sparsity measure ℓ 1 /ℓ 2 . . . . .

In seismic exploration, a seismic signal (e.g. primary signal) is often represented as the results of a convolution between the "seismic wavelet" and the reflectivity series. The second goal of this thesis is to deconvolve them from the seismic signal which is presented in Chapter ??. The main idea of this work is to use an additional premise that the reflections occur as sparsely restricted, for which a study on the "sparsity measure" is considered. Some well known methods that fall in this category are proposed such as [START_REF] Sacchi | Minimum entropy deconvolution with frequency-domain constraints[END_REF][START_REF] Sacchi | Reweighting strategies in seismic deconvolution[END_REF]. We propose a new penalty based on a smooth approximation of the ℓ 1 /ℓ 2 function that makes a difficult nonconvex minimization problem. We develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results. We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term. vii

Résumé

Cette thèse porte sur la restauration de champs d'ondes sismiques perturbés par trois sources de dégradation. Ces sources sont dues à des trajets de propagation complexes, au dispositif d'acquisition, à des sources liées ou non à l'acquisition, et potentiellement présentes simultanément : des réflexions multiples (ou échos), une dégradation de la réponse impulsionnelle attendue (ou flou) et des perturbations plus aléatoires (ou bruits).

Nous avons considéré dans un premier temps le problème des réflexions multiples, réflexions qui se sont réfléchies plusieurs fois sur au moins une interface. Nous nous intéressons ici au filtrage adaptatif de ces réflexions sismiques multiples à partir de modèles approximatifs issus de modélisation sismique. Ce filtrage est réalisé dans un domaine de trames d'ondelettes discrètes, mono-et bidimensionnelles, sous contraintes de parcimonie et de variation lente des filtres adaptatifs. Ceci est intéressant en réflexion sismique, car les méthodes standard peuvent produire des filtres très mal conditionnés, du fait notamment du caractère passe-bande des données sismiques. Dans ce travail, une formulation variationnelle des problèmes de réflexions multiples est proposée. Nous utilisons des algorithmes proximaux, dont la convergence est garantie lorsqu'il s'agit d'optimiser dans un cadre convexe. L'avantage de ces approches est l'utilisation d'une régularisation sophistiquée, permettant de considérer la parcimonie à la fois a) dans le domaine d'ondelettes, b) via des a priori sur les filtres pour lesquels nous avons utilisé différentes fonctions de régularisation (norme ℓ 1 , ℓ 2 , mixte ℓ 1,2 et nucléaire). Notre méthode vise à étendre et améliorer certains aspects de la méthode proposée par S. Ventosa en collaboration avec CGG en 2012, et testée avec succès sur plusieurs campagnes sismiques. Les résultats que nous avons obtenus démontrent la performance de notre méthode non seulement sur des données synthétiques bruitées mais également sur des données réelles.

Nous nous intéressons ensuite au problème de déconvolution aveugle. En géophysique, un modèle simplifié de la Terre souvent utilisé fait l'hypothèse d'un nombre de couches localement parallèles, chacune avec des propriétés constantes. Mais la vitesse, la densité ou les deux peuvent varier d'une couche à l'autre. L'impédance acoustique est calculée pour chaque couche ; puis les coefficients de réflexion pour une incidence normale sont calculés aux endroits où il y a des changements d'impédance acoustique. Chaque changeix x Résumé ment d'impédance acoustique opère une modification d'amplitude et de polarisation liée aux coefficients de réflexion. Ainsi, la séquence de réflectivité (réponse impulsionnelle) est convoluée avec la forme d'onde descendante pour donner une trace sismique. Ce problème constitue un contexte de déconvolution aveugle où l'on recherche un signal inconnu, convolué avec une forme d'onde elle aussi inconnue en présence de bruit additif. La déconvolution requiert souvent d'introduire des hypothèses complémentaires sous forme de pénalisation, notamment non convexe. L'ambiguïté d'échelle en déconvolution aveugle suggère l'usage de fonctions de contraste invariantes en échelle. Dans cette thèse, nous proposons un algorithme de minimisation alternée, de type explicite-implicite à métrique variable. Il traite une approximation lisse du rapport ℓ 1 /ℓ 2 (SOOT pour "Smoothed One-Over-Two penalty") pour des données réelles signées. Nous étudions les propriétés de convergence de la méthode proposée, basées sur l'inégalité de Kurdyka-Lojasiewicz. Les performances de cette nouvelle approche sont illustrées à travers un exemple en déconvolution aveugle de données sismiques, mais aussi sur des images.

Résumé long

Les méthodes d'exploration basées sur la sismique [START_REF] Lavergne | Méthodes sismiques[END_REF] s'appuyent sur la propagation d'ondes générées par un ébranlement du sous-sol. Celles-ci sont réfléchies ou réfractées aux interfaces des couches géologiques. Après une succession de transmissions et de réflexions, une partie de l'énergie de l'ébranlement peut être enregistrée par des capteurs sismiques (géophones ou hydrophones) localisés à proximité de la surface. Ces capteurs font l'acquisition de signaux correspondant aux amplitudes et temps de propagation des ondes considérées. Ces signaux temporels, appelés "traces sismiques" possèdent un spectre de fréquence allant de quelques Hertz à moins de cent Hertz en général. Une acquisition sismique consiste en la collecte de traces sismiques (z) issues de capteurs régulièrement répartis formant des antennes acoustiques en surface ou remorquées par des navires, ce pour un grand nombre d'ébranlements (ou tirs) générés en différentes positions. Par analyse conjointe des traces sismiques, il est possible de déterminer les distances relatives entre les interfaces géologiques et les contrastes de vitesse des ondes s'y propageant, comme illustré dans la . Ces données sismiques sont affectées de nombreuses distorsions, dues à des trajets de propagation complexes, au dispositif d'acquisition et à des sources externes. En général, ces distorsions ne sont pas aléatoires. Elles consistent en des signaux parasites, souvent structurés et de forte amplitude, qui recouvrent les signaux utiles correspondant aux réflexions intéressantes. L'objet du traitement géophysique [START_REF] Mars | Traitement du signal pour géologues et géophysiciens : Techniques avancées 3[END_REF] est l'extraction d'information pertinente à partir de ces importants volumes de données. Du fait de la complexité des champs d'ondes interférents, la géophysique est à l'origine du développement de méthodes de traitement de signal avancées, comme la déconvolution sous contrainte de norme ℓ 1 [START_REF] Claerbout | Robust modeling with erratic data[END_REF], ou les transformées en ondelettes continues [START_REF] Morlet | Wave propagation and sampling theory-part I: Complex signal and scattering in multilayered media[END_REF].

Cette thèse se divise en deux parties : 1) filtrage adaptatif de réflexions multiples et 2) déconvolution aveugle.

Filtrage adaptatif de réflexions multiples

L'enregistrement sismique est constitué notamment de réflexions primaires et de réflexions multiples qui forment l'objet principal des méthodes développées dans cette thèse. Lorsque xi xii Résumé l'onde aborde la première interface, une partie de son énergie est renvoyée vers le haut; une partie de l'énergie est transmise vers bas, l'onde transmise se réfléchit sur la seconde interface et est renvoyée vers le haut; une partie de l'énergie est également transmise vers le bas à travers la seconde interface et les ondes transmises se réfléchissent sur les interfaces suivantes et ainsi de suite jusqu'à la dernière interface susceptible de produire une réflexion sismique. Remarquons que les réflexions primaires se réfléchissent une fois seulement sur les interfaces. Pratiquement, l'enregistrement sismique comporte, outre les réflexions primaires, des réflexions multiples qui se réfléchissent plusieurs fois sur les interfaces.

L'objectif de ce travail est de proposer des méthodes fiables et efficaces pour résoudre le problème de filtrage des réflexions multiples en sismique. Ainsi, nous nous intéresserons à l'emploi de représentations parcimonieuses pour la restauration et l'analyse quantitative de champs d'ondes en sismique.

Nous supposons qu'une trace sismique est composée du primaire d'intérêt y, des multiples s et du bruit b, comme suit: z (nt) = s (nt) + y (nt) + b (nt) où n t ∈ {0, . . . , N t -1} désigne l'indice temporel et z = (z (nt) ) 0≤nt<Nt correspond aux données observées (trace sismique) combinant: le primaire y = (y (nt) ) 0≤nt<Nt (signal d'intérêt, inconnu) représenté en trait continu et pointillés bleu , les multiples (s (nt) ) 0≤nt<Nt (somme des signaux réfléchis non désirés) représentés en pointillés rouge (Figure 3.1 -p. 34) et le bruit b = (b (nt) ) 0≤nt<Nt qui est supposé être une réalisation de bruit additif.

Le problème posé est d'estimer y a partir de z. Les multiples et le bruit étant inconnus, il est nécessaire de faire des hypothèses supplémentaires. Pour cela, nous utilisons des modèles approximatifs des multiples (fournis par des méthodes sismiques non détaillées ici). Par des considérations géophysiques, on sait que ces modèles sont imprécis en amplitude, en fréquence et en localisation temporelle. Pour compenser ces imprécisions, nous effectuons un filtrage adaptif sur les signaux servant de modèles pour les faire "ressembler" le plus possible aux multiples réels, et ensuite les soustraire. L'idée s'inspire de méthodes de filtrage des multiples en sismique classique. Cela veut dire que nous chercherons une transformée adaptée à notre signal, tout en utilisant un formalisme analogue à celui de la déconvolution.

Nous utiliserons des algorithmes proximaux, dont la convergence est garantie lorsqu'il s'agit d'optimiser dans un cadre convexe (minimiser des critères convexes). Le terme de fidélité sera choisi judicieusement à partir d'un critère adapté aux caratéristiques du bruit. De plus, nous utiliserons des termes de régularisation basés sur la parcimonie des coefficients du signal dans le domaine fréquentiel ou temps-échelle (base, trame...), et du filtre composé avec un opérateur linéaire. En particulier, nous ferons des hypothèses supplémentaires sur les filtres adaptatifs afin d'assurer un meilleur comportement des solutions.

Un exemple modélisé de données sismiques est illustré dans la La figure de gauche montre une trace sismique (z, en bas), le signal d'intérêt étant le primaire (y, en haut), auquel s'ajoute le multiple (s, au milieu). On ne connaît ici que z (le signal observé) et on voudrait obtenir y (le primaire d'intérêt). Nous agrandissons une zone d'intérêt (figure de droite) pour le signal observé. Elle met en évidence le mélange des signaux primaires et des multiples. Il n'est donc pas facile d'enlever les multiples dans cette zone. Dans la littérature, on trouve deux grandes classes de méthodes.

Une première approche représente les données dans un domaine transformé avec un chevauchement minimal entre les primaires et multiples. On effectue un filtrage ou une sélection dans le domaine transformé, qui permet d'atténuer des multiples ou de sélectionner des primaires d'intérêt. Les coefficients filtrés sont alors reconvertis dans le domaine temporel ou spatial, en utilisant une transformée inverse. Des outils standard comprennent la sommation combinée avec NMO (Normal Move Out), les filtrages homomorphiques [START_REF] Buttkus | Homomorphic filtering -theory and practice[END_REF], fk [START_REF] Wu | A case study of fk demultiple on 2D offshore seismic data[END_REF], et τp [START_REF] Nuzzo | Improvement in GPR coherent noise attenuation using τp and wavelet transforms[END_REF], ainsi que différents avatars (parabolique, hyperbolique) de la transformée de Radon [START_REF] Hampson | Inverse velocity stacking for multiple elimination[END_REF]Trad et al., 2003;[START_REF] Nowak | Amplitude preservation of Radon-based multipleremoval filters[END_REF].

Une seconde approche inclut des filtres de prédiction et leurs variantes [START_REF] Taner | Long period sea-floor multiples and their suppression[END_REF][START_REF] Abma | Comparisons of adaptive subtraction methods for multiple attenuation[END_REF][START_REF] Spitz | Simultaneous source separation using wave field modeling and PEF adaptive subtraction[END_REF], aussi appelées filtres de mise en forme, ou adaptés dans la littérature en traitement du signal [START_REF] Ristow | Time-varying prediction filtering by means of updating[END_REF]) ou de déconvolution prédictive [START_REF] Taner | Long period multiple suppression by predictive deconvolution in the xt domain[END_REF]. Incidemment, le filtrage adapté des multiples peut être vu comme une forme de déconvolution informée. Récemment, des techniques basées sur la modélisation, telle que le SRME (surface-related multiple elimination), ont démontré d'excellentes performances, ce qui permet de guider par les données l'élimination de multiples [START_REF] Verschuur | Adaptive surface related multiple elimination[END_REF][START_REF] Weglein | An inversescattering series method for attenuating multiples in seismic reflection data[END_REF][START_REF] Lin | 3D SRME application in the Gulf of Mexico[END_REF] à partir d'un modèle basé sur l'équation des ondes (Pica et al., 2005a;[START_REF] Weisser | Wave equation multiple modelling: acquisition independent 3D SRME[END_REF]. Ces méthodes, basées sur des modèles de multiples, consistent à prédire, puis à soustraire les modèles de multiples adaptés aux données sismiques. xiv Résumé Le modèle adapté est généralement obtenu par un filtre linéaire de type Wiener [START_REF] Robinson | Principles of digital Wiener filtering[END_REF] qui minimise l'énergie de la différence entre le signal observé et le modèle. Bien que les primaires et les multiples soient générés à partir de la même source et ne soient pas complètement décorrélés, ou orthogonaux, les solutions basées sur l'erreur quadratique moyenne ou Least Squares Estimation (LSE) sont très utilisées en raison de leur simplicité de calcul. Pour réduire la distorsion des primaires, ces filtres sont généralement appliqués en deux étapes en pratique. Les filtres longs compensent globalement l'amplitude, la forme d'onde et le décalage temporel, puis des filtres plus courts corrigent des écarts variables en temps.

Par expérience, les méthodes hybrides, mélangeant les deux approches de prédiction et de transformation sont généralement plus performantes. Les améliorations peuvent résider dans différentes stratégies. L'utilisation des critères plus robustes que les méthodes basées sur l'erreur quadratique moyenne, comme ceux basés sur la norme ℓ 1 [START_REF] Guitton | Adaptive subtraction of multiples using the L 1 -norm[END_REF], ou les méthodes basées sur des décompositions en composantes indépendantes [START_REF] Kaplan | Adaptive separation of free-surface multiples through independent component analysis[END_REF] sont des alternatives efficaces. Les méthodes basées sur l'estimation simultanée d'ensembles de filtres présentent une autre option, par exemple, en adaptation multi-canal [START_REF] Wang | Multiple subtraction using an expanded multichannel matching filter[END_REF]. Une représentation appropriée des données peut en outre améliorer la soustraction adaptative ( [START_REF] Taner | Long period sea-floor multiples and their suppression[END_REF] avec une transformation radiale, [START_REF] Berkhout | Focal transformation, an imaging concept for signal restoration and noise removal[END_REF] avec une transformation focale). Une nouvelle tendance met l'accent sur des approches multi-échelles ou en ondelettes [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF], ce qui pourrait mieux promouvoir la parcimonie dans l'exploitation de légères différences entre les spectres et les vitesses apparentes des primaires et des multiples. [START_REF] Pokrovskaia | Attenuation of residual multiples and coherent noise in the wavelet transform domain[END_REF] et [START_REF] Ahmed | 2D wavelet transform-domain adaptive subtraction for enhancing 3D SRME[END_REF] ont utilisé principalement la transformée en ondelettes discrète. [START_REF] Herrmann | Robust curvelet-domain primary-multiple separation with sparseness constraints[END_REF], [START_REF] Donno | Curvelet-based multiple prediction[END_REF], [START_REF] Neelamani | Adaptive subtraction using complex-valued curvelet transforms[END_REF] ont utilisé la transformée en curvelet que l'on considère parfois comme une transformée de Radon multi-échelles locale [START_REF] De Hoop | Seismic imaging with the generalized Radon transform: a curvelet transform perspective[END_REF].

Une méthode a récemment été proposée par S. Ventosa en collaboration avec CGG [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. Elle minimise l'erreur quadratique moyenne entre des coefficients du signal observé et ceux de la combinaison des modèles, dans un domaine de trame d'ondelettes complexes et continues. Cette méthode de soustraction utilise la redondance fournie par la trame d'ondelettes complexes dans une conception des filtres rapides à calculer. Elle revient à faire un filtre adaptatif non stationnaire dans le domaine des ondelettes complexes. Notre méthode vise à étendre et améliorer certains aspects de cette approche, notamment par:

1. l'utilisation de transformations discrètes plutôt que continues, permettant d'apporter des gains de calculs (temps, mémoire), 2. l'ajout de contraintes sur les filtres adaptatifs assurant un meilleur comportement des solutions, 3. la prise en compte des informations liées au bruit, permettant de mieux enlever les perturbations incohérentes dans le signal, 4. la prise en compte des informations sur les filtres en utilisant différentes fonctions Résumé long xv de régularisation (normes ℓ 1 , ℓ 2 , ℓ 1,2 et nucléaire), 5. l'extension de la méthode au 2D en utilisant des décompositions M -bandes en arbre dual 2D avec différents filtres d'ondelettes suivant le temps et l'espace [START_REF] Chaux | Image analysis using a dual-tree Mband wavelet transform[END_REF][START_REF] Chaux | 2D dual-tree complex biorthogonal M -band wavelet transform[END_REF], et le rajout de contraintes sur les filtres adaptatifs (non seulement sur le temps mais aussi sur l'espace), 6. les expériences sur les données synthétiques ainsi que les données réelles permettant de mettre en évidence la performance de notre méthode par rapport aux méthodes de l'état de l'art, par exemple, la méthode de [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF].

Déconvolution aveugle

Un modèle simplifié de la Terre souvent utilisé fait l'hypothèse d'un nombre de couches localement parallèles, chacune avec des propriétés constantes, mais la vitesse, la densité ou les deux peuvent varier d'une couche à l'autre. L'impédance acoustique est calculée pour chaque couche; puis les coefficients de réflexion pour une incidence normale sont calculés pour les endroits où il y a des changements d'impédance acoustique. Chaque changement d'impédance acoustique reflète une ondelette réduite en amplitude et polarité en fonction du coefficient de réflexion, et la somme de ceux-ci est la trace de sortie. Ainsi, la séquence de réflectivité est convoluée avec la forme d'onde descendante (en fait, avec l'ondelette) pour donner une trace sismique synthétique. Un exemple d'un sismogramme synthétique est représenté sur la . Une information géologique précieuse est contenue dans la véritable amplitude de l'événement de réflexion, qui peut être récupérée à partir d'enregistrements de terrain convenablement calibrés. Toute variation latérale de réflexion en amplitude est due au changement dans la lithologie latérale de la couche de roche ou de la teneur en liquide des pores. Dans la pratique, l'interprétation structurale sismique est dirigée vers la création de cartes de structure de la sous-surface de la sismologie par réflexion. Cependant, la convolution avec une ondelette altère souvent l'information nécessaire à une interprétation stratigraphique complète des données. Ainsi, la restauration de l'amplitude réelle dans les sections sismiques revêt une importance grandissante. Dans sa forme la plus simple, un sismogramme synthétique y(t) peut être considéré comme la convolution de la fonction de source supposée h(t) (ondelette sismique) avec une fonction de réflectivité x(t) qui représente le contraste d'impédance acoustique dans le modèle en couches:

y(t) = x(t) * h(t) + w(t) (1) 
Avec ce problème, on se trouve dans un contexte de déconvolution aveugle où l'on recherche un signal inconnu (la réflectivité du sous-sol), convolué avec une forme d'onde elle aussi inconnue (ondelette sismique) en présence de bruit additif. Elle requiert souvent d'introduire des hypothèses complémentaires sous forme de pénalisation, notamment non convexe. L'ambiguité d'échelle en déconvolution aveugle suggère l'usage de fonctions de contraste invariantes en échelle. La fonction correspondant au rapport de xvi Résumé normes ℓ 1 et ℓ 2 présente de bonnes propriétés d'estimation de la parcimonie de signaux ou d'images. Quelques travaux existent pour minimiser un critère composite faisant intervenir cette fonction, mais très peu d'entre eux offrent des garanties de convergence. Dans ce manuscrit, nous proposons un algorithme de minimisation alternée, de type explicite-implicite à métrique variable. Il traite une approximation lisse du rapport ℓ 1 /ℓ 2 (SOOT pour "Smoothed One-Over-Two penalty") pour des données réelles signées. Nous étudierons les propriétés de convergence de la méthode proposée, basées sur l'inégalité de Kurdyka-Lojasiewicz. Les performances de cette nouvelle approche sont illustrées à travers un exemple en déconvolution aveugle de données sismiques, mais aussi sur des images.

Introduction 1.1 Seismic data and primaries

Seismic data acquisition involves generating a seismic energy pulse, such as a compressed air gun (marine seismic acquisition), or a seismic vibrator or explosive source (land seismic acquisition) at discrete surface locations. The resulting energy is reflected back to the surface from interfaces where rock properties change. By recording this reflected energy at an array of hydrophones (marine seismic acquisition) or geophones (land seismic acquisition) placed on the ground surface, seismic data can be processed to produce an image of underground geological structures and a range of attributes that can be used to infer the physical rock properties. the seismic energy is reflected and part is transmitted and continues through layer 2 until it reaches the impedance contrast between layers 2 and 3. At this interface, part of the wave is again reflected and part is transmitted and continues into layer 3 (not shown).

The two simplified traces on the left hand side of the layer picture show the signals arriving at the two hydrophones. The electric current values recorded at the geophone or hydrophone are usually digitized with a sampling period of 1 to 4 milliseconds, typically before being transmitted to the recorder. Theoretically, the value recorded on the tape will either be proportional to the particle velocity or the pressure variation. Normally however, the coefficient of proportionality is disregarded and the seismic "amplitudes" recorded on the tape are relative. Figure 1.2 -p. 2 illustrates a seismic image that is collected with five hundred of seismic traces. These seismic traces must be analyzed so as to yield contour maps of the subsurface sedimentary structure. These maps are used in order to make decisions about the locations of where to drill exploratory oil and gas wells. There are two important variables in seismic prospecting: time of reflected events (t) and velocity (v). For simplicity, we assume that velocity is a constant v, so that the relationship between arrival time and offset reads (hyperbolic equation)

t x = r t 2 0 + x v 2 (1.1)
where

• t x is the actual reflection time of the seismic event due to normal moveout correction (NMO) effects, corresponding to the vertical axis in Figure 1.2 -p. 2,

• t 0 is the zero offset reflection time of the seismic event,

• x is the actual source-receiver offset distance, corresponding to the horizontal axis in Figure 1.2 -p. 2,

• v is the NMO velocity for this reflection event.

The physical rock properties can be determined from knowledge of these variables. The distances to subsurface reflectors are calculated from observed travel times and computed velocities. Seismic waves propagate with the velocity of sound in rock, and so the propagation velocity generally depends on chemical composition and local geology. More precisely, it depends on the elastic constant of rocks and their density. These elastic constants and densities are used to characterize rocks, for instance porosity, texture etc. Generally the velocity increases with depth, although occasionally there may be layers in which a decrease in velocity occurs. For a given surface point, the velocity plotted as a function of depth is called the velocity function. This velocity function varies from one location to another, a given velocity function cannot be assumed to be valid for an entire prospect. As a result, the velocity function must be frequently corrected from place to place over the area of exploration. Each recorded trace is a time series made up of reflected events together with various interfering waves and noise. The "desired reflected" events are the primary reflections who

• are the first reflections of the source wavelet from an interface,

• carry useful information about the velocities and thicknesses of subsurface layers.

On the contrary, seismic noise is considered as everything in the record that we did not want to record ("undesired signal"). There are two types of seismic noise:

• Coherent noise which can be followed across at least a few traces. It includes surface waves (ground roll), direct waves, refractions, diffractions, and multiples.

• Incoherent noise which is apparently random on all traces. It includes noise generated by near-surface scatterers, rain, humans, and interference coherent noise.

Multiple reflections are an important type of undesired waves. Occasionally, some noises can reveal useful for seismic interpretation. However, we consider them in the traditional signal/noise separation context. The importance of the problem they raise will be made more explicit in the next sections.

Seismic multiples

Seismic multiples are events that have undergone more than one reflection from the same interface. Multiple reflections fall into one of two basic categories (see based on their paths: short-path (period) multiples and long-path (period) multiples.

Primary

Ghost Near-surface multiple [START_REF] Sheriff | Encyclopedic Dictionary of Exploration Geophysics[END_REF].

• A long-path multiple is generated far from the primary so that it is totally separated from the primary reflection from the same reflector. Therefore, it appears as a separate event on the seismic record.

• A short-path multiple is generated close to the primary so that it interferes with the primary reflection from the same reflector. Its effect is to lower the vertical resolution. The most important short-path multiples are of two main types:

-Peg-leg multiples resulting from the addition to a primary reflection of energy reflected from both the top and bottom of a thin bed, either on the way to or on the way back from the principal reflecting horizon.

-Ghosts where part of the energy leaving the source travels upward and is reflected downward either at the base of the low-velocity layer or at the surface.

Figure 1.4 -p. 5 comes from offshore Labrador (an Atlantic-type divergent margin), which, locally, overlies late Cretaceous rift-type basins. This line is influenced by various multiples which have higher amplitude then their corresponding primaries. One is visible and can be easily accounted for by three successive rebounds within the water layer, and at one second on the left of the section, there are several other multiples which are generated by the strong dipping horizon. Probably, they are secondary rebounds of this primary event: (i) within the water layer, (ii) downward on the water bottom or (iii) a combination of both. (Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm ). Figure 1.5 -p. 6 shows several multiples induced by the sea level. A strong reflection, culminating at approximately two seconds, appears in the middle of the section. Because of the high acoustic impedance contrast at the water-bottom, 1st and 2nd order multiples are produced within the water layer (ringing/ reverberations). The time difference between the primary and its first multiple is everywhere equal to the time through the water layer (Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm).

We refer to the comprehensive survey in Verschuur [START_REF] Verschuur | Seismic multiple removal techniques: past, present and future[END_REF] for a detailed description of seismic multiple removal problem: the classification of multiple reflections and their characteristics, the methods and techniques that have been developed for these problems.

Seismic deconvolution

An often used simplified Earth model assumes the underground to be composed of a number of locally parallel layers, each with constant properties, but the velocity or density or both may differ from layer to layer. The acoustic impedance is calculated for each layer; then reflection coefficients for normal incidence are calculated for places where the acoustic impedance changes. Each acoustic impedance change reflects a wavelet scaled in amplitude and polarity according to the reflection coefficient, and the sum of these is the output trace. Thus, the reflectivity sequence is convolved with the downgoing waveform (actually, with the seismic wavelet) to give a synthetic seismic trace. An example of a synthetic seismogram is shown in . The true amplitude of the reflection event contains most valuable geological information that can be retrieved from suitably calibrated field recordings. Any lateral variation of reflection amplitude is due to lateral change in the lithology of the rock layer or in its pore fluid content. In practice, structural seismic interpretation is directed toward the creation of structural maps of the subsurface from the reflection seismology. However, the convolution with a wavelet sometimes suppresses the information that is essential to a full stratigraphic interpretation of the data. That is why, true-amplitude seismic sections are becoming increasingly important.

In its simplest form, a synthetic seismogram y : R → R may be considered as the convolution of the assumed source function h : R → R (wavelet) with a reflectivity function x : R → R representing the acoustic impedance contrasts in the layered model:

(∀t ∈ R) y(t) = (x * h) (t) (1.2)
Actually, the convolutional model always contains random noise, thus (1.2) should be written as

(∀t ∈ R) y(t) = (x * h) (t) + w(t) (1.3)
where w is the noise component.

The recovery of the reflectivity constitutes a problem of main interest that will be addressed in chapter 6. 

Contribution

The contribution of this thesis is developed along two axes. Firstly, we contribute to the seismic multiple removal problem. After the primaries reflections are recovered, we contribute secondly to deconvolution problem that produces characteristics closest to the Earth layers. More precisely, the specific contributions are as follows: 

Seismic multiple removal

• We propose a generic methodology to impose sparsity and regularity properties through constrained adaptive filtering in a frame transformed domain. This method exploits side information from approximate disturbance templates.

• We use the proximal framework that permits different strategies for sparse modeling, additive noise removal, and adaptive filter design under appropriate regularity and amplitude coefficient concentration constraints.

• We use different orthogonal wavelet bases and tight frames, and various sparsity measures for wavelet coefficients. The standard sparsity-prone ℓ 1 -norm is usefully complemented by alternative concentration measures, such as ℓ 2 or ℓ 1,2 -norms.

• We focus on the adaptation to the anisotropy of two-dimensional seismic data by using shift-invariant tight frames, and directional dual-tree M -band wavelets.

• The approach demonstrates significantly good performance in low signal-to-noise (SNR) ratio conditions, both for simulated and real field data.

Blind deconvolution

• We propose a new penalty based on a smooth approximation to the ℓ 1 /ℓ 2 function.

• We develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results.

• We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term.

• Experiments are performed on seismic and image blind deconvolution.

Publications

Journal papers: 

1) M.-Q. Pham, L. Duval, C.

Organization of the Thesis

This thesis is divided into 7 chapters. Following this introduction, the second chapter is devoted to introduce the reader to the topic of inverse problems and some mathematical tools, i.e. variational methods applied to continuous models. We briefly discuss line search, majorize-minimize and proximal optimization methods. Then, the subsequent Chapters 3-6 address seismic inverse problems. More precisely, in Chapter 3 we develop an optimization framework applied to the seismic multiple removal problem. This method exploits side information from the knowledge of one template and in the non-noisy case. In Chapter 4, we extend the seismic multiple removal problem to the noisy case and exploit several templates. In Chapter 5, we develop the framework of seismic multiple removal for two-dimensional data. Chapter 6 provides an insight with ℓ 1 /ℓ 2 sparsity measure to blind deconvolution applied to both seismic data and image processing. Finally, Chapter 7 is a summary of this thesis, including the conclusions and perspectives which can be drawn from this research work. Concluding this thesis is the bibliography.

-Chapter 2 -Background 2.1 Inverse problems

What are inverse problems?

Solving an inverse problem is often required when recovering information about a physical object from its measurements acquired by a given system. In a direct problem we start from the causes and end up with the results, in an inverse problem we start with partial knowledge of the causes and the results and infer more about the causes. For example, in geophysics in order to predict an earthquake, one can estimate the vibrations produced by an earthquake as well as its propagation by observing the structure of the earth at different points around the globe. Figure 2.1 -p. 12 illustrates an earthquake propagating through the planet. The inverse vision of this is to use earthquake measurements to determine the Earth structure. Inverse problems appear in signal processing, image analysis, computer vision, and many other applications. In this thesis, we are particularly interested in solving inverse problems related to deconvolution and multiple removal in seismic data and in image processing. For both applications, we can formulate the inverse problem as

y = Hx + b (2.1)
where H : R N → R M is a bounded linear operator, N ∈ N * and M ∈ N * are the sizes of signal x and y, respectively. b ∈ R M is the additive noise perturbation. In many cases, the inverse problem is ill-posed, which is the opposite of a well-posed problem. Let us recall the definition of a well-posed problem proposed in [START_REF] Hadamard | Lectures on Cauchy's problem in linear partial differential equations[END_REF], 2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

By contrast, a problem is ill-posed when at least one of the properties of a well-posed problem is violated. Hadamard gave an example of an ill-posed problem named the Cauchy problem for Laplace equation.

Example 2.1.1 (Cauchy problem for Laplace equation) [START_REF] Kabanikhin | Definitions and examples of inverse and ill-posed problems[END_REF] Let u = u(x, y) be a solution to the following problem:

     ∆u(x, y) = 0 , y ∈ R, x > 0, u(0, y) = f (y), y ∈ R, ∂u ∂x (0, y) = 0 , y ∈ R. (2.2)
Let f be chosen as follows

f (y) = u(0, y) = 1 n sin(ny).
The solution to Problem (2.2) is given by

u(x, y) = 1 n sin(ny)(e nx + e -nx ). (2.3)
For any fixed x > 0 and a sufficiently large n, the value of the solution (2.3) can be as large as desired, while f (y) → 0 as n → ∞. Therefore, small variations in y may lead to arbitrary large variations in the solution, which means that Problem (2.2) is ill-posed.

Nowadays, research about well-posed and ill-posed inverse problems remains a major issue in many applications. Let us present some approaches for solving these problems, starting with basic ideas, toward more sophisticated ones. 

Variational approach

Least squares yield standard solutions to inverse problems because they lead to simple computations. The first statement of the method appeared in Legendre's "Nouvelles méthodes pour la détermination des orbites des comètes", Paris, 1805 (or new Methods for the Determination of Comet Orbits). In this text, Legendre writes: "De tous les principes qu'on peut proposer pour cet objet, je pense qu'il n'en est pas de plus général, de plus exact, ni d'une application plus facile que celui dont nous avons fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme des quarrés des erreurs."-Legendre (1805) (or of all the principles which can be proposed for that purpose, I think there is none more general, more exact, and more easy of application, that of which we made use in the preceding researches, and which consists of rendering the sum of squares of the errors a minimum.). It can also be reformulated as follows:

minimize x∈R N kHx -yk 2 .
(2.4)

In the case of an ill-posed problem, (2.4) provides a misbehaved solution. In order to give preference to a particular solution with desirable properties, an extended method based on the generalized Tikhonov regularization is proposed by A.-N. Tikhonov in [START_REF] Tikhonov | Solutions of Ill-posed problems. W.H. Winston[END_REF]. By adding a regularization term in this minimization, (2.4) now becomes minimize

x∈R N kHx -yk 2 + λkxk 2 (2.5)
where λ ∈ ]0, +∞[ is named regularization parameter. The choice of the parameter plays an important role in regularization methods and the way of choosing the regularization parameter has attracted many works [START_REF] Cucker | Best choices for regularization parameters in learning theory: on the bias-variance problem[END_REF][START_REF] Renaut | Regularization parameter estimation for large-scale Tikhonov regularization using a priori information[END_REF]. In order to choose the value of these parameters, we first need to understand them. Bayesian estimators give the relationship between these parameters and signal probabilistic models as described below.

Let assume that x is a realization of random vector X with prior probability density function f X and y is a realization of random vector Y with conditional likelihood f X|Y =y .

X and Y are supposed independent. Assuming that a desired property of a solution is known a priori, the solution of the inverse problem is given by using the maximum a posteriori (MAP) estimator:

b x ∈ argmax x∈R N f X|Y =y (x). (2.6)
By using Bayes rule, this can be simplified as follows:

b x ∈ argmax x∈R N f Y |X=x (y) f X (x) f Y (y) (2.7) ⇔ b x ∈ argmax x∈R N f Y |X=x (y)f X (x) (2.8)
provided that f Y (y) 6 = 0. Due to the monotonicity of the logarithm function this can be rewritten as:

b x ∈ argmin x∈R N Ψ(x) + Φ(x) (2.9) 
where

• Ψ(x) = -log(f Y |X=x (y)
) is called a data fidelity term. For example, when B is a zero-mean Gaussian noise with a covariance matrix Γ, then B has a probability density function defined by the normal distribution i.e. .11) When Γ = σ 2 I, without loss of generality, we can choose

f Y |X=x (y) = 1 (2π) N/2 |Γ| 1/2 e -1 2 (y-Hx) ⊤ Γ -1 (y-Hx) (2.10) ⇒ Ψ(x) = 1 2 (y -Hx) ⊤ Γ -1 (y -Hx) -log 1 (2π) N/2 |Γ| 1/2 . ( 2 
Ψ(x) = 1 2σ 2 ky -Hxk 2
(2.12) shows an original image (left) and this image corrupted by Gaussian noise (right). Legendre's method or Tikhonov's method are two particular cases of Bayesian estimation without/with a priori on the solution, respectively. Usually, the considered criterion to be minimized can take a more general form (than simply quadratic); however, it is often assumed to be convex. Let us recall some definitions about convexity. 

• Φ(x) = -log(f X (x)) is called a regularization term. When f X (x) = e -λkxk 2 , then Φ(x) = λkxk 2 (2.13)
σ C : R N → ]-∞, +∞] : u 7 → sup hC|ui . (2.14) Definition 2.1.4 Let f : R N → ]-∞, +∞]. The domain of f is dom f = x ∈ R N | f (x) < +∞ , (2.15)
the graph of f is defined as

gra f = (x, ξ) ∈ R N × R | f (x) = ξ (2.16)
the epigraph of f is defined as 

epi f = (x, ξ) ∈ R N × R | f (x) ≤ ξ . (2.17) (a) (b) (c)
(x n ) n∈N in R N , x n → x ⇒ f (x) ≤ lim inf f (x n ).
Upper semicontinuity of f at x ∈ R N holds if -f is lower semicontinuous at x i.e. if

x n → x ⇒ f (x) ≥ lim sup f (x n ).
Definition 2.1.7 Γ 0 (R N ) is the class of lower semi-continuous convex functions f : R N → ]0, +∞[ such that their domain dom f is nonempty.

In geophysics, the remnant noise is commonly considered to be Gaussian. Thus a quadratic data-fidelity term has been successfully used (i.e. Ψ = 1 2σ 2 k • k 2 , where σ 2 corresponds to the noise variance). We now focus on the data regularization term Φ(•).

In the following, we discuss the sparse representation of data in general and then about seismic data, in particular.

Sparse representation of signals and images

Introducing sparsity

In signal restoration, the sparsity expressed on data gradient (finite differences) is often used. It is called total variation prior (TV) in image restoration, and it was first used by [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The Hessian based regularization was already discussed in the work by [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF][START_REF] Li | Sparse long-range random field and its application to image denoising[END_REF]. In the context of this thesis, we focus in particular on the sparse signal representation in a basis or frame domain. The key idea is to approximate a signal x ∈ R N by a sparse decomposition in a sequence of vectors F = {e k } k∈L of waveforms, where e k ∈ R N or C N . Thus, we can express x as x = X k∈L c k e k (2.18) and the signal is now characterized by fewer significant coefficients c k . If the set F does not span R N or C N , then such coefficients do not exist for every x. If F spans R N or C N and also is linearly independent, this set forms a basis of R N or C N , and the coefficients c k are uniquely determined by x: they are the components of x relative to this basis. If, however, F spans R N or C N but is not linearly independent, this set forms a frame of R N or C N if it satisfies the so-called frame condition: There exist two real numbers, ν and ν such that 0 < ν ≤ ν < +∞ and

νkxk 2 ≤ X k∈L |hx, e k i| 2 ≤ νkxk 2 for all x ∈ R N (2.19)
This means that the constants ν and ν are independently of a specific x: they only depend on the set F. The numbers ν and ν are called lower and upper frame bounds respectively. Note that the frame bounds ν and ν are not unique because numbers less than ν and greater than ν are also considered as frame bounds. If ν = ν, then a frame is said tight and if ν = ν = 1, then a frame is either called normalized or Parseval. The optimal upper bound is the infimum of all upper bounds. Likewise, the optimal lower bound is the supremum of all lower bounds. Wavelet bases and frames constitute an important class of bases and frames in general and particularly in this thesis. Thus, let us give a short overview of them. Let L 2 (R) denote the space of all square integrable functions on R i.e. if

Z +∞ -∞ |f (t)| 2 dt < +∞ (2.20) then f is square integrable on R (or f ∈ L 2 (R))
. ψ is said to be a wavelet if and only if its Fourier transforms (FT) ψ satisfies

0 <C ψ = Z +∞ 0 | ψ(ω)| 2 |ω| dω < ∞, (2.21) 
which implies that the wavelet must have a zero mean

Z +∞ -∞ ψ(t)dt = 0 (2.22)
and therefore it must be a sort of a wave. The dilated-translated wavelets ψ a,b are defined as the following functions

ψ a,b (t) = 1 √ a ψ t -b a (2.23)
where b ∈ R is a translation parameter, whereas a ∈ R * + is dilation or scale parameter. The factor 1 √ a is a normalization constant such that the energy i.e. kψ a,b k L 2 = 1. The continuous wavelet transform (CWT) of x ∈ L 2 (R) is defined as

W x (a, b) = hx, ψ a,b i = Z +∞ -∞ x(t)ψ * a,b (t)dt = 1 √ a Z +∞ -∞ x(t)ψ * t -b a dt (2.24)
where h , i is the scalar product of L 2 (R).

x can be reconstructed from its wavelet coefficients

x(t) = 1 C ψ Z +∞ 0 Z +∞ -∞ 1 a 2 W x (a, b)(t)dadb (2.25)
However, in practice a data is represented by a finite number of values, then it is important to consider a discrete version of the CWT. Let consider a signal x of finite energy that can be written as follows

x(t) = X m∈Z X n∈Z c m,n e ψ m,n (t) (2.26)
and the coefficients of the expansion are given by

c m,n = Z +∞ -∞ x(t) e ψ m,n (t)dt (2.27)
where e ψ m,n with (m, n) ∈ Z 2 are all distillations and translations of a function referred to the as analyzing wavelet ψ(t), and they can be expressed in the form e ψ m,n (t) = ψ a m ,na m b (t) = a -m/2 ψ(a -m tnb) (2.28) where m and n denote the dilation and translation indices, respectively. Figure 2.5p. 19 shows the Ricker (left) and Symlet (right) wavelets with different scalings a. We next show an illustration of sparsity in the wavelet transform domain used to perform signal denoising. In the space R N , considering a clean signal x, we add some noise to it in order to obtain the noisy signal y = x + b, here b is a realization of a Gaussian white noise with variance σ 2 . Figure 2.6 -p. 20 depicts x and its noisy version y. To analyze the performance of wavelet transform, we now compare the estimation reconstructed by a Wiener filter, and by thresholding the wavelet coefficients of the noisy signal.

Signal denoising using a Wiener filter (Mallat, 2009, Chapter 10) can be seen in Figure 2.8-left -p. 22.

We now use a thresholding estimator to reconstruct the signal. Let F ∈ R K×N (resp. F ⊤ ∈ R N ×K ) denotes the frame analysis (resp. synthesis) operator. We restrict here F to correspond to an orthonormal transform, i.e. F ⊤ = F -1 . [START_REF] Donoho | Wavelet shrinkage: Asymptopia?[END_REF] proved that the performance of a thresholding estimator is close to ideal coefficient selections The soft thresholder on [-T, T ] for some T ∈ ]0, +∞[ is given by

S T : R → R : ζ 7 → sign(ζ) max {0, |ζ| -T } . (2.29) 
T ∈ ]0, +∞[ is the threshold. An estimate x of x can be obtained by applying the soft thresholding to the wavelet coefficients that is x = F -1 (S T (F y)).

The result of the thresholding operation on the noisy Piece-Polynomial signal is given in Figure 2.8-right -p. 22. The performance of the wavelet transform is shown by a comparative evaluation of two results (obtained by using either Wiener filter or thresholding the wavelet coefficients). Apparently, in Figure 2.8 -p. 22, a slightly better result is obtained with thresholding the wavelet coefficients. Figure 2.9 -p. 23 shows the comparative results for two dimensional data. The "regularization" parameters of both methods are adjusted so as to maximize the SNR between the original and the reconstructed data.

Evaluations of the sparsity

Let c be a sparse representation of x via a linear operator L, we thus note c = Lx. According to [START_REF] Donoho | Wavelet shrinkage: Asymptopia?[END_REF], an ideal measure of sparsity Φ is the ℓ 0 measure, i.e. However, ℓ 0 is a nonconvex, discrete valued and non-differentiable function. In this case, the problem is not easy to resolve. To circumvent this problem, different measures of sparsity have been proposed in the regularization terms. For instance, quasi-norms are the most widely used measures, where ℓ p (c) = �P i∈L |c i | p 1/p , for every 0 < p ≤ 1. [START_REF] Kowalski | Sparse regression using mixed norms[END_REF] has investigated mixed ℓ p,q loss functions for deconvolution. A detailed discussion about these loss functions is provided in Chapters 3 and 4. In Chapter 6 we propose to use a smooth approximation of the ℓ 1 /ℓ 2 ratio function.

ℓ 0 (c) = X i∈L δ(c i ) (2.
As the inverse problem is formulated as a minimization problem, the next question to address is: how to solve minimization problems? In order to answer this question, many approaches have been proposed. Recently, tools for convex optimization, named proximal algorithms, have been proposed. These algorithms are well known for their good convergence properties, and for being able to be parallelized or to be implemented in parallel.

Algorithms

We consider an optimization problem in the standard form: 

minimize x∈R N f (x) subject to ( g i (x) ≤ 0, ∀i ∈ E g i (x) = 0, ∀i ∈ I (2.
We define � ∀x ∈ R N C i = ( {x| g i (x) ≤ 0} if i ∈ E {x| g i (x) = 0} if i ∈ I.
We now recall the definition of the indicator function:

Definition 2.3.1 (Indicator function) Let C be a nonempty subset of R N . Its indi- cator function ι C is defined as � ∀x ∈ R N ι C (x) = ( 0 if x ∈ C +∞ otherwise.
Thus, we can write (2.31) 

(x 1 ,x 2 )∈R 2 (x 1 -2) 2 + (x 2 -1) 2 subject to      x 2 1 -x 2 ≤ 0, -3x 1 -2x 2 ≤ 2 (2 - √ 3)x 1 + x 2 ≤ 2 √ 3 (2.34)
we can write this problem in the form (2.31) by defining 

f (x) = (x 1 -2) 2 + (x 2 -1) 2 , x = x 1 x 2 ,
g(x) =   g 1 (x) g 2 (x) g 3 (x)   =   x 2 1 -x 2 -3x 1 -2x 2 -2 (2 - √ 3)x 1 + x 2 -2 √ 3   , I = {1, 2, 3}, E = ∅.
Figure 2.10 -p. 24 shows the contours of the cost function, i.e., the set of points for which f has a constant value. It also illustrates the feasible region, which is the set of points satisfying all the constraints, and the optimal point x * , solution to the problem. Note that the "feasible region" of the inequality constraints is shaded.

Optimization algorithms are iterative. More precisely, the strategy used is to move from an initial point to another point which is closer to the solution in using the values of the cost function f and the constraints g. To move from a point to another, we use, for instance, the first order derivatives of these functions and the local information from the current point. In the following, some basic criteria for algorithm evaluation can be considered

• Robustness: for the choices of the initial variables.

• Efficiency: time to converge.

Starting at x 0 , optimization algorithms generate a sequence of iterates {x k } k∈N . To move from one iterate x k to the next, this sequence is often satisfy f (x k+1 ) ≤ f (x k ).

The strategies used for generating it strongly depend on the mathematical properties of the function f . The algorithm stops at the iterate K such that x K+1 ≈ x K . For instance, there are three fundamental strategies that we will detail in the next sections.

Line search method

Such algorithms choose a direction p k and search along this direction from the current point x k for a new iterate with a lower function value. Thus the iteration is given by ∀k ∈ N,

x k+1 = x k + α k p k (2.35)
where the positive scalar α k is called the step-length. The iteration depends on choices of both the direction p k , (kp k k = 1) and the step-length. Using a Taylor's expansion, for any search direction p and step-length parameter α, we have:

f (x k + αp) = f (x k ) + αp ⊤ ∇f (x k ) + 1 2 α 2 p ⊤ ∇ 2 f (x k + tp)p, for some t ∈ (0, α)
f can be reduced along the direction p at x k when p is the minimum of p ⊤ ∇f (x k ). Since

p ⊤ ∇f (x k ) = kpkk∇f (x k )k cos(θ) = k∇f (x k )k cos(θ)
, where θ is the angle between p and ∇f (x k ), a good direction p is -∇f (x k ) k∇f (x k )k , when θ = π. Another search direction method which moves along p k = -∇f (x k ) at every step, is named the steepest descent method [START_REF] Deift | A steepest descent method for oscillatory Riemann-Hilbert problems: asymptotics for the MKdV equation[END_REF]. One of the most famous method is the Newton direction [START_REF] Nocedal | Numerical optimization[END_REF] that is derived from the second-order Taylor series. Thus the Newton direction

p k is - � ∇ 2 f (x k ) -1 ∇f (x k
). An extension of this method, called quasi-Newton direction [START_REF] Nocedal | Numerical optimization[END_REF], uses an approximation instead of the true Hessian ∇ 2 f (x k ). The search direction of nonlinear conjugate gradient methods [START_REF] Dai | A nonlinear conjugate gradient method with a strong global convergence property[END_REF] is

p k = -∇f (x k ) + β k p k-1
, where β k is a scalar that ensures that p k and p k-1 are collinear. Once we have a good direction, the efficiency of the iterative algorithm depends on the step α, since the new point is given by x k + αp k . In other word, we need to find α that minimizes the following function:

α ∈ argmin α∈R + f (x k + αp k ) (2.36)
In order to insure the convergence of the algorithm, at each direction p k we would like to find an exact minimum of (2.36). This leads to the following approximation method.

Majorize-Minimize method (MM)

The main idea of Majorize-Minimize (MM) method is to construct a majorant function m(x k , x) such that m is simpler in seeking a minimizer and very close to the cost function f at a neighborhood of x k . Thus instead of seeking the minimum of f , we now restrict the search for a minimizer of m(x k , x) to some region around x k i.e.

x k+1 ∈ minimize x m(x k , x) (2.37)
where x = x k + p lies inside the trust region, usually, kpk ≤ δ k , δ k > 0 is called the trust-region radius. The majorant m usually satisfies the following rules

∀x ∈ R N and x k ∈ R N f (x) ≤ m(x k , x) (2.38) and ∀x k ∈ R N f (x k ) = m(x k , x k ) (2.39)
Indeed (2.38) and (2.39) imply that, for every k

f (x k+1 ) ≤ m(x k , x k+1 ) ≤ m(x k , x k ) = f (x k ).
(2.40)

Figure 2.11 -p. 27 illustrates a simple example of MM methods for a one dimensional signal. The majorant is often chosen under a quadratic form (2.41) where the matrix M k is either the Hessian ∇ 2 f (x k ) or an approximation of it. The solution of (2.37) in this case is p k = -M -1 k ∇f (x k ). We can see that the Newton and quasi-Newton's methods belong to the class of MM methods in the convex case. The majorant functions can be iteration dependent as in [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF]. Many frameworks about the convergence are available in the literature. One global convergence for strictly convex, coercive and differentiable f was proposed in (Lange, 2010, Chapter 10.3). In [START_REF] Chouzenoux | A majorize-minimize strategy for subspace optimization applied to image restoration[END_REF], the authors proposed accelerated subspace optimization methods. At each iteration of such methods, a stepsize vector allowing the best combination of several search directions is computed through multidimensional search based on the MM principle. Their method is significantly faster than the Newton methods in terms of computational time before convergence. Concerning the nonconvex case of the cost function, the local convergence was studied in [START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] and their convergence speed is discussed in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. Next we describe a recent strategy for deriving an optimization algorithm relying on proximal minimization.

m(x k , x k + p) = f (x k ) + p ⊤ ∇f (x k ) + 1 2 p ⊤ M k p,

Parallel-Proximal method

In the previous methods, the iteration point is often computed by using the gradient of a differentiable function e.g. the gradient methods x k+1 = x kλ k ∇f (x k+1 ). When f is non differentiable then the problem (2.31) is said nonsmooth. In this case, the gradient can be replaced by the subdifferential. Definition 2.3.2 The subdifferential [START_REF] Rockafellar | Variational Analysis[END_REF] 

of a function f ∈ Γ 0 (R N ) at x ∈ R N , denoted by ∂f (x), is defined as: ∂f (x) := n x ′ ∈ R N | ∀x ′′ ∈ R N , f (x) + x ′ ⊤ (x ′′ -x) ≤ f (x ′′ ) o (2.42) x k x k+1 x k+2
x which implies that

x k+1 = x k -λ k t ′ k , t ′ k ∈ ∂f (x k+1 ) ⇔ 0 ∈ x k+1 -x k + λ k ∂f (x k+1 ) ⇔ 0 ∈ ∂ 1 2 k • -x k k 2 + λ k f (•) (x k+1 ) (2.43) 
(2.43) has a unique solution in the convex case (due the Fermat's rule ) named prox λ k f (x k ).

Definition 2.3.3 The proximity operator [START_REF] Rockafellar | Monotone operator and the proximal point algorithm[END_REF] of a function f ∈ Γ 0 (R N ) at x ∈ R N , denoted by prox f : R N → R N , is defined as:

∀p ∈ R N , prox f (p) := minimize x∈R N 1 2 kx -pk 2 + f (x) (2.44) Example 2.3.2 (ι C function) If C is a closed non empty and convex subset of R N prox ι C (x) = argmin y∈R N ι C (y) + 1 2 kx -yk 2 = argmin y∈C kx -yk 2 | {z } Π C (x):projection operator onto C (2.45) Example 2.3.3 (ℓ 1 -norm) (∀x ∈ R) prox λ|•| (x) = sign(x) max (|x| -λ, 0) | {z } soft thresholding Example 2.3.4 (ℓ 2 2 -norm) (∀x ∈ R N ) prox λk•k 2 (x) = 1 1 + 2λ x | {z } Wiener-like filter .
The proximity operator is non-expansive, i.e.

k prox f (x) -prox f (x ′ )k ≤ kx -x ′ k for every (x, x ′ ) ∈ R N × R N .
We can see that i) proximity operator is a generalization of orthogonal projections and ii) if we define g(x k , x) = 1 2 kx-x k k 2 +f (x), thus g(x k , x) can be seen as a majorant function of f at x k . The proximal algorithms are especially useful for solving large-size optimization problems, when the cost function f is the sum of M functions (f m ) 1≤m≤M . We first discuss the case M = 2 and f 1 , f 2 are in Γ 0 (R N ). The forward-backward algorithm has been proposed when f 2 is differentiable with a Lipschitz continuous gradient. In [START_REF] Chen | Convergence rates in forward-backward splitting[END_REF] the authors used the subdifferential leading to the following update rule

x k+1 = x k -γ k (t ′ k + ∇f 2 (x k )), t ′ k ∈ ∂f 1 (x k+1 ).
In [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] the update rule has been reformulated using the proximity operator which results in

x k+1 = x k + λ k (prox γ k f 1 (x n -γ k ∇f 2 (x k )) -x k )
. This class of algorithms [START_REF] Nesterov | Gradient methods for minimising composite functions[END_REF][START_REF] Bioucas-Dias | A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] focuses on the convergence speed, while [START_REF] Tseng | A modified forward-backward splitting method for maximal monotone mappings[END_REF][START_REF] Raguet | A generalized forward-backward splitting[END_REF], proposed an extension to more general cases. However if both functions to be minimized are nondifferentiable, then the Douglas-Rachford algorithms proposed in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF]Combettes and Pesquet, 2007a) may be used. In the case when M > 2 one can resort to the Parallel Proximal Algorithm (PPXA) proposed in [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] that minimizes a sum of a finite number of functions in Γ 0 (R N ) or its generalized version (PPXA+) in [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF]) that minimizes a sum of a finite number of functions in Γ 0 (R N ) composed with linear operators. We use PPXA+ in Chapter 3. PPXA+ requires to be able to invert some linear operator (consisting of a sum of linear operators), which may not be straightforward to compute. To tackle this problem, we should also mention the Primal-dual techniques proposed in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Alghamdi | A primal-dual method of partial inverses for composite inclusions[END_REF][START_REF] Combettes | A forward-backward view of some primal-dual optimization methods in image recovery[END_REF]. These algorithms are designed to jointly solve the primal and dual formulations of an optimization problem by invoking the Fenchel duality theorem. Definition 2.3.4 The Fenchel-Rockafellar duality (Bauschke and Combettes, 2011, Chapter 15) theorem states that under some technical conditions for any convex functions

f 1 : R N → R and f 2 : V → R : inf x∈R N {f 1 (x) + f 2 (V x)} | {z } Primal problem = sup v∈V {-f * 1 (V * v) -f * 2 (-v)} | {z } Fenchel-Rockafellar dual problem (2.46)
where f * : R N → R is the convex-conjugate of f : R N → R (Bauschke and Combettes, 2011, Chapter 13) i.e.

∀u ∈ R N , f * (u) = sup x∈R N (hx, ui -f (x)) (2.47) z Denoising x = prox f (z) (denoised signal) - + + z -x = prox f * (z) (residual signal) z prox f x (denoised signal) prox f * z -x (residual signal) Figure 2
.12: Moreau's decomposition schema.

V : R N → V is a linear operator and V * is its adjoint. In such settings, primal and dual variables refer to x and v, respectively.

(Bauschke and Combettes, 2011, Chapter 14, Theorem 14.3) states that for any convex function f : R N → R and for any γ ∈ R * + , then Id = prox γf +γ prox f * /γ (•/γ) .

(2.48)

We give one example of a denoising problem to illustrate this theorem.

Example 2.3.5 (Denoising) We consider the following denoising problem

z = x + b
where z corresponds to the observed data, x is the original signal and the noise b which is assumed to be additive zero-mean white Gaussian. We can reformulate the problem as an optimization problem minimize

x∈R N f (x) + 1 2 kz -xk 2
where regularization term f ∈ Γ 0 (R N ) serves to enforce prior knowledge about the solution. We know that this problem has a unique solution x = prox f (z), then z can be decomposed as in Figure 2.12 -p. 29.

The algorithms based on primal-dual techniques are also used in this thesis. In general, proximity methods are known for their good convergence properties. Most of the results are established for convex functions. However, some results in the non convex case can be found in [START_REF] Kaplan | Proximal point methods and nonconvex optimization[END_REF][START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF][START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality[END_REF][START_REF] Sra | Nonconvex proximal splitting: batch and incremental algorithms[END_REF][START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. In particular, we use the algorithm in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] to solve the problem of blind deconvolution in Chapter 6.

Property f (x) prox f (x) i, translation ϕ(x -z), z ∈ R N z + prox ϕ (x -z) ii, scaling ϕ(x/γ), γ ∈ R \ 0 γ prox ϕ/γ 2 (x/γ) iii, reflection ϕ(-x) -prox ϕ (-x) iv, quadratic function 1 2 γkLx -yk 2 (I +γL ⊤ L) -1 (x + γL ⊤ y) L ∈ R M ×N , γ > 0, y ∈ R M v, quadratic perturbation ϕ(x) + αkxk 2 /2 + u ⊤ x + γ prox ϕ/(α+1) ((x -u)/(α + 1)) u ∈ R N , α ≥ 0, γ ∈ R vi, semi-orthogonal ϕ(Lx) x + ν -1 L ⊤ � prox νϕ (Lx) -Lx linear transform L ∈ R M ×N , LL ⊤ = ν I, ν > 0 vii, indicator function ι C (x) = ( 0 if x ∈ C +∞ otherwise Π C (x)
Table 2.1: Properties of proximity operators [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]:

ϕ ∈ Γ 0 (R N ); C ⊂ R N is nonempty, closed, and convex; x ∈ R N . φ(x) prox φ (x) i, ι [ω,ω] (x) Π [ω,ω] (x) ii, ω|x| sign(x) max{|x| -ω, 0} iii, ω|x| 4/3 x + 4ω 32 1/3 � (β -x) 1/3 -(β + x) 1/3
, where [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

β = p x 2 + 256ω 3 /729 iv, ω|x| 3/2 x + 9ω 2 sign(x) 1 - p 1 + 16|x|/(9ω 2 ) /8 v, ω|x| 2 x/(1 + 2ω) vi, ω|x| 3 sign(x) p 1 + 12ω|x| -1 /(6ω) vii, ω|x| 4 β+x 8ω 1/3 - β-x 8ω 1/3 , where β = p x 2 + 1/(27ω) viii, max{|x| -ω, 0}      x if |x| < ω sign(x)ω ifω ≤ |x| ≤ 2ω sign(x)(|x| -ω) if|x| > 2ω Table 2.2: Proximity operators of φ ∈ Γ 0 (R N ); α ∈ R, ω > 0, ω < ω (Combettes
Table 2.1 -p. 30 shows many additional properties of the proximity operator. One will find in Table 2.2 -p. 30 closed-form expressions of the proximity operators of various functions belonging to Γ 0 (R). These two tables contain some important properties that we will use in the next chapters of the thesis.

Conclusion

In this chapter, we first provided an introduction to the topic of inverse problems and several associated mathematical tools. Indeed, we introduced the concept of sparsity and sparse representation, and gave some useful algorithms to solve such inverse problems, possibly favoring sparsity. In the next chapters, we will focus on two inverse problems of particular interest in seismic data processing: multiple removal and blind deconvolution.

-Chapter 3 -

Multiple removal with a single template

Random and structured noise both affect seismic data, hiding the reflections of interest (primaries) that carry meaningful geophysical interpretation. When the structured noise is composed of multiple reflections, its adaptive cancellation can be obtained through time-varying filtering, compensating inaccuracies in given approximate templates. We propose here a new variational framework based on a Maximum A Posteriori estimation procedure. More precisely, the problem of multiple removal is formulated as a minimization problem involving time-varying filters, assuming that a single disturbance signal template is available and the target signal is sparse in some decomposition e.g. an orthonormal basis or a frame. We show that estimating these multiples is equivalent to estimating filters and we propose to employ recently proposed convex optimization procedures based on proximity operators to solve the problem. In this chapter we consider the problem for the case where the structured noise is only composed of one type of multiple reflections and without additional noise. This work was initiated during the internship of D. Gragnaniello (summer 2011).

Introduction

As already detailed in the introduction, the aim of seismic data analysis is to infer the subsurface structure from seismic wave fields recorded through land or marine acquisitions. In reflection seismology, seismic waves, generated by a close-to-impulsive source, propagate through the subsurface medium. They travel downwards, then upwards, reflected by geological interfaces, convolved by earth filters. Seismic waves account for the unknown relative distances and velocity contrasts between layers and they are affected by propagation-related distortions. A portion of the wave fields is finally recorded near the surface by arrays of seismometers (geophones or hydrophones). In marine acquisition, hydrophones are towed by kilometer-long streamers.

We address here one of the most severe types of interferences: secondary reflections, named multiples, corresponding to seismic waves bouncing between layers (Essenreiter et al., 1998), as illustrated with red dashed lines in Figure 3.1 -p. 34. These reverberations share waveform and frequency contents similar to primaries, with longer propagation times. From the standpoint of geological information interpretation, they often hide deeper target reflectors. For instance, the dashed-red multiple path may possess a total travel time comparable with that of the solid-blue primary. Their separation is thus required for accurate subsurface characterization. A geophysics industry standard consists of model-based multiple filtering. One realistic template of a potential multiple is determined off-line, based on primary reflections identified in above layers. For instance, the dashed-red path may be approximately inferred from the dashed-blue, and then adaptively filtered for separation from the solid-blue propagation. Their precise estimation is beyond the scope of this work, we suppose them given by prior seismic processing or modeling. As template modeling is partly inaccurate -in delay, amplitude and frequency -template should be adapted in a time-varying fashion before being subtracted from the recorded data. Since the data recovery problem is under-determined, geophysicists have developed pioneering sparsity-promoting techniques. Recently, several works in geophysics have revisited the use of non-quadratic criteria, including Huber function [START_REF] Guitton | Robust inversion of seismic data using the Huber norm[END_REF] or ℓ p (p ∈ [START_REF] Mai | Représentations parcimonieuses pour la restauration et l'analyse quantitative de champs d'ondes en sismiques[END_REF]2])-norms [START_REF] Costagliola | Hybrid norm adaptive subtraction for multiple removal[END_REF], due to the alleged non-gaussianity of seismic data [START_REF] Walden | Non-Gaussian reflectivity, entropy, and deconvolution[END_REF]. However, robust, ℓ 1 -promoted deconvolution [START_REF] Claerbout | Robust modeling with erratic data[END_REF] or sparseness measure ℓ 1 /ℓ 2 [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF][START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF][START_REF] Hurley | Comparing measures of sparsity[END_REF][START_REF] Barak | Rounding sum-of-squares relaxations[END_REF][START_REF] Gray | Variable norm deconvolution[END_REF][START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ 1 /ℓ 2 regularization[END_REF], or complex wavelet transforms [START_REF] Morlet | Seismic tomorrow, interferometry and quantum mechanics[END_REF] still pervade many areas of signal processing.

• • • • • • •

Towed streamer Hydrophone

The proposed method is based on a single approximate template, in the absence of noise. This framework addresses at the same time structured reverberations. Namely, let n t ∈ {0, . . . , N t -1} denotes the time index for the observed seismic trace z, acquired by a given sensor. We assume, as customary in seismic, an additive model of contributions:

z (nt) = y (nt) + s (nt) . (3.1)
The unknown signal of interest (primary, in blue) and the sum of undesired, secondary reflected signals (multiples, in red) are denoted, respectively, by y = (y (nt) ) 0≤nt<Nt and s = (s (nt) ) 0≤nt<Nt . We assume that an approximate template accounting for multiples is available. This chapter presents a relatively novel framework for multiple reflection filtering with (i ) data fidelity term taking into account the statistical properties of the basis or frame coefficients, (ii ) prior information on the filter, and (iii ) slow variation modelling of the adaptive filter.

In Section 3.2, we analyze related works and specify the novelty of the proposed methodology. Section 3.3 describes the transformed linear model incorporating the template with adaptive filtering. In Section 3.4, we formulate a generic variational form for the problem. We discuss some proximal algorithms for solving our problem in Section 3.5. The slowly-varying property of the filter is to be taken into account and its performance is assessed in Section 3.6. The methodology is evaluated on a realistic synthetic data model. We draw some conclusions in section 3.7.

Related and proposed work

The separation of primaries and multiples is a classical issue in seismic exploration. Most published solutions, tailored to specific levels of prior knowledge, are very dependent on seismic data-sets. Several common processing routines transform the data into a new domain in which they minimize overlap between primaries and multiples. Transformed domain filter subsequently attenuate multiples or select primaries of interest. The filtered data is finally mapped back to data domain, using an appropriate inverse transform. Many standard transform methods are used as homomorphic filtering [START_REF] Buttkus | Homomorphic filtering -theory and practice[END_REF], fk [START_REF] Wu | A case study of fk demultiple on 2D offshore seismic data[END_REF], and τp [START_REF] Nuzzo | Improvement in GPR coherent noise attenuation using τp and wavelet transforms[END_REF] or alternative breeds -parabolic, hyperbolic -of the Radon transform [START_REF] Hampson | Inverse velocity stacking for multiple elimination[END_REF]Trad et al., 2003;[START_REF] Nowak | Amplitude preservation of Radon-based multipleremoval filters[END_REF]. See more details for these methods in [START_REF] Verschuur | Seismic multiple removal techniques: past, present and future[END_REF]. Among the vast literature, we refer to [START_REF] Weglein | Multiple attenuation: Recent advances and the road ahead (2011)[END_REF][START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] for recent accounts on broad processing issues, including shortcomings of standard ℓ 2 -based methods. The latter are computationally efficient, yet their performance decreases when traditional assumptions fail (primary/multiple decorrelation, weak linearity or stationarity, high noise levels). We focus here on recent sparsity-related approaches, pertaining to geophysical signal processing. The potentially parsimonious layering of the subsurface (illustrated in Figure 3.1 -p. 34) suggests a modeling of primary reflection coefficients with generalized Gaussian or Cauchy distributions [START_REF] Walden | Non-Gaussian reflectivity, entropy, and deconvolution[END_REF][START_REF] Walden | The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution[END_REF], having suitable parameters. The sparsity induced on seismic data has influenced deconvolution and multiple subtraction. Progressively, the non-Gaussianity of seismic traces has been emphasized, and contributed to the use of more robust norms [START_REF] Kaplan | Adaptive separation of free-surface multiples through independent component analysis[END_REF][START_REF] Lu | Adaptive multiple subtraction based on constrained independent component analysis[END_REF][START_REF] Liu | Adaptive multiple separation based on information maximization[END_REF][START_REF] Duarte | Seismic wave separation by means of robust principal component analysis[END_REF][START_REF] Takahata | Unsupervised processing of geophysical signals: A review of some key aspects of blind deconvolution and blind source separation[END_REF][START_REF] Da Costa Filho | Applications of independent component analysis to the attenuation of multiple reflections in seismic data[END_REF] for blind separation with independent component analysis (ICA) for the signal of interest. As the true nature of seismic data distribution is still debated, including its stationarity [START_REF] Bois | Étude statistique de la contribution des multiples aux sismogrammes synthétiques et réels[END_REF], a handful of works have investigated processing in appropriate transformed domains. They may either stationarize [START_REF] Krim | Multiresolution analysis of a class of nonstationary processes[END_REF] or strengthen data sparsity. For instance, [START_REF] Donno | Improving multiple removal using least-squares dip filters and independent component analysis[END_REF] applies ICA in a dip-separated domain. In [START_REF] Neelamani | Adaptive subtraction using complex-valued curvelet transforms[END_REF], as well as in [START_REF] Herrmann | Curvelet imaging and processing: adaptive multiple elimination[END_REF] and subsequent works by the same group, a special focus is laid on separation in the curvelet domain.

Data sparsity alone may not be sufficient to solve (3.1). Additional constraints reduce the set of solutions, hopefully to geologically sounder ones. A first one is the locality of matched filter, traditional in standard multiple filtering. These can be modeled by Finite Impulse Response (FIR) operators. Classical filter support limitations, down to one-tap [START_REF] Neelamani | Adaptive subtraction using complex-valued curvelet transforms[END_REF][START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], assorted with ℓ 2 or ℓ 1 criteria, are standard. Yet, no work in multiple removal has endeavored a more systematic study of variational and sparsity constraints on the adaptive filter, in the line of [START_REF] O'brien | Recovery of a sparse spike time series by l 1 norm deconvolution[END_REF]. In this work, we propose a formulation allowing a family of penalties to be applied to the adaptive FIR filter. In standard restoration [START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF], knowledge about the degradation kernel is often required. It is replaced here by the knowledge of a template, the degradation kernel being estimated. The resulting algorithm recursively estimates an FIR filter. The propagation medium, as well as the modeled template, carries continuous variations. With the seismic bandwidth (up to 125 Hz), changes in signals are not as dramatic as in sharp images. Consequently, we expect the adapted filter to exhibit bounded variations from one time index to the next one. This hypothesis is consistent with wave propagation assumptions. More precisely, the estimation problem is formulated as a convex variational problem involving a non-smooth cost function.

Model description

We assume that a multiple template is modeled at the temporal vicinity of actual disturbances, with standard geophysical assumptions on primaries. The multiple signal possesses a local behavior related to the geological context. Hence, we assume the availability of one template (r (nt) ) 0≤nt<Nt , related to (s (nt) ) 0≤nt<Nt via a possibly non-causal linear model through a limited support relationship:

s (nt) = p ′ +P -1 X p=p ′ h (nt) (p)r (nt-p) (3.2)
where h (nt) is an unknown finite impulse response (with P tap coefficients) associated with time n t , and where p ′ ∈ {-P + 1, . . . , 0} is its starting index (p ′ = 0 corresponds to the causal case). It must be emphasized that the dependence with respect to the time index n t of the impulse responses implies that the filtering process is time variant, 0 200 400 600 800 1000 although it can be assumed slowly varying in practice. Indeed, seismic waveforms evolve gradually with propagation depth, in contrast with steeper variations around contours in natural images. A template is generated with standard geophysical modeling based on the above primaries. The adaptive FIR assumption is commonly adopted, and applied in partly overlapping, complementary time windows at different scales. The observation that adapted filter might be ill-behaved, due to the band-pass nature of seismic data is well known, although rarely documented, motivating the need for filter coefficient control. shows an example of synthetic data. We define vectors s and h by:

ȳ(n) r (n) s(n) z (n)
s = s (0) • • • s (Nt-1) ⊤ , (3.3) 
h = h h (0) (p ′ ) • • • h (0) (p ′ + P -1) • • • h (Nt-1) (p ′ ) • • • h (Nt-1) (p ′ + P -1) i ⊤ , (3.4) 
and 1) . . .

R =      R (0) 0 . . . 0 0 R ( 
0 . . . 0 . . . . . . 0 0 . . . R (Nt-1)      , (3.5) 
where (R (nt) ) 0≤nt≤Nt-1 are vectors of dimension P such that 1) . . .

     R (0) R ( 
R (Nt-1)      =             r (-p ′ ) • • • r (0) 0 • • • 0 r (-p ′ +1) • • • r (0) 0 • • • 0 . . . r (Nt-1) r (Nt-2) • • • r (Nt-P ) 0 r (Nt-1) • • • r (Nt-P +1) . . . 0 • • • 0 r (Nt-1) • • • r (Nt-P -p ′ )             . (3.6)
One can note that the matrix R is a block diagonal matrix and that the concatenation of its block diagonal elements is a Toeplitz matrix of size N t × P . With this formulation, the problem of providing an estimate b y of the primary turns out to be equivalent to computing an estimate b h of the impulse response and to deduce b y = z -R b h.

Proposed variational approach

Let us now show how the problem can be addressed from a Bayesian perspective. We assume that the characteristics of the primary are appropriately described through a prior statistical model in a different representation, e.g. a wavelet basis/frame [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. For example, if we denote by x the vector of frame coefficients and F ∈ R K×Nt designates the associated analysis operator, we have (Chaux et al., 2007a) x = F y.

(3.7)

In addition, we assume that y is a realization of a random vector, the probability density function (pdf) of which is given by

(∀y ∈ R Nt ) f Y (y) ∝ exp(-ϕ(F y)) (3.8)
where ϕ : R Nt → ]-∞, +∞] is the associated potential, assumed to be such that

(∀x ∈ R K ) ϕ(x) ≥ αkxk 2θ (3.9)
where α ∈ ]0, +∞[ and θ ∈ ]0, +∞[. This allows us to deduce that

(∀y ∈ R Nt ) ϕ(F y) ≥ αν θ kyk 2θ (3.10)
where ν ∈ ]0, +∞[ is the lower frame bound. This in turn implies that f Y as defined in (3.8) is a valid pdf.

For simplicity, ϕ can be chosen to be separable, which corresponds to an independence assumption on the coefficients when the frame reduces to a basis:

(∀x = (x k ) 1≤k≤K ∈ R K ) ϕ(x) = K X k=1 ϕ k (x k ).
(3.11) where, for every

k ∈ {1, • • • , N t }, ϕ k : R → ]-∞, +∞].
In order to promote the sparsity of the decomposition, a standard choice for this potential is

ϕ k = κ k | • | where κ k > 0.
(This choice satisfies (3.9) with α = min 1≤k≤K κ k and θ = 1/2).

On the other hand, to take into account the available information on the unknown filter, especially its regular variations along the time dimension, it can be assumed that h is a realization of a random vector H, the pdf of which is expressed as

(∀h ∈ R NtP ) f H (h) ∝ exp(-ρ(h)), (3.12)
and which is independent of y. By resorting to an estimation of h in the sense of the Maximum A Posteriori (MAP), the problem can be formulated as minimize .13) In this approach, ϕ represents some data fidelity term taking into account the statistical properties of the basis coefficients and ρ models prior informations that are available on h.

h∈R N t P ϕ(F (z -Rh)) + ρ(h). ( 3 

Filter estimation

Algorithm

The objective here is to perform the minimization of a criterion composed of only two functions: minimize where, Φ = ϕ(F z -Ω•), and Ω = F R. The panel of available methods appears to be very large and we have to take into account the linear operator R, in this case matrix

h∈R N t P Φ(h) + ρ(h) (3.
R verify R ⊤ R = Diag(kR (0) k 2 , . . . , kR (N -1) k 2 ).
As mentioned in the background (see Chapter 2), the Douglas-Rachford (DR) algorithm (Combettes and Pesquet, 2007a) can be used, however this algorithm requires to be able to compute the proximity operators of Φ and ρ. Function Φ contains the linear operator Ω which drastically reduces the choice one can make for ϕ e.g. when ϕ is a ℓ 2 -norm and F is a wavelet orthogonal basis, then DR can be applied by using iv, in Table 2.1 -p. 30. However, when ϕ is a ℓ 2 -norm and F is a wavelet orthogonal basis matrix then .15) This implies that an orthonormal wavelet basis is uneffective in this case.

ϕ(F (z -Rh)) = kF (z -Rh)k 2 = (z -Rh) ⊤ F ⊤ F (z -Rh) = kz -Rhk 2 . ( 3 
Algorithm 1 Forward-Backward algorithm Set h [0] ∈ R NtP for i = 0, 1, . . . do e h [i] = h [i] -γ [i] ∇Φ(h [i] ) h [i+1] = h [i] + λ [i] (prox γ [i] ρ ( e h [i] ) -h [i] ) end for
We now turn our attention to the Forward-Backward (FB) splitting algorithm. We assume that ϕ has a µ-Lipschitz continuous gradient, then the function Φ also has a β-Lipschitz continuous gradient with β = µkΩk 2 . This algorithm implies to be able to compute the gradient of Φ and the proximity operator of ρ. At each iteration i, the stepsize γ [i] and the relaxation parameter λ [i] must be chosen so as to satisfy the following rule: let ǫ ∈]0, min{1, 1/β}[, γ [i] ∈ [ǫ, 2/βǫ], and λ [i] ∈ [ǫ, 1]. We choose to use a wavelet orthogonal basis with 8-length Symlet filters, performed on 4 resolution levels.

Figure 3.3 -p. 39 illustrates a generalized Gaussian modeling of seismic data wavelet basis decomposition with different power laws. The best matching power for the chosen wavelet basis yields the taxicab metric or ℓ 1 -norm. However, we assumed here that Φ has a µ-Lipschitz continuous gradient. For this reason we choose the Huber function as follows:

ϕ k (x) = ( χx 2 if |x| ≤ τ √ 2χ τ √ 2χ|x| -τ 2 2 otherwise (3.16)
where χ > 0 and τ > 0. Then we have ϕ(x

) = P K k=1 κ k ϕ k (x k )
, which is a function that well approximates the ℓ 1 -norm and which has a Lipschitz continuous gradient, µ = 2χ being the Lipschitz constant of ϕ k , with its gradient given by

∇ϕ k (x) = ( 2χx if |x| ≤ τ √ 2χ τ √ 2χ sign(x) otherwise.
(3.17) Figure 3.4 -p. 40 illustrates the ℓ 1 -norm (in blue) and the Huber functions with different parameters (in green and red). The red line is very close to the ℓ 1 -norm. Indeed, (3.13) can be written as minimize

h∈R N t P Φ(Ωh -F z) + ρ(h) (3.18)
where Φ is a function defined such that Φ(x) = ϕ(-x). For solving monotone inclusions involving a mixture of sums, linear compositions, we choose to employ Monotone + Skew Forward Backward Forward (M+SFBF) algorithm (Briceños [START_REF] Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF]. With this algorithm the ℓ 1 -norm can be used without any approximation to the ϕ function.

Algorithm 2 M+SFBF algorithm Set γ n ∈ [ǫ, 1-ǫ β ]. Set h [0] ∈ R NtP , u [0] ∈ R K . for i = 0, 1, . . . do e v [i] = h [i] -γ [i] Ω * v [i] e h [i] = v [i] + γ [i] Ωh [i] w [i] 1 = prox γ [i] ρ (e v [i] ) w [i] 2 = prox γ [i] Φ * ( e h -γ [i] F z) q [i] 1 = w [i] 1 -γ [i] Ω * w [i] 2 q [i] 2 = w [i] 2 + γ [i] Ωw [i] 1 h [i+1] = h [i] -e v [i] + q [i] 1 v [i+1] = v [i] -e h [i] + q [i] 2 end for We have prox γ [i] Φ * ( e h -γ [i] F z) = ( e h -γ [i] F z) -γ [i] prox Φ γ [i] ( e h γ [i] -F z) using Tab. 2.1, (iii) = ( e h -γ [i] F z) -γ [i] prox ϕ(-•) γ [i] ( e h γ [i] -F z) = ( e h -γ [i] F z) + γ [i] prox ϕ γ [i] (F z - e h γ [i] ) using Tab. 2.1, (i).
Furthermore, we can still use the Huber function for ϕ k with this algorithm. In this case, the proximity operator of the Huber function (3.16) reads:

prox ϕ k (x) = ( x 2χ+1 if |x| ≤ τ (2χ+1) √ 2χ x -τ √ 2χ sign(x) otherwise. (3.19)
The convergence of the algorithm to an optimal solution to Problem (3.18) is guaranteed by (Briceños Arias and Combettes, 2011, Theorem 3.1). According to this theorem, the step size γ [i] at each iteration i must be chosen so as to satisfy the following rule: let

ǫ ∈]0, 1 kΩk+1 [, then � γ [i] i∈N ∈ [ǫ, 1-ǫ kΩk ].

Results

In this chapter, the considered data y = (y (nt) ) 0≤nt<Nt and multiple template r = (r (nt) ) 0≤nt<Nt were generated from actual seismic data primaries and multiples. We generated the observed data z = (z (nt) ) 0≤nt<Nt according to the model given in (3.1). In the following, we choose the length of signal N t = 1024, P = 10 tap coefficients and p ′ = 0. We use a Symlet wavelet decomposition with filter length 8 over 4 resolution levels.

The convex optimization algorithm evaluates the value of ĥ that solves problem (3.13).

We choose ϕ = P K k=1 κ k ϕ k where for every k ∈ {1, . . . , K}, ϕ k is the Huber function recalled in (3.16) with χ = 8 and τ = 1 2 and κ k = 0.8 for FB algorithm and ϕ k = | • | and κ k = 0.9 for M+SFBF algorithm. For both algorithms, function ρ is chosen equal to (1κ k )ℓ 2 2 . The algorithms are launched on 10000 iterations and may stop earlier at iteration i if the filter becomes stable (i.e. kh [i+1] -

h [i] k < √ N t P × 10 -6
). The result of these algorithms are depicted in Figure 3.5 -p. 43 and Figure 3.6 -p. 43. We focus on the leftmost part of the plots, between indices 1 and 500. While Figure 3.6p. 43 shows the comparisons of: on the left; primary y (in blue) and observed data z; on the right; primary y (in blue) and estimated signal b y 1 (in magenta) by using FB and estimated signal b y 2 (in cyan) by using M+SFBF. We observe firstly that FB and M+SFBF algorithms give very close results, secondly the primary y is well retrieved. However between indices 80 and 200, the multiple energy is higher in this part, the estimated signal is not compatible with the original, and the result obtained by M+SFBF algorithm is better than the one by FB algorithm. In the next section we propose to add constraints for time-varying adaptive filtering of seismic signal. 

ȳ(n) ŷ(n) 1 ŷ(n) 2 r (n) s(n) ŝ(n) 1 ŝ(n) 2 z (n)

Filter estimation adding constraints

The problem is underdetermined because we should estimate an amount of coefficients of filter h much greater than the length of signal. We know that the choice of a good prior (or equivalently, a good regularization term) is the key for solving most ill-posed inverse problems. In this case from wave propagation properties, the filter is here assumed to vary along the time index n t . However, as mentioned earlier, the filter variations are usually slow. In order to take into account this prior knowledge, the following bounded variation constraint can be introduced

(∀(n t , p)) |h (nt+1) (p) -h (nt) (p)| ≤ ǫ p . (3.20)
This inequality links corresponding coefficients of the impulse response which are estimated between two consecutive time samples (in other words, we impose consecutive filter to take close values). The parameter ǫ p may depend on the shape of the expected filter. For example, its dependence on the coefficient index p may enable a larger (reps. smaller) difference for filter coefficients taking larger (reps. smaller) values. The associated closed convex set is defined as

C = {h ∈ R NtP | ∀(n t , p) |h (nt+1) (p) -h (nt) (p)| ≤ ǫ p }. (3.21)
We subsequently assume that the pdf f H is compactly supported on C, so yielding the following criterion to be minimized: minimize

h∈R N t P ϕ(F (z -Rh)) + e ρ(h) + ι C (h) (3.22)
where e ρ : R NtP → ]-∞, +∞]. For computational issues, the convex set C can be expressed as the intersection of two convex subsets C 1 and C 2 :

C 1 = h ∈ R NtP | ∀p, ∀n t ∈ n 0, . . . , N t 2 -1 o , |h (2nt+1) (p) -h (2nt) (p)| ≤ ε p (3.23) C 2 = h ∈ R NtP | ∀p, ∀n t ∈ n 1, . . . , N t -1 2 o , |h (2nt) (p) -h (2nt-1) (p)| ≤ ε p . (3.24)
Note that in each subset, the involved variables are decoupled. Using these two subsets, Criterion (3.22) becomes minimize

h∈R N t P ϕ(F (z -Rh)) + e ρ(h) + ι C 1 (h) + ι C 2 (h). (3.25)
Concerning the data fidelity term, it can be observed that it is equal to h → Φ(F Rh) where,

Φ △ = ϕ(F z -•). The regularization term is function e ρ.
For the constraints modeled by the closed convex sets C 1 and C 2 , the proximity operators of the associated indicator functions are given by the projections onto these sets. These projections reduce to projections onto a set of hyperslabs of R 2 . More precisely, the projection onto C 1 is calculated as follows: let h ∈ R NtP and let g 1 = Π C 1 (h); and g 2 = Π C 2 (h); then for every p ∈ {p ′ , . . . , p ′ + P -1} and for every n t ∈ 0, . . . , Nt

2 -1 , 1. if |h (2nt+1) (p) -h (2nt) (p)| < ε p , then g (2nt) 1 (p) = h (2nt) (p), g (2nt+1) 1 (p) = h (2nt+1) (p); g (2nt) 2 (p) = h (2nt) (p), g (2nt-1) 2 (p) = h (2nt-1) (p) 2. if h (2nt+1) (p) -h (2nt) (p) > ε p , then g (2nt) 1 (p) = h (2nt+1) (p) + h (2nt) (p) 2 - ε p 2 g (2nt+1) 1 (p) = h (2nt+1) (p) + h (2nt) (p) 2 + ε p 2 ; g (2nt) 2 (p) = h (2nt) (p) + h (2nt-1) (p) 2 + ε p 2 g (2nt-1) 2 (p) = h (2nt) (p) + h (2nt-1) (p) 2 - ε p 2 3. if h (2nt+1) (p) -h (2nt) (p) < -ε p , then g (2nt) 1 (p) = h (2nt+1) (p) + h (2nt) (p) 2 + ε p 2 g (2nt+1) 1 (p) = h (2nt+1) (p) + h (2nt) (p) 2 - ε p 2 ; g (2nt) 2 (p) = h (2nt) (p) + h (2nt-1) (p) 2 - ε p 2 g (2nt-1) 2 (p) = h (2nt) (p) + h (2nt-1) (p) 2 + ε p 2 .
The projections onto the two first constraint sets C 1 and C 2 -imposing smooth variations along time of the corresponding tap coefficients -reduce to projections onto a set of hyperslabs of R 2 as illustrated in Figure 3.7 -p. 46.

Algorithm

We propose to employ the iterative algorithm in [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF] (see Algorithm 3). This algorithm mainly consists of computing alternately proximity operators and projections. It can be noticed that the algorithm requires to compute the inverse of matrix Q ∈ R Nt×Nt . If F corresponds to a wavelet orthonormal basis or a tight frame 

H 3 H 1 π H1 π H3 h ( n t + 1 ) j ( p ) - h ( n t ) j ( p ) - ε j , p = 0 h ( n t + 1 ) j ( p ) - h ( n t ) j ( p ) + ε j , p = 0 h (nt) j (p) h (nt+1) j (p) H 2 ≡ π H2 Figure 3.7: Projection onto C 1 /C 2 of points H 1 , H 2 and H 3 in R 2 . Algorithm 3 PPXA+ Set (o 1 , o 2 , o 3 , o 4 ) ∈ ]0, +∞[ 4 and t [0] 1 ∈ R K , t [0] 2 ∈ R NtP , t [0] 3 ∈ R NtP , t [0] 4 ∈ R NtP Q = o 1 νR ⊤ R + (o 2 + o 3 + o 4 ) I h [0] = Q -1 o 1 R ⊤ F ⊤ t [0] 1 + o 2 t [0] 2 + o 3 t [0] 3 + o 4 t [0] 4 for i = 0, 1, . . . do w [i] 1 = prox Φ o 1 (t [i] 1 ) w [i] 2 = prox � ρ o 2 (t [i] 2 ) w [i] 3 = Π C 1 (t [i] 3 ) w [i] 4 = Π C 2 (t [i] 4 ) c [i] = Q -1 o 1 R ⊤ F ⊤ w [i] 1 + o 2 w [i] 2 + o 3 w [i] 3 + o 4 w [i] 4 λ [i] ∈]0, 2[ t [i+1] 1 = s [i] 1 + λ [i] F R(2c [i] -h [i] ) -w [i] 1 t [i+1] 2 = s [i] 2 + λ [i] 2c [i] -h [i] -w [i] 2 t [i+1] 3 = t [i] 3 + λ [i] 2c [i] -h [i] -w [i] 3 t [i+1] 4 = t [i] 4 + λ [i] 2c [i] -h [i] -w [i] 4 h [i+1] = h [i] + λ [i] � c [i] -h [i] end for
with constant ν ∈ ]0, +∞[ (ν = 1 when F is a orthonormal basis), this can be done by applying the Woodbury formula [START_REF] Golub | Matrix Computations (3rd Ed[END_REF])

Q -1 = 1 o 2 + o 3 + o 4 I - o 1 ν o 2 + o 3 + o 4 R ⊤ I + o 1 ν o 2 + o 3 + o 4 RR ⊤ -1 R 1 o 2 + o 3 + o 4 I = 1 o 2 + o 3 + o 4 I - o 1 ν (o 2 + o 3 + o 4 ) 2 R ⊤ I + o 1 ν o 2 + o 3 + o 4 RR ⊤ -1 R.
By using the fact that

RR ⊤ = Diag(kR (0) k 2 , . . . , kR (Nt-1) k 2 ) (3.26)
we get

Q -1 = 1 o 2 + o 3 + o 4 I -R ⊤ DR (3.27)
where

D -1 = Diag o 2 + o 3 + o 4 o 1 ν + kR (0) k 2 , . . . , o 2 + o 3 + o 4 o 1 ν + kR (Nt-1) k 2 . (3.28)
Concerning the proximity operator of function Φ, it can be computed, by using Table 2.1p. 30, (i) and (iii), we get

prox Φ (x) = prox ϕ(F z -•) (x) = prox ϕ(-(• -F z)) (x)
= F zprox ϕ (F zx) using Tab. 2.1, (i) and (iii).

Results

The inner parameters of PPXA+ have been chosen in an empirical manner:

λ [i] = 1.5, o 1 = 10000/N t , o 2 = o 1 /P, o 3 = o 4 = 10 o 2 ;
the algorithm is initialized by randomly generated N t positive-valued vectors of size P summing up to one. The stopping criteria for PPXA+ algorithm is similar to the one for FB and M+SFBF algorithms.

The numerical results below have been obtained with

ϕ k ≡ κ k |•| and e ρ = (1-κ k )k•k 2 , κ k = 0.
9. Symlet wavelets of length 8 over 4 resolution levels are used.

In a first set of experiments, the observations are generated according to (3.1), and we assume that P , p ′ and ǫ = max

p ′ ≤p≤p ′ +P -1,0≤nt<Nt-1 |h (nt+1) (p)-h (nt) (p)| are known,
where h denotes the "true" impulse response. We subsequently set ǫ p ≡ ǫ for defining the convex constraints on the filter.

Results obtained considering P = 10 , p ′ = 0 and ǫ = 0.14 are displayed in Figure 3.8p. 48 and Figure 3.9 -p. 48. The signal is satisfactorily recovered. As we can observe in Figure 3.9 -p. 48, the primary is well recovered, in particular, the result is improved between indices 80-200. This shows the performance of time-varying filter constraints. To emulate actual geophysical configurations, the data and templates obtained from actual seismic surveys have been combined with filter of varying length (from five to twenty taps), starting time (p ′ ) and shape (from fully symmetric to asymmetric). Due to amplitude and spectrum variations in actual multiples, an absolute statistical analysis is not straightforward. Instead, we focus on errors of estimated signal and reference signal (ℓ 1 (yŷ)) and the ℓ 1 /ℓ 2 (h). Nowadays, the ℓ 1 /ℓ 2 criterion is used frequently to measure the sparsity of a signal [START_REF] Repetti | Euclid in a taxicab: Sparse blind deconvolution with smoothed ℓ 1 /ℓ 2 regularization[END_REF][START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF][START_REF] Benichoux | A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors[END_REF][START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF][START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF][START_REF] Hurley | Comparing measures of sparsity[END_REF][START_REF] Barak | Rounding sum-of-squares relaxations[END_REF]. In Chapter ??, we propose a method based on a smooth approximation of the ℓ 1 /ℓ 2 function. shows the results obtained by two different functions ρ (ℓ 1 -norm and ℓ 2 -norm). We observe that in both cases, the bigger ℓ 1 (yŷ), the bigger ℓ 1 /ℓ 2 (h). In other words, if a filter presents more sparsity, then the estimated signal is better retrieved. Figure 3.10 -p. 49 shows a comparison between the two estimated signals when P = 6 (in red) and P = 16 (in green) with original signal (in blue). We observe that the signal obtained for P = 6 is recovered perfectly, while for P = 16, as the filter length is quite large, it is much more difficult to detect. However, the signal is satisfactorily recovered.
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Conclusion

In this chapter, we developed a new variational framework for multiple removal in seismic data under the assumption that a disturbance signal template is available. The proposed algorithm is based on recent advances in the theory of proximal methods. This allows us to estimate FIR filters that vary along the time dimension and the results provided by this approach appear to be very promising. In a first time we have started with some standard algorithms such as FB and M+SFBF for minimizing the sum of two functions and no constraint is considered. In a second time, the slowly-varying property of filter is taken into account. We then proposed to employ PPXA+ algorithm. The results showed the good performance of time varying filter constraint and the ℓ 1 -norm penalty on the filter. In the following chapter, we extend this method to the noisy case. Moreover we propose a technique to combine different multiple models together to achieve better results.

-Chapter 4 -

Multiple removal with several templates and noise

In the previous chapter we discussed the problem of seismic multiple removal for only one template in a noise-free case. The focus of this chapter addresses different types of multiples with noise estimation. We recall the problem of jointly estimating the filters and the signal of interest (primary) in a new convex variational formulation, allowing the incorporation of knowledge about the noise statistics. We propose a primal-dual algorithm to solve the derived minimization problem which yields good performance in both simulated and real field seismic data. 
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We now consider the problem for a more general case where the primaries are degraded by both random and structured noises. Consequently, the problem (3.1) becomes

z (nt) = y (nt) + s (nt) + b (nt) (4.1)
where b = (b (nt) ) 0≤nt<Nt denotes the additional noise. It is well-known that seismic data often contains random noises related to near-surface scatterers. This work mostly deals with the mitigation of some ℓ 2 -norm on residuals, as remnant noise is traditionally considered as Gaussian in seismic. As far as sparsity is concerned, ℓ 2 -norm penalties are blended with ℓ 0 objectives, solved through ℓ 1 or hybrid ℓ 1 -ℓ 2 approximations (Guitton and Verschuur, 2004), resorting for instance to iteratively re-weighted least-squares method. Recently, [START_REF] Costagliola | Hybrid norm adaptive subtraction for multiple removal[END_REF] investigated the use of intermediate ℓ pnorms, with p = 1.2 for instance, accounting for the "super-Gaussian nature of the seismic data due to the interfering fields", in the time domain. In reality, there exist several types of multiples. As illustrated in Figure 4.1 -p. 51, there is not only the peg-leg multiple, but also a water-bottom multiple. In [START_REF] Mei | A weighted adaptive subtraction for two or more multiple models[END_REF], the authors proposed a multiple subtraction method for two or more multiple models, using matched filters to modify them. Then they minimize the energy between the input data and these modified multiple models. Note that this step is carried out in local time-space windows, and thus the matched filters can vary from one window to another. They showed that the type of weighted subtraction with weights based on the similarity between the multiples and the input data gives the best result when one multiple model is more reliable than the other one. Their experiments were performed only for two multiple models.

Recently, we refer to [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] for a combination of several multiple models.

The authors proposed a model-based multiple subtraction that combines complex Morlet wavelet frame with complex unary Wiener filters. Their methods are demonstrated on field data with three different multiple models. Also many papers show the good performance of the multi-model in the multiple removal problem such as [START_REF] Sanchis | Multiple-input adaptive seismic noise canceller for the attenuation of nonstationary coherent noise[END_REF][START_REF] Van Borselen | An inversion approach to separating sources in marine simultaneous shooting acquisition -application to a Gulf of Mexico data set[END_REF][START_REF] Liu | Adaptive multiple separation based on information maximization[END_REF][START_REF] Moni | Source separation on seismic data: Application in a geophysical setting[END_REF][START_REF] Mei | A weighted adaptive subtraction for two or more multiple models[END_REF][START_REF] Neelamani | Complex curvelet-based adaptive subtraction of several noise templates[END_REF][START_REF] Pica | Behaviour of prestack Backus filters for multiple suppression[END_REF][START_REF] Huo | Improving adaptive subtraction in seismic multiple attenuation[END_REF]. Sometimes, one can consider that there is a single model, however it is turned into a multiple model with the derivatives and the Hilbert transform such as in [START_REF] Wang | Multiple subtraction using an expanded multichannel matching filter[END_REF]. As problem (4.1) is underdetermined, additional constraints should be devised. In particular, we investigate sparsity issues on primaries and adaptive filters. As for sparse representation on primaries, this can be computed using wavelet transformations such as bases or frames [START_REF] Pesquet | Time-invariant orthonormal wavelet representations[END_REF][START_REF] Fowler | The redundant discrete wavelet transform and additive noise[END_REF] in which the regularizations are adapted (e.g. the ℓ 1 -norm defined on the coefficients). Since each subband has different properties due to the energy distribution, it is reasonable to use the different regularization parameters depending on the content of each subband. In image processing, ℓ 1 -norm seems to be a better cost function for wavelet coefficient in subbands and squared ℓ 2 -norm is more appropriate on the approximation subband. In [START_REF] Chaux | Wavelet-based hyperparameter estimation for solving inverse problems[END_REF] the authors proposed a method to estimate the regularization hyperparameters per subband based on a Maximum Likelihood (ML) estimator. In this chapter, we propose to define constraints for each subband. This allows us to more easily determine data-based parameters and to improve the performance of frame decompositions. Concerning the sparsity on adaptative filters, we employ a nuclear norm regularization. This choice is due to the fact that low-rank matrix approximations and sparsity are related. Indeed, a low-rank property well represents matrix sparsity [START_REF] Zeng | Finding correspondence from multiple images via sparse and low-rank decomposition[END_REF][START_REF] Candès | Robust principal component analysis[END_REF][START_REF] Chen | Robust reduced-rank filtering for erratic seismic noise attenuation[END_REF][START_REF] Kreimer | Tensor completion based on nuclear norm minimization for 5d seismic data reconstruction[END_REF]. It is well-known that the nuclear norm (sum of singular values) regularization promotes a low rank solution. The singular values of a complex matrix are always positive [START_REF] Golub | Matrix Computations (3rd Ed[END_REF]. This implies that the nuclear norm is equivalent to the ℓ 1 -norm on singular values. In particular, we demonstrate that the nuclear norm is equivalent to the mixed ℓ 1,2 -norm in some cases. This chapter extends a more generic framework for multiple reflection filtering with (i ) a noise prior, (ii ) sparsity constraints (for each of subbands) on signal frame coefficients, (iii ) slow variation modeling of the adaptive filters, and (iv ) concentration metrics on the filters. Multiple constraints can now be handled in a convenient manner. Due to the diversity of focus points which are paired with data observation, we choose here to decouple effects and to insist on (iv ), with respect to different flavors of 1D wavelet bases and frames, which appear as natural atoms for sparse descriptions of some physical processes, related to propagation and reflection of signals through media.

Section 4.2 describes the transformed linear model incorporating the templates with adaptive filtering. In Section 4.3, we formulate a generic variational form for the problem. Section 4.4 describes the primal-dual proximal formulation. The performance of the proposed method is assessed in Section 4.5. We detail the chosen optimization criteria and provide a comparison with different types of frames. The methodology is first evaluated on a realistic synthetic data model, and then tested and applied to an actual seismic data-set. Actually, the evaluation of the proposed multiple filtering algorithm on seismic data is not straightforward, for two main reasons. First, seismic processing work flows are neither publicly available for benchmarks and are generally heavily parametrized. Second, quality measures are not easy to devise since visual inspection is a paramount feature in geophysical data processing assessment. We thus compare the proposed approach with a state-of-the-art solution, previously benchmarked against industrial competitors [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. Conclusions and perspectives are drawn in Section 4.6.

Model description

We assume that multiple templates are modeled at the temporal vicinity of actual disturbances, with standard geophysical assumptions on primaries. The multiple signal possesses a local behavior related to the geological context. Hence, we assume the availability of J templates (r

(nt) j
) 0≤nt<Nt,0≤j<J , related to (s (nt) ) 0≤nt<Nt via a possibly non-causal linear model through a limited support relationship:

s (nt) = J-1 X j=0 p ′ +P j -1 X p=p ′ h (nt) j (p)r (nt-p) j (4.2)
where h

(nt) j is an unknown finite impulse response (with P j tap coefficients) associated with template j at time n t , and where p ′ ∈ {-P j + 1, . . . , 0} is its starting index (p ′ = 0 corresponds to the causal case). Templates are generated with standard geophysical modeling based on the above primaries and wave-equation modeling. The adaptive FIR assumption is commonly adopted, and applied in partly overlapping, complementary time windows at different scales. The observation that adapted filters are ill-behaved, due to the band-pass nature of seismic data is well known, although rarely documented, motivating the need for filter coefficient control. Defining vectors s and (h j ) 0≤j<J by:

s = s (0) . . . s (Nt-1) ⊤ , h j = h h (0) j (p ′ ) . . . h (0) j (p ′ + P j -1) . . . h (Nt-1) j (p ′ ) . . . h (Nt-1) j (p ′ + P j -1) i ⊤ ,
and block diagonal matrices (R j ) 0≤j<J of size N t × N t P j :

R j =       R (0) j 0 . . . 0 0 R (1) j . . . 0 . . . 0 . . . . . . 0 0 . . . R (Nt-1) j       ,
where (R (nt) j

) 0≤nt≤Nt-1 are vectors of dimension P j such that . . . r

h (R (0) j ) ⊤ (R (1) 
j ) ⊤ . . . (R (Nt-1) j ) ⊤ i ⊤ =              r (-p ′ ) j . . . r ( 
(Nt-Pj -p ′ ) j              .
Eq. ( 4.2) can be expressed more concisely as

s = J-1 X j=0 R j h j .
For more conciseness, one can write

s = Rh by defining R = [R 0 . . . R J-1 ] ∈ R Nt×Q where Q = N t P with P = P J-1 j=0 P j and h = [h ⊤ 0 . . . h ⊤ J-1 ] ⊤ ∈ R Q .

Proposed variational approach

Bayesian framework

As mentioned in the previous chapter, we assume that y is a realization of a random vector Y , the probability density function (pdf) of which is given by

(∀y ∈ R Nt ) f Y (y) ∝ exp(-ϕ(F y)) (4.3)
where ϕ : R Nt → ]-∞, +∞] is the associated potential, assumed to have a fast enough decay.

To take into account the available information on the unknown filters, it can be assumed that for all j ∈ {0, . . . , J -1}, h j is a realization of a random vector

H j . Let H = R NtP 0 × . . . × R NtP J-1 .
The joint pdf of the filter coefficients can be expressed as:

(∀h ∈ H) f H 0 ,...,H J-1 (h) ∝ exp(-ρ(h)),
where (H 0 , . . . , H J-1 ) is independent of Y . It is further assumed that the noise vector b is a realization of a random vector B with pdf

(∀b ∈ R Nt ) f B (b) ∝ exp(-ψ(b)),
where ψ : R Nt → ]-∞, +∞], and that B is independent of Y and H 0 , . . . , H J-1 . The posterior distribution of (Y, H 0 , . . . , H J-1 ) conditionally to

Z = Y + P J-1 j=0 R j H j + B is then given by (∀y ∈ R Nt )(∀h ∈ H) f Y,H 0 ,...,H J-1 |Z=z (y, h) ∝ exp   -ψ z -y - J-1 X j=0 R j h j   f Y (y)f H 0 ,...,H J-1 (h).
By resorting to an estimation of (y, h 0 , . . . , h J-1 ) in the sense of the MAP, the problem can thus be formulated under the following variational form:

minimize y∈R N t , h∈H ψ(z -y - J-1 X j=0 R j h j ) + ϕ(F y) + ρ(h). (4.4)

Problem formulation

For simplicity, we propose to adopt uniform priors for Y and (H 0 , . . . , H J-1 ) by choosing for ϕ and ρ indicator functions of closed convex sets. The associated MAP estimation problem then reduces to the following constrained minimization problem: minimize

F y∈D, h∈C Ψ y h (4.5)
where the data fidelity term is defined by function Ψ :

y h 7 → ψ z -[I R] y h
, and the a priori information available on the filters and the primary are expressed through hard constraints modeled by nonempty closed convex sets C and D. One of the potential advantages of such a constrained formulation is that it facilitates the choice of the related parameters with respect to the regularized approach which was investigated in some of our previous works [START_REF] Gragnaniello | A convex variational approach for multiple removal in seismic data[END_REF][START_REF] Pham | Seismic multiple removal with a Primal-Dual proximal algorithm[END_REF] (this point will be detailed later on). We will now turn our attention to the choice of Ψ, C and D. Function Ψ accounts for the noise statistics. In this work, the noise is assumed to be additive, zero-mean, white and Gaussian. This leads to the quadratic form ψ = k . k 2 .

A priori information on adaptive filter

The filters are assumed to be time-varying. Naturally, the hypothesis is difficult to verify in practice. However, in order to ensure smooth variations along time, we propose to introduce constraint sets

C 1 = n h ∈ R Q | ∀(j, p), ∀n t ∈ 0, . . . , N t 2 -1 |h (2nt+1) j (p) -h (2nt) j (p)| ≤ ε j,p o (4.6) C 2 = n h ∈ R Q | ∀(j, p), ∀n t ∈ 1, . . . , N t -1 2 |h (2nt) j (p) -h (2nt-1) j (p)| ≤ ε j,p o . (4.7) 
These constraints prevent strong variations of corresponding coefficients of the impulse response, estimated at two consecutive times. The bounds ε j,p ∈ [0, +∞[ may depend on the shape of the expected filter. For example, its dependence on the coefficient index p may enable a larger (resp. smaller) difference for filter coefficients taking larger (resp. smaller) values. Moreover, some additional a priori information can be added directly on the vector of filter coefficients h. This amounts to defining a new convex set C 3 as a lower level set of some lower-semicontinuous convex functions, by setting

C 3 = h ∈ R Q | ∀j ∈ {0, 1, .
. . , J -1}, e ρ j (h j ) ≤ λ j where for every j ∈ {0, 1, . . . , J -1}, λ j ∈ ]0, +∞[, e ρ j : R NtP j → [0, +∞[ may correspond to simple norms such as ℓ 1 or ℓ 2norms but also to more sophisticated ones such as a mixed ℓ 1,2 -norm [START_REF] Kowalski | Sparse regression using mixed norms[END_REF]. Hence, the convex set C is defined as C = C 1 ∩C 2 ∩C 3 . From a computational standpoint (see Section 4.4), it is more efficient to split C into three subsets as described above.

A priori information on primary signal

As mentioned in Section 4.3.1, we assume that the primary signal is sparsely described through an analysis frame operator F ∈ R K×Nt [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF], which may ease its processing, by increasing the data-domain discrepancy between primaries and multiples. The associated constraint can be split by defining a partition of {1, . . . , K} denoted by {K l | l ∈ {1, . . . , L}}. For example, for wavelet frames, L may correspond to the number of subbands and K l is the l-th subband. Then, one can choose

D = D 1 × . . . × D L with D l = {(x k ) k∈K l | P k∈K l e ϕ l (x k ) ≤ β l },
where, for every l ∈ {1, . . . , L}, β l ∈ ]0, +∞[, and e ϕ l : R → [0, +∞[ is a lower-semicontinuous convex function.

Primal-Dual proximal algorithm

Our objective is to provide a numerical solution to Problem (4.5). This amounts to minimizing function Ψ with respect to y and h, the latter variables being constrained to belong to the constraint sets D and C, respectively. These constraints are expressed through linear operators, such as a wavelet frame analysis operator F . For this reason, primal-dual algorithms (Briceños [START_REF] Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF], such as the Monotone+Lipschitz Forward-Backward-Forward (M+LFBF) algorithm [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], constitute appropriate choices since they avoid some large-size matrix inversions inherent to other schemes such as the ones proposed in [START_REF] Afonso | An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF]. As mentioned in Section 4.3.3.1, Ψ is a quadratic function and its gradient is thus Lipschitzian, which permits it to be handled by the M+LFBF algorithm. In order to deal with the constraints, projections onto the closed convex sets (C m ) 1≤m≤3 and D are performed (these projections are described in more details in the next section).

Gradient and projection computation

From the assumption of additive zero-mean Gaussian noise, we deduce that Ψ is differentiable with a µ-Lipschitzian gradient, i.e. (∀

y h ∈ R Nt+Q )(∀ y ′ h ′ ∈ R Nt+Q ): ∇Ψ y h -∇Ψ y ′ h ′ ≤ µ y h - y ′ h ′ and ∇Ψ = 2[I R] ⊤ ([I R] • -z).
The gradient of Ψ is thus µ-Lipschitzian with

µ = 2 |||[I R]||| 2 (4.8)
where |||•||| denotes the spectral norm. Note that the proposed method could be applied to other functions ψ than quadratic ones, provided that they are Lipschitz differentiable.

We now turn our attention to the constraint sets C and D. C models the constraints we set on the filters h, which are split into three terms (see Section 4.3.3). We thus have to project onto each set C m with m ∈ {1, 2, 3}. The projections onto the two first constraint sets C 1 and C 2 -impose smooth variations along time of the corresponding tap coefficients.

More precisely, similarly to Chapter 3, the projection onto C 1 (the projection onto C 2 yielding similar expressions) is calculated as follows: let h ∈ R Q and let g 1 = Π C 1 (h); then for every j ∈ {0, . . . , J -1}, p ∈ {p ′ , . . . , p ′ + P -1} and n t ∈ 0, . . . , Nt

2 -1 , 1. if |h (2nt+1) j (p) -h (2nt) j (p)| < ε j,p , then g (2nt) j,1 (p) = h (2nt) j (p), g (2nt+1) j,1 (p) = h (2nt+1) j (p); 2. if h (2nt+1) j (p) -h (2nt) j (p) > ε j,p , then g (2nt) j,1 (p) = h (2nt+1) j (p) + h (2nt) j (p) 2 - ε j,p 2 
g (2nt+1) j,1 (p) = h (2nt+1) j (p) + h (2nt) j (p) 2 + ε j,p 2 ; 3. if h (2nt+1) j (p) -h (2nt) j (p) < -ε j,p , then g (2nt) j,1 (p) = h (2nt+1) j (p) + h (2nt) j (p) 2 + ε j,p 2 
g (2nt+1) j,1 (p) = h (2nt+1) j (p) + h (2nt) j (p) 2 - ε j,p 2 . 
C 3 introduces a priori information on the filter vector h through the lower-semicontinuous convex functions e ρ j . In this framework, we consider three possible choices for e ρ j :

1. ℓ 1 -norm:

e ρ j (h j ) = kh j k ℓ 1 = Nt-1 X nt=0 p ′ +P j -1 X p=p ′ |h (nt) j (p)|.
This choice requires to perform projections onto an ℓ 1 -ball. This can be achieved by using the iterative procedure proposed in (van den [START_REF] Van Den Berg | Probing the Pareto frontier for basis pursuit solutions[END_REF], which yields the projection in a finite number of iterations.

2. squared ℓ 2 -norm:

e ρ j (h j ) = kh j k 2 ℓ 2 = Nt-1 X nt=0 p ′ +P j -1 X p=p ′ |h (nt) j (p)| 2 .
In this case, the projection is straightforward.

3. mixed ℓ 1,2 -norm:

e ρ j (h j ) = kh j k ℓ 1,2 = Nt-1 X nt=0   p ′ +P j -1 X p=p ′ |h (nt) j (p)| 2   1/2
.

Then, we can use an algorithm similar to the one proposed in (van den [START_REF] Van Den Berg | Probing the Pareto frontier for basis pursuit solutions[END_REF] computing the projection onto an ℓ 1,2 -ball.

nuclear norm

k • k * : e ρ j (h j ) = kL j h j k * .
Following the work in [START_REF] Grave | Trace Lasso: a trace norm regularization for correlated designs[END_REF] on sparse regression, a good choice for L j may be:

L j : R NtP j → R Nt×NtP j h j 7 → R j Diag(h j ).
First, let have a look on the adjoint operator L * j of L j . For every x ∈ R Nt×NtP j , y ∈ R NtP j , we have

hL * j x, yi = hx, L j yi = Tr x(L j y) ⊤ = Tr x Diag(y)R ⊤ j = Tr R ⊤ j x Diag(y) .
For every l ∈ {1, 2, . . . , N t P j } and for every k ∈ {1, 2, . . . , N t P j }, we have

� R ⊤ j x Diag(y) | {z } D l,k = NtP j X m=1 (R ⊤ j x) l,m D m,k = (R ⊤ j x) l,k y k ⇒ Tr R ⊤ j x Diag(y) = NtP j X k=1 (R ⊤ j x) k,k y k = hdiag(R ⊤ j x), yi.
We finally obtain L * j x = diag(R ⊤ j x). We now compute the projection Π C 3 onto a "nuclear-ball". Thus, we define C 3 = C 3,0 × . . . × C 3,J-1 , where, for every j ∈ {0, 1, . . . , J -1},

C 3,j = X j ∈ R Nt×NtP j | kX j k * ≤ λ j .
By definition, we have:

Π C 3,j (X j ) = ( argmin Y j ∈R N t ×N t P j kY j -X j k subject to kY j k * ≤ λ j ) . (4.9)
Ignoring the case kX j k * ≤ λ j which has the trivial solution Y j = X j , there exists for each λ j a χ such that minimize

Y j ∈R N t ×N t P j 1 2 kY j -X j k 2 + χkY j k * (4.10)
has the same solution as (4.9). The solution of this penalized formulation is prox χk•k * (X j ).

We now turn our attention to the proximity operator of the nuclear norm. The nuclear norm is also known as the trace norm. The nuclear norm of a matrix X j ∈ R Nt×NtP j of rank T j is defined as the sum of its singular values (υ j,i ) 1≤i≤T j indexed in a decreasing order

kX j k * = T j X i=1 υ j,i (4.11) 
where the singular values υ j,i are positive. The singular value thresholding operator is the proximity operator associated with the nuclear norm [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. More precisely, the proximity operator of the nuclear norm at

X j ∈ R Nt×NtP j is prox χ -1 k•k * (X j ) = U j D χ -1 (Σ j )V ⊤ j
for every χ ∈ ]0, +∞ [ (4.12) where D χ -1 (Σ j ) = Diag � ({υ j,iχ -1 } + ) 1≤i≤T j and U j , V j are respectively N t ×T j and N t P j ×T j matrices with orthonormal columns i.e. U ⊤ j U j = I T j and V ⊤ j V j = I T j , resulting from the singular value decomposition (SVD) of X j .

Finally, we can find the value of χ that makes (4.9) and (4.10) equivalent, so that both can be solved using the proximity operator of χk • k * at X j . This comes down to finding χ such that

k prox χ -1 k•k * (X j )k * = λ j i.e. kU j D χ -1 (Σ j )V ⊤ j k * = λ j ⇔ T j X i=1 {υ j,i -χ -1 } + = λ j . (4.13)
Without loss of generality we can define υ j,T j +1 = 0 and the function φ(•) = P T j i=1 {υ j,i -•} + which is continuous and monotonically decreasing from kX j k * to 0 on [0, υ j,i ]. Therefore, there exists an integer i 0 such that φ(υ j,i 0 +1 ) ≤ χ -1 < φ(υ j,i 0 ). (4.14) This implies that there exists one solution χ of (4.13) and χ -1 = λ j -� i 0 i=1 υ j,i i 0

.

We are now interested in the particular case when X j = R j Diag(h j ) ∈ R Nt×NtP j .

To compute the proximity operator of the nuclear norm at X j , we need to determine matrices U j , V j and D χ -1 (Σ j ) as stated in (4.12). In this case, X j is a block diagonal matrix having the same form as matrix R j . More precisely, X j can be written as follows:

X j =       X (0) j 0 . . . 0 0 X (1) j . . . 0 . . . 0 . . . . . . 0 0 • • • X (Nt-1) j      
where, for every n t ∈ {0, . . . , N t -1}, X

(nt) j are row vectors of length P j . We have

X j X ⊤ j = Diag h kX (0) j k 2 , kX (1) 
j k 2 , . . . , kX

(Nt-1) j k 2 i .
On the other hand we have

X j X ⊤ j = U j (Σ j ) 2 U ⊤ j . (4.15) 
Let define the set N T j as

N T j = n n t ∈ {0 , . . . , N t -1} | X (nt) j 6 = 0 0 P j o
where 0 0 P j is a row vector of zeros of dimension P j . Without loss of generality, let assume that the matrix X j is ordered such that N T j = {0, 1, . . . , T j -1}. Consequently, we have

Σ j = Diag h kX (nt) j k i nt∈N T j ! ∈ R T j ×T j (4.16)
and

U j =             1 0 . . . 0 0 1 . . . 0 . . . 0 . . . . . . 0 0 . . . 1 0 0 . . . 0 . . . . . . . . . . . . 0 0 . . . 0             ∈ R N j ×T j . Finally, V j = X ⊤ j U j Σ -1 j .
Note that, when we define L j : R NtP j → R Nt×NtP j : h j 7 → e R j Diag(h j ) where

e R j =      1 1 P j 0 . . . 0 0 1 1 P j . . . 0 . . . . . . . . . . . . 0 0 . . . 1 1 P j      ,
and 1 1 P j is a row vector of ones of dimension P j , the projection onto the "nuclearball" is equivalent to the projection onto the mixed ℓ 1,2 -norm.

Finally, as mentioned earlier in Section 4.3.3, the prior information on the primary y is expressed through the frame analysis operator F by splitting constraints into individual subband constraints. In order to promote sparsity of the coefficients, the potential function employed for the l-th subband with l ∈ {1, . . . , L} can be chosen equal to e ϕ l = | • |. For computing the resulting projection Π D l onto an ℓ 1 -ball, we can again employ the iterative procedure proposed in (van den [START_REF] Van Den Berg | Probing the Pareto frontier for basis pursuit solutions[END_REF].

M+LFBF algorithm

The primal-dual approach chosen to solve the minimization problem (4.5) is detailed in Algorithm 5.5.1. It alternates computations of the gradient of Ψ, and of the projections onto (C m ) 1≤m≤3 and (D l ) 1≤l≤L .

The choice of the step size is crucial for the convergence speed and it has to be selected carefully. First, the norm of each linear operator involved in the criterion or at least an upper bound of it must be available. In our case, we have:

|||[I R]||| ≤ q 1 + |||R 0 ||| 2 + . . . + |||R J-1 ||| 2 (4.17)
where |||R j ||| = max nt∈{0,...,Nt-1} kR (nt) j k for every j ∈ {0, . . . , J -1}. Secondly, the step size γ [i] at each iteration i must be chosen so as to satisfy the following rule: let µ be the Lipschitz constant defined in (4.8), let

β = µ + q |||F ||| 2 + 3 and let ǫ ∈]0, 1 β+1 [, then γ [i] ∈ [ǫ, 1-ǫ β ].
|||F ||| 2 can be easily evaluated. Indeed, in the case of a tight frame, it is equal to the frame constant and, otherwise, it can be computed by an iterative approach (Chaâri et al., 2009, Algorithm 4). It is important to emphasize that the convergence of this algorithm to an optimal solution to Problem (4.5) is guaranteed by (Combettes and Pesquet, 2012, Theorem 4.2). In practice, the higher the norms of F and (R j ) 0≤j≤J-1 , the slower the convergence of the algorithm. In order to circumvent this difficulty, one can resort to a preconditioned version of the algorithm [START_REF] Repetti | A penalized weighted least squares approach for restoring data corrupted with signal-dependent noise[END_REF]. However, this was not found to be useful in our experiments.

Algorithm 4 Primal-dual algo. M+LFBF to solve (4.5).

Let γ

[i] ∈ [ǫ, 1-ǫ β ] Let y [0] h [0] ∈ R Nt+Q , v [0] ∈ R K , u [0] m m∈{1,2,3} ∈ (R Q ) 3 s [0] 2 ∈ R K , w [0] 1 ∈ R K for i = 0, 1, . . . do Gradient computation " s [i] 1 t [i] 1 # = y [i] h [i] -γ [i] ∇Ψ y [i] h [i] + F * v [i] P 3 m=1 u [i] m Projection computation x [i] 1 = F y [i] for l = 1 : L do s [i] 2 (k) k∈K l = v [i] (k) + γ [i] x [i] 1 (k) k∈K l w [i] 1 (k) k∈K l = s [i] 2 (k) k∈K l -γ [i] Π D l � s [i] 2 (k) � k∈K l γ [i]
! end for for m = 1 : 3 do t

[i] 2,m = u [i] m + γ [i] h [i] w [i] 2,m = t [i] 2,m -γ [i] Π Cm t [i] 2,m γ [i] end for Averaging x [i] 2 = F s [i] 1 for l = 1 : L do q [i] 1 (k) k∈K l = w [i] 1 (k) + γ [i] x [i] 2 (k) k∈K l � v [i+1] (k) k∈K l = v [i] (k) -s [i] 2 (k) + q [i] 1 (k) k∈K l end for for m = 1 : 3 do q [i] 2,m = w [i] 2,m + γ [i] t [i] 1 u [i+1] m = u [i] m -t [i] 2,m + q [i] 2,m end for Update y [i+1] h [i+1] = y [i] h [i] -γ [i] ∇Ψ h s [i] 1 t [i] 1 i + F * w [i] 1 � 3 m=1 w [i] 2,m
end for 4.5 Results

Evaluation methodology

We consider either synthetic or real data for our evaluations. The first ones are evaluated both qualitatively and quantitatively, and the choice for the sparsity norm for the wavelet coefficients is discussed. Realistic synthetic data are obtained from a modeled seismic trace with primaries y. Two multiple templates (J = 2) r 0 and r 1 are independently convolved with time-varying filters and summed up to yield a known, realistic, synthetic secondary reflection signal s. The primaries are then corrupted by s and an additive Gaussian noise. The j-th time-varying filter is built upon averaging filters with length P j , such that, ∀p ∈ {p ′ , . . . , p ′ + P j -1}, h

(nt) j

(p) = η (nt) j /P j (cf. Eq. ( 4.2)). The timevarying filters are thus unambiguously defined, at a given time n t , by the constants η (nt) j . Uniform filters are chosen for their poor frequency selectivity behavior and notches in the frequency domain. Such artifacts for instance happen in marine seismic acquisition.

More specifically, we used a standard practice in geophysics. The simulated data is based on the simulated data used in [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. A model of earth layer is built, a series of spikes that mimic a reflectivity sequence [START_REF] Ricker | Further developments in the wavelet theory of seismogram structure[END_REF], and wave propagation is emulated by propagation of so-called seismic wavelets, here a Ricker wavelet (a shifted second derivative of a Gaussian, [START_REF] Ryan | Butterwork -a choice of wavelets[END_REF]). Such codes are effective to simulate the seismic sensor response, by allowing only primary reflections, or both primary and multiple reflections. By varying the wave celerity in medium, this allows us to emulate different types of multiples. From this modeling, we extract two slightly different and clean multiple signals. The medium is chosen so that the multiples partly overlap the primaries. We now forget about the model, and consider the two modeled multiples as templates.

To test the proposed methodology, we now build two families of time-varying filters, as explained in this chapter. At each time index, the filters have uniform coefficients. These constants follow laws, varying along the time index, given in Figure 4.2 -p. 65. The time-varying filters associated with the first templates have higher amplitude at the beginning, while the second have higher amplitude at the end. In the middle, both filters possess the same amplitude.

The simulated multiple is composed of the sum of the two templates, each weighted by one of the two time-varying filters. Thus we obtain a synthetic trace with isolated primaries, and primaries mixed with multiple reflexions. Such simple models are not fully representative of seismic reality, as for phantoms in image processing. They nevertheless permit to test, calibrate and evaluate algorithms, as the ground truth is known. So it is important to note that the templates are generated by seismic wave propagation, and not chosen in an ad-hoc manner.

Qualitative results on synthetic data

We choose here two filter families with lengths P 0 = 10 and P 1 = 14. The two filters evolve complementally in time, emulating a bi-modal multiple mixture at two different depths. They are combined with the two templates in a multiple signal depicted at the fifth row from the top of . Data and template were designed in order to mimic the time and frequency contents of seismic signals. This figure also displays the other signals of interest, known and unknown, when the noise standard deviation is σ = 0.08. We aim at recovering weak primary signals, potentially hidden under both multiple and random perturbations, from the observed signal z at the last row. We focus on the rightmost part of the plots, between indices 350 and 700. The primary events we are interested in are located in Figure 4.3 -p. 73 (first signal on top) between indices 400-500 and 540-600, respectively. These primary events are mixed with multiples and random noise. A close-up on indices 350-700 is provided in Figure 4.5 -p. 75. The first interesting primary event (400-500) is mainly affected by the random noise component. It serves as a witness for the quality of signal/random noise separation, as it is relatively insulated. The second one is disturbed by both noise and a multiple signal, relatively higher in amplitude than the first primary event. Consequently, its recovery severely probes the efficiency of the proposed algorithm.

For the proposed method, we choose the following initial settings. An undecimated wavelet frame transform with 8-length Symlet filters is performed on 4 resolution levels (L = 5) . The loss functions ψ and ( e ϕ l ) 1≤l≤L in (4.5) are chosen as ψ = k . k 2 and e ϕ l = | . |. The latter is based on a selection of power laws (namely, 1, 4/3, 3/2, 2, 3, and 4) for which closed-form proximal operators exist (Combettes andPesquet, 2007b, p. 1356). The best matching power for the chosen wavelet tight frame yields the taxicab metric or ℓ 1 -norm, as illustrated in In practice, alternative cruder filtering or restoration algorithms indeed exist, with the same purpose. They are often less involved and accurate, and potentially faster. They are run for instance on a small subset of representative real data. Thus, we obtain a first set of solutions, here separating primaries and multiples. Approximate constraints, required in the proposed method, are then computed (in a relatively fast manner) on approximate versions of unknown clean signals. Such a procedure yields coarse bound estimates, upon which the proposed algorithm is run. Although approximate, they are expected to be easier to estimate than regularization hyper-parameters. We hereafter use a fast first-pass separation of signals using [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. Finally, e ρ is chosen as the ℓ 1,2 -norm.

Figure 4.5 -p. 75 provides close-ups of delimited areas with weak primaries. With a low noise level (Figure 4.5-top -p. 75), the multiple echo at indices 500 to 550 is faithfully removed, as well as the random noise. The first strong primary (indices 400-450) is well recovered. The second one has its first four periods matched correctly. More interesting is the stronger noise condition in Figure 4.5-bottom -p. 75. The multiple signal is still correctly removed and the incoherent noise is drastically reduced. Although with a noticeable amplitude distortion and some ringing effect, both primaries are visually recovered. As stated above, the ability to restore -albeit imperfectly -spurs of strongly hidden primaries (cf. , between indices 540 and 600) is of paramount interest for seismic exploration in greater depths.

Quantitative results on synthetic data

These first qualitative simulation results are complemented with more extensive tests on different settings of wavelet choices, levels, redundancy and adaptive filter norms, to limit the risk of unique parameter set bias effects. We test three different dyadic wavelets (Haar, Daubechies and Symlet with filter length 8), either in orthogonal basis or shift-invariant tight frame mode, with 3 or 4 decomposition levels, consistent with seismic data bandwidth. These data decomposition settings are tested again for four noise levels and three different choices of concentration metrics for the adaptive filters. For each choice in this parameter set, 100 different noisy realizations are processed. Each of these experiments is represented by its empirical average and standard deviation. As we have seen before, the restoration of primaries or the cancellation of multiples could be jointly pursued. We thus report in Table 4.1 -p. 68 and Table 4.2 -p. 69 the average SNR, for the clean modeled primary and multiple, with respect to their restored counterpart, respectively. Column headers b and f denote basis and frame results, whose averages are loosely denoted by µ b and µ f . To improve reading, numbers in bold (for Table 4 4.5 -p. 72 as a "significance index" of the outcome.

We first exemplify results in the leftmost part of Table 4.1 -p. 68 (Haar wavelet), for the first two rows. For the ℓ 1 -norm, we observe a primary restoration improvement of 2.2 dB (21.3 -19.1 dB, with standard deviations of 0.16 dB for frames and 0.26 dB for bases) for 3 wavelet levels. For 4 levels, we obtain 1.2 dB with standard deviations of 0.18 dB and 0.22 dB. Intuitively, the SNR improvement appears to be significant, relatively to the dispersion. We shall detail this aspect later on. Yet, such a sensible variation of about 1 dB, with only one additional wavelet decomposition level, further justifies the need for the given multi-parameter analysis.

In most cases, for frames, the best results are obtained with 4 levels. When this is not the case, the difference in performance generally lies within the dispersion. This assertion cannot be stated with bases, possibly due to shift variance effects. The framebased SNR for primaries is always greater, or equal to that of the basis one, putting statistical significance aside for the moment. Namely, looking at summary statistics, the minimum, median, mean and maximum improvements for frames over bases are 0.5 dB, 1.8 dB, 2 dB and 4.2 dB respectively. Looking at numbers in bold, we see that a frame with the ℓ 2 loss function is the clear winner in absolute SNR, for every wavelet choice and noise level.

The results for multiple estimation, given in Table 4.2 -p. 69, are more contrasted. Frames and bases yield more similar performance, especially for high Gaussian noise levels. The best overall results (bold) are given by ℓ 1,2 (high noise) and ℓ 2 -norms (low noise).

Average differences allow the observation of global trends. In practice, consistent results, taking into account SNR dispersion, are more important. Assuming that the denoised realizations follow a Gaussian distribution, we now study the difference Gaussian pdf between frame and basis results. Its mean is 4.5 -p. 72 reports the normalized difference significance index t f /b = µ f /b /σ f /b , reminiscent of the Student's test. It is associated with the probability π f /b that, in an outcome of the realizations, the basis SNR is superior to the frame SNR. show the standard deviations for SNRs from estimations of y in Table 4.1 -p. 68 and of s in Table 4.2 -p. 69, respectively. The Haar wavelet, ℓ 1 -norm, primary restoration improvement of µ f /b = 2.2 dB yields σ f /b = 0.30. Hence, t f /b = 7.2. The interpretation of this significance is illustrated with the abacus in Figure 4.6 -p. 76, with π f /b associated to the shaded area. We deem the difference in distribution between bases and frames significant only if |t f /b | > 1. When significant, the index is emphasized in italics or bold, the latter denoting the most significant among the four concentration measures. Since the minimum, median, mean and maximum indices t f /b are 1.3, 3.4, 3.5 and 7.7, we consider the improvement of frames over bases significant for all the tested parameters for primaries (Table 4.5 -p. 72-left). Interestingly, whereas the ℓ 2 -norm gives the best average gain, the ℓ 1,2 and the ℓ 1 -norms yield sensibly more significance at lower noises. Choosing the ℓ 1,2 or ℓ 1 -norm is consequently more interesting in practice, as we desire more consistent results under unknown noise variations in observed signals. At higher noise levels, the normalized difference index t f /b (between values 3 and 4) is very close for all parameters and wavelets. Thus, the significance of the different filter concentration measures is not fundamentally different. Based on the previous observations, the choice of ℓ 1,2 or ℓ 1 -norms would yield more consistent results in all cases.

µ f /b = µ f -µ b and its variance σ 2 f /b is σ 2 b + σ 2 f . Table
The rightmost and lower part of Table 4.5 -p. 72 concerns the restoration of multiples. Although of weaker importance in practice, we notice that most t f /b values vary between -1 and 1. This indicates that bases and frames perform similarly, since there is no significant performance difference. This phenomenon can be explained by the fact that frames or bases, through the wavelet transform sparsity prior, impact primaries rather than multiples. In few cases though, we observe, at low noise levels, some significance in frame outcomes over basis results, obtained by the ℓ 1,2 and ℓ 1 -norms again.

Globally, the restoration of both primaries and multiples benefits from the choice of a Daubechies or Symlet wavelet frame. The best performance -in terms of statistical significance -is offered by sparsity-promoting ℓ 1 and ℓ 

Comparative evaluation: synthetic data

In addition to the above objective and subjective results, we perform a comparative evaluation with the empirical algorithm proposed in [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. It is based on adaptive filtering on sliding windows in a complex continuous wavelet domain. The chosen complex Morlet wavelet is very efficient at concentrating seismic data energy. Onetap Wiener-like (unary) complex filters are adaptively estimated in overlapping windows taken in the complex scalogram, i.e. the complex-valued, discretized, continuous wavelet transform. This algorithm was successfully tested against industry standards. It is quantitatively faster, but it does not permit the introduction of prior knowledge (Salaun seismic data, constructed similarly to the previous 1D traces in Section VI-B, with a high noise level (σ = 0.08). Vertical traces are stacked laterally to form a 2D image. From left to right, the synthetic traces drift away from the seismic source. The bended hyperbolas correspond to primaries. The flatter one, below, mimics a multiple event. Here, P 0 = 6, P 1 = 6, and constraints C 1 and C 2 are chosen according to ( 14) and ( 15), where ε 1,p = 0.1 and ε 2,p = 0.1 for every p. Apparently, better primary preservation is obtained with the proposed method, for a very simple synthetic data set. This phenomenon is observed at the crossing between primaries and multiples. The proposed method also effectively gets rid of more incoherent noise.

Comparative evaluation: real data

The previous simulated example is a little bit simplistic. We finally compare our algorithm with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] on a portion of a real seismic data set. Recorded and multiple template data belong to the same marine seismic survey processed in [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. The recorded seismic data is displayed in Figure 4.8a -p. 78. The main objective is to uncover a potential primary, masked by strong multiple events that mostly contribute to the observed total seismic signal energy. The primary appears partially as a wiggling, horizontal stripes in the bottom part of the figure, on the right side. Geologically speaking, it should be re-linked with the left side of the picture, to one of the dimmed sloping stripes. By looking at differences between the recorded data and the multiple template in Figure 4.8b -p. 78, the trace of the flat primary may appear more obvious. Templates are obtained by different involved seismic modeling techniques, whose details [START_REF] Pica | 3D surface-related multiple modeling, principles and results[END_REF] are beyond the scope of the work. The core of adaptive multiple removal techniques in seismic data boils down to locally adapting the patterns in Figure 4.8b -p. 78 in location and amplitude to the data in Figure 4.8a -p. 78. Once adapted, the approximate patterns may be subtracted from the observed signal, with the hope of unveiling previously hidden signals.

The efficiency of a seismic data processing algorithm is difficult to assess, due to the absence of ground truth. One of the challenges of present seismic data processing resides in the ability to identify deeper target. To this aim, either noisier data sets or broadband seismic acquisitions are being address by geophysical signal processing. Figure 4.8-middle -p. 78 thus compares the results obtained with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] (c) and the proposed algorithm (d). Although the random noise is apparently highly heteroskedastic, both methods are able to successfully retrieve the weak primary below the multiple level, especially of the left side of the figure. The method in (Ventosa et The increased robustness to noisier seismic data is estimated with a wide-band Gaussian noise, added to the seismic field data. The outcome is illustrated in Figure 4.8bottom -p. 78. While the primary can still be tracked with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] in Figure 4.8e -p. 78, it dims inside the ambient noise on the left-most side. The proposed template-based multiple filtering is more robust to noise, reflecting its practical potential. Naturally, the anisotropic, oriented nature of seismic data, and the directional diversity of primaries and multiples, suggests an extension to oriented frames in two dimensions as presented in the newt chapter.

Conclusion

We have proposed a generic methodology to impose sparsity and regularity properties through constrained adaptive filtering in a transformed domain. This method exploits side information from approximate disturbance templates. The employed proximal framework permits different strategies for sparse modeling, additive noise removal, and adaptive filter design under appropriate regularity and amplitude coefficient concentration constraints. The proposed approach is evaluated on seismic data using different orthogonal wavelet bases and tight frames, and various sparsity measures for wavelet coefficients. The standard sparsity-prone ℓ 1 -norm is usefully complemented by alternative concentration measures, such as ℓ 2 or ℓ 1,2 -norms, which seem better suited to adaptive filter design. Its performance is interesting for instance in recovering weak signals buried under both strong random and structured noise. Provided appropriate templates are obtained, this structured-pattern filtering algorithm could be useful in other application areas, e.g. acoustic echo-cancellation in sound and speech, non-destructive testing where transmitted waves may rebound at material interfaces (e.g. ultrasounds), or pattern matching in images. In the next chapter, two-dimensional directional multiscale approaches [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] are considered and may provide sparser representations for seismic data. 0 200 400 600 800 1000 As mentioned earlier, seismic data consist of a collection of seismic traces. These collections may appear in different dimensions. 2D seismic images would illustrate a single slice of the subsurface (see Figure 5.1 -p. 80 -image from [START_REF] Hill | A seismic oil and gas primer[END_REF]), 3D seismic a volume of the earth and 4D seismic depicts a 3D volume at different times in the life of an oil and/or gas field. In previous chapters, we explored the problem for 1D seismic data with wavelet-frame-based adaptive filtering. Our motivation was a thorough assessment of transforms and optimization tools. However, it is often considered that addressing such data in an higher dimension is often beneficial. The main drive relates to the adjunction of additional dimensions, for instance spatial. It arises from the nature of the acquisition, where the first dimension reflects time (wave propagation), while other dimensions are governed by space (the sensors's location in an array of sensors) or time.

ȳ(n) ŷ(n) r (n) 1 r (n) 2 s(n) ŝ(n) z (n)
Generally, geological structures present a lateral continuity that reflects in wave propagation. It turns into an apparent anisotropy in seismic data. The aim of this chapter is to address an extension of our previous approach in the second spatial dimension.

Introduction

Most of the seismic methods are implemented on 2D, 3D or 4D data. However several seismic data methods are designed in 1D (in time) [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF][START_REF] Pham | A primal-dual proximal algorithm for sparse template-based adaptive filtering: Application to seismic multiple removal[END_REF] or space, sometimes in a separable fashion. In the latter case, we only considered the depth without taking into account additional structures. Actually, a seismic sensor yields an acoustic signal similar to sounds or ultrasounds. In contrast, seismic images do not share all the characteristics of standard or natural images. More precisely, all pixels of standard images are taken at a same time, thus the image points are related to an homogeneous space location. A common practice in image processing is to use separable transforms, nearly separable but directional ones [START_REF] Chaux | Image analysis using a dual-tree Mband wavelet transform[END_REF], or more anisotropic representations [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] such as curvelets, shearlets or with finer frequency decomposition as in [START_REF] Aujol | Wavelet-based level set evolution for classification of textured images[END_REF]. However, the distinct nature of rows and columns in seismic data suggests the use of different transforms along time and space. This chapter focuses on the use of the hybrid dual-tree M -band wavelet. We first review some works in multiple removal for 2D seismic data.

In [START_REF] Barnes | Theory of 2-D complex seismic trace analysis[END_REF], the author observed that, the processing in two-dimensional frequency and bandwidth is appropriate for the migrated data (the process by which seismic events are geometrically re-located in either space or time to the subsurface location the event occurred in rather than the location where it was recorded at the surface, thereby creating a more accurate image of the subsurface (Sheriff, 1989, Chapter 21)) by using the 2D Hilbert transform and 2D complex trace attributes. For unmigrated data (opposite of migrated data), one-dimensional frequency and bandwidth are appropriate. Multiples can be attenuated by filtering in the fk [START_REF] Wu | A case study of fk demultiple on 2D offshore seismic data[END_REF] or τp domain [START_REF] Yilmaz | Seismic data analysis: processing, inversion, and interpretation of seismic data[END_REF]. The 2D Hilbert transform has also been proposed in [START_REF] Karsli | Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement[END_REF]. Separating waves in general or multiple removal in particular is related to the wave propagation, [START_REF] Andersson | Extended structure tensors for multiple directionality estimation[END_REF]) extended a structure tensor using a one-way (in time) wave equation with a constant velocity as a tool for estimating a two-dimensional field. However it can be applied to generic images not related to wave propagation. Indeed, seismic images possess geometric regularity that advises a 2D approach for improved performance. As a result, multiscale geometric transforms such as curvelet frames [START_REF] Herrmann | Curvelet imaging and processing: adaptive multiple elimination[END_REF][START_REF] Neelamani | Adaptive subtraction using complex-valued curvelet transforms[END_REF][START_REF] Ma | The curvelet transform -a review of recent applications[END_REF][START_REF] Donno | Curvelet-based multiple prediction[END_REF] have been employed in geophysical processing.

As mentioned above, adaptive multiple removal is often performed in two or three dimensional seismic data, via standard ℓ 2 or more robust ℓ 1 -norms, with local multidimensional matching FIR filters. The multidimensionality of the filters is thought to ensure lateral continuity in seismic events. A quite opposite direction was taken in [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], with an emphasis on a frequency-and shift-insensitive complex wavelet transform frame, associated with simple unary (one-tap) complex filters, in 1D only. Counter-intuitively, it was able to perform similarly to more classical 2D matching techniques. In other words, a careful partnership between sparse representations and adaptive filtering was deemed beneficial in 1D, with respect to traditional 2D methods. An interpretation of this observation is that a more accurate spectral processing in 1D may yield perceptual continuity often credited to 2D methods. Indeed, 2D matching filters resemble directional filters [START_REF] Donno | Improving multiple removal using least-squares dip filters and independent component analysis[END_REF]. To account for additional properties, including statistical distributions for primaries [START_REF] Costagliola | Matched filtering with orthogonal constraints[END_REF] and slow filter variations (Le [START_REF] Touzé | Matched representations and filters for guided waves[END_REF], (Pham et al., 2014b,a) pursued seismic data adaptive filtering with 1D wavelet frames.

The remainder of the chapter is organized as follows: Section 5.2 presents the considered data modelization. Section 5.3 proposes the approach to solve the problem. Then, the implemented algorithm is detailed in Section 5.4. Simulation results are drawn in Section 5.5 for both simulated and real field seismic data. We then demonstrate the effectiveness of our proposed 2D method through the comparisons with the previous 1D method [START_REF] Pham | A primal-dual proximal algorithm for sparse template-based adaptive filtering: Application to seismic multiple removal[END_REF] and the industrially-validated method [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. This method demonstrated good performance on field data with [START_REF] Salaun | Adaptive subtractive methods for low frequency multiples on broadband data: A case study offshore West Africa (check subtractive)[END_REF]. Finally, Section 5.6 concludes the chapter.

Model description

This section aims at describing the model accounting for multiple reflections in 2D seismic data. As mentioned above, a line of seismic sensors delivers a two-dimensional image. Each column is formed by a 1D temporal signal acquired by one sensor:

z (n) = s (n) + y (n) + b (n) (5.1)
with n = (n t , n o ), where 5.2-left -p. 80) is composed of the primary (Figure 5.2-rightp. 80) y = (y (n) ) n∈N (2D data of interest, unknown), multiples (Figure 5.2-middle -p. 80) (s (n) ) n∈N (sum of undesired reflected data) and additive noise (b (n) ) n∈N . One assumes that genuine multiples (s (n) ) n∈N can be estimated as a local, weighted sum of template candidates:

n t ∈ N t △ = {0, . . . , N t -1} is the time index, n o ∈ N o △ = {0, . . . , N o -1} is the sensor index, and n ∈ N △ = {(n t , n o )| n t ∈ N t , n o ∈ N o }. Observed data z = (z (n) ) n∈N (Figure
s n = J-1 X j=0 p ′ +P j -1 X p=p ′ h (n) j (p)r (nt-p,no) j . (5.2)
Here (r

(n) j ) n∈N ,0≤j<J
denotes the available templates and h

(n) j is an unknown impulse response (with P j tap coefficients) corresponding to template r j , at time n t and sensor n o and where p ′ ∈ {min 0≤j<J P j + 1, . . . , 0}. It must be emphasized that the dependence w.r.t. the time index n t of the impulse response implies that the filtering process is not time and space invariant, although it can be assumed slowly varying in practice. Eq. (5.2) can be expressed more concisely as

s = J-1 X j=0 R j h j (5.3)
by appropriately defining vectors s, h j and matrix R j . More precisely, s = h s (0,0) , . . . , s (Nt-1,0) , . . . , s (0,No-1) , . . . , s (Nt-1,No-1) i ⊤ , (5.4)

h j = h (0) j ⊤ , . . . , h (No-1) j ⊤ ⊤ (5.5)
where

h (no) j = h h (0,no) j (p ′ ), . . . , h (0,no) j (p ′ + P j -1), . . . , h (Nt-1,no) j (p ′ ), . . . , h (Nt-1,no) j (p ′ + P j -1) i ⊤ .
(5.6)

The matrix R j is defined as

R j =       R (0) j 0 . . . 0 0 R (1) j . . . 0 . . . 0 . . . . . . 0 0 . . . R (No-1) j       (5.7)
where

R (no) j =       R (0,no) j 0 . . . 0 0 R (1,no) j . . . 0 . . . 0 . . . . . . 0 0 . . . R (Nt-1,no) j       (5.8)
and (R (nt,no) j

) nt∈Nt are given by

    R (0,no) j . . . R (Nt-1,no) j     =               r (-p ′ ,no) j . . . r (0,no) j 0 . . . 0 r (-p ′ +1,no) j . . . r (0,no) j 0 . . . 0 . . . r (Nt-1,no) j r (Nt-2,no) j . . . r (Nt-P j ,no) j 0 r (Nt-1,no) j . . . r (Nt-P j +1,no) j . . . 0 . . . 0 r (Nt-1,no) j . . . r (Nt-P j -p ′ ,no) j              
.

(5.9) One can note that each matrix R j is a block diagonal matrix of size Q × QP j where Q = N t N o and that, for every n o ∈ {0, . . . , N o -1}, R (no) j is a block diagonal matrix for which the concatenation of its block diagonal elements is a Toeplitz matrix of size N t × P j . Model (5.1) can be written more concisely as

z = Rh + y + b (5.10) where R = [R 0 . . . R J-1 ] ∈ R Q×QP , P = P J-1 j=0 P j and h = [h ⊤ 0 . . . h ⊤ J-1 ] ⊤ ∈ R QP .

Proposed approach

We propose a variational framework where we aim at simultaneously estimating the filter tap coefficients of the nonstationary process h and the primary y. The multiple removal problem is thus formulated as the following constrained convex minimization problem minimize (5.11) where L ∈ R � K×QP is a linear operator and F ∈ R KNo×Q models a frame operator (e.g. directional wavelets [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF]). Generally, seismic data exhibits directional features corresponding to subsurface interfaces. Linear, hyperbolic and parabolic structures, at least piecewise, are observed. Due to the anisotropic nature of seismic data, we choose F as a hybrid dual-tree M -band wavelet (with different wavelets along space and time [START_REF] Chaux | Image analysis using a dual-tree Mband wavelet transform[END_REF][START_REF] Chaux | 2D dual-tree complex biorthogonal M -band wavelet transform[END_REF]). Their decorrelation properties [START_REF] Chaux | Noise covariance properties in dualtree wavelet decompositions[END_REF] have proven efficient in textured image denoising [START_REF] Chaux | A nonlinear Stein based estimator for multichannel image denoising[END_REF][START_REF] Pustelnik | Relaxing tight frame condition in parallel proximal methods for signal restoration[END_REF], for instance, compared to curvelets whose redundancy is more important. We now turn our attention to the choice of the convex sets C = C 1 ∩ C 2 ∩ C 3 and D.

y∈R Q , h∈C 1 ∩C 2 kz -y -Rhk 2 + ι D (F y) + ι C 3 (Lh) ,

A priori information on primary signal

Frame coefficients, denoted by x, are related to the primary signal y through the relation x = F y. Frame coefficients exhibit specific subband structures that are exploited here. Therefore, the constraint can be split by defining a partition of {1, . . . , KN o } denoted by {K l | l ∈ {1, . . . , L}} where L and K l are defined dependently on the transform. More precisely, we investigate two kinds of L and K l 1. If F is an orthogonal basis or a shift-invariant (SI) wavelet frame: L corresponds to the number of subbands and K l is the l-th subband with

D l = {(x k ) k∈K l | P k∈K l ϕ ℓ (x k ) ≤ β l } 2.
If F is a hybrid dual-tree wavelet: L/2 corresponds to the number of subbands and for every l ∈ {1, 2, . . . , L/2}, K l and K l+L/2 are the l-th subband corresponding to the primal and dual coefficients, respectively. Then, one can choose, for every l ∈ {1, . . . , L/2}

D l =    (x k ) k∈K l ∪ K l+L/2 | X k∈K l ϕ ℓ (x k ) ≤ β l and X k∈K l+L/2 ϕ ℓ (x k ) ≤ β l   
where, β l ∈ ]0, +∞[, and ϕ l : R → [0, +∞[ is a lower-semicontinuous convex function.

For example, a natural choice for ϕ l is the ℓ 1 -norm (the coefficients follow a Gauss-Laplace distribution as demonstrated in shows the primal and the dual trees of the dual-tree wavelet transform of the primary wave only, with a Symlet of length 8 along time and Daubechies of length 4 along space over 4 decomposition levels.

A priori information on adaptive filter

The convex set C introduces a priori knowledge on filter tap coefficients. As mentioned earlier, the filters here are assumed to vary not only along the time index n t but also along the sensor index n o . However, the filter variations are usually slow. This can be (5.12)

|h (nt,no+1) j (p) -h (nt+1,no) j (p)| ≤ ε (nt) j,p .
(5.13)

These inequalities link:

1. corresponding coefficients of the impulse response which are estimated between two consecutive time samples (in other words, we impose consecutive filters in time to take close values). The bound ε (no) j,p ∈ ]0, +∞[ may depend on the shape of the expected filter. For example, its dependence on the coefficient indexes p and n o may enable a larger (resp. smaller) difference for filter coefficients taking larger (resp. smaller) values; 2. corresponding coefficients of the impulse response which are estimated between two neighboring sensor samples (in other words, we impose close filters in space to take close values). The bound ε (nt) j,p ∈ ]0, +∞[ may also depend on the shape of the expected filter.

The associated closed convex sets are defined as

C 1 = n h ∈ R QP | ∀(j, n t , n o , p), |h (nt+1,no) j (p) -h (nt,no) j (p)| ≤ ε (no) j,p o C 2 = n h ∈ R QP | ∀(j, n t , n o , p), |h (nt,no+1) j (p) -h (nt,no) j (p)| ≤ ε (nt) j,p o (5.14)
where (ε

(no) j,p , ε (nt) j,p ) ∈ [0, +∞[ 2 .
For computational issues, the convex set C 1 (resp. C 2 ) can be expressed as the intersection of two convex subsets

C 1 = C 1,1 ∩ C 1,2 and C 2 = C 2,1 ∩ C 2,2 : C 1,1 = h | ∀p, ∀n o , ∀n t ∈ 0, . . . , N t 2 -1 : h (2nt+1,no) (p) -h (2nt,no) (p) ≤ ε (no) j,p C 1,2 = h | ∀p, ∀n o , ∀n t ∈ 1, . . . , N t -1 2 : h (2nt,no) (p) -h (2nt-1,no) (p) ≤ ε (no) j,p
(5.15)

C 2,1 = h | ∀p, ∀n t , ∀n o ∈ 0, . . . , N o 2 -1 : h (nt,2no+1) (p) -h (nt,2no) (p) ≤ ε (nt) j,p C 2,2 = h | ∀p, ∀n t , ∀n o ∈ 1, . . . , N o -1 2 : h (nt,2no) (p) -h (nt,2no-1) (p) ≤ ε (nt) j,p . 
(5.16)

Moreover, some additional a priori information can be added directly on the vector of filter coefficients h which we will discuss in detail in the next section. This amounts to defining a new convex set C 3 as a lower level set of some proper lower-semicontinuous convex function ρ, by setting: 1. The simplest choice is L = R, it relates to the sparsity of multiple reflections.

C 3 = n d ∈ R � K | ρ(d)

A more complex choice is L = e

F R where e F : R Q → R � K is an analysis frame operator.

Proximal algorithm

We choose to employ a primal-dual algorithm [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF] an example of which is the M+LFBF algorithm 5 [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]. For the convergence of M+LFBF algorithm, at each iteration i the stepsize γ [i] must be

Algorithm 5 M+LFBF Set γ [i] ∈ [ǫ, 1-ǫ β ]. Set y [0] ∈ R Q , h [0] ∈ R QP , v [0] ∈ R KNo , u [0] 1 ∈ R QP , u [0] 2 ∈ R QP , u [0] 3 ∈ R � K for i = 0, 1, . . . do Gradient computation s [i] 1 = y [i] -γ [i] � Rh [i] + y [i] -z + F * v [i] t [i] 1 = h [i] -γ [i] R ⊤ (Rh [i] + y [i] -z) + L * u [i] 3 + u [i] 1 + u [i] 2
Projection computation x

[i] 1 = F y [i] for l = 1 : L do s [i] 2 (k) k∈K l = � v [i] (k) + γ [i] F y [i] (k) k∈K l w [i] 1 (k) k∈K l = s [i] 2 (k) k∈K l -γ [i] Π D l � s [i] 2 (k) � k∈K l γ [i] ! end for t [i] 2,1 = u [i] 1 + γ [i] h [i] t [i] 2,2 = u [i] 2 + γ [i] h [i] t [i] 2,3 = u [i] 3 + γ [i] Lh [i] for m = 1 : 3 do w [i] 2,m = t [i] 2,m -γ [i] Π Cm (γ [i] ) -1 t [i] 2,m ) end for Averaging x [i] 2 = F s [i] 1 for l = 1 : L do q [i] 1,1 (k) k∈K l = w [i] 1 (k) + γ [i] x [i] 2 (k) k∈K l � v [i+1] (k) k∈K l = v [i] (k) -s [i] 2 (k) + q [i] 1,1 (k) k∈K l end for q [i] 2,1 = w [i] 2,1 + γ [i] t [i] 1 q [i] 2,2 = w [i] 2,2 + γ [i] t [i] 1 q [i] 2,3 = w [i] 2,3 + γ [i] Lt [i] 1 for m = 1 : 3 do u [i+1] m = u [i] m -t [i] 2,m + q [i] 2,m end for Update y [i+1] = y [i] -γ [i] Rt [i] 1 + s [i] 1 -z + F * w [i] 1 h [i+1] = h [i] -γ [i] R ⊤ (Rt [i] 1 + s [i] 1 -z) + L * w [i] 2,3 + w [i] 2,1 + w [i] 2,2
end for chosen so as to satisfy the following rule: Let β = 2(1+|||R||| 2 )+

q 4 + max(|||F ||| 2 , |||L||| 2 ) and ǫ ∈]0, 1 1+β [, then γ [i] ∈ [ǫ, 1-ǫ β ].
In this case, we have

|||R||| =   J-1 X j=0 |||R j ||| 2   1/2
where

|||R j ||| = max n∈N R (n) j
for every j ∈ {0, . . . , J -1}.

Results

The object of interest in this work is the primary waveforms. We thus privileged the display of results on primary reflections. However, numerical evaluations are performed on both primary and multiples.

Comparative evaluation: synthetic data

Our method is evaluated on the 2D synthetic seismic dataset presented in We compute projections onto the convex sets C and D as in Chapter 4. The transforms are chosen as follows. In the time (vertical or sensor) and in the space directions, we choose a Symlet of length 8 and a Daubechies wavelet of length 4, respectively. The overall transform F may either be: 1D shift-invariant (SI, length-8 Symlet along time only), 2D critical and orthogonal, 2D shift-invariant (fully redundant) or 2D dual-tree (twice redundant). In the latter case, the given wavelets yield the primal tree, the dual being obtained by the Hilbert transform of the aforementioned wavelets. In Figure 5.5p. 90, the top row shows estimated primaries obtained by [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF]. The SI frame (Figure 5.5 -p. 90, second row), although more redundant, exhibits a higher level of remnant noise and a blur crossing, as opposed to the bottom row, where primaries are clearly recovered. More interesting is the stronger noise condition in ). The obtained results from this high-noise observed data that correspond to the estimated primaries, are shown in Figure 5.7 -p. 92. One can observe that the estimated primary by the algorithm in Chapter 4 may be not better than the one by [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] (less noise, but lost information on the primary). While the obtained primary by the 2D proposed method is also good, which demonstrates the robustness to noise of this method. The comparison is pursued in a more complete and objective manner with ℓ 1 and ℓ 2 residual errors for primaries yŷ in Table 5.1 -p. 93 and for multiples sŝ in Table 5.2 -p. 94, the smaller being the better. The blue (resp. red) indicates the minimum value of ℓ 1 (resp. ℓ 2 ) for each ρ. We test the proposed method against different levels of noise: σ ∈ {0.04, 0.08, 0.16}. We see that 2D versions generally further reduce modeling errors, as expected. Moreover, a loose ranking is has follows: [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] < SI-1D < 2D orthogonal basis < SI-2D < dual-tree. We cannot clearly conclude about a positive specific effect of ℓ 1 or ℓ 2 -norms, however the smallest * ) in using three different 2D wavelet transforms, over three noise levels, and three a priori functions ρ ∈ {ℓ 2 , ℓ 1 , ℓ 1,2 }, with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] and with the 1D version in Chapter 4. (These results correspond to the data in Figure 5. 4 -p. 89).

1. ℓ 1 -norm � ∀d ∈ R Nt×No ρ(d) = ℓ 1 (d) = No-1 X no=0 Nt-1 X nt=0 |d (nt,no) |, 2. ℓ 2 -norm � ∀d ∈ R Nt×No ρ(d) = ℓ 2 (d) = No-1 X no=0 Nt-1 X nt=0 (d (nt,no) ) 2 ! 1/2 , 3. mixed ℓ 1,2 -norm � ∀d ∈ R Nt×No ρ(d) = ℓ 1,2 (d) = No-1 X no=0 Nt-1 X nt=0 (d (nt,no) ) 2 ! 1/2 .
absolute or quadratic residuals are always obtained with the ℓ 1,2 norm. This confirms that mild redundancy is beneficial when coupled with appropriate constraints.

To better emulate more complex geophysical configurations, we consider another synthetic data (see Figure 5.8 -p. 96). This data resembles a lot the data described above, however, there are other remnants where the structure is more complex with several overlapping hyperbolas. The results are shown in Figure 5.9 -p. 97 (estimated primaries). Figure 5.10 -p. 99 and Figure 5.11 -p. 100 illustrate for a stronger noise case (σ = 0.16). Once again, despite the more complicated data-structure with several overlapping waves, our proposed 2D method gives good results and remains also the top performer compared to two other methods. The comparison of the experimental results are presented in * ) in using three different 2D wavelet transforms, over three noise levels, and three a priori functions ρ ∈ {ℓ 2 , ℓ , ℓ 1,2 }, with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] and with the 1D version in Chapter 4. (These results correspond to the data in Figure 5.4 -p. 89).

(for estimated multiples). The best results were obtained by using 2D proposed method, however, due to the nonstationarity of the data, and the presence of structured noise, the statistical analysis is not straightforward in comparing the performance of transforms.

The previous experiments were performed with synthetic data. Its construction is not related to actual subsurface modelling or wave propagation. However, it exhibits event shapes that help in understanding the proposed method and the algorithm. Additionally, it permits a statistical analysis of the results that cannot be done with real data in the absence of ground truth. In the next subsection, we show the performance of our proposed method on real data.

Comparative evaluation: real data

We finally test our 2D proposed method for the real data provided by Jean Charléty (IFP Energies nouvelles). Figure 5.12-top -p. 102 is a recorded seismic data with a partially appearing primary (arrow) and at bottom a cropped square zone and Figure 5.13 -p. 103 displays two multiple wavefield templates. For this data, we choose L = e F R, where e F is a 2D orthogonal basis with a Symlet of length 8 over 3 decomposition levels, ρ is a mixed ℓ 1,2 -norm. F is a 2D dual-tree with a Symlet of length 8 along time and Daubechies of length 4 along space over 3 decomposition levels, and ϕ = | • |. Figure 5.14 -p. 104 and Figure 5.15 -p. 105 show the estimated primaries obtained by [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], by 1D version in Chapter 4 and by 2D proposed method. Three methods are able to successfully retrieve a weak primary below the multiple level. On Figure 5.14-top -p. 104, arrows indicate remnants of multiples, parallel to the primary, that have been incorrectly subtracted. Figure 5.14-bottom -p. 104 contains more noise and more artifacts. The primary is better delineated with the directional dual-tree wavelet frame, with a reduced level of remaining noise and multiple interferences.

Conclusion

This chapter proposed an adaptive filtering method allowing the suppression of multiple in 2D seismic data. The 2D anisotropic structure is taken into account and tackled using geometric multiscale representations. The adaptive filter is performed under appropriate regularity and amplitude concentration constraints. We tested three different measures for ρ, such as ℓ 1 , ℓ 2 and ℓ 1,2 norms. The ℓ 1,2 -norm seems better suited to design adaptive filters. Simulations are carried out on both synthetic and real seismic data. In all cases, the 2D version with ρ = ℓ 1,2 with 2D dual-tree transform demonstrated very good performance. The comparison of three methods shows that the proposed 2D method improves the robustness to noise and better preserve structural information. Furthermore, instead of using continuous or shift-invariant redundant wavelet transforms that yield huge redundancy, and thus a very large number of coefficients, we employ a 2D dual-tree transform which produces an only twice oversampled transform. The mild redundancy could be beneficial regarding the huge volumes of seismic data, and the results are actually better. From the obtained results and with the same argument, we hope that the * ) in using three different 2D wavelet transforms, over three noise levels, and three a priori functions ρ ∈ {ℓ 2 , ℓ 1 , ℓ 1,2 }, with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] and with the 1D version in Chapter 4. (These results correspond to the data in Figure 5.8 -p. 96). proposed method could be extended to 3D representations and their associated filters (van Borselen and Schonewille, 2005; [START_REF] Baumstein | 3D surface-related multiple elimination: data reconstruction and application to field data[END_REF][START_REF] Beasley | A 3D simultaneous source field test processed using alternating projections: a new active separation method[END_REF][START_REF] Brittan | 3D shallow water demultiple -extending the concept[END_REF][START_REF] Mchugo | 3D multiple attenuation compensates for irregular Black Sea bed[END_REF]Pica et al., 2005a;[START_REF] Zhang | 2D/3D seismic multiple attenuation in the deep water of South China Sea[END_REF] and provide better results. -Chapter 6 -Sparse Blind Deconvolution with Smoothed ℓ 1 /ℓ 2 Regularization

Blind deconvolution plays a central role in the field of signal and image processing in general and of geophysical processing in particular. Indeed several geophysical issues may be formulated as blind deconvolution problems. For instance, [START_REF] Li | Adaptive multiple subtraction based on 3D blind separation of convolved mixtures[END_REF][START_REF] Liu | Blind-source separation of seismic signals based on information maximization[END_REF][START_REF] Kaplan | Adaptive separation of free-surface multiples through independent component analysis[END_REF] use this formalism to address multiple removal. As in the previous chapters we have separated multiples from primaries, a next goal would be to deconvolve them from the seismic source. As the source (the seismic wavelet) is rarely known precisely, blind seismic deconvolution is considered here. It aims at improving the temporal resolution of seismic data in the shape of a sparser sequence. Seismic deconvolution has generated a lot of seminal works on sparsity-promoting measures, including ℓ 1 and even ℓ 1 /ℓ 2 penalties [START_REF] Claerbout | Parsimonious deconvolution[END_REF][START_REF] Gray | A theory for variable norm deconvolution[END_REF]. This chapter is restricted to the use of an ℓ 1 /ℓ 2 penalty. The ℓ 1 /ℓ 2 ratio regularization function has shown good performance for retrieving sparse signals in a number of recent works, in the context of blind deconvolution. Indeed, it benefits from a scale invariance property much desirable in the blind context. However, the ℓ 1 /ℓ 2 function raises some difficulties when solving the nonconvex and nonsmooth minimization problems resulting from the use of such a penalty term in current restoration formulations. In this work, we propose a new penalty based on a smooth approximation to the ℓ 1 /ℓ 2 function. In addition, we develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results. We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term, on both applications to seismic data (1D) and image blind deconvolution (2D).

Introduction

As alluded to in Section ??, many experimental settings are modeled as inverse problems.

They resort to estimating an unknown signal x ∈ R N from observations y ∈ R N , through 107 100 200 300 400 500 600 700

x y the measurement process:

y = H(h, x) + b , (6.1) 
an illustration of which is provided in Figure ??. Here, h ∈ R S represents an impulse response (e.g. a linear sensor response or a "blur" convolutive point spread function),

H : R S × R N → R N : (h, x) 7 → h * x,
where * denotes a discrete-time convolution operator (with appropriate boundary processing), and b ∈ R N is a realization of a random variable modeling an additive noise. Standard approaches, such as Wiener filtering and its statistical SURE-based extensions [START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF], aim at minimizing criteria based on the squared Euclidean norm (ℓ 2 2 ). However, the use of the sole least squares data fidelity term is prone to noise sensitivity and the addition of an ℓ 2 2 regularization often leads to over-smoothed estimates. The deconvolution problem becomes blind, even more ill-posed, when the blur kernel h is unknown, and needs to be estimated as well as the target signal. Applications include communications (equalization or channel estimation) [START_REF] Haykin | Blind Deconvolution[END_REF], nondestructive testing [START_REF] Nandi | Blind deconvolution of ultrasonic signals in nondestructive testing applications[END_REF], geophysics [START_REF] Kaaresen | Multichannel blind deconvolution of seismic signals[END_REF][START_REF] Takahata | Unsupervised processing of geophysical signals: A review of some key aspects of blind deconvolution and blind source separation[END_REF][START_REF] Pham | A primal-dual proximal algorithm for sparse template-based adaptive filtering: Application to seismic multiple removal[END_REF], image processing (Kundur and Hatzinakos, 1996a,b;[START_REF] Kato | A set-theoretic blind image deconvolution based on hybrid steepest descent method[END_REF][START_REF] Ahmed | Blind deconvolution using convex programming[END_REF], medical imaging and remote sensing [START_REF] Campisi | Blind Image Deconvolution: Theory and Applications[END_REF]. Blind deconvolution, being an underdetermined problem, often requires additional hypotheses. A usual approach seeks estimates (b x, b h) ∈ R N × R S of (x, h) as minimizers of the sum of a data fidelity term and additional regularization terms on the signal and on the blur kernel. Such regularization functions account for a priori assumptions one imposes on original sought objects, like sparsity, and ensure the stability of the solution. Blind deconvolution is subject to scaling ambiguity, and suggests scale-invariant contrast functions [START_REF] Comon | Contrasts for multichannel blind deconvolution[END_REF][START_REF] Moreau | Generalized contrasts for multichannel blind deconvolution of linear systems[END_REF].

A decade ago, a Taxicab-Euclidean norm ratio (ℓ 1 /ℓ 2 ) arose as a sparseness measure [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF][START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF][START_REF] Hurley | Comparing measures of sparsity[END_REF][START_REF] Barak | Rounding sum-of-squares relaxations[END_REF], used in NMF (Nonlinear Matrix Factorization) [START_REF] Mørup | Approximate L 0 constrained non-negative matrix and tensor factorization[END_REF]. Earlier mentions of a one-norm/two-norm ratio deconvolution appeared in geophysics [START_REF] Gray | Variable norm deconvolution[END_REF]. It has since been used to constrain sharp images through wavelet frame coefficients [START_REF] Ji | Image deconvolution using a characterization of sharp images in wavelet domain[END_REF], or for sparse recovery [START_REF] Demanet | Scaling law for recovering the sparsest element in a subspace[END_REF]. Such a regularization term is moreover suggested in [START_REF] Benichoux | A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors[END_REF] to avoid common pitfalls in blind sparse deconvolution.

Recently, [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF] proposed an alternating minimization algorithm to deal with the ℓ 1 /ℓ 2 regularization function. Its originality consists of transforming the ℓ 1 /ℓ 2 nonconvex regularization term into a convex ℓ 1 regularization function. This is done in a reweighted fashion, by fixing the denominator ℓ 2 from the previous iterate. An iterative shrinkage-thresholding algorithm finally solves the remaining ℓ 1 regularized problem. Although the convergence of this approach has not been deeply investigated, it appears to work in practice. More recently, [START_REF] Esser | A method for finding structured sparse solutions to non-negative least squares problems with applications[END_REF] proposed a scaled projected gradient algorithm for minimizing a smooth approximation to the ℓ 1 /ℓ 2 function, however limited to the case when the sparse signal to retrieve takes nonnegative values. We generalize this idea to a parametrized Smoothed One-Over-Two (SOOT) penalty for signed, real data. We present a novel efficient method based on recent results in nonconvex optimization combining an alternating minimization strategy with a forwardbackward iteration [START_REF] Bolte | Proximal alternating linearized minimization fon nonconvex and nonsmooth problems[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. Moreover, we accelerate the convergence of our algorithm by using a Majorize-Minimize (MM) approach [START_REF] Sotthivirat | Image recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithms[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF]. Section ?? introduces the minimization problem. Section ?? describes the proposed method and provides convergence results. The algorithm performance, compared with [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF], is discussed in Section ?? for seismic data blind deconvolution (1D) and in Section ?? for blind image deconvolution (2D). Some conclusions are drawn in Section ??.

6.2 Sparsity measure ℓ 1 /ℓ 2 and its surrogates In signal representation, there are many ways to practically define sparsity. For instance, a signal is sparse if the number of the non-zero coefficients in its representation is small compared to its dimension [START_REF] Zonoobi | Gini index as sparsity measure for signal reconstruction from compressive samples[END_REF], that is related to the ℓ 0 -"quasi-norm". However, the optimization problem with the ℓ 0 -penalty is nonconvex and generally impossible to solve as its solution usually leads to an intractable combinatorial search. A relaxation for the ℓ 0 -"quasi-norm" is the ℓ p -norm/quasi-norm (0 < p ≤ 1). We instead consider the ratio of the ℓ 1 -norm to the ℓ 2 -norm that we denote ϕ 0 = ℓ 1 /ℓ 2 , and we then compare with different measures, via some simple examples. We have:

y n = ( 1 if n = 0 0 if n ∈ {-N + 1, • • • , -1, 1, • • • , N }.
• ℓ 1 (x) = ℓ 1 (y) = 1 • ℓ 0 (x) = 2N > ℓ 0 (y) = 1 • ϕ 0 (x) = √ 2N > ϕ 0 (y) = 1.
It is clear that y is sparse, but x is not. From the values obtained by different measures (ℓ 1 , ℓ 0 , ϕ 0 ) for x and y, we observe that, nothing conclusive can be said about the sparsity of x and y with ℓ 1 -norm. However, ϕ 0 may be a better sparsity measure. A parametric family of sparse to non sparse signals is given next.

Example 6.2.2 Let x be a signal of length N = 1000 with x n ∈ [0, 1] for every n ∈ {0, 1, . . . , N -1}. We now consider the evaluation of ϕ 0 for power laws x → x p , (p > 0). Figure ?? -p. ?? illustrates the x p signal where on the top of figure: p = 100 (left), x p is sparse with ϕ 0 (x p ) = 4.44 and p = 0.01 (right), x p is not sparse with ϕ 0 (x p ) = 31.61.

In the bottom of figure: the representation of different signals when p varies (left) and the evaluation of ϕ 0 when p varies (right). We see that, the bigger p, the smaller ϕ 0 (x p ).

Figure ?? -p. ?? is a visualization of the ℓ 0 -"quasi-norm" (top-left), ℓ 1 -norm (topright), ℓ 1 2 -quasi-norm (bottom-left) and ϕ 0 for a two-dimensional vector. The morphology of ϕ 0 is the most similar to that of ℓ 0 . However, the ratio ϕ 0 is difficult to use, we thus propose to replace the nonsmooth function ϕ 0 by a more maniable smooth approximation. In this work, we investigate two kinds of smooth approximation (surrogate functions):

1. The first one is a natural way to replace ℓ 1 and ℓ 2 by their smooth approximations ℓ 1,α (sometimes called hybrid ℓ 1 -ℓ 2 or hyperbolic penalty) and ℓ 2,η , where x 1/2

ℓ 1,α (x) = N X n=1 p x 2 n + α 2 -α , ℓ 2,η (x) = v u u t N X n=1 x 2 n + η 2 0 
x 1

x 5

x 10 x 100 with (α, η) ∈]0, +∞[ 2 . Note that ℓ 1 and ℓ 2 are recovered for α = η = 0. Thus, the considered function is

e ϕ(x) = λ ℓ 1,α (x) ℓ 2,η (x) (6.2)
where, λ ∈ ]0, +∞[.

2. The second one is a little bit more sophisticated

ϕ(x) = λ log ℓ 1,α (x) + β ℓ 2,η (x) , (6.3) 
with (λ, β, α, η) ∈]0, +∞[ 4 .

The log function both makes the penalty easier to handle and, through its concavity, strengthens the flattening of the ℓ 1 /ℓ 2 function toward sparsity. We now turn our attention to the properties of these functions. 6.2.2 Properties of functions ℓ 1 /ℓ 2 and its surrogates

We concisely state three results that will be necessary thereafter. The proofs are given in the appendix. Proposition 6.2.3 For all α > 0, η > 0 and x ∈ R N ,

ℓ 1,α (x) ℓ 2 2,η (x) ≤ 1 2(α + η √ N ) . (6.4)
The proof is given in Appendix A. 

) kzk U = � z ⊤ U z 1/2 . When U is equal to I M , the identity matrix of R M ×M , then prox I M ,ψ
reduces to the original definition of the proximity operator in [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. Secondly, we introduce the Majoration-Minimization (MM) principle:

Definition 6.3.1 Let ζ : R M → R be a differentiable function. Let z ∈ R M . Let us define, for every z ′ ∈ R M , q(z ′ , z) = ζ(z) + (z ′ -z) ⊤ ∇ζ(z) + 1 2 kz ′ -zk 2 U (z) ,
where U (z) ∈ R M ×M is a SPD matrix. Then, U (z) satisfies the majoration condition for ζ at z if q(•, z) is a majorant of the function ζ at z, i.e., for every z

′ ∈ R M , ζ(z ′ ) ≤ q(z ′ , z).
If function ζ has an L-Lipschitzian gradient on a convex subset C ⊂ R M , then, for every z ∈ C, a quadratic majorant of ζ at z is trivially obtained by taking U (z) = L I M . We now shall give some facts concerning "semi-algebraic functions" and subsets which we need to use in this chapter. Definition 6.3.2 A semi-algebraic subset of R N [START_REF] Bierstone | Semianalytic and subanalytic sets[END_REF]) is a finite union of sets of the form {x ∈ R N : f i (x) = 0, g j (x) < 0, i ∈ I, j ∈ J} where I, J are finite and for every i ∈ I and j ∈ J, f i , g j : R N → R are real polynomial functions. A mapping is semi-algebraic if its graph is a semi-algebraic set. Remark 6.3.1 Semi-algebraicity is a property satisfied by a wide class of functions. In particular, it is satisfied for function ϕ defined in (??), for standard numerical implementations of the log function.

Proposed variational approach

From now on, definitions and properties apply for every x = (x n ) 1≤n≤N ∈ R N and h ∈ R S , unless otherwise stated. We propose to define an estimate (b x, b h) of (x, h) as a minimizer of the following penalized criterion:

G(x, h) = ρ(x, h) + g(x, h) + ϕ(x), (6.7) 
where ρ(x, h) = 1 2 kh * xyk 2 is the least-squares objective function, g introduces additional a priori information on the sought objects. Finally, as provided in Proposition ??, ϕ has a Lipschitzian gradient on R N , which is a desirable property for deriving an efficient algorithm to minimize (??). In the following, we assume that g can be split as g(x, h) = g 1 (x) + g 2 (h), (6.8) where g 1 and g 2 are proper, lower semicontinuous, convex functions, continuous on their domain. Thanks to these properties, the problem can be addressed with the Block Coordinate Variable Metric Forward-Backward algorithm [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. Moreover, in practice, h and x have different properties and this choice permits to take into account independently the a priori infomation on the sought objects. Moreover, we denote by f (x, h) = ρ(x, h) + ϕ(x), (6.9) the smooth part of the criterion, and ∇ 1 f (x, h) ∈ R N (resp. ∇ 2 f (x, h) ∈ R S ) the partial gradient of f with respect to the variable x (resp. h) computed at (x, h).

6.4 Proposed alternating optimization method

6.4.1 Smoothed ℓ 1 /ℓ 2 (SOOT) algorithm
To minimize (??), one can exploit the block-variable structure of G by using an alternating forward-backward algorithm [START_REF] Luo | On the convergence of the coordinate descent method for convex differentiable minimization[END_REF][START_REF] Bolte | Alternating proximal algorithm for blind image recovery[END_REF][START_REF] Xu | A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[END_REF][START_REF] Bolte | Proximal alternating linearized minimization fon nonconvex and nonsmooth problems[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. At each iteration k ∈ N, this algorithm updates x k (resp. h k ) with a gradient step on f (•, h k ) (resp. f (x k+1 , •)) followed by a proximity step on g 1 (resp. g 2 ).

We use this alternating minimization method combined with an MM strategy, as described in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. For every (x, h) ∈ R N × R S , let us assume the existence of SPD matrices A 1 (x, h) ∈ R N ×N and A 2 (x, h) ∈ R S×S such that A 1 (x, h) Algorithm 6 SOOT algorithm.

For every k ∈ N, let J k ∈ N * , I k ∈ N * and let (γ k,j 1 ) 0≤j≤J k -1 and (γ k,i 2 ) 0≤i≤I k -1 be positive sequences. Initialize with x 0 ∈ dom g 1 and h 0 ∈ dom g 2 . Iterations:

For k = 0, 1, . . .                   x k,0 = x k , h k,0 = h k , For j = 0, . . . , J k -1 $ e x k,j = x k,j -γ k,j 1 A 1 (x k,j , h k ) -1 ∇ 1 f (x k,j , h k ), x k,j+1 = prox (γ k,j 1 ) -1 A 1 (x k,j ,h k ),g 1 � e x k,j , x k+1 = x k,J k . For i = 0, . . . , I k -1 $ e h k,i = h k,i -γ k,i 2 A 2 (x k+1 , h k,i ) -1 ∇ 2 f (x k+1 , h k,i ), h k,i+1 = prox (γ k,i 2 ) -1 A 2 (x k+1 ,h k,i ),g 2 e h k,i , h k+1 = h k,I k .
(resp. A 2 (x, h)) satisfies the majoration condition for f (•, h) at x (resp. f (x, •) at h).

Then, the SOOT algorithm for the minimization of (??) is described in Algorithm ??.

Note that PALM algorithm [START_REF] Bolte | Proximal alternating linearized minimization fon nonconvex and nonsmooth problems[END_REF] is recovered as a special case if J k ≡ I k ≡ 1 and, at each iteration, the Lipschitz constant of

∇ 1 f (•, h k ) (resp. ∇ 2 f (x k+1 , •)) is substituted for A 1 (x k,0 , h k ) (resp. A 2 (x k+1 , h k,0
)). However, recent works on variable metric strategies [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] show that the use of more judicious preconditioning matrices can significantly accelerate the convergence of the algorithm. An example of such matrices is proposed in Section ??. Moreover, we show in our experimental part the practical interest in terms of convergence speed of taking the number of inner loops (I k ) k∈N or (J k ) k∈N greater than one.

The convergence of Algorithm ?? can be derived from the general results established in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]: Proposition 6.4.1 Let (x k ) k∈N and (h k ) k∈N be sequences generated by Algorithm ??. Assume that:

1. There exists (ν, ν) ∈]0, +∞[ 2 such that, for all k ∈ N,

(∀j ∈ {0, . . . , J k -1}) ν I N A 1 (x k,j , h k ) ν I N , (∀i ∈ {0, . . . , I k -1}) ν I S A 2 (x k+1 , h k,i ) ν I S .

2.

Step-sizes (γ k,j

x ) k∈N,0≤j≤J k -1 and (γ k,i h ) k∈N,0≤i≤I k -1 are chosen in the interval [γ, 2γ] where γ and γ are some given positive real constants.

3. g is a semi-algebraic function.

Then, the sequence (x k , h k ) k∈N converges to a critical point (b x, b h) of (??). Moreover,

� G(x k , h k ) k∈N is a nonincreasing sequence converging to G(b x, b h). -1 -0.6 -0.2 0.2 0.6 1 -5 -3 -1 1 Figure 6
.5: Function ϕ (in black) and its majorization functions at x = 0.8 (in blue), x = 0.2 (in purple) and x = 0.05 (in green).

Construction of quadratic majorants

The numerical efficiency of the SOOT algorithm ?? relies on the use of quadratic majorants providing tight approximations to the criterion and whose curvature matrices are simple to compute. The following proposition allows us to propose SPD matrices A 1 and A 2 for building majorizing approximations of f with respect to x and h. Proposition 6.4.2 For every (x, h) ∈ R N × R S , let

A 1 (x, h) = L 1 (h) + 9λ 8η 2 I N + λ ℓ 1,α (x) + β A ℓ 1,α (x), A 2 (x, h) = L 2 (x) I S ,
where

A ℓ 1,α (x) = Diag (x 2 n + α 2 ) -1/2 1≤n≤N , (6.10) 
and

L 1 (h) (resp. L 2 (x)) is a Lipschitz constant for ∇ 1 ρ(•, h) (resp. ∇ 2 ρ(x, •)). 1 Then, A 1 (x, h) (resp. A 2 (x, h)) satisfies the majoration condition for f (•, h) at x (resp. f (x, •) at h). Proof. Let us decompose ϕ = ϕ 1 + ϕ 2 (∀ x ∈ R N ) with, ϕ 1 (x) = λ log (ℓ 1,α (x) + β) and ϕ 2 (x) = -λ log (ℓ 2,η (x)
). It then suffices to prove that, for every x ∈ R N , (i) A ϕ 1 (x) = λ ℓ 1,α (x)+β A ℓ 1,α (x) satisfies the majoration condition for ϕ 1 at x,

1 Such Lipschitz constants are straightforward to derive since ρ is a quadratic cost.

(ii) ϕ 2 has a µ-Lipschitzian gradient, with µ = 9λ 8η 2 .

On the one hand, setting τ (x) = ℓ 1,α (x) + β, we have [START_REF] Allain | On global and local convergence of half-quadratic algorithms[END_REF] τ x) , (6.11) for every x ′ ∈ R N , where A ℓ 1,α (x) is given by (??).

(x ′ ) ≤ τ (x) + (x ′ -x) ⊤ ∇τ (x) + 1 2 kx ′ -xk 2 A ℓ 1,α ( 
On the other hand, for every (u,

v) ∈]0, +∞[ 2 , log v ≤ log u + v u -1 = log u + v -u u .
(6.12)

By taking v = τ (x ′ ) > 0 and u = τ (x) > 0, and by combining (??) and (??), we obtain

ϕ 1 (x ′ ) ≤ ϕ 1 (x) + λ τ (x) (x ′ -x) ⊤ ∇τ (x) + 1 2 (x ′ -x) ⊤ λ τ (x) A ℓ 1,α (x)(x ′ -x).
Thus, Statement (i) is proved by remarking that ∇ϕ 1 (x) = λ τ (x) ∇τ (x) and A ϕ 1 (x) = λ τ (x) A ℓ 1,α (x). On the other hand, the Hessian of ϕ 2 is given by

∇ 2 ϕ 2 (x) = 2λ ℓ 4 2,η (x) xx ⊤ - λ ℓ 2 2,η (x) 
I N .

Noting that ℓ 2 2,η (x) = kxk 2 + η 2 , and applying the triangular inequality yields

∇ 2 ϕ 2 (x) ≤ 2λkxk 2 (kxk 2 + η 2 ) 2 + λ kxk 2 + η 2 = χ(kxk), where χ : u ∈ [0, +∞[7 → λ 3u 2 +η 2 (u 2 +η 2 ) 2 .
The derivative of χ is given, for every u ∈ [0, +∞[, by 

χ(u) = λ 2u (u 2 + η 2 ) 3 (η 2 -3u 2 ),
(u) = χ � η/ √ 3 = 9λ 8η 2 .
Hence, the proof of Statement (ii). Figure ?? -p. ?? gives an illustration of this majorant for N = 1. Remark 6.4.1 Note that, the Lipschitz constant for ∇ 2 ρ(x, •) is zero when x is a vector of zeros. Thus, to ensure that condition 1 of Proposition ?? holds, we add a very small positive value e β to the Lipschitz constant i.e. A 2 (x, h) = (L 2 (x) + e β) I S .

Algorithm 7 Overall 1 algorithm [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF] (1D Overall adapted algorithm).

For every k ∈ N, let J ∈ N * , I k ∈ N * , let κ ∈ ]0, +∞[ and δ = 10 -3 . Initialize with x 0 ∈ dom ϕ 0 and h 0 ∈ dom g 2 .

Iterations:

For k = 0, 1, . . .                                              x k,0 = x k , h k,0 = h k , d = κ 2 kH(h k , x k,0 ) -yk 2 2 + ϕ 0 (x k,0 ), While (δ > 10 -4 )                            c = d, For j = 0, . . . , J -1           β = κkx k,j,0 k 2 x k,j,0 = x k,j For ℓ = 0, . . . , L -1 e x k,j,ℓ = x k,j,ℓ -δH * (h k , x k,j,ℓ ) � H(h k , x k,j,ℓ ) -y x k,j+1,ℓ = prox δβk•k 1 (e x k,j,ℓ ) x k,j+1 = x k,j,L d = κ 2 kH * (h k , x k,j+1 ) -yk 2 2 + ϕ 0 (x k,j+1 ) If (d > 3c) x k,0 = x k δ = δ 2 Else exit loop x k+1 = x k,J . For i = 0, . . . , I k -1 $ e h k,i = h k,i -γ k,i h A 2 (x k+1 , h k,i ) -1 ∇ 2 f (x k+1 , h k,i ), h k,i+1 = prox (γ k,i h ) -1 A 2 (x k+1 ,h k,i ),g 2 e h k,i , h k+1 = h k,I k .
6.5 Evaluation on seismic signal deconvolution

Problem statement

As some of the earliest mentions of ℓ 1 /ℓ 2 deconvolution appeared in geophysics [START_REF] Gray | Variable norm deconvolution[END_REF], blind seismic deconvolution (or inversion [START_REF] Osman | Seismic Source Signature Estimation and Measurement[END_REF][START_REF] Ulrych | Information-Based Inversion and Processing with Applications[END_REF]) is a natural application. The sparse seismic signal x, of length N = 784, on the top of Figure ?? -p. ?? is composed of a sequence of spikes termed primary reflection coefficients [START_REF] Walden | The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution[END_REF]. This reflectivity series indicates, in reflection seismology at normal incidence, the travel time of seismic waves between two seismic reflectors, and the amplitude of the seismic events reflected back to the sensor. The observed seismic trace y displayed in Figure ??-bottom -p. ?? follows Model (??).

In this context, the blur h is related to the generated seismic source. We use here a bandpass "Ricker" seismic wavelet (or Mexican hat [START_REF] Ricker | The form and nature of seismic waves and the structure of seismograms[END_REF], Figure 2.5-left -p. 19) of size S = 41 (Figure ?? -p. ??) with a frequency spectrum concentrated between 10 and 40 Hz. The additive noise w is a realization of a zero-mean white Gaussian noise with variance σ 2 . Since the reflectivity series is sparse, but limited in amplitude, we choose g 1 as the indicator function of the convex hypercube [x min , x max ] N . Similarly, as the seismic wavelet possesses finite energy, g 2 is equal to the indicator function of the set C = {h ∈ [h min , h max ] S | khk ≤ δ}, where δ > 0, and h min (resp. h max ) is the minimum (resp. maximum) value of h.

Numerical results

Figure ?? -p. ?? presents the variations of the reconstruction time, in seconds, with respect to the number of inner-loops J k ≡ J, with I k ≡ 1 and noise level σ = 0.03. The reconstruction time corresponds to the stopping criterion kx kx k-1 k ≤ √ N × 10 -6 . One can observe that the best compromise in terms of convergence speed is obtained for an intermediate number of inner-loops, namely J = 71. Note that the quality of the reconstruction is stable for each choice of J. We gather comparisons of the SOOT algorithm ?? with Overall 1 algorithm ?? in Table ??, where the same initialization strategy has been used for both algorithms: x 0 is a constant-valued signal such that x 0 ∈ [x min , x max ] N , and h 0 is a centered Gaussian filter, such that h 0 ∈ C. Results presented in this table, for each noise level σ, are averaged over two hundred noise realizations. The regularization parameters of Overall 1 algorithm ?? and (λ, α, β, η) ∈]0, +∞[ 4 of (??) are adjusted so as to minimize the ℓ 1 norm between the original and the reconstructed signals. We also set, for every k ∈ N, J k = 71 and I k = 1. If both methods yield tremendous improvements in ℓ 2 and ℓ 1 norms, the SOOT algorithm ?? exhibits better results, for all noise levels, for both x Table 6.1: Comparison between Overall 1 algorithm ?? and SOOT algorithm ?? for x and h estimates (Intel(R) Xeon(R) CPU E5-2609 v2@2.5GHz using Matlab 8).

Table ?? presents the variances associated with the averaged results of Table ??. It can be noticed that the variance on the error values are of similar order of magnitude for both algorithms (typically around 10% of the error averages), which confirms the statistical consistency of the presented results. While the variance of the signal errors may be a little bit larger for the SOOT algorithm than for Overall 1 algorithm ??, the opposite behavior being observed for the kernel errors. SOOT algorithm appears to be more stable than Overall 1 algorithm ??, in terms of computational time.

The performance is further assessed by subjective results for σ = 0.03. The plots of x and b

x can be found below (Figure ?? -p. ??). One can observe that the reconstructed signals for both algorithms are visually similar, with the exception of a few under-estimated peaks for Overall 1 algorithm ??. We found however that it is difficult to see the differences between SOOT and Overall 1 algorithm ?? results on this figure. For this reason, Figure ?? -p. ?? shows the residual error of the sparse signal estimation xb

x, for a given noise realization, where b x is estimated with Overall 1 algorithm ?? in (a), and with SOOT algorithm ?? in (b). It appears, in this example, that the error is smaller using SOOT algorithm ??. The estimated blur kernels look similar for both methods, as displayed in Figure ?? -p. ??.

Evaluation in blind image deconvolution

Similar ideas can be reused in the context of blind image deconvolution. The main difference resides in that natural images are not considered directly sparse. The ℓ 1 /ℓ 2 Table 6.2: Variances on error values and computation times, for algorithms Overall 1 algorithm ?? and SOOT algorithm ?? (Intel(R) Xeon(R) CPU E5-2609 v2@2.5GHz using Matlab 8). x with SOOT algorithm ??(continuous black) and Overall 1 algorithm ?? (dashed green). function is thus not efficient for measuring sparsity in all their frequency bands. Working on higher frequencies related to contours is more appropriate. At a given resolution, the ℓ 1 /ℓ 2 function or its surrogate is applied to the horizontal and vertical gradients. We recast the approach in [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF] Here, ∇ x and ∇ y denote the gradient operators in the horizontal and vertical directions, 

respectively, v = ∇ x ∇ y y. With u = u x u y ∈ R 2N
(u) = ϕ(u x ) + ϕ(u y ) and g(u, h) = ι [u min ,umax] 2N 2 (u) + ι D (h) with D = n h ∈ [0, +∞[ S : P S-1 s=0 h s = 1 o and we introduce f (u, h) = κ 2 k e H(h, u) -vk 2 + Ψ(u).
Once the blur has been estimated, the second step solves a non-blind image deconvolution problem. More precisely for these two steps: ❶: As in [START_REF] Fergus | Removing camera shake from a single photograph[END_REF], a coarse-to-fine loop over a pyramid of image resolutions achieves a multiscale estimation of the blur. We refer to (Krishnan et al., 2011, Section 3.1.3 ) for additional details.

❷:

The non-blind deconvolution involves a criterion composed of a sum of a quadratic function and a convex function composed with linear operators. It can be minimized properly with PPXA+ [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF] or primal-dual approaches such as the M+LFBF algorithm [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF].

Our 2D adaptation (hereafter denoted by SOOT 2 ) plugs the SOOT algorithm in the first step of the Overall algorithm (Algorithm ??). The latter is rewritten in a more compact form, as detailed in Algorithm ??.

Remark 6.6.1 For every

(u, h) ∈ R 2N 2 × R S and γ ∈ ]0, +∞[ , let A 1 (u, h) be the majorant matrix of f (•, h) at u. Then, prox (γ) -1 A 1 (u,h),ι [u min ,umax] 2N 2 = Π [u min ,umax] 2N 2 .
Similarly, the majorant matrix of f (u, •) at h, A 2 (u, h) is a diagonal matrix whose diagonal elements all equal the same scalar value (the Lipschitz constant for

∇ 2 f (u, •)). Then, prox (γ) -1 A 2 (u,h),ι D = Π D ,
which can be easily computed.

We compare our results to [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF] in Figure ?? -p. ?? and Figure ??p. ??. We observe that we better estimate the blur than the Overall algorithm. Moreover, the Overall algorithm took over 7 minutes for the example shown in Figure ?? -p. ?? and over 2 minutes for the example shown in Figure ?? -p. ??. SOOT 2 only takes 45 seconds and 7 seconds, respectively, on the same CPU. The deblurred images are visually similar for both algorithms. We gain 1.83 dB in terms of SNR for the first test (Figure ?? -p. ??) and 0.86 dB for the second test (Figure ?? -p. ??). A thorough comparative assessment of SOOT 2 and the algorithm from [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF] for blind image deconvolution however deserves additional evaluations on speed, objective and subjective quality results.

Conclusion

The proposed SOOT algorithm ?? and its 2D adaptation SOOT 2 in algorithm ?? for minimizing a modified ℓ 1 /ℓ 2 penalized criterion have been demonstrated to be quite effective in blind deconvolution applications on seismic reflectivity data and on images, respectively. In addition, SOOT offers theoretically guaranteed convergence. The performance of the proposed method is demonstrated through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term, on both blind sparse signal and image deconvolution. The application of the method using a non-quadratic data fidelity term, in association with more sophisticated preconditioning matrices, is finally of main interest.

Algorithm 8 Overall algorithm [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF].

For every k ∈ N, let J ∈ N * , let (κ, τ ) ∈ ]0, +∞[ 2 , and δ = 10 -3 . Initialize with u 0

x ∈ dom ϕ 0 • ∇ x , u 0 y ∈ dom ϕ 0 • ∇ y and h 0 ∈ dom g 2 . Explanations for the steps ❶ and ❷ can be found in the text. 1. Blind estimation of blur ❶ Loop over coarse-to-fine levels Alternate:

For k = 0, 1, . . . , K                                                      u k,0 x = u k x , u k,0 y = u k y , h k,0 = h k , d = κ 2 kH(h k , u k,0 x ) -v x k 2 2 + kH(h k , u k,0 y ) -v y k 2 2 + ϕ 0 (u k,0 x ) + ϕ 0 (u k,0 y ), Update sharp high-frequency image While (δ > 10 -4 )                                      c = d, For j = 0, . . . , J -1                    β x = κku k,j,0 x k 2 and β y = κku k,j,0 y k 2 u k,j,0 x = u k,j
x and u k,j,0

y = u k,j y For ℓ = 0, . . . , L -1           e u k,j,ℓ x = u k,j,ℓ x -δH * (h k , u k,j,ℓ x ) H(h k , u k,j,ℓ x ) -v x u k,j+1,ℓ x = prox δβxk•k 1 e u k,j,ℓ x e u k,j,ℓ y = u k,j,ℓ y -δH * (h k , u k,j,ℓ y ) H(h k , u k,j,ℓ y ) -v y u k,j+1,ℓ y = prox δβyk•k 1 e u k,j,ℓ y u k,j+1 x = u k,j,L x and u k,j+1 y = u k,j,L y d = κ 2 kH(h k , u k,j+1 x ) -v x k 2 2 + kH(h k , u k,j+1 y ) -v y k 2 2 + ϕ 0 (u k,j+1 x ) + ϕ 0 (u k,j+1 y ) If (d > 3c) u k,0 x = u k x and u k,0 y = u k y δ = δ 2 Else exit loop u k+1 x = u k,J
x and u k+1 y = u k,J y Update blurring matrix [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF]) Algorithm 9 SOOT 2 (2D SOOT adapted algorithm).

h k+1 = minimize h∈D κ 2 � kH(h, u k+1 x ) -v x k 2 2 + kH(h, u k+1 y ) -v y k 2 2 + khk 1 b h = h K 2. Non-blind image deconvolution ❷ b x = minimize x∈R N κ 2 kH( b h, x) -yk 2 2 + τ ∇ x ∇ y x
For every k

∈ N, let J k ∈ N * , I k ∈ N * , let (κ, τ ) ∈ ]0, +∞[ 2 and let (γ k,j 1 ) 0≤j≤J k -1 and (γ k,i
2 ) 0≤i≤I k -1 be positive sequences. Initialize with u 0 ∈ [u min , u max ] 2N 2 and h 0 ∈ D. Explanations for the steps ❶ and ❷ can be found in the text. 1. Blind estimation of blur ❶ Loop over coarse-to-fine levels Alternate:

δ 0 = 1, k = 0, While δ k > √ S × 10 -6                            u k,0 = u k , h k,0 = h k , Update sharp high-frequency image For j = 0, . . . , J k -1 $ e u k,j = u k,j -γ k,j 1 A 1 (u k,j , h k ) -1 ∇ 1 f (u k,j , h k ), u k,j+1 = Π [u min ,umax] 2N 2 � e u k,j , u k+1 = u k,J k Update blurring matrix For i = 0, . . . , I k -1 $ e h k,i = h k,i -γ k,i 2 A 2 (u k+1 , h k,i ) -1 ∇ 2 f (u k+1 , h k,i ) h k,i+1 = Π D e h k,i , h k+1 = h k,I k , δ k+1 = kh k+1 -h k k, k = k + 1. b h = h k 2. Non-blind image deconvolution ❷ b x = minimize x∈R N κ 2 kH( b h, x) -yk 2 2 + τ ∇ x ∇ y x 1 -Chapter 7 -

Contributions and perspectives

This thesis focused mainly on two problems. In the first part, we investigated the problem of multiple removal in seismic data within the framework of convex optimization. In the second part, we provided a novel penalty based on the ℓ 1 /ℓ 2 function leading to a nonconvex optimization problem and applied it to blind deconvolution of seismic data and images. Both can be seen as facets of source separation, more or less informed.

Contributions

Multiple removal: A geophysical industry standard consists of model-based multiple filtering. One or several realistic templates of a potential multiple are determined off-line, based on primary reflections identified in above layers. These templates are partly inaccurate -in delay, amplitude and frequency -and should be adapted in a time-varying fashion before being subtracted from the recorded data. We proposed a methodology for primary/multiple adaptive separation based on these approximate templates. This framework presented for the first time a relatively generic framework for multiple reflection filtering with:

A noise prior: By taking into account additional random noise into the generic model, we argue that our proposed method also effectively gets rid of more incoherent noise.

Sparsity constraints on signal frame coefficients:

The proposed approach evaluated on seismic data using different orthogonal wavelet bases and tight frames, and various sparsity for wavelet coefficients. Especially, the priors anisotropic structure of 2D seismic data was taken into account by using the hybrid dual-tree M -band wavelets with different wavelets along space and time. The experiments on 2D seismic data showed that the choice of the transformation plays an important role.

129 Slow variation modeling of the adaptive filters: In the literature, no work in multiple removal has endeavored a more systematic study of the smooth variation of the adaptive filters. In this thesis, we proposed a formulation allowing a family of penalties to be applied to the adaptive FIR filters. More precisely, we expected the adapted filters to exhibit bounded variations from one time index to the next one.

Concentration metrics on the filters: The a priori information on the filter coefficients h can also be exploited. Since the energy of these coefficients is limited, the simple norms such as ℓ 1 or ℓ 2 -norms or more sophisticated one such as a mixed ℓ 1,2 or nuclear norms are used.

We proposed a generic methodology to impose sparsity and regularity properties through constrained adaptive filtering in a transformed domain. This method exploits side information from approximate disturbance templates. The employed proximal framework permits different strategies for sparse modeling, additive noise removal, and adaptive filter design under appropriate regularity and amplitude coefficient concentration constraints. The standard sparsity-prone ℓ 1 -norm is usefully complemented by alternative concentration measures, such as ℓ 2 or ℓ 1,2norms, which seem better suited to adaptive filter design. The Bayesian framework provided in this work could also serve to develop other statistical approaches for multiple removal, e.g. by using Markov Chain Monte-Carlo methods. The designed primal-dual algorithm (M+LFBF) solved a constrained minimization problem that alleviated standard regularization issues in finding hyperparameters. The approach demonstrated significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data.

Blind deconvolution: In the context of blind deconvolution, a relatively common assumption is that the signal of interest has a sparse representation. According to [START_REF] Donoho | Wavelet shrinkage: Asymptopia?[END_REF], an ideal measure of sparsity is the ℓ 0 measure. However, due to the nonconvexity of the ℓ 0 pseudo-norm, different alternative measures of sparsity have been proposed. Among them the ℓ 1 measure is the most popular, because it is convex. In this thesis we proposed a new penalty based on a smooth approximation to the ℓ 1 /ℓ 2 function. This work was the result of a collaboration with Audrey Repetti and Emilie Chouzenoux. We developed a proximal-based algorithm to solve variational problems involving this function named SOOT algorithm. This algorithm is based on a new BC-VMFB algorithm for minimizing the sum of:

• a nonconvex smooth function,

• a nonconvex non necessarily smooth function.

We derived theoretical convergence results both on iterates and function values.

The blocks are updated according to a flexible quasi-cyclic rule. The acceleration of the convergence is obtained thanks to the choice of matrices (A j,ℓ (x ℓ )) ℓ∈N based on the MM principle. The performance of the proposed method is demonstrated through a comparison with a recent alternating optimization strategy dealing with the exact ℓ 1 /ℓ 2 term, on the applications, both on seismic data and image blind deconvolution.

Perspectives

Hyperplane constraints: Concerning the multiple removal problem, most published solutions, tailored to specific levels of prior knowledge, are very dependent on seismic data-sets. They generally rely on adapted transforms (Radon, Fourier transforms) and some form of least-squares adaptive filtering. Among the vast literature, we refer to [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF][START_REF] Song | Comparing three feedback internal multiple elimination methods[END_REF] for a recent account on adaptive subtraction of multiples, including shortcomings of standard ℓ 2 -based methods.

With weak primary/multiple decorrelation, poor data stationarity or higher noise levels, traditional methods fail. Due to the parsimonious layering [START_REF] Walden | The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution[END_REF] of the subsurface, sparsity promotion suggests the use of sparsifying transforms (e.g. wavelet/curvelet frames [START_REF] Herrmann | Curvelet imaging and processing: adaptive multiple elimination[END_REF][START_REF] Neelamani | Adaptive subtraction using complex-valued curvelet transforms[END_REF]), potentially combined with robust norms (approximate ℓ 1 in [START_REF] Guitton | Adaptive subtraction of multiples using the L 1 -norm[END_REF])), quasi-norms or source separation methods [START_REF] Donno | Improving multiple removal using least-squares dip filters and independent component analysis[END_REF][START_REF] Duarte | Seismic wave separation by means of robust principal component analysis[END_REF]. To date, their genericity may be limited by the number of possible penalties to constrain feasible solutions, and the crucial issue of hyperparameter determination in such methods. In the context of this thesis, we incorporated plausible knowledge via additional metrics. Prior multiple templates are supplemented with Gaussian noise assumptions, wavelet-domain sparsity, smooth variations and energy concentration criteria. Joint estimation of primaries and adaptive filters is performed with a proximal algorithm. To alleviate the hyperparameter estimation issue, we reformulated the previous approach as a constrained minimization problem. This allows us to more easily determine databased parameters. The various constraint efficiency in wavelet frame subbands for the primary signal may be exploited. Convex sets defined as appropriate hyperplanes can outperform standard ℓ 1 -ball constraints. The minimization problem (4.4) can be reexpressed as:

minimize y∈R N t , h∈R N t P f (y, h) + ι S (y + Rh -z) + ι C 1 ∩C 2 (h) + ι D (F y) (7.1)
where linear operator and ϕ l : R → R. The simplest choice for L is to take the identity operator L = I. An alternative choice, which is reminiscent of Wiener filtering, is

f : R Nt × R NtP → ]-∞, +∞] : (u, v) 7 → αρ(v) + (1 -α)φ(u), with α ∈ [0, 1], φ : R Nt → ]-∞, +∞] and ρ : R NtP → ]-∞, +∞] are two convex functions. S = w ∈ R Nt | kwk 2 ≤ N t σ
L = λ 1 Diag (1 + λ 1 + λ 2 kR (0) k 2 ) -1 , . . . , (1 + λ 1 + λ 2 kR (Nt-1) k 2 ) -1 (7.2) 
where (λ 1 , λ 2 ) ∈ ]0, +∞[ 2 and for every n t ∈ {0, . . . , N t -1}, R (nt) denotes the n t -th row of matrix R. Now let us show some preliminary simulation tests on synthetic seismic data. Note that we use the same synthetic data as the one in Chapter 4. ϕ is chosen to be the ℓ 1 -norm, and ρ is the squared ℓ 2 -norm. D is defined by choosing F to be a (non tight) undecimated wavelet frame with Daubechies wavelets of length 8 and 4 resolution levels. We have considered the two possibilities for D where, in the first case (inequality constraint), ϕ l ≡ ϕ where ϕ is either the ℓ 1 , ℓ 2 or the ℓ ∞ -norm.

In the second case, ϕ l ≡ ϕ where ϕ is either the identity or the sign function; furthermore, L is chosen according to (7.2) where λ 1 = 0.02 and λ 2 = 0.001. In this last case, both affine constraints have also been considered jointly (intersection of the two constraint sets).

Restoration results, using M+LFBF algorithm for the primary signal in the case when σ = 0.01, are displayed in Figure 7.1-right -p. 132. These results were published in (Pham et al., 2014a). From these the figures, one can note that the stochastic part is accurately removed, even if some residual noise remain for instance when the signal is of small amplitude. Table 7. 1 -p. 133 shows the signalto-noise ratios obtained for the estimation of y and s. Simulations have been run for different convex sets D and for two noise levels (with standard-deviation σ = 0.01 and σ = 0.04). The notation ϕ = 0 has been used in the case when no constraint is applied to F y. This allows us to evaluate the gain (up to 1.4 dB) brought by the introduction of prior information on F y through a constrained formulation. to a priori knowledge on the data to be estimated (i.e. primary signal and timevarying filters). A key observation is that some of the related constraint sets can be expressed through hyperplanes, which are not only more convenient to design, but also easier to implement through straightforward projections. We now study the class of hyperplane constraints of interest as well as their inner parameters. In this context, the variance of Gaussian noise b is known. Further study would start from the experimental setting presented here. The first goal would be to estimate the variance of Gaussian noise from the observed signal. A possibility could be to use the method proposed in [START_REF] Roberts | Bayesian approaches to Gaussian mixture modeling[END_REF]. The second goal would be to construct the wavelet constraints using a mix of statistical and convexanalytical tools. This can be further improved by applying interpolation methods [START_REF] Combettes | Wavelet-constrained image restoration[END_REF][START_REF] Chaux | A nonlinear Stein based estimator for multichannel image denoising[END_REF][START_REF] Pesquet | A SURE approach for digital signal/image deconvolution problems[END_REF]. The third goal could be to extend the proposed method to two dimensional data and then compare with other algorithms as [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF].

Echo cancellation An echo is the repetition of a waveform due to reflection from points where the characteristics of the medium, through which the wave propagates, change. Echo cancellation is an important feature of communication systems. Figure 7.2 -p. 134 shows a concept of acoustic echo, while Figure 7.3 -p. 134 is a simple example of signal (sound) with/without echo. Assuming that the signal on the line from the speaker B to the speaker A at time n t ∈ ]0, +∞[, denoted by y B (n t ) is composed of the speech of speaker B, x B (n t ), plus the echo of speaker A,

x echo A (n t ), we have � ∀n t ∈ R * + y B (n t ) = x B (n t ) + x echo A (n t )
. When speaker A is talking, and speaker B is listening and silent, and only echo is present from line B to A, we have y B (n t ) = x echo A (n t ). In (Vaseghi, 2006, Chapter 15), the authors supposed that the echo synthesizer is a FIR filter. The filter output estimate of the echo signal can be expressed as

b x echo A (n t ) = P -1 X p=0 h nt (p)x A (n t -p)
where, h nt (p) are the time-varying coefficients of an adaptive FIR filter, b x echo A (n t ) is an estimate of the echo of speaker A on the line from speaker B to speaker A, and x A (n t ) is the speech of speaker A. Then, they find the filter coefficients which are adapted to minimize the energy of an error signal defined as minimize

hn t kx B (n t ) + x echo A (n t ) - P -1 X p=0 h nt (p)x A (n t -p)k 2 .
According to these assumptions, we consider a problem

y B (n t ) = x B (n t ) + x echo A (n t ) + b(n t )
where b(n t ) is an additional noise. Assuming that the echo of speaker A x echo A (n t ) is related to his speech x A (n t ) through an FIR filter

x echo A (n t ) = P -1 X p=0 h nt (p)x A (n t -p)
where h nt (p) is an unknown impulse response. A main difference with our approach is however that echo cancellation in acoustic applications must be performed in real-time based on adaptive filtering techniques. Then this problem appears to be related to multiple removal with a strong emphasis on online estimation [START_REF] Mossi | Non-linear acoustic echo cancellation using online loudspeaker linearization[END_REF][START_REF] Joo | Acoustic echo cancellation techniques for far-end telephony speech recognition in barge-in situation[END_REF][START_REF] Moller | Objective estimation of speech quality for communication systems[END_REF][START_REF] Lin | Bayesian regularization and nonnegative deconvolution (brand) for acoustic echo cancellation[END_REF].

Image blind deconvolution It is well known that, in seismic blind deconvolution, the reflectivities themselves are considered very sparse. Thus, the smooth approximation ℓ 1 /ℓ 2 can be directly used on the signal as a sparseness measure. However, in the context of image restoration, the image often has a sparse representation with respect to preassigned operator. For instance, our proposed method for image blind deconvolution assumes that the image admits a sparse gradient prior and then, the blind kernel estimation step is performed on the high frequencies of the image. In future work we will extend the proposed method to a more sophisticated linear operator (e.g. a basis or frame...) for which, the sparsity is not directly linked to the image (pixels) but to a representation of it (coefficients). The question raised is, how to find the quadratic majorant of ϕ(Lx), where ϕ(•) = λ log Sparseness measure ℓ p /ℓ q (p ≤ 1 < q) One can find in the literature various sparsity measures. In [START_REF] Hurley | Comparing measures of sparsity[END_REF] several commonly-used sparsity measures are compared based on six intuitive attributes (Robin Hood, Scaling, Rising Tide, Cloning, Bill Gates, and Babies). This paper shows that the pq-mean measure (or ℓ p /ℓ q , with p ≤ 1 < q) satisfies all six criteria. The ℓ 1 /ℓ 2 function is one of pq-mean cases. In future work we want to extend our SOOT algorithm to a general pq-mean measure.

ϕ(x) = λ log ℓ p,α (x) ℓ q,η (x) (7.3) where, p < q, (λ, α, η) ∈ ]0, +∞[ 3 , α ≤ η and ℓ p,α (x), ℓ q,η (x) are defined as follows:

ℓ p,α (x) = N X n=1 (x 2 n + α 2 ) p/2
! 1/p (7.4) and

ℓ q,η (x) = N X n=1 (x 2 n + η 2 ) q/2
! 1/q (7.5)

Let (p, q) ∈ ]0, +∞[ 2 such that, 1 ≤ p < q, one can prove that, for every 0 < α ≤ η ℓ p,α (x) ≤ ϑ ℓ q,η (x) (7.6) where ϑ = N 1/p-1/q .

Image shadow removal In image processing, image shadow removal is an important topic. Shadows are generated by a local and relative absence of light and they are caused by a local decrease in the amount of light that reaches a surface or by a local change in the amount of light rejected by a surface toward the observer. Insights into this problem may apply to other vision problems as well (such as segmentation, enhancement,...) [START_REF] Finlayson | On the removal of shadows from images[END_REF]. According to [START_REF] Tappen | Recovering intrinsic images from a single image[END_REF] an observed image y ∈ R N ×M is a product of two images: one illumination image and one reflectance image. Thus, for every (i, j) ∈ {1, • • • , N } × {1, • • • , M }, let y(i, j) be the observed image, r(i, j) be the reflectance image and x(i, j) be the illumination image, these three images are related by the following equation y(i, j) = r(i, j)x(i, j). (7.7)

Note that, when x(i, j) = 1 then y(i, j) = r(i, j). Figure 7.4 -p. 137 (Weiss, 2001) illustrates the decomposition of an observed image into a product of reflectance image and illumination image. One can suppose that the values of these images are positive, thus this equation can be rewritten in the log domain as follows (7.8) where, Y (i, j) = log(y(i, i)), X(i, j) = log(x(i, i)) and R(i, j) = log(r(i, i)). Normally, the shadows appear in the illumination image, assuming that X = X + S where S is the shadow of X and related to X by a FIR filter h i.e. S = h * X. We now have the problem Y = R + HX (7.9)

Y = R + X
where, H : R N → R N : X 7 → X + h * X. The FIR filter h can be related to the direction of light-source, position of camera, etc. If h is known, then we have a problem related to multiple removal, otherwise, the problem can be seen as a mixture of multiple removal and "blind" deconvolution. Figure 7.5 -p. 138 shows a simple example on the "multiple" removal image, where Barbara image is degraded by the head of Lena. We adapt our code for multiple removal problem in seismic data to recover Barbara image. Note that, the model of Lena's head is supposed to be known. -Appendix A -

Auxiliary proofs

A.1 Proof of Proposition ??

The proof of this result is equivalent to prove that the following expression is positive:

ℓ 2 2,η (x) -2 α + η √ N ℓ 1,α (x) = N X n=1 x 2 n + η 2 -2 α + η √ N N X n=1 p x 2 n + α 2 -α = N X n=1 x 2 n + η 2 N -2 α + η √ N p x 2 n + α 2 -α = N X n=1 (x 2 n + α 2 ) -2 α + η √ N p x 2 n + α 2 + 2α α + η √ N -α 2 + η 2 N = N X n=1 (x 2 n + α 2 ) -2 α + η √ N p x 2 n + α 2 + α + η √ N 2 ! = N X n=1 p x 2 n + α 2 -α - η √ N 2 ≥0.
The minimum is reached when

x n = q η 2 N + 2 αη √ N or x n = - q η 2
N + 2 αη √ N for every n ∈ {1, . . . , N }.
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A.2 Proof of Proposition ??

To simplify some expressions, let us denote

u(x) = x 1 (x 2 1 + α 2 ) 1/2 , x 2 (x 2 2 + α 2 ) 1/2 , • • • , x N (x 2 N + α 2 ) 1/2 ⊤ .
Now, we calculate the gradient and the Hessian of ℓ 1,α (x) and ℓ 2,η (x), and its Hessian is

∇ℓ 1,α (x) = x 1 (x 2 1 + α 2 ) 1/2 , • • • , x N (x 2 N + α 2 ) 1/2 ⊤ = u(x) (A.1) ∇ 2 ℓ 1,α (x) = Diag α 2 (x 2 1 + α 2 ) 3/2 , • • • , α 2 (x 2 N + α 2 ) 3/2 (A.2) ∇ℓ 2,η (x) =    x 1 P N n=1 x 2 n + η 2 1/2 , • • • , x N P N n=1 x 2 n + η 2 1/2    = 1 ℓ 2,η (x) x (A.3) ∇ 2 ℓ 2,η (x) = 1 ℓ 2,η (x) I N - 1 ℓ 2,η (x) 2
∇ 2 e ϕ(x) = 1 ℓ 2,η (x) ∇ 2 ℓ 1,α (x) - 1 ℓ 2,η (x) 2 u(x)∇ℓ 2,η (x) ⊤ - 1 ℓ 2,η (x) 3 x∇ℓ 1,α (x) ⊤ + ℓ 1,α (x) I N + 3 ℓ 1,α (x) ℓ 2,η (x) 4 x∇ℓ 2,η (x) ⊤ = 1 ℓ 2,η (x) ∇ 2 ℓ 1,α (x) - 1 ℓ 2,η (x) 3 u(x)x ⊤ - 1 ℓ 2,η (x) 3 xu(x) ⊤ - ℓ 1,α (x) ℓ 2,η (x) 3 I N +3 ℓ 1,α (x) ℓ 2,η (x) 5 xx ⊤ = 1 ℓ 2,η (x) ∇ 2 ℓ 1,α (x) - ℓ 1,α (x) ℓ 2,η (x) 3 I N - 1 ℓ 2,η (x) 3 u(x)x ⊤ + xu(x) ⊤ + 3 ℓ 1,α (x) ℓ 2,η (x) 5 xx ⊤ .
Then, the Hessian of e ϕ(x) can be compactly written as follows We now turn our attention to the first term of (A.7), as D(x) is a diagonal matrix, it follows that

|||D(x)||| = 1 ℓ 2,η (x) max 1≤n≤N α 2 (x 2 n + α 2 ) 3/2 - ℓ 1,α (x) ℓ 2,η (x) 2 .
Using Proposition ??. we have

0 < ℓ 1,α (x) ℓ 2,η (x) 2 ≤ 1 2(α + η √ N ) . Moreover 0 < α 2 (x 2 n + α 2 ) 3/2 ≤ 1 α .
On the one hand,

|||D(x)||| ≤ 1 η max ( 1 α , 1 2(α + η √ N ) ) = 1 ηα . (A.8)
On the other hand, the last term of (A.7) is z

(x)x ⊤ + xz(x) ⊤ 2 ≤ z(x)x ⊤ + xz(x) ⊤ 2 ≤ (kz(x)kkxk + kxkkz(x)k) 2 =4kxk 2 kz(x)k 2 =4kxk 2 N X n=1 3 2 ℓ 1,α (x) ℓ 2,η (x) 5 x n - 1 ℓ 2,η (x) 3 x n (x 2 n + α 2 ) 1/2 2 =4 kxk 2 ℓ 2,η (x) 6 N X n=1 x 2 n 3 2 ℓ 1,α (x) ℓ 2,η (x) 2 - 1 (x 2 n + α 2 ) 1/2 2 .
For every x ∈ R N we have, 0 < We now compute the gradient and Hessian of ϕ(x) ∇ϕ(x) =λ ∇ℓ 1,α (x) ℓ 1,α (x) + β -λ 2 ∇ℓ 2,η (x) 2 ℓ 2,η (x) 2 (A.13)

∇ 2 ϕ(x) = λ (ℓ 1,α (x) + β) 2
∇ 2 ℓ 1,α (x) (ℓ 1,α (x) + β) -∇ℓ 1,α (x)∇ℓ 
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Close-up when e ρ is the ℓ 1,2 -norm; (a) input data z (black line σ = 0.01), primary ȳ (blue line), (b) output separated primary ŷ (red line) and primary ȳ (blue line); (c) input data z (black line σ = 0.08), primary ȳ (blue line), (d) output separated primary ŷ (red line) and primary ȳ (blue line). 4.6 Significance index abacus with different "significance levels" (and probability π f /b , shaded): 0.5 (0.17), 1 (0.14), 2 (0.05) and 4 (0.0013). . . . . . 4.7 Data composed by three events (σ = 0.08), one primary and two multiples, SNR = 1.71dB (a); multiples composed by two estimated events (b); output separated primaries with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], SNR = 3.11 dB(c) and our method, SNR = 16.77 dB (d); output adapted multiples with [START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] 
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 14 Figure 1.4: This old seismic line comes from offshore Labrador (an Atlantic-type divergent margin), which, locally, overlies late Cretaceous rift-type basins. (Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm ).
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 15 Figure 1.5: Marine section from offshore Labrador shows several multiples induced by the sea level.(Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm).
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  Figure 2.7 -p. 21 illustrates the wavelet coefficients of the Piece-Polynomial signal. Symlet wavelets of length 8 over 5 resolution levels are used.
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 29210 Figure 2.9: Top: Noisy image SNR= 14.73 dB (left); Wavelet coefficients (right), Bottom: Estimation by using Wiener filter, with λ = 0.7, SNR= 17.17 dB (left); Estimation with a translation invariant soft thresholding, SNR= 18.55 dB (right)
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 31 Figure 3.1: Principles of marine seismic data acquisition and wave propagation. Towed streamer with hydrophones. Reflections on different layers (primaries in blue), and reverberated disturbance (multiple in dashed red).
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 32 Figure 3.2: Considered simulated seismic signals. From top to bottom: primary (unknown) y, template r, multiple (unknown) s and observed signal z.
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 34 Figure 3.4: ℓ 1 -norm (in blue), Huber function with χ = 8 and τ = 1 (in green) and Huber function with χ = 8 and τ = 1 2 (in dashed red).
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 3536 Figure 3.5: Results by using FB and M+SFBF algorithms. From up to down: original signal y, estimated signal b y 1 by FB, estimated signal b y 2 by M+SFBF, model r, multiple s, estimated multiples b s 1 by FB, estimated multiple b s 2 by M+SFBF and observed signal z.
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 38393 Figure 3.8: Results by using PPXA+ algorithm. From top to bottom: original signal y, estimated signal b y, model r, multiple s, estimated multiples b s and observed signal z.
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 311 Figure 3.11: Comparison of the results obtained when varying P tap coefficient from 6 to 16 in using two a priori functions e ρ = ℓ 1 (in blue) and e ρ = ℓ 2 2 (in red).
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 41 Figure 4.1: Principles of marine seismic data acquisition and wave propagation. Towed streamer with hydrophones. Primaries (in blue), and two different types of multiple pegleg (dashed red) and water-bottom (dotted red).
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 42 Figure 4.2: Synthetic filter profiles.

  Figure 4.4 -p. 74. The constraints C 1 and C 2 are chosen according to (4.6) and (4.7), with ε 1,p = 0.1 and ε 2,p = 0.07 for every p. The bounds of the constraints are calculated empirically on ideal signals. For real signals, we propose to infer those constants from other methods.
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 4 8(c) -p. 78, while a remnant -45 • shadow affects the proximal multiple removal in its central part of 

  Normalized difference significance index.
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 43 Figure 4.3: Considered simulated seismic signals with noise level σ = 0.08. From top to bottom: primary (unknown) ȳ, estimated ŷ, first template r 0 , second template r 1 , multiple (unknown) s, estimated ŝ, and observed signal z.
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 444546 Figure 4.4: Generalized Gaussian modeling of seismic data wavelet frame decomposition with different power laws.

Figure 4 . 7 :

 47 Figure 4.7: Data composed by three events (σ = 0.08), one primary and two multiples, SNR = 1.71dB (a); multiples composed by two estimated events (b); output separated primaries with (Ventosa et al., 2012), SNR = 3.11 dB(c) and our method, SNR = 16.77 dB (d); output adapted multiples with (Ventosa et al., 2012), SNR = 3.1 dB (e) and our method, SNR = 15.44 dB (f ).
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 48 Figure 4.8: Portion of a common receiver gather: (a) recorded seismic data with a partially appearing primary, (b) multiple wavefield template; subtraction results, low field-noise case: primaries (separated from multiples) with (c)[START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], (d) the proposed method; subtraction results, high field-noise case: primaries (separated from multiples) with (e)[START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF], (f ) the proposed method.
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 51 Figure 5.1: Seismic data gives the explorationist a picture of the geology of the subsurface (image from[START_REF] Hill | A seismic oil and gas primer[END_REF]).
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 52 Figure 5.2: From left to right: observed image z, multiple s, and primary y.

Figure 5 . 3 :

 53 Figure 5.3: Primary data (top); dual-tree M -band wavelet: primal coefficients (bottomleft), and dual coefficients (bottom-right).

  ≤ λ o where λ ∈ ]0, +∞[ , d = Lh and ρ : R � K → [0, +∞[ is a lower-semicontinuous convex function. Now let us focus on the choice of L:

  Figure 5.4p. 89. It is constructed as in Chapter 4 with N o = 512 seismic traces of length N t = 512 with filters of lengths P 0 = 4 and P 1 = 5. The constraint sets C 1,1 , C 1,2 , C 2,1 and C 2,2 are defined by (5.15) and (5.16) where, for every (j, p, n t , n o ), ε (no) j,p = 0.05 and ε (nt) j,p = 0.0001. The observed image z (with σ = 0.04) is presented at the top of Figure 5.4 -p. 89, in which top and bottom hyperbolas correspond to primaries, while the medium one corresponds to a multiple event. Regarding convex sets D and C 3 , we choose ϕ l = | • |, L = R and we investigate three possible choices for ρ:
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 54 Figure 5.4: From top to bottom: observed image z with σ = 0.04, primary y and multiple s.
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 55 Figure 5.5: From top to bottom: estimated primary y with (Ventosa et al., 2012), with 1D version in Chapter 4 and with the proposed 2D version.
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 56 Figure 5.6: Observed image z with σ = 0.16.
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 57 Figure 5.7: From top to bottom: estimated primary y with (Ventosa et al., 2012), with 1D version in Chapter 4 and with the proposed 2D version.
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 58 Figure 5.8: From top to bottom: observed image z with σ = 0.04, primary y and multiple s.
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 59 Figure 5.9: From top to bottom: estimated primary y with (Ventosa et al., 2012), with 1D version in Chapter 4 and with the proposed 2D version.
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 5 Figure 5.11: From top to bottom: estimated primary y with (Ventosa et al., 2012), with 1D version in Chapter 4 and with the proposed 2D version.
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 555 Figure5.12: From top to bottom: recorded seismic data with a partially appearing primary and a cropped of recorded seismic data.
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 61 Figure 6.1: Unknown seismic signal x (top), blurred/noisy observation y (bottom). the measurement process: y = H(h, x) + b ,(6.1) 
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Example 6 . 2 . 1

 621 Assume that we have two signals x and y of length 2N (Figure ??p. ??), wherex n = 1 2N for every n ∈ {-N + 1, • • • , 0, 1, . . . , N } and
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 62 Figure 6.2: Plots of signals x (green) and y (red), with N = 10.
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 63 Figure 6.3: Evaluation of ϕ 0 for power laws.
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 64 Figure 6.4: Measures for the case of N = 2: ℓ 0 -"quasi-norm" at the top left, ℓ 1 -norm at the top right, ℓ 1/2 -quasi-norm at the bottom left and ℓ 1 /ℓ 2 -function at the bottom right.

  thus χ is an increasing function on [0, η/ √ 3] and a decreasing function on ]η/ √ 3, +∞[, and max u∈[0,+∞[ χ
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 66 Figure 6.6: Reconstruction time for different numbers of inner-loops J k ≡ J (average over thirty noise realizations).

Figure 6 . 7 :

 67 Figure 6.7: Original signal x (continuous red), estimated bx with SOOT algorithm ??(continuous black) and Overall 1 algorithm ?? (dashed green).
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 6869 Figure 6.8: Original blur h (continuous red), estimated b h with SOOT algorithm ?? (continuous black) and Overall 1 algorithm ?? (dashed green).
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 6 Figure 6.10: Top-left: Input blurry image; top-right: original blur; middle-left: deblurred with Overall algorithm ?? (SNR = 20.97 dB) middle-right: deblurred with SOOT 2 algorithm ?? (SNR = 22.80 dB); bottom-left: estimated blur with Overall algorithm ?? and bottom-right: estimated blur with SOOT 2 algorithm ??.
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 6 Figure 6.11: Top-left: Input blurry image; top-right: original blur; middle-left: deblurred with Overall algorithm ?? (SNR = 15.20 dB); middle-right: deblurred with SOOT 2 algorithm ?? (SNR = 16.06 dB); bottom-left: estimated blur with Overall algorithm ?? and bottom-right: estimated blur with SOOT 2 algorithm ??.

2 and σ 2 Figure 7 . 1 :

 271 Figure 7.1: Left: Observed signal z (black; σ = 0.01), original ȳ (blue); Right: Estimated signal ŷ (magenta), original signal ȳ (blue). D is the intersection of two hyperplanes defined from the identity and the sign functions.
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 72 Figure 7.2: Concept of acoustic echo.
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 73 Figure 7.3: From top to bottom: signal with echo and signal without echo.
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 1721 α (•)+β ℓ 2,η (•)andL is a linear operator from R N to R M ? The following simple proposition shows the relationship between the quadratic majorants of ϕ and ϕ• L. Let ζ : R M → R be a differentiable function. Let z ∈ R M . For every z ′ ∈ R M we have a SPD matrix U (z) ∈ R M ×M such that q(z ′ , z) = ζ(z) + (z ′z) ⊤ ∇ζ(z) + 1 2 kz ′zk 2 U (z) , q(z ′ , z) is a quadratic majorant of the function ζ. Then, e q(z ′ , z) = e ζ(z) + (z ′z) ⊤ ∇ e ζ= L ⊤ U (z)L is a quadratic majorant of the function e ζ = ζ • L.
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 74 Figure 7.4: From left to right: observed image y, reflectance image r and illumination image x.
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 75 Figure 7.5: From top to bottom: Observed image z (with Lena's head inclusion), original image y and estimated image ŷ with the M+LFBF algorithm 5 (on the left are the full versions and on the right are their zoomed versions).

  x∇l 2,η (x) ⊤

  η (x)3 u(x).By the triangle inequality we can deduce that∇ 2 e ϕ(x) = D(x) + z(x)x ⊤ + xz(x) ⊤ ≤ |||D(x)||| + z(x)x ⊤ + xz(x) ⊤ . (A.7) 

2 (u+η 2 ) 3 . 3

 2233 The derivative of θ is given, for every u ∈ [0, +∞[, byθ(u) = 4 α 2 u(2η 2u) (u + η 2 ) 4 ,thus θ is an increasing function on [0, 2η 2 ] and a decreasing function on [2η 2 , +∞[(A.9) and (A.8) we then deduce that, for everyx ∈ R N ∇ 2 e ϕ(x) ≤ |||D(x)||| + z(x)x ⊤ + xz(x)Proof of Proposition ??Firstly let us calculate the gradient and Hessian of ℓ 2,η (x) 2 ,
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  Definition 2.1.2 A subset C of R N is said to be convex if either C = ∅ or, whenever we take two points in C, the segment that connects them is entirely contained in C, i.e., Let C ∈ R N . The support function of C is defined as

	∀λ ∈ [0, 1], ∀(x, y) ∈ C 2 , λx + (1 -λ)y ∈ C
	Figure 2.4a -p. 16 illustrates a convex set. The black line segment joining points x
	and y lies within the green set and this is true for all points x and y in the green set.
	Figure 2.4b -p. 16 shows a nonconvex set.
	Definition 2.1.3

  2.4cp. 16) if its epigraph is a convex subset of R N ×R. Moreover, f is concave (or nonconvex) if -f is convex. Let f : R N → ]-∞, +∞],and let x ∈ R N . Then f is lower semicontinuous at x if, for every sequence

	Definition 2.1.6

  .2p. 69 as well) indicate the best result for a given decomposition level. Numbers in italics denote the best SNRs obtained, irrespective of the number of wavelet levels. The standard deviation tables are combined with Table 4.1 -p. 68 and Table 4.2 -p. 69 in Table

Table 4 .

 4 1,2 -norms, either at lower and higher noise level.

					Noise levels (σ)			
				0.01	0.02	0.04	0.08
	wavelet	e ρ ℓ 1	F \ L b f	4 19.1 20.6 5 21.3 21.8	4 19.2 19.8 5 20.3 20.8	4 16.5 18.2	5 16.7 18.5	4 12.3 14.7	5 12.4 15.0
	Haar	ℓ 2	b f	20.2 21.6 21.9 22.4 21.1 21.3 18.5 18.8 14.9 15.2 20.1 20.5 16.9 16.9 12.5 15.0
		ℓ 1,2	b f	18.9 20.3 21.3 21.8	18.6 19.5 20.1 20.6	16.2 18.0	16.5 18.3	12.2 14.6	12.3 14.9
		ℓ 1	b f	20.9 21.8 22.0 20.8 20.6 21.3 21.6 20.1	18.0 20.1	18.0 20.2	14.3 17.4	14.2 17.5
	Symlet	ℓ 2	b f	21.1 22.1 21.2 22.3 22.7 22.1 22.2 20.6 20.7 17.7 17.7 21.0 18.3 18.3 14.4 14.4
		ℓ 1,2	b f	20.1 21.1 20.4 21.8 22.1 21.2 21.5 20.0	17.9 19.9	17.7 20.0	14.2 17.3	14.1 17.3
		ℓ 1	b f	19.9 20.3 20.1 21.8 22.0 21.5 21.6 20.0	17.9 20.2	17.9 20.3	14.1 17.6	13.9 17.5
	Daubechies	ℓ 2	b f	21.4 22.3 22.5 22.8 22.3 22.4 20.8 20.7 17.9 17.7 21.4 21.5 18.4 18.21 14.3 14.0
		ℓ 1,2	b f	19.2 20.4 19.5 21.9 22.1 21.3 21.6 19.2	17.6 20.0	17.5 20.1	14.0 17.5	13.2 17.3

1: SNR, averaged over 100 noise realizations for the estimations of y.
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 4 

						Noise levels (σ)		
				0.01	0.02	0.04	0.08
	wavelet	e ρ ℓ 1	F \ L b f	4 26.3 27.6 5 27.0 28.3	4 25.3 25.6 25.7 5 25.8	4 22.1 22.1	5 22.3 22.2	4 18.4 18.4	5 18.4 18.4
	Haar	ℓ 2	b f	27.4 28.4 28.4 28.7 25.7 25.8 25.7 26.0	21.8 21.8	21.9 21.8	17.7 17.8	17.8 17.8
		ℓ 1,2	b f	26.2 27.4 28.0 28.4	25.0 25.5	25.7 25.8	22.2 22.4 22.3 22.3 18.6 18.6 18.6 18.6
		ℓ 1	b f	27.6 28.0 28.1 27.6 25.8 25.5 25.6 25.5	22.3 22.1	22.2 22.1	18.5 18.4	18.5 18.4
	Symlet	ℓ 2	b f	28.2 28.6 25.8 28.3 28.5 25.6 25.6 21.8 25.7 20.1	21.8 21.8	17.8 17.8	17.8 17.7
		ℓ 1,2	b f	26.9 27.7 25.8 28.0 28.1 25.5 25.6 22.3 25.5 22.5 22.4 18.7 18.7 22.2 18.6 18.6
		ℓ 1	b f	26.7 27.1 28.0 28.1	25.3 25.5	25.3 25.6	22.1 22.1	21.2 22.1	18.4 18.4	18.4 18.4
	Daubechies	ℓ 2	b f	27.9 28.5 28.4 28.6	25.8 25.9 25.6 25.6	21.8 21.8	21.8 21.8	17.8 17.8	17.8 17.8
		ℓ 1,2	b f	26.5 27.1 28.0 28.2	25.1 25.5	25.3 25.6 22.3 22.3 18.6 22.2 22.2 18.6 18.6 18.6

2: SNR, averaged over 100 noise realizations for the estimations of s. et al., 2015) on signal sparsity or filter regularity.

Figure 4.7 -p. 77 presents synthetic 2D
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							Noise levels (σ)		
				0.01	0.02	0.04	0.08
	wavelet	e ρ ℓ 1	F \ L b f	4 0.26 0.16	5 0.22 0.22 4 0.18 0.25	5 0.26 0.33 4 0.27 0.37	5 0.35 0.43 0.46 4 5 0.37 0.53 0.52
	Haar	ℓ 2	b f	0.26 0.29 0.16 0.24	0.26 0.24 0.23 0.34 0.34 0.51 0.51 0.26 0.33 0.35 0.44 0.46
		ℓ 1,2	b f	0.26 0.17	0.24 0.19	0.36 0.25	0.30 0.31	0.37 0.39	0.36 0.40	0.44 0.52	0.47 0.53
		ℓ 1	b f	0.27 0.19 0.31 0.19 0.22 0.34	0.32 0.39	0.41 0.54	0.43 0.53 0.59 0.58 0.72 0.78
	Symlet	ℓ 2	b f	0.26 0.19 0.25 0.26 0.39 0.38 0.53 0.59 0.34 0.21 0.34 0.35 0.46 0.49 0.65 0.72
		ℓ 1,2	b f	0.28 0.21	0.21 0.22	0.34 0.37	0.36 0.41	0.44 0.58	0.47 0.63	0.55 0.59 0.75 0.82
		ℓ 1	b f	0.29 0.19 0.22 0.34 0.23 0.35	0.38 0.38	0.44 0.56	0.47 0.53 0.55 0.59 0.74 0.78
	Daubechies	ℓ 2	b f	0.27 0.32	0.26 0.29 0.36 0.42 0.43 0.53 0.54 0.26 0.34 0.36 0.48 0.53 0.67 0.72
		ℓ 1,2	b f	0.31 0.21	0.26 0.22 0.37 0.47	0.39 0.40	0.47 0.59	0.48 0.53 0.55 0.62 0.77 0.82

3: Standard deviations for SNRs from estimations of y in Table

4

.

1 -p. 68. 
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	al.,

4: Standard deviations for SNRs from estimations of s in Table 4.2 -p. 69. 2012) may suffer from a little more pre-echo above the primary in the top-left corner of

Table 5 . 1 :

 51 Comparison of the estimated primaries with the 2D proposed version (

			2 ) 3.88 6.89 13.09
			ℓ 2 (×10 2 ) 5.42 8.80 16.43
	(Ventosa et al., 2012)	ℓ 1 (×10 2 ) 4.32 7.15 13.01 ℓ 2 (×10 2 ) 6.70 9.50 16.50
	1D version in Chapter 4	ℓ 1 (×10 2 ) 2.06 2.87 ℓ 2 (×10 2 ) 5.36 6.28	3.75 7.14
		orthogonal	ℓ 1 (×10 2 ) 1.30 1.94	2.73
	ρ = ℓ 2	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.67 3.73 ℓ 1 (×10 2 ) 1.06 1.38 ℓ 2 (×10 2 ) 3.01 3.25 ℓ 1 (×10 2 ) 0.77 1.29	4.91 1.91 3.89 1.65
		dual-tree ( * )	ℓ 2 (×10 2 ) 1.83 3.31 3.66
		orthogonal	ℓ 1 (×10 2 ) 1.31 1.92	2.77
	ρ = ℓ 1	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.57 3.59 ℓ 1 (×10 2 ) 0.88 1.26 ℓ 2 (×10 2 ) 2.16 2.69 ℓ 1 (×10 2 ) 0.79 1.09	5.05 1.86 3.63 1.58
		dual-tree ( * )	ℓ 2 (×10 2 ) 1.86 2.34	3.33
		orthogonal	ℓ 1 (×10 2 ) 1.19 1.77	2.63
	ρ = ℓ 1,2	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.22 3.11 ℓ 1 (×10 2 ) 0.96 1.35 ℓ 2 (×10 2 ) 2.68 3.22 ℓ 1 (×10 2 ) 0.71 1.02	4.62 1.99 4.33 1.50
		dual-tree ( * )	ℓ 2 (×10 2 ) 1.44 1.95	2.86
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	.3 -p. 98 (for estimated primaries) and Table 5.4 -p. 101

Table 5 . 2 :

 52 Comparison of the estimated multiples with the 2D proposed version (

Table 5 . 3 :

 53 Comparison of the estimated primaries with the 2D proposed version (

			2 ) 3.88	6.89 13.09
			ℓ 2 (×10 2 ) 5.42	8.80 16.43
	(Ventosa et al., 2012)	7.87 13.36 ℓ 2 (×10 2 ) 8.97 11.14 17.30 ℓ 1 (×10 2 ) 5.38
	1D version in Chapter 4	ℓ 1 (×10 2 ) 2.05 ℓ 2 (×10 2 ) 4.75	2.91 6.26	4.07 8.06
		orthogonal	ℓ 1 (×10 2 ) 1.53	2.27	3.34
	ρ = ℓ 2	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.56 ℓ 1 (×10 2 ) 1.19 ℓ 2 (×10 2 ) 2.34 ℓ 1 (×10 2 ) 1.07	3.59 1.69 2.93 1.41	5.33 2.42 4.01 1.96
		dual-tree ( * )	ℓ 2 (×10 2 ) 2.20	2.50	3.20
		orthogonal	ℓ 1 (×10 2 ) 1.66	2.33	3.37
	ρ = ℓ 1	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.96 ℓ 1 (×10 2 ) 1.23 ℓ 2 (×10 2 ) 2.51 ℓ 1 (×10 2 ) 1.14	3.78 1.70 2.93 1.47	5.40 2.39 3.86 2.00
		dual-tree ( * )	ℓ 2 (×10 2 ) 2.42	2.66	3.30
		orthogonal	ℓ 1 (×10 2 ) 1.51	2.25	3.32
	ρ = ℓ 1,2	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.48 ℓ 1 (×10 2 ) 1.10 ℓ 2 (×10 2 ) 1.76 ℓ 1 (×10 2 ) 0.95	3.54 1.58 2.36 1.31	5.27 2.32 3.49 1.87
		dual-tree ( * )	ℓ 2 (×10 2 ) 1.60	2.07	2.83

Table 5 . 4 :

 54 Comparison of the estimated multiples with the 2D proposed version ( * ) in using three different 2D wavelet transforms, over three noise levels, and three a priori functions ρ ∈ {ℓ 2 , ℓ , ℓ 1,2 }, with[START_REF] Ventosa | Adaptive multiple subtraction with wavelet-based complex unary Wiener filters[END_REF] and with the 1D version in Chapter 4. (These results correspond to the data in Figure5.8 -p. 96).

			2 ) 7.10	9.81 15.59
			ℓ 2 (×10 2 ) 15.18 16.68 21.68
	(Ventosa et al., 2012)	ℓ 1 (×10 2 ) 3.46 ℓ 2 (×10 2 ) 8.17	3.63 8.34	4.10 9.02
	1D version in Chapter 4	ℓ 1 (×10 2 ) 1.55 ℓ 2 (×10 2 ) 4.92	2.24 6.77	3.34 9.35
		orthogonal	ℓ 1 (×10 2 ) 0.54	0.64	0.86
	ρ = ℓ	basis ( * ) SI frame ( * ) M -band	2.20 0.66 2.33 ℓ 1 (×10 2 ) 0.58 0.62 ℓ 2 (×10 2 ) 1.88 ℓ 1 (×10 2 ) 0.58 ℓ 2 (×10 2 ) 2.10	2.89 0.87 2.94 0.77
		dual-tree ( * )	ℓ 2 (×10 2 ) 2.04 2.13	2.54
		orthogonal	ℓ 1 (×10 2 ) 0.72	0.75	0.93
	ρ = ℓ	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 2.46 ℓ 1 (×10 2 ) 0.64 ℓ 2 (×10 2 ) 2.30 ℓ 1 (×10 2 ) 0.68	2.58 0.68 2.34 0.71	3.08 0.82 2.68 0.84
		dual-tree ( * )	ℓ 2 (×10 2 ) 2.30	2.35	2.70
		orthogonal	ℓ 1 (×10 2 ) 0.52	0.60	0.78
	ρ = ℓ 1,2	basis ( * ) SI frame ( * ) M -band	ℓ 2 (×10 2 ) 1.77 ℓ 1 (×10 2 ) 0.45 ℓ 2 (×10 2 ) 1.36 ℓ 1 (×10 2 ) 0.44	2.05 0.49 1.43 1.89 2.57 0.65 0.50 0.64
		dual-tree ( * )	ℓ 2 (×10 2 ) 1.34	1.54	1.95

  1. Proposition 6.2.5 ϕ has a µ-Lipschitzian gradient on R N , with Our minimization strategy relies on two optimization principles. Let U ∈ R M ×M be a symmetric positive definite (SPD) matrix. Firstly, we define the U -weighted proximity operator (Hiriart-Urruty and Lemaréchal, 1993, Sec. XV.4),[START_REF] Combettes | Variable metric quasi-Fejér monotonicity[END_REF] of a proper, lower semicontinuous, convex function ψ : R M →] -∞, +∞] at z ∈ R M , relative to the metric induced by U , and denoted by prox U,ψ (z), as the unique minimizer of ψ + 1 2 k • -zk 2 U , where k.k U denotes the weighted Euclidean norm, i.e., (∀z ∈ R M

	The proof is given in Appendix A.2.								
	µ=λ	max	1 βα	,	1 η 2	+	1 2αβ	+	1 2η 2	.	(6.6)
	The proof is given in Appendix A.3.								
	6.3 Optimization model									
	6.3.1 Optimization tools									
	Proposition 6.2.4 e ϕ has a e µ-Lipschitzian gradient on R N (i.e., for every (z, z ′ ) ∈ � R N 2 , k∇ e ϕ(z) -∇ e ϕ(z ′ )k ≤ e µkz -z ′ k), with
		e µ=λ	1 +	4 √ 3	3	1 αη	.			(6.5)

  2 , the operator e H : R 2N 2 → R 2N 2 :

	u 7 →	H(h, u x ) H(h, u y )	combines blur and gradient. The penalties are Ψ

Table 7 . 1 :

 71 SNR for the estimations of y and s (SNR y and SNR s , resp.) in dB considering different convex constraint sets D and two noise levels. Upper table part: "classical constraints" defined as in 4.3.3.3 and lower table part: hyperplane constraints.

	These results allow us to integrate a large panel of hard constraints corresponding

  1,α (x) ⊤ -λ 2ℓ 2,η (x) 4 ∇ 2 ℓ 2,η (x) 2 ℓ 2,η (x) 2 -∇ℓ 2,η (x) 2 ∇(ℓ 2,η (x) 2 ) ⊤ (x) + β) 2 u(x)u(x) ⊤ + 2λ ℓ 2,η (x) 4 xx ⊤ .We need to find an upper bound for (A.16). First observe that, for every 1 ≤ n ≤ N , +α 2 ) 3/2 ≤ 1 α for every n ∈ {1, . . . , N }, thus

	Since for every n ∈ {1, . . . , N }, 0 < 1 � � N n=1 � √ x 2 n +α 2 -α � +β � 2 ≤ 1 β 2 , then p x 2 n + α 2 -α		≥ 0, 0 <	� √	x 2 n +α 2 +α x 2 n +α 2	�	α and ≤ 2
	P N n=1 (	p	1 n + α 2 -α) + β x 2	2	N X n=1	x 2 n n + α 2 ≤ x 2 ≤	2 α 2 α	. n + α 2 -α) + β p x 2 n + α 2 -α x 2 p n=1 P N P N n=1 ( 1 4β = 1 2αβ .	(A.14) (A.17) 2
	Using Equations (A.1), (A.2), (A.11), and (A.12), we obtain ∇ 2 ϕ(x) = λ ℓ 1,α (x) + β Diag Moreover, 0 < 1 � N n=1 x 2 n +η 2 ≤ 1 α 2 η 2 and 0 < (x 2 α 2 (x 2 n + α 2 ) 3/2 1≤n≤N -λ max 1≤n≤N 1 P N n=1 p x 2 + β α 2 (x 2 n + α 2 ) 3/2 -P N n=1 x 2 ! -1 n + η 2 λ ℓ 2,η (x) 2 I N n + α 2 -α (ℓ 1,α (A.15) ≤ max 1 βα , 1 η 2 (A.18)
	Thus, using the triangle inequality, we can deduce that ∇ 2 ϕ(x) ≤ λ ℓ 1,α (x) + β Diag α 2 (x 2 n + α 2 ) 3/2 0 ≤ 2 P N n=1 x 2 n P N n=1 x 2 n + η 2 2 ≤ 1 2η 2 . 1≤n≤N + λ (ℓ 1,α (x) + β) 2 ku(x)k 2 + 2λ Finally, from (A.17), (A.18), and (A.19), we also have and ℓ 2,η (x) 4 kxk 2 =λ max 1≤n≤N 1 P N n=1 p x 2 + λ P N n=1 ( p x 2 n + α 2 -α) + β 2 N X n=1 x 2 n x 2 n + α 2 + 2λ ! -ℓ 2,η (x) 2 I N λ n=1 x 2 (A.19) (A.16) P N n=1 x 2 n + η 2 . n P N n + α 2 -α + β α 2 (x 2 n + α 2 ) 3/2 -∇ 2 ϕ(x) ≤ λ max 1 βα , 1 η 2 + 1 2αβ + 1 (A.20) 2η 2 1 P N n=1 x 2 n + η 2 which yields the conclusion.
			x 2 n n + α 2 = x 2 =	p x 2 n + α 2 -α x 2 n + α 2 p x 2 n + α 2 + α p x 2 n + α 2 -α p x 2 n + α 2 + α x 2 n + α 2	.
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and h estimates, especially in terms of ℓ 1 norm. Interestingly, the SOOT algorithm ?? is also significantly faster in this application. List of Tables 2.1 Properties of proximity operators: