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Abstract

Imaging techniques have well improved in the last decades. They may accurately
provide numerical descriptions from 2D or 3D images, opening perspectives to-
wards inner information, not seen otherwise, with applications in different fields,
like medicine studies, material science or urban environments.

In this work, a technique to build a numerical description under the mesh format
has been implemented and used in numerical simulations when coupled to finite el-
ement solvers. Firstly, mathematical morphology techniques have been introduced
to handle image information, providing the specific features of interest for the sim-
ulation. The immersed image method was then proposed to interpolate the image
information on a mesh. Then, an iterative anisotropic mesh adaptation operator
was developed to construct the optimal mesh, based on the estimated error concern-
ing the image interpolation. The mesh is thus directly constructed from the image
information.

We have also proposed a new methodology to build a regularized phase func-
tion, corresponding to the objects we wish to distinguish from the image, using a
redistancing method. Two main advantages of having such function are: the gradi-
ent of the regularized function performs better for mesh adaptation; the regularized
function may be directly used for the finite element solver. Stabilized finite element
flow and advection solvers were coupled to the constructed anisotropic mesh and
the redistancing function, allowing its application to multiphase flow numerical sim-
ulations. All these developments have been extended in a massively parallel context.

An important objective of this work is the simplification of the image based
computations, through a modified way to segment the image and by coupling all to
an automatic way to construct the mesh used in the finite element simulations.






Résumé

Ces dernieres années, les techniques d’imagerie ont fait ’'objet de beaucoup d’améliorations.
Elles permettent de fournir des images numériques 2D ou 3D précises de zones par-

fois invisibles 1’oeil nu. Ces techniques s’appliquent dans de nombreux domaines
comme l'industrie cinématographique, la photographie ou I'imagerie médicale...

Dans cette these, 'imagerie sera utilisée pour effectuer des simulations numériques
en la couplant avec un solveur éléments finis. Nous présenterons, en premier lieu, la
morphologie mathématique et la méthode d’immersion d’image. Elles permettront
I’extraction d’informations permettant la transformation d’'une image dans un mail-
lage exploitable. Puis, une méthode itérative d’adaptation de maillage basée sur un
estimateur d’erreur sera utilisée afin de construire un maillage optimal. Ainsi, un
maillage sera construit uniquement avec les données d’une image.

Nous proposerons également une nouvelle méthodologie pour construire une
fonction réguliere a l'aide d’'une méthode de réinitialisation de la distance signée.
Deux avantages sont a noter : 'utilisation de la fonction régularisée permet une
bonne adaptation de maillage. De plus, elle est directement utilisable par le solveur
éléments finis. Les simulations numériques sont donc réalisées en couplant éléments
finis stabilisés, adaptation de maillage anisotrope et réinitialisation.

L’objectif de cette these est donc de simplifier le calcul numérique a partir
d’image, d’améliorer la précision numérique, la construction d’'un maillage automa-
tique et de réaliser des calculs numériques paralleles efficaces. Les applications
envisagées peuvent étre dans le domaine médical, de la physique des matériaux ou
du design industriel.
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2 1. General introduction

1.1 Introduction to image-based meshing

Image acquisition is an everyday operation, in particular thanks to devices like
Smartphones which have digital cameras. Taking photos allows to save memories,
to capture exciting moments, ... However, classical digital cameras provide only
2D images, directly seen by our naked eyes. 3D imaging techniques exist and open
new doors, offering perspectives and sometimes inner information for a better com-
prehension of physical phenomena. In different scientific domains, examples of 3D
techniques that provide volume images are: M RI (Magnetic Resonance Imaging),
X-ray CT (Computed Tomography), or nanotomography. M RI is based on the at-
tenuation of energy released in different structures, by applying a gradient magnetic
field detection of electromagnetic waves emitted. Then, one may detect the location
and species composition of the nucleus of the object and draw an image of the in-
ternal structure. During the past few decades, research on the magnetic resonance
field led six times to a Nobel Prize (Chemistry, Physics, Physiology or Medicine),
illustrating the importance of this technology. X-ray C'T scans and X-ray micro
and nano tomography use X-ray to create cross-sections of a physical object which
may provide a virtual model without destroying the original object. This technology
has applications, for example, in both medical imaging and material science.

Figure 1.1: 3D techniques:(a) M RI-scanner;(b) X-ray CT scan;(c) X-ray Microto-
mography

On one hand, digital cameras, M RI, X-ray, CT scan, X-ray microtomogra-
phy and other imaging techniques provide very accurate digital descriptions. On
the other hand, numerical simulations based on a mesh discretization have become
powerful tools in engineering designing, physical research, medical studies, ... How-
ever, an accurate geometrical representation of an object is of prime importance for
this type of numerical modeling.

For all these reasons, an image-based meshing and simulation method is proposed
in this work. An automatic process to create a discretization, under the mesh
format, for numerical modeling and from the image data was developed. Two major
techniques involved in the generation of the models are, image processing and
mesh generation by adaptation of an initial coarse mesh. These techniques are
also fully coupled to a finite element solver.

Image processing techniques can be used to handle the image concern, for ex-
ample, image segmentation, image filtering, ... Mesh generation is also an open
research field and many approaches have been used to mesh from image data, dis-
tinguished often in CAD (Computer Aided Design) and image based approaches.
The C'AD-based approach uses the image data to define the surface of the object
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and then creates the surface elements corresponding to its boundary with traditional
C' AD-based meshing algorithms [1]. After that, the volume mesh is built from this
surface mesh. On the other hand, an image-based approach combines the surface
data and the mesh construction, creating the surface mesh directly. One example
is the Marching Cubes algorithm [2, 3], widely used. From that, a volume mesh is
created from the surface mesh with a mesh generator. In the following, a review
of the techniques associated to classical image processing, like image segmentation
and compression, and also related to mesh adaptation are presented.

1.2 Literature review

In this section, image characteristics and techniques on image processing are recalled.
After, image compression and mesh adaptation (related to imaging) state of the art
and basic notations are given.

1.2.1 Image characteristics

Here, an image is a tabular representation of some spatial phenomenon. It may be
two-dimensional, such as a photograph or a screen display. With the development
of imaging techniques over the last decades, three-dimensional images became very
popular and used in different areas such as video games, cartoons, engineering design
or medical research. There is a huge potential to find other applications in the future.

The basis of both 2D and 3D images is its digital information. It consists of
a series of the smallest controllable element, the pixel for 2D images or the voxel
for 3D ones. Each element contains one or several values, arranged in a particular
order. Indeed, this digital information is an ”image” for visualization, but is also a
data array. For example, Figure 1.2 shows a popular image, ”Lena” [4], which is a
8-bit grey-scale one, containing 256 different grey.

L6580 198 181 115 82 107 115 123 123 115 132132 107 90 74
189 189 181 99 32 99 90115107107 71123 132123 90 99
198165 74 66 74 74 T4 74 82 &1 24 66113 81 60 66
148 49 57 37 49 57 41 33 33 33 16 33 49 24 16 24
41 49 33 33 2424 24 24 24 16 24 24 24 1M 16§
33 33 16 24 1624 24 16 16 16 16 33 74 57 33 16
33 10 24 10 16 24 16 10 16 24 24 74148130 90 41
24 16 8 33 4924 41 24 8 33 49 57181185173 132
24 24 16 33 7119 19 66 21 11 66 41 181 198 189 181
19 24 16 11 71 90 41 57 57 57 33 99206 206 206 198
82 37 16 24 66 90 82 49 33 41 09181 198 198 180 181
WY X2 8 A9 66 B2 1 99 90 123 173 1KY 19K 198 198 165
115107 99 74 66 T4 82 99115132140 1506 165 173 165 165
107 115107 99 99 90 74 90 66 90 107 107 115 93 123 148
115115115 115115 99 90 90 74 99107 99 90 90 132123

Figure 1.2: "Lena”’s image [4], and a part of it represented both as the image as it
is seen and as the corresponding data array.
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In color images, the primary colors often used are Red, Green and Blue, which
correspond to trichromatic human vision. The combination of any two or three of
these primary colors may create a new color. For this reason, 24-bit color images
have three channels, RGB, and each channel has values within a range of (0, 255),
so that the number of possible colors is 16777216 (256 x 256 x 256 = 224).

To identify an object in color images, the general way to process is to decompose
the image into three (RGB) channels. However, the RG' B channels may not satisfy
fully the demand on image processing, and is not the only way to represent the color
image. Two other common representations of an RGB color model are the HSL
(Hue, Saturation, Luminance) and HSV (Hue, Saturation, Value) models. Both
of these two representations are widely used in computer graphics, since they are
similar to the human perception of color (a strong one), but more intuitive, which
may be more convenient than a RG B representation.

The Hue is used to perceive the dominant wavelength, to observe the wavelength
of a pure color in a signal, to discern red, green, blue. Eyes may distinguish around
400 hues. In what concerns Saturation, it can be seen as the degree of dilution,
or the inverse of the quantity of "white” in a signal. For example, a pure color is
100% saturated and may be identified as red and pink, marine blue and indigo, ...
Luminance is related to the intensity of light in the signal and is used to discern the
grey levels. Human eyes can perceive around 100 levels.

Thus, using different polar color spaces, with variables of intensity such as Sat-
uration or Luminance, one may provide more options available for an appropriate
representation than when using RG'B channels.

As an example, let us consider a color image (Figure 1.3(a)), used to test color
vision deficiencies, where people with healthy eyes can identify the number ”5”. This
image may be decomposed into the Red-Green-Blue channels (Figures 1.3(b)(c)(d)).

(a) Original image (b) Red channel (¢) Green channel (d) Blue channel

Figure 1.3: RGB color image and the corresponding Red, Green and Blue channels.

The Red channel approximately represents the sign 75”7, but the remaining ones
do not easily identify it. For the second option, the original image can be decomposed
into its Hue, Saturation and Luminance values, shown in Figure 1.4. In the Hue one,
the number 75" is very well identified and is the best between all the decomposition
results.

This decomposition of a color image into different channels under several ways
can then provide more options and we may choose the best one according to the
objective. The usage of color image simulations will be presented in following chap-
ters.
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(a) Hue (b) Saturation (¢) Luminance

Figure 1.4: HSV color image and its Hue, Saturation and Luminance values.

In computer science, image processing uses mathematical operations for handling
an input image to provide an output one that preserves required characteristics,
namely to satisfy visual or psychological aspects while improving other features. In
addition, these techniques have a close relationship with optical theory, computer
graphics and artificial intelligence and include, in particular, measurements like noise
reduction, filtering, segmentation or compression.

1.2.2 Image segmentation techniques

Image segmentation is one of the fundamental tasks in image processing and com-
puter vision. Its goal is to partition a given image into regions that contain distinct
objects, with applications in medical imaging, object localization in satellite images,
machine vision and others.

This section recalls the most used algorithms and techniques. In general, they
may be distinguished as explicit or implicit methods. For explicit techniques, seg-
mentation is directly based on the image data, whereas image segmentation per-
formed with moving curves and level-set functions is often called an implicit tech-
nique.

1.2.2.1 Explicit techniques
1.2.2.1.1 Thresholding

Thresholding is the simplest method for image segmentation and is used to cre-
ate, from a grey-scale image, a binary one. During the thresholding process, indi-
vidual pixels/voxels in an image are marked as the object’s pixels/voxels, if their
value is greater than a threshold value. Typically, and according to each technique,
a pixel /voxel belonging to an object is given a value of 1, while other pixels/voxels
have values of 0. After that, a binary image is created by coloring each pixel/voxel
is white or black, depending on the pixels/voxels’ value. An example is shown in
Figure 1.5, for a 2D grey-scale image, which, after application of a thresholding
operation, becomes a binary image. The main drawback of this technique is that
in most cases even the best possible threshold value will not lead to a convenient
segmentation of the image.
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Figure 1.5: Original image and resulting one, after the threshold used on this image

1.2.2.1.2 Edge detection

Edge detection is another fundamental tool in image processing, machine vision
and computer vision, particularly in the areas of feature extraction, which aims
at identifying points in an image at which the image intensity changes sharply or
shows discontinuities [5, 6]. The purpose of edge detection is to generate an edge map
based on the distribution of the intensity discontinuity of the original image. One
may then define the homogeneous regions (that have the same pixel/voxel values)
if the edginess measure is small enough, when compared to a given value. Classical
methods of edge detection imply building an operator perceptive to large gradients
in the image, and returning values of zero in uniform regions [7]. A 2D example of
edge detection applied to the logo image of MINES ParisTech is shown in Figure

MINES
lech

Figure 1.6: Edge detection applied on the logo image of MINES ParisTech.

However, edge detection is a difficult task in noisy images, since both the edges
and noise hold high frequency content. Most usually, efforts to reduce the noise
result in unclear and distorted edges. In noisy images, techniques used involve
considering larger regions, to gather enough data to avoid localized noisy pixels,
even if it results in a less perfect localization of the detected edges [7].
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1.2.2.1.3 Region-growing methods

Region growing is a simple region-based image segmentation method, firstly pro-
posed by [8], involving a selection of initial seed points on each region to be seg-
mented. Regions are then iteratively grown by examining the pixel neighbors of the
initial points defining the seed of a region, and by determining whether they should
be added or not to the region. The difference between the pixel value or intensity
and the mean value defining the region is used to allocate the pixel to the respective
zone.

A suitable selection of seed points is very important, and generally depends on the
user. For example, in a grey-scale image, we may examine the image histogram and
choose the seed points from it, or use the connectivity or pixel adjacent information
to determine the threshold and seed points. Also, by using this algorithm, noise in
the image may cause a poor placement of the seeds, and is generally solved by using
a mask to filter.

1.2.2.2 TImplicit techniques
1.2.2.2.1 The active contour model

Active contour models were firstly proposed by Kass [9], and became very popular
since: they can achieve sub-pixel accuracy of the object boundaries; various prior
knowledge can be easily incorporated for robust image segmentation; the resultant
contours and surfaces obtained are always are quite regular, which may be important
for the use that we wish to give to the image. The fundamental idea of an active
contour model is to start with a curve around the detected object, Figure 1.7. The
curve moves then towards its interior normal and stops on the true boundary of the
object, basing the whole procedure on an energy-minimizing model.

Let us consider a contour C', a parametrized curve, and the Mumford-Shah func-
tional [10] restricted to the edge functional, F'(C), positive inside an homogeneous
region, strictly zero on the boundary and negative outside. In classical active con-
tour models, an edge (or boundary) detector is used, depending on the gradient of
the initial image, u. Starting with the curve C around the object to be detected,
the curve moves towards its interior normal and has to stop on the boundary of the
object. For that, we compute the minimization functional as inf F'(C'), being

FO)=a [ 107 +5 [ 1C°F = [ sqva))? (L.1)

where «, § and A\ are positive parameters. The first two terms control the
smoothness of the contour and the third term attracts the contour towards the
object. In this expression, ¢ is an edge-detection function, positive and decreasing,
such that tlg?o g(t) = 0.

1.2.2.2.2 Chan-Vese active contour model

The Chan-Vese model [11] segments the image without using the edge detection
function. Let us define the evolving curve, Cp, in the original image, &, which is the
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Figure 1.7: Edge or boundary detection of an object in an image using, iteratively,
the classical Active Contour model.

boundary of an object. We suppose that the entire domain consists of an inside and
an outside of (. Let us also consider the following functional, sum of two others,

Fi(C) + Fy(C) :/

(@ —c1)? + / (U — c)? (1.2)
inside(C) outside(C')

where C'is any other variable curve, and the constants c;, ¢o, depending on C', are
the averages of u inside(C') and outside(C'). Thus, Cy, the boundary of the object,
is the minimizer of this functional, obtained by computing Clné (F1(C) + F»(O)).
=<0

Figure 1.8 shows an example of different curves C, with the one in Figure 1.8(d)
particularly minimizing the functional and detecting the boundary.

¢« §

(a) (b) (c) (@

Figure 1.8: All possible cases in the position of the curve in the Chan-Vese model:
(a) the curve C is outside the object, then Fi(C) > 0 and F»(C') =~ 0; (b) the curve
C is inside the object, then F;(C') =~ 0 but F, > 0; (¢) the curve C'is both inside and
outside the object, then F;(C) > 0 and F;(C) > 0;( d) the functional is minimized
if C' = Cy, the curve C is on the boundary of the object [11].

1.2.2.2.3 Level-set formulation of Chan-Vese active contour model

Spline curves may be used to model the boundary of an object, but one of the
most successful active contour models is the level-set method [12], presented also in
[11]. In this case, the curve is represented by the zero level-set of a smooth function,
which is called the level-set function. Moving the curves can be done by evolving the
level-set functions instead of directly moving the curves, by solving a time-dependent
PDE (particle differential equation) where the so-called velocity term reflects the
image features characterizing the object to be segmented. Chan-Vese proposed a
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variant of their model using a level-set function. In this case, the moving curve C
is represented implicitly via a Lipschitz function ug4, such that

>0 inside(C) € Q
ugq=0 C €N (1.3)
<0 outside(C) ¢ <

Let us consider the smooth Heaviside function H (), regularized as

ifﬁd>5

S _ X
(1+@+—sm (%)) if @] < e (1.4)
13 s £

if ﬁd < —€

H(ug) =

S N = =

The segmented image, Uge,, can simply be written by using the level-set formu-
lation as:

’LTs-e\g = clH(ﬁd) + 02(1 — H(ﬂd)) (15)

The energy functional, F(cy, co,uy), is given by:

F(c1,c2,1q) :u/d(ﬂd)|Vﬁd|+v/QH(ﬂd) +)\1/Q(ﬂ—cl)QH(ﬂd)—l—)\g/(ﬁ—CQ)Q(l—H(ﬂd))

Q Q
,u~Le1;g;h(C) U-A;v;a(C)
(1.6)
where () = g—g. By keeping uy fixed and minimizing the F'(cq, c2,uq) with

respect to the constants ¢; and cg, it is easy to express these constants, as a function
of ug by

( u-H(u
c1(tg) = u = average(u) inug >0

Jo H(a)

c (a>: fga(l_H(ad»
VYT - H(aw)

The descent direction is parametrized using an artificial time 7, and the equation
in Ug(7) with the initial contour condition 24(0) = @Y, is

(1.7)

= average(u) inuy <0

% = 6(ua) | pdiv( |§gjl) —v—MA =)’ + MU —c)? =0 in(0,00) X Q
6 () Jtig
-z =0 By
|| Va,| 07 on

(1.8)



10 1. General introduction

where n is the outwards normal to the boundary and %—% the normal derivative
of 1y at the boundary. Figure 1.9 presents the evolution of the moving curve on
an original noisy image u on the top line and the corresponding segmentation, e,
piecewise-constant, on the bottom line.

Figure 1.9: Detection of the different objects on a noisy image, with different shapes
and with an interior contour. In the first line, u and the contour, the zero of the level-
set at different 7 iterations; on the second line, the piecewise-constant approximation
of Usey [11].

1.2.2.2.4 Multiphase Chan-Vese model

Chan and Vese extended their model to the case where we wish to segment mul-
tiple objects or phases [13]. Let us consider m = log, n level-set functions, ug;, with
i=1,...,m, and let us consider the vector level-set function ug = (Ug1, - , Udm),
and the vector Heaviside function H(uy) = (H(Ugq),- -+ , H(Ugm)). The union of
the zero-level-sets of g will represent the edges in the segmented image. We can
define that two pixels x; and x5 in € will belong to the same phase, if and only if
H(ug(zq)) = H(ug(z2)). There are n = 2™ possibilities for the vector values in the
image of H(ug) or n = 2™ phases, as illustrated in Figure 1.10.

Phases are labelled with I, for 1 < I < 2™ = n, and the constant vector of
averages is ¢ = (cq,...,¢,), where ¢; = mean(u) corresponds to phase I, and the
characteristic function for each phase I is x;. The Mumford-Shah functional FM*
can be written as:

FMS (¢ 1y) = Z /u—c; X1+ p Z /|VH Ugs)| (1.9)
1<I<n=2m 1<i<m

leading to an evolution equation per level-set of the following type: given 44;(0) =
Ug;



1.2 Literature review 11

Figure 1.10: On the left, the two curves {ug = 0} U {u4 = 0} that partition the
domain into 4 regions: {tg > 0,Ugo > 0}, {Ugr > 0,uge < 0}, {tug < 0,%Ugo > 0},
{ta1 < 0,7Ug2 < 0}. On the right, three curves {ug = 0} U {ug = 0} U {ug3 = 0}
partition the domain into 8 regions: {ug > 0,Ug > 0,Ugz > 0}, {tg > 0,Ug >
O,adg < O}, {ﬁdl > 0,ad2 < 0,ad3 > 0}, {ﬂdl > O,ﬂdg < O,adg < O}, {ﬁdl <
O,adg > O,adg > 0}, {iL\dl < O,adg > 0,ad3 < 0}, {ib\dl < O,ﬂdg < 0,ad3 > O},
{tig1 < 0,42 < 0,43 < 0}[13]. In the image, ¢ is the level-set function, ug.

Oy

or

Vg,
| Vg

= §(Tgs ) pudiv( )= > (@—c) (1.10)

1<I<n=2m

Figure 1.11 illustrates this with an example of [13], using two curves to segment
four-phases on a noisy synthetic image.

Ow 0% 07 O
OV O ONX O

Figure 1.11: Segmentation of a noisy synthetic image, using the 4-phase piecewise
constant mode. The first line represents the evolving contours overlay on the original
image and the second line gives the computed averages of the four segments c¢1, ¢,
Co1, Coo [13].

The authors proposed also an extension to multichannel-multiphase segmenta-
tion for color RGB images, u = (1, ..., uy), with N = 3 channels. For each channel
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i=1,...,n, we have the constants ¢; = (cr1,...,crn) and the built functional is

Fuenig = Y Z/ﬂ(@_cl,i)le+ T M/Q]VH(ﬁdi)\ (L11)

1<I<n=2m i=1 1<I<n=2m

1.2.3 Image compression

The purpose of image compression is to reduce the redundant information to have
more efficient data storage and transmission formats. Image compression can be dis-
tinguished in lossy compression and lossless compression. When lossless compression
is used then, after compression, the information is not lost and may be fully restored
to its original status. On the other hand, when little perceptible loss is acceptable
(and sometimes imperceptible) but also allows an approximate reconstruction of the
original data, one has lossy compression, greatly reducing the bit rate and achieving
a better compression ratio. In a high bit rate image compressed into a low bit rate,
the definition of the compression ratio is:

Uncompressed Size

Compression Ratio = (1.12)

Compressed Size

1.2.3.1 Lossy compression

In this method, the color palette index representing the selected color is defined in
the image header compression palette firstly. Then, each pixel references the index,
which may reduce the common color space in the image.

An extension, the chroma subsampling method, takes advantage of the human
eye sensitivity to changes in brightness much larger than the color change, so that
the color image information can be reduced by half or more [14].

Transform coding is the most commonly used method [15], employing Fourier-
related transforms, such as the DCT (Discrete Cosine Transform) or quantized
and entropy coding compression methods like JPEG (Joint Photographic Experts
Group) compression [16]. This may achieve 10 : 1 compression ratios with little loss
in the image quality.

Fractal compression was firstly realized in [17], by compressing the image to suit
for textures and natural images. Some pictures seem very complicated for human
eyes, but which may only contain capture a very low amount of information. Frac-
tal algorithms convert these data through ”fractal coding”, and compress common
features by self-similarity compression.

1.2.3.2 Lossless compression

Run-length encoding is the simplest way for data compression. It can be explained
with a simple example: the data list ”AAAAABBBBCCCDDE”, 15 characters, can
be replaced by the "5A4B3C2DE” one with 9 characters. This method is well suited
for already images, but not for continuous ones. It has been applied to the BM P
(bitmap) or TIFF (Tagged image file format) image formats [18].



1.2 Literature review 13

Other methods concern adaptive dictionary algorithms, such as the Lempel-Ziv-
Welch one, proposed in [19, 20] and used for GIF (Graphics Interchange Format)
image formats, with a fixed length code editor to store different lengths of strings.
The advantage is that requires a small storage table and is highly efficient, without
any data analysis.

1.2.4 Mesh adaptation

Over the last decades, numerical simulation played a very import role in the indus-
trial development. It has reduced the experimental costs and provided a solution for
design, avoiding potential risks. The basic idea of numerical simulation is to replace
the continuous domain into a set of discrete sub-domains (elements of a mesh, for
example), couple it to a numerical solver (Navier-Stokes, thermal solver, ...), to have
an approximate solution in the discretization domain.

However, considering the computational cost and time to have very accurate so-
lutions, development of optimal meshing techniques is a field undergoing continuous
improvement. Mesh adaptation techniques are thus efficient solutions, providing
dynamic meshes adapted to the solution fields, based on the interpolation error
estimation.

1.2.4.1 Topological optimization mesh generator

Let us first recall some classically mesh generation algorithms and go more deeply on
the description of the topological optimization mesh generator, used in this thesis.

For mesh generation, the Delaunay triangulation D algorithm is a very popular
one[21]. Let us consider a set of points X in the Euclidean space R, so that a De-
launay triangulation is noted as D(X), for X inside the circumcircle of each triangle
in D(X). This method [22, 23] then creates elements from the boundary of domain.
The mesh is then refined inside of the domain by inserting nodes, but always main-
taining the Delaunay triangulation property. Extension with a Quadtree-Octree
algorithm has been proposed [24], and applied in many commercial numerical simu-
lation softwares. This algorithm has also been widely used in digital image process-
ing [25], and elements of the mesh may not only be triangle/tetrahedron, but also
rectangles/cubes, providing more options than classical Delaunay meshing. There
are also some other mesh techniques like, for example, the advancing front method
[26].

In this work, a topological optimization mesh generator is used, developed by
Coupez [27, 28, 29]. It is based on the iterative improvement of an initial unsatis-
factory mesh by performing local operations. Before detailing the methodology, let
us present some notations, properties and definitions on mesh topologies.

Let us note the mesh, H, of a computational domain 2 C R?. K is an element
of this mesh, being a d-simplex with the convex hull of d + 1 vertices, and K is a
the set of elements. For example, a 1D-segment has 2 vertices, a 2D-triangle has 3
vertices and the 3D-tetrahedron has 4 vertices. Let F(KC) be the set of faces of K’s
elements, being a face designated by F. A basic property is

1 < card(K(F)) < 2, VF € F (1.13)
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and the faces belonging to the boundary of IC are:

OK ={F € F, card(K(F)) =1} (1.14)

Each face F' € F(K) shares no more than two elements, and only the boundary
faces have one element.

The operation of local modification of the mesh topology is done by replacing
the chosen sub-set K, by another sub-set K;, where K, C K and 0K, = 0K;. In
other words, the new sub-set K, has the same boundary as the replaced sub-set IC,,
and a node X, connects to the boundary faces that do not contain it. Let us denote
the set of nodes and faces of K, by N (K,) and F(K,), in the mesh topology K,,
and by C(IC,) the centroid of the nodes of 0K,. A cut/paste operation, designated
0, is performed. Let X, € N(K,) UC(K,) then the new optimal mesh topology, K,
is given by (Figure 1.12):

K=0K)=K-K.+ K (1.15)
~—~
K(Xa,0Ka)

Figure 1.12: Example of sub-set K, replaced by K, by adding the new nodes with
the boundary or around the centroid C .

The algorithm can only handle the nodes inside of domain, but not the nodes
of the boundary. To overcome this drawback, the author [28] proposed to insert a
virtual node 0, which connects to all the nodes along the boundary (as illustrated
in Figure 1.13). Then, each node becomes an “inside” one and can be handled by
the presented local modification operation. More details are given in [27, 28, 29].
Indeed, the operation # may iteratively modify the local mesh, until no significant
improvement is necessary.

1.2.4.2 Criteria of optimal local mesh topology

The previous section has presented the based idea of optimization of local mesh
topology. In this process, two criteria are enforced in a compulsory way:
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Virtual node 0

—@— Boundary a0

Figure 1.13: Virtual node connected to boundary nodes, generating the virtual
elements.

e the minimal volume principle, which ensures the conformity of mesh, with
no element overlaps. If K denotes the set of elements filling the domain €2, we
choose an optimal sub-set K, which improves K, and is given by:

Ky = arg min Z |Volume(K)| (1.16)

KcK

where |[Volume(K')| means the volume of the element K, |[Volume(K)| =
[ dK. As shown in Figure 1.14(a), four nodes may construct two possi-
ble mesh topologies. The left one satisfies the minimal volume criteria, but
not the right one since:

1 _ o AK|=[Volume(K,)|+|Volume(Kp)]

T +
3

4 <«

|Volume( K 4/)|+|Volume(Kp/)| > ]/

(1.17)

However, the mesh topology satisfies the minimal volume property, which may
not be unique, as illustrated in Figure 1.14(b). The following criteria may
overcome this problem, and choose the best mesh topology.

e the geometrical quality principle, which picks the one with the highest
geometrical quality of the elements among all possible triangulations, which
involved shift, destruction and creation of nodes. The evaluation of the quality
of each element of the mesh topologies is done by computing:

|Volume(K)|
hd
K

QK) = (1.18)
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S

(a)

—

Figure 1.14: Criteria of optimal local mesh: (a) minimal volume criteria; (b) possible
triangulations of elements for the same minimal volume.

where h is the space dimension and hx represents the mean of the edge lengths.
The geometrical quality varies between 0 and 1, with 1 being the best quality.

1.2.4.3 Mesh generation algorithm

The definition of mesh optimization and the criteria have been well presented are
summarized in the following algorithm. Firstly, we suppose an initial mesh of 2, with
a connected boundary, 0€). Then, the recursive local mesh optimization algorithm
is as follows:

Algorithm 1: Algorithm of local mesh topology optimization
Input: (N,9K), a mesh topology of domain €
Output: (N,p, OK,p), the optimal mesh topology
1 while the mesh topology IC has to be improved do
2 for each node and edge of the mesh topology do
3 Cut the local topology K,, associated with nodes or edges.
4 Paste it to a new local mesh topology, K, = K(X,, 9K,), which
minimizes the volume and maximizes the element’s qualities among all
the candidates, to obtain (Nopt, O,p)

1.2.4.4 H-refinement method

In this section, the adaptive mesh refinement method will be presented in a general
way. It provides a dynamic mesh during the simulation, adapted to the computed
solution. The ”sensitive” sub-domain targeted is always indicated with an interpo-
lation error estimator, related to the high solution gradient areas.

The error is given by the difference between the exact solution and the one com-
puted on the discretized domain. However, we do not know the exact solution, and
the error may be the result of physical or mathematical errors, of the discretization
(mesh size), of data inputs,... Different factors may affect this error and a priori
error estimators have been introduced. They estimate the size of a solution or its
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derivatives of a partial differential equation [30] and also provide the discretization
error in a current mesh, instead of the actual error.

The H-refinement method is the one applied to modify the topology of mesh in
this work. Based on the current mesh, the interpolation error estimator indicates the
error estimate over the whole computation domain. The presented mesh generator
may improve the mesh size by inserting or removing nodes to reduce or balance this
error estimate. The way of computing this estimate will be described in Chapter 2.

1.2.4.5 Transfer of data between meshes

Let us suppose that mesh adaptation has been done, the new improved mesh re-
placing the old one. The data transfer from the old mesh to the new one without
loosing information is of prime important. In our case, two types of information are
stored within the mesh, such as nodal or element variables and parameters, allowing
the construction of the field through P1 or PO interpolations.

To transfer P1 data, a method called "P1 to P17 is used. Figure 1.15 illustrates
the element K of the old mesh and the element K of the new mesh, as well as element
node and its value denoted, respectively, as X and and u(X). Firstly, we identify the
new nodeN)NC inside the old element K and its barycentric coordinate in K, named
as coord(X)g. The value of node X is computed using a linear interpolation from
the nodal values of K and coord(X)g, as

u(X) = Z coord(i)K (XY (1.19)

—@— element K of old mesh

—&— clement K of new mesh

Xl

X3
(a) (b)

Figure 1.15: (a) Transfer of P1 data: "P1 to P1” procedure; (b) Transfer of PO data
to P1, with a Superconvergent Patch Recovery method.

To transfer PO data, the method is also called "P0-P1-P0”. Using a Supercon-
vergent Patch Recovery procedure [31], the values at the elements are distributed
on the nodes, as seen in Figure 1.15. Then, applying the "P1 to P1” procedure,
data at all the nodes is obtained for the new mesh. Finally, the Gaussian integral
rule may compute the value at the element through its d 4+ 1 nodal data.
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1.2.5 Finite element method

Computational modeling starts with a representation of the physical phenomena us-
ing a mathematical model and the governing equations of the problem to be solved.
The equations to be solved are often described by PDFEs (partial differential equa-
tions) and the numerical solutions of these mathematical models approximate the
exact solutions. In general, three classical methods are widely used and developed to
solve the PDFEs: finite difference method, finite volume method and finite element
methods.

The finite difference method is based on Taylor series to approximate the PDFEs.
However, this method has a limit on handling complex geometries, since several
layers of discretization nodes are asked, increasing the computational cost.

The finite volume method is used to integrate over a cell (volume), respecting
the conservation laws and assuming piecewise constant approximation spaces. The
values of the conserved variables are located within the volume element, and not at
the nodes or surfaces, which are calculated using the mesh geometry. It has been
applied in many commercial simulation softwares.

In this work, we have used the finite element method to solve the PDFE's. Based
on a Galerkin formulation, it provides the solutions of many small sub-domains by
integral forms that approximate the equations over the entire domain. Furthermore,
to avoid oscillations with convective-dominated terms and stabilize mixed-finite ele-
ment methods, specific stabilization methods are also applied, such as the streamline
upwind Petrov-Galerkin method, proposed by [32, 33] and the Residual Free Bubble
approach [34, 35] or the Variational MultiScale method [36].

1.3 Objective of the thesis

In this thesis, we propose a new technique for image-based meshing, an alterna-
tive and innovative way to skip surface mesh construction by directly using image
data. Then, volume mesh is built with an automatic topological optimization mesh
generator, coupled to an estimation error procedure. Additionally, mathematical
morphology methods are used to handle image data, to ensure that they are suit-
able for mesh adaptation and numerical simulation. On the other hand, a newly
proposed redistancing level-set approach is implemented to rebuild a phase function
for object to be identified in an image, a "smooth” segmentation, and the rebuilt
level-set function will be used in numerical simulations. Finally, flow computations
on the images are performed, with a dynamic coupling between image-mesh-flow
solver.

1.4 Framework of the thesis

This thesis work is a part of the project ”"De I'Image au Maillage”, supported by
Institut Mines-Télécom, a collaboration between several researchers from five Ecoles
des Mines (Paris, Saint-Etienne, Albi-Carmaux, Douai, Ales). The first part of
this work was performed at the Center for Material Forming, " CEntre de Mise En
Forme des matriau” (CEMEF) at Sophia Antipolis, to handle the mapping of the
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image data to the mesh structure. The second part was achieved at the Center
for Mathematical Morphology, ”Centre de Morphologie Mathématique” (CMM),
at Fontainebleau, to interface our implementations with Morph-M, a powerful tool
for image processing, based on mathematical morphology techniques. Finally, at
the Institute of High Performance Computing, ”Institut de Calcul Intensif” (ICI)
of Ecole Centrale de Nantes, implementations have been extended to a massively
parallel context, using the ICITech library and numerical simulations based on real
images have been performed.

1.5 Layout of the thesis

This thesis is divided into six chapters. Chapter 1 is the general introduction of
this work. Chapter 2 introduces a new methodology to create anisotropic meshes
based on image data. Anisotropic mesh adaptation is constructed using metric ten-
sors, which are computed from the interpolation error estimate of the image data on
the mesh. The interpolation of the data on the mesh and its adaptation have also
been parallelized. Chapter 3 gives a new methodology to build a continuous phase
function per object of a segmented image, by a redistancing procedure, coupled to
mesh adaptation. Image processing techniques were implemented to improve and
accelerate this redistancing-adaptation procedure. Chapter 4 describes the numer-
ical approach used for multiphase flow problems, the Variational Multiscale Navier
Stokes solver, based on a stabilized finite element method. Then, numerical simula-
tions on real images are illustrated, including fluid-structure interactions or object’s
interfaces dynamics. Finally, conclusions and perspectives are presented.

1.6 Résumé en francais

Ce chapitre introduit les travaux réalisés dans cette these. Premierement, nous
rappelons les techniques de traitement d’image, comme la segmentation ou la com-
pression. Deuxiemement, une breve étude des différentes méthodes de géneration
et d’adaptation sont présentées, avec un intéret particulier pour les techniques avec
optimisation de topologie de maillage. Ensuite, nous décrivons les objectifs pour-
suivis, avec la réalisation de simulations numériques par la méthode des éléments
finis et directement sur des images. La morphologie mathématique est utilisée pour
traiter les données de I'image, afin de s’assurer qu’ils sont mieux exploitables par
les outils d’adaptation de maillage et la simulation numérique. D’autre part, une
méthode de reinitialisation des fonctions de phase est proposée pour reconstruire une
fonction continue par objet a identifier dans une image, nécessaire aux simulations
d’écoulements multiphasiques.
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2.1 Introduction

In this section, the Immersed Image Method is introduced, consisting mainly in
the interpolation of an image onto a given mesh. Coupled to anisotropic adapta-
tion, it allows a very good representation of the original image, with fewer number
of nodes than the number of pixels/voxels and creates simultaneously an adapted
anisotropic mesh. The previous Chapter has presented the definition behind an
image and a mesh. The main idea of the Immersed Image Method is to map the
pixels (2D)/voxels (3D) value of the image onto an existing 2D /3D mesh, allowing
us to build a function within it. In classical methods, from this function we recog-
nize N phases by building N — 1 phase functions, being N — 1 surface meshes then
extracted. In image-based approaches for mesh generation, the most used method
to create a surface mesh is the Marching Cubes [2, 3], building after the volume
one. Here, we propose an alternative way, by skipping these two steps, and directly
construct the mesh. This is specially interesting in the case where computations
will be performed on the adapted mesh, constituted of all the phases. For that, we
propose to use directly the image data and to minimize the a posteriori immersed
image interpolation error by adapting anisotropically the mesh [27, 28, 37, 38|.

2.2 Interpolation of the image Pixel/Voxel values
on the mesh

A new method to transform the image information in a mesh is presented in this
section. In general, a pixel/voxel is the smallest controllable surface/volume element
of a two/three dimensional image, arranged in this latter in a speaﬁc order. The
image, noted as @, can be in two (L x H ) or three dimensions (L x H x W) with
T pixels/voxels (T LxHorT=1LxHx W) where L, H, W are the length
height and width of the image. Therefore, the set of pixels/voxels in the image u is
defined as:

Pizel = {Pizelf € R2, Vk=1,...,T}
(2.1)
Vowzel = {Voxel* e R®, Vk =1,...,T}

Let U* be the value and (IF, BE) /(IF, b wk) the coordinates of U at Pmelk/Voxelk
such that: u(szelk) = U* or u(Vozxel®) = Uk, Wik =1,...,L, " =1,...,L and
wk = 1,...,W.

(

~)

Z (Pizel®) = Z Uk
Z (Voxel®) Z Uk
[

The relation between the k-th pixel/voxel and its coordinate (lAk, hE, wk) is:

Vk=1,...,T (2.2)

)
Il
Ny s
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k=0 +hks«L+whxHxL (2.3)
N————
only for voxel

Like referred previously, for a ¢ 8-bit grey-scale image, there are only 2% = 256
possible levels and the value of U* varies between 0 (black color) and 255 (white
color). However, for color images, like a RGB (Red, Green, Blue), a three channels
are usually used, each channel with 256 levels, so that there are 22 = 16777216
possible colors.

Let us recall the definition of a 2D /3D mesh, which is a collection of nodes, edges
and elements (for example, triangular or quadrilateral for a 2D mesh, tetrahedron or
pyramidal for a 3D mesh). The mesh support is widely used to discretize geometries
in finite element or finite volume methods. For an initial 2D/3D mesh of a domain
of size ([0,X] x [0,Y]) or ([0,X] x [0,Y] x [0,Z]) with N nodes, we define:

= {X'eR,Vi=1,...,N} (2.4)

as the set of nodes of the mesh and d its spatial dimension. We denote U* = u(X")
as the nodal value of u at node X', with the coordinate of node X' being (z*,y") or
(z%,y*, 2") for a 2D or 3D mesh, with z* € [0,X],y* € [0,Y], 2" € [0, Z].

During image to mesh processing, the image, under one of different possible
formats, is firstly read and associated to a data array. Then, this data array of
pixel /voxel values from the image @ is interpolated into the mesh, providing a dis-
tributed field, named here u. The 1nterp01at10n equations are as follows, obtained

using the coordinates of the pixel /voxel (l’g z wk) and of the nodes (2%, 3, 2%):

uw(X") = u(Pixel® /Voxel®), where Ik = int(%i : (Z - 1)+1),
(H-1)+1), @:im(%(ﬁ—l)ﬂ) Vi=1,...,N  (2.5)

N J/

TV
only in the 3D case

In fact, the solution w € C*(Q2) = V. The discretized functional space cor-
responding to V, V), is a simple P! finite element approximation space with a
piecewise constant field, such that:

V, = {uhECO(Q),uh\KEPl(K),KGIC} (26)

where Q@ = |J K is the computational domain, K is the element, in our case a
KeKk
simplex (segment, triangle, tetrahedron) and K is the set of elements of the mesh,

H. Let 11, be the Lagrange interpolation operator from V to V, so that:

Mu(X') =u(X)=U" Vi,...,N (2.7)

More generally, we will designate the continuous form represented as the interpo-
lation solution, up. Figure 2.1 presents a simple interpolation example, of an image
u with 25 pixels (L x H = 5 x 5) on a single triangle element K, with 3 nodes
X! X2 X3 As given by Equation (2.5), the three nodes can directly be mapped
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on the image and will have the values of the pixels u(Pizel'), u(Pizel?), u(Pixel?),
as illustrated in Figures 2.1(a)(b). Since the values of the three pixels have been
interpolated on the mesh nodes, the Lagrange interpolation solution on element K
is computed with the operator IT,u(X") from the three nodal values, as shown in
Figure 2.1(c).

o (Pixell)

(ST

/ N

/ \\ K
/ -

2 3
aPixel?)  a(Pixel®) UXY u(X*) Ut u

(a) Image map (b) u(X?) (c) up

Figure 2.1: Illustration of the interpolation of a 2D image on a single triangular
element: (a) image mapping; (b) nodal values, u(X"); (¢) Lagrange interpolation on
the element, uy,.

Using this approach and enough elements, the mesh may approximately represent
the original image. To outline our purpose, let us consider one other example, the 2D
8-bits image Lena [4], which is presented in Figure 2.2(a). This image is very popular
in the image processing domain, containing 7' = 262144 pixels (E x H = 512 x 512).
Firstly, we immerse this image into an uniform mesh, shown in Figure 2.2(b)),
containing N = 140 nodes on a square of dimensions ([0,1] x [0,1]). The result
provides a rather coarse mesh size.

(a) Lena image, T = 262144 (b) Initial mesh, N = 140

Figure 2.2: "Lena” image [4] and initial mesh.
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Like previously, the mesh nodes find the corresponding pixels, mapping the im-
age, as seen in Figure 2.3(a). Therefore, the image information is stored in the nodes,
Figure 2.3(b). The Lagrange interpolation solution of elements u;, is computed with
the interpolation operator, from the nodes’ value, also shown in Figure 2.3(c).
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U VAVAVAVAVAAN
(a) Image map (b) u(X"), N = 140

Figure 2.3: Tllustration of the interpolation of a 2D grey-scale image, ”Lena” [4], on
a mesh with 140 nodes: (a) node location on the image Lena; (b) nodal value, u(x");
(c) Lagrange interpolation on the elements, uy,

We observe that, even if we recognize the global pattern, coarseness of the mesh
results in a poor representation of the original image. Therefore, the simplest way
to improve the representation is to increase the number of nodes or to reduce the
size of the elements. Figure 2.4 shows the image interpolated on the mesh for an
increasing number of nodes. The last one is very close to the original image, for a
number of nodes still smaller than the number of pixels (V = 50372, T' = 262144),
reducing also the size of the storage of the information.

The Image Immersion method has also be extended to 3D image applications. To
illustrate it, we have used a M RI of the human head from the BrainWeb Database
[39], treated in [40, 41]. The 3D image corresponds to a healthy subject scanned
with a T1-weighted contrast on a 1.5T magnetic field, with a 30° flip angle, 22ms
of repeat time, 9.2ms of echo time, and a 1mm isotropic voxel size, resulting in a
256 x 256 x 181-sized volume. Additionally, ground-truth regions were also provided
for the skin, skull, cerebrospinal fluid, grey and white matter tissues. To have a
clearer visualization of the results, we have interpolated a sub-volume of (91 x 212 x
181), with 7' = 3491852 voxels, as shown in Figure 2.5(a). The (sub)image contains
half the human head regions referred before. The interpolation of the image on a
3D uniform mesh is drawn in Figures 2.5(b),(c) and (d) for different and increasing
number of nodes.
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(a) up, N = 531

(d) up, N = 12595

(e) up, N = 38003 (f) up, N = 50372

Figure 2.4: Interpolation of the image ”Lena” on a 2D mesh, using uniform meshes
but with an increasing number of nodes.
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(a) Original image & (b) up, N = 100000

(¢) up, N = 600000 (d) up, N = 1900000

Figure 2.5: Application of the interpolation of the image on a 3D mesh, using
uniform meshes and an increasing number of nodes.
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2.3 Image construction and compression based on
the mesh

The previous examples show that the Lagrange interpolation solution on the mesh
may approximately represent the original image, often with fewer number of nodes
than the number of pixels/voxels. It may help reducing the stored information, as
in lossy image compression methods. To demonstrate this point and quantify the
results, let us construct a new image, uy, based on the resulting interpolation on
the mesh, uy, with the same number of pixels/voxels and dimension of the original
image, T. This image construction procedure can be considered as the opposite
operation of the previous methodology. Figure 2.6(a) shows again the interpolation
solution on element K, with nodes X', X? X?. Firstly, the three nodes of element
can directly create the three pixels, as given by Equation (2.8) and illustrated in
Figure 2.6(b).

h(szelk/Voxelk) = up(X"), where Ik = int(% (L=1)+1),

i

Bk =int(% - (H—1)+1), wk:iﬂt(%-(W—1)+1)Vz’,...,N (2.8)
only};r 3D
iy, (Pixel)

u(X!)

u(X?) ’ u(X®)

. iy, (Pixel?) o, (Pixel®) 7~

(a) (b) ()

Figure 2.6: Illustration of the image construction from the interpolation solution
on the mesh: (a) interpolation on the element, uy; (b) identification of the pixels’
centers; (c) resulting image.

For the remaining pixels, their centers are identified in the element. If they are
inside or along an edge, they are given by the values of the interpolation solution, uy,,
in this center. The new created pixels construct the new image and are represented
in Figure 2.6(c).

In the new image, u;, with T pixels/voxels, there are N pixels/voxels directly
created from the nodes of the mesh, which are the same as the original image.
For N < T, the created pixels/voxels may be different from the original ones. To
research the quality of the results and the lossy image compression, we introduce
the indicators M SE (Mean Square Error) and D (Density) as follows:
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p

=)

T
MSE = ! Z(u’fL — uk)?
= (2.9)

Mesh size Number of nodes N

L Original image size ~ Number of pixels/voxels T
They will allow, in the following, a comparison between the original and the
created image, pixel by pixel or voxel by voxel.

2.4 Automatic anisotropic mesh construction

The other advanced way to improve the image representation, in particular for a
constrained number of nodes, is to use an anisotropic mesh instead of an uniform one.
Compared to uniform meshes, elements of anisotropic ones have different shapes,
sizes and orientations, which may improve the accuracy of the numerical simulation
solution, especially in the case where there are discontinuities or high gradients of
the solution. It enables to capture physical phenomena such as boundary layers,
shock waves or moving interfaces [42, 29, 43, 44, 37]. In our application, anisotropic
meshes may also improve the interpolation solution with fewer number of nodes.
In this section, we have improved and applied the methodology presented in
[28, 37, 38], which is based on a topological mesh generator that has as input a
nodal metric map, being the metric tensor constructed from an edge based a pos-
teriori error estimator. This error estimate is computed by building the length
distribution tensor and the detail of this error analysis has been presented in [37].
For this remeshing procedure, a stretching factor is applied on each edge to obtain
the corresponding metric tensor, with a constrained number of nodes. Furthermore,
the interpolation error computation can be applied and extended to other compo-
nents or multi-component situations such as color images, velocity or pressure fields,

2.4.1 Mesh adaptation based on a metrics field

Anisotropic mesh generation techniques based on metric tensors have been developed
in the last decade [28, 45, 44]. The metric-based method is not established on the
Euclidean space, but on the Riemannian metric space and on the unit mesh (for
example, equilateral triangles in a 2D mesh or regular tetrahedron in 3D meshes).
In other words, the mesh can be composed of elements of any shape (unit or not)
in the Euclidean space, which will be transformed into unit elements in the given
metric tensor space.

We note the Riemannian metric tensor as M in R™ and is a n x n symmetric
positive matrix. It is diagonalizable and its associated eigenvectors are R (as a
rotation vector), being A the metric of its eigenvalues, as follows:
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A1l 0 0
M="RAR="R| 0 |X] 0 |R,ina 3D mesh (2.10)
0 0 [Ag]

The metric tensor may be represented by an ellipse (in 2D) or an ellipsoid in 3D,
as seen in Figure 2.7, where hy, ho, ..., h, are the local sizes in each direction of the
metric tensor M.

1/62

vy
1
Ellipse Unit circle
In the Euclidean space in Metric space

Ellipsoid Unit ball
in the Euclidean space in the Metric space

(b)

Figure 2.7: Representation of the ellipse (2D) and ellipsoid (3D) transformation into
unit circle and unit ball from the Euclidean space to the metric space.

The scalar product of two vectors in the Euclidean space and in the Riemannian
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metric space are written:

(d,V) = "uv and (4, V) = "uMv € R" (2.11)

For this reason, the norm of the vector d in the Riemannian metric space is:

]| = V(U @) p = ViuMu (2.12)

It means that, for each edge of the mesh, its length in the Riemannian metric
space is always equal to the unit length. The definitions of the Euclidean distance
and of the Riemannian distance, corresponding to vector X% between nodes X’ and
X7 are given as:

d(X7, XY) = VIX9XY and d(X7, XY) = VIXTMXY =1 (2.13)

The metric is continuous along the edge. The tensor may be defined along the
vector X%, as a function of the position of a point z, such that X" (z) = X'+tX" |t €
[0,1]. Thus,

AX(2) X )i = [ XM (X X)X (2.14)

For the anisotropic mesh construction, the metric field may be associated with
the mesh elements. For example, a triangle or a tetrahedron becomes an equilateral
triangle or regular tetrahedron in the metric space, as seen in as Figure 2.8.

Figure 2.8: Unit metric for a 2D and a 3D elements.

In this way, the metric tensor is stored at the element, and is piecewise constant
along the edge (Equation (2.14)), but discontinuous from element to element. For
the iterative mesh adaptation procedure, using the metric tensor at the element,
as seen in Figure 2.9(a), is not the best choice to obtain the new metric tensor
M at the new element, since it involves four parts of four different metric tensors,
My, Moy, M3, M.

Indeed, the nodal metric tensors computation has been most widely used [29,

44, 37]. The metric tensor in the new point X, which is the isobarycenter of
{Xl, o ,X”}, is given by:

— 1 & ;
M:E;M (2.15)
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M,
- ,
M

(a) Metric on elements

(b) Metric on nodes

Figure 2.9: Illustration of mesh adaptation with a metric field defined at the elements
and at the nodes.

where n is the number of nodes around the new node. One way to build this
nodal value is also to perform a metric intersection method proposed and applied
in the literature [46, 42, 47, 44], for the case where we have several meshes. Let us
consider the two metric M;-M, intersection and the matrix My, = M My with
the normalized eigenvectors e;, es, e3. This latter are a basis of the Riemannian
space R3. If we define P = (e; ey e3), then M; and M, are

M 0 0 pr 00
Mi="PH{ 0 X 0 |PlandMy="P' | 0 py 0 |P' (216)
0 0 A 0 0 pus

The final intersected metric Miny = M1 N M is:

max()\l, ,ul) 0 0
My =P} 0 max(Ag, (i) 0 P (2.17)
0 0 max(As, f3)
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For more than two metric tensors intersection, authors consider generally metrics
that are intersected two by two.

Mo, = (M0 M) N Ms) .. N M, (2.18)

This intersection method requires firstly all metric tensors construction to then
obtain the final intersected metric tensor, which may require high computation
resources. Omne other method to compute only one metric tensor at the node
is proposed by [37], by skipping intersection computation and will be applied in
the following anisotropic mesh adaptation procedure. Firstly, let us recall that
X' e R% i =1,---,N is the set of nodes of the mesh and that the vector X%
connects nodes i and j, X7 = X’ — X', as illustrated in Figure 2.10.

Figure 2.10: Illustration of the edge vector X of the edge joining nodes i and j,
and the edge solution, U¥, joining the solution at the nodes ¢ and j.

In the mesh, one node can be shared by several edges. The set of nodes connected
to node i is I'(7), given by:

Ii)={j, 3K ek, X', X7 are nodes of K} (2.19)

Let each edge vector connected to node X“ be transformed in an unit length
vector in the Riemannian space. One may have different element metric tensors that
satisfy the required conditions, since the edges are shared by the latter. In fact,

d(XY,XY) gy = (MIX7 XT) =1 for j € T(i) (2.20)

However, we intend to build one new metric tensor, M?, at node ¢ instead of
these several metric tensors, where each transformed edge vector is almost equal to
1, so that the sum of the transformed edge vectors in I'(4) is:

> (MIXT XT) = 3 1= 1) (2.21)

JET(3) JET()
In the following, we use the tensor scalar product notation:

AllBll A12B12 )

2.22
Ag1 By Az Ba ( )

Aws=(

Equation (2.21) can be written as:
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M| Y XT@XY | =T (2.23)
JEL (@)
In fact, it is very difficult to find a metric tensor, which guarantees that each
edge may be transformed to one with unit length. However, we may accept a
compromised way by computing

M' = argmin Z (”X”Hiw - 1)2 (2.24)

] dxd
MIERE N Ser(i)

In [37], the author proposed a new definition called the length distribution tensor
at node 7, written as

, 1 . -
Xi=—— ) XV®X" (2.25)
TG 2~
Jer(@)
It will be used to find the optimized metric tensor because the latter, evaluated
at node 4, may be constructed as a function of X, as follows:

) 1 )
M = 3(;‘61)*1 (2.26)
where d is the spatial dimension. In addition, the length distribution tensor will

be further used, for example in gradient recovery procedures, as we will see later.

2.4.2 Edge based error estimation

The objective of mesh adaptation is to construct a mesh which is optimal for the
simulations to be performed. In other words, it should ensure that the estimated
error between the exact solution and the approximate one is minimal.

First, let us recall the classical method to compute the interpolation error esti-
mate. u denotes the regular scalar field, U? being its value at node X’, and uy, is
the interpolation result on the given mesh, with N nodes and using the Lagrange
interpolation operator from V to V.

Even if the gradient of uy, is a piecewise constant vector field, Vu € C1(2). The
projection of u;, along the edges is continuous and one may write:

Ul =U"+ Vuy, - XY and Vuy, - X7 = UY (2.27)
Using the analysis carried out in [37], we can set that the norm of the difference

between the projection of the gradient along the edges and the interpolated value
of the gradient can be upper bounded by:

[Vuy - XY = Vu(X') - XY|| < max _|H(u)(y)XY - X7 (2.28)
yE[Xi,Xj}

where H(u) = V?u is the associated Hessian of u. For that, the second derivative
of u is necessary and its projected value can be established using Equation (2.27)
and the interpolation operator, to write a second order derivation as:
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[V (Vu,)X7] - XY = Vu(XY) - XV (2.29)

The Taylor series of the gradient of w is:

Vu(X?) = Vu(X") + H(u) (X)X (2.30)

Then, projecting onto X gives:

(Vu(X7) — Vu(X")) - XY = H(u)(X") X7 - X" (2.31)

We use this result to approximate the error along the edge as

e’ = |[Vu(X!) — Vu(X")] - XY (2.32)

However, a node is always shared by different edges and elements, and the gra-
dient value of u at the node may be different when computed from different edges
separately. Inspired from the length distribution tensor presented in the previous
section, we find a recovered gradient value of u at node X', noted G, proposed by
[37] and satisfying the following condition:

G' = argmin Z (G — Vu(X7)) - X’Aj|2 = argmin Z |G- XY —UY

‘2
@ jer() G jer()

(2.33)
so that,

0= Y (G'(X"®X7)-UYXY) (2.34)
Jer(@)
According to the previous definition of the length distribution tensor X ¢ the
recovered gradient G' at node X' is given by:
) o\ ) ) 1 o
G = () U and U = — Y UYXY 2.35
( ) U" an ) -g(-) ( )
J i

We set GY = G — G as the gradient vector along the edge X which follows

GU . X = H(u)(X') X . X1 (2.36)

According to Equation (2.32), the new estimated error is then a function of the
recovered gradient G as

e’ = |GY - XY| = [H(u)(X") XY - X7 (2.37)

The error tensor £ at node X’ can be written as:

&= argmin Z & X7 — VXY (2.38)

' jer®)

‘ 2
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Finally, the nodal error E* is a function of the length distribution tensor X* as
follows:

= det(£7) = det | (X)) VX @ XY (2.39)

JEL(Q)

2.4.3 Metric construction with control of the number of
nodes

In this section, we explain how to link this estimated error to the new anisotropic
metric field construction. In order to re-generate the mesh properly based on an
existing one, it is necessary to compute the new length for each edge, by applying a
stretching factor s¥ to the edge, so that

XU = §1X (2.40)

The stretch factor of each edge, 5% will then depend on the estimated error e¥

and the target error e” wanted on the edge” such that:
iy €l
(s)° == (2.41)

If the estimation error is larger than the target error then the edge length needs
to be shrinked, s < 1. At the opposite, if the estimated error is smaller than the
target one, the edge length is stretched and s > 1.

However, during the mesh adaptation procedure, controlling the number of nodes
of the mesh is required to avoid reaching too fine meshes and to be optimal in terms
of the computational cost. The stretch factor s used to scale the edge changes
quadratically, Equation (2.41). Hence, let n”/ be the number of created nodes. Its
relation with the stretching factor s¥ is given by:

n = (s7)7t = (Z-j) (2.42)

This allows us to control the number of created nodes along the different edge
directions at node i. By processing in a similar way as for the length distribution
tensor, [38] gives a distribution of nodes tensor, N, at the node X*, which is the
solution of an optimization problem:

[N

Nt = argmm Z N XY — inij’2 (2.43)
JET (@)
so that,
0=N":) X9@X7- Y n/X7®X" (2.44)
jeF(i) jEF

The total number of created nodes per node 4 is then N* = det(N?),



36 2. The immersed image method

N' = det(N*) = det [ (A7) > nX7 @ X" (2.45)
Jer(@)
By considering an averaging process of the number of nodes distribution function,
the total given number of nodes NV in the adapted mesh will be

N=> N (2.46)
Assuming that we will impose an uniform totally balanced error along the edges

€ = e = constant, the number of created nodes per edge is:

n(e) = (s9(e) "t = (=) 2 (2.47)

el

The equation of the total number of created nodes at node ¢ is:

Ni(e) =det | (¥)7 Y (%)_%Xij ® X% (2.48)
Jer(@)

Treatment of this equation gives:

1

i -4 iy ~1 —~rij ij
Ni(e) = e~z det | (X7) Z@) 2 XY @ X% (2.49)
JEer ()
Let us consider N*(1) as:
i iy 1 L1 ij
N'(1) = det | (x7) Z(ﬁ 2 X ® X (2.50)
JEL (@)
then,
Ni(e) = e 2N'(1) (2.51)

The total number of nodes in the new mesh is
N =¢"2) N(1). (2.52)

Therefore, the global induced error for a given fixed number of nodes N can be
written as:

v

N
e(N) = SN (2.53)

The target error of edge e can be replaced by e(N) using this approach. The
stretching factors to be computed in order to obtain the new metric field, under the
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constraint of a fixed number of nodes N and an uniform balanced error along the
edges, e, is thus given by

e

s = (@)2 (2.54)

The new metric tensor only depends now of the given fixed number of nodes NV,
the estimation error e” and the length distribution tensor X.
One may simply define the new length distribution tensor as

Xi = 3 XU @ X = 3 (s7)2X7 @ XY (2.55)
| ()|j€1"7,) | (>|j€F

as well as the new metric to give to the mesher:

—_—

- 1~
Mt = E(Xl) (2.56)

2.4.4 Extension to multiphase field adaptation

A new way to construct a unique metric from a multi-component vector field has
been introduced in [38] and used instead of classical intersection techniques. This
vector can be composed of the velocity, pressure, multi-level-set functions or other

fields composing @ = {uy, us, ..., u,}. We may then define the error vector for all
these components, e = {el ed, ... ,€%}. Then, the stretch factor is
o
SZ] = =1 (257)
&

where the error norm can be Ly or L., to give

R k=1 , N -~ J
~~ Loo

Lo

|e”]| = (Z (e?)2> or |le|| =  Inax ezj (2.58)

To illustrate this point, let us suppose vy, the finite element solution of a multi-
phase Navier-Stokes problem, which needs the velocity vector field 7 and a phase
function . Let v;(X") = V? and we introduce the vector field Y = (%, \4 ,a).

We obtain, for each node 1,

Vl

- [V'], a} =) (2.59)
The particular case of |v| = 0 is accounted using % with € = 107% being
a small value, so that )i = 0 when |V’| = 0. In our case, we have focused mainly
on the change of direction rather than on the intensity of the velocity.
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2.4.5 MTC mesh generator

The topological mesh generator "MTC” [27, 48, 28, 29] has been presented in the
previous chapter, showing that an initial mesh is thus iteratively modified until a
local optimized mesh enforces two main criteria: the minimal volume and the
geometrical quality.

In anisotropic adaptation, the second criterion, the geometrical quality ¢, is
evaluated for each element using the metric field.

As an example, let us consider an initial mesh and a given metric field, M €
R4 which may be computed by the presented metric tensor construction method
with an estimated error. Therefore, the quality ¢(K) of the element measured in
the metric M is defined as the minimum of two subcriteria: the quality, C,(K),
and the size, Ci(K).

a(K) = min (C,(K), Cy(K)) (2.60)
The quality criterion, C,(K), is computed as:

Volume(K) pq

C(K):CO
q h'c/lle

K« (2.61)

where d is the spatial dimension and the matrix Mg of the metric of the element
K is calculated as the average of the nodal metric matrix on the nodes of element
K:

1 i
.MK:E:TEJM (2.62)

ieK
Volume(K ) aq, is the volume of the transformed element K in the metric space
M, given by:

Volume(K) rq,, = Volume(K)+/det(Mg) = / dK pm,, (2.63)
Ky

and c¢g is the normalization factor, to ensure that Equation (2.61) gives a quality
equal to 1 when the element K is equilateral in the metric tensor space, M. Also,

d!
cy = ——v—20/2 2.64
T Vd+1 (2.64)

so that ¢ = 4/ V3 for a 2D equilateral triangle, and ¢y = 6v/2 for a 3D regular
tetrahedron. hy,, is the average of the lengths of the edges of element K transformed
in the metric tensor Mg:

1/2

> (MgXY XY) (2.65)
1,j)EK

2
tse = d(d+1)

The value of C,,(K) varies from 0 to 1. Then, the second factor, the size criterion
Cs(K) controls the size of the element in the metric M, as:
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d
Cs(K) = min < ! ,hMK) (2.66)
Pt

which also varies between 0 and 1. Under the definition of the quality of the
elements ¢(K), we need to compare the different sets (like in Figure 1.12) in order
to choose the best local cavity with the highest quality.

In conclusion, the minimal volume assures the conformity of the mesh, if the
initial mesh was conforming, the latter handles improvements of element shape, size,
connectivity, etc, depending on the quality function ¢, function of the geometry
of the element K and of the prescribed background metric, which give together a
measure for the element size and shape (aspect ratio) based on the computed metric
tensor field.

2.4.6 Numerical tests

In this section, the image to mesh interpolation procedure is coupled to automatic
anisotropic mesh adaptation with the constraint of a given number of nodes. At
each iteration, the original image @ is interpolated in the current mesh, to build wu.
Then, an error estimator computes the estimated error along each edge, €. On
the other hand, a target error, e(N), is defined as a function of an imposed number
of nodes. Finally, computation of a stretch factor for each edge, s is performed.
From this, a new metric tensor field M is established, which is used to construct
the new adapted anisotropic mesh. In this process, the mesh generator only needs
the wanted number of nodes. The initial mesh does not influence the final results,
and may be a very coarse mesh. The different steps of the whole Immersed Image
Method are summarized in the algorithm presented below.

Input: Initial image @, initial mesh H and wanted number of nodes N
Output: Adapted anisotropic mesh H with N nodes, solution interpolated
uy, on this mesh.

1 while the adapted anisotropic mesh is not achieved do

2 Interpolate the image % on the current mesh, to obtain uy,.

3 Compute the recovered gradient G on each node G'.

4 Estimate the error, €%, for the each edge X%.

5 Compute the target error as a function of the given number of nodes,
e(N).

6 Build the stretch factor, s¥, using the estimated error, ¥ and the target
error, e(N).

7 Construct the new metric tensor field, M.

8 Generate the optimal mesh, ?—7, using M , and following the minimal
volume and the geometrical quality criteria.

9 Update the mesh.
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2.4.6.1 Application to “Lena” image

In a previous example, the “Lena” image (Figure 2.2(a)) has been used to illustrate
the image interpolation procedure. Now, this procedure has been coupled to au-
tomatic anisotropic adaptation. Let us consider different number of wanted nodes,
N: 3200, 13000, 35000. After 15 iterations on one core (3.5GHz,16 Gb RAM), the
anisotropic mesh adaptation reaches convergence (the mesh no longer evolves). The
CPU time (s) for each case is given in Table 2.1.

N 3200 13000 35000
Time (s) | 35 99 251

Table 2.1: CPU time (s) for image interpolation coupled to mesh adaptation, for an
increasing number of nodes and 15 iterations, runs performed on one core.

Figure 2.11 illustrates the nodal estimation error field, F, and the obtained
anisotropic mesh. Higher errors are associated to higher gradients, which will be
enriched with more local nodes. Increasing the total number of nodes gives lower
maximum values of the estimated error.
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Figure 2.11: Computed nodal estimated error field, F/, and adapted anisotropic
mesh, for three given number of nodes, N, of 3200, 13000 and 35000.

Figure 2.12 shows the solution of the interpolation, wuj;, on these meshes, after
the 15 performed iterations. One observes that it approximates better the initial
image than the equivalent number of nodes isotropic mesh.
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(a) un, N = 3200 (b) wup, N = 13000 (¢) up, N = 35000

Figure 2.12: Solution of the interpolation, uy,, for three adapted meshes with different
increasing number of nodes, N, of 3200, 13000 and 35000.

It also shows the potential of anisotropic adaptation to reduce the stored infor-
mation and perform image compression. As introduced in Section 2.3, let us build
a new image, Uy, with the same number of nodes T' as the original image, but based
on the result of the interpolation on a mesh with N nodes (N < T'), with or without
adaptation iterations. To analyze the quality of the results, we plot the M .SE (Mean
Square Error) as a function of density D. Figure 2.13 shows the influence of the
density on the computed MSE for ”Lena”’s image, using uniform and anisotropic
meshes. We observe that, for the same density, the anisotropic adapted meshes
provide less error than uniform ones, as expected, since nodal placement is, in this
case, optimized.
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Figure 2.13: “Lena”’s image MSFE as a function of the density, for uniform and
anisotropic adapted meshes.
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2.4.6.2 Application to 2D/3D head MRIs

The proposed methodology can be potentially used in medical applications. Figure
2.14(a) is a 2D grey-scale M RI of the human head given by the Optima* MR450w
with GEM Suite MRI system [49]. It contains 490000 pixels (L x H = 700 x
700). This image has been firstly interpolated on an initial uniform mesh. The
interpolation results, for different number of fixed nodes, is shown in Figure 2.14.

By increasing the number of nodes, the skull and the brain regions become bet-
ter and brain wrinkles appear clearly. In fact, results for a mesh with 127518 nodes
compares very well with the initial image, which has 490000 pixels. Furthermore,
image interpolation coupled to the automatic anisotropic mesh adaptation proce-
dure improves the results, using less nodes. Figure 2.15 illustrates the resulting
interpolation of a 2D cut of the M RI head on an adapted anisotropic mesh, for dif-
ferent number of nodes. For runs on one core and different number of fixed nodes,
the CPU times (s) are presented in Table 2.2.

N 3600 13000 32000 53000
Time (s) | 50 107 202 331

Table 2.2: CPU time (s) for interpolation and mesh adaptation for different number
of nodes and 15 mesh iterations, runs performed on one core.

We observe that, using only 13000 nodes, the interpolation coupled to an adapted
anisotropic mesh performs very well. In addition, for 53000 nodes, the final mesh
clearly describes details like the brain wrinkles and other important features which
may be used to improve final purpose computations.

The 3D case, presented in Figure 2.5(a) and interpolated in uniform meshes, has
also been considered. The same algorithm was run on 4 cores, also imposing a larger
number of nodes. Figure 2.16 shows the results obtained by coupling interpolation
and adaptation in this case. 3D anisotropic mesh adaptation requires more iterations
than 2D to attain the same mesh quality. CPU time (min), for different number of
imposed nodes and 25 iterations is presented in Table 2.3.

N 100000 200000 300000 400000
Time (min) | 66.5 1155  189.9  227.7

Table 2.3: CPU time (min) for image interpolation and mesh adaptation in 3D, with
different number of nodes and for 25 iterations, runs performed on 4 cores.

Quantitative comparison, is terms of M SFE, is given in Figure 2.17, by plotting
it as a function of the density D, for both the 2D and 3D cases. We observe that, for
the same density, anisotropic adapted meshes provides less error than uniform ones,
in particular 