware32

★ ★ ★★ ★★★ ★★ ★

Ga-
meMaker33

★ ★ ★★ ★★★ ★★ ★

Unreal34 ★ ★ ★★ ★★★ ★★ ★

Torque
2D/3D35

★ ★ ★★ ★★★ ★★ ★

Flash36 ★ ★ ★★ ★★★ ★★ ★

Reverse engineering based

Geomagic
Design X37

★★★ ★★ ★ ★★ ☆ ★

Pilot3D38 ★★★ ★★ ★ ★ ☆ ★

26 http://www.sketchup.com/
27 http://www.solidworks.com/
28 http://www.3ds.com/products-services/catia/products/v5/
29 http://www.autodesk.com/products/autocad/overview
30 http://zh-cn.ptc.com/product/creo
31 http://unity3d.com/
32 http://gameware.autodesk.com/
33 http://www.yoyogames.com/studio/
34 www.unrealengine.com/
35 www.unrealengine.com/
36 https://www.adobe.com/products/flash.html
37 http://proto3000.com/rapidform-xor-reverse-engineering-software-benefits.php
38 http://pilot3d.com/

46

ReShaper39 ★★ ★★ ★ ★ ☆ ★

VRMesh40 ★★★ ★★ ★ ★ ☆ ★

Table 2.4 Comparison of modeling tools and systems

Aesthetic design-based tools focus on the digital representation of shapes. These shapes
are going to be used in VE such as films, video games. In general, they are not end-user driven
as they face different types of end user. CG and design knowledge are also required. Workflows
are not very complete as CAD based tools, as they do not define assembly or constraints. They
use both 2D images and 3D models. Most of the time 2D images are considered as texture for
3D surfaces.

However, CAD-based models do not really focus on the “virtual appearance” of shapes.
They are suited for industrial products, which need to be manufactured in the future. Therefore,
not many heterogeneous data are used. At times, 2D images are used to present different views
of a product. The working process in the CAD model is complex, as not only the parts of a
product need to be defined but also assembly, constraints and manufacturing properties.

VE modeling-based tools are not aimed at designing a single shape, but at rearranging
different 3D models in a virtual scene. Thus, multiple resources are involved such as image and
video textures, texts and audio.

Reverse engineering-based tools focus on the reconstruction of specific resources. The
input is totally provided by the user. However, this input is not used to directly modelling more
complex shapes, but is then processed and converted into another type of model for the same
object.

2.6 CONCLUSION AND REMARKS

This chapter reviewed previous works on shape modeling / representation approaches and
tools towards the modeling by reusing heterogeneous data. Then some useful shape descriptors
are also listed in this chapter. Finally, comparisons on modeling tools are presented. These re-
views enables us to highlight the following facts:

Statement 8: Existing modeling approaches define a 3D shape in 3 different ways:

Traditional modelling approaches
Feature-based modeling
Reverse engineering (from lower dimensional input to higher dimensional output)

Statement 9: Reusing heterogeneous data in the shape modeling process works in 3 different
ways:

2D image as texture

39 http://www.pcdmis.com/products/pc-dmis-reshaper
40 http://vrmesh.com/

47

Text, image, video as 2D planar surface
Point cloud, 2D image as input for reverse engineering (for point cloud meshing, image-

based modeling)
Statement 10: Each shape representation or descriptor is used for specific application do-
mains. There is no representation or description of shape that can be considered as a common
input for all applications.
Statement 11: Graph-based or structure-based descriptors provide high-level information
about a shape as opposed to low level geometry, which could be potentially used for defining
new shapes.

Hence we can conclude that:

Conclusion 1: Existing modeling approaches do not reuse heterogeneous data to define new
shapes.

This is due to mainly two reasons:

1 Representing heterogeneous data in the same environment asks for extracting in-
formation from these multiple structured inputs, which increases the complexity.

2 There is no standard structure supporting multiple resources in the same environ-
ment where they need to be rearranged all together.

Conclusion 2: As Shape is about its parts and relations (topological, distance, directional) its
representation should contain information on geometry, structure and semantics.

48

49

- PART B: CONTRIBUTION -

HE SECOND PART AIMS AT the proposed models and related tools which have been
developed to meet the objective specified at the end of Chapter 1. It is composed by

four chapters.
 The first one (Chapter 3) starts with a case study of a traditional VE generation
process, leading to the presentations of two projects (VISIONAIR and Co-DIVE) on
which this Ph.D. thesis is based. Inspired from these two projects together with the results
from - Part A: Background and state-of-the-art -, this chapter ends with a proposed VE
modeling process defined in the Co-DIVE project.
 The second chapter (Chapter 4) is focusing on the introduction of the proposed
shape description model, which enables to distribute the information related to a shape at
three levels of geometry, structure and semantics.
 The third chapter (Chapter 5) presents the user-centered process to use the pro-
posed shape description model and the solutions for the related issues during this process.
 The last chapter (Chapter 6) introduces the implementation developed based on the
proposed shape description model including the user graphical interface, solutions for in-
teraction and three examples made using this system.

T

50

51

.
TOWARDS A NEW APPROACH FOR

SHAPE SPECIFICATION AND CREATION

CHAPTER OVERVIEW

HIS CHAPTER STARTS WITH an example of real industry VR application after a brief
introduction (Section 3.1). This example highlights the problems existing in to-

day’s shape specification and creation process for developing a Virtual Environments
(VE) (Section 3.2). Towards the solution of these problems, two projects are introduced
(Section 3.3) within which the work done in this thesis is carried out. One is the VI-
SIONAIR European infrastructure project, a world-class infrastructure for advanced 3D
visualization-based research, and the other is the Co-DIVE French national project,
which addresses the development of models, methods and tools to support the conceptual
design of VE. With the results of the literature reviews stated in the previous - Part A:
Background and state-of-the-art - and the arguments presented in this chapter, Section
3.4 summarizes the location of this Ph.D., while the last section lists a conclusion and
some remarks (Section 3.5).

T

Start by doing what’s necessary, then do what’s possible, and
suddenly you are doing the impossible

Saint Francis of Assisi

52

3.1 INTRODUCTION

The term Information Technology (IT) in its modern sense first appeared in an article pub-
lished in the Harvard Business Review in 1958. Since that time, many applications have been
developed to store, to retrieve, to transmit and to manipulate data41. This leads to new chal-
lenges not only to visualize, to capture, to search, to share, to store, to transfer but also effi-
ciently re-use this huge amount of data.

More recently, Virtual Reality (VR) applications have been developed to solve some of
those issues in many fields including industrial design, civil engineering, architecture, market-
ing, museums, video games, etc. Together with the development of dedicated models, methods
and tools, such technologies are very promising.

In this context, the European project called VISIONAIR42 (VISION Advanced Infrastruc-
ture for Research) has been proposed to create a world-class research infrastructure that is open
to research communities across Europe and around the world providing access to advanced
visualization capabilities for conducting state-of-the-art research. In conjunction with VISION-
AIR, the French national project called Co-DIVE (COnceptual Design In Virtual Environment)
has been conceived to develop tools for Virtual Reality environment generation exploiting the
huge amount of already created graphical resources as well as the most advanced geometric
processing tools for shape understanding and representation.

Within the scope of these two projects, this thesis addresses the representation and model-
ling of digital objects using existing graphical resources to be reused and combined by neophyte
users during the development of new Virtual Environments.

To better introduce the background of some issues tackled by these two projects, this chap-
ter starts with a case study of a traditional VE generation process for a real VR application.

3.2 AN INDUSTRY EXAMPLE: LOOKX

Today, the VE specification and shape modelling process is long and tedious. To illustrate
this issue, this section analyses a real example of a Virtual Reality (VR) application developed
for a site protection company called Dirickx43.

3.2.1 DESCRIPTION

The French company Dirickx is specialized in site perimeter protection offering fences,
gates, access control and security solutions. Their VR application is called “Lookx”44 aiming
at personalizing fences and gates of a site (Figure 3.1).

41 Daintith, John, ed. (2009), "IT", A Dictionary of Physics, Oxford University Press, retrieved 1 August 2012
42 Home page http://www.infra-visionair.eu
43 Home page : http://www.dirickx.com/
44 Web page: http://www.dirickx-cloture-lookx.fr/configurez-votre-cloture.php

http://www.dirickx.com/
http://www.dirickx-cloture-lookx.fr/configurez-votre-cloture.php

53

Figure 3.1 Using the application “Lookx” to personalize fences and gates of a site

Therefore, the presented use case can be characterized as follows:

 Application domain: site protection
 Application usage: Personalization of the products for clients
 Product categories: home protection, property protection, self-designed space protec-

tion, privacy protection
 Desired functions:

o Presenting the predefined products in a 3D environment
o Configuring each product including:

- Location
- Number
- Size
- Texture
- Specific configuration depending on different products (e.g. angle be-

tween two connected fences)
o Capture of a picture of the configured site
o Price estimation

 Operation environment: PC (Windows + Mac), Smartphones and tablets

54

Using the criteria defined in Subsection 1.2.3, the design of this application can be cate-
gorized as below:

Actor complexity: ★★
Product complexity: ★

Cognitive style or trait: ★★
Cognitive process: ★
Problem structure: ★★
Design processes, practices, culture or tools: ★★

3.2.2 ANALYSIS

This application is developed under a traditional VE modelling process. Different actors
are working together to develop this application. The workflow of this traditional process is
presented in Figure 3.2.

Figure 3.2 Traditional VE modelling approach

Each expert is going to be introduced through the example of “Lookx”:

 Expert of the application domain: These are persons who want to create a VE with a
specific usage in mind related to their specific professional domain. In the example of
“Lookx”, they belong to the commercial department of the Dirickx Company. Starting
from the idea of creating an application for the configuration of fences and gates, they

55

express their needs by using keywords or sketches as shown in Figure 3.3. Here, they
sketch a simple 2D plan of the VE to be built using some blocks showing the different
virtual objects associated with some keywords. As they master the selling of products,
but their computer graphics and design knowledge is limited, they give the plan to an-
other actor in the VE modelling process.

Figure 3.3 A sketch designed for “Lookx”

 Expert of CAD system usage: The CAD experts are those who build the CAD models
for product specification and manufacturing. They are mainly considering the aspects
related to the final manufacturing of this model, such as the exact size of the object, the
assembly information, shape and position tolerances, etc. They are neither working on
the behaviors of the models nor on the interactions with the users. They may use various
approaches to build the 3D models, such as feature-based modelling approaches or re-
verse engineering techniques. They may also need a 3D data management system and a
system for the maintenance of the consistency between the different building blocks, to
ease possible modifications and avoid time-consuming manual manipulations. In our
example, the expert of CAD system usage is the person who designs the industrial 3D
CAD model of the fences and gates. Each model is fully defined with dimensions, as-
sembly constraints, manufacturing tolerances45. However, these models are too detailed
and heavy to be directly manipulated in a VE, where real time interaction is required.
Thus, they require an adaptation to meet the VE system characteristics which are nor-
mally unknown to the CAD expert.

 Expert of VE design: For a VE application, some of the information contained in a CAD
model are not useful within the VE. For example, if an object has not to be decomposed
in the VE application, the information related to its assembly are useless. For instance,

45 For the reason of protection, these industrial 3D models cannot be presented in this manuscript.

56

in the case of a TV, just a 3D model of a textured parallelepiped can be enough. The
inside parts of the TV, while fundamental for its production, are not necessary if there
are no actions on them in the VE application. On the other hand, extra information not
existing in the CAD model can be required in the VE. Thus, the VE designers have to
modify the object representation. Being the CAD and VR systems often based on differ-
ent shape models (B-Rep vs. tessellated models), VE designers first have to convert and
simplify the CAD model to obtain a lighter and simpler VE model. Then, they do have
to enrich it with some additional properties such as textures and materials. The Figure
3.4 shows an example of an enriched 3D model of a fence designed in the “Lookx”
application. In this example, two different textures (the red one and the wood colored
one) have been added to the fence geometrically defined by simple parallelepipeds. An-
other task for the VE designer is to create the user interaction graphical tools, such as
menus, buttons and other controllers.

Figure 3.4 Enriched 3D fence

 Expert of VE development: The VE developers deal with the user-application in-
teraction. Based on the requirements of the foreseen application, they need to con-
sider the software and the hardware environment for its usage and development. In
the example of “Lookx”, the application has to work on the web on smart phones
and tablets. Therefore, considering the graphic characteristics of these devices, this
application does not consider a high-level visualization environment. This is the
reason why Flash player is chosen as the software environment. After choosing the
hardware and software environment, the VE developer needs to select a tool and a
programming language to create the application. During the development phase,
behaviors will be added to the enriched 3D models obtained from the expert of VE
design. These behaviors specify the user’s interaction modalities and model reac-
tions to the user’s actions. For the example of “Lookx”, the end user can change the
texture or the size of the chosen fence as presented in Figure 3.5. The code written

57

by the expert of VE development will finally check that each 3D model behaves
correctly to realize the different virtual tasks defined by the expert of the application
domain.

Figure 3.5 Configuration of a fence from the application of “Lookx”

In this process, as presented in Figure 3.2, there are multiple feedback loops. If there is
something wrong in the final VE, it may require the intervention of all the experts involved and
the repetition of various steps, possibly all. For example, if two objects are colliding, which is
not allowed, the expert of VE development could design a warning box, or change the move-
ment trajectory of the two objects. If these solutions do not solve the problem, then this problem
will be passed to the expert of the VE design who may change the size of the two objects. There
could be also other reasons that cause this problem. For example, one of the objects has not
been well assembled by the CAD expert, or the scenario is not well designed by the expert of
the application domain and these two objects should never be put together. Therefore, solving
one problem may cause the intervention of all actors, thus requiring several modifications,
which are usually long and tedious. In addition, multiple solutions could be found making it
difficult to decide which the most suitable one is. The main reason for this is that they are
sequential and with multiple feedbacks. Therefore, the inefficiency of the traditional VE mod-
eling process is the main issue that needs to be solved.

Another important limit of this process is related to the loss of information between the
successive steps. It can be noticed that the output (keywords, sketches, sentences, etc.) of the
first actor (expert of the application domain) is not coded in the digital chain as presented in
Figure 3.2. However this information directly conveys the needs and characteristics of the fu-
ture VE. In other words, there exists a gap between the description of the VE by the application
domain expert and the digital chain. This is due to the fact that the experts of the application
domain are often not experts in computer graphics or digital design. They cannot directly ex-
press their ideas in the digital chain.

58

In addition, the data the experts of the application domain are using to express their ideas
are not in the same data format. Actually, people are very frequently taking inspiration or are
describing things through analogies, i.e. taking something existing and describing what they
want to preserve or change (see Subsection 1.2.3 about idea generation techniques for creative
conceptual design). There are multiple heterogeneous resources that people can use to describe
new shapes, such as key words, 2D images, 2D drawings, scanned 3D objects (point clouds),
or existing 3D models. For example, in Figure 3.3 there are some 2D blocks and some key-
words to describe a VE. Although different data might be used for describing the same object,
they are coded in different ways and today there are no user-friendly tools that can integrate all
these data to make them compatible in the same digital modeling chain, without converting
every representation into the same model, especially for a creative design phase.

 Finally, the way the experts interact with the system is also important. In this sense,
the definition of the specific behaviors (assembly constraints, displacement laws, etc.) has to be
thought in such a way that it can be defined and modified by all the experts of the modeling
process.

In this actual VE modeling process, several key problems and characteristics can be sum-
marized as below:

 The inputs and outputs of each actor are different. Starting from an idea, the suc-
cessive steps are so that the output of an actor become the input of the following actor, and
so on. This process makes use of different types of digital models adapted to the various
needs at the different steps:

 Different actors need to consider different aspects related to their own domain of
expertise;

 This is a sequential process with multiple feedbacks and loops which slow down
the design of VE (the black arrows in Figure 3.2);

 The initial input heterogeneous data are not preserved and directly used in this
actual modeling process.

The way experts interact with the system and specify the behaviors is not enough user-
friendly and it is hard to interact with it for neophyte users.

3.3 TWO PROJECTS RELATED TO THIS PH.D. SUBJECT

3.3.1 THE VISIONAIR46 PROJECT

The aim of VISIONAIR (VISION Advanced Infrastructure for Research) is to establish a
European infrastructure for high-level visualization facilities that is open to research commu-
nities across Europe and around the world. By integrating existing facilities of a pan-European

46 Home page: http://www.infra-visionair.eu/

59

network, it creates a world-class research infrastructure enabling to conduct cutting edge re-
search. On many sites across Europe, it is infeasible to have at disposal the necessary visuali-
zation facilities needed to tackle high fidelity, large screen and/or immersive visualization. VI-
SIONAIR is targeted to fill in this gap by providing access to the partner facilities, opening its
doors for interested researchers to use the multitude of services available across the European
visualization facilities. After submitting a successful research proposal, international research-
ers are invited to visit the partner’s facility that best fits the scientific goals of their research.
Users are not only given access to the top visualization facilities in Europe, but they are also
supported in their experiments by funding their living and travel expenses. Researchers can
choose from over 20 facilities located in 12 countries in Europe and Israel.

The project targets different fields of visualization and offers access to methods, software
and hardware needed for successfully visualizing scientific data in various application fields
such as engineering, medical, biology, chemistry or physics. Ultra-High-Definition facilities
connected by high-speed networks are targeted at users who want to create high-resolution,
high quality images (up to 8k) and possibly access those by high-speed networks. VISIONAIR
provides the hardware and the unique network distribution services needed for the transmission
of images to their end-points. The network services enable multiple high-resolution digital-
media streams to be transferred, using dynamically available optical light paths across multiple
domains, which can be used on scheduled or on-demand basis. While Scientific and Ultra-High-
Definition Visualization can be done in any environment, researchers specifically targeting Vir-
tual Reality can also apply to a multitude of facilities. Here, the focus is on immersive – possibly
also haptic – experiences in virtual environments. Equipment available for researchers, ranges
from head mounted displays to fully fledged stereoscopic PowerWalls and CAVEs. Further spe-
cialized equipment available allows users to carry out research by using advanced interactive
facilities, such as multi-touch displays and Augmented Reality, a technique that enables users
to overlay the real environment with context dependent computer generated images. Research-
ers also have access to the latest developments in display technology, like holographic displays
or the above mentioned 8k displays.

The project maintains also an already huge database of visualization software and graph-
ical models that is available to all researchers for free. Thus, experts can explore the multitude
of visualization packages that are already available. Software covered here ranges from pro-
cessing filters, converters and readers to fully-fledged modelers and visualization packages.

In order to improve the quality and variety of the services offered to external hosts, the
project includes also some joint research activities. Among them, one is related to the develop-
ment of tools for simplifying the collaborative creation of virtual environments also for non-
expert users. This action is partially carried out by AMPT and CNR-IMATI and it is strongly
related with the objectives of the project Co-DIVE.

60

3.3.2 THE CO-DIVE PROJECT

PROJECT DESCRIPTION

The Co-DIVE (COnceptual Design In virtual Environment) project aims at defining,
developing and testing a set of models, methods and tools to overcome the limits of the actual
VE modelling process while bringing together most advanced results at the level of the geo-
metric modelling and at the level of the VE development process. At the end, the newly
defined approach should enable the collaboration between experts in the fast definition and
direct generation of the final VE as presented in Figure 3.6.

As described before, the involved actors, i.e. the VE application developer (expert of VE
development), the VE end-user (expert of the application domain) and the geometric designer
(expert of CAD usage and expert of VE design) have different views of the VE. This is because
they have different needs. To better satisfy all their needs on information sharing, the Co-DIVE
project tries to find a conceptual model (in the middle of Figure 3.6) linking the actors, tools
and models interacting within the VE modelling process.

Figure 3.6 The different actors involved in the VE modelling process

In addition, to define the conceptual model, this project is also targeting at a creative idea
generation technique (as mentioned in Subsection 1.2.3) by using existing resources to describe
and characterize the virtual objects and their relations.

Moreover, to make easier the user interaction with the system, as in the case of smart
phones technology, which pushes the use of touch screen interfaces, also multi-touch devices

61

can be used during the design process. Therefore, this project is also targeting a 3D multi-touch
table (from a French company called “Immersion” 47) in order to make people collaborate
around the same conceptual model. This table allows multiple users working together on a 3D
screen, which gives them a better experience of visualization.

 As a conclusion, here some scientific challenges targeted by the Co-DIVE project for the
optimization of the VE modeling process are listed:

 Integration of the end-user(s) within the development process of the VE;
 Setting-up of a simplified model (the so-called conceptual model) of the VE from

a set of user-specified functional requirements;
 User-friendly interface such as a touch screen modelling;
 Use of heterogeneous data in the digital chain;

 Optimization of the data exchanges between different domains and the VE modelling
environment;

 Semi-automatic generation of the VE;
 Maintenance of the consistency between the building blocks, to ease the possible mod-

ifications and avoid time-consuming manual manipulations;

 Possibility of directly providing a behavior code.

In order to improve the actual modelling process and solve some of the above mentioned
issues, the Co-DIVE project has been decomposed into two work packages: object modelling
and scene modelling. The tasks of developing the two models and the related tools are distrib-
uted to two different Ph.D. subjects. This Ph.D. thesis focuses on the object modelling phase
and associated models, methods and tools. The other Ph.D. thesis addresses the way the ex-
perts interact with the objects during the design phase as well as during the use of the virtual
environment.

PROPOSED APPROACH

Within the Co-DIVE project, a new integrated VE modeling framework is proposed. It is
not sequential and it allows the use of heterogeneous data shared between the different actors
and experts whose roles have been previously introduced. This approach is represented in Fig-
ure 3.7. The proposed framework is built on top of a new shape description model (set in the
middle of Figure 3.7) that is used as a common reference for the different actors for the VE
specification since the initial idea description.

This new shape description model can be generated and manipulated by anyone, who could
be a CAD expert or who doesn’t have any knowledge in CAD or Computer Graphics.

To this aim, this new model should be able to deal with the different types of information
used for the object and environment specification at the various phases. It should be generic
enough to be linked to various authoring systems and to be suitable for indexing to facilitate a

47 Home page: http://www.immersion.fr/table-ilight-3d-touch/

http://www.immersion.fr/table-ilight-3d-touch/

62

re-use of the created resources.
To guarantee the effectiveness of such an integrated collaborative design process, this in-

termediate model should be conceived to be a suitable basis for a future development of new
methods and tools to:

1) Generate new 3D geometric models and assemblies (feature-based approaches,
deformation techniques, etc.) from the multiple inputs;

2) Search similar models (including heterogeneous ones) within an existing data-
base and re-use them for meeting new needs (addition/suppression, simplification, defor-
mation, etc.) so as to reduce the gap between the wished objects and the ones found in the
database;

3) Integrate different actors (sharing information, data exchange, etc.) in the
framework and ease the co-modelling of the VE application so as to reduce the develop-
ment time.

Figure 3.7 The proposed process for a VE modelling system

In other words, the model is the container of the needed information. What have to be
developed are the methods and tools that provide the capabilities of storing and exploiting in-
formation for the realization of the actual models needed by the VE application.

Based on the criteria identified in Section 2.5, the two approaches (traditional VE model-
ling approach and the proposed one) are compared in Table 3.1:

63

End User

driven

Adapted to
non-expert

users

work flow
complexity

Input
heteroge-

neous
data

Use of
heteroge-
neous data

Time con-
suming

Traditional
process

★,or ★★ ★ ★
★,or

★★
★,or ★★ ★

Proposed
process

★★★ ★★★ ★★★ ★★★ ★★★
★★ or

★★★

Table 3.1 Comparison between the two processes

 This PhD thesis addresses the specification of such common model and framework as
well as the development of easy-to-use software tools for its creation supporting the conceptual
design of the virtual assets to be inserted in a VE application.

3.4 PURPOSE OF THIS PH.D.

Within the scope of these two projects and the analysis of the state-of-the-art presented in
- Part A: Background and state-of-the-art -, this Ph.D. thesis is not aiming at developing the
related approaches and tools for the whole proposed modelling process (Figure 3.7) but the
centered “New shape description model”. In this manuscript, this model is named as Generic
Shape Description Model (GSDM). A detailed view and the location of this Ph.D. thesis is
illustrated in the following Figure 3.8.

A pre-processing stage is needed to add additional information on the raw input heteroge-
neous data using shape representation / description and reverse engineering techniques (as pre-
sented in Section 2.2.2), such as segmentations, skeletons, Reeb graphs, etc., which can be
useful to structure and define new shapes. The GSDM should take this enriched input and re-
organize it in three layers of “geometry”, “structure” and “semantics” to explain what the parts
and relations of a shape are, as defined in Definition 2.5. This model should also be able to
be finally transformed to different digital representations by a post-processing stage using re-
verse engineering and geometrical manipulation techniques (e.g. image-based modelling,
morphing, etc.).

64

Figure 3.8 Location of this Ph.D. thesis

The red box in the center of Figure 3.8 is where this thesis is located. The objective intro-
duced in Section 1.3 can be further detailed as below:

Objective: Development of the Generic Shape Description Model (GSDM) and the
mechanisms used to reduce gaps:
 Gap 1 (between people with creative ideas and conceptual design tools):

o By describing the concepts of “part” and “relation” (topological, distance and
directional) of shape (introduced in Definition 2.5)

o Through simple and smart user interfaces for non-expert users
 Gap 2 (between conceptual specification and VR implementation) by

o Extracting information from heterogeneous input data
o Reorganizing information into three layers of geometry, structure and semantics

(introduced in Definition 2.6)

To make the conceptual design phase more natural and easy for non-expert users, multi-

touch capability is also considered as a way to better interact with the conceptual model and
related virtual objects.

3.5 CONCLUSION AND REMARKS

This chapter has positioned the work of this Ph.D. thesis within the context of two projects
in which I have been involved. One is a European project called VISIONAIR aiming at creating
a world-class research infrastructure. The other one is called Co-DIVE and it aims at bridging

65

the gap between different actors during the VE modelling process using heterogeneous data.
The traditional VE modelling process has been presented through an example of a VR applica-
tion called “Lookx” developed by the “Dirickx” French company. Through this example, sev-
eral issues have been highlighted to justify the need for developing a completely new innovative
integrate VE modelling framework. This new approach is no longer linear and sequential but
concurrent and collaborative thanks to a new shape description model shared by the multiple
actors. Based on the objective of this Ph.D. specified above, a new shape description model has
been designed together with the related methods and tools. In the following, Chapter 4 will
introduce the definition of this conceptual model; Chapter 5 will explain how to use this model
and Chapter 6 will present an implemented environment for evaluating the proposed model
through a set of examples.

66

67

.
GENERIC SHAPE DESCRIPTION MODEL

CHAPTER OVERVIEW

HIS CHAPTER PROPOSES a new Generic Shape Description Model (GSDM),
which may not only be used for the Co-DIVE approach but can also be considered

as an independent model for the conceptual design of digital shapes. First an overview
of the GSDM is described detailing its three different information levels (Section 4.1):
data, intermediate and conceptual level. The following three sections (Section 4.2, 4.3
and 4.4) give a detailed definition and explanation of the three levels. An overview of
the whole data structure of GSDM is presented in Section 4.5. Finally, the last section
contains a conclusion and some remarks (Section 4.6).

T

Design is not just what it looks like. Design is how it works.
Steve Jobs

68

4.1 GSDM – A MULTI-LAYERED FRAMEWORK

To clarify the specified objective defined at the end of Chapter 3 (Section 3.3), the GSDM
is structured with three levels of information: Conceptual level, Intermediate level and Data
level.

On the conceptual level, three basic elements are defined to describe the meaningful object
constituents and their relations: Component, Group, and Relation (the details of these three
notions will be presented in the following sections). They are the three elements directly ma-
nipulated by the user. The conceptual level is aimed at reducing the gap defined in Problem 1.
At this level, two questions arise:

• What are the different parts of this object?
• What are the relations between them?

Component & Group are designed to answer the first question and Group & Relation are
developed to answer the second question (Group explains the topological relation of parts while
Relation explains the distance and directional relation of parts). They help the non-expert user
to have an overview of what is going to be described, but not a precise description. There are
still two questions that need to be answered to clearly understand what the user has in mind:

• What does each part look like and what is its meaning?
• How are the different parts connected?

This second question finds its answer in the second level of the GSDM. On this level, the
local geometric and structural information of a part are addressed. For example, two parts are
connected by indicating the location of one with respect to the other. At this stage, the whole
geometry or the whole structure of each part does not need to be accessed by the user, unlike
some of the Key Entities that represent the anchorage element where restrictions on the related
locations should be specified. Limitations on reciprocal location between key entities are la-
beled as Constraint. This information level is referred to as Intermediate Level.

To answer the first question requires knowing the Geometry, Structure and Semantics
of each part; these three aspects constitute the so-called data level of the GSDM. This infor-
mation provides both the appearance and the meaning of a part. They are also used to indicate
the real location of the key entities for the application of the constraints. This level is only
partially handled by the non-expert user and tackles the heterogeneous inputs.

69

Figure 4.1 The different levels of GSDM and their motivations

The different levels and definitions are represented in Figure 4.1. From the user’s point of
view, the conceptual level is the easiest to understand and know where he can directly work.
The user can also work on the intermediate level to include some more information on the
object’s sub-parts arrangement. The data level is used for representing the heterogeneous infor-
mation, specifying key entities, visualizing components and modifying the shape of components
if needed.

From the information structuring point of view, geometry, structure and semantics are the
three basic elements without any other notion associated. Concerning constraint and key entity,
these are based on the data level information and have their own structures. Component, group
and relation provide the most user oriented information and are expressed in terms of the lower
level information.

The following sections show the details of the different elements of the GSDM as well as
the relations between them. Each one is introduced detailing four aspects: definition, motivation,
properties and data structure as described in UML with examples.

4.2 DATA LEVEL (GEOMETRY, STRUCTURE AND SEMANTICS)

As presented previously in Definition 2.6, information on a shape can be organized in
three layers: geometry, structure and semantics. This paradigm for understanding shapes offers
a way to integrate shapes in application domains, to perform reasoning and comparisons inde-
pendently from their representations. No matter if a shape is represented by a 2D image or a 3D
mesh, the information associated can always be distributed into these three layers.

70

4.2.1 GEOMETRY

DEFINITION

The “geometry” of an object, that is the form of its bounding surface or solid body, can be

represented by different “geometric representations”. Different representations of geometry are
presented in Chapter 2.

PURPOSE:

Geometry is needed to describe the spatial extent of the shape represented.
As presented in Section 3.3, this thesis does not deal with the behaviors (or functions) of

an object in a 3D scene but focuses on the shape of a single object, i.e. what an object looks
like in space To explain what an object looks like can be done in two ways. One is by describing
the spatial extent of the object, showing how much space is taken by the object and in which
way. The other part includes more graphic information such as its color, texture and material.
This subsection focuses on the first way. In conceptual design, the spatial extent of an object is
at first roughly formed in the user’s mind, and then refined while specification evolves. How-
ever, to express the ideas that come out of the user’s mind is not that easy when the user is not
keen on drafting and it is even more difficult when the process is computer-mediated. Combin-
ing existing resources, independently of their type, helps represent different parts of the object
in order to get closer to the imagined shape in the user’s mind. The GSDM provides the capa-
bilities to represent the information about what the object looks like in 3D space. A 2D data,
such as an image, also represents how the object looks in “3D” space but from a specific point
of view. In other words, how the object looks in 3D space is projected on a 2D plane.

PROPERTIES

 Heterogeneous

No assumptions are made on the type of data that can be used to represent the shape. This
means that at this level, vector and raster 2D and 3D data are all addressed. Moreover, different
geometric representations can be used to describe the same object’s geometry.

DATA STRUCTURE IN UML

Different kinds of input data correspond to different types of geometric representations,
which need different data structures for their storage. In this work, data structures for existing
geometric representations are not refined. Those available in the software environment adopted
are used directly. Instead, a common structure for storing the additional data needed for their
combination and simultaneous manipulation is specified.

Definition 4.1: Geometry = The spatial extent of an object.

71

Figure 4.2 Data Structure of geometry

Figure 4.2 shows the data structure of geometry defined in UML that is specified in the
package48 (red rectangle) called “Geometries”. Three basic classes 49 (dark blue block) are
defined in this package: “Entity”, “Geometry” and “Transform”. “Entity” is the basic class for
low dimensional geometric primitives including point, line, oriented point, etc. The classes of
those low dimensional geometric primitives are all inherited from the class “Entity”. “Geometry”
is the basic class for all geometric representations associated with “Transform”. It expresses the
location (including the position, the orientation and the scale) of a representation and the situa-
tion of alignment indicated by the attribute “AlignType”. If the alignment is not set to “Free”
then the orientation of this transform will be fixed to a predefined direction. This is used to help
users to easily move the corresponding geometric element. There are two sub packages included
in “Geometries” named as “Geometry 2D” and “Geometry 3D” which define the data structures
for different geometric representations and geometric primitives in two dimension and in three
dimension. The attribute “resource” of “Geometry” indicates the file address of input data

48 A package is a namespace used to group together elements that are semantically related and might change together.
49 A class in UML describes is a classifier which describes a set of objects that share the same features, constraints and

semantics (meaning).

72

that contains the information of the described geometric representation. The attribute “seman-
tics” is an instance of the class “Semantics” telling the meaning of this geometric representation
and will be explained later. There are other links between different classes in the GSDM, which
for clarity reasons, will be illustrated when all the related classes are introduced.

A data structure called “Contour 2D” is defined in the package of “Geometry2D” to save
the geometric representation of the outlines of the 2D image. The “Contour2D” has a list of
“loops” for saving the interior and exterior boundary of the shape represented in an image (see
the example of an image presented in Figure 4.3.)

Figure 4.3 Example of a 2D image with its associated "Contour2D”

Text, as another kind of heterogeneous shape input, also has a geometric representation
using a texture applied on a simple planar mesh. The manipulation of the 3D planar mesh rep-
resents the manipulation of the shape described by the text (Figure 4.4).

Figure 4.4 Text represented as Mesh3D

In the package “Geometry3D”, there is a class called “WireFrame” which is a 3D geomet-
ric representation described by nodes (“Point3D”) and edges (link between two nodes). This

73

representation can be used to represent the structure-based shape descriptors such as the skele-
ton, the Reeb graph, the medial axis, etc.

In this data structure, the package of “Geometry2D” and “Geometry3D” can be extended,
if needed, to include other kinds of geometric representations.

4.2.2 STRUCTURE

DEFINITIONS

PURPOSE

 To help the user to position different parts composing the object.

Different kinds of structural information, such as the medial axis, the symmetry axis, the
Reeb graph, the skeleton, etc., will help the user to align in position different parts represented
by heterogeneous data. In traditional CAD modeling, the structure information of a CAD model
such as the axis of a cylinder, the center point of a circle, etc., is used to perform the assembly
of different parts. In the GSDM case, the structure information can also help support a similar
assemblage such as in CAD modeling. The structure information of the CAD model used for
assembly is the elements used to define the model itself (e.g. in the case of a sphere surface
defined by a center point and a radius, the center point can be used for assembly). On the con-
trary, the structure discussed here is calculated from geometric representations of the shape to
highlight the constituent shape features/parts and it is independent from the definition of this
geometric representation.

 To support the future phases of Design.

As mentioned previously, the GSDM is used for the conceptual design, which is an early
design phase focusing on the innovation and the creativity phases of the design process of a
new object. Therefore, the GSDM is not a complete 3D model, but it has a multi-layered struc-
ture where some parts may just be a 2D model. However this low-dimensional model together
with the associated structure pieces of information such as the symmetry axis, orientation axis,
etc., can be used by reverse engineering approaches to build 3D models later in the next design
phases.

PROPERTIES

 Heterogeneous

The structure at the data level of the GSDM can be represented by different shape de-
scriptors obtained from either 2D or 3D data such as the medial axis, a Reeb graph, a segmen-
tation, etc.

Definition 4.2: Structure = Shape features and part-whole decomposition of a geometry
represented by graph-based shape descriptors

74

DATA STRUCTURE IN UML

A shape descriptor such as the Reeb graph, medial axis, etc. also has a geometric repre-
sentation. In other words, the structure of an object can be represented differently.

Figure 4.5 Data structure of structure

As presented in Figure 4.5, the super class “Structure” is associated with a “Transform”
used to represent the location of this structure. Different structural representations are repre-
sented by a geometrical representation called “WireFrame” defined in the package “Geome-
try3D” and inherited from the class “Structure”. Examples of different structural representations
are shown in Figure 4.6.

Figure 4.6 Example of geometric and structural representation

Mesh3D Point3D

x: float

z: float
y: float

vertices
normals

2

Line2D
2

pointA
pointB

OrientedPoint3D
2

point
direction

WireFrame

edges: int[*]

triangles: int [*]

nodes *

Transform

Structure

transform 1

-resource:Resource
-semantics:Semantics

75

4.2.3 SEMANTICS

DEFINITION

PURPOSE

 To store the name used in the conceptual design specified by user
 To specify the intention of an instance.
 To indicate the purpose of each action

With GSDM, different items of information are reorganized together following specified
rules. These rules are associated with meanings explaining why this action is done. For example,
the user wants to put two parts together. This action of “put…together” can have a purpose of
geometrically merging the two parts into one or it can have a purpose of assembling them to-
gether without merging their geometries.

 To be kept for further design phases or model retrieval

PROPERTIES

 Intrinsic or extrinsic

Intrinsic semantics expresses the meaning of something that can be obtained directly from
it. For example, a surface can be considered as cylindrical if the distances from all the points
on the surface to an axis are equal. The intrinsic semantics in the GSDM can be the “type” of
geometry or structure. This information can be obtained by certain calculations from the origi-
nal data of the referred item and this information can thus be considered as intrinsic.

Extrinsic semantics refers to additional information independent of the original data under
a specific context. For example, the mesh of a cylinder. Some additional information such as
the color, the material, the name, the function, the role in the overall object (e.g. a chair leg) can
be added to this mesh depending on different contexts. This information is not contained in the
mesh and therefore has to be attached/added to it.

DATA STRUCTURE IN UML

As one item or an action can have different types of semantics depending on the context,
the class of semantics is defined as a super class, different types of semantics are inherited from
this class and located in the packaged called “Semantic Data” as presented in Figure 4.7.

The attribute “type” of the class “Semantics” defines which semantic instance to be used.
The types of semantics are listed in an enumeration50 named “Semantic Type”. The details of

50 An enumeration is a data type whose values are enumerated in the model as user-defined enumeration literals.

Definition 4.3: Semantics = the purpose and meaning of an instance or an action in a specific
context.

76

each type of semantics are going to be presented when each related notion is introduced in the
following sections.

Figure 4.7 Data structure of Semantics

To conclude, in this section, the data level of the GSDM has been presented. It contains
the definition of geometry, structure and semantics. These three notions are used to handle the
information related to a shape obtained from heterogeneous data such as a segmented image
with a Reeb graph, a segmented mesh with medial axis, etc.

4.3 CONCEPTUAL LEVEL (COMPONENT, GROUP AND RELATION)

The data level presented in the previous section contains the basic information of a shape
needed for its visualization and manipulation. However, in our system it is not directly operated
by the users who focus on the overall conceptual specification of the object to be designed and
not on fine-tuning its final shape. The user focuses more on the part-whole decomposition of
the object to which behaviors can be directly associated. This justifies the need of a conceptual

Semantics

Enumeration

Semantictype

Component
Group
Relation

Constraint
KeyEntity
GSDM

type 1

SGSDM

name: string

SComponent

name: string

intent: string

SGroup

name: string

Enumeration

GroupReason

SameColor
SameFunction
SameMaterial
SimilarShape
SameResouce
Others

reasons *

SRelation

Enumeration

RelationIntention

Assembly
Merging
Shaping
Location

intent

1

SKeyEntity

Enumeration

KeyEntityMeaning

Array
Point_Component
Point_Wireframe
Point_OBB
Point_Parametric
Line_Component
Line_Contour
Line_Mesh
Line_OBB
Line_Wireframe
Line_Parametric
OrientedPoint_Component
OrientedPoint_OnContour
OrientedPoint_InContour
OrientedPoint_Mesh
OrientedPoint_Parametric
OrientedPoint_Referenceframe

meaning *

Enumeration

ConstraintIntent

Coincidence
Distance
Angle
Parallelism
Perpendicularity
Co-linearity
Co-planarity
Co-axiality
Tangency
Contact
Insertion
Pattern

SConstraint

Geometry
Structure

intent: string

SGeometry

SStructure

meaning

1

Enumeration

StructureMeaning

ReebGraph
Skeleton
MedialAxis
BoundingBox
Others

Enumeration

GeometryMeaning

Image
Mesh
Text
Others

meaning

1

meaning

1
name:String

name:String

77

level manipulated directly by the non-expert user to specify the decompositions into parts and
the relationships between them.

4.3.1 COMPONENT

DEFINITION

Definition 4.4: Component = In a design context, a component is one part of an object, which
re-organizes some geometric or structural representations together so as to represent a part
with a basic semantic meaning.

Purpose

Context / description components

A teapot with two parts, the main
body and a cover.

Main body, Cover

The main body is composed of a
spout, a container and a handle

Spout, Container, Handle, Cover

The cover has a disc-shaped sur-
face and a spot-like handler

Spout, Container, Handler, Disc-
shaped surface, Spot-like handle

Figure 4.8 Examples of object decomposition in components

PURPOSE

 To define an indivisible part.

Here, “indivisible” means that the user will not decompose this part any further. The user
can define a part according to its functions or any other purposes. A part can also be split into

78

more parts. At one moment, as the decomposition of a part offers enough information or further
decomposition is meaningless, the user will not decompose it anymore. At this stage, this part
can be considered as an inseparable part. For the example presented in Figure 4.8, each time
an element composing the shape of the object is further specified, at least two new parts are
added in the description (such as the spout, the container and the handle detached from the main
container). The number of parts shows us both the complexity of the object and how precise a
user wants to be.

 To organize data with respect to the object’s functionality or re-usable shape constitu-
ents, independently of their geometric and structural representations.

One objective for using the GSDM is to use heterogeneous data and to give the possibility
to represent a part using several geometric representations with different structural descriptions.
However, no matter what kind of geometric or structural representation is used, in the part-
whole relationship, it is still considered as the same part.

The above two points show the main reasons for introducing a new notion of component.

PROPERTIES

 Representation-independent.

The idea of what a specific component looks like can come from different ideas obtained
from different heterogeneous data. In this definition, the number of geometric or structural rep-
resentations of a component is not limited. This is to say that a component can have different
geometric or structural representations (Figure 4.9).

Figure 4.9 Components with multi- geometric representations

 Indivisible

There are no components inside a component. A Component is the basic unit in the defini-
tion of the GSDM in the sense that it cannot be further decomposed.

79

 Context-oriented

An object can be decomposed differently depending on the context as in the example pre-
sented in Figure 4.8. A further detailed decomposition may have more components. There-
fore, which parts of a shape should be considered as components is to be decided by the user in
a specific design context.

 Multi-layered

Every component could contain three layers of information: geometry, structure and se-
mantics.

DATA STRUCTURE IN UML

Geometry

TransformComponent

Structure

Element

Semantics

transform

1

structures

*

semantics1

gemetries

*

... ...

Figure 4.10 Data structure of Component

Figure 4.10 presents the data structure of component, which shows that component is
pointing to a list of geometry and a list of structure. Semantics is also related to components.
The list of geometries and the list of structures offer the possibility for a component to have
multiple representations and multiple layered structures. The semantics of component contains
the attributes of:

- name: the specific name given by the user
- intent: the meaning or intention of this component, such as “support”, “container”,

etc.

In Figure 4.11, there is an example of two components. The right component has a multi-
representations of a bottle, where the geometries of the component contain two 2D images (from
two perpendicular views) represented by Contour2D.

80

Figure 4.11 Data structure of Component with multi-representations

4.3.2 GROUP

DEFINITION

Definition 4.5: Group = a logical operation, which associates a specific meaning or behavior
to several components.
Definition 4.6: Element = the general term for component and group

PURPOSE

 To associate some components together with specific meanings or attributes.

Sometimes, a user wants to gather some components together so that they can be selected,
modified or searched as one. For example, the user may want to change the color of all the
components from red to blue, or to treat as main body the spout, the container and the handle
of the teapot in Figure 4.8.

 To associate some components to a specific behavior

In the example of Figure 4.12, the three arms (Arm 1, Arm 2 and Arm 3) of the robot are
considered as three different components. However, the movement of “Arm 1” will affect the
position of “Arm 2” and “Arm 3”. In other words, the three arms should be moved together
when Arm 1 is moved. In this situation, they have the same behavior and should be treated all
together.

81

Figure 4.12 A robot with three arms

PROPERTIES

 Cardinality

A Group is constituted by at least two elements. A component or a group can be an element
of other groups.

 Semantic inheritance

All the elements in a group should have a specified semantic meaning for indicating the
purpose of being a group. This specific semantics tells us why different elements should be
considered as one. For example, they have a similar function, or they have the same color.

 Non-exclusive inclusion

Non-exclusive inclusion means that a group can be an element of another group and an
element can belong to several groups. An example of group is presented in Figure 4.13, which
shows a corner of an office room. All the books on the desk can be considered as a group called
“Books”. The laptop and the mouse form a group called “PC”. The “PC” and the “Books” can
be also considered as a group sharing the fact that they are all on the desk. Another group called
“Furniture” refers to all the furniture in this office room including the desk and the chair. The
chair and the mouse can be also considered as a group as they are all made by plastic.

In this example, it can be noticed that “mouse” is shared by four groups: “PC”, “plastic”,
“on the table” and “Office room”. This element can be directly included in those groups as an
element such as the “mouse” in “PC” or the “mouse” in “Plastic”. This element can also be an
element of an included group such as the “mouse” of the group “On the table”, where “mouse”
is an element of the included group “PC” including in the group “On the table”. The “mouse”
is also shared by the group “Office room”. To locate the “mouse” of the group “Office room”,
one has to go through minimum 1 group (“Office room” -> “plastic” -> ”mouse”), and maxi-
mum 2 groups (“Office room” -> “On the table” -> ”PC” -> ”mouse”). The number of groups
to go through so as to locate an element is defined as the depth of the element in this group.

82

With different passages, there might be a minimum depth and a maximum depth. Depth shows
the complexity of a group. For the user, the depth might not be very useful. However, it could
be used by the algorithms for the manipulation of groups.

Figure 4.13 Example of groups51. (Blue circles for groups and green block for compo-

nents)

DATA STRUCTURE IN UML

The data structure of a group is presented in Figure 4.14 where the class “Group” points
to a list of components and a list of groups. The class “Component” and “Group” are inherited
from the super class “Element” which points to “Semantics”.

Then the semantics of a group contains:

- name: the user specified name of the group
- reasons: the reasons why elements are grouped together. Six types of grouping rea-

sons have been proposed in the enumeration “Group Reason” including the simi-
larity of shape, color, material, function and source.

51 Picture of the office room is downloaded from : http://www.decosee.com/2014/04/07/modern-office-room-minimal-

ist-idea-23394.html

83

Figure 4.14 Data structure of group

4.3.3 RELATION

DEFINITION

Definition 4.7: Relation = the way two elements are connected together according to a spe-
cific meaning

PURPOSE

 To describe if and how elements are related from a top down perspective.

The links between different elements may express very complex relations and/or opera-
tions that, to be achieved, need complex and precise information. For example, to accomplish
the relation expressing the geometric merge of two components together, the related location of
the two components needs to be specified as well as their geometric representation and the
parameters related to the algorithm used for merging. For a non-expert in Computer Graphics,
describing these complex links can be very difficult. One possibility is to describe them top
down, i.e. from the purpose to the specification of the geometric or structural elements and
associated rules. Additionally, in the conceptual design phase, the purpose of this link is just the
indication of the type of relation/operation, independently of the representations or of the asso-
ciated rules. In the example presented in Figure 4.15, the user wants to merge the spout and the
container of a teapot together as these two components are connected because water can flow
from the container into the spout. Although the two components have different representations,
the link of “merging” exists independently of their underlying representations. At the top level,
different types of links indicating the purpose can be specified, and at the low level, the minimal
set of details necessary to provide a visual feedback for understanding the desired outcome need
to be stated. Such a minimal set normally includes the related location of the two components.
Relation focuses on the top level. The detailed definition of each relation type presented in the

ComponentElement

Semantics

semantics1

Group

*components

*groups

84

column “Relation” is introduced in the following subsection.

Figure 4.15 Examples of relations

INTENT OF RELATION

 Merging

This relation indicates that the two elements have to be geometrically operated to obtain a
unique geometric element. It is a very common relation, which corresponds to the Boolean
union operation on geometric models. For example, in Figure 4.15, the teapot is composed
of four different components, each of them with a different geometrical representation. In real
life, if the container and the spout are not geometrically connected together, then the water
cannot come out of the spout, a merging relation between them can be required so that the spout
and the container create a unique continuous volume. In the example of Figure 4.15, the con-
tainer is represented by a point cloud, while the spout is represented by a text. On the conceptual
design level, this is acceptable since the aim is not to create the final shape of the object but to
express all the information needed to fully specify it to allow its complete shape definition in
the detailed design phase, without being limited and slowed down by unnecessary modeling
details and operations difficult for non-expert users. As already stated, the purpose of the
GSDM is to provide the representation of how an object should be created by combining sub-
parts, possibly not completely defined. The relations aim at specifying the links between them.
The real operation of “merging” does not take place at this stage but it can be obtained by
processing the GSDM once the geometric description of each constituting component has been
completely specified and harmonized (i.e. compatible geometric representations on which
Boolean operations can be applied).

 Assembly

This is the same notion as in CAD systems. Different elements are connected together
without fusing them into the same geometry but simply by linking them with different joints.
In the example of Figure 4.15, the cover and the container are assembled together, but they
could still be treated separately and change their relative positions.

 Shaping

This relation is used to indicate the intention to modify the shape of an element, i.e. to

85

reshape it. It is not simply merging the overlapping areas of two elements by cutting the useless
areas as the merging relation, but restyling one element while taking into account the charac-
teristics of another. These two elements may come from different objects. An example is pre-
sented in Figure 4.16 . A chair plus an egg becomes an egg-like chair. The algorithms used to
process the elements and shape the resulting object have not been considered in this PhD thesis.

Figure 4.16 Example of the intent expressed by a relation of “shaping”

 Location

For some situations, two objects are not assembled, or merged or shaped together, but there
still exist some relations in just positioning one with respect to the other. For example, a football
on the floor. The floor and the ball are not assembled together or merged together. They also
keep their own shapes. The relation used to only position an object with reference to another is
defined as “Location”.

PROPERTIES

 Cardinality

A relation is only built between two elements. Actually, a relation can be built between
more than two elements when using the notion of group. For example, if four legs of a table
need to be fitted to a desktop, a group can be created including the four legs called “support”
and then assemble the group “support” to the desktop. Alternatively, a relation between more
than two elements can be obtained as a series of pairwise relations. For example, for the me-
chanical robot presented in Figure 4.12, if an assembly among all the arms needs to be built,
then it could be separated into an assembly relation between Arm1 and Arm2 and another be-
tween Arm2 and Arm3.

 Independency from the representation

As already stated, being the relation aimed at specifying the purpose and rules of the link
between elements, it is independent from the actual representation of each element.

86

 Inheritance

If there is a relation between group A and element B, then this relation explains that all the
elements in group A should have the same kind of relation with B or with the elements in B (if
B is a group). For example, a group of four legs is assembled with a desktop, it is not necessary
to indicate that each leg is assembled with the desktop. However, it could be necessary to have
some relations between the legs inside of the group legs. This inheritance property doesn’t have
to be specified in the data structure, it is a matter of logic.

 Uniqueness

There is only one kind of relation between two elements, including the inherited relation.

DATA STRUCTURE IN UML

The data structure of relation is presented in Figure 4.17.

Figure 4.17 Data structure of relation

Relation points to two elements (“element A” and “element B”). The semantics of relation
is mainly about the functional intent of this relation including Assembly, Location, Merging and
Shaping. Depending on different intents, in a further design phase, operations will be applied
to these two elements (e.g. Boolean operation to merge meshes, etc.) with parameters defined
in the attribute “para”. One relation also contains a list of constraints to build the link between
the conceptual level and the data level. The definition of constraint will be presented later.

To summarize, in this section, the three constituents of the conceptual level of the GSDM:
component, group and relation, have been presented. They form a high-level description model
for describing shapes that users can directly manipulate. Although it is not precise enough, a
quick overview of an object can be described with the conceptual level. As far as Relation is
concerned, this section has presented the types considered, even though their complete specifi-
cation requires a connection between the conceptual level of the GSDM and the data level of
the GSDM. This connection between the conceptual and data levels is strongly linked to the
so-called “intermediate level” that is detailed in the following section.

Element

Semantics

semantics1
Relation

elementA
elementB

2

semantics

1para:list[*]
constraints: List[Constraint]

87

4.4 INTERMEDIATE LEVEL (KEY ENTITY AND CONSTRAINT)

4.4.1 BASICS

PURPOSE OF SCALING

Scaling is normally not needed in the typical CAD design approach, where different parts
could be assembled together by applying constraints without changing their size as they are
generally designed in the same measurement system and with the same purpose. However, in
GSDM, the components come from heterogeneous input data, which are generated in different
measuring systems. Their sizes are not comparable. One solution is to give each component an
initial size value before building relations between them. They can be considered as rigid com-
ponents as in the CAD system. As in a conceptual design process, the semantic meaning of
combining different components together is more important than the exact specification of the
geometry. For example Figure 4.18 shows some “crazy” chairs. The left-bottom chair is com-
posed of a coffee cup- like back, a usual seat and four legs. The most interesting part in this
design is the combination of the coffee cup-like back with the seat. In this case, the initial value
of the size of the back cannot be specified, as it is difficult to determine which size will be
appropriate to connect the back with the kind of seat the user wishes. Actually, when using the
size of a real cup and the size of a real seat, the back will never satisfy this design intent. On
the other hand, some components can be reused with a different size. Therefore, the size should
be decided during the process of combining them together, not in the opposite way, i.e. before
connecting them. In this sense, the components should be scalable.

Figure 4.18 Examples of unconventional chairs

88

LOCATION OF COMPONENTS

The GSDM describes shapes in 3D space. Although some components may be represented
by 2D data, such as an image, when combined with others, these 2D data are located in a 3D
space. To indicate how different components are located in relation to each other in a 3D space,
the notion of “location of component” needs to be defined. A 3D space can be represented by a
reference frame, which refers to a Euclidean coordinate system. In GSDM There are three types
of 3D space existing in the GSDM represented by three types of reference frame: the reference
frame of each geometric or structural representation in a component space, the reference frame
of the component in the global space and the global reference frame. “The location of compo-
nent” in a 3D space A, can be represented by the “location of the reference frame” in the 3D
space A. As in the example presented in Figure 4.19, the global 3D space is represented by a
global reference frame with an origin point “O” and three orthonormal axes “x”, “y” and “z”.
The location of a component made of two geometric representations (two contour images of a
coca cola bottle) is represented by a reference frame with an origin point “C”. The two reference
frames of the two representations are located “R1” and “R2”. Each reference frame is structured
in a class called “Transform” in the package of “Geometries” as presented in Figure 4.2.

To specify the location of a component, three types of values, the position, rotation and
scale of the component’s reference frame in global space need to be specified. A triple (P, R, S)
is used to represent the location of a component, where P is the position of the reference frame
in a global space. R is the orientation of the component in a global space and S is the scale
factor of the element.

Figure 4.19 Location of a component

89

TRANSFORM BETWEEN LOCAL AND GLOBAL SPACES

However, positioning one element by acting on the local reference frame can be very dif-
ficult for non-expert users. A more natural and meaningful way is to link the related location to
another element. Directly building links between reference frames seems meaningless. A better
way is to specify their reciprocal location, depending on some characteristics of the geometric
or structural representation of the component. For example, two components are assembled to-
gether by inserting a component into another. This assembly will align two specific axes from
the two geometric representations of the components. The specification of this “alignment” ac-
tion and the specification of the “axis” need to be defined. To be able to limit the related location
of the two components is important for an assembly as well as for other types of relation.

However this “axis” is defined by a point and a direction, which is located in a local space
of the representation. In fact all the vectors (points and directions) used to define the geometric
or structural representation of a component, such as the position of a mesh vertex, the normal
of a mesh vertex, the position of a node of a Reeb graph, etc. are defined in the local space of
the representation (e.g. R1 and R2 in Figure 4.19). To “align” an applied vector in one local
representation space to an applied vector in another local representation space, these local en-
tities (point or direction) need first to be transformed in the same space. In GSDM, it is decided
to transform all local entities (point or direction) in the global space before getting them to
interact. A mathematical matrix can be used to calculate this transformation of points or direc-
tions between different spaces.

If space A is inside space B, then the reference frame of A is defined as:

Reference frame of space A: RfBA = (𝐏𝐏A,𝐑𝐑A, 𝐒𝐒A) = ��

xA
yA
zA
1

� , �

αA
βA
γA
1

� , �

aA
bA
cA
1

��,

Where:

𝐏𝐏A = �

xA
yA
zA
1

� is the origin of RfBA, represented by a column vector, xA, yA, zA ∈ ℝ

𝐑𝐑A = �

αA
βA
γA
1

� is the rotation of RfBA, represented by a column vector, αA, βA, γA ∈ ℝ

𝐒𝐒A = �

aA
bA
cA
1

� is the scale factor of RfBA, represented by a column vector,aA, bA, cA ∈ ℝ

90

∀ point 𝐩𝐩A = �

x
y
z
1

� , x, y, z ∈ ℝ and direction 𝐧𝐧A = �

i
j
k
1

� , a, b, c ∈ ℝ in space A, the corre-

sponding point 𝐩𝐩′A = �

x′
y′
z′
1

�of pA in space B and the corresponding direction 𝐧𝐧′A = �

i′
j′
k′
1

� of

𝐧𝐧A in space B is defined as [105]:
𝐩𝐩′A = 𝐌𝐌B

A𝐩𝐩A, the multiplication of matrix 𝐌𝐌B
A and 𝐩𝐩A.

𝐧𝐧′A = �𝐌𝐌B
A−1�

T
𝐧𝐧A, the multiplication of matrix �𝐌𝐌B

A−1�
T

 and 𝐧𝐧A.

where 𝐌𝐌B
A is the transformation matrix from space A to space B defined as:

𝐌𝐌B
A = f𝐌𝐌�RfBA� =

�

aAx ∙ 𝐜𝐜[βA] ∙ 𝐜𝐜[γA] −bA ∙ 𝐜𝐜[βA] ∙ 𝐬𝐬[γA] cA ∙ 𝐬𝐬[βA] xA
aA(𝐜𝐜[γA] ∙ 𝐬𝐬[αA] ∙ 𝐬𝐬[βA] + 𝐜𝐜[αA] ∙ 𝐬𝐬[γA]) bA(𝐜𝐜[αA] ∙ 𝐜𝐜[γA] − 𝐬𝐬[αA] ∙ 𝐬𝐬[βA] ∙ 𝐬𝐬[γA]) −cA ∙ 𝐜𝐜[βA] ∙ 𝐬𝐬[αA] yA

aA(−𝐜𝐜[αA] ∙ 𝐜𝐜[γA] ∙ 𝐬𝐬[βA] + 𝐬𝐬[αA] ∙ 𝐬𝐬[γA]) bA(𝐜𝐜[γA] ∙ 𝐬𝐬[αA] + 𝐜𝐜[αA] ∙ 𝐬𝐬[βA] ∙ 𝐬𝐬[γA]) cA ∙ 𝐜𝐜[αA] ∙ 𝐜𝐜[βA] zA
0 0 0 1

�

Where, 𝐜𝐜[x] refers to cos(x) , 𝐬𝐬[x] refers to sin (x).
To transform a point or a direction in a geometric or structural representation to a global

space requires first to transform it from representation space to the component space then from
the component space to the global space. In this case, the transformation matrix from local to
global can be defined as:

𝐌𝐌Global
Local = 𝑓𝑓𝐌𝐌�RfGlobal

Component�𝑓𝑓𝐌𝐌�RfComponent
Representation�

4.4.2 KEY ENTITY

DEFINITION

Definition 4.8: Key Entity = Geometric primitive (point, line or an oriented point) associated
with a geometric or structural representation of a component or located in a component’s
local 3D space (represented by a local reference frame).

PURPOSE

As mentioned before, instead of describing the related location between reference frames,
it is more meaningful to specify the related locations of some geometric elements of the geo-
metric or structural representation of a component. Key entities are used to represent these
meaningful key geometric elements.

91

TYPE OF KEY ENTITY

In the GSDM, two types of key entity are proposed: Geometric Key Entity and Para-
metric Key Entity.

Definition 4.9: Geometric Key Entity = Geometric primitive (point, line or an oriented point)
situated in a component’s local 3D space (represented by a local reference frame).
Definition 4.10: Parametric Key Entity = Geometric primitive (point, line or an oriented
point) defined by parameters to associate with the geometric or structural representation of a
component or other key entities.

A geometric key entity of a component is not modified when the geometric or the structural

representation changes. For example, a geometric key point defined for a component repre-
sented by a mesh corresponds to a position in the local reference frame of the mesh. Thus, if
the mesh is scaled, this point will not change. Geometric key entities are useful when a compo-
nent has no geometric or structural representations.

A parametric key entity can be represented by a point, a line or an oriented point (it can be
used to represent a plane). These key entities can be associated directly to the geometric or
structural representation of a component such as a vertex of a mesh with its normal. However,
a parametric key entity can also be created by building rules between other key entities. For
example, with a line defined by two points, these two points can be geometric key entities or
parametric key entities. The newly created key entity is not directly associated with the geomet-
ric or structural representation, it is then called indirect parametric key entity.

A Key entity is represented by four types of geometric primitives: a point, a line, an ori-
ented point and a combination of them (indicated as an array). All the proposed key entities are
listed in Table 4.1.

Classification Point Line
Oriented

Point
Array

Geometric
key entity

Independent 𝐄𝐄𝐏𝐏 𝐄𝐄𝐋𝐋 𝐄𝐄𝐅𝐅 \

Parametric
key entity

Indirect 𝐄𝐄𝐏𝐏𝐏𝐏 𝐄𝐄𝐋𝐋𝐋𝐋 𝐄𝐄𝐅𝐅𝐅𝐅 𝐄𝐄𝐀𝐀

Direct

Geometric
representation

Contou2D \ 𝐄𝐄𝐋𝐋𝐋𝐋 𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 \
Mesh3D \ 𝐄𝐄𝐋𝐋𝐋𝐋 𝐄𝐄𝐏𝐏𝐏𝐏 \

Structural rep-
resentation

Wireframe 𝐄𝐄𝐏𝐏𝐏𝐏 𝐄𝐄𝐋𝐋𝐋𝐋 \ \

Table 4.1 Classification of the proposed Key Entities

On Table 4.1, it can be noticed that not all the geometric primitives (a point, a line, an
oriented point, or an array) are associated to the geometric or structural representation of a
component. This is because some of them are meaningless or they do not exist. For example,
an oriented point in a wireframe is not meaningful. The edge of the wireframe can be used to

92

indicate a path without specifying any additional information of “orientation”. On the contrary,
a point on a mesh should be associated with an orientation, which is more useful than for just a
single point, indicating the normal of the surface where this point is located.

MATHEMATICAL SPECIFICATION

In this manuscript, the letter “E” is used to represent a key entity. Each key entity is defined
by a set of parameters between two breaks as below:

E(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2, … 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖=0...𝑛𝑛 is a parameter , n ∈ ℕ+
From those parameters, the four types of geometric primitives can be inferred.

Geometric primitives (point, line and oriented point)

In the following the notations used for the key entity specification.

Let 𝐕𝐕 ≔ {�

𝑎𝑎
𝑏𝑏
𝑐𝑐
1

� , a, b, c, d ∈ ℝ} be the set of column vectors with 4 rows. 3D points and

directions used in this manuscript are represented by elements in V.

𝐩𝐩 ≔ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� ∈ 𝐕𝐕, is a 3D point stored by 𝐕𝐕.

l ≔ (𝐩𝐩1l,𝐩𝐩2l), is a line passing through 𝐩𝐩1l and ,𝐩𝐩2l, where 𝐩𝐩1l,𝐩𝐩2l ∈ 𝐕𝐕
f ≔ (𝐩𝐩f,𝐧𝐧f) is an oriented point, where 𝐩𝐩f,𝐧𝐧f ∈ 𝐕𝐕

 For a point key entity: 𝐩𝐩E represents the point of key entity E
 For a line key entity : lE = (𝐩𝐩1E,𝐩𝐩2E) represents the line of key entity E,

where

𝐩𝐩1E represents the first point used to define the line lE.
𝐩𝐩2E represents the second point used to define the line lE.

 For an oriented point key entity:
 fE = (𝐩𝐩E,𝐧𝐧E) represents the oriented point of key entity E, where

𝐩𝐩E represents the point used to define fE
𝐧𝐧E represents the direction used to define fE

Transformation matrix

However, these primitives are located in a local reference space or on a local geometric or

structural representation. As mentioned at the end of previous section (Section 4.4.1), these
local values need to be transformed in a same measuring space (the global space) so as to be
equally compared. Thus we need the transformation matrix.

93

 For geometric key entities:

The first parameter is the component (Com), where this key entity is located:
E(Com,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2, … 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)

As introduced in Section 4.3.1, each component is associated with a reference frame de-
fined in its data structure (named “Transform”, see Figure 4.10). It is represented here as:

RfCom
Thus, the transformation matrix of the geometric key entity is defined using the function

𝑓𝑓𝐌𝐌 introduced in Section 4.4.1:
𝐌𝐌E = 𝑓𝑓𝐌𝐌(RfCom)

 For direct parametric key entities:

The direct parametric key entities are always associated with a geometric or structural
representation, which is saved in the first parameter (Rep):

E(Com, Rep,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3, … 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)
This geometric or structural representation is also associated with a reference frame, which

is located in the component’s space as their data structure defined in Figure 4.10:

Rfcom
Rep

The reference frame of this component:
Rfcom

Thus, the transformation matrix of direct parametric key entity is used to transform the
key entity from the representation space to component space then to the global space, which
can be calculated as:

𝐌𝐌E = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌(RfCom
Rep)

 For indirect parameter key entities

They are not related to any reference frame. However, the related key entities used for its
specification should be transformed first into global space.

Detailed specification

The following Table 4.2, presents the details of each key entity that is proposed in this

thesis. They are described as they were internally represented to be used by the constraint-
solving engine; clearly the indicated definition elements are not directly specified by the user
but computed based on the direct selection through the graphical interface. In the table there is
no distinction between the topological element of the geometric representation (i.e. the vertex
of a mesh) and its spatial counterpart (i.e. the point in 3D space corresponding to the vertex).
To clarify the meaning of the key entities, examples are presented in each definition.

94

Basic Defi-
nition

Geometric and Structural representations:
Con2D ≔ (loops) is a contour 2D, where

loops = {l1, l2, … , lm}, l𝑖𝑖 is a loop
l𝑖𝑖 = {𝐩𝐩i1,𝐩𝐩i2, …𝐩𝐩in}, m, n, i ∈ ℕ,𝐩𝐩1,𝐩𝐩2, … ,𝐩𝐩n ∈ 𝐕𝐕, i ∈ [1. . m]

Mesh3D ≔ (vertices, triangles, normals) is a mesh, where
 vertices = {𝐩𝐩1,𝐩𝐩2, … ,𝐩𝐩m},𝐩𝐩1,𝐩𝐩2, … ,𝐩𝐩m ∈ 𝐕𝐕, m ∈ ℕ
 triangles = {t1, t2, … , tn}, t1, t2, … , tn, n ∈ ℕ
 normals = {𝐧𝐧1,𝐧𝐧2, … ,𝐧𝐧k},𝐧𝐧1,𝐧𝐧2, … ,𝐧𝐧k ∈ 𝐕𝐕, k ∈ ℕ
Wireframe ≔ (nodes, edges) is a wireframe , where
 nodes = {𝐩𝐩1,𝐩𝐩2, … ,𝐩𝐩k},𝐩𝐩1,𝐩𝐩2, … ,𝐩𝐩k ∈ 𝐕𝐕, k ∈ ℕ
 edges = {e1, e2, … , en}, e1, e2, … , en, n ∈ ℕ
‖𝐧𝐧‖ is the Euclidean norm of the vector (or matrix) n
𝐚𝐚 × 𝐛𝐛 is the cross product of vector (or matrix) a and b.
𝐚𝐚𝐚𝐚 is the multiplication of vector (or matrix) a and b.
a ∙ 𝐛𝐛 is the scalar multiplication of vector (or matrix) b by a, where a ∈ ℝ.

𝐄𝐄𝐏𝐏

A point in a
Compo-
nent’s
space

𝐄𝐄𝐏𝐏(Com,𝐩𝐩) = 𝐩𝐩𝐄𝐄𝐏𝐏 , where
 𝐩𝐩 ∈ 𝐕𝐕
 𝐩𝐩𝐄𝐄𝐏𝐏 = 𝐌𝐌𝐄𝐄𝐏𝐏𝐩𝐩
 𝐌𝐌𝐄𝐄𝐏𝐏 = 𝑓𝑓𝐌𝐌(RfCom)

𝐄𝐄𝐋𝐋

A line in a
Compo-
nent’s
space

𝐄𝐄𝐋𝐋(Com, l) = lEL , where
 l = (𝐩𝐩1l,𝐩𝐩2l)

 lEL = �𝐩𝐩1𝐄𝐄𝐋𝐋 ,𝐩𝐩2𝐄𝐄𝐋𝐋�

 𝐩𝐩1𝐄𝐄𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐩𝐩1l
 𝐩𝐩2𝐄𝐄𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐩𝐩2l
 𝐌𝐌𝐄𝐄𝐋𝐋 = 𝑓𝑓𝐌𝐌(RfCom)

𝐄𝐄𝐅𝐅
A plane in a
Component

’s space

𝐄𝐄𝐅𝐅(Com, f) = f𝐄𝐄𝐋𝐋 , where
 f = (𝐩𝐩f,𝐧𝐧f)

 f𝐄𝐄𝐋𝐋 = �𝐩𝐩𝐄𝐄𝐅𝐅 ,𝐧𝐧𝐄𝐄𝐅𝐅�

 𝐩𝐩𝐄𝐄𝐅𝐅 = 𝐌𝐌𝐄𝐄𝐅𝐅𝐩𝐩f

 𝐧𝐧𝐄𝐄𝐅𝐅 = �𝐌𝐌𝐄𝐄𝐅𝐅
−1�𝑇𝑇𝐧𝐧f

 𝐌𝐌𝐄𝐄𝐅𝐅 = 𝑓𝑓𝐌𝐌(RfCom)

95

𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅
An oriented
point on a
2D contour

𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅(Com, Con2D, u, v, θ) = f𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = �𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 ,𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅�, where

 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = 𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅�𝐩𝐩u
v + θ ∙ (𝐩𝐩uv+1 − 𝐩𝐩uv)�

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = �𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅
−1�𝑇𝑇

𝐧𝐧uv + 𝐧𝐧uv+1

2

 𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComCon2D�

𝐩𝐩uv ,𝐩𝐩uv+1 , are the vth and v + 1th vertex of the u𝑡𝑡ℎ loop
of this Con2D, 𝐧𝐧uv ,𝐧𝐧uv+1, are the normal of them. θ is the
distance factor of this point which equals to the distance be-
tween 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 and 𝐩𝐩uv divided by the distance between 𝐩𝐩uv
and 𝐩𝐩uv+1.

𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅

An oriented
point inside

a 2D con-
tour

𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅(Com, Con2D, x, y) = f𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = (𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 ,𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅)

Where 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = 𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅
1
n
∑ 𝐩𝐩ii=n
i=1 + �

𝑥𝑥
𝑦𝑦
0
1

� , n is the total

number of the vertices, i.e. considering all the loops in
Con2D. x, y ∈ ℝ is the displacement of this key point ap-
plied to the centroid of all the vertices of the Con2D.

𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = �𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅
−1�𝑇𝑇 �

0
0
−1
1

� is the normal of the plane

where is Con2D located.

 𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComCon2D�

96

𝐄𝐄𝐋𝐋𝐋𝐋
An edge of
a 2D con-

tour

𝐄𝐄𝐋𝐋𝐋𝐋(Com, Con2D, u, v) = l𝐄𝐄𝐋𝐋𝐋𝐋 = �𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 ,𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋�, u, v ∈ ℕ

where:
 𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩u

v
 𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩u

v+1

 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComCon2D�

where 𝐩𝐩uv , 𝐩𝐩uv+1 are the vth and v + 1th vertices of
the uth loop of the Con2D.

𝐄𝐄𝐅𝐅𝐅𝐅

An oriented
point on a

surface
mesh

𝐄𝐄𝐅𝐅𝐅𝐅(Com, Mesh3D, u, d0, d1, d2) = f𝐄𝐄𝐅𝐅𝐅𝐅 = �𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 ,𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅�

where:
 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 = 𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅(d0 ∙ 𝐩𝐩tu0 + d1 ∙ 𝐩𝐩tu1 + d2 ∙ 𝐩𝐩tu2)

where 𝐩𝐩tu0,𝐩𝐩tu1,𝐩𝐩tu2 are the three vertices on the tri-
angle tu of the Mesh3D where this point is located

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅 = �𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅
−1�𝑇𝑇(d0 ∙ 𝒏𝒏tu0 + d1 ∙ 𝐧𝐧tu1 + d2 ∙ 𝐧𝐧tu2)

∈ ℝ𝟑𝟑
where 𝐧𝐧tu0,𝐧𝐧tu1,𝐧𝐧tu2 are the three normals of the three

vertices of the triangle tu.

𝐌𝐌𝐄𝐄𝐅𝐅𝐅𝐅 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComMesh3D�

d0, d1, d2 are the three factors indicating the position of
this point related to the three vertices of the u𝑡𝑡ℎ triangle.
u ∈ ℕ, d0, d1, d2 ∈ ℝ

𝐄𝐄𝐋𝐋𝐋𝐋
An edge of

a mesh
𝐄𝐄𝐋𝐋𝐋𝐋(Com, Mesh3D, a, b) = l𝐄𝐄𝐋𝐋𝐋𝐋 = �𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 ,𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋�

97

 𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩𝑎𝑎
 𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩𝑏𝑏

 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComMesh3D�

𝐩𝐩a,𝐩𝐩b are the coordinates of the two vertices of the
edge.

𝐄𝐄𝐏𝐏𝐏𝐏

A point
along the
edges of a
wireframe

𝐄𝐄𝐏𝐏𝐏𝐏(Com, Wireframe, v, θ) = 𝐩𝐩𝐄𝐄𝐏𝐏𝐏𝐏

where

 𝐩𝐩𝐄𝐄𝐏𝐏𝐏𝐏 = 𝐌𝐌𝐄𝐄𝐏𝐏𝐏𝐏(𝐩𝐩ev + θ ∙ �𝐩𝐩ev+1 − 𝐩𝐩ev�), θ ∈ [0,1] ∈ ℝ𝟑𝟑

 𝐌𝐌𝐄𝐄𝐏𝐏𝐏𝐏 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComWireframe�

v and v + 1 are the indexes of values in the edge list of
the wireframe. ev+1 and ev are the indexes of the two
nodes indicating an edge in the node list.
θ is the position factor between the two nodes.

𝐄𝐄𝐋𝐋𝐋𝐋
An edge of

a wireframe

𝐄𝐄𝐋𝐋𝐋𝐋(Com, Wireframe, v) = l𝐄𝐄𝐋𝐋𝐋𝐋 = (𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 ,𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋)

where
 𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩e𝑣𝑣
 𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋𝐩𝐩e𝑣𝑣+1

 𝐌𝐌𝐄𝐄𝐋𝐋𝐋𝐋 = 𝑓𝑓𝐌𝐌(RfCom)𝑓𝑓𝐌𝐌�RfComWireframe�

As edges are stored as a list “e” of indices of nodes, then e𝑣𝑣
and e𝑣𝑣+1, are the indices of the two nodes of the considered
edge stored in the edge list.

98

𝐄𝐄𝐋𝐋𝐋𝐋

A paramet-
ric line (cre-
ated by two
key points)

𝐄𝐄𝐋𝐋𝐋𝐋(E1, E2) = l𝐄𝐄𝐋𝐋𝐋𝐋 = �𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 ,𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋�

where
 𝐩𝐩1𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐩𝐩E1 , 𝐩𝐩2𝐄𝐄𝐋𝐋𝐋𝐋 = 𝐩𝐩E2
E0, E1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}

𝐄𝐄𝐏𝐏𝐏𝐏

A paramet-
ric point
(along a

parametric
line)

𝐄𝐄𝐏𝐏𝐏𝐏(E, θ) = 𝐩𝐩𝐄𝐄𝐏𝐏𝐏𝐏

where
 𝐩𝐩𝐄𝐄𝐏𝐏𝐏𝐏 = 𝐩𝐩𝐩𝐩E + θ ∙ (𝐩𝐩𝐩𝐩E − 𝐩𝐩𝐩𝐩E), whereθ ∈ [0,1],
 E ∈ {𝐄𝐄𝐋𝐋𝐋𝐋}

𝐄𝐄𝐅𝐅𝐅𝐅
A paramet-
ric oriented

point

𝐄𝐄𝐅𝐅𝐅𝐅(u, Para) = f𝐄𝐄𝐅𝐅𝐅𝐅 = (𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 ,𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅)

1) If u = 0, for an oriented point specified by three
points, then Para = (E1, E2, E3),

 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 =
1
3
�𝐩𝐩E1 + 𝐩𝐩E2 + 𝐩𝐩E3�,

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅 = (𝐩𝐩E2 − 𝐩𝐩E1) × (𝐩𝐩E3 − 𝐩𝐩E1), where
 E1, E2, E3 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}

2) If u = 1, for an oriented point specified by a point
and a line, then Para = (E1, E2)

 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 = 𝐩𝐩1E1

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅 = (𝐩𝐩1E2 − 𝐩𝐩E1) × (𝐩𝐩2E2 − 𝐩𝐩E1), where

99

 E1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}
 E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}

3) If u = 2, for an oriented point specified by two
lines, then Para = (E1, E2)

 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 =
1
4
�𝐩𝐩1E2 + 𝐩𝐩2E2 + 𝐩𝐩1E1 + 𝐩𝐩2E1�,

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅 = (𝐩𝐩2E1 − 𝐩𝐩1E1) × (𝐩𝐩2E2 − 𝐩𝐩1E2),where
 E1, E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}

4) If u = 3, for an oriented point specified by two ori-
ented points, then Para = (E1, E2, θ)

 𝐩𝐩𝐄𝐄𝐅𝐅𝐅𝐅 = 𝐩𝐩E1 + θ ∙ �𝐩𝐩E2 − 𝐩𝐩E1�,

 𝐧𝐧𝐄𝐄𝐅𝐅𝐅𝐅 = 𝐧𝐧E1 + θ ∙ �𝐧𝐧E2 − 𝐧𝐧E1�, where

 E2, E2 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}

𝐄𝐄𝐀𝐀
An array of
key entities

𝐄𝐄𝐀𝐀({Ei}i∈[0,n−1])
Ei is one of all the above key entities

Table 4.2 Key entities’ definition

PROPERTIES

 Dimension

A key entity, whether it is a geometric or a parametric one, can be finally represented by a
geometric element such as a point, a line, an oriented point or a combination of them (i.e. an
array). This indicates the dimension of the key entity. A point is a one-dimensional entity, a line
and an oriented point are two-dimensional entities, and an array is an n-dimensional entity
where n is the sum of its key entities’ dimensions. The dimension of a key entity can also be
represented by the number of elements of ℝ𝟑𝟑 used to specify its representation. For example,
𝐄𝐄𝐋𝐋𝐋𝐋 (an edge of the contour 2D) is represented by a line defined by two points (each of them is
an instance of an element of ℝ𝟑𝟑). , All the key entities are represented in a 3D space. A table
classifying all the key entities by their dimension is presented as below:

100

1D key entities 2D key entities nD key entities
Point Line Oriented Point Array

𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏 𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋 𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅 𝐄𝐄𝐀𝐀

Table 4.3 Dimension of Key entities

 Independent and related (or geometric and parametric)

As already mentioned, a geometric key entity is independent from any representation and
a parametric key entity is related to a geometric or structural representation or to other key en-
tities.

 Direct and indirect (for parametric key entities)

A parametric key entity can be directly associated to the entities used to define a geometric
or a structural representation. It can also be indirectly related to a geometric or structural repre-
sentation through some existing key entities.

 Multi-modality

From the presented specification of key entity, it can be noticed that the parametric key
entity can be associated to the geometric and/or the structural representation of the component,
while in traditional CAD systems, the key entities used to specify constraints in assemblies are
only located on its geometric layer.

DATA STRUCTURE IN UML

KeyEntity

Enumeration

KeyEntityType

Geometric
DirectParametric
IndirectParametric

type

1

Semantics

semantics1

para: list[*]
Enumeration

KeyEntityDimention

Point
Line
OrientedPoint
Array

dimension

1

Figure 4.20 Data structure of Key Entity

The above Figure 4.20 presents the data structure of key entity. It is structured with a list
of parameters (“para”), type (“type”), dimension (“dimension”) and semantics. The type indi-
cates the three types of key entity: geometric, direct parametric and indirect parametric. “Di-
mension” points to the types of geometric primitives (Point, Line, Oriented Point or an Array).
The semantics of key entity tells its meaning such as a vertex on a mesh, an edge of a wireframe,
etc.

101

4.4.3 CONSTRAINT

DEFINITION

Definition 4.11: Constraint = A condition limiting the related location of two elements by
applying equations between two key entities

Constraints are expressed by equations or inequalities correlating different key entities.

Therefore, to completely specify a constraint, we need not only to define which are the key
entities involved, but also which equations or inequalities have to be applied.

PURPOSE

Constraint is used to limit the location of two key entities. It can occur only between two
key entities, since, if more than two key entities are involved we can use the key entity𝐄𝐄𝐀𝐀, which
is a list of key entities.

MATHEMATICAL SPECIFICATION

The equations and inequalities are different for different constraints. Even for the same
constraint, different combinations of the two key entities may require different equations or
inequalities. In this sense, the combination of the two key entities involved becomes very useful
for defining a constraint. Thus, in Table 4.4, all the constraints are proposed taking into con-
sideration all the possible combinations of key entities.

Sym-
bol

Name Acceptable key entity Combination

CD Distance
(Point, Point), (Point, Oriented point), (Oriented point, Oriented
point)

CA Angle (Line, Line), (Line, Oriented point), (Oriented point, Oriented point)
CCo Coincidence (Point, Point), (Point, Oriented point)
CPa Parallelism (Line, Line),(Line, Oriented point), (Oriented point, Oriented point)

CPe
Perpendicu-

larity
(Line, Line),(Line, Oriented point), (Oriented point, Oriented point)

CCl Co-linearity (Point, Line), (Oriented point, Line)
CCp Co-planarity (Point, Oriented point), (Oriented point, Oriented point)
CCa Co-axiality (Line, Line)
CT Tangency (Oriented point, Line), (Oriented point, Oriented point)
CI Insertion (Line, Line)
CCt Contact (Oriented point, Oriented point)
CPt Pattern (Point, Array), (Line, Array), (Oriented point, Array)

Table 4.4 Constraints with an associated combination of key entities

102

“Coincidence” is only between two points, “Co-linearity” is used to limit the position of a
point along a line. “Co-planarity” is used to limit a point on a surface. “Co-axiality”, to limit
two lines to be coincident. “Insertion” is used to put two lines that are “Co-axial” then limits
the distance between them. “Contact” is used to put two surfaces that touch each other and
“Tangent” is used to limit a line and a plane or two planes for them to be tangent. “Pattern” is
used to distribute points along a line or a round a point.

The constraints that have been considered were thought to be significant for users. As a
consequence, some of them can be special cases of others just putting a specific different value.
For example, “Coincidence” between two points can be considered as a special case of
“Distance” between two points equal to zero. However, the equation to calculate distance is
not linear. In order to maximise the use of linear equations and linear inequalities, different
equations are used to formulate “Coincidence” and “Distance”. Therefore, six basic expressions
(equations or inequalities) are defined acting on vectors. All the constraints proposed are
defined by using these expressions.

Thus, the equations for each constraint are defined in following Table 4.5.

Notations:
“= =” for conditional-Equal
“&&” for conditional -And
“||” for conditional-Or
‖𝐧𝐧‖ for the Euclidean norm of vector 𝐧𝐧
|v| for the absolute value of v.
→ to give the expression of one equation or inequality defined by parameters

Basic expression (equations or inequalities):
e0(𝐯𝐯1, 𝐯𝐯2,𝑎𝑎) → 𝐯𝐯2 == a𝐯𝐯1, for 𝐯𝐯2 is scaled from 𝐯𝐯1 by a. (three linear equations)

 → �

𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
1

� == 𝑎𝑎 �

𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
1

�

 → �
𝑥𝑥2 == 𝑎𝑎 ∙ 𝑥𝑥1
𝑦𝑦2 == 𝑎𝑎 ∙ 𝑦𝑦1
𝑧𝑧2 == 𝑎𝑎 ∙ 𝑧𝑧1

e1(𝐯𝐯1, 𝐯𝐯2) → 𝐯𝐯1 ∙ 𝐯𝐯2 == 1 for 𝐯𝐯1 is perpendicular to 𝐯𝐯2. (one linear equation)

 → �

𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
1

� ∙ [𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2, 1] = 𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2 + 𝑧𝑧1𝑧𝑧2 + 1 == 1

e2(𝐯𝐯1, 𝐯𝐯2) → e0 ��

𝑥𝑥1𝑦𝑦2
𝑦𝑦1𝑧𝑧2
𝑥𝑥1𝑧𝑧2

1

� , �

𝑥𝑥2𝑦𝑦1
𝑦𝑦2𝑧𝑧1
𝑥𝑥2𝑧𝑧1

1

� , 1� for 𝐯𝐯1 is parallel to 𝐯𝐯2. (three linear equations)

103

 → �
𝑥𝑥1𝑦𝑦2 == 𝑥𝑥2𝑦𝑦1
𝑦𝑦1𝑧𝑧2 == 𝑦𝑦2𝑧𝑧1
𝑥𝑥1𝑧𝑧2 == 𝑥𝑥2𝑧𝑧1

e3(𝐯𝐯1, 𝐯𝐯2) → e0 ��

𝑥𝑥1𝑦𝑦2
𝑦𝑦1𝑧𝑧2
𝑥𝑥1𝑧𝑧2

1

� , �

𝑥𝑥2𝑦𝑦1
𝑦𝑦2𝑧𝑧1
𝑥𝑥2𝑧𝑧1

1

� , 1�&& �
𝑥𝑥1𝑥𝑥2 ≤ 0
𝑦𝑦1𝑦𝑦2 ≤ 0
𝑧𝑧1𝑧𝑧2 ≤ 0

 for 𝐯𝐯1 is opposite to 𝐯𝐯2 (three linear

equations and three linear inequalities)

 →

⎩
⎪
⎨

⎪
⎧
𝑥𝑥1𝑦𝑦2 == 𝑥𝑥2𝑦𝑦1
𝑦𝑦1𝑧𝑧21 == 𝑦𝑦2𝑧𝑧1
𝑥𝑥1𝑧𝑧2 == 𝑥𝑥2𝑧𝑧1
𝑥𝑥1𝑥𝑥2 ≤ 0
𝑦𝑦1𝑦𝑦2 ≤ 0
𝑧𝑧1𝑧𝑧2 ≤ 0

e4(𝐯𝐯1, 𝐯𝐯2,𝑎𝑎) → ‖𝐯𝐯2 − 𝐯𝐯1‖ == 𝑎𝑎 for the distance between 𝐯𝐯1 and 𝐯𝐯2 is a. (one non-linear
equation)

 → �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 + (𝑧𝑧1 − 𝑧𝑧2)2 == 𝑎𝑎

e5(𝐯𝐯1, 𝐯𝐯2,𝑎𝑎) → 𝐯𝐯1∙𝐯𝐯2−1
‖𝐯𝐯2−𝐯𝐯1‖

== cos (𝑎𝑎) for the cosine of the angle between 𝐯𝐯1 and 𝐯𝐯2 is a.

(one non-linear equation)

 →
𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2 + 𝑧𝑧1𝑧𝑧2

�(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 + (𝑧𝑧1 − 𝑧𝑧2)2
== 𝑎𝑎

𝐩𝐩1,𝐩𝐩2 ∈ 𝐕𝐕
Distance 𝐂𝐂𝐃𝐃(E1, E2, distance)

= e4�𝐩𝐩E1 ,𝐩𝐩E2 , distance�

(E1, E1) ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2, distance ∈ ℝ, distance ≥ 0
Angle 𝐂𝐂𝐀𝐀(E1, E2, angle)

= e5�𝐧𝐧E1 ,𝐧𝐧E2 , angle�

 if (E1, E1) ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2 are oriented points

104

= e5�𝐩𝐩2E1 − 𝐩𝐩1E1 ,𝐩𝐩2E2 − 𝐩𝐩1E1 , angle�

 if (E1, E1) ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}2 are lines

= e5�𝐩𝐩2E2 − 𝐩𝐩1E2 ,𝐧𝐧E1 , angle�

 if E1 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is an oriented point
 E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋} is a line,
angle ∈ [0,180]
Coincidence 𝐂𝐂𝐂𝐂𝐂𝐂(E1, E2)

= 𝑒𝑒0�𝐩𝐩E1 ,𝐩𝐩E2 , 1�

(E1, E2) ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2
Parallelism 𝐂𝐂𝐏𝐏𝐏𝐏(E1, E2)

= e2�𝐧𝐧E1 ,𝐧𝐧E2� , if (E1, E2) ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2

= e2�𝐧𝐧E2 ,𝐩𝐩2E1 − 𝐩𝐩1E1� , if E1 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}, E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}

= e2�𝐩𝐩2E1 − 𝐩𝐩1E1 ,𝐩𝐩2E2 − 𝐩𝐩1E2�, if (E1, E2) ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}2

Perpendicularity 𝐂𝐂𝐏𝐏𝐏𝐏(E1, E2)

105

= e1�𝐧𝐧E1 ,𝐧𝐧E2� , if (E1, E2) ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2

= e1�𝐧𝐧E2 ,𝐩𝐩2E1 − 𝐩𝐩1E1� , if E1 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}, E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}

= e1�𝐩𝐩2E1 − 𝐩𝐩1E1 ,𝐩𝐩2E2 − 𝐩𝐩1E2�, if (E1, E2) ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}2

Co-linearity 𝐂𝐂𝐂𝐂𝐂𝐂(E1, E2)

= e2�𝐩𝐩E1 − 𝐩𝐩1E2 ,𝐩𝐩2E2 − 𝐩𝐩1E2�

E1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is a point or an oriented point
E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋} is line
Co-planarity 𝐂𝐂𝐂𝐂𝐂𝐂(E1, E2)

= e1�𝐩𝐩E1 − 𝐩𝐩E2 ,𝐧𝐧E2�

E1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is a point or an oriented point
E2 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is an oriented point
Co-axiality 𝐂𝐂𝐂𝐂𝐂𝐂(E1, E2)

= e2�𝐩𝐩1E1 − 𝐩𝐩1E2 ,𝐩𝐩2E2 − 𝐩𝐩1E2� && e2�𝐩𝐩2E1 − 𝐩𝐩1E2 ,𝐩𝐩2E2 − 𝐩𝐩1E2�

(E1, E1) ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}2 are lines
Tangency 𝐂𝐂𝐓𝐓(E1, E2)

= e0�𝐩𝐩E1 ,𝐩𝐩1E2 , 1� && e1�𝐧𝐧E1 ,𝐩𝐩2E2 − 𝐩𝐩1E2�

106

 if E1 ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is a oriented point,
 E2 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋} is a line

= e0�𝐩𝐩E1 ,𝐩𝐩E2 , 1� && e2�𝐧𝐧E1 ,𝐧𝐧E2�

 if (E1, E2) ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2 are oriented points
Insertion 𝐂𝐂𝐈𝐈(E1, E2, distance)

= e2�𝐩𝐩1E1 − 𝐩𝐩1E2 ,𝐩𝐩2E2 − 𝐩𝐩1E2�

 && e2�𝐩𝐩2E1 − 𝐩𝐩1E2 ,𝐩𝐩2E2 − 𝐩𝐩1E2�

 && e4�𝐩𝐩1E1 ,𝐩𝐩1E2 , distance�,

 (E1, E2) ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋}2, distance ∈ ℝ, distance ≥ 0
Contact 𝐂𝐂𝐂𝐂𝐂𝐂(E1, E2)

= e0�𝐩𝐩E1 ,𝐩𝐩E2 , 1� && e3�𝐧𝐧E1 ,𝐧𝐧E2�, (E1, E2) ∈ {𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}2

Pattern 𝐂𝐂𝐏𝐏𝐏𝐏(E1, E2, distance, radius), distance, radius ∈ ℝ, distance, radius ≥ 0

= 𝐂𝐂𝐂𝐂𝐂𝐂(E2[i], E1) && e0 �𝐩𝐩1E2 ,𝐩𝐩E2[i], 𝑖𝑖 ∗
distance
𝑛𝑛 − 1 �

 for ∀ E2[i] in E2 , 𝑖𝑖 ∈ [0,𝑛𝑛 − 1] ⊂ ℕ, n is the number of key entities in E2

107

 if E1 ∈ {𝐄𝐄𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋,𝐄𝐄𝐋𝐋𝐋𝐋} is a line,
 E2 ∈ 𝐄𝐄𝐀𝐀, E2[k]k=0,1…𝑛𝑛−1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}

= 𝐂𝐂𝐃𝐃(E1, E2[i], radius)&& 𝑒𝑒5 �𝐩𝐩E2[𝑖𝑖−1] − 𝐩𝐩E1 ,𝐩𝐩E2[𝑖𝑖] − 𝐩𝐩E1 ,
distance
𝑛𝑛 − 1 �

for ∀ E2[i] , in E2 , i ∈ [1, n − 1] ⊂ ℕ, n is the number of key entities in E2

 if E1 ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅} is point,
 E2 ∈ 𝐄𝐄𝐀𝐀, E2[k]k=0,1…n ∈ {𝐄𝐄𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐏𝐏𝐏𝐏,𝐄𝐄𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅}

Table 4.5 Equations for constraints

Figure 4.21 presents the links between each constraint and the six basic expressions.

Figure 4.21 Dependencies among the Constraints and the basic functions

108

PROPERTIES

 Cardinality

As mentioned previously, constraints defined in this thesis are built only between two key
entities.

 Boolean-valued formula

Constraint is a condition, not a function or an equation. The value of each constraint is
true or false, in other words it is a Boolean-valued formula. Therefore, conditional operations
can be applied between constraints, such as conditional equal (“==”), conditional and “&&”
and conditional or (“||”). The results of the conditional operations are still Boolean-valued.

 Multi-modality

Because of the specification of key entity, the constraints are built at both the structural
and the geometric level.

DATA STRUCTURE IN UML

Relation

para:list[*]

KeyEntity

Enumeration

KeyEntityType

Geometric
DirectParametric
IndirectParametric

type

1

Semantics

semantics1

para: list[*]

Constraint

values:list[float]

keyentityA
keyentityB

2

*constraints

semantics

1

semantics 1

Enumeration

KeyEntityDimention

Point
Line
OrientedPoint
Array

dimension

1

Figure 4.22 Data Structure of a constraint and links with the other classes

The data structure of a constraint is presented in Figure 4.22 where constraint points to
two key entities (“keyentityA” and “keyentityB”), to semantics (“semantics”) and to an attribute
“values” to define the constant value used in the constraint if needed. Relation indicates a list
of constraints, which bridges the intermediate level with the conceptual level. The semantics of
constraint tells its meaning.

At the intermediate level, we have proposed 14 different kinds of key entities and 12 types
of constraints. Key entities, which are not always explicitly specified by the user, but may be
automatically computed by processing his/her input. In the previous example, the user wants to
put a ball on a floor. He/she would probably specify a “contact” constraint between the ball and
the floor. However, on which exact points of the ball and the floor they are touching might be

109

meaningless for the user. In this case, the user only needs to specify the type of constraint
without specifying the key entities. As in the data structure presented in Figure 4.22, constraints
are saved in a list derived from relation, therefore even if the key entities are not specified, the
constraint can still automatically find two suitable temporary key entities on the geometric or
structural representations of the two elements saved in the relation. More details about the smart
constraining mechanism are given in Section 5.3.

Figure 4.23 Whole data structure of GSDM

Mesh3D

Point2D

x: float
y: float
z: float

Circle2D

*

points

Contour2D

circles

* Pixel

color: int

v: int
u: int

PixelImage
*pixels

Entity

Point3D

x: float

z: float
y: float

vertices
normals

2

Line2D
2

pointA
pointB

WireFrame

edges: int[*]

triangles: int [*]

uvs

*

nodes *

Geometry

Transform

position
rotation

scale

31transform

Component

transform

1

gometries

*

Structure

transform 1

structures

Group

Element

components

*

groups

*

Relation

elementA
elementB

2

Constraintconstraints

*

KeyEntity

keyentityA
keyentityB

2

Enumeration

KeyEntityType

Geometric
DirectParametric
IndirectParametric

Semantics

Enumeration

Semantictype

Component
Group
Relation

Constraint
KeyEntity
GSDM

type 1

SGSDM

name: string

SComponent

name: string

intent: string

SGroup

name: string

Enumeration

GroupReason

SameColor
SameFunction
SameMaterial
SimilarShape
SameResouce
Others

reasons *

SRelation

Enumeration

RelationIntention

Assembly
Merging
Shaping
Location

intent

1

SKeyEntity

Enumeration

KeyEntityMeaning

Array
Point_Component
Point_Wireframe
Point_OBB
Point_Parametric
Line_Component
Line_Contour
Line_Mesh
Line_OBB
Line_Wireframe
Line_Parametric
OrientedPoint_Component
OrientedPoint_OnContour
OrientedPoint_InContour
OrientedPoint_Mesh
OrientedPoint_Parametric
OrientedPoint_Referenceframe

meaning *

Enumeration

ConstraintIntent

Coincidence
Distance
Angle
Parallelism
Perpendicularity
Co-linearity
Co-planarity
Co-axiality
Tangency
Contact
Insertion
Pattern

SConstraint

GSDM

*groups

*components

relations *

1semantics 1

semantics

1

para:list[*]

constant:float

Geometry

type 1

resource:Resource

-resource:Resource

Structure

intent: string

SGeometry

SStructure

meaning

1

Enumeration

StructureMeaning

ReebGraph
Skeleton
MedialAxis
BoundingBox
Others

Enumeration

GeometryMeaning

Image
Mesh
Text
Others

meaning

1

meaning

1

Enumeration

KeyEntityDimention

Point
Line
OrientedPoint
Array

dimention

1

name:String

name:String

Enumeration

AlginType

Free
Forward
Backward
Left
Right
Up
Down

1 alignType

110

4.5 GENERAL OVERVIEW

The complete organization of the GSDM is presented in Figure 4.23. In future, other kinds
of geometry, structure, constraints or key entities or even other types of relations can also be
developed if they are more useful and convenient for the user. So, the proposed data structure
is modular and can be extended.

4.6 CONCLUSION AND REMARKS

In the previous sections, all the constituents of GSDM have been introduced together with
the data structure presented in UML. The data structure of GSDM can be implemented in any
programming language. The GSDM presented in this chapter is not a fixed and closed model.

The class of “GSDM” comprises a list of components a list of groups, a list of relations
and semantics. Through the different definitions and data structures, this chapter shows the
GSDM’s capability to combine heterogeneous data and constrain them so as to define a struc-
tured object whose final geometric representation will be processed at a later stage. At that stage,
heterogeneous data are mixed up in a common 3D viewer where 2D images and meshes coexist.
However, these data structures cannot be instantiated automatically without user interaction.
The way an object can be modeled with the GSDM needs to be clarified. Besides, the infor-
mation stored in the GSDM needs to be checked. This is especially true for the user-specified
constraints that can be inconsistent at a given stage. Therefore, various steps in the process of
modeling with GSDM are needed to check the rationality of the information stored during the
creation of groups, the building of relations and the specification of constraints. These issues
are going to be introduced in Chapter 5. Chapter 6 will present an implementation with user-
friendly interface.

111

.
MODELING WITH GSDM

CHAPTER OVERVIEW

HIS CHAPTER PRESENTS the way to create a conceptual model by using the GSDM
and solve the related issues presented at the end of the previous Chapter 4. It is

organized in five sections: workflow of the modeling process with GSDM (Section 5.1),
working at the conceptual level (Section 5.2), working at the intermediate level (Section
5.3), solving Constraint Satisfaction Problems (CSP) (Section 5.4) and finally some re-
marks in the conclusion (Section 5.5).

T

The good life is a process, not a state of being. It is a direction
not a destination.

Carl Rogers

112

5.1 WORKFLOW OF THE MODELING PROCESS WITH GSDM

The objective of using the GSDM, as presented in Section 3.3, is to reduce the gap between
non-expert users and specification tools in the conceptual design phase, possibly in a collabo-
rative working environment, allowing the re-use of existing heterogeneous data resources (e.g.
images, 3D models). In this section, the workflow of the modeling process with GSDM is in-
troduced.

This process mimics the natural way users follow, i.e. focusing on his/her own objectives
without bothering about the underlying model organization. Thus, the adopted approach can be
classified as a top-down one.

The user usually knows what he/she wants to create but does not necessarily know how to
create it step by step. To be more user-friendly, the modeling process of GSDM is defined as
presented in Figure 5.1.

Working
with the

conceptual
level

Working
with the

intermediate
level

User selects
Heterogeneous resources

Heterogeneous
resources

Create
components

Make groups

Create
relations

Specify key
entities

Constrain key entities
(Smart Constraining

system)

Solve CSP

Need new
Constraint ?

No

End

Start

Yes

Figure 5.1 The GSDM user’s modeling process

113

The modeling process starts from the conceptual level, where the user is actually acting.
The first thing the user needs to do is to create components from the input heterogeneous re-
sources. The geometric, structural or semantic information stored in the input data is automat-
ically extracted and inserted into the corresponding three layers of the component’s description.
Then, the user can regroup the components or existing groups, and specify relations between
them. At this stage, the conceptual level elements are all initialized. The user has to give a
general view of the different parts and how they are combined together to form the object that
he/she wants to create.

The next step is to define the relations more precisely. This step is carried out by specifying
the constraints between key entities. There might be some key entities, which can be specified
directly from the geometric or structural representations (direct parametric key entity) obtained
from the heterogeneous data, but the user can also create his/her own key entities (indirect par-
ametric key entity). With the specified key entities, the user can link two of them and build the
related constraints. After their specification, the system starts to check the constraints and try
to find the best solution to satisfy all the user-specified constraints. This step is called Constraint
Satisfaction Problem (CSP) solving. Each time a new constraint is specified, the CSP solver is
automatically launched. The way the CSP is solved is discussed in Section 5.4.

These steps can be repeated until the complete specification of the object is achieved. Fig-
ure 5.1 shows only one feedback loop. However, the process is iterative and the user can return
to the previous steps to modify the specification at any time. For example, after specifying
relations, the user can still go back to group or to add new components. It should be noted that
those changes might affect the following steps, e.g. requiring a new constraint solving process.

The following sections focuses on the details of each step specifying the corresponding
actions on the GSDM. The graphical user-interface will be presented in the next chapter.

5.2 WORKING AT THE CONCEPTUAL LEVEL

5.2.1 CREATION OF COMPONENTS

The first step in creating a GSDM is to instantiate components from heterogeneous data.
The user’s interaction will play a very important role in this step. The whole process of instan-
tiation of a component is represented in Figure 5.2.

As the input heterogeneous data may contain the information related to segmentations, the
user needs to specify how to use the segmented parts in the input data. First, the user has to
select the part(s) to be used and specify a name for the component to be created. Subsequently,
three options are proposed to the user to declare how selected parts should be considered. This
possibility is given because it is not guaranteed that the available segmentation corresponds to
the actual needs of the user, e.g. over segmented.

Option one is the default option and is to consider all selected parts as a single component.
If this option is selected, an empty component will be created with the specified name associated
to its semantics. Option two indicates that the decomposition of the segmentation should be
preserved, since each of them is meaningful by itself, so separate components should be created

114

in the GSDM, each of them associated to a name corresponding to the part name in the input
data. Option three indicates that selected parts should behave as a unique group. If the user
chooses it, a group with a list of components will be created. The group built in the last option
will be associated to the specified name in its semantics layer, and each component of the group
will have the same part name in the input data. The details of creating a group will be introduced
in the next subsection. There will also be a semantic information as “same source” associated
to the “reason” for the semantics of the group.

Figure 5.2 Creation of a component

Then, for each empty component created, the geometry, structure and semantics will be
added to the corresponding data structure defined by the GSDM, derived from the information
of the related segmented part of the input data. A minimum oriented bounding box is also added
as the structure representation of this component. Figure 5.3 shows an example of a component
instantiated with point clouds and a graph-based structure.

115

Figure 5.3 Example of a component

5.2.2 MAKE GROUPS AND RELATIONS

 Once the components have been created, the user can associate them in different groups
and/or specify relations between them. The process for making a group is presented in Figure
5.4.

To fully instantiate a group, we need four kinds of information: the name of the group, the
reason for grouping, the type of the group, the components to be grouped and possibly the
groups to be grouped. In the process of specifying a component (see Subsection 5.2.1), some
information specified by the user for the creation of component will be used to automatically
instantiate the corresponding group. For other situations, the user needs to specify the four kinds
of information as presented in Figure 5.4. After choosing the elements to be grouped, all the
existing groups are checked to detect if another group with the same selected elements already
exists. If such a group already exists, the user will be warned to go back and to reselect the
elements. Several motives for grouping are proposed as presented previously in the semantics
of group (Figure 4.7): “similar shape”, “same color”, “same material”, “same function”, “from
the same resource” and one additional choice: “other”. The user can choose one or more reasons,
and if there is no suitable reason, then the user can choose “other” and enter a new reason.

116

User selects elements
to be grouped

Does the group
already exist ?

Yes

User specifies a name

NO

User specifies pre-
defined group reasons

Additional reason
needed or no adaptable

reason found ?
User gives a

specific reason

User specifies the type of
group (fixed or free)

Create a new group with the specified name,
group reason, type and selected elements

No

Yes

Figure 5.4 Create groups

Similar to the creation of group, to instantiate a relation, the user also needs to provide
some information including the type of relation and the associated two elements on which the
relation is built. However, it is necessary to verify if the selected two elements can be associated
by a relation. There can be four situations occurring when asking for the creation of a new
relation between two elements as shown in Figure 5.5.

117

Figure 5.5 Situations for adding new relation

1. The selected two elements are already connected by an existing relation. In this case, the
relation cannot be created and so the user will be asked to reselect the elements.

2. There exists a higher level relation, i.e. a relation between the groups containing the selected
elements. Also in this case the relation cannot be created. In the example presented in
Figure 5.5, there is an existing relation of assembly (relation 1) between the “Desktop”
(component 1) and the “Support” (group 2). With this relation, it is clear that all the ele-
ments belonging to the “Desktop” and the “Support” groups are assembled together. There-
fore there is no need to indicate that “Desktop” and “Base” (component 2) are assembled
as “Base” is a part of “Support”. The fact that relation 1 is carried out through the link
between “Desktop” and “Base” will be specified by constraint not at the relation level.

3. There exists a lower level relation. It is the opposite case of situation 2. If there is a relation
between elements of the selected groups, then adding a new relation between the two groups
means to upgrade the lower relation between the included elements to a more general one.
For an example in Figure 5.5, there is a relation of assembly (relation 2) between the “Base”
(component 2) and “Leg1” (component 3). If a new relation of assembly is to be created
between the group of “Legs” (group 3) and the “Base”, then the lower level relation 2 will
disappear while a new relation between “Base” and “Legs” will be created. As in the data
structure of constraint defined in Subsection 4.4.3, each relation has a list of constraints,
when a lower relation disappears, the related constraints will be restructured into the list of
constraints in a higher relation.

4. None of the three above situations. In this case, a new relation will be created.

118

User selects
two elements

If in situation 1 ? If in situation 2 ?

If in situation 3 ?

No No

Show warning:
Existing !

Yes Yes

Create a new relation

Put constraints of
lower relation to the
constraint list of new

relation

Delete lower relation User selects
relation type

Specify the type of new
relation with selected value

Yes

Figure 5.6 Create of a relation

The whole process is represented in Figure 5.6. In this process, situation 2 and 3 actually
explain the “Inheritance” and “uniqueness” properties of relation, which means that there
should be only one kind of relation between two components, including the inherited relation
(For details see Subsection 4.3.3).

5.3 WORKING WITH THE INTERMEDIATE LEVEL

Most of the time a relation is first instantiated without specifying the associated constraints.
The specification of constraints requires first the concerned key entities to be specified, then the
constraints establishing the relation. However, to specify the key entities, one needs to access
the core level information, which might be complicated for a non-expert user. Therefore, a
“smart” system has been defined to help the user. The system’s “smartness” consists of three
capabilities, described in the following:

• automatic identification of key entities;
• automatic selection of the type of constraint and assign it to the right relation;

119

5.3.1 AUTOMATIC IDENTIFICATION OF KEY ENTITIES

As mentioned at the end of Section 4.4, sometimes the user is not really interested in de-
fining the key entities between which a constraint has to be specified. For instance, in the ex-
ample of the ball lying on the floor it is more important to consider those two components in
contact, than to exactly know the points where they are in contact. The ball and the floor are
linked by a relation of “Location”. For this situation, the user does not need to specify the two
key entities while instantiating a constraint. The system will automatically choose two tempo-
rary key entities for the constraint. They are “temporary” because they do not correspond to
specific geometric points in space. Thus, with the specification of other constraints, or though
modifications performed by the user, they could change. For different constraints, the system
will apply different approaches to specify the temporary key entities. The different strategies
are summarized in Table 5.1. Concerning the example in Figure 5.5, the user can instantiate a
“Contact” between “Support” and “Base” without specifying the key entities. The system will
automatically find the closest points between the “Desktop” and the “Base” and then constrain
them together. For the constraint “Pattern”, it is necessary to specify the key entity. If the spec-
ified relation is between two elements, which are all inside of a fixed group, then no constraints
can be built between them as their reciprocal positions are already constrained. In this case, a
warning will alert the user who will be required to reselect key entities. The steps to activate
this “smart” function are: first select two components, then add a constraint related to them. If
only one key entity is specified, then the approaches presented in Table 5.1 will be used to find
the other temporary one. If none of the two key entities are specified, then two temporary key
entities will be instantiated.

Constraints Approach to find temporary key entities

Coincidence, Distance, Coplanar, Tangent,
Contact

𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅,𝐄𝐄𝐅𝐅𝐅𝐅𝐅𝐅 or 𝐄𝐄𝐅𝐅𝐅𝐅
Find the closest points on the two geomet-
ric representations of the selected two
components

Angle, Parallel, Perpendicular, Coaxial,
Insert

𝐄𝐄𝐋𝐋𝐋𝐋
Find the longest edge of the structure of
component if it has any.

Collinear
𝐄𝐄𝐋𝐋𝐋𝐋
Find the longest edge of the structure of
component if it has any.

Table 5.1 Automatic computation of default temporary key entities

120

5.3.2 AUTOMATIC SELECTION OF THE TYPE OF CONSTRAINT AND ASSIGN IT TO

THE RIGHT RELATION

A user can also specify a constraint by selecting two key entities. Depending on the situa-
tions of the specified key entities, a new constraint will be created through a predefined con-
straint type by default. They are summarized in the following Table 5.2. If the predefined con-
straint type is not the desired one, the user can modify it later.

 Key entity 1

Key entity2
Point Line Oriented point

Point Coincidence
Line Co-linearity The angle of these two lines

is:
∈ [45,135] :
Perpendicularity
Others: Parallelism

Oriented point Co-planarity The angle between the ori-
ented point and the line:
∈ [45,135] : Tangency
Others: Parallelism

Contact

Table 5.2 Predefined constraints type depending on the type of key entities

For the above two kinds of “smartness”, the user directly built a constraint by selecting
components or by selecting key entities. Then, the new specified constraint needs to be saved
in a constraint list of the relation. How to associate the new generated constraint to a relation
is introduced in the following subsection.

From the two key entities of the new created constraint, two related components where
these key entities located should be identified first, then from these components, the relation to
associate should be found. If such a relation does not already exist, then the system will not add
this constraint. The approach of finding the associated relation can be detailed as follows:

 Step 1: Identification of the component list for each key entity: list 1 and list 2. Most of
the time one key entity is related to only one component (direct parametric key entities).
However, parametric key entities can be created by building relations between other key
entities which could possibly belong to different components, therefore more than one
component might be related to an indirect parametric key entity. A geometric key entity
is also related to a component, while there might be no geometric or structural represen-
tation of this component (For e.g. a text).

 Step 2: For each existing relation linking two element A and B, find in A and B if they
separately contain all the components in list 1 and list 2 (e.g. components in list 1 are all
found in A and components in list 2 are all found in B, or vice versa).

121

 Step 3: If such a relation is found, then associate this constraint with this relation.

For example in Figure 5.5, if a constraint is built between a key entity on “Leg 1” and a
key entity on “Desktop”, then relation 1 will be found and be associated with this new constraint.
To summarize, the “smartness” is outlined in the following Figure 5.7.

User selects two targets where
to build constraint. They could
be key entities or components.

Component(s)
selected ?

User specifies the type of
constraint to be created

Yes

Use smart system to find the
temporary key entity(ies)
for selected component(s)

Smart system decides a pre-
defined constraint to be

created
No

Use smart system to find the
corresponding relation

If found ?

Create a constraint

Put the new constraint in
the constraint list of the
corresponding relation

Yes

No

Figure 5.7 Process for instantiating a constraint

5.3.3 SPECIFICATION OF KEY ENTITIES

The “smartness” of the system consists in the capability of specifying the temporary key
entity for the user. The user is free anyhow to explicitly specify a key entity by following the
process presented in Figure 5.8. The user can use existing geometric or structural representa-
tions to directly specify a direct parametric key entity, or create a new one, which is indirectly
associated to the geometric or structural representation (indirect parametric key entity). The
process is quite simple for creating new indirect parametric key entities (Figure 5.8). First, the
user selects the existing key entities. When finishing the selection, different types of indirect

122

parametric key entities will be created. Then the user can indicate other parameters of the new
key entity if needed.

User selects
existing key

entities.

Create an indirect
parametric key entity

depending on different
selections

User indicates
other parameters of
the new key entity

Set the parameters of
the new key entity

Figure 5.8 Process for create indirect parametric key entity

In this section, some predefined constraints and key entities have been proposed to help
users to quickly specify constraints between different elements. When the key entities and con-
straints have been specified, the crucial issue is to verify if all the constraints can be satisfied.
The solution adopted is described in the next section.

5.4 CONSTRAINT VERIFICATION

As presented in Subsection 4.4.3, constraints are used to specify the related location be-
tween key entities. To verify if all the constraints will be satisfied corresponds to solving a
Constraint Satisfaction Problem (CSP). During the modeling process with GSDM, the CSP
solving starts automatically as the constraints is fully specified.

5.4.1 INTRODUCTION TO NUMERICAL OPTIMIZATION

Numerical optimization is a way to solve the CSP, which consists of:

• A set of n variables 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} whose values are to be found;
• For each variable 𝑥𝑥𝑖𝑖, a finite set 𝐷𝐷𝑖𝑖 of possible values (its domain);
• A set of constraints 𝐶𝐶 = {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} limiting the values that variables can take.

Numerical optimization is used to solve the problem of minimizing or maximizing a func-
tion 𝑓𝑓(𝑥𝑥) subject to constraints Φ(𝑥𝑥). Here 𝑓𝑓:ℝ𝑛𝑛 → ℝ is called the objective function and

123

Φ(𝑥𝑥) is a Boolean-valued formula defined on top of the set of constraints 𝐶𝐶.

Global Optimization

A point 𝜇𝜇 ∈ ℝ𝑛𝑛 is said to be a global minimum of 𝑓𝑓 subject to constraints Φ if 𝜇𝜇 sat-
isfies the constraints and for any point 𝑣𝑣 that satisfies the constraints, 𝑓𝑓(𝜇𝜇) ≤ 𝑓𝑓(𝑣𝑣).

A value 𝑎𝑎 ∈ ℝ is said to be the global minimum value of 𝑓𝑓 subject to constraints Φ if
for any point 𝑣𝑣 satisfies the constraints, ≤ 𝑓𝑓(𝑣𝑣) .

The global minimum value 𝑎𝑎 exists for any 𝑓𝑓 and Φ. The global minimum value 𝑎𝑎 is
attained if there is a point 𝜇𝜇 such that Φ(𝑥𝑥) is true and 𝑓𝑓(𝜇𝜇) == 𝑎𝑎. Such a point 𝜇𝜇 is nec-
essarily a global minimum.

If 𝑓𝑓 is a continuous function and the set of points satisfying the constraints Φ is compact
(closed and bounded) and nonempty, then a global minimum exists. Otherwise, a global mini-
mum may or may not exist.

Local Optimization

A point 𝜇𝜇 ∈ ℝ𝑛𝑛 is said to be a local minimum of 𝑓𝑓 subject to constraints Φ if 𝜇𝜇 satis-
fies the constraints and there exists another point 𝑣𝑣 that satisfies the constraints and such
that 𝑓𝑓(𝑣𝑣) ≤ 𝑓𝑓(𝜇𝜇).

A global minimum is always also a local minimum, while the opposite is not guaranteed.
The methods used to solve local and global optimization problems depend on specific

problem types. Optimization problems can be categorized according to several criteria. De-
pending on the type of functions involved there are linear and nonlinear (polynomial, algebraic,
transcendental, etc.) optimization problems. Additionally, optimization algorithms can be di-
vided into numeric and symbolic (exact) algorithms.

Several numeric algorithms can be used to solve the optimization problem. For the linear
problem, simplex algorithms, revised simplex algorithms, interior point algorithms etc. can be
used. For nonlinear local optimization, the interior point algorithm can also be used. For non-
linear global optimization, Nelder–Mead, differential evolution, simulated annealing and ran-
dom search can be used. Therefore, to solve the CSP, first we need to check to which type our
CSP belongs.

In our case, the variables are the position, orientation and scaling of each component’s
local reference frame in 3D space. Therefore, for each component there are nine different vari-
ables: the 3D positions, 3D orientations and 3D scales. The variables of each component could
be described mathematically as below.

Rf𝑖𝑖 = (𝐏𝐏i,𝐑𝐑i, 𝐒𝐒i) = ��

xi
yi
zi
1

� , �

αi
βi
γi
1

� , �

ai
bi
ci
1

��

124

The domain for each variable is different. The positions and scales are real values and
the orientations should be from - 𝜋𝜋 to 𝜋𝜋 degrees:

𝐷𝐷𝑖𝑖 = (ℝ4, [−𝜋𝜋,𝜋𝜋]4,ℝ4)
The constraints, as presented in Subsection 4.4.3, are the equations built on different var-

iables. There are three types of basic functions used to specify the equations including the dif-
ference function 𝑓𝑓0, the distance function 𝑓𝑓1 and the angles 𝑓𝑓2.

The goal of numerical optimization is to find the best location for each component after
constraining. To use the constraint optimization algorithms for solving our CSP, these three
issues need to be considered first:

 All variables of equations should be in the same measure space.
As presented in Subsection 4.4.1, all key entities are transformed into the global

space, which makes it possible to apply the numerical optimization algorithms.
 Undefined objective function

To find an optimized solution, a meaningful objective function needs to be defined.

5.4.2 SPECIFICATION OF THE OBJECTIVE FUNCTION

In general, there are three types of solutions for a CSP:

 A single solution;
 An infinite set of solutions;
 An optimal solution according to an objective function defined in terms of some

or all of the variables.

The numerical optimization will give the third type of solution, which needs to specify an
objective function. This choice has been made to be able to access more meaningful solutions
compared to traditional CAD systems. As in CAD system if multiple solutions are found, there
is only one that will be returned, while this one is meaningless compared with other solutions,
possibly just the first solution the system has found.

For choosing the objective function to be used, we considered real life phenomena behav-
iors. In real life, energy input is required to relocate an object. For example, to move an object
from point A to point B, it is always desirable to spend less energy to realize the desired action.
In physics, the energy or work (w) spent to move, rotate or deform an object can be described
as below:

125

POSITIONING

Figure 5.9 Positioning energy

For the simplest situation, as presented in Figure 5.9, an object is moved on a floor for a
distance of “L” along the same direction as a pushing force “F” with a constant speed “v”.
Considering “f” is the coefficient of the resistance between the floor and this object, “N” is the
supporting force from the floor (where, N = mg). “F′” is the friction from the floor, the work
spent for this positioning can be expressed as:

wp = F ∙ L = F′ ∙ L = f ∙ m ∙ g ∙ L = f ∙ g ∙ ρ ∙ V ∙ L = µ𝑝𝑝(V) ∙ L
µ𝑝𝑝(V) = f ∙ g ∙ ρ ∙ V

Where g is the acceleration of gravity, m is the mass of this object, ρ is the density of
the object, V is the volume of the object.

If we suppose that each component has the same material and in the same environment (on
the same floor), then µ𝑝𝑝(V) can be considered as a factor of positioning energy which only
depends on the volume of this component.

ROTATION

Figure 5.10 Rotation energy (top view)

Similarly, the rotation of an object, as presented in Figure 5.10, can be described as rotat-
ing an object around a point “O” with a force “F” and a constant speed. “F′” is the friction from

126

the floor, the work used for this rotation can be expressed then as:
𝑤𝑤𝑟𝑟 = 𝐹𝐹′ ∙ 𝑟𝑟 ∙ 𝜃𝜃 = f ∙ m ∙ g ∙ r ∙ θ = f ∙ g ∙ ρ ∙ V ∙ r ∙ θ = µ𝑟𝑟(V) ∙ θ

Where, r is the radius for the rotated arc (the distance between the mass center and the
rotation center) and 𝜃𝜃 is the rotated angle, g is the acceleration of gravity, m is the mass of
this object, ρ is the density of the object, V is the volume of the object, “f” is the coefficient
of the resistance between the floor and this object.

If we consider that each component has the same material, in the same environment - a
rotation with the same rotation radius- then µ𝑟𝑟(V) can be considered as a factor of rotation
energy which only depends on the volume of this component.

SCALING

Figure 5.11 Scaling energy

As the scale property of a component is also considered as a variable for CSP solving,
therefore each component can be considered as a spring (Figure 5.11). According to Hooke’s
law, the scaling energy can be expressed as:

𝑤𝑤𝑠𝑠 =
1
2
∙ 𝑘𝑘 ∙ 𝑑𝑑2 =

1
2

k(𝐿𝐿1 − 𝐿𝐿0)2 =
1
2

k(𝑙𝑙 ∙ 𝑠𝑠1 − 𝑙𝑙 ∙ 𝑠𝑠0)2 =
1
2

k ∙ 𝑙𝑙2 ∙ ∆𝑠𝑠2

≈
1
2

k ∙ 𝑉𝑉 ∙ ∆𝑠𝑠2 = µ𝑠𝑠(V) ∙ ∆𝑠𝑠2

Where “F” is the force used to scale the spring, “k” is the coefficient (Young’s modules)
of the elastic deformation. “𝑑𝑑” is the scaled distance along the scaling direction. “l” is the initial
length of this object along the direction of “F”. “𝑠𝑠0” and “𝑠𝑠1” are the scale factors before and
after scaling.

If we consider 𝑙𝑙2 is approximately equal to the volume (V) of the object, then µ𝑠𝑠(V) can
be considered as a factor of scaling energy, which only depends on the volume of this compo-
nent.

As a result of these energies, an objective function has been suggested, which reports the
energy used to realize the relocation of components after constraint satisfaction.

The objective function is defined as below:
𝐹𝐹 = 𝑊𝑊𝑝𝑝 + 𝑊𝑊𝑟𝑟 + 𝑊𝑊𝑠𝑠

Where,

𝑊𝑊𝑝𝑝 = � 𝜇𝜇𝜇𝜇𝑖𝑖�𝐏𝐏ik+1 − 𝐏𝐏ik�
𝑖𝑖=𝑛𝑛

𝑖𝑖=1

𝑊𝑊𝑟𝑟 = � 𝜇𝜇𝜇𝜇𝑖𝑖�𝐑𝐑i
k+1 − 𝐑𝐑i

k�
𝑖𝑖=𝑛𝑛

𝑖𝑖=1

127

𝑊𝑊𝑠𝑠 = � 𝜇𝜇𝜇𝜇𝑖𝑖�𝐒𝐒ik+1 − 𝐒𝐒ik�
2𝑖𝑖=𝑛𝑛

𝑖𝑖=1

𝑛𝑛 ∈ N is the number of components

𝑊𝑊𝑝𝑝 is the positioning energy of all the components from the previous position 𝐏𝐏ik to the

final position 𝐏𝐏ik+1 after constraining. The longer the distance between the previous and the
final positions of this component, the larger the positioning energy. 𝜇𝜇𝜇𝜇𝑖𝑖 is the positioning en-
ergy factor for each component. Inspired from the physical energy of movement presented pre-
viously, by default it is equal to the volume of the OBB of the component (for an image, instead
of using volume, surface is considered), which means that if the component is bigger, then more
energy is needed to reposition it. The user can specify a desired value of this factor for each
component.

𝑊𝑊𝑟𝑟 is the orientation energy of all the components from the previous orientation 𝐑𝐑i
k to

the final one 𝐑𝐑i
k+1. Similar to the positioning energy, the larger the angle between the two

orientations is, the more energy is needed. 𝜇𝜇𝜇𝜇𝑖𝑖 is the orientation factor for each component
which also equals the volume of the OBB of the component (surface if it is an image), and can
also be modified.

𝑊𝑊𝑠𝑠 is the scaling energy of all the components from the previous scale 𝐒𝐒ik to the final
scale 𝐒𝐒ik+1 of the component. 𝜇𝜇𝜇𝜇𝑖𝑖 is the scale factor which is related to the the volume of the
OBB of the component (surface if it is an image).

Our objective is to minimize the sum of these three energies. If we do not want one spec-
ified component 𝑖𝑖 to change its position too much, we can set its 𝜇𝜇𝑝𝑝𝑖𝑖 as a very large value so
that this component will move a small distance to limit the required positioning energy. In this
sense, we build a link between the relocations of each component with a semantic meaning of
the intention for the relocation. In other words, our CSP is more meaningful compared with
typical CAD CSP. We can use different factors for different components; we can also use a
global factor for all components. The energy factors actually limit the flexibilities of positioning,
rotating and scaling each component.

Different algorithms can be used to solve this CSP as presented briefly in Subsection 5.4.1.
In our case, the constraint equations are mostly nonlinear (except for coincidence) and the ob-
jective function is also nonlinear. As the development of the algorithm for CSP solving is not
the main objective of this thesis, it was decided to use existing tools to solve the CSP. The
chosen tool and some related applications will be presented in the next chapter.

To summarize, the whole process of CSP specification can be represented as in Figure
5.12. If the alignment of a component’s transform is not set to “Free” as introduced in Chapter
4, then the rotation of this component will be fixed to a predefined value. They are not going to
be considered as unknowns for the CSP solving process. It saves a lot of time.

128

Constrain key entities
(Smart Constraining

system)

Identify unknowns

Formulate equations

Formulate objective
function

Send unknowns, equations and
objective function to CSP solver

Get results

Update the location
of each component

Figure 5.12 Process for CSP solving

5.5 CONCLUSION AND REMARKS

In this chapter, the top-down user-oriented and GSDM-based modeling process have been
presented. All the processes designed during this PhD thesis and presented in this chapter aim
at helping a non-expert user to quickly describe a conceptual model. Starting from the instanti-
ation of the conceptual level, the user can assign heterogeneous data to the indicated constitu-
ents. With the conceptual level, the user can get a fast feedback of what to use and how hetero-
geneous input components are linked to each other to form an object. To complete the arrange-
ment specification of conceptual model constituents, some semi-automatically defined key en-
tities and constraints are proposed to help the user. Once the constraints have been specified,
the CSP solving process starts to find an optimized solution to satisfy all the constraints. This
process not only helps the user to set the related locations of each component, it also ensures
that the information stored in the GSDM is correct, so that it can be used for future design
phases.

Compared to traditional CAD modeling processes, the proposed approach is more mean-
ingful and the scale factors are also considered as unknown values to be constrained, thus al-
lowing an automatic adaptation of the component size according to the specified constraints.

The process of modeling with GSDM presented in this chapter has been implemented in a
demonstrator, with a user-friendly interface, which will be described in the next chapter.

129

.
IMPLEMENTATION AND RESULTS

CHAPTER OVERVIEW

HIS CHAPTER IS organized in four sections which aim at introducing the adopted im-
plementation environment, some tests related to CSP solving, the implemented mod-

elling framework and the validation of the proposed approach through different examples.
First of all, in Section 6.1, the implementation needs and requirements are presented

together with the adopted software and hardware environments. Then, an overview of the
whole implemented framework is proposed in Section 6.2. Section 6.3 depicts three ex-
amples created using the proposed implemented approach. Finally, some remarks and con-
clusions about the implementation are discussed in Section 6.4.

T

I've always believed that if you put in the work, the results will
come.

Michael Jordan

130

6.1 THE ADOPTED DEVELOPMENT ENVIRONMENT

To better demonstrate the capabilities and features of the modelling approach based on the
GSDM, it is important to select the most appropriate development environment, i.e. both soft-
ware and hardware. To take into account all the features and capabilities presented in Chapters
4 and 5, the implementation should enable the visualization, some user interactions as well as
the creation and manipulation of the GSDM. The following Table 6.1 summarizes the require-
ments and facilities that the development environment has to possess.

Operational requirements
Functional require-

ments of the environ-
ment

Visualization
of GSDM

Visualization of the eight no-
tions of GSDM

3D/2D rendering

Visualization of the Graph view 2D rendering
Visualization of the Constraint

tree
2D rendering

Modeling of
GSDM

Import external heterogeneous
data

IO (Input and Output)
operation

3D rendering
2D rendering

Mouse and Keyboard
interface

Touchable Interface

Manipulation of Components
and Groups

Building Relation
Manipulation of Key Entities

and Constraints

CSP solving
Mathematical

calculation engine

Operation related to Relation
Capacity of access-

ing/modifying the core
level information

Controllers
(graphic user

interface)

Menus, buttons and other con-
trollers

2D Rendering
Mouse and Keyboard

interface
Touchable Interface

Table 6.1 The operational and functional requirements for the development environment

Based on the MVC architectural pattern52, the implementation requirements are structured

52 Model, View and Control.
 About the implementation architecture: http://martinfowler.com/eaaDev/uiArchs.html

131

into three modules: modeling of the GSDM, visualization of the GSDM and controllers for the
Graphic User Interface (GUI). GSDM modeling deals with the data structures of the different
notions of GSDM, together with the initialization (e.g. of a component), manipulation (e.g. ro-
tate all components inside a group), modification (e.g. change the parameters of a constraint)
and CPS solving of the GSDM. GSDM visualization is necessary for the representation of the
GSDM (e.g. how to represent the geometry and the structure, how to show the group, etc.). GUI
controllers are mainly for developing easy and friendly interfaces for non-expert users. The
three modules work together to create an object GSDM representation from heterogeneous data
gathered together by a non-expert user. With these requirements, the environment should pro-
vide Input and Output facilities, 2D/3D rendering, mouse/keyboard/touchable interaction,
mathematical calculation and access to/modification of the core level information.

In Section 2.5, the existing environments for the development of VE have been listed. As
a result, the Windows 7 operating system has been chosen, with Unity 3D installed to realize
IO operations, 2D/3D rendering, mouse/keyboard/touchable interactions and access/modifica-
tion of the core level information. A plug-in from Mathematica 10.0.1 has also been chosen to
perform the CSP solving. Regarding hardware, a PC (with mouse and keyboard) with a multi-
touch screen has been used. The selected development environment is outlined in Table 6.2.

Capacities of the environment
Chosen soft-

ware environment

Chosen hard-
ware environment

IO operation

Unity 3D v4
(C#)

Windows 7

2D Rendering

PC (with
mouse and key-

board)
Multi-touch
screen

3D Rendering

Mouse/keyboard/touchable interac-
tion

Accessing/Modifying the core level
information

Mathematical calculation
Mathematica

9.0.1.0 .NET/Link

Table 6.2 Adopted development environment

As shown in Chapter 3, Unity 3D is a powerful tool to develop games or VR appli-
cations. The reasons why it has been chosen for this work are summarized below:

 Unity 3D has its own high level APIs (Application Programming Interfaces). These
APIs have a set of high-level classes and functions that allow a developer to create 2D
and 3D graphics without considering the low-level rendering process (such as the
structure of a mesh or dealing with the graphic card).

132

 If desired, the developer can also access the low level information such as the “core
level” information of the GSDM through these APIs. For example, he/she can get the
coordinates of each vertex of a mesh and modify them.

 Unity 3D also has a GUI system helping the developer to create 2D and 3D menus,
buttons and other controllers. This GUI system works both for the mouse/keyboard
mode and the multi-touch mode.

 Moreover, other libraries can also be plugged into these APIs to call external functions
such as the Mathematica .NET/Link that is used to solve the CSP.

For the mathematical calculation engine, the Mathematica .NET/Link has been chosen.
Mathematica is a computational software which includes a whole package for constraint opti-
mization. It works for both local and global optimizations, as well as for linear and nonlinear
optimizations. Mathematica .NET/Link is a product that integrates the Mathematica engine and
Microsoft .NET platform. It lets us call .NET from the Mathematica language in a completely
transparent way, it also allows us to use and control the Mathematica kernel from a .NET pro-
gram. In our case, it is used to call Mathematica kernel for solving the CSP from the scripts
developed in Unity 3D. With this external library, it is only necessary to formalize the CSP in
the Mathematica language then send it to the Mathematica kernel. Then the CSP will be solved
without entering the details of each algorithm. This external library is not only interesting for
solving CSP, but it also includes many other interesting packages. For sure, future developments
of GSDM will require solving other kinds of mathematical problems that could make use of
other packages included in this library (for example some operations related to the relation).

6.2 OVERVIEW OF THE IMPLEMENTATION

In this section, we provide an overview of the whole implemented framework for the
GSDM modeling. The input of this implemented framework is a set of 2D images or 3D meshes
together with their structural information. The output is a conceptual model defined by the
GSDM.

6.2.1 OVERVIEW OF THE USER INTERFACE

The user interface of the implemented tool has mainly two areas consisting of a 3D viewer
and a control panel as shown in Figure 6.1. It is designed to have as few buttons as possible
and be “easy-to-use”, with the objective of being a tool for non-expert users.

The 3D viewer is the main workspace to select, manipulate and modify the different no-
tions of the GSDM such as component, group, relation, etc. In the 3D viewer, there is a gray
3D plane which is fixed with the global reference frame that cannot be moved, rotated nor
scaled.

133

Figure 6.1 Overview of the user interface

Figure 6.2 Control panel and two work modes. (a) Free mode and (b) Constraint mode

The control panel includes the main controllers which execute the complex functions of
the GSDM. The user can choose between two work modes. One is called “Free mode”, which
is conceived for the manipulation of the conceptual level of the GSDM (as presented in Figure
6.2.a). The other is called “Constraint mode”, which is designed for working on the intermedi-
ate level (as presented in Figure 6.2.b). There is a mode switch button to change from one mode
to another. In the bottom left hand corner, there are three buttons for creating a new file (N),
opening a file (O) or saving a current file (S). The show graph view button is a check box for
showing a graph view of the GSDM.

In the “Free mode” (see Figure 6.2.a), there is a resource pool below the mode switch

134

button represented by a scroll area showing all the heterogeneous inputs that have been im-
ported into the workspace. The user can select and use “drag and drop” to add an input from
the resource pool to the 3D scene. On the top right of the resource pool, there are two buttons
for adding or deleting a resource. There is also an update button (see Figure 6.2) for manually
calling the CSP solver. When clicking on this green dot, the mathematical engine is called to
solve the CSP of the GSDM. The “Group button” and “Relation button” are for creating groups
and building relations.

For the “Constraint mode” (see Figure 6.2.b), there are three buttons for adding new indi-
rect parametric key entities. There is another button called “Constraint tree” to visualize a 2D
tree structure of the relations and constraints. The last button on the right with the label “P” is
for configuring the global energy parameters of the CSP solving.

6.2.2 VISUALIZATION OF HETEROGENEOUS DATA

One important objective in using the GSDM is to reuse existing heterogeneous data. There-
fore, it is important to be able to visualize those heterogeneous data. This thesis mainly consid-
ers three types of these data: 3D meshes, 2D images and texts. It was decided to visualize them
all together in a 3D space so as to be able to specify directly the relations between them.

• Solution for 3D Meshes: Unity 3D native 3D rendering system.

For 3D mesh data, we are using the Unity 3D native rendering system. Unity 3D can im-
port a 3D mesh from the most popular applications such as Maya, 3ds Max, Modo, Cinema 4D,
Blender or Autodesk FBX. A list of supported file formats is shown on the web site of Unity
3D53. The 3D mesh is visualized in a 3D scene (e.g. in Figure 6.3). As mentioned in Chapter 6,
if there is the segmentation information of the input data, then it can help the user to choose the
different parts that he wants to use. This information also needs to be visualized. This imple-
mentation presents the different segmented parts in different colors.

Figure 6.3 Visualization of a segmented 3D mesh

53 http://unity3d.com/unity/workflow/asset-workflow

135

 Solution for 2D images: Contour representation in a mesh structure and texture
mapping.

For a 2D image, it has been decided to use the contour information and then generate a
mesh from it (using a triangulation algorithm). Here it is supposed that the input data already
contain this information. This can be implemented as a plugin in future version. Therefore, a
2D image is represented by a planar mesh that can be visualized by the Unity 3D native render-
ing system. This planar mesh is located in a 3D scene. It can be moved, rotated or scaled in all
three dimensions (e.g. in Figure 6.4). If there is the segmentation information of the image, the
different parts will be represented by different meshes easy to choose for the user. The planar
mesh is then textured using information included in the 2D image.

Figure 6.4 Visualization of a 2D image: the right picture (b) shows the head bones of a

deer skull from the left picture (a) represented by a planar mesh with texture in a 3D space

 Solution for texts: Texture with alpha channel of a rectangular mesh.

For textual data, we decided to render them with a texture applied on a rectangular mesh.
Each letter of the text is rendered as one rectangle. All letters are laid on the same plane as the
word “Spout” represented in Figure 6.5. Text is also represented in a 3D space so that 3D
transformations can be applied.

Figure 6.5 Visualization of textual information

136

Finally, although heterogeneous data have different data structures, they are all restruc-
tured into a mesh in the same 3D scene of Unity3D. Those transformed structures are only used
for the visualization of the GSDM. Of course, their native structures do not change when trans-
forming them into a visualized mesh. But, this makes it easier for the user to visualize and then
integrate different data in the same environment. In our implementation, the link between the
representation of the heterogeneous data and the original data is also kept. Modifications of
representation in Unity 3D do not affect the original data but are saved in the GSDM data struc-
ture.

 Solution for the graph-based structure: wireframe.

A wireframe is used to represent the graph-based structure of a component such as a Reeb
graph, a skeleton, etc. The following Figure 6.6 shows an example of a graph-based structure
of a component. In this example, the pink dots represent the nodes of this structure and the pink
segments between two dots represent the edges of this structure. At a later stage, when specify-
ing the parametric key entities, the user can choose the nodes and the edges of the structure.

Figure 6.6 Visualization of the structure of a component

6.2.3 MANIPULATION OF A COMPONENT (OR GROUP)

Today, due to the development of VE technologies, it is not a problem anymore to manip-
ulate a 3D object in a 3D scene. There are several operations that can be classified in three types:
positioning, rotating and scaling. Besides manipulating a 3D object, the viewer allows one to
visualize an object or a scene from different points of view. In today’s professional 3D design
software, positioning, rotation and scaling are usually realized by different ways of interaction.

137

Figure 6.7 Manipulation modes in Unity 3D

One solution is to set one or multiple buttons to change between the three types of manip-
ulation. As an example in Unity 3D54 (see Figure 6.7), on top left, there are three buttons to
select the type of manipulation the user wants to do and at the center of the selected object there
is a handler with three arrows for the user to choose. When selecting one arrow and dragging
the mouse, the user manipulates the object in the direction specified by the chosen arrow. An-
other solution is to specify the three different types by different ways of interaction, without
using buttons to change between the three types. This is usually used to handle the camera of
the viewer. For example in 3ds Max55, to reposition the camera, the user needs to press the
wheel of the mouse and drag it. To rotate the camera, the user needs to hold the “Alt” key on
the keyboard and press the wheel of the mouse and drag it. To zoom the camera, the user has to
scroll the wheel of the mouse. These two solutions show that handling an object or the viewer
in a 3D scene is not very friendly in professional 3D design software in the sense that the user
needs to change to different manipulation types or interaction modes to realize a sequence of
actions so as to finally relocate an object in a desired location. This is because each type of
manipulation is in 3D, while the mouse is a 2D input. Besides, these two solutions are designed
for a professional user, so the manipulation needs to be accurate. The manipulation methods
used in professional software do not seem suitable for a non-expert user. For example, the three
arrows shown in Figure 6.7 may confuse a non-expert user.

Therefore, we defined a new way to manipulate objects and the viewer in a 3D scene,
using only drag and drop. This “drag and drop” interaction mode can be realized by both a
mouse and a touch screen so as so be suitable for a non-expert user. The example of Figure 6.8
explains this new method. First, when an element is selected, a round spot appears in the center

54 Manipulation of object in Unity 3D: http://docs.unity3d.com/Manual/PositioningGameObjects.html
55 Manipulation of Scene in 3ds Max: http://help.autodesk.com/view/3DSMAX/2015/ENU/?guid=GUID-

D65DE5FD-F859-4F66-9E14-F9A5C1016411

http://docs.unity3d.com/Manual/PositioningGameObjects.html
http://help.autodesk.com/view/3DSMAX/2015/ENU/?guid=GUID-D65DE5FD-F859-4F66-9E14-F9A5C1016411
http://help.autodesk.com/view/3DSMAX/2015/ENU/?guid=GUID-D65DE5FD-F859-4F66-9E14-F9A5C1016411

138

of this selected element with an index number in the center. This round spot is called the selec-
tion handler. It is divided into three zones and each of them is a sector of 120 degrees. When
the mouse moves over one of the three zones, it is lit with a specified color and a letter in the
middle of this spot: orange and the letter “M” is for moving/positioning; blue and the letter “R”
is for rotating and purple and “S” is for scaling. At that moment, if the user presses the selection
handler (or touches the screen) to realize a drag action, then different types of operations will
be carried out, depending on which zone is pressed. The dragged direction and distance will be
used to calculate the values of how far it (the handler) has to be moved, rotated or scaled. When
the user drops the handler, this action will be finished. A window (called “window of Selected
Object”) in the top right hand corner of the 3D viewer shows the exact values of the position,
rotation, scale and the semantic information about the selected element.

Figure 6.8 Manipulation of a Component (or Group): (a): when a Component is selected.

(b), (c), (d): when the mouse moves over different zones of the selection handle.

 Positioning: Press move zone then drag mouse

For positioning an element, a smart positioning system has been designed. As mentioned
at the beginning of this section with the example of Figure 6.7, repositioning a 3D object in
professional software requires the user to specify in which direction or on which plane the po-
sitioning is applied. This is because the dimension of the action that the user can apply to a 3D
object (3D as position in three directions) and the dimension of the interaction (2D as “drag and
drop” on a screen is 2D) differ. In other words, no matter what kind of 3D manipulation the
user is applying, they are all in fact 2D manipulations by the handler on the 2D screen with a
2D input such as a mouse or a touch screen. This 2D input can only offer two variables (the

139

vertical and horizontal position of the handler), whereas the manipulation of a 3D object in a
3D scene requires three variables. Therefore, in Unity 3D or in other 3D modeling software,
the user needs to specify in which direction (1D) or on which plane (2D) this repositioning is
applied. The repositioning along one direction requires only one variable and the positioning
on a plane requires two variables, which it is possible to get by means of 2D input. It is the
same situation for our implementation as we decided to use mouse and touch screen as input
devices. Therefore, it is also essential to specify in which direction or on which plane the repo-
sitioning has been applied.

In our implementation, this decision is automatically made by the system. From the users’
point of view, if they want to reposition an object on a plane, naturally, they would prefer to
turn the viewer to face this plane so that the movement of the object can be clearly seen. Based
on this consideration, we exploit the direction corresponding to the one of the camera view to
apply for the repositioning. For example, if the user wants to reposition an object on a plane
(the orange plane in Figure 6.9.a), which is parallel to the global reference plane (the gray plane
as presented in Figure 6.9), then it is better to have a top view. Thus, our implementation will
automatically specify a plane for the user to position the selected object.

Figure 6.9 Positioning of a component. (a): positioning on a plane parallel to the camera,
in a top view. (b): positioning on a perpendicular plane in a side view

There are two possibilities for automatically specifying planes. One is parallel to the global
reference plane crossing the pivot point of the selected element. The other one is perpendicular
to the global reference plane crossing the pivot point of the selected element and facing the user.
The specified plane will be highlighted by an orange and transparent color as in Figure 6.9.
When the user rotates the 3D viewer close to a top view of the global reference plane (Figure
6.9.a) and he/she moves the mouse pointer over the “position” zone of the selection handler,
the specified positioning plane will be the one which is parallel to the global reference plane.
When the viewer comes close to the side view of the global reference plane (Figure 6.9.b), the
specified positioning plane will be perpendicular to the global reference plane facing the user.
Deciding whether the camera will give a top view or a side view depends on the angle between
the normal position of the global reference plane and the direction of the viewer’s camera. When

140

the angle is between 60 and 120 degrees it is considered as a side view, otherwise it is a top
view. The scheme in Figure 6.10 shows this angle. The blue plane represents the 3D viewer of
the camera which is also what the user sees on the screen. The two red arrows represent the
direction of the viewer’s camera and the direction of the global reference plane.

Figure 6.10 The angle between the direction of the viewer's camera and the direction of

the global reference plane

 Rotation: Press rotate zone then drag mouse

The rotations are designed to be always along a vertical axis and a horizontal axis around
the pivot point of the selected element depending on the dragging movement. A horizontal drag-
ging movement will affect the rotation along the vertical axis and a vertical dragging movement
will affect the rotation along the horizontal axis. An example of the two rotation axes is pre-
sented in Figure 6.11. The “horizontal” and “vertical” directions are defined in the viewer’s
space.

Figure 6.11 Rotation axes

 Scaling: Press scale zone then drag mouse

The scaling action will scale the selected element from its pivot in all three directions or

141

only in selected directions so as to generate heterogeneous scaling effects. The scaling value
depends on the distance of the dragging movement from the dragging start point.

All the three types of manipulation are carried out by dragging the selection handler. In
this way, the user does not need to change interaction mode or click other buttons. However, all
these manipulations are applied from a specific point of view of the 3D scene. To change the
point of view, we also need a manipulation of the viewer (in other words, the viewer’s camera)
to implement a manipulation in the third dimension. The viewer is always focusing on the center
of the 3D scene. There is no scaling action for the camera, but only positioning and rotating.
When the user starts a drag and drop action without pressing the selection handler, this will
move the camera. The dragging action rotates the camera along the vertical and horizontal axes
depending on the dragging movement, similar to the rotation of a component. The scroll of the
mouse wheel (zoom gesture for the touch mode, e.g. two open fingers) will reposition the cam-
era forward or backward to create the zoom effect of the viewer.

To simplify the user’s interaction, the user can also align a component to face eight global
directions including (forward, backward, left, right, top and down). When a component is se-
lected in “Free” mode then, a click on the corresponding button in the alignment tool bar (Fig-
ure 6.12) will set the selected component in the corresponding direction. If a component is
aligned in a global direction, then its rotation is fixed. They (its rotation) are not going to be
considered as unknown values for the CSP solving processing, which would increase the com-
putation time for CSP solving.

Figure 6.12 Alignment tool bar

To conclude, the manipulations of an element and the viewer are realized by drag and drop
interaction thus inaugurating a new way to interact with the 3D object in a 3D viewer. This way
of doing is much more adapted to non-expert users than the traditional combinations of key-
board buttons and mouse buttons. If the dragged target is the selection handler, then the manip-
ulation will be applied to the selected element, otherwise the manipulation is left to the viewer.
To zoom the camera, the user needs to scroll the wheel of the mouse or apply a zoom gesture

142

for the touch mode.

6.2.4 VISUALIZATION OF RELATION AND CONSTRAINT

Relations and constraints have to be visualized in a way that allows the user to select and
modify them. That’s the reason why a specific tree has been implemented to display the relevant
hierarchy, modify and delete a constraint or a relation. When the constraint tree button in the
constraint mode is clicked, the window of Figure 6.13 is being displayed.

Figure 6.13 Relation and Constraint list

This list contains all the relations of the GSDM. Under each Relation we can see the two
associated elements (component or group) to which this Relation is applied and a list of con-
straints. Under each constraint, there are two key entities if they are specified by the user, oth-
erwise they are marked as “unspecified” and will automatically be determined by the system as
described in Subsection 5.3.1. When choosing a constraint or relation in this list, two buttons
(“M” and “-”) appear on the right side of the selected row, to modify or delete the chosen con-
straint or relation.

6.2.5 SYMBOLIC REPRESENTATION AND GRAPH VIEW OF GSDM

As presented in Section 6.2.2, heterogeneous data can be represented in the implemented
3D scene. The geometry, structure, component and group can also be presented in the 3D scene.
However, some other notions of the GSDM do not have an implicit geometric representation,
such as the relation and constraint. Basically, the types of connection between components or

143

groups cannot be directly displayed in the 3D viewer. Although Chapter 4 presents a list show-
ing the existing relations and constraints of the GSDM, it is more comfortable to also have a
representation of them in the 3D viewer. Therefore, we have implemented a dynamic symbolic
graph visualization, which overlaps the related 3D objects in the 3D scene to show the different
notions of the GSDM and the links between them.

This symbolic graph view is a 2D representation of the GSDM overlapping the 3D viewer.
Before showing an example of the symbolic view, a list of symbolic representations of the dif-
ferent notions of the GSDM is presented in the following Table 6.3. The symbolic representa-
tions can also be used as a selection handler for group and component as in the examples pre-
sented in Subsection 6.2.3.

Notion of
GSDM

Symbolic rep-
resentation

Description

Component
A green dot with a black index number at the center

Group

A blue circle/ellipse attached to a blue dot. A black
index number is set at the center of the spot. The
grouped elements are inside the domain defined.

Relation

An orange segment with an orange rectangle attached
to the middle and a black index number located at the
center of the rectangle. The two elements in this Rela-
tion are located at the two ends of this segment.

Constraint

A purple line with one or multiple purple rectangles
attached to it. Each rectangle represents a Constraint
and a white index number is set at the center of the
rectangle.

Key Entity

Dark blue dot for key point or oriented point. Dark lien
segment for key line.

Semantics

It is used to represent the color of the button to open
Semantics and to present different classes in a Class
map.

Structure

Pink dot circled in black for a node of the structure and
pink line for an edge of the structure

Geom-
etry

This color is used to represent a wireframe if it is used
to show a contour

Table 6.3 Specification of symbolic representations for displaying notions of the GSDM

144

With these symbols, a GSDM could be represented by a symbolic graph overlapping the
3D viewer, as in the example presented in Figure 6.14. They are displayed together with the
3D objects and will be updated when the location of the related object changes.

Figure 6.14 Symbolic Graph view of a GSDM: (a) for the 3D viewer without the symbolic
graph, (b) for the 3D viewer with a symbolic graph at a Conceptual level, (c) for the 3D viewer
with a symbolic graph of Constraints

In this example, if the user turns on the graph view check button in the “Free mode”, then
he/she sees a symbolic graph of the conceptual level of this GSDM (Figure 6.14.b). If it is in a
“Constraint mode”, symbols of relation (orange line with number in the middle) are replaced
by symbols of constraint (purple line with numbers in the middle) as presented in Figure 6.14.c.
When a symbol is double clicked, a property window is being displayed to show its content.

6.2.6 CSP SOLVING

Section 5.4 introduced the theory of CSP solving and the related algorithms. This section
explains how the selected mathematical tool works to solve the CSP during the GSDM model-
ing process.

There are three functions in Mathematica which can be used for solving the CSP, as this
CSP contains nonlinear equations and nonlinear objective functions. To use these three func-
tions, we need to formalize the CSP as below56:

S[{𝑓𝑓, cons}, {𝑥𝑥,𝑦𝑦, … }]
Where 𝑓𝑓 is the function to be minimized, cons is the list of constraints and {x, y, … } the

list of variables. S is the name of the different functions as describe below.
With the formalization of constraint, unknown variables, and the objective function intro-

duced previously in Chapter 5, the remaining tasks for the implementation is to transform this
formalization into a set of expressions in the Mathematica language, and subsequently send it
to the solver, get the results and interpret them, and update the GSDM. Section 5.4 presented a
workflow for specifying constraints. The following Figure 6.15 presents a workflow of CSP

56 This expression is using the language of Mathematica 9.0.1.0

145

solving after the specification of constraints.

Figure 6.15 Workflow for CSP solving

In this workflow it can be noticed that the library .Net/Link is a bridge between Unity 3D
and Mathematica kernel. The Mathematica kernel runs when the link is opened and stops when
it is closed. CSP solving will be automatically applied when adding a new constraint, modifying
a constraint or when the user clicks the update button as described in Subsection 6.2.1.

In Mathematica, there are three functions for solving the CSP (Table 6.4), depending on
the type of inputs, different algorithms can be used in different functions. It is decided automat-
ically by Mathematica.

Function
Use

FindMinimum
numeric local optimization

NMinimize
numeric global optimization

Minimize
exact global optimization

Table 6.4 Functions used in Mathematica to solve the CSP

As a global optimization is addressed in the specified CSP, the function “FindMinimum”
is chosen to be used in this implementation.

6.3 EXAMPLES CREATED USING THE IMPLEMENTED APPROACH

In this section, three examples are used to illustrate the proposed conceptual design ap-
proach using GSDM and the implemented tools. The first example is more detailed than the
others since it aims at showing the data structure of each instance.

146

6.3.1 EXAMPLE ONE: CRAZY CHAIR

Example description:

 Object to be described by GSDM: A chair.
 The user of this object: Museum of arts.
 Features of this object:

o Comfortable for sitting with a back rest,
o Possibility to hang up clothes (such as a hat and jacket) on the back,
o Possibility of pivoting around a central support (a swivel chair)

Resources: 4 resources (Res0, Res1, Res2, Res3)

Res0: Picture of antlers of a dear with contour and skeleton information (picture
A)
Res1: 3D mesh of a chair with structure information (Picture B)
Res2: Picture of two bottles of Coca Cola with contour and structure infor-
mation (Picture C)
Res3: Scanned mechanical part of a car wheel hub represented in a mesh (Pic-
ture D)

147

Example of resource data structure (Res0)

(for image input, if there is no icon file then the origin file ad-
dress will be used as the icon file address)

Components: 4 Components (Com0, Com1, Com2, Com3)

Com0: two antlers of the input image from Res0, aligned to face right direction
Com1: the seat of in input chair mesh from Res1
Com2: one bottle of the input image from Res2, aligned to face right direction
Com3: the input mesh from Res3, aligned to face up direction
Example of geometry of component (Geo0 of Com0) and structure of component (Str0

of Com0)

148

Example of a component data structure (Com0)

Groups: two groups (Grp0 and Grp1)

Grp0: contains Com0 and Com1, named as “Up part”
Grp1: contains Com2 and Com3, named as “Support”

149

Example of a group data structure (Grp0):

Relations: 3 Relations (Rel0, Rel1, Rel2), noticing that Rel0 and Rel1 are not visible in
the following figure as it is covered by the group symbol (Grp0 and Grp1).

Rel0 : links Com0 and Com1 as a merging
Rel1: links Com2 and Com3 as an assembly
Rel2: links Grp0 and Grp1 as an assembly
Example of Relation data structure (Rel0):

150

Key entities : 11 direct parametric key entities (Key0 to Key 10)
 And 3 indirect parametric key entities (Key 11 to Key 13)

Direct node of a wireframe (on structure representation):
Key0, Key1, Key2, Key3, Key4, Key5, Key6 and Key7
Direct edge of a wireframe (on structure representation):
Key8, Key9 and Key10
Indirect parametric line:
Key11 and Key12
Indirect parametric point: Key13
Example of Key Entity data structure (Key13): In the “Para” of key13, the last value

“0.504” represents the factor of Key13 between Key0 and Key1.

151

Constraint: 6 constraints defined by 18 equations. The type of each constraint is auto-
matically decided by the smart constraining system (Section 5.3).

Cons0: Coincident between Key2 and Key13 defined by 3 linear equations
Cons1: Parallelism between Key13 and Key13 defined by 3 linear equations
Cons2: Coincident between Key3 and Key6 defined by 3 linear equations
Cons3: Parallelism between Key8 and Key10 defined by 3 linear equations
Cons4: Co-linearity between Key7 and Key9 defined by 3 linear equations
Cons5: Co-linearity between Key7 and Key10 defined by 3 linear equations

152

Result:
First result with the configuration of CSP parameters as bellow:
Global positioning energy factor: 500
Global rotation energy factor: 5
Global scale energy factor: 10000
Time using for CSP solving: 11.5 s, constraints are all satisfied

Section result with the configuration of CSP parameters as bellow:
Global positioning energy factor: 500
Global rotation energy factor: 5
Global scale energy factor: 1
Time using for CSP solving: 10.5 s, constraints are all satisfied

153

Third result with the configuration of CSP parameters as bellow:
Global positioning energy factor: 500
Global rotation energy factor: 5
Global scale energy factor: 100
Time using for CSP solving: 10.2 s, constraints are all satisfied

6.3.2 EXAMPLE TWO: ASSEMBLY SCANNED PIECES

Example description:
This example aims at showing how the proposed approach can be used to assemble 3D

scanned pieces of a real object. As they have not been generated in CAD system, the consid-
ered components do not contain the CAD information but just surface information stored as
meshes. Therefore, a traditional assembly approach, available in most CAD software, cannot
be applied to assemble them together. In contrary, our GSDM gives the possibility to assem-
ble meshes.

This example is not illustrated with as many details as in the example one, but only with
basic GSDM description.

Component: 4 components (Com0, Com1, Com2, Com3)

154

As there is no structure information of the input data, the system adds the minimum

oriented bounding box as the structure representation of each component. Com0 and Com1
are aligned to global right direction.

Example of structure representation for Com0:

Group: no group in this description
Relation: 4 relations (Rel0, Rel1, Rel2, Rel3)

155

Rel0: Assembly between Com0 and Com3
Rel1: Assembly between Com3 and Com1
Rel2: Assembly between Com3 and Com2
Rel3: Assembly between Com0 and Com1
Key entity : 16 direct parametric key entities

Direct edge of wireframe (oriented bounding box of each component):
Key1, Key9, Key13
Direct node of wireframe (oriented bounding box of each component)::
Key3, Key6,key14
Direct oriented point on mesh:
With dimension type: point: Key4, Key5, Key7, Key8, Key15
With dimension type: oriented point: Key0, Key2, Key10, Key11, Key12
Constraint: 11 constraints, including 20 linear equations. The type of each constraint is

156

automatically decided by the smart constraining system.

Cons0: Co-planarity between Key0 and Key4 defined by 1 linear equation.
Cons1: Co-planarity between Key2 and Key5 defined by 1 linear equation.
Cons3: Co-linearity between Key3 and Key9 defined by 3 linear equations.
Cons4: Co-planarity between Key8 and Key11 defined by 1 linear equation.
Cons5: Co-planarity between Key7 and Key10 defined by 1 linear equation.
Cons6: Co-linearity between Key6 and Key9 defined by 3 linear equations.
Cons7: Parallelism between Key9 and Key13 defined by 3 linear equations.
Cons8: Co-linearity between Key9 and Key14 defined by 3 linear equations.
Cons9 Co-planarity between Key12 and Key15 defined by 1 linear equation.
Cons10: Parallelism between Key1 and Key9 defined by 3 linear equations.
Result:

Global positioning energy factor: 500
Global rotation energy factor: 5
Global scale energy factor: 10000
Time using for CSP solving: 39.7 s, constraints are all satisfied.

157

6.3.3 EXAMPLE THREE: POWER PLANT CONFIGURATION

Example description:
For architectural design, there is usually a case for manipulating 3D buildings according

to a 2D plan. This example shows how to use GSDM to realize the manipulation of the 3D
buildings of a nuclear power plant according to a configuration defined in a 2D image.

This example is illustrated with less detail than the example one, but only with the
GSDM description.

Component: 6 components (Com0, Com1, Com2, Com3, Com4, Com5)

Com0 is the 2D plan
Com1 and Com2 are 3D models of two office buildings
Com3, Com4 and Com5 are 3D models of three cooling towers
As there is no structure information associated with those input files, the system creates

a minimum oriented bounding box as the structure representation of each component.
Group: no group specified
Relation: 5 relations (Rel0, Rel1, Rel2, Rel3, Rel4)
Rel0: Location between Com0 and Com1
Rel1: Location between Com0 and Com2
Rel2: Location between Com0 and Com3
Rel3: Location between Com0 and Com4
Rel4: Location between Com0 and Com5
Key entity: 24 direct parametric key entities

158

Direct parametric line of a wireframe’s edge:
Key0, Key1, Key12, Key14, Key16, Key20, Key23
Direct parametric point of a wireframe’s node:
Key18, Key19, Key21, Key22
Direct parametric point on an image:
Key2, key3, Key4, Key5, Key6, Key7, Key8, Key9, Key10, Key11
Direct parametric point on a mesh:
Key13, Key15, Key17
Constraint: 20 constraints including 40 linear equations. The type of each constraint is

automatically decided by the smart constraining system. As the constraining of each office
building and each cooling tower is the same, the following picture shows an example of con-
straining of one office building and one cooling tower.

159

Example of constraining one cooling tower (Com3)
Cons0: perpendicularity between Key0 and Key12 defined by 1 linear equation.
Cons1: perpendicularity between Key1 and Key12 defined by 1 linear equation.
Cons2: Co-linearity between Key12 and Key2 defined by 3 linear equations.
Con3: Coincidence between Key3 and Key13 defined by 3 linear equations.
Example of constraining one office building (Com1)
Cons12: Coincidence between Key18 and Key8 defined by 3 linear equations.
Cons13: Coincidence between Key19 and Key9 defined by 3 linear equations.
Cons14: perpendicularity between Key0 and Key20 defined by 1 linear equation.
Con15: perpendicularity between Key1 and Key20 defined by 1 linear equation.
Result:

Global positioning energy factor: 500
Global rotation energy factor: 5
Global scale energy factor: 10000
Time using for CSP solving: 57.9 s, all constraints are satisfied

160

6.4 CONCLUSION AND REMARKS

This chapter has presented the implemented tool for conceptual object modeling with
GSDM. It proves that:

 The GSDM has the capacity of working with heterogeneous data
 Compared with the traditional 3D design tools, the proposed tool is easier to use by

a non-expert user and allows touch screen interaction by exploiting metaphor well-
known from smartphone use. A smart manipulation system can help prepositioning
the objects. A smart constraint system can automatically build constraint and solve
them. The non-expert user only needs to use click or drag and drop to realize a
conceptual design. No specific and complex combinations of mouse clicks are re-
quired.

 The three examples show different application domains that the implemented tool
can be applied to. This is not an exhaustive list and other applications could be
imagined.

 The related location of each component when building constraints is important, as
well as telling the smart constraining system to choose a suitable type for this gen-
erated constraint. Therefore, it is better to manipulate each component to be ap-
proximately in the final expected location, and then add constraints, so that the sys-
tem can smartly understand the intention of this constraint.

However, there are still some improvements to be brought in the future:

 It is better to have a segmentation tool plugged in to deal with non-segmented re-
sources. We can also imagine having a selection tool to use for cutting an area of the
imported image or mesh to instantiate a component.

 Other high-level constraints can be developed to make the smart constraining system
even smarter and more complete.

 The effective execution of the “operation” of a relation on the geometry is not imple-
mented yet (e.g. the merging of two meshes, properly saying).

 Some reverse engineering algorithms can also be implemented and plugged into the
implemented tool to turn the image into a 3D mesh.

 Search engines can also be plugged in, to find potentially usable 3D meshes in a spe-
cific database if a component is only instantiated by a text.

 Other different CSP solving algorithms can be plugged in. A smart CSP solving sys-
tem can be developed to automatically choose the most efficient algorithm for a spec-
ified CSP.

For complete VR environment creation, the system can be merged into a scene design tool,
and behavioral information should also be included.

161

SYNTHESIS, CONCLUSIONS AND PER-
SPECTIVES

oday, creativity and innovation in product design and communication are more important
than ever in the past. New technologies and the available data and information can provide

a good source of inspiration and support for creativity. However, due to the fact that design
tools are still expert-oriented weakly supporting fast idea mock-up and communication, the
design process is long and tedious. To overcome these issues, this thesis proposes a new ap-
proach to create conceptual shapes by re-using heterogeneous digital shape data resources. The
approach requires the specification of a new shape representation model capable to handle such
a combination of multidimensional data and the development of the required modeling and
manipulation capabilities. In this perspective, this thesis develops a Generic Shape Description
Model (GSDM) together with a user-friendly modelling system prototype aimed at helping non-
expert users to describe shapes.

GENERIC SHAPE DESCRIPTION MODEL…

To overcome the limits of current methods and tools, the proposed GSDM is based on

three information levels: data, intermediate and conceptual levels (Section 4.1). The data level
(Section 4.2) reduces the differences between heterogeneous data inputs. Different data are all
considered as described by Geometry, Structure and Semantics. Thus, the data level is less
sensible to the type of data that can be manipulated in the same way for different heterogeneous
data. For example, a search engine can look for similar data based on the structure layer (e.g.
graph-based representation) independently of the underlying geometries (e.g. meshes, images).
The conceptual level (Section 4.3) bridges the gap between the non-expert user and the GSDM
and immediately provides an overview of the elements constituting the object. The different

T

162

parts of the shape are represented as Components coming from heterogeneous inputs. Com-
ponents sharing a common characteristic (e.g. color, meaning, behavior) can be clustered in a
Group. Besides grouping different components together, Relations can be built between com-
ponents or groups to describe how they are combined. Four types of relations can be applied:
Assembly, Merging, Shaping and Location. Assembly is used to put together different parts
that still exist by their own; merging is applied to create a single elements from different parts
(component or group); shaping indicates the use shape features of one element to modify an-
other one; and location is used to position different parts in an object or in the scene. The inter-
mediate level (Section 4.4) links the conceptual description (conceptual level) and the under-
lying data (data level) through a set of constraints acting on key entities which lie on the com-
ponents. All the user-specified constraints are finally sent to a solver system. This system finds
an optimal solution to satisfy all the constraints by considering an energy function to be mini-
mized. This function is based on physical energies used to translate, rotate and scale the com-
ponents. Compared to the traditional CAD modelers, our approach provides a more meaningful
assembled solution.

MODELING TOOL…

A user-centered workflow for using the GSDM to describe shapes has been presented in

Chapter 5. It is implemented into a design tool based on Unity3D development platform. The
whole process starts from importing external heterogeneous data resources. The information
related to each input is restructured in the three layers of geometry, structure and semantics. If
available segmentation information is imported allowing the user to select sub-parts as Com-
ponents. Groups and Relations can be added later. User can create new key entities or take
existing ones to build constraints. Finally, the CSP solving system is automatically activated to
achieve an optimized solution.

More user-oriented capabilities have been developed in this tool than those available in
other 3D modeling tools. First, a smart 3D object manipulation system automatically decides
in which plane to place the imported component. This positioning is based on the user’s view
direction. A single drag-and-drop action is also defined to simultaneously apply the component
position, rotation and scaling. Second, a smart constraint system is designed to automatically
assign a constraint between two elements depending on the current location of the two user-
specified key entities.

CURRENT ISSUES…

This manuscript defines the so-called Generic Shape Description Model (GSDM) together

with its general structure and associated concepts and definitions. This is the first step for de-
scribing shapes using a unified approach. However, the development of an effective conceptual
design tool based on the GSDM requires the resolution of some research and implementation
issues:

163

 The semantics associated to the current version of the GSDM has a very limited usage.
It is mainly used to store information for initializing different constituents of the
GSDM, such as the “type” or “reason”. For some specific applications, other “types”
or “reasons” need to be extended together with the related mechanisms to treat such
high-level information.

 The concepts of geometry and structure have been included in the GSDM. In princi-
ple, they encompass any geometric and structural representation. In this work, not all
the geometric and structural representations have been treated. To effectively exploit
all the existing visual resources, additional representations should be considered and
manipulated. This could be done through the development of new plugins. Moreover,
even if there exists plenty of algorithms for shape segmentation and structural de-
scriptors’ computation, most of the data available are still containing only pure geo-
metric information. Therefore, currently most of the resources require some human
intervention to be used in our system for the component selection. Additionally, for
input data missing structural information, the system automatically creates a structure
that is the bounding box, which might limit the specification of the relations between
components

 A set of key entities and a set of constraints have been proposed. Some of them have
been tested in the examples presented in Chapter 6. However, for some specific ap-
plications, the ones here proposed might not be the most suitable. Therefore, the gen-
eral concepts of key entity and constraint are well defined, while their exact nature
might need to be extended for different situations. This could be addressed by simply
extending the constraints toolbox. One could also imagine the possibility to have
user-specified constraints.

 The relation type of “Shaping” is not fully expressed in this manuscript, while just a
general concept has been proposed. However, such a relation can be of real interest
for design and creativity issues.

 In the current prototype, the resolution of the optimization problem is implemented
as a plugin using “Mathematica v9.0”. The produced results are appropriate but the
execution is a bit slow for interactive modelling of complex configurations. Having
the resolution fully integrated in the developed prototype software would drastically
speed up the process.

 The current modeler cannot generate shapes starting from scratch but only by com-
bining existing ones. However, this is not a real limitation since the idea was not to
redevelop existing modeling tools but rather to develop a new approach capable of
mixing existing heterogeneous representations.

From the above discussions, it can be noticed that, what presented here is mainly a proof
of concepts, while to achieve an efficient and operative system further activity is needed.

164

PERSPECTIVES…

For future versions, internal modeling capabilities could be integrated to generate shapes

starting from scratch but also to effectively modify the imported ones. More user-oriented func-
tions need to be implemented or optimized for the developed tool. This is the case for the opti-
mization problem solving that still requires the user to specify weights between the terms of the
energy function.

The GSDM can also be further used to describe a whole scene in a VR environment. In
this case, additional specifications of the GSDM concepts needs to be added, which include for
example new types of grouping and new types of constraints.

A full exploitation of semantics for easing objects and scene creation, e.g., for specific
types of objects, can be defined and then exploited to automatically set relations among com-
ponents.

As a long-term perspective, mechanisms for the pre-processing and post-processing phases
should be included. Some automatic segmentation and structure analysis system should be in-
tegrated, so that even raw geometry input data can be associated with segmentation and struc-
ture information. This requires the solution to research problems related to the choice and com-
bination of the segmentation and structure analysis algorithms to obtain the most meaningful
object decompositions and structure descriptors.

 In the post-processing, a fully 3D representation should be generated from the GSDM
with its 3D structure and semantics. This requires more advanced techniques in mesh merging
and reverse engineering. New research on structure and semantics merging can also be imag-
ined for their correct updating according to the achieved 3D object model. With both the pre-
processing and post-processing phases, the GSDM can be used in the whole 3D object design
process.

From the application point of view, the last Chapter (Chapter 6) validates the approach and
demonstrates the possibilities of using GSDM in several domains such as conceptual design,
reverse engineering of assemblies and 3D objects manipulation. It can be also imagined to use
GSDM in medical analysis domain, such as representing different medical data and results (CT
images, type-B ultrasonic images, etc.) in a unified 3D environment, probably aligned to a 3D
model of a human body. GSDM could also be used as a plugin for a 3D presentation tool such
as Microsoft’s PowerPoint but in 3D. In this case, text and animation abilities should be further
developed.

These considerations indicate that there are still many encouraging open issues and appli-
cations of the proposed method.

165

REFERENCES

[1] D. Backlund, "Product cost analysis in early stages of a product development process,"
Arvika, 2013.

[2] E. Nasr and A. Kamrani, "Chapter 2 Product Life Cycle Cost Model," in cunputer Based
Design and Manufacturing, Springer, 2007, pp. 31-58.

[3] Y. ASIEDU and P. GU, "Product life cycle cost analysis: state of the art review," int. j. prod.
res., vol. 36, no. 4, pp. 883-908, 1998.

[4] F. Bianca., G. Franca, L. Jean-Claude and P. Jean-Philippe, "Processing free form objects
within a Product Development Process framework," in Advances in Computers and
Information in Engineering Research, J. G. Michopoulos, C. J. Paredis, D. W. Rosen and J.
M. Vance, Eds., ASME, 2014, pp. 317-344.

[5] H. Istvan T., G. U. W. Martin, S. Olga, D. Loris, D. A. Raffaele and R. Graphitech, "Shape
Semantics from Shape Context," 2004.

[6] G. P. S. Brar, V. Jain and A. Singh, "Research Methodology," International Journal of
Humanities Social Sciences and Education, vol. 1, no. 8, pp. 63-67, 2014.

[7] N. Brikci and J. Green, A Guide to Using Qualitative Research Methodology, MSF UK:
Michael Quinn Patton and Michael Cochran, 2007.

166

[8] C. R. Kothari, Research Methodology : Methods and Techniques, Second Edition ed., New
Age International, 2004.

[9] Y. Singh, Fundamentals of Research Methodology and Statistics, New Age Interantional,
2008.

[10] WiseGeek, "What Are the Different Types of Research?," 2014. [Online]. Available:
http://www.wisegeek.org/what-are-the-different-types-of-research.htm. [Accessed 2014].

[11] K. Best, Design Management: Managing Design Strategy, Process and Implementation,
Switzerland: AVA Publishing SA, 2006.

[12] K. Goodwin, Designing for the Digital Age: How to Create Human-Centered Products and
Services, John Wiley & Sons, 2009.

[13] S. Cox, "Cox Review of Creativity in Business: building on the UK's strengths," 2005.

[14] C. Mok, Designing Business: Multiple Media, Multiple Disciplines, Pap/Cdr edition ed.,
Adobe Pr, 1996.

[15] R. House, Random House Webster's Unabridged Dictionary, 2 Revised edition ed., Random
House Reference, 2005.

[16] Dictionary.com, "Dictionary.com," 2014. [Online]. Available:
http://dictionary.reference.com/.

[17] C. Abras, "User-Centered Design," in Encyclopedia of Human-Computer Interaction,
Bainbridge, W., Thousand Oaks: Sage Publications, 2004, pp. 763-768.

[18] D. A. Norman and S. W. Draper, User Centered System Design: New Perspectives on
Human-Computer Interaction, Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1986.

[19] K. Eason, Information technology and organizational change, London: Taylor and Francis,
1987.

[20] J. Preece, Y. Rogers and H. Sharp, Interaction design: Beyond human-computer interaction,
New York: John Wiley & Sons, Inc., 2002.

[21] P. Gabriel-Petit, "Design Is a Process, Not a Methodology," UXmatters, 2010.

[22] J. Jonson, GUI Bloopers 2.0: Common User Interface Design dont'ts and Dos, Burlington,
MA, USA: Dense E.M. Penrose, 2008.

[23] G. Smith, "Idea-generation techniques: A formulary of active ingredients," Journal of
Creative Behavior, vol. 32, no. 2, pp. 107-133, 1998.

167

[24] K. Sawyer, Zig Zag: The Surprising Path to Greater Creativity, Jossey-Bass, 2013.

[25] O. Shai, Y. Reich and D. Rubin, "Creative conceptual design: Extending the scope by
infused design," Computer-Aided Design, vol. 41, pp. 117-135, 2009.

[26] S. Ellis, "Nature and origin of virtual environments: a bibliographic essay," Computer
Systems in Engineering, p. 325, 1991.

[27] J. Palfreman and D. Swade, The Dream Machine-Exploring the Computer Age, London:
BBC Books, 1991.

[28] I. Sutherland, "The ultimate display," Proceedings of International federation of
Information Processing Congress, pp. 506-508, 1965.

[29] T. P. Hughes, American Genesis - A Century of Invention and Technotogical Enthusiasm,
New York: Pengui Books, 1989, pp. chapter 1-3.

[30] A. Sevalnikov, "Virtual reality and problems of its description," 1999.

[31] V. Bychkov and N. Mankovskaya, "Virtual reality in the space of aesthetic experience,"
2006.

[32] W. R. Sherman and A. B. Craig, Understanding Virtual Reality: Interface, Application, and
Design (The Morgan Kaufmann Series in Computer Graphics), San Francisco, CA: Morgan
Kaufmann; , 2002.

[33] J. Vince, Introduction to Virtual Reality, Springer, 2004.

[34] M. A. M. Lumbreras, L. F. Pulido, A. P. Flores and F. J. A. Velasco, "Incorporating three
dimensional sound in Virtual Environments," Procedia Technology, vol. 3, p. 259–266,
2012.

[35] J. Frederick P. Brooks, "What’s Real About Virtual Reality," IEEE Computer Graphics and
Applications, vol. 19, no. 6, pp. 16-27, 1999.

[36] P. Chen, "The entity-relationship model: Towards a unified view of data.," ACM
Transactions on Database system, vol. 1, no. 1, pp. 471-522, 1976.

[37] T. Halpin, Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design, Morgan Kaufmann, 2001.

[38] M. Fowler and K. Scott, UML Distilled: a brief introduction to the standard object modeling
language., Addison-Wesley Professional, 1999.

168

[39] W. Bille, O. De Troyer, F. Kleinermann, B. Pellens and R. Romero, "Using Ontologies to
Build Virtual Worlds for the Web.," in Proc. of the IADIS International Conference
WWW/Internet 2004 (ICWI2004), Madrid, Soain, 2004.

[40] O. De Troyer, W. Bille, R. Romero and P. Stuer, "On Generating Virtual Worlds from
Domain Ontologies.," in Proc. of the 9th International Conference on Multi-Media
Modeling, Taipei, Taiwan, 2003.

[41] F. K. B. P. W. B. Olga De Troyer, "Conceptual Modeling for Virtual Reality," in Tutorials,
Posters, Panels and Industrial Contributions at the 26th International Conference on
Conceptual Modeling, Auckland, New Zealand, Australian Computer Society, Inc., 2007,
pp. 3-18.

[42] S. GC and S. S, "Latent Semantic Engineering – A New Conceptual User-Centered Design
Approach," Advanced Engineering Informatics, vol. 26, no. 2, pp. 456-473, 2012.

[43] J.-P. Pernot, "Fully Free From Deformation Features for Aesthetic and Engineering
Designs," 2004.

[44] M. Mantyla, "A modeling system for top-down design of assembled products," IBM Journal
of Research and Development, vol. 34, no. 5, pp. 636-659, 2010.

[45] J. J. Shah and M. Mantyla, Parametric and Feature-Based CAD/CAM: Concepts,
Techniques, and Applications, Wiley-Interscience, 19995.

[46] T. D. Martino, B. Falcidieno, F. Giannini, S. Hassunger and J. Ovtcharova, "Feature-based
modeling by integrating design and recognition approaches," Computer-Aided Design, vol.
26, no. 8, pp. 646-653, 1994.

[47] CAM-I, CAM-I's Illustrated Glossary of Workpiece Form Features, CAM-I, 1981.

[48] O. Salomons, F. v. Houten and H. Kals, "Review of research in feature-based design,"
Journal of Manufacturing Systems, vol. 12, no. 2, pp. 113-132, 1993.

[49] S. Coquillart, "Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric
Modeling Computer Graphics," SIGGRAPH '90, vol. 24, no. 4, pp. 187-196, 1990.

[50] R. Smelik, T. Tutenel, K. d. Kraker and R. Bidarra, "A declarative approach to procedural
modeling of virtual worlds," Computers & Graphics, vol. 35, no. 2, pp. 352-363, 2011.

[51] J.-D. Boissonnat, "Geometric structures for three-dimensional shape representation," ACM
Transactions on Graphics, vol. 3, no. 4, pp. 266-286, 1984.

[52] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle, "Surface reconstruction
from unorganized points," Proceeding of SIGGRAPH, pp. 71-78, 1992.

169

[53] N. Amenta, M. Bern and M. Kamvysselis, "A new Voronoi-based surface reconstruction
algorithm," Proceesings of SIGGRAPH, pp. 425-421, 1998.

[54] R. Kolluri, J. Shewchuk and J. O'Brien, "Spectral surface reconstruction from noisy point
clouds," Proc. Symposium on Geometry Processing, pp. 11-21, 2004.

[55] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum and T. Evans,
"Reconstruction and representation of 3D objects with radial basis functions," Proceedings
of SIGGRAPH, pp. 67-76, 2001.

[56] N. Jiang, P. Tan and L.-F. Cheong, " Symmetric Architecture Modeling with a Single
Image," ACM Transactions on Graphics , 2009.

[57] El-Hakim and S. F., "Semi-automatic 3D reconstruction of occluded and unmarked surfaces
from widely separated views," nternational Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. 34, no. 5, pp. 143-145, 2002.

[58] L. D. Luca, P. Veron and M. Florenzano, "Reverse engineering of architectural buildings
based on a hybrid modeling approach," Computers & Graphics, vol. 30, no. 2, pp. 160-176,
2006.

[59] P. M., P. JP. and V. P., "Towards recovery of complex shapes in meshes using digital images
for reverse enginnering applications," Computer-Aided Design, vol. 42, no. 8, pp. 693-707,
2010.

[60] P. M., P. J-P. and V. P, "Polybedral simplifications preserving character lines extracted from
images," in Proceedings of the IEEE Shape Modeling International Coference (SMI'07),
Lyon, 2007.

[61] T. Matsuyama, X. Wu, T. Takai and S. Nobuhara, "Real-time 3D shape reconstruction,
dynamic 3D mesh deformation, and high fidelity visualization for 3D video," Computer
Vision and Image Understanding, vol. 96, no. 3, pp. 394-434, 2004.

[62] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops and R. Koch,
"Visual modelling with a hand-held camera," International Journal of Computer Vision, vol.
59, no. 3, pp. 207-232, 2004.

[63] M. M. Oliveira, "Image-Based Modeling and Rendering Techniques: A Survey," RITA, vol.
9, no. 2, pp. 37-66, 2002.

[64] B. Curless and M. Levoy, "A volumetric method for building complex models from range
images," SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pp. 303-312, 1996.

[65] J. S. Dan Lv, Q. Li and Q. Wang, "Point-based integration for 3D object reconstruction from

170

Ladar range images," Optik - International Journal for Light and Electron Optics, vol. 124,
no. 23, pp. 6318-6326, 2013.

[66] H. M. Nguyen, B. Wunsche and P. Delmas, "A hybrid image-based modeling algorithm,"
Proceedings of the thirty-sixth Australasian Computer Science Conference, pp. 115-123,
2013.

[67] P. E. Debevec, C. J. Taylor and J. Malik, "Modeling and Rendering Architecture from
Photographs: A hybrid geometry- and image-based approach," Proceedings of SIGGRAPH
96, 1996.

[68] E. E. Catmull, "A subdivision algorithm for computer display of curved surfaces," 1974.

[69] R. L. Cook, L. Carpenter and E. Catmull, " The Reyes image rendering architecture Reyes
image rendering architecture," ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 95-
102, 1987.

[70] I. K. Kazmi, L. You and J. J. Zhang, "A Survey of 2D and 3D Shape Descriptors," Computer
Graphics, Imaging and Visualization (CGIV), 2013 10th International Conference, pp. 1-
10, 2013.

[71] T. Pavlidis, "A review of algorithms for shape analysis," Computer Graphics and Image
Processing, vol. 7, pp. 243-258, 1978.

[72] J. Mantas, "METHODOLOGIES IN PATTERN RECOGNITION AND IMAGE
ANALYSIS--A BRIEF SURVEY," Pattern Recognition, pp. 1-620, 1987.

[73] A. Rosenfeld, "Image analysis: Problems, Progress and Prospects," in Computer vision, m.
A. Fischler and O. Firschein, Eds., California, Morgan kaufmann, 1987, pp. 3-12.

[74] L. d. F. Costa and R. M. C. Jr., Shape Analysis and Classification: Theory and Practice, FL,
USA: CRC Press, 2000.

[75] D. Zhang and G. Lu, "Review of shape representation and description techniques," Pattern
Recognition, vol. 37, pp. 1-19, 2004.

[76] L. Zhang, M. João da Fonseca and A. Ferreira, "Survey on 3D Shape Descriptors," 2004.

[77] Y. Yang, H. Lin and Y. Zhang, "contet-Based 3-D model Retrieval: A Survey," IEEE
Transactions on System, Man and Cybernetics - Part C : Applications and Reviews, vol. 37,
no. 6, pp. 1081-1098, 2007.

[78] R. Jain, R. Kasturi and B. G. Schunck, Machine Vision, McGraw-Hill, 1995.

171

[79] F. van der Heijden, Image Based Measurement Systems, New Tork: John Wiley and Sons,
1994.

[80] K. R. Castleman, Digital Image Processing, Englewood Cliffs, New Jersey: Prentice Hall,
1996.

[81] J. M. Chassery and A. Montanvert, Géométrie Discrète, In French ed., Paris: Hernes, 1991.

[82] X. Y. Jiang and H. Bunke, "Simple and fast computation of moments," Pattern Recognition,
vol. 24, no. 8, pp. 801-806, 1991.

[83] N. Kiryati and D. Maydan, "Calculating geometric properties from Fourier representation,"
Pattern Recognition, vol. 22, no. 5, pp. 469-475, 1989.

[84] O. D. Trier, A. K. Jain and T. Taxt, "Feature extraction methods for character recognition -
a survey," Pattern Recognition, vol. 29, no. 4, pp. 641-662, 1996.

[85] J. Wood, "Invariant pattern recognition: A review," Pattern Recognition, vol. 29, no. 1, pp.
1-17, 1996.

[86] R. C. Gonzalez and P. Wintz, Digital Image Processing, Addition-Wesley, 1987.

[87] G. &. T. A. Sapiro, "Affine invariant scale-space," International Journal of computer Vision,
vol. 11, no. 1, pp. 25-44, 1993.

[88] P. J. van Otterloo, A Contour-Oriented Approach to Shape Analysis, Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[89] D. Sarkar, "A simple algorithm for detection of significant vertices for polygonal-
approximation of chain-coded curves," Pattern Recognition Letters, vol. 14, no. 12, pp. 959-
964, 1993.

[90] P. O’Higgins, "Methodological Issues in the Description of Forms.," in Fourier Descriptors
and Their Applications in Biology, P. E. Lestrel, Ed., 1997, p. Cambridge University Press.

[91] S. L. a. C. S. L. Lam, "Thinning methodologies - a comprehensive survey," IEEE
Transations on Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 869-885,
1992.

[92] A. Carlo, S. d. B. Gabriella and S. Luca, "A parallel algorithm to skeletonize the distance
transform of 3D objects," Image and Vision Computing, vol. 27, no. 6, pp. 666-672, 2009.

[93] C. Niblack, P. Gibbons and D. Capson, "Generating skeletons and centerlines from the
distance transform," CVGIP: Graphical Models and Image Processing, vol. 54, no. 5, p.
420–437, 1992.

172

[94] J. A. Sethian, "Level set methods and fast marching methods," Cambridge University Press,
1999.

[95] M. Näf, G. Székely, R. Kikinis, M. Shenton and O. Kübler, "3D Voronoi Skeletons and
Their Usage for the Characterization and Recognition of 3D Organ Shape," Computer Vision
and Image Understandin, vol. 66, no. 2, p. 147–161, 1997.

[96] G. Reeb., " Sur les points singuliers d’une forme de Pfaff compl`etement int´egrable ou
d’une fonction num´erique," Comptes-rendus de l’Acad´emie des Sciences, pp. 848-849,
1946.

[97] S. Biasotti, D. Giorgi, M. Spagnuolo and B. Falcidieno, "Reeb graphs for shape analysis and
applications," Theoretical Computer Science, vol. 392, no. 1-3, p. 5–22, 2008.

[98] A. W. Smeulders, M. Worring, S. Santini, A. Gupta and Ramesh Jain, "Content-Based Image
Retrieval at the End of the Early Years," IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, vol. 22, no. 12, pp. 1349-1380, 2000.

[99] H. H. Wang, D. Mohamad and N. Ismail, "Approaches, Challenges and Future Direction of
Image Retrieval," JOURNAL OF COMPUTING, vol. 2, no. 6, pp. 193-199, 2010.

[100] G. Stiny, J. Gips, G. Stiny and J. Gips, "Shape Grammars and the Generative Specification
of Painting and Sculpture," in Segmentation of Buildings for 3DGeneralisation. In:
Proceedings of the Workshop on generalisation and multiple representation , 1971.

[101] I. Bloch, "Fuzzy relative position between objects in image processing: A morphological
approach.," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no.
7, pp. 657-664, 1999.

[102] C. Hudelot, J. Atif and I. Bloch, "Fuzzy spatial relation ontology for image interpretation,"
Fuzzy Sets Syst, vol. 159, no. 15, pp. 1929-1951, 2008.

[103] C. M. Takemura, "Modelagem de posições relativas de formas complexas para análise de
configuração espacial," 2008.

[104] AIM@SHAPE, "AIM@SHAPE," 2004. [Online]. Available: http://www.aimatshape.net/.

[105] A. Saxena and B. Sahay, Computer Aided Engineering Design, Springer, 2005.

173

Conceptual design of shapes by reusing existing heterogeneous shape data through a
multi-layered shape description model and for VR applications

ABSTRACT
Due to the great advances in acquisition devices and modeling tools, a huge amount of digital data (e.g.

images, videos, 3D models) is becoming now available in various application domains. In particular, virtual envi-
ronments make use of those digital data allowing more attractive and more effectual communication and simula-
tion of real or not (yet) existing environments and objects. Despite those innovations, the design of application-
oriented virtual environment still results from a long and tedious iterative modeling and modification process that
involves several actors (e.g. experts of the domain, 3D modelers and VR programmers, designers or communica-
tions/marketing experts). Depending of the targeted application, the number and the profiles of the involved actors
may change. Today’s limitations and difficulties are mainly due to the fact there exists no strong relationships
between the expert of the domain with creative ideas, the digitally skilled actors, the tools and the shape models
taking part to the virtual environment development process. Actually, existing tools mainly focus on the detailed
geometric definition of the shapes and are not suitable to effectively support creativity and innovation, which are
considered as key elements for successful products and applications. In addition, the huge amount of available
digital data is not fully exploited. Clearly, those data could be used as a source of inspiration for new solutions,
being innovative ideas frequently coming from the (unforeseen) combination of existing elements. Therefore, the
availability of software tools allowing the re-use and combination of such digital data would be an effective support
for the conceptual design phase of both single shapes and VR environments. To answer those needs, this thesis
proposes a new approach and system for the conceptual design of VRs and associated digital assets by taking
existing shape resources, integrating and combining them together while keeping their semantic meanings. To
support this, a Generic Shape Description Model (GSDM) is introduced. This model allows the combination of
multimodal data (e.g. images and 3D meshes) according to three levels: conceptual, intermediate and data levels.
The conceptual level expresses what the different parts of a shape are, and how they are combined together. Each
part of a shape is defined by an Element that can either be a Component or a Group of Components when they
share common characteristics (e.g. behavior, meaning). Elements are linked with Relations defined at the Concep-
tual level where the experts in the domain are acting and exchanging. Each Component is then further described
at the data level with its associated Geometry, Structure and potentially attached Semantics. In the proposed ap-
proach, a Component is a part of an image or a part of a 3D mesh. Four types of Relation are proposed (merging,
assembly, shaping and location) and decomposed in a set of Constraints which control the relative position, orien-
tation and scaling of the Components within the 3D viewer. Constraints are stored at the intermediate level and are
acting on Key Entities (such as points, a lines, etc.) laying on the Geometry or Structure of the Components. All
these constraints are finally solved while minimizing an additional physically-based energy function. At the end,
most of the concepts of GSDM have been implemented and integrated into a user-oriented conceptual design tool
totally developed by the author. Different examples have been created using this tool demonstrating the potential
of the approach proposed in this document.

KEYWORDS

Virtual Environment, conceptual design, shape description, hybrid object, heterogeneous data, optimization prob-
lem.

Design conceptuel de formes par exploitation de données hétérogènes au sein d’un modèle de
description de forme multi-niveaux et pour des applications de RV

RESUME
Les récentes avancées en matière de systèmes d’acquisition et de modélisation ont permis la mise à disposition

d’une très grande quantité de données numériques (e.g. images, vidéos, modèles 3D) dans différents domaines
d’application. En particulier, la création d’Environnements Virtuels (EVs) nécessite l’exploitation de données
numériques pour permettre des simulations et des effets proches de la réalité. Malgré ces avancées, la conception
d’EVs dédiés à certaines applications requiert encore de nombreuses et parfois laborieuses étapes de modélisation
et de traitement qui impliquent plusieurs experts (e.g. experts du domaine de l’application, experts en modélisation
3D et programmeur d’environnements virtuels, designers et experts communication/marketing). En fonction de
l’application visée, le nombre et le profil des experts impliqués peuvent varier. Les limitations et difficultés
d’aujourd’hui sont principalement dues au fait qu’il n’existe aucune relation forte entre les experts du domaine qui
ont des besoins, les experts du numérique ainsi que les outils et les modèles qui prennent part au processus de
développement de l’EV. En fait, les outils existants focalisent sur des définitions souvent très détaillées des formes
et ne sont pas capables de supporter les processus de créativité et d’innovation pourtant garants du succès d’un
produit ou d’une application. De plus, la grande quantité de données numériques aujourd’hui accessible n’est pas
réellement exploitée. Clairement, les idées innovantes viennent souvent de la combinaison d’éléments et les
données numériques disponibles pourraient être mieux utilisées. Aussi, l’existence de nouveaux outils permettant
la réutilisation et la combinaison de ces données serait d’une grande aide lors de la phase de conception
conceptuelle de formes et d’EVs. Pour répondre à ces besoins, cette thèse propose une nouvelle approche et un
nouvel outil pour la conception conceptuelle d’EVs exploitant au maximum des ressources existantes, en les
intégrant et en les combinant tout en conservant leurs propriétés sémantiques. C’est ainsi que le Modèle de
Description Générique de Formes (MDGF) est introduit. Ce modèle permet la combinaison de données
multimodales (e.g. images et maillages 3D) selon trois niveaux : Conceptuel, Intermédiaire et Données. Le niveau
Conceptuel exprime quelles sont les différentes parties de la forme ainsi que la façon dont elles sont combinées.
Chaque partie est définie par un Elément qui peut être soit un Composant soit un Groupe de Composants lorsque
ceux-ci possèdent des caractéristiques communes (e.g. comportement, sens). Les Eléments sont liés par des
Relations définies au niveau Conceptuel là où les experts du domaine interagissent. Chaque Composant est ensuite
décrit au niveau Données par sa Géométrie, sa Structure et ses informations Sémantiques potentiellement attachées.
Dans l’approche proposée, un Composant est une partie d’image ou une partie d’un maillage triangulaire 3D.
Quatre Relations sont proposées (fusion, assemblage, shaping et localisation) et décomposées en un ensemble de
Contraintes qui contrôlent la position relative, l’orientation et le facteur d’échelle des Composants au sein de la
scène graphique. Les Contraintes sont stockées au niveau Intermédiaire et agissent sur des Entités Clés (e.g. points,
des lignes) attachées à la Géométrie ou à la Structure des Composants. Toutes ces contraintes sont résolues en
minimisant une fonction énergie basée sur des grandeurs physiques. Les concepts du MDGF ont été implémentés
et intégrés au sein d’un outil de design conceptuel développé par l’auteur. Différents exemples illustrent le potentiel
de l’approche appliquée à différents domaines d’application.

MOTS CLES

Environnement Virtuel, design conceptuel, description de formes, objet hybride, données hétérogènes, problème
d’optimisation numérique.

Progettazione concettuale creativa di forme: un approccio centrato sull’utente basato su un
modello di descrizione delle forme a più livelli e sul riutilizzo di dati eterogenei

SINTESI
Grazie ai grandi progressi raggiunti dai dispositivi di acquisizione e dagli strumenti di modellazione, una

quantità enorme di dati digitali (immagini, video, modelli 3D,..) sta diventando ora disponibile in vari domini
applicativi. Tali dati possono essere quindi sfruttati in ambienti virtuali per una comunicazione e simulazione
efficace di ambienti e oggetti reali o possibili. Nonostante i notevoli sviluppi nel settore, la progettazione di
ambienti virtuali richiede ancora un lungo processo iterativo di modellazione e modifica che coinvolge diversi
attori. A seconda dell’applicazione, il numero e i profili degli attori coinvolti possono variare, includendo, ad
esempio, esperti del dominio per il quale l’applicazione è sviluppata, esperti di modellazione 3D, programmatori
di ambienti virtuali, progettisti o esperti di comunicazione o marketing. Gli attuali limiti e ostacoli sono
principalmente dovuti alla difficoltà di comunicazione tra l'esperto del dominio con idee creative, gli esperti di
modellazione CAD e i tecnologi competenti negli strumenti coinvolti nel processo di sviluppo dell’ambiente
virtuale. Gli strumenti esistenti si concentrano principalmente sulla definizione geometrica dettagliata delle forme
e non sono adatti a supportare efficacemente la creatività e l'innovazione, elementi chiave per la realizzazione di
prodotti e applicazioni di successo. Inoltre, questa caratteristica non permette di sfruttare al meglio la grande
quantità di dati digitali disponibili. Questi dati possono infatti costituire un’importante fonte di ispirazione per
nuove soluzioni, essendo le idee innovative spesso provenienti dalla (inusuale) combinazione di elementi esistenti.
Pertanto, la disponibilità di strumenti software che consentano il riutilizzo e la combinazione di tali dati digitali
costituirebbe un supporto efficace per la fase di progettazione concettuale di singole forme e ambienti virtuali.
Per rispondere a queste esigenze, questa tesi propone un nuovo approccio e un sistema per la progettazione
concettuale che permette la creazione di forme a partire da elementi esistenti combinando insieme loro sotto parti
e mantenendone il loro significato semantico. Il tutto è supportato dalla definizione di un nuovo modello per la
rappresentazione delle forme denominato Generic Shape Description Model (GSDM). Questo modello consente
la combinazione di dati multimodali (ad esempio immagini e mesh 3D) organizzata su tre livelli: concettuale,
intermedio e dati. Il livello concettuale indica la scomposizione di una forma nelle sue parti elementari e relazioni
tra di esse. Ogni parte è rappresentata da un elemento, che può corrispondere a una Componente o a un Gruppo di
Componenti che condividono caratteristiche comuni (ad esempio comportamento, significato). Gli elementi sono
collegati da Relazioni. Ogni Componente è ulteriormente descritta a livello dati tramite le corrispondenti
informazioni relative a Geometria, Struttura e Semantica. Nell'approccio proposto, una Componente è una parte
di un'immagine o di una mesh 3D. Le Relazioni possono essere di quattro tipi (fusione, assemblaggio, modifica di
forma e posizionamento) e sono espresse tramite un insieme di vincoli che controllano la posizione relativa,
l'orientamento e il ridimensionamento delle componenti all'interno della nuova forma. I vincoli sono memorizzati
a livello intermedio e agiscono su Entità Chiave (come punti, a linee, ecc.), appartenenti alla Geometria o alla
Struttura delle Componenti. La maggior parte dei concetti del GSDM sono stati implementati e integrati in uno
strumento di supporto alla progettazione concettuale user-oriented sviluppato dall'autore. Vari esempi di utilizzo
del sistema sono riportati nella tesi a dimostrazione delle potenzialità del metodo proposto.

PAROLE CHIAVE

Ambienti virtuali, progettazione concettuale, descrizione delle forme, modelli ibridi, dati eterogenei,
ottimizzazione.

	- Acknowledgments –
	Introduction
	- Part A: Background and state-of-the-art -
	1 .
	1.1 Research methodology
	1.1.1 Qualification
	1.1.2 Research method and process

	1.2 Context
	1.2.1 What is design?
	1.2.2 Conceptual design in user-centered design process
	1.2.3 Creative conceptual design
	1.2.4 What is Virtual reality?
	1.2.5 Conceptual design for VR applications
	1.2.6 Shape modeling for developing VR applications

	1.3 Definition of research problem

	2 .
	2.1 Heterogeneous shapes data resources
	2.2 Toward shape modeling by reusing heterogeneous data
	2.2.1 Traditional modeling and representation
	Geometric elements
	modelling and representation approaches
	Declarative and semantic based modelling

	2.2.2 Modeling with heterogeneous data
	Point cloud and hybrid geometry meshing
	 Image-based modeling
	2D images considered as textures of 3D images
	2D planar surfaces used in virtual environment
	Text with 2D and 3D shapes

	2.3 Brief introduction to shape description and useful shape descriptors
	Shape skeleton
	Reeb graph
	bounding box

	2.4 A multi-layered shape understanding paradigm
	2.5 Modeling tools
	2.6 Conclusion and remarks

	- Part B: Contribution -
	3 .
	3.1 Introduction
	3.2 An Industry example: Lookx
	3.2.1 Description
	3.2.2 Analysis

	3.3 Two projects related to this Ph.D. subject
	3.3.1 The VISIONAIR45F project
	3.3.2 The Co-DIVE project
	Project description
	Proposed approach

	3.4 Purpose of this Ph.D.
	3.5 Conclusion and remarks

	4 .
	4.1 GSDM – A multi-layered framework
	4.2 Data level (Geometry, Structure and Semantics)
	4.2.1 Geometry
	Definition
	Purpose:
	Properties
	Data structure in UML

	4.2.2 Structure
	Definitions
	Purpose
	Properties
	Data structure in UML

	4.2.3 Semantics
	Definition
	Purpose
	Properties
	Data structure in UML

	4.3 Conceptual level (Component, Group and Relation)
	4.3.1 Component
	Definition
	Purpose
	Properties
	Data structure in UML

	4.3.2 Group
	Definition
	Purpose
	Properties
	Data structure in UML

	4.3.3 Relation
	Definition
	Purpose
	Intent of relation
	Properties
	Data structure in UML

	4.4 Intermediate level (Key Entity and Constraint)
	4.4.1 Basics
	PURPOSE of scaling
	Location of components
	Transform between local and global spaces

	4.4.2 Key entity
	Definition
	Purpose
	Type of Key Entity
	Mathematical specification
	Properties
	Data structure in UML

	4.4.3 Constraint
	Definition
	Purpose
	Mathematical specification
	Properties
	Data structure in UML

	4.5 General overview
	4.6 Conclusion and remarks

	5 .
	5.1 Workflow of the modeling process with GSDM
	5.2 Working at the conceptual level
	5.2.1 Creation of components
	5.2.2 Make groups and relations

	5.3 Working with the intermediate level
	5.3.1 Automatic identification of key entities
	5.3.2 Automatic selection of the type of constraint and assign it to the right relation
	5.3.3 Specification of key entities

	5.4 Constraint Verification
	5.4.1 Introduction to numerical optimization
	5.4.2 Specification of the objective function
	Positioning
	Rotation
	Scaling

	5.5 Conclusion and remarks

	6 .
	6.1 The adopted development environment
	6.2 Overview of the implementation
	6.2.1 Overview of the user interface
	6.2.2 Visualization of heterogeneous data
	6.2.3 Manipulation of a component (or group)
	6.2.4 Visualization of Relation and Constraint
	6.2.5 Symbolic representation and graph view of GSDM
	6.2.6 CSP solving

	6.3 Examples created using the implemented approach
	6.3.1 Example one: Crazy chair
	6.3.2 Example two: Assembly scanned pieces
	6.3.3 Example three: power plant configuration

	6.4 Conclusion and remarks

	Synthesis, conclusions and perspectives
	References

