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Abstract

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three different
parts.

In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner
spaces are described by non-crossing partitions, and develop the Weingarten calculus on these
quantum groups. As an application of the previous work, we recover the results of Diaconis and
Shahshahani on the unitary group and extend those results to the free unitary group.

In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to prove the conjecture of Banica
and Bichon.

In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph
introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise
estimates on the uniform standard filling of a large ribbon Young diagram. This yields a positive
answer to the conjecture that Bender, Helton and Richmond gave in [1§].

Abstrakt

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veroffentlichungen darstellen.

In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitaren Fall
untersucht. Es wird eine Klassifikation aller unitdaren easy Quantengruppen in dem klassischen
und freien unitiren Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitéren Fall ausgedehnt.

In dem zweiten Teil der Dissertation widme ich mich zunéchst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis einer Vermutung von Banica und Bichon
fiihrt.

In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation der fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse beziiglich grofler Ribbon-Young-Tableaus.



Résumé

Le sujet de cette these est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties distinctes.
Dans la premiere partie de la these, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de ’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.

La deuxieme partie de la theése est consacrée a une étude du produit en couronne libre. Dans un
premier temps, nous décrivons les entrelaceurs des représentations dans le cas particulier d’un
produit en couronne libre avec le groupe symétrique libre: cette description permet également
d’obtenir plusieurs résultats probabilistes. Dans un deuxiéme temps, nous établissons un lien
entre le produit en couronne libre et les algebres planaires: ce lien mene a une preuve d’une
conjecture de Banica et Bichon.

Dans la troisieme partie de la these, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative des fonctions fondamentales quasi-symétriques. La frontiere minimale
de ce graphe a déja été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontiére
minimale coincide avec la frontiere de Martin. Au cours de cette preuve, nous montrons plusieurs
résultats combinatoires asymptotiques concernant les diagrammes de Young en ruban.
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Thesis summary

The subject of this thesis is the non-commutative generalization of some probabilistic results
that occur in representation theory. The results of the thesis are divided into three parts, which
are summarized here.

Weingarten calculus and free easy quantum groups FEasy quantum groups have been
defined in [I5] as a class of orthogonal compact quantum groups whose associated intertwiners
are described by set partitions. This class of compact quantum groups contains important exam-
ples of quantum groups as the classical orthogonal and symmetric groups and their free analogs,
the free orthogonal and free symmetric groups (see [95, 06]). In a second paper [14], it has been
possible to systematically develop the Weingarten calculus on these compact quantum groups
in order to get some probabilistic results: in particular, they recovered the convergence results
of Diaconis and Shahshahani (see [33]) on the orthogonal and symmetric group, and extended
them to the free case. The usual gaussian and Poisson laws are replaced in the free case by the
semicircular and the Marchenko-Pastur laws, their free analogs in free probability theory.

The first part of the thesis is devoted to the generalization of this framework in the unitary
case. Namely the compact quantum groups are not assumed to be orthogonal anymore, but
their intertwiner spaces are still described by set partitions with colors. The classical example
is given by the classical unitary group whose intertwiner spaces are described by permutations
(which can be seen as two-colored pair partitions) through the Schur-Weyl duality. We classify
all unitary easy quantum groups whose intertwiner spaces are described by non-crossing parti-
tions, and develop the Weingarten calculus on these quantum groups. As an application of the
previous work, we recover the results of Diaconis and Shahshahani on the unitary group and
extend those results to the free unitary group.

Free wreath product The free wreath product is a non-commutative analog of the classical
wreath product. The free wreath product is an algebraic construction that produces a new
compact quantum group from a compact quantum group and a non-commutative permutation
group. This construction arises naturally in the study of quantum symmetries of lexicograph-
ical products of graphs. In the classical case, the representation theory of a wreath product is
well-know (see for example [60], Part 1, Annex B) and the Haar measure has a straightforward
expression. It is for example easy to prove that the fundamental character of a wreath product
with the symmetric group .S,, converges toward a compound Poisson law as n goes to infinity.
However in the free case, the Haar state doesn’t have any straightforward expression. For in-
stance Banica and Bichon conjectured in [I0] that in some cases, the fundamental character of
a free wreath product is distributed as the free multiplicative convolution of the law of the two
initial fundamental characters.

In the second part of the thesis, we study the free wreath product. First, we study the free
wreath product with the free symmetric group by giving a description of the intertwiner spaces:
several probabilistic results are deduced from this description. Then, we relate the intertwiner
spaces of a free wreath product with the free product of planar algebras, an object which has
been defined by Bisch and Jones in [46]. This relation allows us to express the law of the charac-
ter of a free wreath product as a free multiplicative convolution of the initial laws, which proves
the conjecture of Banica and Bichon.



Martin boundary of the Zig-zag lattice The ring Q.Sym of quasi-symmetric functions is
a refinement of the ring of symmetric functions, in the sense that any symmetric function has a
decomposition in terms of quasi-symmetric ones. An important basis of this ring is called the
fundamental basis, and its elements have a monomial expansion similar to the Schur basis of
the ring of symmetric functions: this expansion is indexed by semi-standard filling of ribbon
Young diagrams for the fundamental basis of QSym and by semi-standard filling of Young
diagram for the Schur basis of Sym. The multiplication structure of the Schur basis is encoded
by an important graph which is called the Young graph and denoted by ). This graph has
many applications in the representation theory of the infinite group S and in the probabilistic
behavior of some discrete processes. It has been intensively studied by Thoma, Vershik and
Kerov in [85] 86, 47]. In particular they identified the minimal and Martin boundaries of Y,
and proved that the two coincide. The analog of ) for the fundamental basis of QSym is the
graph Z of Zigzag diagrams. This lattice has been deeply studied by Gnedin and Olshanski
who identified in [42] its minimal boundary. They conjectured that the minimal and Martin
boundaries also coincide on Z.

In the last part of the thesis, we prove that the minimal and the Martin boundaries of Z are
the same. In order to prove this, we give some precise estimates on the uniform standard filling
of a large ribbon Young diagram: we prove that in a uniform filling, the fillings of distant cells
become independent in a certain sense. This yields a positive answer to the conjecture that
Bender, Helton and Richmond gave in [I§].



Résumé de la these

Le sujet de cette these est la généralisation non-commutative de résultats probabilistes venant
de la théorie des représentations. Les résultats obtenus se divisent en trois parties qui sont
résumées ici.

Groupes quantiques easy et calcul de Weingarten: La théorie des représentations de
certains groupes et groupes quantiques orthogonaux compacts mettent en jeu un méme objet
combinatoire, les partitions d’ensembles finis. Ceci est le cas pour le groupe orthogonal et le
groupe symétrique, ainsi que pour le groupe orthogonal libre et le groupe symétrique libre:
ces deux derniers sont des groupes quantiques qui ont été introduits par Wang [95, [96] comme
version non-commutative de leurs homologues classiques. Dans [I5], Banica et Speicher ont
généralisé ces exemples en définissant les groupes quantiques easy. Il y a dans cette classe deux
situations extrémes: celle ou le groupe quantique est un groupe classique et celle ou la théorie
des représentations du groupe est décrite par des partitions non-croisées. Dans ce dernier cas, le
groupe quantique est dit libre. La classification de tous les groupes quantiques easy dans le cas
classique et libre a été initiée par Banica et Speicher, puis complétée par Weber [15], [07]. Dans
un troisieme temps, Raum et Weber [71] ont réussi a classifier ’ensemble des groupes quantiques
easy.

Pour un tel groupe quantique, le calcul de Weingarten [28] donne un moyen efficace de calculer
les intégrales par rapport a la mesure de Haar sur le groupe quantique. Avec ’aide du calcul de
Weingarten, Banica, Curran et Speicher [14] ont pu obtenir plusieurs resultats probabilistes dans
le cas des groupes quantiques easy libres ou classiques: par exemple, ils ont étendu a I’ensemble
de ces groupes quantiques les théorémes asymptotiques de Diaconis et Shahshahani [33] sur les
traces des groupes orthogonaux et symétriques.

Dans la premiere partie de la these, le concept de groupe quantique easy est étendu au cas
unitaire. Tout d’abord, nous donnons une classification de ’ensemble des groupes quantiques
easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de
[14] au cas unitaire.

Produit en couronne libre: Le produit en couronne libre est une construction algébrique
die & Bichon [2I] qui associe un groupe quantique compact & un sous-groupe quantique du
groupe symétrique libre pour créer un nouveau groupe quantique, d’'une maniere analogue au
produit en couronne classique. Alors que la mesure de Haar d’un produit en couronne classique
a une expression simple en fonction des mesures de Haar des groupes initiaux, il n’y a dans le
cas libre aucun moyen d’obtenir une formulation explicite de 1’état de Haar. Banica et Bichon
ont conjecturé dans [10] que la loi du caractere fondamental d’un produit en couronne libre est
dans certains cas la convolution multiplicative libre des lois de caractere des groupes quantiques
initiaux.

La deuxieme partie de la these est consacrée a une étude plus approfondie du produit en couronne
libre. Dans un premier temps, nous décrivons les entrelaceurs des représentations dans le cas
particulier d’un produit en couronne libre avec le groupe symétrique libre: cette description
permet également d’obtenir plusieurs résultats probabilistes. Dans un deuxiéme temps, nous
établissons un lien entre le produit en couronne libre et les algebres planaires: ce lien mene a
une preuve de la conjecture de Banica et Bichon précitée.

Frontiere de Martin du graph Z: Le graphe de Young est un graphe qui encode la structure
multiplicative de ’anneau des fonctions symétriques dans la base de Schur [85, [86, [47]. Cet



anneau, également défini comme ’anneau commutatif universel engendré par un nombre infini
et denombrable de variables, joue un role important dans la théorie des représentations du
groupe symétrique et du groupe unitaire. En retirant la condition de commutativité dans cet
anneau, on obtient un nouvel anneau non-commutatif qui a été introduit [41] comme l’anneau
des fonctions symétriques non-commutatives. Un résultat fondamental est qu’on peut associer
a cet anneau non-commutatif un anneau commutatif, 'anneau des fonctions quasi-symétriques,
qui présente un structure combinatoire similaire & celle de ’anneau des fonctions symétriques.
L’anneau des fonctions quasi-symétriques possede ainsi une base semblable a la base de Schur,
la base des fonctions fondamentales quasi-symétriques.

Dans la troisieme partie de la these, nous étudions un analoque du graphe de Young qui encode
la structure multiplicative de la base des fonctions fondamentales. La frontiere minimale de ce
graphe a déja été décrite par Gnedin et Olshanski [42]. Nous prouvons que la frontiére minimale
coincide avec la frontiere de Martin. Au cours de cette preuve, nous montrons plusieurs résultats
combinatoires asymptotiques concernant les diagrammes de Young en ruban.



Zusammenfassung der Dissertation

In dieser Dissertation widme ich mich der nicht-kommutativen Verallgemeinerung probabilistis-
cher Ergebnisse aus der Darstellungstheorie. Die Dissertation besteht aus einer Einleitung und
drei Teilen, die jeweils separate Veroffentlichungen darstellen.

Easy Quantengruppen und Weingarten-Kalkiil: In mehreren Fillen besitzen orthogonale
Gruppen und Quantengruppen eine dhnliche Darstellungstheorie, deren kombinatorische Struk-
tur mit Hilfe von mengentheoretischen Partitionen beschrieben wird: dies gilt zum Beispiel
fur die symmetrische Gruppe und die orthogonale Gruppe sowie fiir die freie symmetrische
Quantengruppe und die freie orthogonale Quantengruppe, wobei letztere als nicht-kommutative
Verallgemeinerung von ersteren von Wang [95] [96] definiert wurden. In [I5] wurden easy Quan-
tengruppen von Banica und Speicher zur Systematisierung dieses Phanomens eingefiihrt. Im
Rahmen der easy Quantengruppen gibt es zwei extreme Situationen: diejenige, in der die easy
Quantengruppe eine klassische Gruppe ist und diejenige, in der die Darstellungstheorie der easy
Quantengruppe mit Hilfe von nicht-kreuzenden Partitionen beschrieben wird. In letzterem Fall
wird die easy Quantengruppe frei genannt. Die Klassifikation aller klassischen und aller freien
Quantengruppen wurde von Banica, Speicher und Weber[15, 97] erreicht und spéter fiir alle easy
Quantengruppen von Raum und Weber [71] vollendet.

Fiir eine easy Quantengruppe existiert eine effiziente Methode, die Weingarten-Kalkiil genannt
wird [28], um Integrale beziiglich des Haarmafles zu berechen. Mit dem Weingarten-Kalkiil kon-
nten Banica, Curran und Speicher [I4] mehrere probabilistische Ergebnisse im Rahmen der easy
Quantengruppen erlangen: insbesondere wurde der Grenzwertsatz von Diaconis und Shahsha-
hani [33] beziiglich der Verteilung des fundamentalen Charakters der symmetrischen und or-
thogonalen Gruppen auf alle klassischen und freien easy Quantengruppen ausgedehnt.

In dem ersten Teil der Dissertation wird der Begriff von easy Quantengruppe im unitaren Fall
untersucht. Es wird eine Klassifikation aller unitaren easy Quantengruppen in dem klassischen
und freien unitéren Fall gegeben. Des weiteren werden die probabilistischen Ergebnisse von [14]
auf den unitaren Fall ausgedehnt.

Freies Kranzprodukt: Das freie Kranzprodukt ist eine von Bichon [21] eingefiihrte nicht-
kommutative Version des klassichen Kranzprodukts, mit Hilfe dessen eine neue Quantengruppe
aus einer kompakten Quantengruppe und einer Untergruppe der freien symmetrischen Quan-
tenruppe erzeugt wird. Wahrend das Haarmaf} fiir ein klassisches Kranzprodukt eine einfache
Gestalt hat, gibt es fiir das Haarmaf} eines freien Kranzprodukts keine explizite Formulierung.
Banica und Bichon [I0] stellten jedoch die Vermutung auf, dass die Verteilung des fundamen-
talen Charakters eines freien Kranzprodukts in vielen Fallen die multiplikative freie Faltung der
Verteilungen der beiden origindren Charaktere ist.

In dem zweiten Teil der Dissertation widme ich mich zunéchst dem freien Kranzprodukt einer
kompakten Quantengruppe mit der freien symmetrischen Gruppe. Die Darstellungstheorie
solcher Kranzprodukte wird beschrieben, und verschiedene probabilistische Ergebnisse werden
aus dieser Beschreibung gezogen. Dann wird eine Beziehung zwischen freien Kranzprodukten
und planaren Algebren hergestellt, die zu dem Beweis der Vermutung von Banica und Bichon
fihrt.

Martin-Rand des Graphs Z: Der Young-Graph ) beschreibt die multiplikative Struktur
des Rings der symmetrischen Funktionen in der sogenannten Schur-Basis [85] [86l, 47]. Dieser



Ring ist der universelle kommutative Ring mit abzahlbar unendlich vielen Variablen, der eine
grofe Rolle in der Darstellungstheorie der symmetrischen und unitdren Gruppen spielt. Wenn
man die Kommutativitdt der Variablen wegfallen ldsst, erhélt man einen neuen Ring, der der
Ring der nicht-kommutativen symmetrischen Funktionen genannt wird [41]. Der Punkt ist,
dass man daraus trotzdem einen kommutativen Ring erzeugen kann, der &hnlich dem Ring
der symmetrischen Funktionen &hnlich ist. Insbesondere gibt es in diesem neuen Ring ein
Gegenstiick der Schur-Basis, das die fundamentale quasi-symmetrische Basis genannt wird.

In dem dritten Teil dieser Dissertation wird der Graph Z der Multiplikation dieser fundamentalen
quasi-symmetrischen Basis untergesucht. Der minimale Rand dieses Graphs wurde schon von
Gnedin und Olshanski identifiziert [42]. Wir beweisen jedoch, dass der minimale Rand und der
Martin-Rand gleich sind. Als Nebenprodukt des Beweises erhalten wir mehrere asymptotische
kombinatorische Ergebnisse beziiglich grofler Ribbon-Young-Tableaus.






Contents

I Introduction|

[1 Partitions and free probability|
[1.1 Set partitions| . . . . . . . . . . L
Il a l . I I)s:““il ‘l!z“ E“ls] l”zl E!l 'IQIlSI ............................
[1.1.2  Two-level partitions| . . . . . .. .. .. .. ... .. ... .. ...
[1.1.3  Contraction of tensor products| . . . . . . . . ... .. ... ... ...,
[1.2  Free independence and set partitions| . . . . . . .. ... oo
[1.2.1  Non-commutative probability spaces and freeness|. . . . . . . . . .. ...

[2  Probabilistic aspects of representation theory: the unitary group|
2.1 Compact groups as probability spaces| . . . . . . . ... ... ... ... .....
[2.1.1 Compact group and Haar measure| . . . . . . . .. ... ... ... ....
[2.1.2  Representations of a compact group| . . . . .. ... ... ... ... ...

[2.1.4  Characters and the unitary group|. . . . . . . . . . . . . . ... ... ...
2.2 Symmetric functions| . . . . . . .. L L

[2.2.1  Young diagrams| . . . . . . . .. ...

[2.2.2  Symmetric functions| . . . . . .. Lo o

[2.2.3  Hall inner product| . . . . . . . ... ... o
2.3  Representation theory of the unitary group and probabilitistic applications|

[2.3.1 Irreducible representations of U,| . . . . . . . . . .. ...

[2.3.2 Probabilistic applications| . . . . . ... ... 000000
2.4 Weingarten calculus for Uy,| . . . . . . . . . ... . oo

[2.4.2  Schur-Weyl duality| . . . . .. ... ... ... o
[2.4.3  Convolution algebral . . . . . ... ... ... .. 0 oo
[2.5  Application of the Weingarten calculus|. . . . . . ... ... ... ...
[2.5.1  Asymptotic of the Weingarten function and pair partitions| . . . . . . ..
[2.5.2  Asymptotic freeness of unitary invariant random matrices| . . . . . . . . .
[2.6  Generalization to other groups: the Tannaka-Krein duality]. . . . . . . . ... ..
[2.6.1 Tannaka-Krein duality for compact matrix group| . . . . . . . . . . .. ..
[2.6.2  Other groups with intertwiners described by set partition| . . . . . . . ..

[3 Compact quantum group|
[3.1 Noncommutative spaces and quantum groups| . . . . . . . . . .. ... ... ...
3.1.1  What is a compact quantum group 7| . . . . . . . ... ...
[3.1.2  Representation theoryl . . . . . . . ... .. .. ... ... ... .. ...
13.1.3  Tannaka-Krein Duality|. . . . ... ... ... ... ... ... .. .....

S 0 0 0O UL W W W el

—_



[3.2  Unitary easy quantum groups| . . . . . . . . . . . ..o 46

[3.2.1  Easy quantum groups| . . . . . . . ... o oo 46
13.2.2  Free easy quantum groups|. . . . . . . . .. ..o oo 47
B.2.3 Overview of theresultsl . . .. ... ... ... ... .. ... ....... 49

3.3 Noncommutative permutations and free wreath product| . . . . . ... ... ... 50
13.3.1 Free wreath product{ . . . . . . .. ... .. .. . oo 50
13.3.2  Planar algebral . . . . . ... ... .. o 52
8.3.3 Overview of theresultsl . .. ... ... ... ... ... ... .. ..... 54

[3.4  Free fusion rings and non-commutative symmetric functions| . . . . . . . . . . .. 55
3.4.1 Freetusionring. . . . . . . . ... 955
13.4.2  Noncommutative symmetric functions| . . . . . . . . ... ... ... ... 56
3.43 Overview of theresults . . .. ... ... ... ... ... ... ...... 58

(I Unitary easy quantum groups| 61
[4  Classification of categories of non-crossing colored partitions| 63
4.1 Categories of two-colored partitions and first results] . . . . . . . ... ... ... 63
|4.1.1  Special operations on partitions|. . . . . . . . . ... ... ... L. 64
[4.1.2  The non- (or one-) colored case| . . . . . . .. ... ... ... ... ... 65

4.2 Dividing the categories into cases| . . . . . . . . . . . ... 66
4.2.1 Thecases O, H,Sand B| . . ... ... .. ... ... ... . ... ..., 66
4.2.2 Global and local colorizationl . . . . . .. ... .. ... ... ... .. 67
4.2.3  The global parameter £(C)[ . . . . ... ... .. ... ... ... .... 67

4.2.4  The local parameters d(C) and K¢({ &) . . . . . . . . . .. ... ... .. 68
|4.2.5  Summary of the strategy for the classification| . . . . . . . ... ... ... 72

4.3 Case Ol . . . . . e 72
4.3.1  Determining the parameters|. . . . . . . . . . . ... ... ... 72
4.3.2  Finding partitions realizing the parameters| . . . . . . .. ... ... ... 73
|4.3.3  Description of natural categoriesincase O . ... ... ... ... .... 73
4.3.4 Classification in the case Ol . . . . . . . . . . ... ... ... 74
HACase Hl o o oo oo e 74
[4.4.1  Determining the parameters|. . . . . . . . . .. ... ... ... ... ... 74
|4.4.2  Finding partitions realizing the parameters| . . . . . ... ... ... ... 75
|4.4.3  Description of natural categories| . . . . . . .. ... ... ... ... 75
(444 Classification in thecase H] . . . . . . . . .. ... . 76

EE Case Sl. . . oo 7
|4.5.1 Determining the parameters|. . . . . . . . . . ... ... ... . ..., 77
|4.5.2  Finding partitions realizing the parameters| . . . . . . ... .. ... ... 78
|4.5.3  Description of natural categories| . . . . . . . ... .. ... ... ..... 78
[4.5.4  Classification in the case S| . . . . . . . ... .. ... ... ... .. 80

4.6 Case Bl. . . . . . e 81
[4.6.1 Determining the parameters|. . . . . . . . . .. ... 0oL 81
[4.6.2  Finding partitions realizing the parameters| . . . . . .. . ... ... ... 83
[4.6.3  Description of natural categories| . . . . . . . ... ... 0oL 83
[4.6.4  Classification in the case Bl . . . . . . . ... .. ... ... ...... 85

4.7 Main result: Summary of the noncrossing case| . . . . ... ... ... ... ... 86
4.8 C™-algebraic relations associated to partitions| . . . . . . . .. .. ... ... ... 89

[4.9  Free unitary easy group| . . . . . . . o i i i e e e e e e 91




[4.9.1 Definition of C;7| . . . . . . ..
[4.9.2  Free and tensor complexifications with Zg4f . . . . . . . . . .. ...

[5

Stochastics on the free unitary easy groups|

5.1 Weingarten calculus for easy quantum groups| . . . . . . . . . .. ... ...
0.2 Diaconis-Shahshahani results in the free casel . . . . . ... ... ... ... ...
[5.3  Second-order freeness for the free unitary group|. . . . . . . . . . .. ... ...
5.3.1 Bidiagrams associated to X¢(n). . . . .. ... ... o o0
5.3.2 Convergence and asymptotic law for {X¢(n)}rer,| - - . . . . . . ... ..

(II1  Free wreath product|

|6

Free wreath product with the free symmetric group|

6.2 Classical wreath products by permutation groups.| . . .. .. ... ... ... ..
6.3 Intertwiner spaces in G, S]‘{’, .............................
6.4 Probabilistic aspects of the free wreath product|. . . . . . . ... ... ... ...

16.4.2  Weingarten calculus| . . . . . ... ... ... . L
|6.4.3  Non-commutative symmetric functions as a probability space] . . . . . . .

Planar algebra of a free wreath product|

7.1 Planar algebras| . . . . . . . . . ..
[7.1.1  Definition of planar tangles| . . . . . . . .. ... ... . L.
[7.1.2  Non-crossing partition and irreducible planar tangles|. . . . . . . . . . ..
[7.1.3  Planar algebral . . . . . ... ... ...

(7.2 Intertwiner spaces of a free wreath product| . . . . . . .. ... ... ... ....
[7.2.1 Intertwiner spaces of non-commutative permutation groups| . . . . . . . .
[7.2.2  Case of a free wreath product|. . . . . . ... ... ... ...

(7.3 Free product formula of Bisch and Jones| . . . . . . . ... ... ... ... ...,

IV ~ The multiplicative graph Z of quasisymmetric functions|

18

Combinatorics of large compositions|

[8.2.1 Compositions]| . . . . . . . . . .
[8.2.2  Result on asymptotic independence]. . . . . . . ... ...
[8.2.3 Runs of a composition| . . . . . . .. ... L
[8.2.4  The coupling method| . . . . ... ... .. ... ... .

8.4  Convex Sawtooth Modell . . . . . . . . . . . . .

98
98
100
113
113
118

123

125
126
128
131
140
140
142
144

146
146
146
149
152
155
155
157
167

177



[8.4.1 Log-concave densities] . . . . .. . ... .. ... ... ... 188

[8.4.2  Alternating pattern of a convex sawtooth model| . . . . . ... ... ... 191
18.4.3  Estimates on the behavior of extreme particles| . . . . . . ... ... ... 192

[8.5  The independence theorem in a bounded Sawtooth Model| . . . . . . . . ... .. 196
18.5.1  Decorrelation principle and bounding Lemmas| . . ... . ... ... ... 196
[8.5.2  Behavior of {X;} for large models| . . . ... ... ... ... ... .. 200
8.5.3  Proof of Theorem 827 . . . . . . . ... ... .. ... . 201

[8.6  Application to compositions| . . . . . . ... Lo 203
[8.6.1  Effect of a large run on the law of (X7, Xp) . . . . . . . . ... ... ... 203
[8.6.2 Proof of Theorem 836 . . . . . . .. ... ... ... ... ... ...... 205
18.6.3  Consequences and proof of Theorem 8.3 . . . . . . . ... ... ... ... 207

[9 Martin bounday of Z| 212
9.1 Introduction|. . . . . . . . . .. 212
9.2 Graded graphs and Martin boundary | . . . . . . ... ... ... . .. 213
9.2.1 Graded graphs and random walks| . . . . ... ... ... ... ... ... 213
[9.2.2  Martin entrance boundary|. . . . . . ... ..o oL 214

9.3 Thegraph Z| . . . . . . . . . . 215
9.3.1 Compositions| . . . . . . . . . . L 216
9.3.2 Thegraph Z| . . . . . . . . ... 216
9.3.3 Arrangement on N| . . . . ... Lo oo 218

9.4 Paintbox construction and Minimal boundary| . . . . . . . ... ... ... ... 218
[9.41  Paintbox construction| . . . . . . . .. ... Lo 218
[9.4.2  Martin entrance boundary of Z|. . . . . . ... ... oL 219

9.5 The familiy (£2)i>1] - - -+« o oo 221
[9.5.1 Combinatorics of compositions] . . . . . ... ... .. ... ... ..., . 221
9.5.2  Definition of (€2);>1] . . . . .. 221

9.6 Combinatorics of large compositions| . . . . . . . . . . .. .. ... ... ..., 224
19.6.1 Probabilistic approach to descent combinatorics|. . . . . . .. .. .. ... 224
[9.6.2  Estimates on (X),Y)) . . . . . . o oo 226

9.7 Asymptotic law of €. . . . . .. 226
[0.771 Preliminary results| . . . . . . . .. . . . .. ... 227
19.7.2  Convergence to a uniform distribution| . . . . . . . . ... ... .. ... 229

9.8 Martin boundary of Z| . . . . . ... Lo 232
[9.8.1  Generalization of Proposition[9.23] . . . . . .. ... ... . ... ..... 232
9.8.2 Proof of Theorem 9.8 . . ... ... ... ... ... ... ......... 234

0.9 The Plancherel measurel . . . . . . . ... .. ... . 235
9.9.1 Thegraph )| . . . . . . . 235
19.9.2  RSK algorithm and the projection 2 — ). . . . . .. ... ... ..... 236
9.9.3  Asymptotic of A, under the Plancherel measure|. . . . . . . . . ... ... 240
994 Clustersets| . . . . . . . . . . e 242
9.9.5  Convergence in law with conditioningl . . . . . .. ... ... ... .... 243

9.9.6  Proof of Proposisition [9.14] . . . . . .. ... oo oo 244




List of Figures

[L.1 Partition {{1,3,4},{2,7},{5,8},16}} with 4 blocks| . . . ... ... ... ... .. 3
[1.2 Pair partition {{1,5},{2,4},{6,8},{3,7}} with 4 blocks]. . . . . ... ... ... 4
1.3 Non-crossing partition {{1,2,5},13,4},16,8},{7}} with 4 blocks| . . . . .. ... 4
1.4 Non-crossing pair partition {{1,6},{2,3},{4,5},{7,8}} with 4 blocks|. . . . . . . 4
1.5 Two-level partition in P(3,5) with block structure {{5,6,8},{2,7},{1,4},{3}}| . 5
[1.6 Tensor product of two partitions| . . . . . . . . . . .. ... 6
[L.7  Horizontal reflexion of a partition|. . . . . . . . .. . . ... ... ... 6
[1.8  Composition of two partitions| . . . . . . . . . . . ... o 6
[1.9  Verticolor reflection of a partition|. . . . . . . . . . ... ... L. 7
[L.10 The partition ker((7,1,2),(3,1,3,3,7))[ . . . . . . . . .. .. L 8
2.1 Young diagram of (7,4,2,1).|. . . . ... ... ... 18
2.2  Young diagram of (7,4,2,1) and its transpose.| . . . .. ... ... ... 19
2.3 Young tableau T of shape (7,4,2,1) giving 2 = z{rizszirirsriorsy - . . . . . 19

|3.1  Correspondance between classical groups and categories of partitions through the |

| map p— Lyl . . oL 46

[3.2 Lexicographical product G o F, with G a segment and F a square] . . .. . ... 52
3.3 Planar tangle of degree 4] . . . . . . . . . Lo 53
3.4  Composition of planar tangles| . . . . . . . . ... ... ... ... . . . ... 53
[3.5 : Multiplication tangle of degree Pg.| . . . . . . . . . . .o 54
[3.6 Skew Young tableau associated to the composition [ = (3,2,4,1).. . . . . . ... 58
5.1 Tracial diagram consisting in two cyclic partitions . . . . . . .. ... ... ... 114
5.2 Two-colored bidiagram|. . . . . . . . . ... o 114
[5.3  The cyclic partition D2, —25| - - - - o« o oL 115
(7.1 . Planar tangle of degree 4 with 4 inner disks.|. . . . . . . .. ... ... ..... 148
[7.2 . A connected and an irreducible planar tangle.| . . . . . . ... ..o 148
(7.3 : Composition of two planar tangles.| . . . . . .. ... ... .. o0 149
[7.4 : First connected component of the first planar tangle of Figure|r.2l] . . .. . .. 150
[7.5 : Jordan curves surrounding the connected components of a planar tangle|. . . . 151
[7.6 The partition {{1,3,4},{2},{5,6}} and its nested Kreweras complement.| . . . . 151
[7.7 . Multiplication tangle ot degree Pg.| . . . . . . . . . .o oo 153
[7.8 : Inclusion tangle from Py to Pg) . . . . . . . .. oo oo 153
[7.9 . Right trace tangle and Left trace tangleon Py.f . . . . . . . . . . ... ... 153
[7.10 : T'wo planar tangles related by a spherical symmetry.| . . . . . . ... ... ... 154
[7.11 : Axial symmetry of the planar tangle of Figure(7.1[} . . . . . .. ... ... ... 154
[7.12 : Spin action a planar tangle.| . . . . . . . ... oo oo 156
[7.13 : Free composition of two planar tangles.|. . . . . . . . ... ... ... ... ... 158

xvil



[7.14 : Example of reduced free pair.| . . . . . . . ... o oL 160

[7.15 : Tangles Sy and Uyl . . . . . . . o o 161
[7.16 : Construction ot the planar tangle R for the reduced free pair ot Figure|7.14l| . . 162
[[.17 . Reconstruction of P from RJ. . . . . . . ... ... ... ... ... ... ... 163
[7.18 The partition {{1,3,4},{2},{5,6}} and its Kreweras complement.| . . . . .. .. 163
8.1 Ribbon Young diagram Ap of to the composition D = {10, (3,5,9)}. . . . . . .. 179
8.2 Standard filling of the composition (3,2,4, 1)[ . . . . .. .. ... ... ... ... 179
8.3 Upper particles {p1, p2, p3} and lower particles {qi, q2,q3} in a tube| . . . . . .. 184
[8.4  Decorrelation of the process| . . . . . . . . . .. o 197
9.1 Skew Young tableau associated to the composition A = (3,2,4,1).f. . . . . .. .. 216
9.2 Standard filling of the composition (3,2,4,1).| . . . .. ... ... ... ... ... 216
9.3 Vertices of Z of degree Oto 3.|. . . . . . . . . . .. ... 217
[9.4  Young diagram of (7,4,2,1) and an example of standard filling| . . . . . . . ... 236




Part 1

Introduction






Chapter 1

Partitions and free probability

This chapter is an introduction to set partitions, a class of objects that underlies the combina-
torics of free probability. We set the notations, explain how set partitions are transformed into
linear morphisms, and describe their role in free probability.

1.1 Set partitions

1.1.1 Definition and notations

Definition of a set partition:

Definition 1.1. Let n,r > 1. A set partition of n with r parts is a set p of subsets By,..., B,
of [1;n] such that \J;_y B; ={1,...,n} and for 1 <i < j <r, BiNB; =0.

A set B; in the definition above is called a block of p. A block of cardinal one is called a
singleton and a block of cardinal 2 is called a pair. When no confusion is possible, a set partition
of n with r parts is simply called a partition of n. The set of all set partitions of n is denoted by
P(n) and the number of blocks of a partition p is denoted by b(p). P(0) denotes the empty set.
We write i ~, j if and only if < and j are in a same block of p. This is an equivalence relation
on {1,...,n}. Assigning to each equivalence relation the set of its equivalence classes yields a
bijection between equivalence relations of {1,...,n} and set partitions of n.

A set partition is depicted by drawing the integers 1 to n on a row, and the blocks as lines between
them. Figure[L.1]is an example of such a drawing for n = 8 and p = {{1, 3,4}, {2, 7}, {5, 8}, {6} }.

| M |

1 2 3 4 ) 6 7 8

Figure 1.1: Partition {{1, 3,4}, {2, 7}, {5,8},{6}} with 4 blocks.

We distinguish several subsets of P,:

e The set P»(n) of pair partitions: these are partitions such that all blocks are pairs.

e The set NC(n) of non-crossing partitions: these are the partitions p of n such that if
1<i<j<k<l<nandi~,kandjn~,l, then j ~, k. This means that we can draw
p such that the blocks do not cross each other. For example {{1,2,5},{3,4},{6,8},{7}}
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Figure 1.2: Pair partition {{1,5},{2,4},{6,8},{3,7}} with 4 blocks.

is a non-crossing partition:

\ [ ]

1 2 3 4 )

Figure 1.3: Non-crossing partition {{1,2,5},{3,4},{6,8},{7}} with 4 blocks

e The set NC5(n) of non-crossing pair partitions: NCs(n) is the set NC(n) N Pa(n).

11

1 2 3 4 5 6 7 8

Figure 1.4: Non-crossing pair partition {{1,6},{2,3},{4,5},{7,8}} with 4 blocks

The lattice of set partitions Let p,q be two partitions of n, One says that p refines ¢
(denoted by p < ¢) if any block of p is contained in a block of ¢q. < yields a partial order on the
set P(n) (resp. NC(n)). One can check that for p,q € P(n) (resp. NC(n)), there always exist
a unique supremum p V ¢ and infimum p A ¢ of p and ¢ in P(n) (resp. NC(n)), yielding that
(P(n), <) and (NC(n), <) are actually lattices.

Note that NC(n) is a subset of P(n) but not a sublattice, since two elements of NC'(n) may
have a supremum in P(n) that differs from the one in NC(n). For example {{1,3},{2},{4}}
and {{1},{3},{2,4}} are both in NC(n); their supremum in NC(n) is {{1,2,3,4}} whereas
their supremum in P(n) is {{1,3},{2,4}}. However, for all p,q € NC(n), p A q is again in
NC(n). To distinguish both lattice, we write Ap,Vp for the supremum in P(n) and Ayc, Ve
for the one in NC(n) (the subscripts are omitted when there is no confusion).

Two colored set partitions Let S be a denumerable set. A S—coloring of [1,r] is a map
c:[1,r] = S. A S—colored partition p of r is a partition p of P(r) together with a coloring ¢ of
[1,7]. The partition p is called the uncolored version of p. The set of S-colored partitions with
a particular coloring is denoted by P(c) or P(c(1),...,c(r)). We replace P by Po, NC or NCy
to emphasize the shape of the partitions.

A two-colored partition p of n is a S—partition with S = {0, e}, a set of cardinal 2. The integer
n is thus fixed by the definition of ¢, and is also denoted by |c|. A two-colored partition corre-
sponds to a coloring of the extreme points of the blocks of p with elements of {0, e}. We denote
by P°*(n) (resp. P5*(n), NC°*(n), NC5®(n)) the set of two-colored partitions (resp. pair par-
titions, non-crossing partitions, non-crossing pair partitions). For each map c: [1;n] — {o, e},
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P°*(c) denotes the set of two-colored partitions such that the coloring is given by the map ¢
(and the same for the three other kinds of partitions).

1.1.2 Two-level partitions

Definition 1.2. A two-level partition is a set partition p of n with a distinguished integer
[ € [0;n]. The integers lower than | are called the upper points and the integers greater than
I+ 1 the lower points.

For k,1 > 0, the set of two-level set partitions of k4 [ with k£ upper points and [ lower points
is denoted by P(k,[) (and by P°®(k,l) when the partition is colored). The subset of non-crossing
two-level partitions (resp. two-level pairing, non-crossing two-level pairings) is denoted NC'(k, 1)
(resp. Pa(k,l), NCa(k,l)) or NC°*(k,l) (resp. Ps*(k,l), NC5®*(k,l)) depending on whether they
are considered colored or not. When no confusion is possible, a two-level set partition is simply
called a partition. For ¢; : [1;k] — {o,e} and co : [k 4+ 1;k+ 1] — {o, e}, we denote by P(c1, c2)
(resp. NC'(c1,c¢2)) the set of two-level partitions in P(k,[) such that the coloring of the upper
points is given by ¢; and the one of the lower points by cs.

A two-level set partition is drawn with two rows of integers, in such a way that the numbering
is cyclic:

Figure 1.5: Two-level partition in P(3,5) with block structure {{5,6,8},{2,7},{1,4},{3}}

The integers are omitted when they do not play any role.

Note that the lattice structure on P(n) (resp. NC(n)) extends to the case of two-level partitions
P(k,l) (resp. NC(k,l)). In the latter case, the lattice structure is the same as the one of
P(k + 1), forgetting the role of lower and upper points. In the case of colored partitions, the
same identification is made to also give a lattice structure to the set P°®(c) for each ¢ : [1, k+I] —

{o, e}.

Operations on two-level colored partitions Several operations can be performed on two-
level colored partitions. The easiest is to give a pictorial description of each of these operations.

e The tensor product of two partitions p € P°*(k,l) and ¢ € P°*(k,l') is the partition
p®q € P°*(k+ k' 1+ 1) obtained by horizontal concatenation (writing p and ¢ side by
side). The first k points of the k 4+ k' upper points are connected by p to the first { of the
[ + I’ lower points, and the remaining k' upper points are connected to the remaining [’
lower points by q.

e The horizontal reflection of a partition p € P°®(k, 1) is given by the reflection of p through
the horizontal axis. We also call it the involution of the partition p and denote it by

p* = Ru(p).

e The vertical reflection of a partition p € P°*(k, ) is given by the reflection R, (p) € P°*(k,1)
of p through the vertical axis.



| = 1 | LQO
—— | ©® %
H | I ﬁ |
- =T | —:

Figure 1.6: Tensor product of two partitions

1

[ ]
h
[ ] o

*

L

Figure 1.7: Horizontal reflexion of a partition

(e}

The composition of two partitions ¢ € P°*(k,l) and p € P°*(l,m) is the partition pg €
P°*(k,m) obtained by vertical concatenation (writing p below ¢): First connect k upper
points by ¢ to | middle points and then connect these middle points to m lower points by
p. This yields two kinds of objects : a partition, connecting k upper points with m lower
points, and a certain number 7l(p, q) of blocks containing only middle points. The latter
blocks and all the middle points [ are removed. Note that we can compose two partitions
q € P°*(k,l) and p € P°*(I',;m) only if

(i) the numbers [ and I’ coincide,

(ii) the colorings match, i.e. the color of the j-th lower point of ¢ coincides with the color
of the j-th upper point of p, for all 1 < j <.

[ J [ ] O o [ ] O [ ]
| = ! “ _ u |
| |
= T 1 — [N . E—
O [} o o [ ] [ ] [ ] o o [} O o [ ]

Figure 1.8: Composition of two partitions

The inversion of colors of a partition p € P°*(k,l) is given by the partition R.(p) €
P°*(k,1) with same uncolored partition as p, but with all the colors inverted.

The verticolor reflection of a partition p is given by p := R, R.(p).

The rotation of a partition: Let p € P°*(k,l) be a partition connecting k upper points
with [ lower points. Shifting the very left upper point to the left of the lower points and
inverting its color gives rise to a partition in P°®(k — 1,1 4 1), a rotated version of p.
Note that the point still belongs to the same block after rotation. We may also rotate
the leftmost lower point to the very left of the upper line (again inverting its color), and
we may as well rotate in the right hand side of the lines. In particular, for a partition

6



RoR. = | |=
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[ ]
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o —
[ ]
o
[

Figure 1.9: Verticolor reflection of a partition

p € P°*(0,1), we may rotate the very left point to the very right and vice versa. Such a
rotation on one line does not change the colors of the points.

Here is a list of basic two-colored partitions that play an important role in Part II.

e The two identity partitions i, I € P°*(1,1) connects one upper point with one lower

point of the same color. Note that i and I are not identity partitions.

e The bicolored pair partitions &1, £& € P°*(0,2) connect two lower points of different col-

ors. We also have their horizontally reflected versions €7, 7% € P°*(2,0). The unicolored

pair partitions are §¢, &4 € P°*(0,2) and %%, U7 € P°*(2,0).

e The singleton partitions E, I € P°*(0,1) consist of a single lower point respectively.

o) [ ]
Their reflected versions are denoted by |, | € P°*(1,0).

e We also have four block partitions like [31d, £béé € P°*(0,4) and ?g—"{, H € P°*(2,2).
e All preceding examples are partitions consisting of a single block. The crossing partition

X € P°*(2,2) however consists of two blocks. It connects a white upper left point to a
white lower right point, as well as a black upper right point to a black lower left point; we

also have other colorings like X or X These partitions are not in NC°*(2,2).

Category of partitions A collection C of subsets C(e,&’) C P°*(e,€’) (indexed by all the
words ,&" in {o,e}) is a category of partitions, if it is closed under the tensor product, the

composition and the involution, and if it contains the bicolored pair partitions [ and §J as

well as the identity partitions i and I We say that C C C’ if for any pair of words ¢, in
{o,e}, C(e) C C(¢') in the set-theoretic sense.

An easy check yields that the set of all partitions P°®, the set of all pair partitions P5® (i.e.
all blocks have length two), the set of all non-crossing partitions NC°®, and the set of all non-
crossing pair partitions NC3* form each of them a category of partition. Similarly let P3¢ ting

(resp. N g;ltemating) be the set of pair partitions (resp. non-crossing pair partitions) with pairs

having endpoints of opposite colors if these endpoints are on the same level and endpoints of

same color if they are on different levels. Then P;;ltenating and N C’i’altemating are also categories
of partitions. We have moreover the relation :
P;,;ltenating g PZO. —»C«— pee
U U U (1.1.1)
g,.alternating g NCS. g NC**



1.1.3 Contraction of tensor products

Kernel of a sequence of integers Let i = (i1,...,1,) be a sequence of integers. This
sequence defines an equivalence relation on [1, n] by saying that r ~= s if and only if i, = i5. The
set partition associated to the relation ~> through the bijection given in Section is denoted

ker(f). Ifi = (i1, .y i), j= (J1,-.-,J1) are two sequences of integers of respective length k and [,
we can similarly define a set partition ker(i, 7) in P(k, 1) by the same construction: this is the two-
level partition (ker(ji,...,Ji, ik, -..,71),1). Note that we reversed the order of the indices i for

convenience in later computations. If we specifiy a coloring € : [1,k] — {o,e},&" : [1,1] — {o, e},
we can assume that this partition is in P(e,e’). Here is an example of such a construction:

71 2
|

[ — [ H

3 1 3 3 71

Figure 1.10: The partition ker((7,1,2),(3,1,3,3,7))

Given a sequence of integers of length n and a partition p € P(n), we set 6p(;) =1lifp< ker(f)
and 0,(:7) = 0 otherwise. Similarly if p € P(k,l) and ¢, j are sequences of integers of respective

—

length & and [, we set 6,(7,) = 1 if p < ker(7,7) and 6,(7,j) = 0 otherwise.

The maps T},’s:  Let V°, V*® be two Hilbert spaces of dimension n, and let (€f)1<i<n, (€])1<i<n
be respectively an orthonormal basis of V° and V°®. For any word ¢ = €1...g, in {o, e}, the
scalar product (,) on these Hilbert spaces is extended to a scalar product on the tensor product
VeE=Ve ®...® Ve by saying that the basis {ez1 R - ® 6?:}152‘1,..‘,1'471 is othonormal.

For each partition p € P°*(e,¢’), one can define a map T), : V& — Ve by the relation

- —

<Tp(€i1 X & eik)7ej1 K Q ejy) = 5p(i7j)'

If p is considered without colors, the same definition holds by considering tensor products of a
unique vector space V of dimension n.

With this definition of the maps 7T’ Igs, the operations on two-level partitions defined in Paragraph
transpose to the usual operations on linear maps between Hilbert spaces as follows:

[ ] Tp®Tq:Tp®q .
o T,0T, =n"POT,,.

° T; = TR}L(p).

Some linear maps can be easily expressed by the maps Tés. For example Ts and Ty are
respectively the identity map on V° and V*, T';, and T'; are the scalar products on V° and V*.

1.2 Free independence and set partitions

1.2.1 Non-commutative probability spaces and freeness

The free independence is a phenomenon arising in the study of non-commutative random vari-
ables. The latter are a generalization of probabilty spaces in the framework of non-commutative
algebras.



Definition 1.3. A non-commutative probability space (A, ) is a unital x—algebra A with a
linear functional ¢, such that p(14) = 1.

¢ is called the expectation on A and is usually a trace (namely p(ab) = ¢(ba) for a,b € A).

The joint law of a1,...,a, € A is defined as the expectation map
.{(C<X1,...,X7»> — C
Yay,...ar X ... Xz'p — (p(G,Z'l -Gy,

Example 1.4. There are two basic examples of noncommutative probability spaces:

o If (,P) is a classical probability space, then the algebra L~ (2) = U, LP(Q) of mea-
surable functions having all moments finite is a noncommutative probability space, and the
linear functional is given by the expectation E with respect to P.

o Let (Q,P) be a classical probability space and consider the algebra M, ® L~ (). This
algebra is again a noncommutative probability space with expectation given by the map
A E(2 Tr(A)).

When A is a C*—algebra and a is a normal element of A (i.e aa® = a*a), the spectral
theorem yields that a is an actual random variable on its spectrum, with moments given by
{o(a*(a*)*)}rars0}. The law of a is denoted by .

If two commuting random variables a, b are independent, the knowledge of the respective laws
of a and of b suffices to compute the expectation of any polynomial in ¢ and b.

The concept of freeness is the analog of the independence of classical random variables in the
setting of highly non-commutative variables. It has been introduced by Voiculescu around 1983
(see [90], see also [93] for an introduction to the subject).

Definition 1.5. Let (A, ¢) be a non-commutative probability space and Ay, ..., A, be subalgebras
of A. Aq,..., A, are called free (or freely independent) if for any sequence (ai,...,a,) with
a; € Ag,, ki # kig1 for 1 <i<p—1 and p(a;) =0 for 1 <i < p, the relation

holds. The variables x1,...x, are called freely independent if the algebras respectively generated
by x1,...,x, are free.

In particular if ay, ..., a, are free, the data {¢(al’) }1<i<rn>1 suffices to characterize the joint
law of (ai,...,a,).

Example 1.6. Originally introduced to study free products of C*—algebra and free group factors,
free probability has drawn hudge interests when it has been discovered by Voiculescu in [92] that
free probability encodes the limit law of large matrices with independent entries.

If (A, ) is C*—algebra and aj,as are two free self-adjoint elements of A, then a; + ag is
again self-adjoint. We denote by p4, B p4, the law of a1 + a2, which depends only on p,, and

lay, by the remark above. If ag > 0, aé/ 2a1a§/ % is again a self-adjoint element, and we denote by

tay X pig, the law of aé/ 2a1a;/ 2 If ¢ is tracial and a; is also positive, pq, X pq, is also equal to
/2 172

ay’ “azay’”.



1.2.2 Classical and free cumulants

In the classical case, the computation of the additive convolution of two independent random
variables is greatly simplified by the use of the Fourier transform. In the free case, an anologuous
method exists with the so-called R-transform introduced by Voiculescu in [91]. However the
R-transform is a complicated object, mainly because it involves using the inverse of analytic
functions with respect to the composition.
In [77], Speicher introduced a combinatorial method to compute the sum of two free random
variables. It is based on the notion of free cumulants, a non-commutative analog of cumulants
in classical probability. We present both classical and free cumulants at the same time, since
they will both be used in following chapters.
Let {fi}i>1 be a family of multilinear functionals on A such that f; is i—multilinear (namely
fi : A®Y — C). For 7 a partition of r and ay, ..., a, elements of A, f, denotes the r—multilinear
map defined by

fx(ar, ... a;) = H fs(aiy, .. ai,).

B={i1,...,i5}€ﬂ'

For i > 1 and a € A, we denote by f;(a) the quantity fi(a,...,a). The expectation ¢ yields
such a family of multilinear maps {m;};>1 with the relation m;(ai,...,a;) = ¢(a; ...a;); the
r—th moment of a is m,(a).

Definition 1.7. The classical (resp. free) cumulants of (A, ) is the unique family of multilinear
maps {c;}i>1 (resp. {ki}i>1) such that

m, = Z Cr, (Tesp. my = Z kr).

weP(r) TeNC(r)

cr(a) (resp. ky(a)) is called the r—th cumulant (resp. r—th free cumulant) of a.

The existence and unicity of such families is easily proved by recurrence on r. The relation in

the definition is also known as the moment-cumulant formula. By this formula, the knowledge
of {ki(a)} is equivalent to the knowledge of the law of a in (A4, ¢), and the same holds with
classical cumulants.
Thanks to the poset structure on the set of partitions and the set of non-crossing partitions,
there exists a direct formula to express the cumulants in terms of moments. In a finite poset
(G, <), the Moebius function pg : G x G — R is defined as the unique function satisfying
Y g<h<gMc(g'sh) = dg4 for ¢ < g and pg(h,g) = 0if h £ g. Let pp and punc denote
respectively the Moebius function on the poset of partitions and non-crossing partitions. The
following result is due to Speicher ([77]) in the non-commutative case.

Theorem 1.8. The cumulants and free cumulants have the following expression :

Cr = Z /,LP(ﬂ', 1r)m7r> k, = Z /,LNc'(TI', 17’)m71"
meP(r) TeNC(r)

In both case the Moebius function is given by an explicit formula. Let 7 < o in P(r) (resp.
NC(r)). One can easily show that the interval [, o] is isomorphic as a poset to P (k1) x---X Py, )
(resp. NC (k1) x -+- x NC(ky,)) for some positive integers ki, ..., k,. Then

pp(m0) = T (~15 10— 1)1

1<i<n

10



for P(r), and
/‘NC(ﬂvo-) = H (_1)ki_1cki—1

1<i<n

in the non-crossing case. The formula in the non-crossing case has also been proved by Speicher
in [77].

The important property of cumulants (resp. free cumulants) is that they characterize indepen-
dence (resp. free independence). The free part of the following result comes from [77]:

Theorem 1.9. Let aq,...,a, be r elements of A. a1, ...,a, are independent (resp. free) if and
only if cn(aiy, .-+, ain)) (resp. kn(a(ir),...,a(in))) vanishes for any non-constant function
i:[1,n] — [1,r].

Therefore if a; and ay are free then we have the simple relation k(a1 +a2) = kr(a1) + k- (a2)
for all > 1. A same formula involving free cumulants exists to compute the law pq, X pq, (see
[66]).

In the classical setting several distributions arising as universal limit distributions have very
simple expression in terms of cumulants:

22
e The standard Gaussian variable N, with density dy(z) = \/%677, has cumulants co(N) =

1 and ¢;(N) = 0 for i # 2. This distribution appears as the limit distribution of X1+7\/5X"

when n — 400 and (X;);>1 is a family of i.i.d centered random variables of variance 1.
A standard complex gaussian variable Z is defined as Z = %(X + 1Y), with X and Y
two independent standard gaussian variables. All cumulants of Z vanish except cao(Z, Z*)

and co(Z*, Z) which are equal to 1.

e The Poisson variable P, with distribution P(P = n) = en;!l, has cumulants ¢;(P) = 1 for
all 4 > 1. This distribution is the limit distribution of Y{" +--- 4+ Y¥,* as n goes to infinity,
where (Y/)1<i<; is a family of independent variables, Y7 being a Bernoulli variable with
law nT_l(So + %(51

e The compound Poisson variable P, with original probability measure 1 is defined by the
formula P, = Ef: 1 Zi, where P is a Poisson variable and (Z;);>1 is a sequence of i.i.d
p—distributed random variables (also independent from P). The cumulants of P, are
¢i(Py) = m;(p) for @ > 1. This distribution is the limit distribution of Z1Y* +- .-+ Z,Y,}
as n goes to infinity, where (YZJ )1<i<; is distributed as before and independent from (Z;);>1.

In the free case, the same phenomenon arises (see [66] for a detailed exposition of each case):

e The semi-circular variable s, having density ds(x) = %1@52 V4 — 22, has free cumulants
ka(s) = 1 and k;(s) = 0 for ¢ # 2. This distribution is the the limit distribution of
% when n — 400 and (X;);>1 is a family of free identically distributed centered
random variables of variance 1.

A standard circular variable ¢ is defined by ¢ = %(51 + is2), s1 and sg being two free
standard semi-circular variables. All the free cumulants of ¢ vanish except ka(c,c*) and

ka(c*,c) that are equal to one.

e The free Poisson variable p, with density d,(z) = =1p<z<41/4 — (2 — 2)? has free cumu-
lants k;(p) = 1 for all i > 1. This distribution is the limit distribution of Y{* 4---- 4 Y,"
as n goes to infinity, where (Y;)i<;<; is a family of free independent variables, Y7 being
a Bernoulli variable with law ”7—150 + %51.

11



e The free compound Poisson variable p, with original probability measure p is defined
as the limit distribution of Z1Y{" + .-+ Z,Y;" as n goes to infinity, where (YZJ Ji<i<j is
as before and (Z;);>1 is a free family of p—distributed random variables such that Z; is
classicaly independent from Yij for all j > ¢. The i—th free cumulant of p, is the i—th
moment of u.

There is an obvious similarity between the three classical examples and the free ones. This
correspondance has lead to a systematic bijection, the Bercovici-Pata bijection, between distri-
butions arising as a limit of sums of independent variables and the ones arising as limits of sum
of free variables (see [19]).

The cumulant description of the aforementioned distributions and Theorem [I.9]yield interesting
combinatorial formulae for some joint moments of free variables. Let us state for example the
following result that will be used in Chapter 5:

Proposition 1.10. Letci, ..., c; be k free standard circular elements, and write c_; = c¢;. Then
forji,....gr€{=k,...,—1,1,.. .k},

mr(cju .. ')er) = #{p S NOQ(.jla cee 7j7‘)|v{b17b2} € pvjb1 = _jbz}'

Proof. By the moment cumulant formula,

mr(le,...,CjT) = Z kﬂ(cj17"'7cj7')'

WeNc(jlr“:j’l‘)

Since (¢;)1<i<k is a free family and for each i > 1, only ka(c;, ¢f) and ka(c], ¢;) are non-zero, the
result follows. O
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Chapter 2

Probabilistic aspects of
representation theory: the unitary

group

In this chapter we briefly review how the representation theory of the unitary group U, leads
to interesting probabilistic results. This chapter is mainly intended for probabilists having no
backgrounds on representation theory, and serves as a motivation for the non-commutative
results in the following chapter. The first section presents the framework of compact groups
and their associated probability space, and introduces the representation theory of the unitary
group. The irreducible representations of U, are indexed by symmetric functions; the theory of
these functions is quickly reviewed in the second section. The third section is devoted to the full
description of the representations of the unitary group and to the description of the Schur-Weyl
duality. The fourth section introduces the Weingarten calculus and the fifth section gives some
applications of this method. Finally, generalization to other groups are discussed in Section 6.

2.1 Compact groups as probability spaces

This section follows the book [26], and the reader should refer to this reference for omitted
proofs.

2.1.1 Compact group and Haar measure

Definition 2.1. A compact group G is a group that is also a compact topological space, with
the property that the maps (g1,92) — g1g2 from G x G to G and g + g~' from G to G are
continuous maps.

In the definition above, G x G is considered with the product topology.

Example 2.2. The group U of complex numbers of modulus 1 with the topology inherited from
C is a compact group.

More generally, the unitary group U, consisting of matrices U in M, (C) which satisfy UU* =
1d,, is a compact group; the same is true for any closed subgroup of U,.

The main feature of a compact group G is the existence of an invariant probability measure
on the topological space G:

13



Theorem 2.3. Let G be a compact group. There exists a unique reqular probability measure fG
on G such that for any measurable set X C G and any g € G,

/Gg.X—/GX.g—/GX

This probability measure is called the Haar measure.

In the statement above, g.X (resp. X.g) denotes the set {gx,z € X} (resp. {zg,z € X}).
For G = U, the Haar measure is simply the Lebesgue measure on the circle.

Remark 2.4. If G is only assumed to be locally compact, there still exists a unique requ-
lar measure (up to a constant multiple) being invariant by left translation . However this
measure is not necessarily invariant by right translation. Consider for example the group
G = {<g T) |,y € R,y > O}, with the left invariant measure puy, given by duy, = y~2dxdy
and the right invariant measure ug given by dug = vy~ *dxdy. A locally compact group such that
left and rignt invariant translations coincide is called unimodular.

Any compact group is thus a natural probability space with the Haar measure. Since it is
also a topological space, it carries a canonical class of measurable functions with respect to fG,
namely the algebra C (G, C) of continuous complex functions on G. If f € C(G,C), we denote
by f the complex conjugate of this function. With this conjugation, C(G,C) is a commutative
x—algebra.

2.1.2 Representations of a compact group

In most cases, the Haar measure doesn’t have any straightforward expression and therefore the
computation of the law of any element of C(G,C) may become cumbersome. Fortunately, the
representations theory helps to better understand these random variables.

Definition 2.5. A representation (V,p) of G is the data of a vector space V' and a continuous
morphism of groups p: G — GI(V).

A subspace W C 'V is called invariant if for all g € G, p(g)(W) C W, and v € V is called
a fized point if p(g)v = v for all g € V. A representation V is said irreductible if V is finite
dimensional and has no invariant subspace apart from {0} and V.

An intertwiner operator from (V,p) to (V',p') is a linear map T : V — V' such that, for any
g € G, p(g)oT = Top(g). The space of morphisms between (V,p) and (V',p')is denoted
Morg(p, p).

Two representations (V, p) and (V', p') are isomorph if there is an invertible map T in Morg(p, p').

From now on we will only consider finite dimensional representations and denote by d(p) the
dimension of the vector space V of a representation (V, p).
Given two representations (V, p) and (V', p’) of G, we can construct the direct sum representation
p@®p on VEW (resp. the tensor product representation p® p’ on V ® W) by taking the direct
sum of the maps p and p’ (resp. tensor product of the maps p and p'):

p®p(9)=plg)@p'(9) e GUV &W),p®p'(9) = plg) @ p'(g) € GV @ W).

Finally if (V,p) is a representation of GG, we can define the dual representation p* on the dual
V* of V by

p*(f)(w) = f(p(g~")v),

where f € V* and v is any vector in V.

14



Example 2.6. As an example of the previous constructions, let (V, p) be a representation of G.
It yields a representation p of G on End(V') defined by

p() (@) = p(@)f (plg™ )],

with f € End(V) and v € V. It is possible to prove that, as a representations of G, End(V)
is isomorphic to V@ V*. Moreover the set of fized points of End(V') under the action of G is
precisely the space of intertwiners Morg(p, p').

Let (V, p) be a finite dimensional representation of G. Any scalar product ((.,.)) on V defines
an average scalar product (.,.)¢ on V by the formula :

(01, 02), = /G (plg)on, plg)v2))dg.

where vy, v9 € V.
The invariance of the Haar measure implies that (.,.), is G—invariant, namely

(p(g)v1, p(g)v2)p = (v1,v2)p

With the latter scalar product we can prove that the irreducible representations are the building
block of the representation theory of G :

Proposition 2.7. Let (V,p) be a finite dimensional representation of G. Then V is the direct
sum of irreducible representations of G.

Noticing that the eigenspaces and the image of an intertwiner are invariant subspaces yields
the description of the intertwiner space between irreducible representations :

Lemma 2.8 (Schur Lemma). Let (V,p),(V',p) be two irreducible representations, and T €
Mor(p, p'). Then T is either 0 or an isomorphism.

If (V, p) is an irreducible representation and f € Mor(p, p), then there exists a scalar A € C such
that f = M\d.

2.1.3 Matrix coefficients

The goal is now to construct a family of random variables which is dense in C(G, C) and whose
law with respect to the Haar measure could be theoretically computed. This family is a class of
particular continuous functions based on the G —invariant scalar products (., .),.

Definition 2.9. A matriz coefficient on G is a function @ on G of the form

v(g9) = (p(g)v1, v2)p,
with (V, p) a representation of G and vi,ve € V.

The name of these functions is clear if we consider an orthonormal basis (eq,...,eq) of V
with respect to the scalar product (.,.)g. With respect to this basis, the representation p is

pui(g) - pra(g)
p:g— :
Pd1 (g) S Pdd(g)

with pi;(g) = (p(9)ej, ei)p = Tr(p(g)Eji), where Ejje, = djre;. From now on, each representa-
tion (V p) is considered with a particular choice of orthonormal basis (€;)1<j<q(,) With respect to
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an invariant scalar product on V: in this way a canonical set of matrix coefficients { Pz‘j}lgi,jgd( 0)
is associated to each representation (V) p).

Since we have defined a representation (V,p) as a continuous map G — GI(V), any matrix
coefficient on G is continuous.

Considering direct sums, dual and tensor products of representations shows that the sum, the
conjugate and the product of matrix coefficients are again matrix coefficients. The trivial rep-
resentation g — 1 yields the unit element of C'(G,C). Therefore the vector space A of matrix
coefficients on G is a unital x—subalgebra of C'(G,C). Since any representation of G is a di-
rect sum of irreducible representation, a basis of A is given by the set of matrix coefficients

I= {pij}p irreductible-
1<4,5<d(p)

It is possible to construct intertwiners from (V,p) to (V’,p’) by averaging on G matrix coeffi-
cients coming from these two representations. A careful study of these intertwiners yields the
first following important result:

Theorem 2.10 (Schur orthogonality relations, [26] Thm 2.3, Thm 2.4). Let (V,p) and (V' p)
be two non-isomorphic irreducible representations. Then the matriz coefficients are orthogonal
with respect to the Haar measure. Namely for 1 <i,j <d(p) and 1 < k,l < d(p'),

/ pij(9)p(9)dg = 0.
G

If (V,p) and (V',p") are isomorphic irreducible representations, we can identify their basis and

i this case )
pij(9)pri(9)dg = ——dirdji-
[ pstaontads = 2o,

Therefore the matrix coefficients of irreducible representations yield an orthonormal basis of
A with respect to the Haar measure on G:

A= @B D Cpy

(V,p) irred. 1<4,5<d(p)

The subspace €, <ij<d(p) Cpij is denoted by W,,.
The second important Theorem is that the algebra A is dense in C(G, C):

Theorem 2.11 (Peter-Weyl Theorem, Thm 4.1 in [26]). The matriz coefficients are dense
in C(G,C). In particular T is an orthonormal basis of L*(G), the space of square-integrable
functions on G.

The proof of this Theorem is a bit evolved in the general case. However, if G is already
described as a subgroup of Gl,,(C), the proof of the density is a straightforward consequence of
Stone-Weierstrass Theorem.

Example 2.12. Let us apply these results to the unit circle U. In this case, since the group is
commutative, an irreducible representation (V,p) of U is one dimensional and thus it is just a
group homomorphism p : U — C*. Since p has to be continuous, there exists n € Z such that
p = ey, where ey(z) = 2" for all z € U. Reciprocally any function of this type is indeed an
irreductible representation of U.

From FExample the Haar measure on U is just the Lebesgue measure on the unit circle.
Therefore by the content of this paragraph, the set of functions {ey}nez is an othonormal basis
of L?(U) with respect to the Lebesgue measure on the circle: the decomposition of any continuous
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function in this basis is exactly the usual Fourier expansion.
Thus the constructions made in this paragraph are a generalization of the usual Fourier expansion
on the circle to a general non-commutative compact group.

To sum up, any compact group GG comes naturally with a probability measure fG, and a
particular set Z of random variables that form an orthonormal basis of L?(G, fG) To fully
describe this probability space, we need to know the joint law of these random variables. This
is equivalent to knowing the expansion of products of matrix coefficients in the basis Z. A
theoretical answer to this problem will be given in Section with the Weingarten formula.
The concrete computations are hard to achieve. A smaller space of continuous functions, the
space of class functions, is easier to handle and still give interesting informations on the compact
group.

2.1.4 Characters and the unitary group

Definition 2.13. Let (V,p) be a representation of G. The character of p is the function

Xp(9) = Tr(p(9)).

The character is said irreducible if it is the character of an irreducible representation.
A wirtual character is a function of the form x1 — x2 with x1 and x2 characters.

Since the direct sum and tensor product of representations are again representations, the
set of characters is stable by addition and multiplication. Since the character of the trivial
representation is the constant unit function, the set of virtual characters forms therefore a ring
Cl(G).

Note moreover that since the trace is invariant by conjugation,

x(hgh™') = Tr(p(hgh™")) = Tr(p(h)p(g)p(h)~") = Tr(p(g))

with g,h € G. Thus by linear extension of this relation, CI(G) is a ring of functions which
are constant on conjugacy classes of G. A function f on G such that f(hgh™') = f(g) for all
g,h € G is called a class function. Actually the vector space CCI(G) spanned by the characters
is dense in the space of class functions in L*(G) (see [26], Thm 2.6).

Theorem yields the following straightforward result :

Proposition 2.14. Let (V,p), (V' p) be two representations of G. Then

/G Xp(9)xp (9)dg = dim Mor(p, p').

If p,p’ are irreducible representations,

(1 G Wi~ ()
/GX,O(Q)X/J’(g)dg = {0 if (V, p) o (V’,p/) .

In particular the set of irreducible characters is a basis of Cl(G).

Therefore the set of irreducible characters forms a basis of the L?—space of class functions.
To compute the moments of a character with respect to the Haar measure amounts to decompose
tensor products of the representation of this character into irreducible ones.
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Example 2.15. Let (V,p) be a representation of U, and U € U,,. Since U is a unitary matriz,
it is thus diagonalizable in an orthonormal basis and there exists P € U, and A a diagonal
matriz with modulus one coefficients such that U = PAP™L.

Since x, is a class function and U is diagonalizable, x,(U) = x,(PAP™1) = x,(A). Therefore
the value of the character on U only depends on the eigenvalues of U.

If o0 € Sy, is a permutation, the matriz W (o) = (0i5(j))1<i j<n 8 i Uy, and

A1 )\0'*1(1)
W (o) W(o)™ = .
A, A1

n

Since x,(W (o) AW (0)71) = x,(A), the value of the character on U is a symmetric function of
the eigenvalues of U.

The previous example shows that the theory of symmetric functions plays a role in the study
of characters of the unitary group.

2.2 Symmetric functions

In this section we briefly review the basics of symmetric functions. Most of the results come
from [60], and the reader should refer to this book for complete proofs.

2.2.1 Young diagrams

Definition 2.16. Let n > 1. A partition XA of n, also written A F n, is a finite decreasing
sequence of integers (A1 > Ao > A\, > 0) such that > \; = n. The length of X is the length of
the sequence of mon-zero integers.

The set of partitions of n is denoted ). For each partition A, my(A) denotes the num-
ber of elements equal to k& in (Ay > Ao > --- > \.). With this notation A is also written
A= 1m0 g,

A partition is pictorially represented by a Young diagram, which is an array of n cells with \;
cells on the first row, Ao cels on the second and so on. The Young diagram of the partition
(7,4,2,1) is drawn in Figure

Figure 2.1: Young diagram of (7,4,2,1).

Definition 2.17. A partial order is defined on Y, by saying that A < p if and only if I(\) > I(n)
and
A < pn, A A2 < gt gy A Ny St )

The transpose A of a partition X is defined as the partition corresponding to the symmetry
of the Young diagram of A through the diagonal axis. For example the transpose of (7,4,2,1)
is the partition (4,3,2,2,1,1,1), as suggests the following picture :
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Figure 2.2: Young diagram of (7,4,2,1) and its transpose.

A Young tableau T is the assignment of a positive integer to each cell of a Young diagram \. ) is
then refered as the shape of T'. For {x;};>1 an infinite set of commutating variables, a monomial
2T is assigned to each Young tableau T with the formula 27 = xlfumber of LinT gumber of 2in T

Since the Young diagram has a finite number of cells, the aforementioned product is finite. The

next figure is an example of such correspondance:

41710611
5041
6

‘CDOO\I»P

Figure 2.3: Young tableau T of shape (7,4,2,1) giving 27 = 2223zs2322w8710211.

2.2.2 Symmetric functions

Definition 2.18. A symmetric function f is a polynomial in n variables x1,...,x, such that
for all permutation o € Sy, f(To), - Tom)) = f(T1,. .., Tn).

A rational symmetric function g is a polynomial in n variables x1,...,x, and their inverse
xfl, oo, w b such that 9(To(1ys s Tomy) = (X1, -, Tn).

We denote by A, (resp. Af) the ring of symmetric functions (resp. rational symmetric
functions) in n variables with integer coefficients in the basis of monomials. This is a graded
ring with the grading given by the degree of an homogeneous polynomial.

Let e, be the monomial x; ...x,. Since any rational symmetric function has a monomial of

lowest degree, any rational symmetric function ¢ is equal to - f, with f a symmetric function.

Therefore we will only consider symmetric functions in this Subsection

A straightforward basis of A, is the so-called monomial basis, whose elements are indexed by

partition A with [(A) < n. The monomial symmetric polynomial m) is defined as the sum of
}\ é\\Q o) (where we set A\p11 = -+~ = A\, = 0) and all the different monomials obtained from

G A )‘ by permuting the 1ndlces in the variables {z; }1<i<n. For example

3 3 2
m(3,1,1)($1, T2, T3) = T|T2T3 + T1THT3 + T1T2T3.
Besides this basis, there exist three bases which can be constructed with Young tableaux:

e Let RT'(\) denote the set of tableaux of shape A such that the integers are weakly increasing
along the rows, and define

ha(zi,...,xpn) = Z zT

TERT(X)

These functions are called homogeneous symmetric polynomials.
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e Let CT(\) denote the set of tableaux of shape A such that the integers are strictly increas-
ing along the columns, and define

é,\(xl,...,a;n): Z xT.

TeCT(N)
The functions ey = €,: are called the elementary symmetric polynomials.

e Let SSYT(A) denote the set of tableaux of shape A such that the integers are weakly
increasing along the rows and stricly increasing along the colums; such tableau is called a
semi-standard Young tableau. Define

sax(x1, ... xn) = Z i

TeSSYT())

These functions are called Schur polynomials. These are the most important polynomials
in the study of the representations of U,.

The sets {hx}in)<ns {€x}ia)<n 18A}i(\)<n are all bases of A,,. In the case of the elementary and
Schur polynomials this result is straightforward: indeed after ordering the bases with respect to
the order < on partitions (as defined in[2.17), the transition matrix between {m,} and {€,} (or
sy) is upper-triangular with 1 on the diagonal. Complete proofs and complement can be found
in [60], Part I, Ch 6.

From the list of bases above, ey = ey, ...ey,.. Thus, since {e)\t}l()\t)gn is a basis of A,, A, can
be identified with the free commutative ring Zles, . .., e,], with e, being the polynomial

er(T1,. .., xn) = Z Tiy - T,

11 <<ty

A fifth family of symmetric functions arises by considering power sums. Namely let p, =
D i<i<n a¥ and py = py, ...py,. Although the set {pr};n)<n is not a basis of Ay, it is still a
basis of Q ® A,,.

2.2.3 Hall inner product

RS
Projective limit The map ®,, : A,, — A,,_1 defined by ®,,(e;) = %Z ifz f Z is a surjective
homomorphism of graded algebra from A, to A,—;. We can thus define the projective limit
A =1limA,.

(_
A can be seen as the algebra of symmetric polynomials in an infinite denumerable set of variables
{z1,...,&pn, ...}, with the grading given by the degree of homogeneous polynomials. For example

the monomial symmetric polynomial m(3,171) is defined as

mea) ({2, T, ) = Z $§1$i2$i3-
i1,i2,13 distinct

The bases given for A,, are also bases of A if we drop the restriction /(A) < n on the partitions
indexing elements of the bases.

An important result is that the coefficients of any expansion of an element in A, in one of the
bases we gave before is constant for n large enough. Therefore any algebraic result obtained
in A on a finite set of elements can be considered as also true in A,, for n large enough. For
example, if we write mymy, = 3, <, a5, (n) the expansion of mymy, in the basis {mx};(»)<, of
Ay, the coefficients af, (n) are independent of n as soon as n > I(A) +I(u).
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Hall inner product We introduce here the Hall inner product in A. Note that the same
construction and results exist for A,,.

Definition 2.19. The Hall inner product (.,.) is the bilinear form on A defined by its value on
the basis {myx} and {hy} as
<m)\,hu> = 5/\N'

This bilinear form is naturally extended to Q ® A.

This bilinear form is actually an inner product, as we will see in Example
It is possible to characterize dual bases with respect to this product. If {x;},{y;} are two
denumerable infinite sets of variables, the basis {my)} and {h,} are related by the Cauchy

formula
11 1_1963/ =Y ma({z ) ({u}).
1JJ 3

The Cauchy formula implies that if f is a symmetric function, then (]| ﬁiyi’ f{zi}) = f{wi}).
The latter equality yields a proof of the following fact:

Proposition 2.20. Two bases {f\} and {gr} consisting of homogeneous polynomials are dual
with respect to (.,.) if and only if

1
1— 2y,

> Hzhateh) =11
A

Let us apply this proposition to the power sums basis.

Example 2.21. If we set zy = [[mg! [[ K™ (recall that my, is the number of parts of A equal
to k), then

3 1px({1‘z} ISCUREDS Z H Z I xajyb

A LEPWION 'a1, Ha

lav'r

_ Z %(_ Z log(1 — z;y5))"
r i,J
=exp(— Zlog(l —aiy;))) = H :
2%

i.j 1= @iy,

Therefore from the last proposition, the dual basis of {px} is {zxpr}. This implies that

(DX, Pp) = Ox 2
In particular (.,.) is positive definite and symmetric.

An important result is that the Schur basis is an orthonormal basis of A: namely (sy,s,) =
dxu- The proof is done in [60], Part I, Ch. 4. By a linear algebraic argument, an inner product
on A has at most one orthonormal basis, up multiplication by +1. The Schur basis is therefore
the unique orthonormal basis of A, and the unique graded basis such that

H = ZSA {zi})sx({yi})-

1 — 2y,
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2.3 Representation theory of the unitary group and probabili-
tistic applications

It is now possible to describe the ring of virtual characters C1(U,,). This description gives a way
to compute moments of characters with respect to the Haar measure: some important results
obtained by Diaconis and Shahshahani in [33] are given in example of this machinery.

2.3.1 Irreducible representations of U,

The content of this subsection comes from [26] Ch. 35 and 38.

Rational and polynomial representations The unitary group U, has a fundamental rep-
resentation given by its canonical embedding in Gl,(C). Denote by (u;j)i<ij<n the matrix
coefficients of this representation. A representation (V,p) of U, is said rational (resp. polyno-
mial) if the matrix coefficients of p are rational (resp. polynomial) expressions of the u;;. In the
next paragraph we will classify all rational and polynomial representation of U,.
In any case the character of a continuous representation of U, is a rational function of the eigen-
values. Indeed let (V, p) be a continuous representation of U,, and consider its restriction to the
eiﬂl
n—torus T, = . . This yields a continuous representation (V, p) of T,,. Since
eiﬂN
T, is the commutative product of n different copies of U, V' decomposes in dim (V') vectors v;, each
of them being a one-dimensional continuous representation of 7T;,. Each one-dimensional contin-
uous representation of T}, has the form p(e™r, ..., eWn) = eilkdrt+hbntn) with ki, ... k, € Z;
therefore the character Xﬁ(ewl, eee em") is a rational function of €1, ... e® with non-negative
integer coeflicient in front of each monomial. But we have seen in Example that for U € U,,
xp(U) is equal to x,(A), with A € T, being a diagonal matrix such that U = PAP~!. Thus if
(V, p) is a continuous representation of Uy, x,(U) is the evaluation of an element of A on the
eigenvalues of U. From now on the characters of U, are thus identified with elements of A,
and the ring of virtual characters with a subring of A*.

Examples of rational representations We review here some basic examples of rational
representations, with the identification of the associated character as an element of A . Recall
that in order to identify the character, it suffices to consider the restriction of the representation
to the n—torus T),. In the sequel, (vy,...,v,) denotes the canonical basis of C", and for each
unitary matrix U, u = {uy,...,u,} denote its eigenvalues.

e The fundamental representation: this is the identity map on U, (C). Therefore the char-
acter is just the symmetric function Y u; = mi(u) = ej(u).

e The determinant: the determinant det : U, — C is a group homomorphism, and thus
a represenation. By the relation between determinant and eigenvalues of a matrix, the
associated character is the elementary symmetric function e, (w1, ..., uy) = uq ... Uy.

e One can generalize the previous representation by considering powers of the determinant:
for m € Z the map det™ : U — (det(U))™ is again a group homomorphism, and the
associated character is the symmetric function e]'.
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e The m—fold exterior representation: let 1 < m < n and let /\m C"™ be the m—fold exterior
product of C™. The latter is the quotient of the tensor product (C")®™ by the relations
Vi, ® - @, = 0if i; = i for some j # k. A basis of A™C" is given by {v;, A--- A
Vi Yiy<ig<o<inm - The map (U, vy, A---Av;, ) — Ulviy ) A--- AU (v;,) gives a representation
of U, on A" C". Considering the restriction to T;, yields that the associated character is
exactly the elementary symmetric function e,.

Note that all these representations are polynomial, except for det” with m < 0.

Moreover, taking tensor products of the last example with different positive values of m yields
that any symmetric function of the form e]fl ...eFn with ki,..., k. > 0 are characters of some
polynomial representations. Since A,, = Zley,...,e,], taking direct sums of these representa-
tions shows that any element of A,, corresponds to a virtual character.

From Section any rational symmetric function is of the form e,™ f with f € A,,, and thus

Cl(U,) ~ AF.

Is there a continuous representation of U, which is not rational ? It seems not clear
whether there exists a continuous representation that is not rational. For example GI,(C)
has continuous non rational representations: consider for instance the group homomorphism
G = (9ij)1<ij<n — G = (Gij)i<i,j<n- However in the case of the unitary group the answer is
negative: we have seen that the character of any continuous representation corresponds to an
element of Af. But since, from the previous paragraph, A is already spanned by characters of
rational representations, any continuous representation is actually rational.

Irreducible characters of U,, It remains to find which elements of A correspond to irre-
ducible characters.

Since the representations det™ are all one-dimensional, the functions €]’ correspond to irre-
ducible characters. Therefore let us consider only the polynomial representations. The irre-
ducible characters can be directly obtained thanks to the Hall inner product on A,. Consider
the graded algebra Clu;;] = @~ Cluij]q of polynomials in the variables u;j, with Clu;;]q being
the subspace of homogeneous polynomials of degree d.

Since the set {u;j}1<i j<n is a set of matrix coefficients of the fundamental representation, Clu;;]
is a subalgebra of the algebra A of matrix coefficients of U,,. Recall that

A= P W,
(V,p) irred.

with W, = @1§i,j§d(p) Cpij. Since p;ij(g) = (p(g)es, ej), Up x Uy, acts on W, as

(A, 1')-piz)(9) = (p(9)(p(R)ei), p(h™)ey).

This shows that as a representation of U, x Uy, W, =~ V,®@V 7. It is an easy computation to check
that V, ® VI is an irreducible representation of Uy, X Up,. Therefore the U, x U, representation
A has a decomposition into irreducible U,, x U, representations

A~ & v,ev;.
(V,p) irred.

Since Clujj;]q is invariant under the action of Uy, x Uy, it has a unique decomposition into U,, x U,
irreducible representations. The polynomial form of these representations yields that

(C[’U,Z]] = @ Wp = @ Vp ® Vp*.

(V,p) poly. irred. (V,p) poly. irred.
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—1
x1 U1

Looking at the trace of the action of ( , ) on both sides of the

—1
In Yn

equaliyy above yields

H #: Z f)\(l'l’...,-’L'n)f/\(yla---ayn)'

1—xy;
1<i,j<n iYj AN <n

Remark 2.22. There is obviously a convergence problem here, since the x;,vy; have modulus
one as eigenvalues of U,. However this equality between functions should be considered as an
equality between each homogeneous component, and the value of the whole serie doesn’t play any
role.

From Section we deduce that, with the appropriate labelling, fy = s). This yields the
following result:

Theorem 2.23. The ring of virtual characters of U, is isomorphic to A, and the basis of

n -’
irreducible characters is given by the set {e,;;""sx} m>0 -
I(N)<n
The algebra CClyo (Up) of polynomial characters is isomorphic to C ® Ay, and the basis of
irreducible polynomial characters is given by the Schur basis.
Through the isomorphism ® : CClyy(Uy) — C ® A,, the L?—scalar product with respect to the

Haar measure on U, yields the Hall inner product on A,,.

2.3.2 Probabilistic applications

The random variables x, Let us label by A the irreducible representation whose character
is given by sy through the map ® in Theorem [2.23] and denote by x) the associated charac-
ter. Then for n distinct partitions A',... A", the joint law of (),1,...,xar) can be explicitly
computed. Indeed the product formula on the Schur basis in A,, is given by the Littlewood-
Richardson coefficients {c§,} as

S\Sy = Z CK“Snu- (2.3.1)
l(v)<n

These coefficients have a combinatorial nature (see [60], Ch.9), which allows to algorithmically
compute them. Let us write M, = (CKM) w the matrix of the multiplication by sy in the basis
{suti(uy<n- Then for my,...,my,n1,...,n. >0,

where (0) is the empty partition corresponding to the constant function 1. However, the
Littlewood-Richardson coefficients are hard to compute and the previous formula is difficult
to deal with.

Diaconis-Shahshahani results Other kinds of formulae can occur by expanding characters
in different bases and evaluating the Hall inner product in these bases. Let us look at the power
sum basis, and write X; = Tr(U?) for 4 > 1. Diagonalizing U shows that the random variable
X} correspond to the power sum pg through the map ®. Therefore if aq,...,a,,b1,...,b, >0,

/ (X9 X (X7 X)) = (o

n
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with g =19 ...7% and v = 1% .. .rbr. For n > (3 ;i) V (3 bii), the expansion of p,, p, in the
Schur basis is independent of n, and thus the evaluation of the Hall inner product on p, and p,
is the same in A,, and A for n large enough. Therefore in this case, from the computation of the
Hall inner product for the power sum basis in Section [2.2.3

/ (X0 ... X%) (Xfl ...Xf?T) = S

n

Since z, = [[i%a;!, this yields for n > (3 ia;) V (i) b;)
(X, xon) (X0, xPr) = / X0 xh
J st () <T1

with [;; XOXP = 6,,,i%a,!.
The latter are exactly the moments of a symmetric Gaussian complex variable with mean 0 and
variance 7 (see(l.2.2)). This is the content of the following Theorem of Diaconis and Shahshahani:

Theorem 2.24 ([33]). Asn goes to +o0, the random vector (Tr(U?));>1 converges in moments
to a family of independent symmetric complex gaussian variables (Z;)i>1, such that Z; has mean
0 and variance 1.

By using the representation theory of the symmetric group .S, Diaconis and Evans also com-
puted in [32] the value of the variance of Tr(U?) for all n > 1 and found that Ju, Tr(UH)Tr(U7) =
9;5(1 A n). This allowed them to extend this convergence to all symmetric functions having cer-
tain Fourier expansions. They could also prove that the convergence of these random variables
is stronger than the convergence in moments.

Concrete realization of the Hall inner product The Hall inner product, abstractly defined
on the bases {my,hy} of A,, can be concretely defined as the inner product of a L?—space.
Indeed, the Haar measure on U, yields a probability measure on the torus T, (identified with
[0,27]™) as the pushforwards measure through the map sending U to its eigenvalues. Some care
is needed because of the ordering of the eigenvalues, but eventually this yields the existence of
a measure dm on T, invariant under the action of Sy, such that for u,v with I(u),l(v) < n,

/ (€1, e s, (e, et ) dm (D, ..., ) = O
The density of the measure dm with respect to the Lebesgue measure can be explicitly computed
with the Weyl integration formula (see [98]):
Theorem 2.25. The density of dm with respect to the Lebesgue measure is given by

1 i 00
dm(ﬁl, N 71971) = W H ’6 ﬁke 19]‘2.
i<k

2.4 Weingarten calculus for U,

In the last section we have used representation theory to obtained probabilistic results on class
functions. The goal is to extend this approach to any element of C'(U,,C). This has been done
by Collins in [28], and more generally by Collins and Sniady in [29]. The content of this section
comes mainly from [29]. This section is particularly exhaustive, since the generalization of the
Weingarten formula to quantum groups is the main motivation of the first part of this thesis.
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We have seen that the algebra of polynomial matrix coefficients is exactly Clu;;]. From Section
2.3.1] rational representations of U, are tensor products of polynomial representations with a
one dimensional representation of the form det™™ = (det)™ for m > 0. Since det € Cluy;], the
algebra of matrix coefficients is therefore C([u;;, ;).

The main goal is to compute the integral

Lagy = /U Winjy -+ Wigjg iy -+ Uit g1, (2.4.1)
n

fori,j € [1;n]? and il ]7 € [1; n]]d/. Note that we can always assume that d = d’, since otherwise
by invariance of the Haar measure by a scalar rotation,

iy, = [ ) i) G G )
Un, Un

2.4.1 The method

Weingarten calculus is based on the following observation: if G is a compact group and (V p) is
a representation of G, then p, : v — fG p(g)vdg is the orthonal projection (with respect to the
invariant scalar product) on the vector space of fixed points of (V, p). The latter is a consequence
of the invariance of the Haar measure by left multiplication and of Theorem [2.10

The idea is thus to consider the integral as the average of an endomorphism of (C")®¢
with respect to the action of U, on End((C")®?). From the previous phenomenon, this average
is a fixed point of End((C™)®%), and thus an intertwiner of the representation of U, on (C™")®¢
Relating intertwiners of ((C”)®d with a particular action of the symmetric group Sy gives then a
combinatorial formula for the integral .

Expressing integrals as elements of Mory, ((C")®?) Let us denote by E;; the matrix
(0ri0s5)1<rs<n in My (C) (the latter is identified with End(C™) through the action on the canon-
ical basis). Then Ej jy @ -+ ® Ej ;1 € End((C™)®%). U, acts on (C")®? by the d—fold tensor
product of the fundamental representation; thus as in Example U,, acts on End((C")®%) by

conjugation. For U € U,,
UEle{ Ur@---® UE U* = Jlj Q- Q® dejfi’
with Mj ;. being the matrix
Urj,Urjy -+ U Ungy
Thus Tr(M;, j Eyi.) = Ui, j, Uy jr and

Tr((MjU{ Q- ® M]dj )(Ez’zl @ Ez’ zd)) = Uiljl .. Uld]dU

igdy

Q_\

LAl
1J1

Integrating with respect to the Haar measure yields
I;; 35 —TT((/UE]‘U{U* (SR ®UE /U*ClU)( i i1 ®‘-'®Ei£iid)).
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To emphasize the geometric aspect of the right hand-side, this equality can be written as
L7 5.5 = Penaeme) (Bjyjg @ - @ Ejyj), Biyig @ - @ By )),

with (,) being the invariant scalar product (4, B) — Tr(AB*) in End((C")®%). Since PEnd((Cr)®d)
is a projector, the latter quantity is the same as (pgyq((cnyed) (£, ®- - ®E]d]d) PEnd((cmyedy (B ®
@K ;). From Example the space of fixed points of End((C")®?) is exactly Mory, ((C™)®4, (C™)®%).
Therefore evaluating the above scalar product requires a good description of Mory, ((C™)®4, (C™)®9).

2.4.2 Schur-Weyl duality

Let Sy denote the symmetric group of order d. Sy is a finite group with cardinal d!. By a
result of Young (see [60] Part I, Ch. 7), the irreducible representations of S, are indexed by
the integer partitions of d. The irreducible representation corresponding to A is also called the
Specht module of the partition A and denoted by S.

The representation theory of Sy has a very rich combinatorial structure. Looking at the repre-
sentations of Sy for several d yields in particular a link between the theory of representation of
Sy and symmetric functions :

Theorem 2.26 (Frobenius character formula, [60] p.114). Let u+ d and v F d be two partitions.
The value of the irreducible character of S, on a permutation o with cycle decomposition v is

Xu(0) = (S, Pv), (2.4.2)
where the scalar product on the right hand side is the Hall inner product on A.

Sy acts also on (C")®¢ by permuting the entries of the tensor product. Namely for o € Sy,
the representation ((C")®9,w) is defined by

w(o) (V1 @+ ®Va) = Vy-1(1) @+ ® Vg-1(g).-

This action commutes with the action of U,, on each component of the tensor product and thus
w(o) € Mory, ((C™)®4, (C™)®9). Moreover

<Ej1ji ® - ®Ejdj ,w(o)) = 5]10(11) 5jd0(j;)'

Therefore we know a particular subset of MorU ((C)®d (C™)®9), namely the set {w(o)}oes,, for
which the scalar product with £}, 78 QF; o, is particularly simple. The question is to know
whether the knowledge of all these scalar products is enough to reconstruct pg,q(cnyed) (Ej, i ®

J
+®@Ej,; ). The answer is positive if {w(c) }ses, spans the vector space Morg, ((C™)®4 (C™)24),

This is exactly the content of the Schur Weyl duality.

Theorem 2.27 (Schur-Weyl duality, [26], Ch.36). As a U, x Si-representation, ((C”)®d decom-

poses as
@ Vy® Sh.
MO <n

In particular, the action w of S yields a surjective map
w : C[Sy) — Mory, ((C™)®4, (C™)®)
which restricts to an isomorphism

W= @ My()(C) = Moy, ((C™)®?, (C™)®4),
M(N)<n

where CSy is identified with .3 Ma(x)(C) as a semi-simple algebra.
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The decomposition of CSy as a direct sum of matrix algebras indexed by irreducible repre-
sentations of Sy is the content of Artin-Wedderburn’s Theorem (see [74], Section 1.10).
We will give here a proof of Theorem based on the Frobenius character formula. Note
however that its apparent simplicity is misleading, since the Frobenius character formula is a
nontrivial result.

Proof. The action of Sg and U,, commutes, yielding an action ¢ of Sy x U, on ((C”)®d. We can
thus decompose (C*)®? = D, irred. of v, Vo ® Wy, where V,, the irreducible representation of Uy,
with character s, and W, a representation of Sg.

Moreover one can prove (see [57], Section 2) that if 4 = (u1 > -+ > ) is the cycle decomposi-

tion of o and €1, ..., e are the eigenvalues of U € U,,, then
Xo(o,U) = Te(UM) Te(UF2) ... Te(UPr) = pu(e™, ... ). (2.4.3)
For example if o is just the cycle [1,...,d],
Xelo,U)= Y (Uei,®---®@Ue;, @Ue;,€;, @ D e;)
1<iy,..ig<n
= Z Ui1i2 cee Uin—linUinil = TI‘(Ud).
1<iy,yig<n

Since X¢(0,U) = 3_(v.p) iwred of U, So(U)xw, (o) and the Schur functions {s,};(,)<, form an or-
thonormal basis of the class functions in L?(Uy,, fUn)’

W @) = [ xo( 05T
Therefore xw,(0) = Jy; pu(0)5p @)U = (0 5p)an. Since 1(p) < 1, (B Sp)an = (B 5,4
Thus by the Frobenius character formula (2.4.2)), xw, (o) = x, and W, ~ S, the Specht module
of the partition p.
O

To summurize, the purpose is to evaluate the scalar product (pgnq((cnyed(A), PEnd((cr)y2d)(B)),
with A, B two elements of End((C")®9). To each element A, one can associate the function
fa on Sy defined by fa(o) = (A,w(0)); by the Schur-Weyl duality, the intertwiner space
of (C")®? is spanned by {w(c)}ses, and thus the data of f4 and fp is enough to compute
(PEnd((ct)@e(A); PEnd((cr)2e)(B)). The matter is therefore to relate exactly (pgna((cayed(4); Pna(cmyedy (B))
to (fa, fB)r2(s4)-

2.4.3 Convolution algebra

Convolution algebra Let G be a compact group. We have seen in Section 2 that L?(G, /. G) =
@(V,p irred) @19’,;5:1(,;) Pij-

Let (V,p) be an irreducible representation. We identify End(V') with Mg(,)(C) through the
particular orthogonal basis (e, ..., ed(p)) chosen in Section 2.1.3} Thus there is a linear map
P, : My,)(C) — L?(G, Jo) sending Ej; to d(p)ps, and this linear map is an isomorphism
onto the vector space C), of matrix coefficients of the irreducible representation p. ®, maps
Ae Md(p)((C) to

g~ d(p) Tr(p(g)A").

However My, (C) has a richer structure given by the matrix multiplication, and by isomorphism
this structure transposes to the vector space @1<i, j<d(p) Pij-
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Definition 2.28. The convolution algebra on G is the x—algebra (C(G, C), ), with the product
* given by

fie fale) = [ Fi0) a0 )
The involution f* is given by B
f9)=Flg™).
There exists a state € on this algebra which is defined by the formula f — f(e), where e is the
unit in G.

Note in particular that e(f1 = f3) = [, fi(h)f2(h)dh = (f1, f2>L2(G,fG)'
By Schur orthogonality’s Theorem, if (e;) (resp. (f;)) is the chosen basis of (V, p) (resp. (V' p')),

©,(EL) @y (Ef) = d(p)d(p)pij * plulg) =d(p)d(p) /G (p(h)ej, ex)(p' (™) fi, fi)dh

—d(p)d(p) /G (p(h)es, e () Fir p(g) Fi)dh
:d(p)épp’(sklpil = (I)p(Eijlgl)'

Since ©,(E};) = @,(Eji) = d(p)pji and pji = (p(g)ei ej) = (p(g~1)ej, ;) yields also ®,(E};) =
®,(Eij)*, ®, is a x—algebra isomorphism. With this isomorphism, the scalar product given by
the trace on Mg, (C) gives the scalar product ﬁ(., .y on Cp.

Fourier transform of a representation Let (W,¥) be a finite dimensional representation
of G, and let Ay be the matrix algebra generated by {¥(g)}4eq. Since W is finite dimensional,
W = @(Vw) ired VTP ®(V,p) C» ®V, with Y 7, < co. Since G doesn’t act on the left of
each tensor product, A € Ay has the form

A= P Idev @ A4, (2.4.4)
(V,p) irred

with A, € My, (C).

Definition 2.29. The Fourier transform of A € End(W) is the function f4 € C(G,C) defined
by
fa(g) = Tr(9(g)AY).
Since on W = @y, ) irrea. €' @ V, U(g) has the form 9(g) = D(v) irred. Ldr, @ p(g), for
Aec Ay r
fale)= D rpTr(Ap(9) = iy 20
(Vip) irred. (Vip)

where A has been decomposed as in ([2.4.4)).

Let B € Ay be another operator with the expansion B = ®(V, 0 Idcr» ® B,. Then on one

hand irred
and,
Te(AB*) = Y r, Te(A,B;}) = %@(Amwp»,
(Vop) (Vi) TP
and on the other hand in C(G,C),
(Fa fB)12(c) = 2(%)%@%)@(3@»

(Vip)
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Thus if we denote by Py the operator multiplying each element of C, by fgz g, then
Tr(AB*) = (Pyfa, fB) = (Py = fa* f5)(e).

Characters in the convolution algebra Since Py is diagonal on each space C), it lies in
the center of (C(G,C), x). Note that for g,¢" € G;

fl9g') = /G 5,-1(h) F(h~1g)dh = (6,1 * )(g)

and

(f+8,1)(g) = /G F(1)6,-1(h g ydh = £(d'g).

Thus a function f lies in the center Z of (C(G,C),x) if and only if for all g,¢' € G, f(99') =
f(g'g). This means that the center of the convolution algebra coincides with the space of class
functions, and has a basis consisting in the irreducible characters {x,}, irred-

Moreover if p is an irreductible representation, then by the Schur orthogonality’s Theorem,

1
Xp * Péj (9) = m(;p,p’p/ij'

Thanks to this formula, we can express the operator Py above as :

P— Y d(rp)QXp.

(V,p) irred  *

Weingarten Calculus for U, Let Wg denotes the function Pcnyea. Applying the result of
the last paragraph to the representations of Sy on (C")®? in order to compute (PEnd((cmyee) (B, ®

@ Ej ), By ® -+ @ Eyy,)) yields

Lo 55 <pEnd((<Cn)®d)(Ej1j; ® - @ Ej 51 )s PEnd((cnyed) (Biyiy ® - ® Ejyir)))
:(Wg*fE 7 &0, fE i ® 08, )(6)
Computing the last product in the convolution algebra gives the Weingarten formula obtained
by Collins in[28]:
Theorem 2.30.
1
Lago= D Oiol) - SaotipOinr(@) - Siar(yWolor™).
o,TESy
d(N)2

with Wg(0) = iz Loxeai<n s XA(0)-

2.5 Application of the Weingarten calculus

We review here some applications of the Weingarten calculus. The main motivation of [28] for
developing the Weingarten calculus was to compute the coefficients of the so-called Itzykson-
Zuber integrals (z, X,Y) — fUn exp(nz Tr(XUYU*)dU. However we will only give results con-
cerning asymptotic freeness and second order freeness, since the latter involve free probability.
One should refer to [28] for more details on the asymptotic expansion of the Itzykson-Zuber
integrals.
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2.5.1 Asymptotic of the Weingarten function and pair partitions

All the results of this section rely on the asymptotic value of the Weingarten function. Suppose
from now on that n > d. In this case, Wg(o) = Z/\Fd dlmVA X,\(a) and Wy is precisely the
inverse of the character X(cnyea in the convolution algebra Sq. Applying expression (2.4.3)) to
o x Id yields

X(cmea = n,

where ¢(0) is the number of cycles of . Since X(cryed is polynomial in n, it is expected that
W g is rational in n. Actually, Collins proved in [2§] that

Z ax(o ~(2d—c(0)).

k>0

and that

o) = (d)* [ lur(~
Hi

where p is the partition coming from the cycle decomposition of ¢ and I, = % is the k—th
Catalan number. There exists also a combinatorial description of the other coefficients ay,.

A simpler proof for the expression of ag, based on Biane’s algebra (see [20]), has been given by
Collins and Sniady in [29]. Note in particular that the expression of ag is a particular value of
the Moebius function of the lattice of non-crossing partitions (see Section .

The higher order term in the expansion is given by the value of Wg on the identity, with
Wg(o) = (d")?n"%es (1 4+ O(n~')). An independent proof of this first order expansion can be
given using a scalar product on CSy.

Let (.,.) be the scalar product defined on CSy by the formula (o,7) = n® '™ and let Gpq be
the scalar product matrix ((0,7))sres,. With these notations (Gna)or = X (cnysd (0™ 17). Thus

if we set G 7 = (a(7))ores,, then the functions a, have to satisfy the relation

Zag X(cnyea(n™'7) = 0or.

In the convolution algebra of Sq, this means that aq * x(cnyed = %50. Therefore a, = %50 *Wg
and

(Grd)or = ao(T dlz 0o (Wg(h™'7) = —=sWy(o™'7).

(d')

Thus (G, 1)or = ﬁWg(a 17). On the other hand since c¢(o77!) < d for o771 # e, Gpg =
n(Id + o(n™')). Inverting G,q in the latter first order expansion yields (G, ;) = n~%(Id +
o(n™1)), which gives the first order expansion of the Weingarten formula.

The method using the Gram-Schmidt matrix of the scalar product on the intertwiner spaces of

U,, will be generalized to a large class of quantum groups in Chapter 5.

2.5.2 Asymptotic freeness of unitary invariant random matrices

Second order freeness A second-order probability space intends to capture both expecta-
tions and fluctuations of non-commutative random variables. Second-order probability spaces
and second-order freeness have been introduced by Mingo and Speicher in [64] to express the flu-
cutations of large random matrices. Unless specified otherwise, all the content of this subsection
comes from [64].

31



Definition 2.31. A second-order probability space is the data of a probability space (A, ) with
a bilinear functional @ : A x A — C which is tracial in both arguments and such that $(.,14) =
&(14,.)=0.

The natural construction of a second order probability space is made by considering an
algebra A together with a linear map ¥ : A — L7 (Q2) sending 14 to the constant function 1q,

and such that ¥(a*) = ¥(a). Then (A, ¥}) yields a second-order probability space with the maps
©, @ defined by

p(a) = E(9(a)), #(a,b) = Cov(d(a),I(b)).

Note that ¢ does not need to be an algebra homomorphism. Actually if 9 is an algebra homo-
morphism, the map ¢ doesn’t give further information than ¢, since in this case

Cov(¥(a), V(b)) = E(I(ad)) — E(9(a) ) E(I(b)) = ¢(ab) — ¢ (a)p(b).

Example 2.32. Let A = M,, ® L~ (). The trace maps any random matriz to a random vari-
able, and therefore from the discussion above, (A, E(: Tr(.)), Cov(L Tr(.), L Tr(.))) is a second-
order probability space.

Definition 2.33. Let (A, ¢, p) be a second-order probability space and A1, ..., A, be subalgebras

of A. Ai,..., A, are called second-order free if they are free and if for all centered elements
ay, .. .,ap,bl, . ..bp/ with a; € Akiabj S Ak;’ k; 75 kiy1, 3 75 k;’—i-l’ k:p 75 k1 and k?;/ #* kll,

e ifp=p =1 and k1 # Kk}, ¢(a1,b1) =0.

e otherwise
p—1
Pay...ap, by ...b1) = Opy Z o(arbiyi) ... p(apbpyi),
1=0
where the indices are understood modulo p.

As for freeness, second order freeness allows to recover ¢ from the value of ¢ and ¢ on each
subalgebra A;.

Second-order limit distribution Let {A4,},>1 be a family of unital x—algebras and let
{Un}n>1 be a family of linear maps ¥, : A, — L>7 (2, C) with 9, (a*) = ¥,,(a) for any a € A,,.
A sequence ((af,...,ay))n>1 of p—tuples (af,...,ay) in A, has a second-order limit distribution
(¢, @) if and only if

e the family (ﬁn(P(a’f, cee ag)))PeC<Xi>1§i§p converges in moment to a family of complex
gaussian variables (9(P)) pece X;>1<i<,” The expectation of Y(P) is given by a functional
¢ : C < X; >— C and covariances are given by a bilinear functional ¢ : C < X; > xC <

X, >— C.

e the space C < Xy,...,X, > with the functional ¢ and ¢ is a second-order probability
space.

Note that C < Xy,..., X}, > denotes here the *—algebra of noncommutative polynomials in
X;, X}. We will write X} = X, ! in the sequel.

(2

Example 2.34. To illustrate the meaning of a second-order limit distribution, let us consider the
convergence result of Diaconis and Shahshahani in Theorem|(2.24]. Let C[U,| be the unital algebra
of polynomials in U(n), with U(n) being a unitary matrixz chosen randomly according to the Haar
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measure on Uy, and let ¥, (C[U | = L ( Un,fU define by 9,(B) = Tr(B) — Tl (Tr(B)).
Then from Theorem-, ) has a second-order limit distribution (C[X], ¢, @) with p(X?) = 0
and §(X*, X7) = 6;_;i.

Definition 2.35. Let {Ay,}n>1 be a family of unital algebras and let {Vy,} be a family of linear
maps Un : Ay — L7 (,C). A couple of sequences ((af,...,ap), (b1,.. .,bg))n>1 s asymptoti-
cally second order free if and only if the sequence of p + q elements ((af,. .., s b, .. ,bq))n>1
has a second order limit distribution (C < Xy,..., X, Y1,...,Y, >, ¢,¢) such that C < X; >

and C <Y; > are second order free in (C < Xl,...,Xp,Yl,...,Y >, 0,0).

Second order freeness for random matrices The two following theorems are two striking
applications of the asymptotic computation of the Weingarten formula. The first one is directly
based on the evalutation of integrals of type (2 with the Weingarten calculus :

Theorem 2.36. [[63],[62]] For eachn > 1 let Up(1),...,U,(p) be p independent Haar-distributed
unitary matrices of dimension n. Let A, = C[U,(1),U,(1),...,Un(p), Upn(p)] with ¥, = Tr(.) —
oL [T ().

Then the family (U,(1),Un(1),...,Un(p),Un(p)) is asymptotically second order free and the
second order distribution (C[X;],p, @) (resp. C[Y;]) of each Uy(i) (resp. Uy(i)) is given by

SO(sz) =0, @(szszk/) = 5k,*k’k'

A generalization of this result is given for the free unitary group in Chapter 5.
The second theorem should be seen as a generalization of the asymptotic freeness result of
Voiculescu on independent random matrices in [92]. We consider here (A, J,,) as the x—algebra
of random matrices with the *—linear map ¥, = Tr(.)— 21E(Tr(.)). An n—dimensional random
matrix A is said unitarily invariant if the law of A is the same as the law of UAU* for all U € U,,.

Theorem 2.37. [[63]] Let ([AL,..., AN])n>1 and ([B},. .., Bi])n>1 be two sequences of random
matrices, each of them having a second order limit distribution. Suppose moreover that the
entries of [AL, ..., Ab] are independent to the ones of [B}, ..., B], and that the law of each B,
18 unitarily invariant.

Then ([AL,..., Ab])n>1 and ([BL, ..., Bi])n>1 are asymptotically second order free.

The Weingarten calculs is the cornerstone of the proof. Indeed, since the law of each BY, is uni-
tarily invariant, any expectation of products of B, results in elements of Mory;, ((C?)®4, (C™)®%).
Therefore computing expectations of traces of products of these matrices with the ones of
[AL,... Ab] yields projections on the space of intertwiners, and thus the use of the machin-
ery of Section 5.

2.6 Generalization to other groups: the Tannaka-Krein duality

We have seen that the computation of an integral with respect to the Haar measure was done
through the following procedure :

1. Relate the integral to the scalar product of the projection of two operators on the space
of intertwiners of the group.

2. Find a spanning set of the space of intertwiners, on which orthogonal projections have a
straightforward expression.
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3. Use the properties of the space of intertwiners to recover the scalar product from the
orthogonal projections on each element of the spanning set.

Although the first step is a straightforward, the second and the third ones depend heavily on
the group and may not be possible. Fortunately there exist some groups for which the second
and third steps are still feasible. This will lead to define a category of groups whose intertwiners
have a nice combinatorial description (see Section and [I5]). This combinatorial description
is greatly simplified by the rich structure underlying the intertwiner spaces. This structure is
given by the Tannaka-Krein duality.

2.6.1 Tannaka-Krein duality for compact matrix group

The Tannaka-Krein duality describes the operations which exist on intertwiner spaces, and estab-
lish a bijection between compact groups and collections of spaces stable under these operations.
We will only give the result in the case of a matrix compact group but a similar result exists for
general compact groups.

Let G C U, be a compact subgroup of U,. There exists a natural family or representations
of G, indexed by words in {o,e}. Namely let (V°, p°) be the fundamental representation of G
given by the identity morphism p° : G — U, and let (V*,p®) be its dual representation given
by the morphism p°®((g:j)1<i,j<n) = (ij)<i,j<n- Note that as vector spaces, V° ~ V*® ~ C". Let
(ei)1<i<n be a basis of V° which is orthogonal with respect to the invariant scalar product. The
dual basis in V* is denoted by (€;)1<i<n and the pairing between both bases is denoted by (.,.).
Note that (.,.) is an intertwiner from V° ® V* to the trivial representation V? ~ C.

Taking tensor products of these two representations yields the existence, for any finite word
g=¢1...,& in {o, e}, of a representation (V¢, p?) with

V€:V81®...®V6T’pezp£1®...®par'

Let us denote by Morg(e,e’) the vector space of intertwiners from (V¢, pf) to (V< pf'). Thus
for any G C U, Morg(e, ') is a vector subspace of L(V¢, VEI), the space of linear maps from
Ve to Ve

Remark 2.38. The collection of vector spaces {Morg(e,e’)} satisfies several properties :

e Idyo. € Mor(o,0),Idye € Mor(e,e), (.,.) € Mor(ce,0),(.,.) € Mor(eo, ).

e If Ty € Mor(ey,e3), Ty € Mor(eg,e3), then Ty o Ty € Mor(eq,€3).

o [fT) € Mor(ey,e3),Ta € Mor(eg,e4), then Ty @ Ty € Mor(e1e2,€3¢4).

e IfT € Mor(ey,e3), T* € Mor(eg,e1).

Of course, since the functions on a compact group form a commutative algebra,

T:e;®ejrej®e;isin Mor(oo,00). (2.6.1)

All these properties are straightforward deductions of Section 1.2.

Example 2.39. For U,, the space of intertwiners Mory, (e1,e2) is exactly the vector space
spanned by all T, for p € P gpternating(€1,€2) (as defined in Section . Ife = ¢ = o,
Each allowed pair partition is encoding a permutation of Sq. In particular the scalar product
on permutations considered in Section 5.1 is the scalar product between the maps T, for p in

d d
P2,alte7"nating(o , O )
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The striking fact is that the collection {Morg(e,€’)}e o completely characterizes G: this is
the content of Tannaka’s Theorem. Note that the actual statement of the following Theorem is
a bit more evolved (refer to [81] for an exact statement):

Theorem 2.40 ([81]). G can be reconstructed from the data of {Morg(e,€’)}cor. In particular
{Morg(e,e’)}e s completely characterizes G.

Krein’s Theorem gives an answer to the dual question: to find all collections of vector spaces
{H(e,&")} being the collection of intertwiners of any compact subgroup of U,. Of course such
a collection has to satisfy the conditions (2.38). Krein’s Theorem asserts that these conditions
are enough:

Theorem 2.41 ([51]). Let {H(e,&')} be a collection of vector spaces such that H(e,e') C
L(VE,VE). If {H(e, &)} fulfills the four conditions (2.38) and the commutativity relation (2.6.1),

then there exists a compact subgroup G of U,, such that for all €,¢’,
H(g,&") = Morg(e, €').

By Tannaka’s Theorem, the compact group G coming from Krein’s Theorem is uniquely
determined by {H (e,¢’)}.

2.6.2 Other groups with intertwiners described by set partition

In this thesis we are mainly interested in groups (and later quantum groups) whose associated
intertwiner spaces are spanned by maps 7T),’s as in the case of U,.

Compact classical groups The orthogonal group O,, is the group of matrices O € GIl,(R)
such that OO! = Id, and the symplectic group Sp, is the group of matrices T' € Us,, such that
TJT! = J, with J = (—?dn Ig")

In both cases, the fundamental representation and the dual ones are isomorphic: the isomor-
phisms are given by the map Id in the orthogonal case and by the map J in the symplectic
case. Therefore it is enough to specify the description of the intertwiner spaces Morg(e,€’) in
the case € = of and ¢ = o', Let us simply denote these vector spaces by Morg(k, k).

The intertwiners of the compact classical groups O,, and Sp, are also described by pair parti-
tions. Refer to Section for the definition of the maps T, Igs for a given set partition and a
Hilbert space V. In the case of O,,,

Moro,, (kv k,) = <Tp>p€P2(kJ€')’

Moreover {Tp},cp,(ki)} 18 a basis of Morg, (k, k') for n > k 4+ k'. A same result holds for
Spn, but it is necessary to adapt the maps T},’s to the non-degenerate bilinear form given by
J. Using this description of the interwiners, it has been shown by Diaconis and Shahshahani in
[33] that the random vectors (Tr(OF))g>1 and (Tr(TF))x>1 converge in moments respectively to
a gaussian vector (og)g>1 and (tx)r>1, with covariance matrices E(ogox) = E(tyty) = Opik and
expectations E(og) = 0k even and E(tx) = —0k even-

In [29], Collins and Sniady used the Weingarten calculus to compute the Haar integral of arbi-
trary polynomials in the coefficients of the fundamental and dual representations of these two
groups. In particular the same results as in Section 5 exist in the orthogonal and symplectic
case.
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Symmetric group A permutation o, of S, can be embedded into O, by considering its
permutation action on the vector space C™: this action simply permutes the elements of the
canonical basis (e;)1<i<n. This yields a representation (v(0)ij)1<ij<n of Sy, called the funda-
mental representation. Thus S, can be seen as a compact matrix group through this fundamental
representation v.

As for the orthogonal group, the fundamental representation is isomorphic to the dual repre-
sentation, and therefore it is enough to describe the interwiner spaces for e = of, ¢/ = o*’. The
description is once again achieved by using the maps {7} for general partitions. Indeed the
spaces of intertwiners are Morg, (k, k") = (Tp)pepk, iy, and the set {1} pcp(ri) is a basis of
Morg, (k, k') for n > k + k' (see [44]). If n < k + Kk, a basis is given by restricting to the set
{T,} where p is a partition having less than n blocks.

Diaconis ans Shahshahani proved in [33] the convergence in moments of the random vector
(Tr(ck))k>1 toward a vector of independent random variables (sg)r>1, sx having a Poisson
distribution with parameter % Their proof of the result doesn’t use the description of the inter-
twiner spaces. A proof involving this description has been done by Banica, Curran and Speicher
in [14].

As it was already said in Section 4.2, symmetric functions play also an important role in the
representation theory of .S,,. Indeed irreducible representations S, of S, are indexed by Young
diagrams v with n cells. Note first that there is a natural inclusion S; x S,,, C S, for [ +m = n.
Therefore an irreducible representation p of .S, is not necessarily an irreducible representation
of S; x Sy, and the decomposition of p into irreducible representations of S; x .S, is given by
the multiplicative structure of the ring of symmetric functions in the Schur basis: namely if
A1l pwEm and v F n, there is a decomposition

Sy = @(S)\ ® S,u)@cx“a

AHL
ukFm

where c§ , are the Littlewood-Richardson coefficients (see and [60], Part I, Ch.9 for their
precise definition).

The Weingarten calculus for the symmetric group is not as much developed as the one for the
classical Lie groups. We have seen in Section 5 that the precision of the Weingarten calculus
is given by the ability to invert a Gram-Schmidt matrix. In the unitary case, this was greatly
simplified by the Schur-Weyl duality and the well-known representation theory of the different
symmetric groups Sk, for £ > 1. The same method applies also to the orthogonal and symplectic
case. However in the symmetric case, the Schur-Weyl theory involves another family of algebras,
namely the partition algebras Py (n) for n,k > 1. The understanding of the algebraic properties
of this family is recent (see the work of Halverson and Ram in [44] for example), and therefore
the Weingarten calculus has still not been fully achieved in this setting.

Wreath product with S,, Let G be a classical group and n > 1. Then S,, acts on G" by the
automorphisms

5:0€ Sy 5(0)(g1,-,9n) = (Go1(1)5+ -+ > Go1(n))- (%)
Definition 2.42. The wreath product between G and S,, denoted G 1Sy, is the semi-direct
product of G™ and Sy, where Sy, acts on G™ by the action . In other words,

GZS = {((917"'7.971)70-)792' S G,U S S’I’L}7
with the product

((g15---9n),0) - (915 9n), 1) = ((9195-1(1)> - - > InTo—1(n))> )
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If G is a matrix compact group, there is an equivalent way to define G .5,. Namely let
(uk1(g))1<k,<p be the fundamental representation of G. Then G S, can be defined as the sub-

group of Uy, consisting of the matrices {(vij(a)ukl(gi))lgi,jgn} foro € S, and ¢1,...,9, € G.
1<k,i<p
If G is a compact group, G ! S, is compact as well and thus there exists a Haar measure on

G S,,. It is easy to see that G .S, is isomorphic to G X --- X G X S, as a measure space and
that the Haar measure on G5, is given by dAgs, = &), dg; ® do, where dy denotes the Haar
measure on G and do the normalized counting measure on S,,.

Let G C U,,. In this case G5, C U, ® Uy,, and by the Tannaka-Krein duality, the description
of G1 .S, is completely given by the data of Morgs, (¢,¢’) for all words e,&’ in {o,e}. Actu-
ally it is a straightforward computation to express Morgs, (¢,€') in terms of Morg, (¢,¢’) and
{Morg(e,e'}e e an element of Morgs, (€,¢’) is given by a partition p € P(e,&’) together with
an element of Morg(ep,e) for each block B of p, ep and €5 being respectively the restriction
of € and €’ to the elements in B (see Chapter 6 for more details on the subject).

As consequence, we get the convergence in law of Tr(ugs,) toward a compound Poisson distri-
bution with initial law Tr(ug).

Note that the irreducible representations of G5, are described by generalization of Schur func-
tions. Refer to [60], Part I, Appendix B for an exposition in the case of a wreath product G.S,,
with G a finite group.

Remark 2.43. For two sets X, Y denote by F(X,Y) the set of maps from X toY. The wreath
product is a more general construction than the one presented here. Let G be a group. For any
set X and group F acting on X, the wreath product G1x F is the set F(X,G) x F with the
product  defined as follows: for h,h' € F(X, Q) and f,f € F, (h, ) (K, f') = (h, ff), where
forx e X, )
h(z) = h(z)l' (f~(x)),
with the product on the right hand side being done in G.
In Chapter 6, we will study this more general wreath product for G a compact group, X a finite

set and F' a permutation group of X. In this case the construction is exactly the same as in the
case of the symmetric group, and G lx F is compact.
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Chapter 3

Compact quantum group

In this chapter we introduce the notion of compact matrix quantum group and give the non-
commutative version of the results of last chapter. This lead to an overview of the results
obtained in the thesis.

3.1 Noncommutative spaces and quantum groups

3.1.1 What is a compact quantum group ?

Non-commutative spaces The notion of quantum groups fits into the more general frame-
work of noncommutative spaces. The starting idea is that most properties of a classical object,
like a topological or a measurable space, can be seen through the algebra of functions on this
object. Thus by a considering noncommutative generalization of these algebras, it is possible to
define noncommutative analogs to the classical objects.

Example 3.1 (Historical example). The most trivial example is the one of complex functions
on a unique point. Classically this space is just C, with multiplication given by the canonical
one on C. The noncommutative generalization is obtained by replacing C by the algebra M, (C)
of n—dimensional matrices. This is exactly what Heisenberg, Born and Jordan (see [24]) did
when replacing the orbital position x and momentum p of an electron by two matrices X and P
(which were infinite dimensional in this case).

This example can be transposes to the case of C-valued functions on r points. In this case the
algebra C™ with the pointwise multiplication turns into a matriz algebra @;_, My, (C). Note that
the classical algebra C" coincides with the center of @;_; My, (C).

In the previous example there is no particular interest in defining topological or measurable
noncommutative spaces, since the classical space is a finite set. The correct approach to the
definition of functions on a noncommutative topological space is the one of C*—algebras:

Definition 3.2. A C*—algebra A is a x—algebra over C with a norm ||.| such that
e A is complete with respect to ||.||.
o forallxz,y € A, (xy)* =y*z*.

o forallz,y € A, |zyll < ||=[llyll and |2z = [l=>.
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This definition is the most natural one for two reasons. First, the algebra of complex func-
tions on a locally compact Hausdorff space, considered with the ||.||c—norm, is a commutative
C*—algebra. Actually any commutative C*—algebra is of this form:

Theorem 3.3 (Gelfand’s Theorem). Let A be a commutative C*—algebra. There exists a locally
compact Hausdorff space X such that A is isomorphic to C(X), the algebra of complex functions
on X wvanishing at infinity.

If A is unital, then X is compact.

Secondly, if A is finite dimensional, we recover the construction made in Example

Theorem 3.4 (Artin-Wedderdurn’s Theorem). Let A be a finite dimensional C*—algebra. Then
there exist r > 0 and ny,...,n, > 0 such that

A~ é M,,(C).
i=1

If X,Y are compact spaces, a continuous map ¢ from X to Y yields a C*—morphism & :
C(Y) — C(X) defined by ®(f)(x) = f(p(x)). If ¢ is an injective map (resp. surjective,
bijective), then ® is a surjective map (resp. injective, resp. invertible). Therefore C* —morphisms
encode continuous maps between non-commutative topological spaces.

Remark 3.5 (Where are the points in a noncommutative space 7). Fven if the right way to
see a noncommutative space is to consider the functions defined on it, it is still possible to
recover a topological space from a general C*—algebra. If A is commutative, we have seen that
A isomorphic to CY(X) for a locally compact Hausdorff space X . In this case one can show that
any irreducible (continuous) representation of A is of the form evy : a — a(x) for an element
zeX.

Similarly if A is a general C*—algebra, we define the spectrum Spec(A) as the set of equivalence
classes of continuous representations of the C*—algebra. It is possible to define a topology on
Spec(A) such that in the commutative case, Spec(C°(X)) ~ X. In Example this yields as
expected that Spec(A) is a discrete space with v elements. Therefore formally, evaluating a € A
on x € Spec(A) is taking the image of a in the irreducible representation x.

This point of view is however often limited, since in many cases, Spec(A) is just a point.

It is also possible to define noncommutative measurable spaces. This yields the notion of
von Neumann algebra, which won’t be explained here (refer to [80]).

Compact quantum group Following the dual approach to the study of spaces, we want to
translate the axioms of a compact group G at the level of the continous functions on G, in order
to construct noncommutative analogs.
If (X, e) is a compact Hausdorff space with a continuous semigroup structure e : X x X — X,
the algebra of continuous functions on X inherits an additionnal structure. Namely it is possible
to define the map
cX) — C(X x X)
JANR: .
{ foo= (@) e flzed)
By Arzela-Ascoli Theorem, C(X x X) ~ C(X) ® C(X) (where C(X) ® C(X) is the norm
completion of the algebraic tensor product). Since (fg)(zez’) = f(zez')g(zez’) and f(ze2') =
f(zex’), Ais a x—homomorphism from C(X) to C(X) ® C(X). Moreover the associativity of
the product on X yields the relation:

(A®Id) o A(f))(w1,22,23) = A(f)((z1 @ 22),23) = f((21 ® 22) ® 3))
= f(z1 0 (z20x3)) = (Id® A) o A(f) (21,22, 23).
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A map A satisfying the relation (Id ® A)o A = (A ® Id) o A is called coassociative.

Let us consider the maps ¢ : (z,2) — (zoa’,2') and ¢’ : (x,2) — (z,x e 2’). If X is a group,
these maps are homeomorphisms of topological spaces. By duality ¢ and ¢’ yield on C(X) ®
C(X) the maps ®(f,9) = A(f)(1®g) and ®'(f,g) = (f ® 1)A(g). Since ¢ and ¢’ are injective,
® and @' are surjective maps, and therefore {(f ® 1)A(g)}f4cc(x) and {A(f)(1® g)} . gec(x)
are dense in C'(X) ® C(X).

Reciprocally, if these sets are dense, this means that the maps ®, ®’ are surjective, and thus the
maps ¢, ¢’ are injective. But this is equivalent to the left and right cancellation property for
the compact semigroup X, and therefore X is actually a group.

The C*—algebra C(G) of functions on a compact group G is therefore a commutative unital
C*—algebra with an associative coproduct A : C(G) — C(G) ® C(G), and such that the sets
{(f®1)A(9)} s gec) and {A(f)(1®9)} 1 gec(q) are dense in C(G) ® C(G). This motivates the
following definition, which has been introduced by Woronowicz:

Definition 3.6 (Woronowicz,[99]). A compact quantum group is a unital C*—algebra A with a
coassociative C*—morphism A : A — AR A such that A(A)(1® A) = (AR 1)A(A) = A® A.

The C*—algebra is often denoted C'(G) to emphasize its quantum group nature, even if there
is no concrete underlying space G.
(C(H),A) is a quantum subgroup of (C(G), A) if there is a sujective C*—morphism ® : C(G) —
C(H) such that (® @ ®)A = A’®. If ® is an isomorphism, then H and G are called isomorphic.
As for C*—algebras, a commutative compact quantum group is a classical group in the following
sense :

Proposition 3.7. Let A be a compact quantum group. If A is commutative, then there exists a
compact group G such that A ~ C(G).

3.1.2 Representation theory

In this subsection we will introduce the representation theory of a compact quantum group for
finite dimensional representations. The content of this subsection comes from [99].

Haar state Since the purpose is to extend probabilistic results from the classical group to
the quantum case, one need a natural probability space on compact quantum groups. In the
classical setting, this probability space was given by the Haar measure fG This probability
measure is the unique to satisfy the relations fG (gh)dg = fG (hg)dg = fG g)dg for all
continuous functions f on G; equivalently, for any regular probablhty measure f on G and any
function f € C(G,C), [4yq flgh)dgdu(h) = [4. o [(hg)dgdu(h) = [ f(

By the Riesz representation theorem, there is a bijection between regular 31gned finite measures
on G and bounded linear functionals on C'(G,C). This bijection restricts to a bijection between
regular probability measures p on G and positive linear functionals [ on C(G,C) such that
[(1) = 1. Positiveness means that [(f) > 0is f > 0 on Gj; such positive linear functional | with
[(1) = 1 is called a state on C(G,C). If we use the dual approach of the last subsection, the
Haar measure corresponds to the unique state fG on C(G,C) satisfying the relations :

(h@)A = (1® h)A = h, (3.1.1)

for any other state [ on C(G,C).

In the quantum framework, we don’t have access to the space but only to the functions defined
on it. Therefore we can not define measures, but only states: a state w on a unital C*—algebra
A is a linear functional which is positive, in the sense that w(aa™) > 0 for any a € A, and such
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that w(1) = 1.
One of the major results deduced from the axioms of a compact quantum group C(G) is the
existence of a state on C(G) satisfying the relations (3.1.1)).

Theorem 3.8 ([99]). Let C(G) be a compact quantum group. There exists a unique state h on
C(Q) such that for any bounded linear functional ¢ on C(G),

(h® @)A = (p @ h)A = h.

Therefore as in the classical case, a compact quantum group becomes naturally a noncom-
mutative probability space with the Haar state h. We will mainly be interested in the behavior
of elements of C(G) with respect to this Haar state. The example of U, showed us that the
representation theory of the group plays an important role in the computation of expectations
with respect to this Haar state. Fortunately it is also possible to build a representation theory
of a compact quantum group, and this representation theory is approximately the same as in
the classical case.

Finite dimensional representations A finite-dimensional representation of a classical com-
pact group is a finite-dimensional vector space V together with a continuous map p : G —
End(V), such that p(gg’) = p(g9)p(¢’) for all g,¢' € G and p(e) = Idy. If the dimension of V is
n, the space of functions from G to End(V) is isomorphic to the space End(V) ® C(G, C); thus
the previous definition is equivalent to the data of a vector space V' together with an element p
in End(V) ® C(G, C) satisfying

(Id® A) o p = p1api3,
where (a ® b)12 =a®b® 1o and (a @ b)13 = a ® 1gg) @b
Applying p to a vector v € V yields an element in V' ® C(G, C), and the image of a subspace W
of V' is a subspace of V ® C(G, C).
This yields the following definition in the quantum case :

Definition 3.9. Let (C(G), A) be a compact quantum group. A finite dimensional representation
of C(G) is a finite-dimensional vector space V' with an element o € End(V) ® C(G) such that

(a®Id)oa=(Id® A)oa,

as maps from V to V@ C(G) ® C(G).
An intertwiner from (V,«) to (V',d/) is a linear map T : V — V' such that

o oT =(T®Id)oa.
The vector space of intertwiners from (V,a) to (V',a') is denoted Morg(a, o).

Since V is finite dimensional, we can express « in a basis (e;)1<i<p of V. This yields a matrix
(uij)1§i7j§ in Mn(C(G)) such that

n
A(ugy) = Zuzk & U
k=1

Reciprocally any matrix in M, (C(G)) satisfiying the above relations yields a finite dimensional
representation of C(G).
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We can take tensor products, direct sums and dual of finite dimensional representations (ui;)1<i j<n
and (vg)1<ki<m by considering the following usual operations on M, (C(G)), M (C(G)):

0
u®v = (V) 1<ij<n € Mmn(C(G)),u®v = (g ) € My 1m(C(G))
1<k,1<m v

and u = (ufj)lgiﬂ'gn.

The representation is called non-degenerate if (u;j)1<; j<n is invertible in M, (C(G)), and two
representations are said equivalent if there is an invertible intertwiner from one to the other.
As in the classical case, an invariant subspace of (V, «) is a subspace W C V' such that a(W) C
W ®C(G) and a fixed vector is a an element v of V' such that a(v) = v®1¢(g). A representation
(V, ) is called irreducible if there is no invariant subspace except {0} and V.

Thanks to the Haar state, if (V,«) is non-degenerate, it is still possible to defined a scalar
product (.,.) on V which is invariant with respect to o: namely (.,.) satisfies

(aen), aler) =D (ej, e1) ® ujiufy, = (ei,e1) @ 1.

To obtain this scalar product it suffices to take any scalar product (.,.) on V, and to average
(.,.) with respect to the Haar state:

(eisex) = Z<€j7 er) @ h(ujiug).

Therefore any non-degenerate representation (V, «) has a basis B such that the matrix u of « in
B verifies uu® = u*u = Id, where (u*);; = u};. Such a matrix is called unitary. The main differ-
ence with the classical case is that the conjugate matrix defined by u;; = u;; is not necessarily
unitary as well. However we can show that the representation associated to u has good prop-
erties, namely: it is non-degenerate (resp. irreducible) if u is non-degenerate (resp.irreducible)
and the representation associated to # doesn’t depend, up to equivalence of representations,
to the choice of a matrix u for (V,a). A compact quantum group such that for any unitary
representation wu, « is also unitary, is called a compact quantum group of Kac type.

Matrix quantum group We have seen in Chapter 2 that the situation is much simpler when
the group is already described as a subgroup of U, for some integer n > 1. In particular the
Peter-Weyl Theorem, which is a deep result in the general case, has a much simpler proof in
this case.

Definition 3.10. A compact matriz quantum group is a triple (A, (uij)i<ij<n) such that :
e Ais a C*—algebra.
o The x—algebra generated by {u;j}1<i j<n is dense in A.
o The map ® : u;j — Y wir, ® uj; extends to a C*—homorphism from A to A® A.
o The matrices u = (u;j)1<ij<n and U = (u];)1<ij<n are invertible in My(A).

u can always be chosen unitary, up to equivalence of representations. Since @ is non-
degenerate, there exists a matrix F € GI,(C) such that FuF~! = (u')~! (F is the matrix
encoding the invariant scalar product on the representation of @).

One can prove that a matrix compact quantum group is actually a compact quantum group.
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Therefore a compact matrix quantum group is just a compact quantum group (C(G), A) with a
particular representation u = (u; j)1<i j<n Whose coeffficients generate all the C*—algera C(G).
A compact matrix quantum group is of Kac type if F' can be chosen equal to the identity. In

this case we have
* *

wu = wu* = ' = v'u = Id.
Remark 3.11. This definition is very convenient to define new compact matriz quantum group.
Namely it suffices to specify relations among abstract variables {Uij,u;}}lgi,jgn that are com-
patible with the coproduct defined above, and then to construct the universal C*—algebra having
these relations.
An important example is given by the free unitary quantum group U’ , introduced by Wang in
[95]. The C*—algebra is the universal C*— algebra generated by n* elements u = (uij)1<ij<n
satisfying the relations u*u = vu* = wu! = vt = Id. Since any other compact matriz quantum
group of Kac type has also to fulfill these relations, U,5 can be seen as the biggest compact matriz
quantum group of Kac type of dimension n.
If we add the commutation relations w;juy = uwu; for all 1 < 4,j,k,1 < n, the resulting
C*—algebra is commutative and corresponds therefore to a compact matriz group. Actually this
group is Uy, the unitary group of dimension n.

3.1.3 Tannaka-Krein Duality

We will present here the Tannaka-Krein duality in the framework of compact quantum groups.
This duality extends the Tannaka-Krein duality of Chapter 2 to compact quantum groups.

Peter-Weyl Theorem and Schur’s orthogonality Theorem The similarity in the repre-
sentation theory of the classical and the quantum groups extend to the two majors Theorem
of the first section of Chapter 2. Let C(G) be a compact quantum group. A matrix coefficient
of C(G) is an element u;; € C(G) coming from a finite-dimensional representation of G. The
vector subspace of matrix coefficients of C'(G) is a *—algebra for the same reasons as in the
classical case. This s—algebra is denoted by C(G)o.

Theorem 3.12. Let C(G) be a compact quantum group. The x—algebra C(G)o is dense in
C(G).

The Schur’s orthogonality Theorem is in the quantum case is analogous to the one in the
classical case. However one needs to modify a bit the orthogonality relations, because the dual
of a unitary representation is not necessarily also unitary.

Let {(U%)lgi,jgd(a)}a irred D€ the set of equivalence classes of irreducible representations (written
in an orthonormal basis with respect to the invariant scalar product). We have seen that for
each irreducible representation u®, the dual representation u® is not necessarily unitary but
always nondegenerate, and therefore there exists ' € My(q)(C) such that F*(u®)"(F®)~la® =
Tdym(c(c):-

Let L?(C(G), h) be the completion of C(G) with respect to the scalar product (a,b) > h(ab*).

Theorem 3.13 (Schur’s orthogonality Theorem). The set {(U%)lgi,jgd(a)}a irred forms a basis
of L*(C(G),h), and for a, B irreducible representations, 1 <i,7 < d(a) and 1 < k,1 < d(B),




with Q, Dy, only depending on F<. Similarly

oy Qa'
By (ug,)") = Sy Da)pq-

If G is of Kac type, h((uﬁ,)*ujo-‘q) = (5(1/3(51,(152-]-% and the Haar state is a trace:

h(zy) = h(yx) for all x,y € C(G,h).

In particular in the case of a compact quantum group of Kac type, the situation is very close
to the one of classical compact groups.

Tannaka-Krein duality In the last part of the previous chapter, it has been shown that a
classical compact group is essentially the same as a collection of vector spaces of linear maps
stable under certain operations and that most of the properties of the group could be seen on
this collection of spaces. The similarity between classical compact groups and compact quan-
tum groups continues here, since the same kind of alternative description exists for a compact
quantum group.

The natural framework to describe the representation theory of a compact quantum group is the
one of concrete monoidal W*—category with dual. We won’t introduce the basics of category
theory here and an interested reader should refer to [59] to get precise statements and theoretical
explanation of the formalism introduced here. The definition is given from an abstract point
of view, but keeping in mind the representations of a compact quantum group makes it more
concrete.

Definition 3.14 ([I00]). A concrete monoidal W*—-category (or CMW™*—category) C is a
monoid R together with a family of finite dimensional Hilbert spaces { Hy },cr such that H @ Hg =
H,s ((H,® Hs)® Hy is canonically identified with H, @ (Hs ® Hy) ), and a family of vector spaces
Mor(r,s) C L(H,, Hy) with the following properties :

e Idy. € Mor(r,r)
e If T € Mor(r,r") and T € Mor(r', ") then T'T € Mor(r,r").
e If T € Mor(r,r") then T* € Mor(r/, r).
o IfT e Mor(r,7") and T" € Mor(r’,r®)) then T @ T' € Mor(rr’, r"r(®)).
e H . =C
C is called complete if moreover

o For any r € R and Hilbert space H such that there exists a unitary operator V : H. — H,
H = H; for some s € R, and V &€ Mor(r,s).

e For any projector p € Mor(r, ), there exists s € R such that Hs = pH, and the embedding
i:Hg — H, is in Mor(s,r).

e For any r,7’, there exists s € R such that H, ® H,, = Hy and the canonical inclusion
H, — Hg and H,.» — H; are respectively in Mor(r, s) and Mor(r', s).

Example 3.15 ([I00]). The set of finite dimensional representations of a compact quantum
group (C(QG), A) together with the spaces of intertwiners between them is a complete C MW™*— category
denoted Rep G. Moreover H is a quantum subgroup of G if and only if Rep G is a subcategory

of Rep H.
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Note that we didn’t formalize the fact that the dual of a finite dimensional representation is
equivalent to a unitary representation. In the context of C'MW™*—category, this is equivalent to
the following definition :

Definition 3.16. Let r € R and H, the associated Hilbert space with basis (€;)1<i<n. T has
a complex conjugate T € R if there is an invertible antilinear map j : H, — Hz such that
S e ®j(e;) € Mor(e,r7) and Y. j 71 (e;) ® e; € Mor(e, 7r).

A CMW*—category such that any v has a complex conjugate 7 is called a CMW™*—category
with conjugates.

For example, a finite dimensional representation u® of a compact quantum group has a dual
4%, and the map j is given by the matrix F'* as constructed in Paragraph
In the classical case, it was easy to compare the categories of representations of two compact
groups G and G’ since we only considered matrix compact groups of fixed dimension. Thus
we just had to compare the intertwiner spaces Morg(e,e’) and Morgs(e,¢’) for all €,¢’. In the
broader case of CMW™*—category, we still have to be able to compare these objects. This leads
to the following definition:

Definition 3.17. Let C = (R, {H, }rer, {Mor(r,7") }, 7er) andC' = (S, {Ks}ses, {Mor(s,s') }s ses)
be two C MW ™*—categories.

C and C' are unitarily monoidally equivalent if there is a monoid morphism F : R+ S and for
each r, v’ a vector space isomorphism F : Mor(r,r") — Mor(F(r), F(r')) such that :

e for all s € S, there exists r € R such that Mor(F(r), s) contains a unitary operator.

e F respects the operations on C and C': namely if T € Mor(r,7"),T" € Mor(r',7"),T" €
Mor (", r®)), then F(T*) = F(T)*, F(T'T) = F(T")F(T) and F(TRT") = F(T)2F(T").

C and C' are unitarily isomorphic if they are unitarily monoidally equivalent, and moreover there
exists for each r € R a unitary operator F, : H, — K such that:

o F(rr')=F(r)® F(r').
e If T € Mor(r,r"), F(r')oT = F(T) o F(r).

This means that two CMW™*—categories are unitarily monoidally equivalent if they have
the same structure (composition, tensor products, decomposition into simple pieces,...), but
the concrete realization on Hilbert spaces are different; they are unitarily isomorphic if even
the realization of these structure on Hilbert spaces is the same. In the latter case the two
C MW*—categories should be considered as being the same object.

We can now state the Tannaka-Krein duality in the compact quantum group case. This duality
has been discovered and proved by Woronowicz in [100].

Theorem 3.18 (Tannaka-Krein’s Duality). Let C be a complete CMW™*—category with con-
jugate. There exists a compact quantum group (C(G),A) such that C is unitarily isomorphic
to RepG. Moreover if (C(H),A’) is another compact quantum group such that C is unitarily
isomorphic to Rep H, then H is isomorphic to G.

There exist compact quantum group whose categories of representations are unitarily monoidally
equivalent but not unitarily isomorphic. In the latter case the representations are still similar,
and for example two compact quantum groups with unitarily monoidally equivalent categories
of representations have isomorphic fusion rings.

In the case of a matrix compact quantum group of Kac type, the situtation is much simpler.
Let n > 1. We are using here the notations of Section [2.6.1
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Theorem 3.19 (Tannaka-Krein’s duality in the matrix case). Let {H (e, ")} be a collection of
vector spaces such that H(e,e') C L(VE,VE). If {H(e,&)} fulfills the four conditions (2.38),
then there exists a compact subgroup (C(G),A) of U,S such that for all e,€’,

H(g,e') = Morg(e, €').
Moreover the matriz compact quantum group is uniquely determined by the data of {H (g,€")}.

Example 3.20. By the stability results[1.1.3 of Chapter 1, for each category of partition C and
n > 1, the maps T),’s give a collection of vector spaces {Cp(c,€’)} that fulfills the four conditions
. Therefore for each catergory of partition C and n > 1, there is a quantum subgroup of
U,b whose representation theory is encoded by C.

3.2 Unitary easy quantum groups

3.2.1 Easy quantum groups

Free versions of the classical groups and their associated categories of representa-
tion We have seen in Chapter 2, Section 6 that we could associate categories of partition to
certain classical groups. This correspondance is summarized by the following list :

Un poe

2,alternating
On| P5*
S, poe

Figure 3.1: Correspondance between classical groups and categories of partitions through the
map p — T,

Note that the size n of the group is reflected through the map p — T, by the choice of the dimen-
sion of V° and V* (which is theoretically speaking a concrete realization of the corresponding
category of partition).

The relation S,, € O,, C U, corresponds to the inverse relation P;;ltemating C P* C P°*% asit
was predicted in Example In Chapter 1, we have seen the existence of non-crossing analogs
NC°*,NC3*, N S:zlternating of these categories of partitions. By Example each category of
partition C yields a subgroup of Ul for each n > 1. Actually the quantum groups corresponding
to the three categories of non-crossing partitions aforementioned have already been introduced
by Wang in [95] and [96], and the correspondance with categories of partitions has been proved

by Banica in [3],[5] and [4]. In each case the construction is done by using Remark

o N é’:alt ernating corresponds to the free unitary group itself U, .

e NC5*® corresponds to the free orthogonal group O;F. This quantum group is the quantum
subgroup of U," defined by the relation uj; = u;j. This is the biggest compact matrix
quantum group (C(G), (uij)1<i,j<n) such that all the u;;s are self-adjoint.

e N(C°*® corresponds to the free symmetric group S;". This quantum group is the quantum
subgroup of O, defined by the relation Zj uij = >, uij = 1 and ugjug, = 0jpu4; for all
1<4,5,k <n.

If we add the relations u;jup = ugu;; for all 1 < 4,5, k, 1 < n, U, O/ and S, become respec-
tively U, Op, Sn. Thus we have the following inclusion relations:

Sy ¢ Of ¢ Uy
U U U
Se € O, € U,

= =
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Definition of easy quantum groups The diagram above is the starting point to define the
class of unitary easy quantum groups. This class has been first introduced in the orthogonal
case by Speicher and Banica in [I5], and then extended to the unitary case in an unpublished
article of Banica, Curran and Speicher ([83]).

Definition 3.21. A compact matriz quantum group G with S, C G C U, is called easy, if
there is a category of partitions C C P°® such that for every words e and &' in {o, e}, the space
of intertwiners Morg(e,€’) is spanned by all linear maps T, where p is in C°*(g,e’). An easy
quantum group G is called orthogonal easy quantum group, if G C O;F.

Refer to Chapter 1, Section 1 for the definition of the map 7}, for p a two-colored partition.

As we will see in Chapter 4, an easy quantum group is orthogonal if and only if [l belongs to
the associated category of partitions.

Example 3.22. Let us consider the set H of all partition p € P°® such that each block of p has
an even number of elements. H is a category of partitions. This category corresponds to the
hyperoctahedral group Hy,, = Z31S,. This is a subgroup of Oy, and C(Hy) is defined by taking
the quotient of C(Oy,) by the relations wiju;, = ujiug; =0 for all 1 <1, 5,k <n with j # k.
Once again, we can define the same with non-crossing partitions, yielding the free hyperoctahedral
quantum group introduced by [11]. This quantum group is the subgroup of O, defined by imposing
the same relations as above.

The natural question is to find all the compact matrix quantum groups that are easy; this

question is equivalent to the classification of all categories of partitions. From a probabilistic
point of view, an answer to this question is interesting because for such quantum groups, we
expect that the Weingarten calculus may have simpler combinatorial expressions, as this is the
case in Chapter 2 for the classical groups. There exists also a method to study the representation
theory of easy quantum groups, see [40)].
The classification of all orthogonal easy quantum groups has been done in a serie of papers
[15],[97],[71]. In this classification, there are two particularly simple cases: the case where the
easy quantum group is a classical group and the case where the category of partitions associated
to the quantum group is a category of non-crossing partitions. The classification in these both
cases has been done in [I5, 97]. In-between the situation is much harder to handle with, since
there is an uncountable set of such easy quantum groups (see [71]); we should stress nonetheless
that the situation becomes simple again when restricting to easy quantum groups between O,,
and O;F. In the latter case there is only one such quantum group, namely the half-liberated
orthogonal group O} (see [15]).

3.2.2 Free easy quantum groups

Following the last comment, we focus particularly on the easy quantum groups described by
non-crossing partitions:

Definition 3.23. A free easy quantum group is an easy quantum group G, such that the
corresponding category of partitions C is a subcategory of NC°® (or equivalently S\t C Gy,).

The terminology goes back to Wang’s papers [95], 06]; see also [11] or [39]. For example the
three quantum groups S;7, O;F and U,I are all free easy quantum groups. Several other free easy
quantum groups have already been discovered.
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The orthogonal case As we said before the classification of all free easy quantum groups has
been done in the orthogonal case by Banica, Speicher and Weber in [15] [O7].

Proposition 3.24. Let G, be an orthogonal free easy quantum group. Then G, coincides with
one of the following quantum groups.

o Of: uj = uy;, u orthogonal, i.e. Dok UikWjk = Y p Ukillk; = Ojj.

*

o Hi:wuj= Uy,

u orthogonal, wipuji = upug; = 0 if © # j.
o Sit:u; = u;, w orthogonal, wiuj, = ugiug; =0 if @ F 30 Dok Uik = > Ukj for all i, 7.
*

Situgy = us; ufj, u orthogonal, Y, wi = Y upj = 1 for all i, j.

o BIIt: uij = uj;, u orthogonal, D op Uik = g Uk; for all i, j.

*

o BIt:u; = uj;, w orthogonal, r := Dok Uik = D op Ukj for all i, j, uijr = rug;.

*

.o =
® By uij = ujj,

w orthogonal, >, wi, = > uk; =1 for all i, j.

Note that the quantum groups B;, Bt (with a different notation) and S;F appeared first
in [15], and B was discovered in [97].
Moreover the category of partitions of each of these quantum groups can be explicitly described.
For example B#, the category of partitions associated to B *, is the category of non-crossing
partitions whose blocks are only pairs and singleton, and such that there is an even number of
singletons between two elements of a same pair. We won'’t describe all of these categories, since
a more general result will be given in Chapter 4.

Banica and Vergnioux’s quantum reflection groups H:* The quantum reflection groups
H?* were first defined by Banica and Vergnioux in [16] and studied by Banica, Belinschi, Cap-
itaine and Collins in [9].

Definition 3.25. Given n,s € N, the quantum reflection group H:" is given by the universal
C*-algebra generated by elements u;;, 1 < 1,5 < n subject to the conditions:

o u = (u;;) and u = (uj;) are unitaries

*
ij

*
ij

o all u;j are partial isometries (i.e. wjjulu;; = uij) and the projections uju;; and u,-ju;kj

coincide
S __ ¥
o Ui = ujju;

We define HS°t by omitting the third of the above conditions.

Note that H1T = S and H2* = H;. Furthermore, HS" = Z, 1, S; where 1, denotes
Bichon’s free wreath product [21] and Zj is shorthand for the cyclic group Z/sZ. Moreover, the
quotient of the above C*-algebras by the commutator ideal yields C'(H;), where HS = Zs 1 Sp.
The quantum reflection groups have also been studied in [16] , [9] and [55].

Proposition 3.26. Let s € NU {oo}. The quantum reflection group HE' is easy and the
corresponding category of partition is H®®, the category of non-crossing partitions such that
each block has the same number of black and white points modulo s.

This serie of quantum groups will be further studied in Chapter 5 and 6, since they are also
free wreath products.
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Banica, Bichon, Capitaine and Collins’s H#t The quantum group H#* has been de-
fined in [9] as an auxiliary object.

Definition 3.27. The quantum group H#% is given by the universal C*-algebra generated by
u;j such that u and u are unitaries and:

UikUSy = Uilp,; = Uik = UpUgj = 0, whenever ¢ # j.

It has been proven in [§] that
H#+

is free easy with category H#, the category of non-crossing partitions with blocks having an
even number of elements with alternating colors.

3.2.3 Overview of the results

Let us review the results that are obtained in Part II. The results of Part II are from a joint
work with Moritz Weber.

Classification of free easy quantum groups The first result is a classification of all free
easy quantum groups. This classification is done in two steps. The first step is the classification
of all the categories of non-crossing two-colored partitions, which can be summarized as follows

Theorem 3.28 (Ch.3, Th and Thi4.42)). There ezist five denumerable families of categories
of two-colored non-crossing two-colored partitions :

o U

o OF ford € 2N

o H* and HYF for d|k, k > 2.

o Bk for d|k,k > 1 and r € {*,0,d/2} (r = d/2 is possible only if d is even).
o S for d|k,k > 1.

In each case these categories have a combinatorial description.

In a second step we identify the compact quantum groups that corresponds to each of these
categories of partitions. This identification is greatly simplified by the fact that a lot of free
easy quantum groups have already been identified. The essential tool of the remaining part
of this identification is the introduction of two algebraic operations, the tensor and the free
complexifications denoted respectively x and %) by Zz. The tensor complexification has been
already considered in an unpublished draft [83], and the free complexification with Z has been
first introduced in [8]. This yields the following classification :

Theorem 3.29 (Ch.3, Th. [4.57)). For each n > 1, the following correspondance holds between
categories of partitions and unitary easy quantum groups:

1. the category U corresponds to the free unitary quantum group U;. the category OF corre-
sponds to O} x Zj,.

2. the category H*? corresponds to (Zy Ve S;P)XZy. Za L S is also denoted HE and has
been introduced by Banica and Vergniouz in [16].
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3. the category H¥ corresponds to Hﬁr# = H, %Z.

4. the category B%* (resp B&®0)  corresponds to (C;F%Z4)x Zy,) (reps. (Bf%Z4)%xZy,)).
5. the category B¥%%2 corresponds to C’}f’d%Zk.

6. the category S*4 corresponds to (S;f%Z4)% Zy).

As a corollary, we obtain also all the unitary easy quantum groups that are classical groups

(see Ch.3, Th4.61)).

Weingarten calculus on free easy quantum groups We have seen in Chapter 2, Section
3 that for u, the fundamental representation of Uy, the family (Tr(uf)y>1) converges in law
toward a family of independent complex gaussian variables (uy)x>1 such that uy has variance k;
since this result holds also for O,, and S,, with different limit distributions, it is expected that
the result can be generalized to all easy quantum groups. In [I4], Banica, Curran and Speicher
proved that the same phenomenon holds for orthogonal free easy quantum groups, with limit
distributions involving free semicircular and free Poisson distributions.

In Chapter 5, we will extend this result to all free easy quantum groups. The main tool is the
Weingarten formula, which takes a simpler expression for easy quantum groups. In the second
part of Chapter 5, we prove that the second-order freeness for the unitary group (see Chapter 2,
Th has a natural analog in the free case: namely the family of traces of arbitrary reduced
products of u, u!, %, u* converges in distribution to a family of circular variables.

3.3 Noncommutative permutations and free wreath product

The free wreath product is an algebraic construction that generalizes the usual wreath product
between permutation groups and compact groups. It has been introduced by Bichon in [21] as
a way to encode the quantum symmetries of a finite product of graphs.

3.3.1 Free wreath product

In the classical case, a permutation group is a subgroup of S,, for some n > 1. The natural
extension in the noncommutative case yields the following definition:

Definition 3.30. A non-commutative permutation group F = (C(F), (vij)1<ij<n) @S a quantum
subgroup of S;t. The non-commutative permutation group F is said irreducible if dim Morp(0,1) =
1.

From an algebraic point of view, this means that F' is a compact matrix quantum group
whose fundamental representation matrix v satisfies at least the following relations:

*
vl =i, Y0 = 3 v = 1, 0ivik = 805,
j i

for all 1 <14,j,k < n. From a representation theoretic point of view, Rep(S;") is a subcategory
of Rep(F'), and therefore all the maps T, with p € NC°* are also intertwiners of F'.
The free wreath product is the generalisation of the construction Chapter 2, Section 6.2.

Definition 3.31 (Bichon). ([21, Definition 2.2]) Let G = (C(G),A) be a compact quantum
group and F = (C(F), (vij)i<ij<n) be a non-commutative permutation group. Let v; : C(G) —
C(G)*™ be the canonical inclusion of C(G) as the i—th copie in the free product C(G)*", i =
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1,...,n.
The free wreath product of G by F is the quotient of the C*-algebra C(G)*N x C(F) by the
two-sided ideal generated by the elements

vp(a)vg; — vgivg(a), 1<i,k<n, a€C(G).
It is denoted by C(G) *,, C(F).

It has been proved in [2I] that there exists a coproduct A on C(G) %, C(F') such that
(C(G) #y C(F),A) is a compact quantum group. This coproduct is defined as

n
Alvig) =D vk ® vk, Vi, j € {1,...,n}
k=1

and

3

Avi(a)) = ) _vilaq))vik ® vi(ag)),
k=1
where Ag(a) =3 alV) @ a(? is the value of the coproduct Ag on a with the Seedler notations.
We denote by G 1, F' the quantum group (C(G) *,, C(F), A).
Suppose that G is a compact matrix quantum group with fundamental representation (wg;) 1<k, i<m.-
In this case G i F is also a compact matrix quantum group with a fundamental representation

(wij k1)) 1<ij<n defined by wyjm = vijul,, where u}, denotes the element v;(ug;).
1<k,1<m

Quantum symmetries of a graph The free wreath product construction is a natural con-
struction when considering quantum symmetries of graphs. Let G be a finite graph with n
vertices {1,...,n} and adjacency matrix dg = (d;j)1<ij<n. We suppose that G doesn’t have
any loop. A symmetry of G is a permutation o of {v1,...,v,} such that d,(;),(;) = dij for all
1 <14,5 < n. The set of symmetries of G forms a subgroup of S, called the symmetry group of
G and denoted by S(G). From a dual point of view, C(S(G)) = C(S,)/{vdg = dgv), where v is
the fundamental matrix (v;)i<i j<n of S, defined in m

Definition 3.32 ([I0]). The quantum symmetry group of G is the matriz quantum subgroup
(A(G), (vij)i<ij<n) of (C(S;, (uij)i<ij<n) defined as follows: A(G) is the quotient of C(S;) by

the relation ud = du and v;; is the image of u;; in this quotient.

There is a natural operation on graphs yielding free wreath products on the level of the
quantum symmetry group.

Definition 3.33. Let F,G be two graphs without loop, with vertices indexed respectively by [1;n]
and [1,m], and respective adjacency matrices ¢ and d. The lexicographical product G o F 1is the
graph with vertices indexed by [1,m] x [1,n], and adjacendy matriz

dkl fi=j
Dijw = {Cij if i #J

Figure is an example of such construction, with the lexicographical product of a segment
with a square.
By a result of [27], A(G) \. A(F) C A(G o F), with equality if and only if (G, F) respects the
conditions of Sabidussi (see [73] for a description of this conditions). Note that the same result
holds also in the classical case : namely S(G) ! S(F) C S(G o F), with equality if and only if
(G, F) respects the conditions of Sabidussi.
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Figure 3.2: Lexicographical product G o F, with G a segment and F a square.

Free product formulae An important invariant of a quantum permutation group F'is the
law of the character xr of the fundamental representation (v;;)1<;i j<n under the Haar measure.
Since F is a quantu