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Les photons apparaissent comme des vecteurs d'information ables, car peu sensibles à leur environnement. Mais ils interagissent si faiblement entre eux que la réalisation directe de portes logiques optiques à deux qubits photoniques est impossible. On peut toutefois engendrer indirectement des interactions photon-photon substantielles, via la propagation dans un milieu optiquement non-linéaire. L'utilisation du phénomène de transparence électromagnétiquement induite permet, en particulier, d'induire une forte non-linéarité résonante, sur l'une des transitions d'un système à trois niveaux -néanmoins pas encore détectable dans le domaine quantique. Pour augmenter les eets non-linéaires obtenus il a été récemment proposé de combiner cette approche au blocage d'excitation induit par les fortes interactions dipôle-dipôle entre atomes de Rydberg. On accroît encore les eets non-linéaires sur la lumière transmise en plaçant le milieu en cavité. L'étude théorique et expérimentale de ce dispositif a été menée dans le régime dispersif et pour une non-linéarité faible, dans le cas d'un faible champ sonde incident classique. Dans ce mémoire, nous nous intéressons aux eets optiques non-linéaires induits par un milieu Rydberg sur un champ quantique. Dans le chapitre 1, nous présentons les équations dynamiques générales de notre système et rappelons les principales propriétés de la fonction de corrélation d'intensité que nous utiliserons pour caractériser les eets du milieu atomique sur la statistique quantique du champ incident. Dans le chapitre 2, nous considérons notre système dans le régime dispersif, i.e. lorsque l'état atomique intermédiaire est excité hors résonance et peut être éliminé adiabatiquement. Dans l'approximation des bulles Rydberg nous réduisons eectivement le milieu à un ensemble de superatomes à deux niveaux, couplés au mode de la cavité selon le modèle de Tavis-Cummings forcé. Nous calculons analytiquement et numériquement la fonction de corrélation d'intensité pour la lumière transmise, qui, selon les paramètres de la cavité, peut être groupée ou dégroupée. Dans le chapitre 3, nous présentons un traitement perturbatif du système, restreint à l'ordre le plus bas non nul en le champ sonde incident, valable, notamment, dans le régime résonant. Nous dérivons la fonction de corrélation d'intensité pour la lumière transmise et rééchie, grâce à la factorisation des moyennes de produits d'opérateurs. Dans le régime résonant, nous identions des conditions d'adaptation d'impédance de la cavité diérentes selon les composantes du champ, qui suggèrent l'utilisation du dispositif en tant que ltre. Nous proposons enn un modèle eectif non-linéaire à trois bosons pour le système couplé atomes-cavité. Dans le chapitre 4, nous dépassons l'ordre le plus bas de la théorie de perturbation, en utilisant le formalisme de Schwinger-Keldysh. Par cette méthode, nous retrouvons les résultats du chapitre 3, sous une forme analytique, que nous étendons à l'ordre supérieur. Nous dérivons notamment des expressions analytiques pour les composantes élastique et inélastique du spectre de la lumière transmise par la cavité. Nous identions ainsi une structure de résonance polaritonique, jusque-là inconnue, que nous interprétons physiquement. Dans le dernier chapitre, nous décrivons un protocole de porte logique photonique de haute délité, fondé sur le blocage Rydberg dans un ensemble atomique placé dans une cavité optique. Ce protocole peut être réalisé avec des cavités de nesse modérée et permet, en principe, un traitement ecace de l'information quantique codée dans des qubits photoniques. L'appendice A présente une application de nos méthodes aux résultats expérimentaux obtenus au laboratoire. Les appendices B-G reprennent diérents points techniques du

Introduction

Photons appear as reliable information carriers since they interact very weakly with their environment. For the same reason, they hardly interact with each other which forbids the direct implementation of optical two-qubit gates. Such an interaction can actually be eectively emulated via the propagation through atomic nonlinear media.

In this chapter, we rst review conventional nonlinear media and show that they fail to induce eects beyond the classical regime. Then we present Rydberg atoms, their physical properties and uses on quantum information purposes, and show that the strong dipole-dipole interactions between Rydberg atoms are expected to allow for optical nonlinearities strong enough to be noticeable at the single-photon level. Finally, we sketch the outline of the present dissertation.

Nonlinear optics

When propagating through an atomic medium, light interacts with the (valence) electrons, polarizes each atom which acquires a dipole d . The average dipole moment per unit volume is P = n at d , where n at is the atomic density [START_REF] Boyd | Nonlinear optics[END_REF].

In an atomic medium, the polarization can be related to the electric eld via:

P = 0 χE (1)
where χ is the susceptibility of the medium 1 . Induced dipoles are not necessarily proportional to the electric eld they are induced by, and the susceptibility χ can be expanded in powers of E [START_REF] Boyd | Nonlinear optics[END_REF]: χ = χ (1) + χ (2) E + χ (3) E 2 + . . . (2) In materials which have the spatial inversion symmetry, the χ (2) term in Eq. ( 2) vanishes [START_REF] Boyd | Nonlinear optics[END_REF], and therefore χ (3) characterizes the nonlinear response of the sample at the lowest order. In general, the susceptibility Eq. ( 2) is a complex number.

Its real and imaginary parts stand for the phase shift and absorption of the total eld, respectively. In particular, the nonlinear shift accumulated by a monochromatic eld 1 Assuming an isotropic medium with local response.

Figure 1: Schematic showing advances in the optical Kerr nonlinear coecient, χ (3) .

Conventional optical materials have resonances in the ultra-violet leading to a small non-linearity in the visible and infra-red. Enormous enhancements of the non-linearity are possible by using resonant media but at the expense of loss. The loss can be reduced using the technique of electromagnetically induced transparency (EIT). The giant EIT non-linearity can be further enhanced using a Rydberg medium with strong dipoledipole interaction. With Rydberg EIT it is possible to exceed the threshold for single photon non-linearities (dashed line) where a quantum description is required.

Picture is taken from [START_REF] Pritchard | Nonlinear optics using cold rydberg atoms[END_REF].

along the propagation in a medium of length L is given by φ nl = Re χ (3) ω 2c E 2 L Pushing the formula above beyond its applicability limit, i.e. out of the classical regime, we can roughly estimate the order of magnitude of the χ (3) coecient for φ nl to be noticeable in the quantum regime by requiring φ nl ≈ π for a single-photon input (E ≈ E 1ph ). Denoting the bandwidth of the tightly-focused photon wavepacket by ∆ω, and assuming that the transverse waist w 0 and propagation length L are related via L = πw 2 0 λ , we get:

φ nl ≈ Re χ (3) k 2 χ (3) ω 0 V L ≈ π 2 λ
Re χ (3) ω∆ω 0 πλ 2 c2π λ ≈ Re χ (3) π ω 3 ∆ω 0 (2π) 3 c 3

Setting φ nl ≈ π and assuming ∆ω ≈ 2π × 10 6 rad• s -1 and ω = 2π × 10 15 rad• s -1 we get Re χ (3) ∝ 10 -3 × V -2 m 2 .

Conventional o-resonant materials provide values of χ (3) that are many orders of magnitude smaller. For example for air and for water they can be found to be 1.7 × 10 -25 V -2 m 2 and ∼ 2.5 × 10 -22 V -2 m 2 , respectively [START_REF] Pritchard | Nonlinear optics using cold rydberg atoms[END_REF]. When the incident beam becomes resonant with a transition of the medium, the nonlinearity increases by many orders of magnitude but at the cost of stronger losses. A compromise may be sought for between (desired) dispersion and (unwanted) absorption, which however fails in achieving strong enough nonlinear eects to be noticeable at the single-photon level.

The coupling to an additional level, in a so-called electromagnetically induced transparency (EIT) conguration, allows one to still benet from enhanced susceptibility while avoiding the spurious absorption mentioned above [START_REF] Harris | Nonlinear optical processes using electromagnetically induced transparency[END_REF][START_REF] Boller | Observation of electromagnetically induced transparency[END_REF]. In addition to the transparency window around the two-photon resonance, one observes the strong reduction of the group velocity of light [START_REF] Budker | Nonlinear magnetooptics and reduced group velocity of light in atomic vapor with slow ground state relaxation[END_REF][START_REF] Hau | Light speed reduction to 17 metres per second in an ultracold atomic gas[END_REF]. The reported non-linear susceptibility in such a medium is χ (3) ∼ 7 × 10 -8 × V -2 m 2 , still insucient to implement photonic interactions.

Much stronger nonlinearities can be achieved in high nesse cavity QED setups [START_REF] Haroche | Exploring the quantum[END_REF]) with a single trapped atom in the strong coupling conditions. The latter are met when the coupling strength g between the atom and the mode is much bigger than atomic (γ e ) and cavity (γ c ) decay rates, (i.e. g 2 2γ c γ e ).

In this case, the Rabi splitting of the multiply-excited states, predicted by the Jaynes-Cummings model, is much bigger than the linewidths of the corresponding multiphoton transitions, giving rise to the few-photon nonlinearities observed, for instance, in [START_REF] Birnbaum | Photon blockade in an optical cavity with one trapped atom[END_REF][START_REF] Schuster | Nonlinear spectroscopy of photons bound to one atom[END_REF].

Another approach to reach strong non-linear susceptibilities consists in the collective enhancement of the response of the sample. This can be performed via long-range dipole-dipole interactions between one of the atomic levels used in the scheme. One of the most promising approaches is to use high-lying atomic levels, known as Rydberg states [START_REF] Gallagher | Rydberg atoms[END_REF].

In the next sections, we present the main physical properties of Rydberg atoms as well as their main uses in quantum information protocols, before proceeding to the description of Rydberg-induced photon-photon interactions.

Rydberg atoms and their interactions

Rydberg atoms exhibit exaggerated properties which make them particularly appealing and useful for quantum information processing. Here, we make a brief summary of their relevant features.

The Rydberg states have relatively long radiative lifetimes that scale proportionally to the cube of the principal quantum number n 3 (for example Na(10d) the radiative lifetime is ≈ 1µs) [START_REF] Gallagher | Rydberg atoms[END_REF]. The corresponding reduction of the decoherence favors their use in various schemes of quantum information processing [START_REF] Saman | Quantum information with rydberg atoms[END_REF].

The orbital radius of a Rydberg atom, and therefore, its dipole moment scales as the square of the principal quantum number n 2 (example Na(10d) the dipole moment is ≈ 143ea 0 ). Moreover, the energy levels can be approximated by [START_REF] Gallagher | Rydberg atoms[END_REF]:

E nlj = Ry (n -δ lj (n)) 2
where l and j are the orbital and the total angular momenta, Ry is the Rydberg constant and the quantum defect δ lj (n) is a slowly varying function of principal quantum number. Small energy spacings (∼ MHz) and large dipole moments lead to enhanced dipoledipole interactions between Rydberg atoms [START_REF] Pritchard | Nonlinear optics using cold rydberg atoms[END_REF]. The Hamiltonian of the electrostatic interaction of two Rydberg atoms A and B whose relative position is R = R B -R A (assuming that R n 2 a 0 where a 0 is the Bohr radius) is given by Vdd =

e 2 R 3 ˆ a• ˆ b -3 ˆ a• R R• ˆ b
where ˆ a and ˆ b are the position vector operators of the outer electrons of the corresponding atoms with respect to their nuclei. This Hamiltonian mainly mixes a given doubly Rydberg-excited two-atom state with the closest Rydberg manifolds. The corresponding perturbed eigenstate and eigenenergy can be computed by direct diagonalization of the full Hamiltonian. In the so-called Van der Waals regime, which corresponds to a detuned regime of the dipole-dipole interaction, the resulting energy shift takes the form V (R) = -C 6 /R 6 , where the coecient C 6 scales as n 11 (Saman et al., 2010). In general C 6 has an angular dependence relative to the mutual arrangement of atoms [START_REF] Saman | Quantum information with rydberg atoms[END_REF].

The dipole-dipole induced shifts V (R) are so strong that they may compete with the Rabi frequency of an exciting laser and even forbid the transition towards a Rydberg state. This phenomenon theoretically predicted in (Lukin et al., 2001) and experimentally demonstrated in [START_REF] Vogt | Dipole blockade at förster resonances in high resolution laser excitation of rydberg states of cesium atoms[END_REF][START_REF] Urban | Observation of rydberg blockade between two atoms[END_REF], is called dipole or Rydberg blockade. Below, we review several examples of simple atomic congurations and protocols which, despite their simplicity, give an insight in the physics of the dipole blockade and reveal themselves very useful from the quantum information point of view.

Rydberg blockade: atomic quantum information processing and many-body physical features

We rst consider a system of two atoms, referred to as control and target, respectively, and separated by the distance R. The target atom (T) is assumed to be initially prepared in a ground state, while the control (C) may be in a ground or a Rydberg level. When (T) is submitted to a laser beam of Rabi frequency Ω resonantly coupled to a transition towards a Rydberg state, its dynamics depends on (C): if (C) is in a ground state, (C) and (T) do not interact signicantly, therefore (T) experiences unperturbed The case where the control atom is in |1 which is Rydberg excited leading to blockade B = V (R) of the target atom excitation. The picture is taken from [START_REF] Saman | Quantum information with rydberg atoms[END_REF].

Rabi oscillations between the ground and Rydberg levels; by contrast, if (C) is in a Rydberg state, it eectively shifts the Rydberg state of (T) out of resonance with the laser of the quantity V (R). Since the energy shift depends of R, the space can be eectively divided into two regions where V (R) Ω and V (R) Ω respectively. The boundary length R b between these regions is dened by V (R b ) ≈ Ω, or equivalently R b ≈ 6 C 6 Ω .

In the rst region where R R b (which is called blockade volume), (T) cannot be excited to the Rydberg state if (C) itself is excited, as the laser is strongly o-resonant with the transition to the Rydberg state. Applying a 2π pulse ( dsΩ (s) = 2π) on the target, one therefore imposes an overall π phase factor on the two-atom wavefunction conditionally to (C) not being initially excited. Elaborating on this conguration, one can implement a phase gate on two qubits encoded in a pair of ground states of (C) and (T), as rst proposed in [START_REF] Jaksch | Fast quantum gates for neutral atoms[END_REF] (see Fig. 2).

In the region R R b , the second atom can be excited to the Rydberg state but still experiences an energy shift which can be used to induce a phase on the system's wavefunction.

To be more explicit, in this conguration the gate operation can be performed through applying two subsequent π pulses to both atoms (therefore exciting them both to the Rydberg state) separated by the waiting time π V (R) which imprints the π phase on the wavefunction [START_REF] Jaksch | Fast quantum gates for neutral atoms[END_REF]. As similar idea was proposed in [START_REF] Protsenko | Operation of a quantum phase gate using neutral atoms in microscopic dipole traps[END_REF] where authors assumed that the excitation lasers are detuned from the Rydberg state are brought back on resonance only in the presence of the dipole-dipole interactions. In (Brion et al., 2007c), the authors propose a scheme of implementation of the atomic phase gate, which avoids populating the Rydberg state.

Instead of individually addressing the atoms, one may also try to excite them collectively from the ground state |gg with a resonant laser of Rabi frequency Ω (see Fig. 3). As above, if the atoms are located closer than R b , the doubly excited state |r, r is inaccessible by the laser (Fig. 3 (a)) The system therefore performs Rabi oscillations in the subspace within the subspace |g, g and 1 √ 2 {|g, r + |r, g } with the Rabi frequency enhanced by a √ 2 factor. This conguration can be used in order to create entanglement between atoms. In (Gaëtan et al., 2009) it was shown, for two Rb atoms located in traps separated by ∼ 3.5µm and simultaneously laser-excited on the transition towards the state 58d 3/2 , that the probability for both atoms to be in Rydberg state is strongly suppressed compared to the non-interacting conguration. In a subsequent experiment [START_REF] Wilk | Entanglement of two individual neutral atoms using rydberg blockade[END_REF] long-living entanglement was demonstrated by mapping the Rydberg state onto a dierent hyperne (ground) state. Using a similar conguration a cnot gate was demonstrated with two trapped Rb atoms separated by 10 µm [START_REF] Isenhower | Demonstration of a neutral atom controlled-not quantum gate[END_REF].

Due to the long-range character of dipole-dipole interactions, the blockade mechanism applies not only to few-atom systems but can be generalized to bigger ensembles.

An extension of the original proposal [START_REF] Jaksch | Fast quantum gates for neutral atoms[END_REF] to mesoscopic-ensemble qubits was proposed in (Lukin et al., 2001). Similarly to the two-atom conguration, the manyatom system state space, can be restricted to the collective ground |g 1 . . . g N and singly excited 1 √ N i |g 1 . . . r i . . . g N states, provided that multiply Rydberg-excited states are strongly out of resonance. It can therefore be used in an analogous way to implement the two-qubit gate. Authors also propose to transfer the collective spin degrees of freedom to the photons, hence creating nonclassical states of light. Another collective approach is presented in [START_REF] Brion | Quantum computing with collective ensembles of multilevel systems[END_REF]2008) where authors propose to use the internal atomic level structure to encode several quantum bits. In (Paredes-Barato and Adams, 2014) the authors propose an implementation scheme of the CZ gate, using the storage of photons in dierent Rydberg levels, which minimizes the distortion of photons, as it does not involve the propagation of excitations.

The eld of quantum information and communication is very active and many proposals based on Rydberg blockaded atomic ensembles were recently put forward. Among many others, let us cite the implementation of quantum repeaters [START_REF] Zhao | Ecient quantum repeater based on deterministic rydberg gates[END_REF][START_REF] Brion | Quantum repeater with rydbergblocked atomic ensembles in ber-coupled cavities[END_REF] and quantum simulators [START_REF] Weimer | A rydberg quantum simulator[END_REF][START_REF] Labuhn | A highly-tunable quantum simulator of spin systems using twodimensional arrays of single rydberg atoms[END_REF].

In general, the physics of dipole-dipole-interacting ensembles cannot be described only by means of the two-body interactions. In [START_REF] Mourachko | Many-body eects in a frozen rydberg gas[END_REF] authors study many-body eects in a dense atomic cloud and introduced the so-called frozen Rydberg gas model, which states that the motion of atoms on the timescales of the experiment is much smaller than the typical interatomic distance and therefore can be neglected. The complexity of the collective dynamics, generated by the Hamiltonian of dipole-dipole interactions in an atomic ensemble generates a lot of phenomena, more common in the eld of condensed matter physics, e.g. thermalization, etc. The theoretical treatment of strongly correlated many-body problems is usually dicult, as many interesting eects can not be treated perturbatively. In [START_REF] Lesanovsky | Thermalization in a coherently driven ensemble of two-level systems[END_REF] authors demonstrate that a coherently-driven two-level atomic ensemble thermalizes with respect to observables of the classical lattice gas for strong dipole-dipole interactions. The analogy with the second-order phase transition is pointed out in [START_REF] Weimer | Quantum critical behavior in strongly interacting rydberg gases[END_REF] where authors derive the corresponding critical theory and demonstrate that in the saturated regime it describes the properties of the driven Rydberg two-level system. Extending these ideas, authors discuss the emergent universal scaling in [START_REF] Löw | Universal scaling in a strongly interacting rydberg gas[END_REF]. A similar many-body phenomenon is observed in [START_REF] Schauÿ | Observation of spatially ordered structures in a two-dimensional rydberg gas[END_REF], where the competition between exciting laser and dipole-dipole interaction-induced shift leads to the formation of spatially ordered excitation patterns in a two-dimensional geometry.

Quantum nonlinear optics with Rydberg atoms

In this section we focus on the main subject of this dissertation, namely the eective interactions between photons, mediated by Rydberg-Rydberg interactions.

As soon as it was discovered, the dipole blockade appeared as a way to create non-classical states of light, using the storage of excitations in the form of Rydberg polaritons, as rst introduced in (Lukin et al., 2001): due to blockade, a small atomic sample can only accommodate for and therefore store one photon. In (Dudin and Kuzmich, 2012), the authors demonstrate a single-photon source based on the strong suppression of the two-excitation component in the spinwave stored in the Rydbergblockaded ensemble and characterize it by measuring the intensity correlation function of the retrieved light. However, as will be shown in this section, the storage is not absolutely necessary and many interesting quantum phenomena can be observed with propagating photons.

The strong dipole-dipole interactions between Rydberg atoms can be converted into eective interactions between photons. An optical nonlinearity, arising from the dipoledipole interactions of high-lying atomic levels was rst observed in (Pritchard et al., 2010). The χ (3) susceptibility, estimated in [START_REF] Pritchard | Nonlinear optics using cold rydberg atoms[END_REF], though insucient to implement interaction between photons, suggested that its higher density extrapolation should enter the quantum realm. The underlying idea consists in coupling optical photons to Rydberg atomic excitations, using a three-level ladder excitation schemethe Rydberg blockade therefore eectively translates into a photon blockade.

The physical mechanism behind such eective photon-photon interactions can be seen as follows. Due to the dipole-dipole induced energy shift of doubly Rydberg excited ensemble states, a photon propagating through the medium as a dark-state polariton [START_REF] Fleischhauer | Dark-state polaritons in electromagnetically induced transparency[END_REF] modies the optical response of the ensemble in its neighborhood. Depending on the parameters, this may either change the group velocity or cause the scattering of a subsequent photon emulating therefore an eective photonphoton interaction.

In (Friedler et al., 2005), the authors propose to combine the EIT ladder scheme with strong dipole-dipole interactions of one of the upper levels. According to their proposal, two photons of dierent polarizations are converted into two dierent polaritons when entering the medium. This requires an atomic medium with a double-ladder structure as shown in Fig. 4, the lower transitions |g → |e 1,2 being driven by the photons while the upper transitions |e 1,2 → |d 1,2 are coupled to two classical elds of Rabi frequencies Ω 1,2 . It is well known that the speed of EIT dark-state polaritons can be tuned by changing the control eld Rabi intensity: in particular, if the Rydberg polaritons are slowed down or almost stopped (then they essentially have an atomic character) in the vicinity of each other, they strongly interact via dipole-dipole interaction and may acquire a π phase factor (Friedler et al., 2005).

In the subsequent proposals based on Rydberg EIT polaritons, two physically dierent regimes were investigated. In the so-called absorptive case, the intermediate state of the ladder scheme is resonant with the probe eld: in that case the rst propagating photon increases the absorption for the second one by shifting the Rydberg state out of resonance, eectively transforming the atoms within the blockade volume into resonant two-level systems. By contrast, in the so-called dispersive regime, i.e. when the intermediate level is detuned, Rydberg spheres are essentially composed of non-resonant two-level atoms: absorption is negligible but dispersion is high and therefore the group velocity of a second incoming photon is substantially changed. representing a coupled excitation of the eld and atomic coherence. These polaritons propagate in the opposite directions with slow group velocities v 1,2 and interact via the dipole-dipole interaction. Taken from (Friedler et al., 2005).

The original idea of photon-photon interactions via dipole blockade was further developed in (Gorshkov et al., 2011), and extended to co-propagating and stored photons, revealing, in particular, the strong correlations between photons in the co-propagating case. In [START_REF] Gorshkov | Dissipative many-body quantum optics in rydberg media[END_REF] authors considered the absorptive conguration of the EIT ladder, bringing the intermediate state to resonance which allows the system to transmit only the single photon component, while scattering the rest. In [START_REF] Bienias | Scattering resonances and bound states for strongly interacting rydberg polaritons[END_REF], the authors used the scattering theory formalism to calculate the 1D scattering length and showed that, depending on the control eld Rabi frequency, the eective interaction potential can be either attractive or repulsive. Moreover, in [START_REF] Maghrebi | Coulomb bound states of strongly interacting photons[END_REF] the authors predicted the existence of Coulomb bound states of photons. The complexity of the system makes authors resort to numerical and analytical techniques taken from the many-body physics [START_REF] Negele | Quantum many-particle systems[END_REF][START_REF] Giamarchi | Quantum physics in one dimension[END_REF]:

in [START_REF] Otterbach | Wigner crystallization of single photons in cold rydberg ensembles[END_REF] authors used DMRG to numerically t the parameters of Luttinger model to eectively describe the Wigner crystallization of photons in a Rydberg EIT medium; in [START_REF] Moos | Many-body physics of rydberg dark-state polaritons in the strongly interacting regime[END_REF] the authors developed an eective description of the Rydberg polariton propagation and dissipative coupling to bright-state polaritons, based on perturbation theory.

The experimental implementation of the absorptive regime, in a cloud with and optical depth per blockade sphere OD b ≈ 5 was reported in [START_REF] Peyronel | Quantum nonlinear optics with single photons enabled by strongly interacting atoms[END_REF]. The photon statistics of the light transmitted through the cloud was shown to be strongly antibunched due to the scattering of the multiphoton components in the incident light.

By contrast, in the dispersive regime photons were experimentally shown to propagate as massive, mutually attracting particles, therefore leading to photon bunching (Firstenberg et al., 2013). In addition, a conditional phase shift, resulting in polarization-entangled photon pairs was demonstrated.

In (Baur et al., 2014) the authors demonstrated the rst Rydberg-based photon switch, which forbids the transmission of the target photon conditionally to the presence of a gate photon, stored in the ensemble as a Rydberg collective spinwave. The idea is again to take advantage of Rydberg EIT in the absorptive regime: if the cloud contains no excitation initially, then it is transparent to the target photon; by contrast, the latter is scattered by one of the eective resonant two-level atoms in the blockade sphere of an initially stored Rydberg spinwave. The coherence of the stored gate spinwave is aected by the presence of the target photon. As theoretically investigated in [START_REF] Li | Coherence in a cold-atom photon switch[END_REF], this eect can be reduced by stronger dipole-dipole interactions.

The single-photon transistor is very similar a single photon switch: in the former the single target photon is however replaced by a stronger input beam. The performance of such a transistor can be quantied by the gain which is given by the number of scattered photons of the target beam. In (Gorniaczyk et al., 2014;Tiarks et al., 2014) authors reported single photon transistors with gains G > 10.

Outline of this dissertation

To eectively enhance medium-induced optical nonlinear eects, it is natural to resort to a resonator (cavity) which allows for light multiple passes through the active medium.

Such a system was studied both theoretically and experimentally in the dispersive regime for a relatively weak nonlinearity, so that the eld could still be treated classically (Parigi et al., 2012;Stanojevic et al., 2013). In particular, in (Parigi et al., 2012) the authors demonstrated the intensity-dependent shift of the cavity resonance.

In this dissertation, we investigate the optical nonlinear eects induced by a Rydberg medium in the quantum regime.

In the rst chapter we present the system we shall consider throughout the whole dissertation. We rst provide equations governing the system's dynamics in Schrödinger and Heisenberg pictures. In order to characterize the action of nonlinearity on the photonic eld, we dene the intensity correlation function g (2) and recall its basic properties.

In the second chapter we consider the so-called dispersive regime, i.e. when the intermediate state is far detuned, ∆ e γ e , and can be eliminated. We moreover employ the bubble picture approximation in which the system eectively consists in an ensemble of two-level superatoms coupled to the cavity mode, described by the drivendissipative Tavis-Cummings model. We evaluate numerically and analytically the g (2) function of the transmitted light, which, depending on the cavity parameters, is shown to be either bunched or antibunched.

In the third chapter we present an alternative treatment of the system, which allows us to investigate the resonant regime that was unexplored so far. Restricting ourselves to low feeding, we analytically derive the correlation function g (2) (τ ) for the transmitted and reected lights, based on the factorization of the lowest perturbative order of operator product averages. We then propose an eective non-linear threeboson model for the coupled atom-cavity system: this Ansatz allows us to obtain the same results as the (more cumbersome) exhaustive treatment and gives a more intuitive physical picture of our system and its dynamical behavior. Finally, we investigate the resonant regime of the system (∆ e ≈ 0 ) and our treatment reveals novel features of the pair correlation function g (2) due to the interplay of the impedance matching and dipole-dipole interactions.

In the fourth chapter we analyze the system in the so-called Schwinger-Keldysh contour formalism. Using Wick's theorem, we perturbatively expand correlation functions with respect to both feeding and dipole-dipole interactions Hamiltonians. We perform a complete resummation with respect to the latter, for each correlation function that we encounter in this chapter. Using this method we re-derive results of Chap.

3 in an analytic form. We also go beyond and derive analytic expressions for the elastic and inelastic components of the cavity transmission spectrum. We identify a polaritonic resonance structure in this spectrum, to our knowledge unreported so far, that we physically interpret.

In the fth chapter we present a novel scheme for a high-delity photonic controlledphase gate, based on the Rydberg blockade in an atomic ensemble loaded in an optical cavity. In our scenario, the π phase factor is induced by the reection of the target photonic qubit on the cavity, conditioned by the presence of an intracavity stored po- 

Description of the system

In this chapter we present the system we shall consider throughout the whole dissertation. It comprises an ensemble of ladder-type three-level atoms loaded in an optical cavity and excited in EIT conditions: the cavity mode drives the lower atomic transition while the upper transition to the Rydberg state is driven by a strong control eld. In order to describe the behavior of the system we provide equations governing its dynamics in Schrödinger and Heisenberg pictures (Sec. 1.1). Due to the strong dipole-dipole interactions between Rydberg atoms, the system exhibits non-linear behavior, potentially noticeable at the single photon level: in order to characterize this nonlinearity we dene the intensity correlation function g (2) (Sec. 1.2). The following chapters are devoted to its determination in various regimes. Here, we only recall its basic properties and give classical bounds on values it can take. We provide examples of states of light that violate these bounds, testifying therefore the quantum nature of light.

Presentation of the system

The system we consider is schematically shown on Fig. . Finally, we introduce g (that we assume to be the same for all atoms) which is the single-atom coupling constant of the transition |g ↔ |e with the cavity mode, and Ω cf the Rabi frequency of the control eld on the transition |e ↔ |r . In order to characterize the collective coupling of the atomic ensemble to the cavity mode we also dene the cooperativity of the sample C ≡ g 2 N 2γeγc .

In order to be more specic, we provide the following set of experimentally feasible parameters. We assume that the atomic ensemble is composed of 87 Rb atoms. We use the following atomic levels as ground, intermediate and Rydberg states: |g = 5s 1

2

; F = 2 , |e = 5p3 is given by γ e = 2π × 3 MHz. It is convenient to express all energy parameters in units of γ e . In order to be consistent with the experimental work at IOGS for the cavity decay rate we take γ c = 0.3γ e . Since several physical eects of dierent natures shall be addressed in this dissertation, the parameters that are optimal may vary depending on our purpose: we shall therefore provide the complete set of parameters in each case specically. We also notice that the principal quantum number of the Rydberg state n plays a double role as on one hand it increases the interatomic interaction coecient C 6 ≈ 15000γ e n 56

11 , but on the other it decreases the control eld Rabi frequency 3/2 thus eectively decreasing the coupling to the Rydberg state. Nonlinearity is generated in the system not only by the dipole-dipole interactions between Rydberg atoms but also by the EIT ladder scheme itself. The contribution of the latter is, however, negligible in the regime of parameters we use.

Ω cf ∼ n -

Description of the system

If the nonlinearity is relatively weak, the non-linear response can be estimated in the semiclassical regime in which the cavity mode is treated classically, i.e. a → a , while atoms remain quantum. This approach will be considered in both dispersive (Parigi et al., 2012;Stanojevic et al., 2013;[START_REF] Sevinçli | Nonlocal nonlinear optics in cold rydberg gases[END_REF] and resonant regimes [START_REF] Boddeda | Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity[END_REF].

When the nonlinearity becomes signicant at the single-photon level, this approach, however, is no longer relevant and one has to consider the cavity mode eld to be quantum. The non-linearity of the sample can then be characterized by its action on the quantum statistics of light transmitted through or reected from the cavity. As one may expect, strong nonlinearities modify the response of the sample for a single photon and for pairs of photons in a dierent way. This eect is well addressed by means of the intensity correlation function g (2) that we explain in more details in Sec. 1.2. In the sections below we give details on the mathematical framework that we use in order to describe the dynamics of the system.

General equations

The dynamics of an any closed quantum system can be generally described in three ways: Schrödinger, Heisenberg and interaction pictures. In this section we consider only the rst two, leaving the description of the interaction picture to Chap. 4. In the Heisenberg picture all operators are time-dependent and the averaging is performed over the initial state of the system. On the other hand in Schrödinger picture the state of the system evolves in time while operators are taken at initial time.

We may apply both approaches to the system described above. For the sake of consistency one has to take into account the modes of the environment, so that the system {cavity + atoms+ baths} can be approximately considered closed. Below, we give the expression of the corresponding Hamiltonian of the full system in the frame rotating at the frequency ω p for the intermediate state |e , the cavity baths and the electromagnetic eld modes coupled to the transition e ↔ g, and the frequency (ω p + ω cf ) for the Rydberg state |r and the electromagnetic eld modes coupled to the transition r ↔ g.

In the RWA, the Hamiltonian takes the form

H = H at + H cav + V at-cav + H f + H bath + V at-bath + V cav-bath (1.1) with 1.1 Presentation of the system H at = N n=1 -∆ e σ (n) ee -∆ r σ (n) rr + Ω cf 2 σ (n) re + σ (n) er + 1 2 N m,n κ mn σ (m) rr σ (n) rr (1.
2)

H cav = -∆ c a † a (1.3) V at-c = N n=1 g aσ (n) eg + a † σ (n) ge (1.4) H f =α a + a † (1.5) H bath = λ=L,R dω ωB † λ,ω B λ,ω + dω ω N n=1 D † n,ω D n,ω + C † n,ω C n,ω (1.6) V at-bath ≈ N n=1 dω g c (ω) C n,ω σ (n) eg + g d (ω) D n,ω σ (n) rg + H.c. (1.7) V cav-bath = λ=L,R dω g λ (ω) B λ,ω a † + B † λ,ω a (1.8)
where σ ) , ω µ is the energy of the atomic level |µ for µ = e, r (with the convention ω g = 0), and κ mn ≡ C 6 rm-rn 6 denotes the van der Waals interaction between atoms in the Rydberg level when atoms are in the ground or intermediate states, their interactions are neglected. By ∆ c ≡ (ω pω c ), ∆ e ≡ (ω pω e ), and ∆ r ≡ (ω p + ω cfω r ) we denote the cavity, intermediate and Rydberg state detunings, respectively. The operators B λ=L,R (ω) denote the left (λ = L)/right (λ = R) handside bath operators coupled to the two-sided cavity mode with the respective coupling strengths g λ=L,R (ω), whereas {C n (ω)} and {D n (ω)}, are bath operators coupled to the atomic operators with the respective coupling strengths g c (ω) and g d (ω). Note that, here, we implicitly assumed that atoms are coupled to dierent baths, though with the same coupling constants. α denotes the cavity feeding rate which can be related to the incoming photon ux via

(n) µ,η ≡ I (1) ⊗ . . . ⊗ I (n-1) ⊗ |µ η| ⊗ I (n+1) ⊗ . . . ⊗ I (N
α 2 2 g 2 b,L 2π 
, assuming that feeding is performed through the left mirror of the cavity.

In Schrödinger picture, the master equation for the full density matrix of the system ρ f is given by

d dt ρ f = -i [H, ρ f ] (1.9)
In the Heisenberg picture for any time-dependent operator X of the system we have:

d dt X = i H, X
Given the structure of the baths in the Hamiltonian Eqs. (1.2-1.8) we moreover 1. Description of the system assume that the coupling coecients of bath modes are frequency independent i.e.

g λ,c,d (ω) ≈ g λ,c,d . This constitutes Markov approximation, under which the system {cavity+atoms} is eectively decoupled from the bath modes. As will be addressed in the following subsections, in Markov approximation, the interaction with baths is accounted for by merely introducing extra terms in the dynamical equations.

Master equation

Assuming that the subsystem {atoms,cavity} is initially disentangled form the baths, it will remain so under the conditions of Markov approximation and therefore the total density matrix of the system factorizes at all times ρ f (t) ≈ ρ (t) ⊗ ρ bath (t). In this approximation, one deduces the Master equation for the reduced density matrix of the system ρ (t) [START_REF] Breuer | The theory of open quantum systems[END_REF]:

d dt ρ = -i [H sys , ρ] + D [ρ] (1.10)
where H sys is the Hamiltonian of the reduced system {cavity+atoms} Eqs. (1.2-1.5).

We note that the master equation Eq. (1.10) contains extra terms compared to Eq.

(1.9) that are denoted by D [ρ]. This operator contains the so-called Lindblad decay superoperators that correspond to decays of Rydberg (|r ) and intermediate (|e ) states of each atom along with the decay of the cavity mode:

D [ρ] = γ R c + γ L c 2aρa † -a † aρ -ρa † a (1.11) + γ e N n=1 2σ (n) ge ρσ (n) eg -σ (n) ee ρ -ρσ (n) ee + γ r N n=1 2σ (n) gr ρσ (n) rg -σ (n) rr ρ -ρσ (n) rr 1.1.

Heisenberg-Langevin equations

Implementing Markov approximation in the Heisenberg picture leads to a modied set of dynamical equations. We note that due to the interaction with baths the Heisenberg equations for the {cavity+atoms} reduced system's operators [START_REF] Walls | Quantum optics[END_REF] writes

d dt X = i H sys , X -γ x X + F x
where γ x and F x denote the decay rate and Langevin noise operator, associated to the operator X, respectively. Taking this into account we now write the set of Heisenberg-Langevin equations for all degrees of freedom of the reduced system:

1.2 Quantum statistics of light

d dt a = (i∆ c -γ c ) a -iα -ig N i σ (i) ge + 2γ (L) c a (L) in + 2γ (R) c a (R) in (1.12) d dt σ (i) ge = (i∆ e -γ e ) σ (i) ge -i Ω cf 2 σ (i) gr + iga σ (i) ee -σ (i) gg + F (i) ge (1.13) d dt σ (i) gr = (i∆ r -γ r ) σ (i) gr -i Ω cf 2 σ (i) ge + igaσ (i) er -iσ (i) gr N j =i κ ij σ (j) rr + F (i) gr (1.14) d dt σ (i) er = iD er σ (i) er + i Ω cf 2 σ (i) rr -σ (i) ee + iga † σ (i) gr -iσ (i) er N j =i κ ij σ (j) rr + F (i)
er (1.15) where a

(L) in , a (R)
in and F

(i) αβ denote the Langevin forces associated to the incoming elds from the left and right sides of the cavitye and to the atomic operator σ (i) αβ , respectively.

We also introduced the complex eective detunings D k ≡ (∆ k + iγ k ) for k = c, e, r and D er ≡ (∆ r -∆ e ) + i (γ r + γ e ). Note that we chose to make the feeding factor α appear explicitly in Eq. (1.12): in technical terms, it corresponds to displacing the incoming eld from the coherent state |α to the vacuum |0 ; to be consistent with this choice, from now on, we must set a in = 0. 1

In conclusion we emphasize that both pictures lead to the same equations for correlation functions and are thus equivalent. In this dissertation, we will use both methods to determine the intensity correlation function of light g (2) but in slightly dierent contexts (see Chaps. 2 and 3).

In the next section we dene the g (2) function, recall its basic properties and give details about the physical information it provides.

Quantum statistics of light

The quantum statistics of light can be characterized by the distribution of pairs inside the corresponding quantized mode. To this end we consider the normalized probability to detect a pair of photons at two subsequent times t 1 and t 2 . Mathematically the g (2) (t 1 , t 2 ) intensity correlation function of the light is dened as [START_REF] Loudon | The quantum theory of light[END_REF]:

g (2) (t 1 , t 2 ) ≡ a † (t 1 ) a † (t 2 ) a (t 2 ) a (t 1 ) a † (t 1 ) a (t 1 ) a † (t 2 ) a (t 2 ) (1.16)
1 The set of Heisenberg-Langevin equations (1.12-1.15) allows us to recover the standard full linear spectral response of the intracavity EIT. Indeed, assuming α = α (t) we get in the temporal Fourier space:

a (ω) = α (ω) ω + D c - g 2 N ω+De- Ω 2 cf 4(ω+Dr )
1. Description of the system dωa ω e -iωt is the Heisenberg operator of the quantized eld at the position of detector (assumed to be z = 0), while a ω is the annihilation operator of the ω-frequency mode. The averaging in Eq. (1.16) is performed over the initial state of the system ρ 0 , i.e. ... ≡ Tr [...ρ 0 ]. We may notice that for a stationary eld the expression Eq. (1.16) can be simplied to

g (2) (τ ) ≡ a † (0) a † (τ ) a (τ ) a (0) a † (0) a (0) 2
where we assumed the time-translational invariance of expressions:

a † (t) a † (t + τ ) a (t + τ ) a (t) = a † (0) a † (τ ) a (τ ) a (0) a † (t) a (t) = a † (0) a (0)
In the remainder of this section we shall show how to experimentally determine the g (2) function and more precisely relate its behavior to the quantum statistical properties of light.

1.2.1 Measurement of the g (2) function.

In this section we describe the method which is frequently used to experimentally determine the g (2) function. It is based on the intensity cross correlation measurement using the Hanbury-Twiss interferometer shown on Fig. 1.2

2 . We denote by a 1 , a 2 the annihilation operators of the two input modes of the interferometer and by a 3 , a 4 those of the two output modes. We assume that the signal that we want to characterize has the density matrix ρ 1 and is sent on the rst arm of the interferometer. The second arm is assumed in its vacuum state |0 . The full density matrix of the system consisting of 1.2 Quantum statistics of light two arms is thus given by ρ = ρ 1 ⊗ |0 2 0| 2 . According to the standard beam-splitter input-output relation, for two output channels [START_REF] Scully | Quantum optics[END_REF] we have:

a 3 (t) = 1 √ 2 (a 1 (t) + a 2 (t)) a 4 (t) = 1 √ 2 (a 1 (t) -a 2 (t))
Consider now photon uxes on each detector separately:

a † 3,4 (t) a 3,4 (t) = 1 2 a † 1 (t) ± a † 2 (t) (a 1 (t) ± a 2 (t)) = 1 2 a † 1 (t) a 1 (t)
where the plus and minus signs correspond to the third and fourth modes respectively.

For the correlation of uxes on the detectors D 1 at time t 1 and D 2 at time t 2 , we get respectively:

a † 3 (t 1 ) a † 4 (t 2 ) a 4 (t 2 ) a 3 (t 1 ) = 1 4 a † 1 (t 1 ) a † 1 (t 2 ) a 1 (t 2 ) a 1 (t 1 )
we therefore conclude that g (2) (t 1 , t 2 ) is given by the cross-correlation of intensities in two dierent output arms of the interferometer.

g (2) (t 1 , t 2 ) = a † 3 (t 1 ) a † 4 (t 2 ) a 4 (t 2 ) a 3 (t 1 ) a † 3 (t 1 ) a 3 (t 1 ) a † 4 (t 2 ) a 4 (t 2 )

Photon statistics

In this subsection

3 we show what information on the quantum statistics of light is contained in the g (2) (τ ) function. In both cases τ = 0 and τ = 0, we determine the classical bounds on the correlation functions and show when they can be violated due to the quantum nature of light. In the former case (τ = 0) the violation of the classical inequality is associated to the eect known as antibunching while in the latter case (τ = 0), it reveals the sub-Poissonian photon statistics. We stress that as shown in [START_REF] Zou | Photon-antibunching and sub-poissonian photon statistics[END_REF]) these eects do not necessarily occur together.

1. Description of the system

Bunching/antibunching

Let us rst consider the photon ux I (t) ≡ a † (t) a (t) treating it as a classical quantity, and introduce the joint probability density distribution p cl (t, I, t , I ) for the eld to have photon uxes at times t and t to be equal to I and I , respectively. We have for the correlation function:

I (t) I (t + τ ) cl = dIdI × I × I × p cl (t, I, t + τ, I ) (1.17)
Let us now apply the Cauchy-Schwarz inequality to Eq. (1.17):

I (t) I (t + τ ) cl ≤ dI × I 2 × p cl (t, I) 1 2 dI × I 2 × p cl (t + τ, I) 1 2
where p cl (t, I) ≡ dI p cl (t, I, t + τ, I ). 

I (t) I (t + τ ) cl ≤ I (t) I (t)
or, equivalently, the classical intensity correlation function g

cl (τ ) ≡ I(t+τ )I(t) cl I(t) 2 obeys the inequality:

g (2) cl (τ ) ≤ g (2)
cl (0) (1.18) Now considering the quantized eld, Eq. (1.16) can be put under the form:

g (2) (τ ) ≡ : I (t + τ ) I (t) : : I (t) : 2

In the quantum case the g (2) function obeys the inequality Eq. (1.18) for certain states.

For example for the coherent state |α , dened in the stationary case as a (t) |α = α |α , we have g

(2)

cl (τ ) = g (2)
cl (0). The light for which the inequality (1.18) becomes strict at least for some τ : g

(2) cl (τ ) < g (2)
cl (0) is called called bunched. In this case photons tend to come in groups. As soon as the inequality (1.18) is violated the corresponding state of light can not be explained by means of the classical probability density distribution p cl . The eect that accompanies the inequality violation is called antibunching: for antibunched light, photons tend to come one by one, as schematically shown on Fig. 1.3.

The well known example of an antibunched light is given by the resonant uorescence from an atom. An example of a bunched is given by a chaotic light [START_REF] Loudon | The quantum theory of light[END_REF].

We now use the Cauchy-Schwarz inequality once more for the same-time intensity correlation function: 

I (t) I (t) cl ≡ dI × I 2 × p cl (t, I) ≥ dI × I × p cl (t, I) 2 = I (t) 2
and consequently g

cl (0) ≥ 1. We therefore conclude that any violation of this inequality would testify a quantum nature of light. In the quantum case the exact equality holds for coherent light, which follows Poissonian statistics, as will be shown below.

Single-mode coherent state Consider a single-mode coherent state dened as:

|α ≡ e αa † +α * a |0 = e αa † -|α| 2 2 |0
The probability of detecting n photons is obviously given

P n = | n|α | 2 = n e αa † -|α| 2 2 0 2 = e -|α| 2 |α| 2n n! (1.19)
we therefore infer that the probability distribution is given by the Poissonian distribution with an average photon number given by |α| 2 . An important property of the 1. Description of the system Poissonian statistics is that the variance of the photon number is equal to the square of its mean value. According to Eq. (1.19) we indeed have:

n 2 -n 2 = n
Throughout the dissertation we will rather be interested in multimode coherent elds, whose main properties are, as shown below, akin to those of single-mode coherent elds.

Multimode coherent state Consider the multimode coherent state [START_REF] Loudon | The quantum theory of light[END_REF] dened by:

|α ≡ e √ n (a † α -aα) |0 a α (t) |α = α (t) |α where a † α (t) ≡ 1 √ n dωα (ω) a † ω e iωt is the mode creation operator, α (t) = 1 √ 2π dωα (ω) e -iωt
and n = |α (t)| 2 dt. First, it is easy to check α|α = 1.

We now expand the coherent state |α in the following way: √ n! |0 , n|m = δ n,m . We thus get that the total photon distribution in the coherent mode is given by a Poissonian distribution:

e √ n a † α -1 2 n |0 = e -1 2 n n n n 2 a † α n n! |0 = e -
P n = e -n n n n! (1.20)
Consider now the photon ux I (t) ≡ a † (t) a (t) through a certain surface. One may demonstrate that the probability to detect m photons within the time interval [t, t + δt] is given by:

P m (δt) = |α (t)| 2 δt m m! e -|α(t)| 2 δt
hence obeying a Poissonian statistics. Indeed, due to the superposition principle, the state of the eld in each small time slice δt is also coherent, with the average photon number |α (t)| 2 δt. Therefore, as in the single-mode case, we have for the intensity correlation function of the coherent light: g (2) (0

) = (|α(t)| 2 δt) 2 (|α(t)| 2 δt) 2 = 1.
As soon as the variance of the photon number is superior or inferior to that of the coherent light for the same average ux the light eld is called super or sub-Poissonian, 1.2 Quantum statistics of light respectively [START_REF] Scully | Quantum optics[END_REF]. The simplest example of a sub-Poissonian light is given by the Fock state containing n photons:

|n ≡ a † α n √ n! |0 ⇒ g (2) (0) = n a † (t) a † (t) a (t) a (t) n | n |a † (t) a (t)| n | 2 = 1 - 1 n (1.21)
The simplest example of super-Poissonian light is given by the thermal light for which g (2) (0) = 2 [START_REF] Loudon | The quantum theory of light[END_REF]. According to Eq. (1.21) the g (2) (0) function for a single-photon state vanishes (this is also called anticorrelation), testifying the particle nature of light [START_REF] Grangier | Experimental evidence for a photon anticorrelation eect on a beam splitter: a new light on single-photon interferences[END_REF].

In conclusion we note that the g (2) function contains an important information on the photon distribution in the light eld. An eective interaction between photons can aect the statistics, redistributing them inside the initially coherent light. As the intermediate state is far detuned, it remains mostly unpopulated during the evolution and its coherence can be eliminated from the dynamical equations (Brion et al., 2007b): as shown in [START_REF] Guerlin | Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble[END_REF] the system eectively behaves as an ensemble of two-level atoms coupled to the cavity mode (Sec. 2.1). In addition, we assume that the two-photon transition is also slightly detuned in order to ensure that dipole-dipole interactions induce predominantly dispersive eects. Then we further approximate our system employing the so-called bubble picture [START_REF] Vuletic | When superatoms talk photons[END_REF] for our eective two-level atoms (Sec. 2.2): we thus get an ensemble of two-level superatoms coupled to the cavity mode which is known as the driven Tavis-Cummings model (Sec.

2.3). We numerically evaluate the g (2) function of the light transmitted through the cavity (Sec. 2.4) and show that, depending on the cavity parameters, the transmitted light is bunched or antibunched (Sec. 2.5).

Eective two-level model

The starting point of our study is the Hamiltonian given in Chap. 1 for the system {atoms+cavity} under the usual RWA and Markov approximations:

H sys = H a + H c + V a-c + H f H a = -∆ e N n=1 σ (n) ee -∆ r N n=1 σ (n) rr + Ω cf 2 N n=1 σ (n) re + σ (n) er + N m<n=1 κ mn σ (m) rr σ (n) rr H c = -∆ c a † a V a-c = N n=1 g aσ (n) eg + a † σ (n) ge H f = α a + a †
where we used the same notations as in Chap. 1. We also recall here the set of corresponding Heisenberg-Langevin equations:

1 This chapter is an edited version of [START_REF] Grankin | Quantum statistics of light transmitted through an intracavity rydberg medium[END_REF]. 

d dt a = (i∆ c -γ c ) a -iα -ig N i σ (i) ge + a in (2.1) d dt σ (i) ge = (i∆ e -γ e ) σ (i) ge -i Ω cf 2 σ (i) gr + iga σ (i) ee -σ (i) gg + F (i) ge (2.2) d dt σ (i) gr = (i∆ r -γ r ) σ (i) gr -i Ω cf 2 σ (i) ge + igaσ (i) er -iσ (i) gr N j =i κ ij σ (j) rr + F (i) gr (2.3) d dt σ (i) er = {i (∆ r -∆ e ) -γ er } σ (i) er + i Ω cf 2 σ (i) rr -σ (i) ee + iga † σ (i) gr (2.4) -iσ (i) er N j =i κ ij σ (j) rr + F (i)
er

Let us now simplify the system Eqs. (2.1-2.4). Discarding the non-linearity arising from the saturation of the transitions 

d dt σ (i) gr = i ∆r -γr σ (i) gr + ig eff a -iσ (i) gr N j =i κ ij σ (j) rr + F (i) gr (2.6)
where [START_REF] Grankin | Quantum statistics of light transmitted through an intracavity rydberg medium[END_REF]:

∆c =∆ c -∆ e g 2 N (∆ 2 e + γ 2 e ) γc =γ c + γ e g 2 N (∆ 2 e + γ 2 e )
2. Rydberg-induced quantum optical nonlinearities in the dispersive regime 

ãin = a in + g (∆ e + iγ e ) i F (i) ge ≈ a in + g ∆ e i F (i)
ge

F (i) gr = F (i) gr + Ω cf 2 (∆ e + iγ e ) F (i) ge ≈ F (i) gr + Ω cf 2∆ e F (i)
ge Finally, we get the eective Hamiltonian

H = -∆r N n=1 σ (n) rr + N m<n=1 κ mn σ (m) rr σ (n) rr -∆c a † a + α a + a † + g eff a N n=1 σ (n) rg + h.c.
Performing the adiabatic elimination of the detuned intermediate level, we reduce the system to an ensemble of eective two-level atoms coupled to a cavity mode which interact via dipole-dipole interactions in exactly the same way as in the original system.

Rydberg bubble approximation

We may simplify the system further by introducing the Rydberg bubble approximation [START_REF] Guerlin | Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble[END_REF]. In this approach, the strong Rydberg interactions are assumed to eectively split the sample into N b bubbles {B α=1,...,N b } each of which contains n b = N N b atoms but can only accommodate for a single Rydberg excitation, delocalized over the bubble [START_REF] Vuletic | When superatoms talk photons[END_REF]. Note that the number of atoms per bubble n b is approximately given by (Parigi et al., 2012;Stanojevic et al., 2013) 

n b = 2π 2 ρ at 3 |C 6 | ∆ r -Ω 2 cf /(4∆
= |-α + α | the operator s (α)
corresponds to the lowering operator of the spin and the annihilation of a Rydberg excitation, one can write

N n=1 σ (n) gr = N b α=1 iα∈Bα σ (iα) gr ≈ N b α=1 s (α) - -α iα∈Bα σ (iα) gr + α ≈ √ n b N b α=1 s (α) - = √ n b J -
where we introduced the collective angular momentum J -≡ N b α=1 s (α) -. In the same way, 3 . Finally, as shown in [START_REF] Guerlin | Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble[END_REF], the Hamiltonian of the system takes the approximate form

N n=1 σ (n) rr = N b α=1 iα∈Bα σ (iα) rr ≈ N b α=1 |+ α + α | + α iα∈Bα σ (iα) rr + α ≈ N b α=1 1 2 + s (α) z ≈ N b 2 + J z
H ≈ -∆c a † a + α a + a † -∆r N b 2 + J z + g eff √ n b aJ + + a † J - (2.8)
which represents the interaction of the large spin J -with the cavity mode a, known as the driven (and dissipative) Tavis-Cummings model [START_REF] Tavis | Exact solution for an n-moleculeradiation-eld hamiltonian[END_REF]), that we study in the next section in more details.

Tavis-Cummings Hamiltonian

We rst analyze the spectral properties of the Hamiltonian Eq. (2.8) without the driving term:

HTC ≈ -∆c a † a -∆r N b 2 + J z + g eff √ n b aJ + + a † J - (2.9) 
The nonlinearity of this model arises from the niteness of the Hilbert space spanned by the spin degree of freedom, as we shall now show.

As can be easily demonstrated, the total number of excitations is an integral of motion, i.e.

HTC , N = 0, where N ≡ a † a + N b 2 + J z . Therefore, the Hilbert space is split into subspaces of denite excitation number N ex , spanned by the vectors {|n, N exn , n = 0, . . . , N ex }, where by |n, k ≡ |n ⊗ j = N b 2 ; m = -N b 2 + k we denote the state that contains n photonic excitations and the collective atomic spin J z projection is equal to -N b 2 + k. Since these subspaces are not coupled by Eq. (2.9), the matrix representation of HTC , truncated at N ex = 2 can be put in the block-diagonal form 3 The derivation of the spin Hamiltonian provided here is based on the ad hoc representation of the sample as a collection of superatoms with a pre-dened position [START_REF] Stanojevic | Many-body rabi oscillations of rydberg excitation in small mesoscopic samples[END_REF][START_REF] Robicheaux | Many-body wave function in a dipole blockade conguration[END_REF]. In each superatom, we restrict the basis to the set of allowed states. This is a simplied derivation. One can resort to a more rigorous treatment based on the restriction to the states of the whole ensemble, allowed by the interaction Hamiltonian. These states are given by [START_REF] Guerlin | Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble[END_REF] 

HTC =          0 0 0 0 0 0 0 -∆c g eff √ N 0 0 0 0 g eff √ N -∆r 0 0 0 0 0 0 -2 ∆c √ 2g eff √ N 0 0 0 0 √ 2g eff √ N -∆c -∆r √ 2g eff √ N -n b 0 0 0 0 √ 2g eff √ N -n b -2 ∆r          (2.10)
The eigenenergies in the single excitation subspace are easily found to be ± =

1 2 -∆c -∆r ± 4g 2 eff N + ∆c -∆r 2 .
When the blockade sphere is very small and consequently the number of atoms per bubble Eq. (2.7) is also small, i.e. n b → 0, one checks that the quantities 2 + , + + -, 2 -are eigenvalues of the two-excitation block of Eq. (2.10). The spectrum is thus harmonic with the possibility of existence of excitations of two kinds: since we assume that n b → 0 the basis spanned by the spin degree of freedom indeed becomes almost innite and in this case the system behaves 2. Rydberg-induced quantum optical nonlinearities in the dispersive regime as two uncoupled harmonic oscillators with frequencies + , -. These modes ± are also known as normal modes of the system. By contrast, when the number of atoms n b per bubble is nite, the term √ 2g eff √ Nn b in the two-excitation block in Eq. (2.10) breaks the harmonicity of the level structure. We denote as E 1 , E 2 , E 3 the corresponding eigenvalues of the Hamiltonian in the two-excitation subspace.

In the low excitation regime, feeding terms can be perturbatively added to the Hamiltonian Eq. (2.9), without changing its level structure and all the properties of the transmitted light can therefore be explained by the conguration of its eigenvalues.

In particular, as shown on Fig. 2.1, due to the anharmonicity of the level structure, the single and two-photon components of the light are not simultaneously resonant: it is thus possible to tune the cavity parameters to eectively lter one of them, therefore modifying the quantum statistics of transmitted light.

The next sections are devoted to the investigation of the dierent possible statistical behaviors of the system.

2.4 Calculation of the g (2) function

In this section we present the two methods (numerical and analytic) we use to compute the g (2) function of the system. In Schrödinger picture we consider the master equation 2.4 Calculation of the g (2) function for the reduced density matrix:

∂ t ρ = Lρ (2.11) = -i H, ρ + γ c 2aρa † -a † aρ -ρa † a + γ r N b α=1 2s (α) -ρs (α) + -s (α) + s (α) -ρ -ρs (α) + s (α) -
One can also write the Heisenberg-Langevin equations for the time-dependent operators

a (t) , J -(t) ∂ t a = i ∆c -γc a -iα -ig eff √ n b J -+ ãin (2.12) ∂ t J -= i ∆r -γr J -+ 2ig eff √ n b J z a + Jin (2.13)
where ãin , Jin ≡ N n=1 F (n) gr are the Langevin forces associated to a and J -, respectively.

Note that we neglected the eect of extra dephasing due to, e.g., collisions or laser uctuations.

To study the quantum properties of the light transmitted through the cavity, we shall compute the function g

(2) out , which characterizes the two-photon correlations. In the input-output formalism [START_REF] Walls | Quantum optics[END_REF], one shows that this function simply equals the g (2) function for the intracavity eld (see App. C for details) given by g (2) (τ ) = Tr a † ae Lτ aρ ss a †

Tr [a † aρ ss ] 2

( 2.14) where ρ ss denotes the steady state of the system dened by Lρ ss = 0, see Eq. (2.11).

In the regime of small feeding parameter α, one can compute ρ ss numerically by propagating in time the initial state ρ 0

≡ |N r = 0 N r = 0| ⊗ |n c = 0 n c = 0| (here |N r = 0, 1, . . . , N b represents the symmetric state in which N r ≡ N b
2 + Jz bubbles are excited, and |n c = 0, 1, . . . are the Fock states of the cavity mode). To this end, one applies the Liouvillian evolution operator e Lt in a truncated basis, restricted to states of low numbers of excitations (typically with n c + N r ≤ 6). The steady state is reached in the limit of large times ideally when t → ∞. The denominator of the ratio Eq.(2.14) is directly obtained from ρ ss . To compute its numerator, one rst propagates in time aρ ss a † from t = 0 to τ , using the same procedure as above, then applies the operator a † a and takes the trace. In the regime of weak feeding, it is also possible to get a perturbative expression for g (2) (0) by computing the expansion of a † a † aa ss and a † a ss in powers of α. To this end, one uses the Heisenberg equations of the system Eqs. (2.12,2.13) to derive the hierarchy of equations relating the dierent mean values and correlations . . . ss up to the fourth order in α. After straightforward though lengthy algebra, one gets 2. Rydberg-induced quantum optical nonlinearities in the dispersive regime an expression for g (2) (0) which is too cumbersome to be reproduced here but allows for faster calculations than the numerical approach. Such a fully analytical treatment, however, cannot, to our knowledge, be extended to g (2) (τ > 0). For τ > 0 we therefore entirely rely on numerical simulations presented in the next section.

Numerical results and discussion

We consider the physical setup presented in (Parigi et al., 2012), i.e. an ensemble of 87 Rb atoms, whose state space is restricted to the levels |g = 5s1 ; F = 4 with the decay rates γ e = 2π × 3 MHz, and γ r = 2π × 0.03 MHz. The other physical parameters must be designed so that strong nonlinearities may be observed at the single-photon level. In the specic system considered here, we nd this is achieved for a cavity decay rate γ c = 2π × 1 MHz, a volume of the sample V = 40π × 15 × 15µm 3 , a sample density n at = 0.4µm -3 , a control laser Rabi frequency Ω cf = 10γ e , a cooperativity C = 1000, a detuning of the intermediate level ∆ e = -35γ e , a detuning of the Rydberg level ∆ r = 0.4γ e , a cavity feeding rate α = 0.01γ e . For these parameters, the cavity detuning ∆ (0) c ≈ -6.1γ e corresponds to the (numerically computed) maximal average number of photons in the cavity, i.e., to the linear EIT resonance. Note that these physical parameters are experimentally realistic and feasible, though they are not the ones used in (Parigi et al., 2012) (in particular, C was much smaller).

Let us rst focus on the second-order correlation function at zero time g (2) (0), represented on Fig. One notes a super-Poissonian region near (B) θ B = -4.9 and a deep sub-Poissonian area centered on (A) θ A = 0. This suggests that around (A), photons are preferably transmitted one by one, while around (B) they are preferably transmitted by pairs. Note, however, that, as a ratio, g (2) (0) gives only information on the relative importance of pair and single-photon emissions. Its peaks therefore do not correspond to maxima of photon pair emission, but to the best compromises between a † a † aa ss and a † a in their respective subspace.

We now investigate the behavour of g (2) (τ > 0) for two dierent values of the detuning, i.e. θ B = -4.9 and θ A = 0 which respectively correspond to the peak (B) and minimum (A) of g (2) (0). The numerical simulations we obtained are given in Fig. The position of the peak of the correlation function g (2) (0) is signaled by a vertical line.

2. Rydberg-induced quantum optical nonlinearities in the dispersive regime 2) (τ ) for a) θ B = -4.9 and b) θ A = 0 . Note that we chose a dimensionless time-variable τ × γ e on the x-axis.

The plot relative to (B) exhibits damped oscillations, alternatively showing a bunched g (2) (0) > g (2) (τ ) or antibunched g (2) (0) < g (2) (τ ) behavior. The plot corresponding to (A) always remains on the antibunched side, though asymptotically tending to

1.

The features observed can be understood and satisfactorily accounted for by a simple three-level model. Indeed, due to the weakness of α, the system, in its steady state, is expected to contain at most two excitations (either photonic or atomic). Therefore, after a photon detection at t = 0, it contains at most one excitation which can be exchanged between the cavity eld and atoms, as it has been known for long [START_REF] Brecha | Observation of oscillatory energy exchange in a coupled-atomcavity system[END_REF][START_REF] Brune | Quantum rabi oscillation: A direct test of eld quantization in a cavity[END_REF]. In other words, the operator aρ ss a † can be expanded in the space restricted to the three states {|00 ≡ |N r = 0,

n c = 0 , |01 ≡ |N r = 0, n c = 1 , |10 ≡ |N r = 1
, n c = 0 } and the eective non-Hermitian Hamiltonian for the system, in this subspace, takes the following form:

H 3 =   0 α 0 α -∆c -iγ c g eff √ N 0 g eff √ N -∆r -iγ r  
The oscillatory dynamical behavior observed for g (2) (t) in the specic cases (A,B) is correctly recovered by this Hamiltonian, which validates the schematic model we used and suggests it comprises the main physical processes at work.

Conclusion

Conclusion

In this chapter, we studied how the strong Rydberg-Rydberg van der Waals interactions in an atomic medium may aect the quantum statistical properties of an incoming light beam. In the dispersive regime, the system was shown to eectively behave as a large spin coupled to a damped harmonic oscillator, i.e. the assembly of Rydberg bubbles and the cavity mode, respectively. The strong anharmonicity of the atomic spin aects the quantum statistics of the outgoing light beam. To demonstrate this eect, we performed analytical and numerical calculations of the second-order correlation function g (2) (τ ≥ 0). The results we obtained on a specic physical example with rubidium atoms show indeed that the transmitted light presents either bunched or antibunched characters, depending on the detuning between the cavity mode and the probe eld.

This suggests that, in such a setup, one could design light of arbitrary quantum statistics through appropriately adjusting the physical parameters. The Rydberg bubble approach akin to that developed in this chapter was used in [START_REF] Boddeda | Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity[END_REF] to successfully reproduce the temporal behavior of the cavity transmission coecient. In order to t the experimental data an additional decay to a dark Rydberg manifold was added in a purely phenomenological way. More details can be found in App. A.

Chapter 3

Perturbative treatment at lowest-order Contents 3.1 g (2) function in the perturbative regime . . . . . . . . . . . . 1 is devoted to the investigation of the general case, including the resonant conguration ∆ e = 0, in the low feeding limit. The perturbative treatment we propose to tackle this new problem also allows us to avoid resorting to the free parameter number of atoms per bubble that we had to adjust in the previous chapter to t the results of the semiclassical calculations. In Sec. 3.1, we present an analytic derivation of the correlation g (2) (τ ) function for the transmitted and reected light, based on the factorization of the lowest perturbative order of operator product averages. It is important to note that this derivation is valid in both the dispersive and resonant regimes and therefore generalizes our previous results. In Sec.

3.2, we numerically investigate the dispersive (∆ e = 0) and resonant regimes (∆ e ≈ 0 ) of the system; in particular, our treatment reveals novel features of the pair correlation function g (2) due to the interplay of the impedance matching and dipole-dipole interactions. In the Sec. 3.3, we propose an eective non-linear three-boson model for the coupled atom-cavity system: this Ansatz allows us to obtain the same results as the (more cumbersome) exhaustive treatment. In the dispersive regime, this Hamiltonian agrees with the one we obtained in Chap. 2 in the Rydberg-bubble approximation.

3.1 g (2) function in the perturbative regime

In order to compute the g (2) function of the transmitted or reected light, we perturbatively expand all correlation functions with respect to the feeding rate α. This expansion is equivalent to the expansion in the number of excitations in the incoming light. In Subsec. 3.1.1 we use the latter fact along with the conservation of the total number of excitations to demonstrate the factorization property of the lowest non-vanishing perturbative order of operator product averages. This property restricts the calculation of g (2) (0) to the determination of rst and second-order mean values in feeding discussed in Subsecs. 3.1.2 and 3.1.3. We nish this section by explicitly showing how to deduce the two-time correlation function g (2) (τ ) (Subsec. 3.1.4).

Factorization property

As we restrict ourselves to low feeding rates, we may expand g (2) (0) in powers of α.

Here, we consider g (2) (0) at the lowest non-vanishing order in α: this requires to evaluate a † a † aa , a † a † a and a † a at the fourth, third and second orders, respectively, as shown in App. C. This task is greatly simplied by the following remarkable factorization property, established in App. D:

1 This chapter is an edited version of [START_REF] Grankin | Quantum-optical nonlinearities induced by rydberg-rydberg interactions: A perturbative approach[END_REF].

3.1 g (2) function in the perturbative regime a † (t) a (t) (2) = a † (t) (1) a (t) (1) a

† (t 2 ) a † (t 1 ) a (t 1 ) (3) = a † (t 2 ) a † (t 1 ) (2) a (t 1 ) (1) a † (t 2 ) a † (t 1 ) a (t 1 ) a (t 2 ) (4) = a † (t 2 ) a † (t 1 ) (2) a (t 1 ) a (t 2 ) (2)
where the superscript (k) denotes the order in α to which quantities are calculated. This is a consequence of the conservation of the excitation number by the full Hamiltonian of the system {atoms+cavity+baths}. Therefore, for instance, for the transmitted light, g

t (0) = a † a † (2) aa (2) / a † (1) a (1) 2 (2) 
and we merely need to determine a (1) and a 2 (2) . Note that the factorization does not apply to products of the kind a 2 (2) , so that a 2 (2) = a (1) a (1) .

First order mean values

The mean values a (1) and σ (i) ge

(1) are readily obtained through taking the steady state of the rst-order averaged Heisenberg equations Eqs. (1.12-1.15)

a (1) = α D c - g 2 N De- Ω 2 cf 4Dr (3.1) σ (i) ge (1) = αg D c D e - Ω 2 cf 4Dr -g 2 N (3.2) σ (i) gr (1) = αgΩ cf 2D r D c D e - Ω 2 cf 4Dr -g 2 N (3.3)

Second order mean values

In a similar way, the second-order value a 2 (2) is determined through solving the following closed system 2 2 This system is closed as a result of the expansion with respect to α. 51 3. Perturbative treatment at lowest-order

a 2 (2) = g √ N D c ab (2) + α D c a (1) (3.4) ab (2) = Ω cf 2 (D c + D e ) ac (2) + g √ N (D c + D e ) aa (2) + g √ N (D c + D e ) bb (2) + α (D c + D e )
b (1) (3. 5)

ac (2) = g √ N (D c + D r ) bc (2) + α (D c + D r ) c (1) + Ω cf 2 (D c + D r ) ab (2) (3.6) bb (2) = Ω cf 2D e bc (2) + g √ N D e ab (2) 
(3.7) bc (2) = Ω cf 2 (D e + D r ) cc (2) + g √ N (D e + D r ) ac (2) + Ω cf 2 (D e + D r ) bb (2) (3.8) cc (2) = Ω cf g √ N 2 K ac (2) + Ω 2 cf g √ N 4D e
K ab (2) (3.9) deduced from Eqs. (1.12-1.15) under the assumption of a homogeneous atomic medium, whose consequences are detailed in App. E. In this system, we introduced the collective

atomic operators b ≡ 1 √ N i σ (i) ge c ≡ 1 √ N i σ (i)
gr .

(3.10)

We note that the rst-order mean values a (1) , b (1) and c (1) which appear in Eqs. (3.4, 3.5, 3.6), respectively, have been computed in Eqs. (3.1, 3.2, 3.3). The K coecient is approximately given by (see App. E for details)

K ≈ 1 D e + D r - Ω 2 cf 4De D r - Ω 2 cf 4 1 - V b V (3.11)
where

V b = √ 2π 2 3 -C 6 D r -Ω 2 cf / 4(D e + D r ) - Ω 2 cf De (3.12)
will be interpreted as the Rydberg bubble volume in the dispersive regime in the next section. Though it is too cumbersome to be reproduced here, the solution for a 2 (2) is simply obtained by matrix inversion, and the calculation of g

t (0) and g

(2)

r (0) can be straightforwardly programmed, e.g. in Mathematica.

The closed sets of equations for the single-Eqs. (3.1-3.3) and two-Eqs. (3.4-3.9) operator product averages are obtained in the steady state regime. The temporal 3.2 Application to an experimental case.

response can however be derived in Fourier space by replacing setting d dt by -iω in the expressions of App. E. This would account for the linear and non-linear (Rydberginduced) EIT dispersion. The intrinsic (saturation) nonlinearity of the EIT ladder scheme is neglected from our consideration as it is assumed to be very weak for the chosen regime of parameters.

Two-time correlation functions

As for g

t,r (0), the calculation of the time-dependent correlation function g

(2)

t,r (τ ) is greatly simplied (see App. C) by the factorization property derived in App. D, since we simply need to determine the quantity a (t + τ ) a (t) (2) . From Eqs. (1.12-1.15), one easily deduces the following dierential system, at the lowest order in α,

d dτ    a (t + τ ) a (t) (2) b (t + τ ) a (t) (2) c (t + τ ) a (t) (2)    = -iα a   1 0 0   + -i    -D c g √ N 0 g √ N -D e Ω cf 2 0 Ω cf 2 -D r       a (t + τ ) a (t) (2) b (t + τ ) a (t) (2) c (t + τ ) a (t) (2)   
which, together with the boundary condition

   a (t + τ ) a (t) (2) b (t + τ ) a (t) (2) c (t + τ ) a (t) (2)    τ ≡0 =    aa (2) ba (2) ca (2) 
   calculated above, allows us to determine a (t + τ ) a (t) . Again, though involved, the expressions are straightforward to obtain and program.

3.2 Application to an experimental case.

Dispersive regime.

Let us now provide some numerical results obtained in the perturbative approach described above. We rst investigate the dispersive regime, addressed in Chap. 2. We consider the same values for physical parameters of the system {atoms + cavity} as discussed in Chap. 1, except for the following tunable parameters, which are xed so as to optimize the eect: the control laser Rabi frequency is Ω cf = 10γ e , the detuning of the intermediate level is ∆ e = -35γ e , the detuning of the Rydberg level is ∆ r = 0.4γ e , the cavity feeding rate is α = 0.01γ e , and the Van der Waals coecient is C 6 = -8.83 × 10 6 γ e µm 6 . For these parameters, the maximal average number of 53 3. Perturbative treatment at lowest-order 

t (τ ) exhibits damped oscillations around the asymptotic value 1, alternatively showing bunching and antibunching. b) For θ c /γ e = 0, g

t (τ ) tends to 1 without crossing the asymptote. The results obtained in both cases are in good qualitative agreement with the results of the previous model.

Resonant case

In the previous subsection we conrmed results, obtained in the dispersive regime, in a more exhaustive way. Let us now consider the resonant case, which could not be treated in the previous chapter. As a new set of parameters, we take ∆ c = ∆ e = ∆ r = 0, and assume that γ

(R) c γ (L)
c . We also choose a higher principal number n = 100 for the Rydberg level, for which we take γ r = 0.1γ e . In addition, we x γ c = 0.3γ e , C = g 2 N 2γeγc ≈ 30 and V = 50π ×20×20µm 3 . In this regime, V b ≈

√ 2π 2 3 -C 6 De is enhanced,
and therefore magnied non-linear eects are expected.

As can be seen on Figure 3.3, there exists a value for which single photons are mostly absorbed a

(L) † out a (L) out = 0, while pairs are reected a (L) † out a (L) † out a (L) out a (L)
out = 0: this value can be computed and is found to be

Ω cf = 2 γ e γ r (2C -1) = 2γ e √ 6 ≈ 5γ e
The time-dependence of g

(2)

r (τ ) for the reected light is also displayed for this choice of Rabi frequency: the reected light is strongly bunched.

On the contrary, in a slightly detuned case, i.e. for ∆ e = -2γ e and ∆ r = -0.1γ e , the other parameters remaining the same, one observes that around Ω cf ≈ 11γ e pairs are absorbed a 

r (τ ), for Ω cf ≈ 11γ e : reected light is antibunched, asymptotically becoming uncorrelated.

Eective non-linear three-boson model

These new features are specic of the near-resonant regime, and could not be revealed by our previous work. They may be interpreted as dierent impedance matching 3 conditions for single photons and pairs, leading to very large non-linear losses, acting at the single photon level.

In the last two sections, we described how to compute the correlation function in the low excitation regime, valid not only in the dispersive regime but even in the resonant case. Though exact and computable, the analytic expressions we get are cumbersome and do not easily lend themselves to physical interpretation. As we will see in the next section, one can however describe the physics of the system by a simpler model, in the low excitation number approximation. In this regime, according to the well-known

Holstein-Primako approximation [START_REF] Holstein | Field dependence of the intrinsic domain magnetization of a ferromagnet[END_REF], it is indeed possible to treat b and c as bosonic operators. To recover the results of the previous section to the lowest order, one moreover needs to introduce an eective non-linear dispersive term in the Hamiltonian together with a non-linear decay: the expressions we nd have the advantage of being physically more transparent.

Eective non-linear three-boson model

In this section, we propose an eective model which is designed to correctly reproduce the physics of the system in the perturbative regime. Besides being simpler than the original formulation, this Ansatz also lends itself to a more transparent physical interpretation, as we shall see.

In the low excitation regime, i.e. for numbers of excitations much lower than the total number of atoms N , if initially prepared in a collective symmetric atomic state (e.g. the ground state), the system essentially remains in a symmetric subspace that is with respect to permutations of atoms. 

D e (ρ) = γ e 2 2bρb † -ρb † b -b † bρ D r (ρ) = γ r 2 2cρc † -ρc † c -c † cρ
The dipole-dipole interaction term is more tricky: it indeed couples the symmetric subspace both to itself and the nonsymmetric subspace. The restriction of V int to the symmetric subspace yields the approximate form κ 2 c † c † cc where κ denotes the average pair interaction. The complementary term V S-A = V int -κ 2 c † c † cc therefore represents the coupling of symmetric and nonsymmetric subspaces. Since it requires multiple Rydberg excitations, the eect of this coupling remains small in the low excitation regime. It, however, has two consequences : i ) it changes the coupling strength κ into a new value denoted κ r , which takes into account self-coupling of the symmetric subspace through the nonsymmetric subspace via terms of the form (V S-A ) 2 , ii ) it induces a non-linear decay due to the enhanced spontaneous emission experienced by nonsymmetric states which are uncoupled to the cavity eld and therefore do not fulll EIT conditions. The form we choose for this non-linear decay is

D nl (ρ) = κ i 2 2ccρc † c † -ρc † c † cc -c † c † ccρ
Though it seems arbitrary at this stage, this choice will be mathematically justied later by the fact that it allows us to recover the Heisenberg equations Eqs. (3.4-3.9) obtained in the previous Section. The expression of κ i will be determined later by identication with Eqs. (3.4-3.9) ; it is also physically sound since it aects only multiply Rydbergexcited states inducing their decay to the ground level.

At this point, the Hamiltonian for our eective three-boson model writes

H ef f = -∆ c a † a + α a + a † -∆ e b † b -∆ r c † c + g √ N ab † + b † a + Ω cf 2 bc † + b † c + κ r 2 c † c † cc
with the dissipation Liouvillian D [ρ] = D e (ρ)+D r (ρ)+D nl (ρ). We shall now determine κ i and κ r by identifying the corresponding steady state averages for the second order correlation functions. From the full Liouville-von Neumann equation of the system

∂ t ρ = -i [H ef f , ρ] + D [ρ] one readily derives the following Bloch equations d dt a = iD c a -iα -ig √ N b (3.13) d dt b = iD e b -ig √ N a -i Ω cf 2 c (3.14) d dt c = iD r c -i Ω cf 2 b -iκ c + cc (3.15)
where we introduced the notation κ ≡ κ riκ i , κ r and κ i being real. From this set of equations, one gets the same steady state value a (1) as in Eq. (3.1). At second order in α, the set of equations for two-operator steady-state averages is derived in the same way (here we omit superscripts (1,2) for simplicity)

aa = g √ N D c ab + α D c a ab = Ω cf 2 (D c + D e ) ac + g √ N (D c + D e ) aa + g √ N (D c + D e ) bb + α (D c + D e ) b ac = g √ N (D c + D r ) bc + α (D c + D r ) c + Ω cf 2 (D c + D r ) ab bb = Ω cf 2D e bc + g √ N D e ab bc = Ω cf 2 (D e + D r ) cc + g √ N (D e + D r ) ac + Ω cf 2 (D e + D r ) bb cc = Ω cf 2 D r -κ 2 bc
which agrees with Eqs. (3.4-3.9) but for the last equation. If, however, we eliminate bc and bb from the last three equations, we obtain

cc = Ω cf 2 g √ N D r -κ 2 D r + D e - Ω 2 cf 4De - Ω 2 cf 4 ac + Ω cf 2D e ab
Finally, for our model to correctly reproduce the physics of the original system, the value we got for cc must coincide with Eq. (3.9) which requires that

K = 1 D r -κ 2 D r + D e - Ω 2 cf 4De - Ω 2 cf 4
and, upon recalling Eq. (3.11), 59
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κ = 2 V b V -V b   Ω 2 cf 4 D r + D e - Ω 2 cf 4De -D r  
We thus obtain the analytic expressions of the parameters κ r and κ i , respectively characterizing the non-linear dispersion and absorption of the c-boson, which make our model system precisely reproduce the results of the original problem in the steady state and in the lowest order of the feeding parameter α.

Let us now investigate the physical content of the previous model by considering two limiting cases.

Dispersive regime

In the dispersive regime addressed in the Chap.

2, |D e,r | Ω cf , whence V b ≈ √ 2π 2 3 |C 6 | ∆r , κ r ≈ -2∆r (N b -1)
and κ i ≈ 0, where we introduced

N b ≡ V V b . This result
agrees with what we previously obtained in the Rydberg bubble approximation and therefore conrms its validity: we observe a shift due to the non-linear dispersive behavior of the c-boson, but no non-linear absorption since the intermediate level is too far detuned. Moreover, in the bubble picture, the parameter N b was interpreted as the number of Rydberg bubbles the sample may accommodate; as suggested above, this allows us to interpret V b as the bubble volume.

Resonant case

If we now go to the opposite regime, i.e. the resonant case for which ∆ e = ∆ r = 0, γ e γ r and

Ω 2 cf γ 2 e , we obtain V b ≈ π 2 3 (1 -i) |C 6 |
γe and therefore the non-linearity parameters are

κ r = -κ i ≈ - 2π 2 3V γ e |C 6 |
We now have both dispersion and absorption. From the expression of κ i , it is clear that absorption results from an interplay of the spontaneous emission from the intermediate state and the Rydberg-Rydberg interactions.

Conclusion

In this chapter, we have studied the strong quantum optical non-linearities induced by Rydberg-Rydberg dipole-dipole interactions in an atomic medium. We provided a new perturbative treatment of the problem, based on the factorization of the lowest-order of operator product averages. This calculation enabled us to recover and extend our previous results: we could validate the approach based on the Rydberg bubble picture, as

Conclusion

well as investigate the resonant, absorptive, regime. In particular, our numerical simulations showed that strong Rydberg-induced non-linearities lead to dierent impedance matching conditions for single photons and photon pairs.

Moreover we proposed an eective model which yields the same results as the full calculation at the lowest order in the feeding parameter; this model also sheds light on the origin of the dispersion and absorption, as well as makes a bridge between the Rydberg bubble and perturbative approaches. In [START_REF] Boddeda | Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity[END_REF], the eective bosonic model was used to reproduce the non-linear behavior of the cavity transmission.

Under the mean-eld approximation (equivalent to all bosons being in coherent states)

the model was shown to correctly reproduce the experimental data. More details can be found in App. A.

In the next chapter, we present an approach inspired from the many-body physics which allows us to go beyond the lowest order terms in expansion of correlation functions.

4. Schwinger-Keldysh contour formalism.

In Chap. 3 we considered the perturbative expansion of correlation functions to the lowest order in the feeding rate α. The extension of this method to higher orders leads to cumbersome expressions which are dicult to deal with. In this chapter 1 we consider the system in the so-called Schwinger-Keldysh contour formalism. Based on a contourordered representation of the relevant correlation functions (Sec. 4.1), it allows for a systematic perturbative expansion via Wick's theorem (Sec. 4.2). As a perturbation we will consider both feeding and dipole-dipole interaction Hamiltonians. We will perform a complete resummation with respect to the latter, for each correlation function that we encounter in this chapter. Using this method we re-derive results of Chap. 3 (Secs. 4.3,4.4,4.5) in an analytic compact form and go beyond by deriving analytic expressions for elastic and inelastic components of the cavity transmission spectrum (Sec. 4.6). We also identify a polaritonic resonance structure, to our knowledge unreported so far, that we physically interpret.

Introduction

In this section, we introduce the basic tools we shall use throughout this chapter.

In Subsec. 4.1.1, we present the bosonic representation of the system's Hamiltonian, explained in more detail in App. B. In Subsec. 4.1.2, we show how to use the socalled Schwinger-Keldysh contour idea to express generic correlation functions in a form particularly well suited for the perturbative expansion we perform in subsequent sections.

Bosonic representation of the Hamiltonian

In the perturbative treatment we perform in the next sections, we shall make an extensive use of Wick's theorem. To this end, it is convenient to represent our system in terms of bosons. The idea, presented in detail in App. B and only briey sketched here, is to associate each atom i = 1, . . . , N in the ensemble with two independent bosonic annihilation operators {b i , c i } whose truncations to single-excitation subspace coincide with the lowering operators σ

(i)
ge and σ (i) gr , respectively. This approximation is valid in the regime of large atom numbers and weak coupling g γ R c , γ e . In that representation, the Hamiltonian of the full system described in Chap. Input-output theory shows that, under Markov approximation, these functions simply relate to the intracavity eld correlation functions, themselves coupled to the atomic correlation functions via Heisenberg-Langevin equations. The generic form for such correlation functions is

H 0 = H at + V a-c + H cav + H bath + V cav-bath + V at-bath H int = H dd + H f H dd = 1 2 N m,n κ mn c † m c † n c m c n H f = α a + a † H at = N n=1 -∆ e b † n b n -∆ r c † n c n + Ω cf 2 b † n c n + b n c † n V a-c = N n=1 g ab † n + a † b n H cav = -∆ c a † a H bath = λ=L,R dω ωB † λ,ω B λ,ω + dω ω N n=1 D † n,ω D n,ω + C † n,ω C n,ω V cav-bath = λ=L,R dω g b (ω) B λ,ω a † + B † λ,ω a V at-bath ≈ N n=1 dω g c (ω) C n,ω b † n + g d (ω) D n,ω c † n + H.c.
T r i=1 O † H,i (t i ) T r+s j=r+1 O H,j (t j ) (4.1)
where O H,i (t) ≡ e iH(t-t 0 ) O i e -iH(t-t 0 ) is an arbitrary operator of our system, expressed in the Heisenberg picture with respect to the Hamiltonian H given in the previous subsection. In (4.1) T and T stand for the chronological and anti-chronological time-4. Schwinger-Keldysh contour formalism.

ordering operators dened respectively as:

T (A (t 1 ) B (t 2 )) = A (t 1 ) B (t 2 ) ; t 1 > t 2 B (t 2 ) A (t 1 ) ; t 2 > t 1 (4.2) T (A (t 1 ) B (t 2 )) = A (t 1 ) B (t 2 ) ; t 2 > t 1 B (t 2 ) A (t 1 ) ; t 1 > t 2 (4.3)
We also notice that averaging in 4.1 is performed over the initial state of the system (at t = t 0 ), that we assume to be the vacuum

ρ 0 = |Ø Ø| ( • • • ≡ Tr [ρ 0 • • • ]
), i.e. the state which does not contain any excitation, either in the baths or in the system {cavity+atoms}. Many physically relevant quantities involve correlation functions of the form (4.1), as for example the g (2) (τ ) function of the transmitted light (See App. C) or the squeezing spectrum which requires the determination of

T {a (t) a (t )} , T a † (t) a † (t ) .
Let us now transform (4.1) into the interaction picture with respect to H 0 . For any operator O H (t) ≡ e iH(t-t 0 ) Oe -iH(t-t 0 ) in the Heisenberg picture we may write

O H (t) = V † (t, t 0 ) O H 0 (t) V (t, t 0 ) (4.4)
where we introduced V (t, t 0 ) ≡ e iH 0 (t-t 0 ) e -iH(t-t 0 ) . By time derivation of the previous denition we get

d dt V (t, t 0 ) = -iH int (t) V (t, t 0 ) (4.5)
H int (t) ≡ e iH 0 (t-t 0 ) H int e -iH 0 (t-t 0 )

and deduce through recursive integration that V = +∞ n=0 V (n) , where

V (0) (t, t 0 ) = 1 and V (n>1) (t, t 0 ) = (-i) n t t 0 . . . t 2 t 0 dt 1 . . . dt n H int (t n ) . . . H int (t 1 ) = (-i) n n! T t t 0 dsH int (s)
n where T is the chronological time-ordering operator (see Eq. 4.2). Please note that the n! factor in the denominator appears from permutations of the time arguments. Finally combining all terms in the expansion of V (t, t 0 ) we get

4.1 Introduction V (t, t 0 ) = T e -i t t 0 dsH int (s) (4.6) and V † (t, t 0 ) = T e -i t 0 t dsH int (s) (4.7)
At this point it is worth noticing, that following [START_REF] Abrikosov | Methods of Quantum Field Theory in Statistical Physics[END_REF][START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF][START_REF] Rammer | Quantum eld theory of non-equilibrium states[END_REF][START_REF] Kamenev | Field theory of non-equilibrium systems[END_REF], we do not provide any prescription for same-time values of (4.2). In order to make the chronological time-ordering coincide with normal ordering when t = t , we shall implicitly assume that, under T , the time arguments of creation operators are shifted further in time by the innitesimal quantity 0 + such that, e.g.

T t t 0 dsH dd (s) = T 1 2 m,n κ mn dsc † m s + 0 + c † n s + 0 + c m (s) c n (s) = 1 2 m,n κ mn dsc † m (s) c † n (s) c m (s) c n (s)
For the same reason, under T , the time arguments of creation operators will be added the innitesimal quantity 0 -so that:

T t t 0 dsH dd (s) = T 1 2 m,n κ mn dsc † m s + 0 -c † n s + 0 -c m (s) c n (s) = 1 2 m,n κ mn dsc † m (s) c † n (s) c m (s) c n (s)
Combining (4.4, 4.6, 4.7) we may rewrite (4.4) under the following form: 

O H (t) = T e -i t 0 t dsH int (s) O H 0 (t) T e -i t
O † 1 (t 1 ) O † 2 (t 2 ) . . . O † r (t r ) O r+1 (t r+1 ) . . . O r+s (t r+s ) (4.9) = Tr ρ 0 V † (t 1 , t 0 ) O † H 0 ,1 (t 1 ) V † (t 2 , t 1 ) O † H 0 ,2 (t 2 ) . . . V † (t r , t r-1 ) O † H 0 ,r (t r ) V (t r , t 0 ) ×V † (t r+1 , t 0 ) O H 0 ,r+1 (t r+1 ) V (t r+1 , t r+2 ) . . . O H 0 ,r+s (t r+s ) V (t r+s , t 0 ) = Tr ρ 0 V † (t 1 , t 0 ) O † H 0 ,1 (t 1 ) . . . O † H 0 ,r (t r ) V † (∞, t r ) ×V (∞, t r+1 ) O H 0 ,r+1 (t r+1 ) . . . O H 0 ,r+s (t r+s ) V (t r+s , t 0 )
where in the last line we used the unitarity of the V operator. Finally we assume further that the evolution of the system began at t 0 = -∞. The latter condition is consistent with the steady state calculation.

Reintroducing time-ordering operators in Eq. ( 4.9) we get

T r i=1 O † H,i (t i ) T r+s j=r+1 O H,j (t j ) (4.10) = Tr ρ 0 T V † (t 1 , ∞) O † H 0 ,1 (t 1 ) . . . O † H 0 ,r (t r ) V † (∞, t r ) ×T {V (∞, t r+1 ) O H 0 ,r+1 (t r+1 ) . . . O H 0 ,r+s (t r+s ) V (t r+s , ∞)} = Tr   ρ 0 T O † H 0 ,1 (t 1 ) . . . O † H 0 ,r (t r ) e -i -∞ +∞ dsH int (s)
×T O H 0 ,r+1 (t r+1 ) . . . O H 0 ,r+s (t r+s ) e -i +∞ 

∀z 1 , z 2 C : T C {A (z 1 ) B (z 2 )} = A (z 1 ) B (z 2 ) ; z 1 > z 2 B (z 2 ) A (z 1 ) ; z 2 > z 1
or, to be more explicit,

T C {A (z 1 ) B (z 2 )} =            A (z 1 ) B (z 2 ) ; if z 1 C -, z 2 C + B (z 2 ) A (z 1 ) ; if z 1 C + , z 2 C - T { A (z 1 ) B (z 2 ) } ; if z 1 C + , z 2 C + T { A (z 1 ) B (z 2 ) } ; if z 1 C -, z 2 C - Finally, introducing the notation O ±,i ≡ O H 0 ,i (t i C ± ), we may rewrite (4.10) under the form: T r i=1 O † H,i (t i ) T r+s j=r+1 O H,j (t j ) = T C r i=1 r+s j=r+1 O † -,i (t i ) O +,j (t j ) e -i C dsH int (s) (4.11)
The so-called Schwinger-Keldysh contour formalism we have just introduced allows one to expand e.g. correlation functions in powers of the perturbation in a more systematic and practical way than conventional approaches thanks to Wick's theorem for contour-ordered quantities, as we shall see in the next section.

For the sake of simplicity, we introduce the operator (4.11), where the q subscript stands for the so-called quantum variable [START_REF] Kamenev | Field theory of non-equilibrium systems[END_REF] 3 :

A q = 1 √ 2π ∞ -∞ (a + -a -) ds in Eq.
T C e -i( C H dd) -i √ 2πα(Aq+A † q ) r i=1 O † -,i (t i ) r+s j=r+1 O +,j (t j ) = n -i √ 2πα n n! T C e -i( C H dd) A q + A † q n r i=1 O † -,i (t i ) r+s j=r+1 O +,j (t j ) = n,k -i √ 2πα n (n -k)!k! T C e -i( C H dd) A n-k q A †k q r i=1 r+s j=r+1 O † -,i (t i ) O +,j (t j ) (4.12)
In the next section, we shall consider the perturbative expansion of Eq. ( 4.12) with respect to H dd which yields the following double perturbation series

n,k,p -i √ 2πα n (n -k)!k! T C -i C H dd p p! A n-k q A †k q r i=1 r+s j=r+1 O † -,i (t i ) O +,j (t j ) (4.13)
Thanks to Wick's theorem, recalled in the next section, we shall be able to fully resum the rst few terms in α (up to n = 4) with respect to H dd .

3 This denition is made for the sake of convenience. The term quantum variable can be motivated by the following decomposition of the forward and backward operators: a + (t) ≡ a (t) + δa + (t) , a -(t) ≡ a (t) + δa -(t) , where δa +,-= 0. Therefore the so-called quantum variable a q ≡ 1 √ 

2 (a + -a -) = 1 √ 2 (δa + -δa -) indeed
T {O 1 (t 1 ) O 2 (t 2 ) O 3 (t 3 )} T {O 4 (t 4 ) O 5 (t 5 )} .

Wick's theorem and Green's functions

In this section we recall the Wick's theorem for bosonic statistics which applies to our system. Then we dene and give the main properties of the Green's functions which appear as the basic element of the perturbative expansion we get from Wick's theorem.

Wick's theorem

Following [START_REF] Rammer | Quantum eld theory of non-equilibrium states[END_REF], we recall the Wick's theorem for contour-ordered quantities specic to the bosonic statistics.

The generic term of the double perturbative expansion of Eq. ( 4 4 We notice that Wick's theorem is actually demonstrated for independent bosons [START_REF] Rammer | Quantum eld theory of non-equilibrium states[END_REF].

In our case, bosons are not independent but we may set ourselves in these conditions as follows. The Hamiltonian H 0 is quadratic in bosonic operators, i.e. it can be written as H 0 = i,j h ij ζ † i ζ j where we sum over all the possible operators of the system (∀i, j :

ζ i , ζ † j = δ ij ).
We introduce the new operators ξ i = U j i ζ j , where U stands for the unitary transformation which diagonalizes the matrix 4.2 Wick's theorem and Green's functions

S = a.p.p k,l T C e l (z l ) e † k (z k ) (4.15)
The quantity G

(C)

e k e l (z l , z k ) = -i T C e l (z l ) e † k (z k )
is called the unperturbed contourordered Green's function for the operators e k and e l . The next subsection shall be devoted to its determination.

It is important to notice that an implicit part of the theorem's statement is that the number of creation and annihilation operators should be equal, the corresponding expectation value otherwise vanishes. This remark allows us to simplify the general formula Eq. ( 4.13) for the correlation function as follows. In this formula we have

k + r + 2p creation operators (recalling that H dd = 1 2 ij κ ij c † i c † j c i c j ) and n -k + s + 2p
annihilation operators. According to the remarks above, we can restrict the series Eq. Dening D = sr we nally have

n: n+D 2 Z,p -i √ 2πα n n+D 2 ! n-D 2 ! T C -i C H dd p p! A n-D 2 q A † n+D 2 q r i=1 r+s j=r+1 O † -,i (t i ) O +,j (t j ) (4.16)
where in the summation over n we specied that k should be an integer. For future reference and for the sake of conciseness we shall use the formally resummed version of this formula with respect to p

n: n+D 2 Z -i √ 2πα n n+D 2 ! n-D 2 ! T C e -i( C H dd) A n-D 2 q A † n+D 2 q r i=1 r+s j=r+1 O † -,i (t i ) O +,j (t j ) (4.17)
Finally it is worth noticing that the theorem completes the mathematical apparatus required for the perturbative expansion of the correlation functions.

Green's functions

The crucial concept of this chapter is the contour-ordered Green's function G

(C)

e k e l (z l , z k ) = -i T C e l (z l ) e † k (z k )
which naturally emerges from Wick's theorem. Physically it characterizes the system's response at some time z l to the creation of a single excitation at time z k .

h ij . These new operators are themselves bosonic, i.e. ξ i , ξ † j = δ ij and since H 0 = i ω i ξ † i ξ i , they are independent and therefore satisfy the theorem's hypothesis. Finally transforming bosons back to the initial basis we get Eq. (4.15).

4. Schwinger-Keldysh contour formalism.

Depending on the respective positions of the arguments z k and z l on the contour, G (C) e k e l [z l , z k ] coincides with one of the four following real-time Green's functions:

           G T e k e l (z l -z k ) = G (C) e k e l [z l , z k ] ; when z l , z k C + G T e k e l (z l -z k ) = G (C) e k e l [z l , z k ] ; when z l , z k C - G > e k e l (z l -z k ) = G (C) e k e l [z l , z k ] ; when z k C + , z l C - G < e k e l (z l -z k ) = G (C) e k e l [z l , z k ] ; when z k C -, z l C +
where we implicitly assumed the time invariance of G T, T ,>,< (resulting from the fact that H 0 is time-independent). Note that, while (z k , z l ) are contour arguments in G

(C)

e k e l (z l , z k ), they must be understood as real time arguments in the functions G T ,G T ,G > ,G < . It can also be shown [START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF]) that 5 

G T xy [t -t] = -G T yx [t -t ] * = -G T xy [t -t ] * , or equivalently in temporal Fourier space G T xy [ω] = -G T xy [ω] * .
Moreover, the dierent Green's functions are related by

G > xy [ω] + G > xy [ω] = G T xy [ω] + G T xy [ω].
This can be further simplied by noticing that, since H 0 preserves the excitation number and the state we average on is the vacuum ρ 0 , then G < xy [ω] = 0 for any pair of operators (x, y); therefore G

> xy [ω] = 2i Im G T xy [ω]
. As it can be seen, all four Green's functions are not independent. As a consequence dening the so-called

quantum variable x q (t) ≡ 1 √ 2 (x + (t) -x -(t)) (where as usual x ± (t) = x H 0 (t C ± ))
we get for any pair of two operators (x, y): T C x q (t) y † q (t ) = 0. In the remainder of this subsection we determine G T xy for all possible pairs of oper- ators (x, y), from which all other Green's functions can be deduced.

Time-ordered Green's functions

In this subsubsection we shall determine time-ordered Green's functions of the form

G T (t k -t l ) = -i T e k (t k ) e † l (t l )
where e k , e l are either atomic or photonic annihilation operators expressed in the interaction picture with respect to H 0 . Their expression can be deduced from the Heisenberg-Langevin equations of the system, generated by H 0 alone:

d dt a = -Γ c a -iα -ig N i b i + 2γ c a in (4.18) d dt b i = -Γ e b i -i Ω cf 2 c i -iga + 2γ e b i,in (4.19) 
d dt c i = -Γ r c i -i Ω cf 2 b i + 2γ r c i,in (4.20) 
5

The second equality follows from the unitarity of the Hamiltonian.

4.2 Wick's theorem and Green's functions

In this section we use complex decay rates Γ x ≡ γ x +i∆ x where x = c, e, r for simplicity. We now introduce the collective spinwaves b k ≡ 1 √ N j e i k r j b j , c k ≡ 1 √ N j e i k r j c j dened in App. B which allow us to split the system of Eqs. (4.18-4.20) into a set of independent subsystems, i.e.

d dt a = -Γ c a -iα -ig √ N b 0 + 2γ c a in (4.21) d dt b 0 = -Γ e b 0 -i Ω cf 2 c i -ig √ N a + 2γ e b 0,in (4.22) 
d dt c 0 = -Γ r c 0 -i Ω cf 2 b 0 + 2γ r c 0,in (4.23) 
and, for k = 0

d dt b k = -Γ e b k -i Ω cf 2 c k + 2γ e b k,in (4.24) 
d dt c k = -Γ r c k -i Ω cf 2 b k + 2γ r c k,in (4.25) 
We dene the matrix 6 ĜT [t, t ] ≡ -i T X (t) × X † (t ) (4.26) where

X (t) ≡        a (t) b 0 (t) c 0 (t) b k (t) c k (t) k =0        and X † (t) is the transconjugated vector a † (t) , b † 0 (t) , c † 0 (t) , b † k (t) , c † k (t) , that is more explicitly, ĜT t, t ≡ -i           T a (t) a † (t ) T a (t) b † 0 (t ) T a (t) c † 0 (t ) T a (t) b † k (t ) T a (t) c † k (t ) T b 0 (t) a † (t ) T b 0 (t) b † 0 (t ) T b 0 (t) c † 0 (t ) T b 0 (t) b † k (t ) T b 0 (t) c † k (t ) T c 0 (t) a † (t ) T c 0 (t) b † 0 (t ) T c 0 (t) c † 0 (t ) T c 0 (t) b † k (t ) T c 0 (t) c † k (t ) T b k (t) a † (t ) T b k (t) b † 0 (t ) T b k (t) c † 0 (t ) T b k (t) b † k (t ) T b k (t) c † k (t ) T c k (t) a † (t ) T c k (t) b † 0 (t ) T c k (t) c † 0 (t ) T c k (t) b † k (t ) T c k (t) c † k (t )          
6 Note that the time-ordering applies only to operators but not to vectors 4. Schwinger-Keldysh contour formalism.

From Eqs. (4.21-4.23,4.24,4.25) we deduce the matrix equation [START_REF] Rammer | Quantum eld theory of non-equilibrium states[END_REF])

∂ t ĜT [t, t ] = M × Ĝ [t, t ] -iδ (t -t ) I (4.27)
where M has the following block-diagonal structure in the basis (a, b 0 , c 0 , {b k , c k }):

M = M0 0 0 M k k =0 (4.28)
where

M0 =    -Γ c -ig √ N 0 -ig √ N -Γ e -i Ω cf 2 0 -i Ω cf 2 -Γ r    (4.29) M k = -Γ e -i Ω cf 2 -i Ω cf 2 -Γ r (4.30)
Switching to the temporal Fourier space ( ĜT [ω] ≡ -i dω e iωt T X † (t) × X (0) ) we get:

-iω ĜT [ω] = M • ĜT [ω] -iI or equivalently: ĜT [ω] = ω -i M -1
Finally, using the expression of M (4.28) we get a block-diagonal form for ĜT

[ω] ĜT [ω] = ĜT 0 [ω] 0 0 ĜT k [ω] where ĜT 0 [ω] =    ω + iΓ c -g √ N 0 -g √ N ω + iΓ e - Ω cf 2 0 - Ω cf 2 ω + iΓ r    -1 (4.31) ĜT k [ω] = ω + iΓ e - Ω cf 2 
-

Ω cf 2 ω + iΓ r -1 (4.32)
The explicit calculation of ĜT 0 [ω] and ĜT k [ω] can be readily performed, for example, using Mathematica. The exact expression of the full ĜT does not present much interest 4.3 First order quantities here: we will provide specic matrix elements where needed.

Recalling the properties of the Green's functions

Ĝ

T , Ĝ> specied in the introduction to this subsection we may straightforwardly deduce that they exhibit the same blockdiagonal structure as ĜT .

In the following sections we present the calculation of correlation functions using the formalism presented above. For all physical quantities of interest, we will perform the expansion and full resummation of Eq. ( 4.17) with respect to H dd , for the rst few orders (up to the fourth order) in the feeding rate α: therefore, unless specied, the term order will refer to the order in power of α. In Sec. 4.3 we derive the rst order averages for cavity and atomic variables. In Sec. 4.4 we demonstrate the factorization of the lowest order correlation functions. Using this property we re-derive the results of the Chap. 3 in Sec. 4.5, but, here, in an analytic form. In Sec. 4.6 we go beyond the lowest order and derive the analytic expression of the transmission spectrum of the cavity, distinguishing its elastic and inelastic parts. We give a physical explanation to the inelastic part using a simple polaritonic picture.

First order quantities

In this section we derive results for the rst order cavity mode average a (1) . Applying the general expression Eq. ( 4.17) to a (t) (1) we get:

a (t) (1) = -i √ 2πα T C e -i( C H dd) A † q a + (t) (4.33)
Being of the rst order with respect to the feeding rate α, this correlation function could be derived from, e.g., the Heisenberg-Langevin equations presented in Chap. 3 .

In order to introduce the formalism we, however, prefer to provide a detailed derivation.

By separating the forward and backward parts of the contour C H dd = C + H dd +

C -H dd and expanding with respect to each of them separately we get from (4.33):

a (t) (1) = -i √ 2πα p,q T C    -i C + H dd p p! -i C -H dd q q! A † q a + (t)    (4.34)
We rst consider the term -i C -H dd q in Eq. (4.34), which, according to the denition of H dd , contains 2q creation operators and 2q annihilation operators belonging to the backward part of the contour C.

According to Wick's theorem we shall now consider all possible pairings of these annihilation/creation operators to get the generic term of the expansion. We will rst provide two important rules that we shall use extensively in the remainder of the chapter. We start by making the simple but very important remark: since H 0 conserves the 4. Schwinger-Keldysh contour formalism.

number of excitations and the state we average on is the vacuum ρ 0 , then the average of a normal ordered product of annihilation e k and a creation operator e † l vanishes, i.e. e † l (z l ) e k (z k ) = 0; as a consequence:

R1 the contraction

T C e k (z k ) e † l (z l )
vanishes unless z k > z l on the contour C.

Another consequence of the excitation number conservation by H 0 and ρ 0 being in the vacuum state, is that for any k ≥ 1

T C -i C ± H dd (s) ds k = 0 which implies: R2 T C exp -i C ± H dd (s) ds = 1
Applying the rule R1 we deduce that all creation and annihilation operators in -i C -H dd q should be contracted with each other. According to rule R2 a contraction arrangement in which the (2q) operators of -i C -H dd q are paired with each other, and therefore disconnected from the remaining terms -i C + H dd p A † q a + (t), will give a vanishing contribution to the overall average, unless q = 0. This simple but fundamental remark will be used further; let us notice that it allows one to discard the terms in the perturbation series corresponding to the so-called disconnected diagrams [START_REF] Abrikosov | Methods of Quantum Field Theory in Statistical Physics[END_REF]. The same kind of argument holds for

-i C + H dd p
and we, therefore, may discard all terms except for q, p = 0:

a (t) (1) = -i √ 2πα T C A † q a + (t)
which further simplies recalling that

A † q ≡ 1 √ 2π ds a † + -a † -: a (t) (1) = (-iα) T C ds a † + -a † -a + (t) (4.35)
Let us now consider the Fourier transform of the Eq. ( 4.35):

4.4 Factorization of averages in the lowest order

1 √ 2π e iωt dt a (t) (1) = (-iα) √ 2π e iωt T C dsa † + (s) a + (t) = (-iα) √ 2π e iωt ds iG T aa [t, s] = (-iα) √ 2π e iωt ds iG T aa [t -s] = -iα √ 2π iG aa [ω] δ (ω) The term T C dsa † -(s) a + (t)
vanished due to the rule R1. The delta function in this expression results from the system being in the steady state (we assume that the evolution starts at t 0 = -∞). Using the expression Eq. ( 4.31) we deduce:

a (t) (1) = (-iα) iG aa [0] = (-iα) Γ c + g 2 N Γe+ Ω 2 cf 4Γr
Here we recover the standard cavity-EIT response formula.

We may derive other averages in the same way:

b 0 (ω) (1) = -iα √ 2π iG b 0 a [0] δ (ω) c 0 (ω) (1) = -iα √ 2π iG c 0 a [0] δ (ω)

Factorization of averages in the lowest order

In this subsection we consider the expression for correlation function in the general contour-ordered form Eq. (4.17). Restricting ourselves to the lowest non-vanishing order in α, that is n = r+s 7 , where r, and s are the numbers of creation and annihilation operators, respectively, we get:

7 The results from employing the equality between the number of creation and annihilation operators in Eq. (4.17 4. Schwinger-Keldysh contour formalism.

T r i=1 O † i (t i ) T r+s j=r+1 O j (t j ) (4.36) = -i √ 2πα r+s r!s! T C e -i C (H dd ) (A q ) r A † q s r i=1 O † -,i (t i ) r+s j=r+1
O +,j (t j )

Let us now expand the expression Eq. (4.36) in powers of C + (H dd ) and C -(H dd )

analogously to the previous subsection:

-i √ 2πα r+s r!s! p,q (-i) p+q p!q! T C C + (H dd ) p C -(H dd ) q A r q A †s q • • • × r i=1 O † -,i (t i ) r+s j=r+1 O +,j (t j ) (4.37)
Recalling the expression for the Hamiltonian of the dipole-dipole interactions

H dd = 1 2
m,n κ mn c † n c † m c n c m , we deduce that each term of the sum in (4.37) contains (2p + s)

annihilation operators that belong to the forward part (C + ) of the contour. From the rule R1 given in the previous subsection, they can only be contracted with the s operators A † q and 2p creation operators within -i C + (H dd )

p . The same remark applies to the (2q + r) annihilation operators belonging to the C -branch of the contour: they can only be contracted with the r operators A q and the 2q annihilation operators in

-i C -(H dd ) q .
Therefore, in Eq. (4.37) the two sums over p and q factorize, or, more explicitly:

-i √ 2πα r+s r!s! p,q (-i) p+q p!q! T C C + (H dd ) p C -(H dd ) q A r q A †s q • • • × r i=1 O † -,i (t i ) r+s j=r+1 O +,j (t j ) = -i √ 2πα r r! q (-i) q q! T C C - H dd q A r q r i=1 O † -,i (t i ) × -i √ 2πα s s! p (-i) p p! T C C + H dd p A †s q r+s j=r+1 O +,j (t j ) = T O +,j (t j ) (s) T O +,j (t j ) (r)
where the superscript as usual denotes the order in expansion in α. Here we therefore recover the factorization property of averages discussed in Chap. 3, though in an alternative way. It is important to stress that this property does not apply to averages beyond the lowest non-vanishing order (leading to some interesting physical eects, as will be shown in the Subsec. 4.6.2).

4.5 Intensity correlation function

Intensity correlation function

In this subsection we partially re-derive the results obtained in Chap 3 on the g (2) function. It allows us to introduce various tools that we will use to compute quantities beyond the lowest order approximation.

4.5.1 g (2) function

Using the results of the previous subsections we may write for the intensity correlation function at the lowest non-vanishing order:

g (2) (τ ) = T a † (0) a † (τ ) T {a (τ ) a (0)} (4) a † (0) a (0) (2) 2 = T {a (τ ) a (0)} (2) 2 a (1)
ss 4

The denominator of this expression was already computed in Sec. 4.3, therefore, in this section we shall focus on T (a (t) a (t )) (2) . We use (4.36) with r = 0 and s = 2 and get:

T {a (t) a (t )} (2) = -i √ 2πα 2 2! T C e -i C + H dd A † q 2 a + (t) a + (t ) (4.38)
Note that here we omitted the e -i C - H dd factor under the contour ordering as only its 0th order in expansion contributes to the average (see Sec. 4.3). We also notice that Eq. (4.38) contains only + operators and therefore its Wick's expansion comprises only time-ordered Green's functions. We therefore keep only the C + part of the contour (for shortness we will omit " + " indices in this section):

T (a (t) a (t )) (2) = (-iα) 2 2! T e -i 1 2 m,n κmn dsc † n c † m cncm dsa † (s) 2 a (t) a (t ) (4.39)
In order to evaluate this expression we now perform the perturbative expansion with respect to H dd . It appears to be more convenient to express the Hamiltonian in the spinwave picture derived in App. B.2:

H dd = 1 2 q, k 1 , k 2 U q c † k 2 -q c † q+ k 1 c k 1 c k 2
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A. Zeroth order The zeroth order in expansion of Eq. (4.39) in H dd yields:

T (a (t) a (t )) (2,0) = (-iα) 2 2! T dsa † (s) 2 a (t) a (t ) = (-iα) 2 ds 1 iG aa [t -s 1 ] ds 2 iG aa [t -s 2 ] = (-iα) 2 iG aa [ω = 0] iG aa [ω = 0] ≡ a (t) (1) a (t ) (1) 
where the superscript (p,q) denotes the pth order in expansion in α and qth in H dd (we also recall here the denition of a (t) (1) ≡ (-iα) iG aa [0]). The factorization of T (a (t) a (t )) (2,0) constitutes an obvious consequence of the fact that at zeroth order in H dd the system is completely linear.

B. First order Let us now consider the rst order in expansion in dipole-dipole interactions:

T {a (t) a (t )}

(2,1)

(4.40) = q, k 1 , k 2 -iU q 2 (-iα) 2 2! T dsc † k 2 -q c † q+ k 1 c k 1 c k 2 ds a † (s ) 2 a (t) a (t )
According to Wick's theorem, we now have to review all possible ways to pair creation and annihilation operators in (4.40). Let us rst make a few remarks which allow us to discard vanishing contractions.

As shown in Subsection 4. 

T C ± c k (t) c † k (t + 0 ± ) = 0.
Taking these remarks into account we get:

T {a (t) a (t )}

(2,1) (4.41)

= -i × U 0 (-iα) 2 ds 1 ds 2 ds 3 G ac 0 [t, s 1 ] G ac 0 [t , s 1 ] G c 0 a [s, s 2 ] G c 0 a [s, s 3 ]
Fourier transforming of Eq. ( 4.41) with respect to both t and t we get:

T {a (ω out,1 ) a (ω out,2 )} (2,1) = 1 2π dtdt e iω out,1 t e iω out,2 t T {a (t) a (t )}

(2,1)

= -i √ 2πα 2 -i × U 0 2π δ (ω out,1 + ω out,2 ) G T ac 0 [ω] G T ac 0 [ω ] G T c 0 a [0] 2 (4.42)
Note that the operator T appearing in T {a (ω out,1 ) a (ω out,2 )} (2,1) does not refer to any hypothetical ordering in the frequency space; it is a mere notation meant to remind that this quantity was obtained by Fourier transforming the average of a time-ordered product in real time space.

C. Second order Consider now the second order in expansion in H dd :

T {a (t) a (t )} (2,2) = -i √ 2πα 2 q, k 1 , k 2 , k 1 , k 2 q , -iU -q 2π -iU q 2π × T    a (t) a (t ) ds 1 c † k 2 -q (s) c † q+ k 1 (s) c k 1 (s) c k 2 (s) × ds 2 c † k 2 -q (s 2 ) c † q + k 1 (s 2 ) c k 1 (s 2 ) c k 2 (s 2 ) 1 √ 2π dsa † (s) 2   
Using the same remarks as made above for the rst order and recalling that, according to the rule R2, the contribution of disconnected diagrams (i.e. the contraction arrangement in which the (4p) atomic operators of -i C + H dd p are paired with each other and therefore are disconnected from the other terms) vanishes, we get in the temporal Fourier space:
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Green's function Diagrammatic representation

G ac 0 [ω],G c 0 a [ω] G c k c k [ω]
U k Table 4.1: Diagrammatic representation of Green's functions and interacting potential.

T {a (ω out,1 ) a (ω out,2 )} (2,2)

= -i √ 2πα 2 δ (ω out,1 + ω out,2 ) G T ac 0 [ω out,1 ] G T ac 0 [ω out,2 ] × × q -iU -q 2π iU q 2π dωG T c q ,c q [ω] G T c -q ,c -q [-ω] × G T c 0 a [0] 2 (4.43) 
D. Feynman diagrams The expansion can be performed further. Higher-order terms in H dd reveal a self-similar form and lend themselves to a diagrammatic representation. Table 4.1 summarizes the equivalence rules we use to build diagrams in Fourier space: Green's functions of dierent kinds are represented by dierent arrows, while the interaction potential is represented by a vertical dashed line; it is moreover implicit that, for each loop in a diagram, integration (summation) should be performed over internal variables (indices) and that the overall expression obtained should be multiplied by the factor -i

√ 2πα 2 δ (ω out,1 + ω out,2 ) -i 2π p
where p is the order in H dd ,i.e. the number of dashed vertical lines. Note that we do not distinguish G ac 0 [ω] and G c 0 a [ω] graphically since their expressions coincide (see Eq. (4.31)).

It is easy to see that diagrams (a), (b), (c) in Fig. 4.2, which represent T {a (ω out,1 ) a (ω out,2 )} (2,p) for p = 1, 2, 3, have four thick lines in common. These thick lines represent the conversion of a photon from the cavity mode to the symmetric Rydberg polariton and back. As there is no integration over the arguments of the corresponding Green's function we can factorize them (Fig. 4. Schwinger-Keldysh contour formalism. p T {a (ω out,1 ) a (ω out,2 )} (2,p) 

(4.44) = -i √ 2πα 2 δ (ω out,1 + ω out,2 ) G T ac 0 [ω out,1 ] G T ac 0 [ω out,2 ] (-iT 0 ) 2π G T c 0 a [0]
2 where T 0 is (by direct translation of Fig. 4.2 (e))

T 0 = U 0 + i q U -q S q U q + i 2 q U -q S q q U q-q S q U q + • • • (4.45) and S q ≡ 1 2π dωG T c q ,c q [ω] G T c -q ,c -q [-ω].
We may now give a simple interpretation to the overall formula Eq. ( 4 E. Analytic expression of g (2) (0) According to the results above, we nally get the following analytic expression for the second-order correlation function g (2) (0):

g (2) (0) = a † (0) a † (0) a (0) a (0) (4) 
a † (0) a (0) (2) 2

(4.46) = 1 + iα 2 2π dωG T ac 0 [ω] G T ac 0 [-ω] T 0 G T c 0 a [0] 2 a (0) (1) 2 2 where a (t) (1) = (-iα) iG aa [0] = (-iα) Γ c + g 2 N Γe+ Ω 2 cf 4Γr
The simplicity of Eq. (4.46) is misleading. The main diculty is enclosed in the explicit determination of T 0 to which the next subsection is devoted. The diagrammatic representation of T k, k ( given in Fig. 4.3 a) ) is similar to the one obtained for T 0 . From the diagrammatic structure it is easy to infer its selfconsistent denition shown in Fig. 4.3 b). The corresponding equation is readily obtained using the correspondence rules specied in the previous subsection:

T k, k = U k-k + i q U k-q S q T q, k (4.47)
Let us recall the expression for S q ≡ 1 2π

dωG T c q ,c q [ω] G T c -q ,c -q [-ω].
As shown in Sec. 4.2.2, all Green's functions G c q c q have the same expression for q = 0; we therefore dene S q =0 ≡ S. Using the latter remark we rewrite Eq. 4.47: 85 4. Schwinger-Keldysh contour formalism.

T k, k = U k-k + i q U k-q ST q, k + iU k (S 0 -S) T 0, k (4.48)
It is convenient to represent this equation in a matrix form. We therefore dene matrices:

T k, k ≡ T k, k (4.49) U k, k ≡ U k-k (4.50) P (0) k, k ≡ δ k δ k
where P (0) is the projector on the zeroth spinwave. With these denitions Eq. ( 4.48)

takes the form:

T = U + iS U• T + i (S 0 -S) U• P (0) • T T = 1 -iS U -1 • U• I + i (S 0 -S) P (0) • T (4.51)
There is no obvious straightforward way to extract T from Eq. ( 4.51) in the general case. We may however relate T to its value in the hypothetical conguration when the atoms decouple from the cavity, i.e. when atom-cavity coupling coecient vanishes i.e. g = 0.

Relation to the decoupled case

When g = 0, the atoms do not interact with the cavity eld. From Eqs. (4.31,4.32) in the latter condition we infer that G T c q c q [ω] = G T c 0 c 0 [ω] whence S = S 0 . In this specic conguration, the matrix T , that we shall denote T , to distinguish it from the general case, obeys:

T = U + iS U• T (4.52)
or equivalently:

T = 1 -iS U -1
• U

From Eq. ( 4.51) we get the relation between the T -matrices for the general and hypothetical cases:

T = T • I + i (S 0 -S) P 0 • T (4.53)

Intensity correlation function

Let us multiply both sides of Eq. ( 4.53) by P (0) • from the left:

P (0) • T = P (0) • T + i (S 0 -S) P (0) • T0 • P (0) • T
Solving this equation with respect to P (0) • T and dening P (0) • T • P (0) ≡ T0 P (0) we get:

P (0) • T = P (0) • T 1 -i (S 0 -S) T0
Substituting this expression in Eq. ( 4.53) we nally get the expression for the T matrix:

T = T + i (S 0 -S) T • P (0) • T 1 -i (S 0 -S) T0 (4.54)
Since we are interested in determining T 0 = T [0, 0] = Tr P (0) • T • P (0) we multiply Eq. ( 4.54) by P (0) on the left and right sides and get:

T 0 = T0 1 -i T0 (S 0 -S) (4.55)
The advantage of this relation is that T0 can be evaluated exactly. We start with Eq. ( 4.52) and recalling the denitions of matrices T and Û Eqs. (4.49, 4.50) we have:

T k, k = U k-k + iS q U k-q T q, k
Let us now transform T k, k to the real space using

U K = 1 N N m κ ( r m ) e i K rm (see App. B.2) : T [ r, r ] ≡ 1 N k, k e -i k r e i k r T k, k = 1 N k, k e -i k r e i k r U k-k + iS 1 N k, k e -i k r e i k r q U k-q T q, k = κ ( r) δ r, r + iSκ ( r) T [ r, r ]
where r and r denote the real space conjugate coordinates to k and k , respectively, and κ (R) = C 6 R 6 . Finally we get:

T [ r, r ] = κ (r) 1 -iSκ ( r) δ r, r
Using this expression and transforming back to the spinwave space we get T [0, 0] =

1 N i κ( r i ) 1-iSκ( r i )
. We notice that we already encountered expressions of this kind in Chap.

3.

We may approximately turn T0 into an integral assuming the size of the sample to be suciently big :

T0 ≈ 1 V V d 3 R κ (R) 1 -iSV (R) = 1 V V d 3 R C 6 R 6 1 -iS C 6 R 6 = 4π V ∞ 0 dR × R 2 C 6 R 6 1 -iS C 6 R 6 = 2π 2 3V C 6 i C 6 S
Assume now that C 6 < 0 we have: 

T0 = - 2π 2 3V -i
T 0 = -2π 2 3V -i|C 6 | S 1 + i (S 0 -S) 2π 2 3V -i|C 6 | S (4.57)
Substituting this expression into Eq. ( 4.44) we can get an expression for the non-linear part of the pair correlation function in Fourier space. We may also use it directly as it gives the main part of the spectrum of the transmitted light, or to recover results of the Chap. 3.

Numerical results

In this paragraph we provide the numerical results we obtained for the g (2) (0) function of the light transmitted through the cavity, using the method developed in the current chapter. We compare these results with those obtained in Chap. 3. We also dene and compute the squeezing spectrum Ξ [ω, θ] of the transmitted light.

Intensity correlation function

Intensity correlation function In the previous subsection we obtained all the components required to derive the g (2) function.

We rst recall that (Eq. 4.46):

T {a (ω) a (ω )} (2) = a (ω) (1) a (ω )

(1)

+ iα 2 δ (ω + ω ) G T ac 0 [ω] G T ac 0 [ω ] T 0 G T c 0 a [0] 2 (4.58)
which, in the time domain, yields:

T {a (t) a (t )} (2) = 1 2π dωdω e -iωt e -iω t T {a (ω) a (ω )} (2) = a (t) (1) 2 + iα 2 2π dωe -iω(t-t ) G T ac 0 [ω] G T ac 0 [-ω] T 0 G T c 0 a [0] 2 
For comparison with results obtained in Chap. 3 we set t = t and get

T {a (t) a (t)} (2) ≡ a (t) (1) 2 + iα 2 2π dωG T ac 0 [ω] G T ac 0 [-ω] T 0 G T c 0 a [0] 2 
Integration is performed analytically in App. G, as well the explicit calculation of S and S 0 . In Fig. 4.4 we provide plots of g (2) (0) function obtained through the perturbative method of Chap. 3 and in the contour approach described in the current chapter, both in the resonant (a) and detuned regimes (b). The agreement between the two methods is such that no dierence can be discerned on the gures. As already noted in the previous chapter, the nonlinearity is weaker in the far detuned regime than on exact resonance.

Squeezing spectrum Optical non-linearities are known to lead to squeezing of light, such as, e.g., in the parametric oscillator model Hamiltonian [START_REF] Walls | Quantum optics[END_REF].

Light squeezing is powerful means to perform measurements beyond the quantum limit.

In the multimode case, squeezing can be quantitatively characterized by the squeezing spectrum, which can be physically measured via homodyne detection [START_REF] Lvovsky | Squeezed light[END_REF].

The calculation presented in the current chapter also allows us to easily determine the squeezing spectrum of the transmitted light (at second order in feeding). According to [START_REF] Walls | Quantum optics[END_REF] the squeezing spectrum is given by ζ (ω, θ) = 1 + dte -iωt : X out θ (t) , X out θ (0) :

(4.59)
where the quadrature operator is dened by X out θ (t) ≡ a out (t) e -iθ +a † out (t) e iθ , : . . . :
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denotes the normal ordering of operators and A, B ≡ AB -A B . We can therefore put (4.59) under the form where we used the input-output formalism to relate the transmitted and intracavity eld operators (a out = 2γ

ζ (ω, θ) = 1 + dte -iωt : a out (t) e -iθ + a † out (t) e iθ , a out (0) e -iθ + a † out (0) e iθ : = 1 + 2γ (R) c dte -iωt T {a (t) , a (0)} e -2iθ + 2γ (R) c dte -iωt T a † (t) , a † (0) e 2iθ + 2γ (R) c dte -iωt a † (0) , a (t) + 2γ (R) c dte -iωt a † (t) , a (0) 
(R) c a (t)a in (t)). Restricting ourselves to the second order in feeding rate α, we may use the factorization property of averages, from which we deduce, for example, a † (0) , a (t) (2) ≡ a † (0) a (t) (2) a † (0) (1) a (t) (1) = 0. Therefore Eq. ( 4.60) greatly simplies:

ζ (2) (ω, θ) = 1 + 2γ (R) c dte -iωt T {a (t) , a (0)} (2) e -2iθ + 2γ (R) c dte -iωt T a † (t) , a † (0) (2) 
e 2iθ

(4.61)

The second term in this equation is actually the complex conjugate of the third one:

dte -iωt T a † (t) , a † (0)

(2)

e 2iθ * = dte iωt T {a (t) , a (0)} (2) e -2iθ = dte -iωt T {a (t) , a (0)} (2) e -2iθ
where in the last line we used the time inversion symmetry of time ordered products.

Using Eq. ( 4.58) we therefore nally get : 2) e -2iθ + c.c.

ζ (2) (ω, θ) = 1 + 2γ (R) c dω T {a (-ω) , a (ω )} ( 
= 1 + 2 2γ (R) c dω T {a (-ω) , a (ω )} (2) e -2iθ = 1 + 4γ (R) c α 2 iG T ac 0 [-ω] G T ac 0 [ω] T 0 G T c 0 a [0] 2 e -2iθ (4.62)
According to Eq. ( 4.62) the maximal squeezing which can be achieved with respect to θ is, for any ω, 

t (0) assuming n = 100 and Ω cf = 3γ e for dierent values of cooperativity (provided on the plot) for a ) the resonant case (∆ e = 0,∆ r = 0 ), b) detuned case ∆ e = -25γ e , ∆ r = 0. Ξ (2) 

(ω) = 1 -4γ (R) c α 2 G T ac 0 [-ω] G T ac 0 [ω] T 0 G T c 0 a [0] 2 
In our calculation we a priori assumed that α is small and therefore the latter expression cannot signicantly dier from unity. Fig. 4.5 shows the deviation from unity of the maximum of squeezing spectrum, i.e. 1 -Ξ (2) (ω), using the same parameters as in the previous paragraph and α = 0.1γ e .

G (1) correlation function

In this section we use the Schwinger-Keldysh contour formalism in order to compute the 2) [ω] as a function of the control eld Rabi frequency for a ) the resonant case (∆ e = 0,∆ r = 0 ), b) detuned case ∆ e = -25γ e , ∆ r = 0, α = 0.1γ e .

G (1) out (t, t ) = a (R) † out (t) a
4.6 G (1) correlation function cavity at the fourth order in feeding. This quantity could not have been analytically

determined within the formalism used in Chap. 3 and it will allow us, in the next subsection, to compute the transmission spectrum.

Using the input-output relation for the right mirror of the cavity a (R)

out (t) = 2γ (R) c a (t)- a (R)
in (t) we readily deduce:

a (R) † out (t) a (R) out (t ) = 2γ (R) c a † (t) -a †(R) in (t) 2γ (R) c a (t ) -a (R) in (t ) = 2γ (R) c a † (t) a (t ) (4.63)
where we took into account that the bath to the right of the cavity is in vacuum state (or equivalently a (R) in (t ) gives zero contribution). The right handside of Eq. ( 4.63) can be computed using the formalism developed in the current chapter.

At second order in feeding a † (t) a (t ) (2) = a † (t) (1) a (t ) (1) due to the factorization property. At fourth order in feeding this property does not hold any longer and we must resort to the general formula (4.17) to get:

a † (t) a (t ) (4) = -i √ 2πα 4 4 T C e -i( C H dd) A 2 q A †2 q a † -(t) a + (t ) (4.64) 
Note that we placed the operators a † -(t) and a + (t) on the C -and C + branches, respectively, in order to impose the normal ordering a † (t) a (t ) whatever t and t are.

We now expand the correlation function Eq. ( 4.64) with respect to the dipole-dipole interactions, separating the forward and backward branches of the contour C as follows:

a † (t) a (t ) (4) = -i √ 2πα 4 4 p,q (-i) p+q p!q! T C C + dsH dd (s) p C - dsH dd (s) q × A 2 q A †2 q a † -(t) a + (t ) (4.65)
In the following paragraphs, we split the sum into two main sub-series which exhibit physically dierent contributions to the G

(1) out function at fourth order in feeding.

Elastic contribution

In this subsection, we consider the partial resummation E (t, t ) = p=0,q>0 + p>0,q=0

of Eq. (G (1) correlation function) which will be shown to constitute the so-called elastic part of the G

(1) out function.
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Consider rst the partial sum of Eq. ( 4.65) including the terms p = 0, q = 0:

-i √ 2πα 4 4 p (-i) p p! T C 1 2 m,n κ mn C + dsc † n c † m c n c m p A 2 q A †2 q a † -(t) a + (t ) (4.66)
From the rule R1 (see Subsec. 4.3) we see that the operator a † -(t) does not have other candidates for contraction than A q . Since a † (t) (1) 

= - √ 2πiα T C a † -(t) A q (see Sec. 4.3), -i √ 2πα 3 2 p (-i) p p! T C 1 2 m,n κ mn C + dsc † n c † m c n c m p A q A †2 q a + (t ) × a † (t) (1) 
(4.67)

The rst term in Eq. ( 4.67) will now be shown to be equal to a (t ) (3) . From the general formula Eq. ( 4.17) we indeed have

a (t) (3) ≡ -i √ 2πα 3 2! p,q (-i) p+q p!q! T C 1 2 m,n κ mn C + c † n c † m c n c m p × 1 2 m,n κ mn C -c † n c † m c n c m q A q A †2 q a + (t)
In the expression above one of the operators c † n , c † m belonging the C -branch does not have any partner for contraction (according to the rule R1). Therefore only the q = 0 term will contribute to the sum and a (t) (3) 

≡ -i √ 2πα 3 2! T C e -i 1 2 m,n κmn C + dsc † n c † m cncm A q A †2 q a + (t) (4.68)
We indeed recover the expression obtained in Eq. ( 4.67). Analogously, the partial sum of the terms (p = 0, q = 0) yields a † (t) (3) a (t ) (1) . Finally we get E = a † (t) (3) a (t ) (1) + a † (t) (1) a (t )

(3)

We shall now determine the expression for a (t) (3) . Let us perform an expansion of Eq. ( 4.68) with respect to H dd . Due to the symmetry properties of the system, it is more convenient to work in the spatial Fourier space. We therefore get:

4.6 G (1) correlation function a (t) (3) = = -i √ 2πα 3 2! p 1 p! T C      - i 2 q, k 1 , k 2 U q C + c † k 2 -q c † q+ k 1 c k 1 c k 2   p A q A †2 q a + (t)   
As expected, the zeroth order (p = 0) of this expansion is zero since it necessarily involves the vanishing contraction of two quantum operators A q and A † q (see Sec.

4.2.2)

. Applying rules R1, R2, R3, R4, the rst order term (p = 1) takes the form:

a (t) (3,1) = -i √ 2πα 3 2! -i 2 q, k 1 , k 2 U q T C C + c † k 2 -q c † q+ k 1 c k 1 c k 2 A q A †2 q a + (t) = (-iα) 3 (-iU 0 ) ds 1 ds 2 ds 3 iG T ac 0 (t -s) -iG T ac 0 [s 3 -s] iG T c 0 a (s -s 1 ) iG T c 0 a (s -s 2 )
where we used

T C A q c † +, k (t) = 1 √ 2π ds T C (a + (s) -a -(s)) c † +, k (t) = 1 √ 2π ds iG T ac 0 [s, t] -iG > ac 0 [s, t] δ k,0 = 1 √ 2π ds -iG T ac 0 [s, t] δ k,0
Therefore, switching to the frequency domain a (ω) (3,1) 

= -i √ 2πα 3 -iG T ac 0 [0] iG T ac 0 [0] (-iU 0 ) iG T c 0 a [0] 2 
We can determine the second order term (p = 2) in Eq. ( 4.68) in a similar way and get:

a (ω) (3,2) = -i √ 2πα

3

-iG T ac 0 [0] iG T ac 0 [0] × ×    q (-iU q ) (-iU -q ) dωiG T q, q [ω] iG T -q,-q [-ω]    × iG T c 0 a [0] 2 
Higher-order terms (p ≥ 3) can be diagrammatically generated and resummed so that 4. Schwinger-Keldysh contour formalism.

we get a (ω) (3) = p a (ω) (3,p) 

= -i √ 2πα 3 δ (ω) -iG T ac 0 [0] iG T ac 0 [0] -iT 0 2π iG T c 0 a [0] 2 (4.69)
where T 0 was dened in Eq. (4.45). Gathering Eqs. (4.69,4.33) we nally get in the frequency domain

E (ω, ω ) = a † (ω) (1) a (ω ) (3) + c.c. = -2πα 4 δ (ω ) δ (ω) G * aa [0] G T ac 0 [0] G T ac 0 [0] T 0 G T c 0 a [0] 2 + c.c. Since a † (ω) (3) 
∝ δ (ω) , a (ω ) (1) ∝ δ (ω ), we see that E (ω, ω ) corresponds to the elastic part of the G

(1) out function at fourth order in feeding.

a (R) † out (ω) a (R) out (ω ) el ∝ δ (ω) δ (ω )
which is due to photons propagating through cavity without changing their frequency.

Note that this fourth order elastic contribution is actually a correction of the (necessarily elastic) second order spectrum.

4.6.2 Inelastic contribution to G (1) out

In this subsection, we consider the partial resummation of the terms of Eq. (G (1) 4) -E (t, t ) and show this brings nonlinearity-induced inelastic features which were absent at lower orders.

correlation function) I (t, t ) ≡ p>0,q>0 = a † (t) a (t ) ( 
We have

I (t, t ) = -i √ 2πα 4 4 p>0,q>0 T C 1 p! -i C + dsH dd (s) p 1 q! -i C -dsH dd (s) q ×A 2 q A †2 q a † -(t) a + (t )
Let us rst consider the term (p = 1, q = 1) still using the H dd in the spinwave basis:

4.6 G (1) correlation function

I 1,1 (t, t ) = -i √ 2πα 4 4 T C      -i 1 2 q, k 1 , k 2 dsU q c † k 2 -q,+ c † q+ k 1 ,+ c k 1 ,+ c k 2 ,+   ×   -i 1 2 q , k 1 , k 2 U q dsc † k 2 -q ,-c † q + k 1 ,-c k 1 ,-c k 2 ,-   A 2 q A †2 q a † -(t) a + (t )    (4.70)
We rst notice that in Eq. ( 4.70) operators c k 1 ,+ c k 2 ,+ and c † k 2 -q ,-c † q + k 1 ,-can only be contracted with A †2 q and A 2 q respectively (using rules R1, R2, R3, R4). Recalling that

A q ≡ 1 √ 2π ds (a + (s) -a -(s))
we have:

T C c k,+ (t) A † q = i √ 2π dsG T c 0 a (t -s) δ k,0 T C c † k,-(t) A q = -i √ 2π dsG T c 0 a (s -t) δ k,0 therefore I 1,1 (t, t ) = -i √ 2πα 4 4 T C      -i C + dz 1 q U q c † -q c † q     i -C - dz 2 q U q c -q c q   × a † -(t) a + (t ) ds √ 2π iG T c 0 a [z 1 , s] 2 - ds √ 2π iG T ac 0 [s, z 2 ] 2 (4.71)
In this expression, according to rule R1, a † -(t) and a + (t ) can only be contracted with one of c q,-and c † q,+ operators respectively. Therefore:

-i √ 2πα 4 T C -i C + dz 1 U 0 c † 0 i -C - dz 2 U 0 c 0 (4.72) × iG T c 0 a [z 2 , t] iG T ac 0 [t , z 1 ] ds √ 2π iG T c 0 a [z 1 , s] 2 - ds √ 2π iG T ac 0 [s, z 2 ]
2 and nally, recalling the denition of the greater Green's function

∀ (z 1 C -, z 2 C + ), T C c 0 (z 2 ) c † 0 (z 1 ) = iG > c 0 ,c 0 [z 2 , z 1 ] we have I 1,1 (t, t ) = -i √ 2πα 4 (-iU 0 ) (iU 0 ) ∞ -∞ dz 1 dz 2 iG > c 0 c 0 [z 2 , z 1 ] iG T c 0 a [z 2 , t] × iG T ac 0 [t , z 1 ] ds √ 2π iG T c 0 a [z 1 , s] 2 - ds √ 2π iG T ac 0 [s, z 2 ] 2 (4.73)
or equivalently in frequency domain

-i √ 2πα 4 δ (ω -ω ) -i U 0 2π i U 0 2π iG > c 0 c 0 [-ω] iG T c 0 a [ω ] (4.74) × iG T ac 0 [ω] iG T c 0 a [0] 2 iG T ac 0 [0] 2 
Continuing the procedure and resumming for p, q > 0, we get: 

I (ω, ω ) = -α 4 δ (ω -ω ) |T 0 | 2 iG > c 0 c 0 [-ω] G T c 0 a [ω ] (4.75) × G T ac 0 [ω] G T c 0 a [0] 2 G T ac 0 [0]
 -∆ c g √ N 0 g √ N -∆ e Ω 2 0 Ω 2 -∆ r   (4.76)
but taken with positive and negative signs. The physical explanation of this eect can be given according to the level structure of the considered system, shown in Fig. 4.7 [START_REF] Ourjoumtsev | Observation of squeezed light from one atom excited with two photons[END_REF]. The system can be seen as to be excited by two photons of the probe laser frequency ω p . Eq. ( 4.75) shows that the strength of dipole-dipole interactions does not aect the ω-dependence of the inelastic component at fourth order since H dd enters Eq. ( 4.75) only via the overall factor T 0 . Doubly excited states decay via dissipative terms Eq. (1.11) to the three symmetric polaritons: the resonance frequencies of the emitted photon pairs are therefore ω p ± 1 , ω p ± 2 and ω p ± 3 , respectively, or, in the frame rotating at the probe frequency ω p , ± 1 , ± 2 and ± 3 .

Conclusions

In this chapter, we investigated the quantum optical nonlinearities induced by a cavity Rydberg EIT medium in the Schwinger-Keldysh contour approach. We transformed all operators of the system into the interaction picture, and used the contour-ordered form for correlation functions. We expanded them perturbatively with respect to both feeding and dipole-dipole interactions. The resummation of series can be performed employing the Wick's theorem for contour-ordered quantities. For that we dened and derived all possible Green's functions of the system. As dipole-dipole interactions can a priori be arbitrarily strong, we are compelled to resum all order of magnitude in H dd for each order of expansion in the feeding Hamiltonian. Using this approach we could derive a compact analytic expression for the squeezing spectrum of the transmitted light and the g

(2) t function at lowest non-vanishing order in feeding. Then we derived the analytic expression of the spectrum of the light transmitted through the cavity beyond the lowest order in feeding which were not accessible to the methods presented in previous chapters. Besides an elastic part, associated to photons going through the cavity without frequency change, the spectrum also comprises an inelastic contribution which contains several resonances that we explained by a simple polaritonic picture.

Throughout this chapter, we assumed a constant feeding of the system, for simplicity: the formalism actually allows for time-dependent wavepacket inputs. We moreover want to emphasize that, though rarely employed in this context (another example of application of such techniques in quantum optics is provided in [START_REF] Fleischhauer | Radiative atom-atom interactions in optically dense media: Quantum corrections to the lorentz-lorenz formula[END_REF]), the contour formalism is a powerful tool for quantum optics which could be used, e.g., to compute higher-order correlation functions of the system or thoroughly analyze subtle eects in Rydberg atomic ensembles such as thermalization [START_REF] Ates | Thermalization of a strongly interacting closed spin system: From coherent many-body dynamics to a fokker-planck equation[END_REF] or phase transition [START_REF] Löw | Universal scaling in a strongly interacting rydberg gas[END_REF]. 

Photonic phase gate

In this chapter 1 , we present a novel scheme for high-delity photonic controlled- phase gates based on the Rydberg blockade in an atomic ensemble loaded in an optical cavity. The setup we consider, represented on Fig. 5.1, is very similar to that described in Chap. 1: it comprises a ladder-type three-level Rydberg medium, placed in an optical cavity whose left mirror is partially transmissive while the right mirror is perfectly reecting. In our scenario, the π phase factor is induced by the reection of the target photonic qubit on the cavity, conditioned by the presence of an intracavity stored polariton, associated with the control qubit. The resulting gate can be implemented with cavities of moderate nesse allowing for highly ecient and robust processing of quantum information encoded in photons.

After describing the gate protocol in Sec. 5.1, we introduce the formalism required to study the scattering of an incident photon on the cavity in Sec. 5.2. We apply this formalism to quantitatively characterize the respective evolution of the logical qubit states in Sec. 5.3. In the last section, we present numerical results we obtained for the gate delity, based on the expressions of the scattering coecients derived previously.

Presentation of the protocol

For simplicity, we rst describe the operation in the so-called single-rail approach, according to which a qubit is encoded in a pulse prepared in a superposition of vacuum |0 and single-photon |1 states. In Sec. 5.4, we shall extend it to the dual-rail encoding where a qubit is encoded as a photon prepared in one of two, spatially distinct possible modes.

In the single-rail version outlined in Figs. 5.1 a) and b), the gate operates as follows.

The pulse encoding the control qubit is sent towards the cavity where it gets stored as a Rydberg polariton of type |r , via a strong-laser-assisted ladder-type storage process (Gorshkov et al., 2007). The |r excitation is then transferred to another Rydberg state |r by a microwave pulse 2 . At that stage, the ensemble therefore contains a single atom in state |r if the rst pulse did contain a photon. Note that we do not take into account possible losses during the storage process and hence assume that, in the latter case, the resulting state of the ensemble is

1 √ N i |g 1 , . . . r i , . . . g N .
The pulse encoding the target qubit is then sent towards the cavity. It is important to notice, that, as shown on Fig. 5.1, the |r state is not coupled to the control eld. We now consider the following two possible cases. A. If the rst pulse contained no photon, the second pulse is scattered under Rydberg EIT conditions (we assume all transitions 5.1 Presentation of the protocol , where

C b = g 2 n b
2γcγe is the cooperativity of (n b ) atoms inside the blockade sphere (see Fig. 5.2). For suciently large values of C b , the photon can not enter the cavity any longer, and is reected from the left mirror, acquiring the desired π phase (shown by black arrow), i.e. R → -1.

For future reference, let us introduce the qubit encoding : To evaluate the performances of the gate dened above, we must be able to quantitatively describe the scattering of a photon on the cavity in which an r excitation may be stored. In the next section we introduce the general formalism which shall allow us to compute the scattering coecients in the four cases corresponding to the four logical states of the two incoming qubits.

Photon scattering on the cavity

In this section, we provide the general equations which govern the dynamics of the system and show, on a simple example, how to deduce the scattering coecient for an incoming photon.

Dynamical equations

The Hamiltonian of the full system (including the bath modes) we consider here reads:

H = Ω cf 2 i σ (i) er + σ (i) re + g i a + σ (i) ge + aσ (i) eg + ij V ij σ (i) r r σ (j) rr + g b dωb † ω a + g * b dωb ω a † + dωωb † ω b ω + H at-bath (5.5)
where the last term in the rst line of Eq. ( 5.5) stands for the dipole-dipole-induced shift V ij = C6 r 6 ij of the doubly excited state r i , r j . We notice, that according to the qubit encoding Eqs. (5.1-5.4), there can never be two atoms simultaneously excited in the 5. Photonic phase gate state |r . This is why we implicitly omitted the term

H dd = 1 2 k,l V ij σ (k) rr σ (l) rr in Eq.
(5.5).

We now perform Markov approximation and eliminate all bath modes. The resulting Heisenberg-Langevin equations are given by:

d dt a = -γ c a -ig i σ (i) ge + 2γ c a in (5.6) d dt σ (i) ge = -γ e σ (i) ge + iga 2σ (i) ee + σ (i) rr + σ (i) r r -1 -i Ω cf 2 σ (i) gr (5.7) d dt σ (i) gr = igaσ (i) er -i Ω cf 2 σ (i) ge -iσ (i) gr k V ij σ (k) r r (5.8) d dt σ (i) gr = igaσ (i) er -iσ (i) gr k V ik σ (k) rr (5.9)
We implicitly neglected Langevin forces in Eqs. (5.7-5.9) as, for the atomic operators, bath is assumed to be in the vacuum state initially.

We moreover set γ r , γ r → 0, since the time of the experiment is assumed to be much shorter than the lifetimes of the Rydberg states. As said in the previous section, we shall also assume that the storage and retrieval of photons into the atomic ensemble are perfect (which strictly speaking requires innite cooperativity (Gorshkov et al., 2007)).

Therefore, the only step which may limit the performance of the gate is the imperfect reection of the target photon on the cavity which can lead to distortion of the photon shape and/or photon loss. This may be quantitatively characterized by a coecient relating the actual scattered state to a reference state, as we shall now focus on.

Reference situation

In order to characterize the eect of a possibly stored Rydberg excitation in the ensemble on the scattering on an incoming photon we need to take a reference conguration in which atoms play no role. We therefore consider the imaginary situation in which the coupling strength g is articially set to zero in Eq. (5.5). In this reference situation the bath and cavity mode are decoupled from the atomic ensemble and evolve according to the Hamiltonian 5 :

H = dωωb † ω b ω + ḡb dωb ω ā † + ḡ * b dωb † ω ā
Moreover since we are not interested in quantitatively accounting for the possible distortion of the wavepacket due to the cavity response, we shall assume its decay rate γc is much bigger than the spectral width of the incoming photon (γ c → ∞) or equivalently The input-output relation that corresponds to the reference situation above is therefore

āout (ω) = 2γ c āin (ω) γc -āin (ω) = āin (ω)
Since in the reference situation the photon does not entangle with the atoms, its state φ (t f ) can be evaluated independently at time t f after the scattering took place and is given by (using āout (ω) ≡ b ω (t f ) e iωt f and āin (ω) ≡ b ω [START_REF] Walls | Quantum optics[END_REF])

φ (t f ) = e -i Ht f β (ω) b † ω |Ø = β (ω) b † ω (t f ) |Ø = β (ω) ā † out (ω) e iωt f |Ø = β (ω) ā † in (ω) e iωt f |Ø φ (t f ) = -β (ω) b † ω e iωt f |Ø
(5.10)

Cavity with non-interacting two-level atoms

In this subsection, we introduce the formalism that we shall use in the next sections to analyze the gate performance on the simple example of a cavity lled with noninteracting two-level atoms. The Hamiltonian for this system can be readily obtained from Eq. (5.5) with Ω cf = 0

H 2lev ≡ Ω cf →0

H

Assuming the same initial state is |φ 0 = dωβ (ω) b † ω |Ø as above, the state of the full system at time t f is given by: |φ (t f ) = e -iHt f |φ 0 109

Photonic phase gate

To compare the actual scattering process to the reference situation we now consider the following scalar product, henceforth referred to as scattering coecient:

φ (t f ) | φ (t f ) = -Ø dω b ω e iω t f β * (ω ) e -iH 2lev t f φ 0 = -Ø dω e -iH 2lev t f e iH 2lev t f b ω e -iH 2lev t f e iω t f β * (ω ) φ 0 = -Ø dω b ω (t f ) e iω t f β * (ω ) dωb † ω β (ω) φ 0 = -Ø dω a out (ω ) β * (ω ) φ 0
where we implicitly used the following relation and denitions:

e -iH 2lev t |Ø = |Ø b ω (t f ) ≡ e iH 2lev t f b ω e -iH 2lev t f a out (ω) ≡ b ω (t f ) e iωt f
Moreover, for a cavity lled with non-interacting atoms, the linearized set of Heisenberg-Langevin equations for a in Fourier space yields a (ω) = √ 2γc

γc+ g 2 N γe-iω -iω a in (ω), whence φ (t f ) | φ (t f ) = -Ø dωa out (ω) β * (ω) φ 0 (5.11) = -Ø dω 2γ c a (ω) -a in (ω) β * (ω) φ 0 = dω γ c -g 2 N γe-iω + iω γ c + g 2 N γe-iω -iω |β (ω)| 2 (5.12)
where we used a in (ω)

|φ 0 ≡ b ω dω b † ω β (ω ) |Ø = -β (ω) |Ø 6 .
Finally we consider two limiting cases of the formula (5.12). If the number of atoms in the ensemble is very large (i.e. N → ∞) the absorption in the cavity is increased and φ|φ N →∞ ≈ -1

Gate operation

On the other hand if the number of atoms is very small (N → 0), that is in the empty cavity case we nd

φ|φ N →0 = dω γ c + iω γ c -iω |β (ω)| 2 ≈ |β(ω)| 2 →δ(ω) 1 
In the next section we shall apply the same technique to evaluate the scattering coecient relative to the full system and deduce a quantitative characterization of the gate performance.

Gate operation

In this section, we investigate the performance of the gate described in Sec. 5.1.

Given the qubit encoding Eqs. (5.1-5.4) we will compute the scattering coecient φ (t f ) |φ (t f ) for each of the four following initial states:

|00

no stored excitation, no incoming photon

|10

one stored excitation and no incoming photon

|01

no stored excitation and one incoming photon

|11

one stored excitation and one incoming photon

We demonstrate that, following the naive picture presented in the introduction (Sec.

5.1), for suciently large cooperativity per blockade sphere the evolution with respect to H Eq. (5.5) achieves the desired control phase gate operation.

Evolution of |00 , |10

We start this section by considering the trivial cases |00 and |10 , corresponding to no incoming photon, an excitation being stored or not in the cavity. Obviously, in those cases the real and reference situations lead to the same evolution, i.e., 00

(t f ) |00 (t f ) = 10 (t f ) |10 (t f ) = 1.

Evolution of |01

We now consider the initial state |01 i.e. when target photon scatters on the cavity which initially contains no excitation. The real and reference states of the bath are therefore the same, as in the previous case. The only dierence comes from the cavity dynamics. From Heisenberg-Langevin equations: 111 5. Photonic phase gate

d dt a = -γ c a -ig i σ (i) ge + 2γ c a in d dt σ (i) ge = -γ e σ (i) ge -iga -i Ω cf 2 σ (i) gr d dt σ (i) gr = -i Ω b 2 σ (i) ge we get in Fourier space a (ω) = √ 2γ c    γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω    a in (ω)
and upon recalling Eq. ( 5.10), we nally compute the desired scattering coecient

01 (t f ) | 01 (t f ) = -Ø dωa out (ω) β * (ω) 01 = -Ø dω 2γ c a (ω) -a in (ω) β * (ω) 01 = -Ø dω       γ c + iω - g 2 N γe-iω+i Ω 2 cf 4ω γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω       a in (ω) β * (ω) 01 01 (t f ) | 01 (t f ) = dω |β (ω)| 2 γ c + iω - g 2 N γe-iω+i Ω 2 cf 4ω γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω
Let us remark that setting Ω cf = 0 we recover the expression obtained in Eq. ( 5.12)

Evolution of |11

In this case, the initial state of the system is dened by |11 = S † dωb † ω β (ω) |Ø . The state of the system at time t f in the reference and real situations are given by: 5.14) respectively. In Eq. ( 5.13) we implicitly used the fact that in the reference conguration, the polariton does not evolve in time. The scattering coecient is therefore given by:

11 (t f ) = -S † dωb † ω e -iωt f β (ω) |Ø (5.13) |11 (t f ) = e -iHt f S † dωb † ω β (ω) |Ø ( 
11 (t f ) | 11 (t f ) = -Ø S dωb ω e iωt f β (ω) e -iHt f 11 = -Ø S (t f ) dωb ω (t f ) e iωt f β * (ω) 11 = -Ø S (t f ) dωa out (ω) β * (ω) 11 = -Ø S (t f ) dω 2γ c a (ω) -a in (ω) β * (ω) 11 = -2γ c dωβ * (ω) Ø |S (t f ) a (ω)| 11 - dω |β (ω)| 2 Ø S (t f ) S † Ø = -2γ c dωβ * (ω) Ø |S (t f ) a (ω)| 11 -1
where we employed

S (t f ) ≡ e iHt f Se -iHt f b ω (t f ) ≡ e iHt f b ω e -iHt f a out (ω) ≡ b ω (t f ) e iωt f Ø| e -iHt f = Ø| dω |β (ω)| 2 = 1 Ø S (t f ) S † Ø = 1 We now compute Ø |S (t f ) a (ω)| 11 . First, we notice that the term Ø |S (t f ) a (ω)| 11
can be put under the form:

Ø |S (t f ) a (ω)| 11 = 1 N i,j Ø σ (i) gr (t f ) a (ω) r j , 1 β where r j , 1 β ≡ σ (j) r g dωβ (ω) b † ω |Ø . Moreover Ø σ (i)
gr (t f ) a (ω) r j , 1 β is readily obtained through Fourier transforming the following dierential system, derived from the Heisenberg-Langevin equations:

d dt Ø σ (i) gr (t f ) a (t) r j , 1 β = -γ c Ø σ (i) gr (t f ) a (t) r j , 1 β -ig k Ø σ (i) gr (t f ) σ (k) ge (t) r j , 1 β - 2γ c β (t) Ø σ (i) gr (t f ) r j , 1 β d dt Ø σ (i) gr (t f ) σ (k) ge (t) r j , 1 β = -γ e Ø σ (i) gr (t f ) σ (k) ge (t) r j , 1 β + ig (δ kj -1) Ø σ (i) gr (t f ) a (t) r j , 1 β -i Ω cf 2 Ø σ (i) gr (t f ) σ (k) gr (t) r j , 1 β d dt Ø σ (i) gr (t f ) σ (k) gr (t) r j , 1 β = -i Ω b 2 Ø σ (i) gr (t f ) σ (k) ge (t) r j , 1 β -iV kj Ø σ (i) gr (t f ) σ (k) gr (t) r j , 1 β We nd Ø σ (i) gr (t f ) a (ω) r j , 1 β = - √ 2γ c β (ω) δ ij    γ c -iω + g 2 N γe 1 N k =j γe γe-iω-i Ω 2 cf 4 ( V kj -ω )    and therefore Ø |S (t f ) a (ω)| 11 = - 1 N i √ 2γ c β (ω)    γ c -iω + g 2 N γe 1 N k =i γe γe-iω-i Ω 2 cf 4(V ki -ω)   
Assuming the sample is homogeneous, with no edge eects, and dening

V b (ω) V ≡ 1 N k =i γ e γ e -iω -i Ω 2 cf 4(V ki -ω)
where assumed that the latter expression does not depend on the i index, we get 114

5.4 Numerical results Ø |S (t f ) a (ω)| 11 ≈ - √ 2γ c β (ω) γ c -iω + g 2 N γe V b (ω) V
Finally, we obtain the following scattering coecient:

11 (t f ) | 11 (t f ) = 2γ c dω |β (ω)| 2 γ c -iω + g 2 N γe V b (ω) V - 1 
If we further assume the photon wavepacket is long enough (steady state approximation), we get the simplied form

11 (t f ) | 11 (t f ) ≈ 2γ c γ c + g 2 N γe V b V -1 = γ c -g 2 N γe V b V γ c + g 2 N γe V b V = 1 -2C b 1 + 2C b where we introduced C b ≡ g 2 N 2γeγc V b (0) V = g 2
2γeγc n b which can be interpreted as the cooperativity per blockade sphere (n b is the number of atoms per bubble).

In the next section we shall use the results obtained above for the dierent initial states to evaluate the gate delity in experimentally feasible situations.

Numerical results

In this section, we quantitatively estimate the performance of the gate protocol by means of the so-called Choi-Jamiolkowski delity, that we readily compute using the results of the previous section. Then we introduce the dual-rail encoding version of the protocol, where both logic states |0 and |1 are physically encoded in two states of a single photon propagating along two spatially distinct paths. This encoding allows for postselection, therefore correcting possible photon-loss-induced errors during the gate operation. Finally, we evaluate delities for the single-and dual-rail versions of the protocol as functions of the cooperativity per blockade volume.

Choi-Jamiolkowsky delity

To evaluate the performance of the proposed c-phase gate we shall calculate its Choi-Jamiolkowski delity [START_REF] Choi | Completely positive linear maps on complex matrices[END_REF][START_REF] Jamioªkowski | Linear transformations which preserve trace and positive semideniteness of operators[END_REF]. Since, in general, we have C > C b , the delity will be mainly limited by the target photon scattering process 115 5. Photonic phase gate and we may therefore safely ignore the imperfections of the storage/retrieval of the control photon. With the above solution to the scattering problem we have a complete characterization of the gate dynamics.

To translate this into the Choi-Jamiolkowski delity, we consider the input state

|Φ ≡ 1 2 (|00 |00 + |01 |01 + |10 |10 + |11 |11
) of a system of four qubits, two of which, e.g. the third and the fourth ones, are subject to the gate, while the other two are left alone. The nal state (t = t f ) is therefore given by |Φ real = I ⊗ e -iHt f |Φ which represents the evolution of the third and fourth qubits under the Hamiltonian Eq. (5.5). By contrast, the state resulting from the action of the ideal c-phase gate on |Φ can be expressed by means of the evolved reference states ij (t f ) (see Sec. 5.2) as:

|Φ ideal = I ⊗ U e -iH ref t f |Φ = ij=0,1 ij |cphase| ij |ij ij (t f ) with cphase =      1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1     
The delity is therefore given by:

F cj ≡ | Φ ideal |Φ real | 2 (5.15) = 1 16 00 (t f ) |00 (t f ) + 01 (t f ) |01 (t f ) + 10 (t f ) |10 (t f ) -11 (t f ) |11 (t f ) 2 = 1 16 2 + 10 (t f ) |10 (t f ) -11 (t f ) |11 (t f ) 2 = 1 16 2 + dω |β (ω)| 2 γ c + iω - g 2 N γe-iω+i Ω 2 cf 4ω γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω -dω |β (ω)| 2 γ c + iω -g 2 N γe V b (ω) V γ c -iω + g 2 N γe V b (ω) V 2 
The steady state limit (|β (ω)| 2 → δ (ω)) of this expression yields where

F cj ≡ 1 16 3 - 1 -2C b 1 + 2C b 2 (5.
C b ≡ g 2 N γe V b V (see Sec. 5.3).
As can be seen from Eq. ( 5.16), in the limit of big cooperativity per blockade sphere, the delity approaches unity (1 - Fig. 5.3). Therefore, as discussed in the introduction (Sec. 5.1), the cavity-enhanced blockaded cooperativity is the main gure of merit for the gate.

F cj ∝ 1 |C b | ) (see

Dual rail encoding

In the dual-rail encoding, both logical states |0 and |1 are encoded in two states of a single photon propagating along two spatially distinct paths. A schematic of the dual-rail c-phase gate is shown in Fig. 5.1 (c). The rst photon pulse in the upper two arms of the gure is rst stored in one of the memories consisting of a Rydberg ensemble placed in each arm (in the case polarization encoding, two such memories might be realized by two dierent internal states of the same ensemble). A second photon pulse is then scattered from the Rydberg ensemble if it is in state |1 (upper rail in the gure). This scattering ideally induces a phase change of π if there was a photon stored in the Rydberg ensemble, i.e., if both qubits were in state |1 .

As opposed to the single-rail implementation, the dual-rail allows one to condition the gate's operation on getting two photons in the output. Since the dominant source of error in the single-rail implementation is the photon loss, this oers a substantial increase in the delity with only a minor failure probability of the gate. We consider the conditional delity of a maximally entangled two-qubit state resulting from an entanglement swap realized with the gate using the full circuit drawn in Fig. 5.1 (c).

Neglecting again the error due to nite storage eciency, we nd that this delity is (see App. H for more details): 117 5. Photonic phase gate

F swap (5.17) = 1 16P suc 2 + dω |β (ω)| 2       γ c + iω - g 2 N γe-iω+i Ω 2 cf 4ω γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω - γ c + iω -g 2 N γe V b (ω) V γ c -iω + g 2 N γe V b (ω) V       2 where P suc = 1 4       2 + dω |β (ω)| 2 γ c + iω - g 2 N γe-iω+i Ω 2 cf 4ω γ c -iω + g 2 N γe-iω+i Ω 2 cf 4ω 2 + dω |β (ω)| 2 γ c + iω -g 2 N γe V b (ω) V γ c -iω + g 2 N γe V b (ω) V 2      
Note that, compared to F cj in Eq. (5.15), the only dierence is due to the conditioning with the success probability P suc < 1.

Let us now consider the steady state limit of Eq. 5.17:

F swap = 3 -1-2C b 1+2C b 2 4 3 + 1-2C b 1+2C b 2 
In the limit of a long pulse, we thus see that the conditional gate error 1 -

F swap ∝ 1 |C b | 2
for C b 1 is much smaller than for the single rail. This comes at only a minor cost in the failure probability 1 -

P suc ∝ 1 |C b |
. The resulting dual-rail delities are plotted in Fig. 5.3 as a function of the parameter C b . For C b ≈ 8, the (postselected) delity is found to be larger than 0.99.

Conclusions

In this chapter, we proposed an ecient method to implement a c-phase gate for photonic qubits. The gate combines the advantages of cavity-dened optical modes and cavity-enhanced light-matter interactions with the strong Rydberg blockade obtainable in atomic ensembles. As a direct application, the proposed gate can be used to improve the communication rate of quantum repeaters. More generally it may serve as a building block for photonic quantum networks [START_REF] Das | Photonic controlled-phase gates through rydberg blockade in optical cavities[END_REF].

Chapter 6

Outlook

In this dissertation, we theoretically studied the reection and transmission of an optical cavity lled with an ensemble of ladder-type three-level atoms, whose lower transition, from the ground to the low-lying intermediate states, is driven by the cavity mode, while the upper transition, from the intermediate to a Rydberg excited states, is driven by a strong control eld. Because of the large dipole-dipole interactions between Rydberg atoms, the response of the setup is expected to be strongly nonlinear, allowing for optical nonlinearities even at the single-photon level, which constitute the key ingredient of photonic quantum information processing.

We investigated both the resonant and dispersive regimes of the setup, i.e. when the transition from the ground to intermediate states is resonant with the cavity mode or not, and demonstrated that a quasi-classical input beam can be made highly nonclassical when reected from or transmitted through the cavity. Strong correlations between photons were shown to appear, manifesting themselves in the behavior of the pair-correlation function and revealing eective intracavity photon-photon interactions.

Depending on the physical parameters of the system, its response can be drastically dierent to the single-and two-photon components of the incident light which, eectively turns the setup into a lter that operates in the quantum regime. Resorting to many-body physics techniques, namely to the Schwinger-Keldysh contour formalism, we were able to compute correlation functions beyond the lowest non-vanishing order in the excitation number. We also demonstrated that, due to dipole-dipole interactions, the light transmitted through the cavity becomes non-monochromatic: along with the broadening, it was indeed shown to acquire sidebands, whose frequencies are dened by the intracavity polariton energies. Finally we demonstrated that, combined with the photon storage techniques, our setup can operate as a high delity c-phase gate.

Several aspects of the problem remain to be addressed in the future.

Throughout this dissertation our calculations were restricted to the weak cavity feeding regime. More specically, all our results were obtained by discarding the Fock components of the incoming coherent light beam with more than two photons. Many phenomena are however expected to take place beyond the two-photon regime, as re-6. Outlook cently demonstrated in free-space conguration [START_REF] Bienias | Quantum theory of kerr nonlinearity with rydberg slow light polaritons[END_REF][START_REF] Jachymski | Three-body interaction of rydberg slow light polaritons[END_REF]. The method presented in Chap. 4 actually may be extended to higher excitation numbers, by means of the multi-particle scattering theory developed by Faddeev [START_REF] Faddeev | Scattering theory for a three particle system[END_REF]. Well-known in few-body physics, this theory allows to regroup Feynman diagrams for photon components higher than two in a systematic way which facilitates their subsequent resummation.

In this thesis, we generally considered the steady state regime of the cavity feeding. Many applied problems, however, may involve time-dependent incoming photon wavepacket. The latter regime can be well addressed by a straightforward modication of the formalism, presented in Chap. 4.

As shown in App. A, while the experimentally observed behavior of the setup is well reproduced by our theoretical model when S-Rydberg states are excited, it signicantly diers in the case of D states. Elucidating that point will surely require to go beyond the simple three-level model we employed throughout this dissertation and incorporate extra states not directly addressed by the laser but coupled to the Rydberg state considered in our protocol, whose eect would be to shelve excitation.

Finally, within the past few years, much eort has been devoted to developing quantum platforms using interacting photons to simulate various models taken from condensed matter physics [START_REF] Carusotto | Quantum uids of light[END_REF]. In particular, it has recently been suggested to use dispersive EIT with a Rydberg medium coupled to dierent degenerate spatial modes of a linear optical cavity to implement crystalline order and fractional quantum Hall states of light [START_REF] Sommer | Quantum crystals and laughlin droplets of cavity rydberg polaritons[END_REF]. The latter proposal actually relies on an ad hoc eective interaction potential between dark-state polaritons.

The ab initio approach we used in Chap. et al., 2016).

∆ c -∆ e = -3.2MHz, ∆ r -∆ e = -1.2MHz, γ r = 2π × 0.42MHz, γ c = 2π × 10MHz, Ω cf = 2π × 10MHz, C = 8 (Boddeda
Due to the dipole-dipole interactions of S-excited Rydberg atoms, the spectrum depends on the intensity of the incoming eld. The results are tted by the solution of Eqs. (A.5 -A.7) which appear to be in a reasonably good agreement.

As soon as D states are employed, however, the mean-eld description fails to reproduce the behavior of the cavity transmission: in particular, in the case of D states, when the cavity is locked on resonance and a constant probe beam is sent through it, the transmission decreases on a slow (10µs) time scale. This feature does not show up with S-states, and is not accounted for by the mean-eld model. We therefore need to develop a dierent phenomenological model model that we present in the next section.

A.2 D-Rydberg state

Here, we present the phenomenological model which was developed to account for the cavity transmission, in the case of D-Rydberg-state-excited samples. This model combines a modied version of the Rydberg bubble picture used in Chap. 2 with a phenomenological decay towards a shelving Rydberg state. The decay rate, left as a free parameter, can be adjusted in order to successfully reproduce the experimental data for both the static and dynamical transmission of the setup.

A.2.1 Presentation of the model

We assume that the Rydberg blockade phenomenon eectively splits the atomic sample into independent and equivalent bubbles which can at most accommodate for one Rydberg excitation. Accordingly, the two-photon transition towards the Rydberg level |r essentially couples the two collective symmetric states

|G ≡ |g • • • g |R ≡ 1 √ n b n b i=1 σ (i) rg |G = 1 √ n b (|rg • • • g + • • • |g • • • gr )
where n b denotes the number of atoms in a Rydberg bubble, and the corresponding lowering operator is the Pauli-like matrix σ GR ≡ |G R| (we also dene σ RR ≡ |R R| and σ RG ≡ |R G| ). Note that n b can be evaluated by

n b = N × V b V
, where N is the total number of atoms in the sample, V is the total volume of the sample and V b is the A.2 D-Rydberg state volume of a Rydberg bubble whose expression was given in Eq. A.4.

In a Rydberg bubble, the intermediate state can, by contrast, be arbitrarily populated ; we, however, further assume that we remain in the low excitation regime (corresponding to moderate cavity feeding rates) so that the transition to the intermediate state is never saturated. In this approximation scheme, the collective lowering operator

β ≡ 1 √ n b n b i=1 σ (i)
ge can be satisfactorily considered bosonic, i.e. β, β † ≈ 1.

Here, in order to account for the dynamical behavior observed experimentally, we moreover introduce an extra Rydberg state, denoted by |s , to which the state |r decays: this implies that, in a bubble, the collective states |R and |S ≡ 1

√ n b (|sg • • • g + • • • |g • • • gs )
are coupled by a Lindblad-like operator.

To simplify the treatment, we furthermore assume the cavity mode to be classical, that is we replace a by its expectation value a whose time evolution is therefore ruled by the equation 

d dt a = i (∆ c + iγ c ) a -i N n b g √ n b β -iα Note that
H = -∆ r |R R| -∆ e β † β + Ω cf 2 σ RG + g √ n b a * β + h.c. D l (ρ) = γ e 2βρβ † -β † βρ -ρβ † β +γ r (2σ GR ρσ RG -σ RR ρ -ρσ RR ) +γ s (2σ GS ρσ SG -σ SS ρ -ρσ SS ) D nl (ρ) = ξ σ RR (2σ SR ρσ RS -σ RR ρ -ρσ RR )
Note that the phenomenological extra non-linear decay D nl (ρ) we introduced is time vs theoretical methods dependent through σ RR (t); its rate is moreover governed by the ad hoc free parameter ξ, whose value can be tuned so as to reproduce the experimental results.

A.2.2 Experimental results vs theoretical methods

The experimental results for the time-dependent T (t) = γ 

(b † ) m √ m! (c † ) n √ n! |0, 0 ):             0 Ωp 2 0 0 0 0 • • • Ωp 2 -∆ e Ω cf 2 Ωp 2 √ 2 0 0 • • • 0 Ω cf 2 -∆ r 0 Ωp 2 0 • • • 0 Ωp 2 √ 2 0 -2∆ e + U ∞ Ω cf 2 √ 2 0 • • • 0 0 Ωp 2 Ω cf 2 √ 2 -∆ e -∆ r + U ∞ Ω cf 2 √ 2 • • • 0 0 0 0 Ω cf 2 √ 2 -2∆ r + U ∞ • • • . . . . . . . . . . . . . . . . . . . . .             (B.3)
where vertical and horizontal lines separate subspaces with dierent excitation numbers. In Eq. B.3, diagonal elements in the subspaces with more than two excitations contain U ∞ . If U ∞ = 0, we merely recover a system of two coupled harmonic oscillators. By contrast, if we set U ∞ → ∞ the subspaces with more that two excitations will become highly o-resonant and inaccessible from the zero and single excitation subspaces. Hence, the Hamiltonian H will eectively reduce to H 1at (Eq. (B.1)). It is worth noticing that H sat accounts for the non-linearity due to the saturation of atomic transitions.

We may now extrapolate the representation to the N -atom ensemble described in Chap. 1 by dening two bosons b i , c i for each atom i = 1, . . . , N . The full Hamiltonian H = H 0 + H int contains the natural evolution part H 0 and the interaction part H int which stands for the external feeding and quartic in operators:

H 0 = H at + V a-c + H cav + H bath + V cav-bath + V at-bath (B.4) H int = H dd + H sat + H f (B.5) H dd = 1 2 N m,n κ mn c † m c † n c m c n (B.6) H f = α a + a † (B.7) H sat = U ∞ n 1 2 b † n b † n b n b n + 1 2 c † n c † n c n c n + b † n b n c † n c n (B.8) H at = N n=1 -∆ e b † n b n -∆ r c † n c n + Ω cf 2 b † n c n + b n c † n (B.9) V a-c = N n=1 g ab † n + a † b n (B.10) H cav = -∆ c a † a (B.11) H bath = λ=L,R dω ωB † λ,ω B λ,ω + dω ω N n=1 D † n,ω D n,ω + C † n,ω C n,ω (B.12) V cav-bath = λ=L,R dω g b (ω) B λ,ω a † + B † λ,ω a (B.13) V at-bath ≈ N n=1 dω g c (ω) C n,ω b † n + g d (ω) D n,ω c † n + H.c. (B.14)
We notice that H sat is the sum of single-atom Hamiltonians: since, throughout this dissertation, we consider the weak coupling regime (g γ R c , γ e ), this term does not contribute to the non-linear behavior of the system. Contrary to H sat , H dd involves many atoms and therefore constitutes the leading contribution. We therefore completely neglect the H sat non-linearity in our calculations.

B.2 Spinwave basis

In this section, we introduce the collective modes known as spinwaves which play a crucial role due to the symmetries of the problem and lead to a simpler expression of the full Hamiltonian.

First, we assume that atoms occupy the vertices of a 3D square lattice of spacing δ. In all calculations we will eventually set the limit δ → 0 and therefore consider a continuous medium but we will keep the discrete sums in all expressions for the sake of convenience. The discrete Fourier transform allows us to relate the direct space bosonic operators b j and c j to the reciprocal space collective (so-called) spinwave operators b k , c k :

c k = 1 √ N j e i k r j c j ↔ c j = 1 √ N k e -i k r j c k (B.15) b k = 1 √ N j e i k r j b j ↔ b j = 1 √ N k e -i k r j b k (B.16)
where r i is the position of the i-th atom and k x,y,z = -π δ , -π δ + 2π Lx,y,z . . . . , π δ are the components of the k vector, where L x,y,z is the lattice dimension in the {x, y, z} direction . One readily shows

c k , c † k = 1 N m,n e i k rm e -i k rn c m , c † n = 1 N m e i k rm e -i k rm = δ k, k b k , b † k = δ k, k
We now rewrite the dipole-dipole interactions Hamiltonian in terms of the spinwaves operators dened above

H dd = 1 2N 2 N m,n κ mn k , k , k , k e i( k -k) rn e i( k -k ) rm c k c k c k c k (B.17)
Imposing the periodic boundary conditions to κ mn , we obtain

1 N 2 N m,n κ mn e i( k -k) rn e i( k -k ) rm = U k -k 1 N N n e i( k -k + k -k) rn = U k -k δ k -k + k -k (B.18)
where we dened the Fourier transform of the interaction matrix κ mn as 1 N N m κ nm e i K rm = U K e i K rn . Substituting B.18 to B.17 we get 19) where summations can be taken within any period of the lattice and will be omitted for the sake of conciseness.

H dd = k , k, q U q c k -q c k + q c k c k (B.
Analogously, we can rewrite the natural Hamiltonian H 0 (Eq. (B.4)) under the form

H 0 = H at + V a-c + H cav + H bath + V cav-bath + V at-bath V a-c = g √ N ab † 0 + a † b 0 H at = N n=1 -∆ e b † n b n -∆ r c † n c n + Ω cf 2 b † n c n + b n c † n = N n=1 k, k 1 N e i( k-k ) rn -∆ e b † k b k -∆ r c † k c k + Ω cf 2 b † k c k + b k c † k = k, k δ k, k -∆ e b † k b k -∆ r c † k c k + Ω cf 2 b † k c k + b k c † k = k -∆ e b † k b k -∆ r c † k c k + Ω cf 2 b † k c k + b k c † k H bath = λ=L,R dω ωB † λ,ω B λ,ω + dω ω N n=1 D † k,ω D k,ω + C † k,ω C k,ω (B.20) V at-bath ≈ N n=1 dω g c (ω) C k,ω b † k + g d (ω) D k,ω c † k + H.c. (B.21)
where C k,ω ≡ 1 √ N j e i k r j C j,ω , D k,ω ≡ 1 √ N j e i k r j D j,ω .

Deriving Heisenberg equations from the expression above, we conclude that the Hamiltonian H 0 does not couple the spinwaves k = 0 (symmetric) and k = 0 .

Appendix C

The second-order correlation function g (2) of the reected/transmitted light

In this appendix we provide technical details regarding the calculation of the g (2) (τ ) function of the transmitted and reected lights. We denote by a (R,L) out the annihilation operators of the out mode to the right or to the left of the cavity, respectively.

Let us rst consider the transmitted light. By denition, assuming the g 

g (2) t (τ ) = a † (0) 2γ (R) c a † (τ ) -a †(R) in (τ ) a (τ ) -a (R) in (τ ) 2γ (R) c a (0) (2γ R c ) a † a 2 (C.2)
where we implicitly used the fact that a a in and any operator of the system x [START_REF] Walls | Quantum optics[END_REF]:

x (t ) , 2γ R c a in (t) = 2γθ (t -t) [x (t ) , a (t)] (C.3)
where θ (t) is the Heaviside step function. Using now the latter formula we nally have C. The second-order correlation function g (2) of the reected/transmitted light for the transmitted light assuming τ > 0:

g (2) t (τ ) = a † (0) a † (τ ) a (τ ) a (0) a † a 2 (C.4)
We now consider the reected light on the left side (L) of the cavity:

g (2) r (τ ) ≡ a (L) † out (0) a (L) † out (τ ) a (L) out (τ ) a (L) out (0) a (L) † out a (L) out 2 
Similarly, by using the following input-output relation for the left mirror:

1

a (L) out + a (L) in -i α 2γ (L) c = 2γ (L) c a one gets a (L) † out (0) a (L) † out (τ ) a (L) out (τ ) a (L) out (0) = 2γ (L) c 2 a † (0) a † (τ ) a (τ ) a (0) + + 2iγ (L) c α a † (0) a † (τ ) a (τ ) + a † (0) a † (τ ) a (0) -a † (0) a (τ ) a (0) -a † (τ ) a (τ ) a (0) + α 2 2 a † a + a † (τ ) a (0) + a † (0) a (τ ) -a † (0) a † (τ ) -a (τ ) a (0) + i α 3 γ (L) c a † -a + α 4 2γ (L) c 2 and a (L) † out a (L) out = 2γ (L) c a † a + iα a † -a + α 2 2γ (L) c
where we omitted the time arguments for those averages which do not depend on τ .

We may also notice that the factorization property discussed in App. D for the intracavity (eld) operators also applies to the correlation functions of the transmitted or reected lights, i.e. we may write in the lowest order in α:

a (L,R) † out (0) a (L,R) † out (τ ) a (L,R) out (τ ) a (L,R) out (0) (4) = a (L,R) † out (0) a (L,R) † out (τ ) (2) 
a

(L,R) out (τ ) a (L,R) out (0) (2) 
.

D. Factorization of correlation functions.

e -n k,l n k+l 2 √ k!l! k, G| a † (t 1 ) a † (t 2 ) (D.2) i q |q i q i | a (t 2 ) a (t 1 ) |G, l
For the lowest non-vanishing term k = 2, l = 2:

a (t 2 ) a (t 1 ) |G, 2 = e iHt 2 ae iH(t 1 -t 2 ) a |G, 2 (t 1 )
where H is the Hamiltonian of the full system including baths Eq. ( 1 

α, G a † (t 1 ) a † (t 2 ) . . . a † (t p ) a (t p+1 ) . . . a (t p+q-1 ) a (t p+q ) α, G (p+q)
and in particular a † (t) a (t) (2) = a † (t) (1) a (t) (1) a † (t 2 ) a † (t 1 ) a (t 1 )

(3) = a † (t 2 ) a † (t 1 ) (2) a (t 1 ) (1) a † (t 2 ) a † (t 1 ) a (t 1 ) a (t 2 ) (4) = a † (t 2 ) a † (t 1 ) (2) a (t 1 ) a (t 2 ) (2) d dt aa = 2D c aa -2ig i aσ (i) ge -2iα a d dt aσ (i) ge = (D c + D e ) aσ (i) ge -i Ω b 2 aσ (i) gr -ig aa -ig j σ (j) ge σ (i) ge -iα σ (i) ge d dt aσ (i) gr = (D c + D r ) aσ (i) gr -ig j σ (j) ge σ (i) gr -iα σ (i) gr -i Ω b 2 aσ (i) ge d dt σ (j) ge σ (i) ge = 2D e σ (j) ge σ (i) ge -i Ω b 2 σ (j) ge σ (i) gr -i Ω b 2 σ (j) gr σ (i) ge -ig aσ (j) ge -ig aσ (i) ge d dt σ (j) ge σ (i) gr = (D e + D r ) σ (j) ge σ (i) gr -i Ω b 2 σ (j) gr σ (i) gr -ig aσ (i) gr -i Ω b 2 σ (j) ge σ (i) ge d dt σ (j) gr σ (i) gr = (2D r -iκ i,j ) σ (j) gr σ (i) gr -i Ω b 2 σ (j) ge σ (i) gr -i Ω b 2 σ (j) gr σ (i) ge
Assuming that the medium is homogeneous, i.e. that for all (i, j), σ = aσ (j) ge , in the steady-state this system yields aa = g D c i aσ

(i) ge + α D c a aσ (i) ge = Ω b 2 (D c + D e ) aσ (i) gr + g (D c + D e ) aa + g (D c + D e ) j σ (j) ge σ (i) ge + α (D c + D e ) σ (i) ge aσ (i) gr = g (D c + D r ) j σ (j) ge σ (i) gr + α (D c + D r ) σ (i) gr + Ω b 2 (D c + D r ) aσ (i) ge σ (j) ge σ (i) ge = Ω b 2D e σ (j) ge σ (i) gr + g D e aσ (i) ge σ (j) ge σ (i) gr = Ω b 2 (D e + D r ) σ (j) gr σ (i) gr + g (D e + D r ) aσ (i) gr + Ω b 2 (D e + D r ) σ (j) ge σ (i) ge σ (j) gr σ (i) gr = Ω b 2 D r - κ i,j 2 σ (j) ge σ (i)
gr Note that the rst-order values a ≡ a (1) , σ

have been determined through solving the rst-order steady state system, see Eqs. (3.1-3.3) in the main text.

Summing the above equations over atom numbers (i, j) yields a system on averages of the collective operators b ≡ 1

√ N i σ (i)
ge and c ≡ 1

√ N i σ (i)
gr and eld operator a, which is almost closed but for the last equation which will now be considered and approximated.

Eliminating σ (j) ge σ (i) gr and σ

(j) ge σ (i) ge from the last three equations we get

σ (j) gr σ (i) gr = Ω b g 2 D r - κ i,j 2 
(D e + D r ) -

Ω 2 b 4De - Ω 2 b 4 aσ (i) gr + Ω 2 b g 4D e D r - κ i,j 2 
(D e + D r ) -

Ω 2 b 4De - Ω 2 b 4 aσ (i) ge
We now sum over i and j indices and divide this equation by

N to get cc = Ω b g 2 i K i aσ (i) gr + Ω 2 b g 4D e i K i aσ (i)
ge where we introduced the coecient

K i ≡ 1 N j 1 D e + D r - Ω 2 b 4De D r - κ i,j 2 - Ω 2 b 4
.

Making the approximation that K i does not depend on i, i.e. K i ≈ K, we get:

cc ≈ Ω b g √ N 2 K ac + Ω 2 b g √ N 4D e K ab
To estimate K we consider that the sample is a sphere of radius R K

= 1 N j 1 D e + D r - Ω 2 b 4De D r - κ i,j 2 
-

Ω 2 b 4 ≈ 4π 4π 3 R 3 R 0 r 2 D e + D r - Ω 2 b 4De D r -C 6 2r 6 - Ω 2 b 4 dr = 3 R 3 R 0 r 2 D e + D r - Ω 2 b 4De D r -C 6 2r 6 - Ω 2 b 4
dr

For large values of R, K does not depend on the geometry

K ∼ R→∞ 1 D e + D r - Ω 2 b 4De D r - Ω 2 b 4 ×      1 - √ 2π 2 3V C 6 Ω 2 b 4 De+Dr- Ω 2 b 4De -D r      Finally the desired closed system is aa = g √ N D c ab + α D c a ab = Ω b 2 (D c + D e ) ac + g √ N (D c + D e ) aa + g √ N (D c + D e ) bb + α (D c + D e ) b ac = g √ N (D c + D r ) bc + α (D c + D r ) c + Ω b 2 (D c + D r ) ab (E.1) bb = Ω b 2D e bc + g √ N D e ab bc = Ω b 2 (D e + D r ) cc + g √ N (D e + D r ) ac + Ω b 2 (D e + D r ) bb cc = Ω b g √ N 2 K ac + Ω 2 b g √ N 4D e K ab
which allows us to determine aa . The analytical solution is too cumbersome to be displayed but can be readily obtained by matrix inversion. This result can also be extended to higher order quantities a † m a p .

where the matrix M q is dened in Eq. (4.29-4.30). Solving Eq. (G.3) we get: ĜT q [τ > 0] = e M q τ ĜT q [0 + ] = -ie M q τ . Substituting this relation to Eq. (G.2) we have:

Ŝ q ≡ ∞ 0 dτ ĜT q [τ ] ⊗ ĜT -q [τ ] = - ∞ 0 dτ e M q τ ⊗ e M -q τ = - ∞ 0 dτ e (M q ⊗I+I⊗M -q )τ = (M q ⊗ I + I ⊗ M -q ) -1
The inversion of the matrix is much easier from the computational point of view and can be easily performed e.g. in Mathematica. We therefore provide the nal expression for the integral Eq. (G.1):

S = - 4Γ 2 e Ω 2 cf +4ΓeΓr + 1 2 (Γ e + Γ r ) (G.4)
The expression for

S 0 ≡ 1 2π ∞ -∞ dωG T c 0 c 0 [ω] G T c 0 c 0 [-ω] is much more cumbersome:
-

ΓcΩ 4 cf +4Ω 2 cf (Γ 3 c +Γc(Γ 2 e +2ΓeΓr+g 2 N )+Γ 2 c (Γe+Γr)+g 2 N Γr)+16(Γc+Γe)(ΓcΓe+g 2 N )((Γc+Γr)(Γe+Γr)+g 2 N ) 2(ΓcΩ 2 cf +4Γr(ΓcΓe+g 2 N ))(4(Γc+Γe)((Γc+Γr)(Γe+Γr)+g 2 N )+Ω 2 cf (Γe+Γr))
Large bandwidth, fast propagation and the non-interacting nature of photons, make them ideal for communicating quantum information over long distances [1]. In contrast, strong photon-photon interactions are desirable for processing of quantum information encoded in the photons, especially if both high fidelity and high efficiency are needed. To satisfy these requirements one needs a highly non-linear medium. Typically, the strength of photon-photon interactions mediated by a non-linear medium is very weak at the single-photon level where photonic quantum logic gates are operating [2]. As a consequence, the implementation of photonic quantum gates remains an unsolved challenge and requires novel means of efficient light-matter interaction. To enhance light-matter interactions, a viable solution is to use ensembles of atoms, e.g., configured for electromagnetically induced transparency (EIT) [3]; this can be further improved by placing the ensemble in an optical cavity, but these ensemble based approaches do not increase the essential photonic non-linearity. In recent years, there has been intense efforts to realize light-matter interactions via, non-linear interactions in a variety of medium, ranging from atoms [4][5][6][7][8][9][10] and atom like systems [11][12][13][14] to superconducting qubits [15][16][17].

A promising approach towards creating strong quantum nonlinearities is to exploit excitation blockade in Rydberg EIT systems [18][19][20][21][22][23][24][25]. Several quantum effects like strong optical non-linearities and control of light by light [22][23][24][25][26][27][28], deterministic single-photon sources [29], and the generation of entanglement and atomic quantum gates [30][31][32][33][34] have been investigated. The strong nonlinearity originates from the fact that the Rydberg interaction prevents multiple excitations within a blockaded radius r b [35,36]. The ensemble then behaves as a two-level superatom consisting of N b atoms within a radius r b [35,36]. If the optical depth d b corresponding to the superatom is sufficiently large, d b 1 [22], a strong optical nonlinearity at the single-photon level can be achieved in the EIT configuration [18][19][20][21][22][23][24][25]. Reaching such an optical depth is, however, challenging, which limits the effectiveness of photonic quantum gates.

An enhanced optical nonlinearity was recently demonstrated by placing the ensemble inside an optical cavity [26], but a direct application of this nonlinearity for quantum gates is non-trivial since the outgoing optical modes are highly distorted and entangled by the interaction [37][38][39]. In this letter, we propose a novel scheme for achieving a high fidelity photonic controlled-phase (CP) gate with a Rydberg EIT ensemble trapped inside an optical cavity of moderate finesse. In our scheme, the photons are incident at different times thus avoiding the problem of mode distortion while still allowing the cavity enhancement of the interaction. The use of a cavity has several major advantages compared to ensembles in free space, since it enhanced light-atom coupling in the ensemble and also effectively increases the non-linearity. In our proposal, the parameter characterizing the Rydberg blockade is C b ∼ Fd b , where C b = N b C, with C 1 being the single atom cooperativity, and F is the cavity finesse. Hence the effect of the Rydberg interaction is increased by the cavity finesse F, whereas the low value of C is compensated by a high value of N b . In addition, the cavity is also useful for controlling the mode structure thereby enabling high input-output efficiencies [40]. We show that the proposed gate can have a promising (heralded) error scaling as 1/C 2 b , and demonstrate how it can be used to improve quantum repeaters based on atomic ensembles even for moderate interactions strengths C b ∼ 10. The proposed CP gate can thus be directly integrated into quantum communication circuitry thereby providing a building block for future quantum networks. The Rydberg interaction [36] for our proposal can either be long range dipolar or van der Waals interactions, but for simplicity, we only consider the latter.

We first outline the basic idea of our gate, which goes along the line of Ref. [41], except that the single trapped atom is replaced by a Rydberg ensemble. In contrast to Ref. [41],

and many others, we thus do not require the strong-coupling regime of cavity QED, and can work with cavities of moderate finesse. This enables input-output efficiency near unity since the cavity losses can be completely negligible compared to the mirror's transmission [40]. For simplicity, we first describe the operation for single-rail qubits where a qubit is encoded in a photon pulse containing a superposition of vacuum |0 and a single photon |1 . Later, we generalize it to a more useful dual-rail encoding where the qubit is encoded as a photon in one of two possible modes.

In the single-rail version outlined in Figs. 1(a) and (b), a first photon pulse is stored in a cavity containing a Rydberg EIT ensemble [42]. Here a classical driving field from an excited state |e to a Rydberg state |r enables the storage of incoming photons in |r through the interaction of the cavity field with the transition from the ground state |g to |e . The excitation in state |r is then transferred to another Rydberg state |r by a microwave pulse so that the ensemble contains a single atom in state |r if the first pulse contained a single incoming photon. The second pulse is then incident on the cavity. If the first pulse contained vacuum |Ø , the second pulse is scattered under Rydberg EIT conditions and leaves the cavity with the same phase. If the first pulse contained a photon, the atom in |r shifts the position of the state |r in the remaining atoms. As we will show, this prevents the second pulse from entering the cavity resulting in a phase flip on the |1 component of the second pulse. This evolution thus realizes a CP gate which, together with single qubit operations, is universal for quantum information processing.

We now present a theoretical treatment to evaluate the performance of the CP gate. The initial state of the single photon pulse can be expressed as dωφ(ω)â † ω e -iωt |Ø , where φ(ω) is the normalized pulse shape, â † ω is the one-dimensional field operators satisfying the standard bosonic commutation relations and |Ø denotes the vacuum of all the optical modes. The frequency integrand ω of the incoming photon is referenced to the cavity frequency ω c , which in turn is nearly resonant to the |e → |g transition (see Fig. 1(a)). The cavity is assumed to be one-sided with a standing-wave field. The dynamics of the system can be described in the quantum jump approach through the no-jump Hamiltonian H = H s + H I .

Here H s consists of the decays and the free energy terms [43] while,

H I = - l Ω l 2 |r l e l | + iG l |e l g l | b + H.c. + k V kl |r k r k | ⊗ |r l r l |, (1) 
Here the coupling strengths of the l th atom with the driving field and the incoming single photon pulse is respectively Ω l and G l , while V kl is the van der Waals interaction among the Rydberg excitations of atoms k and l. We solve the Schrödinger equation for the scattering stage assuming constant Ω l in Fourier space to find the reflection co-efficient. The (amplitude) reflection coefficient with the stored Rydberg excitation in atom k is given by R k (ω) = 2κS k (ω) -1 where,

S k (ω) = ⎛ ⎝ κ -iω + l |G l | 2 (Γ el -i Δl ) + |Ω l /2| 2 Γ rl +i(δ l +V kl -ω) ⎞ ⎠ -1 .
(2) where the detunings are Δ l = ω e lω c , Δl = Δ l + ω and δ l = (ω r l -ω e )-ω c with ω e l (r l ) and Γ el(rl) being the energy and width of the excited (Rydberg) state |e (|r ) in atom l and κ is the cavity field decay rate. The reflection coefficient R g (ω) [43] for no stored excitation is evaluated by setting V kl = 0.

To get an understanding of the scattering we study the behavior of the reflection coefficient for resonant interactions δ l = Δ l = 0 and long lived Rydberg excitations (Γ rl = 0). For simplicity, we assume equal couplings and driving strengths on all atoms G l = G and Ω l = Ω (for the general case see [43]). Furthermore, if the photon pulse has a suitably long duration we can put ω ≈ 0 (see below). With these assumptions, we find from Eq. (S14) that R g = 1 for no stored excitation; this is the perfect EIT condition. When an excitation is stored, the reflection coefficient becomes

R k = 2 1 + C * v -1 , (3) 
where

C * v = C b + iC b = C l 1/ 1 + |Ω/2| 4 V 2 kl Γ 2 e + iC l |Ω/2| 2 V kl Γe / 1 + |Ω/2| 4 V 2 kl Γ 2 e
quantifies the effective coopera-tivity of the blockade, while C = |G| 2 /(κΓ e ) is the single atom cooperativity. Each atom l in the volume blocked by the |r k excitation, i.e. such that V kl |Ω/2| 2 /Γ e , will contribute with C in C b . On the other hand, those atoms for which V kl |Ω/2| 2 /Γ e will have a negligible contribution to C b , and hence C b gives the effective cooperativity of the blockade ensemble. The imaginary part depends on the shape of the interaction but for a uniform 1/r 6 interaction at resonance in a uniform cloud we find that |C b | = C b [43] (r is the distance between atoms k and l).

We now discuss the key feature of our work -the implementation of a photonic CP gate via scattering from a Rydberg ensemble in either a single-rail or dual-rail encoding. The single-rail implementation uses the encoding discussed in the introduction and is shown schematically in Fig. 1 

(b).

A first qubit is encoded in the vacuum and single photon state, |Ø and |1 = dωφ(ω)â † ω e -iωt |Ø , respectively, of a first incoming pulse. This pulse is stored in the Rydberg ensemble such that the logical states |0 and |1 are mapped onto the ensemble being in the joint ground state |0 = |g N |Ø and a Rydberg polariton |1 = k α k |g N -1 , r k |Ø . This is achieved using the well established techniques of storage in atomic ensembles, which is known to have an error 1/N C for any slowly varying pulse shape provided a temporally varying control field is used during storage [3,19], followed by microwave π-pulse between |r k and |r k . A second incoming photon pulse is then reflected from the cavity. This reflection can be from either an ensemble in the EIT configuration (ensemble in |0 ), or from a blocked ensemble (|1 ). As can be seen from Eq. (S17) there is exactly a π phase shift between the two situations: R g = 1 for C

* v = 0 and R k = -1 for |C * v | 1.
Finally, the first stored pulse is retrieved from the ensemble.

To evaluate the performance we calculate the Choi-Jamiolkowski fidelity of the gate. Since, in general, we have N C > C b , the fidelity of the operation will mainly be limited by the gate and we shall ignore imperfections during the storage. The fidelity can then be determined by [43] ,

F CJ = 1 16 2 + dω|φ(ω)| 2 R g (ω) - k dω|α k | 2 |φ(ω)| 2 R k (ω) 2 . (4) 
To account for errors due to imperfect Rydberg blockade, we evaluate the above fidelity and find

F CJ = 1 - (1 + C b ) (1 + C b ) 2 + C 2 b - N CΓ 2 e |Ω/2| 4 (∆ω) 2 - 1 κ + N CΓ e |Ω/2| 2 2 (∆ω) 2 (5) 
Here the third and fourth term are gate errors due to the finite frequency width ∆ω 2 of the incoming pulse. These terms arise predominately from the EIT bandwidth, which is much narrower than the variations of the blocked reflection coefficient. For a narrow pulse ∆ω → 0, the fidelity is only limited by the cooperativity of the blocked ensemble 1 -

F CJ ∝ 1/C b .
Hence, as discussed in the introduction, it is the cavity enhanced blockaded cooperativity, which is the main figure of merit for the gate.

In the dual-rail encoding, both logical states |0 and |1 are represented by photons, but in two different paths. A schematic of the dual-rail CP gate is shown in Fig. 1(c). The first photon pulse in the upper two arms of the figure is first stored in a memory consisting of a Rydberg ensemble placed in each arm (for a polarization encoding such two memories might be realized by two different internal states of the same ensemble). A second photon pulse is then scattered from the Rydberg ensemble if it is in state |1 (upper rail in the figure). This scattering ideally induces a phase change of π if there was a photon stored in the Rydberg ensemble, i.e. if both qubits were in state |1 . As opposed to the single-rail implementation, the dual-rail implementation has the possibility of conditioning on getting two photons in the output. Since the dominant error in the single-rail implementation is the loss of photons, this possibility allows for a substantial increase in the fidelity with only a minor failure probability of the gate. In view of a possible application of the gate for quantum repeaters, discussed below, we consider the conditional fidelity of an EPR pair resulting from an entanglement swap realized with the gate using the full circuit in Fig. 1(c). Neglecting again the error due to finite storage efficiency, we find that this fidelity is [43]

F swap = dω|φ(ω)| 2 2 + R g (ω) -k |c k | 2 R k (ω) 2 16P suc (6) 
where the success probability of the process is

P suc = dω|φ(ω)| 2 (2 + |R g (ω)| 2 + | k |c k | 2 R k (ω)| 2 )/4
. Note that compared to F CJ in Eq. (S19), the only difference is due to the conditioning with a success probability P suc < 1 and the way the mode function is treated. The latter is related to the fact that Eq. (S19) is the fidelity with a specific mode function. Keeping only the leading order contribution to the dispersion, we find the fidelity and success probability of the CP gate

F swap = 1 - 1 [C 2 b + C 2 b ] - 3C 2 b -C 2 b 4[C 2 b + C 2 b ] 2 - 3 4 
1 κ + N CΓ e |Ω/2| 2 2 (∆ω) 2 , (7) 
P suc = 1 - C b (1 + C b ) 2 + C 2 b - N CΓ 2 e |Ω/2| 4 (∆ω) 2 (8)
Here the fourth term is again the leading order error from the spectral width of the pulse. In the limit of a narrow pulse ∆ω → 0, we see that the conditional gate error 1 -F swap ∝ 1/(C b ) 2 for C b 1 is much smaller than for the single-rail. This comes at only a minor cost in the failure probability 1 -P suc ∝ 1/C b . The resulting dual-rail fidelities are plotted in Fig. 2 as a function of the parameter C b . For C b ≈ 8, the (post-selected) fidelity is found to be larger than 0.99

In order to get realistic predictions, we use the experimental conditions of Ref. [26], with Γ e ≈ (2π)3MHz and κ ≈ (2π)10MHz (corresponding to a finesse F ≈ 120) but a smaller beam waist w 0 = 15µm. This gives a single atom cooperativity C = 0.025 and we take N C = 20 corresponding to a combined storage and retrieval efficiency of 90%. We assume a Rydberg line width γ r = (2π)60 kHz [44] corresponding to a coherence time of τ r = 1/γ r = 2.65 µs (note that if the two ensembles in the dual-rail encoding are read out with the same laser the scheme becomes insensitive to phase fluctuations). With a pulse duration of T = 1/∆ω = 300 ns and a driving strength of Ω = (2π)36 MHz the error due to finite bandwidth in Eq. ( S22) is below 2%. Taking the interaction V = (2π)8.31 • 10 6 /r 6 MHz µm 6 corresponding to two atoms with a Rydberg quantum number n r = 90 and an atomic density of n = 0.25 µm -3 , one has C b ∼ 8. 1 [43] which is sufficient to obtain high fidelities as show in Fig. 2. Here, we ignore any effect of sample inhomogeneities, but this can be taken into account by suitable redefinitions of C b and C b [43]. As a particular application of the gate, we consider long distance quantum cryptography based on quantum repeaters. We considered the ensemble based quantum repeater protocol proposed in Ref. [46], but replace the entanglement swapping with the procedure shown in Fig. 1(c). We calculate the secret key rate per repeater station as described in Ref. [45] (assuming the distributed states to be Werner states) and compare the results to the original protocol (see Fig. 3). At the lowest level of the protocol, single excitations are stored in atomic ensembles using a Raman scheme and we include double excitation errors to lowest order similar to Ref. [46]. The performance of the protocol depends strongly on the repetition rate of this operation. Regardless of the repetition rate, the CP gate enables significantly higher communication rates since it allows near perfect Bell state measurements (for C b 1) whereas swapping operations based on linear optics have a maximal success probability of 50%. In Fig. 3, we also show the rate obtainable if single excitations are initially created perfectly and deterministically in the atomic ensembles, e.g., by exploiting Rydberg blockade [29]. We find that for such a protocol, a cooperativity of C b ∼ 25 is sufficient to obtain a secret key rate of 1.5 Hz over 1000 km using 33 repeater stations.

In conclusion, we have proposed an efficient method to im- 

= 2 (1 + C * v ) -1 -1 , where C * v = l C/ 1 -i|Ω/2| 2 /V kl Γ e .
To get a simple physical understanding of the scattering dynamics, we shall first assume that all atoms are identical (homogeneous). We will consider what happens for an inhomogeneous ensemble in a later section. For the van der Waals interaction potential V kl = -C 6 /r 6 , where r is the relative distance between the k th and l th atoms, we can evaluate C * v with the sum l converted to a volume integral → ndV . Thus we get for a homogeneous ensemble with an isotropic potential,

C * v = 4πnC ∞ 0 dr r 2 /(1 + iζr 6 ); ζ = |Ω| 2 4C 6 Γ e . ( S18 
)
We can write this integral as

C * v = C b -iC b and solved it to get, |C b | = |C b | = 2 3 (Cnπ 2 / √ 2ζ)
. Above, we have solved the scattering dynamics in the case where there was already a Rydberg excitation stored. In principle, we should also solve the dynamics without the first stored excitation. In this case, however, the excitations are completely independent of each other. We can then conveniently obtain the results for this situation by simple setting V kl = 0. Then from Eq. (S17) we get C * v = 0 for a long photon pulse and hence R g = 1.

To investigate the effect of pulses of a finite duration, we now consider the bandwidth of the scattering coefficient. To do this, we perform a Taylor series expansion of the reflection coefficient about some central frequency ω 0 ,

R k (ω) = R k (ω 0 ) + ∂ ω R k | ω0 (ω -ω 0 ) + 1 2 ∂ 2 ω R k | ω0 (ω -ω 0 ) 2 . (S19)
Here we have kept upto the second order in the expansion. The above three terms in the expansion are described by, with the parameters defined by,

R k (ω 0 ) = 2 1 + C * v -1 + 2i ω 0 κ 1 (1 + C * v ) 2 , (S20) ∂ ω R k | ω0 = -4 ω0 κ 1 κ - C * αv Γe (1 + C * v ) 3 + 2i 1 κ - C * αv Γe (1 + C * v ) 2 , (S21) ∂ 2 ω R k | ω0 = -4 1 κ - C * αv Γe 2 (1 + C * v ) 3 + 4C * v Γe C * βv Γe (C * v ) 2 -3 ω 2 0 κ 2 (1 + C * v ) 6 + 4 ω0 κ C * ηv Γ 2 e (1 + C * v ) 4 + 4 C * χv Γ 2 
C * v = l C 1 -i ω0 Γe + |Ω l /2| 2 i(V kl -ω0)Γe , C * αv = C l 1 + |Ω l /2| 2 /(V kl -ω 0 ) 2 1 -i ω0 Γe + |Ω l | 2 i(V kl -ω0)Γe 2 (S23) C * βv = C l 1 + |Ω l /2| 2 /(V kl -ω 0 ) 2 1 -i ω0 Γe + |Ω l /2| 2 i(V kl -ω0)Γe 3 , C * ηv = C l |Ω l /2| 2 Γ e /(V kl -ω 0 ) 3 1 -i ω0 Γe + |Ω l /2| 2 i(V kl -ω0)Γe 3 (S24) C * χv = C l |Ω l /2| 2 ω 0 /(V kl -ω 0 ) 3 1 -i ω0 Γe + |Ω l /2| 2 i(V kl -ω0)Γe 3 . (S25)
Assuming the central frequency of the incoming pulse to be on resonance, we set ω 0 = 0 and hence Eqs. (S20-S22) become substantially simpler and are described by,

R k = 2 1 + C * v -1 , (S26) ∂ ω R k | ω0=0 = 2i 1 κ - C * αv Γe (1 + C * v )
2 , (S27)

∂ 2 ω R k | ω0=0 = -4 1 κ - C * αv Γe 2 (1 + C * v ) 3 + 4C * v Γe C * βv Γe (C * v ) 2 (1 + C * v ) 6 + 4 C * χv Γ 2 e (1 + C * v ) 3 -4i      C * ηv Γ 2 e (1 + C * v ) 3      . ( S28 
)
Note that for the case of no stored photon in the ensemble, we have R k → R g and one can also get the Taylor series expansion of R g by setting V kl = 0. The expressions for such an expansion at resonance is the same as given by Eqs. (S26 -S28) but now with the set of parameters,

C * v → C * , C * αv → C * α , C * βv → C * β , C * ηv → C * η , C * χv → C * χ ,
where the new parameters correspond to Eqs. (S23 -S25) with V kl = 0. From the set of Eqs. (S26-S28), we see that the leading order dispersive contributions are scaled down by a factor of (C * v ) 2 and (C * v ) 3 when we compare the situation with and without stored excitation in the first pulse. Hence the spectrally narrowest feature is the width of the EIT resonance without a stored excitation, and this will thus be the limiting factor for the bandwidth.

We next analyze the behaviour of the parameters listed in Eqs. (S23-S25) in different limits of operation. We can find the blockaded part by considering the limits V kl |Ω l /2| 2 /Γ e , while the contribution from the remaining EIT medium is found in the limit V kl |Ω l /2| 2 /Γ e . To get a feeling for the expression in Eqs. (S23-S25), we separate them into contributions coming from the blockaded atoms and that from the rest of EIT medium, Note that since in this case there is no Rydberg excitation blockade, only the EIT medium contributes and all the terms arising due to blockade are zero.

C * v ≈ C b + iC b = l C 1 + |Ω/2| 4 V 2 kl Γ 2 e + i l C |Ω/2| 2 V 2 kl Γe 1 + |Ω/2| 4 V kl Γ 2 e ; ( 
we can define the state |Φ = j |j |j / √ d that is an element of the original Hilbert space tensored with a copy of itself. Note that |Φ is a maximally entangled state of these two copies. We will only consider a two-qubit gate, so that d = 4 in the above.

After applying I ⊗ U and I ⊗ V onto the density matrix |Φ Φ|, we get a pair of new states The CJ fidelity is defined to be the fidelity of these two states. Since ρ U is a pure state, we get

F CJ = F (ρ U , ρ V ) = Φ|(I ⊗ U † )ρ V (I ⊗ U )|Φ = | Φ|(I ⊗ U † V )|Φ | 2 + l | Φ|(I ⊗ U † K l )|Φ | 2 . ( S39 
)

STORAGE AND RETRIEVAL

The full physical process to implement the controlled-phase gate consists of storage of one photon, scattering of the second one, and retrieval of the first. The theory of storage and retrieval with an ensemble in a cavity is well established. In suitable regimes these results show that we have a mapping between a single mode of the atomic ensemble and a specific incoming or outgoing optical mode, and all other modes will be uncoupled [1]. Hence, the process of storage is described by a single parameter, which is the storage efficiency of a single incoming photon to create a specific spin wave

|S = k α k |g N -1 , r k . (S40)
After scattering of the second photon, this spin wave will get multiplied by the reflection coefficient of the second photon such that it becomes

|S R = k α k R k (ω)|g N -1 , r k ,
where ω is the frequency of the second photon. Note here that the scattering coefficient may depend on which atom the first photon was stored in since different atoms may experience different degrees of blockade. For the retrieval, the cavity maps the particular spin wave (S40) to a specific temporal mode. Hence, the amplitude of the retrieved photon is given by the shape of that temporal mode multiplied by the overlap

S|S R = k |α k | 2 R k (ω).
In general, the retrieved wavepacket will also need to multiplied by the square root of the overall storage and retrieval efficiency, but we neglect this in our analysis. For the fidelity calculations, one would need to calculate the overlap of the retrieved photon wavepackets corresponding to |S and |S R . However, by the discussion above, the overlap of the photon wavepackets will be equal to the overlap of the spin waves |S and |S R . Hence, in the calculations below, we will directly calculate the fidelities by projecting the spin waves instead of analysing the retrieval.

FIDELITY IN THE SINGLE-RAIL ENCODING

In the single-rail encoding the computational basis is (S41)

|00(t) = |g
Note that this basis is time dependent due to the free evolution phase exp(-iωt). Hence, we define the ideal operation U such that it includes this free evolution phase. Specifically, if we denote the computational basis states at the initial time t = 0 by omitting the time variable, i.e. |jj = |jj (t = 0) (j, j 0, 1), then the ideal operation of the controlled-phase gate is given by

U |00 = |00(t f ) , U |01 = |01(t f ) , U |10 = |10(t f ) , U |11 = -|11(t f ) . (S42)
Using the computational basis (S41) we can write

|Φ = 1 2 |00 |00 + |01 |01 + |10 |10 + |11 |11 .
Inserting this specific form of |Φ into (S39) we obtain

F CJ = 1 16 00|U † V |00 + 01|U † V |01 + 10|U † V |10 + 11|U † V |11 2 + 1 16 l 00|U † K l |00 + 01|U † K l |01 + 10|U † K l |10 + 11|U † K l |11 2 . ( S43 
)
For the operators K l , we assume that jj (t f )|K l |jj = 0, where j, j ∈ {0, 1}. Physically, this assumption means that if a quantum jump (incoherent decay) occurs, the given basis will switch to another state of the physical system (possibly even one of the other basis states) but can never be driven back to the original state. I.e. if a photon is lost, it will result in a vacuum output, and thus is does not give an overlap with the original state. Under this assumption, we only need to compute the dynamics due to the non-Hermitian Hamiltonian. The detailed calculation is presented in Sec. . In essence, the result is that the dynamics of the operator V can be described by the scattering relations

V |00 = |g N |Ø , V |01 = |g N dωR g (ω)φ(ω)â † ω e -iωtf |Ø , V |10 = k α k |g N -1 , r k |Ø , V |11 = dω k α k R k (ω)φ(ω)â † ω e -iωtf |g N -1 , r k |Ø . (S44)
Gathering all the formulas in this section, the CJ fidelity becomes

F CJ = 1 16 2 + dω|φ(ω)| 2 R g (ω) -dω|φ(ω)| 2 k |α k | 2 R k (ω) 2 .
(S45)

FIDELITY IN THE DUAL-RAIL ENCODING

In this section we calculate both the CJ fidelity and the entanglement swap fidelity for the dual-rail encoding and show how they relate to each other. The circuit diagram of the entanglement swap operation is shown in Fig. S4.

The entanglement swap operation consists of evolution of the initial state (which is unitary in the ideal case) and a subsequent measurement. The evolution can be decomposed into a controlled-phase gate and Hadamard gates. If the Hadamard gates are assumed to be ideal, then the CJ fidelity of the whole evolution is equal to the CJ fidelity of the controlled-phase gate. We are going to use this fact in relating the CJ fidelity to the entanglement swap fidelity.

The abstract definition of the CJ fidelity does not make any reference to a particular basis. In this section, in addition to the computational basis, we will also use the Bell basis, since it is the natural choice for the entanglement swap operation. The Bell states are In the circuit, the Hadamard gates are denoted by H and the controlled-phase gate is denoted by ϕ.

In addition to the conventional names, we also give numbers to the Bell states, which will allow us to express summations in a simple way below.

For the entanglement swap circuit of Fig. S4, the initial state is one Bell pair |φ + 12 between subsystems 1 and 2 and another Bell pair |φ + 34 between subsystems 3 and 4. Note that this initial state can be written as This is exactly the state that is used as the input for the calculation of the CJ fidelity expressed in the Bell basis. After evolution of subsystems 2 and 3 as shown by the circuit and a measurement (the two detectors to the right), a Bell pair between subsystems 1 and 4 is established.

The practical implementation of the above circuit is shown in Fig. 1(c) of the main text. Whereas Fig. S4 displays the extended four-qubit Hilbert space required for the calculation of the CJ and entanglement swap fidelity, Fig. 1(c) only displays the two central subsystems (2 and 3), but each of the two subsystems are represented by the photon being in two distinct modes.

We define â † 0,ω to be the creation operator for subsystem 3 in state |0 with frequency ω, and â † 1,ω to be the creation operator for state |1 . For notational convenience, we define the states |0 ω 3 = â † 0,ω |Ø and |1 ω 3 = â † 1,ω |Ø . Then in the dual-rail encoding, the computational basis is 

|0 2 = k α k |g N -1 , r k 0 , |1 2 = k α k |g N -1 , r

(S47)

Here, |g N -1 , r k 0 are the states of the memory (the ensemble which does not interact with the second photon), and |g N -1 , r k 1 are the states of the cavity from which the second photon is scattered (see Fig. 1(c) of the main text). These two states correspond to subsystem 2 of Fig. S4. Subsystem 3 is encoded in photonic states which are not stored but only scattered. Note that all of the resulting computational basis states |00 23 , |01 23 , |10 23 and |11 23 physically correspond to having two excitations. Hence, it allows for simple means of error detection: if less than two excitations are present at the end of the evolution, we know that an error has occured. In the dual-rail basis, the action of the operator V 23 that corresponds to the physical implementation of the controlled-phase gate can be written 

(S48)

For the operators corresponding to the full evolution of the circuit of Fig. S4, we also need to describe the Hadamard operators. In the dual-rail encoding, the Hadamard operations are obtained by impinging the photons on beamsplitters which work on all frequency components separately. This is important for subsystem 3 (the scattered photon), since the frequency components will be multiplied with, in general, different reflection coefficients R g (ω) and R k (ω) depending on the input state. Hence the definition of the Hadamard operator here needs to be per frequency component, i. (S49)

Note that with the definitions (S42), (S46) and (S49), it holds that Ũ23 |φ jj = |jj (t f ) . In this setting, not only the input states used for the entanglement swapping match the ones used for the CJ fidelity, also the actual operation itself has the same form: an identity operation acting on subsystems 1 and 4, while subsystems 2 and 3 are evolved according to either Ũ or Ṽ. The two output states are then where j, j ∈ {0, 1}, and we also define their sum

P = 1 j,j =0 Pjj . (S51)
The projection operators of Eq. (S50) correspond to measuring the states |jj 23 on the detectors of circuit of Fig. S4. Note that for subsystem 3, we project onto the entire subspace that is spanned by the states |j ω instead of choosing a particular mode. This is equivalent to the assumption that all frequency components contribute to the probability of a "click" on the detector. On the other hand, the operator of Eq. (S51) has a less clear physical interpretation. Formally, it projects a given state onto the subspace with two excitations. The motivation for defining such an operator is to be able to relate the CJ fidelity to the entanglement swap fidelity as we will see below. Since the entanglement swap fidelity can only be understood as a conditional fidelity (conditioned on the measurement outcomes corresponding to the operators of Eq. (S50)), the CJ fidelity also needs to be conditional. Let us begin with the calculation of the entanglement swap fidelity. Using the states after the measurement has taken place (S52)

Here, we take the trace over subsystems 2 and 3, since the relevant question is how close subsystems 1 and 4 are to a particular Bell pair. The trace can be written as tr 23 (ρ jj ) = For the dual-rail encoding, we have a stronger assumption about the operators K l than for the single-rail encoding. We are going to assume that n| 2 n ω | 3 K l |jj = 0, where n, n , j, j ∈ {0, 1}. Physically, this assumption means that the decay processes take the state out of the computational basis entirely, since any such decay will reduce the number of the total excitations to less than two. Then the expression for the fidelity (S52) becomes .

For all j and j we get

tr( Pjj ρ Ṽ P † jj ) = 1 16 dω|φ(ω)| 2   2 + |R g (ω)| 2 + k |α k | 2 R k (ω) 2   
and

F swap = F jj = 1 16P suc dω|φ(ω)| 2 2 + R g (ω) - k |α k | 2 R k (ω) 2 , ( S53 
)
where we have defined the success probability P suc = 1 j,j =0 tr( Pjj ρ Ṽ P † jj ), i.e.

P suc = 1 4 dω|φ(ω)| 2   2 + |R g (ω)| 2 + k |α k | 2 R k (ω) 2    . (S54)
Now we look at the conditional CJ fidelity. Using the state ρ Ṽ = P ρ Ṽ P † tr( P ρ Ṽ P † ) (S55)

we can define the conditional CJ fidelity as F CJ = F (ρ Ũ , ρ Ṽ ). By the cyclicity and linearity of the trace, we have tr( P ρ Ṽ P † ) = 1 j,j =0 tr( Pjj ρ Ṽ P † jj ) = P suc .

The projection operator P has no effect on the states |Φ , hence F (ρ Ũ , P ρ Ṽ P † ) = F (ρ Ũ , ρ Ṽ ), and the analysis reduces to finding the unconditional CJ fidelity and dividing by the success probability P suc . The final result is

F CJ = 1 16P suc 2 + dω|φ(ω)| 2 R g (ω) -dω|φ(ω)| 2 k |α k | 2 R k (ω) 2 . ( S56 
)
Comparing Eqs. (S53) and (S56) we see that the only difference is the order of integration and taking the absolute value. Thus in general, we have F CJ ≤ F swap . If the bandwidth of the second photon is narrow compared to the the frequency variations of R g and R k , then the two fidelity measures become equal. The reason for this similarity is that the two measures consider the same input, but they do not consider exactly the same output. For the CJ fidelity the question we ask is what is the output with a particular mode, which we for simplicity take to be the same as the input mode. Possibly the CJ fidelity can therefore be increased by considering a more appropriate output mode. For the swapping fidelity we on the other hand consider everything which is incident on the photodetectors regardless of the temporal mode and hence this fidelity is higher.

THE GATE FIDELITIES FOR THE RYDBERG CONTROLLED-PHASE GATE

In the single-rail case, we evaluate the CJ fidelity (S45). To evaluate the quantity inside the modulus square we expand it and use Eq. (S19) and the corresponding expansion for R g to get, where,

∆R = R g - k |α k | 2 R k = 2C b + 2iC b (1 + C b ) + iC b (S57) ∆R =   R g - k |α k | 2 R k   = 2i 1 κ + N CΓ e |Ω/2|
C inh b = Re     1 k |α k | 2 1 + l =k C l 1+|Ω/2| 2 /(Γ rl Γ el +iV kl Γ el ) -1     -1, C inh b = Im     1 k |α k | 2 1 + l =k C l 1+|Ω/2| 2 /(Γ rl Γ el +iV kl Γ el ) -1     (S70)
Note that contrary to the homogeneous case the above defined effective co-operativity for inhomogeneous ensemble also includes the effect of Rydberg decoherence on the scattering process. Thus, to study the Fidelity of the phase gate for an inhomogeneous ensemble and in presence of decoherence, the results in Eqs. 
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 2 Figure 2: Rydberg blockade controlled phase gate operating on input states (a)|01 and (b) |11 . Quantum information is stored in the basis states |0 , |1 and state |1 is coupled to a Rydberg level |r with excitation Rabi frequency Ω. The controlled phase gate is implemented with a three pulse sequence: (1) π pulse on control atom |1 → |r , (2) 2π pulse on target atom |1 → |r → |1 , and (3) π pulse on control atom |r → |1 . (a) The case where the control atom starts in |0 and is not Rydberg excited so there is no blockade. (b) The case where the control atom is in |1 which is Rydberg excited leading to blockade B = V (R) of the target atom excitation. The picture is taken from

Figure 3 :

 3 Figure 3: Energy level structure of the two-atom system being resonantly excited in a a) complete blockade conguration, b) no blockade conguration.

Figure 4 :

 4 Figure 4: (a) Level scheme of atoms interacting with weak (quantum) elds E 1,2 on the transitions |g → |e 1,2 and strong driving elds of Rabi frequencies Ω 1,2 on the transitions |e 1,2 → |d 1,2 . V dd denotes the dipole-dipole interaction between pairs of atoms in Rydberg states |d . (b) Upon entering the medium, each eld having Gaussian transverse intensity prole is converted into the corresponding polariton Ψ 1,2

∆ 2 2γ(

 2 e ≡ (ω pω e ) and ∆ r ≡ (ω p + ω cfω r ). Moreover, the atoms are placed in an optical cavity: we shall denote by γ (L,R) c the respective decay rates through the left and right mirrors (see Fig. 1.1), with γ c ≡ γ transition |g ↔ |e is supposed in the neighborhood of a cavity resonance. The frequency and annihilation operator of the corresponding mode are denoted by ω c and a, respectively ; the detuning of this mode with the probe laser is dened by ∆ c ≡ (ω pω c ) and α denotes the feeding rate of the cavity related to the incoming photon ux via I in = α

2 ;F 2 ;

 22 Figure 1.1: a) The setup consists of N cold atoms placed in an optical cavity which is fed by a weak (classical) laser beam of frequency ω p and a strong control laser eld of frequency ω cf . b) The atoms present a three-level ladder structure {|g , |e , |r }. The transitions |g ↔ |e and |e ↔ |r are driven by the injected probe and control laser elds, respectively, with the respective coupling strength and Rabi frequency g and Ω cf (see the text for the denitions of the dierent detunings represented here).
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 12 Figure 1.2: The scheme of the Hanbury Brown and Twiss experiment.
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 213 Figure 1.3: Schematic representation of dierent light statistics.
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 361 Eective two-level model

Figure 2 . 1 :

 21 Figure 2.1: Schematic level structure of the Tavis-Cummings Hamiltonian for N b > 1 being externally excited so that a) single photon component is resonant, b) 2-photon component is resonant.
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 22 Figure 2.2: The structure of nearly-resonant eigenvalues of the Tavis-Cummings Hamiltonian as a function of of the reduced detuning θ ≡ ∆ c -∆ (0) c /γ e . Thin and thick lines represent eigenvalues of (2.10) in the single and two-excitation subspaces the respectively.
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 22 = 2 , |e = 5p 3 F = 3 and |r = 95d5
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  2.3 a) as a function of the reduced detuning θ ≡ ∆ c -∆

  checked by comparison of Fig. 2.3 a) and b). Hence, pair emission might dominate in a regime where the number of photons coming out from the cavity is actually very small. We may now explain the exact positions of single-and two-photon resonances. As discussed in the previous section the level structure of the Hamiltonian we consider in the low excitation regime coincides with those of the Tavis-CummingsHamiltonian. As can be seen from the comparison of gures 2.2 and 2.3 various single and two-photon resonances correspond to the zero-crossings of eigenvalues of Eq.(2.10) 
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 2322 Figure 2.3: a) Second-order correlation function at zero time g (2) (0) (numerical and analytical plots coincide), as a function of the reduced detuningθ ≡ ∆ c -∆ (0) c /γ e .In the neighborhood of the minimum (A) θ A = 0, a region with a sub-Poissonian statistics is observed (see inset); a super-Poissonian area is obtained around the peak (B) θ B = -4.9. b) Average number of pairs a † a † aa ss = n (n -1) ss (thin line) and square of the average number of photons a † a 2 ss = n 2 ss in the steady state (thick line).
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 24 Figure 2.4: Temporal behaviour of g(2) (τ ) for a) θ B = -4.9 and b) θ A = 0 . Note that we chose a dimensionless time-variable τ × γ e on the x-axis.
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 312 Figure 3.1: Second-order correlation function g (2) t (0) for the transmitted light in the dispersive regime considered in Chap. 2 as a function of the renormalized cavity detuning θ c /γ e ≡ ∆ c -∆ (0) c/γ e where ∆ (0) c is the detuning of the linear cavity. The shape of the plot is in good qualitative agreement with the results of the previous model.Inset : the same plot in logarithmic scale.
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 32 Figure 3.2: Unequal time second-order correlation function g (2) t (τ ) for the transmitted light in the dispersive regime considered in Chap. 2 as a function of time. a) For θ c /γ e = -3.5, g

  out = 0 while single photons are reected a (L) † out a (L) out = 0 (see Fig. 3.4). The time-dependence of g (2) r (τ ) is also shown on Fig. 3.4 for Ω cf ≈ 11γ e : the reected light is antibunched, asymptotically becoming uncorrelated at large times.
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 3334 Figure 3.3: Resonant case ∆ c = ∆ e = ∆ r = 0. a) The quantities a (L) † out a (L) † out a (L) out a (L) out

3 .

 3 It is therefore enough to focus on the eective action of the Hamiltonian H and the dissipation operator D onto this subspace. Let us rst consider the action of b (dened in Eq. 3.10) onto the collective symmetric atomic state |m, n ≡ |N e = m; N r = n; N g = Nmn containing m excitations 'e' and n excitations 'r'. Neglecting m and n with respect to N , one readily gets b |m, n ≈ √ m |(m -1) , n and b † |m, n ≈ (m + 1) |(m + 1) , n . Hence b † b |m, n = m |m, n = N n=1 σ (n) ee |m, n and b, b † ≈ 1 and the term -∆ e N n=1 σ (n) ee in the Hamiltonian can be replaced by -∆ e b † b. The same results can be established for c : in particular, the term -∆ r N n=1 σ (n) rr in the Hamiltonian can be replaced by -∆ r c † c. Moreover, in the low excitation regime, bosonic operators b and c can be considered independent their commutators being of order O m N , n N . In the same approximation framework, the term N n=1 σ (n) re + σ (n) er , involved in the interaction between atoms and control 3 Analogously to classical systems, here, impedance matching designates the regime when no reec- tion of the incoming wave is observed. 57 Perturbative treatment at lowest-order eld, is replaced by bc † + b † c the action of these two operators onto the same collective symmetric state indeed coincides up to O m N , n N contributions. Similarly, the Liouvillian operators corresponding to spontaneous decays from intermediate and Rydberg levels take the collective forms

4. 1 . 2

 12 Contour-ordered representation of correlation functions 4.1.2.1 Multitime-correlation functions in the interaction picture 2 Throughout this dissertation, we have focused on evaluating correlation functions of the light either transmitted through or reected from the cavity, which can be experimentally obtained via multitime measurements of the light outgoing from the setup.

  -Keldysh contour-ordering Eq. (4.10) suggests to introduce a new variable, which does not merely follow the real axis (-∞, ∞) but rather a contour C made of two branches C + = (-∞, +∞) and C -= (+∞, -∞) (Fig.4.1). A contour-ordering operator T C can be dened, accordingly, by

Figure 4 . 1 :

 41 Figure 4.1: Representation of contour-ordering for the multitime correlation function

  .13) is an expectation value in the vacuum state ρ 0 of a contour-ordered string of creation and annihilation operatorsS = T C e † p+q (z p+q ) . . . e † p+1 (z p+1 ) e p (z p ) . . . e 1 (z 1 ) (4.14)where e 1 , e 2 , • • • , e p+q are bosonic annihilation operators in the interaction picture with respect to H 0 . Applied to our system, Wick's theorem states that such a contourordered string can be decomposed into a sum over all possible pairwise products of creation and annihilation operators 4 in the string in Eq.(4.14) 

( 4 .

 4 13) to the terms which satisfy k + r + 2p = nk + s + 2p, or equivalently k = n+s-r2.

  )

  2.2, the matrix representation ĜT [ω] of the time-ordered Green's function show a block-diagonal structure in the basis {a 0 , b 0 , c 0 , b k =0 , c k =0 which implies that the Green's functions G T xy (tt ) = -i T x (t) y † (t ) vanishes unless x and y simultaneously belong to the same set, either {a 0 , b 0 , c 0 } or b k =0 , c k =0 . Therefore: R3 Only contractions of operators all picked either in the set {a, b 0 , c 0 } or in the set b k =0 , c k =0 give non-vanishing contractions. Moreover we recall our convention for same-time expectation values, evaluated on the C ± branches (see Sec. 4.1): the time argument of the creation operators are assumed to be innitesimally shifted by 0 ± , such that the chronological coincides with normal ordering. Therefore: 4.5 Intensity correlation function R4 Same-time contractions vanish, in particular,

Figure 4 . 2 :

 42 Figure 4.2: Feynman diagrams corresponding to a ) rst order, b) second order, c) third order contributions in H dd . d ) Schematic representation of the sum of all orders starting with the rst. e ) diagrammatic representation of the perturbative expansion of T 0 .

  .44) by inspecting its dierent terms. The last term on the right side of Eq. (4.45), G T c 0 a [0] 2 , stands for the conversion of two incoming photons into symmetric Rydberg polaritons. Resulting from the resummation of diagrams of all perturbative orders in H dd , the term (-iT 0 ) 2π represents the action of the Rydberg dipole-dipole-interaction-induced non-linearity on the two symmetric polaritons, provided they return to the symmetric subspace. Finally the term G T ac 0 [ω out,1 ] G T ac 0 [ω out,2 ] represents the conversion of two symmetric polaritons back to the cavity mode photons.
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 432 Figure 4.3: Diagrammatic representation of T k, k in a ) perturbative form, b) self- consistent form.
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 44 Figure 4.4: Intensity correlation functions of the transmitted light g

Figure 4 . 5 :

 45 Figure 4.5: Maximum squeezing spectra 1 -Ξ (2) [ω] as a function of the control eld Rabi frequency for a ) the resonant case (∆ e = 0,∆ r = 0 ), b) detuned case ∆ e = -25γ e , ∆ r = 0, α = 0.1γ e .
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 263 Transmission spectrumIn this subsection we use the results, derived above to investigate the spectrum of the transmitted light S out (ω) ≡ dω G (1) out (ω, ω ) We shall be particularly interested in the inelastic part ( S out i ≡ 2γ R c ∞ -∞ dνI (ω, ν), see Eq. (4.75) ), which is represented in Fig. 4.6 in resonant (∆ c = ∆ e = ∆ r = 0) as well as detuned (∆ c = -3γ e , ∆ e = 0, ∆ r = 0) congurations. For both regimes we assume a cloud cooperativity C = 5, and γ R c = 0.3γ e γ L c and γ r = 0.15γ e for the cavity and Rydberg decays respectively. All parameters are expressed in units of the intermediate state decay rate γ e = 2π × 3MHz. As can be seen on Fig. 4.6 the spectrum has several resonances which depend on the control eld Rabi frequency. The resonance structure shown in Fig. 4.6 (a) (resonant case) resembles the level pattern of the Hamiltonian in the single excitation subspace In the detuned case, the structure shown on Fig. 4.6 (b) is more complicated; resonances can still be identied as the eigenvalues 1 , 2 , 3 of the Hamiltonian 4.7 Conclusions 

  Figure 4.6: Inelastic component of the cavity transmission spectrum S i ≡ 2γ R c dν a † (ω) , a (ν) in logarithmic scale as a function of Ω cf and the frequency (in the frame rotating at ω p ) for: a) the resonant case ∆ c = ∆ e = ∆ r = 0, b) the detuned case. The transverse curves give (± 1 , ± 2 , ± 3 ) as functions of Ω cf (see main text).
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 47 Figure 4.7: The level structure of the Hamiltonian of the system, restricted to two excitations. The structure of the doubly excited manifold is represented schematically.
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 5152 Figure 5.1: Schematic outline of the phase gate (a) An input single photon pulse along with a driving eld induces a two-photon transition to the Rydberg state |r which is subsequently transferred to another Rydberg state |r . Due to Rydberg interactions V kl among the atoms, other Rydberg states |r within the range of the interaction potential, given by, the blockade radius of r b , become o-resonant allowing no further excitation. (b) When an initial photon pulse is stored in the Rydberg ensemble, the second incoming photon cannot enter the cavity and is scattered o, which ideally induces a phase ip of π on the scattered photons.

  |g 1 , . . . g N ⊗ |0 is the vacuum state of the system {atoms+baths}, S † ≡ i ν i | with µ, ν taking values from {g, e, r, r }) is the stored r -polariton creation operator and b † ω is the creation operator of the electromagnetic bath mode of frequency ω. We moreover assume that the function β (ω) which denes the temporal mode of the incoming photon satises the normalization condition dω |β (ω)| 2 = 1.
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 52 All barred quantities correspond to the reference situation.108 Photon scattering on the cavity the coupling strength to the bath modes g b is innite. This assumption legitimates the steady state approximation for the cavity eld in Eq. (5

Figure 5 . 3 :

 53 Figure 5.3: Choi-Jamiolkowski delity (thin line) and postselected swap delity (thick line) as functions of the blockaded cooperativity C b for a spectrally narrow pulse |β (ω)| 2 → δ (ω) .

  4 may allow us to clarify the range of applicability of such an approximate description and to go beyond by considering, e.g., the resonant regime of EIT. A.1.2 Comparison with the experimental data In Fig. A.1.2 we provide the experimental results for the stationary cavity transmission spectrum using the following set of parameters
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  the second term of the right hand side of this equation arises from the coupling of the cavity mode with the ensemble of N n b Rybderg bubbles with the magnied coupling strength g √ n b . The rst term accounts for the detuning and decay of the cavity, while the last one results from the feeding by the probe eld. In this semiclassical approximation, bubbles do not entangle with the cavity mode and therefore cannot get entangled with each other: the atomic sample can hence be described by the tensor product density matrix ρ ⊗ • • • ⊗ ρ where ρ is the density matrix of any of the bubbles (they are all equivalent). The semi-classical dynamical equation for ρ now writes d dt ρ = -i [H, ρ] + D l (ρ) + D nl (ρ) where single-bubble Hamiltonian and decay operators are given by
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 2 Figure A.2: Cavity transmission in EIT conditions (probe and control elds are on resonance) for 60D 5/2 Rydberg state of rubidium atom. In addition to a decrease in transmission with the probe photon rate due to the Rydberg blockade, we observe a transmission decay over time for D states.
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  is computed in the state |ψ (t = -∞) ≡ |in = e -1 2 n e dωα(ω)b † L,ω |Ø where b † L,ω is the creation operator of the bath mode of frequency ω and |Ø is the state with no excitations in the system. From the input-output relation for the right mirror a c a we may write for (C.1)

  |in = 0. For the further development of (C.2) we may use the standard commutation relation for the Langevin noise operator

  and the radiative coherence decay γ r is eectively replaced by the dephasing decay rate γ d .

FIG. 1 :

 1 FIG. 1: Schematic outline of the phase gate (a) An input single photon pulse along with a driving field induces a two-photon transition to the Rydberg state |r which is subsequently transferred to another Rydberg state |r . Due to Rydberg interactions V kl among the atoms, other Rydberg states |r within the range of the interaction potential, given by, the blockade radius of r b , become off-resonant allowing no further excitation. (b) When an initial photon pulse is stored in the Rydberg ensemble, the second incoming photon cannot enter the cavity and is scattered off, which ideally induces a phase flip of π on the scattered photons. (c) Dual-rail implementation of a CP gate (dotted box). A Bell state measurement can be implemented by combining the CP gate with Hadamard gates (HG).

FFIG. 2 :

 2 FIG. 2: Choi-Jamiolkowski fidelity (thin line) and post-selected swap fidelity (thick line) as functions of the blockaded cooperativity C b for a spectrally narrow pulse ∆ω → 0. We assume |C b | = C b .

  assumed all the Rabi frequencies to be equal such thatΩ l = Ω and C * α v = l C/(1 + |Ω/2| 2 /iV kl Γ e ) 2 , C * β v = C * η v = l C/(1 + |Ω/2| 2 /iV kl Γ e ) 3, which scale as the number of blocked atoms C b while N α EIT , N β EIT scale as the number of remaining unblocked atoms ∼ N . Similarly, for the case of no stored excitation, we get,

ρ

  U = [I ⊗ U]|Φ Φ| = (I ⊗ U )|Φ Φ|(I ⊗ U † ), (S37) ρ V = [I ⊗ V]|Φ Φ| = (I ⊗ V )|Φ Φ|(I ⊗ V † ) + l (I ⊗ K l )|Φ Φ|(I ⊗ K † l ). (S38)

  N |Ø , |01(t) = |g N dωφ(ω)â † ω e -iωt |Ø , |10(t) = k α k |g N -1 , r k |Ø , |11(t) = k α k |g N -1 , r k dωφ(ω)â † ω e -iωt |Ø .

  FIG. S4: (a) The circuit diagram of the entanglement swap operation. The numbers at the left edge indicate the label of the subsystem (qubit).In the circuit, the Hadamard gates are denoted by H and the controlled-phase gate is denoted by ϕ.
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 1 |0(t) 3 = dωφ(ω)e -iωt |0 ω 3 , |1(t) 3 = dωφ(ω)e -iωt |1 ω 3 .

V
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2 . 2 . 2 ⊗

 222 e. H 3 |0 ω 3 = (|0 ω 3 + |1 ω 3 )/ √ 2 and H 3 |1 ω 3 = (|0 ω 3 -|1 ω 3 )/√ For subsystem 2, the single mode retrieval precludes any such difference in the mode shape for photons that are incident on the beamsplitters. Hence we can define the Hadamard operators to act on the spin wave states directly,H 2 |0 2 = (|0 2 + |1 2 )/ √ 2 and H 2 |1 2 = (|0 2 -|1 2 )/ √In analogy with Eqs. (S34) and (S36), we define the superoperators Ũ and Ṽ for the ideal and the real version of the circuit of Fig.S4. They can be written asŨ23 (ρ) = Ũ23 ρ Ũ † 23 H 3 )U 23 (I 2 ⊗ H 3 ), Ṽ23 = (H 2 ⊗ H 3 )V 23 (I 2 ⊗ H 3 ),Kl,23 = (H 2 ⊗ H 3 )K l,23 (I 2 ⊗ H 3 ).

ρ(I 14 ⊗

 14 Ũ = [I 14 ⊗ Ũ23 ] |Φ Φ| = (I 14 ⊗ Ũ23 )|Φ Φ|(I 14 ⊗ Ũ † 23 ), ρ Ṽ = [I 14 ⊗ Ṽ23 ] |Φ Φ| = (I 14 ⊗ Ṽ23 )|Φ Φ|(I 14 ⊗ Ṽ † 23 ) + l Kl,23 )|Φ Φ|(I 14 ⊗ K † l,23).Now we want to use the error detection property of the dual-rail encoding. We define the projection operatorsPjj = I 14 ⊗ |j j| 2 ⊗ dω|j ω j ω | 3 (S50)

  the conditional fidelities for the entanglement swapF jj = φ jj | tr 23 (ρ jj )|φ jj 14 .

F jj = 1 4 2 .

 12 tr( Pjj ρ Ṽ P † jj ) dω j| 2 j ω | 3 (H 2 ⊗ H 3 )V 23 (I 2 ⊗ H 3 )|φ jj 23with the trace in the denominator given by tr( Pjjρ Ṽ P † jj ) dω n| 2 n ω | 3 (H 2 ⊗ H 3 )V 23 (I 2 ⊗ H 3 )|φ jj 23 2

2 b( 1 + 2 b( 1 +

 2121 above expressions, we have assumed that the ensemble is homogeneous and that the potential is isotropic. Hence we have dropped the index k from V kl . We can then do the sum over k and given that α k are normalized, we have k |α k | 2 = 1 in the above expressions.A closer look at Eq. (S45) suggests a further simplification which gives us,|∆R| 2 + 4Re[∆R] + 2Re[∆R ](∆ω) 2 + Re[∆R∆R * ](∆ω) 2 (S60)where we have assumed narrow bandwidth of the pulse and defined the variance of the incoming pulse as (∆ω) 2 = dω|φ(ω)| 2 (ωω 0 ) 2 . Substituting Eqs. (S57 -S59) in Eq. (S60) and assuming that C b , C b 1 and C * β b , C b ) (1 + C b ) 2 + C 2 b + 1 4[(1 + C b ) 2 + C 2 b ] -N CΓ 2 e 2|Ω/2| 4 (∆ω) 2 1 + C b (1 + C b ) + C C b ) 2 + C 2 b (1 + C b ) + C C b ) 2 + C 2 b (∆ω) 2 (S61)

  (S62) and (S68) can be utilized but now with C b replaced by C inh b and C b by C inh b .

  

  

  Consider now the limit t → ∞, assuming the process is stationary (Lim t→∞ [p cl (t, I)] = Lim t→∞ [p cl (t + τ, I)]) we have therefore:

  |E n = 1

	√ A (It can be seen as a symmetric superposition of bubble states centered at dierent atoms). The matrix i1,...in∈"allowed" |r i1 , . . . r in where A is the number of allowed states
	form of the collective raising (lowering) operator restricted to the set of allowed states |E n coincides with that of the momentum raising (lowering) operator J -in the basis n b 2 + n . The system 2 , -n b therefore behaves as a spin coupled to the cavity mode (Tavis-Cummings model) which agrees with
	and therefore legitimates the bubble picture.

  Chap. 2 we investigated the dispersive regime of the system presented in Chap. 1, i.e. when the intermediate state is excited o-resonantly, ∆ e γ e , and can therefore be adiabatically eliminated. This chapter
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  4. Schwinger-Keldysh contour formalism.
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  .1) and |G, 2 (t 1 ) ≡ e -iHt 1 |G, 2 (note that this state can contain excited atoms and/or cavity photons). The state a |G, 2 (t 1 ) can at most contain one excitation, and so can the state e iH(t 1 -t 2 ) a |G, 2 (t 1 ) due to the conservation of excitation number. Hence e iHt 2 ae iH(t 1 -t 2 ) a |G, 2 (t 1 ) can only have component on |G, 0 . Finally the fourth order expression of (D.2) reads:G|a † (t 1 ) a † (t 2 ) a (t 2 ) a (t 1 ) |G, 2 = e -n n 2 2 2, G|a † (t 1 ) a † (t 2 ) |G, 0 2 = α, G|a † (t 1 ) a † (t 2 ) |G, 0 2 G, 0|a (t 2 ) a (t 1 ) |G, α 2 G|a † (t 1 ) a † (t 2 )|G, 0 and e -n G|a (t 2 ) a (t 1 ) |G, 2 are equal to the second order expansion in |α| of quantities α, G|a † (t 1 ) a † (t 2 ) |G, α and α, G|a † (t 1 ) a † (t 2 ) |G, α respectively, that we denoted by ... 2 .To compute α, G|a † (t 1 ) a † (t 2 ) a (t 2 ) a (t 1 ) |G, α in the lowest order it is thus enough to calculate a (t 2 ) a (t 1 ) ≡ α, G|a (t 2 ) a (t 1 ) |G, α .The same argument holds for more general mean values such as

	e -n n 2 2 2, where we used that e -n 2 n √ 2 2, 2	n √ 2 0,

  We compare the protocol of Ref.[46] (Original) with a modified protocol where the entanglement swapping is performed with the Rydberg CP gate (Rydberg). We consider an optimistic source repetition rate of 100 MHz and a more modest one of 1 MHz, as well as a perfect single excitation state created in the atomic ensembles, e.g., using Rydberg blockade[29]. We assume an attenuation length of 22 km in the fibers and an optical signal speed of 2 • 10 5 km/s. The ensemble readout efficiency and photodetector efficiency are both assumed to be 90%. The steps in the curves reflect where the fidelity of the CP gate allows additional swap levels to be employed. plement a CP gate for photons. The gate combines the advantages of cavity defined optical modes and cavity enhanced light matter interactions with the strong Rydberg blockade obtainable in atomic ensembles. As a direct application, the proposed gate can be used to improve the communication rate of quantum repeaters, but more generally the gate may serve as a building block for photonic quantum networks.The research leading to these results was funded by the European Union Seventh Framework Programme through SIQS (Grant No. 600645) and ERC Grant QIOS (Grant No. 306576). J.B. acknowledges funding from the Carlsberg foundation. S.D. and A.G. contributed equally to this work. which under the assumption of equal coupling strengths G l = G and Rabi frequencies Ω l = Ω, for the defined single atom co-operativity C = |G| 2 /κΓ e becomes, R k

	10 0
	Original, perfect
	Original, 100 MHz
	Original, 1 MHz
	Rydberg, perfect
	Rydberg, 100 MHz
	Rydberg, 1 MHz
	FIG. 3: Secret key rate per repeater station (rsecret) as a function of the blockaded cooperativity (C b ) for a communication distance of 1000 km.

  =0 dω n| 2 n ω | 3 ρ jj |n ω 3 |n 2 = 1 tr( Pjj ρ Ṽ P † jj ) dω j| 2 j ω | 3 ρ Ṽ |j ω 3 |j 2 .Projecting ρ Ṽ onto |φ jj 14 we obtainφ jj |ρ Ṽ |φ jj

	1								
	n,n 14 =	1 4	Ṽ23 |φ jj	23 φ jj | 23	Ṽ † 23 +	1 4 l	Kl,23 |φ jj	23 φ jj | 23	K † l,23 .

This setup allows to perform the measurement of the correlation function g(2) (τ ) for any delay time τ , contrary to the single-detector setup where the resolution is limited by the bandwidth of the detector.

This subsection essentially follows[START_REF] Scully | Quantum optics[END_REF] 

As pointed out in Chap. 1, we indeed expect Rydberg induced nonlinearities to be much stronger than saturation eects and therefore linearize the system apart from interatomic interactions.

Rydberg-induced quantum optical nonlinearities in the dispersive regime

Perturbative treatment at lowest-order

The results of this chapter are presented in the preprint(Grankin et al., 

2016) submitted for publication.

This subsection essentially follows[START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction[END_REF][START_REF] Rammer | Quantum eld theory of non-equilibrium states[END_REF].

This chapter is an edited version of(Das et al., 

2016; 2015) 2 It is important to note that, here, |r and |r are assumed to be of the same parity, so that r and r -excited atoms interact via Van der Waals Hamiltonian ∝ 1 r 6 . Transferring the excitation from |r to |r therefore requires a two-photon process. Alternatively, one could also directly convert the control photon as an |r excitation by using a dierent control eld laser for the storage step, which drives the transition |e ↔ |r .

This actually corresponds to dening R such that a out = -Ra in where a in and a out are the incoming and outgoing mode annihilation operators.

This result can be readily obtained from the Heisenberg-Langevin equations, assuming the cavity is lled with resonant two-level atoms with the cooperativity C b .

We note that from Eq.(5.12) in the long-pulse (steady state) limit, i.e. |β (ω)| 2 = δ (ω), we recover the formula for R used in Sec. 5.1.

Note that the term i α √

2γ(L) c is responsible for the displacement from the vacuum due to the coherent feeding while the bath modes are assumed to be in vacuum.

Appendix A Transmission of an intracavity Rydberg medium: experimental results vs theoretical methods

In this appendix, we present variants of the models developed in Chaps. 2 and 3 , which were recently put forward [START_REF] Boddeda | Rydberg-induced optical nonlinearities from a cold atomic ensemble trapped inside a cavity[END_REF] to account for dierent features of the transmission spectrum of a cavity lled with a Rydberg EIT medium, experimentally observed at IOGS.

In the rst section, we derive a mean-eld description from the bosonic model proposed in Chap. 3 which satisfactorily reproduces the experimental data obtained in the case of S-Rydberg states but fails for D-Rydberg states. To deal with the latter, in Sec. A.2, we elaborate on the Rydberg bubble model, used in Chap. 2 that we combine with a phenomenological decay towards an extra shelving Rydberg state; the resulting model successfully ts the data upon adjusting the free parameters.

A.1 S-Rydberg state

In this section, we present a mean-eld approximation of the three-boson model developed in Chap. 3, and show that it satisfactorily accounts for the transmission of an S-excited Rydberg EIT medium, experimentally observed at IOGS.

A.1.1 Presentation of the model

As shown in Eqs. (3.13-3.15), the expectation values a , b , c for the cavity mode 

where the complex constant κ characterizes the eect of dipole-dipole Rydberg interactions, and is given by .4) where D k ≡ ∆ k + iγ gk for k = e, r, V b is the volume of a blockade sphere and V is the total volume of the cloud.

If the ratio V b /V is small (high Rydberg bubble number regime) the state of the system can be approximately considered as coherent. We therefore apply to Eqs. (A.1-A.3) the so-called mean eld approximation: it implies that the state of each boson is coherent and we therefore replace operators by the corresponding complex numbers:

a → a , b → b , c → c . The corresponding system of equations is given by:

This system can be numerically solved in order to deduce the cavity transmission T =

Appendix B 

Bosonic representation

Let us now introduce two independent bosonic operators b and c ( b, b † = 1, c, c † = 1,[b, c] = 0, b, c † = 0) that we shall identify with lowering operators σ ge and σ gr respectively, in the Hilbert space restricted to zero and one excitation. We moreover introduce the anharmonic Hamiltonian:

where U ∞ is some real-valued constant. We now show that, in certain circumstances, Appendix D

Factorization of correlation functions.

In this appendix, we give the technical details regarding the derivation of the factorization of the intracavity eld operator correlation functions at lowest non-vanishing order in cavity feeding rate, that we extensively use in Chap. 3.

Here, we suppose that the bath interacting with the cavity is initially in the following continuous-mode coherent state (incoming quasi-classical eld)

where [START_REF] Loudon | The quantum theory of light[END_REF]. Note that with this denition, B α is a bosonic operator, i.e. B α , B † α = 1. The atoms and cavity eld are initially in their ground state denoted by |G ≡ |g . . . g ⊗ |0 .

Let us consider, for instance, the quantity α, G|a † (t 1 ) a † (t 2 ) a (t 2 ) a (t 1 ) |G, α , for t 2 > t 1 , where |G, α denotes the initial state of the whole system {atoms+cavity+baths}

Expanding this expression with respect to |α| (which is equivalent to expanding in the number of excitations present in the system), one nds that the lowest non-vanishing contribution is the fourth order term k = l = 2. For the system considered the identity operator can be represented in the following way I = i I i where I i = q |q i q i | are the identity operators on each degree of freedom of the system, and |q i 's denote q -th basis vector of i -th degree of freedom. Inserting this identity operator between a † (t 2 ) and a (t 2 ) of the quantity (D.1) yields:

1 The baths coupled to the atoms are supposed empty and their state is not explicitly written.

Appendix E

Calculation of aa (2) In this appendix we sketch the calculation of the correlation function a (t) a (t) in the second order in the cavity feeding rate α that we need in Chap. 3. to compute the pair correlation function g (2) .

The system of equations for the same-time two-operator products in the second order in α is readily derived from Heisenberg-Langevin equations Eqs. (5.6-5.9). For notational convenience here, we do not explicitly write superscripts (1,2) , nor the time argument since we only deal with same-time mean values : hence aa should be understood as a (t) a (t) (2) and σ In the absence of interatomic interactions, because laser and cavity elds address the atoms symmetrically, the ensemble evolves in the subspace of symmetric states.

The atomic system essentially remains in this subspace, even when the interactions are taken into account, if the number of Rydberg excitations in the sample is much less than the total number of Rydberg bubbles the ensemble can accommodate for.

Such symmetric superpositions actually not only contain allowed components (i.e.

with Rydberg atoms further than a Rydberg bubble radius apart) but also forbidden components (with Rydberg atoms closer than a Rydberg bubble radius). Their number is, however, very small compared to that of allowed congurations and they will therefore only slightly alter the outcome of dissipative dynamics of the system.

Under these assumptions, let us show in which conditions the mean value c † c factorizes at lowest order. Focusing on the dissipative part 1 of Bloch equations for σ (i) gr

1 Due to the presence of extra dephasing, the coherent collective excitations are turned into a statistical mixture which does not allow for the factorization of averages. Here we derive a condition when the coherent symmetric (which is coupled to the cavity mode) component of population dominates over the statistical mixture. We set Ω cf → 0, g = 0, κ ij → 0 in Eq. (1.14) in order to study the eect of dephasing separately. We also implicitly assume that initially the atoms are prepared in the symmetric coherent state.
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F. Factorization in the presence of extra dephasing and σ

(i) rr (note that for the latter, there is no extra dephasing) we get

rr and recalling that c ≡ 1

When there are n r Rydberg excitations in the sample, with n r N b N (N b is the maximum number of Rydberg excitations the sample can contain), one has c † c ≈ i σ

so, from the point of view of c † c, everything works as if the system was radiatively damped with the rate γ d . In the same conditions, we moreover have

and again, from the point of view of c, everything works as if the system was radiatively damped with the rate γ d . Moreover, since all other dynamical equations (for population, coherence and eld operator mean values) remain formally the same as in the purely radiative damping, the factorization procedure remains valid for a † a provided that Appendix G

Computation of integrals

Throughout Chap. 4, we encounter various integrals, which, as we show in this appendix can be computed in a unied manner. For example let us consider the following integral:

where G T c q c q is the Green's function dened in Eq. (4.26). The latter may contain several poles, and therefore the direct calculation of (G.1) using the residue theorem is somewhat cumbersome. There is, however, an alternative and easier way, as we shall now show.

Let us construct the tensor product

where the matrices ĜT q are dened in Eqs. (4.31-4.32) which contain Green's functions of all possible kinds, and let us dene Ŝ q as

Note that Ŝq obviously includes Eq. (G.1). Ŝ q can also be expressed as an integral over time as follows:

The matrix ĜT q [τ ] obeys (see Eq. ( 4.27))

This appendix is an extended preprint version of the article [START_REF] Das | Photonic controlled-phase gates through rydberg blockade in optical cavities[END_REF].

Photonic Controlled-Phase Gates Through Rydberg Blockade in Optical Cavities Sumanta Das The dynamics of the Rydberg ensemble in the cavity can be described through the no-jump Hamiltonian H consisting of the free energy and decay terms H s along with the interaction part as H I = H L-int + H Ryd-int , where

where the detunings ∆ l , δ l , the linewidths Γ e , Γ r , and the coupling strengths Ω l , G l are as defined in the main text, while 2κ is the cavity intensity decay rate. Note that all energies are measured relative to the cavity resonance, and hence the cavity term in H s only involve the loss rate κ. are as defined in the main text, while V kl is the van der Waals interaction among the Rydberg excitations of atoms k and l. The incoming and outgoing photons are going to be accounted for by the input-output relations.

After the storage of the first pulse, the wave-function of the combined field and ensemble with the initial excitation stored in |r k and one incoming photon is given by,

Here |Ø is the vacuum state, C ekl and C rkl are respectively the amplitude of being in the excited state |e and the Rydberg state |r when there is one stored Rydberg excitation in the k th atom, while C bk is the amplitude of the cavity excited state. We next evaluate the Schrödinger equation for the wave-function (S10) together with the input-output relations to find the dynamical behavior of the amplitudes

The outgoing field amplitude is then given by,

where C bk is found by solving the set of Eqns. (S11-S13) using Fourier transformation. We thereby get,

Substituting C bk into Eq. (S14) we get,

Assuming all fields to be resonant i.e. for δ l = ∆ l = 0, a long lived Rydberg state (Γ rl = 0), and slowly varying photon pulses (ω = 0) we get,

(S17)

CHOI-JAMIOLKOWSKI FIDELITY

The Choi-Jamiolkowski (CJ) fidelity is a measure of how close two given quantum mechanical processes are. The idea is to apply each process to a particular entangled state and then calculate the fidelity between the two output states. Specifically, we assume that the two processes are described by the superoperators U and V. The superoperator U represents the ideal process that we want to accomplish and is assumed to be unitary. Hence, its action on some density matrix ρ can be be written as

where U is a unitary operator. The actual physical implementation is represented by the completely positive trace preserving superoperator V. In general, it admits a Kraus (operator-sum) decomposition

with l V † l V l = I (I is the identity operator). If we separate out the "no jump" evolution with the effective non-Hermitian Hamiltonian H in Eq. (S35), we can write

where V = exp(-iHt f / ) with t f being the time it takes to accomplish the wanted operation. The operators K l form the Kraus decomposition of the part of the evolution where at least one quantum jump occurs.

To find the CJ fidelity, we consider the superoperators I ⊗ U and I ⊗ V that are tensor products of the original ones with the identity superoperator I. We pick an orthonormal basis set {|j } for the d-dimensional Hilbert space that U and V act on. Now Considering only the leading order contribution to the fidelity, we get,

For the dual-rail case, we calculate a conditional swap fidelity (S53) and the success probability (S54). We can write (S53) as

The success probability (S54) is then Substituting Eq. (S66) and (S61) into Eq. (S53), we get the expression for the conditional swap fidelity,

Finally, keeping only the dominant contribution to the gate operation, we get the conditional swap fidelity, So far, we have considered only a homogeneous ensemble without decay of the Rydberg level. In this section we discuss the case for an inhomogeneous ensemble. For simplicity, we only consider ∆ω = 0. Here the scattering dynamics depends on where the excitation was stored in the ensemble. From the fidelity expressions Eq. (S45) and Eq. (S53) we see that the essential parameter is k |α k | 2 R k which for δ l = ∆ l = 0 is given by