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Résumé

Les photons apparaissent comme des vecteurs d'information �ables, car peu sensibles
à leur environnement. Mais ils interagissent si faiblement entre eux que la réalisation
directe de portes logiques optiques à deux qubits photoniques est impossible. On peut
toutefois engendrer indirectement des interactions photon-photon substantielles, via
la propagation dans un milieu optiquement non-linéaire. L'utilisation du phénomène
de transparence électromagnétiquement induite permet, en particulier, d'induire une
forte non-linéarité résonante, sur l'une des transitions d'un système à trois niveaux --
néanmoins pas encore détectable dans le domaine quantique. Pour augmenter les e�ets
non-linéaires obtenus il a été récemment proposé de combiner cette approche au blocage
d'excitation induit par les fortes interactions dipôle-dipôle entre atomes de Rydberg.
On accroît encore les e�ets non-linéaires sur la lumière transmise en plaçant le milieu en
cavité. L'étude théorique et expérimentale de ce dispositif a été menée dans le régime
dispersif et pour une non-linéarité faible, dans le cas d'un faible champ sonde incident
classique. Dans ce mémoire, nous nous intéressons aux e�ets optiques non-linéaires
induits par un milieu Rydberg sur un champ quantique.

Dans le chapitre 1, nous présentons les équations dynamiques générales de notre
système et rappelons les principales propriétés de la fonction de corrélation d'intensité
que nous utiliserons pour caractériser les e�ets du milieu atomique sur la statistique
quantique du champ incident. Dans le chapitre 2, nous considérons notre système dans
le régime dispersif, i.e. lorsque l'état atomique intermédiaire est excité hors résonance
et peut être éliminé adiabatiquement. Dans l'approximation des bulles Rydberg nous
réduisons e�ectivement le milieu à un ensemble de � superatomes � à deux niveaux,
couplés au mode de la cavité selon le modèle de Tavis-Cummings forcé. Nous calculons
analytiquement et numériquement la fonction de corrélation d'intensité pour la lumière
transmise, qui, selon les paramètres de la cavité, peut être �groupée� ou �dégroupée�.
Dans le chapitre 3, nous présentons un traitement perturbatif du système, restreint à
l'ordre le plus bas non nul en le champ sonde incident, valable, notamment, dans le
régime résonant. Nous dérivons la fonction de corrélation d'intensité pour la lumière
transmise et ré�échie, grâce à la factorisation des moyennes de produits d'opérateurs.
Dans le régime résonant, nous identi�ons des conditions d'adaptation d'impédance de
la cavité di�érentes selon les composantes du champ, qui suggèrent l'utilisation du
dispositif en tant que �ltre. Nous proposons en�n un modèle e�ectif non-linéaire à
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trois bosons pour le système couplé atomes-cavité. Dans le chapitre 4, nous dépassons
l'ordre le plus bas de la théorie de perturbation, en utilisant le formalisme de Schwinger-
Keldysh. Par cette méthode, nous retrouvons les résultats du chapitre 3, sous une
forme analytique, que nous étendons à l'ordre supérieur. Nous dérivons notamment
des expressions analytiques pour les composantes élastique et inélastique du spectre de
la lumière transmise par la cavité. Nous identi�ons ainsi une structure de résonance
polaritonique, jusque-là inconnue, que nous interprétons physiquement. Dans le dernier
chapitre, nous décrivons un protocole de porte logique photonique de haute �délité,
fondé sur le blocage Rydberg dans un ensemble atomique placé dans une cavité optique.
Ce protocole peut être réalisé avec des cavités de �nesse modérée et permet, en principe,
un traitement e�cace de l'information quantique codée dans des qubits photoniques.
L'appendice A présente une application de nos méthodes aux résultats expérimentaux
obtenus au laboratoire. Les appendices B-G reprennent di�érents points techniques du
mémoire. L'appendice H reproduit un article relatif au chapitre 5.
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Introduction

Photons appear as reliable information carriers since they interact very weakly with
their environment. For the same reason, they hardly interact with each other which
forbids the direct implementation of optical two-qubit gates. Such an interaction can
actually be e�ectively emulated via the propagation through atomic nonlinear media.

In this chapter, we �rst review conventional nonlinear media and show that they
fail to induce e�ects beyond the classical regime. Then we present Rydberg atoms,
their physical properties and uses on quantum information purposes, and show that
the strong dipole-dipole interactions between Rydberg atoms are expected to allow for
optical nonlinearities strong enough to be noticeable at the single-photon level. Finally,
we sketch the outline of the present dissertation.

Nonlinear optics

When propagating through an atomic medium, light interacts with the (valence) elec-
trons, polarizes each atom which acquires a dipole 〈d〉 . The average dipole moment
per unit volume is P = nat 〈d〉, where nat is the atomic density (Boyd, 2003).

In an atomic medium, the polarization can be related to the electric �eld via:

P = ε0χE (1)

where χ is the susceptibility of the medium1. Induced dipoles are not necessarily pro-
portional to the electric �eld they are induced by, and the susceptibility χ can be
expanded in powers of E (Boyd, 2003):

χ = χ(1) + χ(2)E + χ(3)E2 + . . . (2)

In materials which have the spatial inversion symmetry, the χ(2) term in Eq. (2)
vanishes (Boyd, 2003), and therefore χ(3) characterizes the nonlinear response of the
sample at the lowest order. In general, the susceptibility Eq. (2) is a complex number.
Its real and imaginary parts stand for the phase shift and absorption of the total �eld,
respectively. In particular, the nonlinear shift accumulated by a monochromatic �eld

1Assuming an isotropic medium with local response.
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Figure 1: Schematic showing advances in the optical Kerr non�linear coe�cient, χ(3).
Conventional optical materials have resonances in the ultra-violet leading to a small
non-linearity in the visible and infra-red. Enormous enhancements of the non-linearity
are possible by using resonant media but at the expense of loss. The loss can be
reduced using the technique of electromagnetically induced transparency (EIT). The
giant EIT non-linearity can be further enhanced using a Rydberg medium with strong
dipole�dipole interaction. With Rydberg EIT it is possible to exceed the threshold for
single photon non-linearities (dashed line) where a quantum description is required.
Picture is taken from (Pritchard et al., 2013).

along the propagation in a medium of length L is given by

φnl = Re
[
χ(3)
] ω

2c
E2L

Pushing the formula above beyond its applicability limit, i.e. out of the classical regime,
we can roughly estimate the order of magnitude of the χ(3) coe�cient for φnl to be
noticeable in the quantum regime by requiring φnl ≈ π for a single-photon input (E ≈
E1ph). Denoting the bandwidth of the tightly-focused photon wavepacket by ∆ω, and

assuming that the transverse waist w0 and propagation length L are related via L =
πw2

0

λ
,

we get:

φnl ≈ Re
[
χ(3)
] k

2
χ(3) ~ω

ε0V
L

≈ π2

λ
Re
[
χ(3)
] ~ω∆ω

ε0πλ2c2π
λ

≈ Re
[
χ(3)
] π~ω3∆ω

ε0 (2π)3 c3
(3)

Setting φnl ≈ π and assuming ∆ω ≈ 2π× 106rad· s−1 and ω = 2π× 1015rad· s−1 we get
Re
[
χ(3)
]
∝ 10−3 × V−2m2 .
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Conventional o�-resonant materials provide values of χ(3) that are many orders
of magnitude smaller. For example for air and for water they can be found to be
1.7×10−25V−2m2 and ∼ 2.5×10−22V−2m2, respectively (Pritchard et al., 2013). When
the incident beam becomes resonant with a transition of the medium, the nonlinearity
increases by many orders of magnitude but at the cost of stronger losses. A com-
promise may be sought for between (desired) dispersion and (unwanted) absorption,
which however fails in achieving strong enough nonlinear e�ects to be noticeable at the
single-photon level.

The coupling to an additional level, in a so-called electromagnetically induced trans-
parency (EIT) con�guration, allows one to still bene�t from enhanced susceptibility
while avoiding the spurious absorption mentioned above (Harris et al., 1990; Boller
et al., 1991). In addition to the transparency window around the two-photon reso-
nance, one observes the strong reduction of the group velocity of light (Budker et al.,
1999; Hau et al., 1999). The reported non-linear susceptibility in such a medium is
χ(3) ∼ 7× 10−8 × V−2m2, still insu�cient to implement photonic interactions.

Much stronger nonlinearities can be achieved in high �nesse cavity QED setups
(Haroche and Raimond, 2006) with a single trapped atom in the strong coupling con-
ditions. The latter are met when the coupling strength g between the atom and the
mode is much bigger than atomic (γe) and cavity (γc) decay rates, (i.e. g2 � 2γcγe).
In this case, the Rabi splitting of the multiply-excited states, predicted by the Jaynes-
Cummings model, is much bigger than the linewidths of the corresponding multiphoton
transitions, giving rise to the few-photon nonlinearities observed, for instance, in (Birn-
baum et al., 2005; Schuster et al., 2008).

Another approach to reach strong non-linear susceptibilities consists in the collective
enhancement of the response of the sample. This can be performed via long-range
dipole-dipole interactions between one of the atomic levels used in the scheme. One of
the most promising approaches is to use high-lying atomic levels, known as Rydberg
states (Gallagher, 2005).

In the next sections, we present the main physical properties of Rydberg atoms as
well as their main uses in quantum information protocols, before proceeding to the
description of Rydberg-induced photon-photon interactions.

Rydberg atoms and their interactions

Rydberg atoms exhibit exaggerated properties which make them particularly appealing
and useful for quantum information processing. Here, we make a brief summary of their
relevant features.

The Rydberg states have relatively long radiative lifetimes that scale proportionally
to the cube of the principal quantum number n3 (for example Na(10d) the radiative
lifetime is ≈ 1µs) (Gallagher, 2005). The corresponding reduction of the decoherence
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favors their use in various schemes of quantum information processing (Sa�man et al.,
2010).

The orbital radius of a Rydberg atom, and therefore, its dipole moment scales as
the square of the principal quantum number n2 (example Na(10d) the dipole moment
is ≈ 143ea0). Moreover, the energy levels can be approximated by (Gallagher, 2005):

Enlj =
Ry

(n− δlj (n))2

where l and j are the orbital and the total angular momenta, Ry is the Rydberg constant
and the quantum defect δlj (n) is a slowly varying function of principal quantum number.
Small energy spacings (∼ MHz) and large dipole moments lead to enhanced dipole-
dipole interactions between Rydberg atoms (Pritchard et al., 2013). The Hamiltonian
of the electrostatic interaction of two Rydberg atoms A and B whose relative position is
~R = ~RB − ~RA (assuming that R� n2a0 where a0 is the Bohr radius) is given by V̂dd =
e2

R3

(
~̂a·~̂b− 3

(
~̂a· ~R

)(
~R·~̂b
))

where ~̂a and ~̂b are the position vector operators of the outer

electrons of the corresponding atoms with respect to their nuclei. This Hamiltonian
mainly mixes a given doubly Rydberg-excited two-atom state with the closest Rydberg
manifolds. The corresponding perturbed eigenstate and eigenenergy can be computed
by direct diagonalization of the full Hamiltonian. In the so-called Van der Waals regime,
which corresponds to a detuned regime of the dipole-dipole interaction, the resulting
energy shift takes the form V (R) = −C6/R

6, where the coe�cient C6 scales as n11

(Sa�man et al., 2010). In general C6 has an angular dependence relative to the mutual
arrangement of atoms (Sa�man et al., 2010).

The dipole-dipole induced shifts V (R) are so strong that they may compete with the
Rabi frequency of an exciting laser and even forbid the transition towards a Rydberg
state. This phenomenon theoretically predicted in (Lukin et al., 2001) and experi-
mentally demonstrated in (Vogt et al., 2006; Urban et al., 2009), is called �dipole� or
�Rydberg blockade�. Below, we review several examples of simple atomic con�gurations
and protocols which, despite their simplicity, give an insight in the physics of the dipole
blockade and reveal themselves very useful from the quantum information point of view.

Rydberg blockade: atomic quantum information

processing and many-body physical features

We �rst consider a system of two atoms, referred to as �control� and �target�, respec-
tively, and separated by the distance R. The target atom (T) is assumed to be initially
prepared in a ground state, while the control (C) may be in a ground or a Rydberg
level. When (T) is submitted to a laser beam of Rabi frequency Ω resonantly coupled to
a transition towards a Rydberg state, its dynamics depends on (C): if (C) is in a ground
state, (C) and (T) do not interact signi�cantly, therefore (T) experiences unperturbed
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Figure 2: Rydberg blockade controlled phase gate operating on input states (a)|01〉 and
(b) |11〉. Quantum information is stored in the basis states |0〉, |1〉 and state |1〉 is
coupled to a Rydberg level |r〉 with excitation Rabi frequency Ω. The controlled phase
gate is implemented with a three pulse sequence: (1) π pulse on control atom |1〉 → |r〉,
(2) 2π pulse on target atom |1〉 → |r〉 → |1〉, and (3) π pulse on control atom |r〉 → |1〉.
(a) The case where the control atom starts in |0〉 and is not Rydberg excited so there
is no blockade. (b) The case where the control atom is in |1〉 which is Rydberg excited
leading to blockade B = V (R) of the target atom excitation. The picture is taken from
(Sa�man et al., 2010).

Rabi oscillations between the ground and Rydberg levels; by contrast, if (C) is in a
Rydberg state, it e�ectively �shifts� the Rydberg state of (T) out of resonance with
the laser of the quantity V (R). Since the energy shift depends of R, the space can be
e�ectively divided into two regions where V (R)� Ω and V (R)� Ω respectively. The
boundary length Rb between these regions is de�ned by V (Rb) ≈ Ω, or equivalently

Rb ≈ 6

√
C6

Ω
.

In the �rst region where R� Rb (which is called blockade volume), (T) cannot be
excited to the Rydberg state if (C) itself is excited, as the laser is strongly o�-resonant
with the transition to the Rydberg state. Applying a 2π pulse (

∫
dsΩ (s) = 2π) on the

target, one therefore imposes an overall π phase factor on the two-atom wavefunction
conditionally to (C) not being initially excited. Elaborating on this con�guration, one
can implement a phase gate on two qubits encoded in a pair of ground states of (C)
and (T), as �rst proposed in (Jaksch et al., 2000) (see Fig. 2).

In the region R � Rb, the second atom can be excited to the Rydberg state but
still experiences an energy shift which can be used to induce a phase on the system's
wavefunction.

To be more explicit, in this con�guration the gate operation can be performed
through applying two subsequent π pulses to both atoms (therefore exciting them both
to the Rydberg state) separated by the waiting time π

V (R)
which imprints the π phase
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Figure 3: Energy level structure of the two-atom system being resonantly excited in a
a) complete blockade con�guration, b) no blockade con�guration.

on the wavefunction (Jaksch et al., 2000). As similar idea was proposed in (Protsenko
et al., 2002) where authors assumed that the excitation lasers are detuned from the
Rydberg state are brought back on resonance only in the presence of the dipole-dipole
interactions. In (Brion et al., 2007c), the authors propose a scheme of implementation
of the atomic phase gate, which avoids populating the Rydberg state.

Instead of individually addressing the atoms, one may also try to excite them col-
lectively from the ground state |gg〉 with a resonant laser of Rabi frequency Ω (see Fig.
3). As above, if the atoms are located closer than Rb, the doubly excited state |r, r〉
is inaccessible by the laser (Fig. 3 (a)) The system therefore performs Rabi oscilla-
tions in the subspace within the subspace |g, g〉 and 1√

2
{|g, r〉+ |r, g〉} with the Rabi

frequency enhanced by a
√

2 factor. This con�guration can be used in order to create
entanglement between atoms. In (Gaëtan et al., 2009) it was shown, for two Rb atoms
located in traps separated by ∼ 3.5µm and simultaneously laser-excited on the tran-
sition towards the state 58d3/2, that the probability for both atoms to be in Rydberg
state is strongly suppressed compared to the non-interacting con�guration. In a sub-
sequent experiment (Wilk et al., 2010) long-living entanglement was demonstrated by
mapping the Rydberg state onto a di�erent hyper�ne (ground) state. Using a similar
con�guration a cnot gate was demonstrated with two trapped Rb atoms separated by
10µm (Isenhower et al., 2010).

Due to the long-range character of dipole-dipole interactions, the blockade mecha-
nism applies not only to few-atom systems but can be generalized to bigger ensembles.
An extension of the original proposal (Jaksch et al., 2000) to mesoscopic-ensemble qubits
was proposed in (Lukin et al., 2001). Similarly to the two-atom con�guration, the many-
atom system state space, can be restricted to the collective ground |g1 . . . gN〉 and singly
excited 1√

N

∑
i |g1 . . . ri . . . gN〉 states, provided that multiply Rydberg-excited states are
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strongly out of resonance. It can therefore be used in an analogous way to implement
the two-qubit gate. Authors also propose to transfer the collective spin degrees of
freedom to the photons, hence creating nonclassical states of light. Another collective
approach is presented in (Brion et al., 2007a; 2008) where authors propose to use the
internal atomic level structure to encode several quantum bits. In (Paredes-Barato and
Adams, 2014) the authors propose an implementation scheme of the CZ gate, using
the storage of photons in di�erent Rydberg levels, which minimizes the distortion of
photons, as it does not involve the propagation of excitations.

The �eld of quantum information and communication is very active and many pro-
posals based on Rydberg blockaded atomic ensembles were recently put forward. Among
many others, let us cite the implementation of quantum repeaters (Zhao et al., 2010;
Brion et al., 2012) and quantum simulators (Weimer et al., 2010; Labuhn et al., 2015).

In general, the physics of dipole-dipole-interacting ensembles cannot be described
only by means of the two-body interactions. In (Mourachko et al., 1998) authors study
many-body e�ects in a dense atomic cloud and introduced the so-called �frozen Rydberg
gas� model, which states that the motion of atoms on the timescales of the experiment is
much smaller than the typical interatomic distance and therefore can be neglected. The
complexity of the collective dynamics, generated by the Hamiltonian of dipole-dipole
interactions in an atomic ensemble generates a lot of phenomena, more common in the
�eld of condensed matter physics, e.g. thermalization, etc. The theoretical treatment of
strongly correlated many-body problems is usually di�cult, as many interesting e�ects
can not be treated perturbatively. In (Lesanovsky et al., 2010) authors demonstrate that
a coherently-driven two-level atomic ensemble thermalizes with respect to observables
of the classical lattice gas for strong dipole-dipole interactions. The analogy with the
second-order phase transition is pointed out in (Weimer et al., 2008) where authors
derive the corresponding critical theory and demonstrate that in the saturated regime
it describes the properties of the driven Rydberg two-level system. Extending these
ideas, authors discuss the emergent universal scaling in (Löw et al., 2009). A similar
many-body phenomenon is observed in (Schauÿ et al., 2012), where the competition
between exciting laser and dipole-dipole interaction-induced shift leads to the formation
of spatially ordered excitation patterns in a two-dimensional geometry.

Quantum nonlinear optics with Rydberg atoms

In this section we focus on the main subject of this dissertation, namely the e�ective
interactions between photons, mediated by Rydberg-Rydberg interactions.

As soon as it was discovered, the dipole blockade appeared as a way to create
non-classical states of light, using the storage of excitations in the form of Rydberg
polaritons, as �rst introduced in (Lukin et al., 2001): due to blockade, a small atomic
sample can only accommodate for and therefore store one photon. In (Dudin and
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Kuzmich, 2012), the authors demonstrate a single-photon source based on the strong
suppression of the two-excitation component in the spinwave stored in the Rydberg-
blockaded ensemble and characterize it by measuring the intensity correlation function
of the retrieved light. However, as will be shown in this section, the storage is not
absolutely necessary and many interesting quantum phenomena can be observed with
propagating photons.

The strong dipole-dipole interactions between Rydberg atoms can be converted into
e�ective interactions between photons. An optical nonlinearity, arising from the dipole-
dipole interactions of high-lying atomic levels was �rst observed in (Pritchard et al.,
2010). The χ(3) susceptibility, estimated in (Pritchard et al., 2013), though insu�cient
to implement interaction between photons, suggested that its higher density extrapola-
tion should enter the �quantum realm�. The underlying idea consists in coupling optical
photons to Rydberg atomic excitations, using a three-level ladder excitation scheme -
the Rydberg blockade therefore e�ectively translates into a photon blockade.

The physical mechanism behind such e�ective photon-photon interactions can be
seen as follows. Due to the dipole-dipole induced energy shift of doubly Rydberg excited
ensemble states, a photon propagating through the medium as a dark-state polariton
(Fleischhauer and Lukin, 2000) modi�es the optical response of the ensemble in its
neighborhood. Depending on the parameters, this may either change the group velocity
or cause the scattering of a subsequent photon � emulating therefore an e�ective photon-
photon interaction.

In (Friedler et al., 2005), the authors propose to combine the EIT ladder scheme with
strong dipole-dipole interactions of one of the upper levels. According to their proposal,
two photons of di�erent polarizations are converted into two di�erent polaritons when
entering the medium. This requires an atomic medium with a double-ladder structure as
shown in Fig. 4, the lower transitions |g〉 → |e1,2〉 being driven by the photons while the
upper transitions |e1,2〉 → |d1,2〉 are coupled to two classical �elds of Rabi frequencies
Ω1,2. It is well known that the speed of EIT dark-state polaritons can be tuned by
changing the control �eld Rabi intensity: in particular, if the Rydberg polaritons are
slowed down or almost stopped (then they essentially have an atomic character) in
the vicinity of each other, they strongly interact via dipole-dipole interaction and may
acquire a π phase factor (Friedler et al., 2005).

In the subsequent proposals based on Rydberg EIT polaritons, two physically di�er-
ent regimes were investigated. In the so-called absorptive case, the intermediate state
of the ladder scheme is resonant with the probe �eld: in that case the �rst propagating
photon increases the absorption for the second one by shifting the Rydberg state out of
resonance, e�ectively transforming the atoms within the blockade volume into resonant
two-level systems. By contrast, in the so-called dispersive regime, i.e. when the in-
termediate level is detuned, Rydberg spheres are essentially composed of non-resonant
two-level atoms: absorption is negligible but dispersion is high and therefore the group
velocity of a second incoming photon is substantially changed.
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Figure 4: (a) Level scheme of atoms interacting with weak (quantum) �elds E1,2 on
the transitions |g〉 → |e1,2〉 and strong driving �elds of Rabi frequencies Ω1,2 on the
transitions |e1,2〉 → |d1,2〉. Vdd denotes the dipole-dipole interaction between pairs
of atoms in Rydberg states |d〉. (b) Upon entering the medium, each �eld having
Gaussian transverse intensity pro�le is converted into the corresponding polariton Ψ1,2

representing a coupled excitation of the �eld and atomic coherence. These polaritons
propagate in the opposite directions with slow group velocities v1,2 and interact via the
dipole-dipole interaction. Taken from (Friedler et al., 2005).

The original idea of photon-photon interactions via dipole blockade was further de-
veloped in (Gorshkov et al., 2011), and extended to co-propagating and stored photons,
revealing, in particular, the strong correlations between photons in the co-propagating
case. In (Gorshkov et al., 2013) authors considered the absorptive con�guration of the
EIT ladder, bringing the intermediate state to resonance which allows the system to
transmit only the single photon component, while scattering the rest. In (Bienias et al.,
2014), the authors used the scattering theory formalism to calculate the 1D scattering
length and showed that, depending on the control �eld Rabi frequency, the e�ective in-
teraction potential can be either attractive or repulsive. Moreover, in (Maghrebi et al.,
2015) the authors predicted the existence of Coulomb bound states of photons. The
complexity of the system makes authors resort to numerical and analytical techniques
taken from the many-body physics (Negele and Orland, 1988; Giamarchi et al., 2004):
in (Otterbach et al., 2013) authors used DMRG to numerically �t the parameters of Lut-
tinger model to e�ectively describe the Wigner crystallization of photons in a Rydberg
EIT medium; in (Moos et al., 2015) the authors developed an e�ective description of
the Rydberg polariton propagation and dissipative coupling to bright-state polaritons,
based on perturbation theory.

The experimental implementation of the absorptive regime, in a cloud with and
optical depth per blockade sphere ODb ≈ 5 was reported in (Peyronel et al., 2012). The
photon statistics of the light transmitted through the cloud was shown to be strongly
antibunched due to the scattering of the multiphoton components in the incident light.
By contrast, in the dispersive regime photons were experimentally shown
to propagate as massive, mutually attracting particles, therefore leading to photon
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bunching (Firstenberg et al., 2013). In addition, a conditional phase shift, resulting in
polarization-entangled photon pairs was demonstrated.

In (Baur et al., 2014) the authors demonstrated the �rst Rydberg-based photon
switch, which forbids the transmission of the �target� photon conditionally to the pres-
ence of a �gate� photon, stored in the ensemble as a Rydberg collective spinwave. The
idea is again to take advantage of Rydberg EIT in the absorptive regime: if the cloud
contains no excitation initially, then it is transparent to the target photon; by con-
trast, the latter is scattered by one of the e�ective resonant two-level atoms in the
blockade sphere of an initially stored Rydberg spinwave. The coherence of the stored
gate spinwave is a�ected by the presence of the target photon. As theoretically investi-
gated in (Li and Lesanovsky, 2015), this e�ect can be reduced by stronger dipole-dipole
interactions.

The single-photon transistor is very similar a single photon switch: in the former the
single target photon is however replaced by a stronger input beam. The performance
of such a transistor can be quanti�ed by the �gain� which is given by the number of
scattered photons of the target beam. In (Gorniaczyk et al., 2014; Tiarks et al., 2014)
authors reported single photon transistors with gains G > 10.

Outline of this dissertation

To e�ectively enhance medium-induced optical nonlinear e�ects, it is natural to resort to
a resonator (cavity) which allows for light multiple passes through the active medium.
Such a system was studied both theoretically and experimentally in the dispersive
regime for a relatively weak nonlinearity, so that the �eld could still be treated classically
(Parigi et al., 2012; Stanojevic et al., 2013). In particular, in (Parigi et al., 2012) the
authors demonstrated the intensity-dependent shift of the cavity resonance.

In this dissertation, we investigate the optical nonlinear e�ects induced by a Rydberg
medium in the quantum regime.

In the �rst chapter we present the system we shall consider throughout the
whole dissertation. We �rst provide equations governing the system's dynamics in
Schrödinger and Heisenberg pictures. In order to characterize the action of nonlinearity
on the photonic �eld, we de�ne the intensity correlation function g(2) and recall its basic
properties.

In the second chapter we consider the so-called dispersive regime, i.e. when
the intermediate state is far detuned, ∆e � γe, and can be eliminated. We moreover
employ the bubble picture approximation in which the system e�ectively consists in an
ensemble of two-level superatoms coupled to the cavity mode, described by the driven-
dissipative Tavis-Cummings model. We evaluate numerically and analytically the g(2)

function of the transmitted light, which, depending on the cavity parameters, is shown
to be either bunched or antibunched.

14



In the third chapter we present an alternative treatment of the system, which
allows us to investigate the resonant regime that was unexplored so far. Restricting
ourselves to low feeding, we analytically derive the correlation function g(2) (τ) for the
transmitted and re�ected lights, based on the factorization of the lowest perturbative
order of operator product averages. We then propose an e�ective non-linear three-
boson model for the coupled atom-cavity system: this Ansatz allows us to obtain the
same results as the (more cumbersome) exhaustive treatment and gives a more intuitive
physical picture of our system and its dynamical behavior. Finally, we investigate the
resonant regime of the system (∆e ≈ 0 ) and our treatment reveals novel features of
the pair correlation function g(2) due to the interplay of the impedance matching and
dipole-dipole interactions.

In the fourth chapter we analyze the system in the so-called Schwinger-Keldysh
contour formalism. Using Wick's theorem, we perturbatively expand correlation func-
tions with respect to both feeding and dipole-dipole interactions Hamiltonians. We
perform a complete resummation with respect to the latter, for each correlation func-
tion that we encounter in this chapter. Using this method we re-derive results of Chap.
3 in an analytic form. We also go beyond and derive analytic expressions for the elastic
and inelastic components of the cavity transmission spectrum. We identify a polari-
tonic resonance structure in this spectrum, to our knowledge unreported so far, that
we physically interpret.

In the �fth chapter we present a novel scheme for a high-�delity photonic controlled-
phase gate, based on the Rydberg blockade in an atomic ensemble loaded in an optical
cavity. In our scenario, the π phase factor is induced by the re�ection of the target
photonic qubit on the cavity, conditioned by the presence of an intracavity stored po-
lariton, associated to the control qubit. The resulting gate can be implemented with
cavities of moderate �nesse allowing for highly e�cient and robust processing of quan-
tum information encoded in photons.

Finally, App. A presents an application of our methods to an experimental mea-
suring of nonlinear transmission of an optical cavity containing Rydberg atoms. Apps.
B-G discuss various technical issues, and App. H is a preprint of an article related to
Chap. 5 of this thesis.
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1. Description of the system

In this chapter we present the system we shall consider throughout the whole disser-
tation. It comprises an ensemble of ladder-type three-level atoms loaded in an optical
cavity and excited in EIT conditions: the cavity mode drives the lower atomic tran-
sition while the upper transition to the Rydberg state is driven by a strong control
�eld. In order to describe the behavior of the system we provide equations governing
its dynamics in Schrödinger and Heisenberg pictures (Sec. 1.1). Due to the strong
dipole-dipole interactions between Rydberg atoms, the system exhibits non-linear be-
havior, potentially noticeable at the single photon level: in order to characterize this
nonlinearity we de�ne the intensity correlation function g(2) (Sec. 1.2). The following
chapters are devoted to its determination in various regimes. Here, we only recall its
basic properties and give classical bounds on values it can take. We provide examples
of states of light that violate these bounds, testifying therefore the quantum nature of
light.

1.1 Presentation of the system

The system we consider is schematically shown on Fig. 1.1 : it comprisesN atoms which
present a three-level ladder structure with a ground |g〉, intermediate |e〉 and Rydberg
states |r〉. The energy of the atomic level |k = g, e, r〉 is denoted by ~ωk (by convention
ωg = 0) and the coherence decay rates are γe (intermediate state) and γr (Rydberg
state). The transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉 are respectively driven by a weak probe
�eld of frequency ωp and a strong control �eld of frequency ωcf . Both �elds can a priori

be resonant or not with atomic transitions, the respective detunings being de�ned by
∆e ≡ (ωp − ωe) and ∆r ≡ (ωp + ωcf − ωr). Moreover, the atoms are placed in an optical
cavity: we shall denote by γ(L,R)

c the respective decay rates through the left and right
mirrors (see Fig. 1.1), with γc ≡ γ

(L)
c + γ

(R)
c . The transition |g〉 ↔ |e〉 is supposed in

the neighborhood of a cavity resonance. The frequency and annihilation operator of
the corresponding mode are denoted by ωc and a, respectively ; the detuning of this
mode with the probe laser is de�ned by ∆c ≡ (ωp − ωc) and α denotes the feeding rate
of the cavity related to the incoming photon �ux via Iin = α2

2γ
(R,L)
c

. Finally, we introduce

g (that we assume to be the same for all atoms) which is the single-atom coupling
constant of the transition |g〉 ↔ |e〉 with the cavity mode, and Ωcf the Rabi frequency
of the control �eld on the transition |e〉 ↔ |r〉. In order to characterize the collective
coupling of the atomic ensemble to the cavity mode we also de�ne the cooperativity of
the sample C ≡ g2N

2γeγc
.

In order to be more speci�c, we provide the following set of experimentally feasible
parameters. We assume that the atomic ensemble is composed of 87Rb atoms. We
use the following atomic levels as ground, intermediate and Rydberg states: |g〉 =∣∣∣5s 1

2
;F = 2

〉
, |e〉 =

∣∣∣5p 3
2
;F = 3

〉
and |r〉 =

∣∣∣nd 5
2
;F = 4

〉
, where the principal quantum

number n will typically be chosen around 100. The decay rate of the intermediate level
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1. Description of the system

If the nonlinearity is relatively weak, the non-linear response can be estimated in the
semiclassical regime in which the cavity mode is treated classically, i.e. a→ 〈a〉, while
atoms remain quantum. This approach will be considered in both dispersive (Parigi
et al., 2012; Stanojevic et al., 2013; Sevinçli et al., 2011) and resonant regimes (Boddeda
et al., 2016).

When the nonlinearity becomes signi�cant at the single-photon level, this approach,
however, is no longer relevant and one has to consider the cavity mode �eld to be
quantum. The non-linearity of the sample can then be characterized by its action on
the quantum statistics of light transmitted through or re�ected from the cavity. As one
may expect, strong nonlinearities modify the response of the sample for a single photon
and for pairs of photons in a di�erent way. This e�ect is well addressed by means of
the intensity correlation function g(2) that we explain in more details in Sec. 1.2.

In the sections below we give details on the mathematical framework that we use in
order to describe the dynamics of the system.

1.1.1 General equations

The dynamics of an any closed quantum system can be generally described in three
ways: Schrödinger, Heisenberg and interaction pictures. In this section we consider
only the �rst two, leaving the description of the interaction picture to Chap. 4. In the
Heisenberg picture all operators are time-dependent and the averaging is performed
over the initial state of the system. On the other hand in Schrödinger picture the state
of the system evolves in time while operators are taken at initial time.

We may apply both approaches to the system described above. For the sake of con-
sistency one has to take into account the modes of the environment, so that the system
{cavity + atoms+ baths} can be approximately considered closed. Below, we give the
expression of the corresponding Hamiltonian of the full system in the frame rotating
at the frequency ωp for the intermediate state |e〉, the cavity baths and the electromag-
netic �eld modes coupled to the transition e↔ g, and the frequency (ωp + ωcf ) for the
Rydberg state |r〉 and the electromagnetic �eld modes coupled to the transition r ↔ g.
In the RWA, the Hamiltonian takes the form

H = Hat +Hcav + Vat−cav +Hf +Hbath + Vat−bath + Vcav−bath (1.1)

with
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1.1 Presentation of the system

Hat =
N∑

n=1

{
−∆eσ

(n)
ee −∆rσ

(n)
rr +

Ωcf

2

(
σ(n)
re + σ(n)

er

)}
+

1

2

N∑

m,n

κmnσ
(m)
rr σ(n)

rr (1.2)

Hcav =−∆ca
†a (1.3)

Vat−c =
N∑

n=1

g
(
aσ(n)

eg + a†σ(n)
ge

)
(1.4)

Hf =α
(
a+ a†

)
(1.5)

Hbath =
∑

λ=L,R

∫
dω ωB†λ,ωBλ,ω +

∫
dω ω

N∑

n=1

(
D†n,ωDn,ω + C†n,ωCn,ω

)
(1.6)

Vat−bath ≈
N∑

n=1

∫
dω

[
gc (ω)Cn,ωσ

(n)
eg + gd (ω)Dn,ωσ

(n)
rg + H.c.

]
(1.7)

Vcav−bath =
∑

λ=L,R

∫
dω gλ (ω)

[
Bλ,ωa

† +B†λ,ωa
]

(1.8)

where σ(n)
µ,η ≡ I(1) ⊗ . . . ⊗ I(n−1) ⊗ |µ〉 〈η| ⊗ I(n+1) ⊗ . . . ⊗ I(N), ωµ is the energy of

the atomic level |µ〉 for µ = e, r (with the convention ωg = 0), and κmn ≡ C6

‖~rm−~rn‖6

denotes the van der Waals interaction between atoms in the Rydberg level � when atoms
are in the ground or intermediate states, their interactions are neglected. By ∆c ≡
(ωp − ωc), ∆e ≡ (ωp − ωe), and ∆r ≡ (ωp + ωcf − ωr) we denote the cavity, intermediate
and Rydberg state detunings, respectively. The operators Bλ=L,R (ω) denote the left
(λ = L)/right (λ = R) handside bath operators coupled to the two-sided cavity mode
with the respective coupling strengths gλ=L,R (ω), whereas {Cn (ω)} and {Dn (ω)}, are
bath operators coupled to the atomic operators with the respective coupling strengths
gc (ω) and gd (ω). Note that, here, we implicitly assumed that atoms are coupled to
di�erent baths, though with the same coupling constants. α denotes the cavity feeding
rate which can be related to the incoming photon �ux via α2

2
g2
b,L
2π

, assuming that feeding

is performed through the left mirror of the cavity.

In Schrödinger picture, the master equation for the full density matrix of the system
ρf is given by

d

dt
ρf = −i [H, ρf ] (1.9)

In the Heisenberg picture for any time-dependent operator X̂ of the system we have:

d

dt
X̂ = i

[
H, X̂

]

Given the structure of the baths in the Hamiltonian Eqs. (1.2-1.8) we moreover
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1. Description of the system

assume that the coupling coe�cients of bath modes are frequency independent i.e.

gλ,c,d (ω) ≈ gλ,c,d. This constitutes Markov approximation, under which the system
{cavity+atoms} is e�ectively decoupled from the bath modes. As will be addressed
in the following subsections, in Markov approximation, the interaction with baths is
accounted for by merely introducing extra terms in the dynamical equations.

1.1.2 Master equation

Assuming that the subsystem {atoms,cavity} is initially disentangled form the baths,
it will remain so under the conditions of Markov approximation and therefore the total
density matrix of the system factorizes at all times ρf (t) ≈ ρ (t) ⊗ ρbath (t). In this
approximation, one deduces the Master equation for the reduced density matrix of the
system ρ (t) (Breuer and Petruccione, 2002):

d

dt
ρ = −i [Hsys, ρ] +D [ρ] (1.10)

where Hsys is the Hamiltonian of the reduced system {cavity+atoms} Eqs. (1.2-1.5).
We note that the master equation Eq. (1.10) contains extra terms compared to Eq.
(1.9) that are denoted by D [ρ]. This operator contains the so-called Lindblad decay
superoperators that correspond to decays of Rydberg (|r〉) and intermediate (|e〉) states
of each atom along with the decay of the cavity mode:

D [ρ] =
(
γRc + γLc

) (
2aρa† − a†aρ− ρa†a

)
(1.11)

+ γe

N∑

n=1

(
2σ(n)

ge ρσ
(n)
eg − σ(n)

ee ρ− ρσ(n)
ee

)

+ γr

N∑

n=1

(
2σ(n)

gr ρσ
(n)
rg − σ(n)

rr ρ− ρσ(n)
rr

)

1.1.3 Heisenberg-Langevin equations

Implementing Markov approximation in the Heisenberg picture leads to a modi�ed set
of dynamical equations. We note that due to the interaction with baths the Heisenberg
equations for the {cavity+atoms} reduced system's operators (Walls and Milburn, 2007)
writes

d

dt
X̂ = i

[
Hsys, X̂

]
− γxX̂ + Fx

where γx and Fx denote the decay rate and Langevin noise operator, associated to the
operator X, respectively. Taking this into account we now write the set of Heisenberg-
Langevin equations for all degrees of freedom of the reduced system:
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1.2 Quantum statistics of light

d

dt
a = (i∆c − γc) a− iα− ig

N∑

i

σ(i)
ge +

√
2γ

(L)
c a

(L)
in +

√
2γ

(R)
c a

(R)
in (1.12)

d

dt
σ(i)
ge = (i∆e − γe)σ(i)

ge − i
Ωcf

2
σ(i)
gr + iga

(
σ(i)
ee − σ(i)

gg

)
+ F (i)

ge (1.13)

d

dt
σ(i)
gr = (i∆r − γr)σ(i)

gr − i
Ωcf

2
σ(i)
ge + igaσ(i)

er − iσ(i)
gr

N∑

j 6=i

κijσ
(j)
rr + F (i)

gr (1.14)

d

dt
σ(i)
er = iDerσ

(i)
er + i

Ωcf

2

(
σ(i)
rr − σ(i)

ee

)
+ iga†σ(i)

gr − iσ(i)
er

N∑

j 6=i

κijσ
(j)
rr + F (i)

er (1.15)

where a(L)
in , a(R)

in and F (i)
αβ denote the Langevin forces associated to the incoming �elds

from the left and right sides of the cavitye and to the atomic operator σ(i)
αβ, respectively.

We also introduced the complex e�ective detunings Dk ≡ (∆k + iγk) for k = c, e, r and
Der ≡ (∆r −∆e) + i (γr + γe). Note that we chose to make the feeding factor α appear
explicitly in Eq. (1.12): in technical terms, it corresponds to displacing the incoming
�eld from the coherent state |α〉 to the vacuum |0〉 ; to be consistent with this choice,
from now on, we must set 〈ain〉 = 0.1

In conclusion we emphasize that both pictures lead to the same equations for corre-
lation functions and are thus equivalent. In this dissertation, we will use both methods
to determine the intensity correlation function of light g(2) but in slightly di�erent
contexts (see Chaps. 2 and 3).

In the next section we de�ne the g(2) function, recall its basic properties and give
details about the physical information it provides.

1.2 Quantum statistics of light

The quantum statistics of light can be characterized by the distribution of pairs inside
the corresponding quantized mode. To this end we consider the normalized probability
to detect a pair of photons at two subsequent times t1 and t2. Mathematically the
g(2) (t1, t2) intensity correlation function of the light is de�ned as (Loudon, 2000):

g(2) (t1, t2) ≡
〈
a† (t1) a† (t2) a (t2) a (t1)

〉

〈a† (t1) a (t1)〉 〈a† (t2) a (t2)〉 (1.16)

1The set of Heisenberg-Langevin equations (1.12-1.15) allows us to recover the standard full linear
spectral response of the intracavity EIT. Indeed, assuming α = α (t) we get in the temporal Fourier
space:

〈a (ω)〉 =
α (ω)

ω +Dc − g2N

ω+De−
Ω2
cf

4(ω+Dr)
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1. Description of the system

Figure 1.2: The scheme of the Hanbury Brown and Twiss experiment.

where a (t) ≡ 1√
2π

∫
dωaωe

−iωt is the Heisenberg operator of the quantized �eld at the
position of detector (assumed to be z = 0), while aω is the annihilation operator of
the ω-frequency mode. The averaging in Eq. (1.16) is performed over the initial state
of the system ρ0, i.e. 〈...〉 ≡ Tr [...ρ0]. We may notice that for a stationary �eld the
expression Eq. (1.16) can be simpli�ed to

g(2) (τ) ≡
〈
a† (0) a† (τ) a (τ) a (0)

〉

〈a† (0) a (0)〉2

where we assumed the time-translational invariance of expressions:

〈
a† (t) a† (t+ τ) a (t+ τ) a (t)

〉
=

〈
a† (0) a† (τ) a (τ) a (0)

〉
〈
a† (t) a (t)

〉
=

〈
a† (0) a (0)

〉

In the remainder of this section we shall show how to experimentally determine the
g(2) function and more precisely relate its behavior to the quantum statistical properties
of light.

1.2.1 Measurement of the g(2) function.

In this section we describe the method which is frequently used to experimentally
determine the g(2) function. It is based on the intensity cross correlation measurement
using the Hanbury-Twiss interferometer shown on Fig. 1.22. We denote by a1, a2 the
annihilation operators of the two input modes of the interferometer and by a3, a4 those
of the two output modes. We assume that the signal that we want to characterize has
the density matrix ρ1 and is sent on the �rst arm of the interferometer. The second arm
is assumed in its vacuum state |0〉. The full density matrix of the system consisting of

2This setup allows to perform the measurement of the correlation function g(2) (τ) for any delay
time τ , contrary to the single-detector setup where the resolution is limited by the bandwidth of the
detector.

28



1.2 Quantum statistics of light

two arms is thus given by ρ = ρ1 ⊗ |0〉2 〈0|2. According to the standard beam-splitter
input-output relation, for two output channels (Scully and Zubairy, 1997) we have:

a3 (t) =
1√
2

(a1 (t) + a2 (t))

a4 (t) =
1√
2

(a1 (t)− a2 (t))

Consider now photon �uxes on each detector separately:

〈
a†3,4 (t) a3,4 (t)

〉
=

1

2

〈(
a†1 (t)± a†2 (t)

)
(a1 (t)± a2 (t))

〉

=
1

2

〈
a†1 (t) a1 (t)

〉

where the plus and minus signs correspond to the third and fourth modes respectively.
For the correlation of �uxes on the detectors D1 at time t1 and D2 at time t2, we get
respectively:

〈
a†3 (t1) a†4 (t2) a4 (t2) a3 (t1)

〉
=

1

4

〈
a†1 (t1) a†1 (t2) a1 (t2) a1 (t1)

〉

we therefore conclude that g(2) (t1, t2) is given by the cross-correlation of intensities in
two di�erent output arms of the interferometer.

g(2) (t1, t2) =

〈
a†3 (t1) a†4 (t2) a4 (t2) a3 (t1)

〉

〈
a†3 (t1) a3 (t1)

〉〈
a†4 (t2) a4 (t2)

〉

1.2.2 Photon statistics

In this subsection3 we show what information on the quantum statistics of light is
contained in the g(2) (τ) function. In both cases τ 6= 0 and τ = 0, we determine the
classical bounds on the correlation functions and show when they can be violated due
to the quantum nature of light. In the former case (τ 6= 0) the violation of the classical
inequality is associated to the e�ect known as antibunching while in the latter case
(τ = 0), it reveals the sub-Poissonian photon statistics. We stress that as shown in
(Zou and Mandel, 1990) these e�ects do not necessarily occur together.

3This subsection essentially follows (Scully and Zubairy, 1997)
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1. Description of the system

Bunching/antibunching

Let us �rst consider the photon �ux I (t) ≡ a† (t) a (t) treating it as a classical quantity,
and introduce the joint probability density distribution pcl (t, I, t

′, I ′) for the �eld to
have photon �uxes at times t and t′ to be equal to I and I ′, respectively. We have for
the correlation function:

〈I (t) I (t+ τ)〉cl =

∫
dIdI ′ × I × I ′ × pcl (t, I, t+ τ, I ′) (1.17)

Let us now apply the Cauchy-Schwarz inequality to Eq. (1.17):

〈I (t) I (t+ τ)〉cl ≤
{∫

dI × I2 × pcl (t, I)

} 1
2
{∫

dI × I2 × pcl (t+ τ, I)

} 1
2

where pcl (t, I) ≡
∫
dI ′pcl (t, I, t+ τ, I ′). Consider now the limit t → ∞, assuming the

process is stationary (Limt→∞ [pcl (t, I)] = Limt→∞ [pcl (t+ τ, I)]) we have therefore:

〈I (t) I (t+ τ)〉cl ≤ 〈I (t) I (t)〉

or, equivalently, the classical intensity correlation function g(2)
cl (τ) ≡ 〈I(t+τ)I(t)〉cl

〈I(t)〉2 obeys
the inequality:

g
(2)
cl (τ) ≤ g

(2)
cl (0) (1.18)

Now considering the quantized �eld, Eq. (1.16) can be put under the form:

g(2) (τ) ≡ 〈: I (t+ τ) I (t) :〉
〈: I (t) :〉2

In the quantum case the g(2) function obeys the inequality Eq. (1.18) for certain states.
For example for the coherent state |α〉, de�ned in the stationary case as a (t) |α〉 = α |α〉,
we have g(2)

cl (τ) = g
(2)
cl (0). The light for which the inequality (1.18) becomes strict at

least for some τ : g(2)
cl (τ) < g

(2)
cl (0) is called called bunched. In this case photons tend

to come in groups. As soon as the inequality (1.18) is violated the corresponding state
of light can not be explained by means of the classical probability density distribution
pcl. The e�ect that accompanies the inequality violation is called antibunching: for
antibunched light, photons tend to come one by one, as schematically shown on Fig. 1.3.
The well known example of an antibunched light is given by the resonant �uorescence
from an atom. An example of a bunched is given by a chaotic light (Loudon, 2000).

We now use the Cauchy-Schwarz inequality once more for the same-time intensity
correlation function:
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1.2 Quantum statistics of light

Figure 1.3: Schematic representation of di�erent light statistics.

〈I (t) I (t)〉cl ≡
∫
dI × I2 × pcl (t, I)

≥
∣∣∣∣
∫
dI × I × pcl (t, I)

∣∣∣∣
2

= 〈I (t)〉2

and consequently g(2)
cl (0) ≥ 1. We therefore conclude that any violation of this inequal-

ity would testify a quantum nature of light. In the quantum case the exact equality
holds for coherent light, which follows Poissonian statistics, as will be shown below.

Single-mode coherent state Consider a single-mode coherent state de�ned as:

|α〉 ≡ eαa
†+α∗a |0〉

= eαa
†− |α|

2

2 |0〉

The probability of detecting n photons is obviously given

Pn = |〈n|α〉|2

=

∣∣∣∣
〈
n

∣∣∣∣eαa
†− |α|

2

2

∣∣∣∣ 0
〉∣∣∣∣

2

= e−|α|
2 |α|2n
n!

(1.19)

we therefore infer that the probability distribution is given by the Poissonian distri-
bution with an average photon number given by |α|2. An important property of the
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1. Description of the system

Poissonian statistics is that the variance of the photon number is equal to the square
of its mean value. According to Eq. (1.19) we indeed have:

〈
n2
〉
− 〈n〉2 = 〈n〉

Throughout the dissertation we will rather be interested in multimode coherent �elds,
whose main properties are, as shown below, akin to those of single-mode coherent �elds.

Multimode coherent state Consider the multimode coherent state (Loudon, 2000)
de�ned by:

|α〉 ≡ e
√
〈n〉(a†α−aα) |0〉

aα (t) |α〉 = α (t) |α〉

where a†α (t) ≡ 1√
〈n〉

∫
dωα (ω) a†ωe

iωt is the mode creation operator, α (t) = 1√
2π

∫
dωα (ω) e−iωt

and 〈n〉 =
∫
|α (t)|2 dt. First, it is easy to check 〈α|α〉 = 1.

We now expand the coherent state |α〉 in the following way:

e
√
〈n〉a†α− 1

2
〈n〉 |0〉 = e−

1
2
〈n〉
∑

n

〈n〉n2
(
a†α
)n

n!
|0〉

= e−
1
2
〈n〉
∑

n

〈n〉n2√
n!
|n〉

where we introduced the Fock state |n〉 ≡ (a†α)
n

√
n!
|0〉 , 〈n|m〉 = δn,m. We thus get that the

total photon distribution in the coherent mode is given by a Poissonian distribution:

Pn = e−〈n〉
〈n〉n
n!

(1.20)

Consider now the photon �ux I (t) ≡ a† (t) a (t) through a certain surface. One may
demonstrate that the probability to detect m photons within the time interval [t, t+ δt]

is given by:

Pm (δt) =

(
|α (t)|2 δt

)m

m!
e−|α(t)|2δt

hence obeying a Poissonian statistics. Indeed, due to the superposition principle, the
state of the �eld in each small time slice δt is also coherent, with the average photon
number |α (t)|2 δt. Therefore, as in the single-mode case, we have for the intensity

correlation function of the coherent light: g(2) (0) =
(|α(t)|2δt)

2

(|α(t)|2δt)
2 = 1.

As soon as the variance of the photon number is superior or inferior to that of the
coherent light for the same average �ux the light �eld is called super or sub-Poissonian,
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1.2 Quantum statistics of light

respectively (Scully and Zubairy, 1997). The simplest example of a sub-Poissonian light
is given by the Fock state containing n photons:

|n〉 ≡
(
a†α
)n

√
n!
|0〉

⇒ g(2) (0) =

〈
n
∣∣a† (t) a† (t) a (t) a (t)

∣∣n
〉

|〈n |a† (t) a (t)|n〉|2

= 1− 1

n
(1.21)

The simplest example of super-Poissonian light is given by the thermal light for
which g(2) (0) = 2 (Loudon, 2000). According to Eq. (1.21) the g(2) (0) function for a
single-photon state vanishes (this is also called �anticorrelation�), testifying the particle
nature of light (Grangier et al., 1986).

In conclusion we note that the g(2) function contains an important information on
the photon distribution in the light �eld. An e�ective interaction between photons can
a�ect the statistics, redistributing them inside the initially coherent light.
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2. Rydberg-induced quantum optical nonlinearities in the dispersive regime

In this chapter 1, we consider the so-called dispersive regime of the system described
in Chap. 1, i.e. when the intermediate state is excited far from resonance. Under
this condition, dipole-dipole interactions induce only non-linear dispersive e�ects for
the cavity mode, without generating extra losses in the system. Besides, due to the
presence of the cavity the dispersive e�ects are enhanced.

As the intermediate state is far detuned, it remains mostly unpopulated during the
evolution and its coherence can be eliminated from the dynamical equations (Brion
et al., 2007b): as shown in (Guerlin et al., 2010) the system e�ectively behaves as
an ensemble of two-level atoms coupled to the cavity mode (Sec. 2.1). In addition,
we assume that the two-photon transition is also slightly detuned in order to ensure
that dipole-dipole interactions induce predominantly dispersive e�ects. Then we further
approximate our system employing the so-called �bubble picture� (Vuletic, 2006) for our
e�ective two-level atoms (Sec. 2.2): we thus get an ensemble of two-level superatoms
coupled to the cavity mode which is known as the driven Tavis-Cummings model (Sec.
2.3). We numerically evaluate the g(2) function of the light transmitted through the
cavity (Sec. 2.4) and show that, depending on the cavity parameters, the transmitted
light is bunched or antibunched (Sec. 2.5).

2.1 E�ective two-level model

The starting point of our study is the Hamiltonian given in Chap. 1 for the system
{atoms+cavity} under the usual RWA and Markov approximations:

Hsys = Ha +Hc + Va−c +Hf

Ha = −∆e

N∑

n=1

σ(n)
ee −∆r

N∑

n=1

σ(n)
rr +

Ωcf

2

N∑

n=1

(
σ(n)
re + σ(n)

er

)
+

N∑

m<n=1

κmnσ
(m)
rr σ(n)

rr

Hc = −∆ca
†a

Va−c =
N∑

n=1

g
(
aσ(n)

eg + a†σ(n)
ge

)

Hf = α
(
a+ a†

)

where we used the same notations as in Chap. 1. We also recall here the set of
corresponding Heisenberg-Langevin equations:

1This chapter is an edited version of (Grankin et al., 2014).

36



2.1 E�ective two-level model

d

dt
a = (i∆c − γc) a− iα− ig

N∑

i

σ(i)
ge + ain (2.1)

d

dt
σ(i)
ge = (i∆e − γe)σ(i)

ge − i
Ωcf

2
σ(i)
gr + iga

(
σ(i)
ee − σ(i)

gg

)
+ F (i)

ge (2.2)

d

dt
σ(i)
gr = (i∆r − γr)σ(i)

gr − i
Ωcf

2
σ(i)
ge + igaσ(i)

er − iσ(i)
gr

N∑

j 6=i

κijσ
(j)
rr + F (i)

gr (2.3)

d

dt
σ(i)
er = {i (∆r −∆e)− γer}σ(i)

er + i
Ωcf

2

(
σ(i)
rr − σ(i)

ee

)
+ iga†σ(i)

gr (2.4)

− iσ(i)
er

N∑

j 6=i

κijσ
(j)
rr + F (i)

er

Let us now simplify the system Eqs. (2.1-2.4). Discarding the non-linearity arising
from the saturation of the transitions2 we neglect the term aσ

(i)
er in Eq. (2.3) and set

σ
(i)
ee − σ(i)

gg ' −I in Eq. (2.2). Averaging out the physically irrelevant fast oscillations of
the atomic coherence σ(i)

ge (at frequency ∆e) we can identify the latter with its steady-
state expression

σ(i)
ge '

Ωcf

2 (∆e + iγe)
σ(i)
gr +

g

(∆e + iγe)
a+

i

(∆e + iγe)
F (i)
ge

Finally, substituting this relation into Eqs.(2.1,2.3) one gets

d

dt
a =

(
i∆̃c − γ̃c

)
a− iα + igeff

(∑

i

σ(i)
gr

)
+ ãin (2.5)

d

dt
σ(i)
gr =

(
i∆̃r − γ̃r

)
σ(i)
gr + igeffa− iσ(i)

gr

(
N∑

j 6=i

κijσ
(j)
rr

)
+ F̃ (i)

gr (2.6)

where (Grankin et al., 2014):

∆̃c =∆c −∆e
g2N

(∆2
e + γ2

e )

γ̃c =γc + γe
g2N

(∆2
e + γ2

e )

2As pointed out in Chap. 1, we indeed expect Rydberg induced nonlinearities to be much stronger
than saturation e�ects and therefore linearize the system apart from interatomic interactions.
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2. Rydberg-induced quantum optical nonlinearities in the dispersive regime

∆̃r = ∆r −∆e

Ω2
cf

4 (∆2
e + γ2

e )

γ̃r = γr + γe
Ω2
cf

4 (∆2
e + γ2

e )

geff =
gΩcf

2 (∆e + iγe)
≈ gΩcf

2∆e

are the parameters for the e�ective two-level model and ãin, F̃
(i)
gr are the modi�ed

Langevin noise operators

ãin = ain +
g

(∆e + iγe)

∑

i

F (i)
ge ≈ ain +

g

∆e

∑

i

F (i)
ge

F̃ (i)
gr = F (i)

gr +
Ωcf

2 (∆e + iγe)
F (i)
ge ≈ F (i)

gr +
Ωcf

2∆e

F (i)
ge

Finally, we get the e�ective Hamiltonian

H̃ = −∆̃r

(
N∑

n=1

σ(n)
rr

)
+

N∑

m<n=1

κmnσ
(m)
rr σ(n)

rr

−∆̃ca
†a+ α

(
a+ a†

)
+ geff

{
a

(
N∑

n=1

σ(n)
rg

)
+ h.c.

}

Performing the adiabatic elimination of the detuned intermediate level, we reduce
the system to an ensemble of e�ective two-level atoms coupled to a cavity mode which
interact via dipole-dipole interactions in exactly the same way as in the original system.

2.2 Rydberg bubble approximation

We may simplify the system further by introducing the Rydberg bubble approximation
(Guerlin et al., 2010). In this approach, the strong Rydberg interactions are assumed
to e�ectively split the sample into Nb bubbles {Bα=1,...,Nb} each of which contains nb =(
N
Nb

)
atoms but can only accommodate for a single Rydberg excitation, delocalized

over the bubble (Vuletic, 2006). Note that the number of atoms per bubble nb is
approximately given by (Parigi et al., 2012; Stanojevic et al., 2013)

nb =
2π2ρat

3

√
|C6|

∆r − Ω2
cf/(4∆e)

(2.7)
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2.2 Rydberg bubble approximation

where ρat is the atomic density. Each bubble can therefore be viewed as an e�ective
spin 1

2
whose Hilbert space is spanned by

|−α〉 = |Gα〉 ≡
⊗

iα∈Bα

|giα〉

|+α〉 = |Rα〉 ≡
1√
nb
{|rg . . . g〉+ . . .+ |g . . . gr〉}

namely the ground state of the bubble Bα and its symmetric singly-Rydberg-excited
state, respectively. Introducing the bubble Pauli operators s

(α)
− = |−α〉 〈+α| � the

operator s
(α)
− corresponds to the lowering operator of the spin and the annihilation of a

Rydberg excitation, one can write

N∑

n=1

σ(n)
gr =

Nb∑

α=1

∑

iα∈Bα

σ(iα)
gr

≈
Nb∑

α=1

s
(α)
−

〈
−α
∣∣∣∣∣
∑

iα∈Bα

σ(iα)
gr

∣∣∣∣∣+α

〉

≈ √
nb

Nb∑

α=1

s
(α)
−

=
√
nbJ−

where we introduced the collective angular momentum J− ≡
∑Nb

α=1 s
(α)
− . In the same

way,

N∑

n=1

σ(n)
rr =

Nb∑

α=1

∑

iα∈Bα

σ(iα)
rr

≈
Nb∑

α=1

|+α〉 〈+α|
〈

+α

∣∣∣∣∣
∑

iα∈Bα

σ(iα)
rr

∣∣∣∣∣+α

〉

≈
Nb∑

α=1

(
1

2
+ s(α)

z

)

≈
(Nb

2
+ Jz

)
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2. Rydberg-induced quantum optical nonlinearities in the dispersive regime

where we used |+α〉 〈+α| ≡
(

1
2

+ s
(α)
z

)
3. Finally, as shown in (Guerlin et al., 2010), the

Hamiltonian of the system takes the approximate form

H̃ ≈ −∆̃ca
†a+ α

(
a+ a†

)
− ∆̃r

(Nb
2

+ Jz

)
+ geff

√
nb
(
aJ+ + a†J−

)
(2.8)

which represents the interaction of the large spin J− with the cavity mode a, known as
the driven (and dissipative) Tavis-Cummings model (Tavis and Cummings, 1968), that
we study in the next section in more details.

2.3 Tavis-Cummings Hamiltonian

We �rst analyze the spectral properties of the Hamiltonian Eq. (2.8) without the driving
term:

H̃TC ≈ −∆̃ca
†a− ∆̃r

(Nb
2

+ Jz

)
+ geff

√
nb
(
aJ+ + a†J−

)
(2.9)

The nonlinearity of this model arises from the �niteness of the Hilbert space spanned
by the spin degree of freedom, as we shall now show.

As can be easily demonstrated, the total number of excitations is an integral of

motion, i.e.
[
H̃TC , N̂

]
= 0, where N̂ ≡ a†a +

(Nb
2

+ Jz
)
. Therefore, the Hilbert

space is split into subspaces of de�nite excitation number Nex, spanned by the vectors
{|n,Nex − n〉 , n = 0, . . . , Nex}, where by |n, k〉 ≡ |n〉 ⊗

∣∣j = Nb
2

;m = −Nb
2

+ k
〉
we de-

note the state that contains n photonic excitations and the collective atomic spin Jz
projection is equal to −Nb

2
+ k. Since these subspaces are not coupled by Eq. (2.9), the

matrix representation of H̃TC , truncated at Nex = 2 can be put in the block-diagonal
form

3The derivation of the spin Hamiltonian provided here is based on the ad hoc representation of
the sample as a collection of superatoms with a pre-de�ned position (Stanojevic and Côté, 2009;
Robicheaux and Hernández, 2005). In each superatom, we restrict the basis to the set of allowed states.
This is a simpli�ed derivation. One can resort to a more rigorous treatment based on the restriction
to the states of the whole ensemble, allowed by the interaction Hamiltonian. These states are given by
(Guerlin et al., 2010) |En〉 = 1√

A
∑
i1,...in∈”allowed” |ri1 , . . . rin〉 where A is the number of allowed states

(It can be seen as a symmetric superposition of bubble states centered at di�erent atoms). The matrix
form of the collective raising (lowering) operator restricted to the set of allowed states |En〉 coincides
with that of the momentum raising (lowering) operator J− in the basis

{∣∣nb

2 ,−nb

2 + n
〉}

. The system
therefore behaves as a spin coupled to the cavity mode (Tavis-Cummings model) which agrees with
and therefore legitimates the bubble picture.
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2.3 Tavis-Cummings Hamiltonian

Figure 2.1: Schematic level structure of the Tavis-Cummings Hamiltonian for Nb > 1
being externally excited so that a) single photon component is resonant, b) 2-photon
component is resonant.

H̃TC =




0 0 0 0 0 0

0 −∆̃c geff

√
N 0 0 0

0 geff

√
N −∆̃r 0 0 0

0 0 0 −2∆̃c

√
2geff

√
N 0

0 0 0
√

2geff

√
N −∆̃c − ∆̃r

√
2geff

√
N − nb

0 0 0 0
√

2geff

√
N − nb −2∆̃r




(2.10)

The eigenenergies in the single excitation subspace are easily found to be ε± =

1
2

(
−∆̃c − ∆̃r ±

√
4g2

effN +
(

∆̃c − ∆̃r

)2
)
. When the blockade sphere is very small

and consequently the number of atoms per bubble Eq. (2.7) is also small, i.e. nb → 0,
one checks that the quantities 2ε+, ε+ + ε−, 2ε− are eigenvalues of the two-excitation
block of Eq. (2.10). The spectrum is thus harmonic with the possibility of existence of
excitations of two kinds: since we assume that nb → 0 the basis spanned by the spin
degree of freedom indeed becomes almost in�nite and in this case the system behaves
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2. Rydberg-induced quantum optical nonlinearities in the dispersive regime

Figure 2.2: The structure of nearly-resonant eigenvalues of the Tavis-Cummings Hamil-

tonian as a function of of the reduced detuning θ ≡
(

∆c −∆
(0)
c

)
/γe. Thin and thick

lines represent eigenvalues of (2.10) in the single and two-excitation subspaces the re-
spectively.

as two uncoupled harmonic oscillators with frequencies ε+, ε−. These modes �±� are
also known as normal modes of the system. By contrast, when the number of atoms nb
per bubble is �nite, the term

√
2geff

√
N − nb in the two-excitation block in Eq. (2.10)

breaks the harmonicity of the level structure. We denote as E1, E2, E3 the corresponding
eigenvalues of the Hamiltonian in the two-excitation subspace.

In the low excitation regime, feeding terms can be perturbatively added to the
Hamiltonian Eq. (2.9), without changing its level structure and all the properties of
the transmitted light can therefore be explained by the con�guration of its eigenvalues.
In particular, as shown on Fig. 2.1, due to the anharmonicity of the level structure,
the single and two-photon components of the light are not simultaneously resonant: it
is thus possible to tune the cavity parameters to e�ectively �lter one of them, therefore
modifying the quantum statistics of transmitted light.

The next sections are devoted to the investigation of the di�erent possible statistical
behaviors of the system.

2.4 Calculation of the g(2) function

In this section we present the two methods (numerical and analytic) we use to compute
the g(2) function of the system. In Schrödinger picture we consider the master equation
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2.4 Calculation of the g(2) function

for the reduced density matrix:

∂tρ̃ = Lρ̃ (2.11)

= −i
[
H̃, ρ̃

]
+ γ̃c

{
2aρ̃a† − a†aρ̃− ρ̃a†a

}

+γ̃r

Nb∑

α=1

{
2s

(α)
− ρ̃s

(α)
+ − s

(α)
+ s

(α)
− ρ̃− ρ̃s

(α)
+ s

(α)
−

}

One can also write the Heisenberg-Langevin equations for the time-dependent operators
a (t) , J− (t)

∂ta =
(

i∆̃c − γ̃c
)
a− iα− igeff

√
nbJ− + ãin (2.12)

∂tJ− =
(

i∆̃r − γ̃r
)

J− + 2igeff

√
nbJza+ J̃in (2.13)

where ãin, J̃in ≡
∑N

n=1 F̃
(n)
gr are the Langevin forces associated to a and J−, respectively.

Note that we neglected the e�ect of extra dephasing due to, e.g., collisions or laser
�uctuations.

To study the quantum properties of the light transmitted through the cavity, we
shall compute the function g

(2)
out, which characterizes the two-photon correlations. In

the input-output formalism (Walls and Milburn, 2007), one shows that this function
simply equals the g(2) function for the intracavity �eld (see App. C for details) given
by

g(2) (τ) =
Tr
{
a†aeLτ

[
aρssa

†]}

Tr [a†aρss]
2 (2.14)

where ρss denotes the steady state of the system de�ned by Lρss = 0, see Eq. (2.11).

In the regime of small feeding parameter α, one can compute ρss numerically by
propagating in time the initial state ρ0 ≡ |Nr = 0〉 〈Nr = 0| ⊗ |nc = 0〉 〈nc = 0| (here
|Nr = 0, 1, . . . ,Nb〉 represents the symmetric state in which Nr ≡

(Nb
2

+ Jz
~

)
bubbles are

excited, and |nc = 0, 1, . . .〉 are the Fock states of the cavity mode). To this end, one
applies the Liouvillian evolution operator eLt in a truncated basis, restricted to states of
low numbers of excitations (typically with nc +Nr ≤ 6). The steady state is reached in
the limit of large times � ideally when t→∞. The denominator of the ratio Eq.(2.14)
is directly obtained from ρss. To compute its numerator, one �rst propagates in time
aρssa

† from t = 0 to τ , using the same procedure as above, then applies the operator
a†a and takes the trace.

In the regime of weak feeding, it is also possible to get a perturbative expression
for g(2) (0) by computing the expansion of

〈
a†a†aa

〉
ss

and
〈
a†a
〉
ss

in powers of α. To
this end, one uses the Heisenberg equations of the system Eqs.(2.12,2.13) to derive
the hierarchy of equations relating the di�erent mean values and correlations 〈. . .〉ss
up to the fourth order in α. After straightforward though lengthy algebra, one gets
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2. Rydberg-induced quantum optical nonlinearities in the dispersive regime

an expression for g(2) (0) which is too cumbersome to be reproduced here but allows
for faster calculations than the numerical approach. Such a fully analytical treatment,
however, cannot, to our knowledge, be extended to g(2) (τ > 0). For τ > 0 we therefore
entirely rely on numerical simulations presented in the next section.

2.5 Numerical results and discussion

We consider the physical setup presented in (Parigi et al., 2012), i.e. an ensemble of
87Rb atoms, whose state space is restricted to the levels |g〉 =

∣∣∣5s 1
2
;F = 2

〉
, |e〉 =∣∣∣5p 3

2
;F = 3

〉
and |r〉 =

∣∣∣95d 5
2
;F = 4

〉
with the decay rates γe = 2π× 3 MHz, and γr =

2π × 0.03 MHz. The other physical parameters must be designed so that strong non-
linearities may be observed at the single-photon level. In the speci�c system considered
here, we �nd this is achieved for a cavity decay rate γc = 2π × 1 MHz, a volume of
the sample V = 40π × 15 × 15µm3, a sample density nat = 0.4µm−3, a control laser
Rabi frequency Ωcf = 10γe, a cooperativity C = 1000, a detuning of the intermediate
level ∆e = −35γe, a detuning of the Rydberg level ∆r = 0.4γe, a cavity feeding rate
α = 0.01γe. For these parameters, the cavity detuning ∆

(0)
c ≈ −6.1γe corresponds to

the (numerically computed) maximal average number of photons in the cavity, i.e.,
to the linear EIT resonance. Note that these physical parameters are experimentally
realistic and feasible, though they are not the ones used in (Parigi et al., 2012) (in
particular, C was much smaller).

Let us �rst focus on the second-order correlation function at zero time g(2) (0),

represented on Fig. 2.3 a) as a function of the reduced detuning θ ≡
(

∆c −∆
(0)
c

)
/γe.

One notes a super-Poissonian region near (B) θB = −4.9 and a deep sub-Poissonian
area centered on (A) θA = 0. This suggests that around (A), photons are preferably
transmitted one by one, while around (B) they are preferably transmitted by pairs.
Note, however, that, as a ratio, g(2) (0) gives only information on the relative importance
of pair and single-photon emissions. Its peaks therefore do not correspond to maxima
of photon pair emission, but to the best compromises between

〈
a†a†aa

〉
ss
and

〈
a†a
〉2

ss
,

as can be checked by comparison of Fig. 2.3 a) and b). Hence, pair emission might
dominate in a regime where the number of photons coming out from the cavity is
actually very small. We may now explain the exact positions of single- and two-photon
resonances. As discussed in the previous section the level structure of the Hamiltonian
we consider in the low excitation regime coincides with those of the Tavis-Cummings
Hamiltonian. As can be seen from the comparison of �gures 2.2 and 2.3 various single
and two-photon resonances correspond to the zero-crossings of eigenvalues of Eq. (2.10)
in their respective subspace.

We now investigate the behavour of g(2) (τ > 0) for two di�erent values of the de-
tuning, i.e. θB = −4.9 and θA = 0 which respectively correspond to the peak (B) and
minimum (A) of g(2) (0). The numerical simulations we obtained are given in Fig. 2.4.
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Figure 2.3: a) Second-order correlation function at zero time g(2) (0) (numerical and

analytical plots coincide), as a function of the reduced detuning θ ≡
(

∆c −∆
(0)
c

)
/γe.

In the neighborhood of the minimum (A) θA = 0, a region with a sub-Poissonian
statistics is observed (see inset); a super-Poissonian area is obtained around the peak
(B) θB = −4.9. b) Average number of pairs

〈
a†a†aa

〉
ss

= 〈n (n− 1)〉ss (thin line) and

square of the average number of photons
〈
a†a
〉2

ss
= 〈n〉2ss in the steady state (thick line).

The position of the peak of the correlation function g(2) (0) is signaled by a vertical line.
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Figure 2.4: Temporal behaviour of g(2) (τ) for a) θB = −4.9 and b) θA = 0 . Note that
we chose a dimensionless �time�-variable τ × γe on the x-axis.

The plot relative to (B) exhibits damped oscillations, alternatively showing a bunched(
g(2) (0) > g(2) (τ)

)
or antibunched

(
g(2) (0) < g(2) (τ)

)
behavior. The plot correspond-

ing to (A) always remains on the antibunched side, though asymptotically tending to
1.

The features observed can be understood and satisfactorily accounted for by a simple
three-level model. Indeed, due to the weakness of α, the system, in its steady state, is
expected to contain at most two excitations (either photonic or atomic). Therefore, after
a photon detection at t = 0, it contains at most one excitation which can be exchanged
between the cavity �eld and atoms, as it has been known for long (Brecha et al.,
1995; Brune et al., 1996). In other words, the operator aρssa† can be expanded in the
space restricted to the three states {|00〉 ≡ |Nr = 0, nc = 0〉 , |01〉 ≡ |Nr = 0, nc = 1〉 ,
|10〉 ≡ |Nr = 1, nc = 0〉} and the e�ective non-Hermitian Hamiltonian for the system,
in this subspace, takes the following form:

H3 =




0 α 0

α −∆̃c − iγ̃c geff

√
N

0 geff

√
N −∆̃r − iγ̃r




The oscillatory dynamical behavior observed for g(2)(t) in the speci�c cases (A,B) is
correctly recovered by this Hamiltonian, which validates the schematic model we used
and suggests it comprises the main physical processes at work.
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2.6 Conclusion

2.6 Conclusion

In this chapter, we studied how the strong Rydberg-Rydberg van der Waals interactions
in an atomic medium may a�ect the quantum statistical properties of an incoming light
beam. In the dispersive regime, the system was shown to e�ectively behave as a large
spin coupled to a damped harmonic oscillator, i.e. the assembly of Rydberg bubbles
and the cavity mode, respectively. The strong anharmonicity of the atomic spin a�ects
the quantum statistics of the outgoing light beam. To demonstrate this e�ect, we per-
formed analytical and numerical calculations of the second-order correlation function
g(2) (τ ≥ 0). The results we obtained on a speci�c physical example with rubidium
atoms show indeed that the transmitted light presents either bunched or antibunched
characters, depending on the detuning between the cavity mode and the probe �eld.
This suggests that, in such a setup, one could design light of arbitrary quantum statis-
tics through appropriately adjusting the physical parameters. The Rydberg bubble
approach akin to that developed in this chapter was used in (Boddeda et al., 2016) to
successfully reproduce the temporal behavior of the cavity transmission coe�cient. In
order to �t the experimental data an additional decay to a dark Rydberg manifold was
added in a purely phenomenological way. More details can be found in App. A.
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Chapter 3

Perturbative treatment at lowest-order
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3. Perturbative treatment at lowest-order

In Chap. 2 we investigated the dispersive regime of the system presented in Chap.
1, i.e. when the intermediate state is excited o�-resonantly, ∆e � γe, and can there-
fore be adiabatically eliminated. This chapter1 is devoted to the investigation of the
general case, including the resonant con�guration ∆e = 0, in the low feeding limit. The
perturbative treatment we propose to tackle this new problem also allows us to avoid
resorting to the free parameter �number of atoms per bubble� that we had to adjust
in the previous chapter to �t the results of the semiclassical calculations. In Sec. 3.1,
we present an analytic derivation of the correlation g(2) (τ) function for the transmitted
and re�ected light, based on the factorization of the lowest perturbative order of oper-
ator product averages. It is important to note that this derivation is valid in both the
dispersive and resonant regimes and therefore generalizes our previous results. In Sec.
3.2, we numerically investigate the dispersive (∆e 6= 0) and resonant regimes (∆e ≈ 0 )
of the system; in particular, our treatment reveals novel features of the pair correlation
function g(2) due to the interplay of the impedance matching and dipole-dipole inter-
actions. In the Sec. 3.3, we propose an e�ective non-linear three-boson model for the
coupled atom-cavity system: this Ansatz allows us to obtain the same results as the
(more cumbersome) exhaustive treatment. In the dispersive regime, this Hamiltonian
agrees with the one we obtained in Chap. 2 in the Rydberg-bubble approximation.

3.1 g(2) function in the perturbative regime

In order to compute the g(2) function of the transmitted or re�ected light, we perturba-
tively expand all correlation functions with respect to the feeding rate α. This expansion
is equivalent to the expansion in the number of excitations in the incoming light. In
Subsec. 3.1.1 we use the latter fact along with the conservation of the total number of
excitations to demonstrate the factorization property of the lowest non-vanishing per-
turbative order of operator product averages. This property restricts the calculation of
g(2) (0) to the determination of �rst and second-order mean values in feeding discussed
in Subsecs. 3.1.2 and 3.1.3. We �nish this section by explicitly showing how to deduce
the two-time correlation function g(2) (τ) (Subsec. 3.1.4).

3.1.1 Factorization property

As we restrict ourselves to low feeding rates, we may expand g(2) (0) in powers of α.
Here, we consider g(2) (0) at the lowest non-vanishing order in α: this requires to eval-
uate

〈
a†a†aa

〉
,
〈
a†a†a

〉
and

〈
a†a
〉
at the fourth, third and second orders, respectively,

as shown in App. C. This task is greatly simpli�ed by the following remarkable factor-
ization property, established in App. D:

1This chapter is an edited version of (Grankin et al., 2015).

50



3.1 g(2) function in the perturbative regime

〈
a† (t) a (t)

〉(2)
=
〈
a† (t)

〉(1) 〈a (t)〉(1)

〈
a† (t2) a† (t1) a (t1)

〉(3)
=
〈
a† (t2) a† (t1)

〉(2) 〈a (t1)〉(1)

〈
a† (t2) a† (t1) a (t1) a (t2)

〉(4)
=
〈
a† (t2) a† (t1)

〉(2) 〈a (t1) a (t2)〉(2)

where the superscript (k) denotes the order in α to which quantities are calculated. This
is a consequence of the conservation of the excitation number by the full Hamiltonian of
the system {atoms+cavity+baths}. Therefore, for instance, for the transmitted light,

g
(2)
t (0) =

(〈
a†a†

〉(2) 〈aa〉(2)
)
/
(〈
a†
〉(1) 〈a〉(1)

)2

and we merely need to determine 〈a〉(1) and 〈a2〉(2). Note that the factorization does
not apply to products of the kind 〈a2〉(2), so that 〈a2〉(2) 6= 〈a〉(1) 〈a〉(1).

3.1.2 First order mean values

The mean values 〈a〉(1)and
〈
σ

(i)
ge

〉(1)

are readily obtained through taking the steady

state of the �rst-order averaged Heisenberg equations Eqs. (1.12-1.15)

〈a〉(1) =
α

Dc − g2N(
De−

Ω2
cf

4Dr

) (3.1)

〈
σ(i)
ge

〉(1)
=

αg

Dc

(
De −

Ω2
cf

4Dr

)
− g2N

(3.2)

〈
σ(i)
gr

〉(1)
=

αgΩcf

2Dr

[
Dc

(
De −

Ω2
cf

4Dr

)
− g2N

] (3.3)

3.1.3 Second order mean values

In a similar way, the second-order value 〈a2〉(2) is determined through solving the fol-
lowing closed system2

2This system is closed as a result of the expansion with respect to α.
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〈
a2
〉(2)

=
g
√
N

Dc

〈ab〉(2) +
α

Dc

〈a〉(1) (3.4)

〈ab〉(2) =
Ωcf

2 (Dc +De)
〈ac〉(2) +

g
√
N

(Dc +De)
〈aa〉(2)

+
g
√
N

(Dc +De)
〈bb〉(2) +

α

(Dc +De)
〈b〉(1) (3.5)

〈ac〉(2) =
g
√
N

(Dc +Dr)
〈bc〉(2) +

α

(Dc +Dr)
〈c〉(1) +

Ωcf

2 (Dc +Dr)
〈ab〉(2) (3.6)

〈bb〉(2) =
Ωcf

2De

〈bc〉(2) +
g
√
N

De

〈ab〉(2) (3.7)

〈bc〉(2) =
Ωcf

2 (De +Dr)
〈cc〉(2) +

g
√
N

(De +Dr)
〈ac〉(2) +

Ωcf

2 (De +Dr)
〈bb〉(2) (3.8)

〈cc〉(2) =
Ωcfg
√
N

2
K 〈ac〉(2) +

Ω2
cfg
√
N

4De

K 〈ab〉(2) (3.9)

deduced from Eqs. (1.12-1.15) under the assumption of a homogeneous atomic medium,
whose consequences are detailed in App. E. In this system, we introduced the collective
atomic operators

b ≡ 1√
N

∑

i

σ(i)
ge c ≡ 1√

N

∑

i

σ(i)
gr . (3.10)

We note that the �rst-order mean values 〈a〉(1), 〈b〉(1) and 〈c〉(1) which appear in
Eqs. (3.4, 3.5, 3.6), respectively, have been computed in Eqs. (3.1, 3.2, 3.3). The K
coe�cient is approximately given by (see App. E for details)

K ≈ 1(
De +Dr −

Ω2
cf

4De

)
Dr −

Ω2
cf

4

(
1− Vb

V

)
(3.11)

where

Vb =

√
2π2

3

√√√√ −C6

Dr − Ω2
cf/
(

4(De +Dr)−
Ω2
cf

De

) (3.12)

will be interpreted as the Rydberg bubble volume in the dispersive regime in the next
section. Though it is too cumbersome to be reproduced here, the solution for 〈a2〉(2) is
simply obtained by matrix inversion, and the calculation of g(2)

t (0) and g(2)
r (0) can be

straightforwardly programmed, e.g. in Mathematica.

The closed sets of equations for the single- Eqs. (3.1-3.3) and two- Eqs. (3.4-
3.9) operator product averages are obtained in the steady state regime. The temporal
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3.2 Application to an experimental case.

response can however be derived in Fourier space by replacing setting d
dt

by −iω in
the expressions of App. E. This would account for the linear and non-linear (Rydberg-
induced) EIT dispersion. The intrinsic (saturation) nonlinearity of the EIT ladder
scheme is neglected from our consideration as it is assumed to be very weak for the
chosen regime of parameters.

3.1.4 Two-time correlation functions

As for g(2)
t,r (0), the calculation of the time-dependent correlation function g

(2)

t,r (τ) is

greatly simpli�ed (see App. C) by the factorization property derived in App. D, since
we simply need to determine the quantity 〈a (t+ τ) a (t)〉(2). From Eqs. (1.12-1.15),
one easily deduces the following di�erential system, at the lowest order in α,

d

dτ



〈a (t+ τ) a (t)〉(2)

〈b (t+ τ) a (t)〉(2)

〈c (t+ τ) a (t)〉(2)


 = −iα 〈a〉




1

0

0


+

−i



−Dc g

√
N 0

g
√
N −De

Ωcf
2

0
Ωcf

2
−Dr






〈a (t+ τ) a (t)〉(2)

〈b (t+ τ) a (t)〉(2)

〈c (t+ τ) a (t)〉(2)




which, together with the boundary condition



〈a (t+ τ) a (t)〉(2)

〈b (t+ τ) a (t)〉(2)

〈c (t+ τ) a (t)〉(2)



τ≡0

=



〈aa〉(2)

〈ba〉(2)

〈ca〉(2)




calculated above, allows us to determine 〈a (t+ τ) a (t)〉. Again, though involved, the
expressions are straightforward to obtain and program.

3.2 Application to an experimental case.

3.2.1 Dispersive regime.

Let us now provide some numerical results obtained in the perturbative approach de-
scribed above. We �rst investigate the dispersive regime, addressed in Chap. 2. We
consider the same values for physical parameters of the system {atoms + cavity} as
discussed in Chap. 1, except for the following tunable parameters, which are �xed
so as to optimize the e�ect: the control laser Rabi frequency is Ωcf = 10γe, the de-
tuning of the intermediate level is ∆e = −35γe, the detuning of the Rydberg level is
∆r = 0.4γe, the cavity feeding rate is α = 0.01γe, and the Van der Waals coe�cient
is C6 = −8.83 × 106γe µm6. For these parameters, the maximal average number of
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Figure 3.1: Second-order correlation function g
(2)

t (0) for the transmitted light in the
dispersive regime considered in Chap. 2 as a function of the renormalized cavity detun-

ing θc/γe ≡
(

∆c −∆
(0)
c

)
/γe where ∆

(0)
c is the detuning of the linear cavity. The shape

of the plot is in good qualitative agreement with the results of the previous model.
Inset : the same plot in logarithmic scale.

photons in the cavity is obtained for the cavity detuning ∆
(0)
c = −6.15 γe which is

taken as a reference.

Under these conditions, Fig. 3.1 shows the second-order correlation function g(2)

t (0)

as a function of the reduced cavity detuning θc ≡ (∆c − ∆
(0)
c )/γe, to be compared

with Fig. 2.3 a) in Chap. 2. The two plots are in good qualitative agreement, but the
position of the maximum is shifted from θc ≈ −5 to θc ≈ −3.5, for the same parameters.
This basically originates from the de�nition of Vb in Chap. 2, di�ering from the present
one by a factor

√
2. Fig. 3.2 shows the two-time second-order correlation function

g
(2)

t (τ) as a function of time delay τ for two values of the detuning, i.e. θc ≈ −3.5

(maximum of g(2)

t (0)) and θc ≈ 0 (minimum g
(2)

t (0)) : again, these plots are in good
agreement with what we previously obtained in Chap. 2.

Let us note that in real experimental conditions, the atoms undergo not only ra-
diative damping, but are also subject to extra dephasing γd on the Rydberg-ground
state transition, due to laser frequency and intensity noise. This additional dephasing
cannot be modeled in the Hamiltonian formalism presented in Appendix F, and thus
the demonstration given in Appendix D for the factorization of mean values does not
apply any more. However, since the radiative coherence damping is γr ≈ 0.01 γe, the
additional damping is γd ≈ 0.15 γe, and the total number of atoms in the sample is
N ≈ 104, the experimental parameters satisfy the condition γr � γd � Nγr. Under
these circumstances, it is shown in Appendix F that the factorization remains valid,
provided that the coherence radiative damping γr is replaced by the dephasing rate γd
in the equations.
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Figure 3.2: Unequal time second-order correlation function g(2)

t (τ) for the transmitted
light in the dispersive regime considered in Chap. 2 as a function of time. a) For
θc/γe = −3.5, g(2)

t (τ) exhibits damped oscillations around the asymptotic value 1,

alternatively showing bunching and antibunching. b) For θc/γe = 0, g(2)

t (τ) tends to
1 without crossing the asymptote. The results obtained in both cases are in good
qualitative agreement with the results of the previous model.

3.2.2 Resonant case

In the previous subsection we con�rmed results, obtained in the dispersive regime, in a
more exhaustive way. Let us now consider the resonant case, which could not be treated
in the previous chapter. As a new set of parameters, we take ∆c = ∆e = ∆r = 0,
and assume that γ(R)

c � γ
(L)
c . We also choose a higher principal number n = 100

for the Rydberg level, for which we take γr = 0.1γe. In addition, we �x γc = 0.3γe,

C = g2N
2γeγc

≈ 30 and V = 50π×20×20µm3. In this regime, Vb ≈
√

2π2

3

√
−C6

De
is enhanced,

and therefore magni�ed non-linear e�ects are expected.
As can be seen on Figure 3.3, there exists a value for which single photons are mostly

absorbed
〈
a

(L)†
out a

(L)
out

〉
= 0, while pairs are re�ected

〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉
6= 0: this value

can be computed and is found to be

Ωcf = 2
√
γeγr (2C − 1) = 2γe

√
6 ≈ 5γe

The time-dependence of g(2)
r (τ) for the re�ected light is also displayed for this choice

of Rabi frequency: the re�ected light is strongly bunched.
On the contrary, in a slightly detuned case, i.e. for ∆e = −2γe and ∆r = −0.1γe,

the other parameters remaining the same, one observes that around Ωcf ≈ 11γe pairs

are absorbed
〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉
= 0 while single photons are re�ected

〈
a

(L)†
out a

(L)
out

〉
6= 0

(see Fig. 3.4). The time-dependence of g(2)
r (τ) is also shown on Fig. 3.4 for Ωcf ≈ 11γe:

the re�ected light is antibunched, asymptotically becoming uncorrelated at large times.
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Figure 3.3: Resonant case ∆c = ∆e = ∆r = 0. a) The quantities
〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉

(thick line) and
〈
a

(L)†
out a

(L)
out

〉
(thin line), renormalized by the intensity of the incoming

light, are represented as functions of the normalized control �eld Rabi frequency Ωcf/γe.

For Ωcf = 2
√
γeγr (2C − 1) ≈ 5γe, photon pairs are re�ected, i.e.

〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉
6=

0, while single photons are absorbed, i.e.
〈
a

(L)†
out a

(L)
out

〉
≈ 0. b) Unequal time second-

order correlation function g(2)
r (τ) in logarithmic scale, for Ωcf ≈ 5γe : the re�ected light

is strongly bunched.
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Figure 3.4: Slightly detuned case ∆c = 0, ∆e = −2γe, ∆r = −0.1γe. a) The quan-

tities
〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉
(thick line) and

〈
a

(L)†
out a

(L)
out

〉
(thin line), renormalized by the

intensity of the incoming light, are represented as functions of the normalized con-
trol �eld Rabi frequency Ωcf/γe. For Ωcf ≈ 11γe, photon pairs are absorbed, i.e.〈
a

(L)†
out a

(L)†
out a

(L)
outa

(L)
out

〉
= 0, while single photons are re�ected, i.e.

〈
a

(L)†
out a

(L)
out

〉
6= 0. b)

Unequal time second-order correlation function g(2)
r (τ), for Ωcf ≈ 11γe : re�ected light

is antibunched, asymptotically becoming uncorrelated.
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3.3 E�ective non-linear three-boson model

These new features are speci�c of the near-resonant regime, and could not be re-
vealed by our previous work. They may be interpreted as di�erent �impedance match-
ing�3 conditions for single photons and pairs, leading to very large non-linear losses,
acting at the single photon level.

In the last two sections, we described how to compute the correlation function in the
low excitation regime, valid not only in the dispersive regime but even in the resonant
case. Though exact and computable, the analytic expressions we get are cumbersome
and do not easily lend themselves to physical interpretation. As we will see in the next
section, one can however describe the physics of the system by a simpler model, in
the low excitation number approximation. In this regime, according to the well-known
Holstein-Primako� approximation (Holstein and Primako�, 1940), it is indeed possible
to treat b and c as bosonic operators. To recover the results of the previous section
to the lowest order, one moreover needs to introduce an e�ective non-linear dispersive
term in the Hamiltonian together with a non-linear decay: the expressions we �nd have
the advantage of being physically more transparent.

3.3 E�ective non-linear three-boson model

In this section, we propose an e�ective model which is designed to correctly repro-
duce the physics of the system in the perturbative regime. Besides being simpler than
the original formulation, this Ansatz also lends itself to a more transparent physical
interpretation, as we shall see.

In the low excitation regime, i.e. for numbers of excitations much lower than the
total number of atoms N , if initially prepared in a collective symmetric atomic state
(e.g. the ground state), the system essentially remains in a symmetric subspace � that
is with respect to permutations of atoms. It is therefore enough to focus on the e�ective
action of the Hamiltonian H and the dissipation operator D onto this subspace. Let
us �rst consider the action of b (de�ned in Eq. 3.10) onto the collective symmetric
atomic state |m,n〉 ≡ |Ne = m;Nr = n;Ng = N −m− n〉 containing m excitations 'e'
and n excitations 'r'. Neglecting m and n with respect to N , one readily gets b |m,n〉 ≈√
m |(m− 1) , n〉 and b† |m,n〉 ≈

√
(m+ 1) |(m+ 1) , n〉. Hence b†b |m,n〉 = m |m,n〉 =

∑N
n=1 σ

(n)
ee |m,n〉 and

[
b, b†

]
≈ 1 and the term

(
−∆e

∑N
n=1 σ

(n)
ee

)
in the Hamiltonian can

be replaced by −∆eb
†b. The same results can be established for c : in particular, the

term
(
−∆r

∑N
n=1 σ

(n)
rr

)
in the Hamiltonian can be replaced by −∆rc

†c. Moreover, in

the low excitation regime, bosonic operators b and c can be considered independent �
their commutators being of order O

(
m
N
, n
N

)
. In the same approximation framework,

the term
∑N

n=1

(
σ

(n)
re + σ

(n)
er

)
, involved in the interaction between atoms and control

3Analogously to classical systems, here, impedance matching designates the regime when no re�ec-
tion of the incoming wave is observed.
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3. Perturbative treatment at lowest-order

�eld, is replaced by
(
bc† + b†c

)
� the action of these two operators onto the same

collective symmetric state indeed coincides up to O
(
m
N
, n
N

)
contributions. Similarly,

the Liouvillian operators corresponding to spontaneous decays from intermediate and
Rydberg levels take the collective forms

De (ρ) =
γe
2

(
2bρb† − ρb†b− b†bρ

)

Dr (ρ) =
γr
2

(
2cρc† − ρc†c− c†cρ

)

The dipole-dipole interaction term is more tricky: it indeed couples the symmetric
subspace both to itself and the nonsymmetric subspace. The restriction of Vint to the
symmetric subspace yields the approximate form κ̄

2
c†c†cc where κ̄ denotes the average

pair interaction. The complementary term VS−A = Vint− κ̄
2
c†c†cc therefore represents the

coupling of symmetric and nonsymmetric subspaces. Since it requires multiple Rydberg
excitations, the e�ect of this coupling remains small in the low excitation regime. It,
however, has two consequences : i) it changes the coupling strength κ̄ into a new value
denoted κr, which takes into account self-coupling of the symmetric subspace through
the nonsymmetric subspace via terms of the form (VS−A)2, ii) it induces a non-linear
decay due to the enhanced spontaneous emission experienced by nonsymmetric states
which are uncoupled to the cavity �eld and therefore do not ful�ll EIT conditions. The
form we choose for this non-linear decay is

Dnl (ρ) =
κi
2

(
2ccρc†c† − ρc†c†cc− c†c†ccρ

)

Though it seems arbitrary at this stage, this choice will be mathematically justi�ed later
by the fact that it allows us to recover the Heisenberg equations Eqs. (3.4-3.9) obtained
in the previous Section. The expression of κi will be determined later by identi�cation
with Eqs. (3.4-3.9) ; it is also physically sound since it a�ects only multiply Rydberg-
excited states inducing their decay to the ground level.

At this point, the Hamiltonian for our e�ective three-boson model writes

Heff = −∆ca
†a+ α

(
a+ a†

)
−∆eb

†b

−∆rc
†c+ g

√
N
(
ab† + b†a

)

+
Ωcf

2

(
bc† + b†c

)
+
κr
2
c†c†cc

with the dissipation LiouvillianD [ρ] = De (ρ)+Dr (ρ)+Dnl (ρ). We shall now determine
κi and κr by identifying the corresponding steady state averages for the second order
correlation functions. From the full Liouville-von Neumann equation of the system
∂tρ = − i

~ [Heff , ρ] +D [ρ] one readily derives the following Bloch equations

58



3.3 E�ective non-linear three-boson model

d

dt
〈a〉 = iDc 〈a〉 − iα− ig

√
N 〈b〉 (3.13)

d

dt
〈b〉 = iDe 〈b〉 − ig

√
N 〈a〉 − i

Ωcf

2
〈c〉 (3.14)

d

dt
〈c〉 = iDr 〈c〉 − i

Ωcf

2
〈b〉 − iκ

〈
c+cc

〉
(3.15)

where we introduced the notation κ ≡ κr − iκi, κr and κi being real. From this set of
equations, one gets the same steady state value 〈a〉(1) as in Eq. (3.1). At second order
in α, the set of equations for two-operator steady-state averages is derived in the same
way (here we omit superscripts (1,2) for simplicity)

〈aa〉 =
g
√
N

Dc

〈ab〉+
α

Dc

〈a〉

〈ab〉 =
Ωcf

2 (Dc +De)
〈ac〉+

g
√
N

(Dc +De)
〈aa〉+

g
√
N

(Dc +De)
〈bb〉+

α

(Dc +De)
〈b〉

〈ac〉 =
g
√
N

(Dc +Dr)
〈bc〉+

α

(Dc +Dr)
〈c〉+

Ωcf

2 (Dc +Dr)
〈ab〉

〈bb〉 =
Ωcf

2De

〈bc〉+
g
√
N

De

〈ab〉

〈bc〉 =
Ωcf

2 (De +Dr)
〈cc〉+

g
√
N

(De +Dr)
〈ac〉+

Ωcf

2 (De +Dr)
〈bb〉

〈cc〉 =
Ωcf

2
(
Dr − κ

2

) 〈bc〉

which agrees with Eqs. (3.4-3.9) but for the last equation. If, however, we eliminate
〈bc〉 and 〈bb〉 from the last three equations, we obtain

〈cc〉 =

Ωcf
2
g
√
N

(
Dr − κ

2

) (
Dr +De −

Ω2
cf

4De

)
− Ω2

cf

4

(
〈ac〉+

Ωcf

2De

〈ab〉
)

Finally, for our model to correctly reproduce the physics of the original system, the
value we got for 〈cc〉 must coincide with Eq. (3.9) which requires that

K =
1

(
Dr − κ

2

) (
Dr +De −

Ω2
cf

4De

)
− Ω2

cf

4

and, upon recalling Eq. (3.11),
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κ = 2

(
Vb

V − Vb

)
 Ω2

cf

4
(
Dr +De −

Ω2
cf

4De

) −Dr




We thus obtain the analytic expressions of the parameters κr and κi, respectively char-
acterizing the non-linear dispersion and absorption of the c-boson, which make our
model system precisely reproduce the results of the original problem in the steady state
and in the lowest order of the feeding parameter α.

Let us now investigate the physical content of the previous model by considering
two limiting cases.

3.3.1 Dispersive regime

In the dispersive regime addressed in the Chap. 2, |De,r| � Ωcf , whence Vb ≈
√

2π2

3

√
|C6|
∆r

, κr ≈ − 2∆r

(Nb−1)
and κi ≈ 0, where we introduced Nb ≡ V

Vb
. This result

agrees with what we previously obtained in the Rydberg bubble approximation and
therefore con�rms its validity: we observe a shift due to the non-linear dispersive be-
havior of the c-boson, but no non-linear absorption since the intermediate level is too
far detuned. Moreover, in the bubble picture, the parameter Nb was interpreted as the
number of Rydberg bubbles the sample may accommodate; as suggested above, this
allows us to interpret Vb as the bubble volume.

3.3.2 Resonant case

If we now go to the opposite regime, i.e. the resonant case for which ∆e = ∆r = 0,

γe � γr and Ω2
cf � γ2

e , we obtain Vb ≈ π2

3
(1− i)

√
|C6|
γe

and therefore the non-linearity
parameters are

κr = −κi ≈ −
2π2

3V

√
γe |C6|

We now have both dispersion and absorption. From the expression of κi, it is clear that
absorption results from an interplay of the spontaneous emission from the intermediate
state and the Rydberg-Rydberg interactions.

3.4 Conclusion

In this chapter, we have studied the strong quantum optical non-linearities induced by
Rydberg-Rydberg dipole-dipole interactions in an atomic medium. We provided a new
perturbative treatment of the problem, based on the factorization of the lowest-order of
operator product averages. This calculation enabled us to recover and extend our pre-
vious results: we could validate the approach based on the Rydberg bubble picture, as
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3.4 Conclusion

well as investigate the resonant, absorptive, regime. In particular, our numerical simu-
lations showed that strong Rydberg-induced non-linearities lead to di�erent impedance
matching conditions for single photons and photon pairs.

Moreover we proposed an e�ective model which yields the same results as the full
calculation at the lowest order in the feeding parameter; this model also sheds light
on the origin of the dispersion and absorption, as well as makes a bridge between the
Rydberg bubble and perturbative approaches. In (Boddeda et al., 2016), the e�ective
bosonic model was used to reproduce the non-linear behavior of the cavity transmission.
Under the �mean-�eld� approximation (equivalent to all bosons being in coherent states)
the model was shown to correctly reproduce the experimental data. More details can
be found in App. A.

In the next chapter, we present an approach inspired from the many-body physics
which allows us to go beyond the lowest order terms in expansion of correlation func-
tions.
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Chapter 4

Schwinger-Keldysh contour formalism.
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4. Schwinger-Keldysh contour formalism.

In Chap. 3 we considered the perturbative expansion of correlation functions to the
lowest order in the feeding rate α. The extension of this method to higher orders leads
to cumbersome expressions which are di�cult to deal with. In this chapter1 we consider
the system in the so-called Schwinger-Keldysh contour formalism. Based on a contour-
ordered representation of the relevant correlation functions (Sec. 4.1), it allows for a
systematic perturbative expansion via Wick's theorem (Sec. 4.2). As a perturbation we
will consider both feeding and dipole-dipole interaction Hamiltonians. We will perform
a complete resummation with respect to the latter, for each correlation function that
we encounter in this chapter. Using this method we re-derive results of Chap. 3 (Secs.
4.3,4.4,4.5) in an analytic compact form and go beyond by deriving analytic expressions
for elastic and inelastic components of the cavity transmission spectrum (Sec. 4.6). We
also identify a polaritonic resonance structure, to our knowledge unreported so far, that
we physically interpret.

4.1 Introduction

In this section, we introduce the basic tools we shall use throughout this chapter.
In Subsec. 4.1.1, we present the bosonic representation of the system's Hamiltonian,
explained in more detail in App. B. In Subsec. 4.1.2, we show how to use the so-
called Schwinger-Keldysh contour idea to express generic correlation functions in a
form particularly well suited for the perturbative expansion we perform in subsequent
sections.

4.1.1 Bosonic representation of the Hamiltonian

In the perturbative treatment we perform in the next sections, we shall make an ex-
tensive use of Wick's theorem. To this end, it is convenient to represent our system
in terms of bosons. The idea, presented in detail in App. B and only brie�y sketched
here, is to associate each atom i = 1, . . . , N in the ensemble with two independent
bosonic annihilation operators {bi, ci} whose truncations to single-excitation subspace
coincide with the lowering operators σ(i)

ge and σ
(i)
gr , respectively. This approximation

is valid in the regime of large atom numbers and weak coupling g � γRc , γe. In that
representation, the Hamiltonian of the full system described in Chap. 1 now takes the
form H = H0 +Hint where

1The results of this chapter are presented in the preprint (Grankin et al., 2016) submitted for
publication.
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H0 = Hat + Va−c +Hcav +Hbath + Vcav−bath + Vat−bath

Hint = Hdd +Hf

Hdd =
1

2

N∑

m,n

κmnc
†
mc
†
ncmcn

Hf = α
(
a+ a†

)

Hat =
N∑

n=1

{
−∆eb

†
nbn −∆rc

†
ncn +

Ωcf

2

(
b†ncn + bnc

†
n

)}

Va−c =
N∑

n=1

g
(
ab†n + a†bn

)

Hcav =−∆ca
†a

Hbath =
∑

λ=L,R

∫
dω ωB†λ,ωBλ,ω +

∫
dω ω

N∑

n=1

(
D†n,ωDn,ω + C†n,ωCn,ω

)

Vcav−bath =
∑

λ=L,R

∫
dω gb (ω)

[
Bλ,ωa

† +B†λ,ωa
]

Vat−bath ≈
N∑

n=1

∫
dω

[
gc (ω)Cn,ωb

†
n + gd (ω)Dn,ωc

†
n + H.c.

]

4.1.2 Contour-ordered representation of correlation functions

4.1.2.1 Multitime-correlation functions in the interaction picture

2Throughout this dissertation, we have focused on evaluating correlation functions of
the light either transmitted through or re�ected from the cavity, which can be exper-
imentally obtained via multitime measurements of the light outgoing from the setup.
Input-output theory shows that, under Markov approximation, these functions simply
relate to the intracavity �eld correlation functions, themselves coupled to the atomic
correlation functions via Heisenberg-Langevin equations. The generic form for such
correlation functions is

〈
T̃
{

r∏

i=1

O†H,i (ti)
}
T
{

r+s∏

j=r+1

OH,j (tj)

}〉
(4.1)

where OH,i (t) ≡ eiH(t−t0)Oie−iH(t−t0) is an arbitrary operator of our system, expressed
in the Heisenberg picture with respect to the Hamiltonian H given in the previous
subsection. In (4.1) T and T̃ stand for the chronological and anti-chronological time-

2This subsection essentially follows (Stefanucci and van Leeuwen, 2013; Rammer, 2007).
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ordering operators de�ned respectively as:

T (A (t1)B (t2)) =

{
A (t1)B (t2) ; t1 > t2

B (t2)A (t1) ; t2 > t1
(4.2)

T̃ (A (t1)B (t2)) =

{
A (t1)B (t2) ; t2 > t1

B (t2)A (t1) ; t1 > t2
(4.3)

We also notice that averaging in 4.1 is performed over the initial state of the system
(at t = t0), that we assume to be the vacuum ρ0 = |Ø〉 〈Ø| ( 〈· · · 〉 ≡ Tr [ρ0 · · · ]
), i.e. the state which does not contain any excitation, either in the baths or in
the system {cavity+atoms}. Many physically relevant quantities involve correlation
functions of the form (4.1), as for example the g(2) (τ) function of the transmitted
light (See App. C) or the squeezing spectrum which requires the determination of
〈T {a (t) a (t′)}〉,〈T̃

{
a† (t) a† (t′)

}
〉.

Let us now transform (4.1) into the interaction picture with respect to H0. For any
operator OH (t) ≡ eiH(t−t0)Oe−iH(t−t0) in the Heisenberg picture we may write

OH (t) = V † (t, t0)OH0 (t)V (t, t0) (4.4)

where we introduced V (t, t0) ≡ eiH0(t−t0)e−iH(t−t0). By time derivation of the previous
de�nition we get

d

dt
V (t, t0) = −iHint (t)V (t, t0) (4.5)

Hint (t) ≡ eiH0(t−t0)Hinte
−iH0(t−t0)

and deduce through recursive integration that V =
∑+∞

n=0 V
(n), where V (0) (t, t0) = 1

and

V (n>1) (t, t0) = (−i)n
∫ t

t0

. . .

∫ t2

t0

dt1 . . . dtnHint (tn) . . . Hint (t1)

=
(−i)n

n!
T
{(∫ t

t0

dsHint (s)

)n}

where T is the chronological time-ordering operator (see Eq. 4.2). Please note that the
n! factor in the denominator appears from permutations of the time arguments. Finally
combining all terms in the expansion of V (t, t0) we get
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V (t, t0) = T
{
e
−i
∫ t
t0
dsHint(s)

}
(4.6)

and

V † (t, t0) = T̃
{
e−i

∫ t0
t dsHint(s)

}
(4.7)

At this point it is worth noticing, that following (Abrikosov et al., 1975; Stefanucci
and van Leeuwen, 2013; Rammer, 2007; Kamenev, 2011), we do not provide any pre-
scription for same-time values of (4.2). In order to make the chronological time-ordering
coincide with normal ordering when t = t′, we shall implicitly assume that, under T ,
the time arguments of creation operators are shifted further in time by the in�nitesimal
quantity 0+ such that, e.g.

T
{∫ t

t0

dsHdd (s)

}
= T

{
1

2

∑

m,n

κmn

∫
dsc†m

(
s+ 0+

)
c†n
(
s+ 0+

)
cm (s) cn (s)

}

=

{
1

2

∑

m,n

κmn

∫
dsc†m (s) c†n (s) cm (s) cn (s)

}

For the same reason, under T̃ , the time arguments of creation operators will be added
the in�nitesimal quantity 0− so that:

T̃
{∫ t

t0

dsHdd (s)

}
= T̃

{
1

2

∑

m,n

κmn

∫
dsc†m

(
s+ 0−

)
c†n
(
s+ 0−

)
cm (s) cn (s)

}

=

{
1

2

∑

m,n

κmn

∫
dsc†m (s) c†n (s) cm (s) cn (s)

}

Combining (4.4, 4.6, 4.7) we may rewrite (4.4) under the following form:

OH (t) = T̃
{
e−i

∫ t0
t dsHint(s)

}
OH0 (t) T

{
e
−i
∫ t
t0
dsHint(s)

}
(4.8)

Consider now, without loss of generality, that all creation and annihilation operators
in (4.1) are already arranged anti-chronologically and chronologically, respectively, i.e.
t1 < t2 < . . . tr, tr+1 > tr+2 > . . . > tr+s. Substituting (4.8) into (4.1) we get:
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4. Schwinger-Keldysh contour formalism.

〈
O†1 (t1)O†2 (t2) . . .O†r (tr)Or+1 (tr+1) . . .Or+s (tr+s)

〉
(4.9)

= Tr

[
ρ0V

† (t1, t0)O†H0,1
(t1)V † (t2, t1)O†H0,2

(t2) . . . V † (tr, tr−1)O†H0,r
(tr)V (tr, t0)

×V † (tr+1, t0)OH0,r+1 (tr+1)V (tr+1, tr+2) . . .OH0,r+s (tr+s)V (tr+s, t0)

]

= Tr

[
ρ0V

† (t1, t0)O†H0,1
(t1) . . .O†H0,r

(tr)V
† (∞, tr)

×V (∞, tr+1)OH0,r+1 (tr+1) . . .OH0,r+s (tr+s)V (tr+s, t0)

]

where in the last line we used the unitarity of the V operator. Finally we assume further
that the evolution of the system began at t0 = −∞. The latter condition is consistent
with the steady state calculation.

Reintroducing time-ordering operators in Eq. (4.9) we get

〈
T̃
{

r∏

i=1

O†H,i (ti)
}
T
{

r+s∏

j=r+1

OH,j (tj)

}〉
(4.10)

= Tr

[
ρ0T̃

{
V † (t1,∞)O†H0,1

(t1) . . .O†H0,r
(tr)V

† (∞, tr)
}

×T {V (∞, tr+1)OH0,r+1 (tr+1) . . .OH0,r+s (tr+s)V (tr+s,∞)}

]

= Tr


 ρ0T̃

{
O†H0,1

(t1) . . .O†H0,r
(tr) e

−i
∫−∞
+∞ dsHint(s)

}

×T
{
OH0,r+1 (tr+1) . . .OH0,r+s (tr+s) e

−i
∫+∞
−∞ dsHint(s)

}



4.1.2.2 Schwinger-Keldysh contour-ordering

Eq. (4.10) suggests to introduce a new variable, which does not merely follow the
real axis (−∞,∞) but rather a contour C made of two branches C+ = (−∞,+∞)

and C− = (+∞,−∞) (Fig. 4.1). A contour-ordering operator TC can be de�ned,
accordingly, by

∀z1, z2 ε C : TC {A (z1)B (z2)} =

{
A (z1)B (z2) ; z1 > z2

B (z2)A (z1) ; z2 > z1

or, to be more explicit,

TC {A (z1)B (z2)} =





A (z1)B (z2) ; if z1εC−, z2εC+

B (z2)A (z1) ; if z1εC+, z2εC−
T {A (z1)B (z2) } ; if z1εC+, z2εC+

T̃ {A (z1)B (z2) } ; if z1εC−, z2εC−
Finally, introducing the notation O±,i ≡ OH0,i(ti ε C±), we may rewrite (4.10) under the
form:
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〈
T̃
{

r∏

i=1

O†H,i (ti)
}
T
{

r+s∏

j=r+1

OH,j (tj)

}〉

=

〈
TC
{

r∏

i=1

r+s∏

j=r+1

O†−,i (ti)O+,j (tj) e
−i
∫
C dsHint(s)

}〉
(4.11)

The so-called Schwinger-Keldysh contour formalism we have just introduced allows
one to expand e.g. correlation functions in powers of the perturbation in a more sys-
tematic and practical way than �conventional� approaches thanks to Wick's theorem
for contour-ordered quantities, as we shall see in the next section.

For the sake of simplicity, we introduce the operator Aq = 1√
2π

∫∞
−∞ (a+ − a−) ds in

Eq. (4.11), where the q subscript stands for the so-called �quantum� variable (Kamenev,
2011)3:

〈
TC
{
e−i(

∫
C Hdd)−i

√
2πα(Aq+A†q)

r∏

i=1

O†−,i (ti)
r+s∏

j=r+1

O+,j (tj)

}〉

=
∑

n

(
−i
√

2πα
)n

n!

〈
TC
{
e−i(

∫
C Hdd)

(
Aq + A†q

)n r∏

i=1

O†−,i (ti)
r+s∏

j=r+1

O+,j (tj)

}〉

=
∑

n,k

(
−i
√

2πα
)n

(n− k)!k!

〈
TC
{
e−i(

∫
C Hdd)An−kq A†kq

r∏

i=1

r+s∏

j=r+1

O†−,i (ti)O+,j (tj)

}〉
(4.12)

In the next section, we shall consider the perturbative expansion of Eq. (4.12) with
respect to Hdd which yields the following double perturbation series

∑

n,k,p

(
−i
√

2πα
)n

(n− k)!k!

〈
TC
{(
−i
∫
C Hdd

)p

p!
An−kq A†kq

r∏

i=1

r+s∏

j=r+1

O†−,i (ti)O+,j (tj)

}〉
(4.13)

Thanks to Wick's theorem, recalled in the next section, we shall be able to fully resum
the �rst few terms in α (up to n = 4) with respect to Hdd.

3This de�nition is made for the sake of convenience. The term �quantum variable� can be motivated
by the following decomposition of the forward and backward operators: a+ (t) ≡ 〈a (t)〉 + δa+ (t) ,
a− (t) ≡ 〈a (t)〉 + δa− (t) , where 〈δa+,−〉 = 0. Therefore the so-called quantum variable aq ≡
1√
2

(a+ − a−) = 1√
2

(δa+ − δa−) indeed represents quantum �uctuations around the mean �eld.
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time 
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Figure 4.1: Representation of contour-ordering for the multitime correlation function〈
T̃ {O1 (t1)O2 (t2)O3 (t3)} T {O4 (t4)O5 (t5)}

〉
.

4.2 Wick's theorem and Green's functions

In this section we recall the Wick's theorem for bosonic statistics which applies to our
system. Then we de�ne and give the main properties of the Green's functions which
appear as the basic element of the perturbative expansion we get from Wick's theorem.

4.2.1 Wick's theorem

Following (Rammer, 2007), we recall the Wick's theorem for contour-ordered quantities
speci�c to the bosonic statistics.

The generic term of the double perturbative expansion of Eq. (4.13) is an expecta-
tion value in the vacuum state ρ0 of a contour-ordered string of creation and annihilation
operators

S =
〈
TC
{
e†p+q (zp+q) . . . e

†
p+1 (zp+1) ep (zp) . . . e1 (z1)

}〉
(4.14)

where e1, e2, · · · , ep+q are bosonic annihilation operators in the interaction picture with
respect to H0. Applied to our system, Wick's theorem states that such a contour-
ordered string can be decomposed into a sum over all possible pairwise products of
creation and annihilation operators4 in the string in Eq. (4.14)

4We notice that Wick's theorem is actually demonstrated for independent bosons (Rammer, 2007).
In our case, bosons are not independent but we may set ourselves in these conditions as follows. The
Hamiltonian H0 is quadratic in bosonic operators, i.e. it can be written as H0 =

∑
i,j hijζ

†
i ζj where

we sum over all the possible operators of the system (∀i, j :
[
ζi, ζ

†
j

]
= δij). We introduce the new

operators ξi =
∑
U ji ζj , where U stands for the unitary transformation which diagonalizes the matrix
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4.2 Wick's theorem and Green's functions

S =
∑

a.p.p

∏

k,l

〈
TC
{
el (zl) e

†
k (zk)

}〉
(4.15)

The quantity G(C)
ekel (zl, zk) = −i

〈
TC
{
el (zl) e

†
k (zk)

}〉
is called the unperturbed contour-

ordered Green's function for the operators ek and el. The next subsection shall be
devoted to its determination.

It is important to notice that an implicit part of the theorem's statement is that
the number of creation and annihilation operators should be equal, the corresponding
expectation value otherwise vanishes. This remark allows us to simplify the general
formula Eq. (4.13) for the correlation function as follows. In this formula we have
k+ r+ 2p creation operators (recalling that Hdd = 1

2

∑
ij κijc

†
ic
†
jcicj) and n− k+ s+ 2p

annihilation operators. According to the remarks above, we can restrict the series Eq.
(4.13) to the terms which satisfy k+ r+ 2p = n−k+ s+ 2p, or equivalently k = n+s−r

2
.

De�ning D = s− r we �nally have

∑

n:n+D
2

εZ,p

(
−i
√

2πα
)n

(
n+D

2

)
!
(
n−D

2

)
!

〈
TC
{(
−i
∫
C Hdd

)p

p!
A

n−D
2

q A
†n+D

2
q

r∏

i=1

r+s∏

j=r+1

O†−,i (ti)O+,j (tj)

}〉

(4.16)
where in the summation over n we speci�ed that k should be an integer. For future
reference and for the sake of conciseness we shall use the formally resummed version of
this formula with respect to p

∑

n:n+D
2

εZ

(
−i
√

2πα
)n

(
n+D

2

)
!
(
n−D

2

)
!

〈
TC
{
e−i(

∫
C Hdd)A

n−D
2

q A
†n+D

2
q

r∏

i=1

r+s∏

j=r+1

O†−,i (ti)O+,j (tj)

}〉

(4.17)

Finally it is worth noticing that the theorem completes the mathematical apparatus
required for the perturbative expansion of the correlation functions.

4.2.2 Green's functions

The crucial concept of this chapter is the contour-ordered Green's functionG(C)
ekel (zl, zk) =

−i
〈
TC
{
el (zl) e

†
k (zk)

}〉
which naturally emerges from Wick's theorem. Physically it

characterizes the system's response at some time zl to the creation of a single excitation
at time zk.

hij . These new operators are themselves bosonic, i.e.
[
ξi, ξ

†
j

]
= δij and since H0 =

∑
i ωiξ

†
i ξi, they

are independent and therefore satisfy the theorem's hypothesis. Finally transforming bosons back to
the initial basis we get Eq. (4.15).
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Depending on the respective positions of the arguments zk and zl on the contour,
G

(C)
ekel [zl, zk] coincides with one of the four following real-time Green's functions:





GT
ekel

(zl − zk) = G
(C)
ekel [zl, zk] ; when zl, zk ε C+

GT̃
ekel

(zl − zk) = G
(C)
ekel [zl, zk] ; when zl, zk ε C−

G>
ekel

(zl − zk) = G
(C)
ekel [zl, zk] ; when zk ε C+, zl ε C−

G<
ekel

(zl − zk) = G
(C)
ekel [zl, zk] ; when zk ε C−, zl ε C+

where we implicitly assumed the time invariance of GT,T̃ ,>,< (resulting from the fact
that H0 is time-independent).

Note that, while (zk, zl) are contour arguments in G
(C)
ekel (zl, zk), they must be un-

derstood as �real� time arguments in the functions GT ,GT̃ ,G>,G<. It can also be
shown (Stefanucci and van Leeuwen, 2013) that5 GT̃

xy [t′ − t] = −
[
GT
yx [t− t′]

]∗
=

−
[
GT
xy [t− t′]

]∗
, or equivalently in temporal Fourier space GT̃

xy [ω] = −
[
GT
xy [ω]

]∗
.

Moreover, the di�erent Green's functions are related by G>
xy [ω] + G>

xy [ω] = GT
xy [ω] +

GT̃
xy [ω]. This can be further simpli�ed by noticing that, since H0 preserves the ex-

citation number and the state we average on is the vacuum ρ0, then G<
xy [ω] = 0 for

any pair of operators (x, y); therefore G>
xy [ω] = 2i Im

[
GT
xy [ω]

]
. As it can be seen, all

four Green's functions are not independent. As a consequence de�ning the so-called
�quantum� variable xq (t) ≡ 1√

2
(x+ (t)− x− (t)) (where as usual x± (t) = xH0 (tεC±))

we get for any pair of two operators (x, y):
〈
TC
{
xq (t) y†q (t′)

}〉
= 0.

In the remainder of this subsection we determine GT
xy for all possible pairs of oper-

ators (x, y), from which all other Green's functions can be deduced.

4.2.2.1 Time-ordered Green's functions

In this subsubsection we shall determine time-ordered Green's functions of the form
GT (tk − tl) = −i

〈
T
{
ek (tk) e

†
l (tl)

}〉
where ek, el are either atomic or photonic an-

nihilation operators expressed in the interaction picture with respect to H0. Their
expression can be deduced from the Heisenberg-Langevin equations of the system, gen-
erated by H0 alone:

d

dt
a = −Γca− iα− ig

N∑

i

bi +
√

2γcain (4.18)

d

dt
bi = −Γebi − i

Ωcf

2
ci − iga+

√
2γebi,in (4.19)

d

dt
ci = −Γrci − i

Ωcf

2
bi +

√
2γrci,in (4.20)

5The second equality follows from the unitarity of the Hamiltonian.
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In this section we use complex decay rates Γx ≡ γx+i∆x where x = c, e, r for simplicity.
We now introduce the collective spinwaves b~k ≡ 1√

N

∑
j e

i~k ~rjbj, c~k ≡ 1√
N

∑
j e

i~k ~rjcj
de�ned in App. B which allow us to split the system of Eqs. (4.18-4.20) into a set of
independent subsystems, i.e.

d

dt
a = −Γca− iα− ig

√
Nb0 +

√
2γcain (4.21)

d

dt
b0 = −Γeb0 − i

Ωcf

2
ci − ig

√
Na+

√
2γeb0,in (4.22)

d

dt
c0 = −Γrc0 − i

Ωcf

2
b0 +

√
2γrc0,in (4.23)

and, for ~k 6= 0

d

dt
b~k = −Γeb~k − i

Ωcf

2
c~k +

√
2γeb~k,in (4.24)

d

dt
c~k = −Γrc~k − i

Ωcf

2
b~k +

√
2γrc~k,in (4.25)

We de�ne the matrix6

ĜT [t, t′] ≡ −i
〈
T
(
~X (t)× ~X† (t′)

)〉
(4.26)

where

~X (t) ≡




a (t)

b0 (t)

c0 (t){
bk (t)

ck (t)

}

~k 6=0




and ~X† (t) is the transconjugated vector
(
a† (t) , b†0 (t) , c†0 (t) ,

{
b†k (t) , c†k (t)

})
, that is

more explicitly,

ĜT
[
t, t′
]

≡ −i



〈
T
{
a (t) a† (t′)

}〉 〈
T
{
a (t) b†0 (t′)

}〉 〈
T
{
a (t) c†0 (t′)

}〉 〈
T
{
a (t) b†

~k
(t′)
}〉 〈

T
{
a (t) c†

~k
(t′)
}〉

〈
T
{
b0 (t) a† (t′)

}〉 〈
T
{
b0 (t) b†0 (t′)

}〉 〈
T
{
b0 (t) c†0 (t′)

}〉 〈
T
{
b0 (t) b†

~k
(t′)
}〉 〈

T
{
b0 (t) c†

~k
(t′)
}〉

〈
T
{
c0 (t) a† (t′)

}〉 〈
T
{
c0 (t) b†0 (t′)

}〉 〈
T
{
c0 (t) c†0 (t′)

}〉 〈
T
{
c0 (t) b†

~k
(t′)
}〉 〈

T
{
c0 (t) c†

~k
(t′)
}〉

〈
T
{
b~k (t) a† (t′)

}〉 〈
T
{
b~k (t) b†0 (t′)

}〉 〈
T
{
b~k (t) c†0 (t′)

}〉 〈
T
{
b~k (t) b†

~k
(t′)
}〉 〈

T
{
b~k (t) c†

~k
(t′)
}〉

〈
T
{
c~k (t) a† (t′)

}〉 〈
T
{
c~k (t) b†0 (t′)

}〉 〈
T
{
c~k (t) c†0 (t′)

}〉 〈
T
{
c~k (t) b†

~k
(t′)
}〉 〈

T
{
c~k (t) c†

~k
(t′)
}〉



6Note that the time-ordering applies only to operators but not to vectors
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From Eqs. (4.21-4.23,4.24,4.25) we deduce the matrix equation (Rammer, 2007)

∂tĜ
T [t, t′] = M̂ × Ĝ [t, t′]− iδ (t− t′) I (4.27)

where M̂ has the following block-diagonal structure in the basis (a, b0, c0, {bk, ck}):

M̂ =

[
M̂0 0

0
{
M̂~k

}
~k 6=0

]
(4.28)

where

M̂0 =




−Γc −ig
√
N 0

−ig
√
N −Γe −i

Ωcf
2

0 −i
Ωcf

2
−Γr


 (4.29)

M̂~k =

(
−Γe −i

Ωcf
2

−i
Ωcf

2
−Γr

)
(4.30)

Switching to the temporal Fourier space (ĜT [ω] ≡ −i
∫
dω eiωt

〈
T
(
~X† (t)× ~X (0)

)〉
)

we get:

−iωĜT [ω] = M̂ · ĜT [ω]− iI

or equivalently:

ĜT [ω] =
(
ω − iM̂

)−1

Finally, using the expression of M̂ (4.28) we get a block-diagonal form for ĜT [ω]

ĜT [ω] =

[
ĜT

0 [ω] 0

0
{
ĜT
~k

[ω]
}
]

where

ĜT
0 [ω] =




ω + iΓc −g
√
N 0

−g
√
N ω + iΓe −Ωcf

2

0 −Ωcf
2

ω + iΓr




−1

(4.31)

ĜT
~k

[ω] =

(
ω + iΓe −Ωcf

2

−Ωcf
2

ω + iΓr

)−1

(4.32)

The explicit calculation of ĜT
0 [ω] and ĜT

~k
[ω] can be readily performed, for example,

using Mathematica. The exact expression of the full ĜT does not present much interest
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4.3 First order quantities

here: we will provide speci�c matrix elements where needed.

Recalling the properties of the Green's functions ĜT̃ , Ĝ> speci�ed in the introduction
to this subsection we may straightforwardly deduce that they exhibit the same block-
diagonal structure as ĜT .

In the following sections we present the calculation of correlation functions using
the formalism presented above. For all physical quantities of interest, we will perform
the expansion and full resummation of Eq. (4.17) with respect to Hdd, for the �rst few
orders (up to the fourth order) in the feeding rate α: therefore, unless speci�ed, the
term �order� will refer to the order in power of α. In Sec. 4.3 we derive the �rst order
averages for cavity and atomic variables. In Sec. 4.4 we demonstrate the factorization
of the lowest order correlation functions. Using this property we re-derive the results
of the Chap. 3 in Sec. 4.5, but, here, in an analytic form. In Sec. 4.6 we go beyond
the lowest order and derive the analytic expression of the transmission spectrum of the
cavity, distinguishing its elastic and inelastic parts. We give a physical explanation to
the inelastic part using a simple polaritonic picture.

4.3 First order quantities

In this section we derive results for the �rst order cavity mode average 〈a〉(1). Applying
the general expression Eq. (4.17) to 〈a (t)〉(1) we get:

〈a (t)〉(1) =
(
−i
√

2πα
)〈
TC
{
e−i(

∫
C Hdd)A†qa+ (t)

}〉
(4.33)

Being of the �rst order with respect to the feeding rate α, this correlation function
could be derived from, e.g., the Heisenberg-Langevin equations presented in Chap. 3 .
In order to introduce the formalism we, however, prefer to provide a detailed derivation.

By separating the forward and backward parts of the contour
∫
C Hdd =

∫
C+ Hdd +∫

C− Hdd and expanding with respect to each of them separately we get from (4.33):

〈a (t)〉(1) =
(
−i
√

2πα
)∑

p,q

〈
TC





(
−i
∫
C+ Hdd

)p

p!

(
−i
∫
C− Hdd

)q

q!
A†qa+ (t)





〉
(4.34)

We �rst consider the term
(
−i
∫
C− Hdd

)q
in Eq. (4.34), which, according to the de�ni-

tion of Hdd, contains 2q creation operators and 2q annihilation operators belonging to
the backward part of the contour C.

According to Wick's theorem we shall now consider all possible pairings of these
annihilation/creation operators to get the generic term of the expansion. We will �rst
provide two important rules that we shall use extensively in the remainder of the chap-
ter. We start by making the simple but very important remark: since H0 conserves the
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4. Schwinger-Keldysh contour formalism.

number of excitations and the state we average on is the vacuum ρ0, then the average
of a normal ordered product of annihilation ek and a creation operator e†l vanishes,

i.e.
〈
e†l (zl) ek (zk)

〉
= 0; as a consequence:

R1 the contraction
〈
TC
{
ek (zk) e

†
l (zl)

}〉
vanishes unless zk > zl on the contour

C.
Another consequence of the excitation number conservation by H0 and ρ0 being in

the vacuum state, is that for any k ≥ 1

〈
TC
{(
−i

∫

C±
Hdd (s) ds

)k}〉
= 0

which implies:

R2 〈
TC
{

exp

(
−i

∫

C±
Hdd (s) ds

)}〉
= 1

Applying the rule R1 we deduce that all creation and annihilation operators in(
−i
∫
C− Hdd

)q
should be contracted with each other. According to rule R2 a contraction

arrangement in which the (2q) operators of
(
−i
∫
C− Hdd

)q
are paired with each other,

and therefore disconnected from the remaining terms
(
−i
∫
C+ Hdd

)p
A†qa+ (t), will give a

vanishing contribution to the overall average, unless q = 0. This simple but fundamental
remark will be used further; let us notice that it allows one to discard the terms in the
perturbation series corresponding to the so-called disconnected diagrams (Abrikosov

et al., 1975). The same kind of argument holds for
(
−i
∫
C+ Hdd

)p
and we, therefore,

may discard all terms except for q, p = 0:

〈a (t)〉(1) =
(
−i
√

2πα
) 〈
TC
{
A†qa+ (t)

}〉

which further simpli�es recalling that A†q ≡ 1√
2π

∫
ds
(
a†+ − a†−

)
:

〈a (t)〉(1) = (−iα)

〈
TC
{∫

ds
(
a†+ − a†−

)
a+ (t)

}〉
(4.35)

Let us now consider the Fourier transform of the Eq. (4.35):
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4.4 Factorization of averages in the lowest order

1√
2π

∫
eiωtdt 〈a (t)〉(1) =

(−iα)√
2π

∫
eiωt

〈
TC
{∫

dsa†+ (s) a+ (t)

}〉

=
(−iα)√

2π

∫
eiωt

∫
ds iGT

aa [t, s]

=
(−iα)√

2π

∫
eiωt

∫
ds iGT

aa [t− s]

=
(
−iα
√

2π
)

iGaa [ω] δ (ω)

The term
〈
TC
{∫

dsa†− (s) a+ (t)
}〉

vanished due to the rule R1. The delta function in

this expression results from the system being in the steady state (we assume that the
evolution starts at t0 = −∞). Using the expression Eq. (4.31) we deduce:

〈a (t)〉(1) = (−iα) iGaa [0]

=
(−iα)

Γc + g2N(
Γe+

Ω2
cf

4Γr

)

Here we recover the standard cavity-EIT response formula.

We may derive other averages in the same way:

〈b0 (ω)〉(1) =
(
−iα
√

2π
)

iGb0a [0] δ (ω)

〈c0 (ω)〉(1) =
(
−iα
√

2π
)

iGc0a [0] δ (ω)

4.4 Factorization of averages in the lowest order

In this subsection we consider the expression for correlation function in the general
contour-ordered form Eq. (4.17). Restricting ourselves to the lowest non-vanishing
order in α, that is n = r+s7, where r, and s are the numbers of creation and annihilation
operators, respectively, we get:

7The results from employing the equality between the number of creation and annihilation operators
in Eq. (4.17)
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4. Schwinger-Keldysh contour formalism.

〈
T̃
{

r∏

i=1

O†i (ti)

}
T
{

r+s∏

j=r+1

Oj (tj)

}〉
(4.36)

=

(
−i
√

2πα
)r+s

r!s!

〈
TC
{
e−i

∫
C(Hdd) (Aq)

r (A†q
)s r∏

i=1

O†−,i (ti)
r+s∏

j=r+1

O+,j (tj)

}〉

Let us now expand the expression Eq. (4.36) in powers of
∫
C+ (Hdd) and

∫
C− (Hdd)

analogously to the previous subsection:

(
−i
√

2πα
)r+s

r!s!

∑

p,q

(−i)p+q

p!q!

〈
TC
{ {∫

C+ (Hdd)
}p {∫

C− (Hdd)
}q
ArqA

†s
q

· · · ×∏r
i=1O†−,i (ti)

∏r+s
j=r+1O+,j (tj)

}〉
(4.37)

Recalling the expression for the Hamiltonian of the dipole-dipole interactions Hdd =
1
2

∑
m,n κmnc

†
nc
†
mcncm, we deduce that each term of the sum in (4.37) contains (2p+ s)

annihilation operators that belong to the forward part (C+) of the contour. From
the rule R1 given in the previous subsection, they can only be contracted with the

s operators A†q and 2p creation operators within
{
−i
∫
C+ (Hdd)

}p
. The same remark

applies to the (2q + r) annihilation operators belonging to the C− branch of the contour:
they can only be contracted with the r operators Aq and the 2q annihilation operators

in
{
−i
∫
C− (Hdd)

}q
. Therefore, in Eq. (4.37) the two sums over p and q factorize, or,

more explicitly:

(
−i
√

2πα
)r+s

r!s!

∑

p,q

(−i)p+q

p!q!

〈
TC
{ {∫

C+ (Hdd)
}p {∫

C− (Hdd)
}q
ArqA

†s
q

· · · ×∏r
i=1O†−,i (ti)

∏r+s
j=r+1O+,j (tj)

}〉

=

(
−i
√

2πα
)r

r!

∑

q

(−i)q

q!

〈
TC
{(∫

C−
Hdd

)q
Arq

r∏

i=1

O†−,i (ti)
}〉

×
(
−i
√

2πα
)s

s!

∑

p

(−i)p

p!

〈
TC
{(∫

C+
Hdd

)p
A†sq

r+s∏

j=r+1

O+,j (tj)

}〉

=
〈
T̃
{∏

O+,j (tj)
}〉(s) 〈

T
{∏

O+,j (tj)
}〉(r)

where the superscript as usual denotes the order in expansion in α. Here we therefore
recover the factorization property of averages discussed in Chap. 3, though in an
alternative way. It is important to stress that this property does not apply to averages
beyond the lowest non-vanishing order (leading to some interesting physical e�ects, as
will be shown in the Subsec. 4.6.2).
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4.5 Intensity correlation function

4.5 Intensity correlation function

In this subsection we partially re-derive the results obtained in Chap 3 on the g(2)

function. It allows us to introduce various tools that we will use to compute quantities
beyond the lowest order approximation.

4.5.1 g(2) function

Using the results of the previous subsections we may write for the intensity correlation
function at the lowest non-vanishing order:

g(2) (τ) =

〈
T̃
{
a† (0) a† (τ)

}
T {a (τ) a (0)}

〉(4)

(
〈a† (0) a (0)〉(2)

)2

=

∣∣∣〈T {a (τ) a (0)}〉(2)
∣∣∣
2

∣∣∣〈a〉(1)
ss

∣∣∣
4

The denominator of this expression was already computed in Sec. 4.3, therefore, in this
section we shall focus on 〈T (a (t) a (t′))〉(2). We use (4.36) with r = 0 and s = 2 and
get:

〈T {a (t) a (t′)}〉(2)
=

(
−i
√

2πα
)2

2!

〈
TC
{
e
−i
(∫
C+ Hdd

) (
A†q
)2
a+ (t) a+ (t′)

}〉
(4.38)

Note that here we omitted the e
−i
(∫
C− Hdd

)
factor under the contour ordering as only its

0th order in expansion contributes to the average (see Sec. 4.3). We also notice that
Eq. (4.38) contains only �+� operators and therefore its Wick's expansion comprises
only time-ordered Green's functions. We therefore keep only the C+ part of the contour
(for shortness we will omit ” + ” indices in this section):

〈T (a (t) a (t′))〉(2)
=

(−iα)2

2!

〈
T
{
e−i 1

2

∑
m,n κmn

∫
dsc†nc

†
mcncm

(∫
dsa† (s)

)2

a (t) a (t′)

}〉

(4.39)

In order to evaluate this expression we now perform the perturbative expansion with
respect to Hdd. It appears to be more convenient to express the Hamiltonian in the
spinwave picture derived in App. B.2:

Hdd =
1

2

∑

~q,~k1,~k2

U~qc
†
~k2−~q

c†
~q+~k1

c~k1
c~k2
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4. Schwinger-Keldysh contour formalism.

A. Zeroth order The zeroth order in expansion of Eq. (4.39) in Hdd yields:

〈T (a (t) a (t′))〉(2,0)
=

(−iα)2

2!

〈
T
{(∫

dsa† (s)

)2

a (t) a (t′)

}〉

= (−iα)2

(∫
ds1iGaa [t− s1]

∫
ds2iGaa [t′ − s2]

)

= (−iα)2 iGaa [ω = 0] iGaa [ω = 0]

≡ 〈a (t)〉(1) 〈a (t′)〉(1)

where the superscript (p,q) denotes the p− th order in expansion in α and q− th in Hdd

(we also recall here the de�nition of 〈a (t)〉(1) ≡ (−iα) iGaa [0]). The factorization of
〈T (a (t) a (t′))〉(2,0) constitutes an obvious consequence of the fact that at zeroth order
in Hdd the system is completely linear.

B. First order Let us now consider the �rst order in expansion in dipole-dipole
interactions:

〈T {a (t) a (t′)}〉(2,1) (4.40)

=
∑

~q,~k1,~k2

−iU~q
2

(−iα)2

2!

〈
T
{∫

dsc†~k2−~q
c†
~q+~k1

c~k1
c~k2

(∫
ds′a† (s′)

)2

a (t) a (t′)

}〉

According to Wick's theorem, we now have to review all possible ways to pair
creation and annihilation operators in (4.40). Let us �rst make a few remarks which
allow us to discard vanishing contractions.

As shown in Subsection 4.2.2, the matrix representation ĜT [ω] of the time-ordered

Green's function show a block-diagonal structure in the basis {a0, b0, c0,
{
b~k 6=0, c~k 6=0

}}

which implies that the Green's functions GT
xy (t− t′) = −i

〈
T
{
x (t) y† (t′)

}〉
vanishes

unless x and y simultaneously belong to the same set, either {a0, b0, c0} or
{
b~k 6=0, c~k 6=0

}
.

Therefore:

R3 Only contractions of operators all picked either in the set {a, b0, c0} or in
the set

{
b~k 6=0, c~k 6=0

}
give non-vanishing contractions.

Moreover we recall our convention for same-time expectation values, evaluated on
the C± branches (see Sec. 4.1): the time argument of the creation operators are assumed
to be in�nitesimally shifted by 0±, such that the chronological coincides with normal
ordering. Therefore:
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R4 Same-time contractions vanish, in particular,
〈
TC±

{
ck (t) c†k (t+ 0±)

}〉
= 0.

Taking these remarks into account we get:

〈T {a (t) a (t′)}〉(2,1) (4.41)

= −i× U0 (−iα)2

∫
ds1ds2ds3Gac0 [t, s1]Gac0 [t′, s1]Gc0a [s, s2]Gc0a [s, s3]

Fourier transforming of Eq. (4.41) with respect to both t and t′ we get:

〈T {a (ωout,1) a (ωout,2)}〉(2,1)

=
1

2π

∫
dtdt′eiωout,1teiωout,2t′ 〈T {a (t) a (t′)}〉(2,1)

=
(
−i
√

2πα
)2
(
−i× U0

2π

)
δ (ωout,1 + ωout,2)GT

ac0
[ω]GT

ac0
[ω′]

(
GT
c0a

[0]
)2

(4.42)

Note that the operator T appearing in 〈T {a (ωout,1) a (ωout,2)}〉(2,1) does not refer to any
hypothetical ordering in the frequency space; it is a mere notation meant to remind
that this quantity was obtained by Fourier transforming the average of a time-ordered
product in real time space.

C. Second order Consider now the second order in expansion in Hdd:

〈T {a (t) a (t′)}〉(2,2)

=
(
−i
√

2πα
)2 ∑

~q,~k1,~k2,~k′1,~k
′
2~q
′,

(−iU−~q
2π

)(−iU~q′

2π

)

×
〈
T





a (t) a (t′)
∫
ds1c

†
~k2−~q

(s) c†
~q+~k1

(s) c~k1
(s) c~k2

(s)

×
∫
ds2c

†
~k′2−~q′

(s2) c†
~q′+~k′1

(s2) c~k′1
(s2) c~k′2

(s2)
(

1√
2π

∫
dsa† (s)

)2





〉

Using the same remarks as made above for the �rst order and recalling that, accord-
ing to the rule R2, the contribution of �disconnected diagrams� (i.e. the contraction

arrangement in which the (4p) atomic operators of
(
−i
∫
C+ Hdd

)p
are paired with each

other and therefore are disconnected from the other terms) vanishes, we get in the
temporal Fourier space:
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Green's function Diagrammatic representation

Gac0 [ω],Gc0a [ω]

Gc~kc~k
[ω]

U~k

Table 4.1: Diagrammatic representation of Green's functions and interacting potential.

〈T {a (ωout,1) a (ωout,2)}〉(2,2)

=
(
−i
√

2πα
)2

δ (ωout,1 + ωout,2)GT
ac0

[ωout,1]GT
ac0

[ωout,2]×

×
∑

~q

(−iU−~q
2π

)(
iU~q
2π

)(∫
dωGT

c~q ,c~q
[ω]GT

c−~q ,c−~q [−ω]

)

×
(
GT
c0a

[0]
)2

(4.43)

D. Feynman diagrams The expansion can be performed further. Higher-order
terms in Hdd reveal a self-similar form and lend themselves to a diagrammatic rep-
resentation. Table 4.1 summarizes the equivalence rules we use to build diagrams in
Fourier space: Green's functions of di�erent kinds are represented by di�erent arrows,
while the interaction potential is represented by a vertical dashed line; it is moreover
implicit that, for each loop in a diagram, integration (summation) should be performed
over internal variables (indices) and that the overall expression obtained should be mul-
tiplied by the factor

(
−i
√

2πα
)2
δ (ωout,1 + ωout,2)

(−i
2π

)p
where p is the order in Hdd,i.e.

the number of dashed vertical lines. Note that we do not distinguish Gac0 [ω] and
Gc0a [ω] graphically since their expressions coincide (see Eq. (4.31)).

It is easy to see that diagrams (a), (b), (c) in Fig. 4.2, which represent
〈T {a (ωout,1) a (ωout,2)}〉(2,p) for p = 1, 2, 3, have four thick lines in common. These
thick lines represent the conversion of a photon from the cavity mode to the symmetric
Rydberg polariton and back. As there is no integration over the arguments of the corre-
sponding Green's function we can factorize them (Fig. 4.2 (d)). The remaining part of
the correlation function is denoted by T0; its perturbative expansion is diagrammatically
represented in Fig. 4.2 (e).

We now write the expression that corresponds to the diagram (d) in Fig 4.2:

82



4.5 Intensity correlation function

a)

b)

c)

d)

e)

Figure 4.2: Feynman diagrams corresponding to a) �rst order, b) second order, c) third
order contributions in Hdd. d) Schematic representation of the sum of all orders starting
with the �rst. e) diagrammatic representation of the perturbative expansion of T0.
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∑

p

〈T {a (ωout,1) a (ωout,2)}〉(2,p) (4.44)

=
(
−i
√

2πα
)2

δ (ωout,1 + ωout,2)GT
ac0

[ωout,1]GT
ac0

[ωout,2]
(−iT0)

2π

(
GT
c0a

[0]
)2

where T0 is (by direct translation of Fig. 4.2 (e))

T0 = U0 + i
∑

~q

U−~qS~qU~q + i2
∑

~q

U−~qS~q
∑

~q′

U~q−~q′S~q′Uq′ + · · · (4.45)

and S~q ≡ 1
2π

∫
dωGT

c~q ,c~q
[ω]GT

c−~q ,c−~q [−ω].

We may now give a simple interpretation to the overall formula Eq. (4.44) by in-
specting its di�erent terms. The last term on the right side of Eq. (4.45),

(
GT
c0a

[0]
)2
,

stands for the conversion of two incoming photons into symmetric Rydberg polari-
tons. Resulting from the resummation of diagrams of all perturbative orders in Hdd,
the term (−iT0)

2π
represents the action of the Rydberg dipole-dipole-interaction-induced

non-linearity on the two symmetric polaritons, provided they return to the symmet-
ric subspace. Finally the term GT

ac0
[ωout,1]GT

ac0
[ωout,2] represents the conversion of two

symmetric polaritons back to the cavity mode photons.

E. Analytic expression of g(2) (0) According to the results above, we �nally get the
following analytic expression for the second-order correlation function g(2) (0):

g(2) (0) =

〈
a† (0) a† (0) a (0) a (0)

〉(4)

(
〈a† (0) a (0)〉(2)

)2 (4.46)

=

∣∣∣∣∣∣∣
1 +

iα2

2π

∫
dωGT

ac0
[ω]GT

ac0
[−ω]T0

(
GT
c0a

[0]
)2

(
〈a (0)〉(1)

)2

∣∣∣∣∣∣∣

2

where

〈a (t)〉(1) = (−iα) iGaa [0]

=
(−iα)

Γc + g2N(
Γe+

Ω2
cf

4Γr

)

The �simplicity� of Eq. (4.46) is misleading. The main di�culty is enclosed in the
explicit determination of T0 to which the next subsection is devoted.
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a)

b)

Figure 4.3: Diagrammatic representation of T
[
~k,~k′

]
in a) perturbative form, b) self-

consistent form.

4.5.2 T matrix

As shown in the previous section, T0 describes the combination of all possible
interaction-induced scattering processes in which two incoming Rydberg polaritons are
converted back to the same symmetric spinwaves. This quantity actually appears as
a speci�c value of a more general function which describes the scattering of two ar-
bitrary (i.e. not necessarily symmetric) Rydberg polaritons only constrained by the
conservation of the sum of the wavevectors. To be more explicit we denote this latter

function by T
[
~k,~k′, ~P

]
where k =

~kin,1−~kin,2
2

and ~k′ =
~kout,1−~kout,2

2
are the di�erences

of the incoming/outgoing spinwave's wavevectors ~k(in/out),1, ~k(in/out),2 respectively, and
~P = ~kin,1 + ~kin,2 is their (necessarily conserved) sum. The symmetry of the coupling
between the cavity mode and the atoms restricts the possible values of the wavevec-
tors: we are therefore entitled to consider only the ~P = 0 component, and denote

T
[
~k,~k′, ~P = 0

]
≡ T

[
~k,~k′

]
.

The diagrammatic representation of T
[
~k,~k′

]
( given in Fig.4.3 a) ) is similar to

the one obtained for T0. From the diagrammatic structure it is easy to infer its self-
consistent de�nition shown in Fig.4.3 b). The corresponding equation is readily ob-
tained using the correspondence rules speci�ed in the previous subsection:

T
[
~k,~k′

]
= U~k−~k′ + i

∑

~q

U~k−~qS~qT
[
~q,~k′

]
(4.47)

Let us recall the expression for S~q ≡ 1
2π

∫
dωGT

c~q ,c~q
[ω]GT

c−~q ,c−~q [−ω]. As shown in
Sec. 4.2.2, all Green's functions Gc~qc~q have the same expression for ~q 6= 0; we therefore
de�ne S~q 6=0 ≡ S. Using the latter remark we rewrite Eq. 4.47:
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T
[
~k,~k′

]
= U~k−~k′ + i

∑

~q

U~k−~qST
[
~q, ~k′

]
+ iU~k (S0 − S)T

[
0, ~k′

]
(4.48)

It is convenient to represent this equation in a matrix form. We therefore de�ne matri-
ces:

T̂~k,~k′ ≡ T
[
~k,~k′

]
(4.49)

Û~k,~k′ ≡ U~k−~k′ (4.50)

P(0)
~k,~k′

≡ δ
(
~k
)
δ
(
~k′
)

where P(0) is the projector on the zeroth spinwave. With these de�nitions Eq. (4.48)
takes the form:

T̂ = Û + iS Û · T̂ + i (S0 − S) Û · P(0)· T̂

T̂ =
(

1− iS Û
)−1

· Û ·
(
I + i (S0 − S) P(0)· T̂

)
(4.51)

There is no obvious straightforward way to extract T̂ from Eq. (4.51) in the general
case. We may however relate T̂ to its value in the hypothetical con�guration when the
atoms decouple from the cavity, i.e. when atom-cavity coupling coe�cient vanishes i.e.
g = 0.

4.5.3 Relation to the decoupled case

When g = 0, the atoms do not interact with the cavity �eld. From Eqs. (4.31,4.32) in
the latter condition we infer that GT

c~qc~q
[ω] = GT

c0c0
[ω] whence S = S0. In this speci�c

con�guration, the matrix T̂ , that we shall denote ̂̊T , to distinguish it from the general
case, obeys:

̂̊
T = Û + iS Û · ̂̊T (4.52)

or equivalently:

̂̊
T =

(
1− iSÛ

)−1

· Û

From Eq. (4.51) we get the relation between the T - matrices for the general and
hypothetical cases:

T̂ =
̂̊
T ·
(
I + i (S0 − S) P0· T̂

)
(4.53)
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Let us multiply both sides of Eq. (4.53) by P(0)· from the left:

P(0)· T̂ = P(0)· ̂̊T + i (S0 − S) P(0)· T̊0· P(0)· T̂

Solving this equation with respect to P(0)· T̂ and de�ning P(0)· ̂̊T · P(0) ≡ T̊0P(0) we get:

P(0)· T̂ =
P(0)· ̂̊T

1− i (S0 − S) T̊0

Substituting this expression in Eq. (4.53) we �nally get the expression for the T matrix:

T̂ =
̂̊
T + i (S0 − S)

̂̊
T · P(0)· ̂̊T

1− i (S0 − S) T̊0

(4.54)

Since we are interested in determining T0 = T [0, 0] = Tr
{
P(0)· T̂ · P(0)

}
we multiply

Eq. (4.54) by P(0) on the left and right sides and get:

T0 =
T̊0

1− iT̊0 (S0 − S)
(4.55)

The advantage of this relation is that T̊0 can be evaluated exactly. We start with
Eq. (4.52) and recalling the de�nitions of matrices T̂ and Û Eqs. (4.49, 4.50) we have:

T̊
[
~k,~k′

]
= U~k−~k′ + iS

∑

~q

U~k−~qT̊
[
~q,~k′

]

Let us now transform T
[
~k,~k′

]
to the real space using U ~K = 1

N

∑N
m κ (~rm) ei

~K ~rm (see

App. B.2) :

T [~r, ~r′] ≡ 1

N

∑

~k,~k′

e−i~k~rei~k′~r′T̊
[
~k,~k′

]

=
1

N

∑

~k,~k′

e−i~k~rei~k′~r′U~k−~k′

+ iS
1

N

∑

~k,~k′

e−i~k~rei~k′~r′
∑

~q

U~k−~qT̊
[
~q,~k′

]

= κ (~r) δ~r,~r′ + iSκ (~r) T̊ [~r, ~r′]

where ~r and ~r′ denote the real space conjugate coordinates to ~k and ~k′, respectively,
and κ (R) = C6

R6 . Finally we get:
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T̊ [~r, ~r′] =
κ (r)

1− iSκ (~r)
δ~r,~r′

Using this expression and transforming back to the spinwave space we get T̊ [0, 0] =
1
N

∑
i

κ(~ri)
1−iSκ(~ri)

. We notice that we already encountered expressions of this kind in Chap.
3.

We may approximately turn T̊0 into an integral assuming the size of the sample to
be su�ciently big :

T̊0 ≈
1

V

∫

V

d3R
κ (R)

1− iSV (R)

=
1

V

∫

V

d3R
C6

R6

1− iS C6

R6

=
4π

V

∫ ∞

0

dR×R2
C6

R6

1− iS C6

R6

=
2π2

3V
C6

√
i

C6S

Assume now that C6 < 0 we have:

T̊0 = −2π2

3V

√
−i |C6|
S

(4.56)

Now combining Eqs. (4.55,4.56) we �nally have:

T0 =
−2π2

3V

√
−i|C6|
S

1 + i (S0 − S) 2π2

3V

√
−i|C6|
S

(4.57)

Substituting this expression into Eq. (4.44) we can get an expression for the non-linear
part of the pair correlation function in Fourier space. We may also use it directly as
it gives the main part of the spectrum of the transmitted light, or to recover results of
the Chap. 3.

4.5.4 Numerical results

In this paragraph we provide the numerical results we obtained for the g(2) (0) function
of the light transmitted through the cavity, using the method developed in the current
chapter. We compare these results with those obtained in Chap. 3. We also de�ne and
compute the squeezing spectrum Ξ [ω, θ] of the transmitted light.
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4.5 Intensity correlation function

Intensity correlation function In the previous subsection we obtained all the com-
ponents required to derive the g(2) function.

We �rst recall that (Eq. 4.46):

〈T {a (ω) a (ω′)}〉(2)
= 〈a (ω)〉(1) 〈a (ω′)〉(1)

+ iα2δ (ω + ω′)GT
ac0

[ω]GT
ac0

[ω′]T0

(
GT
c0a

[0]
)2

(4.58)

which, in the time domain, yields:

〈T {a (t) a (t′)}〉(2)
=

1

2π

∫
dωdω′e−iωte−iω

′t′ 〈T {a (ω) a (ω′)}〉(2)

=
(
〈a (t)〉(1)

)2

+
iα2

2π

∫
dωe−iω(t−t′)GT

ac0
[ω]GT

ac0
[−ω]T0

(
GT
c0a

[0]
)2

For comparison with results obtained in Chap. 3 we set t = t′ and get

〈T {a (t) a (t)}〉(2) ≡
(
〈a (t)〉(1)

)2

+
iα2

2π

∫
dωGT

ac0
[ω]GT

ac0
[−ω]T0

(
GT
c0a

[0]
)2

Integration is performed analytically in App. G, as well the explicit calculation of S
and S0.

In Fig. 4.4 we provide plots of g(2) (0) function obtained through the perturbative
method of Chap. 3 and in the contour approach described in the current chapter, both
in the resonant (a) and detuned regimes (b). The agreement between the two methods
is such that no di�erence can be discerned on the �gures. As already noted in the
previous chapter, the nonlinearity is weaker in the far detuned regime than on exact
resonance.

Squeezing spectrum Optical non-linearities are known to lead to squeezing of light,
such as, e.g., in the parametric oscillator model Hamiltonian (Walls and Milburn, 2007).
Light squeezing is powerful means to perform measurements beyond the quantum limit.
In the multimode case, squeezing can be quantitatively characterized by the squeezing
spectrum, which can be physically measured via homodyne detection (Lvovsky, 2014).

The calculation presented in the current chapter also allows us to easily determine
the squeezing spectrum of the transmitted light (at second order in feeding). According
to (Walls and Milburn, 2007) the squeezing spectrum is given by

ζ (ω, θ) = 1 +

∫
dte−iωt

〈
: Xout

θ (t) , Xout
θ (0) :

〉
(4.59)

where the quadrature operator is de�ned by Xout
θ (t) ≡ aout (t) e−iθ+a†out (t) eiθ , 〈 : . . . : 〉
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4. Schwinger-Keldysh contour formalism.

denotes the normal ordering of operators and 〈A,B〉 ≡ 〈AB〉 − 〈A〉 〈B〉. We can
therefore put (4.59) under the form

ζ (ω, θ)

= 1 +

∫
dte−iωt

〈
: aout (t) e−iθ + a†out (t) eiθ, aout (0) e−iθ + a†out (0) eiθ :

〉

= 1 + 2γ(R)
c

∫
dte−iωt 〈T {a (t) , a (0)}〉 e−2iθ + 2γ(R)

c

∫
dte−iωt

〈
T̃
{
a† (t) , a† (0)

}〉
e2iθ

+ 2γ(R)
c

∫
dte−iωt

〈
a† (0) , a (t)

〉
+ 2γ(R)

c

∫
dte−iωt

〈
a† (t) , a (0)

〉
(4.60)

where we used the input-output formalism to relate the transmitted and intracavity �eld

operators (aout =

√
2γ

(R)
c a (t) − ain (t)). Restricting ourselves to the second order in

feeding rate α, we may use the factorization property of averages, from which we deduce,
for example,

〈
a† (0) , a (t)

〉(2) ≡
〈
a† (0) a (t)

〉(2) −
〈
a† (0)

〉(1) 〈a (t)〉(1) = 0. Therefore Eq.
(4.60) greatly simpli�es:

ζ(2) (ω, θ) = 1 + 2γ(R)
c

∫
dte−iωt 〈T {a (t) , a (0)}〉(2) e−2iθ

+ 2γ(R)
c

∫
dte−iωt

〈
T̃
{
a† (t) , a† (0)

}〉(2)

e2iθ (4.61)

The second term in this equation is actually the complex conjugate of the third one:

(∫
dte−iωt

〈
T̃
{
a† (t) , a† (0)

}〉(2)

e2iθ

)∗
=

∫
dteiωt 〈T {a (t) , a (0)}〉(2) e−2iθ

=

∫
dte−iωt 〈T {a (t) , a (0)}〉(2) e−2iθ

where in the last line we used the time inversion symmetry of time ordered products.
Using Eq. (4.58) we therefore �nally get :

ζ(2) (ω, θ) = 1 + 2γ(R)
c

∫
dω′ 〈T {a (−ω) , a (ω′)}〉(2)

e−2iθ + c.c.

= 1 + 2<
[
2γ(R)

c

∫
dω′ 〈T {a (−ω) , a (ω′)}〉(2)

e−2iθ

]

= 1 + 4γ(R)
c α2<

[
iGT

ac0
[−ω]GT

ac0
[ω]T0

(
GT
c0a

[0]
)2
e−2iθ

]
(4.62)

According to Eq. (4.62) the maximal squeezing which can be achieved with respect to
θ is, for any ω,
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4.6 G(1) correlation function

a)

b)

Figure 4.4: Intensity correlation functions of the transmitted light g(2)
t (0) assuming

n = 100 and Ωcf = 3γe for di�erent values of cooperativity (provided on the plot) for
a) the resonant case (∆e = 0,∆r = 0 ), b) detuned case ∆e = −25γe, ∆r = 0.

Ξ(2) (ω) = 1− 4γ(R)
c α2

∣∣∣GT
ac0

[−ω]GT
ac0

[ω]T0

(
GT
c0a

[0]
)2
∣∣∣

In our calculation we a priori assumed that α is small and therefore the latter expression
cannot signi�cantly di�er from unity. Fig. 4.5 shows the deviation from unity of the
maximum of squeezing spectrum, i.e. 1−Ξ(2) (ω), using the same parameters as in the
previous paragraph and α = 0.1γe.

4.6 G(1) correlation function

In this section we use the Schwinger-Keldysh contour formalism in order to compute the

G
(1)
out (t, t′) =

〈
a

(R)†
out (t) a

(R)
out (t′)

〉
correlation function of the light transmitted through the
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4. Schwinger-Keldysh contour formalism.

a)

b)

Figure 4.5: Maximum squeezing spectra 1 − Ξ(2) [ω] as a function of the control �eld
Rabi frequency for a) the resonant case (∆e = 0,∆r = 0 ), b) detuned case ∆e = −25γe,
∆r = 0, α = 0.1γe.
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4.6 G(1) correlation function

cavity at the fourth order in feeding. This quantity could not have been analytically
determined within the formalism used in Chap. 3 and it will allow us, in the next
subsection, to compute the transmission spectrum.

Using the input-output relation for the right mirror of the cavity a(R)
out (t) =

√
2γ

(R)
c a (t)−

a
(R)
in (t) we readily deduce:

〈
a

(R)†
out (t) a

(R)
out (t′)

〉
=

〈(√
2γ

(R)
c a† (t)− a†(R)

in (t)

)(√
2γ

(R)
c a (t′)− a(R)

in (t′)

)〉

= 2γ(R)
c

〈
a† (t) a (t′)

〉
(4.63)

where we took into account that the bath to the right of the cavity is in vacuum state
(or equivalently a(R)

in (t′) gives zero contribution). The right handside of Eq. (4.63) can
be computed using the formalism developed in the current chapter.

At second order in feeding
〈
a† (t) a (t′)

〉(2)
=
〈
a† (t)

〉(1) 〈a (t′)〉(1)due to the factor-
ization property. At fourth order in feeding this property does not hold any longer and
we must resort to the general formula (4.17) to get:

〈
a† (t) a (t′)

〉(4)
=

(
−i
√

2πα
)4

4

〈
TC
{
e−i(

∫
C Hdd)A2

qA
†2
q a
†
− (t) a+ (t′)

}〉
(4.64)

Note that we placed the operators a†− (t) and a+ (t) on the C− and C+ branches, re-
spectively, in order to impose the normal ordering a† (t) a (t′) whatever t and t′ are.
We now expand the correlation function Eq. (4.64) with respect to the dipole-dipole
interactions, separating the forward and backward branches of the contour C as follows:

〈
a† (t) a (t′)

〉(4)

=

(
−i
√

2πα
)4

4

∑

p,q

(−i)p+q

p!q!

〈
TC
{(∫

C+
dsHdd (s)

)p(∫

C−
dsHdd (s)

)q

× A2
qA
†2
q a
†
− (t) a+ (t′)

}〉
(4.65)

In the following paragraphs, we split the sum into two main sub-series which exhibit
physically di�erent contributions to the G(1)

out function at fourth order in feeding.

4.6.1 Elastic contribution

In this subsection, we consider the partial resummation E (t, t′) =
∑

p=0,q>0 +
∑

p>0,q=0

of Eq. (G(1) correlation function) which will be shown to constitute the so-called elastic
part of the G(1)

out function.
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Consider �rst the partial sum of Eq. (4.65) including the terms p 6= 0, q = 0:

(
−i
√

2πα
)4

4

∑

p

(−i)p

p!

〈
TC
{(

1

2

∑

m,n

κmn

∫

C+
dsc†nc

†
mcncm

)p

A2
qA
†2
q a
†
− (t) a+ (t′)

}〉

(4.66)
From the rule R1 (see Subsec. 4.3) we see that the operator a†− (t) does not have other

candidates for contraction than Aq. Since
〈
a† (t)

〉(1)
=
(
−
√

2πiα
) 〈
TC
{
a†− (t)Aq

}〉

(see Sec. 4.3),

(
−i
√

2πα
)3

2

∑

p

(−i)p

p!

〈
TC
{(

1

2

∑

m,n

κmn

∫

C+
dsc†nc

†
mcncm

)p

AqA
†2
q a+ (t′)

}〉
×
〈
a† (t)

〉(1)

(4.67)
The �rst term in Eq. (4.67) will now be shown to be equal to 〈a (t′)〉(3). From the
general formula Eq. (4.17) we indeed have

〈a (t)〉(3)

≡
(
−i
√

2πα
)3

2!

∑

p,q

(−i)p+q

p!q!

〈
TC
{(

1
2

∑
m,n κmn

∫
C+ c

†
nc
†
mcncm

)p

×
(

1
2

∑
m,n κmn

∫
C− c

†
nc
†
mcncm

)q
AqA

†2
q a+ (t)

}
〉

In the expression above one of the operators c†n, c
†
m belonging the C− branch does not

have any partner for contraction (according to the rule R1). Therefore only the q = 0

term will contribute to the sum and

〈a (t)〉(3) ≡
(
−i
√

2πα
)3

2!

〈
TC
{
e
−i 1

2

∑
m,n κmn

∫
C+ dsc†nc

†
mcncmAqA

†2
q a+ (t)

}〉
(4.68)

We indeed recover the expression obtained in Eq. (4.67). Analogously, the partial sum

of the terms (p = 0, q 6= 0) yields
〈
a† (t)

〉(3) 〈a (t′)〉(1). Finally we get

E =
〈
a† (t)

〉(3) 〈a (t′)〉(1)
+
〈
a† (t)

〉(1) 〈a (t′)〉(3)

We shall now determine the expression for 〈a (t)〉(3). Let us perform an expansion
of Eq. (4.68) with respect to Hdd. Due to the symmetry properties of the system, it is
more convenient to work in the spatial Fourier space. We therefore get:
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〈a (t)〉(3) =

=

(
−i
√

2πα
)3

2!

∑

p

1

p!

〈
TC






− i

2

∑

~q,~k1,~k2

U~q

∫

C+
c†~k2−~q

c†
~q+~k1

c~k1
c~k2



p

AqA
†2
q a+ (t)





〉

As expected, the zeroth order (p = 0) of this expansion is zero since it necessarily
involves the vanishing contraction of two �quantum� operators Aq and A†q (see Sec.
4.2.2). Applying rules R1, R2, R3, R4, the �rst order term (p = 1) takes the form:

〈a (t)〉(3,1)

=

(
−i
√

2πα
)3

2!

−i

2

∑

~q,~k1,~k2

U~q

〈
TC
{∫

C+
c†~k2−~q

c†
~q+~k1

c~k1
c~k2
AqA

†2
q a+ (t)

}〉

= (−iα)3 (−iU0)

∫
ds1ds2ds3iGT

ac0
(t− s)

(
−iGT̃

ac0
[s3 − s]

)
iGT

c0a
(s− s1) iGT

c0a
(s− s2)

where we used

〈
TC
{
Aqc

†
+,~k

(t)
}〉

=
1√
2π

∫
ds
〈
TC
{

(a+ (s)− a− (s)) c†
+,~k

(t)
}〉

=
1√
2π

∫
ds
{

iGT
ac0

[s, t]− iG>
ac0

[s, t]
}
δ~k,0

=
1√
2π

∫
ds
{
−iGT̃

ac0
[s, t]

}
δ~k,0

Therefore, switching to the frequency domain

〈a (ω)〉(3,1) =
(
−i
√

2πα
)3 (
−iGT

ac0
[0] iGT̃

ac0
[0]
)

(−iU0)
(
iGT

c0a
[0]
)2

We can determine the second order term (p = 2) in Eq. (4.68) in a similar way and get:

〈a (ω)〉(3,2) =
(
−i
√

2πα
)3 (
−iGT

ac0
[0] iGT̃

ac0
[0]
)
×

×




∑

~q

(−iU~q) (−iU−~q)

(∫
dωiGT

~q,~q [ω] iGT
−~q,−~q [−ω]

)


×
(
iGT

c0a
[0]
)2

Higher-order terms (p ≥ 3) can be diagrammatically generated and resummed so that
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we get

〈a (ω)〉(3) =
∑

p

〈a (ω)〉(3,p) =
(
−i
√

2πα
)3

δ (ω)
(
−iGT

ac0
[0] iGT̃

ac0
[0]
)(−iT0

2π

)(
iGT

c0a
[0]
)2

(4.69)
where T0 was de�ned in Eq. (4.45). Gathering Eqs. (4.69,4.33) we �nally get in the
frequency domain

E (ω, ω′) =
〈
a† (ω)

〉(1) 〈a (ω′)〉(3)
+ c.c.

= −2πα4δ (ω′) δ (ω)G∗aa [0]
(
GT
ac0

[0]GT̃
ac0

[0]
)
T0

(
GT
c0a

[0]
)2

+ c.c.

Since
〈
a† (ω)

〉(3)
∝ δ (ω) , 〈a (ω′)〉(1) ∝ δ (ω′), we see that E (ω, ω′) corresponds to the

elastic part of the G(1)
out function at fourth order in feeding.

〈
a

(R)†
out (ω) a

(R)
out (ω′)

〉
el
∝ δ (ω) δ (ω′)

which is due to photons propagating through cavity without changing their frequency.
Note that this fourth order elastic contribution is actually a correction of the (necessarily
elastic) second order spectrum.

4.6.2 Inelastic contribution to G
(1)
out

In this subsection, we consider the partial resummation of the terms of Eq. (G(1)

correlation function) I (t, t′) ≡ ∑
p>0,q>0 =

〈
a† (t) a (t′)

〉(4) − E (t, t′) and show this
brings nonlinearity-induced inelastic features which were absent at lower orders.

We have

I (t, t′) =

(
−i
√

2πα
)4

4

∑

p>0,q>0

〈
TC
{

1
p!

(
−i
∫
C+ dsHdd (s)

)p
1
q!

(
−i
∫
C− dsHdd (s)

)q

×A2
qA
†2
q a
†
− (t) a+ (t′)

}〉

Let us �rst consider the term (p = 1, q = 1) still using the Hdd in the spinwave basis:
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4.6 G(1) correlation function

I1,1 (t, t′)

=

(
−i
√

2πα
)4

4

〈
TC






−i

1

2

∑

~q,~k1,~k2

∫
dsU~qc

†
~k2−~q,+

c†
~q+~k1,+

c~k1,+
c~k2,+




×


−i

1

2

∑

~q′,~k′1,~k
′
2

U~q′

∫
dsc†~k′2−~q′,−

c†
~q′+~k′1,−

c~k′1,−
c~k′2,−


A2

qA
†2
q a
†
− (t) a+ (t′)





〉
(4.70)

We �rst notice that in Eq. (4.70) operators c~k1,+
c~k2,+

and c†~k′2−~q′,−
c†
~q′+~k′1,−

can only be

contracted with A†2q and A2
q respectively (using rules R1, R2, R3, R4). Recalling that

Aq ≡ 1√
2π

∫
ds (a+ (s)− a− (s)) we have:

〈
TC
{
c~k,+ (t)A†q

}〉
=

i√
2π

∫
dsGT

c0a
(t− s) δ~k,0

〈
TC
{
c†~k,− (t)Aq

}〉
=

−i√
2π

∫
dsGT̃

c0a
(s− t) δ~k,0

therefore

I1,1 (t, t′) =

(
−i
√

2πα
)4

4

〈
TC






−i

∫

C+
dz1

∑

~q

U~qc
†
−~qc
†
~q




i

∫

−C−
dz2

∑

~q′

U~q′c−~q′c~q′




× a†− (t) a+ (t′)
}〉(∫ ds√

2π
iGT

c0a
[z1, s]

)2(
−
∫

ds√
2π

iGT̃
ac0

[s, z2]

)2

(4.71)

In this expression, according to rule R1, a†− (t) and a+ (t′) can only be contracted with
one of c~q,− and c†~q,+ operators respectively. Therefore:

(
−i
√

2πα
)4
〈
TC
{(
−i

∫

C+
dz1U0c

†
0

)(
i

∫

−C−
dz2U0c0

)}〉
(4.72)

× iGT̃
c0a

[z2, t] iGT
ac0

[t′, z1]

(∫
ds√
2π

iGT
c0a

[z1, s]

)2(
−
∫

ds√
2π

iGT̃
ac0

[s, z2]

)2

and �nally, recalling the de�nition of the greater Green's function ∀ (z1εC−, z2εC+),〈
TC
{
c0 (z2) c†0 (z1)

}〉
= iG>

c0,c0
[z2, z1] we have
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4. Schwinger-Keldysh contour formalism.

I1,1 (t, t′) =
(
−i
√

2πα
)4

(−iU0) (iU0)

∫ ∞

−∞
dz1dz2iG>

c0c0
[z2, z1] iGT̃

c0a
[z2, t]

× iGT
ac0

[t′, z1]

(∫
ds√
2π

iGT
c0a

[z1, s]

)2(
−
∫

ds√
2π

iGT̃
ac0

[s, z2]

)2

(4.73)

or equivalently in frequency domain

(
−i
√

2πα
)4

δ (ω − ω′)
(
−i
U0

2π

)(
i
U0

2π

)
iG>

c0c0
[−ω] iGT̃

c0a
[ω′] (4.74)

× iGT
ac0

[ω]
(
iGT

c0a
[0]
)2
(

iGT̃
ac0

[0]
)2

Continuing the procedure and resumming for p, q > 0, we get:

I (ω, ω′) = −α4δ (ω − ω′) |T0|2 iG>
c0c0

[−ω]GT̃
c0a

[ω′] (4.75)

× GT
ac0

[ω]
(
GT
c0a

[0]
)2
(
GT̃
ac0

[0]
)2

4.6.3 Transmission spectrum

In this subsection we use the results, derived above to investigate the spectrum of the
transmitted light

Sout (ω) ≡
∫
dω′G

(1)
out (ω, ω′)

We shall be particularly interested in the inelastic part ( Souti ≡ 2γRc
∫∞
−∞ dνI (ω, ν),

see Eq. (4.75) ), which is represented in Fig. 4.6 in resonant (∆c = ∆e = ∆r = 0)
as well as detuned (∆c = −3γe,∆e = 0,∆r = 0) con�gurations. For both regimes we
assume a cloud cooperativity C = 5, and γRc = 0.3γe � γLc and γr = 0.15γe for the
cavity and Rydberg decays respectively. All parameters are expressed in units of the
intermediate state decay rate γe = 2π × 3MHz.

As can be seen on Fig. 4.6 the spectrum has several resonances which depend on the
control �eld Rabi frequency. The resonance structure shown in Fig. 4.6 (a) (resonant
case) resembles the level pattern of the Hamiltonian in the single excitation subspace




0 g
√
N 0

g
√
N 0 Ω

2

0 Ω
2

0




In the detuned case, the structure shown on Fig. 4.6 (b) is more complicated;
resonances can still be identi�ed as the eigenvalues ε1, ε2, ε3 of the Hamiltonian
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

−∆c g

√
N 0

g
√
N −∆e

Ω
2

0 Ω
2

−∆r


 (4.76)

but taken with positive and negative signs. The physical explanation of this e�ect can
be given according to the level structure of the considered system, shown in Fig. 4.7
(Ourjoumtsev et al., 2011). The system can be seen as to be excited by two photons
of the probe laser frequency ωp. Eq. (4.75) shows that the strength of dipole-dipole
interactions does not a�ect the ω-dependence of the inelastic component at fourth
order since Hdd enters Eq. (4.75) only via the overall factor T0. Doubly excited states
decay via dissipative terms Eq. (1.11) to the three symmetric polaritons: the resonance
frequencies of the emitted photon pairs are therefore ωp ± ε1, ωp ± ε2 and ωp ± ε3,
respectively, or, in the frame rotating at the probe frequency ωp, ±ε1, ±ε2 and ±ε3.

4.7 Conclusions

In this chapter, we investigated the quantum optical nonlinearities induced by a cavity
Rydberg EIT medium in the Schwinger-Keldysh contour approach. We transformed
all operators of the system into the interaction picture, and used the contour-ordered
form for correlation functions. We expanded them perturbatively with respect to both
feeding and dipole-dipole interactions. The resummation of series can be performed
employing the Wick's theorem for contour-ordered quantities. For that we de�ned and
derived all possible Green's functions of the system. As dipole-dipole interactions can
a priori be arbitrarily strong, we are compelled to resum all order of magnitude in Hdd

for each order of expansion in the feeding Hamiltonian. Using this approach we could
derive a compact analytic expression for the squeezing spectrum of the transmitted
light and the g(2)

t function at lowest non-vanishing order in feeding. Then we derived
the analytic expression of the spectrum of the light transmitted through the cavity
beyond the lowest order in feeding which were not accessible to the methods presented
in previous chapters. Besides an elastic part, associated to photons going through the
cavity without frequency change, the spectrum also comprises an inelastic contribution
which contains several resonances that we explained by a simple polaritonic picture.

Throughout this chapter, we assumed a constant feeding of the system, for simplic-
ity: the formalism actually allows for time-dependent wavepacket inputs. We moreover
want to emphasize that, though rarely employed in this context (another example of ap-
plication of such techniques in quantum optics is provided in (Fleischhauer and Yelin,
1999)), the contour formalism is a powerful tool for quantum optics which could be
used, e.g., to compute higher-order correlation functions of the system or thoroughly
analyze subtle e�ects in Rydberg atomic ensembles such as thermalization (Ates et al.,
2012) or phase transition (Löw et al., 2009).
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4. Schwinger-Keldysh contour formalism.

a)

b)

Figure 4.6: Inelastic component of the cavity transmission spectrum Si ≡
2γRc

∫
dν
〈
a† (ω) , a (ν)

〉
in logarithmic scale as a function of Ωcf and the frequency

(in the frame rotating at ωp) for: a) the resonant case ∆c = ∆e = ∆r = 0, b) the
detuned case. The transverse curves give (±ε1,±ε2,±ε3) as functions of Ωcf (see main
text).
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4.7 Conclusions

Figure 4.7: The level structure of the Hamiltonian of the system, restricted to two
excitations. The structure of the doubly excited manifold is represented schematically.

101



4. Schwinger-Keldysh contour formalism.
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5. Photonic phase gate

In this chapter1, we present a novel scheme for high-�delity photonic controlled-
phase gates based on the Rydberg blockade in an atomic ensemble loaded in an optical
cavity. The setup we consider, represented on Fig. 5.1, is very similar to that described
in Chap. 1: it comprises a ladder-type three-level Rydberg medium, placed in an optical
cavity whose left mirror is partially transmissive while the right mirror is perfectly
re�ecting. In our scenario, the π phase factor is induced by the re�ection of the target
photonic qubit on the cavity, conditioned by the presence of an intracavity stored
polariton, associated with the control qubit. The resulting gate can be implemented
with cavities of moderate �nesse allowing for highly e�cient and robust processing of
quantum information encoded in photons.

After describing the gate protocol in Sec. 5.1, we introduce the formalism required
to study the scattering of an incident photon on the cavity in Sec. 5.2. We apply this
formalism to quantitatively characterize the respective evolution of the logical qubit
states in Sec. 5.3. In the last section, we present numerical results we obtained for the
gate �delity, based on the expressions of the scattering coe�cients derived previously.

5.1 Presentation of the protocol

For simplicity, we �rst describe the operation in the so-called �single-rail� approach,
according to which a qubit is encoded in a pulse prepared in a superposition of vacuum
|0〉 and single-photon |1〉 states. In Sec. 5.4, we shall extend it to the dual-rail encoding
where a qubit is encoded as a photon prepared in one of two, spatially distinct possible
modes.

In the single-rail version outlined in Figs. 5.1 a) and b), the gate operates as follows.
The pulse encoding the control qubit is sent towards the cavity where it gets stored as
a Rydberg polariton of type |r〉, via a strong-laser-assisted ladder-type storage process
(Gorshkov et al., 2007). The |r〉 excitation is then transferred to another Rydberg state
|r′〉 by a microwave pulse2. At that stage, the ensemble therefore contains a single
atom in state |r′〉 if the �rst pulse did contain a photon. Note that we do not take into
account possible losses during the storage process and hence assume that, in the latter
case, the resulting state of the ensemble is 1√

N

∑
i |g1, . . . r

′
i, . . . gN〉.

The pulse encoding the target qubit is then sent towards the cavity. It is important
to notice, that, as shown on Fig. 5.1, the |r′〉 state is not coupled to the control �eld. We
now consider the following two possible cases. A. If the �rst pulse contained no photon,
the second pulse is scattered under Rydberg EIT conditions (we assume all transitions

1This chapter is an edited version of (Das et al., 2016; 2015)
2It is important to note that, here, |r〉 and |r′〉 are assumed to be of the same parity, so that r and

r′-excited atoms interact via Van der Waals Hamiltonian ∝ 1
r6 . Transferring the excitation from |r〉 to

|r′〉 therefore requires a two-photon process. Alternatively, one could also directly convert the control
photon as an |r′〉 excitation by using a di�erent control �eld laser for the storage step, which drives
the transition |e〉 ↔ |r′〉.
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5.1 Presentation of the protocol

Figure 5.1: Schematic outline of the phase gate (a) An input single photon pulse along
with a driving �eld induces a two-photon transition to the Rydberg state |r〉 which is
subsequently transferred to another Rydberg state |r′〉 . Due to Rydberg interactions
Vkl among the atoms, other Rydberg states |r〉 within the range of the interaction
potential, given by, the blockade radius of rb , become o�-resonant allowing no further
excitation. (b) When an initial photon pulse is stored in the Rydberg ensemble, the
second incoming photon cannot enter the cavity and is scattered o�, which ideally
induces a phase �ip of π on the scattered photons.
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5. Photonic phase gate

Figure 5.2: Re�ection coe�cient of the cavity R as a function of the cooperativity Cb
of atoms within the blockade sphere.

are resonantly driven: ∆c = 0, ∆e = 0, ∆r = 0) . B. If the �rst pulse contained a
photon, the delocalized excitation in |r′〉 induces an energy shift on the state |r〉 in the
atoms around, which can prevent the second photon from entering, and imprints on the
wavefunction an additional π phase, compared to the case A. A naive explanation of this
e�ect is provided on Fig. 5.2. If no excitation is initially stored in the cavity (case A),
the re�ection coe�cient for the second photon, treated in the long pulse approximation
(steady state) is conventionally taken to be 3 R = 1 , provided the cloud is transparent
(perfect EIT). In that case the photon indeed merely enters the cavity, is re�ected from
the right mirror and leaves the cavity through the left mirror. By contrast, in case B, the
stored excitation breaks EIT in its neighbourhood, transforming the blockaded atoms
around into resonant two-level systems. The collective response of these atoms changes
the cavity re�ection coe�cient into4 R = 1−2Cb

1+2Cb
, where Cb = g2nb

2γcγe
is the cooperativity

of (nb) atoms inside the blockade sphere (see Fig. 5.2). For su�ciently large values of
Cb, the photon can not enter the cavity any longer, and is re�ected from the left mirror,
acquiring the desired π phase (shown by black arrow), i.e. R → −1.

For future reference, let us introduce the qubit encoding :

3This actually corresponds to de�ning R such that aout = −Rain where ain and aout are the
incoming and outgoing mode annihilation operators.

4This result can be readily obtained from the Heisenberg-Langevin equations, assuming the cavity
is �lled with resonant two-level atoms with the cooperativity Cb.
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5.2 Photon scattering on the cavity

|00〉 ≡ |Ø〉 (5.1)

|01〉 ≡
∫
dωβ (ω) b†ω |Ø〉 (5.2)

|10〉 ≡ S† |Ø〉 (5.3)

|11〉 ≡ S†
∫
dωβ (ω) b†ω |Ø〉 (5.4)

where |Ø〉 ≡ |g1, . . . gN〉 ⊗ |0〉 is the vacuum state of the system {atoms+baths}, S† ≡
1√
N

∑
i σ

(i)
r′g (where as usual σ(i)

µν ≡ |µi〉 〈νi| with µ, ν taking values from {g, e, r, r′})
is the stored r′−polariton creation operator and b†ω is the creation operator of the
electromagnetic bath mode of frequency ω. We moreover assume that the function β (ω)

which de�nes the temporal mode of the incoming photon satis�es the normalization
condition

∫
dω |β (ω)|2 = 1.

To evaluate the performances of the gate de�ned above, we must be able to quanti-
tatively describe the scattering of a photon on the cavity in which an r′ excitation may
be stored. In the next section we introduce the general formalism which shall allow us
to compute the scattering coe�cients in the four cases corresponding to the four logical
states of the two incoming qubits.

5.2 Photon scattering on the cavity

In this section, we provide the general equations which govern the dynamics of the
system and show, on a simple example, how to deduce the scattering coe�cient for an
incoming photon.

5.2.1 Dynamical equations

The Hamiltonian of the full system (including the bath modes) we consider here reads:

H =
Ωcf

2

∑

i

(
σ(i)
er + σ(i)

re

)
+ g

∑

i

(
a+σ(i)

ge + aσ(i)
eg

)
+
∑

ij

Vijσ
(i)
r′r′σ

(j)
rr

+ gb

∫
dωb†ωa+ g∗b

∫
dωbωa

† +

∫
dωωb†ωbω

+ Hat−bath (5.5)

where the last term in the �rst line of Eq. (5.5) stands for the dipole-dipole-induced
shift Vij = C̃6

r6
ij
of the doubly excited state

∣∣ri, r′j
〉
. We notice, that according to the qubit

encoding Eqs. (5.1-5.4), there can never be two atoms simultaneously excited in the
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5. Photonic phase gate

state |r〉. This is why we implicitly omitted the term Hdd = 1
2

∑
k,l Vijσ

(k)
rr σ

(l)
rr in Eq.

(5.5).
We now perform Markov approximation and eliminate all bath modes. The resulting

Heisenberg-Langevin equations are given by:

d

dt
a = −γca− ig

∑

i

σ(i)
ge +

√
2γcain (5.6)

d

dt
σ(i)
ge = −γeσ(i)

ge + iga
(

2σ(i)
ee + σ(i)

rr + σ
(i)
r′r′ − 1

)
− iΩcf

2
σ(i)
gr (5.7)

d

dt
σ(i)
gr = igaσ(i)

er − i
Ωcf

2
σ(i)
ge − iσ(i)

gr

∑

k

Vijσ
(k)
r′r′ (5.8)

d

dt
σ

(i)
gr′ = igaσ

(i)
er′ − iσ

(i)
gr′

∑

k

Vikσ
(k)
rr (5.9)

We implicitly neglected Langevin forces in Eqs. (5.7-5.9) as, for the atomic operators,
bath is assumed to be in the vacuum state initially.

We moreover set γr, γr′ → 0, since the time of the experiment is assumed to be much
shorter than the lifetimes of the Rydberg states. As said in the previous section, we
shall also assume that the storage and retrieval of photons into the atomic ensemble are
perfect (which strictly speaking requires in�nite cooperativity (Gorshkov et al., 2007)).
Therefore, the only step which may limit the performance of the gate is the imperfect
re�ection of the target photon on the cavity which can lead to distortion of the photon
shape and/or photon loss. This may be quantitatively characterized by a coe�cient
relating the actual scattered state to a reference state, as we shall now focus on.

5.2.2 Reference situation

In order to characterize the e�ect of a possibly stored Rydberg excitation in the ensemble
on the scattering on an incoming photon we need to take a reference con�guration in
which atoms play no role. We therefore consider the imaginary situation in which the
coupling strength g is arti�cially set to zero in Eq. (5.5). In this reference situation the
bath and cavity mode are decoupled from the atomic ensemble and evolve according to
the Hamiltonian5:

H̄ =

∫
dωωb†ωbω + ḡb

∫
dωbωā

† + ḡ∗b

∫
dωb†ωā

Moreover since we are not interested in quantitatively accounting for the possible dis-
tortion of the wavepacket due to the cavity response, we shall assume its decay rate γ̄c is
much bigger than the spectral width of the incoming photon (γ̄c →∞) or equivalently

5All barred quantities correspond to the reference situation.
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5.2 Photon scattering on the cavity

the coupling strength to the bath modes gb is in�nite. This assumption legitimates the
steady state approximation for the cavity �eld in Eq. (5.6):

ā (ω) ≈
γ̄c→∞

√
2γ̄cāin (ω)

γ̄c

The input-output relation that corresponds to the reference situation above is therefore

āout (ω) =
2γ̄cāin (ω)

γ̄c
− āin (ω)

= āin (ω)

Since in the reference situation the photon does not entangle with the atoms, its state∣∣φ̄ (tf )
〉
can be evaluated independently at time tf after the scattering took place and

is given by (using āout (ω) ≡ bω (tf ) e
iωtf and āin (ω) ≡ bω (Walls and Milburn, 2007))

∣∣φ̄ (tf )
〉

= e−iH̄tf
∫
β (ω) b†ω |Ø〉

=

∫
β (ω) b†ω (tf ) |Ø〉

=

∫
β (ω) ā†out (ω) eiωtf |Ø〉

=

∫
β (ω) ā†in (ω) eiωtf |Ø〉

∣∣φ̄ (tf )
〉

= −
∫
β (ω) b†ωe

iωtf |Ø〉 (5.10)

5.2.3 Cavity with non-interacting two-level atoms

In this subsection, we introduce the formalism that we shall use in the next sections
to analyze the gate performance on the simple example of a cavity �lled with non-
interacting two-level atoms. The Hamiltonian for this system can be readily obtained
from Eq. (5.5) with Ωcf = 0

H2lev ≡
Ωcf→0

H

Assuming the same initial state is |φ0〉 =
∫
dωβ (ω) b†ω |Ø〉 as above, the state of the full

system at time tf is given by:

|φ (tf )〉 = e−iHtf |φ0〉
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5. Photonic phase gate

To compare the actual scattering process to the reference situation we now consider the
following scalar product, henceforth referred to as �scattering coe�cient�:

〈
φ̄ (tf ) | φ (tf )

〉

= −
〈
Ø

∣∣∣∣
{∫

dω′bω′e
iω′tfβ∗ (ω′)

}
e−iH2levtf

∣∣∣∣φ0

〉

= −
〈
Ø

∣∣∣∣
{∫

dω′e−iH2levtf eiH2levtf bω′e
−iH2levtf eiω

′tfβ∗ (ω′)

}∣∣∣∣φ0

〉

= −
〈
Ø

∣∣∣∣
∫
dω′bω′ (tf ) e

iω′tfβ∗ (ω′)

∫
dωb†ωβ (ω)

∣∣∣∣φ0

〉

= −
〈
Ø

∣∣∣∣
∫
dω′aout (ω′) β∗ (ω′)

∣∣∣∣φ0

〉

where we implicitly used the following relation and de�nitions:

e−iH2levt |Ø〉 = |Ø〉
bω′ (tf ) ≡ eiH2levtf bω′e

−iH2levtf

aout (ω) ≡ bω (tf ) e
iωtf

Moreover, for a cavity �lled with non-interacting atoms, the linearized set of Heisenberg-
Langevin equations for a in Fourier space yields a (ω) =

√
2γc

γc+
g2N
γe−iω

−iω
ain (ω), whence

〈
φ̄ (tf ) | φ (tf )

〉

= −
〈
Ø

∣∣∣∣
∫
dωaout (ω) β∗ (ω)

∣∣∣∣φ0

〉
(5.11)

= −
〈
Ø

∣∣∣∣
∫
dω
(√

2γca (ω)− ain (ω)
)
β∗ (ω)

∣∣∣∣φ0

〉

=

∫
dω
γc − g2N

γe−iω
+ iω

γc + g2N
γe−iω

− iω
|β (ω)|2 (5.12)

where we used ain (ω) |φ0〉≡ bω
∫
dω′b†ω′β (ω′) |Ø〉= −β (ω) |Ø〉6.

Finally we consider two limiting cases of the formula (5.12). If the number of atoms
in the ensemble is very large (i.e. N → ∞) the absorption in the cavity is increased
and

〈
φ̄|φ
〉
N→∞ ≈ −1

6We note that from Eq. (5.12) in the long-pulse (steady state) limit, i.e. |β (ω)|2 = δ (ω), we
recover the formula for R used in Sec. 5.1.
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5.3 Gate operation

On the other hand if the number of atoms is very small (N → 0), that is in the empty
cavity case we �nd

〈
φ̄|φ
〉
N→0

=

∫
dω
γc + iω

γc − iω
|β (ω)|2 ≈

|β(ω)|2→δ(ω)
1

In the next section we shall apply the same technique to evaluate the scattering
coe�cient relative to the full system and deduce a quantitative characterization of the
gate performance.

5.3 Gate operation

In this section, we investigate the performance of the gate described in Sec. 5.1.
Given the qubit encoding Eqs. (5.1-5.4) we will compute the scattering coe�cient〈
φ̄ (tf ) |φ (tf )

〉
for each of the four following initial states:

|00〉 �no stored excitation, no incoming photon

|10〉 �one stored excitation and no incoming photon

|01〉 �no stored excitation and one incoming photon

|11〉 �one stored excitation and one incoming photon

We demonstrate that, following the naive picture presented in the introduction (Sec.
5.1), for su�ciently large cooperativity per blockade sphere the evolution with respect
to H Eq. (5.5) achieves the desired control phase gate operation.

5.3.1 Evolution of |00〉 , |10〉
We start this section by considering the trivial cases |00〉 and |10〉, corresponding to
no incoming photon, an excitation being stored or not in the cavity. Obviously, in those
cases the real and reference situations lead to the same evolution, i.e.,

〈
00 (tf ) |00 (tf )

〉
=〈

10 (tf ) |10 (tf )
〉

= 1.

5.3.2 Evolution of |01〉
We now consider the initial state |01〉 i.e. when target photon scatters on the cavity
which initially contains no excitation. The �real� and �reference� states of the bath are
therefore the same, as in the previous case. The only di�erence comes from the cavity
dynamics. From Heisenberg-Langevin equations:
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5. Photonic phase gate

d

dt
a = −γca− ig

∑

i

σ(i)
ge +

√
2γcain

d

dt
σ(i)
ge = −γeσ(i)

ge − iga− i
Ωcf

2
σ(i)
gr

d

dt
σ(i)
gr = −iΩb

2
σ(i)
ge

we get in Fourier space

a (ω) =

√
2γc

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

)



ain (ω)

and upon recalling Eq. (5.10), we �nally compute the desired scattering coe�cient

〈
01 (tf ) | 01 (tf )

〉
= −

〈
Ø

∣∣∣∣
∫
dωaout (ω) β∗ (ω)

∣∣∣∣ 01

〉

= −
〈
Ø

∣∣∣∣
∫
dω
(√

2γca (ω)− ain (ω)
)
β∗ (ω)

∣∣∣∣ 01

〉

= −
〈
Ø

∣∣∣∣∣∣∣∣∣∣

∫
dω




γc + iω − g2N(
γe−iω+i

Ω2
cf

4ω

)

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

)



ain (ω) β∗ (ω)

∣∣∣∣∣∣∣∣∣∣

01

〉

〈
01 (tf ) | 01 (tf )

〉
=

∫
dω |β (ω)|2

γc + iω − g2N(
γe−iω+i

Ω2
cf

4ω

)

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

)

Let us remark that setting Ωcf = 0 we recover the expression obtained in Eq. (5.12)

5.3.3 Evolution of |11〉

In this case, the initial state of the system is de�ned by |11〉 = S†
∫
dωb†ωβ (ω) |Ø〉. The

state of the system at time tf in the reference and real situations are given by:
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5.3 Gate operation

∣∣11 (tf )
〉

= −S†
∫
dωb†ωe

−iωtfβ (ω) |Ø〉 (5.13)

|11 (tf )〉 = e−iHtfS†
∫
dωb†ωβ (ω) |Ø〉 (5.14)

respectively. In Eq. (5.13) we implicitly used the fact that in the reference con�guration,
the polariton does not evolve in time. The scattering coe�cient is therefore given by:

〈
11 (tf ) | 11 (tf )

〉

= −
〈
Ø

∣∣∣∣S
∫
dωbωe

iωtfβ (ω) e−iHtf
∣∣∣∣ 11

〉

= −
〈
Ø

∣∣∣∣S (tf )

∫
dωbω (tf ) e

iωtfβ∗ (ω)

∣∣∣∣ 11

〉

= −
〈
Ø

∣∣∣∣S (tf )

∫
dωaout (ω) β∗ (ω)

∣∣∣∣ 11

〉

= −
〈
Ø

∣∣∣∣S (tf )

∫
dω
(√

2γca (ω)− ain (ω)
)
β∗ (ω)

∣∣∣∣ 11

〉

= −
√

2γc

∫
dωβ∗ (ω) 〈Ø |S (tf ) a (ω)| 11〉 −

(∫
dω |β (ω)|2

)〈
Ø
∣∣S (tf )S

†∣∣Ø
〉

= −
√

2γc

∫
dωβ∗ (ω) 〈Ø |S (tf ) a (ω)| 11〉 − 1

where we employed

S (tf ) ≡ eiHtfSe−iHtf

bω (tf ) ≡ eiHtf bωe
−iHtf

aout (ω) ≡ bω (tf ) e
iωtf

〈Ø| e−iHtf = 〈Ø|∫
dω |β (ω)|2 = 1

〈
Ø
∣∣S (tf )S

†∣∣Ø
〉

= 1

We now compute 〈Ø |S (tf ) a (ω)| 11〉. First, we notice that the term 〈Ø |S (tf ) a (ω)| 11〉
can be put under the form:

〈Ø |S (tf ) a (ω)| 11〉 =
1

N

∑

i,j

〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (ω)

∣∣∣ r′j, 1β
〉
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5. Photonic phase gate

where
∣∣r′j, 1β

〉
≡ σ

(j)
r′g

∫
dωβ (ω) b†ω |Ø〉. Moreover

〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (ω)

∣∣∣ r′j, 1β
〉
is readily

obtained through Fourier transforming the following di�erential system, derived from
the Heisenberg-Langevin equations:

d

dt

〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (t)

∣∣∣ r′j, 1β
〉

= −γc
〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (t)

∣∣∣ r′j, 1β
〉

− ig
∑

k

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
ge (t)

∣∣∣ r′j, 1β
〉

−
√

2γcβ (t)
〈
Ø
∣∣∣σ(i)
gr′ (tf )

∣∣∣ r′j, 1β
〉

d

dt

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
ge (t)

∣∣∣ r′j, 1β
〉

= −γe
〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
ge (t)

∣∣∣ r′j, 1β
〉

+ ig (δkj − 1)
〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (t)

∣∣∣ r′j, 1β
〉

− i
Ωcf

2

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
gr (t)

∣∣∣ r′j, 1β
〉

d

dt

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
gr (t)

∣∣∣ r′j, 1β
〉

= −iΩb

2

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
ge (t)

∣∣∣ r′j, 1β
〉

− iVkj

〈
Ø
∣∣∣σ(i)
gr′ (tf )σ

(k)
gr (t)

∣∣∣ r′j, 1β
〉

We �nd

〈
Ø
∣∣∣σ(i)
gr′ (tf ) a (ω)

∣∣∣ r′j, 1β
〉

= −
√

2γcβ (ω) δij
γc − iω + g2N

γe
1
N

∑
k 6=j

γe(
γe−iω−i

Ω2
cf

4(Vkj−ω)

)



and therefore

〈Ø |S (tf ) a (ω)| 11〉 = − 1

N

∑

i

√
2γcβ (ω)

γc − iω + g2N
γe

1
N

∑
k 6=i

γe(
γe−iω−i

Ω2
cf

4(Vki−ω)

)



Assuming the sample is homogeneous, with no edge e�ects, and de�ning

Vb (ω)

V
≡ 1

N

∑

k 6=i

γe(
γe − iω − i

Ω2
cf

4(Vki−ω)

)

where assumed that the latter expression does not depend on the i index, we get
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〈Ø |S (tf ) a (ω)| 11〉 ≈ −
√

2γcβ (ω)(
γc − iω + g2N

γe

Vb(ω)
V

)

Finally, we obtain the following scattering coe�cient:

〈
11 (tf ) | 11 (tf )

〉
= 2γc

∫
dω

|β (ω)|2(
γc − iω + g2N

γe

Vb(ω)
V

) − 1

If we further assume the photon wavepacket is long enough (steady state approxi-
mation), we get the simpli�ed form

〈
11 (tf ) | 11 (tf )

〉
≈ 2γc(

γc + g2N
γe

Vb
V

) − 1

=
γc − g2N

γe

Vb
V

γc + g2N
γe

Vb
V

=
1− 2Cb
1 + 2Cb

where we introduced Cb ≡ g2N
2γeγc

Vb(0)
V

= g2

2γeγc
nb which can be interpreted as the cooper-

ativity per blockade sphere (nb is the number of atoms per bubble).
In the next section we shall use the results obtained above for the di�erent initial

states to evaluate the gate �delity in experimentally feasible situations.

5.4 Numerical results

In this section, we quantitatively estimate the performance of the gate protocol by
means of the so-called Choi-Jamiolkowski �delity, that we readily compute using the
results of the previous section. Then we introduce the dual-rail encoding version of the
protocol, where both logic states |0〉 and |1〉 are physically encoded in two states of a
single photon propagating along two spatially distinct paths. This encoding allows for
postselection, therefore correcting possible photon-loss-induced errors during the gate
operation. Finally, we evaluate �delities for the single- and dual-rail versions of the
protocol as functions of the cooperativity per blockade volume.

5.4.1 Choi-Jamiolkowsky �delity

To evaluate the performance of the proposed c-phase gate we shall calculate its Choi-
Jamiolkowski �delity (Choi, 1975; Jamioªkowski, 1972). Since, in general, we have
C > Cb, the �delity will be mainly limited by the target photon scattering process
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5. Photonic phase gate

and we may therefore safely ignore the imperfections of the storage/retrieval of the
control photon. With the above solution to the scattering problem we have a complete
characterization of the gate dynamics.

To translate this into the Choi-Jamiolkowski �delity, we consider the input state
|Φ〉 ≡ 1

2
(|00〉 |00〉+ |01〉 |01〉+ |10〉 |10〉+ |11〉 |11〉) of a system of four qubits, two of

which, e.g. the third and the fourth ones, are subject to the gate, while the other two
are left alone. The �nal state (t = tf ) is therefore given by |Φreal〉 =

(
I⊗ e−iHtf

)
|Φ〉

which represents the evolution of the third and fourth qubits under the Hamiltonian
Eq. (5.5). By contrast, the state resulting from the action of the ideal c-phase gate
on |Φ〉 can be expressed by means of the evolved reference states

∣∣ij (tf )
〉
(see Sec. 5.2)

as:

|Φideal〉 = I⊗ Ue−iHref tf |Φ〉 =
∑

ij=0,1

〈ij |cphase| ij〉 |ij〉
∣∣ij (tf )

〉

with

cphase =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




The �delity is therefore given by:

Fcj ≡ |〈Φideal|Φreal〉|2 (5.15)

=
1

16

∣∣〈00 (tf ) |00 (tf )
〉

+
〈
01 (tf ) |01 (tf )

〉
+
〈
10 (tf ) |10 (tf )

〉
−
〈
11 (tf ) |11 (tf )

〉∣∣2

=
1

16

∣∣2 +
〈
10 (tf ) |10 (tf )

〉
−
〈
11 (tf ) |11 (tf )

〉∣∣2

=
1

16

∣∣∣∣∣∣∣∣∣∣

2 +

∫
dω |β (ω)|2

γc + iω − g2N(
γe−iω+i

Ω2
cf

4ω

)

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

) −
∫
dω |β (ω)|2

γc + iω − g2N
γe

Vb(ω)
V(

γc − iω + g2N
γe

Vb(ω)
V

)

∣∣∣∣∣∣∣∣∣∣

2

The steady state limit (|β (ω)|2 → δ (ω)) of this expression yields

Fcj ≡
1

16

∣∣∣∣3−
1− 2Cb
1 + 2Cb

∣∣∣∣
2

(5.16)
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Figure 5.3: Choi-Jamiolkowski �delity (thin line) and postselected swap �delity (thick
line) as functions of the blockaded cooperativity Cb for a spectrally narrow pulse
|β (ω)|2 → δ (ω) .

where Cb ≡ g2N
γe

Vb
V

(see Sec. 5.3). As can be seen from Eq. (5.16), in the limit of big
cooperativity per blockade sphere, the �delity approaches unity (1 − Fcj ∝ 1

|Cb|
) (see

Fig. 5.3). Therefore, as discussed in the introduction (Sec. 5.1), the cavity-enhanced
blockaded cooperativity is the main �gure of merit for the gate.

5.4.2 Dual rail encoding

In the dual-rail encoding, both logical states |0〉 and |1〉 are encoded in two states of
a single photon propagating along two spatially distinct paths. A schematic of the
dual-rail c-phase gate is shown in Fig. 5.1 (c). The �rst photon pulse in the upper
two arms of the �gure is �rst stored in one of the memories consisting of a Rydberg
ensemble placed in each arm (in the case polarization encoding, two such memories
might be realized by two di�erent internal states of the same ensemble). A second
photon pulse is then scattered from the Rydberg ensemble if it is in state |1〉 (upper
rail in the �gure). This scattering ideally induces a phase change of π if there was a
photon stored in the Rydberg ensemble, i.e., if both qubits were in state |1〉.

As opposed to the single-rail implementation, the dual-rail allows one to condition
the gate's operation on getting two photons in the output. Since the dominant source
of error in the single-rail implementation is the photon loss, this o�ers a substantial
increase in the �delity with only a minor failure probability of the gate. We consider
the conditional �delity of a maximally entangled two-qubit state resulting from an
entanglement swap realized with the gate using the full circuit drawn in Fig. 5.1 (c).
Neglecting again the error due to �nite storage e�ciency, we �nd that this �delity is
(see App. H for more details):
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Fswap (5.17)

=
1

16Psuc

∣∣∣∣∣∣∣∣∣∣

2 +

∫
dω |β (ω)|2




γc + iω − g2N(
γe−iω+i

Ω2
cf

4ω

)

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

) −
γc + iω − g2N

γe

Vb(ω)
V

γc − iω + g2N
γe

Vb(ω)
V




∣∣∣∣∣∣∣∣∣∣

2

where

Psuc

=
1

4




2 +

∣∣∣∣∣∣∣∣∣∣

∫
dω |β (ω)|2

γc + iω − g2N(
γe−iω+i

Ω2
cf

4ω

)

γc − iω + g2N(
γe−iω+i

Ω2
cf

4ω

)

∣∣∣∣∣∣∣∣∣∣

2

+

∣∣∣∣∣

∫
dω |β (ω)|2

γc + iω − g2N
γe

Vb(ω)
V

γc − iω + g2N
γe

Vb(ω)
V

∣∣∣∣∣

2




Note that, compared to Fcj in Eq. (5.15), the only di�erence is due to the conditioning
with the success probability Psuc < 1.

Let us now consider the steady state limit of Eq. 5.17:

Fswap =

∣∣∣3− 1−2Cb
1+2Cb

∣∣∣
2

4

(
3 +

∣∣∣1−2Cb
1+2Cb

∣∣∣
2
)

In the limit of a long pulse, we thus see that the conditional gate error 1−Fswap ∝ 1
|Cb|2

for Cb � 1 is much smaller than for the single rail. This comes at only a minor cost
in the failure probability 1 − Psuc ∝ 1

|Cb|
. The resulting dual-rail �delities are plotted

in Fig. 5.3 as a function of the parameter Cb. For Cb ≈ 8, the (postselected) �delity is
found to be larger than 0.99.

5.5 Conclusions

In this chapter, we proposed an e�cient method to implement a c-phase gate for
photonic qubits. The gate combines the advantages of cavity-de�ned optical modes and
cavity-enhanced light-matter interactions with the strong Rydberg blockade obtainable
in atomic ensembles. As a direct application, the proposed gate can be used to improve
the communication rate of quantum repeaters. More generally it may serve as a building
block for photonic quantum networks (Das et al., 2016).
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Chapter 6

Outlook

In this dissertation, we theoretically studied the re�ection and transmission of an optical
cavity �lled with an ensemble of ladder-type three-level atoms, whose lower transition,
from the ground to the low-lying intermediate states, is driven by the cavity mode, while
the upper transition, from the intermediate to a Rydberg excited states, is driven by
a strong control �eld. Because of the large dipole-dipole interactions between Rydberg
atoms, the response of the setup is expected to be strongly nonlinear, allowing for optical
nonlinearities even at the single-photon level, which constitute the key ingredient of
photonic quantum information processing.

We investigated both the resonant and dispersive regimes of the setup, i.e. when
the transition from the ground to intermediate states is resonant with the cavity mode
or not, and demonstrated that a quasi-classical input beam can be made highly non-
classical when re�ected from or transmitted through the cavity. Strong correlations
between photons were shown to appear, manifesting themselves in the behavior of the
pair-correlation function and revealing e�ective intracavity photon-photon interactions.
Depending on the physical parameters of the system, its response can be drastically
di�erent to the single- and two-photon components of the incident light which, e�ec-
tively turns the setup into a �lter that operates in the quantum regime. Resorting to
many-body physics techniques, namely to the Schwinger-Keldysh contour formalism,
we were able to compute correlation functions beyond the lowest non-vanishing order in
the excitation number. We also demonstrated that, due to dipole-dipole interactions,
the light transmitted through the cavity becomes non-monochromatic: along with the
broadening, it was indeed shown to acquire sidebands, whose frequencies are de�ned by
the intracavity polariton energies. Finally we demonstrated that, combined with the
photon storage techniques, our setup can operate as a high �delity c-phase gate.

Several aspects of the problem remain to be addressed in the future.
Throughout this dissertation our calculations were restricted to the weak cavity

feeding regime. More speci�cally, all our results were obtained by discarding the Fock
components of the incoming coherent light beam with more than two photons. Many
phenomena are however expected to take place beyond the two-photon regime, as re-
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6. Outlook

cently demonstrated in free-space con�guration (Bienias and Büchler, 2016; Jachymski
et al., 2016). The method presented in Chap. 4 actually may be extended to higher
excitation numbers, by means of the multi-particle scattering theory developed by Fad-
deev (Faddeev, 1961). Well-known in few-body physics, this theory allows to regroup
Feynman diagrams for photon components higher than two in a systematic way which
facilitates their subsequent resummation.

In this thesis, we generally considered the steady state regime of the cavity feed-
ing. Many applied problems, however, may involve time-dependent incoming photon
wavepacket. The latter regime can be well addressed by a straightforward modi�cation
of the formalism, presented in Chap. 4.

As shown in App. A, while the experimentally observed behavior of the setup
is well reproduced by our theoretical model when S-Rydberg states are excited, it
signi�cantly di�ers in the case of D states. Elucidating that point will surely require to
go beyond the simple three-level model we employed throughout this dissertation and
incorporate extra states not directly addressed by the laser but coupled to the Rydberg
state considered in our protocol, whose e�ect would be to �shelve� excitation.

Finally, within the past few years, much e�ort has been devoted to developing
quantum platforms using interacting photons to simulate various models taken from
condensed matter physics (Carusotto and Ciuti, 2013). In particular, it has recently
been suggested to use dispersive EIT with a Rydberg medium coupled to di�erent
degenerate spatial modes of a linear optical cavity to implement crystalline order and
fractional quantum Hall states of light (Sommer et al., 2015). The latter proposal
actually relies on an ad hoc e�ective interaction potential between dark-state polaritons.
The �ab initio� approach we used in Chap. 4 may allow us to clarify the range of
applicability of such an approximate description and to go beyond by considering, e.g.,
the resonant regime of EIT.
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Appendix A

Transmission of an intracavity

Rydberg medium: experimental

results vs theoretical methods

In this appendix, we present variants of the models developed in Chaps. 2 and 3 , which
were recently put forward (Boddeda et al., 2016) to account for di�erent features of the
transmission spectrum of a cavity �lled with a Rydberg EIT medium, experimentally
observed at IOGS.

In the �rst section, we derive a mean-�eld description from the bosonic model pro-
posed in Chap. 3 which satisfactorily reproduces the experimental data obtained in
the case of S-Rydberg states but fails for D-Rydberg states. To deal with the latter, in
Sec. A.2, we elaborate on the Rydberg bubble model, used in Chap. 2 that we combine
with a phenomenological decay towards an extra shelving Rydberg state; the resulting
model successfully �ts the data upon adjusting the free parameters.

A.1 S-Rydberg state

In this section, we present a mean-�eld approximation of the three-boson model devel-
oped in Chap. 3, and show that it satisfactorily accounts for the transmission of an
S-excited Rydberg EIT medium, experimentally observed at IOGS.

A.1.1 Presentation of the model

As shown in Eqs. (3.13-3.15), the expectation values 〈a〉, 〈b〉, 〈c〉 for the cavity mode
annihilation operator and the collective atomic operators
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b = 1√
N

∑
i σ

(i)
ge

c = 1√
N

∑
i σ

(i)
gr

are governed by the following dynamical equations:

d

dt
〈a〉 = (i∆c − γc) 〈a〉 − ig

√
N 〈b〉 − iα (A.1)

d

dt
〈b〉 = (i∆e − γge) 〈b〉 − i

√
Ng 〈a〉 − iΩcf

2
〈c〉 (A.2)

d

dt
〈c〉 = (i∆r − γgr) 〈c〉 − i

Ωcf

2
〈b〉 − iκ

〈
c†cc

〉
(A.3)

where the complex constant κ characterizes the e�ect of dipole-dipole Rydberg inter-
actions, and is given by

κ = −2

(
Vb

V − Vb

)(
Ω2
cf

4(De +Dr −
Ω2
cf

4(De)
)
− (Dr)

)

with

Vb =

√
2π2

3

√√√√√
C6

De −
Ω2
cf

4(De+Dr−
Ω2
cf

4De
)

(A.4)

where Dk ≡ ∆k + iγgk for k = e, r, Vb is the volume of a blockade sphere and V is the
total volume of the cloud.

If the ratio Vb/V is small (high Rydberg bubble number regime) the state of the
system can be approximately considered as coherent. We therefore apply to Eqs. (A.1-
A.3) the so-called mean �eld approximation: it implies that the state of each boson
is coherent and we therefore replace operators by the corresponding complex numbers:
a→ 〈a〉 , b→ 〈b〉 , c→ 〈c〉. The corresponding system of equations is given by:

d

dt
〈a〉 = (i∆c − γc) 〈a〉 − ig

√
N 〈b〉 − iα (A.5)

d

dt
〈b〉 = (i∆e − γge) 〈b〉 − i

√
Ng 〈a〉 − iΩcf

2
〈c〉 (A.6)

d

dt
〈c〉 = (i∆r − γgr) 〈c〉 − i

Ωcf

2
〈b〉 − iκ |〈c〉|2 〈c〉 (A.7)

This system can be numerically solved in order to deduce the cavity transmission T =
γ2
c |〈a〉|2
α2 .
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A.1.2 Comparison with the experimental data

In Fig. A.1.2 we provide the experimental results for the stationary cavity transmission
spectrum using the following set of parameters ∆c − ∆e = −3.2MHz, ∆r − ∆e =

−1.2MHz, γr = 2π× 0.42MHz, γc = 2π× 10MHz, Ωcf = 2π× 10MHz, C = 8 (Boddeda
et al., 2016).

Due to the dipole-dipole interactions of S-excited Rydberg atoms, the spectrum de-
pends on the intensity of the incoming �eld. The results are �tted by the solution of
Eqs. (A.5 - A.7) which appear to be in a reasonably good agreement.

As soon as D states are employed, however, the mean-�eld description fails to re-
produce the behavior of the cavity transmission: in particular, in the case of D states,
when the cavity is locked on resonance and a constant probe beam is sent through it,
the transmission decreases on a slow (10µs) time scale. This feature does not show up
with S-states, and is not accounted for by the mean-�eld model. We therefore need to
develop a di�erent phenomenological model model that we present in the next section.

A.2 D-Rydberg state

Here, we present the phenomenological model which was developed to account for the
cavity transmission, in the case of D-Rydberg-state-excited samples. This model com-
bines a modi�ed version of the Rydberg bubble picture used in Chap. 2 with a phe-
nomenological decay towards a shelving Rydberg state. The decay rate, left as a free
parameter, can be adjusted in order to successfully reproduce the experimental data
for both the static and dynamical transmission of the setup.

A.2.1 Presentation of the model

We assume that the Rydberg blockade phenomenon e�ectively splits the atomic sample
into independent and equivalent �bubbles� which can at most accommodate for one
Rydberg excitation. Accordingly, the two-photon transition towards the Rydberg level
|r〉 essentially couples the two collective symmetric states

|G〉 ≡ |g · · · g〉

|R〉 ≡ 1√
nb

nb∑

i=1

σ(i)
rg |G〉 =

1√
nb

(|rg · · · g〉+ · · · |g · · · gr〉)

where nb denotes the number of atoms in a Rydberg bubble, and the corresponding
lowering operator is the Pauli-like matrix σGR ≡ |G〉 〈R| (we also de�ne σRR ≡ |R〉 〈R|
and σRG ≡ |R〉 〈G| ). Note that nb can be evaluated by nb = N ×

∣∣Vb
V

∣∣, where N is the
total number of atoms in the sample, V is the total volume of the sample and Vb is the
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A.2 D-Rydberg state

volume of a Rydberg bubble whose expression was given in Eq. A.4.

In a Rydberg bubble, the intermediate state can, by contrast, be arbitrarily pop-
ulated ; we, however, further assume that we remain in the low excitation regime
(corresponding to moderate cavity feeding rates) so that the transition to the interme-
diate state is never saturated. In this approximation scheme, the collective lowering
operator

β ≡ 1√
nb

nb∑

i=1

σ(i)
ge

can be satisfactorily considered bosonic, i.e.
[
β, β†

]
≈ 1.

Here, in order to account for the dynamical behavior observed experimentally, we
moreover introduce an extra Rydberg state, denoted by |s〉, to which the state |r〉 de-
cays: this implies that, in a bubble, the collective states |R〉 and |S〉 ≡ 1√

nb
(|sg · · · g〉+ · · · |g · · · gs〉)

are coupled by a Lindblad-like operator.

To simplify the treatment, we furthermore assume the cavity mode to be classical,
that is we replace a by its expectation value 〈a〉 whose time evolution is therefore ruled
by the equation

d

dt
〈a〉 = i (∆c + iγc) 〈a〉 − i

(
N

nb

)
g
√
nb 〈β〉 − iα

Note that the second term of the right hand side of this equation arises from the

coupling of the cavity mode with the ensemble of
(
N
nb

)
Rybderg bubbles with the

magni�ed coupling strength g
√
nb. The �rst term accounts for the detuning and decay

of the cavity, while the last one results from the feeding by the probe �eld. In this semi-
classical approximation, bubbles do not entangle with the cavity mode and therefore
cannot get entangled with each other: the atomic sample can hence be described by
the tensor product density matrix ρ ⊗ · · · ⊗ ρ where ρ is the density matrix of any of
the bubbles (they are all equivalent). The semi-classical dynamical equation for ρ now
writes d

dt
ρ = −i [H, ρ] + Dl (ρ) + Dnl (ρ) where single-bubble Hamiltonian and decay

operators are given by

H = −∆r |R〉 〈R| −∆eβ
†β

+

{(
Ωcf

2
σRG + g

√
nb 〈a〉∗

)
β + h.c.

}

Dl (ρ) = γe
(
2βρβ† − β†βρ− ρβ†β

)

+γr (2σGRρσRG − σRRρ− ρσRR)

+γs (2σGSρσSG − σSSρ− ρσSS)

Dnl (ρ) = ξ 〈σRR〉 (2σSRρσRS − σRRρ− ρσRR)

Note that the phenomenological extra non-linear decay Dnl (ρ) we introduced is time

125



A. Transmission of an intracavity Rydberg medium: experimental results
vs theoretical methods

Figure A.2: Cavity transmission in EIT conditions (probe and control �elds are on
resonance) for 60D5/2 Rydberg state of rubidium atom. In addition to a decrease in
transmission with the probe photon rate due to the Rydberg blockade, we observe a
transmission decay over time for D states.

dependent through 〈σRR〉 (t); its rate is moreover governed by the ad hoc free parameter
ξ, whose value can be tuned so as to reproduce the experimental results.

A.2.2 Experimental results vs theoretical methods

The experimental results for the time-dependent T (t) = γ2
c |〈a (t)〉| 2/α2 cavity trans-

mission are shown on Fig. A.2 (Boddeda et al., 2016) using the same set of parameters
as in Sec. A.1.2. The proper choice of the ξ parameter allows us to �t the experimen-
tal curves for all intensities. Besides, with the same value of ξ we recover the cavity
transmission spectrum for the whole range of frequencies of the incident light as shown
in Fig. A.3.
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A. Transmission of an intracavity Rydberg medium: experimental results
vs theoretical methods

128



Appendix B

Bosonic representation

B.1 Bosonic representation

In order to use Wick's theorem in Chap. 4 it is convenient to represent our system in
terms of bosons.

Let us �rst illustrate the basic principle of this mapping on the simple example of a
single atom coupled to two classical �elds, driving the lower (g ↔ e) and upper (e↔ r)
transitions with the respective Rabi frequencies Ωp and Ωcf . Analogously to Chap. 1
we may write the Hamiltonian of this system in the RWA approximation under the
form

H1at = −∆eσee −∆rσrr +
Ωcf

2
(σer + σre) +

Ωp

2
(σge + σeg)

or equivalently, in the matrix form (using the basis {|g〉 , |e〉 , |r〉}) :

H1at →




0 Ωp
2

0
Ωp
2
−∆e

Ωcf
2

0
Ωcf

2
−∆r


 (B.1)

Let us now introduce two independent bosonic operators b and c (
[
b, b†

]
= 1,[

c, c†
]

= 1,[b, c] = 0,
[
b, c†

]
= 0) that we shall identify with lowering operators σge

and σgr respectively, in the Hilbert space restricted to zero and one excitation. We
moreover introduce the anharmonic Hamiltonian:

H̃ = −∆eb
†b−∆rc

†c+
Ωp

2

(
b† + b

)
+

Ωcf

2

(
c†b+ b†c

)
(B.2)

+ H̃sat

with

H̃sat ≡
U∞
2
b†b†bb+

U∞
2
c†c†cc+ U∞b

†bc†c

where U∞ is some real-valued constant. We now show that, in certain circumstances,
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B. Bosonic representation

the two Hamiltonians Eqs. (B.2,B.3) coincide. Consider the matrix representation of H̃

in the basis (|0, 0〉, |1, 0〉, |0, 1〉, |2, 0〉, |1, 1〉, |0, 2〉 , . . . where |m,n〉 ≡ (b†)
m

√
m!

(c†)
n

√
n!
|0, 0〉):




0 Ωp
2

0 0 0 0 · · ·
Ωp
2
−∆e

Ωcf
2

Ωp
2

√
2 0 0 · · ·

0
Ωcf

2
−∆r 0 Ωp

2
0 · · ·

0 Ωp
2

√
2 0 −2∆e + U∞

Ωcf
2

√
2 0 · · ·

0 0 Ωp
2

Ωcf
2

√
2 −∆e −∆r + U∞

Ωcf
2

√
2 · · ·

0 0 0 0
Ωcf

2

√
2 −2∆r + U∞ · · ·

...
...

...
...

...
...

. . .




(B.3)

where vertical and horizontal lines separate subspaces with di�erent excitation num-
bers. In Eq. B.3, diagonal elements in the subspaces with more than two excitations
contain U∞ . If U∞ = 0, we merely recover a system of two coupled harmonic oscil-
lators. By contrast, if we set U∞ → ∞ the subspaces with more that two excitations
will become highly o�-resonant and inaccessible from the zero and single excitation
subspaces. Hence, the Hamiltonian H̃ will e�ectively reduce to H1at (Eq. (B.1)). It is
worth noticing that H̃sat accounts for the non-linearity due to the saturation of atomic
transitions.

We may now extrapolate the representation to the N -atom ensemble described in
Chap. 1 by de�ning two bosons bi, ci for each atom i = 1, . . . , N . The full Hamiltonian
H = H0 + Hint contains the natural evolution part H0 and the �interaction� part Hint

which stands for the external feeding and quartic in operators:

H0 = Hat + Va−c +Hcav +Hbath + Vcav−bath + Vat−bath (B.4)

Hint = Hdd +Hsat +Hf (B.5)

Hdd =
1

2

N∑

m,n

κmnc
†
mc
†
ncmcn (B.6)

Hf = α
(
a+ a†

)
(B.7)

Hsat = U∞
∑

n

{
1

2
b†nb
†
nbnbn +

1

2
c†nc
†
ncncn + b†nbnc

†
ncn

}
(B.8)

Hat =
N∑

n=1

{
−∆eb

†
nbn −∆rc

†
ncn +

Ωcf

2

(
b†ncn + bnc

†
n

)}
(B.9)
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B.2 Spinwave basis

Va−c =
N∑

n=1

g
(
ab†n + a†bn

)
(B.10)

Hcav =−∆ca
†a (B.11)

Hbath =
∑

λ=L,R

∫
dω ωB†λ,ωBλ,ω +

∫
dω ω

N∑

n=1

(
D†n,ωDn,ω + C†n,ωCn,ω

)
(B.12)

Vcav−bath =
∑

λ=L,R

∫
dω gb (ω)

[
Bλ,ωa

† +B†λ,ωa
]

(B.13)

Vat−bath ≈
N∑

n=1

∫
dω

[
gc (ω)Cn,ωb

†
n + gd (ω)Dn,ωc

†
n + H.c.

]
(B.14)

We notice that Hsat is the sum of single-atom Hamiltonians: since, throughout
this dissertation, we consider the weak coupling regime (g � γRc , γe), this term does
not contribute to the non-linear behavior of the system. Contrary to Hsat, Hdd involves
many atoms and therefore constitutes the leading contribution. We therefore completely
neglect the Hsat non-linearity in our calculations.

B.2 Spinwave basis

In this section, we introduce the collective modes known as �spinwaves� which play a
crucial role due to the symmetries of the problem and lead to a simpler expression of
the full Hamiltonian.

First, we assume that atoms occupy the vertices of a 3D square lattice of spacing
δ. In all calculations we will eventually set the limit δ → 0 and therefore consider a
continuous medium but we will keep the discrete sums in all expressions for the sake of
convenience. The discrete Fourier transform allows us to relate the direct space bosonic
operators bj and cj to the reciprocal space collective (so-called) spinwave operators
b~k, c~k:

c~k =
1√
N

∑

j

ei
~k ~rjcj ↔ cj =

1√
N

∑

~k

e−i
~k ~rjc~k (B.15)

b~k =
1√
N

∑

j

ei
~k ~rjbj ↔ bj =

1√
N

∑

~k

e−i
~k ~rjb~k (B.16)

where ~ri is the position of the i-th atom and kx,y,z = −π
δ
,−π

δ
+ 2π

Lx,y,z
. . . . , π

δ
are the

components of the ~k vector, where Lx,y,z is the lattice dimension in the {x, y, z} direction
. One readily shows
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B. Bosonic representation

[
c~k, c

†
~k′

]
=

1

N

∑

m,n

ei
~k ~rme−i

~k′ ~rn
[
cm, c

†
n

]

=
1

N

∑

m

ei
~k~rme−i

~k′~rm

= δ~k,~k′[
b~k, b

†
~k′

]
= δ~k,~k′

We now rewrite the dipole-dipole interactions Hamiltonian in terms of the spinwaves
operators de�ned above

Hdd =
1

2N2

N∑

m,n

κmn
∑

~k′′′,~k′′,~k′,~k

ei(
~k′′′−~k) ~rnei(

~k′′−~k′) ~rmc~k′′′c~k′′c~k′c~k (B.17)

Imposing the periodic boundary conditions to κmn, we obtain

1

N2

N∑

m,n

κmne
i(~k′′′−~k) ~rnei(

~k′′−~k′) ~rm = U~k′′−~k′
1

N

N∑

n

ei(
~k′′−~k′+~k′′′−~k) ~rn

= U~k′′−~k′δ
(
~k′′ − ~k′ + ~k′′′ − ~k

)
(B.18)

where we de�ned the Fourier transform of the interaction matrix κmn as 1
N

∑N
m κnme

i ~K ~rm =

U ~Ke
i ~K ~rn . Substituting B.18 to B.17 we get

Hdd =
∑

~k′,~k,~q

U~qc~k′−~qc~k′+~qc~k′c~k (B.19)

where summations can be taken within any period of the lattice and will be omitted
for the sake of conciseness.

Analogously, we can rewrite the natural Hamiltonian H0 (Eq. (B.4)) under the form
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B.2 Spinwave basis

H0 = Hat + Va−c +Hcav +Hbath + Vcav−bath + Vat−bath

Va−c = g
√
N
(
ab†0 + a†b0

)

Hat =
N∑

n=1

{
−∆eb

†
nbn −∆rc

†
ncn +

Ωcf

2

(
b†ncn + bnc

†
n

)}

=
N∑

n=1

∑

~k,~k′

1

N
ei(

~k−~k′) ~rn
{
−∆eb

†
~k
b~k′ −∆rc

†
~k
c~k′ +

Ωcf

2

(
b†~kc~k′ + b~kc

†
~k′

)}

=
∑

~k,~k′

δ~k,~k′

{
−∆eb

†
~k
b~k′ −∆rc

†
~k
c~k′ +

Ωcf

2

(
b†~kc~k′ + b~kc

†
~k′

)}

=
∑

~k

{
−∆eb

†
~k
b~k −∆rc

†
~k
c~k +

Ωcf

2

(
b†~kc~k + b~kc

†
~k

)}

Hbath =
∑

λ=L,R

∫
dω ωB†λ,ωBλ,ω +

∫
dω ω

N∑

n=1

(
D†~k,ωD~k,ω + C†~k,ωC~k,ω

)
(B.20)

Vat−bath ≈
N∑

n=1

∫
dω

[
gc (ω)C~k,ωb

†
~k

+ gd (ω)D~k,ωc
†
~k

+ H.c.
]

(B.21)

where C~k,ω ≡ 1√
N

∑
j e

i~k ~rjCj,ω, D~k,ω ≡ 1√
N

∑
j e

i~k ~rjDj,ω.
Deriving Heisenberg equations from the expression above, we conclude that the

Hamiltonian H0 does not couple the spinwaves ~k = 0 (symmetric) and ~k 6= 0 .
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Appendix C

The second-order correlation function

g(2) of the re�ected/transmitted light

In this appendix we provide technical details regarding the calculation of the g(2) (τ)

function of the transmitted and re�ected lights. We denote by a(R,L)
out the annihilation

operators of the �out� mode to the right or to the left of the cavity, respectively.

Let us �rst consider the transmitted light. By de�nition, assuming the g(2)
t function

is computed in the steady state, we have:

g
(2)
t (τ) ≡

〈
a

(R)†
out (0) a

(R)†
out (τ) a

(R)
out (τ) a

(R)
out (0)

〉

〈
a

(R)†
out a

(R)
out

〉2 (C.1)

there the average is computed in the state |ψ (t = −∞)〉 ≡ |in〉 = e−
1
2
〈n〉e

∫
dωα(ω)b†L,ω |Ø〉

where b†L,ω is the creation operator of the bath mode of frequency ω and |Ø〉 is the state
with no excitations in the system. From the input-output relation for the right mirror

a
(R)
out + a

(R)
in =

√
2γ

(R)
c a we may write for (C.1)

g
(2)
t (τ) =

〈
a† (0)

(√
2γ

(R)
c a† (τ)− a†(R)

in (τ)

)(
a (τ)− a(R)

in (τ)
)(√

2γ
(R)
c a (0)

)〉

(2γRc ) 〈a†a〉2
(C.2)

where we implicitly used the fact that a(R)
in (0) |in〉 = 0. For the further development of

(C.2) we may use the standard commutation relation for the Langevin noise operator
ain and any operator of the system x̂ (Walls and Milburn, 2007):

[
x̂ (t′) ,

√
2γRc ain (t)

]
= 2γθ (t′ − t) [x̂ (t′) , a (t)] (C.3)

where θ (t) is the Heaviside step function. Using now the latter formula we �nally have
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C. The second-order correlation function g(2) of the re�ected/transmitted
light

for the transmitted light assuming τ > 0:

g
(2)
t (τ) =

〈
a† (0) a† (τ) a (τ) a (0)

〉

〈a†a〉2
(C.4)

We now consider the re�ected light on the left side (L) of the cavity:

g
(2)
r (τ) ≡

〈
a

(L)†
out (0) a

(L)†
out (τ) a

(L)
out (τ) a

(L)
out (0)

〉

〈
a

(L)†
out a

(L)
out

〉2

Similarly, by using the following input-output relation for the left mirror:1

a
(L)
out + a

(L)
in − i

α√
2γ

(L)
c

=

√
2γ

(L)
c a

one gets

〈
a

(L)†
out (0) a

(L)†
out (τ) a

(L)
out (τ) a

(L)
out (0)

〉
=
(
2γ(L)

c

)2 〈
a† (0) a† (τ) a (τ) a (0)

〉
+

+ 2iγ(L)
c α

[〈
a† (0) a† (τ) a (τ)

〉
+
〈
a† (0) a† (τ) a (0)

〉
−
〈
a† (0) a (τ) a (0)

〉
−
〈
a† (τ) a (τ) a (0)

〉]

+ α2
(
2
〈
a†a
〉

+
〈
a† (τ) a (0)

〉
+
〈
a† (0) a (τ)

〉
−
〈
a† (0) a† (τ)

〉
− 〈a (τ) a (0)〉

)

+ i
α3

γ
(L)
c

(〈
a†
〉
− 〈a〉

)
+

α4

(
2γ

(L)
c

)2

and
〈
a

(L)†
out a

(L)
out

〉
= 2γ(L)

c

〈
a†a
〉

+ iα
(〈
a†
〉
− 〈a〉

)
+

α2

2γ
(L)
c

where we omitted the time arguments for those averages which do not depend on τ .
We may also notice that the factorization property discussed in App. D for the

intracavity (�eld) operators also applies to the correlation functions of the transmitted
or re�ected lights, i.e. we may write in the lowest order in α:

〈
a

(L,R)†
out (0) a

(L,R)†
out (τ) a

(L,R)
out (τ) a

(L,R)
out (0)

〉(4)

=
〈
a

(L,R)†
out (0) a

(L,R)†
out (τ)

〉(2) 〈
a

(L,R)
out (τ) a

(L,R)
out (0)

〉(2)

.

1Note that the term i α√
2γ

(L)
c

is responsible for the displacement from the vacuum due to the coherent

feeding while the bath modes are assumed to be in vacuum.

136



Appendix D

Factorization of correlation functions.

In this appendix, we give the technical details regarding the derivation of the factoriza-
tion of the intracavity �eld operator correlation functions at lowest non-vanishing order
in cavity feeding rate, that we extensively use in Chap. 3.

Here, we suppose that the bath interacting with the cavity is initially in the following
continuous-mode coherent state (incoming quasi-classical �eld)

|α〉 = e−
1
2
〈n〉e
√
〈n〉B†α |0〉

where
∫
|α (t)|2 dt = 〈n〉 and B†α = 1√

〈n〉

∫
dωα (ω)B† (ω) is a superposition of bath

mode creation operators B† (ω) (Loudon, 2000). Note that with this de�nition, Bα is
a bosonic operator, i.e.

[
Bα, B

†
α

]
= 1. The atoms and cavity �eld are initially in their

ground state denoted by |G〉 ≡ |g . . . g〉 ⊗ |0〉.
Let us consider, for instance, the quantity

〈
α,G|a† (t1) a† (t2) a (t2) a (t1) |G,α

〉
, for

t2 > t1, where |G,α〉 denotes the initial state of the whole system {atoms+cavity+baths}1,
〈
α,G

∣∣a† (t1) a† (t2) a (t2) a (t1)
∣∣G,α

〉
(D.1)

= e−〈n〉
∑

k,l

〈n〉 k+l
2

√
k!l!

〈
k,G

∣∣a† (t1) a† (t2) a (t2) a (t1)
∣∣G, l

〉

Expanding this expression with respect to |α| (which is equivalent to expanding in the
number of excitations present in the system), one �nds that the lowest non-vanishing
contribution is the fourth order term k = l = 2. For the system considered the identity
operator can be represented in the following way I =

⊗
i

Ii where Ii =
∑

q |qi〉 〈qi| are
the identity operators on each degree of freedom of the system, and |qi〉's denote q -th
basis vector of i -th degree of freedom. Inserting this identity operator between a† (t2)

and a (t2) of the quantity (D.1) yields:

1The baths coupled to the atoms are supposed empty and their state is not explicitly written.
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D. Factorization of correlation functions.

e−〈n〉
∑

k,l

〈n〉 k+l
2

√
k!l!
〈k,G| a† (t1) a† (t2) (D.2)

{⊗

i

∑

q

|qi〉 〈qi|
}
a (t2) a (t1) |G, l〉

For the lowest non-vanishing term k = 2, l = 2:

a (t2) a (t1) |G, 2〉 = eiHt2aeiH(t1−t2)a |G, 2 (t1)〉

whereH is the Hamiltonian of the full system including baths Eq. (1.1) and |G, 2 (t1)〉 ≡
e−iHt1 |G, 2〉 (note that this state can contain excited atoms and/or cavity photons). The
state a |G, 2 (t1)〉 can at most contain one excitation, and so can the state eiH(t1−t2)a |G, 2 (t1)〉
due to the conservation of excitation number. Hence eiHt2aeiH(t1−t2)a |G, 2 (t1)〉 can only
have component on |G, 0〉. Finally the fourth order expression of (D.2) reads:

e−〈n〉
〈n〉2

2

〈
2, G|a† (t1) a† (t2) a (t2) a (t1) |G, 2

〉

= e−〈n〉
〈n〉2

2

∣∣〈2, G|a† (t1) a† (t2) |G, 0
〉∣∣2

=
〈
α,G|a† (t1) a† (t2) |G, 0

〉
2
〈G, 0|a (t2) a (t1) |G,α〉2

where we used that e−
〈n〉
2
〈n〉√

2

〈
2, G|a† (t1) a† (t2) |G, 0

〉
and e−

〈n〉
2
〈n〉√

2
〈0, G|a (t2) a (t1) |G, 2〉

are equal to the second order expansion in |α| of quantities
〈
α,G|a† (t1) a† (t2) |G,α

〉

and
〈
α,G|a† (t1) a† (t2) |G,α

〉
respectively, that we denoted by 〈...〉2.

To compute
〈
α,G|a† (t1) a† (t2) a (t2) a (t1) |G,α

〉
in the lowest order it is thus enough

to calculate 〈a (t2) a (t1)〉 ≡ 〈α,G|a (t2) a (t1) |G,α〉.

The same argument holds for more general mean values such as

〈
α,G

∣∣a† (t1) a† (t2) . . . a† (tp) a (tp+1) . . . a (tp+q−1) a (tp+q)
∣∣α,G

〉(p+q)

and in particular

〈
a† (t) a (t)

〉(2)
=
〈
a† (t)

〉(1) 〈a (t)〉(1)

〈
a† (t2) a† (t1) a (t1)

〉(3)
=
〈
a† (t2) a† (t1)

〉(2) 〈a (t1)〉(1)

〈
a† (t2) a† (t1) a (t1) a (t2)

〉(4)
=
〈
a† (t2) a† (t1)

〉(2) 〈a (t1) a (t2)〉(2)
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Appendix E

Calculation of 〈aa〉(2)

In this appendix we sketch the calculation of the correlation function 〈a (t) a (t)〉 in the
second order in the cavity feeding rate α that we need in Chap. 3. to compute the pair
correlation function g(2).

The system of equations for the same-time two-operator products in the second
order in α is readily derived from Heisenberg-Langevin equations Eqs. (5.6-5.9). For
notational convenience here, we do not explicitly write superscripts (1,2), nor the time
argument since we only deal with same-time mean values : hence 〈aa〉 should be un-

derstood as 〈a (t) a (t)〉(2) and
〈
σ

(i)
ge

〉
as
〈
σ

(i)
ge (t)

〉(1)

etc. We thus �nd

d

dt
〈aa〉 = 2Dc 〈aa〉 − 2ig

∑

i

〈
aσ(i)

ge

〉
− 2iα 〈a〉

d

dt

〈
aσ(i)

ge

〉
= (Dc +De)

〈
aσ(i)

ge

〉
− iΩb

2

〈
aσ(i)

gr

〉
− ig 〈aa〉 − ig

∑

j

〈
σ(j)
ge σ

(i)
ge

〉
− iα

〈
σ(i)
ge

〉

d

dt

〈
aσ(i)

gr

〉
= (Dc +Dr)

〈
aσ(i)

gr

〉
− ig

∑

j

〈
σ(j)
ge σ

(i)
gr

〉
− iα

〈
σ(i)
gr

〉
− iΩb

2

〈
aσ(i)

ge

〉

d

dt

〈
σ(j)
ge σ

(i)
ge

〉
= 2De

〈
σ(j)
ge σ

(i)
ge

〉
− iΩb

2

〈
σ(j)
ge σ

(i)
gr

〉
− iΩb

2

〈
σ(j)
gr σ

(i)
ge

〉
− ig

〈
aσ(j)

ge

〉
− ig

〈
aσ(i)

ge

〉

d

dt

〈
σ(j)
ge σ

(i)
gr

〉
= (De +Dr)

〈
σ(j)
ge σ

(i)
gr

〉
− iΩb

2

〈
σ(j)
gr σ

(i)
gr

〉
− ig

〈
aσ(i)

gr

〉
− iΩb

2

〈
σ(j)
ge σ

(i)
ge

〉

d

dt

〈
σ(j)
gr σ

(i)
gr

〉
= (2Dr − iκi,j)

〈
σ(j)
gr σ

(i)
gr

〉
− iΩb

2

〈
σ(j)
ge σ

(i)
gr

〉
− iΩb

2

〈
σ(j)
gr σ

(i)
ge

〉

Assuming that the medium is homogeneous, i.e. that for all (i, j),
〈
σ

(j)
ge σ

(i)
gr

〉
=

〈
σ

(i)
ge σ

(j)
gr

〉
and

〈
aσ

(i)
ge

〉
=
〈
aσ

(j)
ge

〉
, in the steady-state this system yields
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E. Calculation of 〈aa〉(2)

〈aa〉 =
g

Dc

∑

i

〈
aσ(i)

ge

〉
+

α

Dc

〈a〉

〈
aσ(i)

ge

〉
=

Ωb

2 (Dc +De)

〈
aσ(i)

gr

〉
+

g

(Dc +De)
〈aa〉+

g

(Dc +De)

∑

j

〈
σ(j)
ge σ

(i)
ge

〉

+
α

(Dc +De)

〈
σ(i)
ge

〉

〈
aσ(i)

gr

〉
=

g

(Dc +Dr)

∑

j

〈
σ(j)
ge σ

(i)
gr

〉
+

α

(Dc +Dr)

〈
σ(i)
gr

〉
+

Ωb

2 (Dc +Dr)

〈
aσ(i)

ge

〉

〈
σ(j)
ge σ

(i)
ge

〉
=

Ωb

2De

〈
σ(j)
ge σ

(i)
gr

〉
+

g

De

〈
aσ(i)

ge

〉

〈
σ(j)
ge σ

(i)
gr

〉
=

Ωb

2 (De +Dr)

〈
σ(j)
gr σ

(i)
gr

〉
+

g

(De +Dr)

〈
aσ(i)

gr

〉
+

Ωb

2 (De +Dr)

〈
σ(j)
ge σ

(i)
ge

〉

〈
σ(j)
gr σ

(i)
gr

〉
=

Ωb

2
(
Dr − κi,j

2

) 〈σ(j)
ge σ

(i)
gr

〉

Note that the �rst-order values 〈a〉 ≡ 〈a〉(1),
〈
σ

(i)
ge

〉
≡
〈
σ

(i)
ge

〉(1)

,
〈
σ

(i)
gr

〉
≡
〈
σ

(i)
gr

〉(1)

have been determined through solving the �rst-order steady state system, see Eqs.
(3.1-3.3) in the main text.

Summing the above equations over atom numbers (i, j) yields a system on averages
of the collective operators b ≡ 1√

N

∑
i σ

(i)
ge and c ≡ 1√

N

∑
i σ

(i)
gr and �eld operator a,

which is almost closed but for the last equation which will now be considered and
approximated.

Eliminating
〈
σ

(j)
ge σ

(i)
gr

〉
and

〈
σ

(j)
ge σ

(i)
ge

〉
from the last three equations we get

〈
σ(j)
gr σ

(i)
gr

〉
=

Ωbg

2
{(
Dr − κi,j

2

) [
(De +Dr)− Ω2

b

4De

]
− Ω2

b

4

} 〈aσ(i)
gr

〉

+
Ω2
bg

4De

{(
Dr − κi,j

2

) [
(De +Dr)− Ω2

b

4De

]
− Ω2

b

4

} 〈aσ(i)
ge

〉

We now sum over i and j indices and divide this equation by N to get

〈cc〉 =
Ωbg

2

∑

i

Ki

〈
aσ(i)

gr

〉
+

Ω2
bg

4De

∑

i

Ki

〈
aσ(i)

ge

〉
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where we introduced the coe�cient

Ki ≡
1

N

∑

j

1(
De +Dr − Ω2

b

4De

) (
Dr − κi,j

2

)
− Ω2

b

4

.

Making the approximation that Ki does not depend on i, i.e. Ki ≈ K, we get:

〈cc〉 ≈ Ωbg
√
N

2
K 〈ac〉+

Ω2
bg
√
N

4De

K 〈ab〉

To estimate K we consider that the sample is a sphere of radius R

K =
1

N

∑

j

1(
De +Dr − Ω2

b

4De

) (
Dr − κi,j

2

)
− Ω2

b

4

≈ 4π
4π
3
R3

∫ R

0

r2

(
De +Dr − Ω2

b

4De

) (
Dr − C6

2r6

)
− Ω2

b

4

dr

=
3

R3

∫ R

0

r2

(
De +Dr − Ω2

b

4De

) (
Dr − C6

2r6

)
− Ω2

b

4

dr

For large values of R, K does not depend on the geometry

K ∼
R→∞

1(
De +Dr − Ω2

b

4De

)
Dr − Ω2

b

4

×


1−

√
2π2

3V

√√√√√
C6

Ω2
b

4

(
De+Dr−

Ω2
b

4De

) −Dr




Finally the desired closed system is
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E. Calculation of 〈aa〉(2)

〈aa〉 =
g
√
N

Dc

〈ab〉+
α

Dc

〈a〉

〈ab〉 =
Ωb

2 (Dc +De)
〈ac〉+

g
√
N

(Dc +De)
〈aa〉+

g
√
N

(Dc +De)
〈bb〉+

α

(Dc +De)
〈b〉

〈ac〉 =
g
√
N

(Dc +Dr)
〈bc〉+

α

(Dc +Dr)
〈c〉+

Ωb

2 (Dc +Dr)
〈ab〉 (E.1)

〈bb〉 =
Ωb

2De

〈bc〉+
g
√
N

De

〈ab〉

〈bc〉 =
Ωb

2 (De +Dr)
〈cc〉+

g
√
N

(De +Dr)
〈ac〉+

Ωb

2 (De +Dr)
〈bb〉

〈cc〉 =
Ωbg
√
N

2
K 〈ac〉+

Ω2
bg
√
N

4De

K 〈ab〉

which allows us to determine 〈aa〉. The analytical solution is too cumbersome to be
displayed but can be readily obtained by matrix inversion.
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Appendix F

Factorization in the presence of extra

dephasing

In this appendix, we show in which conditions the factorization of �eld operator prod-
ucts described in Appendix D remains valid in the presence of extra dephasing due to
laser frequency and intensity noise. Such dephasing is correctly accounted for by adding
the term −γdσ(n)

gr +F
(d)
gr in the Heisenberg-Langevin equation Eq. (1.14) on σ(n)

gr , where
F

(d)
gr is an extra Langevin force and γd ≈ 0.15×γe, γr ≈ 0.01×γe and γe = 2π× 3 MHz

in the experimental setup studied at IOGS.

In the absence of interatomic interactions, because laser and cavity �elds address
the atoms symmetrically, the ensemble evolves in the subspace of symmetric states.
The atomic system essentially remains in this subspace, even when the interactions
are taken into account, if the number of Rydberg excitations in the sample is much
less than the total number of Rydberg bubbles the ensemble can accommodate for.
Such symmetric superpositions actually not only contain �allowed� components (i.e.
with Rydberg atoms further than a Rydberg bubble radius apart) but also �forbidden�
components (with Rydberg atoms closer than a Rydberg bubble radius). Their number
is, however, very small compared to that of �allowed� con�gurations and they will
therefore only slightly alter the outcome of dissipative dynamics of the system.

Under these assumptions, let us show in which conditions the mean value
〈
c†c
〉

factorizes at lowest order. Focusing on the dissipative part1 of Bloch equations for σ(i)
gr

1Due to the presence of extra dephasing, the coherent collective excitations are turned into a
statistical mixture which does not allow for the factorization of averages. Here we derive a condition
when the coherent symmetric (which is coupled to the cavity mode) component of population dominates
over the statistical mixture. We set Ωcf → 0, g = 0, κij → 0 in Eq. (1.14) in order to study the e�ect of
dephasing separately. We also implicitly assume that initially the atoms are prepared in the symmetric
coherent state.
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F. Factorization in the presence of extra dephasing

and σ(i)
rr (note that for the latter, there is no extra dephasing) we get

d

dt

〈
σ(i)
gr

〉∣∣
d

= − (γr + γd)
〈
σ(i)
gr

〉

d

dt

〈
σ(i)
rg σ

(j)
gr

〉∣∣
d,i6=j = −2 (γr + γd)

〈
σ(i)
rg σ

(j)
gr

〉

d

dt

〈
σ(i)
rr

〉∣∣
d

= −2γr
〈
σ(i)
rr

〉

and recalling that c ≡ 1√
N

∑
i σ

(i)
gr , we get

〈
c†c
〉

= 1
N

∑
i

〈
σ

(i)
rr

〉
+ 1

N

∑
i6=j

〈
σ

(i)
rg σ

(j)
gr

〉

whence

d〈c†c〉
dt

∣∣∣∣
d

=
1

N

∑

i

d

dt
〈σ(i)

rr 〉
∣∣
d

+
1

N

∑

i6=j

d

dt
〈σ(i)

rg σ
(j)
gr 〉
∣∣
d

= −2γr
N

∑

i

〈σ(i)
rr 〉 −

2

N
(γr + γd)

∑

i6=j

〈σ(i)
rg σ

(j)
gr 〉

=
2γd
N

∑

i

〈σ(i)
rr 〉 −

2

N
(γr + γd)

∑

i,j

〈σ(i)
rg σ

(j)
gr 〉

and
d

dt
〈c†c〉

∣∣
d

=
2γd
N

∑

i

〈σ(i)
rr 〉 − 2 (γr + γd) 〈c†c〉

When there are nr Rydberg excitations in the sample, with nr � Nb � N (Nb is
the maximum number of Rydberg excitations the sample can contain), one has

〈
c†c
〉
≈

∑
i

〈
σ

(i)
rr

〉
≈ nr whence

d

dt

〈
c†c
〉∣∣
d
≈ −2

[
γr + γd

(
1− 1

N

)] 〈
c†c
〉

For γr � γd � Nγr, one therefore has

d

dt

〈
c†c
〉∣∣
d
≈ −2γd

〈
c†c
〉

so, from the point of view of c†c, everything works as if the system was radiatively
damped with the rate γd. In the same conditions, we moreover have

d

dt
〈c〉|d ≈ −γd 〈c〉

and again, from the point of view of c, everything works as if the system was radiatively
damped with the rate γd. Moreover, since all other dynamical equations (for population,
coherence and �eld operator mean values) remain formally the same as in the purely
radiative damping, the factorization procedure remains valid for

〈
a†a
〉
provided that
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γr � γd � Nγr and the radiative coherence decay γr is e�ectively replaced by the
dephasing decay rate γd.

This result can also be extended to higher order quantities
〈(
a†
)m

ap
〉
.
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F. Factorization in the presence of extra dephasing
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Appendix G

Computation of integrals

Throughout Chap. 4, we encounter various integrals, which, as we show in this appendix
can be computed in a uni�ed manner. For example let us consider the following integral:

S~q =
1

2π

∫ ∞

−∞
dωGT

c~qc~q
[ω]GT

c−~qc−~q [−ω] (G.1)

where GT
c~qc~q

is the Green's function de�ned in Eq. (4.26). The latter may contain
several poles, and therefore the direct calculation of (G.1) using the residue theorem is
somewhat cumbersome. There is, however, an alternative and easier way, as we shall
now show.

Let us construct the tensor product ~GT
~q [ω] ⊗ ~GT

−~q [−ω] where the matrices ĜT
~q are

de�ned in Eqs. (4.31-4.32) which contain Green's functions of all possible kinds, and
let us de�ne Ŝ~q as

Ŝ~q ≡
1

2π

∫ ∞

−∞
dωĜT

~q [ω]⊗ ĜT
−~q [−ω] (G.2)

Note that Ŝq obviously includes Eq. (G.1). Ŝ~q can also be expressed as an integral over
time as follows:

Ŝ~q ≡
1

2π

∫ ∞

−∞
dωdτdτ ′e−iωτ ĜT

~q [τ ]⊗ eiωτ ′ĜT
−~q [τ ′]

=

∫ ∞

−∞
dτĜT

~q [τ ]⊗ ĜT
−~q [τ ]

The matrix ĜT
~q [τ ] obeys (see Eq. (4.27))

{
d
dτ
ĜT
~q = M~q × ĜT

~q ; τ > 0

ĜT
~q = 0; τ < 0

(G.3)
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G. Computation of integrals

where the matrixM~q is de�ned in Eq. (4.29-4.30). Solving Eq. (G.3) we get: ĜT
~q [τ > 0] =

eM~qτ ĜT
~q [0+] = −ieM~qτ . Substituting this relation to Eq. (G.2) we have:

Ŝ~q ≡
∫ ∞

0

dτĜT
~q [τ ]⊗ ĜT

−~q [τ ]

= −
∫ ∞

0

dτeM~qτ ⊗ eM−~qτ

= −
∫ ∞

0

dτe(M~q⊗I+I⊗M−~q)τ

= (M~q ⊗ I + I ⊗M−~q)−1

The inversion of the matrix is much easier from the computational point of view and
can be easily performed e.g. in Mathematica. We therefore provide the �nal expression
for the integral Eq. (G.1):

S = −
4Γ2
e

Ω2
cf+4ΓeΓr

+ 1

2 (Γe + Γr)
(G.4)

The expression for S0 ≡ 1
2π

∫∞
−∞ dωG

T
c0c0

[ω]GT
c0c0

[−ω] is much more cumbersome:

−ΓcΩ4
cf+4Ω2

cf(Γ3
c+Γc(Γ2

e+2ΓeΓr+g2N)+Γ2
c(Γe+Γr)+g2NΓr)+16(Γc+Γe)(ΓcΓe+g2N)((Γc+Γr)(Γe+Γr)+g2N)

2(ΓcΩ2
cf+4Γr(ΓcΓe+g2N))(4(Γc+Γe)((Γc+Γr)(Γe+Γr)+g2N)+Ω2

cf (Γe+Γr))
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Appendix H

c-phase gate

This appendix is an extended preprint version of the article (Das et al., 2016).

149



Photonic Controlled-Phase Gates Through Rydberg Blockade in Optical Cavities
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We propose a novel scheme for high fidelity photonic controlled-phase gates using Rydberg blockade in an
ensemble of atoms in an optical cavity. The gate operation is obtained by first storing a photonic pulse in the
ensemble and then scattering a second pulse from the cavity, resulting in a phase change depending on whether
the first pulse contained a single photon. We show that the combination of Rydberg blockade and optical
cavities effectively enhances the optical non-linearity created by the strong Rydberg interaction and makes the
gate operation more robust. The resulting gate can be implemented with cavities of moderate finesse allowing
for highly efficient processing of quantum information encoded in photons. As an illustration, we show how the
gate can be employed to increase the communication rate of quantum repeaters based on atomic ensembles.

PACS numbers:
Keywords:

Large bandwidth, fast propagation and the non-interacting
nature of photons, make them ideal for communicating quan-
tum information over long distances [1]. In contrast, strong
photon-photon interactions are desirable for processing of
quantum information encoded in the photons, especially if
both high fidelity and high efficiency are needed. To satisfy
these requirements one needs a highly non-linear medium.
Typically, the strength of photon-photon interactions medi-
ated by a non-linear medium is very weak at the single-photon
level where photonic quantum logic gates are operating [2].
As a consequence, the implementation of photonic quantum
gates remains an unsolved challenge and requires novel means
of efficient light-matter interaction. To enhance light-matter
interactions, a viable solution is to use ensembles of atoms,
e.g., configured for electromagnetically induced transparency
(EIT) [3]; this can be further improved by placing the ensem-
ble in an optical cavity, but these ensemble based approaches
do not increase the essential photonic non-linearity. In recent
years, there has been intense efforts to realize light-matter in-
teractions via, non-linear interactions in a variety of medium,
ranging from atoms [4–10] and atom like systems [11–14] to
superconducting qubits [15–17].

A promising approach towards creating strong quantum
nonlinearities is to exploit excitation blockade in Rydberg EIT
systems [18–25]. Several quantum effects like strong optical
non-linearities and control of light by light [22–28], determin-
istic single-photon sources [29], and the generation of entan-
glement and atomic quantum gates [30–34] have been inves-
tigated. The strong nonlinearity originates from the fact that
the Rydberg interaction prevents multiple excitations within
a blockaded radius rb [35, 36]. The ensemble then behaves
as a two-level superatom consisting of Nb atoms within a ra-
dius rb [35, 36]. If the optical depth db corresponding to the
superatom is sufficiently large, db � 1 [22], a strong optical
nonlinearity at the single-photon level can be achieved in the
EIT configuration [18–25]. Reaching such an optical depth is,

however, challenging, which limits the effectiveness of pho-
tonic quantum gates.

An enhanced optical nonlinearity was recently demon-
strated by placing the ensemble inside an optical cavity [26],
but a direct application of this nonlinearity for quantum gates
is non-trivial since the outgoing optical modes are highly dis-
torted and entangled by the interaction [37–39]. In this let-
ter, we propose a novel scheme for achieving a high fidelity
photonic controlled-phase (CP) gate with a Rydberg EIT en-
semble trapped inside an optical cavity of moderate finesse.
In our scheme, the photons are incident at different times thus
avoiding the problem of mode distortion while still allowing
the cavity enhancement of the interaction. The use of a cav-
ity has several major advantages compared to ensembles in
free space, since it enhanced light-atom coupling in the en-
semble and also effectively increases the non-linearity. In our
proposal, the parameter characterizing the Rydberg blockade
is Cb ∼ Fdb, where Cb = NbC, with C � 1 being the sin-
gle atom cooperativity, and F is the cavity finesse. Hence the
effect of the Rydberg interaction is increased by the cavity fi-
nesse F , whereas the low value of C is compensated by a high
value of Nb. In addition, the cavity is also useful for con-
trolling the mode structure thereby enabling high input-output
efficiencies [40]. We show that the proposed gate can have
a promising (heralded) error scaling as 1/C2

b , and demon-
strate how it can be used to improve quantum repeaters based
on atomic ensembles even for moderate interactions strengths
Cb ∼ 10. The proposed CP gate can thus be directly inte-
grated into quantum communication circuitry thereby provid-
ing a building block for future quantum networks. The Ryd-
berg interaction [36] for our proposal can either be long range
dipolar or van der Waals interactions, but for simplicity, we
only consider the latter.

We first outline the basic idea of our gate, which goes along
the line of Ref. [41], except that the single trapped atom is
replaced by a Rydberg ensemble. In contrast to Ref. [41],
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2

and many others, we thus do not require the strong-coupling

regime of cavity QED, and can work with cavities of moderate

finesse. This enables input-output efficiency near unity since

the cavity losses can be completely negligible compared to the

mirror’s transmission [40]. For simplicity, we first describe

the operation for single-rail qubits where a qubit is encoded in

a photon pulse containing a superposition of vacuum |0〉 and

a single photon |1〉. Later, we generalize it to a more useful

dual-rail encoding where the qubit is encoded as a photon in

one of two possible modes.

In the single-rail version outlined in Figs. 1(a) and (b), a

first photon pulse is stored in a cavity containing a Rydberg

EIT ensemble [42]. Here a classical driving field from an ex-

cited state |e〉 to a Rydberg state |r〉 enables the storage of

incoming photons in |r〉 through the interaction of the cavity

field with the transition from the ground state |g〉 to |e〉. The

excitation in state |r〉 is then transferred to another Rydberg

state |r′〉 by a microwave pulse so that the ensemble contains

a single atom in state |r′〉 if the first pulse contained a single

incoming photon. The second pulse is then incident on the

cavity. If the first pulse contained vacuum |Ø〉, the second

pulse is scattered under Rydberg EIT conditions and leaves

the cavity with the same phase. If the first pulse contained a

photon, the atom in |r′〉 shifts the position of the state |r〉 in

the remaining atoms. As we will show, this prevents the sec-

ond pulse from entering the cavity resulting in a phase flip on

the |1〉 component of the second pulse. This evolution thus re-

alizes a CP gate which, together with single qubit operations,

is universal for quantum information processing.

We now present a theoretical treatment to evaluate the per-

formance of the CP gate. The initial state of the single photon

pulse can be expressed as
∫
dωφ(ω)â†ωe

−iωt|Ø〉, where φ(ω)
is the normalized pulse shape, â†ω is the one-dimensional field

operators satisfying the standard bosonic commutation rela-

tions and |Ø〉 denotes the vacuum of all the optical modes.

The frequency integrand ω of the incoming photon is refer-

enced to the cavity frequency ωc, which in turn is nearly res-

onant to the |e〉 → |g〉 transition (see Fig. 1(a)). The cavity

is assumed to be one-sided with a standing-wave field. The

dynamics of the system can be described in the quantum jump

approach through the no-jump Hamiltonian H = Hs + HI .

Here Hs consists of the decays and the free energy terms [43]

while,

HI = −
∑
l

�

[
Ωl

2
|rl〉〈el|+ iGl|el〉〈gl|b̂

]
+ H.c.

+
∑
k

�Vkl|r′k〉〈r′k| ⊗ |rl〉〈rl|, (1)

Here the coupling strengths of the lth atom with the driving

field and the incoming single photon pulse is respectively Ωl

and Gl, while Vkl is the van der Waals interaction among

the Rydberg excitations of atoms k and l. We solve the

Schrödinger equation for the scattering stage assuming con-

stant Ωl in Fourier space to find the reflection co-efficient.

The (amplitude) reflection coefficient with the stored Rydberg

excitation in atom k is given by Rk(ω) =
(
2κSk(ω)− 1

)
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âout

2rb

Rydberg 
Blockade
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FIG. 1: Schematic outline of the phase gate (a) An input single
photon pulse along with a driving field induces a two-photon transi-
tion to the Rydberg state |r〉 which is subsequently transferred to an-
other Rydberg state |r′〉. Due to Rydberg interactions Vkl among the
atoms, other Rydberg states |r〉 within the range of the interaction
potential, given by, the blockade radius of rb, become off-resonant
allowing no further excitation. (b) When an initial photon pulse is
stored in the Rydberg ensemble, the second incoming photon cannot
enter the cavity and is scattered off, which ideally induces a phase
flip of π on the scattered photons. (c) Dual-rail implementation of a
CP gate (dotted box). A Bell state measurement can be implemented
by combining the CP gate with Hadamard gates (HG).

where,

Sk(ω) =

⎛⎝κ− iω +
∑
l

|Gl|2

(Γel − iΔ̃l) +
|Ωl/2|2

Γrl+i(δl+Vkl−ω)

⎞⎠−1

.

(2)

where the detunings are Δl = ωel − ωc, Δ̃l = Δl + ω and

δl = (ωrl−ωe)−ωc with �ωel(rl) and Γel(rl) being the energy

and width of the excited (Rydberg) state |e〉(|r〉) in atom l
and κ is the cavity field decay rate. The reflection coefficient

Rg(ω) [43] for no stored excitation is evaluated by setting

Vkl = 0.

To get an understanding of the scattering we study the be-

havior of the reflection coefficient for resonant interactions

δl = Δl = 0 and long lived Rydberg excitations (Γrl =
0). For simplicity, we assume equal couplings and driving

strengths on all atoms Gl = G and Ωl = Ω (for the general

case see [43]). Furthermore, if the photon pulse has a suitably

long duration we can put ω ≈ 0 (see below). With these as-

sumptions, we find from Eq. (S14) that Rg = 1 for no stored

excitation; this is the perfect EIT condition. When an excita-

tion is stored, the reflection coefficient becomes

Rk =

(
2

1 + C∗v
− 1

)
, (3)

where C∗v = Cb + iC′b = C∑l 1/
[
1 + |Ω/2|4

V2
klΓ

2
e

]
+

iC∑l
|Ω/2|2
VklΓe

/
[
1 + |Ω/2|4

V2
klΓ

2
e

]
quantifies the effective coopera-
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tivity of the blockade, while C = |G|2/(κΓe) is the single
atom cooperativity. Each atom l in the volume blocked by the
|r′k〉 excitation, i.e. such that Vkl � |Ω/2|2/Γe, will con-
tribute with C in Cb. On the other hand, those atoms for which
Vkl � |Ω/2|2/Γe will have a negligible contribution to Cb,
and hence Cb gives the effective cooperativity of the blockade
ensemble. The imaginary part depends on the shape of the
interaction but for a uniform 1/r6 interaction at resonance in
a uniform cloud we find that |C′b| = Cb [43] (r is the distance
between atoms k and l).

We now discuss the key feature of our work - the imple-
mentation of a photonic CP gate via scattering from a Ry-
dberg ensemble in either a single-rail or dual-rail encoding.
The single-rail implementation uses the encoding discussed
in the introduction and is shown schematically in Fig. 1 (b).
A first qubit is encoded in the vacuum and single photon state,
|Ø〉 and |1〉 =

∫
dωφ(ω)â†ωe

−iωt|Ø〉, respectively, of a first
incoming pulse. This pulse is stored in the Rydberg ensem-
ble such that the logical states |0〉 and |1〉 are mapped onto
the ensemble being in the joint ground state |0〉 = |gN 〉|Ø〉
and a Rydberg polariton |1〉 =

∑
k αk|gN−1, r′k〉|Ø〉. This is

achieved using the well established techniques of storage in
atomic ensembles, which is known to have an error 1/NC for
any slowly varying pulse shape provided a temporally varying
control field is used during storage [3, 19], followed by mi-
crowave π-pulse between |rk〉 and |r′k〉. A second incoming
photon pulse is then reflected from the cavity. This reflection
can be from either an ensemble in the EIT configuration (en-
semble in |0〉), or from a blocked ensemble (|1〉). As can be
seen from Eq. (S17) there is exactly a π phase shift between
the two situations: Rg = 1 for C∗v = 0 and Rk = −1 for
|C∗v | � 1. Finally, the first stored pulse is retrieved from the
ensemble.

To evaluate the performance we calculate the Choi-
Jamiolkowski fidelity of the gate. Since, in general, we have
NC > Cb, the fidelity of the operation will mainly be lim-
ited by the gate and we shall ignore imperfections during the
storage. The fidelity can then be determined by [43] ,

FCJ =
1

16

∣∣∣2 +

∫
dω|φ(ω)|2Rg(ω)

−
∑

k

∫
dω|αk|2|φ(ω)|2Rk(ω)

∣∣∣
2

. (4)

To account for errors due to imperfect Rydberg blockade, we
evaluate the above fidelity and find

FCJ = 1− (1 + Cb)
(1 + Cb)2 + C′2b

− NCΓ2
e

|Ω/2|4 (∆ω)2

−
(

1

κ
+
NCΓe
|Ω/2|2

)2

(∆ω)2 (5)

Here the third and fourth term are gate errors due to the fi-
nite frequency width ∆ω2 of the incoming pulse. These terms
arise predominately from the EIT bandwidth, which is much
narrower than the variations of the blocked reflection coeffi-
cient. For a narrow pulse ∆ω → 0, the fidelity is only limited

by the cooperativity of the blocked ensemble 1−FCJ ∝ 1/Cb.
Hence, as discussed in the introduction, it is the cavity en-
hanced blockaded cooperativity, which is the main figure of
merit for the gate.

In the dual-rail encoding, both logical states |0〉 and |1〉
are represented by photons, but in two different paths. A
schematic of the dual-rail CP gate is shown in Fig. 1(c). The
first photon pulse in the upper two arms of the figure is first
stored in a memory consisting of a Rydberg ensemble placed
in each arm (for a polarization encoding such two memories
might be realized by two different internal states of the same
ensemble). A second photon pulse is then scattered from the
Rydberg ensemble if it is in state |1〉 (upper rail in the figure).
This scattering ideally induces a phase change of π if there
was a photon stored in the Rydberg ensemble, i.e. if both
qubits were in state |1〉. As opposed to the single-rail imple-
mentation, the dual-rail implementation has the possibility of
conditioning on getting two photons in the output. Since the
dominant error in the single-rail implementation is the loss of
photons, this possibility allows for a substantial increase in
the fidelity with only a minor failure probability of the gate.
In view of a possible application of the gate for quantum re-
peaters, discussed below, we consider the conditional fidelity
of an EPR pair resulting from an entanglement swap realized
with the gate using the full circuit in Fig. 1(c). Neglecting
again the error due to finite storage efficiency, we find that
this fidelity is [43]

Fswap =

∫
dω|φ(ω)|2

∣∣2 +Rg(ω)−∑k |ck|2Rk(ω)
∣∣2

16Psuc
(6)

where the success probability of the process is Psuc =∫
dω|φ(ω)|2(2 + |Rg(ω)|2 + |∑k |ck|2Rk(ω)|2)/4. Note

that compared to FCJ in Eq. (S19), the only difference is due
to the conditioning with a success probability Psuc < 1 and
the way the mode function is treated. The latter is related to
the fact that Eq. (S19) is the fidelity with a specific mode
function. Keeping only the leading order contribution to the
dispersion, we find the fidelity and success probability of the
CP gate

Fswap = 1− 1

[C2
b + C′2b ]

− 3C2
b − C

′2
b

4[C2
b + C′2b ]2

−3

4

[
1

κ
+
NCΓe
|Ω/2|2

]2

(∆ω)2, (7)

Psuc = 1− Cb
(1 + Cb)2 + C′2b

− NCΓ2
e

|Ω/2|4 (∆ω)2 (8)

Here the fourth term is again the leading order error from the
spectral width of the pulse. In the limit of a narrow pulse
∆ω → 0, we see that the conditional gate error 1 − Fswap ∝
1/(Cb)2 for Cb � 1 is much smaller than for the single-rail.
This comes at only a minor cost in the failure probability 1−
Psuc ∝ 1/Cb. The resulting dual-rail fidelities are plotted in
Fig. 2 as a function of the parameter Cb. For Cb ≈ 8, the
(post-selected) fidelity is found to be larger than 0.99

In order to get realistic predictions, we use the experi-
mental conditions of Ref. [26], with Γe ≈ (2π)3MHz and
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κ ≈ (2π)10MHz (corresponding to a finesse F ≈ 120) but
a smaller beam waist w0 = 15µm. This gives a single atom
cooperativity C = 0.025 and we take NC = 20 correspond-
ing to a combined storage and retrieval efficiency of 90%. We
assume a Rydberg line width γr = (2π)60 kHz [44] corre-
sponding to a coherence time of τr = 1/γr = 2.65 µs (note
that if the two ensembles in the dual-rail encoding are read out
with the same laser the scheme becomes insensitive to phase
fluctuations). With a pulse duration of T = 1/∆ω = 300
ns and a driving strength of Ω = (2π)36 MHz the error due
to finite bandwidth in Eq. (S22) is below 2%. Taking the in-
teraction V = (2π)8.31 · 106/r6 MHz µm6 corresponding to
two atoms with a Rydberg quantum number nr = 90 and an
atomic density of n = 0.25 µm−3, one has Cb ∼ 8.1 [43]
which is sufficient to obtain high fidelities as show in Fig. 2.
Here, we ignore any effect of sample inhomogeneities, but this
can be taken into account by suitable redefinitions of Cb and
C′b [43].

0 1 2 3 4 5 6
Cb

0.2

0.4

0.6

0.8

1.0
F

FIG. 2: Choi-Jamiolkowski fidelity (thin line) and post-selected
swap fidelity (thick line) as functions of the blockaded cooperativ-
ity Cb for a spectrally narrow pulse ∆ω → 0. We assume |C′b| = Cb.

As a particular application of the gate, we consider long
distance quantum cryptography based on quantum repeaters.
We considered the ensemble based quantum repeater protocol
proposed in Ref. [46], but replace the entanglement swapping
with the procedure shown in Fig. 1(c). We calculate the secret
key rate per repeater station as described in Ref. [45] (assum-
ing the distributed states to be Werner states) and compare the
results to the original protocol (see Fig. 3). At the lowest level
of the protocol, single excitations are stored in atomic ensem-
bles using a Raman scheme and we include double excitation
errors to lowest order similar to Ref. [46]. The performance of
the protocol depends strongly on the repetition rate of this op-
eration. Regardless of the repetition rate, the CP gate enables
significantly higher communication rates since it allows near
perfect Bell state measurements (for Cb � 1) whereas swap-
ping operations based on linear optics have a maximal suc-
cess probability of 50%. In Fig. 3, we also show the rate ob-
tainable if single excitations are initially created perfectly and
deterministically in the atomic ensembles, e.g., by exploiting
Rydberg blockade [29]. We find that for such a protocol, a
cooperativity of Cb ∼ 25 is sufficient to obtain a secret key
rate of 1.5 Hz over 1000 km using 33 repeater stations.

In conclusion, we have proposed an efficient method to im-
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FIG. 3: Secret key rate per repeater station (rsecret) as a function of the
blockaded cooperativity (Cb) for a communication distance of 1000
km. We compare the protocol of Ref. [46] (Original) with a mod-
ified protocol where the entanglement swapping is performed with
the Rydberg CP gate (Rydberg). We consider an optimistic source
repetition rate of 100 MHz and a more modest one of 1 MHz, as well
as a perfect single excitation state created in the atomic ensembles,
e.g., using Rydberg blockade [29]. We assume an attenuation length
of 22 km in the fibers and an optical signal speed of 2 ·105 km/s. The
ensemble readout efficiency and photodetector efficiency are both as-
sumed to be 90%. The steps in the curves reflect where the fidelity
of the CP gate allows additional swap levels to be employed.

plement a CP gate for photons. The gate combines the ad-
vantages of cavity defined optical modes and cavity enhanced
light matter interactions with the strong Rydberg blockade ob-
tainable in atomic ensembles. As a direct application, the pro-
posed gate can be used to improve the communication rate of
quantum repeaters, but more generally the gate may serve as
a building block for photonic quantum networks.
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Supplementary Material

THE REFLECTION COEFFICIENT

The dynamics of the Rydberg ensemble in the cavity can be described through the no-jump HamiltonianH consisting of the free
energy and decay termsHs along with the interaction part asHI = HL-int +HRyd-int, where

Hs =
∑

l

~(∆l − iΓel)|el〉〈el|+ ~(δl − iΓrl)|rl〉〈rl| − i~κb̂†b̂

HL-int = −
∑

l

~Ωl
2
|rl〉〈el| − i

∑

l

~Gl|el〉〈gl|b̂+ H.c.

HRyd-int =
∑

k

~Vkl|r′k〉〈r′k| ⊗ |rl〉〈rl|, (S9)

where the detunings ∆l, δl, the linewidths Γe,Γr, and the coupling strengths Ωl,Gl are as defined in the main text, while 2κ is
the cavity intensity decay rate. Note that all energies are measured relative to the cavity resonance, and hence the cavity term in
Hs only involve the loss rate κ. are as defined in the main text, while Vkl is the van der Waals interaction among the Rydberg
excitations of atoms k and l. The incoming and outgoing photons are going to be accounted for by the input-output relations.
After the storage of the first pulse, the wave-function of the combined field and ensemble with the initial excitation stored in |r′k〉
and one incoming photon is given by,

|Ψ〉 =
∑

k

∫
dωβk(ω)â†ωe

−iωt|gN−1, r′k,Ø〉+
∑

k

b̂†Cbk|gN−1, r′k,Ø〉

+
∑

l

{
Cekl|gN−2, el, r

′
k,Ø〉+ Crkl|gN−2, rl, r

′
k,Ø〉

}
. (S10)

Here |Ø〉 is the vacuum state, Cekl and Crkl are respectively the amplitude of being in the excited state |e〉 and the Rydberg
state |r〉 when there is one stored Rydberg excitation in the kth atom, while Cbk is the amplitude of the cavity excited state. We
next evaluate the Schrödinger equation for the wave-function (S10) together with the input-output relations to find the dynamical
behavior of the amplitudes Cak, Cekl, Crkl

Ċbk =
∑

l

CeklG∗l − κCbk +
√

2κβin
k , (S11)

Ċekl = −i(∆l − iΓel)Cekl + i
Ω∗l
2
Crkl − GlCbk, (S12)

Ċrkl = −i(δl − iΓrkl)Crkl + i
Ωl
2
Cekl − iCrklVkl. (S13)

The outgoing field amplitude is then given by,

βout
k (ω) =

√
2κCbk(ω)− βin

k (ω), (S14)

where Cbk is found by solving the set of Eqns. (S11-S13) using Fourier transformation. We thereby get,

Cbk(ω) =
√

2κβin
k (ω)Sk(ω)

Sk(ω) =


κ− iω +

∑

l

|Gl|2

(Γel − i∆l − iω) + |Ωl/2|2
Γrl+i(δl+Vkl−ω)



−1

. (S15)

Substituting Cbk into Eq. (S14) we get,

Rk(ω) = 2κ


κ− iω +

∑

l

|Gl|2

(Γel − i∆l − iω) + |Ωl/2|2
Γrl+i(δl+Vkl−ω)



−1

− 1. (S16)

Assuming all fields to be resonant i.e. for δl = ∆l = 0, a long lived Rydberg state (Γrl = 0), and slowly varying photon pulses
(ω = 0) we get,

Rk = 2


1 +

∑

l

|Gl|2/κΓe
1− i|Ωl/2|2/VklΓe



−1

− 1. (S17)
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which under the assumption of equal coupling strengths Gl = G and Rabi frequencies Ωl = Ω, for the defined single atom
co-operativity C = |G|2/κΓe becomes, Rk =

[
2 (1 + C∗v )

−1 − 1
]
, where C∗v =

∑
l C/

(
1− i|Ω/2|2/VklΓe

)
. To get a simple

physical understanding of the scattering dynamics, we shall first assume that all atoms are identical (homogeneous). We will
consider what happens for an inhomogeneous ensemble in a later section. For the van der Waals interaction potential Vkl =
−C6/r

6, where r is the relative distance between the kth and lth atoms, we can evaluate C∗v with the sum
∑
l converted to a

volume integral→
∫
ndV . Thus we get for a homogeneous ensemble with an isotropic potential,

C∗v = 4πnC
∫ ∞

0

dr r2/(1 + iζr6); ζ =
|Ω|2

4C6Γe
. (S18)

We can write this integral as C∗v = Cb − iC′b and solved it to get, |Cb| = |C′b| = 2
3 (Cnπ2/

√
2ζ). Above, we have solved the

scattering dynamics in the case where there was already a Rydberg excitation stored. In principle, we should also solve the
dynamics without the first stored excitation. In this case, however, the excitations are completely independent of each other. We
can then conveniently obtain the results for this situation by simple setting Vkl = 0. Then from Eq. (S17) we get C∗v = 0 for a
long photon pulse and henceRg = 1.

To investigate the effect of pulses of a finite duration, we now consider the bandwidth of the scattering coefficient. To do this,
we perform a Taylor series expansion of the reflection coefficient about some central frequency ω0,

Rk(ω) = Rk(ω0) + ∂ωRk|ω0(ω − ω0) +
1

2
∂2
ωRk|ω0(ω − ω0)2. (S19)

Here we have kept upto the second order in the expansion. The above three terms in the expansion are described by,

Rk(ω0) =

(
2

1 + C∗v
− 1

)
+ 2i

ω0

κ

1

(1 + C∗v )2
, (S20)

∂ωRk|ω0
=
−4ω0

κ

(
1
κ −

C∗αv
Γe

)

(1 + C∗v )
3 +

2i
(

1
κ −

C∗αv
Γe

)

(1 + C∗v )
2 , (S21)

∂2
ωRk|ω0

=
−4
(

1
κ −

C∗αv
Γe

)2

(1 + C∗v )
3 +

4C∗v
Γe

C∗βv
Γe

[
(C∗v )2 − 3

ω2
0

κ2

]

(1 + C∗v )
6 +

4ω0

κ

C∗ηv
Γ2
e

(1 + C∗v )
4 +

4
C∗χv
Γ2
e

(1 + C∗v )
3 ,

−4i





3ω0

κ

(
1
κ −

C∗αv
Γe

)2

(1 + C∗v )
4 −

ω0

κ

C∗βv
Γ2
e

[
3(C∗v )2 − ω2

0

κ2

]

(1 + C∗v )
6 +

C∗ηv
Γ2
e

(1 + C∗v )
3 +

ω0

κ

C∗χv
Γ2
e

(1 + C∗v )
4




,

(S22)

with the parameters defined by,

C∗v =
∑

l

C
1− iω0

Γe
+ |Ωl/2|2

i(Vkl−ω0)Γe

, C∗αv = C
∑

l

1 + |Ωl/2|2/(Vkl − ω0)2

[
1− iω0

Γe
+ |Ωl|2

i(Vkl−ω0)Γe

]2 (S23)

C∗βv = C
∑

l

1 + |Ωl/2|2/(Vkl − ω0)2

[
1− iω0

Γe
+ |Ωl/2|2

i(Vkl−ω0)Γe

]3 , C∗ηv = C
∑

l

|Ωl/2|2Γe/(Vkl − ω0)3

[
1− iω0

Γe
+ |Ωl/2|2

i(Vkl−ω0)Γe

]3 (S24)

C∗χv = C
∑

l

|Ωl/2|2ω0/(Vkl − ω0)3

[
1− iω0

Γe
+ |Ωl/2|2

i(Vkl−ω0)Γe

]3 . (S25)

Assuming the central frequency of the incoming pulse to be on resonance, we set ω0 = 0 and hence Eqs. (S20-S22) become
substantially simpler and are described by,

Rk =

(
2

1 + C∗v
− 1

)
, (S26)

∂ωRk|ω0=0 =
2i
(

1
κ −

C∗αv
Γe

)

(1 + C∗v )
2 , (S27)

∂2
ωRk|ω0=0 =

−4
(

1
κ −

C∗αv
Γe

)2

(1 + C∗v )
3 +

4C∗v
Γe

C∗βv
Γe

(C∗v )2

(1 + C∗v )
6 +

4
C∗χv
Γ2
e

(1 + C∗v )
3 − 4i





C∗ηv
Γ2
e

(1 + C∗v )
3




. (S28)
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Note that for the case of no stored photon in the ensemble, we have Rk → Rg and one can also get the Taylor series expansion
ofRg by setting Vkl = 0. The expressions for such an expansion at resonance is the same as given by Eqs. (S26 - S28) but now
with the set of parameters, C∗v → C∗, C∗αv → C∗α, C∗βv → C∗β , C∗ηv → C∗η , C∗χv → C∗χ, where the new parameters correspond to
Eqs. (S23 -S25) with Vkl = 0. From the set of Eqs. (S26-S28), we see that the leading order dispersive contributions are scaled
down by a factor of (C∗v )2 and (C∗v )3 when we compare the situation with and without stored excitation in the first pulse. Hence
the spectrally narrowest feature is the width of the EIT resonance without a stored excitation, and this will thus be the limiting
factor for the bandwidth.

We next analyze the behaviour of the parameters listed in Eqs. (S23-S25) in different limits of operation. We can find the
blockaded part by considering the limits Vkl � |Ωl/2|2/Γe, while the contribution from the remaining EIT medium is found in
the limit Vkl � |Ωl/2|2/Γe. To get a feeling for the expression in Eqs. (S23-S25), we separate them into contributions coming
from the blockaded atoms and that from the rest of EIT medium,

C∗v ≈ Cb + iC′b =
∑

l

C[
1 + |Ω/2|4

V2
klΓ

2
e

] + i
∑

l

C |Ω/2|
2

V2
klΓe[

1 + |Ω/2|4
VklΓ2

e

] ; (S29)

C∗αv = C∗αb −Nα
EITC

Γ2
e

|Ω/2|2 , C∗βv = C∗βb ; (S30)

C∗ηv = C∗ηb − iN
η
EITC

Γ4
e

|Ω/2|4 , C∗χv = 0, (S31)

where we have assumed all the Rabi frequencies to be equal such that Ωl = Ω and C∗αv =
∑
l C/(1 + |Ω/2|2/iVklΓe)2, C∗βv =

C∗ηv =
∑
l C/(1 + |Ω/2|2/iVklΓe)3, which scale as the number of blocked atoms Cb while Nα

EIT , N
β
EIT scale as the number of

remaining unblocked atoms ∼ N . Similarly, for the case of no stored excitation, we get,

C∗ = 0, C∗α = −NC Γ2
e

|Ω/2|2 , C∗β = 0; (S32)

C∗η = −iNC Γ4
e

|Ω/2|4 , C∗χ = 0. (S33)

Note that since in this case there is no Rydberg excitation blockade, only the EIT medium contributes and all the terms arising
due to blockade are zero.

CHOI-JAMIOLKOWSKI FIDELITY

The Choi-Jamiolkowski (CJ) fidelity is a measure of how close two given quantum mechanical processes are. The idea is to
apply each process to a particular entangled state and then calculate the fidelity between the two output states. Specifically, we
assume that the two processes are described by the superoperators U and V . The superoperator U represents the ideal process
that we want to accomplish and is assumed to be unitary. Hence, its action on some density matrix ρ can be be written as

U(ρ) = UρU†, (S34)

where U is a unitary operator. The actual physical implementation is represented by the completely positive trace preserving
superoperator V . In general, it admits a Kraus (operator-sum) decomposition

V(ρ) =
∑

l

VlρV
†
l (S35)

with
∑
l V
†
l Vl = I (I is the identity operator). If we separate out the “no jump” evolution with the effective non-Hermitian

HamiltonianH in Eq. (S35), we can write

V(ρ) = V ρV † +
∑

l

KlρK
†
l , (S36)

where V = exp(−iHtf/~) with tf being the time it takes to accomplish the wanted operation. The operators Kl form the Kraus
decomposition of the part of the evolution where at least one quantum jump occurs.

To find the CJ fidelity, we consider the superoperators I ⊗ U and I ⊗ V that are tensor products of the original ones with the
identity superoperator I. We pick an orthonormal basis set {|j〉} for the d-dimensional Hilbert space that U and V act on. Now
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we can define the state |Φ〉 =
∑
j |j〉|j〉/

√
d that is an element of the original Hilbert space tensored with a copy of itself. Note

that |Φ〉 is a maximally entangled state of these two copies. We will only consider a two-qubit gate, so that d = 4 in the above.
After applying I ⊗ U and I ⊗ V onto the density matrix |Φ〉〈Φ|, we get a pair of new states

ρU = [I ⊗ U ]|Φ〉〈Φ| = (I ⊗ U)|Φ〉〈Φ|(I ⊗ U†), (S37)

ρV = [I ⊗ V]|Φ〉〈Φ| = (I ⊗ V )|Φ〉〈Φ|(I ⊗ V †) +
∑

l

(I ⊗Kl)|Φ〉〈Φ|(I ⊗K†l ). (S38)

The CJ fidelity is defined to be the fidelity of these two states. Since ρU is a pure state, we get

FCJ = F (ρU , ρV) = 〈Φ|(I ⊗ U†)ρV(I ⊗ U)|Φ〉
= |〈Φ|(I ⊗ U†V )|Φ〉|2 +

∑

l

|〈Φ|(I ⊗ U†Kl)|Φ〉|2. (S39)

STORAGE AND RETRIEVAL

The full physical process to implement the controlled-phase gate consists of storage of one photon, scattering of the second
one, and retrieval of the first. The theory of storage and retrieval with an ensemble in a cavity is well established. In suitable
regimes these results show that we have a mapping between a single mode of the atomic ensemble and a specific incoming
or outgoing optical mode, and all other modes will be uncoupled [1]. Hence, the process of storage is described by a single
parameter, which is the storage efficiency of a single incoming photon to create a specific spin wave

|S〉 =
∑

k

αk|gN−1, r′k〉. (S40)

After scattering of the second photon, this spin wave will get multiplied by the reflection coefficient of the second photon such
that it becomes

|SR〉 =
∑

k

αkRk(ω)|gN−1, r′k〉,

where ω is the frequency of the second photon. Note here that the scattering coefficient may depend on which atom the first
photon was stored in since different atoms may experience different degrees of blockade. For the retrieval, the cavity maps the
particular spin wave (S40) to a specific temporal mode. Hence, the amplitude of the retrieved photon is given by the shape of
that temporal mode multiplied by the overlap

〈S|SR〉 =
∑

k

|αk|2Rk(ω).

In general, the retrieved wavepacket will also need to multiplied by the square root of the overall storage and retrieval efficiency,
but we neglect this in our analysis.

For the fidelity calculations, one would need to calculate the overlap of the retrieved photon wavepackets corresponding to
|S〉 and |SR〉. However, by the discussion above, the overlap of the photon wavepackets will be equal to the overlap of the
spin waves |S〉 and |SR〉. Hence, in the calculations below, we will directly calculate the fidelities by projecting the spin waves
instead of analysing the retrieval.

FIDELITY IN THE SINGLE-RAIL ENCODING

In the single-rail encoding the computational basis is

|00(t)〉 = |gN 〉|Ø〉,

|01(t)〉 = |gN 〉
∫
dωφ(ω)â†ωe

−iωt|Ø〉,

|10(t)〉 =
∑

k

αk|gN−1, r′k〉|Ø〉,

|11(t)〉 =
∑

k

αk|gN−1, r′k〉
∫
dωφ(ω)â†ωe

−iωt|Ø〉.

(S41)
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Note that this basis is time dependent due to the free evolution phase exp(−iωt). Hence, we define the ideal operation U such
that it includes this free evolution phase. Specifically, if we denote the computational basis states at the initial time t = 0 by
omitting the time variable, i.e. |jj′〉 = |jj′(t = 0)〉 (j, j′ε0, 1), then the ideal operation of the controlled-phase gate is given by

U |00〉 = |00(tf)〉, U |01〉 = |01(tf)〉, U |10〉 = |10(tf)〉, U |11〉 = −|11(tf)〉. (S42)

Using the computational basis (S41) we can write

|Φ〉 =
1

2

(
|00〉|00〉+ |01〉|01〉+ |10〉|10〉+ |11〉|11〉

)
.

Inserting this specific form of |Φ〉 into (S39) we obtain

FCJ =
1

16

∣∣∣〈00|U†V |00〉+ 〈01|U†V |01〉+ 〈10|U†V |10〉+ 〈11|U†V |11〉
∣∣∣
2

+
1

16

∑

l

∣∣∣〈00|U†Kl|00〉+ 〈01|U†Kl|01〉+ 〈10|U†Kl|10〉+ 〈11|U†Kl|11〉
∣∣∣
2

.
(S43)

For the operators Kl, we assume that 〈jj′(tf)|Kl|jj′〉 = 0, where j, j′ ∈ {0, 1}. Physically, this assumption means that if a
quantum jump (incoherent decay) occurs, the given basis will switch to another state of the physical system (possibly even one
of the other basis states) but can never be driven back to the original state. I.e. if a photon is lost, it will result in a vacuum output,
and thus is does not give an overlap with the original state. Under this assumption, we only need to compute the dynamics due
to the non-Hermitian Hamiltonian. The detailed calculation is presented in Sec. . In essence, the result is that the dynamics of
the operator V can be described by the scattering relations

V |00〉 = |gN 〉|Ø〉,

V |01〉 = |gN 〉
∫
dωRg(ω)φ(ω)â†ωe

−iωtf |Ø〉,

V |10〉 =
∑

k

αk|gN−1, r′k〉|Ø〉,

V |11〉 =

∫
dω
∑

k

αkRk(ω)φ(ω)â†ωe
−iωtf |gN−1, r′k〉|Ø〉.

(S44)

Gathering all the formulas in this section, the CJ fidelity becomes

FCJ =
1

16

∣∣∣∣∣∣
2 +

∫
dω|φ(ω)|2Rg(ω)−

∫
dω|φ(ω)|2

∑

k

|αk|2Rk(ω)

∣∣∣∣∣∣

2

. (S45)

FIDELITY IN THE DUAL-RAIL ENCODING

In this section we calculate both the CJ fidelity and the entanglement swap fidelity for the dual-rail encoding and show how
they relate to each other. The circuit diagram of the entanglement swap operation is shown in Fig. S4.

The entanglement swap operation consists of evolution of the initial state (which is unitary in the ideal case) and a subsequent
measurement. The evolution can be decomposed into a controlled-phase gate and Hadamard gates. If the Hadamard gates are
assumed to be ideal, then the CJ fidelity of the whole evolution is equal to the CJ fidelity of the controlled-phase gate. We are
going to use this fact in relating the CJ fidelity to the entanglement swap fidelity.

The abstract definition of the CJ fidelity does not make any reference to a particular basis. In this section, in addition to the
computational basis, we will also use the Bell basis, since it is the natural choice for the entanglement swap operation. The Bell
states are

|φ00〉 = |φ+〉 =
1√
2

(
|00〉+ |11〉

)
,

|φ01〉 = |ψ+〉 =
1√
2

(
|01〉+ |10〉

)
,

|φ10〉 = |φ−〉 =
1√
2

(
|00〉 − |11〉

)
,

|φ11〉 = |ψ−〉 =
1√
2

(
|01〉 − |10〉

)
.

(S46)
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1

2

3

4

ϕ

H

HH

FIG. S4: (a) The circuit diagram of the entanglement swap operation. The numbers at the left edge indicate the label of the subsystem (qubit).
In the circuit, the Hadamard gates are denoted by H and the controlled-phase gate is denoted by ϕ.

In addition to the conventional names, we also give numbers to the Bell states, which will allow us to express summations in a
simple way below.

For the entanglement swap circuit of Fig. S4, the initial state is one Bell pair |φ+〉12 between subsystems 1 and 2 and another
Bell pair |φ+〉34 between subsystems 3 and 4. Note that this initial state can be written as

|φ+〉12|φ+〉34 =
1

2

1∑

j,j′=0

|φjj′〉14|φjj
′〉23 = |Φ〉1423.

This is exactly the state that is used as the input for the calculation of the CJ fidelity expressed in the Bell basis. After evolution
of subsystems 2 and 3 as shown by the circuit and a measurement (the two detectors to the right), a Bell pair between subsystems
1 and 4 is established.

The practical implementation of the above circuit is shown in Fig. 1(c) of the main text. Whereas Fig. S4 displays the extended
four-qubit Hilbert space required for the calculation of the CJ and entanglement swap fidelity, Fig. 1(c) only displays the two
central subsystems (2 and 3), but each of the two subsystems are represented by the photon being in two distinct modes.

We define â†0,ω to be the creation operator for subsystem 3 in state |0〉 with frequency ω, and â†1,ω to be the creation operator
for state |1〉. For notational convenience, we define the states |0ω〉3 = â†0,ω|Ø〉 and |1ω〉3 = â†1,ω|Ø〉. Then in the dual-rail
encoding, the computational basis is

|0〉2 =
∑

k

αk|gN−1, r′k〉0,

|1〉2 =
∑

k

αk|gN−1, r′k〉1,

|0(t)〉3 =

∫
dωφ(ω)e−iωt|0ω〉3,

|1(t)〉3 =

∫
dωφ(ω)e−iωt|1ω〉3.

(S47)

Here, |gN−1, r′k〉0 are the states of the memory (the ensemble which does not interact with the second photon), and |gN−1, r′k〉1
are the states of the cavity from which the second photon is scattered (see Fig. 1(c) of the main text). These two states correspond
to subsystem 2 of Fig. S4. Subsystem 3 is encoded in photonic states which are not stored but only scattered. Note that all of the
resulting computational basis states |00〉23, |01〉23, |10〉23 and |11〉23 physically correspond to having two excitations. Hence, it
allows for simple means of error detection: if less than two excitations are present at the end of the evolution, we know that an
error has occured. In the dual-rail basis, the action of the operator V23 that corresponds to the physical implementation of the
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controlled-phase gate can be written

V23|00〉23 =
∑

k

αk|gN−1, r′k〉0
∫
dωφ(ω)e−iωtf |0ω〉3,

V23|01〉23 =
∑

k

αk|gN−1, r′k〉0
∫
dωRg(ω)φ(ω)e−iωtf |1ω〉3,

V23|10〉23 =
∑

k

αk|gN−1, r′k〉1
∫
dωφ(ω)e−iωtf |0ω〉3,

V23|11〉23 =

∫
dω
∑

k

αkRk(ω)φ(ω)e−iωtf |gN−1, r′k〉1|1ω〉3.

(S48)

For the operators corresponding to the full evolution of the circuit of Fig. S4, we also need to describe the Hadamard operators.
In the dual-rail encoding, the Hadamard operations are obtained by impinging the photons on beamsplitters which work on all
frequency components separately. This is important for subsystem 3 (the scattered photon), since the frequency components
will be multiplied with, in general, different reflection coefficients Rg(ω) and Rk(ω) depending on the input state. Hence
the definition of the Hadamard operator here needs to be per frequency component, i.e. H3|0ω〉3 = (|0ω〉3 + |1ω〉3)/

√
2 and

H3|1ω〉3 = (|0ω〉3 − |1ω〉3)/
√

2. For subsystem 2, the single mode retrieval precludes any such difference in the mode shape
for photons that are incident on the beamsplitters. Hence we can define the Hadamard operators to act on the spin wave states
directly, H2|0〉2 = (|0〉2 + |1〉2)/

√
2 and H2|1〉2 = (|0〉2 − |1〉2)/

√
2.

In analogy with Eqs. (S34) and (S36), we define the superoperators Ũ and Ṽ for the ideal and the real version of the circuit of
Fig. S4. They can be written as

Ũ23(ρ) = Ũ23ρŨ
†
23,

and

Ṽ23(ρ) = Ṽ23ρṼ
†
23 +

∑

l

K̃l,23ρK̃
†
l,23,

where

Ũ23 = (H2 ⊗H3)U23(I2 ⊗H3),

Ṽ23 = (H2 ⊗H3)V23(I2 ⊗H3),

K̃l,23 = (H2 ⊗H3)Kl,23(I2 ⊗H3).

(S49)

Note that with the definitions (S42), (S46) and (S49), it holds that Ũ23|φjj
′〉 = |jj′(tf)〉.

In this setting, not only the input states used for the entanglement swapping match the ones used for the CJ fidelity, also the
actual operation itself has the same form: an identity operation acting on subsystems 1 and 4, while subsystems 2 and 3 are
evolved according to either Ũ or Ṽ . The two output states are then

ρŨ = [I14 ⊗ Ũ23]
(
|Φ〉〈Φ|

)
= (I14 ⊗ Ũ23)|Φ〉〈Φ|(I14 ⊗ Ũ†23),

ρṼ = [I14 ⊗ Ṽ23]
(
|Φ〉〈Φ|

)
= (I14 ⊗ Ṽ23)|Φ〉〈Φ|(I14 ⊗ Ṽ †23) +

∑

l

(I14 ⊗ K̃l,23)|Φ〉〈Φ|(I14 ⊗ K̃†l,23).

Now we want to use the error detection property of the dual-rail encoding. We define the projection operators

P̂jj′ = I14 ⊗ |j〉〈j|2 ⊗
(∫

dω|j′ω〉〈j′ω|3
)

(S50)

where j, j′ ∈ {0, 1}, and we also define their sum

P̂ =
1∑

j,j′=0

P̂jj′ . (S51)

The projection operators of Eq. (S50) correspond to measuring the states |jj′〉23 on the detectors of circuit of Fig. S4. Note that
for subsystem 3, we project onto the entire subspace that is spanned by the states |j′ω〉 instead of choosing a particular mode. This
is equivalent to the assumption that all frequency components contribute to the probability of a “click” on the detector. On the
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other hand, the operator of Eq. (S51) has a less clear physical interpretation. Formally, it projects a given state onto the subspace
with two excitations. The motivation for defining such an operator is to be able to relate the CJ fidelity to the entanglement swap
fidelity as we will see below. Since the entanglement swap fidelity can only be understood as a conditional fidelity (conditioned
on the measurement outcomes corresponding to the operators of Eq. (S50)), the CJ fidelity also needs to be conditional.

Let us begin with the calculation of the entanglement swap fidelity. Using the states after the measurement has taken place

ρjj′ =
P̂jj′ρṼ P̂

†
jj′

tr(P̂jj′ρṼ P̂
†
jj′)

,

we can define the conditional fidelities for the entanglement swap

Fjj′ = 〈φjj′ | tr23(ρjj′)|φjj
′〉14. (S52)

Here, we take the trace over subsystems 2 and 3, since the relevant question is how close subsystems 1 and 4 are to a particular
Bell pair. The trace can be written as

tr23(ρjj′) =
1∑

n,n′=0

∫
dω〈n|2〈n′ω|3ρjj′ |n′ω〉3|n〉2 =

1

tr(P̂jj′ρṼ P̂
†
jj′)

∫
dω〈j|2〈j′ω|3ρṼ |j′ω〉3|j〉2.

Projecting ρṼ onto |φjj′〉14 we obtain

〈φjj′ |ρṼ |φjj
′〉14 =

1

4
Ṽ23|φjj

′〉23〈φjj
′ |23Ṽ

†
23 +

1

4

∑

l

K̃l,23|φjj
′〉23〈φjj

′ |23K̃
†
l,23.

For the dual-rail encoding, we have a stronger assumption about the operatorsKl than for the single-rail encoding. We are going
to assume that 〈n|2〈n′ω|3Kl|jj′〉 = 0, where n, n′, j, j′ ∈ {0, 1}. Physically, this assumption means that the decay processes
take the state out of the computational basis entirely, since any such decay will reduce the number of the total excitations to less
than two. Then the expression for the fidelity (S52) becomes

Fjj′ =
1

4 tr(P̂jj′ρṼ P̂
†
jj′)

∫
dω
∣∣∣〈j|2〈j′ω|3(H2 ⊗H3)V23(I2 ⊗H3)|φjj′〉23

∣∣∣
2

.

with the trace in the denominator given by

tr(P̂jj′ρṼ P̂
†
jj′) =

1

4

1∑

n,n′=0

∫
dω
∣∣∣〈n|2〈n′ω|3(H2 ⊗H3)V23(I2 ⊗H3)|φjj′〉23

∣∣∣
2

.

For all j and j′ we get

tr(P̂jj′ρṼ P̂
†
jj′) =

1

16

∫
dω|φ(ω)|2


2 + |Rg(ω)|2 +

∣∣∣∣∣∣
∑

k

|αk|2Rk(ω)

∣∣∣∣∣∣

2



and

Fswap = Fjj′ =
1

16Psuc

∫
dω|φ(ω)|2

∣∣∣∣∣∣
2 +Rg(ω)−

∑

k

|αk|2Rk(ω)

∣∣∣∣∣∣

2

, (S53)

where we have defined the success probability Psuc =
∑1
j,j′=0 tr(P̂jj′ρṼ P̂

†
jj′), i.e.

Psuc =
1

4

∫
dω|φ(ω)|2


2 + |Rg(ω)|2 +

∣∣∣∣∣∣
∑

k

|αk|2Rk(ω)

∣∣∣∣∣∣

2

 . (S54)

Now we look at the conditional CJ fidelity. Using the state

ρ′Ṽ =
P̂ ρṼ P̂

†

tr(P̂ ρṼ P̂
†)

(S55)
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we can define the conditional CJ fidelity as F ′CJ = F (ρŨ , ρ
′
Ṽ). By the cyclicity and linearity of the trace, we have

tr(P̂ ρṼ P̂
†) =

1∑

j,j′=0

tr(P̂jj′ρṼ P̂
†
jj′) = Psuc.

The projection operator P̂ has no effect on the states |Φ〉, hence F (ρŨ , P̂ ρṼ P̂
†) = F (ρŨ , ρṼ), and the analysis reduces to

finding the unconditional CJ fidelity and dividing by the success probability Psuc. The final result is

F ′CJ =
1

16Psuc

∣∣∣∣∣∣
2 +

∫
dω|φ(ω)|2Rg(ω)−

∫
dω|φ(ω)|2

∑

k

|αk|2Rk(ω)

∣∣∣∣∣∣

2

. (S56)

Comparing Eqs. (S53) and (S56) we see that the only difference is the order of integration and taking the absolute value. Thus
in general, we have F ′CJ ≤ Fswap. If the bandwidth of the second photon is narrow compared to the the frequency variations
of Rg and Rk, then the two fidelity measures become equal. The reason for this similarity is that the two measures consider
the same input, but they do not consider exactly the same output. For the CJ fidelity the question we ask is what is the output
with a particular mode, which we for simplicity take to be the same as the input mode. Possibly the CJ fidelity can therefore be
increased by considering a more appropriate output mode. For the swapping fidelity we on the other hand consider everything
which is incident on the photodetectors regardless of the temporal mode and hence this fidelity is higher.

THE GATE FIDELITIES FOR THE RYDBERG CONTROLLED-PHASE GATE

In the single-rail case, we evaluate the CJ fidelity (S45). To evaluate the quantity inside the modulus square we expand it and
use Eq. (S19) and the corresponding expansion forRg to get,

∆R = Rg −
∑

k

|αk|2Rk =
2Cb + 2iC′b

(1 + Cb) + iC′b
(S57)

∆R′ =


R′g −

∑

k

|αk|2R′k


 = 2i

(
1

κ
+
NCΓe
|Ω/2|2

)
− 2i

(
1

κ
+
Nα
EITCΓe
|Ω/2|2

)
1

(1 + Cb)2
+

2iC∗αb
Γe

(1 + Cb)2
(S58)

∆R′′ =


R′′g −

∑

k

|αk|2R′′k


 = −4

(
1

κ
+
NCΓe
|Ω/2|2

)2

+ 4

(
1

κ
+
Nα
EITCΓe
|Ω/2|2

)2
1

(1 + Cb)3

+ 4
(
C∗αb
Γe

)2

(1 + Cb)3
− 4

NΓ2
eC

|Ω/2|4 + 4
Nη
EITΓ2

eC
|Ω/2|4

1

(1 + Cb)3
− 4

C∗βb
Γ2
e

C3
b

+ 4i
C∗ηb

Γ2
e(1 + Cb)3

(S59)

In deriving the above expressions, we have assumed that the ensemble is homogeneous and that the potential is isotropic. Hence
we have dropped the index k from Vkl. We can then do the sum over k and given that αk are normalized, we have

∑
k |αk|2 = 1

in the above expressions.
A closer look at Eq. (S45) suggests a further simplification which gives us,

FCJ =
1

16

(
4 + |∆R|2 + 4Re[∆R] + 2Re[∆R′′](∆ω)2 + Re[∆R∆R′′∗](∆ω)2

)
(S60)

where we have assumed narrow bandwidth of the pulse and defined the variance of the incoming pulse as (∆ω)2 =∫
dω|φ(ω)|2(ω − ω0)2. Substituting Eqs. (S57 - S59) in Eq. (S60) and assuming that Cb, C′b � 1 and C∗βb , C∗αb < C2

b , we
get,

FCJ '
[

1− (1 + Cb)
(1 + Cb)2 + C′2b

]
+

1

4[(1 + Cb)2 + C′2b ]
− NCΓ2

e

2|Ω/2|4 (∆ω)2

(
1 +
Cb(1 + Cb) + C′2b
(1 + Cb)2 + C′2b

)

− 1

2

(
1

κ
+
NCΓe
|Ω/2|2

)2
(

1 +
Cb(1 + Cb) + C′2b
(1 + Cb)2 + C′2b

)
(∆ω)2 (S61)
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Considering only the leading order contribution to the fidelity, we get,

FCJ = 1− (1 + Cb)
(1 + Cb)2 + C′2b

− NCΓ2
e

|Ω/2|4 (∆ω)2 −
(

1

κ
+
NCΓe
|Ω/2|2

)2

(∆ω)2 (S62)

For the dual-rail case, we calculate a conditional swap fidelity (S53) and the success probability (S54). We can write (S53) as

Fswap =
1

16Psuc

(
4 + |∆R|2 + 4Re[∆R] + |∆R′|2(∆ω)2 + 2Re[∆R′′](∆ω)2 + Re[∆R∆R′′∗](∆ω)2

)
(S63)

which under the assumption that Cb, C′b � 1 and C∗βb , C∗αb < C2
b , becomes,

=
1

16Psuc

(
16

[
1− (1 + Cb)

(1 + Cb)2 + C′2b

]
+

4

(1 + Cb)2 + C′2b
− 8NCΓ2

e

|Ω/2|4 (∆ω)2

(
1 +
Cb(1 + Cb) + C′2b
(1 + Cb)2 + C′2b

)

− 8

(
1

κ
+
NCΓe
|Ω/2|2

)2
(

1 +
Cb(1 + Cb) + C′2b
(1 + Cb)2 + C′2b

)
(∆ω)2 + 4

(
1

κ
+
NCΓe
|Ω/2|2

)2

(∆ω)2

− 8

(
1

κ
+
NCΓe
|Ω/2|2

)(
1

κ
+
Nα
EITCΓe
|Ω/2|2

)
1

(1 + Cb)2
(∆ω)2

)
(S64)

The success probability (S54) is then

Psuc =
1

4

(
2 + |Rg|2 + |R′g|2(∆ω)2 + Re[RgR′′∗g ](∆ω)2 + |Rk|2 + |R′k|2(∆ω)2 + Re[RkR′′∗k ](∆ω)2

)
, (S65)

which under the assumption that Cb, C′b � 1 and C∗βb , C∗αb < C2
b , becomes,

Psuc = 1− Cb
(1 + Cb)2 + C′2b

− NCΓ2
e

|Ω/2|4 (∆ω)2 (S66)

Substituting Eq. (S66) and (S61) into Eq. (S53), we get the expression for the conditional swap fidelity,

Fswap ' 1− 3

4[C2
b + C′2b + 2Cb]

− C2
b

[C2
b + C′2b + 2Cb]2

− 3

4

[
1

κ
+
NCΓe
|Ω/2|2

]2
[

1 +
Cb

C2
b + C′2b + 2Cb

]
(∆ω)2

(S67)

Finally, keeping only the dominant contribution to the gate operation, we get the conditional swap fidelity,

Fswap = 1− 1

[C2
b + C′2b ]

− 3C2
b − C

′2
b

4[C2
b + C′2b ]2

− 3

4

[
1

κ
+
NCΓe
|Ω/2|2

]2

(∆ω)2 (S68)

INHOMOGENEOUS ENSEMBLE

So far, we have considered only a homogeneous ensemble without decay of the Rydberg level. In this section we discuss
the case for an inhomogeneous ensemble. For simplicity, we only consider ∆ω = 0. Here the scattering dynamics depends on
where the excitation was stored in the ensemble. From the fidelity expressions Eq. (S45) and Eq. (S53) we see that the essential
parameter is

∑
k |αk|2Rk which for δl = ∆l = 0 is given by

∑

k

|αk|2Rk =
∑

k

|αk|2

 2

1 +
∑
l

|Gl|2/κΓel
1+|Ωl/2|2/(ΓrlΓel+iVklΓel)

− 1


 . (S69)

When the ensemble was homogeneous, we defined the blockaded co-operativity Cb and C′b such thatRk = 1
1+Cb+iCb . Analogous

to this for an inhomogeneous ensemble, we can define the blockaded co-operativity through
∑
k |αk|2Rk = 1/(1+Cinh

b +iC′inh
b )
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where,

Cinh
b = Re




1
∑
k |αk|2

(
1 +

∑
l 6=k

Cl
1+|Ω/2|2/(ΓrlΓel+iVklΓel)

)−1


− 1,

C′inh
b = Im




1
∑
k |αk|2

(
1 +

∑
l 6=k

Cl
1+|Ω/2|2/(ΓrlΓel+iVklΓel)

)−1


 (S70)

Note that contrary to the homogeneous case the above defined effective co-operativity for inhomogeneous ensemble also includes
the effect of Rydberg decoherence on the scattering process. Thus, to study the Fidelity of the phase gate for an inhomogeneous
ensemble and in presence of decoherence, the results in Eqs. (S62) and (S68) can be utilized but now with Cb replaced by Cinh

b

and C′b by C′inh
b .
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