N

N

Modeling, design and characterization of delay-chains
based true random number generator
Molka Ben Romdhane

» To cite this version:

Molka Ben Romdhane. Modeling, design and characterization of delay-chains based true random
number generator. Micro and nanotechnologies/Microelectronics. Télécom ParisTech, 2014. English.
NNT: 2014ENST0055 . tel-01354263

HAL Id: tel-01354263
https://pastel.hal.science/tel-01354263
Submitted on 18 Aug 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/tel-01354263
https://hal.archives-ouvertes.fr

Parislech

INSTITUT DES SCIENCES ET TECHNOLOGIES TELECO M

PARIS INSTITUTE OF TECHNOLOGY i)<“|\TeCh

—he)

2014-ENST-0055

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Electronique et Communication »

présentée et soutenue publiquement par

Molka BEN ROMDHANE
le 1er Octobre 2014

Modélisation, implémentation et caractérisation de circuits
générateurs de nombres aléatoires vrais utilisant des chaines a
retards

Directeur de thése : Jean-Luc DANGER, Professeur, Télécom ParisTech
Co-encadrement de la thése : Tarik GRABA, Maitre de Conférences, Télécom ParisTech

Jury

M. Viktor FISCHER Rapporteur, Professeur, Université Jean Monnet Saint Etienne

M. Olivier SENTIEYS Rapporteur, Professeur, Université de Rennes |

M. Yannick TEGLIA Examinateur, Expert en sécurité, ST Microelectronics

M. Guy GOGNIAT Examinateur, Professeur, Lab-STICC, Université de Bretagne Sud
M. Philippe NGUYEN Examinateur, Secure-IC

M. Sylvain GUILLEY Invité, Professeur associé, Télécom ParisTech

TELECOM ParisTech
école de I'lnstitut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

“Coming together is a beginning. Keeping together is
progress. Working together is success.”
Henry Ford

“God does not play dice with the universe.”
Albert Einstein

“He who hesitates is lost.”
David J. Kinniment

Remerciements

Les travaux que nous présentons dans ce manuscrit de thése ont été effectués
dans le cadre de la préparation d’un diplome de Doctorat en collaboration
entre Télécom ParisTech au sein du laboratoire COMELEC (Communica-
tions et Electronique) et 'entreprise Secure-IC basée a Rennes qui développe
des solutions de sécurisation des nouvelles générations de cartes a puce. Les
travaux de recherche réalisés au cours de cette thése ont été menés au sein
du groupe de recherche SEN (Systémes Electroniques Numériques).

Je remercie tout particulierement Monsieur Jean-Luc Danger, Professeur
a Télécom ParisTech et chef du groupe SEN, pour m’avoir accueillie dans
son équipe, pour avoir accepté de diriger cette thése et pour son soutien
scientifique. Je tiens a témoigner ma gratitude également a Monsieur Tarik
Graba, Maitre de conférences a Télécom ParisTech, pour avoir accepté le
co-encadrement de cette these, pour son soutien et sa participation con-
sidérable a la bonne évolution des travaux. Je le remercie spécialement
pour son support scientifique ainsi que ses critiques constructives qui m’ont
permis d’avancer. Qu’ils soient assurés de ma profonde gratitude et qu’ils
acceptent mes remerciements pour avoir contribué a rendre cette expérience
enrichissante aussi bien sur le plan professionnel que personnel. L’intérét
qu’ils ont apporté a ces travaux et leur confiance m’a beaucoup aidé a évoluer
scientifiquement et techniquement. Je remercie aussi les directeurs de Secure-
1C, Hassan Triqui, directeur général, et Philippe Nguyen, directeur technique,
d’avoir accepté de financer cette theése en 2011 surtout que l'entreprise en
était a ses débuts.

Je tiens également a remercier Monsieur Viktor Fischer, Professeur a
I’Université Jean Monnet de Saint Etienne, et Monsieur Olivier Sentieys, Pro-
fesseur a 'université de Rennes I, pour avoir accepté de rapporter le présent
travail. J’exprime aussi ma reconnaissance a Messieurs Yannick Teglia, ex-
pert en sécurité chez ST Microelectronics, et Guy Gogniat, Professeur a
I'université Bretagne Sud, pour avoir accepté d’étre examinateurs au sein de
mon jury de these. Je remercie également Yves Mathieu, directeur d’études a
Télécom ParisTech, pour son aide ainsi que le temps qu’il m’a accordé pour
la supervision des travaux de conception des circuits ASIC qui ont permis
de tester et valider ces travaux de these.

Mes remerciements s’adressent aussi a Monsieur Sylvain Guilley, Pro-
fesseur associé a Télécom ParisTech, ainsi que Laurent Sauvage, enseignant
chercheur a Télécom ParisTech et responsable du laboratoire sécurité du
groupe SEN et Florent Lozac’h, ingénieur de recherche a COMELEC, pour
leur soutien scientifique et leur support technique qui m’a permis de mener
a bien ces travaux. Je tiens aussi a remercier tous les membres de I’équipe
SEN et de I’équipe Threat Protection de Secure-1C plus particulierement ma

3

chef d’équipe Karine Lorvellec et mes collegues Youssef Souissi, Thibault Por-
teboeuf, Cédric Murdica, Pierre Viland, Zouha Chérif Jouini, Pablo Rauzy,
Annelie Heuser, Zakaria Najm et Shivam Bhasin. Je profite aussi pour re-
mercier mon ancien encadrant industriel et chef de projet chez Secure-1C,
Lionel Tchernatinsky ainsi que mon ancien collegue Sébastien Briais qui
m’ont aidée pendant les tous débuts de cette these. Qu’ils trouvent tous
dans ce travail le résultat de leurs conseils et encouragements.

Je tiens d’autre part a remercier spécialement Chadi Jabbour, enseignant
chercheur et Hussein Fakhouri, ingénieur de recherche du groupe SIAM et
Karim Benkalai pour leur disponibilité et le support matériel et scientifique
qu’ils m’ont apporté. Ma reconnaissance s’adresse aussi au Professeur Patrick
Loumeau, chef du groupe SIAM, et & Mesdames les Professeurs Lirida Naviner
et Patricia Desgreys pour leur soutien, leur temps et leur présence au cours
de la période passée a Télécom ParisTech. Je souhaite également faire part de
mes remerciements envers 1’équipe administrative du laboratoire COMELEC
et de I’école doctorale EDITE pour leur efficacité et leur soutien. Je remercie
particulierement Bruno Thédrez, directeur du laboratoire COMELEC, Alain
Sibille, directeur de la formation doctorale, Florence Besnard, Responsable
de la scolarité de 'EDITE, ainsi que Zouina Sahnoune, Chantal Cadiat et
Yvonne Bansimba, secrétaires gestionnaires comptabilité a COMELEC et
finalement Bernard Cahen, directeur de la Maisel de Télécom ParisTech qui
m’ont beaucoup facilité les démarches administratives tout au long de mon
parcours doctoral.

Je profite aussi pour témoigner ma reconnaissance a mes amis au travail
et dans la vie pour leurs conseils, leur soutien et leur présence tres appréciés.
Je cite particulierement Emna Amouri, Arwa Ben Dhia, Imen Mansouri,
Hassen Karray ainsi que Lobna Haouari. Enfin, et non le moins important,
je remercie profondément mes parents Sadika et Noomane ainsi que ma sceur
Manel pour m’avoir toujours soutenue et encouragée malgré la distance et
les difficultés.

Résumé long en francais

Les nombres aléatoires sont indispensables dans de nombreuses applications.
Par exemple, ils sont requis pour la validation des calculs ou des variables sta-
tistiques interviennent, comme la simulation de Monte-Carlo ou I’émulation
de canaux de transmission numérique. Une autre application fondamentale
est la cryptographie ou l'aléa est utilisé dans certains protocoles de sécurité.
Les générateurs de nombres aléatoires, plus connus sous le nom de RNG
pour “Random Number Generator” se déclinent en deux familles, les PRNG
(pseudo RNG) qui sont des générateurs de nombres aléatoires ayant des sé-
quences déterministes et les TRNGs (True RNG) qui sont des générateurs
d’aléa “vrai”, donc non prévisibles.

Les applications cryptographiques utilisent & la fois les TRNGs et les
PRNGs. Un PRNG nécessite une valeur initiale, ou graine, qui peut étre la
sortie d’'un TRNG. Les TRNGs tirent profit de ’aléa de certain phénomenes
physiques en technologies CMOS comme le bruit thermique causé par I’agi-
tation des électrons dans un conducteur ou encore l'effet de charges piégées
de maniere aléatoire a la surface de 'oxyde de grille. L’aléa obtenu grace a
ce genre de phénomenes est ainsi plus facile a générer avec des technologies
analogiques. Pour des raisons de portabilité et d’intégration, nous visons a
étudier les TRNGs plutot numériques.

De facon a évaluer la qualité entropique d’'un TRNG, des standards basés
sur des tests statistiques ont été élaborés par des organismes de certification
comme le NIST ou la BSI. Cependant, il est recommandé de formaliser, par
le biais d'un modele, le caractere stochastique de la génération d’aléa. Dans
la littérature, plusieurs architectures de TRNG ont déja été proposées et
certaines d’entre elles sont déja utilisées dans des produits commerciaux. En
outre, des méthodes ont été proposées pour évaluer la qualité des nombres
aléatoires générés. Ces tests statistiques sont méme utilisés dans la procédure
de certification standard et y sont bien définis. Dans le chapitre 2, nous
détaillons les méthodes d’évaluation de la qualité et de la robustesse d’un
TRNG.

Les parameétres primordiaux aux quels un concepteur de TRNG doit
préter attention sont :

Complexité en terme de ressources

Débit

Robustesse

Auto-testabilité

Possibilité d’évaluation au moment de conception

o Conformité aux tests standard statistiques

Un des principaux inconvénients des TRNGs existants est la non porta-
bilité de leur architecture a travers différentes technologies. En effet, une fois
congu pour une technologie particuliére, il est souvent impossible de les porter
vers une nouvelle technologie sans une refonte complete. Parfois, ’extraction
du phénomene physique est méme impossible dans certaines technologies. Par
exemple, les circuits FPGA (Field Programmable Gate Arrays) sont limités
a des primitives logiques numériques contrairement aux circuits ASIC (Ap-
plication Specific Integrated Circuit) ot des primitives analogiques peuvent
étre trouvées lors de la conception. La plupart des TRNGs dans les techno-
logies numériques, comme les FPGA, font appel a des oscillateurs en anneau
en exploitant I'aléa induit par le phénomeéne de gigue d’horloge. Cependant,
récemment, des attaques physiques contre ces TRNGs ont été menés. Ces at-
taques représentent une menace contre certains protocoles d’authentification,
de chiffrement par blocs et de signature digitales dont la sécurité dépend
de l'aléa généré par les TRNGs. Ces vulnérabilités concernent particuliere-
ment les TRNGs a base d’oscillateurs en anneau. Ces derniers présentent
en effet I'inconvénient de pouvoir étre attaqués par couplage harmonique.
Depuis lors, une nouvelle catégorie de TRNG, qui exploitent le phénomene
de métastabilité se produisant dans les cellules CMOS bi-stables, a re¢u une
grande attention de la part des concepteurs de TRNG. Néanmoins, pour
cette catégorie de TRNG un modele mathématique, décrivant 1'aléa généré
et permettant d’évaluer sa qualité durant la conception, manque.

Dans cette these, nous adressons la problématique de génération d’aléa
vrai dans des systemes électroniques numériques. Dans un premier temps,
nous étudions les différentes classes de TRNG ainsi que les méthodes qui per-
mettent de les évaluer statistiquement. Puis, nous présentons les différentes
techniques et phénomenes physiques étudiés dans la littérature pour générer
de l'aléa vrai sur puce en technologie CMOS. Par la suite, nous présentons
un état de I’'art des menaces qui peuvent détériorer la qualité entropique
d’un TRNG.

Nous étudions ensuite une architecture de TRNG, peu cofiteuse et ro-
buste face aux attaques par injection d’harmoniques car elle n’utilise pas
d’oscillateurs. Ce TRNG extrait une variable aléatoire en exploitant a la fois
les états métastables des bascules et les fluctuations temporelles (ou gigue)
des signaux échantillonnés.

Nous proposons par la suite un modele stochastique qui nous permet
de décrire le comportement aléatoire du TRNG, et d’établir ainsi I’entropie
théorique minimale qu’il peut fournir, indépendamment de la technologie
ciblée. Les caractérisations et évaluations sur des circuits prototypes en
technologies FPGA et ASIC montrent que I'architecture du TRNG proposée
génere de 'aléa de qualité, est robuste face aux variations environnementales
et utilise exclusivement des cellules numériques.

Les utilisations de nombres aléatoires en cryptographie sont diverses :
génération de clés, génération de vecteurs d’initialisation en cryptographie
symétrique, randomisation en cryptographie asymétrique. Contrairement a
beaucoup d’applications qui sont moins exigeantes que les applications cryp-
tographiques, l’aléa en cryptographie doit garantir plusieurs propriétés. En
effet, pour éviter certain types d’attaques, les clés secretes ou les graines
doivent étre non prédictibes, uniformément réparties et statistiquement in-
dépendantes mais surtout et aussi le TRNG qui les géneres ne doit pas étre
manipulables. Il est tres important qu'un générateur de nombre aléatoire
soit fiable et génere de l'aléa de bonne qualité c’est a dire avec une entropie
élevée. L’échec de génération d’entropie ou la vulnérabilité du RNG a cer-
taines attaques peut conduire a 1’échec de tout le systeme cryptographique
[NS02, NS03, LHAT12, MMO09].

Pour la vérification des propriétés statistiques, il existe des batteries de
tests statistiques qui permettent de tester la qualité de l’aléa. Il y a celles
qui sont standardisées par des organismes comme le NIST ou la BSI et
d’autres qui ne sont pas standardisées mais qui sont aussi utilisées par la
communauté des concepteurs de TRNG comme DieHard. Pour valider les
séquences générées pas notre TRNG, nous avons utilisé les batteries de tests
statistiques AIS31 et NIST sp800-22.

Ces tests statistiques permettent de vérifier la bonne distribution sta-
tistique de l'aléa généré, mais aucun des tests existants ne garantit 1’im-
prévisibilité d’une source de nombres aléatoires. Le caractere imprévisible
de l'aléa cryptographique ne s’étudie pas sur la suite de bits générée mais
sur le mécanisme de génération lui méme. D’ou le besoin de modéliser les
TRNGs. En plus de ces propriétés statistiques, le circuit TRNG doit étre
non manipulable physiquement.

Dans le cadre de cette theése, nous avons pour objectif d’étudier une
nouvelle architecture qui vise a exploiter deux phénomenes physiques pour
générer ’'aléa qui sont d’une part la métastabilité et d’autre part la gigue
d’horloge. Communément le phénomeéne de gigue d’horloge est exploité a
travers I'utilisation d’oscillateurs en anneau. Les TRNGs utilisant des oscil-
lateurs en anneau sont sensibles particulierement aux attaques par injection
de fréquence dont le principe consiste a verrouiller la fréquence de ces oscilla-
teurs. Le couplage entre les oscillateurs en anneau et le signal oscillant injecté
conduit a I’élimination de la variation de phase entre plusieurs oscillateurs
tournant en parallele. Donc le but de notre nouvelle structure de TRNG est
d’exploiter la gigue d’horloge en évitant d’utiliser les oscillateurs en anneau.

Nous voulons plutot exploiter des chaines de bascules en boucle ouverte
qui permettent de capturer en méme temps un bruit de phase (gigue d’hor-
loge) et un bruit d’amplitude. Dans ces travaux, nous adressons tout d’abord
I’étude de la faisabilité de ce genre de structure en ASIC ensuite nous étu-
dions sa faisabilité en technologie FPGA.

Aussi, d’'une maniere générale, il est recommandé de traiter 'aléa issu

7

d’une source aléatoire non malitrisée pour en garantir les caractéristiques
statistiques. Pour obtenir de I’aléa vrai sous forme numérique, il est commu-
nément indiqué d’utiliser les mécanismes suivants :

e une source physique d’aléa,

e un bloc de numérisation, des tests en ligne embarqués avec la puce du
TRNG et

o finalement un retraitement algorithmique de I’aléa a la sortie du bloc
de numérisation.

La figure 1 illustre la structure commune a tous les TRNGs.

Physical

Entropy

Source of Extractor

R tput
aw oupt %[Online tests jﬂ

Figure 1 — Structure générique d’'un TRNG

{Post—processing }iNG output

Randomness

Dans les circuits numériques, I’extraction d’entropie se fait communément
a travers ’échantillonnage d’un signal bruité. L’échantillonnage se fait a I’aide
d’éléments mémorisant comme les bascules-D (D-flip-flops,DFF), des verrous
(D-latches) ou les cellules de mémoire statique SRAM (Static Random Access
Memory).

Pour générer de I’aléa dans les circuits numériques, une premiere méthode
consiste a échantillonner un signal aléatoire a des instants réguliers. Ce cas
est équivalent a échantillonner le signal aléatoire en utilisant une horloge
idéale La deuxiéeme méthode est d’échantillonner des signaux réguliers a des
intervalles de temps aléatoires. La troisiéme voie consiste a échantillonner
un signal bruyant avec une horloge bruitée.

Dans le circuit TRNG que nous proposons dans ce manuscrit, nous ex-
ploitons la derniere méthode qui tire profit de I’'accumulation des deux types
de bruit. Le bruit généré par les porteurs de charges dans les transistors
constituant le circuit, influe d’une part le moment de I’échantillonnage et
d’autre part Pamplitude des signaux [FABT09]. La figure 2 illustre les deux
types de bruit.

Le bruit sur le signal échantillonnant est communément appelé “gigue
d’horloge”, nous l'appellerons “bruit de phase” comme il arrive sur 'axe de
temps autour du moment d’échantillonnage. Se rajoute a ce bruit, le “bruit
d’amplitude” est quant a lui saisi autour d’un “état métastable” de I’élément

8

jitter

Ideal edge
Voltage drifﬁ{

(a) Phase noise (b) Voltage noise

Figure 2 — Tlustration des bruits de phase et d’amplitude sur le signal
échantillonneur et le signal échantillonné

de mémoire au moment de I’échantillonnage. Dans la technologie CMOS, la
tension de I’état métastable est autour de VLQD.

Le plan de ce manuscrit de these se répartit comme suit :

Une introduction générale traite du contexte des ces travaux, en d’autres
termes des besoin des TRNGs surtout dans le domaine de la cryptogra-
phie. Ensuite, nous discutons les criteres nécessaires en cryptographie pour
concevoir un TRNG qui soit apte a fournir de 'aléa de bonne qualité et qui
soit non manipulable physiquement. Dans cette introduction générale, nous
présentons les motivations qui nous ont mené a proposer ’architecture ici
traitée ainsi que les motivations de chacune des taches entreprises durant
cette these. Finalement, I'introduction générale résume nos contributions.

Par la suite, le manuscrit présente cing chapitres. Les deux premiers
présentent un état de I'art des circuits TRNGs existants dans la littérature
scientifique ou encore des brevets industriels. Y sont expliqués leur fonction-
nement général et 'origine de l'aléa.

Dans cette partie, nous proposons de classifier les circuits TRNGs exis-
tants suivant le critere de source de bruit. Une premiere catégorie est celle
des TRNGs qui exploitent le bruit de phase qui est la plus répandue. La
deuxiéme catégorie c’est celle qui exploite le bruit d’amplitude. Finalement,
nous introduisons une nouvelle catégorie de TRNG qui exploitent la super-
position de ces deux phénomenes.

Le deuxieéme chapitre est consacré aussi a la suite de 1’état de 'art du
point de vue de I’évaluation des TRNGs. Ce chapitre traite respectivement
I’état de l’art de trois aspects importants vers la certification de TRNGs :
I’évaluation statistique, la modélisation stochastique et 1’évaluation physique.

9

Nous présentons les méthodes d’évaluation statistique et physique des
TRNGs existants ainsi que les vulnérabilités identifiées dans la littérature.
Afin d’évaluer la qualité de la I'aléa que génere les circuits TRNGs, des
tests statistiques standards sont appliqués a la séquence générée. Par contre,
évaluer un TRNG comprend non seulement ’évaluation statistique de la
qualité de I’aléa, mais aussi sa capacité d’auto-test et sa robustesse face a
la variation des conditions de fonctionnement qui peuvent étre naturelles
ou d’origine malveillante. Un TRNG devrait également étre modélisé de
point de vue stochastique pour permettre son évaluation au moment de la
conception.

Dans la section 2.2, nous présentons les normes d’évaluation existantes
en termes de qualité statistique. En outre, nous proposons une étude ap-
profondie de la certification suivant la méthodologie d’évaluation AIS-31.
Nous présentons dans la section 2.3 un bref état de 'art de la modélisation
stochastique de TRNGs.

Troisitmement, la section 2.4 traite des vulnérabilités de TRNGs sur puce
et présente 1’état de 'art des attaques physiques sur les TRNGs décrites dans
la littérature. Dans cette méme section, nous présentons un état de I’art concis
des méthodes de perturbations des générateurs de nombres aléatoires dans
des conditions anormales d’utilisation permettant de biaiser 1'aléa généré.
C’est ce qui nous aidera par la suite a comparer en terme de robustesse, entre
autres, les TRNGs existants.

Enfin, dans la section 2.5, nous présentons une comparaison entre les
TRNGs existants sur puce en termes de complexité, de débit et vulnérabilités
physiques. Cette étude comparative exhaustive des TRNGs existants prend
comme parametres de comparaison la robustesse physique face aux attaques
par couplage, l'existence ou non d’un modele stochastique et le débit de
génération d’aléa. Cette étude comparative nous a amené a conclure qu’il
n’existe, a ce jour, aucun TRNG qui soit en méme temps robuste face aux
attaques par couplage, qui présente une bonne qualité statistique d’aléa et
qui ait un bon débit de fonctionnement tout en étant basé sur des cellules
numériques. Ce manque dans ’état de I'art nous a donc amené a proposer
une nouvelle architecture de TRNGs exploitant la superposition des deux
phénomenes de bruit de phase et d’amplitude. Cette nouvelle architecture
qu’on appelle TRNG a base de chaines a retards fait ’objet des chapitres
suivants.

Dans le chapitre 3, nous commencons par présenter les principes de fonc-
tionnement de ’architecture proposés. Notamment la description de la source
de bruit, 'explication des raisons pour lesquelles nous avons choisis d’utili-
ser des chaines a retards. Dans ce méme chapitre, nous présentons ensuite
le modele stochastique que nous introduisons dans cette these. Ce modele
nous permet en tant que concepteur de TRNGs d’évaluer et d’estimer 1’aléa
attendu avant sa mise en ceuvre ou encore son envoi en fonderie s’il s’agit
d’un circuit ASIC. Le concepteur d’'un TRNG doit fournir un modele sto-

10

chastique de la cible d’évaluation pour étre en conformité avec le processus
d’évaluation standard AIS-31.

Nous présentons le modele d’un TRNG qui exploite le comportement
aléatoire de la sortie d’une bascule D fonctionnant dans la région métastable.
Cette incertitude est causée par le bruit omniprésent dans un circuit intégré
CMOS. Un tel modele doit étre mis en place pour le processus d’évaluation
de lentropie minimale fournie par le TRNG. Dans ce travail, nous décrivons
et analysons le caractere aléatoire provenant d’'une chaine de bascules D
lorsque ces dernieres opérent pres de I’état métastable. La principale valeur
ajoutée de ce chapitre est le modele permettant calcul de la probabilité en
sortie du TRNG en fonction des parametre du systeme.

L’idée de base des TRNGs existants est d’exploiter la superposition de
différents types de bruit intrinseques au silicium pour générer une sortie
aléatoire. Nous proposons de forcer des D-latch & opérer dans la région
métastable et de profiter des deux phénomenes exploitables qui sont la gigue
d’horloge et la métastabilité. Supposons que les données changent dans la
fenétre interdite autour du front d’échantillonnage. Cela signifie que le bi-
stable est forcé de fonctionner dans le mode métastable. Dans cette région
métastable, le résultat de la cellule bi-stable est imprévisible et dépend de :

e L’incertitude autour de I'instant d’échantillonnage de la donnée. En
fait, si le signal de données, D, passe avant le tses,p limite, la sortie du
bi-stable, @), permettrait de s’établir a Vpp sinon a 0V. Ce moment
incertain de 1’état de commutation des données est provoqué par la
gigue d’horloge.

e Les fluctuations de la tension autour de VLQD. En fait, la résolution
de I’état de la bi-stable dépend du décalage par rapport a VDTD. Si ce

décalage est positive la sortie () s’établira a Vpp. Si elle est négative
Q s’établira a 0V.

On note l'incertitude de synchronisation caractérisé par la gigue 0t et
I'incertitude du décalage de tension par dv telles que représentées dans la
figure 3.

Une zone de certitude, donnée par le constructeur, est garantie par le
respect des temps de setup et de hold. Si on ne respecte pas cette zone de
certitude la bascule entre dans la zone métastable. Dans cette zone, on ne
peut plus garantir I’état final de la sortie de la bascule. Dans cette zone,
I’état final du bi-stable va dépendre du bruit. Donc si on échantillonne la
donnée au moment ou elle change d’état, on ne peut pas prédire la sortie de
la bascule.

Le défi est d’arriver a contrdler le délai entre donnée et horloge dans
le but de faire opérer la bascule dans cette fenétre de métastabilité. Une
approche naive serait de retarder le signal donnée de Tieupo (tel que défini

11

Figure 3 — Incertitude autour de VL2D

au paragraphe 3.2.2) a partir du front d’horloge avec un élément de retard
controlable. La figure 4 illustre cette approche.

Clock | §t>/i< b Ql—
| C

Figure 4 — Principe du TRNG a base de chaines de retard

Ce type de controle et la précision nécessaire est impossible dans les
FPGA, ni dans des cellules standard ASIC. Pour cela, nous proposons d’uti-
liser de multiples éléments de retard : une chaine a retard sur le chemin de
donnée et une autre chaine a retard sur le chemin horloge avec une légere
différence de retard et considérer le retard différentiel.

Cela permet d’atteindre une meilleure précision. En fait, plus la précision
est élevée, plus 'imprédicitibilité de la sortie de la bascule est grande.

Dans les sous sections suivantes du chapitre, nous introduisons la struc-
ture des chaines a retard. Par la suite, nous présentons le modele stochastique
du TRNG a base de chalnes a retard. La figure 5 illustre la structure géné-
rique du TRNG que nous introduisons.

Deux chaines a délais fins sont connectées a une chaine de bascules. Les
temps de propagation de chacune de ces chaines sont légerement différents.
Ceci nous permet d’avoir un délai différentiel tres fin entre les entrées donnée
et horloge de chacune des bascules constituant la chaine. Cela nous permet
de controler dtpc avec une grande précision de sorte que le front du signal
de donnée rattrape le front d’horloge tel que représenté dans la figure 6.

La longueur de la chaine fine, ¢’est a dire le nombre d’éléments de délai,

12

DATA
COARSE | —] Data fine chain |
CHAIN 1 2 N-1 N
clk D Q D Q D Q D Q

e e e T

CLOCK
COARSE
CHAIN

Clock fine chain

ctrd Q1 Q2 Qv

Figure 5 — Structure générique du TRNG a base de chaines a retard

Delay
Clock

Data

Data-to-clock
Initial delay

H
) s
Z

Delay element index

Figure 6 — Course entre donnée et horloge a travers la chaine de latches

est égal au nombre de bascules. D’autre part, comme illustré dans la figure 5,
nous utilisons également deux blocs de chaines a retard grossier qui aident
a calibrer le retard initial entre le signal d’horloge et de donnée pour com-
penser tout éventuel changement dans les conditions environnementales de
fonctionnement.

Le retard dans la chalne grossiere est réglable en controlant les M mul-
tiplexeurs chainés. Le nombre de multiplexeurs, M, en fonction du nombre
de bascules, N, est donné dans I’équation (1). Cette équation est définie par
I’hypotheése que les signaux donnée et horloge se rencontrent quelque part a
I’entrée d’une des bascules du milieu de la chaine.

M N
7dTmuaz + 5-675DC = TsetupO (1)

La chaine de retard grossier est utilisée pour ajuster les retards qui
peuvent changer avec les conditions environnementales. La mise en oeuvre
de ce type de structure est difficile a réaliser en raison du :

13

o déséquilibre physique de routage,

o des asymétries entre les cellules.

Des retards entre les signaux donnée et horloge existent donc inévitable-
ment. En fait, les variations technologiques entre les puces, et méme entre
les LUT et les matrices de commutation sur la méme puce FPGA, peuvent
conduire a une différence de retard en fonction de la région FPGA il est mis
en ceuvre.

La sortie du TRNG, trngo, est obtenue par addition modulo 2 de toutes
les sorties des bascules comme indiqué dans 2.

N
trngo = @ Qi (2)
i=1

Ensuite, nous discutons des parametres de conception qui influent sur la
sortie du TRNG et établissons la formulation mathématique de la probabilité
de la sortie brute, trngo, du TRNG. La sortie brute du circuit TRNG est
représentée par un bit qui peut prendre la valeur logique 1 ou 0. L’entropie
de la sortie brute du TRNG est exprimée dans I’équation (3) ou p; et po
représente respectivement la probabilité d’obtenir 1 sur trngo et la probabilité
d’obtenir 0.

Htrngo = —Po ° logZ(pO) — D1 lOgQ(pl) (3)

Dans ce qui suit, nous établirons une expression mathématique de la
probabilité p(trngo =" 1'). Plus tard, nous essayons d’extraire les paramétres
optimaux qui géneérent l’entropie maximale pour I'architecture du TRNG
présenté plus haut. Pour cette question, nous devons identifier les parametres
qui influencent 'entropie du point de vue de la technologie et de la structure.
Donc la suite de la section 3.4 du chapitre 3 nous présentons une analyse de
I’état métastable de la bascule afin de modéliser le comportement aléatoire
du TRNG.

L’expression de la probabilité que le TRNG génére un 1 est calculée en
fonction de I’écart type du bruit, des caractéristiques du D-Latch utilisé et
le retard différentiel 6t des éléments des chaines a retard utilisés. Les para-
metres du modele stochastique identifiés dans ce chapitre nous permettent de
caractériser plus tard les parametres technologiques qui influencent la qualité
de T'aléa et la fagcon d’établir les spécifications de conception du TRNG.

Dans les chapitres 4 et 5 respectivement, le modele présenté est validé
sur une puce prototype en technologie CMOS 65nm et sur un FPGA. Le
chapitre 4 est consacré a la mise en ceuvre de 'ASIC TRNG auparavant
présenté dans le chapitre 3. Il traite de la faisabilité de I’architecture géné-
rique du TRNG a chaines a retards avec la bibliotheque de cellules standards
CMOS 65nm de ST Microelectronics.

14

Nous comparerons les résultats de la modélisation par rapport aux résul-
tats de la simulation et des mesures sur le prototype TRNG ASIC. Habituel-
lement, on commence par tester un circuit sur FPGA mais vu que nous avons
voulu premierement valider le modele stochastique, il était plus intéressant
de commencer par une conception en technologie ASIC puisque on a acces
aux parameétres technologique, aux architectures des cellules standards, aux
modeles des portes et nous avons la possibilités de faire des simulations en
ajoutant du bruit transitoire intrinseque aux éléments constitutifs.

Deux types de controles de retard pour la chaine grossiére ont été proposés.
Le premier est d’utiliser une chaine de multiplexeurs et la seconde méthode
utilise des cellules amplificateurs trois états (tristate buffers).

La section 4.2 est dédié a la description de la structure ASIC et aux
détails de conception du TRNG ASIC avec une chaine grossiere utilisant
des multiplexeurs. Nous désignerons ce premier prototype ASIC_TRNG#1.
Puis dans la section 4.3.1, nous présentons des tests statistiques standard
NIST et AIS-31 effectuées sur ce premier prototype TRNG. En outre, nous
présentons les résultats de mesure des conditions de travail des perturbations
sur le TRNG a savoir alimentation des variations de tension et les variations
de température. Enfin, dans la section 4.4, une amélioration des chaines de
retard grossieres et fines est proposée. Nous nous référons a la mise en ceuvre
de ce second prototype ASIC ASIC_TRNG#2.

Pour mettre en ceuvre la structure générique de la figure 5 en technologie
ASIC, nous devons définir les spécifications des chaines a retard grossier et
chaines a retard fin. La chaine de retard fin devrait permettre un réglage tres
fin du délai entre les signaux horloge et donnée, de I'ordre de la picoseconde.

Dans ce chapitre nous traitons des contraintes de placement et routage
des chaines a retards ainsi que de I'ajustement des délais pour tirer profit de
la gigue d’horloge et du bruit d’amplitude en zone métastable. Par la suite,
nous présentons les résultats de simulations avec bruit et les comparaisons
avec le modele stochastique. Finalement nous présentons les résultats obtenus
sur circuits et validons la qualité de I'aléa du TRNG avec les batteries de
tests statistiques standards. Au sein du testchip ASIC__TRNG#1 lui méme,
nous proposons de concevoir différentes versions de circuits TRNG dans le
but de :

e étudier 'impact de la précision des chaines a délais sur I'entropie,

e comparer 'apport du bruit vertical dans deux cellules bi-stables dif-
férentes, la cellule standard verrou et un autre verrou personnalisé
utilisant un multiplexeur rebouclé,

e ¢étudier 'impact du placement et routage des chaines a délais sur le
retard entre donnée et horloge.

Notre méthodologie de conception du prototype ASIC TRNG se présente
sous forme des étapes suivantes :

15

o D’abord, nous choisissons les éléments dans les cellules de la biblio-
theque pour garantir 'apparence de métastabilité au milieu de la chaine
de délais fins.

o Ensuite, nous contraignons attentivement la mise en ceuvre du Layout
du TRNG et par la suite nous intégrons les différents versions du
TRNG chacune comme un bloc pré-placé-routé dans un flot backend
automatique.

e Nous réalisons des simulations post layout dans les conditions de fonc-
tionnement typique, pire cas et meilleur cas, chacune en ajoutant le
bruit transitoire.

e Nous confrontons le modele stochastique proposé dans le chapitre 3
aux résultats de simulation.

e Nous comparons les résultats de simulation et du modele stochastique
aux mesure sur puce.

o Enfin, nous appliquons les tests standards statistiques pour évaluer le
caractere aléatoire du TRNG ASIC.

Nous présentons la mesure de I'impact de la température, la tension d’ali-
mentation et les variations de processus sur le premier circuit ASIC_ TRNG#1.
Les résultats des mesures sur le prototype TRNG sont conformes aux ré-
sultats théoriques et de simulation. Les résultats des tests statistiques et I’ana-
lyse et comparaison des 4 versions TRNG au sein du prototype ASIC_ TRNG#1
se trouvent dans les sections 4.3.3 et 4.2.4.

Apres la caractérisation et I’évaluation de PASIC_TRNG#1, nous pro-
posons une amélioration des chaines de retard du TRNG. La nouvelle ar-
chitecture de TRNG proposée permet de régler beaucoup plus finement le
délai différentiel incrémental entre donnée et horloge. C’est ce qui assure
I’amélioration de I'entropie générée. Les détails d’implémentation et les ré-
sultats de simulation sur la deuxieme version du TRNG ASIC_TRNG#2
sont présentés dans la deuxieme partie du chapitre 4.

Nous présentons les résultats de mesures de I'aléa du TRNG dans des
conditions de travail limite en faisant varier la tension d’alimentation et
la température ambiante de I'environnement du circuit. La puce TRNG
peut étre exposée a certaines perturbations environnementales telles que la
variation de la température de fonctionnement iet la tension d’alimentation.

Les variations technologiques, la température et Vpp affectent les délais
d’interconnexion et les temps de propagation. C’est pour cela que nous
ajoutons un bloc d’auto-calibration, qui cherche, durant le fonctionnement,
la configuration de délai différentiel optimal dans les chaines a retard grossier.
Figure 7 illustre les parametres potentiels qui peuvent affecter la sortie de
TRNG.

16

Temperature Voltage Process Variations

Delay chains
self-calibration

)

TRNG

L Online tests

\ J

TRNG chip X

Alarm

Figure 7 — Environnement du TRNG

Le bloc d’auto-calibration sélectionne la meilleure configuration de com-
mande de retard et contréle les chalnes de retard grossiers dans un mode de
rétroaction. Ce bloc calcule la fréquence de la sortie brute TRNG pour chaque
configuration de la chaine de retard grossier, puis, configure les chaines de re-
tard a la configuration qui correspond a la fréquence optimale. L’algorithme
d’auto-calibration des chaines du TRNG est présenté dans l'algorithme 4.

Le retard différentiel entre donnée et horloge, peut étre modifié de maniere
automatique en cas de perturbation de ’environnement ou de malveillance.
Ainsi, cette méthode s’avere étre tres efficace pour régler les chaines grossiéres
pour équilibrer la sortie du TRNG et palier a toute perturbation visant a
modifier les temps de propagation. Le flux de bits qui a été utilisé lors de la
calibration n’est pas conservé.

Le choix de la périodicité d’activation du mécanisme d’auto-calibration
revient a 'utilisateur. Ce choix dépend évidemment du niveau de sécurité
requis par le TRNG ainsi que de l'application utilisée. Ce test peut étre
utilisé comme test de démarrage du TRNG.

Dans la suite du chapitre 4, nous présentons les résultats de mesures sur
la puce TRNG ASIC en faisant varier température et tension d’alimentation.
Nous avons prélevé la fréquence d’apparition de bits égaux a 1 pour des
températures variants entre —10 et 70 degrés Celsius et des tension d’alimen-
tation entre 0.6 et 1.8V. Pour chacune des températures nous prélevons aussi
la configuration de délai optimale qui nous permet d’avoir le maximum d’en-
tropie. Ceci nous as permis de valider le bon fonctionnement du mécanisme
d’auto-calibration.

Des mesures sur une vingtaine de puce ont été aussi entreprises pour étu-

17

dier 'effet des variations technologiques sur la qualité d’aléa. Comme prévu,
les résultats de mesures démontrent bien que les retards de propagation dans
les multiplexeurs des chaines a retard augmentent lorsque la température
augmente. En fait, dans le cas de températures typiques et élevés (50C et
70C), le signal de données atteint la fenétre de métastabilité plus rapidement
que a basse température (—10C et 0C). Ces mesures confirment les résultats
de simulation pour la variation de la température et d’alimentation Vpp.

Le bloc d’auto-calibration s’est avéré étre tres important non seulement
en cas de variations de I’environnement mais aussi pour les variations de
processus technologiques. Par la suite, nous comparons les résultats de mo-
délisation du chapitre 3 aux résultats de mesures sur puce.

Le dernier chapitre est consacré a 'implémentation en technologie FPGA.
Gréce a leur flexibilité de reconfiguration et des délais de commercialisation
courts, les FPGA sont largement utilisés pour des application de cryptogra-
phie. C’est pourquoi le besoin de TRNGs sur circuit FPGA a augmenté.

Premiérement nous étudions la faisabilité de chaines a délais fins. Nous
décrivons la méthodologie de conception du TRNG avec des contraintes
au niveau placement des éléments de délai. Nous présentons ensuite les
résultats des tests statistiques standards et nous comparons les performances
de notre circuit TRNG sur un Virtex 5 avec d’autres TRNGs récents dans
la littérature.

L’architecture du TRNG a chaines a retard est fortement sensible au
déséquilibre dans le routage. A la différence de la conception du TRNG
ASIC, les choses sont moins évidentes coté FPGA. Ceci est principalement
dii au fait que pour la technologie FPGA (Xilinx dans notre cas) nous n’avons
pas d’informations sur la fagon de contraindre le routage et sur le détail de
conception des cellules logiques et d’interconnexion. De plus, tout le long
du flot de conception FPGA, les outils Xilinx procedent & des vérifications
pour éviter les violations de timing et permettre des optimisations de la
fréquence de fonctionnement. Dans ce travail, nous proposons de contourner
le processus automatique de routage pour pouvoir concevoir des chaines a
retard fins.

Dans la section 5.2, nous présentons la méthodologie de la conception
et la mise en ceuvre du TRNG dans la technologie FPGA qui permet de
garantir les retards pendant les étapes de placement et de routage. Ensuite, la
section 5.3 est consacré aux premiers résultats de la mise en ceuvre du TRNG
proposé en FPGA. Enfin pour valider notre méthodologie, nous présentons
les résultats expérimentaux et ’évaluation statistique de la séquence générée
sur un circuit FPGA Virtex 5 de Xilinx.

Contrairement a la technologie ASIC, les modeles de bruit transitoires
des primitives des circuits FPGA ne sont pas fournis par les vendeurs. Ainsi,
contrairement aux technologies ASIC, nous ne pouvons pas simuler le com-
portement aléatoire du TRNG. Cependant, nous pouvons programmer le
circuit FPGA autant de fois que nous voulons jusqu’a ce que nous trou-

18

vions la configuration de chaines a retard optimale qui fournit les meilleurs
résultats statistiques.

Dans la suite, nous présentons les spécifications de 'adaptation du TRNG
exploitant des chaines a retard a la technologie FPGA. Dans un premier
temps, nous étudions la faisabilité de la conception générique et I'idée que
nous proposons a fin d’obtenir de tres fins délais différentiels. Ensuite, nous
présentons la méthodologie de la conception et la mise en ceuvre du TRNG
& chaines a retard dans un FPGA Xilinx.

Coté technologie FPGA, que ce soit pour implémenter des TRNGs ou
autres circuits nécessitant un controle fin de délai, il existe plusieurs méthodes
proposées dans la littérature. Citons notamment celles qui ont été proposées
pour implémenter des TRNGs.

Chaines a propagation de retenue

Controle des sortances

Modification des fonctions logiques des LUT

Changement de routage par reconfiguration dynamique

Nous proposons une nouvelle méthode qui consiste a mettre en ceuvre les
chaines de retard sur les données et les chemins d’horloge en utilisant Look-
Up-Tables (LUT) avec des entrées différentes. Selon l'entrée LUT utilisée,
nous pouvons obtenir des retards différents selon le chemin de routage utilisé
par la boite de commutation. En effet, cette différence de retard n’est pas
due au temps de propagation de la LUT lui-méme. Elle est due a différents
chemins de routage dédiées a chaque entrée de table de conversion. La figure 8
illustre I'idée.

Switch matrix

GDER COe—OaTR:

Routing path (f o
I1

4 12 ow
I3

] 14
Routing path 8] /5

LUT6

AN

Figure 8 — Chemin de routage introduisant des délais différentiels différents

19

Donc, nous proposons d’utiliser des entrées de LUT différentes pour
chaque chaine de retard et d’examiner le retard différentiel introduit par les
différences dans les chemins de routage. Ceci est illustré dans différentes
couleurs dans la figure 9.

Fine Delay Chain on Data

5hﬂ

10
11

15
LUT6

D qQn Up q
CLK Stpe <

\L Fine\LDelay chain on Clock

@1 Q2 Qn
Figure 9 — Chaine a délais fin utilisant des LUT

La chaine de retard de données passe par 13 de la LUT et la chaine de
retard d’horloge passe par ’entrée I5 de la LUT. Le processus de placement
et de routage doit étre examiné tres soigneusement et vérifié pour garantir
aux chaines de retard les spécifications voulues. Le probléeme ici est que
les outils de placement et routage Xilinx procedent a des optimisations et
vérification automatique et de synchronisation tout au long du processus de
conception. Nous devons donc contourner toute optimisation afin de garantir
le méme placement et le routage le long des chaines a retard pour garantir
un délai différentiel régulier.

En suite, comme la qualité de la séquence générée dépend étroitement de
la finesse du retard sur les latches, nous devons vérifier la qualité de 'aléa
a chaque fois que nous modifions le routage. En effet, avec une premiere
acquisition sur FPGA de quelques centaines de bits, nous ne pouvons pas
simplement dire si la sortie du TRNG est suffisament aléatoire, nous avons
besoin a chaque fois de lancer les tests statistiques standard. Donc, nous
devons procéder par essais-erreurs tel que représenté dans le diagramme de
la figure 5.1. En cas d’échec des tests statistiques nous devons réajuster les
contraintes de placement. Nous réitérons chacune des étapes jusqu’a ce que
tous les tests statistiques soient satisfaisant.

20

Les deux prototypes du TRNG en technologie FPGA et ASIC ont été
testés avec les batteries de tests NIST et AIS-31. Ces derniers sont appliquées
sur des séquences aléatoires générées a partir de nombreuses configurations
de délais des chaines de réglage a délaiis grossiers. Les résultats des tests
statistiques NIST sont donnés dans la section 5.4 et plus de détail dans le
tableau 5.10 dans I’annexe. Les tableaux des résultats montrent que le TRNG
passe des tests pour 83 % de toutes les configurations de retard. Cela garantit
que le TRNG présente de bonnes propriétés statistiques indépendamment des
variations des conditions environnementales et technologiques (d’'un FPGA
a un autre et sur différents emplacement de la puce FPGA). Des mesures en
faisant varier température et alimentation devraient étre menées sur le Virtex
5 pour étendre les résultats présentés dans le chapitre 5. En fonction de ces
résultats, la complexité de conception peut étre éventuellement allégée et son
débit augmenté en réduisant le nombre de cellules qui composent chacune
de ses chalnes de retard.

D’autre part, nous avons conclu, suite a des travaux comparatifs, que le
niveau de bruit sur ASIC est beaucoup plus faible que sur FPGA et nécessite
un controle précis des délais. Les résultats des tests statistiques NIST et AIS-
31 prouvent que la qualité de I'aléa sur FPGA est meilleure. Ceci prouve bien
que le niveau de bruit en technologie FPGA est plus élevé qu’en technologie
ASIC.

Finalement, nous concluons ce manuscrit avec la synthese des contribu-
tions et la proposition de quelques perspectives que nous estimons intéres-
santes pour la suite de ces travaux. Entre autres, comme travaux futurs, les
tests statistiques seront menés sur le second prototype ASIC qui n’était pas
livré lors de la rédaction de ce manuscrit de these. Un autre bloc devrait
étre ajouté dans le TRNG qui embarque des tests statistiques appliqués
en ligne et léve une alarme en cas de fonctionnement anormale ou de per-
turbations d’entropie malveillantes. Cette fonction est donc nécessaire pour
étre conforme aux normes de certification. Le bloc de test en ligne devrait
tenir compte de la contrainte de faible complexité, particulierement impor-
tantes pour des applications a faibles ressources. Une analyse d’injection de
fautes pourrait étre effectuée pour évaluer I'impact du sur-échantillonnage,
de l'injection de faute laser et des attaques par injection électromagnétiques
sur la quantité d’entropie. Cela permettrait de vérifier 'efficacité des tests
en ligne et donnerait quelques idées pour améliorer ’architecture contre ces
attaques.

21

Abstract

Random numbers are required in numerous applications. For instance, they
are needed in system validation by Monte Carlo simulations and emulation
of channels for digital communications. Another important application is
cryptography where randomness is used in security protocols. There are
two main classes of Random Number Generators (RNG): The Pseudo RNG
(PRNG) which have a deterministic sequence, and the True RNG (TRNG)
which generates unpredictable random numbers. Cryptographic applications
use both TRNG and PRNG. The PRNG needs an initial value, or seed, which
can be the output of a TRNG. The TRNG exploits physical phenomenon,
thus it is preferable to design them using analog technologies. In digital
technologies, like FPGAs, TRNGs are commonly based on oscillators which
have the drawback of being biased by harmonic coupling. In order to assess
the entropic quality of TRNGs, standards based on statistical tests have
been elaborated by certification organisms namely the NIST and the BSI.
However, it is recommended to formalize the stochastic behaviour of the
randomness generation process.

In this Ph.D, we address the design and quality evaluation of TRNGs
in digital circuits. As a first step, we review the different TRNGs classes
and the methods to evaluate the randomness quality. The techniques and
physical phenomena exploited for on-chip randomness in CMOS technologies
are presented. Then, the different threats which can deteriorate the random-
ness are reviewed. In the second step, a study of a low-cost digital TRNG
without oscillators (open-loop TRNG), hence robust against harmonics at-
tacks, is presented. The proposed TRNG exploits both the metastability
phenomenon and the jitter noise in CMOS digital flip-flops to generate the
random numbers. A stochastic model of this TRNG has been formalized.
This model describes the random generation process that allows to obtain the
minimum entropy level that can be generated, regardless of the targeted tech-
nology. The characterization and evaluation on a prototype circuit, in FPGA
and ASIC technologies, has shown that the proposed TRNG architecture
generates randomness of good quality and is robust against environmental
variations.

Keywords: True Random Numbers Generator, metastability, ASIC, pro-
grammable delay, delay chains, FPGA, noise, standard statistical tests, NIST,
AIS-31

23

Contents

Remerciements

Résumé long en frangais

Abstract

List of Figures

List of Algorithms

List of Tables

List of Abbreviations and Acronyms
General Introduction

1 State-of-the-art of True Random Number Generators

1.1 Imtroduction.
1.2 Principle and Classification Proposal of TRNGs
1.2.1 Source of entropy
1.2.2 Entropy extractor
1.2.3 Onlinetests
1.2.4 Post-processing
1.2.,5 TRNG classification
1.3 Phase Noise based TRNGs
1.3.1 Intel’s dual-oscillator based TRNG
1.3.2 Two-ring-oscillator based TRNG
1.3.3 Multiple-ring-oscillator based TRNG
1.3.4 PLL-based TRNG
1.3.5 Self-timed ring based TRNG
1.4 Voltage Noise based TRNGs
1.4.1 Metastability based TRNG
1.4.2 BRAM based TRNG
1.4.3 SRAM-based TRNG
1.5 Phase-Voltage Noises based TRNGs
1.5.1 Diodes based TRNG
1.5.2 Open-Loop delay chains based TRNG
1.5.3 Transient effect ring oscillator based TRNG
1.5.4 Metastable ring oscillator based TRNG
1.6 Conclusion

23

29

33

35

37

41

2 Evaluation of True Random Numbers Generators 67

2.1 Introduction 67
2.2 Statistical Evaluation 67
2.2.1 Overview of statistical evaluation standards 67
2.2.2 AIS-31 standard certification 68
2.2.3 Onlinetests, 81
2.3 TRNGs Stochastic Modeling 82
2.4 TRNGs Attacks and Vulnerabilities. 83
2.4.1 TRNGs vulnerabilities identification 83
2.4.2 Side channel threat analysis on TRNGs 84
2.4.3 Active attacks on RO-based TRNGs 87
2.5 Comparison between Existing TRNGs 90
2.6 Conclusion 91

3 Principle and Model of the Delay Chains based True Ran-

dom Number Generator 93
3.1 Introductiono 93
3.2 Principle and Source of Randomness of the Delay Chains based
TRNG . . .o 93
3.2.1 Source of randomness 93
3.2.2 Metastability principle and characterization 94
3.3 Proposed Delay Chains based TRNG 99
3.3.1 Delay chains structure specifications 99
3.3.2 Delay chains based TRNG generic structure 100
3.4 Stochastic Model of Delay Chains based TRNG 101
3.4.1 Stochastic model parameters identification 102
3.4.2 Proposed stochastic model 104
3.5 Conclusion 107

4 Study of the Delay Chains based True Random Number

Generator for ASIC Technology 109
4.1 Introduction o 109
4.2 ASIC Design of the TRNG with MUX-based Delay Chains . 109
4.2.1 Specificationso oo 109
4.2.2 Place and route process 113
4.2.3 Post place and route simulation results. 114
4.2.4 Stochastic model versus simulation results 117

4.3 ASIC Prototype Test and Validation of the TRNG with MUX-
based Delay Chains 120

4.3.1 Experimental results and statistical evaluation on the
ASIC TRNGo o 120

4.3.2 Environmental variations tests of delay chains based
TRNG 124
4.3.3 Model versus ASIC prototype results 128

26

4.4 TRNG Design with Tri-states Buffers based Delay Chains . . 132
4.4.1 Principle of the tri-state buffers based delay chains . . 132
4.4.2 Design description of the TRNG with tri-state buffers

based delay chains 0L 132
4.4.3 Post place and route simulations 136
4.5 Conclusion 140

5 Study of the Delay Chains based True Random Number

Generator for FPGA Technology 141
5.1 Introduction o 141
5.2 FPGA Implementation of the Delay Chains based TRNG . . 141
5.2.1 Specifications and problem statement 142

5.2.2 Design methodology 142

5.3 Primary Tests 148
5.3.1 TRNG throughput 148

5.3.2 TRNG design complexity 150

5.4 Experimental Results and Statistical Evaluation 150
5.4.1 Statistical tests evaluation in typical use mode 150

5.4.2 Evaluation study in environmental variation 151

5,5 Conclusion 156
General conclusion 157
Publications 159
Appendix 161
NIST standard statistical tests results 161
ATIS-31 standard statistical tests results 162

x? contingency table for AIS-31 tests 164
References 165

27

1.1
1.2

1.3
1.4
1.5
1.6

1.7

1.8
1.9
1.10
1.11

1.12
1.13
1.14
1.15
1.16
1.17
1.18

1.19
1.20
1.21

2.1

2.2
2.3
2.4
2.5

2.6
2.7

2.8

List of Figures

Random Number Generators Classification
ATS-31 standard architecture of True Random Number Gen-

eratorso
Noise power density function (PDF) of Flicker noise.
Principle of noise extractor.
CMOS bi-stable elements for entropy extraction.
Illustration of phase and voltage noises respectively on the

sampling and the sampled signals.
The dual oscillator based architecture of Intel’s first generation

of TRNGs.
Architecture of the two ring oscillators based TRNG.
Architecture of the two ring oscillators based TRNG.
Multiple ring oscillator based TRNG.
Digital timing diagram of randomness extraction in the PLL-

based TRNG.
PLL-based TRNG architecture.
Self-timed ring based TRNG architecture.

Entropy extraction in Kinniment’s metastability based TRNG.

Entropy source block of Intel’s metastability based TRNG.
Principle of the BRAM concurrent data writing operation. . .
Principle of SRAM-based TRNG.
The generic design of noisy diodes based PTRNG of Killmann
and Schindler L
Delay tuning of open-loop delay chains based TRNG.
Transient effect ring oscillator based TRNG.
Structure of the Meta-RO-TRNG.

Standard structure of TRNGs as described in the AIS-31 stan-
dard certification scheme.
T2 Poker test representation
T3 runs test example for N=32 and r=2..
TRNGs vulnerabilities at different TRNG blocks
Attack setup of differential frequency analysis on multiple ring

oscillator based TRNG.

Harmonic injection attack on a simple two-ring-oscillator circuit.

Electric field characterisation of the EMV smart card embed-
ding a multiple ring oscillator based TRNG.
Attack setup of multiple ring oscillator based TRNG by means

of frequency injection. oo

47
48
49
49

50

53
54
54
55

56
o7
o7
59
60
61
62

63
64
65
66

70
73
75
85

86
87

88

88

2.9

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9
4.10
4.11

4.12

4.13

4.14

4.15

Attack setup of the TRNG’s entropy perturbation by means

of laser injection. 89
Sampling uncertainty around VDTD 94
D-Latch characterization around metastability. 95
Q output value depending on data arrival time uncertainty . 96
Measurement circuit. 96

Propagation delay time Tcq vs. 6tpc of a CMOS D-Latch. . 98
Transient noise simulation: The internal net behaviour for 10

noise iterations for LDLQ latch where 6tpc = Tsetupo- - - - - 98
p(Q="1") vs. clock-to-data delay around the metastable state 99
Principle of the delay chains based TRNG. 99
Data and clock race through the latches to catch metastability. 100
Generic structure of the delay chains based TRNG 100
D-Latch characterization around metastability. 102
The probability to correctly sample the input for consecutive

latches. 104
Custom latch structure. 110
Detailed view of the TRNGO. 111

Mux-based coarse chain architecture and delay configurations 112
Zoom of the layout of the TRNG with custom latches: view
of the balanced routing of the fine delay chains on data and

clock paths. 114
Post place and route simulation for 6 transient noise iterations

of the TRNG. 115
Metastability position for ctr = 0x3 and ctrd = 0x1. 117
p(trngo="1") for all the possible delays configuration of (ctr,ctrd)
forcase (). 118
Test board and measurements of the ASIC_ TRNG#1 prototype120
TRNG system 124
Frequency of occurrences of ’1” at TRNG3 output vs. power
supply voltage variation for 10K samples. 127
Frequency of occurrences of 1’ at TRNG3 output vs. temper-
ature variations for 10K samples. 128

The probability prryg at the TRNG raw output in terms of
the noise standard deviation for all delay configurations from

analytic expression L Lo oL 129
ASIC_TRNG#1: measurement results vs. post PAR extracted
delays 131

Optimal region for randomness generation from comparison
between test-chip measurement results and post PAR extracted

30

4.16
4.17

4.18
4.19

4.20

4.21

5.1
5.2
5.3

5.4
5.5
5.6
5.7

2V possible delays through tri-state buffers based delay blocks.134
Architecture of the delay chains based TRNG using tri-state
buffers. 134
Layout capture of the tri-state buffers delay chains based TRNG.136
Feasible delays for different ctr__large, ctr__average and ctr__small
from post PAR simulation for typical corners. 137
Q0] and Q[15] waveforms shows the state flipping respectively

for (ctr__large, ctr__average,ctr__small)=(15,7,31) and (15,7, 127)
from post PAR simulation 138
Metastable states on latches chain outputs at (ctr_large,
ctr__average, ctr__small)=(63,31,31) from post PAR simula-

BIOT. . . . L 139
Trial-and-error procedure for the TRNG design on FPGA . . 143
Different routing paths inducing different delays. 144
LUT based implementation of the fine delay chains of the

TRNG. . . 145
Hard Macro generation flow. 146
Integration of the delay chains hard macros. 147

TRNG output for 100 different acquisitions on Virtex 5 FPGA 149
Random pattern of the output of the delay chains based
TRNG designed with: 154

31

List of Algorithms

Algorithmic implementation of the Von Neumann post-processing
technique.o 51
Algorithmic implementation of the Tsetyp0 measurement process. 97
Algorithmic implementation of the probability computation

at the delay chains based TRNG output. 118
Algorithmic implementation of the self-calibration technique. 125

33

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11

4.12

5.1

5.2

List of Tables

ATS-31 certification classes of Physical True Random Number

Generators according to §262 of [KS11]. 71
Table of the permitted intervals in T3 Runs test for o = 1076
and N = 20000 bits. 76
Table of comparison between FIPS 140-1 tests and AIS-31 tests 77
Minimum length required for each AIS-31 test 80
Online tests bounds for 256-bit sequences. 81
Complexity of the hardware online AIS-31 tests for a generic
sequence length. Lo 0oL 82
Summary of types of attacks on TRNGs. 84
NIST statistical tests result of a multiple ring oscillator based
TRNG under attack, . 88
Comparison between existing TRNGs implemented in FPGAs 90
Notations of the TRNG design parameters 111
Post-layout simulation results considering transient noise: fre-
quency of occurrences of bit "1’ over 100 iterations. 116
Metastability position in the chain of latches depending on
process variations for T=25 and Vdd=1.2. 116
Measurement results of the TRNG3 version for the delay con-
figuration (ctr,ctrd)=(0x00,0x00) on 100000 samples. 121
AIS-31 statistical tests for the ASIC TRNG (PTG.1 tests with
Von Neumann PP and PTG.2 without PP). 121
NIST statistical tests results of the ASIC TRNG 122
Impact of process variations on the TRNG. 125
NIST statistical tests results of the ASIC TRNG3 version at
—10°C and 70°C" 126
Optimal coarse delay chain configuration vs. power supply
voltage. 127
Optimal coarse delay chain configuration vs. temperature. . . 127
The probability prryg at the TRNG raw output for all delay
configurations from ASIC prototype measurements. 130
Optimal delay configuration depending on process variation
and environmental conditions. o000 139

Table of the realisable fine chains differential delays depending
on LUT inputs selection (in ps). 148
Comparison of existing metastability based TRNGs implemen-
tations in FPGA Xilinx devices in terms of complexity and
throughputo 150

5.3

5.4

2.5

5.6

2.7

5.8

5.9

5.10

5.11
5.12

5.13

ATS-31 statistical tests for the FPGA TRNG (test procedure
A with von Neumann PP and test procedure B without PP).
NIST statistical tests results of the FPGA TRNG with Von
Neumann post-processing L.
Results of AIS-31 tests of PTG.1 class for different coarse
chain configurations on raw sequences (-: Fail, P: Pass).
Results of AIS-31 tests of test procedure A for different coarse
chain configurations with post-processing (-: Fail, P: Pass).
Results of AIS-31 test procedure B for different coarse chain
configurations without any post-processing (-: Fail, P: Pass).
NIST results for different coarse chain configurations with
post-processing.
NIST results for the uniformity of p-values and the proportion
of passing sequences of the PP output of ASIC TRNG3
NIST results for the uniformity of p-values and the proportion
of passing sequences of raw output of the FPGA TRNG . . .
ATS-31 results for the FPGA TRNG without post-processing
ATS-31 results for the ASIC_ TRNG#1 (TRNG3 version) with
post-processing for TO-T5 and without for T6-T7-T8
x? contingency table where « is the error probability and df
is the degree of freedom.

36

151

152

. 153

. 153

155

155

. 161

161
162

List of Abbreviations and
Acronyms

AES Advanced Encryption Standard

AIS Anwendungshinweise und Interpretationen zu Common Criteria
ANSSI Agence Nationale de la Sécurité des Systemes d’Information
ASIC Application Specific Integrated Circuit

BRAM Block Random Access Memory

BSI Bundesamt fiir Sicherheit in der Informationstechnik
CC Common Criteria

CMOS Complementary Metal Oxide Semiconductor
CRI Cryptography Research, Inc

DFA Differential Frequency Analysis

DFF D-Flip-Flop

DFT Discrete Fourier Transform

DPA Differential Power Analysis

DNA Deoxyribo-Nucleic Acid

EMI Electro-Magnetic Interference

EMIA Electro-Magnetic Injection Attack

EMYV European Mastercard Visa

FIA Fault Injection Attack

FIB Focused Ion Beam

FIPS Federal Information Processing Standard

FPGA Field Gate Programmable Array

HRNG Hybrid Random Number Generator

IC Integrated Circuit

37

IV Initialisation Vector

LASER Light Amplification by Stimulated Emission of Radiation
LED Light Emitting Diode

LUT Look-Up-Table

MDL Measurement Design Language

MOSFET Metal Oxyde Semiconductor Field Effect Transistor
MSS MetaStable State

MUX MUltipleXor

NIST National Institute of Standards and Technology

NMOS N-channel MOSFET

NONCE Not ONCE the same number

NPTRNG Non Physical True Random Number Generator
OSC OSCillator

Op.Amp. Operational Amplifier

PAR Place And Route

PCB Printed Circuit Board

PDL Programmable Delay Lines

PLL Phase-Locked Loop

PMOS P-channel MOSFET

PP Post-Processing

PRNG Pseudo Random Number Generator

PTRNG Physical True Random Number Generator
QPTRNG Quantum Physical True Random Number Generator
RAM Read Access Memory

RO Ring Oscillator

SCA Side Channel Analysis

SOA State Of the Art

38

SPA Simple Power Analysis

SRAM Static Read Access Memory
STM ST Microelectronics

STR. Self Timed Ring

TOE Target Of Evaluation

TRNG True Random Numbers Generator
VCO Voltage Controlled Oscillator

VN Von Neumann

XOR eXclusive OR

39

General introduction

Context

Randomness is used in a large scope of applications covering test vectors
for Integrated Circuits (ICs), Monte Carlo simulations and gambling. Ran-
domness is also essential in some cryptographic protocols such as random
session keys generation, Initialization Vectors (IVs), NONCE (Not Once the
same number) and protections against physical attacks [MvOV96]. Dynami-
cally generated randomness, which occurs during circuit operations, is due to
ambient noise caused by voltage fluctuations and many other noise sources,
as thermal noise. This dynamic randomness is exploited in True Random
Number Generator (TRNG) because of its unpredictability. Thanks to their
simplicity of design, Pseudo Random Number Generators (PRNG) are widely
used although not cryptographically secure as they are generated based on a
deterministic sequence [MvOV96]. This is why PRNGs are initialized with a
seed that are generated from a True Random Number Generator. Such a com-
bined structure is often called a Hybrid RNG (HRNG). The unpredictability
of the seed of PRNGs or stream cipher is a sore point in cryptographic
protocols.

Physically implemented RNGs in digital Integrated Circuits (IC) should
generate "true" random bits. In fact, untrustworthy TRNGs may threaten
the security of the whole cryptographic system. To be cryptographically
secure and compliant with Common Criteria (CC) certification schemes, the
TRNG should [KS11, Joil3]:

1. have good statistical properties i.e. first the generated sequence must be
uniformly distributed and, second, knowing the history of the generated
sequence, one can not predict the successors,

2. embed self tests that rises an alarm in case of source of noise failure
and

3. be robust against environmental perturbations and physical attacks.

The second and third requirements are as much important as the first one
for the cryptographic applications. Ideally on-line tests should be performed
to detect environmental perturbations or malevolent attacks [KS11].

Motivations

Up till the late 90’s, hardware random number generators was designed
exclusively with analog components such as zener diodes and resistors which

41

exploit respectively thermal noise [JK99] and shot noise [KS08]. The noise
is then amplified and converted to a digital random bit '0’ or ’1’. For digital
technologies, like FPGAs or standard cell ASICs, the most common method
to build TRNG is based on ring oscillators (RO) which takes advantage
of the noise jitter on a clock signal. However, recent physical attacks on
RO-based TRNGs have shown that a bias can be introduced by means of
harmonic injection [MMO09]. Apart from its vulnerability towards this attack,
RO-based TRNGs can present a good quality of randomness.

Another method to extract the noise is to place a flip-flop in a metastable
state and observe the convergence towards a stable state. This convergence
is given by the current voltage noise. This technique is hardly possible in
digital technologies as the metastability is not digitally controllable given
that the metastable voltage is around Vyy/2, Vi being the power supply
volatge. In this Ph.D work, we propose to study an “open-loop” architecture
which theoretically extracts noise coming from both metastability and jitter
and is intrinsically robust against harmonics injection attack. The other
motivations are to provide a portable TRNG in fully digital technology, like
FPGA and standard cells ASIC, and compliant with standard statistical
test suites. The robustness of a TRNG is strongly related to a permanent
quality of the generated bit stream despite the variations in its environment,
the potential external attacks and aging effects. To summarize, the main
motivations are:

e Propose and study a TRNG structure which is portable, compliant
with standard statistical tests.

e Prove the randomness quality by proposing a stochastic model.

o Address the security and reliability properties to make sure the quality
of the TRNG is not impacted by environmental variations or attacks.

Contributions

In this Ph.D work, the main contributions are the study, design and char-
acterization of a TRNG based on open-loop delay chains in both ASIC and
FPGA technologies. This kind of TRNG structure offers the advantage of
high throughput and resiliency against harmonic Electromagnetic Injection
Attacks (EMIA). The characterisation stage includes environmental tests on
real silicon to ensure that the randomness quality is preserved.

Another contribution is to introduce a stochastic model of the open-
loop delay chains based TRNG. It has been proven that the metastability
phenomenon can be efficiently mixed up with jitter noise for true randomness
generation. A model of the delay chains based TRNG has been build to allow
the designer to simulate the TRNG. Hence the statistical evaluation of the

42

randomness can be performed before the fabrication process. This model has
been validated through simulation and evaluation of an ASIC prototype.

This manuscript is organized as follows:

The first chapter describes the state-of-the-art with the principles of the
existing TRNGs which are presented according to a proposed classification.

Then, we present a second chapter addressing the existing techniques to
evaluate a TRNG in terms of randomness quality and physical robustness.
This chapter presents three essential parts towards the certification of a
TRNG:

1. the method to formalize the randomness by stochastic modeling,
2. the methods to evaluate statistically the TRNG,

3. the robustness against physical attacks with the description of some
significant cases.

At the end of this chapter, a synthetic comparison of existing TRNGs is given
in terms of complexity, throughput, testability at design time and security.

In the third chapter, we present the principle of the proposed “open-
loop” TRNG architecture based on delay chains. This chapter presents also
a mathematical stochastic model that describes the design parameters that
affect the entropy of the delay chains based TRNG. We give a probabilistic
study of the TRNG output.

In chapter four, we study the ASIC architecture of the generic delay
chains based TRNG. This technology allows us to study the impact of the
placement and routing and build characterization methods based on elec-
trical simulations. Along with the design of the prototype circuit, models
issued from simulation and stochastic approach have been validated through
measurements. Also the impact of constrained placement and routing on the
randomness quality has been studied by applying standard statistical tests.
In order to be sensitive to very small noise level, a second architecture with
new delay chains has been proposed in a second ASIC prototype.

Chapter five is dedicated to the feasibility and adaptation of the generic
architecture of the delay chains based TRNG on a Xilinx FPGA. It first
presents the study the architecture of Xilinx FPGAs and propose an imple-
mentation based on LUT differential delays to get high delay precision. This
chapter also presents the randomness evaluation for different environmental
conditions of this TRNG FPGA.

Finally, we conclude this manuscript by summarizing the main contribu-
tions of this Ph.D work and some openings to future works.

43

CHAPTER 1

State-of-the-art of True
Random Number Generators

1.1 Introduction

Over the past ten years, great efforts have been undertaken to implement
on-chip true randomness generation. In this chapter, we present the existing
solutions to generate on-chip true randomness. In the first section, we present
the TRNGs standard structure by describing the role of each of its main
blocks. First, we give an overview of the main sources of noise in CMOS tech-
nology. Then we describe the requirements of the entropy extraction, online
tests and post-processing blocks. Meanwhile, we propose a novel criterion
of classification of the existing TRNGs. Then, we give an overview of the
existing on-chip TRNGs by classifying them in terms of source of noise and
entropy extraction.

1.2 Principle and Classification Proposal of TRNGs

Basically, a random set of bits or set of states could be seen as the result
of the flips of a coin with a head side labeled 0’ and a tail side labeled ’1’
with each flip having a probability of exactly 50% of producing a ’0’ or a 1’
Furthermore, each flip is independent from the others such that the current
coin flip result does not affect the future ones. A TRNG should operate
exactly in this same way.

Several True Random Number Generators (TRNG) have been presented
in the literature, spanning from Non-Physical TRNG (NPTRNG) to phys-
ical TRNG (PTRNG). NPTRNGs extract randomness from non physical
processes. For example, from computer peripherals namely from the ran-
dom access to RAM, mouse motion, hard disk access or USB port access
on the computer [MvOV96]. Software entropy collector exist such as the
Linux kernel RNG whose output can be accessed through special files such
as /dev/random and /dev/urandom. Unlike NPTRNGs, PTRNGs extract
randomness from physical phenomena. The exploited phenomena can be as
complex as generating a random number from a solid phase synthesis of an
oligonucleotide sequence of the DNA [GAR10] or the random events of the ra-
dioactive atom disintegration [Wal01]. Other optoelectronic TRNGs exist for

45

instance the super-luminescent LED (Light Emitting Diode) based PTRNG
[LCMR11] or the chaotic semiconductor laser PTRNG [ZWW11]. Quantum
based PTRNG (QPTRNG) have also been introduced recently. The need
for quantum TRNGs has recently overgrown because of the extension of the
quantum information and computation and quantum cryptography namely
the Quantum Key Distribution protocol [SBpCT09]. QPTRNGs generate a
random state for example from the polarisation beam splitting of a random
polarized photon which is generated by a LED. This QPTRNG is proposed
in [JAWT00] and in [Still]. Another QPTRNG which exploit the random
transmission of a photon through a semi-transparent mirror was introduced
in [IDQ10].

Deterministic

Non-Physical

Figure 1.1: Random Number Generators Classification

In the diagram of Figure 1.1, we present the general classification of ran-
dom number generators. A wide spectrum of on-chip or “integrated” TRNGs
have been published over the last two decades. In this work, we focus on the
integration of on-chip TRNGs in both Application Specific Integrated Cir-
cuits (ASIC) and Field Programmable Gate Arrays (FPGAs). Historically,
the first on-chip TRNGs have been designed for ASICs. Then with the spread
of FPGASs use, not only for research and prototyping, but also for industrial
products, the need for robust TRNG designs on FPGA has grown especially
for cryptographic applications. Whatever the source of randomness and the
targeted technology are, all TRNGs have the common structure of Figure 1.2.
This standard structure is proposed by AIS-31 (Anwendungshinweise und
Interpretationen zu Common Criteria) [KS11].

Basically a TRNG is composed of four blocks such as illustrated in Fig-
ure 1.2:

1. A physical source of randomness block which is also called source of
entropy

2. An entropy extraction and digitisation block

46

Physical

Entropy
Source of

Extractor

9[Post—processing} TRNG output
Raw output) Alarm
—| Online tests .

Figure 1.2: AIS-31 standard architecture of True Random Number Genera-
tors

Randomness

3. An online tests block

4. A post-processing block

1.2.1 Source of entropy

This block constitutes the analog part of a TRNG. Each TRNG uses a
specific randomness source which is based on an unpredictable physical
phenomenon. In silicon technologies, physical sources of noise come from
non-deterministic effects on electronic components. MOSFET transistors
exhibit different sources of noise [Bak10]. The first one is the thermal noise
in the MOS transistor channel and also in the resistive metal of the transis-
tor gate. It is characterized by voltage fluctuations caused by the random
motion of electrons in any resistive medium. Its amplitude increases with
the temperature. The thermal noise is the dominant noise at higher frequen-
cies. The magnitude, V;%ermal, of the total thermal noise power is given by
Equation (1.1).

Vvt%ermal = kBC L (11)
where kg = 1.3810723.J/K is the Boltzmann constant, T’ the temperature in
Kelvin and C' the load capacitance in an RC equivalent circuit. Second, the
flicker noise is characterized by the effect of randomly trapped charges at
the surface of the gate oxide [Liu06]. The effect from the randomly trapped
charges can be modeled as a random voltage source at the gate of the device.
The magnitude of the flicker noise is given by Equation (1.2).

K

2
Vflicker(f) = L C (12)
ox
where K is an empirical constant found by measurement, f is the frequency
of the noise, L is the effective gate length of the MOSFET transistor and C,,
is the capacitance of the gate oxide. Equation (1.2) shows the flicker noise
voltage is inversely proportional to the frequency. It is especially pronounced

in MOSFET transistors with small channels. Figure 1.3 depicts the spectral

47

density increase of the flicker noise for lower frequencies. The flicker noise
is the principal source of the jitter [AbiO6]. Its effect is more important in
deep sub-micron CMOS technologies.

PDF

Frequency

Figure 1.3: Noise power density function (PDF) of Flicker noise.

Third, the shot noise is characterized by the leakage current of the drain-
to-source reverse diodes. The power spectral density of the shot noise is
determined empirically and it is given by Equation (1.3) according to [Bak10].
The shot noise is not present in short channel CMOS technologies under
20nm.

Bhy=2q" Ip (1.3)

where ¢ is the electron charge of 1.610—19 coulombs and Ip is the current
flowing in the MOSFET channel. At low frequencies, the primary dominant
noise sources are the thermal noise and the flicker noise. Another source of
noise has been identified in CMOS technology which is the popcorn noise,
also known as random telegraph signal (RTS) noise. The popcorn noise char-
acterises the noise caused by the electrons and holes combination-generation
process in a PN junction. The baud diagram of the popcorn noise is equiva-
lent to a low pass filter [Bak10]. The power spectral density of the pop-corn
noise can be modeled using Equation (1.4).

Krts ' ID

2 —
Irts(f)_ 1_’_(]{)

(1.4)

where K,;s is an empirical evaluated constant which has a unit of Ampers
per Hertz, f. is the cut-off frequency of the equivalent low pass filter and
Ip is the current flowing in the MOSFET channel. To evaluate the total
popcorn noise power, Equation (1.4) is integrated for f from zero to infinity.
At low frequencies, the PSD of the popcorn noise exhibits a white noise
similarly to the thermal noise and shot noise. However, at higher frequencies,
the popcorn noise decreases as - . In addition to thermal, shot, flicker and
popcorn noise, phenomena such cross-talk effects between adjacent wires and

electromagnetic interferences (EMI) from external environment intensify the

48

ambient noise effect [Fai99]. EMI is caused by the radiation outside the chip
mainly by the I/O pads of the chip, power supplies and I/O cables on the
printed circuit board (PCB).

1.2.2 Entropy extractor

In this block, the analog noise signal is extracted and digitised. This is
done by means of sampling a noisy signal using “sample and hold” circuits.
Figure 1.4 illustrates a sample and hold circuit with both the sampling and
sampled signals.

sampled
signal

AM AR AL
i/ \"\/\

;"H‘\','.-‘J\ 1\
sampling L

signal

FAVAN

Figure 1.4: Principle of noise extractor.

For digital circuits, they are performed by memory elements (e.g. D-flip-
flops(DFF), D-latches or SRAM (Static Random Access Memory) cells). The
sampling is generally performed by a clock signal which allows the TRNG to
output random bits periodically. Figure 1.5 illustrates all the CMOS memory
elements that can be used in order to sample a noisy signal.

D-flip-flop Latch SRAM
H Q

—{D Q
< S Q T 7

Figure 1.5: CMOS bi-stable elements for entropy extraction.

The noise impacts both the timing and the amplitude of signals [FAB*09).
Figure 1.6 illustrates two types of noise. The noise on timing is commonly
called “jitter noise”, we will call it “phase noise” as it happens on the time
axis around the sampling edge of the sampling signal. The noise on the
amplitude is grabbed at a “metastable state” of the memory element. we
refer to this type of noise “voltage noise” as it comes from the amplitude
of the sampled signal. In CMOS technology, the metastable state voltage
is around VDTD. The time of sampling uncertainty can be considered as a

49

time uncertainty around the sampled signal switching. This extraction and

jitter
Ideal edge

Voltage drift{

(a) Phase noise (b) Voltage noise

Figure 1.6: Illustration of phase and voltage noises respectively on the sam-
pling and the sampled signals.

digitisation mechanism generates a sequence of digital bits called the raw
output.

1.2.3 Online tests

Some hardware statistical tests should be embedded within the TRNG chip
to test the TRNG output sequence during operation [Sch01]. Online tests
should check the quality of the random numbers first at TRNG reset, then
applied continuously or permanently [KS11]. The online tests block should
rise an alarm in case of failure of the source of entropy. In fact, on-chip
TRNGs can be influenced by ageing, deterministic noise of surrounding logic,
temperature and supply variations and also physical attacks [Joil3].

The complexity of these online tests should be reasonable in comparison
with the TRNG core since they are embedded directly within the TRNG
chip. Power-up online tests should run fast to avoid big latency times. The
latency time or power-up time is defined by the time needed from the TRNG
online tests to release a safe random sequence. Moreover, when the online
tests are applied periodically they decrease the throughput. The online check
tests are not intended to measure the entropy per bit of the TRNG. They
are actually used in order to check if the TRNG output is stuck outputting
periodically the same patterns or long sequences of consecutive zeros or ones
or alternating zeros and ones periodically. Hence online tests can be very
simple and light. For example, we can count the number of occurrences of
ones and check whether it is not highly offset from 50%. Online tests can
be applied either on the TRNG raw output sequence or on the TRNG post-
processed sequence. This choice depends on the level of security strength
required from the certification standard AIS [KS11].

50

1.2.4 Post-processing

The raw output of the TRNG may present bad statistical properties such as
long sequences of ones or zeros or a repetitive pattern of bits. This bias can ac-
tually originate from deterministic noise from external sources such as power
supply variations or crosstalk effects coming from surrounding logic. In this
case, post-processing algorithm can be used in order to increase the entropy
per random bit. The post-processing block is not mandatory if the TRNG
raw output presents good statistical properties. Post-processing techniques
may be arithmetic or cryptographic [NIS12, KS11]. Typical arithmetic post-
processing methods are using simple de-biasing function namely the Von
Neumann correction technique [vN51, ECS05]. The von Neumann debiasing
solution is the most used one since it requires a very lightweight hardware.
Von Neumann correction algorithm considers the RNG sequence pair by
pair and proceeds like the following. "00" and "11" pairs are discarded and
the "10" and "01" pairs are replaced respectively by 1’ and ’0’. However,
the bit rate of the post-processed output may drop of 25% compared to the
bit rate of the raw output sequence. The drawback of this method is the

Algorithm 1 Algorithmic implementation of the Von Neumann post-
processing technique.

N : raw sequence length
Valid : table of N bits
ji=1

for iin (0,5 — 1) do

if Sraw[2i + 1] ® Sraw[2i + 2] = 1 then

Svn []] = Sraw[27; + 1]

j=j+1
Valid[i]=1
else
Valid[i]=0
end if
end for

return S,,

unknown waiting time until the required post-processed random bits are
available [vN51, Dic07]. In fact, the throughput of the post-processed output
depends on the randomness of the raw output. In fact the bit rate of the
post-processed output varies depending on the entropy of the raw output.

51

Other post-processing methods are also widely used such as Linear Feedback
Shift Registers (LFSR). The commonly cryptographic post-processing are
hash functions or stream cyphering algorithm [NIS12, KS11]. Block cipher
algorithms, such as AES (Advanced Encryption Standard), are also com-
monly used for post-processing. This can be found, for example, in the VIA
Nano CPU [VTO08] and Intel’s new Ivy bridge CPU [HKM12]. In [KEC*11],
authors studied and compared these post-processing techniques.

1.2.5 TRNG classification

In literature, several solutions for on-chip randomness generation in digital
ICs have been introduced. We propose to classify the exiting TRNGs in
terms of entropy extraction. We identify three families of TRNGs:

e« TRNGs that exploit the phase noise. The jitter phenomenon charac-
terizes the sampling time uncertainty. This family encloses the method
of sampling a jittery oscillating elements, such as ring oscillators, by
jittery clock.

e TRNGs that exploit the voltage drift phenomena around the VLQD
voltage level. This is commonly known as metastability in bi—stable
elements. This family encloses the following randomness extraction
solutions:

— Writing data to the same memory location or sampling randomly
initialized memories at power-up.

— Placing a bi-stable cell in a metastable state, then observing the
stable state which is the consequence of ambient noise.

e« TRNGs that exploit both phase and voltage uncertainties. We refer to
the family of TRNGs that exploit both phase and voltage uncertainty
noises as phase-voltage noise based TRNGs.

In the next section, we present the TRNG state-of-the-art for each family.

1.3 Phase Noise based TRNGs

The common method to generate on-chip true randomness is to use a jittery
clock which samples a jittery oscillating structures such as voltage controlled
oscillator (VCO), phase locked loop (PLL) and free-running ring oscillators.
In this state-of-the-art of TRNGs exploiting phase noise, we present the most
known and used TRNG architectures.

02

1.3.1 Intel’s dual-oscillator based TRNG

In 1999, Cryptography Research Inc. (CRI) presented a review of Intel’s
1% generation TRNG [JK99] where they introduce its principle. The dual-
oscillator based TRNG extracts randomness from the amplification of the
thermal noise of an integrated resistor. Figure 1.7 illustrates the architecture
of the first Intel TRNG. A voltage controlled oscillator is fed by the noisy

Resistor

“#J\/\ﬁ VCO D

qQ | -RNCG

High Speed Oscillator —>C

Figure 1.7: The dual oscillator based architecture of Intel’s first generation
of TRNGs.

amplified signal. The resulting signal is a slow jittery clock, which is then
sampled by the high frequency system clock. The drift between the noisy
low frequency oscillator and the clock produces random bits.

The TRNGs based on the extraction of resistors thermal noise are very
much sensitive to the chip temperature. In [SCDC™11], authors studied the
impact of temperature variations on such analog TRNG structures. For
temperature values higher than the ambient temperature, the TRNG output
is biased and the NIST statistical tests fail.

1.3.2 Two-ring-oscillator based TRNG

Sampling free running oscillators with a jittery output is the common method
to generate true randomness since it requires simple ring oscillators structures
which are easily implementable. A ring oscillator consists in a chain of delay
elements which are logically inverted in a feedback loop. The IC community
have devoted several studies to characterize jittery behaviour of free running
oscillators. Ring oscillators are also embedded by circuit manufacturer into
IC wafers to measure to characterize technology process variations and the
maximum working frequency of the produced ICs [BGKDO6].

The uncertainty around the clock edges is due to instabilities in the prop-
agation delays of the inverting cells which compose the ring oscillator. These
instabilities may come from temperature variations. Semiconductor process
variations namely the non uniform doping density can also cause the clock
jitter. The random properties of jitter combined with several characterisation
studies for both ASIC and FPGA technologies, have made ring oscillators a

53

widely used structure to generate on-chip randomness.

To understand the principle of jittery ring oscillators based TRNGs, let
us go further with a simple two ring oscillators based TRNG, the Kohlbren-
ner and Gaj’s TRNG [KGO04]. The latter has the architecture presented in
Figure 1.8. Here S; is the random output. If the rising edge of the OSC0
output, C0, comes before the rising edge of C'1, S; is equal to '1’ else S; is

0.
(s} o

—>C

D Q D Q TRNG raw

output
o5t C c

Figure 1.8: Architecture of the two ring oscillators based TRNG.

Cl1

The TRNGs that extract noise from jittery oscillators use either two ring
oscillators (RO) such as described above [KG04] or multiple RO such as pro-
posed in [SMS07], [SPV06] and [AFRO08] or several RO-based PRNGs [Gol06,
DGO7]. Another two ring oscillators (RO) TRNG structure is proposed by
Tkacik in [Tka02]. It is a US patented by Motorola. It exploits two jittery
ring oscillators. One feeds a Linear Feedback Shift Register (LFSR) and the
second one feeds a Cellular Automata Shift Register (CASR). Figure 1.9
illustrates the Tkacik’s TRNG structure.

32 bit select
(IO 1T

— 43 bits LFSR |
0SCo

P RNG output

N

ML b 37 bits CASR |

0SC1 OCIIT—1TH
32 bit select

Figure 1.9: Architecture of the two ring oscillators based TRNG.

This structure is very simple however it does not embed any logic to test
online the statistical properties of the TRNG raw output. In CHES 2003, an

04

attack has been experienced on the Tkacik’s TRNG in [Dic03].

1.3.3 Multiple-ring-oscillator based TRNG

Figure 1.10a illustrates the multiple ring oscillators based TRNG. The out-
puts of n ring oscillators are XORed. The resulting signal is then sam-
pled using a DFF. The DFF output represents the raw random bit output
of the TRNG. Sunar et al. published a stochastic model of this TRNG
in [SMS07, YSKBO07].

RO, '7 DFF
i oton. |2 [ows e
Aw rancom DFF| output
DFF output) o
ROu | | DFF
clk a
o
(a) Sunar’s structure (b) Wold’s structure

Figure 1.10: Multiple ring oscillator based TRNG.

Wold et al. propose an enhancement of Sunar’s TRNG in [WTO08]. A
DFF is added at the output of each ring oscillator such as illustrated in
Figure 1.10b. Thanks to the synchronization of ring oscillators outputs,
the probability of interaction between the ring oscillator jittery outputs
is reduced. The TRNG output sequence of Wold’s enhancement on the
multiple ring oscillator based TRNG allows to pass the standard statistical
tests without any post-processing. In fact, sampling the output of each RO
independently allows to exploit the phase uncertainty at each sample at the
outputs of the added DFFs.

The advantages of the RO-based TRNG cited above are the ease of design.
In fact, they require only inverter gates and therefore are highly portable.
They also feature several Mbps throughputs. RO-based TRNG structure have
been experienced through several FPGA chips from different vendors and
also on ASIC technologies. According to their authors, the above presented
RO-based TRNGs present good quality of randomness since they pass NIST
standard statistical tests. However, this class of TRNGs has proven to present
a serious issue regarding security applications. Its drawback is declined in
design oriented drawbacks and security oriented drawbacks:

e Design oriented disadvantage is the need for placement constraints to
reduce the effect of process variation on the RO. This is needed to

55

ensure that RO frequencies are relatively primes [SMS07].

o The security oriented drawbacks are related to its vulnerability towards
physical attacks. In fact, the ring oscillators can be mutually locked by
a harmonic injection attack [BBAT12]. If the rings are not independent,
their mutual phases are not uniformly distributed. This causes a bias
at the TRNG output.

Physical attacks are out of the scope of this section. We present the
harmonic injection attack of [BBAT12] in the Section 2.4 which is dedicated
to the issue of TRNG physical evaluation. Other FPGA TRNG designs
exploiting jitter as source of randomness exist namely the PLL (Phase Locked
Loop) based TRNGs proposed in [VF02, FDcC04, LMO05].

1.3.4 PLL-based TRNG

In [FDcB04], authors propose an FPGA implementation of a TRNG. The
TRNG exploits the jitter produced in a PLL. The random output is obtained
by sampling the CLJ signal by the CLI jittery clock signal. The timing
diagram of Figure 1.11 depicts the random samples extraction. Figure 1.12

Torg Terr

critical samples

Figure 1.11: Digital timing diagram of randomness extraction in the PLL-
based TRNG.

illustrates the structure of the PLL-based TRNG.

The PLL-based TRNG has been experienced and its output statistically
evaluated through several Altera and Actel FPGAs. Authors also validated
the quality of randomness through a stochastic model [cDFF06]. In this
model authors identify the PLL-based TRNG design parameters and propose
a mathematical model to test and enhance the TRNG quality of randomness
at design time. Stochastic modeling is out of the scope of this chapter. The
PLL-based TRNG stochastic model is described in Section 2.3. The main
drawback of the PLL-based TRNGs is their need for a PLL block. However,

56

clk
PLL, CLI

CLJ g(nTcry
PLL D Q D Q ; x(nTy
2 Decimator (Q)

L (NKp)

Ne—

—pC —pC

Figure 1.12: PLL-based TRNG architecture.

most FPGAs feature a limited number of PLL which are generally used
to generate different clock domains. All the above cited RO-based TRNGs
present a good quality of randomness as they pass the NIST statistical
tests. However these structures are technology dependent and potentially
vulnerable against physical attacks. In the same family of jitter-based TRNGs,
a novel RO-based TRNG has been proposed. It exploits an asynchronous
free running oscillator.

1.3.5 Self-timed ring based TRNG

Recently, a single ring-oscillator based TRNG has been proposed in [CFAF13].
The Self-Timed Ring (STR) oscillator is designed by an asynchronous FIFO
(First In First Out memory) that has been closed to form a ring of L stages.
The Self-Timed Ring block provides L jittery signals. A clock samples each
inverting stage output, C; where 1 < +¢ < L, using DFFs. The L outputs of
the DFFs are combined using a XOR function which result in the TRNG raw
random bit output. The entropy extraction block of this STR-based TRNG
is depicted in Figure 1.13.

Raw random bit

Entropy extractor

[1prr| | |DFF T DFF
[

3 T@@@j 7777777777777 Self-timed ring

Figure 1.13: Self-timed ring based TRNG architecture.

57

The advantage of the STR-based TRNG is that it allows to control
precisely the relative phase differences between the asynchronous ring stages.
Since it exploits only a single ring oscillator, this architecture is inherently
robust against mutual locking phenomena. In the following subsection, we
present another family of TRNGs which is the memory cells based TRNGs.
This category of TRNGs extract randomness either from memory writing
conflict or from non initialized memories.

1.4 Voltage Noise based TRNGs

This section includes TRNGs which exploit voltage drift uncertainty around
a metastable state. Given our current knowledge, three different methods
exist in the literature:

1. forcing bi-stable cells to operate in the metastable region by customiz-
ing the transistors of the bi-stable cells.

2. forcing memory cells to metastable states by means of memory writing
conflicts.

3. extracting memory cells initial state which is random at power-up.

TRNGs designs which exploit voltage noise are rarer in the literature than
those that exploit solely the jitter. In the following, we present two de-
signs which exploit the first method [KC02, HKM12] and two other designs
that exploit respectively the second method [GCS09] and the third method
[HBF09].

1.4.1 Metastability based TRNG
1.4.1.1 Kinniment’s TRNG

In 2002, Kinniment et al. presented the first TRNG based on the principle
of metastability in [KC02]. This TRNG uses a custom analog cell which
is controlled in order to force the metastable state. The principle of such
metastability based TRNG is to drive a bi-stable cell in a metastable state
which will resume eventually in a random stable state. The metastability
control circuitry is called R-flop. Figure 1.14a illustrates the R-flop full
custom circuit [KC02].

The R-flop circuit is composed of a differential amplifier and a latch. The
analog input stage of the differential amplifier drives a bi—stable cell with a
small current difference. Thus, the output resolves to a high logic value or low,
when the latch is clocked with very low voltage levels. If AV = VT —V ™~ at the
amplifier input is lower than than 0.1 mV then the AV at the bi-stable cell
input is lower than the thermal noise voltage uncertainty. The R-flop present
a bias caused by temperature variations which need to be adjusted using a

o8

NN

T
v, —] _||:LJ H
y _l Clock ,_|

Differential Preamplifier Regenerative Latch

(a) R-flop circuit (b) Kinniment’s metastability based TRNG

Figure 1.14: Entropy extraction in Kinniment’s metastability based TRNG.

circuit-switched capacitor followed by a DFF. The entropy extractor block is
illustrated in Figure 1.14b [KKC02]. Then a post-processing circuit composed
of an LFSR generates the final output sequence of random bits. Authors of
[VSB10] and [TBMO7] proposed also an analog metastability based TRNG.
Such analog designs of TRNGs are not portable on reconfigurable devices.

1.4.1.2 Intel’s Ivy bridge metastability based TRNG

Recently, Intel introduced its 2"¢ generation of TRNG which is based on
metastability. It is published under the US patent 8489660 [HCG™*13]. In
2012, the CRI published an evaluation of the new Intel’s Ivy bridge TRNG in
[HKM12]. Figure 1.15 illustrates the entropy extraction block of this TRNG.
The core of the entropy source is the metastable RS latch. The final state
to which the RS latch resolves depends on the thermal noise. The RS latch
settling state is controlled by the feedback trimming circuit which adjust the
amount of charge at the PMOS inputs of the RS latch circuit. Based on how
the latch resolves, a fixed amount of charge is drained from one capacitance
to the other to maintain the metastable state. The buffering circuit detects
when the RS latch settles down to a stable state and stores the random bit.
Finally data_out is sampled by the clock out to generate a random bit. The
final DFF output represents the TRNG raw random output.

The entropy source output feeds an AES conditioner which is used as
post-processing. However, the raw entropy source output is not accessible to
the user. The post-processed output delivers random number at 800 Mbps
and passed the NIST SP900-22 statistical test suite. The user can only access
to the post-processed output.

59

8 data out Raw

Q D
R Q random bit
The buffering circuit clock out Ie
diff buffer

Metastable RS latch

IP-°<|7§D°-QI.

I e

- [Osnet
trim toward Q trim toward T

Figure 1.15: Entropy source block of Intel’s metastability based TRNG.

Feedback trimming circuit

1.4.2 BRAM based TRNG

The principle of the Block RAM (BRAM) based TRNG is to write simulta-
neously a logic one and a logic zero on the same memory cell. The BRAM
based TRNG exploits writing conflict on a dual-port BRAM cells embedded
in Xilinx FPGAs to generate random bits [GCS09]. Figure 1.16 illustrates
the principle of the writing conflict at the data inputs of a BRAM.

The concurrent write operation makes the resulting value at the BRAM
output a non-deterministic non-logic value. This is the case for some BRAM
cells, however some others generate a biased result. According to [GCS09],
only a few BRAM cells over the total available BRAMs are exploitable for
true random bit generation. In fact, because of the clock skew caused by
placement and routing asymmetries and the board heating-up, the optimal
BRAM cells cannot generate as high quality as when started-up. Hence,
authors propose to sweep all the BRAM cells by testing the frequency of
ones constantly at run time. This test is performed over 2'6 clock cycles
for each of the potential optimal BRAMs which are of the number of 8.
The design has been experienced and its randomness tested and validated
on several Xilinx FPGA chips, the Virtex 2 PRO, the Spartan 3 and the
Virtex 4. It needs 686 Slices and 16 BRAMs. It passes the NIST statistical
tests and operates at 25 Mbps. The main disadvantages of the BRAM-based

60

Common address bus
\Addr__ A

DA
clk
> Clk A Raw random bit

] Dout ———=

\Addr B
DB

Clk_B

BRAM
703

Figure 1.16: Principle of the BRAM concurrent data writing operation.

TRNG are:

o Its dependency to BRAM blocks. In fact, BRAM are not available in
all the FPGAs on the market.

o Its long start-up time 2! clock cycles needed before the first random
bit is released.

o Its design complexity.

According to authors analysis, this structure exploits only the phenomena
of non-deterministic voltage value at the output of the BRAM since the
written conflicted inputs, A and B, are constant. This is why we classify the
BRAM-based TRNG in the voltage uncertainty category. However, we note
that one can also force a timing violation one the switching time of A and B
data signals. This would force the BRAM cell to operate in the metastable
region.

1.4.3 SRAM-based TRNG

In [HBF09], Holcomb et al. propose to exploit the non-initialized state of an
SRAM as source of randomness. The SRAM cell is composed of 6 MOSFET
transistors: two cross-coupled inverters and two access transistors which
control the read and write operations. Figure 1.17a illustrates the SRAM
cell structure. At power-up the initial SRAM states are unpredictable. The
process variation at SRAM manufacturing induces a difference in the tran-
sistors threshold voltage. The transistors mismatch fixes the SRAM value
at power-up. In this case, at each power-up the SRAM has the same value.
However, if the inverters are perfectly balanced, the SRAM cell starts in a

61

metastable state. Figure 1.17b illustrate the metastable behaviour of the
back-to-back inverters node, V4. The amplitude noise around the metastable
state VDTD of the back-to-back inverters makes the cell resume to either a
logic one or a logic zero.

WL

VA

Voo

A=t Voo

Logic ‘1’
M, M,
wl ¥ HE

F__f _4 M, M
TT |~ g
M, My Logic ‘0’ A=0

BL ¢
Settling time
—_ Power up Stable

(a) SRAM 6 transistor cell (b) Random initial state of SRAM at power-up.

Figure 1.17: Principle of SRAM-based TRNG.

The true randomness generated by the SRAM cells results from the
voltage drift uncertainty impacting some SRAM cells that do not present
fabrication process mismatch. Authors of [HBF09] exploit 256 bytes of non-
initialized SRAM to produce 128 random bits. The sequence generated by the
SRAM-based TRNG passes only 3 over 15 of the NIST statistical test suite.
In comparison with RO-based TRNGs, these RAM-based TRNGs present
lower bit rate and are more demanding in terms of resources. However, such
TRNG designs can exploit the existent RAM circuitry. In the next section, we
present the state-of-the-art of TRNGs which exploit both phase and voltage
noise.

1.5 Phase-Voltage Noises based TRNGs

In this section, we present four TRNG designs that exploit both time and
voltage uncertainties [KS08, DGH09, VHK12, VD10].

1.5.1 Diodes based TRNG

Killmann and Schindler presented a noisy diodes based TRNG in [KSO08].
Figure 1.18 illustrates its architecture. The diode based TRNG exploits both
shot noise induced by the Zener diodes and jitter at the output signals of the
T-Flip-Flop and the sampling clock. A Zener diode generate 1 mV of voltage
uncertainty. The output of the operational amplifier feeds a Schmitt trigger.
The mean voltage of the Op.Amp. output corresponds approximately to
the middle of the two threshold voltage values of the Schmitt trigger. The

62

Schmitt trigger output consists of consecutive low and high voltage levels.
The time length of these signals is random.

ol e O

B s e i B Y R
D D
. . C
Schmitt Trigger clk
i

Figure 1.18: The generic design of noisy diodes based PTRNG of Killmann
and Schindler

D Q |~ TRNG raw output

Each 0 to 1 transition at the output of the Schmitt Trigger activate the
T-flip-flop (TFF). The TFF output is sampled by an external clock. The
final DFF output represents the TRNG raw random bit.

1.5.2 Open-Loop delay chains based TRNG

Metastability based TRNGs take advantage from metastable states in bi-
stable cells. Several analog and digital TRNG designs that extract random-
ness from metastability have been proposed in [KC02, DGH09, VSB10]. A
way to create metastability in any bi-stable cell is to toggle its data input
simultaneously with the sampling edge of the clock. In this case, the data
input toggles in the interval [tsetup, thold) leading possibly to a metastable
state. A very simple implementation of TRNGs could then be done by sam-
pling the clock itself. This approach has been introduced in [KC02| with a
controlled custom analog cell to force the metastable state. Later, an FPGA
implementation of the metastability based TRNG principle was introduced
in [DGHO7]. In this design, the delay between data and clock signals is
controlled so that the data edge catches the clock edge. The higher is the
definition of the data-to-clock delay, greater the chances are for the data to
switch in the metastable region. In order to do so, a chain of multiplexors
is used in order to control the data-to-clock delay at the latches input. Fig-
ure 1.19 illustrates the principle of delay chains tuning of the Open-Loop
TRNG [DGHO09].

1.5.3 Transient effect ring oscillator based TRNG

The transient effect ring oscillator (TERO) based TRNG exploits phase and
voltage noises. It extracts randomness from temporary oscillations when a bi—
stable cell resolves from a temporary oscillating phase to a stable state. The
TERO loop cell, as illustrated in Figure 1.20a, is composed of two XORs and

63

Coarse delay

Fine delay
T d; D-Latches chain
g

clk

G

Coarse delay control

Raw random bit

Figure 1.19: Delay tuning of open-loop delay chains based TRNG.

two ANDs. This block behaves as a flip-flop. When ctrl equals to 1 or 0 the
TERO structure enters a temporarily oscillatory state. It begins to oscillate at
each falling or rising edge of the ctrl signal. This is the transient mode. Then
the output settles down to a stable logic state. Figure 1.20b illustrates the
timing diagram of the TERO-based TRNG. The number of oscillation in the
oscillatory phase depends on the level of noise. The random behavior of the
TERO-based TRNG lies in the random number of oscillations in the transient
mode. The oscillatory phase is introduced periodically in accordance with
the timing diagram of Figure 1.20b. The number of oscillations are counted
in T-Flip-Flop (TFF) which stops counting when the oscillations stop. On
each rst falling edge, the final DFF samples the random value at the TFF
output such as illustrated in the timing diagram of Figure 1.20b. The TERO-
based TRNG was experienced in Spartan 3. A TERO cell occupies only one
CLB. Authors tested two TERO cells where the output is the XOR, of both
outputs. This combination improved the statistical tests results.

1.5.4 Metastable ring oscillator based TRNG

Vasyltsov et al. propose a TRNG which extract randomness from both jittery
ring oscillators and metastable states called the Meta-RO TRNG [VHKKO8].
The structure of the Meta-RO TRNG is illustrated by Figure 1.21. The
multiplexers are used to choose between two different phases. In the first
phase, the fed back multiplexor behaves like a bi—stable cell. In this phase,
the inverter loop output oscillates around a non-logic value that is neither a
zero nor a one. This instable outputs set the local signals in the global ring
oscillator. In the second phase, called the generation phase, the inverters are
connected in a loop to form a free running ring oscillator. The ring oscillator
begins to oscillate from this instable state. The ring oscillator output is
sampled with the delayed clock system to generate a random bit.

64

rTERO loop cell D Q % D Q Raw random
output

output—‘ \—

(b) TERO timing diagram

Figure 1.20: Transient effect ring oscillator based TRNG.

Hence, in the Meta-RO structure, the randomness comes from:
e the voltage value uncertainty at the output of the inverters.
o the phase uncertainty in the ring oscillator

The Meta-RO TRNG is US patented by Samsung [VHK12](US 8341201).
Simulated random sequences of Meta-RO TRNG targeting CMOS 65nm
ASIC technology pass only the statistical tests of procedure A of the AIS-31
with a throughput of 140 Mbps. Authors present also an investigation of
the Meta-RO TRNG on Xilinx FPGA which pass the FIPS 140-1 tests and
only the statistical tests of procedure A of the AIS-31. However, authors do
not present results of NIST battery of statistical tests. The FPGA design
presents a throughput of 35 Mbps after post-processing. The advantages of
the Meta-RO TRNG are its very low design complexity and its portability.

Even though several TRNGs have been introduced in each category, given
our current knowledge, no digital versions of TRNGs exploiting both phase
and voltage noises and robust against frequency injection attacks have been
prototyped in ASIC technology. In this Ph.D work, we propose to exploit
both voltage and phase noises to extract randomness while targeting both
FPGA and ASIC technologies.

65

% E % Raw random bit
. D Q

clk 1 N r Q

g Delay

Figure 1.21: Structure of the Meta-RO-TRNG.

1.6 Conclusion

In this chapter, we give the design guidelines of the TRNGs four main
blocks according to the AIS-31 standard for TRNGs certification. First, we
presented the main sources of noise in silicon technologies then we discuss the
methods of noise extraction and the digital elements used in order to sample
the noise and generate a random bit. Then, we present the specifications and
guidelines of TRNG online testing and post-processing. Besides, we introduce
a new TRNG classification criteria and present the state-of-the-art of on-
chip true randomness generation methods. The classification we propose
in this chapter helps us study and identify the source of noise exploited
in each method proposed in the literature. To evaluate a TRNG quality
of randomness and robustness, some common and standard methods exist.
In the next chapter, we present the existing methods namely stochastic
modeling, statistical standard tests and physical evaluation.

66

CHAPTER 2
Evaluation of True Random
Numbers Generators

2.1 Introduction

In order to evaluate the quality of TRNG randomness, standard statistical
tests are applied to the generated sequence. Evaluating a TRNG includes
not only the statistical evaluation of the quality of randomness but also
its self-testing ability and its robustness against working conditions and
malevolent perturbations. A TRNG should also be stochastically modeled to
allow its evaluation at design time. This chapter addresses respectively the
state-of-the-art of three important aspects towards TRNG certification: the
statistical evaluation, the stochastic modeling and the physical evaluation.
First, in Section 2.2, we present existing TRNGs evaluation standards in
terms of quality of randomness. Besides, we propose a thorough study of
a specific standard certification scheme for TRNGs which is the AIS-31
evaluation methodology. Second, we present in Section 2.3 the state-of-the-
art of stochastic modeling of TRNGs. Third, Section 2.4 deals with the
vulnerabilities of on-chip TRNGs and presents the state-of-the-art of TRNGs
physical attacks. Finally, in Section 2.5, we draw a comparison between the
existing on-chip TRNGs in terms of complexity, throughput and physical
vulnerabilities.

2.2 Statistical Evaluation

This section is undertaken in the regard of studying the AIS-31 standard.
We begin with presenting the statistical tools and the existing standards of
evaluation that allow to test the quality of randomness of a TRNG. Then
we propose to study the design and statistical evaluation requirements of
the AIS-31 standard. Through the thorough description of the AIS-31 eval-
uation methodology, we propose to study the feasibility and complexity of
embedding some of the AIS-31 statistical tests in hardware.

2.2.1 Overview of statistical evaluation standards

There are three practical and open source standard batteries of tests to
evaluate the quality of randomness namely the FIPS 140-1 [Sta94] tests,

67

the NIST (National Institute of Standards and Technology) battery of tests
SP800-22 [RSN'10] and finally the AIS-31 procedure A and B tests [KS11]
issued from the BSI, the German IT security certification authority. Two
other statistical tests batteries exist but are not standardized such as the
TESTO01 [LS07] and the DieHard [EBO7] batteries of tests. However, the
AIS-31 [KS11] and the NIST SP800-90B draft [NIS12] standards propose an
evaluation methodology dedicated to test Physical True Random number
Generators a part from the batteries of tests.

Truly generated random numbers have to fulfill these two properties:
First, they have to be uniformly distributed. It means that all the numbers
are equally likely to be observed. Second, the generated numbers must be
inpredictible in the way that we cannot predict the number to come from the
current generated number. Third, they have to be independent. Standard
statistical tests check if the random number generator under test respects
the above discussed requirements. A TRNG should fulfill the forward secrecy
i.e. if you know the generated sequence (Sp, Si,..,S,) you cannot predict
the sequence S,+1. The length of the sequence to be tested varies depending
on the battery of tests performed. Each of the standard tests batteries cited
above defines its own permitted intervals of test parameters for each test.

In the next section, we give a detailed overview of the AIS-31 evaluation
methodology. We propose to study the AIS-31 standard in particular for
two reasons. The first one is to study the statistical tests procedure to
help propose a lightweight hardware online test. Understanding the AIS-31
statistical requirements of a true random sequence would help us to propose
the appropriate post-processing to correct the TRNG eventual bias. The
second reason is related to the fact that the AIS-31 standard is a complete
evaluation methodology that helps setting the specifications of a robust
TRNG that fulfill the common criteria requirements. Then, we give a brief
state-of-the-art of TRNG hardware online tests.

2.2.2 AIS-31 standard certification
2.2.2.1 Statistical tools and deifinitions

e Uniform distribution
A random variable X is uniformly distributed if all the possible out-
comes of X, P, are equally likely to be observed. It intends that all the
outcomes have equal probabilities to happen such that p,[i] verifies
Equation (2.1).

pali] = % viell, Pl (2.1)

In the following, the TRNG output is our random variable X.

68

« Chi square test x?
The x? test is a statistical tool that does not directly answer this
question, however it will give a decision whether the distribution of the
random variable X is approximately the same as an ideal RNG with
a risk of mistaking o %. The x? test is commonly used to compare
observed data with data we would expect for an ideal system.

Y (vl — Veapl? 2
X2 _ ZO (obs[l]/ewp[i] H) (2.2)

where vyps[i] denotes the frequency of i observed at the output of
the TRNG. While vy, |i] represents the expected frequency of i for a
uniform distribution as given by Equation (2.3).

1

- (2.3)

Veap|i] =

The x? test defines two parameters:

— First, the degree of freedom denoted df. df is equal to the number
P of the possible states of a random variable X that are free to
vary minus one such as given in Equation (2.4).

df =P—1 (2.4)

— Secondly, the rejection level, . Depending on « and df, a table,
called the contingency table, is given by the x? test. The rejection
probability defines the level of rejection of the comparison between
the expected distribution and the observed one. In the AIS-31,
we confront a TRNG sequence with a sequence generated by an
ideal TRNG which generates equally distributed numbers. The
rejection probability, «, for an ideal RNG is 9.6 10~7 which is
given by the Central Limit Theorem. In the AIS-31 standard,
this value is approximated to 1075 according to §192 of [KS11].
The contingency table of the x? test is given in Table 5.13 in the
Appendix.

Figure 2.1 summarizes the TRNG standard structure towards AIS-31
certification scheme as it is described in the AIS-31 Evaluation Methodology
for True (Physical) Random Number Generators in §263 [KS11].

The TRNG system of Figure 2.1 represents the Target Of Evaluation
(TOE) of the AIS-31 standard. The AIS-31 standardisation scheme defines
two levels of certification of the TRNG TOE: PTG.1 and PTG.2. Table 2.1
gives a summary of the requirements of the AIS-31 levels of certifications.

69

Alarm for entropy failure

On-line tests

Raw output

Post-processing TRNG output

Entropy extraction

Entropy
Source

T6-T7-T8 tests T0..T5 tests
PTG.1
-~~~
PTG.2

including stochastic model

Figure 2.1: Standard structure of TRNGs as described in the AIS-31 standard
certification scheme.

Using AIS-31 statistical tests helps us find out how much the tested
sequence is close to a uniform distribution. Here, we present the statistical
tools and the background of AIS-31 statistical tests. This section present a
thorough study of the AIS-31 standard. The aim of describing each test is:

¢ to explain the error margins given in the standard,
e to study the complexity of each test and

e to propose a relevant lightweight online tests.

2.2.2.2 PTG.1 certification class

This class requires from the post-processed output of a TRNG to pass TO
to T5 statistical tests such as defined by AIS-31 standard according to §273
of [KS11]. It also requires from a TRNG to embed within the core a health
online tests. These hardware embedded tests should rise an alarm in case of
total failure of the source of entropy. The TRNG certified as PTG.1 class can
be used for challenge response protocols and as seeds for PRNGs [Sch99]. In
the PTG.1 certification class, the BSI allows to apply the statistical tests on
a post-processed sequence. In the following, we give a detailed description
of each statistical test. Lower and upper bound margins of errors allowed in
the AIS-31 standard statistical tests are given by AIS-31 documentation for
each statistical test however no explanations are given. In the following, we
provide mathematical evidence and explanations of the margins imposed by
the AIS-31 standard. Through this study, we propose a lightweight version
of the AIS-31 test suite to embed within the TRNG chip.

70

Certification Statistical AIS-31 Requirements
class test procedure

PTG.1 Test procedure A | - The TRNG shall embed online tests that detect a total

(TO-T5 tests) failure of the entropy source

- Online tests shall be applied at the TRNG post-processed output.
- The TRNG post-processed output shall pass the test procedure A.

PTG.2 Test procedure B | - The TRNG shall be compliant with the PTG.1 requirements
- Online tests shall be applied at the TRNG raw output.
(T6-T8 tests) - The TRNG raw output shall pass the test procedure B
- A stochastic model of the entropy source shall be provided.
PTG.3 No additional - PTG.2, additionally with cryptographic post-processing
tests - If failure of entropy source, generates the internal

random numbers with a post-processing algorithm

Table 2.1: AIS-31 certification classes of Physical True Random Number
Generators according to §262 of [KS11].

4+ TO0 Disjointness test:
This test consist basically in comparing N = 2'¢ words of n = 48 bits
pair by pair. To pass this test, the words wy, -+ , w6 € {0, 1}48 have
to be pairwise different. To perform this test on-chip we need a memory
of 600 kB.

+ T1 Monobit test: T1 is performed on N=20000 bits. This test is
equivalent to flipping a coin 20000 times and recording the frequency
of occurrences of heads and tails. If the coin is perfect, we should expect
10000 heads and 10000 tails. Let v[1] = Zé-v:l b; which corresponds to
the number of bits equal to "1’ in the sequence. We consider that this
test is successful if almost half of the generated bits are ones and the
other half are zeros. The sequence by, --- ,by passes T1 if n; lies in
5 —e 5 +e.

Let us determine e. Basically, T1 test consists in applying the x? test
for:
— df =1, the degree of freedom. As we consider the sequence bit by
bit, the possible outcomes, P, are ’0’ or ’1’,
— o = 1079, is the rejection level.
The test variable used to validate the T1 test is given in §192 of
[KS11] such that, Ty follows a x? distribution with df = 1. The x? test

variable is given in Equation (2.5) where v[0] is the observed number
of occurrences of '0” and v[1] is the observed number of occurrences of

71

X%lz Z

= A
2 2
2
<u[0] _ u[m;um) +(vp - u[O]guM)
- N
2
v[0] v[1] ? v[1] v[0] ?
(2 - 2) - (2 - 2)
- N
2
2
(v11) - v(0))
XT1 = (2.5)

And the condition to pass the T1 test is:

Xr1 < X2 (2.6)

So € should verify the Inequality (2.7)

—+—% < xa
2 2
2, 2
€ +e
— < xa
2
2
€
4-N < Xi
v N
le] < T'|Xa| (2.7)

X2 is equal to 23.92 for a rejection probability a = 107¢ according to
the x? contingency table of Table 5.13. Then from the Inequality (2.7)
and for N=20000, we obtain |e¢|] < 346 that specifies the permitted
intervals in T1 test [§ — €, & + €] = [9654, 10346].

72

+ T2 Poker test:

This test is called the poker test because it treats numbers grouped
together as a poker hand. The hands obtained are compared to what
is expected using the y? test. The testing method proceeds as the
following: We divide N bit stream into % consecutive m-bit words
denoted as w; for j € [1, %] Then we count and store the number of
occurrences of the 2™ possible values ¢ as represented in Figure 2.2. T2
is performed on N=20000 bits for m=4. Note that T2 yields to T1 for
m=1.

wy Wa Ws5000

Random Sequence [0100 11110 [0111 [-

5000 4-bits segments

==

16 cases 0000 | 0001 | 0010

,,,,, 1110 1111

\L 0 1 15
15 Degrees of Freedom

Figure 2.2: T2 Poker test representation

Let then denote v[i] as the frequency of occurrences of the value i,
where 0 < 7 < 15. The function v is defined as:

v @ [0,2"—1] — [1, %]
i — v[i] = card{j : w; = i}
where wj =8 « byj_g+4 - baj_o+2 - baj_1 + byj

for j = 1,..,%

To compute the test variable, X2T27 we need the following parameters:

— df is the degree of freedom and corresponds to 2" — 1.

— The frequency expected, vegp[i], of each 4-uplet is given by
N Vi o€ [0,15].

m.2m

— The sum of all the observed frequencies, Z?:o_l v|i], is equal to
N

m"°

Equation (2.8) comes from the generic expression of the x? test given
in Equation (2.2).

73

X%?:Z

N
=0 2%
_ ”@VT”(EZ[ZP 2 <2§um> o 22: (o)
By = ”’ﬁniu—ﬁ (2.8)

For N = 20000, m = 4 and df = 15, such as set in the AIS-31 standard,
we obtain Equation (2.9).

Xty = %. 3 v[i]? — 5000 (2.9)
i=0
The bit sequence by, - - - , bagooo passes the poker test if the test variable,
X%, verifies the Inequality (2.10).
X72 < X2 (2.10)

So € should verify the Inequality (2.11)

1=0 om
2m—1 c 2
2m N N)
=0 m
2m
mi, € < X2
N
le] < mb@’ (2.11)

74

X2 for df = 2* —1 = 15 is equal to 56.49 for a rejection probabil-

ity a = 107 according to the x? contingency table of Table 5.13 in

the Appendix. Hence, xo, = v/56.49 = 7.51. Then from the Inequal-

ity (2.11) and for N=20000 and m=4, we obtain |e| < 36 that specifies
N N

the permitted intervals in T2 test [gx — €, o5 + €] = [276, 348].

We propose to embed the T2 test as an online test. For example, we
can apply the test only on N = 1024 and m = 4, then we need a 7-bit
adder.

+ T3 Runs test:

A run is a sequence of identical bits (zeros or ones). T3 is performed
on a sequence of N = 20000 bits. It counts the frequencies v(N,r) of
runs of ones of various lengths r € [1, 6] and checks for deviations from
expected values as represented in the table 2.2. For example, for r=1,
we count the number of occurrences of the word 010 and the number
of occurrences of 101. For r= 2, we count the number of occurrencses
of the word 0110 and the number of occurrences of 1001. Figure 2.3
illustrates an example of sequence of N=32 bits.

1-runs of 2-bit length

N

— —
Lil1fofolulafola o 1 oTolaToJola 1 a o s o a1 o o 1]oTola]1 o 1]

ﬁ

0-runs of 2-bit length

N=32, r=2| Word Occurrences
1001
0-run 15(32,2) =5
— T |n(32,2)=3
1-run 0110

Figure 2.3: T3 runs test example for N=32 and r=2.

The test value xr3(r) is computed Vr € [1,6] (2.12) where v(N,r)
expected equals to 27‘% Vr € [1,6] for an ideal RNG. The observed
frequency is denoted (N, 7)ops-

v N,T‘ obs—V N,T' ex 2
X2T3(T) _)Vme)izp) »)

_ V(N,m)obs—v(N,r)

) =TS

V(Nar)o S_TL
xra(r) =R (2.12)
or+2

The test condition to pass T3 Vr € [1, 6] is given in 2.13.

75

X73(T) <x2

le(r)] < [Xal-\/57 (2.13)

By applying the Inequality (2.13) for N=20000 bits and for a@ = 10~
and 7 =1, [e(1)] < /2500 * 23.92 = 244. Then, T3 is considered suc-
cessful if for each run length r if the frequency of occurrences (20000, r)
lies in the corresponding permitted intervals of Table 2.2.

Run length Boundary values Permitted interval

for x? test

' X (e — elr). g% + <(r)]
1 23.92 [2256,2744]

2 30.66 [1055,1445]

3 35.88 [502,748]

4 40.52 [233,402]

5 44.81 [90,223]

6 48.86 [17,139]

Table 2.2: Table of the permitted intervals in T3 Runs test for o = 1076 and
N = 20000 bits.

If for any r € [1,6] the observed frequency of occurrences (20000,)
lies outside the permitted intervals of Table 2.2, it means that the
number of runs occurred in the tested sequence is far from what is
accepted.

+ T4 Long run test:
The long run test is an extension of the runs test T3. T4 checks whether
there is an uninterrupted sequence of identical bits (i.e., either all zeroes
or all ones). The test is successful if there is no long run of length
LR = 34 or longer in a sequence of 20000 bits.

The 4 cited above tests, T1, T2, T3 and T4, are nearly the same tests
of FIPS 140-1 standard [Sta94] but with narrower permitted intervals
as reported in Table 2.3.

+ T5 auto-correlation test:
T5 is performed on a sequence of N=10000 bits. This test looks for

76

Permitted intervals FIPS 140-1 AIS-31
Tests

Frequency test (T1) [9726,10274] ‘ [9655,10345]

Poker test (T2) 2.16,46,17] | [1.03,57.4]

Run test (T3)

| [
|
| [2343,2657) | [2326,2674]
| |

Long run test (T4) 26 bits 34 bits

Table 2.3: Table of comparison between FIPS 140-1 tests and AIS-31 tests

correlation between s and a 7-shifted version of it.

5000
for T €{1,..,5000}, Z, = > (bi ® biyr) (2.14)
i=1

Similarly to the test T1 and T2, we use the x? test by computing the

following test variable of (2.15) for each 7 € [1, & :

ZT _ (N—7)

xrs(T) = T_f (2.15)
2

The generic condition applied in this test is the Inequality (2.16).

Xo

>0
N

N
Ny
[N\

IN
<
e

Xa (2.16)

By applying the Inequality (2.16) for N=20000 bits and for a = 1075,
le] < /2500 % 23.92 = 174. Then, the tested sequence passes the test
T5 if the test variable Z, fulfills 2.17.

vr € {1,...,5000}, 2326 < Z, < 2674 (2.17)

In the nex sub-section, we present the second AIS-31 class of certification,
PTG.2.

7

2.2.2.3 PTG.2 certification class

The PTG.2 class of certification requires from the TOE TRNG, first, to
be compliant with the class PTG.1 then to pass also Tests T6, T7 and
T8 not only, but require from the TRNG designer to provide a stochastic
model of the TRNG. PTG.2 certified TRNGs can be used in more sensitive
cryptographic protocol:

e Session keys generation for symmetric encryption algorithms
o Bits padding

e Seed generation which can be used for higher classes of certification of
PRNGs as specified in [Sch99].

The PTG.2 class includes the first class and adds more complex tests
and requirements about online tests and entropy source modeling. Unlike
PTG.1 tests, PTG.2 tests must be applied on the raw output of the TRNG
without any post-processing.

+ Test T6: Multinomial Distributions Test
T6 test is divided in two sub-tests, T6a and T6b. Both tests are per-
formed on a sequence of N=100000 bits.

— T6a
This test performs the same test procedure as in T1 test (i.e.
records the frequency of occurrences of ’1’) although on 100000
bits this time. T6a is successful if § = S 199900p; respects the
condition (2.18).

S
— —0.5] < 0.025 2.18
N

— T6b
The tested sequence is split by pairs {wa;41, we;+2}. Then we get
% = 50000 pairs which are sub-classified in 2 groups according to
the value of the first bit wo;1. If wo;r1 = 0, the i*" pair belongs
to the group Gy else wa;10 belongs to G1. Let us note Sy as the
cardinal of the group G and S as the cardinal of the group Gj.

The TRNG passes T6b if condition (2.19) is fulfilled.
So — S1

| | < 0.02 (2.19)

+ Test T7: Test for homogeneity

— T7a
In T7a, the tested sequence of N = 100000 bits is split into

78

3-bit words designated as {ws;+1, w32, w3i+3}. Then, they are
sub-classified in 4 groups according to the value of the first pair
{w3i+1,w3i+2}. If {w3i+1,w3i+2} = OO, the ith word belongs to
the group Goo. If {ws; 1, wsi12} = 01, the i*" word belongs to the
group Goi. If {ws;y1, w310} = 10, the i*" word belongs to the
group Gio. If {ws;41, w310} = 11, the i'" word belongs to the
group G11. The frequency of occurrences of the bit "1’ respectively
'0’ in the sub pairs of groups Goo, Go1, G10, G11 is listed producing
V0, Vi1, Vipandi?; respectively vy, v, vy and v{;. The TRNG
passes T7a if conditions (2.20) and (2.21) are fulfilled.

0 012 112
(VOS VO(}) +<V°f VO}) <15.13 (2.20)
Yoo T Vo1 Voo t Vo1

0 012 1142
(Vlg ”1(}) +(”1f Vlll) <15.13 (2.21)
Vio t+ V11 Vip t+ 11

— T7b

Unlike T7a test T7b splits the tested sequence of N = 100000
bits in words of 4 bits {w4; 11, Wait2, Wai+3, Waita . Words are then
classified along 8 (= 23) groups : Gooo, Goo, -, G111 according to
the value of the 3 first bits {wyj41, Wait2, wai13}. Conditions of
validation of T7b are the same as in T7a. The TRNG passes T7b
if condition (2.22) is fulfilled for all the pairs of Groups Gy, Giy+1
where w € {000,010, 100, 110}.

0 .0 2 11 32
(V% Vlg“) (V“; V“ﬁl) <15.13 (2.22)
Vw—’_Verl Vw+yw+1

+ Test T8 : Entropy test
T8 applies basically the test procedure of the enhanced version of the
Maurer’s Universal Test in accordance with [Cor99]. Considering a
sequence of length N, test T8 splits the sequence in Q+K disjoint L-bit
words {w1, .., wg+Kk }. An specifies the minimal distance of a bit from
its predecessor with the same value. Ay is defined in Equation (2.23).
For example, for the sequence "1000100001", Aqg is equal to 5.

{ N if card{i:wy=wn_i} =0
An = . ‘
min { i:wy =wy_;} else

(2.23)

This test allows to estimate the global entropy of the generated se-
quence. In fact, [Cor99] presents a variant of the Maurer’s Universal
Test. In [Cor99], authors demonstrated that the test function, Ty of
Equation (2.25), is asymptotically equal to the Shanon’s entropy of the

79

tested sequence. In AIS-31 standard the entropy test is applied for L =
8, Q = 2560 and K = 256000. The maximum entropy H,,q. for equally
distributed probabilities p; = 2% for i € [1, L] is equal to 8 according
to Equation (2.24).

2L 1

H=— " pilog(p) (2.24)
=0

A source of entropy is ideal if the random sequence it generates provides
full entropy i.e. at least (1 — €).L bits of entropy, where 0 < ¢ < 2764
[NIS12]. The test variable, tg, of Equation (2.25) has to be approxi-
mately equal to Hyq, = L.

1 Qf 1 Zi 1
Ty = — - g(A,) where g(i) = - (2.25)
K ot In(2) (= k

The test T8 is considered successful if the test variable tg is greater
than 7,976. When a TRNG passes T8, this would tell that the entropy
source is good enough that the generated output can be safely used to
seed a block cipher of an 8 bits key length.

Table 2.4 summarizes the minimum length required of the sequence to
be tested for each AIS-31 test.

ATS-31 tests ‘ Length in bits

TO | 2165 48 = 3145728
T1-T5 | 257 % 20000 = 5140000
T6a-T6b-T7a-T7b | 100000

T8 | 7200000

Table 2.4: Minimum length required for each AIS-31 test

Aside from the online tests, PTG.2 class includes also the mathematical
model of the physical source which must be provided to the evaluator for two
main objectives: First, identify the physical parameters which impact the
entropy of the source of noise. The lower bound of the entropy would then
help verifying the expected behavior of the TRNG. The stochastic model
of the TRNG helps set the specifications of the online tests. Second, the
stochastic model would help evaluating the quality of the TRNG output at
design time. The evaluator would be able then to test the robustness of the
TOE against malevolent or environmental perturbations. It is also important
to note that the applicant should perform statistical tests of both PTG.1 (T0

80

to TH) and PTG.2 (T6 to T8) classes respectively on the post-processed and
the raw output of the TRNG for all relevant environmental conditions. These
added requirements have been recently published by the BSI in the form of a
note for the TRNG designer application towards AIS-31 evaluation [HG13].

2.2.3 Online tests

After the specifications of the AIS-31 tests, we present the state-of-the-art
of the TRNG online tests. We propose to describe the hardware online
tests proposed by Intel in [HKM12]. Intel proposes a simple lightweight HW
online tests for the novel Ivy bridge TRNG. It simply counts the number
of occurrences of certain bit pattern in a sequence of 256 bits. The test
is validated if the number of occurrences lies within the allowed bounds
presented in Table 2.5.

‘ Bit pattern ‘ Bounds ‘
1	[109,165]
01	[46,84]
010	[858
101	[858]
o110	[2,35]
1001	[2,35]

Table 2.5: Online tests bounds for 256-bit sequences.

According to [Ham12], the CRI report of Intel’s evaluation, the bounds
were determined empirically by Intel. However, they are close to what an ideal
random generator would generate. In fact, the probability that a random
sample from a uniform distribution fails these online tests is about 1%.

Santoro et al. recently proposed an online embedded version of the FIPS
140-1 tests (which are the same as T1-T4 of AIS-31) in [SSR09] using only
482 LUTs of a Xilinx Virtex 5 FPGA. Since the FIPS statistical tests are
not very much demanding in terms of resources compared to the AIS-31
tests, they propose to embed a hardware implementation of the FIPS tests.
We propose to reduce the length of the tested sequence. As a consequence
the TRNG start-up time is considerably reduced. Hence, as a simple TRNG
start-up test, we propose to apply a light hardware T1 and T3 tests at the
output of the TRNG where N equals to 1024. So, a 10 bit adder is needed.
According to Equation (2.7), for N=1024 and x,, = 23.92, ep; would be equal
to 77. According to Equation (2.13), for N=1024 and x, = 23.92 and r=1,
ers(1) would be equal to 55. In this HW T3 test, we need to add on-the-

81

Tests Resources

T1 loga N bits adder
2 * loga N bits comparators
T2 loga(2) bits adder
2 * logz(%) bits comparators
loga(E) x loga () bits multiplier
T3 12 *loga N bits adder
24 * loga N bits comparators

Table 2.6: Complexity of the hardware online AIS-31 tests for a generic
sequence length.

fly the number of ones and the number of 1-run and O-run of six different
lengths. We note that we keep the same rejection probability o = 1076 as in
the AIS-31 standard. Hence, if no alarm is triggered by the HW T1 and T3
tests, we conclude that the generated sequence is considered approximately
close to an ideal RNG for a significance level of 1076,

Apart from statistical tests evaluation, the TRNG designer should develop
a stochastic model to evaluate the TRNG at design time. In the next section,
we present examples of stochastic models of TRNGs.

2.3 TRNGs Stochastic Modeling

We need a model to estimate the minimum entropy provided by the output
of the TRNG. A stochastic model of the TRNG aimed at its evaluation for
Common Criteria certification should be provided according to §62 of [KS11].
In such a model, the designer has to identify the design parameters that
impact the quality of randomness at the output of the TRNG. The TRNG
designer can then tune those model parameters to enhance the quality of the
TRNG. Stochastic models of a PLL-based TRNG, a noisy diodes physical
TRNG and a floating-gate-based TRNG were introduced respectively in
[cDFF06], [KS08] and [XHAO0S]. Killmann and Schindler published in [KS08]
a mathematical formulation of the entropy lower bound of the diodes based
TRNG. The stochastic model was then confronted to experimental results.

Wold and Petrovic [WP11] presented also a behavioral model of a RO-
based TRNG. They studied the probability of hitting the jittery region while
varying the TRNG design parameters namely the RO number, the sampling
frequency and the number of inverters used in the ROs. The proposed model
was simulated in Matlab. Modeling results has shown that:

 the higher the standard deviation of the ring oscillator’s jitter o; is,

82

higher the entropy of the TRNG output is.

e the lower the sampling frequency is, higher the entropy of the TRNG
output is.

However, this behavioral model has never been confronted to any experimen-
tal result of the RO-based TRNG design implemented in an Altera Cyclone
ITI FPGA [WTO08]. In addition, the results of this behavioral model lacks a
mathematical formulation of the entropy lower bound of the TRNG output.

Simka et al. also presented a stochastic model of the PLL-based TRNG
[cDFF06] which we described in Section 1.3.4. The latter is an enhancement
of the PLL-based TRNG design introduced by Fischer et al. in [FDcB04].
In [¢cDFF06], authors established the probability of the TRNG output as a
function of the division factor of the PLL and the jitter standard deviation.
The relevance of the mathematical formulation of the TRNG entropy has
been experimentally verified using random sequences generated from an
Altera Stratix FPGA device.

Several other stochastic models of TRNGs have been studies namely
in [SMS07, KS08, XHA08, HTBF14]. Despite the fact that several digital
TRNGs exploiting metastability have been proposed in the recent years
[DGHO07, DGH09, MKD11, HI12], a stochastic model of such designs lacks in
the literature. In fact, the issue of stochastic modeling is, to our best knowl-
edge, not yet treated by the scientific community with regard to randomness
generation using metastability. Once the stochastic modeling process and
statistical tests evaluation is done, we need to evaluate a TRNG in terms of
physical robustness. In the next section, we present the state-of-the-art of
physical vulnerabilities and attacks on TRNGs.

2.4 TRNGs Attacks and Vulnerabilities

2.4.1 TRNGs vulnerabilities identification

Crypto-systems are vulnerable if the key generation process is threatened.
The above cited statistical tests assure the unpredictability of the sequence
making the TRNG robust against a mathematical attack. However, the imple-
mentation of the TRNG itself can make it vulnerable against environmental
or malevolent perturbations such as cryptanalysis or invasive attacks. Fig-
ure 2.4 summarizes the vulnerable points of a TRNG. We categorize TRNGs
potential vulnerabilities in two main attacks types:

o Passive attacks where the electromagnetic (EM) emanation or the
power consumption can provide the attacker information about the
TRNG such that operating frequency [BBAF13]. This type of threat
is represented by an external-oriented arrow. In Figure 2.4, attacks (3)
and (8) illustrates this category of attacks.

83

o Vulnerability to active attacks which can disturb the TRNG behav-
ior towards fault creation or total inhibition of the source of entropy.
This type of attacks are represented by bottom-oriented arrows. This
category of attacks can be sub-categorized in two applicable attack
method:

— Non-invasive using a permanent or transient influence of the op-
erating conditions such as:

* Under-power the circuit core or signal superimposing on power
supply voltage [KW10, Soul2, SCDEV13, Joil3].

x Over-heat the circuit [SCDCT11, KW10].

* Over-clock the TRNG.

x Apply clock glitches.

In Figure 2.4, label (1) and (2) illustrates this category of attacks.

— Invasive by physical manipulation of the TRNG circuitry such
as forcing the TRNG output or the alarm hardware online test
output to a zero by means of laser injection. In Figure 2.4, labels
(4), (5), (6) and (7) illustrates this category of attacks. To our best
knowledge, these kind of attacks have never been experienced on a
TRNG. Another physical manipulation is the frequency injection
on the power pad of the TRNG. In Figure 2.4, attack label (2)
illustrates this category of attack. There have been two publication
of this kind of attacks on RO-based TRNGs.

Table 2.7 summarizes the potential vulnerabilities of a TRNG.

‘ Vulnerability label ‘ Attack type ‘ Threat ‘ Reference ‘
‘ (1),(2) ‘ Environmental perturbations ‘ Bias TRNG output ‘ [SCDC*11, KW10, SSR09] ‘
‘ (3) ‘ DFA ‘ Operating frequency detection ‘ [BBAF13, Soul2] ‘
‘ (4),(7) ‘ FIA ‘ Force or bias TRNG output ‘ [SCDEV13] ‘
‘ (5) ‘ EMIA ‘ Bypass online tests ‘ [MM09, BBAT12] ‘
‘ (6) ‘ FIA ‘ Online tests alarm stuck to 0 ‘ - ‘
‘ (8) ‘ SPA ‘ Detect TRNG output by EM or power analysis ‘ - ‘

Table 2.7: Summary of types of attacks on TRNGs.

2.4.2 Side channel threat analysis on TRNGs

Before citing and describing example of existing attacks on TRNGs, let us first
give an overview of physical threats towards any crypto-system in general. In
cryptography, an attack is by definition the recovery of a secret data, which is
very often the key or parts of the key used for message encryption, by means
of physical or mathematical tools or the combination of both. Recent physical
attacks have been introduced, namely the Kocher’s cryptanalysis known as

84

5
(4) R (6)

/4
Physical Entropy
source of extractor On-line tests]m
randomness

Raw output

TRNG output
Post-processing

~ -7 => Vulnerability to active non-invasive attack (1,2)

®) (7)

~<—=— Vulnerability to passive attack (3,8)

—x> Vulnerability to active invasive attack (4,5,6,7)

Figure 2.4: TRNGs vulnerabilities at different TRNG blocks

Simple Power Analysis (SPA) [KJJ99]. SPA exploits the power consumption
of the system to reveal secret information as the key encryption or the
time of execution. Other well known measurement techniques and statistical
methods exists such as Differential Power Analysis (DPA), Electromagnetic
emanation attack (EMA) [GMOO1], Timing attacks [KJJ96] and Differential
Frequency Analysis (DFA) [BBAF13]. The book [MOPO7] gives a detailed
overview of all the existing methods that allow to reveal sensitive data from
a smart cards. These techniques allow to retrieve the secret key during
its storage operations or encryption and decryption. All these attacks are
known as Side Channel Attacks (SCA). By definition, a crypto-system is
secure against SCA if all its sensitive data is not correlated to its time of
execution or to its power consumption or its electromagnetic emanation. So,
to design a secure TRNG, we should pay attention to its power consumption.
The less the TRNG consumes, the less it leaks information, the more it is
likely to be robust against SPA.

A different vulnerability may exist in case of secured implementation. A
crypto-system may embed a counter-measure that uses a random number
to mask the secret key [SPQO05] or introduce random delays to randomize
the position of sensitive operation against SCA [CK10]. SCA protection
by masking aims to decorrelate the power consumption from the secret
information. In this kind of counter-measure, the random number is called
the mask. In this case, the system security is threatened if the mask is
biased [OMHT06, CGPROS].

85

Up till now and given our current knowledge, the only SCA attack ex-
perienced on TRNGs is the DFA presented in [BBAF13]. The DFA attack
aims to extract the operating frequencies of the ring oscillators. Besides the
electromagnetic (EM) analysis can identify the ring oscillators location on
the FPGA. To extract these side channel information, authors perform what
we call an EM cartography of the FPGA chip. To do so, the EM emanations
of the device under operation is acquired point by point. This means that the
EM emanations is acquired for different X, Y and Z positions of the magnetic
probe. Hence, authors place the FPGA board which embed the RO-TRNG
on a XYZ table with a shift precision of 1 pm. Figure 2.5 illustrates the
setup environment used in order to perform the DFA attack on an FPGA
RO-based TRNG.

ACQUISITION CHAIN

[_; Oscilloscope
Magnetic
Probs Low Noise Amplifier

Power Supply
_— —
— :

. 3 2
L
<& FPGA
id Configuration
" I
1 Position X
== PositionY (d
Position Z

DEVICE g
UNDER TEST CONFIGURATION COMPUTER

XYZ Table

Figure 2.5: Attack setup of differential frequency analysis on multiple ring
oscillator based TRNG.

There have been more publications on TRNG active attacks. Some stud-
ies have been done concerning active attacks on TRNG which consist in
deliberate perturbations to bias the TRNG output. The most known are
the Fault Injection Attack (FIA) [BBKN12] and Electromagnetic Injection
Attack (EMIA) [PTL*11]. As opposed to the SCA attacks, these attacks aim
to inhibit the TRNG source of entropy. This kind of attack is more threaten-
ing than an SCA since it can disable the random number generation process.
In the following, we present in Sub-section 2.4.3.1 and Sub-section 2.4.3.2
respectively the harmonic injection attack and the laser injection attack on
TRNGs.

86

2.4.3 Active attacks on RO-based TRNGs
2.4.3.1 Harmonic injection attack on RO-based TRNGs

The so-called frequency injection attack was publised in [MMO09]. The prin-
ciple of this attack is to cause the mutual coupling of the ring oscillators
aiming at reducing the ring oscillators jitter. To understand the principle of
this attack, let us first present the theory behind this attack then a simple
circuit to test the effectiveness of the attack [MMO09]. Figure 2.6 illustrates
the principle of harmonic injection attack on a simple two-ring-oscillator
circuit.

Vbp

R

f mjé': Tvmj

7

Figure 2.6: Harmonic injection attack on a simple two-ring-oscillator circuit.

This attack was performed on an EMV (European Mastercard Visa)
embedding a Ro-based TRNG with relatively prime RO lengths. The fre-
quency injection attack on multiple RO-based TRNG was performed in two
steps [MMO9]: First, the attacker need to deduce the random generator oper-
ating frequency. Authors activate the TRNG by sending the ISO 7816 GET
CHALLENGE command to the smart card. Then they apply analyze the
spectrum of the EM emanation of the smart card under operation first when
the TRNG is off then when the TRNG is running by means of spectrum
analyser such as illustrated in Figure 2.7. This frequency analysis is described
in [BBAF13].

They identify a frequency corresponding to the TRNG operation mode.
After that, they inject a sine signal, whose frequency is the one previously
identified, on the power supply pad feeding the ring oscillators. Figure 2.8
presents a description of the setup used to perform the frequency injection
attack.

NIST statistical tests were applied on sequences acquired from the EMV
card under attack. This attack caused the failure of the statistical tests.
According to [MMO09], Table 2.8 gives the NIST statistical tests results of

87

EMV Smart Card

EM
. emanation

=,
Z

of

)

Spectrum analyser

Figure 2.7: Electric field characterisation of the EMV smart card embedding
a multiple ring oscillator based TRNG.

pPC

EMV reader/ g

VDI
Lo
|—

1 E%lon 39Q 100nF [HIOQ

inject
J T GND

Figure 2.8: Attack setup of multiple ring oscillator based TRNG by means
of frequency injection.

a sequence generated under attack versus a sequence generated before the
frequency injection attack.

NIST ‘ % of success
Without frequency injection | 99%
With frequency injection ‘ 15%

Table 2.8: NIST statistical tests result of a multiple ring oscillator based
TRNG under attack

To counter-act the frequency injection attack, authors of [MMO09] pro-
pose some solutions. They suggest for example filtering power pad injected
frequencies or smoothing the power supply to prevent from signal injection.
However, the same attack principle can be performed by contactless EM
injection called EMIA attack. It has been introduced in [BBA*12]. Similarly
to [MMO09], Bayon et al.[BBAT12] succeeded in controlling the bias of the
RO-based TRNG implemented in FPGA by electromagnetic injection. The

88

latter cited attack can thwart any chip filtering on the power pad since it is
contactless. This type of attack can even bypass the TRNG online tests when
they are performed periodically. We classify the above cited attacks as attack
label (2) of Figure 2.4. EMIA attacks may also be classified as attack labels
(4),(5),(6) and (7) depending on the strength of the EM field injected. This
type of attacks reduced the scope of use of RO-based TRNGs as they repre-
sent a threat on the security of smart cards embedding such TRNGs [MMO09)].
Since then, new TRNG architectures namely using metastable DFFs and
latches [DGHO7, MKD11, HI12] have risen a great interest thanks to their
resiliency against frequency injection attack.

2.4.3.2 Laser injection attacks on TRNGs

The laser FIA attack has been experienced in [SCDEV13]. It is harmful to the
TRNG raw, the post-processed output and the alarm signal. It characterizes
respectively the threats (4), (6) and (7) such as illustrated in Figure 2.4. By
means of a laser spot injection, an attacker may set the online tests output
alarm to a logic 1. This would be very harmful to the TRNG since it would not
be aware anymore in case of source of entropy failure. To our best knowledge,
no such attacks have been experienced on TRNGs. However in [SCDEV13],
Soucarros et al. experienced a laser injection on a VIA processor embedding a
TRNG. Since the vendor does not provide any information about the TRNG
design nor the TRNG position inside the CPU chip, Soucarros et al. propose
to perform a cartography of the chip by applying different laser shots all
over the chip using a XY table. Figure 2.9 illustrates the attack setup of a
fault injection perturbation of a TRNG using a laser source.

Power Supply LASER
XY table Focalization
TRNG

Figure 2.9: Attack setup of the TRNG’s entropy perturbation by means of
laser injection.

A computer drives the power supply voltage of the laser diode to perform
several laser shots. It also controls an XY table to move the laser beam

89

over the component step by step. This allows to impact the chip to different
positions and generate a cartography from the obtained results. Finally, the
PC communicates with the component to start the generation of random
numbers, acquire the TRNG sequences and reset the component before each
new laser shot. Fortunately, detection of such invasive attacks is possible
by embedding on-chip sensors [SBGD11, All08] to detect any malevolent
perturbation by triggering an alarm. Another protection would be shielding
the TRNG circuit to make it immune against EMA. The shield is a top metal
wired pattern that is drawn on top of the circuit layout to make complex
invasive attacks on the circuit front size. It is a protection against probing
that attempts to modify the value of a signal. In case of external probing,
the shield alarm is triggered.

2.5 Comparison between Existing TRNGs

To synthesize and conclude the state-of-the-art in terms of design conducted
in Chapter 1 and the state-of-the-art in terms of TRNG evaluation of this
chapter, we propose a summary in Table 2.9. It illustrates the classification
of the existing full digital TRNGs in terms of throughput, design complexity
and resiliency against physical attacks.

TRNG name[References| Noise | Technology | Complexity | Vulnerabilities | Throughput | Stochastic model
source in LUT to EMIA (Mbps)
BRAM-TRNG [GCS09] A Virtex 4 1294 LUT - 25
16 BRAM
PLL-TRNG [FDcC04] H Stratix - X 2 X
Cyclone 3

Two-RO-TRNG [KG04] H X X 0.5
FIGARO-TRNG [DGO07] H Spartan 3 - x 12.5 -
Multiple-RO-TRNG [SMS07] H Virtex 2 1000 LUT X 80 X
Open-Loop-TRNG [DGHO07] H-V Cyclone 2 - 100
Multiple-RO-TRNG [WTO08] H 83 LUT X 100

TERO-TRNG [VD10] H-V Spartan 3 - - 0.25 x

Actel Fusion 8§ LUT X

Meta-TRNG [MKD11, HI12] \ Virtex 5 256 LUT - 12.5

Meta-RO [VHK12] H-V Virtex 2 X X 140 -
STR-TRNG [CFAF13] H Virtex 5 - X 16 X

Table 2.9: Comparison between existing TRNGs implemented in FPGAs

In Table 2.9, in the vulnerabilities column, a - means that the TRNG
is inherently robust against the EMIA attack. The bold x means that an
EMIA attack has been experienced and published. However the x means
that this TRNG is potentially vulnerable to the EMIA attack since it does
exploit more than two oscillating signals. In the stochastic model column, a -
means that the TRNG is not provided with a stochastic model. However the
x means that authors provide a stochastic model and validated it through
experiments. In this work, we target the design of a TRNG that exploits
both jitter and voltage noises and would be:

90

o resilient against harmonic injection and EMIA attacks,
o testable at design time through a stochastic model,

e robust against environmental perturbations,

o feasible in both FPGA and ASIC technologies,

e mnot very demanding in terms of resources and

o features throughputs in the order of the state-of-the-art.

2.6 Conclusion

This chapter deals with three important steps towards the certification of
a TRNG: the statistical evaluation, the stochastic modeling and finally the
physical vulnerabilities issue. We present the state-of-the-art of TRNGs
evaluation methods and propose a thorough study of the AIS-31 standard.
An overview of the existing stochastic models of TRNGs is also given. Then,
we studied the potential vulnerabilities and discussed the state-of-the-art of
physical attacks on TRNGs. It helped us to identify the evaluator guidelines
towards the test and validation of our TRNG. The conducted study in
this chapter allows us to set the TRNG design specifications. Therefore,
in Chapter 3, we propose a novel digital TRNG design and its stochastic
model. In fact, our goal is to design a TRNG which is feasible in FPGA and
ASIC, testable at design time through a stochastic model and robust against
environmental perturbations and harmonic injection attacks.

91

CHAPTER 3

Principle and Model of the

Delay Chains based True
Random Number Generator

3.1 Introduction

As the quality of randomness is a crucial matter for cryptographic applica-
tions, the source of entropy used to generate random bits should be studied.
In fact, to make the TRNG testable at design time the designer should
identify the design parameters that impacts the quality of randomness and
quantify the entropy at the TRNG output. This chapter is undertaken with
regards to providing a stochastic model of the delay chains based TRNG.
We describe how to take advantage of the combination of phase noise and
voltage noise in CMOS technology to extract randomness. The primary ob-
jectives of this chapter is first to discuss the source of noise used and how
to sample this noise to generate a random bit. The second objective is to
model this behavior and establish an estimation of the probability that the
TRNG output is equal to one depending on the TRNG design parameters
and the noise source. This chapter is divided into three sections. Section 3.2
presents the principle of entropy extraction in the delay chains based TRNG.
Then, in Section 3.3 we present the generic architecture of the delay chains
based TRNG. Finally, Section 3.4 addresses the stochastic modeling of a
delay chains based TRNG.

3.2 Principle and Source of Randomness of the
Delay Chains based TRNG

3.2.1 Source of randomness

The principle behind the delay chains based TRNG is to take advantage of
the uncertainty when sampling a signal around a metastable region. This
delay uncertainty is basically caused by the omnipresent noise in a CMOS
integrated circuit. The basic idea of the existing TRNGs is to exploit the
superimposition of different types of noise intrinsic to the silicon to generate
random output. We propose to force D-latches to operate in the metastable

93

region to take advantages of two exploitable phenomena in the delay chains
based TRNG. Assume that the data switches in the metastable forbidden
window. This means that the bi-stable is forced to operate in the metastable
mode. In this metastable region, the bi-stable cell’s outcome is unpredictable.
This may be provoked either by:

e The delay uncertainty around the sampling time of data in bi-stables
cells. In fact, if the data signal, D, switches before the #sety, limit, the
bi-stable output, Q, would resolve to Vpp else to 0V. This uncertain
moment of data switching state is caused by the clock jitter.

e Or, it can be caused by the voltage fluctuations around Vg—D. In fact,
the resolving state of the bi-stable depends on the offset from VLQD. If
this offset is positive Q output would resolve to Vpp. If it is negative
Q output would resolve to OV.

We denote the timing uncertainty characterized by the jitter as ot and the
voltage offset uncertainty by dv such as represented in Figure 3.1.

Data(V)

VD D

oV

) _ . . 1%
Figure 3.1: Sampling uncertainty around -52

3.2.2 Metastability principle and characterization

In nowadays sub-micron silicon technologies, IC designers work on how to
avoid the hazardous phenomenon of metastability by improving synchro-
nizers and predicting the failure of bi-stable cells [Ginl1, Fol96, CSCT10].
In the case of our TRNG design, we want to exploit this phenomenon to
generate true random bits. More precisely, we study the behavior of latches
in case of timing violation and exploit the ambient noise to generate unpre-
dictable bits. The output of such bi-stables produces an unpredictable state
if the data is forced to change near the metastability window. The very first
implementation idea is to sample the clock by the clock itself, this way the

94

data switches in the forbidden interval [tsetup, thord)Where toerup and thoq are
defined by the following conditions:

e D must be stable for a duration of at least ¢4, before the active edge
of clock.

e D must remain stable for at least t5,;4 after the clock edge.

Failure to meet these timing conditions may cause an awkward operation
mode of the latch and make the latch fall in a metastable state. The metastable
state, MSS, is a state where the output voltage is neither a valid low nor a
high logic state such as depicted in the transfer characteristic of Figure 3.2a.
In this state, the voltage values of both the input and the output of the static
storage element, have the same value Vjs99 =~ VDTD.

Vo - W
— Vi
Vi, L. MSS: MetaStable State
ad [-=-22070
X C C
v _Vop| N Stable State D— £ :% o
MSS = 5~ !
Vi C Ve
0—‘>O -
Vi
0 4{ >o- Q
(a) Transfer Characteristic (b) CMOS D-Latch cell

Figure 3.2: D-Latch characterization around metastability.

Depending on data and clock signal arrival times, three situations are
possible:

(i) The delay between the clock C' and the data D, dtpc, is greater than
tsetup- This implies the @ output goes rapidly to Vpp.

(ii) 6tpc = tsetup- This means that there is a tgesyp violation and @ may re-
main stuck around an intermediate voltage level Vj;55 which is neither
a 0V nor Vpp.

(iii) dtpc, is lower than tges,, the output @) never leaves 0V,

Figure 3.3 illustrates these 3 possible scenarios.

As we want to force the data signal to switch in the metastable window,
we need to use a very precise limit value of dt po for which the Q output needs
a high propagation time to resolve to a stable state. Later we refer to this

95

tsetup
=

s

Vbp

2 \/\ (StDC ~ tsetup
(i) Q VAN

6tDC < tsetup

(i) Q

Figure 3.3: Q output value depending on data arrival time uncertainty

asymptotic value as Tierupo. To sort out Tyetupo, we perform several simula-
tions on bi—stable cells with a tunable delay to set different dt oo then observe
the behavior of the V; node of Figure 3.2b. Transient simulations of bi-stable
standard cells are done to characterize Tsetupo, tsetup limit of metastability
appearance. The results presented here are obtained with the LDLQ latch
standard cell of STM 65nm CMOS technology. Simulation conditions are a
temperature of 25° C, typical fabrication process of the transistors and a
supply voltage VDD equal to 1.2 V. In this simulation, we perform a simple
dichotomy on the dtpc to extract a very precise Tsetypo in the order of 1 fs.
dtpc is a tunable parameter in the Spectre netlist of the circuit under test
of Figure 3.4. The circuit used to measure the Tyespo and the time needed
for the D-Latch to resolve, T, from MSS is presented in the Figure 3.4.
From this measurements, we visualize the internal node, V;, of the back to
back inverters of the D-Latch as illustrated in Figure 3.2b. In fact, we cannot
visualize metastable state on the Q output since it is amplified.

Load gate

dtpe
Clock | j b Q:)D

c Q

Figure 3.4: Measurement circuit.

96

This simulation is performed using the Cadence simulation tool Spectre
MDL (Measurement Description Language). The principle is to tune the
data-to-clock delay, 0tpc, with a very high precision to capture the exact
moment of transition of the Q output and thus report what we call Tiesupo-
When the value of V{, is higher than 0.9Vpp, the dtpc is too short to cause the
transition. When the value of V{, is equal to or less than 0.9Vpp, étpc time
is long enough to cause Q transition. The dtpo searching process continues
running until the condition % < 0.1 is verified. The source code of
Algorithm 2 represents the methodology of Tsetyp0 characterization.

Algorithm 2 Algorithmic implementation of the Tsesyp0 measurement pro-
cess.

alias measurement transl

{
export real ., t4
run tran(stop=4ns, errpreset=’conservative)
t. = cross(sig=C, thresh=0.95*VDD, dir="fall, n=1)
tq = cross(sig=V;, thresh=0.95*VDD, dir="rise, n=-1)
export real Tog = tg — L.
export real Vg = V(Q)Q4n

¥

search 0tpc from swp(start=-100ps, stop=0ps, tol=0.001ps)

{
run transl

}

until (VD#_DVQ) < .01)

Figure 3.5 shows the clock-to-output propagation delay, T, versus the
data-to-clock delay dtpc.

We notice from Figure 3.5 that, the more we get close to the metastable
state, longer time is needed to go to a stable state. When the timing require-
ments are respected (dtpc < tsetup)7 the propagation delay converges to a
constant value which corresponds to the propagation delay of a transpar-
ent D-Latch Toq, given by the manufacturer. When d¢pc decreases, the
propagation time T increases with a logarithmic shape. This increase is
due to the recovery time from metastability. The asymptotic limit defines a
minimum setup time for which the propagation delay To becomes infinite.
In the following, we refer to this asymptotic value as Tserupo-

When the delay between clock and data inputs is around, Tiezup0, the
final state is sensitive to any noise in the circuit or external perturbation
on the supply voltage [KD90]. To exhibit this behavior, we perform several
Monte Carlo simulations using an additional transient noise. The simulator
adds realistic estimation of the internal noise of the circuit based on prior

97

350

300

(5%
93
[=)

Propagation time T, (ps)
[
S

150
/
100 S—
50
33 32 31 30 29 28 27 26 25
Tse[up0=—27.78 ps

S tpc (ps)

Figure 3.5: Propagation delay time Tcg vs. dtpc of a CMOS D-Latch.

library characterisation. The final state is not deterministic and depends
on the noise value. Figure 3.6 represents different runs of this simulation
showing the behaviour of the internal net, V,, of LDLQ latch. The transient
noise simulation is performed with a data-to-clock delay equal to Tserupo-

Lo
Lo
j IR

02

Qlatch output voltage (V)

395 4 405 41 415 42 425 43 435 44

Time (ns)

Figure 3.6: Transient noise simulation: The internal net behaviour for 10
noise iterations for LDLQ latch where 6tpc = Tsetupo-

98

3.3 Proposed Delay Chains based TRNG

3.3.1 Delay chains structure specifications

As previously discussed, we propose to exploit the metastable state in Latches.
This assure that the probability for Q to settle down to 1 is equal to 50%
such as represented in Figure 3.7. If we sample the data when it switches we
cannot predict its output.

Metastability window (MW)

— Q=1
p@="1)=1__ | | p(@Q="1)=05
MSS
p(Q =/ 1') =0____
q\ dtpe
TsetupO

Figure 3.7: p(Q="1") vs. clock-to-data delay around the metastable state

The challenge is to manage to set the data-to-clock delay on purpose in
the metastability window. A naive approach would be to delay the data of
Tsetupo (as defined in subsection 3.2.2) from the clock edge with a controllable
delay element. Figure 3.8 illustrates this approach. This kind of control and
precision is impossible in FPGAs nor in ASIC standard cells. So, we propose
to use multiple delay elements: A delay chain on the data path and another
delay chain on the clock path with a slight delay difference and consider the

differential delay.
> 1

Clock ___| &iDCC Ql—

Figure 3.8: Principle of the delay chains based TRNG.

This allows to reach better precision. In fact, the higher is the precision,
the greater are the chances to obtain metastability. In the next sub-section
we introduce the delay chains based structure.

99

3.3.2 Delay chains based TRNG generic structure

So we propose the generic structure of Figure 3.10 as the delay chains based
TRNG. Two fine chains feed a latch chain with slightly different incremental
delays at the data and clock inputs. This allows us to control dtpc with a
fine delay control precision so that the data edge catches up the clock edge
such as represented in Figure 3.9.

Delay
Clock

Data

Data-to-clock
Initial delay

H
) s
Z

Delay element index

Figure 3.9: Data and clock race through the latches to catch metastability.

As represented in the Figure 3.10, we also use 2 blocks of coarse delay
chains which help setting the initial delay between clock and data signals to
compensate eventual change in the working conditions.

DATA

COARSE —{ Data fine chain ‘
CHAIN L 1 L 2 N-1 L N

D QL

e e e

C C C C
CLOCK [[[[
COARSE | Clock fine chain |
CHAIN

clk

cjrd @ Q2 Qn

Figure 3.10: Generic structure of the delay chains based TRNG

To shrewdly control delays to make the D-latch operate in the metastable
region, two adjustable delay blocks are used on both data path and clock
path. The first chain should introduce a thin differential delay between data
and clock. We name it a fine delay chain. The second chain set the initial
data-to-clock delay which is higher in resolution than the first chain. We
name it a coarse delay chain.

100

Fine delay chain The fine delay chain is used to tune the delay between
the clock and data inputs of the latch with high precision. We propose to
use two fine delay chains, one on the data path and the second one on the
clock path and consider the differential delay. The fine delay chain length is
equal to the number of latch used, N.

Coarse delay chain Similarly, we use two coarse delay chains, one on
the data path and the second on the clock path. The delay in the coarse
chain is adjustable by controlling M chained multiplexers. The number of
MUZXes, M, as a function of the number of latches is given in Equation (3.1).
Equation (3.1) is set by the assumption that the data and clock signals meet
somewhere at the input of one of the middle latches in the chain.

M

N
?.dTmuJ; + 5-(5tDC = TsetupO (31)

The coarse delay chain is used to adjust delays that may change with the
operating conditions variations. The implementation of this kind of structure
is hard to carry out due to (physical routing imbalance, asymmetries between
cells, etc), delays between the data and the clock inevitably exist. In fact,
process variations between chips, and even between LUTs and switch matrices
on the same FPGA chip, can lead to a difference in delays depending on the
FPGA region it is implemented in.

The raw output of the TRNG, trngo, is obtained by XORing all the latch
outputs as given in 3.2.

N
trngo = EB Qi (3.2)
i=1
In the next section, we discuss the design parameters that impact the TRNG
output and establish the mathematical formulation of the probability at
trngo raw random bit.

3.4 Stochastic Model of Delay Chains based TRNG

TRNG designers should provide a stochastic model, first to estimate the en-
tropy of the raw and post-processing output, then to identify the parameters
that may affect the entropy and quantify their impact on it. The TRNG
raw output is represented by one bit which can take the logic value "1’ or ’0".
The TRNG entropy of the raw output, trngo, is expressed in Equation (3.3)
where p; and pg represents respectively the probability to get '1’ at trngo
and the probability to get 0’

Hirngo = —po-loga(po) — p1.loga(p1) (3.3)

101

where p; represents the TRNG output to be equal to ‘1’. In the following, we
try to establish a mathematical expression of the probability p(trngo =" 1')
to identify the TRNG parameters that affect it. Later we try to extract
optimal parameters that generate the maximum possible entropy of the
TRNG architecture presented above. For that matter, we need to identify
the technology and design parameters that are involved in the TRNG entropy.

3.4.1 Stochastic model parameters identification

To study the probability for Q to settle down to either a logic 1’ or a ’0’, we
need to go deeper in the analysis of the metastable behavior. So, let us zoom
around the MSS state of Figure 3.6. The metastable state, MSS, is a state
where the output voltage is neither a valid low nor a high logic state such as
depicted in Figure 3.2a. In this state the voltage values of both the input and

the output of the static storage element, have the same value Vjsg9g =~ VLQD.

dv

2 ; AV>Vpp/2
g e
§° Vin=Ypp/2+3v
>
5 Vop/2
g
2 Viy=Ypp/2-8v
B
g
é AV(<Vpp/2
ov
Time (ns) Time (ns)
(a) Exit from metastability (b) Voltage offset around MSS

Figure 3.11: D-Latch characterization around metastability.

Around this point, the inverters of the static storage element can be
modeled as two amplifiers with a negative gain (—A) where A > 1 [CSC*10,
Ginl1]. We note that we consider equal gains for both inverters for the sim-
plicity of expression. Each inverter drives a resistance R and a capacitive
load C' which models the gates and connections at each output. To simplify
computations the capacitance and the resistance of both inverter are con-
sidered to be equal to each other. In the absence of noise, the voltage of
the internal node V,, remains stuck at this intermediate voltage, around VDTD.
The probability to enter a MSS whose duration is longer than t,, is expressed
as in Equation (3.5) [Vee80].

-y L,
p(t>tm) =€ 7 m (3.5)

Practically, when the clock C' switches to ‘1’ the node voltage is never

exactly VDTD, and even then, ambient noise can shift this position. This bias

102

will determine the final logical value and the time to reach it as shown
in Figure 3.11a. In fact, AVpg, impacts the final state of the D-Latch.
Figure 3.11b shows the behavior of the internal storage net at MSS state
for different data-to-clock delays. The sub-figure (b) is a zoom of (a) around

Vop
5.

The expression of the voltage difference V' (t) = V,(t) — Vi(t) around MSS
is given in Equation (3.6) [Ginll]:

V({t) = AVpe, - e 7 (3.6)

where AVpcy, = (Vo — Vi) (Tsetupo) is the voltage difference at the moment
where the D-Latch switches to memorizing mode. 7 = R - C' is the time
constant.

We introduce a threshold voltage AVy, around MSS. This threshold
corresponds to the voltage over which the state goes from MSS to a valid
logic value at the moment of sammpling.

T A‘/vth

T, — 1
A—1 H(AVDCO

(3.7)

T, represents the time needed to leave the metastable state or the increase
in the propagation delay. We consider a linear relation between the voltage
differences AV and the delay in arrival times of the D and C signals such as:

AVDC’O =aA- (6tDC - Tsetupo) (3.8)

where « is the slope of the clock and data input and A the gain of inverter.
Thus, by replacing the expression of Vy;, in Equation (3.7), we can express
the resolving time as a function of the time delays as in Equation (3.9).

T AVy,

T, = 1 '
" A-1 n(a A - (5tDC - TsetupO)) (3 9)

Which can be rewritten as in Equation (3.10).

T, = 7(13 —In (5tDC - TsetupO)) (310)
Teq =T, +Tcq,,, 3.11)
AVip

where v = 45 and 8 = In 4.

Equations (3.10) and (3.11) show that the D-Latch propagation delay,
Tcq, increases as 6t pc decreases. And this is what we obtained at electrical
simulation as shown previously in Figure 3.5. Hence, we HenceHence,clude
that the analytical expression models well the simulation waveform of Tog
vs. dtpc in the absence of noise.

103

3.4.2 Proposed stochastic model

Now we need to establish the probability expression of the TRNG output. To
do so we consider the generic structure of Figure 3.10. For the " D-Latch,
dtpc, represents the delay between D and C' signals (C' being the clock input
of the latch). This delay is incremented between two consecutive latches by
a differential delay ot, as expressed in Equation (3.12). ¢ comes from the
difference between the two fine delay chains D and CLK.

5tDCi+1 =0t + dtpc, (3.12)

Figure 3.12 shows the clock-to-data delay at consecutive latches, superposed

Noise Normal distribiition
ERI e e
3
£
B a
[}
o
g Qi // M~
g N
& | 1Qi
=%
E Qi3 //

,.,/‘ /
ot
TsetupO

Data-to-clock delay: 8ty

Figure 3.12: The probability to correctly sample the input for consecutive
latches.

with the propagation characteristic of a D-Latch. This delay can be expressed,
as in (3.13), as the sum of deterministic delays, which correspond to the
signals race and a random delay, which models the noise impact.

5tDCZ- =ADy—1i - 0t —l—N((St) (3.13)

where N (o) is the Normal distribution and ADjy is the initial delay
between C and D introduced by the data and clock coarse chains. The delay
incertitude is distributed approximately normally as it characterizes the
influence of the superimposition of multiple noise sources according to the
Central Limit Theorem [Tro59].

In the case of rising edge sensitive D-latch, the output @ resumes to a high
logic value ‘1" if this delay is smaller than Tsesyp0. We denote pg, = p(Q; = 1)
this probability:

104

pQ, = p(dtpc, < Tsetupo) (3.14)

This corresponds to the gray colored area of the Normal bell in Figure 3.12.
This probability can thus be analytically expressed as:

1 (5tDCi - Tsetup())

PQ; =5 1 —erf(5 (3.15)

where ¢ is the noise standard deviation, Tieypo is the experimental asymp-
totic limit such as represented in Figure 3.12 and erf(z) is the error function.

In the following, we use the notation pyx, representing p(X =’ 1), where
X is a Normal random variable. Since the TRNG output is the XOR of the N
D-Latch outputs, as illustrated in Figure 3.10, the probability of the TRNG
output to be equal to 1 is the probability parity of having an odd number of
the N D-Latch outputs settling down to a logic ’1". Let ptrng0 = p(trngo ='1)
be the probability to have 1 on the TRNG output. Here we distinguish two
cases:

(i) Influence of noise on each of the N D-Latches is independent.

(ii) The value of @; of the iy, D-Latch impacts the output value @Q;4+1 of
the (i + 1) D-Latch.

Basically, computing the TRNG output probability, psng0, is equivalent
to compute the probability of a N-input XOR to be equal to ’1’. Let us
consider the first two latches @1 and Q2. Equation (3.16) represents the
probability to obtain ‘1’ at the output of the first stage 2-input XOR.

PQieQ2 = PQ1 * Pg, T Pg; " PQ:
=pq, - (1 =p@,) + (1 —pg,) " pq,
PQ16Qs = PQ, T PQy — 2pQ1pQ2 (3'16)

Equation (3.17) is the factorized expression of (3.16).

L =2pgi0q, = 1 = 2pQ: — 2Pq, + 4PQiPQ»
=(1- 2pQ1) (1 2pQ2) (3.17)
Then, by mathematical induction, we can generalize the expression for

N-input XOR as shown in Equation (3.18).

N

N
1-2p(PQi=1) =[]0 -2pq,) (3.18)
i=1

i=1

Thus, from Equation (3.18), the final expression of p(trngo = 1) in terms
of pg, is given in Equation (3.19).

105

1 N
Ptrngo = 5[1 - H(l - Qin)] (3.19)

=1

In the case (i) where the influence of noise on each D-Latch is inde-
pendent, then, we end up with Equation (3.20) written as a function of
design parameters, N and dtpc, and the technology related parameters, o
and TsetupO-

N

_1 9tpc; — Tsetupo)
Ptrngo = 5 [1];[1 (erf(G) (3.20)

In the second case, (ii), where the value @Q; of the i*" D-Latch impacts
the output value Q;41 of the (i + 1) D-Latch, then Q; 41 cannot be equal to
‘0’ if @, is equal to '1’. Thus, we eliminate some terms from the truth table

N
of P Qi-

For example, for a 3-input XOR, only the following input triplets (1,0,0)
and (1,1,1) are left. Hence, the probability of the output of XOR pg,e0, 60, =
p(Qo ® Q1 @ Q2 = 1) would be expressed as follows:

PQ1oQeeQs =P1 - (L—p2) - (1 —p3)+p1 - p2 - p3

For a 4-input XOR, the product of all p; does not appear in the final
probability, as the XOR of an even number of ones is 0.

PQ10Q20Qs3Qs =P1 - (1—p2) - (1 —p3) - (1 —pa) +p1 - p2 - p3 - (1 —pa)

By mathematical induction, we establish a general expression of pirngo =
p(trngo = 1) for an N-input XOR (here N is even). Equation (3.21) repre-
sents thus the probability psrngo versus the probability at the latches output
for the case (ii).

% 21—1 N
Ptrngo = Z H PqQ; - H (1 _ij) (321)
=1 j=1 Jj=21

Finally, we get the probability expression of the TRNG as a function of
design parameters: N and dtpc, and the technology related parameters: the
noise standard deviation, o, and the Tserpo (Equation 3.22).

N
2 2i—1

N
1 (StDCj - Tsctup() 6tDCj - TsetupO
Prrngo = 51 E 1 1_[1 [1 - erf(T) 1_! erf(—) (322)
i=1 j= Jj=21

Now it is an open question whether the ambient noise of the targeted
technology present a correlated influence all along the chain of latches or

106

an independent impact on each latch. In the next chapter, we will present
experimental results on the ASIC implementation of the TRNG and confront
the analytical expressions of Equations (3.22) and (3.21) to the empirical
frequencies of ‘1’ at the TRNG output.

3.5 Conclusion

In this chapter, we have presented the principle of exploiting metastability
and jitter to generate randomness. The principle is to place a D-Latch in a
metastable state, then sample the stable state which is the consequence of
the chip ambient noise impact. We discussed and presented the method that
allows to compute the parameters of the TRNG output probability modeling
equation through electrical simulation. The probability expression of the
TRNG is computed in terms of the noise standard deviation, the character-
istics of the D-Latch Tierupo, and the differential delay 0t of the delay chains
elements used in the TRNG core. The stochastic model parameters identified
in this chapter allow us later to characterize the technology parameters that
influences the TRNG quality of randomness and how to establish the TRNG
design specifications.

After having introduced the principle behind the proposed TRNG and
described the model parameters to design a true random bit generator, we
present in next chapters how to design such an architecture in FPGA and
ASIC technologies. The TRNG architecture introduced in this chapter is
generic. In fact, it is based on an open loop structure composed only of
latches and delay elements. This architecture assures full portability to both
FPGA and ASIC technologies. In the next chapter, we will compare the
modeling results versus the simulation results and measurements on the

TRNG ASIC prototype.

107

CHAPTER 4

Study of the Delay Chains
based True Random Number
Generator for ASIC

Technology

4.1 Introduction

This chapter is dedicated to the ASIC implementation of the TRNG pre-
viously presented in Chapter 3. It deals with the feasibility of the generic
architecture with the CMOS 65nm standard cells library from STMicro-
electronics. Section 4.2 is dedicated to the ASIC implementation TRNG
design with multiplexors based coarse chain. We later refer to this ASIC
implementation as ASIC_TRNG#1. Then in Section 4.3.1, we present NIST
and AIS-31 standard statistical tests performed on the MUX based delay
chains TRNG. Besides,we present measurement results of working conditions
perturbations on the TRNG namely power supply voltage variations and
temperature variations. Finally, in Section 4.4 an enhancement of the coarse
and fine delay chains is proposed. We refer to the implementation of this
ASIC prototype as ASIC_ TRNG#2.

4.2 ASIC Design of the TRNG with MUX-based
Delay Chains

4.2.1 Specifications

To implement the generic structure presented in Section 3.3 in ASIC technol-
ogy, we need to set the specifications of the coarse and fine delay chains. The
fine delay chain should allow very fine tuning of the clock-to-data delay, in
the order of the ps. We propose to design different versions of implementation
of the delay chains based TRNG in order to study:

e the impact of the fine delay chain precision on the entropy,

o two different bi—stable elements, the LDLQ standard cell latch and a
custom latch,

109

MUX21

C

Figure 4.1: Custom latch structure.

e the impact of placement and routing of the delay chains on the data-
to-clock delay.

Hence, we propose to implement 4 versions of the TRNG:

¢ TRNGO: Latches are LDLQ standard cells and the fine delay chains
are designed with buffers where the data-to-clock differential delay
ot = 5ps (Figure 4.2),

e TRNG1: Custom latch with buffers for the fine delay chains where
ot = Hps,

« TRNG2: LDLQ with routing wires for the fine delay chains where
o0t = 1ps and

e TRNG3: Custom latch with routing wires for the fine delay chains
where 0t = 1ps.

The custom latch is composed of a 2 to 1 multiplexor (MUX21) with a
feedback connection such as illustrated in Figure 4.1.

The coarse chain delay is designed with M chained MUX21. The output
of each MUX21 feeds the high active input. All the low active MUX21 inputs
are fed with the same signal which is the clock input. This makes the global
delay across the data coarse delay chain, AT,,,.p varies as a function of
the number of active bit on the ctrd input selection as in Equation (4.1).
Similarly for the clock coarse delay chain. AT}, ,.c varies as a function of
the number of active bit on the ctr input selection as in Equation (4.2).

ATmuzD = Ctrd-Tmu:cD (41)
AT e = ctrTyucc (4.2)

Figure 4.3a and Table 4.3b give respectively the architecture and table
of possible delay at the output of the coarse chain as a function of the
multiplexors control bits.

110

Ctgata[M — 1] ... ctTdata[0]
I I

I
I

B I
> B TmuxD :

I

|

I

I

|

.. Data fine delay chain

| ‘BFp
CLK B > P> e mneeee —>
muxD
Data coarse delay chain
ctrap[M — 1] ... ctra[0] : 1 N

D

| D-Latch chain

% ********* —
Pod2

Cl()(k flne deldv (h:lln

Clock coarse delay chain

Figure 4.2: Detailed view of the TRNGO.

Table 4.1 gives all the notations. Hereinafter, the position of the metastable
Latch will be referred to as i,,. To force the middle latch operate in the
metastability region, Equation (4.3) has to be verified.

N Number of latches

M Number of multiplexors in each coarse delay chain bloc

im Index of potentially metastable D-latch

dl Propagation delay of the buffer BFp on the data fine delay chain
d2 Propagation delay of the buffer BF on the clock fine delay chain
5t Added delay on the i*" bi-stable element

Truzc Propagation delay in clock coarse delay chain

TouzD Propagation delay in data coarse delay chain

ATz Differential delay between the two coarse delay chains

ctr]M —1:0] Control bits of the M multiplexors of the clock coarse delay chain
ctrdl]M —1:0] Control bits of the M multiplexors of the data coarse delay chain

Table 4.1: Notations of the TRNG design parameters

N M
= ot="" - dlu 4.

Equation (4.3) helps to choose the number and the capacitance of the
MUX21 standard cells to use to design the coarse delay chains. The differen-
tial delay 0t = d1—d2 and d1;,,, are obtained from the standard cells library
data-sheet provided by the manufacturer STM. For N equal to 64, with §t

111

ctr(7]

ctr[6]

} ctr[5]
1 l ctr[4]
0 1 l ctr[3]
0 1
ctr(2]
1k
» o
ctr(1]
O h
ctr[0]
0o, l
0 1
chain,
0
(a) Coarse chain architecture
ctr[7] | ctr[6] | ctr[5] | ctr[4] | ctr3] | ctr[2] | ctr[1] | ctr[0] Global delay
at coarse chaine output
- - - - - 0 Touzc
- - - - 0 1 2.Tmuac
- - - 0 1 1 3. Tnuac
. . 0 1 1 1 4. Tunc:
- 0 1 1 1 1 5. Tnuac
5 0 1 1 1 1 1 6. Tyrunc
0 1 1 1 1 1 1 7. Tuac
0 1 1 1 1 1 1 1 8. Trnuac

(b) Coarse chain possible delays

Figure 4.3: Mux-based coarse chain architecture and delay configurations

equals to 5 ps and dT},,, equals to 40 ps, we can compute the number M of
MUXs needed as in Equation (4.4).

N - (d1 - d2)

M =
AT g

=38 (4.4)

To make sure that the i*" Latch operates in the metastable region, i,
has to verify Equation (4.5). The general expression of the position i,, is
given by Equation(4.5). If c¢tr and ctrd are equal, Equation (4.6) is obtained.
As N is equal to 64, the condition of appearance of metastability is given in
(4.7).

112

Equation (4.7) is verified for best and worst cases of Truzp, Tuzc, dl
and d2 from the CMOS 65nm data-sheet library.

(ctrd - Thugp + im * d1) — (ctr - Tz +im - d2) = 6Tsetupo (4.5)

1<, <64,1<ctr <8 VI°C, VVyq (4.7)

In the case of wired fine chain TRNGs, the TRNG2 and TRNG3 versions,
the fine delay dt is introduced by the routing differences on the data and clock
paths. For the TRNGO and TRNG1 versions, the fine delay dt is introduced
by the differential propagation delay between the buffer on the data and the
one on the clock.

4.2.2 Place and route process

Fine and coarse delay chains are very sensitive to the delays introduced by
the wires. Coupling effects between routing wires may introduce additional
delays at the clock to data differential delay. Added delays are proportional
to the coupling capacitance between the routing metals along the fine and
coarse chains and neighboring routing wires of the same metal level and
upper metal levels. Hence, the place and route process (PAR) is a very
important step and it has to be done manually and with special care to:

o balance the data and clock routing paths in both fine and coarse chains,
e balance routing paths at every stage of the XOR tree,

e minimize coupling effects between data and clock routing paths along
the fine and coarse chains by outdistancing routing paths in the same
metal and different levels of metals.

Figure 4.4 shows a zoom of the TRNG layout on the fine delay chains.
The wire connecting the delay element BFp to the input D and the wire
connecting BF¢ to the clock input C must be of equal length. The same thing
has to be done for the coarse delay chains. The custom physical layout has
been performed manually. We developed a placement and routing constraints
script. Cadence Encounter parses the script and executes it to generate the
layout. We can see a balanced routing of data and clock paths along the
latches.

113

Balanced data routing

1 BFp

Custom
mux latch

BF,

clock routing

Figure 4.4: Zoom of the layout of the TRNG with custom latches: view of
the balanced routing of the fine delay chains on data and clock paths.

4.2.3 Post place and route simulation results

Now that we have a balanced placed and routed design, we perform the
resistances and capacitances coupling network extraction. This step is very
important in the design of the delay based chains TRNG. In fact, coupling
effects of routing lines inside the delay chains influence very much the data to
clock differential delay. Hence, it is important to verify the data to clock delays
all along the chain. After the parasitics extraction, post layout simulations
are performed. Post layout verifications are done on 4 steps:

1. The first post layout simulation is intended to extract the data to clock
delays after parasitics extraction and check whether at least one latch
is metastable.

2. If it is not the case, the re-adjustment of the initial data-to-clock delay
is needed. Then, we re-launch the previous step.

114

3. After that, we extract the delay configuration for which a metastable
behavior is perceived.

4. Finally, we perform a transient noise simulation to verify the random-
ness behavior.

The transient noise simulation is an important step. It represents the essence
of TRNG verifications before final integration of the TRNG hard macro and
the GDSII delivery to foundry. In fact, when the data signal switches in the
metastable region, the final state Q is sensitive to any noise in the circuit.
This sensitivity has been described in [KD90]. To exhibit this behavior,
we have performed several Monte Carlo simulations using an additional
transient noise. The simulator adds realistic estimation of the internal noise
of the circuit based on prior library characterisation. The final state is not
deterministic and depends on the noise. This simulation allows us to check:

1. if the design generates random bits by running electrical simulations
using transient noise. Figure 4.5 shows a random state in the middle
of the latches chain depending on the noise simulation iteration.

2. if i, is somewhere in the middle of the latches chain considering dif-
ferent working conditions (Typical, best and worst cases).

12

1

08
S Q3 —
G Qs
g 06 Q33—
= Qi —

0.2 e AR
0 / i 7N

10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 10.5
Time (ns)

Figure 4.5: Post place and route simulation for 6 transient noise iterations
of the TRNG.

Such a simulation was not possible to be performed for the TRNG2 and
TRNG3 with wire-based fine delay chains because there is no noise model

115

for the passive element. In fact, the Monte Carlo transient noise simulation
models exist only for the standard cells. Hence, for wired fine delay chains of
the TRNG versions 2 and 3, we cannot perform such a simulation. Instead, we
performed a simulation with a jittery data signal. We simulate the behavior
of the TRNG1, with transient noise, for the 64 possible values of control
inputs ctr and ctrd of the coarse delay chains. Table 4.2 shows the number
of ones at the output of the TRNG2 for 100 iterations of the Monte Carlo
simulation. The best results are those highlighted in gray in Table 4.2 .

n ctrd | 1200 0x01 0x03 0x07 OxOf OxIf O0x3f Ox7f
0x00 73 90 82 91 68 78 100 100
0x01 98 98 90 95 8 67 79 97T
0x03 5 56 84 97 77T 91 67 T4

|
|
|
0x07 | 64 64 84 94 95 | 5T 89 74
|
|
|
|

0xO0F 0 0 86 98 98 94 90 89
Ox1f 0 0 0 98 98 93 59 91
0x3f 0 0 0 0 64 86 96 70
0x7f 0 0 0 0 0 88 7 97

Table 4.2: Post-layout simulation results considering transient noise: fre-
quency of occurrences of bit '1” over 100 iterations.

The index i, where the data and clock signal meet around the metastable
region is likely to shift with temperature, voltage and process variations. The
variation of 7 depending on the transistors corners for a chosen control value
is reported in the Table 4.3. Results of Table 4.3 are presented for ctr=0x1f
and ctrd=0x3f. In fact, for delay control value, (ctr=0x1f, ctrd=0x3f), i shifts
from 32 (for typical and best transistors corners) to 27 (for slow transistors,
T =27°C and VDD = 1.1‘/).

Process variations ‘ Typical ‘ Best case ‘ Worst case

Index of the metastable latch Q30 Q32 Qo7

Table 4.3: Metastability position in the chain of latches depending on process
variations for T=25 and Vdd=1.2.

The variation of the metastability position, ¢, toward temperature and
supply voltage variations, is reported respectively in Figure 4.6a and Fig-

116

ure 4.6b. The position i is always in the range [1 : 64] for a wide range
of supply voltage and temperature. The proposed TRNG structure is ro-
bust against environmental perturbations. In fact, even in environmental
perturbations, at least one latch is metastable.

38
36
= 34
32
& 30
28
26
-40 -20 0 20 40 60 80
(a) vs. Temperature(°C) @1.2V

Position
(98]
[\S)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 24
(b) vs. Supply voltage(V) @25C°

Figure 4.6: Metastability position for ctr = 0x3 and ctrd = 0x1.

4.2.4 Stochastic model versus simulation results

After presenting the simulation results, we propose to compare the post
PAR simulation results to the stochastic model presented in Chapter 3. We
propose to plot the probability piqngo versus the noise standard deviation for
all the delay configurations while considering Equation (3.20). To do so, we
use Algorithm 3. We end up with 4096 delay values. In fact, N=64 latches
multiplied by 8 data coarse delay configurations and 8 clock coarse delay
configurations.

117

Algorithm 3 Algorithmic implementation of the probability computation
at the delay chains based TRNG output.

NBLatches=64

CONFIG=8*8

DELAYS=[CONFIG]|[NBLatches]

Tsetupo = 27.87 ps

for ctr in (1,CONFIG) do

for o in (1,10) do
for i in (1,NBLatches) do
dtpelil = DELAY S|ctr][i]

pali] = 3.(1 — SO et
p=p-(1 —2pq[i]))
end for
end forpimgolcon fig) = 5(1 - p)
end for

Then we plot the psrpngo result for each of the 64 delay configurations in
Figure 4.7. We notice from Figure 4.7 that:

A\

0.4

0.2 /

p(TRNG=1)

0 2 4 6 8 10
Noise standard deviation in (ps)

Figure 4.7: p(trngo="1") for all the possible delays configuration of (ctr,ctrd)
for case (i)

o the proposed architecture can extract entropy almost equal to 1 for o
higher than 4 ps.

o according to the comparison between simulation results from Table 4.2
and waveforms in Figure 4.7, the standard deviation of the noise is

118

lower than 2 ps.

In the next section, we will present the measurement and statistical tests
results that allow to validate the TRNG__ASIC#1 prototype.

119

4.3 ASIC Prototype Test and Validation of the
TRNG with MUX-based Delay Chains

4.3.1 Experimental results and statistical evaluation on the
ASIC TRNG

For the sake of relevant comparison, we use both AIS-31 and NIST to evalu-
ate the TRNGs designed in this Ph.D work. In fact, most of the previously
published TRNGs were evaluated using the NIST SP800-22 [RSNT10] bat-
tery of statistical tests. NIST statistical tests battery as well as the AIS-31
battery require a big amount of samples to perform the tests. Several millions
of samples is needed depending on the test to be performed such as reported
in the Table 2.4.

Twenty identical test-chips of the ASIC_ TRNG#1 design were fabricated
in the 65nm CMOS technology process by STMicroelectronics. This section
presents experimental results and statistical evaluation of the ASIC_ TRNG#1
presented in Section 4.2. Figure 4.8a shows the test board used for the acqui-
sition of ASIC_ TRNG#1 output sequences. Figure 4.8b shows the TRNG
output signal on oscilloscope with a throughput of 10 Mbps.

TRNG output signal (V)

of bt WE Kl bbbk

o 1000 2000 3000 4000 5000
Time (ns)

(b)
Figure 4.8: Test board and measurements of the ASIC_ TRNG#1 prototype

From Table 4.4, we notice that all the latches output are random as
they have different logic states for each of the 100000 samples. In fact, v;
represents the frequency of occurrences of the XOR output of the it" latches
packet at the 3" stage of XOR tree such as given in Equation (4.8). Virngo
represents the final frequency of occurrences of '1” at the raw output of the
TRNG.

8%1+47
b= (@ Qlil = 1) (48)

J=8x%1

120

Vtrngo ‘ Vo U1 V2 U3 V4 Us Ve U7

50.31‘51.6 0l.4 8252 99.81 21.04 7744 80.6 74.64

Table 4.4: Measurement results of the TRNG3 version for the delay configu-
ration (ctr,ctrd)=(0x00,0x00) on 100000 samples.

First, we begin with applying the monobit test for AIS-31 standard. This
test evaluates the frequencies of ones and zeros in the sequence. If these
frequencies are not balanced, we should not engage the standard statistical
tests because the chances to pass all of them is small. Table 4.5 reports the
statistical tests results of ASIC samples for AIS-31 standards. Test procedure
A (TO to T5) are performed on von Neumann post-processed samples of 10 M
bits generated at a bit rate of 100 Mbps. The test procedure B (T6, T7 and
T8) are performed on raw samples as specified by [KS11]

TRNG version
AIS-31 tests TRNGO | TRNG1 | TRNG2 | TRNG3

Disjointness test T0 | pass | pass | pass | pass
Monobit test T1 ‘ pass ‘ pass ‘ pass ‘ pass
Poker test T2 ‘ fail ‘ pass ‘ fail ‘ pass
Run test T3 ‘ fail ‘ pass ‘ fail ‘ pass
Long run test T4 ‘ pass ‘ pass ‘ pass ‘ pass
Auto-correlation test T5H | fail | pass | fail | pass
Uniform distribution test T6a ‘ fail ‘ fail ‘ pass ‘ pass
Uniform distribution test T6b ‘ fail ‘ pass ‘ fail ‘ pass
Test for homogeneity T7a ‘ fail ‘ fail ‘ pass ‘ pass
Test for homogeneity T7b ‘ fail ‘ fail ‘ pass ‘ pass
Entropy estimation test T8 ‘ fail ‘ fail ‘ fail ‘ pass

Table 4.5: AIS-31 statistical tests for the ASIC TRNG (PTG.1 tests with
Von Neumann PP and PTG.2 without PP).

For the TRNG3, we report that only the Entropy estimation test T8
results are not regular from chip to chip and from a sequence to another. In
fact, depending on the chip the observed test variable varies from 6.86 and
goes up to 7.9962. To be compliant with T8 test, AIS-31 standard claim an
Heppectea of at least 7.976. Details of the AIS-31 statistical tests results are

121

given in Table 5.12 in Appendix. NIST statistical tests [RSNT10] are also
performed on a raw sample of 10M bits acquired on the four versions of the
ASIC_TRNG#1. The sequences are generated at a throughput of 100 Mbps.
The acquisition was performed at 100MHz, the test board local oscillator.
However the TRNG2 and TRNGS3 version can operate at frequencies up to
the GHz. This is not the case for TRNGO and TRNGI1 versions which are
limited by a 100 MHz because of their longer delay chains. The statistical tests
results are poor for the TRNGO and TRNG1 versions. So, a von Neumann
post-processing is applied [vN51]. The best statistical results concern the
TRNGS3 version sample. In fact, it fails only the Universal test out of the 15
NIST tests. AIS-31 and NIST statistical tests results are very much consistent
with each other. In fact, the Maurer’s Universal test of NIST is the same
test as T8 entropy estimation test of AIS-31.

TRNG version
NIST tests TRNGO | TRNG1 | TRNG2 | TRNG3

Frequency ‘ pass ‘ pass ‘ pass ‘ pass
Block Frequency ‘ pass ‘ pass ‘ pass ‘ pass
Cumulative Sums ‘ pass ‘ pass ‘ pass ‘ pass
Runs | pass | pass | pass | pass
Longest Runs ‘ pass ‘ pass ‘ pass ‘ pass
Rank ‘ pass ‘ pass ‘ pass ‘ pass
FFT ‘ fail ‘ fail ‘ pass ‘ pass
Non Overlapping Template Matching ‘ pass ‘ 146/148 ‘ 147/148 ‘ pass
Overlapping Template Matching ‘ fail ‘ pass ‘ pass ‘ pass
Universal ‘ pass ‘ pass ‘ pass ‘ fail
Approximate Entropy | pass | pass | pass | pass
Random Excursions ‘ pass ‘ pass ‘ 17/18 ‘ pass
Random Excursions Variant ‘ pass ‘ pass ‘ pass ‘ pass
Serial ‘ pass ‘ pass ‘ pass ‘ pass
Linear Complexity ‘ pass ‘ pass ‘ pass ‘ pass

Table 4.6: NIST statistical tests results of the ASIC TRNG

Details of the NIST statistical tests results are given in Table 5.9 in
Appendix. Statistical tests results on the ASIC_TRNG#1 from Tables 4.5
and 4.6 show that the best version is the TRNG3. We identify 3 reasons that
make the TRNG version present higher entropy:

122

o small differential d¢p¢ all along the latches
o the use of custom latches designed with multiplexors
e very high slope to capture the vertical noise

In the following, we present environmental variations tests of the TRNG3
version.

123

4.3.2 Environmental variations tests of delay chains based
TRNG

Process variations, temperature and Vpp variations affect both interconnect
and propagations delays. For this matter, a self-calibration block, which sets
the optimal delay configuration of the TRNG coarse delay chains, is added
to the TRNG. The TRNG chip may be exposed to certain environmen-
tal perturbations such as temperature and power supply voltage variations.
Figure 4.9 illustrates the potential parameters that may affect the TRNG
output.

Temperature Voltage Process Variations

Delay chains
self-calibration

i)

TRNG

L Online tests

\ J

TRNG chip X
Alarm

Figure 4.9: TRNG system

All CMOS on-chip TRNG structures are sensitive to environment per-
turbations. As physical attacks are an important issue in the cryptography
field, the coarse chains are implemented to adjust the delays and assure that
the TRNG works within a wide temperature and supply voltage ranges. A
self-calibration block selects the best delay control configuration and con-
trols the coarse delay chains in a feedback mode. The self-calibration block
is embedded within the TRNG as a feedback control of the coarse delay
chains as represented in Figure 4.9. This TRNG auto-calibration block has
been proposed in [DGHO09]. This block computes the frequency of ones at
the TRNG raw output for each configuration of the coarse delay chain at the
TRNG start-up. Then, it sets the input of the coarse delay chains to the con-
figuration that corresponds to the optimal frequency. The algorithm of the
self-calibration of the TRNG coarse delay chains is presented in Algorithm 4

The data-to-clock differential delay may change in case of malevolent or
environmental perturbations so as the index i. So self-calibration method

124

Algorithm 4 Algorithmic implementation of the self-calibration technique.

c=1
NCONFIG=2.M
NSAMPLES=256

_ NSAMPLES
Vopt = 3
€opt — 16
Vtrngo = 0

for ¢ in (2,NCONFIG) do
for i in (1, NSAMPLES) do
return trngoli|
if trngoli] = 1 then
Virngo = Virngo + 1
end if
end for
E = |Vt7"ngo - Vopt‘
if &> €,y then
Ctropt = €
end if
end for
ctr = clropt

turns out to be very effective to set the coarse chains on the effective delay
configurations to balance out the perturbations. However, it has a drawback.
We have to throw the bit stream which was used when applying the cali-
bration. The more configurations we have, more clock cycles are needed to
calibrate, hence more bits to throw. The length of non-used sequence, L, is
given in Equation (4.9).

L=NSAMPLES x NCONFIG (4.9)

Table 4.7 reports the frequency of occurrences of '1’ at the output of the
TRNG for 7 different dies of the ASIC prototype. The optimal coarse delay
chains configuration (ctr, ctrd) differs from die to die.

Die # \ 1 2 3 4 5 6 7
Optimal
(CTR,CTRD) | (x1fx3f) (x03,x01) (x03,x03) (x01,x01) (xOf,x0f) (x1fx3f) (xOfx1f)
v(trngo ="1) ‘ 51.71 50.58 46.77 50.9 53.93 55.72 51.64

Table 4.7: Impact of process variations on the TRNG.

In Table 4.8, we report the NIST statistical tests results on a sequence
generated at —10°C' and 70°C.

125

N _10°C | 70°C
Frequency pass ‘ pass
Block Frequency pass ‘ pass
Cumulative Sums pass | pass
Runs pass ‘ pass
Longest Runs pass ‘ pass
Rank pass ‘ pass

‘ pass

Non Overlapping Template Matching | 146/148 | 146,148

|
|
|
|
|
|
FFT ‘ pass
|
|
|
|
|
|
|
|

Overlapping Template Matching pass ‘ pass
Universal fail | fail
Approximate Entropy pass ‘ pass
Random Excursions pass ‘ pass
Random Excursions Variant pass ‘ pass
Serial pass ‘ pass
Linear Complexity pass ‘ pass

Table 4.8: NIST statistical tests results of the ASIC TRNG3 version at
—10°C and 70°C

CMOS circuits are tolerant to work correctly only for £10% of Vpp as
specified by the manufacturer. A common ways of disturbing a cryptographic
CMOS IC device are FIA attacks as discussed in Section 2.4. In fact, an
attacker can over or under supply the TRNG to bias its output. The lower
Vpp is, the higher Ipg is [KKO06], and the higher the propagation delays
are. This implies that the MUXes propagation delays increase with the
increase of Vpp. For the delay chains based TRNG, if propagation delays
change, the optimal configuration of the coarse delay chains change. For that
matter, power supply voltage variations have been applied to the TRNG
ASIC prototype to assure that at least one delay configuration is good.
Figure 4.10 reports the TRNG output frequency of occurrences of "1’ versus
the power supply voltage Vpp. In Table 4.9, we report the optimal delay
configuration of the coarse chain ws. the power supply voltage variation on
the test-chip for 10K samples of TRNG output.

The optimal delay configuration is generated by the self-calibration block.
Temperature variations have also been performed on the ASIC test-chip of the
delay chains based TRNG. In CMOS technology, the higher the temperature

126

100

80

ot

60

40

Frequency of trngo

20

O0.6 0.8 1 1.2 14 1.6 1.8
Power supplv voltage (V)

Figure 4.10: Frequency of occurrences of 1’ at TRNG3 output vs. power
supply voltage variation for 10K samples.

Vop(V) | 18 1.6 1.4 1.2 1 0.8 0.6

Optimal
(ctryetrd) | (x0fx3f) (x0fx3f) (x0fx3f) (x0,x0) (x0fx1f) (x1fx3f) (x01,x00)

Table 4.9: Optimal coarse delay chain configuration vs. power supply voltage.

is, lower are the propagation delays. [KKO06] and [Aasl12] present a study
of the impact of temperature fluctuations on CMOS technologies. In the
coarse delay chains, the optimal delay configuration (ctr,ctrd) of the TRNG
differs with temperature variation. Tests and measurements while varying
the temperature of the test-chip have been carried out in the laboratory using
a cooling and heating oven. Figure 4.11 reports the observed TRNG output
frequency of occurrences of 1’ versus temperature variations. Table 4.10
reports the optimal delay configuration of the coarse delay chains wvs. the
temperature variations for which we obtain around 50% of ‘1’ at the TRNG
output sequence.

°C | 10 0 27 50 70

Optimal
(ctr,etrd) | (x07,x07) (x01,x01) (x00,x00) (x00,x00) (x00,x00)

Table 4.10: Optimal coarse delay chain configuration vs. temperature.

As expected, Table 4.10 demonstrates that the MUXes propagation delays
increase when the temperature increases. In fact, in the case of typical and

127

100

80

3k

60

40

Frequency of trngo

20

(—)10 0 10 20 30 40 50 60 70

Temperature (C)

Figure 4.11: Frequency of occurrences of "1’ at TRNG3 output vs. tempera-
ture variations for 10K samples.

high temperatures (50°C and 70°C), the data signal reaches the metastability
window more rapidly than at low temperatures (—10°C and 0°C). We notice
that the measurements on ASIC prototype for temperature and power supply
voltage variations results of Figures 4.10 and 4.11 confirm the simulation
results of temperature and Vpp variations of Figure 4.6a and Figure 4.6b
respectively. The self-calibration block introduced in this chapter has proven
to be very important not only in case of environmental variations but also
for process variations as the propagation delays of the TRNG varies from
die to die.

4.3.3 Model versus ASIC prototype results

Modeling results of Figure 4.12 are confronted with real samples from the
prototype ASIC test-chip ASIC_TRNG#1. Table 4.11 reports the number
of occurrences of ’1’ at the output of the ASIC TRNG for different values
of ctr and ctrd. When we compare the values reported in Table 4.11 with
the waveforms of Figure 4.12, we can estimate the noise standard deviation.
We plot a vertical line varying from 1ps to 10ps and investigate on which o
matches best the values from Table 4.11. For example, for the coarse chain
configuration (ctr=0x00, ctrd=0x00), the probability prryg measured on
the test-chip over 100000 samples as in Table 4.11 is 84.25%. This shows
that the proposed model matches well the measurement results extracted
from the ASIC prototype. We deduce that the noise standard deviation of
the test-chip is around 2 ps.

The previous results help us to enhance the ASIC_ TRNG#1 architecture
by designing more precise delay chains. The next section describes the new
ASIC architecture. From the comparison study between post PAR simulation
results and measurements on the ASIC_TRNG#1 test-chip, we deduce that

128

0.8

0.6

0.4

p(TRNG=1)

0.2

0 2 4 6 8 10
Noise standard deviation in (ps)

Figure 4.12: The probability prryg at the TRNG raw output in terms of the
noise standard deviation for all delay configurations from analytic expression

the standard deviation of the noise is around 2 ps. 2 ps represents the
uncertainty around the delay between data and clock. Although the fine
tuning step of the Fine delay chains of the ASIC_TRNG#1 is equal to 5 ps.
We need to refine this value to reach a resolution lower than 2 ps. Hence,
we need to enhance the precision of the fine delay chains The coarse tuning
step of the MUX-based coarse chains is not optimal neither. It is equal to
35 ps. This makes a lot of configurations non-usable as we can see from
Figure 4.13. In fact the configurations that works the best corresponds to
a data-to-clock delay in the range of [0 ps, 100 ps] as we can see in the
gray range in Figure 4.14. Only the gray zone configurations generate about
50% of trngo at '1’ with a 3.5% error rate around 50% such as required in
the monobit test of AIS-31 [KS11]. Only 16 configurations, at most, allow
good measurement results. This represents only a % of the total number of
possible configurations. So we should design a coarse chain with a thinner
tuning step, such as we can sweep into the metastable region with a fine
precision. Previous transient simulations of bi—stable standard cells are done
to characterize tgetp limit of metastability appearance. For the mux_latch
it has been shown that the Tiesup0 equals to 27.8742 ps. This value should
be integrated in the sizing process to assure the metastability appearance.

Comparison of measurement and statistical tests results between the

129

Al 0x00 0x01 0x03 0x07 OxOF Oxlf O0x3f Ox7f

ctrd

0x00 ‘ 84.25 9597 7791 94.13 8845 498 811 91.79
0x01 ‘ 0.14 0.68 21.43 49.65 96.93 100 94.88 55.91
0x03 ‘ 100 100 7494 53.8 98.95 99.99 216 99.87
0x07 ‘ 0.11 7.23 9849 99.73 7498 0.28 27.95 100

0x0f ‘ 0 0 100 97.39 99.7 26.31 49.83 63.27
Ox1f ‘ 0 0 93.9 4496 28.17 76.4 94.09 9.37
Ox3f ‘ 0 0 0 58.84 2.16 40.51 32.82 99.97
0x7f ‘ 0 0 0 1.6 382 99.98 547 66.77

Table 4.11: The probability prryg at the TRNG raw output for all delay
configurations from ASIC prototype measurements.

different versions of the ASIC_TRNG#1 shows also that TRNG2 and 3
versions present better results that the TRNGO and 1 versions thanks not
only to thiner fine delay chains but also to a very high slope of the data signal.
In fact, in the TRNG2 and TRNG3 versions, the fine delay chains are maid
only of routing wires. Hence the BFX2 output of the coarse chains feeds 64
stages of latches which makes the data slope extremely high. The comparison
between the four different versions of the ASIC_TRNG#1 makes us also
deduce that using a custom latch and place and route the cells in a balanced
way assure better results.

Besides, the TRNG2 and TRNGS3 versions present better results first
because the fine delay chain is very thin. Second, unlike TRNGO and TRNG1,
TRNG2 and TRNG3 do not use buffering elements on the fine chain hence
the slope is very high. This make the structure of TRNG2 and TRNG3
sensitive to the voltage uncertainty around the MSS = VDTD position. In
fact, higher is the slope, higher is the sensitivity of latches to the vertical
noise. Consequently, we propose to study a new architecture of delay chains
based TRNG by enhancing the fine chains and coarse chain precision. In
the next sub-section, we describe the specifications we set for the new ASIC
design and present the principle of our novel architecture.

130

300 T T T T T
Stpyc from post PAR simulation +
" Measurements TRNG3 versions (ctr,ctrd,8tpyc.V) L]
200
+ +
- + +
> 100 + i i .
& . X .
> + i
= oL . (£,3f,-1.95ps,49.1%)
o
=4
Q
]
—
g -100
= (1f,1£,-110.7ps,48
8 + + + + + +
<
a 2200 + + + + + ;
+ + + + +
+ + + #
-300 + | |
+ +
+
-400
0 100 200 300 400 500 600

Delay control configurations

Figure 4.13: ASIC_ TRNG#1: measurement results vs. post PAR extracted
delays

Coarse chain tuning range

=

Clock Edge

_—
-100ps 0ps §tpe
Fine chain tuning range

Figure 4.14: Optimal region for randomness generation from comparison
between test-chip measurement results and post PAR extracted delays.

131

4.4 TRNG Design with Tri-states Buffers based
Delay Chains

4.4.1 Principle of the tri-state buffers based delay chains

Based on the previous conclusions on the ASIC_TRNG#1 characterisations
in the Section 4.3.3, we should:

e control with more precision the delays between the clock and data
along the fine chain,

e control the coarse delay with higher precision,
e decrease the latches chain,

o make the clock signal slope sharp and

o make the data signal slope very high.

We propose to use a delay chain designed with controllable tri-state buffers
as represented in the Figure 4.15.

Tri-state buffers drive strength of the upper block 1 and the lower block 2
are identical. However we use different delay elements (a buffer) on the input
of each block and consider the differential delay between them. The global
delay between the input delay block and the output delay block depends on:

e d2 — d1: the differential delay between the upper delay chain and the
lower one.

e N,: the number of active tri-state buffers in the upper delay chain
e N;: the number of active tri-state buffers in the lower delay chain.

We set the same number of active tri-state buffers on the block 1, N, as
on the block 2, N;, to get the same slope for each configuration and an
almost constant ¢ according to Equation (4.10) such as the waveforms of
Figure 4.16b.

_d2—dl
N

where N = N, = N;. In Figure 4.16a, the tri-state buffers outputs have
different slopes.

ot

(4.10)

4.4.2 Design description of the TRINNG with tri-state buffers
based delay chains

Three delay blocks are used to control the data-to-clock delay around the
metastable region (i.e. around 7. sempo). The architecture of the TRNG using

132

1[N —1:0]

4‘>—0 iTri—state buffer block 1

[T
e

Delay block input g I:‘ Delay block output

‘foiffiffiffif.‘,_‘;

d2 I% iTri—state buffer block 2

Figure 4.15: Differential delay principle using tri-state buffers.

the tri-state-buffers-based delay chains is presented in Figure 4.17 The tri-
state buffers block on data is called the small delay chain. It is used to control
finely the delay on data. The second tri-state buffers block on clock is called
the average delay chain which is used to control finely the delay on clock.
A third block is used to control coarsely the delay on clock. It is called the
large delay block.

We need to specify:

e The number NT of tri-state buffers constituting each of the 3 delay
blocks that introduce a small, medium and large tuning step delay. The
total delay introduced by the large block, AT, is arbitrarily chosen at
30 ps with a coarse tuning delay step of §tl = %. Hence, the ATa
have to be greater than dt/ which means that the medium delay tuning

step, dta, should verify Condition (4.11).

otl
ot — 4.11
0> (4.11)

133

1.2 12
1 1
~ 08 / / / ~ 08
2 I 2
2 0 % o6
: I :
> 04 /// > 04
0.2 W 0.2
0 </ 0
1 1.05 1.1 1.15 12 125 1.3 1.35 1.4 12 122 124 126 128 13 132 134 136 138 14
Time (ns) Time (ns)
(a) For all configurations (b) For configurations assuring the same slope

Figure 4.16: 2V possible delays through tri-state buffers based delay blocks.

Data 1 2 N-1 N
fine delay]

chain

ctrs Q Q o Q Q
Clock Clock

large delay —— average delay#

chain chain
ctrl ctra Q1 Q2 QN1 Qn

Figure 4.17: Architecture of the delay chains based TRNG using tri-state
buffers.

And finally the AT's have to be greater than dta which means that the
small delay tuning step,dts, should verify Condition (4.12).

ota
ot — 4.12
5> (412)

So, we summarize these conditions into Equation (4.14).

o Buffers which introduce a global initial delay on the clock equal to
Tsetupo such as given in Equation (4.13).

o Buffers on data and clock inputs of the latches assuring a high clock
slope and a low data slope.

e The number of latches: As the latches represent the load, the number
of latches N influences the clock and data slopes. The larger N is, the
greater is the slope.

134

The following conditions are used to specify d1 and d2 buffers drive
strength for each of the three delay tri-state blocks (Figure 4.15).

clk_del = Tyerupo (4.13)
MX(H_ﬁ)
NT 1007 v (1 + ﬂ) ATI m
Sts = NT NT 100/ — s < (Lt ﬁ)2 (4.14)

where:
e m represents the overlapping margin we set arbitrarily for the 3 blocks.

e NT the number of tri-state buffers used which corresponds to the
number of possible delay intervals.

e Ots the tuning delay step of the small delay block.

Later we will be referring to the 3-uplet (ctr__large, ctr_average, ctr__small)
respectively the decimal values of the control bits of the large, average and
small delay blocks. Next, we move to the place and route process and the
simulations of the tri-state buffers delay chains based TRNG.

135

4.4.3 Post place and route simulations

The TRNG layout was carried out with special attention to the placement of
the delay chains standard cells. The tri-states buffers constituting each delay
chain are tightly placed in columns to assure small wire lengths and thus
small delays. Figure 4.18 presents the layout of the tri-state buffers delay
chains based TRNG. Latches are tightly placed in a single row to guarantee
also small wire lengths between them.

50.35 um

SR] ErE

e ; e R
' i

HEEENE

Small-delay eliain
5 103 ST

S

40 um

SRR

B R

ENET : = g
B -@ S
i ol
e : I I : Gt
g s A R

Figure 4.18: Layout capture of the tri-state buffers delay chains based TRNG.

After the place and route process, we perform post layout parasitics
extraction. Then, post layout simulations are carried out for all delay con-
figurations. Figure 4.19 shows all the possible delays for the 1331 = 113
possibles cases. If we zoom this figure we can see that we managed to sweep
the whole metastable region with a step of the order of tens of femto seconds
where:

e ATs = 0.5 ps — fts = Algs ~ 0.05 ps the tuning delay step of the
small delay block.

136

e ATa = 3.7 ps — dta = Alga ~ (.37 ps the tuning delay step of the
average delay block.

e ATl =30 ps— dtl = Al—:ga ~ 3 ps the tuning delay step of the average
delay block.

The fine tuning delay, ¢t introduced by the routing wires along the latches
chains is equal to 01%4 = 0.02 ps where N = 16 latches. This small tuning
delay allows to sample the data signal at multiple latches in the metastable

region. Figure 4.20 shows that Q[0] state flips for the position (15,7,31) for

-85
™,
-90
\\
-95 NN

; N\
100 \\\

-105

-110 N
115 \\\\
-120 \P\

-125
0

Data-to-clock delay (ps)

200 400 600 800 1000 1200

Delay control configurations

Figure 4.19: Feasible delays for different ctr_large, ctr_average and
ctr__small from post PAR simulation for typical corners.

typical corners. Figure 4.21 presents the waveforms the 16 latches outputs
in typical case without any noise. It shows that all the latches outputs are
metastable for the delay configurations (63,63, 31). Besides, some outputs
settle down to OV and others settle down to Vpp. The high precision of the
delay tuning allows to make all the latches operate in the metastable region
for several delay configurations. We also performed the same simulations
for worst and best cases of working conditions. Table 4.12 also reports the
optimal delay configuration for which some latches present a metastable
behavior.

Post PAR simulation results shows that we managed to design a very high
precision delay chains. Post PAR simulation results of the tri-state buffers
based TRNG are better than the TRNG designed with multiplexors based
delay chains. This very fine tuning capacity allows to extract a high entropy
at the TRNG output. Besides, as all the 16 latches are metastable, we do

137

15 & :tb_trng:ctr_large[9:0]

| @ :tb_trng:ctr_average([9:0]
5T X@5s 127 X63 3T 15 7 3 2] th_trng:ctr_small[9:0]

1 V(:tb_trng:dut:\ltchs/latches[0].ltch :2)
1. " —
=
1.0
0.9
0.8
s 07 1 to 0 Flip
g 0.6 at (ctrlctra.ctrs)=X(15,7,31)
D o5
0.4
0.3
0.2
0.1
0.0 — b — —
0.1
1. V(:tb_trng:dut:\ltchs/latches[15].Itch :7)

1. — — —
11
1.0

0.9
0.8

s 07
o 06
Z o0s 1 to 0 Flip
0.4 at(ctrl,ctra,ctrs)=X(15,7,127)
0.3
0.2
0.1
0.0— — (S S [[L

-0.1
r~ 1. ~r+-fr°t o r o r o1 ol T T T T r o 1 7
710.0N 720.0N 730.0N 740.0N 750J0N 760.0N 770.0N 780.0N 790.0N 800.0N 810.0N 820.0N 830.0N 840.0N 850.0N

Time (s)

Figure 4.20: Q[0] and Q[15] waveforms shows the state flipping respec-
tively for (ctr_large, ctr_average,ctr_small)=(15,7,31) and (15,7,127)
from post PAR simulation

not apply the XOR at the latches output. This multiplies the TRNG bit rate
by 16. The post PAR simulation results of the ASIC_TRNG#2 introduced
in this chapter assure a very promising novel TRNG design. At the time of
writing this manuscript, test-chips of ASIC_TRNG#2 prototype are not yet
delivered. Standard statistical tests will be performed in our laboratory as
soon as they are delivered.

138

1.2

0.8

0.6

Latches outputs (V)

0.4

0.2 i

30.4 30.5 30.6 30.7 30.8 30.9 31
Time (ns)

Figure 4.21: Metastable states on latches chain outputs at (ctr_large,
ctr_average, ctr__small)=(63,31,31) from post PAR simulation.

Process Temperature(°C) VDD(V) Optimal delay configuration
(ctr_large, ctr_average, ctr__small)
Fast-Fast -40 1.3 (3,63,15)
Typical-Typical 25 1.2 (15,7,31)
Slow-Slow 105 1.1 (63,31,7)

Table 4.12: Optimal delay configuration depending on process variation and
environmental conditions.

139

4.5 Conclusion

In this chapter we presented the ASIC implementation of the delay chains
based TRNG, the following methodology have been used:

e First, choose narrowly TRNG elements in the cells library to assure
the metastability appearance, then

o carefully constrain the TRNG layout and integrate the TRNG as a
black box block into an automatically PAR test-chip design,

o perform simulations in typical, best and worst case conditions with the
addition of noise

o confront the stochastic model proposed in the previous chapter to the
test-chip measurement

« finally, apply statistical standard tests to evaluate the randomness of
the delay-chains based TRNG implemented in ASIC.

We presented the measurement of the impact of temperature, power supply
voltage and process variations on the ASIC_ TRNG#1. The measurement
results on the TRNG prototype are consistent with theoretical and simula-
tion results. After characterisation and evaluation of the ASIC_TRNG#1,
we proposed an enhancement of the delay chains based TRNG. The new
proposed TRNG architecture allows:

o very fine delay tuning
o high entropy extraction
e to multiply the bit rate by 16

Measurements on the second version of the delay chains based TRNG,
ASIC_TRNG#2 proposed in the second section of this chapter will be carried
out in our laboratory as soon as the test-chips are delivered.

140

CHAPTER b

Study of the Delay Chains
based True Random Number

Generator for FPGA
Technology

5.1 Introduction

The TRNG architecture of the delay chains based TRNG is highly sensitive to
any routing imbalance in the design. The FPGA implementation of such an
architecture is more challenging than its implementation in ASIC technology.
This is mainly due to the fact that Xilinx FPGA vendor do not provide any
information about how to constrain the routing of a design. In this work,
we propose to counteract the automatic place and route process to apply
the delay chains specifications of the TRNG. In the section 5.2, we present
the design methodology to implement the TRNG in FPGA technology while
taking care on the delays during the placement and routing steps. Section 5.3
is dedicated to the primary results of the FPGA implementation of the delay
chains based TRNG. Finally to validate the TRNG implementation, we
present the experimental results and statistical evaluation of the sequence
generated on the Virtex 5 FPGA.

5.2 FPGA Implementation of the Delay Chains
based TRNG

Thanks to their flexibility, reconfigurability and short time-to-market, FPGAs
are extensively used in cryptography research. This is why the need for
FPGA-based TRNGs has grown. The design of delay chains based TRNG
is more challenging on FPGA technology than in ASIC technology. First,
because of the difficulty to manipulate the routing in FPGAs. Second, unlike
ASIC, transient noise models of the FPGA primitives are not provided by
the vendor. Hence, unlike ASIC technologies, we cannot simulate the TRNG
random behavior. However, we can program the FPGA as many times as we
want until we find the optimal delay chains design which provide the best
results. In the following subsections, we present specifications and problem

141

statement of the adaptation of the delay chains based TRNG to FPGA
technology. In fact, in the first sub-section, we study the feasibility of the
generic design and the idea that we propose to get small differential delays.
Then, we present the design methodology to implement the delay chains
based TRNG in Xilinx FPGAs.

5.2.1 Specifications and problem statement

As the randomness quality of the generated sequence depends closely on the
shrewdness of the delay along the latches, we need to check the quality of
the output each time we modify the routing. In fact, with a first acquisition
on FPGA of some hundreds of bits, we can not simply tell if the TRNG
output is random enough, we need each time to run the standard statistical
tests. So basically we have to proceed with the trial-and-error method such
as represented in the diagram of Figure 5.1. In case of the statistical tests
failure we need to readjust the placement constraints. We re-iterate each of
the steps of Figure 5.1 until it passes all the AIS-31 statistical tests.

Next, we describe the design methodology that we propose in order to
balance the routing inside the TRNG design on the Virtex 5 FPGA.

5.2.2 Design methodology
5.2.2.1 Delay chains specifications

We propose to implement the delay chains on data and clock paths using
Look-Up-Tables (LUT) with different inputs. Depending on the LUT input
used, we can get different delays according to the routing path used through
the switch box. In fact, this difference of delays is not due to the propagation
time of the LUT itself. It is due to the different routing paths dedicated to
each LUT input. This is illustrated in Figure 5.2.

So we propose to use different LUT input for each delay chain and consider
the differential delay introduced by the differences in the routing paths. This
is illustrated in different colors in Figure 5.3. The data delay chain is routed
through the I3 LUT input and the clock delay chain is routed through the
I5 LUT input. The challenge of designing the delay chains based TRNG
structure of Figure 5.3 lies in the placement and routing process. The PAR
process needs to be very carefully considered and checked to meet the delay
chains specifications.

The fine chain on the clock path has to be the clone of the fine chain
on the data path(i.e. the reproduction of its placement and routing) in a
way that both data and clock fine delay chains verify respectively Conditions
(C1) and (C2).

(5lD’i = 5ZDVi € [I,N] (Cl)

142

Placement Constraints RTL level

Timing Analysis

Do not match specifications Y —
Delays

FPGA
Reconfiguration

TRNG traces

Fail

Statistical Tests

Figure 5.1: Trial-and-error procedure for the TRNG design on FPGA

Oloi = Sl Vi € [1, N] (02)

If the differential delay, 0tpc = dlp — dl¢ is not zero, we can perceive a
race between the data and the clock signals along the fine delay chains. At
each latch, one signal catches up the other with a dtpc increment.

Xilinx CLB contains two registers that can be configured as flip-flops
or latches (level sensitive mode). However, these primitives are hardened to
avoid metastability [A1f05, Xil97]. In fact, their Mean Time Between Failure
(MTBF) is very high as presented by Xilinx in the reliability application
note of Virtex 5 device [Cha]. We decided thus to implement a custom latch
using an LUT. The proposed structure is designed with an LUT configured
as a MUX21 where the MUX output is forwarded back to an input and the
selection input acts as the enable input of a latch. This way, if S="1", the
custom latch is in data copying mode else if S="0’, the custom latch is in
the storage mode.

143

Switch matrix

Routing path Q| ;o

B I1
12 ow

13
; 14
Routing path 51 /=

LUT6

Figure 5.2: Different routing paths inducing different delays.

5.2.2.2 Place and route process

The problem here is that the Xilinx place and route tools perform many
verification and timing optimisations all along the design flow. In order to
avoid these optimisations, we need to hard-protect the delay chains in order
to guarantee the same placement and routing along the chains.

Xilinx provides some specific features that permit to add placement con-
straints options on the RTL level and disable any undesired optimisation.
Xilinx user guide document [Xil09] gives details on the syntax of the place-
ment constraints to use in the RTL. The constraints we use for the TRNG
design are cited below:

e SAVE NET FLAG (S): When used on a net, this placement constraint
prevents from the net removal.

e LOCK_PINS: The LOCK_PINS constraint is used on a primitive to
avoid the LUT inputs swapping. Meaning that when adding this con-
straint on a LUT instantiation, we assure that the placement tool does
not make any modification to the LUT mapping specified by the user
on the RTL code.

e KEEP Prevent from undesired optimisation. Since we instantiate 6-input
LUT with a true boolean function in the truth table, Xilinx tool would
manage to entirely remove the LUT used and replace it by a simple
wire.

o Explicitly specify the truth table. When instantiating a primitive in
the RTL code we can specify the truth table. Through the truth table
we can force the use of specific inputs of a slice or a LUT.

144

Fine Delay Chain on Data

()-lul

10
Il

15
LUT6

CLK Stpe <*

\L Fine\LDelay chain on Clock

@1 Q2 Qv
Figure 5.3: LUT based implementation of the fine delay chains of the TRNG.

e LOC, RLOC, RLOC_ORIGIN: These constraints are very convenient in
our case since they allow to specify the location of the SLICE used. LOC
would force the tool to use a primitive of an exactly specified SLICE X
and Y coordinates. RLOC different from the LOC constraints as it makes
the placement tool use a relative position to another block instead of
specifying an absolute position. RLOC_ORIGIN is used to specify the X
and Y coordinates of a hard macro.

We set the truth table of the delay element as a bit wise AND function.
Then we add the following constraints to the RTL source code of the delay
element module:

e Put the SAVE NET FLAG (S) constrain on the input nets of the 6-input
LUT

e Set the option LOCK_PINS constrain on each LUT used
o Use the KEEP constrain to make sure all the nets of the bit wise AND
is kept

To make the tool route through all the routing resources of each switch
box of each delay element, we configurate the LUT as a bit wise AND. Later
we would extract all the corresponding delays to compare and choose the
optimal LUT input considering the fine delay chains specifications. Then to
make sure that fine chains are identical we use hard macros. A hard macro is

145

a part of a placed and routed design. It allows to preserve the placement and
routing inside an instantiated black box if it is used in the same resources.

For each hard macro design (coarse chain hard macro and fine chain
hard macro), we go through the same flow. Figure 5.4 illustrates the hard
macro generation flow of each of the delay blocks. Hard macros are stored
in NMC files, a Xilinx specific file format that is quite similar to NCD files,
already used to describe classic netlists. A custom script has been developed
to automatically generate the hard macros.

Netlist Placement

with primitives Constraints

)
&)

Conventional Xilinx flow
[

\L 'S
.ned
FPGA
.nmce
editor
FPGA editor script generator}%k)

Figure 5.4: Hard Macro generation flow.

Each hard macro is a placed and routed design which will be instantiated
later as a black box. The Hard macros do not contain any input or output
buffers IOBs. Figure 5.5 illustrates the floor plan of the chains constituting
the TRNG implementation on the Virtex 5 FPGA.

In an intermediate design we instantiated all the hard macros (Figure 5.5).
In the next step, we use the ReportGen Xilinx tool to generate the timing
report. In fact, at this point of our design flow, latches and delay chains are
placed on the FPGA matrix, but the data-to-clock race is not yet guaranteed
and the coarse chain is not yet controllable. With the reported timing delay,
we have obtained the following possible differential delays for the fine chains.
The results are reported in Table 5.1.

Depending on the delay results, we get (Table 5.1), we need to choose
the optimal LUT input to use. I1 and [2 are dismissed as they introduce
a differential delay equal to zero. I3 and I4 induce the same differential

146

E . . £
ERE | i -
) 3 o %
5 . <]
% = : : 2 =
< O : : < =
o« . o =
O & M M © 3
¢ M 8 =
8 l Latches l =
O chain A
|1:| """ Latch 1 |1:|
i =
z 2 =z 0
= 2 = o
S & S &
g = v =
= =
& B A=l
% 3 3 =
& & = T
© . Latch N A

Figure 5.5: Integration of the delay chains hard macros.

delay dtpc = 13 ps. Hence, there are only two possibilities to consider: 14
or I5 LUT input for both fine chains. We need to test both designs, one
with the I4 selected input and another design with the I5 input. To do
so, we need to modify the truth tables in the already placed and routed
design. LUTs truth tables have to be modified to consider only the chosen
routing resources through the I5 LUT input. In this step of the design, we
have the choice to use simply the FPGA Editor tool or the RapidSmith tool.
RapidSmith [LPLT12, Uni] is an open source library specifically designed
in order to manipulate XDL netlists. First, we need to export the names
of all the instances we want to modify. For this purpose, the intermediate
design NCD netlist is converted into an XDL file. Then, we use the java
class, design.Instance from RapidSmith to list the names of all instances
corresponding to the fine chains elements and modify them. As we used the

147

LUT input clock chain data chain dtpo

10 1040 1040 0
11 1091 1091 0
12 937 937 0
13 544 957 13
14 570 583 13
I5 461 471 10

Table 5.1: Table of the realisable fine chains differential delays depending on
LUT inputs selection (in ps).

RapidSmith to do this, we use it also to modify the truth tables. Finally
we generate the final processed netlist XDL. This processed XDL netlist is
converted back into a final NCD binary file.

5.3 Primary Tests

The last step of the flow from Figure 5.1 is to generate the final bitstream from
the post processed NCD netlist and load it in the Virtex 5 XC5VLX50T on
the Genesys board. Then we perform 100 acquisitions of 1M bits of samples
on the FPGA board to see if the frequencies to get ‘1’ at the TRNG output
is around 50%. The frequency of occurrences of 1 at the output of the TRNG,
Utrngo 18 Teported on the Figure 5.6 for each acquisition.

To compare the traces from the TRNG designed with custom latches and
DFF primitives, we report the zoomed out of 20K bits sequence generated
by each design respectively in Figures 5.7a and 5.7b. We notice from the
Figure 5.7 that in the bitstream of DFF primitives based TRNG, a pattern
is regularly generated whereas it is not the case for the pattern generated by
the custom latch LUT based TRNG.

What is left to do now that we have the final design is to verify the quality
of randomness of the sequence output. We propose to perform both NIST
and AIS-31 battery of tests to validate the design. This part is presented in
the chapter 5.

5.3.1 TRNG throughput

The advantage of this TRNG structure is that it generates a random bit per
clock cycle. This allow to reach better throughputs than the one proposed
until now. As the throughput of the TRNG is limited by the clock frequency,

148

100

v‘trngo=1)‘ —_—

[e]
o

(o)
o

40

Frequency of trngo="1"

[\
(=)

10 20 30 40 50 60 70 80 90 100
Index of the acquisition

Figure 5.6: TRNG output for 100 different acquisitions on Virtex 5 FPGA

we only need to report fux. Equation (5.1) gives the frequency limit of the
TRNG clock fqr denoted Femay -

1
(M = 1) % (DTue + dTig) + N % (DTje + dThur))

Fenar = (5.1)

where:
e dT},; represents the propagation delay of an LUT

e DT,.. = the maximum delay between propagation delay on data coarse
delay chain and the propagation delay on clock coarse delay chain)

e DT}y, = the maximum delay between propagation delay on data fine
delay chain and the propagation delay on clock fine delay chain)

M the number of MUX used in the coarse delay chain

N the length of custom latches chain

According to the timing analysis report, the maximum frequency the
TRNG can achieve is about 22 M H z. This value can be enhanced using only
16 latches and 4 MUZXes on the delay coarse chains making the TRNG reach
a throughput of 88 Mbps.

149

5.3.2 TRNG design complexity

In case of our design on Virtex 5, we use :

e 2 coarse delay chains of 12 LUT,

e 2 fine chains of 64 LUTs,

e 64 custom latches design with 64 LUTs, and

e 4 LUT for the XOR tree to generate the final TRNG output.

However, to balance the routing through the delay chains, we place fine
and coarse delay chains in columns of SLICES. Moreover, it is important
to note that each chain is used as a black box Hard Macro and avoid using
resources allocated for the TRNG design when it is embedded with other
blocks. Consequently, only one LUT is used per slice. Hence, the TRNG core
occupies 224 slices. So, this implementation occupies about 4% of the FPGA
Virtex 5 slice resources. It is also interesting to mention that the design
is reusable at different locations of the FPGA. Measurement tests on the
FPGA board were done for different design locations and it was verified that
the TRNG keeps the same performances regardless its location. Table 5.2
reports the comparison of our TRNG FPGA design vs. two other recent
implementation of metastability based FPGA TRNGs [MKD11, HI12] in
terms of complexity and throughput.

Reference Device Number of Slices Throughput
Our design [LBRGD13] Virtex 5 XC5VLX50T 224 20 Mbps
Hata et al. [HI12] Virtex 4 XC4VFX20 580 12.5 Mbps
Majzoobi et al. [MKD11] Virtex 5 XC5VLX110T 32 16 Mbps

Table 5.2: Comparison of existing metastability based TRNGs implementa-
tions in FPGA Xilinx devices in terms of complexity and throughput

The next section is dedicated to the TRNG tests, measurements and
statistical evaluation of the FPGA implementation of the delay chains based
TRNG

5.4 Experimental Results and Statistical Evalua-
tion
5.4.1 Statistical tests evaluation in typical use mode

Standard statistical tests were performed on the implementation described in
Section 5.2 on the Virtex 5 Xilinx FPGA. Tables 5.3 and 5.4 give respectively
the results of the AIS-31 and NIST statistical tests.

150

AIS-31 tests Final result

| | |
| Disjointness test TO | pass |
‘ Monobit test T1 ‘ pass ‘
‘ Poker test T2 ‘ pass ‘
‘ Run test T3 ‘ pass ‘
‘ Long run test T4 ‘ pass ‘
‘ Auto-correlation test TH ‘ pass ‘
‘ Uniform distribution test T6a ‘ pass ‘
‘ Uniform distribution test T6b ‘ pass ‘
‘ Test for homogeneity T7a ‘ pass ‘
‘ Test for homogeneity T7b ‘ pass ‘
‘ Entropy estimation test T8 ‘ pass ‘

Table 5.3: AIS-31 statistical tests for the FPGA TRNG (test procedure A
with von Neumann PP and test procedure B without PP).

5.4.2 Evaluation study in environmental variation

Table 5.5 reports the results of the test procedure A of AIS-31 statistical tests
for different coarse chain configurations Tests are applied on raw sequences.
In Table 5.5, P refers to successful results and - refers to the failure of 2 tests
over 15.

Results of Table 5.5 are satisfactory since 80% of the delay configura-
tions meet the statistical requirements of test procedure A without post-
processing. Nevertheless, as AIS-31 standard does allow post-processing on
the sequence tested, we perform also the tests for the same sequences with
post-processing. The corresponding results are reported in Table 5.6. The
table reports that over the 81 possible configuration only 15% fails the PTG.1
class statistical tests. Table 5.7 reports the results of test procedure B with-
out post-processing for all the delay configurations. Results report of the
ATS-31 statistical tests are given in Table 5.11 of the Appendix. NIST statis-
tical tests are also applied on the TRNG FPGA generated sequences. The
NIST test suite for TRNGs consists of 15 statistical tests such as specified
in [RSNT10]. NIST tests are applied on sequences of 20 Mbits for different
configurations of coarse chains. To compensate the encvironmental variations,
more delay configurations should pass the statistical tests. Hence, we apply
a Von-Neumann post-processing on the TRNG output. The corresponding
results are given in Table 5.8. P means all the NIST statistical tests were
successful while - means that two tests failed and P; means that all tests

151

‘ NIST statistical tests Final result

| |
| Frequency | pass |
‘ Block Frequency ‘ pass ‘
‘ Cumulative Sums ‘ pass ‘
‘ Runs ‘ pass ‘
‘ Longest Runs ‘ pass ‘
| Rank \ pass \
‘ FFT ‘ pass ‘
‘ Non Overlapping Template Matching ‘ pass ‘
‘ Overlapping Template Matching ‘ pass ‘
‘ Universal ‘ pass ‘
‘ Approximate Entropy ‘ pass ‘
‘ Random Excursions ‘ pass ‘
| Random Excursions Variant \ pass \
‘ Serial ‘ pass ‘
‘ Linear Complexity ‘ pass ‘

Table 5.4: NIST statistical tests results of the FPGA TRNG with Von Neu-

mann post-processing

passed except the universal test.

Details on the NIST statistical tests results are given in Table 5.10 of the
Appendix. The statistical tests results tables, presented above, show that the
TRNG pass the tests for 83% of all the delay configurations. This guarantees
that the TRNG presents good statistical proporties regardless its working
conditions variations. Tests on working conditions variations on the Virtex 5
TRNG design should be conducted to extend the FPGA results presented
in this chapter. After the analysis of temperature and power supply voltage
variations impact on the TRNG, the design complexity can be lighten and
its throughput increased by reducing the number of cells composing each of
its delay chains.

152

\:;;;\\:fij 0x00 0x01 0x03 0x07 OxO0F O0x1F O0x3F O0x7F OxFF

0x00 P P P - P - - P i
0x01 P - _ _
P

|
|
0x03 \
0x07 \
0x0F \
|

|

|

|

i~ B el el B!

SRR el Bl B!

0x1F
0x3F
0x7F
0xFF

||

vl Bav el Bavl lav

el B~ el Mavl Bavl B!

a2 Ba~A el Bavi Bavh Bavl av
B BavH el Bavi Bavh Bavl av
DWW v v

Table 5.5: Results of AIS-31 tests of PTG.1 class for different coarse chain
configurations on raw sequences (-: Fail, P: Pass).

\;;;;\\:fij 0x00 0x01 0x03 0x07 OxOF Ox1F O0x3F Ox7F OxFF

0x00 | P P P P p p P P P
0x01 |
0x03 |
0x07
0x0F
|
|
|
|

vl Bavi el Bas

SRR AR R

0x1F
0x3F
0x7F
O0xFF

AR e R A

B Ba-H Bavl Bavh Bavh Bavl lav
- B el Bavi Bavh Bavh Bavl lav
-l el Bavi Mavh Bavh Bavh lav
B Ba~R Ba~R BaE Bavh BavBlav

el
T

- e~ Mavl el Ba vl e vl Bia ol ia e

Table 5.6: Results of AIS-31 tests of test procedure A for different coarse
chain configurations with post-processing (-: Fail, P: Pass).

153

1111110110111

11:
1000011111 11011101111110000001: 101 101101110111011110001 1010110100010
1010110111 0 101101111610110101116011 1. 110101001
n)eoeanmemnmaamnm11 111 1011101000111011111111111110000111016: 1110001100011160011010
0001011 0 111016001111116110010101011111011011001160001016111010011001110
1201300110 10111100111011111000011000111101011001101011100000011111111000100000011011161100000
““u“uuuenennemmmx 1010160111 10010001111001 10610011011 CMRATLINCER AT
110011100101 L s e 000000111160
1001001101101111100111010110011100010011011010161 101101 90000100101001100000011100100010110110110011010
11011011001111610110161 11001011100001101000011 11110011100110101101010110011101 1001160011000
1110001111161001101101161110101161061 10100101161111000061160111111110000601111 116011110011101

61160010000110061101001010110101111001111600111100111016111611006116101611101111010101011110011000000110011006161161101161061
91001001100101011110011001110010000111101111161010111011100010110101111000100010111111001100111110101011091101101001100101161

110101111110100111000109110111111016011011111101 11101011 1101101001 011111101
1100101110001011100111010011101061 1 1 1100110110100 1011 11100110011
01011001110011161611111100110000011 10011 111010011001011110011016110010111101
1n1mnnnm1oammmsnnemnmnmmnmnumnmnemm;mummnu»mnu»a:neua:mu]namuamnnnen]nemeamunm]nem
o 10100110016011161 01111000116011000001110161001100160111011
110111001 111010100101111111101 1001110101101
1016101110101001 160011 101 1100010001 100001110011010
100008101 100011 1110110011000
110011 101111111
116001 110011
101101011
00001011 110010

(a) LUT based custom latch

600001111111111111110000001111111111 11111111106009011111111111111000990011111111111111000000111111111111111000000111 1111111 1
111 111 111 11 111111111
1111111111000000111111111111116090001111111111111110000111111111111110000001 11111111 1111 1111111111116000011111
11111111600000011111111111111000600011111 1060690091111111111111600600011111111111111000600111111111111100000001111111111111008009001111111111111600
00111 L1111110000000011311111111100000 1111111000600011111111111110060000111111111111100000091111111111111100000001111111111111000600011111111,
11166000 1111009000001111111111 6111111111111100006900111111111111000890001111111111111080000081111 11000900001111111111111090000061
11111111 wsnosnsnu 1111000000001 1000000001111 1000000111111 1000000011111111111100000900111111111111100090000111111111
000908111111111111 111111100 11111 11111111 111111 11111111
11000000 0011111111111 00111111 1 001
11 111111111060060001111 11001 1 11111011 111111 111111111
0011111 10000000111111111111000000001111111111111100000011111111 00111111 1000000011111 600001111111 600000001
11110000 111111116060060111111111111109600091111111111110900080 1110000 11100060 1111000606 111100
009111111111 9011111111111111060001111111111111106660001111111111111 11111111 11111111 11111111 111111
00000011 1110000001111 11090000011111111111111000009011111 00000111 90000011 0000011111 900000
111 11 111 11111111 111111 111111 11111 111111
11111111 11
10000000 000
11111111 1111111 11111111 111111 1111 1111 111 11111111
00000001111111111111000609011111111 9006001 11111111111110000080111111111111110000000111111111111110008001111111111111160600001 1111111 160000000111
11111 1ueeeeaam 111111110060001 11111116000900011111111111111680001111 111110096901 1111111111111000¢ 1111111006000011111111111116980
00111111 10000000111111111111110009000111 0000000111 1000000001111 110000000111 11111 0000011111111
Soe00B0B 1111111101 11110 1111100 1111111 111111111 00000061
001 001 600
11111 111111111006 11111111111100600000111111 0111111 111111111 111111111
600006000111111111111160606061111111 66000001111111111111000000011 1111100909001 1111116000600111111111111160060000111 6600000111
1111111110000000011111111111118060061 1111111000060011111111111110000006011111111111110600009111111111111110000690111111111111100066000: 11111160000
6001111111111111100600001111111111111 11 60960111111111111100096011111111111111. 1 11111 111
9008001111111111111060606011111111111111100900811 11111 6060 9000000111111111111100000000111111111111110989090111111111111116000001111111
11111090600011111111111111006011111111111111160000081111111111111 111111111100060001111111111111116000091111111111111100000111111111111111100000.
1111111111111000000001111111111110006000011 1000600011111111111111160000011111111 9990011111111111111100000611111111111110000006111111111111
6000000111111 1160000111111111111111000000011111111111111000000111111111111100000001 1 10000000111111111111110000000111111111111110000000111
1111111 11111 1 11111116 111111 111111 11111 1111000
0011 1 000000011 001 0111111111 0001 111
160
001 007 o1 1 6001
11111 1061 11111 1001 1 110 1061 1001 111
60006600 6000061 6000 601 60 60001 6000061 6600
1111111 1111 111111 o0 1111 1 1111000060 11111000000¢ 11t 1111
80111111 11111111, 001111 1 EEETES 016 111111111, 1t 1111
11111000001 100000111 111100000911 16060011111111111111666000011 1000001 10000001 10000
11 11111 11111 11111 1111111166 1111111 TETETEES 1111
6000000111111 6900011111111111116000008611111111 6000061111111 6000066111111 60000661111111111111000066001111111 6000060111111
1111111160000 11000906001 111100000061 1111111060000 109060001 11110900600111111111111110600001
eI 11111166 111111 11111111111 111111101 1111111 1111 111
0000001111 00001111111 000000111111 100000000111 000111111 00000011111111111110000000111111 0011111
011
10000000111 1 111 11 10600900111111
111111111066 000 060 000 6600000061 11111116
0001111111111 0111111111111 0001111111111111 91111111111111110090001111111111 0001111111111111600999901111111111 00001111111
0009091111111111111600 11110000600
1111111111100 1111111111600 1111111111160600 11111111116000000111111111111100¢ 11111111110600000011111111111111 1

(b) DFF primitives

Figure 5.7: Random pattern of the output of the delay chains based TRNG
designed with:

154

\:;;;\\:fij 0x00 0x01 0x03 0x07 OxO0F O0x1F O0x3F O0x7F OxFF

0x00 - P - - - - - - -
0x01 P - - - P j

|
|
0x03 \
0x07
0xO0F ‘ _
|
|
|
|

el B!
vl Bav)

el BavA el Bav

el
T

0x1F
0x3F
0x7F
0xFF

B BavE !

Table 5.7: Results of AIS-31 test procedure B for different coarse chain
configurations without any post-processing (-: Fail, P: Pass).

\;;;;\\:fij 0x00 0x01 0x03 0x07 OxOF Ox1F O0x3F Ox7F OxFF

0x00 | P r p p P P P _
0x01 | P
0x03
0x07
0x0F
|
|
|
|

el el !

A el Bavl av
N |

0x1F
0x3F
0x7F
O0xFF

el R AR R PR -

el

IR E IR E
TR R T R T R I R

~

IR IR TR R TR R

T vl v B VR e~ B VR B VI B VRl B
IR I E IR IR IR

v | v

B v

Table 5.8: NIST results for different coarse chain configurations with post-
processing.

155

5.5 Conclusion

In this chapter, we study the feasibility of the delay chains based TRNG in
FPGA technology. A design methodology is proposed to bypass the auto-
matic PAR in FPGA. We managed to obtain a fine differential delay to force
the appearance of metastability. The delay chains based TRNG proposed in
this Ph.D work has proven to be feasible on both FPGA and ASIC. Even
though the FPGA design requires special care on the placement and route
process, the TRNG FPGA version presented better results. In fact, the test-
chip characterisation results have shown that the level of noise on FPGA is
five times higher than what is perceived on ASIC test-chip.

156

Conclusion and perspectives

General Conclusion

This manuscript presents research works concerning modeling, characterisa-
tion and design of a delay chains based TRNG which exploits both voltage
noise and phase noise. A study of the feasibility of delay chains with high
precision in FPGA and ASIC technologies has been conducted. The study
has been validated by designing prototypes in FPGA and ASIC technologies.
A stochastic model has been proposed for the delay chains based TRNG. It
allows the designer to express the random behavior of the TRNG, and estab-
lish the theoretical probability of getting one at the TRNG output, regardless
the targeted technology. The FPGA and ASIC implementation and valida-
tion represent major contributions of this work. Three target prototypes, two
ASIC in CMOS 65nm technology and one Xilinx FPGA have been studied.
The design method has been adapted at every stage: architecture with cell
choice, place and route, simulation and validation. Thus it offered a good
base to characterize and assess the quality of the randomness issued from
the TRNG. Simulation results have been intensively used to calibrate the
architecture and assess the quality of randomness. The two first prototypes
have been tested with NIST and AIS-31 statistical tests which are applied
for many configurations of the tuning coarse chains. It has been noticed that
the level of noise on ASIC is much lower than on FPGA and needs accurate
delay control and precision. Two types of delay controls for the coarse chain
have been proposed. The first one with a chain of multiplexers and the sec-
ond one with open-drain buffers. Associated with a dynamic control of the
best configuration, the TRNG architecture could be automatically adjusted
to deliver the best randomness regardless environmental and technological
variations.

Perspectives

As future works, statistical tests will be conducted on the second ASIC
prototype which was not delivered when writing this manuscript. An other
feature should be added within the TRNG to provide online statistical test-
ing and rise an alarm in case of entropy abnormal situation or malevolent
perturbations. This feature is also required to be compliant with certification
standards. The online test block should take into account the low complex-
ity constraint, specifically important for lightweight applications. The fault
injection analysis will be carried out to evaluate the impact of over-clocking,
laser fault injection and electromagnetic injection attacks on the quality of

157

randomness. This will check the efficiency of the online testing and give some
insights to enhance the architecture against attacks.

158

1]

Publications

Molka Ben-Romdhane, Tarik Graba, and Jean-Luc Danger.
Stochastic model of a metastability-based true random num-
ber generator. In Michael Huth, N. Asokan, Srdjan apkun,
Ivan Flechais, and Lizzie Coles-Kemp, editors, Trust and Trust-
worthy Computing, volume 7904 of Lecture Notes in Com-
puter Science, pages 92-105. Springer Berlin Heidelberg, 2013.

M. Ben-Romdhane, T. Graba, J.-L. Danger, and Y. Mathieu.
Design methodology of an ASIC TRNG based on an open-

loop delay chain. In New Circuits and Systems Conference
(NEW-CAS), 2013 IEEE 11th International, pages 1-4, 2013.

Florent Lozach, Molka Ben-Romdhane, Tarik Graba, and Jean-
Luc Danger. FPGA design of an open-loop true random num-
ber generator. In Digital System Design (DSD), 2013 Euromi-
cro Conference on, pages 615622, 2013.

Molka Ben-Romdhane, Tarik Graba, and Jean-Luc Danger.
ASIC enhancement of a delay chains based true random num-
ber generator. Under preparation.

159

NIST standard statistical tests results

Appendix

| ¢1 | Cc2 | €3 | C4 | C5 | C6 | CT | C8 | C9 | C10 | P-VALUE | PROPORTION | Result | STATISTICAL TEST
8 10 6 7 12 10 13 13 13 8 0.699313 100/100 PASS Frequency
12 13 15 9 11 10 11 5 8 6 0.474986 99/100 PASS BlockFrequency
11 6 8 6 8 5 14 18 13 11 0.075719 100/100 PASS CumulativeSums
8 10 9 11 10 7 12 9 13 11 0.964295 99/100 PASS CumulativeSums
9 11 13 10 10 8 14 8 13 4 0.534146 100/100 PASS Runs
9 6 9 9 10 15 7 17 12 6 0.202268 99/100 PASS LongestRun
8 14 11 9 8 9 10 10 14 7 0.816537 100/100 PASS Rank
15 15 7 13 9 10 9 8 8 6 0.401199 96/100 PASS FFT
13 14 10 11 10 6 8 7 15 6 0.383827 98/100 PASS NonOverlappingTemplate
100 0 0 0 0 0 0 0 0 0 0.000000 0/100 FAIL Universal
12 13 8 11 9 8 10 11 6 12 0.883171 100/100 PASS ApproximateEntropy
0 4 5 1 2 1 4 3 1 1 0.162606 22/22 PASS RandomExcursions
3 4 2 1 2 5 1 0 2 2 0.350485 22/22 PASS RandomExcursionsVariant
14 8 10 8 7 7 13 10 12 11 0.779188 100/100 PASS Serial
11 9 11 14 9 8 12 9 7 10 0.924076 100/100 PASS Serial
9 8 11 11 10 12 11 9 7 12 0.978072 98/100 PASS LinearComplexity

Table 5.9: NIST results for the uniformity of p-values and the proportion of

passing sequences of the PP output of ASIC TRNG3

| c1] c2 | €3 | Cc4 | C5 | C6 | C7T | C8 | C9 | C10 | P-VALUE | PROPORTION | Result | STATISTICAL TEST
10 7 6 9 7 15 16 11 9 10 0.366918 99/100 PASS Frequency
15 13 6 12 10 9 6 9 15 5 0.202268 97/100 PASS BlockFrequency
10 8 4 8 8 12 11 11 11 17 0.319084 99/100 PASS CumulativeSums
10 9 5 11 8 10 8 5 17 17 0.071177 99/100 PASS CumulativeSums
7 9 6 12 10 10 10 13 11 12 0.883171 98/100 PASS Runs
10 6 7 9 10 9 13 12 12 12 0.851383 97/100 PASS LongestRun
10 16 6 11 10 7 5 14 16 5 0.058984 99/100 PASS Rank
13 9 9 8 9 8 18 8 8 10 0.419021 99/100 PASS FFT
13 9 10 10 6 12 7 11 10 12 0.883171 99/100 PASS NonOverlappingTemplate
10 13 14 9 15 6 6 10 9 8 0.455937 99/100 PASS OverlappingTemplate
10 3 15 11 13 5 7 12 14 10 0.129620 99/100 PASS Universal
13 12 9 9 12 6 8 8 9 14 0.739918 100/100 PASS ApproximateEntropy
6 8 4 8 10 8 12 7 12 6 0.572333 81/81 PASS RandomExcursions
9 9 7 8 6 7 14 9 8 4 0.572333 78/81 PASS RandomExcursionsVariant
12 11 11 12 10 8 9 6 11 10 0.955835 99/100 PASS Serial
10 10 10 15 7 14 6 6 16 6 0.145326 100/100 PASS LinearComplexity

Table 5.10: NIST results for the uniformity of p-values and the proportion
of passing sequences of raw output of the FPGA TRNG

161

AIS-31 standard statistical tests results

| Test Name | Lower and the upper bound | Test variable value | Result |
‘ T0 ‘ - | - | Pass |
| T1 | [9655 ; 10345] | 10058 | Pass |
\ T2 \ [1.03 ; 57.4] \ 13.75 | Pass |
T3 [2267; 2733 0-Runs[1] = 2470 Pass
[2267; 2733] 1-Runs[1] = 2405
[1079; 1421] 0-Runs[2] = 1225
[1079; 1421] 1-Runs[2] = 1231
[502; 748] 0-Runs[3] = 598
[502; 748] 1-Runs[3] = 651
[223; 402] 0-Runs[4] = 309
[223; 402] 1-Runs[4] = 317
[90; 223] 0-Runs[5] = 154
[90; 223] 1-Runs[5] = 181
[90; 223] 0-Runs[6] = 179
[90; 223] 1-Runs[6] = 150
‘ T4 ‘ 34 long run of 0’s and 1’s ‘ None ‘ Pass ‘
\ 5 \ (2326 ; 2674] \ 2459 | Pass |
| Tea | | |P(1)- 0.5 = 000365 | Pass |
T6b p(01) = 0.49621
p(11) = 0.49885
Ip(01) — p(11)] = 0.00264 | Pass
T7a T[0] = 0.259 Pass
T[1] = 3.378
T7b T[0] = 0.0387 Pass
T[1] = 6.4297
T[2] = 2.5063
T[3] = 0.0000
\ T8 \ 8 \ T= 8.00 | Pass |

Table 5.11: AIS-31 results for the FPGA TRNG without post-processing

162

‘ Test Name ‘ Lower and the upper bound ‘ Test variable value ‘ Result ‘
TO	-	-	Pass
T1	[9655 ; 10345]	10246	Pass
T2	[1.03 ; 57.4]	9.03	Pass
T3 [2267; 2733] 0-Runs[1] =2501 Pass			
[2267; 2733] 1-Runs[1] =2466			
[1079; 1421] 0-Runs[2] =1232			
[1079; 1421] 1-Runs[2] =1260			
[602; 748] 0-Runs[3] =602			
[602; 748] 1-Runs[3] =645			
[223; 402] 0-Runs[4] =319			
[223; 402] 1-Runs[4] =312			
[90; 223] 0-Runs[5] =179			
[90; 223] 1-Runs[5] =149			
[90; 223] 0-Runs[6] =154			
[90; 223] 1-Runs[6] =156			
T4	34 long run of 0’s and 1’s	None	Pass
T5	[2326 ; 2674]		Pass
\ T6a \ | IP(1)-0.5] =0.0192 | Pass |
T6b p(01) = 0.47832
p(11) = 0.48234
\p(Ol) — p(ll)\ = 0.004 Pass
T7a T[0] = 0.2164 Pass
T[1] = 1.4916
T7b T[0] = 0.4744 Pass
T[1] = 0.0845
T[2] = 0.6699
T[3] = 0.4263
\ T8 \ 8 \ T= 7.9962 | Pass |

Table 5.12: AIS-31 results for the ASIC_TRNG#1 (TRNGS3 version) with
post-processing for TO-T5 and without for T6-T7-T8

163

Y% contingency table

@ -1 -2 -3 —4 —5 —6
df 10 10 10 10 10 10

1 2.71 | 6.63 | 10.8 | 15.13 | 19.51 | 23.92
2 4.61 | 9.21 | 13.8 | 18.42 | 23.02 | 27.63
3 6.25 | 11.3 | 16.3 | 21.1 | 25.90 | 30.66
4 7.78 | 13.3 | 18.5 | 23.51 | 28.47 | 33.37
5 9.24 | 15.1 | 20.5 | 25.74 | 30.85 | 35.88
6 10.6 | 16.8 | 22.5 | 27.85 | 33.10 | 38.25
7 12 18.5 | 24.3 | 29.87 | 35.25 | 40.52
8 13.4 | 20.1 | 26.1 | 31.82 | 37.33 | 42.69
9 14.7 | 21.7 | 27.9 | 33.71 | 39.34 | 44.81
10 16 23.2 | 29.6 | 35.56 | 41.29 | 46.85
11 17.3 | 24.7 | 31.3 | 37.36 | 43.20 | 48.86
12 18.5 | 26.2 | 32.9 | 39.13 | 45.07 | 50.82
13 19.8 | 27.7 | 34.5 | 40.87 | 46.91 | 52.76
14 21.1 | 29.1 | 36.1 | 42.57 | 48.71 | 54.63
15 22.3 | 30.6 | 37.7 | 44.26 | 50.49 | 56.49

Table 5.13: x? contingency table where « is the error probability and df is
the degree of freedom.

164

[Aas12]

[Abi06]

[AFROS]

[Al£05]

[ALI08]

[Bak10]

[BBA*12]

[BBAF13]

[BBKN12]

References

Paul. Ampadu, author., and SpringerLink (Online service).
Managing Temperature Effects in Nanoscale Adaptive Systems.
Springer New York, 2012.

A.A. Abidi. Phase noise and jitter in cmos ring oscillators.
Solid-State Clircuits, IEEE Journal of, 41(8):1803-1816, Aug
2006.

Massimo Alioto, Luca Fondelli, and Santina Rocchi. Analysis
and performance evaluation of area-efficient true random bit
generators on fpgas. In ISCAS, pages 1572-1575, 2008.

Peter Alfke. Metastable recovery in virtex-ii pro fpgas, Febru-
ary 2005. http://www.xilinx.com/support/documentation/
application_notes/xapp094.pdf.

Smart Card Alliance. What makes a smart card secure? a
smart card alliance contactless and mobile payments council
white paper. Technical report, Smart Card Alliance, October
2008.

R. Jacob Baker. CMOS Circuit Design, Layout, and Simulation.
Wiley-IEEE Press, 3rd edition, 2010.

Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer,
Francgois Poucheret, Bruno Robisson, and Philippe Maurine.
Contactless electromagnetic active attack on ring oscillator
based true random number generator. In Proceedings of the
Third international conference on Constructive Side-Channel
Analysis and Secure Design, COSADE’12, pages 151-166, Berlin,
Heidelberg, 2012. Springer-Verlag.

P. Bayon, L. Bossuet, A. Aubert, and V. Fischer. Electromag-
netic analysis on ring oscillator-based true random number gen-
erators. In Circuits and Systems (ISCAS), 2018 IEEE Interna-
tional Symposium on, pages 1954-1957, 2013.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures. Proceedings of the IEEE, 100(11):3056-3076,
2012.

165

[BGKDO6]

[cDFF06]

[CFAF13]

[CGPROS]

[Chal

[CK10]

[Cor99]

[CSC+10]

[DGO7]

M. Bhushan, A. Gattiker, M.B. Ketchen, and K.K. Das. Ring
oscillators for cmos process tuning and variability control. Semi-
conductor Manufacturing, IEEE Transactions on, 19(1):10-18,
Feb 2006.

M. gimka, M. Drutarovsky, V. Fischer, and J. Fayolle. Model
of a true random number generator aimed at cryptographic
applications. In Circuits and Systems, 2006. ISCAS 2006. Pro-
ceedings. 2006 IEEE International Symposium on, page 4 pp.,
may 2006.

Abdelkarim Cherkaoui, Viktor Fischer, Alain Aubert, and Lau-
rent Fesquet. A self-timed ring based true random number

generator. 2012 IEEE 18th International Symposium on Asyn-
chronous Clircuits and Systems, 0:99-106, 2013.

Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff,
and Matthieu Rivain. Attack and improvement of a secure s-
box calculation based on the fourier transform. In Elisabeth
Oswald and Pankaj Rohatgi, editors, CHES, volume 5154 of
Lecture Notes in Computer Science, pages 1-14. Springer, 2008.

Ken Chapman. Seu strategies for virtex-5 devices. applica-
tion note: Virtex-5 family. http://www.xilinx.com/support/
documentation/application_notes/xapp864.pdf.

Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and im-
provement of the random delay countermeasure of ches 2009. In
Stefan Mangard and Francois-Xavier Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, vol-
ume 6225 of Lecture Notes in Computer Science, pages 95-109.
Springer Berlin Heidelberg, 2010.

Jean-Sebastien Coron. On the security of random sources. In
Public Key Cryptography, volume 1560 of Lecture Notes in Com-
puter Science, pages 29-42. Springer Berlin Heidelberg, 1999.

Doris Chen, Deshanand Singh, Jeffrey Chromczak, David Lewis,
Ryan Fung, David Neto, and Vaughn Betz. A comprehensive ap-
proach to modeling, characterizing and optimizing for metasta-
bility in fpgas. In Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays,
FPGA 10, pages 167-176, New York, NY, USA, 2010. ACM.

Markus Dichtl and Jovan Dj. Golic. High-speed true random
number generation with logic gates only. In CHES, pages 4562,
2007.

166

[DGHO7]

[DGHO9]

[Dic03]

[Dic07]

[EBO7]

[ECS05]

[FAB109]

[Fai99)

[FDcB04]

[FDcC04]

Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst.
Fast True Random Generator in FPGAs. In IEFEE MWS-
CAS/NEWCAS, pages 506-509, Montréal, Canada, aug 2007.
DOI: 10.1109/NEWCAS.2007.4487970.

Jean-Luc Danger, Sylvain Guilley, and Philippe Hoogvorst. High
Speed True Random Number Generator based on Open Loop
Structures in FPGAs. Microelectronics Journal, 40(11):1650—
1656, November 2009. DOI: 10.1016/j.mejo.2009.02.004.

Markus Dichtl. How to predict the output of a hardware ran-
dom number generator. In ColinD. Walter, CetinK. Kog, and
Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2003, volume 2779 of Lecture Notes in Com-
puter Science, pages 181-188. Springer Berlin Heidelberg, 2003.

Markus Dichtl. Bad and good ways of post-processing biased
physical random numbers. In Alex Biryukov, editor, Fast Soft-
ware Encryption, volume 4593 of Lecture Notes in Computer
Science, pages 137-152. Springer Berlin Heidelberg, 2007.

Dirk Eddelbuettel and Robert G. Brown. Rdieharder: An r
interface to the dieharder suite of random number generator
tests, 2007.

D. Eastlake, S. Crocker, and J. Schiller. Randomness recom-
mandations for security, 2005. RFC 4086.

Viktor Fischer, Alain Aubert, Florent Bernard, Boyan
Valtchanov, Jean-Luc Danger, and Nathalie Bochard. True
Random Number Generators in Configurable Logic Devices,
2009. http://www.lirmm.fr/~w3mic/ANR/PDF/D2.pdf.

Application Note Semiconductor Fairchild. Design innovations
address advanced cmos logic noise considerations: Understand-
ing the fundamentals of noise, 1999.

Viktor Fischer, Milo$ Drutarovsky, Martin S imka, and Nathalie
Bochard. High performance true random number generator in
altera stratix fplds. In Jurgen Becker, Marco Platzner, and Serge
Vernalde, editors, Field Programmable Logic and Application,
volume 3203 of Lecture Notes in Computer Science, pages 555—
564. Springer Berlin Heidelberg, 2004.

Viktor Fischer, Milos Drutarovsky, Martin gimka, and Frédéric
Celle. A simple pll-based true random number generator for
embedded digital systems. Computing and Informatics, pages
5-6, 2004.

167

[Fol96]

[GARL0]

[GCS09)]

[Gin11]

[GMOO1]

[Gol06]

[Ham12]

[HBF09)]

[HCG*+13]

[HG13]

[HI12]

Clark Foley. Characterizing metastability practical measure-
ment techniques to accurately determine "device dependent
coefficients" used to predict synchronizer mtbf. Asynchronous
Circuits and Systems, International Symposium on, 0:175, 1996.

Christy M. Gearheart, Benjamin Arazi, and Eric C. Rouchka.
Dna-based random number generation in security circuitry.
Biosystems, 100(3):208-214, 2010.

Tamas Gyorfi, Octavian Cret, and Alin Suciu. High performance
true random number generator based on fpga block rams. Paral-
lel and Distributed Processing Symposium, International, 0:1-8,
2009.

R. Ginosar. Metastability and synchronizers: A tutorial. Design
Test of Computers, IEEFE, 28(5):23 —35, sept.-oct. 2011.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Elec-
tromagnetic analysis: Concrete results. In Proceedings of the
Third International Workshop on Cryptographic Hardware and
Embedded Systems, CHES ’01, pages 251-261, London, UK, UK,
2001. Springer-Verlag.

Jovan Dj. Golic. New methods for digital generation and
postprocessing of random data. [EEE Trans. Computers,
55(10):1217-1229, 2006.

Michael Hamburg. Understanding intel’s ivy bridge random
number generator, December, 11 2012.

D.E. Holcomb, W.P. Burleson, and K. Fu. Power-up sram state
as an identifying fingerprint and source of true random numbers.
Computers, IEEE Transactions on, 58(9):1198-1210, Sept 2009.

H.C. Herbert, G.W. Cox, S. Gueron, J. Walker, C.E. Dike, S.A.
Fischer, E. Brickell, M.G. Dixon, D. Johnston, G. Thuraising-
ham, et al. Digital random number generator using partially
entropic data, July 16 2013. US Patent 8,489,660.

Hasselmann and Gabriel. Developer evidence for the evaluation
of a physical true random number generator, February 28 2013.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Zertifizierung /Interpretationen/AIS 31 PTRNG-
Developer_ Evidence.pdf.

Hisashi Hata and Shuichi Ichikawa. Fpga implementation of
metastability-based true random number generator. IEICE
Transactions, 95-D(2):426-436, 2012.

168

[HKM12]

[HTBF14]

[IDQ10]

[JAW00]

[JK99]

[Joil3]

[KC02]

[KD90]

[KEC*11]

[KGO04]

Mike Hamburg, Paul Kocher, and Mark E. Marson. Analysis
of intel’s ivy bridge digital random number generator, March,
12 2012.

P. Haddad, Y. Teglia, F. Bernard, and V. Fischer. On the
assumption of mutual independence of jitter realizations in p-
trng stochastic models. In Design, Automation and Test in
Europe Conference and Ezxhibition (DATE), 201/, pages 1-6,
March 2014.

IDQuantique. Quantis white paper random number generation
using quantum physics, April 2010.

Thomas Jennewein, Ulrich Achleitner, Gregor Weihs, Harald
Weinfurter, and Anton Zeilinger. A fast and compact quantum
random number generator. Review of Scientific Instruments,
71(4):1675-1680, 2000.

Benjamin Jun and Paul Kocher. The Intel Random Number
Generator, 1999. http://www.cryptography.com/intelRNG.
pdf.

Joint Interpretation Library. Application of Attack Potential
to Smartcards, Version 2.9, January 2013. http://www.ssi.
gouv.fr/site_documents/JIL/JIL-The_application_of _
attack_potential_to_smartcards_V2-1.pdf.

D.J. Kinniment and E.G. Chester. Design of an on-chip random
number generator using metastability. In Proceedings of the 28th
European Solid-State Circuit Conference., 2002.

L.-S. Kim and R.W. Dutton. Metastability of cmos latch/flip-
flop. Solid-State Circuits, IEEE Journal of, 25(4):942 —951, aug
1990.

Siew-Hwee Kwok, Yen-Ling Ee, Guanhan Chew, Kanghong
Zheng, Khoongming Khoo, and Chik-How Tan. A comparison
of post-processing techniques for biased random number gener-
ators. In Proceedings of the 5th IFIP WG 11.2 International
Conference on Information Security Theory and Practice: Secu-
rity and Privacy of Mobile Devices in Wireless Communication,
WISTP’11, pages 175-190, Berlin, Heidelberg, 2011. Springer-
Verlag.

Paul Kohlbrenner and Kris Gaj. An embedded true ran-
dom number generator for FPGAs. In Proceedings of the
2004 ACM/SIGDA 12th international symposium on Field pro-
grammable gate arrays, 2004.

169

[KJJ96]

[KJJ99)

[KKO06]

[KS08]

KS11]

[KW10]

[LBRGD13]

[LCMR11]

[LHA*+12]

[Liu06]

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Timing At-
tacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Proceedings of CRYPTO’96, volume 1109 of
LNCS, pages 104-113. Springer-Verlag, 1996.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO0’99, pages 388—
397. Springer-Verlag, 1999.

Ranjith Kumar and Volkan Kursun. Impact of temperature
fluctuations on circuit characteristics in 180nm and 65nm cmos
technologies. In ISCAS. TEEE, 2006.

Wolfgang Killmann and Werner Schindler. A design for a phys-
ical rng with robust entropy estimators. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Em-
bedded Systems CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 146-163. Springer Berlin Heidelberg,
2008.

Wolfgang Killmann and Werner Schindler. A proposal for: Func-
tionality classes for random number generatorsl, September
2011.

S. Petrovic K. Wold. Robustness of trng against attacks that
employ superimposing signal on fpga supply voltage. In Proceed-

ings of the Norwegian Information Security Conference, pages
81-92. Tapir Akademisk Forlag, 2010.

Florent Lozac’h, Molka Ben-Romdhane, Tarik Graba, and Jean-
Luc Danger. Fpga design of an open-loop true random number
generator. In Digital System Design (DSD), 2013 Euromicro
Conference on, pages 615-622, 2013.

Xiaowen Li, Adam B. Cohen, Thomas E. Murphy, and Rajarshi
Roy. Scalable parallel physical random number generator based
on a superluminescent led. Opt. Lett., 36(6):1020-1022, Mar
2011.

Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W.
Bos, Thorsten Kleinjung, and Christophe Wachter. Ron was
wrong, whit is right. Cryptology ePrint Archive, Report
2012/064, 2012. http://eprint.iacr.org/.

Chengxin Liu. Jitter in oscillators with 1/f noise sources and
Application to True RNG for Cryptography. PhD thesis, Worces-
ter Polytechnic Institute, January 2006.

170

[LMO5)]

[LPL*12]

[LS07]

[MKD11]

[MMO09]

[MOP07]

[MvOV96]

[NIS12]

[NS02]

Chengxin Liu and J. McNeill. A digital-pll-based true random
number generator. In Research in Microelectronics and Elec-
tronics, 2005 PhD, volume 1, pages 113-116 vol.1, July 2005.

Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lun-
drigan, Brent Nelson, Brad Hutchings, and Michael Wirthlin.
A library for low-level manipulation of partially placed-and-
routed fpga designs. technical report and documentation. Tech-
nical report, NSF Center for High Performance Reconfigurable
Computing (CHREC), Department of Electrical and Computer
Engineering, Brigham Young University,Provo, UT 84602, 2010-
2012.

Pierre L’Ecuyer and Richard Simard. Testu01: A ¢ library for
empirical testing of random number generators. ACM Trans.
Math. Softw., 33(4), August 2007.

Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas.
Fpga-based true random number generation using circuit
metastability with adaptive feedback control. In Proceedings
of the 13th international conference on Cryptographic hardware
and embedded systems, CHES’11, pages 17-32, Berlin, Heidel-
berg, 2011. Springer-Verlag.

A. Theodore Markettos and Simon W. Moore. The frequency
injection attack on ring-oscillator-based true random number
generators. In Cryptographic Hardware and Embedded Systems
- CHES 2009, 11th International Workshop, Lausanne, Switzer-
land, September 6-9, 2009, Proceedings, volume 5747 of Lecture
Notes in Computer Science, pages 317-331. Springer, 2009.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards (Ad-
vances in Information Security). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, October 1996.

NIST. Recommendation for the entropy sources used
for random bit generation, 2012. http://csrc.nist.gov/
publications/drafts/800-90/draft-sp800-90b.pdf.

Nguyen and Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology,
2002.

171

[NS03]

[OMHTO6]

[PTL*11]

[RSN*+10]

[SBGD11]

[SBpC*09]

[SCDC*11]

[SCDEV13]

[Sch99]

Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the
elliptic curve digital signature algorithm with partially known
nonces. Des. Codes Cryptography, 2003.

Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Ste-
fan Tillich. Practical Second-Order DPA Attacks for Masked
Smart Card Implementations of Block Ciphers. In David
Pointcheval, editor, CT-RSA, volume 3860 of LNCS, pages 192—
207. Springer, 2006.

Francois Poucheret, Karim Tobich, Mathieu Lisart, Laurent
Chusseau, Bruno Robisson, and Philippe Maurine. Local and Di-
rect EM Injection of Power Into CMOS Integrated Circuits. In
Luca Breveglieri, Sylvain Guilley, Israel Koren, David Naccache,
and Junko Takahashi, editors, FDTC, pages 100-104. IEEE,
2011.

Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid,
Flaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel,
David Banks, Alan Heckert, James Dray, and San Vo. A statis-
tical test suite for the validation of random number generators
and pseudo random number generators for cryptographic appli-
cations,, april 2010.

Nidhal Selmane, Shivam Bhasin, Sylvain Guilley, and Jean-Luc
Danger. Security evaluation of application-specific integrated
circuits and field programmable gate arrays against setup time
violation attacks. IET Information Security, 5(4):181-190, De-
cember 2011. DOI: 10.1049/iet-ifs.2010.0238.

Valerio Scarani, Helle Bechmann-pasquinucci, Nicolas J. Cerf,
Miloslav Dusek, Norbert Liitkenhaus, and Momtchil Peev. The
security of practical quantum key distribution, 2009.

M. Soucarros, C. Canovas-Dumas, J. Clediere, P. Elbaz-Vincent,
and D. Real. Influence of the temperature on true random
number generators. In Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium on, pages 24-27,
June 2011.

Mathilde Soucarros, Jessy Clédiere, Cécile Dumas, and Philippe
Elbaz-Vincent. Fault analysis and evaluation of a true random
number generator embedded in a processor. Journal of Elec-
tronic Testing, 29(3):367-381, 2013.

Werner Schindler. Ais 20: Functionality classes and evaluation
methodology for deterministic random number generators,

172

[SchO01]

[SMS07]

[Soul2]

[SPQOS]

[SPV06]

[SSRO9]

[Sta94]

[Stil1]

[TBMO7]

December 1999. https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Zertifizierung/Interpretationen/
ais20e_pdf.pdf.

Werner Schindler. Efficient online tests for true random number
generators. In CetinK. Kog, David Naccache, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems CHES
2001, volume 2162 of Lecture Notes in Computer Science, pages
103-117. Springer Berlin Heidelberg, 2001.

Berk Sunar, William J. Martin, and Douglas R. Stinson. A
provably secure true random number generator with built-in
tolerance to active attacks. IEEE Trans. Computers, 56(1):109—
119, 2007.

Mathilde Soucarros. Analysis of random number generators
in abnormal usage conditions. PhD thesis, Institut Fourier,
Université de Grenoble, 2012.

F. X Standaert, E. Peeters, and J-J Quisquater. On the masking
countermeasure and higher-order power analysis attacks. In
Information Technology: Coding and Computing, 2005. ITCC
2005. International Conference on, volume 1, pages 562-567
Vol. 1, 2005.

Dries Schellekens, Bart Preneel, and Ingrid Verbauwhede. Fpga
vendor agnostic true random number generator. In FPL, pages
1-6, 2006.

R. Santoro, O. Sentieys, and S. Roy. On-line monitoring of ran-
dom number generators for embedded security. In Circuits and
Systems, 2009. ISCAS 2009. IEEE International Symposium
on, pages 3050 —-3053, may 2009.

NIST FIPS (Federal Information Processing Standards). Secu-
rity Requirements for Cryptographic Modules publication 140-
1, January 11 1994. http://csrc.nist.gov/publications/
fips/fips140-1/fips1401.pdf.

M. Stipcevic. Quantum random number generators and their
use in cryptography. In MIPRO, 2011 Proceedings of the 34th
International Convention, pages 1474-1479, 2011.

Carlos Tokunaga, David T. Blaauw, and Trevor N. Mudge. True
Random Number Generator with a Metastability-Based Quality
Control. In IEEFE International Solid-State Circuits Conference
(ISSCC), pages 404-611. IEEE, February 2007.

173

[Tka02] Thomas Tkacik. A hardware random number generator. In
BurtonS. Kaliski, CetinK. Kog, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2002, vol-
ume 2523 of Lecture Notes in Computer Science, pages 450-453.
Springer Berlin Heidelberg, 2002.

[Tro59] H.F. Trotter. An elementary proof of the central limit theorem.
Archiv der Mathematik, 10:226-234, 1959.

[Uni] Brigham Young University. Rapidsmith 0.5.1. http://
sourceforge.net/projects/rapidsmith/files/.

[VD10] Michal Varchola and Milo§ Drutarovsky. New high entropy
element for fpga based true random number generators. In
Proceedings of the 12th International Conference on Crypto-
graphic Hardware and Embedded Systems, CHES’10, pages 351—
365, Berlin, Heidelberg, 2010. Springer-Verlag.

[Vee80)| H.J.M. Veendrick. The behaviour of flip-flops used as synchro-
nizers and prediction of their failure rate. Solid-State Circuits,
IEEE Journal of, 15(2):169 — 176, apr 1980.

[VF02] M. Drutarovsky V. Fischer. True Random Number Generator
Embedded in Reconfigurable Hardware. In Proc. the 4th Inter-
national Workshop on Cryptographic Hardware and Embedded
Systems, 2002.

[VHK12] I. Vasyltsov, E. Hambardzumyan, and B. Karpinskyy. Random
number generator, December 25 2012. US Patent 8,341,201.

[VHKKO8] Thor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and
Bohdan Karpinskyy. Fast digital trng based on metastable ring
oscillator. In Elisabeth Oswald and Pankaj Rohatgi, editors,
Cryptographic Hardware and Embedded Systems CHES 2008,
volume 5154 of Lecture Notes in Computer Science, pages 164—
180. Springer Berlin Heidelberg, 2008.

[VN51] John von Neumann. Various Techniques Used in Connection
with Random Digits. J. Res. Nat. Bur. Stand., 12:36-38, 1951.

[VSB10] V.B V.B. Suresh and W.P. Burleson. Entropy extraction in
metastability-based TRNG. In HOST, pages 135-140, 2010.

[VTOS§] Inc. VIA Technologies. PADLOCK QUICK
REFERENCE FOR VIA NANO PROCESSORS
VERSION 0.95, 25th July 2008. ftp://ftp.vt-

bridge.org/Docs/CPU /Nano/padlock__quick reference V095.pdf.

174

[Wal01]

[WP11]

[WTO08]

[XHAOS]

Xil97]

[Xil09]

[YSKBO7]

[ZWW11]

John Walker. Hotbits: Genuine random numbers generated by
radioactive decay, 2001.

K. Wold and S. Petrovic. Behavioral model of trng based on
oscillator rings implemented in fpga. In Design and Diagnos-
tics of Electronic Circuits Systems (DDECS), 2011 IEEE 14th
International Symposium on, pages 163-166, 2011.

Knut Wold and Chik How Tan. Analysis and enhancement of
random number generator in fpga based on oscillator rings. In
ReConFig, pages 385-390, 2008.

Peng Xu, T. Horiuchi, and P. Abshire. Stochastic model and
simulation of a random number generator circuit. In Circuits
and Systems, 2008. ISCAS 2008. IEEE International Sympo-
stum on, pages 2977 —2980, may 2008.

Xilinx. Metastability —considerations, 1997. http:
//www.coe.montana.edu/ee/courses/ee/ee367/pdffiles/
xappO077.pdf.

Xilinx. Constraints guide, December 2009. www.xilinx.com/
support/documentation/sw_manuals/xilinx11/cgd.pdf.

Sang-Kyung Yoo, Berk Sunar, Deniz Karakoyunlu, and Berk
Bir. A robust and practical random number generator, 2007.

J. Z. Zhang, J. F. Wang, and Y. C. Wang. High-speed physical
random number generation using a chaotic semiconductor laser.
In Proc. SPIE, International Conference on Optical Instruments
and Technology: Optoelectronic Devices and Integration, volume
8198, pages 819801-819801-6, 2011.

175

Modélisation, implémentation et caractérisation de circuits
générateurs de nombres aléatoires vrais utilisant des
chaines a retards

Molka BEN ROMDHANE

RESUME : Les nombres aléatoires sont indispensables dans de nombreuses applications no-
tamment en cryptographie ou I'aléa est utilisé dans les protocoles de sécurité. Les générateurs
de nombres aléatoires, plus connus sous le nom de RNG comme “Random Number Generator”
se déclinent en deux familles, les PRNG (Pseudo RNG) qui sont des générateurs de nombres
aléatoires ayant des séquences déterministes et les TRNG (True RNG) qui sont des généra-
teurs d’aléa “vrai”, donc non prédictibles. Les applications cryptographiques utilisent a la fois les
TRNG et les PRNG. Un PRNG nécessite une valeur initiale, ou graine, qui peut étre la sortie
d’'un TRNG. Les TRNG tirent profit de I'aléa des phénoméenes physiques. Les TRNGs dans les
technologies numériques comme les FPGAs font appel a des oscillateurs qui présentent I'in-
convénient de pouvoir étre attaqués par couplage harmonique. De fagon a évaluer la qualité
entropique d’un TRNG, des standards basés sur des tests statistiques ont été élaborés par des
organismes de certification comme le NIST ou la BSI. Cependant, il est recommandé de for-
maliser, par le biais d’'un modele, le caractére stochastique de la génération d’aléa. Dans cette
thése, nous étudions une architecture de TRNG, peu coliteuse et robuste face aux attaques
harmoniques car elle nutilise pas d’oscillateurs. Ce TRNG extrait une variable aléatoire en ex-
ploitant a la fois les états métastables des bascules et les fluctuations temporelles (ou gigue)
des signaux échantillonnés. Nous proposons par la suite un modeéle stochastique qui nous per-
met de décrire le comportement aléatoire du TRNG indépendamment de la technologie ciblée.
Les caractérisations et évaluations sur des circuits prototypes en technologies FPGA et ASIC
montrent que I'architecture TRNG proposée génére de I'aléa de qualité et est robuste face aux
variations environnementales.

MOTS-CLEFS : TRNG, métastabilité, modélisation, ASIC, FPGA, retards programmables, tests
statistiques, NIST, AIS-31.

ABSTRACT : Random numbers are required in numerous applications namely in cryptogra-
phy where randomness is used in security protocols. There are two main classes of Random
Number Generators (RNG) : The Pseudo RNG (PRNG) which have a deterministic sequence,
and the True RNG (TRNG) which generates unpredictable random numbers. Cryptographic ap-
plications use both TRNG and PRNG. The PRNG needs an initial value, or seed, which can
be the output of a TRNG. In digital technologies, like FPGAs, TRNG are commonly based on
oscillators which have the drawback of being biased by harmonic coupling. In order to assess
the entropic quality of TRNGs, standards based on statistical tests have been elaborated by
certification organisms namely the NIST and the BSI. However, it is recommended to formalize
the stochastic behaviour of the randomness generation process. In this Ph.D, we address the
design and quality evaluation of TRNGs in digital circuits. We study of a low-cost digital TRNG
without oscillators, hence robust against harmonics attacks. The proposed TRNG exploits both
the metastability phenomenon and the jitter noise in CMOS digital flip-flops to generate the ran-
dom numbers. A stochastic model of this TRNG has been formalized. This model describes
the random generation process regardless of the targeted technology. The characterization and
evaluation on a prototype circuit, in FPGA and ASIC technologies, has shown that the proposed
TRNG architecture generates randomness of good quality and is robust against environmental
variations.

KEY-WORDS : True Random Numbers Generator, metastability, ASIC, programmable delay,
delay chains, FPGA, noise, standard statistical tests, NIST, AlS-31

TELECOM

ParisTech

Z ParisTec

INSTITUT DES SCIENCES ET TECHNOLOGIE!
PARIS INSTITUTE OF TECHNOLOG

