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Abstract

This thesis is composed of three essays on the economics of innovation. Each chapter is dedicated

to a specific question and can therefore be read separately.

The first two chapters are devoted to the study of the recent emergence of new actors in the

market for patents, namely, Non-Practicing Entities (NPEs), who acquire patents with no aim

to use them to produce a final good. The main focus here is on two types of NPEs that differ

according to their acquisition strategies. On the one hand, Patent Assertion Entities (PAEs),

often referred to as patent trolls, seek to acquire patents with the intent to monetize them

through litigation or the threat of litigation for patent infringement. PAEs usually operate

in technology fields (such as ICT) where products encompass numerous overlapping patents.

The likelihood of inadvertently infringing a patented technology is particularly high when R&D

intensive firms develop technical components in such complex technological industries where

several patented inventions enter their final good. Importantly, PAEs’ immunity to countersuits

gives them a strategic advantage over producing firms through a greater bargaining power when

it comes to extracting damage payments from alleged infringers, thereby imposing tremendous

costs on producing firms. For instance, Bessen and Meurer (2014) argue that, in 2011, United

States business entities incurred $29 billion in direct costs because of them. On the other hand,

defensive aggregators (also known as preemptive intermediaries) acquire patents to provide safety

from litigation brought by patent trolls to their affiliated firms.

In this respect, the first chapter considers the auction of a patent which, upon enforcement,

threatens two producing firms for patent infringement. The patent has common value among

bidders, which include both firms and a patent troll. In order to capture the troll’s strategic

advantage over firms, it is assumed that he holds a private-value advantage so that he enjoys a

strictly higher ex-post valuation for the patent. On the other hand, he is completely uninformed
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about the common value of the patent. The results of this chapter first suggest that, without

intermediation, firms have no means to protect themselves against litigation brought by the troll

since the latter always wins the auction.

The baseline model is then extended with the introduction of an intermediary who, in ex-

change of an up-front membership fee, enables firms to collectively contribute toward the patent

purchase. Then the intermediary competes against the troll in the auction on behalf of his

affiliated firms. The results state that there is no equilibrium in which the intermediary wins

at a positive price due to a collective action issue, and that firms pledge either conservative or

aggressive contributions. Finally, the intermediary’s probability to win the auction is strictly

positive, suggesting that his intervention partially hampers the troll’s litigious activity.

This chapter also contributes to the vast literature on second-price sealed-bid common value

auctions. While asymmetries in terms of either information or ex-post valuations for the object

across bidders (in the so-called almost common value auctions) have been extensively studied,

the existing literature does not incorporate both sources of asymmetries with more than two

bidders. As such, the model developed in this chapter is therefore at the intersection of these two

strands of the literature by considering an almost common value auction with three asymmet-

rically informed bidders. The results indicate that perturbing the information structure so that

the advantaged bidder is also uninformed restores the extreme result of almost common value

auctions with two imperfectly informed bidders. Namely, the advantaged bidder always wins

in any ex-post equilibrium. Furthermore, it is shown that the participation of an uninformed

advantaged bidder substantially raises the seller’s expected equilibrium revenue.

In a similar vein, the second chapter theoretically and empirically examines recent business

models of patent preemption entities (PPEs) who specialize in the preemptive acquisition of

patents that could threaten firms that subscribe to their services, thereby alleviating the risk

of litigation brought by PAEs. We develop a simple theoretical model in which a PPE seeks to

attract subscribers before competing against a PAE in a patent auction. We show that PPEs

can establish a profitable business model by restricting their protection to the most threatening

patents and by targeting a subset of highly exposed firms, while maintaining a credible threat of

litigation against other potential infringers. Using patent reassignment and litigation data, we

then provide evidence supporting the model’s prediction. This chapter is a joint project with

Henry Delcamp, Aija Leiponen and Yann Ménière.
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The last chapter contributes to the literature on non-tournament models of R&D in which

firms engage in cost-reducing innovation and then compete à la Cournot in the product market.

In such models, it is widely recognized that exogenous knowledge spillovers create distortions

in R&D investment decisions. While most of the extant literature on imperfectly appropriable

R&D focused on multidirectional spillovers, Amir and Wooders (1999), henceforth AW, instead

consider a stochastic directed spillover process whereby know-how may flow only from the more

R&D intensive firm to its rival, so that spillovers only admit extreme realizations - full or no

spillovers occur with a given probability. The idea underlying the assumption of a unidirectional

spillover process is that it may better approximate the potential leakages that occur when the

R&D process is either one-dimensional, i.e. there is a single research path to achieve unit cost

reductions, or multi-dimensional in which case this spillover structure suggests that there is a

more natural path to follow. In this context, the spillover parameter may be interpreted as being

related to the length of patent protection, but also to a measure of the imitation lag.

This chapter examines the certainty-equivalent of AW’s model in the sense that a fraction

of the R&D undertaken by the leader flows to its rival with certainty. While firms are ex-ante

identical, one obtains a unique asymmetric equilibrium so that the roles of R&D innovator and

imitator are endogenously determined. We analyze the impact of uncertainty about the appro-

priability of firms’ R&D investments and find that both the spread between firms’ investments

and the industry’s total cost reductions are higher in the stochastic framework. Firms are better

off when spillovers are uncertain for a wide range of parameters due to increased asymmetries

in terms of their unit cost structure in the product market competition. Finally, we provide

a welfare analysis, showing that the stochastic spillover process is superior to its deterministic

counterpart, and examine the social costs of imposing symmetric R&D invesments among firms.

This last chapter is a joint project with Małgorzata Knauff.
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Chapter 1

Intermediaries versus Trolls in Contests

for Patents
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English summary

This paper examines the emergence of non-practicing entities in the market for patents, who

acquire patents with no aim to engage into innovative activities. While patent trolls seek to

monetize their acquired patents through the threat of litigation against alleged infringers, in-

termediaries instead intend to provide their affiliated firms with safety to operate from trolls’

litigious activity by buying out patents that would otherwise fall in trolls’ hands. We develop a

model of patent acquisition through an auction incorporating both patent trolls and intermedi-

aries. We highlight trolls’ greater ability to preempt patents that represent a threat of infringe-

ment as compared to producing firms. We find that firms have no means to protect themselves

against threatening patents when individually competing against the troll in the auction, while

the seller’s revenue sharply increases in response to the participation of a troll in the auction.

We then examine the effectiveness of intermediaries to protect firms against the troll’s litigious

activity by analyzing their patent funding mechanism. Since the patent is collectively financed

through voluntary individual contributions, firms tend to free ride on other contributors. While

the intermediary’s probability to outbid the troll in the auction is strictly positive, the collective

action issue inherent to his funding mechanism greatly hampers his performance in the auction

and undermines the seller’s revenue. Overall, our results nonetheless suggest that the presence of

NPEs in the patent acquisition process positively impacts the revenue of sellers of likely infringed

patents.

Résumé français

Ce papier examine l’émergence des entreprises non productrices sur le marché des brevets, qui

acquièrent des brevets sans intention d’innover. Tandis que les chasseurs de brevets cherchent

à acquérir des brevets en vue de les monétiser par la menace d’action en contrefaçon, les inter-

médiaries quant à eux acquièrent des brevets afin de protéger leurs entreprises clientes contre

des litiges initiés par les chasseurs de brevets. Nous développons un modèle d’acquisition de

brevet par le biais d’une enchère incorporant les chasseurs de brevets ainsi que les intermédi-

aires. Nous mettons en évidence l’aptitude supérieure des premiers quant à l’acquisition de

brevets représentant une menace d’action en contrefaçon par rapport aux producteurs. Nous

montrons que, sans intermédiaire, les firmes n’ont aucun moyen de se protéger contre les actions
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initiées par le chasseur de brevets, puisque ce dernier gagne toujours l’enchère. En outre, nos ré-

sultats montrent que le revenu du vendeur du brevet augmente considérablement dès lors qu’un

chasseur de brevet participe à l’enchère. Nous examinons ensuite l’efficacité des intermédiaires

quant à leur protection des producteurs contre les menaces légales initiées par les chasseurs de

brevets en analysant leur mécanisme de financement du rachat de brevets. Puisque le brevet est

collectivement financé via les contributions individuelles et volontaires des firmes, ces dernières

sont incitées à laisser les autres membres contribuer à leur place. Tandis que l’intermédiaire a

une probabilité strictement positive de gagner l’enchère, le problème d’action collective généré

par son mécanisme de rachat collectif a un impact négatif sur sa performance dans l’enchère,

ainsi que sur le revenu du vendeur. Néanmoins, nos résultats suggèrent que les vendeurs de

brevets menaçants bénéficient de la présence de ces deux types d’entreprises non productrices.
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1.1 Introduction

The last decade has seen a growing activity of patent assertion entities (PAEs), also known as

patent trolls. Trolls typically do not produce anything covered by their patents, and are therefore

frequently referred to as “non-practicing entities”. Such firms instead seek to acquire patents so as

to use them as a strategic tool to extort rents from alleged infringers, through either litigation or

the threat of litigation. Trolls usually operate in technology fields (such as ICT) where products

encompass numerous overlapping patents. The likelihood of inadvertently infringing a patented

technology is particularly high when R&D intensive firms develop technical components in such

complex technological industries where several patented inventions enter their final good1.

Since trolls do not engage in innovative activities, their immunity to countersuits gives them

a strategic advantage over producing firms through a greater bargaining power when it comes

to extracting damage payments from alleged infringers, thereby imposing tremendous costs on

producing firms and raising concerns regarding their impact on firms’ incentives to innovate.

For instance, Bessen et al. (2011) find that over the last four years, defendants incurred over

$80 billion per year in lawsuits initiated by patent trolls. On the other hand, their proponents

instead argue that trolls may enable inventors lacking resources to either manufacture products

embedding their technology, license their technology or even enforce their rights, to earn rents.

The proliferation of trolls’ litigious activity further gave rise to a different type of NPE,

often called defensive aggregators, such as RPX Corporation and Allied Security Trust. Their

primary goal is to provide producing firms with safety to operate by acquiring threatening

patents that might otherwise get in the possession of trolls. For an annual membership fee,

these intermediaries search for patents that might threaten their members upon litigation for

patent infringement. The identified patents are then collectively financed through members’

voluntary contributions. More specifically, each member decides whether to contribute toward

the patent purchase, and if so, by how much. Importantly, the contributors’ identity as well as

the amount they pledge is not disclosed. The intermediary then provides contributors with non-

exclusive licenses to the acquired patents, thereby annihilating any risk of patent infringement.

This paper develops a model of patent acquisition incorporating both trolls and intermedi-

aries, and focuses on the sale of a patent that threatens two producing firms upon enforcement

1The emergence of patent trolls is also closely related to the issue of uncertain patents (see e.g. Amir et al.,
2014).
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for patent infringement, so as to highlight trolls’ greater ability to acquire patents as compared

to producing firms, and then study the effectiveness of intermediaries’ mechanism to protect

firms from litigation brought by trolls.

The existing theoretical literature instead focuses on the effect of patent trolls on incentives

to undertake R&D and on litigation. Lemus and Temnyalov (2015) examine PAEs’ “patent

privateering” strategies, which consist of acquiring patents from operating firms to subsequently

enforce them against alledged infringers, usually competitors of the patent seller. They analyze

the impact of such strategies on incentives to undertake R&D and to engage in costly litigation.

Without PAEs, producing firms are reluctant to enforce their patents against their rivals due

to the threat of countersuits. In turn, the authors show that outsourcing patent monetization

to PAEs enhances the offensive value of patents due to PAEs’ immunity to countersuits but

undermines their defensive value. In particular, they find that when the former effect prevails,

PAEs spur incentives to innovate and enhance social welfare.

Hovenkamp (2013) instead develops a dynamic model of patent assertion and reputation

building in order to study PAEs’ strategy of predatory litigation. By aggressively asserting

weak patents against alleged infringers, PAEs develop a tough reputation and gain credibility in

their litigation threats, so that other firms are more encline to settle on a licensing agreement

before reaching the courts. While PAEs experience losses when litigating patents that are likely

to be invalidated, the author argues that the prospect of substantial licensing payments through

subsequent settlement agreements compensates. In a similar vein, Choi and Gerlach (2015)

examine PAEs’ litigation strategies and the credibility of their threats. They show that naming

multiple defendants using related technologies enhances the credibility of their litigation threat

and their bargaining position through information externalities generated across litigation suits.

In contrast to the extant literature, we focus on the strategic behavior of trolls and producing

firms in the patent acquisition process, and study how trolls successfully preempt patents as com-

pared to firms. We then examine intermediaries’ ability to successfully counter trolls’ litigious

activity by analyzing their collective funding mechanism through firms’ individual contributions.

To address these issues, we first consider the sale of a patent through a second-price sealed-

bid auction between a troll and two producing firms, which once bought out, threatens both

firms upon enforcement for patent infringement. We assume that firms use the same technology,

but that they operate in different markets so that they are not direct competitors. Prior to
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the auction, each firm privately receives a signal, which captures her exposure (or likelihood

of infringement) to the patent for sale. The value of the patent for a firm equals the damage

payments she can extract by asserting it against her rival plus the damages she would have had

incurred if she were sued for patent infringement. As to the troll, his value for the patent equals

the total damages to receive by litigating both firms. As such, the patent for sale has common

value among bidders. In order to capture the troll’s strategic advantage over firms through

his immunity to countersuits, it is assumed that he holds a private-value advantage so that he

enjoys a strictly higher ex-post valuation for the patent. On the other hand, he is completely

uninformed about the common value of the patent.

We show that the troll adopts an extreme equilibrium bidding behavior depending on the

magnitude of his private-value advantage, namely, he bids either very aggressively or very cau-

tiously. In turn, firms do not suffer from ex-post regret and mildly shade their bids down, so

that the expected equilibrium revenue of the seller of the patent subtantially increases when the

troll participates in the auction. Importantly, the troll always wins the auction in any ex-post

equilibrium due to his immunity to countersuits, thereby motivating intermediaries’ intervention

in the market for patents as an attempt to protect producing firms against litigation brought by

trolls.

Therefore, we extend the baseline model by introducing an intermediary who, in exchange

of a non-refundable up-front membership fee, offers firms to compete against the troll on their

behalf in the auction for patent buyout. Upon acceptance of the intermediary’s offer, firms then

simultaneously choose whether to contribute and if so, the amount of their contribution. The

intermediary’s bid then simply aggregates firms’ contributions. When winning the auction, the

intermediary then provides his members with non-exclusive licenses thereby annihilating any

risk of litigation for patent infringement.

We show that the intermediary screens out low-signal firms in order to charge a strictly

positive membership fee. Moreover, we identify two necessary conditions for the intermediary

to outbid the troll: both firms must contribute and any excess of contributions must be fully

refunded to contributing firms. Nevertheless, because the patent is collectively financed through

individual contributions, the collective action issue inherent to the intermediary’s funding mecha-

nism greatly hampers his performance in the auction and dramatically lowers the seller’s revenue.

Indeed, we show that there is no equilibrium in which the intermediary wins the auction with
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a strictly positive price. We highlight two classes of equilibria yielding two opposite outcomes.

The first one exhibits a free rider problem whereby each firm has an incentive to lower her con-

tribution so that the other firm incurs a larger share of the patent purchase. As a result, firms’

total contributions are too low and the troll always wins. The second instead involves firms

pledging aggressive contributions so that the troll always bids zero to ensure losing. Invoking

forward induction arguments, we argue that the second class of equilibria is more plausible.

Thus, the intermediary wins the patent for sale with a strictly positive ex-ante probability, yet

lower than that of the troll, thereby partially overcoming the troll’s threat for firms.

This paper also contributes to the vast literature on auctions. In second-price common-

value auctions with two bidders, introducing asymmetries among players through a private-value

advantage drastically affects the outcome of the auction, namely, the advantaged bidder always

wins and the seller’s revenue substantially decreases (see Bikhchandani (1988) and Avery and

Kagel (1997)). Levin and Kagel (2005) examine whether this extreme result still obtains with

more than one regular bidder in an almost common-value second-price auction where each bidder

receives a private signal. They show that, in the wallet auction, regular bidders have a positive

probability to win the auction, yet lower than that of the advantaged bidder, and that a small

private-value advantage only slightly decreases the seller’s revenue. However, while asymmetries

in terms of either information or ex-post valuations for the object across bidders have been

extensively studied, the existing literature does not incorporate both sources of asymmetries

with more than two bidders. As such, the model we consider is therefore at the intersection of

these two strands of the literature by considering an almost common-value auction with three

asymmetrically informed bidders.

In this respect, our results indicate that perturbing the information structure so that the

advantaged bidder is also uninformed restores the extreme result of almost common-value auc-

tions with two imperfectly informed bidders. Namely, the advantaged bidder always wins in

any ex-post equilibrium. However, we find that the participation of an uninformed advantaged

bidder substantially raises the seller’s expected equilibrium revenue.

The remainder of the paper is organized as follows. Section 1.2 presents the model and the

equilibrium concept. Section 1.3 characterizes the equilibria of the patent auction in which firms

compete against the troll and examines players’ exposure to ex-post regret. In Section 1.4, we

extend the model with the introduction of an intermediary who aggregates firms’ contributions
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toward the patent purchase and competes with the troll in the auction on behalf of firms.

Concluding remarks are provided in Section 1.5. Finally, Section 1.6 contains all the proofs.

1.2 The model

We consider the auction of a patent which, once bought out, might threaten two producing

firms upon enforcement for patent infringement. We assume that firms use the same technology,

but that they operate in different markets so that they are not direct competitors. We do not

model product market interaction, rather, we focus on the strategic value of the patent for sale.

Bidders include the two producing firms (indexed by i = 1, 2) and a patent troll (indexed by T),

and we denote by B this set of risk neutral bidders.

1.2.1 Patent value and information structure

Each firm i is characterized by a different degree of exposure, denoted by xi, to the patent for

sale, which can be thought of as the probability that a court deems the patent valid and infringed

by firm i. Throughout the paper, xi denotes the value of the signal received by firm i. Signals

X1, X2 are assumed to be independently and identically drawn from the uniform distribution

over the support [0, 1]. We assume that, prior to the auction, each firm privately receives her

signal, but remains uninformed about the other firm’s degree of exposure.

Acquiring the patent confers its new owner the right to enforce it against potential infringers

so as to collect damages D > 0. More specifically, the benefits of winning the patent auction

for firm i are twofold. First, it allows to save on damages to be paid if the patent is bought out

and subsequently enforced by any other bidder. Second, it also entitles firm i to sue the other

infringing firm j. As to the troll, the benefit derived from acquiring the patent is to assert it

against both firms so as to collect damage fees. Hence, the value of the patent for sale, v, equals

the total expected damages that can be extracted from infringers, that is v(x1, x2) = D(x1+x2),

and is common to all bidders. In what follows, we normalize damages D to one so that the

common value reduces to v(x1, x2) = x1+x2, as in the well-known wallet game (see Klemperer,

1998). That is, firm i’s ex-post valuation for the patent is given by2 Vi(x1, x2) = v(x1, x2) for

2Following Milgrom and Roberts (1982), firm i’s payoff is normalized to zero in the event where she is
prosecuted so that her value for the patent equals her opportunity cost of litigation, xi, plus damage payments,
xj , that she can extract from firm j.
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all i = 1, 2.

In contrast to firms, the patent troll is assumed to be completely uninformed3 about the

common value of the patent. However, the troll benefits from a private-value advantage, denoted

by λ, so that his ex-post valuation for the patent is

VT (x1, x2) = (1 + λ)v(x1, x2) with λ 2 [0, 1]

This private-value advantage4 captures the troll’s strategic advantage over producing firms, such

as his immunity to countersuits for infringement, or his better ability to sue due to a greater

expertise in patent assertion activities.

Once the patent is awarded to the highest bidder, the degree of exposure of the defendant

is assumed to be truly revealed to the plaintiff after the latter incurs an information acquisition

cost, which we normalize to zero for computational convenience.

The patent is auctionned through a second-price sealed-bid auction5, with random tie-

breaking rule, where it is assigned to the highest bidder who pays the second highest bid. We are

therefore in the context of a second-price almost common-value auction with three asymmetri-

cally informed bidders. In the vast literature on second-price sealed-bid common-value auctions,

asymmetries in terms of either information or ex-post valuations for the object across bidders

have been extensively studied6. Nevertheless, the existing literature does not incorporate both

sources of asymmetries with more than two bidders. Hence, the model under consideration is at

the intersection between these two strands of the literature.

Let x = (x1, x2) 2 [0, 1]2 denote the vector of signal realizations and b−h the vector of

bidding strategies of all players but h. The ex-post payoff of bidder h 2 B is then given by:

uh(bh, b−h,x) = [Vh(x)− max
l 6=h

{bl}]1bh≥max
l 6=h

{bl}

3Formally, letting xT denote the realized signal received by the troll, the common value of the patent is given
by ṽ(x1, x2, xT ) = x1 + x2 = v(x1, x2).

4While we postulate that the private-value advantage enters the troll’s ex-post valuation multiplicatively, it
may be easily verified that our qualitative results hold if the private-value advantage instead enters additively,
i.e. if the troll’s ex-post valuation for the patent is of the form ṼT (x1, x2) = v(x1, x2) + κ, κ ≥ 0.

5We do not endogenize the patent seller’s behavior. The seller exogenously sets a reserve price that does not
exclude any bidder from participating in the auction.

6See for instance Hernando-Veciana (2004) and de Frutos, Pechlivanos (2006) for asymmetries in terms of
the information structure; Bikhchandani (1988) and Levin, Kagel (2005) for almost common-value auctions with
respectively two and strictly more than two bidders.
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where 1E is equal to one in event E, and zero otherwise (i.e., 1E is the indicator function of

event E).

1.2.2 Timing and equilibrium concept.

The timing of the game is as follows.

t=0 Signals are simultaneously and independently drawn by Nature from the uniform distribu-

tion over the unit interval, and each firm privately observes her realized signal.

t=1 The patent is auctionned through a second-price sealed-bid auction and the patent reas-

signee enforces its rights.

It is well known that second-price common-value auctions are plagued by a plethora of equi-

libria (Milgrom, 1981). Therefore, we first restrict our attention to (pure-strategy) Bayesian

Nash equilibria in undominated strategies (or, undominated equilibria) to eliminate some trivial

equilibria that would not be meaningful in our context. For instance, there is a whole class of

equilibria in which one player submits a prohibitively high bid, while its competitors bid more

conservatively.

For firm i, bidding bi = v(xi, 0) = xi, i.e. the lowest possible value of the patent given her

signal realization, weakly dominates any lower bid. To see this, suppose that firm i bids instead

according to b0 < xi, then the outcome only changes if b0 < max
j 6=i

{bj , bT } < xi. In this case, firm

i gets

ui(b
0, b−i,x) = 0  v(x)− xi < v(x)− max

j 6=i
{bj , bT } = ui(bi = xi, b−i,x)

Since this holds for all b−i, bi = xi weakly dominates any b0 < xi = bi. A similar argument

shows that bidding bi = v(xi, 1) = xi + 1, i.e. the highest possible value of the patent given her

signal realization, weakly dominates any higher bid. Thus, the set of undominated strategies of

firm i writes Ai = [xi, xi + 1], and an undominated (pure) strategy for firm i is then a function

bi : [0, 1] ! Ai that maps signals into her set of undominated strategies.

Likewise, because the troll is completely uninformed about the common value of the patent,

his undominated bids necessarily lie between his lowest possible ex-post valuation (that is,

VT (0) = 0), and his highest possible ex-post valuation (namely, VT (1) = 2(1 + λ)), so that

his set of undominated strategies is AT = [0, 2(1 + λ)]. Thus, an undominated (pure) strategy
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for the troll is simply bT 2 AT . We can now define the equilibrium notion that we will use in

this paper.

Definition 1.1. The vector of bids b⇤ = (b⇤T , b
⇤
1, b

⇤
2) is an undominated equilibrium of the patent

auction if for all h 2 B, for all x 2 [0, 1]2 and all ah 2 Ah,

8
>><
>>:

E[uT (b
⇤(X),X)] ≥ E[uT (aT,b

⇤
−T (X),X)]

E[ui(b
⇤(X),X)|Xi = xi] ≥ E[ui(ai,b

⇤
−i(Xj),X)|Xi = xi] 8i 6= j, i, j = 1, 2

The first inequality says that bidding b⇤T is optimal for the troll against firms’ strategies

b⇤−T , and since he does not hold any information about the common value of the patent, the

expectation operator is with respect to the random vector X. Instead, the second inequality

states that bidding b⇤i is optimal for firm i against her competitors’ strategies b⇤−i when evaluated

at the interim stage, that is, once she learns her exposure to the patent.

Another natural refinement is to further focus on equilibrium strategies satisfying the no

ex-post regret property, defined below. In words, a bidder’s strategy is immune to ex-post regret

if knowing the vector of realized signals x would not change its bidding behavior, regardless of

whether it wins or loses the auction. In the next section, we will see that this desirable property

is always satisfied by firms’ equilibrium strategies if they are symmetric. However, we shall see

that this result does not typically carry over to the troll’s bidding strategies because of his lack

of information about the common value of the patent. Furthermore, his private-value advantage

tends to exacerbate his exposure to ex-post regret as it spurs his incentives to bid aggressively.

Definition 1.2. Let b−h be a vector of actions of bidders other than h. An undominated

strategy bh for bidder h 2 B satisfies the no ex-post regret property if for all x 2 [0, 1]2 and all

ah 2 Ah, uh(bh, b−h,x) ≥ uh(ah,, b−h,x).

Finally, we next introduce the stronger concept of ex-post equilibrium generally adopted in

common-value auctions, which ensures that the equilibrium vector of bids is immune to ex-post

regret for all bidders.

Definition 1.3. The vector of bids b⇤ = (b⇤T , b
⇤
1, b

⇤
2) is an ex-post equilibrium in undominated
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strategies of the patent auction if for all h 2 B, for all x 2 [0, 1]2 and all ah 2 Ah,

8
>><
>>:

uT (b
⇤(x),x) ≥ uT (aT,b

⇤
−T (x),x)

ui(b
⇤(x),x) ≥ ui(ai,b

⇤
−i(xj),x) 8i 6= j, i, j = 1, 2

1.3 Equilibrium analysis

In this section, we restrict our attention to symmetric equilibrium strategies among firms, and

show that the troll always either bids zero or aggressively. Then, we characterize equilibria in

which firms employ symmetric linear strategies, which further allows us to examine whether

the troll suffers from ex-post regret due to the combination of a lack of information and a

private-value advantage. Throughout, we assume that firms’ symmetric bidding strategies are

continuous and strictly increasing in their signal. For the reader’s convenience, we begin with

the special case where a single firm faces the troll alone.

1.3.1 The case of a single firm

In second-price common-value auctions with two bidders, introducing asymmetries among play-

ers through a private-value advantage drastically affects the outcome of the auction, namely, the

advantaged bidder always wins and the seller’s revenue substantially decreases (see Bikhchan-

dani (1988) and Avery and Kagel (1997)). This result is still robust when the advantaged bidder

is also completely uninformed about the common value. To see this in our context, consider the

patent auction in which the troll competes with only one firm. The patent value then simply

reduces to v(x) = x, where x is the realized signal received by the firm. Clearly, the firm is

now perfectly informed about the patent value, and standard arguments show that her unique

(weakly) dominant strategy is to bid her true value, i.e. b(x) = x. In turn, the troll optimally

responds by bidding aggressively, i.e. above the patent highest possible value v̄ ⌘ v(1) = 1, and

wins the patent with probability one.

Lemma 1.1. Consider the patent auction with one firm and the troll. There is a continuum

of ex-post equilibria in undominated strategies in which the troll always wins the patent for sale

with b(x) = x, bT 2 (1, 1 + λ]. Furthermore, as the troll’s private-value advantage vanishes (i.e.

as λ # 0), the strategies b(x) = x and any bT 2 [0, 1] constitute an ex-post equilibrium.
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Note that the troll is indifferent over his whole set of undominated strategies when he does

not enjoy a private-value advantage since he gets a zero ex-post payoff regardless of whether

he wins or loses the patent auction. Instead, even a tiny private-value advantage over the firm

shrinks the set of ex-post equilibria so that the troll always gets the patent. Driving this result

is the fact that the firm has now “private” values. Given the firm’s bidding behavior and the

auction format, the troll can always outbid her without fearing to overpay, thereby winning the

auction and getting a positive ex-post payoff despite his lack of information.

Levin and Kagel (2005) examine whether this extreme result still obtains with more than

one regular bidder in an almost common-value second-price auction where each bidder receives a

private signal. They show that, in the wallet auction, regular bidders have a positive probability

to win the auction, yet lower than that of the advantaged bidder, and that a small private-value

advantage only slightly decreases the seller’s revenue. However, because of the information

structure we adopt, this result does not carry over here since the advantaged bidder (namely,

the troll) is also uninformed.

1.3.2 Symmetric strategies among firms

It is well known that, with two bidders, the second-price pure common-value auction admits a

unique7 symmetric equilibrium where each player bids twice its signal, i.e. bS(xi) = 2xi, and

neither suffers from ex-post regret (Milgrom, 1981). Unfortunately, this nice result does not carry

over to our context because of the asymmetries among bidders. The first type of asymmetry

that arises comes from the information structure of our model. Namely, firms are imperfectly

informed about the common value of the patent through the signal they receive, while the troll

is completely uninformed. Second, bidders differ according to their ex-post valuation for the

patent as the troll enjoys a private-value advantage coming from his immunity to countersuits,

reflected in λ.

The presence of the troll at the patent auction impacts firms’ bidding behavior in two opposite

ways. On the one hand, one might expect that the mere participation of the troll in the patent

auction will induce firms to bid more cautiously in order to avoid ex-post regret, ceteris paribus.

Intuitively, the troll can be thought of as a “noisy bidder” in the sense that the bid he submits

does not reflect or contain any relevant information about the patent value. Rather, driving

7See Levin and Harstad (1986) for a proof of uniqueness.
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the troll’s bidding strategy is the magnitude of his private-value advantage. Given the auction

format under consideration, if the troll is the second highest bidder, then the winning firm will

likely overpay for the patent, and make a loss. In other words, the presence of the troll worsens

firms’ winner’s curse. On the other hand, firms may be incentivized to submit more “aggressive”

bids, up to their maximum willingness-to-pay for the patent in the absence of the troll. By doing

so, firms exploit their information advantage over the troll so that the latter strictly prefers to

lose the auction for low values of his private-value advantage.

The next result describes the troll’s equilibrium bidding behavior in the auction for patent

buyout and its consequences on firms’ exposure to ex-post regret and the sellers’s expected

revenue.

Theorem 1.1. Suppose that firms’ bidding strategies are symmetric. Then, the following holds

in any undominated equilibrium:

(i) The troll bids either the upper bound or the lower bound of his set of undominated strategies.

(ii) Firms do not suffer from ex-post regret regardless of the outcome of the auction.

(iii) The troll’s participation in the auction raises the seller’s expected revenue.

Knowing that his participation lowers firms’ maximum willingness-to-pay for the patent

through a more severe winner’s curse, the troll anticipates that firms bid closer to their interim

expected value for the patent. It follows that the troll’s winner’s curse gets milder despite

his information disadvantage, which in turn enhances the profitability of winning the auction.

Because of his lack of information about firms’ exposure to the patent, bidding aggressively,

that is, above the highest possible value of the patent, ensures that he always wins and that

firms do not regret losing since outbidding the troll would result in a strictly negative ex-post

payoff upon winning. Notably, the higher his private-value advantage the more frequently the

troll resorts to this strategy since winning becomes more profitable.

Even though the seller benefits from the addition of a bidder in the auction through harsher

competition to acquire the patent for sale, the fact that the troll holds a private-value advantage

worsens firms’ exposure to the winner’s curse, and incentivizes them to submit more cautious

bids (Levin and Kagel, 2005). While the latter effect usually outweighs the former in almost

common-value settings, thereby lowering the seller’s revenue, this result does not carry over here
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because of information asymmetries across bidders. The troll’s lack of information about the

common value of the patent together with his private-value advantage encourage him to adopt

an extreme bidding behavior. Because he bids either above the highest possible patent value or

zero, firms respond to the troll’s participation in the auction by mildly shading their bids down,

so that the competitive effect instead dominates and positively impacts the seller’s revenue.

We now offer further insight into Theorem 1.1 by considering explicitely the special case of

linear strategies.

Proposition 1.1. Suppose that firms pledge symmetric linear bids. There is a continuum of

undominated equilibria in which the troll always wins the auction. The equilibrium strategies are

then

bT = 2(1 + λ) and b(xi) = ↵xi with ↵ 2 [1,
3

2
]

This equilibrium profile is robust when the troll’s private-value advantage vanishes, i.e. as λ

goes to zero, which suggests that firms’ cautious bidding behavior is mainly driven by the troll’s

lack of information, yet worsened by the latter’s private-value advantage.

Conversely, if firms adopt a more aggressive behavior, we shall see below that the troll then

strictly prefers to lose the auction when his private-value advantage is too low as the price to pay

upon winning exceeds the true value of the patent. Every firm then infers that, upon winning,

the price she has to pay will necessarily be coming from the other firm. Thus, firms behave

as if the troll did not participate in the auction and one obtains the symmetric equilibrium of

the pure common-value auction with two bidders, which guarantees that neither firm suffers

from ex-post regret and that the seller’s expected revenue remains the same. The next result

characterizes an equilibrium for which the outcome of the auction depends on the magnitude of

the troll’s private-value advantage.

Proposition 1.2. The following strategies constitute an undominated equilibrium:

• if λ < 1
3 , then bT = 0 and b(xi) = 2xi.

• if λ ≥ 1
3 , then bT = 2(1 + λ) and b(xi) = βxi , with β 2 [1, 2].

A few comments are in order. First, firms have a strictly positive ex-ante probability of

winning the patent auction only if the troll’s private-value advantage is low enough (λ < 1/3).
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In this case, the participation of the troll in the auction does not alter the symmetric equilibrium

strategies played by firms in the pure common-value case without the troll. Interestingly, if β = 2,

then this result extends to any λ. Put differently, in our context, the symmetric equilibrium

of the pure common-value auction with two bidders is robust to the introduction of a third

uninformed advantaged bidder. Namely, firms behave as if the troll did not take part in the

auction for patent buyout. Nevertheless, if λ ≥ 1
3 , firms’ attempt to prevent the troll from

getting the patent is in vain as the troll always wins the auction in any equilibrium.

1.3.3 On the patent troll’s ex-post regret

While firms’ symmetric equilibrium bidding strategies are immune to ex-post regret, this prop-

erty is less likely to be satisfied by the troll’s equilibrium bid because of his lack of information

about the patent common value. We now restrict our attention to equilibrium profiles of strate-

gies satisfying the no ex-post regret property for all bidders, and examine whether the set of

ex-post equilibria reduces to a unique outcome of the auction.

Before stating the main results, we first illustrate the issue at hand by focusing on the

equilibrium profile in which firms play the symmetric strategies of the pure common-value case

in order to grasp some intuition about the impact of the troll’s “all-or-nothing” equilibrium

behavior on his exposure to ex-post regret upon both winning and losing. Throughout this

subsection, we assume w.l.o.g. that signal realizations are such that x1 ≥ x2.

Lemma 1.2. Consider the following equilibrium profile of strategies:

bS(xi) = 2xi 8xi 2 [0, 1], bST =

8
>><
>>:

2(1 + λ) if λ ≥ 1
3

0 if λ < 1
3

We have that:

• if λ 2
⇥
1
3 ,∆(x)

⇤
, then the troll suffers from ex-post regret upon winning

• if λ 2
⇥
∆(x), 13

)
, then the troll suffers from ex-post regret upon losing

with ∆(x) ⌘ x1−x2
x1+x2

.

This result is straightforward upon noticing that ∆(x) R 1
3 is equivalent to x2 Q x1

2 =

E(X2|X2  x1). Namely, if the realized degree of exposure of firm 2 (that is, the low-signal
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firm) is lower than its interim expected value, then the troll suffers from ex-post regret upon

winning since the patent value is too low compared to the price paid by the troll for acquiring

it. Conversely, if the degree of exposure of firm 2 is greater than its interim expected value, then

the troll suffers from ex-post regret upon losing since the patent value is higher than expected,

and the troll could have extracted a positive surplus by winning the patent. Finally, note that

as ∆(x) goes to the troll’s cutoff point, or equivalently as x2 gets closer to its interim expected

value, then the troll does not suffer from ex-post regret regardless of the outcome of the auction.

Figure 1.1 provides a partition of the (∆(x), λ)-space showing whether the troll suffers from

ex-post regret in equilibrium with the aforementioned strategies. The troll is ex-post indifferent

between winning and losing the auction along the 45° line as

λ = ∆(x) =
x1 − x2
x1 + x2

, (1 + λ)(x1 + x2) = 2x1 , VT (x) = bS(x1)

The upper-half space characterizes all combinations of signal realizations and private-value ad-

vantage that yield a strictly positive ex-post payoff to the troll upon winning the patent, while

the lower-half space depicts combinations for which the troll strictly prefers to lose the auction

from an ex-post perspective.

As his private-value advantage goes to zero (resp. to one), the troll is ex-post better off

losing (resp. winning) the patent auction for any vector of signal realizations x 2 [0, 1]2, i.e. for

any value of the patent. Instead, the troll is vulnerable to ex-post regret when playing according

to bS , i.e. either the upper bound or the lower bound of his set of undominated strategies, for

any λ 2 (0, 1). This is due to the fact that the he pays the most exposed firm’s bid, which

does not necessarily capture the patent value. It follows that the troll likely overpays for the

patent, thereby getting a strictly negative ex-post payoff, unless his private-value advantage is

sufficiently large to compensate the loss associated with his lack of information. For instance, if

firms are very heterogeneous in terms of exposure to patent infringement, i.e. for |xi − xj | ! 1,

then we have that ∆(x) ! 1 and the troll always suffers from ex-post regret upon winning. As

well, if firm 2 faces a very low risk of patent infringement, then the troll gets

uT = lim
x2!0

[(1 + λ)(x1 + x2)− 2x1] = (1 + λ)x1 − 2x1  0 8λ  1
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Figure 1.1: Troll’s exposure to ex-post regret

Instead, as firms face a similar risk of patent infringement, i.e. as |xi − xj | ! 0, then the price

that the troll would have to pay upon winning tends to the patent true value, which in turn

would lead to a positive ex-post payoff upon winning as

uT = lim
x2!x1

[(1 + λ)(x1 + x2)− 2x1] = 2λx1 ≥ 0 8λ ≥ 0

In such a case, the troll always suffers from ex-post regret upon losing. In fact, our next result

states that, if the troll enjoys a strictly positive private-value advantage, then he must win in

any ex-post equilibrium in which firms’ bidding functions are symmetric.

Theorem 1.2. Suppose that firms play symmetric strategies. If λ > 0, then there is no ex-post

equilibrium in which firms have a positive ex-ante probability to win the auction.

Hence, the set of ex-post equilibria yields a unique outcome, namely, the troll always wins,

which further motivates intermediaries’ intervention since firms have no means to protect them-

selves against threatening patents when individually competing against the troll in the auction.

This result therefore suggests that, with more than two players, perturbing the information

structure so that the advantaged bidder is also uninformed restores the extreme result of almost
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common-value auctions with two imperfectly informed bidders: the advantaged bidder always

wins.

We now provide a necessary and sufficient condition on the private-value advantage to sup-

port the troll’s aggressive bidding strategy as part of an ex-post equilibrium in which firms

pledge symmetric and linear bids.

Proposition 1.3. The strategies bT = 2(1 + λ), b(xi) = γxi with γ 2 [1, 2] , form an ex-post

equilibrium in undominated strategies if and only if λ ≥ γ − 1 ⌘ λ.

Typically, bidding aggressively makes the troll vulnerable to ex-post regret when firms bid

above their signal realization (that is, for γ > 1). By symmetry and linearity of firms’ strategies,

the troll pays the bid of the most exposed firm upon winning. Yet, the patent value depends

on each firm’s degree of exposure. For instance, if firms are very heterogeneous in terms of

exposure to patent infringement, i.e. if |xi − xj | is close to one, then the troll will suffer from

ex-post regret upon winning, unless his private-value advantage is high enough (namely, such

that λ ≥ λ). In this case, the troll’s greater ex-post valuation for the patent compensates his

information disadvantage relative to firms when formulating his bid.

It directly follows that the vector of bids as indicated in Proposition 1.1 in which the troll

plays aggressively for any λ 2 [0, 1] constitutes an ex-post equilibrium in undominated strategies

if and only if ↵ = 1. If firms bid as low as their signal realization, the troll is ensured to never

regret winning since, for any λ, he gets uT = (1 + λ)(x1 + x2) − x1 ≥ 0, 8xi 2 [0, 1], i =

1, 2. Importantly, this result obtains once one reestablishes symmetry across bidders’ ex-post

valuations for the patent. Thus, as opposed to the auction with only one firm, there is an ex-

post equilibrium in which the troll still wins the auction with probability one as his private-value

advantage vanishes when competing with two firms. This is due to the fact that, with only one

firm, the information gap between bidders is maximal as the firm is perfectly informed about

the patent value. Therefore, given the auction format, the troll cannot extract any surplus upon

acquisition of the patent for sale if he does not benefit from a private-value advantage over the

firm.
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1.4 Intermediation in the patent auction

In this section, we extend the previous model by introducing an intermediary who, in exchange of

an up-front membership fee, enables firms to gather their interests by voluntarily contributing

toward the patent purchase8. The intermediary then aggregates contributions and competes

with the troll in the auction for patent buyout on behalf of his members. Upon winning the

auction, the intermediary provides his member(s) with non-exclusive license(s) to the acquired

patent, thereby annihilating any risk of litigation for patent infringement brought by the troll.

1.4.1 Augmented model setup

The crucial difference with the model specified before is that, whenever (say) firm i accepts the

intermediary’s offer, she then has “private values” for the patent in the sense that she cannot

sue firm j for patent infringement, regardless of whether firm j accepted or rejected the offer.

This comes from the fact that holding a non-exclusive license precludes any right of enforcing the

patent, rather, this right accrues to the patent owner. Therefore, firm i’s valuation for the patent

now simply equals her degree of exposure xi, that is, Ṽi(xi) = xi, while the troll’s valuation

remains unchanged due to his ability to enforce the patent against both firms, regardless of

whether they joined the intermediary, i.e. VT (x1, x2) = (1 + λ)(x1 + x2).

1.4.1.1 Exclusion of low-signal firms

The intermediary is assumed to be uninformed about firms’ signals, or equivalently about the

true value of the patent, but makes his offer at the interim stage, that is, after each firm

privately receives her signal. Straightforwardly, he cannot discriminate among firms through

signal-contingent membership fees since firms would fail to truthfully self-select within this

menu. The intermediary’s offer therefore consists of a uniform membership fee, i.e., t = ti for

all i = 1, 2, which further implies that proposing a fee targeting the whole set of possible signal

realizations, [0, 1], is not profitable since he would then get zero profit.

Hence, the intermediary instead chooses a threshold signal x̂ 2 (0, 1) and a membership fee

t > 0 such that firms with a signal in [x̂, 1] accept his offer, while firms with a signal in [0, x̂)

reject it. Letting ai 2 {A,R} denote the decision of firm i to accept or reject the offer, the

8See for instance: http://www.alliedsecuritytrust.com/Services/AcquisitionModel.aspx and
http://www.rpxcorp.com/rpx-services/rpx-defensive-patent-acquisitions/
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intermediary’s set of members, I ✓ {1, 2}, is then given by

I = {i 2 {1, 2} such that ai = A} with |I| =
X

i2{1,2}
1ai=A

Furthermore, we suppose that the intermediary’s number of members becomes common knowl-

edge once firms made their decisions, that is

Assumption 1. |I| is common knowledge.

This assumption comes from the fact that intermediaries’ websites often display their number

of members, but do not (usually) disclose their identity9. In what follows, we let Γ|I| denote the

continuation game after |I| firms accepted the intermediary’s offer.

1.4.1.2 Collective patent purchase through voluntary individual contributions

Upon paying the membership fee, firms then simultaneously choose the amount of their con-

tribution, si, toward the patent purchase. The intermediary then competes with the troll in

the auction for patent buyout where his bid then simply equals the sum of his members’ con-

tributions, that is, bI =
P

l2I sl. If bI < bT , then the intermediary loses the auction and

contributions are fully refunded to firms. Instead, upon winning, we assume that the interme-

diary uses a proportional rebate rule10 whenever the total contributions exceed the troll’s bid.

Namely, if bI = si + sj ≥ bT , firm i then retrieves

ri(si, sj , bT ) =
si

si + sj
(si + sj − bT )

Observe that the intermediary’s funding mechanism for the patent purchase is similar to the

well-known subscription game11 in the literature on the private provision of a discrete public

good through voluntary contributions. In such games, agents voluntarily choose the amount

of their contribution to the funding of a public good, which is then provided if the sum of

contributions exceeds an exogenous threshold cost12. However, in our model, the threshold cost

9In some cases, they provide the name of some of their members, usually major firms in their technology area.
See for instance: http://www.alliedsecuritytrust.com/ASTMembers.aspx

10See Spencer et al. (2009) for alternative rebate rules in the context of public good provision.
11Following the terminology of Admati and Perry (1991), contributions are fully refunded in subscription games

whenever insufficient to provide the public good, as opposed to contribution games in which they are retained by
the collector.

12See for instance Menezes et al. (2001).
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is endogenously determined by the troll’s bidding strategy given the auction format.

1.4.1.3 Payoffs

Suppose first that at least one firm decided to join the intermediary. For a given pair (x̂, t),

let σ = (s, bT ) denote the vector of actions in the continuation game Γ|I|, where s is the |I|-

dimensional vector of contributions and bT is the troll’s bid. Straightforwardly, since the inter-

mediary’s number of members is common knowledge, firm i can then infer firm j’s acceptance

decision. The ex-post net payoff of firm i with signal xi, when choosing ai and contributing si, is

thus given by ũi(si,σ−i,x|(ai, aj)). More specifically, if both firms accept, then firm i, i = 1, 2,

gets

ũi(si,σ−i,x|(A,A)) =

8
>><
>>:

xi − si + ri(si, sj , bT )− t = xi − si.bT
si+sj

− t if si + sj ≥ bT

−t otherwise

Instead, if firm i accepts and firm j rejects, i 6= j, ex-post payoffs are then given by

ũi(si,σ−i,x|(A,R)) =

8
>><
>>:

xi − bT − t if si ≥ bT

−t otherwise

and

ũj(sj ,σ−i,x|(R,A)) =

8
>><
>>:

xj if si ≥ bT

0 otherwise

If neither firm accepts the intermediary’s offer, then ex-post payoffs are the same as those of the

patent auction without the intermediary, namely,

ũi(si,σ−i,x|(R,R)) = ui(bi, b−i,x) = [Vi(x)− max
l 6=i

{bl}]1bi≥max
l 6=i

{bl} 8i = 1, 2

Finally, upon observing |I|, the troll’s ex-post payoff is

ũT (bT,σ−T (x),x||I|) =

8
>><
>>:

uT (bT , b−T ,x) = [VT (x)− max
l 6=T

{bl}]1bT≥max
l 6=T

{bl} if I = ;

[VT (x)− bI ]1bT≥bI otherwise
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1.4.1.4 Timing and equilibrium concept

The game now unfolds as follows.

t=0 Signals are simultaneously and independently drawn by Nature from the uniform distribu-

tion over the unit interval, and each firm privately observes her realized signal.

t=1 The intermediary chooses a threshold signal and proposes a subscription fee, and firms

simultaneously either accept or reject the intermediary’s offer13.

If both firms reject (I = ;), then firms individually participate in the auction and compete

against the troll, and the game proceeds as without the intermediary’s intervention, namely:

t=2 The patent is auctionned through a second-price sealed-bid auction between firms and the

troll, and the patent reassignee enforces its rights.

If instead at least one firm accepts (I 6= ;), then the game proceeds as follows:

t=2’ Each member simultaneously submits a voluntary contribution toward the patent pur-

chase.

t=3’ The patent is auctionned through a second-price sealed-bid auction between the interme-

diary and the troll, and the patent reassignee enforces its rights.

A pure strategy for firm i is now a pair (ai, si) where ai 2 {A,R} denotes firm i’s decision to

accept or reject the intermediary’s offer, and si : [0, 1] ! R+ is the contribution of firm i to

the patent purchase, i = 1, 2. Since the intermediary’s bid is simply the sum of his members’

contributions, he can therefore be thought of as a “passive” bidder in the auction. Thus, given

that firms simultaneously pledge their contributions, together with the fact that they are not

observable by the troll, the continuation game Γ|I| can then be treated as a one-shot game.

Throughout, we will use the concept of perfect Bayesian equilibrium with the additional

requirement that any candidate vector of actions σ⇤ forms an ex-post equilibrium of the corre-

sponding continuation game.

13Throughout, we adopt the conventional assumption that, when indifferent, firms accept the intermediary’s
offer.
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Definition 1.4. The vector of actions σ⇤ = (s⇤, b⇤T ) is an ex-post equilibrium of the continuation

game Γ|I| if for all x 2 [0, 1]2,

8
>><
>>:

ũT (σ
⇤(x),x||I|) ≥ ũT (b

0
T,σ

⇤
−T (x),x||I|) 8b0T 2 R+

ũi(σ
⇤(x),x|(ai, aj)) ≥ ũi(s

0
i,σ

⇤
−i(xj),x|(ai, aj)) 8s0i 2 R+, 8i 6= j, i, j = 1, 2

Definition 1.5. An equilibrium of the intermediated patent auction is a threshold signal x̂⇤

and a membership fee t⇤ such that (x̂⇤, t⇤) is optimal for the intermediary given other players’

strategies, together with a vector of decisions a⇤ = (a⇤1, a
⇤
2) satisfying

8
>><
>>:

a⇤i = A ) xi 2 [x̂⇤, 1]

a⇤i = R ( xi 2 [0, x̂⇤)

for all i = 1, 2

and such that:

1. Letting Si ✓ [0, 1] and Sj ✓ [0, 1], the troll and firms’ updated beliefs are compatible with

Bayes’ rule:

8
>><
>>:

µT (X 2 Si ⇥ Sj | |I| = k) =
Pr(|I|=k|X2Si⇥Sj )Pr(X2Si⇥Sj)

Pr(|I|=k)

µi (Xj 2 Sj | |I| = k,Xi = xi) =
Pr(|I|=k,Xi=xi|Xj2Sj )Pr(Xj2Sj)

Pr(|I|=k)

8i, j = 1, 2 i 6= j

2. The vector of actions σ⇤ = (s⇤, b⇤T ) satisfies Definition 1.4 given the system of beliefs µ,

the intermediary’s strategy (x̂⇤, t⇤) and the vector of firms’ decisions a⇤.

1.4.2 Equilibria of the continuation games

In this subsection, we examine, for a fixed threshold x̂ 2 (0, 1) and membership fee t > 0,

firms’ strategic behavior when contributing toward the patent purchase, and characterize equi-

libria of the continuation games that begin after either one firm or both of them accepted the

intermediary’s offer.

Remark. If neither firm accepts the intermediary’s offer (that is, if I = ;), then the troll’s set

of undominated strategies shrinks as he infers that the true patent value satisfies v(x)  2x̂. In
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particular, standard arguments show that bidding bT = 2(1 + λ)x̂ weakly dominates any higher

bid so that the troll’s set of undominated strategies becomes A0
T = [0, 2(1 + λ)x̂] ⇢ AT for any

threshold x̂ 2 (0, 1). While the troll bids less aggressively than before, it is easy to see that the

results of the baseline model without intermediation do not qualitatively change. Namely, the

troll wins the auction in any ex-post equilibrium of the continuation game Γ0 (cf. Theorem 1.2).

In order to carry revenue comparisons, we shall restrict our attention to symmetric linear

contributions in every continuation game. Thus, from Proposition 1.3, the continuation game

Γ0 admits a continuum of ex-post equilibria with bT = 2x̂(1 + λ), b(xi) = γxi with λ ≥ γ − 1,

γ 2 [1, 2].

1.4.2.1 The case of a single member firm

Consider the continuation game after only one firm accepted the intermediary’s offer. Then

this firm has private values for the patent upon being the only member, so that asymmetries

across bidders are exacerbated. Besides his private-value advantage λ, the troll now also benefits

from a greater ex-post valuation for the patent relative to firms coming from his ability to name

multiple defendants. Because the intermediary’s funding mechanism for the patent purchase

relies exclusively on his members’ contributions, it follows that the troll always preempts the

patent whenever only one firm contributes. To see this, suppose that, say, firm 1 accepted the

offer while firm 2 rejected it, so that the intermediary’s bid is simply equal to the contribution

of firm 1. By pledging a contribution s1, firm 1’s ex-post net payoff is

ũ1(s1, bT ,x|(A,R)) =

8
>><
>>:

x1 − bT − t if s1 ≥ bT

−t otherwise

We now show that firm 1 has a unique weakly dominant strategy, to contribute her true value for

the patent, i.e. s(x1) = x1. Suppose instead that firm 1 contributes any s̄ > x1. The outcome

only changes if s̄ > bT > x1, in which case firm 1 gets x1 − bT − t < −t. Similarly, contributing

according to s < x1 only changes the outcome if x1 > bT > s and leads to −t < x1 − bT − t. In

turn, the troll’s optimal strategy is then to submit a bid that ensures winning with probability

one since his ex-post payoff upon winning is then (1 + λ)(x1 + x2)− x1 > 0.

Thus, as the following lemma formalizes, the intermediary cannot preempt the patent for
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sale with only one contributor. In fact, since the membership fee is non-refundable, firm 1 is

instead strictly worse off with the intermediary’s intervention relative to section 3 whenever she

ends up being the only contributing firm.

Lemma 1.3. If |I| = 1, then there is a continuum of ex-post equilibria of the continuation game

Γ1 in which the intermediary loses the patent auction with probability one. The equilibrium

strategies are then s(x1) = x1 and bT 2 (1, (1 + λ)(1 + x̂)].

One obtains the same result as in the auction without the intermediary in which the troll

competes with only one firm (cf. Lemma 1.1). Namely, the troll always wins in equilibrium

and neither player suffers from ex-post regret since the intermediary’s bid, bI = s(x1) = x1,

is lower than the troll’ ex-post valuation for the patent, v(x) = x1 + x2. However, this result

is now robust as the troll’s private-value advantage vanishes (that is, as λ # 0), so that the he

always outbids the intermediary regardless of the magnitude of his private-value advantage λ.

Driving this result is the fact that the troll has a higher ex-post valuation for the patent as

compared to firm 1 since he can also extract damage payments from firm 2 upon winning, while

firm 1 has now “private values” for the patent due to her inability to enforce the patent when

holding a non-exclusive license. Therefore, the troll’s ability to extract the whole value of the

patent for sale through litigation compensates for his lack of information about firms’ likelihood

of infringement.

Finally, observe that if winning the patent auction were feasible with only one contributor,

firms’ incentives to join the intermediary would be greatly undermined. Indeed, by rejecting the

offer, a firm could then be de facto protected from litigation brought by the troll while saving

on the subscription fee if the other firm instead accepted the intermediary’s offer. Clearly, the

intermediary would then have to offer a lower subscription fee in order to account for such incen-

tives to free ride. Hence, Lemma 1.3 ensures that firms’ incentives to accept the intermediary’s

offer in the first place are preserved.

1.4.2.2 Collective action issue with two contributing firms

We now turn to the case where both firms accepted the intermediary’s offer, namely, signal

realizations are now such that xi ≥ x̂ 8i = 1, 2. From Lemma 1.3, a necessary condition for

the intermediary to outbid the troll in the patent auction is that both firms accept his offer.
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Nevertheless, we now shall see that this is not a sufficient condition for his success in the auction.

While the fact that the intermediary cannot acquire the patent for sale with only one con-

tributor annihilates firms’ incentives to free ride when deciding whether to accept his offer, his

mechanism to finance the patent purchase creates a collective action problem which potentially

undermines his performance in the auction. Because the patent is collectively financed through

voluntary individual contributions, this creates a free-rider problem whereby a firm has incen-

tives to slightly lower her contribution so that the other contributing firm incurs a larger share

of the patent purchase, ceteris paribus. This is due to the fact that, whenever both firms join

the intermediary, the patent becomes a collective good in the sense that both firms (i) benefit

from its acquisition by the intermediary through the non-exclusive license they receive, (ii) and

are entitled to get the license regardless of their contribution (see Olson, 1965). The next result

sheds light on the impact of free riding on the outcome of the auction.

Theorem 1.3. Suppose that firms pledge symmetric contributions. There is no ex-post equi-

librium of the continuation game Γ2 in which the intermediary wins the auction with a strictly

positive price.

Observe that the collective action issue inherent to the intermediary’s funding mechanism

greatly benefits the troll, as submitting a strictly positive bid triggers firms’ free-riding behav-

ior and undermines the intermediary’s bid, thereby increasing the profitability of winning the

auction despite his lack of information about the patent value.

In what follows, we focus on equilibria involving symmetric linear contributions of the form

s(xi) = kxi, k ≥ 0, so that the intermediary’s bid amounts to bI(x) = k(x1 + x2) ⌘ kv(x).

Importantly, beyond their tractability, linear contributions make the troll immune to ex-post

regret regardless of whether he wins or loses the auction since the intermediary’s bid aggregates

firms’ private information about the patent true value. To begin with, we propose a class of

ex-post equilibria which illustrates the collective action issue at hand. Formally, any profile of

strategies of the form

σw = {sw(xi) = kxi with 0  k < 1 + λ, bwT = 2(1 + λ)}

constitutes an ex-post equilibrium of the continuation game Γ2, in which the intermediary loses

the patent auction for sure. To see this, suppose first that firms play according to σw. By

31



bidding bwT = 2(1 + λ), the troll wins the auction for sure as

bwT = 2(1 + λ) ≥ (1 + λ)(x1 + x2) > k(x1 + x2) = bI

and gets (1 + λ)(x1 + x2) − k(x1 + x2) > 0 for any k < 1 + λ which ensures that he does not

regret winning. Given the auction format, bidding any b̄ > bwT does not improve his payoff,

while bidding according to b < bwT triggers a positive probability to lose the auction if b < bI ,

then resulting in a zero ex-post payoff. Similarly, consider, say, firm i and suppose that the

troll and firm j 6= i play according to σw. Contributing according to sw(xi) = kxi leads to

the intermediary’s defeat in the auction, with associated ex-post payoff −t < 0. Obviously, any

lower contribution yields the same auction outcome and ex-post payoff. Pledging instead any

s̄ > sw(xi) = kxi changes the outcome only if s̄ > bwT − sw(xj). In this case, the intermediary

wins the auction and firm i’s ex-post net payoff is then

ũi(s̄,σ
w
−i,x|(A,A)) = xi −

s̄.bwT
s̄+ sw(xj)

− t

< xi −
(bwT − sw(xj)) .b

w
T

bwT
− t

= xi − 2(1 + λ) + kxj − t

< xi − (1 + λ)(2− xj)− t

< −t

= ũi(σ
w,x|(A,A))

which ensures that firm i does not regret losing. Finally, since firms are symmetric, a similar

reasoning holds for firm j 6= i.

Hence, in such equilibria, the intermediary’s intervention fails to provide firms with safety

from litigation brought by the troll. As compared to the patent auction without intermediation,

firms are actually strictly worse off since they end up with a strictly negative payoff due to

the fact that the membership fee is non-refundable. On the one hand, if the troll sticks to an

aggressive bidding behavior, then the collective patent purchase through firms’ contributions is

not feasible as the troll’s bid exceeds firms’ aggregate value for the patent: x1+x2 < 2(1+λ) =

bwT 8x 2 [0, 1]2. It follows that any vector of contributions s such that bI > bwT would make
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firms strictly worse off. Thus, firms optimally react by shading their contributions down so that

the intermediary loses the auction for sure. On the other hand, the free-rider issue inherent to

the intermediary’s funding mechanism greatly impairs his bid, which in turn spurs the troll’s

aggressive bidding behavior.

One way to circumvent this severe free-rider problem is for firms to pledge aggressive contri-

butions so that the troll always prefers to lose the auction from an ex-post perspective. Namely,

if each firm contributes s(xi) > (1 + λ)xi, then the troll finds it optimal to always lose the

auction since (1+λ)(x1+x2)− bI < 0. In particular, submitting a nill bid is a best response for

the troll. Importantly, even though the intermediary’s refund mechanism does not effectively

alleviate the free-rider issue inherent to the contribution game, it is necessary for the existence

of an equilibrium in which the intermediary outbids the troll with two contributors as it enables

firms to play aggressively so as to drive the troll’s bid down. The next result formalizes.

Proposition 1.4. There exists an ex-post equilibrium of the continuation game Γ2 in which the

intermediary always wins the auction only if the excess of contributions is refunded. Firms then

pledge aggressive contributions sa(xi) = k̄xi with k̄ > 1 + λ, i = 1, 2, while the troll bids baT = 0.

By adopting an aggressive behavior, firms are fully protected from any risk of infringement of

the patent for sale. While they have no means to win the auction and always face costly litigation

when individually competing against the troll in any ex-post equilibrium of the unintermediated

auction (see Theorem 1.2), the intermediary’s intervention may overturn this negative result

by encouraging and aggregating aggressive contributions. Nevertheless, since the price is set

by the second highest bid, it follows that the seller’s revenue is strongly undermined whenever

the intermediary wins in equilibrium since the troll sharply decreases his bid in response to his

opponent’s aggressiveness.

1.4.3 The intermediary’s problem

Observe first that the intermediary finds it optimal to induce aggressive contributions in the

continuation game Γ2. Indeed, since the patent purchase is not feasible through the contribution

of a sole firm (cf. Lemma 1.3), firms’ perceived probability that the intermediary wins the

auction would otherwise be zero so that incurring the non-refundable membership fee would

then be strictly unprofitable. Consequently, firms would turn his offer down for any threshold
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signal and strictly positive subscription fee, yielding zero profit to the intermediary.

Hence, the intermediary chooses a threshold signal x̂ 2 (0, 1) and a strictly positive member-

ship fee t such that any firm holding a signal above the threshold finds it optimal to become a

member. In this respect, a firm finds it profitable to accept the offer if her expected benefit from

joining the intermediary, defined as her updated probability that the intermediary wins the auc-

tion times her value for the patent, net of the membership fee, exceeds her payoff upon rejecting

the offer. Since the intermediary fails to acquire the patent with only one contributor, it follows

that firm i’s updated probability that the intermediary wins the auction, conditional on holding

a signal xi 2 [x̂, 1], simply equals the probability that firm j’s signal exceeds the threshold x̂ as

well by independence, and that her payoff upon rejecting the offer is zero regardless of whether

the other firm accepts. Thus, the participation constraint of (say) firm i writes

(1− x̂)xi − t ≥ 0 8xi 2 [x̂, 1]

The intermediary therefore chooses a threshold signal x̂ and a membership fee t that maximize

his ex-ante expected profit, which equals the total expected membership fees, subject to firms’

participation constraint. That is, the intermediary’s problem writes

max
(x̂,t)2[0,1]⇥R+

2q2(x̂).t+ q1(x̂).t

s.t. (1− x̂)xi − t ≥ 0 8xi 2 [x̂, 1]

where qk(x̂) denote the intermediary’s prior probability that k firms hold a signal greater than

the threshold x̂, k = 1, 2. The probability that both firms hold a signal greater than x̂ is simply

given by

q2(x̂) = Pr [(X1 > x̂) \ (X2 > x̂)] = (1− x̂)2

while the probability that only one firm does is computed as follows
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q1(x̂) = Pr {[(X1 > x̂) \ (X2  x̂)] [ [(X1  x̂) \ (X2 > x̂)]}

= Pr [(X1 > x̂) \ (X2  x̂)] + Pr [(X1  x̂) \ (X2 > x̂)]

− Pr {[(X1 > x̂) \ (X2  x̂)] \ [(X1  x̂) \ (X2 > x̂)]} (by definition)

= Pr [(X1 > x̂) \ (X2  x̂)] + Pr [(X1  x̂) \ (X2 > x̂)] (by mutual exclusivity)

= (1− x̂) x̂+ x̂ (1− x̂) (by independence)

= 2x̂ (1− x̂)

Since optimality requires that the participation constraint binds for the threshold signal x̂,

the membership fee is given by t = (1 − x̂)x̂. Plugging these into the intermediary’s objective

and rearranging yields ΠI(x̂) = 2x̂(1− x̂)2. One can easily check that the intermediary’s profit

function ΠI is strictly quasi-concave in x̂, and that the unique optimal threshold signal and

membership fee pair is given by

(x̂⇤, t⇤) =

✓
1

3
,
2

9

◆

The intermediary finds it optimal to screen out low signal firms by proposing a strictly positive

membership fee such that firms holding a signal above the threshold x̂⇤ find it profitable to

become members. Nevertheless, observe that firms are engaged in a coordination game with the

troll whenever both of them join. Indeed, our previous analysis characterizes two classes of ex-

post equilibria in the continuation game Γ2 yielding two opposite outcomes (see subsection 1.4.2).

While firms get a strictly positive ex-post payoff when they both pledge aggressive contributions

and the troll bids zero, firms end up strictly worse off if the equilibrium profile in which they

play conservatively while the troll bids aggressively instead prevails since the membership fee

is non-refundable, so that it is optimal to accept (resp. reject) the intermediary’s offer in the

former (resp. latter) case. Therefore, if both firms hold a signal greater than the threshold x̂⇤,

the whole game admits the two following classes of equilibria

Ew = ((x̂⇤, t⇤), (R,R),σw)

Ea = ((x̂⇤, t⇤), (A,A),σa)

These two classes of equilibria yielding two opposite outcomes, we now ask whether either

35



equilibrium constitutes an “unreasonable” prediction when both firms hold a signal above the

threshold x̂⇤. Intuitively, if both firms decide to join the intermediary, they are giving up a

certain payoff of zero. Since they get a strictly negative payoff when contributing cautiously,

the troll should therefore expect firms to play aggressively, and bid zero himself. Invoked here

is the idea of forward induction (Kohlberg and Mertens, 1986) which says that the play leading

to the continuation game Γ2 conveys information about firms’ intentions to play subsequently.

Hence, upon observing |I| = 2, the troll should assign probability zero to firms pledging cautious

contributions in equilibrium. In other words, the equilibrium Ea is robust to forward induction.

The next result summarizes these findings.

Proposition 1.5. The equilibrium of the intermediated auction entails the following:

1. The intermediary’s optimal pair of threshold signal and membership fee (x̂⇤, t⇤) = (13 ,
2
9)

is unique, and such that a firm accepts his offer if and only if she holds a signal in
⇥
1
3 , 1

⇤
,

and rejects if and only if her signal instead lies in
⇥
0, 13

)
.

2. If |I| = 2, then the intermediary always outbids the troll , whereas if |I| < 2, then the troll

always wins the auction.

The intermediary’s equilibrium ex-ante probability of winning the auction is thus q2(x̂
⇤) =

(1− x̂⇤)2 = 4
9 , while the troll’s is now 5

9 . From an ex-ante perspective, the intermediary therefore

partially hampers the troll’s supremacy when it comes to acquiring threatening patents with the

intent to engage in litigious activity against firms. The effectiveness of his intervention to protect

firms against litigation brought by the troll is nonetheless mitigated by the fact that the collective

patent purchase is feasible only if both firms contribute. Though his probability of winning the

auction is slightly lower than that of the troll, the true value of the patent for sale is higher

whenever the intermediary acquires it as compared to the troll. This comes from the fact that

the intermediary wins only if both firms hold a signal above the threshold x̂⇤, whereas the troll

wins otherwise.

However, the seller’s revenue dramatically falls whenever the intermediary wins the auction

since firms’ aggressive contributions drive the troll’s bid down to zero. But, as stated in the next

result, the seller’s expected revenue is still higher when the intermediary intervenes as compared

to the case where firms are the only participants in the auction. At a first glance, this result
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might seem surprising because the presence of the intermediary harms the seller through two

channels. First, the troll’s response to firms’ aggressiveness whenever both contribute yields zero

revenue to the seller nearly half of the time in equilibrium. Also, because he bids on behalf of

his members, the intermediary’s intervention softens competition to acquire the patent for sale

by decreasing the number of bidders in the auction.

The combination of these two negative effects is nonetheless offset by the fact that, whenever

both of them reject the offer, firms mildly decrease their bids in response to the troll’s partici-

pation in the auction (cf. Proposition 1.3). Likewise, if only one of them joins the intermediary,

her high signal compensates for the lower contribution she submits (cf. Lemma 1.3).

Corollary 1.1. The seller’s equilibrium expected revenue ranks as follows

E(RT ) ≥ E(RI) ≥ E(R0)

The participation of the troll in the auction substantially raises the seller’s expected revenue

which continuously increases with the parameter γ. From Proposition 1.3, since γ  1 + λ ,

it follows that the seller’s revenue is higher when the troll benefits from a significantly higher

ex-post valuation for the patent over firms through a greater private-value advantage λ. In other

words, asymmetries across bidders in terms of ex-post valuation for the patent benefits to the

seller. This result also suggests that the intermediary’s positive impact on the seller’s expected

revenue comes from his probability to lose the auction slightly more than half of the time so

that the troll’s strong positive effect on the seller’s revenue dominates.

1.5 Concluding remarks

The aim of this paper is to study the emergence of non-practicing entities in the market for

patents, who acquire patents with no aim to engage into innovative activities. While patent

trolls seek to monetize their acquired patents through the threat of litigation against alleged

infringers, intermediaries instead intend to provide their affiliated firms with safety to operate

from trolls’ litigious activity by buying out patents that would otherwise fall in trolls’ hands.

We develop a model of patent acquisition through an auction incorporating both patent

trolls and intermediaries. We highlight trolls’ greater ability to preempt patents that represent
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a threat upon enforcement for patent infringement as compared to producing firms due to their

immunity to countersuits. We find that firms have no means to protect themselves against

threatening patents when individually competing against the troll in the auction for patent

buyout, whereas the seller’s revenue substantially increases in response to the participation of a

troll in the auction.

We then examine the effectiveness of intermediaries to protect firms against the troll’s liti-

gious activity by analyzing their patent funding mechanism. Since the patent is collectively

financed through voluntary individual contributions, firms tend to free ride on other contribu-

tors. While the intermediary’s probability to outbid the troll in the auction is strictly positive,

the collective action issue inherent to his funding mechanism greatly hampers his performance

in the auction and undermines the seller’s revenue. Overall, our results nonetheless suggest that

the presence of NPEs in the patent acquisition process positively impact the revenue of sellers

of likely infringed patents.

1.6 Proofs

This section provides the proofs for all the results of the paper.

Proof of Lemma 1.1

We first establish that bidding b(x) = x is optimal for the firm. Observe that she always

loses against the troll as b(x) = x  1 < bT and therefore gets a zero ex-post payoff. She

does not regret losing since outbidding the troll would instead yield x − bT < x − 1  0,

and pledging instead any b0 < x does not alter the outcome of the auction or her payoff.

Hence, bidding according to b(x) = x is indeed a best response for the firm. Next, we show

that bidding any bT 2 (1, 1 + λ] is a best response for the troll. By playing bT , the troll

always wins against the firm as b(x) = x  1 < bT , and does not regret winning since he gets

(1 + λ)x − x = λx ≥ 0 for any λ 2 [0, 1]. Given the auction format, submitting a higher bid

does not improve his payoff upon winning. Thus, bidding any bT 2 (1, 1 + λ] constitutes a

best response for the troll. Finally, the equilibrium profile does not involve weakly dominated

strategies as VT (0) = 0 < 1 < bT  1 + λ = VT (1), and, as is well known, b(x) = x is a weakly

dominant strategy for the firm.
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Similarly, we now consider the case where λ # 0. If 0 < bT < x, then the firm wins and does

not suffer from ex-post regret since she gets x− bT > 0 upon winning. If bT = x, she gets zero

ex-post payoff regardless of the outcome of the tie resolution. Finally, if x < bT  1, then the

firm loses for sure and does not regret as x− bT < 0. Clearly, for any bT 2 [0, 1], the troll gets

zero ex-post payoff whether he wins or loses the auction, and does not suffer from ex-post regret

in either case.

Proof of Theorem 1.1

Let βe denote firms’ common equilibrium strategy, which is assumed to be continuous and

strictly increasing in the signal they receive, and φ(b) ⌘ β−1
e (b) firms’ equilibrium inverse bidding

function, where φ : [βe(0), βe(1)] ! [0, 1] is continuous and strictly increasing. Throughout, we

shall say that the troll bids aggressively whenever he submits any b > βe(1).

Furthermore, we reorder X1, X2 and let Y1, Y2 denote the rearranged signals so that Y1 ≥ Y2,

where Yk is distributed according to Fk, k = 1, 2, given by14

F1(y1) = [F (y1)]
2 = y21 and F2(y2) = 2F (y2)− [F (y2)]

2 = 2y2 − y22

with associated marginal densities f1(y1) = 2y1 and f2(y2) = 2(1 − y2), and joint density

f1,2(y1, y2) = 2 if 0  y2  y1  1 and 0 elsewhere.

(i) We first show that firms’ equilibrium bidding strategies are bounded above by w̄(xi) = 2xi

for all xi 2 [0, 1], i = 1, 2. Consider (say) firm i and let us derive her maximum willingness-to-

pay for the patent, wi(xi), defined as the tying bid at which firm i is indifferent between winning

and losing. Two cases need to be considered. If the tying bidder is the troll, then firm i infers

that Xj < xi so that her maximum willingness-to-pay is given by

E[v(Xi, Xj)|Xi = xi, Xj < xi]− wi(xi) = 0 , wi(xi) =
3

2
xi ⌘ w(xi)

Instead, if the tying bidder is firm j, then firm i infers that Xj = xi by symmetry of bidding

strategies. Therefore, her maximum willingness-to-pay is given by

E[v(Xi, Xj)|Xi = xi, Xj = xi]− wi(xi) = 0 , wi(xi) = 2xi ⌘ w̄(xi)

14See for instance Krishna (2009), pp. 281-284.
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Thus, firms’ equilibrium bids are indeed bounded above by w̄(xi) = 2xi 8xi 2 [0, 1], i = 1, 2.

Next, for given firms’ equilibrium strategies βe(xi), let us define G(λ) as the troll’s expected

payoff upon winning when bidding any b > 0. Since the troll wins if b > βe(Y1) , Y1 < φ(b),

we have

G(λ) , E
⇥
((1 + λ)(Y1 + Y2)− βe(Y1))1y1φ(b)

⇤
(1.1)

= 2

ˆ φ(b)

0

ˆ y1

0
[(1 + λ)(y1 + y2)− βe(y1)]dy2dy1

Consider first the case where firms’ equilibrium strategy is such that xi  βe(xi)  3
2xi for any

xi 2 [0, 1], i = 1, 2, where the first inequality comes from the fact that we focus on equilibria in

undominated strategies. The troll’s expected payoff upon winning when bidding b > 0 is then

2

ˆ φ(b)

0

ˆ y1

0
[(1 + λ)(y1 + y2)− βe(y1)]dy2dy1 ≥ 2

ˆ φ(b)

0

ˆ y1

0
[(1 + λ)(y1 + y2)−

3

2
y1]dy2dy1

= λ [φ(b)]3

≥ 0 8λ 2 [0, 1]

Hence, the troll always prefers to win for any λ 2 [0, 1] whenever firms’ equilibrium strategy

lies in [xi,
3
2xi] for all xi 2 [0, 1], i = 1, 2, so that bidding aggressively is optimal as it ensures

winning with probability one. In particular, b = 2(1 + λ) is a best response.

Consider now the case where 3
2xi < βe(xi)  2xi. First, we show that winning is no longer

profitable for the troll whenever his private-value advantage λ falls below a cutoff λ̂ 2 (0, 1) as

defined hereafter. From Eq. (1.1), observe that

G(0) = E
⇥
(Y1 + Y2 − βe(Y1))1y1φ(b)

⇤
< E

✓
Y1 + Y2 −

3

2
Y1

◆
1y1φ(b)

]
= 0
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and

G(1) = E
⇥
(2(Y1 + Y2)− βe(Y1))1y1φ(b)

⇤
≥ E

⇥
(2(Y1 + Y2)− 2Y1)1y1φ(b)

⇤

= 2E
⇥
Y21y1φ(b)

⇤

= 2

ˆ φ(b)

0

ˆ y1

0
2y2dy2dy1

=
2

3
[φ(b)]3 > 0

Moreover, we have that G0(λ) = E [Y1 + Y2|Y1 < φ(b)] > 0 for any φ(b) > 0. Together with

the fact that, since φ is continuous, G is continuous, there exists a unique λ̂ 2 (0, 1) such that

G(λ̂) = 0. Therefore, it follows that G(λ) ≥ 0 for any λ 2 [λ̂, 1] so that bidding aggressively

is optimal for the troll since winning is always profitable whenever his private-value advantage

exceeds the cutoff λ̂. In particular, submitting b = 2(1+λ) constitutes a best response. Instead,

since G(λ) < 0 for all λ 2 [0, λ̂), the troll strictly prefers to lose the auction which is ensured by

bidding zero.

(ii) We first show that if the troll pledges zero in equilibrium, then firms’ best response is

to bid twice their signal. To see this, consider, say, firm i and suppose that firm j 6= i pledges

βe(xj) = 2xj . By playing βe(xi) = 2xi, firm i wins if xi > xj . She gets xi+xj−2xj = xi−xj > 0

which ensures that she does not regret winning, and given the auction format, submitting a

higher bid does not improve her payoff. Instead, if xi < xj , then she loses and does not suffer

from ex-post regret either as xi + xj − 2xj = xi − xj < 0. Hence, playing βe(xi) = 2xi for all

xi 2 [0, 1], i = 1, 2 is optimal and satisfies the no ex-post regret property. Finally, suppose that

the troll instead bids b = 2(1 + λ) in equilibrium so that he always wins. Firms do not regret

losing since xi + xj < 2  b, which completes the proof of the second part.

(iii) Let RT and R0 denote respectively the seller’s expected revenue with and without the

troll’s participation in the auction. If the troll does not participate in the auction, then in a

symmetric equilibrium, firms play βe(xi) = 2xi as derived by Milgrom (1981), in which case the

seller’s expected revenue is E(R0) = 2E[Y2] =
2
3 . Clearly, if the troll bids zero in equilibrium,

we have that E(RT ) = E(R0) from part (ii). Instead, if the troll bids b = 2(1 + λ), the seller’s
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expected revenue is then given by

E(RT ) = E[βe(Y1)] ≥ E[Y1] =
2

3
= 2E[Y2] = E(R0)

where the first inequality follows from the fact that we discard equilibria involving the use of

weakly dominated strategies.

Proof of Proposition 1.1

Let us first consider the troll and suppose that firms play according to b. By bidding bT , the

troll always wins and gets

ˆ 1

0

ˆ y1

0
2 [(1 + λ)(y1 + y2)− ↵y1] dy2dy1 = 1 + λ− 2

3
↵ ≥ 0 8λ 2 [0, 1], 8↵ 2 [1,

3

2
]

Given the auction format, submitting a higher bid does not improve his payoff, while lowering

his bid triggers a positive probability to lose the auction. Hence, bidding aggressively ensures

that the troll outbids firms and in particular, bT = 2(1 + λ), constitutes a best response.

We now turn to (say) firm i and show that bidding b(xi) is a best response and satisfies

the no ex-post regret property. Suppose that the troll and firm j 6= i play according to the

aforementionned strategies. By pledging b(xi), firm i always loses the auction since b(xi) < bT ,

and gets zero payoff. She does not suffer from ex-post regret since winning would instead yield

x1 + x2 − bT = x1 + x2 − 2(1 + λ)  0 8λ 2 [0, 1], 8x 2 [0, 1]2. Obviously, either lowering

her bid or bidding any ai 2 (b(xi), bT ) does not change the outcome or her payoff. Since firms’

strategies are symmetric, a similar argument holds for firm j, j 6= i.

Finally, note that these equilibrium strategies are undominated since bT = 2(1+λ) = VT (1)

and Vi(xi, 0) = xi  b(xi) < xi + 1 = Vi(xi, 1) for all xi 2 [0, 1], i = 1, 2.

Proof of Proposition 1.2

Consider first the troll, and suppose that firms play linear strategies of the form b(xi) = kxi, k ≥

1, for any xi 2 [0, 1], i = 1, 2. Following the proof of Theorem 1.1, the troll’s expected payoff
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when bidding an amount b > 0 is then

2

ˆ b
k

0

ˆ y1

0
[(1 + λ)(y1 + y2)− ky1] dy2dy1

Simplifying, the troll’s problem is therefore given by

max
b2AT

ΠT (b) =


3

2
(1 + λ)− k

]
b3

3k3

Differentiating the objective with respect to b yields

dΠT

db
=


3

2
(1 + λ)− k

]
b2

k3
R 0 , λ R

2k − 3

3

Therefore, we have that if k = 2, then ∂ΠT

∂b
< 0 for all λ < 1

3 so that playing bT = 0 is optimal.

Instead, if k 2 [1, 2], then ∂ΠT

∂b
≥ 0 for any λ ≥ 1

3 so that playing bT = 2(1 + λ) is optimal.

We now turn to, say, firm i and suppose that the troll and firm j 6= i play the proposed

strategies. If λ < 1/3, then by bidding b(xi) = 2xi, firm i wins against firm j if xi > xj and

gets xi + xj − 2xj = xi − xj > 0, which ensures that she does not regret winning, and given

the auction format, increasing her bid does not improve her ex-post payoff. If λ ≥ 1/3, then

firm i always loses when bidding b(xi) and gets a zero ex-post payoff. She does not regret losing

as xi + xj  2 < 2(1 + λ) = bT . By symmetry, a similar argument holds for firm j. Finally,

since bT 2 AT and b(xi) 2 Ai for all i = 1, 2, the equilibrium does not involve the use of weakly

dominated strategies.

Proof of Lemma 1.2

Suppose first that λ ≥ 1
3 . Then the troll always outbids firms and his ex-post payoff upon

winning is

(1 + λ)(x1 + x2)− 2x1  0 , λ  x1 − x2
x1 + x2

Thus, the troll suffers from ex-post regret upon winning whenever λ 2 [13 ,
x1−x2
x1+x2

]. Similarly,

suppose that λ < 1/3 so that the troll loses the auction. His ex-post payoff is then

(1 + λ)(x1 + x2)− 2x1 ≥ 0 , λ ≥ x1 − x2
x1 + x2
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so that he suffers from ex-post regret upon losing for any λ 2
h
x1−x2
x1+x2

, 13

⌘
.

Proof of Theorem 1.2

Assume not. Since from Theorem 1.1, the troll bids either zero or bT = 2(1+λ) in any equilibrium

in which firms employ symmetric strategies, it is sufficient to restrict our attention to the case

where the troll’s equilibrium bid is bT = 0. From the proof of Theorem 1, firms’ best-response is

then to pledge b(xi) = 2xi, which ensures that they do not suffer from ex-post regret regardless

of the outcome of the auction. Thus, for (bT , b(x1), b(x2)) to form an ex-post equilibrium, it

must be that the troll does not suffer from ex-post regret upon losing. That is, the following

inequality must hold for any pair (x1, x2) 2 [0, 1]2

0 ≥ (1 + λ)(x1 + x2)− 2x1 (1.2)

But notice that for x2 ! x1, then the right-hand-side of Eq. (1.2) goes to 2(1 + λ)x1 − 2x1 > 0

for any λ > 0, a contradiction.

Proof of Proposition 1.3

()) Suppose that the strategies bT and b(xi) constitute an ex-post equilibrium. Then, it must

be that

uT (bT , b(x1), b(x2),x) = (1 + λ)(x1 + x2)− γ.max{x1, x2} ≥ uT (aT , b(x1), b(x2),x) (1.3)

for all x 2 [0, 1]2 and all aT 2 AT = [0, 2(1 + λ)]. Suppose that the troll instead bids any

aT < 2(1 + λ). Given the auction format, the troll’s payoff only changes if aT < γ.max{x1, x2},

in which case the troll loses the auction and gets zero payoff. Suppose w.l.o.g. that x1 ≥ x2, we

have that:

(1 + λ)(x1 + x2)− γ.max{x1, x2} = (1 + λ)(x1 + x2)− γx1 ≥ 0 8x 2 [0, 1]2

) (1 + λ)x1 ≥ γx1 x1 2 [0, 1]

, λ ≥ γ − 1 ⌘ λ

(() Suppose that λ ≥ γ − 1. We now establish that the proposed strategies constitute an
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ex-post equilibrium. By bidding bT = 2(1+λ), the troll always wins and gets (1+λ)(x1+x2)−

γ.max{x1, x2} ≥ γ(x1+x2)−γ.max{x1, x2} ≥ 0 for any x 2 [0, 1]2, which ensures that he does

not regret winning. Since the price he pays upon winning is the second highest bid, increasing

his bid does not improve his payoff, while a lower bid triggers losing the auction resulting in a

zero ex-post payoff. Likewise, firms do not regret losing since outbidding the troll would lead to

x1 + x2 − bT  x1 + x2 − 2  0 8x 2 [0, 1]2. Finally, note that bT = 2(1 + λ) = VT (1) and

Vi(xi, 0) = xi  b(xi)  xi + 1 = Vi(xi, 1) for all xi 2 [0, 1], i = 1, 2, which ensures that the

equilibrium strategies are undominated.

Proof of Lemma 1.3

The proof closely follows that of Lemma 1.1. We first establish that contributing s(x1) = x1 is

a best response for the firm. Observe that she always loses against the troll as s(x1) = x1 

1 < bT and therefore gets a strictly negative ex-post payoff −t. She does not regret losing since

outbidding the troll would instead yield x1 − bT − t < x1 − 1 − t < 0. Pledging instead any

s0 < x1 does not alter the outcome of the auction or her payoff. Hence, s(x1) = x1 is indeed a

best response. Next, we show that bidding any bT 2 (1, (1 + λ)(1 + x̂)] is a best response for

the troll. By playing bT , the troll always wins against the firm as s(x1) = x1  1 < bT , and does

not regret winning since he gets (1 + λ)(x1 + x2)− x1 ≥ 0 for any λ 2 [0, 1]. Given the auction

format, submitting a higher bid does not improve is payoff upon winning. Thus, bidding any

bT 2 (1, (1 + λ)(1 + x̂)] constitutes a best response for the troll.

Proof of Theorem 1.3

Towards a contradiction, assume first that there exists a profile of strategies (se(x1), s
e(x2), b

e
T )

that constitutes an ex-post equilibrium with se(x1) + se(x2) > beT > 0. Consider, say, firm 1.

By slightly lowering her contribution to s01 = se(x1)− ✏, with ✏ > 0 such that s01 + se(x2) ≥ beT ,

she is strictly better off as

x1 −
s01.b

e
T

s01 + se(x2)
− t > x1 −

se(x1).b
e
T

se(x1) + se(x2)
− t

, se(x1)(s
0
1 + se(x2)) > s01(s

e(x1) + se(x2))
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, se(x1) > s01 = se(x1)− ✏

Clearly, she finds it profitable to do so until the sum of contributions meets the troll’s equilibrium

bid, i.e. up to the point where s1 + se(x2) = beT . Tying with the troll then leads to

x1 −
s1b

e
T

s1 + se(x2)
− t = x1 −

s1b
e
T

beT
− t = x1 − s1 − t

Two cases need to be considered: (a) if x1− t ≥ s1, then firm 1 is strictly better off by deviating

to s1, contradicting an equilibrium in symmetric strategies; (b) if x1−t < s1, then firm 1 strictly

prefers to further reduce her contribution so that the troll wins the auction, a contradiction.

Consider now the case where (se(x1), s
e(x2), b

e
T ) forms an ex-post equilibrium with se(x1) +

se(x2) = beT > 0. By definition, it must be that all players are ex-post indifferent between

winning and losing, i.e. (se(x1), s
e(x2)) must satisfy

8
>><
>>:

(1 + λ)(x1 + x2) = se(x1) + se(x2)

xi − t = se(xi)

8x 2 [0, 1]2, i = 1, 2

Clearly, these two equalities are mutually exclusive. Hence, there is no pair (se(x1), s
e(x2))

such that tying with the troll at a positive price constitutes an ex-post equilibrium. This last

argument completes the proof.

Proof of Proposition 1.4

Suppose that the profile of strategies (s(x1), s(x2), bT ) constitutes an ex-post equilibrium of the

continuation game Γ2 for which the intermediary wins the auction. From Theorem 1.3, it must

be that bT = 0. By contradiction, assume that excessive contributions are not refunded. Then,

in equilibrium, it must be that firms pledge at most their signal, i.e. s(xi)  xi, as any higher

contribution s0i > xi yields xi − s0i < 0, making si = 0 a strictly profitable deviation. By

definition, one must have that the troll does not regret bidding zero, that is, the following must

hold for any pair (x1, x2) 2 [0, 1]2

0 ≥ (1 + λ)(x1 + x2)− (s(x1) + s(x2))
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which contradicts s(xi)  xi. Hence, the troll strictly prefers to win the auction so that pledging

any b0T > 2 ≥ x1 + x2 is a profitable deviation, a contradiction.

We now establish that the proposed strategies constitute an ex-post equilibrium of Γ2. Sup-

pose that firms play according to sa. By bidding baT = 0, the troll always loses and gets

0 > (1 + λ)(x1 + x2)− (sa(x1) + sa(x2))

which ensures that he does not regret losing. Consider now firm i, and assume that the troll

and firm j 6= i play the aforementioned strategies. By pledging sa(xi), the intermediary always

wins and firm i gets xi − t ≥ −t so that she does not suffer from ex-post regret. Lowering her

contribution to some s0i only changes the outcome if both s0i = 0 and xj = 0 in which case she

gets −t < 0. Hence, pledging sa(xi) indeed constitutes a best-response for firm i, i = 1, 2.

Proof of Proposition 1.5

Recall that the intermediary’s objective writes ΠI(x̂) = 2x̂(1 − x̂)2. We first show that ΠI(x̂)

is strictly quasi-convave in x̂. To this end, it is sufficient to show that the second derivative of

ΠI(x̂) is strictly negative whenever the first derivative equals zero.

Π
0

I(x̂) = 2(1− x̂)(1− 3x̂)

Π
00

I (x̂) = −8 + 12x̂

Observe that the first derivative vanishes at x̂ = 1
3 and x̂ = 1. However, x̂ = 1 is not optimal

since ΠI(1) = 0. Since Π
00

I (
1
3) = −4 < 0, ΠI(x̂) is strictly quasi-concave and admits a unique

interior argmax x̂⇤ = 1
3 . Since firms’ participation constraint binds at xi = x̂ for all i = 1, 2, we

have that t⇤ = (1− x̂⇤)x̂⇤ = 2
9 and ΠI(x̂

⇤) = 8
27 > 0. The proof of the following equivalences

8
>><
>>:

a⇤i = A , xi 2 [13 , 1]

a⇤i = R , xi 2 [0, 13)

for all i = 1, 2

directly follows from Definition 1.5 and the forward induction criterion, while the proof of the

second part directly follows from the proofs of Theorem 1.2, Lemma 1.3 and Proposition 1.4.
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Proof of Corollary 1.

From the proof of Theorem 1.1, we have that E(R0) = 2
3 . When the troll participates in the

auction, the seller instead gets

E(RT ) = γE(Y1) = γ.
2

3
2

2

3
,
4

3

]

In turn, the seller’s expected revenue in the intermediated auction, E[RI ], is given by

E[RI ] =Pr [X1 ≥ x̂, X2 ≥ x̂] .0 + Pr {[(X1 > x̂) \ (X2  x̂)] [ [(X1  x̂) \ (X2 > x̂)]} .E [Y1|Y1 ≥ x̂, Y2 < x̂]

+ Pr [X1 < x̂,X2 < x̂] .γE [Y1|Y1 < x̂]

=2x̂(1− x̂)E [Y1|Y1 ≥ x̂, Y2 < x̂] + x̂2γE [Y1|Y1 < x̂]

Letting F1,2(y1, y2) denote the joint distribution of (Y1, Y2), we have that

Pr [(Y1, Y2) 2 [x̂, 1]⇥ [0, x̂)] = F1,2(1, x̂)− F1,2(x̂, x̂)− F1,2(1, 0) + F1,2(x̂, 0)

=

ˆ 1

0

ˆ x̂

0
2dy2dy1 −

ˆ x̂

0

ˆ x̂

0
2dy2dy1 −

ˆ 1

0

ˆ 0

0
2dy2dy1 +

ˆ x̂

0

ˆ 0

0
2dy2dy1

= 2x̂(1− x̂)

= Pr {[(X1 > x̂) \ (X2  x̂)] [ [(X1  x̂) \ (X2 > x̂)]}

Thus, the density of Y1 conditional on the event (Y1, Y2) 2 [x̂, 1]⇥ [0, x̂) is

f1 (y1|(Y1, Y2) 2 [x̂, 1]⇥ [0, x̂)) =
2y1

2x̂(1− x̂)
1y1≥x̂

which leads to

E [Y1|Y1 ≥ x̂, Y2 < x̂] =

ˆ 1

x̂

y21
x̂(1− x̂)

dy1

Similarly, from the proof of Proposition 1.1, we have that E [Y1|Y1 < x̂] =
´ x̂

0
2y21
x̂2 dy1. Plugging

these into the seller’s expected revenue and rearranging yields

E[RI ] =

ˆ 1

x̂

2y21dy1 + γ

ˆ x̂

0
2y21dy1 =

2

3

(
1 + x̂3(γ − 1)

)
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Since γ 2 [1, 2], evaluating at x̂⇤ = 1
3 finally gives us

E[RI ] =
2

3
.

✓
26 + γ

27

◆
2

2

3
,
56

81

]

Hence, we indeed have that E(RT ) ≥ E(RI) ≥ E(R0).
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Chapter 2

Preemptive Intermediaries in the

Market for Patents

51



English summary

We theoretically and empirically examine business models of “patent preemption entities” (PPEs),

a type of non-practicing entity in markets for technology. PPEs specialize in the preemptive

acquisition of patents that could legally threaten their clients that subscribe to their services,

thereby preventing the risk of litigation brought by patent assertion entities (PAEs). We develop

a theoretical model where a PPE seeks to attract clients before competing against a PAE in an

auction for patent buyout. We show that PPEs can establish a profitable business model by re-

stricting their protection to the most threatening patents and to the most highly exposed firms,

while maintaining a credible threat of litigation against other potential infringers. Using patent

reassignment and litigation data, we then provide evidence supporting the model’s predictions.

Résumé français

Nous examinons théoriquement et empiriquement les modèles d’affaire des “entités de préemption

de brevets” (EPB), un type d’entreprise non productrice dans les marchés de technologie. Les

EPB sont spécialisées dans l’acquisition de brevets pouvant représenter une menace légale pour

leurs clients, anéantissant ainsi tout risque de litiges initiés par les entités de revendication de

brevets (ERB). Nous développons un modèle théorique dans lequel une EPB cherche à attirer

des clients avant d’entrer en concurrence avec une ERB dans une enchère de brevet. Nous

montrons que les EPB peuvent établir un modèle d’affaire profitable en restreignant leur offre

de protection aux firmes les plus exposées contre les brevets les plus menaçants, ainsi qu’en

maintenant une menace de litige crédible à l’encontre d’autres contrevenants présumés. Enfin,

s’appuyant sur des données de transferts de brevets et d’actions en contrefaçon, nos résultats

empiriques corroborent les prédictions du modèle.
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2.1 Introduction

This paper examines the business model of patent preemption entities that have emerged as

a competitive force in markets for technology. As the trade of patents has substantially in-

creased since the strengthening of the patent rights in the United States (see Branstetter et al.,

2006; Maskus, 2000), new types of intermediaries have emerged to exploit the legal and tech-

nological arbitrage opportunities (Hagiu & Yoffie, 2013; Delcamp and Leiponen, 2015). These

non-practicing entities do not sell products or perform R&D. They identify and buy dormant,

unutilized patents in order to license or sell (reassign) them to operating companies that develop

and commercialize products using these technologies. There are three types of non-practicing

entities. Patent assertion entities intend to profit from their acquired patents by legally asserting

them against infringing operating companies. Patent marketplaces are pure intermediaries that

enable patent trading without necessarily taking ownership of the portfolios for sale. Instead,

patent preemption entities, the focus of this study, intend to profit from their acquired patents

by licensing them to operating companies to defend against the attacks of patent assertion enti-

ties. Acting on behalf of their operating company clients, patent preemption entities attempt to

acquire and license patents before patent assertion entities, also called patent trolls, get a hold

of them.

The business model of patent assertion entities is relatively well understood: they identify

patents that can later be asserted against operating companies in order to extract settlement

fees or court-awarded damages. Similarly, patent market makers such as auction houses play

a reasonably simple role in this market by facilitating reassignment. By contrast, the business

model of patent preemption entities has not been analyzed in depth. Delcamp and Leiponen

(2015) provide a descriptive analysis of their activities. The purpose of this paper is to model

and empirically test the theoretical predictions regarding the interplay between patent assertion

entities and patent preemption entities, thus highlighting the economic mechanisms underpin-

ning the business model of patent preemption entities. After describing the differences between

the two patent entities, we develop a theoretical model of patent acquisition explaining when

either entity is likely to win a patent that is for sale. We then provide empirical evidence sup-

porting our theoretical results. Our results suggest that preemption entities tend to restrict

their protection to the most threatening patents and to the most highly exposed firms, while
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maintaining a credible threat of litigation against other potential infringers.

We consider a model of patent acquisition, whereby a preemption entity first attracts client

firms that seek protection in a particular technology field and then competes against an assertion

entity in an auction for a patent (or a patent portfolio) in that field. The patent threatens a

continuum of operating firms with heterogeneous degrees of exposure to infringement suits in

the field. Firms privately know their degree of exposure, while both non-practicing entities only

know the distribution. The infringement fee that the patent holder can extract depends on the

individual degree of exposure of operating firms and on the intrinsic value of the patent (e.g.,

its legal strength, or the value of the patented invention). While this value is known when the

auction starts, it is still uncertain when operating firms must decide whether to become a client

of the patent preemption entity.

The value of the patent for the patent assertion entity is based on the total expected in-

fringement fees that it can collect, net of the cost of extracting these fees from each targeted

infringer. We posit that this cost has both a fixed and variable part. The variable part captures

the costs of bilateral litigation and/or negotiations with each targeted operating firm. It implies

that a part of the fees eventually paid by infringers is dissipated in the enforcement process. The

fixed part instead corresponds to the upfront cost of setting up an enforcement strategy, such

as e.g. the cost of searching for potential infringers. It implies that the assertive entity cannot

profitably enforce the patent if the intrinsic value fo the patent is too low.

The preemptive entity’s bidding strategy is contingent on the contract established with

operating firms in the first stage, when the value of the patent for sale was still uncertain. We

consider a contract whereby, upon payment of a subscription fee, the preemption entity commits

to protect client firms against litigation for patents within a particular range of intrinsic values.

Importantly, subscription fees are not the only source of revenue for the preemption entity. If a

subset of firms reject its offer, it also has the option to sue these non-client firms upon buying

the patent - the so-called “Catch-and-Release” strategy.

We find that the catch-and-release strategy is a critical element in the PPE’s business model.

Without maintaining a credible threat of litigation against non-clients, operating firms would

have an incentive to free ride on the preemptive entity’s intervention: they are better off saving on

the subscription fee while benefitting from the removal of the patent threat once the preemptive

entity has purchased the patent. As a consequence, resorting to the catch-and-release strategy
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must be a credible threat, and the PPE cannot afford to preempt patents that it cannot profitably

assert against non client firms afterwards. This imposes a joint restriction on the mass of client

firms to target and on the set of patents that can be preempted. In this respect, we find that the

PPE offers protection against a limited set of high value patents to a subset of highly exposed

operating firms.

We build a database of 2,608 U.S. patents reassigned to preemption and assertion entities

to empirically test the prediction that preemption entities are more likely to purchase patents

that are of higher value in the technology fields where they are active. Using citation, litigation,

and other patent information to identify the importance and strength of the patent, and the

demand for the patent, our results are consistent with the model: preemption entities tend to

acquire more valuable patents. Moreover, this result is stronger when the value coincides with

a technical field of interest for preemption entities, as proxied by high exposure of their clients.

The paper is organized as follows. We next review the recent literature on assertive and

preemptive entities. We introduce the theoretical model in Section 2.3. We present our empirical

evidence in Section 2.4 and conclude in Section 2.5. Finally, proofs are relegated to Section 2.6.

2.2 NPEs in the market for patents: a review

2.2.1 Patent assertion entities

Patent assertion entities (PAEs) - NPEs with an explicit strategy to enforce patents through

litigation - have been fast developing in the last decade. According to industry estimates, there

were 550 IP lawsuits in the United States in 2010 against 3000 defendants, that is, over 2000

unique companies (some of which were sued more than once)1. Many of these legal cases were

concentrated in the communication technology industry, particularly smartphones, and about

17% of lawsuits were brought by NPEs in 2008.

Steiner and Guth (2005) observe that PAEs often buy patents and then wait until the

associated product market takes off. Then, PAEs are able to obtain compensations that are

higher than what potential licensees would have been willing to pay ex ante (Reitzig et al., 2007).

Having no R&D or production activity, PAEs are unexposed to patent suits, which deprives the

defendant from wielding the threat of counter-suit as a bargaining argument (Shapiro, 2001;

1RPX 2011 Annual Report, retrieved from www.rpx.com on May 7, 2012.
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Galasso, 2012). Levko et al. (2009) also suggest that PAEs differ from practicing entities in

terms of litigation strategies. For instance, they tend to name multiple defendants to maximize

settlement revenues and minimize legal costs. PAEs also seem to be less successful in their

litigation than practicing entities (29% rate of success compared with 41% for practicing entities,

ibid.).

There are relatively few and contrasted empirical studies of PAEs’ acquisition and litigation

strategies. Fischer and Henkel (2012) suggest that the probability that a traded patent is

acquired by an NPE rather than a practicing entity (operating company) increases in the scope

of the patent, in the patent density of its technology held, and in the patent’s technological

quality. A number of other empirical analyses confirm these findings (e.g., Shrestha, 2012;

Risch, 2012). By contrast, a recent empirical study by Cohen et al. (2014) finds evidence that

PAEs usually target firms that are flush with cash, irrespective of the closeness of those firms’

patents to the PAEs’.

2.2.2 Patent preemption entities

Our main focus in this paper is on so-called patent preemption entities (PPEs), also known as

defensive patent aggregators (McDonough, 2006; Wang, 2010; Hagiu and Yoffie, 2013). Their

activity consists in acquiring patents so that they do not end up in the hands of parties that

are likely to assert them. PPEs then provide freedom of operation and safety from litigation for

their operating company members or partners.

The two most advanced PPEs are companies called RPX and AST (Allied Security Trust).

Whereas certain PAEs, such as Intellectual Ventures or Mosaid, also provide comparable services,

RPX and AST are the most purely preemptive in their stated objectives. Their stated foci are

on pooling risks, costs, and transaction activities related to acquiring or licensing problematic

patents in high-technology industries. For example, RPX may negotiate licenses with external

PAEs to license or acquire their IP that is alleged to be infringed by RPX members. Thus, RPX

pools the bargaining power of its members to obtain licenses to relevant IPRs. This may reduce

the licensing or acquisition prices paid to IP sellers.

However, RPX and AST are structured rather differently from one another. AST is a non-

profit company that attempts to return as much of the value back to its clients. In a stark

contrast, RPX as a publicly-traded entity attempts to capture as much of the created value as
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possible and utilizes it to grow its businesses and at the same time generate reasonable benefits

for members. AST engages in patent acquisition based on (confidential) ex-ante bids by its

individual members. Meanwhile, RPX also pools information from its clients regarding patent

threats and litigation exposures, but its clients do not necessarily need to commit to bidding

ex-ante. AST buys, licenses, and sells patents but does not enforce them directly. In contrast,

and aligned with PAEs, RPX aggregates and enforces patents, but is committed to litigation

only indirectly through holding companies.

2.3 A model of patent acquisition

2.3.1 Setup

We consider a continuum of mass one of operating firms exposed to patent infringement in a

given technology field. Firms are heterogeneous in terms of their exposure to patents in the field,

denoted by ✓, which is distributed according to the twice differentiable distribution F over the

unit interval. Throughout, we assume that the probability density function f = F 0 is strictly

positive everywhere and the following:

(A1) The probability density function f is logconcave on [0, 1].

Firms expect that a patent assertion entity (henceforth, PAE) might acquire and assert a patent

against them, whereby a type ✓ firm has to pay a damage fee equal to ✓⇡, where ⇡ 2 [0, 1] denotes

the intrinsic value of the patent. At the beginning of the game, the value of the patent for sale,

⇡, is unknown to all players. Rather, they all share the same prior that ⇡ is distributed according

to the twice differentiable distribution G over [0,1], with strictly positive density g = G0.

Prior to the patent being for sale in the market, firms can subscribe to a patent preemption

entity (henceforth, PPE). In exchange for an up-front subscription fee, the PPE contractually

commits to protecting clients against litigation brought by the PAE for a range of patent values.

We posit that firms privately know their degree of exposure to the patent, while both NPEs

only know the distribution F . It directly follows that the PPE cannot discriminate among firms

as proposing a menu of type-contingent subscription fees is not incentive compatible: it fails to

induce firms to select properly within this menu. Put differently, the optimal incentive feasible

contract bunches types. In particular, proposing a contract targeting the whole set of types
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yields zero profit to the PPE.

We shall therefore restrict our attention to a contract with shut-down of a subset of types.

Namely, the PPE chooses a threshold type ✓̂ 2 (0, 1] and proposes a contract that consists of:

(i) a patent value threshold ⇡̂ such that it commits to preempt the patent for sale whenever its

realized value ⇡r satisfies ⇡r ≥ ⇡̂, and provides freedom to operate for its clients,

(ii) and a uniform non-negative type-contingent subscription fee T ≥ 0, i.e., T (✓) = T (✓0)

8 (✓, ✓0) 2 [✓̂, 1]2.

Furthermore, we adopt the usual assumption that the contract is perfectly enforceable, which

notably presupposes that there is a penalty, denoted by ⇢, to be incurred by the PPE upon

breaching the contract. That is, if the value of the patent for sale ⇡r exceeds the contractually

defined threshold ⇡̂, then the PPE incurs ⇢ whenever losing the auction.

The patent is sold through a second-price sealed-bid auction (without reserve price) between

the PAE and the PPE, where it is assigned to the highest bidder who pays the second highest bid.

In case of a tie, we assume that the patent is reassigned to either NPE with equal probability.

Importantly, we asssume that the realized value ⇡r of the patent for sale becomes common

knowledge before the auction starts, but after contracting takes place.

The PAE’s expected benefit of buying the patent is to assert it against operating firms so

as to collect damage fees. The cost of enforcing the patent consists of a fixed cost C 2 (0, 1)

of setting up a licensing program for the patent, plus a fraction (1− ↵), with ↵ 2 (0, 1), of the

total damages ✓⇡ extracted from each exposed firm that is dissipated through litigation and

transaction costs. Upon acquiring the patent, the PAE’s expected payoff is therefore equal to

↵⇡r

ˆ 1

0
✓f (✓) d✓ − C

which is positive if and only if

⇡r ≥ C

↵
´ 1
0 ✓f (✓) d✓

⌘ ⇡0

That is, the PAE finds it profitable to enforce the patent if its value is not too low so that

operating firms are not threatened by litigation when the patent for sale is of too limited value.

In order to ensure that ⇡0 2 (0, 1), we further assume that the parameters (C,↵) 2 (0, 1)2 satisfy

the following
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(A2) 0 < C ⌧ ↵ < 1

Hence, the PAE’s valuation for the patent vA (⇡r) is given by

vA (⇡r) =

8
>><
>>:

↵⇡r
´ 1
0 ✓f (✓) d✓ − C if ⇡r ≥ ⇡0

0 otherwise

Finally, the game unfolds as follows.

t=1 The PPE proposes a contract (⇡̂, T ) to firms which provides protection against a contrac-

tually defined subset of potentially threatening patents.

t=2 Operating firms either accept or reject the PPE’s offer2.

t=3 The value of the patent for sale is drawn by Nature from the distribution G over the unit

interval, and it becomes common knowledge among players.

t=4 The PPE and the PAE compete in an auction to purchase the patent, and the winner may

enforce its rights.

2.3.2 Auction for patent buyout

Let us first characterize the equilibrium of the auction for patent buyout, for a given patent value

threshold ⇡̂ 2 (0, 1). Throughout, we focus on equilibria in which the PAE’s bidding strategy is

undominated.

Prior to formulating their bids, both NPEs learn the realized value of the patent for sale ⇡r.

Given its contractual commitment to preempt patents above the value threshold ⇡̂, the PPE

must bid aggressively so as to outbid the PAE whenever the value of the patent for sale is such

that ⇡r ≥ ⇡̂. An obvious way to fulfill this commitment is to bid according to b̄P > vA(⇡
r),

that is, strictly above the PAE’s valuation for the patent, whenever ⇡r 2 [⇡̂, 1]. Indeed, the

PAE then strictly prefers to lose the auction since it would otherwise get uA = vA(⇡
r)− b̄P < 0

upon winning. However, the PPE’s incentives to honor its contract might be overturned if the

penalty to be incurred upon breaching the contract, ⇢, is too low. Namely, letting v1P denote

the PPE’s gross payoff derived from subscription fees, and v2P 2 [0, vA(⇡
r)) denote the PPE’s

2Throughout, we adopt the conventional assumption that, when indifferent, firms accept the offer.
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expected gain from asserting the patent against non-clients, breaching the contract is strictly

preferred if and only if

v1P − ⇢ > v1P + v2P − bA(⇡
r) 8⇡r ≥ ⇡̂

where bA(⇡
r) denotes the PAE’s equilibrium bid. Therefore, we need the following assumption to

ensure that the PPE’s penalty is high enough so that deviating from its contractual commitment

is strictly unprofitable.

(A3) ⇢ > bA(⇡
r)− v2P

Conversely, whenever the patent value ⇡r lies below the threshold ⇡̂, then the PPE always

prefers to lose the auction since it gets v1P ≥ v1P + v2P − vA(⇡
r). In this respect, pledging any

bP < vA(⇡
r) ensures such an outcome since the PAE then strictly prefers to win as it gets

uA = vA(⇡
r) − bP > 0. The next result characterizes the equilibrium of the patent auction

which honors the PPE’s contract3.

Proposition 2.1. If (A3) holds, then the following bidding strategies constitute an equilibrium

of the patent auction:

b⇤P (⇡
r) =

8
>>>>>><
>>>>>>:

b̄P if ⇡r 2 [⇡̂, 1]

bP if ⇡r 2 [⇡0, ⇡̂)

0 if ⇡r 2 [0, ⇡0)

, b⇤A(⇡
r) = vA(⇡

r) =

8
>><
>>:

↵⇡r
´ 1
0 ✓f (✓) d✓ − C if ⇡r ≥ ⇡0

0 otherwise

with 0  bP < ↵⇡r
´ 1
0 ✓f (✓) d✓ − C < b̄P .

When the value of the patent for sale is such that it is strictly unprofitable to litigate operating

firms, that is when ⇡r < ⇡0, both NPEs bid zero since they cannot extract any revenue from

3The patent auction actually admits myriad of equilibria supporting the PPE’s contractual commitment,
provided that the penalty ρ is adjusted accordingly. Formally, one obtains a continuum of equilibria in which the
PAE bids according to

βA(π
r) =











bA if πr
∈ [π̂, 1]

b̄A if πr
∈ [π0, π̂)

0 if πr
∈ [0, π0)

with 0 ≤ bA ≤ vA(π
r) ≤ b̄A

while the PPE’s pledges bP (π
r) as specified in Proposition 1. Nevertheless, given the auction format, such

equilibrium profiles of strategies are problematic in our context since they fail to provide us with a unique

prediction of the PPE’s expected cost of patent acquisition. Instead, refining the set of equilibria by discarding
the use of weakly dominated strategies by the PAE overcomes this issue, which will prove useful when solving
for the PPE’s problem.
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such patents and each of them has a probability of 1/2 to win. The PAE always preempts lower

value patents such that enforcement is profitable, while the PPE instead always wins higher

value patents, thereby fulfilling its contractual commitment.

2.3.3 The PPE’s problem

We now turn to the characterization of the PPE’s optimal contract. The PPE chooses a patent

value threshold ⇡̂, a threshold type ✓̂ and a subscription fee T that maximize its ex ante expected

profit and satisfy firms’ participation constraint for all types in [✓̂, 1], and such that:

• types in [✓̂, 1] accept the PPE’s offer and are protected from litigation for any patent such

that ⇡r ≥ ⇡̂,

• types in [0, ✓̂) do not subscribe and face litigation regardless of the patent reassignee’s

identity, provided that the value of the patent for sale satisfies ⇡r ≥ ⇡0.

Moreover, the PPE may enforce the patent vis-à-vis non-client firms or, equivalently, sell the

patent encumbered with a free license to its clients to a PAE - the so-called catch-and-release

strategy. Whether the PPE can credibly use this strategy affects firms’ incentives to accept its

contract. Indeed, enforcing a patent requires incurring the fixed cost C, and may therefore not

be profitable if damages can only be collected from the subset of non-clients. Formally, upon

winning the auction, the PPE finds it profitable to assert its patent against non-clients if the

expected damages it receives from the mass of firms comprised in [0, ✓̂) outweigh the fixed cost

of enforcement C. That is,

↵⇡

ˆ θ̂

0
✓f (✓) d✓ ≥ C

Provided that ✓̂ > 0, this condition rewrites as

⇡ ≥ C

↵
´ θ̂

0 ✓f (✓) d✓
⌘ ⇡(✓̂) (CC)

Observe that ⇡(✓̂) ≥ ⇡0 since ✓̂  1, meaning that the critical patent value so that enforcing

the patent against non-clients becomes profitable exceeds that of the profitability to litigate all

operating firms. Therefore, the catch-and-release strategy is profitable for the PPE if the value
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of the patent for sale is high enough to compensate for the lower expected damage fees it receives

upon litigation. Hence, the use of this strategy is a credible threat if the PPE chooses (⇡̂, ✓̂)

such that ⇡̂ ≥ ⇡(✓̂). In particular, notice that the critical patent value ⇡(✓̂) is decreasing with

the threshold type ✓̂. That is, the PPE faces a trade off between the subset of firms to attract

and the range of patents that it commits to preempt in order to maintain a credible threat of

litigation against non-clients.

Clearly, the PPE never offers to protect its clients against a range of patent values such

that enforcement is not profitable. Indeed, by choosing (⇡̂, ✓̂) such that ⇡0  ⇡̂ < ⇡(✓̂), the

PPE cannot profitably litigate non-clients when it preempts patents of intermediate value ⇡̂ 

⇡r < ⇡(✓̂). In this case, any firm that did not subscribe to the PPE is thus de facto protected

from the patent once the PPE has purchased it. Firms’ incentives to accept the PPE’s offer are

therefore undermined as they can freely benefit from the PPE’s intervention with probability

G(⇡(✓̂)) − G(⇡̂) ≥ 0. Since the patent value is unknown when deciding whether to accept the

PPE’s offer, a type ✓ firm subscribes if the expected damages to be paid when not subscribing

exceed its expected cost of subscribing, which consists of the subscription fee plus the expected

damages to pay to the PAE when the latter wins the auction, i.e.

✓

ˆ π̂

π0

⇡g (⇡) d⇡ + ✓

ˆ 1

π(θ̂)
⇡g (⇡) d⇡ ≥ T + ✓

ˆ π̂

π0

⇡g (⇡) d⇡

, T  ✓

ˆ 1

π(θ̂)
⇡g (⇡) d⇡ 8✓ 2 [✓̂, 1] (2.1)

Notice that firms’ maximum willingness to pay for the PPE’s services, as given by the right-hand

side of (2.1), does not depend on the threshold patent value ⇡̂ since litigation brought by the

PPE is not a credible threat for any patent such that ⇡r 2 [⇡̂, ⇡(✓̂)). In other words, highly

exposed firms find it profitable to accept the PPE’s offer if the subscription fee is lower than

the expected damage fees to be paid to the PPE, provided that the patent can be profitably

enforced.

Proposition 2.2. It is not optimal for the PPE to commit to preempt patents that cannot be

subsequently asserted against non-client firms.

Intuitively, because of its contractual commitment, setting the patent value threshold ⇡̂ below

the critical value to profitably enforce its rights obliges the PPE to bear the cost of preempting
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a larger set of patents without being able to profitably enforce all of them against non-clients.

Hence, ex-ante, the PPE solves

max
{π̂,θ̂,T (.)}

h
1− F (✓̂)

i
.T

| {z }
Expected subscription fees

+

ˆ 1

π̂

"
↵⇡

ˆ θ̂

0
✓f (✓) d✓ − C

#
g (⇡) d⇡

| {z }
Expected revenue from catch-and-release

−
ˆ 1

π̂

vA (⇡) g (⇡) d⇡

| {z }
Expected price for the patent

subject to

T + ✓

ˆ π̂

π0

⇡g (⇡) d⇡  ✓

ˆ 1

π0

⇡g(⇡)d⇡ 8✓ 2 [✓̂, 1] (PC)

⇡̂ ≥ ⇡(✓̂) (CC)

(PC) states that, in order to induce a type ✓ firm to accept its offer, the PPE’s subscription fee

plus the expected damages to be paid to the PAE if it wins the auction must be lower than the

expected damages she has to pay when rejecting the PPE’s offer. Straightforwardly, optimality

requires that (PC) binds for the threshold type ✓̂ so that the resulting tariff is given by

T ⇤ = ✓̂

ˆ 1

π̂

⇡g(⇡)d⇡ (2.2)

Moreover, since ⇡(✓̂) ≥ ⇡0 for any ✓̂  1, the expected price to pay for preempting the patent

can be rearranged as

ˆ 1

π̂

vA (⇡) g (⇡) d⇡ =

ˆ 1

π̂


↵⇡

ˆ 1

θ̂

✓f (✓) d✓ − C

]
g (⇡) d⇡

| {z }
PAE’s expected revenue from the PPE’s clients

+

ˆ 1

π̂

"
↵⇡

ˆ θ̂

0
✓f (✓) d✓ − C

#
g (⇡) d⇡

| {z }
PAE’s expected revenue from other firms

(2.3)

Observe that the PAE’s expected revenue from firms that are not clients of the PPE coincides

with the PPE’s expected revenue from the catch-and-release strategy. Thus, net of the benefit

derived from catch-and-release, the expected cost of preempting the patent reduces to the PAE’s

expected revenue derived from litigating the PPE’s clients. Plugging (2.2) and (2.3) into the
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PPE’s objective and rearranging then yields

max
θ̂,π̂

VP =


ˆ 1

π̂

⇡g (⇡) d⇡

]
.


ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

]

s.t. ⇡̂ ≥ ⇡(✓̂) (CC)

The PPE’s objective now appears as a simple product of the two terms in brackets, capturing

respectively the expected value of the patents that the PPE commits to preempt, and the

differential valuation for the PPE’s clients by the PAE and the PPE. Note that this latter term

may be negative if its mass of client firms is too large (i.e. for low values of ✓̂), which suggests

that the PPE needs to severely screen out firms by setting a high threshold type in order to

make a positive profit.

The next result provides a sufficient condition on the probability density functions f and g

for a unique pair (✓̂, ⇡̂) maximizing the PPE’s problem. Nevertheless, this is not a necessary

condition since most generic optimization problems admit a unique solution (see Kenderov,

1984).

Lemma 2.1. The PPE’s objective monotonically decreases (resp. increases) with the patent

value threshold ⇡̂ whenever the threshold type ✓̂ satisfies

✓̂ ≥ (resp. )↵E
⇣
✓|✓ > ✓̂

⌘

Furthermore, if the densities f and g are everywhere non-decreasing, then the PPE’s problem

admits a unique argmax.

It directly follows that setting a threshold type such that ✓̂ < ↵E
⇣
✓|✓ > ✓̂

⌘
holds cannot be

optimal as it would then yield ⇡̂ = 1, and therefore leads to zero profit for the PPE. Instead,

the PPE must screen out low type firms by choosing a high threshold type so that enforcing

the patent against the set of non-clients becomes profitable. Hence, the PPE instead chooses

a threshold type satisfying ✓̂ ≥ ↵E
⇣
✓|✓ > ✓̂

⌘
so that the catch-and-release credibility condition

binds, that is, ⇡̂ = ⇡(✓̂). The PPE’s reduced problem is then

max
θ̂

"
ˆ 1

π(θ̂)
⇡g (⇡) d⇡

#
.


ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

]
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s.t. ✓̂ ≥ ↵E
⇣
✓|✓ > ✓̂

⌘

and the threshold type becomes the only choice variable left. By imposing a further restriction

on its mass of clients, this new constraint ensures that the PPE maintains a credible threat of

litigation against non-clients and gets a positive profit. Winning the auction indeed requires

that the fees collected by the PPE (and defined according to the threshold type ✓̂) are high

enough to outweigh the PAE’s valuation for the PPE’s clients. As an immediate consequence,

this constraint is also a sufficient condition to guarantee the profitability of the PPE’s business

model. Choosing the optimal threshold type ✓̂ is then a problem of balancing, on the one hand,

the benefit of restricting its mass of clients through a higher subscription fee, and on the other

hand, the benefit of collecting fees from a larger mass of clients. Proposition 3 establishes the

existence of an interior solution to this problem.

Proposition 2.3. There exists an interior threshold ✓̂⇤ satisfying

0 < ↵E
⇣
✓|✓ > ✓̂⇤

⌘
 ✓̂⇤ < 1

such that the PPE finds it optimal optimal to shut down the least exposed firms. The optimal

incentive feasible contract bunches types in [✓̂⇤, 1] and entails:

⇡̂⇤ =
C

↵
´ θ̂⇤

0 ✓f (✓) d✓
> 0 and T ⇤ = ✓̂⇤

ˆ 1

π̂⇤

⇡g(⇡)d⇡

Hence, the PPE can always make positive profits by offering protection against a subset of

patents with the highest value to a subset of operating firms with the highest exposure. This

suggests that this type of patent intermediary provides only a partial solution to the legal threat

created by PAEs. Indeed, it leaves its clients unprotected against the milder threat of lower-

value patents and does not address the exposure to litigation of non-client firms. Rather, the

PPE needs to maintain a credible threat of catch-and-release against them in order to sustain

its business model.

65



2.4 Quantitative evidence of NPEs’ business models

In this section we empirically compare the acquisition strategies of assertive and preemptive

intermediaries engaged in patent acquisition through regression analyses of patent reassignment

data. We first describe our data on the different patent trading models. We then test the

predictions that the likelihood that the preemption entity acquires a patent depends on the

intrinsic value of the patent (as measured by the legal strength of and demand for the patent),

controlling for the legal exposure of the clients of the entity.

2.4.1 Data

We gathered data on patents reassigned to assertion and preemption entities using the U.S

patent reassignment database. In total, our dataset contains 2608 patents that were reassigned

to at least one of the identified intermediaries between 1988 and 2012. 865 of these were bought

by the preemption entities Allied Security Trust and RPX Corporation, and the rest by asser-

tion entities including 1st Technology, Acacia Patent Acquisition, Arrival Star, Cheetah Omni,

Innovation Management, Innovative Sonic Limited, Intellectual Ventures, IPG Healthcare 501,

Mosaid Technologies, Papst Licensing, Rembrandt IP Management, Scenera Research, Tessera

Technologies, Trontech Licensing, Wi-Lan Inc., and Wisconsin Alumni Research4.

2.4.2 Characteristics of reassigned patents

Table 1.1 summarizes the main characteristics of the patents in our two samples. There are a

few differences between the patents reassigned to preemption versus assertion entities. Preemp-

tion entities tend to acquire patents that are slightly older and more highly cited than those of

assertive entities. Although the average ages of patents reassigned to preemption and assertion

entities differ by less than a year, this statistically significant age difference suggests that pre-

emption organizations acquire patents that are already known to be problematic or valuable,

whereas assertion organizations may acquire patents on a somewhat more speculative basis.

Preemption entities tend to buy significantly more-cited patents than do assertion entities.

The likelihood of litigation is also higher for patents reassigned to preemption entities, as com-

4However, we were unable to reliably distinguish the reassignments to Intellectual Ventures, because the
company operates through so many different funds, subsidiaries, and limited liability companies that this would
require substantial amount of detective work to compile (cf. Avancept 2011. The Intellectual Ventures Report.
Second Edition, http://avancept.com/iv-report2Ed.html).
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pared with patents reassigned to assertion ones. However, the differences in litigation rates are

not statistically significant.

Preemptive entities Assertive entities

Number of patents 865 1,743

Mean application year (SD) 1,996.51 (4.83) 1,997.28 (5.42)

Mean forward citations (SD) 17.07 (28.49) 14.96 (23.05)

Likelihood of litigation (SD) 0.060 (0.24) 0.050 (0.22)

Table 2.1: Characteristics of the reassigned patents

2.4.3 “Catch-and-release” strategies

One of the key insights of the theoretical model is that the preemptive entities’ ability to acquire

the most valuable patents depends on their use of catch-and-release strategies whereby they buy

patents, negotiate licenses to the patents with potential buyers on behalf of their clients, and

then sell the patents “encumbered” with the licenses. Then the members of the entity will enjoy

the licensing terms possibly for the life of the patent, even though the patent may be further

reassigned (sold) ex post. Catch-and-release provides incentives for legally exposed operating

companies to subscribe to the preemption entity because only their clients will benefit from the

licensing of the acquired patents.

Catch-and-release strategies are not easy to confirm empirically. Most patent reassignments

involving preemption entities have taken place rather recently, and, therefore, our dataset may

not yet capture many of the follow-on trades. Moreover, whereas some preemption entities (e.g.

AST) buy and sell large numbers of patents, this is not necessary for catch-and-release to be

effective. A credible commitment to catch-and-release might require selling just a handful of

key patents to assertion entities. Therefore, in order to find evidence about the existence of

such strategies, we examine whether (1) some of the patents reassigned to RPX or AST were

subsequently reassigned to another entity, and whether (2) some of the patents reassigned to

RPX or AST were subsequently litigated. If we find evidence of both, it is highly likely that

these firms use catch-and-release as a credible threat to incentivize membership.

Our sample suggests that 32% of patents reassigned to RPX Corporation were subsequently

reassigned to another entity. However, we are not able to precisely identify, for all reassignments,

if the second reassignee was a client of RPX at the time of reassignment5. The percentage of

5The majority of patents reassigned to RPX or AST were reassigned in 2009 or later. 10 See
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secondary reassignments is much higher for AST, around 80%. However, as AST organizes

itself through subsidiaries, we do not have comprehensive data on the history of its subsequent

reassignments. However, AST explicitly states that its goal is to sell all the patents ex post6.

Furthermore, according to our sample, out of those 100 patents that were reassigned to RPX

or AST and litigated, 22 patents were part of a lawsuit that was filed after the reassignment to

RPX or AST7. We have not been able to identify the parties involved in these lawsuits or to

confirm whether these patents were part of a litigation initiated by RPX, AST or by subsequent

reassignees. However, these cases imply subsequent monetization of the patent through enforce-

ment, which is consistent with a broad definition of the catch-and-release strategy. Moreover,

going to court may not be necessary in all cases before reaching a settlement in the dispute.

Accordingly, the number of litigated patents should be seen as a lower bound for the actual

deployment of catch-and-release. In summary, we observe at least selective litigation of patents

after reassignment to preemptive entities, which is aligned with the prediction of our model that

without such strategies the preemptive business model will not work.

2.4.4 Regression analyses of reassignments to assertion versus preemption

entities

Proposition 2.3 of our theoretical model predicts that whenever a patent is for sale in its tech-

nological field of activity, the likelihood that a preemption entity acquires this patent increases

with the value of the patent, broadly construed. In order to test this proposition, we measure

the technical importance of the patent in terms of its forward citations; its legal strength in

terms of past litigation; and its potential demand in terms of the number of companies among

the holders of the citing patents. This last measure of value reflects the fragmentation of the

follow-on invention (cf. Ziedonis, 2004), which is likely to strengthen the bargaining position

and expected returns of the focal patent holder.

According to our model, only firms that are substantially legally exposed to infringement in

the technical fields targeted by preemptive entities will subscribe to their protection services.

Therefore, we use the clients’ exposure to infringement to each traded patent to identify whether

this patent may be a potential target for the preemptive entity. For this purpose, we collect

http://www.alliedsecuritytrust.com/services/divestitureprocess.aspx, retrieved on Oct 15, 2015.
6See http://www.alliedsecuritytrust.com/services/divestitureprocess.aspx, retrieved on Oct 15, 2015.
711 of these patents were initially reassigned to RPX and 11 to AST.
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information about the clients of each patent preemption entity and their prior art citations to

each traded patent. We assume that citations to the focal patent indicate that the citing patents

are closely related to the cited patent. Citations are often interpreted to delimit and define the

boundaries of invention claims presented in each patent (Hall et al. 2001; Lampe, 2012). When

a patent cites another patent, its inventors (or examiners) acknowledge that the earlier patent

reduces the extent and originality of the subsequent patent. Therefore, citations are indicators

of closeness of the inventions in the technology space.

Using the number of forward citations to indicate legal exposure to a patent presents some

empirical challenges. The number of citations is correlated with the age of the patent, and

citations and reassignments could be subject to reverse causality, with reassignments causing

subsequent citations. Thus, differences in the number of citations between assertion and pre-

emption entities could be generated by differences in the numbers of reassignments or variation

in the timing of reassignments of patents to each type of entity. To overcome these issues, we

only use the number of forward citations that occurred during the first five years of the patent’s

life excluding all patents that were reassigned during these initial years (345 out of the 2,608

patents). For each reassigned patent, we used the list of the preemption entity’s clients to

distinguish the numbers of citations by clients and non-clients.

In estimating the auction outcome we control for observable characteristics of the reassigned

patent including its age and technological class, and estimate the simple cross-sectional linear

regression of the likelihood that a patent preemption entity (PPE) wins the auction for patent

p:

Preemptivep = ↵0 + ↵1Importancep + ↵2Strengthp + ↵3Demandp

+↵4GrantY earp + ↵5TechnologyClassp + ↵6ReassignmentY earp + ✏p

with:

Preemptivep: Likelihood, for the patent p, to be reassigned to a PPE,

Importancep: Total forward citations to patent p, or alternatively,

CitationsbyClientsp: Number of citations to patent p in patents held by PPE clients and

CitationsbyNonClientsp: Number of citations to patent p in patents held by firms that are
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not clients of the PPE

Strengthp: Past litigation of patent p,

Demandp: Number of companies citing patent p,

GrantY earp: Set of dummies for grant years of the patent

TechnologyClassp : Set of dummies for technological classes of the patent

ReassignmentY earp : Dummies for the year of reassignment

↵p= Error term

In Tables 2.2 and 2.3, we provide the descriptive statistics and correlations among the es-

timation variables. Approximately one third of the patents in our sample were reassigned to a

PPE. These organizations thus acquire a significant share of patents traded by intermediaries.

An average traded patent in the sample receives almost 16 citations, three of which from clients

of PPEs, and 12 from non-clients. Six percent of these patents have been litigated, and there

are usually about five companies (assignees) who generate the forward citations.

Table 2.2: Descriptive statistics

Table 2.4 presents the linear probability regression results. We also estimated the models

with logit maximum likelihood and the results were qualitatively aligned. We prefer the linear

regression for easy interpretation of the coefficients and interaction effects. In every specification

we include dummies for technology classes, patent age and reassignment year, as there may be

systematic differences in the probability or reassignment across these categories.

Additionally we control for potentially confounding factors related to the generality of the

patent (number of technology classes among the citing patents) and the standard-essentiality of

the patent (whether it has been declared essential in a standard-setting organization). Each of
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Table 2.3: Correlation matrix

these factors could conceivably influence the reassignment value of the patent. We add the main

explanatory variables of interest one by one and in specification (5) we include them all. In this

specification we also control for the generality and standard-essentiality of the patent.

The regressions presented in Table 2.4 suggest that the probability of reassignment of a

patent to a PPE increases with the value of the patent measured by its importance, strength,

and potential demand. We find that the importance of the patent measured as the number of

forward citations only matters to the PPE clients—the number of citations to the patent by

non-clients of PPEs is insignificant. In other words, preemption entities are likely to acquire

patents that are important for their clients, rather than for the general industry. The legal

strength of the patent in terms of past litigation also significantly increases the likelihood of

PPE acquisition. Past litigation validates the patent’s claims. Similarly the demand for the

patent in terms of the number of assignees (unique companies) in patents citing the focal patent

for sale significantly increases the likelihood that a PPE acquires it.

As the variables are measured in units and we estimate the linear probability model, the

coefficients directly indicate the marginal effects of the estimates. For example, past litigation

increases the probability of PPE acquisition of the patent by 9–11 percentage points; an addi-

tional assignee citing the patent by up to six percentage points; and an additional citation by
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PPE clients by 2–3 percentage points. These variables thus have economically significant effects

on the probability of acquisition by a PPE.

Citations from PPE clients reflect the clients’ legal exposure to the technical claims made by

the patent in question. In the last three specifications, we interact this variable with the other

measures of value: litigation and potential demand. These specifications most directly assess

the implications of our theoretical model. Our propositions suggest that the most exposed firms

will join the PPE and, conditional on the client relationship, the intrinsic value of the patent

determines who wins the auction. A positive interaction term in the estimation model would

then indicate that the value of the patent (measured as its legal strength and demand) matters

significantly more for the legally exposed firms.

Indeed, in specification (6) we find that a greater demand for patents to which many PPE

clients are exposed significantly drives the PPE’s bidding strategies in the auction. In other

words, the demand for patents in terms of a large number of citing companies drives PPE

acquisition strategies particularly strongly if the PPE clients are highly exposed to that patent.

Economically, this effect is significant at the higher end of the number of citations by PPE

clients, i.e., for the highest levels of PPE client exposure. At the mean value of citations by PPE

clients (3.40), the combined effect of the direct and interaction effects of the number of assignees

is only 0.54 percentage points. However, the number of citations by PPE clients ranges from 0

to 88 and at the midpoint of 44, an additional citing company would increase the probability of

PPE acquisition by 3.3 percentage points. In other words, the estimated effect of demand for

the patent measured as the number of citing companies (unique assignees of citing patents) is

quite substantial for the patents to which PPE clients are the most exposed.

In contrast, the litigation variable does not significantly interact with the exposure of PPE

clients. Litigation of a patent significantly increases its likelihood of being acquired by a PPE, but

this does not depend on the exposure of PPE clients to the patent. One possible interpretation

for this is that litigated patents may be acquired out of active lawsuits based on demand by a

smaller number of PPE clients, whereas the demand indicator (the number of companies citing

the patent in their own patents) suggests there is a large number of companies pursuing the

technology area in question, and if those companies are also highly exposed, then the PPE is

very likely to respond by acquiring the patent. There thus appear to be two distinct acquisition

strategies that PPEs may follow to provide legal protection to their clients.
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To disentangle these two acquisition strategies, we add two binary litigation variables in the

last two specifications, one for patents that have been litigated in the past and which litigation

has been concluded prior to the acquisition in question, and one for patents that were litigated

during the transaction in question. It turns out that almost all litigated patents with some

forward citations by the PPE’s clients were more likely to be acquired by PPEs. In particular,

patents concurrently involved in litigation during the time of reassignment were very likely

to be acquired by a PPE, and much more so if they were highly cited by patents of PPE

clients. Although not all these direct and interaction effects are statistically significant, the

results roughly indicate that patents that were cited at the mean rate of 3.4 by PPE clients’

patents and were litigated in the past were 15% more likely to be acquired by a PPE, whereas

similar patents that were involved in ongoing litigation were 67% more likely to be acquired

by a PPE. Thus, although the signal of value from past litigation alone does not necessarily

induce acquisition by a PPE, any connection to the technology areas on which PPE clients are

working strongly enhances the probability of reassignment to a PPE, particularly if the patent

is concurrently subject to litigation concurrently. However, some of the coefficients are only

marginally significant, possibly because there are very few cases of litigation that have already

ended before reassignment.

2.5 Conclusion

This paper studies how preemptive and assertive non-practicing entities (NPEs) operate in the

patent market. We theoretically examine competition between an patent assertion entity and a

patent preemption entity in a patent auction, and find that the latter can prevail by attracting

the most exposed firms to become members and using their collective demand to preempt the

most valuable patents. Our analysis also shows that the profitability of PPEs’ business model

relies on preserving a credible threat of enforcement of the preempted patent against non-client

firms (Catch-and-Release strategy), thereby obliging the preemption entity to commit to preempt

a subset of high value patents.

We test the validity of these claims with analyses of patent reassignment and litigation data.

We use citation data to identify legally exposed member firms, and find that our empirical

evidence is consistent with the model. Specifically, the PPE’s probability of buying a patent
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increases with its intrinsic value in terms of technical importance, strength and demand. Fur-

thermore, the value of the patent has a greater impact on firms that are legally exposed to the

patent claims. We find that patent value significantly interacts with legal exposure.

Our analyses highlight key features of preemptive and assertive strategies in the patent

marketplace by focusing on the information and bidding strategies of different types of NPEs.

Our empirical analyses, however, are based on the behavior of just two preemption entities, RPX

Corporation and Allied Security Trust. Although they are major participants in this market,

they are the only companies thus far known to provide substantial preemption services in their

stated missions and observed operations.

We find that these two companies indeed provide services to preempt patent assertion entities

on behalf of their clients. They also subsequently monetize their patents by selling them to their

own clients, other practicing entities, or patent assertion entities for further monetization and

possibly litigation. Thus, what makes preemptive entities “defensive”, as they call themselves, is

the fact that they enable sharing the risks, costs, and information related to patent threats among

their members. The defensive business model does not mean that patents are left “unmonetized”

on the shelf. As of 2015, AST and RPX have not engaged in extensive litigation themselves,

but it would not be surprising if RPX decided to do so in the future, as it is holding a large and

rapidly growing portfolio of unmonetized assets. Its limited catch-and-release of the acquired

patents may prevent it from acquiring some valuable targets, and hence from providing the best

defensive services.

2.6 Proofs

Proof of Proposition 2.1.

Throughout the proof, we will use the following notation: uP (bP ) = v1P+
(
v2P − bA

)
1bP≥bA1πr≥π0

denotes the PPE’s net payoff upon bidding bP ≥ 0, where v1P is the revenue it derives from

subscription fees, while v2P 2 [0, v(⇡r)) is the PPE’s gain from litigating the acquired patent

against non-clients. As well, we let uA(bA) = (vA(⇡
r)− bP )1bA≥bP denote the PAE’s net payoff

when bidding bA ≥ 0.
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We first show that bidding according to

b⇤A(⇡
r) = vA(⇡

r) =

8
>><
>>:

↵⇡r
´ 1
0 ✓f (✓) d✓ − C if ⇡r ≥ ⇡0

0 if ⇡r < ⇡0

is a weakly dominant strategy for the PAE. If ⇡r < ⇡0, then bidding zero yields uA(0) = 0,

while bidding any b0 > 0 only changes the outcome if b0 > bP > 0, in which case the PAE then

gets uA(b
0) = −bP < 0 = uA(0). If ⇡r ≥ ⇡0, then bidding bA = ↵⇡r

´ 1
0 ✓f (✓) d✓ − C weakly

dominates any lower bid. To see this, suppose instead that the PAE bids b < bA, then the

outcome only changes if b < bP < bA. In this case, the PAE loses and gets

uA(b) = 0 < bA − bP = vA(⇡
r)− bP = uA(bA)

Similarly, bidding bA weakly dominates any higher bid. Asssume that the PAE bids according

to b̄ > bA, then the outcome only changes if bA < bP < b̄. In this case, the PAE wins and gets

uA(b̄) = vA − b̄ = bA − bP < 0 = uA(bA)

Hence, bidding its true value, i.e. according to b⇤A(⇡
r) = vA(⇡

r) is indeed a weakly dominant

strategy for the PAE.

We now turn to the PPE and show that, under (A3), playing according to

b⇤P (⇡
r) =

8
>>>>>><
>>>>>>:

b̄P if ⇡r 2 [⇡̂, 1]

bP if ⇡r 2 [⇡0, ⇡̂)

0 if ⇡r 2 [0, ⇡0)

with 0  bP < ↵⇡r

ˆ 1

0
✓f (✓) d✓ − C < b̄P

is a best response to the PAE’s bid. Suppose that the PAE plays according to b⇤A(⇡
r). If ⇡r < ⇡0,

then the PPE is indifferent between winning and losing as it gets uP = v1P ≥ 0 in both cases.

Thus, bidding any b ≥ 0 yields the same payoff to the PPE and in particular, pledging bP = 0

is a best response. Now, if ⇡r 2 [⇡0, ⇡̂), the PPE strictly prefers to lose as it gets

uP = v1P > v1P + v2P − vA(⇡
r) = v1P + v2P − bA(⇡

r)
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Hence, bidding any bP such that 0  bP < ↵⇡r
´ 1
0 ✓f (✓) d✓ − C = b⇤A(⇡

r) is indeed optimal for

the PPE. Finally, consider the case where ⇡r ≥ ⇡̂. Due to its contracting commitment, the PPE

strictly prefers to win the auction since

uP = v1P + v2P − bA(⇡
r) > v1P − ⇢

, ⇢ > bA(⇡
r)− v2P

which holds by assumption (A3). Hence, bidding any b̄P > ↵⇡r
´ 1
0 ✓f (✓) d✓ − C = b⇤A(⇡

r)

constitutes a best response, which completes the proof.

Proof of Proposition 2.2.

Towards a contradiction, suppose that the PPE chooses (⇡̂, ✓̂, T ) such that

⇡̂ <
C

↵
´ θ̂

0 ✓f (✓) d✓
⌘ ⇡(✓̂)

That is, the PPE’s problem is

max
(π̂,θ̂,T )

h
1− F (✓̂)

i
.T

Expected subscription fees

+

ˆ 1

π(θ̂)

"
↵⇡

ˆ θ̂

0
✓f (✓) d✓ − C

#
g (⇡) d⇡

| {z }
Expected revenue from catch-and-release

−
ˆ 1

π̂

vA (⇡) g (⇡) d⇡

| {z }
Expected price for the patent

subject to

T + ✓

ˆ π̂

π0

⇡g (⇡) d⇡  ✓

ˆ π̂

π0

⇡g (⇡) d⇡ + ✓

ˆ 1

π(θ̂)
⇡g (⇡) d⇡ 8✓ 2 [✓̂, 1] (PC)

⇡̂  ⇡(✓̂) (C̄C)

Since optimality requires that (PC) binds for the lowest type, one obtains

T o = ✓̂

ˆ 1

π(θ̂)
⇡g (⇡) d⇡
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Plugging T o and vA(⇡) into the PPE’s objective and rearranging yields

max
(π̂,θ̂)

V o(⇡̂, ✓̂) =

"
ˆ 1

π(θ̂)
⇡g (⇡) d⇡

#
.


ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

]
−↵


ˆ 1

0
✓f(✓)d✓

]
.

"
ˆ π(θ̂)

π̂

⇡g (⇡) d⇡

#

s.t. ⇡̂  ⇡(✓̂) (C̄C)

Differentiating the PPE’s objective with respect to ⇡̂ yields

@V o

@⇡̂
= ↵⇡̂g(⇡̂)

ˆ 1

0
✓f(✓)d✓ > 0

using the fact that the density g is strictly positive everywhere. Therefore, it must be that

⇡̂ =
C

↵
´ θ̂

0 ✓f (✓) d✓
⌘ ⇡(✓̂)

which is a contradiction.

Proof of Lemma 2.1.

Let V (⇡̂, ✓̂) denote the PPE’s objective, that is,

V (⇡̂, ✓̂) =


ˆ 1

π̂

⇡g (⇡) d⇡

]
.


ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

]

and let Vi denote the first derivative of V with respect to its i-th argument, andVij be the

cross-partial derivative of V with respect to its i-th and j-th argument, i, j = 1, 2.

We first establish that V is either monotonically decreasing or increasing with ⇡̂. Differen-

tiating V with respect to ⇡̂ yields

V1 = −⇡̂g(⇡̂)

ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓ = −⇡̂g(⇡̂)


✓̂
⇣
1− F (✓̂)

⌘
− ↵

ˆ 1

θ̂

✓f(✓)d✓

]

Since the density function g is strictly positive everywhere, we have that

V1  (≥) 0 , ✓̂ ≥ ()
↵

1− F (✓̂)

ˆ 1

θ̂

✓f(✓)d✓ = ↵E
⇣
✓|✓ > ✓̂

⌘
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Let us now define

h(✓̂) = ✓̂ − ↵E
⇣
✓|✓ > ✓̂

⌘

Since h is continuous and h(0) = −↵E(✓) < 0 while h(1) = 1− lim
θ̂!1

↵E
⇣
✓|✓ > ✓̂

⌘
= 1− ↵ > 0,

there exists ✓0 2 (0, 1) such that h(✓0) = 0, that is, ✓0 = ↵E (✓|✓ > ✓0). Furthermore, ✓0 is

unique as, letting m(✓, ✓̂) ⌘ E

⇣
✓|✓ > ✓̂

⌘
, we have that

h0(✓̂) = 1− ↵
@m

@✓̂
≥ 1− ↵ > 0

where the first inequality follows from the fact that ∂m

∂θ̂
2 [0, 1] under the logconcavity assumption

of ✓ (see Heckman and Honoré, 1990, Proposition 1 p. 1128).

Suppose that f and g are everywhere non-decreasing. We now show that V is strictly quasi-

concave in (⇡̂, ✓̂) on the region [⇡0, 1] ⇥ (✓0, 1]. To this end, it is sufficient to show that the

determinant of the Bordered Hessian of V is strictly positive. We have that

B =

2
66664

V11 V12 V1

V21 V22 V2

V1 V2 0

3
77775

with

V1 =− ⇡̂g(⇡̂)

ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

V2 =
h
−✓̂(1− ↵)f(✓̂) + 1− F (✓̂)

i
.

ˆ 1

π̂

⇡g (⇡) d⇡

V12 =V21 = −⇡̂g(⇡̂)
h
−✓̂(1− ↵)f(✓̂) + 1− F (✓̂)

i

V11 =−
⇥
g(⇡̂) + ⇡̂g0(⇡̂)

⇤
.

ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

V22 =
h
−(1− ↵)

⇣
f(✓̂) + ✓̂f 0(✓̂)

⌘i
.

ˆ 1

π̂

⇡g (⇡) d⇡

Thus, det(B) > 0 if 2V1V2V12 − (V1)
2V22 − (V2)

2V11 > 0. Since g is strictly positive everywhere,

it follows that V1 < 0 and V11 < 0 for all ✓̂ 2 (✓0, 1]. Furthermore, we have that sign(V2) =

−sign(V12) so that 2V1V2V12 ≥ 0. Likewise, V22 < 0. Hence, det(B) > 0.
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Finally, it may be easily verified that the constraint set

C =

(
(⇡̂, ✓̂) 2 [⇡0, 1]⇥ (✓0, 1] : ⇡̂

ˆ θ̂

0
✓f (✓) d✓ ≥ C

↵

)

is non-empty under assumption (A2). We now show that it is convex. Let (⇡̂1, ✓̂1) 2 C and

(⇡̂2, ✓̂2) 2 C, and observe that

λ⇡̂1

ˆ λθ̂1

0
✓f(✓)d✓ = λ⇡̂1

(
ˆ λθ̂1+(1−λ)θ̂2

0
✓f(✓)d✓ −

ˆ λθ̂1+(1−λ)θ̂2

λθ̂1

✓f(✓)d✓

)
≥ λ

C

↵

and

(1−λ)⇡̂2

ˆ (1−λ)θ̂2

0
✓f(✓)d✓ = (1−λ)⇡̂2

(
ˆ λθ̂1+(1−λ)θ̂2

0
✓f(✓)d✓ −

ˆ λθ̂1+(1−λ)θ̂2

(1−λ)θ̂2

✓f(✓)d✓

)
≥ (1−λ)

C

↵

for any λ 2 (0, 1). Adding both inequalities yields

[λ⇡̂1 + (1− λ)⇡̂2]

ˆ λθ̂1+(1−λ)θ̂2

0
✓f(✓)d✓−λ⇡̂1

ˆ λθ̂1+(1−λ)θ̂2

λθ̂1

✓f(✓)d✓−(1−λ)⇡̂2

ˆ λθ̂1+(1−λ)θ̂2

(1−λ)θ̂2

✓f(✓)d✓ ≥ C

↵

) [λ⇡̂1 + (1− λ)⇡̂2]

ˆ λθ̂1+(1−λ)θ̂2

0
✓f(✓)d✓ ≥ C

↵
, λ(⇡̂1, ✓̂1) + (1− λ)(⇡̂2, ✓̂2) 2 C

Hence, the constraint set is indeed convex. The problem of the PPE therefore admits a unique

global constrained maximizer. This last argument completes the proof.

Proof of Proposition 2.3.

Ṽ (✓̂) =

2
64
ˆ 1

C

α
´ θ̂
0 θf(θ)dθ

⇡g(⇡)d⇡

3
75

| {z }

.

A(θ̂)


ˆ 1

θ̂

⇣
✓̂ − ↵✓

⌘
f (✓) d✓

]

| {z }
B(θ̂)

We have that

dṼ

d✓̂
= A0(✓̂)B(✓̂) +A(✓̂)B0(✓̂)

where
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A0(✓̂) =
✓̂C2f(✓̂)

↵2
⇣
´ θ̂

0 ✓f(✓)d✓
⌘3 .g

0
@ C

↵
´ θ̂

0 ✓f(✓)d✓

1
A and B0(✓̂) = 1− F (✓̂)− ✓̂(1− ↵)f(✓̂)

Evaluating at ✓̂ = 1, one obtains

dṼ

d✓̂

∣∣∣∣∣
θ̂=1

= −(1− ↵)f(1)

ˆ 1

C

α
´ 1
0 θf(θ)dθ

⇡g(⇡)d⇡ < 0

from assumption (A2) and the fact that the density f is strictly positive everywhere. In turn,

from the proof of Lemma 1, we know that there exists a unique interior ✓0 implicitely defined

by ✓0 = E (✓|✓ > ✓0) such that B(✓0) = 0, and that

B(✓̂) < 0 if ✓̂ 2 [0, ✓0) and B(✓̂) > 0 if ✓̂ 2 (✓0, 1)

Hence, it must be that B0(✓0) ≥ 0. Therefore, it implies that

dṼ

d✓̂

∣∣∣∣∣
θ̂=θ0

= A(✓0)B
0(✓0) ≥ 0 , A(✓0) =

ˆ 1

C

α
´ θ0
0 θf(θ)dθ

⇡g(⇡)d⇡ ≥ 0

which strictly holds by (A2). Since Ṽ 0(✓̂) is continuous, there exists a threshold ✓̂⇤ satisfying

0 < ↵E
⇣
✓|✓ > ✓̂⇤

⌘
 ✓̂⇤ < 1

and such that the first order condition for an interior solution is satisfied at ✓̂ = ✓̂⇤:

dṼ

d✓̂

∣∣∣∣∣
θ̂=θ̂⇤

= 0
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Chapter 3

Duopoly with Deterministic One-way

R&D Spillovers
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English summary

We examine the standard symmetric two-period R&D model with a deterministic one-way

spillover structure. Though firms are ex-ante identical, one obtains a unique asymmetric equi-

librium of R&D investments, leading to inter-firms heterogeneity in the industry. We analyze

the impact of a change in the spillover parameter and R&D costs on firms’ levels of R&D and

profits. We consider R&D cooperation and provide a welfare analysis in which we examine the

social costs of imposing symmetric R&D invesments among firms. Finally, we discuss the impact

of uncertainty about the appropriability of firms’ R&D investments and find that the spread

between firms’ investments and the industry’s total cost reductions are higher in the stochastic

framework. Firms sometimes prefer uncertain spillovers due to increased asymmetries in terms

of their unit cost structure.

Résumé français

Nous examinons le modèle standard de R&D à deux périodes avec des spillovers unidirec-

tionnels et déterministes. Bien que les firmes soient a priori identiques, l’unique équilibre

d’investissements en R&D est asymétrique et induit donc de l’hétérogénéité entre les firmes

dans l’industrie. Nous analysons l’impact d’un changement dans le paramètre de spillover et

dans les coûts de R&D sur les niveaux de R&D des firmes ainsi que sur leur profit. La coopéra-

tion en R&D est également étudiée et nous menons une analyse du bien-être social au sein de

laquelle nous examinons le coût social associé à la contrainte d’investissements symétriques entre

les firmes. Enfin, nous analysons l’impact de l’incertitude quant à l’appropriation des investisse-

ments des firmes en R&D. Nous montrons que l’écart entre leurs niveaux d’effort ainsi que les

reductions de coût totales sont supérieurs dans un environnement incertain. Le profit des firmes

est plus élevé dès lors que les spillovers sont stochastiques du fait d’une plus grande asymétrie

dans la structure des coûts unitaires.
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3.1 Introduction

In the context of non-tournament models of R&D in which firms engage in cost-reducing in-

novation and then compete à la Cournot in the product market, it is widely recognized that

exogenous knowledge spillovers create distortions in R&D investment decisions. While most of

the extant literature on imperfectly appropriable R&D focuses on multidirectional spillovers,

Amir and Wooders (1999), henceforth AW, instead consider a stochastic directed spillover pro-

cess whereby know-how may flow only from the more R&D intensive firm to its rival. In their

model, spillovers are stochastic and admit only extreme realizations - either full or no spillovers

occur with a given probability.

As argued by AW, the idea underlying the assumption of a unidirectional spillover process

is that it may better approximate the potential leakages that occur when the R&D process is

either one-dimensional, i.e. there is a single research path to achieve unit cost reductions, or

multi-dimensional in which case this spillover structure suggests that there is a more natural

path to follow. In this context, the spillover parameter may be interpreted as being related to

the length of patent protection, but also to a measure of the imitation lag.

The purpose of the present paper is to examine the certainty-equivalent of AW’s model in

the sense that a fraction of the R&D undertaken by the leader flows to its rival with certainty.

Namely, we consider the standard two-period model of process R&D and product market com-

petition with deterministic one-way spillovers. We adopt the common specification of linear

market demand and identical linear firms’ cost functions. Though firms are ex-ante identical,

one obtains a unique pair of asymmetric equilibria so that the roles of R&D innovator (the more

R&D intensive firm) and imitator (the less R&D intensive firm) are endogenously determined.

That is, a firm always either spends less than its rival so as to free ride on the latter’s R&D

investment through spillovers, or spends more if the other firm’s investment is too low in order

to benefit from a competitive advantage over its rival in the product market, thereby leading to

asymmetries in terms of the unit cost structure in the product market competition, and thus

unequal market shares. This conclusion establishes a simple link between the nature of the

R&D process in an industry –including the associated spillover –and the emergence of inter-firm

heterogeneity in that industry.

We examine how R&D investments and firms’ profits vary with both the spillover parameter
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and the R&D cost parameter. In particular, although both firms’ reaction curves shift down

as the spillover rate increases, we identify separate conditions for each firm’s R&D levels to

increase in the spillover parameter. Nevertheless, if either demand is high enough relative to

initial unit costs or R&D costs are sufficiently convex, R&D expenditures globally decrease with

the spillover parameter. Furthermore, we find that an increase in the spillover rate sometimes

raises the innovator’s profit and lowers that of the imitator. The industry is nonetheless better

off with some degree of imperfect appropriability of R&D as compared to no spillovers when

R&D costs are high.

Next, we study R&D cooperation among firms by means of a joint lab formation, thereby al-

lowing firms to jointly appropriate the outcome of R&D investments, while sharing the associated

costs. It has been shown that, when the spillover process is multidirectional and deterministic,

cooperating through a joint lab is superior to R&D competition in terms of levels of investments,

industry profit and consumer surplus (see d’Aspremont and Jacquemin, 1988; Kamien et al.,

1992). In the context of one-way stochastic spillovers, AW find that, under R&D competition,

the innovator sometimes invests more in R&D than the joint lab, and the industry’s total profit

is sometimes higher than under the joint lab. Clearly, since spillovers vanish under this type of

cooperation, the same results obtain with deterministic one-way R&D spillovers.

Then, we consider a benevolent central planner with a second best mandate, i.e. one that can

decide on R&D investments without intervening into the market competition. While the second-

best optimal symmetric investments coincide with those of the joint lab, social welfare achieved

under the joint lab formation is superior since R&D costs are shared among firms. Furthermore,

since imposing symmetric R&D investments yield symmetric unit costs in the product market

competition, social welfare under R&D competition dominates that under the intervention of

the central planner when R&D costs are low enough. This is because social welfare tends to

be higher when firms are asymmetric in terms of unit costs (see Salant and Shaffer, 1998). In

this respect, relaxing the assumption that the central planner imposes equal treatment among

firms, we find that social welfare induced by the second-best welfare maximizing asymmetric

R&D investments dominate that of the joint lab if either the spillover parameter or the cost of

performing R&D are low enough. Therefore, the well known result that the market typically

delivers lower levels of R&D than a (second-best) social planner continues to hold in our setting,

despite the resulting asymmetry among firms.
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Finally, we discuss the impact of uncertainty about the appropriability of firms’ R&D in-

vestments by comparing our results with those of AW. This is a meaningful comparison despite

the difference in the spillover processes of the two papers, since ours constitutes the certainty-

equivalent version of AW’s. In other words, the issue at hand here is to investigate the role

played by uncertainty in the spillover process. In particular, we find that the spread between

firms’ investments is higher when the unidirectional spillover process is stochastic. Interestingly,

a stochastic spillover structure seems to be more efficient than its deterministic counterpart since

the industry needs to invest less to achieve larger total cost reductions for a significant range

of parameters. Notably, we show that firms are better off when spillovers are uncertain for a

wide range of parameters due to increased asymmetries in terms of their unit cost structure

in the product market competition. We provide some economic intuition for this comparison

in terms of the curvature of firms’ profit functions. Since these are convex in the firms’ unit

costs, firms behave as risk-loving entities, preferring the stochastic spillover process of AW to

the certainty-equivalent version of the present paper.

The rest of the paper is organized as follows. Section 3.2 describes the model and the

assumptions. Section 3.3 characterizes the equilibrium under R&D competition. Section 3.4

studies the effect of a change in the spillover parameter and the R&D costs on firms’ propensity

to invest and profits. R&D cooperation by means of a joint lab is examined in Section 3.5.

A welfare analysis is provided in section 3.6. In Section 3.7, we compare R&D competition

under both deterministic and stochastic one-way spillovers. Concluding remarks are provided

in Section 3.8. Finally, a brief description of the model developed by AW and the proofs of our

results is relegated to the Appendix in Section 3.9.

3.2 The model

Consider an industry with two firms producing a homogenous good with the same initial unit

cost c, playing the following two-stage game. In the first stage, firms simultaneously choose

their autonomous cost reduction level x1 and x2, with xi 2 [0, c], i = 1, 2. The R&D cost to

firm i associated with the cost reduction xi is γ
2x

2
i , 8i = 1, 2. We assume, following AW, that

the innovation only flows from the more R&D intensive firm (the innovator) to its rival (the

imitator). But contrary to AW, we assume that the spillover process is deterministic. Namely,
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if autonomic cost reductions are x1 and x2 with, say, x1 ≥ x2, then the effective cost reductions

are X1 = x1 and X2 = x2 + β (x1 − x2), where the parameter β 2 [0, 1] is the fraction of the

cost reduction undertaken by firm 1 that spills over firm 2 with certainty.

In the second stage, upon observing the new unit costs, firms compete in the product market

by choosing quantities, with linear inverse demand P (q1 + q2) = a− (q1 + q2). A pure strategy

for firm i is thus a pair (xi, qi), where xi 2 [0, c] and qi : [0, c]
2 ! R+. Throughout, we use the

standard concept of subgame perfect equilibrium.

We assume that demand is high enough relative to the initial unit cost to ensure that the

second-stage game admits a unique pure strategy Nash equilibrium (PSNE) where both firms

are active in the product market, that is,

(A1) a > 2c

Cournot equilibrium profit of firm i in the second stage, given the actual unit costs ci, cj , is

thus given by Π(ci, cj) =
(a−2ci+cj)

2

9 . Firms’ net profits F1, F2, defined as the difference between

the second stage profit and the first stage R&D investment, can then be expressed as functions

of the autonomous cost reductions x1 and x2. Since the game is symmetric, we have that

F1(x1, x2) = F2(x2, x1). Therefore, throughout the paper, we omit the subscripts and write

F (xi, xj) to denote the net profit of firm i, where

F (xi, xj) =

8
>><
>>:

(a−c+xi(2−β)−xj(1−β))2

9 − γ
2x

2
i =̂U(xi, xj) if xi ≥ xj

(a−c+2xi(1−β)+xj(2β−1))2

9 − γ
2x

2
i =̂L(xi, xj) if xi  xj

(3.1)

One can easily check that F is continuous and nonconcave along the diagonal. Amir et al. (2010)

show that such a payoff function can guarantee the existence of an equilibrium if U and L are

globally submodular in (xi, xj). Unfortunately, this condition is not satisfied in our model for

all values of the spillover parameter β. Indeed, for β  1
2 , both U and L are submodular in

(xi, xj), i.e.,
∂2U(xi,xj)
∂xi∂xj

< 0 and
∂2L(xi,xj)
∂xi∂xj

< 0. On the other hand, for β > 1
2 , U is submodular

but L is supermodular in (xi, xj), i.e.,
∂2U(xi,xj)
∂xi∂xj

< 0 and
∂2L(xi,xj)
∂xi∂xj

> 0.

Furthermore, we assume the following.

(A2) 9γ − 2 (2− β)2 > 0

(A3) 4a
c
(1− β) < 9γ
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(A2) guarantees that U and L are strictly concave with respect to the first variable, while (A3)

ensures that firm i’s reaction function satisfies ri(c) < c, where ri(xj) 2 argmax {F (xi, xj) : xi 2

[0, c]}. This enables us to derive the reaction function of, say, firm i as

ri(xj) =

8
>><
>>:

2
(2−β)(a−c+xj(β−1))

9γ−2(β−2)2
if xi ≥ xj

4
(1−β)(a−c+xj(2β−1))

9γ−8(β−1)2
if xi  xj

(3.2)

and since the game is symmetric, we have that ri(xj) = rj(xi).

3.3 Equilibrium analysis

Before characterizing the equilibrium investments of the first-stage R&D game, our first result

states that firms’ reaction functions are not continuous.

Lemma 3.1. Reaction functions admit a unique downward jump.

Figure 1a (resp. 1b) depicts firms’ reaction curves for β  1
2 (resp. β > 1

2). As was previously

mentionned, the upper payoff function U is globally submodular in own and rival’s decisions so

that it gives rise to a reaction function segment that shifts down as rival’s investment increases.

As for the lower payoff function L, it is also submodular in own and rival’s decision for β  1
2 ,

but supermodular for β > 1
2 , so that its reaction function segment shifts up as rival’s investment

increases for this range of the spillover parameter. In contrast to our model, each player’s payoff

function in AW1 is instead globally submodular in (xi, xj) so that reaction curves have a similar

character to those depicted in Figure 1a.

Given firms’ best-response functions as derived in the previous section, straightforward com-

putations establish that reaction curves cross at (x, x) and (x, x), where

x̄ =
2 (a− c) (2− β)

⇣
3γ − 4 (β − 1)2

⌘

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2
(3.3)

x =
4 (a− c) (1− β) (3γ − 2 (1− β) (2− β))

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2
(3.4)

and x > x for any β 2 (0, 1). To guarantee that these two points are in the area of interest

1See Appendix 1.
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Figure 3.1: Reaction curves for different values of β

(0, c)⇥ (0, c), we need the following additional assumption

(A4) 9γ > I(β)

where

I(β) =
⇣a
c
− 1

⌘
(2− β) +

(
5β2 − 12β + 8

)

+

r⇣⇣a
c
− 1

⌘
(2− β) + (5β2 − 12β + 8)

⌘2
− 24

a

c
(2− β) (1− β)2

Though firms are ex-ante identical, the next proposition establishes the existence of only asym-

metric equilibrium pairs of R&D investments. This gives rise endogenously to a high R&D firm

(called the innovator) and a low R&D firm (called the imitator).

Proposition 3.1. Suppose that (A1) through (A4) hold. The R&D game admits a unique pair

of PSNE of the form (x, x) and (x, x).

As in the stochastic version of the model, the equilibrium levels of R&D investments are

asymmetric due to the nonconcavity of the net profit function F along the 45◦ line. By Lemma

3.1, reaction curves jump downward over the diagonal at bx as indicated on Figure 3.1 so that,

in equilibrium, a firm will always either spend less than its rival so as to free ride on the latter’s

R&D investment through spillovers, or spend more if the other firm’s investment is too low in

order to benefit from a competitive advantage over its rival in the product market. Notice that

(A4) ensures that the two equilibrium pairs (x, x) and (x, x) are interior solutions. Instead, if

90



(A1) through (A3) are satisfied, but (A4) is not, we have a boundary equilibrium of the form
(
xB, xB

)
and

(
xB, xB

)
where xB = c and xB = 4 (a−2c(1−β))(1−β)

9γ−8(β−1)2
. Figure 3.2 graphs assumptions

(A2) through (A4) in the parameter space (β, 9γ) and shows whether an interior or a boundary

equilibrium prevails.

Figure 3.2

3.4 Comparative statics

In this section, we examine how firms’ R&D levels of investments and net profits vary with the

spillover parameter and the cost of performing R&D.

3.4.1 Autonomous cost reductions

An increase in the spillover parameter impacts firms’ R&D expenditures through two channels.

Observe first that each payoff is submodular in own R&D level and β.2 Hence, the reaction

functions shift down as β increases, i.e., each firm lowers its R&D investment as its rival’s R&D

level is held constant (this is the direct effect). Intuitively, greater spillovers lower the innovator’s

benefit from undertaking R&D as its investment becomes less appropriable, thus enhancing its

rival’s efficiency in the product market. Likewise, the imitator’s incentives to invest in R&D are

2In other words, the cross-partial derivative of each payoff with respect to own R&D level and β is ≤ 0.
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undermined since its benefit from free riding over the innovator’s R&D investment is enhanced

through greater spillovers.

An increase in the spillover parameter also indirectly impacts firms’ investment decisions.

Namely, for β  1
2 , both firms’ payoff functions are submodular in (xi, xj) so that R&D invest-

ments are strategic substitutes. Thus, in this range of the spillover parameter, a decrease in one

firm’s R&D makes its rival optimally react by increasing its own level of investment so that it

enjoys a competitive advantage over its rival in the product market. This indirect (or strategic)

effect works against the direct effect.

Instead, for β > 1
2 , the imitator’s payoff function is supermodular in the two R&D levels,

so the imitator optimally responds to a decrease in the innovator’s level of R&D by lowering

its own investment as well. Hence the indirect effect reinforces the direct effect. Intuitively,

the larger fraction of R&D that flows to the imitator compensates for the innovator’s lower

level of investment so that free riding over the innovator’s investment is more profitable than

undertaking its own R&D.

The next result provides regions of parameters that determine which effect dominates.

Proposition 3.2. Suppose that the equilibrium pair of R&D decisions (x, x) is interior and let

Γ̄ and Γ be as depicted in Figure 3.3. Then the following holds:

(i) The innovator’s propensity to invest in R&D is increasing in β if 9γ 2 Γ̄, otherwise it is

decreasing.

(ii) The imitator’s propensity to invest is increasing in β if 9γ 2 Γ, otherwise it is decreasing.

(iii) Total R&D investments are decreasing in β.

Not surprisingly, total R&D expenditures are nonetheless decreasing in β, suggesting that

the eventual rise in one firm’s level of R&D does not compensate for its competitor’s lower

investment in response to a change in the spillover parameter. Figure 3.3 displays the regions

of parameters Γ̄,Γ for which firms’ equilibrium levels of R&D increase with the spillover rate.

Nevertheless, if either demand is high enough relative to initial unit costs or R&D cost is

sufficiently convex, then the direct effect dominates for both firms: R&D expenditures globally

decrease with the spillover rate. In particular, if a
c

> 4 or 9γ > 16 then the innovator’s
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Figure 3.3

equilibrium level of R&D is always decreasing in β. Likewise, if a
c
> 2.7 or 9γ > 12, then the

imitator’s investment in equilibrium x is always decreasing in β.

3.4.2 Profits

Next, we examine how firms’ overall profits vary in both the magnitude of spillovers and the cost

of R&D. Again, two opposite effects need to be considered. On the one hand, as said earlier,

greater spillovers lower the imitator’s incentives to invest in R&D in the first stage so as to freely

benefit from the innovator’s effort. But on the other hand, decreasing its R&D expenditures

exacerbates its production cost disadvantage relative to the innovator at the competition stage,

and thus negatively impacts its second-stage profit. Similarly, an increase in β alters the inno-

vator’s willingness to conduct R&D as its investment becomes less appropriable. However, a

decrease in R&D reduces its competitive advantage over its rival, which in turn undermines its

profit at the second stage. The next result characterizes regions of parameters for which either

effect dominates.

Proposition 3.3. Let Γ̄0 and Γ0 be as indicated in Figure 3.4. Assume that the equilibrium pair

of R&D decisions (x, x) is interior. The innovator’s profit is increasing in β for β < 2/3 and

9γ 2 Γ̄0, while the imitator’s profit is decreasing in β if 9γ 2 Γ0.

Hence, the innovator’s overall profit is increasing with the spillover rate as long as β <

2/3 and R&D costs are convex enough, meaning that the benefit derived from its competitive
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advantage over the imitator outweighs the cost of performing R&D. Intuitively, since the imitator

lowers its R&D expenditures, asymmetries across firms in terms of production costs increase at

the competition stage and strengthen the innovator’s competitive advantage. However, when

β ≥ 2/3, the innovator’s overall profit falls as β increases. As the imitator freely benefits

from a larger share of the innovator’s investment, the efficiency gap between them reduces and

negatively impacts the innovator’s second-stage profit. As for the imitator, greater spillovers

reduce its R&D investment which exacerbate its lack of efficiency relative to the innovator in

the product market competition. Notably, its profit decreases with β when the cost of conducting

R&D is such that 9γ 2 Γ0. Otherwise, its benefit from free riding over its rival’s investment

compensates for its competitive disadvantage.

In particular, observe that if 9γ > 16, that is, when the cost of R&D is sufficiently convex,

both firms are better off with positive spillovers as compared to no spillovers. This is due to

the fact that the imitator reduces its investment and the benefit from free riding over its rival’s

R&D expenditures outweighs the decrease in profit associated with its efficiency loss. As for

the innovator, while its R&D effort becomes less appropriable, its competitive advantage in the

product market compensates. Figure 3.4 provides a partition of the parameter space which fully

illustrates these comparative statics.

Figure 3.4

Finally, we consider how profits vary with the cost of R&D. Let ⇡(c) denote each firm’s

profit without any cost reduction, which simply equals per firm Cournot equilibrium profit with
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symmetric unit costs, i.e. ⇡(c) = 1
9(a − c)2. Straightforwardly, both the innovator’s and the

imitator’s profits tend to ⇡(c) as γ ! 1. The next two figures illustrate how each firm’s

equilibrium profit varies as the cost of R&D increases for different values of the spillover rate β.

Figure 3.5a

Figure 3.5b

3.5 R&D cooperation

In this section, we examine R&D cooperation by means of a joint lab formation, which allows

firms to jointly appropriate the outcome of R&D investments, while sharing the associated
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cost.Under this configuration, the joint lab therefore chooses a level of R&D that maximizes the

sum of firms’ profits, net of its cost. That is, the problem of the joint lab is

max
x2[0,c]

F̃ (x) =
2

9
(a− c+ x)2 − γ

2
x2

which yields the following per firm level of investment

xJ =

8
>><
>>:

4 a−c
9γ−4 if 9γ > 4a

c

c otherwise

Figure 3.6 shows whether an interior or a boundary equilibrium prevails under the joint lab

formation.

Figure 3.6

Straightforwardly, the joint lab’s optimal cost reduction coincides in both the determinis-

tic and the stochastic models as spillovers vanish under this type of R&D cooperation. The

next proposition provides a comparison of the joint lab’s R&D investment with those of the

noncooperative game (as depicted on Figure 3.6).

Proposition 3.4.

(i) xJ < x̄ if 9γ < 4 (1− β) (4− 3β) and xJ > x̄ otherwise

(ii) xJ > x
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This result firstly says that the innovator invests more in R&D than the joint lab if the

spillover parameter and the R&D costs are low enough. Intuitively, in the noncooperative

setting, the prospect of efficiency gains when competing in the product market with a weaker

rival boosts R&D investments in the first stage if these two conditions are satisfied. Conversely,

its incentives to exert R&D effort are undermined if either the associated cost is large or the

fraction of its cost reduction that spills over the imitator is high. Consequently, in this case, the

joint lab reaches a higher level of cost reduction by both splitting the cost of undertaking R&D

among firms and annihilating the free-rider issue.

Not surprinsingly, the level of R&D performed by the imitator in the noncooperative case

is instead strictly lower than the joint lab’s optimal cost reduction for any R&D cost and any

spillover rate since R&D competition leaves scope for free riding over the innovator’s investment

through the existence of spillovers. Our next result states that, for interior solutions, the total

effective cost reduction achieved by means of cooperation via a joint lab is greater than in the

noncooperative case.

Proposition 3.5. If both (x, x) and xJ are interior, then total effective cost reductions achieved

under the joint lab formation dominate those of the noncooperative setting.

Next, we examine the impact of R&D cooperation on firms’ equilibrium profit. The joint

lab’s profit in equilibrium is given by

F̃ (xJ) =

8
>><
>>:

2 (a−c)2γ
(9γ−4) if 9γ > 4a

c

4a2−9c2γ
18 otherwise

so that each firm gets 1
2 F̃ (xJ). The following table provides a full comparison of the innovator’s

equilibrium profit for interior and boundary equilibria in both settings.

R&D cooperation through a joint lab

Interior (9γ > 4a
c
) Boundary (9γ < 4a

c
)

R&D Interior (9γ > I(β) ) 1
2 F̃ (xJ) > F (x, x) 1

2 F̃ (c) > F (x, x)

competition Boundary (9γ  I(β) ) 1
2 F̃ (xJ) R F

(
xB, xB

)
1
2 F̃ (c) > F

(
xB, xB

)

Observe first that the innovator is strictly better off cooperating with its rival whenever the
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interior equilibrium would otherwise prevail in the noncooperative setting since the joint lab

formation allows to share both the cost and the results of R&D investments, while suppressing

spillovers. The superiority of cooperation is nonetheless jeopardized whenever 4a
c

< 9γ  I(β).

In this region of parameters, R&D competition enables the innovator to stand out from its rival

in terms of efficiency gains in the product market, so that its higher profit at the competition

stage outweighs both the cost of undertaking R&D and the losses associated with a lower ap-

propriability of its investment. Notably, the innovator strictly prefers to incur substantial R&D

expenditures the lower the spillover parameter, so that asymmetries in terms of unit costs are

exacerbated at the competition stage. For instance, letting a = 2.2, c = 1, β = 0.1 and γ = 1.16,

we have that 1
2 F̃ (xJ) = 0.259 < 0.274 = F

(
xB, xB

)
.

Likewise, the next table compares the imitator’s equilibrium profit under both regimes.

R&D cooperation through a joint lab

Interior (9γ > 4a
c
) Boundary (9γ < 4a

c
)

R&D Interior (9γ > I(β) ) 1
2 F̃ (xJ) > F (x, x) 1

2 F̃ (c) R F (x, x)

competition Boundary (9γ  I(β) ) 1
2 F̃ (xJ) > F

(
xB, xB

)
1
2 F̃ (c) > F

(
xB, xB

)

The imitator strictly prefers cooperating with the innovator unless I(β) < 9γ < 4a
c
, in which

case R&D competition may be superior as it enables the imitator to freely benefit from the

innovator’s investment through spillovers. More specifically, free riding becomes more profitable

than sharing the cost of undertaking R&D with the innovator for large values of the spillover

parameter. To see this, let a = 5, c = 1, β = 0.95 and γ = 1.38. Then, we have that

1
2 F̃ (c) = 2.43, while F (x, x) = 2.5.

Even though firms inherit the same cost structure under a joint lab, whereby strengthening

competition and disseminating firms’ profits in the product market, cooperation through a joint

lab allows firms to share R&D costs thereby avoiding the inefficiencies associated with the free-

rider issue inherent to the noncooperative setting. The next result establishes that the latter

effect dominates the former, whereby making the industry strictly better off when cooperating

through a joint lab.

Proposition 3.6. F̃ (c) ≥ F (x, x) + F (x, x) and F̃ (xJ) ≥ F
(
xB, xB

)
+ F

(
xB, xB

)
.
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3.6 Welfare analysis

In this section, we characterize the second-best welfare maximizing solution and examine the

social costs of imposing equal treatment among firms. Assume, w.l.o.g., that x1 ≥ x2, and define

social welfare in the usual way as the sum of firms’ profit and consumer surplus, i.e.

W (x1, x2) =
1

18
[8 (a− c) ((a− c) + x1 (β + 1) + x2 (1− β)) (3.5)

− x21
(
9γ + 14β − 11β2 − 11

)
− x22

⇣
9γ − 11 (β − 1)2

⌘
+ 2x1x2 (11β − 7) (1− β)]

Consider a benevolent central planner with a second best mandate, i.e., one that can decide

on R&D investments without intervening into the market competition. We first examine the case

where the planner imposes symmetric R&D expenditures across firms. In this case, the optimal

symmetric per firm investment level is given by xW = 4 (a−c)
(9γ−4) , which surprisingly coincides with

that of the joint lab, that is, xW = xJ . However, since the cost of undertaking R&D is no

longer split among firms, it directly follows that the total welfare achieved through cooperation

by means of a joint lab is strictly higher.

Whether total welfare achieved with the central planner’s intervention is superior to that of

the noncooperative setting instead depends on the magnitude of R&D costs. Two conflicting

effects need to be considered. On the one hand, imposing symmetric R&D investments implies

that firms face the same unit cost when competing in the product market, which in turn leads

to profit dissemination. On the other hand, since xW = xJ , total effective cost reductions are

higher under the intervention of the central planner (see Proposition 3.5) so that consumers

benefit from a lower price. The following result characterizes regions of parameters for which

either effect dominates.

Proposition 3.7. Total welfare ranks as follows:

W (jointlab) ≥

8
>><
>>:

W (x̄, x) > W (xW , xW ) if 9γ < K4

W (xW , xW ) > W (x̄, x) otherwise

where

K4 =
1

2

(
43β2 − 102β + 55

)
+

1

2

p
1057− 4212β + 5870β2 − 3396β3 + 697β4
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Not surprisingly, total welfare when firms cooperate through a joint lab exceeds that of the

noncooperative setting. Indeed, both the innovator and the imitator get a strictly higher profit

when cooperating (cf. section 3.5). Moreover, since the second-best welfare maximizing symmet-

ric R&D investments coincide with those of the joint lab, it follows that Proposition 3.5 applies.

Namely, total effective cost reductions are higher than those achieved in the noncooperative

setting so that aggregate production costs are lower whenever a central planner intervenes in

the R&D game. It directly follows that firms charge a lower price, thereby increasing consumer

surplus.

Corollary 3.1. CS (xW , xW ) ≥ CS(x̄, x)

Next, we relax the assumption that the social planner imposes equal treatment across firms.

Namely, the problem of the social planner is now to choose a pair of (possibly asymmetric) R&D

investments that maximizes total welfare, as given by Eq. (3.5), that is

(xW1 , xW2 ) 2 argmax
(x1,x2)2[0,c]2

W (x1, x2) (3.6)

Intuitively, one would expect the global argmax of social welfare to be asymmetric, as a result

of the well-known fact that Cournot equilibrium industry profit is convex in firms unit costs.

In other words, industry profit tends to be higher when firms are asymmetric in terms of unit

costs, and this property is inherited by social welfare (Salant and Shaffer, 1998 and 2001).

Indeed, this intuition is confirmed by the solution, as it may be easily verified that the

optimal investment levels are given by

xW1 =
4 (a− c)

⇣
γ (β + 1)− 2 (1− β)2

⌘

⇣
9γ2 − 2γ (11β2 − 18β + 11) + 8 (1− β)2

⌘ ,

x2
W = 4

(a− c) (γ − 2 (1− β)) (1− β)⇣
9γ2 − 2γ (11β2 − 18β + 11) + 8 (1− β)2

⌘ .

and that they satisfy 0 < xW2 < xW1 < c if 9γ > max{18(1 + β), Z1}, where

Z1 =2
a

c
(1 + β)− (11β − 9) (1− β)

+
1

c

r
(11β − 9)2 (β − 1)2 + 4(

a

c
)2 (β + 1)2 + 4

a

c
(β − 1) (11β2 − 16β + 9)
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Since symmetric choices of R&D levels are one option that the social planner has in the opti-

mization problem (3.6), it is clear that W (xW1 , xW2 ) > W (xW , xW ), as is indeed easily verified by

direct calculation. Nevertheless, despite its sub-optimality, the constrained-symmetric solution

may well be of substantial real-life interest, since implementing an asymmetric solution on a

priori identical firms may well be politically infeasible. It would be akin to forging a national

champion out of two equally efficient firms.

Our next result compares the second-best welfare maximizing asymmetric R&D investments

with those of the noncooperative setting, as well as the associated cost reductions.

Proposition 3.8. The second-best welfare maximizing asymmetric R&D investments satisfy the

following:

(i) xW1 > x̄ and xW2 > x if β > 2
3 , while xW2 < x if both β  2

3 and 9γ > 2(1−β)(23β−11−11β2)
(3β−2)

(ii) (1 + β)xW1 + (1− β)xW2 > (1 + β)x̄+ (1− β)x

Part (ii) of this result is not surprising, since it simply confirms for the particular setting

at hand a well-known general fact about innovation in general: That the market typically

undersupplies R&D, due to well-established market failures, in particular to the imperfectly

appropriable nature of process R&D here. Thus even a second-best social planner would typically

choose to generate higher levels of effective R&D.

Nevertheless, it is noteworthy that for small spillover rates, the social planner would actually

dictate a lower R&D level for the imitator. The intuition for this finding is that the social

planner is more apt than the non-cooperative solution to take advantage of the aforementioned

asymmetry premium for social welfare, and thus more prone to a higher dispersion in R&D

levels.

Furthermore, while total welfare achieved under symmetric regulation is inferior to that

induced by the joint lab formation, the next result instead states that asymmetric regulation is

superior from a welfare point of view whenever the spillover parameter is high enough.

Proposition 3.9. Total welfare induced by the asymmetric second-best welfare maximizing R&D

investments satisfies the following:

(i) W (xW1 , xW2 ) > W (xW , xW )
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(ii) W (xW1 , xW2 ) > W (jointlab) if either β ≥ 1p
2

or β < 1p
2

and 9γ < Z2 where

Z2 = (1− β)
(7β − 11)−

p
193β2 − 154β + 49

(2β2 − 1)

3.7 Deterministic versus stochastic spillover process

In this section, we provide a comparison of our results with those of the stochastic version of the

model by Amir and Wooders (1999) in terms of equilibrium levels of R&D investments, profits

and welfare. A brief description of their model is provided in Appendix 1. Importantly, while

the spillover parameter β denotes the portion of the innovator’s R&D investment that flows over

to the imitator with certainty in our model, β (resp. 1−β) instead denotes the probability that

full (resp. no) spillovers occur in AW. As such, our framework can a priori be thought of as the

certainty equivalent of the model presented in AW.

3.7.1 Assumptions

To begin with, let us briefly recall assumptions made by AW.

(AW1) a > 2c

(AW2) (i) 9γ > 4a
c
(1− β), (ii) 9γ > 8− 6β

Note that (AW1) and (AW2) (i) are identical to (A1) and (A3) in our model, while (AW2) (ii)

implies our assumption (A2) for any β 2 [0, 1]. Furthermore, they assume that

(AW4) 9γ > IAW (β) where

IAW (β) = 6(1− β) +
a

c
(2− β) +

r⇣
6(1− β)− a

c
(2− 3β)

⌘2
+ 8β

a

c

⇣a
c
− 2

⌘
(1− β)

(AW4) (resp. (A4)) ensures the interiority of the equilibrium pairs of R&D investments in the

stochastic (resp. deterministic) model. Figure 3.7 depicts these two interiority conditions in the

parameter space and shows that an interior equilibrium obtains more often when the spillover

process is deterministic.
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Figure 3.7

3.7.2 R&D investments and input shares

We first examine the role of uncertainty in the spillover process on both firms’ equilibrium levels

of R&D expenditures. In this respect, the next result states that the innovator (resp. imitator)

invests more (resp. less) in AW so that the spread between firms’ equilibrium levels of R&D

investments is larger when the spillover process is stochastic.

Proposition 3.10. Equilibrium R&D investments rank as follows

xAW < x < x < xAW

The intuition underlying this result is that, because of uncertainty about whether spillovers

will occur, the innovator has stronger incentives to invest in R&D since it will enjoy an important

competitive advantage over its rival at the competition stage in the event where there is no

spillover. Instead, in a deterministic environment, the innovator knows that a fraction of its

investment will freely benefit to its rival with certainty, whereby reducing asymmetries in terms

of unit costs between them.

Similarly, in a stochastic environment, there is a positive probability that the imitator can

appropriate the full cost reduction of its rival. Thus, in hope of free-riding over the innovator,

its incentives to exert costly R&D effort are weakened as compared to the deterministic setting.
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Another interesting aspect in which the deterministic and the stochastic models differ is in

the total level of R&D performed by the industry, and in the associated total cost reductions.

Proposition 3.11.

(i) Total R&D investments when the spillover process is deterministic dominate those of the

stochastic model.

(ii) Total effective cost reductions are higher in the stochastic model if either β > 3
5 or 9γ <

12(1−β)(3−β)
3−5β .

This result states that the stochastic spillover process is more efficient than the deterministic

one since the industry needs to invest less to achieve larger total cost reductions for a significant

range of parameters. This comes from the dispersion between the equilibrium R&D inputs of

the innovator and the imitator which is much higher in the stochastic model from Proposition

3.10. In particular, for large values of β, total cost reductions under uncertainty substantially

dominate those achieved in the deterministic setting for any γ. Furthermore, this domination

still holds for lower values of the spillover parameter provided that the cost of R&D is not too

high.

Next, we examine how a change in the spillover parameter and R&D costs affect the in-

novator’s share of R&D investment, and then contrast these comparative statics in both the

deterministic and the stochastic environments. Assuming that the equilibrium pair of R&D

decisions (x, x) is interior, the innovator’s R&D input share is given by

s̄=̂
x2

x2 + x2
=

⇣
3γ − 4 (β − 1)2

⌘2
(2− β)2

9γ2 (5β2 − 12β + 8)− 24γ (3β − 4) (β − 2) (β − 1)2 + 32 (β − 2)2 (β − 1)4

In the special case of no spillover (i.e., β = 0), the innovator’s R&D input share simply reduces to

1
2 . Otherwise, it is decreasing with the cost of R&D γ, and as γ tends to infinity, the innovator’s

R&D input share goes to (2−β)2

((2−β)2+4(1−β)2)
, which is the same as in AW. It is instead increasing

in β if 9γ > I4(β) where

I4(β) = 12 (1− β)
(
1− β2 + β

)
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In the stochastic version of the model, the innovator’s R&D input share is instead given by

x2AW

x2AW + x2AW

=
(8 (1− β) (3− 2β)− 9γ (2− β))2

128 (β − 1)2 (2β − 3)2 + γ281 (5β2 − 12β + 8) + γ144 (β − 1) (3β − 4) (2β − 3)

and is larger than in the deterministic case if 9γ > IAW (β). The idea is that, because there is a

positive probability that no spillover occurs, the innovator has stronger incentives to provide a

larger share of R&D investment so as to become more efficient when competing in the product

market, via increased asymmetry across firms’ cost structure. Instead, the deterministic nature

of spillovers in our model makes the innovator’s investment to account for a lower share of

total R&D in the industry as a fraction of its investment will freely benefit to the imitator

with certainty, whereby making its rival more competitive in the second stage relative to the

stochastic model. Finally, note that the range of R&D costs for which the innovator’s R&D

input share is decreasing in β is smaller in the deterministic case than in the stochastic version

of AW.

3.7.3 Profit comparison

We finally turn to the comparison of firms’ overall profits in the two versions of the model. In

this respect, our next result states that the innovator is weakly better off when the spillover

process is stochastic.3

Proposition 3.12. The innovator’s profit in AW is strictly higher than in the deterministic

case for any β 2 (0, 1).

This result can be understood in terms of two effects that reinforce each other. Observe first

that each firm’s overall profit function is strictly convex in its rival’s unit cost. Since the imita-

tor’s actual unit cost in our model a priori equals its expected unit cost in AW, it follows that

the innovator strictly prefers a lottery on the imitator’s unit cost over its certaintly equivalent.

Hence, the innovator is better off when the spillover process is stochastic. Furthermore, in the

event where no spillover takes place, the innovator’s large profit associated with its substantial

production cost advantage over its rival more than compensates for a lower profit when full

spillovers occur due to a perfectly symmetric cost structure. Figure 3.8 below illustrates the

3It is easy to see that, if either β = 0 or β = 1, the two models become equivalent, and there is no meaningful
comparison to perform.
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innovator’s profit in both models as a function of β for given parameters’ values.

Figure 3.8

Regarding the imitator, the result is not as clear-cut and notably depends on the probability

that spillovers occur. Notice that the imitator’s expected effective cost reduction in the stochastic

model amounts to

βx̄AW + (1− β)xAW = xAW + β(xAW − xAW )

whereas in the deterministic setting, its effective cost reduction is equal to x+ β(x− x). From

Proposition 3.10, we have that xAW < x and xAW − xAW > x− x. Thus, when the probability

that spillovers occur is small, the imitator’s expected effective cost reduction in AW is lower than

the effective cost reduction in the deterministic setting. The imitator’s competitive disadvantage

relative to the innovator being exacerbated, its expected overall profit is therefore lower in the

stochastic framework. Conversely, when the probability that full spillovers occur is large enough,

the imitator’s expected overall profit is larger in the stochastic model as it invests less but

still achieves a greater expected effective cost reduction. The following example illustrates the

imitator’s profit comparison in both models for different values of β.

Example. Let a = 2.2, c = 1 and γ = 2. If β = 1/4, we have that F (xAW , xAW ) = 0.162 77 <

F (x, x) = 0.163 00. Instead, if β = 3/4, then F (xAW , xAW ) = 0.195 03 > F (x, x) = 0.192 93.

We conclude this section by illustrating firms’ joint profit for both models as a function of β
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for given parameters’ values. Figure 3.9 shows that the industry’s total expected profit is greater

in the stochastic model than in the deterministic one for any β.

Figure 3.9

3.7.4 Welfare comparison of the noncooperative solution

Throughout this subsection, we suppose that assumptions (A1) through (A4) hold so that the

equilibrium pairs of R&D investments are interior. Our next result concerns the impact of a rise

in the spillover parameter and the cost of performing R&D onto consumer surplus.

Proposition 3.13. Consumer surplus is decreasing in both β and γ.

Since R&D investments and the resulting total effective cost reductions decrease in both

the spillover parameter and the cost of undertaking R&D (see Proposition 3.2), it follows that

aggregate production costs increase with these two parameters, thereby harming consumers

through a higher price.

Therefore, we shall now examine how the nature of the spillover process impacts consumers.

Since consumer surplus increases as aggregate production costs decline, it directly follows from

Proposition 3.11. that consumers are better off in AW whenever the probability that full

spillovers occur is high enough. In fact, it may be verified that CS(xAW , xAW ) < CS(x, x)

for small values of β , whereas CS(xAW , xAW ) > CS(x, x) for larger values of β. For instance,

suppose that a = 2.2, c = 1, γ = 2. If β = 1/4, we have that CS(xAW , xAW ) = 0.483 93 <
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CS(x, x) = 0.484 30, while if β = 3/4, then CS(xAW , xAW ) = 0.426 52 > CS(x, x) = 0.425 06.

Nevertheless, the next result states that total welfare in AW is still higher than in our model.

Proposition 3.14. W (xAW , xAW ) ≥ W (x̄, x)

This result can be understood as follows. Observe first that since the spread between R&D

investments in AW is higher than in our model, total surplus is strictly higher, were the sum of

unit costs constant across both models (see Salant and Shaffer, 1999). From Proposition 3.11,

total effective cost reduction achieved through the stochastic spillover process dominates that of

the deterministic one if either β is large or R&D costs are low enough so that aggregate produc-

tion costs are lower in AW, which further accentuates the superiority of the stochastic version

of the model in terms of total surplus. However, if either of these two conditions fails, the de-

terministic model exhibits lower aggregate production cost. Proposition 3.14 therefore suggests

that the gains associated with a higher heterogeneity across firms’ cost structure outweighs the

losses in terms of higher aggregate production costs.

3.8 Conclusion

We examine the standard symmetric two-period R&D model with a deterministic one-way

spillover structure. Though firms are ex-ante identical, one obtains a unique asymmetric equi-

librium of R&D investments, so that the roles of R&D innovator and imitator are endogenously

determined. This establishes a simple link between the nature of the R&D process in an indus-

try –including the associated spillover –and the emergence of inter-firm heterogeneity in that

industry. We analyze the impact of a change in the spillover parameter and R&D costs on firms’

levels of R&D and profits. R&D cooperation through a joint lab is also examined, and we find

that the innovator sometimes invests more in R&D than the joint lab, and the industry’s total

profit is sometimes higher than under the joint lab.

We then provide a welfare analysis in which we examine the social costs of imposing symmet-

ric R&D invesments among firms. Finally, the impact of uncertainty about the appropriability

of firms’ R&D investments is analyzed and our results suggest that both the spread between

firms’ investments and the industry’s total cost reductions are higher in the stochastic frame-

work. Firms are better off when spillovers are uncertain for a wide range of parameters due to

increased asymmetries in terms of their unit cost structure in the product market competition.
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3.9 Appendix

3.9.1 The AW model

Here, we briefly describe the model of Amir and Wooders (1999). For more details, the reader

is referred to the original paper.

In the first stage, firms simultaneously choose their unit-cost reduction xi 2 [0, c], i = 1, 2,

with associated R&D cost γ
2x

2
i . Know-how only flows from the more R&D intensive firm to its

rival, namely, spillovers are unidirectional. In contrast to our model, the spillover process in AW

is stochastic in the sense that, with probability β, full spillover occurs, while with probability

1 − β, there is no spillover. Assuming that, say, xi ≥ xj , expected effective cost reductions are

then given by

Xi = xi and Xj = βxi + (1− β)xj

Firms then compete à la Cournot in the second stage with linear inverse demand function

P (q1, q2) = a− q1 − q2.

To avoid confusions, we denote by F̂ (xi, xj) firm i’s overall profit function in AW when its

own investment is xi and its rival’s is xj , i.e.

F̂ (xi, xj) =

8
>><
>>:

β
9 (a− c+ xi)

2 + 1−β
9 (a− c+ 2xi − xj)

2 − γ
2x

2
i if xi ≥ xj

β
9 (a− c+ xj)

2 + 1−β
9 (a− c+ 2xi − xj)

2 − γ
2x

2
i if xi  xj

(3.7)

and it may be easily verified that F̂ is globally submodular in (xi, xj). The equilibrium pair of

interior PSNE is then given by

x̄AW =(a− c)
4(1− β)(9γ − 12 + 8β) + 18βγ

[9γ − 8(1− β)].(9γ − 8 + 6β)− 16(1− β)2
(3.8)

xAW =(a− c)
4(1− β)(9γ − 12 + 8β)

[9γ − 8(1− β)].(9γ − 8 + 6β)− 16(1− β)2
(3.9)
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3.9.2 Proofs

Proof of Lemma 3.1

The reaction function r as given by Eq. (3.2) is not continuous since, letting xS1 = r1(x
S1) for

x1 ≥ x2 and xS2 = r1(x
S2) for x1  x2, one obtains

xS1 =
2 (a− c) (2− β)

(9γ − 2 (2− β))
,

xS2 =
4 (a− c) (1− β)

(9γ − 4 (1− β))

with xS1 > xS2. Hence, the reaction function has a downward jump, and letting bx be the

solution to U(r1(bx), bx) = L(r1(bx), bx), we have that

bx =

(a− c)

✓r
1 + 2β(4−3β)

(9γ−2(β−2)2)
− 1

◆

✓
2β − 1 + (1− β)

r
1 + 2β(4−3β)

(9γ−2(β−2)2)

◆

Furthermore, x̂ is unique since both U and L are monotonic in x2. U is decreasing in x2 for all

β 2 [0, 1], while L either increases with x2 for β > 1/2 or decreases with x2 slower than U .

Proof of Proposition 3.1

A lengthy but simple computation establishes that x̄, x as given by Eq. (3.3) and (3.4) satisfy

x > bx if 9γ > I1 and x < bx if 9γ > I2, where

I1 =
(
5β2 − 12β + 8

)
+

p
13β4 − 48β3 + 68β2 − 48β + 16,

I2 =
(
5β2 − 12β + 8

)
+

p
73β4 + 224β2 − 216β3 − 96β + 16,

Straightforward computations then establish that I(β) > I1 and I(β) > I2. Hence, if assump-

tions (A1) through (A4) hold, the pair of PSNE (x, x) and (x, x), with x̄, x as given by Eq. (3.3)

and (3.4), is unique.
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Proof of Proposition 3.2

(i) Differentiating x̄ with respect to β yields

dx̄

dβ
= − 6 (a− c) γL1⇣

3γ [9γ − 2 (5β2 − 12β + 8)] + 8 (2− β) (β − 1)2
⌘2

where L1 = 27γ2 − 6γ
(
13β2 − 28β + 14

)
+ 8

(
5β2 − 12β + 8

)
(β − 1)2. Thus, dx̄

dβ > 0 if

and only if L1 < 0, which holds if (β, 9γ) is such that 9γ 2 Γ̄ = (γ1(β), γ2(β)), where

γ1(β) =13β2 − 28β −
p

260β2 − 112β − 200β3 + 49β4 + 4 + 14

γ2(β) =13β2 − 28β +
p
260β2 − 112β − 200β3 + 49β4 + 4 + 14

(ii) In a similar fashion, differentiating x with respect to β yields

dx

dβ
= − 12 (a− c) γL2⇣

3γ [9γ − 2 (5β2 − 12β + 8)] + 8 (2− β) (β − 1)2
⌘2 ,

where L2 = 27γ2−6γ
(
4β2 − 14β + 11

)
+4 (β − 1)

(
18β − 15β2 + 5β3 − 10

)
. Thus, dx

dβ > 0

if and only if L2 < 0, which holds if (β, 9γ) is such that 9γ 2 Γ = (γ3(β), γ4(β)), where

γ3(β) =
(
4β2 − 14β + 11

)
−

p
28β − 112β2 + 128β3 − 44β4 + 1

γ4(β) =
(
4β2 − 14β + 11

)
+

p
28β − 112β2 + 128β3 − 44β4 + 1

(iii) The sum of autonomous cost reductions is decreasing in β since

d

dβ
(x+ x) =

6γ (a− c)L3⇣
3γ [9γ − 2 (5β2 − 12β + 8)] + 8 (2− β) (β − 1)2

⌘2

where L3 = −81γ2+6γ
(
21β2 − 56β + 36

)
+16 (1− β)

(
19β − 16β2 + 5β3 − 9

)
< 0 for all

β 2 [0, 1].
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Proof of Proposition 3.3

(i) From Eq. (3.1), the innovator’s equilibrium profit is given by

F (x, x) =
(a− c+ x (2− β)− x (1− β))2

9
− γ

2
x2

Differentiating totally F (x, x) with respect to β yields

d

dβ
F (x, x) = −

12
⇣
3γ − 4 (1− β)2

⌘
γ2 (a− c)2 L4

⇣
3γ [9γ − 2 (5β2 − 12β + 8)] + 8 (2− β) (β − 1)2

⌘3

where L4 = 27γ2 (3β − 2)−6γ
(
13β3 − 48β2 + 58β − 22

)
+8

(
5β3 − 16β2 + 20β − 10

)
(1− β)2 .

Under assumption (A4), the denominator is strictly positive and 3γ > 4 (1− β)2 for any

β 2 [0, 1]. Therefore, we have that d
dβF (x, x) > 0 if and only if L4 > 0, which holds for

β < 2/3 and 9γ 2 Γ̄0 = (γ5(β),1), where

γ5(β) =
22− 58β + 48β2 − 13β3 +

p
4 + 88β − 572β2 + 1348β3 − 1540β4 + 864β5 − 191β6

(2− 3β)
.

(ii) Likewise, the imitator’s equilibrium profit is given by

F (x, x̄) =
(a− c+ 2x (1− β) + x̄ (2β − 1))2

9
− γ

2
x2

Differentiating totally F (x, x̄) with respect to β yields

d

dβ
F (x, x) =

12 (a− c)2 (3γ − 2 (1− β) (2− β)) γ2L5⇣
3γ [9γ − 2 (5β2 − 12β + 8)] + 8 (2− β) (β − 1)2

⌘3 ,

where L5 = 27γ2+6γ
(
−14 + 40β − 45β2 + 16β3

)
−8

(
−8 + 24β − 27β2 + 10β3

)
(1− β)2.

Again, if (A4) holds, the denominator is strictly positive and 3γ > 2 (1− β) (2− β) for

any β 2 [0, 1]. Hence, the imitator’s profit is strictly decreasing in β if and only if L5 < 0,

which holds for 9γ 2 Γ0 = (γ6(β), γ7(β)), where

γ6(β) =
⇣
45β2 − 40β − 16β3 + 14−

p
868β2 − 160β − 1936β3 + 2177β4 − 1200β5 + 256β6 + 4

⌘

γ7(β) =
⇣
45β2 − 40β − 16β3 + 14 +

p
868β2 − 160β − 1936β3 + 2177β4 − 1200β5 + 256β6 + 4

⌘
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Proof of Proposition 3.4

(i) We have that

xJ − x̄ =
4(a− c)

9γ − 4
−

2 (a− c) (2− β)
⇣
3γ − 4 (β − 1)2

⌘

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2

Simplifying and rearranging then leads to sign(xJ−x̄) = sign
(
28β + 9γ − 12β2 − 16

)
< 0

if and only if 9γ < 4 (1− β) (4− 3β).

(ii) Similarly,

xJ − x =
4(a− c)

9γ − 4
− 4 (a− c) (1− β) (3γ − 2 (1− β) (2− β))

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2

so that sign(xJ−x) = sign
(
9γ − 2

(
3β2 − 7β + 5

))
> 0 for 9γ > I(β) > 2

(
3β2 − 7β + 5

)
.

Proof of Proposition 3.5

Total cost reductions achieved under cooperation through a joint lab formation dominate those

of the noncooperative regime if

8(a− c)

9γ − 4
>(1 + β)

2 (a− c) (2− β)
⇣
3γ − 4 (β − 1)2

⌘

27γ2 − 8 (β − 2) (β − 1)2 − 6γ (5β2 − 12β + 8)

+ (1− β)
4 (a− c) (1− β) (3γ − 2 (β − 1) (β − 2))

27γ2 − 8 (β − 2) (β − 1)2 − 6γ (5β2 − 12β + 8)

, 9γ >
12 (1− β) (3− 2β)

(3− β)

which holds at an interior equilibrium since I(β) > 12(1−β)(3−2β)
(3−β) .
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Proof of Proposition 3.6

We first check that F̃ (xJ) > F (xB, xB) + F (xB, xB) holds for 4a
c
< 9γ  I(β). It may be

verified that the difference F̃ (xJ)− F (xB, xB)− F (xB, xB) is positive if and only if

− 729c2γ4 + 162cγ3
(
13cβ2 + (2a− 26c)β + 2a+ 13c

)

− 72
⇣(

21− 32β + 16β2
)
(1− β)2 c2 − 2a (1− β)

(
−6 + 6β + β2

)
c+ 2a2

⌘
γ2

+ 32 (1− β)2
⇣
8 (1− β)2 c2 + 2a (7− 8β) (1− β) c+ a2

(
9− 2β + β2

)⌘
γ − 128a2 (1− β)4 < 0

Numerical computations then establish that this inequality holds for 9γ 2 [4a
c
, I(β)] .

In a similar fashion, we now shall show that F̃ (c) > F (x, x) + F (x, x) for I(β) < 9γ < 4a
c
.

A lengthy computation establishes that the sign of the difference F̃ (c)−F (x, x)−F (x, x) is the

same as that of L6, where

L6 =− 6561c2γ5 +
(
14 580c2β2 − 34 992c2β + 20 412c2 + 5832ac

)
γ4

+ (972a2β2 − 1944a2β − 14 904acβ2 + 34 992acβc2

− 20 736ac− 8100c2β4 + 42 768c2β3 − 80 676c2β2 + 64 152c2β − 18 144)γ3

+ (9072a2β3 − 2232a2β4 − 11 592a2β2 + 4320a2β + 576a2 + 11 664acβ4 − 56 160acβ3 + 101 520acβ2

− 81 216acβ + 24 192ac− 4320c2β5 + 21 816c2β4 − 41 904c2β3 + 37 368c2β2 − 14 688c2β + 1728c2)γ2

+ (1152a2β6 − 7296a2β5 + 17 664a2β4 − 19 584a2β3 + 8064a2β2 + 1536a2β − 1536a2 − 2304acβ6

+ 18 432acβ5 − 59 904acβ4 + 101 376acβ3 − 94 464acβ2 + 46 080acβ − 9216ac+ 576c2β6 − 4608c2β5

+ 14 976c2β4 − 25 344c2β3 + 23 616c2β2 − 11 520c2β + 2304 + c2)γ

+
(
256a2β6 − 2048a2β5 + 6656a2β4 − 11 264a2β3 + 10 496a2β2 − 5120a2β + 1024a2

)

Numerical computations then demonstrate that L6 > 0 for 9γ 2 [I(β), 4a
c
].
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Proof of Proposition 3.7

We first shall show that W (jointlab) > W (xW , xW ). We have that

4
(9γ − 2) (a− c)2 γ

(9γ − 4)2
> 4

(a− c)2 γ

(9γ − 4)

, 9γ > 3

which holds from assumption (A2) and the fact that 9γ > 4a
c
.

Next, we establish that W (jointlab) ≥ W (x̄, x). From section 3.5, we have that 1
2F (xJ) >

F (x, x̄) and 1
2F (xJ) > F (x̄, x) for 9γ > max{4a

c
, I(β)}. Hence, it directly follows that the

industry’s profit under the joint lab formation exceeds that of the noncooperative setting, i.e.

F (xJ) > F (x, x̄) + F (x̄, x) (3.10)

Therefore, a sufficient condition for W (jointlab) ≥ W (x̄, x) to hold is that consumer surplus

when firms cooperate through a joint lab is higher. The difference CS (xJ , xJ) − CS(x̄, x) is

given by

2

✓
3γ (a− c)

(9γ − 4)

◆2

− 18 (3γ + (1− β) (3β − 4))2 (a− c)2 γ2
⇣
27γ2 − 6γ (5β2 − 12β + 8)− 8 (β − 2) (β − 1)2

⌘2

Straightforward computations then establish that CS (xJ , xJ) − CS(x̄, x) ≥ 0 if and only if

K6.K7 ≥ 0, where

K6 =
(
4 (1− β)

(
2β2 − 9β + 8

)
+ 54γ2 − 3γ

(
19β2 − 45β + 32

))

K7 = (3γ (3− β)− 4 (1− β) (3− 2β)) .

Both K6 and K7 are positive for all 9γ > I(β). Thus, we have that

CS (xJ , xJ) ≥ CS(x̄, x) (3.11)

Hence, (3.10) together with (3.11) establish the superiority of the joint lab in terms of welfare.
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Finally, the difference W (x̄, x)−W (xW , xW ) is given by

2γ (a− c)2
⇥
162γ3 −−9γ2

(
41β2 − 96β + 56

)
+ 3γ

(
81β2 − 224β + 160

)
(1− β)2 − 32 (2− β)2 (1− β)4

i

⇣
27γ2 − 6γ (5β2 − 12β + 8)− 8 (β − 2) (β − 1)2

⌘2

− 4
(9γ − 2) (a− c)2 γ

(9γ − 4)2

Simplifying and rearranging, we have that

W (x̄, x) > W (xW , xW ) , 9γ 2 (K5,K4)

with K4 as indicated in the proposition and

K5 =
1

2

(
43β2 − 102β + 55

)
− 1

2

p
1057− 4212β + 5870β2 − 3396β3 + 697β4

where K5 < I(β).

Proof of Corollary 3.1

The proof is given in that of Proposition 3.7.

Proof of Proposition 3.8

(i) Upon simplification, we have that the sign of the difference xW1 − x is the same as that of

8 (16− 11β) (1− β)3 + 81γ2 − 18γ (1− β) (11− 9β), which is strictly positive for 9γ >

18(1 + β).

Likewise, it may be easily verified that the sign of xW2 − x is the same as that of 9γ (3β − 2)−

2 (1− β)
(
23β − 11− 11β2

)
. This expression is strictly positive if both β > 2

3 and 9γ > 18(1+β),

so that xW2 > x. Instead, if either β = 2
3 , or β < 2

3 and 9γ >
2(1−β)(23β−11−11β2)

(3β−2) , then xW2 < x.

(ii) As for total effective cost reductions, straightforward computations establish that (1+β)x+

(1− β)x− (1 + β)xW1 − (1− β)xW2 < 0 if −9 (1 + β) γ2 − 2 (1− β)
(
−15 + 8β + 3β2

)
γ +

8 (2β − 3) (1− β)3 < 0, which holds for any β 2 [0, 1] and 9γ > Z1.
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Proof of Proposition 3.9

(i) We have that

W (xW1 , xW2 )−W (xW , xW ) =
4
⇣
γ − 2 (1− β)2

⌘
(a− c)2 γ

⇣
9γ2 − 2γ (11β2 − 18β + 11) + 8 (1− β)2

⌘ − 4
(a− c)2 γ

(9γ − 4)

=
16 (a− c)2 β2γ2

(9γ − 4)
⇣
9γ2 − 2γ (11β2 − 18β + 11) + 8 (1− β)2

⌘

>0

(ii) The difference W (xW1 , xW2 )−W (jointlab) is given by

4
⇣
γ − 2 (1− β)2

⌘
(a− c)2 γ

⇣
9γ2 − 2γ (11β2 − 18β + 11) + 8 (1− β)2

⌘ − 4
(9γ − 2) (a− c)2 γ

(9γ − 4)2

so that W (xW1 , xW2 )−W (jointlab) > 0 if 16 (1− β)2+18γ2
(
1− 2β2

)
−4γ (1− β) (11− 7β) > 0,

which holds if either β < 1
2

p
2 and 9γ < Z2, or β ≥ 1

2

p
2 provided that 9γ > 18(1 + β).

Proof of Proposition 3.10

The difference in the innovator’s equilibrium R&D investment in both models is

x̄− xAW =
2 (a− c) (2− β)

⇣
3γ − 4 (β − 1)2

⌘

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2

− 4(a− c)(1− β)(9γ − 12 + 8β) + 18βγ

[9γ − 8(1− β)](9γ − 8 + 6β)− 16(1− β)2

Simplifying and rearranging yields

x̄− xAW < 0 , −81γ2 + 18γ
(
8− 11β + 4β2

)
+ 8 (5β − 6) (1− β)2 < 0
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which holds for 9γ > I(β) (assumption (A4)). Similarly, the difference in the imitator’s equilib-

rium R&D investment in both models is

x− xAW =
4 (a− c) (1− β) (3γ − 2 (1− β) (2− β))

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2

− 4(a− c)(1− β)(9γ − 12 + 8β)

[9γ − 8(1− β)](9γ − 8 + 6β)− 16(1− β)2

Straightforward calculations then establish that x − xAW > 0 if and only if 9γ + 5β − 7 > 0,

which is satisfied for 9γ > I(β).

Proof of Proposition 3.11

(i) The difference (x+ x)− (xAW + xAW ) is given by

2(a− c)
(
8β3 − 32β2 − 9βγ + 40β + 12γ − 16

)

27γ2 − 6γ (5β2 − 12β + 8) + 8 (2− β) (1− β)2
− (a− c) [8(1− β)(9γ − 12 + 8β) + 18βγ]

[9γ − 8(1− β)](9γ − 8 + 6β)− 16(1− β)2

which is positive if and only if L8 = 27γ+4 (7β − 9) is positive, which holds for 9γ > I(β).

(ii) The difference (1 + β)x+ (1− β)x− (1 + β)xAW − (1− β)xAW is given by

(1 + β)
2 (a− c) (2− β)

⇣
3γ − 4 (β − 1)2

⌘

27γ2 − 8 (β − 2) (β − 1)2 − 6γ (5β2 − 12β + 8)

+ (1− β)
4 (a− c) (1− β) (3γ − 2 (β − 1) (β − 2))

27γ2 − 8 (β − 2) (β − 1)2 − 6γ (5β2 − 12β + 8)

− (1 + β)
4(a− c)(1− β)(9γ − 12 + 8β) + 18βγ

[9γ − 8(1− β)](9γ − 8 + 6β)− 16(1− β)2

− (1− β)
4(a− c)(1− β)(9γ − 12 + 8β)

[9γ − 8(1− β)](9γ − 8 + 6β)− 16(1− β)2

Simplifying and rearranging, we have that (1+β)x+(1−β)x−(1+β)xAW−(1−β)xAW < 0

if and only if L9 = −3 (3− 5β) γ + 4 (1− β) (3− β) < 0, which holds if either β > 3
5 or

β  3
5 and 9γ < 34(1−β)(3−β)

(3−5β) .

Proof of Proposition 3.12

We want to prove that F (x, x) < F̂ (xAW , xAW ). To do so, we proceed in two steps: we first

show that F (x, x)−F (xAW , xAW ) < 0, and then show that F (xAW , xAW )− F̂ (xAW , xAW ) < 0.
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1. The difference F (x, x)− F (xAW , xAW ) is given by

(a− c+ x(2− β)− x(1− β))2

9
− γ

2
x2 <

(a− c+ xAW (2− β)− xAW (1− β))2

9
− γ

2
x2AW

,8748γ4 − 243
(
140− 172β + 49β2

)
γ3 + 54

(
872− 2076β + 1696β2 − 508β3 + 25β4

)
γ2 (1− β)3

> 48 (1− β)
(
564− 1370β + 1142β2 − 343β3 + 15β4

)
γ + 32

(
−168 + 232β − 83β2 + 3β3

)
(1− β)3

which holds from numerical computations.

2. Next, we have that

F (xAW , xAW )− F̂ (xAW , xAW ) =
(a− c+ xAW (2− β)− xAW (1− β))2

9
− γ

2
x2AW − β

9
(a− c+ xAW )2

− 1− β

9
(a− c+ 2xAW − xAW )2 − γ

2
x2AW

=
−1

9
β (xAW − xAW )2 (1− β)

<0

Hence, we indeed have that F (x, x) < F̂ (xAW , xAW ).

Proof of Proposition 3.13

Consumer surplus at the noncooperative interior equilibrium is given by

CS(x̄, x) =
18 (3γ + (1− β) (3β − 4))2 (a− c)2 γ2

⇣
27γ2 − 6γ (5β2 − 12β + 8)− 8 (β − 2) (β − 1)2

⌘2

Differentiating CS(x̄, x) with respect to β yields

d

dβ
CS(x̄, x) =

36γ2 (a− c)2K1K2⇣
27γ2 − 6γ (5β2 − 12β + 8)− 8 (β − 2) (β − 1)2

⌘3

where K1 =
⇣
9γ2 (2β − 3) + 6γ

(
11β2 − 24β + 12

)
− 8

(
3β2 − 8β + 6

)
(β − 1)2

⌘
and

K2 = (3γ − (1− β) (4− 3β)). We have that K1.K2 < 0 since K1 < 0 and K2 > 0 for all

9γ > I(β). Since the denominator is strictly positive, it follows that d
dβCS(x̄, x) < 0.
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Likewise, we have that

d

dγ
CS(x̄, x) = − 36 (a− c)2 γK2K3⇣

27γ2 − 6γ (5β2 − 12β + 8)− 8 (β − 2) (β − 1)2
⌘3 ,

where K3 = 9γ2
(
β2 − 3β + 4

)
−48γ (2− β) (1− β)2−8 (3β − 4) (2− β) (1− β)3. Observe that

K2.K3 > 0 since K2 > 0 and K3 > 0 for all 9γ > I(β). Hence, d
dγCS(x̄, x) < 0.

Proof of Proposition 3.14

The sign of W (xAW , xAW )−W (x̄, x) is the same as that of

50 301γ4 − 972
(
133− 163β + 47β2

)
γ3 − 108

(
−716 + 1691β − 1407β2 + 421β3

)
γ2

−96 (1− β)
(
−186 + 538β − 507β2 + 163β3

)
γ + 64

(
216− 325β + 113β2

)
(β − 1)3

It directly follows from computations that this expression is strictly positive whenever 9γ > I(β).

Hence, we indeed have that W (xAW , xAW ) > W (x̄, x).
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Résumé 
 
La première partie de cette thèse est 
consacrée à l’étude de l’émergence récente 
de nouveaux acteurs sur le marché des 
brevets, à savoir les entreprises non 
productrices, qui acquièrent des brevets sans 
intention de produire un bien final. D’une 
part, les chasseurs de brevets cherchent à 
acquérir des brevets en vue de les monétiser 
par la menace d’action en contrefaçon de 
brevet. D’autre part, les agrégateurs 
défensifs acquièrent des brevets afin de 
protéger leurs entreprises clientes contre des 
litiges initiés par les chasseurs de brevets. 
Nous analysons le comportement stratégique 
de ces nouveaux intermédiaires dans le 
processus d’acquisition de brevets et mettons 
en évidence l’aptitude supérieure des 
chasseurs de brevets quant au rachat de 
brevets par rapport aux producteurs. 
Ensuite, nous examinons l’efficacité du 
mécanisme de protection proposé par les 
agrégateurs défensifs contre la menace des 
chasseurs de brevets envers les producteurs.  
Enfin, la dernière partie étudie l’impact des 
spillovers unidirectionnels dans le contexte 
des modèles de R&D dans lesquels des 
firmes à priori identiques investissent dans 
une innovation réductrice de coût puis sont 
en concurrence à la Cournot sur le marché 
des produits. Nous analysons comment les 
spillovers unidirectionnels et deterministes 
induisent de l’hétérogénéité entre les firmes 
dans la concurrence sur le marché des 
produits, et examinons l’effet de l’incertitude 
quant à l’appropriation des investissements 
en R&D sur les incitations des firmes à 
investir en R&D. 
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Abstract 
 
The first part of this thesis studies the recent 
emergence of new actors in the market for 
patents, namely, non-practicing entities, who 
acquire patents with no aim to use them to 
produce a final good. On the one hand, 
patent assertion entities seek to acquire 
patents so as to monetize them through the 
threat of litigation for patent infringement. 
On the other hand, defensive aggregators 
acquire patents to provide safety from 
litigation brought by patent trolls to their 
affiliated firms. We analyze the strategic 
behavior of non-practicing entities in the 
patent acquisition process and highlight 
patent assertion entities’ greater ability to 
preempt patents as compared to producing 
firms. Then, we examine the effectiveness of 
defensive aggregators to protect firms 
against litigation brought by patent assertion 
entities.  
Finally, the last part instead studies the 
effects of one-way spillovers in the context of 
non-tournament models of R&D in which ex-
ante identical firms engage in cost-reducing 
innovation and then compete à la Cournot in 
the product market. We analyze how a 
deterministic unidirectional spillover process 
induces heterogeneity across firms in the 
product market competition, and examine 
the impact of uncertainty about the 
appropriability of R&D investments on 
incentives to undertake R&D. 
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