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Chapter 1

Introduction and overview of the
results

This thesis focuses on two areas of statistics: Aggregation of estimators and shape
restricted regression. The goal of this introduction is to provide a motivation for
these statistical problems, to explain how these two areas are connected and to give
an overview of the results derived in the next chapters.

1.1 Aggregation of estimators: Motivating appli-
cations

If several estimators are proposed for the same statistical task, is it possible to
mimic the performance of the best among them? This problem is known as the
model selection type aggregation problem [83]. The definition of an estimator and
of the statistical task can vary. Two statistical tasks will be studied in this thesis:
density estimation and regression with fixed design. We first provide some examples
and motivating applications.

1.1.1 Density estimation

For the density estimation problem, the goal is to estimate an unknown density f
from i.i.d. observations that are drawn from f . For simplicity, in this introduction
we focus on the univariate setting where f is absolutely continuous with respect to
the Lebesgue measure on R. To be more precise, f : R→ [0,+∞) is a measurable
function with

∫
R f(x)dx = 1 and we observe N i.i.d. random variables X1, ..., XN

that are drawn from f . We measure the estimation error with the integrated square
risk: If f̂ is an estimator of f based on the data X1, ..., XN , the estimation error of
f̂ is given by ∫

R

(
f̂(x)− f(x)

)2
dx.

Let M ≥ 2 be an integer. Assume that we are given M estimators f̂1, ..., f̂M based
on X1, ..., XN . The estimators f̂1, ..., f̂M are referred to as the preliminary estimators
and the set {f̂1, ..., f̂M} is sometimes called the dictionary. Our goal is to mimic the
performance of the best estimator in the dictionary, and to construct a new estimator
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or aggregate f̂ such that

E
∫
R

(
f̂(x)− f(x)

)2
dx ≤ C min

j=1,...,M
E
∫
R

(
f̂j(x)− f(x)

)2
dx+ δN,M , (1.1)

where C ≥ 1 is a constant and δN,M ≥ 0 is a small quantity. The inequality (1.1)
formalizes that the expected squared error of f̂ should be smaller, up to constants,
than the minimal expected squared error of the estimators in the dictionary.

Sample splitting in density estimation

We now explain a general methodology to construct an aggregate f̂ so that (1.1)
holds. This methodology is based on sample splitting and reduces the problem of
aggregation of estimators to that of aggregation of deterministic functions. Let n ≥ 1
be an integer such that n < N . A simple sample splitting scheme is as follows.

1. Split the data into two samples, {X1, ..., Xn} and {Xn+1, .., XN}.

2. Using the sample {Xn+1, ..., XN}, construct preliminary estimators {f̂1, ..., f̂M}.

3. Aggregate these preliminary estimators using the untouched sample {X1, ..., Xn}.

Conditionally on Xn+1, ..., XN , the preliminary estimators {f̂1, ..., f̂M} can be con-
sidered as frozen. Hence, for the third step above – the aggregation step – one may
use procedures that aggregate deterministic functions.

Aggregation of deterministic functions. Some of the literature on aggregation
problems and Chapter 2 of the present thesis consider the problem of aggregation
of deterministic functions instead of the problem of aggregation of estimators. We
now explain how a result on aggregation of functions yield a result on aggregation of
estimators.

Let f1, ..., fM : R→ R be deterministic functions. For all θ = (θ1, ..., θM )T ∈ RM ,
let fθ = ∑M

j=1 θjfj. Consider the estimator fθ̂ where θ̂ = θ̂(X1, ..., Xn, f1, ..., fM)
is an estimator valued in RM and based on the observations X1, ..., Xn and the
functions f1, ..., fM . It is proved in [89] that if

θ̂ = θ̂(X1, ..., Xn, f1, ..., fM) ∈ argmin
θ∈RM

(∫
R
fθ(x)2dx− 2

n

n∑
i=1

fθ(Xi)
)
, (1.2)

then the following oracle inequality holds

En
∫
R

(fθ̂(x)− f(x))2 dx ≤ min
j=1,...,M

∫
R

(fj(x)− f(x))2 dx+ M |f |∞
n

, (1.3)

where the expectation is taken with respect to X1, ..., Xn and θ̂ is defined in (1.2).
We show in Chapter 2 that fθ̂ is an empirical risk minimizer over the linear span of
{f1, ..., fM}. Another example of an aggregate of deterministic functions is given by
fθ̂ where

θ̂ = θ̂(X1, ..., Xn, f1, ..., fM) ∈ argmin
θ∈{e1,...,eM}

(∫
R
fθ(x)2dx− 2

n

n∑
i=1

fθ(Xi)
)
, (1.4)
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where {e1, ..., eM} is the canonical basis in RM . In Chapter 2, it is proved that this
aggregate (1.4) satisfies

En
∫
R

(fθ̂(x)− f(x))2 dx ≤ min
j=1,...,M

∫
R

(fj(x)− f(x))2 dx+ c max
j=1,...,M

|fj|∞

√
log(M)
n

for some numerical constant c > 0. In Chapter 2, we study another aggregate defined
by

θ̂ = θ̂(X1, ..., Xn, f1, ..., fM) ∈ argmin
θ∈ΛM

(∫
R
fθ(x)2dx− 2

n

n∑
i=1

fθ(Xi) + 1
2pen(θ)

)
,

(1.5)
where pen(·) is a well-chosen penalty function and ΛM is the simplex in RM . It is
proved in Chapter 2 that the estimator (1.5) satisfies

En
∫
R

(fθ̂(x)− f(x))2 dx ≤ min
j=1,...,M

∫
R

(fj(x)− f(x))2 dx

+ c
(
|f |∞ + max

j=1,...,M
|fj|∞

) log(M)
n

for some numerical constant c > 0.
The aggregates fθ̂ with the choices θ̂ = θ̂(X1, ..., Xn, f1, ..., fM) given in (1.2),

(1.4) or (1.5) are three different estimators that aggregate the deterministic functions
f1, ..., fM using the observations X1, ..., Xn. These aggregates satisfy an oracle
inequality of the form

En
∫
R

(fθ̂(x)− f(x))2 dx ≤ min
j=1,...,M

∫
R

(fj(x)− f(x))2 dx+ δn,M , (1.6)

where En denotes the expectation with respect to the observations X1, ..., Xn and
δn,M > 0 is a deterministic quantity.

In general, it is impossible to construct an estimator f̂ that satisfies (1.6) with
δn,M = 0 over large classes of unknown densities. Such impossibility results can be
proved using information theoretic lower bounds such as Le Cam’s inequality, Fano’s
Lemma, Assouad’s Lemma and their variants, cf. [99, Chapter 2] for an overview
of these methods and their application to statistical lower bounds. We prove such
lower bounds in Chapter 2. Such impossibility results may be surprising at first.
It means that there is an unavoidable error term to pay if one wants to mimic the
performance of the best function in a dictionary of M deterministic functions. This
unavoidable error term can be thought of as the price to pay for aggregation of the
deterministic functions. In the past fifteen years, a line of research has focused on
characterizing the optimal price to pay for aggregation in several settings.

From aggregation of deterministic functions to aggregation of estimators.
With the notation defined above, an aggregation scheme that uses sample splitting

is as follows.

1. Split the data into two samples, {X1, ..., Xn} and {Xn+1, .., XN}.

2. Using the sample {Xn+1, ..., XN}, construct preliminary estimators {f̂1, ..., f̂M}.
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3. Aggregate these preliminary estimators using the untouched sample {X1, ..., Xn}
by setting f̂ = ∑M

j=1 θ̂j f̂j where θ̂ = θ̂(X, ..., Xn, f̂1, ..., f̂M ) is one of the proce-
dures (1.2)-(1.4)-(1.5).

By conditioning on the first sample {Xn+1, ..., XN}, the aggregation result for deter-
ministic functions (1.6) implies that

E
∫
R

(
f̂ − f(x)

)2
dx ≤ min

j=1,...,M
EN−n

∫
R

(
f̂j(x)− f(x)

)2
dx+ δn,M ,

where E denotes the expectation with respect to the complete sample

{X1, ..., Xn, Xn+1, ..., XN},

and EN−n denotes the expectation with respect to the sample {Xn+1, ..., XN} used to
construct the preliminary estimators. Note that in the above display, EN−n may be
replaced by E since f̂j is independent from {X1, ..., Xn}. Thus, data-splitting always
allows us to reduce the problem of aggregation of estimators to that of aggregation of
deterministic functions. We now explore two outcomes of this data-splitting strategy.

Sobolev ellipsoids and adaptation to the smoothness

For all integer β ≥ 1 and positive number L > 0, define the set S(β, L) as the
set of all densities f : R→ [0,∞) with

∫
R f(x)dx = 1 such that f is (β − 1)-times

differentiable, its derivative f (β−1) is absolutely continuous and
∫
R

(
f (β)(x)

)2
dx ≤ L2.

Consider i.i.d. observations X1, ..., XN drawn from an unknown density f . For
any fixed integer β, there exists a kernel estimator f̂β based on the observations
X1, ..., XN such that

if f ∈ S(β, L) then
∫
R
(f̂β(x)− f(x))2dx ≤ C(β, L)N−

2β
2β+1

for some constant C(β, L) that is independent of N . The smoothness β of the
unknown density is not known in practice and a natural question is that of adaptation
to β. That is, without the knowledge of β, we would like to construct an estimator
f̂ such that ∫

R
(f̂(x)− f(x))2dx ≤ C ′(β, L)N−

2β
2β+1

for all β ≥ 1 and L > 0 such that f ∈ S(β, L) for some constant C ′(β, L).
A natural solution to this problem is to construct an aggregate f̂ that is nearly

as good as any of the estimators {f̂β, β = 1, ..., βmaxN } for some value βmaxN such that
βmaxN → +∞ as N → +∞.

A precise construction of such aggregate f̂ is as follows. Let βmax = M = dlogNe.
Assume that N is even and let n = N/2. With the observations Xn+1, ..., XN ,
we construct preliminary estimators f̂1, ..., f̂M such that for each j = 1, ...,M , the
estimator f̂j satisfies that

if f ∈ S(j, L) then
∫
R
(f̂j(x)− f(x))2dx ≤ C(j, L)n−

2j
2j+1 . (1.7)

Then, we construct the aggregate f̂ = ∑M
j=1 θ̂j f̂j where θ̂ = θ̂(X1, ..., Xn, f̂1, ..., f̂M)

is defined in (1.2). If f ∈ S(β∗, L) for some unknown constant β∗ and N is large
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enough so that M ≥ β∗, by (1.3) and (1.7) we have simultaneously

E
∫
R

(
f̂(x)− f(x)

)2
dx ≤ min

j=1,...,M
E
∫
R

(
f̂j(x)− f(x)

)2
dx+ |f |∞M

n
, (1.8)

and as f ∈ S(β∗, L), E
∫
R

(
f̂β∗(x)− f(x)

)2
dx ≤ C(β∗, L)n−

2β∗
2β∗+1 .

(1.9)

By combining these two inequalities, we obtain

E
∫
R

(
f̂(x)− f(x)

)2
dx ≤ C(β∗, L)n−

2β∗
2β∗+1 + dlogNe|f |∞

n
.

As n = N/2 and log(N)/n = o(N−
2β∗

2β∗+1 ), this yields

E
∫
R

(
f̂(x)− f(x)

)2
dx ≤ C ′(β∗, L)N−

2β∗
2β∗+1

where C ′(β∗, L) is a constant independent of N . This simple adaptivity result can
be extended and improved in two directions. First, it is also possible to define the
Sobolev class S(β, L) for any positive real number β [99, see page 25-26]. A similar
scheme to achieve adaptation in this context is derived in [89, Section 6]. We have
restricted the presentation to β ∈ {1, 2, 3, ...} for simplicity.

Second, in the procedure presented above, N is even and we have performed
an even split of the data. The observations {XN/2+1, ..., XN} are used to construct
preliminary estimators while the observations {X1, ..., XN/2} are use to aggregate
these preliminary estimators. Instead of using an even split of the data, the size of
these two samples can be optimized to reduce the asymptotic constant C ′(β∗, L), cf.
[89, Sections 5].

Nearly as good as the kernel estimator with optimal bandwidth

Consider the sinc kernel

K(u) = sin(πu)
πu

, u ∈ R. (1.10)

Given a bandwidth h > 0, a natural estimator of the unknown density f is the kernel
estimator

f̂N,h(x) = 1
Nh

N∑
i=1

K
(
Xi − x
h

)
, x ∈ R. (1.11)

Kernel estimators perform well in practice if the bandwidth h > 0 is chosen properly.
That is, for a density f , there exists an unknown bandwidth h∗ such that the
integrated squared risk E

∫
R(f̂N,h∗(x) − f(x))2dx is small. A legitimate goal is to

mimic the performance of the best among these kernel estimators. It means that we
would like to construct an estimator f̂ such that

E
∫
R
(f̂(x)− f(x))2dx ≤ C min

h>0
E
∫
R
(f̂N,h(x)− f(x))2dx+ δ,

for some constants C ≥ 1 and δ > 0. This point of view is different from the one of the
previous subsection where one assumes that the true density belongs to a smoothness
class – such as the Sobolev ellipsoid S(β, L) defined above – and uses the minimax

11



risk over this smoothness class as a benchmark. Here, no smoothness assumption is
made on the true density f and the benchmark is minh>0 E

∫
R(f̂N,h(x)− f(x))2dx,

which characterizes the performance of kernel estimator with the optimal bandwidth.
The following inequality (1.12) is a particular case of [89, Theorem 5.1], specialized
to the sinc kernel. If K(·) is the sinc kernel (1.10), there exists an aggregate f̂ that
satisfies

E
∫
R
(f̂(x)− f(x))2dx ≤

(
1 + c

logN

)
min
h>0

E
∫
R
(f̂N,h(x)− f(x))2dx

+ c(logN)3

N
(1.12)

for all N ≥ N0, where c > 0 is a numerical constant and N0 is an integer that
depends only on |f |∞ and

∫
RK(u)2du. This shows that the aggregate f̂ is nearly as

good as the best kernel estimator of the form (1.10).
The construction of the aggregate f̂ also relies on sample splitting and the

aggregation result for deterministic functions (1.3), with an additional averaging
step, cf. [89, Section 4 and 5] for more details about this construction.

From structural or smoothness assumption to oracle behavior

In this thesis, we focus on the approach based on oracle inequalities such as (1.1)
or (1.12). Instead of making strong smoothness or structural assumptions on the
unknown density f , a dictionary of estimators is given, and the goal is to construct
a new estimator that is nearly as good as any estimator in the dictionary. Being
nearly as good as any estimator in the dictionary is an oracle behavior. The oracle is
the best estimator in the collection, and the goal is to construct an estimator whose
performance is close to that of the oracle.

In the literature on aggregation problems, this problem is known as the model
selection type aggregation problem. This problem can also be stated using benchmarks.
We are given a benchmark, say minj=1,...,M E

∫
R

(
f̂j(x)− f(x)

)2
dx, and the goal is

to construct a new estimator f̂ that is nearly as good as the given benchmark, as in
(1.1). This oracle or benchmark approach allows us to study aggregation procedures
under minimal assumptions on the preliminary estimators and the unknown density
f . For instance, the oracle inequalities satisfied by the estimators (1.2), (1.4) or (1.5)
or the results of Chapter 2 hold under the assumption that |f |∞ is bounded from
above by a constant, but under no other smoothness or structural assumption on the
true density f . Hence, the oracle inequalities (1.1)-(1.12) contrast with traditional
statistical results where one assumes that the true density has a particular smoothness
or structure.

It is also possible to consider infinite collections of estimators, such as the collection
{f̂N,h, h > 0} that appears on the right hand side of (1.12). Here, the benchmark is
minh>0 E

∫
R(f̂N,h(x) − f(x))2dx and the aggregate f̂ in (1.12) is nearly as good as

any kernel estimator constructed with the sinc kernel.

1.1.2 Fixed design regression
A key step in the procedures presented above is the splitting of the data into two
independent samples, where one sample is used to construct preliminary estimators
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and the other sample is used to aggregate these preliminary estimators. We now
turn to fixed design regression. In fixed design regression, splitting the data into
two independent samples is in general problematic, since the observations are not
identically distributed.

Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (1.13)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a subgaussian noise
vector. We observe y = (Y1, ..., Yn)T and we want to estimate µ. The values µi can
be interpreted as the values f(xi) of an unknown regression function f : X → R
at deterministic points x1, ..., xn ∈ X , where X is an abstract set and x1, ..., xn are
known. Then, the equivalent setting is that we observe y along with (x1, . . . , xn)
but the values of xi are of no interest and can be replaced by their indices if we
measure the loss in a discrete norm. Namely, for any u ∈ Rn we consider the scaled
(or empirical) norm ‖ · ‖ defined by

‖u‖2 = 1
n

n∑
i=1

u2
i .

We will measure the error of an estimator µ̂ of µ by the squared distance ‖µ̂− µ‖2.
As the observations (1.13) are not i.i.d., splitting the data into two independent

samples cannot be achieved as simply as in the density estimation setting. If the
noise vector ξ has the n-dimensional Gaussian distribution N (0, σ2In) and the
noise level σ > 0 is known, creating two independent samples is possible using the
following randomization device, known as sample cloning [96, Lemma 2.1]. Let g be
independent of y such that g ∼ N (0, In) and consider

y(1) := y + σg, y(2) := y− σg.

An explicit calculation of the covariance matrix of y(1) and y(2) reveals that these two
random vectors are independent. Furthermore, y(i) −µ has distribution N (0, 2σ2In)
for i = 1, 2. In this case, sample splitting is indeed possible, at the cost of a factor
2 in the variance. Then, as in the previous section, the sample y(1) can be used to
construct preliminary estimators and the sample y(2) can be used to aggregate these
preliminary estimators.

However, the sample cloning device is only available for Gaussian noise with
known covariance matrix. If the noise is not Gaussian, another line of research
studies the possibility of constructing preliminary estimators and aggregating them
with the same data y. The lack of independence between the preliminary estimators
and the data used to aggregate them makes this problem more challenging than
the aggregation problem under independence or the problem of aggregation of
deterministic functions. Chapter 3 solves this problem in the case of linear or affine
estimators. A surprising result is that the price to pay for aggregation is of the
same order as if the preliminary estimators were independent of the data used for
aggregation, i.e., there is no extra cost induced by the lack of independence between
the preliminary estimators and the data used for aggregation. Let A1, ..., AM be
squared matrices of dimension n. For each j = 1, ...,M , we associate to the matrix Aj
the linear estimator µ̂j = Ajy. Chapter 3 suggests an estimator µ̂ = µ̂(y, Aj, ..., AM )
that satisfies

E‖µ̂− µ‖2 ≤ min
j=1,...,M

E‖µ̂j − µ̂‖2 + cσ2 logM
n

, (1.14)
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where c > 0 is a numerical constant, under the only assumption that

max
j=1,...,M

|||Aj|||2 ≤ 1,

where ||| · |||2 denotes the operator norm. Similar guarantees are proved for non-
Gaussian noise in Chapter 3. The estimator µ̂ is the first component of the solution
of the optimization problem

(µ̂, θ̂) ∈ argmin
(u,θ)∈Rn×RM :u=

∑M

j=1 θjµj

‖u− y‖2 +
M∑
j=1

θj

(
2σ2Tr(Aj) + 1

2‖µ̂j − u‖
2
) .
(1.15)

Thus, the construction of µ̂ does not rely on sample splitting.
Before giving an overview of the results derived in the following chapters, let us

describe some applications of aggregation methods in the fixed design regression
setting

Adaptation to the number and location of jumps

Assume that the true mean µ is piecewise constant with k pieces, or equivalently,
that µ has k − 1 jumps. A jump is defined as an integer i ∈ {1, ..., n − 1} such
that µi 6= µi+1. The locations of the jumps are unknown. If the jumps of µ are the
integers i1 < i2 < ... < ik−1, then µ belongs to the linear subspace

Vi1,...,ik−1 =
{
u = (u1, ..., un)T ∈ Rn : ui = ui+1 if i /∈ {i1, ..., ik−1}

}
.

A good random approximation of µ is the projection of y onto the linear space
Vi1,...,ik−1 . This subspace has dimension k and if Pi1,...,ik−1 is the orthogonal projector
onto this subspace, then a standard bias-variance decomposition yields

E‖µ− Pi1,...,ik−1y‖2 = min
v∈Vi1,...,ik−1

‖v − µ‖2 + σ2k

n
.

The first term on the right hand side vanishes if the true mean µ has not more
than k − 1 jumps and belongs to Vi1,...,ik−1 . As the locations of the jumps of µ are
unknown, the random variable Pi1,...,ik−1y is not an estimator but an oracle. It is not
accessible and can only serve as a benchmark.

Using the procedure µ̂ of (1.14) as a building block, we will construct in Chapter 5
an estimator that satisfies a similar oracle inequality up to logarithmic factors.
The performance of this estimator µ̂ matches the performance of the oracle up to
logarithmic factors. In the case where the number of jumps k is known, such an
estimator can be constructed as follows. We aggregate the linear estimators Pi1,...,ik−1

for all possible values of {i1, ..., ik}, that is, we constructM :=
(
n−1
k−1

)
linear estimators

of the form Pi1,...,ik−1 and use the procedure µ̂ of (1.14) to aggregate them. Thus,
we have

E‖µ̂− µ‖2 ≤ min
1≤i1<...<ik−1≤n

E‖µ− Pi1,...,ik−1y‖2 + cσ2 logM
n

, (1.16)

and ∀i1 < ... < ik−1 E‖µ− Pi1,...,ik−1y‖2 = min
v∈Vi1,...,ik−1

‖v − µ‖2 + σ2k

n
.

(1.17)
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For any u ∈ Rn, let k(u) ∈ {1, ..., n} be the integer such that k(u)− 1 is the number
of jumps of u. The integer k(u) is also the smallest integer l such that u is piecewise
constant with l pieces. Define the class

Ck = {µ ∈ Rn : µ has at most k − 1 jumps } = {µ ∈ Rn : k(µ) ≤ k},

where k = 1, ..., n is a fixed parameter. By observing that for any function H : Rn →
R,

min
v∈Ck

H(v) = min
1≤i1<...<ik−1≤n

min
v∈Vi1,...,ik−1

H(v),

we can combine the oracle inequalities (1.16)-(1.17) and the fact that logM ≤
k log(en/k) to obtain

E‖µ̂− µ‖2 ≤ min
v∈Ck
‖v − µ‖2 + (c+ 1)σ2k log(en/k)/n.

The first term on the right hand side vanishes if the true mean µ has not more than
k − 1 jumps, and in this case E‖µ̂− µ‖2 ≤ (c+ 1)σ2 log(en/k)/n. In Chapter 5, we
show that this risk bound is minimax optimal up to logarithmic factors over the
class Ck. Furthermore, the above construction will be refined in Chapter 5 so that
the knowledge of k is not needed to construct the estimator.

Combining the oracle inequality (1.16) and the risk bound (1.17) is an example
of a general device used to obtain risk bounds and oracle inequalities in several
contexts [92, 93, 93, 14, 96]. The aggregate µ̂ in (1.14) inherits the smallest risk
bound among the estimators µ̂1, ..., µ̂M , up to the additive error term cσ2 logM

n
which

can be interpreted as the price to pay for aggregation of the M linear estimators
µ̂1, ..., µ̂M .

In Chapter 6, we study a similar problem under an additional monotonicity
constraint. An outcome of Chapter 6 is that we characterize the minimax rate up to
logarithmic factor over the class S↑n ∪ S↓n, where

S↑n := {u = (u1, ..., un)T ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1} (1.18)
is the set of nondecreasing sequences and S↓n = −S↑n is the set of non-increasing
sequences. Let µ̂ls(K) = argminv∈K ‖y− v‖2 be the Least Squares Estimator over
K for any set K ⊂ Rn and define the estimator µ̂ as the first component of the
solution of the optimization problem

(µ̂, θ̂↑, θ̂↓) ∈ argmin
(u,θ↑,θ↓)∈Rn×R×R : u=θ↑µ̂ls(S↑n)+θ↓µ̂ls(S↓n)

H(u, θ↑, θ↓),

where H(u, θ↑, θ↓) = ‖u− y‖2 + 1
2
(
θ̂↑‖µ̂ls(S↑n)− u‖2 + θ̂↓‖µ̂ls(S↓n)− u‖2

)
.

The estimator µ̂ aggregates the Least Squares estimators µ̂ls(S↑n) and µ̂ls(S↓n). We
will prove in Chapters 5 and 6 that for any k0 ∈ {1, ..., n} and for all µ ∈ S↑n ∪ S↓n,

E‖µ̂− µ‖2 ≤ min
K∈{S↑n,S↓n}

E‖µ̂ls(K)− µ‖2 + 4σ2 log(en)
n

, (1.19)

∀K ∈ {S↑n,S↓n}, E‖µ̂ls(K)− µ‖2 ≤ min
u∈K
‖u− µ‖2 +

σ2k(u) log en
k(u)

n
(1.20)

∃u ∈ S↑n ∪ S↓n : k(u) = k0 and ‖u− µ‖2 ≤ V 2

k2
0
, (1.21)
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where V = |µn−µ1| is the total variation of µ. The oracle inequality (1.19) describes
the aggregation property of the aggregate µ̂, (1.20) bounds from above the risk of
the estimators µ̂ls(S↑n) and µ̂ls(S↓n), while (1.21) is a deterministic approximation
result. Combining (1.19)-(1.20)-(1.21) with k0 = d(V/σ)2/3n1/3e, we obtain that

E‖µ̂− µ‖2 ≤ cσ2 log(en)
((

V

σn

)2/3
+ 1
n

)

for some numerical constant c > 0. In Chapters 5 and 6, we show that this rate is
minimax optimal up to logarithmic factors.

Screening in high-dimensional statistics

A similar strategy was used in the context of high-dimensional linear regression to
obtain sparsity oracle inequalities [37, 34, 92, 93]. This technique is often referred to
as sparsity pattern aggregation or exponential screening, and it leads to prediction
guarantees that improve upon the prediction bounds satisfied by `1-regularized
estimators such as the Lasso and the Dantzig selector, cf. [92, 93] or Chapter 3 below.
Oracle inequalities such as (1.14) above are used as building blocks to obtain such
results.

Consider a design matrix X ∈ Rn×p with p columns, and let s ∈ {1, ..., p} be a
fixed parameter. For any J ⊆ {1, ..., p}, let PJ ∈ Rn×n be the orthogonal projector
onto the linear span of the columns of X whose indices belong to J . Let

J = {J ⊆ {1, ..., p} : |J | = s and rankPJ = s} , M = |J |.

Define the collection of linear estimators (µ̂j)j=1,...,M as the collection (PJy)J∈J and
let µ̂ be the estimator that aggregates the linear estimators (µ̂j)j=1,...,M so that (1.14)
holds. Then we have simultaneously

E‖µ̂− µ‖2 ≤ min
J∈J

E‖PJy− µ̂‖2 + cσ2 logM
n

, (1.22)

for all J ∈ J , E‖PJy− µ̂‖2 = min
β∈Rp:βj=0 if j /∈J

‖Xβ − µ‖2 + σ2s

n
, (1.23)

where the second line follows from a simple orthogonal decomposition and the fact
that rankPJ = s. Combining the oracle inequalities (1.22)-(1.23) and the fact that
logM ≤ s log(ep/s), we obtain

E‖µ̂− µ‖2 ≤ min
β∈Rp:|β|0≤s

‖Xβ − µ‖2 + (c+ 1)σ2s log(ep/s)
n

, (1.24)

since minJ∈J minβ∈Rp:βj=0 if j /∈J = minβ∈Rp:|β|0≤s. Here, |β|0 denotes the number
of nonzero coefficients of any β ∈ Rp. Inequality (1.24) is called a sharp oracle
inequality or a regret bound, since the constant in front of minβ∈Rp:|β|0≤s ‖Xβ − µ‖2

is 1. Chapter 5 defines a related quantity, the minimax regret, and discusses the
optimality of such regret bounds in a minimax sense. For some design matrices and
most values of the parameters s, σ2, n and p, the regret bound (1.24) is optimal in a
minimax sense over the class {Xβ : |β|0 ≤ s}, cf. [92].
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Adaptation to the smoothness

The sharp oracle inequality (1.14) provides a general strategy to prove adaptivity
results with asymptotically exact minimax constant. Consider the regression setting
(1.13) with

µi = f(i/n), i = 1, ..., n,
where f : [0, 1]→ R is an unknown function. We will write µf = (f(1/n), ..., f(n/n))T
to emphasize the dependence on f . For any positive integer β ∈ {1, 2, ...}, consider
the Sobolev class

W (β, L) =
{
f : [0, 1]→ R : f (β−1) is abs. continuous and

∫
[0,1]

f (β)(x)2dx ≤ L

}
.

For any β ∈ {1, 2, ...} and any n ≥ 1, there exists a squared matrix Aβ ∈ Rn×n that
depends on β such that

if f ∈ W (β, L) then E‖µf − Aβy‖2 ≤ (1 + ρn)C∗(β, L)n−
2β

2β+1 , (1.25)

where ρn is a quantity that tends to 0 as n goes to infinity, and the constant C∗(β, L)
is the asymptotically exact minimax constant. The asymptotically exact minimax
constant satisfies

n
2β

2β+1 inf
µ̂

sup
f∈W (β,L)

E‖µf − µ̂‖2 → C∗(β, L) as n→ +∞,

where the infimum on the left hand side is taken over all estimators. Such matrices
Aβ are given, for instance, by the Pinsker filters and (1.25) is Pinsker’s theorem [99,
Theorem 3.2].

Adaptation with respect to β is obtained in a similar fashion as in Section 1.1.1.
The main difference is that here, data-splitting is not necessary since the aggregation
result (1.14) allows us to aggregate the collection of estimators (Aβy)β=1,...,M with
the same data as that used to construct these estimators. As a result, we obtain
an adaptation result with the asymptotically exact minimax constant. Indeed,
let M = n and consider the estimator µ̂ that aggregates the linear estimators
(µ̂j)j=1,...,M = (Aβy)β=1,...,M so that (1.14) holds. Inequalities (1.25) and (1.14) can
be rewritten as

E‖µ̂− µf‖2 ≤ min
β=1,...,M

E‖Aβy− µf‖2 + cσ2 logM
n

, (1.26)

if f ∈ W (β, L), E‖Aβy− µf‖2 ≤ (1 + ρn)C∗(β, L)n−
2β

2β+1 . (1.27)

If f ∈ W (β∗, L) for some unknown β∗ ∈ {1, 2, ...}, by combining (1.26)-(1.27) we
obtain that for all n ≥ β∗,

E‖µ̂− µf‖2 ≤ (1 + ρn)C∗(β∗, L)n−
2β∗

2β∗+1 + cσ2 log n
n

,

= (1 + ρn + δn)C∗(β∗, L)n−
2β∗

2β∗+1 ,

where δn is a sequence that tends to 0 as n goes to infinity. Thus, the aggregate µ̂
achieves adaptation with the asymptotically exact minimax constant.

The Sobolev class W (β, L) can be defined for continuous values of β (cf. [99,
Definition 2.12]) and if β ∈ (0,+∞), (1.25) still holds for a matrix Aβ that depends

17



only on n and β. In Chapter 3, we extend the construction of the previous paragraph
to the case {β ∈ [1,+∞)}. Here is an outline of this construction. Let M ≥ 2 and
1 = β1 < β2 < ... < βM be quantities that only depend on n such that

βM → +∞ as n→ +∞ and ∀j = 1, ...,M−1, n
−

2βj
2βj+1 ≤ (1+an)n−

2βj+1
2βj+1+1 ,

(1.28)
where an is a sequence that depends only on n and that tends to 0 as n goes to
infinity. Let µ̂ be the aggregate (1.15) where (µ̂j)j=1,...,M = (Aβjy)j=1,...,M so that
(1.14) holds. Then we have

E‖µ̂− µf‖2 ≤ min
j=1,...,M

E‖Aβjy− µf‖2 + cσ2 logM
n

, (1.29)

if f ∈ W (βj, L), E‖Aβjy− µf‖2 ≤ (1 + ρn)C∗(β, L)n−
2βj

2βj+1 , (1.30)

if βj ≤ β∗ < βj+1 then n
−

2βj
2βj+1 ≤ (1 + an)n−

2βj+1
2βj+1+1 ≤ (1 + an)n−

2β∗
2β∗+1 . (1.31)

Assume that f ∈ W (β∗, L) for some unknown β∗ ∈ [1,+∞). By combining (1.29)-
(1.30)-(1.31), we obtain that for n large enough (so that β∗ < βM), we have

E‖µ̂− µf‖2 ≤ (1 + ρn)(1 + an)C∗(β, L)n−
2β∗

2β∗+1 + cσ2 log n
n

,

= (1 + ρn + an + ρnan + δn)C∗(β∗, L)n−
2β∗

2β∗+1 ,

where ρn, an, δn tend to 0 as n goes to infinity and their roles are as follows:

• δn represents the price paid for aggregation,

• (1 + ρn) is the ratio between the risk of the estimator Aβy and the minimax
oracle when f ∈ W (β, L),

• an controls that the grid {β1, ..., βM} is thin enough.

Thus, if we can find a grid β1 < ... < βM such that (1.28) holds, the estimator µ̂
achieves adaptation over {β ∈ [1,+∞)} with the asymptotically exact minimax
constant. An example of a grid satisfying (1.28) is given in Chapter 3.

Dalalyan and Salmon [35] proposed a different approach to achieve a similar goal
using the Exponential Weights aggregate.

1.1.3 Oracle inequalities as building blocks
We have presented several applications of the aggregation results derived in the
present thesis. In the previous subsections, we emphasized that oracle inequalities
may be thought of as “building blocks” in order to obtain statistical results in several
settings.

• In density estimation, the oracle inequality (1.8) and the risk bound (1.9) were
combined to obtain an adaptivity result with respect to Sobolev classes indexed
by integer parameters.

• The oracle inequalities (1.16) and (1.17) were combined to achieve adaptation
with respect to the location of jumps in isotonic regression.
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• The oracle inequalities (1.19), the risk bound (1.20) and the approximation
(1.21) were combined to achieve the nonparametric rate n−2/3 is isotonic re-
gression where the direction of monotonicity is unknown.

• The oracle inequalities (1.22) and (1.23) were combined to obtain the sparsity
oracle inequality (1.24) in high-dimensional linear regression.

• The oracle inequalities (1.26) and (1.27) were combined to achieve adaptation
with respect to a discrete family of Sobolev ellipsoids.

• Finally, the oracle inequality (1.29), the risk bound (1.30) and the grid ap-
proximation (1.31) were combined to achieve adaptation with respect to a
continuous family of Sobolev ellipsoids.

This general idea was used to obtain many results in the past decade. An impressive
outcome of this method lies in high-dimensional statistics [92, 93, 96] where the
resulting sparsity oracle inequality improves substantially upon the sparsity oracle
inequalities satisfied by `1-regularized methods such as the Lasso and the Dantzig
selector.

1.2 Overview of the results

1.2.1 A penalized procedure over the simplex
Consider a Hilbert space H with a norm ‖ · ‖H. Let h∗ ∈ H be some ground truth
that we would like to estimate. Assume that there is some empirical criterion Rn(·),
such that for all h ∈ H,

E[Rn(h)] = ‖h− h∗‖2
H.

Then it is natural to use Rn in order to estimate h∗ from the data, for instance by
minimizing the data-driven criterion Rn over H or over a subset of H. One may also
minimize the sum of the criterion Rn plus an additive penalty in order to achieve
some kind of regularization.

Let h1, ..., hM be elements of H. Our goal is to mimic the performance of the
best element in {h1, ..., hM}. Ideally, we are looking for an estimator ĥ such that

E‖ĥ− h∗‖2
H ≤ min

j=1,...,M
‖hj − h∗‖2

H + δn,M , (1.32)

where δn,M is some small quantity. Chapters 2 and 3 study this problem. For all
θ = (θ1, ..., θM)T ∈ RM , define hθ = ∑M

j=1 θjhj. A central object of these chapters is
the penalty

pen(θ) =
M∑
j=1

θj‖hj − hθ‖2
H, θ = (θ1, ..., θM)T ∈ ΛM (1.33)

where ΛM is the simplex in RM . An estimator is constructed by minimizing the
penalized empirical criterion as follows. Let

θ̂ ∈ argmin
θ∈ΛM

(
Rn(hθ) + 1

2pen(θ)
)
, (1.34)

and define the estimator ĥ by ĥ = hθ̂. Chapters 2 and 3 prove that this estimator
satisfies (1.32) for a quantity δn,M of order log(M)/n in several settings.
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Aggregation of deterministic vectors in fixed design regression. Here, let
H = Rn and consider the regression model (1.13). We observe y and the goal is to
estimate µ = E[y]. For any deterministic vector b ∈ Rn, the sum of squares criterion
provides an unbiased estimate of the risk. Indeed, for all b ∈ Rn we have

E[‖y− b‖2] = ‖µ− b‖2 +
(
E‖y‖2 − ‖µ‖2

)
and the term (E‖y‖2 − ‖µ‖2) is independent of b. Let b1, ..., bM be deterministic
vectors in Rn and let bθ = ∑M

j=1 θjbj for all θ = (θ1, ..., θM)T ∈ RM . Here, the
procedure (1.34) becomes

θ̂ ∈ argmin
θ∈ΛM

‖y− bθ‖2 + 1
2

M∑
j=1

θj‖bj − bθ‖2

 .
This procedure satisfies the following oracle inequality [32]. For all x > 0, with
probability greater than 1− e−x we have

‖bθ̂ − µ‖
2 ≤ min

j=1,...,M
‖bj − µ‖2 + 4σ2(x+ logM)

n
.

Thus the estimator bθ̂ mimics the best approximation of µ among {b1, ..., bM}. This
result and the procedure (1.34) first appeared in [32]. It shows that in this setting,
the penalty (1.33) leads to an oracle inequality with an error term of order logM

n
. We

now present similar results in other settings.

Density estimation. Here, H is the set of all measurable functions R→ R and
‖g‖2

H =
∫
R g(x)2dx. Consider an unknown density f on R and let f1, ..., fM be

elements of H. The goal is to estimate f from i.i.d. observations X1, ..., Xn drawn
from f . The abstract criterion (1.34) takes the form

θ̂ ∈ argmin
θ∈ΛM

∫
R
fθ(x)2dx− 2

n

n∑
i=1

fθ(Xi) + 1
2

M∑
j=1

θj

∫
R
(fj(x)− fθ(x))2dx

 ,
where fθ = ∑M

j=1 θjfj. This procedure is studied in Chapter 2, where it is shown
that the oracle inequality∫

R
(fθ̂(x)− f(x))2dx ≤ min

j=1,...,M

∫
R
(fj(x)− f(x))2dx

+ c
(
|f |∞ + max

j=1,...,M
|fj|∞

)
x+ logM

n
(1.35)

holds with probability greater than 1− e−x for all x > 0, where c > 0 is an absolute
constant. The oracle inequality above is the main result of Chapter 2. Several related
results are included in Chapter 2.

• We prove that the tail probabilities of (1.35) are optimal in a minimax sense.

• Define f̂ = argming∈{f1,...,fM}
∫
R g(x)2dx − 2

n

∑n
i=1 g(Xi) as the estimator that

selects the best function in the dictionary {f1, ..., fM} with respect to the
empirical criterion

g →
∫
R
g(x)2dx− 2

n

n∑
i=1

g(Xi).

This estimator f̂ satisfies the oracle inequality (1.1) with δn,M of the order
(log(M)/n)1/2. This procedure satisfies a similar oracle inequality in deviation.
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• Let k̂ be any random variable valued in {1, ...,M} A procedure of the form
fk̂ cannot achieve an oracle inequality of the form (1.1) with an error term
of order log(M)/n. This result is commonly known as the sub-optimality of
selectors.

• The aggregate with exponential weights cannot achieve an oracle inequality of
the form (1.35) with high probability.

In density estimation, our results focus on aggregation of deterministic functions
since it is always possible to split the data into two independent samples, as explained
in Section 1.1.1 above.

Aggregation of linear estimators in fixed design regression. We now come
back to the regression model (1.13) and consider linear estimators µ̂1, ..., µ̂M . For
all j = 1, ...,M the estimator µ̂j has the form Ajy for some deterministic matrix
Aj . The goal is to mimic the performance of the best estimator among {µ̂1, ..., µ̂M}.
The main difference from the two previous paragraphs is that here, the estimators
µ̂1, ..., µ̂M are not deterministic as they clearly depend on the data y.

Now that the estimators to aggregate are random and depend on the data y, the
following important questions arise.

1. Does the price to pay for aggregation increase because of the dependence
between µ̂1, ..., µ̂M and the data y, or is it still of order σ2 log(M/δ)? Is there
an extra price to pay to handle the dependence?

2. A natural quantity that captures the statistical complexity of a given estimator
µ̂j is the variance defined by E‖µ̂j − Eµ̂j‖2. When the estimators are deter-
ministic, their variances are all zero. Now that the estimators are random,
does the price to pay for aggregation depend on the statistical complexities of
the estimators µ̂1, ..., µ̂M , for example through their variances? Is it harder to
aggregate estimators with large statistical complexities?

Chapter 3 investigates these questions. For linear estimators, an unbiased risk
estimate is given by Mallows [73] Cp criterion. For any matrix A, this criterion is
defined as Cp(A) = ‖Ay− y‖2 + 2σ2TrA

n
. Let Aθ = ∑M

j=1 θjAj for all θ ∈ RM . In this
setting, the abstract procedure (1.34) takes the form

θ̂ ∈ argmin
θ∈ΛM

Cp(Aθ) + 1
2

M∑
j=1

θj‖Ajy− Aθy‖2

 . (1.36)

The estimator θ̂ is equal to the second component of (1.15). The main result of
Chapter 3 is that this estimator satisfies with probability greater than 1− e−x the
oracle inequality

‖Aθ̂y− µ‖
2 ≤ min

j=1,...,M
‖Ajy− µ‖2 + cσ2(x+ logM)

n
(1.37)

where c > 0 is an absolute constant, provided that maxj=1,...,M |||Aj|||2 ≤ 1 where
||| · |||2 denotes the operator norm. This result answers the two questions raised above
for linear estimators in the following way.
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1. The dependence between the preliminary estimators and the data y induces
no extra cost for linear estimators. The price to pay for aggregation is still of
order logM

n
.

2. The variances of the linear estimators – or any other measure of their statistical
complexities – have no impact on the price to pay for aggregation.

1.2.2 Mimicking the best Lasso estimator
The estimator (1.36) enjoys the oracle inequality (1.37) in the situation where the
preliminary estimators (µ̂j)j=1,...,M are linear estimators. If a design matrix X is
given, we will explain in Chapter 4 that an estimator related to (1.36) can aggregate
a dictionary of nonlinear estimators, provided that all nonlinear estimators µ̂j in
the dictionary are of the form Xβ̂ for some estimator β̂ valued in Rp. In particular,
Chapter 4 suggests an estimator µ̂ that satisfies

E‖µ̂− µ‖2 ≤ Emin
λ>0

‖Xβ̂l
λ − µ‖2 + cσ2|β̂

l
λ|0

n
log

 ep

|β̂
l
λ|0 ∨ 1

 , (1.38)

where a ∨ b = max(a, b), c > 0 is a numerical constant and where β̂l
λ denotes the

Lasso estimator with design matrix X and tuning parameter λ. This result holds
with no assumption on the design matrix X or on the true mean µ.

Inequality (1.38) above is of the same nature as (1.12) in density estimation.
Instead of assuming a specific structure or regularity of the design matrix or of the
true parameter, the goal is to construct an estimator that is nearly as good as the
best estimator in a given collection. Here, the collection of estimators is (Xβ̂l

λ)λ>0
while in Section 1.1.1, the collection of density estimators is (fN,h)h>0 where fN,h is
the kernel estimator (1.11).

Consider the following problem.

• What are suitable assumptions on the matrix X such that computationally
tractable and consistent estimators of µ = Xβ∗ exist in the situation p� n
and |β∗|0 � n?

This question has been investigated thoroughly in the last decade [78, 17, 61, 24].
The Lasso and the Dantzig selector are two examples of estimators that are compu-
tationally tractable and consistent in a sparse setting. Inequality (1.38) is proved
in Chapter 4, it is the result of another investigation that contrasts with the above
question and the results [78, 17, 61, 24]. Namely, Chapter 4 investigates the following
question.

• With no assumption on the design matrix X, is it possible to construct an
estimator µ̂ that is nearly as good as the best Lasso estimator? That is,
is it possible to construct an estimator µ̂ whose prediction performance is
comparable to the benchmark minλ>0 ‖Xβ̂

l
λ − µ‖2?

1.2.3 Advances in shape restricted regression
The second and third part of the thesis deal with shape restricted regression in the
model (1.13). The two most famous examples of shape restrictions are monotonicity
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and convexity. Isotonic regression is the univariate regression model where the
underlying nonparametric function class is that of all nondecreasing functions, cf.
(1.18). In convex regression, the underlying nonparametric function class is that of
convex functions. These nonparametric classes have two remarkable properties:

• The estimation problem over these nonparametric classes admits nonparametric
minimax rates similar to those obtained for smooth parametric classes such as
Hölder or Sobolev ellipsoids. In the L2 norm, the minimax rate of estimation
over the class of nondecreasing functions is of order n−2/3 while the rate of
estimation over the class of convex functions is of order n−4/5, see Chapters 5
and 6 and the references therein.

• These nonparametric classes enjoy an almost parametric phenomenon similar
to sparsity phenomena in high-dimensional statistics. In high-dimensional
statistics, it is shown that one can estimate an s-sparse vector in the squared
`2-norm at the rate s

n
up to logarithmic factors. In isotonic regression, we show

that it is possible to estimate a piecewise constant nondecreasing function at the
rate k

n
if the unknown nondecreasing function has only k pieces, or equivalently

k−1 jumps. In convex regression, it is possible to estimate a piecewise constant
convex function at the rate q

n
if the unknown convex function is piecewise affine

with at most q pieces, or equivalently with at most q − 1 changes of slope. In
all the cases, we deal with the squared `2-norm.

Sharp oracle inequalities through aggregation. Aggregation methods such as
the procedure studied in Chapter 3 can be used to construct estimators that satisfy
the almost-parametric phenomena mentioned above. Namely, Chapter 5 constructs
an estimator µ̂ such that with probability at least 1− e−x,

‖µ̂− µ‖2 ≤ min
u∈S↑n

‖u− µ‖2 +
cσ2k(u) log

(
en
k(u)

)
n

+ cσ2x

n

 , (1.39)

for all x > 0 and where c > 0 is a numerical constant. In the above display, the
integer k(u) is the smallest integer k ≥ 1 such that u ∈ S↑n is piecewise constant
with k pieces. Similarly, one may define the set of convex sequences by

S∪n = {u = (u1, ..., un)T ∈ Rn : ui−1 + ui+1 ≥ 2ui, i = 2, ..., n− 1}.

Here, the new quantity that characterizes the parametric phenomenon is the number
of affine pieces of the sequence u ∈ S∪n , or equivalently the number of changes of
slope. Let q(u) be the smallest number q ≥ 1 such that u ∈ S∪n is piecewise affine
with q pieces (see Chapters 5 and 6 for a precise definition of the integer q(u)). As
for nondecreasing sequences above, in Chapter 5 we suggest an estimator µ̂′ that
satisfies

‖µ̂′ − µ‖2 ≤ min
u∈S∪n

‖u− µ‖2 +
cσ2q(u) log

(
en
q(u)

)
n

+ cσ2x

n

 , (1.40)

for all x > 0 and another numerical constant c > 0. The estimator µ̂ that satisfies
(1.39) and the estimator µ̂′ are both constructed by aggregating projection estimators,
using an aggregation procedure studied in Chapter 3. Chapter 5 thus establishes
a link between shape restricted regression and the aggregation methods studied in
Chapters 2 and 3.
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Least Squares estimator over convex sets. Obtaining such results using ag-
gregation methods was our initial motivation for studying shape restricted regression.
Chapters 6 and 7 take a closer look at shape restricted regression. These two chapters
focus on the two Least Squares estimators

µ̂ls(S↑n) = argmin
v∈S↑n

‖v − y‖2, µ̂ls(S∪n ) = argmin
v∈S∪n

‖v − y‖2.

We show in Chapter 6 that the Least Squares estimator µ̂ls(S↑n) satisfies a sharp oracle
inequality similar to (1.39), while µ̂ls(S∪n ) satisfies a sharp oracle inequality similar
to (1.40). Oracle inequalities for these two Least Squares estimators were previously
known by Guntuboyina and Sen [50], Chatterjee et al. [27]. Oracle inequalities from
these previous papers have a leading constant strictly greater than 1. Chapter 6
provides general techniques to obtain oracle inequalities with leading constant 1 for
Least Squares estimators over convex sets.

Adaptive confidence sets: is it possible to infer that the rate of estimation
is actually fast? The oracle inequality (1.39) implies that if the true regression
vector µ is nondecreasing with few jumps (i.e., k(µ) is small), then it is possible
to estimate µ at the rate σ2k(µ)

n
up go logarithmic factors. Similarly, the oracle

inequality (1.40) implies that if µ ∈ S∪n is convex with few changes of slope (i.e.,
q(µ) is small), then it is possible to estimate µ at the rate σ2q(µ)

n
up to logarithmic

factors. The values k(µ) or q(µ) are unknown in practice, which raises the following
natural question. In isotonic regression, if µ ∈ S↑n and k(µ) = k0, is it possible to
infer from the data that the rate of estimation is at most of order σ2k0

n
without the

knowledge of k0? This question can be answered by constructing confidence sets. We
show in Chapter 7 that for isotonic and convex regression, it is possible to construct
satisfactory confidence sets, so that it is possible to infer the rate of estimation from
the data.

1.3 Organization of the chapters
The following chapters are self-contained and can be read independently. A short
summary of each chapter and their main contribution is as follows.

• Chapter 2 studies the problem of aggregation of deterministic functions in
density estimation with the L2-loss. The main results of this chapter are the
oracle inequalities given Theorems 2.6 and 2.8 and the lower bounds given in
Theorems 2.1 and 2.9.

• Chapter 3 studies the problem of aggregation of affine and linear estimators in
regression with fixed design. No data splitting is performed. The estimators
depend on the same data as that used for aggregation. The main result of
Chapter 3 is the oracle inequality given in Theorem 3.1.

• In Chapter 4, we construct an estimator that aggregates the Lasso estimators
on the Lasso path. This estimator is nearly as good as the best Lasso estimator,
cf. Theorem 4.3.
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• Chapter 5 links the two areas of statistics studied in the thesis: Aggregation of
estimators and shape restricted regression. Chapter 5 uses aggregation methods
as building blocks to construct rate optimal estimators in shape restricted
regression, cf. the oracle inequalities given in Theorems 5.1 and 5.6 and the
lower bounds given in Propositions 5.4 and 5.7.

• Chapter 6 studies the Least Squares estimator in shape restricted regression.
The main result of Chapter 6 is that the oracle inequalities obtained with
aggregation methods in Chapter 5 are also satisfied for the Least Squares
estimator, cf. Theorems 6.2 and 6.6.

• Finally, in Chapter 7 we construct adaptive confidence sets in the context of
shape restricted regression. Chapters 5 and 6 study estimators that achieve
the minimax rate of estimation on classes of monotone and convex functions.
Chapter 7 proves the existence of confidence sets that capture the true function
with high probability and whose diameter is of order of the minimax rate, cf.
Theorems 7.2, 7.3, 7.9 and 7.11.

1.4 Bibliographic notes
The first results on aggregation in statistical settings appeared in Nemirovski [83],
Catoni [25], Yang [106] and Tsybakov [98]. These early works studied three different
aggregation problem.

• For the model selection type aggregation problem, the goal is to mimic the
best function in the dictionary. Results for this problem were obtained in
[106, 25, 98, 64, 70, 58, 4, 35, 90, 32, 33], Chapters 2 and 3.

• For the convex aggregation problem, the goal is to mimic the best convex
combination of the functions in the dictionary. [98, 89, 90, 96]. Proposition 3.10
in Chapter 3 provides a convex aggregation result for affine estimators.

• For the linear aggregation problem, the goal is to mimic the best function in
the span of the functions in the dictionary [98, 89, 90, 96].

Some more recent papers studied the sparse and sparse-convex aggregation problems,
cf. [71, 92, 93, 96].

This thesis focuses on the model selection type aggregation problem. The
penalized estimator studied in Chapters 2 and 3 is similar to the Q-aggregation
procedure proposed by Rigollet [90] and Dai et al. [32]. Aggregation of affine
estimators using the Q-aggregation procedure was previously studied in Dai et al.
[33].

Aggregation of density estimators with respect to the Kullback-Leibler loss was
studied in [106, 25, 58, 64]. These results hold with no boundedness assumption,
unlike the aggregation problem with respect to the L2 loss where an l∞-bound is
required on the true density to obtain satisfactory results, cf. [89, 58] and Chapter 2.

Leung and Barron [70] derived the first result on aggregation of linear estimators,
where one has to handle the dependence between the estimators in the dictionary and
the data used to aggregate them. These results were later generalized in Dalalyan
and Salmon [35], Dai et al. [33] and in Chapter 3 of the present thesis. To our
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knowledge, Corollary 4.2 in Chapter 4 is the first result on aggregation of nonlinear
estimators where the nonlinear estimators are based on the same data as that used
for aggregation.

The results above hold under a boundedness or subgaussian assumption. Let us
mention the work of Mendelson [79] who recently studied aggregation of functions
with heavy tailed noise. This result weakens the subgaussian assumption required in
the papers mentioned above.

Chapter 5 explains how aggregation methods can be used to derive oracle inequal-
ities in the context of shape restricted regression. In this context, previously obtained
oracle inequalities for the Least Squares estimators can be found in Guntuboyina and
Sen [50], Chatterjee et al. [27] and Chatterjee et al. [28]. These papers first studied
the almost parametric phenomenon that appears if the true regression function has
some low-dimensional property, cf. Chapters 5 and 6 for rigorous results and more
discussion about this almost parametric phenomenon. To our knowledge, Chapter 7
provides the first results on the construction of adaptive confidence sets related to
this almost parametric phenomenon.
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Part I

Aggregation
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Chapter 2

Optimal exponential bounds for
aggregation of density estimators

We consider the problem of model selection type aggregation in the context of density
estimation. We first show that empirical risk minimization is sub-optimal for this
problem and it shares this property with the exponential weights aggregate, empirical
risk minimization over the convex hull of the dictionary functions, and all selectors.
Using a penalty inspired by recent works on the Q-aggregation procedure, we derive
a sharp oracle inequality in deviation under a simple boundedness assumption and
we show that the rate is optimal in a minimax sense. Unlike the procedures based
on exponential weights, this estimator is fully adaptive under the uniform prior. In
particular, its construction does not rely on the sup-norm of the unknown density.
By providing lower bounds with exponential tails, we show that the deviation term
appearing in the sharp oracle inequalities cannot be improved.

Key Words: aggregation, model selection, sharp oracle inequality, density
estimation, concentration inequality, lower bounds, minimax optimality.

2.1 Introduction
We study the problem of estimation of an unknown density from observations. Let
(X , µ) be a measurable space. We are interested in estimating an unknown density f
with respect to the measure µ given n independent observations X1, . . . , Xn drawn
from f . We measure the quality of estimation of f by the L2 squared distance

‖ĝ − f‖2 =
∫

(f − ĝ)2dµ = ‖ĝ‖2 − 2
∫
ĝfdµ+ ‖f‖2 , (2.1)

for any ĝ ∈ L2(µ) possibly dependent on the data X1, . . . , Xn. Since the term ‖f‖2

is constant for all ĝ, we will consider throughout the paper the risk

R(ĝ) = ‖ĝ‖2 − 2
∫
ĝfdµ. (2.2)

An estimator ĝ minimizes R(·) if and only if it minimizes (2.1).
Given M functions f1, . . . , fM ∈ L2(µ), we would like to construct a measurable

function ĝ of the observations X1, . . . , Xn that is almost as good as the best function
among f1, . . . , fM . The model may be misspecified, which means that f may not
be one of the functions f1, . . . , fM . We are interested in deriving oracle inequalities,
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either in expectation
ER(ĝ) ≤ C min

j=1,...,M
R(fj) + δn,M ,

or with high probability, i.e., for all ε > 0, with probability greater than 1− ε

R(ĝ) ≤ C min
j=1,...,M

R(fj) + δn,M + dn,M(ε),

where δn,M is a small quantity and dn,M (·) is a function of ε that we call the deviation
term. We are only interested in sharp oracle inequalities, i.e., oracle inequalities
where the leading constant is C = 1, since it is essential to derive minimax optimality
results.

We consider only deterministic functions for f1, . . . , fM . They cannot depend
on the data X1, . . . , Xn. A standard application of this setting was introduced
in Wegkamp [104]: given m + n i.i.d. observations drawn from f , use the first m
observations to buildM estimators f̂1, . . . , f̂M , and in a second step use the remaining
n observations to select the best among the preliminary estimators f̂1, . . . , f̂M . A
related problem is selecting the best estimator from a family f̂1, . . . , f̂M where these
estimators are built using the same data used for model selection or aggregation.
Such problems were recently considered in Dalalyan and Salmon [35] and Dai et al.
[33] for the regression model with fixed design.

We are also interested in deriving sharp oracle inequalities with prior weights on
the model {f1, . . . , fM}. To be more precise, for some prior probability distribution
π1, . . . , πM over the finite set {f1, . . . , fM} and any ε > 0, our estimator f̂n should
satisfy with probability greater than 1− ε

R(f̂n) ≤ min
j=1,...,M

(
R(fj) + β

n
log 1

πj

)
+ dn,M(ε), (2.3)

for some positive constant β and some deviation term dn,M (·). The Mirror Averaging
algorithm [58, 37] is known to achieve a similar oracle inequality in expectation. The
analysis of Juditsky et al. [58] shows that the constant β scales linearly with the
sup-norm of the unknown density, which is also the case for the results presented
here. Model selection techniques with prior weights were used in order to derive
sparsity oracle inequalities using sparsity pattern aggregation [92, 93, 37].

Another related learning problem is that of model selection when the model is
finite dimensional with a specific shape, for example a linear span of M functions or
the convex hull ofM functions. This is the aggregation framework and it has received
a lot of attention in the last decade to construct adaptive estimators that achieve
the minimax optimal rates, especially for the regression problem [98, 71, 92, 65, 93]
but also for density estimation [106, 64, 89].

The main contribution of the present paper is the following.

• We provide sharp oracle inequalities and the corresponding tight lower bounds
for two procedures: empirical risk minimization over the discrete set {f1, . . . , fM}
and the penalized procedure (2.14) with the penalty (2.15). Here, tight means
that neither the rate nor the deviation term of the sharp oracle inequalities
can be improved. The sharp oracle inequalities are given in Theorem 2.2 and
Corollary 2.8 and the tight lower bounds are given in Theorem 2.1 and Theo-
rem 2.9. These results lead to a definition of minimax optimality in deviation,
which is discussed in Section 2.4.
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While proving the above results, we extend several aggregation results that are known
for the regression model to the density estimation setting. Let us relate these results
of the present paper to the existing literature on the regression model:

• In Theorem 2.2, we derive a sharp oracle inequality in deviation for the empirical
risk minimizer over the discrete set {f1, . . . , fM}. This is new in the context of
density estimation, and an analogous result is known for the regression model
[93].

• In Theorem 2.6, we derive a sharp oracle inequality in deviation for penalized
empirical risk minimization with the penalty (2.15). With the uniform prior,
this yields the correct rate (logM)/n of model selection type aggregation. This
penalty is inspired by recent works on the Q-aggregation procedure [69, 32]
where similar oracle inequalities in deviation were obtained for the regression
model. The first sharp oracle inequalities that achieve the correct rate of model
selection type aggregation were obtained in expectation for the regression model
in [106, 25].

• We extend several lower bounds known for the regression model to the density
estimation setting. We show that any procedure that selects a dictionary
function cannot achieve a better rate than

√
(logM)/n and that the rate of

model selection type aggregation is of order (logM)/n. We also show that
the exponential weights aggregate and the empirical risk minimizer over the
convex hull of the dictionary functions cannot be optimal in deviation, with an
unavoidable error term of order 1/

√
n. Earlier results for the regression model

can be found in [98, 93] for lower bounds on model selection type aggregation
and the performance of selectors, while [66, 32, 68] contain earlier lower bounds
on the performance of exponential weights and empirical risk minimization
over the convex hull of the dictionary.

An aspect of our results is not present in the previous works on the regression
model. In the literature on aggregation in the regression model, lower bounds are
proved either in expectation or in probability in the form

P
(
R(T̂n) > min

j=1,...,M
R(fj) + ψn,M

)
> c, (2.4)

for any estimator T̂n, a risk function R(·), a rate ψn,M and some absolute constant
c > 0, usually c = 1/2. The tight lower bounds presented in Theorem 2.1 and
Theorem 2.9 contrast with lower bounds of the form (2.4) as they yield for any
estimator T̂n,

∀x > 0, P
(
R(T̂n) > min

j=1,...,M
R(fj) + ψn,M + x

n

)
> c exp(−x), (2.5)

i.e., they provide lower bounds for any probability estimate in an interval (0, 1/c)
where c > 0 is an absolute constant. Moreover, these lower bounds show that
the exponential tail of of the excess risk of the estimators from Theorem 2.2 and
Theorem 2.6 cannot be improved. The tools used in the present paper to prove lower
bounds of the form (2.5), in particular Lemma 2.16, can be used to prove similar
results for regression model. The tight lower bounds of the present paper contrast
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with the existing literature on the regression model, since to our knowledge, there is
no lower bound of the form (2.5) available for regression.

In the regression model with random design, given a class of functions G, a
penalty pen(·), a coefficient ν > 0 and observations (X1, Y1), ..., (Xn, Yn), penalized
empirical risk minimization solves the optimization problem

min
g∈G

1
n

n∑
i=1

(g(Xi)− Yi)2 + νpen(g). (2.6)

But if the distribution of the design is known, the statistician can compute the
quantity E[g(X)2] for all g ∈ G and solve the following minimization problem that
slightly differs from (2.6):

min
g∈G

E[g(X)2]− 2
n

n∑
i=1

g(Xi)Yi + νpen(g). (2.7)

In the regression model, the distribution of the design is rarely known so the penalized
ERM that solves (2.7) has not received as much attention as the procedure (2.6)
when the distribution of the design is not known. The density estimation setting
studied in the present paper is closer to the regression setting with known design
(2.7) than to the regression setting with unknown design (2.6) studied in [69]. There
are differences with respect to the choice of coefficient of the penalty (2.15), and to
the form of the empirical process that appears in the analysis. These differences are
more thoroughly discussed in Section 2.3.4.

The paper is organized as follows. In Section 2.2 we show that empirical risk
minimization achieves a sharp oracle inequality with slow rate, but this rate cannot
be improved among selectors. Two classical estimators, the exponential weights
aggregate and empirical risk minimization over the convex hull of the dictionary
functions, are shown to be suboptimal in deviation. In Section 2.3, we define a
penalized procedure that achieves the optimal rate logM

n
in deviation, and we provide

a lower bound that shows that neither the rate nor the deviation term can be
improved. Section 2.4 proposes a definition of minimax optimality in deviation and
shows that it is satisfied by the procedures given in Sections 2.2 and 2.3. Section 2.5
is devoted to the proofs.

2.2 Sub-optimality of selectors, ERM and expo-
nential weights

2.2.1 Selectors
Define a selector as a function of the form fĴ where Ĵ is measurable with respect
to X1, . . . , Xn with values in {1, . . . ,M}. It was shown in the regression framework
[58, 93] that selectors are suboptimal and cannot achieve a better rate that σ

√
logM
n

where σ2 is the variance of the regression noise. The following theorem extends this
lower bound for selectors to density estimation. The underlying measure µ is the
Lebesgue measure on Rd for d ≥ 1.

Theorem 2.1 (Lower bounds for selectors). Let L > 0, and M ≥ 2, n ≥ 1, d ≥ 1 be
integers. Let F be the class of all densities f with respect to the Lebesgue measure
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on Rd such that ‖f‖∞ ≤ L. Let x ≥ 0 satisfying

log(M) + x

n
< 3.

Then there exist f1, . . . , fM ∈ L2(Rd) with ‖fj‖∞ ≤ L such that the following lower
bound holds:

inf
Ŝn

sup
f∈F

Pf

‖Ŝn − f‖2 − inf
j=1,...,M

‖fj − f‖2 ≥ L√
3

√
x+ logM

n

 ≥ 1
24 exp(−x)

where Pf denotes the probability with respect to n i.i.d. observations with density f
and the infimum is taken over all selectors Ŝn.

The proof of Theorem 2.1 is given in Section 2.5. It can be extended to other
measures as soon as the underlying measurable space allows the construction of an
orthogonal system such as the one described in Proposition 2.15 below.

For any g ∈ L2(µ), define the empirical risk

Rn(g) = ‖g‖2 − 2
n

M∑
j=1

g(Xi). (2.8)

The empirical risk (2.8) is an unbiased estimator of the risk (2.2). In order to explain
the idea behind the proof of our main result described in Theorem 2.6, it is useful
the prove the following oracle inequality for the empirical risk minimizer over the
discrete set {f1, . . . , fM}.

Theorem 2.2. Assume that the functions f1, . . . , fM ∈ L2(µ) satisfy |fj|∞ ≤ L0 for
all j = 1, . . . ,M . Define

Ĵ ∈ argmin
j=1,...,M

(
‖fj‖2 − 2

n

n∑
i=1

fj(Xi)
)
.

Then for any x > 0, with probability greater than 1− exp(−x),

R(fĴ) ≤ min
j=1,...,M

R(fj) + L0

4
√

2
√
x+ logM

n
+ 8(x+ logM)

3n

 .
Together with Theorem 2.1, Theorem 2.2 shows that empirical risk minimization

is optimal among selectors. Unlike the oracle inequality of Theorem 2.6 below, this
result applies for any density f , with possibly |f |∞ = ∞. Its proof relies on the
concentration of Rn(g)−R(g) around 0 for fixed functions g with |g|∞ ≤ L0.

Proof of Theorem 2.2. We will use the following notation that is common in the
literature on empirical processes. For any g ∈ L2(µ), define

Pg =
∫
gfdµ, (2.9)

Png = 1
n

n∑
i=1

g(Xi).
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With this notation, the difference between the real risk (2.2) and the empirical risk
(2.8) can be rewritten

R(g)−Rn(g) = (P − Pn)(−2g). (2.10)

Let J∗ be such that R(fJ∗) = minj=1,...,M R(fj). The definition of Ĵ yields
Rn(fĴ) ≤ Rn(fJ∗). Using (2.10), it can be rewritten

R(fĴ)−R(fJ∗) ≤ (P − Pn)(−2fĴ + 2fJ∗).

We can control the right hand side of the last display using the concentration
inequality (2.23) with a union bound over j = 1, . . . ,M . For any t > 0, with
probability greater than 1−M exp(−t),

(P − Pn)(−2fĴ + 2fJ∗) ≤ max
j=1,...,M

(P − Pn)(−2fj + 2fJ∗),

≤ σ

√
2t
n

+ 8L0t

3n ,

where σ2 = maxj=1,...,M P (−2fj + 2fJ∗)2 ≤ 16L2
0. Setting x = t− logM yields the

desired oracle inequality.

By inspecting the short proof above, we see that the slow rate term
√

x+logM
n

comes from the variance term in the concentration inequality (2.23).
We can draw two conclusions from Theorems 2.1 and 2.2.

• In order to achieve faster rates than
√

logM
n

, we need to look for estimators
taking values beyond the discrete set {f1, . . . , fM}. In Section 2.3, we will
consider estimators taking values in the convex hull of this discrete set.

• The proof of Theorem 2.2 suggests that a possible way to derive an oracle
inequality with fast rates is to cancel the variance term in the concentration
inequality (2.23). In order to do this, we need some positive gain on the
empirical risk of our estimator. Namely, for some oracle j∗ we would like our
estimator f̂n to satisfy Rn(f̂n) ≤ Rn(fJ∗) minus some positive value. This value
is given by the strong convexity of the empirical objective in Proposition 2.7.

Define the simplex in RM :

ΛM =
θ ∈ RM ,

M∑
j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0
 . (2.11)

Given a finite set or dictionary {f1, . . . , fM}, define for any θ ∈ ΛM

fθ =
M∑
j=1

θjfj. (2.12)

In particular, fj = fej where e1, . . . , eM are the vectors of the canonical basis in RM .
Two classical estimators, the ERM over the convex hull of f1, ..., fM and the

exponential weights aggregate, are known to be sub-optimal in the regression setting
[32, 66, 67, 68]. In the following we show that the same conclusions hold for density
estimation with the L2 risk.
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2.2.2 ERM over the convex hull
A first natural estimator valued in the convex hull of the dictionary functions is the
ERM. However, as in the regression setting [66], this estimator is suboptimal with
an unavoidable error term or order 1/

√
n.

Proposition 2.3. Let X = R and µ be the Lebesgue measure on R. There exist
absolute constants C0, C1, C2, C3 > 0 such that the following holds. Let L > 0. For
any integer n ≥ 1, there exist a density f bounded by L and a dictionary {f1, ..., fM}
of functions bounded by 2L, with C0

√
n ≤ M ≤ C1

√
n, such that with probability

greater than 1− 12 exp(−C2M),

‖fθ̂ERM − f‖
2 ≥ min

j=1,...,M
‖fj − f‖2 + C3L√

n
,

where θ̂ERM := argminθ∈ΛM Rn(fθ).
The proof of Proposition 2.3 can be found in Section 2.5.5.2.

2.2.3 Exponential Weights
The exponential weights aggregate is known to achieve optimal oracle inequalities in
expectation when the temperature parameter β > 0 is chosen carefully [70, 36, 58].
Given prior weights (π1, ..., πM)T ∈ ΛM , it can be defined as follows:

f̂EWβ =
M∑
j=1

θ̂EW,βj fj, θ̂EW,β ∈ ΛM , θ̂EW,βj ∝ πj exp
(
−n
β
Rn(fj)

)
.

The following proposition shows that it is suboptimal in deviation for any temperature,
with a error term of order at least 1/

√
n. This phenomenon was observed in the

regression setting [32, 66], and Proposition 2.4 shows that it also holds for density
estimation. As opposed to [32], the following lower bound requires only 3 dictionary
functions.
Proposition 2.4. There exist absolute constants C0, C1, N0 > 0 such that the follow-
ing holds. Let X = R and µ be the Lebesgue measure on R. For all n ≥ N0, L > 0,
there exist a probability density f with respect to µ, a dictionary {f1, f2, f3} and prior
weights (π1, π2, π3) ∈ Λ3 such that with probability greater than C0,∥∥∥f̂EWβ − f

∥∥∥2
≥ min

j=1,2,3
‖fj − f‖2 + C1L√

n
,

Furthermore, |f |∞ ≤ L, and |fj|∞ ≤ 3L for j = 1, 2, 3.
The following proposition shows that the optimality in expectation cannot hold

if the temperature is below a constant, extending a result from [66] to the density
estimation setting.
Proposition 2.5. Let X = R and µ be the Lebesgue measure on R. There exist
absolute constants c0, c1, c2 > 0 such that the following holds. Let L > 0. For any
odd integer n ≥ c0, there exist a probability density f with respect to µ with |f |∞ ≤ L,
and a dictionary {f1, f2} with fj : X → R and |fj|∞ ≤ L for j = 1, 2 for which the
following holds:

E
∥∥∥f̂EWβ − f

∥∥∥2
≥ min

j=1,2
‖fj − f‖2 + c2L√

n
if β ≤ c1L.

The proofs of Proposition 2.4 and Proposition 2.5 can be found in Section 2.5.5.3.
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2.3 Optimal exponential bounds for a penalized
procedure

2.3.1 From strong convexity to a sharp oracle inequality
In this section we derive a sharp oracle inequality for the estimator fθ̂ where θ̂ is
defined in (2.14). Define the empirical objective Hn and the estimator θ̂ by

Hn(θ) =
(
‖fθ‖2 − 2

n

n∑
i=1

fθ(Xi)
)

+ 1
2pen(θ) + β

n

M∑
j=1

θj log 1
πj
, (2.13)

θ̂ ∈ argmin
θ∈ΛM

Hn(θ), (2.14)

for some positive constant β and

∀θ ∈ ΛM , pen(θ) =
M∑
j=1

θj ‖fθ − fj‖2 . (2.15)

The simplex ΛM and fθ are defined in (2.11) and (2.12).
The term

β

n

M∑
j=1

θj log 1
πj

is a penalty that assigns different weights to the functions fj according to some prior
knowledge given by π1, ..., πM , in order to achieve an oracle inequality such as (2.3).

The penalty (2.15) as well as the present procedure are inspired by recent works
on Q-aggregation in regression models [90, 32, 69]. The choice of the coefficient 1

2 for
the penalty (2.15) is explained in Remark 2.1 below. An intuitive interpretation of the
penalty (2.15) can be as follows. A point fθ is in the convex hull of {f1, . . . , fM} if and
only if it is the expectation of a random variable taking values in {f1, . . . , fM}. The
penalty (2.15) can be seen as the variance of such a random variable whose distribution
is given by θ. More precisely, let η be a random variable with P (η = j) = θj for all
j = 1, . . . ,M . Denote by Eθ the expectation with respect to the random variable η.
Then Eθ[fη] = fθ and

pen(θ) = Eθ ‖fη − Eθ[fη]‖2 ,

which is the variance of the random point fη. The penalty (2.15) vanishes at the
extreme points:

∀j = 1, . . . ,M, pen(ej) = 0,

and pen(θ) increases as θ moves away from an extreme point ej. Thus we convexify
the optimization problem over the discrete set {f1, . . . , fM} by considering the convex
set {Eθ[fη], θ ∈ ΛM} which is exactly the convex hull of {f1, . . . , fM}, and we penalize
by the variance of the random point fη.

It is also possible to describe the level sets of the penalty (2.15). Assume only in
this paragraph that the Gram matrix of f1, ..., fM is invertible and let c ∈ L2(µ) be
in the linear span of f1, ..., fM such that for all j = 1, ...,M ,

∫
2cfjdµ = ‖fj‖2. Then

simple algebra yields
pen(θ) = ‖c‖2 − ‖c− fθ‖2 .

Thus the level sets of the penalty (2.15) are euclidean balls centered at c.
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Last, note that fθ̂ coincides with the Q-aggregation procedure from [32] since(
‖fθ‖2 − 2

n

n∑
i=1

fθ(Xi)
)

+ 1
2pen(θ) = Rn(θ)+ 1

2pen(θ) = 1
2

Rn(θ) +
M∑
j=1

θjRn(fj)
 .

We propose an estimator fθ̂ based on penalized empirical risk minimization over
the simplex, with θ̂ defined in (2.14). This estimator satisfies the following oracle
inequality.
Theorem 2.6. Assume that the functions f1, . . . fM satisfy |fj|∞ ≤ L0 for all
j = 1, . . . ,M , and assume that the unknown density f satisfies |f |∞ ≤ L. Let θ̂ be
defined in (2.14) with

β = 4L+ 8L0

3 .

Then for any x > 0, with probability greater than 1− exp(−x),

R(fθ̂) ≤ min
j=1,...,M

(
R(fj) + β

n
log 1

πj

)
+ βx

n
. (2.16)

The following proposition specifies the property of strong convexity of the objective
function Hn(·) defined in (2.13), which is key to prove Theorem 2.6.
Proposition 2.7 (Strong convexity of Hn). Let Hn and θ̂ be defined by (2.13) and
(2.14), respectively. Then for any θ ∈ ΛM ,

Hn(θ̂) ≤ Hn(θ)− 1
2 ‖fθ − fθ̂‖

2 . (2.17)

For any θ ∈ ΛM , empirical risk minimization only grants the simple inequality
Rn(θ̂) ≤ Rn(θ),

but with Proposition 2.7 we gain the extra term 1
2 ‖fθ − fθ̂‖

2. To prove Theorem 2.6,
we will use this extra term to compensate the variance term of the concentration
inequality (2.24). Strong convexity plays an important role in our proofs, and we
believe that our arguments would not work for loss functions that are not strongly
convex such as the Hellinger distance, the Total Variation distance or the Kullback-
Leibler divergence.

The proof of Proposition 2.7 is given in Section 2.5.3. We now give the proof of
our main result, which is close to the proof of Theorem 2.2 except that we leverage
the strong convexity of the empirical objective Hn.

Proof of Theorem 2.6. Note that pen(ej) = 0 for j = 1, . . . ,M and let

j∗ ∈ argmin
j=1,...,M

(
‖fj‖2 − 2

∫
fjfdµ+ β

n
log 1

πj

)
= argmin

j=1,...,M
E [Hn(ej)] .

Using (2.17) of Proposition 2.7

Hn(θ̂)−Hn(ej∗) ≤ −
1
2 ‖fj

∗ − fθ̂‖
2 ,

Rn(θ̂) + β

n

M∑
j=1

θ̂j log 1
πj
−Rn(ej∗)−

β

n
log 1

πj∗
≤ −1

2 ‖fj
∗ − fθ̂‖

2 − 1
2pen(θ̂),

= −1
2

M∑
j=1

θ̂j ‖fj − fj∗‖2 ,
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where we used Proposition 2.12 with g = fj∗ for the last display. Using (2.10), we get

R(fθ̂)−R(fj∗)−
β

n
log 1

πj∗
≤ Zn

where

Zn = (P − Pn)(−2fθ̂ + 2fj∗)−
β

n

M∑
j=1

θ̂j log 1
πj
− 1

2

M∑
j=1

θ̂j ‖fj − fj∗‖2

and the notation P and Pn is defined in (2.9) and (2.10). The quantity Zn is affine in
θ and an affine function over the simplex is maximized at a vertex, so almost surely,

Zn ≤ max
θ∈ΛM

−2(P − Pn)(fθ − fj∗)−
1
2

M∑
j=1

θj ‖fj∗ − fj‖2 − β

n

M∑
j=1

θj log 1
πj

 ,
= max

k=1,...,M

(
−2(P − Pn)(fk − fj∗)−

1
2 ‖fk − fj

∗‖2 − β

n
log 1

πk

)
. (2.18)

Let k = 1, . . . ,M fixed. Applying Proposition 2.14 with g = −2(fk−fj∗) and π = πk
yields

P
(
−2(P − Pn)(fk − fj∗)−

1
2 ‖fk − fj

∗‖2 − β

n
log 1

πk
>
βx

n

)
≤ πk exp(−x).

To complete the proof, we use a union bound on k = 1, . . . ,M together with∑M
j=1 πj = 1 and (2.18):

P
(
Zn >

βx

n

)
≤

M∑
k=1

πk exp(−x) = exp(−x).

Remark 2.1 (Choice of the coefficient of the penalty (2.15)). Let ν ∈ (0, 1). With
minor modifications to the proof of Theorem 2.6, it can be shown that the oracle
inequality (2.16) still holds with

β = 2L
min(ν, 1− ν) + 8L0

3 ,

Hn(θ) =
(
‖fθ‖2 − 2

n

n∑
i=1

fθ(Xi)
)

+ νpen(θ) + β

n

M∑
j=1

θj log 1
πj
,

θ̂ ∈ argmin
θ∈ΛM

Hn(θ).

The oracle inequality (2.16) is best when β is small. Thus the choice ν = 1
2 is natural

since it minimizes the value of β.
The optimization problem (2.14) is a quadratic program, for which efficient

algorithms exist. We refer to [32, Section 4] for an analysis of the statistical
performance of an algorithm that approximately solves a optimization problem
similar to (2.14) in the regression setting.

The estimator θ̂ of Theorem 2.6 is not adaptive since its construction relies on
L, an upper bound of the sup-norm of the unknown density. However, in the case
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of the uniform prior πj = 1/M for all j = 1, . . . ,M , Corollary 2.8 below provides
an estimator which is fully adaptive: its construction depends only on the functions
f1, . . . , fM and the data X1, . . . , Xn. A similar adaptivity property was observed in
[69] in the regression setting.

Corollary 2.8 (Adaptive estimator). Assume that the functions f1, . . . fM satisfy
|fj|∞ ≤ L0 for all j = 1, . . . ,M , and assume that the unknown density f satisfies
|f |∞ ≤ L. Let

θ̂ ∈ argmin
θ∈ΛM

(
‖fθ‖2 − 2

n

n∑
i=1

fθ(Xi)
)

+ 1
2pen(θ). (2.19)

Then for any x > 0, with probability greater than 1− exp(−x),

R(fθ̂) ≤ min
j=1,...,M

R(fj) +
(

4L+ 8L0

3

) log(M) + x

n
.

Proof of Corollary 2.8. With the uniform prior, πj = 1/M for all j = 1, . . . ,M , the
quantity

β

n

M∑
j=1

θj log 1
πj

= β

n
logM

is independent of θ ∈ ΛM . The minimizer (2.19) is also a minimizer of the empirical
objective (2.13) used in Theorem 2.6. Thus, the estimator fθ̂ satisfies (2.16) which
completes the proof.

Corollary 2.8 is in contrast to methods related to exponential weights such as the
mirror averaging algorithm from [58] as these methods rely on the knowledge of the
sup-norm of the unknown density. The method presented here is an improvement in
two aspects. First, the estimator of Corollary 2.8 is fully data-driven. Second, the
sharp oracle inequality is satisfied not only in expectation, but also in deviation.

However, the method of Theorem 2.6 loses this adaptivity property when a
non-uniform prior is used, and we do not know if it is possible to build an optimal
and fully adaptive estimator for non-uniform priors.

2.3.2 A lower bound with exponential tails
The following lower bound shows that the sharp oracle inequality of Corollary 2.8
cannot be improved both in the rate and in the tail of the deviation.

Theorem 2.9 (Lower bounds with optimal deviation term). Let M ≥ 2, n ≥ 1 be
two integers and let a real number x ≥ 0 satisfy

log(M) + x

n
< 3.

Let L > 0 and d ≥ 1. Let F be the class of densities f with respect to the Lebesgue
measure on Rd such that ‖f‖∞ ≤ L.

Then there exist M functions f1, . . . , fM in L2(Rd) with |fj|∞ ≤ L satisfying

inf
T̂n

sup
f∈F

Pf
(∥∥∥T̂n − f∥∥∥2

− min
j=1,...,M

‖fj − f‖2 >
L

24

(
log(M) + x

n

))
≥ 1

24 exp(−x)

where the infimum is taken over all estimators T̂n and Pf denotes the probability
with respect to n i.i.d. observations with density f .
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Notice that the restriction log(M)+x
n

< 3 is natural since the estimator T̂ ∗n ≡ 0
achieves a constant error term and is optimal in the region log(M)+x

n
> c for some

absolute constant c. Indeed, as the unknown density satisfies |f |∞ ≤ L, we have
with probability 1:∥∥∥T̂ ∗n − f∥∥∥2

= ‖f‖2 ≤ L ≤ inf
j=1,...,M

‖f − fj‖2 + L, (2.20)

R(T̂ ∗n) ≤ inf
j=1,...,M

R(fj) + L.

Thus it is impossible to get the lower bound of Theorem 2.9 for arbitrarily large
x+logM

n
.

2.3.3 Weighted loss and unboundedness
The previous strategy based on penalized risk minimization over the simplex can be
applied to handle unbounded densities or unbounded dictionary functions, if we use
a weighted loss.

Let w : X → R+ be a measurable function with respect to µ. Define the norm
(or semi-norm if w is zero on a set of positive measure)

‖g‖2
w =

∫
g2wdµ, ∀g ∈ L2(µ).

Then we can define the estimator fθ̂ where

θ̂ = argmin
θ∈ΛM

Vn(θ), Vn(θ) = Pn

‖fθ‖2
w −

2
n

n∑
i=1

fθ(Xi)w(Xi) + 1
2

M∑
j=1

θj ‖fj − fθ‖2
w

 .
The function Vn is strongly convex with respect to the new norm ‖·‖2

w. As in the
proof of Theorem 2.6,this leads to

‖fθ̂ − f‖
2
w ≤ ‖fj∗ − f‖

2
w+ max

k=1,...,M
δk, δk := (P−Pn)(−2(fj∗−fk)w)−1

2 ‖fj
∗ − fk‖2

w .

If for some L,L0 > 0, |wf |∞ ≤ L and maxj=1,...,M |wfj|∞ ≤ L0, then

δk ≤ −2(P − Pn)((fk − fj∗)w)− 1
2LE[(fk(X)− fj∗(X))2w(X)2].

We apply (2.24) to the random variables (fk−fj∗)(Xi)w(Xi), which are almost surely
bounded by L0. Using the union bound on k = 1, ...,M we obtain maxk=1,...,M δk ≤
β(x+ logM)/n with probability greater than 1− exp(−x). and thus

‖fθ̂ − f‖
2
w ≤ ‖fj∗ − f‖

2
w + β

(
x+ logM

n

)
,

where β = c (L+ L0) for some numerical constant c > 0.

2.3.4 Differences and similarities with regression problems
Here we discuss differences and similarities between aggregation of density and
regression estimators. Some notation is needed in order to compare these settings.
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We first define some notation related to the Density Estimation (DE) framework
studied in the present paper. Let X be a random variable with density f absolutely
continuous with respect to the measure µ, let Dde = {f1, ..., fM} be a subset of L2(µ)
and define for all g ∈ L2(µ) and x ∈ X ,

‖g‖2 =
∫
g2dµ, lde

g (x) = ‖g‖2−2g(x), g∗ = argmin
g∈Dde

‖g−f‖2 = argmin
g∈Dde

E[lde
g (X)].

Given n i.i.d. observations X1, ..., Xn and some fixed function g, one can use the
empirical risk Pn(lde

g ) = ∑n
i=1

1
n
lde
g (Xi).

We now define similar notation for the regression problem with the L2 loss. Let
(X, Y ) be a random couple valued in X × R, let PX be the probability measure
of X, let f be the true regression function defined by f(x) = E[Y |X = x], let
Dr = {f1, ..., fM} be a subset of L2(PX) and define for all g ∈ L2(PX),

‖g‖2
PX

= E[g(X)2], g∗ = argmin
g∈Dr

‖g − f‖2
PX
.

For Regression with Unknown Design (RUD) i.e., when the distribution of the design
X is not known to the statistician, a natural choice for the loss function lg is

lrud
g (x, y) = (g(x)− y)2, ∀x, y ∈ X ×R,

and the oracle g∗ defined above satisfies g∗ = argming∈Dr E[lrud
g (X, Y )]. For Regres-

sion with Known Design (RKD), the quantity ‖g‖2
PX

is accessible for all g. Thus we
can define the loss

lrkd
g (x, y) = ‖g‖2

PX
− 2g(x)y, ∀x, y ∈ X ×R,

and the oracle g∗ satisfies g∗ = argming∈Dr E[lrkd
g (X, Y )]. Thus, two natural functions

lg arise in the regression context, depending on whether the distribution of the design
is known or unknown. Given n i.i.d. observations (Xi, Yi) with the same distribution
as (X, Y ), the empirical quantities Pn(lrud

g ) and Pn(lrkd
g ) can be used to infer the

true regression function f . An estimator constructed using the quantity Pn(lrkd
g ) is

used, for example, in [98] for the problem of linear and convex aggregation.

Linear or quadratic empirical process. The empirical process (Pn−P )(lg−lg∗)
indexed by g plays an important role in the proofs of Theorem 2.2 and Theorem 2.6.
This empirical process also appears in the analysis [69] for regression with unknown
design with the loss lrud

g . For density estimation and regression with known design,
this empirical process is linear in g:

(Pn−P )(lde
g −lde

g∗ ) = −2(Pn−P )(g−g∗), (Pn−P )(lrkd
g −lrkd

g∗ ) = −2(Pn−P )[(g−g∗)ẏ],

where the function ẏ(·) above is defined by ∀x, y ∈ X ×R, ẏ(x, y) = y. For regression
when the design is unknown, the empirical process is quadratic in the class member g.
To control the behavior of this quadratic empirical process, the contraction principle
is used in [69], whereas this principle is not needed for density estimation or regression
when the distribution of the design is known.
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The penalty (2.15) and its coefficient. In the regression problem when the
distribution is known, given a dictionary of potential regression functions {f1, ..., fM},
the quantity

M∑
j=1

θj ‖fj − fθ‖2
PX
, (2.21)

is accessible and a procedure similar to the one proposed in Theorem 2.6 and
Corollary 2.8 can be constructed, with the penalty coefficient 1/2 which is a natural
choice as explained in Remark 2.1. For regression with unknown design, the above
penalty cannot be computed: the procedure [69] for the L2 loss is the estimator fθ̂
where

θ̂ = argmin
θ∈ΛM

(
Pn
(
lrud
fθ

)
+ νPn(fj − fθ)2

)
,

= argmin
θ∈ΛM

(
1
n

n∑
i=1

(Yi − fθ(Xi))2 + ν

n

n∑
i=1

(fj − fθ)2(Xi)
)
,

for some coefficient ν ∈ (0, 1) and where we chose the uniform prior for clarity. Thus
the procedure [69] can be formulated as a penalized procedure where the penalty
is the empirical counterpart of (2.21) with the coefficient ν. Although 1/2 is a
natural choice for regression with known design and density estimation, for regression
with unknown design the expression of the optimal coefficient is more intricate [69,
Minimize β in (1.4)].

Sketch of proof for the regression model with known design. In order to
show the similarities between density estimation and regression problems when the
design is known, we now give the main ideas to derive an oracle inequality similar to
Corollary 2.8 for regression with known design. Note that the framework studied in
[69] does not cover the estimator defined below, since the function lrkd

g depends on
the quantity ‖g‖2

PX
. Given n i.i.d. observations (X1, Y1), ..., (Xn, Yn), define

θ̂ = argmin
θ∈ΛM

Vn(θ), Vn(θ) = Pn
(
lrkd
fθ

)
+ 1

2

M∑
j=1

θj ‖fj − fθ‖2
PX
.

Analogously to the argument of Proposition 2.7, we note that the function Vn is
strongly convex and Vn(θ̂) ≤ Vn(ej∗) − 1

2 ‖fj∗ − fθ̂‖
2
PX

for any j∗ = 1, ...,M . As in
the proof of Theorem 2.6, this leads to

‖fθ̂ − f‖
2
PX
≤ ‖fj∗ − f‖2

PX
+ max
k=1,...,M

δk, δk := (P−Pn)(lrkd
fk
−lrkd

fj∗
)−1

2 ‖fj
∗ − fk‖2

PX
.

As explained above, when the distribution of the design is known, the empirical
process is linear in fk − fj∗ :

δk = −2(P − Pn)((fk − fj∗)ẏ)− 1
2 ‖fk − fj

∗‖2
PX
.

If for some b > 0, |Y | ≤ b and maxj=1,...,M |fj(X)| ≤ b almost surely, then

δk ≤ −2(P − Pn)((fk − fj∗)ẏ)− 1
2b2E[Y 2(fk(X)− fj∗(X))].
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Using (2.24) and the union bound on k = 1, ...,M , we obtain maxk=1,...,M δk ≤
β(x+ logM)/n with probability greater than 1− exp(−x) and thus

‖fθ̂ − f‖
2
PX
≤ ‖fj∗ − f‖2

PX
+ β

(
x+ logM

n

)
,

where β = c b2 for some numerical constant c > 0.
In conclusion, the density estimation framework studied in the present paper is

close to the regression problem when the distribution of the design is known, while
it presents several differences with the regression problem when the design is not
known.

2.4 Minimax optimality in deviation
The goal of this section is to state a minimax optimality result based on the lower
bound of Theorem 2.9 and the sharp oracle inequality of Corollary 2.8. In this
section, the underlying measure µ is the Lebesgue measure on Rd for some integer
d ≥ 1.

Minimax optimality in model selection type aggregation is usually defined in
expectation [98], by studying the quantity

sup
fj∈F

j=1,...,M

inf
T̂n

sup
f∈Fd

(
ER(T̂n)− inf

j=1,...,M
R(fj)

)

where the infimum is taken over all estimators T̂n, F is a class of possible functions for
the dictionary and Fd is the class of all densities satisfying some general constraints.

Let µ be the Lebesgue measure on Rd and for some L > 0, let F = {g ∈
L2(µ), |g|∞ ≤ L} and Fd be the set of all densities f with respect to µ satisfying
|f |∞ ≤ L. Then, by an integration argument, Corollary 2.8 and Theorem 2.9 provide
the following bounds for some absolute constant c, C > 0 and any M ≥ 2, n ≥ 1:

c
L logM

n
≤ sup

fj∈F
j=1,...,M

inf
T̂n

sup
f∈Fd

(
ER(T̂n)− inf

j=1,...,M
R(fj)

)
≤ C

L logM
n

.

This shows that L logM
n

is the optimal rate of convergence in expectation for model
selection type aggregation under the boundedness assumption.

But our results are stronger that the above optimality in expectation since the
deviation term in the sharp oracle inequality of Corollary 2.8 and in the lower bound
of Theorem 2.9 are the same up to a numerical constant.

The central quantity when dealing with optimality in deviation is, for t > 0,

sup
fj∈F

j=1,...,M

inf
T̂n

sup
f∈Fd

P
(
R(T̂n)− inf

j=1,...,M
R(fj) > t

)
.

The results of Section 2.3 provide upper and lower bounds for this quantity.
We propose the following definition of minimax optimality in deviation.
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Notation 2.1 (Minimax optimality in deviation). Let F be a subset of L2(µ) and
Fd be a set of densities with respect to the measure µ. Let En be a set of estimators.
Denote by Pn,M

En,F ,Fd(t) the quantity

Pn,M
En,F ,Fd(t) = sup

fj∈F
j=1,...,M

inf
T̂n∈En

sup
f∈Fd

P
(
R(T̂n)− inf

j=1,...,M
R(fj) > t

)
.

A function pn,M(·) is called optimal tail distribution over (En,F ,Fd) if for any
n ≥ 1,M ≥ 2 and any t > 0,

c pn,M(c′t) ≤ Pn,M
En,F ,Fd(t) ≤ pn,M(t)

where c, c′ > 0 are constants independent of n,M and t.
The following proposition is a direct consequence of Corollary 2.8 and Theorem 2.9.

Proposition 2.10. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd), |g|∞ ≤ L}
and Fd be the set of all densities f with respect to the Lebesgue measure on Rd with
|f |∞ ≤ L. Let En be the set of all estimators. Define

pn,M(t) = M exp
(
− 3tn

20L

)
1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,
1
24pn,M (160 t) ≤ Pn,M

En,F ,Fd(t) ≤ pn,M (t) .

Thus, pn,M(·) is an optimal tail distribution over (En,F ,Fd) according to Defini-
tion 2.1.
Proof. The regime t > L corresponds to the trivial case where (2.20) holds and
T̂ ∗n = 0 is an optimal estimator. In this regime pn,M(t) = 0.

For t ≤ L, by setting t = β log(M)+x
n

= 20L
3

log(M)+x
n

in Corollary 2.8 , we get

Pn,M
En,F ,Fd ≤ pn,M (t)

while Theorem 2.9 implies that
1
24pn,M

(24 · 20
3 t

)
≤ Pn,M

En,F ,Fd(t).

Similarly, the results of Section 2.2 imply the following proposition.
Proposition 2.11. Let M ≥ 2, n ≥ 1 and L > 0. Let F = {g ∈ L2(Rd), |g|∞ ≤ L}
and Fd be the set of all densities f with respect to the Lebesgue measure on Rd with
|f |∞ ≤ L. Let Sn be the set of all selectors, i.e. the measurable functions valued in
the discrete set {f1, . . . , fM}. Define

qn,M(t) = M exp
(
− t2n

L2(4
√

2 + 8/3)2

)
1[0,L](t),

where 1A denotes the indicator function of the set A. Then for all t > 0,
1
24qn,M

(√
3(4
√

2 + 8/3) t
)
≤ Pn,M

Sn,F ,Fd(t) ≤ qn,M (t) .

Thus, qn,M(·) is an optimal tail distribution over (Sn,F ,Fd) according to Defini-
tion 2.1.
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Proof. The regime t > L can be treated similarly as in the proof of Proposition 2.10.
For t ≤ L, let t = L(4

√
2 + 8/3)

√
x+logM

n
in Theorem 2.2. For this definition of t

and x, 1 ≥
√

x+logM
n
≥ x+logM

n
. Then

Pn,M
Sn,F ,Fd(t) ≤ qn,M (t)

and Theorem 2.1 implies
1
24qn,M

(√
3(4
√

2 + 8/3) t
)
≤ Pn,M

Sn,F ,Fd(t).

2.5 Proofs

2.5.1 Bias-variance decomposition
As discussed in Section 2.3, the penalty can be viewed as the variance of a random
element of the discrete set {f1, . . . , fM} and it satisfies the following bias-variance
decomposition.

Proposition 2.12. For any g ∈ L2(µ) and θ ∈ ΛM ,
M∑
j=1

θj ‖fj − g‖2 = ‖fθ − g‖2 + pen(θ) (2.22)

where pen(·) is the penalty defined in (2.15).

Proof. Let η be a random variable with P (η = j) = θj for all j = 1, . . . ,M . Denote
by Eθ the expectation with respect to the random variable η. Then Eθ[fη] = fθ and
the bias-variance decomposition yields

Eθ ‖fθ − g‖2 = ‖g − Eθ[fη]‖2 + Eθ ‖fη − Eθ[fη]‖2 ,

which is exactly the desired result.

2.5.2 Concentration inequalities
Proposition 2.13. Let Y1, . . . , Yn be independent random variables, such that almost
surely, for all i, |Yi − EYi| ≤ b. Then for all x > 0,

P
(

n∑
i=1

Yi − EYi >
√

2xv + bx

3

)
≤ exp(−x), (2.23)

where v = ∑n
i=1 V (Yi).

Proposition 2.13 is close to Bennett and Bernstein inequalities. A proof can be
found in [75, Section 2.2.3, (2.20) with c = b/3].

The following one-sided concentration inequality is a direct consequence of Propo-
sition 2.13 and the inequality 2

√
uv ≤ u

a
+ av for all a, u, v > 0. Under the same

assumptions as Proposition 2.13 above, for all x > 0 and any a > 0,

P
(

1
n

n∑
i=1

Yi − EYi − aV (Yi) >
(

1
2a + b

3

)
x

n

)
≤ exp(−x). (2.24)
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Proposition 2.14. Let X1, . . . , Xn be i.i.d. observations drawn from the density f
with |f |∞ ≤ L. Let g ∈ L2(µ) with |g|∞ ≤ 4L0. Let β = 4L+ 8L0

3 . Define

ζn = (P − Pn)g − 1
8 ‖g‖

2 − β

n
log 1

π
,

where the notation P and Pn is defined in (2.9). Then for all x > 0,

P
(
ζn >

βx

n

)
≤ π exp(−x).

Proof of Proposition 2.14. As the unknown density f is bounded by L,

V (g(X1)) ≤ P (g2) =
∫
g2fdµ ≤ L ‖g‖2 ,

−1
8 ‖g‖

2 ≤ − 1
8LV (g(X1)) .

Thus almost surely

ζn ≤ (P − Pn)g − 1
8LV (g(X1))− β

n
log 1

π
.

Define n i.i.d. random variables Y1, . . . , Yn by
Yi = g(Xi).

Almost surely, |Yi| ≤ 4L0 and |Yi − EYi| ≤ 8L0. By applying (2.24) to Y1, . . . , Yn
with b = 8L0 and a = 1

8L , we get that for any t > 0 with x = t+ log 1
π
,

P
(

(P − Pn)g − 1
8LV (g(X1)) > βx

n

)
≤ exp(−x),

P
(
ζn >

βx

n

)
≤ P

(
(P − Pn)g − 1

8LV (g(X1))− β

n
log 1

π
>
βt

n

)
≤ π exp(−t).

2.5.3 Strong convexity
Proof of Proposition 2.7. We will first prove that for any θ, θ′,

Hn(θ)−Hn(θ′) = 〈∇Hn(θ′), θ − θ′〉+ 1
2 ‖fθ − fθ

′‖2 . (2.25)

Using the bias-variance decomposition of (2.22) with g = 0, we get

pen(θ) =
M∑
j=1

θj ‖fθ − fj‖2 = −‖fθ‖2 +
M∑
j=1

θj ‖fj‖2 .

Thus Hn can be rewritten as Hn(θ) = 1
2 ‖fθ‖

2 + L(θ) where L is affine in θ. If we
can prove N(θ)−N(θ′) = 〈∇N(θ′), θ − θ′〉+ ‖fθ − fθ′‖2 where N(θ) = ‖fθ‖2, then
(2.25) holds. By simple properties of the norm,

‖fθ‖2 − ‖fθ′‖2 = 2
∫
fθ′(fθ − fθ′)dµ+ ‖fθ − fθ′‖2 ,

= 2θ′TG(θ − θ′) + ‖fθ − fθ′‖2 ,

where G is the Gram matrix with elements Gj,k =
∫
fjfkdµ for all j, k = 1, . . . ,M .

The gradient at θ′ of the function θ → ‖fθ‖2 is exactly 2Gθ′ so (2.25) holds.
The function Hn is convex and differentiable. If θ̂ minimizes Hn over the simplex,

then for any θ ∈ ΛM , 〈∇Hn(θ̂), θ − θ̂〉 ≥ 0 which proves (2.17).
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2.5.4 Tools for lower bounds
Proposition 2.15. There exists a countable set of functions ε1, ε2, . . . defined on
[0, 1] such that for all j, k > 0 with k 6= j,

∀u ∈ [0, 1), εj(u) ∈ {−1, 1},∫
[0,1]

εj(x)εk(x)dx = 0,∫
[0,1]

ε2
j(x)dx = 1.

Furthermore, if U is uniformly distributed on [0, 1], then ε1(U), ε2(U), ... are i.i.d.
Rademacher random variables.

See [54, Definition 3.22] for an explicit construction of these functions and a proof
a their properties.

If P � Q are two probability measures defined on some measurable space, define
their Kullback-Leibler divergence and their χ2 divergence by

K(P,Q) =
∫

log
(
dP

dQ

)
dP, χ2(P,Q) =

∫ (
dP

dQ
− 1

)2

dQ.

The following comparison holds

K(P,Q) ≤ χ2(P,Q). (2.26)

Furthermore, if n ≥ 1 and P⊗n denotes the n-product of measures P ,

K(P⊗n, Q⊗n) = nK(P,Q). (2.27)

The proofs of (2.26) and (2.27) are given in [99, Lemma 2.7 and page 85].

Lemma 2.16. Let (Ω,A) be a measurable space and m ≥ 1. Let m ≥ 1 and
A0, . . . , Am ∈ A be disjoint events: Aj ∩ Ak = ∅ for any j 6= k. Assume that
Q0, . . . , Qm are probability measures on (Ω,A) such that

1
m

m∑
j=1

K(Qj, Q0) ≤ χ <∞.

Then,
max

j=0,...,m
Qj(Ω \ Aj) ≥

1
12 min(1,m exp(−3χ)).

Lemma 2.16 can be found in [59, Lemma 3]. It is a direct consequence of [99,
Proposition 2.3] with τ ∗ = min(m−1, exp(−3χ)).

Corollary 2.17 (Minimax lower bounds). Let n ≥ 1 be an integer and s > 0 be a
positive number. Let m ≥ 1 and q0, . . . , qm be a family of densities with respect to
the same measure µ. Assume that for any j 6= k,

‖qj − qk‖2 ≥ 4s > 0. (2.28)
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If P⊗nk denotes the product measure associated with n i.i.d. observations drawn from
the density qk, assume that

1
m

m∑
j=1

K(P⊗nj , P⊗n0 ) ≤ χ

for some finite χ > 0. Then, for any estimator T̂n,

max
k=0,...,m

P⊗nk
(
‖T̂n − qk‖2 ≥ s

)
≥ 1

12 min(1,m exp(−3χ)).

Proof of Corollary 2.17. For any estimator T̂n, for any j = 0, . . . ,m define the events

Aj =
{∥∥∥T̂n − qj∥∥∥2

< s
}
.

These events are disjoint because of the triangle inequality and (2.28). Applying
Lemma 2.16 completes the proof.

2.5.5 Lower bound theorems
2.5.5.1 Lower bounds with exponential tails

Proof of Theorem 2.9. Let ε2, . . . , εM be M − 1 functions from Proposition 2.15.
Consider the dictionary {f1, . . . , fM} such that for all (u1, . . . , ud) ∈ Rd

f1(u1, . . . , ud) = L

2 1[0,1]

(
L

2 u1

) d∏
q=2

1[0,1](uq),

and for j ≥ 2

fj(u1, . . . , ud) = L

2

1 +
√

log(M) + x

3n εj

(
L

2 u1

)1[0,1]

(
L

2 u1

) d∏
q=2

1[0,1](uq).

Since logM+x
n

< 3, these functions are densities and satisfy |fj|∞ < L.
For any j 6= k,

‖fj − fk‖2 ≥ L
log(M) + x

6n (2.29)

and (2.29) is true with equality when j = 1. If P⊗nk denotes the probability with
respect to n i.i.d. random variables with density fj, the properties (2.26) and (2.27)
give that for any k ≥ 2,

K(P⊗nk , P⊗n1 ) = nK(P⊗1
k , P⊗1

1 ),
≤ nχ2(P⊗1

k , P⊗1
1 ),

= n
2
L
‖fk − f1‖2 ,

= log(M) + x

3 .
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Applying Corollary 2.17 with m = M − 1 yields that for any estimator T̂n,

sup
j=1,...,M

P⊗nj

(∥∥∥T̂n − fj∥∥∥2
≥ L

log(M) + x

24n

)
≥ 1

12 min(1, M − 1
M

exp(−x)),

≥ 1
24 exp(−x).

Proof of Theorem 2.1. Let ε1, . . . , εM be M functions from Proposition 2.15.
For (u1, . . . , ud) ∈ Rd, we define a dictionary {f1, . . . , fM} by

fj(u1, . . . , ud) = L

2

(
1 + εj

(
L

2 u1

))
1[0,1]

(
L

2 u1

) d∏
q=2

1[0,1](uq),

and we define M densities {d1, . . . , dM}:

dj(u1, . . . , ud) = L

2

(
1 + γεj

(
L

2 u1

))
1[0,1]

(
L

2 u1

) d∏
q=2

1[0,1](uq),

for some γ ∈ (0, 1
2) that will be specified later. Due to the properties of the (εj), the

following holds for any j 6= k

‖fk − dj‖2 = L

2 (1 + γ2),

‖fj − dj‖2 = L

2 (1− γ)2,

‖dj − dk‖2 = Lγ2.

Thus if Ŝn is any selector taking values in the discrete set {f1, . . . , fM}:

‖Ŝn − dj‖2 − inf
l=1,...,M

‖fl − dj‖2 = ‖Ŝn − dj‖2 − ‖fj − dj‖2 = 2Lγ1Ŝn 6=fj . (2.30)

Let P⊗nk be the product measure associated with n i.i.d. random variables drawn
from the density dk. Equation (2.30) ensures that with probability P⊗nj (Ŝn 6= fj),
the excess risk is 2Lγ.

For any k 6= 1, using (2.26) and (2.27), we obtain

K(P⊗nk , P⊗n1 ) = nK(P⊗1
k , P⊗1

1 ),
≤ nχ2(P⊗1

k , P⊗1
1 ),

≤ 4
L
n ‖dk − d1‖2 ,

= 4nγ2,

where we used that d1(u1, . . . , ud) ≥ L/4 almost surely on the common support of
dk and d1.

Now we choose γ = 1
2
√

3

√
x+logM

n
such that ∀k 6= 1, K(P⊗nk , P⊗n1 ) ≤ x+logM

3 .
Let Ŝn be any estimator with values in the discrete set {f1, . . . , fM}. For any
j = 1, . . . ,M , define the event Aj = {Ŝn = fj}. The events are disjoint if fj 6= fk for
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all j 6= k (if this is not satisfied, we can always remove the duplicates). By applying
Lemma 2.16 with m = M − 1 and χ = 1

3(x+ logM), we get

max
j=1,...,M

P⊗nj
(
Ŝn 6= fj

)
≥ M − 1

12M exp(−x).

Since (M − 1)/M ≥ 1/2,

max
j=1,...,M

P⊗nj
(
‖Ŝn − dj‖2 − inf

l=1,...,M
‖fl − dj‖2 > 2Lγ

)
≥ M − 1

12M exp(−x),

≥ 1
24 exp(−x).

2.5.5.2 ERM over the convex hull

Proof of Proposition 2.3. By homogeneity, it is enough to prove the case L = 2.
Let φ1, ..., φM , φM+1 be M + 1 functions given by Proposition 2.15. Consider the
probability density f = 1[0,1] and the dictionary of 2M + 1 functions

D =
{

1[0,1]

}
∪
{

(1± φjφM+1)1[0,1], j = 1, ...,M
}
.

The true density is in the dictionary thus ming∈D ‖f − g‖2 = 0. Also, all the elements
of the dictionary are uniformly bounded by L = 2.

The convex hull of the dictionary is the set

{gλ = (1 + fλφM+1)1[0,1], λ ∈ RM , |λ|1 ≤ 1},

where fλ = ∑M
j=1 λjφj and | · |1 is the `1 norm in RM .

For all λ ∈ RM with |λ|1 ≤ 1, ‖f − gλ‖2 = |λ|22 where | · |2 is the `2 norm in RM .
Let Lλ := ‖gλ‖2−2gλ+2f−‖f‖2 = |λ|22−2fλφM+1. Since the empirical process is

linear in λ, the proof from [66] can be adapted as follows. Given n i.i.d. observations
X1, ..., Xn generated by the density f , [66, Lemma 5.4] states that for every r > 0,
with probability greater than 1− 6 exp(−C2M),

c0

√
r

M
≤ c1

√
rM

n
≤ sup

λ∈RM ,|λ|2≤
√
r

Pn(fλφM+1) ≤ c2

√
rM

n
,≤ c3

√
r

M
,

where c0, c1, c2, c3 > 0 are absolute constants.
Let r ≤ 1/M that will be specified later (such that if |λ|2 ≤

√
r then |λ|1 ≤ 1).

On the one hand,

inf
λ∈RM ,|λ|2≤

√
r
PnLλ ≤ r − 2 sup

λ∈RM ,|λ|2≤
√
r

Pn(fλφM+1).

Given that n ∼M2, using the above high probability estimate, there exists a positive
absolute constant c4 such that for all r ≤ c2

3/(4M), with probability greater than
1 − 6 exp(−C2M), infλ∈RM ,|λ|2≤√r PnLλ ≤

√
r(
√
r − c3/

√
M) ≤ −c4

√
r/M , where

c4 = c3/2.
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On the other hand, if ρ ≤ 1/M , with probability greater than 1− 6 exp(−C2M),

sup
λ∈RM ,|λ|2≤

√
ρ

|(Pn − P )Lλ| = 2 sup
λ∈RM ,|λ|2≤

√
ρ

|(Pn − P )fλφM+1| ≤ 2c3

√
ρ

M
.

Finally, choose r, ρ such that 2c3

√
ρ/M < c4

√
r/M and ρ > c5/

√
n for some absolute

constant c5 > 0, then with probability greater than 1− 12 exp(−C2M),

inf
λ,|λ|2≤

√
ρ
PnLλ ≥ − sup

λ,|λ|2≤
√
ρ
|(Pn − P )Lλ| ≥ −2c3

√
ρ

M
> −c4

√
r

M
≥ inf

λ,|λ|2≤
√
r
PnLλ.

Thus with high probability, infλ,|λ|2≤√ρ PnLλ > infλ,|λ|1≤1 PnLλ. The inequality is
strict so the empirical risk minimizer has a risk greater than ρ. As ρ satisfies
ρ > C3/

√
n, the proof is complete.

2.5.5.3 Exponential Weights

If Y1,...,Ym are i.i.d. with P (Y1 = ±1) = 1/2, then for all u ∈ [0,
√
m/4],

1
15 exp(−4u2) ≤ P

(
Y1 + ...+ Ym ≥ u

√
m
)
≤ exp(−u2/2). (2.31)

A proof of the lower bound can be found in [76, 7.3.2] and a standard Chernoff bound
provides the upper bound. The following proof uses arguments similar to [32].

Proof of Proposition 2.4. By homogeneity, it is enough to prove the case L = 1. Let
ε1, ε2, ε3 be 3 functions from Proposition 2.15. Let f = 1[0,1] be the unknown density
and let

f1 = f + ε1, f2 = f + (1 + 1√
n

)ε2, f3 = f2 + α√
n
ε3,

π1 = 1/(8
√
n), π2 = 1/(8

√
n), π3 = 1− 1/(4

√
n),

where 0 ≤ α ≤ n1/4 will be specified later. The best function in the dictionary is f1:
‖f1 − f‖2 = minj=1,...,M ‖fj − f‖2.

Let E be the event {Rn(f2) + 2/
√
n ≤ Rn(f1)}. By simple algebra,

E =
{

1 + 4
√
n− 2

√
nPn(ε2) ≤ 2n(Pn(ε2 − ε1)

}
⊇
{

7
√
n ≤ 2n(Pn(ε2 − ε1)

}
,

where for the inclusion we used 1 ≤
√
n and |Pn(ε2)| ≤ 1. The 2n random variables

(εj(Xi))j=1,2; i=1,...,n are i.i.d. Rademacher random variables, so applying the lower
bound of (2.31) with m = 2n and u = 7

√
2/4 yields P (E) ≥ C2 > 0 for some

absolute constant C2. Now set α2 = 8 log(2n/C2), and choose N0 such that for all
n ≥ N0, 8 log(2n/C2) > 0 and α2 ≤

√
n.

Let F := {Rn(f3) ≤ Rn(f1)} and define

G = {2(α/
√
n)Pn(ε3) ≤ α2/n− 2/

√
n}.

Since Rn(f3) = Rn(f2) + α2/n− 2(α/
√
n)Pn(ε3), we have E ∩Gc ⊆ F . As α2 ≤

√
n

holds, we have α2 − 2
√
n ≤ −α2 and

G ⊆ {(2(α/
√
n)Pn(ε3) ≤ −α2/n} = {−nPn(ε3) ≥

√
nα/2}.
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The random variable −nPn(εj) is the sum of n independent Rademacher random
variables. Applying the upper bound of (2.31) to u = α/2, we have P (G) ≤
exp(−α2/8) = C2/(2n) since α = 8 log(2n/C2). Now as F c ⊂ Ec ∪G,

P (Ec ∪ F c) ≤ P (Ec ∪G) ≤ (1− C2) + C2

2n ≤ 1− C2/2 < 1.

The probability of the event E ∩ F is greater than C0 := C2/2. On this event,
Rn(f2) ≤ Rn(f1) and Rn(f3) ≤ Rn(f1) thus

θ̂EW,β1 = π1 exp(−Rn(f1)/β)
π1 exp(−Rn(f1)/β) + π2 exp(−Rn(f2)/β) + π3 exp(−Rn(f3)/β) ,

≤ π1 exp(−Rn(f1)/β)
(π1 + π2 + π3) exp(−Rn(f1)/β) = π1 = 1

8
√
n
.

Let θ1 = θ̂EW,β1 for simplicity. As (ε1, ε2, ε3) is an orthonormal system,

‖fθ̂EW,β − f‖
2 − ‖f1 − f‖2 ≥ ‖θ1f1 + (1− θ1)f2 − f‖2 − ‖f1 − f‖2 ,

= (1− θ1)2 ‖f2 − f‖2 − (1− θ2
1) ‖f1 − f‖2 ,

≥ 2(1− θ1)2/
√
n+ [(1− θ1)2 − (1− θ2

1)],
≥ 1/(2

√
n)− 2θ1,

≥ 1/(2
√
n)− 2/(8

√
n) ≥ 1/(4

√
n).

The proof of Proposition 2.5 is based on estimates from [68] and highlights the
similarities between regression with random design and density estimation with the
L2 risk.

Proof of Proposition 2.5. By homogeneity, it is enough to prove the case L = 1. The
strategy is to construct an example for density estimation such that the calculations
from [68, Proof of Theorem A] can be leveraged. Let fY be the probability density

fY (x) =
1/4 + 1/(2

√
n) if x ∈ [−2, 0),

1/4− 1/(2
√
n) if x ∈ (0, 2],

and 0 elsewhere. Let {f1 = 1
21[−2,0)], f2 = 1

21[0,2)} be the dictionary. Let

L2(y) := ‖f2‖2 − 2f2(y) + 2f1(y)− ‖f1‖2 , ∀y ∈ R,

and observe that L2(Y ) = −X where X = 1[0,2)(Y )− 1[−2,0)(Y ) so that X satisfies

X =
1 with probability 1/2− 1/

√
n,

−1 with probability 1/2 + 1/
√
n.

By definition of L2,

PL2 = EL2(Y ) = ‖f2 − fY ‖2 − ‖f1 − fY ‖2 .

As PL2 = E[−X] = 2/
√
n > 0, f1 is the best function in the dictionary and PL2 is

the excess risk of f2. Finally, let

α = ‖f1 − f2‖2

PL2
=
√
n

2 .
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For any θ ∈ [0, 1], let fθ = θf1 + (1− θ)f2. An explicit calculation of the excess
risk of fθ yields

‖fθ − fY ‖2 − ‖f1 − fY ‖2 = θ2 ‖f1‖2 + (1− θ)2 ‖f2‖2 − 2E[fθ(Y )] + 2E[f1(Y )]− ‖f1‖2 ,

= −θ(1− θ) ‖f1 − f2‖2 + (1− θ)E[−X],
= (1− θ − θ(1− θ)α)PL2.

Given n independent observations Y1, ..., Yn with common density f , define Xi =
1[0,2)(Yi)− 1[−2,0)(Yi) as above. The exponential weights estimator with temperature
β can be written as

f̂EWβ = θ̂1f1 + (1− θ̂1)f2, θ̂1 := 1
1 + exp(−(n/β) 1

n

∑n
i=1[−Xi])

,

and its excess risk is
∥∥∥f̂EWβ − fY

∥∥∥2
− ‖f1 − fY ‖2 = (1− θ̂1 − θ̂1(1− θ̂1)α)PL2.

The constants α and PL2, the law of X1, ..., Xn, θ̂1 are the same as in [68, Proof
of Theorem A], thus the lower bounds in expectation and probability of the quantity
(1− θ̂1− θ̂1(1− θ̂1)α) in Lecué and Mendelson [68] also hold here and yield the lower
bound of Proposition 2.5.
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Chapter 3

Optimal bounds for aggregation of
affine estimators

We study the problem of aggregation of estimators when the estimators are not
independent of the data used for aggregation and no sample splitting is allowed. If
the estimators are deterministic vectors, it is well known that the minimax rate of
aggregation is of order log(M), where M is the number of estimators to aggregate. It
is proved that for affine estimators, the minimax rate of aggregation is unchanged: it
is possible to handle the linear dependence between the affine estimators and the data
used for aggregation at no extra cost. The minimax rate is not impacted either by the
variance of the affine estimators, or any other measure of their statistical complexity.
The minimax rate is attained with a penalized procedure over the convex hull of the
estimators, for a penalty that is inspired from the Q-aggregation procedure. The results
follow from the interplay between the penalty, strong convexity and concentration.

3.1 Introduction
We study the problem of recovering an unknown vector f = (f1, ..., fn)T ∈ Rn from
noisy observations

Yi = fi + ξi, i = 1, ..., n, (3.1)
where the noise random variables ξ1, ..., ξn are i.i.d. N (0, σ2) or i.i.d. subgaussian
random variables. We measure the quality of estimation of the unknown vector f
with the squared Euclidean norm in Rn:

‖f − µ̂‖2
2,

for any estimator µ̂ of f . When the noise random variables are normal, (3.1) is
the Gaussian sequence model, which has been extensively studied, see e.g. [57]
and the references therein. Several estimators have been proposed to recover the
unknown vector f from the observations: the Ordinary Least Squares, the Ridge
estimator, the Stein estimator and the procedures based on shrinkage, to name
a few. Several of these estimators depend on a parameter that must be chosen
carefully to obtain satisfying error bounds. These available estimators have different
strengths and weaknesses in different scenarios, so it is important to be able to
mimic the best among a given family of estimators, without any assumption on the
unknown f . The problem of mimicking the best estimator in a given finite set is the
problem of model-selection type aggregation, which was introduced in [83, 98]. More
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precisely, let µ̂1, ..., µ̂M be M estimators of f based on the data y = (Y1, ..., Yn)T .
The goal is to construct with the same data y = (Y1, ..., Yn)T a new estimator µ̂
called the aggregate, which satisfies with probability greater than 1− δ the sharp
oracle inequality1

|µ̂− f |22 ≤ min
j=1,...,M

|µ̂j − f |22 + priceM(δ), (3.2)

where priceM(·) is a function of δ that should be small. The term priceM(·) will
be referred to as the price to pay for aggregating the estimators µ̂1, ..., µ̂M . If the
estimators µ̂1, ..., µ̂M are deterministic vectors, the price to pay for aggregating these
estimators is of order σ2 log(M/δ) and (3.2) is satisfied for an estimator µ̂ based
on Q-aggregation [32]. Considering deterministic estimators is of interest if two
independent samples are available, so that µ̂1, ..., µ̂M are based on the first sample
while aggregation is performed using the second sample. Then the first sample can
be considered as frozen at the aggregation step (for more details see [96]). If the
estimators are random (dependent on the data y used for aggregation), two natural
questions arise.

1. Does the price to pay for aggregation increase because of the dependence
between µ̂1, ..., µ̂M and the data y, or is it still of order σ2 log(M/δ)? Is there
an extra price to pay to handle the dependence?

2. A natural quantity that captures the statistical complexity of a given estimator
µ̂j is the variance defined by E|µ̂j − Eµ̂j|22. When the estimators are deter-
ministic, their variances are all zero. Now that the estimators are random,
does the price to pay for aggregation depend on the statistical complexities of
the estimators µ̂1, ..., µ̂M , for example through their variances? Is it harder to
aggregate estimators with large statistical complexities?

The goal of this paper is to answer these questions for affine estimators.
Among the procedures available to estimate f , several are linear in the obser-

vations Y1, ..., Yn. It is the case for the Least Squares and the Ridge estimators,
whereas the shrinkage estimators and the Stein estimator are non-linear functions
of the observations. Examples of estimators that are linear or affine in the obser-
vations is given in [35, Section 1.2], [2] and references therein. An affine estimator
is of the form µ̂j = Ajy + bj for a deterministic matrix Aj of size n × n and a
deterministic vector bj ∈ Rn. The linearity of the estimators µ̂1, ..., µ̂M makes it
possible to explicitly treat the dependence between the estimators µ̂1, ..., µ̂M and
the data y = (Y1, ..., Yn)T used to aggregate them. Donoho et al. [40] proved that
for orthosymmetric quadratically convex sets (which include all ellipsoids and hy-
perrectangles), the minimax risk among all linear estimators is within 25% of the
minimax risk among all estimators.

The papers [70, 35, 33] derived different procedures that satisfy sharp oracle
inequalities for the problem of aggregation of affine estimators when the noise random
variables are Gaussian. Leung and Barron [70], Dalalyan and Salmon [35] proposed
an estimator µ̂EW based on exponential weights, for which the following sharp oracle
inequality holds in expectation:

E|f − µ̂EW |22 ≤ min
j=1,...,M

E|µ̂j − f |22 + 8σ2 logM,

1By sharp, we mean that the constant in front of the term minj=1,...,M |µ̂j − f |22 is 1.
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under the assumption that all Aj are orthoprojectors (orthogonal projection matrices,
cf (3.4)), or under a strong commutativity assumption on the matrices Aj. The
constant 8 can be reduced to 4 if all Aj are orthoprojectors. If the matrices Aj are
not symmetric, [35] achieved a similar oracle inequality by symmetrizing the affine
estimators before the aggregation step, which suggests that the symmetry assumption
can be relaxed. Although the estimator µ̂EW achieves this inequality in expectation,
it was shown in [3, 32] that it cannot achieve a similar result in deviation, with an
unavoidable error term of order

√
n. In Dai et al. [33], a sharp oracle inequality in

deviation is derived for an estimator µ̂Q based on Q-aggregation [90, 32]. Namely,
[33] proves that if the matrices A1, ..., AM are symmetric and positive semi-definite,
the estimator µ̂Q satisfies with probability greater than 1− δ:

|f − µ̂Q|22 ≤ min
j=1,...,M

(
|µ̂j − f |22 + 4σ2Tr(Aj)

)
+ Cσ2 log(M/δ), (3.3)

where the constant C is proportional to the largest operator norm of the matrices
A1, ..., AM . The term 4σ2Tr(Aj) is intimately linked to the statistical complexity of
the estimator µ̂j = Ajy + bj. For instance, the variance of µ̂j is E|µ̂j − Eµ̂j|22 =
σ2Tr(ATj Aj). If µ̂j is a Least Squares estimator, Aj is an orthoprojector, and the
variance becomes σ2TrAj. Thus, the statistical complexity of the estimator µ̂j
clearly appears in the remainder term of the oracle inequality (3.3) proved in [33].
Thus, one may think that the price to pay for aggregating affine estimators, i.e. the
function priceM (δ) in (3.2), depends on the statistical complexity of the estimators
to aggregate.

The bound (3.3) may lead to the conclusion that the price to pay for aggregation
of affine estimators can be substantially larger than σ2 log(M/δ) which is the price
for aggregating deterministic vectors. Indeed, the extra term 4σ2Tr(Aj) may be large
in common situation where the trace of some matrices Aj is large. For example,
if one aggregates the estimators µ̂1 = λ1y, ..., µ̂M = λMy, for some positive real
numbers λ1, ..., λM , then the remainder term 4σ2Tr(Aj) in the above oracle inequality
is of order σ2nλj for each j = 1, ...,M , which can be greater than the optimal rate
σ2 logM . This term 4σ2Tr(Aj) makes the oracle inequality (3.3) suitable only for
scenarios where the matrices Aj have small trace. But more importantly, the term
σ2TrAj suggests that the price to pay for aggregating affine estimators increases with
the statistical complexities of the estimators to aggregate.

The results discussed above rely on specific assumptions on the matrices A1, ..., AM
[70, 35, 33]. This raises a third question, although not as important as the two
questions above:

3. Does the nature of the matrices A1, ..., AM have an impact on the price to pay
to aggregate these affine estimators? Is the price in (3.2) substantially smaller
if the matrices are orthoprojectors, semi-positive definite or symmetric?

The main contribution of the present paper is to answer the three questions raised
above:

1. It is proved in Theorem 3.1 that a penalized procedure over the simplex
satisfies the sharp oracle inequality (3.2) with priceM(δ) = cσ2 log(M/δ) for
some absolute constant c > 0. This price is of the same order as for the problem
of aggregation of deterministic vectors. Thus the dependence between the
estimators and the data used to aggregate them induces no extra cost.
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2. The form of the affine estimators to aggregate has no impact on the price to
pay for aggregation. In particular, the sharp oracle inequalities of the present
paper do not involve quantities dependent on Aj such as σ2TrAj.

3. The only assumption made on the matrices A1, ..., AM is that |||Aj|||2 ≤ 1 for
all j = 1, ...,M , where ||| · |||2 is the operator norm. All other assumptions
on the matrices A1, ..., AM can be dropped, in particular the matrices can be
non-symmetric and have negative eigenvalues.

The paper is organized as follows. In Section 3.1.1 we define the notation used
throughout the paper. Section 3.2 defines a penalized procedure over the simplex
and shows that it achieves sharp oracle inequalities in deviation for aggregation of
affine estimators. The role of the penalty is studied in Section 3.3 and Section 3.4.
Prior weights are considered in Section 3.5. Section 3.6 shows that the estimator
is robust to variance misspecification and to non-Gaussianity of the noise. Some
examples are given in Section 3.7. Section 3.8 is devoted to the proofs.

3.1.1 Notation
Let f = (f1, ..., fn)T ∈ Rn be an unknown regression vector. We observe n random
variables (3.1) where ξ1, ..., ξn are subgaussian random variables, with E[ξi] = 0 and
E[ξ2

i ] = σ2. It can be rewritten in the vector form y = f + ξ where y = (Y1, ..., Yn)T ,
f = (f1, ..., fn)T and ξ = (ξ1, ..., ξn)T .

For any estimator µ̂ of f , we measure the quality of estimation of f with the
loss |µ̂− f |22, where | · |2 is the Euclidean norm in Rn. Let M ≥ 2. We consider M
affine estimators of the form

µ̂j = Ajy + bj, j = 1, ...,M.

The matrices A1, ..., AM and the vectors b1, ..., bM ∈ Rn are deterministic. Define
the simplex in RM :

ΛM =
{
θ ∈ RM ,

M∑
j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0
}
.

For any θ ∈ ΛM , let

Aθ =
M∑
j=1

θjAj, bθ =
M∑
j=1

θjbj, µ̂θ = Aθy + bθ.

Let e1, ..., eM be the vectors of the canonical basis in RM . Then µ̂j = µ̂ej for all
j = 1, ...,M .

An orthoprojector is an n× n matrix P such that

P = P T = P 2. (3.4)

Denote by In×n the n×n-identity matrix. For any n×n real matrix A = (ai,j)i,j=1,...,n,
define the operator norm of A, the Frobenius (or Hilbert-Schmidt) norm of A and
the nuclear norm of A respectively by:

|||A|||2 = sup
x6=0

|Ax|2
|x|2

, ‖A‖F =
√ ∑
i,j=1,...,n

a2
i,j, ‖A‖1 = Tr

(√
ATA

)
.
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The following inequalities hold for any two squared matrices M,M ′:
|||MM ′|||2 ≤ |||M |||2|||M

′|||2, ‖MM ′‖F ≤ |||M |||2 ‖M
′‖F . (3.5)

Finally, denote by log the natural logarithm with log(e) = 1.

3.2 A penalized procedure on the simplex
For any θ ∈ ΛM define

Cp(θ) := |µ̂θ|22 − 2yT µ̂θ + 2σ2Tr(Aθ), (3.6)
which is Mallows [73] Cp-criterion. Next, define

Hpen(θ) = Cp(θ) + 1
2pen(θ), (3.7)

where
pen(θ) =

M∑
j=1

θj|µ̂θ − µ̂j|22. (3.8)

We consider the estimator µ̂θ̂pen
where

θ̂pen ∈ argmin
θ∈ΛM

Hpen(θ). (3.9)

The function Hpen is quadratic and convex (cf. Lemma 3.14). Minimizing Hpen over
the simplex is a convex quadratic program for which efficient algorithms are available.
The convexity of Hpen also proves that θ̂pen is well defined, although it may not be
unique (for example if all µ̂j are the same then Hpen is constant on the simplex).

We now explain the meaning of the terms that appear in (3.7). If θ is fixed,
Cp(θ) is an unbiased estimate of the quantity

R(θ) := |µ̂θ|22 − 2fT µ̂θ = |µ̂θ − f |22 − |f |22, (3.10)
which is the quantity of interest |µ̂θ − f |22 up to the additive constant |f |22.

The penalty (3.8) is borrowed from the Q-aggregation procedure, which is a
powerful tool to derive sharp oracle inequalities in deviation when the loss is strongly
convex [90, 32, 69, 12]. Since the estimators µ̂1, ..., µ̂M depend on the data, the
penalty (3.8) is data-driven, which is not the case if µ̂1, ..., µ̂M are deterministic
vectors as in [32]. In order to give some geometric insights on the penalty (3.8),
let c ∈ Rn be a solution of M linear equations 2cT µ̂j = |µ̂j|22, j = 1, ...,M , and
assume only in the rest of this paragraph that such a solution exists, even though
this assumption cannot be fulfilled for M > n. Then

pen(θ) =
M∑
j=1

θj|µ̂j|22 − |µ̂θ|22 = 2cT µ̂θ − |µ̂θ|22 = |c|22 − |µ̂θ − c|22. (3.11)

We can write pen(θ) = g(µ̂θ) for some function g defined on the convex hull of
{µ̂1, ..., µ̂M}. Equation (3.11) shows that the level sets of the function g are Euclidean
balls centered at c. The function g is non-negative, it is minimal at the extreme points
µ̂1, ..., µ̂M since g(µ̂j) = 0 for all j = 1, ...,M and g is maximal at the projection of c
on the convex hull of {µ̂1, ..., µ̂M}. Intuitively, the penalty (3.8) pushes θ away from
the center of the simplex towards the vertices. Thus, the level sets of the function
θ → pen(θ) in RM are ellipsoids centered at θc, where θc is the unique point in RM

such that µ̂θc = c. If M > n or if the vector c is not well defined, the level sets of
pen(·) are more intricate and cannot be described in such a simple way.

59



(a) 3 points in R2. (b) 4 points in R2. (c) 6 points in R2.

Figure 3.1: Penalty (3.8) heatmaps. Largest penalty in red, smallest in blue.

Theorem 3.1 (Main result). Let M ≥ 2. For j = 1, ...,M , consider the affine
estimators µ̂j = Ajy + bj and assume that |||Aj|||2 ≤ 1. Assume that the noise
random variables ξ1, ...ξn are i.i.d. N (0, σ2). Let θ̂pen be the estimator defined in
(3.9). Then for all x > 0, the estimator µ̂θ̂pen

satisfies with probability greater than
1− exp(−x),

|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
|µ̂j − f |22 + 30σ2(x+ 2 logM). (3.12)

Furthermore,

E
[
|µ̂θ̂pen

− f |22
]
≤ E

[
min

j=1,...,M
|µ̂j − f |22

]
+ 60σ2 log(M). (3.13)

The sharp oracle inequality in deviation given in [33] presents an additive term
proportional to σ2Tr(Aj), as in (3.3). An improvement of the present paper is the
absence of this additive term which can be large for matrices Aj with large trace.
Our analysis shows that the quantities σ2Tr(Aj) are not meaningful for the problem
of aggregation of affine estimators, and Theorem 3.1 improves upon the earlier result
of [33].

We relax all assumptions on the matrices A1, ..., AM , for instance they may be
non-symmetric and have negative eigenvalues. The above result shows that the
restrictions on the matrices A1, ..., AM introduced in [70, 35, 33] are not intrinsic to
the problem of aggregation of affine estimators.

An estimator of the form Bjy + bj with |||Bj|||2 > 1 and bj ∈ Rn is inadmissible
in the sense that there exists a matrix Aj = Aj(Bj) such that

|||Aj|||2 ≤ 1, E
[
|Ajy + bj − f |22

]
≤ E

[
|Bjy + bj − f |22

]
(3.14)

for all f ∈ Rn, cf. Cohen [31]. Let B1, ..., BM be real matrices and b1, ..., bM ∈ Rn

be deterministic vectors. We now define the matrices Aj = Aj(Bj) in the following
way. If |||Bj|||2 > 1 then Aj is a matrix such that (3.14) holds and if |||Bj|||2 ≤ 1,
set Aj = Bj. By Theorem 3.1, the estimator µ̂θ̂pen

that aggregates the improved
estimators (Ajy + bj)j=1,...,M satisfies

E|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
E
[
|Ajy + bj − f |22

]
+ 60σ2 log(M),

≤ min
j=1,...,M

E
[
|Bjy + bj − f |22

]
+ 60σ2 log(M).
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Thus, we obtain a sharp oracle inequality in expectation without the assumption
maxj=1,...,M |||Bj|||2 ≤ 1 if the estimators (Bjy + bj)j=1,...,M are pre-improved by
transformation to (Ajy + bj)j=1,...,M where |||Aj|||2 ≤ 1.

The next proposition shows that the bounds of Theorem 3.1 are optimal in a
minimax sense. For any f ∈ Rn we denote by Pf the probability measure of the
random variable y = f + ξ. A lower bound for aggregation of deterministic vectors
was proved in [92, Theorem 5.4 with S = 1]. This lower bound implies the following
result.

Proposition 3.2. There exist absolute constants c∗, C∗, p∗ > 0 such that the following
holds. For all M,n ≥ C∗, there exist b1, ..., bM ∈ Rn and orthoprojectors A1, ..., AM
of rank one such that

inf
µ̂

sup
f∈Rn

Pf
(
|µ̂− f |22 − min

k=1,...,M
|bk − f |22 ≥ c∗σ2 log(M)

)
≥ p∗, (3.15)

inf
µ̂

sup
f∈Rn

Pf
(
|µ̂− f |22 − min

k=1,...,M
|Aky− f |22 ≥ c∗σ2 log(M)

)
≥ p∗, (3.16)

where the infima are taken over all estimators µ̂.

This implies that the bounds of Theorem 3.1 are rate minimax in terms of the
aggregation price. The lower bound can be constructed either with a dictionary of
deterministic vectors (cf. (3.15)), or with a dictionary of orthoprojectors of rank one
(cf. (3.16)).

3.3 The penalty (3.8) improves upon model selec-
tion based on Cp

In order to explain the role of the penalty (3.8) for the problem of aggregation of
affine estimators, consider first the standard empirical risk minimization scheme
based on the Cp criterion. Define Ĵ as

Ĵ ∈ argmin
j=1,...,M

Cp(ej), (3.17)

where Cp(·) is defined in (3.6). Using that Cp(eĴ) ≤ Cp(ek) for all k = 1, ...,M
together with the definition of Cp(·) and R(·) given in (3.6) and (3.10), the following
holds almost surely:

|µ̂Ĵ − f |
2
2 ≤ min

k=1,...,M
|µ̂k − f |22 + max

j,k=1,...,M
∆jk, (3.18)

where ∆jk := Cp(ek) − Cp(ej) − (R(ek) − R(ej)). Thus, it is possible to prove an
oracle inequality for the estimator µ̂Ĵ if we can control the quantities ∆jk uniformly
over all pairs j, k = 1, ...,M . These quantities can be rewritten as

∆jk = 2ξT ((Aj − Ak)f + bj − bk) + 2
(
ξT (Aj − Ak)ξ − σ2Tr(Aj − Ak)

)
. (3.19)

Two stochastic terms appear in ∆jk. The first is a centered Gaussian random variable
with variance 4σ2|(Aj − Ak)f + bj − bk|22. The second is a centered quadratic form
in ξ, and it can be shown that its variance is of order σ4 ‖Aj − Ak‖2

F. This quadratic
term is sometimes called a Gaussian chaos of order 2. The deviations of these

61



two terms are governed by the following concentration inequalities. For any vector
v ∈ Rn, a standard Gaussian tail bound gives

P
(
vTξ > σ|v|2

√
2x
)
≤ exp(−x), ∀x > 0. (3.20)

For the Gaussian chaos of order 2, the following is proved in [20, Example 2.12].

Lemma 3.3. Assume that ξ ∼ N (0, σ2In×n). For any squared matrix B of size n,

P
(
ξTBξ − σ2TrB > 2σ2 ‖B‖F

√
x+ 2σ2|||B|||2x

)
≤ exp(−x), (3.21)

where σ2TrB = E[ξTBξ].

We set v = 2((Aj −Ak)f + bj − bk) and B = 2(Ak −Aj) to study the deviations
of the random variable ∆jk. If |||Aj − Ak|||2 is small, (3.20) and (3.21) yield that the
deviations of ∆jk are of order of the two quantities

σ|(Aj − Ak)f + bj − bk|2, σ2 ‖Aj − Ak‖F , (3.22)

i.e., the standard deviations of the two terms in ∆jk. The concentration inequalities
(3.20) and (3.21) are known to be tight [62], thus there is little hope to bound the
deviations of ∆jk independently of f , Aj and Ak in order to prove a sharp oracle
inequality. It is possible to refine the above analysis and to prove the following oracle
inequality, though with a leading constant greater than 1.

Proposition 3.4. There exist absolute constants c, C > 0 such that the following
holds. Assume that |||Aj|||2 ≤ 1 for all j = 1, ...,M . Let 0 < ε < c and let Ĵ be the
estimator defined in (3.17). For all x > 0, the estimator µ̂Ĵ satisfies with probability
greater than 1− 2 exp(−x)

|µ̂Ĵ − f |
2
2 ≤ (1 + ε) min

k=1,...,M
|µ̂k − f |22 + Cσ2(x+ 2 logM)/ε.

The proof of Proposition 3.4 is given in the supplementary material. The estimator
µ̂Ĵ fails to achieve a sharp oracle inequality with a remainder term of order σ2 logM ,
and this drawback cannot be repaired for all procedures of the form µ̂K̂ where K̂
is an estimator valued in {1, ...,M}. Indeed, it is proved in [46, Section 6.4.2 and
Proposition 6.1] that there exist f 1,f 2 ∈ Rn and orthoprojectors A1, A2 such that
for any estimator K̂ valued in {1, 2},

sup
f∈{f1,f2}

(
E|AK̂y− f |22 − min

j=1,2
E|Ajy− f |22

)
≥ σ2√n/4, (3.23)

provided that n is larger than some absolute constant. Inspection of the proof of
this result reveals that

σ|(A2 − A1)f + b2 − b1|2 ≥ σ2√n, ∀f ∈ {f 1,f 2},

where we set b1 = b2 = 0. Thus, this lower bound of order
√
n is related to the

Gaussian component of the random variable ∆12, i.e., to the term ξT ((A1 − A2)f +
b1 − b2), cf. (3.19).

The procedure µ̂Ĵ fails to achieve a sharp oracle inequality because the variances
of the two components of ∆jk may be large and cannot be controlled. The role of
the penalty (3.8) is exactly to control the deviations of ∆jk by controlling the terms
(3.22). The following proposition makes this precise.
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Proposition 3.5. Let θ̂pen be the estimator (3.9). Then almost surely,

|µ̂θ̂pen
− f |22 ≤ min

q=1,...,M

(
|µ̂q − f |22

)
+ max

j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
, (3.24)

where ∆jk is the quantity (3.19). Furthermore, for all j, k = 1, ...,M ,

E
[1
2 |µ̂j − µ̂k|

2
2

]
= 1

2 |(Aj − Ak)f + bj − bk|22 + σ2

2 ‖Aj − Ak‖
2
F . (3.25)

The proof of (3.24) is given in Section 3.4 below. A bias-variance decomposition
directly yields (3.25), since E[µ̂j − µ̂k] = (Aj − Ak)f + bj − bk and E|µ̂j − µ̂k −
E[µ̂j − µ̂k]|22 = E|(Aj − Ak)ξ|22 = σ2 ‖Aj − Ak‖2

F.
Compared with (3.18), the right hand side of (3.24) presents the quantities

−1
2 |µ̂j − µ̂k|

2
2. We will explain below that these quantities appear because of the

interplay between the penalty (3.8) and the strong convexity of Hpen.
From (3.24), an outline of the proof of Theorem 3.1 is as follows. By combining

the simple inequality (3.54) and Proposition 3.12 below, we will prove that for any
pair (j, k) we have

E exp
(
λ0

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

))
≤ 1

for λ0 = (30σ2)−1 if the noise ξ has distribution N (0, σ2In×n). Thus, one has

E exp
(
λ0 max

j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

))
≤M2.

Then, Jensen’s inequality yields (3.13) while a Chernoff bound yields (3.12). This
explains the success of the penalty (3.8) for the problem of model selection type
aggregation: the penalty and the strong convexity of Hpen provide the quantity
−1

2 |µ̂j − µ̂k|
2
2, and this quantity is exactly what is needed to control the deviations

of the random variable ∆jk.

3.4 Strong convexity and the penalty (3.8)
To further understand the interplay between the penalty (3.8) and the strong con-
vexity of Hpen, we now give the proof of (3.24).

Proof of (3.24). Let k = 1, ...,M be fixed. The simplex ΛM is a convex set and the
function Hpen is convex, hence we have

∇Hpen(θ̂pen)T (ek − θ̂pen) ≥ 0,

cf. [21, Section 4.2.3, equation (4.21)]. Inequality (3.24) follows from

|µ̂θ̂pen
− f |22 − |µ̂k − f |22

≤ |µ̂θ̂pen
− f |22 − |µ̂k − f |22 +∇Hpen(θ̂pen)T (ek − θ̂pen), (3.26)

=
M∑
j=1

θ̂pen, j

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
, (3.27)

≤ max
j=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
. (3.28)

Equality (3.27) is obtained by simple algebra while (3.28) is a consequence of∑M
j=1 θ̂pen, j = 1 and θ̂pen, j ≥ 0 for all j = 1, ...,M .
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It is possible to interpret this argument in light of the interplay between strong
convexity and the penalty (3.8). The right hand side of (3.26) satisfies

|µ̂θ̂pen
− f |22 − |µ̂k − f |22 +∇Hpen(θ̂pen)T (ek − θ̂pen)

=
M∑
j=1

θ̂pen, j∆jk −
1
2
[
pen(θ̂pen) + |µ̂θ̂pen

− µ̂k|22
]
.

The term |µ̂θ̂pen
− µ̂k|22 comes from the strong convexity of the function Hpen. By

simple algebra or using (3.58) with g = µ̂k, we have

pen(θ̂pen) + |µ̂θ̂pen
− µ̂k|22︸ ︷︷ ︸

Term given by the
strong convexity of Hpen

=
M∑
j=1

θ̂pen, j |µ̂j − µ̂k|22.︸ ︷︷ ︸
Term that controls

the deviations of ∆jk

(3.29)

Formula (3.29) highlights a feature of the penalty (3.8): the penalty transforms the
quadratic term given by strong convexity into the linear term given by the right
hand side of (3.29).

The strong convexity of Cp(·) and Hpen(·) is understood with respect to the
pseudometric

|µ̂θ − µ̂θ′ |2, θ,θ′ ∈ RM ,

so it is not the strong convexity in the Euclidean norm. We say that a function V (·)
is strongly convex with coefficient γ > 0 over the simplex if for all θ,θ′ ∈ ΛM ,

V (θ) ≥ V (θ′) +∇V (θ′)T (θ − θ′) + γ|µ̂θ − µ̂θ′|22.

The strong convexity of Hpen could be used because Hpen is minimized over the
simplex and not just over the vertices. Indeed, minimizing a strongly convex function
over a discrete set, as in the definition of Ĵ , only grants the inequalities

Cp(eĴ) ≤ Cp(ek), for all k = 1, ...,M.

Because the simplex is a convex set, minimizing the strongly convex function Hpen
over the simplex grants the inequalities

Hpen(θ̂pen) ≤ Hpen(θ)− 1
2 |µ̂θ − µ̂θ̂pen

|22, for all θ ∈ ΛM .

One could also consider the estimator θ̂C ∈ argminθ∈ΛM Cp(θ). Because of the strong
convexity of Cp(·), this estimator enjoys the inequalities

Cp(θ̂C) ≤ Cp(θ)− |µ̂θ − µ̂θ̂pen
|22, for all θ ∈ ΛM .

The above displays highlight the fact that Cp(·) and Hpen(·) have different strong
convexity coefficients. This is because Hpen(·) = Cp(·) + (1/2)pen(·) and (1/2)pen(·)
is strongly concave with coefficient 1/2, thus the strong convexity coefficient of
Hpen(·) is less than that of Cp(·). We refer to Lemma 3.14 for a rigorous proof of the
strong convexity of Hpen and Cp.

The estimator µ̂θ̂C is another candidate for the problem of aggregation of affine
estimators. It is close to the estimator µ̂θ̂pen

, except that the penalty (3.8) has been
removed from the function to minimize. It was proved in [32, Section 2.2] that when
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Aj = 0 for all j = 1, ...,M , this estimator performs poorly: for large enough M and
n, there exist f and b1, ..., bM ∈ Rn such that with probability greater than 1/4,

|µ̂θ̂C − f |
2
2 ≥ min

j=1,...,M
|µ̂j − f |22 + σ2√n

48 ,

where µ̂j = bj for all j = 1, ...,M .

3.5 Prior weights
We consider now the problem of aggregation of M affine estimators with a prior
probability distribution π = (π1, ..., πM)T on the finite set of indices {1, ...,M}.

Theorem 3.6. Let M ≥ 2. For j = 1, ...,M , consider the estimator µ̂j = Ajy + bj
and assume that |||Aj|||2 ≤ 1. Let π = (π1, ..., πM)T ∈ ΛM . Assume that the noise ξ
has distribution N (0, σ2In×n). Let θ̂π ∈ argminθ∈ΛM Vpen(θ) where

Vpen(θ) := Hpen(θ) + 30σ2Kθ. (3.30)

Then for all x > 0, with probability greater than 1− exp(−x),

|µ̂θ̂π − f |
2
2 ≤ min

j=1,...,M

(
|µ̂j − f |22 + 60σ2 log 1

πj

)
+ 30σ2x. (3.31)

Furthermore,

E|µ̂θ̂π − f |
2
2 ≤ E min

j=1,...,M

(
|µ̂j − f |22 + 60σ2 log 1

πj

)
. (3.32)

The prior probability distribution π = (πj)j=1,...,M is deterministic and does not
depend on the data y = (Y1, ..., Yn)T . The only difference between the function (3.7)
and the function minimized in (3.30) is the term

σ2Kθ. (3.33)

This term allows us to weight the candidates µ̂1, ..., µ̂M with the prior probabil-
ity distribution (πj)j=1,...,M based on some prior knowledge about the estimators
µ̂1, ..., µ̂M . For example, if the estimators are orthoprojectors, one can set prior
weights that decrease with the rank the orthoprojectors [92, 93]. The same term
is used in [69] whereas [33] uses the Kullback-Leibler divergence of θ from π. It is
shown in [32] that for aggregation of deterministic vectors, one may use a quantity
of the form ∑M

j=1 θj log(ρ(θj)/πj) where ρ(·) satisfies ρ(t) ≥ t and t→ t log(ρ(t)) is
convex. This suggests that we could use the Kullback-Leibler divergence of θ from
π instead of (3.33), but in their current form our proofs only hold with the “linear
entropy” (3.33).

3.6 Robustness of the estimator µ̂θ̂pen

We prove in this section that the procedure (3.9) is robust to non Gaussian noise
distributions and to variance misspecification.
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3.6.1 Robustness to non-Gaussian noise
The following result shows that the penalized procedure (3.9) is robust to non-
Gaussian noise distributions.
Theorem 3.7. Let M ≥ 2. Let σ̄ > 0. For j = 1, ...,M , consider the estimator
µ̂j = Ajy + bj and assume that |||Aj|||2 ≤ 1. Assume that the noise components
ξ1, ..., ξn are i.i.d., centered with variance σ2 and satisfy for all b ∈ Rn, all matrices
B and all x > 0

P
(
ξTb > σ̄

√
2x
)
≤ exp(−x), (3.34)

P
(
ξTBξ − σ2TrB > 2σσ̄ ‖B‖F

√
x+ 2σ̄2|||B|||2x

)
≤ exp(−x). (3.35)

Let θ̂pen be the estimator defined in (3.9). Then for all x > 0, the estimator µ̂θ̂pen

satisfies with probability greater than 1− 2 exp(−x),

|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
|µ̂j − f |22 + 46σ̄2(2 logM + x). (3.36)

Let K > 0. If the random variables ξ1, ..., ξn are i.i.d., centered with variance
σ2 and K-subgaussian in the sense that logE[etξi ] ≤ K2t2/2 for all t ∈ R and all
i = 1, ..., n, then (3.34) is satisfied with σ̄ = cK for some absolute constant c > 0
[102, Section 5.2.3]. As σ ≤ K, (3.34) is also satisfied with σ̄ = cK2/σ. By the
Hanson-Wright inequality [52, 105, 94], (3.35) also holds with σ̄ = cK2/σ for another
absolute constant c > 0. Thus, for i.i.d. K-subgaussian random variables with
variance σ2, (3.36) yields

|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
|µ̂j − f |22 + C(K4/σ2)(2 logM + x), (3.37)

for some absolute constant C > 0. For most common examples of subgaussian
random variables, the standard deviation σ is of the same order as the subgaussian
norm K, so the bound (3.37) is satisfying. This bound may not be tight if the
standard deviation is pathologically small compared to the subgaussian norm.

3.6.2 Robustness to variance misspecification
In order to construct the estimator (3.9) by minimizing (3.7), the knowledge of the
variance of the noise is needed. However, the following proposition shows that the
procedure (3.9) is robust to variance misspecification, i.e., the result still holds if the
variance is replaced by an estimator σ̂2 as soon as σ̂2 is consistent in a weak sense
defined below.
Theorem 3.8 (Aggregation under variance misspecification). Let M ≥ 2. For
j = 1, ...,M , consider the estimator µ̂j = Ajy + bj. Assume that the noise random
variables ξ1, ...ξn are i.i.d. N (0, σ2). Let σ̂2 be an estimator and assume that

∀j = 1, ...,M, Aj = ATj = A2
j , δ := P

(
|σ2 − σ̂2| > σ2/8

)
< 1. (3.38)

Let θ̂σ̂ = argminθ∈ΛM Wpen(θ) where

Wpen(θ) := |µ̂θ|22 − 2yT µ̂θ + 2σ̂2Tr(Aθ) + 1
2pen(θ). (3.39)

Then for all x > 0, with probability greater than 1− δ − exp(−x),

|µ̂θ̂σ̂ − f |
2
2 ≤ min

j=1,...,M
|µ̂j − f |22 + 48σ2(x+ 2 logM).
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The proof of Theorem 3.8 is given in Section 3.8.3. In (3.38), the matrices
A1, ..., AM are assumed to be orthoprojectors, so Theorem 3.8 is a result for ag-
gregation of Least Squares estimators. As soon as an estimator σ̂2 satisfies with
high probability |σ̂2 − σ2| ≤ σ2/8, optimal aggregation of Least Squares estimators
is possible. This condition is weaker than consistency, as any estimator σ̂2 that
converges to σ2 in probability satisfies this condition for n large enough.

The proof of Theorem 3.8 exploits the form of the penalty (3.8) and the strong
convexity of the function (3.39). Similarly to Proposition 3.5, we will prove that
almost surely,

|µ̂θ̂σ̂ − f |
2
2 ≤ min

q=1,...,M
|µ̂q − f |22

+ max
j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2 + 2(σ2 − σ̂2)Tr(Aj − Ak)

)
, (3.40)

where ∆jk is the quantity (3.19). The only difference from (3.24) is in the extra
term 2(σ2 − σ̂2)Tr(Aj − Ak) that appears because we used σ̂2 instead of σ2 in the
definition of Wpen(·). On the event |σ̂2 − σ2| ≤ σ2/8, it is easy to check that (cf.
Lemma 3.13)

2(σ2 − σ̂2)Tr(Aj − Ak) ≤
σ2

4 ‖Aj − Ak‖
2
F .

As explained in the discussion that follows Proposition 3.5, the quantity 1
2 |µ̂j − µ̂k|

2
2

is given by the interplay between the penalty (3.8) and the strong convexity of the
function that is minimized. By (3.25), the expectation of this quantity is greater than
(σ2/2) ‖Aj − Ak‖2

F. Thus, the penalty (3.8) and the strong convexity of Wpen provide
exactly what is needed to compensate the difference between σ̂2 and σ2. Hence, the
proof of Theorem 3.8 reveals that the robustness to variance misspecification is in
fact due to the interplay between the penalty (3.8) and the strong convexity of Wpen.

The papers [47, 49, 8] aim at performing aggregation of Least Squares estimators
when σ2 is unknown, but unlike Theorem 3.8 the oracle inequalities that they
established have a leading constant greater than 1. To our knowledge, Theorem 3.8
is the first aggregation result, with leading constant 1, that is robust to variance
misspecification.

In the following, we describe several situations where the suitable estimator σ̂2 is
available.

Example 3.1 (An estimator σ̂2 that does not depend on y). In [35, Section 3.1], two
contexts are given where an unbiased estimator of the covariance matrix, independent
from y, is available. For example, the noise level can be estimated independently if
the signal is captured multiple times by a single device, or if several identical devices
capture the same signal.

Example 3.2 (Difference based estimators). In nonparametric regression where the
non-random design points are equispaced in [0, 1], a well known estimator of the noise
level is the difference based estimator 1/(2n− 2)∑n−1

i=1 (yi+1 − yi)2. This technique
can be refined with more complex difference sequences [51, 39], and extends to design
points in a multidimensional space [81]. For images, where the underlying space is
2-dimensional, there exist efficient methods which require no multiplication [56].

Example 3.3 (Consistent estimation of σ2 in high-dimensional linear regression). In
a high-dimensional setting, it is possible to estimate σ2 under classical assumptions
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in high-dimensional regression. First, the scaled Lasso [95] allows a joint estimation
of the regression coefficients and of the noise level σ2. The estimator σ̂2 of the scaled
Lasso converges in probability to the true noise level σ2 [95, Theorem 1], and σ̂2/σ2 is
asymptotically normal [95, Equation (19)]. Second, [15] proposes to estimate σ2 with
with a recursive procedure that uses Lasso residuals, and non-asymptotic guarantees
are proved [15, Supplementary material]. Third, [16] provides non-asymptotic bounds
on the estimation of σ2 by the residuals of the Square-Root Lasso [16, Theorem 2] and
these bounds imply consistency. In Theorem 3.8, we require that |σ̂2/σ2 − 1| ≤ 1/8
with high-probability and this requirement is far weaker than the guarantees obtained
in [15, 95].

3.7 Examples

3.7.1 Adaptation to the smoothness
For all n ≥ 1, given continuous parameters β ≥ 1 and L > 0, we consider subsets
Θ(β, L) ⊂ Rn. We assume that for each β ≥ 1, there exists a squared matrix Aβ of
size n with |||Aβ|||2 ≤ 1 such that for all L > 0, as n→ +∞,

inf
f̂

sup
f∈Θ(β,L)

1
n
E|f − f̂ |22 ∼ sup

f∈Θ(β,L)

1
n
E|f − Aβy|22 ∼ C∗n

−2β
2β+1 , (3.41)

where an ∼ bn if and only if an/bn → 1 as n → +∞, the infimum is taken over
all estimators and the constant C∗ > 0 may depend on β, L and σ. The above
assumption holds for Sobolev ellipsoids in nonparametric regression, and in this
case one can choose the Pinsker filters for the matrices Aβ (cf. [99, Theorem 3.2]).
For Sobolev ellipsoids, there exist different estimators that adapt to the unknown
smoothness [43, 99, 35].

Consider the following aggregation procedure. Assume that n ≥ 3 and let M =
d120 log(n)(log log n)2e. For all j = 1, ...,M , let βj = (1 + 1/(log(n) log log n))j−1.
We aggregate the linear estimators (µ̂j = Aβjy)j=1,...,M using the procedure (3.9) of
Theorem 3.1, and denote by µ̃ the resulting estimator. The following adaptation
result is a direct consequence of Theorem 3.1.
Proposition 3.9. For all n ≥ 3, β ≥ 1 and L > 0, let Θ(β, L) ⊂ Rn such that as
n → +∞, (3.41) is satisfied for some matrices Aβ with |||Aβ|||2 ≤ 1. Assume that
the sets Θ(β, L) are ordered, i.e., Θ(β, L) ⊂ Θ(β′, L) for any β > β′ and any L > 0.
For all β ≥ 1 and L > 0, the estimator µ̃ defined above satisfies as n→ +∞

lim
n→+∞

sup
f∈Θ(β,L)

1
n
E|f − µ̃|22 n

2β
2β+1 = C∗.

The above procedure adapts to the unknown smoothness in exact asymptotic sense
by aggregating only log(n)(log log n)2 estimators so its computational complexity is
small. Another feature is that the minimax rate and the minimax constant C∗ are
not altered by the aggregation step.

3.7.2 The best convex combination as a benchmark
We consider convex combinations of the estimators µ̂1, ..., µ̂M to construct the
estimator (3.9). The goal of this section is to study the performance of the estimator
(3.9) if the benchmark is minθ∈ΛM |µ̂θ − f |22 instead of mink=1,...,M |µ̂k − f |22.
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The penalty (3.8) vanishes at the extreme points: pen(ej) = 0 for all j = 1, ...,M ,
and it pushes µ̂θ̂pen

towards the points {µ̂1, ..., µ̂M}. This can be seen in Figure 3.1.
Consider a noise-free problem where σ = 0. Let f ∈ Rn. Consider estimators
µ̂1, ..., µ̂M such that |µ̂j|22 = ρ > 0 for all j = 1, ...,M (here, the estimators are
deterministic because σ = 0). Then pen(θ) = ρ− |µ̂θ|22 and Hpen(θ) = (1/2)|µ̂θ −
2f |22 + c where c is constant that depends on ρ and f but not on θ. If both f
and 2f lie in the convex hull of µ̂1, ..., µ̂M , µ̂θ̂ defined in (3.9) will be equal to 2f
instead of f and is likely to be a bad procedure with respect to the benchmark
minθ∈ΛM |µ̂θ − f |22. This fact is not surprising since the penalty penalizes heavily
some regions of the convex hull of the estimators. Furthermore this procedure is
tailored for the benchmark mink=1,...,M |µ̂k − f |22 and its goal is not to mimic the
best convex combination of the estimators.

It is possible to modify the procedure (3.9) to construct an estimator that performs
well with respect to the best convex combination of M linear estimators. Let

m :=
⌊√

n

log(1 +M/
√
n)

⌋
. (3.42)

If m ≥ 1, define the set ΛM
m ⊂ ΛM as

ΛM
m :=

 1
m

m∑
q=1
uq, u1, ...,um ∈ {e1, ..., eM}

 . (3.43)

Denote by |ΛM
m | the cardinality of ΛM

m . We aggregate the affine estimators (µ̂u)u∈ΛMm
using the procedure (3.9) and denote by µ̂ΛMm the resulting estimator.

Proposition 3.10. Let M,n ≥ 1. For j = 1, ...,M , consider the estimator µ̂j =
Ajy +bj for any n×n matrix Aj and vector bj ∈ Rn. Assume that ξ ∼ N(0, σ2In×n)
and that for some constant R > 0,

1
n
|f |22 ≤ R2,

1
n
|bj|22 ≤ R2, |||Aj|||2 ≤ 1, ∀j = 1, ...,M.

For all x > 0, the estimator θ̂C ∈ argminθ∈ΛM Cp(θ) satisfies with probability greater
than 1− 2 exp(−x),

1
n
|µ̂θ̂C − f |

2
2 ≤ min

θ∈ΛM

1
n
|µ̂θ − f |22 + 8(σ2 + σR

√
2)
√
x+ 2 logM

n
+ 8σ2(x+ 2 logM)

n
.

(3.44)
If M ≤

√
n(exp(n)− 1) then for all x > 0, the estimator µ̂ΛMm defined above satisfies

with probability greater than 1− 3 exp(−x),

1
n
|µ̂ΛMm −f |

2
2 ≤ min

θ∈ΛM

1
n
|µ̂θ−f |22 +C max(R2, σ2)

√
log(1 +M/

√
n)

n
+ Cσ2x

n
. (3.45)

To our knowledge, this is the first result that provides a sharp oracle inequality
for the problem of aggregation of affine estimators with respect to the convex oracle.
However, there is a large literature on convex aggregation when the estimators to
aggregate are deterministic, which corresponds to the particular case Aj = 0 for
all j = 1, ...,M . When the error is measured with the scaled squared norm 1

n
| · |22,

the minimax rate of convex aggregation is known to be of order M/n if M ≤
√
n
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and
√

log(1 +M/
√
n)/n if M >

√
n. For our setting, this is proved in [92]. This

elbow effect was first established for regression with random design [98] and then
extended to other settings in [89, 90]. All these results assume that the estimators
to aggregate are deterministic or independent of the data used for aggregation. The
lower bound [92, Theorem 5.3 with S = M , δ = σ and R = log(1 + eM)] yields that
there exist absolute constants c, C > 0 such that if log(1 + eM)2 ≤ Cn, there exist
deterministic vectors µ̂1 = b1, ..., µ̂M = bM such that for all estimators µ̂,

sup
f∈Rn

Pf

 1
n
|µ̂− f |22 − min

θ∈ΛM
1
n
|µ̂θ − f |22 ≥ cσ2

M
n
∧
√

log(1 +M/
√
n)

n

 ≥ c.

Thus, if M ≥
√
n, (3.45) is optimal in a minimax sense up to absolute constants, and

(3.44) is optimal up to logarithmic factors. However, we do not know whether the
minimax rate is M/n when M <

√
n, as in the case of aggregation of deterministic

vectors.
The problem of linear aggregation of affine estimators remains open. It is only

known that for linear aggregation of deterministic vectors, the Least Squares estimator
on a linear space of dimension M achieves the rate σ2M/n, which is optimal in a
minimax sense [98, 89, 92, 90].

3.7.3 k-regressors
Let X be a design matrix consisting of p columns and n rows. Let k be an integer
such that 1 ≤ k ≤ n. Consider the family of distinct estimators {µ̂1, ..., µ̂M} where
for each j = 1, ...,M , µ̂j = Ajy and Aj is the orthoprojector on a linear span of k
linearly independent columns of X. In particular, M ≤

(
p
k

)
. The estimator µ̂j is the

Least Squares estimator on the subspace Vj of dimension k which is the linear span
of these k columns.

Now consider the estimator θ̂(k)
∈ RM defined by

θ̂
(k) = argmin

θ∈ΛM

(
|µ̂θ − y|22 + 1

2pen(θ)
)
,

where pen(·) is the penalty (3.8). It is exactly the procedure (3.9) from Theorem 3.1
since the projection matrices A1, ..., AM have the same trace equal to k. This
procedure is fully adaptive with respect to the unknown variance of the noise. The
following result is a direct consequence of Theorem 3.1. The estimator θ̂(k) satisfies
for all x > 0, with probability greater than 1− 3 exp(−x),

|µ̂
θ̂

(k) − f |22 ≤ min
β∈Rp, |β|0≤k

|Xβ − f |22 + cσ2
(
k log

(
ep

k

)
+ x

)
,

for some absolute constant c > 0.

3.7.4 Sparsity pattern aggregation
Given a design matrix X with p columns, an estimator µ̂ of f is said to achieve a
sparsity oracle inequality if it satisfies

|µ̂− f |22 ≤ min
θ∈Rp

(
C|Xθ − f |22 + ∆(|θ|0)

)
, (3.46)
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with high probability or in expectation. In (3.46), C ≥ 1, |θ|0 is the number of
non-zero coefficients of θ and ∆ is an increasing function, which may also depend on
problem parameters such as the variance of the noise or the design matrix X. See
(3.47) below for a typical example of such function ∆(·). Results of the form (3.46)
are of major interest in high-dimensional statistics where the number of covariates
p exceeds the number of observations [92]. First approach to get such results can
be found in [41], and in an expanded form in [18, 19], under Gaussian noise with
a leading constant C > 1. The drawback of having C > 1 cannot be repaired for
these penalized model selection procedures (cf. (3.23) and [46, Section 6.4.2]). More
recently, aggregation methods based on exponential weights [92, 93, 96] and then
Q-aggregation [33] were shown to achieve sharp oracle inequalities similar to (3.46).
These sharp oracle inequalities were proved for Gaussian noise with known variance.

Aggregation procedures with prior weights [36, 32, 69, 12] as in Theorem 3.6 can
be used to prove sparsity oracle inequalities if sparsity-inducing prior weights are
used. For instance, sparsity pattern aggregation [92, 93, 33, 96] leads to the following
oracle inequality. Given a design matrix X with p columns, there exists an estimator
µ̂ that satisfies with probability greater than 1− 2 exp(−x),

|µ̂− f |22 ≤ min
θ∈Rp

(
|Xθ − f |22 + c σ2|θ|0 log

(
ep

1 ∨ |θ|0

))
+ c′σ2x, (3.47)

where c, c′ > 0 are absolute constants and |θ|0 denotes the number of non-zero
coefficients of θ. When the noise is Gaussian, the result (3.47) is proved in [33] and
a similar result in expectation was shown in [92, 96].

We now derive a similar result for subgaussian noise. We propose below a new
sparsity pattern aggregation method that only requires an estimator K̂2 that upper
bounds the subgaussian norm of the noise with high probability. We will make the
following assumption on the noise. For some constant K > 0, we assume that the
random vector ξ satisfies:

∀α ∈ Rn, E exp(αTξ) ≤ exp
(
|α|22K2

2

)
. (3.48)

As opposed to the previous section, the components of ξ are not assumed to be
independent.

For each subset J ⊂ {1, ..., p}, let µ̂LSJ be the Least Squares estimator on the
linear span of the columns of X whose indices are in J . The estimator µ̂LSJ is of
the form µ̂LSJ = AJy for some projection matrix AJ . Consider the weights πJ ∝
e−|J |

(
p
|J |

)−1
and choose the normalisation constant such that∑J⊆{1,...,p} πJ = 1. Given

λ = (λJ)J⊆{1,...,p}, let µ̂λ = ∑
J⊆{1,...,p}AJy. Let µ̂spa = µ̂λ̂ where λ̂ = (λ̂J)J⊆{1,...,p}

is a minimizer of

|y− µ̂λ|22 +
∑

J⊆{1,...,p}
λJ

(1
2 |AJy− µ̂λ|22 + 32K̂2 log 1

πJ

)

over the set

Λ =
λ = (λJ)J⊆{1,...,p},

∑
J⊆{1,...,p}

λJ = 1, λJ ≥ 0,∀J ⊆ {1, ..., p}
 .
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As sparsity pattern aggregation is not central in the present paper, we keep this
presentation short and refer the reader to [92, 93, 33, 96] for more details on sparsity
pattern aggregation and the construction of Least Squares estimators.

Then the following sparsity oracle inequality holds, where |θ|0 is the number of
non-zero coefficients of θ.

Theorem 3.11. Let X be a deterministic design matrix with p columns Let K > 0
be the smallest positive real number such that the noise random ξ satisfies (3.48). Let
K̂ be a given estimator and let δ := P(K̂2 < K2). Then, the estimator µ̂spa defined
above satisfies with probability greater than 1− δ − 3 exp(−x),

|µ̂spa − f |22 ≤ inf
θ∈Rp

|Xθ − f |22 + 31K2x

+ (64K̂2 + 4K2)
(

1
2 + 2|θ|0 log

(
ep

1 ∨ |θ|0

)). (3.49)

Theorem 3.11 is proved in the supplementary material. It improves upon the
previous results on sparsity pattern aggregation [33, 92, 93, 96] in several aspects.

First, the noise ξ is only assumed to be subgaussian and its components need
not be independent, whereas previous results only hold under Gaussianity and
independence of the noise components [33, 92, 93, 96]. Theorem 3.11 shows that the
optimal bounds are of the same form in this more general setting.

Second, to construct the aggregates in [33, 92, 93, 96] one needs the exact
knowledge of the covariance matrix of the noise. In Theorem 3.11, only an upper
bound of the subgaussian norm of the noise is needed to construct the estimator.

Third, we do not split the data in order to perform sparsity pattern aggregation,
as opposed to the “sample cloning” approach [96, Lemma 2.1]. Sample cloning is
possible only for Gaussian noise when the variance is known; it cannot be used here
as ξ can be any subgaussian vector.

The estimator of Theorem 3.11 achieves the minimax rate for any intersection
of `0 and `q balls, where q ∈ (0, 2). This can be shown by applying the arguments
of [33, 96] and bounding the right hand side of (3.49). Indeed, although [33, 96]
consider only normal random variables, the argument does not depend on the noise
distribution.

The result above holds without any assumption on the design matrix X, as
opposed to the Lasso or the Dantzig estimators which need assumptions on the
design matrix X to achieve sparsity oracle inequalities similar but weaker than (3.49).

The interest of the Lasso and the Dantzig estimators is that they can be computed
efficiently for large p. The sparsity pattern aggregate based on exponential weights
can also be computed efficiently usind MCMC methods [92]. The estimator θ̂SPA
proposed here suffers the same drawback as [18] or the sparsity pattern aggregate
performed with Q-aggregation [33]: it is not known whether these estimators can be
computed in polynomial time, which makes them useful only for relatively small p.
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3.8 Proofs

3.8.1 Preliminaries
The following notation will be useful. Define for all j, k = 1, ...,M

Qj,k :=
(
−2In×n − 1

2(Ak − Aj)T
)

(Ak − Aj), (3.50)

vj,k :=
(
−2In×n − (Ak − Aj)T

)
((Ak − Aj)f + bk − bj) . (3.51)

Let Bjk = Ak − Aj, so that µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj). Then

|µ̂k − µ̂j|22 = |Bjkξ|22 + |Bjkf + bk − bj|22 + 2ξTBT
jk(Bjkf + bk − bj).

Thus, simple algebra yields that the quantity ∆jk defined in (3.19) satisfies

∆jk − 1
2 |µ̂k − µ̂j|

2
2 = ξTQj,kξ − E[ξTQj,kξ] + ξTvj,k

− σ2

2 ‖Aj − Ak‖
2
F −

1
2 |(Ak − Aj)f + bk − bj|22, (3.52)

where we used the equality σ2 ‖Aj − Ak‖2
F = E[|(Aj−Ak)ξ|22] and the above definitions

of Qj,k and vj,k. Furthermore, using (3.5) and |||Aj − Ak|||2 ≤ 2 we have

|||Qj,k|||2 ≤ 6, ‖Qj,k‖F ≤ 3 ‖Ak − Aj‖F , (3.53)
|vj,k|2 ≤ 4|(Ak − Aj)f + bk − bj|2

for all j, k = 1, ...,M . This yields that

∆jk − 1
2 |µ̂k − µ̂j|

2
2 ≤ ξTQj,kξ − E[ξTQj,kξ] + ξTvj,k

− σ2

18 ‖Qj,k‖2
F −

1
32 |vj,k|

2
2. (3.54)

Proposition 3.12. Let v ∈ Rn and let Q be any squared matrix of size n. Assume
that ξ1, ..., ξn are i.i.d. N (0, σ2) random variables. Then for all u > 0 such that
2uσ2|||Q|||2 < 1 we have

E
[
eu(ξTQξ−E[ξTQξ]+ξT v)

]
≤ exp

u2σ2

 σ2 ‖Q‖2
F + |v|22

2
1− 2σ2|||Q|||2u

 . (3.55)

Furthermore, define

ZQ,v := ξTQξ − E[ξTQξ] + ξTv − σ2

18 ‖Q‖
2
F −

1
32 |v|

2
2,

YQ,v := ξTQξ − E[ξTQξ] + ξTv − σ2

36 ‖Q‖
2
F −

1
32 |v|

2
2.

If |||Q|||2 ≤ 6, then for u = 1/(30σ2) we have E
[
euZQ,v

]
≤ 1 and for u′ = 1/(48σ2)

we have E
[
eu
′YQ,v

]
≤ 1.

The proof relies on an argument similar to that of [63, Lemma 1].
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Proof. If Q is not symmetric, let Qs = (Q + QT )/2. We have ‖Qs‖F ≤ ‖Q‖F,
|||Qs|||2 ≤ |||Q|||2 and almost surely ξTQξ = ξTQsξ so that if (3.55) holds for Qs then

E
[
eu(ξTQξ−E[ξTQξ]+ξT v)

]
≤ e

u2σ2

(
σ2‖Qs‖2F+

|v|22
2

1−2σ2|||Qs|||2u

)
≤ e

u2σ2

(
σ2‖Q‖2F+

|v|22
2

1−2σ2|||Q|||2u

)
.

Thus the result for the symmetric matrix Qs implies the result for Q.
We now assume thatQ is symmetric. There exists a matrix P with P TP = PP T =

In×n such that Q = P Tdiag(λ1, ..., λn)P , where λ1, ..., λn are the eigenvalues of Q. Let
w = (1/σ)Pv and define the random variables g1, ..., gn by (g1, ..., gn)T = (1/σ)Pξ.
By the rotational invariance of the Gaussian distribution, g1, ..., gn are i.i.d. N (0, 1)
random variables. Thus, the random variable ξTQξ − E[ξTQξ] + ξTv has the same
distribution as

σ2
n∑
i=1

Wi, where Wi := λi(g2
i − 1) + giwi,

For all i = 1, ..., n and for all t > 0 such that maxi=1,...,n 2t|λi| < 1, integration using
the probability density function of gi yields

E[etWi ] = 1√
1− 2λit

e
t2w2

i
2(1−2λit)

−tλi ≤ e
λ2
i
t2

1−2|λi|t
+

t2w2
i

2(1−2λit) ,

where we used the inequalities

log
(

1√
1− 2v

)
≤ v + v2

1− 2v = v + v2

1− 2|v| for all v ∈ [0, 1/2),

log
(

1√
1− 2v

)
≤ v + v2 ≤ v + v2

1− 2|v| for all v ∈ (−1/2, 0].

This can be shown by comparing the power series expansions. As |λi| ≤ |||Q|||2 for
all i = 1, ..., n, by independence of W1, ...,Wn we obtain

E[et
∑n

i=1Wi ] ≤ exp
t2

‖Q‖2
F + |w|22

2
1− 2|||Q|||2t

 .
By definition of w we have |v|2 = σ|w|2, so setting t = uσ2 completes the proof of
(3.55).

The claims about ZQ,v and YQ,v are direct consequences of (3.55).

3.8.2 Proof of the main results
Proof of Theorem 3.1. By (3.5), it is enough to prove that

D1 := E
[
eumaxj,k=1,...,M (∆jk− 1

2 |µ̂j−µ̂k|
2
2)
]
≤M2 (3.56)

for u = 1/(30σ2). Then, Jensen’s inequality yields (3.13) and a Chernoff bound
yields (3.12).

We now prove (3.56). By (3.53), for all j, k = 1, ...,M we have |||Qj,k|||2 ≤ 6.
Using (3.54) and Proposition 3.12, we have

D1 ≤
M∑
j=1

M∑
k=1

E
[
eu(∆jk− 1

2 |µ̂j−µ̂k|
2
2)
]
≤

M∑
j=1

M∑
k=1

E
[
euZQj,k,vj,k

]
≤M2,
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where for any matrix Q and any v ∈ Rn, the random variable ZQ,v is defined in
Proposition 3.12.

Proof of Theorem 3.6. Let β = 30σ2. Let θ̂ = θ̂π for notational simplicity. The only
difference between Hpen and Vpen is the linear term (3.33). As in the proof of (3.24)
in Section 3.4, by convexity of Vpen we have that for all k = 1, ...,M ,

|µ̂θ̂ − f |
2
2 − |µ̂k − f |22

≤ |µ̂θ̂ − f |
2
2 − |µ̂k − f |22 +∇Vpen(θ̂)T (ek − θ̂),

= 2β log 1
πk

+
M∑
j=1

θ̂j

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2 − β log 1

πjπk

)
,

≤ 2β log 1
πk

+ max
j=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2 − β log 1

πjπk

)
,

where ∆jk is defined in (3.19). For all u > 0, let

D2 := E
[
exp

(
u max
j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2 − β log 1

πjπk

))]
.

We now bound from above this moment generating function using (3.54) and Propo-
sition 3.12. If u = 1/β = 1/(30σ2) then

D2 ≤
M∑
j=1

M∑
k=1

πjπkE
[
eu(∆jk− 1

2 |µ̂j−µ̂k|
2
2)
]

≤
M∑
j=1

M∑
k=1

πjπkE
[
euZQj,k,vj,k

]
≤

M∑
j=1

M∑
k=1

πjπk = 1.

As in the proof of Theorem 3.1, Jensen’s inequality yields (3.31) while a Chernoff
bound completes the proof of (3.31).

Proof of Theorem 3.7. For a fixed pair (j, k), we apply (3.34) to the vector vj,k and
(3.35) to the matrix Qj,k. Using (3.53),

ξTQj,kξ − E[ξTQj,kξ] ≤ σ̄212x+ 6σσ̄ ‖Ak − Aj‖F
√
x,

≤ 30σ̄2x+ σ2

2 ‖Ak − Aj‖
2
F ,

ξTvj,k ≤ σ̄4|(Ak − Aj)f + bk − bj|2
√

2x,

≤ 16σ̄2x+ 1
2 |(Ak − Aj)f + bk − bj|22.

Combining this bound with (3.40), (3.52) and the union bound completes the
proof.

3.8.3 Proof of Theorem 3.8
The following inequality will be useful.

Lemma 3.13 (Projection matrices). Let A,B be two squared matrices of size n with
AT = A = A2 and BT = B = B2. Then

|Tr(A−B)| ≤ ‖A−B‖2
F . (3.57)
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Proof. Without loss of generality, assume that TrA ≥ TrB. As ‖A−B‖2
F = ‖A‖2

F +
‖B‖2

F−2Tr(AB) and ‖A‖2
F = TrA, (3.57) is equivalent to 2Tr(AB) ≤ 2Tr(B). Notice

that for projection matrices, Tr(AB) = ‖AB‖2
F ≤ |||A|||

2
2 ‖B‖

2
F ≤ ‖B‖

2
F = Tr(B) and

the proof is complete.

Proof of Theorem 3.8. Let θ̂ = θ̂σ̂ for notational simplicity. As in the proof of (3.24)
in Section 3.4, by convexity of Wpen we have that for all k = 1, ...,M ,

|µ̂θ̂ − f |
2
2 − |µ̂k − f |22

≤ |µ̂θ̂ − f |
2
2 − |µ̂k − f |22 +∇Wpen(θ̂)T (ek − θ̂),

=
M∑
j=1

θ̂j

(
∆jk + 2(σ̂2 − σ2)Tr(Aj − Ak)−

1
2 |µ̂j − µ̂k|

2
2

)
,

≤ max
j=1,...,M

(
∆jk + 2(σ̂2 − σ2)Tr(Aj − Ak)−

1
2 |µ̂j − µ̂k|

2
2

)
=: D3,

where ∆jk is defined in (3.19). The assumption on σ̂2 and (3.57) yield that on an
event Ω0 of probability greater than 1− δ,

2
∣∣∣(σ̂2 − σ2)Tr(Aj − Ak)

∣∣∣ ≤ σ2

4 ‖Aj − Ak‖
2
F for all j, k = 1, ...,M.

Using (3.52) and (3.53), we obtain that on the event Ω0,

D3 ≤ max
j,k=1,...,M

(
ξTQj,kξ − E[ξTQj,kξ] + ξTvj,k −

σ2

36 ‖Qj,k‖2
F −

1
32 |vj,k|

2
2

)
,

= max
j,k=1,...,M

YQj,k,vj,k ,

where Qj,k and vj,k are defined in (3.50) and (3.51) while YQ,v is defined in Proposi-
tion 3.12 for any matrix Q and any v ∈ Rn. Using Proposition 3.12, for u = 1/(48σ2)
we have

E
[
exp

(
u max
j,k=1,...,M

YQj,k,vj,k

)]
≤

M∑
j=1

M∑
k=1

E
[
exp

(
uYQj,k,vj,k

)]
≤M2.

By a Chernoff bound, this proves that on an event Ω1 of probability greater than
1− e−x, we have maxj,k=1,...,M YQj,k,vj,k ,≤ 48σ2(x+ 2 logM). On the event Ω0 ∩ Ω1
we have D3 ≤ 48σ2(x + 2 logM) and the union bound yields that P (Ω0 ∩ Ω1) ≥
1− e−x − δ.

3.8.4 Strong convexity
The penalty (3.8) satisfies for any g ∈ Rn and any θ ∈ ΛM :

M∑
k=1

θk|µ̂k − g|22 = |µ̂θ − g|22 + pen(θ). (3.58)

This can be shown by using simple properties of the Euclidean norm, or by noting
that the equality above is a bias-variance decomposition. For g = 0, (3.58) yields
pen(θ) = −|µ̂θ|22 +∑M

k=1 θk|µ̂k|22.
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Lemma 3.14. Let F be any one of the functions Hpen, Vpen, Wpen or U defined in
(3.7), (3.30), (3.39) and the supplementary material, respectively. Then F is convex,
differentiable and satisfies for all θ,θ0 ∈ ΛM ,

F (θ) = F (θ0) +∇F (θ0)T (θ − θ0) + 1
2 |µ̂θ − µ̂θ0 |

2
2. (3.59)

Furthermore, if θ̂ is a minimizer of F over the simplex then for all θ ∈ ΛM ,

F (θ) ≥ F (θ̂) + 1
2 |µ̂θ − µ̂θ̂|

2
2. (3.60)

Proof. Using (3.58) with g = 0 we obtain that the function F is a polynomial of
degree 2, of the form F (θ) = affline(θ) + 1

2 |µ̂θ|
2
2 where affine(·) is an affine function

of θ. This shows that F is convex and differentiable. The result (3.59) follows by
uniqueness of the Taylor expansion of F (or by an explicit calculation of ∇F (θ0)).
Inequality (3.60) is a consequence of [21, 4.2.3, equation (4.21)].

3.8.5 Lower bound
Proof of Proposition 3.2. The lower bounds of [92, Theorem 5.4] are stated in ex-
pectation, but inspection of the proof of [92, Theorem 5.3 with S = 1, δ =∞ and
R = log(1 + eM)] reveals that the lower bound holds also in probability since it
is an application of [99, Theorem 2.7]. This result yields that there exist absolute
constants p, c, C > 0 and f 1, ...,fM ∈ Rn such that for any estimator µ̂,

sup
j=1,...,M

Pfj (Ωj) ≥ p, Ωj :=
{
|µ̂− f j|22 ≥ cσ2 log(M)

}
,

provided that log(M) ≤ cn and n,M > C. Set bj = f j for all j = 1, ...,M . This
lower bound implies that for any estimator µ̂,

sup
f∈Rn

Pf
(
|µ̂− f |22 − min

k=1,...,M
|bk − f |22 ≥ cσ2 log(M)

)
≥ p.

For all j = 1, ...,M , let Aj = (1/|f j|22)f jfTj so that Aj is the orthogonal projection on
the linear span of f j . The orthoprojector Aj has rank one so under Pfj , |Ajy−f j|22/σ2

is a χ2 random variable with one degree of freedom. Let Ω′j be the event {|Ajy−f j|22 ≤
cσ2 log(M)/2} and let Ω̄′j be its complementary event. A two sided bound on the
Gaussian tail implies that Pfj(Ω̄′j) ≤ 2/(M c/4), which is smaller than p/2 if M is
larger than some absolute constant, so that we have Pfj(Ω̄j ∪ Ω̄′j) ≤ 1 − p + p/2
where Ω̄j is the complementary of Ωj, which implies Pfj(Ωj ∩ Ω′j) ≥ p/2. Thus, for
any estimator µ̂ and M large enough,

sup
f∈{f1,...,fM}

Pf
(
|µ̂− f |22 − min

k=1,...,M
|Aky− f |22 ≥ cσ2 log(M)/2

)
≥ p/2 =: p∗.
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Supplementary material

3.9 Proof of Proposition 3.4
Proof of Proposition 3.4. Let a ∈ (0, 1). By definition of Ĵ , we have for all k =
1, ...,M ,

|µ̂Ĵ − f |
2
2 ≤ |µ̂k − f |22 + ∆Ĵk −

a

2 |µ̂Ĵ − µ̂k|
2
2 + a

2 |µ̂Ĵ − µ̂k|
2
2,

≤ |µ̂k − f |22 + 1
a

max
j,k=1,...,M

(
a∆jk −

1
2 |aµ̂Ĵ − aµ̂k|

2
2

)
+ a(|µ̂Ĵ − f |22 + |f − µ̂k|22).

By rearranging, we have almost surely

|µ̂Ĵ − f |
2
2 ≤

1 + a

1− a min
k=1,...,M

|µ̂k − f |22 + Ξ
a(1− a) ,

where Ξ := max
j,k=1,...,M

(
2ξT (µ̂′j − µ̂′k)− 2σ2Tr(A′j − A′k)−

1
2 |µ̂

′
j − µ̂

′
k|22
)
,

and for all j = 1, ...,M , µ̂′j := aµ̂j = A′jy + b′j , A′j := aAj , b′j := abj , and |||A′j|||2 ≤ 1.
By Proposition 3.12, as in the proof of Theorem 3.1, we have Ξ ≤ 30σ2(x+ 2 logM)
with probability greater than 1− exp(−x).

Set ε = 3a and choose the absolute constant c > 0 such that for all ε < c,
(1 + a)/(1− a) ≤ 1 + ε and 1/(1− a) ≤ 2.

3.10 Smoothness adaptation
Proof of Proposition 3.9. Because the ellipsoids are ordered, if f ∈ Θ(β, L) then

E|f − µ̃|22 ≤ min
j:βj≤β

E|f − Aβjy|22 + 60σ2 logM ≤ min
j:βj≤β

C∗n
1

2βj+1 (1 + o(1)).

If β ∈ [βj, βj+1) for some j, then βj+1−βj = βj/(log(n) log log n) and simple algebra
yields

n
1

2βj+1−
1

2β+1 ≤ n
2βj+1−2βj

(2β+1)(2βj+1) = n
2βj

(2β+1)(2βj+1) log(n) log logn ≤ n
1

(2β+1) log(n) log logn ≤ e
1

3 log logn ,

where we used that β ≥ 1 for the last inequality.
Now assume that β ≥ βM . Let εn = 1/(log(n) log log n), and

c = 120 log(1 + ε3)/ε3.
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By definition of M ,

βM = eM log(1+ 1
log(n) log logn) ≥ e120 log log(n) log(1+εn)

εn ≥ ec log log(n) = log(n)c,

since the function t→ log(1+t)/t is decreasing and n ≥ 3. A numerical approximation
gives c ≥ 1.01. Thus,

n
1

2βM+1n
−1

2β+1 ≤ n
1

2βM+1 ≤ e
logn
2βM ≤ e

1
2 log(n)c−1 .

In summary we have proved that minj:βj≤β n
1

2βj+1 ≤ n
1

2β+1 (1 + o(1)), thus

sup
f∈Θ(β,L)

E|f − µ̃|22 ≤ C∗n
1

2β+1 (1 + o(1)).

3.11 Convex aggregation
Lemma 3.15 (Maurey argument). Let m and ΛM

m be defined in (3.42) and (3.43).
Let Q(θ) = θTΣθ + vTθ + a for some semi-definite matrix Σ, v ∈ RM and a ∈ R.
Then

min
θ∈ΛMm

Q(θ) ≤ min
θ∈ΛM

Q(θ) + 4 maxj=1,...,M Σjj

m
. (3.61)

Proof of Lemma 3.15. Let θ∗ ∈ ΛM ∈ argminθ∈ΛM Q(θ). Let η be a random variable
valued in {e1, ..., eM} such that P (η = ej) = θ∗j for all j = 1, ...,M , and let η1, ..., ηm
be m i.i.d. copies of η. The random variable η̄ = 1

m

∑m
q=1 is valued in ΛM

m and
Eη̄ = θ∗. A bias variance decomposition and the independence of η1, ..., ηm yield

EQ(η̄) = Q(θ∗) + E[(η1 − θ∗)TΣ(η1 − θ∗)]
m

.

Using the triangle inequality, E[(η1 − θ∗)TΣ(η1 − θ∗)] ≤ 2(θ∗)TΣθ∗ + 2E[ηT1 Ση1] ≤
4 maxj=1,...,M Σjj. Since η̄ is valued in ΛM

m , minθ∈ΛMm Q(θ) ≤ EQ(η̄) and the proof is
complete.

Proof of (3.45) of Proposition 3.10. The condition on M,n implies that m ≥ 1
where m is defined in (3.42). Let C > 0 be an absolute constant whose value
may change from line to line. Applying Theorem 3.1 yields that on an event of
probability greater than 1− 2 exp(−x),

1
n
|µ̂ΛMm − f |

2
2 ≤ min

θ∈ΛMm

1
n
|µ̂θ − f |22 + Cσ2(log(|ΛM

m |) + x)
n

. (3.62)

By [65, page 8] we have
log |ΛM

m | ≤ m log 2eM
m

.

We use (3.61) with Q(θ) = |µ̂θ − f |22 to get

min
θ∈ΛMm

1
n
|µ̂θ − f |22 ≤ min

θ∈ΛM

1
n
|µ̂θ − f |22 + 4

nm
max

j=1,...,M
|µ̂j|22.
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We have (1/n) maxj=1,...,M |µ̂j|22 ≤ C(|ξ|22/n+R2) ≤ C(σ2(2 + 3x) +R2) on an event
of probability at least 1− exp(−x), where for the second inequality we used (3.21)
with B = In×n. Thus, with probability greater than 1− e−x,

min
θ∈ΛMm

1
n
|µ̂θ − f |22 ≤ min

θ∈ΛM

1
n
|µ̂θ − f |22 + C(σ2(2 + 3x) +R2)

m
. (3.63)

Simple algebra yields that

1
m
≤ C

√
log(1 +M/

√
n)

n
,

m log(2eM/m)
n

≤ C

√
log(1 +M/

√
n)

n
. (3.64)

Combining (3.62), (3.63) and (3.64) with the union bound completes the proof.

Proof of (3.44) of Proposition 3.10. Let θ ∈ ΛM . By definition of θ̂C , Cp(θ̂) ≤
Cp(θ). This can be rewritten

|µ̂θ̂C − f |
2
2 ≤ |µ̂θ̂ − f |

2
2 + 2ξT (µ̂θ̂ − µ̂θ).

The function (θ′,θ)→ 2ξT (µ̂θ̂− µ̂θ) is bilinear, thus it is maximized at vertices, and

2ξT (µ̂θ̂ − µ̂θ) ≤ max
j,k=1,...,M

2ξT (µ̂k − µ̂j) = max
j,k=1,...,M

∆jk,

where ∆jk is defined in (3.19). Fix some pair (j, k). Let B = Aj − Ak and b =
(Aj − Ak)f + bj − bk. We have |||B|||2 ≤ 2, ‖B‖F ≤ |||B|||2 ‖In×n‖F ≤ 2

√
n and

|b|2 ≤ 4R
√
n. We apply (3.21) to the matrix B and (3.20) to the vector b, which

yields that with probability greater than 1− 2 exp(−x),

∆jk ≤ 8(σ2 + σR
√

2)
√
nx+ 8σ2x.

The union bound over all pairs j, k = 1, ...,M completes the proof.

3.12 Sparsity oracle inequalities

3.12.1 Concentration inequalities for subgaussian vectors
A direct consequence of assumption (3.48) on the random vector ξ is the following
Hoeffding-type concentration inequality:

P
(
αTξ > K|α|2

√
2x
)
≤ exp(−x). (3.65)

The following concentration inequality was proven in [55].

Proposition 3.16 (One sided concentration [55]). Let ξ be a random vector in
Rn satisfying (3.48) for some K > 0. Let A be a real n × n positive semi-definite
symmetric matrix. Then for all x > 0, with probability greater than 1− exp(−x),

ξTAξ ≤ K2
(
TrA+ 2 ‖A‖F

√
x+ 2|||A|||2x

)
. (3.66)

This result is remarkable as it holds with the same constants as in the Gaussian
case (3.21), under the weak assumption (3.48).
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Corollary 3.17 (Corollary of Proposition 3.16 for any real matrix A). Under (3.48)
and for any real matrix A, with probability greater than 1− exp(−x), the following
holds:

ξTAξ ≤ K2
(
‖A‖1 + 2 ‖A‖F

√
x+ 2|||A|||2x

)
. (3.67)

Proof. To see this, let As := 1
2(A+ AT ) and let |As| :=

√
A2
s, the square root of the

positive semi-definite symmetric matrix A2
s. By definition of |As| and the triangle

inequality,

ξTAξ = ξTAsξ ≤ ξT |As|ξ, Tr(|As|) = ‖As‖1 ≤ ‖A‖1 ,

||||As||||2 = |||As|||2 ≤ |||A|||2, ‖|As|‖F = ‖As‖F ≤ ‖A‖F .

Thus applying (3.66) to the matrix |As| proves (3.67).

In [55], the authors prove the following oracle inequality for the Least Squares
estimator µ̂LSV on a d-dimensional linear subspace V of Rn. The Least Squares
estimator µ̂LSV is defined as the orthogonal projection of y on the linear subspace V .

Lemma 3.18 ([55]). Under (3.48), with probability greater than 1− exp(−x):

|µ̂LSV − f |22 ≤ min
µ∈V
|µ− f |22 +K2(d+ 2

√
dx+ 2x),

≤ min
µ∈V
|µ− f |22 +K2(2d+ 3x). (3.68)

3.12.2 Preliminary result
Under the assumption (3.48), the authors of [55] proved the concentration inequality
(3.66) and we use this concentration result to prove the following oracle inequality
for aggregation of Least Squares estimators. Given an estimator K̂2, define for any
θ ∈ ΛM

U(θ) = |µ̂θ|22 − 2yT µ̂θ + 1
2pen(θ) + 32K̂2

M∑
j=1

θj log 1
πj
,

where pen(·) is the penalty (3.8). We consider the estimator µ̂θ̂ of f where

θ̂ ∈ argmin
θ∈ΛM

U(θ). (3.69)

The function U is equal to the sum of Hpen (3.7) and some linear function of θ. Thus
U is also convex.

Proposition 3.19. Let K > 0 be the smallest positive number such that the random
vector ξ satisfies (3.48). For all j = 1, ...,M , let bj ∈ Rn and let Aj be a square
matrix of size n that satisfies Aj = ATj = A2

j . Let (π1, ..., πM) ∈ ΛM such that for
all j = 1, ...,M , Tr(Aj) ≤ log(π−1

j ). Let K̂ > 0 be a given estimator and let θ̂ be
defined in (3.69). Let δ := P(K̂2 < K2). Then for all x > 0, with probability greater
than 1− δ − 2 exp(−x),

|µ̂θ̂ − f |
2
2 ≤ min

j=1,...,M

(
|µ̂j − f |22 + 64K̂2 log 1

πj

)
+ 28K2x.
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Proposition 3.19 is proved below. Compared to (3.31), this oracle inequality holds
for orthogonal projectors under the constraint Tr(Aj) ≤ log(π−1

j ) for all j = 1, ...,M .
However, this oracle inequality presents some advantages. First, it holds under
(3.48) which is weaker that the Gaussian assumption of Theorem 3.6 since the
noise coordinates do not need to be independent. Second, the quantity K4/σ2 that
appears in (3.37) is not present here, which is possible thanks to the constraint
Tr(Aj) ≤ log(π−1

j ). This repairs the drawback of the right hand side of (3.37) which
may be large if the noise random variables have a pathologically small variance
compared to their subgaussian norm. Finally, one does not need to know the variance
of the noise in order to compute the proposed estimator; its construction only relies
on K̂ which can be any estimate that upper bounds the subgaussian norm of the
random vector ξ. For instance, assume that ξ is zero-mean Gaussian with covariance
matrix σ2In×n, and assume that an estimator σ̂2 of σ2 is accessible, and that this
estimator has bounded bias. Let γ > 1 and ε = P(σ̂2 < σ2/γ). The quantity ε is
likely to be small if σ̂2 has a bounded bias and γ is large enough. Then one can use
the upper bound K̂2 = γσ̂2 in Proposition 3.19, which yields that with probability
greater than 1− 3ε,

|µ̂θ̂ − f |
2
2 ≤ min

j=1,...,M

(
|µ̂j − f |22 + 64γσ̂2 log 1

πj

)
+ 28σ2 log(1/ε).

Thus, γ is used to perform a trade-off between the probability estimate and the
remainder term of the oracle inequality. By using an upper bound for K̂2 in
Proposition 3.19 the oracle inequality holds with slightly worse constants but with
high probability.

Proof of Proposition 3.19. Let β̂ = 32K̂2, Let θ̂ = θ̂π for notational simplicity. As
in the proof of (3.24) in Section 3.4 or the proof of Theorem 3.6, by convexity of U
we have that for all k = 1, ...,M ,

|µ̂θ̂ − f |
2
2 − |µ̂k − f |22 ≤ |µ̂θ̂ − f |

2
2 − |µ̂k − f |22 +∇U(θ̂)T (ek − θ̂),

= 2β̂ log 1
πk

+
M∑
j=1

θ̂jζjk

≤ 2β̂ log 1
πk

+ max
j=1,...,M

ζjk,

where for all j, k = 1, ...,M ,

ζjk := 2ξT (µ̂k − µ̂j)− β̂ log 1
πjπk

− 1
2 |µ̂k − µ̂j|

2
2.

Let Bjk = Ak − Aj, and note that |||Bjk|||2 ≤ 2 because Ak and Aj are orthogonal
projectors. Using µ̂k − µ̂j = Bjkξ + (Bjkf + bk − bj), we get

ζjk = 2ξT (Ak − Aj)ξ + ξTαjk − 1
2 |Bjkf + bk − bj|22 − 1

2 |Bjkξ|22 − β̂ log 1
πjπk

,

where αjk := 2(In×n − 1
2B

T
jk)(Bjkf + bk − bj). The vector αjk satisfies

|αjk|2 ≤ 2(1 + 1
2 |||Bjk|||2)|Bjkf + bk − bj|2 ≤ 4|Bjkf + bk − bj|2.

We also have −|Bjkξ|22 ≤ 0 almost surely.
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Let x > 0. We now apply the concentration inequality (3.67) to the matrix 2Bjk

and the Hoeffding-type inequality (3.65) to the vector αjk. Using the union bound,
the following holds with probability greater than 1− 2 exp(−x):

ζjk ≤ K2
(
2 ‖Bjk‖1 + 4|||Bjk|||2x+ 4 ‖Bjk‖F

√
x
)

+ 2K(1 + 1
2 |||Bjk|||2)|Bjkf + bk − bj|2

√
2x− 1

2 |Bjkf + bk − bj|22
− β̂ log 1

πjπk
.

We bound from above the first line of the RHS of the previous display. By the triangle
inequality, and the assumption Tr(Aj) ≤ log(π−1

j ), we have ‖Bjk‖1 ≤ Tr(Aj +Ak) ≤
log((πjπk)−1). Using simple inequalities,

‖Bjk‖F
√
x ≤ (‖Aj‖F + ‖Ak‖F)

√
x ≤ (‖Aj‖2

F + ‖Ak‖2
F + 2x)/2 ≤ 1

2 log 1
πjπk

+ x.

Thus, 2 ‖Bjk‖1 + 4|||Bjk|||2x+ 4 ‖Bjk‖F
√
x ≤ K2(12x+ 4 log 1

πjπk
).

We now bound from above the second line. We apply the inequality st ≤ s2+t2
2

with t = |Bjkf + bk − bj|2 and s = 2K(1 + 1
2 |||Bjk|||2)

√
2x:

2K(1 + 1
2 |||Bjk|||2)|Bjkf + bk − bj|2

√
2x− 1

2 |Bjkf + bk − bj|22

= st− t2

2 ≤
s2

2 = 4K2(1 + 1
2 |||Bjk|||2)2x ≤ 16K2x.

For any x′ > 0, let xjk = x′ + 1
πjπk

. By setting x = xjk, the above displays yield the
following bound on ζjk, with probability greater than 1− 2πjπk exp(−x′):

ζjk ≤ 28K2xjk − (β̂ − 4K2) log 1
πjπk

= 28K2x′ − (β̂ − 32K2) log 1
πjπk

.

Using a union bound, we obtain that on an event of probability greater than
1− δ − 2∑M

j=1
∑M
k=1 πjπk exp(−x′) = 1− δ − 2 exp(−x′), we have β̂ ≥ 32K2 and

max
j,k=1,...,M

ζjk ≤ 28K2x′.

3.12.3 Sparsity pattern aggregation
We now combine (3.19) and (3.68) to prove Theorem 3.11.

Proof of Theorem 3.11. Given a subset J ⊂ {1, ..., p}, the projection matrix AJ
satisfies Tr(AJ) ≤ |J | ≤ log(π−1

J ) since the normalizing constant of the weights
(πj)J⊆{1,...,p} is greater than 1 [93, Section 5.2.1]. The estimator µ̂LSJ satisfies the
oracle inequality (3.68) with d ≤ |J |, where |J | denotes the cardinal of J and d is
the dimension of the linear span of the columns whose indices are in J .

Let θ̄ ∈ Rp be a minimizer of the right hand side of (3.49) and let J̄ ⊂ {1, ..., p}
be the support of θ̄, hence |θ̄|0 = |J̄ |. Since the RHS of (3.49) is random, θ̄ and its
support are also random.
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Let t > 0. For each support J ⊂ {1, ..., p}, the oracle inequality (3.68) applied to
x = t+ log(π−1

J ) yields that with probability greater than 1− πJ exp(−t),

|µ̂LSJ̄ − f |
2
2 ≤ |Xθ̄ − f |22 +K2

(
2|θ̄|0 + 3 log

( 1
πJ

)
+ 3t

)
. (3.70)

With the union bound, (3.70) holds simultaneously for all J ⊂ {1, ..., p} with
probability greater than 1− exp(−t) = 1−∑J⊂{1,...,p} πJ exp(−t).

We apply the oracle inequality of Proposition 3.19 and the oracle inequality (3.70)
to µ̂LSJ̄ . With the union bound, we have with probability greater than 1−δ−3 exp(−t):

|Xθ̂SPA − f |22 ≤ |µ̂
LS
J̄ − f |

2
2 + 64K̂2 log 1

πJ̄
+ 28K2t,

|µ̂LSJ̄ − f |
2
2 ≤ |Xθ̄ − f |22 +K2

(
2|θ̄|0 + 3 log

(
1
πJ̄

)
+ 3t

)
,

where AJ̄ is the projection matrix such that µ̂LSJ̄ = AJ̄y. We now use the following
bound from [93, Section 5.2.1]:

log 1
πJ̄
≤ 2|θ̄|0 log

(
ep

1 ∨ |θ̄|0

)
+ 1

2 .

Summing the two oracle inequalities above and applying the upper bound on log 1
πJ̄

completes the proof.

85



86



Chapter 4

Aggregation of supports along the
Lasso path

4.1 Introduction
Let n, p be two positive integers. We consider the mean estimation problem

Yi = µi + ξi, i = 1, ..., n,

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a subgaussian vector,
that is,

E[exp(vTξ)] ≤ exp σ
2|v|22
2 for all v ∈ Rn, (4.1)

where σ > 0 is the noise level and | · |2 is the Euclidean norm in Rn. We only observe
y = (Y1, ..., Yn)T and wish to estimate µ. A design matrix X of size n× p is given
and p may be larger than n. We do not require that the model is well-specified, i.e.,
that there exists β∗ ∈ Rp such that µ = Xβ∗. Our goal is to find an estimator µ̂
such that the prediction loss ‖µ̂ − µ‖2 is small, where ‖ · ‖2 is the empirical loss
defined by

‖u‖2 = 1
n
|u|22 = 1

n

n∑
i=1

u2
i , u = (u1, ..., un)T ∈ Rn.

In a high-dimensional setting where p > n, the Lasso is known to achieve good
prediction performance. For any tuning parameter λ > 0, define the Lasso estimate
β̂

l
λ as any solution of the convex minimization problem

β̂
l
λ ∈ argmin

β∈Rp

1
2n |y− Xβ|22 + λ |β|1 , (4.2)

where |β|1 = ∑n
j=1 |βj| is the `1-norm. If XTX/n = Ip×p where Ip×p is the identity ma-

trix of size p, then an optimal choice of the tuning parameter is λuniv ∼ σ
√

log(p)/n,
up to a numerical constant. If the Restricted Eigenvalue condition holds (cf. Defini-
tion 4.1 below), then the universal tuning parameter λuniv ∼ σ

√
log(p)/n leads to

good prediction performance [17]. However, if the columns of X are correlated and
the Restricted Eigenvalue condition is not satisfied, the question of the optimal choice
of the tuning parameter λ is still unanswered, even if the noise level σ2 is known.
Empirical and theoretical studies [100, 53, 38] have shown that if the columns of
X are correlated, the Lasso estimate with a tuning parameter substantially smaller
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than the universal parameter leads to a prediction performance which is substantially
better than that of the Lasso estimate with the universal parameter. To summarize,
these papers raise the following question:
Problem 4.1 (Data-driven selection of the tuning parameter). Find a data-driven
quantity λ̂ such that the prediction loss ‖µ− Xβ̂

l
λ̂‖2 is small with high probability.

In this paper, we focus on a different problem, namely:
Problem 4.2 (Lasso Aggregation). Construct an estimator µ̂ that mimics the
prediction performance of the best Lasso estimator, that is, construct an estimator µ̂
such that with high probability,

‖µ̂− µ‖2 ≤ C min
λ>0

(
‖Xβ̂

l
λ − µ‖2 + ∆(β̂l

λ)
)
, (4.3)

where C ≥ 1 is a constant and ∆(β̂l
λ) is a small quantity.

Problem 4.1 and Problem 4.2 have the same goal, that is, to achieve a small
prediction loss with high probability. In Problem 4.1, the goal is to select a Lasso
estimate that has small prediction loss. In Problem 4.2, we look for an estimator
µ̂ such that the prediction performance of µ̂ is almost as good as the prediction
performance of any Lasso estimate. The estimator µ̂ may be of a different form than
β̂

l
λ̂ for some data-driven parameter λ̂.
Our motivation to consider Problem 4.2 instead of Problem 4.1 is the following. Let

µ1, ...,µM be deterministic vectors Rn. If the goal is to mimic the best approximation
of µ among µ1, ...,µM , it is well known in the literature on aggregation problems
that an estimator of the form µ̂ = f k̂ for some data-driven integer k̂ is suboptimal (cf.
Theorem 2.1 in [93], Section 2 of [58] and Proposition 6.1 in [46]). Thus, an optimal
procedure cannot be valued in the discrete set {µ1, ...,µM}. Optimal procedures for
this problem are valued in the convex hull of the set {µ1, ...,µM}. Examples are the
Exponential Weights procedures proposed in [70, 35] or the Q-aggregation procedure
of [33].

Although a lot of progress has been made for various aggregation problems, to
our knowledge no previous work deals with the problem of aggregation of nonlinear
estimators such as the collection (Xβ̂l

λ)λ>0 based on the sample. In the setting of the
present paper, the observation y and the Lasso estimates are not independent: no
data-split is performed and the same data is used to construct the Lasso estimators
and to aggregate them.

We will show that aggregation of nonlinear estimators of the form Xβ̂ is possible,
for any nonlinear estimators β̂ and without any assumption on X. For instance, an
estimator µ̂ that achieves (4.3) with

∆(β) ' σ2|β|0
n

log
(

ep

|β|0 ∨ 1

)
is given in Section 4.3. Here, |β|0 denotes the number of nonzero coefficients of β
and a ∨ b = max(a, b).

Given a design matrix X, we call support any subset T of {1, ..., p}. The cardinality
of T is denoted by |T | and for β ∈ Rp, supp(β) is the set of indices k = 1, ..., p
such that βk 6= 0. Given a support T , we denote by ΠT the square matrix of size
n which is the orthogonal projection on the linear span of the columns of X whose
indices belong to T . Denote by P({1, ..., p}) the set of all subsets of {1, ..., p}. We
will consider the following problem.
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Problem 4.3 (Aggregation of a data-driven collection of supports). Let F̂ be a data-
driven collection of supports, that is, an estimator valued in P({1, ..., p}). Construct
an estimator µ̂ such that with high probability,

‖µ̂− µ‖2 ≤ min
T∈F̂

(
‖ΠTµ− µ‖2 + ∆(T )

)
, (4.4)

where ∆(·) is a function that takes small values.

The set F̂ is a family of supports. Let us emphasize that both its cardinality and
its elements can depend on the data y. Note that for any support T , ΠTµ = Xβ∗T
where β∗T minimizes |Xβ − µ|22 subject to βk = 0 for all k 6∈ T . In Section 4.3, we
construct an estimator µ̂ that satisfies (4.4) with ∆(T ) ' σ2|T | log(p/|T |)/n for all
nonempty supports T . In the literature on aggregation problems, one is given a
collection of estimators {µ̂1, ..., µ̂M} where M ≥ 1 is a deterministic integer and the
goal is to mimic the best estimator in this collection, cf. [96] and the references
therein. A novelty of the present paper is to consider aggregation of a collection of
estimators, where the cardinality of the collection depends on the data.

The main contributions of the present paper are the following.

• In Section 4.2, we propose an estimator µ̂q
F̂ ,σ̂2 that satisfies the oracle inequality

(4.4) with ∆(T ) ' σ̂2|T | log(p/|T |)/n for all nonempty supports T , where σ̂2 is
an estimator of the noise level. This estimator solves Problem 4.3. We explain
in Corollary 4.2 how Section 4.2 can be used to construct a procedure that
aggregates nonlinear estimators of the form Xβ̂.

• Section 4.3 is devoted to Problem 4.2. Using the result from Section 4.2, we
construct an estimator µ̂ that satisfies (4.3) with ∆(β) ' σ2|β|0 log(p/|β|0).
The computational complexity of the procedure is the sum of the complexity of
the regularization path of the Lasso and the complexity of a convex quadratic
program.

The proofs can be found in the appendix.

4.2 Aggregation of a data-driven family of sup-
ports

Throughout this section, let F̂ be a data-driven collection of supports and let σ̂2 ≥ 0
be a real valued estimator. Let M̂ be the cardinality of F̂ , and let (T̂j)j=1,...,M̂ be
supports such that

F̂ = {T̂1, ..., T̂M̂}. (4.5)

For all supports T ⊂ {1, ..., p}, define the weights [93]

πT :=
(
Hp

(
p

|T |

)
e|T |

)−1

, Hp := e− e−p

e− 1 .

Note that by construction, the constant Hp is greater than 1 and ∑T∈P({1,...,p}) πT = 1
where P({1, ..., p}) is the set of all subsets of {1, ..., p}. Given a support T , the Least
Squares estimator on the linear span of the covariates indexed by T is ΠTy.
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We will consider two estimators of µ based on F̂ and σ̂2. The first estimator is
defined as follows. Define the criterion

Critσ̂2(T ) = |y− ΠTy|22 + 18σ̂2 log 1
πT
.

We have
|T | ≤ log 1

πT
≤ 1

2 + 2|T | log(ep/|T |) (4.6)

for any support T . The lower bound is a direct consequence of Hp > 1 and the upper
bound is proved in [93, (5.4)]. As (4.6) holds, the above criterion is of the same
nature as Cp, AIC, BIC and their variants, cf. [18]. Define the estimator

ΠT̂F̂ ,σ̂2
(y) where T̂F̂ ,σ̂2 ∈ argmin

T∈F̂
Critσ̂2(T ). (4.7)

The estimator (4.7) is the orthogonal projection of y onto the linear span of the
columns of X whose indices are in T̂F̂ ,σ̂2 . If F̂ is not data-dependent, the procedure
ΠT̂F̂ ,σ̂2

(y) is close to the one studied in [18].
We now define a second estimator valued in the convex hull of (ΠTy)T∈F̂ . Let M̂

be the cardinality of F̂ , and let (T̂j)j=1,...,M̂ be supports such that (4.5) holds. For
any j = 1, ..., M̂ , let µ̂j = ΠT̂j

y. Define a simplex in RM as follows:

ΛM =
{
θ ∈ RM ,

M∑
j=1

θj = 1, ∀j = 1 . . . M̂ , θj ≥ 0
}
.

For any θ ∈ RM , define µ̂θ = ∑M̂
j=1 θjµ̂j. For all θ ∈ ΛM , let

HF̂ ,σ̂2(θ) := |µ̂θ − y|22 + 1
2pen(θ) + 26σ̂2Kθ. (4.8)

where

pen(θ) :=
M̂∑
j=1

θj|µ̂j − µ̂θ|22. (4.9)

The penalty (4.9) is inspired by recent works on the Q-aggregation procedure [32],
and it was used to derive sharp oracle inequalities for aggregation of linear estimators
[33, 11] and density estimators [12]. The penalty pushes µ̂θ towards the points
{µ̂1, ..., µ̂M̂}. Finally, the term Kθ is another penalty that pushes the coordinate θj
to 0 if the size of the support T̂j is large.

Define the estimator µ̂q
F̂ ,σ̂2 as any minimizer of the function HF̂ ,σ̂2 defined in

(4.8):
µ̂q
F̂ ,σ̂2 := µ̂θ̂, θ̂ ∈ argmin

θ∈ΛM
HF̂ ,σ̂2(θ). (4.10)

Theorem 4.1. Let n, p be positive integers and let σ > 0. Let µ ∈ Rn and X be
any matrix of size n× p. Let F̂ be any data-driven collection of subsets of {1, ..., p}.
Assume that the noise ξ satisfies (4.1). Let σ̂2 be any real valued estimator and let
δ := P(σ̂2 < σ2). Then for all x > 0, the estimator µ̂q

F̂ ,σ̂2 defined in (4.10) satisfies
with probability greater than 1− δ − 2 exp(−x),

‖µ̂q
F̂ ,σ̂2 − µ‖2 ≤ min

T∈F̂

(
‖ΠTµ− µ‖2 + σ̂2

n

(
24 + 96|T | log

(
ep

|T | ∨ 1

)))
+ 22σ2x

n
.

(4.11)
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Furthermore, the estimator ΠT̂F̂ ,σ̂2
(y) satisfies with probability greater than 1− δ −

2 exp(−x),

‖ΠT̂F̂ ,σ̂2
(y)−µ‖2 ≤ min

T∈F̂

(
3‖ΠTµ− µ‖2 + σ̂2

n

(
26 + 104|T | log

(
ep

|T | ∨ 1

)))
+28σ2x

n
.

(4.12)

In previously studied aggregation problems, one is given a collection of estimators
{µ̂1, ..., µ̂M} where M ≥ 1 is a deterministic integer and the goal is to construct an
estimator µ̂ such that with high probability,

‖µ̂− µ‖2 ≤ min
j=1,...,M

‖µ̂j − µ‖2 + ∆n(M),

where ∆n(M) is a small error term that increases with M , cf. [96] and the references
therein. Theorem 4.1 is of a different nature for several reasons. First, the set F̂ is
random, its cardinality can depend on the observed data y. Second, the error term
that appears inside the minimum of (4.11) does not depend on the cardinality of F̂ .

The estimator µ̂q
F̂ ,σ̂2 of Theorem 4.1 with σ̂2 = σ2 and F̂ being the set of all

subsets of {1, ..., p} was previously studied as the Exponential Screening estimator
[92] or as the Sparsity Pattern Aggregate [93]. In this special case, F̂ is deterministic
and contains all the 2p possible supports. Because of this exponential number of
supports, computing the sparsity pattern aggregate in practice is hard. An MCMC
algorithm is developed in [92] to compute an approximate solution of the sparsity
pattern aggregate, but to our knowledge there is no theoretical guarantee that this
MCMC algorithm will converge to a good approximation in polynomial time. The
Sparsity Pattern Aggregate satisfies (4.11) with σ̂2 = σ2 and F̂ = P({1, ..., p}). This
sharp oracle inequality yields the minimax rate over all `q balls for all 0 < q ≤ 1,
under no assumption on the design matrix X [33, 96].

To construct the estimator µ̂q
F̂ ,σ̂2 , one has to solve the optimization problem

(4.10). This is a convex quadratic program of size |F̂ | with a simplex constraint. The
complexity of computing µ̂q

F̂ ,σ̂2 is polynomial in the cardinality of F̂ . Thus, if F̂ is
small then it is possible to construct µ̂q

F̂ ,σ̂2 efficiently.
As the cardinality of F̂ decreases, the prediction performance of the estimator

µ̂q
F̂ ,σ̂2 becomes worse, but computing µ̂q

F̂ ,σ̂2 becomes easier.

Problem 4.4. Construct a data-driven set of supports F̂ such that with high proba-
bility, there exists a support T ∈ F̂ for which, simultaneously, the bias ‖ΠTµ− µ‖2

and the size |T | are small.

If we can construct such a set F̂ , by (4.11) the prediction loss of the estimator
µ̂q
F̂ ,σ̂2 will be small. Note that Theorem 4.1 needs no assumption on the data-driven

set F̂ and the design matrix X.
In the following Corollary, we perform aggregation of a family of nonlinear

estimators of the form (Xβ̂k)j∈J for some set J . All estimators in the family share
the same design matrix X and this matrix is deterministic.

Corollary 4.2. Let n, p be positive integers and let σ > 0. Let µ ∈ Rn and X be
any matrix of size n× p. Let F̂ be any data-driven collection of subsets of {1, ..., p}.
Assume that the noise ξ satisfies (4.1). Let (β̂j)j∈Ĵ be a family of estimators valued in
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Rp. Both the cardinality of the family and its elements can depend on the data. Let σ̂2

be any real valued estimator and let δ := P(σ̂2 < σ2). Define F̂ = {supp(β̂j), j ∈ Ĵ}
and let µ̂q

F̂ ,σ̂2 be the estimator (4.10). Then for all x > 0, the estimator µ̂q
F̂ ,σ̂2 satisfies

with probability greater than 1− δ − 2 exp(−x),

‖µ̂q
F̂ ,σ̂2 − µ‖2 ≤ min

j∈Ĵ

‖Xβ̂j − µ‖2 + σ̂2

n

24 + 96|β̂j|0 log
 ep

|β̂j|0 ∨ 1

+ 22σ2x

n
.

Using (4.12), a similar result can be readily obtained for the estimator ΠT̂F̂ ,σ̂2
(y)

with the leading constant 3.

4.3 Aggregation of supports along the Lasso path
Let us recall some properties of the Lasso path [44]. For a given observation y, there
exists a positive integer K and a finite sequence

λ0 > λ1 > ... > λK = 0

such that β̂l
λ = 0 for all λ > λ0, and such that

∀λ ∈ (λk+1, λk), supp(β̂l
λ) = supp(β̂l

λk
).

Thus, there is a finite number of supports on the Lasso path. In this section, we
study the estimator of Theorem 4.1 in the special case F̂ = {supp(β̂l

λk
), k = 0, ..., K},

that is, we aggregate all the supports that appear on the Lasso path.

Theorem 4.3. Let n, p be positive integers and let σ > 0. Let µ ∈ Rn and X be
any matrix of size n× p. Assume that the noise ξ satisfies (4.1). Let σ̂2 be any real
valued estimator and let δ := P(σ̂2 < σ2). Let λ0 > ... > λK be the knots of the Lasso
path. Let F̂ = {supp(β̂l

λj
), j = 0, ..., K} be the family of all supports that appear

on the Lasso path and let µ̂q
F̂ ,σ̂2 be the estimator (4.10). Then for all x > 0, the

estimator µ̂q
F̂ ,σ̂2 satisfies with probability greater than 1− δ − 2 exp(−x),

‖µ̂q
F̂ ,σ̂2 −µ‖2 ≤ min

λ>0

‖Xβ̂l
λ − µ‖2 + σ̂2

n

24 + 96|β̂l
λ|0 log

 ep

|β̂
l
λ|0 ∨ 1

+ 22σ2x

n
,

(4.13)
where for all λ > 0, β̂l

λ is the Lasso estimator (4.2).

Using (4.12), a similar result can be readily obtained for the estimator ΠT̂F̂ ,σ̂2
(y)

with the leading constant 3.
The computational complexity of the procedure of Theorem 4.3 is polynomial in

the number of knots of the Lasso path. This will be further discussed in Section 4.4.
In the rest of this section, we assume that σ̂2 = σ2 and δ = 0. We will come back to
the estimation of the noise level in Section 4.5 below.

Interestingly, Theorem 4.3 does not need any assumption on the design matrix X.
The estimators µ̂q

F̂ ,σ̂2 and ΠT̂F̂ ,σ̂2
(y) have a good performance as soon as for some

possibly unknown λ > 0, both the support of β̂l
λ and the loss ‖Xβ̂l

λ − µ‖2 are small.
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4.3.1 Prediction guarantees under the restricted eigenvalue
condition

The goal of this section is to study the prediction performance of the procedure
defined in Theorem 4.3 under the Restricted Eigenvalue condition on the design
matrix X.

Definition 4.1. For any s ∈ {1, ..., p} and c0 > 0, condition RE(s, c0) is satisfied if

κ(s, c0) := min
T⊂{1,...,p}:|T |≤s

min
δ∈Rp:|δTc |1≤c0|δT |1

|Xδ|2√
n|δT |2

> 0.

The following result is a reformulation of Bickel et al. [17, Theorem 6.2].

Theorem 4.4 (Bickel et al. [17]). Let X be such that the diagonal elements of
XTX/n are all equal to 1. Assume that µ = Xβ∗ and let s := |β∗|0. Assume that
ξ ∼ N (0, σ2In×n) and that condition RE(s, 3) is satisfied. Let x0 > 0. There is an
event Ω(x0) of probability greater than 1− e−x0 on which the Lasso estimator (4.2)
with tuning parameter λx0 = σ

√
8(x0 + log p)/n satisfies simultaneously

|β̂
l
λx0
|0 ≤

64φmax
κ2(s, 3)s, (4.14)

‖X(β̂l
λx0
− β∗)‖2 ≤ 128σ2s(x0 + log p)

κ2(s, 3)n , (4.15)

where φmax is the largest eigenvalue of the matrix XTX/n.

Thus, if the restricted eigenvalue condition is satisfied, the Lasso estimator with
the universal parameter λx0 = σ

√
8(x0 + log p)/n enjoys simultaneously an `0 norm

of the same order as the true sparsity (cf. (4.14)), and a prediction loss of order
s log(p)/n (cf. (4.15)).

Theorem 4.5 below is a direct consequence of Theorem 4.3 and the bounds
(4.14)-(4.15).

Theorem 4.5. Let n, p be positive integers and let σ > 0. Let µ ∈ Rn and X be
any matrix of size n × p. Let F̂ be any data-driven subset of {1, ..., p}. Assume
that µ = Xβ∗ and let s := |β∗|0. Assume that ξ ∼ N (0, σ2In×n) and that condition
RE(s, 3) is satisfied.

Let λ0 > ... > λK be the knots of the Lasso path. Let F̂ = {supp(β̂l
λj

), j =
0, ..., K} be the family of all supports that appear on the Lasso path and let µ̂q

F̂ ,σ2 be
the estimator (4.10) with σ̂2 = σ2. Then for all x > 0, the estimator µ̂q

F̂ ,σ2 satisfies
with probability greater than 1− 3 exp(−x),

‖µ̂q
F̂ ,σ2 − Xβ∗‖2 ≤ (128 + 48φmax)σ2s log p

κ2(s, 3)n + 24σ2

n
+ 128σ2sx

κ2(s, 3)n + 22σ2x

n
. (4.16)

Furthermore,

E‖µ̂q
F̂ ,σ2 − Xβ∗‖2 ≤ (128 + 48φmax)σ2s log p

κ2(s, 3)n + 384σ2s

κ2(s, 3)n + 90σ2

n
. (4.17)
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Using (4.12), a similar result can be readily obtained for the estimator ΠT̂F̂ ,σ̂2
(y)

with different constants.

Proof of Theorem 4.5. By Theorem 4.3 with δ = 0, there is an event Ωagg(x) of
probability greater than 1− 2e−x such that on Ωagg(x) we have

‖µ̂q
F̂ ,σ2 − Xβ∗‖2 ≤ ‖X(β̂l

λx − β
∗)‖2 + σ2

n

24 + 96|β̂l
λx|0 log

 ep

|β̂
l
λ|0 ∨ 1

+ 22σ2x

n
.

Let Ω(x) be the event defined in Theorem 4.4. Using the simple inequality log(p/(|β̂l
λ|0∨

1)) ≤ log p, and the bounds (4.14)-(4.15), we obtain that (4.16) holds on the event
Ωagg(x)∩Ω(x). By the union bound, the event Ωagg(x)∩Ω(x) has probability greater
than 1− 3e−x. Finally, (4.17) is obtained from (4.16) by integration.

The procedure studied in Theorem 4.5 aggregates the supports along the Lasso
path using the procedure (4.10). A similar result holds for the estimator ΠT̂F̂ ,σ̂2

(y)
with a leading constant equal to 3. Theorem 4.5 has the following implications.

First, if x > 0 is fixed, the prediction performance (4.16) of the estimator µ̂q
F̂ ,σ2

is similar to that of the Lasso with the universal tuning parameter λx, up to a
multiplicative factor that only involves numerical constants and the quantity φmax.
As soon as φmax (the operator norm of XTX/n) is bounded from above by a constant,
the estimator studied in Theorem 4.5 enjoys the best known prediction guarantees.

Second, Theorem 4.5 implies that the estimator µ̂q
F̂ ,σ2 satisfies the prediction

bound (4.16) simultaneously for all confidence levels. That is, (4.16) holds for all
x > 0 with probability greater than 1− 3e−x, in contrast with the Lasso estimator
with the universal parameter λx0 which depends on a fixed confidence level 1− e−x0 .
The Lasso estimator with the universal parameter λx0 satisfies the prediction bound
(4.15) only for the confidence level 1− e−x0 , but to our knowledge it is not known
whether the Lasso estimator with the universal parameter λx0 satisfies a similar
bound for different confidence levels than 1 − e−x0 . In this regard, the estimator
studied in Theorem 4.5 provides a strict improvement compared to the Lasso with
the universal parameter.

Third, the estimator µ̂q
F̂ ,σ2 of Theorem 4.5 satisfies the bound (4.17), that is,

a prediction bound in expectation. Again, to our knowledge, it is not known
whether the Lasso estimator with the universal parameter satisfies a similar bound
in expectation.

Assuming that the bound (4.15) is tight and putting computational issues aside,
the prediction performance of the procedure µ̂q

F̂ ,σ2 of Theorem 4.5 is substantially
better than the performance of the Lasso with the universal parameter, as soon as
φmax is bounded from above by a constant.

An upper bound similar to (4.14) is given in [16, Theorem 3 and Remark 3].
Namely, [16] prove that the square-root Lasso estimator with the universal tuning
parameter β̂ satisfies |β̂|0 ≤ Cs with high probability, where s is the sparsity of
the true parameter and C is a constant that depends on the sparse eigenvalues of
the matrix XTX/n, cf. [16, Condition P]. This upper bound can be used instead of
(4.14) to prove results similar to (4.16) where φmax is replaced by a smaller constant
that depends on the sparse eigenvalues of XTX/n.
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4.4 Computational complexity of the Lasso path
and µ̂q

F̂ ,σ̂2

Computing the estimator µ̂q
F̂ ,σ̂2 of Theorem 4.3 is done in two steps:

1. Compute the full Lasso path and let F̂ = {supp(λ0), ..., supp(λK)} be all the
supports that appear on the Lasso path, where λ0, ..., λK are the knots of the
Lasso path.

2. Compute µ̂q
F̂ ,σ̂2 as a solution of the quadratic program (4.10), where F̂ is

defined by Step 1.
(We assume that the complexity of computing σ̂2 is negligible compared to the
complexity of Step 1 and Step 2 above). The time complexity of Step 2 is the
complexity of a convex quadratic program of size |F̂ | ≤ K, where K is the number
of knots on the Lasso path. Thus, the global cost of computing the estimator µ̂q

F̂ ,σ̂2

of Theorem 4.3 is polynomial in K.
There exist efficient algorithms to compute the entire Lasso path [44]. However,

[72] proved that for some values of X and y, the regularization path of the Lasso
contains more than 3p/2 knots. Hence, for some design matrix X and some observation
y, an exact computation of the full Lasso path is not realizable in polynomial time.
In order to fix this computational issue, [72] propose an algorithm that computes an
approximate regularization path for the Lasso. For some fixed ε > 0, this algorithm
is guaranteed to terminate with less than O(1/

√
ε) knots and the points on the

approximate path have a duality gap smaller than ε. This approximation algorithm
can be used instead of computing the exact Lasso path. That is, one may compute the
estimator µ̂q

F̂ ,σ̂2 where F̂ is the collection of supports that appear on the approximate
path computed by the algorithm of [72].

Another solution to avoid computational issues is as follows. Let M be a positive
integer. Instead of computing the Lasso path, one may consider a grid of tuning pa-
rameters λ1, ..., λM > 0 and aggregate the supports of corresponding Lasso estimates
β̂

l
λ1 , ...β̂

l
λM

. The advantage of this approach is twofold. First, for all j = 1, ...,M
the Lasso estimate β̂l

λj
can be computed by standard convex optimization solvers.

Second, the time complexity of the procedure is guaranteed to be polynomial in M
and p. For any x > 0, by Corollary 4.2, this procedure satisfies, with probability
greater than 1− 3e−x

‖µ̂q
F̂ ,σ̂2−µ‖2 ≤ min

j=1,...,M

‖Xβ̂l
λj
− µ‖2 + σ̂2

n

24 + 96|β̂l
λj
|0 log

 ep

|β̂
l
λj
|0 ∨ 1

+22σ2x

n
.

This oracle inequality is not a strong as (4.13). However, if at least one of the Lasso
estimates {β̂l

λj
, j = 1, ...,M} enjoys a small prediction loss and a small `0 norm, then

the prediction loss of µ̂q
F̂ ,σ̂2 is also small.

4.5 A fully data-driven procedure using the Square-
Root Lasso

This section proposes a fully data-driven procedure, based on the Square-Root Lasso.
The choice of grid comes from the empirical and theoretical observations that for a
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correlated design matrix, there exists a tuning parameter smaller than the universal
parameter which enjoys better prediction performance than the universal parameter
[100, 53, 38].

1. Let λmax = 2
√

log(p/0.01)/n be the universal parameter of the Square-Root
Lasso [16] with confidence level 0.01.

2. Let λmin be a conservatively small value of the tuning parameter.
3. Let M be an integer.
4. Consider the geometric grid {λ1, ..., λM} such that

λj = λmin

(
λmax

λmin

)((j−1)/M−1)

, j = 1, ...,M.

5. Compute the Square-Root Lasso estimators β̂sq
λ1 , ...β̂

sq
λM

with parameters λ1, ..., λM
(it is possible to perform this computation simultaneously for all λ1, ..., λM , cf.
[85] and the references therein).

6. Let F̂ = {supp(β̂sq
λj

), j = 1, ...,M} be the supports of the computed Square-
Root Lasso estimators.

7. Let σ̂2 be the variance estimated by the Square-Root Lasso with the universal
parameter λmax.

8. For this choice of σ̂2 and F̂ , return the estimator µ̂q
F̂ ,σ̂2 or the estimator

ΠT̂F̂ ,σ̂2
(y) .

This estimator µ̂q
F̂ ,σ̂2 returned by this procedure enjoys the theoretical guarantee

‖µ̂q
F̂ ,σ̂2−µ‖2 ≤ min

j=1,...,M

‖Xβ̂sq
λj
− µ‖2 + σ̂2

n

24 + 96|β̂sq
λj
|0 log

 ep

|β̂
sq
λj
|0 ∨ 1

+22σ2x

n

with probability greater than 1− 3e−x. A similar guarantee with leading constant 3
can be obtained for the estimator ΠT̂F̂ ,σ̂2

(y) using (4.12).

4.6 Concluding remarks
We have presented two procedures (4.7) and (4.10) that aggregates a data-driven
collection of supports F̂ . These procedures satisfy the oracle inequalities given in
Theorem 4.1 above, which is the main result of the paper. Sections 4.3 and 4.4 study
the situation where F̂ is the collection of supports that appear along the Lasso path.
These procedures may be used for other data-driven collections F̂ as well.

These procedures allow one to perform a trade-off between prediction performance
and computational cost. If F̂ contains all the 2p supports, these procedures achieve
optimal prediction guarantees with no assumption on the design matrix X, but can
not be realized in polynomial time. On the other hand, if the cardinality of F̂ is
small (say, polynomial in n and p), then it is possible to compute the estimators (4.7)
and (4.10) in polynomial time. In view of (4.3), one should look for a data-driven
set F̂ with the following properties.

1. The set F̂ is small so that the estimators (4.10) and (4.7) can be computed
rapidly,
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2. The set F̂ contains a support T such that |T | and ‖πTµ − µ‖2 are simulta-
neously small, so that the procedures (4.10) and (4.7) enjoy good prediction
performance.

A natural choice for F̂ is the collection of supports that appear along the Lasso
path. This choice of F̂ was studied in Sections 4.3 and 4.4. Another natural choice
is to aggregate the supports of several hard-thresholded Lasso estimators, since
the hard-thresholded Lasso is sign-consistent under weak conditions on the design
[78, Definition 5 and Corollary 2]. Further research will investigate other means to
construct a data-driven collection F̂ such that the above two properties are satisfied.
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Appendix

4.7 Proof of Theorem 4.1
For any matrix A ∈ Rn×n, define the operator norm of A and the Frobenius norm of
A by

|||A|||2 := sup
|u|22=1

|Au|2, ‖A‖F =
√

Tr(ATA),

respectively.

Proof of (4.11). For all S, T ⊂ {1, ..., p}, define the event

ΩS,T =
{
Z(S, T ) ≤ 4σ2|S|+ 22σ2

(
log 1

πSπS
+ x

)}
,

where
Z(S, T ) = 2ξT (ΠSy− ΠTµ)− 1

2 |ΠSy− ΠTy|22. (4.18)

Define the event V := {σ̂2 ≥ σ2}. On the event A := V ∩ (∩S,T⊂{1,...,p}ΩS,T ), we have
simultaneously for all supports S, T

Z(S, T )− 26σ̂2 log 1
πS
− 22σ2 log 1

πT
≤ 22σ2x+ 4σ2|S| − 4σ2 log 1

πS
≤ 22σ2x

where we have used that log 1
πS
≥ |S|, cf. (4.6). By Lemma 4.6, on the event A we

have

|µ̂q
F̂ ,σ̂2 − µ|22 ≤ min

T∈F̂

(
|ΠTµ− µ|22 + (26σ̂2 + 22σ2) log 1

πT

)
+ 22σ2x.

To obtain (4.11), we use (4.6) and the fact that on the event V , 26σ̂2 + 22σ2 ≤ 48σ̂2.
It remains to bound from below the probability of the event A. Denote by Bc

the complement of any event B. We proceed with the union bound as follows,

P(Ac) ≤ P(Vc) +
∑

S,T⊂{1,...,p}
P(Ωc

S,T ).

By definition, δ = P(Vc) and for any S, T ⊂ {1, ..., p}, Lemma 4.7 with t = x+log 1
πSπT

yields that P(Ωc
S,T ) ≤ πSπT2 exp(−x). As ∑S,T⊂{1,...,p} πSπT = (∑S⊂{1,...,p} πS)2 = 1,

we have established that
P(Ac) ≤ δ + 2 exp(−x).

The proof of (4.12) is close to the argument used in [18], cf. [48, Section 2.3] for
a recent reference on model selection. The novelty of the present paper is to consider
a data-driven collection of estimators.
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Proof of (4.12). Let Λ̂ = 18σ̂2 and let T̂ = T̂F̂ ,σ̂2 for notational simplicity. By
definition of ΠT̂F̂ ,σ̂2

(y) = ΠT̂y, for all T ∈ F̂ we have Critσ̂2(T̂ ) ≤ Critσ̂2(T ) which
can be rewritten as

|ΠT̂F̂ ,σ̂2
(y)− µ|22 + Λ̂ log 1

πT̂
≤ |ΠTy− µ|22 + Λ̂ log 1

πT
+ 2ξT (ΠT̂y− ΠTy),

≤ |ΠTµ− µ|22 + Λ̂ log 1
πT

+ 2ξTΠT̂ξ + 2ξT (ΠT̂µ− ΠTµ)− |ΠTξ|22.

(4.19)

Define the event V := {σ̂2 ≥ σ2}. For all S, T ⊂ {1, ..., p}, define

W (S) = 2ξTΠSξ − 10σ2 log 1
πS
,

W ′(S, T ) = 2ξT (ΠSµ− ΠTµ)− 8σ2 log 1
πSπT

− 1
4 |ΠSµ− ΠTµ|22.

With this notation, using the simple inequality −|ΠTξ|22 ≤ 0, (4.19) implies that on
the event V ,

|ΠT̂F̂ ,σ̂2
(y)− µ|22 ≤ |ΠTµ− µ|22 + Λ̂ log 1

πT
+ 8σ2 log 1

πT
+W (T̂ ) +W ′(T̂ , T ) + 1

4 |ΠT̂µ− ΠTµ|22,

Using that |ΠT̂µ − ΠTµ|22 ≤ 2|ΠT̂µ − µ|22 + 2|µ − ΠTµ|22 and that |ΠT̂µ − µ|22 ≤
|ΠT̂y− µ|22, we obtain

1
2 |ΠT̂F̂ ,σ̂2

(y)− µ|22 ≤
3
2 |ΠTµ− µ|22 + Λ̂ log 1

πT
+ 8σ2 log 1

πT
+W (T̂ ) +W ′(T̂ , T ).

For all S, T ⊂ {1, ..., p}, define the events

ΩS := {W (S) ≤ 6σ2x}, ΩS,T := {W ′(S, T ) ≤ 8σ2x}.

On the event V ∩ (∩S⊂{1,...,p}ΩS) ∩ (∩S,T⊂{1,...,p}ΩS,T ), (4.12) holds. It remains to
bound from below the probability of this event.

For any fixed S ⊂ {1, ..., p}, using (4.6) and (4.23) with t = x+ log 1
πS

we have
P(Ωc

S) ≤ πSe
−x.

Let S, T ⊂ {1, ..., p} be fixed. By using (4.22) with v = 2(ΠSµ − ΠTµ)) and
t = x+ log 1

πSπT
, we have that on an event of probability greater than 1− πSπT e−x,

2ξT (ΠSµ−ΠTµ) ≤ 2σ
√

2(x+ log(1/πSπT ))|ΠSµ−ΠTµ|2 ≤ 8σ2
(
x+ log 1

πSπT

)
+1

4 |ΠSµ−ΠTµ|22.

Thus, P(Ωc
S,T ) ≤ πSπT e

−x.
As in the proof of (4.11), the union bound completes the proof.

4.8 Technical Lemmas
Lemma 4.6. For any estimator σ̂2, let θ̂ be a minimizer of (4.8). Then, almost
surely,

|µ̂θ̂ − µ|
2
2 ≤ min

q=1,...,M̂

|ΠT̂q
µ− µ|22 + (26σ̂2 + 22σ2) log 1

πT̂q

+W, (4.20)
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where
W := max

S,T∈F̂

(
Z(S, T )− 26σ̂2 log 1

πS
− 22σ2 log 1

πT

)
and Z(·, ·) is defined in (4.18).

Proof of Lemma 4.6. Let Λ̂ = 26σ̂2. The function HF̂ ,σ̂2 is convex and differentiable,
it can be rewritten as

∀θ ∈ ΛM , HF̂ ,σ̂2(θ) = 1
2 |µ̂θ|

2
2 + |y|22 +

M∑
j=1

θj

−2yT µ̂j + 1
2 |µ̂j|

2
2 + Λ̂ log 1

πT̂j

 .
By simple algebra, for any θ′ ∈ RM ,

∇HF̂ ,σ̂2(θ̂)Tθ′ = µ̂Tθ̂ µ̂θ′ +
M∑
j=1

θ′j

−2yT µ̂j + 1
2 |µ̂j|

2
2 + Λ̂ log 1

πT̂j

 , (4.21)

∇HF̂ ,σ̂2(θ̂)T (−θ̂) = −|µ̂θ̂ − µ|
2
2 + |µ|22 +

M∑
j=1
θ̂j

2ξT µ̂j −
1
2 |µ̂j|

2
2 − Λ̂ log 1

πT̂j

 ,
By summing the last display and equality (4.21) applied to θ′ = eq, we get

∇HF̂ ,σ̂2(θ̂)T (eq − θ̂) = −|µ̂θ̂ − µ|
2
2 + |µ̂q − µ|22 + Λ̂ log 1

πT̂q

+
M̂∑
j=1
θ̂j

2ξT (µ̂j − µ̂q)−
1
2 |µ̂j − µ̂q|

2
2 − Λ̂ log 1

πT̂j

.
Since µ̂q = ΠT̂q

y is a Least Squares estimator over the linear span of the covariates
in T̂q, we have |µ̂q − y|22 ≤ |ΠT̂q

µ− y|22 which can be rewritten as

|µ̂q − µ|22 ≤ |ΠT̂q
µ− µ|22 + 2ξT (µ̂q − ΠT̂q

µ).

We thus have

∇HF̂ ,σ̂2(θ̂)T (eq − θ̂) ≤ −|µ̂θ̂ − µ|
2
2 + |ΠT̂q

µ− µ|22 + (Λ̂ + 22σ2) log 1
πT̂q

+
M̂∑
j=1
θ̂j

2ξT (µ̂j − ΠT̂q
µ)− 1

2 |µ̂j − µ̂q|
2
2 − Λ̂ log 1

πT̂j
− 22σ2 log 1

πT̂q

.
For all q = 1, ..., M̂ , [21, Section 4.2.3] yields ∇HF̂ ,σ̂2(θ̂)T (eq − θ̂) ≥ 0. Furthermore,
a linear function over the simplex is maximized at a vertex, so almost surely we
obtain (4.20).

Lemma 4.7. Let t > 0. For any supports S, T ⊂ {1, ..., p}, the quantity Z(S, T )
defined in (4.18) satisfies with probability greater than 1− 2 exp(−t),

Z(S, T ) ≤ 4σ2|S|+ 22σ2t.
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Proof of Lemma 4.7. Let D = ΠS − ΠT . Then almost surely,

Z(S, T ) = 2ξTΠSξ + ξT (2Dµ−D2µ)− 1
2 |Dµ|

2
2 −

1
2 |Dξ|

2
2.

It is clear that −|Dξ|22 ≤ 0. As ξ satisfies (4.1), a Chernoff bound yields that for all
v ∈ Rn,

P
(
ξTv > σ|v|2

√
2t
)
≤ exp(−t). (4.22)

It is clear that |||D|||2 ≤ 2. We apply this concentration inequality to v = 2Dµ−D2µ
to get that with probability greater than 1− exp(−t),

ξT (2Dµ−D2µ) ≤ σ|2Dµ−D2µ|2
√

2t ≤ σ|||2In −D|||2|Dµ|2
√

2t,

≤ σ4|Dµ|2
√

2t ≤ 16σ2t+ 1
2 |Dµ|

2
2.

Finally, let r ≤ |S| be the rank of ΠS. The matrix ΠS is an orthogonal projector.
Hence ‖ΠS‖2

F = r and |||ΠS|||2 ≤ 1, so that applying the concentration inequality
from [55] yields that with probability greater than 1− exp(−t),

2ξTΠSξ ≤ 2σ2(r + 2
√
rt+ 2t) ≤ 4σ2r + 6σ2t ≤ 4σ2|S|+ 6σ2t. (4.23)

A union bound completes the proof.
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Part II

From aggregation to shape
restricted regression
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Chapter 5

Sharp oracle bounds for monotone
and convex regression through
aggregation

Joint work with Alexandre Tsybakov.

We derive oracle inequalities for the problems of isotonic and convex regression
using the combination of Q-aggregation procedure and sparsity pattern aggregation.
This improves upon the previous results including the oracle inequalities for the
constrained least squares estimator. One of the improvements is that our oracle
inequalities are sharp, i.e., with leading constant 1. It allows us to obtain bounds
for the minimax regret thus accounting for model misspecification, which was not
possible based on the previous results. Another improvement is that we obtain oracle
inequalities both with high probability and in expectation.

5.1 Introduction
Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (5.1)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a noise vector with
n-dimensional Gaussian distribution N (0, σ2In×n) where σ > 0. We observe y =
(Y1, ..., Yn)T and we want to estimate µ. We can interpret µi as the values f(Xi) of
an unknown regression function f : X → R at given non-random points Xi ∈ X ,
i = 1, . . . , n, where X is an abstract set. Then, the equivalent setting is that we
observe y along with (X1, . . . , Xn) but the values of Xi are of no interest and can be
replaced by their indices if we measure the loss in a discrete norm. Namely, for any
u ∈ Rn we consider the scaled (or the empirical) norm ‖ · ‖ defined by

‖u‖2 = 1
n

n∑
i=1

u2
i .

We will measure the error of an estimator µ̂ of µ by the distance ‖µ̂− µ‖. Let S↑n
be the set of all non-decreasing sequences:

S↑n := {u = (u1, ..., un) ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1}.
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For a subset S of S↑n, and any µ ∈ Rn the quantity minu∈S ‖u− µ‖ is the smallest
approximation error achievable by a sequence in the set S. This quantity defines
a benchmark or oracle performance on S. The accuracy of an estimator µ̂ with
respect to the oracle for any µ, not necessarily µ ∈ S, can be characterized by
the excess loss ‖µ̂ − µ‖ − minu∈S ‖u − µ‖. This is a measure of performance
of µ under model misspecification. One can also consider the expected quantities
R1(µ̂,µ) = E‖µ̂−µ‖−minu∈S ‖u−µ‖ or R2(µ̂,µ) = E‖µ̂−µ‖2−minu∈S ‖u−µ‖2

known under the name of regret measures. Here, E denotes the expectation with
respect to the distribution of y satisfying (5.1). The minimax regret is defined
as minµ̂ maxµ∈Rn Ri(µ̂,µ) for i = 1, 2, where minµ̂ denotes the minimum over all
estimators. We can characterize the performance of an estimator µ̃ by the closeness
of its maximal regret maxµ∈Rn Ri(µ̃,µ) to the minimax regret. This approach to
measure the performance of estimators under model misspecification was pioneered
by Vapnik and Chervonenkis who called it the criterion of minimax of the loss [101,
Chapter 6]. In this paper, we follow this approach and establish non-asymptotic
bounds for the maximal regret for some classes S of monotone and convex functions.

When the model is well-specified, i.e., the true function µ belongs to the class
S, the approximation error vanishes and instead of the minimax regret it is nat-
ural to consider the minimax risk defined either as minµ̂ maxµ∈S E‖µ̂ − µ‖ or as
minµ̂ maxµ∈S E‖µ̂ − µ‖2 (the minimax squared risk). It is easy to see that the
minimax risk is not greater than the minimax regret. A classical problem in nonpara-
metric statistics is to study the behavior of minimax risks for different classes S. In
particular, there exist results concerning the minimax risks for classes of monotone
and convex functions in our setting. We review some of them below. The behavior
of the minimax regret is much less studied. For a recent overview and some general
results we refer to [87] where it is shown that the rate of minimax regret can be
different from that of the minimax risk. Note that [87] studies the prediction problem
with i.i.d. observations, which is a setting different from ours.

A well-studied estimator under the monotonicity and convexity assumptions is
the least squares estimator

µ̂LS(S) ∈ argmin
u∈S

‖y− u‖2.

In [82] it was shown that µ̂LS(S) attains, up to logarithmic factors, the rates n−2/3

and n−4/5 of the mean squared risk for classes S of monotone and convex functions
respectively and that these rates are optimal up to logarithmic factors when the
minimax squared risk is used as a criterion. Under monotonicity constraints, the
rate n−2/3 was later observed in different settings, see for instance [7, 5].

One class of monotone functions we will be interested in here is defined as

S↑n(V ) = {µ ∈ S↑n : V (µ) ≤ V }

where V (µ) = µn − µ1 for any µ = (µ1, . . . , µn) ∈ S↑n, and V > 0 is a given constant.
In [80, 107] it was shown that for any µ ∈ S↑n we have

E‖µ̂− µ‖2 ≤ cmax
(σ2V (µ)

n

)2/3

,
σ2 log n

n

 (5.2)

for µ̂ = µ̂LS(S↑n) and some absolute constant c > 0. This immediately implies an
upper bound on the minimax risk on S↑n(V ). A recent paper [27] establishes the
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oracle inequality

E‖µ̂LS(S↑n)− µ‖2 ≤ C∗ min
u∈S↑n

(
‖µ− u‖2 + c∗σ

2k(u)
n

log en

k(u)

)
(5.3)

valid for all µ ∈ S↑n where either C∗ = 6, c∗ = 1 [27, inequality (18)] or C∗ = 4, c∗ = 4
[27, inequality (30)]. Here, k(u) ≥ 1 for u = (u1, . . . , un) ∈ S↑n is the integer such
that k(u)−1 is the number of inequalities ui ≤ ui+1 that are strict for i = 1, . . . , n−1
(number of jumps of u). Inequality (5.3) implies (up to a logarithmic factor) a bound
as in (5.2) and also gives some more insight into the problem. For example, (5.3)
shows that the fast rate logn

n
is achieved if µ has only one jump or a fixed, independent

of n, number of jumps. This is not granted by (5.2).
Along with the least squares estimator, one may consider estimation of monotone

functions via penalized least squares with total variation penalty. The corresponding
estimator µ̂TV is defined as

µ̂TV ∈ argmin
u∈Rn

(
1
2‖u− y‖2 + λ

n−1∑
i=1
|ui+1 − ui|

)
, (5.4)

where λ > 0 is a tuning parameter. Statistical properties of this estimator were
first studied in [74] where it was shown that ‖µ̂TV − µ‖ attains the optimal rate
n−1/3 in probability on the class of functions of bounded variation (and thus on
S↑n(V )). Recently, the performance of µ̂TV was analyzed in [38] by considering µ̂TV
as a special instance of the Lasso estimator. If µ↑ is the projection of µ onto S↑n,
δ ∈ (0, 1) is a constant, and the tuning parameter λ is given by

λ = σ

√
log(n/δ)
k∗n

where k∗ =
(
V (µ↑)2n log(n/δ)

σ2

)1/3

,

the estimator µ̂TV satisfies with probability greater than 1− 2δ the following oracle
inequality [38, Proposition 6]:

‖µ̂TV − µ‖2 ≤ ‖µ↑ − µ‖2 + 6
σ2V (µ↑)

√
log(n/δ)

n

2/3

(5.5)

+2σ2(1 + 2 log(1/δ))
n

for all µ ∈ Rn. It follows from (5.5) that if the tuning parameter is chosen correctly,
the estimator µ̂TV achieves, up to a logarithmic factor, the minimax rate n−2/3 in
probability on the class S↑n(V ). Also, (5.5) implies a bound for the excess losses
‖µ̂TV−µ‖i−minu∈S↑n(V ) ‖u−µ‖

i, i = 1, 2, corresponding to the class S↑n(V ). However,
(5.5) does not allow us to evaluate the expected regrets Ri(µ̂TV ,µ) since µ̂TV depends
on δ. It is also shown in [38, Proposition 4] that if λ = 2σ

√
(2/n) log(n/δ), the

estimator µ̂TV satisfies

‖µ̂TV − µ‖2 ≤ min
u∈Rn

(
‖u− µ‖2 + 4σ2k(u) log(n/δ)

n
rn(u)

)
(5.6)

with probability greater than 1 − 2δ, where k(u) − 1 for u ∈ Rn is the number
of jumps of u, i.e., the cardinality of the set {i ∈ {1, ..., n − 1} : ui 6= ui+1},
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rn(u) = 3 + 256(log(n) + (n/∆(u))) and ∆(u) is the minimum distance between two
jumps in the sequence u:

∆(u) = min {d ≥ 1 : ∃k ∈ {1, ..., n} with uk+1 6= uk and uk+d+1 6= uk+d} .
The expressions on the right hand sides of (5.3) and (5.6) are small if the unknown

sequence µ is well approximated by a piecewise constant sequence with not too
many pieces. In this regard, the two bounds have some similarity to sparsity oracle
inequalities in high-dimensional linear regression, cf. [91, 93, 97]. This similarity can
be easily explained as follows. Write (5.1) in the equivalent form

y = Xβ∗ + ξ,
with the matrix X = (Xij)i=1,...,n, j=1,...,n where Xij = 1 if j ≤ i and Xij = 0 otherwise,
and β∗ = (β∗1 , . . . , β∗n) where β∗1 = µ1 and β∗i = µi − µi−1 for i = 2, . . . , n. With
this notation, k(µ) ∈ {|β∗|0, 1 + |β∗|0}, where |β∗|0 denotes the number of non-zero
components of β∗. The value k(µ) is small when β∗ is sparse. Thus, the problem
of estimation of piecewise constant sequence µ with small number of pieces can be
considered as the problem of prediction in sparse linear regression with a specific
design matrix X. Similarly, we may write u = Xβ, for β with components β1 = u1
and βi = ui − ui−1 for i = 2, . . . , n. These remarks suggest that we can apply the
theory of sparsity oracle inequalities, in particular, sparsity pattern aggregation
(cf. [91, 93, 97]) in the context of monotone estimation described above. Similar
observation is valid for estimation under convexity constraints (see Section 5.3 below).
In the present paper, we develop this argument using as a building block the Q-
aggregation procedures [90, 32, 33, 11]. In particular, we construct an estimator µ̂
such that

E‖µ̂− µ‖2 ≤ min
u∈S↑n

(
‖µ− u‖2 + cσ2k(u)

n
log en

k(u)

)
, ∀ µ ∈ Rn, (5.7)

for some absolute constant c > 0. Note that (5.7) is a sharp oracle inequality (i.e.,
an inequality with leading constant 1). It improves upon the oracle inequality (5.3)
for the least squares estimator where the leading constant C∗ is noticeably greater
than 1 and the bound is valid only for µ ∈ S↑n. The advantage of having leading
constant 1 and arbitrary µ in (5.7) is that it allows us to derive bounds on the
excess risk and on the minimax regret, which was not possible based on the previous
results. We also obtain sharp oracle inequalities with high probability for the same
estimator. In addition, we show that it satisfies stronger sharp inequalities with the
minimum minu∈S↑n on the right hand side of (5.7) replaced by minu∈Rn . This implies
that our results are invariant to the direction of monotonicity; they remain valid
if we replace everywhere monotone increasing by monotone decreasing functions.
Finally, we derive similar results for the problem of estimation under the convexity
constraints improving an oracle inequality obtained in [50].

5.2 Sparsity pattern aggregation for piecewise con-
stant sequences

For any non-empty set J ⊆ {1, ..., n − 1}, let |J | denote the cardinality of J and
define

πJ := exp(−|J |)
H
(
n−1
|J |

) , H :=
n−1∑
i=0

exp(−i). (5.8)
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Let PJ ∈ Rn×n be the projector on the linear subspace VJ of Rn defined by

VJ :=
{
u ∈ Rn : ∀i ∈ {1, ..., n− 1} \ J, ui+1 = ui

}
.

In words, VJ is the space of all piecewise constant sequences that have jumps only
at points in J . Given a vector y of observations and θ = (θJ)J⊆{1,...,n−1} where each
θJ ∈ R, let

µθ =
∑

J⊆{1,...,n−1}
θJPJy.

Finally, let
µ̂Q = µθ̂

where θ̂ is the solution of the optimization problem

min
θ∈Λ

‖µθ − y‖2 +
∑

J⊆{1,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2‖µθ − PJy‖2 + 46σ2

n
log 1

πJ

)

where

Λ =
θ : θJ ≥ 0 for all J ⊆ {1, ..., n− 1}, and

∑
J⊆{1,...,n−1}

θJ = 1
 .

This optimization problem is a convex quadratic program with a simplex con-
straint. It performs aggregation of the linear estimators (PJy)J⊆{1,...,n−1} using the
Q-aggregation procedure [32, 33, 11] with the prior weights (5.8). As the size of
this quadratic program is of order 2n, it is a computationally hard problem. The
estimator µ̂Q satisfies the following sharp oracle inequalities.

Theorem 5.1. Let µ ∈ Rn, n ≥ 2, and assume that the noise vector ξ has dis-
tribution N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all
δ ∈ (0, 1/3), the estimator µ̂Q satisfies with probability at least 1− 3δ,

‖µ̂Q − µ‖2 ≤ min
u∈Rn

(
‖µ− u‖2 + cσ2k(u))

n
log en

k(u)

)
+ cσ2 log(1/δ)

n
, (5.9)

and
E‖µ̂Q − µ‖2 ≤ min

u∈Rn

(
‖µ− u‖2 + c′σ2k(u)

n
log en

k(u)

)
. (5.10)

Proof. Let J ⊆ {1, ..., n− 1}. Denote by d = |J |+ 1 the dimension of the subspace
VJ . Then, the projection estimator PJy satisfies with probability at least 1− δ (see,
for example, [55]):

‖PJy− µ‖2 ≤ ‖PJµ− µ‖2 +
d+ 2

√
d log(1/δ) + 2 log(1/δ)

n

≤ min
u∈VJ
‖u− µ‖2 + 2(|J |+ 1) + 3 log(1/δ)

n
. (5.11)

The sharp oracle inequality from [11] yields that with probability at least 1− 2δ for
all J ⊆ {1, ..., n− 1} we have

‖µ̂Q − µ‖2 ≤ ‖PJy− µ‖2 + Cσ2 log 1
πJ

+ Cσ2 log(1/δ), (5.12)
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for some absolute constant C > 0. Combining (5.11) and (5.12) with the union bound
and the inequality (cf. [93, (5.4)]) log(1/πJ) ≤ 2(|J |+ 1) log(en/(|J |+ 1)) + 1/2, we
find that with probability at least 1− 3δ,

‖µ̂Q − µ‖2 ≤ min
J⊆{1,...,n−1}

min
u∈VJ

(
‖µ− u‖2 + cσ2(|J |+ 1)

n
log

(
en

|J |+ 1

))
+ cσ2 log(1/δ)

where c > 0 is an absolute constant. Since |J | + 1 = k(u) for all u ∈ VJ and
minJ⊆{1,...,n−1}minu∈VJ = minu∈Rn , the bound (5.9) follows. Finally, (5.10) is ob-
tained from (5.9) by integration.

We now discuss some corollaries of Theorem 5.1. First, it follows that (5.7) is
satisfied for µ̂ = µ̂Q, so the remarks after (5.7) apply. Next, in view of (5.10), for
the class of monotone sequences with at most k jumps S↑n(k) = {u ∈ S↑n : k(u) ≤ k}
we have the following bounds for the maximal expected regrets

max
µ∈Rn

(
E‖µ̂Q − µ‖ − min

u∈S↑n(k)
‖u− µ‖

)
≤ c

√
σ2k

n
log

(
en

k

)
, (5.13)

max
µ∈Rn

(
E‖µ̂Q − µ‖2 − min

u∈S↑n(k)
‖u− µ‖2

)
≤ cσ2k

n
log

(
en

k

)
, (5.14)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks
over S↑n(k) since the minimax risk is smaller than the minimax regret. Proposition 5.4
below shows that the bounds (5.13) and (5.14) are optimal up to logarithmic factors.

Finally, consider the consequences of Theorem 5.1 for the class S↑n(V ). To this
end, define the integer k∗ such that

k∗ = min
m ∈ N : m ≥

(
V (µ)2n

σ2 log(en)

)1/3


if the set
{
m ∈ N : m ≥

(
V (µ)2n
σ2 log(en)

)1/3}
is non-empty, and k∗ = 1 otherwise. We will

need the following lemma.

Lemma 5.2. Let µ ∈ S↑n and let 1 ≤ k ≤ n be an integer. Then there exists a
sequence ū ∈ S↑n(k) such that

‖ū− µ‖ ≤ V (µ)
2k . (5.15)

Next, there exists a sequence ū ∈ S↑nk∗ such that

‖ū− µ‖2 ≤ 1
4 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (5.16)

In addition,

σ2k∗

n
log en

k∗
≤ 2 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (5.17)
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Proof. To construct the sequence ū, consider the k intervals

Ij =
[
µ1 + j − 1

k
V (µ), µ1 + j

k
V (µ)

)
, j = 1, ..., k − 1,

and Ik = [µ1 + k−1
k
V (µ), µn]. For all j = 1, ..., k, let

Jj = {i = 1, ..., n : µi ∈ Ij}.

For any i ∈ {1, ..., n} there exists a unique j ∈ {1, ..., k} such that i ∈ Ij. Let
ūi = µ1 + j−1/2

k
V (µ) for all i ∈ Ij. Then the sequence ū = (ū1, . . . , ūn) is non-

decreasing, it has at most k pieces, i.e., k(ū) ≤ k, and |ūi−µi| ≤ V (µ)
2k for i = 1, ..., n.

Thus (5.15) follows. Next, note that if k∗ = 1, then V (µ)2 ≤ σ2 log(en)/n. If
k∗ > 1, then by definition of k∗, V (µ)2/(k∗)2 ≤ (σ2V (µ) log(en)/n)2/3. Thus, (5.16)
follows. The bound (5.17) is straightforward by studying the cases k∗ = 1 and k∗ > 1
separately.

We can now derive the following corollary of Theorem 5.1.

Corollary 5.3. Under the assumptions of Theorem 5.1, there exists an absolute
constant c > 0 such that, for any µ ∈ S↑n,

E‖µ̂Q − µ‖2 ≤ c max
(σ2V (µ) log n

n

)2/3

,
σ2 log n

n

 . (5.18)

In addition, for any V > 0 and any µ ∈ Rn the expected regret of µ̂Q satisfies

E‖µ̂Q − µ‖ − min
u∈S↑n(V )

‖u− µ‖ ≤ c max
(σ2V log n

n

)1/3

, σ

√
log n
n

 (5.19)

where c > 0 is an absolute constant.

Proof. Inequality (5.18) is straightforward in view of (5.10), (5.16), and (5.17). To
prove (5.19), fix any µ ∈ Rn and consider

µ∗ ∈ argmin
µ′∈S↑n(V )

‖µ′ − µ‖.

From (5.10) and the fact that the function x 7→ x log
(
en
x

)
is increasing for 1 ≤ x ≤ n

we get

E‖µ̂Q − µ‖ ≤ min
u∈S↑nk∗

‖u− µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)
≤ min

u∈S↑nk∗
‖u− µ∗‖+ ‖µ∗ − µ‖+

√
c′
σ2k∗

n
log

(
en

k∗

)

≤ ‖µ∗ − µ‖+ c′′ max
(σ2V log n

n

)1/3

, σ

√
log n
n


for an absolute constant c′′ > 0 where the last inequality follows from (5.16) and
(5.17).
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The estimator µ̂Q shown in Theorem 5.1 satisfies the sharp oracle inequalities
both in expectation and with high probability. Previous results for the least squares
estimator [27] were only obtained in expectation and the results on the `1-penalized
estimator (5.4) are only obtained with high probability.

Finally, the following result shows that the upper bounds (5.13) and (5.14) are
optimal up to logarithmic factors.

Proposition 5.4. Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants
c, c′ > 0 such that for any positive integer k ≤ n satisfying k3 ≤ 16nV 2/σ2 we have

inf
µ̂

sup
µ∈S↑n(k)∩S↑n(V )

Pµ
(
‖µ̂− µ‖2 ≥ cσ2k

n

)
> c′,

where Pµ denotes the distribution of y satisfying (5.1) and infµ̂ is the infimum over
all estimators.

For k = 1, ..., n, take any V > 0 large enough to satisfy k3 ≤ 16nV 2/σ2. Then,
Proposition 5.4 and Markov’s inequality yield the following lower bounds on the
minimax risks over the class S↑n(k):

inf
µ̂

sup
µ∈S↑n(k)

E‖µ̂− µ‖ ≥ c

√
c′σ2k

n
, inf

µ̂
sup

µ∈S↑n(k)
E‖µ̂− µ‖2 ≥ cc′σ2k

n
. (5.20)

As the minimax risk is smaller than the minimax regret, (5.20) also provides lower
bounds for the corresponding minimax regrets over S↑n(k). Combining this with
(5.13) and (5.14) we find that the estimator µ̂Q achieves up to logarithmic factors
the optimal rate with respect to the minimax regret.

Next, Proposition 5.4 implies the following lower bound on the minimax deviation
risk on S↑n(V ).

Corollary 5.5. Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants c, c′ > 0
such that

inf
µ̂

sup
µ∈S↑n(V )

Pµ

‖µ̂− µ‖2 ≥ cmax

(
σ2V

n

)2/3

,
σ2

n


 > c′. (5.21)

To prove this corollary it is enough to note that if 16nV 2/σ2 ≥ 1, by choosing k
in Proposition 5.4 as the integer part of (16nV 2/σ2)1/3, we obtain the lower bound
corresponding to

(
σ2V
n

)2/3
under the maximum in (5.21). On the other hand, if

16nV 2/σ2 < 1 the term σ2

n
is dominant, so that we need to have the lower bound of

the order σ2

n
, which is trivial (it follows from a reduction to the bound for the class

composed of two constant functions).
It follows from (5.21) and (5.18) that the estimator µ̂Q achieves, up to logarithmic

factors, the optimal rate with respect to the minimax risk on the class S↑n(V ). Using
(5.19) and the fact that the minimax risk is smaller than the minimax regret, we
conclude that it is also the optimal rate up to logarithmic factors for the minimax
regret.

Proof of Proposition 5.4. We assume for simplicity that n is a multiple of k. The
general case is treated analogously. For any ω,ω′ ∈ {0, 1}k, let dH(ω,ω′) = |{i =
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1, ..., k : ωi 6= ω′i}| be the Hamming distance between ω and ω′. By the Varshamov-
Gilbert bound [99, Lemma 2.9], there exists a set Ω ⊂ {0, 1}k such that

0 = (0, ..., 0) ∈ Ω, log(|Ω| − 1) ≥ k/8, and dH(ω,ω′) > k/8 (5.22)

for any two distinct ω,ω′ ∈ Ω. For each ω ∈ Ω, define a vector uω ∈ Rn with
components

uωi = b(i− 1)k/nc V
2k + γωb(i−1)k/nc+1, i = 1, ..., n,

where γ = (1/8)
√
σ2k/n, and bxc denotes the maximal integer smaller than x. For

any ω ∈ Ω, uω is a piecewise constant sequence with k(uω) ≤ k, uω is a non-
decreasing sequence because γ ≤ V/(2k), and by construction V (uω) ≤ V . Thus,
uω ∈ S↑n(k) ∩ S↑n(V ) for all ω ∈ Ω. Moreover, for any ω,ω′ ∈ Ω,

‖uω − uω′‖2 = γ2

k
dH(ω,ω′) ≥ γ2

8 = σ2k

512n.

Set for brevity Pω = Puω . The Kullback-Leibler divergence K(Pω, Pω′) between Pω
and Pω′ is equal to n

2σ2‖uω − uω
′‖2 for all ω,ω′ ∈ Ω. Thus,

K(Pω, P0) = γ2ndH(0,ω)
2kσ2 ≤ k

128 ≤
log(|Ω| − 1)

16 . (5.23)

Applying [99, Theorem 2.7] with α = 1/16 completes the proof.

5.3 Estimation of convex sequences by aggrega-
tion

Assume that n ≥ 3 and define the set of convex sequences S∪n as follows:

S∪n = {u = (u1, . . . , un) ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1}.

For any u ∈ Rn, we introduce the integer q(u) ≥ 1 such that q(u) − 1 is the
cardinality of the set {i = 1, ..., n − 1 : 2ui 6= ui+1 + ui−1}. If u ∈ S∪n , q(u) − 1 is
the number of inequalities 2ui ≤ ui+1 + ui−1 that are strict for i = 2, ..., n− 1. The
value q(u) is small if u is a piecewise linear sequence with a small number of pieces.

The performance of the least squares estimator over convex sequences µ̂LS(S∪n )
has been recently studied in [50]. If the unknown vector µ belongs to the set S∪n ,
[50] shows that the estimator µ̂LS(S∪n ) satisfies the risk bound

E‖µ̂LS(S∪n )− µ‖2 ≤ c log(en)5/4

σ2
√
R(µ)
n

4/5

,

where R(µ) = max(1,min{‖τ − µ‖2, τ is affine}) and c > 0 is an absolute constant.
It is proved in [27, Example 2.3] that the least squares estimator µ̂LS(S∪n ) satisfies
the oracle inequality

E‖µ̂LS(S∪n )− µ‖2 ≤ 6 min
u∈S∪n

‖u− µ‖2 +
cσ2q(u) log

(
en
q(u)

)5/4

n

 , (5.24)
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where c > 0 is an absolute constant. The right hand side of (5.24) is small if the
unknown vector µ can be well approximated by a piecewise linear sequence in S∪n
with not too many pieces.

The leading constant in (5.24) is 6. We will show that sparsity pattern aggregation
achieves a substantially better performance. We obtain the sharp oracle inequality
(5.27) below, improving upon (5.24) not only in the fact that the leading constant is
1 but also in the rate of the remainder term; we will see that the exponent 5/4 of
the logarithmic factor is reduced to 1.

For any set J ⊆ {2, ..., n− 1}, define

νJ := exp(−|J |)
HC

(
n−2
|J |

) , HC :=
n−2∑
i=0

exp(−i). (5.25)

Let QJ ∈ Rn×n be the projector on the linear subspace WJ of Rn given by

WJ :=
{
u ∈ Rn : ∀i ∈ {2, ..., n− 1} \ J, 2ui = ui+1 + ui−1

}
.

Given a vector y of observations and θ = (θJ)J⊆{2,...,n−1} where each θJ belongs to
R, let

µθ =
∑

J⊆{2,...,n−1}
θJQJy.

Finally, let
µ̂Q−conv = µθ̂

where θ̂ is the solution of the optimization problem

min
θ∈Λ′

‖µθ − y‖2 +
∑

J⊂{2,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2‖µθ −QJy‖2 + 46σ2

n
log 1

νJ

)

where

Λ′ =
θ : θJ ≥ 0 for all J ⊆ {2, ..., n− 1}, and

∑
J⊆{2,...,n−1}

θJ = 1
 .

The structure of this minimization problem is the same as of its analog introduced
in Section 5.2. This is a quadratic program that aggregates the linear estimators
(QJy)J⊆{2,...,n−1} using the Q-aggregation procedure [32, 33, 11] with the prior weights
(5.25).

Theorem 5.6. Let µ ∈ Rn, n ≥ 3, and assume that the noise vector ξ has dis-
tribution N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all
δ ∈ (0, 1/3), the estimator µ̂Q−conv satisfies with probability at least 1− 3δ,

‖µ̂Q−conv − µ‖2 ≤ min
u∈Rn

(
‖µ− u‖2 + cσ2q(u)

n
log en

q(u)

)
+ cσ2 log(1/δ)

n
, (5.26)

and we have

E‖µ̂Q−conv − µ‖2 ≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2q(u)

n
log en

q(u)

)
. (5.27)
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The proof of this theorem is the same as that of Theorem 5.1 with the only
difference that J is now a subset of {2, ..., n− 1} rather than that of {1, ..., n− 1},
and we replace the notation PJ and VJ by QJ and WJ respectively.

The leading constant of the oracle inequality (5.27) is 1, and the remainder
term is proportional to q(u) log(en/q(u)). These are two improvements upon
(5.24), where the leading constant is 6 and the remainder term is proportional
to q(u) log(en/q(u))5/4.

In view of (5.27), for the class of piecewise linear convex sequences with at most
q linear pieces, S∪n (q) = {u ∈ S∪n : q(u) ≤ q} we have the following bounds for the
maximal expected regrets

max
µ∈Rn

(
E‖µ̂Q − µ‖ − min

u∈S∪n (q)
‖u− µ‖

)
≤ c

√√√√σ2q

n
log

(
en

q

)
, (5.28)

max
µ∈Rn

(
E‖µ̂Q − µ‖2 − min

u∈S∪n (q)
‖u− µ‖2

)
≤ cσ2q

n
log

(
en

q

)
, (5.29)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks
over S∪n (q) since the minimax risk is smaller than the minimax regret.

The following proposition shows that the rates of convergence in (5.28) and (5.29)
are optimal up to logarithmic factors. We omit the discussion since it is similar to
that after Proposition 5.4.
Proposition 5.7. Let n ≥ 3. There exist absolute constants c, c′ > 0 such that, for
any positive integer q ≤ n,

inf
µ̂

sup
µ∈S∪n (q)

Pµ
(
‖µ̂− µ‖2 ≥ cσ2q

n

)
> c′,

where the infimum is taken over all estimators.

Proof. Assume that q ≥ 2 since for q = 1 the result is trivial. We also assume
for simplicity that n is a multiple of q. Let m = n/q and γ = (1/8)

√
σ2q/n. Set

β0 = 0, α0 = 0 and define, for all integers j ≥ 1,

βj = βj−1 + γ +mαj−1, αj = 2γ + αj−1. (5.30)

By the Varshamov-Gilbert bound [99, Lemma 2.9] there exists Ω ⊂ {0, 1}q such that
(5.22) is satisfied, with k replaced by q. For each ω ∈ Ω, define a vector uω ∈ Rn

with components

uωjm+i = ωj+1γ + αj(i− 1) + βj, j = 0, ..., q − 1, i = 1, ...,m.

The sequence uω is piecewise linear. It is linear with slope αj on the set {jm +
1, ..., (j+1)m} for any j = 0, ..., q−1. Thus, q(uω) = q. Next, we prove that uω ∈ S∪n
for all ω ∈ Ω. It is enough to check the convexity condition at the endpoints of the
linear pieces:

2uωjm ≤ uωjm−1 + uωjm+1, 2uωjm+1 ≤ uωjm + uωjm+2, (5.31)

for all j = 1, ..., q − 1. Using (5.30) we get that, for all j = 1, ..., q − 1,

uωjm+1 − uωjm = ωj+1γ + βj − (ωjγ + αj−1(m− 1) + βj−1),
= (ωj+1 − ωj + 1)γ + αj−1,

= (ωj+1 − ωj − 1)γ + αj.
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Hence, αj−1 ≤ uωjm+1 − uωjm ≤ αj. Since also αj−1 = uωjm − uωjm−1 and αj =
uωjm+2 − uωjm+1, it follows that the two inequalities (5.31) hold, for all j = 1, ..., q − 1.
Thus, uω ∈ S∪n . In summary, we have proved that uω ∈ S∪n (q) for all ω ∈ Ω.

Now, from the Varshamov-Gilbert bound, cf. (5.22), for ω,ω′ ∈ Ω we have

‖uω − uω′‖2 = γ2

q
dH(ω,ω′) ≥ γ2

8 = σ2q

512n,

where dH(·, ·) is the Hamming distance. Finally, similarly to (5.23), the Kullback-
Leibler divergence between Pω and P0 satisfies K(Pω, P0) ≤ log(|Ω|−1)

16 . Applying [99,
Theorem 2.7] with α = 1/16 completes the proof.

5.4 Concluding remarks and discussion
In this short note, we have shown that the estimators µ̂Q and µ̂Q−conv based on
sparsity pattern aggregation (in its Q-aggregation version) achieve oracle inequalities
that improve on some previous results for isotonic and convex regression.

One of the improvements is that oracle inequalities (5.10) and (5.27) are sharp,
i.e., with leading constant 1 and they are valid for all µ ∈ Rn. It allows us to obtain
bounds for the minimax regret under arbitrary model misspecification, which was not
possible based on the previous results. We show that these bounds are rate optimal
up to logarithmic factors. The question on whether the least squares estimators
under monotonicity and convexity constraints can achieve sharp oracle inequalities
with correct rates remains open.

Another improvement is that we obtain oracle inequalities both with high proba-
bility and in expectation, which was not the case in the previous work.

An advantage of the least squares estimator is that it requires no tuning parame-
ters. In particular, the knowledge of σ2 is not needed to construct the estimators
µ̂LS(S↑n) and µ̂LS(S∪n ). This is in contrast to the `1 penalized estimator (5.4) and the
estimators µ̂Q and µ̂Q−conv; their construction requires the knowledge of σ2. For the
`1 penalized estimator (5.4), the issue may be addressed by using a scale-free version
of the Lasso [16, 95]. For the Q-aggregation estimators µ̂Q and µ̂Q−conv, we can
treat the issue of unknown σ as in [11]. Namely, it is shown in [11] that the oracle
inequalities for Q-aggregation procedures are essentially preserved after plugging in
an estimator σ̂2 of σ2 that satisfies |σ̂2/σ2 − 1| ≤ 1/8 with high probability, which is
even weaker than consistency.

Finally, note that instead of Q-aggregation we could have used sparsity pattern
aggregation by the Exponential Screening procedure of [91]. This would lead to sharp
oracle inequalities in expectation of the form (5.10) and (5.27) but not to inequalities
with high probability such as (5.9) and (5.26). This is the reason why we have opted
for Q-aggregation rather than for Exponential Screening in this paper. On the other
hand, Exponential Screening estimators are computationally more attractive than
Q-aggregation since they can be successfully approximated by MCMC algorithms
(see [91, 93] for details).
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Part III

Shape restricted regression
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Chapter 6

Sharp oracle inequalities for Least
Squares estimators in shape
restricted regression

The performance of Least Squares estimators is studied in shape restricted regression
for convex cones that include nondecreasing sequences, convex sequences and higher
order cones. We derive sharp oracle inequalities for the Least Squares estimator,
i.e., oracle inequalities with leading constant 1. Two types of oracle inequalities are
derived. The inequalities of the first type are adaptive in the sense that the rate
becomes parametric if the true sequence can be well approximated by a sequence that
satisfies some low-dimensionality property. The inequalities of the second type yield
a rate that corresponds to the nonparametric rate of smoothness classes under a
localized Gaussian width assumption. The oracle inequalities hold in deviation with
exponential probability bounds and in expectation. To obtain our results, we improve
the best known bounds on the statistical dimension of the cone of convex sequences,
and we derive upper bounds on the statistical dimension of higher order cones. Then
we construct an estimator that aggregates two projections on opposite convex cones.
In isotonic regression, the estimator adapts to the best direction of monotonicity.
In convex regression, the estimator mimics the best behavior among concavity and
convexity. Our estimators are fully data-driven and computationally tractable.

6.1 Introduction
Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (6.1)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a noise vector with
n-dimensional Gaussian distribution N (0, σ2In×n) where σ > 0 and In×n is the n×n
identity matrix. Denote by Eµ the expectation with respect to the distribution of
the random variable y = µ + ξ. The vector y = (Y1, ..., Yn)T is observed and the
goal is to estimate µ. The estimation error is measured with the scaled norm ‖ · ‖
defined by

‖u‖2 = 1
n

n∑
i=1

u2
i , u = (u1, ..., un)T ∈ Rn.
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The error of an estimator µ̂ of µ is given by ‖µ̂− µ‖2. Let also | · |22 be the squared
Euclidean norm, so that 1

n
| · |22 = ‖ · ‖2.

Let E be a subset of Rn. If the unknown regression vector µ lies in E, we say
that the model is well-specified. If µ ∈ E, an estimator µ̂ enjoys good performance
if the squared error

‖µ̂− µ‖2 (6.2)
is small, either in expectation or with high probability. If µ /∈ E, we say that the
model is misspecified. In that case, the quantity of interest to assess the performance
of an estimator µ̂ with respect to the set E is the regret

‖µ̂− µ‖2 −min
u∈E
‖u− µ‖2. (6.3)

The Least Squares estimator over a closed convex set K is defined by

µ̂ls(K) ∈ argmin
u∈K

‖y− u‖2.

If V is a linear subspace of Rn of dimension dV , then µ̂ls(V ) is the orthogonal
projection of y onto V and the Pythagorean theorem yields

∀µ ∈ Rn, Eµ‖µ̂ls(V )− µ‖2 = min
u∈V
‖u− µ‖2 + σ2dV

n
. (6.4)

In this paper, we are interested in the performance of the estimator µ̂ls(K) when K
is closed and convex and we propose generalizations of (6.4).

If K is a closed convex set, there are general methods to bound (6.2) from above
if µ ∈ K and µ̂ = µ̂ls(K). For example, the analysis of [29] ensures that (6.2) is
bounded from above by tσ,n(K)2/n with high probability if

Eµ sup
u∈K: |u−µ|2≤tσ,n(K)

ξT (u− µ) ≤ tσ,n(K)2

2 , (6.5)

where tσ,n(K) is a constant that may depend on σ, n and K. The left hand side of
(6.5) is sometimes called the localized Gaussian width of K. However, if µ /∈ K, to
our knowledge there is no general method to control the regret (6.3) with E = K
using conditions similar to (6.5) on the localized Gaussian width. One of the goals
of the present paper is to fill this gap. Theorem 6.12 allows us to derive inequalities
of the form

‖µ̂ls(K)− µ‖2 ≤ min
u∈K
‖u− µ‖2 + ctσ,n(K)2

n
, (6.6)

in expectation and with high probability for some absolute constant c > 0, as soon as

Eµ sup
u∈K: |u−ΠK(µ)|2≤tσ,n(K)

ξT (u− ΠK(µ)) ≤ tσ,n(K)2

2

is satisfied, where ΠK(µ) is the projection of µ onto K. The inequality (6.6) is a
sharp oracle inequality, i.e., an oracle inequality with leading constant 1, which yields
an upper bound on the regret (6.3) with E replaced by K. This is opposed to other
oracle inequalities of the form

Eµ‖µ̂− µ‖2 ≤ C min
u∈K
‖u− µ‖2 + tσ,n(K)2

n
, (6.7)
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where the leading constant C is strictly greater than 1. The right hand sides of (6.6)
and (6.7) are minimized if u is the projection of µ onto K, i.e., minu∈K ‖u− µ‖2 =
‖ΠK(µ)− µ‖2 where ΠK : Rn → K is the projection onto K.

If K is a closed convex cone, we will show that the estimator µ̂ = µ̂ls(K) satisfies
oracle inequalities of the form

Eµ‖µ̂− µ‖2 ≤ C min
u∈K

(
‖u− µ‖2 + rσ,n(u)

)
, (6.8)

where C ≥ 1 and the remainder term rσ,n(u) depends on u, unlike (6.7) where
the remainder term depends on K but not on u. The right hand side of (6.8) is
minimized by a vector u ∈ K that makes a trade-off between the approximation
error ‖u−µ‖2 and the quantity rσ,n(u). Bounds such as (6.8) will be called adaptive
oracle inequalities. Such trade-off is common in the context of sparse linear regression,
where the right hand side of sparsity oracle inequalities balances approximation error
and sparsity [17, 61, 92]. This is opposed to the oracle inequality (6.7) where there
is no trade-off, the right hand side of (6.7) is always minimized for u = ΠK(µ) which
achieves the smallest approximation error.

6.1.1 Preliminary properties of closed convex sets
We recall here several properties of convex sets that will be used in the paper. Given
a closed convex set K ⊂ Rn, denote by ΠK : Rn → K the projection onto K. For all
y ∈ Rn, ΠK(y) is the unique vector in K such that

(u− ΠK(y))T (y− ΠK(y)) ≤ 0, u ∈ K. (6.9)

Inequality (6.9) can be rewritten as follows

‖ΠK(y)− y‖2 + ‖u− ΠK(y)‖2 ≤ ‖u− y‖2, y ∈ Rn,u ∈ K, (6.10)

which is a consequence of the cosine theorem. The Least Squares estimator over K is
exactly the projection of y onto K, i.e., µ̂ls(K) = ΠK(y). In this case, (6.10) yields
that for all u ∈ K,

‖µ̂ls(K)− y‖2 ≤ ‖u− y‖2 − ‖u− µ̂ls(K)‖2. (6.11)

Inequality (6.11) can be interpreted in terms of strong convexity: the Least Squares
estimator µ̂ls(K) solves an optimization problem where the function to minimize is
strongly convex with respect to the norm ‖ · ‖. Strong convexity grants inequality
(6.11), which is stronger than the inequality

‖µ̂ls(K)− y‖2 ≤ ‖u− y‖2, u ∈ K.

Now, assume that K is a closed convex cone. For all y ∈ Rn, ΠK(y) is the unique
vector in K that satisfies

ΠK(y)Ty = |ΠK(y)|22 and ∀θ ∈ K, θTy ≤ θTΠK(y). (6.12)

The lineality space of the closed convex cone K is the linear space

Lin(K) = {u ∈ K : −u ∈ K}.
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It is the maximal linear subspace contained in K. Not all cones admit a lineality
space different than {0}, for instance Lin(Rn+) = {0} where Rn+ is the nonnegative
orthant. For any v ∈ Rn we have

|ΠK(v)|22 = vTΠK(v) =
(

sup
θ∈K:|θ|2≤1

vTθ

)2

, (6.13)

cf. [1, Proposition 3.1 and Appendix B.4]. Define

δ(K) := E
[
|ΠK(g)|22

]
= E

[
gTΠK(g)

]
= E

( sup
θ∈K:|θ|2≤1

gTθ

)2
 , (6.14)

where g ∼ N (0, In×n). We will refer to the quantity δ(K) as the statistical dimension
of the cone K. We refer the reader to [1] for properties and equivalent definitions of
δ(·). The statistical dimension appears in several results of the present paper. The
following proposition is a first generalization of (6.4).

Proposition 6.1. Let µ ∈ Rn and K be a closed convex subset of Rn. Define the
cone TK,ΠK(µ) = {t(v − ΠK(µ)) : t ≥ 0,v ∈ K}. Then

Eµ‖µ̂ls(K)− µ‖2 ≤ min
u∈K
‖u− µ‖2 + σ2

n
δ
(
TK,ΠK(µ)

)
. (6.15)

Proof. Let u = ΠK(µ) and µ̂ = µ̂ls(K). Then (6.11) yields

‖µ̂− µ‖2 − ‖u− µ‖2 ≤ (2/n)ξT (µ̂− u)− ‖µ̂− u‖2. (6.16)

Using the simple inequality 2ab− b2 ≤ a2 and taking the supremum, we obtain

‖µ̂− µ‖2 − ‖u− µ‖2 ≤ 1
n

(
sup

v∈K,v 6=u

ξT (v − u)
|v − u|2

)2

.

Combining the expectation of the previous display and (6.14) completes the proof.

In the well-specified case, a similar upper bound was derived in [84, Theorem 3.1].
Oymak and Hassibi [84] also proved a worst-case lower bound that matches the upper
bound. If K ⊂ V where V is a subspace of dimension dV , then by monotonicity of
the statistical dimension (cf. [1, Proposition 3.1]) δ(TK,ΠK(µ)) ≤ δ(V ) = dV . In this
case, (6.15) shows that the constant 4 in [96, Proposition 3.1] can be reduced to 1.

6.1.2 Contributions and organisation of the paper
Section 6.2 presents several examples of closed convex cones and a review of the
literature on the performance of the Least Squares estimator over these cones. The
contributions of the present paper are the following.

First, we present in Proposition 6.3 a link between the performance of the Least
Squares estimator over a closed convex cone and the statistical dimensions of certain
cones. Section 6.3 allows us to derive several oracle inequalities of the form (6.8),
where C = 1 and µ̂ is the Least Squares estimator over a closed convex cone. These
oracle inequalities are given in Theorems 6.2, 6.6, 6.8 and 6.10.

Second, we develop a new argument to bound from above the statistical dimension
of the cones defined in Example 6.2 and Example 6.3 below. The result is given
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in Theorem 6.5 and Theorem 6.7. For the cones of convex sequences, this is a
substantial improvement upon (6.29).

Third, Section 6.4 provides a general technique to obtain sharp oracle inequalities
similar to (6.6). Theorem 6.12 describes this result. In Theorem 6.12, we also explain
why this result is of a different nature than the recent analysis of [29].

Finally, Section 6.5 deals with the problem of adaptation to the direction of
monotonicity. Consider the mean estimation problem (6.1) under monotonicity
constraint, either nondecreasing or non-increasing. We could not find in the literature
a data-driven procedure that automatically mimics the best estimator among the two
Least Squares estimators {µ̂ls(S↑n), µ̂ls(S↓n)}, where S↓n = −S↑n is the cone of non-
increasing sequences. The same question arises in the context of univariate convex
regression: it is possible to mimic the best estimator among {µ̂ls(S∪n ), µ̂ls(−S∪n )}?
The procedure presented in Section 6.5 gives a positive answer. In particular, we
show that it is possible to aggregate two Least Squares estimators on two opposite
cones.

Section 6.7 is devoted to the proofs.

6.2 Examples of closed convex cones
We give below several examples of sets K that will be studied in the paper. For all
q ≥ 2, denote by Dq the following matrix with q − 1 rows and q columns

Dq :=


−1 1 0 . . . . . . 0
0 −1 1 . . . . . . 0
... ... . . . . . . . . . ...
0 . . . . . . 0 −1 1

 . (6.17)

For all q ≥ 2, denote by ≤ and ≥ the component-wise comparison operators in Rq,
i.e.,

(u1, ..., uq)T ≤ (v1, ..., vq)T if and only if ∀i = 1, ..., q, ui ≤ vi.

Example 6.1 (Nondecreasing sequences). Let S↑n be the set of all nondecreasing
sequences, defined by

S↑n := {u = (u1, ..., un)T ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1},
:= {u = (u1, ..., un)T ∈ Rn : Dnu ≥ 0 = (0, ..., 0)T},

where Dn is the matrix (6.17). Define the matrix X = (Xij)i=1,...,n, j=1,...,n by

Xij = 1 if j ≤ i and Xij = 0 otherwise. (6.18)

Then

S↑n =
{
Xθ, θ = (θ1, ..., θn)T ∈ Rn : θk ≥ 0 for all k ≥ 2

}
. (6.19)

The set S↑n is a closed convex cone. An exact formula is available for the statistical
dimension of S↑n. Namely, it is proved in [1, (D.12)] that

δ(S↑n) =
n∑
k=1

1
k
. (6.20)
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For u = (u1, . . . , un)T ∈ S↑n, let k(u) ≥ 1 be the integer such that k(u) − 1 is the
number of inequalities ui ≤ ui+1 that are strict for i = 1, . . . , n− 1 (the number of
jumps of u). If u = Xθ with θ as in (6.19), then k(u) is also the number of strictly
positive entries among θ2, ..., θn. The cone S↑n is endowed with the the lineality space

Lin(S↑n) = {(b, ..., b)T , b ∈ R} = {u ∈ S↑n : k(u) = 1},

which is the subspace of constant sequences. Previous results on the performance
of the Least Squares estimator µ̂ls(S↑n) can be found in [80, 107, 27, 29], where
risk bounds or oracle inequalities with leading constant strictly greater than 1 are
derived. Two types of risk bounds or oracle inequalities have been obtained so far. If,
µ = (µ1, ..., µn)T ∈ S↑n, it is known [80, 107, 27, 29] that for some absolute constant
c > 0,

Eµ‖µ̂ls(S↑n)− µ‖2 ≤ cσ2 log(en)
n

+ c

(
(µn − µ1)σ2

n

)2/3

. (6.21)

If µ ∈ S↑n, the following oracle inequality was proved in [27]:

Eµ‖µ̂ls(S↑n)− µ‖2 ≤ 6 min
u∈S↑n

(
‖u− µ‖2 + σ2k(u)

n
log en

k(u)

)
. (6.22)

The assumption µ ∈ S↑n is rather restrictive as it does not allow for any model
misspecification. We will see below that this assumption can be dropped. If D >
0 is a fixed parameter and log(en)3σ2 ≤ nD2, the bound (6.21) yields the rate
(Dσ2)2/3n−2/3 for the risk of µ̂ls(S↑n). By the lower bound [14, Corollary 5], this rate
is minimax optimal over the class {µ ∈ S↑n : µn − µ1 ≤ D} if log(en)3σ2 ≤ nD2.
The bound (6.22) yields the rate n−2/3 up to logarithmic factors, thanks to the
approximation argument given in [14, Lemma 2]. The oracle inequality (6.22) also
yields a parametric rate (up to logarithmic factors) if µ is well approximated by a
piecewise constant sequence with not too many pieces.

Example 6.2 (Convex sequences). If n ≥ 3, define the set of convex sequences S∪n
by

S∪n := {u = (u1, . . . , un)T ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1},
:= {u = (u1, . . . , un)T ∈ Rn : Dn−1Dnu ≥ 0 = (0, ..., 0)T},

where Dn−1 and Dn are the rectangular matrices defined in (6.17). If X is the matrix
defined in (6.18), then

S∪n =
{
X2θ, θ = (θ1, ..., θn)T ∈ Rn : θk ≥ 0 for all k ≥ 3

}
. (6.23)

If x1 < ... < xn are equispaced design points in R, i.e., xi = (i − 1)(x2 − x1) + x1,
i = 2, ..., n, then

S∪n = {u ∈ Rn,u = (f(x1), ..., f(xn))T for some convex function f : R→ R}.

If x1 < ... < xn are non-equispaced design points in R, define the cone

KCx1,...,xn
:= {u ∈ Rn,u = (f(x1), ..., f(xn))T for some convex function f : R→ R},
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which can be rewritten as

KCx1,...,xn
:= {u = (u1, ..., un)T ∈ Rn : ui − ui−1

xi − xi−1
≤ ui+1 − ui
xi+1 − xi

, i = 2, ..., n− 1}.

(6.24)

For any u = (u1, ..., un)T ∈ KCx1,...,xn , we say that u is piecewise affine with k pieces
if there exist real numbers a1, ..., ak and a partition (T1, ..., Tk) of {1, .., n} such that

ui = aj(xi − xl) + ul, i, l ∈ Tj, j = 1, ..., k. (6.25)

If u = (f(x1), ..., f(xn))T for some convex function f : R→ R and f is a piecewise
affine function with k pieces, then u is piecewise affine with k pieces. For any
u ∈ KCx1,...,xn , let q(u) ≥ 1 be the smallest integer such that u is piecewise affine with
q(u) pieces. The quantity q(u) ≥ 1 satisfies

q(u)− 1 ≤
∣∣∣∣∣
{
i = 2, ..., n− 1 : ui − ui−1

xi − xi−1
<
ui+1 − ui
xi+1 − xi

}∣∣∣∣∣ .
If u ∈ S∪n and u = X2θ with θ ≥ 0 as in (6.23), then q(u)− 1 ≤ |{i = 3, ..., n : θi >
0}|. The cone KCx1,...,xn is endowed with the lineality space

Lin(KCx1,...,xn) = {(ax1 + b, ..., axn + b)T , a, b ∈ R} = {u ∈ KCx1,...,xn : q(u) = 1},

which is the subspace of all affine sequences. The performance of the Least Squares
estimator over convex sequences has been recently studied in [50, 27], where it was
proved that if µ ∈ KCx1,...,xn , the estimator µ̂ = µ̂ls(S∪n ) satisfies

Eµ‖µ̂− µ‖2 ≤ C

min
u∈S∪n

‖u− µ‖2 + σ2q(u)
n

(
log en

q(u)

)5/4
 . (6.26)

If µ ∈ KCx1,...,xn and nR2
µ ≥ log(en)5/4σ2 where Rµ is defined in Corollary 6.14 below,

then the estimator µ̂ = µ̂ls(S∪n ) satisfies

Eµ‖µ̂− µ‖2 ≤ C


√
Rµσ

2

n

4/5

log(en), (6.27)

where C > 0 is a constant that depends only on the ratio

maxi=2,...,n(xi − xi−1)
mini=2,...,n(xi − xi−1) . (6.28)

The bound (6.26) yields an almost parametric rate if µ can be well approximated by
a piecewise affine sequence with not too many pieces. If R̄ > 0 is a fixed parameter
and nR̄2 ≥ log(en)5/4σ2, the bound (6.27) yields the rate (R̄2σ8)1/5n−4/5, which is
minimax optimal up to logarithmic factors [50]. We will see that the assumption
µ ∈ KCx1,...,xn can be dropped and that the bounds above can be improved by deriving
the corresponding sharp oracle inequalities (cf. (6.43) and (6.61)). It is not known
whether (6.27) or (6.26) holds for some absolute constant C > 0 independent of the
design points. We will prove in Theorem 6.6 below a more general version of (6.26)
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that holds for any design points x1 < ... < xn. The following upper bound on the
statistical dimension of the cone KCx1,...,xn is derived in [50]:

δ(KCx1,...,xn) ≤ c(log(en))5/4, (6.29)

for some constant c > 0 that depends on the ratio (6.28). A tighter bound will be
derived in Theorem 6.5.

Example 6.3 (β-constrained sequences). For any positive integer β < n, consider
the weights vector ω[β] = (ω[β]

0 , ..., ω
[β]
β )T ∈ Rβ+1 defined by

ω
[β]
k = (−1)β−k

(
β

k

)
, k = 0, ..., β. (6.30)

Define the cone

S [β]
n := {u = (u1, . . . , un)T ∈ Rn : (ω[β])T (ui, ui+1, ..., ui+β)T ≥ 0, i = 1, . . . , n− β},

:= {u = (u1, . . . , un)T ∈ Rn : Dn−β+1Dn−β+2...Dnu ≥ 0 = (0, ..., 0)T},

where Dn−β+1, ..., Dn are the matrices defined in (6.17). In particular, we have ω[1] =
(−1, 1)T and S [1] = S↑n is the cone of nondecreasing sequences, ω[2] = (1,−2, 1)T and
S [2] = S∪n is the cone of convex sequences. The notation β has been chosen to highlight
the similarity between the cones S [β]

n and β-smoothness classes in nonparametric
statistics. In univariate regression for instance, the minimax rate of estimation under
the loss (6.2) for smoothness classes such as Hölder or Sobolev balls is proportional
to n−2β/(2β+1), where β is the smoothness of the class. Inequalities (6.21) and (6.27)
show that the rates of convergence of the Least Squares estimator over the cones
S [β]
n under the loss (6.2) are n−2β/(2β+1) up to logarithmic factors for β = 1, 2.
If u = (u1, ..., un)T ∈ S [β]

n , we say that u is a piecewise polynomial function of
degree d with k pieces if there exist polynomials Q1, ..., Qk of degree at most d and a
partition (T1, ..., Tk) of {1, ..., n} such that

ui = Qj(i), i ∈ Tj, j = 1, ..., k. (6.31)

If u ∈ S [β]
n , define sβ(u) ≥ 1 as the smallest integer s such that u is a piecewise

polynomial function of degree β − 1 with s pieces. Note that s1(·) = k(·) for
nondecreasing sequences, and s2(·) = q(·) for convex sequences. The cone S [β]

n is
endowed with with the lineality space

Lin(S [β]
n ) = {u ∈ S [β]

n : sβ(u) = 1},

which is the subspace of polynomials of degree at most β − 1. In Section 6.7.1 we
will derive upper bounds on the statistical dimension of the cones S [β]

n for all β ≥ 2.
These bounds lead to sharp oracle inequalities for µ̂ls(S [β]

n ) similar to (6.22) and
(6.26).

Example 6.4 (m-monotone sequences). Define the linear operator ∇ : Rn → Rn by

∇u = (u2 − u1, ..., un − un−1,−un), u = (u1, ..., un)T ∈ Rn.

If m ≥ 0 is an integer, the cone of m-monotone sequences is defined as

Mm
n = {u ∈ Rn : ∇mu ≥ 0}.
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For density estimation, m-monotone functions have been studied in [5, 6]. Simple
algebra shows thatM0

n = Rn+ andM1
n = S↑n∩(−Rn+), where Rn+ is the nonnegative

orthant. For m = 2,M2
n = S∪n ∩ (−S↑n) ∩ Rn+ is the cone of convex, non-increasing

and nonnegative sequences. For all m ≥ 1, we have

Mm
n = ∩ml=0

(
(−1)m−lS [l]

n

)
, (6.32)

with the convention S [0]
n = Rn+. This implies that Mm

n ⊂ (−1)m−1S↑n. Using the
monotonicity of the statistical dimension with respect to inclusion [1, Proposition 3.1],
we obtain δ(Mm

n ) ≤ δ((−1)m−1S↑n) = δ(S↑n) ≤ log(en). This simple monotonicity
argument cannot be used to bound from above the statistical dimension of the cones
S∪n or S [β]

n defined above. For all m ≥ 0, the coneMm
n contains no linear subspace

and
Lin(Mm

n ) = {0}.
This is opposed to the cones S [β]

n , since the lineality space of S [β]
n has dimension β.

Example 6.5 (Cone with arbitrary weights vector ω). Given a positive integer m
with m ≤ n and a vector of weights ω ∈ Rm, define the cone Kωn by

Kωn =
{
u = (u1, . . . , un)T ∈ Rn : ωT (ui, ui+1, ..., ui+m−1)T ≥ 0

for all i = 1, . . . , n−m+ 1
}
.

The cone Kωn is a closed and convex subset of Rn. The sets S↑n, S∪n and S [β]
n defined

above are examples of cones of this form.

Example 6.6 (Polyhedral cones). All the examples above are particular cases of
convex polyhedral cones. Given a matrix A with r rows and n columns, define the
cone

CA = {u ∈ Rn, Au ≤ 0 = (0, ..., 0)T},
where ≤ denotes the component wise comparison in Rr. The polyhedral cones in Rn

are the sets of the form CA where A is a matrix with n columns. The lineality space
of CA is the kernel of matrix A. The cone of nondecreasing sequences and the cone
of convex sequences are polyhedral cones with S↑n = C−Dn and S∪n = C−Dn−1Dn . For
cones of higher order defined in Example 6.3, we have S [β]

n = CAβ where

Aβ = −Dn−β+1Dn−β+2...Dn.

Given a vector ω ∈ Rm as in Example 6.5, the cone Kωn satisfies Kωn = CAω where
Aω = (aij)i=1,...,n;j=1,...,n−m+1 is the matrix

aij = −ωj+i−1 if 1 ≤ i+ j − 1 ≤ m and aij = 0 otherwise.

6.3 Sharp oracle inequalities and adaptation

6.3.1 Nondecreasing sequences
Let us start this section with the following result on the performance of µ̂ls(S↑n).
This result is representative of the sharp oracle inequalities obtained for different
cones in the rest of the section.
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Theorem 6.2. For all n ≥ 2 and any µ ∈ Rn,

Eµ‖µ̂LS(S↑n)− µ‖2 ≤ min
u∈S↑n

(
‖u− µ‖2 + σ2k(u)

n
log en

k(u)

)
. (6.33)

Furthermore, for any a > 0 and any t > 0, we have

‖µ̂LS(S↑n)− µ‖2 ≤ min
u∈S↑n

(
‖u− µ‖2 + (1 + a)σ2k(u)

n
log en

k(u)

)
+ σ2(8 + 2/a)t

n
(6.34)

with probability greater than 1− exp(−t).
The proof will be given in the next section. Let us discuss some features of

Theorem 6.2 that are new. First, the estimator µ̂ls(S↑n) satisfies oracle inequalities
both in deviation with exponential probability bounds and in expectation, cf. (6.34)
and (6.33), respectively. Previously known oracle inequalities for the Least Squares
estimator over S↑n were only proved in expectation.

Second, both (6.33) and (6.34) are sharp oracle inequalities, i.e., with leading
constant 1. Although sharp oracle inequalities were obtained using aggregation
methods [14], this is the first known sharp oracle inequality for the Least Squares
estimator µ̂ls(S↑n).

Third, the assumption µ ∈ S↑n is not needed, as opposed to the result of [27].
Last, the constant 1 in front of σ2k(u)

n
log en

k(u) in (6.33) is optimal for the Least
Squares estimator. To see this, assume that there exists an absolute constant c < 1
such that for all µ ∈ S↑n and µ̂ = µ̂ls(S↑n),

Eµ‖µ̂− µ‖2 ≤ min
u∈S↑n

(
‖u− µ‖2 + cσ2k(u)

n
log en

k(u)

)
. (6.35)

Set µ = 0. Thanks to (6.20), the left hand side of the above display becomes
σ2∑n

k=1 1/k which is greater than σ2 log(n), while the right hand side becomes
cσ2 log(en). Thus, it is impossible to improve the constant in front of σ2k(u)

n
log en

k(u)
for the estimator µ̂ls(S↑n). However, it is still possible that for another estimator µ̂,
(6.35) holds with c < 1 or without the logarithmic factor. We do not know whether
such an estimator exists.

We now highlight the adaptive behavior of the estimator µ̂ls(S↑n). Let u∗ ∈ S↑n
be a minimizer of the right hand side of (6.33). Let k = k(u∗) and let T1, ..., Tk be a
partition of {1, ..., n} such that u∗ is constant on all Tj, j = 1, .., k. Given T1, ..., Tk,
consider the piecewise constant oracle

µ̂oracle ∈ argmin
u∈WT1,...,Tk

‖y− u‖2,

where WT1,...,Tk is the linear subspace of all sequences that are constant on all Tj,
j = 1, ..., k. This subspace has dimension k, so the estimator µ̂oracle satisfies

Eµ‖µ̂oracle − µ‖2 = min
u∈WT1,...,Tk

‖u− µ‖2 + σ2k

n
≤ ‖u∗ − µ‖2 + σ2k

n
.

Thus, (6.33) can be interpreted in the sense that without the knowledge of T1, ..., Tk,
the performance of µ̂ls(S↑n) is similar to that of µ̂oracle up to the factor log(en/k).
Of course, the knowledge of T1, ..., Tk is not accessible in practice, so µ̂oracle is an
oracle that can only serve as a benchmark. This adaptive behavior of µ̂ls(S↑n) was
observed in [27].
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6.3.2 Orthogonal decomposition and lineality spaces

Proposition 6.3 below is our main tool to derive sharp oracle inequalities for the
estimator µ̂ls(K) for any closed convex cone K. Given a matrix P , denote by ImP
the linear span of the columns of P .

Proposition 6.3. Let n ≥ 2, µ ∈ Rn, let K be a closed convex set and let u ∈ K.
Furthermore, assume (i) and (ii) below.

(i) There exist orthogonal projectors P1, ..., Pk such that

k∑
j=1

Pj = In×n and PjPl = 0 for all j, l = 1, ..., k.

(ii) There exist closed convex cones K1, ...,Kk such that

{Pjv,v ∈ K} ⊆ Kj ⊆ ImPj and Pju ∈ Lin(Kj), j = 1, ..., k.

Then almost surely

‖µ̂LS(K)− µ‖2 ≤ ‖u− µ‖2 +
k∑
j=1
‖Πj(Pjξ)‖2, (6.36)

where Πj : ImPj → Kj is the projection onto Kj, j = 1, ..., k.

The assumptions of Proposition 6.3 on the projectors P1, ..., Pk imply

ImP1 ⊕ · · · ⊕ ImPk = Rn,

where ⊕ denotes an orthogonal direct sum. The random variables P1ξ, ..., Pkξ are
thus independent normal random variables.

Proposition 6.3 allows us to bound from above the loss of µ̂ls(K) by bounding from
above the sum of the k independent random variables ‖Π1(P1ξ)‖2, ..., ‖Πk(Pkξ)‖2.
By the definition of the statistical dimension of a cone given in (6.14), Proposition 6.3
shows that upper bounds on the statistical dimensions of the cones K1, ...,Kk imply
a sharp oracle inequality for the estimator µ̂ls(K).

If K is a closed convex cone, a natural choice for K1, ...,Kk is Kj = {Pjv,v ∈ K},
j = 1, ..., k. However, we will see in Theorem 6.10 an application of Proposition 6.3
with a different choice for the cones K1, ...,Kk, and in (6.41) an application of
Proposition 6.3 where K is not a cone.

To prove Proposition 6.3, we use the strong convexity of the Least Squares
minimization problem, as follows.

Proof of Proposition 6.3. Let µ̂ = µ̂LS(K) for notational simplicity. Inequality (6.16)
can be rewritten as

|µ̂− µ|22 − |u− µ|22 ≤ 2ξT (µ̂− u)− |u− µ̂|22 = |ξ|22 − |ξ − µ̂+ u|22. (6.37)
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For all j = 1, ..., k, we have Pjµ̂ ∈ Kj and Pju ∈ Lin(Kj), so Pj(µ̂− u) ∈ Kj . Thus,
by definition of Π1, ...,Πk,

|ξ|22 − |ξ − µ̂+ u|22 =
k∑
j=1
|Pjξ|22 − |Pj(ξ − (µ̂− u))|22,

≤
k∑
j=1
|Pjξ|22 − |Pjξ − Πj(Pjξ)|22,

=
k∑
j=1

2(Pjξ)TΠj(Pjξ)− |Πj(Pjξ)|22 =
k∑
j=1
|Πj(Pjξ)|22,

where for the last equality we used that if Π is a projection onto a closed convex
cone, Π(θ)T (θ −Π(θ)) = 0 for all vectors θ (cf. (6.12)). By plugging the previous
display back into (6.37) and dividing by n, we obtain (6.36).

For any T ⊂ {1, ..., n} and v ∈ Rn, denote by vT ∈ R|T | the restriction of v to
the set T and by |T | the cardinality of T . Let (T1, ..., Tk) be a partition of {1, ..., n}
and let P1, ..., Pk be the coordinate projections

Pj =
∑
l∈Tj

ele
T
l , for all j = 1, ..., k. (6.38)

If K = Kωn for some vector ω ∈ Rm (cf. Example 6.5), and the cones K1, ...,Kk are
given by Kj = PjK for all j = 1, ..., k, then Kj = Kω|Tj | and Proposition 6.3 takes the
following form.
Corollary 6.4. Let ω ∈ Rm for some m ≤ n. Let (T1, ..., Tk) be a partition of
{1, ..., n} such that for all j = 1, ..., k, Tj has the form Tj = {tj + 1, ..., tj + |Tj|} for
some integer tj ≥ 0. Let u = (u1, ..., un)T ∈ Kωn be such that

uTj ∈ Lin(Kω|Tj |), j = 1, ..., k.
Then, almost surely

‖µ̂ls(Kωn )− µ‖2 ≤ ‖u− µ‖2 +
k∑
j=1
‖ΠKω|Tj |(ξTj)‖

2. (6.39)

To illustrate Proposition 6.3 and Corollary 6.4, we now prove Theorem 6.2.

Proof of Theorem 6.2. Let µ̂ = µ̂LS(S↑n) for notational simplicity. Let u ∈ S↑n and
let k = k(u). Let T1, ..., Tk be a partition of {1, ..., n} such that u is constant on all
Tj, j = 1, ..., k. Thanks to Corollary 6.4 with ω = (−1, 1)T , inequality (6.39) holds
where Kω|Tj | = S↑|Tj |. We will first prove (6.33). It was shown in [1, Appendix D.4]
that if g ∼ N (0, In×n), then

E
[
|ΠS↑|T |(gT )|22

]
=
|T |∑
l=1

1
l
≤ log(e|T |), (6.40)

where T = {1, ..., n}. To complete the proof of (6.33), we take the expectations in
(6.39) and apply Jensen’s inequality to get

k∑
j=1

log(e|Tj|) = k
k∑
j=1

1
k

log(e|Tj|) ≤ k log
 e
k

k∑
j=1
|Tj|

 = k log en
k
.

To prove (6.34), we use (6.39) where u ∈ S↑n is a minimizer of the right hand side of
(6.34), and then apply Lemma 6.20 to the stochastic term.
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As a consequence of Proposition 6.3, we can derive sharp oracle inequalities for
the Least Squares estimator if we can bound from above the statistical dimension
of certain cones. The survey [1] provides general recipes to bound from above
the statistical dimension of cones of several types. For instance, the statistical
dimension of S↑n is given by the exact formula (6.20). Bounds on the statistical
dimension of a closed convex cone K can be based on metric entropy results, as
σ2δ(K)/n = E0‖ΠK(ξ)‖2 is the risk of the Least Squares estimator µ̂ls(K) when the
true vector is 0. This technique is used in [50] to derive the bound (6.29).

We now illustrate how Proposition 6.3 can be used in situations where K is not a
cone. Let K be any closed convex subset of S↑n. Let u ∈ K and let (T1, ..., Tk) be a
partition of {1, ..., n} such that u is constant on all Tj, j = 1, ..., k. Let P1, ..., Pk be
the coordinate projections (6.38) and let Kj = S↑|Tj |. Applying (6.36) and following
the same arguments as in the proof of Theorem 6.2, we obtain that for any closed
convex subset K of S↑n,

Eµ‖µ̂LS(K)− µ‖2 ≤ min
u∈K

(
‖u− µ‖2 + σ2k(u)

n
log en

k(u)

)
. (6.41)

For instance, (6.41) holds for K = {u ∈ S↑n : a− ≤ u1, un ≤ a+} where a− < a+ are
fixed real numbers.

6.3.3 Convex sequences and arbitrary design
We now present a new argument to bound from above the statistical dimension of
the cone of convex sequences.

Theorem 6.5. Let n ≥ 3. Let x1 < ... < xn be real numbers and consider the cone
KCx1,...,xn defined in (6.24). Let g ∼ N (0, In×n). Then

δ(KCx1,...,xn) = E|ΠKCx1,...,xn
(g)|22 ≤ 10 log(en). (6.42)

The proof of Theorem 6.5 is given in Section 6.7.1. The bound (6.42) improves
upon (6.29) as the exponent 5/4 is reduced to 1. Furthermore, (6.42) does not
depend on the design points x1, ..., xn. Combining Proposition 6.3 and Theorem 6.5
yields the following oracle inequalities.

Theorem 6.6. Let n ≥ 3 and µ ∈ Rn. Let x1 < ... < xn be real numbers and
consider the cone KCx1,...,xn defined in (6.24). Then

Eµ‖µ̂LS(KCx1,...,xn)− µ‖2 ≤ min
u∈KCx1,...,xn

(
‖u− µ‖2 + 10σ2q(u)

n
log en

q(u)

)
. (6.43)

Furthermore, for any t > 0 we have

‖µ̂LS(KCx1,...,xn)−µ‖2 ≤ min
u∈KCx1,...,xn

(
‖u− µ‖2 + 20σ2q(u)

n
log en

q(u)

)
+ 10σ2t

n
(6.44)

with probability greater than 1− exp(−t).

Proof of Theorem 6.6. Let u ∈ KCx1,...,xn and let k = q(u). Let T1, ..., Tk be a partition
of {1, ..., n} such that u is affine on all Tj, j = 1, ..., k (cf. (6.25)). Thanks to
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Proposition 6.3 with the projectors P1, ..., Pk defined in (6.38), inequality (6.36)
holds with Kj = KCxi1 ,...,xi|Tj |

and Tj = {i1, ..., i|Tj |}. The rest of the proof is identical
to that of Theorem 6.2 with a = 1, except that we use the bound (6.42) instead of
(6.40).

The oracle inequalities of Theorem 6.6 do not depend on the design points
x1, ..., xn. In particular, (6.43) and (6.44) hold for non-equispaced design points and
design points that are be arbitrarily close to each other. This improves upon the
oracle inequality (6.26) proved in [50, 27] where C is strictly greater than 1 and
depends on the design points through the ratio (6.28). The sharp oracle inequalities of
Theorem 6.6 hold in deviation with exponential probability bounds and in expectation
for any µ ∈ Rn, whereas previously known oracle inequalities from [50, 27] only hold
in expectation under the additional assumption that µ ∈ KCx1,...,xn .

6.3.4 Minimax regret bounds for S [β]
n

The argument behind Theorem 6.5 can be used to recursively control the statistical
dimensions of the cones S [β]

n for β ≥ 3.

Theorem 6.7. Let β, n be integers such that 1 ≤ β < n. Then

δ(S [β]
n ) = E|ΠS[β]

n
(g)|22 ≤ C(β) log(en), (6.45)

where g ∼ N (0, In×n) and C(β) = 3 · 4β−1 − 2.

The proof of Theorem 6.7 is given in Section 6.7.1. We now generalize Theorem 6.2
to the cones S [β]

n for β ≥ 1.

Theorem 6.8. Let β, n be integers such that 1 ≤ β < n and let µ ∈ Rn. Then

Eµ‖µ̂LS(S [β]
n )− µ‖2 ≤ min

u∈S[β]
n

(
‖u− µ‖2 + C(β)σ2sβ(u)

n
log en

sβ(u)

)
, (6.46)

where C(β) depends only on β. Furthermore, for any t > 0 we have

‖µ̂LS(S [β]
n )− µ‖2 ≤ min

u∈S[β]
n

(
‖u− µ‖2 + 2C(β)σ2sβ(u)

n
log en

sβ(u)

)
+ 10σ2t

n

with probability greater than 1− exp(−t).

Proof of Theorem 6.8. Let u ∈ S [β]
n and let k = sβ(u). Let T1, ..., Tk be a partition

of {1, ..., n} such that u is a polynomial of degree β − 1 on all Tj, j = 1, ..., k. We
apply Corollary 6.4 with ω = ω[β], where ω[β] is defined in (6.30). Then inequality
(6.39) holds with Kω|Tj | = S [β]

|Tj |. The rest of the proof is the same as the proof of
Theorem 6.2 with a = 1, except that we use the bound (6.45) instead of (6.40).

For β = 1, the result above is exactly Theorem 6.2 with a = 1. The following
lower bound holds.
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Theorem 6.9. There exists an absolute constant c > 0 such that the following holds.
Let β, s, n be positive integers such that n ≥ s. Then

inf
µ̂

sup
µ∈S[β]

n : sβ(µ)≤s
P
(
‖µ̂− µ‖2 ≥ c(β)s

n

)
≥ c,

where the infimum is taken over all estimators and c(β) > 0 is a constant that
depends only on β.

The proof of Theorem 6.9 is given in Section 6.7.2. Under the assumption of
Theorem 6.9 for the integers s, β and n, Markov inequality yields

inf
µ̂

sup
µ∈S[β]

n : sβ(µ)≤s
Eµ‖µ̂− µ‖2 ≥ c(β)cs

n
. (6.47)

Consider the class
S [β]
n (s) := {µ ∈ S [β]

n : sβ(µ) ≤ s}. (6.48)

The left hand side of (6.47) is the minimax risk over this class. We have proved that
the minimax risk over this class is of the order σ2s/n, up to a logarithmic factor. To
be more precise, inequalities (6.46) and (6.47) yield

c(β)cσ2s

n
≤ inf

µ̂
sup

µ∈S[β]
n (s)

Eµ‖µ̂− µ‖2 ≤ C(β)σ2s log(en/s)
n

.

Define the minimax regret as

inf
µ̂

sup
µ∈Rn

(
Eµ‖µ̂− µ‖2 − min

u∈S[β]
n (s)
‖u− µ‖2

)
.

Since the oracle inequality (6.46) is sharp, thus it implies the following bound on the
maximal expected regret of µ̂ls(S [β]

n )

sup
µ∈Rn

(
Eµ‖µ̂ls(S [β]

n )− µ‖2 − min
u∈S[β]

n (s)
‖u− µ‖2

)
≤ C(β)σ2s log(en/s)

n
. (6.49)

Since the minimax risk is always smaller than the minimax regret, the minimax
regret also satisfies

c(β)cσ2s

n
≤ inf

µ̂
sup
µ∈Rn

(
Eµ‖µ̂− µ‖2 − min

u∈S[β]
n (s)
‖u− µ‖2

)
≤ C(β)σ2s log(en/s)

n
.

(6.50)
For β = 1, 2, this bracketing of the minimax regret was shown in [14]. The estimator
proposed in [14] for which the upper bound of (6.50) is attained is an aggregate of
an exponential number of estimators, and cannot be computed in polynomial time.
In (6.50), the upper bound on the minimax regret is attained at the Least Squares
estimator µ̂ls(S [β]

n ), which can be computed efficiently by solving a convex quadratic
minimization program of size n.
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6.3.5 Cones of m-monotone sequences
This section deals with the cones defined in Example 6.4. Unlike the cones S↑n,S∪n
and S [β]

n studied in the previous sections, the lineality space of the coneMm
n is {0}

for all n,m ≥ 1.
Let (T1, ..., Tk) be a partition of {1, ..., n}. To derive Theorem 6.2, we applied

Corollary 6.4 to the cones S↑|T1|, ...,S
↑
|Tk| and each of these cones has a lineality space

of dimension 1. Similarly, to derive Theorem 6.8 we applied Corollary 6.4 to the
cones S [β]

|T1|, ...,S
[β]
|Tk| and each of these cones has a lineality space of dimension β.

Although the lineality space of the coneMm
n is {0} for all m,n ≥ 1, Proposition 6.3

can be used to derive the following oracle inequalities.

Theorem 6.10. Let m,n be integers such that 1 ≤ m < n and let µ ∈ Rn. Then

Eµ‖µ̂LS(Mm
n )− µ‖2 ≤ min

u∈Mm
n

(
‖u− µ‖2 + C(m)σ2sm(u)

n
log en

sm(u)

)
,

where C(·) is the constant from Theorem 6.7. Furthermore, for any t > 0,

‖µ̂LS(Mm
n )− µ‖2 ≤ min

u∈Mm
n

(
‖u− µ‖2 + 2C(m)σ2sm(u)

n
log en

sm(u)

)
+ 10σ2t

n

with probability greater than 1− exp(−t).

For u ∈Mm
n , recall that sm(u) is the smallest number s such that u is a piecewise

polynomial function of degree at most m− 1 with s pieces (cf. (6.31)).

Proof of Theorem 6.10. Let u ∈Mm
n and let k = sm(u). Let T1, ..., Tk be a partition

of {1, ..., n} such that u is a polynomial of degree m− 1 on all Tj, j = 1, ..., k. Let
P1, ..., Pk be the coordinate projections (6.38). We apply Proposition 6.3 to the cones
Kj := S [m]

|Tj |, j = 1, ..., k. For all j = 1, ..., k, PjK ⊂ Kj (cf. (6.32)) and the restriction
uTj is a polynomial of degree at most m. Thus, uTj ∈ Lin(Kj). Then inequality
(6.36) holds and can be rewritten in the form

‖µ̂LS(Mm
n )− µ‖2 ≤ ‖u− µ‖2 +

k∑
j=1
‖ΠS[m]

|Tj |
(ξTj)‖

2.

The rest of the proof is the same as the proof of Theorem 6.2 with a = 1, except
that instead of (6.40) we use the bound (6.45) with β replaced by m.

6.3.6 Non-Gaussian noise
In this section, we do not assume that the noise vector ξ is normally distributed.
Proposition 6.3 does not depend on the distribution of the noise vector ξ. To illustrate
this, we apply Corollary 6.4 to the cone K = S↑n. For any u ∈ Rn, let (T1, ..., Tk)
be a partition such that u is constant on all Tj, j = 1, ..., k. Taking expectations of
both sides of (6.39) yields

E‖µ̂ls(S↑n)− µ‖2 ≤ ‖u− µ‖2 +
k∑
j=1

E‖ΠS↑|Tj |
(ξTj)‖

2. (6.51)
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Let ξ = (ε1, ..., εN)T where ε1, ..., εN are i.i.d. random variables with Eε1 = 0 and
E[ε2

1] ≤ σ2. It was shown in [27, Theorem 3.1] that for all N ≥ 1,

E‖ΠS↑N (ξ)‖2 ≤ 4σ2 log(eN).

Combining this bound with (6.51) and Jensen’s inequality yields the following result.

Corollary 6.11. Let µ ∈ Rn. Let ξ = (ε1, ..., εn)T where ε1, ..., εN are i.i.d. with
Eε1 = 0 and E[ε2

1] = σ2. Then for all u ∈ S↑n,

E‖µ̂ls(S↑n)− µ‖2 ≤ ‖u− µ‖2 + 4σ2k(u) log(en/k(u))
n

.

6.3.7 Multivariate isotonic regression
Proposition 6.3 is not limited to univariate regression. Let d > 1, let n1, ..., nd > 1
be integers and let n = n1n2...nd. Consider the discrete hyperrectangle

I = {(i1, ..., id) ⊂ Nd, 1 ≤ il ≤ nl, for all l = 1, ..., d}, (6.52)

and the cone Kd↑ ⊂ RI defined by

Kd↑ =
{
u = (ui1i2...id)(i1,i2,...,id)∈I ∈ RI ,

such that ui1i2...id ≤ uj1j2...jd if (il ≤ jl for all l = 1, ..., d)
}
. (6.53)

The set Kd↑ is the cone of vectors indexed by I that are nondecreasing in all directions
l = 1, ..., d. For d = 2, the performance of the Least Squares estimator over K2↑

has been recently studied in [28]. Let k be a positive integer. Consider a partition
(T1, ..., Tk) of I and u ∈ Kd↑ such that u is constant on Tj for all j = 1, ..., k. Then,
for any unknown µ ∈ RI , Proposition 6.3 yields

Eµ‖µ̂ls(Kd↑)− µ‖2 ≤ ‖u− µ‖2 + σ2

n

k∑
j=1

δj, (6.54)

where for all j = 1, ..., r, δj is the statistical dimension of the cone
{
u = (ui1i2...id)(i1,i2,...,id)∈Tj ∈ RTj

such that ui1i2...id ≤ uj1j2...jd if (il ≤ jl for all l = 1, ..., d)
}
.

If d = 2 and T1, ..., Tk are rectangles, Chatterjee et al. [28] proved that δj ≤ C log(en)8

for some absolute constant C. In that case, a direct consequence of Proposition 6.3 is

Eµ‖µ̂ls(K2↑)− µ‖2 ≤ ‖u− µ‖2 + Cσ2k log(en)8

n
.

This improves upon the oracle inequality [28, Theorem 4.1] that has a leading constant
strictly greater than 1. More importantly, (6.54) above shows that our method does
not depend on the underlying dimension since (6.54) holds for any d ≥ 2.
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6.4 From Gaussian width bounds to sharp oracle
inequalities

In this section, we develop yet another technique to derive sharp oracle inequalities
for Least Squares estimators over closed convex sets. This technique is associated
with localized Gaussian widths rather than statistical dimensions of cones considered
above. The result is given in Theorem 6.12 below. Recently, other general methods
have been proposed [27, 86, 103], but these methods did not provide oracle inequalities
with leading constant 1.

Theorem 6.12. Let C be a closed convex subset of Rn, ξ ∼ N (0, σ2In×n) and
µ ∈ Rn. Denote by ΠC(µ) the projection of µ onto C. Assume that for some t∗ > 0,

E
[

sup
u∈C: |ΠC(µ)−u|2≤t∗

ξT (u− ΠC(µ))
]
≤ t2∗

2 . (6.55)

Then for any x > 0, with probability greater than 1− e−x,

‖µ̂ls(C)− µ‖2 ≤ ‖ΠC(µ)− µ‖2 + 2 max(t2∗, 8σ2x)
n

. (6.56)

The proof of Theorem 6.12 is given in Section 6.7.3.
Note that condition (6.55) depends on the true vector µ only through ΠC(µ).

The left hand side of (6.55) is the Gaussian width of C localized around ΠC(µ). This
differs from the recent analysis in [29] where the Gaussian width localized around µ
is studied. An advantage of considering the Gaussian width localized around ΠC(µ)
is that the resulting oracle inequality (6.56) is sharp. Chatterjee [29] proved that
the Gaussian width localized around µ characterizes a deterministic quantity tµ
such that ‖µ̂ls(C)−µ‖ concentrates around tµ

√
n. This result from [29] grants both

an upper bound and a lower bound on |µ̂ls(C)− µ|2, but it does not imply nor is
implied by a sharp oracle inequality such as (6.56) above. Thus, the result of [29] is
of a different nature than (6.56).

Let C be a closed convex subset of Rn. If the problem is misspecified, i.e., the true
vector µ does not belong to the set C, two types of results arise naturally. Results of
the first type are oracle inequalities such as (6.7) and (6.56) above. Results of the
second type are upper bounds on the quantity

‖µ̂− ΠC(µ)‖2, (6.57)

if µ̂ is an estimator such that µ̂ ∈ C almost surely. The quantity (6.57) is the
estimation error of µ̂ with respect to ΠC(µ), the projection of µ onto C. The regret
‖µ̂ − µ‖2 − ‖ΠC(µ) − µ‖2 and the quantity (6.57) are two natural measures of
the performance of µ̂ under model misspecification. When µ̂ is the Least Squares
estimator over C, (6.57) becomes ‖ΠC(µ+ ξ)−ΠC(µ)‖2. Estimation of ΠC(µ) by the
Least Squares estimator µ̂ls(C) has been considered in [107, Section 4] for C = S↑n,
and in [50, Section 6] for C = S∪n . By convexity of C (cf. (6.11)), if µ̂ ∈ C then

‖µ̂− ΠC(µ)‖2 ≤ ‖µ̂− µ‖2 − ‖µ− ΠC(µ)‖2. (6.58)

Thus, sharp oracle inequalities such as (6.56) always imply upper bounds on ‖µ̂ls(C)−
ΠC(µ)‖2. On the other hand, oracle inequalities such as (6.7) with leading constant
C strictly greater than 1 do not imply upper bounds on the estimation error (6.57).
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A strategy to find a quantity t∗ that satisfies (6.69) is to use metric entropy
results together with Dudley integral bound, although Dudley integral bound may
not be tight [20, Section 13.1, Exercises 13.4 and 13.5]. The following results are
direct consequences of Theorem 6.12, Dudley integral bound and the entropy bounds
from [45, 29, 50, 28].

Corollary 6.13. There exists an absolute constant C > 0 such that the following
holds. Let n ≥ 2 and µ ∈ Rn. Assume that ξ ∼ N (0, σ2In×n). Then for any x > 0,
with probability greater than 1− exp(−x),

‖µ̂ls(S↑n)− µ‖2 ≤ min
u∈S↑n
‖u− µ‖2 + C

(
Dµ∗σ

2

n

)2/3

+ 16σ2x

n
, (6.59)

where Dµ∗ = max(σ, µ∗n − µ∗1)) and µ∗ = (µ∗1, ..., µ∗n)T is the projection of µ onto S↑n.

Corollary 6.14. There exist absolute constants κ,C > 0 such that the following
holds. Let n ≥ 3 and µ ∈ Rn. Assume that ξ ∼ N (0, σ2In×n) and that

nR2
µ∗ ≥ κ log(en)5/4, (6.60)

where Rµ∗ = max(σ,min({‖µ∗ − τ‖, τ ∈ Rn and τ is affine})) and µ∗ is the projec-
tion of µ onto S∪n . Then for any x > 0, with probability greater than 1− exp(−x),

‖µ̂ls(S∪n )− µ‖2 ≤ min
u∈S∪n

‖u− µ‖2 + C (Rµ∗σ4)2/5 log(en)
n4/5 + 16σ2x

n
. (6.61)

Corollary 6.15. There exist absolute constants C > 0 such that the following holds.
Let d = 2 and n = n1n2 for two positive integers n1, n2. Let µ ∈ RI where I is
defined in (6.52), and let µ∗ be the projection of µ onto the cone K2↑ defined in
(6.53). Then for all x > 0, with probability greater than 1− exp(−x),

‖µ̂ls(K2↑)− µ‖2 ≤ min
u∈K2↑

‖u− µ‖2 + Cσ2 log(en)8

n
+
C
√
σ2V (µ∗)
n1/2 + 16σ2x

n
,

where V (µ∗) = (1/n)∑n1
i1=1

∑n2
i2=1(µ∗i1i2 − µ̄∗)2 and µ̄∗ = (1/n)∑n1

i1=1
∑n2
i2=1 µ

∗
i1i2.

The novelty of Corollaries 6.13 to 6.15 are twofold. First, the leading constant is
1. Although model misspecification was considered in [107, 50], no oracle inequalities
were obtained. Second, these sharp oracle inequalities hold in deviation, whereas the
previous work derived upper bounds on the expected squared risk in the well-specified
case. Note that one can derive sharp oracle inequalities in expectation by integrating
the bounds of Corollaries 6.13, 6.14 and 6.15.

For any µ = (µ1, ..., µn)T ∈ Rn, let |µ|∞ = maxi=1,...,n |µi|. It is easy to see
that

∣∣∣ΠS↑n(µ)
∣∣∣
∞
≤ |µ|∞. By integration, (6.59) implies the following bound on the

maximal expected regret of µ̂ls(S↑n) over the class {µ ∈ Rn : |µ|∞ ≤ D}

sup
µ∈Rn:|µ|∞≤D

(
Eµ‖µ̂ls(S↑n)− µ‖2 − min

u∈S↑n
‖u− µ‖2

)
≤ C ′

(
Dσ2

n

)2/3

, (6.62)

where D ≥ σ is a fixed parameter and C ′ > 0 is an absolute constant. Similar regret
bounds hold for the estimator µ̂ls(S∪n ) with the rate n−4/5, and for µ̂ls(K2↑) with
the rate n−1/2.
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6.5 Aggregation of projections on opposite con-
vex cones

Let K be a closed convex cone in Rn. Let −K = {−u : u ∈ K} be the opposite cone
of K. For instance, if K = S↑n is the cone of nondecreasing sequences, then −K is the
cone of non-increasing sequences. If K = S∪n is the cone of convex sequences, then
−K is the cone of concave sequences.

In this section we derive a sharp oracle inequality for the problem of aggregation
of two estimators µ̂ls(K) and µ̂ls(−K). The goal is to construct an estimator µ̂ that
may depend on y, µ̂ls(K) and µ̂ls(−K), such that with high probability,

‖µ̂− µ‖2 ≤ min
C∈{K,−K}

‖µ̂ls(C)− µ‖2 + ε,

where ε is a small quantity. Let us emphasize that no sample splitting is allowed,
i.e., the same observation y is used to construct the estimators {µ̂ls(K), µ̂ls(−K)}
and to perform the aggregation step. There exist procedures to aggregate with no
sample splitting estimators of the form Ay where A is a deterministic n× n matrix
[70, 35, 33, 11], leading to sharp oracle inequalities. But to our knowledge there is
no aggregation result of this type for nonlinear estimators. If K is not a subspace of
Rn, then the estimators µ̂ls(K) and µ̂ls(−K) are nonlinear estimators. Note that
Theorem 6.16 substantially uses the fact that we have opposite cones. We do not
know whether this can be extended to more general nonlinear estimators. Define the
simplex in R2 by

Λ2 = {(θ+, θ−) ∈ R2, θ+ ≥ 0, θ− ≥ 0, θ+ + θ− = 1}.

For all (θ+, θ−) ∈ Λ2, let

µ̂(θ+,θ−) = θ+µ̂
ls(K) + θ−µ̂

ls(−K).

Finally, define the penalty

pen(θ+, θ−) = θ+‖µ̂ls(K)− µ̂(θ+,θ−)‖2 + θ−‖µ̂ls(−K)− µ̂(θ+,θ−)‖2.

We refer the reader to [11] for more details about this penalty.

Theorem 6.16. Let n ≥ 2 and µ ∈ Rn. Let K ⊆ Rn be a closed convex cone. Let
µ̂∗(K) = µ̂(θ̂+,θ̂−) where

(θ̂+, θ̂−) ∈ argmin
(θ+,θ−)∈Λ2

‖y− µ̂(θ+,θ−)‖2 + 1
2pen(θ+, θ−).

Then
Eµ‖µ̂∗(K)− µ‖2 ≤ min

C∈{K,−K}
Eµ‖µ̂ls(C)− µ‖2 + 4σ2δ(K)

n
. (6.63)

Furthermore, for all x > 0, with probability greater than 1− 2 exp(−x),

‖µ̂∗(K)− µ‖2 ≤ min
C∈{K,−K}

‖µ̂ls(C)− µ‖2 + 4σ2δ(K) + 20σ2x

n
, (6.64)

where δ(K) is the statistical dimension (6.14) of the cone K.
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The proof of Theorem 6.16 is given in Section 6.7.4. The above aggregation
procedure mimics the best estimator among the pair {µ̂ls(K), µ̂ls(−K)}. The
quantity 4σ2δ(K)/n may be referred to as the price to pay for aggregating the
estimators {µ̂ls(K), µ̂ls(−K)}. As Eµ‖ΠK(ξ)‖2 = σ2δ(K)/n, this price is of order of
the risk of the estimator µ̂ls(K) when the true vector µ is 0. More precisely, (6.63)
can be rewritten as

Eµ‖µ̂∗(K)− µ‖2 ≤ min
C∈{K,−K}

Eµ‖µ̂ls(C)− µ‖2 + 4E0‖µ̂ls(K)− 0‖2.

To illustrate Theorem 6.16, let K = S↑n be the cone of nondecreasing sequences.
By (6.20), δ(K) ≤ log(en). Let k ∈ {1, ..., n} and consider the class S↑↓n (k) =
S [1]
n (k) ∪ (−S [1]

n (k)), where the class S [1]
n (k) is defined in (6.48). The class S↑↓n (k) is

the set of all sequences that are either nondecreasing or non-increasing, and that
are piecewise constant with less that k pieces. Combining Theorem 6.2 and the
aggregation result above, we obtain the following bound on the maximal expected
regret of µ̂∗(S↑n)

sup
µ∈Rn

[
Eµ‖µ̂∗(S↑n)− µ‖2 − min

u∈S↑↓n (k)
‖u− µ‖2

]
≤
σ2
(
k log(en/k) + 4 log(en)

)
n

.

Similarly for higher order cones, combining Theorem 6.8 and the aggregation result
above yields that for all integers s, β such that 1 ≤ β < n and 1 ≤ s ≤ n,

sup
µ∈Rn

Eµ‖µ̂∗(S [β]
n )− µ‖2 − min

u∈
(
S[β]
n (s)∪(−S[β]

n (s))
) ‖u− µ‖2


is bounded from above by σ2C(β)

(
s log(en/s) + 4 log(en)

)
/n where C(β) is the

constant from (6.50). Thus the minimax regret for the class S [β]
n (s) ∪ (−S [β]

n (s)) is
of the order σ2s/n (up to logarithmic factors), which is the order of the miminax
regret for the class S [β]

n (s).

6.6 Concluding remarks
We have presented two general methods to derive sharp oracle inequalities for the
Least Squares estimator over a closed convex subset of Rn. First, Proposition 6.3
shows that the Least Squares estimator over a closed convex set satisfies a sharp oracle
inequality in deviation and expectation, where the remainder term is proportional
to the sum of the statistical dimensions of some cones (cf. (6.36)). The second
method is based on localized Gaussian widths and is given in Theorem 6.12. If
C is a closed convex subset of Rn, Theorem 6.12 shows that the Least Squares
estimator µ̂ls(C) satisfies a sharp oracle inequality in deviation and expectation if
the localized Gaussian width of C satisfies condition (6.55) for some constant t∗ > 0.
To summarize, our methods lead to the following improvements.
(i) Our oracle inequalities hold not only for the expected squared risk, but also

in deviation with exponential probability tails. By integration, a sharp oracle
inequality in deviation with exponential probability tails always implies a
sharp oracle inequality in expectation. The reverse is not true, as there exist
estimators that satisfy sharp oracle inequalities in expectation but not in
deviation [3, 32].

139



(ii) Another improvement of the present paper over [107, 50, 27, 28] is that our
oracle inequalities are sharp, i.e., with leading constant 1. Thus, our bounds
account for model misspecification. This advantage can be interpreted at least
in the following two ways.

(a) Let C be a closed convex set such that µ̂ /∈ C and µ̂ an estimator valued in
C. The quantity ‖µ̂−ΠC(µ)‖2 is a natural measure of the performance of
µ̂. As seen in (6.58), sharp oracle inequalities grant upper bounds on the
quantity ‖µ̂− ΠC(µ)‖2, whereas oracle inequalities with leading constant
strictly greater than 1 do not.

(b) A second advantage of sharp oracle inequalities is that they allow to bound
from above the minimax regret. To see this, let E, Ē be two subsets of
Rn with E ⊂ Ē. If µ ∈ E, we say that the model is well-specified,
if µ ∈ Ē \ E the model is misspecified. The minimax risk over E is
infµ̃ supµ∈E Eµ‖µ̃−µ‖2 and the minimax regret with respect to (E, Ē) is

inf
µ̃

sup
µ∈Ē

(
Eµ‖µ̃− µ‖2 − inf

u∈E
‖u− µ‖2

)
,

where the infima are taken over all estimators. The minimax risk is a
measure of the statistical complexity of E if the model is well-specified.
The minimax regret is a natural measure of the statistical complexity of
E that accounts for misspecification with respect to the set Ē. There
are situations where the minimax regret is substantially greater than the
minimax risk [88]. Thus, it is important to study both the minimax risk
and the minimax regret. As follows from (6.49) and (6.62), the sharp
oracle inequalities (6.46) and (6.59) yield upper bounds on the minimax
regret for (E, Ē) = (S [β]

n (s),Rn) and (E, Ē) = (S↑n, {µ ∈ Rn : |µ|∞ ≤ D}).
On the other hand, risk bounds or oracle inequalities with leading constant
strictly greater than 1 do not imply bounds on the minimax regret.

6.7 Proofs

6.7.1 Upper bounds on statistical dimensions of cones
For any k = 1, ..., n− 1, let Sk = {1, ..., k} and Tk = {k + 1, ..., n}. For any subset
T ⊂ {1, ..., n} and any vector θ ∈ Rn, denote by θT ∈ RT the restriction of θ to T .
For any g,θ ∈ Rn and any k = 1, ..., n− 1,

gTθ = gTTkθTk + gTSkθSk .

For any closed convex cone K, denote by ΠK the projection onto K.

Lemma 6.17. Let K ⊂ Rn be a closed convex cone. Assume that there exists a
collection {(CL

k , C
R
n−k), k = 1, ..., n − 1} where CL

k ⊂ Rk, CR
n−k ⊂ Rn−k are closed

convex cones such that the following holds. For all θ ∈ K, there exists k ∈ {1, ..., n−1}
such that

θSk ∈ CL
k , θTk ∈ CR

n−k. (6.65)
Then

δ(K) ≤ 2d∗ + 6 log(n− 1), where d∗ := max
k=1,...,n−1

[
δ(CL

k ) + δ(CR
n−k)

]
.

140



Proof. Let g ∼ N (0, In×n). If θ ∈ K is such that (6.65) holds for some k = 1, ..., n−1,
then by the Cauchy-Schwarz inequality,

θTg = θTSkgSk + θTTkgTk ≤
√
|θTSk |

2
2 + |θTTk |

2
2

√
ZL
k + ZR

n−k = |θ|2
√
ZL
k + ZR

n−k, (6.66)

where we used the notation

ZL
k :=

 sup
u∈CL

k
:|u|22≤1

gTSku

2

, ZR
n−k :=

 sup
u∈CR

n−k:|u|22≤1
gTTku

2

.

By (6.13), we have almost surely

ZL
k = |ΠCL

k
(gSk)|

2
2, ZR

n−k = |ΠCR
n−k

(gTk)|
2
2.

Similarly, let Z := |ΠK(g)|22 = (supθ∈K:|θ|22≤1 θ
Tg)2. Using (6.65) and by taking the

supremum over |θ|22 ≤ 1 in (6.66) , we have established
√
Z = sup

θ∈K:|θ|22≤1
θTg ≤ max

k=1,...,n−1

√
ZL
k + ZR

n−k.

For any fixed k, gSk and gTk are independent, thus ZL
k and ZR

n−k are independent.
By independence, for all λ > 0,

EeλZ ≤
n−1∑
k=1

E exp(λZL
k + λZR

n−k) =
n−1∑
k=1

E[exp(λZL
k )] E[exp(λZR

n−k)]. (6.67)

Applying the moment generating function bound given in [1, Sublemma A.3], we
obtain that for any λ ∈ (0, 1/4),

E[exp(λZL
k )] E[exp(λZR

n−k)] ≤ exp
[(

2λ2

1− 4λ + λ

)(
δ
(
CL
k

)
+ δ

(
CR
n−k

))]
.

Let λ∗ = 1/6. The previous display with λ = λ∗ and the definition of d∗ yield

E[exp(λ∗ZL
k )] E[exp(λ∗ZR

n−k)] ≤ exp [2λ∗d∗] ,

for all k = 1, ..., n− 1. Plugging these bounds back into (6.67), we obtain

Eeλ∗Z ≤ (n− 1)e2λ∗d∗ = eλ
∗[2d∗+6 log(n−1)].

The function t→ exp(λ∗t) is convex, so applying Jensen’s inequality yields δ(K) =
E[Z] ≤ 2d∗ + 6 log(n− 1).

Proof of Theorem 6.5. Define the convex cones

CL
k = S↓k , CR

n−k = S↑n−k, k = 1, ..., n− 1, (6.68)

i.e., the cone of non-increasing sequences in Rk and the cone of nondecreasing
sequences in Rn−k. A convex sequence θ ∈ KCx1,...,xn must be first non-increasing and
then nondecreasing, so (6.65) holds for some k = 1, ..., n− 1.

We apply Lemma 6.17 with K = KCx1,...,xn and the cones defined in (6.68). By
(6.20), d∗ ≤ 2 log(en), so Lemma 6.17 yields the bound δ(K) ≤ 10 log(en).
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Proof of Theorem 6.7. We proceed by induction. Let β ≥ 1. Assume that (6.45)
holds for this β. We now prove that (6.45) holds for β + 1. Define the convex cones

CL
k = −S [β]

k if k ≥ β + 1, CL
n−k = Rk otherwise,

CR
n−k = S [β]

n−k, if n− k ≥ β + 1, CR
k = Rn−k otherwise,

for all k = 1, ..., n− 1, where S [β]
k ⊂ Rk and S [β]

n−k ⊂ Rn−k are defined in Example 6.3.
LetDn−β, Dn−β+1, ..., Dn be the rectangular matrices defined in (6.17). Let θ ∈ S [β+1]

n

and define v = Dn−β+1...Dnθ. As θ ∈ S [β+1]
n , Dn−βv ≥ 0. Thus v is a nondecreasing

sequence in Rn−β.
Let E = {l = 1, ..., n− β : vl ≤ 0} where vl, l = 1, ..., n− β are the components

of v. If E is not empty, let k = β − 1 + maxE. Then Dk−β+1...Dk−1DkθSk ≤ 0 so
that θSk ∈ −S

[β]
k , and Dn−k−β+1...Dn−k−1Dn−kθTk ≥ 0 so that θTk ∈ CR

n−k. If E is
empty, v > 0 and thus θ ∈ S [β]

n , so (6.65) holds for k = 1. In summary, we have
proved that for all θ ∈ S [β+1]

n , there exists k = 1, ..., n− 1 such that (6.65) holds.
Combining Lemma 6.17 with (6.45) yields

δ(S [β+1]
n ) ≤ 4C(β) log(en) + 6 log(n− 1),

≤ (4C(β) + 6) log(en) = C(β + 1) log(en),

as by definition of C(β + 1) and C(β), 4C(β) + 6 = C(β + 1).

6.7.2 Lower bound
Define the support of v = (v1, ..., vn)T ∈ Rn by supp(v) = {i = 1, ..., n : vi 6= 0}.

Proof of Theorem 6.9. First, assume that s ≥ 9β + 1. Let S ≥ 8 be the largest
integer such that (S + 1)β + 1 ≤ s. For all ω = (ω1, ..., ωS)T ∈ {0, 1}S and
ω′ = (ω′1, ..., ω′S)T ∈ {0, 1}S, define the Hamming distance between ω and ω′ by
dH(ω,ω′) = ∑S

k=1 |ωk − ω′k|. By the Varshamov-Gilbert bound [99, Lemma 2.9],
there exists Ω ⊆ {0, 1}S such that

0 = (0, ..., 0)T ∈ Ω, log(|Ω| − 1) ≥ S/8, and dH(ω,ω′) > S/8

for all ω,ω′ ∈ Ω such that ω 6= ω′. Let m be the largest integer such that mS ≤ n.
For each ω ∈ Ω, define uω = (uω1 , ..., uωn ) by

uωi = ωj if jm ≤ i− 1 < jm+ 1, for i = 1, ..., Sm and j = 1, ..., S,

and uωi = 0 if i > Sm. Let ∆ = X−1 where X is the matrix (6.18), i.e., ∆u =
(u1, u2 − u1, ..., un − un−1)T for all u = (u1, ..., un)T ∈ Rn. For all ω ∈ Ω, uω is
piecewise constant with at most S + 1 pieces. It is easy to see that ∆uω has at most
S + 1 nonzero components and

supp(∆uω) ⊂ ∪Sk=0{km+ 1}.

An immediate recurrence yields that for all ω ∈ Ω,

supp(∆βuω) ⊂ ∪Sk=0{km+ 1, km+ 2, ..., km+ β}.
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Let T := (∪Sk=0{km + 1, km + 2, ..., km + β}) ∩ {1, ..., n}. We have |T | ≤ (S + 1)β
and supp(∆βuω) ⊂ T for all ω ∈ Ω. Define θ = (θ1, ..., θn)T ∈ Rn by

θi = max
(

0,max
ω∈Ω

(
−(∆βuω)i

))
if i ∈ T, θi = 0 if i /∈ T.

By construction, for all ω ∈ Ω, supp(θ+ ∆βuω) ⊂ T and θ+ ∆βuω has nonnegative
entries. Let γ = (1/8)

√
σ2/m. Using Lemma 6.18 below, for all ω ∈ Ω,

xω := γXβ
(
θ + ∆βuω

)
= γXβθ + γuω

belongs to S [β]
n , and sβ(xω) ≤ |T |+ 1 ≤ β(S+ 1) + 1 ≤ s. For two distinct ω,ω′ ∈ Ω,

we have
‖xω − xω′‖2 = γ2dH(ω,ω′)m

n
≥ γ2Sm

8n ≥ γ2

16 ,

as by definition of m, n/(2S) < m ≤ n/S. Denote by Pω the distribution of xω + ξ.
For any ω ∈ Ω, the Kullback-Leibler divergence between the measures Pω and P0
satisfies

K(Pω, P0) = n

2σ2‖x
ω − x0‖2 = nγ2

2σ2 ‖u
ω − u0‖2 ≤ γ2Sm

2σ2 ≤
S

128 ≤
log |Ω| − 1

16 .

By [99, Theorem 2.7] with α = 1/16, there exists an absolute constants c > 0 such
that

inf
µ̂

sup
µ∈S[β]

n : sβ(µ)≤s
P
(
‖µ̂− µ‖2 ≥ γ2

64

)
≥ c.

By definition of S we have s ≤ 2Sβ, and by definition of m we have Sm ≤ n. This
implies that

64γ2 = σ2

m
≥ σ2S

n
≥ σ2s

2βn.

It remains to consider the case s < 9β + 1. In this case, the rate is of order
1/n and the lower bound follows from standard arguments by a reduction to testing
between two simple hypotheses.

Lemma 6.18. Let n < β be positive integers and let X be the matrix (6.18). Assume
that θ = (θ1, ..., θn)T ∈ Rn has nonnegative entries, i.e., θi ≥ 0, i = 1, ..., n. Then
Xβθ ∈ S [β]

n and sβ(Xβθ) ≤ | supp(θ)|+ 1.

Proof. The claim Xβθ ∈ S [β]
n follows from

Dn−β+1Dn−β+2...DnXβθ = (θβ+1, ..., θn)T .

Let t1 = 1. There exists k ≥ 1 such that supp(θ)∪{t1} = {t1, ..., tk} with t1 < ... < tk
and k ≤ | supp(θ)| + 1. Let tk+1 = n + 1 and define a partition (T1, ..., Tk) of
{1, ..., n} by Tj = {tj, ..., tj+1 − 1}, j = 1, ..., k. Let uj = (Xβθ)Tj ∈ R|Tj |. Let
j = 1, ..., k. If |Tj| ≤ β then using interpolation polynomials, the vector uj satisfies
(uj)i = Qj(i), i = 1, ..., |Tj| for some polynomial Qj of degree at most β − 1. If
|Tj| > β then

D|Tj |−β+1...D|Tj |uj = (θtj+β, ..., θtj+1−1)T .

By definition of t1, ..., tk we have (θtj+β, ..., θtj+1−1)T = 0. Thus uj ∈ Lin(S [β]
|Tj |) and

there exists a polynomial Qj of degree at most β − 1 such that (uj)i = Qj(i), i =
1, ..., |Tj|. We have established that sβ(Xβθ) ≤ k ≤ | supp(θ)|+ 1.
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6.7.3 From Gaussian width bounds to sharp oracle inequal-
ities

The proof of Theorem 6.12 is related to the isomorphic method [9] and the theory of
local Rademacher complexities in regression with random design [10, 60].

Lemma 6.19. Let K ⊆ Rn. Assume that K is star-shaped at 0, i.e., that αu ∈ K
for all u ∈ K and all α ∈ [0, 1]. Let ξ ∼ N (0, σ2In×n). Assume that there exists
t∗ > 0 such that

E
[

sup
u∈K: |u|2≤t∗

ξTu

]
≤ t2∗

2 . (6.69)

Then for all x > 0, with probability greater than 1− e−x we have

2ξTu− |u|22 ≤ 2 max(t2∗, 8σ2x) (6.70)

simultaneously for all u ∈ K.

Proof of Lemma 6.19. Let ρ := max(t∗, σ2
√

2x). The concentration inequality for
suprema of Gaussian processes [20, Theorem 5.8] yields that on an event Ω(x) of
probability greater than 1− e−x,

Z := sup
u∈K: |u|2≤ρ

ξTu ≤ E[Z] + ρσ
√

2x ≤ E[Z] + ρ2

2 .

Because K is star-shaped at 0, the function

ϕ : t→ 1
t2

E sup
u∈K: |u|2≤t

ξTu

is non-increasing on (0,+∞). Indeed, for all t > s > 0, consider u ∈ K such that
|u|2 ≤ t. Then |(s/t)u|2 ≤ s and (s/t)u ∈ K because K is star-shaped at 0, hence

1
t2
ξTu = 1

st
ξT ((s/t)u) ≤ 1

st
sup

v∈K: |v|2≤s
ξTv ≤ 1

s2 sup
v∈K: |v|2≤s

ξTv.

Taking expectations yields that ϕ(t) ≤ ϕ(s). Thus, the inequality ρ ≥ t∗ and (6.69)
imply that ϕ(ρ) ≤ 1/2 and EZ ≤ ρ2/2. Consequently, we have Z ≤ ρ2 on Ω(x).
Thus for all u ∈ K such that |u|2 ≤ ρ we have ξTu ≤ ρ2 and (6.70) holds.

If u ∈ K and |u|2 > ρ, then θ = (ρ/|u|2)u satisfies |θ|2 ≤ ρ. By the above
argument, we have ξTθ ≤ ρ2 on Ω(x). By rearranging, we get

2uTξ ≤ 2ρ|u|2 ≤ ρ2 + |u|22 ≤ 2ρ2 + |u|22,

which completes the proof of (6.70) for every u ∈ K.

Proof of Theorem 6.12. Inequality (6.16) with u = ΠC(µ) can be rewritten as

|µ̂ls(C)− µ|22 − |ΠC(µ)− µ|22 ≤ 2ξT (µ̂ls(C)− ΠC(µ))− |µ̂ls(C)− ΠC(µ)|22.

Then, the claim is a direct consequence of Lemma 6.19 and (6.70) applied to
u = µ̂ls(C)− ΠC(µ).
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Proof of Corollary 6.13. By rescaling we may assume that σ = 1. It was proved
in [29, Inequality (51)] that there exists an absolute constant c > 0 such that
t∗ := cDµ∗1/3n1/6 satisfies (6.55). Applying Theorem 6.12 completes the proof.

Proof of Corollary 6.14. By rescaling we may assume that σ = 1. Let R = Rµ∗ . As
in the proof of Corollary 6.13, we apply Theorem 6.12. We need to find t∗ > 0 such
that (6.69) holds forK = S∪n−µ∗. Let r > 0. Let S(µ∗, r) = {u ∈ S∪n , ‖u−µ∗‖ ≤ r}.
By Dudley entropy bound (cf. [20, Corollary 13.2]), we obtain

E sup
u∈S(µ∗,r)

ξT (u− µ∗)√
n

≤ 12
∫ r

0

√
logM(ε, S(µ∗, r), ‖ · ‖)dε,

≤ κ̄ log(en)5/8r3/4(r2 +R2)1/8,

where κ̄ > 0 is an absolute constant, M(ε, S(µ∗, r), ‖ · ‖) is the ε-entropy of S(µ∗, r)
in the ‖·‖ norm, and the second inequality is proved in [50, (25)]. The constant 1/

√
n

on the left hand side due to the fact that the Gaussian process is normalized with
respect to the metric ‖ · ‖, i.e., for all vectors u,u′, ‖u−u′‖2 = E[(ξT (u−u′)/

√
n)2].

Let now t = r
√
n. After rearranging, the previous inequality becomes

E sup
u∈S∪n : |µ∗−u|22≤t

ξT (u− µ∗) ≤ κ̄ log(en)5/8n1/8t3/4
(
t2

n
+R2

)1/8

. (6.71)

Let
t∗ =

(
2κ̄21/8

)4/5√
log(en)R1/5n1/10,

and choose the absolute constant κ := 4κ̄221/4. With this choice of κ and t∗, (6.60)
is equivalent to t2∗/n ≤ R2. Thus, for t = t∗, the right hand side of (6.71) does not
exceed

κ̄21/8 log(en)5/8n1/8t3/4∗ ≤ t2∗/2.
Applying Theorem 6.12 completes the proof of (6.61).

Proof of Corollary 6.15. It was proved in [28, Section 2] that there exists an absolute
constant c > 0 such that t∗ := c

√
σ2 log(en)8/n+

√
σ2V (µ∗)/n satisfies (6.55).

Applying Theorem 6.12 completes the proof.

6.7.4 Aggregation on opposite cones
Proof of Theorem 6.16. For notational simplicity, let µ̂∗ = µ̂∗(K), µ̂+ = µ̂ls(K) and
µ̂− = µ̂ls(−K). Let H(θ+, θ−) = ‖y− µ̂(θ+,θ−)‖2 + 1

2pen(θ+, θ−). The function H is
convex and differentiable, thus it satisfies

∇H(θ̂+, θ̂−)T
(
(1, 0)− (θ̂+, θ̂−)

)
≥ 0,

cf. [21, 4.2.3, equation (4.21)]. This inequality can be rewritten as

‖µ̂∗ − µ‖2 − ‖µ̂+ − µ‖2 ≤ 2
n
ξT (µ̂∗ − µ̂+)− 1

2pen(θ+, θ−)− 1
2‖µ̂

+ − µ̂∗‖2.

Simple algebra yields that the right hand side of the previous display is equal to

2
n
ξT (µ̂∗ − µ̂+)− 1

2 θ̂−‖µ̂
+ − µ̂−‖2 =: L(θ̂+, θ̂−).
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The function L is linear, thus it is maximized at a vertex of Λ2, and

‖µ̂∗ − µ‖2 − ‖µ̂+ − µ‖2 ≤ max
(

0, 2
n
ξT (µ̂− − µ̂+)− 1

2‖µ̂
+ − µ̂−‖2

)
.

Note that µ̂− − µ̂+ ∈ −K. Thus by definition of the projection on −K denoted by
Π−K,

4
n
ξT (µ̂− − µ̂+)− ‖µ̂+ − µ̂−‖2 = ‖2ξ‖2 − ‖2ξ − (µ̂− − µ̂+)‖2,

≤ ‖2ξ‖2 − ‖2ξ − Π−K(2ξ)‖2 = ‖Π−K(2ξ)‖2.

In summary, we have proved that

‖µ̂∗ − µ‖2 − ‖µ̂+ − µ‖2 ≤ 2‖Π−K(ξ)‖2.

Similarly, ∇H(θ̂+, θ̂−)T
(
(0, 1)− (θ̂+, θ̂−)

)
≥ 0 implies

‖µ̂∗ − µ‖2 − ‖µ̂− − µ‖2 ≤ 2‖ΠK(ξ)‖2.

Combining the two bounds, we obtain

‖µ̂∗(K)− µ‖2 ≤ min
C∈{K,−K}

‖µ̂ls(C)− µ‖2 + 2 max
(
‖ΠK(ξ)‖2, ‖Π−K(ξ)‖2

)
.

Using that max(a, b) ≤ a + b for all a, b > 0 and taking the expectation of the
previous display yields (6.63). To prove (6.64), we apply Lemma 6.20 with t = x,
k = 1 and a = 1 twice, to the cones K and −K. The union bound and the equality
δ(K) = δ(−K) complete the proof.

6.7.5 Concentration lemma
Lemma 6.20. Let k be a positive integer. For all j = 1, ..., k, let dj be a positive
integer, let Kj be a closed convex cone in Rdj , and let Πj be the projection onto
Kj. Let ξ1, ..., ξk be independent random variables with ξj ∼ N (0, σ2Idj×dj) for all
j = 1, ..., k. Then for all t > 0 and a > 0, with probability greater than 1− exp(−t),

1
σ2

k∑
j=1
|Πj(ξj)|22 ≤ (1 + a)

 k∑
j=1

δj

+
(

8 + 2
a

)
t,

where for all j = 1, ..., k, δj = E
[
|Πj(ξj)|22

]
.

The Lemma above is a consequence of the moment generating function bound
given in [1, Sublemma E.3].

Proof. By homogeneity it is enough to prove the Lemma for σ = 1. By the indepen-
dence of ξ1, ..., ξk and [1, Sublemma E.3], we get that for all u ∈ (−1/4, 1/4),

E exp
−u

 k∑
j=1

(
|Πj(ξj)|22 − δj

) ≤ exp
2u2∑k

j=1 δj

1− 4|u| .
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Let S = ∑k
j=1 δj. By Markov exponential inequality, for all λ > 0 and for u =

λ/(4(S + λ)),

P

 k∑
j=1
|Πj(ξj)|22 ≥ S + λ

 ≤ exp
(
−λu+ 2u2S

1− 4|u|

)
= exp

(
− λ2/8
S + λ

)
.

For all t > 0, we now set λ = 2
√

2St+ 4t2 + 4t so that t = λ2/8
S+λ . To complete the

proof, observe that for all a > 0,

λ ≤ 2
√

2St+ 8t ≤ aS + (8 + 2/a)t.
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Chapter 7

Adaptive confidence sets in shape
restricted regression

We construct adaptive confidence sets in isotonic and convex regression. In univariate
isotonic regression, if the true parameter is piecewise constant with k pieces, then the
Least-Squares estimator achieves a parametric rate of order k/n up to logarithmic
factors. We construct honest confidence sets that adapt to the unknown number of
pieces of the true parameter. The proposed confidence set enjoys uniform coverage
over all non-decreasing functions. Furthermore, the squared diameter of the confidence
set is of order k/n up to logarithmic factors, which is optimal in a minimax sense.
In univariate convex regression, we construct a confidence set that enjoys uniform
coverage and such that its diameter is of order q/n up to logarithmic factors, where
q − 1 is the number of changes of slope of the true regression function.

7.1 Introduction
Let K ⊂ Rn be a closed convex set. Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n,

where the vector µ = (µ1, ..., µn)T ∈ K is unknown, ξ = (ξ1, ..., ξn)T is a noise vector
with n-dimensional Gaussian distribution N (0, σ2In×n) where σ > 0 and In×n is the
n × n identity matrix. Denote by Eµ and Pµ the expectation and the probability
measure corresponding to the distribution of the random variable y = µ+ ξ. The
vector y = (Y1, ..., Yn)T is observed and the goal is to estimate µ. Consider the scaled
norm ‖ · ‖ defined by

‖u‖2 = 1
n

n∑
i=1

u2
i , u = (u1, ..., un)T ∈ Rn.

The error of an estimator µ̂ of µ is given by ‖µ̂ − µ‖2. Let | · |22 be the squared
Euclidean norm, so that 1

n
| · |22 = ‖·‖2. For a finite set E, let |E| denote its cardinality.

We use bold face for vectors and the components of any vector v ∈ Rn are denoted
by v1, ..., vn.

In this paper, we consider the particular case where K is a polyhedron, that is,
an intersection of a finite number of half-spaces. If the true parameter µ lies in a
low-dimensional face of the polyhedron K, it has been shown that for some polyhedra
K, the rate of estimation is of order dσ2

n
up to logarithmic factors, where d is the
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dimension of the smallest face that contains µ [50, 27, 28, 13]. This phenomenon
appears, for example, if the polyhedron K is the cone of nondecreasing sequences
[27, 13] or the cone of convex sequences [50, 13]. For these examples, if µ lies in a
d-dimensional face of the polyhedron K, the Least Squares estimator over K satisfy
risk bounds and oracle inequalities with the parametric rate dσ2

n
, up to logarithmic

factors. We consider the problem of confidence sets in this context. In particular,
the present paper addresses the following questions.

• Is it possible to estimate or bound from below by a data-driven quantity the
dimension d of the smallest face of the polyhedron K that contains the true
parameter µ?

• Is it possible to construct a confidence set Ĉn such that:

1. It enjoys uniform coverage over all µ ∈ K (i.e., µ ∈ Ĉn with high
probability).

2. It adapts to the smallest low-dimensional face that contains µ (i.e., the
diameter of Ĉn should be of the order dσ2

n
up to logarithmic factors if the

smallest face that contains µ has dimension d).

In this paper, we answer these questions for two particular polyhedra: the cone of
nondecreasing sequences and the cone of convex sequences.

The construction of adaptive confidence sets in isotonic or convex regression has
been studied in [42, 22, 23]. These papers show that if the true regression function is
simultaneously smooth and monotone, then it is possible to construct confidence sets
that adapt to the unknown smoothness of the true regression function. In the present
paper, there is no smoothness assumption and the goal is to construct confidence
sets that adapt to the dimension d of the smallest face of the polyhedron.

The rest of the paper is organized as follows. Section 7.2 gives the definition of
honest and adaptive confidence sets. Section 7.3 defines the cone of nondecreasing
sequences and recalls some material from [1, 77] on the statistical dimension and the
intrinsic volumes of closed convex cones. In Section 7.4 and Section 7.6, we construct
honest and adaptive confidence sets for the cone of nondecreasing sequences and for
the cone of convex sequences, respectively. We discuss the scope of these results in
Section 7.7.

7.2 Honest and adaptive confidence sets
Let (Ek)k∈J be a collection of subsets K indexed by some possibly infinite set J . We
will refer to the sets (Ek)k∈J as the models. If J = {1, ..., kmax}, these models may
be ordered by inclusion so that

E1 ⊂ ... ⊂ Ekmax = K. (7.1)

For any model Ek ⊂ K, the minimax risk on Ek is the quantity

R∗E(Ek) = inf
µ̂

sup
µ∈Ek

Eµ‖µ̂− µ‖2,

where the infimum is taken over all estimators, that is, all random variables of the
form µ̂ = g(y) where g : Rn → Rn is a Borel function. If J = {1, ..., kmax} and (7.1)
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holds, the minimax risks satisfy

R∗E(E1) ≤ ... ≤ R∗E(Ekmax).

In that case, the collection (Ek)k=1,...,kmax represents models of increasing complexity.
Similarly, if a confidence value α ∈ (0, 1) is given, one may define the minimax

quantity

R∗α(Ek) = inf
{
R > 0 : sup

µ̂
inf
µ∈Ek

Pµ
(
‖µ̂− µ‖2 ≤ R

)
≥ 1− α

}
(7.2)

for all k ∈ J , where the supremum of taken over all estimators. This quantity
represents the smallest size, if a minimax sense, of a confidence ball with confidence
level 1− α. Similarly, if J = {1, ..., kmax} and the models are ordered by inclusion
as in (7.1), this quantity is an increasing function of k and we have

R∗α(E1) ≤ ... ≤ R∗α(Ekmax).

for all α ∈ (0, 1).
The goal of this paper is to study confidence sets in shape restricted regression. A

confidence set is a region Ĉn such that with high probability, the unknown parameter
µ belongs to Ĉn. Let α ∈ (0, 1). If µ ∈ Ek∗ for some k∗ ∈ J , the quantity (7.2) may
be used to define the oracle region

Ĉ∗n(k∗) := {u ∈ Rn : ‖u− µ̂‖2 ≤ R∗α(Ek)},

where µ̂ is an estimator that achieves the supremum in (7.2) (we assume here that
all infima and suprema in (7.2) are attained). Then, by definition of R∗α(·), we have
that µ ∈ Ĉ∗n(k∗) with probability at least 1 − α. We call Ĉ∗n(k∗) an oracle region
since it is inaccessible for two reasons.

First, the radius R∗α(Ek∗) and the integer k∗ must be known in order to construct
Ĉ∗n(k∗), i.e., the knowledge of the smallest model that contains µ is needed. Second,
the oracle region Ĉ∗n(k∗) is an Euclidean ball centered around the estimator µ̂ that
achieves the infimum in (7.2), and this estimator is unknown.

This paper studies the construction of data-driven confidence sets Ĉn. We consider
only 1− α confidence sets, which means that the true parameter µ belongs to Ĉn
with probability at least 1− α, uniformly over all µ ∈ K.

We also want the diameter of the confidence set Ĉn to be of the same order as
the diameter of the oracle region Ĉ∗n(k∗), that is, the value R∗α(Ek∗). Furthermore
the construction of Ĉn should not require the knowledge of the smallest model that
contains the true parameter µ: The knowledge of k∗ is not needed to construct the
confidence region Ĉn. In that case, we say that the confidence set Ĉn is adaptive.

We now give a formal definition of these properties. For any A ⊂ Rn, define the
diameter of A for the scaled norm ‖ · ‖ by

diamA := sup
v,u∈A

‖v − u‖.

Definition 7.1. Let α ∈ (0, 1). Let K ⊂ Rn be a closed convex set and let (Ek)k∈J
be a collection of subsets of K indexed by an arbitrary set J . Let Ĉn = Ĉn(y) be
a Borel subset of Rn measurable with respect to y. We say that Ĉn is an honest
confidence set if

inf
µ∈K

Pµ
(
µ ∈ Ĉn

)
≥ 1− α. (7.3)
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We say that an honest confidence set Ĉn is adaptive in probability if for all γ ∈ (0, 1),

inf
k∈J

inf
µ∈Ek

Pµ
(

diam(Ĉn)2 ≤ c′R∗α(Ek) log
(
en

γα

)c)
≥ 1− γ, (7.4)

where c′ > 0 and c ≥ 0 are numerical constants. Alternatively to (7.4), we say that
the confidence set Ĉn is adaptive in expectation if for all k ∈ J ,

sup
µ∈Ek

Eµ
[
diam(Ĉn)2

]
≤ c′R∗E(Ek) log

(
en

α

)c
, (7.5)

where c′ > 0 and c ≥ 0 are numerical constants.

The role of the constant c ≥ 0 is to allow for logarithmic factors.
The statistic Ĉn induces a confidence set. If the definition above holds, (7.3) says

that the true sequence µ lies in Ĉn with high probability. Inequality (7.4) implies
that if the true parameter satisfies µ̂ ∈ Ek∗ for some k∗ ∈ J , then the diameter
of Ĉn is of the same order as the minimax quantity (7.2) of the model Ek, up to
logarithmic factors.

We now consider a special case: confidence ball around the Least Squares estima-
tor. The Least Squares estimator over a closed convex set K is defined by

µ̂ls(K) = argmin
u∈K

‖y− u‖2 = ΠK(y)

where ΠK denotes the convex projection onto K. By definition of the convex
projection onto K, we have (u−ΠK(y))T (y−ΠK(y)) ≤ 0 for all u ∈ K, which can
be rewritten as

‖µ̂ls(K)− y‖2 ≤ ‖u− y‖2 − ‖u− µ̂ls(K)‖2. (7.6)

If the confidence set Ĉn is an Euclidean ball, it is characterized by its center and
its radius.

Let α ∈ (0, 1) be a confidence value. Let K ⊂ Rn be a closed convex set and let
(Ek)k∈J be a collection of subsets of K indexed by an arbitrary set J . Let r̂ be a
positive random variable measurable with respect to y and let µ̂ls(K) be the Least
Squares estimator over K. The set

Ĉn = {v ∈ Rn : ‖µ̂ls(K)− v‖2 ≤ r̂} (7.7)

is an honest confidence ball if (7.3) holds. The confidence ball Ĉn is said to be
adaptive in probability if (7.4) holds, that is, for all γ ∈ (0, 1),

inf
k∈J

inf
µ∈Ek

Pµ
(
r̂ ≤ c′R∗α(Ek) log

(
en

γα

)c)
≥ 1− γ, (7.8)

for all γ ∈ (0, 1) where c′ > 0 and c ≥ 0 are numerical constants. The confidence
ball Ĉn is said to be adaptive in expectation if (7.5), that is,

sup
µ∈Ek

Eµ[r̂] ≤ c′R∗E(Ek) log
(
en

α

)c
, (7.9)

for all k ∈ J , where c′ > 0 and c ≥ 0 are numerical constants.
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7.3 Preliminaries

7.3.1 The cone of nondecreasing sequences and the models(
S↑n(k)

)
k=1,...,n

Let S↑n be the set of all nondecreasing sequences, defined by

S↑n := {u = (u1, ..., un)T ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1}.

For n = 1, let S↑n = R. For all n ≥ 1, define the cone of non-increasing sequences by
S↓n := −S↑n.

For any u ∈ S↑n, let k(u) := |{ui, i = 1, ..., n}| where |A| denotes the cardinality
of set A. The integer k(u) is the smallest positive integer such that u is piecewise
constant with k(u) pieces. The integer k(u)− 1 is also the number of jumps of u,
that is, the number of inequalities ui ≤ ui+1 that are strict. Define the sets

S↑n(k) = {u ∈ S↑n : k(u) ≤ k}, k = 1, ..., n.

The set S↑n(1) is the subspace of all constant sequences while S↑n(2), ...,S↑n(n− 1) are
closed non-convex sets. We have

S↑n(1) ⊂ S↑n(2) ⊂ ... ⊂ S↑n(n) = S↑n.

It is known that there exist numerical constants c, c′ such that for all α ≤ c,

c′σ2k

n
≤ R∗α(S↑n(k)) ≤ 2σ2k log(en/k)

n
+ 10 log(1/α)

n
,

cf. [14, Proposition 4] for the lower bound and [13] for the upper bound. Thus, for
α > 0 small enough, the quantity R∗α(S↑n(k)) is of order kσ2/n, up to logarithmic
factors in n and 1/α. Furthermore, the minimax risk over the sets S↑n(k) satisfies

c′′σ2k

n
≤ R∗E(S↑n(k)) ≤ sup

µ∈S↑n(k)
Eµ‖µ̂ls(S↑n)− µ‖2 ≤ σ2k log(en/k)

n
, (7.10)

for some numerical constant c′′ > 0, cf. [13, Theorem 2] for the upper bound and [14,
(30)] for the lower bound. Finally, (7.10) implies that the Least Squares estimator
µ̂ls(S↑n) achieves the minimax rate, up to logarithmic factors.

7.3.2 Statistical dimension and intrinsic volumes of cones
We recall here some properties of closed convex cones. Most of the material of the
present section comes from [1, 77]. In the present paper, a cone is always pointed at
0. A polyhedral cone is a closed convex cone of the form

K = {u ∈ Rn : uTvj ≤ 0 for all j = 1, ..., k}, (7.11)

where v1, ...,vk are vectors in Rn, that is, K is the intersection of a finite number of
half-spaces. The dual or polar cone of K is defined as

K◦ := {θ ∈ Rn : vTθ ≤ 0 for all v ∈ K}.
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If K a polyhedral cone, the face of K with outward vector θ ∈ Rn is the set

F (θ) := {u ∈ K : uTθ = sup
v∈K

vTθ}.

The face F (θ) is nonempty if and only if θ ∈ K◦. If K is the polyhedral cone (7.11)
defined by the vectors v1, ...,vk, a face of a polyhedral cone K has to be of the form

{u ∈ K : uTvj = 0 for all j ∈ T} (7.12)

for some T ⊂ {1, ..., k}. The dimension of a face F is the dimension of the linear
span of F .

Definition 7.2 (Statistical dimension, Amelunxen et al. [1]). For any closed convex
cone K ⊂ Rn, define

δ(K) := E
[
|ΠK(g)|22

]
= E

[
gTΠK(g)

]
= E

( sup
θ∈K:|θ|2≤1

gTθ

)2
 ,

where g ∼ N (0, In×n). The quantity δ(K) is called the statistical dimension of the
cone K.

It is also known that the following holds almost surely

|ΠK(g)|22 = gTΠK(g) =
(

sup
θ∈K:|θ|2≤1

gTθ

)2

, (7.13)

cf. [1, Proposition 3.1]. The random variable (7.13) concentrates around its expecta-
tion. More precisely, [77, Lemma 4.9] combined with a Chernoff bound (as in [13,
Lemma 20]) implies that with probability at least 1− α, we have

|ΠK(g)|22 ≤ δ(K) + 2
√

2 log(1/α)δ(K) + 8 log(1/α) ≤ 2δ(K) + 10 log(1/α). (7.14)

We now define the intrinsic volumes of a polyhedral cone, which are closely related
to the statistical dimension.

Definition 7.3 (Intrinsic volumes of a polyhedral cone). LetK ⊂ Rn be a polyhedral
cone and let g ∼ N (0, In×n). The intrinsic volumes of K are the real numbers

νk(K) = P (ΠK(g) lies in the relative interior of a k-dimensional face of K) ,

for all k = 0, ..., n.

The intrinsic volumes of a polyhedral cone K define a probability distribution on
the discrete set {0, ..., n}. More precisely, define the random variable

VK =
n∑
k=0

k 1{ΠK(g) lies in the relative interior of a k-dimensional face of K}, (7.15)

where 1{·} is the indicator function. The random variable VK is valued in {0, ..., n}
and satisfies P(VK = k) = νk(K) for all k = 0, ..., n. The following identity was
derived in [1, 77]:

δ(K) =
n∑
k=0

kνk(K), (7.16)
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that is, the statistical dimension δ(K) is the expectation of the random variable VK .
Furthermore, the random variable VK concentrates around its expected value. The
following concentration inequality is given in [77, Corollary 4.10]

P (VK − δ(K) ≥ λ) ≤ exp
(
−δ(K)

2 h

(
λ

δ(K)

))
, for all λ > 0,

where h(t) = (1 + t) log(1 + t) − t. Using the estimate h−1(t) ≤
√

2t + 3t (cf. [20,
Corollary 12.12]), we obtain

P
(
VK − δ(K) ≥ 2

√
xδ(K) + 6x

)
≤ exp(−x), for all x > 0. (7.17)

Deriving upper and lower bounds on the statistical dimension of a cone K may
be a challenging problem. Some recipes to derive such bounds are proposed in [26, 1].
An exact formula is available for the statistical dimension of the cone S↑n [1, (D.12)].
It is given by

δ(S↑n) = δ(S↓n) =
n∑
k=1

1
k
, (7.18)

so that log n ≤ δ(S↑n) ≤ log(en).
Finally, we will need the following characterization of the faces of the cone S↑n.

The following proposition may be derived easily from the fact that if K is the
polyhedron (7.11), and a face of K has the form (7.12).

Proposition 7.1. Let d ∈ {1, ..., n}. The faces of dimension d of the cone S↑n are
the sets

F (S) := {u = (u1, ..., un)T ∈ S↑n : ui−1 = ui if i ∈ S}

where S ⊆ {2, ..., n} with |S| = n− d. The cone S↑n has no face of dimension 0.

Thus, for all k = 1, ..., n, the set S↑n(k) is the union of all faces of dimension k.

7.3.3 Notation
For any v = (v1, ..., vn) ∈ Rn and any T ⊂ {1, ..., n}, define the vector vT ∈ R|T | as
the restriction of v to T , that is,

vT = (vt1 , ..., vt|T |)
T ∈ R|T |

if T = {t1, ..., t|T |} and t1 < ... < t|T |.

7.4 Adaptive confidence sets for nondecreasing se-
quences

The estimator µ̂ls(S↑n) projects y onto S↑n, so the vector µ̂ls(S↑n) is nondecreasing.
Let k̂ = k(µ̂ls(S↑n) be the number of constant pieces of the Least Squares estimator.
Using this notation, we define the statistic

r̂↑ = σ2k̂(2 + 22 log(n) + 10 log(1/α))
n

. (7.19)
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Theorem 7.2. For all α ∈ (0, 1) and all µ ∈ S↑n, the statistic r̂↑ defined in (7.19)
satisfies

‖µ̂ls(S↑n)− µ‖2 ≤ r̂↑ (7.20)
with probability at least 1− α.

The above proposition shows that the confidence set (7.7) with r̂ = r̂↑ satisfies
condition (7.3). Up to constants and logarithmic factors, the number of constant
pieces k̂ of the Least Squares estimator µ̂ls(S↑n) bounds the loss ‖µ̂ls(S↑n) − µ‖2

from above with high probability. Since µ̂ls(S↑n) can be computed in linear time,
the integer k̂ and the statistic r̂↑ can also be computed in linear time. It is easy to
compute k̂ visually by drawing the estimator µ̂ls(S↑n) and counting the number of
jumps. The proof of Theorem 7.2 relies on concentration properties of the random
variable (7.13).

Proof of Theorem 7.2. Let s ≤ t be two integers in {1, ..., n}. Let

Ts,t = {i = 1, ..., n : s ≤ i ≤ t} = {s, s+ 1, ..., t− 1, t}, (7.21)

that is, Ts,t contains all consecutive integers from s to t. For any set T of the form
(7.21), using the concentration property (7.14) of the random variable (7.13) with
K = S↓|T |, we have with probability greater than 1− α,

|ΠS↓|T |(ξT )|22 ≤ 2δ
(
S↓|T |

)
+ 10 log(1/α) ≤ 2 log(en) + 10 log(1/α),

where we used (7.18) for the last inequality. There are less that n2 sets T ⊂ {1, ..., n}
of the form (7.21). Using the union bound for all sets T of the form (7.21), we have
P(Ω(α)) ≥ 1− α where

Ω(α) :=
{

sup
T∈{Ts,t,1≤s≤t≤n}

|ΠS↓|T |(ξT )|22 ≤ σ2
(

2 log(en) + 10 log
(
n2

α

))}
.

Let µ̂ = µ̂ls(S↑n) for notational simplicity. Then (7.6) with u replaced by µ can
be rewritten as

|µ̂− µ|22 ≤ 2ξT (µ̂− µ)− |µ̂− µ|22.
By definition of k(·), there exists a partition (T̂1, ..., T̂k̂) of {1, ..., n} such that µ̂ls(S↑n)
is constant on each T̂j, j = 1, ..., k̂. Furthermore, each T̂j has the form (7.21). We
have

2ξT (µ̂− µ)− |µ̂− µ|22 =
k̂∑
j=1

[
2ξTT̂j(µ̂− µ)T̂j − |(µ̂− µ)Tj |22

]
,

≤
k̂∑
j=1

ξTT̂j(µ̂− µ)T̂j
|(µ̂− µ)T̂j |2

2

,

where have used the elementary inequality 2ab− a2 ≤ b2. By definition of (T̂1, ..., T̂k̂),
µ̂ is constant on T̂j for each j = 1, ..., k̂, thus the subsequence is non-increasing:
(µ̂− µ)T̂j ∈ S

↓
|T̂j |

. By taking the supremum, we obtain

|µ̂− µ|22 ≤
k̂∑
j=1

sup
v∈S↓

|T̂j |
:|v|22≤1

(ξTT̂jv)2 =
k̂∑
j=1
|ΠS↓

|T̂j |
(ξ|T̂j |)|

2
2,
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where we used (7.13) for the last equality. On the event Ω(α) and by definition of r̂↑,

|µ̂− µ|22 ≤
k̂∑
j=1
|ΠS↓

|T̂j |
(ξ|T̂j |)|

2
2 ≤ σ2k̂

(
2 log(en) + 10 log(n2/α)

)
= nr̂↑.

We have established the existence of an honest confidence interval of the form

Ĉn := {v ∈ S↑n : ‖v − µ̂ls(S↑n)‖2 ≤ r̂}.

This confidence set has uniform coverage over all µ ∈ S↑n, i.e., it satisfies (7.3). The
next result implies that the diameter of this confidence set is minimax optimal up to
logarithmic factors.

Theorem 7.3. Let µ ∈ S↑n and γ ∈ (0, 1). The random variable k̂ = k(µ̂ls(S↑n))
satisfies

k̂ ≤ 2k(µ) log
(
en

k(µ)

)
+ 7 log(1/γ)) (7.22)

with probability greater than 1− γ. Furthermore,

Eµ[k̂] ≤ k(µ) log
(
en

k(µ)

)
.

Proof of Theorem 7.3. Let k = k(µ) and let (T1, ..., Tk) be a partition of {1, ..., n}
such that for all j = 1, ..., k, µTj is constant. As µ is nondecreasing, Tj has the form
(7.21) for all j = 1, ..., k. Define the closed convex cone

K = S↑|T1| × S
↑
|T2| × ...× S

↑
|Tk| ⊂ Rn

and let µ̂∗ = ΠK(y). It is clear that

min
u∈K

k∑
j=1
|yTj − uTj |22 = min

u1∈S↑|T1|
,...,uk∈S↑|Tk|

k∑
j=1
|yTj − uTj |22 =

k∑
j=1

min
uj∈S↑|Tj |

|yTj − uTj |22.

Thus, as y = µ+ ξ and µ is constant on each Tj, we have

µ̂∗Tj = ΠS↑|Tj |
(yTj) = ΠS↑|Tj |

(µTj + ξTj) = µTj + ΠS↑|Tj |
(ξTj).

As adding the constant sequence µTj does not modify the number of constant pieces
(or the number of jumps), we have

k
(
µ̂∗Tj

)
= k

(
µTj + ΠS↑|Tj |

(ξTj)
)

= k

(
ΠS↑|Tj |

(ξTj)
)

= k
(
(ΠK(ξ))Tj

)
.

Let VK be the random variable defined in (7.15). By the properties of product cones
given in [77, Section 5.2], VK has the same distribution as

VS↑|T1|
+ ...+ VS↑|Tk|

.
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By Proposition 7.1, for all j = 1, ..., k we have k(µ̂∗Tj ) = VS↑|Tj |
so that ∑k

j=1 k(µ̂∗Tj ) is
distributed as VK . By (7.16), EVK = δ(K) and by (7.17), with probability greater
than 1− γ we have

VK ≤ 2δ(K) + 7 log(1/γ).

To bound δ(K) from above, we use that the statistical dimension of a direct product
of cones is the sum of the statistical dimensions (cf. [1, Proposition 3.1])

δ(K) =
k∑
j=1

δ(S↑|Tj |) ≤
k∑
j=1

log(e|Tj|) ≤ k log(en/k),

where we have used (7.18) and Jensen’s inequality.
The random variable VK is distributed as ∑k

j=1 k(µ̂∗Tj). Thus, to complete the
proof, it is enough to prove that almost surely, k̂ := k(µ̂ls(S↑n)) ≤ ∑k

j=1 k(µ̂∗Tj). Let
µ̂ = µ̂ls(S↑n) for notational simplicity. It is clear that

k(µ̂) = |{µ̂i, i = 1, ..., n}| ≤
k∑
j=1

k(µ̂Tj) =
k∑
j=1
|{µ̂i, i ∈ Tj}|,

since a piece counted on the left hand must be counted at least once on the right hand
side. For all j = 1, ..., k, µ̂Tj and µ̂

∗
Tj

are solutions of the minimization problems

µ̂∗Tj = argmin
v∈S↑|Tj |

|v − yTj |22, µ̂Tj = argmin
v∈S↑|Tj |:

µ̂min(Tj)−1≤v1,

v|Tj |≤µ̂max(Tj)+1

|v − yTj |22,

where by convention µ̂0 = −∞ and µ̂n+1 = +∞. This means that µ̂Tj is solution of a
minimization problem with additional constraints at the boundary. By Lemma 7.13,
we have

k
(
µ̂Tj

)
≤ k

(
µ̂∗Tj

)
for all j = 1, ..., k, which completes the proof.

Corollary 7.4. Let J = {1, ..., n} and define the collection of models (Ek)k∈J =(
S↑n(k)

)
k∈J

. The random variable r̂↑ defined in (7.19) satisfies (7.20), (7.8) and (7.9)
with r̂ replaced by r̂↑. Thus, the ball centered at µ̂ls(S↑n) of radius

√
r̂↑ is an honest

confidence set, which is adaptive in probability and in expectation with respect to the
models

(
S↑n(k)

)
k=1,...,n

.

7.5 Nondecreasing sequences with bounded total
variation

Let V > 0. If the unknown parameter µ satisfies µn − µ1 ≤ V , the risk of the Least
Squares estimator satisfy [107, (28)]

Eµ‖µ̂ls(S↑n)− µ‖2 ≤ σ2κ2
((

V

σn

)2/3
+ log(en)

n

)
,
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where κ ≤ 3.6. Thus, an explicit constant is readily available [107, (2.8)]. It is
possible to deduce from this risk bound an upper bound on the loss ‖µ̂ls(S↑n)− µ‖2

with high probability. We proceed as follows.
The function f : Rn → Rn defined by f(v) = ‖ΠS↑n(µ + σv) − µ‖ is Lipschitz

with coefficient σ/
√
n as for all v,v′ ∈ Rn,

|f(v)− f(v′)| ≤ ‖ΠS↑n(µ+ σv)− ΠS↑n(µ+ σv′)‖ ≤ σ‖v − v′‖ = (σ/
√
n)|v − v′|2.

(7.23)
By the Gaussian concentration inequality [20, Theorem 5.6], the following holds with
probability greater than 1− α

‖µ̂ls(S↑n)− µ‖ ≤ Eµ‖µ̂ls(S↑n)− µ‖+ σ

√
2 log(1/α)

n
.

Using that (a+ b)2 ≤ 2a2 + 2b2, we obtain the following for all α ∈ (0, 1): If µ ∈ S↑n
and µn − µ1 ≤ V , then

‖µ̂ls(S↑n)− µ‖2 ≤ 2κ2σ2
(
V

σn

)2/3
+ 2κ2σ2 log(en) + 4σ2 log(1/α)

n

with probability greater than 1− α.
Let Vµ = µn − µ1 and V̂ = yn − y1. The random variable V̂ − Vµ is centered

Gaussian with variance 2σ2, so that

Vµ ≤ V̂ + 2σ
√

log(1/α)

with probability greater than 1− α. Thus, we have established the following.

Proposition 7.5. Let µ ∈ S↑n. Define the statistic ŝ↑ by

√
ŝ↑ = 2κ2σ2

 V̂ + 2σ
√

log(1/α)
σn

2/3

+ 2κ2σ2 log(en) + 4σ2 log(1/α)
n

where κ ≤ 3.6 is the constant from [107] that appears in (7.23). Then we have
‖µ̂ls(S↑n)− µ‖2 ≤ ŝ↑ with probability greater than 1− α.

Furthermore, it is clear that V̂ ≤ Vµ+ 2σ
√

log(1/γ) with probability greater than
1− γ for all γ ∈ (0, 1).

Proposition 7.6. Let µ ∈ S↑n and let V = µn − µ1. Then the statistic ŝ↑ defined
above satisfies

ŝ↑ ≤ 2κ2σ2

 V̂ + 2σ
√

log(1/(γα))
σn

2/3

+ 2κ2σ2 log(en) + 4σ2 log(1/α)
n

(7.24)

with probability at least 1− γ for all γ ∈ (0, 1).

Theorem 7.7. Let µ ∈ S↑n. The statistic min(r̂↑, ŝ↑) satisfies

‖µ̂ls(S↑n)− µ‖2 ≤ min(r̂↑, ŝ↑)

with probability at least 1−2α. Furthermore, for all γ ∈ (0, 1), the statistic min(r̂↑, ŝ↑)
is bounded from above with probability at least 1− 2γ, by the minimum of the right
hand side of (7.22) and the right hand side of (7.24).
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For all V ≥ σ and all k = 1, ..., n, define the class

S↑n(k, V ) := {v = (v1, ..., vn)T ∈ S↑n : k(v) ≤ k and vn − v1 ≤ V }.

For small enough α > 0, the quantity R∗α(S↑n(k, V )) defined in (7.2) is greater than

cσ2 min
((

V

σn

)2/3
,
k

n

)

for some absolute constant c > 0, cf. [13, Proposition 4]. Thus, the statistic
min(r̂↑, ŝ↑) of Theorem 7.7 induces an honest confidence ball centered at the Least
Squares estimator, and this confidence ball is adaptive in probability for the collection
of models

(S↑n(k, V ))k∈{1,...,n},V ∈[σ,+∞).

7.6 Adaptive confidence sets for convex sequences
Confidence sets can also be obtained in univariate convex regression. If n ≥ 3, define
the set of convex sequences S∪n by

S∪n := {u = (u1, . . . , un)T ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1},

and define S∪n = R if n = 1 and S∪n = R2 if n = 2. For all n ≥ 1, define the cone of
concave sequences by S∩n := −S∪n .

For any u ∈ S∪n , let q(u) − 1 ≥ 0 be the number of inequalities 2ui ≤ ui+1 +
ui−1, i = 2, ..., n − 1 that are strict. The integer q(u) is also the smallest positive
integer such that u is piecewise affine with q(u) pieces. Define the sets

S∪n (q) = {u ∈ S∪n : q(u) ≤ q}, q = 1, ..., n− 1.

The set S∪n (1) is the subspace of all affine sequences while S∪n (2), ...,S∪n (n− 2) are
closed non-convex sets. We have

S∪n (1) ⊂ S∪n (2) ⊂ ... ⊂ S∪n (n− 1) = S∪n .

These sets represent models of increasing complexity.
There exist numerical constants c, c′ > 0 such that for all α ≤ (0,min(c, 1)) and

any q = 1, ..., n− 1, we have

c′σ2q

n
≤ R∗α(S∪n (q)) ≤ 20σ2q log(en/q)

n
+ 10 log(1/α)

n
, (7.25)

cf. [13, Theorem 6] for the upper bound and [14, Proposition 7] for the lower bound.
Thus, for α > 0 small enough, the quantity R∗α(S∪n (q)) is of order qσ2/n, up to
logarithmic factors.

The statistical dimension of the cone S∪n satisfies [13]

δ(S∪n ) = δ(S∩n ) ≤ 10 log(en). (7.26)

It is not known whether this upper bound is sharp. However, the fact that the
statistical dimension of S∪n grows slower that a logarithmic function of n is enough
for the purpose of the present paper.

The following bound on the risk of µ̂ls(S∪n ) will be useful.
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Proposition 7.8 ([13]). Let µ ∈ S∪n . Then

Eµ|µ̂ls(S∪n )− µ|22 ≤ Eµ
[
( sup
v∈Tµ:|v|2≤1

ξTv)2
]

= σ2δ(Tµ) ≤ 10σ2q(µ) log en

q(µ) ,

where Tµ is the tangent cone at µ defined by

Tµ := closure{t(u− µ), t ≥ 0,u ∈ S∪n }.

An outline of the proof of this result is as follows. More details may be found in
[13].

Outline of the proof of Proposition 7.8. The inequality Eµ|µ̂ls(S∪n )− µ|22 ≤ σ2δ(Tµ)
was proved by [84], it is a direct consequence of (7.6) with u = µ. To bound from
above the statistical dimension of Tµ, we have the inclusion

Tµ ⊂ S∪|T1| × ...× S
∪
|Tq(µ)|,

where (T1, ..., Tq(µ)) is a partition of {1, ..., n} such that µ is affine on each Tj,
j = 1, ..., q(µ). The formula for the statistical dimension of a direct product of cones
[1, Proposition 3.1] yields

δ(S∪|T1| × ...× S
∪
|Tq(µ)|) =

q(µ)∑
j=1

δ(S∪|Tj |) ≤ 10
q(µ)∑
j=1

log(e|Tj|) ≤ 10 log(en/q(µ)),

where we used (7.26) and Jensen’s inequality.

We now turn to the construction of confidence sets. Recall that if u ∈ S∪n is a
convex sequence, q(u) is the number of pieces in the piecewise affine decomposition of
u. Let q̂ := q(µ̂ls(S∪n ) be the number of affine pieces of the Least Squares estimator.
Then, define the statistic

r̂∪ = σ2q̂(20 + 40 log(n) + 10 log(1/α))
n

. (7.27)

Similarly to the case of the statistic r̂↑ in isotonic regression, the following result
shows that the confidence ball (7.7) with r̂ = r̂∪ enjoys uniform coverage over all
µ ∈ S∪n .

Theorem 7.9. For all α ∈ (0, 1) and all µ ∈ S∪n , the statistic r̂∪ defined in (7.19)
satisfies

‖µ̂ls(S∪n )− µ‖2 ≤ r̂∪, (7.28)
with probability at least 1− α.

The above result is analog to Theorem 7.2. The numerical constants are slightly
worse in the case of the present section because the upper bound (7.26) on the
statistical dimension of the cone S∪n is slightly worse than (7.18). The proof of
Theorem 7.9 is similar to the proof of Theorem 7.2 and can be found in the appendix.

Now, the goal is to show that the statistic r̂∪ is of the same order as the minimax
quantity (7.25). We employ a different strategy than in the previous section.

For any function g : Rn → Rn which is weakly differentiable, the divergence of g
is the random variable

Dg(y) = σ2
n∑
i=1

∂

∂yi
g(y)i.
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It is well known that by Stein’s identity, under suitable conditions on g (cf. [80,
Section 2] or [99, Lemma 3.6]), we have

σ2EµDg(y) = Eµ[ξTg(y)]. (7.29)

The divergence of the estimator µ̂ls(S∪n ) = ΠS∪n (y) is given in [30, Proposition 2.7]
(see also [80]). Namely, we have the following result.
Proposition 7.10 ([80, 30]). If g(·) = ΠS∪n (·) is the projection onto the cone of
convex sequences, then (7.29) holds and we have

Dg(y) = q̂ + 1

almost surely, where q̂ = q(µ̂ls(S∪n )).
This result can be used to bound from above the expected radius of the statistic

r̂∪.
Theorem 7.11. Let µ ∈ S∪n . Then

Eµ[q̂] ≤ 10q(µ) log en

q(µ) − 1. (7.30)

Furthermore, for all α ∈ (0, 1), the statistic (7.27) satisfies

Eµ[r̂∪] ≤
σ2q(µ) polylog(n, 1/α)

n
. (7.31)

where polylog(n, 1/α) = 10 log(en)(20 + 40 log(n) + 10 log(1/α)).
Proof. By Proposition 7.10 and (7.29), we have

σ2Eµ[1 + q̂] = Eµ[ξTΠS∪n (y)] = Eµ[ξT (ΠS∪n (y)− µ)].

By the Cauchy-Schwarz inequality, we have

σ2Eµ[1 + q̂] ≤ E1/2
µ

(ξT (ΠS∪n (y)− µ)
|ΠS∪n (y)− µ|2

)2E1/2
µ |ΠS∪n (y)− µ|22,

≤ σ
√
δ(Tµ)E1/2

µ |ΠS∪n (y)− µ|22.

Using Proposition 7.8 completes the proof of (7.30). Inequality (7.31) is a direct
consequence of (7.30) and of the definition of r̂∪.

The above result is different from Theorem 7.3 in isotonic regression. Theorem 7.3
controls both the expectation and the deviations of k̂. In this section, Theorem 7.11
only controls the expectation of q̂. This comes from the use of Stein’s identity in the
proof of Theorem 7.11, which yields a result only in expectation.

The arguments used to prove Theorem 7.3 are based on the concentration
properties of the intrinsic volumes of cones, while the proof of Theorem 7.11 relies
on Stein’s identity and Proposition 7.10. Thus, we have presented two methods to
bound from above the expected diameter of the confidence sets constructed in the
present paper.
Corollary 7.12. Let J = {1, ..., n−1} and define the collection of models (Ek)k∈J =
(S∪n (k))k=1,...,n−1. The random variable r̂∪ defined in (7.27) satisfies (7.28) and
(7.9) with r̂ replaced by r̂↑. Thus, the ball centered at µ̂ls(S∪n ) of radius

√
r̂↑ is an

honest confidence set, which is adaptive in expectation with respect to the models
(S∪n (k))k=1,...,n−1.
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7.7 Concluding remarks
We have shown that it is possible to design honest and adaptive confidence sets
for the estimation problem over two convex polyhedra: the cone of nondecreasing
sequences and the cone of non-increasing sequences. The confidence sets defined in
the previous sections adapt automatically to the unknown dimension of the smallest
face that contains the true parameter µ. Theorems 7.2, 7.3, 7.9 and 7.11 provide
a deeper understanding of the statistical complexity of these polyhedra in the case
where the true parameter µ lies on a low-dimensional face.

Let K be either S↑n or S∪n and let us summarize some statistical properties of the
Least Squares estimator around low-dimension faces.

1. If the true parameter µ belongs to a d-dimensional face of K, then the rate of
convergence of the Least Squares estimator µ̂ls(K) is almost parametric, of
order σ2d/n [29, 50], and it is the minimax rate up to logarithmic factors.

2. If the true parameter µ is well approximated by some u ∈ K and u lies in a
d-dimensional face, then the rate of the estimator µ̂ls(K) is still parametric
of order σ2d/n up to logarithmic factors. This phenomenon takes the form
of oracle inequalities [29, 50, 13]. Furthermore, these bounds hold both in
expectation and with high probability [13].

3. Let α ∈ (0, 1). By Theorems 7.2, 7.3, 7.9 and 7.11, there exists a (1 − α)
confidence set Ĉn which depends only on K, σ and α such that the following
holds. For all d = 1, ..., n and for all µ ∈ K, if the true parameter µ belongs
to a d-dimensional face of K, then the diameter of Ĉn is of order σ2d/n up to
logarithmic factors.

These results illustrate that an remarkable statistical phenomenon appears for the
estimator µ̂ls(K) if the true parameter lies around a low-dimensional face of K: In
that case the estimator µ̂ls(K) converges at an almost parametric rate, and it is
possible to construct confidence sets whose radius is of the same order as this almost
parametric rate.

A natural question is whether these results can be extended to other polyhedra.
Are there other examples polyhedra K for which this phenomenon appears? Is it
possible to generalize these results to a large class of polyhedra? To our knowledge,
there is no general method to construct adaptive confidence sets such as the ones
studied in Sections 7.4 to 7.6 of the present paper. A generalization of (1) and (2) is
the following oracle inequality. For any closed convex set K and any µ ∈ Rn, we
have

E‖µ̂ls(K)− µ‖2 ≤ min
u∈K

(
‖u− µ‖2 + σ2δ (Cu,K)

n

)

where Cu,K is the tangent cone at u defined by Cu,K = {v − tu,v ∈ K, t ≥ 0}
(cf. [84] in the well-specified case and [13] in the miss-specified). A similar oracle
inequality holds with high probability using the concentration inequality (7.14) from
[1]. Namely, for all x > 0 we have [13]

‖µ̂ls(K)− µ‖2 ≤ min
u∈K

(
‖u− µ‖2 + σ2

n

(
δ (Cu,K) + 2

√
2xδ (Cu,K) + 8x

))
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with probability at least 1− e−x. In the well-specified case, taking u = µ in (7.32)
we obtain

E‖µ̂ls(K)− µ‖2 ≤ σ2δ (Cµ,K)
n

.

It was proved in [84] that this risk bound becomes tight as the noise level σ tends to
0. If K is a polyhedron and if µ,µ′ belong to the relative interior of the same face
F of K, then the tangent cones are the same, that is, Cµ,K = Cµ′,K . This suggests
that the statistical dimension of the tangent cone δ(Cµ,K) is an insightful statistical
invariant of the face F .

7.8 Appendix: Technical Lemma
Lemma 7.13. In the present Lemma, all quantities are deterministic. Let a ∈
[−∞,+∞) and b ∈ (−∞,+∞] such that a ≤ b. Let y ∈ Rn. Define θ and θ∗ as the
unique solutions of the minimization problems

θ∗ ∈ argmin
v∈S↑n

|y− v|22, (7.32)

θ ∈ argmin
v∈S↑n(a,b)

|y− v|22 (7.33)

where S↑n(a, b) := {v = (v1, ..., vn)T ∈ S↑n : a ≤ v1, vn ≤ b}. Then k(θ) ≤ k(θ∗).
The intuition behind this Lemma is that if a constraint is not saturated for θ,

this constraint is not saturated for θ∗ either, so θ∗ has at least as many jumps as θ.

Proof of Lemma 7.13. Let Ta = {i = 1, ..., n : θ̂∗i ≤ a}, Tb = {i = 1, ..., n : θ̂∗i ≥ b}
and Tc = {i = 1, ..., n : a < θ̂∗i < b}. We will prove that the unique minimizer θ of
the problem (7.33) is

θTa = a1Ta , θTc = θ∗Tc , θTb = b1Tb , (7.34)

where 1 = (1, ..., 1)T ∈ Rn. Then it is clear that k(θ) = 1 + k(θ∗Tc) + 1 ≤ k(θ∗Ta) +
k(θ∗Tc) + k(θ∗Tb) = k(θ∗).

First, by strong convexity there exists a unique solution to the minimization
problem (7.33), and a unique solution to the minimization problem (7.32). Second,
by the characterization of the projection onto the closed convex set S↑n(a, b), if θ
satisfies

Au := (u− θ)T (y− θ) ≤ 0
for all u ∈ S↑n(a, b), then θ is the unique solution to the minimization problem (7.33).
Let θ be defined by (7.34). By simple algebra, for all u ∈ S↑n(a, b),

Au =(uTa − a1Ta + θ∗Ta − θ
∗
Ta)

T (yTa − θ∗Ta) + (uTa − a1Ta)T (θ∗Ta − a1Ta)
+ (uTb − b1Tb + θ∗Tb − θ

∗
Tb

)T (yTb − θ∗Tb) + (uTb − b1Tb)T (θ∗Tb − b1Tb)
+ (uTc − θ∗Tc)

T (yTc − θ∗Tc).

If a vector v has nonnegative entries and a vector x have non-positive entries, then
vTx ≤ 0, so (uTa − a1Ta)T (θ∗Ta − a1Ta) ≤ 0 and (uTb − b1Tb)T (θ∗Tb − b1Tb) ≤ 0. Thus,

Au ≤(uTa − a1Ta + θ∗Ta − θ
∗
Ta)

T (yTa − θ∗Ta)
+ (uTb − b1Tb + θ∗Tb − θ

∗
Tb

)T (yTb − θ∗Tb)
+ (uTc − θ∗Tc)

T (yTc − θ∗Tc),
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and the right hand side of the previous display is equal to
(v − θ∗)T (y− θ∗), (7.35)

where v ∈ Rn is defined by
vTa := uTa − a1Ta + θ∗Ta , vTc := uTc , vTb := uTb − b1Tb + θ∗Tb .

We have v ∈ S↑n by definition of Ta, Tc and Tb. The quantity (7.35) is non-positive
because θ∗ is the projection of y onto the convex set S↑n. Thus we have established
that Au ≤ 0 for all u ∈ S↑n(a, b), so that the unique solution of the minimization
problem (7.33) is given by the expression (7.34).

7.9 Appendix: Proofs for convex sequences
Proof of Theorem 7.9. For any set T of the form (7.21), using the concentration
property (7.14) of the random variable (7.13) with K = S∩|T |, we have with probability
greater than 1− α,

|ΠS∩|T |(ξT )|22 ≤ 2δ
(
S∩|T |

)
+ 10 log(1/α) ≤ 20 log(en) + 10 log(1/α),

where we used (7.26) for the last inequality. There are less that n2 sets T ⊂ {1, ..., n}
of the form (7.21). Using the union bound for all sets T of the form (7.21), we have
P(Ω(α)) ≥ 1− α where

Ω(α) :=
{

sup
T∈{Ts,e,1≤s≤e≤n}

|ΠS∩|T |(ξT )|22 ≤ σ2
(

20 log(en) + 10 log
(
n2

α

))}
.

Let µ̂ = µ̂ls(S∪n ) for notational simplicity. Then (7.6) with u replaced by µ can
be rewritten as

|µ̂− µ|22 ≤ 2ξT (µ̂− µ)− |µ̂− µ|22.
By definition of q(·), there exists a partition (T̂1, ..., T̂q̂) of {1, ..., n} such that µ̂ls(S∪n )
is affine on each T̂j, j = 1, ..., q̂. Furthermore, each T̂j has the form (7.21) because
µ̂ls(S∪n ) ∈ S∪n . We have

2ξT (µ̂− µ)− |µ̂− µ|22 =
q̂∑
j=1

2ξTT̂j(µ̂− µ)T̂j − |(µ̂− µ)Tj |22,

≤
q̂∑
j=1

ξTT̂j(µ̂− µ)T̂j
|(µ̂− µ)T̂j |2

2

,

where we have used 2ab− a2 ≤ b2. By definition of (T̂1, ..., T̂q̂), µ̂ is affine on T̂j for
each j = 1, ..., q̂, thus the vector (µ̂− µ)T̂j ∈ S

∩
|T̂j |

is a concave sequence. By taking
the supremum, we obtain

|µ̂− µ|22 ≤
q̂∑
j=1

sup
v∈S∩

|T̂j |
:|v|22≤1

(ξTT̂jv)2 =
q̂∑
j=1
|ΠS∩

|T̂j |
(ξ|T̂j |)|

2
2,

where we used (7.13) for the last equality. On the event Ω(α) and by definition of r̂∪,

|µ̂− µ|22 ≤
q̂∑
j=1
|ΠS∩

|T̂j |
(ξ|T̂j |)|

2
2 ≤ σ2q̂

(
20 log(en) + 10 log(n2/α)

)
= nr̂∪.
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Chapter 8

Résumé substantiel

8.1 Bornes optimales pour l’agrégation d’estimateurs
affines

Nous étudions le problème d’estimation un vecteur inconnu f = (f1, ..., fn)T ∈ Rn a
partir d’observations bruitées

Yi = fi + ξi, i = 1, ..., n, (8.1)

où les variables aléatoires ξ1, ..., ξn sont i.i.d. N (0, σ2) et représentent le bruit: La
qualité d’estimation d’un estimateur du vecteur inconnue f est donnée par la norme
euclidienne au carré:

‖f − µ̂‖2
2,

étant donné un estimateur µ̂ de f . Lorsque les variables aléatoires de bruits sont des
gaussiennes standards, (8.1) est le modèle des séquences gaussiennes, qui a été étudié
de manière exhaustive, voir par exemple [57]. De nombreux estimateurs ont été
proposés pour estimer le vecteur inconnu f à partir des observations : l’estimateur
des moindres carrés, l’estimateur de Ridge, l’estimateur de Stein et les méthodes
basés sur le seuillage, pour en citer quelques uns. La plupart de ces estimateurs
dépendent d’un paramètre qui doit être choisi avec précaution pour obtenir des
bornes d’erreur satisfaisantes. Ces estimateurs ont différentes forces et faiblesses
dans différents scénarios, donc il est important de pouvoir imiter la performance du
meilleur estimateur dans une famille donnée, sans faire d’hypothèse sur le vecteur
inconnu f . Le problème de pouvoir imiter la performance du meilleur estimateur
dans une famille donnée est le problème d’agrégation de type sélection de modèles,
introduit dans [83, 98]. Concrètement, soit µ̂1, ..., µ̂M des estimateurs de f construits
a partir des observations y = (Y1, ..., Yn)T . Le but est de construire avec les mêmes
données (le vecteur d’observations y = (Y1, ..., Yn)T ) un nouvel estimateur µ̂ appelé
“l’agrégat”, qui satisfasse avec probabilité plus grande que 1− δ l’inégalité d’oracle
exacte 1

|µ̂− f |22 ≤ min
j=1,...,M

|µ̂j − f |22 + priceM(δ), (8.2)

où priceM (·) est une fonction de δ qui doit être petite. Le terme priceM (·) représente
le prix à payer pour l’agrégation des estimateurs µ̂1, ..., µ̂M . Si les estimateurs
µ̂1, ..., µ̂M sont des vecteurs déterministes, le prix à payer pour l’agrégation de ces

1Par exacte, nous entendons que la constante devant le terme minj=1,...,M |µ̂j − f |22 est 1.
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estimateurs est de l’ordre de σ2 log(M/δ) et (8.2) est satisfaite par un estimateur
µ̂ basé sur la Q-agrégation [32]. Il est intéressant de considérer des estimateurs
déterministes si deux échantillons indépendants sont disponibles, de sorte que les
estimateurs µ̂1, ..., µ̂M sont construits a partir du premier échantillon, et l’agrégation
de ces estimateurs est réalisée en utilisant le second échantillon. Dans cette situ-
ation, le premier échantillon et les estimateurs µ̂1, ..., µ̂M peuvent être considérés
comme gelés pour la phase d’agrégation (pour plus de détails, cf. [96]). Si les
estimateurs µ̂1, ..., µ̂M sont aléatoires et dépendent des données y utilisées pour la
phase d’agrégation, deux questions naturelles se posent.

1. Est-ce que le prix à payer pour agréger les estimateurs µ̂1, ..., µ̂M est plus
fort lorsque les estimateurs µ̂1, ..., µ̂M et les données y utilisées pour la phase
d’agrégation ne sont pas indépendants ? Ou bien, ce prix est toujours de l’ordre
de σ2 log(M/δ) ? Y a-t-il un prix supplémentaire a payer pour prendre en
compte la dépendance ?

2. Une quantité naturelle qui capture la complexité statistique d’un estimateur
µ̂j est sa variance, définie par E|µ̂j − Eµ̂j|22. Si les estimateurs µ̂1, ..., µ̂M
sont déterministes, leurs variances sont toutes égales a 0. Maintenant que
les estimateurs sont aléatoires, est-ce que le prix a payer pour les agréger va
dépendre de leur complexité statistique, par exemple a travers leurs variances
? Est-il plus difficile d’agréger des estimateurs ayant une grande variance ?

Le but du présent article est de répondre a ces questions pour les estimateurs affines.
Parmi les procédures existantes pour estimer le vecteur inconnue f , plusieurs

sont linéaires par rapport aux observations Y1, ..., Yn. C’est le cas de l’estimateur
des moindres carrés et de l’estimateur de Ridge, tandis que les estimateurs base
sur le seuillage sont des fonctions non linéaires des observations. Des exemples
d’estimateurs linéaires ou affines par rapport aux observations sont donnés dans
[35, Section 1.2], [2]. Un estimateur affine est de la forme µ̂j = Ajy + bj, où Aj
est une matrice déterministe de taille n× n et bj ∈ Rn est un vecteur déterministe
dans Rn. La linéarité des estimateurs µ̂1, ..., µ̂M permet de traiter explicitement la
dépendance entre les estimateurs µ̂1, ..., µ̂M et les données y = (Y1, ..., Yn)T utilisées
pour la phase d’agrégation.

Les articles [70, 35, 33] ont étudié différentes procédures qui satisfont des inégalités
d’oracles exactes pour le problème d’agrégation d’estimateurs affines lorsque le bruit
est gaussien. Leung and Barron [70], Dalalyan and Salmon [35] ont proposé un
estimateur µ̂EW basé sur les poids exponentiels pour lequel l’inégalité d’oracle
suivante est vérifiée en espérance :

E|f − µ̂EW |22 ≤ min
j=1,...,M

E|µ̂j − f |22 + 8σ2 logM,

sous l’hypothèse que tous les Aj sont des projecteurs orthogonaux, ou sous une
hypothèse forte de commutativité des matrices Aj. La constante 8 peut être réduite
a 4 si toutes les matrices Aj sont des projecteurs orthogonaux. Si les matrices Aj ne
sont pas symétriques, [35] a montrée qu’il était possible de symétriser les estimateurs
affines avant la phase d’agrégation obtenant une inégalité d’oracle similaire, ce qui
suggère que l’hypothèse de symétrie n’est pas nécessaire. Bien que l’estimateur
µ̂EW satisfasse l’inégalité ci-dessus en espérance, il a été montré dans [3, 32] que cet
estimateur ne peut pas satisfaire une inégalité similaire avec grande probabilité, avec
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un terme d’erreur inévitable de l’ordre de
√
n. Dans Dai et al. [33], une inégalité

d’oracle exacte est démontré pour un estimateur µ̂Q basé sur la Q-aggregation [90, 32].
Plus précisément, [33] a montré que si les matrices A1, ..., AM sont symétriques et
positives semi-définies, alors l’estimateur µ̂Q verifie avec probabilité plus grande que
1− δ

|f − µ̂Q|22 ≤ min
j=1,...,M

(
|µ̂j − f |22 + 4σ2Tr(Aj)

)
+ Cσ2 log(M/δ), (8.3)

où la constante C est proportionnelle à la plus grande norme opérateur des matrices
A1, ..., AM . Le terme 4σ2Tr(Aj) est intimement lié à la complexité statistique de
l’estimateur µ̂j = Ajy+bj . En effet, la variance de l’estimateur µ̂j est E|µ̂j−Eµ̂j|22 =
σ2Tr(ATj Aj). Si µ̂j est un estimateur des moindres carrés, Aj est un projecteur
orthogonal et sa variance est σ2TrAj. La complexité statistique de l’estimateur
µ̂j apparait clairement dans le terme résiduel de l’inégalité d’oracle (8.3) prouvé
dans [33]. On pourrait donc penser que le prix à payer pour agréger M estimateurs
affines, i.e. la fonction priceM (δ) dans (8.2), dépend de la complexité statistique des
estimateurs a agréger. La borne (8.3) pourrait amener à la conclusion que le prix à
payer pour l’agrégation d’estimateurs affines peut être substantiellement plus grand
que σ2 log(M/δ) qui est le prix a payer pour agréger des vecteurs déterministes. En
effet, le terme supplémentaire 4σ2Tr(Aj) peut être large dans des situations où la
trace de certaines matrices Aj est grande. Par exemple, si l’on agrège les estimateurs
µ̂1 = λ1y, ..., µ̂M = λMy, où λ1, ..., λM sont des constantes positives, alors le terme
4σ2Tr(Aj) présent dans l’inégalité d’oracle est de l’ordre de σ2nλj , donc ce terme peut
être plus grande que la vitesse optimale d’agrégation σ2 logM . Ce terme 4σ2Tr(Aj)
rend l’inégalité d’oracle (8.3) intéressante seulement pour des scénarios où les matrices
Aj ont une trace faible. Mais pour en revenir à la question plus fondamentale évoquée
plus haut, le terme σ2TrAj suggère que le prix à payer pour agréger les estimateurs
affines augmente avec la complexité statistique des estimateurs à agréger. Enfin, les
résultats discutés plus haut nécessitent des hypothèses spécifiques sur les matrices
A1, ..., AM [70, 35, 33]. Cela pose une troisième question :

3. Est-ce que la nature des matrices A1, ..., Am a un impact sur le prix à payer
pour agréger les estimateurs affines correspondants ? Est-ce que le prix (8.2)
est plus faible lorsque ces matrices sont des projecteurs orthogonaux, ou bien
lorsqu’elle sont symétriques définies positives ?

La contribution principale du présent article est de répondre aux trois questions
posées plus haut :

1. Théorème 8.1 montre que la minimisation d’un critère de moindres carrés
pénalisé sur le simplex permet de construire un estimateur qui vérifie l’inégalité
d’oracle exacte (8.2) avec priceM (δ) = cσ2 log(M/δ) où c > 0 est une constante
absolue. Ce prix est du même ordre que le prix à payer pour l’agrégation de
vecteurs déterministes. La dépendance entre les estimateurs à agréger et les
données y n’induit donc pas de terme d’erreur supplémentaire.

2. La forme des estimateurs affines à agréger n’a pas d’impact sur le prix à payer
pour les agréger. En particulier, les inégalités d’oracle exactes du présent article
ne font pas intervenir de quantités dépendant des matrices Aj tels que σ2TrAj .

3. La seule hypothèse faite sur les matrices A1, ..., AM est que |||Aj|||2 ≤ 1 pour
tout j = 1, ...,M , où ||| · |||2 est la norme opérateur. Toutes les autres hypothèse
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sur les matrices A1, ..., AM ne sont pas nécessaires, en particulier les matrices
peuvent ne pas être symétriques ou avoir des valeurs propres négatives.

L’organisation de l’article est la suivante. La Section 8.1.1 définit les notations
utilisées dans l’article. La Section 8.1.2 définit un estimateur par la minimisation
d’un critère pénalisé sur le simplex, et montre que que cet estimateur vérifie une
inégalité d’oracle exacte en déviation pour l’agrégation d’estimateurs affines. Le role
de la pénalité est étudié dans la Section 8.1.3 et la Section 8.1.4. Dans la Section 8.1.5
nous considérons des poids a priori sur les estimateurs à agréger.

8.1.1 Notation
Soit f = (f1, ..., fn)T ∈ Rn un vecteur de régression inconnue. Nous observons n
variables aléatoires (8.1) où ξ1, ..., ξn sont des variables aléatoires sous-gaussiennes
telles E[ξi] = 0 et E[ξ2

i ] = σ2. Avec la notation vectorielle, nous avons y = f + ξ où
y = (Y1, ..., Yn)T , f = (f1, ..., fn)T et ξ = (ξ1, ..., ξn)T .

Étant donné un estimateur µ̂ de f , nous mesurons l’erreur d’estimation avec la
perte quadratique |µ̂− f |22, où | · |2 est la norme euclidienne dans Rn. Soit M ≥ 2
un entier. Nous considérons M estimateurs affines de la forme

µ̂j = Ajy + bj, j = 1, ...,M.

Les matrices A1, ..., AM et les vecteurs b1, ..., bM ∈ Rn sont déterministes. Nous
définissons le simplex dans RM par :

ΛM =
{
θ ∈ RM ,

M∑
j=1

θj = 1, ∀j = 1 . . .M, θj ≥ 0
}
.

Pour tout θ ∈ ΛM , soit

Aθ =
M∑
j=1

θjAj, bθ =
M∑
j=1

θjbj, µ̂θ = Aθy + bθ.

Soit e1, ..., eM les vecteurs de la base canonique RM . Avec ces notations, µ̂j = µ̂ej
pour tout j = 1, ...,M .

Un projecteur orthogonal est une matrice P de taille n× n telle que

P = P T = P 2.

Soit In×n la matrice identité de taille n × n. Étant donnée une matrice réelle
A = (ai,j)i,j=1,...,n de taille n× n, la norme opérateur de A, la norme de Frobenius
de A et la norme nucléaire de A sont respectivement définies par :

|||A|||2 = sup
x6=0

|Ax|2
|x|2

, ‖A‖F =
√ ∑
i,j=1,...,n

a2
i,j, ‖A‖1 = Tr

(√
ATA

)
.

L’inégalité suivante est vérifiée pour toutes matrices carrées M,M ′ :

|||MM ′|||2 ≤ |||M |||2|||M
′|||2, ‖MM ′‖F ≤ |||M |||2 ‖M

′‖F .

Enfin, la fonction log est le logarithme naturel vérifiant log(e) = 1.
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8.1.2 Une procédure pénalisée sur le simplex
Pour tout θ ∈ ΛM , soit

Cp(θ) := |µ̂θ|22 − 2yT µ̂θ + 2σ2Tr(Aθ), (8.4)

qui est le critère Cp de Mallows [73]. Nous définissons ensuite

Hpen(θ) = Cp(θ) + 1
2pen(θ), (8.5)

où
pen(θ) =

M∑
j=1

θj|µ̂θ − µ̂j|22. (8.6)

Nous considérons l’estimateur µ̂θ̂pen
solution du problème de minimisation

θ̂pen ∈ argmin
θ∈ΛM

Hpen(θ). (8.7)

La fonction Hpen est quadratique et convexe. Minimiser Hpen sur le simplex est un
programme quadratique pour lequel des algorithmes efficaces sont disponibles. La
convexité de Hpen montre que θ̂pen est bien défini, bien qu’il puisse ne pas être unique
(par exemple, si tous les µ̂j sont égaux alors Hpen est constante sur le simplex).

Nous expliquons maintenant la signification de chacun des termes qui apparaissent
dans (8.5). Si θ est fixé, alors Cp(θ) est un estimateur non biaisé de

R(θ) := |µ̂θ|22 − 2fT µ̂θ = |µ̂θ − f |22 − |f |22, (8.8)

qui est égale, à une constante additive près, au risque de l’estimateur µ̂θ.
La pénalité (8.6) a pour origine la Q-agrégation, qui est une technique avérée pour

obtenir des inégalités d’oracle exacte en déviation quand la perte est fortement convexe
[90, 32, 69, 12]. Puisque les estimateurs µ̂1, ..., µ̂M dépendent des données y, la
pénalité (8.6) dépend également des données, ce qui n’est pas le cas si µ̂1, ..., µ̂M sont
des vecteurs déterministes comme dans [32]. Pour donner une intuition géométrique
de la pénalité (8.6), soit c ∈ Rn une solution des M équations linéaires 2cT µ̂j =
|µ̂j|22, j = 1, ...,M , et supposons seulement dans le reste du présent paragraphe que
cette solution existe, bien que cette hypothèse ne puisse pas être vérifiée lorsque
M > n. Dans ce cas, la pénalité peut être réécrite

pen(θ) =
M∑
j=1

θj|µ̂j|22 − |µ̂θ|22 = 2cT µ̂θ − |µ̂θ|22 = |c|22 − |µ̂θ − c|22. (8.9)

Nous pouvons donc écrire pen(θ) = g(µ̂θ) pour une fonction g définie sur l’enveloppe
convexe de {µ̂1, ..., µ̂M}. L’équation (8.9) montre que les lignes de niveau de g sont
des sphères euclidiennes centrées en c. La fonction g est positive, elle est minimale
aux points extrêmes µ̂1, ..., µ̂M puisque g(µ̂j) = 0 pour tout j = 1, ...,M et g est
maximale en la projection euclidienne de c sur l’enveloppe convexe de {µ̂1, ..., µ̂M}.
Intuitivement, la pénalité (8.6) repousse θ loin du centre c vers les points extrêmes.
Ici, les lignes de niveau de la fonction θ → pen(θ) définie sur RM sont des ellipsoïdes
centrés en θc, où θc est l’unique point de RM telle que µ̂θc = c. Si M > n ou bien si
c n’est pas bien définie, alors les lignes de niveau de pen(·) sont plus complexes et ne
peuvent pas être décrites aussi simplement.
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(a) 3 points dans R2. (b) 4 points dans R2. (c) 6 points dans R2.

Figure 8.1: La pénalité (8.6) et ses lignes de niveaux. La plus grande pénalité est en
rouge, la plus petite en bleu.

Theorem 8.1 (Résultat principal). Soit M ≥ 2. Pour tout j = 1, ...,M , soit
un estimateur affine µ̂j = Ajy + bj et supposons que |||Aj|||2 ≤ 1. Supposons que
les variables aléatoires de bruit ξ1, ...ξn sont i.i.d. N (0, σ2). Soit θ̂pen l’estimateur
(8.7). Alors pour tout x > 0, l’estimateur µ̂θ̂pen

vérifie avec probabilité au moins
1− exp(−x),

|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
|µ̂j − f |22 + 30σ2(x+ 2 logM). (8.10)

De plus,
E
[
|µ̂θ̂pen

− f |22
]
≤ E

[
min

j=1,...,M
|µ̂j − f |22

]
+ 60σ2 log(M). (8.11)

L’inégalité d’oracle exacte en déviation donnée par [33] présente un terme additif
proportionnel à σ2Tr(Aj), cf. (8.3). Une amélioration du présent article est l’absence
de ce terme additif qui peut être large pour des matrices Aj ayant une trace large.
Notre analyse montre que les quantités σ2Tr(Aj) ne sont pas significatives pour le
problème d’agrégation d’estimateurs affines, et le Théorème 8.1 améliore le résultat
précédemment obtenue par [33].

Les hypothèses sur les matrices A1, ..., AM ne concernent que la norme opérateur
de ces matrices. Les matrices peuvent ne pas être symétriques ou avoir des valeurs
propres négatives. Le résultat ci-dessus montre donc que les restrictions sur les
matrices A1, ..., AM introduites dans [70, 35, 33] ne sont pas intrinsèques au problème
d’agrégation d’estimateurs affines.

Un estimateur de la forme Bjy + bj avec |||Bj|||2 > 1 et bj ∈ Rn n’est pas
admissible au sens où il existe une matrice Aj = Aj(Bj) telle que

|||Aj|||2 ≤ 1, E
[
|Ajy + bj − f |22

]
≤ E

[
|Bjy + bj − f |22

]
(8.12)

pour tout f ∈ Rn, cf. Cohen [31]. Soit B1, ..., BM des matrices réelles et b1, ..., bM ∈
Rn des vecteurs déterministes. Nous définissons les matrices Aj = Aj(Bj) de la
manière suivante. Si |||Bj|||2 > 1 alors Aj est une matrice telle que (8.12) est vérifié
et si |||Bj|||2 ≤ 1, alors Aj = Bj. Grâce au Théorème 8.1, l’estimateur µ̂θ̂pen

qui
agrègent les estimateurs (Ajy + bj)j=1,...,M vérifie

E|µ̂θ̂pen
− f |22 ≤ min

j=1,...,M
E
[
|Ajy + bj − f |22

]
+ 60σ2 log(M),

≤ min
j=1,...,M

E
[
|Bjy + bj − f |22

]
+ 60σ2 log(M).
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Nous obtenons donc une inégalité d’oracle en espérance sans l’hypothèse maxj=1,...,M |||Bj|||2 ≤
1 si les estimateurs (Bjy + bj)j=1,...,M sont préalablement transformés en (Ajy +
bj)j=1,...,M avec |||Aj|||2 ≤ 1.

La proposition suivante montre que les majorations du Théorème 8.1 sont opti-
males dans un sens minimax. Pour tout f ∈ Rn notons Pf la mesure de probabilité
de la variable aléatoire y = f + ξ. Une minoration pour l’agrégation de vecteurs
déterministe a été prouvé dans [92, Theorem 5.4 with S = 1]. Cette minoration
implique le résultat suivant.

Proposition 8.2. Il existe des constantes absolues c∗, C∗, p∗ > 0 telle que le résultat
suivant est vérifié. Pour tout M,n ≥ C∗, il existe des vecteurs b1, ..., bM ∈ Rn et des
projecteurs orthogonaux A1, ..., AM de rang 1 tels que

inf
µ̂

sup
f∈Rn

Pf
(
|µ̂− f |22 − min

k=1,...,M
|bk − f |22 ≥ c∗σ2 log(M)

)
≥ p∗, (8.13)

inf
µ̂

sup
f∈Rn

Pf
(
|µ̂− f |22 − min

k=1,...,M
|Aky− f |22 ≥ c∗σ2 log(M)

)
≥ p∗, (8.14)

où la borne inférieure est prise sur tous les estimateurs µ̂.

Ce résultat implique que les majorations du Théorème 8.1 sont optimales pour
le problème d’agrégation d’estimateurs affines. La minoration ci-dessus peut être
construite soit avec un dictionnaire de vecteur déterministes (cf. (8.13)), soit avec
un dictionnaire de projecteurs orthogonaux de rang 1 (cf. (8.14)).

8.1.3 La pénalité (8.6) améliore la sélection de modèles basée
sur Cp

Pour expliquer le rôle joué par la pénalité (8.6) pour le problème d’agrégation
d’estimateurs affines, considérons d’abord la procédère de sélection par minimization
du critère Cp . Définissons Ĵ par

Ĵ ∈ argmin
j=1,...,M

Cp(ej), (8.15)

où Cp(·) est défini par (8.4). En utilisant l’inégalité Cp(eĴ) ≤ Cp(ek) pour tout
k = 1, ...,M et les définitions de Cp(·) et R(·) données dans (8.4) et (8.8), l’inégalité
suivante est vérifiée presque sûrement :

|µ̂Ĵ − f |
2
2 ≤ min

k=1,...,M
|µ̂k − f |22 + max

j,k=1,...,M
∆jk, (8.16)

où ∆jk := Cp(ek) − Cp(ej) − (R(ek) − R(ej)). Il est donc possible de montrer
une inégalité d’oracle pour l’estimateur µ̂Ĵ si nous pouvons contrôlé les quantités
∆jk uniformément sur toutes les paires j, k = 1, ...,M . Ces quantités peuvent être
réécrites

∆jk = 2ξT ((Aj − Ak)f + bj − bk) + 2
(
ξT (Aj − Ak)ξ − σ2Tr(Aj − Ak)

)
. (8.17)

Deux quantités aléatoires apparaissent dans ∆jk. La première quantité est une
variable aléatoire gaussienne centrée, de variance 4σ2|(Aj − Ak)f + bj − bk|22. La
seconde quantité est une forme quadratique en ξ, et sa variance est de l’ordre de
σ4 ‖Aj − Ak‖2

F. Ce terme quadratique est parfois appelé un chaos gaussien d’ordre 2.
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La déviation de ces deux termes est caractérisée par les inégalités de concentration
suivantes. Pour tout vecteur v ∈ Rn, une majoration standard de la queue gaussienne
est

P
(
vTξ > σ|v|2

√
2x
)
≤ exp(−x), ∀x > 0. (8.18)

Pour le chaos gaussien d’ordre 2, l’inégalité de concentration suivante est montré
dans [20, Example 2.12].
Lemma 8.3. Supposons que ξ ∼ N (0, σ2In×n). Alors pour toute matrice carrée B
de taille n,

P
(
ξTBξ − σ2TrB > 2σ2 ‖B‖F

√
x+ 2σ2|||B|||2x

)
≤ exp(−x), (8.19)

où σ2TrB = E[ξTBξ].
Notons v = 2((Aj − Ak)f + bj − bk) et B = 2(Ak − Aj) pour étudier le com-

portement de la variable aléatoire ∆jk. Si |||Aj − Ak|||2 est petite, (8.18) et (8.19)
montrent que les déviations de ∆jk sont de l’ordre des deux quantités

σ|(Aj − Ak)f + bj − bk|2, σ2 ‖Aj − Ak‖F ,

i.e., l’écart type des deux termes aléatoires présents dans ∆jk. Les inégalités de
concentration (8.18) et (8.19) sont connues pour être précises [62], il y a donc peu
d’espoir de majorer les larges déviations de ∆jk indépendamment de f , Aj et Ak pour
obtenir une inégalité d’oracle exacte. Cependant, il est possible de modifier l’analyse
ci-dessus pour obtenir l’inégalité d’oracle suivante, qui est cependant inexacte avec
une constante principale strictement plus grande que 1.
Proposition 8.4. Il existe des constantes absolues c, C > 0 telles que le résultat
suivant est vérifiée. Supposons que |||Aj|||2 ≤ 1 pour tout j = 1, ...,M . Soit 0 < ε < c

et soit Ĵ l’estimateur défini par (8.15). Pour tout x > 0, l’estimateur µ̂Ĵ vérifie avec
probabilité plus grande que 1− 2 exp(−x)

|µ̂Ĵ − f |
2
2 ≤ (1 + ε) min

k=1,...,M
|µ̂k − f |22 + Cσ2(x+ 2 logM)/ε.

L’estimateur µ̂Ĵ ne peut pas vérifier une inégalité d’oracle exacte avec un terme
d’erreur de l’ordre de σ2 logM , et cette faiblesse ne peut pas être réparé par une
procédure de la forme µ̂K̂ où K̂ est un estimateur qui prend ses values dans l’ensemble
discret {1, ...,M}. En effet, il est prouvé dans [46, Section 6.4.2 et Proposition 6.1]
qu’il existe f 1,f 2 ∈ Rn et deux projecteurs orthogonaux A1, A2 tels que pour
n’importe quel estimateur K̂ valué dans {1, 2},

sup
f∈{f1,f2}

(
E|AK̂y− f |22 − min

j=1,2
E|Ajy− f |22

)
≥ σ2√n/4,

dès que n est plus grand qu’une valeur absolue. Si l’on regarde de plus près la preuve
de ce résultat, on trouve que

σ|(A2 − A1)f + b2 − b1|2 ≥ σ2√n, ∀f ∈ {f 1,f 2},

où b1 = b2 = 0. Cette minoration d’ordre
√
n est donc lié au terme gaussien de la

variable aléatoire ∆12, i.e., au terme ξT ((A1 − A2)f + b1 − b2), cf. (8.17).
La procédure µ̂Ĵ ne vérifie pas d’inégalité d’oracle exacte car les variances des

deux termes de ∆jk peuvent être larges et ne sont pas contrôlés. Le rôle de la pénalité
(8.6) est exactement de contrôler les déviations de ∆jk. La proposition suivante
précise cette interprétation.
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Proposition 8.5. Soit θ̂pen l’estimateur (8.7). Alors, presque sûrement

|µ̂θ̂pen
− f |22 ≤ min

q=1,...,M

(
|µ̂q − f |22

)
+ max

j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
, (8.20)

où ∆jk est définie par (8.17). De plus, pour tout j, k = 1, ...,M ,

E
[1
2 |µ̂j − µ̂k|

2
2

]
= 1

2 |(Aj − Ak)f + bj − bk|22 + σ2

2 ‖Aj − Ak‖
2
F . (8.21)

La preuve de (8.20) est donnée dans la Section 8.1.4 ci-dessous. Une décomposition
biais-variance montre directement (8.21), puisque E[µ̂j − µ̂k] = (Aj −Ak)f + bj − bk
et E|µ̂j − µ̂k − E[µ̂j − µ̂k]|22 = E|(Aj − Ak)ξ|22 = σ2 ‖Aj − Ak‖2

F.
Comparé avec (8.16), le membre de droite de (8.20) présente les quantités

−1
2 |µ̂j − µ̂k|

2
2. Nous expliquerons plus bas que ces quantités apparaissent à cause de

l’interaction entre la pénalité (8.6) et la convexité forte de la fonction Hpen.
A partir de (8.20), voici un résumé de la preuve du Théorème 8.1. En étudiant

précisément la fonction génératrice des moments, nous montrerons que pour toute
paire (j, k) nous avons

E exp
(
λ0

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

))
≤ 1

où λ0 = (30σ2)−1 si le bruit ξ a pour distribution N (0, σ2In×n). Nous avons donc

E exp
(
λ0 max

j,k=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

))
≤M2.

En utilisant l’inégalité de Jensen, nous obtenons (8.11) et en utilisant la borne de
Chernoff nous obtenons (8.10). Cela explique le succès de la pénalité (8.6) pour le
problème d’agrégation de type sélection de modèle : la pénalité et la convexité forte
de Hpen font apparaitre les quantités −1

2 |µ̂j − µ̂k|
2
2, et ces quantités sont exactement

celles nécessaires pour contrôler les larges déviations des variables aléatoires ∆jk.

8.1.4 Convexité forte et la pénalité (8.6)
Pour comprendre plus précisément l’interaction entre la pénalité (8.6) et la convexité
forte de Hpen, nous donnons maintenant une preuve de (8.20).

Preuve de (8.20). Soit k = 1, ...,M un entier fixé. Le simplex ΛM est un ensemble
convexe et la fonction Hpen est convexe, donc nous avons

∇Hpen(θ̂pen)T (ek − θ̂pen) ≥ 0,

cf. [21, Section 4.2.3, equation (4.21)]. L’inégalité (8.20) est une conséquence de

|µ̂θ̂pen
− f |22 − |µ̂k − f |22

≤ |µ̂θ̂pen
− f |22 − |µ̂k − f |22 +∇Hpen(θ̂pen)T (ek − θ̂pen), (8.22)

=
M∑
j=1

θ̂pen, j

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
, (8.23)

≤ max
j=1,...,M

(
∆jk −

1
2 |µ̂j − µ̂k|

2
2

)
. (8.24)

L’égalité (8.23) est obtenue par des manipulations élémentaires tandis que (8.24) est
une conséquence de ∑M

j=1 θ̂pen, j = 1 et θ̂pen, j ≥ 0 pour tout j = 1, ...,M .
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Il est possible d’interpréter cet argument en terme d’interaction entre la convexité
forte et la pénalité (8.6). En effet, le membre de droite de (8.22) vérifie

|µ̂θ̂pen
− f |22 − |µ̂k − f |22 +∇Hpen(θ̂pen)T (ek − θ̂pen)

=
M∑
j=1

θ̂pen, j∆jk −
1
2
[
pen(θ̂pen) + |µ̂θ̂pen

− µ̂k|22
]
.

Le terme |µ̂θ̂pen
− µ̂k|22 vient de la convexité forte de la fonction Hpen. Par des

manipulations élémentaires, nous obtenons

pen(θ̂pen) + |µ̂θ̂pen
− µ̂k|22︸ ︷︷ ︸

terme provenant de
la convexité forte de Hpen

=
M∑
j=1

θ̂pen, j |µ̂j − µ̂k|22.︸ ︷︷ ︸
terme qui contrôle

les déviations de ∆jk

(8.25)

La formule (8.25) met en lumière le rôle de la pénalité (8.6): la pénalité transforme
le terme quadratique provenant de la convexité forte en un terme linéaire donné par
le membre de droite de (8.25).

8.1.5 Poids a priori
Nous considérons maintenant le problème d’égrégation de M estimateurs affines
étant donnée une mesure de probabilité a priori π = (π1, ..., πM)T sur l’ensemble
d’indices {1, ...,M}.

Theorem 8.6. Soit M ≥ 2. Pour tout j = 1, ...,M , considérons l’estimateur
µ̂j = Ajy+bj et supposons que |||Aj|||2 ≤ 1. Soit π = (π1, ..., πM )T ∈ ΛM . Supposons
que le bruit ξ a pour distribution N (0, σ2In×n). Soit θ̂π ∈ argminθ∈ΛM Vpen(θ) où

Vpen(θ) := Hpen(θ) + 30σ2Kθ. (8.26)

Alors pour tout x > 0, avec probability plus grande que 1− exp(−x), nous avons

|µ̂θ̂π − f |
2
2 ≤ min

j=1,...,M

(
|µ̂j − f |22 + 60σ2 log 1

πj

)
+ 30σ2x. (8.27)

De plus,

E|µ̂θ̂π − f |
2
2 ≤ E min

j=1,...,M

(
|µ̂j − f |22 + 60σ2 log 1

πj

)
. (8.28)

La mesure de probabilité a priori π = (πj)j=1,...,M est déterministe et ne peut pas
dépendre des données y = (Y1, ..., Yn)T . La seule différence entre la fonction (8.5) et
la fonction minimisé dans (8.26) est le terme

σ2Kθ.

Ce terme nous permet de donner des poids différents aux estimateurs candidats
µ̂1, ..., µ̂M avec la mesure de probabilité (πj)j=1,...,M basé sur une connaissance
préalable sur les caractéristiques des estimateurs µ̂1, ..., µ̂M . Par exemple, si les esti-
mateurs sont des projecteurs orthogonaux on peut définir une mesure de probabilité
a priori qui décroit avec le rang des projecteurs [92, 93]. Le même terme est utilisé
[69] tandis que [33] utilise la divergence de Kullback-Leibler de θ par rapport π.
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8.2 Résumé des différents chapitres
Les chapitres peuvent être lues de manière indépendante. Voici un résumé succin de
chaque chapitre et de leur contribution principale.

• Le chapitre 2 étudie le problème d’agrégation de fonctions déterministes pour
l’estimation de densité en perte L2. Les résultats principaux de ce chapitre
sont les inégalités d’oracle données dans les Théorèmes 2.6 et 2.8.

• Le chapitre 3 étudie le problème d’agrégation d’estimateurs affines en régression
à design fixe. Les estimateurs sont dépendants des données utilisées pour
l’agrégation. Le résultat du chapitre 3 est l’inégalité d’oracle donné dans le
Théorème 3.1.

• Dans le chapitre 4, nous construisons un estimateur qui agrège les estimateurs
Lasso sur le chemin de régularisation du Lasso. Cet estimateur est presque
aussi performant que le meilleur estimateur Lasso, cf. Théorème 4.3.

• Le chapitre 5 lie les deux domaines des statistiques étudiés dans cette thèse:
l’agrégation d’estimateurs et la régression sous contrainte de forme.

• Le chapitre 6 étudie l’estimateur des moindres carrés en régression sous con-
trainte de forme. Le résultat principal de ce chapitre est que les inégalités
d’oracle du chapitre 5 sont également satisfaites par l’estimateur des moindres
carrées.

• Enfin, dans le chapitre 7 nous construisons des ensembles de confiance dans
le contexte de la régression sous contrainte de forme. Le chapitre 7 prouve
l’existence d’ensembles de confiance qui capturent la vrai fonction avec grande
probabilité et dont le diamètre est de l’ordre de la vitesse minimax, cf. Theo-
rems 7.2, 7.3, 7.9 and 7.11.

8.3 Mise en perspective et notes bibliographiques
Les premiers résultats sur l’agrégation dans un contexte statistique sont apparus dans
Nemirovski [83], Catoni [25], Yang [106] et Tsybakov [98]. Ces travaux pionniers
étudient trois différents problème d’agrégation.

• Pour l’agrégation de type sélection de modèles, le but est d’imiter la performance
de la meilleure fonction dans le dictionnaire. Les résultats pour ce problème
ont été obtenus dans [106, 25, 98, 64, 70, 58, 4, 35, 90, 32, 33], Chapters 2
and 3.

• Pour le problème d’agrégation convexe, le but est d’imiter la performance de
la meilleure combinaison convexe des fonctions du dictionnaire [98, 89, 90, 96].
La Proposition 3.10 du chapitre 3 donne un résultat d’agrégation convexe pour
les estimateurs affines.

• Pour le problème d’agrégation linéaire, le but est d’imiter la meilleure fonction
dans l’espace vectoriel engendré par les fonctions du dictionnaire. [98, 89, 90,
96].
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Des travaux plus récents étudient le problème d’agrégation parcimonieuse et celui de
l’agrégation parcimonieuse-convexe, cf. [71, 92, 93, 96].

Cette thèse se concentre sur le problème d’agrégation de type sélection de modèle.
L’estimateur pénalisé étudié dans les chapitres 2 et 3 est similaire à la procédure de
Q-agrégation proposé par Rigollet [90] et Dai et al. [32]. L’agrégation d’estimateurs
affines utilisant la Q-agrégation a été étudié précédemment dans Dai et al. [33].

Leung and Barron [70] ont donné le premier résultat d’agrégation d’estimateurs
linéaires, où il est nécessaire de prendre en compte la dépendance entre les estimateurs
dans le dictionnaire et les données utilisées pour la phase d’agrégation. Ces résultats
ont été plus tard généralisés dans Dalalyan and Salmon [35], Dai et al. [33] et dans
le chapitre 3 de la présente thèse. A notre connaissance, le Théorème 4.2 du chapitre
4 est le premier résultat d’agrégation d’estimateurs non linéaires où les estimateurs
non linéaires sont construits à partir des mêmes données que celles utilisées pour la
phase d’agrégation.

Le chapitre 5 explique comment les méthodes d’agrégation peuvent être utilisées
pour produire des inégalités d’oracle exactes dans le cadre de la régression à contrainte
de forme, généralisant les résultats de Guntuboyina and Sen [50], Chatterjee et al. [27]
et Chatterjee et al. [28]. Ces papiers ont d’abord étudié la vitesse quasi-paramétrique
qui apparaît si la fonction de régression inconnue possède des propriétés de basse
dimension, cf. les chapitres 5 et 6 pour des résultats rigoureux et une discussion plus
approfondie à propos de ces propriétés de basse dimension. A notre connaissance, le
chapitre 7 donne les premiers résultats sur la construction d’ensembles de confiance
adaptatifs dans ce cadre.
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Résumé
Deux sujet sont traités dans cette thèse: l’agrégation d’estimateurs et la régression
sous contrainte de formes.

La régression sous contrainte de forme étudie le problème de régression (trouver
la fonction qui représente un nuage de points), avec la contrainte que la fonction
en question possède une forme spécifique. Par exemple, cette fonction peut être
croissante ou convexe: ces deux contraintes de forme sont les plus étudiés. Nous
étudions en particulier deux estimateurs: un estimateur basé sur des méthodes
d’agrégation et un estimateur des moindres carrés avec une contrainte de forme
convexe. Des inégalités d’oracle sont obtenues, et nous construisons aussi des
intervalles de confiance honnêtes et adaptatifs.

L’agrégation d’estimateurs est le problème suivant. Lorsque plusieurs méthodes
sont proposes pour le même problème statistique, comment construire une nouvelle
méthode qui soit aussi performante que la meilleure parmi les méthodes proposées?
Nous étudierons ce problème dans trois contextes: l’agrégation d’estimateurs de den-
sité, l’agrégation d’estimateurs affines et l’agrégation sur le chemin de régularisation
du Lasso.

Summary
This PhD thesis studies two fields of Statistics: Aggregation of estimators and shape
constrained regression.

Shape constrained regression studies the regression problem (find a function
that approximates well a set of points) with an underlying shape constraint, that
is, the function must have a specific "shape". For instance, this function could be
nondecreasing of convex: These two shape examples are the most studied. We study
two estimators: an estimator based on aggregation methods and the Least Squares
estimator with a convex shape constraint. Oracle inequalities are obtained for both
estimators, and we construct confidence sets that are adaptive and honest.

Aggregation of estimators studies the following problem. If several methods
are proposed for the same task, how to construct a new method that mimics the
best method among the proposed methods? We will study these problems in three
settings: aggregation of density estimators, aggregation of affine estimators and
aggregation on the regularization path of the Lasso.
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