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Résumé

Le bruit généré dans la zone de contact entre un pneumatique et une route peut être

amplifié par des dièdres constitués des surfaces du pneumatique et la route. Cette

étude est consacrée à l’optimisation et à la conception de bandes de roulement et

de textures de la route pour réduire l’amplification de l’effet dièdre sur la base de

l’annulation de sons. Les bandes de roulement et les textures de la route peuvent

être considérées comme deux réseaux dans la zone de contact. Les surfaces du pneu-

matique et de la route peuvent être considérées comme des baffles. Un modèle de

réseau à baffle est constitué pour le système pneumatique / chaussée, et des procédés

de couplage multi-domaines sont développés pour le calcul des champs acoustiques

autour des réseaux à baffles. Avec ce modèle, la réduction des amplifications de

l’effet dièdre par les réseaux peut être estimée. Étant donné que les réductions sont

autour des fréquences de résonance de l’air à l’intérieur des réseaux, des méthodes

numériques simples pour estimer les fréquences de résonance sont développées. Afin

de concevoir des réseaux pour obtenir les fréquences de résonance recherchées, une

méthode d’optimisation sur la base des algorithmes génétiques est proposée. Les

méthodes d’estimation des fréquences de résonance sont validées avec des mesures.

Les méthodes d’optimisation et le modèle des réseaux bafflés sont également vérifiées

par les expériences. Une structure avec un cylindre en bois et une feuille de contre-

plaqué est construite pour les validations. Un vrai pneumatique sur une feuille de

contreplaqué est également mesuré et calculé avec les méthodes proposées. Les ban-

des de roulement sont optimisées avec les méthodes proposées. Plusieurs réductions

des amplifications de l’effet dièdre peuvent être vues et sont estimées avec les méth-

odes de couplage multi-domaines. La dimension des motifs de texture de la route est

également étudiée afin de trouver les réductions maximales des amplifications.

Mots clés : Bruit; Pneumatique; Route; Effet dièdre; Résonance; Correction de

longueur; Résonateur acoustique; Sculpture; Texture; Optimisation.





Abstract

The noise generated in the contact zone between a tire and a road can be amplified

by horns constituted of the surfaces of the tire and the road. This study is devoted

to the optimization and the design of tire treads and road textures for reducing the

amplification of horn effect based on the sound cancellation. The tire treads and the

road textures can be considered as two dimensional networks in the contact zone. The

surfaces of the tire and the road can be seen as flanges. A model of flanged networks

is established for the tire/road system, and multi-domain coupling methods are de-

veloped for the calculation of the acoustic fields around the flanged networks. With

this model the reductions of the amplifications of horn effect by the networks can

be estimated. Since the reductions are around the resonant frequencies of air inside

the networks, simple numerical methods for estimating the resonant frequencies are

developed. In order to design the networks to get wanted resonant frequencies, an

optimization method based on genetic algorithms is proposed. The methods for esti-

mating the resonant frequencies are validated with measurements. The optimization

methods and the model of the flanged networks are also proved to be effective by the

experiments. The wooden networks between a wooden cylinder and a sheet of ply-

wood are built for the validation. A real tire on a sheet of plywood is also measured

and calculated with the proposed methods. Last the tire treads are optimized with

the optimization methods. Multiple reductions of the amplifications of horn effect

can be seen and are estimated with the multi-domain coupling methods. The road

brick dimension is also investigated in order to find the maximum reductions of the

amplifications.

Keywords: Noise; Tire; Road; Horn effect; Pipe resonance; End correction; Acoustic

network resonator; Tire treads; Road textures; Optimization.





Long Résumé

Le bruit généré par le trafic automobile est responsable d’une grande partie de la

pollution de l’environnement sonore. Grace à la technologie moderne, le bruit des

moteurs de voiture et d’autres pièces mécaniques a été considérablement réduit. Par

conséquent, le bruit des pneumatiques en interaction avec la route est de plus en

plus perceptible. Au-dessus d’une vitesse de 50km/h, le bruit généré par les pneuma-

tiques roulant sur la route est le bruit dominant [1]. Le bruit des pneumatiques de

poids-lourds domine également lorsque la vitesse est supérieure à 80km/h. Ainsi une

réduction de la génération du bruit de contact pneumatique / chaussée va grandement

améliorer l’environnement en bordure de route et la qualité de vie associée.

Il est essentiel de comprendre les mécanismes de génération du bruit de contact

pneumatique / chaussée pour faciliter la recherche de sa réduction sans compromettre

la sécurité routière. Ainsi, les mécanismes de la génération et du rayonnement du

bruit de roulement provoqué par l’interaction entre un pneumatique et la surface

d’une route ont reçu une attention considérable au cours des dernières décennies. Les

phénomènes physiques responsables de la génération et du rayonnement du bruit de

contact pneumatique / chaussée sont bien connus, et sont essentiellement les vibrations

de pneumatiques, le pompage d’air, l’effet dièdre et les résonances d’air.

L’objectif de cette étude est concentré sur la réduction de l’effet dièdre par la

résonance de l’air à l’intérieur des conduits entre le pneumatique et la route. Le bruit

généré dans la zone de contact peut être amplifié par les dièdres comprenant des

surfaces du pneumatique et de la route. Les recherches antérieures sur l’effet dièdre

ont seulement considéré un pneumatique et une route lisses. Dans ce travail, nous

prenons en compte les bandes de roulement et les textures de la route dans cet effet

dièdre. Le couplage entre les résonances de l’air et l’effet dièdre sera étudié dans le

même modèle.

Un modèle de réseau bafflé est établi pour calculer les champs acoustiques dans

le système pneumatique / chaussée. Les bandes de roulement et la texture de la

route peuvent être considérées comme deux réseaux tridimensionnels dans la zone
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de contact entre le pneumatique et la route. Les surfaces du pneumatique et de la

route peuvent être considérées comme des baffles. Dans ce modèle à la fois l’effet

dièdre et la résonance de l’air sont pris en compte. Il peut être utilisé pour estimer

la réduction de l’effet dièdre en utilisant les résonateurs du réseau. L’impédance de

rayonnement peut être pris en compte à l’extrémité d’un tuyau. En calculant un simple

tuyau droit à bride avec les méthodes d’impédance de rayonnement, la description

physique de la propagation des ondes et l’interaction entre les champs acoustiques

en dehors de la structure et à l’intérieur du tuyau sont présentés clairement. Pour

des baffles et des réseaux complexes les méthodes de couplage multi-domaines sont

proposées pour obtenir les solutions. Dans les procédés de couplage multi-domaine, le

domaine acoustique est divisé en sous-domaines extérieur et intérieur, sous-domaines

qui sont couplés aux interfaces entre eux par la continuité de la pression et de la

vitesse. Nous utilisons des méthodes d’éléments de frontières pour obtenir un système

d’équations pour le sous-domaine extérieur. Si le sous-domaine intérieur est un tuyau

droit, nous pouvons utiliser la matrice de transfert pour le résoudre. La théorie de

Miles [2] est adaptée pour calculer deux jonctions de réseau tridimensionnel, on peut

donc combiner la matrice de transfert et la théorie de Miles pour résoudre un réseau

complexe. Les méthodes numériques (telles que les méthodes d’éléments de frontière et

les méthodes d’éléments finis) peuvent être utilisées pour des réseaux tridimensionnels.

Bien entendu, les méthodes numériques peuvent également être appliquées à des cas à

une ou deux dimensions. En résolvant le problème couplé, la pression et la vitesse sur

l’ensemble de la frontière peuvent être obtenues. Puis, les champs acoustiques peuvent

être calculés par une formule intégrale. Les formes de tuyau en T sont résolus par la

méthode des éléments de frontière et les méthodes de couplage multi-domaines. De

bons accords entre ces méthodes prouvent la fiabilité des méthodes de couplage multi-

domaines. Comme pour les deux réseaux tridimensionnels, les procédés de couplage

multi-domaine permettent de ne pas mailler le réseau, ils sont plus efficaces que les

méthodes d’éléments de frontière. Les pertes dues aux conductivités visqueuses et

thermiques à la paroi du tube peuvent être prises en compte dans les méthodes de

couplage multi-domaines afin d’améliorer la précision des solutions. Un tuyau droit

à bride et un réseau bridé sont calculés pour comparer les méthodes de couplage

multi-domaine avec et sans pertes.

D’importantes réductions des amplifications de l’effet dièdre peuvent être vues

autour des fréquences de résonance. Par conséquent des méthodes numériques sim-

ples (méthode des éléments finis) pour estimer les fréquences de résonance de l’air à

l’intérieur des réseaux sont développées. Il n’est pas nécessaire de calculer les champs

acoustiques à l’extérieur des baffles pour obtenir les fréquences de résonance, ce qui
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est consommateur de temps de calcul. Nous pouvons obtenir les fréquences de ré-

sonance facilement en résolvant un problème de valeurs propres par la méthode des

éléments finis. Nous avons développé un programme à cet effet dans lequel nous de-

vons saisir les paramètres tels que la dimension de réseau, les conditions aux limites

et ou les corrections de longueur. Puisque les réseaux bridés non seulement ont des

extrémités fermées, mais aussi des extrémités ouvertes, les corrections d’extrémité aux

extrémités ouvertes doivent être calculées en premier. Ces corrections seront utilisées

dans l’estimation des fréquences de résonance. Basé sur les méthodes numériques

(méthodes d’éléments de frontière) proposées dans [3], les corrections des extrémités

ouvertes bafflées peuvent être obtenues. Les fréquences de résonance de plusieurs

réseaux à brides sont estimées par nos méthodes proposées et comparées avec les ré-

sultats de champs acoustiques à partir desquels nous pouvons aussi voir les fréquences

de résonance. De bons accords peuvent être observés.

Pour un réseau spécifié, nos méthodes peuvent donner les fréquences de réson-

ance. Toutefois, si nous concevons le réseau pour obtenir les fréquences de réson-

ance recherchées, une méthode d’optimisation des structures de réseau est néces-

saire. Les fréquences de résonance dépendent de la structure du réseau. Un procédé

d’optimisation sur la base des algorithmes génétiques et des méthodes d’estimation

pour des fréquences de résonance est développé à cet effet. Les paramètres de la di-

mension de réseau tels que les types de jonction, les positions de jonction et la surface

de section transversale peuvent être optimisés. Nous choisissons trois types de jonc-

tions pour construire le réseau: un T tourné vers la gauche, un T tourné vers la droite

et une jonction en croix. Deux fonctions objectifs sont définies. L’une est pour une

seule fréquence de résonance déterminée, et l’autre est pour un nombre maximal de

fréquences de résonance dans une plage de fréquences spécifiée. Avec cette méthode,

les deux réseaux tridimensionnels avec la fréquence cible ou le nombre maximal de

fréquences de résonance dans une bande de fréquences peuvent être trouvés. Nous

pouvons réduire les amplifications de l’effet dièdre autour de ces fréquences de réso-

nance optimisées. Plusieurs exemples d’optimisation de deux réseaux avec et sans

baffles sont donnés.

Le modèle proposé, les méthodes de calcul, les méthodes d’estimation pour les

fréquences de résonance et les méthodes d’optimisation sont validés avec des mesures

de plusieurs tuyaux bafflés en bois et un vrai pneumatique. D’abord un guide d’onde

droit en bois et un réseau en bois entre un cylindre de bois et une feuille de con-

treplaqué sont respectivement mesurés. Les tendances concernant la pression sonore

sont similaires aux résultats prédits par les méthodes de couplage multi-domaine, et

de bons accords entre les résultats mesurés et prévus peuvent être vus. Les fréquences
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de résonance sont très proches des estimations. Ensuite, le réseau est optimisé afin

d’obtenir un nombre maximum de fréquences de résonance inférieures à 2000Hz. Qua-

tre fréquences de résonance peuvent être trouvées. Nous avons calculé et mesuré les

champs acoustiques pour l’un des réseaux optimisés. D’après les résultats prévus, nous

pouvons voir les fréquences de résonance optimisées. Les résultats prédits concordent

bien avec les résultats mesurés. Ensuite un réseau non bafflé est optimisé pour une

des fréquences de résonance spécifiées. A partir des champs acoustiques mesurés, nous

pouvons voir la fréquence de résonance ciblée qui est très proche de la fréquence de

résonance prédite. Finalement un véritable pneumatique sur une surface plane est

mesuré et calculé. En raison de l’erreur sur la longueur estimée de la zone de contact,

les résultats prévus sont en accord partiel avec les résultats mesurés. Dans notre ex-

périence, la zone de contact ne peut pas être pressée fermement sur le sol car la charge

que l’on utilise est très inférieure à la charge d’un véhicule réel. Ainsi, la longueur de

la zone de contact n’est pas vraiment estimée correctement.

Pour l’optimisation des bandes de roulement et de la texture de la route, nous

supposons que le pneumatique peut être appuyé fermement sur la route dans la zone

de contact. Les bandes de roulement sont optimisées de deux manières. Dans la

première optimisation, on insère le réseau optimisé un par un pour les pics de fréquence

ciblés. Dans la seconde optimisation, les réseaux optimisés ont un nombre maximum

de fréquences de résonance inférieures à 2000Hz. Pour les deux types de réseaux

optimisés, de multiples réductions des amplifications de l’effet dièdre peuvent être vues

à travers les calculs avec les méthodes de couplage multi-domaines. La dimension de la

texture de route est étudiée afin de trouver les réductions maximales des amplifications

de l’effet dièdre jusqu’à 2000Hz. Le nombre maximum de fréquences de résonance que

nous pouvons trouver est 3. Nous pouvons voir trois réductions claires des champs

acoustiques calculés par les méthodes de couplage multi-domaines.
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Noise generated by traffic is responsible for a great portion of environmental noise

pollution. Thanks to modern technology, noise from car engines and other mechanical

parts has been significantly reduced. Therefore, noise from tire and road interaction

is becoming increasingly noticeable. Above the moderate speed of 50km/h, the sound

generated by the tires rolling over the road is the dominant noise [1]. Tire noise from

trucks also dominates when the speed is higher than 80km/h. Hence a reduction

in tire/road noise generation will greatly improve the roadside environment and the

associated quality of life.

It is essential to understand the mechanisms of noise generation to facilitate the

search for quiet tire/road surface without compromising road safety. So the mecha-

nisms of the generation and radiation of rolling noise caused by the interaction between

a tire and the surface of a road have received considerable attention over the past few

decades. The physical phenomena responsible for the generation and radiation of

tire/road contact noise are well known, basically due to tire vibrations, air-pumping,

horn effect and air resonances.

The focus of this study is put on the reduction of horn effect by the resonance of

air inside the pipes between the tire and the road based on the sound cancellation.

The noise generated in the contact zone can be amplified by the horns comprised of

the surfaces of the tire and the road. Previous researches on the horn effect only

investigate smooth tires and roads. In this work we take into account the tire treads

and the road textures in the calculation of horn effect. The air resonances and horn

effect will be studied in the same model.

A model of flanged networks is established for calculating the acoustic fields around

the tire/road system. The tire treads and the road textures can be considered as two

dimensional networks in the contact zone between the tire and the road. The surfaces

of the tire and the road can be seen as flanges. In this model both the horn effect and

the air resonance are taken into account. It can be used to estimate the reduction

of the horn effect by using the network resonators. Radiation impedance can be
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applied to the calculation of the simple flange and pipe. By computing a simple

flanged straight pipe with the radiation impedance methods, the physical description

of the wave propagation and the interaction between the acoustic fields outside the

flange and inside the pipe are presented clearly. For the complex flanges and networks

multi-domain coupling methods are proposed to get the solutions. In the multi-domain

coupling methods, the acoustic domain is divided into an exterior subdomain and an

interior subdomain which are coupled at the interfaces between them by the continuity

of pressure and velocity. We use boundary element methods to get an equation system

for the exterior subdomain. If the interior subdomain is one dimensional straight

pipe, we can use transfer matrix to solve it. The theory of Miles [2] is suitable

for calculating two dimensional network junctions, so we can combine the transfer

matrix and the theory of Miles to solve a complex network. Numerical methods

(such as boundary element methods and finite element methods) can be used for

three dimensional networks. Of course the numerical methods can also be applied

to the one and two dimensional cases. By solving the coupled problem, the pressure

and velocity on the whole flange can be obtained. Then the acoustic fields can be

calculated by an integral formula. A flanged T shaped pipe is solved by the boundary

element method and multi-domain coupling methods. Good agreements between these

methods prove the reliability of the multi-domain coupling methods. Since for two

dimensional networks the multi-domain coupling methods don’t use network meshes,

they are more effective than boundary element methods. The viscous and thermal

conductivity losses at the pipe walls can be taken into account in the multi-domain

coupling methods in order to improve the accuracy of the solutions. A flanged straight

pipe and a flanged network are calculated to compare the multi-domain coupling

methods with and without losses.

Large reductions of the amplifications of horn effect can be seen around the res-

onant frequencies. Therefore simple numerical methods (finite element methods) for

estimating the resonant frequencies of air inside the flanged networks are developed.

It is not necessary to calculate the acoustic fields outside the flanges to get the reso-

nant frequencies, which is quite time-consuming. We can get the resonant frequencies

easily by solving an eigenvalue problem with the finite element method. We developed

a program for this purpose where we should input the parameters such as the network

dimension, boundary conditions and end corrections. Since the flanged networks not

only have closed ends but also have open ends, the end corrections of the open ends

should be calculated first. These end corrections will be used in the estimation of

resonant frequencies. Based on the numerical methods (boundary element methods)

proposed in [3], the corrections of the flanged open ends can be obtained. The resonant
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frequencies of several flanged networks are estimated by our proposed methods and

compared with the results of acoustic fields from which we can also see the resonant

frequencies. Good agreements can be seen.

For a specified flanged network, our proposed methods can give the resonant fre-

quencies. However, if we design the network to get the wanted resonant frequencies,

optimization methods of the network structures are requisite. The resonant frequen-

cies depend on the network structures. An optimization method based on genetic

algorithms and the estimation methods for the resonant frequencies is developed for

this purpose. Parameters of the network dimension such as junction types, junction

positions and cross sectional area can be optimized. We choose three types of junc-

tions to build the network: left T junction, right T junction and cross junction. Two

objective functions are defined. One is for a single specified resonant frequency, and

the other one is for the maximum number of resonant frequencies within a specified

frequency range. With this method, the two dimensional networks with the targeted or

the maximum number of resonant frequencies within a frequency range can be found.

We can reduce the amplifications of horn effect around these optimized resonant fre-

quencies. Several optimization examples of unflanged and flanged two dimensional

networks are given.

The proposed model, computational methods, estimation methods for the resonant

frequencies and the optimization methods are validated with measurements of several

wooden flanged pipes and a real tire. First a straight wooden pipe and a wooden

network between a wooden cylinder and a sheet of plywood are respectively measured.

The tendencies of sound pressure are similar to the results predicted by the multi-

domain coupling methods, and good agreements between the measured and predicted

results can be seen. The resonant frequencies are very close to the estimations. Then

the network is optimized in order to get a maximum number of resonant frequencies

within 2000Hz. Four resonant frequencies can be found. We calculated and measured

the acoustic fields for one of the optimized networks. From the predicted results we

can see the optimized resonant frequencies. The predicted results agree well with the

measured results. Next an unflanged network is optimized for a specifed resonant

frequencies. From the measured acoustic fields we can see the targeted resonant

frequency that is very close to the predicted resonant frequency. Last a real tire on

a plane surface is measured and calculated. Due to the error of the estimated length

of the contact zone, the predicted results partly agree with the measured results. In

our experiment, the contact zone may not be pressed firmly in the whole contact zone

because the load that we use is much smaller than the load from a real car. So the

length of the contact zone may not be estimated correctly.
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For the optimization of the tire treads and the road textures, we assume that the

tire can be pressed firmly on the road in the whole contact zone. The tire treads are

optimized in two ways. In the first optimization, we insert the optimized networks one

by one for the targeted peaks. In the second optimization, the optimized networks

have a maximum number of resonant frequencies within 2000Hz. For both types of

optimized networks, multiple reductions of the amplifications of horn effect can be

seen through the calculations with the multi-domain coupling methods. The road

brick dimension is investigated in order to find the maximum reductions of the ampli-

fications of horn effect within 2000Hz. Since the maximum number of the resonant

frequencies that we can find is 3, we can see three clear reductions from the acoustic

fields computed by the multi-domain coupling methods.
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Chapter 1

Introduction

The tire/road system can be seen as a horn-like structure. The surfaces of the tire

and the road constitute horns in front of and behind the contact zone. The noise

generated in the contact zone is amplified by the horn-like structures. Tire treads and

road textures in the contact zone between the tire and the road can be considered as

acoustic network resonators. The acoustic fields around the tire/road system are also

influenced by the network resonances. In this chapter, first the importance and the

mechanisms of the tire/road noise are presented. Then studies and applications of the

acoustic resonators are reviewed. Next boundary element methods used for calculating

the acoustic fields of the horn-like structure are introduced. Last optimization methods

are compared in order to choose a suitable one for the optimization of tire treads and

road textures.

1.1 Tire/road noise

The road traffic noise is a part of the community noise which also includes other

traffic, industries, construction, public work and so on [5]. Among these noise sources,

the road traffic noise is a dominant source [6]. About 40% of the Europeans are

exposed to levels of the road traffic noise exceeding 55dBA daytime, and 20% are

exposed to levels exceeding 65dBA according to the study [7] by Lambert in 1994.

Nowadays this problem is even worse due to the population growth, urbanization and

the enlargements of the highway systems.

The traffic noise is very annoying and has many adverse health effects. It can

cause population annoyance, interference with communication and intended activities,

disturbance of sleep, hearing impairment and so on. It also has large economic effects.

From the EU Green Paper of 1996 we know that the cost of traffic noise in 17 European
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countries is about 0.65% of GDP.

The traffic noise emitted to the environment includes the tire/road noise, power-

train noise and the aerodynamic noise. The contribution of the tire/road noise is the

largest [1]. Tire/road noise is the loudest component in the total noise level of cars

traveling faster than 50 km/h and trucks traveling faster than 80 km/h [8].

1.1.1 Mechanisms

The tire/road noise is generated between the tire and road, and then radiates from the

horn-like structure formed by the tire and road. In [4] the mechanisms that create the

energy of the noise are referred as sound generation mechanisms, and the mechanisms

that convert the energy to noise and radiate it are referred as sound enhancement

mechanisms. These mechanisms are shown in Fig.1.1.

Figure 1.1: Sound generation and enhancement mechanisms of tire/road noise [4]

The sound generation mechanisms are tread impact, air pumping, slip-stick and

stick-snap. The tire treads keep hitting the road at the entrance of the contact interface

when the tire is rolling. The impacts of small rubbers on the road result in vibrations

of the tire. In the contact zone between the rolling tire and road, the grooves on

the tire surface are compressed and then recover, so air is pumped in and out. The

noise is generated by the pumping effect. The treads will slip briefly if the horizontal

forces from the road exceed the limits of friction, and then stick to the road during

acceleration, braking or cornering. Both noise and vibration will be generated by

the repeated slipping and sticking. When the tire treads leaves the contact zone, the

release of the adhesion between the tire and road will generate noise and vibration.

The sound enhancement mechanisms includes horn effect, pipe resonances, carcass

vibration and cavity resonance. The tire surface and the road create horn-like struc-

ture both in front of the tire and behind the tire. The noise generated in the contact

patch is enhanced by the horn. The pipes between the tire and road in the contact

resonate at the resonant frequencies. The carcass vibration is generated by the energy

created in the contact patch. Noise is radiated from the tire carcass. The air in the
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cavity inside the tire resonate.

A prominent peak in the range of 700 − 1300Hz can be found in most frequency

spectra of the exterior tire/road noise. In [9] this peak is investigated. The causes

include characteristics such as tread pattern pitch, pipe resonances, tangential block

resonances, belt resonances, the horn effect and road texture geometry. The author

even inferred that the developments in tire design, dictated by other concerns than

exterior noise, had tended to increase this problem.

In [10] the influence of the pavement characteristics on the generation and prop-

agation of the tire road noise is studied. The tire road noise can be reduced by the

road absorption effect. A numerical correspondence is found between the acoustic

absorption coefficient in normal incidence and the difference of the pass by noise level

between the absorbing and the reflecting surfaces in [10].

1.1.2 Tire vibration and air pumping

The mechanisms of tire vibration and air pumping are the tasks of this work, so we

only give a short review in this subsection.

This mechanism is studied in many publications [11–17]. In [11] tire/road interac-

tion and radial tire vibrations are studied by the measurement of a rolling smooth tire

for tire/road noise characterisation. This study gave a physical insight on generation

mechanisms of tire radial vibrations. Larsson [12] proposed a double-layer tire model

in order to take into account the tangential motion and the local deformation of the

tread. The model was validated by comparing the calculations and measurements

of the response of a smooth tire under an external excitation. In [18] the measured

road profiles are used as input data in INRETS rolling tire model to estimate the

tire/road noise. The tire/road noise due to the tire vibration is within about 1kHz.

Nackenhorst [13] studied the arbitrary Lagrangian Eulerian formulation of rolling, and

developed the weak form of the equations of motion. Tatsuo Fujikawa [14] defined

the essential road roughness parameters that govern tire tread vibration and provide

information on tire/road noise reduction. He used a tire/road contact model to esti-

mate the effects of road roughness parameters on tire tread vibration. The conclusion

is that the pavement asperity height itself is not an important parameter. However,

asperity height unevenness, asperity radius, and asperity spacing are essential for the

reduction of tire vibration noise. Kozhevnikov [15] calculated the spectrum of natural

frequencies and natural forms of vibration for a free and a loaded tire using the model

of a wheel with a reinforced tire in order to estimate the level of noise of a tire moving

on an uneven surface. Rustighi [16] presented a simple model for the prediction of tire

behavior in the frequency range up to 400Hz. A linear model was used to calculate
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the contact forces and the average spectral properties of the resulting radial velocity.

Kim [17] used a circular ring model in a low frequency range and a cylindrical shell

model above 300Hz to investigate the wave propagation of a tire. He found that one

of the most important features in sound radiation of a tire shell is acoustically excited

wave motions of the tire wall.

Today the noise due to the vibrations of a rolling tire can be calculated with

convincing accuracy. However, air pumping is not understood very well. In [19]

Hayden described the air movement in the contact zone between a rolling tire and a

road. Air is squeezed out when the treads at the entrance of the contact zone are

compressed on the road surface, and flows into the voids when the treads lift up from

the road surface. Daffayet et al. [20] measured the pressure in cylindrical cavities

over which a smooth tire rolled. They assumed that the noise generated by opening

and closing the cavities in the contact zone. Ronneberger [21] thought that air was

displaced by the changing gaps between the tire and road surfaces, because the treads

are deformed by road roughness.

1.1.3 Horn effects

Horn effect in Fig.1.2 is an essential noise enhancement mechanism. The tire/road

system can be seen as a horn-like structure. The surfaces of the tire and the road

constitute horns in front of and behind the contact zone. The noise generated in the

contact zone is amplified by the multiple reflections between the tire surface and the

road surface which are acoustically reflecting surfaces. The amplification of the horn

effect reaches up to 10 to 20dB in the results of previous studies, where the road and

the tire are modeled with smooth surfaces. The amplification can be calculated by

equation (1.1), where P is obtained in Fig.1.3a and Pref is calculated in Fig.1.3b. In

the calculations of P and Pref , a source is located in the horn between the tire and

the road.

Figure 1.2: Horn effect: multiple refections of sound in the horn-like structure
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In this work, we try to optimize the tire treads and road textures in order to reduce

the amplification of horn effect. P is still calculated in the case where a tire is on the

road, and Pref is still obtained in the case where no road is under the tire. In the latter

case, whether the tire is smooth or has treads Pref is almost the same. Therefore, in

the following calculations we only investigate the influences of the networks between

the tire and the road on the acoustic pressure P .

A = 20log(
P

Pref

) (1.1)

(a) (b)

Figure 1.3: (a) Tire on the road; (b) Tire without the road.

A first attempt at an analytical description of the horn effect was made by Ron-

neberger [22]. He represented the tire geometry as a flat rigid surface extending to

infinity at a small angle to the road, forming a wedge-shaped horn. Contributions

from a single source and its images then sum to produce a far-field acoustic pressure

spectrum which exhibits a characteristic, lobed interference pattern. The finite width

of the tire is accounted for by superimposing a low-frequency dependence derived from

the spectrum of a decaying sine wave. Although this model describes the general shape

of the amplification spectrum, it does not fully resolve the low frequency behavior,

nor does it predict the correct lobe structure for high frequencies. It therefore seems

necessary to describe the tire geometry more accurately.

Kropp et al. [23] suggested a theoretical model based on multipole synthesis. The

model can provide a reasonable prediction of noise levels at mid and high frequencies

for a tire placed on a hard surface. However, it overestimates the horn amplification

effect at low frequencies. Since the Kropp model is a two-dimensional one, the model

can only be valid for estimating the amplification of sound when the receiver is located

in the plane of a tire.

Graf et al. [24, 25] first investigated experimentally the horn amplification of

sound generated by a simple acoustic source. The boundary element method is then

shown to give predictions. And the dependence of the horn-effect on different geomet-
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rical parameters is also investigated both through experiment and boundary element

calculations. It shows that for the intermediate frequency range the BEM provides

an excellent tool to calculate the horn effect for practical geometries. However, the

computations are expensive, limited to frequencies below 2500 Hz, and provide little

physical insight. So two supplementary asymptotic approaches are developed in Kuo

et al. [26]: a ray theory for high frequencies and a compact body scattering model

for low frequencies. These methods are found to have good predictive capabilities, at

frequencies above 3 kHz and below 300 Hz respectively. Ray theory provides a useful

physical basis for the interpretation of the lobed interference patterns seen at these

frequencies. The main strength of the low frequency theory is the insight it yields into

the parametric dependence of the amplification.

The aim of the work by Anfosso et al. [27, 28] is also to predict the amplification

due to horn effect. Sound pressure amplification of a 2D infinite rigid cylinder is ob-

tained using the analytical approach based on modal decomposition of sound pressure.

It gives quick and accurate results, but is limited to simple geometrical configurations

and purely reflecting properties of boundaries. Horn effect is reduced for porous road

surface because of sound absorption properties. To introduce sound absorption of the

road surface, 2D Boundary Element Method was used to describe the porous pave-

ment by a phenomenological model. The parameters of the mesh are optimized by

comparison with the results from the analytical model. The BEM models are more

time consuming but more realistic situations can be predicted. Then the analysis was

extended to a 3D rigid sphere.

In [29] Fadavi et al deal with the horn effect using a 3D cylinder tire model. The

sound pressure and sound amplification are calculated in the space around the 3D tire

model using the Boundary Element Method. The influence of different parameters

such as the position and size of the source are studied in terms of amplification and

sound pressure spectrums.

Wai keung lui et al. [30] offered a simplified theoretical model to carry out a

parametric study when selecting appropriate materials for porous road pavement. A

study of the influence of porous ground on the horn effect is discussed considering the

parameters such as the thickness of the porous layer, double layer, porosity, and the

variations in the angular position of the source.

1.2 Acoustic resonators

Tire treads and road textures in the contact zone between the tire and the road can

be considered as acoustic network resonators. The acoustic fields around the tire/road
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system are influenced by the network resonances. The resonances of the pipes in the

contact zone between the tire and the road in Fig.1.4 are seen as one of the noise

enhancement mechanisms in [4]. However, this conclusion may be not correct if the

pipe resonances are investigated together with horn effects, because the horns between

the tire/road system and the pipes in the contact zone constitute the boundary of the

acoustic fields together. In fact, the sound fields can be reduced around the resonant

frequencies. Since the network resonators in the contact zone have large influences

on the acoustic field around their resonant frequencies, the acoustic behaviors inside

the networks and the resonant frequencies should be investigated in detail. First the

studies of some simple acoustic resonators are reviewed in the following sections.

Figure 1.4: Pipe resonators in the contact zone between a tire and a road

1.2.1 Straight tube resonator

The straight tube resonators are applied to many acoustic problems, such as sound

absorption, radiation and transmission, in the previous studies. The straight tube

with one open and one closed end or two open ends are first used. Then two straight

tubes are coupled to improve the performance.

1.2.1.1 Sound absorption

For the sound absorption, there are several ways. Porous materials show a broadband

sound absorbing behaviour above a certain frequency and the acoustic energy is con-

verted to heat because of the viscosity inside the materials. Perforated panel, which

can be seen as a row of Helmholtz resonators, can be used for the absorption of a

small band of low and medium frequency sound.

Besides porous materials and perforated panels, narrow quarter-wave tube res-

onators are also widely used for the sound absorption in a wall (see Fig.1.5) or panel

for a narrow frequency band based on the resonance of air inside the tube and the vis-

cous shear and thermal conductivity losses on the tube walls. The model by Zwikker

and kosten [31] for wave propagation in cylindrical tubes included the viscosity and

thermal conductivity. Tijdeman [32] proved that this model is complete and accurate
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Figure 1.5: A sound absorbing wall with quarter-wave resonators.

for both narrow and wide tubes. Eerden [33] studied the influence of the viscous and

thermal conductivity losses on the absorption coefficient and concluded that the vis-

cothermal effects cannot be neglected if the resonators are used for sound absorption

because they result in energy being dissipated and the effective speed of sound inside

the tube can be considerable reduced. Around the resonant frequencies, we can see

a maximum sound absorption. For the wall or panel with the tube resonators, the

tube radius and the porosity (the ratio of the sum of the tube cross-sections and the

panel area) determine the height and the width of the absorption peaks. The theory

and applications of quarter-wave resonators are summarized in [34]. The attenuation

of fan noise by the quarter-wave resonators can be found in many researches [35–38].

The combination of noise barrier and the quarter-wave resonators can be seen in [39–

41]. Studies [42–44] applied the quarter wave resonators to the attenuation of noise

entering buildings through ventilation openings.

The quarter-wave tube has an open and a closed end, but resonators with two

open ends can also be used for the sound absorption, especially for the case where air

needs to be transported through wall or one needs to see through the wall. Eerden

also studied this case, and concluded that at low frequencies (f < 2000Hz) the waves

propagating in the resonator are not absorbed at the end but are reflected back into

the resonator due to the mass reactance at the free end. For higher frequencies (2000−
10000Hz) the waves are absorbed due to radiation into infinity.

In order to create broadband sound absorption, coupled tube resonators with dif-

ferent cross-sectional areas and lengths in Fig.1.6 are designed and applied by Eerden.

The mechanism for the broadband absorption is that the sound energy is dissipated

by the viscothermal effects and the incident waves are cancelled due to the broadband

resonance of air in the coupled resonators. Experiments for the quarter-wave tubes
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Figure 1.6: Two axially coupled tubes.

with different porosities and lengths, tube resonator with two open ends and different

coupled tubes are performed by Eerden to validate the methods and design tools.

Eerden [33] used a simple and efficient network of small couple tubes to predict the

acoustic behaviour of conventional sound absorbing materials, for example glass wool

and foams. The sound absorption of the one-dimensional case agrees well with the

empirical and theoretical models.

1.2.1.2 Sound radiation and transmission

The tube resonators can also be applied for the reduction of sound radiation of a

panel based on the resonance of the air inside the tube. The viscothermal effects are

much less important in this case. On a small partition of the panel, no sound will

be radiated if the velocities at the panel surface and at the tube end are equal but

opposite in phase. By tuning the length, the radius and the porosity of the panel,

different sound reducing properties can be obtained. Weak radiating cells are used for

passive noise reduction based on a similar principle by Ross and Burdisso [45].

Parallel resonators of the straight tubes are applied for the reduction of sound ra-

diation from and transmission through the rigid or flexible panels in [46]. Analytical

with viscothermal effects and numerical models are proposed to predict the influences

of the panels with the parallel tube resonators. For the sound radiation, good agree-

ments between the calculations and measurements can be seen. But the models need

to be developed because the predictions of the increases of the sound transmission loss

by the application of tube resonators are larger than the measured results.

1.2.2 Helmholtz resonator

Helmholtz resonator can be considered as a mass-spring system. The spring stiffness

is represented by the volume of air and the mass is given by the small column of

vibrating air in a perforation of the panel. The energy can be dissipated by the vi-
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brating air and the porous material placed in the volume. The Helmholtz resonators

(HRs) are used to control the noise inside the enclosure in many studies [47–51]. In

[47] the coupling between a single resonator and a single enclosure mode was taken

into account, and damping materials were used inside the resonator to improve the

dissipation and broaden the working bandwidth. In the study of damped HR [48]

the optimal resonator resistance can be seen in the experiments. Then the model in

[47] was further developed by Cummings [49] so that multiple resonators and multiple

modes of the enclosure can be taken into account. In [50] two serially connected cham-

bers are used to compose a resonator in order to deal with two enclosure resonances

at the same time. Similarly, one resonator with multiple serially connected chambers

were used to target multiple enclosure modes in [51].

1.2.3 T-pipe resonator

T-shaped acoustic resonators in Fig.1.7 can be seen in many researches for noise

control in small enclosures. Merkli [52] first proposed a theoretical model for the

calculations of the resonant frequencies of a T-shaped tube. Then Li and Vipperman

[53, 54] use a multi-mode model for the design of the T-shaped acoustic resonators in

order to control noise in the enclosures. T-shaped acoustic resonators are also used in

[55] to reduce the resonances of an enclosure based on the wave cancelation around

the resonant frequencies. The acoustic interaction between the enclosure and the

resonators are studied and design tools for optimizing the resonators are developed.

Then experiments are done to validate them. The model and design tools are applied

to the noise transmission control through a double-glazed window by using the T-

shaped acoustic resonators. Besides, in the expendable launch vehicle payload fairing

[56] and the chamber core fairing [57] there are applications of the T-shaped acoustic

resonators.

Figure 1.7: T-shaped acoustic resonator.
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1.3 Acoustic radiation of baffled piston

In this thesis, the horn effect and the pipe resonances will be investigated in the same

model. In this model, the surfaces of the tire and the road can be seen as flanges,

and air at the ends of the pipes between the tire and the road can be considered as

pistons on these flanges. If there are incident waves on the pistons, the acoustic fields

inside the pipes will be excited and there will be waves radiating from the pistons to

the exterior domain. So the computational methods of the acoustic radiation of the

baffled pistons should be developed. For the acoustic radiation of a piston with an

infinite flange in Fig.1.8, we have analytical solutions. But the surfaces of the tire

and the road are very complex, numerical methods should be used. Since boundary

element methods are suitable for the complex surfaces, we will propose a multi-domain

coupling method in chapter 2 based on BEM to solve the problem. There is a brief

review of BEM in the following.

Figure 1.8: A piston with an infinite baffle.

1.3.1 Boundary element methods

The numerical solutions (using boundary elements) of the direct BIE (boundary inte-

gral equations) formulations are first applied to 2D potential problem in [58]. Then

they are extended to 2D elastostatic problem in [59]. One of the most important

applications of the BEM is solving acoustic problems and predicting acoustic fields for

noise control. We can find many researches on the development of the BEM for solving

the exterior acoustic problem. The work in [60] is considered as classical work and

the BIE formulation in [60] is used by many researchers for solving acoustic problems.

More researches on the boundary element methods (BEM) are reviewed by Liu [61].
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The BEM only requires discretization of the boundary of the domain. Bound-

ary meshing is simple when modeling many problems with complicated geometries.

However due to the dense and non-symmetric matrices produced by the conventional

BEM, for large-scale problems its efficiency in solutions is a big problem.

1.3.2 Fast multipole boundary element methods

Thanks to the acceleration of the fast multipole method (FMM), the BEM can solve

large-scale problems. The fast multipole method stemmed from the computation of

the potential field of interactive discretized multi-particles system. For all particles,

the computation complexity is O(N2). In 1986, Barnes and Hut published a paper in

Nature proposing the Tree Codes. It uses the tree structure and reduces the computa-

tion of mutli-particles system to O(NlogN) by recursive operation [62]. The prototype

of FMM was first proposed by Rokhlin when calculating the boundary value prob-

lem of ellipse and introduced the concepts of multipole expansion and local expansion

[63]. In 1987, Rokhlin and Greengard formally proposed the fast multipole method

and combined the tree structure with the multipole and local expansion. It reduces

the computation complexity of multi-particles systems to O(N) [64]. However, when

the particles are unevenly distributed, the former tree structure will lead to the re-

duction of computation efficiency. So in 1988, Carrier et al. introduced the adaptive

tree structure which generates according to the distribution of the particles [65]. In

order to further improve the computation efficiency of FMM, Rokhlin introduced the

concept of diagonalization in 1993 [66]. And in 1997, Greengard and Rokhlin [67]

proposed the new version of FMM which greatly improved the computation efficiency

of FMM by introducing the new exponent expansion.

The discretized multi-particles system are similar to the continuous medium. Sup-

pose that the particles are continuously distributed on the space curved surface, the

discretized multi-particles system can be transformed to continuous distribution sys-

tem. After discretizing the curved surface into surface elements, every surface element

can be regarded as a particle. So the curved surface is equivalent to the discretized

multi-particle systems and FMM can be used to accelerate the computation of the

integral on the curved surface. Therefore, FMM can also be used to accelerate the

boundary integral which includes the kernel function and boundary variable in the

boundary integral equation.

In the BEM system of equations, each equation represents the sum of the integrals

on all the elements when the source point is placed at one node. The conventional

approach is still used to evaluate the integrals on the elements that are close to the

source point. The FMM is applied to evaluate the integrals on the elements that
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are far away from the source point. The advantages of fast multipole BEM can be

described as follows:

1. When solving the BEM system of linear equations using an iteration method, the

multiplication operator of the coefficient matrix and iterative vector should be done

at least once for every iteration. But with FMM, for every iterative operator of BEM,

use the tree structure to describe the multiplication of coefficient matrix and iterative

vector, so the coefficient matrix needn’t be stored using an array.

2. The multiplication result of the coefficient matrix and iterative vector can be got

by the recursive operator of the tree structure, and the accuracy can be controlled.

3. Both the computation and storage of the tree structure are O(N), so on the premise

that the iterations converges rapidly, the relationship between the degrees of freedom

and the computation and storage of the fast multipole BEM is linear.

With the help of the FMM, the BEM is unmatched by other methods for solving

large-scale acoustic problems. Researches on solving the Helmholtz equation by the

fast multipole BEM are reviewed in [61].

1.4 Optimization methods

For the acoustic resonators, the resonant frequencies are very important because their

working frequency bands are around the resonant frequencies. In order to get two

dimensional networks with wanted resonant frequencies, we need to know what pa-

rameters of the networks govern their resonant frequencies. The networks in Fig.1.9

that we investigate have perpendicular rows and columns. The parameters of the

network structure include junction type, end type, cross sectional area and positions

of the junctions and the ends. These parameters should be optimized with the opti-

mization methods to get the wanted resonant frequencies. A program based on the

optimization methods is developed for this purpose.

The objective function of our optimization problem is quite clear. We want to get

the networks with the targeted or maximum number of resonant frequencies within a

specified frequency range. So for the targeted resonant frequency, we can calculate the

difference between the obtained resonant frequency and the resonant frequency. The

network with the minimum frequency difference will be chosen. For the maximum

number of resonant frequencies, we can count the resonant frequencies of the obtained

networks. Then we add a minus sign to the number in order to get a minimization

problem. The ones with the smallest number will be selected.

The goal of our optimization is to minimize the objective functions by modifying

the parameters of the network junctions. But the parameters cannot take arbitrary
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Figure 1.9: A simple example of a two dimensional wooden network with open and
closed ends

values. They should stay within a range of feasible values which is defined as the

search space. The search space determine which type of optimization method should

be used. Each parameter can vary continuously or take only a set of discrete values.

For the case where all the parameters vary continuously, we can introduce the

derivative or sensitivity which quantifies how much the objective function are changed

as the parameters are varied. Only a local solution can be found by this kind of

approach. Because only a neighborhood of the initial guess is searched. However, the

solution can be improved by using several randomly chosen starting points. This kind

of method is used in [68] for the optimization of tramway low height noise barriers

and in [55] for the optimization of T-resonator location in an enclosure. However,

some of the network parameters take discrete values. For instance the junction type

varies in several specified junctions. In this case, we cannot define the derivative,

and therefore we should use a different approach. Evolutionary optimization methods

are well-suited for this purpose, for example genetic algorithms. Since they do not

necessarily require a discrete search space, other network parameters, such as the cross

sectional area and the position of a junction, can vary in continuous ranges. These

methods allow a more global search. Therefore, genetic algorithms will be used in our

optimization of network structures for the wanted resonant frequencies.

Besides, the simulated annealing method is also a global search method. Similar

as genetic algorithms, it does not require the derivative information of the physical

problem. It can be applied to discrete and continuous problems. It is inspired from the

physical process of the cooling of a metal. Initially the metal is under the disordered

state at a high temperature. If the annealing time is long enough, the thermal equilib-

rium can be reached at each cooling stage, which warrants the minimum energy level.

Eventually, the metal becomes a crystalline structure. In the simulated annealing
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method, the process starts at a high temperature. In order to find the minimum value

of the objective function at each subsequent temperature, sufficient iterative searches

are carried out. The temperature keeps decreasing until the process is terminated, so

the optimal solution can be obtained.

For the calculation of our objective functions, the resonant frequencies should be

estimated. There are analytical methods for the estimations of the simple straight and

T-shaped resonators. However, the networks to be treated in this work are more com-

plex. It is difficult to give accurate estimations of the resonant frequencies analytically.

Therefore, numerical methods (finite element methods) will be proposed.

1.5 Objective and Scope of Research

This work is conducted within the framework of the German-French DEUFRAKO

project ODSurf concerning the reduction of the rolling noise of the road traffic by

optimizing the road surfaces. Researchers in this project focus on the improvement

of the theoretical models (air pumping, tire/road contact, horn effect and pipe reso-

nance), the validation of new measurement systems including the 3D texture analyser

and the industrial realizations of optimized low noise dense road pavement. After

testing the models on all the low noise surfaces and comparing these surfaces, the

acoustic characteristics of these surfaces will be used to complement and extend the

capabilities of the common database DEUFRABASE.

The topic of this study is about the two mechanisms of the tire/road noise: pipe

resonance and horn effect. Although a lot of researches have been done in order to

reduce the tire/road noise, some mechanisms of the tire/road noise should be taken

into account together. In this thesis, the pipe resonances and the horn effect of the

tire/road noise will be calculated in the same model. In the previous studies of the horn

effect, the tire and the road are modeled with smooth surfaces. In this work we try

to use the resonances of the networks formed by the tire treads and the road textures

in the contact zone to reduce the amplification of the horn effect around the resonant

frequencies. The acoustic resonators are widely used for the noise control. The original

peaks of sound pressures can be reduced by inserting the acoustic resonators.

For simple T-shaped pipes, the resonant frequencies can be estimated analytically.

But for the networks their structures are too complex to be estimated by the analytical

methods. So numerical methods should be developed. In order to reduce the ampli-

fication of the horn effect at targeted frequencies, a design and optimization method

of the network structures should be given to obtain the wanted resonant frequencies.

Because the resonant frequencies of the networks depend on their structures.
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A systematic study on the pipe resonances and the horn effect of the tire/road will

be carried out in this thesis. Systematic analysis tools for the tire/road noise including

the calculation of the acoustic fields, the estimation of the resonant frequencies and

the optimization of the network structures are developed. The scope of this work is

listed as follows:

(1) A model to characterize the interaction between the flanged networks and the

exterior domain is proposed. The influence of the viscous and thermal conductivity

losses is studied.

(2) The determination of the end corrections of the network inside arbitrary body

is carried out. A numerical method for the estimation of the resonant frequencies of

the network is developed.

(3) A design and optimization method based on the genetic algorithm for obtaining

the network with the wanted resonant frequencies is proposed.

(4) Experiments of wooden cylinders, wooden networks and a real tire are car-

ried out to validate the interaction model and the methods for the estimation of the

resonant frequencies and the optimization of the network.

(5) The optimized tire treads and road textures are applied to reduce the amplifi-

cation of the horn effect.

This chapter involves an overview of the tire/road noise and a review of the horn ef-

fect, the acoustic resonators and the boundary element methods. In chapter 2, a model

for the flanged networks is proposed. For a simple structure, radiation impedance can

be used to calculate the acoustic fields. For a complex flange, multi-domain coupling

methods are developed. The viscous and thermal conductivity losses can be taken into

account. Chapter 3 includes the numerical methods for estimating the end corrections

and calculating the resonant frequencies. Boundary element methods and Finite ele-

ment methods are used for the estimation of the end corrections and the calculation

of the resonant frequencies, respectively. Chapter 4 focuses on the methods for de-

signing and optimizing the network structures in order to obtain the wanted resonant

frequencies. The genetic algorithm is adopted for this purpose. Measurements are

performed in chapter 5 to validate the model and the methods proposed in the pre-

vious chapters. A Wooden cylinder and networks are built and measured as well as

a real tire. Chapter 6 concerns the optimizations of the tire treads and road textures

for the reductions of amplifications of the horn effect. Final conclusions and future

works are presented in Chapter 7.



Chapter 2

Modelling of networks in

horn-like structures

2.1 Introduction

Horn-like structures with networks inside can be considered as bodies with macro

porosities, which can be seen in the analysis of porous walls, horn effects of road/tire

and so on. It is essential to calculate the sound pressure field around them. Such prob-

lems include the acoustic transmission-radiation problems. The networks constituting

the porosities could be networks, several parallel pipes or a mixture of them.

In such systems the networks to be analyzed have small cross sections. However,

the cross sections are neither as small as the arbitrary microscopic holes in many

porous materials nor as complicated as the pipes in the mufflers, so it is not suitable

to use the same methods to calculate the sound pressure fields. Besides, in porous

materials acoustic energy is dissipated as heat because of viscosity, so noise could be

reduced by porous materials. But for the networks considered in this work the main

mechanisms of noise reduction by networks are the pipe resonances. However, the

methods for mufflers could give some inspirations.

Mufflers have complicated internal structures such as inlet/outlet tubes, thin baf-

fles, perforated tubes, and sound absorbing materials. There are several methods

for the analysis of mufflers summarized in [69]. The multi-domain boundary element

method (BEM) and BEM with the transfer matrix could be used for the calculation

of the flanged network, but some changes should be made.

A brief introduction of the applications of multi-domain BEM can be seen in

[70]. It was first used to analyze the potential problem and elasticity [71]. Then

it was introduced to solve acoustic problems. An important application of multi-
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domain BEM to acoustics is the coupled interior/exterior problems [72] where the

interior boundary integral equation is used for a finite internal domain and the exterior

boundary integral equation is used for an infinite external domain. The solution at the

interface between the two domains is coupled by the continuity constraint equations.

So the problem can be solved as a continuous field problem to get a solution at any

point in the whole domain. The multi-domain BEM is also used to deal with problems

with several acoustic media [73]. Another wide application is the problem about thin

bodies [74, 75] before using the hypersingular integral equation.

Transfer matrix techniques have been applied to the analysis of the series connec-

tion pipes with many changes of sectional area in [76]. The advantage is that only

two-by-two matrices are needed and it is possible to work on a desktop computer, but

only using the transfer matrix is not easily applied to network. In [77] a different form

of transfer matrix is used, together with the matrices derived for the two-dimensional

junctions by the finite element method, to describe a complete network. In [78] the

transfer matrix is used to combine the impedance matrix of each substructure of a

silencer.

The transfer matrix can easily connect two substructures and describe the relation

of pressure and particle velocity between them. But an assumption should be true to

get the transfer matrix, which is the plane wave propagation in the connected part.

For the network analyzed in this part, BEM of one computational domain is avail-

able, but only for very simple case, as BEM needs fine mesh around the resonant

frequency of the air in the network to get converged solutions. Substructuring tech-

niques can reduce the matrix size and the total computational time for complex struc-

tures. Dividing the whole acoustic domain into several subdomains is the main idea

of the multi-domain coupling method. Each subdomain, which could be an exterior

or an interior one, has a well-defined boundary and the same material property. The

exterior boundary integral equation is used for the infinite external subdomain. For

the interior subdomain, transfer matrix, 2D analytical relations, FEM or BEM can

be used. The solutions at the interfaces between the subdomains are coupled by the

continuity constraints of sound pressure and normal particle velocity.

First the structures to be analyzed and wave propagation are introduced. Then the

computational methods are described in the next section. Next comparisons are made

to check the accuracy of the proposed methods. Last viscous and thermal conduction

losses are taken into account in the simulations to show their influences.
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2.2 Problem specification

2.2.1 Flanged network

The structure to be analyzed here has arbitrary flange and macro porosities (see

Fig.2.1a). The network constituting the porosities could have any connection pattern:

arbitrary network like Fig.2.1b, parallel pipes or a mixture of them. The pipes here

have small cross sections.

(a) (b)

Figure 2.1: (a) Flanged network; (b) Network.

2.2.2 Wave propagation

Fig.2.2a represents three dimensional networks with arbitrary flange. A point source S

is put near the flange. The acoustic wave at point R includes three parts (see Fig.2.2a):

a wave directly from the source, a wave reflected from the flanged without network

(see Fig.2.2b) and a wave radiating from the network with flange (see Fig.2.2c).

The wave from the source arrives at pipes ends and then propagates in the network.

The straight parts of the network are very thin compared with the wavelength to be

analyzed. The working frequencies of the source are below the cut off frequencies

of straight parts. So there is only a plane wave motion in the straight parts that

consists of a forward travelling wave and a backward reflected wave. The waves in the

junctions of the network have higher order modes, but they don’t propagate in the

straight parts.

In Fig.2.2b, imaginary pipe ends are used instead of the real ends. The imaginary

ends are inside the network but close to the real ones. The imaginary surfaces Simag

are perpendicular to pipes walls. Thus, at Simag the wave is uniform and the velocity

is perpendicular to the imaginary end, which is useful in the method proposed in
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(a) (b)

(c)

Figure 2.2: (a) Total pressure; (b) Pressure directly from the source and reflected by
the flange; (c) Pressure radiating from the network

this chapter. However, it is not uniform at the real ends, even if the real ends are

perpendicular to the network walls, because the cross sections change suddenly.

2.2.3 Boundary condition

The boundary conditions on the flange surfaces could be the pressure, the normal

derivative of the pressure, the impedance, the surface velocity, or a mixture of them

(see equation (2.1)). For network walls, boundary conditions are rigid.






p = p0 (on Γp)

p = Zv (on ΓZ)

v = v0 (on Γv)

(2.1)

Pressure p0, impedance Z and velocity v0 are known. We have Γp

⋃
ΓZ

⋃
Γv = Γ.
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2.3 Radiation impedance methods

For a simple flange and a straight pipe, we can get radiation impedances of open

ends easily. So acoustic fields can be obtained by using the radiation impedances.

An example is given to show the calculations. The simple flange in our example is a

cylinder. There is a thin pipe at the center (see Fig.2.3). The flange and pipe wall are

rigid. The radius of the pipe and the flange are 0.005m and 0.6m respectively. The

pipe length is 0.1m. The source S is at (0, 0, −0.1). The total pressure at receiver R

Figure 2.3: A straight pipe at the center of a cylinder

(0.1, 0.1, −0.1) can be calculated approximately by

ptot = prad + pinc (2.2)

pinc in this part is the incident pressure from the source and reflected by the cylinder

without pipe. prad is the pressure radiating from the open ends of the flanged straight

pipe. We will compare this method with the multi-domain coupling methods proposed

in the next section.

The first step to get prad is calculating the pressure pend and particle velocity vend

at the open ends analytically. However, at the open ends the pressure and velocity are

not uniform. So we can create imaginary ends for the pipe to ensure that the pressure

and velocity are uniform at these ends (see Fig.2.3). Then we calculate pend and vend

at the imaginary ends. The coordinates of the imaginary ends are z = 0.005m and

z = 0.095m. Since the pipe is straight and thin, there is only a plane wave. If we

don’t take into account viscous and thermal conduction losses at the rigid walls of the

straight pipe, the wave equation is
∂2p

∂z2
=

1
c2

∂2p

∂t2
(2.3)

c is the sound speed.
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Suppose that the solution of equation (2.3) is

p(z) = a cos kz + b sin kz (2.4)

k is the wave number.

The convention e−iωt is adopted, where i2 = −1, ρ is the density of air and ω is

the angular frequency. The velocity is given as

v(z) =
1

iρω

∂p

∂z
(2.5)

At the right real end of the pipe (z = 0), the total pressure and velocity are

prt = a (2.6)

vrt =
kb

iρω
(2.7)

From equations (2.6) and (2.7), one can get a and b. So at the left real end of the

pipe (z = l), the pressure and velocity are

plt = prt cos kl + iρcvrt sin kl (2.8)

vlt = − 1
iρc

(prt sin kl − iρcvrt cos kl) (2.9)

At the two real ends the pressure and velocity also satisfy

prt = prr + pri vrt = vrr + vri (2.10)

plt = plr + pli vlt = vlr + vli (2.11)

prr and vrr are values of wave radiating from the right real end, and plr and vlr are

from the left real end. pri and vri are values of incident wave at the right real end,

and pli and vli are at the left real end.

Substitute equation (2.10) and (2.11) into (2.8) and (2.9), one has

prr cos kl + iρcvrr sin kl − plr = −pri cos kl − iρcvri sin kl + pli (2.12)

prr sin kl − iρcvrr cos kl + iρcvlr = −pri sin kl + iρcvri cos kl − iρcvli (2.13)

The pressure and velocity radiating from the pipe satisfy
prr

vrr

= −Zr (2.14)

plr

vlr

= Zr (2.15)

Zr is the radiation impedance. Since the pipe is thin and the source is closed to the

pipe, the flange can be considered as infinite. One has

Zr ≈ ρc(
1
2

(kr)2 − i(0.8216kr)) (2.16)

r is the pipe radius.
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From equation (2.12)-(2.15) one can obtain the following system of linear equations









cos kl sin kl −1 0

sin kl − cos kl 0 1

1 Zr/iρc 0 0

0 0 1 −Zr/iρc



















prr

iρcvrr

plr

iρcvlr










=










−pri cos kl − iρcvri sin kl + pli

−pri sin kl + iρcvri cos kl − iρcvli

0

0










(2.17)

In system (2.17), pri, vri, pli and vli should be given. In Fig.2.3 one can close the

real ends of the pipe and then put a rigid boundary condition on the whole surface.

These values can be obtained by boundary element method, and so is the incident

pressure pinc at receiver R in the exterior domain. After substituting them into (2.17)

and solving one can get the pressure prr, plr and velocity vrr, vlr at the two ends for

a given frequency.

Then one can get a and b from equations (2.6) and (2.7). By substituting them in

equation (2.4), one obtains the pressure pend and vend at the imaginary ends. With

pend, the pressure prad radiating for the pipe can be obtained by BEM. By closing

the pipe at imaginary ends in Fig.2.3, putting pend on the ends surfaces and rigid

boundary conditions on the other part of the surface, removing the source and solving

this problem by BEM, one has prad at R. Then the total pressure at the point R can

be obtained by equation (2.2).

From the analyses above, we know that the pipe ends act as pistons, and surfaces

of the cylinder can be considered as flanges. So the interactions between the cylinder

and the exterior subdomain are acoustic incidences and radiations at pipe ends, and

reflections by the surfaces. For complex networks with many ends and arbitrary

flanges, the interactions with the exterior subdomains are the same. But the radiation

impedances are not easy to get, so we should develop new calculation methods which

are the multi-domain coupling methods introduced in the following section.

The example in this section can also be solved directly by BEM, if we create meshes

of the straight pipe at the center of the cylinder. However, the pipe is very thin, so

very fine meshes are needed to get converged results around the resonant frequencies.

That is why we try to avoid using BEM directly to solve this example, especially for

more complex networks with arbitrary flanges.

2.4 Multi-domain coupling methods

The network to be analyzed consists of cylindrical or rectangular pipes with small

cross sections. For complex networks and flanges, we have to find new calculation

methods, because BEM needs fine meshes leading to long computational time or
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memory problems in the computers and the radiation impedances of complex flanged

pipe ends are not easy to get. The calculation of the total acoustic pressure ptot at

a point R in the exterior domain in Fig.2.2a by multi-domain coupling methods is

introduced in this section.

In boundary element methods, for a problem with a bounded domain, the integral

equation to be solved is given by

ce(x)p(x) =
∫

Γ

p(y)
∂G

∂ny

(x, y)dy −
∫

Γ

∂p

∂ny

(y)G(x, y)dy + pinc(x) (2.18)

Γ includes the flange and the imaginary network ends (see Fig.2.2b). pinc(x) is the

incident pressure from the source without the structure. G is the Green function. n

is the unit normal vector pointing into the domain. To get the total pressure ptot in

the exterior domain, let ce(x) = 1, and the pressure p(y) and its derivative
∂p

∂ny

on

the surface Γ should be calculated first.

To get the pressure p(y) and its derivative
∂p

∂ny

on the surface Γ of a complex

network with flange, the computational domain in Fig.2.2a should be divided into

an exterior subdomain and an interior subdomain by creating imaginary ends for the

network. The exterior subdomain is solved by BEM to get BEM system matrices and

an excitation vector. The interior subdomain can be solved by analytical methods

(transfer matix) or numerical methods (FEM or BEM) to get the relation between p

and q =
∂p

∂n
at these ends. Then the exterior and interior subdomains are coupled at

the interfaces. Finally by solving the overall equation system, and one has p(y) and
∂p

∂ny

on the surface Γ. The process is described in detail in the following.

2.4.1 Exterior subdomain

In Eq. (2.18), for a point x on Γ, ce(x) equals 1/2 if the surface Γ is regular at this

point. The discretization of Eq. (2.18) is obtained from a mesh of the surface of

the domain. Then a linear system (2.19) can be obtained whose solution gives an

approximation of the solution on the surface Γ. More information can be found in

[79].

AP + BQ = Pinc (2.19)

P, Q and Pinc are vectors of pressure, derivative of pressure and incident pressure,

respectively. A and B are BEM system matrices.

For the exterior subdomain in Fig.2.2b, dividing the vectors in Eq. (2.19) into

vectors of imaginary ends and vectors of flange, one has

AE

[

PE
ep

PE
f

]

+ BE

[

QE
ep

QE
f

]

=

[

Pep
inc

Pf
inc

]

(2.20)



2.4 Multi-domain coupling methods 25

The subscripts and superscripts ep and f mean the imaginary ends of the pipes and

flange, respectively, and E means exterior. Matrices AE and BE can be obtained by

solving the problem in Fig.2.2b with BEM software. In the BEM software, using the

rigid boundary condition on the surface Γ, one can get AE. Using the soft boundary

condition, one can get BE . The incident pressure pinc can be obtained in either of the

two computations above.

2.4.2 Interior subdomain

For 1D parallel straight pipes, the transfer matrix can give the relation between pres-

sures and velocities. For 2D networks, the theory of Miles [2] is suitable to get the

relations. For 3D complex networks, FEM or BEM should be used to get the system

equations.

2.4.2.1 One dimension without losses

The straight pipe through the flange or straight part of a network between the flange

and a junction or two junctions in Fig.2.2c, whose central axis is labelled as z, is thin

compared to the wavelength to be analyzed. There is only plane wave consisting of a

forward travelling wave and a backward reflected wave. Pressure p and its derivated

q are constant on a plane perpendicular to z. So one has the wave equation (2.3) and

its solution (2.4) and (2.5).

Surfaces Sr and Sl in Fig.2.2c have different normal directions. For one node on

Sr (z = zr), p and q can be written as

pr = a cos kzr + b sin kzr

qr = ka sin kzr − kb cos kzr

(2.21)

On Sl (z = zl)

pl = a cos kzl + b sin kzl

ql = −ka sin kzl + kb cos kzl

(2.22)

Get a and b from equation (2.21), and then substitute them into (2.22). The relation

of p and q between one node on Sr and another node on Sl can be obtained
[

qr

ql

]

=

[

t11 t12

t21 t22

] [

pr

pl

]

(2.23)

In (2.23), p can be expressed as the mean value because the pressure is constant at
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each pipe end. So q of any node i on Sr and q of any node j on Sl becomes

[

qri

qlj

]

=

[

t11 t12

t21 t22

]










1
nr

i=nr∑

i=1

pri

1
nl

j=nl∑

j=1

plj










(2.24)

Here nr and nl are node numbers at each end.

Thus, the relation between p vector Pe and q vector Qe at the two ends can be

written as

Qe = SPe (2.25)

where the transfer matrix

S =







t11

nr

Jnr ,nr

t12

nl

Jnr,nl

t21

nr

Jnl,nr

t22

nl

Jnl,nl







(2.26)

Ji,j is a matrix with i lines and j columns, where each element is equal to one.

For a body with parallel pipes, one has the system equations (2.20) for the exterior

subdomain. And for the two ends of each straight pipe one has the analytical relation

(2.25). Therefore the overall system can be obtained. After applying the boundary

condition in section 2.2.3 to the flange and tube walls and solving the overall system,

the values of p and q for each node on the whole surface Γ can be obtained.

2.4.2.2 One dimension with losses

According to the study by Kinsler [80], there are viscous losses at rigid walls of thin

pipes. In this case, the equation of motion, which is given in the book [81], is

− ∂p

∂z
= ρ

∂v̄

∂t
+ Rv̄ (2.27)

with the average velocity v̄ at the pipe cross-section, and the damping coefficient of

the thin pipe

R =
1
r

√

2ηρω (2.28)

where r is the radius of the circular pipe, and η is the coefficient of shear viscosity.

The equation of continuity and equation of state do not change, then the wave

equation (2.29) can be obtained

∂2p

∂z2
=

1
c2

∂2p

∂t2
+

R

ρc2

∂p

∂t
(2.29)

The solution of equation (2.29) can be given as

p(z) = a cos k′z + b sin k′z (2.30)
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with k′ = k + iα, where α is the absorption coefficient for the viscous losses

α =
1
rc

√
ηω

2ρ
(2.31)

The average velocity can be obtained from the equation (2.27)

v̄ =
1

iρω − R

∂p

∂z
(2.32)

Equations, which are similar to equations (2.21)-(2.26), can be obtained, in which k

should be replaced by k′. So an equation similar to equation (2.25), describing the

relation between p vector Pe and q vector Qe at the two ends, can be written as

Qe = S′Pe (2.33)

where in matrix S′, wave number k is replaced by k′.

Impedance of pipe with viscous losses is also given in the book [81]

Zv =
l

πr3

√

2ηωρ − ρl

πr2
ωi (2.34)

where l is the pipe length.

Thermal conduction losses should also be taken into account in thin pipes besides

viscous losses according to Kinsler’s measurements. The coefficient of shear viscosity

η used above should be replaced by an effective coefficient ηe. The latter is defined by

ηe = η[1 +
γ − 1√

Pr

]2 (2.35)

where γ is the ratio of specific heats of air, and Pr is the Prandtl number.

For a body with parallel pipes, one has the system equations (2.20) for the exterior

subdomain. And for the two ends of each straight pipe one has the analytical relation

(2.33) which includes the viscous and thermal conduction losses. Therefore the overall

system can be obtained. After applying the boundary condition in section 2.2.3 to the

flange and tube walls and solving the overall system, the values of p and q for each

node on the whole surface Γ can be obtained.

2.4.2.3 Two dimensions

In this part, all the pipes and junctions constituting a network are in the same plane

and have the same depth. Only rectangular pipes and three types of junctions will be

considered, which are L shaped, T shaped and cross junctions. The straight pipes have

sufficiently small transverse dimensions compared to the wave length under consider-

ation, so the higher order waves can not propagate. However, the higher order modes

are required in order to satisfy the boundary conditions imposed by the junctions.

Miles first introduced the transmission line and impedance analogies for plane

discontinuities in the articles [82] and [83]. Then Miles [2] gave the relations between

pressures and velocities of right-angled joint ends in rectangular pipes, which can be
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used to get the boundary conditions at the junction ends.

In Miles theory the propagation of the principal wave is represented by the voltage

and current on a transmission line. An impedance element of the equivalent circuit for

the junctions is calculated to give the effect of the high order modes on the principal

wave.

The junction under consideration is shown in Fig.2.4. There are n straight pipes

and one has n = 2 for L junction, n = 3 for T junction and n = 4 for cross junction.

The problem is considered as 2D, for the incident waves are assumed to be plane and

the depth of the pipes is irrelevant. The voltages and currents are respectively denoted

by U0 and I0 at the junction ends. They are assumed related through the admittance

matrix (Yij) such that

Ii
0 =

n∑

j=1

YijU
j
0

i = 1, 2, ..., n (n = 2, 3 or 4) (2.36)

The equivalent circuits of the junctions and the calculation of Yij can be seen in

Figure 2.4: Junction

paper [2] where one can see the terms of high order modes of Yij. Here only the first

approximations of Yij are given.

Y12 = Y21 = Y23 = Y32 = Y34 = Y43 = Y14 = Y41 = iY0θ−1

Y13 = Y31 = Y24 = Y42 = iY0 csc θ

Y11 = Y22 = Y33 = Y44 = iY0 cot θ

(2.37)

With Y0 = ρc/S and θ = ka. S = a2 is the straight pipe cross section area.

At the junction ends, one has the relations

p =
√

SI0 (2.38)

v =
√

S
−1

U0 (2.39)

Thus, one has the relations between pressures and velocities at the junction ends.
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For a body with a 2D network, one has equations (2.36), (2.38) and (2.39) for

each junction, the analytical relation (2.25) or (2.33) for the two ends of each straight

pipe and the system equations (2.20) for the exterior subdomain. So one can get the

overall equations system. After applying the boundary condition in section 2.2.3 to

the flange and tube walls and solving the overall system, the values of p and q for each

node on the whole surface Γ can be obtained.

2.4.2.4 Three dimensions

In this part two numerical methods are introduced to get the relations of pressures

and velocities for the interior subdomain.

Finite element method

In the finite element method, for the network in Fig.2.2c one has

Da

[

ü

P

]

= Pa (2.40)

With Da = Ka − iωCa − ω2Ma. Subscript a repensents acoustic. K, C and M are

stiffness, damping and mass matrices, respectively. ü, P and Pa are the accelera-

tion, sound pressure and acoustic excitation vectors, respectively. Da and Pa can be

obtained with FEM software.

In this work, Abaqus is used to get the coefficient matrix and excitation vector

in equation (2.40). In Abaqus, the acoustic interface elements should be used if we

want to apply the boundary conditions of accelerations on the pipe ends. The acoustic

interface elements couple ü to the pressure in the acoustic medium (see the acoustic

interface elements in Abaqus Analysis User’s Manual).

Dividing the vectors into a vector for nodes at ends and a vector for the other

nodes, one has

Da










üI
ep

üI
other

PI
ep

PI
other










= Pa (2.41)

The superscript I means interior. At the interfaces between the exterior subdomain

and interior subdomain, the pressure and acceleration are continuous. One has

PI
ep = PE

ep (2.42)

and

üI
ep = −1

ρ
QE

ep (2.43)

Identical meshes are needed to match the boundary conditions at the interfaces.
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For a body with a network in Fig.2.2c, the overall system can be assembled with

systems (2.20) and (2.41)-(2.43). After applying the boundary condition in section

2.2.3 to the flange and tube walls and solving the overall system, the values of p and

q for each node on the whole surface Γ can be obtained.

Boundary element method

Besides FEM, BEM also can be used for the interior subdomain. To make a

further reduction of the BEM matrix size and save computational costs, the interior

subdomain can be divided into several subdomains: straight pipes and junctions.

We can only mesh the junctions, and use the transfer matrix instead of meshing the

straight pipes.

For the problem of a flanged network in Fig.2.2c one creates imaginary surfaces for

network junctions. These surfaces should be perpendicular to the network walls. One

can see the junction subdomain in Fig.2.2c. The normal direction of surface junction

Sjun points inward.

The system equations for the junction are similar to equation (2.20). Since for the

junction subdomain there is no source, the incident pressure equals zero, and one has

AI

[

PI
ej

PI
w

]

+ BI

[

QI
ej

QI
w

]

=

[

0

0

]

(2.44)

The subscripts and superscripts ej and w mean the imaginary ends and the walls of

the junction. Matrices AI and BI can be obtained by running BEM software.

For the whole problem of a flanged network in Fig.2.2a, one has the systems (2.20),

(2.25) or (2.33) of two ends of each straight pipe and (2.44) for each junction, so the

overall system can be assembled. After applying the boundary condition in section

2.2.3 to the flange and tube walls and solving the overall system, the values of p and

q for each node on the surfaces Γ can be obtained.

2.5 Simulations

2.5.1 Calculations without losses

In this section, viscous and thermal conduction losses are ignored. First three examples

are calculated by the methods introduced above. Comparisons of these methods are

given. The first example is a straight pipe at the center of a cylinder. The seconde one

is a T pipe at the center of a cuboid. The third one is a 2D network between a tire and

a road. For simple straight networks with flat flanges, there are analytical solutions

for interior acoustic fields. Full BEM also works although the computational costs are

high around the resonant frequencies. Multi-domain coupling method with 1D interior

relations can be used for the calculations as well. For a T pipe, the multi-domain
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coupling methods with 3D interior relations introduced before are compared with full

BEM. For a network between the tire and the road, multi-domain coupling methods

with 2D interior relations are compared with the one with 3D interior relations. Then

3D networks at the center of a cuboid is computed to show the possibilities of the

proposed methods to solve problems of complex networks. For the complex networks

multi-domain coupling method with 3D interior relations is used to calculate the

acoustic fields.

2.5.1.1 Straight pipe

One can solve the problem in Fig.2.3 by the multi-domain coupling methods intro-

duced in section 2.4. There is no junction, so the systems (2.20) and (2.25) are needed.

(a) (b)

Figure 2.5: Pressure at the imaginary end of a straight pipe: (a) 200 − 2000Hz; (b)
Around the resonant frequencies

Fig.2.5a and 2.6a are the pressures at the right imaginary end of the straight pipe

and at point R(0.1, 0.1, −0.1) calculated by three methods. Good agreement can be

seen in these figures. From Fig.2.5a we can see that the resonant frequency is about

1600Hz. The error of pressure between two different methods can be calculated by

error = |p1 − p2|/|p1|. BEMT means BEM is used for the exterior subdomain and

transfer matrix is used for the interior subdomain. Analytical methods in Fig.2.6a

mean the radiation impedance methods introduced before. Around the resonant fre-

quency at point R, the maximum error between BEMT and BEM is 2.6%. The

maximum error between BEMT and analytical methods is 5.1%, and is 4.9% between

BEM and analytical methods. In the analytical methods, the assumption of uniform

pressure at the real pipe ends is used. Actually it is not a plane wave at the real ends,

for the pipe radius changes suddenly. This assumption brings errors.



32 Modelling of networks in horn-like structures

(a) (b)

Figure 2.6: Pressure at receiver R: (a) 200 − 2000Hz; (b) Around the resonant fre-
quencies

Good results can be seen in the example above, although the transfer matrix is

only a 1D relation while the full BEM is a 3D method. We can conclude that the

transfer matrix can be used for straight parts of interior subdomains in the multi-

domain modelling.

2.5.1.2 T pipe

The flange in this example is a hexahedron. There is a T pipe at the center (see

Fig.2.7). The flange and pipe walls are rigid. The cross section of the pipe and the

flange is 0.02 × 0.02m and 0.3 × 0.3m respectively. The pipe length is 0.1m and the

branch length is 0.14m. The source S is at (0, 0, −0.1). Since the T pipe is simple,

full BEM of one computational domain can be used to solve this problem. If the

computational domain is divided into two subdomains, the multi-domain coupling

methods proposed in this chapter can also be used.

We can use FEM to solve the interior subdomain. We create imaginary ends

Simag,p for the T pipe as the interfaces between the exterior and interior subdomains

to ensure that the pressure is uniform and the velocity is perpendicular to the ends.

The distance between imaginary ends and real ends is 0.005m(see Fig.2.7). Assembling

systems (2.20) and (2.41)-(2.43), applying the rigid boundary condition in section 2.2.3

to the flange and tube walls and solving the overall system, the values of p and q for

each node on the whole surface can be obtained. Then the pressure in the exterior

domain can be calculated by equation (2.18).

BEM can also be used to solve the interior subdomain. We create imaginary

surfaces Simag,j for the junction. Thus, we can use different numbers of elements and



2.5 Simulations 33

Figure 2.7: T pipe with rectangular flange

nodes on the two imaginary ends Simag,j and Simag,p. It is easier to create the mesh.

The distance between Simag,p and Simag,j is 0.005m. The new interior subdomain

is formed by pipe walls and the junction imaginary ends Simag,j . The short straight

parts between the exterior and new interior subdomains can be described by a transfer

matrix. Assemble and solve Eqs. (2.20), (2.25) of each couple of imaginary surfaces

Simag,p and Simag,j and (2.44), one can get the solution. By Eq. (2.18) one has the

sound pressure field.

Fig.2.8a and Fig.2.9 are the pressures at the imaginary end (z = 0.005m) and

at point R (0.1, 0.1, −0.1) calculated by three methods. We can see good agreement.

BFEM means BEM is used for the exterior subdomain and FEM is used for the interior

subdomain. BBEM means BEM is used for the exterior subdomain and BEM is used

for the interior subdomain.

From Fig.2.8a we can see that one resonant frequency is about 1600Hz. Around

the resonant frequency 1600Hz at the imaginary end (z = 0.005m), the maximum

error of pressure between BBEM and BEM is 9.22%. Compared to BEM, there is a

small resonant frequency shift for BFEM, about 5Hz, and the error of the maximum

pressure between BEM and BFEM is 3.39%. In BFEM the more elements are used,

the smaller the frequency shift is.

In Fig.2.9 at receiver R the maximum error of pressure between BBEM and BEM

is 1.35%, and the error of the maximum pressure between BEM and BFEM is 1.48%.

In this example, there is another resonant frequency within 2000Hz, about 900Hz,

which can be obtained by the methods proposed in chapter 3. Around 900Hz we can
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(a) (b)

Figure 2.8: Pressure at the imaginary end (z = 0.005m): (a) 200 − 2000Hz; (b)
Around the second resonant frequencies

Figure 2.9: Pressure at point R near flange

also see very good agreements.

For this T pipe BBEM and BFEM, which are multi-domain coupling methods with

3D interior relations, have very good accuracy compared with full BEM. In BFEM,

modelling the network is easier than in BBEM. BBEM is more suitable for networks

with long straight parts, for the straight parts can be described with transfer matrices,

thus less elements would be used. For complex networks they are better than BEM

because BEM leads to high computational costs. But if the complex networks can be

considered as 2D networks with right angle junctions, multi-domain coupling methods

with 2D interior relations would be faster and easier to used than BBEM and BFEM.

An example of 2D network is given in the following and comparisons with BFEM are

shown.
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2.5.1.3 Network between the tire and the road

In order to compare BFEM (BEM for the exterior subdomain and FEM for the net-

work) and A2BEM (2D analytical relation for the network and BEM for the exterior

subdomain), the network shown in Fig.2.10b between the tire and the road in Fig.2.10a

is calculated by these two methods. In this example, the round surface in Fig.2.10a

is the tire, and the rigid plane surface is the road. The radius of the round surface is

0.27m, and its width is 0.015m. The dimensions of the contact zone between the tire

and the road are 0.01 × 0.015m. The network can be considered as a 2D network be-

cause all the pipes are in the same plane. Acoustic pressure at receiver R (1, 0, 0.265)

outside the tire and road can be seen in Fig.2.11.

(a) (b)

Figure 2.10: (a) Network between a round surface and a rigid plane surface; (b) The
network with open ends.

Figure 2.11: Pressure at point R outside the tire

There are several assumptions when modelling tire treads: a. there are only

longitudinal grooves on the tire surface except in the contact zone, b. there are
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only right-angled junctions in the networks in the contact zone, c. the pipes in the

networks have the same cross-section. An example of network between the tire and

the road is meshed in Fig.2.12.

Figure 2.12: Half of a tire with a network in the contact zone between a tire and a
road

The resonant frequencies obtained by matlab code 2DNRF developed in chapter 3

are 1224Hz and 1770Hz. Around these two resonant frequencies, there are two valleys

which are caused by the acoustic wave radiated from the network ends. Small shifts of

the valleys between the two computational methods can be seen. The shift of the first

valley is about 30Hz, and for the second valley the shift is only 14Hz. However, the

values of valleys of the two computational methods are quite close, and the differences

of the valleys between these two methods are 2.96% and 1.42%, respectively. For the

non-resonant frequencies, the acoustic pressures between the two methods are almost

the same.

Compared to BFEM, A2BEM can give acceptable results. So either of the two

methods proposed in this chapter can be used to calculate the sound pressure fields

of bodies with 2D right-angled network inside. But A2BEM is much easier to use

because there is no need to mesh the network with FEM software.

2.5.1.4 Complex network

In order to explore the possibilities of calculating complex 3D networks by the methods

introduced above in this chapter, flanged complicated networks (see Fig.2.13a and

2.13b) are calculated by the proposed method. Single domain full BEM doesn’t work

because of too many nodes. We divide the computational domain into two subdomains

by creating imaginary ends, and FEM is used for the interior subdomain.

The flange size is 0.15 × 0.15 × 0.1034m. The pipe cross sections are a × a =

0.01 × 0.01m and b × c = 0.01 × 0.005m. The distance between two pipes is 0.025m.
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(a) (b)

Figure 2.13: (a) Network 1; (b) Network 2

The flange and network walls are rigid. The source S is at (0, 0, −0.01). The observer

R is at (0, 0, −1).

Besides these two networks, a straight pipe and a cross pipe at the body center

are also calculated, respectively. Comparisons of sound pressure fields for bodies with

pipes and without pipes are shown in Fig.2.14a. Fig.2.14b shows the results around

the resonant frequencies. The sound pressures increase and then decrease around the

(a) (b)

Figure 2.14: Modulus of sound pressure at R: (a) 200 − 200HZ; (b) Around the
resonant frequencies

resonant frequencies of different pipes in Fig.2.14b. Compared with the body without

pipe, the maximum pressure decreases of bodies with pipes are almost the same, about
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72%. But the maximum pressure increases vary, and the pressure increase of network

2 is the smallest, about 41.5%. The pressures in a circle around the body at three

(a) (b) (c)

Figure 2.15: Pressure modulus in a circle around the body (a) Frequency 200Hz; (b)
Frequency 1410Hz; (c) Frequency 1455Hz

frequencies (200Hz, 1410Hz and 1455Hz) are calculated. At receiver R, network

2 has the maximum pressure at 1410Hz, and minimum pressure at 1455Hz. Since

plane yz is a plane of symmetry of the body, only half of the circle (x > 0) is shown

in Fig.2.15a, 2.15b and 2.15c. The circle is in plane xz. The center is at point (0, 0, 0)

and its radius is 1m.

At 200Hz the influence of network 2 is quite small, because the wavelength is very

long compared to the cross section of network. At 1410Hz for network 2 the pressures

increase around the body. At 1455Hz we can see big reductions in front of the body

(z > 0) for network 2.

2.5.2 Calculations with losses

From the calculations and comparisons in section 2.5.1 we can see good agreements of

different methods we introduced in this chapter. However, we didn’t take into account

the viscous and thermal conduction losses at the rigid pipe walls in the calculations

above. For pipes with large cross-sections, losses are not necessary. But according

to previous researches and our experiments, for the pipe dimensions in which we are

interested losses should be considered in the simulations. So in this section, we will

give some examples to show the influences of viscous and thermal conduction losses

on the acoustic fields.
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In this section we calculate the acoustic fields of pipes between a round surface and

a plane surface in Fig.2.10a. The round surface in this section is a smooth cylinder.

Its radius is 0.27m and width is 0.15m. The contact zone between the cylinder and

the plane surface is 0.15m × 0.1m.

2.5.2.1 Straight pipe

In the contact zone in Fig.2.10a, there is a longitudinal straight pipe at the center.

The pipe cross-section is 0.005m × 0.01m. Since the pipe is very simple, we can use

BEM directly to get the acoustic fields by meshing the cylinder and the straight pipe

first. The meshes can be seen in Fig.2.16a. Since the cylinder has a symmetric plane,

half of the cylinder is meshed.

(a) (b)

Figure 2.16: (a) Meshes of half a cylinder with half of a straight pipe at the center of
the contact zone; (b) Details of meshes of the contact zone.

The source is at (0.1, 0, 0.005). The results at (1, 0, 0.06) can be seen in Fig.2.17.

The solid line, dash line and dot line are results for no pipe, one straight pipe without

losses and one one straight pipe with viscous losses respectively. The viscous losses

are taken into account in the BEM calculations by an impedance which is given by

equation (2.34). The difference of SPL between the solid line and the dot line is 5.5dB

at the resonant frequency 1430Hz, and is 6.8dB between the solid line and dash line

at the resonant frequency 1460Hz. The resonant frequency has a small shift of 30Hz.

By using the viscous losses, the differences become smaller.

The numerical results of this example will be compared with measurements in

chapter 5.
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Figure 2.17: Predicted results for a straight pipe between a cylinder and a plane
surface

2.5.2.2 Network

In the contact zone in Fig.2.10a, there is a network at the center which can be seen

in Fig.2.10b. In the network, there are two longitudinal (x direction in Fig.2.10b)

and three transverse branches (y direction). The network has symmetric planes xz

and yz. The plane surface is in plane xy. The pipe width is 0.009m. Since the

cylinder has symmetric plane xz, half of the cylinder without network is meshed with

2D elements. Then this problem is solved by the method ’A2BEM’ proposed in this

work. The source is at (0.1, 0, 0.005).
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Figure 2.18: Predicted results for a network between a cylinder and a plane surface:
(a) 200 − 2000HZ; (b) Around the resonant frequencies

The results at (1, 0, 0.06) are shown in Fig.2.18a where we can see two obvious

variations of SPL around the resonant frequencies compared to the solid line. The

first variations are reductions around 1220Hz, and the second variations are reductions
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and amplifications around 1850Hz.

From table 2.1 we can see the influences of viscous and thermal conduction losses

on the SPL. At the frequencies of three SPL extrema, the more losses we take into

account, the smaller the SPL differences between the case without network and the

case with one network are.

The numerical results are validated by experiments in chapter 5.

Table 2.1: Differences of SPL in Fig.2.18a between the case without network and the
case with one network around resonant frequencies

Frequencies No losses Viscous losses VT losses
1220 Hz 3.30dB 2.98dB 2.85dB
1800 Hz 6.89dB 5.41dB 4.88dB
1880 Hz 3.13dB 2.65dB 2.44dB

Note: Viscous and thermal conduction losses (VT losses)

2.6 Conclusions

From the simple structure solved by the radiation impedance methods, we can con-

clude that for networks in horn-like structures pipe open ends act as pistons, and the

structure surfaces can be considered as flanges. The interactions between the struc-

ture and exterior subdomain are acoustic incidences and radiations at pipe open ends,

and reflections by the structure surfaces.

The multi-domain coupling methods proposed in this chapter make it possible to

calculate the three-dimensional sound pressure field of complex networks with arbi-

trary flanges. It uses substructuring techniques, transfer matrix for the straight pipe

part, analytical acoustic relations for the 2D junctions and numerical methods for the

3D parts to reduce mesh nodes, elements and the matrix size and to save computa-

tional costs. It combines the advantages of numerical methods and analytical relations

together.

The influence of the network on the acoustic fields mainly results from the pipe

resonances. The viscous and thermal conductivity losses can give small corrections. If

no viscous and thermal conductivity losses are taken into account, the multi-domain

coupling methods can still be applied to the estimation of the tendencies of the acoustic

pressure and the resonant frequencies.

The resonances of air columns in networks can be used for reducing sound pressures

at resonant frequencies for horn-like structures. However, the resonant frequencies

should be estimated correctly first, and this will be introduced in the next chapter.





Chapter 3

Calculation of network resonant

frequencies

In networks with arbitrary flange, the sound pressure fields are quite large around

the resonant frequencies. So the exterior acoustic fields will be greatly influenced

by the networks. In order to calculate this influence, resonant frequencies should

be estimated. Methods for estimating resonant frequencies of 1D and 2D flanged

pipes with small cross-sections are discussed in this part. For simple pipes, there

are analytical solutions, but for complex networks numerical methods should be used.

Since the pipes to be discussed may have open ends, end corrections will be introduced

first.

3.1 Determination of end corrections

The length is an important parameter for calculating the resonant frequencies of a

network with open ends. A short distance should be added to each end of the network

to get precise results. This short distance is called the end correction, which makes

each straight part of the network a little longer than its physical length.

From the perspective of waves, standing waves occur during the network reso-

nances. The sound waves are reflecting at open ends, which are not perfectly at

the end sections of the network, but at small distances (end corrections) outside the

network.
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3.1.1 Previous researches

The end corrections of the network open ends can be obtained from the radiation

impedances which have small but finite values by (3.1) from [3].

δ̃ = Re[k−1 arctan(
−Zr

iρc
)] (3.1)

The upper script ∼ means that it is a frequency-dependent quantity. Here only the

real part of the end correction is considered, which is the most useful in the present

study.

The radiation impedance depends on details of the flange geometry of the open

end and the frequencies. For the cases of a circular pipe with circular flanges of infinite

and zero radii, there are precise theoretical solutions of the end corrections. In these

two extreme cases the end corrections for low frequencies are 0.8216a and 0.6133a,

respectively [84–86] where a is the inner radius of the pipe. For a circular flange

with finite dimensions the end corrections are between those two cases, and there

are experimental and analytical investigations on this. Benade and Murday [87] and

Peters et al. [88] performed experiments. Ando [89] analytically gave an approximate

formula for such a case, but to get accurate results a large number of terms of the

expansion should be taken into account, which leads to complex computations and

precludes its application.

Dalmont et al. [3] used numerical methods and experiments to get fit formulas of

end corrections for circular pipes and finite flanges with various radii. Since the values

of end corrections for other flange shapes found on wind musical instruments are also

very interesting, various other flanges were investigated as well in [3]: spherical and

cylindrical flanges, square flanges, the normalised flange, short flaring horns and a

disk at a certain distance above the open end.

3.1.2 Numerical procedures

Dalmont’s numerical methods of BEM are introduced and used in this part. To

estimate the end corrections of the network between a tire and a road, the radiation

impedances of the open ends should be calculated first by the impedance transfer

equation of acoustic transmission line (3.2) from [3], because Zr cannot be calculated

or measured directly at the pipe end.

Zr = −iρc tan[arctan(
−Zl

iρc
) − kl] (3.2)

Zl is the impedance at an abscissa x = −l, i.e., at a distance l from the open end. It

can be calculated by numerical methods. Boundary element method is used to do the

calculations.
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Equation (3.2) means that the radiation impedance can be obtained from the case

where Zl is an input impedance of a pipe of length l. Then the end corrections can

be obtained by (3.1).

A simple case, consisting in a circular pipe with an infinite flange, is solved by

BEM in order to introduce the calculations procedures and to check the feasibility

of this numerical methods, because there is a simple fit formula (3.3) (kr < 3.5) by

Norris and Sheng [90] for this case.

δ̃∞ = δ∞[1 +
(0.77kr)2

1 + 0.77kr
]−1 (3.3)

with δ∞ = 0.8216r and k = 2πf/c where r is the pipe radius and f is the frequency.

Figure 3.1: Mesh of the boundary element model of a tube with a circular flange (case
r/R =1/2)

Since symmetric planes exist, only one-quarter of the geometry is meshed by Gmsh

in Fig.3.1. The model is a circular pipe of radius r = 0.005m and length 0.1m, which

has an open end and a closed end. The circular flange of radius R = 0.6m is connected

with the open end, and the flange is used to simulate the infinite flange since the pipe

radius is very small compared to the flange radius. The closed end acts as a flat piston

moving with a prescribed velocity, which is a normal unit velocity. There is a base

surface behind the piston and it causes acoustic reflections. A small impedance equal

to 0.1Pa · s/m is applied to the base surface to minimize the reflections. This is an

absorption boundary condition. Other parts of the model are rigid.

The BEM software Samray is used to compute the model. There is a node at

the centre of the piston mesh. The acoustic pressure at this node can be calculated

by Samray. Since the acoustic velocity is unity, the impedance of the piston can be

obtained. Then the radiation impedance is deduced from this impedance by equation

(3.2).

Fig.3.2a from paper (3.3) shows the fit formula (3.3), BEM and experimental

results of end corrections (ka < 2). The agreement between the results is good. For
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(a) (b)

Figure 3.2: (a) End corrections divided by pipe radius from [3] (ka<2): (dots) fit
formula (3.3) results, (plus sign) BEM results by Dalmont, (straight line) experimental
results; (b) Errors between fit formula and BEM results (ka<0.23). (Symbol a in the
figures represents the radius r)

the computations in this part, ka is less than 0.23, and the maximum error of end

corrections between the fit formula (3.3) and our BEM model is about 2%, which can

be seen in Fig.3.2b. In Fig.3.2a when ka < 0.23 we can also see small differences of the

results. Since the end corrections are used to estimate the resonant frequencies around

which the acoustic fields will be calculated at several frequencies, the results obtained

in Fig.3.2b are good enough and accepted. So this numerical methods can be used to

calculate the end corrections of networks with flanges of tire and road surfaces, which

is shown in the following section.

3.1.3 Complex flanges and networks

The values of end corrections depend on flange shapes. An open pipe end with different

flange shapes has different end corrections. In this section, end corrections of networks

with different flanges are calculated by the numerical methods introduced before. In

section 3.1.2 the flange is flat, but in this section the flanges are a round surface and

a plane surface.

For 2D networks with complex flanges, the numerical procedures introduced before

are used to get the end correction of each open end in order to estimate the resonant

frequencies. In this part, networks with two types of round flanges are calculated.

The first one is a cylinder, and the second one is a tire surface, both of which are on

plane surfaces. In Fig.2.10a there is a network between a round surface and a rigid

plane surface. In the contact zone, the surface is flat.

As for networks, there are only longitudinal and transverse pipes constituting the
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networks and these two types of pipes are perpendicular. Only the end corrections

of longitudinal pipes will be discussed. For transverse pipes they can be calculated

approximately by Dalmont’s fit formula of rectangular flanges (see the calculations in

3.3.2) because the flange of transverse ends is flat.

The longitudinal pipes at different positions have different shapes and dimensions

of the flanges. Although their ends may not be in the middle of the flanges, in the

interest of simplicity they are assumed in the middle of the flanges.

3.1.3.1 Flange of cylinder

In this section the round surface in Fig.2.10a is a cylinder. There is a network between

the cylinder and the rigid plane surface. In the contact zone, the cylinder surface is

flat.

(a) (b)

Figure 3.3: (a) Half of meshes of the boundary element model of a rectangular tube
with a flange of cylinder; (b) Details of the mesh of the tube.

In order to calculate the end corrections of longitudinal pipes, half a cylinder is

meshed for BEM, which is shown in Fig.3.3a and 3.3b. The model is similar to the

one in Fig.3.1. Since the plane surface is rigid, it can be considered as a symmetric

plane. Another symmetric plane of the cylinder exists, so only half of the cylinder is

meshed. The half pipe has rectangular cross-section with area of 0.0045m × 0.009m.

The length is 0.1m. It has an open end and a closed end which has unity velocity as

boundary condition. The base surface behind the piston is modelled as flat to reduce

the elements because the flange shape behind the piston has no influence on the end

correction of the open end of this pipe. It has a very small impedance which is used
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to minimize the reflections. Other parts of the model are rigid.

The acoustic pressure at the central node of the closed end is calculated by Samray.

The acoustic velocity is unity, so the impedance of the piston is obtained. Then the

radiation impedance is calculated from this impedance by equation (3.2).
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Figure 3.4: End corrections of longitudinal pipes with cylindrical flanges of different
widths within 2000Hz (ka < 0.23)
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Figure 3.5: Standard deviations and mean values of end corrections of longitudinal
pipes with cylindrical flanges of different widths

The end corrections of the longitudinal pipe for cylinders of different widths are

shown in Fig.3.4 (ka < 0.23), and the frequency interval is 200Hz. The cylinder radius

is 0.27m. For each width of the cylinder, the end corrections are frequency-dependent,

but their standard deviations are very small (see Fig.3.5), which indicates that they

tend to be very close to the mean values. The standard deviation is calculated by

equation (3.4). So the mean values of end corrections for each width in Fig.3.5 are
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used to get a fit formula of end corrections (3.5), in which w is half of the width.

σ =

√
√
√
√

1
N

N∑

i=1

(xi − µ)2 (3.4)

with µ = 1

N

N∑

i=1

xi, where xi is the end correction at each frequency and N is the

number of frequencies calculated.

δ = 0.00808 + 0.22128w − 3.72112w2 + 19.80897w3 (3.5)

The same procedure can be used to get fit formulas for other pipes and flanges of

different shapes and dimensions.

3.1.3.2 Flanges of tire

The network between a tire and a road calculated in this part is similar to the cylinder

case in section 3.1.3.1. An example of network is on the tire surface which can be seen

in Fig.2.12. The road surface can be considered as a rigid plane surface, and the tire

surface can be considered as a cylinder with grooves. The network in the contact zone

between the tire and the road can be considered as a flanged 2D network. In order to

estimate the resonant frequencies of the network, the end correction of each open end

should be known.

There are several hypotheses for the discussions of tire/road cases:

a) The contact zone is a rectangle.

b) The network just includes longitudinal and transverse pipes.

c) There is no transverse groove on the tire surfaces except in the contact zone.

(a) (b)

Figure 3.6: (a) Half of meshes of the boundary element model of a rectangular tube
with a part of tire flange; (b) Details of the mesh of the tube.
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For calculating the end corrections of longitudinal pipes, the BEM mesh of half

tire is shown in Fig.3.6a and 3.6b. The model is similar to the one in Fig.3.1. Since

the road is rigid, it can be considered as a symmetric plane. Another symmetric plane

of tire exists, so only half of the tire is meshed. The half pipe has a rectangular cross-

section with an area of 0.0025m×0.005m. The length is 0.1m. It has an open end and

a closed end which has unity velocity as boundary condition. The base surface behind

the piston is modelled as flat to reduce the elements. It has a very small impedance

which is used to minimize the reflections. Other parts of the model are rigid.

The acoustic pressure at the central node of the closed end is calculated by Samray.

The acoustic velocity is unity, so the impedance of the piston is obtained. Then the

radiation impedance is calculated from this impedance by equation (3.2).

Figure 3.7: End corrections of a longitudinal pipe with tire flanges of different widths
within 2000Hz

Figure 3.8: Standard deviations and mean values of end corrections of a longitudinal
pipe with tire flanges of different widths
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The end corrections of the longitudinal pipe for tires of different widths are shown

in Fig.3.7, and the frequency interval is 200Hz. The tire radius is 0.27m. For each

tire width, the end corrections are frequency-dependent, but their standard deviations

are very small (see in Fig.3.8), which indicates that they tend to be very close to the

mean values. The standard deviation is calculated by equation (3.4). So the mean

values of end corrections for each tire width in Fig.3.8 are used to get a fit formula of

end corrections (3.6), in which w is half of tire width.

δ = 0.00936 + 0.26929w − 5.77679w2 + 41.66667w3 (3.6)

The same procedure can be used to get fit formulas for other pipes and tires of different

dimensions.

3.2 Resonant frequencies

In the network, there are columns of air. Waves traveling in air will reflect back when

they reach the end. A standing wave is created at the network’s resonant frequency.

An open network will resonate if there is an anti-node at each open end. These

anti-nodes are places where there are maximum velocities and minimum pressures

(p = 0). However, these zero pressures are not at the physical ends of the network

as they are altered by their contacts with air. In fact they are at the end correction

positions of the network.

Knowing the resonant frequencies of the network is essential. The network has a

great influence on the exterior acoustic field of the tire around the resonant frequencies,

and at other frequencies there is no change of acoustic pressure. In order to calculate

this influence the resonant frequencies should be estimated first, otherwise all the

frequencies should be calculated and it leads to large computations.

There are analytical solutions for simple pipes such as a straight pipe, a T-shaped

pipe and so on. However, numerical methods should be adopted in order to get the

resonant frequencies of complex networks.

It is assumed that there is a plane wave in the straight parts of the network for

the cross-sections are quite small compared to the wavelengths.

3.2.1 Analytical methods

3.2.1.1 Solutions of plane wave

The resonant frequencies of a straight pipe are easy to get. The acoustic pressure

solution of the wave equation in a straight pipe is

p(z) = acoskz + bsinkz (3.7)
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with k = ω/c the wave number, c the speed of sound, ω = 2πf , a, b constants and z

the longitudinal coordinate of the pipe.

If coordinates z of the physical pipe ends are δ and l + δ, at z = 0 and z = L

(L = l + 2δ) the pressures should be zero because of the pipe resonances. δ is the end

correction and l is the physical length of the straight pipe.

One has p(0) = 0, so a = 0 in (3.7). And then from p(L) = 0, one has b sin(kL) = 0.

Thus, the resonant frequencies are

f =
nc

2L
(3.8)

where n is a positive integer (1, 2, 3...).

3.2.1.2 Merkli’s method

A theoretical model was given by Miles [2] to calculate the pressure and velocity

in a T-shaped pipe based on the transmission line and impedance analogy circuit.

However, it cannot be used to estimate the resonant frequencies. Merkli [52] proposed

a simple model to calculate the resonant frequencies of a T-shaped resonator by using

the wave propagation theory. It will be introduced for a T-shaped pipe with three

open ends.

Figure 3.9: T-shaped pipe

For the T-shaped pipe of Fig.3.9, in three branches there are plane waves. The

incident wave enters from end 1. The boundary conditions at the junction are that

the pressure is single valued,

pj1 = pj2 = pj3 (3.9)

and that the continuity equation holds

vj1ρS1 = vj2ρS2 + vj3ρS3 (3.10)

where v is acoustic velocity, ρ is density, S is the branch cross-section area and j rep-

resents the junction. The three branches have the same S. In terms of the impedance,
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Z = p/v, (3.9) and (3.10) can be combined to give
1

Zj1

=
1

Zj2

+
1

Zj3

(3.11)

For the open ends of the T-shaped pipe, impedances Zo are zero at the end correction

positions at the resonant frequencies. So the impedances at the junctions can be

obtained by equation (3.2), in which Zr is replaced by Zo and Zl gives the impedances

at the junction. Then equation (3.11) becomes a relation of resonant frequencies. After

solving this new equation the resonant frequencies can be obtained. More details can

be seen in Merkli’s paper [52].

In this model, end corrections for open ends should be considered. Besides, the

end correction of each branch at the junction position is also essential. Because the

matching condition (3.11) is ’at the junction’, but it is hard to say precisely at which

point the boundary condition has to be met. The distance from the point of matching

condition to the closest physical end is the end correction at the junction position.

The position of the point of matching condition should be determined. Merkli used

a weighted partition of the common intersection volume of the junction based on the

branch lengths, and a transformation of the transition volumes between the junction

and each branch. So for each open branch, the effective length includes the physical

length of the branch, the end correction at the junction position and the end correction

of the open end. In order to determine effective lengths of the branches of T-shaped

resonators and get more precise resonant frequencies, Deyu Li [91] compared Merkli’s

end corrections, hybrid Rayleigh’s end corrections [92], simplified impedance models

and alternate simplified impedance models with measured results for the case where

the three branches have the same circular cross-sections. In his paper [53] published

later a new model based on Rayleigh’s end corrections was proposed for the same

case. But his experimental results showed that this model also works for square cross-

sections of branch 1 and 2.

The previous researches are about the T-shaped acoustic resonators which have

closed ends, but the T-shaped pipe in this work has three open ends. Merkli’s model

will be adopted for the estimation of the resonant frequencies, but the end corrections

will be calculated by other methods. Dalmont’s [3] methods and results will be used

for the calculations of the open end corrections. With his methods, the open end

flanges could have any shape and dimension. Then the end corrections at the junction

position should be obtained, and end corrections similar to the ones from model 1 by

Li [53] could be used. In the model 1 by Li [53], first Rayleigh’s end correction (3.12)

is used for the interior end correction of each branch of the T pipe in Fig.3.9. Then

the interior end correction of branch 3 is divided equally and combined into the end
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corrections of branch 1 and branch 2. So no interior end correction is used for branch

3, and 1.5∆L is the interior end correction for branch 1 and 2. Li [53] compared this

model 1 and other models with measurements, and found that this model is the best

one.

∆L =
8

3π
r (3.12)

In the model 1 in [53] the pipe has a circle cross-section and r is the radius.

3.2.2 Numerical methods

Theoretically, Merkli’s model can be applied to other cases such as a L-shaped junc-

tion pipe, cross junction pipe or a network. However, when estimating the resonant

frequencies the end corrections of branches at the junction positions should be ob-

tained first. There is no precise result. In order to avoid calculating these interior

corrections, numerical methods can be adopted.

3.2.2.1 Finite element methods

The resonant frequencies can be obtained by solving an eigenvalue problem (3.13) of

an undamped finite element model.

(K − ω2M)φ = 0 (3.13)

K is the stiffness matrix, M is the mass matrix, ω = 2πf and φ is the eigenvector.

Finite element software Abaqus is chosen to perform the resonant frequencies ex-

traction procedure, which is a linear perturbation procedure. The networks have open

ends. The impedance boundary conditions cannot be applied to these ends in Abaqus.

So their end corrections should be taken into account in the models. The branches

with open ends in finite element models are created a little longer than their physical

lengths. Since at the resonant frequencies the pressures are zero at the end correction

positions, zero pressure boundary conditions are used. The other boundary conditions

are rigid.

For a 2D network whose junctions and branches are in the same plane, an au-

tomatic calculation procedure can be implemented to get the resonant frequencies.

Abaqus GUI will generate an input file ’*.inp’ which is sent to the processor while

running a simulation. A simple case of a straight pipe is solved to get the ’*.inp’

file which can be modified for complex networks. In this file, the straight pipe mesh

information is deleted, then mesh information of the network to be solved is added.

New node and element sets are defined for the zero pressure boundary conditions.

The other parts of this file keep the same data as before.
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Give network 

dimensions and 

boundary condition 

parameters

Generate mesh 

information

Create input file 

*.inp for Abaqus

Submit *.inp to 

Abaqus

Call Abaqus output 

file *.py

Read resonant 

frequencies from 

Abaqus result file

Figure 3.10: Flow chart of Matlab program 2DNRF for calculating network resonant
frequencies

Since 2D meshes are quite easy to get, Matlab is used to create the mesh infor-

mation for the network, and the node and element sets for the boundary conditions.

The other information from the old file of straight pipe is written into the new ’*.inp’

file by Matlab as well.

Abaqus scripting is a powerful tool for combining the functionality of the GUI

of Abaqus and the power of the programming language Python. After finishing the

actions such as open the Abaqus result file ’*.odb’ and output the results needed, a

script file ’*.rpy’ will be created including these actions. Then the file ’*.rpy’ should

be renamed as ’*.py’ which can be submitted directly to Abaqus by commands in

order to output the results needed. The results will be saved in a text file.

The automatic procedure for calculating the resonant frequencies of 2D network

is: create the ’*.inp’ by Matlab, submit it to Abaqus by commands in Matlab, and

then call Abaqus output script ’*.py’ in Matlab. This Matlab programme is named

as ’2DNRF’.

3.2.2.2 Boundary element methods

Boundary element methods will be only used to check the resonant frequencies ob-

tained by analytical methods and FEM. At the resonant frequencies, the pressures at
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the physical ends are very small compared to the pressures inside the pipes, but they

are much larger than the pressures at other frequencies. By comparing the pressures

at open ends at different frequencies and observing the acoustic fields of the pipes,

resonant frequencies can be found.

3.3 Examples of resonant frequencies

3.3.1 T pipe

The body of flanges in this example is a hexahedron. There is a T pipe with three open

ends at the center (see Fig.2.7). The flange and pipe walls are rigid. The half-width

of the square pipe is asq = 0.01m. The cross section of the square flange parallel to

x-y plane is 0.3 × 0.3m. The branch lengths are l1 = l2 = 0.04m and l3 = 0.14m.

The three methods introduced above are used to calculate the resonance frequencies

of this T pipe.

In analytical methods and FEM, Dalmont’s open end corrections (3.14) for square

flange and square pipe are used.

δsq = δsq∞ +
asq

bsq

(δsq0 − δsq∞) + 0.057
asq

bsq

[1 − (
asq

bsq

)5]aeff (3.14)

with δsq∞ = 0.811aeff and δsq0 = 0.597aeff , in which aeff = 2asq/
√

π. Here, 2asq

and 2bsq are pipe width and flange width, respectively.

Dalmont’s fit formula (3.14) is for square flanges, but the flange 0.1×0.3m parallel

to y-z plane is not square. Here, the shorter width 0.1m will be used as 2bsq in the

fit formula (3.14) to get the approximate end correction for end 3. Since the flanges

0.3 × 0.3m parallel to x-y plane are square, there is no such problem for ends 1 and

2 and equation (3.14) can be used directly to calculate their end corrections. Thus,

the open end corrections for branches 1, 2 and 3 are ∆L11 = ∆L21 = 0.009m and

∆L31 = 0.0088m, respectively, where the subscripts mean the pipe number.

In the analytical methods, for the interior end corrections of each branch at the

junction position, the end corrections similar to the ones (introduced in 3.2.1.2) of

model 1 in [53] will be used. But the pipe cross-sections here are square, so δsq∞ =

0.811aeff is used instead of equation (3.12) according to the relation of area between

circles and squares. Thus, for branch 3 no interior end correction will be used, and

for branch 1 and 2 the interior end corrections are

∆L12 = ∆L22 = 1.5δsq∞ (3.15)

The effective lengths of the three branches are

L1 = l1 + ∆L11 + ∆L12 (3.16)
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(a)

(b)

Figure 3.11: Modes of T pipe within 2000 Hz obtained from Abaqus by 2DNRF: (a)
The first resonant frequency 912Hz; (b) The second resonant frequency 1605Hz.

L2 = l2 + ∆L21 + ∆L22 (3.17)

L3 = l3 + ∆L31 (3.18)

Then by using Mercli’s model introduced in 3.2.1.2, three resonant frequencies are

obtained: 897Hz, 1153Hz and 1567Hz.

The T pipe can be considered as two dimensional, so it can be solved by ’2DNRF’

introduced before, which is a Matlab programme for estimating the resonant fre-
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quencies of 2D network by FEM. The open end corrections should be taken into

account when inputting the pipe coordinates in ’2DNRF’. The coordinates of zero

pressure boundary conditions should be given in ’2DNRF’ as well. After running it,

the resonant frequencies are obtained. In Fig.3.11a and 3.11b, there are two resonant

frequencies within 2000Hz.

Figure 3.12: Total pressure modulus at the open end of branch 3

(a) (b)

Figure 3.13: Total pressure modulus distributions on the T pipe surface at resonant
frequencies within 2000Hz by BEM: (a) The first resonant frequency 914Hz; (b) The
second resonant frequency 1610Hz.

The boundary of the structure can be meshed with 2D elements and then solved

by boundary element software Samray in order to get the acoustic field of the T pipe.

The source S is at (0, 0, −0.1). Pressure modulus at open end of branch 3 by BEM

is shown in Fig.3.12. At the resonant frequencies 914Hz and 1610Hz, there are two
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pressure peaks. The distributions of total pressure can be seen in Fig.3.13a and 3.13b,

and the variations of pressure with the coordinates are the same as in Fig.3.11a and

3.11b.

Table 3.1: The resonant frequencies of flanged T pipe

Estimation methods Analytical 2DNRF BEM
First frequency 897Hz 912Hz 914Hz
Second frequency 1567Hz 1605Hz 1610Hz

In table 3.1, the results of FEM and BEM are very close, which means that the

end corrections of open ends are adequate. The differences between analytical and

numerical results show that the interior end corrections at the junction position need

to be further developed. So the analytical methods are not suitable for complex

networks. By comparison of the three methods, the FEM ’2DNRF’ introduced before

is suitable for estimating the resonant frequencies of T-shaped pipes.

3.3.2 Networks

A network (in Fig.2.10b) in the contact zone between a round surface and a rigid plane

surface is solved in this part in order to validate the estimations of end corrections

and the software ’2DNRF’ which is programmed to calculate the resonant frequencies.

The radius of the round structure is 0.27m and its width is 0.15m. In the network,

there are two longitudinal (x direction in Fig.2.10b) and three transverse branches (y

direction). The network has two symmetric planes xz and yz. The plane surface is in

the plane xy.

In order to estimate the resonant frequencies by program ’2DNRF’, the corrections

of network open ends should be taken into account.

All the longitudinal ends have the same corrections, for their flanges are of the

same dimensions. These corrections can be calculated by the methods introduced in

3.1.2. Although the results in 3.1.3 are for the case where ends are in the middle

of width, in the interest of simplicity they will be used directly for the longitudinal

ends in this network. The distances between the longitudinal end 1 and the sides AB

or CD of the contact zone are not the same. The shorter distance is used in the fit

formulas in 3.1.3 to get the end correction.

The end corrections of transverse branches are obtained by equation (3.14), where

bsq is the shorter one of the two distances between the transverse end and the sides AD

or BC of the contact zone. Since the rigid road is a symmetric plane, the transverse

ends are not square. In equation (3.14), 2asq should be the side of a square end. So
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the transverse ends should be transformed into squares according to the equality of

end areas.

3.3.2.1 Flange of cylinder

In this section, the round surface in Fig.2.10a is a cylinder whose surface is flat in

the contact zone between the cylinder and the rigid plane surface. The pipe width

is 0.009m. Since the rigid plane surface is a symmetric plane, the cross-sections of

network ends are 0.009m × 0.018m, and asq in (3.14) is given by
√

0.009 × 0.018/2.

By (3.14) the end corrections for ends 2 and 3 are 0.0057m and 0.0054m, respectively.

The shorter distance (from the end 1 to side AB or CD) 0.0425m is used to get the

end correction of end 1 by equation (3.5). The longitudinal end correction is 0.012m

by equation (3.5).

By solving with ’2DNRF’, two resonant frequencies are found within 2000Hz:

1232Hz and 1823Hz. The modes can be seen in Fig.3.14a and 3.14b.

(a) (b)

Figure 3.14: Modes of half network within 2000 Hz: (a) The first resonant frequency
1232Hz; (b) The second resonant frequency 1823Hz.

Since the cylinder has a symmetric plane xz, half of the cylinder without network

is meshed with 2D elements. Then this problem is solved by the method ’A2BEM’

proposed in this work. The source is at (0.1, 0, 0.005). The pressure at end 2 is shown

in Fig.3.15. The resonant frequencies are 1230Hz and 1825Hz.
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Figure 3.15: Total pressure modulus at the open end 2

Table 3.2: The resonant frequencies of a network with cylindrical flange

Estimation methods 2DNRF A2BEM Error
First frequency 1232Hz 1230Hz 2Hz
Second frequency 1823Hz 1825Hz 2Hz

In table 3.2, the errors of resonant frequencies between these two methods are

quite small. The resonant frequencies are validated by measurements in chapter 5.

3.3.2.2 Flange of tire

In this section, the round surface in Fig.2.10a is a tire, and the rigid plane surface is

a surface of road. The pipe width is 0.005m. Since the road is a symmetric plane,

the cross-sections of network ends are 0.005m × 0.01m, and asq in (3.14) is given by√
0.005 × 0.01/2. By (3.14) the end corrections for ends 2 and 3 are 0.0032m and

0.0031m, respectively.

The shorter distance (from the end 1 to side AB or CD) 0.0425m is used to get the

end correction of end 1 by equation (3.6). The longitudinal end correction is 0.01357m

by equation (3.6).

By solving with ’2DNRF’, two resonant frequencies are found within 2000Hz:

1224Hz and 1770Hz. The modes can be seen in Fig.3.16a and 3.16b.

Since the tire has a symmetric plane xz, half of the tire without network is meshed

with 2D elements, and then half of the network is meshed with Abaqus. Then this

problem is solved by the method ’BFEM’ proposed in this work. The source is at

(0.1, 0, 0.005). The pressure at end 2 is shown in Fig.3.17. The resonant frequencies

are 1213Hz and 1771Hz. The pressure distributions are shown in Fig.3.18a and 3.18b.

By comparisons with Fig.3.16a and 3.16b, similar pressure distributions can be seen.

In table 3.3, the errors of resonant frequencies between these two methods are
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(a)

(b)

Figure 3.16: Modes of half network within 2000 Hz obtained from Abaqus by 2DNRF:
(a) The first resonant frequency 1224Hz; (b) The second resonant frequency 1770Hz.

Table 3.3: The resonant frequencies of a network with tire flange

Estimation methods 2DNRF BFEM Error
First frequency 1224Hz 1213Hz 11Hz
Second frequency 1770Hz 1771Hz 1Hz

quite small. Since ’2DNRF’ is easy to use and suitable for automatic estimations of

different networks, it will be used in the following analyses.



3.4 Conclusions 63

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

0

5

10

15

20

25

30

m
od

ul
us

frequency(Hz)

Figure 3.17: Total pressure modulus at the open end 2

(a) (b)

Figure 3.18: Total pressure modulus distributions of a half network at resonant fre-
quencies within 2000 Hz by BFEM: (a) The first resonant frequency 1213Hz; (b) The
second resonant frequency 1771Hz.

If we ignore the end corrections of all the open ends, the resonant frequencies

calculated by ’2DNRF’ are 1379Hz and 1934Hz which are quite different from the

results in table 3.3. Because for the tire flange the end corrections are very large

compared with the original network dimension and must be taken into account in the

estimation of the resonant frequencies.

3.4 Conclusions

In this chapter, previous researches about end corrections of pipe open ends are sum-

marized. Boundary element methods are validated with a simple example by compar-

ing with existing fit formula, and then used to calculate the open end corrections for

ends with arbitrary shaped flanges. For given pipe dimensions, end corrections depend

on the shape and dimensions of flange, and also vary with frequencies. However for



64 Calculation of network resonant frequencies

given flange dimensions, mean values of end corrections at different frequencies can

be used approximately as the end correction within 2000Hz, because the standard

deviation of end corrections at different frequencies is small. Thus, a fit formula of

end corrections for different flange dimensions can be obtained.

For simple pipes, analytical calculation methods of resonant frequencies are in-

troduced. For complex 2D networks finite element methods are used as it is not

easy to get accurate values of interior end corrections at junction positions. Matlab

codes ’2DNRF’ based on the finite element methods are developed to calculate the 2D

network resonant frequencies automatically. Once the network dimensions are given

and the open end corrections are known, the resonant frequencies can be obtained by

’2DNRF’. This method is compared with analytical methods and boundary element

methods for T pipes, and also compared with another numerical methods ’BFEM’ and

’A2BEM’, which are introduced in this work, for a complex network. Good agreements

can be seen.

The methods introduced in this chapter make it possible to get the resonant fre-

quencies for 2D networks with perpendicular pipes and arbitrary shaped flanges.



Chapter 4

Optimization of junctions and

end positions of 2D networks

Around the resonant frequencies of a network, pressure reductions could be found in

the exterior subdomain of horn-like structures. The value and number of resonant

frequencies vary according to the network structures. Because of this dependence, it

should be possible to find the wanted resonant frequencies or a maximum number of

resonant frequencies by optimizing the network structure.

The parameters that describe a network are the number and positions of ends,

junction types, junction positions and pipe cross-sections. In this work there are only

longitudinal and transverse pipes in a network, so the junction positions depend on

the end positions. If the end positions are known, the junction positions are known.

The 2D network considered here consists of the three types of junctions shown in

Fig.4.1a-4.1c.

(a) (b) (c)

Figure 4.1: (a) T junction with left branch; (b) T junction with right branch; (c)
Cross junction

Different networks can be formed by using different parameters. Their resonant

frequencies can be estimated by the finite element method 2DNRF proposed before.
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By changing the parameters, networks with the wanted resonant frequencies or a

maximum number of resonant frequencies can be found. Optimization methods should

be adopted to achieve this purpose.

First the optimization methods will be reviewed in this part, and then the appro-

priate one will be used to optimize and design 2D network structures.

4.1 Genetic algorithm

In order to get the wanted frequencies or a maximum number of resonant frequencies,

networks need to be optimized and designed by a optimization method. Genetic algo-

rithm (GA) is used for this purpose. The Genetic Algorithm Toolbox for MATLAB

developed by the University of Sheffield is chosen for the optimization.

4.1.1 Population Representation

The chromosome representations should be decided first. GAs operate on a number of

potential solutions, called a population of chromosomes, consisting of some encoding

of the network parameter set. The binary and integer chromosome representations

are supported by the GA Toolbox. For a network, each parameter of junction type is

encoded as an integer in 0, 1 or 2 which represent the junction types in Fig.4.1a-4.1c,

and the other parameters of network dimensions (such as end positions, cross-sections

and so on) are encoded as binary strings.

Then the initial population can be generated by using a random number generator.

There are two parts in a population, a binary part of network dimensions and an

integer part of junction types. The Toolbox function, crtbp, can be used to initialise

binary and integer parts. This function can create a random binary matrix of size

Nind × Lind for the parameters of network dimensions, where Nind specifies the

number of individuals and Lind the length of the individuals. For the parameters of

junction types, crtbp can give a integer (0, 1 and 2) matrix of size Nind × Lindjun

where Lindjun is the number of junctions. By combining these two matrices, the

initial population is obtained.

Here is an example of an individual in a population of networks

[

m
︷ ︸︸ ︷

0100...1111, 0101...0101
︸ ︷︷ ︸

l

, ......, 0101....0111,

n
︷ ︸︸ ︷

2, 1, 0, ......, 1, 0, 2] network i (4.1)

This is the chromosome representation of the network in Fig.4.2. The network has

3 rows and 4 columns. In the first part of the chromosome, there are m dimension

parameters and each one has l binary strings which can be converted to a real value

by the routine bs2rv. So there are m real values, and for this network m is 8. We
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Figure 4.2: An example of network for the chromosome representation

specify the boundary of the network, so the open ends move only on this boundary

and along with the junctions. Therefore, we only need to generate the real values for

the coordinates of the junctions and the cross sectional area of the network. Since we

use the same cross section for the network, only one real value is needed for the area.

The other seven real values represent the positions of the three rows and four columns

which determine the coordinates of the junctions. In addition, the end corrections of

the open ends also depend on the positions of the rows and the columns in the fit

formula of end corrections (for example equation (3.6)), so no real value is needed for

the end corrections. In the second part of the individual there n = 12 junctions and

each integer represents the junction type. If this population consists of k networks,

its chromosome representation is a k × (m + n) matrix.

4.1.2 The objective and fitness functions

The purpose of this work is to find the wanted resonant frequencies or as many reso-

nant frequencies as possible by designing and optimizing the network. The 2D FEM,

implemented in the MATLAB code ’2DNRF’ proposed before, has been used for esti-

mating values of fr and the number of resonant frequencies of a network.

If fw is the wanted resonant frequency and there are several resonant frequencies

for the network i, the objective function for the first purpose is given by

ObjV1(xi) = min(|fr1 − fw|, |fr2 − fw|, ...) (4.2)

where xi is the chromosome of network i.

If the purpose is to find as many resonant frequencies as possible, the objective

function is the number of the resonant frequencies. Since the GA Toolbox is for

minimization problems, a minus sign is added. One has

ObjV2(xi) = −count(fr1, fr2, ...) (4.3)
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We would like to minimize the two objective functions, which only depends on the

parameters of the network, that is its dimensions and junction types.

For the minimization problem, the most fit individuals have the lowest numerical

values of the associated objective function. The raw objective values in equation (4.2)

or (4.3) are usually only used as an intermediate stage in determining the relative

performance of individuals. The fitness function is normally used to transform the

objective function value into a measure of relative fitness. To prevent premature

convergence, Baker [93] suggests limiting the reproductive range, so that no individual

generate an excessive number of offspring. Here, individuals are assigned a fitness

according to the rank of their raw objective values in the population rather than the

raw performance.

A vector of fitness of the chromosome is obtained by a linear model as equation

(4.4). The order of this vector reflects the order of the original objective vector.

FitnV (Pos) = 2 − SP + 2 × (SP − 1) × (Pos − 1)/(Nind − 1) (4.4)

where the selective pressure SP is the chosen maximum fitness value in the population

and is set to 2, Pos is the position in the list of objective values of the chromosomes

sorted in descending order, and Nind is the number of individuals in the popula-

tion. More details about equation (4.4) can be seen in the documentation of Sheffield

GAToolbox or [93].

4.1.3 Selection

The selection algorithm selects individuals for reproduction based on their relative

fitness. It determines the number of times an individual is chosen. There are two

steps in the selection process: the first one is to transform the raw objective values

into a relative fitness, and the second one is to convert the relative fitness into a discrete

number of offspring. The first step is done with the fitness function in section 4.1.2.

The second step, sampling, is the probabilistic selection of individuals for reproduction

based on the relative fitness.

Roulette wheel mechanism is used by many selection techniques. Here, the cir-

cumference of the roulette wheel is determined as the sum of the individuals’ relative

fitness values in the current population. The size of each individual interval in the

roulette wheel depends on the relative fitness value. Stochastic sampling with re-

placement (SSR) is the basic roulette wheel selection method. Individual are placed

in order into contiguous intervals in the roulette wheel. It uses only one pointer to

select an individual. In the range [0, Sum], a random number indicated by an arrow

in Fig.4.3a is generated. The individual whose segment spans the random number
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is selected and in Fig.4.3a the selected individual is the second one. The required

number of individuals can be selected by repeating this process. The segment sizes

don’t change in the whole process.

(a) (b)

Figure 4.3: (a) Stochastic sampling with replacement (SSR) with one pointer; (b)
Stochastic universal sampling (SUS) with ten pointers.

Stochastic universal sampling (SUS) is a little different. The individuals are shuf-

fled randomly. It uses N equally spaced pointers, where N is the number of individuals

required. N individuals can be selected simultaneously. In the whole process only a

single random number, ptr, in the range [0, Sum/N ] is generated. The N pointers

are created by a space Sum/N , [ptr, ptr + Sum/N, ..., ptr + (N − 1) × Sum/N ]. The

individuals whose relative fitnesses span the pointers are selected and the number

of pointers inside the segment of an individual indicates the times this individual is

chosen. In Fig.4.3b an example is shown. There are ten pointers, and individual 2 is

selected twice for there are two pointers inside this segment.

When an individual has a really large relative fitness, SSR can have bad perfor-

mance. However, SUS starts from a small random value ptr, and gives chances to

other individuals to be selected. Besides, SUS has high efficiency. So SUS will be used

in this work.

The number of selected individuals required can be given by a parameter named

generation gap. It is the fraction between the number of the selected individuals and

the original population size. Normally it is no more than one.

4.1.4 Crossover(Recombination)

Crossover is a basic operator for producing new chromosomes that have some parts

of both parent’s genes selected by the selection operator. Single-point crossover is
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the simplest approach and will be used in this work. The individuals are combined

into pairs whose genetic information are exchanged to produce new individuals. The

number of population should be given as even. The single-point crossover selects a

random integer position k between 1 and L − 1, where L is the length of the individ-

ual. The variables from position k + 1 to L are exchanged between the two parent

individuals. For example, in Fig.4.4 if the crossover position is k = 3, the parents has

new offsprings

Figure 4.4: Single-point crossover

4.1.5 Mutation

Mutation is a random process for producing new genetic structures. It replaces one

allele of a gene by another. The mutation process mutates each individual with a

given probability Pm. This process guarantees that any individual has a chance to

be searched in case a good genetic material may be lost through the selection and

crossover processes.

For a binary population of dimension parameters of the network, the mutation of

the gene is within two binaries 0 and 1. For a population of junction types of the

network, the gene mutates within three integers 0, 1 and 2 representing three types of

junction. In the chromosome of the network in equation (4.1), there are two parts, the

dimension parameters and the junction types. The mutation is carried out separately

for each part, and then the mutated parts are assembled together.

Figure 4.5: Multi-point mutation of an integer individual

Here is an example of mutation of an integer individual in Fig.4.5. Integer muta-

tion changes the value at the location selected as the mutation point within the given

integer range 0, 1 and 2. Mutation is generally applied uniformly to the whole popu-
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lation, so an individual may be mutated at more than one point. For the mutation of

a binary individual, the process is similar. The value of the bit at the loci selected as

the mutation point changes within 0 and 1.

Give network 

parameters and GA 

parameters

Encode the 

parameters into 

binary strings and 

integers and create 

the 1st population

Assign fitness values

Decode 

chromosomes 

into network 

parameters

Calculate 

objective 

values by 

2DNRF

Generate new 

offsprings by three 

genetic operators

Decode and 

calculate objective 

values of the 

offsprings by 2DNRF

Reinsert the 

offsprings into 

current population 

to get the nth 

population

Yes

n <= maximum 

number of 

generations

No

Satisfied?

Yes

End

No 

Then adjust GA parameters

Select 

individuals 

according to 

the fitness 

values 

Obtain 

offsprings by 

crossover

Mutate the 

binary strings 

and integers 

separately for 

each offspring

Figure 4.6: Flow chart of GA process
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4.1.6 Reinsertion

A new population is produced by the operators above and the new individuals have to

be reinserted into the old population to maintain the size of the old population. First

the fitness of the new individuals should be determined. Then the least fit members

in the old population are replaced by offsprings selected according to their fitness.

4.1.7 Termination of the GA

When GA is terminated, the homogeneity of the fitness values of individuals should be

considered. It is difficult to formally specify a convergence criteria because the GA is

a stochastic search method. A common practice is to give the number of generations

for running GA and then test the best individual. If it is not acceptable, the GA

process should be restarted or a new search should be initiated.

The flow process of GA is shown in Fig.4.6.

4.2 Optimizations and designs of 2D networks

In order to illustrate that GA works for the optimization of 2D networks and the

resonant frequencies needed can be obtained by the GA process, some examples are

given in the following.

The network to be optimized in this section has 14 open ends and 12 junctions. The

junction positions are arranged in four columns and three rows, and their coordinates

depend on end coordinates. In Fig.4.7 there is an example of the networks generated

randomly in the first generation of GA procedure. In Fig.4.7 we can see 14 positions

for the open ends, but the network has 12 open ends due to the junction types. The

circles represent the junction positions. Three types of junctions introduced at the

beginning of this chapter can be seen in this example. They are T junction with left

branch, T junction with right branch and cross junction.

The corrections of open ends can be obtained by the methods introduced in chapter

3. If the ends are closed, there is no need to add the end corrections to the origin

pipe lengths. All the dimension parameters of the network can be optimized within

given ranges during the GA process, but for the sake of simplicity some of them are

specified.
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Figure 4.7: An example of the networks generated randomly in the first generation of
GA procedure

4.2.1 Unflanged networks

4.2.1.1 Dimension parameters of networks

In this example there is no flange, so the end corrections, 0.001684m, can be calculated

by equation (4.5) which is from paper [3].

δsq0 = 0.597aeff (4.5)

with aeff = 2asq/
√

π where 2asq is the pipe width.

Transverse (x axis) and some of longitudinal coordinates of the ends are given in

table 4.1. The other longitudinal coordinates of the ends vary within the ranges which

are shown in table 4.1 as well. The pipe cross-sections are the same, 0.005m×0.005m.

Boundary conditions p = 0 should be applied to the open ends, where p is the acoustic

pressure.

Table 4.1: Coordinates of central points of open ends of a unflanged network

End x(m) y(m) End x(m) y(m)
1 0.0475 −0.051684 8 −0.0475 0.051684
2 0.0325 −0.051684 9 −0.0325 0.051684
3 −0.0325 −0.051684 10 0.0325 0.051684
4 −0.0475 −0.051684 11 0.0475 0.051684
5 −0.076684 [−0.0475, −0.015] 12 0.076684 [0.015, 0.0475]
6 −0.076684 [−0.01, 0.01] 13 0.076684 [−0.01, 0.01]
7 −0.076684 [0.015, 0.0475] 14 0.076684 [−0.0475, −0.015]
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4.2.1.2 Targeted resonant frequencies

By giving the GA parameters, such as the number of individuals, generation gap, the

maximum number of generations and wanted resonant frequencies, and running the

GA program once, a optimal network can be found. This network has the closest

resonant frequency to the targeted resonant frequency. The GA parameters should be

adjusted for each case to obtain acceptable results.

Table 4.2: Results for the targeted resonant frequencies

Case Targeted(Hz) Obtained(Hz) Error(%)
1 1250 1254 0.32
2 1400 1400 0
3 1600 1590 0.625

(a) (b)

(c)

Figure 4.8: (a) Network with the resonant frequency 1254Hz; (b) Network with the
resonant frequency 1400Hz; (c) Network with the resonant frequency 1590Hz.
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(a)

(b)

(c)

Figure 4.9: (a) Mode of acoustic pressure at 1254Hz; (b) Mode of acoustic pressure
at 1400Hz; (c) Mode of acoustic pressure at 1590Hz
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In table 4.2, the wanted resonant frequencies are obtained by optimizing the net-

work structure and the maximum error is less than 1%. The network structures and

modes at the resonant frequencies can be seen in Fig.4.8a-4.8c and 4.9a-4.9c.

Besides the resonant frequencies shown in table 4.2, these three networks have

other resonant frequencies within 2000Hz. They are 1926Hz in case 1, 1976Hz in

case 2 and 1947Hz in case 3.

In Fig.4.10 we can see the minimum difference between the targeted frequency

1400Hz and the resonant frequencies of individuals in each generation in GA proce-

dure. In the first generation the difference is 259.52Hz. From the second generation

it becomes 6.93Hz. In 7th generation a very good result is found. The difference

between its resonant frequency and the targeted frequency 1400Hz is 0.22Hz. The

number of individuals in each generation used in the GA procedure is 1000.
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Figure 4.10: The minimum difference between the targeted frequency 1400Hz and the
resonant frequencies of individuals in each generation in GA procedure

From the above examples one can conclude that the GA process developed before

is suitable for the optimization and design of networks. Once the ranges of dimension

parameters of networks are given, networks with targeted resonant frequencies can be

found.

Experiments will be performed in chapter 5 to validate the optimization of the

networks and to see if the frequencies obtained are close to the measured results.

4.2.1.3 Maximum number of resonant frequencies

It is of interest to know how many resonant frequencies one can get at most within a

frequency range, for example 0−2000Hz. With the dimension parameters of networks

given before, a network with as many resonant frequencies as possible will be searched

by GA.
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(a) (b)

(c) (d)

Figure 4.11: (a) Network 1; (b) Network 2; (c) Network 3; (d) Network 4

By changing the GA parameters and running GA program several times, three

resonant frequencies at most within 0−2000Hz are found. There are several networks

having 3 resonant frequencies, and some of them are shown in Fig.4.11a-4.11d.

Table 4.3: Networks with three resonant frequencies

Resonant frequency Network 1 Network 2 Network 3 Network 4
1st 1380Hz 1442Hz 1318Hz 1362Hz
2nd 1781Hz 1863Hz 1868Hz 1735Hz
3rd 1972Hz 1983Hz 1960Hz 1971Hz

These four networks have different but close resonant frequencies in table 4.3. The

first resonant frequency is around 1400Hz, the second one is about 1800Hz and the

third one is close to 2000Hz.

Their structures can be seen in the Fig.4.11a-4.11d. They have totally different

structures, but the resonant frequencies are similar. So it is possible to choose the net-



78 Optimization of junctions and end positions of 2D networks

work according to needs or design a new network by changing the ranges of dimension

parameters to satisfy our needs.

4.2.2 Network between a cylinder and a plane surface

4.2.2.1 Dimension parameters of network

In this example the network is between the cylinder and the plane surface used in

section 2.5.2. The calculations of open end corrections are presented in section 3.3.2.1.

The end corrections of longitudinal open ends can be calculated by formula (3.5). For

the transverse ends their corrections, 0.0054m, 0.0057m, and 0.0054m, are given by

formula (3.14).

Table 4.4: Coordinates of central points of open ends of network between a cylinder
and a plane surface

End x(m) y(m) End x(m) y(m)
1 [0.042, 0.0705] −0.05 − EC 8 [−0.0705, −0.042] 0.05 + EC
2 [0.0045, 0.033] −0.05 − EC 9 [−0.033, −0.0045] 0.05 + EC
3 [−0.033, −0.0045] −0.05 − EC 10 [0.0045, 0.033] 0.05 + EC
4 [−0.0705, −0.042] −0.05 − EC 11 [0.042, 0.0705] 0.05 + EC
5 −0.0804 −0.03333 12 0.0804 0.03333
6 −0.0807 0 13 0.0807 0
7 −0.0804 0.03333 14 0.0804 −0.03333

Longitudinal and some transverse coordinates of the ends are given in table 4.4.

The other transverse coordinates vary within the ranges which are shown in table 4.4.

The pipe cross-sections are the same, 0.009m × 0.009m. Boundary condition p = 0

should be applied to the open ends, where p is the acoustic pressure.

In table 4.4, EC means the value of longitudinal end correction, which can be

calculated by formula (3.5).

4.2.2.2 Maximum number of resonant frequencies

In this section we try to get networks with the maximum number of resonant fre-

quencies within the frequency range 0 − 2000Hz. With the dimension parameters of

networks given before, networks with as many resonant frequencies as possible will be

searched by GA. The networks that we want should have repeated junctions in the

longitudinal direction (y axis in Fig.4.7). It means in each column of the network in

Fig.4.7 the junctions should be the same.

By changing the GA parameters and running the GA programme several times,

four resonant frequencies at most within 0 − 2000Hz are found. There are 2 networks
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(a) (b)

Figure 4.12: (a) Network 1; (b) Network 2.

Table 4.5: Networks with four resonant frequencies

Resonant frequency 1st 2nd 3rd 4th
Network1 1055Hz 1797Hz 1799Hz 1929Hz
Network2 1201Hz 1799Hz 1890Hz 1989Hz
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Figure 4.13: The maximum number of resonant frequencies for each generation in GA
procedure

having 4 resonant frequencies, and they are shown in Fig.4.12a and Fig.4.12b. The

resonant frequencies are shown in table 4.5.

In Fig.4.13, the maximum number of resonant frequencies of a network in the first

generation is 3. It changes to 4 in the 8th generation and then keeps the same value

until the end of the GA procedure. Since we are interested in periodic networks,

only networks with repeated junctions could be generated in each generation. So the

number of individuals in each generation is just 30.
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4.3 Conclusions

Different optimization methods are introduced and compared in this chapter. Genetic

algorithms are chosen to design and optimize the 2D network resonators.

A network with 12 junctions is optimized to illustrate that GA procedure developed

in this chapter can be used to design networks. The end corrections of open ends

should calculated first. No matter the network has flange or not, the networks with

targeted resonant frequency or a maximum number of resonant frequencies within a

given frequency range can be found by GA after the dimension ranges of networks

and GA parameters are given.

We can choose the network according to needs or design a new network by changing

the ranges of dimension parameters in the GA procedure developed in this chapter to

satisfy our needs.



Chapter 5

Validations with measurements

In this chapter, the multi-domain coupling methods introduced in chapter 2, the

matlab codes 2DNRF developed in chapter 3 and optimization methods of resonant

frequencies in chapter 4 are validated with measurements.

We use wood to build networks, flanges and plane surfaces, for wood is easy to

cut, bend, shape and glue. Besides, wood can give the rigid boundary conditions used

in our simulations. A real tire on the road is also measured and calculated in this

chapter.

5.1 Sound pressure fields of pipes between a cylinder

and a plane surface

The flange-network interaction model has been established in chapter 2. In this sec-

tion, experiments will be carried out to validate numerical simulations of this model.

The flange in the model developed before could have arbitrary shape. For the sake of

convenience, a circular flange in Fig.5.2b is used in both numerical simulations and

experiments. The radius and width of the cylinder in Fig.5.2b are 0.27m and 0.15m.

Its location can be seen in Fig.5.1. The sketch of the experimental setup is shown in

Fig.5.1. The locations of source and receiver are exchanged in Fig.5.2a thanks to the

reciprocity principle. The experiments are performed in a large testing hall to avoid

influences of the reflections from the wall. The plywood on the floor in Fig.5.2a is used

to simulate the rigid plane surface. Sweep signals within 2000Hz are generated by a

generator. The generator, amplifier and B&K pulse data acquisition system can be

seen in Fig.5.3a and 5.3b. The center of the speaker is at (1, 0, 0.06). The microphone

is at (0.1, 0, 0.005).

First we present the acoustic source used in our experiments. Then the acoustic
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Figure 5.1: Sketch of experimental setup

(a) (b)

Figure 5.2: (a) The experimental set-up; (b) flange used in calculations and experi-
ments

(a) (b)

Figure 5.3: (a) Generator and amplifier; (b) B&K pulse data acquisition system
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fields of a cylinder on a plane surface are computed and measured. In this comparison,

there is no pipe between the cylinder and the plane surface. Next a straight pipe and

a network between the cylinder and the plane surface are measured. Last a optimized

network between the cylinder and the plane surface is solved and measured.

5.1.1 Point source

In our simulations, a dimensionless point source is used, and it has been assumed

omni-directional. Typical sources used in previous researches are audio speakers [55],

audio speakers coupled with circular pipe [94] and electrostatic spark sources [68].

In our study the predicted results will not be compared directly with the measured

results. Instead, the general tendencies and frequency-dependant variations of the

sound intensity will be compared between the predicted and measured results. Such

comparisons are very common and widely used in previous studies such as in [95] and

[55]. So it is not necessary to use a omni-directional source in our experiments. A real

loudspeak, whose signal is digitally generated, is used as source in the experiments.

The dimensions are 0.12 × 0.12 × 0.12m.

5.1.2 Plane surface with or without a cylinder

Since the measurements are performed in a large testing hall, it is essential to know if

the influences of reflections from walls and roof can be ignored or not. In this section,

two measurements are done for this purpose. In the first case, a cylinder is located on

a plane surface, but there is no pipe between the cylinder and the plane surface. In

the second case, we move the cylinder away from the plane surface.

The acoustic field of the first case can be calculated by BEM. In the second case

the plane surface is rigid, so it can be considered as a symmetric plane. An image

source is created in Fig.5.4b. Thus, the second case can be solved by equations (5.1)

and (5.2). The predicted results can be seen in Fig.5.5a. The measured results of SPL

are shown in Fig.5.5b.

p =
eikd1

4πd1

+
eikd2

4πd2

(5.1)

where d1 and d2 are the distances from the source and the image source to the receiver

in Fig.5.4b.

SPL = 10 log10

|p|2
4 × 10−10

(5.2)

When we compare the predicted results in Fig.5.5a and the measured results in
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(a) (b)

Figure 5.4: (a) A cylinder on a plane surface (no pipe between the cylinder and the
plane surface); (b) A rigid plane surface between a source and an image source.
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Figure 5.5: (a) Predicted results; (b) Measured results.

Fig.5.5b, similar tendencies of SPL can be found. The maximum difference of predicted

SPL between the case with the cylinder and the case without the cylinder is about

15dB around 1250Hz in Fig.5.5a. The maximum difference between these two cases of

the measured SPL is about 14.5dB around 1300Hz in Fig.5.5b. The predicted results

agree well with the measured results. We can conclude that the reflections from the

walls and the roof can be ignored in our experiments.

5.1.3 Straight pipe

The example calculated in section 2.5.2.1 is measured in this section, which can be

seen in Fig.5.6. We measured the case with a straight pipe and the case without pipe.

In the case without pipe, we close the pipe ends with woods.

The results are shown in Fig.5.7, where we can see a reduction of SPL of 3.5dB

around the resonant frequency 1460Hz. The reduction of numerical results with

viscous losses in Fig.2.17 is 5.5dB at the resonant frequency 1430Hz. The difference
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Figure 5.6: A straight pipe between a cylinder and a plane surface
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Figure 5.7: Measured results of flange with a straight pipe

of reduction at the resonant frequency between measurement and simulation is 2dB,

which will be smaller if the thermal conduction losses are taken into account. The

influence of thermal conduction losses are shown in table 2.1 by solving another case.

But in this example the tendencies of numerical SPL are similar to the measurements,

and the resonant frequency is estimated correctly.

5.1.4 Network

The network calculated in section 5.1.4 is measured in this part to validate the multi-

domain coupling methods proposed in chapter 2. When we measure the case without

network, we close the pipe ends in Fig.5.8 with woods.

Table 5.1: Predicted and measured results

Predicted f Predicted differences Measured f Measured differences
1220Hz 2.85dB 1200Hz 4dB
1800Hz 4.88dB 1800Hz 3.5dB
1880Hz 2.44dB 1900Hz 3.2dB
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Figure 5.8: A network between a cylinder and a plane surface
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Figure 5.9: Measured results of flange with a network

The experiment is shown in Fig.5.8. The results can be seen in Fig.5.9. There

are three SPL extrema around the two resonant frequencies 1232Hz and 1823Hz

which are obtained by 2DNRF in section 3.3.2.1. Around the first resonant frequency

1232Hz, we can see a reduction. Around the second resonant frequency 1823Hz,

there are a reduction and an amplification. The predicted and measured frequencies

of these three extrema and the differences between the case with pipes and the case

without pipe are shown in table 5.1.

At the second extremum, the SPL reduction of experimental results between the

solid line and the dash line is about 3.5dB. The SPL reduction 4.88dB of numerical

results with viscous and thermal conduction losses is closer to the measurements. So

for a thin pipe in this work, the viscous and thermal conduction losses should be

taken into account. Otherwise, the difference of reductions between experimental and

numerical results for the second extremum is too large.

Compared with simulations, the frequencies of these three extrema, which are

about 1200Hz, 1800Hz and 1900Hz, are estimated correctly, and the variations of
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these three extrema are also very close. The errors are 1.15dB, 1.38dB and 0.76dB.

Besides, we can see similar tendencies of SPL between experiments and simulations.

The resonant frequencies of this network, 1232Hz and 1823Hz, are estimated in

section 3.3.2.1 by 2DNRF. From Fig.5.9 we can see the variations of SPL around these

two frequencies. So the resonant frequencies are estimated correctly in section 3.3.2.1.

5.1.5 Optimized network

The network between the cylinder and the plane surface is optimized in section 4.2.2.

The acoustic fields of network 1 in Fig.4.12a are calculated by A2BEM and measured

in order to validate the A2BEM and GA optimization methods. When we measure

the case without network, we close the pipe ends in Fig.5.10 with woods.

Figure 5.10: A optimized network between a cylinder and a plane surface
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Figure 5.11: (a) Predicted results of a optimized network between a cylinder and a
plane surface; (b) Measured results of a optimized network between a cylinder and a
plane surface.

The predicted results are shown in Fig.5.11a. The resonant frequencies of this

optimized network are given in section 4.2.2, which are 1055Hz, 1797Hz, 1799Hz

and 1929Hz. The second and the third resonant frequencies are very close, so just
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one extremum can be seen around 1800Hz in Fig.5.11a, where we can see two other

extrema around 1055Hz and 1929Hz.

The measured results are given in Fig. 5.11b, where the variations of SPL are

similar to the predicted results in Fig.5.11a. The reductions of predicted SPL are close

to the reductions of measured SPL. Around the first resonant frequency 1055Hz, we

can see a maximum reduction 6.9dB in Fig.5.11a, and 5.6dB in Fig.5.11b. Another

big reduction for the predicted results is 4.3dB around 1800Hz, and 3.8dB for the

measured results which is also around 1800Hz.

If we compare this optimized network with the network in section 5.1.4, the results

of the optimized network are better. There is no peak around 1900Hz, whereas we

can see a peak around 1900Hz in Fig.5.9. Because the optimized network has a

resonant frequency at 1929Hz. This gives reductions of SPL that we can see clearly

in Fig.5.11a.

Figure 5.12: Optimized wooden network with the resonant frequency 1400Hz
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Figure 5.13: Measured SPL for the optimized wooden network with the resonant
frequency 1400Hz

Besides the flanged network given above, an unflanged network in Fig.5.12 is also

measured in order to validate the optimization in Fig.4.9b in section 4.2.1.2. The
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network in Fig.5.12 is built with wood. A speaker and a microphone are put near the

open ends in Fig.5.12.

The network optimized in section 4.2.1.2 is a 2D network, so the depth is not given

in the optimization. In the experiments, the depth that we use is 0.01m.

The SPL obtained by the microphone is shown in Fig.5.13. We can see a deep valley

at frequency 1370Hz which is close to the targeted resonant frequency 1400Hz. So the

GA optimization procedure developed in chapter 4 can give the resonant frequencies

that we want.

5.2 Tire

In order to know whether the tire treads in the contact zone have influences on the

acoustic radiation of the tire and road system, measurements of the acoustic fields for

a real tire are performed. Then the estimations of the resonant frequencies of the tire

treads in the contact zone and the calculations of the sound pressures are done by the

methods proposed in the previous chapters.

(a) (b)

Figure 5.14: (a) Tire with an open network; (b) Tire with a closed network.

The tire treads in Fig.5.14a are very complex. There are three longitudinal pipes

(pipe 1, 2 and 3) with large cross-sections, two longitudinal pipes (pipe 4 and 5) with

very small cross-sections and many transverse pipes with different cross-sections. For

the sake of simplicity, we only investigate the network in the middle of the contact

zone. The network consists of the longitudinal pipes 1 and 2 and the large transverse

pipes between them in Fig.5.14a. But there are also many small pipes connecting to

the network to be studied, so we fill them with silicone. We also fill the longitudinal

pipe 3 to make sure that there is no other longitudinal pipe except the pipe 1 and 2

in the network to be investigated.

Two tests are performed. In the first test, the network is open. In the second test,
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we fill the network with silicone in the contact zone (see Fig.5.14b). We can see that

the ends of the pipes 1 and 2 are closed in Fig.5.14b. These two tests are compared

to study the influence of the treads on the acoustic radiation.

We use five concrete cylinders (Fig.5.15a) as the load from the car to get the flat

contact zone (Fig.5.15b). In order to obtain the dimensions of the network in the

contact zone, first we put the tire on the flour for several minutes (Fig.5.16a). Next

we move the tire on a clean surface. Then we lay the tire flat on the surface. In

Fig.5.16b we can see the elliptical contact zone which is given by the lumps of flour

on the tire or on the road. When we compare the tire with and without the lumps of

flour in Fig.5.17, we can see clearly the shape of the contact zone. The length of the

contact zone is 0.161m. The experimental setup is the same as the wooden cylinder

case, which is shown in Fig.5.1. The source is at (1, 0, 0.06), and the receiver is at

(0.15, −0.005, 0.005).

(a) (b)

Figure 5.15: (a) The load of five concrete cylinders; (b) The contact zone between the
tire and the road.

(a) (b)

Figure 5.16: (a) The tire on the flour; (b) The contact area given by the flour.

The network of the real tire to be investigated is simplified and meshed in Fig.5.18a.

The pipes between longitudinal pipes 1 and 2 of the real tire are modeled as straight
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Figure 5.17: The tire with and without the lumps of flour

(a) (b)

Figure 5.18: (a) The simplified network; (b) The meshes of the BEM model of the
tire used in the multi-domain coupling methods.
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Figure 5.19: (a) Measured results of the network between a tire and a plane surface;
(b) Predicted results of the network between a tire and a plane surface.
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pipes. The length of the longitudinal pipe is 0.161m. The width is 0.012m. The

distance between the two longitudinal pipes is 0.019m which is very short, so we can

use the same end correction for the two longitudinal pipes. The end correction of

the longitudinal pipe is 0.0169m, and it is calculated by the methods introduced in

chapter 3. The widths of the transverse pipes are 0.003m or 0.004m.

The resonant frequencies of the network within 2000Hz are 868Hz and 1734Hz.

They are estimated by the program 2DNRF proposed in chapter 3. From the modes

of the network at 868Hz and 1734Hz in Fig.5.20a and Fig.5.20b we know that these

two resonant frequencies are because of the resonance of the two straight pipes 1 and

2. If we use equation (3.8) to calculate the resonant frequencies of the straight pipe 1

or 2, we can get the resonant frequencies 880Hz and 1761Hz which are close to the

resonant frequencies obtained by 2DNRF.

(a)

(b)

Figure 5.20: Modes of the network obtained from Abaqus by 2DNRF: (a) The first
resonant frequency 868Hz; (b) The second resonant frequency 1734Hz.

However, from the measured sound pressures in Fig.5.19a we can see only one

resonant frequency around 1734Hz. There is no variation of SPL around 868Hz. The

reason is not clear. Maybe because the tire is not pressed firmly in the whole contact

zone. The load of the five concrete cylinders that we use are too light compared to

the load from a real car. When we did the tests of wooden networks, we found that if

the woods are not glued firmly no resonant frequency can be found. For the straight

pipe we know that the longer the pipe is, the smaller the first resonant frequency is.

Since the first resonant frequency in the measured results is about twice as many as

the first estimated resonant frequency, the length of the real contact zone may be

approximately half of the length used in the estimation. The contact zone where the
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tire is pressed firmly may be just the central part of the ellipse in Fig.5.16b. Although

the outer parts of the elliptical surface of the tire touch the road, maybe they are not

pressed firmly on the road. Besides, the tire in our test is just the tire surface. So it

is very difficult to press the whole network in Fig.5.18a firmly on the road.

The same problem can be seen in the experimental results from the report [96].

This experiment is similar to ours. In this experiment, first the open treads are

measured, and then these treads are filled and measured again. The results can be

seen in Fig.5.21b. The tire footprint in the contact zone is shown in Fig.5.21a where

the length of the footprint, about 0.22m, is measured. For the two longitudinal pipes,

we can estimate the resonant frequencies by using the measured length. There should

be a resonant frequency around 600Hz. But there is no SPL variation around 600Hz

in Fig.5.21b. Above 1000Hz we can see obvious differences between the two curves.

Besides, from our measured results of the wooden networks and the wooden cylinder

we can also see clear variations of SPL above 1000Hz. Therefore, in this work for

the real tire we will put the focus on the frequencies above 1000Hz because in this

frequency range our calculations and estimations agree with the measured results.

(a) (b)

Figure 5.21: (a) The tire footprint in the contact zone; (b) The measured sound
pressure level for a tire with the open or closed treads in the contact zone.

In order to predict the influence of the tire treads on the acoustic fields of our tire

and road systems, the network is modeled as the one in Fig.5.18a. The BEM meshes

of the tire can be seen in Fig.5.18b. We ignore the transverse grooves on the tire

surface except the ones in the network to be studied. We only take into account the

two large longitudinal pipes 1 and 2. The other longitudinal pipes are not modeled.

The lateral surface in the model is a flat surface. Although the model is not the same

as the real tire, it is not very important. Because the model is used to compare the
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cases with and without the network and estimate the influence the network on the

acoustic fields. In the calculations of these two cases, the network to be investigated

will be changed from open ends to closed ends, but the other parts keep the same.

The tire width and radius are 0.165m and 0.27m, respectively. The contact zone is

0.161m × 0.165m. Two calculations are done. In the first calculation, the ends of the

network are open. We use the multi-domain methods given in chapter 2 to solve the

problem. In the second calculation, the ends of the network are closed. We use BEM

to do the calculations.

The measured and predicted results at receiver (0.15, −0.005, 0.005) are shown

in Fig.5.19a and 5.19b. Unlike the wooden cylinder case in section 5.1, the general

tendencies of the predicted SPL are not quite similar the measured results. The

reason is that the BEM model in Fig.5.18b is not exactly the same as the real tire, for

example the lateral surface. But the influences of the network on the acoustic fields

around 1734Hz are estimated approximately. Around the resonant frequency 1734Hz

of the network, we can see the variations of SPL in Fig.5.19b. In Fig.5.19a, we can

see the similar variations around 1734Hz. But errors of reductions and amplifications

between the measured and predicted results can be seen. These errors are due to the

differences between the real tire and the simplified model that we use. Around 868Hz

there is a resonant frequency in Fig5.19b, but it can not be seen in the measured

results. The frequency range of interest is above 1000Hz, so we ignore this difference.

Although above 1000Hz the agreements between the measured and predicted re-

sults in our case of the real tire are not as perfect as the agreements in the case of the

wooden cylinder and the wooden networks, we can still use our proposed model and

methods to estimate the influences of the tire treads on the acoustic fields.

5.3 Conclusions

In this chapter, several flanged or unflanged wooden pipes and a real tire are measured

to validate our predictions. Good agreements can be seen for the wooden cases.

However, for the real tire some differences between the predicted and measured results

are found within 1000Hz.

By comparing the predicted and measured results of a flanged straight pipe, we

can conclude that the viscous and thermal losses should be taken into account in the

calculation of the acoustic fields.

For the flanged wooden network, resonant frequencies can be estimated from the

predicted and measured SPL curves. These resonant frequencies can also be estimated

by the matlab codes 2DNRF. Good agreements are found. Since the calculations and
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the measurements of the SPL are quite time-consuming, 2DNRF is an easier and

better method for the estimation of the resonant frequencies of the networks.

The tendency and variation of the measured SPL agree well with the predicted

results for the flanged wooden pipes, which validates the model and computational

methods proposed in chapter 2. The flanged and unflanged wooden networks are

optimized by the proposed GA procedure to get the wanted resonant frequencies.

From the measured SPL curves, we can find these resonant frequencies. So the GA

procedure can be used to get the targeted resonant frequencies.

For the real tire, above 1000Hz the predicted resonant frequency and SPL varia-

tions agree with the measured results. Therefore, the proposed model and numerical

methods will be used to study the influence of the tire treads and the road textures

on the acoustic fields above 1000Hz.





Chapter 6

Optimization of tire treads and

road textures

Acoustic radiation from tire and road system is influenced by the horn between the

tire and the road and networks formed by tire treads and road textures in the contact

zone. Previous researches on acoustic radiation from tires and roads, for example the

thesis [97], only considered smooth tires and roads for horn effects. In the researches

about tire treads, resonances of pipes are always thought to be a reason of sound

enhancement. However, the pipe resonances should be investigated together with

horn effects because both of them are noise radiation mechanisms. In fact, the network

resonances can reduce the sound pressure at the resonance frequencies, which can be

seen in Fig.2.11. Exterior acoustic fields are amplified by the horn between the tire and

the road, but the acoustic interactions between the exterior fields and the resonance

of networks change the amplifications. In this chapter, the influence of treads and

textures on horn effects will be investigated in detail. The treads and the textures

will be optimized to reduce the acoustic radiation. The optimization process is shown

in Fig.6.1.

There are several assumptions when modelling tire treads and road textures: a.

there are only longitudinal grooves on the tire surface and road surface except in the

contact zone, b. there are only right-angled junctions in the networks in the contact

zone, c. the pipes in the networks have the same cross-section. d. The tire is pressed

very firmly on the road in the whole contact zone. An example of network in the

contact zone simulating treads between the tire and the road is meshed in Fig.2.12.
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Calculate the end 

corrections by the 

methods introduced 

in chapter 3

Get the optimized 

networks 

Estimate the influences of 

networks on acoustic radiation 

by the multi-domain methods 

A2BEM given in chapter 2

Figure 6.1: Optimization process of tire treads and road textures

6.1 Acoustic excitations

6.1.1 Comparison of excitations

Noise of rolling tires on the road are generated by vibrations and air-pumping. Ve-

locities on a tire surface and a point source are used to simulate the noise generation

mechanisms. They are compared for calculating the noise radiations in this section.

(a) (b)

Figure 6.2: (a) Point source and velocity excitation; (b) A simple network between
the tire and the road.

In Fig.6.2a, we can see the locations of the point source and the velocities used

in the simulations. The network used in the comparison is shown in Fig.6.2b. In the

calculation no viscous and thermal conduction losses are taken into account, because

these losses only change the amplitudes of the pressure at the resonant frequencies.

The amplitudes are not very important to the conclusions in this part.

From Fig.6.3a and 6.3b, we can conclude that under these two types of excitations

the resonant frequency is the same and the variations of pressure are similar at the

resonant frequency. For a point source, there is a peak of amplification in the case of

smooth tires, but for the velocity excitation, we cannot see a peak within 2000Hz. If

higher frequencies are calculated for the velocity excitation case, the peak of ampli-

fication will be seen. However, more elements and nodes should be used for higher

frequencies, and it will lead to longer computational time. So we will choose the point

source as the excitation.
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(a) (b)

Figure 6.3: Modulus of pressure at R under different excitations (a) Point source
excitation; (b) Velocity excitation on the tire.

6.1.2 Point source position

Different positions of point source are compared in this section. The network in the

calculations is the same one, and the tire and receiver positions keep the same. Since

we just compare the different source positions, viscous and thermal conduction losses

are not very important to the conclusion and will not be taken into account in the

simulations.

Figure 6.4: Pressure modulus at R (1, 0, 0.265) for different source positions: S1
(0.1, 0, 0.005) and S2 (0.1, 0.0325, 0.005)

In Fig.6.4 we can see that for different source positions in the transverse direction

(y axis in Fig.6.2b) the pressure is very close within 2000Hz. So the source position

in the transverse direction between the tire and the road has hardly any influence on

the pressure.
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Figure 6.5: Networks (including end corrections) in the contact zone with targeted
resonant frequencies (The vertical direction is the rolling direction): (a) 1400Hz; (b)
1400Hz and 1250Hz; (c) 1400Hz, 1250Hz and 1050Hz (There are five closed ends
in the middle of the contact zone). SPL at R for a tire with networks in the contact
zone: (d) One network targeting 1400Hz; (e) Two networks targeting 1400Hz and
1250Hz; (f) Three networks targeting 1400Hz, 1250Hz and 1050Hz.
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6.2 Optimization of tire treads

Tire treads in the contact zone are in the same plane, so can be considered as 2D

networks. The multi-domain coupling method A2BEM can be used to calculate the

acoustic fields. Viscosity and thermal conduction losses at pipe walls will be taken

into account in the analytical relations of straight parts of the networks.

The GA procedure proposed in chapter 4 is used to optimize the tire treads. The

number of rows and columns in the network should be given in the GA procedure. In

our optimization three transverse rows and six longitudinal columns are chosen. The

tire dimensions are shown in section 2.5.1.3. Pipe width is 0.005m.

6.2.1 Parallel networks

In Fig.6.3a, there is a peak of sound pressure for the smooth tire without network in

the contact zone. The peak has a wide bandwidth. If a network in the contact zone

is optimized to target the frequency of this peak, new peaks will be created around

the targeted peak.

By using several parallel networks, bandwidths of the new peaks will become very

narrow. In our optimizations the contact zone is divided into several parts in the

transverse direction (y axis in Fig.6.2a). In each part a network is inserted. The first

network is used to target the original peak, and the following networks are optimized

to target the peaks that the last network creates until there is no place for another

new network.

Optimizations of the networks in the contact zone are performed by the GA proce-

dure developed in chapter 4. The first network targets the peak 1400Hz. In Fig.6.5a,

there are two symmetrical networks with an optimized resonant frequency 1376Hz.

In Fig.6.5d, we can see the SPL reduction 5.5dB at the resonant frequency 1376Hz.

Two new peaks emerge around the frequencies 1250Hz and 1600Hz.

The next network is optimized to target 1250Hz. In Fig.6.5b, there are two

symmetrical networks with resonant frequencies 1240Hz besides the networks with

frequency 1376Hz. In Fig.6.5e we can see the SPL reductions 6.4dB and 4.3dB at the

targeted frequencies 1250Hz and 1400Hz. New peaks can also be seen around the

resonant frequencies, especially a big new peak around 1050Hz.

Then we optimize a network for the new peak around 1050Hz. In Fig.6.5c, we can

see a new network with resonant frequencies 1034Hz, 1754Hz and 1972Hz besides

the two networks optimized before. In Fig.6.5f the peak at 1050Hz shifts to 1100Hz

and its bandwidth becomes narrower. In addition, we can see two more reductions

1.2dB and 4.7dB at 1050Hz and 1754Hz thanks to the new optimized network. So
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when optimizing the treads, we should choose networks with the maximum number

of resonant frequencies.

When we compare the two curves in Fig.6.5f, we can see that although the max-

imum pressures are close, obvious reductions of acoustic pressure are obtained espe-

cially at the targeted frequencies. Furthermore, we can calculate the global reduction

between the two curves in Fig.6.5f from 1000Hz to 2000Hz by equation 6.1. The

global reduction is 1.5dB.

GR = 10 log10

∑

j

P 2

j,smooth∆fj

∑

j

P 2

j,network∆fj

(6.1)

where Pj,smooth is the pressure modulus for the smooth tire case, Pj,network is the

pressure modulus for the tread case and ∆f is the frequency bandwidth.

6.2.2 Periodic networks

Through the network optimization in section 6.2.1 good results of reducing the sound

pressure can be seen in Fig.6.5f. However, the network obtained in Fig.6.5c is not a

periodic network in the contact zone. When the tire is rolling on the road, after a

length of the contact zone emerges the optimized network. If the optimized network is

a periodic network, it will emerge after a shorter rolling distance. Thus, the acoustic

reductions will be better. In this section, a periodic network with the maximum

number of resonant frequencies will be searched with the proposed GA procedure.

Three periodic networks with four resonant frequencies are obtained and shown

in Fig.6.6a-Fig.6.6c. The acoustic pressure with and without the viscous and thermal

conduction losses at receiver R is given in Fig.6.6d-6.6f. Their resonant frequencies

within 2000Hz can be seen in table 6.1.

Table 6.1: Four resonant frequencies for the three optimized networks

Resonant frequency 1st 2nd 3rd 4th
Network1 1060Hz 1486Hz 1871Hz 1961Hz
Network2 1034Hz 1245Hz 1803Hz 1920Hz
Network3 1046Hz 1187Hz 1722Hz 1990Hz

From the pressure without the losses we can see a clear valley at every resonant

frequency. But at some resonant frequencies the valleys of the pressure are not very

clear if the losses are taken into account. In chapter 5 we know that the viscous and

thermal conduction losses should be taken into account because the results with losses

are closer to the experimental results.
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Figure 6.6: Periodic networks (including end corrections) with 4 resonant frequencies
(The vertical direction is the rolling direction): (a) Network 1; (b) Network 2; (c)
Network 3. SPL at R for periodic networks with 4 resonant frequencies: (d) Network
1; (e) Network 2; (f) Network 3.
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Table 6.2: SPL reductions at the resonant frequencies of the three optimized networks

X
X
X
X
X
X
X
X
X
X
X

Network
RF

1st 2nd 3rd 4th

Network1 4.8dB 3dB 4.3dB 4.7dB
Network2 4.2dB 3.9dB 3dB 4.8dB
Network3 2dB 3.5dB 5.3dB 4.8dB

Note: resonant frequency (RF)

Compared with a smooth tire without network in the contact zone, optimized

networks can give pressure reductions above 1000Hz, especially around the resonant

frequencies. The SPL reductions at the resonant frequencies can be seen in table 6.2.

Besides, we can calculate the global reductions for these three networks from 1000Hz

to 2000Hz by equation 6.1. The global reductions are 1.5dB, 1.5dB and 1.8dB. If

we compare the results of three optimized networks, it is hard to say which one is

better. However, we can conclude that the more resonant frequencies the network can

give, the better the network is. Because around every resonant frequency we can see

obvious reductions.

The networks obtained have three rows and six columns which are the parameters

given in the GA optimization. Of course we can change these parameters to see if we

can get more resonant frequencies and better reductions of acoustic pressure.

Tire treads not only influence the acoustic radiations from the tire and road system,

but also are essential factors for the noise generation mechanisms, such as air-pumping

and vibrations. So the optimizations of tire treads are very complicated. When we

design the tire treads, both the noise generation and radiation mechanisms should be

taken into account. But in this work, we just investigate the impact of treads on tire

and road noise from the aspect of acoustic radiation mechanisms.

In Fig.6.7, we compare three networks which have the same structure but different

pipe widths, 0.005m, 0.007m and 0.009m. The network structure that we use is the

network 2 in Fig.6.6b. At low frequencies, the results are almost the same, so only

the results above 800Hz are shown in the figure. The change of pipe width does

not influence the number of resonant frequencies. We can see shifts of the resonant

frequencies when we compare these three cases. The lengths of the straight parts in

the network are changed when the pipe width varies. It could be a reason for the

shifts of the resonant frequencies. Above 1300Hz, the smaller the width is, the larger

the pressure is. Between 800Hz and 1300Hz, the results are complicated, but we can

see similar variations of sound pressure.
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Figure 6.7: SPL at R (1, 0, 0.265) for the network 2 with different cross-sections

6.3 Optimization of road textures

The road tiles texture in Fig.6.8 can also be considered as network resonators between

the tire and the road. Smooth tire without treads is used in this section.

Figure 6.8: The road tiles texture

The three steps of the process in Fig.6.1 for optimizing the road textures are shown

in this section. First the end corrections of the texture networks are calculated. Then

the resonant frequencies of the different networks are estimated. For the optimization

of the road textures, we design several networks and choose the ones with maximum

resonant frequencies. The GA procedure developed in chapter 4 will not be used for

the optimization of textures. Last the acoustic radiations of the chosen networks are

computed by the multi-domain coupling methods.
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6.3.1 Determination of end corrections

In order to estimate the resonant frequencies, the open end corrections of the networks

should be obtained by the numerical methods introduced in chapter 3.

(a) (b)

Figure 6.9: (a) Half of meshes of the boundary element model of a longitudinal tube
between a smooth tire and a road; (b) Details of the mesh of the model.

(a) (b)

Figure 6.10: (a) Half of meshes of the boundary element model of a transverse tube
between a smooth tire and a road; (b) Details of the mesh of the model.

The determination of the end corrections is similar to the calculation in section

3.1.3. The surface of the smooth tire in the contact patch is flat. The meshes of

the longitudinal pipe are shown in Fig.6.9a and Fig.6.9b. The longitudinal pipe is

located underneath the smooth tire. The round surface of the smooth tire and the

road surface are the flanges of the longitudinal end. In Fig.6.10a and Fig.6.10b we can

see a transverse pipe under the smooth tire. The flanges of the end of the transverse

pipe are the lateral surface of the tire and the road surface. The longitudinal and
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transverse pipes are assumed at the center of the contact zone between the tire and

the road.

The pipe has a rectangular cross-section with an area of 0.005m × 0.005m. The

lengths of the longitudinal and transverse pipes are 0.1m and 0.07m, respectively. The

closed ends act as flat piston and have unity velocity as boundary conditions. The

base surface behind the piston of the longitudinal pipe is modelled as flat to reduce

the elements because the flange shape behind the piston has no influence on the end

correction of the open end of this pipe. The base surfaces have very small impedances

which are used to minimize the reflections. Other parts of the model are rigid.

The acoustic pressure at the central node of the closed end is calculated by BEM

software Samray. The acoustic velocity is unity, so the impedance of the piston is

obtained. Then the radiation impedance is calculated from this impedance by equation

(3.2).

The end corrections of the longitudinal pipe under the smooth tire of different

widths are shown in Fig.6.11a, and the frequency interval is 200Hz. The tire radius

is 0.27m. For each width of the tire, the end corrections are frequency-dependent,

but their standard deviations are very small (see Fig.6.11b), which indicates that they

tend to be very close to the mean values. The standard deviation is calculated by

equation (3.4). So the mean values of end corrections for each width in Fig.6.11b are

used to get a fit formula of end corrections, in which w is half of the width.

δ = 0.00743 + 0.24995w − 4.625w2 + 27.7778w3 (6.2)
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Figure 6.11: (a) End corrections of longitudinal pipes under tires of different widths
within 2000Hz; (b) Standard deviations and mean values of end corrections of longi-
tudinal pipes under tires of different widths.

The end corrections of the transverse pipe in the middle of the contact zone under

the smooth tire are shown in Fig.6.12, and the frequency interval is 200Hz. The
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Figure 6.12: End corrections of the transverse pipe in the middle of the contact zone
under the tire within 2000Hz.

standard deviation of the end corrections is very small 3.48 × 10−4m, which indicates

that they tend to be very close to the mean value 0.0053m. So the mean value can be

used to estimate the resonant frequencies within 2000Hz. The standard deviation is

calculated by equation (3.4).

6.3.2 Estimation of resonant frequencies

For the optimization of the tire treads, GA procedure proposed in chapter 4 is used.

The optimized networks with the wanted resonant frequencies are obtained. For the

optimization of the road texture, if we use GA we can get similar results. Because both

the road textures and tire treads are networks in the contact zone. So in this part,

we investigate some simple road textures. We compare the number of the resonant

frequencies of these networks and find the one with maximum number of resonant

frequencies.

The textures that we study have the same pattern, but different dimensions. The

texture junctions are cross junctions. An example of the texture is shown in Fig.6.13.

The texture is a periodic network in the directions of x and y axes. The network has

the same symmetry axes (x and y axes) as the contact zone. In Fig.6.13, there are two

columns and three rows of the network in the contact zone. By changing the distances

D1 and D2 between the adjacent columns and rows of the network, different networks

can be obtained, which have different number of the columns and rows in the contact

zone. Two parameters, nc and nr, represent the number of the columns and rows of

the network in the contact zone, and vary in the vectors [2, 4, 6, 8, 10] and [1, 2, 3, 4, 5].

We can get 25 networks with different resonant frequencies.

The resonant frequencies can be estimated by the program 2DNRF developed in
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Figure 6.13: Road texture in the contact zone

Table 6.3: The number of resonant frequencies of networks with different number of
columns and rows

P
P
P
P
P
P
P
PP

Nc
Nr

1 2 3 4 5

2 1 2 3 3 3
4 1 1 1 2 2
6 2 1 1 1 1
8 2 1 1 1 1
10 2 1 1 1 1

Note: the number of columns (Nc), the number of rows (Nr)

chapter 3. The number of the resonant frequencies of the networks with different

number of columns and rows are shown in table 6.3. There are three networks with

3 resonant frequencies. Their resonant frequencies are given in table 6.4. From the

optimization of the tire treads, we know that the networks with a maximum number

of resonant frequencies give better results of reducing the acoustic radiations. So the

three networks with 3 resonant frequencies are better than the others.

Table 6.4: The resonant frequencies of networks with 2 columns and 3 − 5 rows

X
X
X
X
X
X
X
X
X
X
X

(Nc,Nr)
RF

1st 2nd 3rd

(2, 3) 1213Hz 1657Hz 1888Hz
(2, 4) 1200Hz 1615Hz 1893Hz
(2, 5) 1190Hz 1574Hz 1868Hz

Note: the number of columns (Nc), the number of rows (Nr), resonant frequencies (RF)
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6.3.3 Road dimensions

The road in the calculation of acoustic radiations of tire treads is a rigid plane surface.

So it can be considered as a symmetric plane and no mesh is needed for the road. But

in the calculation of the acoustic radiation of the road textures, the road should be

meshed in order to simulate the road textures. Therefore, the road dimensions should

be studies in order to reduce the meshes of the road and the computational time.

A longitudinal straight pipe at the center of the contact zone under the smooth

tire simulates the road texture. The acoustic fields are calculated by the multi-domain

coupling methods BEMT (BEM is used for the exterior subdomain and transfer matrix

is used for the interior subdomain which is the straight pipe) developed in chapter 2.

So no mesh for the pipe is needed. The BEM meshes of the tire and road are shown in

Fig.6.14a. The source and receiver, which can be seen in Fig.6.2a, are at (0.1, 0, 0.005)

and (1, 0, 0.06).

(a) (b)

Figure 6.14: (a) Meshes of half the boundary element model of a longitudinal pipe at
the center of the contact zone between a smooth tire and a road; (b) Details of the
meshes of the model.

Table 6.5: The modulus of the sound pressure at the receiver for different dimensions
of the road

(l1, l2, w)/m modulus error (l1, l2, w)/m modulus error
(1, 1, 1) 0.7076 − (1.35, 1.35, 1.35) 0.5974 −

(1.35, 1.35, 1.35) 0.5974 18.5% (0.55, 1.35, 1.35) 0.5941 0.6%
(1.55, 1.55, 1.55) 0.6217 3.9% (0.55, 1.35, 1.075) 0.5895 0.8%

We change the dimensions of the road and compare the sound pressure at the

receiver at 1300Hz which is close to the first resonant frequency of the pipe. The

smallest dimension with good results at the receiver will be used in the following

calculations. The dimension of the road can be seen in Fig.6.15. The results for the
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Figure 6.15: Road dimensions

different dimensions of the road are shown in table 6.5. In each column of the modulus

of the sound pressure, we compare the modulus with the one above. In the left part

of the table, the dimension (1.35, 1.35, 1.35)m is chosen. Then it is compared with

smaller dimensions in the right part of the table. The dimension (0.55, 1.35, 1.075)m

can give good results and it is small, so it will be used in the calculations of sound

fields.

6.3.4 Calculation of acoustic radiations

In this section, we choose the first texture with 3 resonant frequencies within 2000Hz

in table 6.4, calculate the sound pressure at (1, 0, 0.265)m within 2000Hz, and compare

with the case of the smooth road in order to show the influence of the road texture

on the acoustic radiation. In this texture, there are two columns and three rows.

Figure 6.16: Meshes of half the boundary element model of the texture with 2 columns
and 3 rows under the smooth tire

The multi-domain methods A2BEM proposed in chapter 2 are used to do the
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calculations. The BEM meshes are shown in Fig.6.16. The results can be seen in

Fig.6.17. Around the three resonant frequencies we can see the clear SPL reductions

2.1dB, 2.9dB and 1dB.
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Figure 6.17: SPL at R (1, 0, 0.265)m for the network with 2 columns and 3 rows

6.4 Conclusions

The influence of the network on the acoustic fields can be seen under both of the two

types of excitations, the point source and the velocities on the tire surface.

Two ways of the optimization of the tire treads are introduced in this chapter. By

inserting several networks with targeted resonant frequencies, the original wide-band

peak of the sound pressure within 2000Hz becomes a narrow-band peak, and multiple

reductions of sound pressure at resonant frequencies can be achieved. The second

way is optimizing and designing the periodic networks with the maximum number of

resonant frequencies. We can get good reductions of the sound pressure similar to

results of the first way. Since periodic tire treads can cause the periodic vibrations of

the tire, small transverse pipes without connecting to the optimized network should

be inserted into the spaces between the optimized network. The cross-sectional area

can result in the shifts of the resonant frequencies, but has no influence on the number

of the resonant frequencies.

The same optimization methods as used for the tire treads can be applied to the

design of the road texture. Similar conclusions can be obtained, because the road

textures are also the network between the tire and the road. So for the road texture,

we only investigated the influence of the dimensions of the bricks in the contact zone

on the number of resonant frequencies. The optimized dimensions of the bricks with
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a maximum number of resonant frequencies are obtained.

Based on the studies in this chapter, we know that by optimizing the networks

between the tire and the road, the sound pressure fields can be improved. So we can

use the network to reduce the sound pressures at its resonant frequencies.





Chapter 7

Conclusions and future work

7.1 Conclusions

Tire/road noise is the dominant source of the noise from the cars at speeds above

approximately 50kph for properly maintained automobiles [1]. Many researches have

been done to reduce the noise. The generation and radiation mechanisms of the noise

are presented and studied by a lot of researchers. However, the horn effect and the pipe

resonances, which are two noise radiation mechanisms, should be taken into account

in the same model. Thus, new designs of the tire treads and road texture can be

found for the noise reduction. In this work, design methods for the tire treads and

road textures and computational methods for the noise reduction are developed.

The tire treads and road textures can be seen as the networks in the contact zone

between the tire and the road. Around the resonant frequencies, the amplification

of the sound pressure by the horn effect can be reduced by the networks. So nu-

merical methods for the calculation of the resonant frequencies of the network are

developed. Since the network has open ends for which the end correction should be

taken into account when we calculate the resonant frequencies, numerical methods

for the determination of the end corrections of the pipes with arbitrary flanges are

proposed. In order to reduce the amplification of the horn effect around the wanted

resonant frequencies, an optimization method of the network structure based on the

genetic algorithm is developed. By optimizing the junction types and the positions

of the network, we can get the network with wanted resonant frequencies. The more

resonant frequencies the network has within 2000Hz, the more reductions of the am-

plifications can be obtained. Therefore, we can also use the optimization methods to

design networks with maximum number of the resonant frequencies within 2000Hz.

The tire/road system and the networks in the contact zone can be considered as the
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flanged networks. In order to estimate the value of the reduction, multi-domain cou-

pling methods are developed. The network in the contact zone is a two dimensional

structure. The multi-domain coupling methods can also be applied to solve three

dimensional networks with arbitrary flanges.

The methods proposed in this work are validated with measurements. First we

use a wooden cylinder and several wooden networks to compare the predicted results

obtained by the methods introduced before and the measured results. The availability

and effectiveness of the methods are proved by good agreements. Then a real tire is

measured and calculated. Since it is difficult to estimate the dimension of the network

in the contact zone, the agreements between the predicted and measured results are

not as perfect as the agreements in the wooden cases. But based on the results that

we have, we can still conclude that the resonances of the networks can reduce the

amplification around the resonant frequencies, and the methods that we developed

can be applied to the design and optimization of the tire treads and the road textures.

The systematic analysis tools developed for the flanged networks are used for the

real tire and road. By optimizing the tire treads, multiple reductions of the amplifi-

cation of the horn effect can be seen. Two types of optimized tire treads are obtained.

In the first optimization, we optimize the treads for the targeted resonant frequencies,

and for the second type the treads are optimized to get the periodic structures with

the maximum number of resonant frequencies. Since the tire treads also influence

other noise generation mechanisms, such as air-pumping and tire vibration, we can

not give the optimal tire treads from the aspect of noise radiation. The systematic

analysis tools should be used together with other design tools for other mechanisms.

Otherwise, the networks that we design maybe cause other enhancement of the noise,

for example tire vibrations.

For the road textures, we can get the similar conclusions as for the tire treads,

because both of them can be seen as the networks in the contact zone. So only the

dimension of the road bricks in the contact zone is studied. Then we choose the texture

with maximum resonant frequencies to estimate the influence on the horn effect. We

can see the reductions of amplifications of the horn effect by the texture around the

resonant frequencies.

7.2 Future work

From the aspect of the tire/road noise radiation, systematic analysis tools of the tire

treads and road textures for the reductions of the amplifications of the horn effect are

developed. Based on the present work, future work can be continued:
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(1) The road in this work is modeled as the rigid surface. Porous road should be

taken into account in the model.

(2) In the multi-domain coupling method, the equations for two dimensional net-

works are only suitable for the networks with square junctions. These equations should

be developed for the rectangular junctions.

(3) Besides the horn effect and the pipe resonances, more mechanism should be

studied together in order to reduce the tire/road noise.

(4) More possible applications of the network resonators should be explored for

the noise control.
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