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Chapter 1. Introduction

Résumé: Introduction

Nous introduisons ici les principaux enjeux associés aux procédés de formage
par impulsion magnétique. Nous essayons de répondre à deux questions fon-
damentales:

• pourquoi? Ou l’intérêt industriel d’un tel procédé

• comment cela fonctionne.

Nous présentons en parallèle un historique du procédé. Nous concluons ce
chapitre par les principaux objectifs de ce travail de thèse.

Le formage électromagnétique est une technologie utilisée de façon coris-
sante dans les dernières décennies - grâce notamment à la formabilité accrue
qu’il offre pour les matériaux à haute résistance et faible masse spécifique tels
que les alliages d’aluminium et de magnésium.

Ce procédé rentre dans la catégorie des procédés de formage à haute vitesse
de déformation. La déformation de la matière se produit dans une plage entre
103 et 104 s-1. Plusieurs études montrent que l’on obtient dans cette gamme
de vitesses des limites de formabilité bien plus élevées que celles rencontrées
dans le cadre d’un procédé quasi-statique.

Un autre avantage important réside dans l’élimination presque totale du re-
tour élastique. Ce phénomène est en effet un défi récurrent dans la mise en
forme des pièces dès lors que nous utilisons des procédés basés sur la défor-
mation plastique.

Le procédé a vu le jour aux alentours des années 1920 avec les études de Kapitza
Kapitza 1924. L’industrialisation du procédé a du attendre les années 50-60,
lorsque, suite à un accident dans une installation nucléaire aux États-Unis on
a trouvé le moyen de générer les niveaux d’énergie requis pour déformer la
matière à haute vitesse.

Depuis, plusieurs études ont été accomplies pour essayer de comprendre com-
ment l’interaction entre les différents aspects physiques conduit aux résultats

2



obtenus dans la pratique.

Le présent travail consiste principalement dans le développement d’un mod-
èle numérique basé sur la méthode des éléments finis qui permet de prendre
en compte les différents aspects multiphysiques dans un cadre complètement
tridimensionnel. Nous allons développer un modèle qui soit à la fois précis
pour faire une étude scientifique approfondie et en même temps avec une
interface "simple" pour permettre l’utilisation efficace de l’outil numérique
dans le cadre industriel de conception d’un procédé.
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Chapter 1. Introduction

Interest in lightweight structural applications has driven research on alterna-
tive forming processes that allows costs reduction while maintaining or im-
proving structural resistance. The first stage for introducing lightweight com-
ponents into the fabrication line is shape optimization because structural re-
sistance can be highly upgraded by optimally adapting the geometry of the
component to the application. This optimal shape leads in many cases to
complex geometries that cannot be easily obtained by traditional forming pro-
cesses.

The second stage consists in selecting materials which satisfy both the weight
requirements and the mechanical resistance requirements. In structural ap-
plications for the aeronautic and automotive industries the most popular op-
tions are aluminium and magnesium alloys. Nevertheless, most aluminium
alloys show poor formability qualities when compared to steel using classical
(low speed) processes. [Daehn 2002] enumerates some of the main difficulties
associated with the forming of this material:

1. Forming limits of aluminium are significantly lower than those
for steel. Aluminium is particularly prone to tearing at bends.
This limits the shapes that can be fabricated and slows die de-
sign, die tryout and application.

2. As the elastic modulus of aluminium is lower than that of steel,
springback is more severe and it is difficult to keep dimen-
sional tolerances.

3. Conventional die try-out with mating male and female dies
is always slow and expensive. It would be desirable if a least
prototypes could be produced with one-sided die sets. This
would speed time-to-market.

Several experimental works show that it is possible to access increased forma-
bility ranges and almost eliminate the springback by means of high speed
forming technologies. These qualities have already been used in several join-
ing and forming applications as shown in fig. 1.1. Besides, the main high speed
technologies used up to now require one-sided die due to the intrinsic way of
delivering the load.

• Explosive forming: A chemical or combustible charge is placed near the
work piece inside a confined chamber. When the load is ignited the pres-
sure shock wave transmitted through the air will cause the high speed
deformation of the part.
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Fig. 1.1 – Some of the first applications to the electromagnetic forming applications
according to Zittel 2010.

• Electro-Hydraulic forming (EHF): An electrical arc is formed between
two conductors placed near each other inside a container with water.
The pulsed nature of the arc will induce a fast phase transformation from
liquid to high temperature vapour. The high energy shock wave pro-
duced by this phenomenon is responsible for the forming process.

• Electromagnetic forming (EMF): Induced Lorentz forces on the work
part due to a fast electric discharge into a coil placed near the piece lead
to a high acceleration and the resulting deformation of the material.

Fig. 1.2 – Fundamental principle behind high speed forming processes.

The basic principle behind all these processes is, as depicted in fig. 1.2, that
given a certain amount of energy (stored as chemical or electrical energy), the
delivered power is increased by reducing the discharge time. Consequently,
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Chapter 1. Introduction

the loads generated on the material are very high without the need of larger1

amounts of energy.

Important requirements for industrializing a given technology are its control-
lability and predictability. Safety and pollution are also major factors that will
help in the choice of the most appropriate and "friendly" technology. This
has driven attention towards EHF and EMF because they offer access to the
same range of high speed loads as explosive forming, but with increased con-
trollability. Besides, they are much more environmental friendly (no chemical
reactive and no need for lubrication).

In this work we have chosen to focus our attention on the last of these three
technologies, electromagnetic forming. From a scientific point of view we are
interested in studying the interaction between the different physics. Full un-
derstanding of the process is quite challenging because of the multiple phys-
ical aspects involved: namely, the electromagnetic wave propagation, fast in-
duction heating and self-heating through deformation work, the inertial ef-
fects on the formability, etc. And from a technological point of view, we want
to develop a numerical tool that provides accurate representation of the com-
plete process.

1.1 The magnetic pulse forming process

The magnetic pulse forming (MPF) technology or electromagnetic forming
(EMF) consists in deforming metallic components through the application of
an intense electromagnetic pulse. This process enters in the category of high
speed forming processes because of the range of strain rates that are usually
attained, ranging from 103s−1 to 104s−1.

It has been one of the most commercially used high speed processes for the
last 40 years because it offers high controllability and safety, making it apt for
industrialization and automation.

1Compared to the slower forming technologies
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1.2. Motivation and Challenges

1.2 Motivation and Challenges

Some of the most attractive assets from this technology have been identified
by Psyk et al. 2011. Here, we summarize some of these points:

• It is a one-sided die process. The coil occupies the roll of the "male die".
Furthermore, a single coil can be used for several final geometries.

• Since the forces are applied without any mechanical contact it is pos-
sible to perform surface treatments or rectifications before the forming
process is applied. In metal-to-metal welding applications it is not nec-
essary to "clean" the contact surfaces. During impact, a jet stream is gen-
erated in the collision zone that cleans the surfaces (fig. 1.2), removing
the oxides and thus creating a high quality bonding BMAX 2014.

Fig. 1.3 – Under proper impact velocity conditions a jet stream appear that cleans the
contact zone.

• It is possible to join dissimilar materials that could not normally be joined
by classical welding. For metals this is achieved by the atomic bonding
due to the high speed impact. Joining without welding is possible by the
almost perfect incrustation of the work piece into the receptor. At the
high strain rates of the process the material undergoes a transition from
elastic-plastic behaviour to a more hydrodynamic behaviour.

• One of the most interesting yet poorly understood outcomes is the re-
duction (almost full elimination) of the elastic spring back - enabling die
design with the exact final shape.

• It can be tagged as a highly environmental friendly process because the
lack of moving parts and the lack of contact with the work piece elimi-
nates the need for lubrication.

• It is also considered as a low cost process. Assuming that a single "shot"
consumes 10kW from the grid. The charging time of the capacitor being

7



Chapter 1. Introduction

around 5s, and using the reference price of 0.144 euros /kWh (July 2015,
EDF, France). We obtain an approximate price of 0.002 euros per shot.

As any other technology, EMF has its limitations or disadvantages:

• It is limited to use materials with high electric conductivity. One workaround
is the use of a punch or driver. A conductive material is placed near the
inductor to which the kinetic energy is given. The punch is accelerated
and forms the low-conductive part by impact. Another way is to increase
the discharge frequency of the capacitor in order to diminish the skin
depth penetration of the fields in the work part, thus avoiding the fields
to traverse and create forces on the opposite side that will work against
the acceleration of the material.

• The coil has to be carefully designed because it will withstand large ther-
mal and mechanical loads. Given a certain frequency of production, fa-
tigue can be a serious damaging factor. This is one of the most limiting
factors of the process.

• While it was shown before that the process is profitable from an econom-
ical point of view, it is also quite ineffective in terms of energy recovery. It
is reported that the rate of effective plastic energy used to the stored en-
ergy in the capacitors is between [2−20]%, normally closer to 2%. One of
the causes being the resistive losses in the electric connections. Another
cause could be the energy elastic losses involved at impact.

1.3 History

The first time someone effectively used such a process to deform a solid con-
ductor beyond its yield point was Kapitza 1924. He was able to produce elec-
tromagnetic fields about 15 to 20 kiloGauss (compared to the earth’s natural
magnetic field of 0.2Gauss) but the technological constraints at that time re-
quired enormous power sources for the generation of the energy and also for
the cooling of the inductors which was already a major blocking point. So the
technology was abandoned for almost 40 years.

As explained in Zittel 2010 it was at the end of the 1950’s that during a nuclear
fusion research by General Atomic2 in San Diego, material failures were de-

2Nuclear research division of General Dynamics Corporation
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1.3. History

tected between the conductor carrying the electric current. This accident led
to the patent of Harvey et al. 1961. This marked the start point for the indus-
trialization of the process. In this work, they already stated the main classical
forming configurations (mainly related to the geometry of the coil) that can be
found in industry, see fig. 1.4. We can find tube forming by either compression
or expansion, in which case a cylindrical coil is needed. We also have flat sheet
forming or bulging. In this case a flat or "pancake-like" coil is used.

Fig. 1.4 – Classic forming configurations as described by Harvey et al. 1961.

The technique of indirect forming within the EMF process was published by
Brower 1966 in which an elastomeric punch is used to transmit the energy.
Thus allowing to form non-conductive materials. Some of the first work on
joining of dissimilar materials were done by Al-Hassani et al. 1967 to join a
metallic cap with a glass bottle and, Rafailoff et al. 1975 where a metallic tube
was joined with a porcelain component. A more detailed account on the evo-
lution of the technology can be found in Psyk et al. 2011.

As the technology gained interest in the scientific and industrial domains, the
need for accurate and representative tools for predicting the outcomes in-
creased. According to Daehn 2002 between the end of the 60s and the 70s
most of the "modelling" was done in closed-forms (0-D approximations) en-
abling to compute scalar quantities, basically estimations of the order of mag-
nitudes. One of the works documented here is the 1977 Ukranian Electromag-
netic Forming Handbook. In the same line, the work of Leroy et al. 1980 served
as an abaqus in the 1980’s in French industry for several industrial applica-
tions.

At the 1-D level we find the equivalent circuit approaches which are also in-
teresting, mainly for the computation of the electric system. In this case only
simple geometries can be treated, the EM fields are treated in average terms
and the mechanical deformation phenomena is not considered.

9
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One of the first attempts to compare experimental results with 2-D finite ele-
ments/finite difference computations was done by TAKATSU et al. 1988. They
studied a free bulging case of an aluminium sheet in order to find a constitu-
tive law for the plastic behaviour of the material. This case has been largely
referenced thereafter.

A few years later appeared one of the first documented 2-D codes dedicated
to EMF. It was the CALE code (C Language Arbitrary Lagrangian-Eulerian),
mainly dedicated for research activities. In the work of Fenton 1996 they suc-
cessfully applied this method for the computation of axi-symmetric models in
order to study plasticity in the high strain rates range.

In recent years, there have been several works in the development of 3-D tools
for the simulations of the process. The two main toolbox found in literature
are ANSYS (see Siddiqui 2009; Bartels et al. 2009; Demir et al. 2010; CUI et al.
2012 for instance) and LS-DYNA (L’Eplattenier et al. 2009; L’Eplattenier et al.
2012). Nevertheless, industrial use of the 3D tools have had a slow introduc-
tion in industry due to the complexity of setting up the simulations and the
computational time required in order to accomplish a coupled simulation.

1.4 Understanding how it works

In order to design a target oriented toolbox for the process, we need to un-
derstand how it all works. The process can be decomposed in the following
consecutive stages:

Fig. 1.5 – Stages of the EMF forming process.

1. The stored energy in the capacitor bank is rapidly discharged as a pulse
signal into the the system.

10
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2. The time-varying current in the coil generates intense electromagnetic
fields near the work piece.

3. Induced eddy currents arise on the work piece flowing in opposite direc-
tion to the current in the coil.

4. As a consequence, repulsive Lorentz forces appear on both parts.

5. The forming takes place by the transformation of the electromagnetic
force into kinetic energy, and subsequently into plastic deformation at
high strain rates. In joining applications, the high speed impact is the
responsible of bonding the surfaces at the atomic level.

1.5 On the increased formability properties

Several works on high speed forming of certain metals alloys (aluminium and
copper mainly) have shown that for the given loading conditions increased
formability properties are found as seen in fig. 1.6. In Balanethiram et al. 1994
two possible causes are enumerated: (1) A change in the material constitu-
tive law that makes the material more formable and (2) The effect of inertia
attenuating the growth of cracks.

Fig. 1.6 – Example forming diagram for a 6061 T4 aluminum as taken
fromBalanethiram et al. 1994.

It has been noted that the most relevant factor is the inertia that stabilizes
the development of necking and increases the global ductility. In the works of
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Jacques et al. 2012; Molinari et al. 2014 a model of micro-inertia effects was de-
veloped in order to study the influence of inertia on the propagation of cracks.
It was concluded that the micro-inertia helps reducing voids growth (hence
the coalescence) in the regions where strain is more concentrated, thus al-
lowing a more progressive accumulation of damage, which is distributed in
several regions rather than concentrating in the most fragile zone as would be
expected under low speed loading conditions.

1.6 Objectives

Following the observations made above it was detected that there is a need for
developing a simulation toolbox that is capable of handle the multiphysical
complexities linked to the process, and at the same time be highly predictive.
In order to accomplish such task we subdivided the study in the following
parts:

1. Include the resolution of the full Maxwell equations into the electro-
magnetic module MATELEC. The solver was originally conceived for in-
duction heating applications, meaning applications in a low frequency
regime for which several hypothesis are made that do not match the
needs for EMF processes.

2. Include the EMF machine into the simulation set-up using an electric
circuit description that is coupled with the finite elements resolution.
The methodology behind these two points are described in chapter 3.

3. Optimize the simulation CPU time by means of parallel resolution tech-
niques. For this purpose we have selected to focus the simulation strat-
egy of the electromagnetic problem on full finite element discretization
in contrast to boundary elements/finite elements couplings.

4. Couple the thermo-mechanical (TM) solver with the EM solver in order
to guarantee an efficient communication and accurate reproduction of
the phenomena within a reasonable CPU time. The numerical resolu-
tion of the physics are formulated using implicit methods in order to
guarantee the numerical accuracy3.

3Explicit methods are largely used in fast dynamics because they will always provide a solu-
tion, but no guarantee is given on whether the solution found corresponds to the equilibrium
state. Implicit methods on the other hand may have difficulties converging in the numerical
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5. One of the difficulties in the simulation of the electromagnetic phenom-
ena within the process is the management of movement/deformation.
chapter 4 will provide the details of the adopted methodology.

6. Compare the simulation results with available data in literature and also
with experiments performed in our facilities.

sense, or not converge at all. If they do, we know that the solution does correspond to the
equilibrium state
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Résumé: Modèles physiques et mathématiques

Ce chapitre est consacré à la description mathématique des différentes prob-
lématiques physiques impliquées: la mécanique des solides, le transfert de
chaleur et la propagation des ondes électromagnétiques dans le cadre macro-
scopique de la mécanique des milieux continus.

Nous démarrons avec l’introduction d’un schéma d’interaction entre les trois
phénomènes physiques évoqués. Nous utilisons ensuite les concepts de la
mécanique des milieux continus pour développer les équations différentielles
fondamentales à partir des équations intégrales de conservation.

Une fois établies les équations différentielles de conservation, nous rappelons
certains modèles physiques pour les équations constitutives des matériaux,
qui permettent de lier les différentes quantités physiques et qui permettent
donc de décrire le comportement de la matière.
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2.1. A coupled multiphysics problem

The electromagnetic forming process can be decomposed in three main ele-
ments (fig. 2.1):

• The EMF machine, consisting in the command bank and the electric ca-
pacitors bank for energy storage. This element contains no moving parts
since its purpose is the set-up of the process and energy delivery through
electric connections. From this fact it is possible to reduce the modelling
of it by only considering the electric parameters.

• The work bench: Its main component is the coil, responsible of trans-
mitting the electromagnetic waves. In case of forming applications we
will also have the matrix or female-die.

• The work piece, which is the target element, subject to the deformation
by either direct or indirect forming.

Fig. 2.1 – Decomposition of the main elements in the electromagnetic forming pro-
cess.(Left) The EMF machine (Command+energy storage). (Center) Work bench
(Coil+matrix). (Right) Work piece after deformation and strain map.

For the simulation of the whole process we shall consider the interaction of
these different elements. In order to accomplish this task we will review the
mathematical description behind the physics governing the process.

2.1 A coupled multiphysics problem

The core complexity related to this process lies in its multiphysical nature. All
the different physical phenomena are highly interconnected. The electromag-
netism drives the process by creating the "electromagnetic pressure" on the
work piece. As the material deforms and changes its temperature due to the
Joule heating effect and plastic self-heating, the material properties change in-
cluding the electromagnetic ones. Also it is important to closely keep track of
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the geometrical evolution since the intensity of the EM fields decreases rapidly
with distance. This interaction is summarized in fig. 2.2.

Fig. 2.2 – Interaction of the main different physics involved in the EMF process

Before establishing the schemes for the interaction between the physics we
are going to review the mathematical notation used to describe the different
problems. The coupling strategy will be discussed in the following chapters
together with the finite elements approach.

2.2 Continuum Mathematics

This section will present some of the basic notations and concepts related to
the mathematics used in continuum mechanics for the further development
of the equations.

2.2.1 Reference frames

The description of the continuum mechanics phenomena starts by defining
the reference systems shown in fig. 2.3. The Eulerian or laboratory frame al-
lows measuring the quantities with tools considered static with respect to the
observer. The Lagrangian frame follows the movement and deformation of
the given domain Ω in space so as to imagine that for an observer in such a
frame, no motion has taken place.

Under this framework, the kinematics of a selected point P ∈ Ω with coordi-
nates #»x = #»x ( #»x ′, t) are described by

18
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Fig. 2.3 – Typical reference systems in continuum mechanical description. The Eule-
rian or static frame of reference and the Lagrangian or deforming frame.

Displacement #»u = #»u ( #»x ′, t) = #»x ( #»x ′, t)− #»x ( #»x ′, t0) = #»x ( #»x ′, t)− #»x ′ (2.1)

Velocity #»v =
d

dt
#»x ( #»x ′, t) =

d

dt
[ #»u + #»x ′] =

d #»u

dt
=
∂ #»u

∂t
+
∂ #»u

∂ #»x ′
d #»x ′

dt
=
∂ #»u

∂t
(2.2)

Acceleration #»a =
d

dt
#»v =

∂ #»v

∂t
+ ( #»v · ∇) #»v =

[
∂

∂t
+ #»v · ∇

]
#»v (2.3)

The measure equivalences between the deformed and undeformed configu-
rations are given by:

Length d #»x = dxi =
∂xi
∂x′j

dx′j = Fijdx
′
j = Fd #»x ′ (2.4)

Volume dV = |dx′êx′ · (dy′êy′ × dz′êz′)| = dx′dy′dz′ (2.5)

dv = |dxêx · (dyêy × dzêz)| = det
(
F
)
dV = J dV (2.6)

Surface n̂dS = JF−T n̂′dS ′ (2.7)

(Nanson’s Formula)

Other additional concepts that are going to be necessary are1

1See demonstration in section A.1 for the derivative of the Jacobian
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Velocity Gradient Tensor d #»v =
∂

∂ #»x ′

(
∂ #»x

∂t

)
· ∂

#»x ′

∂ #»x
=

∂

∂t

(
∂ #»x

∂ #»x ′

)
· ∂

#»x ′

∂ #»x
(2.8)

d #»v =
∂

∂t

(
F
)
· F−1 · d #»x = Ḟ · F−1d #»x = L · d #»x

L = Ḟ · F−1 =
∂ #»v

∂ #»x

Derivative of the Jacobian
d

dt
J =

∂

∂t
J = J Tr

[
F−1 · Ḟ

]
= J∇ · #»v (2.9)

Theorem 1 (Theorem of conservation). Given a functional F existing over a
domain Ω, if F is C1 and

if/∀v ⊂ Ω

∫
v

F dΩ = 0⇒ F = 0 ∈ Ω

Theorem 2 (Gauss Theorem). Given a function f : R3 → R3, if f ∈ C1∫
Ω

∇ · f dΩ =

∫
Γ

f · n̂ dS (2.10)

In case of a second order tensor we have∫
Ω

∇ · T dΩ =

∫
Γ

T · n̂ dS (2.11)

Theorem 3 (Stokes’ Theorem).∮
C

#»

F · d #»

l =

∫
Γ

∇× #»

F · n̂ dS (2.12)

2.2.2 Reynold’s Transport theorem - Volume Integral time deriva-
tive

As will be shown later, many of the fundamental equations of mechanics are
obtained by establishing the conservation laws and then deriving the differ-
ential forms from integral representation.
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2.2.2.1 Derivative of a volume scalar integral

d

dt

∫
Ω

f dΩ = lim
∆t→0

1

∆t

 ∫
Ω(τ+∆t)

f( #»x , τ + ∆t) dΩ−
∫

Ω(τ)

f( #»x , τ) dΩ


= lim

∆t→0

1

∆t

∫
Ω0

f( #»x ′, τ + ∆t)J ( #»x ′, τ + ∆t) dΩ−
∫
Ω0

f( #»x ′, τ)J ( #»x ′, τ) dΩ


Now, the integration limits are time independent, allowing to write

d

dt

∫
Ω

f dΩ =

∫
Ω0

∂

∂t
(f( #»x ′, τ)J ( #»x ′, τ)) dΩ

=

∫
Ω0

∂f

∂t
J + f

∂J
∂t

dΩ

=

∫
Ω0

∂f

∂t
J + fJ∇ #»v dΩ =

∫
Ω0

(
∂f

∂t
+ f∇ #»v

)
J dΩ

=

∫
Ω

(
df

dt
+ f∇ #»v

)
dΩ =

∫
Ω

(
∂f

∂t
+ #»v · ∇f + f∇ #»v

)
dΩ

=

∫
Ω

(
∂f

∂t
+∇( #»v f)

)
dΩ (2.13)

d

dt

∫
Ω

f dΩ =

∫
Ω

∂f

∂t
dΩ +

∫
Γ

f #»v · n̂ dS (2.14)

From (2.14) we find Reynolds’ transport theorem.

2.3 The Electromagnetic Problem

Note: In this section we are going to perform a non-classical derivation of
the equations of electromagnetism following what is known as the Heaviside-
Hertz model. The objective being to point out that there are several questions
regarding the development of Maxwell equations that are left without answer
or are overlooked in most textbooks. More than a matter of being wrong or
not, we rise the question on the mathematical steps for the derivation of the
model. After realizing that Maxwell equations do represent the electromag-
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netic phenomena, modern physics has taken the position of saying that "it
does not matters how the model is obtained, what matters are the equations
themselves". If we revisit the equations from the beginning, could we find
some harmony in the procedure? A more "logical" derivation?...

We will see that using the Heaviside-Hertz model we can follow the tools from
continuum mechanics to derive the complete set of equations. It is also found
that the use of this model does not violate the principle of special relativity!.
Nevertheless, since this topic goes beyond the objectives of the present work
we shall simply point out our findings, doubts and possible path for the dis-
cussion. The numerical development of the rest of the work will still use the
Maxwell model given that at the work conditions, both models are equivalent.

The critics to the Maxwell model are summarized here:

1. Before Maxwell, it was accepted that the law for the magnetic field pro-
duced by steady currents was

∇× #»

B =

#»

J

ε0C2

Maxwell realized that there was a problem with such representation. It
violates the principle of charge conservation [Feynman et al. 1963].

∇ · #»

J = −∂ρ
e

∂t

So he proposed to add the term ∂
#»
E
∂t

to the r.h.s of the equation to get

c2∇× #»

B =

#»

J

ε0

+
∂

#»

E

∂t

With this addition Maxwell had fully represented the electromagnetic
phenomena. However, Einstein 1905 in his paper "On the Electrody-
namics of moving bodies" starts by saying It is known that Maxwell’s elec-
trodynamics - as usually understood at the present time- when applied to
moving bodies, leads to asymmetries which do not appear to be inherent
in the phenomena.(...) Making reference to the observed phenomena be-
tween a magnet and a conductor whilst moving one relative to the other.
This observation in addition to the constancy of the velocity of light led
to the development of the special relativity.
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2. It has been criticized that the force on a charge particle can not be di-
rectly obtained from the solution of the field equations but has to be
postulated as the "fifth" equations of electrodynamics.

#»

F = q(
#»

E + #»v × #»

B)

The development that follows will mainly tackle both critics presented before.

2.3.1 Electromagnetic Equations

Let’s start from the integral basic laws

Faraday’s Induction Law
∮
C

#»

E · d #»

l = − d

dt

∫
Γ

#»

B · n̂ dS (2.15a)

Maxwell-Ampere’s Law
∮
C

#»

H · d #»

l = − d

dt

∫
Γ

#»

D · n̂ dS (2.15b)

Gauss’s Law
∮
Γ

#»

D · n̂ =

∫
Ω

ρe dΩ (2.15c)

Gauss’s Law for the magnetic field
∮
Γ

#»

B · n̂ = 0 (2.15d)

Where

#»

E : Electric field intensity
#»

D: Electric flux intensity
#»

H: Magnetic field intensity
#»

B: Magnetic flux intensity
ρe: Electric charge density

Note that we have eliminated the term associated to the current density in
(2.15)b. This term will re-appear when we properly develop the time deriva-
tive of the integral.

Following Maxwell’s model we would have done

d

dt

∫
Γ

#»

B · n̂ dS =
∂

∂t

∫
Γ

#»

B · n̂ dS =

∫
Γ

∂
#»

B

∂t
· n̂ dS (2.16)
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Which can be done if the domain of integration is independent of time, namely,
if it doesn’t move. Let us instead follow the procedure for the time derivative
of a volume integral. Assume

#»

A( #»x , t) be a given vector field, then

d

dt

∫
Γ

#»

A · n̂ dS = lim
∆t→0

1

∆t

 ∫
Γ(τ+∆t)

#»

A( #»x , τ + ∆t) · n̂ dS −
∫

Γ(τ)

#»

A( #»x , τ) · n̂ dS


= lim

∆t→0

1

∆t

∫
Γ0

JF−T #»

A(
#»

X, τ + ∆t) · n̂ dS0 −
∫
Γ0

JF−T #»

A(
#»

X, τ) · n̂ dS0


=

∫
Γ0

n̂T · ∂
∂t

[
JF−1 #»

A(
#»

X, τ)
]
dS0

=

∫
Γ0

n̂T ·
[
JF−1 ∂

∂t

#»

A +
∂J
∂t

F−1 #»

A + J ∂

∂t
F−1 #»

A

]
dS0

=

∫
Γ0

n̂T ·
[
JF−1 ∂

∂t

#»

A + (J∇ · #»v )F−1 #»

A − JF−1ḞF−1 #»

A

]
dS0

=

∫
Γ0

JF−T n̂ ·
[
∂

∂t

#»

A + (∇ · #»v )
#»

A −∇ #»v · #»

A

]
dS0 (2.17)

=

∫
Γ

n̂ ·
[
d

dt

#»

A + (∇ · #»v )
#»

A −∇ #»v · #»

A

]
dS

=

∫
Γ

n̂ ·
[
d

dt

#»

A + (∇ · #»v )
#»

A − (
#»

A · ∇) #»v

]
dS (see2)

=

∫
Γ

n̂ ·
[
∂

∂t

#»

A + ( #»v · ∇)
#»

A + (∇ · #»v )
#»

A − (
#»

A · ∇) #»v

]
dS =

∫
Γ

n̂ · DDt
#»

A dS

(2.18)

From (2.18) we retrieve an equivalent of the Upper Convected Oldroyd deriva-
tive for a vector field.

D
Dt

#»

A =
∂

∂t

#»

A + ( #»v · ∇)
#»

A + (∇ · #»v )
#»

A − (
#»

A · ∇) #»v (2.19)

In Christov 2006 was implied that by choosing this time derivative definition,
it was possible to achieve the time invariance of the Hertz’s equations. Here,

2∇ #»v · #»

A = ∂i(vj êj)⊗ êi ·Akêk = Ak∂ivj êj ⊗ êi · êk = Ak∂ivj êjδik = Ai∂ivj êj = (
#»

A · ∇) #»v

24



2.3. The Electromagnetic Problem

we stress out that (1) More than a matter of choice, it is the natural outcome
by construction (2) Time invariance is not a consequence of the development,
from our perspective, it is just a misinterpretation based on the unconscious
assumption of F = I.

By means of the vector calculus identity

∇× (
#»

A × #»v ) = ( #»v · ∇)
#»

A +
#»

A(∇ · #»v )− (
#»

A · ∇) #»v − #»v (∇ · #»

A) (2.20)

we can reduce (2.19) as

D
Dt

#»

A =
∂

∂t

#»

A −∇× ( #»v × #»

A) + #»v (∇ · #»

A) (2.21)

Equations (2.21) together with Stoke’s and Gauss’s integral theorems allows
transforming the set (2.15) into

∇× #»

E = −∂
#»

B

∂t
+∇× ( #»v × #»

B) (2.22a)

∇× #»

H =
∂

#»

D

∂t
−∇× ( #»v × #»

D) + ρe #»v (2.22b)

∇ · #»

D = ρe (2.22c)

∇ · #»

B = 0 (2.22d)

In (2.22) we find the electric current density term

#»

J = ρe #»v

Another fundamental equation is the equation of charge continuity in a mov-
ing frame of reference. It can be obtained simply by taking the divergence of
(2.22b)

∇ ·
[
∇× #»

H
]

= ∇ ·
[
∂

#»

D

∂t
−∇× ( #»v × #»

D) +
#»

J

]
0 =

∂

∂t
ρe +∇ · ( #»

J ) (2.23)
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2.3.1.1 Electromagnetic Force - The Lorentz Force

As argued before, it has been criticized that the Lorentz force cannot be ob-
tained as a solution of the field equations, but has to be postulated separately.
In [Phipps 2004] it is shown that the Lorentz force can be derived from the
Hertz field equations without any additional postulate. An important remark
is that in their derivation, they find an additional constant value, for which
several arguments concluded that its value should be zero. The cause is that
instead of starting from the integral equations, they simply took the Maxwell
equations and replaced ∂

∂t
→ d

dt
= ∂

∂t
+ ( #»v · ∇).

Let’s instead simply take the definition of the electric field, hence establish
that for a point charge q (or a distribution of charges ρe)

#»

F L = q
#»

E or
#»

f L = ρe
#»

E (2.24)

It is possible to demonstrate that this force is the same as the one given by the
Maxwell representation using the potential formulation.

Potential Formulation An usual way to solve the differential equations is
through the definition of the scalar and the vector potentials. This methodol-
ogy can also be applied to (2.22), finding

∇ · #»

B = 0⇒ #»

B = ∇× #»

A (2.25)

∇× #»

E = −∂
#»

B

∂t
+∇× ( #»v × #»

B)⇒ ∇× #»

E = − ∂

∂t
(∇× #»

A) +∇× ( #»v ×∇× #»

A)

⇒ ∇×
(

#»

E +
∂

#»

A

∂t
− #»v ×∇× #»

A

)
= 0 (2.26)

Since for any scalar function φ,∇× (−∇φ) = 0 holds, then

⇒ #»

E +
∂

#»

A

∂t
− #»v ×∇× #»

A = −∇φ

⇒ #»

E = −∇φ− ∂
#»

A

∂t
+ #»v ×∇× #»

A (2.27)

Where, for the magnetic field, we find the traditional definition
#»

B = ∇× #»

A but
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for the electric field there is an additional term #»v ×∇× #»

A.

We thus find that using (2.27)

#»

F = q

[
−∇φ− ∂

#»

A

∂t
+ #»v ×∇× #»

A

]
#»

F = q
[

#»

EMaxwell + #»v × #»

B
]

(2.28)

The "Maxwell" subscript is meant to highlight that the fields are in fact differ-
ent quantities in each theory. But the effect over matter remains unchanged
(the force) if we use the potential description as reference.

2.3.2 Classical electromagnetism

The classical representation of the electromagnetic problem, as given by Maxwell
can be found by using the integral representation of the Maxwell-Ampere’s
equation ∮

C

#»

H · d #»

l = − d

dt

∫
Γ

#»

D · n̂ dS +

∫
Γ

#»

J · n̂ dS (2.29)

Then, the l.h.s. is modified using Stokes theorem and the r.h.s by saying d
dt

∫
Γ

#»

D·

n̂ dS =
∫
Γ

∂
∂t

#»

D · n̂ dS. This results in a differential set similar to eq. (2.22) where

the difference is that the terms related to the velocity are gone. This results in

∇× #»

E = −∂
#»

B

∂t
(2.30a)

∇× #»

H =
∂

#»

D

∂t
+

#»

J (2.30b)

∇ · #»

D = ρe (2.30c)

∇ · #»

B = 0 (2.30d)
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2.4 The Solid Mechanics and Heat Transfer Prob-

lems

At the macroscopic scale, the fundamental laws for continuum media is given
by the following four conservation laws

2.4.1 Mass conservation:

The mass contained in a given domain Ω is given by m =
∫
Ω

ρ( #»x ′, t) dΩ, where

ρ is the density of matter at each point of the domain. Assuming no flow of
matter on the boundaries of the domain (and neglecting the transformation
of mass into energy)

Dm

Dt
=

D

Dt

∫
Ω

ρ( #»x ′, t) dΩ = 0 (2.31)

In a Lagrangian description we can write∫
Ω

ρ dΩ =

∫
Ω0

ρ0 dΩ

⇒ ρJ = ρ0 , J = detF (2.32)

In the Eulerian frame we obtain the conservative form

∂ρ

∂t
+∇(ρ #»v ) = 0 (2.33)

Equation (2.33) is used to define the compressibility condition which is gen-
erally expressed as

∂ρ

∂t
+ #»v · ∇ρ+ ρ∇ · #»v = 0 (2.34)

dρ

dt
+ ρ∇ · #»v = 0

∇ · #»v = −1

ρ

dρ

dt
(2.35)

2.4.2 Linear momentum conservation:

If we now consider that a set of volumetric forces (ρ
#»

b ) and superficial tensions
(

#»
t ) act upon the domain Ω, the total forces are given by
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f(t) =

∫
Ω

ρ
#»

b dΩ +

∫
Γ

#»
t dS (2.36)

The total linear momentum of the body is

#»

P (t) =

∫
Ω

ρ #»v dΩ (2.37)

From Newton’s second law

D
#»

P (t)

Dt
= f(t)

⇒ D

Dt

∫
Ω

ρ #»v dΩ =

∫
Ω

ρ
#»

b dΩ +

∫
Γ

#»
t dS (2.38)

The r.h.s of (2.38) is given in two forms, each one more convenient for different
applications

D

Dt

∫
Ω

ρ #»v dΩ =

∫
Ω

ρ
D #»v

Dt
dΩ (2.39a)

=

∫
Ω

[
∂

∂t
(ρ #»v ) +∇(ρ #»v · #»v )

]
dΩ (2.39b)

Superficial tension vector
#»
t is measured in a plane defined by the normal n̂ is

given in term of the Cauchy stress tensor as

#»
t = σ · n̂ (2.40)

Then, by means of the Reynolds’ transport theorem, the l.h.s is∫
Ω

ρ
#»

b dΩ +

∫
Γ

#»
t dS =

∫
Ω

ρ
#»

b dΩ +

∫
Γ

σ · n̂ dS

=

∫
Ω

ρ
#»

b dΩ +

∫
Ω

∇ · σ dΩ

The stress tensor is usually decomposed in a deviatoric and a hydrostatic com-
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ponents by

Hydrostatic pressure: p = −1

3
Tr
(
σ
)

(2.41)

Deviatoric component: S = σ + pI (2.42)

From where ∫
Ω

ρ
#»

b dΩ +

∫
Γ

#»
t dS =

∫
Ω

(
ρ

#»

b +∇ · S −∇p
)
dΩ (2.43)

We thus obtain

Lagrangian ρ
D #»v

Dt
= ∇ · S −∇p+ ρ

#»

b (2.44)

Eulerian
∂

∂t
(ρ #»v ) +∇(ρ #»v · #»v ) = ∇ · S −∇p+ ρ

#»

b (2.45)

2.4.3 Angular momentum conservation:

The angular momentum (
#»

h ) of the domain is given by

#»

h (t) =

∫
Ω

#»x × ρ #»v dΩ (2.46)

The total momentum from the external loads is defined as

# »

M(t) =

∫
Ω

#»x × ρ #»

b dΩ +

∫
Γ

#»x × #»
t dS (2.47)
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Then, the conservation law says

D
#»

h (t)

Dt
=

# »

M(t)

D

Dt

∫
Ω

#»x × ρ #»v dΩ =

∫
Ω

#»x × ρ #»

b dΩ +

∫
Γ

#»x × #»
t dS

∫
Ω

ρ
D

Dt
( #»x × #»v ) dΩ =

∫
Ω

#»x × ρ #»

b + #»x ×∇ · σ + ε : σ dΩ

⇒
∫
Ω

#»x ×
(
ρ
D #»v

Dt
−∇ · σ − ρ #»

b

)
︸ ︷︷ ︸

Linear Momentum

dΩ = 0 =

∫
Ω

ε : σ dΩ (2.48)

Where ε is the Levi-Civita operator. From here,

if ε : σ = 0⇒ σ = σT (2.49)

Nevertheless, it is argued that under magnetic fields it might be possible to
find an asymmetric stress tensor. This could happen because of the way the
stress field depends on the electromagnetic field.
Given the Lorentz force on a distribution of charges

#»

f = ρe
#»

E +
#»

J × #»

B (2.50)

Then,

#»

f = (∇ · #»

D)
#»

E +

(
∇× #»

H − ∂
#»

D

∂t

)
× #»

B

= (∇ · #»

D)
#»

E − #»

B ×∇× #»

H − ∂
#»

D

∂t
× #»

B

= (∇ · #»

D)
#»

E − #»

D ×∇× #»

E − #»

B ×∇× #»

H − ∂

∂t
(

#»

D × #»

B)

= (∇ · #»

D)
#»

E − #»

D ×∇× #»

E + (∇ · #»

B)
#»

H − #»

B ×∇× #»

H − ∂

∂t
(

#»

D × #»

B)

= ∇ ·
[

#»

D ⊗ #»

E − 1

2
(

#»

D · #»

E)I +
#»

B ⊗ #»

H − 1

2
(

#»

B · #»

H)I

]
− ∂

∂t
(

#»

D × #»

B)

= ∇ · σ − ∂
#»

S

∂t
(2.51)

Where σ is the electromagnetic induced stress tensor and
#»

S is the Poynting
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vector. From here, the symmetry of σ is conditioned to
#»

D‖ #»

E and
#»

B‖ #»

H. In
Espinosa et al. 2003 is argued that the asymmetric condition would be given
if the microscopic magnetic dipoles in the material are not aligned with the
macroscopic field, which will induce a toque per unit volume. Such condition
will occur if there is a given interaction not allowing the dipoles to align with
the field but in general, it is reasonable to assume aligned dipoles.

2.4.4 Energy conservation, 1st Thermodynamic Principle:

We consider processes where the energy sources are the mechanical work and
input heat. The principle of energy balance establishes that the change rate
of the internal energy equals the work done by the volume forces, surface ten-
sions plus the heat that enters the body.

Notation:

Internal Energy density uint

Total Energy density eint = uint + 1
2

#»v · #»v

Heat flux per surface unit #»q

Volumetric heat source Q̇

The rate of change of the total energy is

P tot = P int + PK =
D

Dt

∫
Ω

ρuint dΩ +
D

Dt

∫
Ω

1

2
ρ #»v · #»v dΩ (2.52)

The external loads and heat sources /fluxes amount to

P ext + P h =

∫
Ω

#»v · ρ #»

b dΩ +

∫
Γ

#»v · #»
t dS

︸ ︷︷ ︸
external

+

∫
Ω

ρQ̇ dΩ−
∫
Γ

n̂ · #»q dS

︸ ︷︷ ︸
heat

(2.53)

From where

P tot = P ext + P h

D

Dt

∫
Ω

(
ρuint +

1

2
ρ #»v · #»v

)
dΩ =

∫
Ω

#»v · ρ #»

b dΩ +

∫
Γ

#»v · #»
t dS +

∫
Ω

ρQ̇ dΩ−
∫
Γ

n̂ · #»q dS

(2.54)
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This expression is usually reformulated in three different manners:

Lagrangian ρ
D

Dt
uint = ε̇ : σ + ρQ̇−∇ · #»q + #»v ·

(
ρ
D

Dt
#»v − ρ #»

b −∇ · σ
)

︸ ︷︷ ︸
=0

ρ
D

Dt
uint = ε̇ : σ + ρQ̇−∇ · #»q (2.55a)

Eulerian (a) ρ
∂

∂t
uint + ρ #»v∇uint = ε̇ : σ + ρQ̇−∇ · #»q (2.55b)

Eulerian (b)
∂

∂t
(ρe) +∇ · [ #»v (ρe+ p)] = ∇ · (S · #»v ) + ρ #»v · #»

b + ρQ̇−∇ · #»q

(2.55c)

2.4.5 Material physical modelling

An important aspect in the modelling of physical processes is the material
characterization that relates the state variables between them. We will first go
through the mechanical constitutive relationships that relate the stress state
with the strain, strain rate and temperature. We shall present the basic princi-
ple of thermal modelling exchange due to energy flux inside a material medium.
Finally, we will cover the electromagnetic material description.

2.4.5.1 Constitutive models

One of the most common ways of describing the mechanical behaviour of
metallic materials (not only) is by means of the linear superposition of strain.
The basic idea is, as sketched in fig. 2.4 that the total deformation felt by a ma-
terial volume element is given by the superposition of individual factors. The
total stress, on the other hand is the same regardless of the different deforma-
tion mechanisms that can be present.

The FORGEr modelling tool uses a formulation based on strain-rates, rather
than strain (eq. (2.56)). The resolution of the problem is then done in terms of
the evolution of the velocity [Mocellin 1999]; The displacements are obtained
by time integration.
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Fig. 2.4 – Additive strain model.


ε̇ = ε̇el + ε̇vp + ε̇th

ε̇el = D−15σ

ε̇vp = 3
2

#̇»ε
#»σ
S , tr

(
ε̇vp
)

= 0

ε̇th = αṪ I , tr
(
ε̇th
)

= 3αṪ

(2.56)

Where ε̇el, ε̇vp and ε̇th represent the elastic, viscoplastic and thermal compo-

nents of the strain rate tensor. D is the stiffness fourth order tensor,
5
σ is an

objective time derivative for the stress tensor. α is the thermal expansion co-
efficient, Ṫ is the temperature rate of change. ˙̄ε and σ̄ are the von Mises equiv-
alent strain rate and stress respectively, which are given by

˙̄ε =

√
2

3
ε̇ : ε̇ (2.57)

σ̄ =

√
3

2
S : S (2.58)

Elasticity The classical description of elastic behaviour of solids is given by
the Hooke’s law

εel =
1 + ν

E
σ − ν

E
tr
(
σ
)
I (2.59)

In terms of the time derivatives we have

ε̇el =
1 + ν

E

5
σ − ν

E
tr
(5
σ
)
I (2.60)

Compressibility In solids, under elastic deformation it is possible to uni-
formly compress a volume element without modifying its shape. This prop-
erty is measured by
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Definition 1. Bulk Modulus (κ): Represents the resistance to uniform compres-
sion

κ = ρ
dp

dρ
(2.61)

Where p represents the pressure felt by the differential volume element. This
definition is used to track the evolution of the volume by insertion of eq. (2.61)
into eq. (2.35) from where

∇ · #»v = −1

κ
ṗ (2.62)

In the case of isotropic elasticity, computing the trace of eq. (2.60) gives

Tr
(
ε̇el
)

= ∇ · #»v = −3(1− 2ν)

E
ṗ

⇒ κ =
E

3(1− 2ν)
(2.63)

For incompressible materials ν = 0.5⇒ ∇ · #»v = 0.

Plasticity Once the onset of permanent deformation (Yield stress) has been
reached, it is needed to model the stress flow rules. This is an extremely rich
field of study in which several descriptions can be obtained depending on the
conditions under which we study the materials. As we mention in the previ-
ous chapter, the characteristic of the EMF process is that deformation occurs
under high strain rates, in the order of 103s−1 to 104s−1. This requires using
flow rules including the effect of strain rate. In this section we just intend to
summarize a few of the most used descriptions to model plastic flow under
high strain rate conditions.

Johnson-Cook model [Johnson et al. 1983]

σy =
(
A+Bε̄np

) [
1 + C log

(
˙̄ε
˙̄ε0

)][
1−

(
T − T0

Tm − T0

)m]
(2.64)

Where σy represents the evolution of the yield stress. ε̄p is the equivalent plas-
tic strain, ˙̄ε the strain rate and T the temperature. A, B, C, n and m are the
empirical material parameters. The ˙̄ε0 parameter was conceived as the effec-
tive plastic strain rate at which the strain-hardening parametersA,B and n are
determined; today, it is seen mainly as a numerical regularization term, espe-
cially when characterizing for a large range of strain rates values. T0 represents
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a reference value for the temperature at which the quasi-static tests are done
(assuming that no appreciable self-heating takes place). And finally Tm is the
fusion or melting temperature.

This model is so far, one of the most used due to its simplicity and versatility.
It will also be the one used in our computations in the following chapters.

Hollomon model This is one of the most well known description for work
hardening behaviour of metals. Several authors have used this model for the
characterization of aluminium alloys in which the strain-rate effects are con-
sidered negligible.

σy = σ0ε̄
n
p (2.65)

Takatsu model [TAKATSU et al. 1988]

This flow curve was introduced by Takatsu in order to include the strain-rates
effects on the properties of aluminium alloy JIS A1050.

σy = K1ε
n1
p +K2ε

n2
p ln

(
ε̇

ε̇0

)
(2.66)

Modified path-dependent Zerilli-Armstrong model [Gould et al. 2000; Forde
et al. 2009]

This is a model developed mainly for the characterization of fcc metals, with
a special attention to copper. The main characteristic given by the authors is
they intend to treat path-dependency in a more physically realistic manner. It
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also enables to include in a simple manner the effect of previous loading.

σy = σa +Kεnp +

(
µT
µ0

)
σt(εp, ε̇, T )φ(ε̇, T ) (2.67a)(

µT
µ0

)
= 1− aT (2.67b)

σt(εp, ε̇, T ) = η

1−
[
θ(ε̇)(α− 1)

εp
η

+

(
1− Σ

η

)1−α
] 1

1−α
 (2.67c)

η(ε̇, T ) = k

(
ε̇

ε̇0

)S( T
1−aT )

(2.67d)

φ(ε̇, T ) = exp [T (−C3 + C4 ln(ε̇))] (2.67e)

σa : Theoretical flow stress at 0 Kelvins

K = 0 for fcc metals

n : Strain hardening exponent

µT , µ0 : Shear modulus at temperatures T and reference

σt : Path-dependent part

φ : Empirical state-dependent part

Σ : Previous loading stress state

Values for the mechanical characterization of some materials using the previ-
ously mentioned laws are given in appendix C.

2.4.5.2 Friction

The friction force appears if contact takes place with a relative displacement
in the tangential direction besides the normal component. This force opposes
the tangential movement between the bodies due to the shear stresses at con-
tact given by

#»
t = τ = σ · n̂− σnn̂ (2.68)

In the same way the material behaviour laws are needed to relate stress and
strain inside a given body, it is necessary to define the relationship between
relative displacement and the stress state at the surface. Several laws exist
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in the literature for that end, here we mention a few of the most known, but
before let us define the sliding velocity as

∆ #»v s = ( #»v − #»v tool)− [( #»v − #»v tool) · n̂] n̂ (2.69)

• Power law or viscoplastic friction: This law is derived from the Norton-
Hoff viscous material description. It is defined as

τ = −αfK‖∆ #»v s‖q−1∆ #»v s (2.70)

Where αf represents the friction coefficient, q the sensibility to sliding
velocity and K the material consistency.

• Tresca: It can be obtained as the limit case for the previous model when
q = 0. It links the shear stress τ with the plastic flow rule σy using the
tresca friction coefficient m̄

g =
1√
3
σym̄ , 0 ≤ m̄ ≤ 1 (2.71a)

∆ #»v s = 0 , if |τ | < g (2.71b)

τ = −g ∆ #»v s
‖∆ #»v s‖

(2.71c)

• Coulomb: It links the critical shear τc to the contact pressure p = −σn by
means of the friction coefficient µ

τc = µp
∆ #»v s
‖∆ #»v s‖

(2.72)

for a more detailed account on the modelling of the contact condition
we advise the reading of Wagoner et al. 2001 chapter 6.

2.4.5.3 Thermal modelling

The thermal problem is obtained from the conservation of energy as shown
in eq. (2.55). There are several hypothesis (or models) used in order to get the
equations into its explicit representation in terms of the temperature

• Energy evolution
(
d
dt
uint
)

: We neglect any chemical transformation of the
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energy and suppose that it depends linearly on the temperature

d

dt
uint = Cp

d

dt
T

where Cp is the heat capacity of the body.

• Heat flux or energy diffusion (−∇ · #»q ): The heat flux within a solid ma-
terial is normally represented by the Fourier relation

#»q = −k∇T (2.73)

Leading to the diffusion term as

−∇ · #»q = ∇ · (k∇T )

where k is the thermal conductivity of the body.

• Mechanical volumetric heat term
(
Q̇m = ε̇ : σ

)
: Transformation of the

dissipated mechanical work into heat. This is the source term from the
mechanical solver.

• External volumetric heat sources
(
Q̇e

)
: In this term we summarize the

heat volumetric sources. In electromagnetic applications we have the
joule heating term given by

Q̇e =
#»

J · #»

E (2.74)

where
#»

J the electric current density and
#»

E the electric flux field.

The total heat source is then given by

Q̇ = Q̇m + Q̇e = ε̇ : σ +
#»

J · #»

E (2.75)

2.4.5.4 Electromagnetic constitutive laws

Description of the electromagnetic wave propagation phenomena in either
free space or material mediums would be incomplete without the constitutive
laws relating the different fields. There are three main aspects that have to be
introduced as shown in [Castro et al. 2014].
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Electric susceptibility and permittivity In dielectric substances, when elec-
tric polarization takes place, the typical representation of the electric flux is
given by

#»

D = (1 + χe)ε0
#»

E

where χe is the electric susceptibility. This factor is condensed in the relative
electric permittivity by

#»

D = ε0εr
#»

E , where εr = 1 + χe (2.76)

Magnetic susceptibility and permeability Just as in the case of the elec-
tric field, magnetic polarization also takes place in several materials when ex-
posed to external magnetic fields. As a parallel to the previous case, the mag-
netic flux is related to the magnetic field by

#»

B = (1 + χm)µ0
#»

H

where χm is the magnetic susceptibility. We thus have

#»

B = ε0εr
#»

H , where µr = 1 + χm (2.77)

Electrical conductivity (Ohm’s law) Most of the known conductive materi-
als used typically exhibit a linear dependence of the electric current density

#»

J

to the applied electric field
#»

E .
#»

J = σ
#»

E (2.78)

The proportionality parameter σ is called the electrical conductivity. We may
also find in literature reference to its inverse value denoted (ρ) electric resis-
tivity.

2.5 Summary

At the beginning of the chapter we presented the conceptual coupling be-
tween the physics involved in the electromagnetic forming process. Then,
we showed the mathematical procedure leading to the mathematical equa-
tions relating the different fields. In fig. 2.5 we summarize the main equations
describing the whole phenomena and the dependencies among them. This
summary allow us to adequately develop the computational model as follows.
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Fig. 2.5 – Interaction of the main different physics involved in the EMF process. Math-
ematical representation.

The subsequent developments are focused on the electromagnetic aspects
and the coupling strategies with the thermo-mechanical solver FORGE R©.
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Résumé: Modélisation numérique du phénomène élec-

tromagnétique

Dans ce chapitre, nous examinons et mettons en place les outils numériques
nécessaires pour modéliser le problème électromagnétique par la méthode
des éléments finis. En raison de la présence de l’opérateur rotationnel dans les
équations de l’électromagnétisme, il est nécessaire d’adapter la formulation
des éléments finis, plus précisément à l’aide des éléments d’arête de Nedelec
Nédélec 1986. Ces éléments éliminent les solutions parasites qui surgiraient
si des éléments finis nodaux classiques étaient utilisés Jin 2002 et simplifient
également la définition des conditions aux limites électromagnétiques.

Comme évoqué précédemment, il existe deux méthodes principales concur-
rentes pour simuler le problème électromagnétique:

• les éléments finis pour les corps conducteurs et les éléments de frontière
pour l’air.

• ou des éléments finis pour tous les matériaux.

Le choix de cette dernière approche comme stratégie de simulation permet de
simplifier la manipulation des équations dans un cadre unique - à savoir, les
domaines sont différenciés les uns des autres uniquement à travers la défini-
tion des paramètres matériau.

En outre, puisque l’approche produit un système linéaire unique pour la ré-
solution du potentiel magnétique, le calcul parallèle est également simplifié.
Nous comparons deux stratégies parallèles pour la simulation. La première est
basée sur l’utilisation de la bibliothèque externe de calcul numérique PETSc,
et la seconde est basée sur l’utilisation d’un solveur interne entièrement codé
en Fortran. Il est constaté que le processus d’assemblage des matrices dans
le solveur PETSc est très inefficace par rapport au code interne et constitue la
principale contrainte.

Dans le but de relier le processus de simulation numérique avec les conditions
expérimentales réelles, nous avons ajouté un modèle décrivant le circuit cou-
plé au processus de formage électromagnétique. Cela a été fait par un schéma
type circuit électrique qui, couplé au module EF comme une condition aux
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limites, simplifie le pilotage de la simulation. Nous avons vu que pour anal-
yser les propriétés de stabilité du schéma numérique, il ne suffit pas de se
concentrer uniquement sur le système EF, mais de prendre aussi en compte
l’influence du couplage avec le modèle du circuit électrique. Cela nous con-
duit à une méthode d’analyse dans laquelle le système EF est condensé dans
une équation représentative scalaire; nous ajoutons aussi l’équation du circuit
ainsi que les dérivés en temps des champs concernés. Nous considérons dans
les perspectives l’extension de cette analyse à la simulation électromagnétique-
thermomécanique.

Les résultats obtenus à partir de la comparaison avec le cas analytique mon-
trent un bon accord avec les résultats numériques. Cette comparaison a égale-
ment permis de confirmer l’approche quasi-statique pour la simulation des
phénomènes de propagation d’ondes électromagnétiques. Un autre résultat
important obtenu par cette analyse est qu’une grande partie des pertes én-
ergétiques rencontrées dans le processus peuvent se produire dans le circuit
électrique relié à la bobine.
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Chapter 3. Computational Modelling of Electromagnetism

We have so far described the theoretical background behind the equations
that rule physics in a macroscopic scale and from the continuum perspective.
In this chapter we introduce some of the mathematical concepts behind the
finite element formulation needed to transform the strong formulation of the
electromagnetic equations (previous chapter) into a discretized weak formu-
lation, needed for modelling in computational terms.

We will then go deeper into the numerical aspects of the electromagnetism.
We will introduce the coupling of the finite element model with a reduced cir-
cuit approach of the electromagnetic forming machine needed to pilot the
process. This will be followed by a validation case of the electromagnetic as-
pects only. The last section of the chapter is dedicated to the parallel comput-
ing strategy selected in order to increase the performance of the simulation
software.

The coupling with the thermo-mechanics will be the main subject of the next
chapter; where a special focus is given to the management of motion within
(due to) the fully immerse approach selected to discretize the electromagnetic
problem.

3.1 Electromagnetic Modelling

3.1.1 The potential formulation

In many aspects of physics and several numerical applications, it is more con-
venient to transform the set of Maxwell equations eq. (2.30) using the poten-
tial formulation. Several options could be found as shown in [Biro et al. 1989].
Nevertheless, the classical

(
φ− #»

A
)

formulation is the most widely used. As

shown in the previous chapter, the start point are equations eqs. (2.30a) and (2.30d)
from where

#»

B = ∇× #»

A (3.1)

#»

E = −∇φ− ∂
#»

A

∂t
(3.2)
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3.1. Electromagnetic Modelling

Where
#»

A is the magnetic vector potential and φ is the scalar vector potential.
Using the electromagnetic constitutive laws, we then have

#»

D = ε0εr
#»

E ⇒ #»

D = ε0εr

(
−∇φ− ∂

#»

A

∂t

)
(3.3)

#»

H =
1

µ0µr

#»

B ⇒ #»

H =
1

µ0µr
∇× #»

A (3.4)

#»

J = σ
#»

E ⇒ #»

J = σ

(
−∇φ− ∂

#»

A

∂t

)
(3.5)

Introducing these elements into the Maxwell-Ampere equations eq. (2.30b)
and the change conservation eq. (2.23) it is then obtained

ε0εr∂
2
t

#»

A + σ∂t
#»

A +
1

µ0

(
∇× 1

µr
∇× #»

A

)
= −σ∇φ− ε0εr∂t∇φ (3.6a)

∇ · (σ∇φ) +∇ ·
(
σ∂t

#»

A
)

= 0 (3.6b)

Which is a four variables (φ,Ax, Ay, Az) four equations system instead of six
variables for a double vector field formulation.

3.1.1.1 The gauge condition

The double curl in eq. (3.6a) requires conditions to be specified not only on the
magnetic potential but also in its first derivative in order to guarantee unique-
ness of the solution. One of the most general conditions is the Lorentz gauge

∇ · #»

A +
1

c
∂tφ = 0 (3.7)

Where c is the speed of light in vacuum. This condition is simplified by assum-
ing 1

c
∂tφ = 0 from where we obtain the Coulomb gauge

∇ · #»

A = 0 (3.8)

One of the advantages of such model is that eq. (3.6b) is also simplified. We
assume that the differential operators ∇ and ∂t are commutable, we also as-
sume the electric conductivity σ as uniform in a small domain (corresponding
to a single finite element in what follows) then

∇ · (σ∇φ) = 0 (3.9)
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Chapter 3. Computational Modelling of Electromagnetism

3.1.2 Boundary conditions

The electromagnetic problem is going to be solved in a single domain as shown
in fig. 3.1. This domain (Ω) is subdivided into three sub-domains: The coil or
inductor (ΩI), the work piece (Ωp) and the surrounding air (Ωa).

Fig. 3.1 – Boundaries of a EMF process. Ω represents the global domain
solids+surroundings. Ωp is the work piece. ΩI represents the inductor domain. The
electrical input and output connections of the inductor are given by ΓIinp and ΓIout.
After [Biro et al. 1989].

The boundary and initial boundary conditions are given as follows

#»

A( #»x , 0) and
∂

∂t

#»

A( #»x , 0) = 0, #»x ∈ Ω (3.10a)
#»

B · n̂ = 0⇒ n̂ · ∇ × #»

A = 0, on ΓB (3.10b)
#»

H × n̂ = 0⇒ ∇× #»

A × n̂ = 0, on ΓH (3.10c)

φ = 0, on ΓIout (3.10d)

φ = V (t), on ΓIinp (3.10e)

Boundary condition 3.10b can be translated into
#»

A × n̂ = 0 (see1) where n̂ is
the outward normal of the surface to which the condition is imposed. This
condition is also a symmetry condition for the field

#»

B. Let’s consider a given
unit vector belonging to the surface t̂. If

#»

A × n̂ = 0⇒ #»

A · t̂ = 0 (3.11)

As it will be seen later, this condition corresponds to a Dirichlet condition. On
the other hand, condition 3.10c is the natural or Neumann condition emerg-

1 #»

B · n̂ = 0⇔ ∇× #»

A · n̂ = 0⇔ ∇ · ( #»

A × n̂) +
#»

A · (∇× n̂) = 0⇒ ∇ · ( #»

A × n̂) = 0 From where
one solution is

#»

A × n̂ = 0. Meaning that imposing this conditions guarantees
#»

B · n̂ = 0
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Fig. 3.2 – Representation of the magnetic boundary conditions on a given elemental
face.

ing from the equations. In Biro et al. 1989 it is said that

∇× #»

A × n̂ = 0⇐ #»

A · n̂ = 0 (3.12)

We do not need to explicitly use or enforce
#»

A · n̂ = 0. Nevertheless, it can be
noticed that if we accept the continuity of the tangential components on the
surface to which this condition is applied, then this condition is a symmetry
condition for

#»

A.

3.1.3 Finite elements for electromagnetism

In traditional FE analysis, we commonly find different elements for which the
degrees of freedom are defined at the nodes and the internal values are ob-
tained through interpolation of the nodal values. When using such elements
definition for electromagnetic fields several inconvenient may arise. In [Jin
2002] was observed that non-physical or spurious solutions could be found in
several cases. This is due to the fact that nodal elements enforce continuity
on the normal components of vector fields, which is useful when dealing with
divergence or gradient operators. In electromagnetism it is necessary to deal
with the curl operator that, in opposition to the divergence or gradient, re-
quires the continuity condition to be applied on the tangential components.
In order to solve this issue, a different kind of elements was introduced by
Nédélec 1986. Instead of defining the variables in the nodes, the degrees of
freedom for the vector fields are assigned to the edges of the elements.
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Chapter 3. Computational Modelling of Electromagnetism

Fig. 3.3 – 2D triangular element.

3.1.3.1 Nedelec Elements

Lets consider the 2D triangular element given in fig. 3.3. A scalar field defined
on the nodes of the element is be given by

φ(t, #»x ) =
∑
n

φn(t)ϕn( #»x ) (3.13)

For the reference triangle, if we use a P1 (linear) interpolation, the base func-
tions ϕn( #»x ) are defined as follows

ϕ1( #»x ) = 1− x− y ; ϕ2( #»x ) = x ; ϕ3( #»x ) = y

A vector field represented on the edges is defined by

#»

A(t, #»x ) =
∑
d

ad(t)Ψd(
#»x ) (3.14)

Where ad =
#»

A·t̂ represents the mean value of the integral of
#»

A along the edge d,
and t̂ is a normal vector tangent to the edge. The vector base functions Ψd(

#»x )

are computed from the nodal base functions following the convention given
in [Jin 2002]

Ψd(
#»x ) = ϕi(

#»x )∇ϕj( #»x )− ϕj( #»x )∇ϕi( #»x ) (3.15)

For the 2D element the vector base interpolation functions are given below
and sketched in fig. 3.4.

Ψ1( #»x ) = ϕ1( #»x )∇ϕ2( #»x )− ϕ2( #»x )∇ϕ1( #»x ) = 〈1− y, x〉T

Ψ2( #»x ) = ϕ2( #»x )∇ϕ3( #»x )− ϕ3( #»x )∇ϕ2( #»x ) = 〈−y, x〉T

Ψ3( #»x ) = ϕ3( #»x )∇ϕ1( #»x )− ϕ1( #»x )∇ϕ3( #»x ) = 〈−y,−1 + x〉T
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3.1. Electromagnetic Modelling

Fig. 3.4 – Edge base functions in a 2D P1 triangular element.

It was explained before that a gauge condition has to be imposed on the sys-
tem of equations in order to guarantee uniqueness of the solution. One of the
advantages of the Nedelec elements formulation is that the Coulomb gauge
eq. (3.8) is implicitly guaranteed.

∇ · #»

A = ∇ ·
∑
d

ad(t)Ψd(
#»x )

=
∑
d

ad(t)∇ ·Ψd(
#»x )

∇ ·Ψd(
#»x ) = [∇ϕi · ∇ϕj −∇ϕj · ∇ϕi] +

[
ϕi∇2ϕj − ϕj∇2ϕi

]
(3.16)

The first part of eq. (3.16) is automatically equal to zero and the second part is
guaranteed to be null for P1 linear elements. From where

∇ ·Ψd(
#»x ) = 0

It will also be needed to know how to compute the curl of Ψd

∇×Ψd = 2∇ϕi ×∇ϕj (3.17)

3.1.3.2 Variational approach

Sobolev Spaces The Sobolev spaces are the mathematical vector spaces upon
which holds the underlying basis of mathematical analysis and numerical meth-
ods for the solution of partial differential equations. These spaces are charac-
terized by allowing the existence of a function (vector or scalar) and its deriva-
tive up to a given order. The space also defines a norm for the function and
the derivatives. Here, we will mention some of the spaces currently found in
finite elements literature.

Let ϕ ∈ R and Ψ ∈ R3 be a scalar and a vector functions.
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Definition 2. L2(Ω) is the space of square integrable functions defined on Ω as

L2(Ω) = H0(Ω) =

{
ϕ ∈ Ω /

∫
Ω

|ϕ|2 <∞
}

(3.18)

Definition 3. The set of Sobolev spaces for scalar functions derivable until a
degree mHm(Ω) in the domain Ω is given by

Hm(Ω) =
{
ϕ ∈ L2(Ω) / ∂αϕ ∈ L2(Ω) ; |α| ≤ m

}
(3.19)

Definition 4. Space of functions vanishing at the boundaryH1
0(Ω) ⊂ H1(Ω)

H1
0(Ω) =

{
ϕ ∈ H1(Ω) / ϕ = 0 ∈ ∂Ω

}
(3.20)

Definition 5. Space of vector functions with square-integrable divergence

Hdiv(Ω) =
{

Ψ ∈
(
L2(Ω)

)3
/∇ ·Ψ ∈

(
L2(Ω)

)}
(3.21)

Definition 6. Space of vector functions with square-integrable curl

Hcurl(Ω) =
{

Ψ ∈
(
L2(Ω)

)3
/∇×Ψ ∈

(
L2(Ω)

)3
}

(3.22)

Definition 7. Inner products: The following notation for the inner products of
the spaces will allow simplifying the notation for the weak forms∫

Ω

f · g dΩ = 〈f, g〉 (3.23)

∫
Γ=∂Ω

f · g dΩ = 〈f, g〉|Γ (3.24)

In case of product of tensor fields the 〈, 〉 notation implies a double tensor prod-
uct.

Given the electromagnetic system of equations in potential form

ε0εr∂
2
t

#»

A + σ∂t
#»

A +
1

µ0

(
∇× 1

µr
∇× #»

A

)
+ σ∇φ+ ε0εr∂t∇φ = 0 (3.25a)

∇ · (σ∇φ) = 0 (3.25b)

Where
#»

A ∈ R3 andφ ∈ R are the field variables of interest, lets define Ψ ∈ Hcurl

and ϕ ∈ Hdiv. Then, the problem consists on finding
#»

A ∈ Hcurl and φ ∈ Hdiv
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3.1. Electromagnetic Modelling

such that

〈Ψ, ε0εr∂
2
t

#»

A + σ∂t
#»

A +
1

µ0

(
∇× 1

µr
∇× #»

A

)
+ σ∇φ+ ε0εr∂t∇φ〉 = 0 (3.26a)

〈ϕ,∇ · (σ∇φ)〉 = 0 (3.26b)

for all Ψ ∈ Hcurl and ϕ ∈ Hdiv. From the first Green’s vector theorem

〈Ψ,∇× 1

µr
∇× #»

A〉 = 〈∇ ×Ψ,
1

µr
∇× #»

A〉 −
∫

Γ

Ψ ·
[

1

µr
∇× #»

A × n̂
]
dS (3.27)

Then, system eq. (3.26) is reformulated as

ε0〈Ψ, εr∂2
t

#»

A〉+ 〈Ψ, σ∂t
#»

A〉+
1

µ0

〈∇ ×Ψ,
1

µr
∇× #»

A〉

− 1

µ0

∫
Γ

Ψ ·
[

1

µr
∇× #»

A × n̂
]
dS + 〈Ψ, σ∇φ〉+ ε0〈Ψ, εr∂t∇φ〉 = 0 (3.28a)

〈∇ϕ, σ∇φ〉 −
∫

Γ

ϕ (σn̂ · ∇φ)dS = 0 (3.28b)

Regarding the natural conditions we will use the following assumptions

• The electric potential is defined in terms of the input and output poten-
tial within the domain of the coil as specified in eq. (3.10)d and eq. (3.10)e.

• No electric flow is allowed on any surface besides ΓIinp and ΓIout.

⇒
∫

Γ

ϕ (σ∇φ · n̂)dS = 0

• No absorbing boundary conditions are used in this work. Thus, the only
condition allowing outward flow of the magnetic field is eq. (3.10c)

⇒ 1

µ0

∫
Γ

Ψ ·
[

1

µr
∇× #»

A × n̂
]
dS = 0

Finally,

ε0〈Ψ, εr∂2
t

#»

A〉+ 〈Ψ, σ∂t
#»

A〉+
1

µ0

〈∇ ×Ψ,
1

µr
∇× #»

A〉

+〈Ψ, σ∇φ〉+ ε0〈Ψ, εr∂t∇φ〉 = 0 (3.29a)

〈∇ϕ, σ∇φ〉 = 0 (3.29b)
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We now define the approximate field solutions corresponding to the finite el-
ement discretization of the domain using eqs. (3.13) and (3.14)

φ(t, #»x ) ≈ φh(t, #»x ) =
∑
n

φn(t)ϕn( #»x )

#»

A(t, #»x ) ≈ #»

Ah(t, #»x ) =
∑
d

ad(t)Ψd(
#»x )

Where
#»

Ah ∈ Hrot(Ωh) and φh ∈ Hdiv(Ωh). Lets define the following notation

M00(χ) =

∫
Ω

∇ϕi · χ∇ϕj dΩ (3.30)

M11(χ) =

∫
Ω

Ψi · χΨj dΩ (3.31)

M10(χ) =

∫
Ω

Ψi · χ∇ϕj dΩ (3.32)

Mcc(χ) =

∫
Ω

∇×Ψi · χ−1∇×Ψj dΩ (3.33)

Where χ is a given material property. Furthermore, lets note {a} and {φ} as the
tables containing the edge and nodal values ad and ϕn for the whole domain.
Then, the variational problem can be stated in the discrete matrix form

ε0M11(εr)∂
2
t {a}+ M11(σ)∂t {a}+

1

µ0

Mcc(µr) {a}

+M10(σ) {φ}+ ε0M10(εr)∂t {φ} = 0 (3.34a)

M00(σ) {φ} = 0 (3.34b)

At this point we realize from eq. (3.34b) that the resolution of the electric po-
tential field φ does not depend on the magnetic vector potential. This hypoth-
esis relies on the fact that the electric conductivity is only a function of the
temperature. This enables to solve the system in a decoupled fashion:

1. Solve the electric potential on the inductor domain only
M00(σ) {φ} = 0 in Ωh

I

φi = V on ΓIin

φi = 0 on ΓIout

(3.35)

2. Solve the magnetic vector potential in the whole domain. The electric
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potential is used as a source term
ε0M11(εr)∂

2
t {a}+ M11(σ)∂t {a}+ 1

µ0
Mcc(µr) {a} =

−M10(σ) {φ} − ε0M10(εr)∂t {φ} in Ωh

ai = 0 on ΓB

(3.36)

3.1.4 Time integration schemes

In eq. (3.35) it is observed that the resolution of the electric potential does not
have an explicit dependence on time. Except for the input boundary condi-
tion, the distribution of the field does not depend on time. Hence, the finite
element resolution of the system may be done once,2 followed by the use of a
scaling factor to track the time evolution of the potential due to due boundary
condition. This will be seen in the next section.

For the magnetic vector potential eq. (3.36) we need to select an appropriate
time discretization method. Most publications done in the EMF process do-
main use a quasi-static assumption. In this work we attempted to verify the
validity of this approximation by comparing with the full model and evaluate
the influence of the displacement current term.

First, we establish the time-step-wise global linear system to solve. We con-
sider we know the information at a certain time step t and we want to advance
to t+ ∆t, then

Kt{A}t+∆t = F
(
{φ}t+∆t, {A}t, . . .

)
(3.37)

Three time integration schemes are compared

• QSEI: Quasi-static Euler Implicit (One time-step)

Kt = µ0M11(σ) + ∆tMcc(µr) (3.38a)

F t = −µ0∆tM10(σ){φ}t+∆t + µ0M11{A}t (3.38b)

2This is valid if we do not include thermal effects in the coil that could change the electric
conductivity.
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• QSSC: Quasi-static Second-order-Central differences (two time steps)

Kt = µ0M11(σ) +
2

3
∆tMcc(µr) (3.39a)

F t = −2

3
µ0∆tM10(σ){φ}t+∆t +

4

3
µ0M11(σ){A}t − 1

3
µ0M11(σ){A}t−∆t

(3.39b)

• DYN: Dynamic Newmark (One time-step)

Kt =µ0ε0∆tb4M11(εr) + µ0∆tb1M11(σ) + ∆tMcc(µr) (3.40a)

F t =−
{
µ0∆tM10(σ){φ}t+∆t − µ0ε0M10(εr)

[
{φ}t+∆t − {φ}t

]}
+ µ0ε0∆tM11(εr)

[
b4{A}t − b5

˙{A}t − b6
¨{A}t
]

+ µ0∆tM11(σ)
[
b1{A}t − b2

˙{A}t − b3
¨{A}t
]

b1 =
γ

β∆t
, b2 = 1− γ

β
, b3 =

(
1− γ

2β

)
∆t (3.40b)

b4 =
1

β∆t2
, b5 = − 1

β∆t
, b6 =

(
1− 1

2β

)
(3.40c)

β =
1

4
, γ =

1

2
(3.40d)

3.2 Machinery modelling and implementation

One of the key points in the simulation of the process consists in including
the machinery parameters. This allows ease in the set-up of the simulation by
giving the same information as the one used in the real process. The process
can be schematized as an electrical circuit as in fig. 3.5. While the electrical
architecture of a EMF machine is quite complex, it is often possible to use a
simplified model based on 3 equivalent parameters plus the chosen potential
(or energy) level. The energy storage capacity is described by the equivalent
capacitance Cm. Thermal losses in the circuit and connections are summa-
rized intoRm and, Lm represents the total inductance due to the spatial distri-
bution of the wires.

The machinery is then connected to the work bench, which consists (for our
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Machinery 

Coil 

Work piece 

Fig. 3.5 – Electrical scheme of a general EMF process

purposes) in an inductor (R1 and L1) and the work part (R2 and L2). Such a
representation allows a simplified characterization by means of Kirchoff’s cir-
cuit laws. Focusing on the machinery we find that the evolution of the electric
potential on the work bench is given by

V (t) = V0 +
1

Cm

∫ t

0

i(τ) dτ +Rmi(t) + Lm
d

dt
i(t) (3.41)

Where V0 denotes the initial potential set on the machine and i(t) the elec-
tric current running through the main circuit. The latter is a classical output
variable of the process measured with a Rogowski coil. This equation is used
to define the input electric boundary condition for the inductor FE model by
means of the following scheme

Equation (3.41) is discretized in time as follows

V (n+1) = V0 +
1

Cm

[
∆t

2
(i(n+1) + i(n)) + Int(n)

]
+Rmi

(n+1) + Lm

(
i(n+1) − i(n)

∆t

)
(3.42)

Int(n) =

∫ t(n)

0

i(τ) dτ =
∆t

2

n−1∑
k=1

(
i(k+1) + i(k)

)
Since this is an implicit scheme, it requires a predictor-corrector strategy. Let’s
specify the use of letter n for a given discrete time t(n) and letter k for a given
iteration within the implicit scheme when solving the system from n to n+ 1.

• At n = 0 and k = 0 we will predict the electric current by approximating
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the first time increment of eq. (3.42)

V (1) = V0 +
1

Cm

∆t

2
i(1) +Rmi

(1) + Lm
i(1)

∆t

from where ⇒ i
(n+1)
k=0 = i

(1)
0 =

V (1) − V0

∆t
2Cm

+Rm + Lm
∆t

=
−χV0

∆t
2Cm

+Rm + Lm
∆t

(3.43)

• At n = 1 and k = 0 (linear extrapolation)

i
(n+1)
k=0 = 2i(n) − i(n−1) (3.44)

• At n > 1 and k = 0 (square extrapolation)

i
(n+1)
k=0 = 3i(n) − 3i(n−1) + i(n−2) (3.45)

• For anyn and k > 0 the iterative correction is given by a Newton-Raphson
computation. We minimize the square of the error function as given by

Error: Φ =
1

2

(
V (i

(n+1)
k )− V (i

(n+1)
k−1 )

)2

(3.46)

From where

dΦ

dik
=
(
V (i

(n+1)
k )− V (i

(n+1)
k−1 )

) dV
di
'

(
V (i

(n+1)
k )− V (i

(n+1)
k−1 )

)2

i
(n+1)
k − i(n+1)

k−1

(3.47)

i
(n+1)
k+1 = i

(n+1)
k − θ Φ

dΦ
dik

= i
(n+1)
k − θ1

2

(
i
(n+1)
k − i(n+1)

k−1

)
(3.48)

χ and θ are purely numerical relaxation parameters to improve the conver-
gence of the numerical scheme. As will be shown later they allow balancing
the competition between the finite element model and the circuit equation
in the fixed-point scheme. The resolution strategy is summarized in the algo-
rithm (1)
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Algorithm 1 Electromagnetics FEM-circuit iterative coupling
while t < tfinal do

Predict i(n+1)

k = 1

Norm = 1

Solve ∇ · (σ∇φ) = 0 (eq. (3.35))
while Norm > tolerance & k < Nmax do

Evaluate V (n) = V (i(n−1), i(n), i
(n+1)
k )

Rescale φ with V (n)

Solve
#»

An+1 = F (
#»

An,
#»

An−1, ∂t
#»

A
n
, ∂2

t

#»

A
n
, φn+1, . . . , φn−2) , (integration

scheme)
Compute

#»

J = −σ∇φ− σ∂t
#»

A

Compute i
(n+1)
k =

∫∫ #»

J · n̂dS on ΓIinp
Correct i(n+1)

k+1

Norm = |1− i
(n+1)
k

i
(n+1)
k+1

|
k = k + 1

end
t = t+ ∆t

end

3.3 Validation of the EM finite elements module

For the development and validation stage of the solver, it is recommended to
choose a study case that can be easily analyzed through analytical formula-
tions. Fenton 1996 has proposed the ring expansion experiment as the easiest
model to perform plasticity characterization on metal specimens submitted
to high speed loading.

3.3.1 Description

It consists in two coaxial copper rings as in fig. 3.6. The inner ring serves as
the inductor connected to the machine. It will receive the electric loading and
generate the repulsive forces on the external ring, causing the latter to deform.
For the subsequent analysis, we will consider the following parameters
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)(1 ti

)(2 ti

(a) Electric configuration

1
a

2
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1
b

2
b

(b) Geometric configuration

Fig. 3.6 – Ring expansion model configuration.

Table 3.1 – Process parameters

Machine
V0 [Volts] 5000
Cm [µF] 126
Rm [mΩ] 48

Case 1 Lm [nH] 0
Case 2 Lm [nH] 115

Table 3.2 – Ring expansion case geometric
parameters

Geometry
Coil mean radius a1 [mm] 14
Coil cross-section radius b1 [mm] 0.5
Ring mean radius a2 [mm] 16
Ring cross-section radius b2 [mm] 0.5

3.3.2 1D Analytical Model

By means of Kirchoff’s electric circuit laws, we can represent the scheme of
fig. 3.5 using the set of equations.

(Rm +R1)i1 +
d

dt
[(Lm + L1)i1 +Mi2] +Q/Cm = 0 (3.49a)

R2i2 +
d

dt
[L2i2 +Mi1] = 0 (3.49b)

WhereQ = CmV0 is the electric charge stored in the main circuit. Considering
that no geometry deformation takes place during the EM computation and,
assuming the following change of variables.

i1 =
d

dt
Q =

d

dt
Q1 (3.50a)

i2 =
d

dt
Q2 (3.50b)
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The system is now cast as[
Lm + L1 M

M L2

][
Q̈1

Q̈2

]
+

[
Rm +R1 0

0 R2

][
Q̇1

Q̇2

]
+

[
1/Cm 0

0 0

][
Q1

Q2

]
=

[
0

0

]
(3.51)

From eq. (3.49) it is possible to say that once the system has stabilized d
dt

[L2i2 +Mi1] =

0 leading to i2 = −M
L2
i1 . Such assumption allows further simplification of the

equations into an equivalent damped resonator given by

Q̈1 + 2ζωnQ̇1 + ω2
nQ1 = 0 (3.52)

where

ωn =

√
1

CmLeq
(3.53)

Leq = Lm + L1 −
M2

L2

(3.54)

ζ =
Req

2

√
Cm
Leq

(3.55)

Req = Rm +R1 +
M2

L2
2

R2 (3.56)

The resistance of an uniform circular section ring is

R =
2a

b2
ρ (3.57)

Where ρ is the electrical resistivity. The mutual inductance is found using
Maxwell’s principle of geometrical mean distance and the self inductance us-
ing Max Wein’s formula of linear current distribution[Rosa et al. 1908]. Leading
to

M = µ
a1 + a2

2

[(
1 +

3

16

(
2(a2 − a1)

a2 + a1

)2
)

ln

(
4
a2 + a1

a2 − a1

)

−2− 1

16

(
2(a2 − a1)

a2 + a1

)2
]

(3.58a)

Li = µai

[(
1 +

3

8

(
bi
ai

)2
)

ln

(
8
ai
bi

)
− 7

4
− 0.092

(
bi
ai

)2
]

(3.58b)

3.3.3 3D Finite Elements Model

In order to find the analytic solution it was supposed that, as well as the ring,
the coil is also a closed loop. This allows performing a semi-axisymmetric sim-
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ulation in order to save computational time. Prefix semi comes from the fact
that an actual 3D simulation is carried out, except for the fact that only a 15◦

portion is actually modeled as shown in fig. 3.7.

Fig. 3.7 – Finite element model. 15◦ section approximation.

Use of this model requires adapting the input parameters for eq. (3.41) by per-
forming a re-scaling as

V0 ←
15

360
V0 , Rm ←

15

360
Rm , Lm ←

15

360
Lm , Cm ←

360

15
Cm (3.59)

For the validation of a FE simulation it is paramount verifying that the final
outputs are as independent of the numerical parameters as possible. The
main parameters in this case are the mesh size and the time step. Mesh de-
pendency is studied using the 3 mesh refinements levels described in fig. 3.8
and table 3.3.
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3.4. Stability Analysis

Fig. 3.8 – Different refinement levels proposed. Global mesh size of 4mm. Local mesh
size: 0.1mm (top, M1), 0.05mm (center, M2), 0.025mm (bottom, M3).

Table 3.3 – Stats of the FEM models.

Nodes Elements Edges
M1 7535 42109 50390
M2 101564 598278 701895
M3 457931 2711134 3175352

3.4 Stability Analysis

Stability and convergence are of paramount importance in the study of nu-
merical simulations. In this section a stability analysis of the time discretiza-
tion schemes chosen is presented. We follow the analysis technique proposed
in [Bathe 1996; Noh et al. 2013]. The discrete-time system is represented asx

(n)

...
x


t+∆t

=M

x
(n)

...
x


t

+ Lr (3.60)

Where x(n) stands for the n-th time derivative vector of the system unknowns,
M is the amplification matrix andLr assembles external loadings and/or pre-
vious time steps. Then, stability and accuracy properties can be studied from
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the characteristics of matrixM

From equations eq. (3.6)a and eq. (3.41) two system variables are identified:
the magnetic potential vector

#»

A and the circuit electric current i. The FE
model will be represented as a set of scalar "representative" values, from where
#»

A −→ a. Then, algorithm 1 can be written as


ä

ȧ

a

∂ti

i



t+∆t

=M


ä

ȧ

a

∂ti

i



t

+ . . . (3.61)

Since the selected algorithm is implicit, we will rewrite eq. (3.60) as B[x]t+∆t =

M[x]t. Then, the characteristic matrix is given by B−1M. We notice that the
method depends on the inversion of matrixB. This resolution does not present
a major burden since it is a 5× 5 matrix. Also, under the parameters definition
studied the determinant is different from zero. Meaning that the matrix is not
singular.

Identification of the Matrices

• Electric current.

i =

∫∫
#»

J · n̂dS

=

∫∫ (
−σ∇φ− σ∂t

#»

A
)
· n̂dS

∼= −σSGV (t)− σSȧ

from eq. (3.41) ⇒ i(t+∆t) ∼= −σSG
{[

∆t

2Cm
+Rm +

Lm
∆t

]
i(t+∆t)

+

[
∆t

Cm
− Lm

∆t

]
i(t) + terms(t−∆t)

}
− σSȧ(t+∆t) (3.62)

Where S amounts for the input surface of the coil and G is a scalar value
that accounts for the gradient of the electric potential by −1/lc, lc is a
characteristic length.

• Reduction of the FEM system. Lets take the dynamic case as an example.
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3.4. Stability Analysis

We start by formulating Equation eq. (3.36) in a single element like the
one in fig. E.1. The left hand side of the simplified scalar equation is
given by

l.h.s = ε0εrm11ä+ σm11ȧ+
mcc

µ0µr
a

r.h.s = −σm10GV (t)− ε0εrm10GV̇ (t) (3.63)

The right hand side is found by first using eq. (3.62) in eq. (3.42), the
resulting definition of V (t) is then introduced into the r.h.s of eq. (3.36).
m11 and mcc are taken as the maximum eigenvalue of eq. (E.7) and (E.9)
respectively, and m10 is linked to chapter E by m10 = min(M10)h (see
chapter E for details of the matrices).

The other equations are given by the choice of the time integration method.

1. ä(t+∆t) = b4(a(t+∆t) − a(t)) + b5ȧ
(t) + b6ä

(t)

2. ȧ(t+∆t) = b1(a(t+∆t) − a(t)) + b2ȧ
(t) + b3ä

(t)

3. FEM simplification (equation eq. (3.63))

4. ∂ti(t+∆t) = 1
∆t

(i(t+∆t) − i(t))

5. Electric current (equation eq. (3.62))

Then, all terms related to (t+ ∆t) are put on the l.h.s and those related to (t) to
the r.h.s. All the coefficients multiplying (ä, ȧ, a, ∂ti, i) are given in the matrices
listed in chapter E.

3.4.1 Results

It is necessary to guarantee that the solution obtained from the numerical
model is independent from the numerical parameters. The main parameters
to analyse are (a) the relaxation parameters χ and θ, (b) the time-step dt and
(c) the mesh size. In this sense, global scalar variables are used to identify and
characterize the influence of the numerical parameters over the global simu-
lation.
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3.4.1.1 Relaxation parameters

As shown in table 3.1 we have defined two study cases: Case 1 corresponds
to Lm = 0, which could be a good approximation when dealing with multiple
turn coils and, Case 2 Lm = 115nH.

The first increment of the electromagnetic simulation is the one requiring
more iterations in order to find the dynamic equilibrium state. We evaluate
the influence of the relaxation parameters χ and θ during this first increment
by evaluating the number of iterations required to reach a relative error in the
electric current output of < 10−6.
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Fig. 3.9 – Number of iterations in the first increment. Influence of χ (for fixed θ = 0.5)
and θ (for fixed χ = 0.5).

From fig. 3.9, it is observed that χ has a quite small influence on the conver-
gence behavior of the algorithm. On the other hand, θ drastically modifies the
speed of convergence. It is curious to notice that the curve of convergence
changes depending on the value of Lm. This actually shows that there exists a
competition between the FE system and the circuit model. A small θ means a
small weight for the circuit and bigger for the FE output. In fig. 3.9a, Lm = 0 so
the global impedance of the whole system is basically dominated by the char-
acteristics of the FE model. For such scenario, convergence is improved when
θ is small. When Lm is different from zero, the competition is more evident as
shown in fig. 3.9b. The best convergence is found for θ = 0.5. These results
may change from case to case but can be used as a guideline. From here on,
we set χ = θ = 0.5.
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3.4. Stability Analysis

3.4.1.2 Time step

It is found that, globally, the electric current output follows the behaviour
given by the analytic solution. Nevertheless, certain discrepancies are found
near the region of the peak current. In fig. 3.10 and fig. 3.11 a zoom around
this region is shown.
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Fig. 3.10 – Evolution of the electric current. Influence of the Time Step. Machine
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We first remark the impact of the chosen time discretization schemes. While
all methods are fully implicit, different degrees of convergence towards the
analytic solution are found. As expected, a decrease of the time step generally
leads to a better approximation, table 3.4 shows the deviation for the peak
current from the analytic solution for each model and each time step.

Table 3.4 – Current Peak deviation from the analytic model. Time step influence.

L = 0nH L = 115nH

dt QSEI QSSC DYN QSEI QSSC DYN

0.1 2.27% 1.14% 0.02% 1.20% 1.31% 0.73%

0.2 3.63% 0.64% 0.56% 2.40% 1.67% 1.63%

0.5 6.89% 1.74% 1.67% 4.46% 3.67% 6.37%

Globally, QSSC and DYN converge faster towards the analytic electric current
output solution when compared to QSEI. But, for small time step (0.1µs) spu-
rious oscillations appear in the DYN model when Lm = 115nH. These os-
cillations are amplified when looking at the electric potential in figure 3.13.
The period of the oscillations is a regular one corresponding to 0.2µs. Consid-
ering the 30cm box surrounding the rings, an EM wave would have bounced
back from the walls almost 200 times in this period. The spurious solutions
are most likely related to the remnant energy in the waves bouncing from the
walls. The imposed boundary condition eq. (3.10c) (

#»

H × n̂ = 0) means that
we impose the field to be parallel to the outward normal of the walls. Thus,
the energy stored in any wave in a direction different from 90◦ will be bounced
back to the interior of the domain.

Another way to understand the cause of these results is by means of the sta-
bility analysis technique proposed in section 3.4. Using the same physical pa-
rameters as in the example case the numerical parameters dt = 0.2µs, h =

0.1mm and assuming perfect tetrahedral elements (α = 1) it is found:
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Table 3.5 – Eigenvalues of the integration
methods. L = 0nH

QSEI QSSC DYN

FEM
- - -1

0.164 0.303 -0.436
0 0 0

Circuit
-0.034 -0.034 -0.034

0 0 0

Table 3.6 – Eigenvalues of the integration
methods. L = 115nH

QSEI QSSC DYN

FEM
- - -1

0.164 0.303 -0.436
0 0 0

Circuit
0.923 0.923 0.923

0 0 0

In order to have a time-integration scheme that is stable, the first requirement
is that the norm of the system eigenvalues should be less than one. This guar-
antees that for null input the solution will always decay to zero. A spectral
radii (maximum eigenvalue norm) inferior to one allows filtering the response
of higher modes that are spurious responses from the numerical spatial dis-
cretization [Noh et al. 2013; Hilber et al. 1977].

In tables 3.5 and 3.6 we present the eigenvalues resulting from the stability
analysis. The first set of eigenvalues are associated to the time-integration
scheme of the FE model whilst the second one corresponds to the electric cir-
cuit. We first notice that for the Newmark method, the spectral radii is equal
to one. It means that any numerical perturbation may (and will) have reper-
cussions on the output response. For instance, the bouncing waves inside the
air box.

The second row in tables 3.5 and 3.6 tell us that, for instance, the QSEI ap-
proach has more numerical filtering or damping that the other two options.
This is the reason why we observed a faster convergence towards the analytic
solution for QSSC and DYN as the time-step is reduced.

Looking at the eigenvalues resulting from the circuit parameters, it is evident
that the machine inductance has an important weight. For Lm = 0nH the
eigenvalue (table 3.5) is almost null (0.034) while for Lm = 115nH is 0.92 (ta-
ble 3.6). This is why, when looking at figure 3.12 no spurious oscillations ap-
pear, in contrast to 3.13 where the spurious solutions of the dynamic model
are highly amplified.
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3.4.2 Energy Analysis

It is known that regardless all the advantages of EMF process, it remains quite
an inefficient method in terms of energy because the ratio between the input
energy (stored in the capacitors) and the actual energy used to achieve the
plastic deformation is quite low. Psyk et al. 2011 report that the efficiency rate
is between 2% and 25%, the largest is achieved mainly in free expansion cases
and the normal expectation should be around 5%. Hence, the importance to
characterize the energy distribution and losses throughout the process.

Returning to fig. 3.5 we can establish the following energy balance

70



3.4. Stability Analysis

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

E
n

e
r
g
y

 [
J
o

u
le

s]
 

Time [µ-sec] 

Energy Balance - Analytic - Case 1 

Available (FEM)

R1

R2

L1

L2

M

M

Fig. 3.14 – Analytic energy balance at the inductor-work piece level. Case1.
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E0 = ECm + ERm︸︷︷︸
losses

+ ELm︸︷︷︸
Reactive

+Eavailable (3.64)

1

2
CmV

2
0 =

1

2
CmVc(t)

2 +Rm

∫ t

0

i(τ)2 dτ +
1

2
Lmi(t)

2

+

∫ t

0

V (τ)i(τ) dτ (3.65)

The available energy is then subdivided into

Eavailable = EL1 + EL2 + EM︸ ︷︷ ︸
Actual usable energy

+ER1 + ER2 (3.66)

3.4.2.1 Energy balance at the inductor - work piece level

By means of the analytic model we can understand how the energy is balanced
at the inductor - work piece level, we see in fig. 3.14 and fig. 3.15 that the en-
ergy is mainly stored as magnetic energy at the beginning of the process, from
where the Lorentz forces will be generated. Thermal losses will appear even-
tually but they become important after the main impulse is given. This energy
will contribute to the adiabatic heating of the piece during the deformation
process.

3.4.2.2 Energy balance at the machine level

Using the input parameters for the machinery plus the output electric current
and potential from the FE model it is a straightforward computation to obtain
the energy balance evolution at the machinery level. Figures 3.16 and 3.17
show the energy balance for case 1 and 2 respectively. It is found that the FE
model allows predicting almost the same energy distribution as in the analytic
model. This ensures that no numerical diffusion was introduced due to the
space or time discretization. The small difference in the behaviour could be
attributed to the volumetric effects taken into account by the finite elements
discretization. Namely, the wave propagation within the solids, the skin effect
and probably, the reflection of wave due to the boundaries of the FE domain.
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ical time integration of the current and
potential outputs. Case 1. Straight lines
correspond to the analytical solution,
Mark plots correspond to the FE output.
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3.5 Parallel computation

3D simulation of coupled electromagnetic/solid mechanics/heat transfer prob-
lems usually lead to large number of increments and can be CPU time inten-
sive. Today’s computational technology enables to breakdown the problem by
means of parallel machines allowing either to reduce the cpu time or increase
the level of complexity of the problems we can deal with while preserving rea-
sonable execution times.

3.5.1 Partitioning paradigm

In the following paragraphs we will describe the methodology behind the par-
allel resolution of the electromagnetic equations:

3.5.1.1 Mesh partitioning - SPMD

Data parallelism in FORGEr and in Matelec follows the Single Program on
Multiple Data strategy (SPMD). This method consists in the following idea

Each processor runs a complete version of the code, with a data set
containing the triangulation of the surface of the tools and a mesh
of a sub-domain associated with it. This involves only few change
in the data structure of the sequential code, which needs only to deal
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with a new type of boundary: The interface between domains[Coupez
et al. 1996].

Ω

1Ω 2Ω

3Ω 4Ω

Partitioning

Elements Nodes Edges

Fig. 3.18 – Scheme of the domain partitioning in the parallel computation context.
The meshing program generates sub-domains in which elements belong to a single
domain, nodes are shared at the interface and edges are also shared following nodal
partitioning paradigm.

The electromagnetic parallelism is an extension of the strategy adopted in
FORGE in which, as shown in fig. 3.18, elements are locally known for each
domain. Nodes have their own local numbering for each domain and an ad-
ditional array is created within each partition in order to recognize that a given
interface node j in partition p is the same as node k in partition q. Edges fol-
low the nodal structure, we add as well the information of the edge sign at the
interface because it might happen that the edge is oriented in the opposite
direction in the neighbouring partition.

3.5.1.2 Matrix and Vectors Assembly

The solver today includes two approaches:

• A FORTRAN layer for data management and pre/post-processing plus a
PETSc (C++) [Balay et al. 2014] layer for the actual resolution step.
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3.5. Parallel computation

• A single FORTRAN layer with an in-house built iterative solver based on
the Conjugate-Gradient method.

This strategy was adopted because the PETSc library offers a large variety of
solution and pre-conditioning methods that can be easily adopted for differ-
ent kind of problems.

Also, one of the limitations of parallel computing is that as we increase the
number of partitions we also increase the number of interfaces. These inter-
faces imply a communication step. Since communicating a partitioned data
can be more time consuming than performing a single operation in a given
cpu, we can reach a "saturation point" where the parallel performance starts
to decline (see fig. 3.19) as the number of processors increases. This is brought
by a competition between the actual computation time versus the communi-
cation time, which under the scope of Strong Scalability3 will rapidly increase.

)(
)1(

 UpSpeed
Nptime

Nptime =
=

Np1 2 K

1

Fig. 3.19 – Speed up of parallel computing.

Among the several operations performed within a FE code there are two that
are core for the resolution of the involved linear systems. The first is the vector
dot product (a = {x} · {y}) and the second one is the matrix-vector product
({y} = A · {x}).

The PETSc library enables to minimize the communication during the matrix-
vector product by storing matrix A in such a way that each processor knows

3In parallel computing there are two classifications for its performance: (1)Strong scala-
bility which measures, for a given problem size, the obtained speed up in processing time as
the number of cpus increases. (2)Weak scalability which looks at the difference in process-
ing time for proportional increase in problem size and resources. Namely, if we double the
resources we also double the problem size and expect the time to be almost the same.
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the full global rows of A. In this way, the operation yi = Aijxj for a given de-
gree of freedom i doesn’t need any communication.

In the single Fortran layer setup the matrix is known by parts because each
processor only assembles its local elements. This means that we will have par-
tial values y(p)

i that have to be added up at each iteration (yi =
∑

p y
(p)
i ).

From the previous paragraphs we then see that in PETSc we have an initial
communication and assembly work in order to know globally the rows of ma-
trix Aij and avoid subsequent communications due to matrix-vector prod-
ucts. In our in-house model, the initial assembly is always minimal but we
do need to perform the communications for the product.

3.5.1.3 Iterative Solver

For the resolution of the large linear system originated from the EM equations
we use an iterative resolution strategy based on the Pre-conditioned Conju-
gate Gradient (PCCG) method (using diagonal preconditioning).

The Conjugate Gradient (CG) method is an optimization strategy that allows
solving problems in the form Ax = b by minimizing the cost function

Φ(x) =
1

2
xTAx− xT b

In principle, this technique can be applied (only guaranteed to work) for sym-
metric positive definite (SPD) matrices. One way of enlarging the range of ap-
plication and optimizing the convergence properties of the method is by using
a preconditioner. Let’s denote M as the preconditioner matrix that has SPD
properties.The conjugate gradient is then applied to the symmetrized precon-
ditioned system (

M−1/2AM−1/2
)
M1/2x = M−1/2b (3.67)

Instead of using M−1A that in general can be non-symmetric. The main ad-
vantages of this strategy is that (a) we retrieve a symmetric system, meaning
that the CG method converge. (b) The spectrum of the matrix

ρ(M−1A) = ρ
(
M−1/2AM−1/2

)
< ρ(A)

meaning that we will improve the convergence rate of the method. An esti-
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mate of the number of iterations required given a certain tolerance value for
the error ε for the CG method is

nCG ∝
√
ρ(A)

2
(− log ε) (3.68)

nPCCG ∝
√
ρ(M−1A)

2
(− log ε)⇒ nPCCG < nCG (3.69)

For a demonstration of the above statements we recommend the reading of
[Dolean et al. 2015]. For the actual algorithm we do not need to compute
M−1/2 but only to apply M−1 as shown in the algorithm 2.

The preconditioning is done by means of the Jacobi preconditioner. It con-
sists on pre-multiplying by the inverse of the matrix diagonal. If we borrow
the MATLAB notation, from where diag(A) returns a vector array containing
the diagonal terms of matrix A and diag(diag(A)) creates a matrix full of ze-
ros except for the main diagonal filled with the vector’s elements then M =

diag(diag(A)).

Algorithm 2 Pre-Conditioned Conjugate Gradient (PCCG) Method
Initialization
r0 = b− A · x0

z0 = M−1 · r0

p0 = z0

relative residual: ρ0 = 1

i = 0

while ρi > tolerance and i < Nmax do
ρi = ri · zi
qi = A · pi
αi = ρi

pi·qi
xi+1 = xi + αipi
ri+1 = ri − αiqi
zi+1 = M−1 · ri+1

ρi+1 = ri+1 · zi+1

βi+1 = ρi+1

ρi

pi+1 = zi+1 + βi+1pi
i = i+ 1

end
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3.5.2 Test case

In the following we present a case that puts in evidence this distinction but
more importantly, it tell us that for our edge-based problem of solving the
electromagnetic equations, the in-house code outperforms the initial global
assembly offered by the PETSc library.

The study case corresponds to a 2◦ 3D cut of the EM forming machine avail-
able in our facilities. The geometry of the coil is described in fig. 3.20. It is a
pancake-like coil with an internal diameter of 30mm and an external diameter
of 132mm. A flat aluminium sheet is placed at 0.5mm distance from the top
face of the coil. For the simulation, the two solids are surrounded by an air box
of 60mm× 104mm.

(a) Top view of the coil.

60

76

80

104

76

15

(b) 2◦ model.

Fig. 3.20 – Pancake-like coil at CEMEF.

The boundary conditions are defined as follows: two magnetic symmetry planes
at the cutting surfaces. The rest of the surfaces are considered free. A zero po-
tential condition is prescribed at the output nodes of the inductor. For the
input condition we consider an initial potential of Vo = 2500V olts. The ma-
chine is characterized by a resistance Rm = 40mΩ, inductance Lm = 69nH

and capacitance Cm = 552µF . In order to apply the correct conditions to each
turn of the coil we pre-multiply each face by the scaling factor
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fi =
θi

360

ri
〈r̄〉

Vi = fi

(
V0 +

1

Cm

∫ t

0

I(τ)dτ +RmI(t) + Lm
dI(t)

dt

)
(3.70)

Where i represents a given sub-turn of the coil. θi = 2◦ for all. ri is computed
from the center of the face of each turn to the central axis and, 〈r̄〉 = 1

N

∑N
i ri.

Fig. 3.21 – Model mesh.

The model is discretized using an isotropic mesh with progressive size refine-
ment. In fig. 3.21 we observe that large elements (approximate size 4mm) are
present on the outskirts of the air mesh. The smaller elements are located
at the bottom face of the aluminium plate facing the inductor with a size of
0.1mm. This leads to a mesh of 124688 nodes 640940 elements and 792799
edges. The inductors outer borders are meshed with 0.2mm length elements.
Besides the length size we also set the time step to 0.2µs for this test case.
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Fig. 3.22 – Analysis of the parallel computing performance of the implemented solv-
ing methods.

The results shown in fig. 3.22 correspond to the resolution of the first incre-
ment of the electromagnetic problem coupled with the circuit model. We
focused on this step because it is always the one demanding more cpu time
due to assemblies and the fact that since no previous solutions are known the
solver takes more iterations between the FE system and the circuit to find the
solution. From here we can draw the following results:

• The total time expended to compute the first increment of our simula-
tion is always shorter when using the in-house Fortran solver.
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• From the speed up graph we see that for PETSc in 2 and 4 processors, we
actually obtain a slow down with respect to a single processor.

• We find an optimum for the in-house code at 16 cores, then we have a
slowdown in the performance. On the other hand, PETSc seems to have
a more stable growth curve. It would be interesting to test with even
more processors.

• The PETSc assembly is extremely expensive. With a single processor we
already see that the assembly time is 5times slower than with the in-
house code. 2 procs⇒ 1300times slower. 32 procs⇒ 300times slower.

• If we subtract the assembly time from the total computation time we
observe that PETSc is actually more efficient up to 12 processors. We
would expect the computation to be actually more efficient due to the
reduction in cpu time by the lack of communication during the matrix-
vector product. Nevertheless, the solver time of the in-house code seems
to be better than the PETSc code for more than 12 procs.

Once the first increment have been solved, the performance of both codes are
comparable. But since in the following we are going to be interested in per-
forming continuous coupling between the electromagnetic resolution and the
thermo-mechanical resolution, it means that we will constantly need to pass
through the assembly stage of the EM code. We have seen that the assembly
is actually the weak aspect of the PETSc interface. From these results, we will
favour the use of our in-house code for any application that can be simulated
with less than 32 processor.

3.6 Conclusions

In this chapter we have reviewed and established the numerical tools needed
to model the electromagnetic problem in terms of finite elements analysis. It
was observed that due to the presence of the curl operator in the EM equations
it is needed to adapt the elements formulation, specifically by using the Ned-
elec edge elements [Nédélec 1986]. They eliminate spurious solutions that
would arise if classical Galerkin elements would be used [Jin 2002] and also
simplify the definition of the electromagnetic boundary conditions.
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At the beginning it was said that there exist two main competing methods for
simulating the electromagnetic problem: Finite elements for the solid bodies
and boundary elements for the air or full finite elements for all materials. The
choice of using the latter as our simulation strategy was driven by the simplifi-
cation of handling the equations within a single framework. Namely, the bod-
ies are different from one another solely by the material parameter definitions.
Also, since the approach produces a single linear system for the resolution of
the magnetic potential the parallelism is also simplified. We have compared
two parallel strategies for the simulation. The first using the well known PETSc
library as an external package and the second one with the in-house solver
fully coded in Fortran. One of our key findings was that the assembly process
of matrices in the PETSc solver was highly inefficient when compared to the
in-house code, at the point of putting most of the computational strain in the
assembly stage. Our results are limited to the use of 32 processors. It would
be necessary to test larger problems in order to evaluate the performance for
massive computations

We realized that in order to relate the numerical simulation process to the ac-
tual experimental settings it was necessary to include a model describing the
machinery behind the electromagnetic forming process. This was done by
an electric circuit scheme which coupled with the boundary conditions of the
FE module simplifies the piloting of the simulation. Then, we recognized as
well that in order to analyse the stability properties of our numerical scheme
it was not enough to focus only on the FE system, but also to take into account
the influence of the coupling with the circuit model. This led to an analy-
sis scheme where the FE system was compacted into a scalar representative
equation, and by input of the circuit equation and also the time derivatives it
was possible to study the coupled system. We see as a perspective to enlarge
this analysis to the thermo-mechanical/electromagnetic simulation.

The results obtained from the comparison with the analytic case showed a
good agreement with the numerical results. It also allowed to confirm the
quasi-static approach for the simulation of the electromagnetic wave prop-
agation phenomena. This case also pointed out that a great part of the ener-
getic losses experienced in the process can happen in the electric circuit con-
nected to the coil.

82



Chapter 4

Computational Modelling of the
Coupled Problem - Objects motion
in the immerse FE approach

Contents
4.1 Solid Mechanics Modelling . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 90

4.1.2 Contact and friction modelling . . . . . . . . . . . . . . 90

4.1.3 Weak or variational formulation . . . . . . . . . . . . . . 92

4.1.4 Spatial discretization . . . . . . . . . . . . . . . . . . . . 93

4.1.5 Time discretization . . . . . . . . . . . . . . . . . . . . . 95

4.2 Heat Transfer Modelling . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . 98

4.2.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Global algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Automatic pre-meshing using the skin effect . . . . . . . . . 104

4.5 R-adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Non-linear springs . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Solution strategy . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Field transport in electromagnetism . . . . . . . . . . . . . . 109

4.6.1 Field Transformation - element wise . . . . . . . . . . . 110

83



Chapter 4. Computational Modelling of the Coupled Problem - Objects
motion in the immerse FE approach

4.6.2 Field Transformation - node wise . . . . . . . . . . . . . 112

4.6.3 Validation of the transport methodology . . . . . . . . . 113

4.7 Data research in parallel computation . . . . . . . . . . . . . 115

4.7.1 Domain Hierarchy: Shape resemblance ranking . . . . 116

4.8 Computational Time Analysis . . . . . . . . . . . . . . . . . . 119

4.8.1 Remeshing and Preparation . . . . . . . . . . . . . . . . 120

4.8.2 R-adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8.3 Field Transformation . . . . . . . . . . . . . . . . . . . . 123

4.9 Study Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9.1 Ring Expansion . . . . . . . . . . . . . . . . . . . . . . . 125

4.9.2 Magnetic Pulse Welding aluminum on copper (MPW2024)132

4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

84



Résumé: Modélisation numérique du problème cou-

plé thermomécanique-électromagnétisme

Dans ce chapitre, nous explorons la méthodologie globale nécessaire pour
mettre en place une simulation couplée entre le module électromagnétique et
le module thermomécanique. Nous travaillons avec une stratégie de couplage
séquentiel qui permet de traiter les différentes physiques de façon individu-
elle, tout en permettant leur interaction à chaque pas de temps.

L’approche des objets complètement immergés utilisée pour le maillage du
problème électromagnétique nécessite des techniques d’adaptation de mail-
lage. Ces dernières permettent de suivre le déplacement et la déformation
provenant du calcul mécanique et de l’imposer au maillage de l’air. La pre-
mière technique implémentée consiste à générer le maillage de façon automa-
tique afin d’adapter la taille des éléments selon les matériaux utilisés. Elle
combine le phénomène de la profondeur de peau avec l’utilisation des boîtes
de taille de maille qui augmente progressivement. L’objectif principal de cette
approche est de concentrer la plupart des éléments autour des solides. Nous
avons ajouté le paramètre "distance à la bobine" qui permet de réduire la zone
affectée par la taille de maille la plus fine, mais en fonction de la valeur at-
tribuée à ce paramètre la zone affectée est perdue lorsque la pièce s’éloigne
de la bobine. Nous avons constaté que cela permet de réduire le nombre des
inconnues du système.

Une question à laquelle nous n’avons pas encore répondu est l’effet que cela
pourrait avoir sur les résultats physiques et la précision du calcul. Néanmoins,
étant donné que l’effet de l’induction diminue rapidement avec la distance,
nous ne prévoyons pas un grand impact. Une fois que la force induite a diminué,
le principal moteur du processus est l’inertie acquise. La deuxième technique
est basée sur la méthode de relocalisation nodale sur la base d’une analogie
avec des ressorts non-linéaires. L’un des avantages principaux est qu’il per-
met de maintenir un maillage unique à travers plusieurs incréments de temps
avec un coût minimum. Le temps consacré à résoudre le déplacement des
nœuds dans l’air est inférieur à 1% par rapport à un incrément donné.

Une fois le problème de gestion de maillage réglé, reste à résoudre le trans-
port des données en raison du changement topologique dans la discrétisation
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géométrique. Les données liées au potentiel-vecteur magnétique posent la
question de l’interpolation des valeurs entre les maillages. Le problème a été
résolu par l’introduction d’une méthode de transport basé sur trois étapes:

1. Les données aux arrêtes se transforment en données de points sur les
points d’intégration.

2. l’interpolation se fait entre les points d’intégration de l’ancien maillage
et les points d’intégration du nouveau maillage.

3. Ces données aux points d’intégrations sont transformées en données
aux arêtes dans le nouveau maillage.

Ce procédé introduit un nouveau système linéaire qui doit être résolu et qui a
les mêmes dimensions que le problème électromagnétique d’origine. Néan-
moins, sa résolution est moins chère que le problème initial puisque la ma-
trice associée à la transformation a un meilleur conditionnement.

Un autre aspect qui a besoin d’être amélioré est l’étape d’interpolation. Le
problème principal est lié au fait qu’une fois qu’un nouveau maillage est généré,
le partitionnement parallèle est perdu et une nouvelle partition est créée. Étant
donné que ce partitionnement est aléatoire, l’optimalité du processus de recherche
des données est difficile à évaluer.

Dans l’aspect physique du processus, nous avons vu que la simulation par
éléments finis a permis de prendre en compte l’effet de la distribution tri-
dimensionnelle du champ magnétique. En fonction du matériau et / ou de
la géométrie, cette distribution peut aller dans le sens contraire du processus.
La présence des forces de Lorentz sur la face opposée de la pièce de travail
peut impliquer un ralentissement de l’accélération de la pièce.

Il est dit dans la bibliographie que le chargement rapide est au centre des
avantages que nous pouvons en tirer du processus. Il y a deux phénomènes
qui jouent en cette faveur. D’un côté, nous avons le chargement rapide qui se
transforme en énergie inertielle. L’inertie contribue au ralentissement et à la
redistribution des points de nucléation des fractures au niveau microscopique
comme montré par [Molinari et al. 2014]. Nous avons regardé de plus près
le second mécanisme qui est lié à l’arrêt rapide contraint du matériau. La
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dynamique rapide en cas de collision augmente l’effet de l’inertie et les con-
traintes (moules, matrices) aident à contenir la déformation du matériau.

Ces phénomènes vont de pair avec la réduction du retour élastique, qui est
produit par la mécanique d’ondes de choc. Nous pourrions postuler que, si
les conditions d’impact sont appropriées pour générer au moins un régime
à double vague comme expliqué dans chapter D, le retour élastique pourrait
être complètement éliminé.
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Increase in the complexity of numerical simulations for forming applications
with large amounts of deformation demands inclusion of remeshing or mesh
adaptation techniques that allows the fulfillment of the simulation. Extensive
documentation exists regarding all the different aspects related to remeshing,
mesh adaptation and/ or recovery of fields for mechanical problems, see for
instance Zienkiewicz et al. 2000. However, little work has been done regard-
ing the application of these techniques to electromagnetic computations. We
found some references in the field of error estimation and mesh adaptation in
the works of Zhelezina 2005; Tang et al. 2009. Most of these works however,
deal with static domains and focus on improving the finite elements mesh
within a single time increment.

In applications such as electromagnetic forming or induction heating with
moving coils, in which electromagnetism is coupled with thermo-mechanics,
it is necessary to devise a methodology that enables to follow the movement
and/or deformation of the solid parts. One approach relays on the use of
boundary elements (BE) for the wave propagation phenomena in the air as
in L’Eplattenier et al. 2009; L’Eplattenier et al. 2012.This eliminates the need
for adaptation of the air mesh but increases the cpu cost due to the resolution
of the linear system due to the full-matrix nature of BE methods. Also, this
approach requires a complex strategy to allow parallel computation as shown
in [L’Eplattenier et al. 2010]. Another approach consists on using full finite
elements discretization for the whole domain, allowing a simpler definition
of the domain in computational terms. In this case it is needed to include
a methodology allowing to track the displacement/deformation of the solids
that are immersed in the air.

Three main types of mesh adaptation methods are usually described in litera-
ture:

• r-adaptation: The mesh topology is preserved and the nodes are relo-
cated in order to smooth the mesh.

• h-adaptation: The mesh is modified by reducing or enlarging the ele-
ments size (h) locally.

• p-adaptation: The mesh topology and grid are preserved and the degree
of interpolation (p) is modified locally. This technique is mainly used
for increasing accuracy but does not tackle the problem of movement,
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meaning therefore it is not interesting in our study.

For the development of our model a combination of h- and r-adaptation are
used. As it will be shown, r-adaptation is rather fast with respect to the reso-
lution of the electromagnetic problem (almost negligible) but is limited by the
amount of distortion the mesh can endure. h-adaptation allows moving for-
ward at the cost of regenerating the mesh, which induces computational costs
related to mesh management and matrix allocations.

In the first part of this chapter we will do a review of the theoretical back-
ground of the mechanics and the heat transfer problem, describing how they
are handle within the framework of FORGErfollowing the works of [Mocellin
1999; Wagoner et al. 2001; Pelissou 2005]. We then discuss the global algo-
rithm that rules the coupling between the electromagnetic module and the
thermo-mechanical one. The rest of the chapter is dedicated to the meshing,
the nodal relocation strategy and data transport for edge elements, necessary
after a remeshing step.

4.1 Solid Mechanics Modelling

One way of categorizing solid mechanics simulations is to consider: (a) Struc-
tural mechanics resistance, where the main focus is to stay in small deforma-
tion regimes. In this case, it is advisable to formulate the continuum and dis-
crete problem in terms of displacements. (b) Forming processes, usually sub-
jected to large deformations of the material for which a formalism in terms
of velocities is more adapted. In this section we present the mixed veloc-
ity/pressure formulation that improves the stability and convergence require-
ments in numerical terms [Coupez 1991; Hachem 2009].

We recall that the principal equations defining the flow of matter are given by
the conservation of momentum and the conservation of mass

ρ
d #»v

dt
= ∇ · S −∇p+ ρ

#»

b

∇ · #»v = −1

ρ

dρ

dt

Where ρ represents the mass density, #»v the velocity field, S is the deviatoric
stress tensor and p the hydrostatic pressure,

#»

b represents the volumetric body
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forces such as gravity and Lorentz induced forces.

As these equations are mathematically and physically incomplete it is needed
to include the behavior laws relating the stress and strain states as shown in
section 2.4.5, as well as initial and boundary conditions.

4.1.1 Boundary Conditions

Ω

vΓ

tΓ

cΓ

Tooln̂

t
�

frΓ

Fig. 4.1 – Boundary conditions of the mechanical problem

Lets consider a solid body Ω as described in fig. 4.1. Lets call its external
boundary Γ = ∂Ω. The boundary is decomposed in several parts depending
on the type of loading as follows: Γ = Γfr ∪ Γt ∪ Γv ∪ Γc where

• On the free surface Γfr the normal stress vector equals zero: σ · n̂ = 0.

• We can explicitly define the normal stress in Γt by imposing σ · n̂ =
#»
t .

• A velocity #»v imp can be imposed on Γv in conditions such as perfect sticky
contact with a rigid tool.

• More generally, the contact with a tool (rigid or deformable) is defined
on Γc. We review the considerations regarding mechanical contact and
friction in the next paragraph.

4.1.2 Contact and friction modelling

Computation of contact is done by means of the following steps
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Fig. 4.2 – Scheme of the penetration distance condition between colliding objects.

4.1.2.1 Computation of contact distance

Considering a pointM belonging to the deformable part, the contact distance
is defined positive if the node is outside the tool, zero for perfect contact and
negative if penetration occurs, see fig. 4.2a. It is computed as the projection of
the vector joining the points M and P onto the outward normal of the body

δ =
#     »

MP · n̂ (4.1)

4.1.2.2 First order update

Assuming that at time t the contact distance δt > 0 it is needed to guarantee
that δt+∆t ≥ 0 (fig. 4.2b). If not, nodal displacements should be corrected.
The condition is established under two hypotheses: (a) Small time step, from
where

δt+∆t =
#                          »

M t+∆tP t+∆t · n̂t+∆t

δt+∆t ' δt + ∆t
dδ

dt
(4.2)

(∗)dδ
dt

=
d

dt

#     »

MP +
#     »

MP · dn̂
dt

=
(

#»v ttool − #»v t
)
· n̂t +

#         »

M tP t · dn̂
t

dt
(4.3)

(b) Flat surface during the time step increment
(
dn̂t

dt
= 0
)

⇒ δt+∆t ' δt + ∆t
(

#»v ttool − #»v t
)
· n̂t (4.4)

Since δt+∆t ≥ 0 and #»u t ' ∆t #»v t

h( #»u t) =
(

#»u t − #»u ttool
)
· n̂− δt ≤ 0 (4.5)
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4.1.2.3 Signorini or dual Conditions

Verification of contact condition in the master/slave framework typically fol-
lows the Signorini conditions. We have already presented the first condition in
eq. (4.5). The second condition is given by the pressure at contact: The normal
stress σn =

(
σ · n̂

)
· n̂ is negative if there is contact or equal to zero for a free

surface. Hence σn ≤ 0. The last one - or the dual condition - comes from the
fact that either the surface is free σn = 0 or there is contact h( #»u t) = 0. So we
can summarize the three conditions as

σn ≤ 0 on Γc

h( #»u t) ≤ 0

h( #»u t)σn = 0

(4.6)

4.1.3 Weak or variational formulation

For the mixed velocity/pressure formulation lets note V the space of admissi-
ble velocities, V0 the space of admissible velocities at zero1, andP the space of
admissible pressures, then

V =
{
v ∈ (H1(Ω))

3
/ (v − vtool) · n̂ ≤ 0 on Γc

}
V0 = {v ∈ V / v · n̂ ≤ 0 on Γc}
P =

{
L2(Ω) /

∫
Ω
pdΩ = 0

} (4.7)

We define by means of the principle of virtual work, the variational or weak
formulation of the conservation equations ∀(v∗, p∗) ∈ V0 × P

〈ρd
#»v
dt
, v∗〉+ 〈S, ε̇(v∗)〉 − 〈p,∇ · v∗〉 − 〈 #»

t , v∗〉|Γc = 〈ρ #»

b , v∗〉 ∀v∗ ∈ V0

〈p∗,∇ · #»v 〉+ 〈p∗, 1
ρ
dρ
dt
〉 = 0 ∀p∗ ∈ P

(4.8)

Depending on the rheology model selected this formulation can be further
modified. We will leave it at this stage as the reference equation for the subse-
quent finite element discretization.

1Meaning the velocities of the body relative to the tool
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4.1.4 Spatial discretization

At this point we have defined the continuous variational problem. In order
to define the discrete form for the finite element formulation we define the
subspace Ωh ⊂ Ω which consists in a set of finite elements as shown in fig. 4.3
(h represents the mesh size).

Fig. 4.3 – Finite elements discretization of a physical domain Ω into smaller sub-
domains Ωk.

The solution of the variational problem is now sought in the approximation
subspaces (Vh,Ph) where the approximate solution (vh, ph) is to be found.

The strong coupling between the fields v and p has as consequence that the
selection of the approximation subspaces can not be chosen freely, neither
independently. In order to guarantee existence and uniqueness of the pair
(vh, ph) it is mandatory to verify the compatibility condition of Brezzi-Babuska.

4.1.4.1 P+
1 /P1 elements, Velocity/pressure modeling

The mixed P+
1 /P1 element (fig. 4.4) was devised as a natural way of satisfy-

ing the Brezzi-Babuska condition without the need for artificial stabilization
[Arnold et al. 1984; Coupez 1991].

bubble

+

1P 1P

Fig. 4.4 – 2D scheme of a P+
1 /P1 element. The velocity is defined for all the nodes plus

the central node (bubble) within the element (P+
1 ) and the pressure is defined only for

the nodes (P1).
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As for a classical P1 element, the velocity and pressure fields are interpolated
linearly between the nodes of the element. The special characteristic is the
addition of an internal node or bubble (as is some times called) to enrich the
velocity field. The interpolation function of the bubble is a linear piece-wise
function equal to 1 on the central node and equals zero over the external faces
of the tetrahedron in 3D, it is continuous within the sub-tetrahedrons. This
approach is summarized in eq. (4.9) where the velocity is written as the su-
perposition of a linear term #»v l plus the term arising from the bubble #»v b, the
pressure only has the linear component. #»v h = #»v l + #»v b =

∑Nn
i=1

#»v liϕi +
∑Ne

k=1
#»v bkϕ

b
k

ph =
∑Nn

i=1 piϕi
(4.9)

Nn represents the total number of nodes and Ne the number of elements. ϕi
is a nodal scalar linear interpolation function and ϕbk the scalar interpolation
function for the bubble which is non-zero only within a single element.

The introduction of the bubble term in the element requires to modify the
variational formulation as follows.
〈ρ d

dt
#»v l, v

∗
l 〉+ 〈ρ d

dt
#»v b, v

∗
l 〉+ 〈S( #»v l + #»v b), ε̇(v

∗
l )〉 − 〈p,∇ · v∗l 〉 − 〈

#»
t , v∗l 〉|Γc = 〈ρ #»

b , v∗l 〉
〈ρ d

dt
#»v l, v

∗
b 〉+ 〈ρ d

dt
#»v b, v

∗
b 〉+ 〈S( #»v l + #»v b), ε̇(v

∗
b )〉 − 〈p,∇ · v∗b 〉 − 〈

#»
t , v∗b 〉|Γc = 〈ρ #»

b , v∗b 〉
〈p∗,∇ · #»v l〉+ 〈p∗,∇ · #»v b〉+ 〈p∗, 1

κ
ṗ〉 = 0

(4.10)

Since the new term disappears on the faces of the elements 〈 #»
t , v∗b 〉|Γc = 0.

Another property imposed on the bubble space is that it has to be orthogonal
to the nodal spaces. Thus, 〈ρ d

dt
#»v b, v

∗
l 〉 = 〈ρ d

dt
#»v l, v

∗
b 〉 = 0 and 〈S( #»v b), ε̇(v

∗
l )〉 =

〈S( #»v l), ε̇(v
∗
b )〉 = 0. Additionally, a static condensation technique is used for

eliminating the bubble’s inertia term 〈ρ d
dt

#»v b, v
∗
b 〉 [Fortin et al. 1985; Coupez et

al. 1997].

The resulting system is written as a vector of residual equationsR = 〈Rl, Rb, Rp〉t
such that
Rl( #»v l,

#»v b, p) = 0 = 〈ρ d
dt

#»v l, v
∗
l 〉+ 〈S( #»v l), ε̇(v

∗
l )〉 − 〈p,∇ · v∗l 〉 − 〈

#»
t , v∗l 〉|Γc − 〈ρ

#»

b , v∗l 〉
Rb( #»v l,

#»v b, p) = 0 = 〈S( #»v b), ε̇(v
∗
b )〉 − 〈p,∇ · v∗b 〉 − 〈ρ

#»

b , v∗b 〉
Rp( #»v l,

#»v b, p) = 0 = 〈p∗,∇ · #»v l〉+ 〈p∗,∇ · #»v b〉+ 〈p∗, 1
κ
ṗ〉

(4.11)
As this problem is highly non-linear due to the material behavior laws, the
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contact and friction problems, it has to be solved using an iterative process
like the Newton-Raphson algorithm.

4.1.5 Time discretization

To establish the time integration scheme we define the difference between an
increment as the process of advancing from time t to t + ∆t and an iteration
as the process of correcting a given solution by trial and error. A sequence of
iterations will take place at time t + ∆t at which the variables are unknown
fig. 4.5.

t
t tt ∆+

1

2

3

i

�

f

)(tf

)( ttf ∆+

Fig. 4.5 – Iterative time evolution scheme for implicit resolutions.

From eq. (4.11) the condition R = 0 has to be enforced at any given time.
Depending on the time discretization used in eq. (4.11) the residual will con-
tain terms from time t + ∆t as well as from previous time steps. Namely,
R = R(t + ∆t) + R(t). For instance, the time derivatives of the velocities are
approximates as

ρ
d #»v l
dt

=
ρ

∆t

(
#»v

(t+∆t)
l − #»v tl

)
(4.12)

Using a Taylor expansion between a known iteration i and the unknown i + 1

we can write

R(i+1) = R(i) +
∂R

∂y(i+1)
δy(i+1)

0 = R(i)(t+ ∆t) +R(t) +
∂ (R(t+ ∆t) +R(t))

∂y(i+1)
δy(i+1)

∂R(t+ ∆t)

∂y(i+1)
δy(i+1) = −

(
R(i)(t+ ∆t) +R(t)

)
(4.13)

Where y stands for any of the principal variables in the system ( #»v l,
#»v b, p). Defin-
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ing the hessian matrixK eq. (4.14)

Kx,y =
∂R(x, y)

∂y
(4.14)

at each iteration the following matrix system has to be solvedKll Klb KlpKbl Kbb Kbp
Kpl Kpb Kpp


δ #»v l
δ #»v b
δp

 = −

Rl

Rb

Rp

 (4.15)

The final solutions are obtained by the progressive update
#»v

(i+1)
l = #»v

(i)
l + δ #»v l

#»v
(i+1)
b = #»v

(i)
b + δ #»v b

p(i+1) = p(i) + δp

(4.16)

Several simplifications can be done to system eq. (4.15). We already saw that
Klb = Kbl = 0 due to the orthogonality property. Since the bubble is defined
within a single element a local condensation can be done in order to reduce
the number of unknowns. Line 2 of system eq. (4.15) implies

δ #»v b = −(Kbb)−1(Rb +Kbpδp) (4.17)

Reintroducing it into the linear system we obtain the reduced representation[
Kll Klp
Kpl −

[
Kpb(Kbb)−1Kbp −Kpp

]] [δ #»v l
δp

]
= −

[
Rl

Rp −Kpb(Kbb)−1Rb

]
(4.18)

Note: for incompressible materials Kpp = 0. This term is different from zero
in the case of compressible elastic deformation in solids. The final system
obtained here is then solved by preconditioned iterative solvers using PETSc
[Balay et al. 2014].

4.2 Heat Transfer Modelling

While the heat transfer phenomena is not a main source for the loading in
the electromagnetic forming process, its influence can not be neglected be-
cause the short process time does not enable diffusion to take place. Since a
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great part of the energy involved in the process is recovered and lost as heat,
the temperature accumulated within the work piece will modify its material
properties. It may lead to higher mechanical deformation and also modify its
electromagnetic properties such as the electric conductivity or magnetic per-
meability.

In this section we summarize the current modelling strategy for the heat trans-
fer phenomenon. As for the mechanical fields, the resolution consists on a
single field formulation, where the temperature is the principal unknown of
the system.

The heat transfer problem is characterized by the energy conservation princi-
ple

ρCṪ +∇ · #»q = ẇ (4.19)

Where ρ is the material density, C the specific heat, #»q the heat flux, Ṫ is the
total time derivative of the temperature in a lagrangian framework. ẇ is the
heat source or function of heat generation.
The heat flux inside the body is related to the temperature by means of the
Fourier conduction law

#»q = −K∇T (4.20)

The strong formulation is then written as

ρCṪ −∇ · (K∇T ) = ẇ (4.21)

4.2.1 Boundary Conditions

Considering the solid domain Ω of fig. 4.6a and its external boundary Γ = Γ1 ∪
Γ2 ∪ Γ3 ∪ Γ4. The main boundary conditions that can be defined are

• On Γ1 the temperature is imposed to a known value T = Timp.

• On Γ2 the heat flux is imposed to a known value−K∇T · n̂ = φimp.

• Pure convection and radiation are mixed in a single convection coeffi-
cient h by saying h = hcv + hr. Where hcv will depend on external con-
ditions of the air or fluid in contact and hr ' εrσr(T + Text)(T

2 + T 2
ext).

εr represents the surface emissivity and σr = 5.67 × 10−8[Wm−2K] the
Stefan-Boltzmann constant. Then−K∇T · n̂ = h(T − Text)
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Fig. 4.6 – Boundary conditions of the heat transfer problem.
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Fig. 4.7 – 2D scheme of a P1 element with the temperature field defined on the nodes.

• Contact with another solid body will imply a resistive surface contact.
For this, an equivalent convection coefficient for surface conduction hcd
is used. It takes into account the conductivities of the two bodies plus
the surface rugosity that traps air in-between.

4.2.2 Weak formulation

The resolution of the heat transfer problem eq. (4.21) is done by projecting
into the space VT = H1

0 of test functions ϕT for the temperature. Then

〈
ρCṪ , ϕT

〉
+ 〈K∇T,∇ϕT 〉+ 〈hcdT, ϕT 〉 |Γ3 + 〈hT, ϕT 〉 |Γ4 =

〈ẇ, ϕT 〉 − 〈φimp, ϕT 〉 |Γ2 + 〈hcdT2, ϕT 〉 |Γ3 + 〈hText, ϕT 〉 |Γ4 (4.22)

4.2.2.1 P1 elements

The temperature field is found by discretizing the domain with tetrahedral P1

elements having the temperature defined on the nodes of the element as in
fig. 4.7.
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The discrete formulation of the time at any given time t and geometrical point
x is then given by the Galerkin interpolation

T (x, t) =
Nn∑
i=1

Ti(t)ϕi(x) (4.23)

Where Nn represents the number of nodes, ϕi are the linear interpolation
functions for the temperature.
Introducing the interpolation functions into eq. (4.22) we can retrieve the fol-
lowing system of equations

M
∂

∂t
{T}+ K {T} = {Q} (4.24)

Where {T} represent the set of nodal values of the temperature. The matrices
C andK and the source term vector {Q} are defined as

M =

Nelts∑
e=1

∫
Ωe

ρCϕTj ϕ
T
i dΩe (4.25)

K =

Nelts∑
e=1

(∫
Ωe

kϕjϕi dΩe +

∫
Γ3e

hcdϕjϕi dΓe +

∫
Γ4e

hϕjϕi dΓe

)
(4.26)

{Q} =

Nelts∑
e=1

(∫
Ωe

ω̇ϕi dΩe

∫
Γ2

φimpϕi dΓ2

∫
Γ3

hTextϕi dΓ3

∫
Γ4

hcdT2ϕi dΓ4

)
(4.27)

The matrix differential system eq. (4.24) is non-linear because material coef-
ficients and the surface integral terms depend on the temperature solution.
the resolution is done following an implicit scheme for the time integration as
explained below

4.2.3 Time evolution

System eq. (4.32) is discretized in time by means of a two-time-steps method
as follows:

• Equilibrium is computed at a time t∗ such that

t∗ = α1tn−1 + α2tn + α3tn+1

and ∆t0 = tn − tn−1 and ∆t = tn+1 − tn. The parameters α1, α2, α3 are
selected such that α1 + α2 + α3 = 1.
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• The unknown field is also interpolated as

U∗ = α1Un−1 + α2Un + α3Un+1 (4.28)

• The time derivative of the field is computed as

∂

∂t
U∗ =

β1Un−1 + β2Un
∆t0

+
γ1Un + γ2Un

∆t
(4.29)

With γ1 = −γ2 and β1 = −β2 = γ2 − 1.

• Unconditional stability and consistency are guarantee using the rela-
tions

γ2 ≥
1

2
& α1 >

1

2
(1− γ2) (4.30)α2 = 1− α1 + (1

2
− α1)∆t0

∆t
− γ2

2
(1 + ∆t0

∆t
)

α3 = (α1 − 1
2
)∆t0

∆t
+ γ2

2
(1 + ∆t0

∆t
)

(4.31)

• The system matrices and the vector are also described at time t∗ using
the same interpolation as in eq. (4.28) so that

M∗
∂

∂t
U∗ + K∗U∗ = F∗ (4.32)

By substitution of the time derivative and the field description at t∗ it is
found (

M∗
γ2

α3∆t2
+ K∗

)
U∗ = F∗+

M∗
[(

α1γ2

α3∆t
− β1

∆t0

)
Un−1 +

(
α2γ2

α3∆t
+

β1

∆t0
+
γ2

∆t

)
Un

]
(4.33)

And the nodal unknowns at time tn+1 are recovered by

Un+1 =
1

α3

[U∗ − (α1Un−1 + α2Un)] (4.34)

This method allows selecting several sets of parameters that will derive in dif-
ferent numerical performances. For instance, the well known Crank-Nicholson
method would be found for α1 = 0, α2 = 1/2, α3 = 1/2, γ2 = 1, β1 = 0. The
method that proved the best quality of results in the work of Pelissou 2005 was
the Implicit Dupont which is obtained for the set α1 = 0, α2 = 0, α3 = 1, γ2 =
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3/2, β1 = 1/2.

4.3 Global algorithm

Multi-physical coupling is a challenging process since the different specific
space and time lengths require a proper strategy enabling the interaction be-
tween the different aspects (heat-transfer, mechanics, electromagnetism). We
need to distinguish between two concepts. The first one is related to the res-
olution of the linear systems arising from each physics. The second one is
related to the time evolution of the variables of each system and how we allow
them to interact.

• Resolution Strategy

Lets assume we have n systems, each one composed of several state vari-
ables {X}i (where i is the system under consideration). Each system rep-
resents a specific phenomenon on a given physical system. The coupling
between these phenomena can be categorized as

Strong Coupling[A]11 · · · [B]1n

. . .

[B]1n · · · [A]nn


{X}

1

...
{X}n

 =

{f}
1

...
{f}n


All physics are included in a single solver or framework. The main advan-
tage is the accuracy of the results. Its disadvantage comes in the compu-
tational burden to generate the large matrices describing all the physics
together. An application in which this kind of coupling can be necessary
is the resolution of magneto-hydrodynamics (see for instance [Badia et
al. 2012]).
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Weak coupling

[A]11 {X}1 = {f}1 −
∑
j 6=1

[B]1j {X}j

...

[A]nn {X}n = {f}n −
∑
j 6=n

[B]1j {X}j

Each physics is solved individually, coupling is achieved by updating the
inputs of the current system with the solutions found from the previ-
ously solved systems.

• Time evolution

Direct coupling:
It can be applied to either Strong or weak coupling. All system variables
advance together. Several iterations within a single time step will be re-
quired for this approach.

Sequential coupling:
Applies only to the weak coupling scheme. The idea is that during a given
time step increment each system is solved once. The communication
is performed at the end of each resolution but no correction step is re-
quired.

Loose coupling:
Similar to sequential coupling. The difference being that communica-
tion from the electromagnetic resolution is done at the end of the full
time period. This means that for the EM simulation no geometry evolu-
tion is taken into account.

We have selected the sequential approach because it allows a clearer and adapted
management of the simulation without highly affecting the accuracy [Alves Z.
et al. 2014]. Also, it enables taking advantage of the existing technology within
the FORGErsoftware for automatic mesh generation as will be seen after.
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Figure 4.8 shows the global work flow to accomplish a single time step incre-
ment. The coupling between the solvers is driven by the communication of:
The Lorentz volumetric forces (

#»

F L) and the Joule heating term (Q̇J) at each
element of the solid body from the EM module. The temperature evolution
(T ) and the velocity field ( #»v ) or the new position ( #»x ) of the nodes of the solid
body are transmitted from the TM module.

Fig. 4.8 – Global algorithm of the sequential coupling algorithm.

Figure 4.9 shows an example schematizing the actual configuration of the fi-
nite element modeling. The electromagnetic module handles the electric source
(inductor), the work piece and the air for the transmission of the EM waves. In
the thermo-mechanical module we only need to define the work piece if it
corresponds to a free forming case and if necessary any additional object that
serves as tool or matrix for the final shape.

Fig. 4.9 – Configuration of the finite element model for the MPW2024 joining case.
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4.4 Automatic pre-meshing using the skin effect

Using the automatic mesh generation capabilities included within FORGEr
makes it is possible to use the material and process characteristics in order
to generate adapted meshes. In this case we consider the skin effect. This
phenomenon appears when a time-varying current circulates through a solid
conductor, generating magnetic fields that induce eddy currents within the
core of the conductor expelling the electric flow to the outer surface as shown
in fig. 4.10.

H

eddyI

J δ

H

1

37.0

Fig. 4.10 – Skin depth concentration of the electric current.

In a harmonic oscillating regime the skin depth is given by

δω =

√
2ρ

ωµrµ0

(4.35)

Where δω is the depth from the surface in which the current density has dropped
to 0.37(1/e) times its value at the surface. ρ is the material electric resistivity.
ω represents the electric signal frequency. µ0 is the magnetic permeability of
void and µr the relative value for each material. In order to get a time evolution
estimate, the following approximation can be done: Consider the first quarter
of a pulsed signal so that t ∈ [0;T/4] where T is the signal period.

δt =

√
2ρ

µrµ0

T

2π
=

√
ρT

µr4π10−7
=

√
ρT

4π210−7µr

δt[mm] =
106

2π

√
10

ρ

µr

√
t =

(
106

2π

√
10

ρ

µr

√
N

)√
∆t = fm

√
∆t[s] (4.36)
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The element size in the selected domain is then estimated by

h =
δt

Nelts/δ

(4.37)

Where Nelts/δ is a pre-defined number of elements in the skin depth.

Fig. 4.11 – Automatic mesh generation by material parameters considerations. In blue
the air mesh, in red the coil and green the work piece.

Assuming that the values fm and Nelts/δ are known, we then have that the skin
depth and thus the local mesh size are a function of the time step, which is
defined as a simulation parameter. The algorithm will also require a param-
eter "Distance from Coil" Dc. It defines an influence zone on the surface of
the work piece. If we look at figure 4.11 it can be seen how the local refine-
ment on the work piece has been applied in a zone facing the coil. This zone
is bounded by Dc which for the example was set to 0.6mm.

Once all the parameters are set, this algorithm is used to automatically gen-
erate an adapted mesh at the beginning of the simulation setting process as
well as it can be automatically activated during the simulation to regenerate
the mesh as it will be shown.

4.5 R-adaptation

One of the advantages of these type of algorithms is that there is no new mesh
management associated. The domain discretization is kept fix while the adap-
tation is introduced by virtual displacements . The drawback is that the appli-
cability of this method is limited by the obvious distortion of the elements. To
bypass this problem we verify the mesh at the end of the adaptation. If the

105



Chapter 4. Computational Modelling of the Coupled Problem - Objects
motion in the immerse FE approach

quality is not verified, a new mesh will be generated for the subsequent time-
step increment, which is the object of the next section.

Fig. 4.12 – Stages of the nodal relocation method. The surrounding air mesh Ω has to
follow the movement of the internal solids.

Several algorithms can be found in literature to induce virtual displacements
in a mesh given the displacements of some of its boundaries. The most classic
ones are the Laplacian smoothing [Herrmann 1976] methods or the barycen-
tric relocations. The latter allows choosing how the weights associated to the
neighbouring nodes are computed, in case the weights are simply given by
1/N where N represents the number of neighbouring nodes, we get an the it-
erative form of the Laplacian smoothing. Another type of algorithm is based
on virtual springs. In this methods we consider that the elements edges are
elastic springs and the problem could be reduced to a structural mechanics
problem of elastic beams. Several variants and refinements of this technique
can be found, see for instance [Farhat et al. 1998; Degand et al. 2002; Bottasso
et al. 2005; Zeng et al. 2005].

4.5.1 Non-linear springs

Fig. 4.13 – Springs based method.

Lets take a set of springs connected to a single node p as shown in figure 4.13.
The force on p due to the given displacement in node q F̄pq is given by
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F̄pq =

kxpq 0 0

0 kypq 0

0 0 kzpq

 (ūp − ūp) (4.38)

Where kdpq are the non-linear stiffness coefficients defined for each direction
so as to enable anisotropic behaviour. ūi represent the displacement of the
nodes.

The equilibrium is reached when for all nodes.

∑
q 6=p

F d
pq = 0⇔ 0 =

∑
q 6=p

kdpq
(
udp − udq

)
(4.39)

The non-linear stiffness of the springs is defined as in (4.40)

kd,ipq =

∣∣∣∣∣ud,ip − ud,iqxd,tp − xd,tq

∣∣∣∣∣ (4.40)

This strategy seeks to minimize the average deformation by continuously mod-
ifying the stiffness of the edges. When a given element gets excessively dis-
torted it will get extremely rigid and thus force to propagate the deformation
towards the neighbouring nodes.

4.5.2 Solution strategy

Given the non-linear nature of the method we need to chose an iterative algo-
rithm in order to solve it. For the fixed-point resolution of the system it was
chosen to use a relaxed approach using the following scheme

ud,i+1
p = (1− θ)ud,ip +

θ∑
q 6=p k

d,i
pq

∑
q 6=p

kd,ipq u
d,i
q (4.41)

Where θ is the relaxation parameter that we have defined as θ = 2
1+
√

5
(Inverse

of the golden ratio).

It was also selected to work with a matrix-free approach in order to reduce
the memory allocation time. For the iterative resolution of the algorithm in
parallel computation we simply need to define
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SKd
p =

∑
q 6=p

kd,ipq (4.42)

SF d
p =

∑
q 6=p

kd,ipq u
d,i
q (4.43)

Where SK and SF are d × NumberLocalNodes arrays. The sums are first per-
formed over the local nodes belonging to the partitions. Then, the results
are communicated between processes in order to add up the influence of the
neighboring nodes belonging to a different partition as in fig. 4.14. The final
update is then done locally.
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Fig. 4.14 – Scheme of boundary node between two neighboring partitions domains of
the mesh.

Another reason to prefer the iterative-matrix-free method was the easiness to
include symmetry planes constraints into the solver in any specific direction
as described next.

4.5.2.1 Non-constrained symmetry planes

The use of symmetry planes is of great advantage in many FE analyses since it
allows reducing the computational time when the geometry and the physics of
the problem allows it. When a symmetry plane matches with one of the main
directions X, Y or Z we can easily block the displacement by setting ud = 0.
When this is not the case, we can further correct the displacement field by the
iterative approach

ūcorrectedp = ūi+1
p −

(
ūi+1
p · n̂

)
n̂ (4.44)

Otherwise, it would be required to assemble the matrices including all the
degrees of freedom of the system and include rotation matrices in order to
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Fig. 4.15 – Symmetry plane constraint.

transform the plane constraint into a local system for the element to which
the condition is applied.

4.6 Field transport in electromagnetism

Lets consider the two meshes given in figure 4.16, both meshes are supposed
to have the same boundaries while not the same internal topology. Addition-
ally, lets consider a given vector field which is (should be) identical in both
meshes. When the field is represented by point data (on the nodes or integra-
tion points) it is straightforward to transport the field from the old triangula-
tion (mesh) T 1

h to the new one T 2
h by means of an interpolation approach or a

recovery strategy. The edge data available due to the use of Nédélec elements
introduces the difficulty that a single edge in T 2

h may run through several el-
ements in T 1

h . Since it is not a point data, the question is, how should it be
interpolated? Or averaged?

Fig. 4.16 – A given field has to be transferred between two coincident but non-
identical meshes.

We shall first define mapping as the whole process of representing the edge
data in one mesh as edge data in another mesh. This mapping process is di-
vided in three stages categorized in two types of processes as represented in
figure 4.17.

(a) Field Transformation: from edge to point data

(b) Field transport or recovery (mesh to mesh), and

(c) Field Transformation: from point data to edge data.
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Fig. 4.17 – Stages of the mesh-to-mesh data transfer process.

4.6.1 Field Transformation - element wise

Once the different stages have been identified, it is possible to define the math-
ematical expressions for the field transformation. Let

#»

A( #»x ) represent the field
in the original triangulation T 1

h and
#»

A∗( #»x ) the field in the new triangulation
T 2
h . Following the notation from the previous section in eq. (3.14) let Ψ( #»x )

represent the base interpolation function for the edges.

The problem statement consists in finding

#»

A∗( #»x ) ' #»

A( #»x ) (4.45)

Which can also be represented by the minimization problem

min ‖ #»

A∗( #»x )− #»

A( #»x )‖2
(4.46)

Since the field is known in a discrete form

#»

A∗( #»x ) =
∑
j

a∗jΨ
∗
j ;

#»

A( #»x ) =
∑
i

aiΨi (4.47)

Where ai = 〈 #»

A · t̂〉 is the value of the line integral of
#»

A over the edge (i). t̂ is the
tangential unit vector of the edge. (i) and (j) are indexes counting the edges on
T 1
h and T 2

h respectively. Since we are interested in finding
#»

A∗, the minimization
problem is found by projecting

#»

A∗( #»x )− #»

A( #»x ) on the base functions of T 2
h as:
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〈∑
j

a∗jΨ
∗
j −

∑
i

aiΨi,Ψ
∗
k

〉
= 0 (4.48)∑

j

〈
Ψ∗j ,Ψ

∗
k

〉
a∗j =

∑
i

〈aiΨi,Ψ
∗
k〉 (4.49)

Obtaining the linear system

M {a}∗ = b({a}) (4.50)

where 
Mjk =

〈
Ψ∗j ,Ψ

∗
k

〉
System matrix

{a}∗j = 〈 #»

A · t̂〉∗j unknowns

bk({a}) =
∑

i 〈aiΨi,Ψ
∗
k〉 Loading

(4.51)

Notice that the terms ajΨi are known on the triangulation T 1
h while Ψ∗k is eval-

uated on T 2
h . This makes it necessary to include the interpolation or transport

stage before assembling the loading in eq. (4.51).

4.6.1.1 Field Interpolation

(a) Reference element in 3D (b) Scheme of the overlap.

Fig. 4.18 – Reference element for the interpolation of a given field from the integration
points.

The evaluation of the loading terms bk are done by transporting the field values
from the integration points of T 1

h to T 2
h as shown in 4.18. This means writing

bk =

〈∑
i

aiΨi,Ψ
∗
k

〉
=
〈

#»

A∗,Ψ∗k

〉
(4.52)
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Where
#»

A∗ = aΨ|x̄p =

edges∑
i=1

int.p∑
k=1

ωk (aiΨi)|x̄k (4.53)

The weights ωk associated to the integration points of the element in the old
mesh depends on the relative coordinates of the point p: (ηp, γp, ξp) by

ω1 =c (1− ηp − γp − ξp) +

d (ηp + γp + ξp) (4.54a)

ω2 =cηp + d (1− ηp) (4.54b)

ω3 =cγp + d (1− γp) (4.54c)

ω4 =cξp + d (1− ξp) (4.54d)

a =
1

4

(
1− 1√

5

)
(4.55a)

b = 1− 3a (4.55b)

c =
−2a− b

3a2 − 2ab− b2
(4.55c)

d =
a

3a2 − 2ab− b2
(4.55d)

As shown before, this operation is local in the sense that it only requires data
from a single element. It has the advantage as well of not requiring any special
treatment for the interfaces between bodies because each element belongs to
a single body. Lets remember that in the interface between a metallic body
and a non-conductor body a discontinuity of the normal component of the
electromagnetic field may be present (only tangential continuity is enforced).

4.6.2 Field Transformation - node wise

It could also be proposed to use nodal data for the transport of the field but
there are two main inconvenients: (1) Nodal vectors would render difficult
handling discontinuities between interfaces and (2) definition of the bound-
ary conditions are also complicated in term of nodal variables. Nevertheless,
a scheme going back and forth between nodes and edges was tried out and
compared with the previously mentioned method.
The node-to-edge method is described as follows:

Ā(x̄n) =

Nedges∑
j=1

ajΨj(x̄n) (4.56)

ad =
1

Nnodes

Nnodes∑
i=1

t̂ · Ā(x̄n) (4.57)

Nodal values Ā(x̄n) are computed by adding up the contribution of all the
edges converging on the node (eq. (4.56)). Edge values ad are approximated by
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averaging the projections of the nodal vectors on the edge (eq. (4.57)). Nnodes

is the number of nodes belonging to a single edge.

4.6.3 Validation of the transport methodology

Fig. 4.19 – 2D 2 elements test for the field transformation methods.

The test case is a simple unit squared 2D mesh as shown in fig. 4.19. Each ele-
ment contains three basic nodes and three additional virtual nodes in order to
verify whether the data diffusion of the mapping can be reduced. In fig. 4.17
this is noted as 1st or 2nd order accuracy mapping. This category is also ap-
plied for the edge-element mapping, in which 1st order refers to the use of a
single integration point by element while 2nd order refers to the use of the 2nd
order integration points.

The interest behind this case is that it is possible to easily visualize the oper-
ators behind the mapping process. Assuming that some edge data is known,
it is desired to know how the application of these methods will affect the edge
data.


...
ad
...


new

=

[∫
Ω

Ψi ·ΨjdΩ

]−1


. . . · · ·
... ωintΨx ωintΨy ωintΨz

...

· · · . . .


︸ ︷︷ ︸

OPEl2Ed (Transport)


. . . · · ·
...
∑Nedges

j=1 Ψj(x̄int)
...

· · · . . .


︸ ︷︷ ︸

OPEd2El (Transform)


...
ad
...


old

(4.58)

The edge-to-element operator (OPEd2El) and the element-to-edge recovery
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operator (OPEl2Ed) are shown in eq. (4.58). They represent the processes of
transforming the edge data into vectors defined at the integration points (OPEd2El)
and then proceed with the transport or interpolation to the new mesh. The
weight ωint correspond to the ones defined in eq. (4.54). Besides the operators
it is also needed to consider the matrix from the linear system upon which the
mapping process depends.

...
ad
...


new

=


. . . · · ·
... 1

N
tdx

1
N
tdy

1
N
tdz

...

· · · . . .


︸ ︷︷ ︸

OPN2E


. . . · · ·
...
∑Nedges

j=1 Ψj(x̄n)
...

· · · . . .


︸ ︷︷ ︸

OPE2N


...
ad
...


old

(4.59)

Equation 4.59 summarizes the transformation stages by means of the edge-
to-node operator (OPE2N) and the node-to-edge recovery operator (OPN2E).

We recall that a projection of the data into original mesh should return an
identity matrix operator. From this statement it is interesting to see that for
the 1st order scheme of the edge-element mapping noise is induced onto the
data, This is evident from the resulting dense matrix. From the diagonal values
we see that each element of the data array multiplies its own value, and every
element has an influence on the rest. This scheme is obviously not suited for
the process.

1st Order 2nd Order

Ed2El


2.2 −0.8 −1.41 0.2 0.2

−0.8 2.2 −1.41 0.2 0.2

−0.35 −0.35 2 0.35 0.35

0.2 0.2 1.41 2.2 −0.8

0.2 0.2 1.41 −0.8 2.2




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(4.60)

On the other hand, use of the 2nd order approach returns a perfect identity
matrix, meaning that the transformations did not induce any data diffusion.
The difference between both methods lies on the assembly process of the lin-
ear system. The solution of the finite element model returns a linear field on
the elements (P1) but, the degree of interpolation is reduced to P0 if the data
is stored in a single integration point. Thus the noise found after retrieval as a
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P1 data set on the same mesh.

1st Order 2nd Order

E2N


1 0 −0.71 0 0.5

0 1 −0.71 0.5 0

0 0 2 0 0

0 0.5 0.71 1 0

0.5 0.2 0.71 0 1




1 0 −0.47 0 1/3

0 1 −0.47 1/3 0

0 0 2 0 0

0 1/3 0.47 1 0

1/3 0.2 0.47 0 1


(4.61)

In the case of nodes to edges it is observed that in both cases the mapping is
different from identity. This means that numerical noise will be introduced
in the target field. Looking at the non-diagonal terms it is seen that the in-
crease in the number of nodes did slightly reduce the noise but no remarkable
improvement is obtained.

4.7 Data research in parallel computation

Notation: In this section, whenever we refer to processor it will be taken as a
synonymous for a machine cpus core.

When we proceed with a mesh regeneration algorithm in our current solver
there are no means for controlling the location of of the mesh partitioning
with respect to the processors.

To clarify the idea, let us look at figure 4.20. In this idealized case we have an
initial square domain partitioned in four squared sub-domains belonging to
the processors (0,1,2 & 3). At a given moment it is decided to regenerate the
mesh. The hypothetical result is the square divided in four triangles. So not
only have the processors changed their "geometrical location" with respect to
the original domain, but also the sub-domains are modified.

Then, before applying the mapping strategy, it is needed to locate for each new
processor the processor from the old partitioning that will contribute to the
data transfer. If we take process 3 for the triangle-partitioned configuration in
figure 4.20, then, the corresponding old partitions will be p0 and p2.
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Fig. 4.20 – Modification of the domain partitioning among the different processes be-
tween two time-step increments. On the left a first hypothetical partitioning with its
circumscribing circles (spheres in 3D) at increment n and to the right a new partition-
ing at n+ 1.

4.7.1 Domain Hierarchy: Shape resemblance ranking

In order to establish in which order we shall start the search of data between
the new partitioning and the old ones we are going to create a classification by
means of a resemblance factor.

4.7.1.1 Coverage Ratio

Given a partitioning domain p in the new increment and the is partitioning
from the old increment we define the Coverage Ratio of i over p (CRp

i ) as

CRp
i =


0 ξri − ξrp ≤ 0

1
2

+ 1
4
(ξri − ξrp) 0 < ξri − ξrp ≤ 2

1 2 < ξri − ξrp
(4.62)

Fig. 4.21 – Estimation of the overlapping between two circumscribing spheres.
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Where ξ is a reduced coordinate between the origins of the circumscribing
spheres of each domain as shown in figure 4.21. ri and rp are subscripts to
indicate the zone covered from the center to the outer limit of the circum-
scribing sphere of domain i or p respectively.

4.7.1.2 Resemblance Factor

The resemblance factor will be given as a combination of the Coverage Ratio
and the distance between the centers of the spheres by

RF p
i =

1

2

(
exp−D

2
ip + exp−(1−CRpi )2

)
(4.63)

The ranking is then performed, for each partition p, by ordering the is domains
with respect to RF p

i . To illustrate the process lets take the following example:
The partitions shown in figure 4.22 are characterized by their circumscribing
spheres (see tables 4.1). The complete procedure is defined in algorithm (3).

Fig. 4.22 – Partitioning of a 2D mesh in four domains and circumscribing spheres.
(left) First partitioning, (right) Second partitioning.

Table 4.1 – Definition of the circumscribing spheres.

Old New
x y r x y r

P0 0.25 0.75 0.35 0.50 0.33 0.60
P1 0.75 0.75 0.35 0.67 0.50 0.60
P2 0.25 0.25 0.35 0.50 0.67 0.60
P3 0.75 0.25 0.35 0.33 0.50 0.60
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Algorithm 3 Shape resemblance ranking
Compute circumscribing spheres
for p ∈ [1, Nnew partitions] do

#»x pc = 1
Nnodes

∑Nnodes
i

#»x i
Rp = ‖maxi (‖ #»x i − #»x pc‖)− #»x pc‖

end
for p ∈ [1, Nnew partitions] do

for q ∈ [1, Nold partitions] do
Compute distances with respect to old partitionings
Dpq = ‖ #»x pc − #»x qc‖
Compute relative coverage parameters fig. 4.21
ζrq = 2 Rq

Dpq
− 1

ζrp = 1− 2 Rp
Dpq
− 1

Compute Coverage ratio and resemblance factor

CRp
q =


0 ξrq − ξrp ≤ 0

1
2

+ 1
4
(ξrq − ξrp) 0 < ξrq − ξrp ≤ 2

1 2 < ξrq − ξrp
RF p

q = 1
2

(
exp−D

2
pq + exp−(1−CRpq)2

)
end

end
Rank old partitionings with respect to the new ones
Initialization of the ranking variable: ranki = 1

for q ∈ [1, Npartitions] do
if q > 1 then

for j = q . . . 2, do
if RF p

q > RF p
j−1 then

rankj = rankj−1

rankj−1 = q

end
else

rankj = q

exit
end

end
end

end
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Table 4.2 – Comparison of the second partitioning with the original by means of dis-
tance (D), coverage ratio (CR) and the resemblance factor (RF).

P0 P1 P2 P3
D CR RF D CR RF D CR RF D CR RF

P0 0.49 0.98 0.89 0.49 0.98 0.89 0.26 1.00 0.97 0.26 1.00 0.97
P1 0.49 0.98 0.89 0.26 1.00 0.97 0.26 1.00 0.97 0.48 0.98 0.89
P2 0.26 1.00 0.97 0.48 0.98 0.89 0.48 0.98 0.89 0.26 1.00 0.97
P3 0.26 1.00 0.97 0.26 1.00 0.97 0.48 0.98 0.89 0.48 0.98 0.89

The results for the 2D case are shown in table 4.2. Then, the ranking process
follows simply by comparison of the results of the resemblance factor. If we
take for instance p2 from the new partition, then fromRF the research follows
the following order (p0, p1, p2, p3). Additionally, if all the elements have been
found at a given pi it is not necessary to continue the search on the rest of the
domains, so the research will focus only on (p0, p1).

4.8 Computational Time Analysis

In order to evaluate the impact of each strategy included we are going to com-
pare the following cases:

(a) Forced remeshing every 10 increments and

(b) automatic remeshing by verification of a quality criterion defined by the
rule eq. (4.64).

Each case is compared in sequential and in parallel. The main comparison
variable is going to be the total (fig. 4.23b,fig. 4.24b) and average (fig. 4.23a,fig. 4.24a)
CPU time expended in each stage.

1. Remesh if there are excessively distorted elements (ratio between the
minimum and maximum edge lengths less than a given tolerance).

2. Remesh if there are elements with negative volume.Qe = min(hi)
max(hi)

< tol = 1%

∃ Ωe < 0
(4.64)
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The model used consists on two parallel rectangular solids as shown in fig. 4.11.
We assign copper as material to both parts. The FE mesh in composed of
46447 nodes, 254298 elements and 307396 edges. The time step is fixed at
0.2µs.

Table 4.3 – Total cpu times of the electromagnetic computation stages in coupled sim-
ulation.

Processors 1 2 4 8
Forced 21’24” 12’26” 09’37” 10’11”
Automatic 17’32” 10’05” 06’49” 05’34”

The total time consumed for computing 50 increments is always bigger in the
case of forced meshing. We also observe a loss of performance when going
from 4 to 8 processors. These results are related to the fact that the remeshing
and preparation are required several times for the forced case. This also im-
plies more calls to the transport and interpolation routines.
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Fig. 4.23 – Time consumed by each stage of the simulation for any increment in the
case of forced remeshing.

4.8.1 Remeshing and Preparation

Following the different steps in a given time-increment, the first two stages
to intervene are the remeshing (if it was activated) and the Preparation. The
latter refers to the process of creating the necessary files with the partition-
ing of the mesh depending on the number of processors. These two stages
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are currently carried out sequentially, thus they are almost independent on
the number of partitions. They are mainly affected by the size of the resulting
model (number of elements and number of D.O.F.).
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Fig. 4.24 – Time consumed by each stage of the simulation for any increment in the
case of automatic remeshing.

We observe that even though the remeshing and preparation are required just
in a few increments they become relatively more expensive than the actual
computation because they are performed in sequential. The remeshing takes
up to 20% of the cpu time for the periodic meshing and 8% in the automatic
case (with 8 processors). The preparation (or partitioning) takes around 40%
in both cases.

Figure 4.25 shows at different moments of the simulation how the mesh has
evolved due to the displacement of the work piece and the existence of the
"Distance from Coil" parameter. For instance, it is observed that after the first
5 increments, most of the zone that was originally covered by the fine mesh
is now far from its influence, leaving just a small zone close enough so as to
be finely meshed. On the other hand, the automatic remeshing scenario will
preserve the fine mesh and distort it. It is just after some 35 increments ap-
proximately that the criterion is activated in order to generate the new mesh
with less elements.
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Fig. 4.25 – Mesh adaptation to the solid body displacement during forced remeshing
(top) and automatic remeshing (bottom).

Looking at the evolution of the number of elements in figures 4.26 and 4.27
it is observed that the forced remeshing scenario will decrease the number
of elements needed faster than the automatic case (once again depending on
the the distance from coil value). This could help reduce the time consumed
in the resolution of the Maxwell equations but at the price of introducing the
interpolation and transport stages more often.
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Fig. 4.26 – Evolution of the number of ele-
ments in the forced remeshing scenario.
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Fig. 4.27 – Evolution of the number of el-
ements in the automatic remeshing sce-
nario.

4.8.2 R-adaptation

One of the advantages of the adaptation algorithm is that, since it is used to
artificially move the air mesh and that most of the nodes are dedicated to the
discretization of the solids, the loops and iterations are applied only over a re-
duced amount of nodes. Hence, the cpu time expended on this stage is in any
case less than 1% which makes it negligible. In fig. 4.28 and fig. 4.29 is observed
that, while the behaviour of the cpu time consumed at each time increment
is not the same, it is bounded by an asymptote. This growth is most likely
due to the fact that at each increment, the displacement field is initialized to
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Table 4.4 – Total times of the interpolation and transformation stages.

Processors 1 2 4 8

Forced
Int. 201.1(16%) 115.5(16%) 63.5(11%) 30.8(6%)
Trans. 5.0(0%) 4.0(1%) 22.3(4%) 39.5(8%)

Auto
Int. 50.0(5%) 40.3(7%) 9.9(2%) 9.6(3%)
Trans 1.2(0%) 0.7(0%) 15.2(4%) 7.3(2%)

zero everywhere except for the solid nodes. As the work piece will accelerate
due to the growing Lorentz forces, the velocity and thus the displacement per
increment will increase. This will translate in more iterations to achieve a sat-
isfactory equilibrium state.
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Fig. 4.28 – Evolution of the CPU time con-
sumed for the r-adaptation algorithm in
the forced remeshing scenario.
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Fig. 4.29 – Evolution of the CPU time con-
sumed for the r-adaptation algorithm in
the automatic remeshing scenario.

4.8.3 Field Transformation

From fig. 4.23a and fig. 4.24b and table 4.4 we observe that between the inter-
polation stage and the transformation, it is the former the one that consumes
most cpu resource time. The interpolation stage could be largely improved if
the remeshing paradigm allowed to preserve the geometrical localization of
the partition and refine locally. This way, we wouldn’t be forced to research in
several (most) of the other partitions for the data.

For the transformation stage we currently transform the magnetic vector po-
tential vector field

#»

A( #»x ) on the whole domain. Let’s remember that the pur-
pose of such operation is to compute the term (σ

#»

An) on the right hand side
of Maxwell’s equation (previous time step field). One way of optimizing even
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more this stage would be to restrain the operation to only the edges belonging
to the work part and the inductor (thus neglecting the air for which σ = 0).

Fig. 4.30 – Magnetic vector potential computation at increment 7. Effect of the trans-
port and interpolation after a remeshing step (Forced).

In fig. 4.30 we observe the result of the computation of the magnetic vector
potential field

#»

A at increment 7. A forced remeshing was established from 6
to 7. This means that a mapping was done for field

#»

A(6) which allowed com-
puting

#»

A(7). For the automatic meshing option, the mesh is still the original at
this point (no need for mapping). We take as reference the results for the au-
tomatic meshing option (auto) computed in sequential (1p). Comparing with
the same automatic case but in parallel (2p) a small difference is observed
on the field magnitude. The maximum value for the

#»

A field varies of 0.005%.
Which implies that the parallel resolution of Maxwell equations do not pollute
excessively the results. On the other hand, we do observe a remarkable differ-
ence of−2% for the forced meshing in sequential (1p) and +3% for the parallel
forced meshing (2p). This difference is originated on the fact that the meshes
are slightly different in their topology after remeshing and also the filtering
introduced during the interpolation stage. Such difference, that is cumulated
over several increments, will have an impact on the mechanical results as well.
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We observe in fig. 4.31 that the displacement field differs on 0.5% between the
automatic options in sequential and parallel. For the forced meshing the dif-
ference is of 13% for the sequential and of 3% for the parallel option.

Fig. 4.31 – Displacement field of the work piece at the end of increment 100. Compar-
ison of the effect of the electromagnetic field computed under automatic or forced
remeshing conditions.

4.9 Study Cases

4.9.1 Ring Expansion

As in chapter 3 we use the ring expansion case for the validation process. The
original geometry presented in Fenton 1996 is used. A squared cross-sectional
geometry as shown in fig. 4.32 instead of the circular shaped one used in the
previous chapter. Besides, a second case is also studied in which a cylindrical
solid wall is included to simulate a collision such as in a joining process.
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(a) electromagnetic model (b) Thermo-mechanical model

Fig. 4.32 – Configuration of the finite element coupled models for the ring expansion
case.

4.9.1.1 Free expansion validation

One of the easiest measurable values in an EMF process is the resulting elec-
tric current of the system. By means of a Rogowski coil attached to the main
circuit it is possible to capture the evolution of this global variable. For this
reason we have selected the electric current to be one of the first observables
from the simulation. In fig. 4.33a we compare the resulting electric current
to the analytic solution. Globally the agreement between both is good, hav-
ing just a 5% difference on the peak value and 0.5% for the the whole electric
current history. Looking at the evolution of the discharge potential at the ca-
pacitor level fig. 4.33b, the curves fit almost perfectly.
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Fig. 4.33 – Comparison between the analytical model and the 3D FEM. Electrical

Since the main interest is to characterize the behavior of materials during the
EMF process, we now take a look at the thermo-mechanical variables. For this
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purpose we have selected, as shown in fig. 4.34, 3 point sensors and 3 elements
at one of the symmetry faces of the model to read the output variables.

Outer Element

Outer Sensor

Inner Element

Inner Sensor

Central Element

Central Sensor

Fig. 4.34 – Selection of output positions. Inner, Central and Outer labels used for
identification of the the variables with respect the ring radius.

Let us recall that from all the assumptions done for the analytical model, the
most important one is the reduction to a 1D problem. All variables are consid-
ered uniform throughout the cross section of the solid. This enables focusing
only on what happens at the center of the ring.
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Fig. 4.35 – Comparison between the analytical model and the 3D FEM. Kinematics.

Observing the evolution of the kinematic variables we see that the analytic so-
lution always overestimates the results (see fig. 4.35). This result was already
observed in the original work where they developed a 2D axisymmetric code
to study the problem. On the other hand, it helps estimating the order of mag-
nitude of the variables and the global behavior.

The advantage of the finite element model resides in its ability to provide us
with information on the local phenomena taking place during the forming
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process. When looking at the Lorentz forces for instance, it is found that while
there is a major force at the inner section of the ring pushing it forward, there’s
also a negative force on the opposite side slowing down the deformation, see
fig. 4.36.
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Fig. 4.36 – Evolution of the Lorentz
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Looking at the stress levels it is observed that at the beginning of the process
the stress level is basically homogeneous throughout the cross section (first
10micro seconds). Afterwards, the center and the outer elements undergo
higher levels of stress compared with the inner element. fig. 4.36 reveals the
lag in the transmission of the body forces. The inner layer (closer to the induc-
tor) will concentrate the magnetic fields due to the skin effect. Nevertheless,
the transmission of the wave causes the central and outer region to continue
experiencing a higher level of forces while forces in the inner region remain
close to zero.
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Fig. 4.38 – Evolution of the Joule heat-
ing term. Comparison Analytic vs.
FEM.
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Fig. 4.39 – Evolution of the tempera-
ture increase due to self heating and
joule heating. Analytic vs. FEM

The skin depth will also affect the temperature distribution in the body. The
Joule heating effect at the skin causes a high increase in temperature locally.
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For this case we found 60◦C difference between the outer and the inner nodes.
Another interesting phenomenon revealed in fig. 4.39 is that during the first
5 micro-seconds the Outer temperature is higher than the center one. This
is due to the presence of the induced current mainly on the outer surfaces.
Then, temperature in the center increases with respect to the outer section
due to the transmission of the heat through diffusion, see fig. 4.38.

4.9.1.2 Constrained expansion: Impact with rigid wall

Considering impact conditions after the rapid expansion allows observing how
the deformation load distributes in a more regular fashion along the body.
It was already mentioned in Molinari et al. 2014 that fast loading helps dis-
tributing the necking phenomenon, retarding the damaging and cracking of
the material. In fig. 4.40 for the loading case at 7.5kV in free expansion we
observe that 2 necks were formed quite near. In quasi-static loading it would
have been expected that once a neck has started, the deformation would focus
on that single neck.
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Fig. 4.40 – Comparison of the equivalent plastic deformation in constrained (top) vs.
free (bottom) forming.

Including the solid wall into the model shows that we reduce the maximun de-
formation by distributing it more regularly. It will of course depend on several
parameters such as the geometry of the work piece and the receptor (wall).
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These phenomena will result in the reduction of the elastic spring back as is
going to be shown next.
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Fig. 4.41 – Width variation after minimal compression. (Left) Free expansion (Right)
Impact forming.

Evaluating the radial width compression with respect to the minimal attained
value as in fig. 4.41, it is seen that a certain amount of spring back is always
present. This spring back has two sources, the elastic recovery of residual
stresses and the pressure wave travelling backwards in the impact forming
case. For the free forming scenario a decaying oscillating pattern appears,
this is a clear sign of an elastic oscillation around an equilibrium point. It
is remarkable to see that this equilibrium point rises between 2 and 5kV olts

and then drops for 7.5kV olts. It suggests that a transition range exists where
the inertia will influence also the small scale elastic oscillations. The impact
case evaluated here imposes a rapid stabilization around the final spring back
point. This is most likely due to the rapid decay of the mechanical pressure
waves.

Another way of analysing the phenomena is by looking at the energy distri-
bution evolution. In fig. 4.42(free expansion column) it is observed that at
low input energies (hence, low velocities) the elastic energy is comparable in
magnitude with the plastic energy. As the input potential is increased, the
elastic energy becomes negligible. This means that most of the energy given
to the part has been transformed into irreversible energy- mostly plastic de-
formation which will also lead to heat dissipation. It is important to see that
at the beginning of the process, the input energy brought by Lorentz forces
mainly results in an increase of the kinetic energy. Then, the kinetic energy
is the responsible of the plastic deformation. This means that the magnetic
pressure waves are mainly responsible for the acceleration of the part rather
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than directly deforming it. fig. 4.42(impact forming column) shows that at the
moment of collision the kinetic energy is suddenly transformed into internal
deformation energy, which then mostly ends in plastic deformation.
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4.9.2 Magnetic Pulse Welding aluminum on copper (MPW2024)

As was mentioned in the introductory chapter, one of the interests of this tech-
nology is the capability for creating high quality joins between dissimilar ma-
terials. This can be achieved due to the high speed conditions at impact that
change the material behaviour (the solids behave instantaneously like a vis-
cous material). We also have the surface atomic bonding phenomenon which
is responsible for the actual joining. Besides, the process happens in such a
small span of time that heating effects do not entail phase transformations in-
side the materials.

The following aims at introducing some of the physical aspects of the process
and at the same time some of the difficulties associated with the simulation
stage. The model consists in a 5◦ cut of the aluminum and copper tubes as
shown in fig. 4.43. For this simulation we assume symmetry at the sides cut-
ting planes. Two cases are treated: The central tube is considered as

(a) a rigid body

(b) a deformable material

Fig. 4.43 – Joint of a aluminum A2024 with a copper tube due to high speed loading.

4.9.2.1 With Rigid Core

The enormous magnetic fields generated at the skin of the material (82T ⇒
1.2E6× Earth’s field) is strong enough to compress and plastically deform the
aluminum tube. The load largely overpasses the yield limit within less than
a micro-second (fig. 4.44b). This loading level is yet to be surpassed during
impact.
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(a) Magnetic Field [T] after 0.8µs. (b) vonMises Stress [MPa] after 0.8µs.

(c) Pressure [MPa] at impact t = 2.2µs

Fig. 4.44 – Magnetic and mechanical loads on the aluminum tube.

According to Zhakhovsky et al. 2011 a good estimate for the Hugoniot Elas-
tic limit pressure in aluminum would be PHEL = 12.6Gpa. This value repre-
sents the limit between a single phase elastic shock wave and a double phase
elastic-plastic wave (see chapter D). It is observed that before impact the ma-
terial withstands pressures in the range of [0.6 − 2.7]Gpa < PHEL. This means
that global plastic deformation (before impact) is achieved because the static
yield point has been exceeded. Elastic spring back would reappear after the in-
ertia has dissipated and oscillation will happen around the equilibrium point
as was observed in the free forming for the ring expansion case. On the on-
set of impact on the other hand, the pressure reaches levels of > 25GPa (see
fig. 4.49). If we assume that PHEL for an Al1050 is similar to the aluminum
used in the cited work, then the double shock wave regime has been attained.
Meaning that while the elastic shock travels through the material it carries be-
hind a plastic wave that is permanently deforming the body. This plastic shock
wave could be the main driving element behind the spring back elimination
in high speed forming.

At the end of the process, compressive residual stress in the circumferential
direction will remain of about 1GPa contributing to the fixation of the parts.
This of course can not be fully evaluated if we don’t consider two additional
phenomena: (1) the deformation of the solid core and (2) the bonding prop-
erties of the surfaces as a function of the contact speed.
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4.9.2.2 With Deformable Core

Changing between a rigid or deformable tool (receptor) has several conse-
quences: From a physical point of view, the impact loading can be large enough
as to create severe deformation in the harder body. Consequently, the final
shape and quality of the joining section is going to be influenced by this de-
formation.

From a computational point of view other difficulties show up. First, the fact
that it is necessary to compute the deformation field in this new body means
an additional cpu requirement. But, most delicate is going to be the manage-
ment of the contact during impact.

Fig. 4.45 – Mesh distortion during impact between the two deformable bodies when
no automatic time-stepping is allowed. EM model (top) TM model (bottom).

In the example shown in fig. 4.45 it can be seen that interpenetration has taken
place between the aluminum tube (pink) and the copper tube (green). The
cause of this problem is the time step management of the EM module. In the
present state of the tool we can only use constant time step in the coupled
configuration between the solvers. In FORGErit is necessary to allow auto-
matic time step modification when impact between two deformable bodies is
considered. This enables to control the maximum distance of the nodes trav-
eled in a single time step, thus avoiding nodal penetration.

For this example the time step was ∆t = 0.2µs, just before impact the head
velocity was about 1.2× 106mm/smeaning that in the next step we could get a
displacement of about 0.25mm. This magnitude is bigger than the mesh size at
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the impact zone (0.05mm for the copper and 0.02mm for the aluminum). This
excessively large displacement without allowing a modification in the time
step is at the center of failure in the computation.

]/[ smV ]stress[GPaprincipal1st

Fig. 4.46 – Thermomechanical simulation re-started in decoupled fashion just before
impact to allow automatic time-stepping.

One way of bypassing this blocking point is by restarting the thermo-mechanical
computation on its own, and using only the velocity computed before impact
as the initial condition. This was done as shown in fig. 4.46 where the result-
ing velocity field as well as the stress, strain, temperature fields were given as
initial conditions. The Lorentz body forces and the joule heating were elim-
inated. From this point forwards the simulation ran only with the thermo-
mechanical module.

Evaluating the Lorentz force at the surface it is observed that the peak level has
already bee attained fig. 4.47. Under this condition we can assume that most
of the energy has already been transmitted to the work piece.
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Fig. 4.47 – Evolution of the Lorentz force density as computed in a surface element of
the aluminum tube. Impact at t = 2.4µs (red line).

For the proper computation of the mechanics at the impact surface we also
made use of a remeshing strategy consisting in defining a "fine mesh size box"
fig. 4.48 near the impact zone in order to obtain a small mesh size before im-
pact takes place.

Fig. 4.48 – Fine mesh box (pink) for the refinement of the close-to-impact zone in the
aluminum tube.

As shown in fig. 4.49 this allows to follow the advancing contact front in a de-
tailed manner. In this example a bilateral-sticky contact was defined. This
means that once the surfaces have make contact they will remain together.
Such approach enables to obtain a first glance at the macro-phenomena and
determine the stress levels and deformation suffered by both parts. On the
other hand, it overlooks the physics defining the quality of the surface bond-
ing for instance. In Herbst et al. 2014 a study is done to correlate the input
energy in a EMF process to the quality of the surface welding. The drawback
with this correlation is that the input energy can be diffused through several
mechanism, so it is difficult to quantitatively know which amount of that en-
ergy was actually used to create the macro-bonding.
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GPa125.1max = GPa4.15max =

GPa6.25max = GPa4.17max =

Fig. 4.49 – Evolution of the contact zone during impact.

In Wu et al. 2006 a study is presented in which the impact velocity between
Al-Si particles and a metallic substrate is used as the primary variable to char-
acterize the deposition of the particles. They establish that the creation of the
bonding will depend on the competition between the rebound energy and the
adhesive energy which are shown in fig. 4.50a. This range also pairs with the
gaussian curve for optimal bonding ratio fig. 4.50b.

Returning to the welding case, we saw in fig. 4.46 that the velocities before im-
pact are in the order of [800−1200]m/s. While the results presented by Wu et al.
2006 do not represent the conditions of the case at hand, it gives us a direction
in the analysis. In their study the optimal bonding speed was found around
700m/s. We can not say that above this point (700m/s) we would encounter
the rebounding phenomena by it self in our case. It is important to consider
as well the presence of the jet-stream (not seen in the simulation) and the in-
ertia of the matter behind the contact surface. The latter is most probably
going to help prevent the rebound adding some pressure whilst impact is in
progress. Afterwards, it could play against the bonding by pulling the surfaces
apart. Here we point out a possible axis for future studies to generate a joining
criteria following a similar scheme as presented before.
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Fig. 4.50 – (From Wu et al. 2006) Surface bonding characterization between Al-Si feed-
stock and a mild steel substrate.

4.10 Conclusions

In this chapter we have explored the global methodology needed in order to
set up a coupled simulation between the electromagnetic module and the
thermo-mechanical module. It was selected to work following a sequential
coupling strategy that allows handling the physics in a individual fashion while
allowing communication at each time-step.

The fully immersed approach used for the meshing of the electromagnetic
problem introduced the need for mesh adaptation techniques enabling to track
the displacement and deformation coming from the mechanical computa-
tions and impose it to the air mesh. The first technique consisted in an au-
tomatic meshing strategy. It combines a progressive-mesh size-by-boxes to-
gether with the skin depth phenomena in order to adapt the mesh size to the
materials at hand. The main target of this approach is to concentrate most of
the elements around the solids. Including the "Distance from coil" parame-
ter into the meshing process allowed to reduce the area affected by the finer
mesh size but as the part moves, and depending on the value assigned to this
parameter, the affected zone is lost. We have evaluated the effect on the mesh
size as we saw that it allows to reduce the number of unknowns of the system
as the part gets farther from the coil. A question that has yet to be answered is
the effect that it might have on the physical results and the accuracy. Never-
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theless, since the induction effect drops fast with the gap distance we do not
expect a great impact. After the induced force has dropped the main driver of
the process is the acquired inertia. The second technique consisted in nodal
relocation method based on a non-linear springs analogy. One of the main
advantages is that it allows keeping a single mesh through out several time in-
crements with a minimum cost. The time expended solving the relocation of
the air nodes is less that 1% of a single increment.

Once the mesh management problem was sorted out, a question that needed
to be solved was the transport of the data due to the topological change in
the geometrical discretization. The edge data related to the magnetic vector
potential posed the issue on how to interpolate values between meshes. The
problem was solved by introducing a transport methodology based on three
stages: (1) Edge data is transformed into point-wise data on integration points.
(2) the interpolation is done from integration points in the old mesh to inte-
gration points in the new mesh. (3) This point data is re-transformed into edge
data in the new mesh. This process introduces a new linear system that has
to be solved which has the same dimensions as the original electromagnetic
problem. Nevertheless, its resolution is less expensive than the original prob-
lem since the matrix associated to the transformation is well posed and has a
better conditioning.

Another aspect that needs improvement is the interpolation stage. The main
issue is linked to the fact that once a new mesh is generated, the parallel par-
titioning is lost and a new partitioning is created. Since this difference is ran-
dom, the optimality of data research process is difficult to asses.

In the physical aspect of the process, we saw that the finite element simulation
allowed computing the effect of the 3-Dimensional distribution of the mag-
netic field, which depending on the material and/or the geometry can play
against the process. The presence of Lorentz forces on the opposite face of the
work part can imply a slow-down on the kinematic acceleration of the part.

It has been stated in literature that the fast loading is at the center of the ad-
vantages in forming capabilities of the process. There are two phenomena that
play in favour. On one side we have the fast loading itself which transforms
into inertial energy. The inertia helps in slowing-down and re-distributing the
growth of damage at the microscopic level as has been shown by [Molinari et
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al. 2014]. We gave a closer look at the second mechanism related to the fast
constrained arrest of the material. The fast dynamics during impact augments
the effect of the inertia, and the constraints (moulds, matrices, dies) help in
restraining the deformation of the material.

These phenomena goes hand-to-hand with the reduction of the elastic spring-
back, which is produced by the shock wave mechanics. We could postulate
that, if the impact conditions are the appropriate to generate at least a double-
wave regime as explained in chapter D, then elastic spring-back elimination
can be achieved.
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Résumé: Moyennes expérimentales

Ce chapitre est consacré aux installations expérimentales disponibles au lab-
oratoire. La première étape nécessaire afin de modéliser le dispositif expéri-
mental a été sa caractérisation en utilisant le modèle du circuit RLC proposé
précédemment. Nous avons vu que cette approche permet une définition
simple des paramètres et permet en même temps une identification rapide
des paramètres nécessaires. Néanmoins, nous soulignons qu’une différence
dans la puissance électrique entre le modèle et le cas réel devrait être prévue
pour deux raisons principales: du côté expérimental, si nous ne pouvons cap-
turer qu’un seul pic de courant, il n’y a aucune façon de caractériser le com-
portement d’amortissement nécessaire à l’identification du paramètre de ré-
sistance équivalente. Du point de vue du modèle EF, le fait de tronquer la
géométrie de la bobine affecte aussi l’estimation de l’inductance et de la résis-
tance équivalente. Néanmoins, à ce stade, nous tolérons une erreur constatée
d’environ 4% sur le courant électrique que nous estimons acceptable pour ce
premier modèle.

Les expériences de formage présentées ont été faites dans le but de souligner
certains des phénomènes macroscopiques les plus remarquables que l’on ob-
serve au cours d’un processus de formage électromagnétique. Le cas de for-
mage indirect a été le modèle livré avec la machine qui permet la formation
des matériaux pas ou peu conducteurs (pour l’expérience, nous avons utilisé
l’aluminium). Cette configuration présente l’avantage de permettre l’accumulation
des énergies d’inerties très importantes dans le poinçon qui formera ensuite
la pièce. D’autre part notre intérêt premier était de voir directement l’effet
des ondes électromagnétiques sur la pièce de travail. En conséquence, nous
avons conçu le cas de gonflage libre en suivant le cas de [Reference]. La simu-
lation du cas de gonflage libre nous fait constater que nous aurons très prob-
ablement besoin de réidentifier les données matériau pour les échantillons
d’aluminium. Pour le moment, nous sous-estimons la déformation obtenue
par rapport au cas expérimental. Cependant, ce résultat pourrait également
être amélioré en prenant une section géométrique plus grande de l’inducteur
afin de tenir compte du manque de symétrie de révolution de la configura-
tion expérimentale réelle. Enfin, nous avons réalisé un essai d’impression de
surface. Il a été observé que l’impact à grande vitesse et l’adoucissement in-
stantané de la matière permet de reproduire des détails –même très petits- de
la matrice sur la surface de la pièce.
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We have discussed how high speed forming of aluminum alloys helps to in-
crease the formability properties of the material as the dynamic nature of the
loading changes its mechanical behavior. During impact between the work
piece and the die, the material behavior is in a transition between an elastic-
plastic description and a hydrodynamic one. It means that at the impact zone,
the work piece surface can easily adopt not only the global shape of the die
but also the small details due to the previous machining of the die. We have
witnessed how this phenomenon enables imprinting surface details from a
polymeric die into the surface of an A1050 aluminum. We have also tested
the imprinting of different surface treatments of a metal matrix into the alu-
minum sheet.

5.1 Experimental setup

5.1.1 EMF Machine

For the experimental settings we have used an electromagnetic forming ma-
chine available at the CEMEF laboratory and provided by BMAX industries.

(a) Global view. (b) Capacitors.

Fig. 5.1 – Electromagnetic forming machine

The machine consists in three main blocks as shown in fig. 5.1: (1) A control
panel or bank which allows defining the desired input potential. In this bank
an electric transformer is installed in order to convert the electric current com-
ing from the plug-in into a high-voltage signal to charge the capacitors. (2)
The capacitor bank which is currently composed of 12 batteries of 46µF each.
(3) The work station or work bench that is equiped with a pancake-like coil of
φ170mm diameter as was introduced in 3.5.
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5.1.2 Identification of the machine’s electric parameters

At the beginning of this work we started the development of the simulation
software with the aim of piloting the simulation with the same set of parame-
ters that describes (approximately) the electrical behaviour of the real instal-
lations. From chapter 3 we saw that the machine can be modelled as shown in
fig. 5.2.

Fig. 5.2 – Electrical scheme of a general EMF process

Where Rp and Lp are the resistance and inductance of the work piece. Rc and
Lc the resistance and inductance of the coil (the part considered in the FE
model). Rm and Lm belong to the connectivities of the machine not included
in the finite element model. Cm represents the charging capacity and V0 is the
only piloting variable.

Identification of Cm is easily done from the values reported on the machine.
Knowing that all batteries have the same capacity and that they are connected
in parallel we can compute the total capacitance by

Cm =
N∑
i

Ci = NC = 12 · 46µF = 552µF (5.1)

Identification of Rm and Lm requires

1. Measure of an electric discharge from the machine in order to determine
its actual electric response.

2. Determine a priori how much of the coil is going to be considered in the
simulation. As an approximation,Rm andLm will contain not only values
from the machine but also from the geometrical "truncation" of the coil.

For the measurement of the current output of the machine we perform a dis-
charge without any load, meaningRp and Lp = 0. The measurement is carried
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out with a digital oscilloscope (Handyscope HS4 from TiePie engineering) that
is directly connected to a computer for the visualization and processing.
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Fig. 5.3 – Electric Output from the EMF machine in load free test at 2000V olts.

Since the magnitude of the current and potential circulating in the main cir-
cuit are extremely high a filter is installed in the Rogowski probe1. Performing
a discharge of 2000V olts we obtain the voltage readings shown in fig. 5.3(left).
This signal has to be numerically integrated (including the filtering factor) in
order to retrieve the actual electric current as shown in fig. 5.3(right).

It has to be remarked that the machine includes a system which automatically
disconnects the capacitors from the circuit once they have been fully emptied.
This prevents possible damages from backwards currents to the capacitors.
Thus the fact that in the potential history plot we see that at 157µs there is a
sudden drop in the signal, hence we obtain a single peak of current.

We first estimate the resistance and inductance values of the CAD model of the
coil, having previously fixed some values for the machine parameters. From
here we get the equivalent values

Req = Rm +Rc ; Leq = Lm + Lc (5.2)

The first guess values for the machine inductance is Lm = 69nH. It corre-
sponds to the inductance value reported for the induction bank. Nevertheless,

1The filter is composed of: An attenuator factor at the oscilloscopeCA = 1019.94/20 and the
filter of the probe CP = −1.968e8. The total coefficient is C = CA · CP = −3.9266e25.
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there is a large section of conductors not covered in this value, thus the need
to recomputed it. For the resistance we do not have any a priory guess value,
in that case we simply defined Rm = 40mΩ which is close to the one used for
the ring expansion case and is also in the same order of magnitude for most
reported values in EMF cases.

The perfect harmonic oscillator equation is given by

Q̈+ 2ζωnQ̇+ ω2
nQ = 0 ; I(t) = Q̇ (5.3)

where

ωn =

√
1

CmLeq
; ζ =

Req

2

√
Cm
Leq

(5.4)

and the initial conditions given byQ(t = 0) = Q0 = CmV0 = 0.1104 Coulombs

Q̇(t = 0) = 0
(5.5)

With this parameters at hand we compute the finite element model and obtain
a set of values for the electric current history IFE. The analytic resolution of
eq. (5.3) produces also a current history data set Ianalytic. An inverse analysis
procedure using the Microsoft Excel optimization toolbox for instance can be
done by defining the following objective function

Φ(Rc, Lc) =

∣∣∣∣∫ Ianalytic(Rc, Lc)dt−
∫
IFEdt

∣∣∣∣2 (5.6)

For which we specify the objective Φ = 0 and the constraints Rc > 0, Lc > 0.
We then obtain the values
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Fig. 5.4 – Comparison of electric current
analytical vs. FEM.

Rm = 40mΩ⇒ Rc = 30.814mΩ (5.7)

Lm = 69nH ⇒ Lc ≈ 10nH (5.8)

Error =

∣∣∣∣
∫
Ian.dt−

∫
IFEdt∫

Ian.dt

∣∣∣∣ (5.9)

Error = 0.2%

The following step consists in performing the same optimization procedure
but comparing the experimental results against the analytical model as well.
In this case we set as variables Req and Leq.
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Fig. 5.5 – Comparison of electric current
experimental vs. analytical.

Req = 40.815mΩ (5.10)

Leq = 4480.916nH (5.11)

Error =

∣∣∣∣
∫
Ian.dt−

∫
Iexp.dt∫

Iexp.dt

∣∣∣∣ (5.12)

Error = 4%

With these values we can now compute the Rm and Lm parameters that we
should use in our FE model by

Rm = Req −Rc = 10mΩ (5.13)

Lm = Leq − Lc = 4470.892nH (5.14)

Running again the 3D simulation with this new set of parameters we find the
results shown in fig. 5.6.
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Fig. 5.6 – Comparison of electric current experimental vs. analytical and FEM.

From the previous results we validate the FE code not only against an analyt-
ical solution from which we find an error of about 0.2%, but also against an
experimental result for which the difference is of about 4%. This difference
can be attributed to several sources, we point out those we found more rele-
vant.

• The lack of information regarding the decay rate of the oscillations (sin-
gle peak) makes it difficult to accurately define the actual value of Rm.
(Damping factor ζ depends linearly on the resistance).

• The geometrical truncation of the FE model implies a perfect symmetry
in the geometry which is not the case for the real model.

• There are several geometrical details that were not included in the CAD
design of the coil. Such details have a direct impact on the actual values
of Rc and Lc.
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5.2 Work Bench

Epoxy layer

Symmetry Axis

Hammer

Matrix

Elastomer
Metal Sheet

Coil

(a) Indirect Forming.

Metal Sheet

Epoxy layer

Coil

Symmetry Axis

Mechanical
Holder

(b) Free bulging.

Metal Sheet

Epoxy layer

Symmetry Axis

Static Punch

A’

Coil

(c) Surface printing.

Fig. 5.7 – Work bench configurations

The work bench is composed of: the coil that has been previously defined,
which is placed below an epoxy layer of 0.5mm thick in order to avoid con-
tact with any other metallic object. A metal platform enables installation of
different types of matrices for the forming process. There are currently three
experiments that have been set-up as shown in fig. 5.7:

• Indirect forming, which uses an intermediate punch to transmit the ki-
netic energy.

• Free bulging experiment, where the plate is positioned directly over the
coil and it is mechanically hold by a polymer matrix.

• Surface printing experiment to evaluate the degree of details that are im-
printed on the material after impact

A detailed description is given in what follows.
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5.2.1 Indirect Forming

As we saw in the introduction of this work, one of the ways of taking advan-
tage of the EMF process is by means of indirect forming. Brower et al. 1966
devised that by placing the part to be formed between a solid metallic punch
and an elastomer matrix it could be possible to form several types of materials
including non-conductive ones.

Coil

Hammer

Matrix

Receptor

Work piece

(a) Bench.
(b) Forming/cutting ma-
trix.

(c) Elastomer. (d) Work piece.

Fig. 5.8 – Indirect forming work bench.

The first arrangement of the work bench consists on the following mains parts:

• The hammer which is a massive aluminium part responsible of absorb-
ing the electromagnetic energy. Weight: 1087.98gr.

• A steel matrix that has double purpose. A concave zone in the middle
for simple forming and four holes in the peripheral for cutting. Weight:
998.10gr.

• A receptor having an external wall of aluminium of 7.5mm thickness and
of internal diameter φ74mm. Inside, an elastomer material.
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• The work piece that is placed between the matrix and the receptor. For
the tests we use φ73mm A1050o sheet of 0.5mm thickness. Weight: 4.6gr

5.2.1.1 Results

(a) 3kV . (b) 3.5kV . (c) 4kV .

Fig. 5.9 – Indirect forming test results.

It is observed that, for the given discharge conditions, the concave forming at
the center of the part is always achieved. The transmitted kinetic energy due
to the relatively large mass of the system Hammer+Matrix impacting the part
is large enough to guarantee a perfect forming. Additionally, the inertia of the
system will cause it to add a compressive load beyond the impact helping to
fix the shape. The cutting process on the other hand requires a larger energy
in order to be completed. The first reason is due to the material behaviour. In
order to cut it is necessary to induce damage through shearing stresses. Full
damaging requires, naturally, more energy than simple plastic deformation.
The second reason is of geometrical order. As the diameter of the cutting holes
is smaller than the concave section, the resulting force on the section is also
smaller.

5.2.2 Free Forming - Bulging experiment

The bulging experiment was inspired from the work of TAKATSU et al. 1988.
We have carried out several preliminary tests using 160x0.5 mm circular alu-
minum 1050a sheets for feasibility purposes. After several trials we have found
out (results can be observed in fig. 5.10):

• Typical flange wrinkles observed in drawing processes appear for even
low discharge potentials.

• The non perfect symmetry of the coil leaves a strong signature on the
sheet as can be observed in the irregular formed surface. Anisotropy of
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the material due to the previous lamination process may well play an
important role here.

• At 2.5kVolts we obtain a peak displacement in the center of the sheet
of approximately 3cm. Localized striation is already present in several
points around the center.

• For input potentials above 2.6kVolts, we observe the beginning of frac-
ture at the clamping zone due to the section thinning. At 3kVolts full
fracture is obtained.

2014 CEMEF   Centre de Mise en Forme des Matériaux201 CEMEF   Centre de Mise en Forme des Matériaux

Results

kV5.1

kV65.2

kV5.2

kV3

Fig. 5.10 – Experimental results of a flat sheep metal expansion without free
flange. Trails at 1.5kVolts (top-left), 2.5kVolts (top-right), 2.65kVolts (bottom-left) and
3kVolts(bottom right).
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Fig. 5.11 – Image analysis facilities using VIC 3D. Bulging with free flange for retention
purpose.

Deformation under the given conditions can be evaluated by means of an im-
age correlation software such as VIC3D. At the current moment we can only
carry out a post-mortem analysis by comparison of images before and after
the magnetic loading. However, this analysis gives access to a full map of the
displacement deformation field and allows precise identification of the frac-
tured zones.

In order to perform an accurate correlation of this experimental results with
the simulation it would be needed to: In first place, use the full geometrical
representation of the coil. The lack of perfect symmetry has a great influence
on the sample. The fracture zone observed in fig. 5.11 is a direct consequence
of this imperfection (the Lorentz force density in this area is most likely higher
compared to other points on the same circumference). This leads to the sec-
ond point, which is the need to include a damage model at high strain rates
regimes.
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(a) 76µs.

(b) 142µs.

Fig. 5.12 – Deformation under the free bulging case. Load 2.5kV olts

Nevertheless, from our preliminary simulation results corresponding to the
second bulging scenario we observe in fig. 5.12 that the most critical zones are
the border of the clamping zone, where most of the bending load is cumulated
and then the center, as also seen in the experimental results. The deformation
around the center zone goes through a compression on top/traction on the bot-
tom to a reverse traction on top/compression on the bottom loading. This is
caused by the fact that as seen in fig. 5.12a the first zone to move away from
the inductor is placed in between the center and the clamping zone (the cen-
ter is an almost null EM field zone). Thus, at first the center is pulled by the
movement of the rest of the part, then, the inertia will force it to keep on ad-
vancing. From here the bending regime changes quite fast. This can also be
at the origin of the striations that are seen near the center zone in the experi-
mental results.

Fig. 5.13 – Maximum displacement. Load 2.5kV olts. (Expanded view of the 2◦model)

In fig. 5.13 two important results are found. The maximum displacement esti-
mated at the center corresponds to 9.9mm. The experimental case of fig. 5.11
is closer to 14mm. Also, the flange of the sheet did not bend, while in the ex-
periment we expected almost 90◦ of bending. The first cause of this difference
could be the material data. A new identification would be needed for the used
Al sheet. Second, the uneven distribution of the field in the real experiment
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that is not taken into account in the simulation.

5.2.3 Surface Imprinting

Note: The following results are the first findings on a on going research derived
from this project and done in collaboration with the University of Northum-
bria, Newcastle.

(a) Holder. (b) Surface 3D scan.

Fig. 5.14 – Polymer holder for free expansion testing (fig. 5.14a). Surface profile of the
contact zone (fig. 5.14b).

During the free bulging experiment with the polymeric holder we noticed that
the surface patterns of the contact face fig. 5.14 were systematically printed on
the metallic work piece whenever an initial gap distance different from zero
was left in between, see fig. 5.15a.

(a) (left) 5mm gap, (right) 0mm gap. (b) image analysis. pixels to mm

Fig. 5.15 – Work piece after free bulging fig. 5.15a and measurement of visible stria-
tions on the surface of the work piece fig. 5.15b.
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Fig. 5.16 – Surface roughness profile of the polymeric holder.

From fig. 5.15b we obtain some of the most notorious indentations on the
aluminium surface. The typical valley-to-valley distances observed are be-
tween 0.2mm and 0.7mm. These values match with the values extracted from
fig. 5.16, which corresponds to a sample of the surface roughness profile of the
polymer holder.

We have designed a metallic matrix having four kinds of surface finishing in
order to quantify the level of details that is possible to print on the work piece.
The different surface treatments are depicted in fig. 5.17.

(a) Matrix. (b) Surface finishing.

Fig. 5.17 – Surface imprinting matrix. Description of the different surface finishing.

• Turning: Machining process consisting on removal of material through
the advance of a rotating tool.

• Milling: Machining process consisting on removal of material through
the linear advance of a cutting tool.

• Abrasive blasting: Surface smoothening by blasting a sand jet stream
into the surface.

• Grinding: Surface smoothening by friction mechanisms using a rotat-
ing tool equipped with a regular distribution of abrasive grains bonded
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together.

The velocity condition at impact is defined by the kinetic energy given by the
Lorentz forces. In our current experimental settings we had no means of mea-
suring directly the velocity or the pressure.

(a) Front. (b) Rear.

Fig. 5.18 – Deformed sheet at 3.5kV and with a 2mm gap.

The global profile highly depends on the geometry of the coil. For instance,
the red path traced in fig. 5.18a shows the zone on the work piece that was
above the low-field zones of the coil. It means that this zone had a low kinetic
energy and no-impact happened.

We can already observe qualitatively that there is a good printing effect of the
turning, milling and abrasive blasting zones on the work flat sheet. On the
other hand, the grinding zone cannot be evaluated by the eye because the
high quality finishing of the surface makes it almost perfectly flat for the given
impact conditions.

Another interesting result is that, as shown in fig. 5.18b for the two lowest qual-
ity finishing methods (turning and milling) it is possible to observe their sig-
natures on the rear side of the specimen. This means that the plastic wave
was able to travel the 0.5mm of thickness and print the details of the surface
finishing.
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5.3 Conclusions

This chapter was dedicated to the experimental facilities available at the CE-
MEF laboratories. The first step needed in order to identify the experimental
set-up was the characterization using the RLC circuit model. We have seen
that this approach allows a simple definition of the settings and at the same
time enables a fast identification of the needed parameters. Nevertheless, we
point out that a discrepancy in the electric output between the model and the
real case should be expected for two main reasons: From the experimental
side, if we only can capture a single current peak there is no way of character-
izing the damping behaviour thus this will affect the equivalent resistance pa-
rameter. From the FE model point of view, the geometrical truncation of the
coil does affect the estimation of the equivalent inductance and resistance.
Nevertheless, at this stage we accept the error found of about 4% on the elec-
tric current which we estimate acceptable for this first model.

The forming experiments presented so far were done with the purpose of point-
ing out some of the most remarkable macroscopic phenomena that can be
observed during an electromagnetic forming process. The indirect forming
case was the model delivered with the machine that enables forming non-
conductive materials (for the experiment we used aluminium). This set-up
has the advantage of allowing accumulating large inertial energy in the punch
part that will form the work piece. On the other hand our first interest was to
see the effect of the electromagnetic waves on the work piece directly. Hence
we designed the free bulging case following [TAKATSU et al. 1988]. From the
simulation of the free bulging case we saw that we most likely need to re-
evaluate the material data for the aluminium samples. For the moment we un-
derestimate the deformation obtained with respect to the experimental case.
However, this result could also be improved by taking a larger geometrical sec-
tion of the inductor in order to take into account the lack of axisymmetry of the
actual experimental configuration. Finally, we found quite interesting the re-
sults of the surface printing experiment. It was observed that the high-speed
impact and the instantaneous material softening allows copying even small
details from the die/matrix into the work piece.
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Chapter 6

General conclusions and
perspectives

This Ph.D. work had as main objective to develop a predictive computational
tool capable of simulating the electromagnetic forming process taking into ac-
count all the complexities of multiphysical interactions within a 3-Dimensional
framework. This was motivated from the fact that while we know from litera-
ture and experience that the process is promising for the metal forming indus-
try, its multiphysical nature makes it complex to design and understand why
it works so well.

Two key points are at the center of the discussion:
(1) The increased forming limits. This phenomenon depends on the compe-
tition between inertial forces and damage propagation. Since the mechanics
of damage have to be studied at the micro-scale we left this subject out of our
current model. Nevertheless, we can point out as perspective to Perform a
multi-scale study of the process in which the damage phenomenon is mod-
elled with the representative volume element approach (RVE) and link this
information to the macro-scale model. A team in our laboratory is currently
working on the development of the tool Digi-µ for meso-scale modelling of
materials which could be linked to our softwares and could serve to the pur-
pose.

(2) The spring-back elimination: This phenomenon is linked to the high-speed
impact of the solid material with the die. The first driving factor is the prop-
agation of the plastic shock-wave and the second one is the creation of com-
pressive stresses helping in retaining the parts together (we should add also
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the surface bonding for cases where bonding conditions are achieved).

Perspective: To perform a fast dynamic simulation at the nano-second scale
to accurately witness the effect of Lorentz forces propagating from one side
of the material, the impact shock wave coming from the rear side and both
contributing to the formation of the residual compressive stresses. This study
could be done with the tool developed in this work by carrying out the simu-
lation with the appropriate time scale.

Since the main focus of the project was the numerical development of the sim-
ulation tool, most of the attention was given to the mathematical and com-
putational aspects. In chapter 2 we reviewed the fundamental principles be-
hind the description of the electromagnetism and the thermo-mechanics. We
left a question open regarding the derivation of Maxwell’s equations: Are they
the actual equations that should be used in a continuum description of de-
formable objects? We proposed a continuum derivation of the electromag-
netic equations following what is known as the Heaviside-Hertz model. From
it we were able to derive the Lorentz force on a particle as a result of the fields
equations without additional terms. In [Christov 2006] was mentioned that
the Lorentz contraction could be explained starting from the Heaviside-Hertz
model. In the appendix B.2 we show an alternative approach to derive the
contraction factor using this model.

Besides the fundamental discussion rising from the use of the model we also
found that in the domain of magneto-hydrodynamics the electric potential
equations is usually presented as∇· (∇φ) = ∇· ( #»v × #»

B) which can also be ob-
tained from the Heaviside-Hertz model as done in appendix B.1. This raises a
new question (perspective): Are there EMF configurations in which the veloc-
ity of the deformable object generates an induced electric potential? If so, we
should solve eq. (B.2) on the inductor and the work piece as well.

In chapter 3 we established the finite elements framework for the simulation
of the eletromagnetic problem using a fully immersed approach. We also ded-
icated a section to the modelling of the electric machinery behind the process
with the aim of piloting the simulation in the same way we pilot the real exper-
iment. The resolution of the coupled Finite Elements-Circuit equation is done
by means of a fixed-point scheme. We see as a perspective for generalization
of our code to modify the resolution by a constrained resolution of the linear
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system, which would enable to solve simultaneously the vector potential (
#»

A)

and the electric current in the inductor (I).

From the comparison with the electric results of the experimental case we saw
that defining the correct set of parameters for the circuit equation is not trivial
because we need to take into account the geometrical simplifications done in
the CAD model with respect to the actual coil. Nonetheless, the identification
can be done by using an analytical harmonic oscillator model, from where we
can get a good initial approximation of the values.

Coupling between the electromagnetic problem and the thermo-mechanical
problem was introduced in chapter 4. We selected a sequential coupling strat-
egy based on independent mesh management for the different physics. This
created the need for a mesh management method allowing the mesh of the
air, in the EM computation, to track the displacement of the solids. Two strate-
gies were implemented. An r-adaptation technique enabling to define a mesh
nodal displacement and a remeshing that generates a new mesh when the vir-
tual displacement creates excessive distortion.

Perspective: The remeshing algorithm should be rewritten in order to opti-
mally work in parallel. It currently constitutes a bottleneck for the computa-
tion because it is done sequentially.
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Appendix A

Mathematical formulas and
identities

A.1 Time derivative of the determinant of the Jaco-

bian matrix, Euler formula

d

dt
J =

∂

∂t
J = J Tr

[
F−1 · Ḟ

]
= J∇ · #»v (A.1)

Demonstration: Given a transformation matrix

Fij =
∂xi
∂x′j

its determinant is given in inditial notation by

J = |Fij| = εijk
∂xi
∂x′1

∂xj
∂x′2

∂xk
∂x′3

(A.2)

The time derivative of the determinant is computed as follows

d

dt
J =

∂

∂t
J +

∂

∂xl
J êl ·

∂xm
∂t

êm (A.3)

It can be demonstrated that the term ∂
∂xl
J êl = 0.

∂

∂xl
J êl =

∂

∂xl

(
εijk

∂xi
∂x′1

∂xj
∂x′2

∂xk
∂x′3

)
êl (A.4)

Without loss of generality, lets isolate one of the partial derivatives. Take for
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instance
∂

∂xl

(
∂xi
∂x′1

∂xj
∂x′2

∂xk
∂x′3

)
=

∂

∂xl

(
∂xi
∂x′1

)
∂xj
∂x′2

∂xk
∂x′3

+ . . . (A.5)

Commuting the derivative operators we have that

∂

∂xl

(
∂xi
∂x′1

)
=

∂

∂x′1

(
∂xi
∂xl

)
Then, if i = l⇒ ∂xi

∂xl
= 1

if i 6= l⇒ ∂xi
∂xl

= 0
(A.6)

For any case
∂

∂x′1

(
∂xi
∂xl

)
= 0

meaning that ∂
∂xl
J êl = 0, from where it follows that

d

dt
J =

∂

∂t
J (A.7)

For the next part of the demonstration we will make use of the Jacobi formula

∂

∂t
[det (A(t))] = Tr

[
Adj (A(t))

∂

∂t
A(t)

]
(A.8)

Where A(t) is a given tensor field dependent on t and AdjA is the adjoint ma-
trix of A. Then,

∂

∂t
J =

∂

∂t

[
det
(
F
)]

(A.9)

= Tr

[
Adj

(
F
) ∂
∂t
F

]
(A.10)

= Tr
[
JF−1Ḟ

]
(A.11)

= J Tr
[
ḞF−1

]
(A.12)

= J Tr (∇ #»v ) (A.13)

= J∇ · #»v (A.14)

Finally
d

dt
J =

∂

∂t
J = J∇ · #»v (A.15)
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End of the demonstration.
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Appendix B

More on Hertz-Heaviside
electrodynamics

B.1 The electric potential equation

In the domain of magneto-hydrodynamics we can find quite often the use of
the following expression for the electric potential (see [Moreau 1990; Shatrov
et al. 2003; Jin et al. 2015] for instance)

∇ · (∇φ) = ∇ · ( #»v × #»

B) (B.1)

From the proposed development in chapter 2 we can easily obtain it by taking
the divergence of the Maxwell-Ampere’s Law

∇ ·
[
∇× #»

H
]

= ∇ ·
[
∂

#»

D

∂t
−∇× ( #»v × #»

D) +
#»

J

]
0 =

∂

∂t
ρe +∇ · ( #»

J )

0 =
∂

∂t
ρe −∇ · (σ∇φ)−∇ · (σ∂t

#»

A) +∇ · (σ #»v ×∇× #»

A)

From where ∂
∂t
ρe is usually set to zero and, by means of the coulomb gauge we

expect∇ · (σ∂t
#»

A) = 0 as well, thus finding

∇ · (σ∇φ) = ∇ · (σ #»v ×∇× #»

A) (B.2)
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B.2 Lorentz Contraction from Hertz-Heaviside elec-

trodynamics - Demonstration in theω−k̄ space

Suppose that the source of an EM field is moving with the velocity v̄ in the
vacuum. The field equations are

∇× Ē = −∂tB̄ +∇× v̄ × B̄
∇× H̄ = ∂tD̄ −∇× v̄ × D̄ + ρev̄

If the source is a point particle, the term ρe can be eliminated by considering
an arbitrarily large domain. By changing from the space-time domain to the
wavenumber-frequency domain we get (∂t → iω ; ∇ → ik̄)

ik̄ × Ē = −iωB̄ + ik̄ × v̄ × B̄
k̄ × Ē = µ0

[
−ωH̄ + k̄ × v̄ × H̄

]
k̄ × Ē = µ0

[
−ωH̄ + v̄(k̄ · H̄)− H̄(k̄ · v̄)

]
k̄ × Ē = µ0

[
v̄ ⊗ k̄ − (ω + k̄ · v̄) ¯̄I

]
H̄

ik̄ × H̄ = iωD̄ − ik̄ × v̄ × D̄
k̄ × H̄ = ε0

[
ωĒ − k̄ × v̄ × Ē

]
k̄ × H̄ = ε0

[
ωĒ − v̄(k̄ · Ē)− Ē(k̄ · v̄)

]
k̄ × H̄ = −ε0

[
v̄ ⊗ k̄ − (ω + k̄ · v̄) ¯̄I

]
Ē

k̄ × k̄ × Ē = − 1

c2

[
v̄ ⊗ k̄ − (ω + k̄ · v̄) ¯̄I

]2

Ē[
k̄ ⊗ k̄ − k̄2 ¯̄I

]
Ē = − 1

c2

[
v̄ ⊗ k̄ − (ω + k̄ · v̄) ¯̄I

]2

Ē[
k̄ ⊗ k̄ − k̄2 ¯̄I

]
Ē = − 1

c2

[
(v̄ ⊗ k̄)2 + (ω + k̄ · v̄)2 ¯̄I − 2(ω + k̄ · v̄)v̄ ⊗ k̄

]
Ē

0 =

{
(k̄ − 1

c2
(2ω + k̄ · v̄)v̄)⊗ k̄ +

[
(ω + k̄ · v̄)2

c2
− k̄2

]
¯̄I

}
Ē

0 =

{[
(ω + k̄ · v̄)2

c2
− k̄2

]−1

(k̄ − 1

c2
(2ω + k̄ · v̄)v̄)⊗ k̄ + ¯̄I

}
Ē

Employing the identity

det( ¯̄I + ā⊗ b̄) = 1 + ā · b̄
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Demonstration in the ω − k̄ space

We obtain

1 +

[
(ω + k̄ · v̄)2

c2
− k̄2

]−1

(k̄ − 1

c2
(2ω + k̄ · v̄)v̄) · k̄ = 0k̄2 −

(
ω2 +

(
k̄ · v̄

)2
+ 2ωk̄ · v̄

)
c2

−1(
k̄ − 1

c2

(
2ωk̄ · v̄ +

(
k̄ · v̄

)2
))

= 1

k̄2 −

(
ω2 +

(
k̄ · v̄

)2
)

c2

−1(
k̄ − 1

c2

(
k̄ · v̄

)2
)

= 1

1

k̄2 − 1
c2

[
ω2 + (k̄ · v̄)2

] k̄T ( ¯̄I − 1

c2
v̄ ⊗ v̄

)
k̄ = 1 (B.3)

Imagine the particular case of v̄ = 〈v, 0, 0〉T , then

1 =
1

k̄2 − 1
c2

[
ω2 + (k̄ · v̄)2

]

(√

1−
(v
c

)2

kx

)2

+ k2
y + k2

z

 (B.4)

Equation (B.3) describes the geometry of the propagation wavefront around
and observer travelling with the source as described from the reference or ’sta-
tionary’ frame. We can obtain from it the angles of the main propagation axes.
In the particular case of (B.4) it means that the wavefront propagation is an
ellipsoid contracted in the direction of movement of the source by the factor√

1−
(
v
c

)2
. Given

Ē = E0〈n1, n2, n3〉T ; ni = cos(φi) ; i = 1 . . . 3

Then

n1 =

√
1−

(
v
c

)2
kx√

k̄2 − 1
c2

[
ω2 + (k̄ · v̄)2

]
n2 =

ky√
k̄2 − 1

c2

[
ω2 + (k̄ · v̄)2

]
n3 =

kz√
k̄2 − 1

c2

[
ω2 + (k̄ · v̄)2

] (B.5)
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Appendix C

Material Charts

Table C.1 – Standard material definition for Aluminum

Aluminum 6061
General Density (ρ) [Kg/m3] 2700

Elastic
Young (E) [GPa] 70.6
Yield (σy) [MPa] 30.05
Poisson (ν) [−] 0.279

Thermal
Conductivity (k) [W/mK] 205
Specific Heat (Cp)[J/kgK] 356
Expansion (α)[1/K] 22.2e-6

Electric
Resistivity (ρe) [Ωm] ρ0(1 + αe(T − T0))

ρ0 3.24e-8
αe 0.0033

Magnetic Permeability (µr) [−] 1
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Table C.2 – Standard material definition for Copper

Copper OFHC
General Density (ρ) [Kg/m3] 8924

Elastic
Young (E) [GPa] 130
Yield (σy) [MPa] 69
Poisson (ν) [−] 0.342

Thermal
Conductivity (k) [W/mK] 401
Specific Heat (Cp)[J/kgK] 385
Expansion (α)[1/K] 16.6e-6

Electric
Resistivity (ρe) [Ωm] ρ0(1 + αe(T − T0))

ρ0 1.7e-8
αe 0.0039

hline Magnetic Permeability (µr) [−] 1

Table C.3 – Plastic coefficients for the Johnson-Cook model

Material A [MPa] B [MPa] C n m Tm [K] Ref.
Al1050 83 426 0.025 0.35 - - [Jeanson et al. 2013]
Al1050 20 172 0.0221 0.353 - - [Li et al. 2013]
Al6061-T4 265 426 0.015 0.34 1 935.5 [Fenton 1996]

AL6061-T6
324 114 0.002 0.42 1.34 925

[Shang et al. 2012]
275 255 0.0 0.30 1 925

Copper OFHC 90 292 0.025 0.31 1.09 1358.15 [Fenton 1996]
Ti-6A1-4V 200 700 0.06 0.22 - - [Li et al. 2013]
AISI 4130 610 750 0.008 0.25 - - [Johnson et al. 2010]

Table C.4 – Plastic coefficients for the Hollomon model.

K [MPa] n m Ref.
118 0.27 - Al1050 [Siddiqui 2009]
245 0.5 - Al6061-T4 [Fenton 1996]
183.4 0.223 - Al6061-Solutionized [Altynova et al. 1996]
626.2 0.113 - Al6061-T6
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Table C.5 – Plastic coefficients for the Modified path-dependent Z.A. model. (Copper)
[Gould et al. 2000]

Parameter Value
σa[MPa] 50
K[MPa] 0 (fcc materials)
k[MPa] 1475
S[K−1] 4.77e-5
C3[K−1] 3.6e-4
C4[K−1] 2.2e-5
α[−] 0.88
θ[MPa] 1048 + 10.42 ln(ε̇)

ε̇0[s−1] 2.1e11
Σ[MPa] 289

Table C.6 – Plastic coefficients for the Takatsu model. (Aluminum 1050) [TAKATSU
et al. 1988]

Parameter Value
K1[MPa] 118
K2[MPa] 15.7
n1[−] 0.27
n2[−] 0.54
ε̇0[s−1] 1e-3
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Appendix D

Shock wave mechanics

Most of the electromagnetic forming applications have an impact condition
driving the process after the energy has been transmitted to the work piece.
This means that a full comprehension of the process requires some basic knowl-
edge on impact mechanics.

Shock wave mechanics was formally founded in the 19th century with the
works of Rankine and Hugoniot. Rankine was the first to show that within the
shock a non-adiabatic process must occur. Hugoniot showed that in the absence
of viscosity and heat conduction, conservation of energy implies conservation of
entropy in smooth regions and a jump in entropy across a shock [Salas 2007].
At the beginning the theory was mainly targeted to the study of shock prop-
agation in gaseous or perfect elastic solids for the mathematical simplicity in
defining the equations of state (EOS) relating pressure, temperature and den-
sity.

The physics of shock waves mechanics in condensed or solid matter saw its
formal beginning in the 1950s with studies focused on finding the equations
of state for solids in dynamic regimes [Kanel et al. 2004]. Research contin-
ues today with several studies in which nano-scale simulations together with
laser pulsed shock experiments allows to follow in a detailed fashion the evo-
lution and propagation of the shock wave within metal crystals, enabling the
identification of the vast phenomena occurring within the material in such
conditions.

In this appendix we mention a few concepts the we consider important in un-
derstanding the phenomena and that we can use for the study of the high-
speed forming process.
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D.1 Euler equations

In chapter 2, when developing the governing equations of the thermo-mechanical
problem, at all times we presented the equations in its Lagrangian and Eule-
rian forms. The purpose was to set up the background framework from which
we can then develop the rest of the phenomena. In this case we are interested
in the shock wave propagation due to impact conditions.
The study of propagating waves is done easily when regarding them as moving
entities within a fixed frame as in fluid dynamics. For this reason it is conve-
nient to use the Eulerian representation of the governing equations.

Mass conservation
∂ρ

∂t
+∇(ρv̄) = 0 (D.1)

Linear momentum
∂

∂t
(ρv̄) +∇(ρv̄2) = ∇ · S −∇p+ ρb̄ (D.2)

Energy conservation
∂

∂t
(ρe) +∇ · [v̄ (ρe+ p)] = ∇ · (S · v̄) + ρv̄ · b̄+ ρQ̇−∇ · q̄

(D.3)

The well known Euler equations for fluid dynamics are obtained under the
following hypothesis:

• Inviscid material

• No heat transfer

• No friction with walls

• No volume forces or sources

By means of such simplifications we obtain

Mass conservation
∂ρ

∂t
+∇(ρv̄) = 0 (D.4)

Linear momentum
∂

∂t
(ρv̄) +∇(ρv̄2) = 0 (D.5)

Energy conservation
∂

∂t
(ρe) +∇ · [v̄ (ρe+ p)] = 0 (D.6)

D.2 Rankine-Hugoniot shock theory

When the theory was first established, all the mathematical results were ob-
tained mainly in 1D approximations. This allowed to generate analytic equa-

178



D.2. Rankine-Hugoniot shock theory

tions and properly formulate the fundamental concepts. The first step was to
simplify the Euler equations into a 1D form:

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (D.7)

∂

∂t
(ρv) +

∂

∂x
(ρv̄2) = 0 (D.8)

∂

∂t
(ρe) +

∂

∂x
[v (ρe+ p)] = 0 (D.9)

The key concept was the introduction of the jump condition in 1D for a con-
served quantity

D

Dt

∫ x2

x1

wdx = −f(w)|x2x1 (D.10)

us(w1 − w2) = f(w1)− f(w2) (D.11)

where us is the velocity of the jump interface. It must obey the Lax entropy
condition

f ′(w2) < us < f ′(w1)

s
V

1 2

 volume)(controlSystemReferenceMoving

 ZoneAffectedShock  ZoneAffectedNon 

FrontShock Splited
PrecursorElastic

 WavePlastic

Fig. D.1 – Scheme of a two-zone shock wave propagating within a solid material.

Considering a two-zone control volume as in fig. D.1 the mass conservation
implies

us(ρ2 − ρ1) = ρ2u2 − ρ1u1 (D.12)

Where ρ represents the density of the material in the shock affected zone (1)
or the non affected zone (2). u is the velocity of a particle in each of the zones.
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Assuming that the non-affected zone is in a static state with respect to the
affected zone we could say u2 = 0, ρ2 = ρ0, ρ1 = ρ and call u1 = up (p is the
standard notation for the particle velocity). It follows that the compression
can be measured by

ρ0

ρ
=
us − up
us

(D.13)

The Hugoniot is an important relation in the construction of the EOS. At mod-
erate pressures it can be represented by the linear relationship [Kanel et al.
2004].

us = c+ sup (D.14)

Where c is some1 measure of the speed of sound and s is a proportionality
constant which has a value between 1 and 1.7 for most of the known materials.
Another measure of the compression is given by the variable

χ = 1− ρ0

ρ
=

up
c+ sup

=
1

s+ c
up

(D.15)

D.3 The P − v diagram for shock mechanics

Determining the state diagram of the shock process enables to understand the
different phases through which the material goes when submitted to shock
loading. In the works of [Zhakhovsky et al. 2010; Zhakhovsky et al. 2011] we
have found one of the most complete descriptions as seen in fig. D.2.
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Fig. D.2 – Schematic of P − v shock
Hugoniot with elastic and plastic
fronts. [Zhakhovsky et al. 2010;
Zhakhovsky et al. 2011]

HEL: Hugoniot Elastic Limit
EZ: Elastically compressed
metastable elastic state
HEL∗: Hugoniot final metastable
elastic limit
Sel: Hugoniot Elastic Adiabat
Spl: Hugoniot Plastic Adiabat
OD: Over driven
OD∗: Over driven limit of the
two-phase shock wave

1It can change depending on the direction of propagation with respect to the latices of the
crystal selected in the material
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This diagram resumes a large amount of work dedicated to the identifica-
tion of the shock regimes that starts from a single elastic wave, then goes to
a elastic-plastic splited regime, and then a single plastic wave. The last is still
under debate. Shock Regimes

1. P < PHEL: Single elastic wave

uels = Cel + Selup (D.16)

2. PHEL < P < POD: Splited shock wave with different velocities

Elastic uels = Cel + Selup (D.17a)

Plastic upls = Cpl + Splup (D.17b)

3. POD < P < POD : Splited shock wave with equal velocities

us = C + Sup (D.18)

4. P > POD : Single plastic wave

Figure fig. D.3 is an example state diagram for an aluminium sample compar-
ing experimental and numerical data.
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Fig. D.3 – (From [Zhakhovsky et al. 2011]): P-V Hugoniot for perfect AL [111] crystal
and a sample with a vacancy concentration of 10−3.
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Appendix E

Isoparametric Nedelec Element

Fig. E.1 – Idealized tetrahedral

The tetrahedral represented in figure E.1 is characterized by

hx = hy = αhz = αh

The interpolation functions are defined as in Jin 2002:

• Scalar linear interpolation functions

ϕ1 = η , ϕ2 = γ , ϕ3 = ξ (E.1)

ϕ4 = 1− η − γ − ξ (E.2)

• Reference system transformation

F =
1

h

 1
α

0 0

0 1
α

0

0 0 1
α

 (E.3)
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• Gradient
∇ϕi = F∇η,γ,ξϕi (E.4)

• Vector interpolation functions

Ψ1 = ϕ1∇ϕ2 − ϕ2∇ϕ1

Ψ2 = ϕ2∇ϕ3 − ϕ3∇ϕ2

Ψ3 = ϕ3∇ϕ1 − ϕ1∇ϕ3

Ψ4 = ϕ1∇ϕ4 − ϕ4∇ϕ1

Ψ5 = ϕ2∇ϕ4 − ϕ4∇ϕ2

Ψ6 = ϕ3∇ϕ4 − ϕ4∇ϕ3 (E.5)

• Curl
∇×Ψd = −2∇ϕi ×∇ϕj (E.6)

Then, the local element matrices defined in 3.33 are

M11 =
1

30α2h2

1 −1
4
−1

4
0 0 0

α2+1
2

−α2

4
−α2−1

4
−α2−1

2
−α2−1

2
α2+1

2
α2−1

2
α2−1

4
α2−1

2
α2+4

2
α2+4

4
2α2+3

4
α2+4

2
2α2+3

4
3α2+2

2


(E.7)

eig(M11) =
1

30α2h2



α2

2
+ 3

4
5
4

α2

4
−
√

4α4−4α2+9
8

+ 5
8

α2

4
+
√

4α4−4α2+9
8

+ 5
8

5α2

4
− 5

√
4α4−4α2+9

8
+ 15

8
5α2

4
+ 5

√
4α4−4α2+9

8
+ 15

8


(E.8)
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E.1. Characteristic Matrices

Mcc =
2

3α4h4



1 0 0 −1 1 0

α2 0 0 −α2 α2

α2 α2 0 −α2

α2 + 1 −1 −α2

α2 + 1 −α2

2α2


(E.9)

eig(Mcc) =
2

3α4h4



α2 −
√

4α4−4α2+9
2

+ 3
2

α2 +
√

4α4−4α2+9
2

+ 3
2

0

0

0

4α2


(E.10)

M10 =
1

24α2h2



−1 1 0 0

0 −1 α2 −(α2 − 1)

1 0 −1 α2 − 1

−2 −1 −1 α2 + 3

−1 −2 −1 α2 + 3

−1 −1 −2 2(α2 + 1)


(E.11)

E.1 Characteristic Matrices

Note: For the sake of clarity, only the non-zero elements of the matrices are
listed below.
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• Newmark

B11 = 1

B13 = −b4

B22 = 1

B23 = −b1

B33 = ∆tµ0

(
ε0εrm11b4 + σm11b1 +

mcc

µr

)
B35 = ∆tµ0m10G

{
σ +

ε0εr
∆t

}[ ∆t

2Cm
+Rm +

Lm
∆t

]
B44 = 1

B45 = − 1

∆t

B52 = −σS

B55 = 1 + σGS

[
∆t

2Cm
+Rm +

Lm
∆t

]
(E.12)

M11 = b6

M12 = b5

M13 = −b4

M21 = b6

M22 = b5

M23 = −b4

M31 = −m11∆tµ0 (b3σ + b6ε0εr)

M32 = −m11∆tµ0 (b2σ + b5ε0εr)

M33 = m11∆tµ0 (b1σ + b4ε0εr)

M35 = ∆tµ0m10G

{
σ

[
∆t

Cm
− Lm

∆t

]
+

ε0εr
∆t

[
∆t

2Cm
−Rm − 2

Lm
∆t

]}
M45 = − 1

∆t

M55 = −σGS
[

∆t

Cm
− Lm

∆t

]
(E.13)
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• Euler Implicit

B11 = 1

B22 = 1

B23 = − 1

∆t

B33 = µ0

(
σm11 + ∆t

mcc

µr

)
B35 = ∆tµ0m10Gσ

[
∆t

2Cm
+Rm +

Lm
∆t

]
B44 = 1
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]
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M23 = − 1

∆t
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σ
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∆t
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M45 = − 1

∆t
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[
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]
(E.15)
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• Second Order Central Differences

B11 = 1

B22 = 1

B23 = − 3

2∆t

B33 = µ0

(
σm11 +

2

3
∆t
mcc

µr

)
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2

3
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]
B44 = 1

B45 = − 1

∆t

B52 = −σS

B55 = 1 + σGS

[
∆t

2Cm
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3
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Résumé 
 

Le formage électromagnétique est une 

technologie qui a gagné en intérêt dans les 

dernières décennies - grâce notamment à la 

formabilité accrue qu'il offre pour les 

matériaux à haute résistance et  faible masse 

spécifique tels que les alliages d'aluminium et 

de magnésium. Un des défis majeurs au 

niveau du procédé réside dans la conception 

et l'étude au niveau de la pièce à fabriquer et 

sur l'interaction entre les différents aspects 

physiques: les ondes électromagnétiques 

comme source d'énergie, la thermo-

mécanique contrôlant les évolutions de 

déformations et de contraintes, ainsi que 

l'étude de l’endommagement sous des 

sollicitations à grande vitesse. Ce travail est 

consacré à la mise au point d’un modèle et 

d’un outil numérique prédictifs capable de 

traiter l’interaction entre électromagnétisme et 

thermo-mécanique dans un cadre éléments 

finis en 3D. Nous introduisons les modèles de 

calcul pour l'électromagnétisme : l'approche 

permettant d’inclure la géométrie des pièces, 

le couplage électrique avec le générateur, 

entre autres. Nous poursuivons avec les 

techniques de calcul nécessaires pour 

coupler le calcul électromagnétique avec les 

calculs thermo-mécaniques – en mettant 

l’accent sur le problème du suivi des 

déplacements de la pièce déformable dans le 

module électromagnétique. Nous introduisons 

aussi certains aspects plus physiques du 

procédé tels que les phénomènes 

d'élimination du retour élastique ou encore 

l’adhésion des surfaces (soudage). Dans le 

dernier chapitre, nous présentons les 

installations expérimentales disponibles au 

laboratoire. Une méthodologie pour 

l'identification des paramètres électriques 

définissant les machines et nécessaires pour 

effectuer la simulation est introduite. 
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Abstract 
 

Magnetic pulse forming is a technology that 

has gained interest in the last decades – 

thanks to the increased formability it offers for 

high-resistance-low weight ratio materials 

such as aluminum and magnesium alloys. 

One major complexity of the process lies in 

the design and study at the work piece level 

and the interaction between the several 

physical aspects involved: the 

electromagnetic waves as source of energy, 

the thermo-mechanics controlling the strain 

and stress evolution, as well as the study of 

fracture and damage under high-speed 

loading conditions. This work is dedicated to 

the development of a predictive model and 

computational tool able to deal with the 

interaction between the electromagnetism 

and the thermo-mechanics in a 3D finite 

elements frame work. We introduce the 

computational aspects of the 

electromagnetism, from the selected 

approach to include the geometry of the parts 

down to the coupling with the electric 

machinery behind the process. This is 

followed by the computational techniques 

needed to couple the electromagnetic 

computation to the thermo-mechanical one 

with a special focus on the problem of 

tracking the displacement of the deformable 

part within the electromagnetic module. We 

also introduce some aspects more related to 

the physics of the process such as the 

phenomena of elastic spring-back elimination 

and surface bonding (welding). In the last 

chapter we present the experimental facilities 

available at the laboratory. A methodology for 

identification of the electric parameters 

defining the machinery and needed to 

perform the simulation is introduced. 
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