
HAL Id: tel-01355498
https://pastel.hal.science/tel-01355498

Submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seismic wave field restoration using spare
representations and quantitative analysis

Mai-Quyen Pham

To cite this version:
Mai-Quyen Pham. Seismic wave field restoration using spare representations and quantitative analysis.
Signal and Image Processing. Université Paris-Est, 2015. English. �NNT : 2015PESC1028�. �tel-
01355498�

https://pastel.hal.science/tel-01355498
https://hal.archives-ouvertes.fr


Université Paris-Est
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Abstract

This thesis deals with two different problems within the framework of convex and non
convex optimization. The first one is an application to multiple removal in seismic data
with adaptive filters and the second one is an application to blind deconvolution problem
that produces characteristics closest to the Earth layers. More precisely:

Unveiling meaningful geophysical information from seismic data requires to deal with
both random and structured “noises”. As their amplitude may be greater than signals of
interest (primaries), additional prior information is especially important in performing
efficient signal separation. We address here the problem of multiple reflections, caused by
wave-field bouncing between layers. Since only approximate models of these phenomena
are available, we propose a flexible framework for time-varying adaptive filtering of seis-
mic signals, using sparse representations, based on inaccurate templates. We recast the
joint estimation of adaptive filters and primaries in a new convex variational formulation.
This approach allows us to incorporate plausible knowledge about noise statistics, data
sparsity and slow filter variation in parsimony-promoting wavelet transforms. The de-
signed primal-dual algorithm solves a constrained minimization problem that alleviates
standard regularization issues in finding hyperparameters. The approach demonstrates
significantly good performance in low signal-to-noise ratio conditions, both for simulated
and real field seismic data.

In seismic exploration, a seismic signal (e.g. primary signal) is often represented
as the results of a convolution between the “seismic wavelet” and the reflectivity series.
The second goal of this thesis is to deconvolve them from the seismic signal which is pre-
sented in Chapter ??. The main idea of this work is to use an additional premise that
the reflections occur as sparsely restricted, for which a study on the “sparsity measure”
is considered. Some well known methods that fall in this category are proposed such as
(Sacchi et al., 1994; Sacchi, 1997). We propose a new penalty based on a smooth approxi-
mation of the ℓ1/ℓ2 function that makes a difficult nonconvex minimization problem. We
develop a proximal-based algorithm to solve variational problems involving this function
and we derive theoretical convergence results. We demonstrate the effectiveness of our
method through a comparison with a recent alternating optimization strategy dealing
with the exact ℓ1/ℓ2 term.
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Résumé

Cette thèse porte sur la restauration de champs d’ondes sismiques perturbés par trois
sources de dégradation. Ces sources sont dues à des trajets de propagation complexes,
au dispositif d’acquisition, à des sources liées ou non à l’acquisition, et potentiellement
présentes simultanément : des réflexions multiples (ou échos), une dégradation de la
réponse impulsionnelle attendue (ou flou) et des perturbations plus aléatoires (ou bruits).

Nous avons considéré dans un premier temps le problème des réflexions multiples,
réflexions qui se sont réfléchies plusieurs fois sur au moins une interface. Nous nous
intéressons ici au filtrage adaptatif de ces réflexions sismiques multiples à partir de
modèles approximatifs issus de modélisation sismique. Ce filtrage est réalisé dans un
domaine de trames d’ondelettes discrètes, mono- et bidimensionnelles, sous contraintes
de parcimonie et de variation lente des filtres adaptatifs. Ceci est intéressant en réflexion
sismique, car les méthodes standard peuvent produire des filtres très mal conditionnés,
du fait notamment du caractère passe-bande des données sismiques. Dans ce travail,
une formulation variationnelle des problèmes de réflexions multiples est proposée. Nous
utilisons des algorithmes proximaux, dont la convergence est garantie lorsqu’il s’agit
d’optimiser dans un cadre convexe. L’avantage de ces approches est l’utilisation d’une
régularisation sophistiquée, permettant de considérer la parcimonie à la fois a) dans le
domaine d’ondelettes, b) via des a priori sur les filtres pour lesquels nous avons utilisé
différentes fonctions de régularisation (norme ℓ1, ℓ2, mixte ℓ1,2 et nucléaire). Notre
méthode vise à étendre et améliorer certains aspects de la méthode proposée par S. Ven-
tosa en collaboration avec CGG en 2012, et testée avec succès sur plusieurs campagnes
sismiques. Les résultats que nous avons obtenus démontrent la performance de notre
méthode non seulement sur des données synthétiques bruitées mais également sur des
données réelles.

Nous nous intéressons ensuite au problème de déconvolution aveugle. En géophysique,
un modèle simplifié de la Terre souvent utilisé fait l’hypothèse d’un nombre de couches
localement parallèles, chacune avec des propriétés constantes. Mais la vitesse, la densité
ou les deux peuvent varier d’une couche à l’autre. L’impédance acoustique est calculée
pour chaque couche ; puis les coefficients de réflexion pour une incidence normale sont
calculés aux endroits où il y a des changements d’impédance acoustique. Chaque change-
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x Résumé

ment d’impédance acoustique opère une modification d’amplitude et de polarisation liée
aux coefficients de réflexion. Ainsi, la séquence de réflectivité (réponse impulsionnelle)
est convoluée avec la forme d’onde descendante pour donner une trace sismique. Ce
problème constitue un contexte de déconvolution aveugle où l’on recherche un signal
inconnu, convolué avec une forme d’onde elle aussi inconnue en présence de bruit addi-
tif. La déconvolution requiert souvent d’introduire des hypothèses complémentaires sous
forme de pénalisation, notamment non convexe. L’ambigüıté d’échelle en déconvolution
aveugle suggère l’usage de fonctions de contraste invariantes en échelle. Dans cette thèse,
nous proposons un algorithme de minimisation alternée, de type explicite-implicite à
métrique variable. Il traite une approximation lisse du rapport ℓ1/ℓ2 (SOOT pour
“Smoothed One-Over-Two penalty”) pour des données réelles signées. Nous étudions
les propriétés de convergence de la méthode proposée, basées sur l’inégalité de Kurdyka-
 Lojasiewicz. Les performances de cette nouvelle approche sont illustrées à travers un
exemple en déconvolution aveugle de données sismiques, mais aussi sur des images.



Résumé long

Les méthodes d’exploration basées sur la sismique (Lavergne, 1986) s’appuyent sur la
propagation d’ondes générées par un ébranlement du sous-sol. Celles-ci sont réfléchies ou
réfractées aux interfaces des couches géologiques. Après une succession de transmissions
et de réflexions, une partie de l’énergie de l’ébranlement peut être enregistrée par des
capteurs sismiques (géophones ou hydrophones) localisés à proximité de la surface. Ces
capteurs font l’acquisition de signaux correspondant aux amplitudes et temps de propaga-
tion des ondes considérées. Ces signaux temporels, appelés “traces sismiques” possèdent
un spectre de fréquence allant de quelques Hertz à moins de cent Hertz en général. Une
acquisition sismique consiste en la collecte de traces sismiques (z) issues de capteurs
régulièrement répartis formant des antennes acoustiques en surface ou remorquées par
des navires, ce pour un grand nombre d’ébranlements (ou tirs) générés en différentes
positions. Par analyse conjointe des traces sismiques, il est possible de déterminer les
distances relatives entre les interfaces géologiques et les contrastes de vitesse des ondes
s’y propageant, comme illustré dans la Figure 3.1 - p. 34. Ces données sismiques sont
affectées de nombreuses distorsions, dues à des trajets de propagation complexes, au
dispositif d’acquisition et à des sources externes. En général, ces distorsions ne sont
pas aléatoires. Elles consistent en des signaux parasites, souvent structurés et de forte
amplitude, qui recouvrent les signaux utiles correspondant aux réflexions intéressantes.
L’objet du traitement géophysique (Mars et al., 2004) est l’extraction d’information
pertinente à partir de ces importants volumes de données. Du fait de la complexité
des champs d’ondes interférents, la géophysique est à l’origine du développement de
méthodes de traitement de signal avancées, comme la déconvolution sous contrainte
de norme ℓ1 (Claerbout and Muir, 1973), ou les transformées en ondelettes continues
(Morlet et al., 1982).

Cette thèse se divise en deux parties : 1) filtrage adaptatif de réflexions multiples et
2) déconvolution aveugle.

Filtrage adaptatif de réflexions multiples

L’enregistrement sismique est constitué notamment de réflexions primaires et de réflexions
multiples qui forment l’objet principal des méthodes développées dans cette thèse. Lorsque
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l’onde aborde la première interface, une partie de son énergie est renvoyée vers le haut;
une partie de l’énergie est transmise vers bas, l’onde transmise se réfléchit sur la seconde
interface et est renvoyée vers le haut; une partie de l’énergie est également transmise
vers le bas à travers la seconde interface et les ondes transmises se réfléchissent sur les
interfaces suivantes et ainsi de suite jusqu’à la dernière interface susceptible de produire
une réflexion sismique. Remarquons que les réflexions primaires se réfléchissent une fois
seulement sur les interfaces. Pratiquement, l’enregistrement sismique comporte, outre
les réflexions primaires, des réflexions multiples qui se réfléchissent plusieurs fois sur les
interfaces.

L’objectif de ce travail est de proposer des méthodes fiables et efficaces pour résoudre
le problème de filtrage des réflexions multiples en sismique. Ainsi, nous nous intéresserons
à l’emploi de représentations parcimonieuses pour la restauration et l’analyse quantita-
tive de champs d’ondes en sismique.

Nous supposons qu’une trace sismique est composée du primaire d’intérêt y, des
multiples s et du bruit b, comme suit:

z(nt) = s(nt) + y(nt) + b(nt)

où nt ∈ {0, . . . , Nt − 1} désigne l’indice temporel et z = (z(nt))0≤nt<Nt correspond aux
données observées (trace sismique) combinant: le primaire y = (y(nt))0≤nt<Nt (signal
d’intérêt, inconnu) représenté en trait continu et pointillés bleu (Figure 3.1 - p. 34),
les multiples (s(nt))0≤nt<Nt (somme des signaux réfléchis non désirés) représentés en
pointillés rouge (Figure 3.1 - p. 34) et le bruit b = (b(nt))0≤nt<Nt qui est supposé être
une réalisation de bruit additif.

Le problème posé est d’estimer y a partir de z. Les multiples et le bruit étant
inconnus, il est nécessaire de faire des hypothèses supplémentaires. Pour cela, nous
utilisons des modèles approximatifs des multiples (fournis par des méthodes sismiques
non détaillées ici). Par des considérations géophysiques, on sait que ces modèles sont
imprécis en amplitude, en fréquence et en localisation temporelle. Pour compenser ces
imprécisions, nous effectuons un filtrage adaptif sur les signaux servant de modèles pour
les faire “ressembler” le plus possible aux multiples réels, et ensuite les soustraire.

L’idée s’inspire de méthodes de filtrage des multiples en sismique classique. Cela
veut dire que nous chercherons une transformée adaptée à notre signal, tout en utilisant
un formalisme analogue à celui de la déconvolution.

Nous utiliserons des algorithmes proximaux, dont la convergence est garantie lorsqu’il
s’agit d’optimiser dans un cadre convexe (minimiser des critères convexes). Le terme
de fidélité sera choisi judicieusement à partir d’un critère adapté aux caratéristiques du
bruit. De plus, nous utiliserons des termes de régularisation basés sur la parcimonie des
coefficients du signal dans le domaine fréquentiel ou temps-échelle (base, trame...), et
du filtre composé avec un opérateur linéaire. En particulier, nous ferons des hypothèses
supplémentaires sur les filtres adaptatifs afin d’assurer un meilleur comportement des
solutions.

Un exemple modélisé de données sismiques est illustré dans la Figure 1 - p. xiii.
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Figure 1: À gauche : de haut en bas, le signal d’intérêt (y inconnu) en bleu, le multiple
(s inconnu) en rouge et le signal observé (z connu) en noir; à droite: zoom sur une zone
d’intérêt de z.

La figure de gauche montre une trace sismique (z, en bas), le signal d’intérêt étant le
primaire (y, en haut), auquel s’ajoute le multiple (s, au milieu). On ne connâıt ici que z
(le signal observé) et on voudrait obtenir y (le primaire d’intérêt). Nous agrandissons une
zone d’intérêt (figure de droite) pour le signal observé. Elle met en évidence le mélange
des signaux primaires et des multiples. Il n’est donc pas facile d’enlever les multiples
dans cette zone. Dans la littérature, on trouve deux grandes classes de méthodes.

Une première approche représente les données dans un domaine transformé avec
un chevauchement minimal entre les primaires et multiples. On effectue un filtrage ou
une sélection dans le domaine transformé, qui permet d’atténuer des multiples ou de
sélectionner des primaires d’intérêt. Les coefficients filtrés sont alors reconvertis dans
le domaine temporel ou spatial, en utilisant une transformée inverse. Des outils stan-
dard comprennent la sommation combinée avec NMO (Normal Move Out), les filtrages
homomorphiques (Buttkus, 1975), f − k (Wu and Wang, 2011), et τ − p (Nuzzo and
Quarta, 2004), ainsi que différents avatars (parabolique, hyperbolique) de la transformée
de Radon (Hampson, 1986; Trad et al., 2003; Nowak and Imhof, 2006).

Une seconde approche inclut des filtres de prédiction et leurs variantes (Taner, 1980;
Abma et al., 2005; Spitz et al., 2009), aussi appelées filtres de mise en forme, ou
adaptés dans la littérature en traitement du signal (Ristow and Kosbahn, 1979) ou de
déconvolution prédictive (Taner et al., 1995). Incidemment, le filtrage adapté des mul-
tiples peut être vu comme une forme de déconvolution informée. Récemment, des tech-
niques basées sur la modélisation, telle que le SRME (surface-related multiple elimina-
tion), ont démontré d’excellentes performances, ce qui permet de guider par les données
l’élimination de multiples (Verschuur and Berkhout, 1992; Weglein et al., 1997; Lin et al.,
2004) à partir d’un modèle basé sur l’équation des ondes (Pica et al., 2005a; Weisser et al.,
2006). Ces méthodes, basées sur des modèles de multiples, consistent à prédire, puis à
soustraire les modèles de multiples adaptés aux données sismiques.
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Le modèle adapté est généralement obtenu par un filtre linéaire de type Wiener
(Robinson and Treitel, 1967) qui minimise l’énergie de la différence entre le signal observé
et le modèle. Bien que les primaires et les multiples soient générés à partir de la même
source et ne soient pas complètement décorrélés, ou orthogonaux, les solutions basées
sur l’erreur quadratique moyenne ou Least Squares Estimation (LSE) sont très utilisées
en raison de leur simplicité de calcul. Pour réduire la distorsion des primaires, ces filtres
sont généralement appliqués en deux étapes en pratique. Les filtres longs compensent
globalement l’amplitude, la forme d’onde et le décalage temporel, puis des filtres plus
courts corrigent des écarts variables en temps.

Par expérience, les méthodes hybrides, mélangeant les deux approches de prédiction
et de transformation sont généralement plus performantes. Les améliorations peuvent
résider dans différentes stratégies. L’utilisation des critères plus robustes que les méthodes
basées sur l’erreur quadratique moyenne, comme ceux basés sur la norme ℓ1 (Guitton
and Verschuur, 2004), ou les méthodes basées sur des décompositions en composantes
indépendantes (Kaplan and Innanen, 2008) sont des alternatives efficaces. Les méthodes
basées sur l’estimation simultanée d’ensembles de filtres présentent une autre option,
par exemple, en adaptation multi-canal (Wang, 2003). Une représentation appropriée
des données peut en outre améliorer la soustraction adaptative ((Taner, 1980) avec une
transformation radiale, (Berkhout and Verschuur, 2006) avec une transformation focale).
Une nouvelle tendance met l’accent sur des approches multi-échelles ou en ondelettes
(Jacques et al., 2011), ce qui pourrait mieux promouvoir la parcimonie dans l’exploitation
de légères différences entre les spectres et les vitesses apparentes des primaires et des
multiples. (Pokrovskaia and Wombell, 2004) et (Ahmed, 2007) ont utilisé principalement
la transformée en ondelettes discrète. (Herrmann and Verschuur, 2005), (Donno et al.,
2010), (Neelamani et al., 2010) ont utilisé la transformée en curvelet que l’on considère
parfois comme une transformée de Radon multi-échelles locale (de Hoop et al., 2009).

Une méthode a récemment été proposée par S. Ventosa en collaboration avec CGG
(Ventosa et al., 2012). Elle minimise l’erreur quadratique moyenne entre des coefficients
du signal observé et ceux de la combinaison des modèles, dans un domaine de trame
d’ondelettes complexes et continues. Cette méthode de soustraction utilise la redondance
fournie par la trame d’ondelettes complexes dans une conception des filtres rapides à
calculer. Elle revient à faire un filtre adaptatif non stationnaire dans le domaine des
ondelettes complexes. Notre méthode vise à étendre et améliorer certains aspects de
cette approche, notamment par:

1. l’utilisation de transformations discrètes plutôt que continues, permettant d’apporter
des gains de calculs (temps, mémoire),

2. l’ajout de contraintes sur les filtres adaptatifs assurant un meilleur comportement
des solutions,

3. la prise en compte des informations liées au bruit, permettant de mieux enlever les
perturbations incohérentes dans le signal,

4. la prise en compte des informations sur les filtres en utilisant différentes fonctions
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de régularisation (normes ℓ1, ℓ2, ℓ1,2 et nucléaire),

5. l’extension de la méthode au 2D en utilisant des décompositions M -bandes en arbre
dual 2D avec différents filtres d’ondelettes suivant le temps et l’espace (Chaux et al.,
2006, 2007b), et le rajout de contraintes sur les filtres adaptatifs (non seulement
sur le temps mais aussi sur l’espace),

6. les expériences sur les données synthétiques ainsi que les données réelles permettant
de mettre en évidence la performance de notre méthode par rapport aux méthodes
de l’état de l’art, par exemple, la méthode de (Ventosa et al., 2012).

Déconvolution aveugle

Un modèle simplifié de la Terre souvent utilisé fait l’hypothèse d’un nombre de couches
localement parallèles, chacune avec des propriétés constantes, mais la vitesse, la densité
ou les deux peuvent varier d’une couche à l’autre. L’impédance acoustique est calculée
pour chaque couche; puis les coefficients de réflexion pour une incidence normale sont
calculés pour les endroits où il y a des changements d’impédance acoustique. Chaque
changement d’impédance acoustique reflète une ondelette réduite en amplitude et po-
larité en fonction du coefficient de réflexion, et la somme de ceux-ci est la trace de
sortie. Ainsi, la séquence de réflectivité est convoluée avec la forme d’onde descendante
(en fait, avec l’ondelette) pour donner une trace sismique synthétique. Un exemple
d’un sismogramme synthétique est représenté sur la Figure 1.6 - p. 7. Une informa-
tion géologique précieuse est contenue dans la véritable amplitude de l’événement de
réflexion, qui peut être récupérée à partir d’enregistrements de terrain convenablement
calibrés. Toute variation latérale de réflexion en amplitude est due au changement dans
la lithologie latérale de la couche de roche ou de la teneur en liquide des pores. Dans
la pratique, l’interprétation structurale sismique est dirigée vers la création de cartes de
structure de la sous-surface de la sismologie par réflexion. Cependant, la convolution
avec une ondelette altère souvent l’information nécessaire à une interprétation strati-
graphique complète des données. Ainsi, la restauration de l’amplitude réelle dans les
sections sismiques revêt une importance grandissante. Dans sa forme la plus simple, un
sismogramme synthétique y(t) peut être considéré comme la convolution de la fonction
de source supposée h(t) (ondelette sismique) avec une fonction de réflectivité x(t) qui
représente le contraste d’impédance acoustique dans le modèle en couches:

y(t) = x(t) ∗ h(t) + w(t) (1)

Avec ce problème, on se trouve dans un contexte de déconvolution aveugle où l’on
recherche un signal inconnu (la réflectivité du sous-sol), convolué avec une forme d’onde
elle aussi inconnue (ondelette sismique) en présence de bruit additif. Elle requiert sou-
vent d’introduire des hypothèses complémentaires sous forme de pénalisation, notam-
ment non convexe. L’ambiguité d’échelle en déconvolution aveugle suggère l’usage de
fonctions de contraste invariantes en échelle. La fonction correspondant au rapport de
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normes ℓ1 et ℓ2 présente de bonnes propriétés d’estimation de la parcimonie de signaux
ou d’images. Quelques travaux existent pour minimiser un critère composite faisant in-
tervenir cette fonction, mais très peu d’entre eux offrent des garanties de convergence.
Dans ce manuscrit, nous proposons un algorithme de minimisation alternée, de type
explicite-implicite à métrique variable. Il traite une approximation lisse du rapport ℓ1/ℓ2
(SOOT pour “Smoothed One-Over-Two penalty”) pour des données réelles signées. Nous
étudierons les propriétés de convergence de la méthode proposée, basées sur l’inégalité
de Kurdyka- Lojasiewicz. Les performances de cette nouvelle approche sont illustrées à
travers un exemple en déconvolution aveugle de données sismiques, mais aussi sur des
images.
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- Chapter 1 -

Introduction

1.1 Seismic data and primaries

Seismic data acquisition involves generating a seismic energy pulse, such as a compressed
air gun (marine seismic acquisition), or a seismic vibrator or explosive source (land seis-
mic acquisition) at discrete surface locations. The resulting energy is reflected back to
the surface from interfaces where rock properties change. By recording this reflected en-
ergy at an array of hydrophones (marine seismic acquisition) or geophones (land seismic
acquisition) placed on the ground surface, seismic data can be processed to produce an
image of underground geological structures and a range of attributes that can be used
to infer the physical rock properties.

• •2 1
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Signals from Hydrophones Hydrophones

Figure 1.1: The seismic reflection method.

Figure 1.1 - p. 1 depicts some acoustic waves and their travel paths for two hy-
drophones. An acoustic impedance contrast exists between layers 1 (water) and 2
(bedrock), and between layers 2 and 3. At the boundary between layers 1 and 2, part of

1
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Figure 1.2: Portion of common shot gather.

the seismic energy is reflected and part is transmitted and continues through layer 2 until
it reaches the impedance contrast between layers 2 and 3. At this interface, part of the
wave is again reflected and part is transmitted and continues into layer 3 (not shown).
The two simplified traces on the left hand side of the layer picture show the signals ar-
riving at the two hydrophones. The electric current values recorded at the geophone or
hydrophone are usually digitized with a sampling period of 1 to 4 milliseconds, typically
before being transmitted to the recorder. Theoretically, the value recorded on the tape
will either be proportional to the particle velocity or the pressure variation. Normally
however, the coefficient of proportionality is disregarded and the seismic “amplitudes”
recorded on the tape are relative.

Figure 1.2 - p. 2 illustrates a seismic image that is collected with five hundred of
seismic traces. These seismic traces must be analyzed so as to yield contour maps of
the subsurface sedimentary structure. These maps are used in order to make decisions
about the locations of where to drill exploratory oil and gas wells. There are two im-
portant variables in seismic prospecting: time of reflected events (t) and velocity (v).
For simplicity, we assume that velocity is a constant v, so that the relationship between
arrival time and offset reads (hyperbolic equation)

tx =

r
t20 +

�x
v

�2
(1.1)

where

• tx is the actual reflection time of the seismic event due to normal moveout correction
(NMO) effects, corresponding to the vertical axis in Figure 1.2 - p. 2,
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• t0 is the zero offset reflection time of the seismic event,

• x is the actual source-receiver offset distance, corresponding to the horizontal axis
in Figure 1.2 - p. 2,

• v is the NMO velocity for this reflection event.

The physical rock properties can be determined from knowledge of these variables.
The distances to subsurface reflectors are calculated from observed travel times and
computed velocities. Seismic waves propagate with the velocity of sound in rock, and so
the propagation velocity generally depends on chemical composition and local geology.
More precisely, it depends on the elastic constant of rocks and their density. These elastic
constants and densities are used to characterize rocks, for instance porosity, texture etc.
Generally the velocity increases with depth, although occasionally there may be layers
in which a decrease in velocity occurs. For a given surface point, the velocity plotted
as a function of depth is called the velocity function. This velocity function varies from
one location to another, a given velocity function cannot be assumed to be valid for an
entire prospect. As a result, the velocity function must be frequently corrected from
place to place over the area of exploration. Each recorded trace is a time series made
up of reflected events together with various interfering waves and noise. The “desired
reflected” events are the primary reflections who

• are the first reflections of the source wavelet from an interface,

• carry useful information about the velocities and thicknesses of subsurface layers.

On the contrary, seismic noise is considered as everything in the record that we did not
want to record (“undesired signal”). There are two types of seismic noise:

• Coherent noise which can be followed across at least a few traces. It includes
surface waves (ground roll), direct waves, refractions, diffractions, and multiples.

• Incoherent noise which is apparently random on all traces. It includes noise gener-
ated by near-surface scatterers, rain, humans, and interference coherent noise.

Multiple reflections are an important type of undesired waves. Occasionally, some
noises can reveal useful for seismic interpretation. However, we consider them in the
traditional signal/noise separation context. The importance of the problem they raise
will be made more explicit in the next sections.

1.2 Seismic multiples

Seismic multiples are events that have undergone more than one reflection from the same
interface. Multiple reflections fall into one of two basic categories (see Figure 1.3 - p. 4)
based on their paths: short-path (period) multiples and long-path (period) multiples.
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Figure 1.3: Types of multiple reflections from (Sheriff, 1973).

• A long-path multiple is generated far from the primary so that it is totally sepa-
rated from the primary reflection from the same reflector. Therefore, it appears as
a separate event on the seismic record.

• A short-path multiple is generated close to the primary so that it interferes with
the primary reflection from the same reflector. Its effect is to lower the vertical
resolution. The most important short-path multiples are of two main types:

– Peg-leg multiples resulting from the addition to a primary reflection of energy
reflected from both the top and bottom of a thin bed, either on the way to
or on the way back from the principal reflecting horizon.

– Ghosts where part of the energy leaving the source travels upward and is re-
flected downward either at the base of the low-velocity layer or at the surface.

Figure 1.4 - p. 5 comes from offshore Labrador (an Atlantic-type divergent margin),
which, locally, overlies late Cretaceous rift-type basins. This line is influenced by various
multiples which have higher amplitude then their corresponding primaries. One is visible
and can be easily accounted for by three successive rebounds within the water layer, and
at one second on the left of the section, there are several other multiples which are gen-
erated by the strong dipping horizon. Probably, they are secondary rebounds of this pri-
mary event: (i) within the water layer, (ii) downward on the water bottom or (iii) a combi-
nation of both. (Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm
). Figure 1.5 - p. 6 shows several multiples induced by the sea level. A strong reflection,
culminating at approximately two seconds, appears in the middle of the section. Because
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Figure 1.4: This old seismic line comes from offshore Labrador (an Atlantic-type
divergent margin), which, locally, overlies late Cretaceous rift-type basins. (Source:
http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm ).

of the high acoustic impedance contrast at the water-bottom, 1st and 2nd order multi-
ples are produced within the water layer (ringing/ reverberations). The time difference
between the primary and its first multiple is everywhere equal to the time through the
water layer (Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm).

We refer to the comprehensive survey in Verschuur (Verschuur, 2006) for a detailed
description of seismic multiple removal problem: the classification of multiple reflections
and their characteristics, the methods and techniques that have been developed for these
problems.

1.3 Seismic deconvolution

An often used simplified Earth model assumes the underground to be composed of a
number of locally parallel layers, each with constant properties, but the velocity or
density or both may differ from layer to layer. The acoustic impedance is calculated for
each layer; then reflection coefficients for normal incidence are calculated for places where
the acoustic impedance changes. Each acoustic impedance change reflects a wavelet
scaled in amplitude and polarity according to the reflection coefficient, and the sum of
these is the output trace. Thus, the reflectivity sequence is convolved with the downgoing
waveform (actually, with the seismic wavelet) to give a synthetic seismic trace. An
example of a synthetic seismogram is shown in Figure 1.6 - p. 7. The true amplitude of
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Figure 1.5: Marine section from offshore Labrador shows several multiples induced by
the sea level.(Source: http://homepage.ufp.pt/biblioteca/Seismic/Pages/Page10.htm).

the reflection event contains most valuable geological information that can be retrieved
from suitably calibrated field recordings. Any lateral variation of reflection amplitude
is due to lateral change in the lithology of the rock layer or in its pore fluid content. In
practice, structural seismic interpretation is directed toward the creation of structural
maps of the subsurface from the reflection seismology. However, the convolution with
a wavelet sometimes suppresses the information that is essential to a full stratigraphic
interpretation of the data. That is why, true-amplitude seismic sections are becoming
increasingly important.

In its simplest form, a synthetic seismogram y : R → R may be considered as the
convolution of the assumed source function h : R → R (wavelet) with a reflectivity
function x : R → R representing the acoustic impedance contrasts in the layered model:

(∀t ∈ R) y(t) = (x ∗ h) (t) (1.2)

Actually, the convolutional model always contains random noise, thus (1.2) should
be written as

(∀t ∈ R) y(t) = (x ∗ h) (t) + w(t) (1.3)

where w is the noise component.
The recovery of the reflectivity constitutes a problem of main interest that will be ad-
dressed in chapter 6.
Figure 1.7 - p. 8 illustrates enlarged portions from 25 m to 30 m of GPR data (Source:
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Figure 1.6: Reflection seismograms showing primary reflection only, reprinted by per-
mission of Birkhauser Verlag From Al-Sadi, 1980.

http : //www.kgs.ku.edu/Geophysics/OFR/2004/OFR04 41). Comparing the decon-
volved data (Figure 1.7b - p. 8) with the photomosaic (Figure 1.7c - p. 8), we can see the
direct relationship between them. Subtle changes identified on the quarry face are also
identifiable on the enlarged portions of the deconvolved data. The oval reflection portion
in Figure 1.7b - p. 8 is an apparent lateral effect from a portion of the limestone layer
showing relief away from the quarry wall at 27 m and 0.3 m depth in Figure 1.7c - p. 8.
Additionally, the deconvolved data correctly show undulations of Bed B and the smaller
scale stratal complexities that occur between Bed • and Bed E. It is also worth pointing
out that a slight dip in Bed F identified on the quarry wall (oval on the left side of
Figure 1.7c - p. 8) is identified as a dipping reflector on the deconvolved data (oval on
the left side of the 25 m mark on Figure 1.7b - p. 8). We observe that all of the features
discussed above are determined on the deconvolved data Figure 1.7b - p. 8 and none of
them are related to the non-deconvolved data in Figure 1.7a - p. 8.

Contribution

The contribution of this thesis is developed along two axes. Firstly, we contribute to
the seismic multiple removal problem. After the primaries reflections are recovered, we
contribute secondly to deconvolution problem that produces characteristics closest to
the Earth layers. More precisely, the specific contributions are as follows:
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Figure 1.7: An enlarged portion from the 25 to 30 meter locations on the bench.
(a) Non-deconvolved GPR data, (b) deconvolved GPR data, and (c) the photo of the
quarry face with an exaggerated vertical scale to match that of the GPR data. (Source:
http : //www.kgs.ku.edu/Geophysics/OFR/2004/OFR04 41.)

Seismic multiple removal

• We propose a generic methodology to impose sparsity and regularity properties
through constrained adaptive filtering in a frame transformed domain. This method
exploits side information from approximate disturbance templates.

• We use the proximal framework that permits different strategies for sparse model-
ing, additive noise removal, and adaptive filter design under appropriate regularity
and amplitude coefficient concentration constraints.

• We use different orthogonal wavelet bases and tight frames, and various sparsity
measures for wavelet coefficients. The standard sparsity-prone ℓ1-norm is usefully
complemented by alternative concentration measures, such as ℓ2 or ℓ1,2-norms.
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• We focus on the adaptation to the anisotropy of two-dimensional seismic data by
using shift-invariant tight frames, and directional dual-tree M -band wavelets.

• The approach demonstrates significantly good performance in low signal-to-noise
(SNR) ratio conditions, both for simulated and real field data.

Blind deconvolution

• We propose a new penalty based on a smooth approximation to the ℓ1/ℓ2 function.

• We develop a proximal-based algorithm to solve variational problems involving this
function and we derive theoretical convergence results.

• We demonstrate the effectiveness of our method through a comparison with a
recent alternating optimization strategy dealing with the exact ℓ1/ℓ2 term.

• Experiments are performed on seismic and image blind deconvolution.
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Organization of the Thesis

This thesis is divided into 7 chapters. Following this introduction, the second chapter
is devoted to introduce the reader to the topic of inverse problems and some mathe-
matical tools, i.e. variational methods applied to continuous models. We briefly discuss
line search, majorize-minimize and proximal optimization methods. Then, the subse-
quent Chapters 3-6 address seismic inverse problems. More precisely, in Chapter 3 we
develop an optimization framework applied to the seismic multiple removal problem.
This method exploits side information from the knowledge of one template and in the
non–noisy case. In Chapter 4, we extend the seismic multiple removal problem to the
noisy case and exploit several templates. In Chapter 5, we develop the framework of
seismic multiple removal for two-dimensional data. Chapter 6 provides an insight with
ℓ1/ℓ2 sparsity measure to blind deconvolution applied to both seismic data and image
processing. Finally, Chapter 7 is a summary of this thesis, including the conclusions and
perspectives which can be drawn from this research work. Concluding this thesis is the
bibliography.
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Background

2.1 Inverse problems

2.1.1 What are inverse problems?

Solving an inverse problem is often required when recovering information about a phys-
ical object from its measurements acquired by a given system. In a direct problem we
start from the causes and end up with the results, in an inverse problem we start with
partial knowledge of the causes and the results and infer more about the causes. For
example, in geophysics in order to predict an earthquake, one can estimate the vibra-
tions produced by an earthquake as well as its propagation by observing the structure
of the earth at different points around the globe. Figure 2.1 - p. 12 illustrates an earth-
quake propagating through the planet. The inverse vision of this is to use earthquake
measurements to determine the Earth structure.

Inverse problems appear in signal processing, image analysis, computer vision, and
many other applications. In this thesis, we are particularly interested in solving inverse
problems related to deconvolution and multiple removal in seismic data and in image
processing. For both applications, we can formulate the inverse problem as

y = Hx + b (2.1)

where H : RN → R
M is a bounded linear operator, N ∈ N

∗ and M ∈ N
∗ are the sizes of

signal x and y, respectively. b ∈ R
M is the additive noise perturbation. In many cases,

the inverse problem is ill-posed, which is the opposite of a well-posed problem. Let us
recall the definition of a well-posed problem proposed in (Hadamard, 1923),

Definition 2.1.1 (Hadamard, Figure 2.2 - p. 13) A problem is called well-posed
in the sense of Hadamard if

1. there exists a solution to the problem (existence),

11
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Figure 2.1: Waves from an earthquake propagating through the planet (Source:
http://www.bath.ac.uk/elec-eng/invert/inverse.html).

2. there is at most one solution to the problem (uniqueness),

3. the solution depends continuously on the data (stability).

By contrast, a problem is ill-posed when at least one of the properties of a well-posed
problem is violated. Hadamard gave an example of an ill-posed problem named the
Cauchy problem for Laplace equation.

Example 2.1.1 (Cauchy problem for Laplace equation) (Kabanikhin, 2008) Let
u = u(x, y) be a solution to the following problem:





∆u(x, y) = 0 , y ∈ R, x > 0,

u(0, y) = f(y), y ∈ R,
∂u
∂x(0, y) = 0 , y ∈ R.

(2.2)

Let f be chosen as follows

f(y) = u(0, y) =
1

n
sin(ny).

The solution to Problem (2.2) is given by

u(x, y) =
1

n
sin(ny)(enx + e−nx). (2.3)

For any fixed x > 0 and a sufficiently large n, the value of the solution (2.3) can be as
large as desired, while f(y) → 0 as n → ∞. Therefore, small variations in y may lead to
arbitrary large variations in the solution, which means that Problem (2.2) is ill-posed.

Nowadays, research about well-posed and ill-posed inverse problems remains a major
issue in many applications. Let us present some approaches for solving these problems,
starting with basic ideas, toward more sophisticated ones.
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Figure 2.2: Jacques Hadamard.

2.1.2 Variational approach

Least squares yield standard solutions to inverse problems because they lead to simple
computations. The first statement of the method appeared in Legendre’s “Nouvelles
méthodes pour la détermination des orbites des comètes”, Paris, 1805 (or new Methods
for the Determination of Comet Orbits). In this text, Legendre writes: “De tous les
principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de plus général,
de plus exact, ni d’une application plus facile que celui dont nous avons fait usage dans
les recherches précédentes, et qui consiste à rendre minimum la somme des quarrés des
erreurs.”– Legendre (1805) (or of all the principles which can be proposed for that
purpose, I think there is none more general, more exact, and more easy of application,
that of which we made use in the preceding researches, and which consists of rendering
the sum of squares of the errors a minimum.). It can also be reformulated as follows:

minimize
x∈RN

kHx− yk2. (2.4)

In the case of an ill-posed problem, (2.4) provides a misbehaved solution. In order to give
preference to a particular solution with desirable properties, an extended method based
on the generalized Tikhonov regularization is proposed by A.-N. Tikhonov in (Tikhonov
and Arsenin, 1977). By adding a regularization term in this minimization, (2.4) now
becomes

minimize
x∈RN

kHx− yk2 + λkxk2 (2.5)

where λ ∈ ]0,+∞[ is named regularization parameter. The choice of the parameter plays
an important role in regularization methods and the way of choosing the regularization
parameter has attracted many works (Cucker and Smale, 2002; Renaut et al., 2010). In
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order to choose the value of these parameters, we first need to understand them. Bayesian
estimators give the relationship between these parameters and signal probabilistic models
as described below.
Let assume that x is a realization of random vector X with prior probability density
function fX and y is a realization of random vector Y with conditional likelihood fX|Y=y.
X and Y are supposed independent. Assuming that a desired property of a solution is
known a priori, the solution of the inverse problem is given by using the maximum a
posteriori (MAP) estimator:

bx ∈ argmax
x∈RN

fX|Y=y(x). (2.6)

By using Bayes rule, this can be simplified as follows:

bx ∈ argmax
x∈RN

fY |X=x(y)
fX(x)

fY (y)
(2.7)

⇔ bx ∈ argmax
x∈RN

fY |X=x(y)fX(x) (2.8)

provided that fY (y) 6= 0. Due to the monotonicity of the logarithm function this can be
rewritten as:

bx ∈ argmin
x∈RN

Ψ(x) + Φ(x) (2.9)

where

• Ψ(x) = − log(fY |X=x(y)) is called a data fidelity term. For example, when B is
a zero-mean Gaussian noise with a covariance matrix Γ, then B has a probability
density function defined by the normal distribution i.e.

fY |X=x(y) =
1

(2π)N/2|Γ|1/2 e
− 1

2
(y−Hx)⊤Γ−1(y−Hx) (2.10)

⇒ Ψ(x) =
1

2
(y −Hx)⊤Γ−1(y −Hx) − log

�
1

(2π)N/2|Γ|1/2
�
. (2.11)

When Γ = σ2 I, without loss of generality, we can choose

Ψ(x) =
1

2σ2
ky −Hxk2 (2.12)

Figure 2.3 - p. 15 shows an original image (left) and this image corrupted by
Gaussian noise (right).

• Φ(x) = − log(fX(x)) is called a regularization term. When fX(x) = e−λkxk2 , then

Φ(x) = λkxk2 (2.13)
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Figure 2.3: Original image (left); Image corrupted by Gaussian noise (right)

Legendre’s method or Tikhonov’s method are two particular cases of Bayesian estimation
without/with a priori on the solution, respectively. Usually, the considered criterion to
be minimized can take a more general form (than simply quadratic); however, it is often
assumed to be convex. Let us recall some definitions about convexity.

Definition 2.1.2 A subset C of RN is said to be convex if either C = ∅ or, whenever
we take two points in C, the segment that connects them is entirely contained in C, i.e.,

∀λ ∈ [0, 1], ∀(x, y) ∈ C2, λx + (1 − λ)y ∈ C

Figure 2.4a - p. 16 illustrates a convex set. The black line segment joining points x
and y lies within the green set and this is true for all points x and y in the green set.
Figure 2.4b - p. 16 shows a nonconvex set.

Definition 2.1.3 Let C ∈ R
N . The support function of C is defined as

σC : RN → ]−∞,+∞] : u 7→ sup hC|ui . (2.14)

Definition 2.1.4 Let f : RN → ]−∞,+∞]. The domain of f is

dom f =
�
x ∈ R

N | f(x) < +∞
	
, (2.15)

the graph of f is defined as

gra f =
�

(x, ξ) ∈ R
N × R | f(x) = ξ

	
(2.16)

the epigraph of f is defined as

epi f =
�

(x, ξ) ∈ R
N × R | f(x) ≤ ξ

	
. (2.17)
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(a) (b) (c)

Figure 2.4: A convex set (a), a nonconvex set (b) and a convex function

Definition 2.1.5 Let f : RN → ]−∞,+∞]. The function f is convex (see Figure 2.4c -
p. 16) if its epigraph is a convex subset of RN×R. Moreover, f is concave (or nonconvex)
if −f is convex.

Definition 2.1.6 Let f : RN → ]−∞,+∞], and let x ∈ R
N . Then f is lower semicon-

tinuous at x if, for every sequence (xn)n∈N in R
N ,

xn → x ⇒ f(x) ≤ lim inf f(xn).

Upper semicontinuity of f at x ∈ R
N holds if −f is lower semicontinuous at x i.e. if

xn → x ⇒ f(x) ≥ lim sup f(xn).

Definition 2.1.7 Γ0(R
N ) is the class of lower semi-continuous convex functions f :

R
N → ]0,+∞[ such that their domain dom f is nonempty.

In geophysics, the remnant noise is commonly considered to be Gaussian. Thus a
quadratic data-fidelity term has been successfully used (i.e. Ψ = 1

2σ2 k · k2, where σ2

corresponds to the noise variance). We now focus on the data regularization term Φ(·).
In the following, we discuss the sparse representation of data in general and then about
seismic data, in particular.

2.2 Sparse representation of signals and images

2.2.1 Introducing sparsity

In signal restoration, the sparsity expressed on data gradient (finite differences) is often
used. It is called total variation prior (TV) in image restoration, and it was first used
by Rudin, Osher and Fatemi (Rudin et al., 1992). The Hessian based regularization was
already discussed in the work by (Geman and Reynolds, 1992; Yunpeng Li, 2008). In
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the context of this thesis, we focus in particular on the sparse signal representation in
a basis or frame domain. The key idea is to approximate a signal x ∈ R

N by a sparse
decomposition in a sequence of vectors F = {ek}k∈L of waveforms, where ek ∈ R

N or
C
N . Thus, we can express x as

x =
X

k∈L
ckek (2.18)

and the signal is now characterized by fewer significant coefficients ck. If the set F does
not span R

N or CN , then such coefficients do not exist for every x. If F spans RN or CN

and also is linearly independent, this set forms a basis of RN or C
N , and the coefficients

ck are uniquely determined by x: they are the components of x relative to this basis. If,
however, F spans R

N or C
N but is not linearly independent, this set forms a frame of

R
N or C

N if it satisfies the so-called frame condition: There exist two real numbers, ν
and ν such that 0 < ν ≤ ν < +∞ and

νkxk2 ≤
X

k∈L
|hx, eki|2 ≤ νkxk2 for all x ∈ R

N (2.19)

This means that the constants ν and ν are independently of a specific x: they only
depend on the set F . The numbers ν and ν are called lower and upper frame bounds
respectively. Note that the frame bounds ν and ν are not unique because numbers less
than ν and greater than ν are also considered as frame bounds. If ν = ν, then a frame
is said tight and if ν = ν = 1, then a frame is either called normalized or Parseval. The
optimal upper bound is the infimum of all upper bounds. Likewise, the optimal lower
bound is the supremum of all lower bounds.

Wavelet bases and frames constitute an important class of bases and frames in general
and particularly in this thesis. Thus, let us give a short overview of them. Let L2(R)
denote the space of all square integrable functions on R i.e.

if

Z +∞

−∞
|f(t)|2dt < +∞ (2.20)

then f is square integrable on R (or f ∈ L2(R)). ψ is said to be a wavelet if and only if
its Fourier transforms (FT) ψ̂ satisfies

0 <Cψ =

Z +∞

0

|ψ̂(ω)|2
|ω| dω < ∞, (2.21)

which implies that the wavelet must have a zero mean

Z +∞

−∞
ψ(t)dt = 0 (2.22)

and therefore it must be a sort of a wave. The dilated-translated wavelets ψa,b are defined
as the following functions

ψa,b(t) =
1√
a
ψ

�
t− b

a

�
(2.23)
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where b ∈ R is a translation parameter, whereas a ∈ R
∗
+ is dilation or scale parameter.

The factor 1√
a

is a normalization constant such that the energy i.e. kψa,bkL2 = 1. The

continuous wavelet transform (CWT) of x ∈ L2(R) is defined as

Wx(a, b) = hx,ψa,bi =

Z +∞

−∞
x(t)ψ∗

a,b(t)dt

=
1√
a

Z +∞

−∞
x(t)ψ∗

�
t− b

a

�
dt (2.24)

where h , i is the scalar product of L2(R). x can be reconstructed from its wavelet
coefficients

x(t) =
1

Cψ

Z +∞

0

Z +∞

−∞

1

a2
Wx(a, b)(t)dadb (2.25)

However, in practice a data is represented by a finite number of values, then it is impor-
tant to consider a discrete version of the CWT. Let consider a signal x of finite energy
that can be written as follows

x(t) =
X

m∈Z

X

n∈Z
cm,n

eψm,n(t) (2.26)

and the coefficients of the expansion are given by

cm,n =

Z +∞

−∞
x(t) eψm,n(t)dt (2.27)

where eψm,n with (m,n) ∈ Z
2 are all distillations and translations of a function referred

to the as analyzing wavelet ψ(t), and they can be expressed in the form

eψm,n(t) = ψam,namb(t) = a−m/2ψ(a−mt− nb) (2.28)

where m and n denote the dilation and translation indices, respectively. Figure 2.5 -
p. 19 shows the Ricker (left) and Symlet (right) wavelets with different scalings a. We
next show an illustration of sparsity in the wavelet transform domain used to perform
signal denoising. In the space R

N , considering a clean signal x, we add some noise to it
in order to obtain the noisy signal y = x + b, here b is a realization of a Gaussian white
noise with variance σ2 . Figure 2.6 - p. 20 depicts x and its noisy version y. To analyze
the performance of wavelet transform, we now compare the estimation reconstructed by
a Wiener filter, and by thresholding the wavelet coefficients of the noisy signal.

Signal denoising using a Wiener filter (Mallat, 2009, Chapter 10) can be seen in
Figure 2.8-left - p. 22.

We now use a thresholding estimator to reconstruct the signal. Let F ∈ R
K×N (resp.

F⊤ ∈ R
N×K) denotes the frame analysis (resp. synthesis) operator. We restrict here F

to correspond to an orthonormal transform, i.e. F⊤ = F−1. (Donoho et al., 1995) proved
that the performance of a thresholding estimator is close to ideal coefficient selections
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Figure 2.5: Ricker (left) and Symlet (right) wavelet with different a

and attenuations. The vector of wavelet coefficients c ∈ R
K of the signal y ∈ R

N is given
by c = Fy. Figure 2.7 - p. 21 illustrates the wavelet coefficients of the Piece-Polynomial
signal. Symlet wavelets of length 8 over 5 resolution levels are used.

The soft thresholder on [−T, T ] for some T ∈ ]0,+∞[ is given by

ST : R → R : ζ 7→ sign(ζ) max {0, |ζ|− T} . (2.29)

T ∈ ]0,+∞[ is the threshold. An estimate x̂ of x can be obtained by applying the soft
thresholding to the wavelet coefficients that is x̂ = F−1 (ST (Fy)).

The result of the thresholding operation on the noisy Piece-Polynomial signal is
given in Figure 2.8-right - p. 22. The performance of the wavelet transform is shown
by a comparative evaluation of two results (obtained by using either Wiener filter or
thresholding the wavelet coefficients). Apparently, in Figure 2.8 - p. 22, a slightly better
result is obtained with thresholding the wavelet coefficients. Figure 2.9 - p. 23 shows
the comparative results for two dimensional data. The “regularization” parameters of
both methods are adjusted so as to maximize the SNR between the original and the
reconstructed data.

2.2.2 Evaluations of the sparsity

Let c be a sparse representation of x via a linear operator L, we thus note c = Lx.
According to (Donoho et al., 1995), an ideal measure of sparsity Φ is the ℓ0 measure, i.e.

ℓ0(c) =
X

i∈L
δ(ci) (2.30)

where δ(ci) =

(
0 if ci = 0

1 otherwise.
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Figure 2.6: Piece-Polynomial signal (left); Noisy signal (right) SNR= 17.90dB

However, ℓ0 is a nonconvex, discrete valued and non-differentiable function. In this case,
the problem is not easy to resolve. To circumvent this problem, different measures of
sparsity have been proposed in the regularization terms. For instance, quasi-norms are

the most widely used measures, where ℓp(c) =
P

i∈L |ci|p
�1/p

, for every 0 < p ≤ 1.
(Kowalski, 2009) has investigated mixed ℓp,q loss functions for deconvolution. A detailed
discussion about these loss functions is provided in Chapters 3 and 4. In Chapter 6 we
propose to use a smooth approximation of the ℓ1/ℓ2 ratio function.

As the inverse problem is formulated as a minimization problem, the next question
to address is: how to solve minimization problems? In order to answer this question,
many approaches have been proposed. Recently, tools for convex optimization, named
proximal algorithms, have been proposed. These algorithms are well known for their
good convergence properties, and for being able to be parallelized or to be implemented
in parallel.

2.3 Algorithms

We consider an optimization problem in the standard form:

minimize
x∈RN

f(x) subject to

(
gi(x) ≤ 0, ∀i ∈ E
gi(x) = 0, ∀i ∈ I

(2.31)

where f and gi are scalar-valued functions of the variable x, and I, E are sets of indices.
This problem is a constrained optimization problem if E 6= ∅ or I 6= ∅, otherwise, it is
unconstrained and reads

minimize
x∈RN

f(x) (2.32)
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Figure 2.7: Wavelet coefficients of Piece-Polynomial signal
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Figure 2.8: Estimation by using Wiener filter, with λ = σ2, SNR= 24.30 dB (left);
estimation with a translation invariant soft thresholding, SNR= 31.50 dB (right)

We define

∀x ∈ R

N
�

Ci =

(
{x| gi(x) ≤ 0} if i ∈ E
{x| gi(x) = 0} if i ∈ I.

We now recall the definition of

the indicator function:

Definition 2.3.1 (Indicator function) Let C be a nonempty subset of RN . Its indi-

cator function ιC is defined as

∀x ∈ R

N
�

ιC(x) =

(
0 if x ∈ C

+∞ otherwise.

Thus, we can write (2.31) in the following form

minimize
x∈RN

f(x) +
X

i∈E∪I
ιCi(x) (2.33)

Consider a simple example in 2-dimension, we then show a geometrical representation
of this optimization problem.

Example 2.3.1

minimize
(x1,x2)∈R2

(x1 − 2)2 + (x2 − 1)2 subject to





x21 − x2 ≤ 0,

−3x1 − 2x2 ≤ 2

(2 −
√

3)x1 + x2 ≤ 2
√

3

(2.34)

we can write this problem in the form (2.31) by defining

f(x) = (x1 − 2)2 + (x2 − 1)2, x =

�
x1
x2

�
,
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Figure 2.9: Top: Noisy image SNR= 14.73 dB (left); Wavelet coefficients (right), Bot-
tom: Estimation by using Wiener filter, with λ = 0.7, SNR= 17.17 dB (left); Estimation
with a translation invariant soft thresholding, SNR= 18.55 dB (right)
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Figure 2.10: Geometrical representation of (2.34).

g(x) =



g1(x)
g2(x)
g3(x)


 =




x21 − x2
−3x1 − 2x2 − 2

(2 −
√

3)x1 + x2 − 2
√

3


 , I = {1, 2, 3}, E = ∅.

Figure 2.10 - p. 24 shows the contours of the cost function, i.e., the set of points for
which f has a constant value. It also illustrates the feasible region, which is the set of
points satisfying all the constraints, and the optimal point x∗, solution to the problem.
Note that the “feasible region” of the inequality constraints is shaded.

Optimization algorithms are iterative. More precisely, the strategy used is to move from
an initial point to another point which is closer to the solution in using the values of
the cost function f and the constraints g. To move from a point to another, we use,
for instance, the first order derivatives of these functions and the local information from
the current point. In the following, some basic criteria for algorithm evaluation can be
considered

• Robustness: for the choices of the initial variables.

• Efficiency: time to converge.

Starting at x0, optimization algorithms generate a sequence of iterates {xk}k∈N. To
move from one iterate xk to the next, this sequence is often satisfy f(xk+1) ≤ f(xk).
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The strategies used for generating it strongly depend on the mathematical properties
of the function f . The algorithm stops at the iterate K such that xK+1 ≈ xK . For
instance, there are three fundamental strategies that we will detail in the next sections.

2.3.1 Line search method

Such algorithms choose a direction pk and search along this direction from the current
point xk for a new iterate with a lower function value. Thus the iteration is given by

∀k ∈ N, xk+1 = xk + αkpk (2.35)

where the positive scalar αk is called the step-length. The iteration depends on choices
of both the direction pk, (kpkk = 1) and the step-length. Using a Taylor’s expansion, for
any search direction p and step-length parameter α, we have:

f(xk + αp) = f(xk) + αp⊤∇f(xk) +
1

2
α2p⊤∇2f(xk + tp)p, for some t ∈ (0,α)

f can be reduced along the direction p at xk when p is the minimum of p⊤∇f(xk). Since
p⊤∇f(xk) = kpkk∇f(xk)k cos(θ) = k∇f(xk)k cos(θ), where θ is the angle between p

and ∇f(xk), a good direction p is − ∇f(xk)
k∇f(xk)k , when θ = π. Another search direction

method which moves along pk = −∇f(xk) at every step, is named the steepest descent
method (Deift and Zhou, 1993). One of the most famous method is the Newton direction
(Nocedal and Wright, 2006) that is derived from the second-order Taylor series. Thus

the Newton direction pk is −

∇2f(xk)

�−1∇f(xk). An extension of this method, called
quasi-Newton direction (Nocedal and Wright, 2006), uses an approximation instead of
the true Hessian ∇2f(xk). The search direction of nonlinear conjugate gradient methods
(Dai and Yuan, 1999) is pk = −∇f(xk) + βkpk−1, where βk is a scalar that ensures that
pk and pk−1 are collinear. Once we have a good direction, the efficiency of the iterative
algorithm depends on the step α, since the new point is given by xk + αpk. In other
word, we need to find α that minimizes the following function:

α ∈ argmin
α∈R+

f(xk + αpk) (2.36)

In order to insure the convergence of the algorithm, at each direction pk we would like
to find an exact minimum of (2.36). This leads to the following approximation method.

2.3.2 Majorize-Minimize method (MM)

The main idea of Majorize-Minimize (MM) method is to construct a majorant function
m(xk, x) such that m is simpler in seeking a minimizer and very close to the cost function
f at a neighborhood of xk. Thus instead of seeking the minimum of f , we now restrict
the search for a minimizer of m(xk, x) to some region around xk i.e.

xk+1 ∈ minimize
x

m(xk, x) (2.37)
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where x = xk + p lies inside the trust region, usually, kpk ≤ δk, δk > 0 is called the
trust-region radius. The majorant m usually satisfies the following rules

∀x ∈ R
N and xk ∈ R

N f(x) ≤ m(xk, x) (2.38)

and

∀xk ∈ R
N f(xk) = m(xk, xk) (2.39)

Indeed (2.38) and (2.39) imply that, for every k

f(xk+1) ≤ m(xk, xk+1) ≤ m(xk, xk) = f(xk). (2.40)

Figure 2.11 - p. 27 illustrates a simple example of MM methods for a one dimensional
signal. The majorant is often chosen under a quadratic form

m(xk, xk + p) = f(xk) + p⊤∇f(xk) +
1

2
p⊤Mkp, (2.41)

where the matrix Mk is either the Hessian ∇2f(xk) or an approximation of it. The
solution of (2.37) in this case is pk = −M−1

k ∇f(xk). We can see that the Newton
and quasi-Newton’s methods belong to the class of MM methods in the convex case.
The majorant functions can be iteration dependent as in (Jacobson and Fessler, 2007).
Many frameworks about the convergence are available in the literature. One global
convergence for strictly convex, coercive and differentiable f was proposed in (Lange,
2010, Chapter 10.3). In (Chouzenoux et al., 2011), the authors proposed accelerated
subspace optimization methods. At each iteration of such methods, a stepsize vector
allowing the best combination of several search directions is computed through multi-
dimensional search based on the MM principle. Their method is significantly faster than
the Newton methods in terms of computational time before convergence. Concerning the
nonconvex case of the cost function, the local convergence was studied in (Chouzenoux
et al., 2014) and their convergence speed is discussed in (Chouzenoux et al., 2013). Next
we describe a recent strategy for deriving an optimization algorithm relying on proximal
minimization.

2.3.3 Parallel-Proximal method

In the previous methods, the iteration point is often computed by using the gradient of
a differentiable function e.g. the gradient methods xk+1 = xk −λk∇f(xk+1). When f is
non differentiable then the problem (2.31) is said nonsmooth. In this case, the gradient
can be replaced by the subdifferential.

Definition 2.3.2 The subdifferential (Rockafellar and Wets, 2005) of a function f ∈
Γ0(R

N ) at x ∈ R
N , denoted by ∂f(x), is defined as:

∂f(x) :=
n
x

′ ∈ R
N | ∀x′′ ∈ R

N , f(x) + x
′⊤(x

′′ − x) ≤ f(x
′′
)
o

(2.42)
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Figure 2.11: Illustration of the MM methods.

which implies that

xk+1 = xk − λkt
′
k, t

′
k ∈ ∂f(xk+1)

⇔ 0 ∈ xk+1 − xk + λk∂f(xk+1)

⇔ 0 ∈ ∂

�
1

2
k ·−xkk2 + λkf(·)

�
(xk+1) (2.43)

(2.43) has a unique solution in the convex case (due the Fermat’s rule ) named proxλkf
(xk).

Definition 2.3.3 The proximity operator (Rockafellar, 1976) of a function f ∈ Γ0(R
N )

at x ∈ R
N , denoted by proxf : RN → R

N , is defined as:

∀p ∈ R
N , proxf (p) := minimize

x∈RN

1

2
kx− pk2 + f(x) (2.44)

Example 2.3.2 (ιC function) If C is a closed non empty and convex subset of RN

proxιC (x) = argmin
y∈RN

ιC(y) +
1

2
kx− yk2

= argmin
y∈C

kx− yk2

| {z }
ΠC(x):projection operator onto C

(2.45)

Example 2.3.3 (ℓ1-norm)

(∀x ∈ R) proxλ|·|(x) = sign(x) max (|x|− λ, 0)| {z }
soft thresholding
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Example 2.3.4 (ℓ22-norm)

(∀x ∈ R
N ) proxλk·k2(x) =

1

1 + 2λ
x

| {z }
Wiener-like filter

.

The proximity operator is non-expansive, i.e. k proxf (x)− proxf (x
′
)k ≤ kx− x

′k for

every (x, x
′
) ∈ R

N × R
N . We can see that i) proximity operator is a generalization of

orthogonal projections and ii) if we define g(xk, x) = 1
2kx−xkk2+f(x), thus g(xk, x) can

be seen as a majorant function of f at xk. The proximal algorithms are especially useful
for solving large-size optimization problems, when the cost function f is the sum of M
functions (fm)1≤m≤M . We first discuss the case M = 2 and f1, f2 are in Γ0(R

N ). The
forward-backward algorithm has been proposed when f2 is differentiable with a Lipschitz
continuous gradient. In (Chen and Rockafellar, 1997) the authors used the subdifferen-
tial leading to the following update rule xk+1 = xk − γk(t

′
k +∇f2(xk)), t

′
k ∈ ∂f1(xk+1).

In (Combettes and Wajs, 2005) the update rule has been reformulated using the proxim-
ity operator which results in xk+1 = xk +λk(proxγkf1

(xn− γk∇f2(xk))−xk). This class
of algorithms (Nesterov, 2013; Bioucas-Dias and Figueiredo, 2007; Beck and Teboulle,
2009) focuses on the convergence speed, while (Tseng, 2000; Raguet et al., 2013), pro-
posed an extension to more general cases. However if both functions to be minimized are
nondifferentiable, then the Douglas-Rachford algorithms proposed in (Lions and Mercier,
1979; Eckstein and Bertsekas, 1992; Combettes and Pesquet, 2007a) may be used. In the
case when M > 2 one can resort to the Parallel Proximal Algorithm (PPXA) proposed in
(Combettes and Pesquet, 2008) that minimizes a sum of a finite number of functions in
Γ0(R

N ) or its generalized version (PPXA+) in (Pesquet and Pustelnik, 2012) that min-
imizes a sum of a finite number of functions in Γ0(R

N ) composed with linear operators.
We use PPXA+ in Chapter 3. PPXA+ requires to be able to invert some linear operator
(consisting of a sum of linear operators), which may not be straightforward to compute.
To tackle this problem, we should also mention the Primal-dual techniques proposed
in (Combettes and Pesquet, 2012; Vũ, 2013; Komodakis and Pesquet, 2014; Alghamdi
et al., 2014; Combettes et al., 2014). These algorithms are designed to jointly solve the
primal and dual formulations of an optimization problem by invoking the Fenchel duality
theorem.

Definition 2.3.4 The Fenchel-Rockafellar duality (Bauschke and Combettes, 2011, Chap-
ter 15) theorem states that under some technical conditions for any convex functions
f1 : RN → R and f2 : V → R :

inf
x∈RN

{f1(x) + f2(V x)}
| {z }

Primal problem

= sup
v∈V

{−f∗
1 (V ∗v) − f∗

2 (−v)}
| {z }
Fenchel-Rockafellar dual problem

(2.46)

where f∗ : RN → R is the convex-conjugate of f : RN → R (Bauschke and Combettes,
2011, Chapter 13) i.e.

∀u ∈ R
N , f∗(u) = sup

x∈RN

(hx, ui− f(x)) (2.47)
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z Denoising x = proxf (z)

(denoised signal)

–
+
+

z − x = proxf∗(z)

(residual signal)

z

proxf x (denoised signal)

proxf∗ z − x (residual signal)

Figure 2.12: Moreau’s decomposition schema.

V : RN → V is a linear operator and V ∗ is its adjoint. In such settings, primal and dual
variables refer to x and v, respectively.

(Bauschke and Combettes, 2011, Chapter 14, Theorem 14.3) states that for any
convex function f : RN → R and for any γ ∈ R

∗
+, then

Id = proxγf +γ proxf∗/γ (·/γ) . (2.48)

We give one example of a denoising problem to illustrate this theorem.

Example 2.3.5 (Denoising) We consider the following denoising problem

z = x + b

where z corresponds to the observed data, x is the original signal and the noise b which
is assumed to be additive zero-mean white Gaussian. We can reformulate the problem
as an optimization problem

minimize
x∈RN

f(x) +
1

2
kz − xk2

where regularization term f ∈ Γ0(R
N ) serves to enforce prior knowledge about the

solution. We know that this problem has a unique solution x = proxf (z), then z can be
decomposed as in Figure 2.12 - p. 29.

The algorithms based on primal-dual techniques are also used in this thesis. In general,
proximity methods are known for their good convergence properties. Most of the results
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are established for convex functions. However, some results in the non convex case can be
found in (Kaplan and Tichatschke, 1998; Bolte et al., 2007; Attouch et al., 2013; Attouch
and Bolte, 2010; Sra, 2011; Chouzenoux et al., 2014, 2013). In particular, we use the
algorithm in (Chouzenoux et al., 2013) to solve the problem of blind deconvolution in
Chapter 6.

Property f(x) proxf (x)

i, translation ϕ(x− z), z ∈ R
N z + proxϕ(x− z)

ii, scaling ϕ(x/γ), γ ∈ R \ 0 γ proxϕ/γ2(x/γ)

iii, reflection ϕ(−x) − proxϕ(−x)

iv, quadratic function 1
2γkLx− yk2 (I +γL⊤L)−1(x + γL⊤y)

L ∈ R
M×N , γ > 0, y ∈ R

M

v, quadratic perturbation ϕ(x) + αkxk2/2 + u⊤x + γ proxϕ/(α+1) ((x− u)/(α + 1))

u ∈ R
N ,α ≥ 0, γ ∈ R

vi, semi-orthogonal ϕ(Lx) x + ν−1L⊤ proxνϕ(Lx) − Lx
�

linear transform L ∈ R
M×N , LL⊤ = ν I, ν > 0

vii, indicator function ιC(x) =

(
0 if x ∈ C

+∞ otherwise
ΠC(x)

Table 2.1: Properties of proximity operators (Combettes and Pesquet, 2011): ϕ ∈
Γ0(R

N ); C ⊂ R
N is nonempty, closed, and convex; x ∈ R

N .

φ(x) proxφ(x)

i, ι[ω,ω](x) Π[ω,ω](x)

ii, ω|x| sign(x) max{|x|− ω, 0}
iii, ω|x|4/3 x + 4ω

321/3


(β − x)1/3 − (β + x)1/3

�
, where β =

p
x2 + 256ω3/729

iv, ω|x|3/2 x + 9ω2 sign(x)
�

1 −
p

1 + 16|x|/(9ω2)
�
/8

v, ω|x|2 x/(1 + 2ω)

vi, ω|x|3 sign(x)
�p

1 + 12ω|x|− 1
�
/(6ω)

vii, ω|x|4
�
β+x
8ω

�1/3
−
�
β−x
8ω

�1/3
, where β =

p
x2 + 1/(27ω)

viii, max{|x|− ω, 0}





x if |x| < ω

sign(x)ω ifω ≤ |x| ≤ 2ω

sign(x)(|x|− ω) if|x| > 2ω

Table 2.2: Proximity operators of φ ∈ Γ0(R
N ); α ∈ R, ω > 0, ω < ω (Combettes and

Pesquet, 2011).

Table 2.1 - p. 30 shows many additional properties of the proximity operator. One
will find in Table 2.2 - p. 30 closed-form expressions of the proximity operators of various
functions belonging to Γ0(R). These two tables contain some important properties that
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we will use in the next chapters of the thesis.

2.4 Conclusion

In this chapter, we first provided an introduction to the topic of inverse problems and
several associated mathematical tools. Indeed, we introduced the concept of sparsity and
sparse representation, and gave some useful algorithms to solve such inverse problems,
possibly favoring sparsity. In the next chapters, we will focus on two inverse problems of
particular interest in seismic data processing: multiple removal and blind deconvolution.
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Multiple removal with a single template

Random and structured noise both affect seismic data, hiding the reflections of interest
(primaries) that carry meaningful geophysical interpretation. When the structured noise
is composed of multiple reflections, its adaptive cancellation can be obtained through
time-varying filtering, compensating inaccuracies in given approximate templates. We
propose here a new variational framework based on a Maximum A Posteriori estimation
procedure. More precisely, the problem of multiple removal is formulated as a minimiza-
tion problem involving time-varying filters, assuming that a single disturbance signal
template is available and the target signal is sparse in some decomposition e.g. an or-
thonormal basis or a frame. We show that estimating these multiples is equivalent to
estimating filters and we propose to employ recently proposed convex optimization pro-
cedures based on proximity operators to solve the problem. In this chapter we consider
the problem for the case where the structured noise is only composed of one type of
multiple reflections and without additional noise. This work was initiated during the
internship of D. Gragnaniello (summer 2011).

3.1 Introduction

As already detailed in the introduction, the aim of seismic data analysis is to infer the
subsurface structure from seismic wave fields recorded through land or marine acquisi-
tions. In reflection seismology, seismic waves, generated by a close-to-impulsive source,
propagate through the subsurface medium. They travel downwards, then upwards, re-
flected by geological interfaces, convolved by earth filters. Seismic waves account for the
unknown relative distances and velocity contrasts between layers and they are affected by
propagation-related distortions. A portion of the wave fields is finally recorded near the
surface by arrays of seismometers (geophones or hydrophones). In marine acquisition,
hydrophones are towed by kilometer-long streamers.

We address here one of the most severe types of interferences: secondary reflections,
named multiples, corresponding to seismic waves bouncing between layers (Essenreiter

33
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• • • • • • •

Towed streamerHydrophone

Figure 3.1: Principles of marine seismic data acquisition and wave propagation. Towed
streamer with hydrophones. Reflections on different layers (primaries in blue), and re-
verberated disturbance (multiple in dashed red).

et al., 1998), as illustrated with red dashed lines in Figure 3.1 - p. 34. These reverbera-
tions share waveform and frequency contents similar to primaries, with longer propaga-
tion times. From the standpoint of geological information interpretation, they often hide
deeper target reflectors. For instance, the dashed-red multiple path may possess a total
travel time comparable with that of the solid-blue primary. Their separation is thus re-
quired for accurate subsurface characterization. A geophysics industry standard consists
of model-based multiple filtering. One realistic template of a potential multiple is deter-
mined off-line, based on primary reflections identified in above layers. For instance, the
dashed-red path may be approximately inferred from the dashed-blue, and then adap-
tively filtered for separation from the solid-blue propagation. Their precise estimation
is beyond the scope of this work, we suppose them given by prior seismic processing
or modeling. As template modeling is partly inaccurate — in delay, amplitude and fre-
quency — template should be adapted in a time-varying fashion before being subtracted
from the recorded data. Since the data recovery problem is under-determined, geophysi-
cists have developed pioneering sparsity-promoting techniques. Recently, several works
in geophysics have revisited the use of non-quadratic criteria, including Huber function
(Guitton and Symes, 2003) or ℓp(p ∈ [1, 2])-norms (Costagliola et al., 2011), due to the
alleged non-gaussianity of seismic data (Walden, 1985). However, robust, ℓ1-promoted
deconvolution (Claerbout and Muir, 1973) or sparseness measure ℓ1/ℓ2 (Zibulevsky and
Pearlmutter, 2001; Hoyer, 2004; Hurley and Rickard, 2009; Barak et al., 2014; Gray,
1978; Repetti et al., 2015), or complex wavelet transforms (Morlet, 1975) still pervade
many areas of signal processing.

The proposed method is based on a single approximate template, in the absence of
noise. This framework addresses at the same time structured reverberations. Namely, let
nt ∈ {0, . . . , Nt−1} denotes the time index for the observed seismic trace z, acquired by
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a given sensor. We assume, as customary in seismic, an additive model of contributions:

z(nt) = y(nt) + s(nt) . (3.1)

The unknown signal of interest (primary, in blue) and the sum of undesired, secondary
reflected signals (multiples, in red) are denoted, respectively, by y = (y(nt))0≤nt<Nt and
s = (s(nt))0≤nt<Nt . We assume that an approximate template accounting for multiples
is available.

This chapter presents a relatively novel framework for multiple reflection filtering
with (i) data fidelity term taking into account the statistical properties of the basis or
frame coefficients, (ii) prior information on the filter, and (iii) slow variation modelling
of the adaptive filter.

In Section 3.2, we analyze related works and specify the novelty of the proposed
methodology. Section 3.3 describes the transformed linear model incorporating the tem-
plate with adaptive filtering. In Section 3.4, we formulate a generic variational form for
the problem. We discuss some proximal algorithms for solving our problem in Section 3.5.
The slowly-varying property of the filter is to be taken into account and its performance
is assessed in Section 3.6. The methodology is evaluated on a realistic synthetic data
model. We draw some conclusions in section 3.7.

3.2 Related and proposed work

The separation of primaries and multiples is a classical issue in seismic exploration. Most
published solutions, tailored to specific levels of prior knowledge, are very dependent on
seismic data-sets. Several common processing routines transform the data into a new
domain in which they minimize overlap between primaries and multiples. Transformed
domain filter subsequently attenuate multiples or select primaries of interest. The fil-
tered data is finally mapped back to data domain, using an appropriate inverse transform.
Many standard transform methods are used as homomorphic filtering (Buttkus, 1975),
f − k (Wu and Wang, 2011), and τ − p (Nuzzo and Quarta, 2004) or alternative breeds

— parabolic, hyperbolic – of the Radon transform (Hampson, 1986; Trad et al., 2003;
Nowak and Imhof, 2006). See more details for these methods in (Verschuur, 2006).
Among the vast literature, we refer to (Weglein et al., 2011; Ventosa et al., 2012) for
recent accounts on broad processing issues, including shortcomings of standard ℓ2-based
methods. The latter are computationally efficient, yet their performance decreases when
traditional assumptions fail (primary/multiple decorrelation, weak linearity or stationar-
ity, high noise levels). We focus here on recent sparsity-related approaches, pertaining to
geophysical signal processing. The potentially parsimonious layering of the subsurface
(illustrated in Figure 3.1 - p. 34) suggests a modeling of primary reflection coefficients
with generalized Gaussian or Cauchy distributions (Walden, 1985; Walden and Hosken,
1986), having suitable parameters. The sparsity induced on seismic data has influenced
deconvolution and multiple subtraction. Progressively, the non-Gaussianity of seismic
traces has been emphasized, and contributed to the use of more robust norms (Kaplan
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and Innanen, 2008; Lu and Liu, 2009; Liu and Dragoset, 2012; Duarte et al., 2012; Taka-
hata et al., 2012; da Costa Filho, 2013) for blind separation with independent component
analysis (ICA) for the signal of interest. As the true nature of seismic data distribution
is still debated, including its stationarity (Bois and Hémon, 1963), a handful of works
have investigated processing in appropriate transformed domains. They may either sta-
tionarize (Krim and Pesquet, 1995) or strengthen data sparsity. For instance, (Donno,
2011) applies ICA in a dip-separated domain. In (Neelamani et al., 2010), as well as
in (Herrmann and Verschuur, 2004) and subsequent works by the same group, a special
focus is laid on separation in the curvelet domain.

Data sparsity alone may not be sufficient to solve (3.1). Additional constraints reduce
the set of solutions, hopefully to geologically sounder ones. A first one is the locality of
matched filter, traditional in standard multiple filtering. These can be modeled by Finite
Impulse Response (FIR) operators. Classical filter support limitations, down to one-tap
(Neelamani et al., 2010; Ventosa et al., 2012), assorted with ℓ2 or ℓ1 criteria, are standard.
Yet, no work in multiple removal has endeavored a more systematic study of variational
and sparsity constraints on the adaptive filter, in the line of (O’Brien et al., 1994). In
this work, we propose a formulation allowing a family of penalties to be applied to the
adaptive FIR filter. In standard restoration (Pesquet et al., 2009), knowledge about
the degradation kernel is often required. It is replaced here by the knowledge of a
template, the degradation kernel being estimated. The resulting algorithm recursively
estimates an FIR filter. The propagation medium, as well as the modeled template,
carries continuous variations. With the seismic bandwidth (up to 125 Hz), changes in
signals are not as dramatic as in sharp images. Consequently, we expect the adapted
filter to exhibit bounded variations from one time index to the next one. This hypothesis
is consistent with wave propagation assumptions. More precisely, the estimation problem
is formulated as a convex variational problem involving a non-smooth cost function.

3.3 Model description

We assume that a multiple template is modeled at the temporal vicinity of actual dis-
turbances, with standard geophysical assumptions on primaries. The multiple signal
possesses a local behavior related to the geological context. Hence, we assume the avail-
ability of one template (r(nt))0≤nt<Nt , related to (s(nt))0≤nt<Nt via a possibly non-causal
linear model through a limited support relationship:

s(nt) =

p′+P−1X

p=p′

h
(nt)

(p)r(nt−p) (3.2)

where h
(nt)

is an unknown finite impulse response (with P tap coefficients) associated
with time nt, and where p′ ∈ {−P + 1, . . . , 0} is its starting index (p′ = 0 corresponds
to the causal case). It must be emphasized that the dependence with respect to the
time index nt of the impulse responses implies that the filtering process is time variant,
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0 200 400 600 800 1000

ȳ(n)

r(n)

s̄(n)

z(n)

Figure 3.2: Considered simulated seismic signals. From top to bottom: primary (un-
known) y, template r, multiple (unknown) s and observed signal z.

although it can be assumed slowly varying in practice. Indeed, seismic waveforms evolve
gradually with propagation depth, in contrast with steeper variations around contours in
natural images. A template is generated with standard geophysical modeling based on
the above primaries. The adaptive FIR assumption is commonly adopted, and applied
in partly overlapping, complementary time windows at different scales. The observation
that adapted filter might be ill-behaved, due to the band-pass nature of seismic data
is well known, although rarely documented, motivating the need for filter coefficient
control. Figure 3.2 - p. 37 shows an example of synthetic data. We define vectors s and
h by:

s =
�
s(0) · · · s(Nt−1)

�⊤
, (3.3)

h =
h
h
(0)

(p′) · · · h(0)(p′ + P − 1) · · · h(Nt−1)
(p′) · · · h(Nt−1)

(p′ + P − 1)
i⊤

, (3.4)

and

R =




R(0) 0 . . . 0

0 R(1) . . . 0
... 0

. . .
...

0 0 . . . R(Nt−1)


 , (3.5)

where (R(nt))0≤nt≤Nt−1 are vectors of dimension P such that
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


R(0)

R(1)

...

R(Nt−1)


 =




r(−p′) · · · r(0) 0 · · · 0

r(−p′+1) · · · r(0) 0 · · · 0
...

r(Nt−1) r(Nt−2) · · · r(Nt−P )

0 r(Nt−1) · · · r(Nt−P+1)

...

0 · · · 0 r(Nt−1) · · · r(Nt−P−p′)




. (3.6)

One can note that the matrix R is a block diagonal matrix and that the concatenation
of its block diagonal elements is a Toeplitz matrix of size Nt×P . With this formulation,
the problem of providing an estimate by of the primary turns out to be equivalent to
computing an estimate bh of the impulse response and to deduce by = z −Rbh.

3.4 Proposed variational approach

Let us now show how the problem can be addressed from a Bayesian perspective. We
assume that the characteristics of the primary are appropriately described through a
prior statistical model in a different representation, e.g. a wavelet basis/frame (Mallat,
2009). For example, if we denote by x the vector of frame coefficients and F ∈ R

K×Nt

designates the associated analysis operator, we have (Chaux et al., 2007a)

x = Fy. (3.7)

In addition, we assume that y is a realization of a random vector, the probability density
function (pdf) of which is given by

(∀y ∈ R
Nt) fY (y) ∝ exp(−ϕ(Fy)) (3.8)

where ϕ : RNt → ]−∞,+∞] is the associated potential, assumed to be such that

(∀x ∈ R
K) ϕ(x) ≥ αkxk2θ (3.9)

where α ∈ ]0,+∞[ and θ ∈ ]0,+∞[. This allows us to deduce that

(∀y ∈ R
Nt) ϕ(Fy) ≥ ανθkyk2θ (3.10)

where ν ∈ ]0,+∞[ is the lower frame bound. This in turn implies that fY as defined in
(3.8) is a valid pdf.

For simplicity, ϕ can be chosen to be separable, which corresponds to an independence
assumption on the coefficients when the frame reduces to a basis:

(∀x = (xk)1≤k≤K ∈ R
K) ϕ(x) =

KX

k=1

ϕk(xk). (3.11)
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Figure 3.3: Generalized Gaussian modeling of seismic data wavelet basis decomposition
with different power laws.

where, for every k ∈ {1, · · · , Nt}, ϕk : R → ]−∞,+∞]. In order to promote the sparsity
of the decomposition, a standard choice for this potential is ϕk = κk| · | where κk > 0.
(This choice satisfies (3.9) with α = min1≤k≤K κk and θ = 1/2).

On the other hand, to take into account the available information on the unknown
filter, especially its regular variations along the time dimension, it can be assumed that
h is a realization of a random vector H, the pdf of which is expressed as

(∀h ∈ R
NtP ) fH(h) ∝ exp(−ρ(h)), (3.12)

and which is independent of y. By resorting to an estimation of h in the sense of the
Maximum A Posteriori (MAP), the problem can be formulated as

minimize
h∈RNtP

ϕ(F (z −Rh)) + ρ(h). (3.13)

In this approach, ϕ represents some data fidelity term taking into account the statisti-
cal properties of the basis coefficients and ρ models prior informations that are available
on h.

3.5 Filter estimation

3.5.1 Algorithm

The objective here is to perform the minimization of a criterion composed of only two
functions:

minimize
h∈RNtP

Φ(h) + ρ(h) (3.14)
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x

y

Figure 3.4: ℓ1-norm (in blue), Huber function with χ = 8 and τ = 1 (in green) and
Huber function with χ = 8 and τ = 1

2 (in dashed red).

where, Φ = ϕ(Fz − Ω·), and Ω = FR. The panel of available methods appears to be
very large and we have to take into account the linear operator R, in this case matrix
R verify R⊤R = Diag(kR(0)k2, . . . , kR(N−1)k2). As mentioned in the background (see
Chapter 2), the Douglas-Rachford (DR) algorithm (Combettes and Pesquet, 2007a) can
be used, however this algorithm requires to be able to compute the proximity operators
of Φ and ρ. Function Φ contains the linear operator Ω which drastically reduces the
choice one can make for ϕ e.g. when ϕ is a ℓ2-norm and F is a wavelet orthogonal basis,
then DR can be applied by using iv, in Table 2.1 - p. 30. However, when ϕ is a ℓ2-norm
and F is a wavelet orthogonal basis matrix then

ϕ(F (z −Rh)) = kF (z −Rh)k2 = (z −Rh)⊤F⊤F (z −Rh) = kz −Rhk2. (3.15)

This implies that an orthonormal wavelet basis is uneffective in this case.

Algorithm 1 Forward-Backward algorithm

Set h[0] ∈ R
NtP

for i = 0, 1, . . . do
eh[i] = h[i] − γ[i]∇Φ(h[i])
h[i+1] = h[i] + λ[i](proxγ[i]ρ(eh[i]) − h[i])

end for

We now turn our attention to the Forward-Backward (FB) splitting algorithm. We
assume that ϕ has a µ-Lipschitz continuous gradient, then the function Φ also has a
β-Lipschitz continuous gradient with β = µkΩk2. This algorithm implies to be able to
compute the gradient of Φ and the proximity operator of ρ. At each iteration i, the step-
size γ[i] and the relaxation parameter λ[i] must be chosen so as to satisfy the following
rule: let ǫ ∈]0,min{1, 1/β}[, γ[i] ∈ [ǫ, 2/β − ǫ], and λ[i] ∈ [ǫ, 1]. We choose to use a
wavelet orthogonal basis with 8-length Symlet filters, performed on 4 resolution levels.
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Figure 3.3 - p. 39 illustrates a generalized Gaussian modeling of seismic data wavelet
basis decomposition with different power laws. The best matching power for the chosen
wavelet basis yields the taxicab metric or ℓ1-norm. However, we assumed here that Φ
has a µ-Lipschitz continuous gradient. For this reason we choose the Huber function as
follows:

ϕk(x) =

(
χx2 if |x| ≤ τ√

2χ

τ
√

2χ|x|− τ2

2 otherwise
(3.16)

where χ > 0 and τ > 0. Then we have ϕ(x) =
PK

k=1 κkϕk(xk), which is a function that
well approximates the ℓ1-norm and which has a Lipschitz continuous gradient, µ = 2χ
being the Lipschitz constant of ϕk, with its gradient given by

∇ϕk(x) =

(
2χx if |x| ≤ τ√

2χ

τ
√

2χ sign(x) otherwise.
(3.17)

Figure 3.4 - p. 40 illustrates the ℓ1-norm (in blue) and the Huber functions with different
parameters (in green and red). The red line is very close to the ℓ1-norm.
Indeed, (3.13) can be written as

minimize
h∈RNtP

Φ(Ωh− Fz) + ρ(h) (3.18)

where Φ is a function defined such that Φ(x) = ϕ(−x). For solving monotone inclusions
involving a mixture of sums, linear compositions, we choose to employ Monotone +
Skew Forward Backward Forward (M+SFBF) algorithm (Briceños Arias and Combettes,
2011). With this algorithm the ℓ1-norm can be used without any approximation to the
ϕ function.

Algorithm 2 M+SFBF algorithm

Set γn ∈ [ǫ, 1−ǫ
β ]. Set h[0] ∈ R

NtP , u[0] ∈ R
K .

for i = 0, 1, . . . do
ev[i] = h[i] − γ[i]Ω∗v[i]
eh[i] = v[i] + γ[i]Ωh[i]

w
[i]
1 = proxγ[i]ρ(ev[i])

w
[i]
2 = proxγ[i]Φ∗(eh− γ[i]Fz)

q
[i]
1 = w

[i]
1 − γ[i]Ω∗w[i]

2

q
[i]
2 = w

[i]
2 + γ[i]Ωw

[i]
1

h[i+1] = h[i] − ev[i] + q
[i]
1

v[i+1] = v[i] − eh[i] + q
[i]
2

end for
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We have

proxγ[i]Φ∗(eh− γ[i]Fz) = (eh− γ[i]Fz) − γ[i] prox Φ

γ[i]
(
eh
γ[i]

− Fz) using Tab. 2.1, (iii)

= (eh− γ[i]Fz) − γ[i] proxϕ(−·)
γ[i]

(
eh
γ[i]

− Fz)

= (eh− γ[i]Fz) + γ[i] prox ϕ

γ[i]
(Fz −

eh
γ[i]

) using Tab. 2.1, (i).

Furthermore, we can still use the Huber function for ϕk with this algorithm. In this
case, the proximity operator of the Huber function (3.16) reads:

proxϕk
(x) =

(
x

2χ+1 if |x| ≤ τ(2χ+1)√
2χ

x− τ
√

2χ sign(x) otherwise.
(3.19)

The convergence of the algorithm to an optimal solution to Problem (3.18) is guaran-
teed by (Briceños Arias and Combettes, 2011, Theorem 3.1). According to this theorem,
the step size γ[i] at each iteration i must be chosen so as to satisfy the following rule: let
ǫ ∈]0, 1

kΩk+1 [, then

γ[i]
�
i∈N ∈ [ǫ, 1−ǫ

kΩk ].

3.5.2 Results

In this chapter, the considered data y = (y(nt))0≤nt<Nt and multiple template r =
(r(nt))0≤nt<Nt were generated from actual seismic data primaries and multiples. We
generated the observed data z = (z(nt))0≤nt<Nt according to the model given in (3.1). In
the following, we choose the length of signal Nt = 1024, P = 10 tap coefficients and p′ =
0. We use a Symlet wavelet decomposition with filter length 8 over 4 resolution levels.
The convex optimization algorithm evaluates the value of ĥ that solves problem (3.13).

We choose ϕ =
PK

k=1 κkϕk where for every k ∈ {1, . . . ,K}, ϕk is the Huber function
recalled in (3.16) with χ = 8 and τ = 1

2 and κk = 0.8 for FB algorithm and ϕk = | · |
and κk = 0.9 for M+SFBF algorithm. For both algorithms, function ρ is chosen equal
to (1 − κk)ℓ22. The algorithms are launched on 10000 iterations and may stop earlier at
iteration i if the filter becomes stable (i.e. kh[i+1] − h[i]k <

√
NtP × 10−6).

The result of these algorithms are depicted in Figure 3.5 - p. 43 and Figure 3.6 - p. 43.
We focus on the leftmost part of the plots, between indices 1 and 500. While Figure 3.6 -
p. 43 shows the comparisons of: on the left; primary y (in blue) and observed data z;
on the right; primary y (in blue) and estimated signal by1 (in magenta) by using FB
and estimated signal by2 (in cyan) by using M+SFBF. We observe firstly that FB and
M+SFBF algorithms give very close results, secondly the primary y is well retrieved.
However between indices 80 and 200, the multiple energy is higher in this part, the
estimated signal is not compatible with the original, and the result obtained by M+SFBF
algorithm is better than the one by FB algorithm. In the next section we propose to
add constraints for time-varying adaptive filtering of seismic signal.
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Figure 3.5: Results by using FB and M+SFBF algorithms. From up to down: original
signal y, estimated signal by1 by FB, estimated signal by2 by M+SFBF, model r, multiple
s, estimated multiples bs1 by FB, estimated multiple bs2 by M+SFBF and observed signal
z.
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Figure 3.6: Cropped version of the results by using FB algorithm. Left: original signal
y (in blue) and observed signal z (in black); Right: original signal y (in blue) and
estimated signal by1 (in magenta) and estimated signal by2 (in cyan) by M+SFBF.
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3.6 Filter estimation adding constraints

The problem is underdetermined because we should estimate an amount of coefficients of
filter h much greater than the length of signal. We know that the choice of a good prior
(or equivalently, a good regularization term) is the key for solving most ill-posed inverse
problems. In this case from wave propagation properties, the filter is here assumed to
vary along the time index nt. However, as mentioned earlier, the filter variations are
usually slow. In order to take into account this prior knowledge, the following bounded
variation constraint can be introduced

(∀(nt, p)) |h(nt+1)(p) − h(nt)(p)| ≤ ǫp. (3.20)

This inequality links corresponding coefficients of the impulse response which are
estimated between two consecutive time samples (in other words, we impose consecu-
tive filter to take close values). The parameter ǫp may depend on the shape of the
expected filter. For example, its dependence on the coefficient index p may enable a
larger (reps. smaller) difference for filter coefficients taking larger (reps. smaller) values.
The associated closed convex set is defined as

C = {h ∈ R
NtP | ∀(nt, p) |h(nt+1)(p) − h(nt)(p)| ≤ ǫp}. (3.21)

We subsequently assume that the pdf fH is compactly supported on C, so yielding
the following criterion to be minimized:

minimize
h∈RNtP

ϕ(F (z −Rh)) + eρ(h) + ιC(h) (3.22)

where eρ : R
NtP → ]−∞,+∞]. For computational issues, the convex set C can be

expressed as the intersection of two convex subsets C1 and C2:

C1 =

�
h ∈ R

NtP | ∀p, ∀nt ∈
n

0, . . . ,

�
Nt

2

�
− 1
o
, |h(2nt+1)(p) − h(2nt)(p)| ≤ εp

�

(3.23)

C2 =

�
h ∈ R

NtP | ∀p, ∀nt ∈
n

1, . . . ,

�
Nt − 1

2

�o
, |h(2nt)(p) − h(2nt−1)(p)| ≤ εp

�
.

(3.24)

Note that in each subset, the involved variables are decoupled. Using these two
subsets, Criterion (3.22) becomes

minimize
h∈RNtP

ϕ(F (z −Rh)) + eρ(h) + ιC1(h) + ιC2(h). (3.25)

Concerning the data fidelity term, it can be observed that it is equal to h → Φ(FRh)

where, Φ
△
= ϕ(Fz − ·). The regularization term is function eρ. For the constraints
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modeled by the closed convex sets C1 and C2, the proximity operators of the associated
indicator functions are given by the projections onto these sets. These projections reduce
to projections onto a set of hyperslabs of R2. More precisely, the projection onto C1 is
calculated as follows: let h ∈ R

NtP and let g1 = ΠC1(h); and g2 = ΠC2(h); then for every
p ∈ {p′, . . . , p′ + P − 1} and for every nt ∈

�
0, . . . ,

�
Nt
2

�
− 1
	

,

1. if |h(2nt+1)(p) − h(2nt)(p)| < εp, then

g
(2nt)
1 (p) = h(2nt)(p), g

(2nt+1)
1 (p) = h(2nt+1)(p);

g
(2nt)
2 (p) = h(2nt)(p), g

(2nt−1)
2 (p) = h(2nt−1)(p)

2. if h(2nt+1)(p) − h(2nt)(p) > εp, then

g
(2nt)
1 (p) =

h(2nt+1)(p) + h(2nt)(p)

2
− εp

2

g
(2nt+1)
1 (p) =

h(2nt+1)(p) + h(2nt)(p)

2
+

εp
2

;

g
(2nt)
2 (p) =

h(2nt)(p) + h(2nt−1)(p)

2
+

εp
2

g
(2nt−1)
2 (p) =

h(2nt)(p) + h(2nt−1)(p)

2
− εp

2

3. if h(2nt+1)(p) − h(2nt)(p) < −εp, then

g
(2nt)
1 (p) =

h(2nt+1)(p) + h(2nt)(p)

2
+

εp
2

g
(2nt+1)
1 (p) =

h(2nt+1)(p) + h(2nt)(p)

2
− εp

2
;

g
(2nt)
2 (p) =

h(2nt)(p) + h(2nt−1)(p)

2
− εp

2

g
(2nt−1)
2 (p) =

h(2nt)(p) + h(2nt−1)(p)

2
+

εp
2
.

The projections onto the two first constraint sets C1 and C2 — imposing smooth
variations along time of the corresponding tap coefficients — reduce to projections onto
a set of hyperslabs of R2 as illustrated in Figure 3.7 - p. 46.

3.6.1 Algorithm

We propose to employ the iterative algorithm in (Pesquet and Pustelnik, 2012) (see Algo-
rithm 3). This algorithm mainly consists of computing alternately proximity operators
and projections. It can be noticed that the algorithm requires to compute the inverse of
matrix Q ∈ R

Nt×Nt . If F corresponds to a wavelet orthonormal basis or a tight frame
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Figure 3.7: Projection onto C1/C2 of points H1, H2 and H3 in R
2.

Algorithm 3 PPXA+

Set (o1, o2, o3, o4) ∈ ]0,+∞[4 and t
[0]
1 ∈ R

K , t
[0]
2 ∈ R

NtP , t
[0]
3 ∈ R

NtP , t
[0]
4 ∈ R

NtP

Q = o1νR
⊤R + (o2 + o3 + o4) I

h[0] = Q−1
�
o1R

⊤F⊤t[0]1 + o2t
[0]
2 + o3t

[0]
3 + o4t

[0]
4

�

for i = 0, 1, . . . do

w
[i]
1 = prox Φ

o1

(t
[i]
1 )

w
[i]
2 = prox �ρ

o2

(t
[i]
2 )

w
[i]
3 = ΠC1(t

[i]
3 )

w
[i]
4 = ΠC2(t

[i]
4 )

c[i] = Q−1
�
o1R

⊤F⊤w[i]
1 + o2w

[i]
2 + o3w

[i]
3 + o4w

[i]
4

�

λ[i] ∈]0, 2[

t
[i+1]
1 = s

[i]
1 + λ[i]

�
FR(2c[i] − h[i]) − w

[i]
1

�

t
[i+1]
2 = s

[i]
2 + λ[i]

�
2c[i] − h[i] − w

[i]
2

�

t
[i+1]
3 = t

[i]
3 + λ[i]

�
2c[i] − h[i] − w

[i]
3

�

t
[i+1]
4 = t

[i]
4 + λ[i]

�
2c[i] − h[i] − w

[i]
4

�

h[i+1] = h[i] + λ[i]

c[i] − h[i]

�

end for
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with constant ν ∈ ]0,+∞[ (ν = 1 when F is a orthonormal basis), this can be done by
applying the Woodbury formula (Golub and Van Loan, 1996)

Q−1 =
1

o2 + o3 + o4
I− o1ν

o2 + o3 + o4
R⊤
�

I +
o1ν

o2 + o3 + o4
RR⊤

�−1

R
1

o2 + o3 + o4
I

=
1

o2 + o3 + o4
I− o1ν

(o2 + o3 + o4)2
R⊤
�

I +
o1ν

o2 + o3 + o4
RR⊤

�−1

R.

By using the fact that

RR⊤ = Diag(kR(0)k2, . . . , kR(Nt−1)k2) (3.26)

we get

Q−1 =
1

o2 + o3 + o4

�
I−R⊤DR

�
(3.27)

where

D−1 = Diag

�
o2 + o3 + o4

o1ν
+ kR(0)k2, . . . , o2 + o3 + o4

o1ν
+ kR(Nt−1)k2

�
. (3.28)

Concerning the proximity operator of function Φ, it can be computed, by using Table 2.1 -
p. 30, (i) and (iii), we get

proxΦ(x) = proxϕ(Fz− ·)(x)

= proxϕ(−(·−Fz))(x)

= Fz − proxϕ(Fz − x) using Tab. 2.1, (i) and (iii).

3.6.2 Results

The inner parameters of PPXA+ have been chosen in an empirical manner: λ[i] = 1.5,
o1 = 10000/Nt, o2 = o1/P, o3 = o4 = 10 o2; the algorithm is initialized by randomly
generated Nt positive-valued vectors of size P summing up to one. The stopping criteria
for PPXA+ algorithm is similar to the one for FB and M+SFBF algorithms.

The numerical results below have been obtained with ϕk ≡ κk|·| and eρ = (1−κk)k·k2,
κk = 0.9. Symlet wavelets of length 8 over 4 resolution levels are used.

In a first set of experiments, the observations are generated according to (3.1), and

we assume that P , p′ and ǫ = maxp′≤p≤p′+P−1,0≤nt<Nt−1 |h
(nt+1)

(p)−h
(nt)

(p)| are known,
where h denotes the “true” impulse response. We subsequently set ǫp ≡ ǫ for defining
the convex constraints on the filter.

Results obtained considering P = 10 , p′ = 0 and ǫ = 0.14 are displayed in Figure 3.8 -
p. 48 and Figure 3.9 - p. 48. The signal is satisfactorily recovered. As we can observe
in Figure 3.9 - p. 48, the primary is well recovered, in particular, the result is improved
between indices 80–200. This shows the performance of time-varying filter constraints.
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Figure 3.8: Results by using PPXA+ algorithm. From top to bottom: original signal
y, estimated signal by, model r, multiple s, estimated multiples bs and observed signal z.
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Figure 3.9: Cropped version of the results by using PPXA+ algorithm. Left: original
signal y (in blue) and and observed signal z (in black); Right: original signal y (in blue)
and estimated signal by (in red).
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Figure 3.10: Cropped version of the results by using PPXA+ algorithm. Left: original
signal ȳ (in blue) and observed signal z in red for P = 6 and in green for P = 16; right:
original signal y (in blue), estimated signal ŷ in red for P = 6 and in green for P = 16.
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Figure 3.11: Comparison of the results obtained when varying P tap coefficient from
6 to 16 in using two a priori functions eρ = ℓ1 (in blue) and eρ = ℓ22 (in red).
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To emulate actual geophysical configurations, the data and templates obtained from
actual seismic surveys have been combined with filter of varying length (from five to
twenty taps), starting time (p′) and shape (from fully symmetric to asymmetric). Due
to amplitude and spectrum variations in actual multiples, an absolute statistical analysis
is not straightforward. Instead, we focus on errors of estimated signal and reference signal
(ℓ1(y− ŷ)) and the ℓ1/ℓ2(h). Nowadays, the ℓ1/ℓ2 criterion is used frequently to measure
the sparsity of a signal (Repetti et al., 2015; Krishnan et al., 2011; Benichoux et al., 2013;
Zibulevsky and Pearlmutter, 2001; Hoyer, 2004; Hurley and Rickard, 2009; Barak et al.,
2014). In Chapter ??, we propose a method based on a smooth approximation of the
ℓ1/ℓ2 function. Figure 3.11 - p. 49 shows the results obtained by two different functions
ρ (ℓ1-norm and ℓ2-norm). We observe that in both cases, the bigger ℓ1(y− ŷ), the bigger
ℓ1/ℓ2(h). In other words, if a filter presents more sparsity, then the estimated signal
is better retrieved. Figure 3.10 - p. 49 shows a comparison between the two estimated
signals when P = 6 (in red) and P = 16 (in green) with original signal (in blue). We
observe that the signal obtained for P = 6 is recovered perfectly, while for P = 16, as
the filter length is quite large, it is much more difficult to detect. However, the signal is
satisfactorily recovered.

3.7 Conclusion

In this chapter, we developed a new variational framework for multiple removal in seismic
data under the assumption that a disturbance signal template is available. The proposed
algorithm is based on recent advances in the theory of proximal methods. This allows
us to estimate FIR filters that vary along the time dimension and the results provided
by this approach appear to be very promising. In a first time we have started with some
standard algorithms such as FB and M+SFBF for minimizing the sum of two functions
and no constraint is considered. In a second time, the slowly-varying property of filter is
taken into account. We then proposed to employ PPXA+ algorithm. The results showed
the good performance of time varying filter constraint and the ℓ1-norm penalty on the
filter. In the following chapter, we extend this method to the noisy case. Moreover
we propose a technique to combine different multiple models together to achieve better
results.
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Multiple removal with several templates and noise

In the previous chapter we discussed the problem of seismic multiple removal for only
one template in a noise-free case. The focus of this chapter addresses different types of
multiples with noise estimation. We recall the problem of jointly estimating the filters
and the signal of interest (primary) in a new convex variational formulation, allowing
the incorporation of knowledge about the noise statistics. We propose a primal-dual
algorithm to solve the derived minimization problem which yields good performance in
both simulated and real field seismic data.

4.1 Introduction

• • • • • • •

Towed streamerHydrophone

Figure 4.1: Principles of marine seismic data acquisition and wave propagation. Towed
streamer with hydrophones. Primaries (in blue), and two different types of multiple peg-
leg (dashed red) and water-bottom (dotted red).

51
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We now consider the problem for a more general case where the primaries are de-
graded by both random and structured noises. Consequently, the problem (3.1) becomes

z(nt) = y(nt) + s(nt) + b(nt) (4.1)

where b = (b(nt))0≤nt<Nt denotes the additional noise. It is well-known that seismic
data often contains random noises related to near-surface scatterers. This work mostly
deals with the mitigation of some ℓ2-norm on residuals, as remnant noise is traditionally
considered as Gaussian in seismic. As far as sparsity is concerned, ℓ2-norm penalties
are blended with ℓ0 objectives, solved through ℓ1 or hybrid ℓ1-ℓ2 approximations (Guit-
ton and Verschuur, 2004), resorting for instance to iteratively re-weighted least-squares
method. Recently, (Costagliola et al., 2011) investigated the use of intermediate ℓp-
norms, with p = 1.2 for instance, accounting for the “super-Gaussian nature of the
seismic data due to the interfering fields”, in the time domain. In reality, there exist
several types of multiples. As illustrated in Figure 4.1 - p. 51, there is not only the
peg-leg multiple, but also a water-bottom multiple. In (Mei and Zou, 2010), the authors
proposed a multiple subtraction method for two or more multiple models, using matched
filters to modify them. Then they minimize the energy between the input data and these
modified multiple models. Note that this step is carried out in local time-space windows,
and thus the matched filters can vary from one window to another. They showed that
the type of weighted subtraction with weights based on the similarity between the mul-
tiples and the input data gives the best result when one multiple model is more reliable
than the other one. Their experiments were performed only for two multiple models.
Recently, we refer to (Ventosa et al., 2012) for a combination of several multiple models.
The authors proposed a model-based multiple subtraction that combines complex Mor-
let wavelet frame with complex unary Wiener filters. Their methods are demonstrated
on field data with three different multiple models. Also many papers show the good
performance of the multi-model in the multiple removal problem such as (Sanchis and
Hanssen, 2011; van Borselen et al., 2012; Liu and Dragoset, 2012; Moni et al., 2012; Mei
and Zou, 2010; Neelamani et al., 2008; Pica, 1992; Huo and Wang, 2009). Sometimes,
one can consider that there is a single model, however it is turned into a multiple model
with the derivatives and the Hilbert transform such as in (Wang, 2003). As problem (4.1)
is underdetermined, additional constraints should be devised. In particular, we investi-
gate sparsity issues on primaries and adaptive filters. As for sparse representation on
primaries, this can be computed using wavelet transformations such as bases or frames
(Pesquet et al., 1996; Fowler, 2005) in which the regularizations are adapted (e.g. the
ℓ1-norm defined on the coefficients). Since each subband has different properties due to
the energy distribution, it is reasonable to use the different regularization parameters
depending on the content of each subband. In image processing, ℓ1-norm seems to be
a better cost function for wavelet coefficient in subbands and squared ℓ2-norm is more
appropriate on the approximation subband. In (Chaux and Blanc-Féraud, 2012) the
authors proposed a method to estimate the regularization hyperparameters per subband
based on a Maximum Likelihood (ML) estimator. In this chapter, we propose to de-
fine constraints for each subband. This allows us to more easily determine data-based
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parameters and to improve the performance of frame decompositions. Concerning the
sparsity on adaptative filters, we employ a nuclear norm regularization. This choice is
due to the fact that low-rank matrix approximations and sparsity are related. Indeed, a
low-rank property well represents matrix sparsity (Zeng et al., 2012; Candès et al., 2011;
Chen and Sacchi, 2014; Kreimer et al., 2013). It is well-known that the nuclear norm
(sum of singular values) regularization promotes a low rank solution. The singular val-
ues of a complex matrix are always positive (Golub and Van Loan, 1996). This implies
that the nuclear norm is equivalent to the ℓ1-norm on singular values. In particular, we
demonstrate that the nuclear norm is equivalent to the mixed ℓ1,2-norm in some cases.

This chapter extends a more generic framework for multiple reflection filtering with
(i) a noise prior, (ii) sparsity constraints (for each of subbands) on signal frame coeffi-
cients, (iii) slow variation modeling of the adaptive filters, and (iv) concentration metrics
on the filters. Multiple constraints can now be handled in a convenient manner. Due
to the diversity of focus points which are paired with data observation, we choose here
to decouple effects and to insist on (iv), with respect to different flavors of 1D wavelet
bases and frames, which appear as natural atoms for sparse descriptions of some physical
processes, related to propagation and reflection of signals through media.

Section 4.2 describes the transformed linear model incorporating the templates with
adaptive filtering. In Section 4.3, we formulate a generic variational form for the prob-
lem. Section 4.4 describes the primal-dual proximal formulation. The performance of
the proposed method is assessed in Section 4.5. We detail the chosen optimization cri-
teria and provide a comparison with different types of frames. The methodology is first
evaluated on a realistic synthetic data model, and then tested and applied to an actual
seismic data-set. Actually, the evaluation of the proposed multiple filtering algorithm
on seismic data is not straightforward, for two main reasons. First, seismic process-
ing work flows are neither publicly available for benchmarks and are generally heavily
parametrized. Second, quality measures are not easy to devise since visual inspection
is a paramount feature in geophysical data processing assessment. We thus compare
the proposed approach with a state-of-the-art solution, previously benchmarked against
industrial competitors (Ventosa et al., 2012). Conclusions and perspectives are drawn
in Section 4.6.

4.2 Model description

We assume that multiple templates are modeled at the temporal vicinity of actual dis-
turbances, with standard geophysical assumptions on primaries. The multiple signal
possesses a local behavior related to the geological context. Hence, we assume the

availability of J templates (r
(nt)
j )0≤nt<Nt,0≤j<J , related to (s(nt))0≤nt<Nt via a possibly

non-causal linear model through a limited support relationship:

s(nt) =
J−1X

j=0

p′+Pj−1X

p=p′

h
(nt)
j (p)r

(nt−p)
j (4.2)
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where h
(nt)
j is an unknown finite impulse response (with Pj tap coefficients) associated

with template j at time nt, and where p′ ∈ {−Pj + 1, . . . , 0} is its starting index (p′ = 0
corresponds to the causal case). Templates are generated with standard geophysical
modeling based on the above primaries and wave-equation modeling. The adaptive FIR
assumption is commonly adopted, and applied in partly overlapping, complementary
time windows at different scales. The observation that adapted filters are ill-behaved,
due to the band-pass nature of seismic data is well known, although rarely documented,
motivating the need for filter coefficient control. Defining vectors s and (hj)0≤j<J by:

s =
�
s(0) . . . s(Nt−1)

�⊤
,

hj =
h
h
(0)
j (p′) . . . h

(0)
j (p′ + Pj − 1) . . . h

(Nt−1)
j (p′) . . . h

(Nt−1)
j (p′ + Pj − 1)

i⊤
,

and block diagonal matrices (Rj)0≤j<J of size Nt ×NtPj :

Rj =




R
(0)
j 0 . . . 0

0 R
(1)
j . . . 0

... 0
. . .

...

0 0 . . . R
(Nt−1)
j



,

where (R
(nt)
j )0≤nt≤Nt−1 are vectors of dimension Pj such that

h
(R

(0)
j )⊤(R

(1)
j )⊤ . . . (R

(Nt−1)
j )⊤

i⊤
=




r
(−p′)
j . . . r

(0)
j 0 . . . 0

r
(−p′+1)
j . . . r

(0)
j 0 . . . 0

...

r
(Nt−1)
j r

(Nt−2)
j . . . r

(Nt−Pj)
j

0 r
(Nt−1)
j . . . r

(Nt−Pj+1)
j

...

0 . . . 0 r
(Nt−1)
j . . . r

(Nt−Pj−p′)
j




.

Eq. (4.2) can be expressed more concisely as

s =

J−1X

j=0

Rjhj .

For more conciseness, one can write s = Rh by defining R = [R0 . . . RJ−1] ∈ R
Nt×Q

where Q = NtP with P =
PJ−1

j=0 Pj and h = [h
⊤
0 . . . h

⊤
J−1]

⊤ ∈ R
Q.
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4.3 Proposed variational approach

4.3.1 Bayesian framework

As mentioned in the previous chapter, we assume that y is a realization of a random
vector Y , the probability density function (pdf) of which is given by

(∀y ∈ R
Nt) fY (y) ∝ exp(−ϕ(Fy)) (4.3)

where ϕ : RNt → ]−∞,+∞] is the associated potential, assumed to have a fast enough
decay.

To take into account the available information on the unknown filters, it can be
assumed that for all j ∈ {0, . . . , J − 1}, hj is a realization of a random vector Hj . Let
H = R

NtP0 × . . .× R
NtPJ−1 . The joint pdf of the filter coefficients can be expressed as:

(∀h ∈ H) fH0,...,HJ−1
(h) ∝ exp(−ρ(h)),

where (H0, . . . , HJ−1) is independent of Y . It is further assumed that the noise vector b
is a realization of a random vector B with pdf

(∀b ∈ R
Nt) fB(b) ∝ exp(−ψ(b)),

where ψ : RNt → ]−∞,+∞], and that B is independent of Y and H0, . . . , HJ−1. The
posterior distribution of (Y,H0, . . . , HJ−1) conditionally to Z = Y +

PJ−1
j=0 RjHj + B is

then given by

(∀y ∈ R
Nt)(∀h ∈ H)

fY,H0,...,HJ−1|Z=z(y, h) ∝ exp


−ψ

�
z − y −

J−1X

j=0

Rjhj

�

 fY (y)fH0,...,HJ−1

(h).

By resorting to an estimation of (y, h0, . . . , hJ−1) in the sense of the MAP, the prob-
lem can thus be formulated under the following variational form:

minimize
y∈RNt , h∈H

ψ(z − y −
J−1X

j=0

Rjhj) + ϕ(Fy) + ρ(h). (4.4)

4.3.2 Problem formulation

For simplicity, we propose to adopt uniform priors for Y and (H0, . . . , HJ−1) by choosing
for ϕ and ρ indicator functions of closed convex sets. The associated MAP estimation
problem then reduces to the following constrained minimization problem:

minimize
Fy∈D,h∈C

Ψ

��
y
h

��
(4.5)
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where the data fidelity term is defined by function Ψ :

��
y
h

��
7→ ψ

�
z − [I R]

�
y
h

��
, and

the a priori information available on the filters and the primary are expressed through
hard constraints modeled by nonempty closed convex sets C and D. One of the potential
advantages of such a constrained formulation is that it facilitates the choice of the related
parameters with respect to the regularized approach which was investigated in some of
our previous works (Gragnaniello et al., 2012; Pham et al., 2013) (this point will be
detailed later on). We will now turn our attention to the choice of Ψ, C and D.

4.3.3 Considered data fidelity term and constraints

4.3.3.1 Data fidelity term

Function Ψ accounts for the noise statistics. In this work, the noise is assumed to be
additive, zero-mean, white and Gaussian. This leads to the quadratic form ψ = k . k2.

4.3.3.2 A priori information on adaptive filter

The filters are assumed to be time–varying. Naturally, the hypothesis is difficult to verify
in practice. However, in order to ensure smooth variations along time, we propose to
introduce constraint sets

C1 =
n
h ∈ R

Q | ∀(j, p), ∀nt ∈
�

0, . . . ,

�
Nt

2

�
− 1

�
|h(2nt+1)

j (p) − h
(2nt)
j (p)| ≤ εj,p

o

(4.6)

C2 =
n
h ∈ R

Q | ∀(j, p), ∀nt ∈
�

1, . . . ,

�
Nt − 1

2

��
|h(2nt)

j (p) − h
(2nt−1)
j (p)| ≤ εj,p

o
.

(4.7)

These constraints prevent strong variations of corresponding coefficients of the impulse
response, estimated at two consecutive times. The bounds εj,p ∈ [0,+∞[ may depend
on the shape of the expected filter. For example, its dependence on the coefficient index
p may enable a larger (resp. smaller) difference for filter coefficients taking larger (resp.
smaller) values. Moreover, some additional a priori information can be added directly
on the vector of filter coefficients h. This amounts to defining a new convex set C3

as a lower level set of some lower-semicontinuous convex functions, by setting C3 =�
h ∈ R

Q | ∀j ∈ {0, 1, . . . , J − 1}, eρj(hj) ≤ λj

	
where for every j ∈ {0, 1, . . . , J − 1},

λj ∈ ]0,+∞[, eρj : RNtPj → [0,+∞[ may correspond to simple norms such as ℓ1 or ℓ2-
norms but also to more sophisticated ones such as a mixed ℓ1,2-norm (Kowalski, 2009).
Hence, the convex set C is defined as C = C1∩C2∩C3. From a computational standpoint
(see Section 4.4), it is more efficient to split C into three subsets as described above.
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4.3.3.3 A priori information on primary signal

As mentioned in Section 4.3.1, we assume that the primary signal is sparsely described
through an analysis frame operator F ∈ R

K×Nt (Jacques et al., 2011), which may ease its
processing, by increasing the data-domain discrepancy between primaries and multiples.
The associated constraint can be split by defining a partition of {1, . . . ,K} denoted by
{Kl | l ∈ {1, . . . ,L}}. For example, for wavelet frames, L may correspond to the number
of subbands and Kl is the l-th subband. Then, one can choose D = D1 × . . .×DL with
Dl = {(xk)k∈Kl

|Pk∈Kl
eϕl(xk) ≤ βl}, where, for every l ∈ {1, . . . ,L}, βl ∈ ]0,+∞[, and

eϕl : R → [0,+∞[ is a lower-semicontinuous convex function.

4.4 Primal-Dual proximal algorithm

Our objective is to provide a numerical solution to Problem (4.5). This amounts to
minimizing function Ψ with respect to y and h, the latter variables being constrained
to belong to the constraint sets D and C, respectively. These constraints are ex-
pressed through linear operators, such as a wavelet frame analysis operator F . For
this reason, primal-dual algorithms (Briceños Arias and Combettes, 2011; Chambolle
and Pock, 2011; Condat, 2013), such as the Monotone+Lipschitz Forward-Backward-
Forward (M+LFBF) algorithm (Combettes and Pesquet, 2012), constitute appropriate
choices since they avoid some large-size matrix inversions inherent to other schemes such
as the ones proposed in (Afonso et al., 2011; Pesquet and Pustelnik, 2012). As mentioned
in Section 4.3.3.1, Ψ is a quadratic function and its gradient is thus Lipschitzian, which
permits it to be handled by the M+LFBF algorithm. In order to deal with the con-
straints, projections onto the closed convex sets (Cm)1≤m≤3 and D are performed (these
projections are described in more details in the next section).

4.4.1 Gradient and projection computation

From the assumption of additive zero-mean Gaussian noise, we deduce that Ψ is differ-

entiable with a µ-Lipschitzian gradient, i.e. (∀
�
y
h

�
∈ R

Nt+Q)(∀
�
y
′

h
′

�
∈ R

Nt+Q):





∇Ψ
��y

h

��
−∇Ψ

��y′

h
′

��



 ≤ µ






�
y
h

�
−
�
y
′

h
′

�





and
∇Ψ = 2[I R]⊤([I R] ·−z).

The gradient of Ψ is thus µ-Lipschitzian with

µ = 2 |||[I R]|||2 (4.8)

where |||·||| denotes the spectral norm. Note that the proposed method could be applied
to other functions ψ than quadratic ones, provided that they are Lipschitz differentiable.
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We now turn our attention to the constraint sets C and D. C models the constraints
we set on the filters h, which are split into three terms (see Section 4.3.3). We thus
have to project onto each set Cm with m ∈ {1, 2, 3}. The projections onto the two first
constraint sets C1 and C2 — impose smooth variations along time of the corresponding
tap coefficients.

More precisely, similarly to Chapter 3, the projection onto C1 (the projection onto
C2 yielding similar expressions) is calculated as follows: let h ∈ R

Q and let g1 = ΠC1(h);
then for every j ∈ {0, . . . , J − 1}, p ∈ {p′, . . . , p′ + P − 1} and nt ∈

�
0, . . . ,

�
Nt
2

�
− 1
	

,

1. if |h(2nt+1)
j (p) − h

(2nt)
j (p)| < εj,p, then

g
(2nt)
j,1 (p) = h

(2nt)
j (p), g

(2nt+1)
j,1 (p) = h

(2nt+1)
j (p);

2. if h
(2nt+1)
j (p) − h

(2nt)
j (p) > εj,p, then

g
(2nt)
j,1 (p) =

h
(2nt+1)
j (p) + h

(2nt)
j (p)

2
− εj,p

2

g
(2nt+1)
j,1 (p) =

h
(2nt+1)
j (p) + h

(2nt)
j (p)

2
+

εj,p
2

;

3. if h
(2nt+1)
j (p) − h

(2nt)
j (p) < −εj,p, then

g
(2nt)
j,1 (p) =

h
(2nt+1)
j (p) + h

(2nt)
j (p)

2
+

εj,p
2

g
(2nt+1)
j,1 (p) =

h
(2nt+1)
j (p) + h

(2nt)
j (p)

2
− εj,p

2
.

C3 introduces a priori information on the filter vector h through the lower-semicontinuous
convex functions eρj . In this framework, we consider three possible choices for eρj :

1. ℓ1-norm:

eρj(hj) = khjkℓ1 =

Nt−1X

nt=0

p′+Pj−1X

p=p′

|h(nt)
j (p)|.

This choice requires to perform projections onto an ℓ1-ball. This can be achieved
by using the iterative procedure proposed in (van den Berg and Friedlander, 2008),
which yields the projection in a finite number of iterations.

2. squared ℓ2-norm:

eρj(hj) = khjk2ℓ2 =

Nt−1X

nt=0

p′+Pj−1X

p=p′

|h(nt)
j (p)|2.

In this case, the projection is straightforward.
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3. mixed ℓ1,2-norm:

eρj(hj) = khjkℓ1,2 =

Nt−1X

nt=0




p′+Pj−1X

p=p′

|h(nt)
j (p)|2




1/2

.

Then, we can use an algorithm similar to the one proposed in (van den Berg and
Friedlander, 2008) computing the projection onto an ℓ1,2-ball.

4. nuclear norm k · k∗:
eρj(hj) = kLjhjk∗.

Following the work in (Grave et al., 2011) on sparse regression, a good choice for
Lj may be:

Lj :RNtPj → R
Nt×NtPj

hj 7→ Rj Diag(hj).

First, let have a look on the adjoint operator L∗
j of Lj . For every x ∈ R

Nt×NtPj ,

y ∈ R
NtPj , we have

hL∗
jx, yi = hx, Ljyi

= Tr
�
x(Ljy)⊤

�

= Tr
�
xDiag(y)R⊤

j

�

= Tr
�
R⊤

j xDiag(y)
�
.

For every l ∈ {1, 2, . . . , NtPj} and for every k ∈ {1, 2, . . . , NtPj}, we have


R⊤

j xDiag(y)| {z }
D

�
l,k

=

NtPjX

m=1

(R⊤
j x)l,mDm,k

= (R⊤
j x)l,kyk

⇒ Tr
�
R⊤

j xDiag(y)
�

=

NtPjX

k=1

(R⊤
j x)k,kyk

= hdiag(R⊤
j x), yi.

We finally obtain L∗
jx = diag(R⊤

j x).
We now compute the projection ΠC3 onto a “nuclear-ball”. Thus, we define C3 =
C3,0 × . . .× C3,J−1, where, for every j ∈ {0, 1, . . . , J − 1},

C3,j =
�
Xj ∈ R

Nt×NtPj | kXjk∗ ≤ λj

	
.
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By definition, we have:

ΠC3,j (Xj) =

(
argmin

Yj∈RNt×NtPj

kYj −Xjk subject to kYjk∗ ≤ λj

)
. (4.9)

Ignoring the case kXjk∗ ≤ λj which has the trivial solution Yj = Xj , there exists
for each λj a χ such that

minimize
Yj∈RNt×NtPj

1

2
kYj −Xjk2 + χkYjk∗ (4.10)

has the same solution as (4.9). The solution of this penalized formulation is
proxχk·k∗(Xj).

We now turn our attention to the proximity operator of the nuclear norm. The
nuclear norm is also known as the trace norm. The nuclear norm of a matrix
Xj ∈ R

Nt×NtPj of rank Tj is defined as the sum of its singular values (υj,i)1≤i≤Tj

indexed in a decreasing order

kXjk∗ =

TjX

i=1

υj,i (4.11)

where the singular values υj,i are positive. The singular value thresholding operator
is the proximity operator associated with the nuclear norm (Cai et al., 2010). More
precisely, the proximity operator of the nuclear norm at Xj ∈ R

Nt×NtPj is

proxχ−1k·k∗(Xj) = UjDχ−1(Σj)V
⊤
j for every χ ∈ ]0,+∞[ (4.12)

where Dχ−1(Σj) = Diag

({υj,i − χ−1}+)1≤i≤Tj

�
and Uj , Vj are respectively Nt×Tj

and NtPj×Tj matrices with orthonormal columns i.e. U⊤
j Uj = ITj and V ⊤

j Vj = ITj ,
resulting from the singular value decomposition (SVD) of Xj .

Finally, we can find the value of χ that makes (4.9) and (4.10) equivalent, so that
both can be solved using the proximity operator of χk · k∗ at Xj . This comes down
to finding χ such that kproxχ−1k·k∗(Xj)k∗ = λj i.e.

kUjDχ−1(Σj)V
⊤
j k∗ = λj ⇔

TjX

i=1

{υj,i − χ−1}+ = λj . (4.13)

Without loss of generality we can define υj,Tj+1 = 0 and the function φ(·) =
PTj

i=1{υj,i − ·}+ which is continuous and monotonically decreasing from kXjk∗ to
0 on [0, υj,i]. Therefore, there exists an integer i0 such that

φ(υj,i0+1) ≤ χ−1 < φ(υj,i0). (4.14)
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This implies that there exists one solution χ of (4.13) and χ−1 =
λj−

�i0
i=1 υj,i
i0

.

We are now interested in the particular case when Xj = Rj Diag(hj) ∈ R
Nt×NtPj .

To compute the proximity operator of the nuclear norm at Xj , we need to determine
matrices Uj , Vj and Dχ−1(Σj) as stated in (4.12). In this case, Xj is a block
diagonal matrix having the same form as matrix Rj . More precisely, Xj can be
written as follows:

Xj =




X
(0)
j 0 . . . 0

0 X
(1)
j . . . 0

... 0
. . .

...

0 0 · · · X
(Nt−1)
j




where, for every nt ∈ {0, . . . , Nt−1}, X
(nt)
j are row vectors of length Pj . We have

XjX
⊤
j = Diag

�h
kX(0)

j k2, kX(1)
j k2, . . . , kX(Nt−1)

j k2
i�

.

On the other hand we have

XjX
⊤
j = Uj(Σj)

2U⊤
j . (4.15)

Let define the set NTj as

NTj =
n
nt ∈ {0 , . . . , Nt − 1} | X

(nt)
j 6= 00Pj

o

where 00Pj is a row vector of zeros of dimension Pj . Without loss of generality,
let assume that the matrix Xj is ordered such that NTj = {0, 1, . . . , Tj − 1}.
Consequently, we have

Σj = Diag

 h
kX(nt)

j k
i
nt∈NTj

!
∈ R

Tj×Tj (4.16)

and

Uj =




1 0 . . . 0
0 1 . . . 0
... 0

. . .
...

0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




∈ R
Nj×Tj .
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Finally, Vj = X⊤
j UjΣ

−1
j .

Note that, when we define Lj : R
NtPj → R

Nt×NtPj : hj 7→ eRj Diag(hj) where

eRj =




11Pj 0 . . . 0
0 11Pj . . . 0
...

...
. . .

...
0 0 . . . 11Pj


 ,

and 11Pj is a row vector of ones of dimension Pj , the projection onto the “nuclear-
ball” is equivalent to the projection onto the mixed ℓ1,2-norm.

Finally, as mentioned earlier in Section 4.3.3, the prior information on the primary y is
expressed through the frame analysis operator F by splitting constraints into individual
subband constraints. In order to promote sparsity of the coefficients, the potential
function employed for the l-th subband with l ∈ {1, . . . ,L} can be chosen equal to
eϕl = | · |. For computing the resulting projection ΠDl

onto an ℓ1-ball, we can again
employ the iterative procedure proposed in (van den Berg and Friedlander, 2008).

4.4.2 M+LFBF algorithm

The primal-dual approach chosen to solve the minimization problem (4.5) is detailed in
Algorithm 5.5.1. It alternates computations of the gradient of Ψ, and of the projections
onto (Cm)1≤m≤3 and (Dl)1≤l≤L.

The choice of the step size is crucial for the convergence speed and it has to be
selected carefully. First, the norm of each linear operator involved in the criterion or at
least an upper bound of it must be available. In our case, we have:

|||[I R]||| ≤
q

1 + |||R0|||2 + . . . + |||RJ−1|||2 (4.17)

where |||Rj ||| = maxnt∈{0,...,Nt−1} kR(nt)
j k for every j ∈ {0, . . . , J − 1}. Secondly, the step

size γ[i] at each iteration i must be chosen so as to satisfy the following rule: let µ be

the Lipschitz constant defined in (4.8), let β = µ+
q
|||F |||2 + 3 and let ǫ ∈]0, 1

β+1 [, then

γ[i] ∈ [ǫ, 1−ǫ
β ]. |||F |||2 can be easily evaluated. Indeed, in the case of a tight frame, it is

equal to the frame constant and, otherwise, it can be computed by an iterative approach
(Chaâri et al., 2009, Algorithm 4). It is important to emphasize that the convergence of
this algorithm to an optimal solution to Problem (4.5) is guaranteed by (Combettes and
Pesquet, 2012, Theorem 4.2). In practice, the higher the norms of F and (Rj)0≤j≤J−1,
the slower the convergence of the algorithm. In order to circumvent this difficulty, one
can resort to a preconditioned version of the algorithm (Repetti et al., 2012). However,
this was not found to be useful in our experiments.
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Algorithm 4 Primal-dual algo. M+LFBF to solve (4.5).

Let γ[i] ∈ [ǫ, 1−ǫ
β ]

Let

�
y[0]

h[0]

�
∈ R

Nt+Q, v[0] ∈ R
K ,
�
u
[0]
m

�
m∈{1,2,3}

∈ (RQ)3 s
[0]
2 ∈ R

K , w
[0]
1 ∈ R

K

for i = 0, 1, . . . do
Gradient computation"
s
[i]
1

t
[i]
1

#
=

�
y[i]

h[i]

�
− γ[i]

�
∇Ψ
��y[i]

h[i]

��
+

�
F ∗v[i]P3
m=1 u

[i]
m

��

Projection computation

x
[i]
1 = Fy[i]

for l = 1 : L do�
s
[i]
2 (k)

�
k∈Kl

=
�
v[i](k) + γ[i]x

[i]
1 (k)

�
k∈Kl

�
w

[i]
1 (k)

�
k∈Kl

=
�
s
[i]
2 (k)

�
k∈Kl

− γ[i]ΠDl

 �
s
[i]
2 (k)

�

k∈Kl

γ[i]

!

end for
for m = 1 : 3 do
t
[i]
2,m = u

[i]
m + γ[i]h[i]

w
[i]
2,m = t

[i]
2,m − γ[i]ΠCm

�
t
[i]
2,m

γ[i]

�

end for
Averaging

x
[i]
2 = Fs

[i]
1

for l = 1 : L do�
q
[i]
1 (k)

�
k∈Kl

=
�
w

[i]
1 (k) + γ[i]x

[i]
2 (k)

�
k∈Kl

v[i+1](k)
�
k∈Kl

=
�
v[i](k) − s

[i]
2 (k) + q

[i]
1 (k)

�
k∈Kl

end for
for m = 1 : 3 do
q
[i]
2,m = w

[i]
2,m + γ[i]t

[i]
1

u
[i+1]
m = u

[i]
m − t

[i]
2,m + q

[i]
2,m

end for
Update�
y[i+1]

h[i+1]

�
=

�
y[i]

h[i]

�
− γ[i]

�
∇Ψ
�h

s
[i]
1

t
[i]
1

i�
+

�
F ∗w

[i]
1�3

m=1 w
[i]
2,m

��

end for

4.5 Results

4.5.1 Evaluation methodology

We consider either synthetic or real data for our evaluations. The first ones are evaluated
both qualitatively and quantitatively, and the choice for the sparsity norm for the wavelet
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coefficients is discussed. Realistic synthetic data are obtained from a modeled seismic
trace with primaries y. Two multiple templates (J = 2) r0 and r1 are independently
convolved with time-varying filters and summed up to yield a known, realistic, synthetic
secondary reflection signal s. The primaries are then corrupted by s and an additive
Gaussian noise. The j-th time-varying filter is built upon averaging filters with length

Pj , such that, ∀p ∈ {p′, . . . , p′ + Pj − 1}, h
(nt)
j (p) = η

(nt)
j /Pj (cf. Eq. (4.2)). The time-

varying filters are thus unambiguously defined, at a given time nt, by the constants η
(nt)
j .

Uniform filters are chosen for their poor frequency selectivity behavior and notches in
the frequency domain. Such artifacts for instance happen in marine seismic acquisition.

More specifically, we used a standard practice in geophysics. The simulated data is
based on the simulated data used in (Ventosa et al., 2012). A model of earth layer is built,
a series of spikes that mimic a reflectivity sequence (Ricker, 1943), and wave propagation
is emulated by propagation of so-called seismic wavelets, here a Ricker wavelet (a shifted
second derivative of a Gaussian, (Ryan, 1994)). Such codes are effective to simulate
the seismic sensor response, by allowing only primary reflections, or both primary and
multiple reflections. By varying the wave celerity in medium, this allows us to emulate
different types of multiples. From this modeling, we extract two slightly different and
clean multiple signals. The medium is chosen so that the multiples partly overlap the
primaries. We now forget about the model, and consider the two modeled multiples as
templates.

To test the proposed methodology, we now build two families of time-varying filters,
as explained in this chapter. At each time index, the filters have uniform coefficients.
These constants follow laws, varying along the time index, given in Figure 4.2 - p. 65.
The time-varying filters associated with the first templates have higher amplitude at the
beginning, while the second have higher amplitude at the end. In the middle, both filters
possess the same amplitude.

The simulated multiple is composed of the sum of the two templates, each weighted
by one of the two time-varying filters. Thus we obtain a synthetic trace with isolated
primaries, and primaries mixed with multiple reflexions. Such simple models are not fully
representative of seismic reality, as for phantoms in image processing. They nevertheless
permit to test, calibrate and evaluate algorithms, as the ground truth is known. So it
is important to note that the templates are generated by seismic wave propagation, and
not chosen in an ad-hoc manner.

4.5.2 Qualitative results on synthetic data

We choose here two filter families with lengths P0 = 10 and P1 = 14. The two filters
evolve complementally in time, emulating a bi-modal multiple mixture at two different
depths. They are combined with the two templates in a multiple signal depicted at the
fifth row from the top of Figure 4.3 - p. 73. Data and template were designed in order
to mimic the time and frequency contents of seismic signals. This figure also displays
the other signals of interest, known and unknown, when the noise standard deviation is
σ = 0.08. We aim at recovering weak primary signals, potentially hidden under both



4.5. Results 65

Figure 4.2: Synthetic filter profiles.

multiple and random perturbations, from the observed signal z at the last row. We focus
on the rightmost part of the plots, between indices 350 and 700. The primary events we
are interested in are located in Figure 4.3 - p. 73 (first signal on top) between indices
400-500 and 540-600, respectively. These primary events are mixed with multiples and
random noise. A close-up on indices 350-700 is provided in Figure 4.5 - p. 75. The first
interesting primary event (400-500) is mainly affected by the random noise component.
It serves as a witness for the quality of signal/random noise separation, as it is relatively
insulated. The second one is disturbed by both noise and a multiple signal, relatively
higher in amplitude than the first primary event. Consequently, its recovery severely
probes the efficiency of the proposed algorithm.

For the proposed method, we choose the following initial settings. An undecimated
wavelet frame transform with 8-length Symlet filters is performed on 4 resolution levels
(L = 5) . The loss functions ψ and (eϕl)1≤l≤L in (4.5) are chosen as ψ = k . k2 and
eϕl = | . |. The latter is based on a selection of power laws (namely, 1, 4/3, 3/2, 2, 3,
and 4) for which closed-form proximal operators exist (Combettes and Pesquet, 2007b,
p. 1356). The best matching power for the chosen wavelet tight frame yields the taxicab
metric or ℓ1-norm, as illustrated in Figure 4.4 - p. 74.

The constraints C1 and C2 are chosen according to (4.6) and (4.7), with ε1,p = 0.1
and ε2,p = 0.07 for every p. The bounds of the constraints are calculated empirically on
ideal signals. For real signals, we propose to infer those constants from other methods.
In practice, alternative cruder filtering or restoration algorithms indeed exist, with the
same purpose. They are often less involved and accurate, and potentially faster. They
are run for instance on a small subset of representative real data. Thus, we obtain a
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first set of solutions, here separating primaries and multiples. Approximate constraints,
required in the proposed method, are then computed (in a relatively fast manner) on
approximate versions of unknown clean signals. Such a procedure yields coarse bound
estimates, upon which the proposed algorithm is run. Although approximate, they are
expected to be easier to estimate than regularization hyper-parameters. We hereafter
use a fast first-pass separation of signals using (Ventosa et al., 2012). Finally, eρ is chosen
as the ℓ1,2-norm.

Figure 4.5 - p. 75 provides close-ups of delimited areas with weak primaries. With a
low noise level (Figure 4.5-top - p. 75), the multiple echo at indices 500 to 550 is faithfully
removed, as well as the random noise. The first strong primary (indices 400-450) is well
recovered. The second one has its first four periods matched correctly. More interesting
is the stronger noise condition in Figure 4.5-bottom - p. 75. The multiple signal is
still correctly removed and the incoherent noise is drastically reduced. Although with
a noticeable amplitude distortion and some ringing effect, both primaries are visually
recovered. As stated above, the ability to restore — albeit imperfectly — spurs of
strongly hidden primaries (cf. Figure 4.5 - p. 75, between indices 540 and 600) is of
paramount interest for seismic exploration in greater depths.

4.5.3 Quantitative results on synthetic data

These first qualitative simulation results are complemented with more extensive tests
on different settings of wavelet choices, levels, redundancy and adaptive filter norms,
to limit the risk of unique parameter set bias effects. We test three different dyadic
wavelets (Haar, Daubechies and Symlet with filter length 8), either in orthogonal basis
or shift-invariant tight frame mode, with 3 or 4 decomposition levels, consistent with
seismic data bandwidth. These data decomposition settings are tested again for four
noise levels and three different choices of concentration metrics for the adaptive filters.
For each choice in this parameter set, 100 different noisy realizations are processed. Each
of these experiments is represented by its empirical average and standard deviation. As
we have seen before, the restoration of primaries or the cancellation of multiples could be
jointly pursued. We thus report in Table 4.1 - p. 68 and Table 4.2 - p. 69 the average SNR,
for the clean modeled primary and multiple, with respect to their restored counterpart,
respectively. Column headers b and f denote basis and frame results, whose averages
are loosely denoted by µb and µf . To improve reading, numbers in bold (for Table 4.2 -
p. 69 as well) indicate the best result for a given decomposition level. Numbers in
italics denote the best SNRs obtained, irrespective of the number of wavelet levels. The
standard deviation tables are combined with Table 4.1 - p. 68 and Table 4.2 - p. 69 in
Table 4.5 - p. 72 as a “significance index” of the outcome.

We first exemplify results in the leftmost part of Table 4.1 - p. 68 (Haar wavelet),
for the first two rows. For the ℓ1-norm, we observe a primary restoration improvement
of 2.2 dB (21.3 − 19.1 dB, with standard deviations of 0.16 dB for frames and 0.26 dB
for bases) for 3 wavelet levels. For 4 levels, we obtain 1.2 dB with standard deviations
of 0.18 dB and 0.22 dB. Intuitively, the SNR improvement appears to be significant,
relatively to the dispersion. We shall detail this aspect later on. Yet, such a sensible
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variation of about 1 dB, with only one additional wavelet decomposition level, further
justifies the need for the given multi-parameter analysis.

In most cases, for frames, the best results are obtained with 4 levels. When this is
not the case, the difference in performance generally lies within the dispersion. This
assertion cannot be stated with bases, possibly due to shift variance effects. The frame-
based SNR for primaries is always greater, or equal to that of the basis one, putting
statistical significance aside for the moment. Namely, looking at summary statistics, the
minimum, median, mean and maximum improvements for frames over bases are 0.5 dB,
1.8 dB, 2 dB and 4.2 dB respectively. Looking at numbers in bold, we see that a frame
with the ℓ2 loss function is the clear winner in absolute SNR, for every wavelet choice
and noise level.

The results for multiple estimation, given in Table 4.2 - p. 69, are more contrasted.
Frames and bases yield more similar performance, especially for high Gaussian noise
levels. The best overall results (bold) are given by ℓ1,2 (high noise) and ℓ2-norms (low
noise).

Average differences allow the observation of global trends. In practice, consistent
results, taking into account SNR dispersion, are more important. Assuming that the
denoised realizations follow a Gaussian distribution, we now study the difference Gaus-
sian pdf between frame and basis results. Its mean is µf/b = µf − µb and its variance
σ2
f/b is σ2

b + σ2
f . Table 4.5 - p. 72 reports the normalized difference significance index

tf/b = µf/b/σf/b, reminiscent of the Student’s test. It is associated with the probability
πf/b that, in an outcome of the realizations, the basis SNR is superior to the frame SNR.
Table 4.3 - p. 70 and Table 4.4 - p. 71 show the standard deviations for SNRs from
estimations of y in Table 4.1 - p. 68 and of s in Table 4.2 - p. 69, respectively. The Haar
wavelet, ℓ1-norm, primary restoration improvement of µf/b = 2.2 dB yields σf/b = 0.30.
Hence, tf/b = 7.2. The interpretation of this significance is illustrated with the abacus
in Figure 4.6 - p. 76, with πf/b associated to the shaded area. We deem the difference in
distribution between bases and frames significant only if |tf/b| > 1. When significant, the
index is emphasized in italics or bold, the latter denoting the most significant among the
four concentration measures. Since the minimum, median, mean and maximum indices
tf/b are 1.3, 3.4, 3.5 and 7.7, we consider the improvement of frames over bases significant
for all the tested parameters for primaries (Table 4.5 - p. 72-left). Interestingly, whereas
the ℓ2-norm gives the best average gain, the ℓ1,2 and the ℓ1-norms yield sensibly more
significance at lower noises. Choosing the ℓ1,2 or ℓ1-norm is consequently more interest-
ing in practice, as we desire more consistent results under unknown noise variations in
observed signals. At higher noise levels, the normalized difference index tf/b (between
values 3 and 4) is very close for all parameters and wavelets. Thus, the significance of
the different filter concentration measures is not fundamentally different. Based on the
previous observations, the choice of ℓ1,2 or ℓ1-norms would yield more consistent results
in all cases.

The rightmost and lower part of Table 4.5 - p. 72 concerns the restoration of multiples.
Although of weaker importance in practice, we notice that most tf/b values vary between
-1 and 1. This indicates that bases and frames perform similarly, since there is no
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significant performance difference. This phenomenon can be explained by the fact that
frames or bases, through the wavelet transform sparsity prior, impact primaries rather
than multiples. In few cases though, we observe, at low noise levels, some significance
in frame outcomes over basis results, obtained by the ℓ1,2 and ℓ1-norms again.

Globally, the restoration of both primaries and multiples benefits from the choice of
a Daubechies or Symlet wavelet frame. The best performance — in terms of statistical
significance — is offered by sparsity-promoting ℓ1 and ℓ1,2-norms, either at lower and
higher noise level.

Noise levels (σ)
0.01 0.02 0.04 0.08

wavelet eρ F \ L 4 5 4 5 4 5 4 5

Haar

ℓ1
b 19.1 20.6 19.2 19.8 16.5 16.7 12.3 12.4
f 21.3 21.8 20.3 20.8 18.2 18.5 14.7 15.0

ℓ2
b 20.2 21.6 20.1 20.5 16.9 16.9 12.5 15.0
f 21.9 22.4 21.1 21.3 18.5 18.8 14.9 15.2

ℓ1,2
b 18.9 20.3 18.6 19.5 16.2 16.5 12.2 12.3
f 21.3 21.8 20.1 20.6 18.0 18.3 14.6 14.9

Symlet

ℓ1
b 20.9 20.8 20.6 20.1 18.0 18.0 14.3 14.2
f 21.8 22.0 21.3 21.6 20.1 20.2 17.4 17.5

ℓ2
b 21.1 22.1 21.2 21.0 18.3 18.3 14.4 14.4
f 22.3 22.7 22.1 22.2 20.6 20.7 17.7 17.7

ℓ1,2
b 20.1 21.1 20.4 20.0 17.9 17.7 14.2 14.1
f 21.8 22.1 21.2 21.5 19.9 20.0 17.3 17.3

Daubechies

ℓ1
b 19.9 20.3 20.1 20.0 17.9 17.9 14.1 13.9
f 21.8 22.0 21.5 21.6 20.2 20.3 17.6 17.5

ℓ2
b 21.4 22.3 21.4 21.5 18.4 18.21 14.3 14.0
f 22.5 22.8 22.3 22.4 20.8 20.7 17.9 17.7

ℓ1,2
b 19.2 20.4 19.5 19.2 17.6 17.5 14.0 13.2
f 21.9 22.1 21.3 21.6 20.0 20.1 17.5 17.3

Table 4.1: SNR, averaged over 100 noise realizations for the estimations of y.

4.5.4 Comparative evaluation: synthetic data

In addition to the above objective and subjective results, we perform a comparative
evaluation with the empirical algorithm proposed in (Ventosa et al., 2012). It is based
on adaptive filtering on sliding windows in a complex continuous wavelet domain. The
chosen complex Morlet wavelet is very efficient at concentrating seismic data energy. One-
tap Wiener-like (unary) complex filters are adaptively estimated in overlapping windows
taken in the complex scalogram, i.e. the complex-valued, discretized, continuous wavelet
transform. This algorithm was successfully tested against industry standards. It is
quantitatively faster, but it does not permit the introduction of prior knowledge (Salaun
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Noise levels (σ)
0.01 0.02 0.04 0.08

wavelet eρ F \ L 4 5 4 5 4 5 4 5

Haar

ℓ1
b 26.3 27.6 25.3 25.8 22.1 22.3 18.4 18.4
f 27.0 28.3 25.6 25.7 22.1 22.2 18.4 18.4

ℓ2
b 27.4 28.4 25.7 26.0 21.8 21.9 17.7 17.8
f 28.4 28.7 25.7 25.8 21.8 21.8 17.8 17.8

ℓ1,2
b 26.2 27.4 25.0 25.7 22.2 22.4 18.6 18.6

f 28.0 28.4 25.5 25.8 22.3 22.3 18.6 18.6

Symlet

ℓ1
b 27.6 27.6 25.8 25.5 22.3 22.2 18.5 18.5
f 28.0 28.1 25.5 25.6 22.1 22.1 18.4 18.4

ℓ2
b 28.2 28.6 25.8 25.7 20.1 21.8 17.8 17.8
f 28.3 28.5 25.6 25.6 21.8 21.8 17.8 17.7

ℓ1,2
b 26.9 27.7 25.8 25.5 22.5 22.4 18.7 18.7
f 28.0 28.1 25.5 25.6 22.3 22.2 18.6 18.6

Daubechies

ℓ1
b 26.7 27.1 25.3 25.3 22.1 21.2 18.4 18.4
f 28.0 28.1 25.5 25.6 22.1 22.1 18.4 18.4

ℓ2
b 27.9 28.5 25.8 25.9 21.8 21.8 17.8 17.8
f 28.4 28.6 25.6 25.6 21.8 21.8 17.8 17.8

ℓ1,2
b 26.5 27.1 25.1 25.3 22.2 22.2 18.6 18.6
f 28.0 28.2 25.5 25.6 22.3 22.3 18.6 18.6

Table 4.2: SNR, averaged over 100 noise realizations for the estimations of s.

et al., 2015) on signal sparsity or filter regularity. Figure 4.7 - p. 77 presents synthetic 2D
seismic data, constructed similarly to the previous 1D traces in Section VI-B, with a high
noise level (σ = 0.08). Vertical traces are stacked laterally to form a 2D image. From left
to right, the synthetic traces drift away from the seismic source. The bended hyperbolas
correspond to primaries. The flatter one, below, mimics a multiple event. Here, P0 = 6,
P1 = 6, and constraints C1 and C2 are chosen according to (14) and (15), where ε1,p = 0.1
and ε2,p = 0.1 for every p. Apparently, better primary preservation is obtained with the
proposed method, for a very simple synthetic data set. This phenomenon is observed
at the crossing between primaries and multiples. The proposed method also effectively
gets rid of more incoherent noise.

4.5.5 Comparative evaluation: real data

The previous simulated example is a little bit simplistic. We finally compare our algo-
rithm with (Ventosa et al., 2012) on a portion of a real seismic data set. Recorded and
multiple template data belong to the same marine seismic survey processed in (Ventosa
et al., 2012). The recorded seismic data is displayed in Figure 4.8a - p. 78. The main
objective is to uncover a potential primary, masked by strong multiple events that mostly
contribute to the observed total seismic signal energy. The primary appears partially
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Noise levels (σ)
0.01 0.02 0.04 0.08

wavelet eρ F \ L 4 5 4 5 4 5 4 5

Haar

ℓ1
b 0.26 0.22 0.22 0.26 0.33 0.35 0.43 0.46
f 0.16 0.18 0.25 0.27 0.37 0.37 0.53 0.52

ℓ2
b 0.26 0.24 0.26 0.26 0.33 0.35 0.44 0.46
f 0.29 0.16 0.24 0.23 0.34 0.34 0.51 0.51

ℓ1,2
b 0.26 0.24 0.36 0.30 0.37 0.36 0.44 0.47
f 0.17 0.19 0.25 0.31 0.39 0.40 0.52 0.53

Symlet

ℓ1
b 0.27 0.19 0.31 0.32 0.41 0.43 0.53 0.59
f 0.19 0.22 0.34 0.39 0.54 0.58 0.72 0.78

ℓ2
b 0.26 0.19 0.25 0.26 0.39 0.38 0.53 0.59
f 0.34 0.21 0.34 0.35 0.46 0.49 0.65 0.72

ℓ1,2
b 0.28 0.21 0.34 0.36 0.44 0.47 0.55 0.59
f 0.21 0.22 0.37 0.41 0.58 0.63 0.75 0.82

Daubechies

ℓ1
b 0.29 0.23 0.35 0.38 0.44 0.47 0.53 0.55
f 0.19 0.22 0.34 0.38 0.56 0.59 0.74 0.78

ℓ2
b 0.27 0.26 0.29 0.36 0.42 0.43 0.53 0.54
f 0.32 0.26 0.34 0.36 0.48 0.53 0.67 0.72

ℓ1,2
b 0.31 0.26 0.47 0.39 0.47 0.48 0.53 0.55
f 0.21 0.22 0.37 0.40 0.59 0.62 0.77 0.82

Table 4.3: Standard deviations for SNRs from estimations of y in Table 4.1 - p. 68.

as a wiggling, horizontal stripes in the bottom part of the figure, on the right side. Ge-
ologically speaking, it should be re-linked with the left side of the picture, to one of
the dimmed sloping stripes. By looking at differences between the recorded data and
the multiple template in Figure 4.8b - p. 78, the trace of the flat primary may appear
more obvious. Templates are obtained by different involved seismic modeling techniques,
whose details (Pica et al., 2005b) are beyond the scope of the work. The core of adaptive
multiple removal techniques in seismic data boils down to locally adapting the patterns
in Figure 4.8b - p. 78 in location and amplitude to the data in Figure 4.8a - p. 78. Once
adapted, the approximate patterns may be subtracted from the observed signal, with
the hope of unveiling previously hidden signals.

The efficiency of a seismic data processing algorithm is difficult to assess, due to
the absence of ground truth. One of the challenges of present seismic data processing
resides in the ability to identify deeper target. To this aim, either noisier data sets
or broadband seismic acquisitions are being address by geophysical signal processing.
Figure 4.8-middle - p. 78 thus compares the results obtained with (Ventosa et al., 2012)
(c) and the proposed algorithm (d). Although the random noise is apparently highly
heteroskedastic, both methods are able to successfully retrieve the weak primary below
the multiple level, especially of the left side of the figure. The method in (Ventosa et al.,



4.6. Conclusion 71

Noise levels (σ)
0.01 0.02 0.04 0.08

wavelet eρ F \ L 3 4 3 4 3 4 3 4

Haar

ℓ1
b 0.19 0.17 0.23 0.21 0.26 0.27 0.30 0.31
f 0.17 0.18 0.23 0.23 0.26 0.26 0.30 0.30

ℓ2
b 0.20 0.20 0.25 0.25 0.26 0.26 0.30 0.29
f 0.26 0.20 0.25 0.25 0.26 0.26 0.29 0.30

ℓ1,2
b 0.18 0.17 0.24 0.23 0.26 0.26 0.30 0.31
f 0.16 0.17 0.22 0.22 0.25 0.26 0.30 0.30

Symlet

ℓ1
b 0.25 0.14 0.23 0.22 0.27 0.26 0.31 0.31
f 0.17 0.18 0.22 0.24 0.25 0.26 0.30 0.30

ℓ2
b 0.24 0.19 0.24 0.24 0.26 0.26 0.29 0.30
f 0.28 0.20 0.24 0.24 0.25 0.25 0.29 0.29

ℓ1,2
b 0.27 0.18 0.25 0.23 0.27 0.27 0.30 0.30
f 0.16 0.17 0.21 0.23 0.25 0.26 0.30 0.30

Daubechies

ℓ1
b 0.18 0.15 0.21 0.23 0.25 0.26 0.30 0.31
f 0.16 0.17 0.22 0.23 0.25 0.26 0.29 0.30

ℓ2
b 0.19 0.20 0.25 0.25 0.26 0.26 0.30 0.30
f 0.25 0.22 0.24 0.23 0.25 0.25 0.29 0.29

ℓ1,2
b 0.19 0.17 0.24 0.23 0.26 0.27 0.30 0.30
f 0.16 0.16 0.21 0.22 0.25 0.26 0.30 0.30

Table 4.4: Standard deviations for SNRs from estimations of s in Table 4.2 - p. 69.

2012) may suffer from a little more pre-echo above the primary in the top-left corner of
Figure 4.8(c) - p. 78, while a remnant −45◦ shadow affects the proximal multiple removal
in its central part of Figure 4.8d - p. 78.

The increased robustness to noisier seismic data is estimated with a wide-band Gaus-
sian noise, added to the seismic field data. The outcome is illustrated in Figure 4.8-
bottom - p. 78. While the primary can still be tracked with (Ventosa et al., 2012) in
Figure 4.8e - p. 78, it dims inside the ambient noise on the left-most side. The proposed
template-based multiple filtering is more robust to noise, reflecting its practical potential.
Naturally, the anisotropic, oriented nature of seismic data, and the directional diversity
of primaries and multiples, suggests an extension to oriented frames in two dimensions
as presented in the newt chapter.

4.6 Conclusion

We have proposed a generic methodology to impose sparsity and regularity properties
through constrained adaptive filtering in a transformed domain. This method exploits
side information from approximate disturbance templates. The employed proximal
framework permits different strategies for sparse modeling, additive noise removal, and
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Noise levels (σ)
0.01 0.02 0.04 0.08

wavelet eρ F \ L 4 5 4 5 4 5 4 5

Haar

ℓ1
b 7.3 4.2 3.0 2.6 3.4 3.5 3.5 3.8
f 4.3 2.8 2.7 2.3 3.5 3.7 3.5 3.8

ℓ2
b 7.7 5.1 3.4 2.5 3.2 3.3 3.5 3.7
f 2.6 4.2 1.5 3.0 3.0 3.2 3.5 3.4

ℓ1,2
b 3.0 1.9 2.1 2.9 3.9 3.8 3.9 3.6
f 4.9 3.3 1.6 2.7 2.7 2.8 3.3 3.2

Symlet

ℓ1
b 5.6 5.3 2.8 3.0 3.2 3.3 3.8 3.8
f 2.6 1.3 2.1 1.7 3.8 3.7 4.2 4.1

ℓ2
b 7.2 5.1 3.1 4.3 3.2 3.3 3.7 4.2
f 2.7 2.9 0.7 -0.1 0.0 -0.3 0.0 0.0

ℓ1,2
b 3.2 1.1 0.0 -0.6 0.0 -0.1 0.0 0.0
f 7.5 4.2 1.6 0.1 0.1 -0.2 0.1 0.0

Daubechies

ℓ1
b 1.3 2.5 -1.1 0.3 -0.6 -0.3 -0.2 -0.1
f 0.3 -0.2 -0.8 -0.3 4.7 -0.1 0.0 0.0

ℓ2
b 3.5 1.6 -0.9 0.2 -0.6 -0.3 -0.1 -0.2
f 5.3 4.4 0.5 0.8 -0.2 2.6 -0.1 -0.1

ℓ1,2
b 1.5 0.1 -0.5 -0.7 -0.1 -0.1 0.0 0.0
f 6.0 4.4 1.5 1.2 0.1 0.1 0.0 0.0

Table 4.5: Normalized difference significance index.

adaptive filter design under appropriate regularity and amplitude coefficient concentra-
tion constraints. The proposed approach is evaluated on seismic data using different
orthogonal wavelet bases and tight frames, and various sparsity measures for wavelet co-
efficients. The standard sparsity-prone ℓ1-norm is usefully complemented by alternative
concentration measures, such as ℓ2 or ℓ1,2-norms, which seem better suited to adap-
tive filter design. Its performance is interesting for instance in recovering weak signals
buried under both strong random and structured noise. Provided appropriate templates
are obtained, this structured-pattern filtering algorithm could be useful in other applica-
tion areas, e.g. acoustic echo-cancellation in sound and speech, non-destructive testing
where transmitted waves may rebound at material interfaces (e.g. ultrasounds), or pat-
tern matching in images. In the next chapter, two-dimensional directional multiscale
approaches (Jacques et al., 2011) are considered and may provide sparser representa-
tions for seismic data.
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Figure 4.3: Considered simulated seismic signals with noise level σ = 0.08. From
top to bottom: primary (unknown) ȳ, estimated ŷ, first template r0, second template r1,
multiple (unknown) s̄, estimated ŝ, and observed signal z.
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(a) level 1 detail (b) level 2 detail

(c) level 3 detail (d) level 4 detail
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Figure 4.4: Generalized Gaussian modeling of seismic data wavelet frame decomposition
with different power laws.
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Figure 4.5: Close-up when eρ is the ℓ1,2-norm; (a) input data z (black line σ = 0.01),
primary ȳ (blue line), (b) output separated primary ŷ (red line) and primary ȳ (blue
line); (c) input data z (black line σ = 0.08), primary ȳ (blue line), (d) output separated
primary ŷ (red line) and primary ȳ (blue line).
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Figure 4.6: Significance index abacus with different “significance levels” (and probabil-
ity πf/b, shaded): 0.5 (0.17), 1 (0.14), 2 (0.05) and 4 (0.0013).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Data composed by three events (σ = 0.08), one primary and two multiples,
SNR = 1.71dB (a); multiples composed by two estimated events (b); output separated
primaries with (Ventosa et al., 2012), SNR = 3.11 dB(c) and our method, SNR =
16.77 dB (d); output adapted multiples with (Ventosa et al., 2012), SNR = 3.1 dB (e)
and our method, SNR = 15.44 dB (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Portion of a common receiver gather: (a) recorded seismic data with a
partially appearing primary, (b) multiple wavefield template; subtraction results, low
field-noise case: primaries (separated from multiples) with (c) (Ventosa et al., 2012),
(d) the proposed method; subtraction results, high field-noise case: primaries (separated
from multiples) with (e) (Ventosa et al., 2012), (f) the proposed method.
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Multiple removal in 2D

As mentioned earlier, seismic data consist of a collection of seismic traces. These collec-
tions may appear in different dimensions. 2D seismic images would illustrate a single
slice of the subsurface (see Figure 5.1 - p. 80 - image from (Hill, 2014)), 3D seismic a
volume of the earth and 4D seismic depicts a 3D volume at different times in the life
of an oil and/or gas field. In previous chapters, we explored the problem for 1D seis-
mic data with wavelet-frame-based adaptive filtering. Our motivation was a thorough
assessment of transforms and optimization tools. However, it is often considered that
addressing such data in an higher dimension is often beneficial. The main drive relates to
the adjunction of additional dimensions, for instance spatial. It arises from the nature of
the acquisition, where the first dimension reflects time (wave propagation), while other
dimensions are governed by space (the sensors’s location in an array of sensors) or time.
Generally, geological structures present a lateral continuity that reflects in wave propa-
gation. It turns into an apparent anisotropy in seismic data. The aim of this chapter is
to address an extension of our previous approach in the second spatial dimension.

5.1 Introduction

Most of the seismic methods are implemented on 2D, 3D or 4D data. However several
seismic data methods are designed in 1D (in time) (Ventosa et al., 2012; Pham et al.,
2014b) or space, sometimes in a separable fashion. In the latter case, we only considered
the depth without taking into account additional structures. Actually, a seismic sensor
yields an acoustic signal similar to sounds or ultrasounds. In contrast, seismic images
do not share all the characteristics of standard or natural images. More precisely, all
pixels of standard images are taken at a same time, thus the image points are related
to an homogeneous space location. A common practice in image processing is to use
separable transforms, nearly separable but directional ones (Chaux et al., 2006), or more
anisotropic representations (Jacques et al., 2011) such as curvelets, shearlets or with finer
frequency decomposition as in (Aujol et al., 2003). However, the distinct nature of rows
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Figure 5.1: Seismic data gives the explorationist a picture of the geology of the subsur-
face (image from (Hill, 2014)).

Figure 5.2: From left to right: observed image z, multiple s, and primary y.
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and columns in seismic data suggests the use of different transforms along time and
space. This chapter focuses on the use of the hybrid dual-tree M -band wavelet. We first
review some works in multiple removal for 2D seismic data.

In (Barnes, 1996), the author observed that, the processing in two-dimensional fre-
quency and bandwidth is appropriate for the migrated data (the process by which seismic
events are geometrically re-located in either space or time to the subsurface location the
event occurred in rather than the location where it was recorded at the surface, thereby
creating a more accurate image of the subsurface (Sheriff, 1989, Chapter 21)) by us-
ing the 2D Hilbert transform and 2D complex trace attributes. For unmigrated data
(opposite of migrated data), one-dimensional frequency and bandwidth are appropriate.
Multiples can be attenuated by filtering in the f − k (Wu and Wang, 2011) or τ − p
domain (Yilmaz, 2001). The 2D Hilbert transform has also been proposed in (Karsli
et al., 2006). Separating waves in general or multiple removal in particular is related
to the wave propagation, (Andersson and Duchkov, 2013) extended a structure tensor
using a one-way (in time) wave equation with a constant velocity as a tool for estimat-
ing a two-dimensional field. However it can be applied to generic images not related
to wave propagation. Indeed, seismic images possess geometric regularity that advises
a 2D approach for improved performance. As a result, multiscale geometric transforms
such as curvelet frames (Herrmann and Verschuur, 2004; Neelamani et al., 2010; Ma and
Plonka, 2010; Donno et al., 2010) have been employed in geophysical processing.

As mentioned above, adaptive multiple removal is often performed in two or three
dimensional seismic data, via standard ℓ2 or more robust ℓ1-norms, with local multi-
dimensional matching FIR filters. The multidimensionality of the filters is thought to
ensure lateral continuity in seismic events. A quite opposite direction was taken in
(Ventosa et al., 2012), with an emphasis on a frequency- and shift-insensitive complex
wavelet transform frame, associated with simple unary (one-tap) complex filters, in 1D
only. Counter-intuitively, it was able to perform similarly to more classical 2D matching
techniques. In other words, a careful partnership between sparse representations and
adaptive filtering was deemed beneficial in 1D, with respect to traditional 2D methods.
An interpretation of this observation is that a more accurate spectral processing in 1D
may yield perceptual continuity often credited to 2D methods. Indeed, 2D matching
filters resemble directional filters (Donno, 2011). To account for additional properties,
including statistical distributions for primaries (Costagliola et al., 2012) and slow filter
variations (Le Touzé et al., 2009), (Pham et al., 2014b,a) pursued seismic data adaptive
filtering with 1D wavelet frames.

The remainder of the chapter is organized as follows: Section 5.2 presents the consid-
ered data modelization. Section 5.3 proposes the approach to solve the problem. Then,
the implemented algorithm is detailed in Section 5.4. Simulation results are drawn in
Section 5.5 for both simulated and real field seismic data. We then demonstrate the
effectiveness of our proposed 2D method through the comparisons with the previous
1D method (Pham et al., 2014b) and the industrially-validated method (Ventosa et al.,
2012). This method demonstrated good performance on field data with (Salaun et al.,
2015). Finally, Section 5.6 concludes the chapter.
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5.2 Model description

This section aims at describing the model accounting for multiple reflections in 2D seismic
data. As mentioned above, a line of seismic sensors delivers a two-dimensional image.
Each column is formed by a 1D temporal signal acquired by one sensor:

z(n) = s(n) + y(n) + b(n) (5.1)

with n = (nt, no), where nt ∈ Nt
△
= {0, . . . , Nt − 1} is the time index, no ∈ No

△
=

{0, . . . , No− 1} is the sensor index, and n ∈ N
△
= {(nt, no)|nt ∈ Nt, no ∈ No}. Observed

data z = (z(n))n∈N (Figure 5.2-left - p. 80) is composed of the primary (Figure 5.2-right -
p. 80) y = (y(n))n∈N (2D data of interest, unknown), multiples (Figure 5.2-middle - p. 80)
(s(n))n∈N (sum of undesired reflected data) and additive noise (b(n))n∈N . One assumes
that genuine multiples (s(n))n∈N can be estimated as a local, weighted sum of template
candidates:

sn =
J−1X

j=0

p′+Pj−1X

p=p′

h
(n)
j (p)r

(nt−p,no)
j . (5.2)

Here (r
(n)
j )n∈N ,0≤j<J denotes the available templates and h

(n)
j is an unknown impulse

response (with Pj tap coefficients) corresponding to template rj , at time nt and sensor
no and where p′ ∈ {− min

0≤j<J
Pj + 1, . . . , 0}. It must be emphasized that the dependence

w.r.t. the time index nt of the impulse response implies that the filtering process is
not time and space invariant, although it can be assumed slowly varying in practice.
Eq. (5.2) can be expressed more concisely as

s =
J−1X

j=0

Rjhj (5.3)

by appropriately defining vectors s, hj and matrix Rj . More precisely,

s =
h
s(0,0), . . . , s(Nt−1,0), . . . , s(0,No−1), . . . , s(Nt−1,No−1)

i⊤
, (5.4)

hj =

�
h
(0)
j

⊤
, . . . , h

(No−1)
j

⊤�⊤
(5.5)

where

h
(no)
j =

h
h
(0,no)
j (p′), . . . , h

(0,no)
j (p′ + Pj − 1), . . . ,

h
(Nt−1,no)
j (p′), . . . , h

(Nt−1,no)
j (p′ + Pj − 1)

i⊤
. (5.6)
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The matrix Rj is defined as

Rj =




R
(0)
j 0 . . . 0

0 R
(1)
j . . . 0

... 0
. . .

...

0 0 . . . R
(No−1)
j




(5.7)

where

R
(no)
j =




R
(0,no)
j 0 . . . 0

0 R
(1,no)
j . . . 0

... 0
. . .

...

0 0 . . . R
(Nt−1,no)
j




(5.8)

and (R
(nt,no)
j )nt∈Nt are given by




R
(0,no)
j
...

R
(Nt−1,no)
j


 =




r
(−p′,no)
j . . . r

(0,no)
j 0 . . . 0

r
(−p′+1,no)
j . . . r

(0,no)
j 0 . . . 0

...

r
(Nt−1,no)
j r

(Nt−2,no)
j . . . r

(Nt−Pj ,no)
j

0 r
(Nt−1,no)
j . . . r

(Nt−Pj+1,no)
j

...

0 . . . 0 r
(Nt−1,no)
j . . . r

(Nt−Pj−p′,no)
j




.

(5.9)
One can note that each matrix Rj is a block diagonal matrix of size Q×QPj where

Q = NtNo and that, for every no ∈ {0, . . . , No − 1}, R
(no)
j is a block diagonal matrix

for which the concatenation of its block diagonal elements is a Tœplitz matrix of size
Nt × Pj . Model (5.1) can be written more concisely as

z = Rh + y + b (5.10)

where R = [R0 . . . RJ−1] ∈ R
Q×QP , P =

PJ−1
j=0 Pj and h = [h

⊤
0 . . . h

⊤
J−1]

⊤ ∈ R
QP .

5.3 Proposed approach

We propose a variational framework where we aim at simultaneously estimating the filter
tap coefficients of the nonstationary process h and the primary y. The multiple removal
problem is thus formulated as the following constrained convex minimization problem

minimize
y∈RQ,h∈C1∩C2

kz − y −Rhk2 + ιD(Fy) + ιC3(Lh) , (5.11)



84 Chapter 5. Multiple removal in 2D

where L ∈ R
�K×QP is a linear operator and F ∈ R

KNo×Q models a frame operator (e.g.
directional wavelets (Jacques et al., 2011)). Generally, seismic data exhibits directional
features corresponding to subsurface interfaces. Linear, hyperbolic and parabolic struc-
tures, at least piecewise, are observed. Due to the anisotropic nature of seismic data, we
choose F as a hybrid dual-tree M -band wavelet (with different wavelets along space and
time (Chaux et al., 2006, 2007b)). Their decorrelation properties (Chaux et al., 2007c)
have proven efficient in textured image denoising (Chaux et al., 2008; Pustelnik et al.,
2012), for instance, compared to curvelets whose redundancy is more important. We
now turn our attention to the choice of the convex sets C = C1 ∩ C2 ∩ C3 and D.

5.3.1 A priori information on primary signal

Frame coefficients, denoted by x, are related to the primary signal y through the relation
x = Fy. Frame coefficients exhibit specific subband structures that are exploited here.
Therefore, the constraint can be split by defining a partition of {1, . . . ,KNo} denoted by
{Kl | l ∈ {1, . . . ,L}} where L and Kl are defined dependently on the transform. More
precisely, we investigate two kinds of L and Kl

1. If F is an orthogonal basis or a shift-invariant (SI) wavelet frame: L corresponds
to the number of subbands and Kl is the l-th subband with Dl = {(xk)k∈Kl

|P
k∈Kl

ϕℓ(xk) ≤ βl}

2. If F is a hybrid dual-tree wavelet: L/2 corresponds to the number of subbands and
for every l ∈ {1, 2, . . . ,L/2}, Kl and Kl+L/2 are the l-th subband corresponding
to the primal and dual coefficients, respectively. Then, one can choose, for every
l ∈ {1, . . . ,L/2}

Dl =



(xk)k∈Kl ∪Kl+L/2

|
X

k∈Kl

ϕℓ(xk) ≤ βl and
X

k∈Kl+L/2

ϕℓ(xk) ≤ βl





where, βl ∈ ]0,+∞[, and ϕl : R → [0,+∞[ is a lower-semicontinuous convex function.
For example, a natural choice for ϕl is the ℓ1-norm (the coefficients follow a Gauss-
Laplace distribution as demonstrated in Figure 4.4 - p. 74). Figure 5.3 - p. 85 shows
the primal and the dual trees of the dual-tree wavelet transform of the primary wave
only, with a Symlet of length 8 along time and Daubechies of length 4 along space over
4 decomposition levels.

5.3.2 A priori information on adaptive filter

The convex set C introduces a priori knowledge on filter tap coefficients. As mentioned
earlier, the filters here are assumed to vary not only along the time index nt but also
along the sensor index no. However, the filter variations are usually slow. This can be
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Figure 5.3: Primary data (top); dual-tree M -band wavelet: primal coefficients (bottom-
left), and dual coefficients (bottom-right).

modeled by the following two constraints:


∀(nt, no, j, p)

�
|h(nt+1,no)

j (p) − h
(nt,no)
j (p)| ≤ ε

(no)
j,p (5.12)

|h(nt,no+1)
j (p) − h

(nt+1,no)
j (p)| ≤ ε

(nt)
j,p . (5.13)

These inequalities link:

1. corresponding coefficients of the impulse response which are estimated between two
consecutive time samples (in other words, we impose consecutive filters in time to

take close values). The bound ε
(no)
j,p ∈ ]0,+∞[ may depend on the shape of the

expected filter. For example, its dependence on the coefficient indexes p and no

may enable a larger (resp. smaller) difference for filter coefficients taking larger
(resp. smaller) values;

2. corresponding coefficients of the impulse response which are estimated between
two neighboring sensor samples (in other words, we impose close filters in space

to take close values). The bound ε
(nt)
j,p ∈ ]0,+∞[ may also depend on the shape of

the expected filter.
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The associated closed convex sets are defined as

C1 =
n
h ∈ R

QP | ∀(j, nt, no, p), |h(nt+1,no)
j (p) − h

(nt,no)
j (p)| ≤ ε

(no)
j,p

o

C2 =
n
h ∈ R

QP | ∀(j, nt, no, p), |h(nt,no+1)
j (p) − h

(nt,no)
j (p)| ≤ ε

(nt)
j,p

o
(5.14)

where (ε
(no)
j,p , ε

(nt)
j,p ) ∈ [0,+∞[2.

For computational issues, the convex set C1 (resp. C2) can be expressed as the
intersection of two convex subsets C1 = C1,1 ∩ C1,2 and C2 = C2,1 ∩ C2,2:

C1,1 =

�
h | ∀p, ∀no, ∀nt ∈

�
0, . . . ,

�
Nt

2

�
− 1

�
:
���h(2nt+1,no)(p) − h(2nt,no)(p)

��� ≤ ε
(no)
j,p

�

C1,2 =

�
h | ∀p, ∀no, ∀nt ∈

�
1, . . . ,

�
Nt − 1

2

��
:
���h(2nt,no)(p) − h(2nt−1,no)(p)

��� ≤ ε
(no)
j,p

�

(5.15)

C2,1 =

�
h | ∀p, ∀nt, ∀no ∈

�
0, . . . ,

�
No

2

�
− 1

�
:
���h(nt,2no+1)(p) − h(nt,2no)(p)

��� ≤ ε
(nt)
j,p

�

C2,2 =

�
h | ∀p, ∀nt, ∀no ∈

�
1, . . . ,

�
No − 1

2

��
:
���h(nt,2no)(p) − h(nt,2no−1)(p)

��� ≤ ε
(nt)
j,p

�
.

(5.16)

Moreover, some additional a priori information can be added directly on the vector of
filter coefficients h which we will discuss in detail in the next section. This amounts to
defining a new convex set C3 as a lower level set of some proper lower-semicontinuous
convex function ρ, by setting:

C3 =
n
d ∈ R

�K | ρ(d) ≤ λ
o

where λ ∈ ]0,+∞[ , d = Lh and ρ : R
�K → [0,+∞[ is a lower-semicontinuous convex

function. Now let us focus on the choice of L:

1. The simplest choice is L = R, it relates to the sparsity of multiple reflections.

2. A more complex choice is L = eFR where eF : R
Q → R

�K is an analysis frame
operator.

5.4 Proximal algorithm

We choose to employ a primal-dual algorithm (Komodakis and Pesquet, 2014) an exam-
ple of which is the M+LFBF algorithm 5 (Combettes and Pesquet, 2012).
For the convergence of M+LFBF algorithm, at each iteration i the stepsize γ[i] must be
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Algorithm 5 M+LFBF

Set γ[i] ∈ [ǫ, 1−ǫ
β ].

Set y[0] ∈ R
Q ,h[0] ∈ R

QP , v[0] ∈ R
KNo , u

[0]
1 ∈ R

QP , u
[0]
2 ∈ R

QP , u
[0]
3 ∈ R

�K

for i = 0, 1, . . . do
Gradient computation

s
[i]
1 = y[i] − γ[i]


Rh[i] + y[i] − z + F ∗v[i]

�

t
[i]
1 = h[i] − γ[i]

�
R⊤(Rh[i] + y[i] − z) + L∗u[i]3 + u

[i]
1 + u

[i]
2

�

Projection computation

x
[i]
1 = Fy[i]

for l = 1 : L do�
s
[i]
2 (k)

�
k∈Kl

=

v[i](k) + γ[i]Fy[i](k)

�
k∈Kl

�
w

[i]
1 (k)

�
k∈Kl

=
�
s
[i]
2 (k)

�
k∈Kl

− γ[i]ΠDl

 �
s
[i]
2 (k)

�

k∈Kl

γ[i]

!

end for
t
[i]
2,1 = u

[i]
1 + γ[i]h[i]

t
[i]
2,2 = u

[i]
2 + γ[i]h[i]

t
[i]
2,3 = u

[i]
3 + γ[i]Lh[i]

for m = 1 : 3 do
w

[i]
2,m = t

[i]
2,m − γ[i]ΠCm(γ[i])−1t

[i]
2,m)

end for
Averaging

x
[i]
2 = Fs

[i]
1

for l = 1 : L do�
q
[i]
1,1(k)

�
k∈Kl

=
�
w

[i]
1 (k) + γ[i]x

[i]
2 (k)

�
k∈Kl

v[i+1](k)
�
k∈Kl

=
�
v[i](k) − s

[i]
2 (k) + q

[i]
1,1(k)

�
k∈Kl

end for
q
[i]
2,1 = w

[i]
2,1 + γ[i]t

[i]
1

q
[i]
2,2 = w

[i]
2,2 + γ[i]t

[i]
1

q
[i]
2,3 = w

[i]
2,3 + γ[i]Lt

[i]
1

for m = 1 : 3 do
u
[i+1]
m = u

[i]
m − t

[i]
2,m + q

[i]
2,m

end for
Update

y[i+1] = y[i] − γ[i]
�
Rt

[i]
1 + s

[i]
1 − z + F ∗w[i]

1

�

h[i+1] = h[i] − γ[i]
�
R⊤(Rt

[i]
1 + s

[i]
1 − z) + L∗w[i]

2,3 + w
[i]
2,1 + w

[i]
2,2

�

end for
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chosen so as to satisfy the following rule: Let β = 2(1+|||R|||2)+
q

4 + max(|||F |||2 , |||L|||2)
and ǫ ∈]0, 1

1+β [, then γ[i] ∈ [ǫ, 1−ǫ
β ]. In this case, we have

|||R||| =




J−1X

j=0

|||Rj |||2



1/2

where |||Rj ||| = max
n∈N

���
���
���R(n)

j

���
���
��� for every j ∈ {0, . . . , J − 1}.

5.5 Results

The object of interest in this work is the primary waveforms. We thus privileged the
display of results on primary reflections. However, numerical evaluations are performed
on both primary and multiples.

5.5.1 Comparative evaluation: synthetic data

Our method is evaluated on the 2D synthetic seismic dataset presented in Figure 5.4 -
p. 89. It is constructed as in Chapter 4 with No = 512 seismic traces of length Nt = 512
with filters of lengths P0 = 4 and P1 = 5. The constraint sets C1,1, C1,2, C2,1 and C2,2 are

defined by (5.15) and (5.16) where, for every (j, p, nt, no), ε
(no)
j,p = 0.05 and ε

(nt)
j,p = 0.0001.

The observed image z (with σ = 0.04) is presented at the top of Figure 5.4 - p. 89,
in which top and bottom hyperbolas correspond to primaries, while the medium one
corresponds to a multiple event. Regarding convex sets D and C3, we choose ϕl = | · |,
L = R and we investigate three possible choices for ρ:

1. ℓ1-norm


∀d ∈ R

Nt×No
�

ρ(d) = ℓ1(d) =

No−1X

no=0

Nt−1X

nt=0

|d(nt,no)|,

2. ℓ2-norm


∀d ∈ R

Nt×No
�

ρ(d) = ℓ2(d) =

 
No−1X

no=0

Nt−1X

nt=0

(d(nt,no))2

!1/2

,

3. mixed ℓ1,2-norm


∀d ∈ R

Nt×No
�

ρ(d) = ℓ1,2(d) =

No−1X

no=0

 
Nt−1X

nt=0

(d(nt,no))2

!1/2

.
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Figure 5.4: From top to bottom: observed image z with σ = 0.04, primary y and
multiple s.
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Figure 5.5: From top to bottom: estimated primary y with (Ventosa et al., 2012), with
1D version in Chapter 4 and with the proposed 2D version.
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Figure 5.6: Observed image z with σ = 0.16.

We compute projections onto the convex sets C and D as in Chapter 4. The trans-
forms are chosen as follows. In the time (vertical or sensor) and in the space directions,
we choose a Symlet of length 8 and a Daubechies wavelet of length 4, respectively. The
overall transform F may either be: 1D shift-invariant (SI, length-8 Symlet along time
only), 2D critical and orthogonal, 2D shift-invariant (fully redundant) or 2D dual-tree
(twice redundant). In the latter case, the given wavelets yield the primal tree, the dual
being obtained by the Hilbert transform of the aforementioned wavelets. In Figure 5.5 -
p. 90, the top row shows estimated primaries obtained by (Ventosa et al., 2012).
The SI frame (Figure 5.5 - p. 90, second row), although more redundant, exhibits a
higher level of remnant noise and a blur crossing, as opposed to the bottom row, where
primaries are clearly recovered. More interesting is the stronger noise condition in Fig-
ure 5.6 - p. 91 (σ = 0.16). The obtained results from this high-noise observed data that
correspond to the estimated primaries, are shown in Figure 5.7 - p. 92. One can observe
that the estimated primary by the algorithm in Chapter 4 may be not better than the
one by (Ventosa et al., 2012) (less noise, but lost information on the primary). While
the obtained primary by the 2D proposed method is also good, which demonstrates the
robustness to noise of this method.
The comparison is pursued in a more complete and objective manner with ℓ1 and ℓ2
residual errors for primaries y − ŷ in Table 5.1 - p. 93 and for multiples s − ŝ in
Table 5.2 - p. 94, the smaller being the better. The blue (resp. red) indicates the
minimum value of ℓ1 (resp. ℓ2) for each ρ. We test the proposed method against
different levels of noise: σ ∈ {0.04, 0.08, 0.16}. We see that 2D versions generally fur-
ther reduce modeling errors, as expected. Moreover, a loose ranking is has follows:
(Ventosa et al., 2012) < SI-1D < 2D orthogonal basis < SI-2D < dual-tree. We cannot
clearly conclude about a positive specific effect of ℓ1 or ℓ2-norms, however the smallest
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Figure 5.7: From top to bottom: estimated primary y with (Ventosa et al., 2012), with
1D version in Chapter 4 and with the proposed 2D version.
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σ 0.04 0.08 0.16

y − z
ℓ1(×102) 3.88 6.89 13.09
ℓ2(×102) 5.42 8.80 16.43

(Ventosa et al., 2012)
ℓ1(×102) 4.32 7.15 13.01
ℓ2(×102) 6.70 9.50 16.50

1D version in Chapter 4
ℓ1(×102) 2.06 2.87 3.75
ℓ2(×102) 5.36 6.28 7.14

ρ = ℓ2

orthogonal ℓ1(×102) 1.30 1.94 2.73

basis(∗) ℓ2(×102) 2.67 3.73 4.91

SI frame(∗)
ℓ1(×102) 1.06 1.38 1.91
ℓ2(×102) 3.01 3.25 3.89

M -band ℓ1(×102) 0.77 1.29 1.65

dual-tree(∗) ℓ2(×102) 1.83 3.31 3.66

ρ = ℓ1

orthogonal ℓ1(×102) 1.31 1.92 2.77

basis(∗) ℓ2(×102) 2.57 3.59 5.05

SI frame(∗)
ℓ1(×102) 0.88 1.26 1.86
ℓ2(×102) 2.16 2.69 3.63

M -band ℓ1(×102) 0.79 1.09 1.58

dual-tree(∗) ℓ2(×102) 1.86 2.34 3.33

ρ = ℓ1,2

orthogonal ℓ1(×102) 1.19 1.77 2.63

basis(∗) ℓ2(×102) 2.22 3.11 4.62

SI frame(∗)
ℓ1(×102) 0.96 1.35 1.99
ℓ2(×102) 2.68 3.22 4.33

M -band ℓ1(×102) 0.71 1.02 1.50

dual-tree(∗) ℓ2(×102) 1.44 1.95 2.86

Table 5.1: Comparison of the estimated primaries with the 2D proposed version(∗) in
using three different 2D wavelet transforms, over three noise levels, and three a priori
functions ρ ∈ {ℓ2, ℓ1, ℓ1,2}, with (Ventosa et al., 2012) and with the 1D version in
Chapter 4. (These results correspond to the data in Figure 5.4 - p. 89).

absolute or quadratic residuals are always obtained with the ℓ1,2 norm. This confirms
that mild redundancy is beneficial when coupled with appropriate constraints.
To better emulate more complex geophysical configurations, we consider another syn-
thetic data (see Figure 5.8 - p. 96). This data resembles a lot the data described above,
however, there are other remnants where the structure is more complex with several
overlapping hyperbolas. The results are shown in Figure 5.9 - p. 97 (estimated pri-
maries). Figure 5.10 - p. 99 and Figure 5.11 - p. 100 illustrate for a stronger noise
case (σ = 0.16). Once again, despite the more complicated data-structure with several
overlapping waves, our proposed 2D method gives good results and remains also the
top performer compared to two other methods. The comparison of the experimental
results are presented in Table 5.3 - p. 98 (for estimated primaries) and Table 5.4 - p. 101
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σ 0.04 0.08 0.16

s− z
ℓ1(×102) 6.18 8.96 14.73
ℓ2(×102) 11.28 13.24 19.18

(Ventosa et al., 2012)
ℓ1(×102) 1.85 1.97 2.28
ℓ2(×102) 5.51 5.68 6.31

1D version in Chapter 4
ℓ1(×102) 1.31 1.71 2.25
ℓ2(×102) 5.38 6.42 7.88

ρ = ℓ2

orthogonal ℓ1(×102) 0.52 0.67 0.97

basis(∗) ℓ2(×102) 2.14 2.79 3.80

SI frame(∗)
ℓ1(×102) 0.41 0.49 0.61
ℓ2(×102) 1.96 2.24 2.63

M -band ℓ1(×102) 0.39 0.49 0.74

dual-tree(∗) ℓ2(×102) 1.72 2.09 3.07

ρ = ℓ1

orthogonal ℓ1(×102) 0.50 0.75 0.92

basis(∗) ℓ2(×102) 2.28 3.08 3.57

SI frame(∗)
ℓ1(×102) 0.72 0.78 0.84
ℓ2(×102) 3.02 3.11 3.28

M -band ℓ1(×102) 0.37 0.83 0.90

dual-tree(∗) ℓ2(×102) 1.69 3.33 3.56

ρ = ℓ1,2

orthogonal ℓ1(×102) 0.35 0.42 0.56

basis(∗) ℓ2(×102) 1.63 1.90 2.42

SI frame(∗)
ℓ1(×102) 0.48 0.58 0.81
ℓ2(×102) 2.53 2.88 3.73

M -band ℓ1(×102) 0.27 0.35 0.55

dual-tree(∗) ℓ2(×102) 1.20 1.55 2.32

Table 5.2: Comparison of the estimated multiples with the 2D proposed version(∗) in
using three different 2D wavelet transforms, over three noise levels, and three a priori
functions ρ ∈ {ℓ2, ℓ1, ℓ1,2}, with (Ventosa et al., 2012) and with the 1D version in
Chapter 4. (These results correspond to the data in Figure 5.4 - p. 89).
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(for estimated multiples). The best results were obtained by using 2D proposed method,
however, due to the nonstationarity of the data, and the presence of structured noise, the
statistical analysis is not straightforward in comparing the performance of transforms.
The previous experiments were performed with synthetic data. Its construction is not
related to actual subsurface modelling or wave propagation. However, it exhibits event
shapes that help in understanding the proposed method and the algorithm. Addition-
ally, it permits a statistical analysis of the results that cannot be done with real data in
the absence of ground truth. In the next subsection, we show the performance of our
proposed method on real data.

5.5.2 Comparative evaluation: real data

We finally test our 2D proposed method for the real data provided by Jean Charléty (IFP
Energies nouvelles). Figure 5.12-top - p. 102 is a recorded seismic data with a partially
appearing primary (arrow) and at bottom a cropped square zone and Figure 5.13 - p. 103
displays two multiple wavefield templates. For this data, we choose L = eFR, where eF is
a 2D orthogonal basis with a Symlet of length 8 over 3 decomposition levels, ρ is a mixed
ℓ1,2-norm. F is a 2D dual-tree with a Symlet of length 8 along time and Daubechies of
length 4 along space over 3 decomposition levels, and ϕ = | · |. Figure 5.14 - p. 104 and
Figure 5.15 - p. 105 show the estimated primaries obtained by (Ventosa et al., 2012),
by 1D version in Chapter 4 and by 2D proposed method. Three methods are able to
successfully retrieve a weak primary below the multiple level. On Figure 5.14-top - p. 104,
arrows indicate remnants of multiples, parallel to the primary, that have been incorrectly
subtracted. Figure 5.14-bottom - p. 104 contains more noise and more artifacts. The
primary is better delineated with the directional dual-tree wavelet frame, with a reduced
level of remaining noise and multiple interferences.

5.6 Conclusion

This chapter proposed an adaptive filtering method allowing the suppression of multiple
in 2D seismic data. The 2D anisotropic structure is taken into account and tackled using
geometric multiscale representations. The adaptive filter is performed under appropriate
regularity and amplitude concentration constraints. We tested three different measures
for ρ, such as ℓ1, ℓ2 and ℓ1,2 norms. The ℓ1,2-norm seems better suited to design adap-
tive filters. Simulations are carried out on both synthetic and real seismic data. In all
cases, the 2D version with ρ = ℓ1,2 with 2D dual-tree transform demonstrated very good
performance. The comparison of three methods shows that the proposed 2D method im-
proves the robustness to noise and better preserve structural information. Furthermore,
instead of using continuous or shift-invariant redundant wavelet transforms that yield
huge redundancy, and thus a very large number of coefficients, we employ a 2D dual-tree
transform which produces an only twice oversampled transform. The mild redundancy
could be beneficial regarding the huge volumes of seismic data, and the results are actu-
ally better. From the obtained results and with the same argument, we hope that the
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Figure 5.8: From top to bottom: observed image z with σ = 0.04, primary y and
multiple s.



5.6. Conclusion 97

Figure 5.9: From top to bottom: estimated primary y with (Ventosa et al., 2012), with
1D version in Chapter 4 and with the proposed 2D version.
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σ 0.04 0.08 0.16

y − z
ℓ1(×102) 3.88 6.89 13.09
ℓ2(×102) 5.42 8.80 16.43

(Ventosa et al., 2012)
ℓ1(×102) 5.38 7.87 13.36
ℓ2(×102) 8.97 11.14 17.30

1D version in Chapter 4
ℓ1(×102) 2.05 2.91 4.07
ℓ2(×102) 4.75 6.26 8.06

ρ = ℓ2

orthogonal ℓ1(×102) 1.53 2.27 3.34

basis(∗) ℓ2(×102) 2.56 3.59 5.33

SI frame(∗)
ℓ1(×102) 1.19 1.69 2.42
ℓ2(×102) 2.34 2.93 4.01

M -band ℓ1(×102) 1.07 1.41 1.96

dual-tree(∗) ℓ2(×102) 2.20 2.50 3.20

ρ = ℓ1

orthogonal ℓ1(×102) 1.66 2.33 3.37

basis(∗) ℓ2(×102) 2.96 3.78 5.40

SI frame(∗)
ℓ1(×102) 1.23 1.70 2.39
ℓ2(×102) 2.51 2.93 3.86

M -band ℓ1(×102) 1.14 1.47 2.00

dual-tree(∗) ℓ2(×102) 2.42 2.66 3.30

ρ = ℓ1,2

orthogonal ℓ1(×102) 1.51 2.25 3.32

basis(∗) ℓ2(×102) 2.48 3.54 5.27

SI frame(∗)
ℓ1(×102) 1.10 1.58 2.32
ℓ2(×102) 1.76 2.36 3.49

M -band ℓ1(×102) 0.95 1.31 1.87

dual-tree(∗) ℓ2(×102) 1.60 2.07 2.83

Table 5.3: Comparison of the estimated primaries with the 2D proposed version(∗) in
using three different 2D wavelet transforms, over three noise levels, and three a priori
functions ρ ∈ {ℓ2, ℓ1, ℓ1,2}, with (Ventosa et al., 2012) and with the 1D version in
Chapter 4. (These results correspond to the data in Figure 5.8 - p. 96).
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Figure 5.10: Observed image z with σ = 0.16.

proposed method could be extended to 3D representations and their associated filters
(van Borselen and Schonewille, 2005; Baumstein and Hadidi, 2006; Beasley et al., 2012;
Brittan et al., 2011; McHugo et al., 2008; Pica et al., 2005a; Zhang and Wang, 2011) and
provide better results.
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Figure 5.11: From top to bottom: estimated primary y with (Ventosa et al., 2012),
with 1D version in Chapter 4 and with the proposed 2D version.
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σ 0.04 0.08 0.16

s− z
ℓ1(×102) 7.10 9.81 15.59
ℓ2(×102) 15.18 16.68 21.68

(Ventosa et al., 2012)
ℓ1(×102) 3.46 3.63 4.10
ℓ2(×102) 8.17 8.34 9.02

1D version in Chapter 4
ℓ1(×102) 1.55 2.24 3.34
ℓ2(×102) 4.92 6.77 9.35

ρ = ℓ2

orthogonal ℓ1(×102) 0.54 0.64 0.86

basis(∗) ℓ2(×102) 1.88 2.20 2.89

SI frame(∗)
ℓ1(×102) 0.58 0.66 0.87
ℓ2(×102) 2.10 2.33 2.94

M -band ℓ1(×102) 0.58 0.62 0.77

dual-tree(∗) ℓ2(×102) 2.04 2.13 2.54

ρ = ℓ1

orthogonal ℓ1(×102) 0.72 0.75 0.93

basis(∗) ℓ2(×102) 2.46 2.58 3.08

SI frame(∗)
ℓ1(×102) 0.64 0.68 0.82
ℓ2(×102) 2.30 2.34 2.68

M -band ℓ1(×102) 0.68 0.71 0.84

dual-tree(∗) ℓ2(×102) 2.30 2.35 2.70

ρ = ℓ1,2

orthogonal ℓ1(×102) 0.52 0.60 0.78

basis(∗) ℓ2(×102) 1.77 2.05 2.57

SI frame(∗)
ℓ1(×102) 0.45 0.49 0.65
ℓ2(×102) 1.36 1.43 1.89

M -band ℓ1(×102) 0.44 0.50 0.64

dual-tree(∗) ℓ2(×102) 1.34 1.54 1.95

Table 5.4: Comparison of the estimated multiples with the 2D proposed version(∗) in
using three different 2D wavelet transforms, over three noise levels, and three a priori
functions ρ ∈ {ℓ2, ℓ1, ℓ1,2}, with (Ventosa et al., 2012) and with the 1D version in
Chapter 4. (These results correspond to the data in Figure 5.8 - p. 96).
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Figure 5.12: From top to bottom: recorded seismic data with a partially appearing
primary and a cropped of recorded seismic data.
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Figure 5.13: Tow multiple wavefield templates.
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Figure 5.14: From top to bottom: estimated primary obtained with (Ventosa et al.,
2012) and with 1D version in Chapter 4.
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Figure 5.15: Estimated primary obtained with the proposed 2D version.
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- Chapter 6 -

Sparse Blind Deconvolution with Smoothed ℓ1/ℓ2

Regularization

Blind deconvolution plays a central role in the field of signal and image processing in
general and of geophysical processing in particular. Indeed several geophysical issues
may be formulated as blind deconvolution problems. For instance, (Li and Lu, 2013; Liu
and Dragoset, 2013; Kaplan and Innanen, 2008) use this formalism to address multiple
removal. As in the previous chapters we have separated multiples from primaries, a next
goal would be to deconvolve them from the seismic source. As the source (the seismic
wavelet) is rarely known precisely, blind seismic deconvolution is considered here. It aims
at improving the temporal resolution of seismic data in the shape of a sparser sequence.
Seismic deconvolution has generated a lot of seminal works on sparsity-promoting mea-
sures, including ℓ1 and even ℓ1/ℓ2 penalties (Claerbout, 1977; Gray, 1979). This chapter
is restricted to the use of an ℓ1/ℓ2 penalty. The ℓ1/ℓ2 ratio regularization function has
shown good performance for retrieving sparse signals in a number of recent works, in
the context of blind deconvolution. Indeed, it benefits from a scale invariance property
much desirable in the blind context. However, the ℓ1/ℓ2 function raises some difficulties
when solving the nonconvex and nonsmooth minimization problems resulting from the
use of such a penalty term in current restoration formulations. In this work, we propose
a new penalty based on a smooth approximation to the ℓ1/ℓ2 function. In addition, we
develop a proximal-based algorithm to solve variational problems involving this function
and we derive theoretical convergence results. We demonstrate the effectiveness of our
method through a comparison with a recent alternating optimization strategy dealing
with the exact ℓ1/ℓ2 term, on both applications to seismic data (1D) and image blind
deconvolution (2D).

6.1 Introduction

As alluded to in Section ??, many experimental settings are modeled as inverse problems.
They resort to estimating an unknown signal x ∈ R

N from observations y ∈ R
N , through

107
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100 200 300 400 500 600 700

x̄

y

Figure 6.1: Unknown seismic signal x̄ (top), blurred/noisy observation y (bottom).

the measurement process:

y = H(h, x) + b , (6.1)

an illustration of which is provided in Figure ??. Here, h ∈ R
S represents an impulse

response (e.g. a linear sensor response or a “blur” convolutive point spread function),
H : RS × R

N → R
N : (h, x) 7→ h ∗ x, where ∗ denotes a discrete-time convolution oper-

ator (with appropriate boundary processing), and b ∈ R
N is a realization of a random

variable modeling an additive noise. Standard approaches, such as Wiener filtering and
its statistical SURE-based extensions (Pesquet et al., 2009), aim at minimizing criteria
based on the squared Euclidean norm (ℓ22). However, the use of the sole least squares
data fidelity term is prone to noise sensitivity and the addition of an ℓ22 regularization
often leads to over-smoothed estimates. The deconvolution problem becomes blind, even
more ill-posed, when the blur kernel h is unknown, and needs to be estimated as well as
the target signal. Applications include communications (equalization or channel estima-
tion) (Haykin, 1994), nondestructive testing (Nandi et al., 1997), geophysics (Kaaresen
and Taxt, 1998; Takahata et al., 2012; Pham et al., 2014b), image processing (Kun-
dur and Hatzinakos, 1996a,b; Kato et al., 1999; Ahmed et al., 2014), medical imaging
and remote sensing (Campisi and Egiazarian, 2007). Blind deconvolution, being an un-
derdetermined problem, often requires additional hypotheses. A usual approach seeks
estimates (bx,bh) ∈ R

N ×R
S of (x, h) as minimizers of the sum of a data fidelity term and

additional regularization terms on the signal and on the blur kernel. Such regularization
functions account for a priori assumptions one imposes on original sought objects, like
sparsity, and ensure the stability of the solution. Blind deconvolution is subject to scal-
ing ambiguity, and suggests scale-invariant contrast functions (Comon, 1996; Moreau
and Pesquet, 1997).

A decade ago, a Taxicab-Euclidean norm ratio (ℓ1/ℓ2) arose as a sparseness measure
(Zibulevsky and Pearlmutter, 2001; Hoyer, 2004; Hurley and Rickard, 2009; Barak et al.,
2014), used in NMF (Nonlinear Matrix Factorization) (Mørup et al., 2008). Earlier
mentions of a one-norm/two-norm ratio deconvolution appeared in geophysics (Gray,
1978). It has since been used to constrain sharp images through wavelet frame coefficients
(Ji et al., 2012), or for sparse recovery (Demanet and Hand, 2015). Such a regularization
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term is moreover suggested in (Benichoux et al., 2013) to avoid common pitfalls in blind
sparse deconvolution.

Recently, (Krishnan et al., 2011) proposed an alternating minimization algorithm to
deal with the ℓ1/ℓ2 regularization function. Its originality consists of transforming the
ℓ1/ℓ2 nonconvex regularization term into a convex ℓ1 regularization function. This is
done in a reweighted fashion, by fixing the denominator ℓ2 from the previous iterate.
An iterative shrinkage-thresholding algorithm finally solves the remaining ℓ1 regularized
problem. Although the convergence of this approach has not been deeply investigated,
it appears to work in practice. More recently, (Esser et al., 2013) proposed a scaled pro-
jected gradient algorithm for minimizing a smooth approximation to the ℓ1/ℓ2 function,
however limited to the case when the sparse signal to retrieve takes nonnegative values.
We generalize this idea to a parametrized Smoothed One-Over-Two (SOOT) penalty
for signed, real data. We present a novel efficient method based on recent results in
nonconvex optimization combining an alternating minimization strategy with a forward-
backward iteration (Bolte et al., 2014; Chouzenoux et al., 2013). Moreover, we accelerate
the convergence of our algorithm by using a Majorize-Minimize (MM) approach (Sot-
thivirat and Fessler, 2002; Chouzenoux et al., 2013, 2014). Section ?? introduces the
minimization problem. Section ?? describes the proposed method and provides conver-
gence results. The algorithm performance, compared with (Krishnan et al., 2011), is
discussed in Section ?? for seismic data blind deconvolution (1D) and in Section ?? for
blind image deconvolution (2D). Some conclusions are drawn in Section ??.

6.2 Sparsity measure ℓ1/ℓ2 and its surrogates

6.2.1 Motivation on the sparsity measure ℓ1/ℓ2

In signal representation, there are many ways to practically define sparsity. For instance,
a signal is sparse if the number of the non-zero coefficients in its representation is small
compared to its dimension (Zonoobi et al., 2011), that is related to the ℓ0-“quasi-norm”.
However, the optimization problem with the ℓ0-penalty is nonconvex and generally im-
possible to solve as its solution usually leads to an intractable combinatorial search. A
relaxation for the ℓ0-“quasi-norm” is the ℓp-norm/quasi-norm (0 < p ≤ 1). We instead
consider the ratio of the ℓ1-norm to the ℓ2-norm that we denote ϕ0 = ℓ1/ℓ2, and we then
compare with different measures, via some simple examples.

Example 6.2.1 Assume that we have two signals x and y of length 2N (Figure ?? -
p. ??), where

xn =
1

2N
for every n ∈ {−N + 1, · · · , 0, 1, . . . , N} and

yn =

(
1 if n = 0

0 if n ∈ {−N + 1, · · · ,−1, 1, · · · , N}.
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Figure 6.2: Plots of signals x (green) and y (red), with N = 10.

We have:

• ℓ1(x) = ℓ1(y) = 1

• ℓ0(x) = 2N > ℓ0(y) = 1

• ϕ0(x) =
√

2N > ϕ0(y) = 1.

It is clear that y is sparse, but x is not. From the values obtained by different measures
(ℓ1, ℓ0, ϕ0) for x and y, we observe that, nothing conclusive can be said about the sparsity
of x and y with ℓ1-norm. However, ϕ0 may be a better sparsity measure. A parametric
family of sparse to non sparse signals is given next.

Example 6.2.2 Let x be a signal of length N = 1000 with xn ∈ [0, 1] for every n ∈
{0, 1, . . . , N − 1}. We now consider the evaluation of ϕ0 for power laws x → xp, (p > 0).
Figure ?? - p. ?? illustrates the xp signal where on the top of figure: p = 100 (left), xp

is sparse with ϕ0(x
p) = 4.44 and p = 0.01 (right), xp is not sparse with ϕ0(x

p) = 31.61.
In the bottom of figure: the representation of different signals when p varies (left) and
the evaluation of ϕ0 when p varies (right). We see that, the bigger p, the smaller ϕ0(x

p).

Figure ?? - p. ?? is a visualization of the ℓ0-“quasi-norm” (top-left), ℓ1-norm (top-
right), ℓ 1

2
-quasi-norm (bottom-left) and ϕ0 for a two-dimensional vector. The morphol-

ogy of ϕ0 is the most similar to that of ℓ0. However, the ratio ϕ0 is difficult to use,
we thus propose to replace the nonsmooth function ϕ0 by a more maniable smooth ap-
proximation. In this work, we investigate two kinds of smooth approximation (surrogate
functions):

1. The first one is a natural way to replace ℓ1 and ℓ2 by their smooth approximations
ℓ1,α (sometimes called hybrid ℓ1-ℓ2 or hyperbolic penalty) and ℓ2,η, where

ℓ1,α(x) =

NX

n=1

�p
x2n + α2 − α

�
, ℓ2,η(x) =

vuut
NX

n=1

x2n + η2
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Figure 6.3: Evaluation of ϕ0 for power laws.

with (α, η) ∈]0,+∞[2. Note that ℓ1 and ℓ2 are recovered for α = η = 0. Thus, the
considered function is

eϕ(x) = λ
ℓ1,α(x)

ℓ2,η(x)
(6.2)

where, λ ∈ ]0,+∞[.

2. The second one is a little bit more sophisticated

ϕ(x) = λ log

�
ℓ1,α(x) + β

ℓ2,η(x)

�
, (6.3)

with (λ,β,α, η) ∈]0,+∞[4.

The log function both makes the penalty easier to handle and, through its concav-
ity, strengthens the flattening of the ℓ1/ℓ2 function toward sparsity. We now turn our
attention to the properties of these functions.
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Figure 6.4: Measures for the case of N = 2: ℓ0-“quasi-norm” at the top left, ℓ1-norm
at the top right, ℓ1/2-quasi-norm at the bottom left and ℓ1/ℓ2-function at the bottom right.

6.2.2 Properties of functions ℓ1/ℓ2 and its surrogates

We concisely state three results that will be necessary thereafter. The proofs are given
in the appendix.

Proposition 6.2.3 For all α > 0, η > 0 and x ∈ R
N ,

ℓ1,α(x)

ℓ22,η(x)
≤ 1

2(α + η√
N

)
. (6.4)

The proof is given in Appendix A.1.

Proposition 6.2.4 eϕ has a eµ-Lipschitzian gradient on R
N (i.e., for every (z, z′) ∈

R
N
�2
, k∇eϕ(z) −∇eϕ(z′)k ≤ eµkz − z′k), with

eµ=λ

�
1 +

4

3
√

3

�
1

αη
. (6.5)
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The proof is given in Appendix A.2.

Proposition 6.2.5 ϕ has a µ-Lipschitzian gradient on R
N , with

µ=λ

�
max

�
1

βα
,

1

η2

�
+

1

2αβ
+

1

2η2

�
. (6.6)

The proof is given in Appendix A.3.

6.3 Optimization model

6.3.1 Optimization tools

Our minimization strategy relies on two optimization principles. Let U ∈ R
M×M be a

symmetric positive definite (SPD) matrix. Firstly, we define the U -weighted proximity
operator (Hiriart-Urruty and Lemaréchal, 1993, Sec. XV.4), (Combettes and Vũ, 2013)
of a proper, lower semicontinuous, convex function ψ : RM →] − ∞,+∞] at z ∈ R

M ,
relative to the metric induced by U , and denoted by proxU,ψ(z), as the unique minimizer

of ψ + 1
2k · −zk2U , where k.kU denotes the weighted Euclidean norm, i.e., (∀z ∈ R

M )

kzkU =

z⊤Uz

�1/2
. When U is equal to IM , the identity matrix of RM×M , then proxIM ,ψ

reduces to the original definition of the proximity operator in (Moreau, 1965). Secondly,
we introduce the Majoration-Minimization (MM) principle:

Definition 6.3.1 Let ζ : RM → R be a differentiable function. Let z ∈ R
M . Let us

define, for every z′ ∈ R
M ,

q(z′, z) = ζ(z) + (z′ − z)⊤∇ζ(z) +
1

2
kz′ − zk2U(z),

where U(z) ∈ R
M×M is a SPD matrix. Then, U(z) satisfies the majoration condition

for ζ at z if q(·, z) is a majorant of the function ζ at z, i.e., for every z′ ∈ R
M , ζ(z′) ≤

q(z′, z).

If function ζ has an L-Lipschitzian gradient on a convex subset C ⊂ R
M , then, for every

z ∈ C, a quadratic majorant of ζ at z is trivially obtained by taking U(z) = L IM .
We now shall give some facts concerning “semi-algebraic functions” and subsets which

we need to use in this chapter.

Definition 6.3.2 A semi-algebraic subset of R
N (Bierstone and Milman, 1988) is a

finite union of sets of the form

{x ∈ R
N : fi(x) = 0, gj(x) < 0, i ∈ I, j ∈ J}

where I, J are finite and for every i ∈ I and j ∈ J, fi, gj : RN → R are real polynomial
functions. A mapping is semi-algebraic if its graph is a semi-algebraic set.
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Remark 6.3.1 Semi-algebraicity is a property satisfied by a wide class of functions. In
particular, it is satisfied for function ϕ defined in (??), for standard numerical imple-
mentations of the log function.

6.3.2 Proposed variational approach

From now on, definitions and properties apply for every x = (xn)1≤n≤N ∈ R
N and

h ∈ R
S , unless otherwise stated. We propose to define an estimate (bx,bh) of (x, h) as a

minimizer of the following penalized criterion:

G(x, h) = ρ(x, h) + g(x, h) + ϕ(x), (6.7)

where ρ(x, h) = 1
2kh ∗ x− yk2 is the least-squares objective function, g introduces addi-

tional a priori information on the sought objects. Finally, as provided in Proposition ??,
ϕ has a Lipschitzian gradient on R

N , which is a desirable property for deriving an ef-
ficient algorithm to minimize (??). In the following, we assume that g can be split
as

g(x, h) = g1(x) + g2(h), (6.8)

where g1 and g2 are proper, lower semicontinuous, convex functions, continuous on their
domain. Thanks to these properties, the problem can be addressed with the Block Coor-
dinate Variable Metric Forward-Backward algorithm (Chouzenoux et al., 2013). More-
over, in practice, h and x have different properties and this choice permits to take into
account independently the a priori infomation on the sought objects. Moreover, we
denote by

f(x, h) = ρ(x, h) + ϕ(x), (6.9)

the smooth part of the criterion, and ∇1f(x, h) ∈ R
N (resp. ∇2f(x, h) ∈ R

S) the partial
gradient of f with respect to the variable x (resp. h) computed at (x, h).

6.4 Proposed alternating optimization method

6.4.1 Smoothed ℓ1/ℓ2 (SOOT) algorithm

To minimize (??), one can exploit the block-variable structure of G by using an alternat-
ing forward-backward algorithm (Luo and Tseng, 1992; Bolte et al., 2010; Xu and Yin,
2013; Bolte et al., 2014; Chouzenoux et al., 2013). At each iteration k ∈ N, this algo-
rithm updates xk (resp. hk) with a gradient step on f(·, hk) (resp. f(xk+1, ·)) followed
by a proximity step on g1 (resp. g2).

We use this alternating minimization method combined with an MM strategy, as
described in (Chouzenoux et al., 2013). For every (x, h) ∈ R

N × R
S , let us assume the

existence of SPD matrices A1(x, h) ∈ R
N×N and A2(x, h) ∈ R

S×S such that A1(x, h)
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Algorithm 6 SOOT algorithm.

For every k ∈ N, let Jk ∈ N
∗, Ik ∈ N

∗ and let (γk,j1 )0≤j≤Jk−1 and (γk,i2 )0≤i≤Ik−1 be
positive sequences. Initialize with x0 ∈ dom g1 and h0 ∈ dom g2.
Iterations:
For k = 0, 1, . . .

xk,0 = xk, hk,0 = hk,
For j = 0, . . . , Jk − 1$
exk,j = xk,j − γk,j1 A1(x

k,j , hk)−1∇1f(xk,j , hk),
xk,j+1 = prox

(γk,j
1 )−1A1(xk,j ,hk),g1


exk,j
�
,

xk+1 = xk,Jk .
For i = 0, . . . , Ik − 1$ ehk,i = hk,i − γk,i2 A2(x

k+1, hk,i)−1∇2f(xk+1, hk,i),

hk,i+1 = prox
(γk,i

2 )−1A2(xk+1,hk,i),g2

�
ehk,i
�
,

hk+1 = hk,Ik .

(resp. A2(x, h)) satisfies the majoration condition for f(·, h) at x (resp. f(x, ·) at h).
Then, the SOOT algorithm for the minimization of (??) is described in Algorithm ??.

Note that PALM algorithm (Bolte et al., 2014) is recovered as a special case if Jk ≡
Ik ≡ 1 and, at each iteration, the Lipschitz constant of ∇1f(·, hk) (resp. ∇2f(xk+1, ·))
is substituted for A1(x

k,0, hk) (resp. A2(x
k+1, hk,0)). However, recent works on variable

metric strategies (Chouzenoux et al., 2013, 2014) show that the use of more judicious
preconditioning matrices can significantly accelerate the convergence of the algorithm.
An example of such matrices is proposed in Section ??. Moreover, we show in our
experimental part the practical interest in terms of convergence speed of taking the
number of inner loops (Ik)k∈N or (Jk)k∈N greater than one.

The convergence of Algorithm ?? can be derived from the general results established
in (Chouzenoux et al., 2013):

Proposition 6.4.1 Let (xk)k∈N and (hk)k∈N be sequences generated by Algorithm ??.
Assume that:

1. There exists (ν, ν) ∈]0,+∞[2 such that, for all k ∈ N,

(∀j ∈ {0, . . . , Jk − 1}) ν IN � A1(x
k,j , hk) � ν IN ,

(∀i ∈ {0, . . . , Ik − 1}) ν IS � A2(x
k+1, hk,i) � ν IS .

2. Step-sizes (γk,jx )k∈N,0≤j≤Jk−1 and (γk,ih )k∈N,0≤i≤Ik−1 are chosen in the interval [γ, 2−
γ] where γ and γ are some given positive real constants.

3. g is a semi-algebraic function.

Then, the sequence (xk, hk)k∈N converges to a critical point (bx,bh) of (??). Moreover,
G(xk, hk)

�
k∈N is a nonincreasing sequence converging to G(bx,bh).
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Figure 6.5: Function ϕ (in black) and its majorization functions at x = 0.8 (in blue),
x = 0.2 (in purple) and x = 0.05 (in green).

6.4.2 Construction of quadratic majorants

The numerical efficiency of the SOOT algorithm ?? relies on the use of quadratic majo-
rants providing tight approximations to the criterion and whose curvature matrices are
simple to compute. The following proposition allows us to propose SPD matrices A1

and A2 for building majorizing approximations of f with respect to x and h.

Proposition 6.4.2 For every (x, h) ∈ R
N × R

S, let

A1(x, h) =

�
L1(h) +

9λ

8η2

�
IN +

λ

ℓ1,α(x) + β
Aℓ1,α(x),

A2(x, h) = L2(x) IS ,

where

Aℓ1,α(x) = Diag

��
(x2n + α2)−1/2

�
1≤n≤N

�
, (6.10)

and L1(h) (resp. L2(x)) is a Lipschitz constant for ∇1ρ(·, h) (resp. ∇2ρ(x, ·)).1 Then,
A1(x, h) (resp. A2(x, h)) satisfies the majoration condition for f(·, h) at x (resp. f(x, ·)
at h).

Proof. Let us decompose ϕ = ϕ1 +ϕ2 (∀x ∈ R
N ) with, ϕ1(x) = λ log (ℓ1,α(x) + β) and

ϕ2(x) = −λ log (ℓ2,η(x)). It then suffices to prove that, for every x ∈ R
N ,

(i) Aϕ1(x) = λ
ℓ1,α(x)+βAℓ1,α(x) satisfies the majoration condition for ϕ1 at x,

1Such Lipschitz constants are straightforward to derive since ρ is a quadratic cost.
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(ii) ϕ2 has a µ-Lipschitzian gradient, with µ = 9λ
8η2

.

On the one hand, setting τ(x) = ℓ1,α(x) + β, we have (Allain et al., 2006)

τ(x′) ≤ τ(x) + (x′ − x)⊤∇τ(x) +
1

2
kx′ − xk2Aℓ1,α

(x), (6.11)

for every x′ ∈ R
N , where Aℓ1,α(x) is given by (??).

On the other hand, for every (u, v) ∈]0,+∞[2,

log v ≤ log u +
v

u
− 1 = log u +

v − u

u
. (6.12)

By taking v = τ(x′) > 0 and u = τ(x) > 0, and by combining (??) and (??), we obtain

ϕ1(x
′) ≤ ϕ1(x) +

λ

τ(x)
(x′ − x)⊤∇τ(x) +

1

2
(x′ − x)⊤

λ

τ(x)
Aℓ1,α(x)(x′ − x).

Thus, Statement (i) is proved by remarking that ∇ϕ1(x) = λ
τ(x)∇τ(x) and Aϕ1(x) =

λ
τ(x)Aℓ1,α(x). On the other hand, the Hessian of ϕ2 is given by

∇2ϕ2(x) =
2λ

ℓ42,η(x)
xx⊤ − λ

ℓ22,η(x)
IN .

Noting that ℓ22,η(x) = kxk2 + η2, and applying the triangular inequality yields

������∇2ϕ2(x)
������ ≤ 2λkxk2

(kxk2 + η2)2
+

λ

kxk2 + η2
= χ(kxk),

where χ : u ∈ [0,+∞[7→ λ 3u2+η2

(u2+η2)2
. The derivative of χ is given, for every u ∈ [0,+∞[,

by

χ̇(u) = λ
2u

(u2 + η2)3
(η2 − 3u2),

thus χ is an increasing function on [0, η/
√

3] and a decreasing function on ]η/
√

3,+∞[,
and maxu∈[0,+∞[ χ(u) = χ


η/

√
3
�

= 9λ
8η2

. Hence, the proof of Statement (ii). �

Figure ?? - p. ?? gives an illustration of this majorant for N = 1.

Remark 6.4.1 Note that, the Lipschitz constant for ∇2ρ(x, ·) is zero when x is a vector
of zeros. Thus, to ensure that condition 1 of Proposition ?? holds, we add a very small
positive value eβ to the Lipschitz constant i.e. A2(x, h) = (L2(x) + eβ) IS.
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Algorithm 7 Overall1 algorithm (Krishnan et al., 2011) (1D Overall adapted algorithm).

For every k ∈ N, let J ∈ N
∗, Ik ∈ N

∗, let κ ∈ ]0,+∞[ and δ = 10−3. Initialize with
x0 ∈ domϕ0 and h0 ∈ dom g2.
Iterations:
For k = 0, 1, . . .

xk,0 = xk, hk,0 = hk,
d = κ

2kH(hk, xk,0) − yk22 + ϕ0(x
k,0),

While (δ > 10−4)

c = d,
For j = 0, . . . , J − 1

β = κkxk,j,0k2
xk,j,0 = xk,j

For ℓ = 0, . . . , L− 1�
exk,j,ℓ = xk,j,ℓ − δH∗(hk, xk,j,ℓ)


H(hk, xk,j,ℓ) − y

�

xk,j+1,ℓ = proxδβk·k1(exk,j,ℓ)
xk,j+1 = xk,j,L

d = κ
2kH∗(hk, xk,j+1) − yk22 + ϕ0(x

k,j+1)
If (d > 3c)�

xk,0 = xk

δ = δ
2

Else�
exit loop

xk+1 = xk,J .
For i = 0, . . . , Ik − 1$ ehk,i = hk,i − γk,ih A2(x

k+1, hk,i)−1∇2f(xk+1, hk,i),

hk,i+1 = prox
(γk,i

h )−1A2(xk+1,hk,i),g2

�
ehk,i
�
,

hk+1 = hk,Ik .

6.5 Evaluation on seismic signal deconvolution

6.5.1 Problem statement

As some of the earliest mentions of ℓ1/ℓ2 deconvolution appeared in geophysics (Gray,
1978), blind seismic deconvolution (or inversion (Osman and Robinson, 1996; Ulrych and
Sacchi, 2006)) is a natural application. The sparse seismic signal x, of length N = 784,
on the top of Figure ?? - p. ?? is composed of a sequence of spikes termed primary
reflection coefficients (Walden and Hosken, 1986). This reflectivity series indicates, in
reflection seismology at normal incidence, the travel time of seismic waves between two
seismic reflectors, and the amplitude of the seismic events reflected back to the sensor.
The observed seismic trace y displayed in Figure ??-bottom - p. ?? follows Model (??).
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In this context, the blur h is related to the generated seismic source. We use here a band-
pass “Ricker” seismic wavelet (or Mexican hat (Ricker, 1940), Figure 2.5-left - p. 19) of
size S = 41 (Figure ?? - p. ??) with a frequency spectrum concentrated between 10 and
40 Hz. The additive noise w is a realization of a zero-mean white Gaussian noise with
variance σ2. Since the reflectivity series is sparse, but limited in amplitude, we choose
g1 as the indicator function of the convex hypercube [xmin, xmax]N . Similarly, as the
seismic wavelet possesses finite energy, g2 is equal to the indicator function of the set
C = {h ∈ [hmin, hmax]S | khk ≤ δ}, where δ > 0, and hmin (resp. hmax) is the minimum
(resp. maximum) value of h.

6.5.2 Numerical results

Figure ?? - p. ?? presents the variations of the reconstruction time, in seconds, with
respect to the number of inner-loops Jk ≡ J , with Ik ≡ 1 and noise level σ = 0.03. The
reconstruction time corresponds to the stopping criterion kxk − xk−1k ≤

√
N × 10−6.

One can observe that the best compromise in terms of convergence speed is obtained
for an intermediate number of inner-loops, namely J = 71. Note that the quality of the
reconstruction is stable for each choice of J .
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Figure 6.6: Reconstruction time for different numbers of inner-loops Jk ≡ J (average
over thirty noise realizations).

We gather comparisons of the SOOT algorithm ?? with Overall1 algorithm ?? in
Table ??, where the same initialization strategy has been used for both algorithms: x0

is a constant-valued signal such that x0 ∈ [xmin, xmax]N , and h0 is a centered Gaussian
filter, such that h0 ∈ C. Results presented in this table, for each noise level σ, are
averaged over two hundred noise realizations. The regularization parameters of Overall1

algorithm ?? and (λ,α,β, η) ∈]0,+∞[4 of (??) are adjusted so as to minimize the ℓ1
norm between the original and the reconstructed signals. We also set, for every k ∈ N,
Jk = 71 and Ik = 1. If both methods yield tremendous improvements in ℓ2 and ℓ1
norms, the SOOT algorithm ?? exhibits better results, for all noise levels, for both x
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and h estimates, especially in terms of ℓ1 norm. Interestingly, the SOOT algorithm ??
is also significantly faster in this application.

Noise level (σ) 0.01 0.02 0.03

Observation error
ℓ2 (×10−2) 7.14 7.35 7.68
ℓ1 (×10−2) 2.85 3.44 4.09

Signal error
Overall1 algorithm ??

ℓ2 (×10−2) 1.23 1.66 1.84
ℓ1 (×10−3) 3.79 4.69 5.30

SOOT algorithm ??
ℓ2 (×10−2) 1.09 1.63 1.83
ℓ1 (×10−3) 3.42 4.30 4.85

Kernel error
Overall1 algorithm ??

ℓ2 (×10−2) 1.88 2.51 3.21
ℓ1 (×10−2) 1.44 1.96 2.53

SOOT algorithm ??
ℓ2 (×10−2) 1.62 2.26 2.93
ℓ1 (×10−2) 1.22 1.77 2.31

Time (s.)
Overall1 algorithm ?? 106 61 56
SOOT algorithm ?? 56 22 18

Table 6.1: Comparison between Overall1 algorithm ?? and SOOT algorithm ?? for x
and h estimates (Intel(R) Xeon(R) CPU E5-2609 v2@2.5GHz using Matlab 8).

Table ?? presents the variances associated with the averaged results of Table ??. It
can be noticed that the variance on the error values are of similar order of magnitude
for both algorithms (typically around 10% of the error averages), which confirms the
statistical consistency of the presented results. While the variance of the signal errors
may be a little bit larger for the SOOT algorithm than for Overall1 algorithm ??, the
opposite behavior being observed for the kernel errors. SOOT algorithm appears to be
more stable than Overall1 algorithm ??, in terms of computational time.

The performance is further assessed by subjective results for σ = 0.03. The plots
of x and bx can be found below (Figure ?? - p. ??). One can observe that the recon-
structed signals for both algorithms are visually similar, with the exception of a few
under-estimated peaks for Overall1 algorithm ??. We found however that it is difficult
to see the differences between SOOT and Overall1 algorithm ?? results on this figure.
For this reason, Figure ?? - p. ?? shows the residual error of the sparse signal estimation
x− bx, for a given noise realization, where bx is estimated with Overall1 algorithm ?? in
(a), and with SOOT algorithm ?? in (b). It appears, in this example, that the error
is smaller using SOOT algorithm ??. The estimated blur kernels look similar for both
methods, as displayed in Figure ?? - p. ??.

6.6 Evaluation in blind image deconvolution

Similar ideas can be reused in the context of blind image deconvolution. The main
difference resides in that natural images are not considered directly sparse. The ℓ1/ℓ2
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Noise level (σ) 0.01 0.02 0.03

Observation error
ℓ2 (×10−4) 3.52 7.02 10.42
ℓ1 (×10−4) 2.98 5.55 8.06

Signal error
Overall1 algorithm ??

ℓ2 (×10−3) 1.35 2.35 2.09
ℓ1 (×10−4) 2.17 3.36 3.49

SOOT algorithm ??
ℓ2 (×10−3) 2.92 3.44 2.74
ℓ1 (×10−4) 3.88 4.81 4.07

Kernel error
Overall1 algorithm ??

ℓ2 (×10−3) 2.65 6.24 6.36
ℓ1 (×10−3) 1.99 3.96 4.35

SOOT algorithm ??
ℓ2 (×10−3) 2.94 2.75 3.43
ℓ1 (×10−3) 2.04 2.25 2.86

Time (s.)
Overall1 algorithm ?? 54 45 46
SOOT algorithm ?? 11 4 6

Table 6.2: Variances on error values and computation times, for algorithms Overall1

algorithm ?? and SOOT algorithm ?? (Intel(R) Xeon(R) CPU E5-2609 v2@2.5GHz
using Matlab 8).
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Figure 6.7: Original signal x (continuous red), estimated bx with SOOT algo-
rithm ??(continuous black) and Overall1 algorithm ?? (dashed green).

function is thus not efficient for measuring sparsity in all their frequency bands. Working
on higher frequencies related to contours is more appropriate. At a given resolution, the
ℓ1/ℓ2 function or its surrogate is applied to the horizontal and vertical gradients. We
recast the approach in (Krishnan et al., 2011) in the following two main steps. The first
step solves the following optimization problem:

minimize
u∈R2N2

,h∈RS

κ

2
k eH(h, u) − vk2 + Ψ(u) + g(u, h) . (6.13)



122 Chapter 6. Sparse Blind Deconvolution with Smoothed ℓ1/ℓ2 Regularization

1 10 20 30 40
−0.5

0

0.5

1

Figure 6.8: Original blur h (continuous red), estimated bh with SOOT algorithm ??
(continuous black) and Overall1 algorithm ?? (dashed green).

100 200 300 400 500 600 700
−0.1

(b)       0

0.1

−0.1

(a)       0

0.1

Figure 6.9: Signal estimation error x−bx with estimates bx given by Overall1 algorithm ??
(a) and SOOT algorithm ?? (b).

Here, ∇x and ∇y denote the gradient operators in the horizontal and vertical directions,

respectively, v =

�
∇x

∇y

�
y. With u =

�
ux
uy

�
∈ R

2N2
, the operator eH : R

2N2 → R
2N2

:

u 7→
�
H(h, ux)
H(h, uy)

�
combines blur and gradient. The penalties are Ψ(u) = ϕ(ux) + ϕ(uy)

and g(u, h) = ι
[umin,umax]2N

2 (u) + ιD(h) with D =
n
h ∈ [0, +∞[S :

PS−1
s=0 hs = 1

o
and we

introduce f(u, h) = κ
2k eH(h, u) − vk2 + Ψ(u). Once the blur has been estimated, the

second step solves a non-blind image deconvolution problem. More precisely for these
two steps:

❶: As in (Fergus et al., 2006), a coarse-to-fine loop over a pyramid of image resolutions
achieves a multiscale estimation of the blur. We refer to (Krishnan et al., 2011,
Section 3.1.3 ) for additional details.
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❷: The non-blind deconvolution involves a criterion composed of a sum of a quadratic
function and a convex function composed with linear operators. It can be min-
imized properly with PPXA+ (Pesquet and Pustelnik, 2012) or primal-dual ap-
proaches such as the M+LFBF algorithm (Combettes and Pesquet, 2012).

Our 2D adaptation (hereafter denoted by SOOT2) plugs the SOOT algorithm in the
first step of the Overall algorithm (Algorithm ??). The latter is rewritten in a more
compact form, as detailed in Algorithm ??.

Remark 6.6.1 For every (u, h) ∈ R
2N2 × R

S and γ ∈ ]0,+∞[ , let A1(u, h) be the
majorant matrix of f(·, h) at u. Then,

prox(γ)−1A1(u,h),ι
[umin,umax]2N

2
= Π

[umin,umax]2N
2 .

Similarly, the majorant matrix of f(u, ·) at h, A2(u, h) is a diagonal matrix whose di-
agonal elements all equal the same scalar value (the Lipschitz constant for ∇2f(u, ·)).
Then,

prox(γ)−1A2(u,h),ιD = ΠD,

which can be easily computed.

We compare our results to (Krishnan et al., 2011) in Figure ?? - p. ?? and Figure ?? -
p. ??. We observe that we better estimate the blur than the Overall algorithm. Moreover,
the Overall algorithm took over 7 minutes for the example shown in Figure ?? - p. ??
and over 2 minutes for the example shown in Figure ?? - p. ??. SOOT2 only takes
45 seconds and 7 seconds, respectively, on the same CPU. The deblurred images are
visually similar for both algorithms. We gain 1.83 dB in terms of SNR for the first test
(Figure ?? - p. ??) and 0.86 dB for the second test (Figure ?? - p. ??). A thorough
comparative assessment of SOOT2 and the algorithm from (Krishnan et al., 2011) for
blind image deconvolution however deserves additional evaluations on speed, objective
and subjective quality results.

6.7 Conclusion

The proposed SOOT algorithm ?? and its 2D adaptation SOOT2 in algorithm ?? for
minimizing a modified ℓ1/ℓ2 penalized criterion have been demonstrated to be quite ef-
fective in blind deconvolution applications on seismic reflectivity data and on images,
respectively. In addition, SOOT offers theoretically guaranteed convergence. The per-
formance of the proposed method is demonstrated through a comparison with a recent
alternating optimization strategy dealing with the exact ℓ1/ℓ2 term, on both blind sparse
signal and image deconvolution. The application of the method using a non-quadratic
data fidelity term, in association with more sophisticated preconditioning matrices, is
finally of main interest.
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Algorithm 8 Overall algorithm (Krishnan et al., 2011).

For every k ∈ N, let J ∈ N
∗, let (κ, τ) ∈ ]0,+∞[2, and δ = 10−3. Initialize with

u0x ∈ domϕ0 ◦ ∇x, u0y ∈ domϕ0 ◦ ∇y and h0 ∈ dom g2.
Explanations for the steps ❶ and ❷ can be found in the text.
1. Blind estimation of blur
❶ Loop over coarse-to-fine levels
Alternate:
For k = 0, 1, . . . ,K

uk,0x = ukx, u
k,0
y = uky , h

k,0 = hk,

d = κ
2

�
kH(hk, uk,0x ) − vxk22 + kH(hk, uk,0y ) − vyk22

�
+ ϕ0(u

k,0
x ) + ϕ0(u

k,0
y ),

Update sharp high-frequency image
While (δ > 10−4)

c = d,
For j = 0, . . . , J − 1

βx = κkuk,j,0x k2 and βy = κkuk,j,0y k2
uk,j,0x = uk,jx and uk,j,0y = uk,jy

For ℓ = 0, . . . , L− 1

euk,j,ℓx = uk,j,ℓx − δH∗(hk, uk,j,ℓx )
�
H(hk, uk,j,ℓx ) − vx

�

uk,j+1,ℓ
x = proxδβxk·k1

�
euk,j,ℓx

�

euk,j,ℓy = uk,j,ℓy − δH∗(hk, uk,j,ℓy )
�
H(hk, uk,j,ℓy ) − vy

�

uk,j+1,ℓ
y = proxδβyk·k1

�
euk,j,ℓy

�

uk,j+1
x = uk,j,Lx and uk,j+1

y = uk,j,Ly

d = κ
2

�
kH(hk, uk,j+1

x ) − vxk22 + kH(hk, uk,j+1
y ) − vyk22

�
+ ϕ0(u

k,j+1
x ) + ϕ0(u

k,j+1
y )

If (d > 3c)�
uk,0x = ukx and uk,0y = uky
δ = δ

2
Else�

exit loop

uk+1
x = uk,Jx and uk+1

y = uk,Jy

Update blurring matrix (Krishnan et al., 2011)
hk+1 = minimize

h∈D
κ
2


kH(h, uk+1

x ) − vxk22 + kH(h, uk+1
y ) − vyk22

�
+ khk1

bh = hK

2. Non-blind image deconvolution

❷ bx = minimize
x∈RN

κ
2kH(bh, x) − yk22 + τ






�
∇x

∇y

�
x






1
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Figure 6.10: Top-left: Input blurry image; top-right: original blur; middle-left: de-
blurred with Overall algorithm ?? (SNR = 20.97 dB) middle-right: deblurred with SOOT2

algorithm ?? (SNR = 22.80 dB); bottom-left: estimated blur with Overall algorithm ??
and bottom-right: estimated blur with SOOT2 algorithm ??.
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Figure 6.11: Top-left: Input blurry image; top-right: original blur; middle-left: de-
blurred with Overall algorithm ?? (SNR = 15.20 dB); middle-right: deblurred with
SOOT2 algorithm ?? (SNR = 16.06 dB); bottom-left: estimated blur with Overall al-
gorithm ?? and bottom-right: estimated blur with SOOT2 algorithm ??.
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Algorithm 9 SOOT2 (2D SOOT adapted algorithm).

For every k ∈ N, let Jk ∈ N
∗, Ik ∈ N

∗, let (κ, τ) ∈ ]0,+∞[2 and let (γk,j1 )0≤j≤Jk−1 and

(γk,i2 )0≤i≤Ik−1 be positive sequences. Initialize with u0 ∈ [umin, umax]2N
2

and h0 ∈ D.
Explanations for the steps ❶ and ❷ can be found in the text.
1. Blind estimation of blur
❶ Loop over coarse-to-fine levels
Alternate:
δ0 = 1, k = 0,

While
�
δk >

√
S × 10−6

�


uk,0 = uk, hk,0 = hk,
Update sharp high-frequency image
For j = 0, . . . , Jk − 1$
euk,j = uk,j − γk,j1 A1(u

k,j , hk)−1∇1f(uk,j , hk),
uk,j+1 = Π

[umin,umax]2N
2


euk,j
�
,

uk+1 = uk,Jk

Update blurring matrix
For i = 0, . . . , Ik − 1$ ehk,i = hk,i − γk,i2 A2(u

k+1, hk,i)−1∇2f(uk+1, hk,i)

hk,i+1 = ΠD

�
ehk,i
�
,

hk+1 = hk,Ik ,
δk+1 = khk+1 − hkk,
k = k + 1.

bh = hk

2. Non-blind image deconvolution

❷ bx = minimize
x∈RN

κ
2kH(bh, x) − yk22 + τ






�
∇x

∇y

�
x






1
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- Chapter 7 -

Contributions and perspectives

This thesis focused mainly on two problems. In the first part, we investigated the problem
of multiple removal in seismic data within the framework of convex optimization. In
the second part, we provided a novel penalty based on the ℓ1/ℓ2 function leading to a
nonconvex optimization problem and applied it to blind deconvolution of seismic data
and images. Both can be seen as facets of source separation, more or less informed.

7.1 Contributions

Multiple removal: A geophysical industry standard consists of model-based multiple
filtering. One or several realistic templates of a potential multiple are determined
off-line, based on primary reflections identified in above layers. These templates are
partly inaccurate — in delay, amplitude and frequency — and should be adapted
in a time-varying fashion before being subtracted from the recorded data. We
proposed a methodology for primary/multiple adaptive separation based on these
approximate templates. This framework presented for the first time a relatively
generic framework for multiple reflection filtering with:

A noise prior: By taking into account additional random noise into the generic
model, we argue that our proposed method also effectively gets rid of more
incoherent noise.

Sparsity constraints on signal frame coefficients: The proposed approach e-
valuated on seismic data using different orthogonal wavelet bases and tight
frames, and various sparsity for wavelet coefficients. Especially, the priors
anisotropic structure of 2D seismic data was taken into account by using the
hybrid dual-tree M -band wavelets with different wavelets along space and
time. The experiments on 2D seismic data showed that the choice of the
transformation plays an important role.

129
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Slow variation modeling of the adaptive filters: In the literature, no work
in multiple removal has endeavored a more systematic study of the smooth
variation of the adaptive filters. In this thesis, we proposed a formulation
allowing a family of penalties to be applied to the adaptive FIR filters. More
precisely, we expected the adapted filters to exhibit bounded variations from
one time index to the next one.

Concentration metrics on the filters: The a priori information on the filter
coefficients h can also be exploited. Since the energy of these coefficients is
limited, the simple norms such as ℓ1 or ℓ2-norms or more sophisticated one
such as a mixed ℓ1,2 or nuclear norms are used.

We proposed a generic methodology to impose sparsity and regularity properties
through constrained adaptive filtering in a transformed domain. This method ex-
ploits side information from approximate disturbance templates. The employed
proximal framework permits different strategies for sparse modeling, additive
noise removal, and adaptive filter design under appropriate regularity and ampli-
tude coefficient concentration constraints. The standard sparsity-prone ℓ1-norm is
usefully complemented by alternative concentration measures, such as ℓ2 or ℓ1,2-
norms, which seem better suited to adaptive filter design. The Bayesian frame-
work provided in this work could also serve to develop other statistical approaches
for multiple removal, e.g. by using Markov Chain Monte-Carlo methods. The de-
signed primal-dual algorithm (M+LFBF) solved a constrained minimization
problem that alleviated standard regularization issues in finding hyperparameters.
The approach demonstrated significantly good performance in low signal-to-noise
ratio conditions, both for simulated and real field seismic data.

Blind deconvolution: In the context of blind deconvolution, a relatively common as-
sumption is that the signal of interest has a sparse representation. According to
(Donoho et al., 1995), an ideal measure of sparsity is the ℓ0 measure. However,
due to the nonconvexity of the ℓ0 pseudo-norm, different alternative measures of
sparsity have been proposed. Among them the ℓ1 measure is the most popular,
because it is convex. In this thesis we proposed a new penalty based on a smooth
approximation to the ℓ1/ℓ2 function. This work was the result of a collaboration
with Audrey Repetti and Emilie Chouzenoux. We developed a proximal-based
algorithm to solve variational problems involving this function named SOOT al-
gorithm. This algorithm is based on a new BC-VMFB algorithm for minimizing
the sum of:

• a nonconvex smooth function,

• a nonconvex non necessarily smooth function.

We derived theoretical convergence results both on iterates and function values.
The blocks are updated according to a flexible quasi-cyclic rule. The acceleration
of the convergence is obtained thanks to the choice of matrices (Aj,ℓ(xℓ))ℓ∈N based
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on the MM principle. The performance of the proposed method is demonstrated
through a comparison with a recent alternating optimization strategy dealing with
the exact ℓ1/ℓ2 term, on the applications, both on seismic data and image blind
deconvolution.

7.2 Perspectives

Hyperplane constraints: Concerning the multiple removal problem, most published
solutions, tailored to specific levels of prior knowledge, are very dependent on seis-
mic data-sets. They generally rely on adapted transforms (Radon, Fourier trans-
forms) and some form of least-squares adaptive filtering. Among the vast literature,
we refer to (Ventosa et al., 2012; Song et al., 2013) for a recent account on adap-
tive subtraction of multiples, including shortcomings of standard ℓ2-based methods.
With weak primary/multiple decorrelation, poor data stationarity or higher noise
levels, traditional methods fail. Due to the parsimonious layering (Walden and
Hosken, 1986) of the subsurface, sparsity promotion suggests the use of sparsi-
fying transforms (e.g. wavelet/curvelet frames (Herrmann and Verschuur, 2004;
Neelamani et al., 2010)), potentially combined with robust norms (approximate
ℓ1 in (Guitton and Verschuur, 2004)), quasi-norms or source separation methods
(Donno, 2011; Duarte et al., 2012). To date, their genericity may be limited by
the number of possible penalties to constrain feasible solutions, and the crucial
issue of hyperparameter determination in such methods. In the context of this
thesis, we incorporated plausible knowledge via additional metrics. Prior multi-
ple templates are supplemented with Gaussian noise assumptions, wavelet-domain
sparsity, smooth variations and energy concentration criteria. Joint estimation of
primaries and adaptive filters is performed with a proximal algorithm. To alleviate
the hyperparameter estimation issue, we reformulated the previous approach as a
constrained minimization problem. This allows us to more easily determine data-
based parameters. The various constraint efficiency in wavelet frame subbands for
the primary signal may be exploited. Convex sets defined as appropriate hyper-
planes can outperform standard ℓ1-ball constraints. The minimization problem
(4.4) can be reexpressed as:

minimize
y∈RNt ,h∈RNtP

f (y,h) + ιS (y + Rh− z) + ιC1∩C2(h) + ιD(Fy) (7.1)

where f : RNt ×R
NtP → ]−∞,+∞] : (u, v) 7→ αρ(v) + (1− α)φ(u), with α ∈ [0, 1],

φ : RNt → ]−∞,+∞] and ρ : RNtP → ]−∞,+∞] are two convex functions.
S =

�
w ∈ R

Nt | kwk2 ≤ Ntσ
2
	

and σ2 is the variance of Gaussian noise b. C1

and C2 are defined in (4.6) and (4.7). As defined in 4.3.3.3 the convex set D can
be splitted as D1 × · · · ×DL. However, another kind of convex sets (Dl)l∈{1,...,L}
possibly more original consists of defining hyperplanes: for every l ∈ {1, . . . ,L},
Dl = {(xk)k∈Kl

|Pk∈Kl
ϕl((FLz)k)xk = βl}, where L ∈ R

Nt×Nt is an appropriate
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Figure 7.1: Left: Observed signal z (black; σ = 0.01), original ȳ (blue); Right: Esti-
mated signal ŷ (magenta), original signal ȳ (blue). D is the intersection of two hyper-
planes defined from the identity and the sign functions.

linear operator and ϕl : R → R. The simplest choice for L is to take the identity
operator L = I. An alternative choice, which is reminiscent of Wiener filtering, is

L = λ1 Diag
�

(1 + λ1 + λ2kR(0)k2)−1 , . . . , (1 + λ1 + λ2kR(Nt−1)k2)−1
�

(7.2)

where (λ1,λ2) ∈ ]0,+∞[2 and for every nt ∈ {0, . . . , Nt − 1}, R(nt) denotes the
nt-th row of matrix R.
Now let us show some preliminary simulation tests on synthetic seismic data. Note
that we use the same synthetic data as the one in Chapter 4. ϕ is chosen to be
the ℓ1-norm, and ρ is the squared ℓ2-norm. D is defined by choosing F to be a
(non tight) undecimated wavelet frame with Daubechies wavelets of length 8 and 4
resolution levels. We have considered the two possibilities for D where, in the first
case (inequality constraint), ϕl ≡ ϕ where ϕ is either the ℓ1, ℓ2 or the ℓ∞-norm.
In the second case, ϕl ≡ ϕ where ϕ is either the identity or the sign function;
furthermore, L is chosen according to (7.2) where λ1 = 0.02 and λ2 = 0.001. In
this last case, both affine constraints have also been considered jointly (intersection
of the two constraint sets).

Restoration results, using M+LFBF algorithm for the primary signal in the case
when σ = 0.01, are displayed in Figure 7.1-right - p. 132. These results were
published in (Pham et al., 2014a). From these the figures, one can note that
the stochastic part is accurately removed, even if some residual noise remain for
instance when the signal is of small amplitude. Table 7.1 - p. 133 shows the signal-
to-noise ratios obtained for the estimation of y and s. Simulations have been run for
different convex sets D and for two noise levels (with standard-deviation σ = 0.01
and σ = 0.04). The notation ϕ = 0 has been used in the case when no constraint
is applied to Fy. This allows us to evaluate the gain (up to 1.4 dB) brought by
the introduction of prior information on Fy through a constrained formulation.

These results allow us to integrate a large panel of hard constraints corresponding
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σ 0.01 0.04

ϕ α SNRy SNRs α SNRy SNRs

0 0.4 23.98 15.79 0.9 15.03 9.60

ℓ1 0.4 25.98 16.16 0.9 18.19 6.61

ℓ2 0.6 25.59 16.02 0.8 17.84 9.20

ℓ∞ 0.6 24.48 15.81 0.8 16.24 8.69

I 0.4 26.19 15.81 0.2 19.74 8.84

sign 0.3 24.43 14.73 0.1 14.75 4.58

I +sign 0.3 26.40 15.56 0.1 18.43 5.94

Table 7.1: SNR for the estimations of y and s (SNRy and SNRs, resp.) in dB consid-
ering different convex constraint sets D and two noise levels. Upper table part: “classical
constraints” defined as in 4.3.3.3 and lower table part: hyperplane constraints.

to a priori knowledge on the data to be estimated (i.e. primary signal and time-
varying filters). A key observation is that some of the related constraint sets can be
expressed through hyperplanes, which are not only more convenient to design, but
also easier to implement through straightforward projections. We now study the
class of hyperplane constraints of interest as well as their inner parameters. In this
context, the variance of Gaussian noise b is known. Further study would start from
the experimental setting presented here. The first goal would be to estimate the
variance of Gaussian noise from the observed signal. A possibility could be
to use the method proposed in (Roberts et al., 1998). The second goal would be to
construct the wavelet constraints using a mix of statistical and convex-
analytical tools. This can be further improved by applying interpolation methods
(Combettes and Pesquet, 2004; Chaux et al., 2008; Pesquet et al., 2009). The third
goal could be to extend the proposed method to two dimensional data and
then compare with other algorithms as (Chambolle and Pock, 2011; Vũ, 2013;
Condat, 2013; Combettes and Pesquet, 2011).

Echo cancellation An echo is the repetition of a waveform due to reflection from
points where the characteristics of the medium, through which the wave propa-
gates, change. Echo cancellation is an important feature of communication systems.
Figure 7.2 - p. 134 shows a concept of acoustic echo, while Figure 7.3 - p. 134 is
a simple example of signal (sound) with/without echo. Assuming that the signal
on the line from the speaker B to the speaker A at time nt ∈ ]0,+∞[, denoted by
yB(nt) is composed of the speech of speaker B, xB(nt), plus the echo of speaker A,
xechoA (nt), we have


∀nt ∈ R

∗
+

�
yB(nt) = xB(nt) + xechoA (nt).

When speaker A is talking, and speaker B is listening and silent, and only echo is
present from line B to A, we have

yB(nt) = xechoA (nt).
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Figure 7.2: Concept of acoustic echo.
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Figure 7.3: From top to bottom: signal with echo and signal without echo.



7.2. Perspectives 135

In (Vaseghi, 2006, Chapter 15), the authors supposed that the echo synthesizer is
a FIR filter. The filter output estimate of the echo signal can be expressed as

bxechoA (nt) =
P−1X

p=0

hnt(p)xA(nt − p)

where, hnt(p) are the time-varying coefficients of an adaptive FIR filter, bxechoA (nt)
is an estimate of the echo of speaker A on the line from speaker B to speaker A,
and xA(nt) is the speech of speaker A. Then, they find the filter coefficients which
are adapted to minimize the energy of an error signal defined as

minimize
hnt

kxB(nt) + xechoA (nt) −
P−1X

p=0

hnt(p)xA(nt − p)k2.

According to these assumptions, we consider a problem

yB(nt) = xB(nt) + xechoA (nt) + b(nt)

where b(nt) is an additional noise. Assuming that the echo of speaker A xechoA (nt)
is related to his speech xA(nt) through an FIR filter

xechoA (nt) =
P−1X

p=0

hnt(p)xA(nt − p)

where hnt(p) is an unknown impulse response. A main difference with our approach
is however that echo cancellation in acoustic applications must be performed in
real-time based on adaptive filtering techniques. Then this problem appears to be
related to multiple removal with a strong emphasis on online estimation (Mossi
et al., 2011; Joo, 2014; Moller and Heusdens, 2013; Lin and Lee, 2005).

Image blind deconvolution It is well known that, in seismic blind deconvolution, the
reflectivities themselves are considered very sparse. Thus, the smooth approxima-
tion ℓ1/ℓ2 can be directly used on the signal as a sparseness measure. However, in
the context of image restoration, the image often has a sparse representation with
respect to preassigned operator. For instance, our proposed method for image blind
deconvolution assumes that the image admits a sparse gradient prior and then, the
blind kernel estimation step is performed on the high frequencies of the image. In
future work we will extend the proposed method to a more sophisticated linear
operator (e.g. a basis or frame...) for which, the sparsity is not directly linked to
the image (pixels) but to a representation of it (coefficients). The question raised

is, how to find the quadratic majorant of ϕ(Lx), where ϕ(·) = λ log
�
ℓ1,α(·)+β
ℓ2,η(·)

�
and

L is a linear operator from R
N to R

M? The following simple proposition shows
the relationship between the quadratic majorants of ϕ and ϕ ◦ L.
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Proposition 7.2.1 Let ζ : R
M → R be a differentiable function. Let z ∈ R

M .
For every z′ ∈ R

M we have a SPD matrix U(z) ∈ R
M×M such that

q(z′, z) = ζ(z) + (z′ − z)⊤∇ζ(z) +
1

2
kz′ − zk2U(z),

q(z′, z) is a quadratic majorant of the function ζ. Then,

eq(z′, z) = eζ(z) + (z′ − z)⊤∇eζ(z) +
1

2
kz′ − zk2�U(z)

,

where eU(z) = L⊤U(z)L is a quadratic majorant of the function eζ = ζ ◦ L.

Sparseness measure ℓp/ℓq (p ≤ 1 < q) One can find in the literature various sparsity
measures. In (Hurley and Rickard, 2009) several commonly-used sparsity measures
are compared based on six intuitive attributes (Robin Hood, Scaling, Rising Tide,
Cloning, Bill Gates, and Babies). This paper shows that the pq−mean measure
(or ℓp/ℓq, with p ≤ 1 < q) satisfies all six criteria. The ℓ1/ℓ2 function is one
of pq−mean cases. In future work we want to extend our SOOT algorithm to a
general pq−mean measure.

ϕ(x) = λ log

�
ℓp,α(x)

ℓq,η(x)

�
(7.3)

where, p < q, (λ,α, η) ∈ ]0,+∞[3, α ≤ η and ℓp,α(x), ℓq,η(x) are defined as follows:

ℓp,α(x) =

 
NX

n=1

(x2n + α2)p/2

!1/p

(7.4)

and

ℓq,η(x) =

 
NX

n=1

(x2n + η2)q/2

!1/q

(7.5)

Let (p, q) ∈ ]0,+∞[2 such that, 1 ≤ p < q, one can prove that, for every 0 < α ≤ η

ℓp,α(x) ≤ ϑ ℓq,η(x) (7.6)

where ϑ = N1/p−1/q.

Image shadow removal In image processing, image shadow removal is an important
topic. Shadows are generated by a local and relative absence of light and they are
caused by a local decrease in the amount of light that reaches a surface or by a local
change in the amount of light rejected by a surface toward the observer. Insights
into this problem may apply to other vision problems as well (such as segmentation,
enhancement,...) (Finlayson et al., 2006). According to (Tappen et al., 2005) an
observed image y ∈ R

N×M is a product of two images: one illumination image
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Figure 7.4: From left to right: observed image y, reflectance image r and illumination
image x.

and one reflectance image. Thus, for every (i, j) ∈ {1, · · · , N} × {1, · · · ,M}, let
y(i, j) be the observed image, r(i, j) be the reflectance image and x(i, j) be the
illumination image, these three images are related by the following equation

y(i, j) = r(i, j)x(i, j). (7.7)

Note that, when x(i, j) = 1 then y(i, j) = r(i, j). Figure 7.4 - p. 137 (Weiss, 2001)
illustrates the decomposition of an observed image into a product of reflectance
image and illumination image. One can suppose that the values of these images
are positive, thus this equation can be rewritten in the log domain as follows

Y = R + X (7.8)

where, Y (i, j) = log(y(i, i)), X(i, j) = log(x(i, i)) and R(i, j) = log(r(i, i)). Nor-
mally, the shadows appear in the illumination image, assuming that X = X + S
where S is the shadow of X and related to X by a FIR filter h i.e. S = h ∗X. We
now have the problem

Y = R + HX (7.9)

where, H : R
N → R

N : X 7→ X + h ∗ X. The FIR filter h can be related to
the direction of light-source, position of camera, etc. If h is known, then we have
a problem related to multiple removal, otherwise, the problem can be seen as a
mixture of multiple removal and “blind” deconvolution. Figure 7.5 - p. 138 shows a
simple example on the “multiple” removal image, where Barbara image is degraded
by the head of Lena. We adapt our code for multiple removal problem in seismic
data to recover Barbara image. Note that, the model of Lena’s head is supposed
to be known.
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Figure 7.5: From top to bottom: Observed image z (with Lena’s head inclusion), orig-
inal image y and estimated image ŷ with the M+LFBF algorithm 5 (on the left are the
full versions and on the right are their zoomed versions).
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Auxiliary proofs

A.1 Proof of Proposition ??

The proof of this result is equivalent to prove that the following expression is positive:
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A.2 Proof of Proposition ??

To simplify some expressions, let us denote
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Then, the Hessian of eϕ(x) can be compactly written as follows
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which leads to the conclusion. �

A.3 Proof of Proposition ??

Firstly let us calculate the gradient and Hessian of ℓ2,η(x)2,

∇ℓ2,η(x)2 = 2x (A.11)
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We now compute the gradient and Hessian of ϕ(x)
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Thus, using the triangle inequality, we can deduce that
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We need to find an upper bound for (A.16). First observe that, for every 1 ≤ n ≤ N ,
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Finally, from (A.17), (A.18), and (A.19), we also have
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which yields the conclusion. �
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