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chercheurs fort sympatiques. Je pense en particulier aux doctorants et post-doc de l’équipe Sequel, aux
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Introduction et présentation des résultats

Cette thèse s’est déroulée au sein du LTCI (Laboratoire Traitement et Communication de l’In-
formation) à Telecom ParisTech, sous la co-direction d’Olivier Cappé et d’Aurélien Garivier. Elle a
été agrémentée de quelques visites à l’Université Paul Sabatier à Toulouse, où Aurélien Garivier est
désormais professeur. Cette thèse a également été co-encadrée par Rémi Munos, ce qui m’a amenée à
travailler ponctuellement avec lui à l’INRIA Lille.

L’objectif de cette thèse est de proposer et d’analyser de nouvelles stratégies optimales pour des
problèmes d’allocation séquentielle de ressources dans un environnement aléatoire. L’environnement
est constitué de plusieurs options (certaines étant meilleures que d’autres) qui peuvent être testées, et
produisent des résultats aléatoires. Nos ressources correspondent aux tests que nous pouvons effectuer, et
le but est de déterminer des stratégies d’allocation de ce budget de test qui permettent de réaliser certains
objectifs (par exemple identifier les meilleures options). Un modèle statistique naturel pour de telles
situations est le modèle de bandit stochastique à plusieurs bras. L’objectif de ce chapitre est d’introduire
les problèmes de bandits que nous avons considérés, et de présenter nos contributions. Celles-ci seront
détaillées dans les chapitres suivants, où on trouvera les preuves des résultats énoncés, ainsi que des
éléments bibliographiques plus précis.

La section 1 est consacrée à la présentation des modèles de bandit et des deux problèmes de bandit
étudiés dans cette thèse : la maximisation des récompenses d’une part, et l’identification des meilleurs
bras d’autre part. Dans chaque cas, nous nous attacherons en particulier à la définition d’un critère d’op-
timalité. La section 2 présente nos contributions relatives à la maximisation des récompenses. Dans
des modèles de bandit paramétriques simples, ce problème est bien compris puisqu’il existe une borne
inférieure asymptotique sur le regret d’un algorithme efficace, ainsi que des algorithmes atteignant cette
borne. Bien que le regret soit une mesure de performance fréquentiste, nous montrons que deux al-
gorithmes d’inspiration bayésienne, Bayes-UCB et Thompson Sampling, sont également (asymptoti-
quement) optimaux du point de vue du regret, sont plus simples d’implémentation que les algorithmes
optimaux existants et se généralisent facilement à des modèles plus complexes, comme les modèles dits
contextuels. La section 3 présente nos contributions à l’identification des meilleurs bras (ou exploration
pure). Nous présentons et analysons deux algorithmes, KL-LUCB et KL-Racing, basés sur des inter-
valles de confiance construits à l’aide de la divergence de Kullback-Leibler, transposant au cadre de
l’exploration pure des améliorations récentes obtenues pour la minimisation du regret. Nous proposons
également une borne inférieure sur le nombre moyen d’échantillons des bras nécessaires pour identifier
les m meilleurs bras, qui ne permet toutefois pas de prouver l’optimalité des algorithmes proposés. La
complexité de l’identification des meilleurs bras est en effet moins bien comprise que celle de la minimi-
sation du regret. Nous introduisons ici une notion de complexité, qui nous permettra, pour des exemples
importants de modèles de bandit à deux bras, d’identifier des algorithmes optimaux.

Dans notre présentation, nous tâcherons de souligner les outils théoriques utilisés. Nous distinguons
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principalement ceux liés à l’analyse d’algorithmes (inégalités de déviations, construction d’intervalles de
confiance), et ceux liés à l’obtention de bornes inférieures sur la performances de ces algorithmes (liés
aux changements de loi).

1 Présentation des problèmes de bandit étudiés

Un modèle de bandit stochastique à plusieurs bras (ou simplement modèle de bandit dans la suite) est
une collection de K lois de probabilités ν = (ν1, . . . , νK) supposées indépendantes, que l’on désigne par
≪ bras ≫ ou ≪ options ≫. On note µa la moyenne du bras a, c’est-à-dire de la distribution associée νa, et
on introduit µ∗ = maxa µa et a∗ tel que µ∗ = µa∗ . Un agent, qui ne connaı̂t pas ν, peut interagir avec ce
modèle de bandit. Il choisit à chaque instant t un brasAt et observe une réalisation de la loi sous-jacente,
Xt ∼ νAt . Le bras At est choisi en fonction des observations passées de l’agent, A1,X1, . . . ,At−1,Xt−1

La suite de variables aléatoires (At)t∈N∗ est la stratégie d’échantillonnage des bras adoptée par
l’agent, parfois appelée politique ou algorithme de bandit. Elle est notéeA dans la suite. Bien évidemment,
cette stratégie va fortement dépendre de l’objectif de l’agent, c’est-à-dire du problème de bandit considéré.
Dans cette thèse il sera question de deux objectifs différents, qui visent globalement à identifier les
meilleurs bras, mais sous des contraintes différentes.

Le terme ≪ bandit ≫ provient des bandits manchots, qui désignent les machines à sous. Le cadre
probabiliste décrit ci-dessus peut en effet modéliser un casino, où l’on suppose que lorsqu’on tire son
bras, chaque machine à sous délivre une récompense qui suit une certaine loi de probabilité (inconnue
du joueur, bien évidemment). Un objectif naturel pour l’agent (le joueur) est de maximiser la somme
des récompenses obtenues pendant son interaction avec le modèle de bandit (les machines à sous). Cette
somme de récompenses étant aléatoire, un objectif raisonnable est de s’attacher à construire une stratégie
maximisant pour un horizon T donné (le temps de jeu) l’espérance de la somme des récompenses obte-
nues. C’est cet objectif qui est considéré dans l’article de [Thompson, 1933] présentant le premier algo-
rithme de bandit. Le cadre applicatif des essais cliniques qui y est décrit a véritablement motivé l’étude
d’algorithmes de bandits (au contraire de l’exemple du casino, qui n’est qu’un prête-nom) et nous le
présentons ici. Un médecin possède pour un symptôme donné K traitements possibles. Une probabilité
de guérison inconnue, pa, est associée au traitement a. Lorsque qu’il donne traitement At au t-ème pa-
tient, il observe la réponse du patient Xt, qui vaut 1 s’il guérit, 0 sinon (et qui constitue en quelque sorte
la ’récompense’ du médecin). On peut faire l’hypothèse queXt suit une loi de Bernoulli de moyenne pAt ,
et que les réponses des différents patients sont indépendantes. L’objectif du médecin est de construire
une stratégie d’allocation des traitements (At) qui maximise l’espérance du nombre de patients guéris,
soit l’espérance de la somme de ses récompenses. La stratégie du médecin sera alors un compromis entre
exploration (essai des traitements peu donnés pour estimer leur efficacité) et exploitation (tendance à
privilégier le traitement qui a paru le plus efficace jusque-là).

Le fait d’interpréter les observations des bras comme des récompenses nous place naturellement dans
le cadre plus général de l’apprentissage par renforcement, où l’interaction d’un agent avec son environ-
nement est modélisée par un Processus Décisionnel de Markov (MDP pour Markov Decision Process en
anglais). Un MDP est un quadruplet (X ,A,P,R) où X désigne l’espace d’états, A l’espace d’actions,
P ∶ X ,A →M1(X) le noyau de transition et R ∶ X ,A →M1(X) le noyau de récompenses. Lorsqu’il
est dans l’état x, et qu’il choisit l’action a, l’agent reçoit une récompense r ∼ R(⋅∣x, a) et effectue une
transition vers un état y ∼ P(⋅∣x, a). Le but de l’agent est de trouver une politique (une fonction indiquant
quelle action choisir dans un état donné) qui maximise l’espérance de ses récompenses dans un MDP
de paramètres inconnus. Le problème de bandit décrit ci-dessus peut donc être vu comme le problème
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d’apprentissage par renforcement le plus simple : on a un seul état, x0, et le le noyau de récompenses
est donné par R(⋅∣x0, a) = νa. Nous verrons au chapitre 3 que certains des algorithmes proposés dans
cette thèse peuvent se généraliser au cadre de l’apprentissage par renforcement. Par ailleurs, la théorie
des Processus Décisionnels de Markov nous sera utile au chapitre 1, où nous verrons que la formulation
bayésienne d’un problème de bandit peut être modélisée par un MDP.

Un objectif différent peut être envisagé par l’agent : celui d’identifier le ou les meilleurs bras (c’est-
à-dire ceux qui ont les moyennes les plus élevées), mais sans la contrainte de maximiser la somme
des réalisations des bras Xt obtenues. Ces dernières ne sont alors plus perçues comme des récompenses.
Pour bien comprendre la différence avec le problème précédent, considérons un autre exemple qui motive
actuellement l’étude des modèles de bandits : celui de la publicité en ligne.

Un site Internet dispose d’un (ou plusieurs) emplacements publicitaires et son gestionnaire peut
choisir les annonces qu’il veut y mettre parmi un panel de K publicités. Il est payé par les annonceurs
en fonction du nombre de clics sur leur publicité. On peut modéliser de manière simple la réponse Xt

du t-ème visiteur du site (clic ou non-clic sur la publicité qu’on lui présente) par une variable aléatoire
de Bernoulli de moyenne pa si on lui présente la publicité a. Le gestionnaire du site peut choisir de
maximiser le nombre de clics -la somme des Xt- sans chercher à estimer précisément la probabilité de
clic sur chacune des publicités, ce qui revient à maximiser ses récompenses dans le modèle de bandit
associé. Le nombre de visiteurs du site étant grand, il peut aussi décider de procéder en deux phases :
d’abord déterminer le (ou les) publicités ayant les probabilité de clic les plus élevées (en acceptant de
présenter des ’mauvaises’ publicités, et donc de perdre de l’argent pendant cette phase). Au terme de
cette phase, il ne présentera plus que les meilleurs publicités sur son site. S’il adopte une telle stratégie,
le gestionnaire du site dissocie la phase d’exploration de la phase d’exploitation.

Lorsque l’objectif de l’agent est d’identifier le(s) meilleur(s) bras, on parlera en effet d’exploration
pure, par opposition au compromis entre exploration et exploitation auquel il faut parvenir lorsque l’ob-
jectif est la maximisation des récompenses. Si la maximisation des récompenses peut être vue comme un
problème d’apprentissage par renforcement, l’identification des meilleur bras est plutôt un cas particulier
de problème d’optimisation d’une fonction bruitée. Nous allons voir que les algorithmes pour ces deux
objectifs, ainsi que leur complexité, sont de nature différente.

Quelques définitions et notations. Dans cette thèse nous allons considérer des classes de modèles de
bandit à K bras, notées en généralM, pour lesquelles nous voudrons trouver des algorithmes efficaces
pour l’ensemble des modèles de bandit de la classe M. Par exemple on s’intéressera à la classe des
modèles de bandit binaires, où le bras a est une distribution de Bernoulli de moyenne µa, B(µa), qui
permet de modéliser de nombreuses applications pratiques, comme on l’a vu plus haut.

Plus généralement, on considèrera les classes de modèles de bandit paramétriques, où la distribution
du bras a dépend d’un paramètre θa : νa = νθa , avec θa ∈ Θ. Un cas particulier important est celui des
modèles de bandit exponentiels. Une classeM de modèles de bandit exponentiels est telle qu’il existe
des fonctions A et b telle que pour tout ν ∈ M, la distribution νθa du bras a admet pour densité

f(x; θa) = A(x) exp(θax − b(θ)). (1)

En d’autres termes, les distributions des bras appartiennent à une famille exponentielle canonique à un
paramètre. De telles distributions peuvent également être paramétrées par leur moyenne µ(θ) = ḃ(θ), ce
qui permet d’introduire la fonction de divergence suivante, associée à une famille exponentielle donnée,
qui correspond à la divergence de Kullback-Leibler entre deux distributions de cette famille, exprimée
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en fonction de leurs moyennes :

d(µ,µ′) = KL(νḃ−1(µ), νḃ−1(µ′)), (2)

où KL(p, q) désigne la divergence de Kullback-Leibler (ou KL-divergence) entre les distributions p et q,
définie par

KL(p, q) =
⎧⎪⎪⎨⎪⎪⎩
∫ log [dpdq (x)]dp(x) si q ≪ p,

+∞ sinon.

Les modèles de bandit binaires sont un cas particulier des modèles de bandit exponentiels, si la loi de
Bernoulli de moyenne µ est paramétrée par son paramètre naturel θ = log(µ/(1 − µ)). Pour les bandits
binaires, on a

d(x, y) = KL(B(x),B(y)) = x log
x

y
+ (1 − x) log

1 − x
1 − y .

1.1 Maximisation des récompenses : mesure de performance et objectifs

Soit ν = (ν1, . . . , νK) un modèle de bandit. On rappelle que µ∗ = maxa µa désigne la moyenne du
meilleur bras. Un algorithme de banditA = (At)t∈N qui maximise les récompenses minimise de manière
équivalente une quantité appelée regret, qui mesure l’écart entre la récompense moyenne obtenue si on
n’avait tiré que le meilleur bras et la récompense moyenne effectivement obtenue par la stratégie. Le
regret d’une stratégie A à l’horizon T est défini par

Rν(T,A) = Eν [Tµ∗ −
T

∑
t=1

Xt] .

Le regret peut aussi se réécrire de la manière suivante en introduisant Na(t), le nombre de tirages du
bras a entre les instants 1 et t :

Rν(T,A) = Eν [
T

∑
t=1

(µ∗ − µAt)] =
K

∑
a=1

(µ∗ − µa)Eν [Na(T )] . (3)

La notion de regret a été introduite par [Lai and Robbins, 1985], qui donnent également une borne
inférieure sur le regret d’une stratégie A vérifiant Rν(T,A) = o(Tα) pour tout α ∈]0,1[ et tout modèle
de bandit dans la classeM possédant un unique bras optimal. Un telle stratégie est dite uniformément ef-
ficace. Le résultat de Lai et Robbins est valable pour certaines classes de modèles de bandit paramétriques
telles que les distributions des bras dépendent d’un paramètre réel. En particulier, il est vrai pourM une
classe de modèles de bandit exponentiels, et nous l’énonçons dans ce cadre, en rappelant que la fonction
d(µ,µ′) désigne la divergence de Kullback-Leibler (dans une famille exponentielle donnée) entre les
distributions de moyennes µ et µ′.

Théorème 1. Soit A un algorithme uniformément efficace. Pour tout modèle de bandit ν ∈ M, et tout
bras sous-optimal a,

lim inf
T→∞

Eν[Na(T )]
log(T ) ≥ 1

d(µa, µ∗)
En utilisant (3), on obtient la borne inférieure suivante sur le regret :

lim inf
T→∞

Rν(T,A)
log(T ) ≥ ∑

a∶µa<µ∗

(µ∗ − µa)
d(µa, µ∗)

. (4)
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Un algorithme dont le regret atteint la borne (4) est dit asymptotiquement optimal. Des raffinements
successifs dans l’analyse des algorithmes de bandit ont conduit à l’introduction d’algorithmes asympto-
tiquement optimaux pour lesquels une analyse à horizon fini est proposée, c’est-à-dire une majoration
non asymptotique de leur regret. Un exemple de tel algorithme est l’algorithme KL-UCB, introduit par
[Cappé et al., 2013].

Cet algorithme s’inscrit dans la lignée des politiques d’indices dites de type UCB, c’est-à-dire utili-
sant un sommet d’intervalle de confiance (Upper Confidence Bound en anglais) (voir par exemple [Auer
et al., 2002a, Audibert et al., 2009]). Une politique d’indices calcule pour chaque bras un indice ne
dépendant que des observations passées de ce bras, et choisit le bras d’indice maximal. KL-UCB choisit
à l’instant t+1 le brasAt+1 = argmaxaua(t), où ua(t) est l’indice suivant, qui apparaı̂t comme le sommet
d’un intervalle de confiance basé sur la divergence de Kullback-Leibler :

ua(t) = sup{q ≥ µ̂a(t) ∶ Na(t)d (µ̂a(t), q) ≤ β(t)}, avec β(t) = log t + 3 log log t (5)

où µ̂a(t) désigne la moyenne empirique des observations issues du bras a collectées entre les instants 1
et t, et d est la fonction de divergence associée à la famille exponentielle considérée (voir (2)).

Dans cette thèse, nous avons cherché à proposer de nouveaux algorithmes de bandits qui, tout en
conservant la propriété d’optimalité asymptotique dans des modèles simples, ont de meilleures perfor-
mances pratiques et un meilleur pouvoir de généralisation. Pour ce faire, nous avons adopté une approche
bayésienne, discutée à la section 2.

1.2 Identification des meilleurs bras : mesure de performance et objectifs

Fixons m ∈ {1, . . . ,K} et supposons maintenant que l’agent cherche à identifier les m meilleurs
bras. On note (µ[1], . . . , µ[K]) le réarrangement décroissant des moyennes des bras, et on considère des
classesMm de modèles de bandit telles que pour tout ν ∈ Mm, µ[m] > µ[m+1], de sorte que l’ensemble
S∗m des m bras ayant les plus grandes moyennes est défini sans ambiguı̈té.

Comme dans le cadre de la maximisation des récompenses, l’agent choisit séquentiellement les bras
dont il veut obtenir des échantillons, selon une règle d’échantillonnage (At)t∈N, qui détermine quel
bras tirer en fonction des observations passées. Mais il lui appartient aussi de décider quand arrêter
son échantillonnage, selon une règle d’arrêt τ , qui est un temps d’arrêt par rapport à la filtration Ft =
σ(A1,X1, . . . ,At,Xt), et de choisir un ensemble de m bras Ŝm (Fτ -mesurable) selon une règle de
recommandation. Le triplet A = ((At), τ, Ŝm) constitue sa stratégie.

La stratégie de l’agent peut être adaptée à deux contraintes différentes considérées dans la littérature,
que l’on comprend bien à travers un exemple pratique. Imaginons qu’une entreprise cherche à déterminer
les m meilleurs produits parmi K possibles afin de les lancer sur le marché, et puisse pendant une phase
de test les proposer à des clients pour observer leur réaction (la réponse à chaque produit étant modélisée
par des échantillons d’une distribution qui lui est associée). Pendant cette phase de test, l’entreprise
perd de l’argent puisqu’elle accepte de présenter des mauvais produits à ses clients. Pour des raisons
économiques, on peut donc imaginer qu’elle fixe le nombre de clients participants à l’étude de marché,
et cherche alors à minimiser la probabilité de ne pas trouver lesmmeilleurs produits. Si ce ≪ budget ≫ est
choisi trop petit, la probabilité d’erreur ne pourra peut-être pas être rendue très petite. Un autre type de
contrainte possible est que l’entreprise fixe un seuil pour la probabilité d’erreur. Elle veut identifier les
m meilleurs produits avec une probabilité supérieure à 0.95 par exemple : son but est alors d’atteindre ce
seuil en minimisant le nombre de clients impliqués dans l’étude.

La formulation mathématique de ces deux contraintes est la suivante. Dans le cadre de l’identification
des meilleurs bras à budget fixé (fixed-budget setting en anglais), le nombre de tirages des bras τ est fixé
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à l’avance (τ = t, où t est le budget) et on cherche à trouver une règle d’échantillonnage et une règle
de recommandation qui minimisent la probabilité d’erreur, que l’on note pt(ν) ∶= Pν(Ŝm ≠ S∗m). Dans
ce cadre, une stratégie est dite consistante si pour tout problème de bandit ν ∈ Mm, pt(ν) tend vers 0
lorsque t tend vers l’infini. Dans le cadre de l’identification des meilleurs bras à niveau de confiance fixé
(fixed-confidence setting en anglais), on cherche à construire des stratégies dites δ-PAC (pour Probably
Approximately Correct en anglais), dont la probabilité d’erreur est majorée par δ sur tous les modèles de
bandit : ∀ν ∈ Mm,Pν(Ŝm ≠ S∗m) ≤ δ. Dans ce cadre, l’objectif est de construire des stratégies δ-PAC
qui minimisent le nombre moyen d’observations utilisées, Eν[τ].

Par analogie avec le problème de minimisation du regret considéré plus haut, nous nous sommes
posé la question suivante : comment définir des algorithmes optimaux pour l’identification des meilleurs
bras avec un budget ou un niveau de confiance fixé ? La notion d’optimalité asymptotique via-à-vis du
regret est en effet bien justifiée par la borne de Lai et Robbins, et on a montré dans la section précédente
que, pourM une classe de modèles de bandit exponentiels, pour tout ν ∈ M,

inf
stratégies A

lim sup
T→∞

Rν(T,A)
log(T ) = ∑

a∶µa<µ∗

(µ∗ − µa)
d(µa, µ∗)

.

Le terme de droite peut s’interpréter comme un terme de complexité qui dépend du modèle de bandit
ν et qui fait intervenir un quantité informationnelle (la divergence de Kullback-Leibler). Nous avons vu
qu’il existe des algorithmes atteignant cette complexité (c’est-à-dire réalisant l’infimum ci-dessus), que
l’on a qualifié d’asymptotiquement optimaux.

Pour l’identification des meilleurs bras, nous proposons les termes de complexité suivants pour un
budget fixé (κB(ν)) et un niveau de confiance fixé (κC(ν)) :

κB(ν) = inf
A consistant

(lim sup
t→∞

−1

t
log pt(ν))

−1

et κC(ν) = inf
A δ−PAC

lim sup
δ→0

Eν[τ]
log 1

δ

. (6)

De manière heuristique, pour atteindre une probabilité d’erreur δ, un algorithme optimal (au sens des
complexités ci-dessus) à budget fixé devrait utiliser un budget t ≃ κB(ν) log(1/δ) et un algorithme
optimal à niveau de confiance fixé nécessite un nombre moyen d’échantillons Eν[τ] ≃ κC(ν) log(1/δ).
On peut donc naturellement se poser la question de la comparaison entre κB(ν) et κC(ν).

La littérature abondante sur l’identification des meilleurs bras (nous renvoyons le lecteur au chapitre 5
pour une bibliographie détaillée) fournit des bornes supérieures et inférieures sur la probabilité d’erreur
d’un algorithme consistant (pour un budget fixé) ou le nombre moyen d’échantillons utilisés par un
algorithme δ-PAC (pour un niveau de confiance fixé), qui conduisent naturellement à des encadrement de
κB(ν) et κC(ν) respectivement. Toutefois, un écart persiste entre les bornes supérieures et inférieures, ce
qui ne permet pas d’identifier les complexités. Ces bornes font intervenir des constantes multiplicatives
(non nécessairement explicites) et elles sont obtenues pour des modèles de bandit où les bras sont des
distributions sous-gaussiennes 1, faisant intervenir la quantité

H(ν) =
K

∑
a=1

1

∆2
a

avec ∆a =
⎧⎪⎪⎨⎪⎪⎩

µa − µ[m+1] pour a ∈ S∗m,
µ[m] − µa pour a ∈ (S∗m)c.

Pour des bandits binaires (qui forment un cas particulier de distribution 1/4 sous-gaussiennes), l’écart
entre les moyennes de deux bras (µa−µ′a)2 apparait d’après l’inégalité de Pinsker 2 comme une approxi-
mation de la divergence de Kullback-Leibler entre B(µa) et B(µ′a). Par analogie avec la minimisation

1. une distribution νa est dite σ2 sous-gaussienne si ∀λ ∈ R, EX∼νa[eλ(X−E∣X])] ≤ exp (λ2σ2/2)
2. KL(B(µa),B(µ′a)) > 2(µa − µ′a)2
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du regret, on pourrait donc s’attendre à des termes de complexité κB(ν) et κC(ν) qui dépendent de
quantités informationnelles.

Nous présentons en section 3 nos contributions relatives à l’identification et la comparaison des com-
plexités de l’identification des meilleurs bras pour un budget ou un niveau de confiance fixés. Nous cher-
cherons en particulier à identifier les quantités informationnelles caractéristiques des problèmes d’iden-
tification des meilleurs bras.

2 Des algorithmes bayésiens pour la maximisation des récompenses

Cette section présente nos contributions relatives à l’analyse d’algorithmes de bandit d’inspiration
bayésienne pour l’objectif de maximisation des récompenses. Celles-ci seront détaillées dans les cha-
pitres 2 à 5 de ce document. La section 2.1 présente les modèles de bandit bayésiens, ainsi que le critère
de performance qui leur est associé. Nous nous intéressons également à des approximations de la solution
bayésienne du problème de bandit, comme une approximation basée sur les indices de Gittins à horizon
fini. Notre objectif était de proposer de nouveaux algorithmes asymptotiquement optimaux du point de
vue du regret. Bien que ce dernier soit une quantité fréquentiste, nous avons pu obtenir de telles garan-
ties pour deux algorithmes bayésiens, Bayes-UCB et Thompson Sampling : nous présentons les analyses
proposées en section 2.2. Ces deux algorithmes peuvent également être utilisés dans des modèles de
bandit plus généraux, et nous discutons en particulier l’exemple des modèles contextuels linéaires à la
section 2.3.

2.1 Deux approches probabilistes d’un problème de bandit

Nous considérons dans cette section des modèles de bandit paramétriques, de la forme ν = νθ =
(νθ1 , . . . , νθK), où la distribution νa du bras a dépend d’un paramètre θa ∈ Θ. On note θ = (θ1, . . . , θK) ∈
ΘK le paramètre global du modèle. Comme dans tout modèle paramétrique, deux approches sont pos-
sibles : l’approche fréquentiste où l’on considère que θ est un paramètre inconnu, et l’approche bayésienne,
où l’on considère que θ est une variable aléatoire, qui suit une loi a priori Π0.

Modèle de bandit fréquentiste Modèle de bandit bayésien
- θ ∈ ΘK est un paramètre inconnu - θ est tiré sous Π0, une loi a priori sur ΘK

- ∀a, (Xa,t) est i.i.d. de loi νθa et de moyenne µa - ∀a, conditionnellement à θa,
(Xa,t) est i.i.d. de loi νθa et de moyenne µa

- (Xa,t)a,t est une famille indépendante - conditionnellement à θ,
(Xa,t)a,t est une famille indépendante

Dans les deux modèles, l’agent choisit à l’instant t un bras At à tirer et observe la récompense
Xt =XAt,t issue du bras choisi. En introduisant la filtration

Ft = σ(A1,X1, . . . ,At,Xt),

si l’agent adopte une stratégie déterministe, la variable aléatoire At est Ft−1-mesurable, alors que s’il
adopte une stratégie randomisée, At est tirée selon une loi pt sur {1, . . . ,K}, et c’est le vecteur de
probabilités pt qui est Ft−1-mesurable.

La notion de regret introduite en section 1.1 est une mesure de performance associée au modèle
fréquentiste, puisqu’il dépend du modèle ν, ou de manière équivalente, du paramètre θ dans notre cadre
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paramétrique :

Rθ(T,A) = Eθ [Tµ∗ −
T

∑
t=1

Xt] =
K

∑
a=1

(µ∗ − µa)Eθ [Na(T )] .

Pθ et Eθ désignent la probabilité et l’espérance sous le modèle fréquentiste (qui dépend de θ). No-
tons EΠ0 et PΠ0 la probabilité et l’espérance sous le modèle bayésien. Une stratégie qui maximise
l’espérance de la somme des récompenses sous le modèle bayésien minimise de manière équivalente
le risque bayésien (ou regret bayésien), défini par

BRΠ0(T,A) = EΠ0 [Tµ∗ −
T

∑
t=1

Xt] = EΠ0 [Rθ(T,A)] .

La borne inférieure de [Lai and Robbins, 1985] nous a permis de définir des stratégies asymptotique-
ment optimales par rapport au regret, et nous en avons donné des exemple en section 1.1. Du point de
vue du risque bayésien on peut aller plus loin et montrer qu’il existe une stratégie optimale, qui minimise
le risque bayésien parmi toutes les stratégies possibles.

Ces deux formulations fréquentiste et bayésienne d’un même problème de bandit (celui de maximiser
l’espérance de la somme des récompenses) peuvent être dissociées des outils qui leur sont associés. Dans
la littérature liée à la minimisation du regret, les algorithmes proposés sont basés sur des estimateurs du
maximum de vraisemblance des paramètres inconnus des bras, et sur des intervalles de confiances, que
nous pouvons qualifier d’outils fréquentistes. A l’inverse, nous appellerons algorithmes bayésiens des
algorithmes qui pour choisir le bras At+1 se basent sur la loi a posteriori de θ,

Πt(θ) = L(θ∣A1,X1, . . . ,At,Xt),

qui est la loi conditionnelle de θ sachant les observations obtenues jusqu’à l’instant t. Nous pouvons
ainsi nous intéresser au risque bayésien d’un algorithme ’fréquentiste’, et inversement, et c’est ce qui
sera au cœur de cette thèse, à la performance d’algorithmes bayésiens évaluée en terme de regret.

Dans un premier temps, nous allons nous demander si la solution optimale du problème bayésien elle-
même, ou certaines de ses approximations, peuvent fournir de nouveaux algorithmes asymptotiquement
optimaux du point de vue du regret. Nous commençons par décrire ces premiers algorithmes bayésiens.

La solution bayésienne du problème de bandit. L’existence d’une solution à la minimisation du
risque bayésien vient du fait qu’elle peut s’interpréter comme un problème de planification dans un
Processus Décisionnel de Markov (MDP) associé. Pour simplifier la présentation, nous allons exhiber
cette solution pour un modèle de bandit binaire, avec des loi a priori uniformes indépendantes sur chaque
moyenne.

Soit ν = (B(µ1), . . . ,B(µK) un modèle de bandit binaire. On fait l’hypothèse que pour tout a,
θa ∼ U([0,1]) et que les θa sont indépendantes. La loi a posteriori sur θ = (µ1, . . . , µK) à l’instant t
prend la forme d’un produit de K marginales indépendantes Πt = (πt1, . . . , πtK) et la loi a posteriori sur
µa est donnée par

πta = Beta(Sa(t) + 1,Na(t) − Sa(t) + 1),
où Sa(t) est la somme des récompenses obtenues du bras a entre les instants 1 et t, et on le rappelle
Na(t) est le nombre de tirages du bras a entre les instants 1 et t. La loi Beta(a, b) admet pour densité
par rapport à la mesure de Lebesgue

f(a,b)(x) =
Γ(a + b)
Γ(a)Γ(b)x

a−1(1 − x)b−11[0,1](x).
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L’histoire du jeu de bandit peut donc être résumée par une table (Aa,Ba)Ka=1 ∈ (N×N)K qui indique les
paramètres des lois a posteriori Beta courantes associées à chaque bras. Cet état évolue dans le Processus
Décisionnel de Markov dont l’espace d’état est X = (N ×N)K , l’espace d’action est A = {1, . . . ,K} et
la transition est la suivante.

Supposons qu’à l’instant t on soit dans l’état St = (Aa,Ba)Ka=1, ce qui signifie que la loi a posteriori
πt−1
a sur la moyenne du bras a est Beta(Aa,Ba). Si l’actionAt = a est choisie, une récompenseXt =Xa,t

est tirée selon B(µa) et l’état est mis à jour de la manière suivante :

Aa ← Aa +Xt

Ba ← Ba + (1 −Xt).

et pour i ≠ a, Ai et Bi ne changent pas. Les fonctions de transition et de récompense dans ce MDP sont
connues puisqu’on a

PΠ0(Xt ∣ St = (Ai,Bi)Ki=1,At = a) =
Aa

Aa +Ba

(qui est la moyenne d’une loi Beta de paramètre Aa et Ba). La théorie des MDP (voir par exemple
[Sigaud and Buffet, 2008]) nous dit alors qu’il existe une politique φ∗ ∶ X × [0, T ] → A, indiquant
quelle action choisir en fonction de l’état et de l’instant de jeu, qui maximise la somme des récompenses
jusqu’à l’horizon T , EφΠ0

[∑Tt=1Xt] . C’est-à-dire que la stratégie d’échantillonnage At = φ∗(St, t) est
solution du problème de bandit bayésien considéré. Cette politique φ∗ est solution d’une équation de
programmation dynamique, et peut dans le cas d’une horizon fini être calculée par récurrence.

Indices de Gittins et politique optimale. Pour des bandits binaires, le calcul de la politique optimale
est théoriquement possible par récurrence, mais il est très couteux du fait de la taille de l’espace d’état
et ne pourra être effectif que pour des petits horizons. Plus généralement, pour tout modèle de bandit
paramétrique dans lequel les lois a priori sur les paramètres θa sont indépendantes, [Gittins, 1979] a
montré que lorsqu’on cherche à maximiser la somme des récompenses actualisées, c’est-à-dire

EΠ0 [
∞
∑
t=1

αt−1Xt] ,

pour un certain coefficient d’actualisation α ∈]0,1[, la solution bayésienne se réduit à une politique
d’indices. Chacun de ces indices de Gittins Gα(π) (qui dépend d’une loi a posteriori π et du coefficient
d’actualisation) peut être obtenu comme solution d’une équation de programmation dynamique dans un
espace d’état réduit. La définition des indices de Gittins pour un critère actualisé peut naturellement être
transposée à un critère à horizon fini, et nous introduisons les indices de Gittins à horizon fini, G(π,n),
qui dépendent de π, loi a posteriori sur un bras et du temps restant n = T − t+1. Ces deux types d’indices
peuvent être définis de la manière suivante :

Gα(π) = sup
τ>0

Eθ∼π [∑τt=1 α
τ−1Yt]

Eθ∼π [∑τt=1 α
τ−1] et G(π,n) = sup

0<τ≤n

Eθ∼π [∑τt=1 Yt]
Eθ∼π [τ] .

où conditionnellement à θ, la suite (Yt) est i.i.d. de loi νθ et où le supremum porte sur l’ensemble des
temps d’arrêt τ par rapport aux (Yt), bornés par n dans le second cas. G(π,n) représente la récompense
moyenne par unité de temps que l’on peut obtenir d’un bras dont la loi a posteriori courante est π, si on
peut en collecter au plus n réalisations.
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Au chapitre 1, nous présenterons une définition équivalente des indices de Gittins, basée sur un
problème de calibration associé à un bras. Cette interprétation permettra de fournir une méthode de
calcul des indices de Gittins à horizon fini pour les bandits binaires, et de voir que contrairement au
cadre actualisé, lorsqu’on fixe un horizon fini T , la politique d’indices associée aux indices de Gittins à
horizon fini (appelée FH-Gittins pour Finite-Horizon Gittins algorithm), qui choisit à l’instant t

At = argmaxaG(πt−1
a , T − t + 1),

ne coı̈ncide pas en général avec la solution bayésienne présentée plus haut.
Toutefois, nous conjecturons que cette politique d’indices est une bonne approximation de la solu-

tion bayésienne. Cette conjecture est supportée par des expériences numériques montrant que pour des
horizons courts où la solution optimale peut être calculée, le risque bayésien de l’algorithme FH-Gittins
est très proche de celui de la stratégie optimale. Elle est aussi étayée par des approximations obtenues
pour les indices de Gittins à horizon fini qui montrent que ceux-ci sont proches des indices utilisés par
une variante de l’algorithme KL-UCB, que nous appelons KL-UCB-H+. KL-UCB-H+ est la politique
d’indices associée à

uH,+a (t) = sup{q ≥ µ̂a(t) ∶ Na(t)d (µ̂a(t), q) ≤ log( T

Na(t)
) + c log log( T

Na(t)
)} (7)

et [Lai, 1987] a prouvé, en fournissant une borne inférieure asymptotique sur le risque bayésien de tout
algorithme, que cet algorithme constitue une bonne approximation de la solution bayésienne, pour des
grandes valeurs de T .

Aux chapitres 2 et 3 nous proposerons également des expériences numériques montrant les bonnes
performances de l’algorithme FH-Gittins en terme de regret, mais nous n’avons pas pu obtenir de garan-
ties théoriques pour justifier ce constat empirique. De plus, cet algorithme reste difficile à implémenter, et
nous n’avons pu le tester que pour des horizons T ≤ 1000. Nous nous sommes donc focalisés dans la suite
sur d’autres algorithmes bayésiens, plus facile d’implémentation, pour lesquels la propriété d’optimalité
asymptotique vis-à-vis du regret sera établie.

2.2 Les algorithmes Bayes-UCB et Thompson Sampling

Nous introduisons dans cette section deux algorithmes bayésiens, pour lesquels nous proposons en
particulier des analyses à temps fini montrant leur optimalité asymptotique dans des modèles de bandit
binaires. Bayes-UCB, qui fait l’objet du chapitre 3, est une politique d’indices basée sur des quantiles
bien choisi de la distribution a posteriori. L’échantillonnage de Thompson, ou Thompson Sampling, qui
fait l’objet du chapitre 4, est un algorithme randomisé qui tire un bras selon sa probabilité a posteriori
d’être optimal. Cette idée a été introduite par [Thompson, 1933] dans le premier article de bandit, mais
les premiers résultats théoriques proposés pour cet algorithmes datent de la fin des années 2000, et la
question de son optimalité asymptotique était encore ouverte.

BAYES-UCB

Bayes-UCB est une politique d’indices basée sur le principe d’optimisme qui a conduit à toute une
famille de politiques d’indices fréquentistes. Ainsi l’algorithme UCB1 de [Auer et al., 2002a] (pour des
bandits à support borné) choisit à l’instant t + 1 le bras

At+1 = argmax
a

µ̂a(t) +
¿
ÁÁÀ2 log(t)

Na(t)
,
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et l’indice calculé peut être vu comme le sommet d’un intervalle de confiance obtenu avec l’inégalité de
Hoeffding, alors que l’indice ua(t) utilisé par KL-UCB (5) est le sommet d’un intervalle de confiance
construit avec l’inégalité de Chernoff (cf. chapitre 1). On parle de principe d’optimisme car pour chaque
bras, un intervalle de confiance sur la moyenne inconnue est construit, et parmi tous les modèles statis-
tiquement possibles, on agit optimalement de le meilleur des modèles possible (celui où les moyennes
de tous les bras sont égales au sommet de leur intervalle de confiance). L’algorithme Bayes-UCB est
basé sur ce même principe, mais les intervalles de confiance sont remplacés par des régions de confiance
bayésiennes.

Soit ν = (νθ1 , . . . , νθK) un modèle de bandit paramétrique. On suppose que les paramètres (θa)1≤a‘K

sont tirés indépendamment selon des lois a priori (π0
a)1≤a≤K . Soit πta la loi a posteriori du paramètre θa

après t instants, et soit λta l’a posteriori sur la moyenne µa. Si a l’instant t le bras At = a est choisi, les
distributions a posteriori sont mises à jour de la manière suivante :

πta(θ) ∝ νθ(Xt) πt−1
a (θ) , et pour tout i ≠ a, πti = πt−1

i . (8)

L’algorithme Bayes-UCB dépend d’une famille de lois a priori Π0 = (π0
a)1≤a≤K et d’un paramètre

réel c. Pour t = 1, . . . ,K, l’algorithme tire les bras l’un après l’autre. Puis pour t ≥ K, le bras choisi à
l’instant t + 1 est

At+1 = argmax
a=1...K

Q(1 − 1

t(log t)c ;λta) ,

où Q(α,π) désigne le quantile d’ordre α de la distribution π, défini par PX∼π(X ≤ Q(α,π)) = α. Une
illustration de l’algorithme est proposée sur la figure 1, pour des bandits binaires, où on le compare à
KL-UCB. Dans les deux cas, on voit que le bras optimal est tiré la plupart de temps, conduisant à un
intervalle de confiance resserré pour la moyenne de ce bras, ou à une loi a posteriori concentrée.

0

1

9 3 448 18 21

0

1

6 3 451 5 34

FIGURE 1 – Les intervalles de confiance utilisés par KL-LUCB (à gauche) et les lois a posteriori sur les
moyennes utilisées par Bayes-UCB (à droite) après T = 500 instants, pour un modèle de bandit binaire à
5 bras (les losanges rouges représentent leurs moyennes).

Bayes-UCB peut être implémenté dans des classes de modèles de bandit exponentiels (définis par
(1)) où les lois a posteriori sur les moyennes des bras ont des expressions explicites, sous réserve de
choisir un a priori conjugué. Dans l’exemple des bandits binaires, paramétrés par leur moyenne, avec un
a priori uniforme sur les moyenne, on a πta = λta = Beta(Sa(t) + 1,Na(t) − Sa(t) + 1) et l’algorithme
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Bayes-UCB s’écrit

At+1 = argmax
a=1...K

Q(1 − 1

t(log t)c ; Beta(Sa(t) + 1,Na(t) − Sa(t) + 1)) .

Le résultat suivant, basé sur un encadrement précis de la queue d’une loi Beta, montre une connexion
forte avec l’algorithme KL-UCB présenté en section 1.1. Bayes-UCB semble construire de manière
automatique des intervalles de confiance basés sur la divergence de Kullback-Leibler.

Lemme 2. Soit d(x, y) la divergence de Kullback-Leibler entre deux lois de Bernoulli de paramètre x
et y. La quantile d’a posteriori qa(t) utilisé par l’algorithme Bayes-UCB de paramètre c vérifie

ũa(t) ≤ qa(t) ≤ ua(t) ,

avec

ua(t) = argmax
x> Sa(t)

Na(t)

{d( Sa(t)
Na(t)

, x) ≤ log(t) + c log(log(t))
Na(t)

} ,

ũa(t) = argmax
x> Sa(t)

Na(t)+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d( Sa(t)

Na(t) + 1
, x) ≤

log ( t
Na(t)+2) + c log(log(t))

(Na(t) + 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Le chapitre 2 montre d’autres situations où Bayes-UCB présente des similarités avec des algorithmes
fréquentistes existants. Par exemple, lorsque les distributions des bras sont gaussiennes de moyenne et de
variance inconnues, on retrouve un algorithme proche de UCB1-norm proposé par [Auer et al., 2002a],
et plus efficace en pratique.

Dans le cadre des bandits binaires, nous avons pu montrer le résultat suivant. Le fait qu’il soit vrai
pour tout ε > 0 indique qu’on a bien

lim sup
T→∞

Eθ[Na(T )]
log(T ) ≤ 1

d(µ2, µ1)
,

et donc que la borne inférieure de Lai et Robbins est atteinte.

Théorème 3. L’algorithme Bayes-UCB avec un a priori uniforme sur les moyennes et un paramètre
c = 5 vérifie, pour tout ε > 0 et tout T tel que

logT + 5 log logT ≥ d(µ2, µ1)
1 + ε exp( 8

(µ1(1 − µ1))2

(1 + ε)2

ε2d(µ2, µ1)2
) ,

Eθ[Na(T )] ≤ 1 + ε
d(µa, µ1)

log(T ) +
√

logT + 5 log logT

¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ ( 1 + ε
d(µa, µ1)

+ 2e + 3

1 − µ1
) log logT + 27 + 2(1 + ε)2 (d

′(µa, µ1)
d(µa, µ1)

)
2

.
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Ce théorème repose sur le lien avec des indices proches de ceux utilisés dans KL-UCB, ce qui permet
d’adapter l’analyse en temps fini proposée par [Cappé et al., 2013]. Afin de comprendre quels outils
mathématiques sont au cœur de la preuve, nous en présentons une esquisse.

Supposons sans perte de généralité que le bras 1 est un bras optimal, et soit a un bras sous-optimal.
Du fait de la phase d’initialisation, nous avons

Eθ[Na(T )] = 1 +Eθ [
T−1

∑
t=K

1(At+1=a)] .

L’événement (At+1 = a) peut ensuite être décomposé de la manière suivante, en fonction de la position
de la moyenne du bras optimal µ1 par rapport à son indice q1(t) et en utilisant le fait que si a est tiré à
l’instant t + 1, on a qa(t) > q1(t) :

(At+1 = a) ⊆ (µ1 ≥ q1(t),At+1)⋃(µ1 ≤ q1(t),At+1 = a)
⊆ (µ1 ≥ q1(t))⋃(µ1 ≤ qa(t),At+1 = a) .

Cette décomposition est celle utilisée par [Cappé et al., 2013], mais pour l’analyse de Bayes-UCB nous
remplacerons µ1 par µ1 − gt où gt =

√
2/log t. Nous obtenons

(At+1 = a) ⊆ (µ1 − gt ≥ q1(t))⋃(µ1 − gt ≤ qa(t),At+1 = a)
⊆ (µ1 − gt ≥ ũ1(t))⋃(µ1 − gt ≤ ua(t),At+1 = a) ,

en utilisant les notations et résultats du Lemme 2. Finalement, on obtient

Eθ[Na(T )] ≤ 1 +
T−1

∑
t=K

Pθ (µ1 − gt ≥ ũ1(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+
T−1

∑
t=K

Pθ (µ1 − gt ≤ ua(t),At+1 = a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

.

Le terme A est négligeable devant log(T ), car il est peu probable que l’indice ũ1(t), qui est une
borne supérieure sur µ1 soit plus petit que µ1 − gt. Pour montrer ceci, nous devons majorer la probabilité

Pθ (µ1 − gt ≥ ũ1(t)) = Pθ ((N1(t) + 1)d+ ( S1(t)
N1(t) + 1

, µ1 − gt) ≥ log( t

N1(t) + 2
) + 5 log log t) ,

où d+(x, y) = d(x, y)1(x<y). Pour cela nous devons établir une inégalité de déviation dit auto-normalisée
car le nombre d’observations N1(t) est lui même une variable aléatoire. De plus les déviations sont
mesurées à l’aide de la divergence de Kullback-Leibler. [Garivier and Cappé, 2011] proposent le premier
résultat de ce type (pour l’analyse de KL-UCB) qui ne résulte pas d’une borne de l’union, et nous avons
pu l’adapter (grâce au terme gt) à la présence d’un biais et au taux d’exploration log(t/(N1(t) + 2)) au
lieu de log t.

Une réécriture classique (un peu astucieuse) du terme B permet de le débarrasser des quantités
autonormalisées et en introduisant µ̂a,s la moyenne empirique des s premières observations du bras a,
nous avons

(B) ≤
T

∑
s=1

Pθ (sd+ (µ̂a,s, µ1 − gs) ≤ logT + 5 log logT ) .

Le nombre d’échantillons de a nécessaires pour que la moyenne µ1 > µa ne soit plus dans un intervalle
autour de µ̂a,s construit à l’aide de la divergence de KL est environ log(T )/d(µa, µ1) et on pourra
montrer que (B) = (1+ ε) log(T )/d(µa, µ1)+ o(log(T )), ce qui justifie l’ordre de grandeur de la borne
obtenue dans le théorème 3, dans laquelle nous tâchons d’expliciter les termes de second ordre.
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THOMPSON SAMPLING

Soit toujours ν = (νθ1 , . . . , νθK) un modèle de bandit paramétrique tel que les lois a priori sur chacun
des paramètres, (π0

a)1≤a≤K , sont indépendantes. On note µ(θ) la moyenne d’un bras paramétré par θ.
L’échantillonnage de Thompson (ou Thompson Sampling) consiste à tirer à chaque instant un échantillon
des loi a posteriori courantes πta, et à choisir le bras ayant conduit à l’échantillon correspondant à la
moyenne la plus élevée. Plus précisément, à l’instant t + 1,

∀a = 1 . . .K, θa(t) ∼ πta
At+1 = argmax

a
µ(θa(t))

Cet algorithme peut toujours être interprété comme une politique d’indice, mais l’indice calculé pour
chaque bras dépend des observations passées de ce bras et d’une randomisation externe. En particu-
lier, l’indice obtenu n’est pas ’optimiste’ au sens précédent, car ce n’est plus une borne de confiance
supérieure pour la moyenne µa : avec probabilité de l’ordre de un demi, il est même plus petit que la
moyenne a posteriori. Thompson Sampling implémente un optimisme un peu différent, qui consiste a
tirer un modèle selon l’a posteriori courant, et à agir de manière optimale dans ce modèle échantillonné,
ce qui correspond à tirer les bras selon leur probabilité a posteriori d’être optimal. Ce principe simple
peut aussi être implémenté dans des modèles de bandit plus complexes comme on le verra.

La première borne supérieure logarithmique sur le regret de cet algorithme est donnée par [Agrawal
and Goyal, 2012] pour les bandits binaires avec une loi a priori uniforme πU sur les moyennes. Mais leur
résultat ne fait pas intervenir les divergences de Kullback-Leibler entre les bras d(µa, µ1) et ne permet
pas de monter l’optimalité asymptotique de l’échantillonnage de Thompson. Dans le même contexte,
le théorème suivant que nous prouvons au chapitre 3 permet de montrer que Thompson Sampling est
asymptotiquement optimal au sens de la borne de Lai et Robbins.

Théorème 4. Soit ε > 0 et soient b et Cb les constantes définies dans la Proposition 5 ci-dessous. Pour
tout bras sous-optimal a, il existe des constantes N(b) et N(ε, µ1, µa) telles que pour T ≥ N(ε, µ1, µa),

Eθ[Na(T )] ≤ (1 + ε) logT

d(µa, µ1)
+
√

log(T )
¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ 2(1 + ε)2 (d
′(µa, µ1)
d(µa, µ1)

)
2

+ 5 + 2Cb +N(b).

L’analyse à temps fini que nous proposons est assez proche des analyses que l’on peut proposer pour
des politiques d’indices optimistes. Afin de pouvoir adapter de telles analyses, nous avons besoin du
résultat suivant, qui montre que le bras optimal est souvent tiré par l’algorithme Thompson Sampling.

Proposition 5. Il existe des constantes b = b(µ1, µ2) ∈ (0,1) et Cb < ∞ telles que

∞
∑
t=1

Pθ (N1(t) ≤ tb) ≤ Cb.

Les éléments clés de notre analyse. Comme notre analyse de Bayes-UCB, celle proposée pour Thomp-
son Sampling n’est valable que pour des bandit binaires puisqu’elle s’appuie sur une propriété spécifique
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des lois Beta à coefficients entiers. En effet, si on note FBeta
a,b la fonction de répartition d’une loi Beta(a, b)

et FBin
j,µ la fonction de répartition d’une loi binomiale de paramètres j et µ, on a

FBeta
a,b (y) = 1 − FBin

a+b−1,y(a − 1).

Ce résultat peut être établi en remarquant que la a-ème statistique d’ordre parmi a + b − 1 variables
aléatoires uniformes suit une loi Beta(a, b).

Cette propriété avait déjà été utilisée pour établir un lien entre les quantiles d’a posteriori et les
sommets d’intervalles de confiance basés sur la divergence de Kullback-Leibler (Lemme 2). Ce lien
sera à nouveau être utile dans notre analyse de Thompson Sampling, où nous introduisons des quantiles
d’a posteriori bien choisi, et utilisons le fait qu’avec forte probabilité, les échantillons θa(t) utilisés par
l’algorithme sont inférieurs à ces quantiles. En couplant cette remarque à une nouvelle décomposition de
l’événement (At+1 = a), on pourra avec l’aide de la Proposition 5 proposer une analyse proche de celle
de Bayes-UCB. La preuve de cette dernière est plus complexe et utilise pleinement la nature randomisée
de l’échantillonnage de Thompson.

Une généralisation. Au chapitre 3, nous présentons également une preuve de l’optimalité asympto-
tique de l’algorithme de Thompson pour des modèles de bandit exponentiels avec un choix particulier de
distribution a priori : l’a priori de Jeffreys.

COMPARAISON NUMÉRIQUE

Nous proposons au chapitre 3 des expériences numériques comparant les performances de Bayes-
UCB et de Thompson Sampling à celles d’autres algorithmes ’fréquentistes’ de l’état de l’art, qui sont
introduits avec plus de précisions au chapitre 1. La figure 2 présente une estimation de la distribu-
tions du regret cumulé des différents algorithmes obtenu à l’aide de N = 50000 répétitions d’un jeu
de bandit jusqu’à un horizon T = 20000, pour une modèle de bandit binaire à 10 bras de moyennes
µ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]. Les quatre premiers algorithmes (dont le re-
gret est représenté sur la même échelle) sont des variantes de l’algorithme UCB1 : UCB-Tuned ([Auer
et al., 2002a]) et UCB-V ([Audibert et al., 2009]) utilisent des intervalles de confiances incorporant la
variance empirique des distributions des bras, alors que MOSS ([Audibert and Bubeck, 2010]) remplace
le log(t) dans l’indice UCB par log(t/(KNa(t))). Ces quatre algorithmes ne sont pas asymptotique-
ment optimaux et on constate en effet un écart avec la borne inférieure de Lai et Robbins (en bleu).
Les 6 algorithmes suivants (dont le regret est présenté sur la même échelle, différente de la précédente)
possèdent au contraire la propriété d’optimalité asymptotique pour les bandits binaires. Des variantes de
l’algorithme KL-UCB de [Cappé et al., 2013], KL-UCB-H+ utilisant les indices (7), et KL-UCB+ où le
log(T /Na(t)) dans (7) est remplacé par log(t/Na(t)), sont présentées, ainsi que l’algorithme DMED de
[Honda and Takemura, 2010]. On peut constater que Thompson Sampling atteint les même performances
que les meilleurs algorithmes fréquentistes, et que Bayes-UCB a des performances similaires à celles de
KL-UCB. Par ailleurs, l’utilisation de ces deux algorithmes bayésiens présente également un avantage
computationnel, car il est plus facile de calculer un quantile ou de produire un échantillon d’une loi Beta
que de calculer l’indice qui intervient dans KL-UCB.

Nous proposons aussi au chapitre 3 des expériences pour une horizon plus court où l’on compare ces
algorithmes asymptotiquement optimaux à l’algorithme FH-Gittins, montrant que les performances de
ce dernier (quoique grossièrement comparables) sont plus variables en fonctions des modèles de bandit
choisis. D’autres expériences où l’on estime le risque bayésien des algorithmes montrent que Thompson
Sampling et Bayes-UCB semblent aussi asymptotiquement optimaux vis-à-vis de ce dernier.
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FIGURE 2 – Regret cumulé des divers algorithmes en fonction du temps. Sur chaque graphique, la
courbe en bleu présente la borne inférieure, la courbe en gras présente le regret moyen, et les zones
grisées claires et sombres correspondent respectivement aux 0.05% supérieurs et aux 99% centraux

2.3 Des algorithmes bayésiens pour des modèles plus généraux

Nous avons proposé des garanties théoriques pour Bayes-UCB et Thompson Sampling dans les
modèles de bandit les plus simples, où les bras sont notamment indépendants. Si nous revenons à
l’exemple de la recommandation de contenu (par exemple de publicité), de l’information contextuelle est
disponible, et les réponses d’un utilisateur à deux publicités similaires seront sans doute très corrélées.
Pour tenir compte de cette structure des actions, on peut considérer des modèles de bandit contextuels,
qui sont présentés plus en détails au chapitre 4. Nous montrons ici que Bayes-UCB et Thompson Sam-
pling peuvent être facilement appliqués dans ces modèles plus généraux, et nous donnons des bornes
supérieures sur le regret (sous le modèle bayésien) nouvelles par rapport à la littérature, pour un modèle
linéaire.

Nous nous intéressons au modèle de bandit contextuel linéaire suivant, où la notion d’action est
remplacée par celle de contexte (ou d’action contexualisée). A chaque instant t, un ensemble Dt ⊆ Rd de
contextes est présenté à l’agent. Il doit choisir un contexte xt ∈ Dt et reçoit la récompense

yt = xTt θ + εt,

où εt est un bruit centré, θ ∈ Rd est un paramètre de régression et xT désigne la transposée du vecteur x.
Revenant à l’exemple de la publicité en ligne, on peut imaginer que pour chaque utilisateur un vecteur de
caractéristiques est disponible (provenant de son historique de navigation et des données disponibles sur
lui). De même, on dispose de caractéristiques pour chaque publicité qu’on pourrait lui présenter. Pour
chaque publicité, un vecteur de caractéristiques conjointes de la paire (utilisateur/publicité) peut être
formé, ce qui donne l’ensemble de contextes disponibles. L’agent (le gestionnaire du site) choisit alors
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la publicité à présenter et le modèle suppose une dépendance linéaire entre cette réponse et le contexte
associé. L’hypothèse d’un ensemble Dt de contextes changeant à chaque instant correspond donc au fait
qu’un utilisateur différent arrive à chaque fois, et aussi au fait que différentes publicités peuvent entrer
ou sortir de la campagne. Une autre exploitation possible du modèle est la suivante : on suppose que les
utilisateurs qui arrivent sont tous de même type (si une classification a été effectuée au préalable). Dans
ce casDt est l’ensemble des vecteurs de caractéristiques des différentes publicités, et le vecteur θ indique
les préférences de ce type d’utilisateur.

L’objectif de l’agent est de maximiser ses récompenses. De manière (quasiment) équivalente, il peut
chercher à minimiser la quantité suivante appelée pseudo-regret (car contrairement au regret, qui est une
espérance, cette quantité est aléatoire)

Rθ(T,A) =
T

∑
t=1

[(x∗t )T θ − xTt θ] , où x∗t = argmax
x∈Dt

xT θ.

Comme précédemment, le paramètre de régression θ peut être vu comme un paramètre inconnu ou bien
on peut faire l’hypothèse qu’il est tiré sous une loi a priori π0 sur Rd. Comme dans le cadre précédent, on
peut définir des algorithmes utilisant des outils bayésiens et fréquentistes et s’intéresser aux performances
de ces algorithmes sous le modèle fréquentiste (on notera Pθ la probabilité associée) ou sous le modèle
bayésien (on notera P la probabilité associée, qui dépend implicitement de l’a priori π0). Le modèle
bayésien que nous considérons ici fait l’hypothèse d’un a priori et d’un bruit gaussiens :

yt = θTxt + εt, avec θ ∼ N (0, κ2Id) et εt ∼ N (0, σ2) . (9)

Sous ces hypothèses, en introduisant

Xt =
⎛
⎜⎜⎜
⎝

xT1
xT2
.

xTt

⎞
⎟⎟⎟
⎠
∈Mt,d(R), Yt =

⎛
⎜⎜⎜
⎝

y1

y2

.
yt

⎞
⎟⎟⎟
⎠
∈ Rt, et Et =

⎛
⎜⎜⎜
⎝

ε1
ε2
.
εt

⎞
⎟⎟⎟
⎠
∈ Rt,

la loi a posteriori sur θ après t observations est gaussienne de moyenne θ̂(t) et de covariance Σt, où

{ θ̂(t) = (B(t))−1XT
t Yt avec B(t) = σ2

κ2 Id +XT
t Xt

Σt = σ2(B(t))−1.

Les algorithmes. L’algorithme Bayes-UCB tel que nous l’avons présenté pour les bandits à bras
indépendants peut être utilisé ici, en calculant pour chaque contexte x ∈ Dt un quantile de la loi a
posteriori sur la moyenne associée, xT θ, qui a pour loi N (xT θ̂(t), ∣∣x∣∣Σt), où ∣∣x∣∣A =

√
xTAx. Si

l’algorithme original utilise un quantile d’ordre 1 − 1/t, nous le définissons ici en fonction d’un taux
d’exploration f(t, δ). Bayes-UCB choisit à l’instant t + 1 le contexte

xt+1 = argmax
x∈Dt+1

[xT θ̂(t) + ∣∣x∣∣ΣtQ (1 − e−f(t+1,δ);N (0,1))] .

Les modèles de bandit linéaires tels que ceux que nous considérons ont été largement étudiés dans la
littérature et le principe d’optimisme est appliqué de la manière suivante dans ces modèles. Etant donnée
une région de confiance Ct ⊆ Rd pour le paramètre de régression, le contexte choisi est celui dont le
produit scalaire avec un des paramètres de régression jugés possibles (dans Ct) est maximal :

xt+1 = argmax
x∈Dt+1

max
θ′∈Ct

xT θ′.
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Dans les articles de [Auer, 2002, Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Chu et al.,
2011, Abbasi-Yadkori et al., 2011], les régions de confiances qui sont construites sont de la forme
Ct = (θ′ ∈ Rd ∶ ∣∣θ̂(t) − θ′∣∣Σ−1

t
≤ β(t + 1, δ)). Ce sont des régions de confiance ’fréquentistes’, c’est-

à-dire vraies en forte probabilité sous Pθ, pour tout paramètre θ. θ̂(t) ne s’interprète plus alors comme
la moyenne de la loi loi a posteriori mais comme un estimateur des moindres carrés régularisé, où κ est
un paramètre de régularisation. Les algorithmes associés se réécrivent

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σtβ(t + 1, δ)] . (10)

On peut noter que Bayes-UCB prend cette forme. Il est possible de définir une variante de cet al-
gorithme, qui implémente le principe d’optimisme pour les bandits linéaire tel qu’introduit ci-dessus
de manière bayésienne. En effet, une région de confiance pour θ sous le modèle bayésien (9) peut être
construite de la manière suivante :

P(∣∣θ − θ̂(t)∣∣Σ−1
t
≤
√
Q (1 − e−f(t+1,δ);χ2

d)) ≥ 1 − e−f(t+1,δ), (11)

où un quantile d’une loi du chi-deux à d degrés de liberté apparait, car conditionnellement au t premières
observations, ∣∣θ − θ̂(t)∣∣2

Σ−1
t

∼ χ2
d. Nous définissons alors l’algorithme Bayes-LinUCB comme l’algo-

rithme optimiste associé à cette région de confiance, qui choisit à l’instant t + 1 le contexte

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σt
√
Q (1 − e−f(t+1,δ);χ2

d)] .

L’échantillonnage de Thompson peut également être facilement implémenté dans des modèles de
bandit contextuels linéaires. Les bonnes performances de Thompson Sampling dans des modèles plus
complexes, les modèles logistiques, avaient d’ailleurs été constatées en pratique avant que des garan-
ties théoriques n’émergent pour les bandits binaires ([Scott, 2010, Chapelle and Li, 2011]). Dans notre
modèle linéaire, à l’instant t + 1, un échantillon θ̃(t) de la loi a posteriori (gaussienne) sur θ est tiré et le
contexte choisi est

xt+1 = argmaxx∈Dt+1
xT θ̃(t).

Nos résultats. Nous montrons le résultat suivant pour les algorithmes Bayes-UCB et Bayes-LinUCB.

Théorème 6. Avec le taux d’exploration f(t, δ) = log Kπ2t2

3δ , si pour tout t, ∣Dt∣ = K et si les contextes
sont bornés par L, l’algorithme Bayes-UCB vérifie, sous le modèle (9),

P
⎛
⎜
⎝
∀T ∈ N,Rθ(T,A) ≤

√
Td

¿
ÁÁÀ2C1 log(Kπ

2T 2

6δ
) log(1 + T L

2σ2

dκ2
)
⎞
⎟
⎠
≥ 1 − δ.

Avec le taux d’exploration f(t, δ) = log π2t2

6δ , l’algorithme Bayes-LinUCB vérifie, sous le modèle (9) et
avec des contextes bornés par L,

P
⎛
⎜⎜
⎝
∀T ∈ N,Rθ(T,A) ≤ d

√
T

¿
ÁÁÁÀC1 log(1 + T L

2σ2

dκ2
)
⎛
⎝

1 + 2

d
log

π2T 2

6δ
+ 2

√
1

d
log

π2T 2

6δ

⎞
⎠

⎞
⎟⎟
⎠
≥ 1 − δ.

où C1 ∶= 4L2κ2

log(1+L2κ2σ−2) .
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On a donc montré que le pseudo-regret de Bayes-UCB est en forte probabilité (sous le modèle
bayésien) de l’ordre de Õ(

√
dT log(K)) (où la notation Õ ignore les facteurs logarithmiques en T )

et celui de Bayes-LinUCB de l’ordre de Õ(d
√
T ). Le pseudo-regret de l’algorithme optimiste qui utilise

la région de confiance fréquentiste la plus fine, l’algorithme OFUL proposé par [Abbasi-Yadkori et al.,
2011], est de l’ordre de O(d

√
T ) en forte probabilité sous Pθ, pour tout θ. En revanche, on ne trouve pas

dans l’état de l’art fréquentiste un résultat spécifique dans le cas où le nombre de contexte est fini et la
dépendance en

√
dT log(K) obtenue pour Bayes-UCB dans ce cas est dans un certain sens optimale.

Pour Thompson Sampling, on peut déduire de l’analyse bayésienne de [Russo and Van Roy, 2014]
que dans le cas où le nombre de contextes est fini, le risque bayésien, défini ici par BRπ0(T,A) =
E [Rθ(T,A)] de Thompson Sampling est de l’ordre de Õ(

√
dT log(K)). Nous donnons également une

borne générale (indépendante du nombre de contextes) qui montre que le risque bayésien de Thompson
Sampling est de l’ordre de Õ(d

√
T ).

Ainsi, en fonction de la relation entre la dimension d et le nombre d’actionsK, une des deux variantes
Bayes-UCB ou Bayes-Lin-UCB sera préférable ; celle qui conduit à la borne supérieure la plus petite
sur le regret, ou aux meilleures performances pratiques. A l’inverse, l’échantillonnage de Thompson
s’implémente d’une manière unique pour tous les modèles linéaires et son risque bayésien est majoré par
la plus petite des deux bornes en Õ(

√
dT log(K)) et Õ(d

√
T ) obtenues.

3 Vers des algorithmes fréquentistes optimaux pour l’identification des
meilleurs bras

On rappelle que contrairement à l’objectif de minimisation du regret, pour l’objectif d’identification
des meilleurs bras, la notion d’algorithme (asymptotiquement) optimal n’existe pas dans la littérature.
Nous avons proposé les deux notions de complexités suivantes pour un budget fixé (κB(ν)) ou un niveau
de confiance fixé (κC(ν)) :

κB(ν) = inf
A consistant

(lim sup
t→∞

−1

t
log pt(ν))

−1

, κC(ν) = inf
A δ−PAC

lim sup
δ→0

Eν[τ]
log 1

δ

.

Afin d’évaluer ces deux complexités et de pouvoir les calculer, deux types de résultats sont nécessaires.
Nous donnons des bornes inférieures sur le nombre moyen d’observations nécessaires à un algorithme
pour identifier les m meilleurs bras avec une probabilité plus grande que 1− δ, ou sur la probabilité d’er-
reur d’un algorithme qui peut utiliser t observations des bras. Ensuite, nous présentons des algorithmes
qui atteignent ces bornes inférieures. De tels algorithmes peuvent alors être qualifiés d’asymptotiquement
optimaux.

La section 3.1 présente nos outils pour obtenir des bornes inférieures, ainsi qu’une première borne
inférieure sur κC(ν), valable pour des distributions générales et pour toute valeurs de m ≥ 1 (ce qui
n’existait pas dans la littérature). Nous donnons ensuite en section 3.2 deux algorithmes pour l’identi-
fication des meilleurs bras à niveau de confiance fixé, basés sur des intervalles de confiances construits
à l’aide de la divergence de Kullback-Leibler. La borne supérieure obtenue sur la moyenne du nombre
d’échantillons utilisés par KL-UCB fait aussi intervenir des quantités informationnelle, mais n’atteint
pas exactement la borne inférieure précédente. Dans le cas particulier de l’identification du meilleur bras
parmi deux, nous proposons en section 3.3 de nouvelles bornes inférieures ainsi que des algorithmes
asymptotiquement optimaux.
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3.1 Une borne inférieure sur la complexité à niveau de confiance fixé

Toutes les bornes inférieure obtenues dans la littérature, que ce soit pour la minimisation du regret
([Lai and Robbins, 1985]) ou l’identification des meilleurs bras ([Mannor and Tsitsiklis, 2004, Audibert
et al., 2010]) reposent sur des changements de loi. Un changement de loi relie la probabilité du même
événement sous deux modèles de bandit différents, ν et ν′. Le lemme ci-dessous présente une nouvelle
formulation synthétique pour un changement de loi, sous la forme d’une inégalité qui fait directement
intervenir l’espérance du nombre de tirages de chaque bras.

Lemme 7. Soient ν et ν′ deux modèles de bandit tels que les distributions des tous les bras de ν et ν′

soient absolument continues. Soit σ un temps d’arrêt par rapport à la filtration (Ft) et soit A ∈ Fσ tel
que 0 < Pν(A) < 1. On a

K

∑
a=1

Eν[Na(σ)]KL(νa, ν′a) ≥ d(Pν(A),Pν′(A)),

où d(x, y) ∶= x log(x/y) + (1 − x) log((1 − x)/(1 − y)) désigne l’entropie relative binaire.

Soit A un algorithme δ-PAC. Pour minorer le nombre moyen d’observations Eν[τ] pour un modèle
de bandit ν fixé, on peut minorer Eν[Na] pour chaque bras, où Na = Na(τ) désigne le nombre total
d’observations du bras a. Une telle minoration peut être obtenue en appliquant le Lemme 7 avec le
temps d’arrêt τ , en choisissant pour événement A l’événement d’erreur sous ν et pour ν′ un modèle de
bandit qui diffère de ν par le bras a uniquement, et qui a un ensemble de bras optimaux différent de celui
de ν. Ceci permet de montrer, sous certaines hypothèses sur la classeMm, vérifiées par exemple pour
une classe de modèles de bandit exponentiels, le résultat suivant.

Théorème 8. Tout algorithme δ-PAC surMm vérifie, pour δ ≤ 0.15,

Eν[τ] ≥
⎡⎢⎢⎢⎢⎣
∑
a∈S∗m

1

KL(νa, ν[m+1])
+ ∑
a∉S∗m

1

KL(νa, ν[m])

⎤⎥⎥⎥⎥⎦
log ( 1

2δ
) .

Notons que le Lemme 7 sera introduit dès le chapitre 1, car il permet également de donner une preuve
simple de la borne inférieure de [Burnetas and Katehakis, 1996], qui généralise celle de Lai et Robbins.

3.2 Deux algorithmes : KL-LUCB et KL-Racing

Nous commençons par présenter deux algorithmes génériques pour l’identification des m meilleurs
bras parmi K, pour tout m ≥ 1, pour un niveau de confiance fixé. Ces algorithmes partagent l’utili-
sation d’intervalles de confiance, mais sont basés sur deux stratégies d’échantillonnage différentes. A
chaque instant de jeu, indexé par t, ces algorithmes tirent entre 2 et K bras, et nous notons Ia(t) =
[La(t), Ua(t)] un intervalle de confiance construit pour le bras a à l’instant t, ainsi que Na(t) (resp.
Sa(t)) le nombre de tirages (resp. la somme des observations) du bras a entre les instants 1 et t, et µ̂a(t)
la moyenne empirique.

L’algorithme Racing est basé sur un échantillonnage uniforme couplé à des éliminations. A chaque
instant t, les bras sont partitionnés en trois ensemble : Rt est l’ensemble des bras restants en course,
St l’ensemble des bras sélectionnés et Dt l’ensemble des bras éliminés. Chaque bras de Rt est tiré une
fois, d’où le terme échantillonnage uniforme (on pose R1 = {1, . . . ,K} si bien que dans les premiers
instants on tire tous les bras). Les bras deRt sont ensuite triés par moyenne empirique décroissante, et si
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le meilleur empirique â est tel que la borne inférieure Lâ(t) de son intervalle de confiance est supérieure
aux bornes supérieures Ub(t) des K −m − ∣Dt∣ moins bons bras empiriques, on sélectionne â comme
faisant partie des m meilleurs :

St+1 = St⋃{â}, Rt+1 = Rt/{â} et Dt+1 = Dt.

Si â n’a pas été sélectionné, on se donne aussi la possibilité d’éliminer le moins bon bras empirique b̂
si la borne borne supérieure Ub̂(t) de son intervalle de confiance est inférieure aux bornes inférieures
La(t) des m − ∣St∣ meilleurs bras empiriques :

St+1 = St, Rt+1 = Rt/{b̂} et Dt+1 = Dt⋃{b̂}.

L’échantillonnage s’arrête au premier instant t tel que ∣St∣ = m, et on recommande Ŝm = St. Cet al-
gorithme est inspiré des algorithmes de la littérature basés sur des éliminations (e.g. [Jennison et al.,
1982, Even-Dar et al., 2006, Heidrich-Meisner and Igel, 2009]), qui peuvent se réécrire comme l’algo-
rithme Racing avec des intervalles de confiance particuliers.

L’algorithme LUCB est basé sur un échantillonnage adaptatif, et ne tire que deux bras bien choisis
à chaque instant t. Il a été proposé par [Kalyanakrishnan et al., 2012] avec des intervalles de confiances
basés sur l’inégalité de Hoeffding, et sa formulation générique est la suivante. A chaque instant t, l’en-
semble J(t) des m bras ayant les m plus grandes moyennes empiriques est formé. Les deux bras tirés
sont celui parmi J(t) dont l’intervalle de confiance a la plus petit borne inférieure, et celui parmi J(t)c
dont l’intervalle de confiance a la plus grande borne supérieure. Ces deux bras lt et ut ont en effet de plus
grandes chances d’être mal classifiés dans J(t) et J(t)c. L’échantillonnage s’arrête au premier instant t
tel que Llt > Uut (les intervalles de confiances des bras dans J(t) et J(t)c sont séparés) et l’ensemble
J(t) est recommandé.
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FIGURE 3 – Illustration des algorithmes pourK = 6,m = 3. Les losanges noirs représentent les moyennes
inconnues. Les m meilleurs empiriques (resp. K −m moins bons) sont en rouge (resp. en bleu). Les bras
en gras sont ceux tirés à l’instant courant : à gauche KL-LUCB tire tous les bras, et le meilleur bras
empirique va être éliminé. A droite KL-LUCB tire uniquement les bras lt et ut.

Les deux algorithmes décrits ci-dessus dépendent d’une famille d’intervalles de confiance. Nous
analysons pour des modèles de bandit exponentiels les variantes appelées KL-Racing et KL-LUCB qui
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utilisent les intervalles de confiance Ia(t) = [la(t)ua(t)] avec

ua(t) ∶= max{q ∈ [µ̂a(t),1] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} ,
la(t) ∶= min{q ∈ [0, µ̂a(t)] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} ,

où d(x, y) est la fonction de divergence associée à la famille exponentielle (voir (2)) et β(t, δ) est au
taux d’exploration. Une illustration de ces deux algorithmes est proposée sur la figure 3 pour des modèles
de bandit binaires, où l’on a d(x, y) = KL(B(x),B(y)). Une étude numérique sera présentée au cha-
pitre 5 pour des bandit binaires, où l’on verra que comme dans le cadre de la minimisation du regret,
l’utilisation de tels intervalles de confiance est préférable à celle d’intervalles proches de ceux utilisés
par l’algorithme UCB1 et basés sur l’inégalité de Hoeffding. Par ailleurs, KL-LUCB semble nécessiter
empiriquement moins d’observations que KL-Racing pour trouver les m meilleurs bras.

Analyse de KL-LUCB. Pour KL-LUCB nous avons obtenu une majoration de l’espérance du nombre
de tirages de bras Eν[τ] que nous présentons ici car elle conduit à une borne supérieure sur le terme de
complexité κC(ν).

La présentation de notre résultat nécessite l’introduction d’une nouvelle quantité informationnelle,
l’information de Chernoff. L’information de Chernoff entre les distributions de Bernoulli B(x) et B(y),
notée d∗(x, y), est définie par

d∗(x, y) = d(z∗, x) = d(z∗, y) où z∗ est l’unique z tel que d(z, x) = d(z, y). (12)

Cette définition peut être généralisée aux modèles de bandit exponentiels.

Théorème 9. L’algorithme KL-Racing avec β(t, δ) = log (k1Kt
α

δ
) pour α > 1 et k1 > 1 + 1

α−1 recom-
mande les m meilleurs bras avec une probabilité plus grande que 1 − δ.

Soit c ∈ [µ[m+1], µ[m]]. Si de plus on choisit α > 2 dans l’expression ci-dessus du taux d’exploration,
il existe une constante Cα telle que

Eν[τ] ≤ 4αH∗
c log(ek1K(H∗

c )α
δ

log(k1K(H∗
c )α

δ
)) +Cα,

avec
H∗
c (ν) ∶= ∑

a∈{1,...,K}

1

d∗(µa, c)
.

En utilisant les résultats des théorèmes 8 et 9, on obtient l’encadrement suivant sur la complexité
pour un niveau de confiance fixé :

∑
a∈S∗m

1

d(µa, µ[m+1])
+ ∑
a∉S∗m

1

d(µa, µ[m])
≤ κC(ν) ≤ 8 min

c∈[µm+1,µm]

K

∑
a=1

1

d∗(µa, c)
.

Nous avons obtenu des bornes informationnelles sur le terme de complexité κC(ν), mais un écart
demeure entre la borne inférieure et la borne supérieure obtenues. Le paramètre c qui apparaı̂t dans la
borne supérieure semble être un avatar de notre preuve, et on s’attendrait plutôt à une borne supérieure
de la forme

∑
a∈S∗m

1

d∗(µa, µ[m+1])
+ ∑
a∉S∗m

1

d∗(µa, µ[m])
Quant à la présence de l’information de Chernoff, elle semble aussi provenir de raisons techniques (voir
chapitre 5). Mais nous allons voir que cette quantité informationnelle sera en effet caractéristique de la
complexité d’un problème d’identification du meilleur bras dans un modèle de bandit à deux bras.
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3.3 Caractérisation de la complexité pour des modèles de bandit à deux bras

Une partie du chapitre 5 est dédiée au calcul des complexités dans des modèles de bandit à deux
bras. On peut tout d’abord souligner l’intérêt pratique de tels modèles de bandit, qui fournissent un cadre
théorique pour l’A/B Testing séquentiel. L’A/B Testing est une procédure utilisée par exemple pour
l’optimisation des contenus web : deux versions d’une page web sont comparées en étant présentées à
des utilisateurs. On présente à chaque utilisateur une seule des deux versions, At ∈ {1,2}, et l’utilisateur
fournit une réponse Xt qui est un indice de la qualité de la page, modélisée comme une réalisation d’une
loi de probabilité ν1 ou ν2. Un objectif commun est de déterminer quelle version a le plus grand taux de
conversion (probabilité qu’un utilisateur devienne un consommateur) en collectant des réponses binaires
des utilisateurs.

Dans des modèles de bandit à deux bras, les deux algorithmes que nous avons présentés, KL-Racing
et KL-LUCB se réduisent au même algorithme, qui tire les deux bras de manière uniforme et utilisent
un critère d’arrêt basé sur la séparation d’intervalles de confiances. On peut en particulier se demander
si cet échantillonnage uniforme fait sens.

Des bornes inférieures plus fines. En utilisant le même outil qu’en section 3.1, le Lemme 7, mais
on considérant des changements de lois différents (où en particulier les deux bras du modèle de bandit
alternatif ν′ sont modifiés par rapport au modèle ν), on peut montrer le résultat suivant. Ce résultat est
présenté dans un cadre plus général au chapitre 5, mais nous l’énonçons ici pour des modèles de bandit
où les bras sont paramétrés continument par leurs moyennes. Cela inclut le cas des modèles de bandit
gaussiens de variances connues et le cas des modèles de bandit exponentiels.

Théorème 10. SoitM1 une classe de modèles de bandit à deux bras paramétrés continument par leurs
moyennes. Soit ν = (ν1, ν2) ∈ M1. On a les résultats suivants

Budget fixé Niveau de confiance fixé

Tout algorithme consistant surM1 vérifie Tout algorithme δ-PAC surM1 vérifie, pour δ ≤ 0.15,

lim supt→∞ −1
t log pt(ν) ≤ KL∗(ν1, ν2) Eν[τ] ≥ 1

KL∗(ν1,ν2) log ( 1
2δ

)

avec KL∗(ν1, ν2) ∶= KL(ν∗, ν1) = KL(ν∗, ν2). avec KL∗(ν1, ν2) ∶= KL(ν1, ν∗) = KL(ν2, ν∗).

On en déduit
κB(ν) ≥ 1

KL∗(ν1, ν2)
et κC(ν) ≥

1

KL∗(ν1, ν2)
.

La quantité KL∗(ν1, ν2) dans la complexité à budget fixé peut être interprétée comme une informa-
tion de Chernoff, alors que la quantité KL∗(ν1, ν2) apparait comme une quantité similaire, mais où les
rôles des arguments sont inversés.

Algorithmes asymptotiquement optimaux. Dans la classe des bandits gaussiens, définie par

M1 = {ν = (N (µ1, σ
2
1) ,N (µ2, σ

2
2)) ∶ (µ1, µ2) ∈ R2, µ1 ≠ µ2}

où les variances σ2
1 et σ2

2 sont connues (mais potentiellement différentes), la divergence de Kullback-
Leibler est symétrique, et les deux bornes inférieures obtenues dans le théorème 10 sont égales. On
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montre même que

κB(ν) = κC(ν) =
2(σ1 + σ2)2

(µ1 − µ2)2

en proposant des algorithmes asymptotiquement optimaux. Pour un budget fixé, un algorithme qui
échantillonne les bras proportionnellement à leurs écarts types (et non leurs variances) et recommande
le meilleur empirique vérifie en effet

lim inf
t→∞

−1

t
log pt(ν) ≥

(µ1 − µ2)2

2(σ1 + σ2)2
,

et atteint donc la borne inférieure du théorème 10. Pour un niveau de confiance fixé, en couplant un
échantillonnage séquentiel qui maintient la proportion de tirages du bras 1, N1(t)/t, proche du ratio des
écarts types α = σ1/(σ1 + σ2) (At = 2 ssi ⌈αt⌉ = ⌈α(t − 1)⌉) à une règle d’arrêt basée sur la différence
des moyennes empiriques,

τ = inf {t ∈ N ∶ ∣µ̂1(t) − µ̂2(t)∣ >
√

2σ2
t (α) log(t/δ)} où σ2

t (α) =
σ2

1

⌈αt⌉ +
σ2

2

(t − ⌈αt⌉) ,

on obtient un algorithme δ-PAC qui vérifie

Eν[τ] ≤ (1 + ε)2(σ1 + σ2)2

(µ1 − µ2)2
log (1

δ
) + oε

δ→0
(log (1

δ
)) ,

et atteint donc la borne du théorème 10.
Dans la classe des bandits binaires, définie par

M1 = {ν = (B(µ1),B(µ2)) ∶ (µ1, µ2) ∈]0; 1[2, µ1 ≠ µ2},

les deux bornes inférieures du théorème 10 ne sont pas égales. En notant d∗(µ1, µ2) l’information de
Chernoff définie en (12) et d∗(µ1, µ2) la quantité définie par d∗(µ1, µ2) = d(µ1, µ∗) où µ∗ est l’unique
élément vérifiant d(µ1, µ∗) = d(µ2, µ∗), on a en effet

κB(ν) ≥ 1

d∗(µ1, µ2)
et κC(ν) ≥

1

d∗(µ1, µ2)
,

et nous avons d∗(µ1, µ2) < d∗(µ1, µ2). Pour un budget fixé, pour chaque ν, on peut montrer qu’il existe
α(ν) tel qu’en allouant α(ν)t échantillon au bras 1, on atteint la borne du théorème 10. Ceci permet de
montrer que

κB(ν) = 1

d∗(µ1, µ2)
et κC(ν) > κB(ν).

Par ailleurs, nous montrons que dans des modèles de bandit binaires, il y a peu à gagner à considérer des
stratégies dont la règle d’échantillonnage n’est pas uniforme. En effet, nous avons pu obtenir des bornes
inférieures sur le nombre d’échantillons (resp. la probabilité d’erreur) de stratégies échantillonnant les
bras uniformément, qui sont très proches de celles du théorème 10. Pour un budget fixé, la stratégie
qui tire les bras uniformément et recommande le meilleur empirique s’avère ainsi être une très bonne ap-
proximation de la règle optimale. Pour un niveau de confiance fixé, nous montrons qu’un échantillonnage
uniforme couplé à une règle d’arrêt basée sur la différence des moyennes empiriques conduit à un algo-
rithme sous-optimal, et nous proposons une règle d’arrêt plus sophistiquée.
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4 Organisation du document

Dans cette thèse nous présentons des algorithmes pour deux problèmes d’allocation séquentielle de
ressources : la maximisation des récompenses et l’identification des meilleurs bras dans des modèles de
bandit. De bons algorithmes pour ces deux problèmes peuvent être obtenus en utilisant des intervalles de
confiances basés sur la divergence de Kullback-Leibler. Nous avons transposé cette idée, proposée par
[Cappé et al., 2013] pour l’objectif de maximisation des récompenses et donnant lieu à l’algorithme KL-
UCB, à l’identification des meilleur bras, pour laquelle nous avons introduit l’algorithme KL-LUCB. Par
ailleurs, pour l’objectif de maximisation des récompenses, nous avons proposé l’algorithme Bayes-UCB,
basé sur une interprétation bayésienne du problème, et prouvé son optimalité asymptotique du point de
vue du regret, une mesure de performance fréquentiste, dans des modèles de bandit binaires. Nous avons
établi cette même propriété pour l’échantillonnage de Thompson, un autre algorithme bayésien, introduit
en 1933 mais dont l’optimalité était encore une question ouverte.
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FIGURE 4 – KL-UCB (à gauche) et KL-LUCB pour l’identification du meilleur bras (à droite) après
1500 observations des bras environ.

Comme on peut le constater sur la figure 4, les algorithmes pour les deux problèmes considérés sont
différents. KL-UCB tire massivement le bras optimal, et très peu les autres bras, ce qui conduit à une
très bonne estimation de la moyenne du meilleur bras, mais une mauvaise estimation de celles des autres
bras. A l’inverse pour identifier le meilleur bras (donc pour m = 1), KL-LUCB va tirer beaucoup plus les
bras sous-optimaux et a donc une meilleure estimation de leur moyenne.

Si les algorithmes pour ces deux problèmes sont différents, leur complexité l’est également. Nous
avons vu que la complexité du problème de minimisation du regret est bien connue puisque nous avons,
dans le cadre des bandits binaires par exemple,

inf
A uniformément

efficace

lim sup
T→∞

Rν(T,A)
log(T ) = ∑

a∶µa<µ∗

(µ∗ − µa)
d(µa, µa∗)

,

où des stratégies réalisant l’infimum sont par exemple KL-UCB, Bayes-UCB ou Thompson Sampling.
Pour l’identification des meilleurs bras, avec un niveau de confiance 1 − δ fixé, nous avons montré que

inf
A δ−PAC

lim sup
δ→0

Eν[τ]
log(1/δ) ≥ ∑

a∈S∗m

1

d(µa, µ[m+1])
+ ∑
a∉S∗m

1

d(µa, µ[m])
.
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En revanche des résultats plus fins obtenus pour l’identification du meilleur parmi K = 2 bras montrent
que cette borne inférieure ne peut pas être atteinte, et qu’en particulier des quantités informationnelles
différentes, comme l’information de Chernoff, interviennent pour mesurer la complexité du problème.

CONTENU DE LA THÈSE

L’organisation du manuscrit est la suivante : les chapitre 1 à 4 présentent nos contributions relatives
à la maximisation des récompenses, et le chapitre 5 est consacré à l’identification des meilleurs bras.

Plus précisément, le chapitre 1 introduit les deux approches bayésienne et fréquentiste pour la maxi-
misation des récompenses. Nous y présentons les mesures de performance associées, ainsi qu’un état de
l’art des algorithmes fréquentistes et bayésiens. Nous y étudions notamment un algorithme basé sur les
indices de Gittins à horizon fini.

Le chapitre 2 introduit l’algorithme Bayes-UCB. Nous y donnons une analyse à temps fini de l’al-
gorithme pour les bandits binaires, et présentons également des applications dans d’autres contextes,
illustrées de premières simulations numériques.

Le chapitre 3 introduit le Thompson Sampling. Nous donnons une analyse à temps fini de l’algo-
rithme pour les bandits binaires, esquissons une analyse pour des modèles de bandit exponentiels et
présentons une étude numérique comparant Bayes-UCB et Thompson Sampling aux différents algo-
rithmes bayésiens et fréquentistes discutés au chapitre 1.

Le chapitre 4 présente l’utilisation de Bayes-UCB et Thompson Sampling dans des modèles de bandit
contextuels linéaires. Nous y donnons notamment de nouveaux éléments d’analyse bayésienne.

Le chapitre 5 présente le cadre de l’identification des meilleurs bras, propose une analyse des algo-
rithmes KL-LUCB et KL-Racing ainsi qu’une illustration numérique de leur performance. Nous y prou-
vons également de nouvelles bornes inférieures sur les termes de complexités des différents problèmes
et proposons des algorithmes asymptotiquement optimaux dans des modèles de bandit à deux bras.
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● E. Kaufmann, O. Cappé et A. Garivier, On Bayesian Upper Confidence Bounds for Bandit Pro-

blems, AISTATS 2012
● E. Kaufmann, N. Korda et R. Munos, Thompson Sampling : An Asymptotically Optimal Finite

Time Analysis, ALT 2012
● E. Kaufmann et S. Kalyanakrishnan, Information Complexity in Bandit Subset Selection, COLT

2013
● N. Korda, E. Kaufmann et R. Munos, Thompson Sampling for one-dimensional Exponential Fa-

mily Bandits, NIPS 2013
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Chapter 1

Two probabilistic views on rewards
maximization in bandit models

The first part of this thesis is dedicated to the design of strategies maximizing the sum of rewards in
a bandit model. As discussed in the Introduction, this objective is motivated by many applications that
range from clinical trials to the display of advertising. Different communities have worked on this bandit
problem, and in the particular case of parametric bandit models, two different probabilistic points of view
have been considered. This chapter aims at presenting these frequentist and Bayesian approaches. We
introduce the two measures of performance associated to these two probabilistic modelings, namely the
regret and the Bayes risk. We present state-of-the-art algorithms in each case. In particular, we discuss
the use of a strategy based on Finite-Horizon Gittins indices.
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1.1 Introduction

A stochastic multi-armed bandit model, denoted by ν = (ν1, . . . , νK), is a collection of K arms,
where each arm νa is a probability distribution with mean µa. An agent can interact with a bandit model
by choosing at each round t an arm At to draw. This draw results in the observation of a realization Xt

from the associated distribution νAt . The bandit problem that we consider in the first four chapters of this
thesis is the following. The samples (Xt) collected are perceived as rewards, and the agent has to choose
the arms sequentially in order to maximize the sum of the rewards accumulated during his interaction
with the bandit model. Of course, the bandit model ν is unknown to him, an so is the optimal arm a∗,
such that µa∗ = maxa µa. The mean of the optimal is denoted by µ∗.

In this thesis, we mostly consider parametric bandit models, of the form ν = νθ = (νθ1 , . . . , νθK).
The distribution νa of arm a depends on a parameter θa ∈ Θ, and we let θ = (θ1, . . . , θK) ∈ ΘK denote
the global parameter of the model. As in every parametric model, two different points of view can be
adopted: the frequentist point of view, in which θ is seen as an unknown parameter, and the Bayesian
point of view, in which θ is a random variable, drawn from some prior distribution. This leads to two
different probabilistic frameworks, described in Table 1.1.

Frequentist bandit model Bayesian bandit model
- θ ∈ ΘK is an unknown parameter - θ is drawn from Π0, a prior distribution on ΘK

- ∀a, (Xa,t) i.i.d. with distribution νθa and mean µa - ∀a, conditionally to θa,
(Xa,t) is i.i.d. with distribution νθa and mean µa

- (Xa,t)a,t is an independent family - conditionally to θ,
(Xa,t)a,t is an independent family

Table 1.1: Bayesian and frequentist bandit models

We denote by Pθ (resp. Eθ) —or sometimes Pν (resp. Eν) in a model that is not necessarily
parametric— the probability (resp. expectation) under the frequentist modeling, and PΠ0 (resp.EΠ0)
the probability (resp. expectation) under the Bayesian modeling. The subscripts might be omitted in
some parts of this document when the associated probabilistic framework is clear.

In both settings, an agent interacts with the bandit model using a sampling strategy, sometimes
called policy or bandit algorithm. This sampling strategy A = (At)t∈N is a sequence of choices of the
arms based on previous outcomes. At time t, the agent draws the arm At and receives as a reward an
observation from arm At, Xt =XAt,t ∼ νAt . Introducing Ft the filtration defined by

Ft = σ(A1,X1, . . . ,At,Xt),

in a deterministic strategy At is assumed to be Ft−1-measurable and in a randomized strategy At is
drawn from a probability distribution pt on {1, . . . ,K} such that the vector of probabilities pt is Ft−1-
measurable. The bandit problem considered in the first part of this thesis is the following: the agent aims
at building a strategy which minimizes the expected sum of rewards up to some horizon T .

In the frequentist view of the bandit problem, a strategy that maximizes the expected cumulated
rewards equivalently minimizes the regret, defined for any strategy A and horizon T by

Rθ(T,A) = Eθ [Tµ∗ −
T

∑
t=1

Xt] = Tµ∗ −Eθ [
T

∑
t=1

Xt] .
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This quantity depends on the parameter θ (fixed and unknown). The notion of regret was introduced by
[Lai and Robbins, 1985] in a frequentist, parametric setting. Regret represents the difference between
the expected cumulative reward of the strategy drawing the (unknown) best arm at each round, and the
expected cumulative reward obtained with the strategyA. It can be rewritten as a function of the number
of draws of each sub-optimal arm. Let Na(t) denote the number of draws of arm a between the instants
1 and t. Using that Eν[Xt∣Ft−1] = µAt , one obtains the following useful expression of the regret, as
a function of the expected number of draws of each arm (that is also defined for non-parametric bandit
models, for which we use the subscript ν in place of θ):

Rν(T,A) = Eν [
T

∑
t=1

(µ∗ − µAt)] =
K

∑
a=1

(µ∗ − µa)Eν [Na(T )] . (1.1)

In the Bayesian view of the bandit problem there is an equivalent notion, called Bayes risk (a denomi-
nation introduced by [Lai, 1987]), or sometimes Bayesian regret. A strategy that maximizes the expected
cumulative rewards equivalently minimizes the Bayes risk, defined for a strategy A and horizon T by

BRΠ0(T,A) = EΠ0 [Tµ∗ −
T

∑
t=1

Xt] = EΠ0 [EΠ0 [Tµ∗ −
T

∑
t=1

Xt∣θ]] = EΠ0[Rθ(T,A)].

This quantity depends on the prior distribution Π0. An algorithm minimizing the Bayes risk is good in
average on all bandit models with parameters in ΘK , whereas in the frequentist modeling we are looking
for algorithms with small regret on every bandit model νθ, for all θ ∈ ΘK .

The first bandit algorithm was introduced by [Thompson, 1933] in a Bayesian framework, and more
generally the view adopted in the first works on bandit problems was mostly Bayesian. This could be
explained by the fact that Bayes risk minimization has an exact solution (that can be obtained by dynamic
programming, as explained in Section 1.3), whereas there exists no algorithm minimizing the regret on
every bandit model. However the lower bound on the regret given by [Lai and Robbins, 1985] allows to
define the notion of asymptotic optimality in the frequentist setting and paves the way to a more abundant
frequentist literature at the end of the 1980’s.

The Bayesian and frequentist modelings of the bandit problem (and the dedicated performance crite-
ria) can be dissociated from the tools related to these two frameworks. For example, algorithms from the
regret minimization literature rely on maximum likelihood estimates of the unknown parameters or con-
fidence intervals (that we call frequentist tools), whereas algorithms from the Bayesian literature choose
the next arm based on the current posterior distribution. At the end of round t, the posterior distribution
of the parameter θ is the conditional distribution of θ given the observation, denoted by

Πt(θ) = L(θ∣A1,X1, . . . ,At,Xt).

One can evaluate the Bayes risk of an algorithm that uses frequentist tools or conversely focus on the
regret of a Bayesian algorithm that uses a prior distribution and the associated posterior distributions
in its routine. The latter objective is at the heart of this thesis, in which we show that two Bayesian
algorithms, Bayes-UCB and Thompson Sampling, are asymptotically optimal with respect to the regret.

Before studying the regret of Bayesian algorithms in the next chapters, we present in this chapter
state-of-the-art Bayesian and frequentist algorithms and discuss the link between regret and Bayes risk.
Section 1.2 is dedicated to the frequentist framework. We start by presenting the lower bound on the
regret of [Lai and Robbins, 1985], and the subsequent definition of asymptotically optimal algorithms.
We propose a new short proof for this result. Then we present the recent improvements in the frequentist



38 CHAPTER 1. TWO PROBABILISTIC VIEWS ON REWARDS MAXIMIZATION IN BANDIT MODELS

literature that have led to the KL-UCB algorithm of [Cappé et al., 2013], that is asymptotically optimal
with respect to Lai and Robbins’ lower bound. We also present some tools for regret finite-time analysis
that will be useful in the rest of this thesis.

In Section 1.3, we discuss the Bayesian optimal solution. It is often heard that Gittins ([Gittins,
1979]) solved the Bayesian bandit problem by exhibiting an optimal index policy. Index policies are
bandit algorithms in which, at each round, one index for each arm is computed, based on the history
of this arm only, and then the arm with highest index is chosen. We explain here that when the goal
is to maximize the expected cumulative rewards up to some finite horizon —and not the discounted
sum of rewards, as in Gittins’ original paper— the corresponding index policy is not optimal. Nev-
ertheless, we conjecture that this Finite-Horizon Gittins algorithm closely approximates the Bayesian
optimal solution and we present some numerical experiments supporting this claim. Approximations
of the Finite-Horizon Gittins indices also indicate similarities with indices used by a frequentist index
policy, KL-UCB-H+, that is proved to be asymptotically optimal in a Bayesian sense.

In a nutshell, this chapter introduces frequentist algorithms (asymptotically) optimal with respect to
the regret, Bayesian algorithms optimal with respect to the Bayes risk, as well as a frequentist algorithm
(asymptotically) optimal with respect to the Bayes risk. Table 1.2 summarizes the information of this
chapter and can be completed with the contributions of this thesis relative to regret minimization (in
bold), presented in Chapter 2 and Chapter 3.

Regret Bayes risk
Frequentist algorithm KL-UCB KL-UCB-H+

Bayesian algorithm Bayes-UCB Dynamic programming
Thompson Sampling FH-Gittins ?

Table 1.2: Optimal algorithms for each measure of performance

Notation. We introduce here useful notation that enables us to define and later analyse bandit algo-
rithms. Quantities that are functions of t depend on the history of the game up to the end of round t. We
introduce

– Na(t), the number of draws of arm a between instants 1 and t.
– Sa(t) = ∑ts=1 1(As=a)Xa,s, the sum of rewards obtained from arm a between instants 1 and t.

– µ̂a(t) = Sa(t)
Na(t) , the empirical mean of the rewards obtained from arm a between instants 1 and t.

We also introduce
– (Ya,k)k∈N∗ , the sequence of successive rewards obtained from arm a
– µ̂a,s = 1

s ∑
s
k=1 Ya,k the empirical mean of the first s rewards obtained from arm a

If (At = a), Ya,Na(t) = Xa,t, where (Xa,t) is the i.i.d. sequence associated to arm a introduced in

Table 1.1). One has Sa(t) = ∑Na(t)s=1 Ya,s and µ̂a(t) = µ̂a,Na(t). The sequence (Ya,k)k∈N∗ is i.i.d. with
distribution νa (conditionally to θa in the Bayesian modeling).

1.2 The frequentist approach

For the sake of comparison with Bayesian algorithms, we mostly focus our presentation on para-
metric bandit models, in particular on models in which the rewards belong to an exponential family.
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However, we will see that algorithms developed for parametric bandits can sometimes be generalized to
some non-parametric bandit models (e.g. bandits with bounded rewards, that are often considered in the
frequentist literature).

1.2.1 Lower bounds on the regret

In the frequentist framework, the bandit problem was first considered by [Robbins, 1952], who intro-
duces two strategies for two-armed bandit models. For Bernoulli bandit models, he proposes a strategy
that changes the arm that is drawn if and only if a zero is observed. For more general two-armed bandit
models, Robbins proposes a second strategy that relies on two disjoint increasing sequences of integers
(an) and (bn) fixed in advance, with a1 = 1 and b1 = 2. At time t, arm 1 is drawn if t ∈ (an)n∈N, arm
2 is drawn if t ∈ (bn)n∈N. Otherwise, the arm with highest empirical mean of past rewards µ̂a(t − 1)
is chosen. This strategy modifies the ’greedy’ strategy, that chooses At = argmaxaµ̂a(t − 1), in a way
that forces exploration. If the sequences (an) and (bn) are chosen such that the proportion of integers in
{1, . . . , t} that belong to one of the two sequences goes to zero when t goes to infinity, [Robbins, 1952]
shows that this strategy AR is such that, for every two-armed bandit model ν,

Rν(T,AR)
T

Ð→
T→∞

0.

The seminal paper of [Lai and Robbins, 1985] gives, in simple parametric cases, a lower bound on
the regret of strategies having the following stronger consistency property:

for all θ ∈ ΘK such that in νθ there is a unique optimal arm, for all α ∈]0,1], Rθ(T,A) = o(Tα).

Algorithms satisfying this property are called uniformly efficient. For bandits whose arms are parame-
terized by a single parameter (i.e. Θ ⊂ R), under some conditions on Θ, Lai and Robbins show that a
uniformly efficient algorithm has to draw each sub-optimal arm at least in a logarithmic fashion. More
precisely,

µa < µ∗ ⇒ lim inf
T→∞

Eθ[Na(T )]
log(T ) ≥ 1

KL(νθa , νθ∗)
,

where KL(p, q) is the Kullback-Leibler divergence between the distributions p and q, defined by

KL(p, q) =
⎧⎪⎪⎨⎪⎪⎩
∫ log [dpdq (x)]dp(x) if q ≪ p,

+∞ otherwise.

From the regret decomposition (1.1), it follows that, for any uniformly efficient strategy A,

lim inf
T→∞

Rθ(T,A)
log(T ) ≥ ∑

a∶µa<µ∗

(µ∗ − µa)
KL(νθa , νθ∗)

. (1.2)

This lower bound leads to the definition of asymptotic optimality. An algorithm is termed asymptot-
ically optimal if it satisfies, for every θ ∈ Θ,

sup
T→∞

Rθ(T,A)
log(T ) ≤ ∑

a∶µa<µ∗

(µ∗ − µa)
KL(νθa , νθ∗)

.

Lai and Robbins’ lower bound was later generalized by [Burnetas and Katehakis, 1996] to distribu-
tions that depend on multiple parameters. We give here a slightly more general result, that does not rely
on parametric assumptions.
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Definition 1.1. A classM of bandit models is identifiable if it is of the formM= P1 × ⋅ ⋅ ⋅ × PK , where
Pa is the set of possible distributions for arm a, and if for all a, Pa is such that

∀p, q ∈ Pa, p ≠ q ⇒ 0 < KL(p, q) < +∞.
Theorem 1.2. LetM be an identifiable class of bandit models. Let A be a bandit algorithm uniformly
efficient on the classM: for all ν ∈ M with a unique optimal arm, for all α ∈]0,1], Rν(T,A) = o(Tα).
Then, for all ν ∈ M,

µa < µ∗ ⇒ lim inf
T→∞

Eν[Na(T )]
log(T ) ≥ 1

Kainf(νa;µ∗)
, (1.3)

with
Kainf(p;µ) = inf {KL(p, q) ∶ q ∈ Pa and EY ∼q[Y ] > µ} .

All the distribution-dependent lower bounds derived in the bandit literature (e.g. [Lai and Robbins,
1985, Burnetas and Katehakis, 1996] but also [Mannor and Tsitsiklis, 2004, Audibert et al., 2010] in
the literature relative to best arm identification, that will be presented in Chapter 5) rely on changes
of distribution, and so does Theorem 1.2. A change of distribution relates the probabilities of the same
event under two different bandit models ν and ν′. Lemma 1.3 below provides a new, synthetic, inequality
from which all the lower bounds presented in this thesis will be directly derived. In other words, this
result, whose proof is postponed to Section 1.5.1, encapsulates the technical aspects of the change of
distribution. Lemma 1.3 could also be used to give simple proofs for the lower bounds of [Graves and
Lai, 1997, Agrawal et al., 1989] in more general cases in which arms are not necessarily independent.

Lemma 1.3. Let ν and ν′ be two bandit models such that the distributions of all arms in ν and ν′ are
mutually absolutely continuous. Let σ be a stopping time with respect to (Ft) such that (σ < +∞) a.s.
under both models. Let A ∈ Fσ be an event such that 0 < Pν(A) < 1. Then one has

K

∑
a=1

Eν[Na(σ)]KL(νa, ν′a) ≥ d(Pν(A),Pν′(A)),

where d(x, y) ∶= x log(x/y) + (1 − x) log((1 − x)/(1 − y)) is the binary relative entropy.

Proof of Theorem 1.2. Let ν = (ν1, . . . , νK) be a bandit model such that arm 1 is the unique optimal
arm. Let a ≠ 1 be a suboptimal arm. Consider the alternative bandit model ν′ such that ν′i = νi for all
i ≠ a and ν′a ∈ Pa is such that EY ∼ν′a[Y ] > µ1. Arm 1 is thus the unique optimal arm in the bandit model
ν, whereas arm a is the unique optimal arm in the bandit model ν′. For every integer T , let AT be the
event defined by

AT = (N1(T ) ≤ T −
√
T) .

Clearly, AT ∈ FT . From Lemma 1.3, applied to the stopping time σ = T a.s.,

Eν[Na(T )]KL(νa, ν′a) ≥ d(Pν(AT ),Pν′(AT )). (1.4)

The event AT is not very likely to hold under the model ν, in which the optimal arm should be drawn of
order T −O(log(T )) times, whereas it is very likely to happen under ν′, in which arm 1 is sub-optimal
and thus only drawn little. More precisely, Markov inequality yields

Pν(AT ) = Pν(T −N1(T ) ≥
√
T ) ≤ ∑i≠1 Eν[Ni(T )]√

T

Pν′(AcT ) = Pν′(N1(T ) ≥ T −
√
T ) ≤ Eν′[N1(T )]

T −
√
T

≤ ∑i≠aEν
′[Ni(T )]

T −
√
T
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From the formulation (1.1), every uniformly efficient algorithm satisfies

∑
i≠1

Eν[Ni(T )] = o(Tα) and ∑
i≠a

Eν′[Ni(T )] = o(Tα)

for all α ∈]0,1]. Hence Pν(AT ) →
T→∞

0 and Pν′(AT ) →
T→∞

1. Therefore, we get

d(Pν(AT ),Pν′(AT ))
log(T ) ∼

T→∞

1

log(T ) log( 1

Pν′(AcT )
) ≥ 1

log(T ) log( T −
√
T

∑i≠aEν′[Ni(T )]) .

The right hand side rewrites

1 +
log (1 − 1√

T
)

log(T ) − log (∑i≠aEν′[Ni(T )])
log(T ) , Ð→

T→∞
1

where we use the fact that ∑i≠aEν′[Ni(T )] = o(Tα) for all α ∈]0,1]. Finally, for every ν′a ∈ Pa such
that EY ∼ν′a[Y ] > µ1 one obtains, using inequality (1.4)

lim inf
T→∞

E[Na(T )]
log(T ) ≥ 1

KL(νa, ν′a)
.

For all ε ∈]0,1[, ν′a can then be chosen such that Kainf(νa, µ1) ≤ KL(νa, ν′a) ≤ Kainf(νa, µ1)/(1 − ε), and
the conclusion follows when ε goes to zero.

◻

Distribution independent lower bounds on the regret. The lower bounds given in this section are
distribution-dependent: for each bandit model ν and each algorithm A, the regret Rν(T,A) is lower
bounded by a quantity that depends on the arms distributions. More precisely, there exists a constant
C(ν) –given in (1.2) for simple classes of parametric bandits– such that

Rν(T,A) ≥ C(ν) log(T ). (1.5)

It is also possible to consider minimax performance bounds on the regret. Problem-independent upper
and lower bounds on the regret have emerged in the literature on adversarial bandits (see [Cesa-Bianchi
and Lugosi, 2006]), in which there is no stochastic assumptions on the arms. However, the distribution-
independent lower bound first given by [Cesa-Bianchi and Lugosi, 2006] can also be formulated in our
stochastic setting. Indeed, Theorem 3.5 of [Bubeck and Cesa-Bianchi, 2012] states that for every bandit
algorithm A, there exists a stochastic bandit model ν such that νa is supported in [0,1] for all a and

Rν(T,A) ≥ 1

20

√
KT. (1.6)

This worst-case result gives a regret lower bound for an algorithm belonging to argminA maxν Rν(T,A).
In this thesis, we rather aim at finding algorithms that are optimal for every bandit model ν, with respect
to the distribution-dependent lower bound (1.5).

As already noted by [Bubeck and Liu, 2013], the proof of Theorem 3.5 of [Bubeck and Cesa-Bianchi,
2012] also yields a lower bound on the Bayes risk. Indeed, the authors lower bound the quantity

1

K

K

∑
i=1

E
ν
(i)
ε

[
T

∑
t=1

(Xi,t −XAt,t)] ,
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where ν(i)ε is the bandit model in which all arms are Bernoulli distributions with mean (1 − ε)/2, expect
arm i which is Bernoulli with mean (1 + ε)/2. Their result implies that for every bandit algorithm A,
there exists a prior distribution Π (uniform over a finite set of bandit models {ν(1)ε , . . . , ν

(K)
ε }) such that

BRΠ(T,A) ≥ 1

20

√
KT. (1.7)

In Section 1.3 we will present the optimal strategy for any given prior distribution Π0. For some specific
prior distribution, we provide in Section 1.3.5 a lower bound on the Bayes risk BRΠ0(T,A) that depends
on the prior, that can be qualified as prior-dependent.

1.2.2 Examples of bandit models and associated tools to build bandit algorithms

Classes of exponential bandit model, such that the arms distributions all belong to the same one-
parameter canonical exponential family form important examples in which the Lai and Robbins’ lower
bound holds. In such a classM, there exists two functions A and b such thatM= {ν = (νθ1 , . . . , νθK) ∶
∀a ∈ {1, . . . ,K}, θa ∈ Θ},with the distribution νθ having a density f(⋅; θ) with respect to some reference
measure λ given by

f(x; θ) = A(x) exp(xθ − b(θ)), θ ∈ Θ ∈ R. (1.8)

The log-partition function b ∶ Θ → R is supposed to be twice differentiable. Under this assumption, it
can be shown that the mean of the distribution νθ is µ(θ) = ḃ(θ) and its variance is b̈(θ) (see e.g. [Cappé
et al., 2013] for more details on exponential families). Thus, the mapping θ ↦ µ(θ) is increasing and
distributions belonging to a one-parameter canonical exponential family can be either parameterized by
their natural parameter θ or by their mean µ. Hence, each exponential family induces a divergence on
(ḃ(Θ))2, defined by

d(µ,µ′) ∶= KL (νḃ−1(µ), νḃ−1(µ′)) . (1.9)

Besides, the Kullback-Leibler divergence between two distributions in an exponential family parameter-
ized by the natural parameters θ and θ′ respectively will be denoted by K(θ, θ′) ∶= KL(νθ, νθ′).

Many classical families of parametric distributions form a one-parameter canonical exponential fam-
ily, like Gaussian distributions with known variance (Gaussian bandit models), Bernoulli distributions
(Bernoulli bandit models), Poisson and exponential distributions (see Table 1.3). Compared to the defi-
nition (1.8), one can also consider (following the definition of [Bickel and Doksum, 2001] for example)
slightly more general families, for which the density of νθ is given by A(x) exp(T (x)θ − b(θ)), with
T (x) ≠ x. This generalization will be discussed in Chapter 3.

For a given class of exponential bandit models (for example Gaussian bandits or Bernoulli bandits),
with d(µ,µ′) the associated divergence defined in (1.9), every uniformly efficient bandit algorithm A
satisfies

lim inf
T→∞

Rθ(T,A)
log(T ) ≥ ∑

a∶µa<µ∗

(µ∗ − µa)
d(µa, µ∗)

. (1.10)

Deviation inequalities and confidence intervals for exponential families. In an exponential fam-
ily, the relationship between the moment-generating function and Kullback-Leibler divergence given by
Lemma 1.4 below is a crucial property that allows to build good confidence intervals. The logarithm of
the moment-generating function of a random variable X and its Fenchel-Legendre transform are respec-
tively defined by

φX(λ) = logE[eλX] and φ∗X(x) = sup
λ∈R

{xλ − φX(λ)} .
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Density θ b(θ) d(µ,µ′)

Gaussian distribution 1√
2πσ2

e−
(x−µ)2

2σ2 µ
σ2

σ2θ2

2
(µ−µ′)2

2σ2

N (µ,σ2) (known variance)
Bernoulli distribution µx(1 − µ)1−x1{0,1}(x) log µ

1−µ log(1 + eθ) µ log µ
µ′ + (1 − µ) log 1−µ

1−µ′
B(µ) (mean µ)

Poisson distribution λx

x! e
−λ1N∗(x) log(λ) eθ µ′ − µ + µ log µ

µ′

P(λ) (mean λ)
Exponential distribution λe−λx1R+(x) −λ − log(−θ) µ

µ′ − 1 − log µ
µ′

E(λ) (mean 1/λ)
Gamma distribution λk

Γ(k)x
k−1e−λx1R+(x) −λ −k log(−θ) k ( µµ′ − 1 − log µ

µ′ )
Γ(k, λ) (mean k/λ)

Table 1.3: Examples of exponential families and associated divergence

From Cramér’s Theorem (Theorem 2.2.3 of [Dembo and Zeitouni, 2010]), this last quantity can be
regarded as the optimal rate at which the empirical mean of i.i.d. samples concentrates around the true
mean. More precisely, if (Xi) is an i.i.d. sequence with expectation µ, and if µ̂s = 1

s ∑
s
i=1Xi denotes the

empirical mean of the first s observations, for every x > µ,

P (µ̂s ≥ x) ≤ e−sφ
∗
X1

(x) and lim
s→∞

−1

s
logP (µ̂s ≥ x) = φ∗X1

(x).

Because of this second statement, the deviation inequality stated first is optimal with respect to the large
deviation principle. In an exponential family, Lemma 1.4 gives a close form for the rate function φ∗X1

(x)
that yields such an optimal deviation inequality for the empirical mean of i.i.d. samples.

Lemma 1.4. If X ∼ νθ, then φ∗X(x) = d(x,µ(θ)).

Going a bit further, one can give a deviation inequality for the empirical mean of independent random
variables ’dominated’ by some distribution in an exponential family.

Lemma 1.5 (Chernoff inequality). Let (Xi) be a sequence of independent random variables such that

∀i ∈ N, φXi(λ) ≤ φY (λ), (1.11)

where Y ∼ νθ belong to an exponential family with associated divergence d(µ,µ′).
Let µ = E[Y ]. Then if µ̂s = 1

s ∑
s
i=1Xi, one has

for x > µ, P (µ̂s ≥ x) ≤ exp(−sd(x,µ)),
for x < µ, P (µ̂s ≤ x) ≤ exp(−sd(x,µ)).

Proof. The result follows from the Cramer-Chernoff method (see e.g. [Boucheron et al., 2013]).
Using Markov inequality, the independence of the Xi and the upper bound on the φXi(λ), one can write
for any λ > 0,

P(1

s

s

∑
i=1

Xi ≥ x) = P (eλ∑si=1Xi ≥ eλsx) ≤ e−λsx
s

∏
i=1

E [eλXi] = e−λsx
s

∏
i=1

eφXi(λ)

≤ e−λsx (eφY (λ))
s
= e−s(λx−φY (λ)).
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Optimizing in λ ∈ R+ to obtain the tightest possible inequality yields the result. Indeed, for x > µ it can
be shown that

sup
λ∈R+

(λx − φY (λ)) = sup
λ∈R

(λx − φY (λ)) = φ∗Y (x) = d(x,µ),

using Lemma 1.4. The proof for x < µ follows the same lines.

◻

Deviation inequalities for non-parametric distributions can be deduced from Lemma 1.5. The dis-
tribution of a random variable X is called σ2-subgaussian if φX(λ) ≤ λ2σ2/2, which is the moment-
generating function of the distribution N (0, σ2). The associated divergence is d(x, y) = (x − y)/(2σ2)
and one obtains from Lemma 1.5 that the empirical mean of i.i.d. samples of a σ2 subgaussian distribu-
tion satisfies

P (µ̂s ≥ x) = P (µ̂s ≤ −x) ≤ exp(−s x
2

2σ2
) .

From Hoeffding’s lemma (see [Hoeffding, 1963]) every centered distribution with bounded support in
[a, b] is (b−a)2

4 -subgaussian. This remark yields Hoeffding’s inequality.

Lemma 1.6 (Hoeffding’s inequality). Let (Xi) be an i.i.d. sequence with mean µ that is supported in
[a, b]. Then

P (µ̂s ≥ µ + x) = P (µ̂s ≤ µ − x) ≤ exp(−s 2x2

(b − a)2
) .

Moreover, when X1 is supported in [0,1] and has mean µ, another result from [Hoeffding, 1963]
shows that φX1(x) is upper bounded by φB(µ)(x), the log moment-generating function of a Bernoulli
distribution with same mean µ. Thus Lemma 1.5 also applies to bounded distributions with support in
[0,1], taking d(x, y) = KL (B(x),B(y)).

Refined confidence intervals for bounded and Bernoulli distributions. For Bernoulli distributions
and for bounded distributions supported in [0,1], both Hoeffding and Chernoff inequalities can be used
to build confidence intervals on the mean. Let d(x, y) be the divergence associated to Bernoulli distribu-
tions. Let (Xi) be an i.i.d. sequence of Bernoulli (or bounded) random variables with mean µ and µ̂s be
the empirical mean of the first s observations. Hoeffding’s inequality (Lemma 1.6) yields the following
confidence interval for the mean µ:

P
⎛
⎝
µ ∈

⎡⎢⎢⎢⎢⎣
µ̂s −

√
log(1/δ)

2s
; µ̂s +

√
log(1/δ)

2s

⎤⎥⎥⎥⎥⎦

⎞
⎠
≥ 1 − 2δ, (1.12)

whereas using Chernoff inequality (Lemma 1.5) it can be shown that

P(sd (µ̂s, µ) ≤ log (1/δ) ) ≥ 1 − 2δ. (1.13)

Indeed, one has for example, letting x∗ be defined by x∗ < µ and sd(x∗, µ) = log(1/δ),

P(µ ≥ µ̂s, sd(µ̂s, µ) ≥ log(1/δ)) = P(µ̂s ≥ x∗) ≤ e−sd(x
∗,µ) = δ.
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Figure 1.1: Two confidence intervals with the same coverage probability.

This second confidence region, (1.13), is implicitly defined through the function d. For example, the
associated upper confidence bound can be written

us(δ) = max{q > µ̂s ∶ sd (µ̂s, q) ≤ log(1/δ)} .

The confidence region (1.12) also takes the form (1.13) if the function d is replaced by d̃(x, y) = 2(x −
y)2. From Pinsker’s inequality, one has d(x, y) > 2(x − y)2. While the two confidence intervals have
the same coverage probability, Figure 1.1 illustrates that the confidence interval of (1.13), represented in
blue, is contained in that of (1.12), represented in black. The use of these refined confidence intervals
based on the divergence d will be crucial to build asymptotically optimal bandit algorithms.

1.2.3 Asymptotically optimal algorithms

In addition to their lower bound on the regret, [Lai and Robbins, 1985] provide the first asymptoti-
cally optimal bandit algorithms. These first optimal policies are index policies: at each round t, an index
is computed for each arm (based on the past observations of this arm only), and the arm At chosen is
the one with highest index. Index policies are reminiscent of the policy based on Gittins indices intro-
duced earlier by [Gittins, 1979] in a Bayesian framework, that will be presented in Section 1.3. The
form of the indices proposed by [Lai and Robbins, 1985] is however not very explicit, and the analysis
proposed is asymptotic. [Agrawal, 1995] proposes simpler index policies and introduces the notion of
UCB-type algorithm (for Upper Confidence Bound). Indeed, the indices used involve the empirical mean
of past rewards and the number of draws of each arm and can be interpreted as upper confidence bound
for the unknown mean of each arm. In the particular case of Gaussian bandits with known variance σ2,
[Katehakis and Robbins, 1995] propose the following fully explicit index policy and prove its asymptotic
optimality. After an initialization phase in which each arm is drawn once, their policy chooses at time
t + 1

At+1 = argmax
a

Ua(t) with Ua(t) = µ̂a(t) +
¿
ÁÁÀ2σ2 log(t)

Na(t)
.

UCB-type algorithms were popularized at the beginning of the years 2000, with the introduction of the
UCB1 algorithm by [Auer et al., 2002a], for which the authors provide the first finite-time analysis.
UCB1 is designed for the class of bandit models whose arms distributions have bounded support in
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[0,1], that we refer to as bounded bandit models in the sequel. UCB1 chooses at time t + 1 the arm

At+1 = argmax
a

Ua(t) with Ua(t) = µ̂a(t) +
¿
ÁÁÀ β(t)

2Na(t)
,

with an exploration rate β(t) = 4 log(t). At round t, for arm a, the number of draws Na(t) being fixed,
Ua(t) can be interpreted as an Upper Confidence Bound obtained with Hoeffding inequality (see (1.12))
that holds with probability larger than 1 − 1/t4. UCB-type algorithms use the principle of optimism in
face of uncertainty: among all the statistically plausible models, the arm chosen is the optimal arm in
the best possible model (in which the mean of each arm is equal to its upper confidence bound). The
theoretical guarantees for UCB1 are the following.

Theorem 1.7 ([Auer et al., 2002a],Theorem 1). Defining ∆a ∶= µ∗ − µa as the squared gap between the
optimal arm and arm a, if ν is a bounded bandit model,

Rν(T,UCB1) ≤ 8
⎛
⎝ ∑
a∶µa<µ∗

1

∆a

⎞
⎠

log(T ) + (1 + π
2

3
)
K

∑
a=1

∆a.

[Auer et al., 2002a] thus provide an efficient algorithm, together with a logarithmic upper bound on
its regret, for the non-parametric class of bounded bandit models, which is interesting in itself. However,
the class M of bounded bandit models is not identifiable (according to Definition 1.1), and Theorem
1.2 does not apply. There is no lower bound on the regret of algorithms that are uniformly efficient on
this classM to which the result of Theorem 1.7 could be compared. But for Bernoulli bandit models,
to which UCB1 can also be applied, this algorithm is sub-optimal with respect to the Lai and Robbins’
lower bound. Indeed, Pinsker’s inequality shows that d(µa, µ∗) > 2∆2

a, hence the constant in front of
log(T ) is at least sixteen times bigger than the optimal constant prescribed by (1.10).

Successive refinements in the proof of Theorem 1.7, like the use of a smaller exploration rate of
the form β(t) = α log(t) with α > 1 (see e.g. [Audibert et al., 2009, Bubeck, 2010]) lead to a smaller
constant in front of the log(T ), yet still expressed in terms of the squared gaps ∆a. The UCB-V algorithm
of [Audibert et al., 2009], still designed for bounded bandit models, uses for each arm a confidence
interval built by taking into account the empirical variance of the arm (built using a empirical Bernstein
bound). The regret bound obtained is no longer only a function of the means of the arms, but involves
the quantities σ2

a/∆a for each suboptimal arm, where σ2
a is the variance of arm a. The UCB-Tuned

algorithm proposed by [Auer et al., 2002a] also uses variances estimates, but no theoretical guarantees
for this algorithm are provided.

To obtain UCB-type algorithms matching Lai and Robbins’ lower bound, one needs to use refined
confidence intervals, based on Kullback-Leibler divergence. This idea, already suggested by [Lai and
Robbins, 1985, Lai, 1987, Agrawal, 1995] reappeared with the DMED algorithm of [Honda and Take-
mura, 2010], designed for bounded bandit models. [Cappé et al., 2013] study a simpler index policy, that
bears some similarities with DMED, called KL-UCB. While the general KL-UCB algorithm does not re-
quire any parametric assumption on the rewards distributions, the authors provide theoretical guarantees
in two interesting parametric cases. They give a finite-time analysis for KL-UCB applied to exponential
family bandit models (previously studied by [Garivier and Cappé, 2011]) and for bandit models whose
arms distributions have a finite (known) support (previously studied by [Maillard et al., 2011]).

In an exponential bandit model, if d(x, y) = KL(νḃ−1(x), νḃ−1(x)) is the associated divergence, the
KL-UCB algorithm is the index policy associated to

ua(t) = sup{q ≥ µ̂a(t) ∶ Na(t)d (µ̂a(t), q) ≤ β(t)},
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with β(t) = log(t) + 3 log log(t). This index appears as the upper confidence bound of a confidence
interval built with Chernoff inequality (see (1.13)) that holds with probability 1 − 1/(t log3(t)). This
particular case of the algorithm is called kl-UCB by [Cappé et al., 2013]. In this document, the capital
notation is kept to stand for the algorithm designed for rewards in an exponential family. One has the
following result.

Theorem 1.8 ([Cappé et al., 2013], Theorem 1). In an exponential bandit model with associated diver-
gence d, the KL-UCB algorithm satisfies, for any suboptimal arm a,

Eθ[Na(T )] ≤ 1

d(µa, µ∗)
log(T ) + 2

¿
ÁÁÀ2πσ2

a,∗d′(µa, µ∗)2

d(µa, µ∗)3

√
log(T ) + 3 log log(T )

+(4e + 3

d(µa, µ∗)
) log log(T ) + 8πσ2

a,∗ (
d′(µa, µ∗)
d(µa, µ∗)

)
2

+ 6,

where σ2
a,∗ = max{Var[νθ] ∶ µa ≤ E(νθ) ≤ µ∗} and d′(x, y) = ∂d(x,y)

∂x .

It follows from Theorem 1.8 and the regret decomposition (1.1) that KL-UCB is asymptotically
optimal in every class of exponential bandit models. As explained by [Cappé et al., 2013], KL-UCB can
also be used as it is for bounded bandit models (with support in [0,1]) with the divergence d associated to
Bernoulli distributions, and the upper bound of Theorem 1.8 still holds true. This is (mostly) because the
confidence region (1.13) also holds for this non-parametric class of bandit models. Similarly, it can be
shown that KL-UCB with the divergence d(x, y) = (x − y)2/(2σ2) associated to Gaussian distributions
with variance σ2 can also be applied to bandit models with σ2-subgaussian rewards distributions, with
the same theoretical guarantees. Thus, the analysis of [Cappé et al., 2013] also yields a new upper bound
on the regret of UCB1 in bounded bandit models: this algorithm can indeed be seen as KL-UCB with
the divergence d(x, y) = 2(x − y)2 associated to Gaussian distributions with variance 1/4.

Sketch of a finite-time analysis. We do not provide the proof of Theorem 1.8, but we present the
general structure of the finite-time analysis proposed by [Cappé et al., 2013], that can be applied to any
optimistic index policy. We highlight the improvements proposed by the authors, some of which will be
useful in the rest of this thesis.

Let ν = (ν1, . . . , νK) be a stochastic bandit model. An optimistic index policy proceeds in the
following way. After an initialization phase in which each arm is drawn once, the arm chosen at time
t+1 maximizes some index Ua(t) = Ua,Na(t),t, chosen such that for all s ≤ t, P(Ua,s,t < µa) ≤ e−β(t) for
some exploration rate β(t). To upper bound the regret of such a strategy, using the decomposition (1.1),
it is sufficient to upper bound, for every suboptimal a, the quantity

Eν[Na(T )] = Eν [
T

∑
t=1

1(At=a)] = 1 +Eν [
T−1

∑
t=K

1(At+1=a)] .

The event (At+1 = a) can then be decomposed in the following way, depending on whether the optimal
arm µ1 is or not under-estimated by its index U1(t). One also uses that if the suboptimal a is drawn at
time t + 1, one has in particular Ua(t) > U1(t). This leads to

(At+1 = a) ⊆ (U1(t) < µ1) ∪ (At+1 = a,U1(t) > µ1)
⊆ (U1(t) < µ1) ∪ (At+1 = a,Ua(t) > µ1).
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It follows that

Eν[Na(T )] ≤ 1 +
T

∑
t=K+1

Pν (U1,N1(t),t ≤ µ1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term A: related to the possible

under estimation of optimal arm

+
T−1

∑
t=K

Pν (At+1 = a,Ua,Na(t),t > µ1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term B: related to the possible

over estimation of the suboptimal arm a

The ’under-estimation’ term A is shown to be of order o(log(T )). To upper bound this term, one
needs to control the probability of the event {U1,N1(t),t ≤ µ1}, that involves the self-normalized quantity
U1,N1(t),t. This denomination comes from the fact that U1,s,t is already random, and the number of
observations N1(t) is also random. A first idea to control this quantity is to use a union bound:

Pν (U1,N1(t),t ≤ µ1) ≤ Pν (∃s ∈ {1, . . . t} ∶ U1,s,t ≤ µ1) ≤
t

∑
s=1

Pν (U1,s,t ≤ µ1) ≤ te−β(t).

[Cappé et al., 2013] advocate the use of more sophisticated self-normalized deviation inequalities to
control this probability. To be able to analyse KL-UCB, the authors propose an informational self-
normalized deviation inequality, that is expressed with the divergence function d, stated in Lemma 1.9.
[Garivier, 2013] presents more general self-normalized inequalities, and discuss different applications.

Lemma 1.9. Let (Xi) be a sequence of independent random variables such that φXi(λ) ≤ φY (λ) where
Y ∼ νθ belongs to an exponential family with mean µ and associated divergence d. One has

P(∃s ∈ {1, . . . , t} ∶ sd+ (1

s

s

∑
i=1

Xi, µ) > γ) ≤ e ⌈γ log(t)⌉ exp(−γ),

where d+(x, y) = d(x, y)1(x<y).

From Lemma 1.5, introducing also d−(x, y) = d(x, y)1(x>y), it easily follows that

P(sd+(µ̂s, µ) ≥ γ) ≤ e−γ and P(sd−(µ̂s, µ) ≥ γ) ≤ e−γ (1.14)

Whereas a union bound, using (1.14) for all s, would upper bound the probability in Lemma 1.9 by teγ ,
the bound in Lemma 1.9 is of order log (t)))e−γ , and is thus significantly smaller. To obtain such a result,
the union bound, summing over all the possible values of N1(t) ∈ {1, . . . , t} is replaced by a geometric
’peeling’: one considers ’slices’ on which N1(t) ∈ [(1 + η)k−1, (1 + η)k] for some parameter ν > 0. On
each slice, a maximal inequality for a well-chosen martingale is applied. This ’peeling-trick’ will also
be used in the analysis of Bayes-UCB and Thompson Sampling in the next two chapters. Lemma 1.9
will also be used directly several times in this document. We thus provide its proof in Section A.2 of
Appendix A, in which we also present other self-normalized deviation inequalities used in this thesis.

The logarithmic factor in the regret comes from Term B. The upper bound proposed in Lemma
1.10 below allows to replace the self normalized quantity Ua,Na(t),t by the quantity Ua,s,T . This trick,
introduced by [Garivier and Cappé, 2011], will be applied several times throughout this thesis, and leads
to Lemma 1.10.

Lemma 1.10. If the index Ua,s,t is nondecreasing in t,

T

∑
t=K

Pν (At = a,Ua,Na(t),t > µ1) ≤
T

∑
s=1

Pν (Ua,s,T > µ1) ;
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Proof. The trick consists in upper bounding Ua,s,t by Ua,s,T and noting that only one term in the
sum ∑Tt=s 1(At=a,Na(t)=s) can be different from zero. This sum can then be upper bounded by 1. More
precisely, one writes

T

∑
t=K

Pν (At = a,Ua(t) > µ1) = Eν [
T

∑
t=K

t

∑
s=1

1(At=a,Na(t)=s)1(Ua,s,t>µ1)]

≤ Eν
⎡⎢⎢⎢⎢⎣

T

∑
s=1

1(Ua,s,T >µ1)
T

∑
t=s
1(At=a,Na(t)=s)

⎤⎥⎥⎥⎥⎦
≤

T

∑
s=1

Pν (Ua,s,T > µ1) .

◻

It remains to upper bound the right hand side of the inequality in Lemma 1.10. As Ua,s,T is an
upper bound on the mean µa < µ1, for s larger enough, we will be able to show (with a Chernoff-type
inequality for the UCB1 or KL-UCB algorithms) that the probability P (Ua,s,T > µ1) is very small. The
critical value of s is of order C1,a log(T ), where C1,a is a constant that depends on the distribution of
arms 1 and a and on the choice of upper bounds.

1.3 The Bayesian approach

Bandit models were introduced in a Bayesian framework to model medical trials with two possible
treatments. As this particular case was considered in an overwhelming majority of the first bandit papers,
we start by presenting Bayesian Bernoulli bandit models. Treatment 1 (arm 1) has a probability of
success p, and treatment 2 (arm 2) has a probability of success q. One assume that (p, q) is drawn
from a prior distribution with density H(p, q) with respect to some reference measure. [Thompson,
1933] focuses on a particular case of product prior H(p, q) = F (p)G(q), in which F and G are Beta
distributions. He proposes a randomized approach, in which each arm is drawn according to its posterior
probability of being optimal. In the two papers [Thompson, 1933, Thompson, 1935], the author focuses
on the explicit computation of these posterior probabilities, but no analysis or performance study of the
algorithm is proposed. More than 70 years will go by without advances in the study of this first bandit
algorithm. Chapter 3 is focused on Thompson Sampling. We will provide therein bibliographic details
from recent studies of this strategy and above all our own proof that this algorithm is asymptotically
optimal in a frequentist sense.

Bandit problems were considered later in the work of [Robbins, 1952], who state the bandit problem
in a frequentist setting. [Bradt et al., 1956] and [Bellman, 1956] study a particular Bayesian bandit model,
in which the parameter of one of the arms is assumed to be known: q = q0 is fixed, while p is drawn
from a prior distribution F (p). The joint prior distribution is thus of the form H(p, q) = F (p)δq0(q).
For a fixed horizon T , [Bradt et al., 1956] show that there exists a strategy minimizing the Bayes risk,
that depends at time t on the remaining time to play n = T − t and on the current posterior distribution
F on p. The unknown arm is played if and only is some index G(F,n) is larger than the mean q0 of the
known arm.

[Bellman, 1956] considers the same Bayesian bandit model in which one arm is known, but rather
studies a discounted bandit problem. For a fixed α ∈]0,1[, called the discount factor, the goal is to
maximize the expectation of the sum of discounted rewards, defined by

EH [
∞
∑
t=1

αt−1Xt] .
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He shows that the optimal strategy for this problem is solution of some dynamic programming equations.
The theory of dynamic programming was at the time still under development (see [Bellman, 1954]).
Quite similarly to the undiscounted case, the optimal strategy plays the unknown arm if and only if some
index is larger that q0. In this case the index depends on the current posterior distribution F and on the
discount factor α.

More general bandit problems were considered thereafter, with more than two arms, general rewards
distributions, and even different objectives (e.g. maximizing the expected discounted rewards, where
the sequence of discount is not necessary geometric). They are presented by [Berry and Fristedt, 1985],
who give an overview of the bandit literature (mostly Bayesian) up to the 1980’s. The two objectives
considered above are notably presented: maximizing the expected sum of rewards up to some horizon
T (i.e. minimizing the Bayes risk according to our definition) and maximizing the expected sum of
discounted rewards (i.e. solving the discounted bandit problem). [Berry and Fristedt, 1985] explain
that any such bandit problem appears as the solution of a dynamic programming equation. We present
here this associated dynamic programming equation using elements from the theory of Markov Decision
Processes (see e.g. [Puterman, 1994, Sigaud and Buffet, 2008]), developed more recently. A Markov
Decision Process (MDP) is a 4-tuple (X ,A,P,R) where X is a state space, A is an action space,
P ∶ X ×A →M1(X) is a transition kernel andR ∶ X ×A →M1(R) is a reward kernel. When the agent
is in state x ∈ X and chooses action a ∈ A, a transition occurs: the agent receives a reward r ∼ R(⋅∣ x, a)
and his new state is y ∼ P(⋅∣x, a).

The interaction of an agent with a bandit model in a Bayesian framework can be modeled by the
following MDP. Let θ be drawn from a prior distribution Π0.

– the current state is the current posterior distribution Πt on θ: X ⊂M1(ΘK)
– there are K actions, corresponding to the draw of each arm: A = {1, . . . ,K}
– when the agent chooses arm a in state Π, he observes a draw from arm a, x ∼ νθa , receives the

reward x, and computes the new posterior distribution Π′ obtained by taking into account the new
observation x. We let txa be the operator such that Π′ = txa(Π).

The agent’s sampling strategy corresponds to a policy in this MDP. A deterministic policy g is a mapping
that indicates which action is chosen in a state xt and at time t. If (Xg

t ) is a sequence of successive
rewards obtained with g, one can consider the value function of this policy. Depending on the criterion
considered (finite horizon or α-discounted rewards), value functions are defined by

V g(Π, T ) = EΠ [
T

∑
t=1

Xg
t ] and V g

α (Π) = EΠ [
∞
∑
t=1

αt−1Xg
t ] .

Bayes risk minimization is equivalent to solving the planning problem in the above MDP with a finite-
horizon criterion, that is finding a policy maximizing V g(Π, T ). Similarly, the discounted bandit prob-
lem corresponds to the planning problem in the same MDP but with a discounted criterion.

From the the theory of MDPs, there exists an optimal policy g∗ such that its value function V ∗

satisfies a dynamic programming equation. For the finite horizon criterion, for all k = 1, . . . , T − 1, if Πa

denotes the ath marginal distribution of Π, the optimal value function satisfies

V ∗(Π, k) = max
a=1...K

(Eθa∼Πa[µ(θa)] +EW∼f(⋅∣θa)
θa∼Πa

[V ∗(tWa (Πa), k − 1)]) (1.15)

V ∗(Π,0) = 0

The optimal value function can thus be computed by induction and the optimal policy in state Π if the
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remaining time to play is k chooses an action g∗(Π, k) that realizes the maximum in (1.15). The optimal
strategy for the Bayesian bandit problem with finite horizon is therefore At = g∗(Πt−1, T − t + 1).

For the discounted criterion, the optimal value function is solution of the following equation:

V ∗
α (Π) = max

a=1...K
(Eθa∼Πa[µ(θa)] + αEW∼f(⋅∣θa)

θa∼Πa
[V ∗
α (tWa (Π))]) .

Due to the potentially very large state space, usual techniques to compute the optimal policy (value or
policy iteration, induction when the horizon is finite) are often intractable. However, in some particular
cases, a more practical description of the optimal policy can be obtained.

The solution of the Bayesian discounted or undiscounted bandit problem strongly depends on the
prior distribution Π0. [Feldman, 1962] manages to exhibit this solution, for a finite horizon T , in a very
special case of two-armed binary bandit model. The prior distribution he considers captures the fact that
the means of the arms p1 > p2 are known: P((p, q) = (p1, p2)) = ζ and P((p, q) = (p2, p1)) = 1− ζ. If ζt
denotes the posterior probability of the event {(p, q) = (p1, p2)} at the end of round t, [Feldman, 1962]
shows that the optimal policy chooses arm 1 at time t if and only if ζt−1 > 1/2. This myopic strategy
chooses at each time the arm with highest posterior mean reward. It is not true that such a strategy is in
general optimal.

In this particular example, the marginal distributions of each arm are very correlated. On the contrary,
[Gittins, 1979] considers prior distributions with independent arms and shows that the solution of the
discounted bandit problem reduces to an index policy. The computation of the Gittins index for each
arm also resorts to dynamic programming but for a reduced state space. In Section 1.3.2, we define both
the discounted and undiscounted Gittins indices (or Finite-Horizon Gittins indices) and we discuss the
optimality of the associated index policies in Section 1.3.3. Unlike what happens in the discounted case,
the index policy associated to the Finite-Horizon Gittins indices does not coincide with the Bayesian
solution of the bandit problem with a finite horizon. However we will show that the FH-Gittins algorithm
performs well in practice, and that approximations of the FH-Gittins indices presented in Section 1.3.4
show similarities with asymptotic approximations of the optimal strategy, discussed in Section 1.3.5.

Notation. Gittins indices are defined in Bayesian bandit models with independent arms, that we con-
sider in the rest of this chapter. In this case, θ = (θ1, . . . , θK) is drawn from a product prior Π0 =
(π0

1, . . . , π
0
K) such that π0

a is the prior distribution on θa, and the distributions (π0
a)a=1...K are indepen-

dent. The posterior distribution on θ after t observations is thus a product prior,

Πt = (πt1, . . . , πtK),

with the following notation:
– πa,s is the posterior distributions on θa after the first s observations of arm a:

πa,s = L(θa∣Ya,1, . . . , Ya,s).

– πta = πa,Na(t) is the posterior distribution on θa at the end of round t

1.3.1 Some examples of Bayesian bandit models.

In the particular case of exponential bandit models, introduced in Section 1.2.2, we now give ex-
amples of prior distributions that can be used, as well as a more explicit presentation of the associated
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Distribution Mean Prior distribution Posterior distribution on the mean
on the mean after k observations whose sum is s

B(µ) µ Beta(a, b) Beta(a + s, b + k − s)
N (µ,σ2) µ N (µ0,m

−1
0 ) N (m0µ0+σ−2s

m0+kσ−2 , (m0 + kσ−2)−1)
P(λ) λ Γ(c, d) Γ(c + s, d + n)
E(λ) 1/λ InvΓ(c, d) InvΓ(c + n, d + s)

Γ(k, λ) k/λ InvΓ(c, d) InvΓ(c + kn, d + ks)

Table 1.4: Conjugate prior on the mean and associated posterior distributions.

Markov Decision Process in the Bernoulli case. Recall that the distribution of arm a conditionally to θa
has a density of the form

f(x∣θa) = A(x) exp(θax − b(θa)).

A nice property of this family of distributions is that if the prior distribution π0
a has a density h0

a, the
density of the posterior distribution on θa, πa,k takes the following simple parametric form:

p(θa∣Ya,1, . . . , Ya,k) ∝ exp(θa
k

∑
i=1

Ya,i − kb(θa))h0
a(θa). (1.16)

This distribution can be parameterized by two sufficient statistics, (k, s = ∑ki=1 Ya,k): the number of
observations and the sum of observations. The current posterior distribution on θ could therefore be
described by a state S = {(ka, sa)}Ka=1 ∈ (N ×R)K .

Distributions that form an exponential family are often more simply parameterized by their means
than by their natural parameter θ. In many examples of practical interest, it is possible to choose a prior
distribution on the mean (and no longer on the natural parameter, as it is the case above) that belongs to
a family of conjugate priors. A family of conjugate priors is such that if the prior distribution belongs
to that family, the same goes for all the associated posterior distributions. Table 1.4 gives examples
of conjugate priors on the mean for several examples of distributions in an exponential families. The
posterior distribution, that depends on the number of observations k and on the sum of observations s is
also computed. Most of the densities of the different distributions involved are defined in Table 1.1. The
inverse Gamma distribution InvΓ(c, d) is the distribution of the random variable 1/X if X ∼ Γ(c, d).

In the Bernoulli case, a natural prior distribution on the mean is a Beta distribution, denoted by
Beta(a, b). This distributions has a bounded support in [0,1] and a density

f(a,b)(x) =
Γ(a + b)
Γ(a)Γ(b)x

a−1(1 − x)b−11[0,1](x).

In a Bernoulli bandit model with a Beta(a, b) prior on each mean, the posterior distribution on the mean
of arm a at the end of round t is πta = Beta(Sa(t) + a,Na(t) + b). One often considers the uniform prior
U([0,1]) which correspond to Beta(1,1). The history of a Bernoulli bandit game with Beta prior is
summarized by a matrix of Beta posteriors, S = {(Aa,Ba)}Ka=1, that evolves as a state in the following
Markov Decision Process:

– state S = {(Aa,Ba)}Ka=1 ∈ (N ×N)K
– actions {1...K}
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– if the current state is S = {(Aa,Ba)}Ka=1, and action At = a is chosen, a binary reward Xt = Xa,t

is drawn from B(µa) and the state (i.e. the posterior distribution) is updated in the following way:

Aa ← Aa +Xt

Ba ← Ba + (1 −Xt).

Figure 1.2 gives an illustration of a transition in this MDP when there are three arms.

⎛
⎜
⎝

1 2
5 1
0 2

⎞
⎟
⎠
At=2Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎝

1 2
6 1
0 2

⎞
⎟
⎠

if Xt,2 = 1

⎛
⎜
⎝

1 2
5 2
0 2

⎞
⎟
⎠

if Xt,2 = 0

Figure 1.2: Transition in the MDP associated to a Bernoulli bandit model with Beta prior

When there are two arms, the current posterior distribution can be written in a 4-tuple (a, b, c, d),
with (a, b) (resp. (c, d)) the parameters of the current Beta posterior on the mean of arm 1 (resp. arm 2).
The dynamic programming equation (1.15) rewrites in this particular case

V ∗((a, b, c, d), n) = max{ a

a + b +
a

a + bV
∗((a + 1, b, c, d), n − 1) + b

a + bV
∗((a, b + 1, c, d), n − 1);

c

c + d +
c

c + dV
∗((a, b, c + 1, d), n − 1) + d

c + dV
∗((a, b, c, d + 1), n − 1)} (1.17)

and the optimal policy in state (a, b, c, d), with remaining time to play n, chooses arm 1 if the first
argument is the maximum, arm 2 otherwise. For T not too large, the decisions of the optimal policy,
g∗((a, b, c, d), n) ∈ {1,2} can be computed by induction and stored, for elements ((a, b, c, d), n) such
that a + b + c + d ≤ n + α + β and n ≤ T (α and β being the parameters of the prior). This permits
to implement the optimal policy for small values of T . When there are more arms, the exact solution
becomes even less tractable.

1.3.2 Discounted and Finite-Horizon Gittins indices

Gittins’ theorem, stated in the seminal paper [Gittins, 1979], says that an index policy, based on
the (later) so-called Gittins indices, is a solution to several sequential allocation problems, when the
objective is to maximize the expected sum of discounted rewards. This larger class of problems can be
interpreted as planning problems in Markov Decision Processes with particular structure and is presented
in the book [Gittins et al., 2011]. Here we introduce Gittins’ indices only in the context of (Bayesian)
multi-armed bandit models with independent arms.

A possible definition of the Gittins’ indices (like the one given by [Berry and Fristedt, 1985]) relies
on the introduction of a calibration problem for each arm, that we call Cλ. This calibration problem is
sometimes called ’one-armed bandit problem’.

Let θ ∼ π and, conditionally to θ, let (Xt) be an i.i.d. sequence with distribution νθ, that is a
one-armed bandit. For λ ∈ R, one considers the following game, denoted by Cλ. A each time t, an
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agent can choose between receiving a (known) reward λ or drawing the unknown arm and receiving a
random reward drawn from νθ. His goal is to maximize his rewards with respect to one of the criteria
previously considered: either the sum of rewards up to horizon T , or the sum of discounted rewards with
a discount factor α. This game can be naturally expressed as a planning problem in a MDP, and writing
the associated dynamic programming equation, one can show that the optimal policy is a stopping policy:
the unknown arm is played until some stopping time τ after which the reward λ is chosen until the end
of the game. When the value of λ gets larger, the player has less incentive to play the unknown arm.
There exists a critical value λ∗ such that for larger value of λ, the optimal strategy in Cλ never draws the
unknown arm (and always chooses λ). This critical value, which represents the price worth paying for
playing the arm, is the Gittins index.

In the discounted one-armed bandit, the optimal policy plays the unknown arm as long as the current
posterior distribution π on the parameter θ is such thatGα(π) > λ, withGα(π) the Gittins index, defined
in the following way.

Definition 1.11. The (discounted) Gittins index for the current posterior distribution π is

Gα(π) = inf {λ ∈ R ∶ sup
τ≥0

Eπ [
τ

∑
t=1

αt−1Xt +
ατλ

1 − α] = λ

1 − α} ,

where the supremum is taken over the set of stopping times τ , with the convention ∑0
t=1 = 0.

For Bernoulli bandit models, the calibration problem Cλ was already solved by [Bellman, 1956] in
the discounted case. In the case of a finite horizon T , one can also generalize the solution proposed by
[Bradt et al., 1956] in the binary case. In the finite-horizon one-armed bandit, the optimal policy plays
the unknown arm as long as the current posterior distribution π and the remaining time to play n are such
that G(π,n) > λ, where G(π,n) is the Finite-Horizon Gittins index, defined in the following way.

Definition 1.12. The Finite-Horizon Gittins index for a current posterior π and remaining time n is

G(π,n) = inf {λ ∈ R ∶ sup
0≤τ≤n

Eπ [
τ

∑
t=1

Xt + λ(n − τ)] = nλ}

where the supremum is taken over the set of stopping times τ smaller than n almost surely, with the
convention ∑0

t=1 = 0.

These Dynamic Allocation Indices, later called Gittins indices, were defined differently in Gittins’
original paper (in the discounted case only). It is not difficult to show (see e.g. [Gittins et al., 2011])
that the following two equalities hold, showing as a by product that Gittins’ definition coincides with
Definition 1.11:

Gα(π) = sup
τ>0

Eπ [∑τt=1 α
τ−1Xt]

Eπ [∑τt=1 α
τ−1] and G(π,n) = sup

0<τ≤n

Eπ [∑τt=1Xt]
Eπ [τ] . (1.18)

In a multi-armed bandit problem, the Gittins index of an arm whose current posterior is π can be seen as
the price worth paying to play this arm (the critical value of λ in the calibration problem for this arm), or
the mean reward per unit of time it yields.

We mention here some properties of the FH-Gittins indices that easily follow from their definition
and will be useful for the implementation of the associated index policy. First, from the expression
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(1.18), the index is lower bounded by Eπ [∑τt=1Xt]/Eπ [τ] for any stopping time τ . For τ = 1 p.s., one
obtains

G(π,n) ≥ EX∼νθ
θ∼π

[X], (1.19)

which allows to interpret the Gittins index as some upper confidence bound on the (posterior) mean,
providing an analogy with UCB-like algorithms presented in Section 1.2. Moreover, one can show that,
for all n ≥ 2,

G(π,n) ≥ G(π,n − 1). (1.20)

To prove this, assume that there exists y such thatG(π,n) < y < G(π,n−1) and consider the calibration
problem Cy with horizon n. As G(π,n) < y, the optimal policy starts by choosing y. But as y <
G(π,n − 1), the next optimal action is to draw the unknown arm, which contradicts the fact that the
optimal policy is a stopping policy.

Computation of the Gittins indices. Chapter 8 of [Gittins et al., 2011] addresses the computation of
discounted Gittins indices in some examples of exponential family bandit models, whereas [Nino-Mora,
2011] discusses the computation of Finite-Horizon Gittins indices. Among the methods reviewed by the
latter, the calibration method seems to perform well. This approaches solves the calibration problem Cλ
for a grid of values of λ, and identify an approximation of the critical value λ∗ above which the optimal
policy in Cλ∗ never plays the unknown arm.

We now discuss our implementation of the calibration method for computing the indicesG((a, b), n)
in a Bernoulli bandit model with Beta prior ((a, b) are the parameters of the Beta posterior). One has

G((a, b), n) = inf{λ ∈ R ∶ V ∗
λ ((a, b), b) = nλ} with V ∗

λ ((a, b), n) = sup
0≤τ≤n

E(a,b) [
τ

∑
t=1

Xt + λ(n − τ)] .

As already noted, the optimal policy in the calibration problem Cλ is a stopping policies, and thus
V ∗((a, b), n) is the optimal value function in this calibration problem. It satisfies the following dynamic
programming equation

V ∗
λ ((a, b),0) = 0 for all (a, b)

V ∗
λ ((a, b), n) = max(λn;

a

a + b +
a

a + bV
∗
λ ((a + 1, b), n − 1) + b

a + bV
∗
λ ((a, b + 1), n − 1)) .

V ∗
λ ((a, b), n) can thus be computed by induction in O(n2) arithmetic operations. Rather than using a

grid of values of λ or a dichotomic search to obtain an approximation of G((a, b), n), we suggest to
apply the secant method to find the first zero on [0,1] of the convex function

Z(λ;a, b, n) ∶= V ∗
λ ((a, b), n) − nλ = sup

0≤τ≤n
E(a,b) [

τ

∑
t=1

(Xt − λ)] .

An illustration is proposed in Figure 1.3. To initialize the algorithm, one needs two lower bounds on the
Gittins index: from (1.19), the posterior mean a/(a + b) is a lower bound on G((a, b), n), and a second
lower bound can be found using a dichotomic search.

Besides, for n = 1,2, it is easy to obtain a close form expression for V ∗((a, b), n) and thus an explicit
expression of the Gittins indices. The results are the following (and where already given by [Bradt et al.,
1956]):

G((a, b),1) = a

a + b and G((a, b),2) = a

a + b ×
1 + a+1

a+b+1

1 + a
a+b

. (1.21)
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Figure 1.3: Illustration for a = 15, b = 10 and n = 30. The secant (in black) intersects the X axis at x2,
which is a new lower bound x2 on the Gittins index G((a, b), n).

These expressions illustrate the fact mentioned above that the Finite Horizon Gittins indices are upper
bounds on the mean of the posterior distribution, a/(a + b). Moreover, they suggest that these indices
take the form

G((a, b), k) = a

a + b +B(a, b, k),

where the confidence bonus B(a, b, k) seems to decrease when remaining time k decreases, unlike what
happens with UCB indices. We will see in Section 1.3.4 that approximations of the Gittins indices indeed
feature a different exploration rate than that used by UCB-like algorithms.

1.3.3 Index policies using Gittins indices

Gittins’ theorem was presented for the first time by [Gittins and Jones, 1974], but was popularized by
the paper [Gittins, 1979]. This result, particularized to bandit problems, is given here as the first statement
of Theorem 1.13. The second statement of this theorem highlights the fact that in the undiscounted case,
the index policy using the Finite-Horizon Gittins indices is no longer optimal. This is known since [Berry
and Fristedt, 1985], who prove that a geometric discounting sequence is necessary for Gittins’ theorem
to hold (see Chapter 6 therein).

Theorem 1.13. Let α > 1. With an independent prior distribution Π0, the strategy choosing at round t

At = argmax
a=1...K

Gα(πt−1
a )

maximizes EΠ0 [∑∞
t=1 α

t−1Xt].
Let T ∈ N∗. There exists bandit models and independent prior distributions such that the strategy

choosing at time t
At = argmax

a=1...K
G(πt−1

a , T − t + 1)

does not maximize EΠ0 [∑Tt=1Xt].

Several proofs of Gittins’ theorem have been proposed thereafter by different authors. Our own
proof, provided in Section 1.5.2, relies on the prevailing charge argument introduced by [Weber, 1992].
More precisely, it is inspired by the version of this proof presented by [Frostig and Weiss, 1999]. After
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proving the first statement of Theorem 1.13, we highlight which parts of the proof cannot be adapted to
the finite-horizon setting. To prove the second statement of the theorem, we show that for some choices of
independent Beta prior on two-armed Bernoulli bandits, for the horizon T = 2, the dynamic programming
solution and Gittins’ policy, that can both be computed in this simple case, do not coincide. To prove
that the FH-Gittins index policy is not optimal, [Berry and Fristedt, 1985] also exhibit a counterexample
in the class of Bernoulli bandit models, but with a prior distribution on each mean that takes two values.

From the second statement of Theorem 1.13, the Finite Horizon Gittins algorithm (FH-Gittins), that
we define as the index policy using the Finite-Horizon Gittins indices, is not optimal. However, we
conjecture that this algorithm is a good approximation of the Bayesian solution of the bandit problem
with a finite horizon. To support this claim, we start by presenting a numerical comparison of FH-Gittins
and the optimal solution, on a two-armed Bernoulli bandit problem, and for a small horizon T = 70 for
which the optimal Dynamic Programming (DP) solution can indeed be computed.
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Figure 1.4: Bayes risk of the optimal strategy versus Bayes risk of FH-Gittins

For the FH-Gittins algorithm and the Dynamic Programming solution designed for the horizon T =
70 and a uniform prior Π0, we present in Figure 1.4 the Bayes risk BRΠ0(t,A) as a function of time t.
To estimate the Bayes risk, we average over N = 106 draws of a bandit model from the prior distribution
Π0 on which each algorithm is played up to horizon T = 70. We see that indeed the Bayes-risk at horizon
T is such that BRΠ0(T,DP) ≤ BRΠ0(T,FH-Gittins), but the difference is really small. Moreover, the
Bayes risk of FH-Gittins is even smaller at round t < T . [Ginebra and Clayton, 1999] also propose
a comparison of different algorithms with the Bayesian optimal solution for small horizon on which it
can be computed. In particular, the authors similarly notice that the Bayes-risk at time T of the Finite-
Horizon Gittins algorithm (that they call Λ-strategy) is very close to the optimal value, for various choices
of prior and horizons.

Due to the costly implementation of the Bayesian optimal policy, it is important to develop good
approximations of this strategy that are also efficient. FH-Gittins seems to perform well (based on
numerical experiments) and might appears as an appealing alternative from a computational perspective,
since the computation of each index require to solve (several) dynamic programming equations but on a
much reduced state space. However, for large horizons, these repeated computations of indices also take
time. To circumvent this issue, a first idea is to replace the FH-Gittins indices used in the algorithm by
good approximations. In the next section, we present some approximations, that follow from the work
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of [Chang and Lai, 1987] and [Burnetas and Katehakis, 2003], but only hold in an asymptotic regime in
which the remaining time to play is very large. Interestingly, the Finite Horizon Gittins indices happen
to be connected to the indices used by the KL-UCB algorithm, the (frequentist) asymptotically optimal
algorithm discussed in Section 1.2.3. In Section 1.3.5 we will show that variants of KL-UCB, that are
easier to implement than FH-Gittins, are also good approximations of the Bayesian optimal solution in
an asymptotic sense.

1.3.4 Approximation of the FH-Gittins indices

[Chang and Lai, 1987] develop approximations of the classical (discounted) Gittins indices for Gaus-
sian bandit models with a Gaussian prior distribution, when the discount factor α is close to 1. To do
so, they approximate the solution of each calibration problem Cλ by the solution of an optimal stopping
problem for a Brownian motion with drift, with some Gaussian prior distribution on the drift. They
mention that a similar approach can be adopted to approximate the Finite-Horizon Gittins indices in the
Gaussian case, that we explicit here.

In a Gaussian bandit model with known variance σ2, with independent Gaussian prior N (0, κ2) on
each mean, the posterior distribution on the mean of arm a after t observations is

N ( Sa(t)
Na(t) + σ2/κ2

,
σ2

Na(t) + σ2/κ2
) .

Thus each arm is characterized by the vector (ua, va) of mean and variance of its current posterior
distribution. The Gittins indices can be considered as functions of these two parameters. One has

G((u, v), n) = inf {λ ∈ R ∶ sup
0≤τ≤n

E(u,v) [
τ

∑
t=1

(Xt − λ)] = 0}

= inf {λ ∈ R ∶ sup
0≤τ≤n

E(u−λ,v) [
∑τt=1Xt

σ
√
n

] = 0} ,

where the expectation E(u,v) is taken under the model in which the Xt are i.i.d. with distribution
N (θ, σ2) conditionally to θ and θ ∼ N (u, v). In order to introduce the discretization of a continu-
ous optimal stopping problem, one introduces the notation

t′ = t

n
, u′λ =

(u − λ)√n
σ

, v′ = vn
σ2
, wn(t′) =

∑ts=1Xt

σ
√
n

, τ ′ = τ
n

and µ = θ
√
n

σ
.

One has
wn(t′) ∣ µ ∼ N (µt′, t′) and µ ∼ N (u′λ, v′) (1.22)

thus , letting E′(u′,v′) be the expectation under the model (1.22),

sup
0≤τ≤n

E(u−λ,v) [
∑τt=1Xt√

n
] = sup

τ ′∈{0, 1
n
,...,n−1

n
,1}

E′(u′
λ
,v′) [wn(τ

′)]

Letting Bt be a Brownian motion, and considering stopping times T with respect to Bt, the Finite-
Horizon Gittins index can be approximated, for large values of n, as

G((u, v), n) ≃ inf {λ ∈ R ∶ sup
0≤T≤1

Eµ∼N(u′
λ
,v′) [µT +BT ] = 0} .
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[Chang and Lai, 1987] propose an asymptotic approximation of the solution of the continuous stopping
problem involved that yields, when v′ →∞,

T ∗λ ≃
⎧⎪⎪⎨⎪⎪⎩

inf t ∈ [0, T ] ∶ w(t) ≤ −u′λv′−1 −
√

2(t + v′−1) log ( 1

t + v′−1
)
⎫⎪⎪⎬⎪⎪⎭
.

Approximating the Gittins index by the value of λ such that T ∗λ = 0 and returning to the original values
(u, v) yields

G((u, v), n) ≃ u +
√

2v(log(vn) + o(log(vn)).
In a bandit game, the index computed by the FH-Gittins algorithm for arm a at round t + 1 can therefore
be approximated by

Sa(t)
Na(t) + σ2/κ2

+

¿
ÁÁÁÀ2σ2 log ( T−t

Na(t)+σ2/κ2 )
Na(t) + σ2/κ2

. (1.23)

This approximation holds when the remaining time T−t is large and when the ratio (T − t)/(Na(t)+κ−2)
is large too. [Chang and Lai, 1987] also propose approximations of the discounted Gittins indices in
exponential families.

For one-parameter canonical exponential families, [Burnetas and Katehakis, 2003] propose a differ-
ent approach to approximate the solution of the calibration problems Cλ with finite horizon, that leads to
an approximation of the Finite Horizon Gittins indices. In an exponential bandit model, the distribution
of each arm can be parameterized by a natural parameter θa such that, for every θ ∈ Θ, νθ has a density

f(x∣θ) = A(x) exp(xθ − b(θ)), θ ⊆ Θ ⊆ R.

As explained in Section 1.3.1, given a product prior distribution Π0, the density of the posterior
distribution on the parameter of each arm has a simple form (1.16) and can be parameterized by the
number of observations k from the arm and the sum of these observations, s. We denote it H(k,s). The
FH-Gittins index of this arm also depends on these two parameters and can be written

G((k, s), n) = inf {λ ∈ T ∶ V ∗((k, s), n) = λn} , with V ∗((k, s), n) = sup
0≤τ≤n

E(k,s) [
τ

∑
t=1

Xt + (n − τ)λ] .

The expectation E(k,s) is taken under the model in which the Xt are i.i.d. with distribution νθ condition-
ally to θ and θ ∼ H(k,s). V ∗((k, s), n) is the value function in the MDP associated to Cλ. The work of
[Burnetas and Katehakis, 2003] relies on the following assumption on the prior distribution Π0.

Assumption 1. Π0 is supported on AK , where A =]θ−, θ+[⊆ Θ is such that there exists m,M > 0:

∀ θ ∈ A m ≤ b̈(θ) ≤M. (1.24)

Under this assumption we let ]µ−, µ+[ be the corresponding interval on the means: ]µ−, µ+[= ḃ(A).

The approximation of the solution of Cλ given by [Burnetas and Katehakis, 2003] relies on a careful
rewriting of the dynamic programming equation for V ∗((k, s), n) (see 1.15). They exhibit, for the
’continuation set’ (on which the optimal action in Cλ is to draw the unknown arm)

Sλn = {(k, s) ∶ V ∗((k, s), n) > nλ} ,
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two sets Sλn and Sλn such that Sλn ⊆ Sλn ⊆ Sλn . The definition of these two sets involve integral expressions
for which one can obtain asymptotic equivalents when the remaining time n goes to infinity. A close
examination of Theorem 4.2 of [Burnetas and Katehakis, 2003] shows that, when n is large,

(V ∗((k, s), n) > nλ) ∼⇔ λ ≤ max{q ∈ [µ−, µ+] ∶ q ≥ s
k
, kd̃A ( s

k
, q) ≤ log

n

k
}

with d̃A(x, y) the function defined below. It depends on the divergence d(x, y) associated to the expo-
nential family and is defined on (ḃ(Θ))2 by

d̃A(x, y) =
⎧⎪⎪⎨⎪⎪⎩

d(x, y) if x > µ−
f(x∣θ−)

f(x∣ḃ−1(y)) if x < µ− .

Thus, for large values of n, the Gittins index can be approximated as

G((k, s), n) ≃ max{q ∈ [µ−, µ+] ∶ q ≥ s
k
, kd̃A ( s

k
, q) ≤ log

n

k
}

and the index computed by the FH-Gittins algorithm for arm a at time t+1 is approximately, when T − t
is large,

max{q ∈ [µ−, µ+] ∶ q ≥ Sa(t)
Na(t)

,Na(t)d̃A ( Sa(t)
Na(t)

, q) ≤ log( T − t
Na(t)

)} . (1.25)

This approximation is consistent with the one obtained in the Gaussian case (1.23), for which the
divergence function is d(x, y) = (x − y)2/(2σ2). Both approximations of the index used by the FH-
Gittins algorithm only hold when the remaining horizon is large. The indices (1.23) and (1.25) are
reminiscent of the index used by the KL-UCB algorithm, but with a slightly different exploration rate:
log t is replaced by log((T − t)/Na(t)). A natural question is therefore: does this modified exploration
rate lead to improvements? As elements of answer, a quite similar modified version of KL-UCB will be
proved in the next section to be a good approximation of the Bayesian solution, at least asymptotically.
Besides, we will see in the numerical experiments of Section 1.4 that the factor 1/Na(t) indeed leads to
improvements.

1.3.5 Asymptotically optimal algorithms with respect to the Bayes risk

We saw that in the Bayesian framework, for a given prior distribution, the bandit problem with
finite horizon T has an exact solution, that we denote by ADP (since it is solution of a Dynamic Pro-
gramming equation). However, we did not obtain an expression of the Bayes risk of this optimal solu-
tion, BRΠ0(T,ADP). In the particular case of exponential bandit models, [Lai, 1987] provides a prior-
dependent, asymptotic lower bound on the Bayes-risk of any bandit algorithm as well as an algorithm
matching this bound. Hence, the Bayes risk of the Bayesian optimal strategy in such bandit models
must grow at the rate log(T )2 specified by the lower bound of [Lai, 1987]. In this section, we see that
the Bayes risk of the KL-UCB algorithm, discussed in Section 1.2.3 almost matches this lower bound
(Proposition 15), and we discuss possible variants of this algorithm, one of them, KL-UCB-H+, being
asymptotically optimal with respect to the Bayes risk.

Theorem 1.14 below is a rewriting of Theorem 3 of [Lai, 1987] in the particular case of a product
prior. It holds under an extra assumption on the prior distribution: Assumption 1, already used in the
previous section. The prior distribution on each arm must be supported on some interval A =]θ−, θ+[,
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on which the variance of the arms, b̈(θ), is bounded (see (1.24)). Recall that ]µ−, µ+[= ḃ (]θ−, θ+[).
For Gaussian distributions with known variance, one can choose A =]µ−, µ+[= R, whereas for Bernoulli
distributions, this assumption is equivalent to considering that all the means belong to an interval of the
form ]p,1 − p[.

Theorem 1.14 ([Lai, 1987], Theorem 3). Let Π0 be a distribution on AK with a density of the form
h(θ1) . . . h(θK). If h is such that ∫A ∣θ∣q(θ)dθ < ∞ and there exists ρ > 0 such that if hK−1 is the density
of the random variable max1≤i≤K−1 θi,

∫
A

sup
λ∈]θ−ρ;θ]∩A

h(λ) × hK−1(θ)dθ < ∞. (1.26)

Let H be the cumulative distribution function (c.d.f) associated to h. For any bandit algorithm A,

lim inf
T→∞

BRΠ0(T,A)
log2(T )

≥ C(Π0,K)

with

C(Π0,K) = K

2
∫
AK−1

h( max
1≤i≤K−1

θi)h(θ1) . . . h(θK−1)dθ1 . . . dθK−1

= K(K − 1)
2

∫
A
h2(θ)(H(θ))K−2dθ

[Lai, 1987] also proposes an algorithm whose Bayes risk matches the lower bound of Theorem 1.14.
In the sequel, we qualify such algorithms as Bayesian asymptotically optimal (or asymptotically optimal
with respect to the Bayes risk). The algorithm proposed shares strong similarities with the KL-UCB
algorithm presented in Section 1.2.3. Let d denote the divergence associated to the exponential family:
d(x, y) = KL (νḃ−1(x), νḃ−1(y)). One introduce the application dA defined on (ḃ(Θ))2 by, for all y,

dA(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(x, y) if x ∈ A
d(µ−, y) if x ≤ µ−
d(µ+, y) if x ≥ µ+

.

After an initialization phase in which each arm is drawn once, the algorithm presented by [Lai, 1987]
chooses at time t + 1 the arm maximizing the index

Ua(t) = sup{q ∈ [µ−, µ+] ∶ q ≥ Sa(t)
Na(t)

,Na(t)dA ( Sa(t)
Na(t)

, q) ≤ g ( T

Na(t)
)} ,

for some function g satisfying g(t) ∼ log t when t →∞ and g(t) ≥ log t + ξ log log t for some ξ > −3/2.
Apart from the fact that KL-UCB directly uses the divergence d(x, y) in place of dA(x, y), another
difference between these two index policies is that the algorithm proposed by Lai uses an exploration
rate log(T /Na(t)) in place of the log(t) used by KL-UCB.

This alternative exploration rate is also reminiscent of the MOSS algorithm of [Audibert and Bubeck,
2010], which is the index policy associated to

Ua(t) =
Sa(t)
Na(t)

+

¿
ÁÁÁÀ log ( T

KNa(t))
Na(t)

.
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In the same spirit, [Garivier and Cappé, 2011] propose the use of a variant of KL-UCB, called KL-
UCB+, in which the exploration rate log(t) is replaced by log(t/Na(t)). Another alternative that has
been considered in the literature is the UCB-H algorithm (see [Audibert et al., 2009]) in which the log(t)
in UCB1 is replaced by log(T ). Inspired by all these different exploration rates, Definition 1.15 below
gathers the corresponding variants of KL-UCB that can be considered, namely KL-UCB+, KL-UCB-H
and KL-UCB-H+.

Definition 1.15. The KL-UCB, KL-UCB+, KL-UCB-H and KL-UCB-H+ algorithms are index policies
that choose at time t + 1 the arm with highest index

ua(t) = sup{q > Sa(t)
Na(t)

∶ d( Sa(t)
Na(t)

, q) ≤ β(t)} ,

where the exploration rate β(t) is given by

Algorithm KL-UCB KL-UCB+ KL-UCB-H KL-UCB-H+

β(t) = f(t) f(t/Na(t)) f(T ) f(T /Na(t))

with f(t) = log(t) + c log log(t), for some parameter c.

The algorithm proposed by [Lai, 1987] is very similar to KL-UCB-H+ and is asymptotically optimal
with respect to the Bayes risk. From (1.23) and (1.25), the indices used by the Finite-Horizon Gittins
algorithm can be approximated in some asymptotic regime by indices close to those of KL-UCB-H+.
This gives heuristic arguments in favor of the Bayesian asymptotic optimality of FH-Gittins.

Interestingly, to prove the Bayesian asymptotic optimality of his algorithm, [Lai, 1987] starts by
showing that it is asymptotically optimal in a frequentist sense, that is with respect to Lai and Robbins’
lower bound on the regret (1.10). Then he integrates the asymptotic upper bound obtained over the prior
distribution. Quite similarly, one can use the non-asymptotic upper bound on Eθ[Na(T )] for KL-UCB
given in Theorem 1.8 to obtain the following Bayes-risk bound for KL-UCB. The proof of this new result
is given in Section 1.5.3.

Theorem 1.16. Let Π0 be a product prior distribution satisfying the assumptions of Theorem 1.14. Then
the Bayes risk of the KL-UCB satisfies

lim sup
T→∞

BRΠ0(T,KL-UCB)
log(T )2

≤ 2C(Π0,K),

with C(Π0,K) the constant defined in Theorem 1.14.

Theorem 1.16 shows that the KL-UCB algorithm is almost asymptotically optimal with respect to
the Bayes risk, up to a multiplicative factor 2. The fact that KL-UCB, which is optimal in a frequentist
sense, might not be optimal in a Bayesian sense will be illustrated on numerical experiments below and in
Chapter 3. Conversely, KL-UCB-H+ is asymptotically optimal in both settings. Its asymptotic optimality
with respect to the regret is already established by Lai, and can also be established using elements from
our analysis of Bayes-UCB that will be presented in Chapter 2. Indeed, Proposition 2.4 will give the
(frequentist) asymptotic optimality of both KL-UCB-H+ and KL-UCB+.

The notion of Bayesian asymptotic optimality introduced above, based on Theorem 1.14, might
seem not very satisfying, since it applies to prior distributions that can be quite specific. For example,
this notion is not defined in a Bernoulli bandit model with a uniform prior on the mean (whereas it is
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defined if the prior is uniform on [p,1−p] for example). Even if the right constant is still to be identified
in this context, the Bayes risk of the optimal strategy must also grow as K log(T )2. Indeed, an easy
integration (see the precise computation in Section 1.5.3) shows that any algorithm (like UCB1) that
satisfies, for every suboptimal arm a,

Eθ[Na(T )] ≤ C1

(µ∗ − µa)2
log(T ) +C2

for some constants C1 and C2, has its Bayes risk under the uniform prior on [0,1]K upper bounded by

C1

2
K(log(T ))2 +C1K(log(T ))3/2 + (C2 +

1

2
)K. (1.27)

The prior-independent worst-case lower bound on the Bayes risk given in (1.7) is therefore pes-
simistic in the case of Bernoulli bandit with independent prior distributions. Indeed, while there exists
a prior distribution such that the Bayes risk is lower bounded by

√
KT /20, for Bernoulli bandits with

independent, uniform prior on the means, the Bayes-risk is rather of order K log(T )2.

1.4 Numerical study and conclusions

In both the frequentist and Bayesian frameworks, state-of-the-art algorithms presented in the previous
sections are mostly index policies. Our presentation was focused on exponential bandit models, for
which, in the frequentist setting, the KL-UCB algorithm of [Cappé et al., 2013] is asymptotically optimal
with respect to the regret. In the Bayesian framework, with independent arms, the Finite-Horizon Gittins
algorithms (inspired by the first index policy proposed by [Gittins, 1979] for discounted rewards) is
empirically close to the Bayesian optimal solution, albeit not optimal as in the discounted case. For large
horizons, this index policy is however difficult to implement and a variant of KL-UCB, KL-UCB-H+ has
been shown by [Lai, 1987] to be asymptotically optimal with respect to the Bayes risk.

We start by illustrating numerically the performance of these different index policies in the Bayesian
framework, in order to motivate the use of the FH-Gittins algorithm when the horizon is not too large. In
Figure 1.5, we compare FH-Gittins with KL-UCB, KL-UCB+ and KL-UCB-H+ for the horizon T = 500.
For each strategy, the cumulated Bayes risk is averaged over N = 5000 bandit games played up to
horizon T . We see that FH-Gittins dramatically outperforms KL-UCB-H+, which is supposed to be a
good approximation of the optimal strategy only for large values of T . Besides, KL-UCB-H+ slightly
outperform KL-UCB. While KL-UCB-H+ requires the knowledge of the horizon T , KL-UCB+ seems
to be a good anytime (i.e. that does not use the horizon T ) approximation of this algorithm. We carry
out similar experiments, reported in Figure 1.6 and in which the Bayes risk is averaged over N = 10000
bandit games, for an horizon T = 1000. The same trends can be observed, with an increased gap between
KL-UCB and KL-UCB-H+.

By running numerical experiments, one can observe differences between the behavior of FH-Gittins
and frequentist optimistic algorithms. FH-Gittins seems to explore much less than its frequentist coun-
terpart: it ends up by playing always the same arm. From (1.19), Gittins indices can be seen as upper
confidence bounds on the mean, but the ’confidence bonus’ shrinks when getting closer to the horizon
T . Besides, from (1.20), the FH-Gittins indices of arms that have not been played decrease, giving less
incentive to exploration. Conversely, the KL-UCB indices of arms that have not been played increase in
order to favor exploration. This property of FH-Gittins can be used in the implementation of the algo-
rithm: if G denotes the value of the FH-Gittins index when a new arm starts to be played, the algorithm
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Figure 1.5: Bayes risk of the different strategies under a uniform prior distribution on the means, for K=5
arms (left) and K=10 arms (right)
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Figure 1.6: Bayes risk of the different strategies for a larger horizon T = 1000, with a uniform prior on
the means of the K = 5 arms
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will keep playing this same arm as long as its current FH-Gittins index is larger than G. Thus one can
save computations of the indices of other arms during this time.

One of the objectives of this thesis is to present and analyse new efficient bandit algorithms, based
on Bayesian ideas but whose performance is measured with (frequentist) regret. A first idea would
be to investigate the performance of the Finite-Horizon Gittins algorithm, that is believed to be almost
Bayesian optimal, in a frequentist setting. [Ginebra and Clayton, 1994] present a first empirical study for
two-armed Bernoulli bandits in which two Bayesian strategies are evaluated with respect to regret, for
fixed values of the means: the myopic strategy (that chooses the arm with highest posterior mean) and
FH-Gittins (under the name Λ-strategy). The authors show that, for small horizons, there exist values
of the means such that the regret of the Bayesian optimal solution is larger than that of these strategies.
However, they do not compare FH-Gittins to algorithms that are known to be asymptotically optimal with
respect to the regret. In Chapter 2 and Chapter 3, we will propose a numerical comparison of FH-Gittins
with KL-UCB, Bayes-UCB and Thompson Sampling on some fixed Bernoulli bandit models. For the
fixed bandit models chosen in these experiments, FH-Gittins seems to perform quite well on the (rather)
small horizons on which it can be implemented, but its asymptotic optimality with respect to the regret
is still to be investigated.

Due to the hardness of implementation of FH-Gittins, we will rather focus in the next two chapters on
two Bayesian algorithms that are easy to implement: Bayes-UCB and Thompson Sampling. Moreover,
additionally to their good practical performance, we will be able to prove that these Bayesian algorithms
are asymptotically optimal with respect to the regret.

1.5 Elements of proof

This section gathers the proofs of some important results presented in this chapter.

1.5.1 Changes of distribution: proof of Lemma 1.3

As all the arms in ν = (ν1, . . . , νK) and ν′ = (ν′1, . . . , ν′K) are mutually absolutely continuous, there
exists a common measure λ such that for all a, νa has a density fa with respect to λ and ν′a has a density
f ′a with respect to λ. One can introduce the log-likelihood ratio of the observations up to time t under a
bandit algorithm algorithm A:

Lt ∶=
K

∑
a=1

t

∑
s=1

1(As=a) log(fa(Xs)
f ′a(Xs)

) .

The key element in a change of distribution is the following classical lemma that relates the proba-
bilities of an event under Pν and Pν′ through the log-likelihood ratio of the observations. Such a result
is often used in the bandit literature for ν and ν′ that differ just from one arm, for which the expression
of the log-likelihood ratio is simpler. In the proof of Theorem 1.2, we indeed use this kind of change
of distribution. However, we will consider in Chapter 5 changes of distributions where several arms are
modified. A full proof of Lemma 1.17 in this more general setup can be found in the paper [Kaufmann
et al., 2014b].

Lemma 1.17. Let σ be any stopping time with respect to Ft. For every event A ∈ Fσ (i.e. A such that
A ∩ (σ = t) ∈ Ft),

Pν′(A) = Eν[1A exp(−Lσ)]
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Let σ be a stopping time with respect to (Ft). We start by showing that for all A ∈ Fσ, Pν(A) = 0
if and only if Pν′(A) = 0. Thus, if 0 < Pν(A) < 1 one also has 0 < Pν′(A) < 1 and the quan-
tity d(Pν(A),Pν′(A)) in Lemma 1.3 is well defined. Let A ∈ Fσ. Lemma 1.17 yields Pν′(A) =
Eν[1A exp(−Lσ)]. Thus Pν′(A) = 0 implies 1A exp(−Lσ) = 0 Pν − a.s. As Pν(σ < +∞) = 1,
Pν(exp(Lσ) > 0) = 1 and Pν′(A) = 0⇒ Pν(A) = 0. A similar reasoning yields Pν(A) = 0⇒ Pν′(A) =
0.

Let A ∈ Fσ be such that 0 < Pν(A) < 1 (then 0 < Pν′(A) < 1). Lemma 1.17 and the conditional
Jensen inequality lead to

Pν′(A) = Eν[exp(−Lσ)1A] = Eν[Eν[exp(−Lσ)∣1A]1A]
≥ Eν[exp (−Eν[Lσ ∣1A])1A] = Eν[exp (−Eν[Lσ ∣A])1A]
= exp (−Eν[Lσ ∣A])Pν(A),

Writing the same for the event A yields Pν′(A) ≥ exp (−Eν[Lσ ∣A])Pν(A), hence

Eν[Lσ ∣A] ≥ log
Pν(A)
Pν′(A) and Eν[Lσ ∣A] ≥ log

Pν(A)
Pν′(A)

. (1.28)

Therefore one can write

Eν[Lσ] = Eν[Lσ ∣A]Pν(A) +Eν[Lσ ∣A]Pν(A)

≥ Pν(A) log
Pν(A)
Pν′(A) + Pν(A) log

Pν(A)
Pν′(A)

= d(Pν(A),Pν′(A)). (1.29)

Introducing (Ya,t), the sequence of i.i.d. samples successively observed from arm a, the log-likelihood
ratio Lt can be rewritten

Lt =
K

∑
a=1

Na(t)
∑
t=1

log(fa(Ya,t)
f ′a(Ya,t)

) ; and Eν [log(fa(Ya,t)
f ′a(Ya,t)

)] = KL(νa, ν′a).

Applying Wald’s Lemma (see e.g. [Siegmund, 1985]) to Lσ = ∑Ka=1∑
Na(σ)
t=1 log (fa(Ya,t)f ′a(Ya,t)

) yields

Eν[Lσ] =
K

∑
a=1

Eν[Na(σ)]KL(νa, ν′a). (1.30)

Combining this equality with inequality (1.29) gives Lemma 1.3.

1.5.2 On Gittins’ theorem: proof of Theorem 1.13

Proof of the first statement (Gittins’ theorem). Let α ∈]0,1[ be the discount factor. For any bandit
algorithm, one can introduce at round t, for each arm a

– the fair charge ga(t) = Gα(πta) as the Gittins index of arm a at the end round t (the denomination
comes from its interpretation as the highest ’price’ worth paying to play the arm),

– the prevailing charge, g
a
(t) = min1≤v≤t ga(v).

The proof goes as follows: we upper bound the expected sum of discounted rewards for any bandit
algorithm by a quantity that involves the prevailing charge process of each arm, and that does not depend
on the algorithm. Then we show that for Gittins’ policy, this inequality is actually an equality.
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Lemma 1.18. For any bandit algorithm A,

EΠ0 [
∞
∑
t=1

αt−1Xt] ≤ EΠ0 [
∞
∑
t=1

αt−1g
At

(t − 1)]

and this inequality is an equality for Gittins policy.

Proof of Lemma 1.18. The result easily follows by summation if we prove that, for each arm a,

EΠ0 [
∞
∑
t=1

αt−1Xa,t1(At=a)] ≤ EΠ0 [
∞
∑
t=1

αt−1g
a
(t − 1)1(At=a)] . (1.31)

To show (1.31) holds, we fix an arm a and introduce a sequence of stopping times τ0 = 0 and

τk+1 = inf {t > τk ∣ g
a
(t − 1) > g

a
(t)}

For t ∈ [τk + 1; τk+1], the prevailing charge g
a
(t − 1) is equal to the Gittins index ga(τk). Conditionally

to Fτk , one can consider the calibration problem Cga(τk), in which the optimal policy is either to play
arm a until τk+1 (i.e. as long as its Gittins index is larger that ga(τk)) or not to play at all and receive
reward ga(τk) at every time step: thus the expected cumulated reward is ga(τk)/(1 −α). The inequality
we write below follow from the fact that the policy that plays arm a when (At = a) and t ∈ [τk +1; τk+1],
and receives rewards ga(τk) otherwise cannot be better than the optimal policy:

EΠ0

⎡⎢⎢⎢⎢⎣

τk+1

∑
t=τk+1

αt−τk−1 (Xa,t1(At=a) + ga(τk)1(At≠a)) +
∞
∑

t=τk+1+1

ga(τk)αt−τk−1
RRRRRRRRRRR
Fτk

⎤⎥⎥⎥⎥⎦
≤ ga(τk)

1 − α

EΠ0

⎡⎢⎢⎢⎢⎣

τk+1

∑
t=τk+1

αt−1 (Xa,t1(At=a) − ga(τk)1(At=a)) +
∞
∑

t=τk+1

ga(τk)αt−1
RRRRRRRRRRR
Fτk

⎤⎥⎥⎥⎥⎦
≤ ατkga(τk)

1 − α

EΠ0

⎡⎢⎢⎢⎢⎣

τk+1

∑
t=τk+1

αt−1Xa,t1(At=a)

RRRRRRRRRRR
Fτk

⎤⎥⎥⎥⎥⎦
−EΠ0

⎡⎢⎢⎢⎢⎣

τk+1

∑
t=τk+1

αt−1g
a
(t − 1)1(At=a)

RRRRRRRRRRR
Fτk

⎤⎥⎥⎥⎥⎦
≤ 0

Summing over k and conditioning gives inequality (1.31). For every arm a, if the bandit algorithm we
consider is Gittins strategy, (1.31) is an equality. Indeed, on every interval [τk + 1, τk], if Gittins’ policy
plays arm a at time τk + 1, all the Gittins’ indices from the other arms are smaller than ga(τk), and arm
a will therefore be played up to time τk+1, which coincides with an optimal policy in the calibration
problem Cga(τk).

◻

From Lemma 1.18, one can write, introducing the sequence g(t) = g
At

(t − 1),

EΠ0 [
∞
∑
t=1

αt−1Xt] ≤ EΠ0 [
∞
∑
t=1

αt−1g(t)] ≤ EΠ0 [
∞
∑
t=1

αt−1g∗(t)] ,

where (g∗(t)) is a nonincreasing rearrangement of (g(t)). Whereas the sequence (g(t))t∈N∗ depends
on the algorithm, as explained below (g∗(t)) only depends on the sequences of successive rewards
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obtained from each arm, and not on the algorithm itself any more. As Gittins policy is such that the
sequence (g(t)) itself is already nonincreasing (since the arm chosen at time t maximizes g

a
(t)), one

has

EΠ0 [
∞
∑
t=1

αt−1XGit.
t ] = EΠ0 [

∞
∑
t=1

αt−1g∗(t)] ,

which show that Gittins’ policy is optimal.
To understand why (g∗(t)) does not depend on the policy, we introduce the following notation. For

every t, g
a
(t) only depends on the Na(t) first observations gathered from arm a, Ya,1, . . . , Ya,Na(t). In

other words, there exists a sequence of deterministic functions (hs), with hs ∶ {0,1}s → R+, such that
g
a
(t) = hNa(t)(Ya,1, . . . , Ya,Na(t)). For each arm a, and each s ∈ N∗, we define the stopping time τa,s as

the instant at which the s-th draw of arm a occurs (with the convention that τa,s = +∞ if arm a has been
drawn less than s times). Rearranging the sum, one obtains

∞
∑
t=1

αt−1g(t) =
K

∑
a=1

∞
∑
s=1

ατa,s−1 hs(Ya,1, . . . , Ya,s−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ha,s

For each a, (ha,s) is a nonincreasing sequence that does not depend on the algorithm (At). Building a
nonincreasing rearrangement of (g(t)) is equivalent to sorting in nonincreasing order the (ha,s)a=1,...,K,s∈N∗ .
Letting τ̃a,s be the ranking of (a, s) in this sorted list, one has

∞
∑
t=1

αt−1g(t) =
K

∑
a=1

∞
∑
s=1

ατa,s−1 hs(Ya,1, . . . , Ya,s−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=ha,s

≤
K

∑
a=1

∞
∑
s=1

ατ̃a,s−1ha,s =
∞
∑
t=1

αt−1g∗(t).

As the sequence of stopping times τ̃a,s only depends on the (ha,s), and not on (At), the values of g∗(t)
are independent of the algorithm.

Why does this proof not work for Finite-Horizon Gittins indices? It is possible to generalize some
of the arguments, by introducing

– ga(t) = G(πta, T − t) as the fair charge at time t
– g

a
(t) = min1≤v≤t ga(v) as the prevailing charge at time t,

this time with finite-horizon Gittins indices. Referring to the same calibration problem as in the proof of
Lemme 1.18 (but this time with a finite horizon), one can show an equivalent result:

EΠ0 [
T

∑
t=1

Xt] ≤ EΠ0 [
T

∑
t=1

g
At

(t − 1)] , (1.32)

with equality for the FH-Gittins policy. However, both the fact the the horizon is finite and that g
a
(t)

depends on Ya,1, . . . , Ya,Na(t) AND t do not permit to upper bound the quantity in (1.32) by something
independent of the policy using some rearrangement argument.

Proof of the second statement. For Bernoulli bandit models with a Beta prior, the Finite-Horizon
Gittins indices involved in the algorithm depend on the parameters (a, b) of the current posterior and the
remaining time n. They are denotes by G((a, b), n) as in Section 1.3.2.
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If the remaining time to play is T = 2, and the prior distribution is Beta(5,8)⊗Beta(3,5), the explicit
formula for Gittins indices available in this case (1.21) gives

G((5,8),2) = 5

13
×

1 + 6
14

1 + 5
13

= 0.3968 and G((3,5),2) = 3

8
×

1 + 4
9

1 + 3
8

= 0.3939,

thus the FH-Gittins algorithm chooses arm 1 (with highest FH-Gittins index).
With the same prior distribution, the dynamic programming equations (1.17) yield the following

result for the optimal value function V ∗ (which depends on (a, b, c, d), the 4-tuple representing the
posterior distribution on each arm, and the remaining time n)

V ∗((5,8,3,5),2) = max{V1, V2} with

V1 = 5

13
+ 5

13
max( 6

14
,
3

8
) + 8

13
max( 5

14
,
3

8
) = 0.7802

V2 = 3

8
+ 3

8
max( 5

13
,
4

9
) + 5

8
max( 5

13
,
3

9
) = 0.7821

and as V1 < V2, the optimal policy (with value function V ∗) chooses arm 2.

1.5.3 Proofs of Bayes risk bounds

PROOF OF THEOREM 1.16

The constant C(Π0,K) defined in Theorem 1.14 is such that

C(Π0,K) = K
2
IK with IK ∶= ∫

AK−1
h( max

i=2...K
θi)h(θ2) . . . h(θK)dθ2 . . . dθK

The following decomposition of the Bayes risk can be deduced from the regret decomposition (1.1):

BRΠ0(T,KLUCB) =
K

∑
a=1

EΠ0 [(µ∗ − µa)Eθ[Na(T )]] =KEΠ0 [(µ∗ − µ1)Eθ[N1(T )]] .

The last equality follow from the fact that the prior distribution is invariant under permutations of the
arms. To compute the expectation EΠ0 [(µ∗ − µ1)Eθ[N1(T )]], we integrate (µ∗ − µ1)Eθ[N1(T )] on
different regions, on which it can either be upper bounded trivially by (µ∗ − µ1)T or, if arm 1 is sub-
optimal, by the upper bound given of Theorem 1.8, that be rewritten as a function of the natural parame-
ters in the following form:

Eθ[N1(T )] ≤ 1

K(θ1, θ∗)
log(T ) + 2

√
2π

√
M

(θ∗ − θ1)
K(θ1, θ∗)3/2

√
log(T ) + 3 log log(T )

+(4e + 3

K(θ1, θ∗)
) log log(T ) + 8πM

(θ∗ − θ1)2

K(θ1, θ∗)2
+ 6, (1.33)

using additionally that the variance of the arms are bounded by sup b̈(θ) ≤M . We recall that K(θ, θ′) =
KL(νθ, νθ′) where the distributions are parameterized by their natural parameter. We also gather here
some useful properties of exponential families. First, one has the two Taylor expansions

K(λ, θ) = b̈(θ)
2

(θ − λ)2 + o((θ − λ)2) (1.34)

µ(θ) − µ(λ) = b̈(θ)(θ − λ) + o(θ − λ) (1.35)
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Using Taylor-Lagrange formula together with the assumption that on A, m ≤ b̈(θ) ≤ M also yields the
inequalities

∣µ(θ) − µ(λ)∣ ≤M ∣θ − λ∣ and K(λ, θ) ≥ m
2
(λ − θ)2 (1.36)

Decomposition of an integral. Let αT , βT be two nonincreasing sequences of real numbers, to be
chosen later, such that 0 < αT < βT and βT tends to zero as T tends to infinity. One has

EΠ0 [(µ∗ − µ1)Eθ[N1(T )]] = ∫
0<θ∗−θ1<αT

T (µ(θ∗) − µ(θ1))dΠ0(θ) (term A)

+∫
αT <θ∗−θ1<βT

(µ(θ∗) − µ(θ1))Eθ[N1(T )]dΠ0(θ) (term B)

+∫
βT <θ∗−θ1

(µ(θ∗) − µ(θ1))Eθ[N1(T )]dΠ0(θ) (term C)

Upper bound on term A. Let θ∗1 = maxi≠1 θi. Term A is upper bounded by

MT ∫
0<θ∗−θ1<αT

(θ∗ − θ1)h(θ1) . . . h(θK)dθ1 . . . dθK

= MT ∫
AK−1

(∫
θ∗1

θ∗1−αT
(θ∗1 − θ1)h(θ1)dθ1)h(θ2) . . . h(θK)dθ2 . . . dθK

≤ MTα2
T

2
∫
AK−1

sup
λ∈[θ∗1−αT ,θ∗1]

h(λ)h(θ2) . . . h(θK)dθ2 . . . dθK

∼
T→∞

MTα2
T

2
∫
AK−1

h( max
i=2...K

θi)h(θ2) . . . h(θK)dθ2 . . . dθK = MTα2
T

2
IK .

The last equivalent follows from Assumption (1.26) - which allows to apply the dominated convergence
theorem.

Upper bound on term B. To upper bound Term B, we use inequality (1.33). It then boils down to
controlling the three integrals

I1(T ) = ∫
αT <θ∗−θ1<βT

µ(θ∗) − µ(θ1)
K(θ1, θ∗)

dΠ0(θ),

I2(T ) = ∫
αT <θ∗−θ1<βT

(µ(θ∗) − µ(θ1))(θ∗ − θ1)
K(θ1, θ∗)3/2 dΠ0(θ),

I3(T ) = ∫
αT <θ∗−θ1<βT

(µ(θ∗) − µ(θ1))2(θ∗ − θ1)
K(θ1, θ∗)2

dΠ0(θ).

For I1(T ), we use as [Lai, 1987], that the following equivalent holds, uniformly in θ,

µ(θ) − µ(θ1)
K(θ1, θ)

∼
θ1→θ

2

θ − θ1
.
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The equivalent can be obtained using the Taylor expansions (1.34) and (1.35)). Therefore one can write

I1(T ) = ∫
AK−1

(∫
θ∗1−αT

θ∗1−βT

µ(θ∗1) − µ(θ1)
K(θ1, θ∗1)

h(θ1)dθ1)h(θ2) . . . h(θK)dθ2 . . . dθK

∼
T→∞ ∫

AK−1
(∫

θ∗1−αT

θ∗1−βT

2h(θ1)
θ∗1 − θ1

dθ1)h(θ2) . . . h(θK)dθ2 . . . dθK

≤ ∫
AK−1

(∫
θ∗1−αT

θ∗1−βT

2

θ∗1 − θ1
dθ1) sup

λ∈[θ∗1−βT ,θ∗1−αT ]
h(λ)h(θ2) . . . h(θK)dθ2 . . . dθK

= 2 log (βT
αT

)∫
AK−1

sup
λ∈[θ∗1−βT ,θ∗1−αT ]

h(λ)h(θ2) . . . h(θK)dθ2 . . . dθK

∼
T→∞

2 log (βT
αT

)IK

Using inequalities (1.36), one can also show that

I2(T ) ≤ 22/3M

m2/3 ∫
αT <θ∗−θ1<βT

1

θ∗1 − θ1
dΠ0(θ) ∼

T→∞

22/3M

m2/3 log (βT
αT

)IK ,

I3(T ) ≤ 4M2

m2 ∫
αT <θ∗−θ1<βT

1

θ∗1 − θ1
dΠ0(θ) ∼

T→∞

4M2

m2
log (βT

αT
)IK .

These estimations of I1(T ), I2(T ) and I3(T ) together with the upper bound on Eθ[N1(T )] given by
(1.33) leads to

∫
αT <θ∗−θ1<βT

(µ(θ∗) − µ(θ1))Eθ[N1(T )]dΠ0(θ) = 2 log (βT
αT

) log(T )IK + 0(log (βT
αT

)
√

log(T ))

Upper bound on term C. To upper bound Term C, using again inequality (1.33), we would need to
upper bound the same three integrals but on a different region:

I1(T ) = ∫
θ∗−θ1>βT

µ(θ∗) − µ(θ1)
K(θ1, θ∗)

dΠ0(θ),

I2(T ) = ∫
θ∗−θ1>βT

(µ(θ∗) − µ(θ1))(θ∗ − θ1)
K(θ1, θ∗)3/2 dΠ0(θ),

I3(T ) = ∫
θ∗−θ1>βT

(µ(θ∗) − µ(θ1))2(θ∗ − θ1)
K(θ1, θ∗)2

dΠ0(θ)

For I1(T ), one can write, using inequality (1.36),

I1(T ) ≤ M

m
∫
AK−1

(∫
θ∗1−αT

θ∗1−βT

2h(θ1)
θ∗1 − θ1

dθ1)h(θ2) . . . h(θK)dθ2 . . . dθK ≤ 2M

m

1

βT

Similarly, one obtains

I2(T ) ≤ 23/2M

m2/3
1

βT
and I3(T ) ≤ 4M2

m2

1

βT
.

This shows that C is of order O ( log(T )
βT

).
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Choice of αT and βT and conclusion. The following tabular summarizes what we proved above.

term A term B term C
O(Tα2

T ) 2 log ( βTαT ) log(T )IK + o (log ( βTαT ) log(T )) O ( log(T )
βT

)

Choosing αT = 1√
T
√

log(T )
and βT = 1√

log(T )
, term B is the leading term and one obtains

EΠ0 [(µ∗ − µa)Eθ[Na(T )]] = log(T )2IK + o(log(T )2).

Thus

BRΠ0(T,KLUCB) =KIK log(T )2 + o(log(T )2) = 2C(Π0,K) log(T )2 + o(log(T )2),

which concludes the proof.

PROOF IF THE BAYES RISK BOUND (1.27)

Let A be an algorithm that satisfies, on every Bernoulli bandit model parameterized by θ, for every
sub-optimal arm a,

Eθ[Na(T )] ≤ C1

(µ∗ − µa)2
log(T ) +C2.

Let Π0 be the uniform prior on the means. One has

BRΠ0(T,A) =
K

∑
a=1

EΠ0 [(µ∗ − µa)Eθ[Na(T )]]

and for every a, letting µ∗a = maxi≠a µi, one can write

EΠ0 [(µ∗ − µa)Eθ[Na(T )]] = ∫
0<µ∗−µa< 1√

T

(µ∗ − µa)Tdµ1 . dµK

+∫ 1√
T
<µ∗−µa< 1√

log(T )

C1 log(T )
(µ∗ − µa)

dµ1 . dµK

+∫
µ∗−µa> 1√

log(T )

C1 log(T )
(µ∗ − µa)

dµ1 . dµK +C2

= T ∫[0,1]K−1

⎛
⎝∫

µ∗a

µ∗a− 1√
T

(µ∗a − µa)dµa
⎞
⎠
dµ1 . dµa−1dµa+1 . dµK

+∫[0,1]K−1

⎛
⎝∫

µ∗a− 1√
T

µ∗a− 1√
log(T )

C1 log(T )
µ∗a − µa

dµa
⎞
⎠
dµ1 . dµa−1dµa+1 . dµK

+C1

√
log(T ) log(T ) +C2

= T
1

2
( 1√

T
)

2

+C1 log(T ) log
⎛
⎝

√
T√

log(T )
⎞
⎠
+C1

√
log(T ) log(T ) +C2

≤ C1

2
(log(T ))2 +C1(log(T ))3/2 +C2 +

1

2
.

◻



Chapter 2

Bayes-UCB

In this chapter, we introduce and analyse the Bayes-UCB algorithm. We show that this algorithm
can be applied in many contexts and shares strong similarities with existing frequentist algorithms. For
Bernoulli bandits models, we propose a finite-time analysis proving its asymptotic optimality with re-
spect to Lai and Robbins’ lower bound on the regret. Bayes-UCB has been the object of a paper with
Olivier Cappé and Aurélien Garivier for the conference AISTATS in 2012 ([Kaufmann et al., 2012a]) of
which the content of this chapter is largely inspired.

Compared to the original paper, the statement of the Bayes-UCB algorithm does no longer depend
on the horizon T and the finite-time analysis has been slightly improved: following the last refinements
of [Cappé et al., 2013] for KL-UCB, we are now able to give a fully explicit upper bound on the expected
number of draws of each suboptimal arm. Moreover, we point out that our finite-time analysis of Bayes-
UCB can be adapted to show that two variants of KL-UCB presented in Chapter 1, KL-UCB+ and
KL-UCB-H+, are asymptotically optimal.
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2.1 Introduction

As discussed in the previous chapter, the literature on stochastic multi-armed bandit problems is
separated in two distinct approaches. In the frequentist view, the expected mean rewards associated with
each arm is considered as unknown deterministic quantity and the goal of the algorithm is to achieve the
best parameter-dependent performance. In contrast, in the Bayesian view, each arm is characterized by
a parameter which is endowed with a prior distribution. The Bayesian performance is then defined as
the average performance over all possible problem instances weighted by the prior on the parameters.
Here we argue that algorithms derived from the Bayesian perspective also prove efficient when evaluated
using frequentist measures of performance.

Recall that in the classical (frequentist) parametric stochastic multi-armed bandit model, an agent
faces K independent arms which depend on unknown parameters θ1, . . . , θK ∈ Θ. The draw of arm a
at time t results in a reward Xt that is extracted from an i.i.d sequence (Xa,t)t≥1 marginally distributed
under νθa , whose expectation is denoted by µa. The agent sequentially draws the arms according to a
strategyA = (At)t≥1, whereAt denotes the arm chosen at round t, based on previous rewardsXs =XAs,s

for 1 ≤ s ≤ t − 1. The agent’s goal is to find a strategy that maximizes the expected cumulated reward
until time T , or equivalently minimizes the cumulated regret

Rθ(T,A) = Eθ [
T

∑
t=1

µ∗ − µAt] =
K

∑
a=1

(µ∗ − µa)Eθ[Na(T )] , (2.1)

where µ∗ = max{µa ∶ 1 ≤ a ≤K} and Na(t) denotes the number of draws of arm a up to time t.
[Lai and Robbins, 1985], followed by [Burnetas and Katehakis, 1996], have provided lower bounds

on the number of suboptimal draws under any uniformly efficient strategy: for any arm a such that
µa < µ∗,

lim inf
T→∞

Eθ[Na(T )]
log(T ) ≥ 1

infθ∈Θ∶µ(θ)>µ∗ KL(νθj , νθ)
. (2.2)

For important classes of distributions, recent contributions have provided finite-time analysis of strategies
that are asymptotically optimal in so far that they reach this lower bound. Among them, the KL-UCB
algorithm of [Cappé et al., 2013], that uses confidence intervals based on Kullback Leibler divergence,
has been proved optimal in one-parameter exponential family bandit models.

When considering the multi-armed bandit model from a Bayesian point of view, one assumes that the
parameter θ = (θ1, ..., θK) is drawn from a prior distribution Π0. More precisely, we assume in the fol-
lowing that the parameters (θa)1≤a≤K are drawn independently from prior distributions (π0

a)1≤a≤K (usu-
ally chosen to be all equal), and that conditionally on (θa)1≤a≤K , the sequences (X1,t)t≥1, . . . , (XK,t)t≥1

are jointly independent and i.i.d. with marginal distributions νθ1 , . . . , νθK .
In this Bayesian setting, the goal is to maximize E [∑Tt=1Xt], where the expectation is relative to

the entire probabilistic model, including the randomization over θ. Bayesian optimality can equivalently
be measured considering the Bayes risk, BRΠ0(T,A) = E[Rθ(T,A)], that averages the regret over
the parameters. A major appeal of the Bayesian framework is the fact that a strategy with minimal
Bayesian regret can be described: it appears as the solution of a planning problem in an associated
Markov Decision Process.

To define a Bayesian strategy, let Πt denote the posterior distribution of θ after t rounds of game.
Due to our choice of independent priors on (θa)1≤a≤K , Πt is a product distribution which is equivalently
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defined by the marginal posterior distributions πt1, ..., π
t
K on θ1, . . . , θK , after t rounds. If at round t one

chooses arm At = a and consequently observes Xt =Xa,t, the Bayesian update for arm a is

πta(θa) ∝ νθa(Xt) πt−1
a (θa) , (2.3)

whereas for i ≠ a, πti = πt−1
i . A Bayesian algorithm is allowed to exploit the knowledge of the posterior

Πt to determine the next action At+1.
We already presented in Chapter 1 two Bayesian algorithms: the index policies associated to the

Gittins indices and Finite-Horizon Gittins indices. Recall that [Gittins, 1979] considers the infinite-
horizon discounted problem in which one tries to maximize E [∑∞

t=1 α
tXt], where 0 < α < 1 is a real

discount parameter. He shows that the index policy associated to the Gittins indices (that depend on α)
is optimal with respect to this alternative performance criterion. However, the model reduction argument
he uses no longer holds when the horizon T is known and there is no discount. Therefore, the FH-Gittins
algorithm does not coincide with the Bayesian optimal policy. This being said, we gave in Chapter 1
some arguments indicating that FH-Gittins should be very close to the Bayesian optimal solution. Here
we go further and report in Section 2.4 some experiments on Bernoulli bandits that illustrate our finding
that FH-Gittins outperforms its frequentist UCB-like competitors on their own ground, that is, when
evaluated using the parameter-dependent (frequentist) regret.

[Lai, 1987] shows that a variant of the frequentist optimal KL-UCB algorithm, KL-UCB-H+, is also
asymptotically optimal with respect to the Bayes risk (see Theorem 1.14). Conversely, our finding that
a (believed) close-to-optimal Bayesian strategy also achieves remarkable parameter-dependent perfor-
mance for most (all?) value of the parameter θ is currently not supported by mathematical arguments.
Furthermore, computing the finite-horizon variant of the Gittins indices is only feasible for moderate
horizons due to the need to repeatedly perform (and store the results of) dynamic programming re-
cursions on reduced models. Even for small horizons, the associated computational load and memory
footprint are orders of magnitude larger than those of the UCB-like algorithms.

Our objective is thus to propose a generic bandit algorithm, termed Bayes-UCB, that is inspired by
the Bayesian interpretation of the problem but retains the simplicity of UCB-like algorithms. Our hope is
that this algorithm is simple enough to be effectively implemented and yet is able to reach the asymptotic
lower bound of (2.2), including in cases that are currently not handled by UCB-like algorithms. In addi-
tion to promising simulation results reported in Section 2.4, we provide several significant elements that
support our hopes. First, it is shown in Section 2.2 that instantiating the generic Bayes-UCB algorithm
in different specific cases (one-parameter exponential families rewards, Gaussian-armed bandit with un-
known means and variances, linear bandits, Gaussian process optimization) yields algorithms that share
striking similarities with methods previously proposed in the literature. In the case of Bernoulli rewards,
we provide in Section 2.3 a finite-time analysis of the Bayes-UCB algorithm that implies that it reaches
the lower bound (2.2). The proof of this result is based on an interesting connection between Bayes-UCB
and variants of the KL-UCB algorithm.

2.2 The Bayes-UCB algorithm

We start by presenting the rationale for the proposed algorithm before stating it more formally. First,
being inspired by the Bayesian modeling of the bandit problem, the Bayes-UCB strategy is a function of
the posteriors (πta)1≤a≤K . Due to the nature of our performance measure, the relevant aspect of θa is the
expectation µa. Hence, denoting by λta, for 1 ≤ a ≤K, the posterior distribution of the mean µa induced
by πta, the proposed strategy is a function of (λta)1≤a≤K only.
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Algorithm 1 Bayes-UCB
Require: Π0 (initial prior on θ) c (parameters of the quantile)

1: for t = 0 to T − 1 do
2: for each arm a = 1, . . . ,K do
3: compute

qa(t) = Q(1 − 1

t(log t)c , λ
t
a)

(with the convention qa(0) = 1, qa(1) = 1)
4: end for
5: draw an arm At+1 ∈ arg maxa=1...K qa(t)
6: get reward Xt+1 =XAt+1,t+1 and update Πt+1 according to (2.3)
7: end for

The use of fixed-level quantiles of (λta)1≤a≤K as confidence indices appears in [Pavlidis et al., 2008]
as a special case of the Interval Estimation method. To be more specific, denote by Q(t, ρ) the quantile
function associated to the distribution ρ, such that Pρ(X ≤ Q(t, ρ)) = t. [Pavlidis et al., 2008] use indices
of the form Q(1 − α,λta) for 1 ≤ a ≤ K, with α chosen to be equal to a few percents. In Bayes-UCB,
we acknowledge the strong similarity between these posterior indices based on quantiles and the upper
confidence bounds used in UCB and its variants: we consider indices of the formQ(1−αt, λta), where αt
is of order 1/t. As will be shown in Section 2.3 below for the case of binary rewards, this 1/t rate is deeply
connected with the form of the upper confidence bounds used in variants of UCB that are known to reach
the bound in (2.2). It is conjectured that no other rate can provide an algorithm that reaches the bound
in (2.2) and that, furthermore, choices of the form 1/tβ with β < 1 do not even guarantee a finite-time
logarithmic control of the regret. As a more pragmatic comment, we also observed in experiments not
reported here that, in the case of binary rewards, the empirical performance of the method were superior
when using αt ≡ 1/t. We are now ready to state the generic version of the Bayes-UCB algorithm.

In Algorithm 1, the horizon-dependent term (log t)c is an artifact of the theoretical analysis that
enables us, for c ≥ 5, to both guarantee finite-time logarithmic regret bounds and achieve asymptotic
optimality with respect to (2.2) in Bernoulli bandit models. But in simulations, the choice c = 0 actually
proved to be the most satisfying. In cases where the prior Π0 is chosen to correspond to an improper
prior (see, e.g., the Gaussian models below), qa(t) is not defined when t = 1. In those cases it suffices, as
is commonly done in most bandit algorithms, to make sure that initially one gathers a sufficient number
of observations to guarantee that the posterior Πt indeed becomes proper, for instance by drawing each
arm a few times.

As such, Algorithm 1 corresponds to a general principle that does not even require the prior Π0 to
be chosen as a product distribution: Bayes-UCB can still compute one index for each arm, based on its
marginal posterior distribution. In this case, the posterior update no longer reduces to (2.3) but is a global
update on the joint distribution Πt. In fact, the GP-UCB algorithm for Gaussian processes [Srinivas et al.,
2010] can be seen as a variant of Bayes-UCB in which dependencies, in contrast, are of fundamental
importance. This point will be later emphasized in Chapter 4, but here we mostly consider cases where
the coordinates of θ are independent. Implementing Algorithm 1 may require additional tools from
the Bayesian computational toolbox to perform (or approximate) the Bayesian update of Πt and/or to
compute (or, again, approximate) the quantiles qa(t). We first discuss several important models for which
Algorithm 1 corresponds to a a procedure that can be implemented exactly without the need to resort
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to numerical approximation (an example of the opposite situation will be considered in Section 2.4.3
below).

Bayes-UCB for one-parameter exponential family bandits. In the case where the reward distribu-
tions belong to a one-parameter canonical exponential family, that is νθa(x) = A(x) exp(θax − b(θa)),
with θa ∈ R, as recalled in Section 1.3.1, it is well known that the prior distribution π0

a can be cho-
sen to belong to the conjugate family so that the posteriors πta are all members of the same con-
jugate family, indexed by their sufficient statistics. As shown in Figure 1.4 of Chapter 1, in many
cases of interest, the posterior distribution on the mean (λta) then belong to a well-known paramet-
ric family of distribution, for which the quantile qa(t) is easy to compute. For Bernoulli rewards,
for instance, using the prior Beta(a, b) for the probability of observing a non-zero reward, we have
πta = Beta(a + Sa(t), b + Na(t) − Sa(t)), where Sa(t) = ∑ti=1 1{At = j}Xt is the sum of rewards
gathered up to time t. Likewise, for exponential rewards with a Γ(c, d) prior on the parameter, πta =
Γ(c +Na(t), d + Sa(t)) and λta = InvΓ(c +Na(t), d + Sa(t)).

As will be proved below for binary rewards, the Bayes-UCB algorithm in that case is surprisingly
related to the KL-UCB algorithm.

Bayes-UCB for Gaussian bandits with unknown means and variances. In general exponential fam-
ily models, the Bayesian update is usually still computable explicitly (at least when using conjugate
priors) but the relationship between the parameter θa and the expectation µa is less direct. A significant
case where Bayes-UCB corresponds to a simple and efficient algorithm is when the rewards are assumed
to be Gaussian, with both unknown mean µa and unknown variance σ2

a. For simplicity, we consider im-
proper non-informative priors on each arm, that is, π0

a(µa, σa) = 1/σ2
a. It is well known that the marginal

posterior distribution of µa at time t is then such that

µa − Sa(t)/Na(t)√
S

(2)
a (t)/Na(t)

RRRRRRRRRRRRRR
X1, ...,Xt ∼ T (Na(t) − 1) ,

where

S(2)
a (t) =

(∑ts=1 1{As = a}X2
s ) − S2

a(t)/Na(t)
Na(t) − 1

,

and T (k) denote the Student-t distribution with k degrees of freedom. Therefore Bayes-UCB is the
index policy associated to upper confidence bound

qa(t) =
Sa(t)
Na(t)

+

¿
ÁÁÀS

(2)
a (t)
Na(t)

Q(1 − 1

t
,T (Na(t) − 1)) ,

omitting the (log t)c factor for clarity. The Bayes-UCB index above is related to the index used in the
UCB1-norm algorithm of [Auer et al., 2002a], where the quantile is replaced by

√
16 log(t − 1), which

is obtained as an upper bound of Q(1 − 1/t4,T (Na(t) − 1)). The practical performances of these two
variants (Bayes-UCB and UCB1-norm) will be illustrated in Section 2.4 below.

Bayes-UCB for linear bandits. We end this section with the more elaborate case of linear bandits in
which the arms can be numerous but share a strong common structure. We will consider the case of
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Gaussian rewards with a multivariate Gaussian prior for the parameter θ ∈ Rd that defines the model.
The arms are fixed vectors U1, ..., UK ∈ Rd. In this model, the choice of arm At = a at time t results in
the reward

yt = UTa θ + σ2εt,

where εt is some centered noise and MT denotes the transpose of a matrix (or vector) M . In the sequel,
we assume that εt ∼ N (0,1). Following [Rusmevichientong and Tsitsiklis, 2010], our goal is to find
algorithms A that minimize the frequentist regret

Rθ(T,A) = Eθ [
T

∑
t=1

( max
1≤a≤K

(UTa θ) −UTAtθ)] .

Denoting by Yt = [y1, ..., yt]T ∈ Rd the vector of rewards and Xt = [UA1 ...UAt]T ∈ Mt,d(R) the design
matrix, the model rewrites:

Yt =Xtθ + σ2Et , where Et ∼ N(0, σ2Idt) .
The Bayesian modeling here consists in a Gaussian N (0, κ2Idd) prior on θ, assuming the noise param-
eter σ2 to be known. The posterior is

θ∣Xt, Yt ∼ N (Mt,Σt) ,
where

Mt = (XT
t Xt + (σ/κ)2Id)−1XT

t Yt and Σt = σ2(XT
t Xt + (σ/κ)2Id)−1 .

The posterior distribution λta on µa = U ′
aθ is therefore N(UTa Mt, U

T
a ΣtUa). Hence, using the notation

where ∣∣x∣∣A ∶=
√
xTAx, Bayes-UCB selects an arm that maximizes the index:

qa(t) = UTa Mt + ∣∣Ua∣∣ΣtQ(1 − 1

t
,N(0,1)) .

[Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011] propose an
optimistic approach for this problem based on a confidence ellipsoid located around the least-square
estimate θ̂t. This method is equivalent to choosing arm a such that Uaθ̂t+ρ(t)∣∣Ua∣∣(XT

t Xt)−1 is maximal.

For an improper prior (κ = ∞), we have Mt = θ̂t and Σt = σ2(XT
t Xt)−1. Thus, this approach can

again be interpreted as a particular case of Bayes-UCB. In Section 2.4.3, we consider the case where θ
is a sparse vector. It is not obvious how to design an UCB algorithm for this case. Yet, we show that
Bayes-UCB can be implemented, using for example Gibbs sampling.

In Chapter 4, we will consider contextual linear bandits, a more general framework that encompasses
the (static) linear bandit introduced here. We will provide some theoretical guarantees for Bayes-UCB
in this more general framework.

2.3 Analysis of the Bayes-UCB algorithm for binary rewards

In this section, we focus on the case where the rewards have a Bernoulli distribution, and when the
prior distribution on each arm is the Beta(1,1); that is the uniform distribution U([0,1]). In this case,
recall the Bayes-UCB algorithm is the index policy associated to

qa(t) = Q(1 − 1

t(log(t))c ; Beta(Sa(t) + 1,Na(t) − Sa(t) + 1) .

We show below that the Bayes-UCB algorithm is optimal, in the sense that it reaches the lower-bound (2.2)
of Lai and Robbins.
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2.3.1 Asymptotic optimality and links with frequentist algorithms

Theorem 2.1. The Bayes-UCB algorithm with a uniform prior on the means and with the parameter
c = 5 satisfies, for every ε > 0 and for T such that

logT + 5 log logT ≥ d(µ2, µ1)
1 + ε exp( 8

(µ1(1 − µ1))2

(1 + ε)2

ε2d(µ2, µ1)2
) ,

Eθ[Na(T )] ≤ 1 + ε
d(µa, µ1)

log(T ) +
√

logT + 5 log logT

¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ ( 1 + ε
d(µa, µ1)

+ 2e + 3

1 − µ1
) log logT + 27 + 2(1 + ε)2 (d

′(µa, µ1)
d(µa, µ1)

)
2

.

The analysis relies on the following tight bounds we have on the index qa(t).

Lemma 2.2. Denoting by d(x, y) the KL divergence between Bernoulli distributions with parameters x
and y, the posterior quantile qa(t) used by the Bayes-UCB algorithm with parameter c = 5 satisfies

ũa(t) ≤ qa(t) ≤ ua(t) ,

where

ua(t) = argmax
x> Sa(t)

Na(t)

{d( Sa(t)
Na(t)

, x) ≤ log(t) + 5 log(log(t))
Na(t)

} ,

ũa(t) = argmax
x> Sa(t)

Na(t)+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d( Sa(t)

Na(t) + 1
, x) ≤

log ( t
Na(t)+2) + 5 log(log(t))

(Na(t) + 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Surprisingly, the Bayesian quantiles match the upper confidence bounds based on Kullback-Leibler
divergence used by variants of the KL-UCB algorithm of [Cappé et al., 2013]. The quantile qa(t) is
exactly upper bounded by the KL-UCB index ua(t) using the exploration rate f(t) = log t + 5 log log t,
whereas it is upper bounded by a biased version of the index used by the KL-UCB+ variant, that uses
f(t/Na(t)) as an exploration rate (see Definition 1.15 in Chapter 1).

Remark 2.3. If Bayes-UCB were defined more generally depending on some exploration function f(t)
as the algorithm choosing at time t + 1 the arm maximizing the index

qa(t) = Q (1 − e−f(t), πta) ,

then following the proof of Lemma 2.2, one would have qa(t) ≤ ua(t) were ua(t) is the KL-UCB index
with exploration function f(t), i.e.

ua(t) = sup{q ≥ µ̂a(t) ∶ Na(t)d(µ̂a(t), q) ≤ f(t)}.

Thanks to this link with the KL-UCB indices, the finite-time analysis we provide share similarities
with that of [Cappé et al., 2013]. The main difficulty is to deal with the bias and the alternative ex-
ploration rate that appear in the indices ũa(t), since no finite-time analysis of KL-UCB+ existed in the
literature. Following the same lines as our analysis of Bayes-UCB, it is now possible to give a finite-time
analysis for the two variants KL-UCB+ and KL-UCB-H+, leading to the following result.
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Proposition 2.4. For bandits with rewards in an exponential family with associated divergence d(x, y) =
KL(νḃ−1(x), νḃ−1(y)), the following instances of KL-UCB+ and KL-UCB-H+, defined as the index policies

respectively associated to the index u+a(t) and uH,+a (t) given by

u+a(t) = sup{q ≥ µ̂a(t) ∶ Na(t)d (µ̂a(t), q) ≤ log
t

Na(t)
+ 5 log log

t

Na(t)
}

uH,+a (t) = sup{q ≥ µ̂a(t) ∶ Na(t)d (µ̂a(t), q) ≤ log
T

Na(t)
+ 5 log log

T

Na(t)
}

are asymptotically optimal with respect to Lai and Robbins’ lower bound.

2.3.2 Bayes-UCB beyond Bernoulli distributions

Albeit being designed for Bernoulli distributions, as explained by [Cappé et al., 2013], the KL-UCB
algorithm using the divergence associated to Bernoulli rewards can also be used for rewards distributions
bounded in [0,1], without any modification and with the same theoretical guarantees.

For Bayes-UCB, a slight modification of the original algorithm, introduced by [Agrawal and Goyal,
2012] for Thompson Sampling (an other Bayesian algorithm studied in Chapter 3), yields a provably
efficient algorithm for bandit models with bounded rewards. A bounded bandit model with means
µ1, . . . , µK can be ‘transformed’ into a Bernoulli bandit model with same means by introducing for
each arm the reward process X̃a,t = (Ua,t ≤ Xa,t) where (Xa,t) is the original reward process of arm a
and (Ua,t)t∈N∗ is an independent sequence of i.i.d. random variables uniform on [0,1]. The modified al-
gorithm proceeds as follows: if arm a is drawn at time t and rewardXt =Xa,t is observed, a transformed
binary reward X̃t = (Ut ≤ Xt) is collected, where the (Ut) are i.i.d. uniform random variables. Letting
S̃a(t) = ∑ts=1 1(As=a)X̃s, the arm chosen at time t + 1 maximizes the index

q̃a(t) = Q(1 − 1

t(log t)5
; Beta (S̃a(t) + 1,Na(t) − S̃a(t) + 1)) . (2.4)

Theorem 2.1 also holds for this algorithm, whereas there is no provable guarantee if the original Bayes-
UCB algorithm designed for Bernoulli rewards is applied to bounded rewards. Indeed, the sum of ‘true’
rewards Sa(t) is no longer an integer, and Lemma 2.2 on which our analysis is based would no longer
hold (one can only control the tail —and thus the quantiles— of Beta distributions with integer coeffi-
cients).

The asymptotic optimality of Bayes-UCB is established only for Bernoulli distributions, but we
believe this algorithm is also asymptotically optimal for other distributions in an exponential family.
For Gaussian distributions with known variance σ2, Bayes-UCB with a normal (or improper) prior on
the mean can also be proved to be asymptotically optimal, since tight bounds can be obtained for the
quantiles of the (Gaussian) posterior distribution (using for example Theorem 1.2.3. of [Durrett, 2010]).
For Thompson Sampling, we also propose a finite-time analysis for Bernoulli rewards, and extend it
to rewards in an exponential family. This extension notably relies on an upper bound on the tail of
each posterior distribution (see Lemma 3.11). Such a result could be used too in an analysis of Bayes-
UCB, but one would also need either a lower bound of the tail of the posterior, or (as in the analysis of
Thompson Sampling) a result showing separately that the optimal arm has to be drawn a lot. We leave
the generalization of Bayes-UCB to exponential families as future work.

We now give the proof of Lemma 2.2 and Theorem 2.1, that hold for Bernoulli bandit models.
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2.3.3 Finite-time analysis

We start by giving a sketch of the proof of Lemma 2.2. This proof is detailed in Section 2.5.
Lemma 2.2 relies on two ingredients. The first is a connection between Beta and Binomial distribu-
tions: for any integers a, b, the distribution Beta(a, b) is the law of the a-th order statistic among a+b−1
uniform random variables, so that

P(X ≥ x) = P(Sa+b−1,x ≤ a − 1) = P(Sa+b−1,1−x ≥ b) ,

where Sn,x denotes a binomial distribution with parameters n and x. Bounding the beta quantiles then
boils down to controlling the binomial tails, which is achieved by our second ingredient, Lemma 2.5
below. The upper bound in inequality (2.5) is easily obtained using Chernoff inequality, whereas the
lower bound follows from a careful application of the method of types (adapting Lemma 2.1.9. of
[Dembo and Zeitouni, 2010]).

Lemma 2.5. If Sn,x is binomial with parameters n and x and k is an integer such that k ≥ nx,

e−nd(
k
n
,x)

n + 1
≤ P(Sn,x ≥ k) ≤ e−nd(

k
n
,x). (2.5)

We now prove Theorem 2.1, the proof of intermediate lemmas being postponed to Section 2.5. To
ease the notation, we denote by P and E (in place of Pθ and Eθ) the probability and expectation for
a fixed Bernoulli bandit model parameterized by θ = (µ1, . . . , µK) . We recall some useful notations,
already defined in the previous chapter: µ̂a(t) = Sa(t)/Na(t) is the empirical mean of rewards obtained
from arm a up to the end of round t (with the convention that it is set to zero when Na(t) = 0). (Ya,k) is
the sequence of successive rewards obtained from arm a. It is i.i.d. with Bernoulli distribution of mean
µa and we let µ̂a,s = 1

s ∑
s
k=1 Ya,k.

Proof of Theorem 2.1. Assume without loss of generality that arm 1 is optimal and let a ≠ 1 be a
sub-optimal arm. Following the classic regret analysis for index policies discussed in Section 1.2.3 of
Chapter 1, one would use the following decomposition of the event (At+1 = a):

(At+1 = a) ⊆ (µ1 ≥ q1(t))⋃(µ1 ≤ q1(t),At+1 = a) ⊆ (µ1 ≥ q1(t))⋃(µ1 ≤ qa(t),At+1 = a) ,

using that if a is drawn at time t+1, qa(t) > q1(t). However, for the purpose of our analysis, we introduce
here a slightly different decomposition, that depends on the sequence

gt =
√

2

log(t) .

Using the results and notation of Lemma 2.2, we write

(At+1 = a) ⊆ (µ1 − gt ≥ q1(t))⋃(µ1 − gt ≤ qa(t),At+1 = a)
⊆ (µ1 − gt ≥ ũ1(t))⋃(µ1 − gt ≤ ua(t),At+1 = a) . (2.6)

We analyse the Bayes-UCB algorithm with an initialization phase that draws each arm once, although
no initialization is required in principle. This assumption is needed to make sure that when t ≥K, all the
indices ua(t), ũa(t) (that do depend on Na(t), unlike the quantile qa(t)), are well defined. One has

E[Na(T )] = 1 +E [
T−1

∑
t=K

1(At+1=a)] ,
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which yields, using the decomposition (2.6),

E[Na(T )] ≤ 1 +
T−1

∑
t=K

P (µ1 − gt ≥ ũ1(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+
T−1

∑
t=K

P (µ1 − gt ≤ ua(t),At+1 = a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

.

Term A will be small (o(logT )) since arm 1 is not likely to be ‘under-estimated’ by its index ũ1(t) at
each round. To show this, we have to adapt the proof of the self-normalized informational inequality
introduced by [Garivier and Cappé, 2011], stated as Lemma 1.9 in the previous chapter, to the alternative
exploration rate and the bias of index ũ1(t). This is done in Lemma 2.6, and the reason why the extra
term gt is needed to handle the alternative exploration rate appears in its proof.

Lemma 2.6.

T−1

∑
t=K

P (µ1 − gt ≥ ũ1(t)) ≤ 2e + 3

1 − µ1
log logT + 26

To upper bound term B, we start by using that gNa(t) ≥ gt and x ↦ d+(µ̂a(t), x) is non-decreasing,
where d+(x, y) = d(x, y)1(x<y):

T−1

∑
t=K

P (µ1 − gt ≤ ua(t),At+1 = a) ≤
T−1

∑
t=K

P (At+1 = a,Na(t)d+(µ̂a(t), µ1 − gt) ≤ f(T ))

≤
T−1

∑
t=K

P (At+1 = a,Na(t)d+(µ̂a(t), µ1 − gNa(t)) ≤ f(T ))

Summing over the possible values of Na(t) and interverting the sums to get rid of the self-normalized
quantities (a technique already described in Lemma 1.10 in Chapter 1), yields

(B) ≤
T

∑
s=1

P (sd+ (µ̂a,s, µ1 − gs) ≤ f(T )) .

Lemma 2.7 below permits to conclude the proof. A similar term is bounded in Appendix A.2. of [Cappé
et al., 2013]: we adapt their proof to the presence of the extra term gs.

Lemma 2.7. Let

Na(ε) =
d(µa, µ1)

1 + ε exp( 8

(µ1(1 − µ1))2

(1 + ε)2

ε2d(µa, µ1)2
)

For T such that f(T ) ≥ Na(ε), one has

T

∑
s=1

P (sd+ (µ̂a,s, µ1 − gs) ≤ f(T )) ≤ (1 + ε) f(T )
d(µa, µ1)

+
√
f(T )

¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ 2(1 + ε)2 (d
′(µa, µ1)
d(µa, µ1)

)
2

.

◻
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Figure 2.1: Cumulated regret for the two armed-bandit problem with µ1 = 0.1, µ2 = 0.2 (left) and
µ1 = 0.45, µ2 = 0.55 (right).

2.4 Numerical experiments

2.4.1 Binary bandits

Numerical experiments have been carried out in a frequentist setting for bandits with Bernoulli re-
wards: for a fixed parameter θ and an horizon T , N bandit games with Bernoulli rewards are repeated
for a given strategy. The main purpose of these numerical experiments is to compare the performance
of Bayes-UCB in terms of cumulated regret with those of UCB and KL-UCB. These are presented in
Figure 2.1, where the regret is averaged over N = 5000 simulations for two different two-armed bandit
problems with horizon T = 500. We also include in the comparison the Bayesian algorithm based on
Finite-Horizon Gittins indices (FH-Gittins). Whereas the performance of FH-Gittins are more striking in
the left situation (0.1/0.2) than in the right one (0.45/0.55), Bayes-UCB improves equally over KL-UCB
in all scenarios.

The horizon T had to be chosen quite small because of the numerical complexity of the FH-Gittins
algorithm. In the next chapter, we will display numerical results in the Bernoulli case for larger horizons,
also including Thompson Sampling.

2.4.2 Gaussian rewards with unknown means and variances

For the bandit problem with Gaussian rewards with unknown mean and variance, few algorithms
have been proposed. We compare Bayes-UCB with UCB1-norm and UCB-Tuned, two algorithms intro-
duced by [Auer et al., 2002a]. UCB1-norm is designed for Gaussian rewards and a logarithmic upper
bound on its regret is given, whereas UCB-Tuned relies on estimates of the variance of each arm and
can be used for general distributions, but without any theoretical guarantee. Figure 2.2 presents the re-
gret in a 4-arms problem, on a horizon T = 10000, averaged over N = 1000 simulations. UCB-Tuned
seems unadapted to the problem, whereas UCB1-norm and Bayes-UCB achieve a regret proving that the
asymptotic lower bound of Burnetas & Katehakis is pessimistic for such short horizons (see also [Gariv-
ier and Cappé, 2011]). Bayes-UCB outperforms UCB1-norm, mostly because of the more appropriate
choice of a quantile of order 1 − 1/t.
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Figure 2.2: Regret in a 4-arms problem with parameters µ = [1.8 2 1.5 2.2], σ = [0.5 0.7 0.5 0.3].

2.4.3 Sparse linear bandits

The linear bandit model presented in Section 2.2 relies on linear regression. Many recent works
have highlighted the importance of sparsity issues in this context. We show that Bayes-UCB can address
sparse linear bandit problems by using a prior that encourages sparsity of the parameter θ. This ‘spike-
and-slab’ prior is defined as follows: the coordinates of θ are independent, with distribution

θa ∼ εδ0 + (1 − ε)N(0, κ2) .
Let C be the random vector in Rd indicating the non-zero coordinates of θ: Ca = 1(θa≠0). If J denotes
a set of indices, let Xt,J ∈ Mt,∣J ∣(R) be the submatrix of the design matrix Xt with columns in J only
and θJ ∈ R∣J ∣ the subvector with coordinates in J .

Given C and Yt, denote by J1 the set of non-zero coordinates in C. The subvector θJ1 is the solution
of a Bayesian regression problem with prior N(0, κ2I∣J1∣), hence

θJ1 ∣C,Yt ∼ N ((X ′
t,J1

Xt,J1 + (σ/κ)2I∣J1∣)
−1X ′

t,J1
Yt; σ

2(X ′
t,J1

Xt,J1 + (σ/κ)2I∣J1∣)
−1) .

The marginal distribution of C given Y is

P (C ∣Y ) ∝ ε∣J0∣(1 − ε)∣J1∣N (Yt∣0, κ2Xt,J1X
′
t,J1

+ σ2It) .

The normalization term involves a sum over 2d possible configurations of C. When d is small, the exact
Bayes-UCB indices can be computed, as the dot-productU ′

aθ follows a mixture of Gaussian distributions.
For higher dimensions, one can use Gibbs sampling to sample from C ∣Y , and produce samples from θ∣Y
that lead to approximated values of qa(t).

Numerical simulation have been carried out for a sparse problem in dimension d = 10 where θ only
has two non-zero coordinates. In Figure 2.3 we compare the regret of Bayes-UCB for three different
priors: the general multivariate Gaussian prior discussed in Section 2.2, an oracle Gaussian prior on the
first two coordinates only (meaning that the sparsity pattern is known) and Bayes-UCB with a sparse
prior. The 20 arms of the problem are chosen randomly on the unit sphere and the regret is averaged
over N = 100 simulations for an horizon T = 1000. As expected, the use of a sparsity-inducing prior in
this case results in an algorithm with greatly enhanced performance. Such experiments should now be
carried out in larger dimension using more sophisticated MCMC algorithms, designed for sampling from
sparsity-inducing priors in a regression model, like the STMALA algorithm of [Schreck et al., 2013].
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Figure 2.3: Cumulated regret in a 20 arms problem for Bayes-UCB with different prior distributions.

2.5 Elements of proof

2.5.1 Proof of Lemma 2.2

If X ∼ Beta(a, b), using Lemma 2.5 and the link between the tail of Beta and binomial distribution
mentioned above, we get, for x > a−1

a+b−1 ,

e−(a+b−1)d( a−1
a+b−1

,x)

a + b ≤ P(X ≥ x) ≤ e−(a+b−1)d( a−1
a+b−1

,x)

Let q1−γ = Q(1 − γ,Beta(a, b)). Since :

(a + b − 1)d( a − 1

a + b − 1
, x) ≥ log(1/γ) ⇒ x ≥ q1−γ

we have that :

x∗+ = argmin
x> a−1

a+b−1

{(a + b − 1)d( a − 1

a + b − 1
, x) ≥ log(1/γ)}

= argmax
x> a−1

a+b−1

{(a + b − 1)d( a − 1

a + b − 1
, x) ≤ log(1/γ)}

is still an upper bound for the quantile q1−γ . The same reasoning shows q1−γ is lower-bounded by

x∗− = argmax
x> a−1

a+b−1

{(a + b − 1)d( a − 1

a + b − 1
, x) ≤ log( 1

γ(a + b))}

Moreover we can easily show that

x∗+ ≤ argmax
x> a−1

a+b−2

{(a + b − 2)d( a − 1

a + b − 2
, x) ≤ log(1/γ)}

using mainly the fact that y ↦ d(y, x) is decreasing for y < x.We get the final result using a = Sa(t) +
1,b = Na(t) − Sa(t) + 1 and γ = 1/(t log(t)c).
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2.5.2 Proof of Lemma 2.6

To upper bound (A) = ∑T−1
t=K P (µ1 − gt ≥ ũ1(t)) we start by splitting the sum according to the num-

ber of draws of the optimal arm.

(A) ≤
T−1

∑
t=K

P (µ1 − gt > ũ1(t) , N1(t) + 2 ≤ log2(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A1

+
T−1

∑
t=K

P (µ1 − gt > ũ1(t) , N1(t) + 2 ≥ log2(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A2

.

To upper bound term A1, we use that log ( t
Na(t)+2) in ũ1(t) is lower-bounded by log ( t

log(t)2 ):

(µ1 − gt > ũ1(t),N1(t) + 2 ≤ (log t)2)

= ((N1(t) + 1)d+ ( S1(t)
N1(t) + 1

, µ1 − gt) ≥ log
t

N1(t) + 2
+ 5 log log t,N1(t) + 2 ≤ (log t)2)

⊆ ((N1(t) + 1)d+ ( S1(t)
N1(t) + 1

, µ1 − gt) ≥ log
t

log2 t
+ 5 log(log t))

⊆ ((N1(t) + 1)d+ ( S1(t)
N1(t) + 1

, µ1) ≥ log t + 3 log(log t)) .

Hence,

(A1) ≤
T−1

∑
t=K

P(∃s ∈ {1, . . . t} ∶ (s + 1)d+ ( S1,s

s + 1
, µ1) ≥ log(t) + 3 log log(t)) ,

where S1,s = ∑sk=1 Y1,k is the sum of the s first rewards from arm 1. An adaptation of the proof of
Lemma 1.9 yields the following self-normalized inequality, whose proof is given below.

Lemma 2.8.

P(∃s ∈ {1, . . . , t} ∶ (s + 1)d+ ( S1,s

s + 1
, µ1) ≥ δ) ≤

1

1 − µ1
(δ log(t) + 1) exp(−δ + 1).

Lemma 2.8 leads to the upper-bound

(A1) ≤
e

1 − µ1

T−1

∑
t=K

log2(t) + 3 log(t) log(log(t)) + 1

t(log(t))3

≤ e

1 − µ1
(2 + 3

e
)
T−1

∑
t=K

1

t log(t) ≤ 2e + 3

1 − µ1
log logT.

On the events involved in term A2, the optimal arm has been sufficiently drawn to be well estimated,
so we use that

(µ1 − gt > ũ1(t)) ⊆ (µ1 − gt >
S1(t)

N1(t) + 1
) ⊆ (µ1 − gt ≥

S1(t)
N1(t)

− 1

N1(t) + 1
) .
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Without the term gt, the probability of the above event wouldn’t be small, but here one can write

(A2) ≤
T−1

∑
t=K

P((µ1 − gt ≥
S1(t)
N1(t)

− 1

N1(t) + 1
) ∩ (N1(t) > log(t)2 − 2))

≤ 5 +
T−1

∑
t=6

P(∃s ∈ [log(t)2 − 2; t] ∶ µ1 − gt ≥
∑sr=1 Y1,r

s
− 1

s + 1
)

≤ 5 +
T−1

∑
t=6

P(∃s ∈ [log(t)2 − 2; t] ∶
s

∑
r=1

(µ1 − Y1,r) ≥ gts − 1)

We start the sum at t = 6 since when t ≥ 6 one has simultaneously log(t)2 − 2 ≥ 1 and ∀s ≥ log(t)2 −
2, gts − 1 ≥ 0. For each t, noting t′ = log(t)2 − 2, we use a peeling and split the interval [t′; t] in smaller
intervals of the form [2kt′; 2k+1t′[ on which we will use a maximal inequality.

P(∃s ∈ [t′; t] ∶
s

∑
r=1

(µ1 − Y1,r) ≥ gts − 1) =
log(t/t′)
log(2)
∑
k=0

P(∃s ∈ [2kt′; 2k+1t′[ ∶
s

∑
r=1

(µ1 − Y1,r) ≥ gts − 1)

≤
∞
∑
k=0

P(∃s ∈ [2kt′; 2k+1t′[ ∶
s

∑
r=1

(µ1 − Y1,r) ≥ gt2kt′ − 1)

≤
∞
∑
k=0

P(∃s ∈ [1; 2k+1t′[ ∶
s

∑
r=1

(µ1 − Y1,r) ≥ gt2kt′ − 1)

≤
∞
∑
k=0

exp
⎛
⎝
−

2 (gt2kt′ − 1)2

2k+1t′
⎞
⎠
≤

∞
∑
k=0

exp
⎛
⎝
−2k

(gtt′ − 1
2k

)2

t′
⎞
⎠
≤

∞
∑
k=0

e−
(gtt′−1)2

t′ (k+1),

where we use that 2k ≥ 1 + k. And, with the expressions gt and t′,

∞
∑
k=0

e−
(gtt′−1)2

t′ (k+1) = 1

e
(gtt′−1)2

t′ − 1

= 1

exp
⎛
⎝

2
(log2 t− 1√

2

√
log t−2)

2

log3 t−2 log t

⎞
⎠
− 1

∼
t→∞

1

t2

This function of t is the general term of a convergent series. A numerical evaluation of the sum of this
series finally yields (A2) ≤ 26, which concludes the proof.

◻

Proof of Lemma 2.8. As in the proof of Lemma 1.9 (given in Appendix A.2), we start with a peeling
argument, but on the values of s + 1. Let γ > 1.

P(∃s ∈ {1, . . . , t} ∶ (s + 1)d+ ( S1,s

s + 1
, µ1) ≥ δ) (2.7)

≤
⌈ log(t)

log(γ) ⌉

∑
k=1

P(γk−1 ≤ s + 1 < γk , (s + 1)d+ ( S1,s

s + 1
, µ1) ≥ δ)

≤
⌈ log t

log(γ) ⌉

∑
k=1

P(Ek) with Ek ∶= (γk−1 ≤ s + 1 < γk , d+ ( S1,s

s + 1
, µ1) ≥

δ

γk
)
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If k is such that δ
γk

≥ d(0, µ1) clearly P(Ek) = 0. Otherwise, one can introduce a unique zk such that

S1,s

s + 1
< zk < µ1 and d(zk, µ1) =

δ

γk
.

As Bernoulli distribution belong to an exponential family, we have from Lemma 1.4 that

d(zk, µ1) = max
λ∈R

{λzk − φµ1(λ)}

where φµ1(λ) = EY ∼B(µ1)[eλY ]. The maximum is obtained for λk = log zk
1−zk − log µ1

1−µ1
. Thus there ex-

ists λk < 0 such that d(zk, µ1) = λkzk −φµ1(λk) and one can check that φµ1(λk) = log 1−µ1

1−zk . Therefore,

Ek ⊂ (γk−1 ≤ s + 1,
S1,s

s + 1
≤ zk, λkzk − φµ1(λk) =

δ

γk
)

⊂ ( S1,s

s + 1
≤ zk, λkzk − φµ1(λk) ≥

δ

γ(s + 1))

⊂ (λk
S1,s

s + 1
− φµ1(λk) ≥

δ

γ(s + 1))

⊂ (λkS1,s − (s + 1)φµ1(λk) ≥
δ

γ
)

For every λ ∈ R, W λ
s = exp (λS1,s − (s + 1)φµ1(λ)) is a martingale. Thus,

P(Ek) ≤P(W λk
t ≥ exp( δ

γ
)) ≤

Markov
e
− δ
γE [W λk

t ]

≤
super-martingale

e
− δ
γE[W λk

0 ] = e−
δ
γ e−φµ1(λk) = 1 − zk

1 − µ1
e
− δ
γ ≤ 1

1 − µ1
e
− δ
γ .

Summing over k and letting γ = δ
δ−1 > 1, (2.7) is upper bounded by

1

1 − µ1
( log(t)

log (δ/(δ − 1)) + 1) exp(−δ + 1) ≤ 1

1 − µ1
(δ log(t) + 1) e−δ+1,

which concludes the proof.

2.5.3 Proof of Lemma 2.7

The quantity to be upper bounded is

(B)′ ∶=
T

∑
s=1

P (sd+ (µ̂a,s, µ1 − gs) ≤ f(T )) .

The function g(q) = d+(µ̂a,s, q) is convex and differentiable and g′(q) = q−µ̂a,s
q(1−q)1(µ̂a,s≤q), thus

d+(µ̂a,s, µ1 − gs) ≥ d+(µ̂a,s, µ1) − gs
µ1 − µ̂a,s
µ1(1 − µ1)

≥ d+(µ̂a,s, µ1) − gs
2

µ1(1 − µ1)
.
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And

(B)′ ≤
T

∑
s=1

P(d+(µ̂a,s, µ1) ≤
f(T )
s

+ 2gs
µ1(1 − µ1)

) .

Let ε > 0. Introducing

KT ∶= ⌈(1 + ε)f(T )
d(µa, µ1)

⌉

we can split the sum:

(B)′ ≤KT +
T

∑
s=KT+1

P(d+(µ̂a,s, µ1) ≤
f(T )
s

+ bT) , with bT = 2gKT
µ1(1 − µ1)

.

If Na(ε) is chosen as in the statement of Lemma 2.7, one has

f(T ) ≥ Na(ε) ⇒
f(T )
s

+ bT ≤ d(µa, µ1)
1 + ε + bT ≤ d(µa, µ1).

For such values of T , for each s ≥KT +1 there exists µ∗(s) ∈]µa;µ1[ such that d(µ∗(s), µ1) = f(T )
s +bT .

Then, using Hoeffding inequality and comparing with an integral,

(B)′ ≤KT + ∫
∞

KT
exp(−2s(µ∗(s) − µa)2)ds .

Using the convexity of the function x ↦ d(x,µ1), a lower bound on µ∗(s) − µa can be obtained, as in
Appendix 2 of [Cappé et al., 2013]:

µ∗(s) − µa ≥
d(µa, µ1) − [f(T )

s + bT ]
−d′(µa, µ1)

[Cappé et al., 2013] also provide tight upper bound on the resulting integrals, and following their ap-
proach allows us to conclude the proof:

(B)′ ≤ KT + ∫
∞

KT
exp

⎛
⎝
− 2s

d′(µa, µ1)2
(f(T )

s
+ bT − d(µa, µ1))

2⎞
⎠
ds

≤ KT + f(T )∫
∞

1+ε
d(µa,µ1)

exp(− 2uf(T )
d′(µa, µ1)2

(1

u
+ bT − d(µa, µ1))

2

)du

≤ KT + f(T )∫
2(1+ε)
d(µa,µ1)
1+ε

d(µa,µ1)
exp

⎛
⎝
−

2(1 + ε) ( 1
u + bT − d(µa, µ1))

2

d(µa, µ1)d′(µa, µ1)2
f(T )

⎞
⎠
du

+f(T )∫
∞
2(1+ε)
d(µa,µ1)

exp(− 2uf(T )
d′(µa, µ1)2

d(µa, µ1)2

4(1 + ε)2
)du

≤ KT + f(T ) 4(1 + ε)2

d(µa, µ1)2 ∫
∞

0
exp(−v2f(T ) 2(1 + ε)

d(µa, µ1)d′(µa, µ1)2
)dv

+2(1 + ε)2 (d
′(µa, µ1)
d(µa, µ1)

)
2

≤ KT +
√
f(T )

¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3
+ 2(1 + ε)2 (d

′(µa, µ1)
d(µa, µ1)

)
2

.
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Chapter 3

Thompson Sampling

In this chapter, we propose a finite-time analysis of Thompson Sampling that proves its asymptotic
optimality in the context of regret minimization, when the rewards are Bernoulli distributed and the
algorithm uses a uniform prior on the means. This work is a joint work with Nathaniel Korda and Rémi
Munos, and was presented to the conference ALT in 2012 ([Kaufmann et al., 2012b]). In a follow-up
work ([Korda et al., 2013]), we also proved that Thompson Sampling with a specific prior, the Jeffreys’
prior is asymptotically optimal when the rewards belong to an exponential family.

A large part of this chapter is devoted to the presentation of our analysis for Bernoulli bandits (with
only minor changes compared to that proposed in the paper [Kaufmann et al., 2012b]). We highlight the
links with the Bayes-UCB analysis presented in the previous chapter. Our results relative to Thompson
Sampling for exponential families are also be presented, with only a sketch of proof, the whole paper
([Korda et al., 2013]) being provided in Appendix B. This chapter also includes a numerical study that
illustrates the performance of Thompson Sampling both in terms of regret and Bayes risk, compared to
that of Bayes-UCB and other bandit algorithms discussed in previous chapters.
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3.1 Introduction

In 1933, Thompson proposed the first (Bayesian) bandit algorithm in the context of two-armed
Bernoulli bandits, which model clinical trials with two possible treatments. The proposed algorithm
chooses the next arm based on P , the posterior probability of arm 1 being better than arm 2: arm 1 is
chosen at random with probability f(P ), arm 2 with probability 1− f(P ), where f is some nondecreas-
ing function. Thompson’s work ([Thompson, 1933, Thompson, 1935]) was focused on the computation
of the probability P when the posterior distribution on the mean of each arm is a Beta distribution. How-
ever, when f(P ) = P , that is when arms are sampled according to their posterior probabilities of being
optimal, Thompson’s algorithm can be implemented without computing the probability P . For example,
when the arms are independent, drawing at time t+1 two independent samples θ1(t) and θ2(t) from each
posterior distribution πt1 and πt2 and choosing the arm with highest sample (i.e. At+1 = argmaxaθa(t)) is
equivalent to Thompson’s algorithm. Indeed, for a prior distribution Π0,

PΠ0(At+1 = 1∣Ft) = PΠ0(θ1(t) > θ2(t)∣Ft) = PΠ0(θ1 > θ2∣Ft) = Pt,

since conditionally to Ft, θ1 and θ2 are distributed according to the posterior distribution πt1 and πt2, just
like the samples θ1(t) and θ2(t).

This simple principle ’draw each arm according to its posterior probability of being optimal’ is now
referred to as ’Thompson Sampling’ and can be easily generalized beyond two-armed Bernoulli bandit
models. As explained above for two-armed bandits, one way to implement Thompson Sampling is to
draw a model according to our current belief (i.e. posterior distribution) and act optimally in this sampled
model. This is how we define Thompson Sampling for parametric bandit models with independent arms
in Algorithm 2. Each bandit model depends on a parameter θ = (θ1, . . . , θK), and the mean of an arm
parameterized by θ is given by µ(θ). As usual, πta denotes the posterior distribution on θa at the end of
round t. When the arms are no longer independent, Thompson’ heuristic samples a bandit model ν from
the current posterior distribution over the joint distribution of the arms and chooses the optimal arm in
this sampled model. This is how Thompson Sampling is implemented in contextual linear bandit, that
will be studied in Chapter 4. Thompson Sampling using the prior distribution Π0 will be denoted in the
sequel by TSΠ0 .

Thompson Sampling for independent arms is still an index policy, but the index computed for each
arm is longer an optimistic estimate of the mean —it can even be smaller than the posterior mean—,
unlike the quantile used by Bayes-UCB. Bayes-UCB may appear as a ’regularized’ version of Thomp-
son Sampling, or conversely Thompson Sampling may be seen as a ’noisy’ version of Bayes-UCB, in
which the quantile is estimated using only one sample. Although Thompson Sampling was historically

Algorithm 2 Thompson Sampling for parametric bandits with independent arms (TSΠ0)

Require: Π0 = (π0
1, . . . , π

0
K) (initial prior on θ)

1: for t = 1 to T do
2: for each arm a = 1, . . . ,K do
3: draw a sample θa(t − 1) ∼ πt−1

a

4: end for
5: draw an arm At ∈ arg maxa=1...K µ (θa(t − 1))
6: get reward Xt =XAt,t and update the posterior distribution Πt

7: end for
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introduced first, in this thesis we started by presenting Bayes-UCB, because this algorithm is inspired by
the optimistic principle on which asymptotically optimal frequentist algorithms are based. Moreover, the
finite-time analysis we propose for Thompson Sampling partly relies on the introduction of well-chosen
quantiles of the posterior distribution, and thus theoretical elements from the analysis of Bayes-UCB will
be useful in the analysis that we propose here for Thompson Sampling.

Despite its simplicity, Thompson Sampling has been more or less forgotten for decades: it was
acknowledged as the first bandit algorithm (for example by [Berry and Fristedt, 1985]), but there has
been no attempt to analyse its theoretical properties or empirical performance before the late 2000’s. At
this period, it was re-discovered (sometimes independently) by several authors, under different names.
The Bayesian Learning Automaton proposed by [Granmo, 2010] is nothing but Thompson Sampling
for two-armed Bernoulli bandits, and the author gives a first consistency result: the probability that the
optimal arm is chosen at time t goes to one as t goes to infinity. [Scott, 2010] uses Thompson Sampling
under the name randomized probability matching and proposes an empirical evaluation of this method in
Bernoulli bandit models and in the generalized linear bandit model (see [Filippi et al., 2010b]). Similarly,
[Chapelle and Li, 2011] propose an empirical evaluation of Thompson Sampling in contextual bandit
models. [May et al., 2012] study a slightly modified version of Thompson Sampling, called Optimistic
Bayesian Sampling (OBS): if the sample θa(t) is such that µ(θa(t)) is smaller than the posterior mean
E[µ(θa)∣Ft], it is replaced by the posterior mean. They prove that Thompson Sampling and OBS satisfy
an ‘average reward convergence criterion’ for contextual bandits, which rewrites for classical bandits

∑ts=1 µAs
tµ∗

a.sÐ→
t→∞

1.

All these works attracted a lot of interest in Thompson Sampling, because efficient algorithms for
contextual bandit models can be used in add prediction systems (see Chapter 4). Besides [Chapelle
and Li, 2011] gave the first insight that Thompson Sampling might empirically outperform UCB-like
algorithms in classical bandits. However, no theoretical results in terms of regret or Bayes risk could be
extracted from these first works. The first logarithmic (finite-time) regret bound on the regret was given
by [Agrawal and Goyal, 2012]. More precisely, they prove the following theorem for Bernoulli bandit
models. To simplify the presentation, assume that arm 1 is the unique optimal arm and let ∆a = µ1 −µa.

Theorem 3.1 ([Agrawal and Goyal, 2012],Theorem 2). Thompson Sampling using a uniform prior on
the means, denoted by ΠU , satisfies

Rθ(T,TSΠU ) ≤ O
⎛
⎝
(
K

∑
a=2

1

∆2
a

)
2

log(T )
⎞
⎠

This result is optimal in the sense that the regret is logarithmic, as prescribed by Lai and Robbins’
lower bound. However, its is not optimal in terms of the distribution-dependent constant multiplying
log(T ), since Lai and Robbins lower bound states that the regret of an uniformly efficient algorithm A
satisfies in this particular case

Rθ(T,A) ≥ (
K

∑
a=2

∆a

d(µa, µ∗)
) log(T ) (3.1)

A subgaussian approximation of the distribution-dependent term (using Pinsker’s inequality) yields the
sum over the suboptimal arms of the quantity 1/∆a. Whereas Theorem 3.1 exhibits a worse dependency
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in the gaps ∆a, [Agrawal and Goyal, 2012] present a refined result for two-armed bandits showing that
the regret is O(log(T )/∆2), which matches the subgaussian approximation of (3.1) up to a constant
factor.

Even in the Bernoulli case, whether Thompson Sampling is asymptotically optimal with respect to
Lai and Robbins lower bound was not known, and in the paper [Kaufmann et al., 2012b] we answer this
open question positively: we provide the first finite-time analysis showing that Thompson Sampling us-
ing a uniform prior is asymptotically optimal. The finite-time analysis for Bernoulli bandit models given
in Section 3.2 closely follows the paper [Kaufmann et al., 2012b], with minor modifications leading in
particular to more explicit constants. Later, [Agrawal and Goyal, 2013a] proposed a different finite-time
analysis of Thompson Sampling that also proves its asymptotic optimality, still for Bernoulli bandits.
Using elements from their analysis, we were later able in the paper [Korda et al., 2013] to prove the
asymptotic optimality of Thompson Sampling when rewards belong to exponential families. Thompson
Sampling for exponential family bandits is discussed in Section 3.3.

[Agrawal and Goyal, 2013a] also present a distribution-independent upper bound, showing that the
regret of Thompson Sampling for Bernoulli bandits satisfies Rθ(T,TSΠU ) ≤ O(

√
KT log(T )), and is

thus optimal, up to a logarithmic factor in T , with respect to the distribution-independent worst case lower
bound (1.6) given in Chapter 1. In the same spirit, [Russo and Van Roy, 2014] propose prior-independent
upper bound on the Bayes risk of Thompson Sampling, for very general bandit models. Their analysis
relies on strong connections with UCB-like algorithm and will be discussed further in Chapter 4. Their
result for K-armed bandits has been improved by [Bubeck and Liu, 2013] who show that, if the re-
wards are bounded in [0,1], for any prior distribution Π0, one has BRΠ0(T,TSΠ0) ≤ 14

√
KT . This

bound essentially matches the worst-case lower bound (1.7) presented in Chapter 1. However, whether
Thompson Sampling matches the prior-dependent lower bound on the regret given by [Lai, 1987] (see
Theorem 1.14 in Chapter 1) is not known yet, and we propose some numerical experiments in Section
3.4 that investigate this question. As we prove the asymptotic optimality of Thompson Sampling in a
frequentist sense, we also illustrate in this experimental section its good performance in terms of regret,
when compared to the Bayesian and frequentist algorithms studied so far.

3.2 Finite-time analysis of Thompson Sampling for binary bandits

In this section, we fix a Bernoulli bandit model, parameterized by θ = (µ1, . . . , µK) where arm a
is a Bernoulli distribution with mean µa. We assume that there is a unique optimal arm. This is not
a restrictive assumption since it can be shown that adding a second optimal arm can only improve the
performance of Thompson Sampling (as explained in Appendix A of [Agrawal and Goyal, 2012]). We
moreover assume without loss of generality that the arms are ordered such that µ1 > µ2 ≥ ... ≥ µK . To
ease the notation, we denote by P and E (in place of Pθ and Eθ) the probability and expectation under
this bandit model.

As usual, we denote by Sa(t) the number of successes observed from action a at the end of round t,
and denote the empirical mean by: µ̂a(t) ∶= Sa(t)/Na(t). With an uniform prior distribution over the
means µa of the arms, the posterior distribution on µa at the end of round t is explicitly

πta = Beta (Sa(t) + 1,Na(t) − Sa(t) + 1) .

Let FBeta
a,b denote the cdf of a Beta(a, b) distribution and FB

j,µ (resp fB
j,µ) the cdf (resp pdf) of a

Binomial(j, µ) distribution. We recall an important link between Beta and Binomial distributions already
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used in the analysis of Bayes-UCB and in the analysis of Thompson Sampling by [Agrawal and Goyal,
2012]:

FBeta
a,b (y) = 1 − FBa+b−1,y(a − 1)

We use this ‘Beta-Binomial trick’ at several stages of our analysis.
We denote by qa(t) a quantile of the posterior distribution that will be useful in the proof and by

ua(t) the associated KL-UCB index. More precisely, letting Q(α,π) be the α-quantile of distribution
π, these quantities are defined by

ua(t) ∶= argmax
x> Sa(t)

Na(t)

{d( Sa(t)
Na(t)

, x) ≤ log(T )
Na(t)

} and qa(t) ∶ = Q(1 − 1

T
,πta) .

Recall that from Lemma 2.2 in Chapter 2 (see Remark 2.3)

qa(t) < ua(t).

3.2.1 Sketch of Analysis

Like the analysis of Bayes-UCB, our analysis of Thompson Sampling is inspired by standard anal-
ysis of frequentist index policies. At round t + 1, these policies compute an index Ua(t) for each arm
a, based on the sequence of observed rewards from this arm up to the end of round t, and choose
At+1 = argmaxaUa(t). Such an analysis aims to bound the number of draws of a suboptimal arm, a, by
considering two possible events that might lead to a play of this arm:

– the optimal arm (arm 1) is under-estimated, i.e. U1(t) < µ1;
– the optimal arm is not under-estimated and the suboptimal arm a is drawn at time t + 1.

Taking these to be a good description of the event At+1 = a leads to the decomposition

E[Na(T )] ≤
T−1

∑
t=0

P (U1(t) < µ1) +
T−1

∑
t=0

P ((Ua(t) ≥ µ1) ∩ (At+1 = a)) .

As explained in Section 1.2.3 of Chapter 1, the analysis of an optimistic algorithm then proceeds by
showing that the left term (the ‘under-estimation’ term) is o (log(T )) and the right term is of the form

1
d(µa,µ1) log(T ) + o (log(T )) (or at worst 2

∆2
a

log(T ) + o (log(T )) as in the analysis of UCB1). This
scheme of proof works for example for the analysis of UCB1 or KL-UCB (see [Cappé et al., 2013]).

However we cannot directly apply this method to analyse Thompson Sampling, as the sample θa(t)
is not an optimistic estimate of µa. Indeed, even when πt1 is well concentrated and therefore close to
a Gaussian distribution centered in µ1, P (θ1(t) < µ1) is close to 1

2 and the under-estimation term will
not be small compared to logT . Hence we will not compare in our proof the sample θ1(t) to µ1, but
to µ1 −

√
6 log(t)/N1(t) (if N1(t) > 0) which is the lower bound of an UCB interval. We set the

convention that if N1(t) = 0,
√

6 log(t)/N1(t) = ∞. Similarly, when Na(t) = 0, the indices qa(t) and
ua(t) previously defined are set to qa(t) = ua(t) = 1.

As observed by [Agrawal and Goyal, 2012] the main difficulty in a regret analysis for Thompson
Sampling is to control the number of draws of the optimal arm. We provide this control in the form
of Proposition 3.2 whose proof, given in Section 3.2.3, explores in depth the randomized nature of
Thompson Sampling.

Proposition 3.2. There exists constants b = b(µ1, µ2) ∈ (0,1) and Cb < ∞ such that
∞
∑
t=1

P (N1(t) ≤ tb) ≤ Cb.
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Remark 3.3. In general, a result on the regret like E[N1(t)] ≥ t −K log(t) does not imply a deviation
inequality for N1(t) (see [Salomon and Audibert, 2011]). Proposition 3.2 is therefore a strong result,
that enables us to adapt the standard analysis mentioned above.

We can then reduce to analyzing the behavior of the algorithm once it has seen a reasonable number
of draws from arm 1, and thus the posterior distribution is well concentrated. Using Proposition 3.2 and
the new decomposition yields:

Theorem 3.4. Consider ε > 0 and b and Cb as in Proposition 3.2. For every suboptimal arm a, there
exists constants N(b) and N(ε, µ1, µa) such that for T ≥ N(ε, µ1, µa),

E[Na(T )] ≤ (1 + ε) logT

d(µa, µ1)
+
√

log(T )
¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3

+ 2(1 + ε)2 (d
′(µa, µ1)
d(µa, µ1)

)
2

+ 5 + 2Cb +N(b).

The constants are made more explicit in the proofs of Proposition 3.2 and Theorem 3.4. The fact that
Theorem 3.4 holds for every ε > 0 gives the asymptotic optimality of Thompson Sampling.

3.2.2 Proof of Theorem 3.4

Step 1: Decomposition. First we recall the modified decomposition mentioned above:

E[Na(T )] ≤
T−1

∑
t=0

P(θ1(t) ≤ µ1 −
√

6 log t

N1(t)
) +

T−1

∑
t=0

P(θa(t) > µ1 −
√

6 log t

N1(t)
,At+1 = a)

≤
T−1

∑
t=0

P(θ1(t) ≤ µ1 −
√

6 log t

N1(t)
)

+
T−1

∑
t=0

P(θa(t) > µ1 −
√

6 log t

N1(t)
,At+1 = a, θa(t) < qa(t)) +

T−1

∑
t=0

P (θa(t) > qa(t)) .

The sample θa(t) from the posterior is not very likely to exceed the quantile qa(t) introduced above:

T−1

∑
t=0

P (θa(t) > qa(t)) ≤
T−1

∑
t=0

E [P (θa(t) > qa(t)∣Ft)] ≤
T−1

∑
t=0

1

T
= 1.

Finally, using that ua(t) ≥ qa(t) yields

E[Na(T )] ≤
T−1

∑
t=0

P(θ1(t) ≤ µ1 −
√

6 log t

N1(t)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+
T−1

∑
t=0

P(ua(t) > µ1 −
√

6 log t

N1(t)
,At+1 = a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

+1. (3.2)

Step 2: Bounding term A. Let b and Cb be defined in Proposition 3.2.
To deal with term A we show a new self-normalized deviation inequality adapted to the randomiza-

tion occurring at each round of Thompson Sampling.
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Lemma 3.5. Let b and Cb be defined as in Proposition 3.2 and define

N0(b) = inf {t ∈ N ∶ log(t)tb ≥ (
√

6 −
√

5)−2} .

One has
∞
∑
t=1

P(θ1(t) ≤ µ1 −
√

6 log t

N1(t)
) ≤ N0(b) + 3 +Cb < ∞.

Proof Let (Ut) denote a sequence of i.i.d. uniform random variables on [0,1], and let S1,s =
∑sk=1 Y1,s be the sum of the first s rewards from arm 1. In the following, we make the first use of
the link between Beta and Binomial distributions:

P(θ1(t) ≤ µ1 −
√

6 log t

N1(t)
) = P(Ut ≤ FBeta

S1(t)+1,N1(t)−S1(t)+1 (µ1 −
√

6 log t

N1(t)
))

= P
⎛
⎝
⎛
⎝
Ut ≤ 1 − FB

N1(t)+1,µ1−
√

6 log t
N1(t)

(S1(t))
⎞
⎠
∩ (N1(t) ≥ tb)

⎞
⎠
+ P (N1(t) ≤ tb)

= P
⎛
⎝
⎛
⎝
FB

N1(t)+1,µ1−
√

6 log t
N1(t)

(S1(t)) ≤ Ut
⎞
⎠
∩ (N1(t) ≥ tb)

⎞
⎠
+ P (N1(t) ≤ tb)

≤ P(∃s ∈ {tb...t} ∶ FB
s+1,µ1−

√
6 log t
s

(S1,s) ≤ Ut) + P (N1(t) ≤ tb)

=
t

∑
s=⌈tb⌉

P(S1,s ≤ (FB)−1

s+1,µ1−
√

6 log t
s

(Ut)) + P (N1(t) ≤ tb)

The first term in the final line of this display now deals only with Binomial random variables with large
numbers of trials (greater than tb), and so we can draw on standard concentration techniques to bound
this term. Proposition 3.2 takes care of the second term.

Let s be fixed. The random variable

(FB)−1
s+1,µ1−

√
6 log t/s (Ut) ∼ Bin (s + 1, µ1 −

√
6 log t/s)

is independent from S1,s ∼ Bin (s, µ1). One can write S1,s = ∑sl=1 Y1,s, where (Y1,l) is an i.i.d sequence
of Bernoulli random variables with mean µ1. Introducing (Ỹ1,l)l, a second i.i.d. sequence of Bernoulli
random variables with mean µ1 −

√
6 log t/s that is independent from (Y1,l), one has

P(S1,s ≤ (FB)−1

s+1,µ1−
√

6 log t
s

(Ut)) = P(
s

∑
l=1

Yl,s ≤
s+1

∑
l=1

Ỹl,s)

≤ P
⎛
⎝
s

∑
l=1

⎛
⎝
Y1,l − Ỹ1,l −

√
6 log t

s

⎞
⎠
≤ −(

√
6s log t − 1)

⎞
⎠
.

Letting Zl ∶= µ1 −
√

6 log t/s, (Zl) is a sequence of i.i.d centered random variable with range 2, and
Hoeffding’s inequality can be used to bound the last sum. Moreover, for t ≥ N0(b) where

N0(b) ∶= inf {t ∈ N ∶ log(t)tb ≥ (
√

6 −
√

5)−2}
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one has
√

6s log t − 1 >
√

5s log t, for s ≥ tb, and one can write

P(S1,s < (FB)−1

s+1,µ1−
√

6 log t
s

(Ut)) ≤ exp(−2
(
√

5s log t)2

4s
) = e−

5
2

log t = 1

t
5
2

.

We conclude that

∞
∑
t=1

P(θ1(t) < µ1 −
√

6 log t

N1(t)
) ≤ N0(b) +

∞
∑
t=1

1

t
3
2

+Cb ≤ N0(b) + 3 +Cb.

◻

Step 3: Bounding Term B. We specifically show that

Lemma 3.6. For T such that

log(T ) ≥ d(µa, µ1)
1 + ε exp( 8

(µ1(1 − µ1))2

(1 + ε)2

ε2d(µa, µ1)2
) ,

one has

(B) ≤ (1 + ε) log(T )
d(µa, µ1)

+
√

log(T )
¿
ÁÁÀ2π(1 + ε)3d′(µa, µ1)2

d(µa, µ1)3
+ 2(1 + ε)2 (d

′(µa, µ1)
d(µa, µ1)

)
2

+1 +N1(b) +Cb.

with N1(b) ∶= inf {t ≥ e2/b ∶ 3(log t)2 ≤ tb} .

Proof Using Proposition 3.2, term B can be rewritten

(B) ≤
T−1

∑
t=0

P(ua(t) > µ1 −
√

6 log t

N1(t)
,At+1 = a,N1(t) ≥ tb) +

T−1

∑
t=0

P (N1(t) ≤ tb)

≤
T−1

∑
t=0

P
⎛
⎝
ua(t) > µ1 −

√
6 log t

tb
,At+1 = a

⎞
⎠
+Cb

Let N1(b) be defined in the statement of Lemma 3.6. For t ≥ N1(b), one has
√

6 log t/tb ≤
√

2/log(t).

Letting gt ∶=
√

2
log t as in the finite-time analysis proposed for Bayes-UCB in the previous chapter, one

can write, in a very similar way,

(B) ≤
T−1

∑
t=N1(b)+1

P (ua(t) > µ1 − gt,At+1 = a) +N1(b) +Cb

= E
⎡⎢⎢⎢⎢⎣

T−1

∑
t=N1(b)+1

(1(Na(t)=0,At+1=a) +
t

∑
s=1

1(Na(t)=s,At+1=a)1(sd+(µa,s,µ1−gt)≤log(T )))
⎤⎥⎥⎥⎥⎦
+N1(b) +Cb

≤ 1 +E
⎡⎢⎢⎢⎢⎣

T−1

∑
t=N1(b)+1

t

∑
s=1

1(Na(t)=s,At+1=a)1(sd+(µa,s,µ1−gs)≤log(T ))

⎤⎥⎥⎥⎥⎦
+N1(b) +Cb

≤
T−1

∑
s=1

P (sd+(µa,s, µ1 − gs) ≤ log(T ))) + 1 +N1(b) +Cb.
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We used as in the previous chapter that for all s, ∑t∈N 1(Na(t)=s)1(At+1=a) ≤ 1 and that when s ≤ t,
gs ≤ gt. The sum in the right hand side can now exactly be upper bounded using Lemma 2.7 in Chapter
2 with f(T ) = log(T ), which concludes the proof.

◻

Conclusion: Theorem 3.4 follows from Lemmas 3.5, 3.6 and inequality (3.2), letting N(b) ∶= N0(b)+
N1(b).

3.2.3 Proof of Proposition 3.2: Exploiting the randomized nature of Thompson Sampling.

Since we focus on the number of draws of the optimal arm, let τj be the occurrence of the jth play
of the optimal arm (with τ0 ∶= 0). Let ξj ∶= (τj+1 − 1) − τj : this random variable measures the number
of time steps between the jth and the (j + 1)th play of the optimal arm, and so ∑Ka=2Na(t) = ∑N1(t)

j=0 ξj .
For each suboptimal arm, a relevant quantity is

Ca =
32

(µ1 − µa)2
.

We let C = maxa≠1Ca = 32/(µ1 − µ2)2 and introduce δa = (µ1 − µa)/2 and δ = δ2.

Step 1: Initial Decomposition of Summands. First we use a union bound on the summands to extract
the tails of the random variables ξj :

P(N1(t) ≤ tb) = P(
K

∑
a=2

Na(t) ≥ t − tb)

≤ P (∃j ∈ {0, .., ⌊tb⌋} ∶ ξj ≥ t1−b − 1)

≤
⌊tb⌋
∑
j=0

P(ξj ≥ t1−b − 1) (3.3)

This means that there exists a time range of length t1−b−1 during which only suboptimal arms are played.
In the case of two arms this implies that the (unique) suboptimal arm is played ⌈ t1−b−1

2 ⌉ times during the
first half of this time range. Thus its posterior becomes well concentrated around its mean with high
probability, and we can use this fact to show that the probability that the suboptimal action is chosen a
further ⌈ t1−b−1

2 ⌉ times in a row is very small. In Figure 3.2.3 below, one indeed sees that the posterior of
arm 2 —in blue— becomes concentrated, and so the samples θ2(s) used by Thompson Sampling on the
second half of the time range are very likely to always fall below µ2 + δ. Thus, as arm 1 is not drawn on
this time range, the samples θ1(s) (that are i.i.d. samples from the current posterior on arm 1 —in red—,
that does not change on the time range) have to always fall in the shaded region, which is not very likely.

To precise this heuristic argument and generalize it to more arms, we introduce a notion of a satu-
rated, suboptimal action:

Definition 3.7. Let t be fixed. For any a ≠ 1, an action a is said to be saturated at time s if it has been
chosen at least Ca ln(t) times. That is Na(s) ≥ Ca ln(t). We shall say that it is unsaturated otherwise.
Furthermore at any time we call a choice of an unsaturated, suboptimal action an interruption.
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Figure 3.1: Thompson Sampling draws a lot the optimal arm: an heuristic explanation for two-armed
bandits

We want to study the event Ej = {ξj ≥ t1−b − 1}. We introduce the interval Ij = {τj , τj + ⌈t1−b − 1⌉}
(included in {τj , τj+1} on Ej) and begin by decomposing it into K subintervals:

Ij,l ∶= {τj + ⌈(l − 1)(t1−b − 1)
K

⌉ , τj + ⌈ l(t
1−b − 1)
K

⌉} , l = 1, . . . ,K.

Now for each interval Ij,l, we introduce:
– Fj,l: the event that by the end of the interval Ij,l at least l suboptimal actions are saturated;
– nj,l: the number of interruptions during this interval.

We use the following decomposition to bound the probability of the event Ej :

P(Ej) = P(Ej ∩ Fj,K−1) + P(Ej ∩ F cj,K−1) (3.4)

To bound both probabilities, we will need the fact, stated in Lemma 3.8, that the probability of θ1(s)
being smaller than µ2 + δ during a long subinterval of Ij is small. This follows from the fact that the
posterior on the optimal arm is always Beta(S1(τj) + 1, j −S1(τj) + 1) on Ij : hence, when conditioned
on S1(τj), θ1(s) is an i.i.d. sequence with non-zero support above µ2 + δ, and thus is unlikely to remain
below µ2 + δ for a long time period. This idea is also important in the analysis of Thompson Sampling
by [Agrawal and Goyal, 2012].

Lemma 3.8. ∃λ0 = λ0(µ1, µ2) > 1 such that for λ ∈]1, λ0[, for every τj-measurable interval J , such
that ∣J ∣ ≥ f(t) for some positive function f , one has

P (J ⊆ [τj , τj+1[, ∀s ∈ J θ1(s) ≤ µ2 + δ) ≤ (αµ1,µ2)f(t) +Cλ,µ1,µ2

1

f(t)λ e
−jdλ,µ1,µ2

where Cλ,µ1,µ2 , dλ,µ1,µ2 > 0 and αµ1,µ2 = (1/2)1−µ2−δ.
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The proof of this important lemma will be postponed to Section 3.5.1 and all the constants are ex-
plicitly defined there. Another key point in the proof is the fact that a sample from a saturated suboptimal
arm cannot fall too far from its true mean. The following lemma is very close to Lemma 7 of [Agrawal
and Goyal, 2012]. We propose a proof in Section 3.5.2.

Lemma 3.9.
P (∃s ≤ t,∃a ≠ 1 ∶ θa(s) > µa + δa,Na(s) > Ca ln(t)) ≤ 2(K − 1)

t2
.

Step 2: Bounding P(Ej ∩ Fj,K−1). On the event Ej ∩ Fj,K−1, only saturated suboptimal arms are
drawn on the interval Ij,K . Using the concentration results for samples of these arms in Lemma 3.9, we
get

P(Ej ∩ Fj,K−1) ≤P({∃s ∈ Ij,K , a ≠ 1 ∶ θa(s) > µa + δ} ∩Ej ∩ Fj,K−1)
+ P({∀s ∈ Ij,K , a ≠ 1 ∶ θa(s) ≤ µa + δa} ∩Ej ∩ Fj,K−1)

≤P(∃s ≤ t, a ≠ 1 ∶ θa(s) > µa + δa,Na(t) > Ca ln(t))
+ P({∀s ∈ Ij,K , a ≠ 1 ∶ θa(s) ≤ µ2 + δ} ∩Ej ∩ Fj,K−1)

≤2(K − 1)
t2

+ P(Ij,K ⊆ [τj , τj+1[, ∀s ∈ Ij,K θ1(s) ≤ µ2 + δ).

The last inequality comes from the fact that if arm 1 is not drawn, the sample θ1(s) must be smaller
than some sample θa(s) and therefore smaller than µ2 + δ. Since Ij,K is a τj-measurable interval of size
⌈ t1−b−1

K ⌉ we get using Lemma 3.8, for some fixed λ ∈]1, λ0[,

P(Ij,K ⊆ [τj , τj+1[, ∀s ∈ Ij,K θ1(s) ≤ µ2 + δ)

≤ (αµ1,µ2)
t1−b−1
K +Cλ,µ1,µ2

1

( t1−b−1
K )

λ
e−jdλ,µ1,µ2 =∶ g(µ1, µ2, b, j, t). (3.5)

Hence we have show that

P(Ej ∩ Fj,K−1) ≤
2(K − 1)

t2
+ g(µ1, µ2, b, j, t), (3.6)

and choosing b such that b < 1 − 1
λ , the following hypothesis on g holds:

∑
t≥1
∑
j≤tb

g(µ1, µ2, b, j, t) < +∞.

Step 3: Bounding P(Ej ∩ F cj,K−1). We show through an induction that for all 2 ≤ l ≤ K, if t is larger
than some deterministic constant Nµ1,µ2,b specified in the base case,

P(Ej ∩ F cj,l−1) ≤ (l − 2)(2(K − 1)
t2

+ f(µ1, µ2, b, j, t))

for some function f such that ∑t≥1∑1≤j≤tb f(µ1, µ2, b, j, t) < ∞. For l =K we get

P(Ej ∩ F cj,K−1) ≤ (K − 2)(2(K − 1)
t2

+ f(µ1, µ2, b, j, t)) . (3.7)
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Step 4: The Base Case of the induction. Note that on the event Ej only suboptimal arms are played
during Ij,1. Hence at least one suboptimal arm must be played ⌈ t1−b−1

K2 ⌉ times.

There exists some deterministic constant Nµ1,µ2,b such that for t ≥ Nµ1,µ2,b, ⌈ t
1−b−1
K2 ⌉ ≥ C ln(t) (the

constant depends only on µ1 and µ2 because C = C2). So when t ≥ Nµ1,µ2,b, at least one suboptimal arm
must be saturated by the end of Ij,1. Hence, for t ≥ Nµ1,µ2,b

P(Ej ∩ F cj,1) = 0.

This concludes the base case.

Step 5: The Induction. As an inductive hypothesis we assume that for some 2 ≤ l ≤ K − 1 if t ≥
Nµ1,µ2,b then

P(Ej ∩ F cj,l−1) ≤ (l − 2)(2(K − 1)
t2

+ f(µ1, µ2, b, j, t)) .

Then, making use of the inductive hypothesis,

P(Ej ∩ F cj,l) ≤ P(Ej ∩ F cj,l−1) + P(Ej ∩ F cj,l ∩ Fj,l−1)

≤ (l − 2)(2(K − 1)
t2

+ f(µ1, µ2, b, j, t)) + P(Ej ∩ F cj,l ∩ Fj,l−1).

To complete the induction we therefore need to show that:

P(Ej ∩ F cj,l ∩ Fj,l−1) ≤
2(K − 1)

t2
+ f(µ1, µ2, b, j, t). (3.8)

On the event (Ej ∩ F cj,l ∩ Fj,l−1), there are exactly l − 1 saturated arms at the beginning of interval
Ij,l and no new arm is saturated during this interval. As a result there cannot be more than KC ln(t)
interruptions during this interval, and so we have

P(Ej ∩ F cj,l ∩ Fj,l−1) ≤ P(Ej ∩ Fj,l−1 ∩ {nj,l ≤KC ln(t)}).

Let Sl denote the set of saturated arms at the end of Ij,l and introduce the following decomposition:

P(Ej ∩ Fj,l−1 ∩ {nj,l ≤KC ln(t)})
≤ P({∃s ∈ Ij,l, a ∈ Sl−1 ∶ θa(s) > µa + δa} ∩Ej ∩ Fj,l−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

+P({∀s ∈ Ij,l, a ∈ Sl−1 ∶ θa(s) ≤ µa + δa} ∩Ej ∩ Fj,l−1 ∩ {nj,l ≤KC ln(t)})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

.

Clearly, using Lemma 3.9:

(A) ≤ P (∃s ≤ t,∃a ≠ 1 ∶ θa(s) > µa + δa,Na(s) > Ca ln(t)) ≤ 2(K − 1)
t2

.

To deal with term (B), we introduce for k in {0, . . . , nj,l − 1} the random intervals Jk as the time range
between the kth and (k+1)st interruption in Ij,l. For k ≥ nj,l we set Jk = ∅. Note that on the event in the
probability (B) there is a subinterval of Ij,l of length ⌈ t1−b−1

CK2 ln(t)⌉ during which there are no interruptions.
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Moreover on this subinterval of Ij,l, for all a ≠ 1, θa(s) ≤ µ2 + δ2. (This holds for unsaturated arms as
well as for saturated arms since their samples are smaller than the maximum sample of a saturated arm.)
Therefore,

(B) ≤ P({∃k ∈ {0, ..., nj,l} ∶ ∣Jk∣ ≥ (t1−b − 1)/(CK2 ln(t))}
∩ {∀s ∈ Ij,l, a ∈ Sl−1 ∶ θa(s) ≤ µ2 + δ} ∩Ej ∩ Fj,l−1)

≤
KC ln(t)
∑
k=1

P({∣Jk∣ ≥
t1−b − 1

CK2 ln(t)} ∩ {∀s ∈ Jk, a ≠ 1 ∶ θa(s) ≤ µ2 + δ} ∩Ej)

≤
KC ln(t)
∑
k=1

P({∣Jk∣ ≥
t1−b − 1

CK2 ln(t)} ∩ {∀s ∈ Jk, θ1(s) ≤ µ2 + δ}) (3.9)

Now, we have to bound the probability that θ1(s) ≤ µ2 + δ for all s in an interval of size t1−b−1
CK2 ln(t) in Ij .

So we apply Lemma 3.8 to get:

(B) ≤ CK ln(t)(αµ1,µ2)
t1−b−1

CK2 ln(t) +Cλ,µ1,µ2

CK ln(t)

( t1−b−1
CK2 ln(t))

λ
e−jdλ,µ1,µ2 ∶= f(µ1, µ2, b, j, t).

Choosing the same b as in (3.5), we get that ∑t≥1∑1≤j≤tb f(µ1, µ2, b, j, t) < +∞. It follows that for this
value of b, (3.8) holds and the induction is complete.

Step 8: Conclusion. Let b be the constant chosen in Step 2. From the decomposition (3.4) and the two
upper bounds (3.6) and (3.7), we get, for t ≥ Nµ1,µ2,b:

P(Ej) ≤ (K − 2)(2(K − 1)
t2

+ f(µ1, µ2, b, j, t))) +
2(K − 1)

t2
+ g(µ1, µ2, b, j, t).

Recalling (3.3), summing over the possible values of j and t we obtain:

∑
t≥1

P(N1(t) ≤ tb) ≤Nµ1,µ2,b + 2(K − 1)2∑
t≥1

1

t2−b

+∑
t≥1

tb

∑
j=1

[Kf(µ1, µ2, b, j, t) + g(µ1, µ2, b, j, t)] < Cµ1,µ2,b

for some constant Cµ1,µ2,b < ∞.

3.3 Thompson Sampling for Exponential families

Just like the analysis of Bayes-UCB, the finite-time analysis we gave in the previous section for
Thompson Sampling strongly relies on the specific properties of Beta posterior with integer coefficients,
and can therefore only be applied to Bernoulli rewards and uniform prior. In the paper [Korda et al.,
2013] we propose a different analysis, that is suited for exponential family bandit models, with the use of
the Jeffreys’ prior. While providing the full paper in Appendix B, we present in this Section the outline
of this new analysis, trying to highlight the similarities and differences with our previous work. The
notation used in this Section is consistent with the notation used in all the thesis, whereas that used in
Appendix B are slightly different.
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3.3.1 Thompson Sampling with Jeffreys’ prior for general one-parameter canonical exponential
families

In this work, we consider bandit models in which each arm belong to one-parameter canonical expo-
nential family, for which the density of νθ is given by

f(x∣θ) = A(x) exp(T (x)θ − b(θ)). (3.10)

This is the general definition of one-parameter canonical exponential families given for example by
[Bickel and Doksum, 2001], even if so far we only considered particular cases in which the sufficient
statistic T is such that T (x) = x. Most of the examples of practical interest actually belong to this
sub-class, but in Appendix B we give two examples with more general sufficient statistics: Pareto and
Weibull distributions.

The properties of these exponential families include

ḃ(θ) = EX∼νθ[T (X)] and b̈(θ) = VarX∼νθ[T (X)].

Whereas these distributions can still be parameterized by their means µ(θ), a natural alternative parametriza-
tion consists in using the mean of the sufficient statistic, µ̃(θ) = EX∼νθ[T (X)]. For a given exponential
family, one can introduce the divergence associated as a function of this new parameter:

d(µ̃, µ̃′) = KL (νḃ−1(µ̃), νḃ−1(µ̃′)) .

When T (x) = x, µ̃(θ) = µ(θ), so this definition of the divergence function d coincides with the definition
given in Chapter 1 in this particular case.

For X ∼ νθ with mean of sufficient statistic µ̃, introducing φ̃X(λ) = logE [eλT (X)] and φ̃∗X(x)
its Fenchel-Legendre transform (convex conjugate function), one has d(x, µ̃) = φ̃∗X(x). This important
property is given in Lemma 1.4 of Chapter 1 for exponential families such that T (x) = x, for which
it allows to build confidence interval based on KL-divergence. Similarly, for more general exponential
families, it is possible to build KL-confidence intervals for the mean of the sufficient statistic µ̃, and to
define and analyse the associated KL-UCB algorithm as the index policy associated to

ua(t) = sup

⎧⎪⎪⎨⎪⎪⎩
q̃ ≥ 1

Na(t)

Na(t)
∑
i=1

T (Ya,i) ∶ Na(t)d
⎛
⎝

1

Na(t)

Na(t)
∑
i=1

T (Ya,i), q̃
⎞
⎠
≤ f(t)

⎫⎪⎪⎬⎪⎪⎭
.

For exponential families defined by (3.10), it is also easy to implement the Thompson Sampling
algorithm, since the posterior distribution still has an explicit form. If the prior distribution on the
parameter θ has density h0(θ), the posterior distribution after n observations y1, . . . , yn is given by

p(θ∣y1, . . . , yn) ∝ h0(θ) exp(θ
n

∑
i=1

T (yi) − nb(θ)) .

We consider in the sequel the particular implementation of Thompson Sampling that uses the Jeffreys’
prior. This prior, introduced by [Jeffreys, 1946] is non-informative in the sense that it is invariant under
re-parametrization of the parameter space. It can be shown to be proportional to the square root of the
Fischer information I(θ), which is equal to b̈(θ) in our particular case. Thompson Sampling thus draws
for each arm a a sample

θa(t) ∼ πta ∝
√
b̈(θ) exp

⎛
⎝
θ
Na(t)
∑
i=1

T (Ya,i) −Na(t)b(θ)
⎞
⎠
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and chooses at time t + 1 arm At+1 = argmax
a

µ(θa(t)).

We give in Appendix B examples of implementation for classical distributions in an exponential fam-
ily with alternative parametrization. For example for Bernoulli bandits, the Jeffreys’ prior on the mean
is Beta(1/2,1/2) and does not coincide with the uniform prior always considered so far. This version
of Thompson Sampling thus draws samples from Beta(1/2 + Sa(t),1/2 + Na(t) − Sa(t)) and cannot
be analysed with our previous tools. In many other cases, Jeffreys’ prior turns out to be an improper

prior (∫Θ

√
b̈(θ)dθ = +∞), but after one observation, the resulting posterior becomes a probability dis-

tribution, thus Thompson Sampling can be implemented with an initialization phase drawing each arm
once.

3.3.2 Main result and sketch of the proof

Theorem 3.10 is the main result proved in the paper [Korda et al., 2013]. It implies that Thompson
Sampling using the Jeffreys’ prior is asymptotically optimal when the rewards distributions belong to
an exponential family defined by (3.10). We use the shorthand K(θ, θ′) to refer to the Kullback-Leibler
divergence between the distributions νθ and νθ′ .

Theorem 3.10. Assume that µ1 > µa for all a ≠ 1, the prior distribution ΠJ is such that for all a πa,0 is
taken to be the Jeffreys’ prior over Θ. Then for every ε > 0 there exists a constant C(ε,P) depending on
ε and on the problem P such that the regret of Thompson Sampling using the Jeffreys’ prior satisfies

Rθ(T,TSπJ ) ≤
1 + ε
1 − ε (

K

∑
a=2

(µ1 − µa)
K(θa, θ1)

) ln(T ) + C(ε,P).

Our analysis relies on three main ingredients: a new decomposition inspired by the one proposed
by [Agrawal and Goyal, 2013a], a non-asymptotic upper bound on the tail of the posterior distribution
provided that the sufficient statistics are well concentrated (Theorem B.4 in Appendix B) and a result
akin to Lemma 3.2 that controls the number of draws of the optimal arm.

When Jeffreys’ prior is improper, the statement of the posterior concentration result is quite involved,
and requires to introduce events (denoted by Ẽa,t in Appendix B) with complicated expression. For the
sake of clarity, we present below the outline of our finite-time analysis in cases where Jeffreys’ prior is
proper. The general case is dealt with in Appendix B.

A new decomposition. [Agrawal and Goyal, 2013a] propose an alternative finite-time analysis that
leads to the asymptotic optimality of Thompson Sampling with a uniform prior in Bernoulli bandit mod-
els. The decomposition we use here is close to the one they introduce.

For all a = 1 . . .K let δa > 0 be fixed and let Ea(t)(= Ea(t, δa)) be the event defined by

Ea(t) =
⎛
⎝
Na(t) ≠ 0⇒

RRRRRRRRRRRR

1

Na(t)

Na(t)
∑
s=1

T (Ya,s) − b′(θa)
RRRRRRRRRRRR
≤ δa

⎞
⎠
.

For a ≠ 1, let ∆a < µ1 − µa be fixed and let Eθa(t)(= Eθa(t,∆a)) be the event

Eθa(t) = (µ(θa(t)) ≤ µa +∆a) .

On Ea(t) the empirical sufficient statistic is well concentrated around its mean and on Eθa(t) the sample
from πta used in the algorithm does not lead to an over-estimation of the true mean µa. The conjunction
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of these two events holds with high probability. Now we introduce the following decomposition:

E [Na(T )] =
T−1

∑
t=0

P (At+1 = a,Ea(t),Eθa(t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

+
T−1

∑
t=0

P (At+1 = a,Ea(t), (Eθa(t))c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

+
T−1

∑
t=0

P (At+1 = a, (Ea(t))c)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(C)

.

Term (C) only concerns the concentration of empirical sufficient statistics around their means and stan-
dard concentration techniques show that it is bounded. To deal with term (B), one needs to introduce
the posterior concentration result below.

Lemma 3.11. Let π(n, s) denote the posterior distribution under Jeffreys’ prior and n observations such
that the sum of sufficient statistics is s = ∑ni=1 T (yi). If Jeffreys’ prior is proper and

(∣ s
k
− ḃ(θa)∣ ≤ δ) ,

there exists three constants Na, C1,a and C2,a = C2,a(∆) such that for k ≥ Na,

Pθ∼π(k,s) (µ(θ) > µa +∆) ≤ C1,ak exp(−(k − 1)(1 − δC2,a)K(θa, µ−1(µa +∆)))
Pθ∼π(k,s) (µ(θ) < µa −∆) ≤ C1,ak exp(−(k − 1)(1 − δC2,a)K(θa, µ−1(µa +∆)))

Using Lemma 3.11, it can be proved (see Section B.8) in Appendix B) that for all ε > 0, there exists
a constant C1(ε,θ, δ,∆a) such that

(B) ≤ log(T )
(1 − ε)(1 − δaC2,a)K(θa, µ−1(µa +∆a))

+C1(ε,θ, δa,∆a).

Term (A) is the most delicate to control: when the sample from arm a used by the algorithm does
not over-estimate the mean µa, it should be explained why arm a should not be drawn to much. To do so,
we show that this implies some event regarding the optimal arm that hold with small probability since
this arm has been drawn a lot. Indeed, one can show a deviation result similar to Proposition 3.2, stated
as Proposition 3.12. The proof of this result is essentially the same as that of Proposition 3.2, except that
we replace Lemma 3.8 (in which constants are computed explicitly) by an asymptotic argument based
on the posterior concentration phenomenon.

Proposition 3.12. For all b ∈]0,1[, ∑∞
t=1 P(N1(t) ≤ tb) ≤ +∞.

Term (A) can be upper bounded in the following way. As Proposition 3.12 holds for any value of b
we apply it for example for b = 1/2. Let ∆′

a = µ1 − µa −∆a.

(A) ≤
T−1

∑
t=0

P(At+1 = a,Eθa(t),N1(t) >
√
t) +C1/2 ≤

T−1

∑
t=0

P(µ(θ1(t)) ≤ µ1 −∆′
a,N1(t) >

√
t) +C1/2

≤
T−1

∑
t=0

P(µ(θ1(t)) ≤ µ1 −∆′
a,E1(t),N1(t) >

√
t) +

T−1

∑
t=0

P((E1(t))c,N1(t) >
√
t) +C1/2
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Whereas the second sum in the last display is upper bounded using classical concentration tech-
niques, for the first term, we need the second statement of Lemma 3.11 to show

P(µ(θ1(t)) ≤ µ1 −∆′
a∣Ft)1E1(t) ≤ C1,1e

−(N1(t)−1)(1−δ1C2,1)K(θ1,µ−1(µ1−∆′
a))+log(N1(t))

and finally lower bound term (A) by some constant plus the series

∞
∑
t=1

C1,1e
−(

√
t−1)(1−δ1C2,1)K(θ1,µ−1(µ1−∆′

a))+(1/2) log(t) < +∞.

To conclude, one has shown that there exists a constant C(ε,θ, δa,∆a) such that

E[Na(T )] ≤ ln(T )
(1 − δaC2,a)K(θa, µ−1(µa +∆a))(1 − ε)

+ C(ε,θ, δa,∆a)

The constant is of course increasing (dramatically) when δa goes to zero, ∆a to µ1−µa, or ε to zero. But
one can choose ∆a close enough to µ1 − µa and δa small enough, such that

(1 −C2,a(∆a)δa)K(θa, µ−1(µa +∆a)) ≥
K(θa, θ1)
(1 + ε) ,

and this choice leads to

E[Na(T )] ≤ 1 + ε
1 − ε

ln(T )
K(θa, θ1)

+ C(ε,θ, δa,∆a).

3.4 Numerical experiments and discussion

We illustrate here the performance of Thompson Sampling on numerical experiments with Bernoulli
rewards. We compare both the regret and Bayes risk of Thompson Sampling to those of state-of-the-art
frequentist algorithms and Bayes-UCB.

3.4.1 Regret of Thompson Sampling

We start by comparing, on several two-armed bandit models and for a quite small horizon (T = 1000),
the regret of Thompson Sampling, Bayes-UCB, KL-UCB and its two variants KL-UCB+ and KL-UCB-
H+ and the FH-Gittins algorithms. Preliminary experiments in Chapter 2 showed that FH-Gittins, that we
believe to be a good approximation of the Bayesian optimal solution, displays good performance for sev-
eral fixed bandit models. Here we investigate this trend further, adding also a comparison with Thompson
Sampling. Results are reported in Figure 3.2. On the four different two-armed bandit considered with
small (left) and high mean rewards (right), we see that FH-Gittins compares well to asymptotically opti-
mal algorithms, even if it does not always outperform them. In particular, the performance of FH-Gittins
seems to deteriorate on problems with high mean rewards. On this small scale, we also see that Thomp-
son Sampling and Bayes-UCB do not always outperform KL-UCB, and that Bayes- UCB performs better
than Thompson Sampling. This trend seems to be reversed when we consider larger horizons.

In our second experiment, we study regret up to some larger horizon T = 20000 for a 10-armed
bandit problem, already studied by [Cappé et al., 2013], with means given by

µ = (0.1,0.05,0.05,0.05,0.02,0.02,0.02,0.01,0.01,0.01). (3.11)
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Figure 3.2: Regret of several algorithms including FH-Gittins on four different two-armed bandit prob-
lems: 0.05-0.15 (top, left) 0.85-0.95 (top, right) and two more difficult problems, 0.2-0.25 (bottom, left)
and 0.75-0.8 (bottom, right). Regret is estimated based on N = 10000 simulations.
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Figure 3.3: Regret of the various algorithms as a function of time. On each graph, the blue line shows
the lower bound, the solid bold curve corresponds to the mean regret while the dark and light shaded
regions show respectively the central 99% and the upper 0.05%
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Figure 3.4: Influence of the prior. Regret for the 10-armed problem (3.11) (left) and the two-armed
problem with means 0.8-0.9 (right), averaged over N = 50000 simulations.
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Figure 3.3 displays for several algorithms an estimation of the distribution of the cumulative regret
based onN = 50000 trials. The first four algorithms are variants of UCB, displayed using the same scale,
that are not known to be optimal. Of these, the UCB-V algorithm of [Audibert et al., 2009] is close to
the index policy to which Thompson Sampling is compared in [Chapelle and Li, 2011] in the Bernoulli
setting. This algorithm incorporates an estimation of the variance of the rewards in the index which is
defined to be, for an arm that have produced k rewards in n draws,

k

n
+
√

2 log(t)
n

k

n
(1 − k

n
) + 3 log(t)

n

UCB-Tuned is an heuristic proposed by [Auer et al., 2002a] that also uses estimates of the variance,
whereas MOSS ([Audibert and Bubeck, 2010]) is a variant of UCB using an alternative exploration rate
that is reminiscent of KL-UCB-H+: the log(t) in UCB is replaced by log(T /(KNa(t))).

The other six algorithms displayed in Figure 3.3, on a different scale, have a mean regret closer to
(sometimes smaller than) the lower bound of Lai and Robbins, displayed in blue, which we recall is
only asymptotic. All these algorithms are provably asymptotically optimal. Among them, Thompson
Sampling outperforms Bayes-UCB and on this specific bandit model its performance is comparable
to the best frequentist algorithms, KL-UCB+ and KL-UCB-H+. It is also the easiest optimal policy
to implement, since at each round the indices computed by KL-UCB (and its variants) and even the
quantiles computed by Bayes-UCB are more costly than the production of posterior samples.

In Section 3.2 and 3.3 we proved the asymptotic optimality of two versions of Thompson Sampling:
the first using the uniform prior (Beta(1,1)) and the second the Jeffreys’ prior, which corresponds to
a Beta (1/2,1/2) prior distribution over each mean. In Figure 3.4, we compare the two resulting algo-
rithms. While for the 10-armed bandit studied before using Jeffreys’ prior appears to reduce the regret
for both Bayes-UCB and Thompson Sampling, one can find other problems (like the two-armed bandit
with means 0.8 and 0.9) for which it does not. Besides, the performance of the two variants is quite
close on both problems presented in Figure 3.4. Thus we may conjecture that for distributions depending
on a single parameter, the prior distribution chosen has little influence on the asymptotic optimality of
Thompson Sampling. However, [Honda and Takemura, 2014] show that this conjecture in not true for
the particular (two-parameter) case of Gaussian distributions with unknown mean and variance. Indeed,
the authors prove that for a choice of prior π0

a(µa, σa) ∼ (σa)−1−2α with α < 0, Thompson Sampling is
asymptotically optimal (i.e. its regret matches the lower bound of Theorem 1.2), whereas for α ≥ 0, the
regret is not asymptotically logarithmic.

3.4.2 Bayes risk of Thompson Sampling

As discussed in Chapter 1, KL-UCB-H+ is asymptotically optimal with respect to the Bayes risk, in
the sense of the lower bound of [Lai, 1987]. Theorem 1.16 also shows that KL-UCB is close to optimal
since its Bayes risk is within a multiplicative factor 2 of the lower bound. Compared to the experiments in
Chapter 1, we propose here experiments for a larger horizon, including also Bayes-UCB and Thompson
Sampling using the uniform prior. This large horizon does not allow for a comparison with FH-Gittins,
that would be extremely heavy to implement.

ForK = 5 arms (left plot in Figure 3.5) andK = 10 arms (right plot in Figure 3.5), for each algorithm
we approximate the Bayes risk up to horizon T = 20000 by sampling N = 50000 bandit models with
K arms from the prior distribution and playing the algorithm on each bandit model up to horizon T .
As already observed on smaller horizons, KL-UCB+ appears as a good anytime approximation of KL-
UCB-H+. Meanwhile, the gap between KL-UCB and KL-UCB-H+ increases, indicating KL-UCB might
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Figure 3.5: Bayes risk of several algorithm with a uniform prior distribution on the means of the 5 arms
(left) or 10 arms (right).

not be asymptotically optimal. As for the Bayesian algorithms, Thompson Sampling outperforms KL-
UCB-H+ and Bayes-UCB, despite its slightly larger Bayes risk, still appears as a fair competitor to
KL-UCB-H+ and KL-UCB+. We therefore conjecture that Bayes-UCB and Thompson Sampling are
good approximations of the Bayesian optimal policy, at least with a uniform prior. Recently, [Guha and
Munagala, 2014] have investigated the Bayesian optimality of Thompson Sampling, showing that for
two-armed bandits, with arbitrary prior Π0, for all T ,

EΠ0 [NTS
b (T )] ≤ 2 ×min

A
EΠ0 [NAb (T )] ,

where NAa (t) denotes the number of draws of arm a by the algorithm A up to time t and b denotes the
(random) suboptimal arm. As the Bayes risk of an algorithm in that case is EΠ0[(µ∗ −µb)NAb (T )], this
result does not exactly state that the Bayes risk of Thompson Sampling is within a multiplicative factor
2 of the Bayes-risk of the Bayesian optimal solution, but it still provides good performance guarantees
for Thompson Sampling in the Bayesian framework

On the two bandit problems displayed in Figure 3.5, one can check that the prior-independent upper
bound on the Bayes risk given by [Bubeck and Liu, 2013] is quite pessimistic: 14

√
TK is more than

one hundred times the actual regret obtained when there are ten arms. However, this upper bound holds
for any bandit model with a finite number of arms and any prior distribution π0 on reward distributions
bounded in [0,1], which includes more general situations with possibly correlated arms.

3.4.3 Thompson Sampling in more general frameworks

In the Bernoulli case, we have seen that Thompson Sampling is the easiest to implement asymptot-
ically optimal policy. This computational advantage will be even stronger in more complex models, in
which it might not be possible to design a UCB-like algorithm, or for which a complicated prior distri-
bution is used, such that the associated posterior distributions can only be sampled from using MCMC
simulation. In the latter case, an (approximate) implementation of Bayes-UCB needs several samples
from the posterior distribution to estimate the quantiles, whereas Thompson Sampling only needs to
produce one sample per round.

The performance of Thompson Sampling beyond one-parameter exponential family bandits has been
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recently investigated. [Honda and Takemura, 2014] propose the first analysis of Thompson Sampling in
the particular case of Gaussian bandit models with unknown means and variances. They prove that this
algorithm is asymptotically optimal for some choices of independent prior distributions (but not for all
the possible choices of independent priors, as explained above). [Bubeck and Liu, 2013] study Thompson
Sampling for Gaussian bandits with known variance but for a special form of non-independent prior. For
two-armed bandit models such that the means µ1, µ2 are known up to a permutation, they show that
Thompson Sampling has a finite regret. This regret has an optimal dependency in ∣µ1 − µ2∣, in a sense
specified by [Bubeck et al., 2013a], who study the particular setting in which the mean of the best arm
and (a lower bound on) the gap between the best and second best means are known. Recently, [Gopalan
et al., 2014] have proposed the first analysis for Thompson Sampling that holds for quite general bandit
problems. The authors derive a logarithmic upper bound on the regret that involves a (non-explicit)
constant that captures correlations between arms. However, this bound holds for finitely supported arms
and prior distribution, and it would be interesting to investigate whether these assumptions could be
relaxed to recover the upper bound obtained in the Bernoulli case with independent arms. Thompson
Sampling has also been successfully used for bandit problems with switching environments (see [Mellor
and Shapiro, 2013]), yet without theoretical guarantees.

As already mentioned in the Introduction, the good empirical performance of Thompson Sampling
in contextual bandit models was known before any theoretical guarantee even in the Bernoulli case was
available. Chapter 4 is dedicated to the presentation of contextual bandit models. We will notably review
(and prove new) regret and Bayes risk upper bounds for Thompson Sampling in this setting. Thompson
Sampling has also been successfully used in the more general framework of reinforcement learning. In
model-based reinforcement learning, under some assumptions on the transition and reward functions in
a Markov Decision Process, the goal is to design algorithms using estimates of these functions that act
(almost) optimally in the MDP. Optimistic approaches (building set of statistically plausible MDPs and
acting as in the best possible MDP) have been considered, leading to the UCRL2 ([Jaksch et al., 2010])
or KL-UCRL ([Filippi et al., 2010a]) algorithms. [Strens, 2000] introduces the following algorithm,
inspired by Thompson Sampling, that consists in several episodes. A prior distribution over the rewards
and transitions is maintained. At the beginning of each episode a MDP is drawn from the current posterior
distribution, the optimal policy for this sampled MDP is computed and played until the end of the episode.
Recently [Osband et al., 2013] have provided the first (Bayesian) regret guarantees for this algorithm,
while illustrating its practical performance. Other algorithms, sampling several MDPs at each round
(or at the beginning of each episode) have been considered. [Asmuth et al., 2009] merge the samples
obtained into a mixed MDP, whereas [Fonteneau et al., 2013] suggest to combine Thompson Sampling
with the optimism principle: at each round, the best action in the best possible sampled MDP is chosen.

3.5 Elements of proof

3.5.1 Proof of Lemma 3.8

On the event {J ⊆ [τj , τj+1[}, for all s ∈ J the posterior distribution πs1 = π
τj
1 is fixed and the (θ1(s))

are then, when conditioned on S1(τj), an i.i.d. sequence with common distribution Beta(S1(τj) + 1, j −
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S1(τj) + 1). Thus, one can write

P ((J ⊆ [τj , τj+1[) ∩ (∀s ∈ J , θ1(s) ≤ µ2 + δ)) = E [E [1(J ⊆[τj ,τj+1[)1(∀s∈J ,θ1(s)≤µ2+δ)∣ τj , S1(τj)]]

≤ E [E [1(∀s∈J ,θ̃1(s)≤µ2+δ)∣ τj , S1(τj)]]

where θ̃1(s) is an i.i.d. sequence conditionally to S1(τj) with distribution Beta(S1(τj)+1, j−S1(τj)+1).
Using that J is τj-measurable,

P ((J ⊆ [τj , τj+1[) ∩ (∀s ∈ J , θ1(s) ≤ µ2 + δ)) ≤ E [(FBeta
(S1(τj)+1,j−S1(τj)+1)(µ2 + δ))

∣J ∣
]

≤ E [(1 − FB(j+1,µ2+δ)(S1(τj)))
f(t)

] ,

where we use the link between the tail of Beta and Bernoulli distribution mentioned above and the fact
that ∣J ∣ ≥ f(t). It remains to upper bound this last expectation. An exact computation yields

E [(1 − FB(j+1,µ2+δ)(S1(τj)))f(t)] =
j

∑
s=0

(1 − FB(j+1,µ2+δ)(s))
f(t)fBj,µ1

(s)

To simplify notation, from now on let y = µ2 + δ. Using, as [Agrawal and Goyal, 2012], that

FBj+1,y(s) = (1 − y)FBj,y(s) + yFBj,y(s − 1) ≥ (1 − y)FBj,y(s),

we get:

(1 − FB(j+1,y)(s))
f(t) ≤ exp (−f(t)FB(j+1,y)(s)) ≤ exp (−f(t)(1 − y)FB(j,y)(s))

Therefore,

E [(1 − FB(j+1,µ2+δ)(S1(τj)))f(t)] ≤
j

∑
s=0

exp (−f(t)(1 − y)FB(j,y)(s)) f
B
j,µ1

(s)

Using the fact that for s ≥ ⌈yj⌉, FBj,y(s) ≥ 1
2 (since the median of a binomial distribution with parameters

j and y is ⌈yj⌉ or ⌊yj⌋), we get

E [(1 − FB(j+1,µ2+δ)(S1(τj)))f(t)]

≤
⌊jy⌋
∑
s=0

exp (−f(t)(1 − y)FB(j,y)(s)) f
B
j,µ1

(s) +
j

∑
s=⌈jy⌉

(1

2
)
(1−y)f(t)

fBj,µ1
(s)

≤
⌊jy⌋
∑
s=0

exp (−f(t)(1 − y)FB(j,y)(s)) f
B
j,µ1

(s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

+(1

2
)
(1−y)f(t)

.

It is easy to show that for every λ > 1,∀x > 0, xλ exp(−x) ≤ (λ
e
)λ This allows us to upper-bound the

exponential for all λ > 1, using Cλ = (λ
e
)λ,by:

(E) ≤ Cλ

(f(t)(1 − y))λ
⌊jy⌋
∑
s=0

fBj,µ1
(s)

(FB(j,y)(s))
λ
≤ Cλ

(f(t)(1 − y))λ
⌊jy⌋
∑
s=0

fBj,µ1
(s)

(fB(j,y)(s))
λ
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Now, inspired by Agrawal and Goyal’s work (proof of Lemma 3) we compute:

fBj,µ1
(s)

(fB(j,y)(s))
λ
=

(j
s
)µs1(1 − µ1)j−s

(j
s
)λ(yλ)s((1 − y)λ)j−s

≤ µs1(1 − µ1)j−s
(yλ)s((1 − y)λ)j−s

= ( 1 − µ1

(1 − y)λ)
j

(µ1(1 − y)λ
yλ(1 − µ1)

)
s

Let Rλ(µ1, y) = µ1(1−y)λ
yλ(1−µ1) . There exists some λ1 > 1 such that, if λ < λ1, Rλ > 1. More precisely,

Rλ > 1⇔ µ1

1 − µ1
> ( y

1 − y)
λ

⇔ ln( µ1

1 − µ1
) > λ ln( y

1 − y)

and so

λ1(µ1, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln( µ1
1−µ1

)

ln( y
1−y )

if y > 1
2

+∞ if y < 1
2

For 1 < λ < λ1:

⌊jy⌋
∑
s=0

fBj,µ1
(s)

(fB(j,µ2+δ)(s))
λ
≤ ( 1 − µ1

(1 − y)λ)
j ⌊jy⌋
∑
s=0

Rsλ = ( 1 − µ1

(1 − y)λ)
j R

⌊jy⌋+1
λ − 1

Rλ − 1

≤ ( 1 − µ1

(1 − y)λ)
j

Rλ
Rλ − 1

Rjyλ = Rλ
Rλ − 1

( 1 − µ1

(1 − y)λ)
j−jy

(µ1

yλ
)
jy

= Rλ
Rλ − 1

e−jdλ(y,µ1)

where dλ(y, µ1) = y ln (y
λ

µ1
) + (1 − y) ln ( (1−y)λ

1−µ1
). Rearranging we can write

dλ(y, µ1) = λ [y ln(y) + (1 − y) ln(1 − y)] − [y ln(µ1) + (1 − y) ln(1 − µ1)]

which is an affine function of λ with negative slope (y ln(y)+ (1−y) ln(1−y) < 0 for all y ∈ (0,1)) and
d1(y, µ1) =K (y, µ1) > 0. Hence, for fixed 0 < y < µ1 ≤ 1 this function is positive whenever

λ < y ln(µ1) + (1 − y) ln(1 − µ1)
y ln(y) + (1 − y) ln(1 − y) =∶ λ2(µ1, y).

Clearly, λ2(µ1, y) > 1 and we choose λ0 = min(λ1, λ2). After some calculation one can show that
λ2 ≤ λ1, and therefore that

λ0(µ1, µ2) = λ2(µ1, µ2 + δ) = 1 + K(µ2 + δ, µ1)
(µ2 + δ) ln 1

µ2+δ + (1 − µ2 − δ) ln 1
1−µ2−δ

.

To obtain the constants used in the statement of the lemma we define dλ,µ1,µ2 ∶= dλ(y, µ1)

Cλ,µ1,µ2 ∶= Cλ0(1 − µ2 − δ)−λ
Rλ

1 −Rλ
.

This concludes the proof.
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3.5.2 Proof of Lemma 3.9

Let a ∈ {2, . . .K}. Recall that Ca = 32
∆2
a

and δa = ∆a

2 .

P (∃s ≤ t ∶ θa(s) > µa + δa,Na(s) > Ca log t)

≤ P(∃s ≤ t ∶ Sa(t)
Na(t)

> µa +
δa
2
,Na(s) > Ca log t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+P(∃s ≤ t ∶ θa(s) >
Sa(t)
Na(t)

+ δa
2
,Na(s) > Ca log t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

Term A is easily upper bounded using a union bound and Hoeffding inequality:

(A) ≤
t

∑
s=⌈Ca log t⌉

P(∑
s
k=1 Ya,s

s
> µa +

δa
2
) ≤

t

∑
s=⌈Ca log t⌉

exp(−2sδ2
a

4
) ≤ t exp(−Ca log t∆2

a

8
) = 1

t3
≤ 1

t2
.

Term B is upper bounded as follows:

(B) ≤
t

∑
s=⌈Ca log t⌉

s

∑
r=1

P(θa(s) >
r

s
+ δa

2
∣Sa(s) = r,Na(s) = s)P(Sa(t) = r,Na(t) = s)

=
t

∑
s=⌈Ca log t⌉

s

∑
r=1

(1 − FBeta
r+1,s−r+1 (

r

s
+ δa

2
))P(Sa(t) = r,Na(t) = s)

=
t

∑
s=⌈Ca log t⌉

s

∑
r=1

FBin
s+1, r

s
+ δa

2

(r)P(Sa(t) = r,Na(t) = s)

Introducing a sequence (Zi) of i.i.d Bernoulli random variables with mean r
s + δa, one has

FBin
s+1, r

s
+ δa

2

(r) = P(
s+1

∑
i=1

Zi < r) ≤ P(
s+1

∑
i=1

(Zi −
r

s
− δa

2
) ≤ −δa

2
(s + 1)) ≤ exp(−2Ca log t

δ2
a

4
) ≤ 1

t3
.

Hence,

(B) ≤
t

∑
s=⌈Ca log t⌉

s

∑
r=1

1

t3
P(Sa(s) = r,Na(s) = s) =

t

∑
s=⌈Ca log t⌉

1

t3
≤ 1

t2
.

Finally a union bound over the arm yields Lemma 3.9.
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Chapter 4

Bayesian algorithms for linear contextual
bandits

Recall that the initial motivation for studying the stochastic multi-armed bandit problem with Bernoulli
rewards was sequential allocation of medical treatments: the response of patients to each treatment are
assumed to be i.i.d. binary random variables (indicating whether the patient is cured or not). This as-
sumption is however oversimplified, since the doctor has information about both the patient and the
treatments, and the optimal treatment for two patients might actually differ. One way to incorporate
this side information is to consider contextual bandit problems. In a more recent motivation for bandit
problems, online advertisement, contexts are also of utmost importance, since a lot of information on the
add, user or webpage is available. For all these reasons, we chose to dedicate a chapter of this thesis to
the presentation of these more general bandit models of practical interest. We especially focus on linear
contextual bandit problems and we argue that Bayes-UCB and Thompson Sampling can also be used in
this more general framework.

The contributions of this chapter are the following. If d is the dimension of the context space, we give
upper bounds on the Bayes risk of Bayes-UCB and Thompson Sampling using a Gaussian prior on the
regression parameter that scale inO(d

√
T ) andO(

√
dT log(K)) in the particular case of a finite number

of contexts K. For Bayes-UCB, we give a high-probability result that is inspired by standard analysis of
optimistic algorithms for linear bandits, whereas for Thompson Sampling, we use ideas introduced by
[Russo and Van Roy, 2014] and provide upper bounds in expectation. Both analyses rely on the use of
Bayesian confidence regions instead of frequentist confidence regions used in previous work.
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4.1 Introduction

Let Dt ⊂ Rd be a set of contexts (or ’contextualized actions’) available at time t. In a contextual
bandit model, at time t an agent chooses a context xt ∈ Dt and receives a reward

yt = f(xt) + εt, (4.1)

where f ∶ Rd → R is a (unknown) real-valued function and εt some centered noise. The agent aims at
maximizing the sum of his rewards.

The context set Dt can be seen as a set of structured actions that evolves over time. A more general
contextual bandit model involves both actions (in an action set A) and contexts (in a context set C). At
each time t, a context ct ∈ C is revealed, the agent chooses an action at ∈ A an receives a reward

yt = g(ct, at) + εt.

In the online advertisement application, the context ct could be a feature vector relative to the tth user of
the website, while action a corresponds to some advertisement that could be shown to him (a could be
itself a feature vector for this add). It is reasonable to assume that some feature vector for the pair user/add
xat = φ(ct, a), is built for each add a available and that there exists f such that g(c, a) = f(φ(c, a)). In
that case, we are in the model (4.1) with Dt = (xat )a∈A. For example, [Chapelle et al., 2014] suggest that
such coupled features are used in some add prediction systems. Besides, if the users can be clustered
into different categories, one can assume that in each category, the model (4.1) holds, with Dt the set of
feature vectors of adds available for display at time t. In the rest of this chapter, we will study only the
model (4.1).

Several assumptions on the function f have been considered in the literature. If f is a linear function,
that is f(x) = xT θ with θ ∈ Rd some unknown vector we are in a linear contextual bandit model,
first considered by [Auer, 2002] (under the name ‘associative reinforcement learning with linear value
function’). [Filippi et al., 2010b] consider the richer generalized linear bandit model for which f(x) =
µ(xT θ), where µ is some link function and θ ∈ Rd some unknown parameter. [Valko et al., 2013]
consider kernelized contextual bandit models for which f(x) = φ(x)T θ, where x belongs to some set
X , φ ∶ X → H is a mapping to some Hilbert space H, and θ ∈ H. In the rest of this chapter, we
will consider only the linear case, and present —as for classical bandit models in previous chapters—
optimistic approaches and Bayesian alternatives for the linear contextual bandit problem.

Contextual linear bandits. The contextual model mostly considered in this chapter is the following.
Let θ be a parameter in Rd. At time t, the agent chooses a context xt ∈ Dt based on past observations,
according to his strategy (or bandit algorithm) A, and receives a reward

yt = xTt θ + εt.

The σ-field Ht = σ(D1, x1, y1, . . . ,Dt, xt, yt,Dt+1) represents the information available at the end of
round t: contexts chosen and rewards observed up to the end of round t, as well as the new set of contexts
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Dt+1 from which the agent has to choose from at round t + 1. The noise εt satisfies E[εt∣Ht−1] = 0. In
a deterministic strategy, xt is assumed to be Ht−1-measurable, whereas in a randomized strategy, xt is
drawn from some distribution pt on Dt, such that pt is Ft−1-measurable.

The best context (or arm) at time t, i.e. the one with highest mean, is

x∗t = argmax
x∈Dt

xT θ

and the agent aims at minimizing the following random quantity, called pseudo-regret: 1

Rθ(T,A) =
T

∑
t=1

rt where rt = (x∗t )T θ − xTt θ.

In the literature, this model has been often introduced in the static case in which ∀t,Dt = D (as in
the papers by [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010] for example). In Chapter 2,
Bayes-UCB was also applied to a linear contextual bandit problem with a static, finite set of contexts
D = {U1, . . . , UK}. We call this problem a ‘linear bandit problem’, reserving the adjective ‘contextual’
to changing sets of contexts.

Depending on whether the regression parameter θ is regarded as an unknown parameter or is assumed
to be drawn from a prior distribution π0 on Rd, one may consider two different probabilistic frameworks.
We denote by P,E the probability and expectation under the Bayesian model (with an implicit depen-
dency on the prior distribution π0) and by Pθ, Eθ the probability and expectation in the frequentist
framework (that is, conditionally to θ). As for classical bandits, one defines Bayesian algorithms to be
algorithms using at round t the posterior distribution on θ to make a decision. Independently, for any
algorithm, Bayesian or ’frequentist’ (i.e. that does not use a prior in its routine) one can carry out two
types of analyses:

– a frequentist analysis bounds the pseudo-regret of an algorithm either in probability or in expecta-
tion, conditionally to θ. For example one can bound the regret (or expected regret) defined by

Rθ(T,A) = Eθ[Rθ(T,A)]

– a Bayesian analysis bounds the pseudo-regret of an algorithm in the Bayesian modeling (including
an average over the prior π0). For example one can bound the Bayes risk, defined by

BRπ0(T,A) = E[Rθ(T,A)] = E[Rθ(T,A)].

The goal of this chapter is to present the implementation of Bayes-UCB and Thompson Sampling in
linear contextual bandit models, as well as Bayesian and frequentist analyses of these two algorithms.
We make the following classical assumptions:

Assumption 1. The contexts are bounded: there exists L > 0 such that ∀t ∈ N,∀x ∈ Dt, ∣∣x∣∣2 ≤ L.
Assumption 2. The noise is centered and σ2-subgaussian : Eθ[ηt∣Ht−1] = 0 and

∀λ > 0,Eθ[eληt ∣Ht] = E[eληt ∣θ,Ht] ≤ e
λ2σ2

2 .

The Bayesian analyses presented here hold under an additional assumption presented below: Gaussian
prior and Gaussian noise.

1. In some papers, pseudo-regret may be called regret, and what we call regret should be called ‘expected regret’. We
chose these denominations to be consistent with what we call regret in previous chapters: for classical bandits, Rθ(T,A) is the
expectation of the pseudo-regret ∑tt=1(µ∗ − µAt).
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Contextual linear bandit with Gaussian prior. A natural prior distribution on the parameter θ is a
Gaussian prior with covariance κ2Id; that is θ ∼ N (0, κ2Id). Indeed, under this prior distribution,
if one assumes that the noise is Gaussian with known variance, the posterior distribution is explicitly
computable. Introducing for every t ≥ 1 the matrix and vectors

Xt =
⎛
⎜⎜⎜
⎝

xT1
xT2
.

xTt

⎞
⎟⎟⎟
⎠
∈Mt,d(R), Yt =

⎛
⎜⎜⎜
⎝

y1

y2

.
yt

⎞
⎟⎟⎟
⎠
∈ Rt, and Et =

⎛
⎜⎜⎜
⎝

ε1
ε2
.
εt

⎞
⎟⎟⎟
⎠
∈ Rt,

one has Yt = Xtθ + Et. If the noise is such that εt ∼ N (0, σ2), the posterior distribution on θ at the
beginning of round t + 1 is

p(θ∣Ht) = N (θ̂(t),Σt)

where

{ θ̂(t) = (B(t))−1XT
t Yt with B(t) = σ2

κ2 Id +XT
t Xt

Σt = σ2(B(t))−1.

The posterior mean θ̂(t) is the regularized least-square estimator of θ with regularization parameter
λ = σ2

κ2 .
The Bayes-UCB, Bayes-LinUCB and Thompson Sampling algorithms presented in Sections 4.3 and

4.4 use the Gaussian prior distribution defined above. It is sometimes possible to implement (approxima-
tions of) these algorithms using a more general prior distribution π0 by resorting to MCMC simulation
when there is no close form for the posterior distribution, as illustrated in Chapter 2 for Bayes-UCB
with a sparsity-inducing prior. For our Bayesian analyses, Assumption 2 above will be replaced by the
assumption of a Gaussian noise with variance σ2:

yt = θTxt + εt, with θ ∼ N (0, κ2Id) and εt ∼ N (0, σ2) . (4.2)

Optimistic approaches and related works. Optimistic algorithms for linear contextual bandits build
a confidence region Ct in Rd for the unknown parameter θ and choose

xt+1 = argmax
x∈Dt+1

max
θ′∈Ct

xT θ′. (4.3)

This optimism-in-face-of-uncertainty principle is implemented in the algorithms proposed by [Auer,
2002, Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Chu et al., 2011, Abbasi-Yadkori et al.,
2011], with successive refinement on how to build the confidence region Ct. Some of the confidence
regions used are built using a (potentially regularized) least-square estimate of θ. Keeping the notation
B(t), Σt and θ̂(t) of the previous section (with κ = +∞ allowed when there is no regularization), some
confidence region used are of the form

Ct = (θ′ ∈ Rd ∶ ∣∣θ̂(t) − θ′∣∣Σ−1
t
≤ β(t + 1, δ)) ,

where we recall that ∣∣v∣∣A =
√
vTAv is the L2-norm associated to the matrix A. For Ct of the following

form, the maximum in (4.3) can be computed explicitly and the algorithm rewrites

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σtβ(t + 1, δ)] .
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When the number of contexts is finite, the above algorithm appears as an index policy. It can also be
implemented when Dt is infinite and convex as the maximization of a convex differentiable function.
When Dt is a polytope, [Dani et al., 2008] suggest to use L1 confidence regions.

Among theses optimistic algorithms, the one using the tightest confidence region is the OFUL algo-
rithm of [Abbasi-Yadkori et al., 2011], which picks at time t

xt+1 = argmax
x∈Dt+1

⎡⎢⎢⎢⎢⎢⎣
θ̂(t)Tx + ∣∣x∣∣Σt

⎛
⎜
⎝

¿
ÁÁÀ2 log

1

δ
+ d log(1 + (t + 1)L

2κ2

dσ2
) + 1

κ
∣∣θ∣∣

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.

OFUL was introduced in a frequentist setting, in which κ is no longer seen as the parameter of a prior
distribution but is a parameter of the algorithm such that σ

2

κ2 is the regularization coefficient in the regu-
larized least square estimate θ̂(t).

[Abbasi-Yadkori et al., 2011] propose a frequentist analysis of OFUL under Assumption 1 and 2
and the additional assumption that for all t ∈ N∗, for all x ∈ Dt, ∣xT θ∣ ≤ 1. They show that, for a fixed
parameter θ, the pseudo-regret of OFUL is of order Õ(d

√
T ) with high probability. The Õ notation

means that we ignore logarithmic factors in T . In the static case, that is when Dt = D, there exists some
(worst-case) lower bounds on the regret and Bayes risk, under specific assumptions on the set D. For D
the unit sphere in Rd, [Rusmevichientong and Tsitsiklis, 2010] show that there exists a prior distribution
π0 (namely a Gaussian prior with covariance matrix 1

dId) such that every bandit algorithm A satisfies
BRπ0(T,A) ≥ 0.006d

√
T . Consequently, for every algorithm A, there exists θ ∈ Rd such that in the

associated linear bandit model Rθ(T,A) ≥ 0.006d
√
T . When D is the hypercube {0,1}d, of cardinal

K = 2d, [Dani et al., 2007] show that for any bandit algorithm A, there exists a vector θ and a centered
noise εt such that Rθ(T,A) is at least of order d

√
T . In this example, d

√
T = O(

√
dT log(K)), and

more generally when the number of contexts is finite, one may expect to have an upper bound on the
regret or Bayes risk that scales in

√
dT log(K) in place of d

√
T .

This has been shown to be possible in a more general, adversarial, setting. In an adversarial linear
bandit problem (rather called bandit linear optimization in the literature), at each time t the agent chooses
a context xt ∈ D while an ’adversary’ simultaneously chooses a vector lt ∈ Rd. The agent receives the
rewards xTt lt and wants to minimize its pseudo-regret, defined in this setting by

R(T,A) = max
x∈D

E [
T

∑
t=1

xT lt] −E [
T

∑
t=1

xTt lt] .

No stochastic assumptions are made on lt unlike in the (stochastic) linear bandit problem considered so
far. When the number of contexts in D is finite, algorithms for online linear optimization mostly consist
in adapting the EXP3 algorithm of [Auer et al., 2002b] suited for classical adversarial bandits (see e.g.
[Bubeck and Cesa-Bianchi, 2012]) by incorporating estimates of lt at each step. Among them, EXP2 with
John exploration, proposed by [Bubeck et al., 2012] can be applied to the stochastic linear contextual
bandit problem with a static, finite set of context D and is such that Rθ(T,A) ≤ 2

√
3
√
dT log(K).

However, this algorithm is difficult to implement. We will show below that the pseudo-regret of Bayes-
UCB and Thompson Sampling also scales in Õ(d

√
T ) or Õ(

√
dT log(K)), whichever is smaller.

4.2 Bayesian and frequentist confidence regions

Confidence regions on θ in Rd but also confidence intervals (in R) on the mean of each context xT θ
are necessary to define and analyse optimistic algorithms, like the algorithms mentioned above or the
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two variants of Bayes-UCB presented in the next section. In Lemma 4.1, we recall a confidence region
given by [Abbasi-Yadkori et al., 2011]. This confidence region was obtained using the so-called ’method
of mixtures’, that we discuss in Appendix A. One can find in Section A.3 therein the deviation inequality
for vector-valued martingales proved by [Abbasi-Yadkori et al., 2011] that allows to show the following
lemma.

Lemma 4.1. Under Assumptions 1 and 2, for any algorithm A,

Pθ
⎛
⎜
⎝
∀t ∈ N, ∣∣θ − θ̂(t)∣∣Σ−1

t
≤
⎛
⎜
⎝

¿
ÁÁÀ2 log

1

δ
+ d log(1 + (t + 1)L

2κ2

dσ2
) + 1

κ
∣∣θ∣∣

⎞
⎟
⎠

⎞
⎟
⎠
≥ 1 − δ.

Proof. Introducing the martingale St =XT
t Et = ∑ts=1 εsxs, and letting Vt = B(t), one can write

θ̂(t) − θ = V −1
t XT

t Yt − θ = V −1
t XT

t Xtθ + V −1
t XT

t Et − θ = −
σ2

κ2
V −1
t θ + V −1

t St

∣∣θ̂(t) − θ∣∣Σ−1
t

= σ−1∣∣θ̂(t) − θ∣∣Vt ≤ σ−1∣∣St∣∣V −1
t
+ σ

κ2
∣∣θ∣∣V −1

t
.

St = ∑ts=1 εsxs is such that the xs are Fs−1 measurable and εs is centered and σ-subgaussian. Thus the
deviation inequality of Lemma A.8 in Appendix A can be applied with V = σ2

κ2 Id. With probability larger
than 1 − δ, for all t ∈ N,

∣∣θ̂(t) − θ∣∣Σ−1
t
≤
¿
ÁÁÁÀ2 log

1

δ
+ log

det(Vt)
det (σ2

κ2 Id)
+ 1

κ
∣∣θ∣∣.

Following Lemma 10 of [Abbasi-Yadkori et al., 2011], the determinant of Vt is bounded as

det(Vt) ≤ (σ
2

κ2
+ tL

2

d
)
d

, (4.4)

which concludes the proof.

◻

Lemma 4.1 also leads to a confidence intervals on xT θ since from the Cauchy-Schwarz inequality

∣θTx − θ̂(t)Tx∣ ≤ ∣∣θ − θ̂(t)∣∣Σ−1
t
∣∣x∣∣Σt .

This confidence region on θ given in Lemma 4.1 holds conditionally to θ and is therefore a ’frequen-
tist’ confidence region. It is used to define and analyse the OFUL algorithm ([Abbasi-Yadkori et al.,
2011]) as well as in the frequentist analysis of a version of Thompson Sampling proposed by [Agrawal
and Goyal, 2013b]. Integrating over the prior yields a Bayesian confidence region, that is used by [Russo
and Van Roy, 2014] in a general Bayesian analysis of Thompson Sampling.

The Bayesian analysis we present here for Thompson Sampling and Bayes-UCB are based on the
Bayesian confidence regions we introduce here in a model with Gaussian noise and Gaussian prior.
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Lemma 4.2. Under the Bayesian model (4.2), for any algorithm A,

P(∣∣θ − θ̂(t)∣∣Σ−1
t
≤
√
Q (1 − δ;χ2

d)) ≥ 1 − δ. (4.5)

Moreover, if at each round ∣Dt∣ =K, for any algorithm A, for all t ≥ 1,

P(∀x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ ≤ ∣∣x∣∣ΣtQ(1 − δ

2K
;N (0,1))) ≥ 1 − δ. (4.6)

where Q(α,π) is the quantile of order α of the distribution π.

Proof. We first write

∣∣θ − θ̂(t)∣∣2Σ−1
t

= (θ − θ̂(t))TΣ−1
t (θ − θ̂(t)) = [(θ − θ̂(t))TΣ

− 1
2

t ]Σ− 1
2

t (θ − θ̂(t))

= ∣∣Σ− 1
2

t (θ − θ̂(t))∣∣2.

Given Ht, θ has distribution N (θ̂(t),Σt), hence Σ
− 1

2
t (θ − θ̂(t)) ∼ N (0, Id) and ∣∣Σ− 1

2
t (θ − θ̂(t))∣∣2

follows a chi-square distribution with d degrees of freedom. We have shown that

∣∣θ − θ̂(t)∣∣2Σ−1
t
∣Ht ∼ χ2

d.

Hence, we have, by definition of the quantile, that

P(∣∣θ − θ̂(t)∣∣Σ−1
t
≤

√
Q (1 − δ;χ2

d)∣Ht) = P (∣∣θ − θ̂(t)∣∣2Σ−1
t
≤ Q (1 − δ;χ2

d)∣Ht) ≥ 1 − δ

and inequality (4.5) follows in conditioning.
In the particular case where Dt = K for all t ∈ N, we can introduce an (arbitrary) ordering of the

contexts and write Dt = (b1(t), . . . , bK(t)). Then, for each context, we use that conditionally to Ht,
bi(t + 1)T θ ∼ N (bi(t + 1)T θ̂(t), ∣∣bi(t + 1)∣∣Σt). Thus

P(∃x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ > ∣∣x∣∣ΣtQ(1 − δ

2K
;N (0,1)))

≤
K

∑
i=1

P(∣bi(t + 1)T θ − bi(t + 1)T θ̂(t)∣ > ∣∣bi(t + 1)∣∣ΣtQ(1 − δ

2K
;N (0,1)))

=
K

∑
i=1

E [P(∣bi(t + 1)T θ − bi(t + 1)T θ̂(t)∣ > ∣∣bi(t + 1)∣∣Σt Q(1 − δ

2K
;N (0,1))∣Ht)]

=
K

∑
i=1

δ

K
= δ

which yields inequality (4.6).

◻
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4.3 The Bayes-UCB algorithm and a generalization

4.3.1 The algorithms

The Bayes-UCB algorithm presented in Chapter 2 picks at time t the arm whose quantile of order
1 − 1

t of the marginal posterior distribution on the mean is maximal. Ignoring dependencies among the
arms, we explained in Chapter 2 how this algorithm could be applied in a (static) linear bandit model.
Bayes-UCB can also naturally be extended to a linear contextual bandit (with changing contexts). To
obtain theoretical guarantees, however, we need to consider a different level of confidence, and 1/t is
replaced in the definition below by e−f(t,δ), for some exploration rate f(t, δ). The Bayes-UCB algorithm
using the Bayesian model (4.2) chooses at time t + 1

xt+1 = argmax
x∈Dt+1

Q (1 − e−f(t+1,δ);N (xT θ̂(t), ∣∣x∣∣Σt)) ,

xt+1 = argmax
x∈Dt+1

[xT θ̂(t) + ∣∣x∣∣ΣtQ (1 − e−f(t+1,δ);N (0,1))] ,

where f(t, δ) is some exploration rate. Indeed, the posterior distribution on the mean xT θ of arm x at
the beginning of round t + 1 is N (xT θ̂(t), ∣∣x∣∣Σt).

Bayes-UCB can be seen as a variant of a UCB-type algorithm that uses Bayesian confidence regions
on the mean of each arm. When we go from classical bandit to linear bandits, the optimism-in-face-of-
uncertainty principle is used differently : one rather picks the context for which there exists a ’possible’
regression parameter θ (in the sense that it lies in some confidence region) for which the associated mean
xT θ is the highest among all contexts and all ’possible’ regression parameters (see (4.3)). A natural
Bayesian optimistic algorithm for the linear contextual bandit problem consists therefore in applying
this principle with a Bayesian confidence region. It follows from inequality (4.5) that

P(∣∣θ − θ̂(t)∣∣Σ−1
t
≤
√
Q (1 − e−f(t+1,δ);χ2

d)) ≥ 1 − e−f(t+1,δ).

We define the Bayes-LinUCB algorithm to be the algorithm of the form (4.3) using the Bayesian confi-
dence region

Ct = {θ′ ∶ ∣∣θ′ − θ̂(t)∣∣Σ−1
t
≤
√
Q (1 − e−f(t+1,δ);χ2

d)} .

As explained above, using a bit of algebra one can show Bayes-LinUCB picks at time t + 1 the context

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σt
√
Q (1 − e−f(t+1,δ);χ2

d)] .

4.3.2 Bayesian analysis of Bayes-UCB and Bayes-LinUCB

Bayes-UCB and Bayes-LinUCB are algorithms of the form

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σtβ(t + 1, δ)] . (4.7)

One of the first analyses proposed for an algorithm of this form was that of ConfidenceBall given by
[Dani et al., 2008]. A closer examination of their analysis shows that its cornerstone can be summarized
in Lemma 4.3 below, whose proof is given in Section 4.6.1. This Lemma is also implicitly used in the
analysis of the Uncertainty Ellipsoid algorithm of [Rusmevichientong and Tsitsiklis, 2010] and of the
OFUL algorithm of [Abbasi-Yadkori et al., 2011].
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Lemma 4.3. For an algorithmA that picks at time t+1 the context xt+1 according to (4.7), on the event

E = ⋂
t∈N

(∀x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ ≤ ∣∣x∣∣Σtβ(t + 1, δ))

the pseudo-regret of A satisfies, under Assumption 1,

∀T ∈ N∗, Rθ(A, T ) ≤ β(T, δ)
√
Td

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
),

with C1 ∶= 4L2κ2

log(1+L2κ2σ−2) .

This result states that on some event E, the pseudo-regret Rθ(T,A) is upper bounded by a deter-
ministic quantity. For the OFUL algorithm, Lemma 4.1 shows that the event E in Lemma 4.3 holds with
probability at least 1−δ, leading to a high-probability upper bound on the pseudo-regret in the frequentist
framework. Upper bounding the pseudo-regret of Bayes-UCB or Bayes-LinUCB with high probability,
then boils down to choosing the exploration rate f(t, δ) in such a way that the probability of the event
E associated is larger than 1− δ. Using the Bayesian confidence regions given in Lemma 4.2, and upper
bounds on the quantiles of the normal and chi-square distribution leads to PAC-Bayesian bounds on the
pseudo-regret stated in Theorem 4.4.

Up to logarithmic factor in T , the pseudo-regret of Bayes-UCB when there is a finite number of
contextsK is of order Õ(

√
dT log(K)), in high probability under the Bayesian model (4.2). For Bayes-

LinUCB, suited for the general case (with a potentially infinite set of context Dt), the pseudo-regret is of
order Õ(d

√
T ), also with high probability.

Theorem 4.4. Choosing f(t, δ) = log Kπ2t2

3δ , when the number of context is finite and ∣Dt∣ ≤ K, the
Bayes-UCB algorithm satisfies, under Assumption 1 and the Bayesian model (4.2)

P
⎛
⎜
⎝
∀T ∈ N,Rθ(T,A) ≤

√
Td

¿
ÁÁÀ2C1 log(Kπ

2T 2

6δ
) log(1 + T L

2σ2

dκ2
)
⎞
⎟
⎠
≥ 1 − δ.

With the exploration rate f(t, δ) = log π2t2

6δ , the Bayes-LinUCB algorithm satisfies

P
⎛
⎜⎜
⎝
∀T ∈ N,Rθ(T,A) ≤ d

√
T

¿
ÁÁÁÀC1 log(1 + T L

2σ2

dκ2
)
⎛
⎝

1 + 2

d
log

π2T 2

6δ
+ 2

√
1

d
log

π2T 2

6δ

⎞
⎠

⎞
⎟⎟
⎠
≥ 1 − δ.

where C1 is the constant introduced in Lemma 4.3.

Proof of Theorem 4.4 Assume that ∀t ∈ N, ∣Dt∣ = K. With f(t, δ) = log Kπ2t2

3δ , Bayes-UCB picks
at time t+1 the context xt+1 according to the Equation (4.7) with β(t, δ) = Q (1 − 3δ

Kπ2t2
;N (0,1)). Let

E be the event

E = ⋂
t∈N

(∀x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ ≤ ∣∣x∣∣ΣtQ(1 − 3δ

Kπ2(t + 1)2
;N (0,1))) .

Inequality (4.6) yields, for all t ∈ N∗

P(∀x ∈ Dt, ∣xT θ − xT θ̂(t − 1)∣ ≤ ∣∣x∣∣Σt−1Q(1 − 6δ

2Kπ2t2
;N (0,1))) ≥ 1 − 6δ

π2t2
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and an union bound on t ≥ 1 yields P(E) ≥ 1 − δ. On E, from Lemma 4.3 the pseudo-regret is upper
bounded for all T as follows:

Rθ(T,A) ≤ Q(1 − 3δ

Kπ2T 2
;N (0,1))

√
Td

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
)

≤
√
Td

¿
ÁÁÀ2 log(Kπ

2T 2

6δ
)
¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
),

using a classic upper bound on the tail of a Gaussian distribution: if X ∼ N (0,1) it can be shown that
P(X > c) ≤ (1/2)e−c2/2.

Bayes-LinUCB using the exploration rate stated above picks at time t+ 1 the context xt+1 according

to (4.7) with β(t, δ) =
√
Q (1 − 6δ

π2t2
;χd2). Introducing

E = ⋂
t∈N

⎛
⎝
∀x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ ≤ ∣∣x∣∣Σt

√
Q(1 − 6δ

π2t2
;χd2)

⎞
⎠
,

inequality (4.5) and a union bounds also yields P(E) ≥ 1 − δ. By Lemma 4.3, on E one has

∀T ∈ N∗, Rθ(T,A) ≤
√
Q(1 − 6δ

π2T 2
;χ2

d)
√
Td

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
).

Inequality (4.3) in [Laurent and Massart, 2000] provides an upper bound of the quantile of a chi-square
distribution, namely

Q (1 − α;χ2
d) ≤ d + 2 log

1

α
+ 2

√
d log

1

α
. (4.8)

Using this inequality, on event E,

Rθ(T,A) ≤

¿
ÁÁÁÀd + log(π

2T 2

6δ
) + 2

¿
ÁÁÀd log(π

2t2

6δ
),

√
Td

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
)

which concludes the proof.

◻

4.3.3 Comparison with other optimistic algorithms

A linear bandit model with Gaussian prior can also be seen as the simplest example of Gaussian
process bandit models as presented by [Srinivas et al., 2010, Srinivas et al., 2012]. Indeed, the model
yt = xTt θ+εt with the assumption that θ ∼ N (0, κ2Id) is equivalent to the model yt = f(xt)+εt with the
assumption that f is sampled from a Gaussian process ∼ GP (0, k(x,x′)) where k is a linear kernel onD
such that k(x,x′) = κ2xTx′. [Srinivas et al., 2010] also make the assumption that the noise is Gaussian
with variance σ2 and introduce the GP-UCB algorithm, that chooses at time t + 1, when ∣Dt+1∣ =K,

xt+1 = argmax
x∈Dt+1

⎡⎢⎢⎢⎢⎣
θ̂(t) + ∣∣x∣∣Σt

¿
ÁÁÀ2 log(K(t + 1)2π2

6δ
)
⎤⎥⎥⎥⎥⎦
.
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Algorithm Value of β(t, δ)
Bayes-UCB∗ Q (1 − 3δ

Kπ2t2
;N (0,1))

Bayes-LinUCB
√
Q (1 − 6δ

π2t2
;χ2

d)

GP-UCB∗
√

2 log (Kt2π2

6δ )

OFUL (
√

2 log 1
δ + d log (1 + tL2κ2

dσ2 ) + 1
κ ∣∣θ∣∣)

Table 4.1: Index for various policies, some of them∗ suited for ∣Dt∣ =K.

While the original version of GP-UCB was suited for a static context set D, the authors later proposed a
contextualized version ([Krause and Ong, 2011]).

With this particular linear kernel, GP-UCB is very close to Bayes-UCB: more precisely, since√
2 log (Kπ2t2/(6δ)) is a tight upper bound on the quantile Q (1 − 3δ/(Kπ2t2);N (0,1)) used by

the provably efficient version of Bayes-UCB given in Theorem 4.4. [Srinivas et al., 2010] also propose
an algorithm in the case when D is a compact set, based on a discretization argument and on regularity
properties of the Gaussian process. Bayes-LinUCB on the contrary can be implemented for any set D
and is based on the simple Bayesian confidence region given by (4.5).

Optimistic algorithms for linear contextual bandits presented so far appear as generalized index poli-
cies, of the form

xt+1 = argmax
x∈Dt+1

[θ̂(t)Tx + ∣∣x∣∣Σtβ(t + 1, δ)] ,

with different exploration rates β(t, δ), that we recall in Table 4.1. From the analysis we gave, based on
Lemma 4.3, the smaller β(t, δ), the smaller the upper bound on the regret obtained. However, the way
the different values of β(t, δ) in Table 4.1 compare is not obvious. As just mentioned, the exploration
rate of Bayes-UCB is always smaller than that of GP-UCB. Among the other three algorithms, one would
expect the exploration of Bayes-UCB to be smaller than that of Bayes-LinUCB on bandit models with
finite number of contexts such that log(K) ≤ d. Figure 4.1 illustrates this tendency: for a bandit model
with log(K) ≃ 7, we show that the exploration rate of Bayes-UCB is smaller than that of Bayes-LinUCB
when d = 5, and larger when d = 10. In these cases, both exploration rates are smaller than that of OFUL.
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Figure 4.1: Exploration rates β(t, δ) used by the different algorithms as a function of t for δ = 0.05, on
a bandit model for which K = 2000 and d = 5 (left) and K = 2000 and d = 10 (right)

The original Bayes-UCB algorithm (see Chapter 2) is proved optimal for classical bandits with
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Bernoulli rewards in a frequentist sense: the algorithm matches the problem-dependent lower bound
on the regret given by [Lai and Robbins, 1985] for every Bernoulli bandit model. In the same spirit,
we could expect to be able to give a frequentist analysis of Bayes-UCB (or Bayes-LinUCB) in the more
general linear contextual bandit problem studied here. As already explained, most of analyses of algo-
rithms of the form (4.7) rely on Lemma 4.3. For example, with a fixed number of contextsK, frequentist
guarantees for Bayes-UCB would rely on an upper bound for the probability

Pθ (∃t ∈ N∗,∃x ∈ Dt+1, ∣xT θ − xT θ̂(t)∣ > ∣∣x∣∣ΣtQ(1 − π2δ

6Kt2
;N (0,1))) .

However, the best deviation inequality currently available in the frequentist setting is the one deduced
from Lemma 4.1:

Pθ
⎛
⎜
⎝
∃t ∈ N,∃x ∈ Dt+1 ∶ ∣θTx − θ̂(t)Tx∣ > ∣∣x∣∣Σt

⎛
⎜
⎝

¿
ÁÁÀ2 log

1

δ
+ d log(1 + (t + 1)L

2κ2

dσ2
) + 1

κ
∣∣θ∣∣

⎞
⎟
⎠

⎞
⎟
⎠
≤ δ.

Even for a fixed context x, it is not known whether one can prove a deviation inequality of the form

Pθ (∃t ∈ N∗ ∣θTx − θ̂(t)Tx∣ > ∣∣x∣∣Σtβ(t + 1, δ)) ≤ δ (4.9)

with an exploration rate β(t, δ) independent on the dimension d.

4.4 Thompson Sampling

4.4.1 The algorithm

Thompson Sampling in linear contextual bandit models is easy to implement. Given a Bayesian
model such that samples from the posterior distributions on θ at each round can be computed, the algo-
rithm draws at round t + 1 a sample θ̃(t) from the posterior distribution at the end of round t and picks
the context xt+1 according to

xt+1 = argmaxx∈Dt+1
xT θ̃(t).

This ensures that the context chosen has the highest posterior probability of being the best context.
Whereas optimistic algorithms reduce to solving the optimization problem (4.7), Thompson Sampling
only requires to solve a linear optimization problem, which is in general easier.

Recently, Bayesian and frequentist guarantees for Thompson Sampling in linear contextual bandits
have emerged in the literature. On the one hand [Russo and Van Roy, 2014] propose a general Bayesian
analysis of Thompson Sampling that can be applied to linear contextual bandits when the prior distribu-
tion is such that θ remains bounded. On the other hand, [Agrawal and Goyal, 2013b] propose the first
frequentist analysis of Thompson Sampling with a Gaussian prior. They give a high-probability upper
bound on the pseudo-regret of Thompson Sampling for a specific choice of prior (and likelihood), that
depends on δ and on assumptions on the noise.

As in the rest of the chapter, we focus here on Thompson Sampling with Gaussian prior. We review
existing results from [Russo and Van Roy, 2014] and [Agrawal and Goyal, 2013b] and additionally
propose a new Bayesian analysis suited for a potentially infinite set of contextsDt, a case not completely
covered by the work of [Russo and Van Roy, 2014].
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4.4.2 A Bayesian analysis of Thompson Sampling

[Russo and Van Roy, 2014] propose a Bayesian analysis of Thompson Sampling for a wide class
of models, including linear contextual bandits. Their analysis holds for quite general prior distributions
π0 and uses the fact that conditionally to the history Ht, θ and the sample θ̃(t) used in the algorithm
have the same distribution, and so do xt+1 and x∗t+1. This remark leads to a Bayes risk decomposition
extensively used by [Russo and Van Roy, 2014], that rewrites for linear bandits

BRπ0(T,TSπ0) = E[Rθ(T,TSπ0)] ≤ E
T

∑
t=1

[Ut−1(xt) − θTxt] +E
T

∑
t=1

[θTx∗t −Ut−1(x∗t )], (4.10)

where (Ut) is any sequence of confidence bounds. The Bayes-risk bound sketched in [Russo and Van
Roy, 2014] for linear contextual bandit uses classic upper bounds of the formUt(x) = θ̂(t)Tx+∣∣x∣∣Σtβt+1

and holds for prior distribution satisfying P(∣∣θ∣∣2 ≤ C) = 1 for some constant C.
This assumption does not hold for a Gaussian prior distribution. However, as already pointed out in

Section 4.3.3, a linear bandit model with Gaussian prior and Gaussian noise is equivalent to a particular
case of Gaussian process bandit, for which [Russo and Van Roy, 2014] also provide a Bayes risk bound.
This bound is based on the decomposition (4.10) and holds when the total number of contextsDt is finite
and static. Their argument can be easily extended to a set of changing contexts, leading to the following
theorem.

Theorem 4.5 (adapted from [Russo and Van Roy, 2014], Proposition 5). In the Bayesian model (4.2), if
for all t, ∣Dt∣ = K, under Assumption 1, the Bayes-risk of Thompson sampling using a Gaussian prior
π0 = N (0, κ2Id) is upper bounded as

BRπ0(T,TSπ0) ≤
κ2L2

√
2π

+
¿
ÁÁÀ2dT log(KT

2π2

6
)
¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
),

with C1 defined as in Lemma 4.3.

The Bayes risk bound we now provide in Theorem 4.6 holds without the assumption that the context
set Dt is finite. It is based on techniques similar to those of [Russo and Van Roy, 2014] (even if the
decomposition (4.10) is not used explicitly) and on the fact that conditionally toHt, ∣∣θ−θ̂(t)∣∣Σ−1

t
follows

a chi-square distribution with d degrees of freedom, as already used to obtain the Bayesian confidence
region (4.5) in Lemma 4.2. The proof of this theorem is given in Section 4.6.2.

Theorem 4.6. Under Assumption 1 and the Bayesian model (4.2), the Bayes risk of Thompson Sampling
using a Gaussian prior π0 = N (0, κ2Id) is upper bounded in the following way:

BRπ0(T,TSπ0) ≤ d
√
T

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
)(3 + 8 logT + 2

√
log(2T 4)) + π

2Lκ
√
d

3σ
,

with C1 = 4L2κ2

log(1+L2κ2σ−2) .

In a linear contextual bandit problem with a finite number of contexts presented at each round, we saw
in the previous section that either Bayes-UCB or Bayes-LinUCB could be used, with a high probability
upper bound on the pseudo-regret of order Õ(

√
dT log(K)) or Õ(d

√
T ) respectively. Thus, depending

on the relation between the dimension d an the number of contexts K, one of these two variants could
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be preferred based on these theoretical bounds or on the observation that one version performs better
than the other in practice. Conversely, for Thompson Sampling, no adaptation of the algorithm is needed
to obtain the same guarantees. That is, the Bayes risk of Thompson Sampling is upper bounded by
whichever is smaller between the two bounds given in Theorem 4.5 and Theorem 4.6.

4.4.3 A frequentist analysis of Thompson Sampling

The only frequentist guarantees available to date for Thompson Sampling in contextual bandits with
linear payoff follow from the work of [Agrawal and Goyal, 2013b]. For a fixed value of θ, under As-
sumptions 1 and 2, the authors give a high-probability upper bound on the pseudo-regret of Thompson
Sampling, but with a specific choice of prior and likelihood.

If the noise is assumed to be σ2-subgaussian (cf. Assumption 2), letting

κ = v = σ
√

9d log
T

δ
, (4.11)

[Agrawal and Goyal, 2013b] analyse the version of Thompson Sampling assuming θ ∼ N (0, κ2) and
εt ∼ N (0, v2). This algorithm, denoted by TS′ chooses at round t + 1 the context maximizing the dot
product with the sample

θ̃(t) ∼ N (θ̂(t), v2B(t)−1) with B(t) = Id +XT
t Xt.

The parameters κ and v have to be chosen as a function of the horizon T . To circumvent this issue,
the authors propose and analyse the algorithm drawing at each time a sample from a normal distribution
with mean θ̂(t) and covariance v2

tB(t)−1, with vt = σ
√

9d log t
δ . This distribution can be regarded as a

posterior distribution if the prior distribution and the distribution of the noise are N (0, v2
t ). Due to this

varying prior distribution, this horizon-free variant cannot really be interpreted as Thompson Sampling.
For TS′ and its horizon-free variant, [Agrawal and Goyal, 2013b] prove the following theorem.

Theorem 4.7 ([Agrawal and Goyal, 2013b], Theorem 1). For a fixed value of θ, under Assumptions 1
and 2, the algorithm TS′ described above satisfies, with probability larger than 1 − δ,

Rθ(T,TS′) = O
⎛
⎝

min{d3/2√T ;d
√
T log(K)}

⎛
⎝

log(T ) +
√

log(T ) log
1

δ

⎞
⎠
⎞
⎠
.

The proof of Theorem 4.7 given by [Agrawal and Goyal, 2013b] is interesting since it departs from
frequentist analyses presented so far. Indeed, it does not reduce to a deterministic upper bound of the
pseudo-regret on some event whose probability can be shown to be larger than 1 − δ (as is the case
when using Lemma 4.3). The cornerstone of this new analysis lies in an upper bound on the conditional
expectation Eθ[rt∣Ft−1] which takes the form

Eθ[rt∣Ft−1] ≤ CgtEθ[∣∣xt∣∣B(t−1)−1 ∣Ft−1] +
Dgt
t2

,

C,D being two real constants and gt some function growing logarithmically.
Theorem 4.7 leaves interesting open questions regarding the analysis of Thompson Sampling from

a frequentist perspective. First, this bound displays an extra factor
√
d when compared to the bounds

obtained in the Bayesian framework, whereas we will see in the experimental section to follow that
in practice, the regret of Thompson Sampling is smaller. Second, if the noise is assumed to be σ2-
subgaussian, it is natural to try to obtain performance guarantees for the version of Thompson Sampling
that assumes a normal distribution for the noise with variance σ2, and not v2 given by (4.11)).
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4.5 Numerical experiments

Experiments assessing the performance of Thompson Sampling beyond the Bernoulli case are mostly
carried out for a particular instance of generalized linear bandit model, based on logistic regression (see
[Scott, 2010, Chapelle and Li, 2011, May et al., 2012, Chapelle et al., 2014]). The rewards are assumed
to be binary, such that yt ∈ {−1,+1}, modeling for example click or no click from the users, and

P(yt = 1∣xt, θ) =
1

1 + exp(−θTxt)
.

If θ is assumed to be drawn from a Gaussian prior distributionN (0, 1
λ Id), under this model the posterior

distribution is no longer exactly computable. However, using a Laplace approximation (see e.g. [Bishop,
2006]), it can be approximated by a Gaussian distribution:

p(θ∣x1, y1, . . . , xt, yt) ∼ N (m,Diag(q−1
i ))

with

m = argmin
w∈Rd

λ

2
∣∣w∣∣2 +

n

∑
i=1

log(1 + exp(−yiwTxi))

qi =
n

∑
j=1

x2
j,ipj(1 − pj) with pj = (1 + exp(−mTxj))−1.

Thompson Sampling in this model then boils down to drawing at each round a sample θ̃(t) from the
(approximate) posterior distribution at the end of round t and then choosing the context

xt+1 = argmax
x∈Dt+1

1

1 + exp(−θ̃(t)Tx)
= argmax

x∈Dt+1

θ̃(t)Tx.

Hence this version of Thompson Sampling is quite similar to Thompson Sampling as presented for
linear contextual bandits, but with a different posterior distribution motivated by the logistic model. In
the experiments below, we focus on the linear model.
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Figure 4.2: Regret curves for several algorithms in two different linear contextual models, in which d = 5
and K = 2000 (left) or d = 10 and K = 2000 (right).
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Even if most of the results of this chapter are obtained under the Bayesian model (4.2), we propose
here frequentist experiments. Indeed, for a fixed value of the regression parameter θ ∈ Rd, we repeat
several bandit games up to some horizon T and estimate the regret (i.e. the expectation of the pseudo-
regret, given this fixed value of θ). In each bandit game, the reward after choosing context x is drawn
fromN (xT θ, σ2), with σ = 0.25. In order to simulate the changing contexts, we first choose (at random)
a large set of Km = 100000 contexts, and at each round t, a subset of K = 2000 contexts is chosen at
random from this large set and forms the set Dt. For this value of K, one has log(K) ≃ 7.6. We propose
experiments in two different bandit models in which the dimension d is either smaller or larger than this
value. Results are reported in Figure 4.2.

In the first model, d = 5 (therefore d < log(K)). Regret curves (averaged over N = 1000 bandit
games) are displayed on the left of Figure 4.2 for OFUL and the three Bayesian strategies studied in this
chapter: Bayes-UCB, Bayes-LinUCB and Thompson Sampling. In this bandit model, Bayes-LinUCB
outperforms Bayes-UCB, as was expected from Figure 4.1, but OFUL outperforms both algorithms
(maybe because for small horizons, the exploration rate used by OFUL is smaller than that used by both
algorithms, as displayed in Figure 4.1). The regret of Thompson Sampling is significantly smaller than
that of all other algorithms. In the second model, for which regret curves, averaged over N = 500 bandit
games, are displayed on the right of Figure 4.2, one has d = 10 (therefore d > log(K)). In this model,
Bayes-UCB outperforms Bayes-LinUCB and performs almost as well as OFUL, whereas Thompson
Sampling still outperforms all his competitors by a large margin.

4.6 Elements of proof

4.6.1 Proof of Lemma 4.3

Let Ut(x) ∶= θ̂(t)Tx + ∣∣x∣∣Σ−1
t
β(t + 1, δ) and A be the algorithm picking at round t

xt = argmax
x∈Dt

Ut−1(x).

We start by upper bounding the quantity rt = θTx∗t − θTxt on the event E. By definition, the algorithm
is such that Ut−1(xt) ≥ Ut−1(x) for all x ∈ Dt, thus one has in particular Ut−1(x∗t ) ≤ Ut−1(xt). On the
event E, one also has θTx∗t ≤ Ut−1(x∗t ). Therefore, if E holds,

rt ≤ Ut−1(x∗t ) − θTxt ≤ Ut−1(xt) − θTxt
= θ̂(t − 1)Txt + ∣∣xt∣∣Σt−1β(t, δ) − θTxt
= (θ̂(t − 1) − θ)Txt + ∣∣xt∣∣Σt−1β(t, δ)
≤ 2β(t, δ)∣∣xt∣∣Σt−1 .

To obtain the last inequality, we use that on E, (θ̂(t − 1) − θ)Txt ≤ ∣∣xt∣∣Σt−1β(t, δ). Technical lemma
4.8 stated below can now be used to upper bound deterministically the sum of the norms ∣∣xt∣∣Σt−1 . Using
additionally the Cauchy-Schwarz (C.S.) inequality, one can write, if event E holds,



4.6. ELEMENTS OF PROOF 133

Rθ(T,A) =
T

∑
t=1

rt ≤ 2
T

∑
t=1

β(t, δ)∣∣xt∣∣Σt−1

≤ 2β(T, δ)
T

∑
t=1

∣∣xt∣∣Σt−1

C.S.
≤ 2β(T, δ)

√
T

¿
ÁÁÀ T

∑
t=1

∣∣xt∣∣2Σt−1

Lemma 4.8
≤ 2β(T, δ)

√
T

¿
ÁÁÀ L2κ2

log(1 +L2κ2σ−2)d log(1 + T L
2κ2

σ2d
)

= β(T, δ)
√
Td

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
)

which concludes the proof.

◻
Lemma 4.8.

T

∑
t=1

∣∣xt∣∣2Σt−1
≤ L2κ2

log(1 +L2κ2σ−2)d log(1 + T L
2κ2

σ2d
)

Proof of Lemma 4.8. First ∣∣xt∣∣2Σt−1
= σ2∣∣xt∣∣2B(t−1)−1 . One has

∣∣xt∣∣2B(t−1)−1 = xTt B(t − 1)−1xt ≤
CS

∣∣xt∣∣∣∣B(t − 1)−1∣∣∣∣xt∣∣ ≤
κ2

σ2
∣∣xt∣∣2 ≤

κ2

σ2
L2, (4.12)

where we use that ∣∣B(t)−1∣∣ ≤ ∣∣B(t)∣∣−1 ≤ (σ2/κ2)−1, since the eigenvalues of matrix B(t) are lower
bounded by σ2/κ2. For every a > 0 it can be easily shown that

∀x ∈ [0, a], x ≤ a

log(1 + a) log(1 + x).

Applying this inequality to the value a = κ2L2σ−2 yields

T

∑
t=1

∣∣xt∣∣2B(t−1)−1 ≤
κ2L2σ−2

log(1 + κ2L2σ−2)
T

∑
t=1

log (1 + ∣∣xt∣∣2B(t−1)−1) . (4.13)

Now, following for example [Dani et al., 2008], one can show that

T

∑
t=1

log (1 + ∣∣xt∣∣2B(t−1)−1) = log
⎛
⎜
⎝

det(B(T ))
det (σ2

κ2 Id)

⎞
⎟
⎠
. (4.14)

Indeed,

det(B(t + 1)) = det(σ
2

κ2
Id +

t+1

∑
s=1

xsx
T
s ) = det (B(t) + xt+1x

T
t+1)

= det(B(t))det (Id +B(t)−1/2xt+1x
T
t+1B(t)−1/2)

= det(B(t))det (Id + (B(t)−1/2xt+1)(B(t)−1/2xt+1)T )

= det(B(t)) (1 + ∣∣B(t)−1/2xt+1∣∣2) = det(B(t)) (1 + ∣∣xt+1∣∣2B(t)−1) .
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To obtain the last equality, we used that for every v ∈ Rd, det(Id + vvT ) = (1 + vT v). By induction,
it easily follows that det(B(T )) = ∏T

t=1(1 + ∣∣xt∣∣2B(t−1)−1)det (σ2

κ2 Id) which proves (4.14). Using the
bound (4.4) already used for the determinant of B(T ), one has

det(B(T )) ≤ (σ
2

κ2
+ T L

2

d
)
d

.

This leads to an upper bound on (4.14), that yields, combined with Equation (4.13)

T

∑
t=1

∣∣xt∣∣2Σt−1
≤ κ2L2

log(1 + κ2L2σ−2)d log(1 + T L
2κ2

dσ2
)

◻

Remark 4.9. Introducing the notation σ2
t (x) = ∣∣x∣∣2Σt−1

, the quantity introduced in (4.13) can be written

1

2

T

∑
t=1

log (1 + ∣∣xt∣∣2B(t−1)−1) =
1

2

T

∑
t=1

log (1 + σ−2σ2
t (xt)) .

This last quantity is explicitly bounded by [Srinivas et al., 2010] in the more general context of Gaussian
Process bandits. It is upper bounded by the maximum information gain called γT . Here we rather use
techniques from [Dani et al., 2008] to upper bound this quantity in the simpler case of a linear kernel.

4.6.2 Proof of Theorem 4.6

As already used in [Russo and Van Roy, 2014], xt+1 and x∗t+1 have the same distribution conditionally
to Ht. Thus, for any function f(x, y), if X is a Ht measurable random variable, the random variables
f(X,xt+1) and f(X,x∗t+1) have the same conditional expectation with respect to Ht. [Russo and Van
Roy, 2014] use that E[Ut(xt+1)∣Ht] = E[Ut(x∗t+1)∣Ht] for any confidence bound introduced in the
analysis. Here we use similar equalities:

E[∣∣xt+1∣∣Σt ∣Ht] = E[∣∣x∗t+1∣∣Σt ∣Ht] (4.15)

E[θ̂(t)Txt+1∣Ht] = E[θ̂(t)Tx∗t+1∣Ht] (4.16)

We start with the following decomposition:

rt+1 = θTx∗t+1 − θTxt+1 = θTx∗t+1 − θ̂(t)Tx∗t+1 + θ̂(t)Tx∗t+1 − θTxt+1

Conditioning byHt and using equality (4.16) yields, for any sequence βt introduced below,

E[rt+1] ≤ E [(θ − θ̂(t))Tx∗t+1] +E [(θ̂(t) − θ)Txt+1]

≤ E [∣∣θ − θ̂(t)∣∣Σ−1
t
∣∣x∗t+1∣∣Σt] +E [∣∣θ − θ̂(t)∣∣Σ−1

t
∣∣xt+1∣∣Σt]

≤ E
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
(∣∣x∗t+1∣∣Σt + ∣∣xt+1∣∣Σt)1(∣∣θ−θ̂(t)∣∣

Σ−1
t
≤βt+1)

⎤⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
(∣∣x∗t+1∣∣Σt + ∣∣xt+1∣∣Σt)1(∣∣θ−θ̂(t)∣∣

Σ−1
t
>βt+1)

⎤⎥⎥⎥⎦

≤ 2βt+1E [∣∣xt+1∣∣Σt] + 2LκE
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
1
(∣∣θ−θ̂(t)∣∣

Σ−1
t
>βt+1)

⎤⎥⎥⎥⎦
,



4.6. ELEMENTS OF PROOF 135

where the last inequality is obtained using (4.15) together with the upper bound ∣∣x∣∣Σt ≤ Lκ for any
x ∈ Dt+1 (deduced from inequality (4.12) in Section 4.6). One obtains, by summing these terms and
using the Cauchy-Schwarz inequality,

BRπ0(T,TSπ0) ≤
T

∑
t=1

2βtE [∣∣xt∣∣Σt−1] + 2Lκ
T

∑
t=1

E
⎡⎢⎢⎢⎢⎣
∣∣θ − θ̂(t − 1)∣∣Σ−1

t−1
1
(∣∣θ−θ̂(t−1)∣∣

Σ−1
t−1

>βt)

⎤⎥⎥⎥⎥⎦

≤ 2βT
√
TE

⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ T

∑
t=1

∣∣xt∣∣2Σt−1

⎤⎥⎥⎥⎥⎦
+ 2Lκ

T−1

∑
t=0

E
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
1
(∣∣θ−θ̂(t)∣∣

Σ−1
t
>βt+1)

⎤⎥⎥⎥⎦

The sum ∑Tt=1 ∣∣xt∣∣2Σt−1
that appears in the first term is upper bounded deterministically by Lemma 4.8,

given in Section 4.6. To bound the second term, we use again that ∣∣θ − θ̂(t)∣∣2
Σ−1
t

follows a chi-square
distribution with d degrees of freedom. Jensen inequality gives

⎛
⎝
E
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
1
(∣∣θ−θ̂(t)∣∣

Σ−1
t
>βt+1)

⎤⎥⎥⎥⎦
⎞
⎠

2

≤ E
⎡⎢⎢⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣2Σ−1

t
1
(∣∣θ−θ̂(t)∣∣2

Σ−1
t

>β2
t+1)

⎤⎥⎥⎥⎥⎥⎦
= ∫

∞

β2
t+1

x

2
d
2 Γ (d

2
)
x
d
2
−1e−

x
2 dx = d∫

∞

β2
t+1

1

2
d+2
2 Γ (d+2

2
)
x
d+2
2
−1e−

x
2 dx

= d(1 − Fχ2
d+2

(β2
t+1)).

where Fχ2
d+2

denotes the cdf of a chi-square distribution with d + 2 degrees of freedom. Thus,

T−1

∑
t=0

E
⎡⎢⎢⎢⎣
∣∣θ − θ̂(t)∣∣Σ−1

t
1
(∣∣θ−θ̂(t)∣∣

Σ−1
t
>βt+1)

⎤⎥⎥⎥⎦
≤
√
d
T

∑
t=1

√
1 − Fχ2

d+2
(β2
t ) (4.17)

Hence, choosing

βt =
√
Q(1 − 1

t4
;χ2

d+2) ≤
√
d + 2 + 8 log t + 2

√
(d + 2) log 2t4,

inequality (4.17) and Lemma 4.8 yield

BRπ0(T,TSπ0) ≤ 2βT
√
T

¿
ÁÁÀ L2κ2

log(1 +L2κ2σ−2)d log(1 + T L
2κ2

σ2d
) + 2Lκ

√
d
π2

6

≤ d
√
T

¿
ÁÁÀC1 log(1 + T L

2κ2

σ2d
)(3 + 8 logT + 2

√
log(2T 4)) + π

2Lκ
√
d

3

with C1 = 4L2κ2

log(1+L2κ2σ−2) .
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Chapter 5

Refined frequentist tools for best arm
identification

In the first chapters of this thesis, we studied optimal algorithms for the objective of maximizing
rewards in bandit models. A different objective can be considered, in which samples collected from
the arms are not perceived as rewards, and the goal is to optimally explore the environment so as to
identify the best arm(s) (without an incentive to exploration). This chapter gathers our contributions to
this objective, called best arms identification (or pure-exploration) in bandit models.

Unlike that of regret minimization, the complexity of best arms identification is not so well under-
stood, and our goal is to identify optimal algorithms in this framework. In this chapter, we introduce a
dedicated notion of complexity in two different settings that have been considered in the literature: the
fixed-budget and the fixed-confidence settings. We propose new lower bounds on these complexities,
that involve information-theoretic quantities (like the Lai and Robbins’ lower bound on the regret), as
well as improved algorithms. Some of these algorithms, inspired by KL-UCB, are based on refined con-
fidence intervals using Kullback-Leibler divergence. Whereas we were not able to close the gap between
informational upper and lower bounds in the general case, we do identify the complexities for particular
instances of two-armed bandits.

This chapter is based on two publications: a joint work with Shivaram Kalyanakrishnan ([Kaufmann
and Kalyanakrishnan, 2013]), presented at the COLT conference in 2013, in which we study algorithms
for m best arms identification, and a joint work with Olivier Cappé and Aurélien Garivier in which we
introduce the complexities and notably present lower bounds ([Kaufmann et al., 2014b], submitted to
JMLR). A shorter version of this last paper, [Kaufmann et al., 2014a], focused on two-armed bandits,
was also presented at COLT in 2014.
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5.1 Introduction

Recall a bandit model is a collection of K arms, where each arm νa (1 ≤ a ≤ K) is a probability
distribution on R with expectation µa. At each time t = 1,2, . . . , an agent chooses an option At ∈
{1, . . . ,K} and receives an independent draw Xt of the corresponding arm νAt . We denote by Pν (resp.
Eν) the probability law (resp. expectation) of the corresponding process (Xt). The agent’s goal is now
to identify the m best arms, that is, the set S∗m of indices of the m arms with highest expectation. Letting
(µ[1], . . . , µ[K]) be the K-uple of the expectations (µ1, . . . , µK) sorted in decreasing order, we assume
that the bandit model ν belong to a class Mm such that for every ν ∈ Mm, µ[m] > µ[m+1], in which
S∗m is unambiguously defined. This last assumption is not necessary any more in an ε-relaxation of the
problem that is sometimes considered in the literature: for some tolerance parameter ε ≥ 0 the agent has
to ensure that Ŝm is included in the set of (ε,m)-optimal arms S∗m,ε = {a ∶ µa ≥ µ[m] − ε}.

In order to identify S∗m, the agent must use a strategy defining which arms to sample from, but
also when to stop sampling, and which set Ŝm to choose. The sampling rule determines how, at time
t, the arm At is chosen based on the past observations; in other words, At is Ft−1-measurable, with
Ft = σ(A1, Z1, . . . ,At,Xt). The stopping rule τ is a stopping time with respect to (Ft)t∈N. The recom-
mendation rule is aFτ -measurable random subset Ŝm of {1, . . . ,K} of sizem. This triple ((At), τ, Ŝm)
entirely determines the strategy, which we denote in the sequel by A.

In the bandit literature, two different settings have been considered. In the fixed-confidence setting, a
risk parameter δ is fixed. A strategy A is called δ-PAC if, for every choice of ν ∈ Mm, Pν(Ŝm = S∗m) ≥
1 − δ, or in the ε-relaxation described before, if Pν(Ŝm ⊂ S∗m,ε) ≥ 1 − δ. The goal is, among the δ-PAC
strategies, to minimize the expected number of draws Eν[τ] (sometimes called sample complexity). In
the fixed-budget setting, the number of draws τ is fixed in advance (τ = t almost surely) and the goal
is to choose the sampling and recommendation rules so as to minimize pt(ν) ∶= Pν(Ŝm ≠ S∗m). In the
fixed-budget setting, a strategy A is called consistent if, for every choice of ν ∈ Mm, pt(ν) goes to zero
when t goes to infinity.

Recall that the complexity of regret minimization, the alternative objective considered so far, is
well understood for parametric bandits. Indeed, [Lai and Robbins, 1985] define a dedicated notion
of consistency and prove that, in generic one-parameter models,

inf
A consistent

lim inf
t→∞

Eν[Rν(T,A)]
log t

≥ ∑
a∶µa<µ[1]

(µ[1] − µa)
KL(νa, ν[1])

.
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We saw that there exists strategies whose regret attain this bound, including the two Bayesian strategies
discussed in Chapter 2 and 3 and the KL-UCB algorithm of [Cappé et al., 2013] that uses informational
upper-bounds.

Similarly, one would expect in the fixed-confidence setting a lower bound on the sample complexity
Eν[τ] of any δ-PAC algorithm (resp. in the fixed-budget setting a lower bound on the probability of
error pt(ν) of any consistent algorithm) that also features information-theoretic quantities, as well as
algorithms whose sample complexity (resp. probability of error) matches the lower bound, called match-
ing algorithms. In order to unify the two settings, we define the complexity κC(ν) (resp. κB(ν)) of best
arms identification in the fixed-confidence (resp. fixed-budget) setting, as follows:

κC(ν) = inf
A δ−PAC

lim sup
δ→0

Eν[τ]
log 1

δ

, κB(ν) = inf
A consistent

(lim sup
t→∞

−1

t
log pt(ν))

−1

. (5.1)

Heuristically, for a given bandit model ν and a small enough value of δ, a fixed-confidence optimal strat-
egy needs an average number of samples of order κC(ν) log 1

δ to identify the m best arms, whereas a
fixed-budget optimal strategy requires approximately t = κB(ν) log 1

δ draws in order to ensure a prob-
ability of error of order δ. Our goal in this chapter is to evaluate and compare these two complexities.
We will do so by providing new lower bounds on κC(ν) and κB(ν) that feature information-theoretic
quantities and by analyzing refined strategies, some of which matching the lower bounds in particular
instances of two-armed bandit problems.

Most of the existing performance bounds for pure-exploration (a denomination that encompasses the
fixed-budget and fixed-confidence settings) can be expressed using the two complexity measures defined
above, as we see now.

The problem of best arms identification has been studied since the 1950s under the name ’ranking
and identification problems’. The first advances on this topic are summarized in the monograph by
[Bechhofer et al., 1968] who consider the fixed-confidence setting. More recently, in the same setting
[Even-Dar et al., 2006] propose algorithms for (single) best arm identification in bounded bandit models,
in which each arm νa is a probability distribution on [0,1]. m best arms identification with m > 1 was
considered for example by [Kalyanakrishnan et al., 2012] (under the name Explore-m), who propose the
LUCB (for Lower and Upper Confidence Bounds) algorithm, still for bounded bandit models. Bounded
distributions are particular examples of subgaussian distributions, to which the proposed algorithms can
be easily generalized. A relevant quantity introduced in the analysis of algorithms for bounded (or
subgaussian) bandit models is the ’complexity term’

H(ν) = ∑
a∈{1,2,...K}

1

∆2
a

with ∆a =
⎧⎪⎪⎨⎪⎪⎩

µa − µ[m+1] for a ∈ S∗m,
µ[m] − µa for a ∈ (S∗m)c.

(5.2)

The upper bound on the sample complexity of the LUCB algorithm of [Kalyanakrishnan et al., 2012]
implies in particular that κC(ν) ≤ 292H(ν). Some of the existing works on the fixed-confidence setting
do not bound τ in expectation but rather show that Pν(Ŝm = S∗m, τ = O (H(ν))) ≥ 1 − δ. These results
are not directly comparable with the complexity κC(ν), although no significant gap is to be observed
yet.

Form = 1, the work of [Mannor and Tsitsiklis, 2004] provides a lower bound on κC(ν), who address
Bernoulli bandit models with the ε-relaxation described before. The authors show that if an algorithm is
δ-PAC, then in the bandit ν = (B(µ1), . . . ,B(µK)) such that ∀a, µa ∈ [0, α] for some α ∈]0,1[, there
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exists two setsMα(ν) ⊂ S∗1 and Nα(ν) ⊂ {1, . . . ,K}/S∗1 and a positive constant Cα such that

Eν[τ] ≥ Cα
⎛
⎝ ∑
a∈Mα(ν)

1

ε2
+ ∑
a∈Nα(ν)

1

(µ[1] − µa)2

⎞
⎠

log ( 1

8δ
) .

This bound is non asymptotic (as emphasized by the authors), although not completely explicit. In
particular, the subset Mα and Nα do not always form a partition of the arms (it can happen that
Mα ∪ Nα ≠ {1, . . .K}), hence the complexity term does not involve a sum over all the arms. For
m > 1, the only lower bound available in the literature is the worst-case result of [Kalyanakrish-
nan et al., 2012]. It states that for every δ-PAC algorithm there exists a bandit model ν such that
Eν[τ] ≥K/(18375ε2) log (m/8δ). This yields, however, no lower bound on the complexity κC(ν).

The fixed-budget setting has been studied by [Audibert et al., 2010, Bubeck et al., 2011] for sin-
gle best-arm identification in bounded bandit models. For multiple arm identification (m > 1), still in
bounded bandit models, [Bubeck et al., 2013b] introduce the SAR (for Successive Accepts and Re-
jects) algorithm. An upper bound on the failure probability of the SAR algorithm yields κB(ν) ≤
8 log(K)H (ν).

For m = 1, [Audibert et al., 2010] prove an asymptotic lower bound on the probability of error for
Bernoulli bandit models. They state that for every algorithm and every bandit problem ν such that ∀a,
µ1 ∈ [α,1 − α], there exists a permutation of the arms ν′ such that

pt(ν′) ≥ exp(−t/CαH2(ν′))), with H2(ν) = max
i∶µ[i]<µ[1]

i

(µ[1] − µ[i])
2

and Cα = α(1 − α)/(5 + o(1)). This result does not imply a lower bound on κB(ν) and for m > 1, no
such lower bound exists either.

The gap between lower and upper bounds known so far does not permit to identify exactly the com-
plexity terms κB(ν) and κC(ν) defined in (5.1). Not only do they involve imprecise multiplicative
constants but by analogy with the Lai and Robbins’ bound for the regret, the quantities H(ν) or H2(ν)
presented above are only expected to be relevant in the Gaussian case. Moreover, when m > 1, no lower
bounds on the complexities are available.

Our contributions are the following. In the fixed-confidence setting, we first propose in Section 5.2
two algorithms, KL-LUCB and KL-Racing that use informational upper and lower bounds, transposing
the improvements of KL-UCB from regret minimization to pure-exploration. The analysis of these
algorithms leads to the first informational upper bound on κC(ν). We then propose in Section 5.3 a lower
bound on κC(ν), that holds for general classes of bandit models, also when m > 1. This bound takes
the form of a sum over all arms of an individual complexity term involving Kullback-Leibler divergence
so that the quantity H(ν) appears as a subgaussian approximation. However, this lower bound is not
attained by the KL-LUCB algorithm. For specific families of two-armed bandits (Gaussian bandits with
known –but possibly different– variances, Bernoulli bandits) a refined lower bound as well as improved
algorithms then lead to an exact expression of some complexity terms. Interestingly, we prove that for
Gaussian bandit models κC(ν) = κB(ν), whereas for Bernoulli bandit models κC(ν) > κB(ν), showing
that the two complexities are not equal in general. The particular case of two-armed bandits is studied in
Section 5.4.
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5.2 Algorithms: KL-LUCB and KL-Racing

In this Section, we present general algorithms form best arms identification amongK arms. [Bubeck
et al., 2011] show that in the fixed-budget setting, for single best arm identification, any sampling strategy
designed to minimize regret performs poorly with respect to the simple regret rt ∶= µ∗ − µŜ1

, a quantity
closely related to the probability pt(ν) of recommending the wrong arm. Therefore, good strategies for
best arms identification are expected to be quite different from UCB-like strategies.

In Section 5.2, we present a review of existing algorithms for the fixed-confidence and fixed-budget
settings, identifying two main classes of algorithms: those based on uniform sampling and eliminations
and those based on adaptive sampling. We introduce, for the fixed-confidence setting, two generic
algorithms based on confidence intervals (using both upper and lower confidence bounds) that belong to
each of these classes and analyse in Section 5.2.2 two particular instances, KL-Racing and KL-LUCB.
These algorithms are shown to perform well in practice (experiments are reported in Section 5.2.3) and
the upper bounds obtained on their sample complexity are the first upper bounds featuring information-
theoretic quantities.

To ease the presentation, we will restrict our attention to Bernoulli bandit models, but KL-LUCB and
KL-Racing (and our results) can be extended to exponential bandits, using the appropriate d function
(see Section 1.2.2 in Chapter 1). Recall a Bernoulli bandit model, of the form ν = (B(µ1), . . . ,B(µK)),
can be either regarded as a bounded bandit model or as an exponential bandit model. In the regret
minimization framework, this allowed to use algorithms based on upper confidence bounds built either
with Hoeffding’s inequality (UCB1, designed for any bandit bounded bandit model) or on Chernoff
inequality, that lead to Bernoulli-specific confidence regions based on KL-divergence (KL-UCB). In
this Section, we introduce similar improved algorithms for the problem of m-best arms identification in
Bernoulli bandit models in the fixed-confidence setting.

We consider in this section the ε-relaxation of the fixed-confidence setting described above, and
assume to ease the notation that the arms are ordered such that µ1 ≥ ⋅ ⋅ ⋅ ≥ µm ≥ µm+1 ≥ ⋅ ⋅ ⋅ ≥ µK .

5.2.1 Two classes of algorithms based on confidence intervals

Virtually all the algorithms proposed to date for pure-exploration problems can be classified accord-
ing to their sampling strategy: algorithms using uniform sampling and eliminations maintain a set of
remaining arms, and sample all these remaining arms at each round, whereas algorithms using adaptive
sampling sample at each round one or two well-chosen arms.

Just as upper confidence bounds have been used successfully in the regret setting, most existing algo-
rithms for the fixed-confidence setting have used both upper and lower confidence bounds on the means
of the arms. We state here a generic version of an algorithm using uniform sampling and eliminations,
Racing, and a generic version of an adaptive sampling algorithm, LUCB. To describe these contrasting
heuristics, we use generic confidence intervals, denoted by Ia(t) = [La(t), Ua(t)], where t is the round
of the algorithm, La(t) and Ua(t) are the lower and upper confidence bounds on the mean of arm a. Let
Na(t) denote the number of draws, and Sa(t) the sum of the rewards gathered from arm a up to time t.
Let µ̂a(t) = Sa(t)

Na(t) be the corresponding empirical mean reward, and let µ̂a,u be the empirical mean of the
first u i.i.d. samples from arm a. Additionally, let J(t) be the set of m arms with the highest empirical
means at time t (for the Racing algorithm, J(t) only includes m′ ≤m arms if m−m′ have already been
selected). Also, lt and ut are two ‘critical’ arms from J(t) and J(t)c that are likely to be misclassified:

ut = argmax
b∉J(t)

Ub(t) and lt = argmin
a∈J(t)

La(t). (5.3)
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Algorithm 3 Racing
Require: ε ≥ 0 (tolerance level), U,L (confidence bounds)
R = {1, ...,K} set of remaining arms. S = ∅ set of selected arms.
D = ∅ set of discarded arms. t = 1 (current round of the algorithm)
while ∣S∣ <m and ∣D∣ <K −m do

Sample all the arms inR update confidence intervals
Compute J(t) the set of empirical m − ∣S∣ best arms and J(t)c = R/J(t)
Compute ut and lt according to (5.3)
Compute aB (resp. aW ) the empirical best (resp. worst) arm inR
if (Uut(t) −LaB(t) < ε) ∪ (UaW (t) −Llt(t) < ε) then
a = argmax

{aB ,aW }
((Uut(t) −LaB(t))1Uut(t)−LaB (t)<ε; (UaW (t) −Llt(t))1UaW (t)−Llt(t)<ε)

Remove arm a: R = R/{a}
If a = aB select a: S = S ∪ {a}, else discard a: D = D ∪ {a}

end if
t=t+1

end while
return S if ∣S∣ =m, S ∪R otherwise

The Racing algorithm. The first algorithms for best arms identification (see [Bechhofer et al., 1968])
used pure uniform sampling (sometimes called vector-at-a-time sampling): they proceed in rounds,
where all the arms are drawn, and stop when a global stopping criterion is met. [Paulson, 1964] in-
troduces the idea of coupling eliminations to uniform sampling to reduce the number of sample used.
His goal was to find the (single) best arm in a Gaussian bandit model. [Jennison et al., 1982] in the
same setup define general elimination procedures. An elimination procedure depends on some function
g, samples all the remaining arms in R at each round t and eliminate arm b if there exists a ∈ R such
that Sa(t) − Sb(t) > g(t). This criterion can be rephrased as some lower confidence bound for µa being
larger than some upper confidence bound for µb: this is the idea of Racing as introduced by [Maron and
Moore, 1997] in the context of model selection.

For finding the m best arms with m > 1, [Levin and Leu, 2008] modify an existing procedure by
introducing eliminations: both accepts and rejects (called eliminations and recruitments). Accepts and

Algorithm 4 LUCB
Require: ε ≥ 0 (tolerance level), U,L (confidence bounds)
t = 1 (number of stage of the algorithm), B(1) = ∞ (stopping index)
for a=1...K do

Sample arm a, compute confidence bounds Ua(1), La(1)
end for
while B(t) > ε do

Draw arm ut and lt. t = t + 1.
Update confidence bounds, set J(t) and arms ut, lt
B(t) = Uut(t) −Llt(t)

end while
return J(t).
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rejects based on confidence intervals are introduced by [Heidrich-Meisner and Igel, 2009] and applied
within the context of reinforcement learning. The authors do not formally analyse the algorithm’s sample
complexity, as we do here. The Racing algorithm, stated precisely as Algorithm 3, samples at each round
t all the remaining arms, and updates the confidence bounds. Then a decision is made to possibly select
the empirical best arm if its lower confidence bound (LCB) is larger than the upper confidence bounds
(UCBs) of all arms in J(t)c, or to discard the empirical worst arm if its UCB is smaller than the LCBs
of all arms in J(t). The successive elimination algorithm ([Even-Dar et al., 2006]) for finding the single
best arm can be regarded as a specification of Algorithm 3 using Hoeffding bounds.

The LUCB algorithm. A general version of the LUCB algorithm proposed by [Kalyanakrishnan et al.,
2012] is stated in Algorithm 4, using generic confidence bounds U and L, while the original LUCB
uses Hoeffding confidence regions. Unlike Racing, this algorithm does not sample the arms uniformly;
rather, it draws at each round the two critical arms ut and lt. This sampling strategy is associated with
the natural stopping criterion (B(t) < ε) where B(t) ∶= Uut(t) − Llt(t). That is the algorithm stops
when the confidence intervals for the means of the arms in J(t) and those for the means of the arms in
J(t)c are well separeted. An illustration of the LUCB algorithm can be found in Figure 5.1

0

1

58 118 346 330 120 72

Figure 5.1: KL-LUCB for finding the m = 3 best arms among 6. In red (resp. blue) arms in J(t)
(resp. J(t)c) and their confidence intervals. Arms in bold are lt and ut. Red circles represent the current
number of draws of each arm.

The UGapEc algorithm of [Gabillon et al., 2012] also uses adaptive sampling and is very close
to LUCB: it uses an alternative definition of J(t) using confidence bounds on the simple regret, and
a correspondingly different stopping criterion B(t). But as LUCB, it also samples the corresponding
critical arms ut or lt.

KL-Racing and KL-LUCB. The two algorithms mentioned above both use generic upper and lower
confidence bounds on the mean of each arm, and one has the intuition that the smaller these confidence
regions are, the smaller the sample complexity of these algorithms will be. Most of the previous algo-
rithms use Hoeffding bounds, of the form

Ua(t) = µ̂a(t) +
¿
ÁÁÀ β(t, δ)

2Na(t)
and La(t) = µ̂a(t) −

¿
ÁÁÀ β(t, δ)

2Na(t)
(5.4)
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for some exploration rate β(t, δ). Previous work [Mnih et al., 2008, Heidrich-Meisner and Igel, 2009,
Gabillon et al., 2012] has also considered the use of empirical Bernstein bounds, that can be tighter.
Here, we introduce the use of confidence regions based on KL-divergence for Explore-m, inspired by
recent improvements in the regret setting ([Cappé et al., 2013]. We define, for some exploration rate
β(t, δ) (that is a function of t and δ, and not only t as in the regret minimization framework),

ua(t) ∶= max{q ∈ [µ̂a(t),1] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} , and (5.5)

la(t) ∶= min{q ∈ [0, µ̂a(t)] ∶ Na(t)d(µ̂a(t), q) ≤ β(t, δ)} . (5.6)

As already noted in Chapter 1 (Section 1.2.2) , for Bernoulli distributions KL-confidence regions are
always smaller than those obtained with Hoeffding bounds, while sharing the same coverage probability:

µ̂a(t) −
¿
ÁÁÀ β(t, δ)

2Na(t)
≤ la(t) and ua(t) ≤ µ̂a(t) +

¿
ÁÁÀ β(t, δ)

2Na(t)
. (5.7)

We define, for a given function β, the KL-Racing and KL-LUCB algorithms with exploration rate
β as the instances of Racing and LUCB, respectively, that use ua(t) and la(t) as confidence bounds.
Section 5.2.2 provides conditions on β for both algorithms to be δ-PAC and sample complexity bounds
under these conditions. In our theoretical and experimental analysis to follow, we address the “KL versus
Hoeffding” and “uniform versus adaptive sampling” questions.

Other algorithms for the fixed-confidence and fixed-budget setting. Among the family of algo-
rithms using uniform sampling and eliminations, the algorithms presented so far, including (KL)-Racing,
consider the possibility of eliminating one arm at each round. Algorithms inspired by the Median Elim-
ination algorithm of [Even-Dar et al., 2006] for m = 1 - extended to Halving for m > 1 by [Kalyanakr-
ishnan and Stone, 2010] - are quite different. The basic Median Elimination algorithm consists in phases
and at the end of each phase, the empirical worst half of the arms is discarded, based on the samples
gathered in this phase only. For Bernoulli bandits, the Exponential-Gap Elimination of [Karnin et al.,
2013] uses the Median Elimination algorithm as a subroutine. For this δ-PAC algorithm, there exists a
constant C such that, with high probability, the number of samples needed to identify the best arm is
upper bounded by

C
K

∑
a=2

1

∆2
a

log (1

δ
log

1

∆a
) (5.8)

This is an improvement when compared to most existing algorithm for which τ is upper bounded by
some constants multiplied by H(ν) log (H(ν)/δ): the relatively small factor log 1/∆a compared to
H(ν) can be a significant improvement, especially when the number of arms is large. Moreover, in the
regime where δ is fixed and ∆a goes to zero, [Jamieson et al., 2014] show that the term ∆−2

a log log ∆−2
a

is optimal, and propose an upper bound similar to (5.8) for the LIL-UCB algorithm. In both cases the
constantC is quite large, which does not lead to an improved upper bound on the complexity term κC(ν).
For the KL-Racing and KL-LUCB algorithms, we therefore propose in the next Section upper bound on
τ with explicit constants, featuring moreover informational quantities, and no longer the squared gaps
∆a.

In the fixed-budget setting, [Bubeck et al., 2013b] propose the Successive Accepts and Rejects (SAR)
algorithm for the objective of finding the m best arms, generalizing the Successive Reject algorithm of
[Audibert et al., 2010] form = 1. This algorithm samples uniformly the arms in each of theK −1 phases
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with predetermined length, and at the end of each phase exactly one arm is eliminated. The empirical
best arm is selected or the empirical worst discarded, according to its empirical gap with J(t)c or J(t)
respectively (a criterion than cannot be formulated with confidence intervals). A variant of this algorithm
in which at the end of each phase half of the remaining arms is eliminated has been recently proposed
by [Karnin et al., 2013], showing improvements on the theoretical probability of error compared to
that of SAR, but which does not improve the resulting upper bound on the (asymptotic) complexity
κB(ν). Some adaptive sampling algorithms do exist for the fixed-budget setting too, namely UCB-E of
[Audibert et al., 2010] for m = 1, or UGapEb of [Gabillon et al., 2012]. These algorithm are not efficient
in practice since they share the need to know the complexity term H(ν). In the paper [Kaufmann and
Kalyanakrishnan, 2013] we propose an other adaptive algorithm for the fixed-budget setting, KL-LUCB-
E, derived from KL-LUCB by choosing the exploration rate β as a function of n, but suffering from the
same weakness as its existing counterpart. In the practical experiments of Section 5.2.3, we will discuss
further the interest of using adaptive sampling in the fixed-budget setting.

5.2.2 Analysis of KL-Racing and KL-LUCB

Theorem 5.1 gives a choice of β for which KL-Racing and KL-LUCB are correct with probability at
least δ (δ-PAC). Note that these choices of β lead to the same guarantees for their Hoeffding counterpart,
(Hoeffding)-Racing and LUCB.

Theorem 5.1. The KL-Racing and KL-LUCB algorithms using β(t, δ) = log (k1Kt
α

δ
) as an exploration

rate, with α > 1 and k1 > 1 + 1
α−1 , are correct with probability at least 1 − δ.

In order to introduce our results on the sample complexity of KL-Racing and KL-LUCB, one needs
to introduce a new informational quantity: Chernoff information. The Chernoff information between two
Bernoulli distributions B(x) and B(y), denoted by d∗(x, y), is defined by

d∗(x, y) = d(z∗, x) = d(z∗, y) where z∗ is the unique z such that d(z, x) = d(z, y).

This definition can be generalized to distributions in an exponential family. We will discuss later the
interpretation we can propose for the relevance of Chernoff information as a complexity measure for
pure-exploration, here we first explain why Chernoff information in necessary in the proof of Theorem
5.6. In Theorem 5.5, an other quantity is involved, related to Chernoff information:

d∗∗(x, y) = d∗(z∗∗, x) = d∗(z∗∗, y) where z∗∗ is the unique z such that d∗(z, x) = d∗(z, y).

A tight concentration result involving Chernoff information. In our analysis of KL-LUCB, we need
to bound the probability that some constant c belongs to the interval Ia(t) after this arm has already been
sufficiently sampled. Deriving such a result for intervals based on KL-divergence brings up Chernoff
information:

Lemma 5.2. Let T ≥ 1 be an integer. Let γ > 0 and c ∈]0,1[ be such that µa ≠ c.
T

∑
s=⌈ γ

d∗(µa,c) ⌉+1

P (sd (µ̂a,s, c) ≤ γ) ≤
exp (−γ)
d∗(µa, c)

.

This result is a corollary of the important Lemma 5.4 below, proved in Section 5.6.2, that is in some
sense an optimal deviation result involving KL-divergence. Some functions based on KL-divergence
need to be defined in order to state this more general result.
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Definition 5.3. Let C1 > 1, (y, c) ∈]0,1[2, y ≠ c. Let sC1(y, c) be the function implicitly defined by

d(sC1(y, c), c) =
d(y, c)
C1

and sC1(y, c) ∈ (y, c),

where (y, c) denotes the interval [y, c] if y < c, and [c, y] otherwise. We define FC1 as:

FC1(y, c) =
C1d(sC1(y, c), y)

d(y, c) .

Lemma 5.4. Let C1 > 1, γ > 0 and c ∈]0,1[ such that µa ≠ c. For any integer T ,

T

∑
u=⌈ C1γ

d(µa,c) ⌉+1

P (ud(µ̂a,u, c) ≤ γ) ≤ exp (−FC1(µa, c)γ)
d (sC1(µa, c), µa)

. (5.9)

The sum in Lemma 5.4 is bounded tightly in the recent analysis of KL-UCB by [Cappé et al., 2013]
for the value C1 = 1. However, the related bound shows no exponential decay in γ, unlike the one we
prove for C1 > 1 in Section 5.2.4. Whereas it was used to bound an expectation for KL-UCB, in the
proof of Theorem 5.6 we will use it to bound a probability and thus need this exponential decay. This
technical difference ushers in the bifurcation between Chernoff information and KL-divergence. Indeed,
FC1(µa, c), that is the optimal rate in the exponential (see Section 5.2.4), depends on the problem and to
be able to later choose an exploration rate that does not, we have to choose C1 such that FC1(µa, c) = 1.
As we can see below, there is a unique constant C1(µa, c) satisfying FC1(µa,c)(µa, c) = 1 and it is related
to Chernoff information:

FC1(µa, c) = 1 ⇔ d(sC1(µa, c), µa) =
d(µa, c)
C1

⇔ d(sC1(µa, c), µa) = d(sC1(µa, c), c)

⇔ sC1(µa, c) is the unique z satisfying d(z, µa) = d(z, c).

Hence, C1(µa, c) can be rephrased using Chernoff information which is precisely defined for two
Bernoulli by d∗(µa, c) = d(z∗, c) = d(z∗, µa). One gets

C1(µa, c) = d(µa, c)/d∗(µa, c) (5.10)

and invoking Lemma 5.4 with this particular value of C1 leads to Lemma 5.2.

Sample complexity results and discussion. Theorem 5.5 gives an upper bound on the number of
samples used by KL-Racing that holds with high probability, when ε = 0 (i.e. when µm > µm+1 and no
relaxation is considered). It involves the quantity d∗∗ defined above and related to Chernoff information.
We do not provide an upper bound on the expectation of τ for this algorithm, and the proof of Theorem
5.5 share a common structure with the analysis of many algorithms for which only a high-probability
bound on τ is provided (e.g. [Even-Dar et al., 2006, Gabillon et al., 2012, Karnin et al., 2013]): on some
event W on which the algorithm outputs the right subset, the number of draws of each arm is upper
bounded deterministically (see details in Section 5.2.4).

Theorem 5.5. Let β(t, δ) = log (k1Kt
α

δ
), with α > 1 and k1 > 1+ 1

α−1 . The number of samples τ used in
KL-Racing with ε = 0 is such that

Pν (τ ≤ α(
m

∑
a=1

1

d∗∗(µa, µm+1)
+

K

∑
a=m+1

1

d∗∗(µa, µm)) log
1

δ
+ o(log

1

δ
) , Ŝm = S∗m) ≥ 1 − 2δ.
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For KL-LUCB, we provide in Theorem 5.6 an upper bound on E[τ], in the ε-relaxation framework,
for ε ≥ 0. It involves, for c ∈ [µm+1, µm], the quantity

H∗
ε,c(ν) ∶= ∑

a∈{1,...,K}

1

max(d∗(µa, c), ε2/2)
.

The proof of Theorem 5.6 follow from an upper bound on P(τ ≥ T ) for any deterministic time T and is
given in Section 5.2.4. In the sequel, the parameter c ∈ [µm+1, µm] that we introduce in the analysis will
be assumed to be in ]0,1[, excluding the case µm = µm+1 = 0 or 1.

Theorem 5.6. Let c ∈ [µm, µm+1], ε ≥ 0. Let β(t, δ) = log (k1Kt
α

δ
) with k1 > 1 + 1

α−1 . Then for α > 1,

Pν (τ ≤ 2αH∗
ε,c log(

ek1K(H∗
ε,c)α

δ
log(

k1K(H∗
ε,c)α

δ
)) , Ŝm ⊆ S∗m,ε) ≥ 1 − 2δ.

Moreover, for α > 2,

Eν[τ] ≤ 4αH∗
ε,c log(

ek1K(H∗
ε,c)α

δ
log(

k1K(H∗
ε,c)α

δ
)) +Cα,

with Cα = 2α−1δ
k1

∑∞
t=1

log(k1Kt
α/δ)+1

tα−1 .

Theorem 5.5 and Theorem 5.6 provide upper bounds on τ for the KL-Racing and KL-LUCB al-
gorithms that involve informational quantities and explicit constants. For KL-LUCB, we believe that
the finite-time upper bound on the sample complexity is the first of its kind involving KL-divergence
(through Chernoff information). This results yields (for ε = 0) an upper bound on κC(ν), the complexity
term introduced in (5.1):

κC(ν) ≤ 8H∗
0 (ν), with H∗

0 (ν) ∶= min
c∈[µm+1,µm]

K

∑
a=1

1

d∗(µa, c)
.

Pinsker’s inequality shows that d∗(x, y) ≥ (x − y)2/2 and d∗∗(x, y) ≥ (x − y)2/8, which gives
a relationship with the complexity term H(ν) that involves squared gaps defined in (5.2) : H∗

0 (ν) ≤
8H(ν). Although H∗

0 (ν) cannot be shown to be strictly smaller than H(ν) on every problem (this will
be the case for example when the parameters of the arms are small), the explicit bound in Theorem 5.6
still improves over that of [Kalyanakrishnan et al., 2012], which implies that κC(ν) ≤ 192H(ν).

We believe that the constant c that appears in Theorem 5.6 is an artifact of our proof, but we are
currently unable to eliminate it. We would therefore conjecture that it is possible to give an upper bound
on κC(ν) that rather involves the quantity

m

∑
a=1

1

d∗(µa, µm+1)
+

K

∑
a=m+1

1

d∗(µa, µm) .

We can propose an interpretation for this quantity, using that Chernoff information is a relevant quantity
in testing problems ([Cover and Thomas, 2006]). Let X1,X2, . . . ,Xn be n i.i.d. samples and H1 ∶ Xi ∼
B(x) against H2 ∶ Xi ∼ B(y) be two alternative hypotheses. For a test φ, let αn(φ) = P1(φ = 2) and
βn = P2(φ = 1) be respectively the type I and type II error. Chernoff’s Theorem states that when the
objective is to minimize both type I and type II error, the best achievable exponent is

d∗(x, y) = lim
n→∞

− 1

n
log min

φ
max(αn(φ), βn(φ)).
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Hence, for small δ, 1
d∗(µa,µm) log(1

δ ) (resp. 1
d∗(µa,µm+1) log(1

δ )) represents the minimal number of sam-
ples needed to discriminate between arm a and arm m (resp. arm a and arm m + 1) with both error
probabilities smaller than δ.

However, the general lower bound on κC(ν) we propose in the next Section does not involve Cher-
noff information but Kullback-Leibler divergence, so it is still to be determined whether KL-LUCB is
optimal with respect to the complexity κC(ν). Nevertheless, Chernoff information will turn out to be a
relevant measure of complexity for two-armed bandits, in the fixed-budget setting.

5.2.3 Numerical experiments

On the basis of our theoretical analysis from the previous section, could we expect the “KL-ized”
versions of our algorithms to perform better in practice? Does being “fully sequential” make our adaptive
sampling algorithms more efficient than uniform sampling algorithms in practice? In this section, we
present numerical experiments that answer both these questions in the affirmative.

In our experiments, in addition to (KL-)LUCB and (KL-)Racing, we include (KL-)LSC, an adaptive
sampling algorithm akin to (KL)-LUCB. This algorithm uses the same stopping criterion as (KL)-LUCB,
but rather than sample arms ut and lt at stage t, (KL)-LSC samples the least-sampled arm from J(t) (or
J(t)c) that collides (overlaps by at least ε) with some arm in J(t)c (J(t)). To ensure that all algorithms
are provably PAC, we run them with the parameters α = 1.1, k1 = 11.1 justified by Theorem 5.1. Results
are summarized in Figure 5.2.

As a first order of business, we consider bandit instances with K = 10,20, . . . ,60 arms; we generate
1000 random instances for each setting of K, with each arm’s mean drawn uniformly at random from
[0,1]. We set m = K

5 , ε = 0.1, δ = 0.1. The expected sample complexity of each algorithm on the
bandit instances for each K are plotted in Figure 5.2(a). Indeed we observe for each K that (1) the
KL-ized version of each algorithm enjoys a lower sample complexity, and (2) (KL)-LUCB outperforms
(KL-)LSC, which outperforms (KL-)Racing.

These trends, aggregated from multiple bandit instances, indeed hold for nearly every individual
bandit instance therein. In fact, we find that KL-izing has a more pronounced effect on bandit instances
with means close to 0 or 1. For illustration, consider instance B1 (K = 15; µ1 = 1

2 ; µa = 1
2 −

a
40 for

a = 2,3, . . . ,K), an instance used by [Bubeck et al., 2013b] (see Experiment 5). Figure 5.2(b) compares
the runs of LUCB and KL-LUCB both on B1 (with m = 3, ε = 0.04, δ = 0.1), and a “scaled-down”
version B2 (with m = 3, ε = 0.02, δ = 0.1) in which each arm’s mean is half that of the corresponding
arm’s in B1 (and thus closer to 0). While LUCB and KL-LUCB both incur a higher sample complexity
on the harder B2, the latter’s relative economy is clearly visible in the graph.

How conservative are the stopping criteria of our PAC algorithms? In our third experiment, we halt
these algorithms at intervals of 1000 samples, and at each stage record the probability that the set J(t) of
m empirical best arms that would be returned at that stage is non-optimal. Results from this experiment,
again on B1 (with m = 3, ε = 0.04, δ = 0.1), are plotted in Figure 5.2(c). Notice that (KL)-LUCB indeed
drives down the mistake probability much faster than its competitors. Yet, even if all the algorithms have
an empirical mistake probability smaller than δ after 5,000 samples, they only stop after at least 20,000
episodes, leaving us to conclude that our formal bounds are rather conservative. On the low-reward
instance B2 (with m = 3, ε = 0.02, δ = 0.1), we observe that KL-LUCB indeed reduces the mistake
probability more quickly than LUCB, indicating a superior sampling strategy. This difference is between
LUCB and KL-LUCB is not apparent on B1 in Figure 5.2(c).

We test KL-LUCB-log(t), a version of KL-LUCB with an exploration rate of log(t) (which yields no
provable guarantees) as a candidate for the fixed-budget setting. OnB1 (with n = 4000), we compare this
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Figure 5.2: Experimental results (descriptions in text).

algorithm with KL-LUCB-E, discussed in the paper [Kaufmann and Kalyanakrishnan, 2013], which has
a provably-optimal exploration rate involving the problem complexity (H∗

ε ≈ 13659). Quite surprisingly,
we find that KL-LUCB-log(t) significantly outdoes KL-LUCB-E for every setting of m from 1 to 14.
KL-LUCB-log(t) also outperforms the SAR algorithm of [Bubeck et al., 2013b], yielding yet another
result in favor of adaptive sampling. A tuned version of KL-LUCB-E (using an exploration rate of n

2×180 )
performs virtually identical to KL-LUCB-log(t), and is not shown in the figure.

5.2.4 Proofs of the theorems of Section 5.2

Before giving the proofs of Theorems 5.1, 5.5 and 5.6, we introduce the following notation, already
used in Chapter 1, that will be useful in the proof:

d+(x, y) = d(x, y)1(x<y) and d−(x, y) = d(x, y)1(x>y). (5.11)

Proof of Theorem 5.1. We first introduce the following lemma.

Lemma 5.7. KL-LUCB and KL-Racing are such that Ŝm ⊆ S∗m,ε on the event

W = ⋂
t∈N

⋂
a∈S∗m

(Ua(t) > µa) ⋂
b∈(S∗m)c

(Lb(t) < µb). (5.12)

where U and L denote the generic confidence bounds used by these two algorithms.

Proof for Racing. If Racing is not correct, there exists some first round t on which either an arm
in (S∗m,ε)c is selected (first situation), or an arm in S∗m is dismissed (second situation). Before t, all
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the arms in the set of selected arms S are in S∗m,ε, and all the arms in set of discarded arms D are in
(S∗)c. In the first situation, let b be the arm in (S∗m,ε)c selected : for all arms a in J(t)c, one has
Ua(t) −Lb(t) < ε. Among these arms, at least one must be in S∗m. So there exists a ∈ S∗m and b ∈ (S∗ε )c
such that Ua(t) < Lb(t) + ε. The second situation leads to the same conclusion. Hence if the algorithm
fails, the following event holds:

⋃
t∈N

(∃a ∈ S∗m,∃b ∈ (S∗m,ε)c ∶ Ua(t) −Lb(t) < ε)

⊂ ⋃
t∈N

(∃a ∈ S∗m,∃b ∈ (S∗m,ε)c ∶ (Ua(t) < µa) ∪ (Lb(t) > µa − ε > µb))

⊂ ⋃
t∈N

⋃
a∈S∗m

(Ua(t) < µa) ⋃
b∈(S∗m,ε)c

(Lb(t) > µb) ⊂W c.

Proof for LUCB. If LUCB is not correct, there exists some stopping time τ , arm a in S∗m and an arm
b in (S∗m,ε)c such that a ∈ J(τ) and b ∈ J(τ)c. As the stopping condition holds, on has Ua(t)−Lb(t) < ε.
Using the same reasoning as above, if the algorithm fails, the following event holds:

⋃
t∈N

⋃
a∈S∗m

(Ua(t) < µa) ⋃
b∈(S∗m,ε)c

(Lb(t) > µb) ⊂W c.

◻

The probability of error of both algorithms is upper bounded as

P(Ŝm ⊈ S∗m,ε) ≤ ∑
a∈S∗m

P (∃t ∈ N∗ ∶ ua(t) < µa) + ∑
b∈(S∗m)c

P (∃t ∈ N∗ ∶ lb(t) > µb)

And for a ∈ S∗m

P (∃t ∈ N∗ ∶ ua(t) < µa) = P (∃t ∈ N∗ ∶ Na(t)d(µ̂a(t), µa) ≥ β(t, δ), µ̂a(t) < µa)
= P (∃t ∈ N∗ ∶ Na(t)d(µ̂a(t), µa) ≥ β(Na(t), δ), µ̂a(t) < µa)
≤ P (∃s ∈ N∗ ∶ sd+(µ̂a,s, µa) ≥ β(s, δ))

≤
∞
∑
s=1

P (sd+(µ̂a,s, µa) ≥ β(s, δ)) ≤
∞
∑
s=1

exp(−β(s, δ))

from inequality (1.14). The probability P (∃t ∈ N∗ ∶ lb(t) > µb) is similarly upper bounded for b ∈ (S∗m)c,
thus we get

P(Ŝm ⊈ S∗m,ε) ≤K
∞
∑
s=1

exp(−β(s, δ)) ≤
∞
∑
s=1

δ

C1tα
≤ δ,

which proves Theorem 5.1.

Proof of Theorem 5.5. Let W be the event (5.12) defined in Lemma 5.7, on which the algorithm KL-
Racing is correct. We upper bound deterministically the number of samples ta from each arm a used by
the algorithm assuming that this event hold.

On W , at every round of the algorithm the set A of accepted arms (resp. D of discarded arms)
contains only arms from S∗m (resp. (S∗m)c). Let a ∈ S∗m. If la(t) is larger than ub(t) for all b in
(S∗m)c ∩ R, as the set (S∗m)c ∩ R contains K −m − ∣D∣ arms, la(t) is also larger that ub(t) for all b in
(J(t))c, and is thus accepted (and no longer drawn). Indeed, (J(t))c also contains K −m − ∣D∣ arms
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and if any two arms still in the race are such that µ̂i(t) > µ̂j(t), then ui(t) > uj(t) (this holds because
the arms have been drawn the same number of time). This shows that, for a ∈ S∗m,

ta ≤ inf {t ∈ N ∶ ∀b ∈ (S∗m)c ∩R, la(t) > ub(t)} .

Similarly, for b ∈ (S∗m)c,

tb ≤ inf {t ∈ N ∶ ∀a ∈ (S∗m) ∩R, la(t) > ub(t)} .

The following lemma then allows to further upper bound ta and tb.

Lemma 5.8. Let a ∈ S∗m, b ∈ (S∗m)c and T ∗a,b be the unique solution of

td∗∗(µa, µb) = β(t, δ).

On W , if t ≥ T ∗a,b and a and b are still in the race, then la(t) > ub(t) .

Proof of Lemma 5.8. Let c be such that d∗(c, µa) = d∗(c, µb) = d∗∗(µa, µb). One also introduce l̃a
and ũb such that

d∗(c, µa) = d(l̃a, µa) = d(l̃a, c) and d∗(c, µb) = d(ũb, µb) = d(ũb, c).

Assume that t ≥ T ∗a,b and W holds. We prove that la(t) > c and ub(t) < c, which leads to the result. We
give here only the proof that la(t) > c, the proof that ub(t) < c is similar.

We start by showing that µ̂a,t > l̃a. As µa < ua(t), one has td+(µ̂a,t, µa) ≤ β(t, δ). For t ≥ T ∗a,b,

β(t, δ) ≤ td∗∗(µa, µb) = td(l̃a, µa) = td+(l̃a, µa).

Hence, the facts that d+(µ̂a,t, µa) ≤ d+(l̃a, µa) and that x↦ d+(x,µa) is non-increasing (cf. Figure 5.3)
implies that µ̂a,t > l̃a.

By definition, td−(µ̂a,t, la(t)) = β(t, δ). On the one hand the fact that the mapping x↦ d−(x, la(t))
is non-decreasing (Figure 5.3) and that, as proved above, µ̂a,t > l̃a, yields td−(µ̂a,t, la(t)) > td−(l̃a, la(t)).
On the other hand, as t ≥ T ∗a,b, one has

β(t, δ) ≤ td∗∗(µa, µb) = td(l̃a, c) = td−(l̃a, c).

Putting everything together gives d−(l̃a, la(t)) ≤ d−(l̃a, c). This together with the fact that x↦ d−(l̃a, x)
is non-increasing (Figure 5.3) implies that la(t) > c.
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Figure 5.3: Functions based on KL-divergence used in the proof of Lemma 5.8
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◻

It follows from Lemma 5.8 that

a ∈ S∗m ⇒ ta ≤ maxb∈(S∗m)c T
∗
a,b = T ∗a,m+1

b ∈ (S∗m)c ⇒ tb ≤ maxa∈(S∗m) T
∗
a,b = T ∗m,b

To conclude the proof, it remains to give an upper bound on T ∗a,m+1 and T ∗m,b, and Lemma 5.22, given in
Appendix 5.6.1, permits to show that

T ∗a,b ≤
α

d∗∗(µa, µb)
[log( k1K

δd∗∗((µa, µb))α
) + log log( k1K

δd∗∗((µa, µb))α
) + 1]

which gives Theorem 5.5.

Proof of Theorem 5.6. At each round of the KL-LUCB algorithm, exactly two arms are drawn. The
total number of samples used τ is therefore such that τ = 2σ where σ is the random number of rounds
of the algorithm. Theorem 5.6 easily follows from these two inequalities that holds for any exploration
rate:

for α > 1, T ≥ T ∗1 , P (σ ≥ T ) ≤ H∗
ε,ce

−β(T,δ) +
∞
∑
t=1

(β(t, δ) log(t) + 1)e−β(t,δ) (5.13)

for α > 2, T ≥ T ∗2 , P (σ ≥ T ) ≤ H∗
ε,ce

−β(T,δ) + KT
2

(β(T, δ) log(T ) + 1)e−β(T /2,δ), (5.14)

with

T ∗1 = min{T0 ∶ ∀T ≥ T0,H
∗
c,εβ(T, δ) < T} and T ∗2 = min{T0 ∶ ∀T ≥ T0,2H

∗
c,εβ(T, δ) < T},

and from upper bounds on T ∗1 and T ∗2 obtained from Lemma 5.22.
We now prove (5.14). For c ∈ [µm+1, µm], if the algorithm hasn’t stopped at time t, then one of the

two intervals Iut(t) or Ilt(t) is quite large and contains the parameter c. This simple idea is expressed
in Proposition 5.7, which is proved below. To state it, we need to define the event

Wt = ⋂
a∈S∗m

(ua(t) > µa) ⋂
b∈(S∗m)c

(lb(t) < µb) .

Proposition 5.9. If Uut −Llt > ε and Wt holds, then there exists a ∈ {lt, ut} such that

c ∈ Ia(t) and β̃a(t) >
ε

2
,

where we define β̃a(t) ∶=
√

β(t,δ)
2Na(t) .

The remainder of this proof borrows from Lemma 5 of [Kalyanakrishnan et al., 2012]. Let T be
some fixed time and σ the random number of rounds of the algorithm. Our goal is to find an event on
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which min(σ,T ) < T ; that is, the algorithm must have stopped after T rounds. Writing T = ⌈T2 ⌉, we
upper bound min(σ,T ):

min(σ,T ) = T +
T

∑
t=T

1(σ≥t) = T +
T

∑
t=T

1(Uut−Llt>ε) ≤ T +
T

∑
t=T

1(Uut−Llt>ε)1Wt +
T

∑
t=T

1W c
t

≤ T +
T

∑
t=T

1(∃a∈{ut,lt}∶c∈Ia(t)∩β̃a(t)> ε2 )
1Wt +

T

∑
t=T

1W c
t

≤ T +
K

∑
a=1

T

∑
t=T

1(a∈{ut,lt})1(c∈Ia(t))1(β̃a(t)> ε2 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(Ba)

+
T

∑
t=T

1W c
t

where the first inequality comes from Proposition 5.7. Let Aε ∶= {a ∈ {1,2, . . . ,K} ∶ d∗(µa, c) < ε2/2} .
For a ∈ Aε, the term (Ba) is upper bounded as

(Ba) ≤
T

∑
t=T

1(a∈{ut,lt})1(β̃a(t)> ε2 )
=

T

∑
t=T

1(a∈{ut,lt})1(Na(t)<β(t,δ)
ε2/2 )

≤ β(T, δ)
ε2/2

whereas for a ∉ Aε, (Ba) is upper bounded as

(Ba) ≤
T

∑
t=T

1(a∈{ut,lt})1(c∈Ia(t))

≤
T

∑
t=T

1(a∈{ut,lt})1(Na(t)≤ β(T,δ)
d∗(µa,c))

+
T

∑
t=T

1(a∈{ut,lt})1(Na(t)> β(T,δ)
d∗(µa,c))

1(Na(t)d(µ̂a(t),c)≤β(T,δ))

≤ β(T, δ)
d∗(µa, c)

+
T

∑
s=⌈ β(T,δ)

d∗(µa,c) ⌉+1

1(sd(µ̂a,s,c)≤β(T,δ))

Let AT and BT be the two events

AT = ⋂
a∈Acε

⋂
s≥⌈ β(T,δ)

d∗(µa,c) ⌉+1

(sd(µ̂a,s, c) ≥ β(T, δ)) and BT =
T

⋂
T

Wt.

On AT ∩BT , one has min(σ,T ) ≤ T +H∗
ε β(T, δ), thus (σ ≤ T ) for all T ≥ T ∗2 , with

T ∗2 = min{T0 ∶ ∀T ≥ T0,2H
∗
c,εβ(T, δ) < T}

Hence for T ≥ T ∗2 , P(σ ≥ T ) ≤ P(AcT ) + P(Bc
T ). From Lemma 1.9,

P(W c
t ) ≤ ∑

a∈S∗m
P(∃s ≤ t ∶ sd+(µa,s, µa) ≥ β(t, δ)) + ∑

a∉S∗m
P(∃s ≤ t ∶ sd−(µa,s, µa) ≥ β(t, δ))

≤ Keβ(t, δ)(log t + 1) exp(−β(t, δ))
Using moreover Lemma 5.2, one obtains

P(AcT ) ≤ ∑
a∈Acε

∞
∑

s=⌈ β(T,δ)
d∗(µa,c) ⌉+1

P (sd(µ̂a,s, c) ≤ β(T, δ)) ≤ ∑
a∈Acε

e−β(T,δ)

d∗(µa, c)
≤H∗

ε,c exp (−β(T, δ)) ,

P(Bc
T ) ≤ K

T

∑
t=T

eβ(t, δ)(log t + 1) exp(−β(t, δ)) ≤KT

2
β(T, δ)(logT + 1) exp (−β (T /2, δ)) .
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This proves (5.14). The proof of (5.13) follows along the same lines, except we do not introduce T
and replace it by zero in the above equations. The introduction of T to show (5.13) is necessary to be
able to upper-bound P(σ ≥ T ) by the general term of a convergent series. We now give the proof of
Proposition 5.9 .

Proof of Proposition 5.9. We first show that at time t, if the stopping condition does not hold (Uut −
Llt > ε) and the event Wt holds, then either c ∈ Iut(t) or c ∈ Ilt(t). This comes from a straightforward
adaptation of the beginning of the proof of Lemma 2 from [Kalyanakrishnan et al., 2012]. Then we also
observe that if Uut − Llt > ε, the two intervals Iut(t) and Ilt(t) cannot be too small simultaneously.
Indeed, Pinsker’s inequality (5.7) and the fact that p̂ut(t) < p̂lt(t) leads to

β̃ut(t) + β̃lt(t) > ε with β̃a(t) ∶=
¿
ÁÁÀ β(t, δ)

2Na(t)
. (5.15)

Hence either β̃ut(t) > ε
2 or β̃ut(t) > ε

2 . It remains to show that one of k = lt and k = ut such that
c ∈ Ik(t) also satisfies this second condition. This part is the Proof uses properties of KL-divergence,
and cannot directly be adapted from [Kalyanakrishnan et al., 2012].

It remains to show that if Uut(t) −Llt(t) > ε, then the four statements below hold.

c ∈ Iut(t) and c > Ult(t) ⇒ β̃ut(t) >
ε

2
. (5.16)

c ∈ Iut(t) and c < Llt(t) ⇒ β̃ut(t) >
ε

2
. (5.17)

c ∈ Ilt(t) and c > Uut(t) ⇒ β̃lt(t) >
ε

2
. (5.18)

c ∈ Ilt(t) and c < Lut(t) ⇒ β̃lt(t) >
ε

2
. (5.19)

To prove (5.16), note that if c ∈ Iut(t) and c > Ult(t), one has

d(p̂ut(t), c) ≤ 2β̃ut(t)2 and d(p̂lt(t), c) ≥ 2β̃lt(t)2.

Moreover, as c > Ult , c > p̂lt(t) > p̂ut(t) holds, and therefore d(p̂lt(t), c) ≤ d(p̂ut(t), c). Hence,

2β̃lt(t)2 ≤ d(p̂lt(t), c) ≤ d(p̂ut(t), c) ≤ 2β̃ut(t)2 and β̃lt(t) ≤ β̃ut(t)

This together with β̃lt(t) + β̃ut(t) > ε leads to β̃ut(t) > ε
2 and proves statement (5.16). The proof of

statement (5.18) use identical arguments.

The proof of statement (5.17) goes as follows :

(Uut(t) −Llt(t) > ε) ∩ (Lut < c) ∩ (c < Llt(t))
⇒ (Uut(t) > c + ε) ∩ (Lut < c)
⇒ (p̂ut(t) + β̃ut(t) > c + ε) ∩ (p̂ut(t) − β̃ut(t) < c)
⇒ 2β̃ut(t) > ε.

And the proof of statement (5.19) is similar.
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5.3 Generic lower bound on the complexity in the fixed-confidence setting

The lower bound we provide here is not restricted to Bernoulli bandit models discussed in the previ-
ous section. Rather, we focus on identifiable classes of bandit models. A classMm of bandit models is
called identifiable is there exists a set et probability measures P satisfying

∀p, q ∈ P, p ≠ q ⇒ 0 < KL(p, q) < +∞,

such that for all ν = (ν1, . . . , νK) ∈ Mm and for a ∈ {1, . . . ,K}, νa ∈ P .
All the lower bounds we propose in this chapter rely on the powerful technical Lemma 5.10, that

was already introduced in Chapter 1 as Lemma 1.3 to prove the lower bound on the regret given in
Theorem 1.2. This new, simple expression of a change of distribution was first presented in the paper
[Kaufmann et al., 2014a].

Lemma 5.10. Let ν and ν′ be two bandit models. Let Ft = σ(A1, Z1, . . . ,At,Xt) be the filtration
associated to a sampling strategy (At). If σ is a stopping time with respect to Ft, for any A ∈ Fσ such
that 0 < Pν(A) < 1, one has

K

∑
a=1

Eν[Na(σ)]KL(νa, ν′a) ≥ d(Pν(A),Pν′(A)), (5.20)

where d(x, y) ∶= KL(B(x),B(y)) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).

We now propose a non asymptotic lower bound on the expected number of samples needed to identify
the m best arms in the fixed-confidence setting, which straightforwardly yields a lower bound on κC(ν).
Theorem 5.11 holds for an identifiable class of bandit models of the form:

Mm = {ν = (ν1, . . . , νK) ∶ νi ∈ P, µ[m] > µ[m+1]} (5.21)

such that the set of probability measures P satisfies assumption 1 below.

Assumption 1. For all ν, ν′ ∈ P2 such that ν ≠ ν′, for all α > 0,
there exists ν1 ∈ P: KL(ν, ν′) < KL(ν, ν1) < KL(ν, ν′) + α and EX∼ν1[X] > EX∼ν′[X],
there exists ν2 ∈ P: KL(ν, ν′) < KL(ν, ν2) < KL(ν, ν′) + α and EX∼ν2[X] < EX∼ν′[X].
These conditions are reminiscent of assumptions made by [Lai and Robbins, 1985]; they include

simple classes of parametric bandits continuously parameterized by their means.

Theorem 5.11. Let ν ∈ Mm, whereMm is defined by (5.21), and assume that P satisfies Assumption
1; any algorithm that is δ-PAC onMm satisfies, for δ ≤ 0.15,

Eν[τ] ≥
⎡⎢⎢⎢⎢⎣
∑
a∈S∗m

1

KL(νa, ν[m+1])
+ ∑
a∉S∗m

1

KL(νa, ν[m])

⎤⎥⎥⎥⎥⎦
log ( 1

2δ
) .

Proof Without loss of generality, one may assume that the arms are ordered such that µ1 ≥ ⋅ ⋅ ⋅ ≥ µK .
Thus S∗m = {1, ...,m}. LetA = ((At), τ, Ŝm) be a δ-PAC algorithm and fixα > 0. For all a ∈ {1, . . . ,K},
from Assumption 1 there exists an alternative model

ν′ = (ν1, . . . , νa−1, ν
′
a, νa+1, . . . , νK)

in which the only arm modified is arm a, and ν′a is such that:
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– KL(νa, νm+1) < KL(νa, ν′a) < KL(νa, νm+1) + α and µ′a < µm+1 if a ∈ {1, . . . ,m},
– KL(νa, νm) < KL(νa, ν′a) < KL(νa, νm) + α and µ′a > µm if a ∈ {m + 1, . . . ,K}.

In particular, in the bandit model ν′, the set of optimal arms is no longer {1, . . . ,m}. Thus, introducing
the event A = (Ŝm = {1, . . . ,m}) ∈ Fτ , any δ-PAC algorithm satisfies Pν(A) ≥ 1 − δ and Pν′(A) ≤ δ.
Lemma 5.10 applied to the stopping time τ (such thatNa(τ) = Na is the total number of draws of arm a)
and the monotonicity properties of d(x, y) (x ↦ d(x, y) is increasing when x > y and decreasing when
x < y) yield

KL(νa, ν′)Eν[Na] ≥ d(1 − δ, δ).
From the definition of the alternative model, one obtains for a ∈ {1, . . . ,m} or b ∈ {m + 1, . . . ,K}
respectively, for every α > 0,

Eν[Na] ≥
d(1 − δ, δ)

KL(νa, νm+1) + α
and Eν[Nb] ≥

d(1 − δ, δ)
KL(νb, νm) + α.

For δ ≤ 0.15, it can be shown that d(1 − δ, δ) ≥ log(1/(2δ)). Thus, letting α tend to zero and summing
over the arms leads to the lower bound on Eν[τ] = ∑Ka=1 Eν[Na].

◻
Remark 5.12. Lemma 5.10 can also be used to improve the result of [Mannor and Tsitsiklis, 2004] that
holds for m = 1 under the ε-relaxation described before. Combining the changes of distribution of this
paper with Lemma 5.10 yields, for every ε > 0 and δ ≤ 0.15,

Eν[τ] ≥
⎛
⎝

∣{a ∶ µa ≥ µ[1] − ε}∣ − 1

KL (B(µ[1]),B(µ[1] − ε))
+ ∑
a∶µa≤µ[1]−ε

1

KL (B(µa),B(µ[1] + ε))
⎞
⎠

log
1

2δ
,

where ∣X ∣ denotes the cardinal of the set X and B(µ) the Bernoulli distribution of mean µ.

A class of exponential bandit models, such that

Mm = {ν = (νθ1 , . . . , νθK) ∶ (θ1, . . . , θK) ∈ ΘK , θ[m] > θ[m+1]} ,

where νθ belongs to a canonical one-parameter exponential family and has a density with respect to some
reference measure given by

fθ(x) = A(x) exp(θx − b(θ)), for θ ∈ Θ ⊂ R (5.22)

is an example of class satisfying Assumption 1. Using the shorthand K(θ, θ′) = KL(νθ, νθ′) for (θ, θ′) ∈
Θ2, the lower bound of Theorem 5.11 together of the upper bound on E[τ] for KL-LUCB (that can be
generalized to exponential families) yield

m

∑
a=1

1

K(θa, θm+1)
+

K

∑
a=m

1

K(θa, θm) ≤ κC(ν) ≤ 8 min
θ∈[θm+1,θm]

K

∑
a=1

1

K∗(θa, θ)
, (5.23)

where K∗(θ1, θ2) is the Chernoff information between the distributions νθ1 , νθ2 , defined, as a function
of the natural parameters, as

K∗(θ1, θ2) = K(θ∗, θ1), where K(θ∗, θ1) = K(θ∗, θ2).

A gap remains between the upper and lower bounds in (5.23), even when K = 2. For two armed-
bandits we propose in the next Section a refined lower bounds on both κC(ν) and κB(ν) along with
matching algorithms.
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5.4 The complexity of A/B Testing

In this section, we present our contributions related to the complexity of best arm identification in
two-armed bandit models, following closely the paper [Kaufmann et al., 2014a]. Two armed-bandits
are of particular interest as they offer a theoretical framework for sequential A/B Testing. A/B Testing
is a popular procedure used, for instance, for website optimization: two versions of a webpage, say
A and B, are empirically compared by being presented to users. Each user is shown only one version
At ∈ {1,2} and provides a real-valued index of the quality of the page, Xt, which is modeled as a sample
of a probability distribution ν1 or ν2. For example, a standard objective is to determine which webpage
has the highest conversion rate (probability that a user actually becomes a customer) by receiving binary
feedback from the users.

In standard A/B Testing algorithms, the two versions are presented equally often. It is thus of par-
ticular interest to investigate whether an algorithm using a (pure) uniform sampling strategy, such that
the arms are sampled in a round-robin fashion, can be efficient in two-armed bandit model. We saw in
Section 5.2 that when there are more than K > 2 uniform sampling in the above sense is not desirable (it
should at least be coupled with eliminations). However, when there are two arms, KL-LUCB and KL-
Racing reduce to the same algorithm, sampling both arms at each round. An algorithm using uniform
sampling can be regarded as a statistical test of the hypothesis H0 ∶ (µ1 ≤ µ2) against H1 ∶ (µ1 > µ2)
based on paired samples (Xs, Ys) of ν1, ν2; namely a test based on a fixed number of samples in the fixed-
budget setting, and, a sequential test in the fixed-confidence setting, in which a randomized stopping rule
determines when the experiment is to be terminated.

In two-armed bandit models, classical sequential testing theory provides a first element of compari-
son between the fixed-budget and fixed-confidence settings, in the simpler case of fully specified alter-
natives. Consider for instance the case where ν1 and ν2 are Gaussian laws with the same known variance
σ2, the means µ1 and µ2 known up to a permutation. Denoting by P the joint distribution of the paired
samples (Xs, Ys), one must choose between the hypotheses H0 ∶ P = N (µ1, σ

2)⊗N (µ2, σ
2) and H1 ∶

P = N (µ2, σ
2) ⊗N (µ1, σ

2). It is known since [Wald, 1945] that among the sequential tests such that
type I and type II error probabilities are both smaller than δ, the Sequential Probability Ratio Test (SPRT)
minimizes the expected number of required samples, and is such that Eν[τ] = 2σ2/(µ1 −µ2)2 log(1/δ).
However, the batch test that minimizes both probabilities of error is the Likelihood Ratio test; it can
be shown to require a sample size of order 8σ2/(µ1 − µ2)2 log(1/δ) in order to ensure that both type
I and type II error probabilities are smaller than δ. Thus, when the sampling strategy is uniform and
the parameters are known, there is a clear gain in using randomized stopping strategies. We will show
below that this conclusion is not valid anymore when the values of µ1 and µ2 are not assumed to be
known. Indeed, for two-armed Gaussian bandit models we show that κB(ν) = κC(ν) and for two-armed
Bernoulli bandit models we show that κC(ν) > κB(ν).

To prove this, we start by giving in Section 5.4.1 a refined lower bound on κC(ν), based on a different
change of distribution, as well as a lower bound on κB(ν). We then provide in two particular cases,
Gaussian bandits with known variances (Section 5.4.2) and Bernoulli bandits (Section 5.4.3) efficient
algorithms (almost) matching these bounds. In particular, we show that for Bernoulli bandits only little
can be gained by departing from uniform sampling, and propose an algorithm for the fixed-confidence
setting based on a non-trivial stopping criterion that is reminiscent of KL-LUCB.
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5.4.1 Lower bounds on the two complexities

ForM1 =M an identifiable class of two-armed bandit models, Theorem 5.13 provides lower bounds
on κB(ν) and κC(ν) for every ν ∈ M.

Theorem 5.13. Let ν = (ν1, ν2) be a two-armed bandit model such that µ1 > µ2. In the fixed-budget
setting, any consistent algorithm satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ c∗(ν), where c∗(ν) ∶= inf

(ν′1,ν′2)∈M∶µ′1<µ′2
max{KL(ν′1, ν1),KL(ν′2, ν2)} .

In the fixed-confidence setting any algorithm that is δ-PAC onM satisfies, when δ ≤ 0.15,

Eν[τ] ≥
1

c∗(ν)
log ( 1

2δ
) , where c∗(ν) ∶= inf

(ν′1,ν′2)∈M∶µ′1<µ′2
max{KL(ν1, ν

′
1),KL(ν2, ν

′
2)} .

In particular, Theorem 5.13 implies that κB(ν) ≥ 1/c∗(ν) and κC(ν) ≥ 1/c∗(ν). Proceeding simi-
larly, one can obtain lower bounds for the algorithms that use uniform sampling of both arms. The proof
of both results is provided below.

Theorem 5.14. Let ν = (ν1, ν2) be a two-armed bandit model such that µ1 > µ2. In the fixed-budget
setting, any consistent algorithm using a uniform sampling strategy satisfies

lim sup
t→∞

−1

t
log pt(ν) ≤ I∗(ν) where I∗(ν) ∶= inf

(ν′1,ν′2)∈M∶µ′1<µ′2

KL (ν′1, ν1) +KL (ν′2, ν2)
2

.

In the fixed-confidence setting, any algorithm that is δ-PAC onM and uses a uniform sampling strategy
satisfies, for δ ≤ 0.15,

Eν[τ] ≥
1

I∗(ν)
log

1

2δ
where I∗(ν) ∶= inf

(ν′1,ν′2)∈M∶µ′1<µ′2

KL (ν1, ν
′
1) +KL (ν2, ν

′
2)

2
.

Obviously, one always has I∗(ν) ≤ c∗(ν) and I∗(ν) ≤ c∗(ν) suggesting that uniform sampling can
be sub-optimal. It is possible to give explicit expressions for the quantities c∗(ν), c∗(ν) and I∗(ν), I∗(ν)
for specific classes of parametric bandit models that will be studied in the next Sections. In the case of
two-armed Gaussian bandits with known variance (see Section 5.4.2):

M= {ν = (N (µ1, σ
2
1) ,N (µ2, σ

2
2)) ∶ (µ1, µ2) ∈ R2, µ1 ≠ µ2}, (5.24)

using that

KL(N (µ1, σ1) ,N (µ2, σ2)) =
(µ1 − µ2)2

2σ2
2

+ 1

2
[σ

2
1

σ2
2

− 1 − log
σ2

1

σ2
2

] , (5.25)

one obtains

c∗(ν) = c∗(ν) =
(µ1 − µ2)2

2(σ1 + σ2)2
and I∗(ν) = I∗(ν) =

(µ1 − µ2)2

4(σ2
1 + σ2

2)
.

Hence, the lower bounds of Theorem 5.13 are equal in this case, and we provide in Section 5.4.2 match-
ing upper bounds confirming that indeed κB(ν) = κC(ν). In addition, the observation that, when the
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variances are different c∗(ν) > I∗(ν), will be shown to imply that strategies based on uniform sampling
are sub-optimal.

The values of c∗(ν) and c∗(ν) can also be computed in the class of two-armed exponential bandit
models,

M= {ν = (νθ1 , νθ2) ∶ (θ1, θ2) ∈ Θ2, θ1 ≠ θ2}

where νθa has density fθa given by (5.22). One can show that

c∗(ν) = infθ∈Θ max (K(θ, θ1),K(θ, θ2)) = K(θ∗, θ1), where K(θ∗, θ1) = K(θ∗, θ2),
c∗(ν) = infθ∈Θ max (K(θ1, θ),K(θ2, θ)) = K(θ1, θ∗), where K(θ1, θ∗) = K(θ2, θ∗).

The coefficient c∗(ν) is equal to the Chernoff information K∗(θ1, θ2) between the arms, already intro-
duced in Section 5.2, whereas c∗(ν) corresponds to a quantity close to the Chernoff information but with
’reversed’ roles for the arguments. By analogy, we denote this quantity by K∗(θ1, θ2) = K(θ1, θ∗).

For exponential bandits the quantities c∗(ν) and c∗(ν) are not equal in general, although it can
be shown that it is the case when the log-partition function b(θ) is (Fenchel) self-conjugate (e.g., for
Gaussian and exponential variables). In Section 5.4.3, we will focus on the case of Bernoulli models for
which c∗(ν) > c∗(ν). By exhibiting a matching strategy in the fixed-budget setting, we will show that
this implies that κC(ν) > κB(ν) in this case.

On the changes of distribution used. Theorem 5.11 applied to a two-armed exponential bandit model
ν = (νθ1 , νθ2) yields

κC(ν) ≥ ( 1

K(θ1, θ2)
+ 1

K(θ2, θ1)
) , (5.26)

while the lower bound given in Theorem 5.13 is

κC(ν) ≥ ( 1

K∗(θ1, θ2)
) . (5.27)

which can be shown to be always tighter than (5.26).
Interestingly, the changes of distribution used to derive the two results are not the same. On the one

hand, for inequality (5.26), the changes of distribution involved modify a single arm at a time: one of the
arms is moved just below (or just above) the other (see Figure 5.4, left). This is the idea also used, for
example, to obtain the lower bound of [Lai and Robbins, 1985] on the cumulative regret (see the proof
of Theorem 1.2 in Chapter 1). On the other hand, for inequality (5.27), both arms are modified at the
same time: they are moved close to the common intermediate value θ∗ but with a reversed ordering (see
Figure 5.4, right). In the fixed-budget setting, the changes of distribution used to obtain the lower bound
on κB(ν) that follow from Theorem 5.13 moves both arms close to the value θ∗.

θ2 θ1 θ1+α θ2 θ1θ* θ*+α

Figure 5.4: Alternative bandit models considered to obtain the lower bounds of Theorem 5.11 (left) and
Theorem 5.13 (right), in the fixed-confidence setting.
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Proof of Theorem 5.13 and 5.14. Without loss of generality, assume that the bandit model ν = (ν1, ν2)
is such that a∗ = 1. Consider any alternative bandit model ν′ = (ν′1, ν′2) in which a∗ = 2. For a given
strategy A, let A be the event A = (Ŝ1 = 1), which belongs to Fτ , for τ the stopping rule of A.

Fixed-budget setting Assume the strategyA is consistent. For every t ∈ N, if the budget is τ = t a.s.,
Lemma 5.10 applied to the stopping time σ = t and the event A = (Ŝ1 = 1) ∈ Ft defined above yields

Eν′[N1(t)]KL(ν′1, ν1) +Eν′[N2(t)]KL(ν′2, ν2) ≥ d(Pν′(A),Pν(A)).
One has pt(ν) = 1 − Pν(A) and pt(ν′) = Pν′(A). As A is consistent, for every ε > 0 there exists t0(ε)
such that for all t ≥ t0(ε), Pν′(A) ≤ ε ≤ Pν(A). For t ≥ t0(ε),

Eν′[N1(t)]KL(ν′1, ν1) +Eν′[N2(t)]KL(ν′2, ν2) ≥ d(ε,1 − pt(ν)) ≥ (1 − ε) log
1 − ε
pt(ν)

+ ε log ε.

Taking the limsup and letting ε go to zero, one can show that

lim sup
t→∞

−1

t
log pt(ν) ≤ lim sup

t→∞
(Eν

′[N1(t)]
t

KL(ν′1, ν1) +
Eν′[N2(t)]

t
KL(ν′2, ν2)) ≤ max

a=1,2
KL(ν′a, νa).

The first statement of Theorem 5.13 follows by optimizing over the possible model ν′ satisfying µ′1 < µ′2
to make the right hand side of the inequality as small as possible.

If the sampling strategy ofA is uniform, using that Eν[N1] = E[N2] = E[τ]/2, lim sup−1
t log pt(ν)

is upper bounded by (KL(ν′1, ν1) +KL(ν′2, ν2))/2, and similarly optimizing over the choice of ν′ gives
the first statement of Theorem 5.14.

Fixed-confidence setting Assume the strategy A is δ-PAC. It therefore satisfies Pν(A) ≥ 1 − δ
and Pν′(A) ≤ δ. Applying Lemma 5.10 (with the stopping rule τ ) and using again the monotonicity
properties of d(x, y), one obtains that

Eν[N1]KL(ν1, ν
′
1) +Eν[N2]KL(ν2, ν

′
2) ≥ d(δ,1 − δ). (5.28)

For δ ≤ 0.15, as already used in the proof of Theorem 5.11, one has d(δ,1 − δ) ≥ log(1/(2δ)). Using
moreover that τ = N1 +N2, one has

Eν[τ] ≥
1

maxaKL(νa, ν′a)
log ( 1

2δ
) .

The second statement of Theorem 5.13 follows by optimizing over the possible model ν′ satisfying
µ′1 < µ′2 to make the right hand side of the inequality as large as possible.

If A uses a uniform sampling strategy, using the fact that Eν[N1] = E[N2] = E[τ]/2 in Equa-
tion (5.28) similarly gives the second statement of Theorem 5.14.

5.4.2 The Gaussian Case

We study in this Section the class of two-armed Gaussian bandit models with known variances de-
fined by (5.24), where σ1 and σ2 are fixed. In this case, we observed above that the lower bounds of
Theorem 5.13 are similar, because c∗(ν) = c∗(ν). We prove in this section that indeed

κC(ν) = κB(ν) = 2(σ1 + σ2)2

(µ1 − µ2)2

by exhibiting strategies that reach these performance bounds. These strategies are based on the simple
recommendation of the empirical best arm but use non-uniform sampling in cases where σ1 and σ2

differ. When σ1 = σ2 we provide in Theorem 5.15 an improved stopping rule that is δ-PAC but results in
a significant reduction of the running time of fixed-confidence algorithms.
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FIXED-BUDGET SETTING

We consider the simple family of static strategies that draw n1 samples from arm 1 followed by
n2 = t − n1 samples of arm 2, and then choose arm 1 if µ̂1,n1 < µ̂2,n2 , where µ̂i,ni denotes the empirical
mean of the ni samples from arm i. Assume for instance that µ1 > µ2. Since µ̂1,n1 − µ̂2,n2 − µ1 + µ2 ∼
N (0, σ2

1/n1 + σ2
2/n2), the probability of error of such a strategy is easily upper bounded as:

P (µ̂1,n1 < µ̂2,n2) ≤ exp
⎛
⎝
−(σ

2
1

n1
+ σ

2
2

n2
)
−1 (µ1 − µ2)2

2

⎞
⎠
.

The right hand side is minimized when n1/(n1 + n2) = σ1/(σ1 + σ2), and the static strategy drawing
n1 = ⌈σ1t/(σ1 + σ2)⌉ times arm 1 is such that

lim inf
t→∞

−1

t
log pt(ν) ≥

(µ1 − µ2)2

2(σ1 + σ2)2
,

which matches the bound of Theorem 5.13 for Gaussian bandit models.

FIXED-CONFIDENCE SETTING

Equal Variances. We start with the simpler case σ1 = σ2 = σ. Thus, the quantity I∗(ν) introduced in
Theorem 5.14 coincides with c∗(ν), which suggests that uniform sampling could be optimal. A uniform
sampling strategy equivalently collects paired samples (Xs, Ys) from both arms. The difference Xs −Ys
is normally distributed with mean µ = µ1 −µ2 and a δ-PAC algorithm is equivalent to a sequential test of
H0 ∶ (µ < 0) versus H1 ∶ (µ > 0) such that both type I and type II error probabilities are bounded by δ.
[Robbins, 1970] proposes the stopping rule

τ = inf

⎧⎪⎪⎨⎪⎪⎩
t ∈ 2N∗ ∶ ∣

t/2
∑
s=1

(Xs − Ys)∣ >
√

2σ2tβ(t, δ)
⎫⎪⎪⎬⎪⎪⎭
, with β(t, δ) = t + 1

t
log ( t + 1

2δ
) . (5.29)

The recommendation rule chooses the empirically best arm at time τ . This procedure can be seen as
an elimination strategy, in the sense of [Jennison et al., 1982]. The authors of this paper derive a lower
bound on the sample complexity of any δ-PAC elimination strategy (whereas our lower bound applies to
any δ-PAC algorithm) which is matched by Robbins’ algorithm: the above stopping rule τ satisfies

lim
δ→0

Eν[τ]
log(1/δ) = 8σ2

(µ1 − µ2)2
.

This value coincide with the lower bound on κC(ν) of Theorem 5.13 in the case of two-armed Gaussian
distributions with similar known variance σ2. This proves that in this case, Robbins’ rule (5.29) is not
only optimal among the class of elimination strategies, but also among the class of δ-PAC algorithm.

Any δ-PAC elimination strategy that uses a threshold function (or exploration rate) β(t, δ) smaller
than Robbins’ also matches our asymptotic lower bound, while stopping earlier than the latter. From a
practical point of view, it is therefore interesting to exhibit smaller exploration rates that preserve the δ-
PAC property. The failure probability of such an algorithm is upper bounded, for example when µ1 < µ2,
by

Pν (∃k ∈ N ∶
k

∑
s=1

Xs − Ys − (µ1 − µ2)√
2σ2

>
√

2kβ(2k, δ)) = P (∃k ∈ N ∶ Sk >
√

2kβ(2k, δ)) (5.30)
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where Sk is a sum of k i.i.d. variables of distribution N (0,1). [Robbins, 1970] obtains a non-
explicit confidence region of risk at most δ by choosing β(2k, δ) = log (log(k)/δ) + o(log log(k)).
The dependency in k is in some sense optimal, because the Law of Iterated Logarithm (LIL) states that
lim supk→∞ Sk/

√
2k log log(k) = 1 almost surely. Recently, [Jamieson et al., 2014] proposed an explicit

confidence region inspired by the LIL. However, Lemma 1 of [Jamieson et al., 2014] cannot be used to
upper bound (5.30) by δ and we provide in Appendix A a result derived independently (Lemma A.1
therein) that achieves this goal and can be used to obtain the following result (proved in Section 5.4.5).

Theorem 5.15. For δ small enough, the elimination strategy with threshold g(t, δ) =
√

2σ2tβ(t, δ) is
δ-PAC with

β(t, δ) = log
1

δ
+ 3

4
log log

1

δ
+ 3

2
log(1 + log(t/2)). (5.31)

We refer to Section 5.4.4 for numerical simulations that illustrate the significant savings (in the
average number of samples needed to reaching a decision) resulting from the use of the less conservative
exploration rate allowed by Theorem 5.15.

Mismatched Variances. In the case where σ1 ≠ σ2, we rely on the α-Elimination strategy, described
in Algorithm 5 below. For a = 1,2, µ̂a(t) denotes the empirical mean of the samples gathered from arm
a up to time t. The algorithm is based on a non-uniform sampling strategy governed by the parameter
α ∈ (0,1) which ensures that, at the end of every round t, N1(t) = ⌈αt⌉, N2(t) = t − ⌈αt⌉ and µ̂1(t) −
µ̂2(t) ∼ N (µ1 − µ2, σ

2
t (α)) (where σ2

t (α) is defined at line 6 of Algorithm 5). The sampling schedule
used here is thus deterministic.

Algorithm 5 α-Elimination
Require: Exploration function β(t, δ), parameter α.

1: Initialization: µ̂1(0) = µ̂2(0) = 0, σ2
0(α) = 1, t = 0

2: while ∣µ̂1(t) − µ̂2(t)∣ ≤
√

2σ2
t (α)β(t, δ) do

3: t← t + 1.
4: If ⌈αt⌉ = ⌈α(t − 1)⌉, At ← 2, else At ← 1
5: Observe Xt ∼ νAt and compute the empirical means µ̂1(t) and µ̂2(t)
6: Compute σ2

t (α) = σ2
1/⌈αt⌉ + σ2

2/(t − ⌈αt⌉)
7: end while
8: return argmax

a=1,2
µ̂a(t)

Theorem 5.16 shows that the σ1/(σ1 + σ2)-elimination algorithm, with a suitable exploration rate,
is δ-PAC and matches the lower bound on Eν[τ], at least asymptotically when δ → 0. Its proof can be
found in Section 5.4.5.

Theorem 5.16. If α = σ1/(σ1 + σ2), the α-elimination strategy using the exploration rate β(t, δ) =
log t

δ + 2 log log(6t) is δ-PAC onM and satisfies, for every ν ∈ M, for every ε > 0,

Eν[τ] ≤ (1 + ε)2(σ1 + σ2)2

(µ1 − µ2)2
log (1

δ
) + oε

δ→0
(log (1

δ
)) .

Remark 5.17. When σ1 = σ2, 1/2-elimination reduces, up to rounding effects, to the elimination proce-
dure described in the previous paragraph, for which Theorem 5.15 suggests an exploration rate of order
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log(log(t)/δ). As the feasibility of this exploration rate when σ1 ≠ σ2 is yet to be established, we focus
on Gaussian bandits with equal variances in the numerical experiments of Section 5.4.4.

5.4.3 The Bernoulli Case

We consider in this section the class of Bernoulli bandit models defined by

M= {ν = (B(µ1),B(µ2)) ∶ (µ1, µ2) ∈]0; 1[2, µ1 ≠ µ2},

where each arm can be equivalently parameterized by the natural parameter of the exponential family,
θa = log(µa/(1 − µa)). Recall the Kullback-Leibler divergence between two Bernoulli distributions can
be indifferently considered as a function of the means, d(µ1, µ2) = KL(B(µ1),B(µ2)), or of the natural
parameters, K(θ1, θ2).

In this Section, we prove that κC(ν) > κB(ν) for Bernoulli bandit models (Proposition 5.19). To
do so, we first introduce a static strategy matching the lower bound of Theorem 5.13 in the fixed-budget
setting (Proposition 5.18). This strategy is reminiscent of the algorithm exhibited for Gaussian bandits in
Section 5.4.2 and uses parameter-dependent non uniform sampling. This strategy is not directly helpful
in practice but we show that it can be closely approximated by an algorithm using uniform sampling. In
the fixed-confidence setting we similarly conjecture that little can be gained from using a non-uniform
sampling strategy and propose an algorithm based on a non-trivial stopping strategy that is believed to
match the bound of Theorem 5.14.

FIXED-BUDGET SETTING

By carefully upper bounding the probability of error of a static strategy in the Bernoulli case, one
can show the following result, proved in Section 5.6.3.

Proposition 5.18. Let α(θ1, θ2) be defined by

α(θ1, θ2) =
θ∗ − θ1

θ2 − θ1
where K(θ∗, θ1) = K(θ∗, θ2).

For all t, the static strategy that allocates ⌈α(θ1, θ2)t⌉ samples to arm 1, and recommends the empirical
best arm, satisfies pt(ν) ≤ exp(−tK∗(θ1, θ2)).

This shows in particular that for every ν ∈ M there exists a consistent static strategy such that

lim inf
t→∞

−1

t
log pt ≥ K∗(θ1, θ2), and hence that κB(ν) = 1

K∗(θ1, θ2)
.

By combining this observation with Theorem 5.13 and the fact that for Bernoulli distributions it can be
shown that K∗(θ1, θ2) < K∗(θ1, θ2), one obtains the following inequality.

Proposition 5.19. For all ν ∈ M, κC(ν) > κB(ν).

Note that we have determined the complexity of the fixed-budget setting by exhibiting and algorithm
that is of limited practical interest for Bernoulli bandit models. Indeed, the optimal static strategy defined
in Proposition 5.18 requires the knowledge of the quantity α(θ1, θ2), that depends in general on the
unknown means of the arms. So far, it is not known whether there exists a universal strategy, that would
satisfy pt(ν) ≤ exp(−K∗(θ1, θ2)t) on every Bernoulli bandit model.
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Figure 5.5: Comparison of different informational quantities for Bernoulli bandit models.

However, Lemma 5.23 in Section 5.6.3 shows that the strategy using uniform sampling and recom-
mending the empirical best arm satisfies pt(ν) ≤ exp(−I∗(ν)t), where I∗(ν) is the quantity defined in
Theorem 5.14 whose expression for Bernoulli distributions is

I∗(ν) = I∗(θ1, θ2) =
K ( θ1+θ2

2 , θ1) +K ( θ1+θ2
2 , θ2)

2
.

Hence this simple strategy matches the bound of Theorem 5.14 in the fixed-budget setting (see Re-
mark TC). It can be moreover observed that I∗(ν) is very close to c∗(ν) = KL∗(θ1, θ2), and thus the
problem-dependent optimal strategy described in Proposition 5.18 can be approximated by a very simple,
universal algorithm. This fact is illustrated in Figure 5.5, on which we represent the different informa-
tional function c∗,I∗,c∗ and I∗ (defined in Theorem 5.13 and 5.14) when the mean µ1 varies, for two
fixed values of µ2. In can be observed that c∗(ν) and c∗(ν) are almost indistinguishable from I∗(ν) and
I∗(ν) respectively, while there is a gap between c∗(ν) and c∗(ν).

FIXED-CONFIDENCE SETTING

As illustrated in Figure 5.5, c∗(ν) and I∗(ν) are also very close, thus there is a strong incentive to
use uniform sampling in the fixed-confidence setting as well. Finding an algorithm sampling the arms
uniformly and matching the bound of Theorem 5.14 is therefore a crucial matter. This boils down to
determining a proper stopping rule. In all the algorithms studied so far, the stopping rule was based on
the difference of the empirical means of the arms. For Bernoulli arms the 1/2-Elimination procedure
described in Algorithm 5 can be used, as each distribution νa is bounded and therefore 1/4-subgaussian.
More precisely, with β(t, δ) as in Theorem 5.15, the algorithm stopping at the first time t such that

µ̂1(t) − µ̂2(t) >
√

2β(t, δ)/t

has its sample complexity bounded by 2/(µ1 − µ2)2 log(1/δ) + o (log(1/δ)). The expressions of I∗(ν)
as a function of the means of the arms is given by

I∗(ν) = I∗(µ1, µ2) =
d (µ1,

µ1+µ2

2
) + d (µ2,

µ1+µ2

2
)

2
.

Pinsker’s inequality implies that I∗(µ1, µ2) > (µ1 − µ2)2/2 and this algorithm does not match the lower
bound of Theorem 5.14 relative to the fixed-confidence setting. The approximation I∗(µ1, µ2) = (µ1 −
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Algorithm 6 Sequential Generalized Likelihood Ratio Test (SGLRT)
Require: Exploration function β(t, δ).

1: Initialization: µ̂1(0) = µ̂2(0) = 0. t = 0.
2: while (tI∗(µ̂1(t), µ̂2(t)) ≤ β(t, δ))⋃(t = 1[2]) do
3: t = t + 1. At = t[2].
4: Observe Xt ∼ νAt and compute the empirical means µ̂1(t) and µ̂2(t).
5: end while
6: return a = argmax

a=1,2
µ̂a(t).

µ2)2/(8µ1(1−µ1)) + o ((µ1 − µ2)2) suggests that the loss with respect to the optimal error exponent is
particularly significant when both means are close to 0 or 1.

To circumvent this drawback, we propose the SGLRT (for Sequential Generalized Likelihood Ratio
Test) algorithm, described in Algorithm 6. The stopping rule is based on the distance between the
empirical means of the arms, measured with the function I∗, and is related to the generalized likelihood
ratio statistic for testing the equality of two Bernoulli proportions. To test H0 ∶ (µ1 = µ2) against
H1 ∶ (µ1 ≠ µ2) based on t/2 paired samples of the arms Ws = (Xs, Ys), the Generalized Likelihood
Ratio Test (GLRT) rejects H0 when

exp(−tI∗(µ̂1,t/2, µ̂2,t/2)) =
maxµ1,µ2∶µ1=µ2 L(W1, . . . ,Wt/2;µ1, µ2)

maxµ1,µ2 L(W1, . . . ,Wt/2;µ1, µ2)
< zδ,

where L(W1, . . . ,Wt/2;µ1, µ2) denote the likelihood of the observations given parameters µ1 and µ2.
The equality in the previous display is a consequence of the rewriting

I∗(x, y) = H (x + y
2

) − 1

2
[H (x

2
) +H (y

2
)] ,

where H(x) = −x log(x)−(1−x) log(1−x) denotes the binary entropy function. Hence, Algorithm (6)
can be interpreted as a sequential version of the GLRT with (varying) threshold zt,δ = exp(−β(t, δ)).
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Figure 5.6: The KL-confidence intervals used by KL-LUCB are separated if and only if the threshold
β(t, δ)/t is below d∗(µ̂1,t, µ̂2,t)
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Elements of analysis of the SGLRT. The SGLRT algorithm is also related to the KL-LUCB or KL-
Racing algorithms described in Section 5.2. Indeed, for two armed-bandits, both algorithm use uniform
sampling and stop at round t (having used 2t samples of the arms), when l1(t) > u2(t) or l2(t) >
u1(t). Figure 5.6 can help convince oneself that this stopping condition is equivalent to stopping when
d∗(µ̂1,t, µ̂2,t) > β(t, δ)/t, where β(t, δ) is the exploration rate used by KL-LUCB.

From Figure 5.5, I∗(x, y) mostly coincides with d∗(x, y) and more precisely I∗(x, y) < d∗(x, y).
Using all this, one can upper bound the probability of error of the SGLRT, for example when µ1 < µ2:

Pν (∃t ∈ 2N∗ ∶ µ̂1,t/2 > µ̂2,t/2, tI∗(µ̂1,t/2, µ̂2,t/2) > β(t, δ))
≤ Pν (∃t ∈ 2N∗ ∶ µ̂1,t/2 > µ̂2,t/2, (t/2)d∗(µ̂1,t/2, µ̂2,t/2) > (β(t, δ)/2))
= Pν (∃s ∈ N∗ ∶ µ̂1,s > µ̂2,s, sd∗(µ̂1,s, µ̂2,s) > (β(2s, δ)/2))

This is an upper bound of the probability of error of KL-LUCB using the exploration rate β̃(t, δ) =
β(2t, δ)/2 and proceeding as in Theorem 5.1, one can prove the following result.

Lemma 5.20. With the exploration rate

β(t, δ) = 2 log( t(log(3t))2

δ
)

the SGLRT algorithm is δ-PAC.

For this exploration rate, we were able to obtain the following asymptotic guarantee on the stopping
time τ of Algorithm 6, using Lemma 5.21 below (proved in Section 5.6.4):

∀α > 0, lim sup
δ→∞

τ

log(1/δ) ≤ 2(1 + α)
I∗(µ1, µ2)

a.s.

Still from Lemma 5.21, it follows that with an exploration rate β(t, δ) = log((log(t)+1)/δ) —for which
the SGLRT algorithm is not provably δ-PAC—, one has

∀α > 0, lim sup
δ→∞

τ

log(1/δ) ≤ (1 + α)
I∗(µ1, µ2)

a.s..

No upper bound on Eν[τ]/ log(1/δ) can be deduced from this result, but it provides an intuition on
which stopping rule to use. By analogy with the result of Theorem 5.15 we conjecture that the use of
and exploration rate of order log(log(t)/δ) should also lead to a δ-PAC algorithm. This conjecture is
supported by the numerical experiments reported in Section 5.4.4 below.

Lemma 5.21. Let f and g be two continuous function such that f(µ1, µ2) ≠ 0 and g(t) = o(tr) for all
r > 1. For every α > 0 the strategy using uniform sampling and the stopping rule

τ = inf {t ∈ 2N∗ ∶ t f(µ̂1,t/2, µ̂2,t/2) ≥ log
g(t)
δ

} satisfies Pν (lim sup
δ→0

τ

log(1/δ) ≤ 1 + α
f(µ1, µ2)

) = 1.
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5.4.4 Numerical experiments

The goal of this Section is twofold: to compare results obtained in the fixed-budget and fixed-
confidence settings and to illustrate the improvement resulting from the adoption of the reduced ex-
ploration rate of Theorem 5.15.

In Figure 5.7, we consider two Gaussian bandit models with known common variance: the ’easy’
one is {N (0.5,0.25) ,N (0,0.25)}, corresponding to κC = κB = κ = 8, on the left; and the ’difficult’
one is {N (0.01,0.25) ,N (0,0.25)}, that is κ = 2 × 104, on the right. In the fixed-budget setting, stars
(’*’) report the probability of error pn(ν) as a function of n. In the fixed-confidence setting, we plot
both the empirical probability of error by circles (’O’) and the specified maximal error probability δ by
crosses (’X’) as a function of the empirical average of the running times. Note the logarithmic scale
used for the probabilities on the y-axis. All results are averaged on N = 106 independent Monte Carlo
replications. For comparison purposes, a plain line represents the theoretical rate x ↦ exp(−x(1/κ))
which is a straight line on the log scale.

In the fixed-confidence setting, we report results for algorithms of the form (5.29) with g(t, δ) =√
2σ2tβ(t, δ) for three different exploration rates β(t, δ). The exploration rate we consider are: the

provably-PAC rate of Robbins’ algorithm log(t/δ) (large blue symbols), the conjectured ’optimal’ ex-
ploration rate log((log(t) + 1)/δ), almost provably δ-PAC according to Theorem 5.15 (bold green sym-
bols), and the rate log(1/δ), which would be appropriate if we were to perform the stopping test only at
a single pre-specified time (orange symbols). For each algorithm, the log probability of error is approxi-
mately a linear function of the number of samples, with a slope close to −1/κ, where κ is the complexity.
We can visualize the gain in sample complexity achieved by smaller exploration rates, but while the rate
log((log(t) + 1)/δ) appears to guarantee the desired probability of error across all problems, the use of
log(1/δ) seems too risky, as one can see that the probability of error becomes larger than δ on difficult
problems. To illustrate the gain in sample complexity when the means of the arms are known, we add in
red the SPRT algorithm mentioned in the introduction of Section 5.4 along with the theoretical relation
between the probability of error and the expected number of samples, materialized as a dashed line. The
SPRT stops for t such that ∣(µ1 − µ2)(S1,t/2 − S2,t/2)∣ > log(1/δ).

Robbins’ algorithm is δ-PAC and matches the complexity (which is illustrated by the slope of the
measures), though in practice the use of the exploration rate log((log(t) + 1)/δ) leads to huge gain in
terms of number of samples used. It is important to keep in mind that running times play the same role
as error exponents and hence the threefold increase of average running times observed on the rightmost

0 10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Fixed−Budget setting

SPRT

log(1/delta)

log(log(t)/delta)

log(t/delta)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Fixed−Budget setting

SPRT

log(1/delta)

log(log(t)/delta)

log(t/delta)

Figure 5.7: Experimental results for Gaussian bandit models
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Figure 5.8: Results for Bernoulli bandit models: 0.2 − 0.1 (left) and 0.51 − 0.5 (right).

plot of Figure 5.7 when using β(t, δ) = log(t/δ) is really prohibitive.

In Figure 5.8, we compare on two Bernoulli bandit models the performance of the SGLRT algorithm
(Algorithm 6) using two different exploration rates, log(1/δ) and log((log(t) + 1)/δ), to the algorithm
that stops when the difference of empirical means exceeds the threshold

√
2β(t, δ)/t (for the same

exploration rates), that we refer to as ’Elimination’. Plain lines also materialize the theoretical optimal
rate x ↦ exp(−x/κC(ν)) and the rate attained by the Elimination algorithm x ↦ exp(−x/κ′), where
κ′ = 2/(µ1 − µ2)2. On the bandit model 0.51 − 0.5 (right) theses two rates are very close and SGLRT
mostly coincides with Elimination, but on the bandit model 0.2 − 0.1 (left) the practical gain of the use
of a more sophisticated stopping strategy is well illustrated. Besides, our experiments show that SGLRT
using log((log(t) + 1)/δ) is δ-PAC on both the (relatively) easy and difficult problems we consider,
unlike the other algorithms considered.

If one compares on each problem the results for the fixed-budget setting to those for the best δ-
PAC algorithm (or conjectured δ-PAC for the SGLRT algorithm for Bernoulli bandits), in green, one
can see that to obtain the same probability of error, the fixed-confidence algorithm needs an average
number of samples of order at least twice larger than the deterministic number of samples required by
the fixed-budget setting algorithm. This remark should be related to the fact that a δ-PAC algorithm is
designed to be uniformly good across all problems, whereas consistency is a weak requirement in the
fixed-budget setting: any strategy that draws both arm infinitely often and recommends the empirical
best is consistent. Figure 5.7 shows that when the values of µ1 and µ2 are unknown, the sequential
version of the test is no more preferable to its batch counterpart and can even become much worse if the
exploration rate β(t, δ) is chosen too conservatively. This observation should be mitigated by the fact
that the sequential (or fixed-confidence) approach is adaptive with respect to the difficulty of the problem
whereas it is impossible to predict the efficiency of a batch (or fixed-budget) experiment without some
prior knowledge regarding the problem under consideration.

5.4.5 Proof of Theorem 5.15 and Theorem 5.16

Proof of Theorem 5.15. According to (5.30) it boils down to finding an exploration rate such that
P(∃t ∈ N∗ ∶ St >

√
2σ2tβ(t, δ)) ≤ δ, where St =X1 + ⋅ ⋅ ⋅ +Xt is a sum of i.i.d. normal random variable.

Let β(t, δ) be of the form β(t, δ) = log 1
δ + c log log 1

δ + d log log(et), for some constants c > 0 and
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d > 1. Lemma A.1 given in Appendix A yields

P(∃t ∈ N ∶ St >
√

2σ2tβ(t, δ)) ≤ ζ(d(1 − 1

2(z + c log z)
))

√
e

(2
√

2)d
(
√
z + c log z +

√
8)d

zc
δ,

where z ∶= log 1
δ > 0. To upper bound the above probability by δ, at least for large values of z (which

corresponds to small values of δ), it suffices to choose the parameters c and d such that

√
e ζ(d(1 − 1

2(z + c log z)
)) 1

(2
√

2)d
(
√
z + c log z + 2

√
2)d

zc
≤ 1.

For c = d/2, the left hand side tends to
√
eζ (d)/(2

√
2)d when z goes to infinity, which is smaller than

1 for d ≥ 1.47. Thus, for δ small enough, the desired inequality holds for d = 3/2 and c = 3/4, which
corresponds to the exploration rate of Theorem 5.15.

Proof of Theorem 5.16. Let α = σ1/(σ1 + σ2). We first prove that with the exploration rate β(t, δ) =
log(t/δ) + 2 log log(6t) the algorithm is δ-PAC. Assume that µ1 > µ2 and recall τ = inf{t ∈ N ∶ ∣dt∣ >√

2σ2
t (α)β(t, δ)}. The probability of error of the α-elimination strategy is upper bounded by

Pν (dτ ≤ −
√

2σ2
τ(α)β(τ, δ)) ≤ Pν (dτ − (µ1 − µ2) ≤ −

√
2σ2

τ(α)β(τ, δ))

≤ Pν (∃t ∈ N∗ ∶ dt − (µ1 − µ2) < −
√

2σ2
t (α)β(t, δ))

≤
∞
∑
t=1

exp (−β(t, δ)) ,

by an union bound and Chernoff bound applied to dt − (µ1 −µ2) ∼ N (0, σ2
t (α)). The choice of β(t, δ)

mentioned above ensures that the series in the right hand side is upper bounded by δ, which shows the
algorithm is δ-PAC:

∞
∑
t=1

e−β(t,δ) ≤ δ
∞
∑
t=1

1

t(log(6t))2
≤ δ ( 1

(log 6)2
+ ∫

∞

1

dt

t(log(6t))2
) = δ ( 1

(log 6)2
+ 1

log(6)) ≤ δ.

To upper bound the expected sample complexity, we start by upper bounding the probability that τ
exceeds some deterministic time T :

Pν(τ ≥ T ) ≤ Pν (∀t = 1 . . . T, dt ≤
√

2σ2
t (α)β(t, δ)) ≤ Pν (dT ≤

√
2σ2

T (α)β(T, δ))

= Pν (dT − (µ1 − µ2) ≤ −[(µ1 − µ2) −
√

2σ2
T (α)β(T, δ)])

≤ exp(− 1

2σ2
T (α)

[(µ1 − µ2) −
√

2σ2
T (α)β(T, δ)]

2

) .

The last inequality follows from Chernoff bound and holds for T such that (µ1−µ2) >
√

2σ2
T (α)β(T, δ).

Now, for γ ∈]0,1[ we introduce

T ∗γ ∶= inf {t0 ∈ N ∶ ∀t ≥ t0, (µ1 − µ2) −
√

2σ2
t (α)β(t, δ) > γ(µ1 − µ2)} .
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This quantity is well defined as σ2
t (α)β(t, δ) go to zero when t goes to infinity. Then,

Eν[τ] ≤ T ∗γ + ∑
T=T ∗γ +1

P (τ ≥ T )

≤ T ∗γ + ∑
T=T ∗γ +1

exp(− 1

2σ2
T (α)

[(µ1 − µ2) −
√

2σ2
T (α)β(T, δ)]

2

)

≤ T ∗γ +
∞
∑

T=T ∗γ +1

exp(− 1

2σ2
T (α)

γ2(µ1 − µ2)2) .

For all t ∈ N∗, it is easy to show that the following upper bound on σ2
t (α) holds:

∀t ∈ N, σ2
t (α) ≤

(σ1 + σ2)2

t
×

t − σ1

σ2

t − σ1

σ2
− 1

. (5.32)

Using the bound (5.32), one has

Eν[τ] ≤ T ∗γ + ∫
∞

0
exp

⎛
⎝
− t

2(σ1 + σ2)2

t − σ1

σ2
− 1

t − σ1

σ2

γ2(µ1 − µ2)2⎞
⎠
dt

≤ T ∗γ +
2(σ1 + σ2)2

γ2(µ1 − µ2)2
exp(γ

2(µ1 − µ2)2

2(σ1 + σ2)2
) .

We now give an upper bound on T ∗γ . Let r ∈ [0, e/2 − 1]. There exists N0(r) such that for t ≥ N0(r),
β(t, δ) ≤ log(t1+r/δ). Using also (5.32), one gets T ∗γ = max(N0(t), T̃γ), where

T̃γ = inf

⎧⎪⎪⎨⎪⎪⎩
t0 ∈ N ∶ ∀t ≥ t0,

(µ1 − µ2)2

2(σ1 + σ2)2
(1 − γ)2t >

t − σ1

σ2
− 1

t − σ1

σ2

log
t1+r

δ

⎫⎪⎪⎬⎪⎪⎭
.

If t > (1 + γ σ1

σ2
)/γ one has (t − σ1

σ2
− 1)/(t − σ1

σ2
) ≤ (1 − γ)−1. Thus T̃γ = max((1 + γ σ1

σ2
)/γ, T ′γ), with

T ′γ = inf {t0 ∈ N ∶ ∀t ≥ t0, exp( (µ1 − µ2)2

2(σ1 + σ2)2
(1 − γ)3t) ≥ t

1+r

δ
} .

Applying Lemma 5.22 with η = δ, s = 1 + r and β = (1 − γ)3(µ1 − µ2)2/(2(σ1 + σ2)2) leads to

T ′γ ≤
(1 + r)
(1 − γ)3

× 2(σ1 + σ2)2

(µ1 − µ2)2
[log

1

δ
+ log log

1

δ
] +R(µ1, µ2, σ1, σ2, γ, r),

with

R(µ1, µ2, σ1, σ2, γ, r) =
1 + r

(1 − γ)3

2(σ1 + σ2)2

(µ1 − µ2)2
[1 + (1 + r) log( 2(σ1 + σ2)2

(1 − γ)3(µ1 − µ2)2
)] .

Now for ε > 0 fixed, choosing r and γ small enough leads to

Eν[τ] ≤ (1 + ε)2(σ1 + σ2)2

(µ1 − µ2)2
[log

1

δ
+ log log

1

δ
] + C(µ1, µ2, σ1, σ2, ε),

where C is a constant independent of δ. This concludes the proof.
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5.5 Conclusions and future work

In this chapter, we made progress towards understanding the complexity of best arms identification in
bandit models. For two-armed bandits, we obtained complete results, identifying the complexity of both
the fixed-budget and fixed-confidence settings in important parametric families of distributions. With the
example of Bernoulli bandits, we especially show that these two complexities are not always equal.

In the fixed-confidence setting, we also provided in the general case (m best arm identification among
K > 2 arms) new lower bounds as well as improved algorithms. The KL-LUCB and KL-Racing algo-
rithms perform well in practice, but there is a small gap between the (informational) upper bound ob-
tained for KL-UCB and the (informational) lower bound derived, that should be investigated further. As
future work we also plan to examine whether the refined exploration rate that can be used in elimination
algorithm for two-armed (sub)gaussian bandits could be incorporated to the KL-LUCB or KL-Racing
algorithms, and if better theoretical guarantees for the SGLRT algorithm can be obtained.

We acknowledge that we were not able to characterize optimal algorithms in the fixed budget setting
when there are more than two arms. We presented a first attempt to derive new lower bounds in the paper
[Kaufmann et al., 2014b], but there is still room for improvements in this direction.

5.6 Elements of proof

5.6.1 A useful technical lemma

The following lemma is useful in Sections 5.2 and 5.4 to obtain upper bounds on the number of
sample used by algorithms for the fixed-confidence setting.

Lemma 5.22. For every β, η > 0 and s ∈ [0, e/2], the following implication is true:

x0 =
s

β
log(e log (1/(βsη))

βsη
) ⇒ ∀x ≥ x0, e

βx ≥ x
s

η
.

Proof Lemma 5.22 easily follows from the fact that for any s, η > 0,

x0 = s log
⎛
⎜
⎝

e log ( 1
η)

η

⎞
⎟
⎠
⇒ ∀x ≥ x0, e

x ≥ x
s

η

Indeed, it suffices to apply this statement to x = xβ and η = ηβs. The mapping x ↦ ex − xs/η is
increasing when x ≥ s. As x0 ≥ s, it suffices to prove that x0 defined above satisfies ex0 ≥ xs0/η.

log (x
s
0

η
) = s log

⎛
⎝
s log

⎛
⎝
e log 1

η

η

⎞
⎠
⎞
⎠
+ log

1

η
= s(log(s) + log [log

1

η
+ log (e log

1

η
)]) + log

1

η

≤ s(log(s) + log [2 log
1

η
]) + log

1

η

where we use that for all y, log(y) ≤ 1
ey. Then

log (x
s
0

η
) ≤ s(log(s) + log(2) + log log

1

η
+ log

1

η
) .
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For s ≤ e
2 , log(s) + log(2) ≤ 1, hence

log (x
s
0

η
) ≤ s(1 + log log

1

η
+ log

1

η
) = s log

⎛
⎜
⎝

e log ( 1
η)

η

⎞
⎟
⎠
= x0,

which is equivalent to ex0 ≥ xs0
η and concludes the proof.

5.6.2 Proof of Lemma 5.4

The quantity we have to bound in order to prove Lemma 5.4 is

A ∶=
T

∑
u=⌈C1γ/d(µa,c)⌉+1

P (ud(µ̂a,u, c) ≤ γ) .

This sum also arises in the analysis of the KL-UCB algorithm and is precisely upper-bounded by [Cappé
et al., 2013] in Appendix A.2, for the choice C1 = 1. However, in order to obtain an exponential decay
in γ, we have to adapt their method to the choice C1 > 1. Introducing

d+(x, c) = d(x, c)1(x<c) and d−(x, c) = d(x, c)1(x>c),

we use:

A ≤
T

∑
u=n1(a,c,γ)+1

P (ud+(µ̂a,u, c) ≤ γ) for µa < c, and

A ≤
T

∑
u=n1(a,c,γ)+1

P (ud−(µ̂a,u, c) ≤ γ) for µa > c,

with n1(a, c, γ) = ⌈ C1γ
d(µa,c)⌉. We now introduce notation that will be useful in the rest of the proof. The

two mappings

d+ ∶ [0, c] Ð→ [0, d(0, c)] d− ∶ [c,1] Ð→ [0, d(1, c)]
x ↦ d(x, c) x ↦ d(x, c)

are bijective and monotone. Then, for α ∈ [0, d(µa, c)], the quantity s∗α(µa, c) is well-defined by:

d(s∗α(µa, c), c) = α and s∗α(µa, c) ∈ (µa, c).

With this new notation, one has, for a ∈ (S∗m)c:

P (ud+(µ̂a,u, c) ≤ γ)) = P(d+(µ̂a,u, c) ≤
γ

u
) = P (µ̂a,u ≥ s∗γ

u
(µa, c)) .

And for a ∈ S∗m:
P (ud−(µ̂a,u, c) ≤ γ)) = P (µ̂a,u ≤ s∗γ

u
(µa, c)) .

Using Chernoff’s concentration inequality and a comparison with an integral yields in both cases:

A ≤
T

∑
u=n1(a,c,γ)+1

exp (−ud (s∗γ
u
(µa, c), µa)) ≤ ∫

∞

n1(a,c,γ)
exp (−ud (s∗γ

u
(µa, c), µa))du.
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With the change of variable u = γv, one has:

A ≤ γ ∫
∞
C1

d(µa,c)
exp(−γvd(s∗1

v

(µa, c), µa))dv.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mγ

(5.33)

An asymptotic equivalent. This last integral takes the form

∫
∞
C1

d(µa,c)
exp (−γφ(v)) with φ(v) = vd(s∗1

v

(µa, c), µa)

and φ is increasing. We can use the Laplace method for approximating the integral when γ goes to
infinity.

φ′(v) = d(s∗1
v

(µa, c), µa) −
1

v

d′ (s∗1
v

(µa, c), µa)

d′ (s∗1
v

(µa, c), c)
≥ 0.

And φ′ ( C1

d(µa,c)) = 0 iff C1 = 1. If C1 > 1 the following equivalent holds:

∫
∞
C1

d(µa,c)
exp (−γφ(v)) ∼

γ→∞

exp (−γφ( C1

d(µa,c)))

γφ′ ( C1

d(µa,c))
.

Noting that s∗d(µa,c)
C1

(µa, c) = sC1(µa, c), we get

mγ ∼
γ→∞

exp(−γFC1(µa, c))
φ′ ( C1

d(µa,c))
with FC1(µa, c) =

C1d (sC1(µa, c), µa)
d(µa, c)

.

And φ′ ( C1

d(µa,c)) can be written as

φ′ ( C1

d(µa, c)
) = d(µa, c)

C1
(FC1(µa, c) −

d′(sC1(µa, c), µa)
d′(sC1(µa, c), c)

) .

This asymptotic equivalent shows that, starting from (5.33), we cannot improve the constant FC1(µa, c)
in the exponential with a bigger (and maybe non problem-dependent) one. If C1 = 1 the same reasoning
holds, but the Laplace equivalent is different and leads to:

mγ ∼
γ→∞

√
γ

¿
ÁÁÀ

π

−2φ′′ ( 1
d(µa,c))

,

which does not exhibit an exponential decay.

An ‘optimal’ bound of the probability. We now give a non-asymptotic upper bound of (5.33) involv-
ing the optimal rate FC1(µa, c) in the exponential. If v ≥ C1

d(µa,c) , s∗1
v

(µa, c) ≥ s∗d(µa,c)
C1

(µa, c) and we can

use this bound in the integral in (5.33) to get:

A ≤ ∫
∞
C1

d(µa,c)
exp (−ud (sC1(µa, c), µa))du =

exp (−FC1(µa, c)γ)
d (sC1(µa, c), µa)

.
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5.6.3 Proof of Proposition 5.18

Bounding the probability of error of a static strategy using n1 samples from arm 1 and n2 samples
from arm 2 relies on the following lemma.

Lemma 5.23. Let (X1,t)t∈N and (X2,t)t∈N be two independent i.i.d sequences, such that X1,1 ∼ νθ1 and
X2,1 ∼ νθ2 belong to an exponential family. Assume that µ(θ1) > µ(θ2). Then

P( 1

n1

n1

∑
t=1

X1,t <
1

n2

n2

∑
t=1

X2,t) ≤ exp(−(n1 + n2)gα(θ1, θ2)),

where α = n1

n1+n2
and gα(θ1, θ2) ∶= αK(αθ1 + (1 − α)θ2, θ1) + (1 − α)K(αθ1 + (1 − α)θ2, θ2).

The function α ↦ gα(θ1, θ2), can be maximized analytically, and the value α∗ that realizes the
maximum is given by

K(α∗θ1 + (1 − α∗)θ2, θ1) = K(α∗θ1 + (1 − α∗)θ2, θ2)
α∗θ1 + (1 − α∗)θ1 = θ∗

α∗ = θ∗ − θ2

θ1 − θ2

where θ∗ is defined by K(θ∗, θ1) = K(θ∗, θ2) = K∗(θ1, θ2). More interestingly, the associated rate is
such that

gα∗(θ1, θ2) = α∗K(θ∗, θ1) + (1 − α∗)K(θ∗, θ2) = K∗(θ1, θ2),
which leads to Proposition 5.18.

Remark 5.24. When µ1 > µ2, applying Lemma 5.23 with n1 = n2 = t/2 yields

P (µ̂1,t/2 < µ2,t/2) ≤ exp
⎛
⎝
−

K (θ1,
θ1+θ2

2
) +K (θ2,

θ1+θ2
2

)
2

t
⎞
⎠
= exp ( − I∗(ν)t),

which shows that the strategy based on uniform sampling that recommends the empirical best arm
matches the lower bound of Theorem 5.13 for the fixed-budget setting.

Proof of Lemma 5.23. The i.i.d. sequences (X1,t)t∈N and (X2,t)t∈N have respective densities fθ1 and
fθ2 where fθ(x) = exp(θx−b(θ)) and µ(θ1) = µ1, µ(θ2) = µ2. α is such that n1 = αn and n2 = (1−α)n.
One can write

P( 1

n1

n1

∑
t=1

X1,t −
1

n2

n2

∑
t=1

X2,t < 0) = P(α
n2

∑
t=1

X2,t − (1 − α)
n1

∑
t=1

X1,t ≥ 0) .

For every λ > 0, multiplying by λ, taking the exponential of the two sides and using Markov’s inequality
(this technique is often referred to as Chernoff’s method), one gets

P( 1

n1

n1

∑
t=1

X1,t −
1

n2

n2

∑
t=1

X2,t < 0) ≤ (Eν[eλαX2,1])(1−α)n (Eν[eλ(1−α)X1,1])
αn

= exp(n [(1 − α)φX2,1(λα) + αφX1,1(−(1 − α)λ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Gα(λ)

)
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with φX(λ) = logEν[eλX] for any random variable X . If X ∼ fθ a direct computation gives φX(λ) =
b(λ + θ) − b(θ). Therefore the function Gα(λ) introduced above rewrites

Gα(λ) = (1 − α)(b(λα + θ2) − b(θ2)) + α(b(θ1 − (1 − α)λ) − b(θ1)).

Using that b′(x) = µ(x), we can compute the derivative of G and see that this function as a unique
minimum in λ∗ given by

µ(θ1 − (1 − α)λ∗) = µ(θ2 + αλ∗) ⇔ θ1 − (1 − α)λ∗ = θ2 + αλ∗ ⇔ λ∗ = θ1 − θ2,

using that θ ↦ µ(θ) is one-to-one. One can also show that

G(λ∗) = (1 − α)[b(αθ1 + (1 − α)θ2) − b(θ2)] + α[b(αθ1 + (1 − α)θ2) − b(θ1)].

Using the expression of the KL-divergence between νθ1 and νθ2 as a function of the natural parameters:
K(θ1, θ2) = µ(θ1)(θ1 − θ2) − b(θ1) + b(θ2), one can also show that

αK(αθ1 + (1 − α)θ2, θ1)
= −α(1 − α)µ(αθ1 + (1 − α)θ2)(θ1 − θ2) + α[−b(αθ1 + (1 − α)θ2) + b(θ1)]

(1 − α)K(αθ1 + (1 − α)θ2, θ2)
= α(1 − α)µ(αθ1 + (1 − α)θ2)(θ1 − θ2) + (1 − α)[−b(αθ1 + (1 − α)θ2) + b(θ2)]

Summing these two equalities leads to

G(λ∗) = − [αK(αθ1 + (1 − α)θ2, θ1) + (1 − α)K(αθ1 + (1 − α)θ2, θ2)] = −gα(θ1, θ2).

Hence the inequality P ( 1
n1
∑n1
t=1X1,t < 1

n2
∑n2
t=1X2,t) ≤ exp(nG(λ∗)) concludes the proof.

5.6.4 Proof of Lemma 5.21.

We fix α > 0 and introduce

σ = max{t ∈ 2N∗ ∶ f(µ̂1,t/2, µ̂2,t/2) ≤
f(µ1, µ2)
1 + α/2 } .

By the law of large numbers, P(σ < +∞) = 1. Hence, limn→∞ P(σ ≤ n) = 1 and for every α ∈]0,1[
there exists N(α,α,µ1, µ2) such that P(σ ≤ N(α,α,µ1, µ2)) ≥ 1 − α. Therefore, introducing the event

Eα = (∀t ≥ N(α,α,µ1, µ2), f(µ̂1,t/2, µ̂2,t/2) >
f(µ1, µ2)
1 + α/2 ) , one has P(Eα) ≥ 1 − α.

On the event Eα,

τ ≤ max(N(α,α,µ1, µ2); inf {t ∈ N ∶ tf(µ1, µ2)
1 + α/2 ≥ log(g(t)

δ
)})

τ ≤ N(α,α,µ1, µ2) + inf {t ∈ N ∶ tf(µ1, µ2)
1 + α/2 ≥ log(g(t)

δ
)}
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We can use Lemma 5.22 to bound the right term in the right hand side, which shows that there exists a
constant C(α,µ1, µ2) independent of δ such that

τ ≤ N(α,α,µ1, µ2) +
1 + α

f(µ1, µ2)
[log

1

δ
+ log log

1

δ
] +C(α,µ1, µ2)

Thus we proved that for all α > 0,

P(lim sup
δ→0

τ

log(1/δ) ≤ 1 + α
f(µ1, µ2)

) ≥ 1 − α.

This concludes the proof.



Conclusion and perspectives

In this thesis, two different bandit problems have been studied: reward maximization and best arm(s)
identification in bandit models. For the former, whose complexity is well-known, we have proposed
and/or analysed algorithms based on Bayesian ideas that are optimal with respect to the (frequentist)
regret. For the latter, we have introduced two complexity notions in the fixed-budget and fixed-confidence
settings. We have provided new lower bounds on these complexities as well as improved algorithms
matching these lower bounds in particular cases of two-armed bandits.

In both frameworks, we have been focused on obtaining distribution-dependent performance guar-
antees that feature information-theoretic quantities. A first comment is that the information quantities
that appears in the complexity of regret minimization (Kullback-Leibler divergence) and best arm iden-
tification (Chernoff information) differ. A possible interpretation of this fact is that the error events in
these two problems are different. Assume there are two arms and arm 1 is the best. Algorithms for
regret minimization are such that arm 1 has been drawn a lot, so its mean is well estimated: one can
consider that the sth draw of arm 2 occurs when (µ̂2,s > µ1). The probability of this event involves
Kullback-Leibler divergence. On the other hand, in best arm identification, the arms are drawn in a more
comparable way, and a typical error occurs when the empirical means µ̂1,s and µ̂2,s are somewhere in the
middle of the interval [µ2, µ1] and in a reversed order. The probability of this event involves Chernoff
information. In the fixed confidence setting, the lower bound derived in Chapter 5 when there are two
arms involves another information-theoretic quantity, K∗(θ1, θ2), a Chernoff information in which the
role of the arguments are reversed. It would be interesting to be able to interpret this quantity.

The general algorithms proposed for m best arms identification transpose recent improvements, re-
lated to the use of confidence intervals based on the Kullback-Leibler divergence, from regret minimiza-
tion to the pure-exploration framework. As we demonstrated in this thesis the interest of using Bayesian
algorithms for regret minimization, a natural question is: could Bayesian algorithms also be used for best
arm(s) identification? Finding an heuristic like Thompson Sampling adapted for this different objective
is not obvious. But for Bayes-UCB, I suspect that the Racing and LUCB algorithms using Bayesian
confidence regions of the form [la(t), ua(t)] with la(t) = Q( δ

Ct , π
t−1
a ) and ua(t) = Q(1− δ

Ct , π
t−1
a ) can

be shown to be δ-PAC for some constant C. At least, such an algorithm can be easily shown to be δ-PAC
under the Bayesian modeling. However, it is not clear how to give an upper bound on the sample com-
plexity E[τ] in this Bayesian framework (that is, when the expectation includes an average over a prior
distribution). In the same way we considered the Bayesian optimal strategy for the reward maximization
objective, it would also be interesting to describe a Bayesian optimal strategy for best arm(s) identifi-
cation. The papers [Naghshvar and Javidi, 2013, Chandrasekaran and Karp, 2014] consider particular
cases with specific prior distributions.

Bandit models with correlated arms, like linear (contextual) bandit models have also only been stud-
ied in the rewards maximization framework. [Hoffman et al., 2014] are the first to study (single) best arm
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identification in a linear bandit model, and to propose a Bayesian algorithm for this task. More precisely,
each arm a (among K) is normally distributed with mean xTa θ and known variance σ2, where xa ∈ Rd
is some features vector for am a and θ ∈ Rd is an unknown parameter shared by all arms. Assuming a
Gaussian prior distribution N (0, η2Id) on θ, the proposed algorithm uses upper and lower confidence
bounds of the form µa(t)±βσa(t), where µa(t) and σa(t) are respectively the mean and variance of the
posterior distribution on µa ∶= xTa θ at time t. The algorithm is an adaptation of the UGapE algorithm of
[Gabillon et al., 2012] using Bayesian confidence regions, for which the authors provide an upper bound
on the probability of error in the fixed-budget setting. A first possible extension would be to consider the
fixed-confidence setting, an using the LUCB algorithm with the Bayesian confidence regions described
above should work. However, this algorithm would probably share the same shortcoming as the algo-
rithms proposed by [Hoffman et al., 2014] for the fixed-budget setting, whose complexity term features
a sum over all arms of an inverse squared gap (µ∗−µa)2. In other words, the algorithm does not seem to
take advantage of the correlation between arms, as it achieves the same performance as if the arms were
regarded as independent. Thus, the right complexity of best arm identification in a linear bandit model is
still to be investigated.

[Hoffman et al., 2014] also mention that their algorithm can be more generally applied to Gaussian
Process optimization with a discretized space. In Gaussian Process Optimization, we have to find the
maximum of a function f ∶ X → R, where f is assumed to be drawn from a Gaussian process. This
optimization task naturally generalizes best arm identification in a (Bayesian) multi-armed bandit model.
However, despite the optimization objective, the proposed algorithms are often analysed in terms of re-
gret and not optimization error, or simple regret. Besides, in the benchmark of Bayesian optimization,
we find the GP-UCB algorithm of [Srinivas et al., 2010], which is inspired by algorithms minimizing re-
gret in classical bandits (and not algorithms for pure-exploration). It would be interesting to see whether
transposing ideas from the best arm identification literature, like the use of upper and lower confidence
bounds, could yield improved algorithms for Gaussian Process optimization. The algorithm proposed by
[Hoffman et al., 2014] indeed seems to improve over GP-UCB. Other authors, like [Contal et al., 2013]
also start to consider the use of pure-exploration tools for Gaussian Process optimization.

Interesting bandit problems that have not been studied in this thesis, neither from the rewards max-
imization nor from the pure-exploration perspective, are combinatorial bandit problems. Combinatorial
bandit problems have been studied by [Cesa-Bianchi and Lugosi, 2012] in an adversarial setting. In such
problems, arms are edges on a graph and a set of configurationsM in this graph is available (e.g. sub-
graphs with m edges, spanning trees, matchings...). When an agent chooses a configuration, he observes
some function of the rewards of each edge in this configuration (for example the sum of rewards, or the
reward of each edge). Combinatorial bandit problems have seldom been considered in a stochastic set-
ting, in which each arm produces i.i.d. rewards. It has been studied for example by [Lelarge et al., 2013]
with an application to spectrum allocation in a wireless network. Still in a stochastic setting, the identi-
fication of the best configuration (without considering regret) is also a challenging task. For example it
is not obvious how to design an algorithm based on eliminations (that is, a generalization of the Racing
algorithm), as each individual arm belongs to several configurations and eliminating the worst arm in
the best configuration would be problematic. Finally, it could also be investigated whether adopting a
Bayesian approach is possible for these more complex combinatorial bandit problems.



Appendix A

Self normalized deviation inequalities

In several places in this thesis, we needed deviation inequalities for ’self normalized quantities’ of
the form At/Bt, where both At and Bt are random. For example we need to control the empirical mean
of rewards collected from an arm up to a given time t, Sa(t)/Na(t), where both the number of draws
up to time t, Na(t) and the sum of observations , Sa(t), are random. Such deviation inequalities can be
obtained by controlling the quantity the quantity Sa,s/s uniformly for s ∈ {1, . . . , t}, or for s ∈ N∗. We
present deviation inequalities for similar quantities in this section.

A.1 Peeling trick versus mixtures method: the subgaussian case

In Chapter 5, in the proof of Theorem 5.15, a tight deviation inequality, uniform in t, is needed for the
process St/

√
2tσ2, where St is a sum of i.i.d random variables with distributionN (0, σ2). We consider

here the more general framework in which St = X1 + ⋅ ⋅ ⋅ +Xt is a sum of independent increments that
are σ2-subgaussian, i.e. that satisfy, for every λ ∈ R,

φXi(λ) ∶= logE[exp(λXi)] ≤
λ2σ2

2
.

A deviation inequality for St/
√

2tσ2 can either be obtained using a so-called ’peeling-trick’, as shown
in Section A.1.1, or by the ’method of mixtures’ that we present in Section A.1.2. Both methods rely in
this case on the family of super-martingale ((W λ

t )λ∈R), indexed by λ ∈ R, defined by

W λ
t = exp(λSt −

λ2σ2

2
t) . (A.1)

W λ
t is a super-martingale with respect to the filtration Ft = σ(X1, . . . ,Xt).

A.1.1 An ’optimal’ confidence region obtained with the peeling-trick

For each λ ∈ R, for each u > 0, the maximal inequality for super-martingales yields

P(⋃
t≥1

{λSt − t
λ2σ2

2
> u}) ≤ exp(−u). (A.2)

Indeed, introducing the stopping time N = inf{t ∈ N ∶W λ
t > eu}, a maximal inequality yields

P(N ≤ n) = P(∃t ∈ [0, n] ∶W λ
t > eu) ≤ e−uE[W λ

0 ] ≤ e−u.
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It follows that
P(∃t ∈ N ∶W λ

t > eu) = P(N < +∞) = lim
n→∞

P(N ≤ n) ≤ e−u.

The peeling trick consists in partitioning the interval on which we want to control the process
St/

√
2tσ2 into ’slices’ of exponentially growing size, and using inequality (A.2) for a well chosen value

of λ on each slice. This idea is inspired by a proof of the Law of Iterated Logarithm given by [Neveu,
1972] and has been used for example by [Garivier and Moulines, 2011] and [Garivier and Cappé, 2011]
to obtain deviation inequalities. It yields the following result.

Lemma A.1. Let St = X1 + ⋅ ⋅ ⋅ +Xt be a sum of independent, σ2-subgaussian increments. Let ζ(u) =
∑k≥1 k

−u. For all β > 1 and x ≥ 8
(e−1)2 ,

P(∃t ∈ N∗ ∶ St√
2σ2t

>
√
x + β log log(et)) ≤

√
e ζ(β(1 − 1

2x
))(

√
x

2
√

2
+ 1)

β
exp(−x).

Proof of Lemma A.1 We start by stating three technical lemmas, whose proofs are partly omitted.

Lemma A.2. For every η > 0, every positive integer k, and every integer t such that (1 + η)k−1 ≤ t ≤
(1 + η)k, √

(1 + η)k−1/2

t
+
√

t

(1 + η)k−1/2 ≤ (1 + η)1/4 + (1 + η)−1/4 .

Lemma A.3. For every η > 0,

A(η) ∶= 4

((1 + η)1/4 + (1 + η)−1/4)2
≥ 1 − η

2

16
.

Lemma A.4. Let t be such that (1 + η)k−1 ≤ t ≤ (1 + η)k. Then, if λ = σ−1
√

2zA(η)/(1 + η)k−1/2,

σ
√

2z ≥ A(η)z
λ
√
t
+ λσ

2
√
t

2
.

Proof of Lemma A.4:

A(η)z
λ
√
t
+ λσ

2
√
t

2
=
σ
√

2zA(η)
2

⎛
⎝

√
(1 + η)k−1/2

t
+
√

t

(1 + η)k−1/2
⎞
⎠
≤ σ

√
2z

according to Lemma A.2.

◻

Let η ∈]0, e − 1] to be defined later, and let T ηk = N ∩ [(1 + η)k−1, (1 + η)k[.

P(⋃
t≥1

{ St

σ
√

2t
>
√
x + β log log(et)}) ≤

∞
∑
k=1

P
⎛
⎜
⎝
⋃
t∈T η

k

{ St

σ
√

2t
>
√
x + β log log(et)}

⎞
⎟
⎠

≤
∞
∑
k=1

P
⎛
⎜
⎝
⋃
t∈T η

k

{ St

σ
√

2t
>
√
x + β log (k log(1 + η))}

⎞
⎟
⎠
.
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We use that η ≤ e − 1 to obtain the last inequality since this condition implies

log(log(e(1 + η)k−1) ≥ log(k log(1 + η)).

For a positive integer k, let zk = x+β log (k log(1 + η)) and λk = σ−1
√

2zkA(η)/(1 + η)k−1/2. Lemma A.4
shows that for every t ∈ T ηk ,

{ St

σ
√

2t
> √

zk} ⊂ { St√
t
> A(η)zk

λk
√
t
+ σ

2λk
√
t

2
} .

Thus, using inequality (A.2),

P
⎛
⎜
⎝
⋃
t∈T η

k

{ St

σ
√

2t
> √

zk}
⎞
⎟
⎠
≤ P

⎛
⎜
⎝
⋃
t∈T η

k

{ St√
t
> A(η)zk

λk
√
t
+ σ

2λk
√
t

2
}
⎞
⎟
⎠

= P
⎛
⎜
⎝
⋃
t∈T η

k

{λkSt −
σ2λ2

kt

2
> A(η)zk}

⎞
⎟
⎠

≤ exp (−A(η)zk) =
exp(−A(η)x)

(k log(1 + η))βA(η) .

For x such that x ≥ 8
(e−1)2 , one chooses η2 = 8/x (which ensures η ≤ e − 1). Using Lemma A.3, one

obtains that exp(−A(η)x) ≤ √
e exp(−x). Moreover,

1

log(1 + η) ≤ 1 + η
η

=
√
x

2
√

2
+ 1 .

Thus,

P
⎛
⎜
⎝
⋃
t∈T η

k

{ St

σ
√

2t
> √

zk}
⎞
⎟
⎠
≤

√
e

kβA(η) (
√
x

2
√

2
+ 1)

βA(η)
exp(−x) ≤

√
e

kβA(η) (
√
x

2
√

2
+ 1)

β

exp(−x)

and hence,

P(⋃
t≥1

{ St

σ
√

2t
>
√
x + β log log(et)}) ≤

√
eζ (βA(η))(

√
x

2
√

2
+ 1)

βA(η)
exp (−x)

≤
√
eζ (β (1 − 1

2x
))(

√
x

2
√

2
+ 1)

β

exp (−x) ,

using the lower bound on A(η) given in Lemma A.3 and the fact that A(η) is upper bounded by 1.

◻
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A.1.2 The mixtures method for martingales with subgausian increments

The so-called ’method of mixtures’, introduced by [De La Pena et al., 2004], does not originally rely
on the fact that W λ

t defined in (A.1) is a super-martingale, but rather on the fact (which is a consequence
of the super-martingale property in our case) that for all λ ∈ R,

E [exp(λSt −
λ2σ2

2
t)] ≤ 1.

The method then consists in averaging this inequality over a Gaussian prior distribution. More precisely,
assuming that λ ∼ N (0, y−2), one stil has under this new probabilistic model

E [exp(λSt −
λ2σ2

2
t)] = E [E [exp(λSt −

λ2σ2

2
t)∣λ]] ≤ 1.

Besides, a direct integration (over λ) gives a close form for the random variable

E [exp(λSt −
λ2σ2

2
t)∣Ft] ,

whose expectation is then smaller than 1. Finally, the use of Markov inequality yields a deviation in-
equality. Corollary 12.5 of [De La Pena et al., 2009] could be applied directly to obtain a deviation
inequality. However, in order to obtain an inequality that holds for all t ∈ N, we follow [Abbasi-Yadkori
et al., 2011] and consider randomly stopped super-martingales. This leads to the following result.

Lemma A.5. Let St =X1 + ⋅ ⋅ ⋅ +Xt be a sum of independent, σ2-subgaussian increments. For all y > 0,

P(∃t ∈ N∗ ∶ St√
2σ2t

>
√

1 + y
t

√
x + 1

2
log (1 + t

y
)) ≤ e−x

Proof of Lemma A.5 For every λ ∈ R, the super-martingale W λ
t satisfies E[W λ

t ] ≤ 1. Let τ be a
stopping time with respect to Ft. Using the same arguments as in Lemma 8 of [Abbasi-Yadkori et al.,
2011], W λ

τ is well defined and satisfies E[W λ
τ ] ≤ 1.

Let y > 0 and assume that λ ∼ N (0, y−2). One still has E[W λ
τ ] = E[E[W λ

τ ∣λ]] ≤ 1. Besides,

E[W λ
τ ∣Fτ ] = ∫

R
exp(λSτ −

λ2σ2

2
τ) y√

2π
e−

y2

2
λ2

dλ

= y√
2π
∫
R

exp(−y
2 + σ2τ

2
[(λ − Sτ

y2 + σ2τ
)

2

− S2
τ

(y2 + σ2τ)2
])dλ

= y√
y2 + σ2τ

exp( S2
τ

2(y2 + σ2τ)) .

Hence, E [ y√
y2+σ2τ

exp ( S2
τ

2(y2+σ2τ))] ≤ 1 and Markov inequality yields

P
⎛
⎝

y√
y2 + σ2τ

exp( S2
τ

2(y2 + σ2τ)) > ex
⎞
⎠

≤ e−x

P
⎛
⎜
⎝

Sτ√
2σ2τ

>
√

1 + y2

σ2τ

¿
ÁÁÀx + 1

2
log(1 + σ

2τ

y2
)
⎞
⎟
⎠

≤ e−x.
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Now if τ is chosen to be the stopping time

τ = inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t ∈ N ∶ St√

2σ2t
>
√

1 + y2

σ2t

¿
ÁÁÀx + 1

2
log(1 + σ

2t

y2
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

the probability in Lemma A.5 is upper bounded by

P(τ < +∞) ≤ P
⎛
⎜
⎝

Sτ√
2σ2τ

>
√

1 + y2

σ2τ

¿
ÁÁÀx + 1

2
log(1 + σ

2τ

y2
)
⎞
⎟
⎠
≤ e−x,

which concludes the proof.

◻

A.1.3 Comparison and generalization

At first sight, it may be difficult to compare Lemma A.1 and Lemma A.5. Writing Lemma A.1 with
x replaced by x + c log(x) yields

P(∃t ∈ N∗ ∶ St√
2σ2t

>
√
x + c log(x) + β log log(et))

≤
√
e ζ(β(1 − 1

2(x + c logx)
))(

√
x + c logx

2
√

2
+ 1)

β 1

xc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fβ,c(x)

exp(−x).

With a choice c = β/2 + 1 and β > 1, for x large enough, one has Fβ,c(x) ≤ 1. Hence, for every
ε > 0, for large values of x, one can write the following two inequalities, following from Lemma A.1 and
Lemma A.5 respectively:

P(∃t ∈ N∗ ∶ St√
2σ2t

>
√
x + 2 log(x) + (1 + ε) log log(et)) ≤ e−x (A.3)

P
⎛
⎝
∃t ∈ N∗ ∶ St√

2σ2t
>
√

1 + 1

t

√
x + 1

2
log (1 + t)

⎞
⎠

≤ e−x (A.4)

The dependency in x seems a bit worse in inequality (A.3) compared to (A.4). However, when con-
sidering the dependency in t, the deviation inequality (A.3) improves over (A.4) and is in some sense
’optimal’ with respect to the Law of Iterated Logarithm in the Gaussian case, that states that

lim sup
t→∞

St√
2σ2t

√
log log(t)

= 1 a.s.

It would be interesting to be able to compare the deviation inequalities obtained with these two
methods in different settings. However to prove the deviation inequality presented in Section A.3 and
Section A.2 that were useful in this thesis in different contexts, we were not able to use both methods.
Indeed, the method of mixtures can be generalized to deal with vector-valued martingales, as shown
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by [Abbasi-Yadkori et al., 2011] with applications to linear contextual bandits, but the peeling-trick
does not. Conversely, using a peeling trick, [Cappé et al., 2013] give an informational self-normalized
deviation inequality useful in the analysis of KL-UCB, Bayes-UCB and Thompson Sampling, but it is
not known yet how the method of mixtures could be applied in this setting.

Both methods can however be applied in a slightly more general setting to control a self-normalized
process of the form A2

t /2Bt, where At and Bt ≥ 0 are such that, for all λ,

W λ
t = exp(λAt −

λ2

2
Bt) (A.5)

is a super-martingale. A straightforward adaptation of the proof of Lemma A.1 (using the slices T ηk =
{t ∈ N ∶ (1 + η)k−1 ≤ Bt ≤ (1 + η)k}) and Lemma A.5 yields, for x small enough,

P(∃t ∈ N∗ ∶ At√
2Bt

>
√
x + 2 log(x) + (1 + ε) log log(eBt)) ≤ e−x

P
⎛
⎝
∃t ∈ N∗ ∶ At√

2Bt
>
√

1 + 1

Bt

√
x + 1

2
log (1 +Bt)

⎞
⎠

≤ e−x

A.2 An informational deviation inequality

Let (Xi) be an i.i.d. sequence of random variables, whose log-moment generating function satisfy

φXi(λ) ≤ φY (λ),

where the distribution of Y , νθ, belong to an exponential family and has mean µ. Then, if St =X1 + ⋅ ⋅ ⋅ +
Xt, a natural super-martingale is

W λ
t = exp (λSt − tφY (λ))

and the maximal inequality yields, for every λ ∈ R, u ∈ R,

P (∃s ∈ N∗ ∶ λSs − sφY (λ) > u) ≤ e−u. (A.6)

Lemma A.6 below (which corresponds to Lemma 1.9 in Chapter 1) can be obtained with a peeling-
trick using the maximal inequality (A.6). Another key ingredient is the relationship between the log-
moment generating function and the divergence d associated to the exponential family that follow from
Lemma 1.4:

d(x,µ) = sup
λ∈R

(λx − φY (λ)) (A.7)

Lemma A.6. Let (Xi) be a sequence of independent random variable such that φXi(λ) ≤ φY (λ) where
Y ∼ νθ belongs to an exponential family with mean µ and associated divergence d. If St =X1 + ⋅ ⋅ ⋅ +Xt,
one has

P(∃s ∈ {1, . . . , t} ∶ sd+ (Ss
s
, µ) > γ) ≤ e ⌈γ log(t)⌉ exp(−γ),

where d+(x, y) = d(x, y)1(x<y).
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Figure A.1: Illustration of zk in the Bernoulli case

Proof of Lemma A.6. Let η > 0 and for k ≥ 1, let T ηk = {s ∈ N ∶ (1 + η)k−1 ≤ s < (1 + η)k}. One has

P(∃s ∈ {1, . . . , t} ∶ sd+ (Ss
s
, µ) > γ) ≤

⌈ log(t)
log(1+η) ⌉

∑
k=1

P(∃s ∈ T ηk ∶ sd
+ (Ss

s
, µ) > γ)

≤
⌈ log(t)

log(1+η) ⌉

∑
k=1

P
⎛
⎝
∃s ∈ T ηk ∶ d

+ (Ss
s
, µ) > γ

(1 + η)k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ak

⎞
⎠

(A.8)

The mapping x ↦ d+(x,µ) is nonincreasing. For k such that γ/(1 + η)k > d(0, µ), it follows that
P(Ak) = 0.

Now let k be such that γ/(1 + η)k ≤ d(0, µ). There exists a unique zk < µ such that d+(zk, µ) =
γ

(1+η)k . On Ak, for s ∈ T νk , one has Ss/s < zk (see illustration in Figure A.1 in the Bernoulli case). From
equality (A.7) there exists λk ∈ R such that

d+(zk, µ) = λkzk − φY (λk).

Moreover, it can be checked that, as zk < µ, λk < 0. Therefore, on Ak, for all s ∈ T ηk ,

λk
Ss
s
− φY (λk) > λkzk − φY (λk)

λk
Ss
s
− φY (λk) > γ

(1 + η)k

λkSs − φY (λk)s > γs

(1 + η)k

λkSs − φY (λk)s > γ

(1 + η) .

One can now upper bound P(Ak) using (A.6):

P(Ak) ≤ P(∃t ∈ T ηk ∶ λkSs − φY (λk)s >
γ

1 + η) ≤ exp(− γ

1 + η) .
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From (A.8), one gets

P(∃s ∈ {1, . . . , t} ∶ sd+ (Ss
s
, µ) > γ) ≤ ⌈ log(t)

log(1 + η)⌉ exp(− γ

1 + η)

Choosing η such that 1 + η = γ
γ−1 and using that log(γ/(1 − γ)) ≥ 1/γ yields the result.

◻

Remark A.7. It is not known whether the method of mixtures could be applied were, using the super-
martingale W λ

t . Indeed, assuming that λ ∼ N (0, y−1), there is no close form for

E[exp (λSt − tφY (λ)) ∣Ft].

Maybe a different ’prior distribution’ for λ should be considered.

A.3 Deviation inequalities for vector-valued martingales

In Chapter 4, we present in Lemma 4.1 a confidence region for the parameter θ of a linear contextual
bandit model. This confidence region follows from a deviation inequality for vector-valued martingales
proposed by [Abbasi-Yadkori et al., 2011], that applies in the following more general framework.

For (Ft) a filtration, let (Xt), (ηt) be two sequences of random variables such that Xt ∈ Rd is
Ft−1-measurable and ηt ∈ R is Ft mesurable and satisfies

E[ηt∣Ft−1] = 0 and ∀α ∈ R, E[eαηt ∣Ft−1] ≤ e
α2σ2

2 .

Let

St =
t

∑
s=1

ηsXs and Vt =
t

∑
s=1

XsX
T
s .

Then St is a martingale in Rd and for every λ ∈ Rd, the sequence (W λ
t )t∈N∗ , with

W λ
t = exp(λTSt −

σ2

2
∣∣λ∣∣2Vt)

is a super-martingale, since

E [ W λ
t

W λ
t−1

∣Ft−1] = E [exp(λT (ηtXt) −
σ2

2
(∣∣λ∣∣2Vt − ∣∣λ∣∣2Vt−1

))∣Ft−1]

= E [exp(λT (ηtXt) −
σ2

2
λTXtX

T
t λ)∣Ft−1]

= E [exp((λTXt)ηt)∣Ft−1] exp(−σ
2

2
(λTXt)2) ≤ 1.

Applying the method of mixtures to this super-martingale, with a (vector-valued) Gaussian prior
distribution for λ yields the following result.
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Lemma A.8. Under the above assumptions, for any matrix V ∈ S++n (R),

P
⎛
⎜
⎝
∃t ∈ N ∶ ∣∣St∣∣(V +Vt)−1 >

¿
ÁÁÀ2σ2 (x + 1

2
log(det(V + Vt)

det(V ) ))
⎞
⎟
⎠
≤ e−x

Proof of Lemma A.8 Let τ be a stopping time. For all λ ∈ Rd, E[W λ
τ ] ≤ 1. Assuming that

λ ∼ N (0, σ2V ), one still has E[W λ
τ ] ≤ 1. Moreover, a direct integration and a bit of linear algebra (see

[Abbasi-Yadkori et al., 2011]) yields

E [W λ
τ ∣Fτ ] =

¿
ÁÁÀ det(V )

det(V + Vt)
exp( 1

2σ2
∣∣St∣∣(V +Vt)−1) .

Thus

E
⎡⎢⎢⎢⎢⎣

¿
ÁÁÀ det(V )

det(V + Vt)
exp( 1

2σ2
∣∣St∣∣(V +Vt)−1)

⎤⎥⎥⎥⎥⎦
≤ 1.

We conclude by using Markov inequality and choosing the stopping time τ as in the proof of Lemma A.5.

◻

Remark A.9. It is no known yet how to use a peeling-trick to obtain a result analogous to Lemma A.8.
As W λ

t is a super-martingale, for all λ ∈ Rd

P(∀t ∈ N∗, λTSt −
σ2

2
∣∣λ∣∣2Vt > u) ≤ e−u,

but it is not clear how this inequality could be used (which ’slices’ should be considered in the peeling,
and how to choose interesting values of λ ∈ Rd).

With the notation of this section, one could also use that, for any x ∈ Rd, for any λ ∈ R,

W̃ λ
t = exp(λxTSt −

σ2λ2

2
∣∣x∣∣2Vt)

is a super martingale. As explained in Section A.1.3, both the peeling-trick and mixtures method can be
applied with At = xTSt and Bt = σ2∣∣x∣∣2Vt in (A.5), leading to a deviation inequality of the form

P (∃t ∈ N ∶ xTSt > ∣∣x∣∣Vtβ(t, δ)) ≤ δ. (A.9)

One can note that this inequality does not yield a deviation inequality of the form (4.9) for linear con-
textual bandits (see Section 4.3.3 in Chapter 4). Indeed, an inequality of the form (4.9) would follow
from

P (∃t ∈ N ∶ xTV −1
t St > ∣∣x∣∣V −1

t
β(t, δ)) ≤ δ,

which cannot be obtained using inequality (A.9).
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Appendix B

Thompson Sampling for One-Dimensional
Exponential Family Bandits

Abstract. Thompson Sampling has been demonstrated in many complex bandit models, however the
theoretical guarantees available for the parametric multi-armed bandit are still limited to the Bernoulli
case. Here we extend them by proving asymptotic optimality of the algorithm using the Jeffreys prior for
1-dimensional exponential family bandits. Our proof builds on previous work, but also makes extensive
use of closed forms for Kullback-Leibler divergence and Fisher information (through the Jeffreys prior)
available in an exponential family. This allow us to give a finite time exponential concentration inequality
for posterior distributions on exponential families that may be of interest in its own right. Moreover our
analysis covers some distributions for which no optimistic algorithm has yet been proposed, including
heavy-tailed exponential families.

B.1 Introduction

K-armed bandit problems provide an elementary model for exploration-exploitation tradeoffs found
at the heart of many online learning problems. In such problems, an agent is presented with K distri-
butions (also called arms, or actions) {pa}Ka=1, from which she draws samples interpreted as rewards
she wants to maximize. This objective induces a trade-off between choosing to sample a distribution
that has already yielded high rewards, and choosing to sample a relatively unexplored distribution at
the risk of loosing rewards in the short term. Here we make the assumption that the distributions, pa,
belong to a parametric family of distributions P = {p(⋅ ∣ θ), θ ∈ Θ} where Θ ⊂ R. The bandit model is
described by a parameter θ0 = (θ1, . . . , θK) such that pa = p(⋅ ∣ θa). We introduce the mean function
µ(θ) = EX∼p(⋅∣θ)[X], and the optimal arm θ∗ = θa∗ where a∗ = argmaxa µ(θa).

An algorithm, A, for a K-armed bandit problem is a (possibly randomised) method for choosing
which arm at to sample from at time t, given a history of previous arm choices and obtained rewards,
Ht−1 ∶= ((as, xs))t−1

s=1: each reward xs is drawn from the distribution pas . The agent’s goal is to design
an algorithm with low regret:

R(A, t) = R(A, t)(θ) ∶= tµ(θ∗) −EA [
t

∑
s=1

xs] .

This quantity measures the expected performance of algorithmA compared to the expected performance
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of an optimal algorithm given knowledge of the reward distributions, i.e. sampling always from the
distribution with the highest expectation.

Since the early 2000s the “optimisim in the face of uncertainty” heuristic has been a popular approach
to this problem, providing both simplicity of implementation and finite-time upper bounds on the regret
(e.g. [Auer et al., 2002a, Cappé et al., 2013]). However in the last two years there has been renewed
interest in the Thompson Sampling heuristic (TS). While this heuristic was first put forward to solve
bandit problems eighty years ago in [Thompson, 1933], it was not until recently that theoretical analyses
of its performance were achieved [Agrawal and Goyal, 2012, Agrawal and Goyal, 2013b, Kaufmann
et al., 2012b, May et al., 2012]. In this paper we take a major step towards generalising these analyses to
the same level of generality already achieved for “optimistic” algorithms.

Thompson Sampling Unlike optimistic algorithms which are often based on confidence intervals,
the Thompson Sampling algorithm, denoted by Aπ0 uses Bayesian tools and puts a prior distribution
πa,0 = π0 on each parameter θa. A posterior distribution, πa,t, is then maintained according to the
rewards observed in Ht−1. At each time a sample θa,t is drawn from each posterior πa,t and then the
algorithm chooses to sample at = arg maxa∈{1,...,K}{µ(θa,t)}. Note that actions are sampled according
to their posterior probabilities of being optimal.

Our contributions TS has proved to have impressive empirical performances, very close to those of
state of the art algorithms such as DMED and KL-UCB [Kaufmann et al., 2012b, Honda and Takemura,
2010, Cappé et al., 2013]. Furthermore recent works [Kaufmann et al., 2012b, Agrawal and Goyal,
2013b] have shown that in the special case where each pa is a Bernoulli distribution B(θa), TS using a
uniform prior over the arms is asymptotically optimal in the sense that it achieves the asymptotic lower
bound on the regret provided by Lai and Robbins in [Lai and Robbins, 1985] (that holds for univariate
parametric bandits). As explained in [Agrawal and Goyal, 2012, Agrawal and Goyal, 2013b], Thompson
Sampling with uniform prior for Bernoulli rewards can be slightly adapted to deal with bounded rewards.
However, there is no notion of asymptotic optimality for this non-parametric family of rewards. In this
paper, we extend the optimality property that holds for Bernoulli distributions to more general families of
parametric rewards, namely 1-dimensional exponential families if the algorithm uses the Jeffreys prior:

Theorem B.1. Suppose that the reward distributions belong to a 1-dimensional canonical exponential
family and let πJ denote the associated Jeffreys prior. Then,

lim
T→∞

R(AπJ , T )
lnT

=
K

∑
a=1

µ(θa∗) − µ(θa)
KL(θa, θa∗)

, (B.1)

where KL(θ, θ′) ∶= KL(pθ, p′θ) is the Kullback-Leibler divergence between pθ and p′θ.

This theorem follows directly from Theorem B.2. In the proof of this result we provide in Theorem
B.4 a finite-time, exponential concentration bound for posterior distributions of exponential family ran-
dom variables, something that to the best of our knowledge is new to the literature and of interest in its
own right. Our proof also exploits the connection between the Jeffreys prior, Fisher information and the
Kullback-Leibler divergence in exponential families.
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Related Work Another line of recent work has focused on distribution-independent bounds for Thomp-
son Sampling. [Agrawal and Goyal, 2013b] establishes thatR(AπU , T ) = O(

√
KT ln(T )) for Thomp-

son Sampling for bounded rewards (with the classic uniform prior πU on the underlying Bernoulli pa-
rameter). [Russo and Van Roy, 2014] go beyond the Bernoulli model, and give an upper bound on the
Bayes risk (i.e. the regret averaged over the prior) independent of the prior distribution. For the para-
metric multi-armed bandit with K arms described above, their result states that the regret of Thompson
Sampling using a prior π0 is not too big when averaged over this same prior:

Eθ∼π⊗K0
[R(Aπ0 , T )(θ)] ≤ 4 +K + 4

√
KT log(T ).

Building on the same ideas, [Bubeck and Liu, 2013] have improved this upper bound to 14
√
KT . In our

paper, we rather see the prior used by Thompson Sampling as a tool, and we want therefore to derive
regret bounds for any given problem parametrized by θ that depend on this parameter.

[Russo and Van Roy, 2014] also use Thompson Sampling in more general models, like the linear ban-
dit model. Their result is a bound on the Bayes risk that does not depend on the prior, whereas [Agrawal
and Goyal, 2013b] gives a first bound on the regret in this model. Linear bandits consider a possibly
infinite number of arms whose mean rewards are linearly related by a single, unknown coefficient vec-
tor. Once again, the analysis in [Agrawal and Goyal, 2013b] encounters the problem of describing the
concentration of posterior distributions. However by using a conjugate normal prior, they can employ
explicit concentration bounds available for Normal distributions to complete their argument.

Paper Structure In Section B.2 we describe important features of the one-dimensional canonical ex-
ponential families we consider, including closed-form expression for KL-divergences and the Jeffreys’
prior. Section B.3 gives statements of the main results, and provides the proof of the regret bound.
Section B.4 proves the posterior concentration result used in the proof of the regret bound.

B.2 Exponential Families and the Jeffreys Prior

A distribution is said to belong to a one-dimensional canonical exponential family if it has a density
with respect to some reference measure ν of the form:

p(x ∣ θ) = A(x) exp(T (x)θ − F (θ)), (B.2)

where θ ∈ Θ ⊂ R. T and A are some fixed functions that characterize the exponential family and
F (θ) = log (∫ A(x) exp [T (x)θ]dν(x)). Θ is called the parameter space, T (x) the sufficient statistic,
and F (θ) the normalisation function. We make the classic assumption that F is twice differentiable with
a continuous second derivative. It is well known [Wasserman, 2010] that:

EX ∣θ(T (X)) = F ′(θ) and VarX ∣θ[T (X)] = F ′′(θ)

showing in particular that F is strictly convex. The mean function µ is differentiable and stricly
increasing, since we can show that

µ′(θ) = CovX ∣θ(X,T (X)) > 0.

In particular, this shows that µ is one-to-one in θ.
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KL-divergence in Exponential Families In an exponential family, a direct computation shows that the
Kullback-Leibler divergence can be expressed as a Bregman divergence of the normalisation function,
F:

KL(θ, θ′) =DB
F (θ′, θ) ∶= F (θ′) − [F (θ) + F ′(θ)(θ′ − θ)] . (B.3)

Jeffreys prior in Exponential Families In the Bayesian literature, a special “non-informative” prior,
introduced by Jeffreys in [Jeffreys, 1946], is sometimes considered. This prior, called the Jeffreys prior,
is invariant under re-parametrisation of the parameter space, and it can be shown to be proportional to
the square-root of the Fisher information I(θ). In the special case of the canonical exponential family,
the Fisher information takes the form I(θ) = F ′′(θ), hence the Jeffreys prior for the model (B.2) is

πJ(θ) ∝
√

∣F ′′(θ)∣.

Under the Jeffreys prior, the posterior on θ after n observations is given by

p(θ∣y1, . . . yn) ∝
√
F ′′(θ) exp(θ

n

∑
i=1

T (yi) − nF (θ)) (B.4)

When ∫Θ

√
F ′′(θ)dθ < +∞, the prior is called proper. However, stasticians often use priors which

are not proper: the prior is called improper if ∫Θ

√
F ′′(θ)dθ = +∞ and any observation makes the

corresponding posterior (B.4) integrable.

Some Intuition for choosing the Jeffreys Prior In the proof of our concentration result for posterior
distributions (Theorem B.4) it will be crucial to lower bound the prior probability of an ε-sized KL-
divergence ball around each of the parameters θa. Since the Fisher informationF ′′(θ) = limθ′→θK(θ, θ′)/∣θ−
θ′∣2, choosing a prior proportional to F ′′(θ) ensures that the prior measure of such balls are Ω(√ε).

Examples and Pseudocode Algorithm 7 presents pseudocode for Thompson Sampling with the Jef-
freys prior for distributions parametrized by their natural parameter θ. But as the Jeffreys prior is invariant
under reparametrization, if a distribution is parametrised by some parameter λ /≡ θ, the algorithm can use
the Jeffreys prior ∝

√
I(λ) on λ, drawing samples from the posterior on λ. Note that the posterior

sampling step (in bold) is always tractable using, for example, a Hastings-Metropolis algorithm.
Some examples of common exponential family models are given in Figure B.1, together with the

posterior distributions on the parameter λ that is used by TS with the Jeffreys prior. In addition to
examples already studied in [Cappé et al., 2013] for which T (x) = x, we also give two examples of
more general canonical exponential families, namely the Pareto distribution with known min value and
unknown tail index λ, Pareto(xm, λ), for which T (x) = log(x), and the Weibul distribution with known
shape and unknown rate parameter, Weibull(k, λ), for which T (x) = xk. These last two distributions are
not covered even by the work in [Garivier and Cappé, 2011], and belong to the family of heavy-tailed
distributions.

For the Bernoulli model, we note futher that the use of the Jeffreys prior is not covered by the previous
analyses. These analyses make an extensive use of the uniform prior, through the fact that the coefficient
of the Beta posteriors they consider have to be integers.
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Algorithm 7 Thompson Sampling for Exponential Families with the Jeffreys prior
Require: F normalization function, T sufficient statistic, µ mean function

for t = 1 . . .K do
Sample arm t and get rewards xt
Nt = 1, St = T (xt).

end for
for t =K + 1 . . . n do

for a = 1 . . .K do
Sample θa,t from πa,t ∝

√
F ′′(θ) exp (θSa −NaF (θ))

end for
Sample arm At = argmaxaµ(θa,t) and get reward xt
SAt = SAt + T (xt) NAt = NAt + 1

end for

Name Distribution θ Prior on λ Posterior on λ
B(λ) λx(1 − λ)1−xδ0,1 log ( λ

1−λ) Beta (1
2 ,

1
2
) Beta (1

2 + s,
1
2 + n − s)

N(λ,σ2) 1√
2πσ2

e−
(x−λ)2

2σ2 λ
σ2 ∝ 1 N ( sn ,

σ2

n )
Γ(k, λ) λk

Γ(k)x
k−1e−λx1[0,+∞[(x) −λ ∝ 1

λ Γ(kn, s)
P(λ) λxe−λ

x! δN(x) log(λ) ∝ 1√
λ

Γ (1
2 + s, n)

Pareto(xm, λ) λxλm
xλ+1 1[xm,+∞[(x) −λ − 1 ∝ 1

λ Γ (n + 1, s − n logxm)
Weibull(k, λ) kλ(xλ)k−1e−(λx)

k
1[0,+∞[ −λk ∝ 1

λk
αλ(n−1)k exp(−λks)

Figure B.1: The posterior distribution after observations y1, . . . , yn depends on n and s = ∑ni=1 T (yi)

B.3 Results and Proof of Regret Bound

An exponential familyK-armed bandit is aK-armed bandit for which the reward distributions pa are
known to be elements of an exponential family of distributions P(Θ). We denote by pθa the distribution
of arm a and its mean by µa = µ(θa).

Theorem B.2 (Regret Bound). Assume that µ1 > µa for all a ≠ 1, and that πa,0 is taken to be the
Jeffreys prior over Θ. Then for every ε > 0 there exists a constant C(ε,P) depending on ε and on the
problem P such that the regret of Thompson Sampling using the Jeffreys prior satisfies

R(AπJ , T ) ≤ 1 + ε
1 − ε (

K

∑
a=2

(µ1 − µa)
KL(θa, θ1)

) ln(T ) + C(ε,P).

Proof: We give here the main argument of the proof of the regret bound, which proceed by bounding
the expected number of draws of any suboptimal arm. Along the way we shall state concentration results
whose proofs are postponed to later sections.

Step 0: Notation We denote by ya,s the s-th observation of arm a and byNa,t the number of times arm
a is chosen up to time t. (ya,s)s≥1 is i.i.d. with distribution pθa . Let Y u

a ∶= (ya,s)1≤s≤u be the vector of
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first u observations from arm a. Ya,t ∶= Y Na,t
a is therefore the vector of observations from arm a available

at the beginning of round t. Recall that πa,t, respectively πa,0, is the posterior, respectively the prior, on
θa at round t of the algorithm.

We define L(θ) to be such that PY ∼p(∣θ)(p(Y ∣θ) ≥ L(θ)) ≥ 1
2 . Observations from arm a such that

p(ya,s∣θ) ≥ L(θa) can therefore be seen as likely observations. For any δa > 0, we introduce the event
Ẽa,t = Ẽa,t(δa):

Ẽa,t =
⎛
⎜
⎝
∃1 ≤ s′ ≤ Na,t ∶ p(ya,s′ ∣θa) ≥ L(θa),

RRRRRRRRRRRRR

∑Na,ts=1,s≠s′ T (ya,s)
Na,t − 1

− F ′(θa)
RRRRRRRRRRRRR
≤ δa

⎞
⎟
⎠
. (B.5)

For all a ≠ 1 and ∆a such that µa < µa +∆a < µ1, we introduce

Eθa,t = Eθa,t(∆a) ∶= (µ (θa,t) ≤ µa +∆a).

On Ẽa,t, the empirical sufficient statistic of arm a at round t is well concentrated around its mean and a
’likely’ realization of arm a has been observed. On Eθa,t, the mean of the distribution with parameter θa,t
does not exceed by much the true mean, µa. δa and ∆a will be carefully chosen at the end of the proof.

Step 1: Decomposition The idea of the proof is to decompose the probability of playing a suboptimal
arm using the events given in Step 0, and that E[Na,T ] = ∑Tt=1 P (at = a):

E [Na,T ] =
T

∑
t=1

P (at = a, Ẽa,t,Eθa,t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

+
T

∑
t=1

P (at = a, Ẽa,t, (Eθa,t)c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

+
T

∑
t=1

P (at = a, Ẽca,t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(C)

.

where Ec denotes the complement of event E. Term (C) is controlled by the concentration of the empiri-
cal sufficient statistic, and (B) is controlled by the tail probabilities of the posterior distribution. We give
the needed concentration results in Step 2. When conditioned on the event that the optimal arm is played
at least polynomially often, term (A) can be decomposed further, and then controled by the results from
Step 2. Step 3 proves that the optimal arm is played this many times.

Step 2: Concentration Results We state here the two concentration results that are necessary to eval-
uate the probability of the above events.

Lemma B.3. Let (ys) be an i.i.d sequence of distribution p(⋅ ∣ θ) and δ > 0. Then

P(∣1

u

u

∑
s=1

[T (ys) − F ′(θ)]∣ ≥ δ) ≤ 2e−uK̃(θ,δ),

where K̃(θ, δ) = min(K(θ+g(δ), θ),K(θ−h(δ), θ)), with g(δ) > 0 defined by F ′(θ+g(δ)) = F ′(θ)+δ
and h(δ) > 0 defined by F ′(θ − h(δ)) = F ′(θ) − δ.

The two following inequalities that will be useful in the sequel can easily be deduced from Lemma
B.3. Their proof is gathered in Appendix B.6 with that of Lemma B.3. For any arm a, for any b ∈]0,1[,

T

∑
t=1

P(at = a, (Ẽa,t(δa))c) ≤
∞
∑
t=1

(1

2
)
t

+
∞
∑
t=1

2te−(t−1)K̃(θa,δa) (B.6)

T

∑
t=1

P((Ẽa,t(δa))c ∩Na,t > tb) ≤
∞
∑
t=1

t(1

2
)
tb

+
∞
∑
t=1

2t2e−(t
b−1)K̃(θa,δa), (B.7)
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The second result tells us that concentration of the empirical sufficient statistic around its mean implies
concentration of the posterior distribution around the true parameter:

Theorem B.4 (Posterior Concentration). Let πa,0 be the Jeffreys prior. There exists constants C1,a =
C1(F, θa) > 0, C2,a = C2(F, θa,∆a) > 0, and N(θa, F ) s.t., ∀Na,t ≥ N(θa, F ),

1Ẽa,tP(µ(θa,t) > µ(θa) +∆a∣Ya,t) ≤ C1,ae
−(Na,t−1)(1−δaC2,a)KL(θa,µ−1(µa+∆a))+ln(Na,t)

whenever δa < 1 and ∆a are such that 1 − δaC2,a(∆a) > 0.

Step 3: Lower Bound the Number of Optimal Arm Plays with High Probability The main diffi-
culty adressed in previous regret analyses for Thompson Sampling is the control of the number of draws
of the optimal arm. We provide this control in the form of Proposition B.5 which is adapted from Propo-
sition 1 in [Kaufmann et al., 2012b]. The proof of this result, an outline of which is given in Appendix
B.9, explores in depth the randomised nature of Thompson Sampling. In particular, we show that the
proof in [Kaufmann et al., 2012b] can be significantly simplified, but at the expense of no longer being
able to describe the constant Cb explicitly:

Proposition B.5. ∀b ∈ (0,1), ∃Cb(π,µ1, µ2,K) < ∞ such that ∑∞
t=1 P (N1,t ≤ tb) ≤ Cb.

Step 4: Bounding the Terms of the Decomposition Now we bound the terms of the decomposition as
discussed in Step 1: An upper bound on term (C) is given in (B.6), whereas a bound on term (B) follows
from Lemma B.6 below. Although the proof of this lemma is standard, and bears a strong similarity to
Lemma 3 of [Agrawal and Goyal, 2013b], we provide it in Appendix B.8 for the sake of completeness.

Lemma B.6. For all actions a and for all ε > 0, ∃ Nε = Nε(δa,∆a, θa) > 0 such that

(B) ≤ [(1 − ε)(1 − δaC2,a)KL(θa, µ−1(µa +∆a))]−1 ln(T ) +max{Nε,N(θa, F )} + 1.

where Nε = Nε(δa,∆a, θa) is the smallest integer such that for all n ≥ Nε

(n − 1)−1 ln(C1,an) < ε(1 − δaC2,a)KL(θa, µ−1(µa +∆a)),

and N(θa, F ) is the constant from Theorem B.4.

When we have seen enough observations on the optimal arm, term (A) also becomes a result about
the concentration of the posterior and the empirical sufficient statistic, but this time for the optimal arm:

(A) ≤
T

∑
t=1

P (at = a, Ẽa,t,Eθa,t,N1,t > tb) +Cb ≤
T

∑
t=1

P (µ(θ1,t) ≤ µ1 −∆′
a,N1,t > tb) +Cb

≤
T

∑
t=1

P (µ(θ1,t) ≤ µ1 −∆′
a, Ẽ1,t(δ1),N1,t > tb)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B′

+
T

∑
t=1

P (Ẽc1,t(δ1) ∩N1,t > tb)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C′

+Cb (B.8)

where ∆′
a = µ1 − µa −∆a and δ1 > 0 remains to be chosen. The first inequality comes from Proposition

B.5, and the second inequality comes from the following fact: if arm 1 is not chosen and arm a is such
that µ(θa,t) ≤ µa +∆a, then µ(θ1,t) ≤ µa +∆a. A bound on term (C’) is given in (B.7) for a = 1 and δ1.



196 APPENDIX B. THOMPSON SAMPLING FOR EXPONENTIAL FAMILIES

In Theorem B.4, we bound the conditional probability that µ(θa,t) exceed the true mean. Following the
same lines, we can also show that

P (µ(θ1,t) ≤ µ1 −∆′
a∣Y1,t)1Ẽ1,t(δ1) ≤ C1,1e

−(N1,t−1)(1−δ1C2,1)KL(θ1,µ−1(µ1−∆′
a))+ln(N1,t).

For any ∆′
a > 0, one can choose δ1 such that 1−δ1C1,1 > 0. Then, withN = N(P) such that the function

u↦ e−(u−1)(1−δ1C2,1)KL(θ1,µ−1(µ1−∆′
a))+lnu is decreasing for u ≥ N , (B′) is bounded by

N1/b +
∞
∑

t=N1/b+1

C1,1e
−(tb−1)(1−δ1C2,1)KL(θ1,µ−1(µ1−∆′

a))+ln(tb) < ∞.

Step 4: Choosing the Values δa and εa So far, we have shown that for any ε > 0 and for any choice of
δa > 0 and 0 < ∆a < µ1 − µa such that 1 − δaC2,a > 0, there exists a constant C(δa,∆a, ε,P) such that

E[Na,T ] ≤
ln(T )

(1 − δaC2,a)K(θa, µ−1(µa +∆a))(1 − ε)
+ C(δa,∆a, ε,P)

The constant is of course increasing (dramatically) when δa goes to zero, ∆a to µ1−µa, or ε to zero. But
one can choose ∆a close enough to µ1 − µa and δa small enough, such that

(1 −C2,a(∆a)δa)KL(θa, µ−1(µa +∆a)) ≥
KL(θa, θ1)

(1 + ε) ,

and this choice leads to

E[Na,T ] ≤
1 + ε
1 − ε

ln(T )
KL(θa, θ1)

+ C(δa,∆a, ε,P).

Using thatR(A, T ) = ∑Ka=2(µ1 − µa)EA[Na,T ] for any algorithm A concludes the proof.

◻

B.4 Posterior Concentration: Proof of Theorem B.4

For ease of notation, we drop the subscript a and let (ys) be an i.i.d. sequence of distribution
pθ, with mean µ = µ(θ). Furthermore, by conditioning on the value of Ns, it is enough to bound
1ẼuP (µ(θu) ≥ µ +∆∣Y u) where Y u = (ys)1≤s≤u and

Ẽu = (∃1 ≤ s′ ≤ u ∶ p(ys′ ∣θ) ≥ L(θ), ∣
∑us=1,s≠s′ T (ys)

u − 1
− F ′(θ)∣ ≤ δ) .

Step 1: Extracting a Kullback-Leibler Rate The argument rests on the following Lemma, whose
proof can be found in Appendix B.7

Lemma B.7. Let Ẽu be the event defined by (B.5), and introduce Θθ,∆ ∶= {θ′ ∈ Θ ∶ µ(θ′) ≥ µ(θ) +∆}.
The following inequality holds:

1ẼuP (µ(θu) ≥ µ +∆∣Y u) ≤
∫θ′∈Θθ,∆ e

−(u−1)(K[θ,θ′]−δ∣θ−θ′∣)π(θ′∣ys′)dθ′

∫θ′∈Θ e−(u−1)(K[θ,θ′]+δ∣θ−θ′∣)π(θ′∣ys′)dθ′
, (B.9)

with s′ = inf{s ∈ N ∶ p(ys∣θ) ≥ L(θ)}.
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Step 2: Upper bounding the numerator of (B.9) We first note that on Θθ,∆ the leading term in the
exponential is K(θ, θ′). Indeed, from (B.3) we know that

K(θ, θ′)/∣θ − θ′∣ = ∣F ′(θ) − (F (θ) − F (θ′))/(θ − θ′)∣

which, by strict convexity of F , is strictly increasing in ∣θ−θ′∣ for any fixed θ. Now since µ is one-to-one
and continuous, Θc

θ,∆ is an interval whose interior contains θ, and hence, on Θθ,∆,

K(θ, θ′)
∣θ − θ′∣ ≥ F (µ−1(µ +∆)) − F (θ)

µ−1(µ +∆) − θ − F ′(θ) ∶= (C2(F, θ,∆))−1 > 0.

So for δ such that 1 − δC2 > 0 we can bound the numerator of (B.9) by:

∫
θ′∈Θθ,∆

e−(u−1)(K(θ,θ′)−δ∣θ−θ′∣)π(θ′∣ys′)dθ′ ≤ ∫
θ′∈Θθ,∆

e−(u−1)K(θ,θ′)(1−δC2)π(θ′∣ys′)dθ′

≤ e−(u−1)(1−δC2)KL(θ,µ−1(µ+∆))∫
Θθ,∆

π(θ′∣ys′)dθ′ ≤ e−(u−1)(1−δC2)KL(θ,µ−1(µ+∆)) (B.10)

where we have used that π(⋅∣ys′) is a probability distribution, and that, since µ is increasing, KL(θ, µ−1(µ+
∆)) = infθ′∈Θθ,∆ K(θ, θ′).

Step 3: Lower bounding the denominator of (B.9) To lower bound the denominator, we reduce the
integral on the whole space Θ to a KL-ball, and use the structure of the prior to lower bound the measure
of that KL-ball under the posterior obtained with the well-chosen observation ys′ . We introduce the
following notation for KL balls: for any x ∈ Θ, ε > 0, we define

Bε(x) ∶= {θ′ ∈ Θ ∶K(x, θ′) ≤ ε} .

We have K(θ,θ′)
(θ−θ′)2 → F ′′(θ) ≠ 0 (since F is strictly convex). Therefore, there exists N1(θ,F ) such that

for u ≥ N1(θ,F ), on B 1
u2

(θ),

∣θ − θ′∣ ≤
√

2K(θ, θ′)/F ′′(θ).
Using this inequality we can then bound the denominator of (B.9) whenever u ≥ N1(θ,F ) and δ < 1:

∫
θ′∈Θ

e−(u−1)(K(θ,θ′)+δ∣θ−θ′∣)π(θ′∣ys′)dθ′ ≥ ∫
θ′∈B1/u2(θ)

e−(u−1)(K(θ,θ′)+δ∣θ−θ′∣)π(θ′∣ys′)dθ′

≥ ∫
θ′∈B1/u2(θ)

e
−(u−1)(K(θ,θ′)+δ

√
2K(θ,θ′)
F ′′(θ) )

π(θ′∣ys′)dθ′ ≥ π (B1/u2(θ)∣ys′) e−(1+
√

2
F ′′(θ)). (B.11)

Finally we turn our attention to the quantity

π (B1/u2(θ)∣ys′) =
∫B1/u2(θ) p(y

′
s∣θ′)π0(θ′)dθ′

∫Θ p(y′s∣θ′)π0(θ′)dθ′
=
∫B1/u2(θ) p(y

′
s∣θ′)

√
F ′′(θ′)dθ′

∫Θ p(y′s∣θ′)
√
F ′′(θ′)dθ′

. (B.12)

Now since the KL divergence is convex in the second argument, we can write B1/u2(θ) = (a, b). So,
from the convexity of F we deduce that

1

u2
=K(θ, b) = F (b) − [F (θ) + (b − θ)F ′(θ)] = (b − θ) [F (b) − F (θ)

(b − θ) − F ′(θ)]

≤ (b − θ) [F ′(b) − F ′(θ)] ≤ (b − a) [F ′(b) − F ′(θ)] ≤ (b − a) [F ′(b) − F ′(a)] .
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As p(y ∣ θ) → 0 as y → ±∞, the set C(θ) = {y ∶ p(y ∣ θ) ≥ L(θ)} is compact. The map y ↦
∫Θ p(y∣θ′)

√
F ′′(θ′)dθ′ < ∞ is continuous on the compact C(θ). Thus, it follows that

L′(θ) = L′(θ,F ) ∶= sup
y∶p(y∣θ)>L(θ)

{∫
Θ
p(y∣θ′)

√
F ′′(θ′)dθ′} < ∞

is an upper bound on the denominator of (B.12).
Now by the continuity of F ′′, and the continuity of (y, θ) ↦ p(y∣θ) in both coordinates, there exists

an N2(θ,F ) such that for all u ≥ N2(θ,F )

F ′′(θ) ≥ 1

2

F ′(b) − F ′(a)
b − a and (p(y∣θ′)

√
F ′′(θ′) ≥ L(θ)

2

√
F ′′(θ), ∀θ′ ∈ B1/u2(θ), y ∈ C(θ)) .

Finally, for u ≥ N2(θ,F ), we have a lower bound on the numerator of (B.12):

∫
B1/u2(θ)

p(y′s∣θ′)
√
F ′′(θ′)dθ′ ≥ L(θ)

2

√
F ′′(θ)∫

b

a
dθ′ = L(θ)

2

√
(F ′(b) − F ′(a)) (b − a) ≥ L(θ)

2u

Puting everything together, we get that there exist constants C2 = C2(F, θ,∆) and N(θ,F ) =
max{N1,N2} such that for every δ < 1 satisfying 1 − δC2 > 0, and for every u ≥ N , one has

1ẼuP(µ(θu) ≥ µ(θ) +∆∣Yu) ≤
2e

1+
√

2
F ′′(θ)L′(θ)u
L(θ) e−(u−1)(1−δC2)KL(θ,µ−1(µ+∆)).

Remark B.8. Note that when the prior is proper we do not need to introduce the observation ys′ ,
which significantly simplifies the argument. Indeed in this case, in (B.10) we can use π0 in place of
π(⋅∣ys′) which is already a probability distribution. In particular, the quantity (B.12) is replaced by
π0 (B1/u2(θ)), and so the constants L and L′ are not needed.

B.5 Conclusion

We have shown that choosing to use the Jeffreys prior in Thompson Sampling leads to an asymptoti-
cally optimal algorithm for bandit models whose rewards belong to a 1-dimensional canonical exponen-
tial family. The cornerstone of our proof is a finite time concentration bound for posterior distributions
in exponential families, which, to the best of our knowledge, is new to the literature. With this result we
built on previous analyses and avoided Bernoulli-specific arguments. Thompson Sampling with Jeffreys
prior is now a provably competitive alternative to KL-UCB for exponential family bandits. Moreover
our proof holds for slightly more general problems than those for which KL-UCB is provably optimal,
including some heavy-tailed exponential family bandits.

Our arguments are potentially generalisable. Notably generalising to n-dimensional exponential
family bandits requires only generalising Lemma B.3 and Step 3 in the proof of Theorem B.4. Our result
is asymptotic, but the only stage where the constants are not explicitly derivable from knowledge of F ,
T , and θ0 is in Lemma B.9. Future work will investigate these open problems. Another possible future
direction lies the optimal choice of prior distribution. Our theoretical guarantees only hold for Jeffreys’
prior, but a careful examination of our proof shows that the important property is to have, for every θa,

− ln(∫(θ′∶KL(θa,θ′)≤n−2)
π0(θ′)dθ′) = o (n) ,

which could hold for prior distributions other than the Jeffreys prior.
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B.6 Concentration of the Sufficient Statistics: Proof of Lemma B.3, and
Inequalities (B.6) and (B.7)

Proof of Lemma B.3. The proof of Lemma B.3 follows from the classical Cramér-Chenoff technique
(see [Boucheron et al., 2013]). For any λ > 0.

A ∶=P(1

u

u

∑
i=1

[T (yi) − F ′(θ)] ≥ δ) = P (eλ(∑ui=1[T (yi)−F ′(θ)]) ≥ eλuδ)

≤e−λuδE [eλ(∑ui=1[T (yi)−F ′(θ)])] = e−u(δλ−φa(λ))

where we have used the Markov inequality, and where

φa(λ) ∶= lnEX ∣θ [eλ(T (X)−F ′(θ))] = F (θ + λ) − F (θ) − λF ′(θ).

Now we optimize in λ by choosing λ > 0 that maximizes

δλ − φa(λ) = λ(δ + F ′(θ)) − F (θ + λ) + F (θ) ∶= f(λ).

f(λ) is differentiable in λ and its minimum, λ∗, satisfies f ′(λ∗) = 0 i.e.

F ′(θ + λ∗) = δ + F ′(θ).

(Note that λ∗ > 0 since F ′ is increasing). Finally, we get

A ≤ e−u((δ+F ′(θ))λ∗−F (θ+λ∗)+F (θ)) =e−u(F ′(θ+λ∗)λ∗−F (θ+λ∗)+F (θ)) = e−uK(θ+λ∗,θ).

The same reasoning leads to the upper bound

P(1

u

u

∑
s=1

[T (ys) − F ′(θ)] ≤ −δ) ≤ e−uKL(θ−ν∗,θ),

where ν∗ is such that F ′(θ − ν∗) = F ′(θ) − δ.

◻

For the proof of inequalities (B.6) and (B.7), we intoduce the notation Y u
a,s′ = Y s

a /{ya,s} (the first u
observations of arms a exept observation ya,s′). First note that we have Ẽca,t ⊆ Ba,Na,t ⋃Da,Na,t , with

Ba,s = (∀s′ ∈ [1, s], p(ya,s′ ∣θa) ≤ L(θa)) ,

Da,s =
⎛
⎝
∃s′ ∈ {1, . . . s} ∶

RRRRRRRRRRR

1

s − 1

s

∑
k=1,k≠s′

(T (ya,k) − F ′(θa))
RRRRRRRRRRR
≥ δa

⎞
⎠
.

Indeed, we have used that for two sequences of event Fs′ and Gs′ ,

(
s

⋃
s′=1

Fs′ ∩Gs′)
c

= ⋂
s′≤s

F cs′ ∪Gcs′ ⊂ ⋂
s′≤s

F cs′ ∪ ( ⋃
s′′≤s

Gcs′′) = (⋂
s′≤s

F cs′) ∪ (⋃
s′≤s

Gcs′) .
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One then has
T

∑
t=1

P(at = a, Ẽca,t(δ)) ≤ E [
T

∑
t=1

t

∑
s=1

1(at=a,Na,t=s)(1Ba,s + 1Da,s)]

≤ E [
T

∑
s=1

1Ba,s] +E [
T

∑
s=1

1Da,s]

≤
T

∑
s=1

P (p(ya,1∣θa) ≤ L(θa))s +
T

∑
s=1

s

∑
s′=1

P
⎛
⎝

RRRRRRRRRRR

1

s − 1

s

∑
k=1,k≠s′

(T (ya,k) − F ′(θa))
RRRRRRRRRRR
≥ δa

⎞
⎠

≤
∞
∑
s=1

(1

2
)
s

+
∞
∑
s=1

se−(s−1)K̃(θa,δa),

where we use that the definition of L(θ) gives P (p(ya,1∣θa) ≤ L(θa)) ≤ 1
2 . This leads to inequality

(B.6). To proof (B.7), we write:

T

∑
t=1

P(Ẽa,t(δa)c ∩Na,t > tb) ≤ E
⎡⎢⎢⎢⎣

T

∑
t=1

t

∑
s=tb

1Na,t=s(1Ba,s + 1Da,s)
⎤⎥⎥⎥⎦

≤
T

∑
t=1

t

∑
s=tb

P(p(ya,1∣θa) ≤ L(θa))s

+
T

∑
t=1

t

∑
s=tb

s

∑
s′=1

P
⎛
⎝

RRRRRRRRRRR

1

s − 1

s

∑
k=1,k≠s′

(T (ya,k) − F ′(θa))
RRRRRRRRRRR
≥ δa

⎞
⎠

≤
T

∑
t=1

t(1

2
)
tb

+
T

∑
t=1

t2 exp(−tbK̃(θa, δ)).

B.7 Extracting the KL-divergence: Proof of Lemma B.7

We assume that the event Ẽu holds, s′ ≤ u. So, on this event we have

P (µ(θu) ≥ µ +∆∣Y u) =
∫θ′∈Θθ,∆

u

∏
s=1,s≠s′

p(ys ∣ θ′)p(ys′ ∣θ′)π(θ′)dθ′

∫θ′∈Θ
u

∏
s=1,s≠s′

p(ys ∣ θ′)p(ys′ ∣θ′)π(θ′)dθ′

=
∫θ′∈Θθ,∆

u

∏
s=1,s≠s′

p(ys∣θ′)
p(ys∣θ) p(ys′ ∣θ

′)π(θ′)dθ′

∫θ′∈Θ
u

∏
s=1,s≠s′

p(ys∣θ′)
p(ys∣θ) p(ys′ ∣θ

′)π(θ′)dθ′

=
∫θ′∈Θθ,∆ e

−(u−1)K[Y ′u,θ,θ′]π(θ′∣ys′)dθ′

∫θ′∈Θ e−(u−1)K[Y ′u,θ,θ′]π(θ′∣ys′)dθ′

where π(θ∣ys′) denotes the posterior distribution on θ after observation ys′ and

K[Y u
s′ , θ, θ

′] ∶= 1

u − 1

u

∑
s=1,s≠s′

ln
p(ys ∣ θ)
p(ys ∣ θ′)
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denotes the empirical KL-divergence obtained from the observations Y u
s′ = Y u ∖ {ys′}. Introducing

r(Y u
s′ , θ

′) =K[Y u
s′ , θ, θ

′] −EX ∣θ (ln
p(X ∣ θ)
p(X ∣ θ′)) ,

we can rewrite

P (µ(θu) ≥ µ +∆∣Y u) =
∫θ′∈Θθ,∆ e

−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′∣ys′)dθ′

∫θ′∈Θ e−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′∣ys′)dθ′
.

Now, a direct computation show that

∣r(Y ′u, θ′)∣ ≤ ∣θ − θ′∣
RRRRRRRRRRR

1

u − 1

u

∑
s=1,s≠s′

[T (ys) − F ′(θ)]
RRRRRRRRRRR
. (B.13)

Indeed, for any θ, θ′ ∈ Θ

ln
p(y ∣ θ)
p(y ∣ θ′) = T (y)(θ − θ′) − [F (θ) − F (θ′)],

and one also recalls that
K(θ, θ′) = F ′(θ)(θ − θ′) − [F (θ) − F (θ′)]. (B.14)

Hence

∣r(Y u
s′ , θ, θ

′)∣ =
RRRRRRRRRRR

1

u − 1

u

∑
s=1,s≠s′

[ln
p(ys ∣ θ)
p(ys ∣ θ′)

−K(θ, θ′)]
RRRRRRRRRRR

=
RRRRRRRRRRR

1

u − 1

u

∑
s=1,s≠s′

[(T (x) − F ′(θ))(θ − θ′)]
RRRRRRRRRRR
≤
RRRRRRRRRRR

1

u − 1

u

∑
s=1,s≠s′

[T (ys) − ∇F (θ)]
RRRRRRRRRRR
∣θ′ − θ∣.

The inequality (B.13) leads to the result, using that on Ẽu,

RRRRRRRRRRR

1

u − 1

u

∑
s=1,s≠s′

[T (ys) − F ′(θ)]
RRRRRRRRRRR
≤ δ

B.8 Proof of Lemma B.6

From Theorem B.4 we know that, for Na,t ≥ N(θa, F ),

1Ẽa,tP((E
θ
a,t)c ∣ Ft) = 1Ẽa,tP((E

θ
a,t)c ∣ Ya,t)

≤ C1,ae
−(Na,t−1)(1−δaC2,a)KL(θa,µ−1(µa+∆a))+lnNa,t

≤ e−(Na,t−1)((1−δaC2,a)KL(θa,µ−1(µa+∆a))−ln(C1,aNa,t)/(Na,t−1))

Let Nε = Nε(δa,∆a, θa) be the smallest integer such that for all n ≥ Nε

ln(C1,an)
n − 1

< ε(1 − δaC2,a)KL(θa, µ−1(µa +∆a)).
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Defining

LT ∶=
lnT

(1 − ε)(1 − δaC2,a)KL(θa, µ−1(µa +∆a))

we have that for all t and T such that Na,t − 1 ≥ max(LT ,Nε,N(θa, F )),

1Ẽa,tP(µ(θa(t) > µ(θa) +∆a ∣ Ft) ≤
1

T
.

Let τ = inf{t ∈ N ∣ Na,t ≥ max(LT ,Nε,N(θa, F )) + 1}. τ is a stopping time with respect to Ft.
Then,

T

∑
t=1

P (at = a, (Eθa,t)c, Ẽa,t) ≤ E [
τ

∑
t=1

1(at=a)] +E [
T

∑
t=τ+1

1(at=a)1Ẽa,t1(Eθa,t)c]

= E[Na,τ ] +E [
T

∑
t=τ+1

1(at=a)1Ẽa,tP ((Eθa,t)c ∣ Ft)]

= E[Na,τ ] +E [
T

∑
t=τ+1

1(at=a)1Ẽa,tP (µ(θa(t) > µ(θa) +∆a ∣ Ya,t)]

≤ LT + 1 +max(Nε,N(θa, F )) +E [
T

∑
t=τ+1

1

T
]

≤ LT +max(Nε,N(θa, F )) + 2.

B.9 Controling the Number of Optimal Plays: Outline Proof of Proposi-
tion B.5

The proof of this proposition is quite detailed, and essentially the same as the proof given for Propo-
sition 1 in [Kaufmann et al., 2012b], which we will sometimes refer to. However, in generalising to
the case of exponential family bandits we show how to avoid the need to explicity calculate posterior
probabilities that lead to Lemma 4 in [Kaufmann et al., 2012b]. While simplifying the proof we loose
the ability to specify the constants explicitly, and so the analysis becomes asymptotic, but holds for every
b ∈]0,1[.

Sketch of the proof and key results Let τj be the occurrence of the jth play of the optimal arm (with
τ0 ∶= 0). Let ξj ∶= (τj+1 − 1) − τj : this random variable measures the number of time steps between
the jth and the (j + 1)th play of the optimal arm, and so ∑Ka=2Na,t = ∑N1,t

j=0 ξj . We then upper bound
P(N1,t ≤ tb) as in [Kaufmann et al., 2012b]:

P(N1,t ≤ tb) ≤ P (∃j ∈ {0, .., tb⌋} ∶ ξj ≥ t1−b − 1) ≤
⌊tb⌋
∑
j=0

P(ξj ≥ t1−b − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=Ej

) (B.15)

We introduce the interval Ij = {τj , τj + ⌈t1−b − 1⌉}: on the event Ej , Ij is included in {τj , τj+1} and no
draw of arm 1 occurs on I. We also introduce for each arm a ≠ 1 da ∶= µ1−µa

2 .
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The idea of the rest of the analysis is based on the following remark. If on a subinterval I ⊆ [τj , τj+1[
of size f(t) arm 1 is not drawn and all the samples of the suboptimal arms fall below µ2 + d2 < µ1, then
for all s ∈ I, µ(θ1,s) ≤ µ2 + d2. On I, the sequence (θ1,s) is i.i.d. with distribution π1,τj , and hence,

P(∀s ∈ I, µ(θ1,s) ≤ µ2 + δ) ≤ (P (µ(θ1,τj) ≤ µ2 + δ2))
f(t)

At this point, an asymptotic result, telling that the posterior on θ1 concentrates to a Dirac in θ1 (the
Bernstein-Von-Mises theorem, see [Van der Vaart, 1998]) , leads to

P(µ(θ1,τj) ≤ µ2 + δ2) →
j→∞

0.

Assuming that ∀j, P(µ(θ1,τj) ≤ µ2 + δ2) ≠ 1, we have shown the following Lemma, which plays the
role of an asymptotic counterpart for Lemma 3 in [Kaufmann et al., 2012b].

Lemma B.9. There exists a constant C = C(π0) < 1, such that for every (random) interval I included
in Ij and for every positive function f , one has

P (∀s ∈ I, µ(θ1,s) ≤ µ2 + δ2, ∣I∣ ≥ f(t)) ≤ Cf(t).
Another key lemma is the following which generalizes Lemma 4 in [Kaufmann et al., 2012b]. The

proof of this lemma is standard: it proceeds by conditioning on the event Ẽa,t 1 and applying Theorem
B.4, and Lemma B.3.

Lemma B.10. For every a ∈ A, δ > 0, there exist constants Ca = Ca(µa, δ, F ) and N such that for
t ≥ N ,

P (∃s ≤ t,∃a ≠ 1 ∶ µ(θa,s) > µa + da,Na,s > Ca ln(t)) ≤ 2(K − 1)
t2

.

The rest of the proof proceeds by finding a subinterval of Ij on which all the samples of all the
suboptimal arms indeed fall below the corresponding thresholds µa + da. This is done exactly as in
[Kaufmann et al., 2012b] and we recall the main steps of the proof below. Before that, we need to
introduce the notion of saturated, suboptimal action.

Definition B.11. Let t be fixed. For any a ≠ 1, an action a is said to be saturated at time s if it has
been chosen at least Ca ln(t) times, i.e. Na,t ≥ Ca ln(t). We shall say that it is unsaturated otherwise.
Furthermore at any time we call a choice of an unsaturated, suboptimal action an interruption.

Step 1: Decomposition of Ij We want to study the process of saturation on the event Ej = {ξj ≥
t1−b − 1}. We start by decomposing the interval Ij = {τj , τj + ⌈t1−b − 1⌉} into K subintervals:

Ij,l ∶= {τj + ⌈(l − 1)(t1−b − 1)
K

⌉ , τj + ⌈ l(t
1−b − 1)
K

⌉} , l = 1, . . . ,K.

Now for each interval Ij,l, we introduce:
– Fj,l: the event that by the end of the interval Ij,l at least l suboptimal actions are saturated;
– nj,l: the number of interruptions during this interval.

We use the following decomposition to bound the probability of the event Ej :
P(Ej) = P(Ej ∩Fj,K−1) + P(Ej ∩Fcj,K−1) (B.16)

Note that the quantities Ej , Ij,l, Fj,l and nj,l all depend on t, however we suppress this dependency for
notational convenience. However, we keep in mind that we bound the different probabilities for t ≥ N ,
so that Lemma B.10 applies.

1. Using Ẽa,t in place of Ea,t from [Kaufmann et al., 2012b] only changes slightly the constant Ca.
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Step 2: Bounding P(Ej ∩Fj,K−1) On the event Ej ∩Fj,K−1, only saturated suboptimal arms are drawn
on the interval Ij,K . Using Lemma B.10, we get

P(Ej ∩Fj,K−1) ≤P({∃s ∈ Ij,K , a ≠ 1 ∶ µ(θa,s) > µa + da} ∩ Ej ∩Fj,K−1)
+ P({∀s ∈ Ij,K , a ≠ 1 ∶ µ(θa,s) ≤ µa + da} ∩ Ej ∩Fj,K−1)

≤P(∃s ≤ t, a ≠ 1 ∶ µ(θa,s) > µa + da,Na,t > Ca ln(t))
+ P({∀s ∈ Ij,K , a ≠ 1 ∶ µ(θa,s) > µa + da} ∩ Ej ∩Fj,K−1)

≤2(K − 1)
t2

+ P({∀s ∈ Ij,K ∶ µ(θ1,s) ≤ µ2 + d2} ∩ Ej)

≤2(K − 1)
t2

+C
t1−b−1
K .

for 0 < C < 1 as in Lemma B.9. The second last inequality comes from the fact that if arm 1 is not drawn,
the sample θ1,s must be smaller than some sample θa,s and therefore smaller than µ2 + d2.

Step 3: Bounding P(Ej ∩ Fcj,K−1) A similar argument to that employed in Step 2 can be used in an
induction to show that for all 2 ≤ l ≤K, if t is larger than some deterministic constant Nµ1,µ2,b specified
in the base case,

P(Ej ∩Fcj,l−1) ≤ (l − 2)(2(K − 1)
t2

+C
t1−b−1

CK2 ln(t))

We refer the reader to [Kaufmann et al., 2012b] for a precise description of the induction. For l = K we
then get

P(Ej ∩Fcj,K−1) ≤ (K − 2)(2(K − 1)
t2

+C
t1−b−1

CK2 ln(t)) . (B.17)

Step 4: Conclusion Putting Steps 2 and 3 together we obtain that for t ≥ N0 ∶= max(N,Nµ1,µ2,b),

P(Ej(t)) ≤
2(K − 1)2

t2
+C

t1−b−1
K + (K − 2)KC ln(t)C

t1−b−1
CK2 ln(t) ,

P(N1,t ≤ tb) ≤
2(K − 1)2

t2−b
+ tbC

t1−b−1
K + (K − 2)KCtb ln(t)C

t1−b−1
CK2 ln(t) ,

where we use B.15. It then follows that

∞
∑
t=1

P(N1,t ≤ tb) ≤ N0 +
∞
∑

t=N0+1

P(Ej) = Cb = Cb(π0, µ1, µ2,K) < ∞.
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trade-off using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19).

[Auer, 2002] Auer (2002). Using Confidence bounds for Exploration Exploitation trade-offs. Journal
of Machine Learning Research, 3:397–422.

[Auer et al., 2002a] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2):235–256.

[Auer et al., 2002b] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002b). The nonstochastic
multiarmed bandit problem. SIAM Journal of Computing, 32(1):48–77.

[Bechhofer et al., 1968] Bechhofer, R., Kiefer, J., and Sobel, M. (1968). Sequential identification and
ranking procedures. The University of Chicago Press.

[Bellman, 1954] Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515.



206 BIBLIOGRAPHY

[Bellman, 1956] Bellman, R. (1956). A problem in the sequential design of experiments. The indian
journal of statistics, 16(3/4):221–229.

[Berry and Fristedt, 1985] Berry, D. and Fristedt, B. (1985). Bandit Problems. Sequential allocation of
experiments. Chapman and Hall.

[Bickel and Doksum, 2001] Bickel, P. and Doksum, K. (2001). Mathematical Statistics, Basic Ideas
and Selected Topics. Prentice Hall.

[Bishop, 2006] Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer-Verlag New
York.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities.
A non asymptotic theory of independence. Oxford University Press.

[Bradt et al., 1956] Bradt, R., Johnson, S., and Karlin, S. (1956). On sequential designs for maximizing
the sum of n observations. Annals of Mathematical Statistics, 27(4):1060–1074.

[Bubeck, 2010] Bubeck, S. (2010). Jeux de bandits et fondation du clustering. PhD thesis, Université
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Analyse de stratégies bayésiennes et fréquentistes pour
l’allocation séquentielle de ressources

Emilie KAUFMANN

RESUME : Dans cette thèse, nous étudions des stratégies d’allocation séquentielle de ressources. Le
modèle statistique adopté dans ce cadre est celui du bandit stochastique à plusieurs bras. Dans ce modèle,
lorsqu’un agent tire un bras du bandit, il reçoit pour récompense une réalisation d’une distribution de prob-
abilité associée au bras. Nous nous intéressons à deux problèmes de bandit différents : la maximisation
de la somme des récompenses et l’identification des meilleurs bras (où l’agent cherche à identifier le ou les
bras conduisant à la meilleure récompense moyenne, sans subir de perte lorsqu’il tire un «mauvais» bras).
Nous nous attachons à proposer pour ces deux objectifs des stratégies de tirage des bras, aussi appelées
algorithmes de bandit, que l’on peut qualifier d’optimales.

La maximisation des récompenses est équivalente à la minimisation d’une quantité appelée regret. Grâce
à une borne inférieure asymptotique sur le regret d’une stratégie uniformément efficace établie par Lai et Rob-
bins, on peut définir la notion d’algorithme asymptotiquement optimal comme un algorithme dont le regret
atteint cette borne inférieure. Dans cette thèse, nous proposons pour deux algorithmes d’inspiration bayési-
enne, Bayes-UCB et Thompson Sampling, une analyse à temps fini dans le cadre des modèles de bandit à
récompenses binaires, c’est-à-dire une majoration non asymptotique de leur regret. Cette majoration permet
d’établir l’optimalité asymptotique des deux algorithmes.

Dans le cadre de l’identification des meilleurs bras, on peut chercher à déterminer le nombre total
d’échantillons des bras nécessaires pour identifier, avec forte probabilité, le ou les meilleurs bras, sans la
contrainte de maximiser la somme des observations. Nous définissons deux termes de complexité pour
l’identification des meilleurs bras dans deux cadres considérés dans la littérature, qui correspondent à un
budget fixé ou à un niveau de confiance fixé. Nous proposons de nouvelles bornes inférieures sur ces com-
plexités, et nous analysons de nouveaux algorithmes, dont certains atteignent les bornes inférieures dans
des cas particuliers de modèles de bandit à deux bras, et peuvent donc être qualifiés d’optimaux.

MOTS-CLEFS: Modèles de bandit, minimisation du regret, identification des meilleurs bras.

ABSTRACT: In this thesis, we study strategies for sequential resource allocation, under the so-called
stochastic multi-armed bandit model. In this model, when an agent draws an arm, he receives as a reward a
realization from a probability distribution associated to the arm. In this document, we consider two different
bandit problems. In the reward maximization objective, the agent aims at maximizing the sum of rewards
obtained during his interaction with the bandit, whereas in the best arm identification objective, his goal is
to find the set of m best arms (i.e. arms with highest mean reward), without suffering a loss when drawing
‘bad’ arms. For these two objectives, we propose strategies, also called bandit algorithms, that are optimal
(or close to optimal), in a sense precised below.

Maximizing the sum of rewards is equivalent to minimizing a quantity called regret. Thanks to an asymp-
totic lower bound on the regret of any uniformly efficient algorithm given by Lai and Robbins, one can define
asymptotically optimal algorithms as algorithms whose regret reaches this lower bound. In this thesis, we
propose, for two Bayesian algorithms, Bayes-UCB and Thompson Sampling, a finite-time analysis, that is a
non-asymptotic upper bound on their regret, in the particular case of bandits with binary rewards. This upper
bound allows to establish the asymptotic optimality of both algorithms.

In the best arm identification framework, a possible goal is to determine the number of samples of the arms
needed to identify, with high probability, the set of m best arms. We define a notion of complexity for best
arm identification in two different settings considered in the literature: the fixed-budget and fixed-confidence
settings. We provide new lower bounds on these complexity terms and we analyse new algorithms, some of
which reach the lower bound in particular cases of two-armed bandit models and are therefore optimal.

KEY-WORDS: Bandit models, regret minimization, best arm identification
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