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Abstract

The need to distribute massive quantities of multimedia content to multiple users has increased tremen-

dously in the last decade. The current solution to this ever-growing demand are Content Delivery

Networks, that handle nowadays the majority of multimedia traffic by means of a distributed architec-

ture. This distribution problem has also motivated the study of new solutions such as the Information

Centric Networking paradigm, whose aim is to add content delivery capabilities to the network layer by

decoupling data from its location. In both architectures cache servers play a key role, allowing efficient

use of network resources for content delivery. As a consequence, the study of cache performance

evaluation techniques has found a new momentum in recent years.

In this dissertation, we propose a framework for the performance modeling of a cache ruled by the

Least Recently Used (LRU) discipline. Our framework is data-driven in the sense that, in addition to the

usual mathematical analysis, we address two additional data-related problems: the first one is to propose

a model that is a priori both simple and representative of the essential features of the measured traffic.

The second one is the estimation of the model parameters starting from traffic traces. The contributions

of this thesis concerns each of the above tasks.

For our first contribution, we propose a parsimonious traffic model featuring a document catalog

evolving in time. We achieve this by allowing each document to be available for a limited (random)

period of time. To make a sensible proposal, we apply the “semi-experimental” method to real data.

These “semi-experiments” consist in two phases: first, we randomize the traffic trace to break specific

dependence structures in the request sequence; secondly, we perform a simulation of a LRU cache with

the randomized request sequence as input. For a candidate model, we refute an independence hypothesis

if the resulting hit probability curve differs significantly from that obtained from original trace. With

the insights obtained, we refute the widely used Independent Reference Model (IRM) for our data and

iii
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propose a traffic model based on Poisson cluster point processes.

Our second contribution is a theoretical estimation of the cache hit probability for a generalization

of the latter model. For this objective, we use the Palm distribution of the arrival process to set up a

probability space whereby a document can be singled out for the analysis. In this setting, we then obtain

an integral formula for the average number ofmisses. Finally, bymeans of a scaling of systemparameters,

we obtain an asymptotic expansion for the latter integral with large cache size. This expansion quantifies

the error of a widely used heuristic in the literature known as the “Che approximation”, thus providing

both a justification and an extension for the considered class of processes.

Our last contribution concerns the estimation of the model parameters. We tackle this problem in

the case of the simpler IRM model. By considering its parameter (a popularity distribution) to be a

random sample, we implement a Maximum Likelihood method to estimate it. This method allows us

to seamlessly handle the censor phenomena occurring in traces. By measuring the cache performance

obtained with the resulting model, we show that this method provides a more representative model of

data than typical ad-hoc methodologies.



Résumé Étendu

La nécessité de distribuer des quantités massives de contenus multi-média à un nombre croissant

d’utilisateurs s’est accrue au cours de la dernière décennie. La solution actuelle pour cette demande en

croissance constante est fourni par les systèmes connues sous le nom de Content Delivery Networks,

qui gèrent actuellement la majorité du trafic multi-média en utilisant une architecture distribuée. Ce

problème de distribution a également motivé l’étude de nouvelles solutions tel que celui proposé par

l’Information Centric Networking, dont l’objectif est d’ajouter des capacités de livraison de contenus

à la couche réseau, moyennant un découplage des données et de leur localisation. Dans ces deux

architectures, les serveurs cache jouent un rôle clé, en permettant un usage efficace des ressources de

réseau pour la distribution de contenus. En conséquence, l’étude des techniques pour l’évaluation des

performances des serveurs cache a trouvé un nouvel élan ces dernières années.

Dans cette thèse, nous proposons un cadre complet pour lamodélisation des performances d’un cache

utilisant la politique de remplacementLeast RecentlyUsed (LRU). Notre cadre considère, outre l’analyse

mathématique, deux procédures qui relient les données au modèle : Dans la première procédure, nous

proposons un modèle simple qui est a priori représentatif des caractéristiques essentielles du trafic

mesuré; dans la deuxième nous estimons les paramètres du modèle à partir des traces de trafic. Les

contributions de cette thèse concernent chacune des procédures mentionnées. Dans la suite, nous

décrivons succinctement chacune de nos contributions.

v
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Proposition d’un nouveau modèle de trafic

Dans notre première contribution, nous proposons un modèle de trafic parcimonieux (i.e. à petit nombre

de paramètres) qui décrit un catalogue évoluant dans le temps. Pour effectuer un choix judicieux du

modèle, nous appliquons la méthode dite « semi-expérimentale » en utilisant deux jeux des données

réelles. Ces données sont des traces de trafic provenant des systèmes des caches du réseau de l’opérateur

Orange. Les semi-expériences menées consistent en deux étapes :

1. d’abord, nous randomisons la trace en cherchant à briser d’éventuelles structures de dépendance

stochastique;

2. ensuite, nous simulons un cache LRU avec la séquence de requêtes randomisé comme ci-dessus.

Par la suite, pour tout modèle candidat, nous réfutons une hypothèse d’indépendance si la courbe de

probabilité de «hit» diffère significativement de celle obtenue avec la trace initiale. Nous avons conduit

des semi-expériences visant à réfuter les hypothèses suivantes

(i) Indépendance totale des instants d’arrivées des requêtes;

(ii) Indépendance des instants de parution des documents dans le catalogue;

(iii) Indépendance des instants de requête d’un document donné.

De plus, nous cherchons l’échelle de temps ou l’hypothèse (i) commence à être significative.

Les résultats de ces semi-expériences nous conduisent à réfuter la modélisation de nos données

au moyen de l’« Independent Reference Model » (IRM). Bien que ce modèle soit très utilisé dans

la littérature du domaine, l’échelle de temps de nos données est trop longue pour que les hypothèses

d’independance qu’il exige restent valides.

Néanmoins, les résultats de ces expériences nous mènent naturellement à proposer un modèle de

trafic basé sur des processus de type « cluster » poissoniens. Ce modèle consiste en deux couches (voir

Figure 1):
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Temps 
a’’ 

Processus d’arrivé au catalogue 

Processus de requêtes des documents 

a’ a 

Processus de requêtes totale 

Figure 1: Une réalisation du processus d’arrivée au catalogue et requêtes. En haut: Les fonctions
« boîtes » représentent la durée et la popularité de chaque document par la hauteur et la longueur
respectivement. En bas: Une réalisation des processus de requêtes de documents. Leur superposition
génère le processus de requêtes total.

• La première couche modélise les instants d’apparition des documents dans le catalogue. Nous

considérons que ces instants sont générés par un processus de Poisson homogène de taux γ.

• Dans la deuxième couche, qui dépend de la première, se trouvent les requêtes vers chaque

document. Ces requêtes sont modélisés par un processus de Poisson homogène de durée finie qui

commence à un instant d’arrivée défini dans la première couche. L’intensité et la durée de ces

processus est aléatoire et fixée pour chaque document.

La superposition des deux couches génère le processus total de requêtes.

Ce modèle a une structure suffisamment riche pour représenter un catalogue de documents évoluant

dans le temps et assez simple pour permettre une analyse mathématique de la probabilité de succés ou

«hit probability» qui est la mesure de performance que nous étudions dans cette thèse.
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Ces travaux on été présentés à la conférence ITC 2014 en collaboration avec Bruno Kauffmann,

Alain Simonian et Yannick Carlinet [3].

Estimation de la probabilité de hit

Notre deuxième contribution est une estimation théorique de la probabilité de hit pour une généralisation

du modèle de cluster proposé précédemment. Au lieu d’utiliser une fonction «boîte» pour modéliser

l’intensité de requêtes d’un document, nous considérons une fonction aléatoire positive λ quelconque,

presque sûrement intégrable par rapport au temps.

Dans la première partie de notre analyse, nous utilisons la distribution de Palm du processus

global pour construire un espace de probabilité où un document peut être séparé et analysé de façon

indépendante du reste des documents. Ce cadre probabiliste nous permet d’étudier le comportement

d’un document « moyen ». En particulier, grâce à la nature de la discipline LRU, cette décomposition

est très adaptée pour estimer la probabilité de hit sous cette politique.

En travaillant sous la mesure de Palm, nous obtenons une formule intégrale pour le nombre moyen

de requêtes «miss» µC pour un cache de taille C (notons que cette quantité nous permet d’en déduire

immédiatement la probabilité de hit). La formule est donnée par

E[µC ] = E[m(TC)]

où TC représente le temps de sortie d’un objet dans le cache etm(t) est donné par

m(t) = E

[∫ ∞
0
λ(u)e−(Λ(u+t)−Λ(u)) du

]
, t ≥ 0 .

Cette dernière quantité n’est autre que le nombre moyen de «miss» dans un cache qui élimine un

document après t unités de temps s’il ne reçoit pas une nouvelle requête dans cette durée.

Pour rendre applicable cette formule intégrale, nous appliquons un « scaling » des paramètres du

système en supposant la tailleC du cache grande et que le taux d’arrivée γ des documents proportionnel
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à C. Ceci nous permet d’obtenir un développement asymptotique de E[µC ] sous la forme

E[µC ] = m(tθ) +
e(tθ)

C
+ o

(
1

C

)

ou le terme d’erreur e(tθ) ne dépend que de la fonction m et ses dérivés et tθ est appelé «temps

caractéristique» du cache pour la charge θ = C/γ. Le temps caractéristique tθ est donné par l’équation

tθ = M−1(θ) ; M(t) =

∫ t

0
m(s)ds.

Ce terme « temps caractéristique » n’est pas choisi au hasard: le développement quantifie l’erreur de une

heuristique très utilisé dans la littérature connue comme l’«Approximation de Che» qui dépend aussi

d’un temps caractéristique similaire. Nous démontrons que ce temps caractéristique coïncide avec celui

de notre développement et que l’approximation équivaut à tronquer notre développement à l’ordre 0.

Par cette résultat, nous justifions et étendons cette heuristique pour la classe des processus considérée.

Une version preliminaire de ces travaux a été présenté dans l’article ITC26 déjà mentionné [3]. La

version génerale et complète a été soumis au journal « Stochastic Systems » en collaboration avec Carl

Graham et Alain Simonian et il est à ce jour en cours de révision [1] .

Estimation de paramètres

La dernière contribution de nos travaux concerne l’estimation des paramètres dumodèle. Nous abordons

ce problème dans le cas le plus simple du modèle IRM.

Les paramètres de ce modèle de trafic sont la taille du catalogue K et la distribution de popularité

R1, R2, . . . , RK . Nous montrons que l’estimation de ces paramètres avec la méthode du Maximum de

Vraisemblance est pratiquement infaisable. Pour nous placer dans un cadre où nous pouvons appliquer

cette méthode, nous modifions le modèle IRM en considérant que la distribution de popularité n’est pas

constante mais est un échantillon aléatoire tiré d’une distribution inconnue g. Nous appelons ce modèle

« IRM-Mixed » (IRM-M) car la distribution du nombre de requêtes par document suit alors une loi

de Poisson composée avec avec distribution «mélangeante» g. Nous remarquons que ce modèle peut
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être considéré comme intermédiaire entre IRM et le modèle de cluster que nous avons proposé, où le

nombre de requêtes de chaque document suit aussi une loi de Poisson composée.

Dans le cas du modèle IRM-M, l’estimation par la méthode du Maximum de Vraisemblance est

alors traitable et nous implémentons un algorithme pour l’appliquer. Un avantage additionnel de cette

méthode est qu’il permet de traiter de façon transparente les phénomènes de censure qui interviennent

dans les données: par exemple, les documents sans requêtes ne laissent pas des trace de trafic, et donc

une partie de la distribution du nombre de requêtes n’est pas observable.

Nous évaluons notre méthode suivant trois axes:

(i) l’estimation de la distribution mélangeante g qui représente la popularité de chaque document;

(ii) l’estimation de la distribution mélangée Poisson(g) qui représente le nombre de requêtes par

document;

(iii) l’estimation de la probabilité de hit d’un cache LRU

Nous démontrons que notreméthode fourit unmodèlemoins biaisé et plus représentatif des données.

Ces travaux ont été présentés à la conférence VALUETOOLS 2015 en collaboration avec Bruno

Kauffmann [2] .
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Chapter 1

Introduction

1.1 What is Caching?

In computer systems and networks, caching is a trade-off between storage and transfer resources that
increase the system efficiency. For many use-cases, caching actually makes the difference between a
feasible and a non-feasible system.

Caching strategies are implemented on systems where one or more clients request data from one or
more sources, with a broad definition of client and source. The cache component acts as an intermediary
between the source and the client, intercepting all client requests. At each client request, the cache
verifies if it has already stored the requested data. If it is the case, the request is a hit (Fig. 1.1a) on the
cache and the data is transferred to the client directly from it. Otherwise, the request is amiss (Fig. 1.1b)
and the cache forwards the request to the source, possibly saving the requested data at the expense of
another. The rule used for deciding when and what to erase and store is called cache policy.

Caching provides an increased system efficiency thanks to the so-called locality principle. This
principle can be informally defined as the tendency for clients to request only a small subset of the
source’s data at any given time frame. Among the factors [60] affecting locality we can quote:

• Content popularity

• Temporal correlations of requests

• Spatial correlations of requests

The terms temporal locality and spatial locality are usually interchangeably used with temporal and
spatial correlation.

A good caching strategy will exploit these tendencies by implementing an eviction policy that main-
tains most of the “local” subset most of the time. Due to the universality of the locality principle [18],

1
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Client(s) Cache Source 

(a) Cache handling a hit request

Client(s) Cache Source 

(b) Cache handling a miss request

Figure 1.1: Generic caching scheme

caching strategies have been successfully used in many contexts. We now proceed to review some of
them.

Some Classical Caching Applications

Some well known examples of caching strategies can be found in Table 1.1.

Cache System Data Client(s) Source(s)
CPU Memory Pages, Instructions CPU RAM
DNS Name-IP, Name-Name Pairs DNS Servers DNS Servers
Web (Client) Multimedia, HTML Files Web Users Web Servers
Web (Server) Multimedia, HTML Files Web Users Web Servers, Repositories

Table 1.1: Some applications of caching strategies

Themost classical use of caching is found within the context of computer architecture. A CPU cache
is an intermediate memory between the CPU and the RAM, with a smaller capacity and faster access
time, that stores memory pages and instructions. In this application, temporal correlations (repeated
instructions for loops) and spatial correlations (continuous blocks of referred memory) are exploited.
Without CPU caches, either the performance would be degraded, since RAM access would not be at the
level of modern CPU clock speed; or it would be costly to avoid the latter bottleneck, since it would then
be necessary to have large quantities of expensive fast access RAM. For a comprehensive introduction
to this subject, see [52, Ch. 5.3].

In the context of network architecture, caching is essential for the Domain Name System (DNS),
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which is a distributed database in charge of translating domain names (e.g. www.orange.com) into IP
addresses (e.g. 185.63.192.20). In this system, every DNS server in the network acts as a cache for
hostname-IP pairs. Again temporal and spatial (regional) correlations are exploited, but in addition,
popularity is also exploited since a few hosts take most of the queries [39]. The latter is critical, since on
DNS a query is recursively repeated in each server until one provides the answer back. Caching allows
the answers to be distributed in the system according to the demand and fulfills the high responsiveness
requirements of the system. For details about DNS, see [41, Ch. 2.5].

Another application related to networks is the caching of Web resources such as HTML pages,
images and video. In this domain, caching is applied at two levels: The first one is at application level,
wherein a cache is simply a collection of files in the user’s disk; the second one is at the network level
wherein a cache is a proxy server placed near the final users.

While application level caches are widely used in web browsers and smartphone apps, they can
only exploit temporal correlations of a single user. On the other hand, cache servers increase more the
network efficiency since they also exploit the spatial correlation of all users in the region where servers
are placed and popularity of content as well. This system have been in use by companies and universities
since the early days of the web, but its efficiency has declined in recent years due the rise of encrypted
communications and the refusal of content providers to replicate their data without authorization.

Nonetheless, caching still plays an important role in today’s Internet. In fact, caches are a key
component in Content Delivery Networks (CDNs) and the Information Centric Networking (ICN)
paradigm. These architectures address the problems arising from the mismatch between the original
and current purpose of the Internet: while originally conceived to access remote resources in a host-to-
host fashion, today’s Internet is mostly used for content retrieval. We briefly review these architectures
in the following.

Caching in the Internet of today and tomorrow: CDNs and ICN

CDNs are large networks of servers whose objective is to efficiently distribute content to Internet users.
To accomplish this, CDNs are geographically dispersed so that every user is close to an edge server of
the network (see Figure 1.2) which performs both replication and caching. In consequence, the CDN
architecture exploits all three locality factors to efficiently deliver content to users. Additionally, they
are transparent from the user’s point of view: their content requests automatically re-routed by the CDN
to the most appropriate edge server to deliver it.

Initially conceived as a load balancing strategy to cope with “flash crowd” problems, CDNs have
now become crucial for the functioning of the Internet. Among the factors that helped this phenomenon
to occur are the huge number of users on today’s Internet, the increasing availability of high-speed
broadband access, and the rise of web video and User Generated Content (UGC). As an example, more
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Edge Server 

Edge Server 

Edge Server 

Edge Server 

CDN’s Content 

Distributor 

Content Provider 

Figure 1.2: A simplified CDN model (based on [8])

than 60% of video traffic is nowadays delivered by CDNs and it is expected that this number will increase
to more than 70% by 2019 [11]. Both large content providers such as Facebook or YouTube, and ISPs
use CDNs to deploy their services. They either implement their own CDNs or contract specialized
companies such as Akamai Technologies and Limelight Networks.

CDNs are beneficial to all actors involved in the process. On the one hand, content providers and
users benefit from high availability, low access times and an overall increase in Quality of Service. On
the other hand, ISPs obtain a decreased usage of their network resources and increased robustness to
traffic bursts since CDNs also act as load balancers. For a comprehensive treatment on the subject of
CDNs, see [8, 63].

While the CDN architecture has been an organic response to the changes in the Internet’s utilization,
the ICN architectures address this problem by redesigning the network layer. In particular, one of its
main objectives is to have an scalable network architecture by adding content delivery capabilities to the
network layer. To this aim, the principal design choice in ICN architectures is to decouple the naming
from the location of content. Thus, such an architecture, the network is able to deliver content by just
knowing which specific data the client is requesting (see Fig. 1.3). In practice, this design principle
is implemented by replacing named hosts with named data, which allows to implement the desired
scalability techniques at the network layer.

In particular, all major ICN proposals feature in-network caching, allowing data to be cached in
routers and other intermediary devices. Many aspects of caching in ICN architectures are the object
of active research nowadays. In particular, the interplay between caching and routing policies require
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Figure 1.3: Simplified ICN retrieval model

the understanding of their interactions in such an architecture. For an overview of the different ICN
architectures, advantages and challenges, see Alghren et al. [4].

The ICN and CDN architectures have renewed the interest in cache performance modeling in recent
years. In consequence there has been an increased demand for dimensioning and exploratory tools to
analyze the various “what-if” scenarios arising in many studies on these subjects. We continue this
introductory exposition with an overview of the performance evaluation process.

1.2 Performance Evaluation

In simple terms, performance evaluation is the process of estimating the performance indicators of a
system as a function of its characteristics. A performance indicator measures “how well” the system
functions in an specific area of its behavior: for example, in computer networks, usual performance
indicators include its throughput, loss rate and latency. Performance evaluation is an important task for
the dimensioning of systems, in which the key question to answer is “What is the minimum amount of
resources required for the system to attain a given performance level?”.

Among the available performance evaluation methods, we concentrate our efforts on the modeling
approach rather than simulation or experimentation. In this method, the system is abstracted to a
mathematical model and its characteristics to the model parameters. The model is then analyzed to
obtain estimates for performance indicators in terms of the input parameters. This method has two
advantages with respect the others:
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• First, performance formulas provide intuition and insight of how the system works in function of
the parameters. This intuition takes more time and resources to build the other methods;

• secondly, calculating formulas in a computer is less resource-demanding than simulation or
experimentation, allowing to obtain results faster. This is convenient when we want to analyze
and compare many “what-if” scenarios.

This process of obtaining estimates from mathematical models is what is often called performance
evaluation. In our work, however, we also consider the procedures to relate traffic measurements with
the model. In the following, we discuss these data related processes and how, in conjunction with the
mathematical analysis, they conform a workflow for performance evaluation.

Data Driven Performance Evaluation

In Figure 1.4 we show our workflow for performance modeling.
The workflow starts with a model definition procedure, in which we search the key properties of

the system to be accounted for the model. We determine the importance of a property by measuring its
impact in the performance indicators to estimate. The objective of this initial step is to obtain a model
that is both mathematically tractable and accurate. Tractability is usually correlated with simplicity,
and we thus prefer models with few parameters.

Once we have defined the model, we can proceed with the mathematical analysis (usually known
as performance evaluation) to obtain theoretical estimations for the performance indicators of interest.
These results can be readily used to explore the system performance by tinkering with the parameters.
However, when evaluating a real system we must first pass by a parameter fitting procedure, in which
we translate the system data into the model parameters. Finally, the fitted parameters joint with the
theoretical formulas allow us to obtain the desired performance indicator estimate.

In the context of this workflow we now specify the setting and the questions we answer in this work.

Caching Performance Modeling

The performance of a cache server can be evaluated by various metrics. In our modeling, we focus on
the hit probability or hit ratio, which is defined the portion of requests served by the cache, that is

Number of hit requests
Number of requests

.

At this stage we make various hypotheses about the cache system. Note that we do not consider
these assumptions as part of the “model definition” step in the above workflow.

We thus suppose that in the cache system:
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Figure 1.4: Performance Evaluation Workflow

• Request are treated instantaneously: a non-instantaneous treatment could affect the hit ratio if
many requests to the same content arrive in bursts. However, we consider this effect negligible
as it affects few request and thus it does not have a significant impact on the hit probability.

• Disk access is instantaneous: This affects other performance measures such as the latency. In
consequence it does not affect the hit probability.

• Network access is instantaneous: Again this could affect burst of requests for the same content
and the latency as well. We neglect this by simplicity.
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• All files have the same size: We make this assumption since we do not have data to obtain the file
size distribution. Note however that if this data is available, it can be incorporated to our model
proposal (see the conclusion of Chapter 3).

• The cache is always consistent: When content is dynamic, a document can change in the source
and thus it can differ from a cached version of it. In other words the cached content is inconsistent
with the source. We do not consider this issue by simplicity.

Under these hypotheses, we model a cache as a set with C ≥ 0 elements. We call the quantity C
the cache size or capacity. The hit probability is then a function of the capacity C 7→ qC expressed as

qC =
Number of hit requests in a cache of size C

Number of requests
.

The set of stored elements evolves according to the caching policy, which is defined by a storing
decisionD and a replacement algorithmD [56]. Upon a miss event, the cache appliesD and, if positive,
appliesR to make room for a new document. Some common caching policies are:

LRU D: Always R: Least recently referenced document
LFU D: Always. R: Least frequently referenced document
q-LRU D: With probability q R: Least recently referenced document
FIFO D: Always R: Last in “first in first out” queue
RANDOM D: Always R: Randomly chosen
TTL D: Always R: After a document’s timeout (independent of miss).

From this list, LRU is the policy that has received the most attention. To implement an LRU cache in
our model we make the set representing the cache a self-organizing list by adding the following update
mechanism (see Fig. 1.5): Upon a document request:

• If the document is already stored in the cache, then it is moved to the front of the list, while all
documents that were in front of it are shifted down by one slot;

• otherwise, a copy of the requested document is placed at the front of the list, and all other
documents are shifted down by one slot, except the last document which is eliminated.

In this work, we concentrate in this policy since it is simple to implement, has proved to be efficient
and does not need any parameter tweaking. All our modeling assumptions plus the fixation of the cache
policy makes the function C 7→ qC depending only on the stochastic model chosen for the document
request sequence. Now that we have set up the cache model, we ask below three relevant questions
regarding each of the key steps in our workflow.
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Hit Request 

Miss Request  
out 

Figure 1.5: The LRU policy handling a hit and a miss request on a cache of size C = 5.

Model Definition:
•Which assumptions can be reasonably made on the stochastic process modeling the request sequence?
Mathematical Analysis:
• Can we deduce a theoretical expression or approximation for H(C) from such a model?
Parameter Fitting:
• How can we reliably estimate the parameters of such a model from traffic traces?

The aim of this thesis is to contribute to answer these questions. Before stating our contributions
we review the related work regarding each of the latter questions.

1.3 Related Work

We review the related work for each of the non trivial steps of our workflow (Figure 1.4), namely
model definition, mathematical analysis and parameter fitting, in the setting of LRU cache performance
evaluation.

Model Definition

To define traffic model from traces, we use the so-called semi-experimental method. A semi-experiment
consist in a randomization of the traffic trace designed to break a correlation structure on it, and an
oracle to determine if the randomized trace is similar to the original traffic trace. Thus, it allows us
to decide whether the broken structure is relevant. The oracle depends on the problem at hand, but is
usually the difference of a relevant quantity calculated numerically or via simulations.

This procedure was first proposed by Erramilli et al. [20] to study long range dependency (LRD)
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on Internet traffic. With the of studying LRD in Internet traffic, Hohn et al. [33] generalized this
procedure and coined the term “semi-experimental”. In the context of caching performance evaluation,
this methodology has been used by Traverso et al. [59] to propose a shot-noise point process model
for the request sequence. Other applications include the study of wireless traffic [54] and bandwidth
estimation for a model based on Kelly networks [6].

Stochastic Models and Theoretical Hit Ratio Estimates

Independent Reference Model

From the early research on LRU cache performance evaluation, the main stochastic model for analysis
has been the Independent ReferenceModel (IRM). Themain feature of IRM is its simplicity: the requests
are modeled as an i.i.d. sequence taking values on the finite set {1, . . . ,K} called the catalog. Content
popularity is then modeled by the distribution of the sequence: P[X = k] = λk for k = 1, . . . ,K.

Many of the key ideas used in this thesis have been already explored in the f ramewokr of IRM. In
some cases, LRU caches were not directly studied, but rather the related Move-to-Front (MTF) search
list of sizeK. These systems are closely related due a relationship between LRU cache misses and the
MTF list search cost. In fact, we have the event equality

{Miss in an LRU cache of size C} = {Search cost in an MTF list is larger than C} . (1.1)

Under IRM, the dynamics in the cache is ergodic and thus the stationary miss probability is the
main quantity of interest. Notably, Flajolet et al. [22] derived exact combinatorial formulas for the miss
probability for an arbitrary popularity.

The Che Approximation

Apart from some special cases, the latter formulas derived by Flajolet et al. contain sums with an
exponential number of terms, which renders them practically intractable. A key contribution towards
approximative approaches was made by Fill and Holst [21] who re-derived the results already obtained
by Flajolet et al. by embedding the IRM sequence into a Poisson process. In this model, each document
has its own request process ξk, which is a marked Poisson process with request rate λk and fixed mark
k. The request sequence is then modeled with the superposition of all document processes. There is an
ambiguity in the literature because the latter embedded process and IRM are often conflated.

The above embedding technique enabled Che et al. [10] to propose a heuristic method, now called
the Che approximation, to calculate hit probability for a LRU cache. In their work, they express the hit
probability of a LRU cache in terms of a family of exit times {T kC}Ki=1 that represent the elapsed time
between the document request and its eviction. Specifically, since an object at the top of the cache is
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evicted after C documents were requested, we have that T kC is the following first passage time

T kC = inf

t > 0 :

 ∑
j=1; j 6=k

1{ξj(t) ≥ 1}

 ≥ C
 .

In order to simplify the analysis, the authors argued that in the case of a Zipf popularity distribution, we
can approximate the hit probability as follows:

Che.1 First, we assume that the whole family has the same distribution, that is, T kC
d
= TC for some

random time TC .

Che.2 Secondly, we assume the time TC can be well approximated by a single constant tC called
the characteristic time. This time is defined as the solution to the equation:

C =
K∑
k=1

(
1− e−λktC

)
. (1.2)

Che.3 Finally, the hit probability is then estimated as the average

qC =

K∑
k=1

λk

(
1− e−λktC

)
K∑
k=1

λk

(1.3)

The Che approximation proved to be empirically accurate even for non Zipfian popularity profiles, so
much that it is now the de facto method to estimate the hit ratio for a LRU cache [26, 7, 28, 24, 30, 55].

In parallel, another approximative approach was proposed by Jelenković [35], who studied an
asymptotic equivalence for the miss probability asK and C grow large. Later, using some of the latter
results with the Poisson version of IRM, Jelenković and Kang [36] developed an asymptotic estimation
for the miss probability in the case where the popularities have a Zipf profile. They use the scaling
C = δK with fixed δ < 1 to obtain the asymptotic estimation for the miss probability. Although they
do not mention it, their argument is in fact a rigorous justification of the Che approximation.

The question of quantifying the error incurred by the Che approximation has been partially answered
by Fricker et al. [26], where the authors provide a justification for a Zipf popularity distribution when
the cache size C grows to infinity and scales linearly with the catalog sizeK. The error incurred by the
approximation is estimated for the exit times but not, however, for the hit probability.
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Beyond IRM

While the IRM framework is tractable, its source of locality is only the popularity distribution. In fact,
the very definition of IRM immediately implies that there are no temporal correlations in the request
sequence.

Since web traffic evidences the presence of temporal correlations [38], there has been interest in
models that take into account such phenomena. A Markovian model was proposed by Psounis et
al. [53] and later analyzed by Panagakis et al. [51] who obtained approximate expressions for the miss
probability by adapting the Che heuristic. In a similar vein, Jelenković and Radonavić [37] propose a
Semi-Markov stochastic process and estimate the asymptotic miss probability as well.

More recently, Traverso et al. [59] proposed a shot noise point process as a traffic model for which
Garetto et al. [29] obtained theoretical estimates for the miss probability by adapting the Che heuristic.
The approximation’s accuracy was treated by Leonardi and Torrisi [42], where limit theorems for the
exit time are provided for C going to infinity, together with an upper bound of the error on the hit
probability.

Parameter Fitting

Content Popularity Estimation

Content popularity is the main parameter of the IRMmodel. Due to the fact that popularity distributions
usually exhibit a power law behavior, a common method to estimate them is to fit its rank-frequency
distribution in double logarithmic scale. This approach has been recently criticized by Clauset et al. [12].
The main issue is that the rank-frequency plot is not a reliable statistic since, for example, it can exhibit
power-law behavior even if the ground-truth does not.

Despite these problems, the use of the latter method is still pervasive in performance evaluation in
the case of IRM [27, 30] and traffic characterization studies [31, 34, 9]. Authors try to improve these
methods by means of various adjustments. In [34], for example, authors separate in three parts the
rank-frequency plot and adjusting different curves in each piece, and in [31], authors adjust “stretched
exponential” curves instead of power-laws.

The latter adjustments indeed solve some of the fitting issues. However, in previous studies [30],
it has been noted another problem in the context of performance models, which arises from the fact
that, within the model, objects can have zero requests. In consequence, from the point of view of the
network operator, objects with no request are not observed in traces. In statistical jargon, the sample is
zero-censored and not taking this fact into account leads one to underestimate the catalog size, which
has an impact on the conclusions drawn from the fitted model.
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Maximum Likelihood Estimation

In the present work, we address the issues presented above by using Maximum Likelihood (ML)
estimates. This method allows us to seamlessly handle the zero-censored case and it is proposed by
Clauset et al. [12] as a robust method to fit heavy tailed data, which is a common property in popularity
distributions. Maximum likelihood methods have already been in use for flow size estimation [44] and
call center modeling [50]. The latter work uses an approach similar to ours, but it is limited to a specific
parametric model for non-censored data.

The statistical basis of our methods is the estimation of mixed discrete distributions, a subject that
has been extensively studied in the literature. The non-parametric case has been addressed from two
points of view: the first one searches the mixing density in the space generated by Laguerre polynomials
with an exponential cut-off; the estimator is then obtained by a projection on the latter space [57, 13].
However, this estimation method converges slowly with the sample size unless the density belongs to the
aforementioned space. We therefore base our methodology on the second point of view, which assumes
the mixing distribution to be a sum of Dirac masses. The estimation methods are then similar to an
Expectation-Maximization scheme (EM) [43]. As regards the parametric case, EM schemes for finding
the parameters of the mixing distribution are provided for many families in [40]. In both parametric
and non-parametric cases, the estimation algorithms do not handle the case of censored data, and thus
we have to rely on an all-purpose nonlinear optimization solver to obtain our results.

1.4 Contributions and Organization

We here briefly describe the contributions of this thesis at each stage of the performance evaluation
workflow (see Figure 1.6). In addition to the latter contributions, we present in Chapter 5 a global
conclusion and perspectives to the works we have developed. Chapter 6 is an appendix containing some
technical proofs and a brief description of the key algorithms used in this work.

Chapter 2: Model Definition

In this chapter, we propose a parsimonious traffic model which allows us to accurately estimate the hit
probability. With this aim, we study the correlation structure in two large traffic traces by means of the
semi-experimental method. Three semi-experiments were performed on the traces, each one being a
randomization procedure targeting a specific correlation structure in the requests. In each experience,
we compared the hit probability of the original sequence to that of the randomized sequence.

The main conclusions we obtained from these experiences are the following:

• At short timescales, in the order of minutes, the influence of dynamic of the catalog popularity is
negligible and thus IRM is still a good model in this case;
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Figure 1.6: Contributions in the Performance Evaluation Workflow

• at longer timescales, this influence is significant on the hit probability;

• at long timescales, the request sequence for a given document can be modeled as an homogeneous
Poisson process within a finite lifespan and the times in which documents become available can
be modeled as an homogeneous Poisson process. These requirements are captured by the well
known Poisson cluster process.

The above contributions were published in the first part of the article presented at the ITC26
conference [3] in collaboration with Bruno Kauffmann, Alain Simonian and Yannick Carlinet. The
contributions presented here were discovered simultaneously and independently from those Traverso et
al. [59] which propose a model similar to ours. However, our proposal differentiates in that we consider



CHAPTER 1. INTRODUCTION 15

a random bivariate model for the source of catalog dynamicity.

Chapter 3: Theoretical Hit Ratio Estimation

In this chapter, we mathematically analyze a generalization of the model we proposed in Chapter 2 in
which the document request sequence is an inhomogeneous Poisson processes. The aim of the analysis
is to rigorously obtain an estimation on the hit probability for large cache size. The main contributions
are:

• We use the Palm distribution associated with the process to set up a probability space in which a
document can be analyzed independently from the rest;

• the above stochastic setting allows us to derive exact integral formulas for the expected number
of misses;

• We obtain an asymptotic expansion for the expected number of misses by means of a scaling of
meaningful quantities of the system. This expansion justifies the use of the Che Approximation
for this traffic model;

• We validate the theoretical results by comparing them to the hit probability obtained via simula-
tions.

A first version of these contributions is provided in a simple case in the above mentioned conference
article [3], and later generalized and refined in [1] in collaborationwithCarlGrahamandAlain Simonian.
The main differences with regards to similar works are the use of Palm theory to rigorously set up the
analysis from beginning to the end; and secondly, our estimates are explicitly calculated in terms of the
system parameters, whereas in the previous results the latter bound depends on an additional variable,
whose optimal value is not explicitly given.

Additionally, the lemmas we developed in this work enabled us to obtain expressions for the transient
hit probability for the IRM and the IRM-Mixture models used in Chapter 4.

Chapter 4: Parameter Fitting

In this section we tackle the problem of parameter fitting for a modified version of the IRM model. In
this model, that we call IRM-Mixture (IRM-M), popularities are treated as a random sample from a
fixed distribution instead of being fixed. IRM-M model the same localities as IRM, but in addition,
it has the advantage of being tractable for parameter estimation. Additionally, IRM-M can be seen
as an intermediary model between IRM and the cluster model we propose in Chapter 2, and thus our
contributions to the inference problem for IRM-M can be helpful in the development of a method for
cluster traffic models. The main contributions are the following:
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• We propose a Maximum Likelihood (ML) method to estimate the popularity distribution from
data traces;

• we show that the latter method can seamlessly handle the fact that documents with zero requests
are not observed.

The contributions of this section were presented in the VALUETOOLS 2015 conference [2] in collab-
oration with Bruno Kauffmann.
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Chapter 2

Model Definition

The objective of this chapter is to define a traffic model to accurately estimate the performance of a LRU
cache. As noted in the introduction, web traffic contains temporal correlations which are not accounted
for by simple models such as IRM.

We thus aim at obtaining a model that reflects these correlations while remaining simple enough
to be mathematically tractable. To accomplish this, we apply the semi-experimental method to two
large traffic traces and identify the key structural properties of the request sequence relevant to a LRU
cache. These characteristics give us clues about the assumptions we can safely make when modeling
the traffic. We eventually propose a model based on cluster point process, and validate it by comparing
its hit probability predictions with the empirical findings.

To start this chapter, we describe the origin and treatment of the traffic traces that form the basis of
our work.

2.1 Datasets

We have gathered two datasets from two services, which have different traffic profiles. See Table 2.1
for a summary.

The first dataset, hereafter named #yt, captures YouTube traffic of Orange customers located in
Tunisia. We have access to the logs of a transparent caching system set up in order to offload the country
international connection. This system is a commercial product from a large company specialized in the
design and management of CDNs.

Operational constraints, such as the limited disk space available for the logs on the cache system,
made the latter system tomiss requests when the traffic load was at its peak. We could estimate, however,

18
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#vod #yt

Origin France Tunisia
Traffic Type Video-on-Demand YouTube
Period 2008 – 2011 January – March 2012
Raw Requests 3.4 Million 420 Million
After Treatment Requests 1.8 Million 46 Million
Total Documents Requested 120 Thousand 6.3 Million

Table 2.1: Summary of datasets

that the number of missing requests was less than 1% in January and February 2012, and less than 9%

in March. Since the number of missed requests increases afterwards, we will focus our study only on
the period from January to March 2012.

In this observation period, we collected around 420 000 000 requests from about 40 000 IP addresses
to 120 000 000 video chunks. For each chunk request in this trace, the logs contain the user (anonymous)
IP address, a video identifier, the time-stamp of the end of session, the number of transmitted bytes, the
duration of the HTTP connection and the beginning and ending position of the specific chunk requested,
the latter information being available for 96% of the data.

The second dataset, hereafter called #vod, comes from the Orange Video-on-Demand service in
France. This service proposes to Orange customers both free catch-up TV programs, pay-per-view films
and series episodes. Probes deployed at the access of the service platforms recorded video requests
from June 2008 to November 2011. The data amounts to more than 3 400 000 requests from 60 000

users to 120 000 videos. The records in this trace consist in the request timestamp, an internal client
(anonymous) identifier and a video identifier.

Treatment

Recall that we wish to base our modeling on document requests. We must first treat the #yt trace by
consolidating the chunk request sequences so as to recover the document sessions that generated them.

We achieve the latter by using the available chunk information, namely the beginning and ending
position of the chunk within its file. This information allows us to chain consecutive requests to the same
document with adjacent chunk positions, and aggregate them to a single request. However, as stated
before, the chunk information is not present in around 4% of the entries. To aggregate the requests in
this subset, we use a time-window criterion: we conflate all requests made by the same user for the video
that have inter-arrival time smaller than 8 minutes. This threshold corresponds to the 95% percentile
of the length session distribution of requests with chunk data1 The result of these procedures is our
working #yt dataset consisting of more than 46 000 000 requests to about 6 300 000 unique documents.

1We select this percentile to exclude sessions of extreme length (there were 185 lasting several days)
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Figure 2.1: Number of requests
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Figure 2.2: Request intensity for #yt

In Figure 2.1a, we show the number of requests of a document as a function of its rank in a log-log
scale. We observe that this profile is not that exactly that of a Zipf law, since it is not a straight line.
With regards to the intensity of requests (Fig. 2.2), there is a clear daily and weekly periodicity with a
slight increase in the load over time.

In the case of the #vod trace, there was no need of the above consolidation procedure. However, the
trace contained two types of “content surfing” entries: the first consisted in requests to movie trailers;
the second consisted in requests with very short duration. We considered that these kinds of requests
were not relevant in terms of cache performance, and we have therefore discarded them from the dataset.
The working #vod dataset resulted in around 1 800 000 requests to more than 87 000 different objects.

In this case, the number of requests profiles is even more pronouncedly non-Zipfian (Fig. 2.1b) than
in the #yt case. As for the request intensity (Fig. 2.3) we observe again a weekly periodicity but with
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Figure 2.3: Request intensity for #vod

volatile load in each week.

2.2 Semi-Experiments

Intuitively, any time correlation in the request sequence has an impact on the performance of a LRU
cache. On one extreme, for a sequence with maximal time correlation (all request are made to a single
document), all requests except the first are hits. On the other extreme, a totally uncorrelated sequence
(no document receives two requests) will obtain no hits.

We thus investigate how three correlations structures in our data can impact the hit probability of a
LRU cache. Specifically, the three structures we investigate are:

(i) The correlations between all request times

(ii) The correlations between the document apparition times

(iii) The correlations between the request times within an individual document request sequence.

Additionally, in the case (i), we look for the time scale where such correlation structure starts to be
significant.

For this endeavor, we use the semi-experimental method [33]. A semi-experiment consists in two
procedures:

1. We shuffle the request sequence in a way that destroys the targeted correlation structure.

2. We use an oracle to tell if the original and shuffled sequences differ significantly.

Note that since we only shuffle the sequence, the number of requests per document remains the same
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Figure 2.4: A schematic view of the global randomization that shuffles all request times.

after the procedure. Thus, our semi-experiments allow us tomeasure the impact of temporal correlations
while leaving content popularity unchanged.

The choice of oracle is application-dependent: For example Hohn et al. [33] use the wavelet
transform as oracle since they studied LRD properties of Internet traffic. In our case, the oracle consist
in first simulating a LRU cache fed with the traces and then compare the resulting hit probability curves.
If they differ significantly, we infer that the broken structure is relevant for the performance of a LRU
cache. Our curve discrepancy measure is the mean absolute percentage error (MAPE): For a model
sequence (yi)1≤i≤N and empirical data (xi)1≤i≤N , the MAPE is defined as

MAPE(x, y) =
1

N

N∑
i=1

|xi − yi|
|xi|

. (2.1)

The MAPE will be our comparison measure for hit probability curves in the remaining of this work.
For the details of the key algorithms for simulation and trace generation see Appendix 6.2. We now

proceed to explain in detail each semi-experiment and its findings.

Overall Correlation Between Requests

In this semi-experiment, we completely break the correlation structure of the request sequence by
placing each request at an i.i.d. uniform time in the interval [0,W ], where W is the size of the
observation window. Any trace shuffled in this manner leads to an IRM sequence, since the process
destroys any dependence structure. Even more, conditional on the number of requests, the sequence for
both individual documents and the ensemble is uniform after the shuffling. Thus, all request processes
are Poisson and the resulting request sequence is an embedded IRM sequence. We call this procedure
global randomization and show an example in Figure 2.4.

In Figures 2.5a and 2.5b, we compare the resulting hit ratio to that obtained with the original
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Figure 2.5: Comparison of the hit probability of the original request sequence versus the results the
global randomization.

trace and observe that the hit probability of the latter is lower for any cache size in both datasets, but
notoriously in the #vod case. Specifically, in the #yt case, the MAPE has a value of 5.0%; this value
might seem low, but it comes mostly from the left of the curve. Since the left part of the curve is
where practical cache sizes lie, this discrepancy, however low, is still important. As for the #vod trace,
the MAPE amounts to 17.3% which confirms the huge difference observed above in Figure 2.5a. We
thus conclude that, at this time scale, the correlation between requests is a meaningful factor for the
performance of LRU caching and that the IRM assumption leads to an underestimation of the hit ratio,
which can be very significant.

Correlation in Catalog Publications

We now examine how sensitive is our data with respect to the publication of new documents to the
catalog. To this aim, we perform a positional randomization, which breaks the correlation structure
between the first requests of documents, which we use as an estimate of the publication time. The
procedure consists, for a given document, in leaving the inter-arrival times of its request sequence
unchanged and jointly shift all of them by a random quantity, as shown in Figure 2.6. More precisely,
let Θ1,Θ2, . . . ,Θk the request times for a document, then the randomization procedure is as follows:

• first, we draw a uniform random number U from the interval [0,W − (Θk −Θ1)];

• then we define the new request sequence Θ∗1,Θ
∗
2, . . . ,Θ

∗
k by Θ∗i = U + Θi −Θ1 for 1 ≤ i ≤ k.

In both traces, the resulting hit probability shows no difference from the original, as observed in
Figures 2.7a and 2.7b. The MAPEs in this semi-experiment are merely 0.3% in the #yt case and
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Positional Randomization 

Time 

Figure 2.6: A schematic view of the positional randomization that shifts the whole request sequence to
a random location, preserving the order of inter-arrival times.
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Figure 2.7: Comparison of the hit probability of the original request sequence versus the results the
positional randomization.

0.1% in the #vod case. We therefore conclude that the correlation structure of catalog arrivals has no
significant impact on LRU caching.

Correlation between Requests of a Document

In this semi-experiment, we aim at breaking the request dependence structure for each document. To
achieve this, we perform a local randomization (Fig. 2.8): For a document with request times (Θk)

N
k=1,

we keep its first and the last request times fixed and only shuffle the ones in between at i.i.d. times
following a Uniform [Θ1,ΘN ]-distribution. Note that this procedure renders the request sequence of
each document an homogeneous Poisson process within the interval [Θ1,ΘN ] and thus breaks any other
correlation structure inherent to the request process of the document.

Figure 2.9a and 2.9b show that, although the resulting hit probability is slightly below the original
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Local Randomization 

Time 

Figure 2.8: A schematic view of the local randomization that fixes the first and last request and shuffles
the times in the middle.
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Figure 2.9: Comparison of the hit probability of the original request sequence versus the results the
local randomization.

for small cache sizes, the MAPE is just 1.6% in the #yt trace and 0.7% in the #vod trace. We thus
conclude that the correlation among requests of a given document has little impact on LRU cache
performance and we can safely neglect it for modeling purposes.

Relation between Correlations and Timescales

We now determine at which time scale the correlation between requests has an impact in the LRU
performance. With this in mind, we design a slightly different semi-experiment where we first extract
sub-traces of different time scales, choosing high load periods. Then we apply the global randomization
semi-experiment to each of these shorter traces. For each dataset, we distinguish three time scales
and the results for each one are shown in Figure 2.10; other time scales lead to results that are just
intermediate to the three presented here.
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Figure 2.10: Comparison between the hit probability of the original trace and the global randomization
at different time scales.

Near the first time scale (one week for #yt and one month for #vod) and beyond, all time scales
have a request correlation structure that approaches the one observed in the full trace, and thus its hit
probability differs significantly from that of the global randomization. Indeed, already at this time scale,
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the MAPEs are of 5.3% and 11.6% in the #yt and #vod datasets, respectively; around the second time
scale (four hours for #yt and one day for #vod), we observe a decrease in the discrepancies as the
MAPEs are 5.0% and 2.3% in the #yt and #vod case, respectively. Though we see that the correlation
structure does not influence strongly the hit probability, we remark again that the underestimation
happens in the left side of the curves which corresponds to practical cache sizes. Finally, for traces
around the last time scale (half hour for #yt and three hours for #vod), the MAPE are 1.4% and 2.3%

for #yt and #vod, respectively, and we thus conclude that there are no significant structures between
requests at this time scale.

Gained Insights

The results of the semi-experiments lead us to three main conclusions:

I1: At large time scales, the correlation structure of the whole request process is not negligible, in
terms of hit probability. Additionally, we infer that most of the correlation comes from the fact
that all requests for the same document are grouped within its lifespan.

I2: The document publications exhibit a correlation structure that does not have a significant impact
on the hit probability. In particular, we deduce that document arrivals to the catalog can be
modeled by an homogeneous Poisson process without losing accuracy on the estimation of the
hit probability.

I3: For a given document, the request process within its lifespan exhibits some structure, but with
little impact of the hit probability. Thus, for a given document, we can approximate the requests
sequence by an homogeneous Poisson process defined on the lifespan of the document while still
preserving the hit probability.

2.3 Definition of the Traffic Model

We build our model for the document request process by following a top-down approach (see Fig-
ure 2.11):

• on the top level, we consider a ground process Γg, hereafter called catalog arrival process; this
point process dictates the consecutive arrivals of documents to the catalog. In our model, Γg is
assumed to be a homogeneous Poisson process with constant intensity γ, according to insight I2.

• let a be the catalog arrival time of a document dictated by the process Γg. This event generates
a document request process ξa determined by two random variables: the popularity Ra and
the lifespan La. Specifically, following insight I3, we assume the process ξa to be Poisson with
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Figure 2.11: Sample of the document arrival and request. Top: Boxes represent the lifespan and popu-
larity by their width and height. Bottom: Sample of document request processes. Their superposition
generates the total request process.

intensity function Ra on interval [a, a + La] and zero otherwise. We assume that the sequence
(Ra, La)a∈Γg is almost surely i.i.d. and that the average number of requests for a document

Λa = Ra · La

is almost surely finite;

• finally, the superposition of all processes ξa for all a ∈ Γg generates the total request process

Γ =
∑
a∈Γg

ξa

that contains the requests to all documents.

The point process Γ is a marked Poisson-Poisson cluster process [15, Sec. 6.3] because both the
ground process Γg and the individual request processes (ξa)a∈Γg are Poisson. The marks indicate the
specific document being requested at that time. Additionally, the process Γ can be regarded as a marked
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Cox process [15, Sec. 6.2], where the random intensity function is given by the shot noise process

S(t) =
∑
a∈Γg

Ra · 1{a ≤ t ≤ a+ La}

for t ∈ R. Note that, since the ground process Γg and the sequence (Ra, La)a∈Γg are stationary, then
the same holds for S(t).

As show in Figure 2.11, the intensity S is superposition of “box” functions that are the request rate
functions for each document. Thus, from now on we refer to this process as the Box model.

2.4 Validation

We now assess the validity of the Box model for the calculation of the hit probability. For this objective,
we first obtain estimations of the model parameters in each dataset. Then, we plug these estimates
into the theoretical formulas for the hit probability (see Chapter 3) to obtain an estimation of the cache
performance. Finally, we compare the values predicted by the model to those obtained by a direct
simulation of a LRU cache fed with the traces.

Estimation of the model parameters

Let K the number of observed documents. For document k, where 1 ≤ k ≤ K, we denote by Nk its
number of requests and by (Θk

1, . . . ,Θ
k
Nk

) its request sequence observed in data. Our aim is to estimate:

• The catalog arrival intensity γ.

• The distribution of the popularity-lifespan pair (R,L).

LetW be the size of the observation window. Then, the intensity γ is readily estimated by

γ̂ =
K

W
.

Concerning the distribution of the popularity-lifespan pair (R,L), we first suppose without loss of
generality that the data ({Θk

1, . . . ,Θ
k
Nk
})Kk=1 is in decreasing order of number of requestsNk. Then, to

estimate this distribution, we use the point measure

1

K2

K2∑
k=1

δ
R̂k,L̂k

, (2.2)

where K2 is the number of documents with at least two requests and (R̂k, L̂k)
K2
k=1 is a sequence

of popularity-lifespan estimators for each document. Although these estimators are available only for
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documents with more than 2 requests, we will see later that we can incorporate the rest of the information
into the hit probability estimation. We estimate the lifespan of any document with Nk ≥ 2 by

L̂k = (Θk
Nk
−Θk

1)× Nk + 1

Nk − 1
.

This estimator is unbiased since, that under the model assumptions, we have

E
[
Θk
Nk
−Θk

1

]
=
Nk − 1

Nk + 1
× Lk.

Regarding popularity, we could give the crude estimate N/L̂, but our sample is biased by the fact
that we collect only documents with at least one request. To take this bias into account, recall that Nk

is a Poisson random variable with mean RkLk, given Nk ≥ 1. We thus estimate the request rate Rk by

R̂k = N ′k/L̂k

where N ′k verifies equation
N ′k

1− e−N ′k
= Nk.

The latter is shown to have a unique positive solution and we note that in practice that we can take
N ′k ≈ Nk for Nk greater than 10.

Figures 2.12a and 2.12b show kernel density approximations for the lifespan distribution for each
dataset. Note that the lifespan estimation formula yields a positive density for values larger than the
observation window, especially for documents with a small number of requests. Also, in the #yt data,
we observe a probability mass accumulation effect near the mark of three months, which is precisely
the size of the observation window. This is a truncation effect and it is a sign that the lifespan of a video
may be far longer than our current observation window in this dataset. As regards the #vod data, most
documents have a lifespan shorter than one month. This corresponds to the numerous catch-up TV
programs. The remaining documents have a different distribution, with lifespans varying on the range
of a few weeks to the observation period (3.5 years). Due to the large observation period, the truncation
effect is not visible.

As for the popularity distribution (Figures 2.12c and 2.12d), we see that the mass is distributed over
many orders of magnitude which suggests a heavy tailed distribution. Again in the case of the #yt
trace, we observe the censoring effect appearing at the left end of the distribution.

Finally the estimation for the joint distribution of the pair (logR,L) is shown in Figures 2.12e
and 2.12f, with a focus on small values of the lifespan for the #vod data. In both cases, we conclude
from the empirical densities that L and R are not independent random variables. Finally, the presence
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Figure 2.12: Popularity-Lifespan kernel density estimations

of managed catch-up TV documents in the #vod data is visible; the marginal shows density peaks at
values of 1, 2 and 4 weeks, corresponding to the duration for which broadcasts remain available.
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Hit Probability Estimation

In order to calculate the hit probability, we use the estimation of themodel parameterswith the theoretical
formulas that will be deduced in Chapter 3.

We readily express the hit probability in terms of the number of misses of a document µC :

qC = 1− E[µC ]

E[N ]
= 1− E[µC ]

E[N ]
.

We will show in Chapter 3 that the average number of misses E[µC ] can be approximatively written as

E[µC ] ≈ m(tC)

where
m(t) = E

[(
1− e−RL

)
1L≤t +

(
1− e−Rt +R(L− t)e−Rt

)
1L>t

]
(2.3)

and tC is the characteristic time from the Che approximation. Specifically, in the present case, we have

tC = Ξ−1(C)

where Ξ is the average number of different documents requested in [0, t]. We will see in Chapter 3 that
Ξ is simply related tom. In fact, we have in general that

Ξ(t) = γ

∫ t

0
m(u) du,

which, for the Box model, gives

Ξ(t) = γ E

[(
2t+

(
1− e−Rt

)(
L− t− 2

R

))
1L≥t

]
(2.4)

+ γ E

[(
2L+

(
1− e−RL

)(
t− L− 2

R

))
1L<t

]
.

As we have noted in the previous section, the estimators for the lifespan and popularity are not available
for documents with only one request. However, this sub-sample can have a considerable size as
evidenced in the #yt trace where it amounts to 58%. Thus, we cannot neglect this subset in a direct
application of the hit probability formulas.

To incorporate this data, we use the approximation discussed in [30] where the set of documents
requested only once is represented by a “noise” process. Let Ξ1 (resp. Ξ2) denote the mean function
of that noise process (resp. the mean function associated with the “non-noise” part of the process),
with Ξ = Ξ1 + Ξ2. We can separate the noise process from the rest of the request process and, using
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a procedure similar to that for deducing Equation (2.4), we obtain an explicit formula for Ξ1(t) in the
form

Ξ1(t) = γ E

[(
2

R

(
1− e−Rt −Rte−Rt

)
+ (L− t)

(
Rte−Rt

))
1L≥t

]
+ γ E

[(
2

R

(
1− e−RL −RLe−RL

)
+ (t− L)

(
RLe−RL

))
1L<t

]
.

Thus the “non-noise” part of the process Ξ2 can be written as

Ξ2(t) = Ξ(t)− Ξ1(t) = γ E[F (R,L, t)] , (2.5)

where the function F : R3
+ 7→ R+ is given by

F (R,L, t) =

[
2t(1− e−Rt) +

(
1− e−Rt −Rte−Rt

)(
L− t− 4

R

)]
1L≥t

+

[
2L(1− e−RL) +

(
1− e−RL −RLe−RL

)(
t− L− 4

R

)]
1L<t .

Now, letK1 be the number of documents with one request. We then estimateΞ1(t) by the mean function
of a homogeneous Poisson process:

Ξ̂1(t) = K1 ×
t

W
.

On the other hand, we estimate Ξ2(t) by the mean of the function F with respect to the point mea-
sure (2.2), that is,

Ξ̂2(t) = γ̂ × 1

K2

K2∑
i=1

F (R̂i, L̂i, t).

We then naturally set Ξ̂(t) = Ξ̂1(t) + Ξ̂2(t) as the estimator of Ξ(t) (see Fig. 2.13), and we use its
inverse to estimate the characteristic time associated with the Che approximation, that is, t̂C = Ξ̂−1(C).
The latter inversion is carried on numerically.

With an estimation of the function Ξ in hand, we can proceed to estimate the hit probability qC . In
this case, we must similarly take the documents with just one request into account. First note that since
the documents pertaining to the noise always produce misses, we can express the hit probability as

qC = 1− E[µC ]

E[N ]
= 1− P[N = 1] + E[µC · 1N≥2]

P[N = 1] + E[N · 1N≥2]

= 1−
P[N=1]
P[N≥2]

P[N=1]
P[N≥2] + E[N |N ≥ 2]

− E[µC |N ≥ 2]

E[N |N ≥ 2] + P[N≥1]
P[N≥2]
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Figure 2.13: Estimations for the average number of different documents mean function Ξ̂. The asymptote
is shown to highlight the non-linear part at the beginning

We now estimate each of the terms in the latter expression. Let G be the function such that

m(t) = E[G(R,L, t)]

in Equation (2.3). We estimate E[µC |N ≥ 2] by taking the average of G(·, ·, t̂C) with respect to the
point measure (2.2):

E[µC |N ≥ 2] ≈ 1

K2

K2∑
i=1

G(R̂i, L̂i, t̂C).

As to the termE[N |N ≥ 2], it can be computed as the average number of requests in the corresponding
sub-sample. Finally, the ratio P[N = 1] /P[N ≥ 2] is estimated by

P[N = 1]

P[N ≥ 2]
≈ K1

K2
.

Using the above estimators, we can eventually compare the hit probability derived from the Box
model to that obtained by simulation for each trace, as depicted in Figure 2.14. For comparison purpose,
we provide also the estimation of the hit probability obtained by the Che approximation when the request
process is assumed to be IRM. For the #yt traffic, the Box model improves the accuracy by one order
of magnitude compared to the estimation with an IRM process, with respective MAPE of 0.5% and
4.1%. For the #vod traffic, the improvement is even more spectacular, due to the large duration of the
trace. The IRM is far from estimating properly the hit probability with a MAPE of 17.2% (this value is
significantly decreased by including the tail of the curve, not plotted here, and where the IRM converges
towards the correct value). On the other hand, the Box model estimates accurately the hit probability,
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Figure 2.14: Results of a simulation of the traces versus the fittings for the Che approximation with the
Box model and IRM

with a MAPE of 0.6%. These results effectively validate our proposed model.

2.5 Conclusion

The semi-experiments provided evidence that, at sufficiently large scales, the catalog dynamics has
a non-negligible impact on the LRU cache performance. In consequence, simplistic models such
as IRM make inaccurate prediction on the hit probability. The semi-experiments also shed light on
the assumptions we can safely make for a model that exhibits catalog dynamicity. We consequently
proposed and validated a simple yet accurate traffic model that characterize each document via an
intrinsic popularity and a lifespan, and the catalog publications via a single rate.

In Chapter 3, we will justify the hit probability formulas we have used in the previous validation
process. However, we will perform the analysis for a general class of cluster point processes that
includes the Box model. We obtain these estimates by asymptotic methods and rigorously justify the
Che approximation. The error of this approximation is also quantified.

The parameter fitting methods we have used here are ad-hoc and have the undesirable property of
not being available for a potentially large portion of the dataset. This is due to the fact that the popularity
and lifespan distributions are hidden parameters of the model, since we observe a random process that
depends on random unobserved parameters. The standard way to treat this kind of problems is the
Maximum Likelihood method. In Chapter 4, we apply this method to estimate the content popularity
for a simpler model that can be seen as intermediate between the IRM and the Box model.



Chapter 3

Hit Probability Analysis

In this chapter, we develop a rigorous mathematical analysis for estimating the hit probability of an
LRU cache fed by a cluster process. Specifically, we analyze a class of cluster processes such that:

• Each cluster is a Cox point process with almost surely a finite number of points.

• The ground process is a homogeneous Poisson process.

In the case when the clusters are mixed Poisson processes with a finite lifespan, we recover the Box
model proposed in Chapter 2.

The arguments for our analysis are more clearly carried for the document miss probability pC
rather than for hit probability qC . From now on, we thus analyze pC , the hit probability being given
qC = 1− pC . Also note that

pC =
E[µC ]

E[N ]
,

where µC and N the number of misses and requests for a document respectively. In consequence, the
problem reduces to estimate the expectation E[µC ]. We perform this task in three steps:

• The first step is to set up a probability space in which we tag a document to be examined
independently from the rest of the traffic. This is advantageous since the eviction of a document
from the cache depends only on events occurring in the rest of the traffic.

• In this setup we proceed to the second step, which is to deduce an integral formula for the quantity
E[µC ]. Due to all stationarity and independence structures of the model we obtain an intuitive
formula, namely

E[µC ] = E[m(TC)] .

36
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This equality decouples the contributions of the tagged document and the rest of the process:
First, given t > 0, the quantity m(t) is the average number of misses of the tagged document in
a t-TTL cache. Secondly, the exit time TC is a random variable that measures the elapsed time
between a document request and its eviction and for t > 0; deconditioning with respect to TC = t

gives the formula E[µC ]. Additionally, we prove that the exit time TC is a first passage time for
an inhomogeneous Poisson process with known mean function.

• The final step is to approximate the latter expectation. For this, we first consider a relevant scaling
of model parameters. Then, under this scaling, we rigorously derive an asymptotic expansion of
the expectation. This asymptotic expansion proves that the miss probability can be evaluated by
approximating the exit time by the characteristic time of the “Che approximation”. Moreover, we
quantify the error of the approximation and show that it is of order 1/C for large C.

Additionally, we further validate these results empirically by comparing them to the hit probability
obtained via the simulation of a cache fed by the Box model.

We start this chapter by first specifying the model in detail and its notation, and then proceed to our
three step analysis.

3.1 Cluster Process Model

Our request model consists in a cluster point process on the real lineR (see Figure 3.1). The associated
ground process Γg, hereafter called catalog arrival process, dictates the consecutive arrivals of doc-
uments to the catalog. In the present setting, we consider Γg to be an homogeneous Poisson process
with rate γ; we will denote any of its arrival times by the variable a.

The cluster at time a, denoted by ξa, represents the document request process for a document
arriving to the catalog at that time. We consider ξa to be a Cox process directed by a non-negative
stochastic intensity function λa. The intensity λa has the following properties:

• given the catalog arrival process Γg, the intensities λa, a ∈ Γg, are jointly independent;

• we consider causal random intensities λa, that is, each function t 7→ λa(t) is zero for t < a. This
ensures that the requests in process ξa exist only after time a;

• the distribution of λa is “stationary” in the sense that for every arrival time a ∈ R, the processes
λa(·) and λ0(· − a) have the same distribution.

These three conditions make the sampling of the sequence (λa)a∈Γg equivalent to an independent
sample from a canonical intensity function λ with support in [0,∞), which is then shifted to each
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Time 

Catalog Arrival Process 

Document Request Processes 

Total Request Process 

Figure 3.1: A sample of the document arrival and request processes. Top: Each catalog arrival triggers
a function representing the request intensity for the corresponding document. Bottom: A sample of the
document request processes. Their superposition generates the total request process.

arrival time a. We denote by Λa the associated mean function of λa, defined by

Λa(t) =

∫ t

a
λa(u)du, t > a.

For conciseness, we abuse the previous notation by denoting the average number of requests for a
document arriving at time a as Λa = Λa(∞) ≥ 0 which we assume to be finite almost surely. We also
denote by Λ̄a the complementary mean function, that is Λ̄a(t) = Λa −Λa(t), t > a.When referring
to the canonical document, which arrives at time zero, we simply remove the time index a. For example,
Λ̄(t) represents the complementary mean function for the canonical document.

The superposition of all processes ξa, a ∈ Γg, generates the total request process

Γ =
∑
a∈Γg

ξa
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that represents the requests to all documents. Throughout the rest of the paper, we further assume that∫ t

−∞
E
[
1− e−(Λ(u)−Λ(u−t))

]
du <∞ (3.1)

for any t ∈ R+. This is a sufficient and necessary condition for the process Γ to be well defined, in
the sense that any compact set contains a finite number of points almost surely (see Theorem 6.3.III
in [15]).

3.2 The Point of View of a Document

The key of our analysis is to tag one document from the system and treat the remaining process as
an external environment. To this aim, we follow p. 279 in [16] and introduce the spaceM#(R) of
point processes onR; letQa,ν denote the local Palm distribution at point (a, ν) ∈ R×M#(R) for the
marked point process

Γ̃ =
∑
a∈Γg

δa,ξa ,

that is, the ground process Γg marked with the document request processes. Define then the mark-
averaged Palm distribution Qu onM#(R) by

Qu(·) = E[Qu,ξu(·)] .

For this distributionQu, the process has the structure given by the following proposition (see Figure 3.2
for illustration).

Proposition 1
Under the distribution Qu, the process Γ̃ has almost surely a point at time u. Furthermore:

• the distribution of the mark ξu is kept the same;

• the distribution of the remaining process Γ̃ \ δu,ξu is the same than that of the original process Γ̃;

• the mark ξu and the process Γ̃ \ δu,ξu are independent.

Proof. We provide a quick proof using from the Slivnyak-Mecke Theorem (see [16], Prop. 13.1.VII).
The latter theorem characterize the Laplace functional of Poisson point processes under their Palm
distributions. In our case, for (u, ν) in R×M#(R), the Laplace functional Lu,ν of Γ̃ under the Palm
distribution Qu,ν can be expressed by

Lu,ν [f ] = e−f(u,ν) · L[f ]
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(1) Tagged Document (2) Rest of the Process 

Original Process Γ  

(same distribution) 

(independent between them) 

Figure 3.2: Illustration of request process ξ under the averaged Palm distribution. The original process
is decomposed into: (1) the tagged document and (2) the rest of the process. They are mutually
independent and the rest of the process has the same distribution as the original.

for any measurable function f : R×M#(R)→ R+, where L is the Laplace functional on the original
probability space. The Laplace functional Lu under Qu is consequently given by

Lu[f ] = E[Lu,ξu [f ]] = E
[
e−f(u,ξu)

]
L[f ] .

Note that the expectation in the right-hand side is the Laplace functional of the point process δu,ξu .
Since Laplace functionals characterize point processes, the conclusion follows.

The properties claimed in Proposition 1 allow us to set a probability spacewherewe have a document
arrival almost surely at time a = 0. From now on, we consider this document as the tagged document,
and the complementary process will be simply called the rest. In the next section, we will see that the
considered LRU caching discipline, joint with the independence of the tagged document from the rest,
allow us to derive a general integral formula for the miss probability.
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3.3 A General Integral Formula

As stated in the previous section, we will consider a tagged document at time zero, so that its associated
distribution is the canonical one. For a LRU cache with size C, letN and µC be the random number of
requests and number of misses for the tagged document. The total miss probability is defined by

pC =
E[µC ]

E[N ]
,

which is also the average per-document hit ratio µC/N under the size biased distribution of N . Since
N is a mixed Poisson variable with random mean Λ, we have

E[N ] = E[E[N |Λ]] = E[Λ] ,

and it is left to study µC .
Let (Θj)

N
j=1 be the sequence of request times for the tagged document, with the understanding that

it is the empty set ifN = 0. The first request being always a miss, the number of misses can be written
as

µC = 1{N ≥ 1}+ 1{N ≥ 2}
N∑
j=2

1{Request at Θj is a miss}. (3.2)

Under the LRU policy, a document requested at time s will be erased from the cache at the first time,
after the last request for this document, that C distinct other documents have been requested.

For s ∈ R, let Xs = (Xs
t )t≥s denote the process that counts the number of distinct documents in

the rest of the process requested on the interval [s, t]. We also define the family of exit times (T sC)s∈R

as the first passage time to level C ofXs. This quantity is the time that a document requested at time s
can spend in the cache before being evicted. Denoting by F s(ξa) the first arrival time of ξa in [s,∞),
the process Xs and exit times T sC can be expressed as

Xs
t = #{(a, ξa) in Γ̃ \ δ0,ξ0 : F s(ξa) ≤ t} , t ≥ s ,

T sC = inf{t ≥ s : Xs
t = C} .

(3.3)

The above definitions allow us to express the miss events as

{Request at Θj is a miss} = {XΘj−1

Θj
≥ C} = {Θj > T

Θj−1

C } , j ≥ 2 ,

since such a miss occurs if and only if at least C distinct other documents have been requested in the
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interval [Θj−1,Θj ]. Hence (3.2) can be written as

µC = 1{N ≥ 1}+ 1{N ≥ 2}
N∑
j=2

1
{

Θj > T
Θj−1

C

}
. (3.4)

To proceed further, we study the consequences of the structure of the cluster point process on the
structure of the families Xs and T sC .

Proposition 2 (Characterization of Xs and T sC)
The processXs = (Xs

t )t≥s defined by (3.3) is an inhomogeneous Poisson process with mean function

Ξs(t) = E[Xs
t ] = γ

∫ t

−∞
E
[
1− e−(Λa(t)−Λa(s))

]
da , t ≥ s . (3.5)

In particular, T sC − s
d
= TC , where TC = T 0

C is the exit time of a document requested at time zero.

Proof. By condition (3.1), we have Ξs(t) < ∞ for t ≥ s . Now, the process (Xs
u)s≤u≤t is defined by

counting the points (a, ξa) in the rest Γ̃ \ δ0,ξ0 such that F s(ξa) falls in [s, t]; on the other hand, for
h ≥ 0, the incrementXs

t+h−Xs
t counts only those points such that F s(ξa) falls in (t, t+ h]. Since the

corresponding two subsets of R ×M#(R) are disjoint and Γ̃ \ δ0,ξ0 is Poisson, we conclude that Xs

has independent increments. In consequence, since Xs is a counting process, it is a inhomogeneous
Poisson process.

The mean function for this process is then given by

E[Xs
t ] = E

[∑
a∈Γg

1{F s(ξa) ∈ [s, t]}

]
= E

[∑
a∈Γg

1{ξa[s, t] ≥ 1}

]
.

Formula (3.5) follows from the latter expression and the fact that the mean measure η of Γ̃ \ δ0,ξ0 is
defined by

η([t1, t2]×B) = γ

∫ t2

t1

P[ξa ∈ B] da

where B is any Borelian ofM#(R).

Equation (3.4), Proposition 2, and the independence between the tagged document and the rest of
the process now yield an integral formula for E[µC ].

Proposition 3
The expected number of misses is given by

E[µC ] = E[m(TC)] (3.6)
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where TC = T 0
C denotes the exit time for a document requested at time zero (see (3.3)), and the function

m is defined by

m(t) = E

[∫ ∞
0
λ(u)e−(Λ(u+t)−Λ(u)) du

]
, t ≥ 0 . (3.7)

Moreover, limt→∞ ↓ m(t) = m0, wherem0 = E
[
1− e−Λ

]
.

The proof of Proposition 3 will follow from the following lemma, which holds for a class of
functionals of the holding times of a Poisson process.

Lemma 4 (Functionals of holding times)
Let ξ be an inhomogeneous Poisson process on [0,∞) with deterministic intensity function λ. Let the
mean function Λ satisfy Λ(∞) <∞, so that ξ has a finite random number N of points (Θj)

N
j=1. Then,

for any F : R+ → R,

E

1{N ≥ 2}
N∑
j=2

F (Θj −Θj−1)

 =

∫ ∞
0

dwF (w)

∫ ∞
0

duλ(u)λ(u+ w)e−(Λ(u+w)−Λ(u)) .

We refer to Section 3.7 for the proof of this lemma.

Proof of Proposition 3. Since N is a mixed Poisson random variable with random mean Λ, the expec-
tation of the first term on the r.h.s. of (3.4) is P[N ≥ 1] = E

[
1− e−Λ

]
= m0. For the second term

on the r.h.s. of (3.4), since the family T sC for s ≥ 0 is defined on the rest of the process and thus is
independent from the request process ξ =

∑N
j=1 δΘj for the tagged document, we have

E

1{N > 2}
N∑
j=2

1
{

Θj > T
Θj−1

C

}
| ξ

 = E

1{n > 2}
n∑
j=2

1
{
tj > T

tj−1

C

}∣∣∣∣∣∣
(n,t1,...,tn)=(N,Θ1,...,ΘN )

= E

1{n > 2}
n∑
j=2

1{tj − tj−1 > TC}

∣∣∣∣∣∣
(n,t1,...,tn)=(N,Θ1,...,ΘN )

where the last equality follows from T sC − s
d
= TC (see Proposition 2). Taking the expectation and

summing with the expectation of the first term yields

E[µC ] = m0 + E

1{N > 2}
N∑
j=2

1{Θj −Θj−1 > TC}

 .
Since the canonical intensity λ and exit time TC are independent from the request process of the tagged
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document, Lemma 4 yields that

E[µC ] = m0 + E

[∫ ∞
0

dw 1{w > TC}
∫ ∞

0
duλ(u)λ(u+ w)e−(Λ(u+w)−Λ(u))

]
= m0 + E

[∫ ∞
0
λ(u)

(
e−(Λ(u+TC)−Λ(u))

)
du−

∫ ∞
0

λ(u)e−(Λ−Λ(u)) du

]
= E

[∫ ∞
0
λ(u)

(
e−(Λ(u+TC)−Λ(u))

)
du

]
,

where we use for the last equality that, since Λ(∞) = Λ and Λ(0) = 0,∫ ∞
0

λ(u)e−(Λ−Λ(u)) du =
[
e−(Λ−Λ(u))

]∞
0

= 1− e−Λ .

This last equation and dominated convergence imply that limt→∞ ↓ m(t) = E
[
1− e−Λ

]
, which

concludes the proof.

The above analysis would identically apply if the random variable TC were deterministic and equal
to some positive constant t. This would correspond to the cache discipline known as Time to Live (TTL),
where the cache evicts a document after a fixed amount of time t. Therefore,m(t) is simply the average
number of misses for a TTL cache of eviction time t. We can thus regard the number of misses in a
LRU cache as a time randomization of the misses in a TTL cache.

Indeed, the integral formula (3.7) in Proposition 3 can by rewritten using integration by parts as

m(t) = E

[∫ ∞
0

λ(u) e−(Λ(u)−Λ(u−t)) du

]
which can be informally interpreted with as follows. The exponential term

e−(Λ(u)−Λ(u−t))

is simply the conditional probability P[ξ[u− t, u] = 0 |λ]. Thus a request at time u will contribute to
the intensity of the miss process if there were no requests in the interval [u − t, u], which is exactly a
miss event in a t-TTL cache. This relationship between the miss probabilities of TTL and LRU caches
has been already noted by Fofack et al. in [24].

3.4 An Asymptotic Expansion

It can be argued simply thatE[µC ] has a finite limit asC →∞. In fact, first observe from formula (3.7)
that as t→∞,m(t) decreases monotonically tom0 which is the average minimum number of misses;
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secondly, from basic properties of Poisson processes, it can be asserted that the exit time TC tends to
infinity as C →∞. Applying formula (3.6) then provides the limitm0 for E[µC ] when C grows large.

Another way to derive asymptotics for E[µC ] is to scale some system parameter with respect to C.
Intuitively, the catalog arrival rate γ is a good candidate to be scaled by the cache size C, since one
needs more storage in the cache to cope with an increasing document arrival rate. In the following, with
help of the results of the previous sections, we will show that the problem is simply amenable to this
setting and provide an asymptotic expansion for E[µC ] as C grows large.

To this aim, we first note from Proposition 2 that the canonical exit time TC is the first passage time
to level C of a inhomogeneous Poisson process with mean function Ξ = Ξ0. To continue the analysis
further, we first prove a key relation betweenm and Ξ.

Proposition 5
The functionsm and Ξ satisfy the relation

Ξ′(t) = γ m(t)

for all t ≥ 0.

The proof of this proposition is a consequence of various integration by parts and routine calcula-
tions. We thus defer it to Section 3.7.

By integration of the obtained identity with respect to time and by inversion, a consequence of the
previous Proposition 5 is that

Ξ−1(y) = M−1

(
y

γ

)
, y ≥ 0, (3.8)

where
M(t) =

∫ t

0
m(s) ds.

Besides, as observed in the beginning of the section, the exit time TC is distributed as the first passage
time to level C of an inhomogeneous Poisson process with mean function Ξ; it follows that TC can be
expressed by

TC = Ξ−1(T̂C) (3.9)

where T̂C is the first passage time to level C of an unitary homogeneous Poisson process, which has a
Gamma(C, 1) distribution. From Proposition 3 together with (3.9), we then derive that

E[µC ] = E[m(TC)] = E
[
m(Ξ−1(T̂C))

]
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and relation (3.8) eventually gives

E[µC ] = E

[
m

(
M−1

(
T̂C
γ

))]
. (3.10)

Now, recall that by the law of large numbers, we have T̂C/C → 1 as C →∞ almost surely. Thus,
the latter formula suggests the scaling

C = γθ (3.11)

in order obtain further asymptotics of E[µC ]. This scaling relation is natural in the sense that by
applying Little’s law ([5], Section 3.1.2) to the cache system, we obtain C = γ E

[
T in
C

]
where

T in
C =

∫ ∞
0
1{Object is in the cache at t}dt

is the sojourn time of an object in the cache. Note that we do take into account the objects that
do not have any requests as entering the system, but we set their sojourn time to T in

C = 0. As a
consequence, the asymptotic analysis under the scaling (3.11) amounts to fixing the average sojourn
time θ = E

[
T in
C

]
= C/γ and the distribution of the canonical intensity function λ while letting C grow

to infinity.
Applying scaling (3.11), relation (3.10) implies

lim
C→∞

E[µC ] = m(M−1(θ)) = m(tθ); (3.12)

in the following, the quantity tθ will be called the characteristic time and the asymptotics of E[µC ]

will be expressed in terms of it. In this aim, we first recall two basic results regarding the Gamma(C, 1)

distribution.

Lemma 6
Define the random variable XC by

XC =
T̂C
C

where T̂C follows a Gamma(C, 1) distribution. Then

i) for any C > 1 and η > 0, we have

P[|XC − 1| ≥ η] ≤ 2e−C·ϕ(1+η)

where ϕ(x) = x− 1− log x is the rate function of an exponential random variable of mean 1;
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ii) for any C > 1 and k > 1, we have

E
[
(XC − 1)k

]
= O(C−d

k
2
e).

We refer to Section 3.7 for the proof. We now formulate our central result concerning the asymptotics
for the average number of misses.

Theorem 7
Assume that the function m is twice continuously differentiable in (0,∞). Under the scaling C = γθ,
we then have

E[µC ] = m(tθ) +
e(tθ)

C
+ o

(
1

C

)
(3.13)

as C →∞, where the error term e(tθ) is given by

e(tθ) =

[
θ2

2m(tθ)2

(
m′′(tθ)−

m′(tθ)
2

m(tθ)

)]
.

Proof sketch. From (3.10) and the scaling C = γθ we obtain

E[µC ] = E

[
m

(
M−1

(
θ × T̂C

C

))]
.

Since a.s. T̂C/C → 1 as C →∞, the main idea of the proof is to apply a Taylor expansion around 1 to
the function

fθ(·) = m(M−1(θ × ·)).

The bulk of the proof is devoted to the use of Lemma 6 and limit theorems to justify the limit and
expectation exchange and obtain the error term e. See Section 3.7 for the details.

The expansion in Theorem 7 justifies the accuracy of the estimations based on the Che approximation
(see Appendix 6.1 for a derivation of the classic version of this heuristic). In fact, in the present setting,
this heuristic consists in replacing the exit time TC in (3.6) by the characteristic time t̃C = Ξ−1(C),
therefore estimating E[µC ] bym(t̃C). Now, under the scaling C = γθ, identity (3.8) entails that

t̃C = Ξ−1(C) = M−1

(
C

γ

)
= M−1(θ) = tθ.

Thus, the previous identity justifies this naming for tθ as well. More importantly, the asymptotic
expansion of E[µC ] in Theorem 7 shows that the error in the Che approximation is of order 1/C,



CHAPTER 3. HIT PROBABILITY ANALYSIS 48

for large C and fixed average sojourn time θ. We thus have explicitly quantified the accuracy of this
approximation (see the conclusion for a more detailed explanation).

Remark 8
If the functionm has higher order derivatives, the proof of Theorem 7 together with Lemma 6 allow us
to derive higher order expansions of E[µC ] in powers of 1/C. Specifically, to obtain an expansion at
order n, we must expand fθ to the 2n-th order, since E

[
(XC − 1)k

]
is O(1/Cd

k
2
e) by Lemma 6. We

then eventually obtain

E[µC ] =

2n∑
k=0

f
(k)
θ (1)

j!

φk(C)

Ck
+ o

(
1

Cn

)
where φk is a polynomial of degree bk/2c, as shown in the proof of Lemma 6 (see Section 3.7).

Remark 9
Theorem 7 can be proved by purely analytical methods. Indeed, equation (3.19) can be written in
integral form as

E[µC ] =
CC

Γ(C)

∫ ∞
0

e−C(w−log(w)) fθ(w)

w
dw.

after using variable change w 7→ w/C. For large C, Theorem 7 then follows by expanding the above
integral by means of the Laplace method (see (3.15) in [48]) and denominator Γ(C) via the Stirling
formula. This method yields the same expansion for E[µC ] but it is more complicated in that it involves
the expansion of both numerator and denominator in powers of

√
C.

To conclude this section, we show that the smoothness assumptions for function m in Theorem 7
hold for a class of random intensities λ suitable for modeling purposes. This class includes the Box
model and families used in related works [59] and is built by randomly scaling a deterministic shape
function in both domain and range.

Proposition 10
Let f ∈ C1(0,∞) be a strictly positive unimodal function with

∫
f = 1,

∫
f2 < ∞ and

∫
|f ′| < ∞.

Consider a pair (R,L) of positive random variables with smooth joint density such thatE[R] <∞ and
E[RL] <∞. If the canonical document request intensity is distributed as

λ(u) = R · f
(u
L

)
, u ≥ 0, (3.14)
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then functionm is C2(0,∞) with derivatives given by

m′(t) = −E
[
R2L

∫ ∞
0

f(u)f

(
u+

t

L

)
e−RL(F(u+ t

L)−F (u)) du

]
,

m′′(t) = E

[
R3L

∫ ∞
0

f(u)f

(
u+

t

L

)2

e−RL(F(u+ t
L)−F (u)) du

]

−E
[
R2

∫ ∞
0

f(u)f ′
(
u+

t

L

)
e−RL(F(u+ t

L)−F (u)) du

] (3.15)

for t > 0, where F (u) =
∫ u

0 f(v)dv.

We defer the proof of the latter proposition to Section 3.7.
Note that Proposition 10 only imposes mild conditions on the distribution of (R,L). The admitted

shape functions f include exponential and power law decreasing profiles, and Gaussian curves restricted
to [0,∞). In addition, the assumption of f being strictly positive on [0,∞) can be weakened to that of
being positive only in a compact interval; this in turn implies that f ′ is not differentiable everywhere
and the second derivative ofm will thus contain additional terms from the integral of f ′. These terms
can be obtained by an integration by parts (see [25], Th. 3.36 for a generalized form).

One example of such a family with compact support is given by the box model, which can be
constructed by simply taking f = 1[0,1]. In this case,m and its derivatives reduce to

m(t) = E
[(

1− e−RL
)
1L≤t +

(
1− e−Rt +R(L− t)e−Rt

)
1L>t

]
,

m′(t) = −E
[
R2(L− t)e−Rt 1L>t

]
,

m′′(t) = E
[
(R2 +R3(L− t))e−Rt 1L>t

]
.

(3.16)

We will use this model for a numerical illustration in the next section.

3.5 Validation

We here provide some numerical results to validate the accuracy of asymptotic expansion (3.13), by
comparing it to the values obtained from the system simulation. In our experiments, we use the Box
Model in which the canonical intensity function given by

λ(u) = R · 1{0 ≤ u ≤ L}, u ≥ 0,
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where the random pair (R,L) represents the request rate and lifespan of a document. In view of (3.13),
we obtain the zero order and first order approximations for the hit probability qC , namely

qC = 1− pC = 1− E[µC ]

E[Λ]
≈


1− m(tθ)

E[Λ]
, 0th Order

1− m(tθ) + e(tθ)/C

E[Λ]
, 1st Order

(3.17)

where E[Λ] = E[RL]. In general, for a given distribution of (R,L), we cannot deduce from (3.16)
explicit expressions for m,m′,m′′,M andM−1 . In particular, there are usually no formulas for tθ in
terms of θ. In consequence, we resort to numerical integration and inversion to obtain the hit probability
estimates in (3.17).

As argued in Section 2.4, the distributions of variable R and L have a support ranging over
many scales of magnitude, suggesting a heavy tailed nature. For our experiments, we consequently
chose R and L to be distributed as independent Pareto-Lomax variables, with probability density
ασα/(σ + x)α+1, x > 0, with respective parameters (α = 1.9, σ = 22.5) and (α = 1.7, σ = 0.07).
Such values have been taken so that the simulation time is not excessive; they provide a “box” of average
width 0.1 and height 25 with high volatility since neither R nor L have a finite variance.

We generated the request process associated with these intensity functions for various values of γ
ranging from 10 to 1 000. For each request sequence, we simulated an LRU cache and obtained the
empirical hit probability for various capacities C. To obtain reliable results, the heavy tailed nature
of the input distributions makes the use stable-law central limit theorem necessary ([61], Th. 4.5.1).
Specifically, there exists a so-called stable law Sα(σ, β, µ) with scaling parameter σ and a constantKα,
such that

lim
n→∞

1

Kα

1

n1/α

n∑
i=1

(Li − nE[L]) = Sα(1, 1, 0)

in distribution. The latter allows us to heuristically quantify the convergence rate for the law of large
numbers by

1

n

n∑
i=1

(Li − nE[L]) ≈ Sα
(

Kα

n1−1/α
, 1, 0

)
for large n (in the present case, α = 1.7 for variable L). We then chose the simulation time S such
that the average number of observed documents n = γS×E

[
1− e−RL

]
is such that scaling parameter

Kα/n
1−1/α is smaller than 10−3 (such a value of n ensures the same accuracy for the request rate R

with larger tail index α = 1.9). Besides, we also chose S large enough to ensure that there is enough
time for all observable documents to appear in the simulated trace.

We show in Figure 3.3 some of the resulting hit probability curves from these experiments, and
observe that the zero order approximation in (3.17) is exact for γ = 500 already. The error incurred
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Figure 3.3: Convergence to the 0th order approximation when C →∞ and C = γθ.

by the approximation for lower γ can be corrected by using the first order approximation in (3.17), as
shown in Figure 3.4a for γ = 50 (for even lower intensities, this correction might not be enough to
approximate the real hit probability, as illustrated in Figure 3.4b for γ = 12; the higher order expansion
of Remark 8 would then be needed).
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Figure 3.4: Comparison between 0th and 1st approximations and the results of simulations.

The above numerical results therefore illustrate the accuracy of the asymptotic expansion for the hit
probability.
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3.6 Conclusion

In this chapter, we have estimated the hit probability of a LRU cache for a traffic model based on a
Poisson cluster point process. In this endeavor, we have built using Palm theory a probability space
where a tagged document can be analyzed independently from the rest of the process. In the case of the
LRU replacement policy, this property is key for the analysis, since it allowed us to derive an integral
expression for the expected number of misses of the tagged object. Using this expression, we were able
to obtain an asymptotic expansion of this integral for large C under the scaling C = γθ for fixed θ > 0.

Our framework and asymptotic analysis justify rigorously every step of the Che approximation
(Section 1.3) for our traffic model. Indeed:

• Step Che.1 is to assume that all exit times have the same distribution. In our case, this is justified
the integral formula derived in Proposition 3, which tells us that the average number of misses
can be expressed in terms of function m and the canonical exit time TC . We justify the latter
proposition using the Palm distribution of the system (Section 3.2) and applying Lemma 4.

• Step Che.2 is to assume that the exit time is well approximated by the deterministic characteristic
time. Strictly speaking, this assumption is false, since the exit times are random variables with
diverging variance when C →∞.

However, we have shown that in Theorem 7 that under the scaling C = γθ the limiting hit
probability depends on a characteristic time akin to the one in the classic Che approximation.
Indeed, under the previous scaling, the characteristic time is defined by the solution to the
following equation:

C = Ξ(t) = γ E

[∫ t

−∞
1− e−(Λa(t)−Λa(0)) da

]
.

which is analogous to (1.2) in step Che.2.

• Finally, we have also shown in Theorem 7 that asymptotic hit probability satisfies

qC = 1− m(tθ)

E[Λ]
+O

(
1

C

)
=

E

[∫ ∞
0

λ(u)
(

1− e−(Λ(u+tθ)−Λ(u))
)

du

]
E

[∫ ∞
0

λ(u) du

] +O

(
1

C

)

which is analogous to Equation (1.3) in step Che.3 but with the addition of an explicit quantifi-
cation of the error incurred.

In addition to the latter justification, we have shown that the latter expansion is valid for a class of
processes suitable for modeling purposes and that it is possible to estimate it numerically.
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3.7 Technical Proofs

Proof of Lemma 4

Recall that, given that process ξ has k points, then the request times (Θj)
k
j=1 have the distribution of the

order statistics of a random variable with density g(t) = λ(t)/Λ , t ≥ 0 and distribution function G is
given by G(t) = Λ(t)/Λ , t ≥ 0. Let G(t) = 1 − G(t) be the complement of G. From the standard
order statistics theory, it is known that the distribution of the holding times Θj −Θj−1, j > 1, has the
density g̃k,j given by

g̃k,j(w) =
k!

(j − 2)!(k − j)!

∫ ∞
0

Gj−2(u)g(u)g(u+ w)G
k−j

(u+ w)du

for all w ≥ 0. We can consequently write

E[F (Θj −Θj−1) |N = k] =

∫ ∞
0

g̃k,j(w)F (w) dw

which, in turn, allows us to write the desired expectation as

E

1{N ≥ 2}
N∑
j=2

F (Θj −Θj−1)

 =
∞∑
k=2

k∑
j=2

E[F (Θj −Θj−1) |N = k] e−Λ Λk

k!

=

∫ ∞
0

F (w) dw

∞∑
k=2

k∑
j=2

g̃k,j(w) e−Λ Λk

k!
. (3.18)

Now, by the Binomial Theorem, we can write

k∑
j=2

k!

(j − 2)!(k − j)!
Gj−2(u)G

k−j
(u+ w) = k(k − 1)[G(u) +G(u+ w)]k−2

and thus, passing all the sums inside the integral in the right-hand side of (3.18), we obtain

∞∑
k=2

k∑
j=2

g̃k,w(w)e−Λ Λk

k!
= Λ2

∫ ∞
0

e−Λ(1−G(u)−G(u+w))G(u)g(u+ w)du.

Note that
Λ(1−G(u)−G(u+ w)) = Λ(G(u+ w)−G(u)) = Λ(u+ w)− Λ(u)

and
G(u)G(u+ w) = λ(u)λ(u+ w)/Λ2.



CHAPTER 3. HIT PROBABILITY ANALYSIS 54

Equation (3.18) together with the latter intermediate results eventually provides

E

1{N ≥ 2}
N∑
j=2

F (Θj−Θj−1)

 =

∫ ∞
0

F (w) dw

∫ ∞
0

λ(u)λ(u+ w)e−(Λ(u+w)−Λ(u)) du

as claimed.

Proof of Proposition 5

We decompose the integral for Ξ(t) into the contributions before and after time zero, giving

Ξ(t) = γ

∫ 0

−∞
E
[
1− e−(Λa(t)−Λa(0))

]
da+ γ

∫ t

0
E
[
1− e−(Λa(t)−���:

0
Λa(0) )

]
da

= γ

∫ 0

−∞
E
[
1− e−(Λ(t−a)−Λ(−a))

]
da+ γ

∫ t

0
E
[
1− e−Λ(t−a)

]
da

= γ (I1(t) + I2(t)).

Making the variable change a 7→ −a in the first integral I1(t) yields

I1(t) =

∫ 0

−∞
E
[
1− e−(Λ(t−a)−Λ(−a))

]
da =

∫ ∞
0
E
[
1− e−(Λ(t+a)−Λ(a))

]
da.

Successively differentiating with respect to t and integrating by parts further gives

I ′1(t) =

∫ ∞
0
E
[
λ(t+ a)e−(Λ(t+a)−Λ(a))

]
da

= E
[
e−Λ(t) − 1

]
+ E

[∫ ∞
0
λ(a)e−(Λ(t+a)−Λ(a))da

]
= E

[
e−Λ(t) − 1

]
+m(t)

where the last equality comes from Proposition 3. Now, for the second integral I2(t), the variable
change a 7→ t− a yields

I2(t) =

∫ t

0
E
[
1− e−Λ(t−a)

]
da =

∫ t

0
E
[
1− e−Λ(a)

]
da

so that I ′2(t) = E
[
1− e−Λ(t)

]
. As a consequence, we obtain Ξ′(t) = γ(I ′1(t) + I ′2(t)) = γ m(t) as

claimed.
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Proof of Lemma 6

i) This is the classic optimized exponential Markov inequality which is used for the upper bound in
Cramer’s large deviations Theorem, see [17, Th. 2.2.3, Remark (c)].

ii) We expand the k-th order central moment of XC in terms of the known moments of T̂C , giving

E
[
(XC − 1)k

]
=

k∑
i=0

(
k

i

)E[(T̂C)i
]

Ci
(−1)k−i

=
1

Ck

k∑
i=0

(
k

i

)
(−C)k−i

Γ(C + i)

Γ(C)
=

1

Ck
φk(C),

where φk is a polynomial of degree at most k. As shown in [47], the polynomial φk is actually of
degree bk/2c, which allows us to conclude.

Proof of Theorem 7

For fixed θ > 0, define the function fθ by

fθ(z) = m(M−1(θz)) = m(tθz).

With the scaling C = γθ, Equation (3.10) can be then written as

E[µC ] = E

[
fθ

(
T̂C
C

)]
. (3.19)

Let againXC = T̂C/C as in Lemma 6 and fix η > 0. Write the expectation (3.19) asE[µC ] = AC+BC

where
AC = E

[
fθ(XC)1|XC−1|≥η

]
, BC = E

[
fθ(XC)1|XC−1|<η

]
.

•To analyzeAC , recall that functionm is bounded byE[Λ] <∞, and so is fθ. Then, by Lemma 6 (i),
we have

AC ≤ E[Λ]P[|XC − 1| ≥ η] ≤ 2E[Λ] e−C·ϕ(1+η)

which shows, in particular, that AC = o(1/C).
• To analyze BC , first write a Taylor expansion of fθ around 1 at order two in the form

fθ(XC) = fθ(1) + f ′θ(1) (XC − 1) +
f ′′θ (YC)

2
(XC − 1)2

= hθ(XC) + kθ(XC , YC)
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where YC is a random variable in the random interval [1, XC ] ∪ [XC , 1] and
hθ(XC) = fθ(1) + f ′θ(1) (XC − 1) +

f ′′θ (1)

2
(XC − 1)2 ,

kθ(XC , YC) =
f ′′θ (YC)− f ′′θ (1)

2
(XC − 1)2 .

With the latter expansion, we can then decompose BC = DC + EC where

DC = E
[
hθ(XC)1|XC−1|<η

]
, EC = E

[
kθ(XC , YC)1|XC−1|<η

]
.

We then compute
DC = E[hθ(XC)]− E

[
hθ(XC)1|XC−1|≥η

]
(3.20)

with
E[hθ(XC)] = fθ(1) +

f ′′θ (1)

2C

sinceE[XC − 1] = 0 andE
[
(XC − 1)2

]
= 1/C. Besides, to deal with the termE

[
hθ(XC)1|XC−1|≥η

]
in the right-hand side of (3.20), we use the Cauchy-Schwarz inequality to write

∣∣E[hθ(XC)1|XC−1|≥η
]∣∣ ≤√E[hθ(XC)2]

√
P[|XC − 1| ≥ η]

and note thatE
[
hθ(XC)2

]
= O(1) for allC > 1 by Lemma 6 (ii); applying Lemma 6 (i) then eventually

shows that E
[
hθ(XC)1|XC−1|≥η

]
is O(e−

C
2
·ϕ(1+η)) which is, in particular, o(1/C). At this stage, we

therefore conclude from (3.20) and the latter discussion that

DC = fθ(1) +
f ′′θ (1)

2C
+ o

(
1

C

)
. (3.21)

Lastly, we show that the term EC is o(1/C). To this aim, it is sufficient to show (see [62], Theorem
13.7) that the sequenceWC = C · kθ(XC , YC) , C > 1, converges in probability to zero and that it is
uniformly integrable:

• to prove the convergence in probability, note that since XC → 1 a.s. when C → ∞ and
YC ∈ [1, XC ], then YC → 1 a.s. It follows from the continuity of f ′′θ in the interval (1− η, 1 + η) that
f ′′θ (1) − f ′′θ (YC) → 0 a.s. and, in particular, in probability. On the other hand, since XC = T̂C/C is
an average of C i.i.d. random variables with mean 1, the continuous mapping theorem for weak limits
implies that C(XC − 1)2 converges in distribution (the limit distribution is χ2 with parameter 1 but
this specific limit has no importance for the present proof). Finally, since 1{|XC − 1| < η} → 1 a.s.,
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Slutsky’s theorem (Th. 11.4 in [32]) allows us to conclude that

WC =
f ′′θ (1)− f ′′θ (YC)

2
× C(XC − 1)2 × 1{|XC − 1| < η} → 0

in distribution as C →∞ and thus in probability as well;
• to prove the uniform integrability ofWC , it suffices to show that

sup
C≥1

E
[
W 2
C

]
<∞ (3.22)

(see [62] Theorem 13.3). First note that, since fθ is twice continuous differentiable, we have∣∣∣∣f ′′θ (1)− f ′′θ (YC)

2
1|XC−1|<η

∣∣∣∣ ≤ K
for anyC > 1 and for some constantK depending on η only. Secondly, by Lemma 6 (ii), we further have
E
[
C2 (XC − 1)4

]
= C2 × O(C−2) = O(1). We finally conclude that E

[
W 2
C

]
< K2 × O(1) < ∞

which proves the claimed property (3.22).
Finally gathering E[µC ] = AC + BC = AC +DC + EC with AC = o(1/C), EC = o(1/C) and

DC expanded in (3.21), we thus have proved that

E[µC ] = fθ(1) +
f ′′θ (1)

2C
+ o

(
1

C

)
(3.23)

as C →∞. To conclude the proof, we now express function fθ and its derivatives at 1 in terms of the
functionm and its derivatives at tθ; by implicit differentiation, we calculate

f ′θ(z) =
m′(tθz)

m(tθz)
θ, f ′′θ (z) =

θ2

m(tθz)2

(
m′′(tθz)−

m′(tθz)
2

m(tθz)

)
;

the values of f ′θ and f
′′
θ at z = 1 consequently follow and replacing them into (3.23), we finally prove

the expansion (3.13), as claimed.

Proof of Proposition 10

Differentiating (3.7) under the integral sign, with λ(u) expressed by (3.14), readily gives formulas (3.15)
after using the variable change u 7→ u/L. The validity of these formulas can then be simply proved by
showing that these integrals form′ andm′′ are finite.

Given t > 0 andL, define u∗ = u∗(t, L) = inf{u : f(u) > f(u+t/L)}, so that f(u) ≤ f(u+t/L)

for u ≤ u∗ and f(u) > f(u+ t/L) for u > u∗. The existence of u∗ is ensured from the unimodality of
f , and we have u∗ = 0 if and only if f is non-increasing. Finally, define ũ = inf{u : f(u) = max f}
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(see Figure 3.5 for an schematic view of these definitions).

f(u) 

u 

f(u+t/L) 

u* u ~ 0 

Figure 3.5: Schema for unimodal f

Since f is differentiable and unimodal, it is quasi-concave (see [19], Lemma 2.4.1.), that is, for any
0 ≤ η ≤ 1, we have f(ηu1 + (1− η)u2) ≥ f(u1) ∧ f(u2) for u1, u2 ≥ 0. As a consequence, for any
t > 0, the area under the graph of f in the interval [u, u+ t/L] can be bounded below by

F (u+ t/L)− F (u) ≥

f(u) · t/L, u ≤ u∗,

f(u+ t/L) · t/L, u > u∗.
(3.24)

We now divide the integrals in (3.15) into their contributions from intervals [0, u∗] and [u∗,∞),
respectively, and bound them separately. For the first derivative m(t), using lower bounds (3.24) we
obtain

|m′(t)| ≤ E

[
RL

∫ u∗

0
f(u+ t/L)Rf(u)e−Rf(u)t du

]

+ E

[
RL

∫ ∞
u∗

f(u)Rf(u+ t/L)e−Rf(u+t/L)t du

]
≤ 2

et
E[RL]

where the last inequality is justified by the bound xe−ax ≤ 1/ae for any fixed a > 0, and the fact that∫
f = 1.
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For the second derivativem′′(t), we introduce integrals

A1(t) = E

[
RL

∫ ∞
0

R2f(u)f(u+ t/L)2e−RL(F (u+t/L)−F (u)) du

]
,

A2(t) = E

[
R

∫ ∞
0

Rf(u)f ′(u+ t/L)e−RL(F (u+t/L)−F (u)) du

]
so that |m′′(t)| ≤ |A1(t)|+ |A2(t)|. For A1(t), we have

|A1(t)| ≤ E

[
RL

∫ u∗

0
f(u+ t/L)2f(u)R2e−Rf(u)t du

]

+ E

[
RL

∫ ∞
u∗

f(u)R2f(u+ t/L)2e−Rf(u+t/L)t du

]
≤ E

[
4RL

e2t2f(0)

∫
f2

]
+ E

[
RL

et

]
≤ 1

et

(
1 +

4

f(0)et

∫
f2

)
E[RL] <∞

where the last inequality follows from the bounds xe−ax ≤ 1/ae, x2e−ax ≤ 4/a2e2 for any fixed a > 0,
and the fact that 0 < f(0) ≤ f(u) ≤ f(u+ t/L) for u ∈ [0, u∗]. Regarding A2(t), we have

|A2(t)| ≤ E

[
R

∫ u∗

0
Rf(u)|f ′(u+ t/L)|e−Rf(u)t du

]

+ E

[
R

∫ ∞
u∗

Rf(u)|f ′(u+ t/L)|e−Rf(u+t/L)t du

]
= B1(t) +B2(t).

Using again xe−ax ≤ 1/ae, we have

B1(t) ≤ E[R]

et

∫
|f ′| <∞.

Finally, to deal with B2(t) we note that f ′(u + t/L) ≤ 0 for u ∈ [u∗,∞) and thus |f ′(u + t/L)| =

−f ′(u+ t/L). We then use an integration by parts to obtain

B2(t) = −1

t
E

[
R

([
−e−Rf(u+t/L)tf(u)

]∞
u=u∗

+

∫ ∞
u∗

f ′(u)e−Rf(u+t/L)t du

)]
= −1

t
E
[
Rf(u∗)e−Rf(u∗+t/L)

]
− E

[
R

∫ ũ

u∗
f ′(u)e−Rf(u+t/L)t du

]
− E

[
R

∫ ∞
ũ

f ′(u)e−Rf(u+t/L)t du

]
.

The first term in the latter expression is trivially negative; the second is also negative since f is
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non-decreasing in [0, ũ). As a consequence both terms can be ignored to obtain

B2(t) ≤ 1

t
E

[
R

∫ ∞
ũ
|f ′(u)|e−Rf(u+t/L)t du

]
≤ E[R]

t

∫ ∞
0
|f ′(u)|du <∞

where the last inequality again follows from xe−ax ≤ 1/ae, thus concluding the proof.



Chapter 4

Parameter Estimation

We now devote our efforts to the topic of parameter estimation for performance modeling. Already
in Chapter 2, we have used a parameter fitting procedure for the validation of the Box model. This
procedure, although effective, is ad-hoc and has the inconvenience of being defined only for the sub-
sample of objects with at least two requests. The main reason for the difficulties in this estimation is
that, when we represent a traffic trace via the Box model, the popularity and the lifespan are unobserved
random variables.

One methodology that allows to deal with the latter problem is provided by Maximum Likelihood
(ML) estimations. The main objective of this chapter is to propose aML-based parameter fitting method
in the simpler case of the IRM model. However, due combinatorial explosion of its likelihood function,
the ML method is not suitable to the IRM model. Therefore, we propose a modified version of IRM
we call IRM-Mixed (IRM-M) in which the document popularity is modeled by an i.i.d. sample from a
probability distribution. In consequence the individual document request sequences are mixed Poisson
processes and thus we ca regard IRM-M as an intermediate model between IRM and the Box model.

While the IRM-M models the same localities as IRM, the additional randomness layer renders its
likelihood function tractable. This enables us to apply theMLmethod for the estimation of its popularity
distribution. At the same time, the ML method allows us to seamlessly solve the issue of unobserved
documents and to use the whole dataset without using ad-hoc tinkering as we did in Chapter 2.

We remark that solving this problem has applications other than performance evaluation. To
highlight this fact, we show in Figure 4.1 an expanded version of our performance evaluation workflow.
For example, with the estimated parameters in hand, we could resample synthetic traces that are
statistically similar to the original one. These traces could be used to realistically simulate the behavior
of other systems receiving such a traffic.

61
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Figure 4.1: Expanded performance evaluation workflow with a fixed model.

We start this chapter by briefly describing two additional synthetic datasets we use in this chapter
and by making explicit the problem to solve.

4.1 Additional Datasets

In addition to #yt and #vod datasets discussed in previous chapters, we add two synthetic datasets
called #prt and #delta. These datasets allow us to highlight in a clearer way some of our findings and,
more importantly, to validate the results with controlled experiments where ground-truth is available.
The set #prt (resp. #delta) is generated by first drawing 10 000 000 (resp. 100 000) random samples
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with Pareto (1.6, 0.1) (resp. Dirac delta at 4.0) distribution representing the popularity (see Section 4.3
for a model description). The number of requests for each document is then drawn according to the
Poisson distribution with mean equal to the document popularity. After discarding the documents with
zero request, this results into 2 600 000 (resp. 400 000) requests to 1 900 000 (resp. 98 000) documents.

4.2 Problem Definition

Recall that, in the case of LRU cache performance evaluation with IRM traffic, users request documents
among a catalog of K documents. Under IRM, the sequence of requests for document 1 ≤ k ≤ K

is a Poisson process with rate rk, where rk is proportional to the popularity of document k; all such
processes are mutually independent and their superposition build up the total request process. In this
model, the number Nk of requests for document k in a time window W is an independent Poisson
random variable P(rkW ) of mean rkW . Up to a time normalization, we assume in the following that
W = 1.

Assume now that an observer has access to a traffic trace. In the case of IRM, a sufficient statistic
of the request process are the request counts n1, n2, . . . , nK0 for all observed document, where K0 is
the number of observed documents in the sample. Following the point of view of an Internet Service
Provider (ISP), we here assume that objects with zero request are not observable in the sample. Our
main objective is to solve the following problem:

Problem Statement (First Version)
Obtain a popularity distribution estimation such that the request flow predicted by the model using these
parameters represents the data at best

A simple solution, henceforth called the naive method, is to estimate the popularity of a document
by its request count and the catalog size by the number of observed objects, that is:

K̂nv = K0 and r̂nvk = nk for 1 ≤ k ≤ K̂nv

We identify two problems at this stage. First, since the trace is zero-censored, with high probability
the observed number of documents K0 is strictly smaller than the catalog size K. Second, each
document popularity rk is estimated by a single sample nk of the random countNk. This last limitation
is well illustrated in the case of the #delta dataset. By definition, the ground-truth popularities are
rk = 4. In the dataset, however, the counts of document requests are Poisson random variables with
mean 4, hence r̂nvk = P(4) and the naive estimation “dilutes” the mass of popularities over the set of
positive integers. In Figure 4.2, we show the impact of these limitations for the hit ratio estimation,
based on the #prt trace. The first curve is our ground-truth. It is obtained via simulation of a LRU



CHAPTER 4. PARAMETER ESTIMATION 64

0

0.2

0.4

0.6

0.8

0 0.4 0.8 1.2 1.6 2

H
it
R
at
io

Cache Size [Millions of Documents]

Ground-Truth
Che IRM

Naive

Figure 4.2: Hit ratio of a cache fed by #prt trace: Ground-truth and prediction by the naive estimation.
The cache size is normalized with respect to that of the ground-truth.

cache starting empty; the cache is fed by the traffic trace that is randomly shuffled to enforce the IRM
assumption. The second curve is the prediction of the IRM model, when fed by the real popularities in
the trace (see Section 6.1 for a quick derivation of the transient hit ratio for the IRM). As expected, it
perfectly fits the ground-truth. The third curve shows the results obtained by the IRM model when fed
by the parameters K̂nv and r̂nvk , 1 ≤ k ≤ K̂nv, from the naive estimation. The hit ratio curves are seen
to clearly differ, and the naive method proves inaccurate for estimating document popularities when
fitting a performance model.

In the absence of any prior knowledge about the popularity distribution, the only available data for
the estimation of each document popularity is a single request count, which limits the accuracy of this
approach. To overcome this lack of information, we thus aim at jointly estimating the set of popularities,
from the joint set of request counts. The latter approach allows us to use all the information contained
in the joint Poisson distribution rather than just the mean.

We now make more precise our problem with the previously introduced notations:

Problem Statement (Second Version)
Given the measured request counts {n1, n2, . . . , nK0}, determine the parameters K̂ and r̂1, r̂2, . . . , r̂K̂
so that the set of random variables {N1, N2, . . . , NK̂

}, where Nk = P(r̂k) for 1 ≤ k ≤ K̂, is the
“closest” to {n1, n2, . . . , nK0 , 0, . . . , 0}, with K̂ −K0 zeros at the tail.

4.3 Maximum Likelihood Estimation

In this section, we show how to solve the latter inverse problem via the Maximum Likelihood method.
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In the IRM setting, the parameters (r1, r2, . . . , rK ,K) are not ordered, and thus every request count
could correspond to any of the popularities. The likelihood given observations n = (n1, n2, . . . , nK)

thus runs through every permutation σ of sizeK. Specifically, the likelihood L is given by

L (r1, r2, . . . , rK ,K; n) =
1

K!

∑
σ

K0∏
j=1

e−rσ(j)r
nj
σ(j)

nj !
×

K∏
j=K0+1

e−rσ(j)

 .

The combinatorial explosion incurred in the evaluation of L for large catalog sizeK makes the ML
method intractable for the IRM model. We thus propose in the following a slightly modified model,
which is simultaneously tractable for ML estimations and simple to analyze.

IRMMixture Model (IRM-M)

In order to succinctly describe the popularity parameters r1, r2, . . . , rK and to ease their estimation,
we slightly modify the IRM model by considering them as random variables. Specifically, we now
model the popularity by an i.i.d. sample R1, R2, . . . , RK from an unknown mixing distribution with
density g. Given the value of Rk, the request process to the kth document remains a Poisson process
with intensity Rk, and thus the counts of each document follow a mixed Poisson distribution with some
mixing distribution g. In particular, the number of requests N for any document satisfies

P[N = j] = Eg

[
e−RRj

j!

]
,=

∫ ∞
0

e−xxj

j!
g(x) dx (4.1)

P[N > 0] = Eg
[
1− e−R

]
=

∫ ∞
0

(1− e−x)g(x) dx (4.2)

for j ∈ N, where the operator Eg[·] represents the expectation a under the mixing distribution g.

ML estimation on IRM-M

Bymodifying themodel, we have changed the problemof estimating the static parameters r1, r2, . . . , rK ,
to that of estimating the mixing distribution g.
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Problem Statement (IRM-M)
Given the measured request counts {n1, n2, . . . , nK0}, determine the catalog size K̂ and the mixing
density ĝ such that an i.i.d. mixed Poisson sample {N1, N2, . . . , NK̂

} is the “closest” to the set
{n1, n2, . . . , nK0 , 0, . . . , 0}, with K̂ −K0 zeros at the tail.

We now show how this problem can be solved via a ML method. Let J = maxK0
k=1{nk} be the

maximum number of requests over all documents, and let

µj =
1

K0

K0∑
k=1

1{nk = j}

be the proportion of documents with j requests, 1 ≤ j ≤ J . Using (4.1) and (4.2), the log-likelihood
` (g; µ) of the popularity distribution g for the observations µ = (µj)j≥1 reads

` (g; µ) =

J∑
j=1

µj logP[N = j |N > 0]

=
J∑
j=1

µj logEg

[
e−RRj

j!

]
− logEg

[
1− e−R

]
.

We remark that, in this setting, the catalog sizeK is decoupled from the popularity distribution. Thus,
we can first obtain an estimator ĝ of the mixing distribution g, and then approximateK by

K̂ml =
K0

Eĝ[1− e−R]
(4.3)

which is asymptotically close to the ML estimator.
We now proceed with the detailed form of the likelihood function for the parametric and non-

parametric estimation procedures. In both approaches, we numerically solve the problems with a
generic non-linear optimization solver in MATLAB based on an interior point algorithm. Our code is
freely available online.1 We discuss the use of specialized algorithms in Section 4.5.

Parametric Estimation

In this setting, we determine the mixing distribution g within a parametric family of density functions
whose choice relies on an a-priori knowledge. The computation of the ML estimator obviously depends
on this choice, and due to space restriction, we here limit ourselves to the two-parameter Pareto family

1Code : http://www.olmos.cl/code/mixed_poisson.tgz

http://www.olmos.cl/code/mixed_poisson.tgz
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with densities
g(x) =

αxαm
xα+1

for x > xm, with α, xm the shape and scale parameters, respectively. The log-likelihood function
` = ` (α, xm; µ) then reads

` =

J∑
j=1

µj log
Γ(j − α, xm)

j!
− log (αxαm − Γ(−α, xm))

where Γ is the incomplete Gamma function.

Non-Parametric Family

In the absence of a-priori knowledge about the distribution g, the non-parametric (NP) approach
provides a method to obtain an estimator. In this setting, we determine a discrete distribution g of the
form P[R = xi] = θi for 1 < i < I . The log-likelihood correspondingly reads

` (θ; µ) =
J∑
j=1

µj log
I∑
i=1

θi
e−xixji
j!

− log
I∑
i=1

θi(1− e−xi).

Hit Probability Analysis

As detailed in Appendix 6.1, the IRM-Mmodel proves to be tractable for evaluating the performance of
an LRU cache. In particular, the Che approximation is easily adapted to the IRM-M case; furthermore,
we are able to derive formulas for the transient analysis of the hit ratio, when starting from an empty
cache.

4.4 Numerical Evaluation

The accuracy of the parameter estimation can be evaluated at three different levels, as expressed by the
following questions:

(1) Is the estimated popularity distribution close to the actual one?

(2) Is the request flow predicted by the model statistically similar to the actual one?

(3) Is the hit probability of the fitted model accurately predicted?

As in Chapter 2, we assess the precision of a curve estimate by computing the so-called mean
absolute percentage error (MAPE) defined in Equation (2.1).
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Estimation of popularity distribution

First, we start with the most general question, that is, the estimation of the mixing distribution.
By means of the NP method, we obtain an estimate ĝnp of the popularity density by applying the

NP method, using a support with 0.01 as lower bound, exponentially increasing spacings and an upper
bound slightly larger than the maximum of observed requests (e.g., 2 400 for #prt and 16 for #delta).
The naive fitting corresponds to the empirical measure of the request counts, that is, the mixture of
Dirac measures

1

K0

K0∑
k=1

δnk(·).

We observe in Figure 4.3 the NP estimator of the mixing distribution for the #delta and #prt
datasets. In the #delta case, the ground-truth is a Dirac measure at R = 4, and the naive method
fails at correctly estimating its shape, whereas the ML estimator concentrates its mass around the value
R = 4. In the #prt case, as expected, the estimated distribution is irregular, tending to accumulate
mass at certain points (see Section 4.5 for possible regularization solutions). The peaks, nevertheless,
capture the power law trend, as reflected by the good estimation quality of the mixture distribution. In
contrast, the naive method fails at correctly estimating both the trend of distribution body and its tail.

Using Equation (4.3), we also calculate the catalog size, giving K̂ ≈ 11 600 000 (resp. 105 278)
for the #prt (resp. #delta) case. This represents a relative error of 11.6% and 5.2%, respectively.
Following Equation (4.3), it shows that estimating the probability that a document receives no request
for the duration of the trace, based on the very same trace, is a difficult task. As a consequence, this
error is not negligible. It is, however, smaller, and even more significantly in the #prt case, than the
relative error of the naive method (recall that K̂nv = K0 = 1 900 000 and K̂nv = 92 046 for the #prt
and #delta traces, respectively).

When some a priori knowledge about the distribution shape is available, the estimates can be
improved via the parametric approach. In the #prt case, the resulting Pareto fit gives the estimates
α̂ = 1.597 and x̂m = 0.099 that are very close to the original parameters α = 1.6 and xm = 0.1. We
compare these results to that of the “log-log” approach, which consists in estimating the tail index by
fitting a least square approximation to the log-log rank-frequency plot, as shown in Figure 4.4. The
rank frequency plot roughly decays as 1/α. Using the first 20 000 objects to compute the regression,
the estimation gives 1.704, which is worse than the ML estimate.

Request flow estimation

In this section, we specify the discussion by estimating the zero-censored request count distribution (or
mixture distribution in statistical terms) P[N = j |N > 0], j ≥ 1.

For the naive approach, we use the results of the previous section to generate an IRM trace using
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Figure 4.3: Mixing distribution obtained via the non-parametric methods.

the estimated parameters. We then count the mixture distribution. The experiment is repeated 50 000

times, with a coefficient of variation lower that 10−4 for all points of the distribution. As regards
the ML approach, using the ĝnp density, we numerically compute the associated zero-censored request
distribution using Equation (4.1).

In Figure 4.5, we show the resulting zero-censored request distribution estimated by each method.
For comparison, we include the real mixture distribution for the #prt dataset, which can be calculated
explicitly. For the #yt and #vod datasets, we show instead the observed request distribution.

We observe two issues in the naive approach, that are not present in the maximum likelihood
estimation:
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Figure 4.4: Rank frequency distribution for the #prt trace

• first, at the head of the distribution, where most of the mass is concentrated, large estimation
errors are produced by the naive approach. Such errors produce a mass shift towards the tail of the
distribution. On the contrary, the NP estimation matches perfectly the head of the distribution;

• second, the naive method over-fits the tail of the distribution. We observe in Figure 4.5b that
the naive estimate shows a “horizontal branch” at the tail, and differs significantly from the
ground-truth that is approximately a straight “diagonal” line. This horizontal branch is in fact
a few isolated masses, though they look as a line on the figure. The naive estimation therefore
concentrates the mass of the ground-truth distribution on a few points. On the other side, the ML
estimation correctly estimates the trend of the distribution at all scales, though noise inaccuracies
appear at the tail. This is quantified by the MAPE of 1.67 for the ML estimation, whereas the
naive method leads to a MAPE of 668, for the full range distribution. As regards the #yt and
#vod cases in Figures 4.5d and 4.5f, we similarly observe the same horizontal branch at the tail for
the naive distribution. In the absence of available ground-truth, we do not compute the MAPE,
but the similarity of behavior hints that the ML method also performs better on these traces.

Hit Probability Estimation

We finally compare the hit probabilities predicted by the IRM-M model with popularity distributions
fitted using the naive and the ML methods, both for the #prt and #yt traces.

Figure 4.6 shows the obtained hit probability curve in each case. In the case of the #yt trace, in order
to obtain a request sequence modelable by IRM-M, we applied the global randomization procedure as in
Section 2.2. The ground-truth curve is then obtained by simulating a cache with each trace. The Naive
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Figure 4.5: Censored Mixture distribution estimations obtained with the non-parametric method

(resp. NP) curves are obtained when using formula (6.4) (resp. (6.7)) with the parameters obtained
by the naive (resp. NP) method. Finally, the Zipf curve, for the #prt trace, corresponds to the hit
probability prediction when using the “log-log” parametric fitting method detailed in Section 4.4 in
conjunction with formula (6.4).
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Figure 4.6: Hit probability estimations

The naive approach leads to small inaccuracy for the #yt trace and large errors for the #prt trace,
with respective MAPE of 0.06 and 1.44. This difference in estimation accuracy can be explained by
the variability of the random variable N . Indeed, in the #yt dataset, documents receive an average
of 7.3 requests per document, whereas this average decreases to 1.4 in the #prt trace. It follows that
the coefficient of variation of the request count distribution is greater in the #prt trace than in the #yt
trace. As expected, the inaccuracy of the naive method is greater for the former than for the latter.
Note also that from an operational point of view, the focus is on the miss probability, which determines
the dimensioning requirements upstream of the cache. The inaccuracy of the naive hit probability
prediction for the #yt dataset becomes relatively significant in this context. As shown by the Zipf curve,
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the knowledge of a relevant parametric family allows us to improve the hit probability estimation. The
error, however, remains significant with a MAPE of 0.96. In contrast, the non-parametric ML curves
match perfectly the original ones, as shown by the MAPE of 0.002 for the #yt trace and 0.005 for the
#prt trace. We conclude that, as regards hit probability, our estimation method accurately estimates
the model parameters. In contrast, in the Zipf case, a seemingly small error of 0.1 in the estimation of
the tail exponent leads to a significant error in the hit probability estimation.

4.5 Discussion and Conclusion

Other Applications and Extensions

Since our methodology requires only the statistics about the number of requests per document, the
presented estimation method for content popularity can be readily applied in use-cases other than
caching performance. For example, the estimations can be used for dimensioning the bandwidth in the
access network for VoD or TVmulticast services or even predicting the demand for content in marketing
studies.

Additionally, the wide applicability of the ML estimators makes our method a viable option for
other traffic models. In particular, our framework can be extended to to renewal [23, 7] and the
cluster processes we have analyzed in previous chapters. In these cases new challenges arises, due the
reformulation of the ML method. For example, in the Box model, the randomized parameter is not
univariate, but multivariate or can even an stochastic process [23]. Another factor to consider is time
censure, due the greater impact of the time variable in stochastic models other than IRM-M.

Maximization techniques

The main current limitation of our maximization approach is that the estimated mixing density exhibits
a lot of peaks, which is consistent with the results of Lindsay [43]. This might be a problem when one
aims at understanding the nature of the popularity distribution.

A possible solution to enforce smoothness in the mixing density estimation is to introduce a
penalization for the irregularities. Classical candidates for such a penalization are the L2-penalization
or a logarithmic penalization

P (θ) =
I∑
i=1

(log θi+1 − log θi)
θi+1 − θi
xi+1 − xi

.

One then maximizes ` (θ; µ) − ρP (θ), where ρ represents the trade-off factor between fitness and
smoothness. Regularization here comes at the price of choosing the right penalization function P and
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the right value of ρ and in our case, the results have been satisfactory only for concentrated mixing
distributions.

Another possibility is to exploit the fact that the peaks conserve the overall trend of the distribution.
We thus extract the peak locations. A second ML optimization is then performed using these peak
locations as the new support. Though non-standard, this gives satisfactory results for the #prt dataset
as shown in Figure 4.7.
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Figure 4.7: Estimation of the mixing distribution by the peak selection method

Summary of results

In this chapter, we have presented and solved the inverse problem that consists in estimating from
a trace the popularity parameters for the performance evaluation of an LRU cache under the IRM-
M request model. A key point in our approach is that we consider the probability that a document
receives a given number of requests, rather than the probability that a request is directed to a given
document. This representation is consistent with recently developed caching models (see Chapter 2
and [59, 23]). Moreover, it allows us to avoid the fitting of a rank-frequency plot, which is in essence
an order statistic and exhibits over-fitting. Our second contribution on the modeling aspects is that we
consider popularities as random variables, rather than parameters, leading to a mixture model tractable
via ML methods. We have illustrated our method in the case of cache performance evaluation but our
framework is applicable and extensible to other settings.

The inverse problem stems from the random nature of the requests countN for a given document. In
particular, a traffic trace contains a single sample of these requests counts. The accuracy of any method
that aims at fitting independently the popularity of each document is therefore limited by the inherent
variability of the random variable N . The importance of using a sound methodology correspondingly
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increases when the variability of the request counts is large, which is typically the case whenN is small.
Determining the parameters of the model allows one to use the performance for diverse objectives,

including the dimensioning of operational networks or the design of newmechanisms. More importantly,
in contrast with simulation-based analysis, it enables one to more easily explore what-if scenarios, by
keeping some parameters at their current value and modifying others to reflect future or possible
changes.



Chapter 5

Conclusion & Perspectives

In this dissertation, we have proposed and implemented a framework to evaluate the performance of
a LRU cache using mathematical modeling. This framework has at its core the usual mathematical
analysis pertaining to performance evaluation, and extends it by incorporating a model selection step
and a parameter fitting step. Starting from actual data traces, these three stages together provide a
mathematical model for the traces that enables us to accurately estimate the hit probability of a LRU
cache fed with such a traffic.

In Chapter 2, we have applied the “semi-experimental” method to the traces and subsequently
proposed a parsimonious traffic model for our evaluation problem. The results of the semi-experiments
have shown the relevant time correlations for LRU caching when the analysis is carried over a long
period of time. These insights allowed us to propose the “BoxModel” to represent the arrival sequences
in the traces. This model is a Poisson cluster process in which the intensity of each cluster is a “box”
function, and features a document catalog evolving in time.

In Chapter 3, we rigorously obtained an asymptotic estimation of the hit probability of a LRU cache
for a general class of Poisson cluster processes that includes the “Box Model” as a particular case. We
used results from Palm Theory to set up a probability space whereby a document can be tagged and
analyzed independently from the rest of the system. This setup allows us to obtain an integral expression
for the average number of misses that decouples the respective contributions of the tagged document
and the rest of the process. Finally, by scaling the system, we obtained an asymptotic expansion for the
hit probability with a large cache size C, justifying and quantifying the error of the widely used “Che
Approximation”.

In Chapter 4, we proposed a Maximum Likelihood method to estimate the popularity parameter
of the IRM-M model. This method allows us to seamlessly handle the zero-censoring problem found
in traffic traces. We show that although the hidden popularity distribution is difficult to be accurately

76
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estimated, the method gives good results for the distribution of the number of requests and the theoretical
performance of a LRU cache.

Perspectives

We now review some potential research directions to continue this work.

1) Mathematical Analysis

1.a) An immediate extension of our study, is to propose a more realistic model of the system by taking
into account document sizes. These sizes and the cache size C should be measured for instance in bits,
packets, or by a continuous value in R+. The document sizes can be incorporated as additional marks
to the cluster point process. In this case, the process X defining the canonical exit time becomes a
compound inhomogeneous Poisson process, summing up these file sizes. The exit time to consider for
a canonical document of size S is then the first passage time of X strictly above the level C − S.
1.b) Our mathematical framework could be adapted to analyze other caching policies satisfying they
property that the replacement algorithm for the canonical document depends only on the rest of the
document request process. Examples of such caching policies found in the literature are RANDOM,
which evicts a uniformly chosen document when adding a new document to the cache, and FIFO, which
works as LRU except that it does not move a requested document that is already in the cache to the front
of it. Such alternative policies may be relevant to ICN architectures: their simplicity may help to cope
with the high line rates of in-network elements compensating their lower hit probability [28]. In order
to analyze this case, the miss events for this policies are expected to be more intricate to analyze since
they depend on the missed requests in the rest of the process.
1.c) Another interesting eviction policy is k-LRU, in which k− 1 virtual LRU caches are put in front of
a real one, acting as filters for unpopular content. For renewal traffic, it has been shown that the “Che
approximation” works again in this setting and the performance is close that of LFU for large k [46].
Much of the independence structure we have exploited in this work is lost for k-LRU, and again the
missed requests in the rest of the process is a relevant object. As a consequence, a rigorous analysis of
the hit probability for k-LRU is in our opinion very challenging.
1.d) Finally, we can envisage adding a new layer to the model to represent the chunk request processes.
This is relevant since the chunk request present phenomena like “skipping” and interruptions as evi-
denced by the fact that not all chunk are not equally popular [45]. In consequence, working at the chunk
layer may shed light on the impact of the latter phenomena on the LRU cache performance. However,
since the chunks are usually requested in order, they have a highly correlated request times, and thus a
Poisson model does not seems promising. Thus, the first challenge to address is to propose a pertinent
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and tractable model for the chunk request sequences.

2) Parameter Estimation

Ourmethodology to estimate the popularity distribution of the IRM-Mmodel uses a generic optimization
solver. In the non-censored case, Lindsay [43] has shown that the likelihood is a convex function and
thus the optimization problem is well-posed. Furthermore, specialized algorithms have been proposed,
many of them akin to an Expectation Maximization scheme. Thus, it would be interesting to study the
structure of the likelihood in the censored case and adapt the latter algorithms to this setting.

Another possible venue of research is to propose a Maximum Likelihood approach to estimate the
distribution of the popularity-lifespan pair for the “Box Model”. The estimations in Chapter 2, while
effective, are cumbersome and not available for large portion of the dataset. This is due the fact that
the lifespan and popularity are hidden variables of the model (as the popularity is hidden for IRM-M).
The likelihood in this case is more complex, and more sophisticated methods, such as Monte Carlo
approaches [49], may be invoke. Nonetheless, we think that such an approach must be linked to our
method for IRM-M since the number of documents in the “Box Model” is also a mixed Poisson random
variable.



Chapter 6

Appendices

6.1 Analysis of Simpler Models

The mathematical tools developed in Chapter 3 allow us derive formulas for the transient hit probability
for both the IRM and IRM-M models. Additionally we rigorously justify the Che approximation in the
case of IRM-M.

IRMModel

For comprehension purposes, we first review in detail the Che approximation method for the stationary
hit probability estimation in the IRM model. Given popularities r1, r2, . . . , rK , let Xk(t) denote the
number of different documents, apart from the k-th, requested in a time window [0, t], that is,

Xk(t) =
K∑

i=1;i 6=k
1{Ni[0, t] ≥ 1}.

Let
T kC = inf{t > 0 : Xk(t) ≥ C}

be the exit time to level C for processXk; T kC represents the eviction time for content k in a LRU cache
of size C, given that it is not requested during this time period. Now, the core of the Che approximation
in the stationary case consists in the following steps:

Che.1 assuming that all T kC have the same distribution, that is, for each k we have T kC
d
= TC for

some random time TC ;

Che.2 the random variable TC is well approximated by a constant tC called the characteristic time.
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The time tC is implicitly defined by the equation

K∑
k=1

E[1{Nk[0, tC ] ≥ 1}] =

K∑
k=1

1− e−rktC = C. (6.1)

Intuitively, tC is the time when, on average, C different objects have been requested.

Che.3 The hit probability qC can then be derived as follows. Using the Poisson Arrivals See Time
Average property, the hit probability of document k for a cache of sizeC is equal to 1−erktC ,
and by averaging on all documents, it follows that

qC ≈
1

Λ

K∑
k=1

rk(1− e−rktC ) (6.2)

where Λ =
∑K

k=1 rk.

As for the transient case, we simply assume that T kC ≤ W as the hit probability does not increase
with T kC when T kC > W . Note that we can see the kth request process as one of the Box model with
fixed popularity rk and lifespanW . In consequence, by formula (3.16) the average number of hits for
the kth document can be written as

E
[
Hk
C

]
= E

[
h(rk, T

k
C)
]

where
h(r, t) = (rW − 1)(1− e−rt) + rte−rt, t < W. (6.3)

Thus the transient hit probability qC(W ) is given by

qC(W ) =
K∑
k=1

E
[
h(rk, T

k
C)
]
.

Applying the Che approximation, we then obtain

qC(W ) ≈ 1

Λ

K∑
k=1

rk(1− e−rktC ) +
1

ΛW

(
K∑
k=1

rktCe
−rktC − C

)
. (6.4)

The second term of (6.4) vanishes asW →∞, leading to equality (6.2) for the stationary hit probability.
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IRM-MModel

We now address the IRM-M case. We first show how to derive the hit probability in this setting; we
further prove formally the validity of the Che approximation in the case where C = δK andK tends to
infinity.
• Given the popularities R1, R2, . . . , RK , let us define Xk, T kC as in the previous section, and let

δ = C/K be the proportion of stored documents. As the popularities are here an i.i.d. sample, and
since Xk and T kC are independent of Rk, the previous quantities do not consequently depend on the
document index k. In consequence, this validates the first step of the Che approximation.

For the second step, define the characteristic time tδ as

tδ = ϕ−1 (δ) with ϕ(t) = E
[
1− e−Rt

]
, (6.5)

which is equivalent to dividing both sides of (6.1) by K. Following the same steps as in the previous
section, it is easy to derive the following hit probability formulas:

qC ≈
E
[
R(1− e−Rtδ)

]
E[R]

, (6.6)

qC(W ) ≈
E
[
R(1− e−Rtδ)

]
E[R]

+
E
[
Rtδe

−Rtδ
]
− δ

E[R]W
. (6.7)

Equations (6.6) and (6.7) are the respective IRM-M equivalents to Equations (6.2) and (6.4).
•We now show that the second step of the Che approximation is asymptotically exact, that is, the

random variable TC can be replaced by the associated characteristic time tδ. Consider the case where
the cache size scales with the catalog size, that is, δ remains constant, and C and K grow to infinity.
Recall that the distribution of TC is given by

P[TC > t] = P

[
K∑
k=1

1{Nk[0, t] ≥ 1} < C

]

for t ≥ 0, which can be rewritten as

P[TδK > t] = P

[
1

K

K∑
k=1

1{Nk[0, t] ≥ 1} < δ

]
. (6.8)

An application of the law of large numbers shows that

lim
K→∞

1

K

K∑
k=1

1{Nk[0, t] ≥ 1} = ϕ(t)
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almost surely; using (6.8), the exit time TδK thus converges in probability to the constant tδ, for
δ ∈ [0, ϕ(W )], where ϕ(W ) = E[K0] /K. Note that we can regard the request process as the one of
the Box model with popularityR and fixed lifespanW . As in the case of IRM, the formula (3.16) allow
us to show expected number of hits HC = HδK satisfies the identity

E[HδK ] = E[h(R, TδK)] ;

with h defined in (6.3). Finally, applying the bounded convergence theorem [62, Sec. 13.6] to the latter
identity and dividing by the expected number of requests E[R] leads to formulas (6.6) and (6.7), as
claimed.

6.2 Algorithms

We briefly review the key algorithms we have implemented for this work.

LRU Cache Simulation

The LRU policy allows the simulation of a cache to be carried out simultaneously for all cache sizes
0 ≤ C ≤ K0, whereK0 is the number of objects in the trace. We achieve this by using a Move-to-Front
(MTF) list of size K0 and observing that, by event equality (1.1), a truncated MTF list at position C
behaves exactly like a LRU cache of that size.

We implemented this algorithm in the C Language. First, we allocate an array of size K0 and
initialize it to 0. Upon a request of the document 1 ≤ k ≤ K0, we perform a linear search on the array
for it. Then:

• if it is a first document request (Figure 6.1a), we add it to the top of the list while shifting the rest
by one slot. We count one miss for document k for all cache sizes;

• if it is already in the array (Figure 6.1b), then we save the location i where it was stored. We put
the element in the first slot while shifting the necessary documents by one slot. We count a hit
for document k at cache sizes greater than i and one miss in the other cases.

The shifting of objects in the array is implemented by means of the function memmove.
We implemented two performance optimizations by keeping track of the documents already in the

list and calculating the hits for only a fraction of the possible cache sizes.
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(a) Handling of the first request (b) Handling of subsequent requests

Figure 6.1: Implementation of the LRU cache simulator

Mixing Document Request Sequences

A central task for the trace randomizations and simulation of the traffic models is the superposition of
the individual document request sequences. For example, to simulate the Box model, it is easy to obtain
the non-shifted request times, given a document popularity-lifespan pair and the catalog arrival times.
However, to obtain the request trace we must superpose a large number of request sequences.

To perform the superposition efficiently, we implemented a data structure which is a modified min-
priority queue [14, Sec. 6.5] that allows a quick retrieval of the next request. The original min-priority
queue can be regarded as a binary tree where the priority of any node is smaller than of its children. This
ensures that the element with smallest value is always at the top of the tree, thus allowing to implement
an efficient Extract-Min method.

Our modification to this data structure consists in replacing single values by the lists of ordered
request times (see Figure 6.2). The priority of each list is the time at the top of the list. Thus, upon a
call to the Extract-Min procedure of the queue, it returns the list that has the next request to put in the
trace. Then, we extract the first element of this list and, if it is still non-empty, we reinsert it into the
queue.

To obtain the trace, we fill the queue with all the individual document request sequences and then
empty it by successively calling Extract-Min. We implemented this strategy in C by modifying the
array based implementation in [58, Ch. 8].
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Figure 6.2: Evolution of the modified priority queue and trace after two Extract-Min calls
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Résumé : La nécessité de distribuer des quan-
titésmassives de contenusmulti-média à un nom-
bre croissant d’utilisateurs s’est accrue au cours
de la dernière décennie. La solution actuelle
pour cette demande en croissance constante est
fourni par les systèmes connues sous le nom de
Content Delivery Networks, qui gèrent actuelle-
ment la majorité du trafic multi-média en util-
isant une architecture distribuée. Ce problème
de distribution a également motivé l’étude de
nouvelles solutions tel que celui proposé par
l’Information Centric Networking, dont l’objectif
est d’ajouter des capacités de livraison de con-
tenus à la couche réseau, moyennant un décou-
plage des données et de leur localisation. Dans
ces deux architectures, les serveurs cache jouent
un rôle clé, en permettant un usage efficace des
ressources de réseau pour la distribution de con-

tenus. En conséquence, l’étude des techniques
pour l’évaluation des performances des serveurs
cache a trouvé un nouvel élan ces dernières an-
nées.

Dans cette thèse, nous proposons un cadre
complet pour la modélisation des performances
d’un cache utilisant la politique de remplacement
Least Recently Used (LRU). Notre cadre consid-
ère, outre l’analyse mathématique, deux procé-
dures qui relient les données au modèle : Dans la
première procédure, nous proposons un modèle
simple qui est a priori représentatif des carac-
téristiques essentielles du trafic mesuré; dans la
deuxième nous estimons les paramètres du mod-
èle à partir des traces de trafic. Les contributions
de cette thèse concernent chacune des procédures
mentionnées.
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Abstract: The need to distribute massive quan-
tities of multimedia content to multiple users has
increased tremendously in the last decade. The
current solution to this ever-growing demand are
Content Delivery Networks, that handle nowa-
days the majority of multimedia traffic by means
of a distributed architecture. This distribution
problem has also motivated the study of new
solutions such as the Information Centric Net-
working paradigm, whose aim is to add content
delivery capabilities to the network layer by de-
coupling data from its location. In both archi-
tectures cache servers play a key role, allowing
efficient use of network resources for content de-
livery. As a consequence, the study of cache

performance evaluation techniques has found a
new momentum in recent years.

In this dissertation, we propose a framework
for the performance modeling of a cache ruled by
the Least Recently Used (LRU) discipline. Our
framework is data-driven in the sense that, in ad-
dition to the usual mathematical analysis, we ad-
dress two additional data-related problems: the
first one is to propose a model that is a priori
both simple and representative of the essential
features of the measured traffic. The second one
is the estimation of the model parameters start-
ing from traffic traces. The contributions of this
thesis concerns each of the above tasks.
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