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INTRODUCTION

I.1 Context

Many structural materials used in aeronautic and aerospace are crystalline materials such as

steels, aluminium alloys, etc. Industry is always trying to improve these materials and theirs physical

and mechanical properties. An efficient way to obtain improved structural materials is to develop

heterogeneous materials. These materials may be composed of several grains of the same phase or

of domains of different phases. This heterogeneous microstructure is controlled through appropriate

thermo-mechanical treatments.

The prediction of the mechanical properties of an heterogeneous material is a subject of intense

research in the scientific community.

Theoretical and numerical approaches are now available for the homogenization of the elastic

properties [55, 79, 13]. Much less is known concerning the plastic behavior and the damage of

an heterogeneous material. Current investigations, carried out among others at the LEM, try to

simulate complex evolutions involving both phase transformations, plasticity and damage in order to

predict the microstructure evolution and the macroscopic behavior of heterogeneous materials. These

works aim ultimately at proposing improved microstructures and thermo-mechanical treatment for

industrial applications.

Recent models coupling a phase field approach for the description of the microstructure evolution

and a phenomenological continuous plasticity model have been able to qualitatively analyse the

importance of the coupling between plasticity and phase transformation, e.g. for solder alloys [99,

100], for rafting of Ni base superalloys [18] and the growth of Widmanstatten structures [22].

However, the use of these methods is strongly limited by the phenomenology of the plasticity

model. In particular, these plasticity models, inspired from macroscopic models from continuous

mechanics, do not explicitly reproduce the transport of dislocations. This is a strong limitation to

investigate plasticity of an evolving microstructure where the heterogeneity (with differing plastic

behavior) are below a few microns in size. Improved plasticity model, based on transport properties,

are therefore much desired and the present work is a contribution towards a physically based plasticity

model based on the transport of dislocation densities.

I.2 Plasticity in a crystalline material

Crystalline materials are characterized, in opposition to amorphous materials, by an ordered

arrangement of atoms: a motif of several atoms is repeated periodically on a specific lattice. There

are many different crystal lattices, such as body-centered cubic (BCC), face-centered cubic (FCC)

used for figure I.2, etc. It is well known that the mechanical behavior of a crystal is strongly related

to the existence and movement of crystal defects:

- 0 dimension (or point defect): vacancy, substitutional or interstitial atoms, etc.

- 1 dimension (or line defect): dislocations.

11



12 Introduction

- 2 dimension (or surface defect): interfaces, grain boundaries, stacking faults, cracks, etc.

Each defect is governed by a specific kinetics and dislocation movement has been shown to be the

main mechanism of the plasticity. This phenomenon is at the heart of the present thesis.

A dislocation, illustrated in figure I.1, is characterized by two quantities:

- The Burgers vector characterizes the plastic shift of a part of the crystal during the movement

of the dislocation. For usual perfect dislocations, the Burgers vector is a translation vector of the

crystal and is often along a dense direction of the crystal.

- The dislocation line represents the position of the defect. The line is locally oriented along a

unit line vector l̨.

!ledge

!lscrew

!b

Figure I.1: Illustration of crystal defects in a crystal: On the left, there is an interface (dim. 2)
between two phases with different orientations. On the top, there is a vacancy (dim. 0). On the
right, there is a portion of dislocation loop (dim. 1) enclosing an area sheared by an elementary
translation b̨, the Burgers vector. l̨ is the dislocation line vector. Drawing inspired by [86].

The movement of a dislocation inside a plane containing the direction of the Burgers vector is

called glide. Glide planes (or slip planes) are usually the densest planes of the crystal. For example,

in a FCC material illustrated in figure I.2, the four {111} planes are the commonly observed slip

planes.

Figure I.2: Lattice structure of a FCC material with slip-systems (dense planes) illustrated by grey
planes. Adapted from [35].
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The description of crystal plasticity is therefore usually based in slip systems, defined by a slip

plane and a slip direction (i.e. the direction of the Burgers vector). At low temperature, dislocation

movement is only due to glide. At high temperature, screw dislocations may change their slip plane

(cross slip) and dislocation may even move out of their slip plane by absorbing or releasing vacancies

(dislocation climb) [42]. These two thermally activated processes are not considered in this study.

The description of dislocation in text books usually starts by considering straight dislocations.

When b̨ is perpendicular to the dislocation line vector l̨, the dislocation is called an edge dislocation.

When b̨ and l̨ are parallel the dislocation is of screw character and in all other cases the dislocation

has a mixed character.

Figure I.3 illustrates the movement of a perfect edge dislocation in case of a shear stress applied

to the lattice and symbolized by two black arrows. The dislocation line is orthogonal to the figure

and localized by a T symbol and the orientation of the symbol informs about the sign of the Burgers

vector. By convention, the symbol

T

denotes an edge dislocation where the additional half plane is

in the upper part of the crystal (see figure I.3).

!ledge

!b

Figure I.3: Translation from the left to the right of an edge dislocation due to a shear load of the
cubic lattice symbolized by two black pointers.

The glide of the dislocation implies a series of ruptures of atomic bonds followed by reattachment

with the next atomic column. Due to the crystal periodicity, a critical resolved stress, called Peierls

stress, must be overcome in order to make the dislocation glide. In this work, this Peierls stress

is considered negligible, as it is the case in FCC crystals due to the dissociation of the dislocation

core. In addition, the applied stress will be moderate, so that the velocity of the dislocation can be

assumed proportional to the local resolved stress · defined by

· =
b̨

b
· ‡ · n̨ (I.1)

where n̨ is the normal to the glide plane.

We now consider the case of an assembly of dislocations in a crystal. Because each dislocation

generates strain fields in the crystal, a given dislocation will receive from the other dislocations a

stress field that may lead to the movement of the dislocation. The elastic fields generated by a

dislocation are decaying very slowly (as the inverse of the distance to the dislocation) and are also

usually anisotropic. In addition, dislocations interact at short range (in particular by the formation

of junctions), and the dislocation density may strongly evolve in time (source of dislocations).

All this makes it clear that the understanding of the collective behavior of dislocations and the

emergence of complex patterns is a very challenging problem. An example of such a dislocation

pattern in a monocrystal of copper is shown in figure I.4. The obtained pattern depends strongly on
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the time evolution and orientation of the applied load [95, 64, 94]. Scale invariant (fractal) patterns

are also reported [106, 107].

1 µm

5 µm

Figure I.4: Dislocation-pattern of dislocations (black regions) in a monocrystal of copper at stage
II of the strain hardening on the left and cycled at a strain amplitude in the plateau on the right.
Revealed by typical transmission micrographs. Respectively after [64, 71].

The plasticity of heterogeneous crystals or polycrystals may be even more complex because the

heterogeneities of the material introduce new length scales in the problem. This point is illustrated

by the tensile test of a polycrystal of aluminium presented in figure I.5. After deformation, the

orientation map of the polycrystal shows that the heterogeneity of the plastic field appears at the

scale of the grain structure but also at a scale much lower than the grain size.

5 mm

111

001 101

experimental von Mises equivalent strain

[%]

0.0

1.5

4.5

7.5

10.5

13.5

3.0

6.0

9.0

12.0

15.0

Figure I.5: Tensile test response of a polycrystal of aluminium: Above, The lattice orientation of
each phase of the microstructure. Below, the inter-phases pattern of plasticity. The fluctuations of
dislocation density are obtained by the DIC technique. After [112].

From these examples, it appears clearly that the macroscopic mechanical behavior of a material

cannot be understood and predicted without a deep analysis of all the intermediate length scale
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(called mesoscopic scales) between the micro and macro scales. The main difficulty is probably

to derive relevant models to study the mechanical behavior at mesoscale. These models should in

principle describe the transport of dislocations but also the consequences of the short and long range

interactions between dislocations, the creation and annihilation of dislocations, etc. Such a complete

physically based mesoscopic model is still far from being available in the scientific community.

I.3 Crystal plasticity models

The investigation of crystal plasticity goes through different types of tools specific for each

scale, ranging from atomic scale to the macroscopic one: atomistic simulations, Discrete Dislocation

Dynamic (DDD), Field Dislocation Mechanics (FDM) or Continuum Dislocation Dynamic (CDD)

models, based on dislocation densities, and finally, conventional plasticity theories. Atomistic simula-

tions follow the behavior of each atom of the lattice and are useful for the description of dislocation

core interacting with different defects (interfaces, cracks, etc.). This is the most rigorous description

of a dislocation but also the heaviest one and only a few dislocations can be simultaneously simulated.

However, atomistic analysis can be used to calibrate DDD models. Even though less rigorous, it is

currently the best way to understand the collective behavior of dislocations. The drawback is that

simulations are limited in time and also in space (few thousands of dislocations) making it impossible

to simulate complex microstructures. In fact, this tool is limited to simple crystals or, at least, to

situations where there are only a few simple grain boundaries or interfaces, to analyse the impact of

these defects on the dislocation dynamics [23]. It is worth mentioning that this description at the

level of discrete dislocations can also be reached by a continuous Phase Field formulation based on

the so-called "loopons" [87].

The next scale, the mesoscopic scale, is the scale of our investigations in this thesis. Industrial

development of polycrystalline materials are often approached by phenomenological crystal plasticity

models based on macroscopic concepts and laws (Norton, Von Mises, etc.), see for example [37].

Consequently, these models are built without taking into account the origin of plasticity, the dislo-

cations. These models are sometimes improved with a gradient term of plastic strain or stress [36]

in order to incorpore the size effect [19] observed in the plastic behavior when plasticity develops in

regions which are below a few microns in size. A better way is to approach the mesoscopic plasticity

by handling dislocation densities.

A lot of works have already been done on dislocation density models. First studies were done a

long time ago before the help of numerical resources. One of the first contribution was the Taylor

law (1934). Taylor proposed that tangled dislocations are able to move only if the applied stress

exceeds a critical value, called ·c, which is inversely proportional to the distance between dislocation

and thus proportional to
Ô

fl:

·c = –µb
Ô

fl (I.2)

where fl is the dislocation density, – is a phenomenological coefficient, µ is the shear modulus and

b is the norm of the Burgers vector. This law was further generalized to the case of multiple glide

systems [30] and was then used in a phenomenological model developed to analyse each stage of the

strain hardening of a monocrystal [24, 67]. The next important contribution was the Kocks-Mecking

model which proposes to define two types of dislocation density: the stored density and the mobile

density [64, 68, 69]. This model is built on the concept of the mean free path of a dislocation to

reproduce dislocation storage. It integrates also the annihilation phenomenon between dislocations
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which leads to the restoration of the crystal. The Kocks-Mecking model has been extended to the

case of crystal plasticity [97] and has been used, for example, to study the mechanical behavior of

polycrystal [97] or Nickel based superalloy [19, 101], etc.

Other formulations have been proposed to describe plasticity at the mesoscale such as FDM or

CDD models. These formulations will be reviewed in the next chapter.

The important point is that all these models, describing plasticity using dislocation densities, re-

quire a phenomenological constitutive law to describe the crystallographic slip and the slip resistance.

When changing the material under study or the type of loading, it is necessary to recalibrate these

laws and sometimes to even change the law itself.

Therefore, it appears that it is important to work towards the definition of more physically based

plasticity model, and the most relevant way to do that is to directly derive a mesoscopic model by

coarse-graining the dynamics of individual dislocations. This route was opened in 1997 by I. Groma

who proposed to use the tools of statistical physics to derive a dislocation density based model from

the coarse-graining of the 2D dynamics of parallel edge dislocations.

Even if the geometry of the plastic model is very restrictive, this approach was the first one to be

able to derive transport equation for dislocations densities. This approaches has also the advantage

of pointing out the importance of the correlations of the dislocation positions in this coarse-graining

procedure [50, 52]. Most importantly, the correlation term can be split into two contributions which

are formally similar to the usual friction and backstress terms [51], phenomenologically introduced in

the classical plasticity models. Several papers have been devoted to the understanding and the com-

putation of these correlation terms [108]. The model was used to investigate dislocation patterning

[47, 48], and extended to the case of multiple slip systems [105].

This manuscript reinvestigates this formalism and presents my contribution to this model. The

first chapter details the coarse-graining procedure and aims at clarifying each step of the derivation,

starting from the dynamics of discrete dislocations up to transport equations of dislocation density. In

the second chapter, dislocation dynamics is used to estimate the correlation terms that emerges from

the coarse-graining procedure. In the third chapter, the numerical implementation of the dislocation

density model is discussed and an improved numerical scheme is proposed. Then the model is used

to address the question of the spontaneous emergence of a dislocation density pattern when starting

from an initial homogeneous density. The fourth chapter proposes a new FFT based scheme for

numerically solving mechanical equilibrium. It is shown that this scheme, which could be used to

improve the numerical solution of the dislocation density model, is able to provide accurate and non

oscillatory mechanical field even in the case of very inhomogeneous anisotropic elasticity. Finally, the

important results of the work are summarized and several perspectives are proposed.



Chapter 1

DENSITY BASED CRYSTAL PLASTICITY: A

DERIVATION OF COARSE-GRAINED

TRANSPORT EQUATIONS

Résumé du chapitre

Ce chapitre explique la mise en oeuvre d’une méthode de changement d’échelle permettant de

passer de la dynamique des dislocations discrètes (DDD) à une théorie en densité de dislocations

dans le cas d’une assemblée de dislocations coins parallèles se déplaçant suivant un seul système de

glissement. Cette méthode qui reprend la dérivation initialement proposée par I. Groma [46, 51],

aboutit d’une part à des équations de transport sur les densités de dislocations et d’autre part aux

différents termes contribuant à l’évolution de ces densités. Dans le cadre de la situation simple

considérée, cette méthode permet de s’affranchir de la phénoménologie des modèles de plasticité

cristalline utilisés en mécanique des matériaux. Après un état de l’art rappelant brièvement les travaux

sur lesquels nous nous sommes appuyés, nous présenterons en détail la procédure de changement

d’échelle. Nous commencerons ainsi par définir rigoureusement les densités de dislocations à l’aide

de moyennes spatiale, temporelle et d’ensemble. Puis nous discuterons les différentes contributions

à la force motrice d’évolution des densités de dislocations, à savoir la contrainte de champ moyen et

les contraintes induites par les corrélations entre dislocations individuelles. Nous serons alors à même

de proposer une signification physique claire à la contrainte dite ’backstress’. Dans un second temps,

nous discuterons la brisure de symétrie émergeant dans les équations en densité de dislocations suite

au changement d’échelle.

17



18 Chapter 1. - Physically based crystal plasticity

1.1 Introduction

Plasticity of crystalline solids involves the notion of dislocations. However, even today, con-

ventional plasticity theories use mesoscopic variables and evolution equations that do not involve

dislocations. This paradoxical situation is due to the enormous length and time scales that separate

the description of plasticity at the level of individual dislocations and the macroscopic scale of engi-

neering materials. This huge space and time separation renders the hope to use a discrete dislocation

based approach out of reach for treating engineering problems. It could be argued that conventional

or phenomenological plasticity theories are justified because, at the macroscopic scale, engineering

materials always display some sort of disorder that gives to any macroscopic property or measure

an inevitable averaging character. Hence, at the macroscale, plastic strain may be seen as resulting

mesoscale from a space and time average over a huge number of individual dislocation glide events.

Nevertheless, conventional plasticity theories rely on strong approximations and on phenomeno-

logical laws that must be calibrated for each material, or, for each specific applications. Therefore,

it is desirable to make a link between the micro and macro scales and to develop a mesoscopic

plasticity theory that relies on a sound physical basis, i.e. that at least incorporates dislocation glide.

The development of such a mesoscale theory is also crucial to better understand and simulate the

materials behavior at length scales where the elastic interaction between dislocations becomes of the

order of the interaction between dislocations and obstacles, such as precipitates in a matrix, small

grains in a polycrystal or interfaces in nano-materials. At these scales, dislocations display collective

phenomena that result in patterning and complex dynamic regimes. In these situations, plasticity

cannot be described by a simple averaged plastic strain that obeys local time-dependent equations.

Size-dependent effects and, most importantly, transport become fondamental. Conventional theories

of plasticity are no longer valid and are unable to account for the complexity of the plastic activity

because they lack the relevant internal length scale and do not incorporate transport.

These considerations motivate the development of continuum models in which dislocations are

represented by continuous densities and in which the dynamics has conserved the transport character

of the underlying dislocation glide.

Continuum dislocation representations often start from the Nye [85] and Kröner [65] represen-

tation of dislocations. This is the case of the Field Dislocation Model (FDM) proposed by Acharya

[4, 5] and developed subsequently by various authors [88, 31, 96, 32]. The basic equations have

been in fact known as early as the 60’s [66, 83] (see also volume 7, Theory of Elasticity, in the series

Theoretical physics, by Landau-Lifshitz [72] and the chapter Crystal dislocations and the theory of

elasticity by A. Kosevich in "Dislocation in Solids" [84]. The basic ingredient of the FDM is the

dislocation density tensor –=≠ curl —p, where —p is the plastic distorsion tensor. When envisaged at

the smallest scale, the tensor – represents all the dislocations and there is no need to introduce the

concept of "geometrically necessary" or "statistically stored" dislocations (GND and SSD, respec-

tively). The model is then exact, regardless of the atomic nature of the dislocations and provided

that we accept that the dislocation velocity is simply proportional to the local resolved shear stress.

However, being continuous by nature, the implementation of the model requires the use of a com-

putational grid with a grid step significantly smaller than the Burgers vector length. This drastically

limits the spatial length scale that can be investigated. Therefore, in order to reach a convenient

macro scale, a change of scale must be performed to bridge the gap between the singular density

tensor introduced above and a continuous one defined at an intermediate scale. There is of course

no unique way to select this so-called "mesoscale". Obviously, the mesoscale must be larger than
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the average distance between dislocations and smaller than the characteristic length scale we want

to investigate (average grain size in polycrystals, average distance between interfaces in multiphase

alloys, etc.). The underlying averaging or "coarse-graining" procedure has of course been already

mentioned in the context of the FDM [6, 33].

The crucial point is that the application of the coarse-graining procedure to the FDM equations

leads to transport equations for the averaged one-body GND density in which the plastic strain rate

inevitably depends on the correlations between the lower scale GND and velocity fields. This closure

problem is often resolved by using a phenomenological velocity law borrowed from macroscopic

plasticity models leading to the so-called Phenomenological Mesoscopic Field Dislocation Model

(PMFDM) [6, 89]. The actual implementation of the mesoscale FDM thus suffers from the lack of

a mathematically justified mesoscale plastic strain rate.

A more recent formulation of a Continuum Dislocation Dynamics (CDD) has been proposed by

Hochrainer and its collaborators [57, 58]. It is based on a modified definition of the dislocation density

tensor, in order to keep at mesoscale information concerning the geometry of the dislocations (in

particular, line directions and curvatures). The necessity of using an averaging procedure to obtain

a meaningful continuum model has also be pointed out in the context of the CDD formulation [91]

(see also [2, 3]), but a rigorous mathematical formulation of this coarse-graining procedure has not

yet been proposed.

The first attempt to better treat the closure problem has been proposed by Groma [45] and its

collaborators [108, 51]. This is the route that we follow below. A particular attention will be paid

on the nature of the coarse-graining procedure and its consequences on the local stress fields that

emerge from the time and space averaging process.

1.2 Density based plasticity theory: from the discrete to the contin-

uum

Our aim here is to clarify the mathematics and physical aspects of the coarse-graining procedure

that must be used to coarse-grain the dislocation dynamics from discrete to the continuum. There-

fore, we consider the simplest situation, namely a 2D dislocation system with N edge dislocation

lines parallel to the z-axis restricted to glide along the x-axis. The Burgers vector of dislocation i,

i = 1 to N , is noted sįb, where si is the sign of the dislocation i and b̨ = (b, 0, 0). The numbers

N+ and N≠ of negative and positive dislocations are considered equal and constant. We assume an

overdamped motion: the glide velocity of the ith dislocation along the x-axis is simply proportional

to the resolved Peach-Koehler force acting on the dislocation i,

dr̨i

dt
= Msįb

Q
a

Nÿ

j ”=i

sj·ind(r̨i ≠ r̨j) + ·ext

R
b , (1.1)

where M is the mobility coefficient equal to the inverse of the dislocation drag coefficient, ·ext the

external stress resolved in the slip system and ·ind(r̨) the shear stress at position r̨ generated by a

positive dislocation located at the origin:

·ind(x, y) =
µb

2fi(1 ≠ ‹)

x(x2 ≠ y2)

(x2 + y2)2
(1.2)
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where µ is the shear modulus and ‹ the Poisson coefficient. The first step is to define discrete

dislocation densities:

fl+
dis(r̨, t, {r̨ 0

k }) =
qN

i=1 ”si,+1”(r̨ ≠ r̨i(t, {r̨ 0
k }))

fl≠
dis(r̨, t, {r̨ 0

k }) =
qN

i=1 ”si,≠1”(r̨ ≠ r̨i(t, {r̨ 0
k }))

(1.3)

where {r̨ 0
k } refers to the initial positions of the N dislocations, ”s,t is the Kronecker symbol and ”(r̨)

the 2D Dirac function. The notation r̨i(t, {r̨ 0
k }) means that the trajectory of dislocation i depends

on the initial dislocation positions {r̨ 0
k }.

By multiplying equation (1.1) by the Dirac function ”(r̨ ≠ r̨i(t, {r̨ 0
k })) and taking its derivative with

respect to r̨, we get the following transport equation for the discrete densities:

≠ ˆ

ˆt
fls

dis(r̨) = sMb̨ · ˆ

ˆr̨

Y
_]
_[

⁄

r̨ Õ ”=r̨

·ind(r̨ ≠ r̨ Õ)
ÿ

sÕ=±1

sÕflsÕ

dis(r̨ Õ)fls
dis(r̨)dr̨ Õ + ·ext fls

dis(r̨)

Z
_̂

_\
(1.4)

where, to simplify the notation, we write fls
dis(r̨) for fls

dis(r̨, t, {r̨ 0
k }). Obviously, these transport equa-

tions link the time-dependence of the one-body densities to the product of two one-body densities,

which is a direct consequence of the pairwise dislocation interactions. At this stage, the dislocation

densities fls
dis(r̨) are highly singular. The next step is to introduce a coarse-graining procedure.

1.2.1 Coarse-graining procedure

We introduce now a coarse-graining procedure commonly used in statistical physics. We first

define a space and time convolution window w(r̨, t) that we use to coarse-grain microscopic fields

to mesoscopic ones:

fmeso(r̨, t) =

⁄⁄
w(r̨ ÕÕ, tÕÕ) fmicro(r̨ + r̨ ÕÕ, t + tÕÕ) dr̨ ÕÕdtÕÕ. (1.5)

The weighting function w(r̨, t) is non-dimensional and normalized. For simplicity, and without loss

of generality, we choose w(r̨, t) to be separable:

w(r̨, t) = wL(r̨) wT (L)(t) (1.6)

where the functions wL(r̨) and wT (L)(t) are separately normalized:

⁄
wL(r̨) dr̨ = 1 and

⁄
wT (L)(t) dt = 1. (1.7)

The spatial linear dimension L of wL(r̨) should be of the order of the spatial resolution of the

continuous model we seek and, obviously, significantly larger than the average distance between

dislocations. The temporal width T (L) of the time window wT (L)(t) should, in all generality, depend

on L (we comment on that point in section 1.2.4) and, for convenience, we choose wT (L)(t) to be

non-zero only for t60:

wT (L)(t) ”= 0 if t 6 0. (1.8)

Mesoscopic density fields may be defined through equation (1.5), but this is not enough to get

a consistent continuous transport theory. First, we expect that the time evolution of the mesoscopic

dislocation densities will be given by first-order transport (i.e. hyperbolic) equations. These equations
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must be supplemented by initial conditions at t = 0 which, of course, must be defined at mesoscale.

In other words, the coarse-graining procedure should be such that, when applied to equation (1.4)

and its initial condition given by the dislocation positions {r̨ 0
k } at t = 0, we end up with a set of

mesoscopic transport equations supplemented by continuous initial conditions that do not depend on

any specific initial set {r̨ 0
k }. Therefore, if fls(r̨, t=0), s=±1, are given initial continuous densities,

we must introduce a N -body probability density distribution P (r̨ 0
1 , . . . , r̨ 0

N ) on the (discrete) initial

positions {r̨ 0
k } which is linked to the mesoscopic densities fls(r̨, t=0) in a way that we discuss below.

The distribution P (r̨ 0
1 , . . . , r̨ 0

N ) introduces a statistical ensemble on the initial discrete dislocation

positions: P (r̨ 0
1 , . . . , r̨ 0

N )dr̨ 0
1 . . . dr̨ 0

N is the probability to have an initial dislocation configuration

with dislocation 1 in a small volume dr̨ 0
1 around position r̨ 0

1 , dislocation 2 in a small volume dr̨ 0
2

around position r̨ 0
2 , etc.

Now, the overall coarse-graining procedure is defined as the conjugate action of the space-time

convolution window w(r̨, t) and the ensemble average defined by the probability density P (r̨ 0
1 , . . . , r̨ 0

N ).

The mesoscopic field Xmeso(r̨, t) associated with the discrete field Xdis(r̨, t, {r̨ 0
k }) is therefore defined

by:

Xmeso(r̨, t) =
NŸ

k=1

⁄
dr̨ 0

k P (r̨ 0
1 , . . . , r̨ 0

N )

⁄
dr̨ ÕÕ

⁄
dtÕÕw(r̨ ÕÕ, tÕÕ)Xdis(r̨ + r̨ ÕÕ, t + tÕÕ, {r̨ 0

k }). (1.9)

We refer to this coarse-graining procedure by the following short-hand notation:

Xmeso(r̨, t) = ÈÈXdis(r̨, t)ÍÍP (1.10)

where the double brakets refers to the space and time convolution and the lower index P to the

ensemble average. The mesoscopic one-body and two-body densities are therefore defined by:

fls(r̨, t) = ÈÈfls
dis(r̨, t, {r̨ 0

k })ÍÍP (1.11)

and

flssÕ

(r̨, r̨ Õ, t) = ÈÈfls
dis(r̨, t, {r̨ 0

k })flsÕ

dis(r̨ Õ, t, {r̨ 0
k })ÍÍP . (1.12)

We note that the two-body densities defined in equation (1.12) are continuous function of r̨ and

r̨ Õ. This would not be the case if the coarse-graining procedure was limited to a space and time

convolution. This is the second reason why we need to consider also an average over a statistical

ensemble.

We can now precise the link, mentioned above, between the probability density P (r̨ 0
1 , . . . , r̨ 0

N ),

that defines the statistical ensemble, and the continuous dislocation densities fls(r̨, t) that will be

used as initial conditions for the mesoscopic kinetic equations. We consider that any discrete initial

condition {r̨ 0
k } on the N dislocation positions is extended to t<0:

i = 1 to N and t 6 0 : r̨i(t, {r̨ 0
k }) = {r̨ 0

i }. (1.13)

Then, using the definition of the discrete densities (equation (1.3)) and the definition of the coarse-
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grained ones (equation (1.11)), we get:

fls(r̨, t = 0) =
NŸ

k=1

⁄
dr̨ 0

k P (r̨ 0
1 , . . . , r̨ 0

N )

⁄
dr̨ ÕÕ

⁄
dtÕÕw(r̨ ÕÕ, tÕÕ)

Nÿ

i=1

”si,s”(r̨ + r̨ ÕÕ ≠ r̨i(t
ÕÕ, {r̨ 0

k })).

(1.14)

Using equations (1.6), (1.7) and (1.13), we obtain:

fls(r̨, t = 0) =
Nÿ

i=1

”si,s

NŸ

k=1

⁄
dr̨ 0

k P (r̨ 0
1 , . . . , r̨ 0

N ) wL(r̨ 0
i ≠ r̨). (1.15)

Without loss of generality, we may restrict the stochastic variables r̨ 0
i , i=1 to N , to be statistically

independent and to follow the same distribution function f(r̨). Thus, the density P (r̨ 0
1 , . . . , r̨ 0

N )

may be factorized as:

P (r̨ 0
1 , . . . , r̨ 0

N ) = f(r̨ 0
1 )f(r̨ 0

2 ) . . . f(r̨ 0
N ) (1.16)

where the density f(r̨) is normalized:

⁄
f(r̨)dr̨ = 1. (1.17)

Using equations (1.16) and (1.17), equations (1.15) become

fls(r̨, t = 0) =
Nÿ

i=1

”si,s

⁄
wL(r̨ 0

i ≠ r̨)f(r̨ 0
i )dr̨ 0

i (1.18)

and then

fls(r̨, t = 0) = N s

⁄
wL(r̨0 ≠ r̨)f(r̨0)dr̨0 (1.19)

where N s is the number of dislocations of the sign s. Up to the coefficient N s, the initial condition

fls(r̨, t=0) is simply equal to the convolution of f(r̨), the distribution of initial discrete dislocation

positions, with the convolution window wL(r̨). For given fls and wL, equation (1.19) defines a

unique function f(r̨). Thus, for prescribed initial mesoscopic dislocation densities fls(r̨, t=0) and a

given spatial convolution window wL(r̨), the coarse-graining procedure introduced in equation (1.9)

is completely and uniquely defined.

1.2.2 Coarse-grained kinetic equations

By a direct application of the coarse-graining procedure defined in equation (1.9) to equation

(1.4), we get the following mesoscopic equations:

≠ ˆ

ˆt
fls(r̨, t) = sMb̨ · ˆ

ˆr̨

Y
_]
_[

⁄

r̨ Õ ”=r̨

·ind(r̨ ≠ r̨ Õ)
ÿ

sÕ

sÕflssÕ

(r̨, r̨ Õ, t)dr̨ Õ + ·ext fls(r̨, t)

Z
_̂

_\
(1.20)

where the mesoscopic one-body and two-body densities fls(r̨, t) and flssÕ

(r̨, r̨ Õ, t) have been defined

in equation (1.11) and (1.12).

At this stage, no approximation has been introduced. Equations (1.20) are exact and contain the same

information and complexity as equation (1.4) and, therefore, as equation (1.1). However, the time

evolution of one-body densities fls(r̨, t) is linked to the two-body dislocation densities flssÕ

(r̨, r̨ Õ, t). It
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is straightforward to realize that the time evolution of these two-body densities are themselves linked

to the three-body densities, and so forth. Obviously, we are faced by the classical problem of closure

that we meet in statistical physics when we try to replace a set of discrete degrees of freedom by a

set of continuous densities.

As explained above, the next step is to solve the closure problem. This of course requires the

introduction of some approximations. One way to do that is to analyse and possibly approximate the

two-body correlations, defined by:

dssÕ

(r̨, r̨ Õ, t) =
flssÕ

(r̨, r̨ Õ, t)

fls(r̨, t) flsÕ(r̨ Õ, t)
≠ 1 (1.21)

Using equation (1.21), the kinetic equation (1.20) becomes:

≠ ˆ

ˆt
fls(r̨, t) = sMb̨ · ˆ

ˆr̨

C
fls(r̨, t) {·sc(r̨, t) + · s

corr(r̨, t) + ·ext}
D
. (1.22)

where the local stresses · s
sc(r̨, t) and · s

corr(r̨, t) are defined by:

·sc(r̨, t) =
ÿ

sÕ

sÕ
⁄

r̨ Õ ”=r̨

·ind(r̨ ≠ r̨ Õ) flsÕ

(r̨ Õ, t) dr̨ Õ (1.23)

and

· s
corr(r̨, t) =

ÿ

sÕ

sÕ
⁄

r̨ Õ ”=r̨

·ind(r̨ ≠ r̨ Õ) dssÕ

(r̨, r̨ Õ, t) flsÕ

(r̨ Õ, t) dr̨ Õ. (1.24)

1.2.3 Mean field stress

Together with equations (1.21), (1.23) and (1.24), kinetic equation (1.22) is exact but not closed.

The simplest way to have a closed continuous theory is to neglect the correlations dssÕ

(r̨, r̨ Õ, t).

Equations (1.22) become:

≠ ˆ

ˆt
fls(r̨, t) = sMb̨ · ˆ

ˆr̨

C
fls(r̨, t) {·sc(r̨, t) + ·ext}

D
. (1.25)

The local stress exerted on the dislocations of sign s does not depend on s and is simply the sum of

the external stress ·ext and the stress ·sc(r̨, t) generated by all the one-body densities and defined

in equation (1.23):

·sc(r̨, t) =

⁄
·ind(r̨ ≠ r̨ Õ)

ÿ

sÕ

sÕflsÕ

(r̨ Õ, t)dr̨ Õ =

⁄
·ind(r̨ ≠ r̨ Õ)Ÿ(r̨Õ, t)dr̨ Õ (1.26)

where we introduced the polar or GND (Geometrically Necessary Dislocation) density:

Ÿ(r̨, t) =
ÿ

sÕ

sÕflsÕ

(r̨, t). (1.27)

As ·sc(r̨, t) does not incorporate any correlation effects, it may be called a mean field stress or, as it

closes the theory, a self-consistent stress [45].
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1.2.4 Correlation-induced local stresses

We want now to go beyond the mean field approximation and incorporate the correlations. In

other words, the correlation stress · s
corr(r̨, t) (equation (1.24)) will be now taken into account. These

correlations should be approximated in order to close the theory.

We need first to discuss the time and spatial variations of the correlation functions dssÕ

(r̨, r̨ Õ, t). It

has already been observed [108, 51] that the correlation length of dssÕ

(r̨, r̨ Õ, t) is finite and of the

order of a few average dislocation spacings. Consequently, if the width of the convolution window is

sufficiently larger than the mean dislocation spacing, the correlations dssÕ

(r̨, r̨ Õ, t), for a fixed point

r̨ and as a function of r̨ Õ, decrease to zero before the one-body densities flsÕ

(r̨ Õ) vary significantly.

Therefore, within the domain around point r̨ where they are non-zero dssÕ

(r̨, r̨ Õ, t) may be considered

as a function of (r̨≠r̨ Õ) and of the local one-body densities fls(r̨, t):

dssÕ

(r̨, r̨ Õ, t) ƒ dssÕ

(r̨ ≠ r̨ Õ, {fls}, t) (1.28)

where the notation {fls} refers to {fls, s = ±}. Now, we comment on the time dependence of the

correlations. We recall that the coarse-graining procedure introduced above (see equations (1.6) and

(1.9)) involves a time convolution. A width T (L) for the time window must be selected. Due to

their short-range nature in space, we argue that, provided L is large enough, the time needed by the

correlations dssÕ

(r̨, r̨ Õ, t) to reach a stationary state is much smaller than the characteristic time of the

time evolution of the one-body densities. Consequently, if the width T (L) of the time convolution

is large enough 1, the coarse-grained correlations reach a stationary state which is dependent on the

local one-body densities only: the explicit time dependence in dssÕ

(r̨, r̨ Õ, t) disappears and shows up

only implicitly through the time dependence of the one-body densities fls(r̨, t). In short, equation

(1.28) becomes:

dssÕ

(r̨, r̨ Õ, t) ƒ dssÕ

(r̨ ≠ r̨ Õ, {fls}) (1.29)

Now, using again the short-range nature of the correlations discussed above, we note that

flsÕ

(r̨ Õ, t) in equation (1.24) may be expanded to 1st-order around r̨. The local stress defined in

equation (1.24) is then split into two terms:

· s
corr(r̨, t) = ≠· s

b (r̨, t) ≠ · s
f (r̨, t) (1.30)

with

· s
f (r̨, t) = ≠

ÿ

sÕ

sÕflsÕ

(r̨, t)

⁄

r̨ Õ ”=r̨

·ind(r̨ ≠ r̨ Õ) dssÕ

(r̨ ≠ r̨ Õ, {fls}) dr̨ Õ (1.31)

and

· s
b (r̨, t) = ≠

ÿ

sÕ

sÕ ˆflsÕ

(r̨, t)

ˆr̨

⁄

r̨ Õ ”=r̨

(r̨ Õ ≠ r̨) ·ind(r̨ ≠ r̨ Õ) dssÕ

(r̨ ≠ r̨ Õ, {fls}) dr̨ Õ. (1.32)

At this stage, the coarse-grained kinetic equations given in equations (1.22) read:

≠ ˆ

ˆt
fls(r̨, t) = sMb̨

ˆ

ˆr̨

Ë
fls(r̨, t)

Ó
·ext + ·sc(r̨, t) ≠ · s

f (r̨, t) ≠ · s
b (r̨, t)

ÔÈ
(1.33)

1. We will precise this point in chapter 2, section 2.3.1
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where the local stresses ·sc(r̨, t), · s
f (r̨, t) and · s

b (r̨, t) are defined in equations (1.23), (1.31) and

(1.32). Next, we discuss the physical meaning of the correlation-induced · s
f and · s

b .

1.2.5 Physical meaning of the local stresses τ
s
f and τ

s
b

We first need to identify the symmetry properties of the correlation functions dssÕ

. According to

their very definition (equation (1.3) and (1.12)), we obviously have:

dsÕs(r̨ Õ ≠ r̨, t) = dssÕ

(r̨ ≠ r̨ Õ, t) (1.34)

Next, using the discrete kinetic equation (1.1) and its symmetry properties, we obtain the following

properties:

dssÕ

(r̨ ≠ r̨ Õ, t; ·ext) = ds̄s̄Õ

(r̨ ≠ r̨ Õ, t; ≠·ext) (1.35)

dssÕ

(x ≠ xÕ, y ≠ yÕ, t; ·ext) = dssÕ

(xÕ ≠ x, y ≠ yÕ, t; ≠·ext) (1.36)

where s̄ = ≠s and where the dependence of the correlations on the external stress ·ext has been

explicitly pointed out.

Now, in order to get a physical insight into the local stresses · s
f and · s

b , we discuss their de-

pendences on the external stress. They inherite this stress-dependency through the correlations dssÕ

,

which of course depend on the local stress. Within the spirit of the present coarse-graining procedure,

which inevitably leads to a hierarchy of independent and successive many-body densities, we consider

that the stress dependence of the k-body densities is due to the stress generated by the correlations

up to order (k≠1). Therefore, the stress dependence of the correlations dssÕ

is due to the sum of the

external stress and the mean-field stress ·sc(r̨). We note ·(r̨) this sum: ·(r̨) = ·ext+·sc(r̨). Using

the symmetry properties given in equation (1.35) and (1.36), it is straightforward to show that the

local stresses · s
f and · s

b defined in equations (1.31) and (1.32) display the following properties:

· s
f (r̨, t, ≠·(r̨)) = ≠· s

f (r̨, t, ·(r̨)) (1.37)

and

· s
b (r̨, t, ≠·(r̨)) = · s

b (r̨, t, ·(r̨)) (1.38)

where the local stress dependency has been explicitly added. These properties clarify the physical

meaning of the local stresses · s
f and · s

b . · s
f (r̨) changes its sign with the local stress ·(r̨) and, as we

will see below, is positive when ·(r̨) is positive, whereas · s
b is invariant with respect to a change of

sign of ·(r̨). As a consequence, · s
f , which always opposes the local stress ·ext + ·sc (see equation

(1.33)), plays the rôle of a friction term whereas · s
b , which breaks the symmetry with respect to a

reversal of the local stress ·(r̨), may generate a Bauschinger effect and a translation of the elastic

domain. Therefore, · s
b (r̨) plays the rôle of a backstress.
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1.3 Broken symmetry in the kinetics of the coarse-grained signed

dislocation densities

It is important to notice that, according to equation (1.33), the local stress fields experienced

respectively by the positive and negative dislocation densities are different: the correlation-induced

stress components · s
f and · s

b depend on the sign s. In other words, the symmetry that exists at

the discrete scale (positive and negative discrete dislocations at the same point r̨ have opposite

velocities) is broken at mesoscale: the velocities of positive and negative dislocation densities are not

simply of opposite sign. This broken symmetry is the direct consequence of a mesoscale description

and its associated coarse-graining procedure: the averaging process required to build a continuous

description generates kinetic equations for one-body densities that inevitably incorporate two-body

correlations which, in all generality, break the lower-scale symmetry.

In order to be more specific, we analyse explicitly the friction stresses ·+
f and ·≠

f experienced by

the positive and negative dislocation densities, respectively. According to equations (1.31), we have:

·+
f (r̨, t) = ≠fl+(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d++(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ

+ fl≠(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d+≠(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ (1.39)

and

·≠
f (r̨, t) = ≠fl+(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d≠+(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ

+ fl≠(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d≠≠(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ. (1.40)

Using the symmetry property given in equation (1.34), it is easy to show that the terms that depend

on d++ and d≠≠ are equal to zero. Therefore, the previous equations reduce to:

·+
f (r̨, t) = fl≠(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d+≠(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ (1.41)

and

·≠
f (r̨, t) = ≠fl+(r̨, t)

⁄
·ind(r̨ ≠ r̨ Õ) d≠+(r̨ ≠ r̨ Õ, {fls(t)}) dr̨ Õ. (1.42)

Again, using the symmetry properties of equation (1.34), it is easy to show that the integrals in

equations (1.41) and (1.42) differ only by their sign. Thus, we have:

·+
f (r̨, t) = fl≠(r̨, t)A(r̨, t) (1.43)

and

·≠
f (r̨, t) = fl+(r̨, t)A(r̨, t) (1.44)

with

A(r̨, t) =

⁄
·ind(r̨ ≠ r̨ Õ) d+≠(r̨ ≠ r̨ Õ) dr̨ Õ. (1.45)

Thus, when the signed densities fl+(r̨, t) and fl≠(r̨, t) are different, which is the generic situation,

the friction stresses ·+
f and ·≠

f are different, which is sufficient to break the symmetry between

the velocities of the positive and negative dislocation densities. To better understand this broken
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symmetry in physical terms, we note that fl≠(r̨, t)d+≠(r̨ ≠ r̨ Õ, {fls(t)}) may be interpreted as the

excess (with respect to the uncorrelated state) of negative dislocations in the surrounding of a positive

dislocation that sits at point r̨. Equation (1.41) tells us that this excess of negative dislocations at r̨

is at the origin of the friction stress ·+
f experienced by a positive dislocation. There is of course no

reason for this excess of negative dislocations around a positive dislocation to be exactly the opposite

of the excess of positive dislocations around a negative one. Therefore, the friction stresses ·+
f and

·≠
f ought to be different. 2

Now, to better visualize this broken symmetry in the signed kinetic equations, we introduce the

half sums and half differences of the friction and back stresses:

·f (r̨) = (·+
f (r̨) + ·≠

f (r̨))/2

·̃f (r̨) = (·+
f (r̨) ≠ ·≠

f (r̨))/2

·b(r̨) = (·+
b (r̨) + ·≠

b (r̨))/2

·̃b(r̨) = (·+
b (r̨) ≠ ·≠

b (r̨))/2

(1.46)

Using equation (1.31) and (1.32), we see that these stresses are linked to the correlations dssÕ

(r̨≠
r̨ Õ) as follows:

·f (r̨) =
1

2
fl(r̨)

⁄
·ind(r̨ ≠ r̨ Õ) d+≠(r̨ ≠ r̨ Õ) dr̨ Õ, (1.47)

·b(r̨) = ≠1

4

ˆfl

ˆr̨

⁄
(r̨ Õ ≠ r̨) ·ind(r̨ ≠ r̨ Õ)

Ó
d++(r̨ Õ ≠ r̨) ≠ d≠≠(r̨ Õ ≠ r̨)

Ô
dr̨ Õ

≠ 1

4

ˆŸ

ˆr̨

⁄
(r̨ Õ ≠ r̨) ·ind(r̨ ≠ r̨ Õ)

Ó
d++(r̨ Õ ≠ r̨) + d≠≠(r̨ Õ ≠ r̨) + d≠+(r̨ Õ ≠ r̨) + d+≠(r̨ Õ ≠ r̨)

Ô
dr̨ Õ,

·̃f (r̨) = ≠1

2
Ÿ(r̨)

⁄
·ind(r̨ ≠ r̨ Õ) d+≠(r̨ ≠ r̨ Õ)dr̨ Õ, (1.48)

·̃b(r̨) = ≠1

4

ˆŸ

ˆr̨

⁄
(r̨ Õ ≠ r̨) ·ind(r̨ ≠ r̨ Õ)

Ó
d++(r̨ Õ ≠ r̨) ≠ d≠≠(r̨ Õ ≠ r̨)

Ô
dr̨ Õ

≠ 1

4

ˆfl

ˆr̨

⁄
(r̨ Õ ≠ r̨) ·ind(r̨ ≠ r̨ Õ)

Ó
d++(r̨ Õ ≠ r̨) + d≠≠(r̨ Õ ≠ r̨) ≠ d+≠(r̨ Õ ≠ r̨) ≠ d≠+(r̨ Õ ≠ r̨)

Ô
dr̨ Õ

where Ÿ(r̨, t) is the GND density defined in equation (1.27) and fl(r̨, t) the total dislocation density:

fl(r̨, t) =
ÿ

s

fls(r̨, t). (1.49)

By definition, ·f (r̨) and ·b(r̨) are the components of the friction and back stresses experienced by a

dislocation independently of its sign, whereas ·̃f (r̨) and ·̃b(r̨) are their sign-dependent counterparts.

2. In fact, this broken symmetry could already be pointed out earlier when we wrote the coarse-grained kinetic
equations in the form of equation (1.22), where the dislocation-induced stress was split into the mean field stress ·sc(r̨)
and the correlation-induced stress ·s

corr(r̨, t) defined in equation (1.24). Using the fact that the stress function ·ind(r̨)
is odd (see equation (1.2)), it is easy to realize that ·s

corr(r̨, t) would be independent of s if and only if the correlations

dssÕ

are such that the product flsÕ

(r̨ Õ, t)dssÕ

(r̨, r̨ Õ, t) is equal to the opposite of fls̄Õ

(r̨ ÕÕ, t)ds̄s̄Õ

(r̨, r̨ ÕÕ, t), where r̨ ÕÕ and
r̨ Õ are symmetric points with respect to r̨. There is of course absolutely no reason for this to be fulfilled, even if, due
to the short range nature of the correlations, point r̨ ÕÕ and r̨ Õ may be restricted to be very close to each other.
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Using these stresses, equations (1.33) become:

≠ˆfl+(r̨, t)

ˆt
= Mb̨

ˆ

ˆr̨

Ë
fl+(r̨) {·ext + ·sc(r̨) ≠ ·f (r̨) ≠ ·b(r̨) ≠ ·̃f (r̨) ≠ ·̃b(r̨)}

È
(1.50)

and

≠ˆfl≠(r̨, t)

ˆt
= ≠Mb̨

ˆ

ˆr̨

#
fl≠(r̨) {·ext + ·sc(r̨) ≠ ·f (r̨) ≠ ·b(r̨) + ·̃f (r̨) + ·̃b(r̨)}

$
. (1.51)

Similar equations have already been proposed [108, 51] 3, but without the "symmetry-breaking"

stresses ·̃f (r̨) and ·̃b(r̨) and with a sign-independent backstress ·b(r̨) limited to the term that

depends on the gradient of the polar (GND) density Ÿ(r̨), i.e. to the 2nd term in the right hand side

of equation (1.48).

1.4 Conclusion

In this chapter, we have clarified the mathematical procedure needed to coarse-grain the dislo-

cation dynamics from the discrete to the continuum. In particular, we have emphasized that the

coarse-graining procedure requires a space and time convolution, supplemented by an average on a

statistical ensemble. We also argued that, if the width L of the spatial correlation and the width T (L)

of the associated time convolution are both large enough, the mesoscopic two-body correlations may

be considered locally invariant by translation and stationary at the scale of the characteristic evolution

time of the one-body densities. In other words, we may write dssÕ

(r̨, r̨ Õ, t)ƒdssÕ

(r̨≠r̨ Õ, {fls(r̨, t)}).

We have explained that the coarse-graining procedure generates correlation-induced stresses · s
f

and · s
b that have specific physical interpretations. The stress · s

f always opposes the local stress

· (sum of the applied stress and the mean-field stress) and is anti-symmetric with respect to · ;

therefore, · s
f is a friction stress. The stress · s

b is invariant with respect to a change of sign of · .

Consequently, it generates a translation of the elastic domain: it is a backstress.

We have also shown that the sign-independent backstress ·b, which is usually limited to a term

that depends on the gradient of the GND density, contains also a term that depends on the gradient

of the total density.

Finally, we argued that the friction and back stresses · s
f and · s

b , which are sign-dependent, break

the symmetry of the kinetic equations: positive and negative dislocation densities do not experience

the same local stress and, therefore, display velocities which are not strictly opposite.

The next chapter is devoted to a numerical analysis of the friction and back stresses. In particular,

we investigate the rôle of the width L of the convolution window used to define the coarse-graining

procedure and its impact on the correlation-induced stresses.

3. Recently, M. Geers and coll. [26] have proposed a set of different transport equations based on dislocation
densities. However, the derivation does not rely on a coarse-graining procedure and, thus, does not correspond to a
real transition to mesoscale.



Chapter 2

NUMERICAL ESTIMATION OF THE

CORRELATION-INDUCED LOCAL STRESSES

WITH 2D DDD SIMULATIONS

Résumé du chapitre

Ce chapitre se consacre à l’estimation des termes de correlation introduits dans le chapitre 1 qui sont

nécessaires pour les équations de transport des densités de dislocations. Ces termes, le terme de

friction et le terme de ’backstress’, dépendent de cartes de corrélations qui peuvent être évaluées dans

une situation stationnaire. Par conséquent, il est possible de quantifier ces corrélations. Ces cartes

portent l’information sur la probabilité de positionnement relatif entre deux dislocations discrètes.

Ainsi, ces cartes sont estimées dans ce chapitre grâce à des statistiques sur un grand nombre de sim-

ulations DDD. Une partie préliminaire du chapitre détaille l’implémentation des équations cinétiques

des dislocations discrètes en 2D, abordant plusieurs problématiques numériques comme le traitement

des dipôles, l’impact d’un système pseudo-périodique ou encore l’analyse des temps caractéristiques

des simulations. Il s’est avéré important de s’affranchir de ces artéfacts afin de mesurer avec précision

ces cartes de corrélations et leur dépendance à la contrainte appliquée et à la taille de la simulation.

Une deuxième partie illustre les différentes cartes obtenues et propose une interprétation. Enfin, dans

une dernière partie, ces cartes sont utilisées pour quantifier les termes de corrélation dans le cadre

d’un modèle à deux dimensions.

29
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2.1 Introduction

As described in chapter 1, the transport equations of a mesoscale dislocation density theory

contain correlation induced stresses, in particular the friction term and the backstress term. These

terms depend on the correlation functions dssÕ

, which must be computed through a coarse-graining

procedure which has been developed in chapter 1. As explained in section 1.2.2, if the width L of the

spatial convolution window is large enough, dssÕ

(r̨, r̨ Õ, t) may be considered as a function of (r̨≠r̨ Õ)
and of the local densities fls(r̨, t). The aim of this chapter is to recourse to 2D Discrete Dislocation

Dynamics (DDD) to compute numerically these correlation maps and, then, to analyse the flow and

back stresses as a function of the external stress.

The computation of these maps requires an ensemble average that is obtained by averaging the

result of numerous discrete dislocation simulations. Due to the strong short-range and long-range

interactions between dislocations, the numerical treatment of dislocation dipoles and of boundary

conditions is usually subtle in Discrete Dislocations Dynamic (DDD) simulations. In order to deter-

mine rigorously these correlation maps and their dependences, such as on the applied stress, it is

crucial to minimize and control the numerical artefacts. The aim of this chapter is to emphasize

important difficulties and results already present in the 2D geometry considered in chapter 1. We

consider only straight edge dislocations of one slip-system which involves only two types s of dislo-

cation, called + and ≠. From now onwards, the axis ę1 of the basis is aligned with the slip direction

of all dislocations. We characterize a positive dislocation with a Burgers vector toward +ę1 and a

negative dislocation for a Burgers vector toward ≠ę1. Moreover, we assume that the geometrically

necessary dislocations (GND) are negligible compared to the total number of dislocations. The first

part of this chapter details the implementation of equations for DDD in 2D. A second part illustrates

the obtained correlation maps and proposes interpretations. Finally, using these maps, an analysis of

all dependences of correlation terms is performed.

2.2 Preliminary requirement: 2D simulations of discrete dislocation

dynamics

In this preliminary part we discuss the numerical treatment of the discrete dislocation dynamics

used in 2D for the estimation of correlation maps. One of the main difficulties is to reproduce

correctly the behavior of close dislocations, such as dipole of dislocations. In fact, these dipoles can

artificially oscillate due to the time discretization. In addition, the time discretization may help a

dislocation assembly to overcome a high but narrow energy barrier. In most of discrete dislocation

studies, these artefacts have no important consequences but in the present investigation they strongly

affect the correlation maps. The first section of this part addresses the numerical discretization of

equations of DDD. The second section puts on ground the conditions of simulations in a pseudo-

periodic system and proposes some tests to calibrate this time discretization. In a third section, we

analyze the collective behavior of an assembly of dislocations.
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2.2.1 Assumptions for numerical treatment

The kinetics of a distribution of dislocations is governed by the equation (1.1). We write this

equation for our simplified case:

ˆx s
i (t)

ˆt
= Mbs ·

Q
a

Nÿ

j ”=i

sj · ·+
ind

1
x s

i (t) ≠ x sÕ

j (t), y s
i (t) ≠ y sÕ

j (t)
2

+ ·ext

R
b (2.1)

where ·ext is the external stress resolved in the slip system and ·+
ind(x, y) the shear stress at position

(x, y) generated by a positive dislocation located at the origin which, within isotropic elasticity, reads

as:

·+
ind(x, y) =

µb

2fi(1 ≠ ‹)
· x(x2 ≠ y2)

(x2 + y2)2
(2.2)

where µ is the shear modulus and ‹ the Poisson’s ratio. Along any direction, this function behaves as

1/r where r is the distance between two dislocations. This induces very strong stresses between close

dislocations and a weak stress even for far dislocations. The first step is to settle the simulations

in order to represent correctly the mesoscopic quantities defined by the coarse-graining process. In

fact, the statistic has to be performed on many simulations with exactly the same densities fls. A

good way to guaranty this density is to use a periodic distribution with a period corresponding to L.

This periodicity could bring numerical artefacts, discussed at the end of the chapter. Now, we link

the density of a distribution to the number of dislocations included in one period. In 2D, this period

has the size L◊L and this link is fls = N s/L2 where N s is the number of dislocations of the type

s. This density is controlled by two parameters, N s and L. In order to handle only one parameter,

we proceed to an adimension of equation (2.2). All distances are normalized by the characteristic

length of the problem which is the average distance between dislocations. Thus, all distances x

are adimensionalized by x̃ = x
Ô

fl. For the sake of clarity, all times t are also adimensionalized by

t̃= tMµb2fl/(2fi(1≠‹)). Finally, using a first order scheme for the time discretization, the equation

(2.2) becomes

x̃s
i (t̃ + ∆t̃) ≠ x̃s

i (t̃)

∆t̃
= s

Q
a

Nÿ

j ”=i

sj ·
(x̃s

i ≠ x̃sÕ

j )((x̃s
i ≠ x̃sÕ

j )2 ≠ (ỹs
i ≠ ỹsÕ

j )2)

((x̃s
i ≠ x̃sÕ

j )2 + (ỹs
i ≠ ỹsÕ

j )2)
2 +

2fi(1 ≠ ‹)·

µb
Ô

fl

R
b (2.3)

where the stress induced is written in terms of x̃s
i and x̃s

j . The adimensional equation has now

two relevant dependences. From then on, we mainly discuss with adimensional quantities: x̃, t̃,

·̃ . As detailed, this equation is implemented with an explicit discretized time differential with the

adimensional time step ∆t̃. On the contrary, we keep the exact spatial position of each dislocation to

describe short-range correlations with high accuracy. Figure 2.1 illustrates an example of a simulation

showing a box with dislocations with positive Burgers vector in red and dislocations with negative

Burgers vector in blue. Here N+ =N≠ =N/2=50 where N is the total number of dislocations. All

dislocations slip along x̨. According to the periodicity, the middle main box is periodically reproduced.

The copies are represented in grey. We consider a pseudo-periodic system for which the stresses in

the central simulation box are computed by summing the contributions of dislocations inside the

central box as well as in a limited number of repeated boxes. That leads to the definition of Nrep,

the number of layers of repeated box around the central box. For example, Nrep = 1 corresponds

to 8 repeated boxes (see figure 2.1). The impact of this restriction is quantified on each result

of correlation terms. This figure illustrates a distribution under an applied stress. The dislocation
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Figure 2.1: Example of a pseudo-periodic simulation with imposed shear stress ·̃ =1, with 50 positive
dislocations in red and 50 negative dislocations in blue.

pattern contains small walls of identical type of dislocations and also local coupling between opposite

dislocations. In case of two isolated opposite dislocations, it is named a dipole.

2.2.2 Dipole behavior: time discretization and pseudo-periodicity

An elementary system of dislocations is the dipole. Due to its simplicity and to its importance in

dislocation pattern, it is very useful for the investigation of the calibration of the time discretization.

Thus, we now consider two close dislocations of opposite Burgers vector inside the main box. The

dipole size is chosen much smaller than the box size L to investigate the case of an isolated dipole.

This dipole size is defined with the difference between the y-coordinates of the two dislocations,

called ”y. Due to the dipolar effect, the stress generated by a dislocation dipole decays as 1/r2

where r is the distance to the dipole. Consequently, if the dipole size is much smaller than the box

length the periodic copies of the dipole will create a very weak stress inside the main box. In this

case, the dipole can be assimilated to an isolated. The equilibrium position of an isolated dipole

under stress is obtained when the applied resolved stress is equal to the resolved stress generated by

the other dislocation:
2fi(1 ≠ ‹)

µ

”y

b
· =

x(1 ≠ x2)

(x2 + 1)2
”y. (2.4)
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The graphic solution of this equation is given in figure 2.2. For an applied stress below the critical

2π(1− ν)τδy

µb

!e1

!e2

!

"β

δy

!

!

!

π

4

Stress contribution of the positive dislocation

Applied stress

0

0−3

x/δy

xmin

δy

xeq

δy
5

1

4

Figure 2.2: Equilibrium of stress contributions of the negative dislocation (equation (2.4)). The right
hand side of the equation is represented by the red curve and the left hand side by the black line.
The equilibrium position is represented by the crossing at xeq.

value · crit = b
”y

µ
2fi(1≠‹)

1
4 , the equilibrium distance along ę1 between the opposite dislocations is

xeq. For an applied stress just below · crit, the equilibrium distance along x is xmin = (
Ô

2 ≠ 1)”y

corresponding to the angle — =fi/8. The maximum time step that can be obtained by imposing that

during a time step ∆t̃, the displacement of the dislocation ∆x̃ is much lower than the width of the

stress peak around xmin/”y in figure 2.2. In adimensional units, this width is around ”y
Ô

fl. Using

· crit as a maximum value for the resolved stress acting on the dislocation, we obtain the condition

∆t̃ 6 Cste · ”ỹ2 (2.5)

where Cste is a numerical constant. After testing many different configurations, we found that an

acceptable time step is ∆t̃ ƒ ”ỹ2. For an applied stress above · crit, there is no more equilibrium

position. The numerical test of this behavior is presented in figure 2.3 where the size of a dislocation

dipole under stress in our DDD simulations with Nrep =2 and ”y/L=3.9 · 10≠2 is compared to the

result of an isolated dipole. After relaxation, we measure the relative position of the blue dislocation

through the — angle. The grey dislocation illustrates the equilibrium position in case of no external

stress which gives an angle of fi/4 radian. When adding a positive external stress, the stationary

position of the blue dislocation is shifted to the left. Figure 2.3 shows the evolution of the — angle

as a function of the external stress. The comparison between the results of our periodic simulation

and the theory of an isolated dipole shows a very good agreement and the small difference is due to

the stress created by the copies of the dipole.

After this static investigation, we study the dynamics of a dipole to calibrate the time discretization.

The dipole is a good candidate because the formation of a dipole seems to be the fastest phenomenon

inside a collective behavior of dislocations. In order to confirm this aspect, we will also carry out

some tests on collective dislocations, discussed after. The present test is performed for an external

stress taken just below the previous threshold delimiting the equilibrium states. The goal is to find

the largest ∆t̃ which reproduces correctly the stop of the blue dislocation coming from the right of
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Figure 2.3: Evolution of the stationary position of a dipole of dislocations with opposite Burgers
vector function of the external stress. The right side illustrate the system. The left side compare the
approximation of a dipole in our pseudo-periodic system compared to the theory. The dipole size is
”y =3.9 · 10≠2 · L.

the red one. In fact, if we take a too large ∆t̃, the dislocation will go over this equilibrium position

and will continue gliding toward the left. Figure 2.4 shows the strain rate ‘̇p of a dipole function of

the time and for simulations with different ∆t̃. If the simulation approaches the equilibrium state,

dεp

dt̃

t̃

∆t̃

0 5.0e−4 1.0e−3 1.5e−3 2.0e−3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

1e−3

1e−4

1e−5

1e−6

Figure 2.4: Evolution of the strain rate function of the time for different time discretization.

the strain rate will tend to zero. For the largest time step, ∆t̃=10≠3, the negative dislocation goes

straight on without any influence of the red dislocation. When we decrease the time discretization

to 10≠4 or 10≠5, we obtain a wrong behavior with oscillations of the blue dislocation around the

red dislocation, alternatively on its right and its left sides. Finally, for ∆t̃ = 10≠6, the negative

dislocation stops on its equilibrium position. After testing many different sizes of dipole, we found

that an acceptable time step is ∆t̃=Cste · ”ỹ2 where the constant is close to 1.
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Another time discretization method was tested using an adaptative time step. The time step

was reduced if the estimation of the energy increment was positive. We found that in a system

containing more than ten dislocations, this method was unable to avoid oscillations of dislocation

positions. In addition, the problem of using a too high time step discussed above was not solved by

adding the energy criterion. The behavior of the dipoles inside the microstructure were therefore not

always correct. As conclusion, we have not pursued further this route and a constant time step has

beed used in the following simulations.

The next investigation on dipoles is the evaluation of the impact due to the pseudo-periodicity. In

fact, the passage of a dislocation through an interface delimiting the main box is traduced by a

disappearance of a dislocation at one extremity of the pseudo-periodic system and a creation of

another dislocation at the opposite extremity. That creates a stress jump received by all dislocations

inside the main box and alters the energy of the system. Moreover, this phenomenon creates artificial

correlations at the range of L, seen on correlation maps shown after. The present test, illustrated

by figure 2.5, quantifies this artificial stress jump for two dislocations inside the main box with

opposite Burgers vector. Nrep is the number of layers of boxes surrounding the main box. This

1 2 3 4 5 6 7 8 9 10

0.95

1.00

Nrep

τ̃ Nrep = 0

Nrep = 1

Nrep = 2

Figure 2.5: Stress jump due to the pseudo-periodicity. The right side shows the system for different
Nrep and the left side shows the value of the stress jump depending on Nrep.

parameter is illustrated by the right hand side of figure 2.5. The plot on the left hand side shows

the stress jump received by a fixed dislocation when the other one goes through the interface. We

observe that the jump cannot be attenuated by adding more and more layers of boxes. This behavior

comes from the fact that an additional layer involves n extra dislocations where each contribution is

proportional to the inverse of the distance from the main box (see equation (2.2)). The contribution

of each dislocation being proportional to 1/n, the product n · 1/n gives a jump equivalent to one

dislocation positioned in the first neighbor box. A solution could be to copy more boxes toward

x̨ than toward y̨ but we need a lot of copies to have a negligible jump and it will considerably

affect the simulation cost. The best solution appears to put an artificial cut-off rco on the range of

the stress induced by a dislocation · s
ind(r̨). This cut-off is given in number of box size L. Below

this cut-off the stress is unchanged and above the stress is zero. The test illustrated by figure 2.6

still involves two dislocations in the main box with opposite Burgers vector and positioned with the

largest possible spacing between each dislocation: ”y =0.5L. This spacing minimizes the interactions
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Figure 2.6: Stress received by the blue dislocation when the red dislocation moves. The right side
shows the scheme of the pseudo-periodic system involving a cut-off and the left side shows the stress
received function of x̃. Distances are indicated in units of the box size. As is equal to 5 · 10≠2.

between the two main dislocations in the main box in order to emphasize the stresses created by the

copied dislocations on the main dislocations. We still consider a blue dislocation as fixed and a red

dislocation slipping along ę1 with the coordinate x. The right hand side of the figure is a sketch of

this test with the active area delimited by the cut-off. Dislocations inside the circle create a stress

contribution on the fixed dislocation whereas dislocations outside do not contribute. The left hand

side of the figure shows the evolution of the total stress received by the fixed dislocation while the

red ones move. The test is performed for two different cut-off, 1 and 10 times the box size and the

number of layer Nrep is taken bigger than the cut-off. For the smallest cut-off, we find a unique

stress jump which is of the order of the jump without cut-off revealed on the previous test. When

the cut-off increases, this jump is subdivided to small jumps. In fact, each jump is equivalent to the

stress created by one dislocation positioned at the distance rco. Consequently, the jump amplitude

behaves as the inverse of rco. However, even small jumps alter significantly the energetic landscape

of the system. A good solution is to add a smooth transition rather than a sharp cut-off. It is

traduced by multiplying · sÕ

ind( ˛̃r ) with 0.5[1≠tan≠1((| ˛̃r |≠rco)/As)] where As is the parameter of

the size of the smooth. Thus, a dislocation, going out of the delimited area, will slowly disappear.

The green curve illustrates the same simulation of the blue one with rco = 10 but with a smoothed

cut-off. Consequently, we obtain a continuum stress received by each dislocation. We observe that

this additional smooth allows only few layers to have a correct energetic landscape. In our simulations

we have used the typical value of As = 5 · 10≠2. This value has been selected by considering its

influence on the value of ·f as it is discussed below.

2.2.3 Collective behavior

Now that the behavior of a dipole is correctly reproduced, we analyse the collective behavior of

an assembly of dislocations. First of all, we test whether the selection of the time step based on

the behavior of a dipole is also relevant for an assembly of dislocations. Secondly, we characterize

the two stages of simulations: the transient stage and the stationary stage. From this section, we
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restrain the study to the case N+ =N≠. We analyse an history of a distribution through the strain

rate of plasticity as a function of time.

Figure 2.7 shows the plastic strain rate evolution for different time steps ∆t̃. This is an evolution of

an initial random distribution containing N =100 dislocations during its relaxation with no external

load. As expected, we converge toward the same history when ∆t̃ tends to zero. In fact, if we con-
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Figure 2.7: Relaxation of a random initial distribution with 100 dislocations and without external
load: Strain rate of the distribution function of the time and depending on different discretization
∆t̃. ”ỹmin is equal to 10≠2.

sider the history with ∆t̃=10≠7 as a perfect referential history, the relative error of the history with

∆t̃ = 10≠6 compared to this reference is smaller than 1%. However, for larger time discretizations,

this error is non-negligible.

In an assembly of dislocations, we expect that the movement of dislocations will be correctly

reproduced by equation (2.3) if the criterion ∆̃t Ø ”ỹ2 is fulfilled for all dipoles in the assembly. In

other words, the time step is limited by the square of the size along ę2 of the smallest dipole ”ỹmin. In

order to confirm this point, we measure the smallest ”ỹ inside different distributions. Simultaneously,

we measure also the correct ∆t̃ giving a negligible relative error below than 1%. We conclude that

the law ∆t̃ƒ”ỹ2, established in section 2.2.2, is reliable for all collective behaviors.

Now, we analyse the collective behavior as a function of the applied stress ·̃ Prior to the investi-

gation of the correlation maps, we first analyse the overall collective behavior in term of the plastic

strain rate. The analysis relies on an average on a statistical ensemble of disordered initial configura-

tions. Each distribution of this ensemble is randomly initialized but with a restriction on the relative

distance ”ỹ between two dislocations. More precisely, we impose the minimal value ”ỹmin = 10≠2

and we select the time step ∆t̃=”ỹ2
min. This restriction prevents the occurence of distribution with

very small dipoles which would require a too high numerical cost. After this initialization, a quick

relaxation of each distribution is performed with no external load.

We now discuss our simulation results together with the results obtained by [77]. The compar-

ison can only be qualitative because the 2D DDD model in [77] slightly differs from our model, in



38 Chapter 2. - Estimation of correlation term with statistical method

particular because annihilation of dislocation can occur. Following [77] we present in figure 2.8 the

evolution of log(‘̇p) as function of log(t).

We observe qualitatively the same behavior in each investigation. For each value of ·̃ , there are two
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Figure 2.8: The averaged strain-rate of a high quantity of distributions during the relaxation for
different applied stresses. The left investigation with 400 dislocations is performed by [77] with re-
viewed scales. The right side is a new investigation with a pseudo-periodic system describe previously
involving different number of dislocations: N =50, N =100 or N =200. Our averaged strain-rate is
obtained with 103 distributions.

specific stages: the transient stage and the stationary stage. The stationary stage corresponds either

to a static state, if the stress is low enough, or to a steady state, associated to a permanent plastic

flow, if the stress is large enough. During the transient stage, the strain rate decreases as function

of time and follows the Andrade law [14, 15, 16, 17] which has been experimentally observed [98].

This law predicts that the decrease of the strain rate follows a power law with a coefficient ≠2/3.

This law is perfectly reproduced by both investigations. A power law fit is illustrated on each side

by black lines.

The second state is the stationary state which is characterized by a time invariance of the strain rate.

We observe two distinctive stationary stages separated by a stress threshold ·and estimated around

0.05 for the first study and 0.3 for our study. Below this threshold, the simulations tend toward a

frozen state associated with a strain that decreases to zero. Above this threshold, the simulations

tend toward a steady state with a non-zero strain-rate constant over time. This threshold defines the

activation of the plastic flow which should correspond to the Taylor threshold (I.2). This threshold is

well characterized on the left study but can only be estimated between 0.2 and 0.4 in our study. We

also observe a difference on the amplitude of the strain rate between the two investigations also due

to the incorporated physics. In fact, the in left investigation, dipoles smaller than a characteristic

length are annihilated. This avoids the oscillations discussed in section 2.2.2. This restricts the

simulations to low enough densities a physics present only inside high local dislocation density. In

opposition, in the right investigation, we keep all dipoles. Both investigations are relevant but corre-

spond to different ranges of dislocation density. Now we focus on the duration of the transient stage.

Figure 2.8 makes it clear that this duration strongly depends on the applied stress, and diverges when
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the applied stress comes close to the critical stress ·and. As a consequence, it is numerically very

costly to get information on the stationary regime close to ·and.

In the next section, we investigation the correlation maps as a function of the applied stress ·̃ . For

values of ·̃ that lead to a steady state, we simulate the flow up to reduced time t̃ = 10. Practi-

cally, this guaranties that the stationary regime will be significantly established. Figure 2.9 shows

that it is indeed the case for applied stresses above ·̃ = 1.68. In fact, the characteristic time of

the left curve (·̃ = 1.68) is of the order of t̃ = 4. For the right curve (·̃ = 3.37), it is more difficult

to define precisely a characteristic time but it is definitely even smaller than in the previous situation.

τ̃ = 1.68 τ̃ = 3.37

dεp

dt̃

t̃t̃

1.5e−4

2.5e−41.0e−4

0.5e−4
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Figure 2.9: The averaged strain-rate of 103 distributions during the relaxation for two high applied
stresses ·̃ = 1.68 and ·̃ = 3.37 with N =100.

The last point of our current simulations is the influence of the numerical parameter N , repre-

senting the number of dislocations inside the main box of our pseudo-periodic systems. The right

side of figure 2.8 precise this parameter for each curve. The curves obtained with ·̃ = 0.084 are

performed for two distinctive numbers: N = 50 and N = 200. We observe that this number has a

significant influence on the results This point will be addresses when investigating the friction term

in section 2.3.3. We first analyse the dependence of the correlation maps.

2.3 Correlation terms analysis using the coarse-graining procedure

In this part we proceed to the estimation of correlation terms. First, we measure correlated

position between dislocations on a large quantity of realizations in the framework of the coarse-

graining procedure developed. Then, we define the correlation maps. Finally, we use these maps

to estimate the friction and the backstress terms. We consider here a situation with fl+ = fl≠, i.e.

Ÿ=fl+≠fl≠ =0.

2.3.1 Implementation of the coarse-graining procedure

As explained in chapter 1, the basic ingredient of our density-based theory is a coarse-graining

procedure. This procedure induces a spatial convolution defined by the width L, a time convolu-
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tion defined by the width T (L) and, finally, an average over a statistical ensemble of initial conditions.

The spatial convolution window is simply a constant window function of size L, the linear size

of the DDD simulation box. As discussed in section 1.2.1, L should be of the order of the spatial

resolution of the continuous model we want to develop and, of course, sufficiently larger than 1/
Ô

fl,

the average distance between dislocations. Meanwhile, this garanties that L will always be signif-

icantly larger than the range of the correlations dssÕ

. As a consequence, the pertinent choice for

the time window, that in all generality should depend on L, is to select T (L) of the order of the

average time needed by the dislocations to glide along the distance L. This guaranties that T (L)

is long enough but still smaller than the characteristic time of the evolution of the one-body densities.

Finally, this space and time convolution is supplemented by a statistical average over an ensemble

of random initial dislocation configurations, as explained in section 1.2.1.

2.3.2 Estimation of correlation maps

This section presents the procedure for the obtention of correlation maps.

For a given set (s, sÕ), we proceed as follows. For each initial random dislocation configuration, we

let the system evolve for a time of the order of the time needed by dislocations to travel through the

simulation box. We then select typically the configurations that belong to the last third of the total

simulation time and this procedure is repeated for a set of initial configurations. Let Nc the number

of configurations selected at the end of this overall procedure. For each of these Nc configurations,

we identify all the dislocation pairs of type (s, sÕ) and report the vector ų = r̨ ≠ Ǫ̃ on a 2D frame.

This leads to a discrete maps, noted ΓssÕ , that consists in NcN
sN sÕ

points, where N s and N sÕ

are

the numbers of dislocations of sign s and sÕ, respectively.

From these discrete maps, we can obtain an estimation of flssÕ

(r̨)dr̨ (and thus of dssÕ

(r̨)) by

counting the number of points inside the surface element dr̨ at position r̨. The obtained maps

are presented in figure 2.10 with an averaging resolution 256 ◊ 256. Note that the quality of the

maps strongly depend on the chosen resolution. The dssÕ

(r̨) maps can than be used to compute

the correlation terms. However, due to stiff gradients close to r̨ = 0, the accuracy of this approach

is limited. A better way to proceed is to directly estimate the integrals in the definition of the

correlation induced stresses using the discrete set of points ΓssÕ without explicitly computing the

correlation maps dssÕ

(r̨), i.e. for any function f(r̨), we use:

⁄
dssÕ

(r̨)f(r̨)dr̨ ƒ 1

NcN sN sÕflsflsÕ

ÿ

r̨œΓssÕ

f(r̨) ≠
⁄

f(r̨)dr̨ (2.6)

where fls is the density of dislocations of sign s inside the L◊L box.

Each column in figure 2.10 represents an ensemble of measures for a specific applied stress, from

zero to · = 0.45µb
Ô

fl. The maps on the top show the correlations d+≠ of a negative dislocation

with respect to a positive dislocation at the origin. The maps on the bottom show the correlations

d++ of a positive dislocation with respect to another positive dislocation. These numerical results

are obtained from simulations with N+ =N≠ =200, rco =2 and ”ỹmin =10≠2. The correlation maps

d++ (figure 2.10 bottom row) show a tendency of dislocations of the same sign to form walls where

they arrange perpendicularly to each other. Dislocations of opposite signs tend to form dipoles. The
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Figure 2.10: Correlation maps of size L◊L, averaged on a 256◊256 grid and for different applied
stresses. Simulations are performed with N+ = N≠ = 200, rco = 2 and ∆t̃ = 10≠4. Top row: the
function d+≠(r̨). Bottom row: the function d++(r̨).

orientation of the dipoles is close to fi/4 radians in the absence of applied stress (figure 2.10 top row,

left). When a stress is applied, the d+≠ correlation maps are no longer symmetric with respect to

the y-axis and the angle with the y-axis of the most probable dipole orientation is smaller than fi/4

radians. These results are in agreement with the correlation maps presented in [77, 62]. The fact

that we prevent two dislocations to be closer than ”ỹmin along the y-axis leads to a narrow band

along the x-axis with a negative value. We have verified that the influence of the value of ”ỹmin on

the correlation terms ·f and ·b is negligible if ”ỹmin is lower than 10≠2. A second artefact appears

specifically on the two maps obtained with · = 0.15µb
Ô

fl. We observe diffuse and weak bands

parallel to the y-axis at the boundaries of the computational domain. This artefact is minimized by

increasing the cut-off and the with of the smoothing function introduced in section 2.2.2. In any case,

we verified numerically that these diffuse bands have no impact on the values of the correlation terms.

Now, we enumerate the symmetries that the correlation maps may display.

- First, dislocations are restricted to glide along the x-axis and the dislocation-dislocation interaction

·ind(x, y) is even in y. Therefore, inspection of the discrete kinetic equation (2.1) shows that the

correlations dssÕ

are symmetric with respect to the x-axis:

dssÕ

(x, y) = dssÕ

(x, ≠y). (2.7)

- Also, as already mentioned (see equation (1.34)), we have:

dssÕ

(x, y) = dsÕs(≠x, ≠y). (2.8)
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- Therefore, where s=sÕ, the maps are centro-symmetric:

dss(x, y) = dss(≠x, ≠y). (2.9)

There are supplemental symmetries in specific cases. If N+ and N≠ are equal, which is the situation

considered here, we have:

N+ = N≠ ∆ d++(x, y) = d≠≠(x, y). (2.10)

Also, in the absence of stress, and because ·ind(x, y) is even in x, the correlations are symmetric

with respect to the y axis:

·ext = 0 ∆ dssÕ

(x, y) = dssÕ

(≠x, y). (2.11)

The results on figure 2.10 confirm that the correlations d++ and d+≠ display small correlation

lengths. The larger correlation length is obtained with · =0.15µb
Ô

fl. For higher applied stresses, the

correlation length is smaller. In any case, correlations are essentially limited to a close neighborhood

of the origin. When we use a ”ymin small enough, we observe a divergence close to the origin. This

behavior is consistent with the 1/r behavior predicted at short range in [77].

2.3.3 Friction term

In this section we use the previous correlation maps to estimate the friction term given by (see

equation (1.47)):

·f (r̨) =
µb

2fi(1 ≠ ‹)
fl(r̨, t)

1

2

⁄

r̨Õ ”=0

d+≠ !
xÕ, yÕ, fl, ·, L

" xÕ(xÕ2 ≠ yÕ2)

(xÕ2 + yÕ2)2 dxÕdyÕ (2.12)

where, on top of the obvious external stress and density dependencies, we explicitly point out an L

dependence. In order to be consistent with the rescaled correlation maps, we adimensionalize also

all distances by 1/
Ô

fl. The friction term becomes:

·f (r̨) =
µb

2fi(1 ≠ ‹)

Ò
fl(r̨, t)

⁄

˛̃rÕ ”=0

1

2
d+≠

A
x̃Õ, ỹÕ,

2fi(1 ≠ ‹)·

µb
Ô

fl
, L

Ô
fl

B
x̃Õ(x̃Õ2 ≠ ỹÕ2)

(x̃Õ2 + ỹÕ2)2 dx̃ÕdỹÕ (2.13)

which may be written as:

2fi(1 ≠ ‹)·f (r̨)

µb
Ô

fl
= f

A
2fi(1 ≠ ‹)·(r̨)

µb
Ô

fl
, L

Ô
fl

B
(2.14)

where f is the integral estimated numerically by using the previous correlation maps.

Generally speaking, we may expect that the coarse-graining length L will show up in the coarse-

grained quantities that result from the coarse-graining procedure. The important point is that we

are dealing here with a situation where many length scales may emerge from the complex spatial and

dynamical coupling that governs the dislocation dynamics. It is indeed well known that, most often,



2.3. Correlation terms analysis using the coarse-graining procedure 43

dislocations self-organized themselves into complex patterns that display length scales much larger

than the average dislocation spacing, such as dislocation walls in cyclic loading [73] or even seemingly

fractal structures [106] with no characteristic length scale [82]. In such situations, when many

different large length scales are physically present, an averaging procedure at a given intermediate

length scale will generate a continuous theory which is scale dependent. In the present context, it

means that the correlation-induced stresses generated by coarse-graining may definitely display an

L-dependence.

Therefore, in order to investigate this important feature, we consider below different values for

L. In fact, as the only pertinent quantity is L
Ô

fl, we analyse different values for
Ô

N =L
Ô

fl, where

N is the total number of dislocations.

The computations are performed for different applied stresses. The limits of this stress depen-

dence are analytically predictable. In fact, when · tends to zero, there is an axial symmetry on d+≠

with respect to y-axis, as explained in the previous section. Consequently, the function f integrates

an odd function, hence equals to zero. Secondly, when · tends to the infinity, the individual interac-

tions, · sÕ

ind, in the DDD equation (2.3) is negligible compared to the stress · . Thus, the movement

of each dislocation depends only on this applied stress. Consequently, two dislocations with opposite

movements cannot be correlated contrary to two dislocations of same type. That gives the nullity of

the map d+≠ which necessarily implies the nullity of the function f . Figure 2.11 illustrates the nu-

merical results between these two limits and for three different values for the parameter
Ô

N =L
Ô

fl.

These computations are performed with simulations with an artificial smooth at a radius rco = 2,
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Figure 2.11: Numerical results of the friction term ·f depending on the applied stress and the period.

introduced in section 2.2.2. This smooth allows the use of a small pseudo-periodic systems. In fact,

we observe that between rco = 1 and rco = 2 the relative error on ·f values is smaller than one

percent. It is important to note that this smooth is the main parameter of the band artefact seen

on figure 2.10 on the second column. In fact, this artefact is strongly limited by this smooth. We

take As equals to 5 · 10≠2, representing the characteristic width of the smooth, which is sufficient

to have no impact on correlation term values.

The results presented in figure 2.11 are consistent with the predicted behavior when the applied

stress tends to zero and to infinity. Indeed, for · = 0, we obtain ·f = 0 and for high stresses, ·f
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decreases to zero. In fact, the friction stress displays two different regimes. The first one is for small

applied stresses (·̃ up to approximately 1.5) where the friction term is approximatively linear with

a slope close to 1. Therefore, the friction term opposes almost totally the applied stress. This is

associated to a quasi-static state where there is no effective flow of dislocations. For higher applied

stresses, we observe a permanent flow of dislocation. These behaviors are in agreement with the

observations on DDD simulations.

Now, we comment of the dependence of the friction stress ·f with the parameter L
Ô

fl. Fig-

ure 2.11 shows that, for a given density fl, the stress is scale dependent. In light of the previous

discussion, this is not surprising. Examination of the simulated dislocation configurations indicate

that this is due to the increase with L of the number of very short-range dipoles formed by two dis-

locations of opposite sign. This is quantitatively confirmed by the correlation maps (see figure 2.12),

where we observe that the correlation function d+≠, in a very close neighborhood of the origin,

increases significantly when we double the size of the simulation box, keeping the same density fl.
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Figure 2.12: Zoom of the correlation maps d+≠ (top row) and d≠≠ (bottom row). The adimensional
size of the zoom is 5◊5. Simulations are performed for different size of main box of periodic-system.
The left size is performed with L̃x =10 and L̃y =20 and the right side is performed with L̃x = L̃y =20.

The physical origin of the increase of the number of dipoles with L (at constant dislocation

density) is that the coarse-graining procedure involve a time convolution with a width T (L) of the

order of the travelling time over the length L. Therefore, the probability that a given dislocation

meets another dislocation of opposite sign during the time T (L) increases with L. In brief, the longer

L, the higher the number of dipole that have the time to form. However, we note that this physical

phenomena may be here disturb by the use of periodic boundary conditions because a dislocation
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may travel through the simulation box more than once. This undesirable effect may be avoided with

a careful numerical monitoring of T (L), which has not been done here. Therefore, the L-dependence

observed in figure 2.11, even if it has a true physical origin, is not perfectly quantitative.

2.3.4 Backstress term

In this section we proceed to an estimation of the backstress term using correlation maps. In the

same way as for the friction term, we adimension all distances by 1/
Ô

fl.

We limit the analysis to zero external stress and, again, to a situation with fl+ =fl≠ =fl/2. Then,

equation (1.35) leads to

· s
b (r̨) =

µb

2fi(1 ≠ ‹)

1

fl

ˆfl(r̨, t)

ˆx

ÿ

sÕ

⁄
1

2
dssÕ

A
x̃Õ, ỹÕ,

2fi(1 ≠ ‹)·

µb
Ô

fl

B
x̃Õ2(x̃Õ2 ≠ ỹÕ2)

(x̃Õ2 + ỹÕ2)2 dx̃ÕdỹÕ. (2.15)

rewritten as

·+
b (r̨) =

µb

2fi(1 ≠ ‹)

1

fl

ˆfl(r̨, t)

ˆx
(C++ + C+≠) . (2.16)

and

·≠
b (r̨) = ≠·+

b (r̨) (2.17)

where the symmetry properties given in equations (1.34), (1.35) and (1.36) have been used. The

quantities C++ and C+≠ are given by

C++ =
1

2

⁄
d++(x̃Õ, ỹÕ, · = 0, L

Ô
fl)

x̃Õ2(x̃Õ2 ≠ ỹÕ2)

(x̃Õ2 + ỹÕ2)2
dx̃ÕdỹÕ (2.18)

and

C+≠ = ≠1

2

⁄
d+≠(x̃Õ, ỹÕ, · = 0, L

Ô
fl)

x̃Õ2(x̃Õ2 ≠ ỹÕ2)

(x̃Õ2 + ỹÕ2)2
dx̃ÕdỹÕ (2.19)

where the symmetry of dssÕ

with respect to the x-axis has been taken into account. For L
Ô

fl = 20,

the numerical estimation gives C++ ƒ1.09 and C+≠ ƒ≠0.23 with a relative error smaller than 10≠3.

In view of its definition (see section 1.2.4), the physical meaning of this backstress term is

distinctively different from the backstress term proposed in other dislocation density formulations

[27, 8, 38] which do not consider correlations. In these studies, the "backstress" term can be viewed

as originating from a decomposition of the self-consistent stress given by equation (1.23) by splitting

the integral into two parts:

·sc(r̨) =

⁄

r̨ Õ ”=r̨
Ÿ(r̨ Õ, t)·+

ind(r̨ ≠ r̨ Õ)dr̨ Õ

=

⁄

r̨ Õ ”=r̨
|rÕ

i ≠ri|6R

Ÿ(r̨ Õ, t)·+
ind(r̨ ≠ r̨ Õ)dr̨ Õ +

⁄

r̨ Õ ”=r̨
|rÕ

i ≠ri|>R

Ÿ(r̨ Õ, t)·+
ind(r̨ ≠ r̨ Õ)dr̨ Õ (2.20)

where, in principle, R should be small enough for the gradient of Ÿ to be considered constant at the

scale R. Expanding Ÿ(r̨ Õ, t) in the first integral around the point r̨, we obtain for the first integral
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the following estimation:

·local ƒ µb

2fi(1 ≠ ‹)

ˆŸ(r̨, t)

ˆx

⁄

r̨ ÕÕ ”=0
|rÕÕ

i |6R

x2(x2 ≠ y2)

(x2 + y2)2 dxdy =
µb

2fi(1 ≠ ‹)

1

fl

ˆŸ(r̨, t)

ˆx
· I. (2.21)

Now, we proceed to the same adimensionalization in order to bring out an integral, noted I, which

depends only of the length R̃ = R
Ô

fl. This integral can be computed analytically and increases

monotonously with respect to R̃. The backstress term ·local is equivalent to the backstress term

proposed by [8]. In order to appreciate the amplitude of our correlation-based backstress term · s
b ,

we compare it to this backstress term ·local. This comparison is meaningful because of the similar

mathematical expressions of both terms. The minimal amplitude for ·local is obtained with the

minimal usable value of R̃. The correlations on figure 2.10 impose a lower bound of the order of 10.

Then, for R̃=10, we obtain I ƒ85.84. In comparison, the equivalent constant in · s
b is equal to 0.86.

It is almost hundred times smaller than the coefficient of classical backstress term.

2.4 Conclusion

This chapter detailed the numerical procedure, used to apply the coarse-graining procedure pre-

sented in chapter 1 to DDD simulations. The first part was dedicated to the identification of a

precise and stable numerical scheme adapted to the quantities that control the correlation maps.

In fact, we opt for a pseudo-periodic system in order to handle the appropriate dislocation density.

That imposes to manage the artefacts linked to this system. Moreover, this part proposes a rigorous

investigation of the calibration of the time discretization of DDD equations in order to reproduce

correctly the behavior of dipoles. The second part detailed the statistic measures on DDD which is

used to build the correlation maps. Then, we used these maps to estimate the correlation terms.

We observe in particular on L-dependence of the coarse-grained friction stress. Generally speak-

ing, this length-scale dependence is not surprising, regarding the frequently observed patterns that

dislocation dynamics often generate. These patterns generally exhibit characteristic length scales

much larger than the average distance between dislocations. Therefore, a coarse-graining procedure

based on a length scale L smaller than these configurational length scales will inevitable lead to

correlation-induced stresses that are L-dependent. In the present oversimplified situation, where

parallel dislocations are limited to a single glide system, the L-dependence has been linked to the

dynamical formation of short-range dipoles associated to the spatial and time scales of the coarse-

graining procedure.



Chapter 3

SIMULATIONS OF DISLOCATION DENSITY

PATTERNING WITH ONE SLIP SYSTEM IN

2D

Résumé du chapitre

Ce chapitre propose en première partie un schema d’integration numérique pour des équations de

transport de densité du type (1.22), formulées en 2D. Ce nouveau schéma est inspiré du schéma Lax-

Wendroff Haute-Résolution ainsi que de construction de schémas conservatifs. De plus, l’équation

d’Orowan doit être discrétisée de manière similaire afin d’avoir une cohérence entre le champs plas-

tique calculé et son origine physique, les GND. Ce traitement numérique permet de limiter fortement

des artefacts tels que la diffusion numérique, les instabilités numériques ou encore les problèmes de

conservation des champs. En deuxième partie, une simulation 2D utilisant le modèle formulé illus-

tre l’évolution de densités de dislocations initialement homogènes sollicitées par un cisaillement du

matériau. Il est observé une emergence d’un auto-arrangement des dislocations, ce qui confirme les

instabilités prédites sur le comportement du modèle.
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3.1 Introduction

This chapter treats the numerical implementation of transport equations such as the ones de-

velopped in chapter 1. This numerical aspect is not much detailed in the literature on dislocation

densities. In the first part, we propose and compare different numerical schemes for these transport

equations. The behavior of these schemes is independent on the stress components incorporated into

the velocity fields of the dislocation densities. Consequently, for the sake of simplicity, we adopt the

simplified case of chapter 2: we consider only one slip system with edge dislocations in an isotropic

material. Thus, there are only two types of dislocation density, noted fl+ and fl≠, depending on

the direction of the Burgers vector. Moreover, we restrain the model with a GND density negligible

compared to the total dislocation density. Consideration of the GND density is useful because there is

a direct link through the Kröner equation, between the GND density and the plastic strain, which in

turn can be used to compute the stress field generated by the dislocations. We will fix some inconsis-

tencies related to this link. After an illustration of artefacts attached to classical numerical schemes,

we set up a new scheme inspired by the Lax-Wendroff scheme used in fluid mechanics to avoid these

artefacts. The second part of this chapter proposes a 2D simulation with our implemented model

complemented by a stability analysis of the initial homogeneous state.

3.2 Transport equations of density of edge dislocations

We consider the 2D plasticity model developed in chapter 1. For the sake of completeness, we

report here the transport equation (1.50) and (1.51):

≠ˆfl+(r̨, t)

ˆt
= Mb̨

ˆ

ˆr̨

Ë
fl+(r̨) {·(r̨) ≠ ·f (r̨) ≠ ·b(r̨) ≠ ·̃f (r̨) ≠ ·̃b(r̨)}

È
(3.1)

≠ˆfl≠(r̨, t)

ˆt
= ≠Mb̨

ˆ

ˆr̨

#
fl≠(r̨) {·(r̨) ≠ ·f (r̨) ≠ ·b(r̨) + ·̃f (r̨) + ·̃b(r̨)}

$
. (3.2)

where ·(r̨) = ·ext + ·sc(r̨) is the sum of the external stress and the self consistant stress, i.e. the

stress generated by the one-body dislocation densities:

·sc(r̨) =

⁄

r̨ Õ ”=r̨

Ÿ(r̨ Õ, t)·+
ind(r̨ ≠ r̨ Õ)dr̨ Õ. (3.3)

In fact, ·ext and ·sc(r̨), and therefore ·(r̨), should be considered as the shear components of the

stress tensors ‡ext, ‡sc(r̨) and ‡(r̨) = ‡ext + ‡sc(r̨), respectively.

The stress tensor ‡sc(r̨), which is linear with respect to the one-body dislocation density, can

be in fact computed through the usual mechanical equilibrium law, in which the source term is the

spatial derivative of the plastic strain generated by the dislocation glide. More precisely, if ‘P
kl(r̨) is

the plastic strain, ‡(r̨) is the solution of the following mechanical equilibrium problem:

ˆ‡ij(r̨)

ˆrj
= 0 (3.4)

with Hooke’s law

‡ij(r̨) = ⁄ijkl(‘kl(r̨) ≠ ‘P
kl(r̨)) (3.5)
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supplemented by the boundary condition

⁄ijkl‘̄kl = ‡ext
ij (3.6)

where ‘̄kl is the spatial average of the total stress tensor ‘kl(r). The plastic strain ‘P (r̨) that appears

in equation (3.5) is linked to the dislocation glide through Orowan’s law:

ˆ‘
p
ij

ˆt
=

ÿ

s

ps
ij

ˆ“s

ˆt
with

ˆ“s

ˆt
= fls(r̨, t)bsvs(r̨) (3.7)

where ps
ij is the orientation tensor of the glide system s. Finally, with the system of equations coupling

Orowan equation (3.7) and the mechanical equilibrium problem given in equations (3.4)-(3.6), we

compute easily the mesoscopic local stress · needed by the transport equations (3.1)-(3.2). From

a numerical point of view, the resolution of the system of equations (3.4)-(3.6) is easier than the

computation of the integrals that appear in the expression (3.3) of the self-consistent stresses. The

resolution of the system with the mechanical equilibrium needs specific solvers such as fixed-point

FFT-based algorithms which are presented in chapter 4 with new enhanced solvers.

In brief, the kinetic equations that we must integrate consist in the transport equations (3.1) and

(3.2) and the Orowan equation (3.7):

Y
____]
____[

Transport equation:
ˆ
ˆt

fl+(r̨, t) + ˆ
ˆx

#
fl+(r̨, t)v+(r̨)

$
= 0

ˆ
ˆt

fl≠(r̨, t) + ˆ
ˆx

[fl≠(r̨, t)v≠(r̨)] = 0

Orowan equation: ˆ
ˆt

‘p(r̨, t) = fl+(r̨, t)bv+(r̨) ≠ fl≠(r̨, t)bv≠(r̨)

(3.8)

where the notation of the component of the strain tensor is ‘p =‘
p
12 ©‘p

xy and the velocities are given

by:
v+(r̨) = Mb · {· ≠ ·f ≠ ·b ≠ ·̃f ≠ ·̃b}
v≠(r̨) = ≠Mb · {· ≠ ·f ≠ ·b + ·̃f + ·̃b}

(3.9)

where M = M+ = M≠ is the mobility coefficient and each stress contribution corresponds to a

resolved shear stress.

Now we discuss each of the stress components that appear in equations (3.9). First, we propose

a fit of the friction term ·f , based on the estimations performed in section 2.3.3. ·f could be naively

fitted on the curves displayed in Figure 2.11, but it appears that it is more appropriate to fit (· ≠ ·f )

rather than ·f . Figure 3.1 illustrates this fit. As already proposed in [77], we use a power law of the

form:

· ≠ ·f (r̨) = sign(·) · B

A
2fi(1 ≠ ‹)

µb
Ô

fl

B–≠1

· |· |–. (3.10)

where the fitting coefficients B and – depend on the coarse-graining parameter L
Ô

fl. The results for

the three different values of L
Ô

fl that have been considered in Figure 2.11 are presented in Table 3.1.

We note that the exponent – is almost constant, whereas the prefactor B seems to display a variation

with L
Ô

fl. We have therefore decided to perform a new fit of the three curves for which the exponent

– is fixed to the value 1.71 (Figure 3.1). We observe that, for each of the three situations analysed,

the power law fit matches correctly the numerical points, except the first one, which corresponds

to the smaller analysed stress value. Therefore, it seems that the dislocation dynamics display two

distinct regimes, eventhough the present analysis is not precise enough to identify with precision



50 Chapter 3. - Simulations of dislocation density pattern with one slip system in 2D

Table 3.1: Coefficients of the power law fit.

L
Ô

fl 10 14.1 20

– 1.655 1.719 1.765

B 0.156 0.197 0.246

a "critical" stress that would separate this two regimes. More intensive computations would be

necessary to explore this point. Nevertheless, we decided to consider that the power law fit are valid

even in the limit · æ 0, which implies that the expression (· ≠ ·f ) is always finite when · is finite,

which seems a reasonable hypothesis 1.
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Figure 3.1: Symbols: Numerical estimation of · ≠ ·f , coming from section 2.3.2 for three different
values of L

Ô
fl. Lines: corresponding fit using a power law with an exponent – = 1.71.

Next, we discuss the stress components ·b and ·̃b given in equations (1.3) and (1.3), respectively.

We restrain the analysis to Ÿ π fl. In that cases at zero applied stress, d++(r̨ Õ ≠ r̨) and d≠≠(r̨ Õ ≠ r̨)

can be assumed equal. Because d++(r̨ Õ ≠ r̨) and d≠≠(r̨ Õ ≠ r̨) are practically insensitive to the applied

stress [108], ·b(r̨) given in equation (1.48) can be approximated by

·b(r̨) ƒ ≠1

2

ˆŸ

ˆr̨

⁄
(r̨ Õ ≠ r̨)·ind(r̨ ≠ r̨ Õ){d++(r̨ Õ ≠ r̨) + d+≠(r̨ Õ ≠ r̨)}dr̨ Õ (3.11)

where the correlation maps dss are computed at zero applied stress. Using dimensionless quantities

and symmetry properties given in equations (1.34-1.36), we obtain

·b(r̨) ƒ (C++ ≠ C+≠)
µb

2fi(1 ≠ ‹)

1

fl

ˆŸ

ˆr̨
(3.12)

where C++ and C+≠ are dimensionless quantities defined be equations (2.18) and (2.19) respectively.

1. This is coherent with the results presented in [54], where it is observed that, for a similar system, the plastic
strain rate as a function of the applied stress is always finite, even-though it does display two different regimes separated
by a critical stress.
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Using the same analysis and the same approximations for the ·̃b term, we get

·̃b(r̨) ƒ (C++ + C+≠)
µb

2fi(1 ≠ ‹)

1

fl

ˆfl

ˆr̨
. (3.13)

Now, we discuss, again within the approximation Ÿ π fl, the influence of the friction stress

component ·̃f , whose definition is given in equation (1.3). According to equations (3.9), it has to

be compared to · ≠ ·f where · = ·ext + ·sc. Using the power law analysis presented in equations

(3.10) and the fact that according to equations (1.47) and (1.3), we have ·̃f = ≠Ÿ
fl
·f , we can show

that, in the limit · ∫ Ÿ
fl

µb
Ô

fl

2fi(1≠‹) , ·̃f is negligible with respect to · ≠ ·f . Finally, neglecting ·̃f and

using the total and GND densities fl and Ÿ, the transport equations (3.9) can be rewritten:

ˆfl(r̨, t)

ˆt
+ Mb

ˆ

ˆx
[{· ≠ ·f ≠ ·b} Ÿ(r̨, t) ≠ ·̃b fl(r̨, t)] = 0

ˆŸ(r̨, t)

ˆt
+ Mb

ˆ

ˆx
[{· ≠ ·f ≠ ·b} fl(r̨, t) ≠ ·̃b Ÿ(r̨, t)] = 0

(3.14)

In the following, we investigate the numerical treatment of these equations, we proceed to the

stability analysis and then to numerical simulations.

3.3 Numerical treatment of transport equations

This part investigates the numerical treatment of the equations (3.14). Firstly, the discretization

of the transport equations raises specific issues. Some of these are regularly addressed in others

contexts, such as numerical diffusion problems in the transport equations of fluid mechanics. Sec-

ondly, we need to discretize the Orowan equation. However, this equation is linked to the transport

equations. In fact, the strain field, generated by Orowan equation, has to be consistent with the

GND density involved in the transport equations. This link is given by the Kröner equation [65].

Consequently, we will present the particularity of the discretization of the Orowan equation.

3.3.1 Requirement of an advanced scheme discretization

This first section treats only the transport equation of Ÿ but exactly the same treatment would

apply to any dislocation density transport equations. The first step is to discretize the time. Implicit

discretization appears difficult because the velocity is dependent of dislocation densities. Thus, we

choose an explicit discretization leading to

Ÿ(r̨, t + ∆t) ≠ Ÿ(r̨, t)

∆t
+

ˆfl(r̨, t)v(r̨, t)

ˆx
= 0. (3.15)

where ∆t is the time step. The second step is the spatial discretization of the divergence operator.

Figure 3.2 helps us to describe each possible scheme on a simple grid. For the sake of simplicity,

we present here only the direction ę1. ∆x is the grid step and each discrete field is defined on this

grid with the subscript i. For the moment, we consider the velocity v as homogeneous in space.

After managing scheme artefacts, we will discuss some problems for an inhomogeneous velocity. The

simplest discretisation scheme of a transport equation is the Euler scheme with a central difference:

- Euler scheme:
ˆfl(r̨, t)v

ˆx

----
E

i

= v · fli+1 ≠ fli≠1

2∆x
(3.16)
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v v v
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∆x

fli≠1 fli fli+1

Figure 3.2: Illustration of the grid along x̨. The subscript of fl is similar for every densities.

where |i informs about the position where the discrete divergence is computed and |E means the use

of the Euler scheme. However, as predicted by stability analysis, a transport equation discretized with

an explicit time scheme and a centered space scheme is unconditionally instable [12]. An alternative

scheme used for transport equations is the Up-Wind scheme. This scheme treats the divergence with

an off-centered difference depending on the sign of the velocity:

- Up-Wind scheme:
ˆfl(r̨, t)v

ˆx

----
UW

i

= v ·

Y
_]
_[

fli≠fli≠1

∆x
if v > 0

fli+1≠fli

∆x
if v < 0

(3.17)

where |UW means the use of the Up-Wind scheme. This scheme is stable if we take a time step

smaller than the critical value ∆tcrit = ∆x/v [12]. The main drawback of this alternative scheme,

well known in fluid mechanics, is the numerical diffusion: strong gradients of a field of density field

will decrease. Consequently, the field will become smoother over time. Figure 3.3 illustrates this

problem with the time evolution of a square shaped dislocation density in constant and homogeneous

velocity field v. The expected evolution is the uniform translation to the left of the square shaped

at velocity v. The diffusion of the blue curves in figure 3.3 shows that the UW numerical scheme

correctly reproduces the translation of the dislocation density but the shape of the density peak

becomes smoother and broader. This numerical diffusion increases when ∆t decreases.

To reduce the numerical diffusion we turn towards an improved scheme [74] proposed by Lax-

Wendroff, abbreviated LW . This method estimates the diffusion of an Euler scheme. Then, it

proposes to add an anti-diffusion term to the discretized equation based on a central difference.

However, this central difference coupled with our explicit temporal discretization is still unstable

even though oscillations are attenuated by this anti-diffusion term. Moreover, the densities can

evolves to negative values when the local gradients are strong. Recent investigations [75] propose

a new scheme mixing the UW scheme and the LW scheme, called Lax-Wendroff High-Resolution,

abbreviated by LW -HR. This scheme is an evolution of the equation (3.15) with an anti-diffusion

term
Ÿi(t + ∆t) ≠ Ÿi(t)

∆t
+

ˆfl(r̨, t)v

ˆx

----
UW

i

+ Tad(∆x, ∆t) = 0 (3.18)

where the divergence is treated similarly to the UW scheme and Tad is the anti-diffusion term. This

new term is also expressed differently depending on the sign of the velocity:

Tad(∆x, ∆t) = v

3
1 ≠ |v|∆t

∆x

4
·

Y
__]
__[

(fli+1≠fli)„i≠(fli≠fli≠1)„i≠1

2∆x
if v > 0

(fli≠fli≠1)„i≠1≠(fli+1≠fli)„i

2∆x
if v < 0

(3.19)

This term looks like the second order off-centered discretization [75] but with a ponderation with a
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function „, called the limiter. This function is essential because the magnitude of the anti-diffusion

term is too large if the shorter wavelengths (compatible with the grid) show up, leading to undesirable

oscillations. This function depends on the local gradient through the intermediate function ◊:

„i =
|◊i| + ◊i

1 + |◊i|
with ◊i =

fli ≠ fli≠1

fli+1 ≠ fli
if fli+1 ”= fli else if „i = 1. (3.20)

Figure 3.3 illustrates also the evolution of the square wave with the LW -HR scheme. There is two

0 512

0

Initial square wave

Up-Wind scheme

Lax-Wendroff High Resolution scheme

i

t0t1t2

ρ

Figure 3.3: Movement of a square wave of dislocation density shifting on the left inside a 1D
periodic grid with 512 nodes. Comparison between the Up-Wind scheme in blue and Lax-Wendroff
High-Resolution scheme in green. Both simulations are performed with ∆t = 2.6 · 10≠2∆tcrit. The
snapshots at t1 and at t2 are taken respectively at the iteration 4400 and 8800.

snaps at t1 and t2 = 2 · t1 in blue for the UW scheme and in green for the LW -HR scheme. The

simulations are performed with a time step equals to 2.6 · 10≠2∆tcrit. As mentioned before, the

blue one decreases strongly with a numerical diffusion which is worst when ∆t decreases. Note that

in the special case of an homogeneous velocity, this numerical diffusion can be totally removed by

∆t=∆tcrit. But this critical time discretization is unreachable for a realistic case. The green curve

looses only the smallest wavelengths but keeps the amplitude for any time discretization. In fact,

the LW -HR scheme generates only a small regularisation effect but no diffusion, in opposition to

the UW scheme.

The case of homogeneous velocity is now under control but additional issues appear for the

inhomogeneous situations. Before testing an inhomogeneous velocity, we need to precise the index

of the discrete field v involved in each product fl · v in the discrete equation. Indeed, equation

(3.18) involves several products summarized by flj · v where j can take the values i or i ± 1. Two

intuitive possibilities appears for the choice of the index of the velocity: vi or vj . For any choices,

the scheme does not guaranty the conservation of the density. However, the conservation law is a

characteristic of the transport equation (1.22). Figure 3.4 illustrates a simple case where the density

is not conserved. This test is similar to the previous test with an initial square wave of density but

with a sinusoidal imposed velocity shown in dotted line. The blue curve illustrates the density at the

two times t1 and t2, obtained with LW -HR scheme with the choice vi for each product detailed

before. We see a strong increase of the size of the wave at the time t1 which is in contradiction to the
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256
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t0t1t2

ρ

0
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Initial square wave

Velocity

Lax-Wendroff High Resolution scheme

Adaptative LW-HR scheme for flux conservation

Figure 3.4: Movement of a square wave of dislocation density shifting on the left with a non-
constant velocity inside a 1D periodic grid with 256 nodes. Both simulations are performed with
∆t=2.6 · 10≠1∆tcrit. The snaps at t1 and at t2 are taken respectively at the iteration 440 and 880.

conservation law. In order to fix this issue, we need to turn towards an other type of discretization

schemes based on the concept of density flux. In a discrete space, this flux characterizes the flow

between two neighbors nodes. Consequently, this flux, called f , is defined between each nodes of

the main grid. Figure 3.5 illustrates in blue this new intermediate grid in 1D.

v v vj j

-"
∆x

fli≠1 fli fli+1fi≠ 1

2

fi+ 1

2

Figure 3.5: Grid along x̨ with the localization of the flux f between 2 nodes of the main grid.

The choice is to keep only one index for all grids involving half-integers for the index of the flux.

This staggered grid allows a building of schemes which guaranty the conservation law of the density.

These schemes need to verify this structure

Ÿi(x, y, t + ∆t) ≠ Ÿi(x, y, t)

∆t
+

ffl

i+ 1

2

≠ ffl

i≠ 1

2

∆x
= 0 (3.21)

where ffl

i+ 1

2

is the flux of the density fl from fli+1 to fli. Thus, we proposes here a new scheme inspired

by the UW scheme to avoid oscillations and including anti-diffusion terms inspired by LW -HR. The

definition of the flux is

ffl

i+ 1

2

= vi+ 1

2

·

Y
_______]
_______[

C
fli + 1

2„i

A
1 ≠

--v
i+ 1

2

--∆t

∆x

B
(fli+1 ≠ fli)

D
if vi+ 1

2

> 0

C
fli+1 + 1

2„i

A
1 ≠

--v
i+ 1

2

--∆t

∆x

B
(fli ≠ fli+1)

D
if vi+ 1

2

< 0

(3.22)
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As wished, this new scheme is analytically equivalent to the LW -HR scheme in case of homogeneous

velocity. Figure 3.4 illustrates also the evolution of the square wave with this new scheme in green.

This evolution is perfectly conservative. Note that, this scheme imposes the discrete velocity field

in the same position of the flux. Therefore, the driving force terms (3.9) need interpolated values

of 1/fl on the staggered grid. Moreover, the gradient of fl inside ·b is simply the central difference

between two close nodes. We perform systematic numerical tests to attempt to predict the stability

of our scheme. It seems to have the same stability range than the UW scheme. To conclude the

validation of this new numerical scheme, figure 3.6 shows the impact of ∆t. We observe exactly the

i

t0t1
t2

ρ

0

0

256

Initial square wave

Velocity

Evolution with ∆t=2.6e−1∆tcrit

Evolution with ∆t=2.6e−2∆tcrit

Figure 3.6: Movement of a square wave of dislocation density shifting on the left with a non-constant
velocity inside a 1D periodic grid with 256 nodes. The snaps at t1 and at t2 are taken respectively at
the iteration 440 and 880 for the blue curve and at the iteration 4400 and 8800 for the green curve.

same behavior for any time discretization.

3.3.2 Requirement of specific treatment of mechanical fields

This section treats the discretization of the Orowan equation. As explained in the previous section,

the local stress · , computed from the mechanical equilibrium (3.4), is defined on the staggered grid

illustrated by the blue circles on figure 3.5. Moreover, this mechanical equilibrium needs, in input,

the plastic strain ‘p. Consequently, the Orowan equation, which gives this plastic strain, has to be

computed on this staggered grid. In this way, the simplest discretization is

‘
p

i+ 1

2

(t + ∆t) = ‘
p

i+ 1

2

(t) +
1

2
· ∆t · b · fli+ 1

2

· vi+ 1

2

(3.23)

where Ÿi+ 1

2

is the average of Ÿi and Ÿi+1. The behavior of the model (3.8) with this discretization

scheme leads to numerical divergences. The problem comes from the inconsistency of two related

fields, namely the GND density Ÿ and the plastic strain ‘p. In fact, the Kröner equation [65] relates

the plastic strain to its physical origin, the GND. This law is reformulated for our simple case by

– = curl —
in our 2D case≠≠≠≠≠≠≠≠æ –13 = bŸ = ≠2

ˆ‘p

ˆx
(3.24)



56 Chapter 3. - Simulations of dislocation density pattern with one slip system in 2D

where – is the field of Nye tensor and — is the distortion tensor of the lattice. Both tensors are second

order tensors. In order to guaranty this consistency, the Orowan equation has to be discretized exactly

in the same manner than transport equations. Consequently, the Orowan equation computes the

flow of Ÿ with the expression (3.22) and incorporates, curiously, the anti-diffusion term. Then, the

discretization is

‘
p

i+ 1

2

(t + ∆t) = ‘
p

i+ 1

2

(t) +
1

2
· ∆t · b · ffl

i+ 1

2

. (3.25)

Thus, thanks to this new discretization, we well obtain the Kröner link (3.24). In fact, by multiplying

equation (3.21) with the Burgers vector and using this discretization (3.25), we obtain

b
Ÿi(t + ∆t) ≠ Ÿi(t)

∆t
= ≠b

ffl

i+ 1

2

≠ ffl

i≠ 1

2

∆x
= ≠ 2

∆t

AA
‘1+ 1

2

≠ ‘1≠ 1

2

∆x

B

t+∆t

≠
A

‘1+ 1

2

≠ ‘1≠ 1

2

∆x

B

t

B

(3.26)

where (·)t means the field at the time t. We well recognize an explicit time derivative of the discrete

Kröner equation:

bŸi(t) = ≠2

A
‘1+ 1

2

(t) ≠ ‘1≠ 1

2

(t)

∆x

B
. (3.27)

It is important to note that the initial fields of each simulation have to validate this discrete equation.

A convenient way to proceed is to define an initial strain field and use equation (3.27) to compute

the initial Ÿ field. Figure 3.7 illustrates the consequence of the choice of this discretization. This

i

0

Initial dislocation density

κ

κ computed by transport equation

460 465 470 475 480 558

κ deduced from εp with a non consistent Orowan equation

κ deduced from εp with a consistent Orowan equation

Figure 3.7: Simulation of a positive dislocation attracted by a negative dislocation inside a box of
1024◊64 nodes. Both dislocations are defined respectively by a bump of density of fl+ and fl≠. The
side of fl+ is represented here (equivalent behavior for fl≠): the initial state in black, the shifted state
in green. The dot fields represent Ÿ computed by the discrete Kröner equation: the red dots use a
naive discretization and the blue dots use a consistent discretization.

numerical test is an evolution of a positive dislocation attracted by a negative dislocation. Each

dislocation are represented respectively by an initial bump of density of fl+ and fl≠. These bumps

are localized in a 2D simulation at the index (466, 31) for the positive dislocation and (558, 31) for

the negative dislocation in a box of 1024◊64 nodes. Due to this close positioning, we consider these

dislocations as two infinite isolated walls of dislocations along ę2 even though there is boundary
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conditions. The behavior of the red discrete dislocation, predicted by equation (2.3), should be

attracted by the blue discrete dislocation. As well as this red dislocation is defined by a smoothed

bump, this field will be spread during its shifting. In fact, the closest side of the bump to the blue

dislocation is more attracted by the other side. Figure 3.7 illustrates only the behavior of the bump

of fl+ but there is a similar behavior of the bump of fl≠. The initial bump of fl+ is plotted in black

and the shifted field in green is obtained from its transport equation. The two other fields, the blue

dots and the red dots, are indirectly obtained from the plastic strain field with the Orowan equation

followed by the Kröner equation. The red field uses the simple discretization (3.23) of the Orowan

equation and the blue field uses the consistent discretization (3.25). We observe that the naive

discretization of Orowan equation gives a field distinctively different than the green expected field.

This artefact deteriorates strongly simulations during the time and the simulations tend to diverge.

In opposition, the blue field, obtained by the consistent discretization, gives exactly the same field

than the green one.

Finally, all artefacts linked to the first system of equations (3.8) are fixed. However, others

artefacts will come from the coupling with the second equation, the mechanical equilibrium (3.4).

In fact, the FFT algorithms used to compute the mechanical equilibrium treat not correctly small

wavelengths in input, in particular on the plastic strain field. Thus, if the plasticity model predicts

small wavelengths on the plastic strain field, it will create oscillations on the output of the mechanical

equilibrium which is the local stress field · . These oscillations coupled with the dynamic of transport

equations will tend to numerical divergences. Chapter 4 proposes two new solvers for the second

system to avoid any oscillations.

3.4 Spontaneous emergence of heterogeneities

In this part, we aim at investigating (i) whether dislocation patterning, as observed in stage I and

II of hardening of monocrystal [64], could emerge spontaneously from the simple physical picture

given by our 2D model (see part 3.2); and (ii) if so, whether the correlations are decisive or not. For

that purpose, and in the spirit of what has already been done for previous models [46, 47, 48], we

perform in this section the stability analysis of an infinite system with an homogeneous dislocation

density submitted to an applied load.

3.4.1 Stability analysis of an homogeneous state

The stability analysis relies on the following steps: first, small perturbations are applied to the

initial homogeneous fields. Then, the PDEs are linearized with respect to this small perturbations

around the initial state. Considering the Fourier transforms of the perturbations, the coupled PDEs

are transformed into a system of coupled ODEs that can be diagonalized to get the dispersion

relations, i.e. the growth rates of the disturbance versus their wavelength. First, let us recall the

basic equations of the model, that in the limits Ÿ π fl and ·ext ∫ Ÿ
fl

µb
Ô

fl

2fi(1≠‹) , can be written as (see

section 3.2):

Y
__]
__[

≠ˆfl(r̨, t)

ˆt
= Mb

ˆ

ˆx
[{·ext + ·sc ≠ ·f ≠ ·b} Ÿ(r̨, t) ≠ ·̃b fl(r̨, t)]

≠ˆŸ(r̨, t)

ˆt
= Mb

ˆ

ˆx
[{·ext + ·sc ≠ ·f ≠ ·b} fl(r̨, t) ≠ ·̃b Ÿ(r̨, t)]

(3.28)
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where

·̃b =
µb

2fi(1 ≠ ‹)

1

fl
(C++ + C+≠)

ˆfl

ˆx
, (3.29)

·b =
µb

2fi(1 ≠ ‹)

1

fl
(C++ ≠ C+≠)

ˆŸ

ˆx
, (3.30)

·ext ≠ ·sc ≠ ·f = B

A
2fi(1 ≠ ‹)

µb
Ô

fl

B–≠1

È·ext + ·scÍ–, (3.31)

where ÈfÍ– =sign(f) |f |– and with

·sc =

⁄
·ind(r̨ ≠ r̨ Õ)Ÿ(r̨ Õ)dr̨ Õ. (3.32)

From now on and without loss of generality, we consider a strictly positive external stress ·ext. As just

recalled, the analysis is performed on a model restricted to Ÿπfl. Moreover, the self-consistent stress

depends only on Ÿ. Consequently, at the initial time t0, we have ·sc π·ext. Thus, ·ext + ·sc(r̨) Ø 0

and we can safely write È·Í = · . The initial state is assumed to be homogeneous with no GND, i.e.

fl(r̨, t0) = fl0 and Ÿ(r̨, t0) = 0, and a small noise is added to both fields. Next, we make appear the

following quantities: a characteristic frequency

Γµ =
Mb2µfl0

2fi(1 ≠ ‹)
, (3.33)

which gives an adimensional time

t̃ = t Γµ , (3.34)

the adimensional wave vector

q̃x =
qxÔ
fl0

, (3.35)

and the adimensional length

x̃ = x
Ô

fl0 , (3.36)

the adimensional stress

·̃ext =
2fi(1 ≠ ‹)·ext

µb
Ô

fl0
, (3.37)

and

·̃ind(x, y) =
x̃(x̃2 ≠ ỹ2)

(x̃2 + ỹ2)2
, (3.38)

and thus an adimensional density

fl̃ =
fl

fl0
. (3.39)

By applying small perturbations ”fl(r)=fl(r)≠fl0 and ”Ÿ(r)=Ÿ(r), equations (3.28) can be expanded

up to first order in these perturbations to give:

Y
__]
__[

≠ˆ”fl̃(r̨, t)

ˆ”t
= B·̃–

ext

ˆ”Ÿ̃

ˆx̃
≠ (C++ + C+≠)

ˆ2”fl̃

ˆx̃2

≠ˆ”Ÿ̃(r̨, t)

ˆ”t
= B–·̃–≠1

ext

ˆ·̃sc

ˆx̃
+ B

(3 ≠ –)

2
(·̃ext)

– ˆ”fl̃

ˆx̃
≠ (C++ ≠ C+≠)

ˆ2”Ÿ̃

ˆx̃2

(3.40)
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It is worth noting that the self-consistent stress (3.32) depends on ”Ÿ. This system of linear PDEs

is Fourier transformed (appendix A) to obtain a system of ODEs:

Y
___]
___[

≠ˆ ˆ̃fl

ˆt̃
= B·̃–

extiq̃x
ˆ̃Ÿ ≠ (C++ + C+≠)(≠q̃2

x)ˆ̃fl

≠ˆ ˆ̃Ÿ

ˆt̃
= B–·̃–≠1

ext iq̃x

A
≠4ifi

q̃xq̃2
y

q̃4

B
ˆ̃Ÿ ≠ (C++ ≠ C+≠)(≠q̃2

x)ˆ̃Ÿ + B
(3 ≠ –)

2
·̃–

ext(iq̃x)ˆ̃fl

(3.41)

where we have used the adimensional Fourier transform of the individual stress

ˆ̃·ind(q̃) = ≠4ifi
q̃xq̃2

y

q̃4
(3.42)

where i is the imaginary number, q̃ = (q̃1, q̃2, q̃3) is the adimensional wave vector and f̂ stands for

the Fourier transform of f . In matrix form, equation (3.41) reads:

ˆ

ˆt

A
” ˆ̃fl(q̨, t)

” ˆ̃Ÿ(q̨, t)

B
= D(q̨) ·

A
” ˆ̃fl(q̨, t)

” ˆ̃Ÿ(q̨, t)

B
(3.43)

where D is a 2-dimensional matrix defined by

D(q̨) = Mb

Q
a

≠(C++ + C+≠)q̃2
x ≠iB·̃–

extq̃x

≠iB (3≠–)
2 ·̃–

extq̃x ≠
3

–B·̃–≠1
ext 4fi

q̃2
xq̃2

y

q̃4 + (C++ ≠ C+≠)q̃2
x

4
R
b . (3.44)

As usual, solving (3.43) amounts to find the eigenvalues of D. Its characteristic polynomial reads:

P = ⁄2 ≠ ⁄ · A + E (3.45)

where

A = ≠
A

(C++ + C+≠)q̃2
x +

A
–B·̃–≠1

ext 4fi
q̃2

xq̃2
y

q̃4
+ (C++ ≠ C+≠)q̃2

x

BB
(3.46)

and

E = (C++ + C+≠)q̃2
x

A
–B·̃–≠1

ext 4fi
q̃2

xq̃2
y

q̃4
+ (C++ ≠ C+≠)q̃2

x

B
+ B·̃–

extq̃xB
(3 ≠ –)

2
·̃–

extq̃x. (3.47)

Finally, we obtain the eigenvalues of D

⁄± =
A ±

Ô
A2 ≠ 4E

2
. (3.48)

The real part of ⁄± is always negative, stating that the homogeneous state is always stable. For

q̃x = 0, ⁄± is equal to zero implying that the perturbations with wave vector parallel to the y axis

will neither grow nor decrease.

We first consider the mean field solution i.e. correlation terms are neglected. To recover this

case, we set the fitting parameters to – = 1 and B = 1 and suppress all the terms that depend on
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C++ or C+≠, which amounts to set C++ = C+≠ = 0. Equation (3.48) then becomes:

2⁄±

Γµ
= ≠sin2(2„)

4
±

ı̂ıÙ
A

sin2(2„)

4

B2

≠ 1

(2fi)2
·̃2

extq̃
2
x (3.49)

as predicted by [46, 47] and where „ is the angle between the x-axis and the wave vector q̃:

1

4
sin2(2„) =

q̃2
xq̃2

y

q̃4
. (3.50)

We note that the real parts of ⁄± are always strictly negative, except when q̃ is parallel to either the

x or the y axis, in which case they are equal to zero, meaning that the corresponding perturbations

are marginally stable [46, 47].

Now, we consider – = 1.71, B = 0.16, C++ = 1.09 and C+≠ = ≠0.23 for which correlations are

accounted for. The other parameters are reported in Table (3.2).

Table 3.2: Shear modulus µ, Poisson coefficient ‹ and Burgers vector b

µ 26.3 GPa

‹ 0.33

b 3 · 10≠10 m

The real parts of ⁄+ and ⁄≠ are plotted in figure 3.8, respectively left and right, versus the

components of the non dimensional wave vector q̃ (ranging from 0 to fi/(
Ô

fl0∆x) = fi/3.9) for

an apllied stress ·̃ ext = 5.34. As expected, we observe that Ÿ(⁄≠) and Ÿ(⁄+) are always strictly

⁄≠ ⁄+

·̃ext = 5.34

0

≠0.5

≠1

≠1.5

≠2
q̃x q̃x

q̃y q̃y

0 0

fi
3.9

fi
3.9

0 fi/3.9 0 fi/3.9

Figure 3.8: Ÿ(⁄≠) (left) and Ÿ(⁄+) (right), vs the wavelength q̃ of the perturbations for an applied
stress ·̃ ext =5.34.

negative, except when qx = 0, in which case they are equal to zero. This means that perturbations

with a wave vector parallel to the y axis are marginally stable.

3.4.2 Simulation of dislocation pattern

In this section, we present numerical simulations of the model discussed in the previous stability

analysis. We also compare the results to the ones obtained with a mean field model to highlight the
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importance of the correlation-induced stresses. These numerical results should be considered as a

preliminary study, as only a few situations have been investigated.

We have chosen a homogeneous initial state with densities fl0 =2e14 m≠2 and Ÿ=0 and we have

added to these fields small perturbations of the order of 1012 m≠2. A periodic 10≠4◊10≠4 m2 box is

discretized into 2562 nodes such that
Ô

fl0∆x=3.9 to be consistent with the linear stability analysis

in figure 3.8. We apply a stress ·̃ext = 5.34, and we choose ∆t=∆tcrit/2 to ensure the stability of

the numerical scheme.

Snapshots of fl and Ÿ are displayed in top row and bottom row of figure 3.9, respectively. At t̃ =

347 we observe the emergence of a pattern on the GND density field. This pattern consists in small

walls perpendicular to the glide direction, alternatively consisting of positive and negative dislocations.

The anisotropy of the pattern is clearly evidenced in the Fourier map shown in figure 3.10. We indeed

observe that the amplitude of the Fourier modes of the GND density field are confined to a small

domain centred on a q̃-vector with a finite q̃x and zero q̃y components. We note that the emergence

of this pattern contradicts the stability analysis presented above, which predicts that fluctuations

with non-zero q̃x should collapse. Hence, non-linearities are probably already at play.
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Figure 3.9: Initial configuration (left) and dislocations density fields at t̃ = 347 (right) obtained with
the model including the correlation based local stresses. The top row displays fl≠fl0 and the bottom
row Ÿ. The applied stress is ·̃ext = 5.34.

To analyse the importance of the correlation stresses ·b, ·̃b and ·f on the emergence of a

pattern, we now perform simulations in the mean field model in which these local stresses are absent.

Considering the same conditions than above, and in particular the same applied stress ·̃ext=5.34 and

the same initial condition, the evolution of the dislocations density fields predicted by the mean field

model are presented in figure 3.11. It appears that no pattern emerges from either the GND fields

nor the total density field. The comparison of figure 3.11 with 3.9 reveals the importance of the

correlation induced local stresses on the emergence of a pattern. Preliminary study suggests that the

friction stress ·f is at the origin of the patterning, but further investigations are required to confirm

this point.
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Figure 3.10: Left: snapshot of GND density field Ÿ at t̃ = 347 (figure 3.9). Right: Amplitude map
of the corresponding Fourier transform.
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Figure 3.11: Initial configuration (left) and dislocations density fields at t̃ = 347 (right) obtained
with the mean field model. The top row displays fl≠fl0 and the bottom row Ÿ. The applied stress is
·̃ext = 5.34. The color scale is chosen to allow a direct comparison with Figure 3.9.

3.5 Conclusion

In a first part, we have proposed to apply an accurate numerical scheme developed to handle

convection equations in fluid dynamics to the transport equations of dislocation densities. This

scheme mixes ingredients from the Lax-Wendroff High Resolution scheme and from a conservative

scheme. Moreover, we have shown that a particular attention must be paid to remain consistent

with the transport equations when discretizing the Orowan equation to get the plastic strain field

from the dislocation densities. It must be stressed that these schemes are worth to be applied to any

plasticity model based on dislocation densities transport equations.

In a second part, we performed the linear stability analysis of our model, both in a mean-field

approximation and in a complete model that incorporates the correlation-induced stresses (in the

limit Ÿ π fl). In the mean field situation, we found that fluctuations with wave vectors parallel

or perpendicular to the glide direction are marginally stable. When correlation-induced stresses are
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taken into account, only fluctuations with q-vectors perpendicular to the glide direction are marginally

stable.

Finally, we have presented a preliminary numerical simulation of the model. We observed that the

simulated microstructures do not follow the predictions of the stability analysis. Interestingly, when

correlation-induced stresses are taken into account, we found that a pattern consisting of alternating

positive and negative dislocation walls perpendicular to the glide direction emerges, whereas no

heterogeneities show up in the mean field version of the model.





Chapter 4

NUMERICAL ESTIMATION OF

MECHANICAL FIELDS FOR

INHOMOGENEOUS ANISOTROPIC MEDIA

Résumé du chapitre

Ce chapitre traite de la résolution numérique de l’équilibre mécanique dans un matériau hétérogène,

afin d’obtenir en tout point les champs de déformation et de contrainte. La connaissance de ces

champs est utile pour de nombreuses applications et en particulier à la mise en oeuvre numérique

des modèles de plasticité en densité de dislocations présentés dans les chapitres précédents. Les

algorithmes que nous avons considérés dans ce travail sont basés sur une méthode de point fixe util-

isant des Transformées de Fourier Rapides (FFT). Ces méthodes sont des alternatives aux Méthodes

Elements Finis (FEM). Les méthodes FFT sont construites sur des grilles régulières rendant aisé un

grand nombre de couplages. En particulier, ces grilles sont aussi adaptées à la discrétisation des

equations de transport de densité de dislocations vue au chapitre 3. Quatre modèles sont présentés

ici. Le premier, notés (1), correspond à des travaux pionniers basés sur la publication initiale de

Moulinec et Suquet [79] et nous étudions également une variante de ce modèle utilisant une méth-

ode de différences finies pour l’évaluation des opérateurs différentiels (modèle (2)). Ensuite, deux

nouveaux modèles, notés (3) et (4), sont proposés sur des grilles décalées. Ce sont des méthodes de

différences finies permettant de résoudre les artefacts numériques des modèles (1) et (2) conduisant

à des oscillations sur les champs mécaniques. Quand les constantes élastiques sont isotropes (ou

anisotrope alignée sur la grille), les modèles (3) et (4) sont identiques et permettent l’obtention de

champs mécaniques non oscillants même pour de très fortes inhomogénéités (milieux poreux). Les

modèles (3) et (4) différent par leur traitement des anisotropies élastiques: le modèle (3) utilise

des interprétations entre sites premiers voisins alors que le modèle (4) se base sur une construction

variationelle pour laquelle l’énergie élastique est décomposée sur les subvoxels définis par les grilles

décalées. En utilisant des configurations modèles, nous montrons que seul le modèle (4) permet

d’obtenir des champs mécaniques non oscillants quelque soit l’anisotropie et l’inhomogénéité.

65
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4.1 Introduction

As mentioned before in chapter 3, the numerical solution of the proposed dislocation density

model requires the knowledge, at each time step, of the stress field in the material. This field can

be obtained by numerically solving the mechanical equilibrium. An efficient numerical solver is then

needed. This chapter is devoted to the proposition of a new solver. Note also that an efficient

solver could also be of interest in other situations, such as for the homogenization of the mechanical

properties of an heterogeneous material.

A classical way of solving mechanical equilibrium is to use a Finite Element Method (FEM).

However, for the case of an evolving microstructure, the numerical mesh has to be permanently

re-evaluated in order to match to the evolutive microstructure. This remeshing is usually very time

consuming.

Another way has been proposed by Moulinec and Suquet [79] using a scheme based on Fast Fourier

Transforms (FFT). This method discretizes the media on a regular grid rather than a mesh and

uses the efficiency of FFT. Moreover, this regular grid can be easily coupled with a wide range of

information such as experimental images. The FFT-based solver is also commonly used in phase

field models describing elastically inhomogeneous microstructures [10, 21], heterogeneous plasticity

[39] or viscoplasticity [60] or crack description [56]. Finally, these FDM algorithms are built with

the fixed point method which gives very simple algorithm. The drawback of this method is on the

quality of the description of interfaces only localized on regular nodes.

After the seminal paper of Moulinec and Suquet, several improvement have been proposed for the

FFT-based solvers. First, an enhanced algorithm, proposed by [28], accelerates the convergence

of the iterative fixed point. Then, [76] proposes an other building with an augmented Lagrangian

which allows infinite inhomogeneities of elastic stiffness such as for porous materials [78]. Then, a

variational framework has been proposed in [11] to handle infinite elastic contrast. However, all these

methods are often only discussed in the context of the homogenization of mechanical properties and

almost all applications are performed using isotropic elasticity.

Because we are interested here in alloy where the microstructure may be simultaneously elastically

inhomogeneous and anisotropic, we have to discuss the accuracy of these FFT-based methods for

the determination of the full mechanical fields in such a complex alloys.

A first step towards this goal has been very recently made by F. Willot who showed that classical

FFT schemes may lead to oscillating fields [102], and a new spatial discretization grid was proposed

to reduce the numerical oscillations.

The aim of the present chapter is to propose an alternative and very efficient FFT scheme able to

obtain accurate and non oscillating mechanical fields.

This chapter investigates several FFT-based schemes. We distinguish two groups of discretization

grids. Section 4.2.1 presents two classical methods, (1) and (2), using a single regular grid based

on works of [79]. Section 4.2.2 proposes two alternative methods, (3) and (4), using staggered

grids inspired, among others, by geophysical works [7, 90, 111] or coherency loss [41]. Methods (1),

(2) and (3) are implemented with a fixed point. Method (4) is implemented with a direct solver

but the equivalent fixed point algorithm in Fourier space is also expressed. In order to emphasize

the importance of a variational scheme (method (4)), part 4.3 and part 4.4 present tests for the

comparison of all methods and expose the benefits of staggered grids and especially the necessity of
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a physically consistent algorithm.

4.2 Numerical methods: classical and alternative approaches

In this part, we present several Fourier-based numerical schemes for solving inhomogeneous and

anisotropic elasticity problems. As we consider linear elasticity, the problem to be solved can be

expressed as

‡ij(r̨) = Cijkl(r̨) (‘kl(r̨) ≠ ‘ú
kl(r̨)) ;

ˆ

ˆrj
‡ij(r̨) = 0 (4.1)

where r̨ = (r1, r2, r3) describes the space in three dimensions, Cijkl(r̨) is the elastic stiffness tensor

and ‡ij(r̨) the stress tensor. In equation (4.1), the summation over repeated indices is assumed,

‘ú
kl(r̨) is a local eigenstrain tensor which may originate from a phase transformation or from plasticity,

and ‘ij(r̨) is the total strain tensor which derives from the total displacement field ų=(u1, u2, u3):

‘ij(r̨) =
1

2

A
ˆui(r̨)

ˆrj
+

ˆuj(r̨)

ˆri

B
. (4.2)

As we consider a system with periodic boundary conditions, the usual boundary condition is replaced

by a condition on the average value of the strain or stress fields. In this paper, we hold the system

at a constant average strain È‘ijÍ but the extension to the constant average stress condition is

straightforward.

All the following schemes use an homogeneous reference material with a stiffness tensor C0
ijkl,

and the local stiffness heterogeneities are

”Cijkl(r̨) = Cijkl(r̨) ≠ C0
ijkl (4.3)

where C0
ijkl influences the convergence of the algorithm and a good choice appears to be a linear

average of matrix stiffness Cm
ijkl and precipitate stiffness Cp

ijkl [80]. In order to benefit from the

efficiency of the FFT algorithms, we use regular grids and the schemes are written in Fourier space.

For simplicity, we consider a grid spacing d equal in each direction. The simulation box size in each

direction is then Li = Ni d where Ni is an integer, assumed even. The definition of the Fourier

transform ‚f(q̨) of a periodic function f(r̨) is recalled in appendix A.

4.2.1 Single grid

In the first two methods, we use a single regular grid for all mechanical fields.

4.2.1.1 Method (1): Continuum equation of equilibrium in Fourier space

As proposed by [79, 80], the differential problem is transformed into an integral problem using

the Lippmann-Schwinger equation. In Fourier space, we obtain

‚‘ij(q̨) = ≠Γijkl ‚·kl(q̨) (4.4)

where the hat sign denotes the Fourier transform and the polarisation tensor is

·ij(r̨) = ”Cijkl(r̨) ‘kl(r̨) ≠ Cijkl(r̨) ‘ú
kl(r̨). (4.5)
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The strain Green tensor is

Γ
(1)
ijkl(q̨) =

1

4

Ë1
qjG

(1)
ik + qiG

(1)
jk

2
ql +

1
qjG

(1)
il + qiG

(1)
jl

2
qk

È
(4.6)

where Gik stands for the displacement Green tensor defined by

G
(1)
il

≠1
(q̨) = C0

ijkl qj qk. (4.7)

Because periodic boundaries are assumed, the Fourier space is discrete. To use FFT algo-

rithms, the Fourier space is limited to the first Brillouin Zone ‚B0 defined as the set of vectors

2fi(–1/L1, –2/L2, –3/L3) where –i are integers such as ≠Ni/2 < –i Æ Ni/2. The problem is then

solved using the following fixed-point algorithm:

Y
________________________]
________________________[

- Initialization: ‘n=0
ij (r̨) = È‘ijÍ

- Iteration:

1: Calculation of the polarization tensor:

·ij(r̨) = ”Cijkl(r̨)‘n
kl(r̨) ≠ Cijkl(r̨)‘ú

kl(r̨)

2: ‚·(q̨) © Fourier transform of ·(r̨)

3: Actualization:
‰

‘n+1
ij (q̨) = ≠Γijkl(q̨) ‚·kl(q̨) (q̨ ”= 0)

4: ‘n+1(r̨) © Inverse Fourier transform of ‰‘n+1(q̨)

Steps 1 to 4 are repeated until convergence and we choose a practical stopping criterion on the

variation of the deformation fields between two iterations:

e‘ =
ÈÎ‘n+1(r̨) ≠ ‘n(r̨)ÎÍ

Î‘ref Î (4.8)

where ‘ref is a reference deformation tensor, È·Í denotes the spatial average, and where to Î‘Î =Òq
ij ‘2

ij is the norm of the tensor.

In the following simulations performed at fixed average strain, we use ‘ref = È‘Í when this quantity

is non zero; and ‘ref =‘ú otherwise.

When a typical value ‡ref for the stress fields in the material is known, the more physically based

criterion

e‡ =


ÈÎdiv‡Î2Í

ÎCm · ‘ref Î (4.9)

is also computed to compare the different schemes and discretizations.

Due to the non-symmetric choice of the Fourier domain ‚B0, the symmetry Γijkl(≠q̨)=Γ̄ijkl(q̨) is

not ensured at the boundary (ā stands for the complex conjugate of a). This property can be enforced

by replacing Γijkl(q̨) by (Γijkl(q̨)+Γ̄ijkl(≠q̨))/2 or by C0
ijkl

≠1
at the boundary where Γ̄ijkl is the

complex conjugate of Γijkl. Conforming to [80, 102], utilization of C0
ijkl

≠1
decreases significantly

oscillations in case of small eslastic inhomogeneities. In opposition, for strong inhomogeneities,
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this choice compromises the stability of the algorithm. Because this paper present results on very

inhomogeneous microstructures, such as materials containing pores, we have used the first choice.

4.2.1.2 Method (2): Fixed point algorithm on discretised equation (4.10)

The second FFT based method is built on the discretized mechanical equilibrium in real space

on a regular grid B0:

D
(ii)
j [C0

ijkl

1
D

(ii)
k [ul] ≠ ‘ú

kl

2
+ ”Cijkl (‘kl ≠ ‘ú

kl) ] = 0 (4.10)

where D
(ii)
i [ · ] is the central difference along the direction i between two nodes distanced of 2d.

Going to Fourier space, an expression similar to equation (4.4) is obtained for each vector q̨ of
‚B0 but the symmetrised strain Green tensor is now given by

Γ
(2)
ijkl(q̨) =

1

4

C3
G

(2)
ik q

(2)
j + G

(2)
jk q

(2)
i

4
· q

(2)
l +

3
G

(2)
il q

(2)
j + G

(2)
jl q

(2)
i

4
· q

(2)
k

D
(4.11)

where q
(2)
i = sin qid

d
.

The displacement Green tensor G̃ij is defined inside the first Brillouin zone ‚B0 by

G
(2)
il

≠1
(q̨) = C0

ijklq
(2)
j q

(2)
k . (4.12)

At the boundary of the first Brillouin zone, G
(2)
ij is set to zero. Then, a fixed point scheme similar

to the one presented in subsection 4.2.1.1 is used to obtain elastic equilibrium.

When considering diffuse interface approaches, such as phase field models [9, 18, 20, 21], only

small q̨ vectors are used (typically |q̨| < fi/(5d)), therefore q
(2)
i ƒ qi and the definitions of the strain

Green tensor (4.6) and (4.11) lead to very similar results.

4.2.2 Staggered grids schemes

In this section, we propose alternative schemes based on staggered grids [41, 7, 90, 111] with a

particular emphasis on the anisotropic elasticity cases. Method (3), easier to implement, is adapted

for restrained anisotropic cases and method (4) is powerful for any anisotropy. The characteristics of

the staggered grid is to define each component of the displacement vector (u1, u2, u3) on different

grids, as shown in figure 4.1. The aim of this choice is to define the strain components using a

central difference scheme based on nearest neighbors nodes, in order to avoid the short wavelength

oscillations observed with classical central difference schemes.

Figure 4.1 also indicates the grids on which the strain components are defined. Due to the

staggered grids of the displacement, the central differences defining the strain tensor are also on

staggered grids. The diagonal terms ‘ii are all on the circle-grid (in blue). The non diagonal

components ‘ij are defined on a grid which is shifted by a vector d
2(ęi + ęj) with respect to circle

grid. For example, the ‘12 components are known on the cross-grid (in red) in figure 4.1. More

generally, the components of all the rank-2 symmetric tensors Aij (e.g. ‘, ‘ú, · , . . . ) are defined

on the same grids than the ones used for ‘. The mechanical equilibrium (4.1) and the definition of

the polarization tensor contain terms of the type Bij = CijklAij . Therefore the component Bij is
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Figure 4.1: Staggered grids for mechanical fields in 2D on the left and in 3D on the right.

the sum of terms Akl which may not be on the same grid. In order to solve this problem, the Akl

components need to be interpolated on the grid on which Bij is defined.

In this work wa have two ways of performing these interpolations. The first one is based on a nearest

neighbor scheme (Method (3)) and the second one is obtained from a variational principle. These

two approaches are successively presented in the following subsections.

4.2.2.1 Method (3): Linear interpolation of stress components

Method (3) is a FFT based method built from the discrete mechanical equilibrium where gradient

operators are computed using central differences between two nearest neighbor nodes. This central

difference along i direction is written D
(i)
i [ · ]:

D
(i)
j [C0

ijkl

1
D

(i)
k [ul] ≠ ‘ú

kl

2
+ ”Cijkl (‘kl ≠ ‘ú

kl) ] = 0. (4.13)

In Fourier space this operator reduces to multiplication by iq
(3)
j , where q

(3)
j = sin(qjd/2)/(d/2).

As expected, q̨(3) approaches the wave vector q̨ as |q̨| tends to 0. As explained above, we need an

interpolation scheme to estimate the values kl component of a rank-2 symmetric tensor on the grid

where ij components are defined.

As detailled in appendix C, this can be done by averaging the values of the kl components on the

four sites that in a first nearest neighbor position from the considered site of the ij components.

We therefore introduce the interpolation operator I(ij,kl)(Akl) defined as

I(ij,kl)(f) =

ij\kl (i, i) (2, 3) (1, 3) (1, 2)

(i, i)

(2, 3)

(1, 3)

(1, 2)

Q
cccca

f L01̄1̄ L1̄01̄ L1̄1̄0

L011 f L1̄10 L1̄01

L101 L11̄0 f L01̄1

L110 L101̄ L011̄ f

R
ddddb

(4.14)
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where

Ls1s20(f) =

f(–, —, “) + f(– + s1, —, “) + f(–, — + s2, “) + f(– + s1, — + s2, “)

4
(4.15)

with (–, —, “) the grid index and si = ±1. A similar definition stands for L0s2s3
and Ls10s3

. Using

this operator, the polarization tensor is computed in real space as

·ij = I(ij,kl)(C0
ijkl‘

ú
kl ≠ ”Cijkl (‘kl ≠ ‘ú

kl)) (4.16)

and the elastic equilibrium becomes

D
(i)
j [C0

ijklI
(ij,kl)(‘kl)]R̨+ d

2
ęi

= D
(i)
j [·ij]

R̨+ d
2

ęi
. (4.17)

where we have assumed an implicit summation over repeated indices in subscript position.

As usual, equation (4.17) is solved for ‘ij in Fourier space.

As detailed in appendix C, we get an equation similar to equation (4.4) where the strain Green tensor

is now defined as

Γ
(3)
ijkl(q̨) =

eiq̨·P̨ij e≠iq̨·P̨kl

4

C3
G

(3)
ik q

(3)
j + G

(3)
jk q

(3)
i

4
· q

(3)
l +

3
G

(3)
il q

(3)
j + G

(3)
jl q

(3)
i

4
· q

(3)
k

D
. (4.18)

where the displacement Green tensor G(3) is given by

G
(3)
il

≠1
(q̨) = eiq̨·P̨ij e≠iq̨·P̨kl ‚I(ij,kl)C0

ijklq
(3)
j q

(3)
k (4.19)

where P̨ij is equal to ≠d
2(1≠”i,j)(ęi+ęj) as detailled in appendix B. ‚I(ij,kl) is a complex number

defined in table C.10 of appendix C. Note finally that in many cases of practical importance, the

elastic stiffness tensor only differs from zero when i=j and k = l or when (i, j)=(k, l).

This is for example the case for the isotropic case, but also for several anisotropic symmetries (cubic,

tetragonal, orthorhombic) provided that the numerical grid is suitably oriented with the crystal lattice.

G
(3)
il

≠1
(q̨) = C0

ijklq
(3)
j q

(3)
k . (4.20)

4.2.2.2 Method (4): Energy based interpolation

This last method, based on a variational principle, is computed with a direct solving of the

mechanical equilibrium. But the fixed point algorithm can also be implemented, following the ap-

pendix D.Firstly, we will gives the system of linear equations and secondly the fixed point algorithm.

This method define a physical interpolation with consistency with the definition of the elastic

energy. Moreover, in order to express an accurate discrete energy, we split the main grid (circle-grid)

by small voxels (d/2◊d/2), as explained by figure 4.2. As mentioned before, it is assumed that

materials parameters (Cijkl and ‘ú
ij) are known on the circle-grid and interpolated on cross-grid with

linear interpolation of the four neighbors.
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Figure 4.2: One voxel containing four sub-voxels with homogeneous elastic energy with the illustrated
eigenstrain and stiffness tensors decomposition.

Thus, we express the energy of our system by

F el =

3
d

2

4D ÿ

R̨

ÿ

s̨

ÿ

ijkl

1

2
Cijkl(R̨, s̨)‘̃el

ij(R̨, s̨)‘̃el
kl(R̨, s̨) (4.21)

detailed in appendix D. The energy density is considered homogeneous in each subvoxels. The

subscript D is the dimension of our space and ‘̃el
ij(R̨, s̨) is linked to the displacement detailed in

appendix B. The dependences R̨ and s̨ scan each subvoxels. The strain in a subvoxel ‘̃el
mn(R̨Õ, s̨) is

related to the strain ‘el
mn(R̨Õ) defined on the staggered grid (figure 4.1) by

‘̃kl(R̨
Õ, s̨) = ‘kl(R̨

Õ ≠ ◊̨kl(s̨)) (4.22)

where ◊̨kl(s̨) is the shift vector defined by

Y
_]
_[

◊̨kl(s̨) = d
2(ęk + ęl) ≠ 2 [(s̨ · ęk) · ęk + (s̨ · ęl) · ęl] for k ”= l

◊̨kk(s̨) = 0

(4.23)

The last precision of equation (4.21) is the choice of the elastic coefficient Cijkl used for a subvoxel.

In order to illustrate, we express the energy density of one subvoxel by splitting in three different

contributions according to stiffness tensor symmetries:

fel = f iijj
el + 2f

i”=j
ijij

el + 4f

i”=j
iiij

el with f ijkl
el =

1

2
Cijkl‘

el
ij‘el

kl. (4.24)

The choice of the stiffness coefficient for each contribution, summerized in figure 4.2, is given by:

— The first contribution handles only diagonal strain terms defined on the circle-grid. Our choice

is to use the elastic stiffness of the same grid (¶Cijij).
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— The second contribution handles only non-diagonal term defined on the cross-grid. Our choice

is to use the elastic stiffness of the same grid (◊Ciijj).

— The third contribution handles diagonal but also non-diagonal terms. Our choice is to use the

elastic stiffness defined on the circle-grid (¶Ciiij).

Signs ¶, ◊ designate respectively fields on the circle-grid and on the cross-grid.

In order to be consistent with the periodic conditions, we split the displacement field: ų= ų0+”ų

where ų0 =È‘Í · r̨ is the linear part, which is non-periodic and ”ų is the fluctuation around this linear

part. Thus, ”ų can be consistent with the periodicity.

After substracting ų0 and applying the second law of thermodynamics, we obtain the following linear

system on the fluctuation ”ų:

Aij · ”Uj = Bi

with

”Uj©{k,–,—} = ”uk(–, —),

Bi©{l,–Õ,—Õ} =
ˆFel

ˆul(–Õ, —Õ)
,

Aij©{l,–Õ,—Õ}{k,–,—} =
ˆ2Fel

ˆul(–Õ, —Õ)ˆuk(–, —)
, (4.25)

where U is a 1-dimensional matrix containing fluctuation with an adapted storage indexed by j (j

scan all component k and all discrete space – and —). B is also a 1-dimensional matrix containing

the first derivative of the energy by the displacement and indexed by i (i is a similar index than

j). Then, A is a 2-dimensional matrix, the Hessian matrix, containing the second derivative of the

energy by the displacement indexed by i and j. The first and second derivation of the energy are

given respectively by appendix D and appendix E.

Note that, because of a translational invariance by ų, the system have an infinite solutions. In this

way, to restrain to one solution, we constrain ų(–=0, — =0) to zero.

We solve the system with the MUMPS library which is a fast numerical solver for sparse system

using Approximate Minimum Degree automatic quasi-dense row detection method (QAMD). The

direct solving appears to be faster than the fixed point method when we need more than the order

of hundred iterations. However, direct solvers can be easily massively parrallelized.

An alternative solving is to implement a fixed point algorithm similarly to the third first methods.

Based on the same staggered grids, the algorithm is quite similar to the method (3) with two small

modifications. Firstly, the Green tensor of the displacement Γ
(4)
ijkl is similar to Γ

(3)
ijkl but involves a

new Green tensor of the strain G
(4)
ij . Appendix D details the obtention of this new Green tensor

defined by

G
(4)
in

≠1
=

ÿ

lm

q
(3)
l q(3)

m eiq̨·P̨ile≠iq̨·P̨mn ‚J (il,mn)C0
ilmn (4.26)

where
‚J (il,mn) =

1

2D

ÿ

s̨

eiq̨·(◊̨il(s̨)≠◊̨mn(s̨)). (4.27)
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Secondly, the polarization tensor of a subvoxel is now

·̃ij(R̨, s̨) = ”C̃ijkl(R̨, s̨)‘̃kl(R̨, s̨) ≠ C̃ijkl(R̨, s̨)‘̃ú
kl(R̨, s̨). (4.28)

For aligned case, the algorithm of method (3) and (4) are equivalent. Note the method (4) has been

very recently (August 2015) and independently proposed in [93]. However, no anisotropic simulations

are presented in this reference.

4.3 Comparison of methods: Case of cubic symmetry aligned with

the grid

This part treats the restricted ’aligned case’. As mentioned in subsection 4.2.2.1, in this case,

there is no stress interpolation in method (3). In this way, method (3) is similar to method (4).

Thus, only methods (1), (2) and (3) will be compared. Firstly, we illustrate intrinsic artefacts with

the simple case of an homogeneous material, section 4.3.1. In a second time, we observe a strong

degradation in case of inhomogeneous material, section 4.3.2. These analysis are performed in two

dimensions and should be equivalent in 3D. Simulations are achieved with a simple microstructure

containing square precipitates in a periodic matrix. Square is favored because it stays perfectly

described in a discrete space and moreover it owns a singularity at each corner. In a continuum

theory, mechanical fields diverge at these singularities, which is an interesting problem for schemes

behavior analysis. The width of the precipitate is equal to a quarter of the matrix period. The single

grid attached to method (1) and (2) has the same position of the round-grid attached to method

(3). Moreover, the interface of the precipitate is sharp and positioned on the cross-grid. That is why,

a linear interpolation of matrix and precipitate stiffness tensor is taken for ◊Cijkl at the interface.

The appendix F gathers simulations of the situation with a wide range of parameters in order to have

exhaustive comparisons. The following analysis are based on these comparisons.

4.3.1 Illustration of classical scheme artefact

This section considers homogeneous stiffness fields with Lame coefficient ⁄=100 GPa and µ=50

GPa. The precipitate is affected by an eigenstrain ‘ú
11 =‘ú

22 =0.01. Fixed point is always carried out

up to the convergence (e‘610≠10). For each method we proceed to different discretizations, called

N-run where N characterizes the 2D-discretization: N2 ={642; 10242}. Some others discretizations

are proposed by appendix F.

Figure 4.3 shows a comparison between the three methods for the highest discretization (1024-

run) in order to confine local artefact and stand out, far from corners, non-local artefacts. On the

right side, there is a profil of ‘11 along the black line illustrated by the map on the left side.

We observe that method (1) and (3) converge toward the same solution and method (2) oscil-

lates around this solution. This oscillation, coming from classical central difference, stays for any

discretization. Note that, this oscillation looks like steps and is weaker in specific case of square

precipitate described with even nodes.

The second artefact, localized around corners, is attached to the curvature of the interface. In
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Figure 4.3: On the left: Map of ‘11 (Method (1)) with the localisation of the profil (black line) and
the localisation of figure 4.4 (black square). On the right: Profil of ‘11 through the interface for
each method.

order to quantify this artefact, figure 4.4 shows the error of the solution of 64-run compared to a

perfect reference. The maps are centered around one corner and show 20◊20 nodes, as illustrated

on the map of figure 4.3. We take the higher resolution (1024-run with method (1)) as reference

and, in order to compare, we average it on a 64◊64 grid.
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Figure 4.4: Difference between ‘
(64)
11 (64-run) and ‘

(1024)
11 (1024-run averaged on a 64 ◊ 64 grid) for

each method. Only one corner of the precipitate is exhibited, localized by the square in figure 4.3.

The overall pattern of error looks like the same for all methods but with additional oscillation for

method (1) and (2). This error analysis is also done for 256-run (256◊256 grid) and we observe the

same pattern, rigorously the same for method (1) and (3) and quite similar for method (2) du to it

non-local artefact. Consequently, this pattern depends only on the curvature of the discrete interface.

In this way, we can define a characteristic length of this error. For the square case, oscillations spread

up to six nodes.

The characteristic amplitude of an artefact is quantified by the standard deviation of this error

on the entire space which is 3.5e≠6, 1.5e≠4 and 8.4e≠6, respectively for method (1), (2) and (3).

We notice that method (2) is strongly worse than method (1) and (3) and method (1) appears

to be the best. We observe the same behavior for ‘12 analysis and for any discretization (16-run,
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64-run, 256-run). Finally, these artefacts remain very soft for method (1) and (3) but will strongly

increase for method (1) in case of inhomogeneity. Note that, recent works propose solutions to limit

oscillations with new schemes tested for ’aligned case’ [102, 40, 28, 76].

To conclude the case of an homogeneous media, we propose the classical test of two dislocations

inside the same slip system, gliding along ę1 and with opposite Burgers vectors. The Kröner equation

(3.24) gives the equivalent strain dilatation ‘ú
xy defined between these two dislocations. This strain

field is spread on 16 nodes along ę1 and one node along ę2. Figure 4.5 illustrates the resulting fields

of ‡yy obtained, in the order, by method (1), (2) and (3). This test is interesting because we observe

Method (1) Method (2)

2.03e−1

1.58e−1

1.13e−1

6.75e−2

2.25e−2

−2.25e−2

−6.75e−2

−1.13e−1

−1.58e−1

−2.03e−1

y/b

2π(1− ν)σyy

µ

Theoretical σyy

Computed σyy

0

0.2

0.4

−0.2

−0.4

−1.5e2 1.5e20

Method (3)

Figure 4.5: Fields of 2fi(1 ≠ ‹)‡yy/µ computed in a box with 64◊64 nodes. The three maps are,
in the order, obtained by method (1), (2) and (3). The two dislocations are positioned at (23, 31)
and (39, 31). The profil, coming from the method (3) and illustrated by the dotted line on the third
map, is compared to the analytical solution.

a significant oscillations on method (1) and (2) which emphasize the benefit of method (3). The field

‡yy created by an edge dislocation can be obtained analytically. The profil on figure 4.5 is compared

to the mathematical solution. This profil goes through the negative dislocation as illustrated by the

dotted line on the map of method (3). We observe a perfect matching excepted near the dislocation

core and at the boundary of the box. Firstly, the discrete aspect cannot reproduce the divergence

predicted approaching the core. Secondly, due to the symmetry of the periodicity the strain field is

imposed to zero at the boundary whereas a non zero field in case of an infinite empty space.
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4.3.2 Influence of elastic constants inhomogeneity

We keep the previous microstructure configuration with a modification of Lame coefficient in

order to have a quasi-porous microstructure: ⁄m = 100 GPa and µm = 50 GPa for the matrix

and (⁄p, µp) = 10≠3 · (⁄m, µm) for the precipitate. Moreover, we impose a macroscopic strain

È‘11Í = È‘22Í = 0.01 and we have no eigenstrain. Figure 4.6 shows the resulting field of ‘11 for each

method.
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Figure 4.6: Maps of ‘11 (64-run) for each method, containing a quarter of the periodic system with
the middle of the precipitate matching with the corner of the figure.

The oscillation of the corner artefact appears to have the same characteristic length as homoge-

neous case but with a sizable amplitude. In addition, the opposite case with hard precipitates inside

a soft matrix is proposed in appendix F (contrast equals to 103). We observe significant oscillations

in each case on all mechanical fields (‘11, ‘12, ‡11, ‡12). The worst degradation appears always

inside the concave part (precipitate), on strain field for quasi-porous case and on stress field for soft

matrix case. The alternative method (3) seems to fix these oscillations for any contrast and any

discretization.

4.4 Comparison of methods: General anisotropic case

This part treats general anisotropy holding new contributions (Ci”=j
iiij ”= 0) which emphasizes

importance of interpolations. Firstly, a comparison between stress interpolation (method (3)) and

energy based interpolation (method (4)) is illustrated in section 4.4.1. Then, we illustrate a realistic

issue in titanium alloys which is reachable by method (4) (section 4.4.2).

4.4.1 Benefit of a physical interpolation (method (4)) in case of strong anisotropic

inhomogeneity

We still keep the previous microstructure configuration with square precipitate but with a cubic

crystalline material. Moreover, the cubic symmetry and the grid symmetry form an angle of 18¶

which gives the following stiffness tensor for the matrix in the natural basis of the grid (Mandel



78 Chapter 4. - Numerical estimation of mechanical fields

notation in GPa):

Cm =

Q
ccccccccca

133.8 76.2 90.0 0 0 26.9

76.2 133.8 90.0 0 0 ≠26.9

90.0 90.0 120.0 0 0 0

0 0 0 110.0 0 0

0 0 0 0 110.0 0

26.9 ≠26.9 0 0 0 82.4

R
dddddddddb

(4.29)

As required, we hold new contributions Cm
1112 = 19 GPa. We still keep the same contrast

(Cp
ijkl/Cm

ijkl = 10≠3) and the same driving force È‘11Í = È‘22Í = 0.01. Method (1) and (2) keep

the same artefact, already illustrated with the ’aligned case’. As for method (3) and (4), figure 4.7

shows the resulting field of ‘11. Appendix F proposes also this test with the opposite contrast for all

methods.
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Figure 4.7: Maps of ‘11, containing a quarter of the periodic system with the middle of the precipitate
matching with the corner of the figure. Above: 64-run. Below: 1024-run. Left: method (3). Right:
method (4).

First point, method (3) presents a vertical blue line localized at the interface. This permanent

local artefact is linked to the discretization d. Regarding the global response, we notice a worse

accuracy for method (3) compared to method (4). Method (3) gives distinctively a different fields

for 64-run, 256-run or 1024-run, especially inside the precipitate. That means a requirement of a very

high discretization of the space to converge to the solution. In opposition, method (4) gives a good
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solution with 64-run which is qualitatively the same field than 1024-run. The standard deviation of

the error (defined in section 4.3.1) for 64-run is about 3.6e≠2 for method (3) and 3.4e≠3 for method

(4) which confirm the poor accuracy of method (3). Method (4) appears to be efficient for any

contrast, such as hard precipitate in a soft matrix.

4.4.2 Voronoï microstructure for titanium alloy containing a subsurface crack

Dwell fatigue on titanium alloy, imposed by engine cycles, owns internal cracks growth which

are strongly dependent of the characteristic direction of the microstructure. In fact, the particular

grain orientations due to the fatigue allows propagation of cracks through interfaces on several

phases [61]. In order to predict the wide path of cracks we need to know the mechanical full-fields

attached to an heterogeneous anisotropic microstructure on several phases. Finite element method,

the classical way to analyse such a problem, describes very well the vacuum of a cracks inside a

microstructure. Powerful in two dimensions, the meshing of a large number of phases in 3D involves

costly simulations. Method (4) proposes a new way to obtain a high accuracy mechanical field which

is very competitive. Figure 4.8 illustrates a titanium alloy response of a one-directional load along

the vertical axis È‘22Í=0.01 where we consider only –-phases assumed as a Voronoï microstructure.

The elastic stiffness is given by the following tensor expressed in the natural basis of the grid (Mandel

notation in GPa):

C =

Q
ccccccccca

125 69 99 0 0 0

69 155 69 0 0 0

99 69 125 0 0 0

0 0 0 64 0 0

0 0 0 0 64 0

0 0 0 0 0 64

R
dddddddddb

. (4.30)

The left side of figure 4.8 shows the angle representing the phase orientation in the natural basis.
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Figure 4.8: Example of a Voronoï microstructure of titanium alloy with a crack. On the left: the
map of the angle (in gradian) of the cubic symmetry. On the right: the map of Von Mises stress in
GPa (method (4)) for a polycrystalline and a monocrystalline.
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The right side of figure 4.8 shows the Von Mises stress inside the microstructure. The first half

shows the Voronoï microstructure and the second half shows a monocrystal. Heterogeneity of the

microstructure alters significantly the response, especially around the crack tip which will lead the

crack propagation.

4.5 Conclusion

In the previous chapter, we have shown that the numerical situation of the dislocation density

model requires the use of an efficient solver able to provide the stress field in an arbitrary microstruc-

ture. In this chapter, we have tested four FFT-based schemes for solving mechanical equilibrium in

inhomogeneous and anisotropic microstructures. We have analyzed the full mechanical fields (strain

and stress) and a particular attention has been paid to the numerical oscillation that may arise.

Firstly, we consider methods based on a single grid coming from the initial work [79]: Method (1)

is based on a continuum equilibrium equation in Fourier space and Method (2) is based on Finite

Difference Method for computing differential operators. These methods lead to significant numerical

oscillations whose amplitude increases with the elastic inhomogeneity. Then, we propose two new

numerical schemes built on staggered grids. In method (3) the equilibrium condition div ‡ = 0 is

discretized on the staggered grids. In case of isotropic elasticity (or simple symmetries aligned with

the grid), we obtain two independent conditions on the two different grids. In that situation, we

show that the numerical solution leads to accurate non oscillating mechanical fields. In the case of

an arbitrary symmetry, interpolations of quantities from one grid to the other are required. using the

most simple interpolation scheme using the nearest neighbor sites, method (3) has been implemented

and tested. We obtain non oscillating fields but in highly inhomogeneous and anisotropic cases, the

accuracy of the field may be moderate. Finally, we propose another method where discretization is

performed on the same staggered grids. In this approach, the space is divided into subvoxels and a

discrete elastic energy is written. Minimization of this discrete energy leads to a new scheme, formally

very similar to the one of the method (3). Using model configurations, we show that this scheme

leads to both non oscillating and accurate mechanical fields for any inhomogeneous anisotropic me-

dia such as quasi-porous material or hard precipitate in soft matrix. Method (1), (2) and (3) are

implemented with a fixed point algorithm and method (4) with a direct solver. To conclude, this

new scheme is very promising for new issues, for example for dwell fatigue with crack propagation in

complex 3D microstructures.
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Plasticity of crystalline solids is mainly due to the movement dislocations. However, even today,

conventional plasticity theories use mesoscopic variables and evolution equations that do not involve

dislocations. This strongly limits the validity range of these theories. In this work, we have followed

the route opened by I. Groma in order to derive a physically based plasticity model using dislocation

densities. This approach, consists in explicitly performing the coarse graining procedure of the kinetics

of discrete dislocations.

In a simple 2D geometry of parallel edge dislocations, this approach leads, at mesoscale, to

transport equations of dislocation densities in which all ingredients can be related to the underlying

physics of individual dislocations.

In the first chapter, we have clarified the mathematical procedure needed to coarse grain the

dislocation dynamics from the discrete to the continuum. We have in particular emphasized that the

coarse graining procedure requires a space and time convolution, supplemented by an average on a

statistical ensemble. The coarse graining procedure generates correlation-induced stresses · s
f and · s

b

that depend on the signe s of the dislocations and that have specific physical interpretations:

· s
f is a friction stress because it is anti-symmetric and always opposes the local stress · ;

· s
b is a backstress because it is invariant with respect to a change of sign of · and thus generates

a translation of the elastic domain.

We have also shown that the friction and back stresses · s
f and · s

b , which are sign dependent,

break the sign reversal symmetry present at the discrete scale: at mesoscale, dislocations of opposite

sign do not display opposite velocities.

We have also shown that the sign-independent component of · s
b , which is usually limited to a

term that depends on the gradient of the GND density, contains also a term that depends on the

gradient of the total density.

The second chapter has been devoted to the computation of the correlation induced stress terms

· s
f and · s

b using a dynamics of discrete parallel edge dislocations. Numerical difficulties arises from

the wide range of stresses generated by a dislocation as well as from their long-range character.

An efficient numerical scheme has been devised, tested and implemented. Correlation maps of the

dislocation positions have been extracted from these simulations, and these maps have them been

used to compute the correlation induced stress terms · s
f and · s

b .

We have observed a dependence of these terms to the size L of the coarse graining procedure.

Generally speaking, an L dependence may not be surprising because dislocation patterns are often

observed on characteristic sizes much larger than the average dislocation spacing. In the present

situation, where we have a single glide system with parallel glide dislocations, the L dependence

has been linked to the dynamical formation of short range dipole associated to the spatial and time

scales of the coarse-graining procedure. However, this L dependence remains to be more clarified

and quantitatively analyzed.
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Chapter 3 addresses the question of the numerical solution of the dislocation density kinetic

model. It is shown that the numerical implementation requires a well controlled scheme. We have

used a multigrain spatial discretization where fluxes are computed half ways from the grid points

on which dislocation densities are defined. Transport equations are solved using a scheme inspired

by Lax-Wendroff High Resolution scheme in order to remove the numerical diffusion observed in

more simple schemes. Finally, we have also shown that the numerical scheme used to solve Orowan

equation must be consistent with the one used for the transport equations of dislocation densities,

in particular to ensure that Kröner equation is always fulfilled.

We have then selected a simple dislocation density model in which a friction term and a backstress

have been derived from the coarse graining procedure. We first performed a linear stability analysis

of our model, both in a mean-field approximation and in a complete model that incorporates the

correlation-induced stresses (in the limit Ÿ π fl). In the mean field situation, we found that fluctua-

tions with wave vectors parallel or perpendicular to the glide direction are marginally stable. When

correlation-induced stresses are taken into account, only fluctuations with q-vectors perpendicular to

the glide direction are marginally stable.

Finally, we have presented a preliminary numerical simulation of the model. We observed that

the simulated microstructures do not follow the predictions of the stability analysis. Interestingly,

when correlation-induced stresses are taken into account, we found that a pattern consisting of alter-

nating positive and negative dislocation walls perpendicular to the glide direction emerges, whereas

no heterogeneities show up in the mean field version of the model.

The fourth chapter proposes a new FFT-based scheme for numerically solving mechanical equi-

librium in an heterogeneous material. This scheme used a multigrain spatial discretization (staggered

grids) and leads to the minimization of a well defined discrete elastic energy. The results show that

the new scheme is the only one to provide, in all test configurations, accurate and non oscillatory

mechanical fields even in the case if very inhomogeneous and anisotropic elasticity.

The accuracy of the new scheme is tested on model configurations and the results are compared

to the one obtained with elastic solvers from the literature. This scheme uses a multigrain spatial

discretization (staggered grids) and is based on the minimization of a discrete elastic energy.

The accuracy of the new scheme is tested on model configurations and the results are compared to

the ones obtained with other FFT-based solvers from the literature.

The results show that the new scheme is the only one to provide, for all considered configurations,

accurate and non oscillatory mechanical fields even in the case of very inhomogeneous and anisotropic

elasticity. In addition, this scheme has the advantage ti make and well defined assumptions for the

elastic behavior of interfaces.

Several perspectives can be put forward for this work.

First, the new FFT scheme proposed in this work to solve the mechanical equilibrium could be

compared to the recent approach proposed by [102] based on a rotated staggered grid. Preliminary

investigation using isotropic elasticty have shown that the scheme proposed by W. Willot still leads

to slightly oscillated field as opposed to the new scheme [93].

Second, in the case of high elastic inhomogeneity, the convergence of the scheme could be improved

for example using the accelerated scheme proposed in [28], or going to more advanced approaches

[76]. The efficiency of the algorithm could also be improved using a Fixed Point Method on the dis-
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placement field variables, as for example in [10]. This will save computer memory but also computer

time as less FFT will be necessary for each iteration.

The formalism of a physical crystal plasticity model developed in this thesis is a promising way

but stays currently far from its accomplishment. A realistic 3D case involves much more physics,

such as curved dislocation lines, climbing, cross-slip, etc. not considered for the moment. The overall

building of such a 3D model should be performed with the two same stages as our simplified 2D case:

firstly, a mathematical coarse-graining procedure (in the spirit of the one developed in chapter 1)

and secondly, the estimation the correlation-induced local terms that inevitably will emerge (in the

spirit of chapter 2). But each stage will be of course necessarily adapted to the more complex 3D

situation. We attempt here to foresee the obstacles of each stage.

Here, we propose a reflexion for the first stage. In a 3D space, dislocations are curved, as il-

lustrated in figure I.1. Consequently, the coarse-graining formalism needs to incorporate this curved

aspect. Some research teams propose already different ways for the development of a curved dislo-

cation formulation [58, 92, 109, 110, 59, 103]. Here, we suggest some important points for these

developments. In an infinite single crystal, a dislocation is necessarily produced by a Frank-Read

source. The left hand side of figure 4.9 illustrates this mechanism (1-1). Two defects fix locally the

1 1

2

Figure 4.9: On the left: Illustration of a perfect Frank-Read source inside a shear load simulation,
after [29]. On the right: Illustration inside the plane of a curved dislocation of its movement through
a forest of dislocations, after [34].

dislocation which will turn around when a shear stress is applied. That leads to a loop, illustrated by

the symbol (2). Afterward, this loop will meet others dislocations (forest mechanism), illustrated by

the right hand side of figure 4.9. At this moment, the initial perfect loop (2) tends to a loop which,

locally, display ondulations. If the forest obstacle may be considered as randomly distributed, we

could consider that the characteristic length scale of these ondulations is approximately time inde-

pendent. In fact, the curvature of a dislocation carries two distinctive physics which should emerge

differently at the mesoscopic scale. The overall curvature (or average curvature) should represent

an increase of the dislocation density. And then, the small additional deviations (the local ondula-

tions) should act only on a 3D friction term equivalent to our · s
f . In other words, some relevant

assumptions could be performed after splitting the curvature in two parts, an average curvature and
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its complementary fluctuations.

The numerical treatment of a 3D dislocation density model should be quite similar to the 2D case

(see chapter 3).

Here, we propose a reflexion on the second stage which would be devoted to the estimation of

the driving force of the 3D model. The statistical procedure performed in 2D in chapter 2 is difficult

and needs very strong assumptions such as one slip system, edge dislocation, Ÿ π fl, etc. In the

general 3D case, such statistics will appear considerably more complex as well as they will require

exorbitant simulation costs. Moreover, the correlation terms will have a high number of dependencies.

For example, the friction term · s
f in the simple case of two slip-systems of edge dislocations gives

three integrals of correlation maps and each integral will have five dependencies. Consequently, the

investigations will be on 15 dependencies. Such studies, based on a systematic statistical method

could be unattainable (without mentioning the numerical aspect). We suggest that a direct study of

the strain rate (3.7), linked to the driving force, could be a good complementary way to intuit the

relevant ingredients of this driving force, more precisely, the velocity field for each slip system. First

hand, this study could be performed on 3D DDD simulations including more physics of the plasticity

such as junctions, cross-slip, etc. Second hand, the support of some specific experimental results,

exhibiting the microscopic behavior, could be a good test to confirm the intuited driving force. For

example, figure 4.10 illustrates the the tensile tests of monocrystals of copper which shows the strong

dependence of the lattice orientation on the plastic strain.

Figure 4.10: Load-elongation curves of copper single crystals with various multiple-glide orientations
at 22 ¶C. After [95].



Appendix A

Fourier Transform

Let f(r̨) be a function defined in an orthorhombic box with periodic boundary conditions. The

Fourier transform is defined as
‚f(q̨) =

1

V

⁄

V
f(r̨)e≠iq̨·r̨dr̨ (A.1)

where V is the volume of the box.

Due to the choice of periodic boundary conditions, the wave vectors q̨ are discrete:

q̨ = 2fi

3
–1

L1
,

–2

L2
,

–3

L3

4
(A.2)

where –i are signed integers and where Li are the box dimensions.

The backward Fourier Transform is

f(r̨) =
ÿ

q̨

‚f(q̨)eiq̨·r̨. (A.3)

If we are interested in continuous functions whose spatial variations are on a distance larger than the

characteristic length d, the Fourier space can be limited to the first Brillouin zone ‚B0 defined as the

set of vectors q̨ where –i are integers such that ≠Ni/2 < –i Æ Ni/2 where Ni = Li/d.

Then f(r̨) is fully characterized by these N1N2N3 Fourier components.

Alternatively f (̨(r) can be characterized by its value on a regular grid B0 defined as the set of vectors

r̨ = (u1, u2, u3)d+ r̨0 where r̨0 is an arbitrary shift vector and ui are integers such that 0 Æ ui < Ni.

Introducing the discrete field fd(u1, u2, u3) = f((u1, u2, u3)d+ r̨0) and its discrete Fourier Transform

‚fd(–1, –2, –3) =
1

N

ÿ
fd(u1, u2, u3)e

≠2ifi

1
u1–1

N1
+

u2–2
N2

+
u3–3

N3

2
(A.4)

we have
‚f(q̨) = ‚fd(–Õ

1, –Õ
2, –Õ

3)eiq̨·r̨0 (A.5)

where –Õ
i = –i + Ni mod.(Ni). This expression is only the usual property that a global shift in real

space is equivalent to a multiplication by a phase term in Fourier space.
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Appendix B

Deformation and displacements with staggered

grids

In the simulations with periodic boundary conditions, the total deformation tensor ‘(R̨) is decom-

posed in a uniform macroscopic strain È‘ijÍ and an heterogeneous part ”‘(R̨), whose spatial average

is zero. We then introduce local displacement ų(R̨) which are related to the heterogeneous strain

by the usual relation:

”‘ij =
1

2

A
ˆui

ˆxj
+

ˆuj

ˆxi

B
. (B.1)

Using the staggered grids, the displacement and deformation fields are defined on different grids as

shown in figure 4.1. It leads to the following relationships:

Y
__]
__[

‘ii(R̨) = È‘iiÍ + 1
d

Ë
ui(R̨) ≠ ui(R̨ ≠ dęi)

È

‘ij(R̨) = È‘ijÍ + 1
2d

Ë
ui(R̨ + dęj) ≠ ui(R̨) + uj(R̨ + dęi) ≠ uj(R̨)

È
with i ”= j

(B.2)

where (ę1, ę2, ę3) are the unit vectors of the cubic grid, R̨ is a vector of the grid and d is the grid

size. Expressions (B.2) can be rewritten in the following convenient form:

‘ij(R̨) = È‘ijÍ +
1

2d

C
ui(R̨ +

ęj ≠ ęi

2
d ≠ P̨ij) ≠ ui(R̨ +

ęj ≠ ęi

2
d ≠ P̨ij ≠ dęj)

+ uj(R̨ +
ęi ≠ ęj

2
d ≠ P̨ij) ≠ uj(R̨ +

ęi ≠ ęj

2
d ≠ P̨ij ≠ dęi)

D
(B.3)

where P̨ij = ≠d
2(1 ≠ ”i,j)(ęi + ęj) and ”ij stands for the Kronecker symbol equal to 1 if i = j and

0 otherwise.

Going to Fourier space, equation (B.3) becomes

Y
___]
___[

‚‘ij(q̨) = i

2e≠iq̨·P̨ij

5
q

(3)
j e≠ iqid

2 ‚ui(q̨) + q
(3)
i e≠ iqj d

2 ‚uj(q̨)

6
for q̨ ”= 0

‚‘ij(0) = È‘ijÍ
(B.4)

where

q
(3)
j =

sin(qjd/2)

d/2
. (B.5)
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Appendix C

Construction of the fixed point scheme of

Method (3) for mechanical equilibrium

This appendix builds the terms used for method (3). We start from equation (4.13) which is

rewriten as follow:

D
(i)
j [C0

ijkl‘kl]R̨+ d
2

ęi
= D

(i)
j [·ij]

R̨+ d
2

ęi
. (C.1)

We precise the grid position of each component of the divergence by a subscript below the central

difference. R̨ describes the main discrete grid (circle-grid) and (ę1, ę2, ę3) are the unit vectors of our

basis as detailed in figure 4.1. The staggered grid define the diagonal and non diagonal components

of the rank-2 symmetric tensor Aij (e.g. ‘, ‘ú, · , . . . ) on different grid.

Then, when considering a general elastic stiffness tensor Cijkl, Bij =
q

kl CijklAkl is the sum of

terms that are not known on the same grid.

In order to express all components of Bij on the same grids as the other symmetric tensors, a local

interpolation is required.

In this method, we use the most simple interpolation based on the use of the four nearest neighbors.

Because the position of these four points depends on the components ij and kl of the tensors, we

introduce the interpolation operator: I(ij,kl) whose action on a given discrete field f is gathered in

the following table

I(ij,kl)(f) =

ij\kl (i, i) (2, 3) (1, 3) (1, 2)

(i, i)

(2, 3)

(1, 3)

(1, 2)

Q
cccca

f L01̄1̄ L1̄01̄ L1̄1̄0

L011 f L1̄10 L1̄01

L101 L11̄0 f L01̄1

L110 L101̄ L011̄ f

R
ddddb

(C.2)

The interpolation scheme is

Ls1s20(f) =

f(–, —, “) + f(– + s1, —, “) + f(–, — + s2, “) + f(– + s1, — + s2, “)

4
. (C.3)

where (–, —, “) are the grid indexes and si = ±1. The interpolation is similar by index rotation for

L0s2s3
and Ls10s3

.

Using the above interpolation scheme, the polarisation term in equation (C.1) becomes

·ij = I(ij,kl)(C0
ijkl‘

ú
kl ≠ ”Cijkl (‘kl ≠ ‘ú

kl)) (C.4)

where the summation over indices in subscript position is implicit.
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In the same way, the left hand side of equation (C.1) has to be interpolated and equation (C.1)

becomes

D
(i)
j [C0

ijklI
(ij,kl)(‘kl)]R̨+ d

2
ęi

= D
(i)
j [·ij]

R̨+ d
2

ęi
. (C.5)

As usual, this equation is solved in Fourier space. The righthand side of equation (C.5) is

R =
1

d

S
U·ii(i + 1) ≠ ·ii(i) +

ÿ

j ”=i

(·ij(j) ≠ ·ij(j ≠ 1))

T
V (C.6)

where we have used the notations ·ij = ·ij(R̨) and ·ij(k ± 1) = ·ij(R̨ ± ęk). In Fourier space we

obtain

‚R =
2i

d

S
Ue

iqid

2 sin

3
qid

2

4
‚·ii +

ÿ

j ”=i

e≠ iqj d

2 sin

3
qjd

2

4
‚·ij

T
V . (C.7)

Using the Fourier vectors q̨(3) and the vector P̨ij defined in B, we get the close form

‚R = ie
iqid

2

ÿ

j

q
(3)
j eiq̨·P̨ij ‚·ij . (C.8)

Similarly, the Fourier transform of the lefthand side of equation (C.5) is

‚L = ie
iqid

2

ÿ

j

q
(3)
j eiq̨·P̨ij

ÿ

k,l

C0
ijkl

‚I(ij,kl)‚‘kl. (C.9)

In Fourier space, the interpolation operator I(ij,kl) is only a multiplication per a complex number
‚I(ij,kl)(q̨) defined by the following table

‚I(ij,kl) =

ij\kl (i, i) (2, 3) (1, 3) (1, 2)

(i, i)

(2, 3)

(1, 3)

(1, 2)

Q
cccca

1 ‚L01̄1̄
‚L1̄01̄

‚L1̄1̄0
‚L011 1 ‚L1̄10

‚L1̄01
‚L101

‚L11̄0 1 ‚L01̄1
‚L110

‚L101̄
‚L011̄ 1

R
ddddb

(C.10)

where

‚Ls1s20 =
1 + eis1q1d + eis2q2d + eis1q1deis2q2d

4
, (C.11)

with si = ±1. Similar definitions hold for ‚Ls10s3
and ‚L0s2s3

.

The mechanical equilibrium is therefore

q
(3)
j eiq̨·P̨ij C0

ijkl
‚I(ij,kl)‚‘kl = q

(3)
j eiq̨·P̨ij ‚·ij . (C.12)

Using equation (B.4) linking the strain to the displacements in equation (C.12) and using the

symmetries of C0
ijkl and ‚I(ij,kl) we obtain, for all l,

G
(3)
il

≠1
e≠ iqld

2 ‚ul = ≠iq
(3)
j eiq̨·P̨ij ‚·ij . (C.13)
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where the Green tensor is defined for all q(3) ”= 0 by

G
(3)
il

≠1
(q̨) = eiq̨·P̨ij e≠iq̨·P̨kl ‚I(ij,kl)C0

ijklq
(3)
j q

(3)
k (C.14)

which is Hermitian.

Introducing the displacement (C.13) in equation (B.4) we get

‚‘ij(q̨) = ≠Γ
(3)
ijkl(q̨) ‚·kl(q̨) (C.15)

where the strain Green tensor is

Γ
(3)
ijkl(q̨) =

eiq̨·P̨ij e≠iq̨·P̨kl

4

C3
G

(3)
ik q

(3)
j + G

(3)
jk q

(3)
i

4
· q

(3)
l +

3
G

(3)
il q

(3)
j + G

(3)
jl q

(3)
i

4
· q

(3)
k

D
. (C.16)

In the above expression, we have enforced the k ¡ l symmetry Γijkl = Γijlk = Γjikl in order to

treat Γ in Voigt notation.





Appendix D

Construction of Method (4) with variational

approach for mechanical equilibrium

In this method, we assume that the strain component fields are defined on staggered grids (see

figure 4.1) and are related to the local displacement field ų as detailed in B. We assume that

all physical quantities are locally constant over a volume equal to a voxel of size d (see figure 4.2).

However, due to the shifts between the staggered grids, it only implies that all quantities are constant

inside subvoxels of size d/2.

Therefore, each voxel centered on a lattice point R̨ of the main (’circle’) grid is divided into 2D

subvoxels where D stands for the space dimension.

To define a subvoxel, we must supplement the grid vector R̨ with an additional quantiy s̨ to select

one of the 2D subvoxels. A convenient choice is to choose s̨ such as R̨ + s̨ is the center of the

subvoxel. All coordinates of s̨ are equal to ±d
4 . The elastic energy can then be written

F el =

3
d

2

4D ÿ

R̨

ÿ

s̨

ÿ

ijkl

1

2
Cijkl(R̨, s̨)‘̃el

ij(R̨, s̨)‘̃el
kl(R̨, s̨) (D.1)

where Cijkl(R̨, s̨) and ‘el
ij(R̨, s̨) are respectively the elastic tensor and the elastic strain of the (R̨, s̨)

subvoxel. The sign tilde means the averaged field inside the subvoxel.

Assuming that the homogeneous strain È‘Í is imposed, elastic equilibrium is reached when the deriva-

tive of F el with respect to the local displacements ų is zero. 1

Computing these derivatives, we have

ˆF el

ˆui(R̨)
=

3
d

2

4D ÿ

R̨Õ

ÿ

s̨

ÿ

kl

2 ‡̃kl(R̨
Õ, s̨)

ˆ‘̃kl(R̨
Õ, s̨)

ˆui(R̨)
(D.2)

where ‡̃kl(R̨
Õ, s̨) =

q
mn C̃klmn(R̨Õ, s̨)‘̃el

mn(R̨Õ, s̨) is the local stress in the subvoxel (R̨Õ, s̨).

The strain in a subvoxel ‘̃el
mn(R̨Õ, s̨) is related to the strain ‘el

mn(R̨Õ) defined on the staggered grid

(figure 4.1) by

‘̃kl(R̨
Õ, s̨) = ‘kl(R̨

Õ ≠ ◊̨kl(s̨)) (D.3)

where ◊̨kl(s̨) is the shift vector defined by

Y
_]
_[

◊̨kl(s̨) = d
2(ęk + ęl) ≠ 2 [(s̨ · ęk) · ęk + (s̨ · ęl) · ęl] for k ”= l

◊̨kk(s̨) = 0

(D.4)

1. The extension to a condition of imposed average stress is straightforward. See e.g. [63].
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Using equation (B.3), we get

ˆ‘̃kl(R̨
Õ, s̨)

ˆui(R̨)
=

1

2d

C
”k,i

3
”

R̨Õ=R̨+◊̨il(s̨)≠ ęl≠ęi
2

d+P̨il
≠ ”

R̨Õ=R̨+◊̨il(s̨)≠ ęl≠ęi
2

d+P̨il+dęl

4

+ ”l,i

3
”

R̨Õ=R̨+◊̨ki(s̨)≠ ęk≠ęi
2

d+P̨ki
≠ ”

R̨Õ=R̨+◊̨ki(s̨)≠ ęk≠ęi
2

d+P̨ki+dęk

4 D
. (D.5)

This expression is then introduced in equation (D.2) leading to the following expression

1

d3

ˆF el

ˆui(R̨)
= ≠2

d

ÿ

l

5
‡M

il

3
R̨ + P̨il +

ęi + ęl

2
d

4
≠ ‡M

il

3
R̨ + P̨il +

ęi ≠ ęl

2
d

46
(D.6)

where we have introduced the quantity

‡M
il (R̨) =

1

2D

ÿ

s

‡̃il(R̨ + ◊̨il(s̨), s̨). (D.7)

‡M
ii (R̨) is only the average stress over the voxel at point R̨.

‡M
ij (R̨) with i ”= j is the average stress over all subvoxels around the point R̨ + d

2(ęi + ęj).

Note that in equation (D.6), a divergence of this average stress tensor can be recognized.

As in methods (1), (2) and (3), the stress ‡M
il (R̨) is then decomposed into an elastically homogeneous

term and a polarization ·M
il (R̨):

‡M
il (R̨) =

1

2D

ÿ

s̨

ÿ

mn

C0
ilmn‘mn(R̨ + ◊̨il(s̨), s̨) + ·M

il (R̨) (D.8)

where the ·M
il (R̨) is related to the polarization of the subvoxels ·̃il(R̨, s̨) by

·M
il (R̨) =

1

2D

ÿ

s̨

·̃il(R̨ + ◊̨il(s̨), s̨) (D.9)

and, as in equation (4.5),

·̃ij(R̨, s̨) = ”C̃ijkl(R̨, s̨)‘̃kl(R̨, s̨) ≠ C̃ijkl(R̨, s̨)‘̃ú
kl(R̨, s̨). (D.10)

Expressing equation (D.6) in Fourier space and using equation (D.8) we get

I
ˆF el

ˆui(R̨)

J

q̨

= ≠2dDe
iqid

2

C
i

ÿ

n

G
(4)
in

≠1
(q̨)e

≠iqnd
2 ‚un(q̨) +

ÿ

l

q
(3)
l eiq̨·P̨il ‚·M

il (q̨)

D
(D.11)

where the displacement Green tensor is

G
(4)
in

≠1
=

ÿ

lm

q
(3)
l q(3)

m eiq̨·P̨ile≠iq̨·P̨mn ‚J (il,mn)C0
ilmn (D.12)

and
‚J (il,mn) =

1

2D

ÿ

s̨

eiq̨·(◊̨il(s̨)≠◊̨mn(s̨)). (D.13)
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The equilibrium displacement field is then analytically obtained in Fourier space (q̨ ”= 0)

e≠ iqnd
2 ‚un(q̨) = ≠i

ÿ

il

G
(4)
ni (q̨)q

(3)
l eiq̨·P̨il ‚·M

il (q̨). (D.14)

Finally, inserting equation (D.14) in equation (B.4) we obtain

‚‘ij(q̨) = ≠Γijkl‚·M
kl (q̨) (D.15)

where

Γijkl = ≠1

4
e≠iq̨·P̨ij eiq̨·P̨kl

1
q

(3)
j q

(3)
l G

(4)
ik + q

(3)
j q

(3)
k G

(4)
il + q

(3)
l q

(3)
i G

(4)
jk + q

(3)
k q

(3)
i G

(4)
jl

2
. (D.16)





Appendix E

Second derivatives of elastic energy for direct

solving of Method (4)

The second derivatives of the elastic energy (D.1) with respect to the displacements are computed

in this appendix. We introduce the dynamical matrix

Dij(R̨, R̨Õ) =
1

dD≠2

ˆ2F el

ˆui(R̨)ˆuj(R̨Õ)
. (E.1)

As shown in C, the first derivatives are

ˆF el

ˆui(R̨)
= ≠2dD 1

d

ÿ

l

5
‡M

il

3
R̨ +

ęi + ęl

2
d + P̨il

4
≠ ‡M

il

3
R̨ +

ęi ≠ ęl

2
d + P̨il

46
(E.2)

where ‡M (R̨) is defined by equation (D.7). The dynamical matrix is obtained by derivating this

expression with respect to uj(R̨Õ). First, the derivative of the stress is:

ˆ‡M
il (R̨ÕÕ)

ˆuj(R̨Õ)
=

1

2D

ÿ

s̨

ÿ

mn

C̃ijmn(R̨ÕÕ + ◊̨il(s̨), s̨)
ˆ‘̃mn(R̨ÕÕ + ◊̨il(s̨), s̨)

ˆuj(R̨Õ)
. (E.3)

Using equation (D.5) we get

ˆ‡M
il (R̨ÕÕ)

ˆuj(R̨Õ)
=

1

2D

ÿ

n

ÿ

s̨

Ciljn(R̨ÕÕ + ◊̨il(s̨), s̨)
1

d

C
”

R̨ÕÕ≠R̨Õ=◊̨jn+P̨nj≠◊̨il+
ęj ≠ęn

2
d

≠ ”
R̨ÕÕ≠R̨Õ=◊̨jn+P̨nj≠◊̨il+

ęj +ęn

2
d

D
. (E.4)

Inserting equation (E.4) in equation (E.2) we obtain

Dij(R̨, R̨Õ) = 2
1

2D

ÿ

s̨

ÿ

ln

C

C̃iljn(R̨Õ + Į̈jn, s̨)
1
”

R̨≠R̨Õ=Į̈jn≠Į̈il
≠ ”

R̨≠R̨Õ=Į̈jn≠Į̈il+dęl

2

+ C̃iljn(R̨Õ + Į̈jn ≠ dęn, s̨)
1
”

R̨≠R̨Õ=Į̈jn≠Į̈il≠dęn+dęl
≠ ”

R̨≠R̨Õ=Į̈jn≠Į̈il≠dęn

2 D
(E.5)
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where Į̈ij(s̨) = ◊̨ij(s̨) + P̨ij +
ęi+ęj

2 d. More explicitly, we have

Į̈ij(s̨) =

Y
__]
__[

dęi if i = j

1
d
2 ≠ 2si

2
ęi +

1
d
2 ≠ 2sj

2
ęj if i ”= j

(E.6)

where si is the component of s̨ along ęi.



Appendix F

Systematic comparison of all methods

This appendix proposes systematic comparisons of numerical results for different parameters in

case of a square precipitate in a matrix. This precipitate is aligned to the grid of a periodic system

and its width is equal to a quater of the period L. The boundary conditions are held by the average

strain È‘Í. We compare on each line the influence of the discretization on the maps ‘xx, ‘xy and ‡xx,

‡xy in GPa. These comparisons are performed for each method, for different elastic inhomogeneities

and in case of isotropy and anisotropy. The elastic inhomogeneity is expressed by the contrast ratio

r defined by Cp = r · Cm where Cp and Cm are respectively the elastic tensor of the precipitate

and the matrix. There is three distinctive cases, the soft matrix with r = 103, the hard matrix

with r = 10≠3 and the homogeneous media with r = 1. The two inhomogeneous cases are held at

È‘xxÍ = È‘yyÍ = 0.01. The homogeneous case owns a precipitate dilatation rather than an applied

strain in order to obtain an heterogeneous response. It is traduced by an eigenstrain ‘ú
xx =‘ú

yy =0.01

inside the precipitate and È‘Í = 0. For the isotropic case we take ⁄m = 100 GPa and µm = 50 GPa,

and for the anisotropic case we take

Cm =

Q
ccccccccca

133.8 76.2 90.0 0 0 26.9

76.2 133.8 90.0 0 0 ≠26.9

90.0 90.0 120.0 0 0 0

0 0 0 110.0 0 0

0 0 0 0 110.0 0

26.9 ≠26.9 0 0 0 82.4

R
dddddddddb

GPa (F.1)

which corresponds to a cubic symmetry turned by 18¶ with respect to our grid. We perform each

simulation with 4 different discretizations ordered in column, respectively: 16◊16, 64◊64, 256◊256

and 1024◊1024. Moreover, we precise the characteristic values of the error due to this discretization

for ‘xx above the columns: 162, 642 and 2562. The error is defined on the entire space by the

difference between the simulation and a perfect reference. For the three weakest discretizations,

we take the 10242 simulations as reference and average it on grids corresponding to the smaller

discretizations, respectively 162, 642 and 2562. Then, we propose three information:

- Min: the minimal value of this error in the entire map.

- Max: the maximal value of this error in the entire map.

- SD: the standard deviation of all values of this error.

Note that each equivalent simulation performed with the four methods, we impose the same color

scale. Moreover, this color scale is taken in order to illustrate both information: the global field and

the artefacts.
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F.1 Isotropic case

F.1.1 Homogeneous media

F.1.1.1 Method (1)

≠3.13e≠5 ≠ 3.54e≠5 ≠ 3.59e≠5 ≈ Min

3.13e≠5 3.54e≠5 3.59e≠5 ≈ Max

9.87e≠6 3.49e≠6 8.96e≠7 ≈ SD

‘xx

9.20e−3

7.52e−3

5.84e−3

4.17e−3

2.49e−3

8.11e−4

−8.67e−4

−2.54e−3

−4.22e−3

−5.90e−3

‘xy

1.60e−2

1.24e−2

8.89e−3

5.33e−3

1.78e−3

−1.78e−3

−5.33e−3

−8.89e−3

−1.24e−2

−1.60e−2

‡xx

4.07e−1

2.39e−1

7.03e−2

−9.80e−2

−2.66e−1

−4.35e−1

−6.03e−1

−7.71e−1

−9.40e−1

−1.11e0

‡xy

1.62e0

1.26e0

9.01e−1

5.41e−1

1.80e−1

−1.80e−1

−5.41e−1

−9.01e−1

−1.26e0

−1.62e0

162 642 2562 10242
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F.1.1.2 Method (2)

≠1.13e≠3 ≠ 1.17e≠3 ≠ 1.11e≠3 ≈ Min

1.30e≠3 1.17e≠3 1.11e≠3 ≈ Max

4.23e≠4 1.53e≠4 4.70e≠5 ≈ SD

‘xx

9.20e−3

7.52e−3

5.84e−3

4.17e−3

2.49e−3

8.11e−4

−8.67e−4

−2.54e−3

−4.22e−3

−5.90e−3

‘xy

1.60e−2

1.24e−2

8.89e−3

5.33e−3

1.78e−3

−1.78e−3

−5.33e−3

−8.89e−3

−1.24e−2

−1.60e−2

‡xx

4.07e−1

2.39e−1

7.03e−2

−9.80e−2

−2.66e−1

−4.35e−1

−6.03e−1

−7.71e−1

−9.40e−1

−1.11e0

‡xy

1.62e0

1.26e0

9.01e−1

5.41e−1

1.80e−1

−1.80e−1

−5.41e−1

−9.01e−1

−1.26e0

−1.62e0

162 642 2562 10242
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F.1.1.3 Method (3)

≠1.29e≠4 ≠ 8.40e≠5 ≠ 7.98e≠5 ≈ Min

1.29e≠4 8.40e≠5 7.98e≠5 ≈ Max

3.69e≠5 8.42e≠6 2.01e≠6 ≈ SD

‘xx

9.20e−3

7.52e−3

5.84e−3

4.17e−3

2.49e−3

8.11e−4

−8.67e−4

−2.54e−3

−4.22e−3

−5.90e−3

‘xy

1.60e−2

1.24e−2

8.89e−3

5.33e−3

1.78e−3

−1.78e−3

−5.33e−3

−8.89e−3

−1.24e−2

−1.60e−2

‡xx

4.07e−1

2.39e−1

7.03e−2

−9.80e−2

−2.66e−1

−4.35e−1

−6.03e−1

−7.71e−1

−9.40e−1

−1.11e0

‡xy

1.62e0

1.26e0

9.01e−1

5.41e−1

1.80e−1

−1.80e−1

−5.41e−1

−9.01e−1

−1.26e0

−1.62e0

162 642 2562 10242
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F.1.1.4 Method (4)

≠1.29e≠4 ≠ 8.40e≠5 ≠ 7.98e≠5 ≈ Min

1.29e≠4 8.40e≠5 7.98e≠5 ≈ Max

3.69e≠5 8.42e≠6 2.01e≠6 ≈ SD

‘xx

9.20e−3

7.52e−3

5.84e−3

4.17e−3

2.49e−3

8.11e−4

−8.67e−4

−2.54e−3

−4.22e−3

−5.90e−3

‘xy

1.60e−2

1.24e−2

8.89e−3

5.33e−3

1.78e−3

−1.78e−3

−5.33e−3

−8.89e−3

−1.24e−2

−1.60e−2

‡xx

4.07e−1

2.39e−1

7.03e−2

−9.80e−2

−2.66e−1

−4.35e−1

−6.03e−1

−7.71e−1

−9.40e−1

−1.11e0

‡xy

1.62e0

1.26e0

9.01e−1

5.41e−1

1.80e−1

−1.80e−1

−5.41e−1

−9.01e−1

−1.26e0

−1.62e0

162 642 2562 10242
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F.1.2 Hard matrix

F.1.2.1 Method (1)

≠1.17e≠2 ≠ 7.37e≠2 ≠ 1.57e≠1 ≈ Min

1.65e≠2 7.38e≠2 1.15e≠1 ≈ Max

2.97e≠3 5.74e≠3 2.77e≠3 ≈ SD

‘xx

4.88e−1

4.16e−1

3.44e−1

2.71e−1

1.99e−1

1.27e−1

5.47e−2

−1.76e−2

−8.98e−2

−1.62e−1

‘xy

7.68e−1

5.97e−1

4.27e−1

2.56e−1

8.53e−2

−8.53e−2

−2.56e−1

−4.27e−1

−5.97e−1

−7.68e−1

‡xx

2.14e1

1.90e1

1.65e1

1.40e1

1.16e1

9.08e0

6.61e0

4.14e0

1.67e0

−7.99e−1

‡xy

1.24e1

9.66e0

6.90e0

4.14e0

1.38e0

−1.38e0

−4.14e0

−6.90e0

−9.66e0

−1.24e1

162 642 2562 10242



Systematic comparison of all methods 105

F.1.2.2 Method (2)

≠7.35e≠3 ≠ 5.84e≠2 ≠ 1.28e≠1 ≈ Min

6.54e≠3 3.99e≠2 9.01e≠2 ≈ Max

2.00e≠3 3.20e≠3 1.66e≠3 ≈ SD

‘xx

4.88e−1

4.16e−1

3.44e−1

2.71e−1

1.99e−1

1.27e−1

5.47e−2

−1.76e−2

−8.98e−2

−1.62e−1

‘xy

7.68e−1

5.97e−1

4.27e−1

2.56e−1

8.53e−2

−8.53e−2

−2.56e−1

−4.27e−1

−5.97e−1

−7.68e−1

‡xx

2.14e1

1.90e1

1.65e1

1.40e1

1.16e1

9.08e0

6.61e0

4.14e0

1.67e0

−7.99e−1

‡xy

7.68e−1

5.97e−1

4.27e−1

2.56e−1

8.53e−2

−8.53e−2

−2.56e−1

−4.27e−1

−5.97e−1

−7.68e−1

162 642 2562 10242
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F.1.2.3 Method (3)

≠2.45e≠2 ≠ 7.31e≠2 ≠ 1.32e≠1 ≈ Min

3.27e≠2 4.28e≠2 6.76e≠2 ≈ Max

5.52e≠3 3.08e≠3 1.34e≠3 ≈ SD

‘xx

4.88e−1

4.16e−1

3.44e−1

2.71e−1

1.99e−1

1.27e−1

5.47e−2

−1.76e−2

−8.98e−2

−1.62e−1

‘xy

7.68e−1

5.97e−1

4.27e−1

2.56e−1

8.53e−2

−8.53e−2

−2.56e−1

−4.27e−1

−5.97e−1

−7.68e−1

‡xx

2.14e1

1.90e1

1.65e1

1.40e1

1.16e1

9.08e0

6.61e0

4.14e0

1.67e0

−7.99e−1

‡xy

1.24e1

9.66e0

6.90e0

4.14e0

1.38e0

−1.38e0

−4.14e0

−6.90e0

−9.66e0

−1.24e1
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F.1.2.4 Method (4)

≠2.55e≠2 ≠ 7.53e≠2 ≠ 1.36e≠1 ≈ Min

3.19e≠2 4.14e≠2 6.50e≠2 ≈ Max

5.50e≠3 3.11e≠3 1.36e≠3 ≈ SD

‘xx

4.88e−1

4.16e−1

3.44e−1

2.71e−1

1.99e−1

1.27e−1

5.47e−2

−1.76e−2

−8.98e−2

−1.62e−1

‘xy

7.68e−1

5.97e−1

4.27e−1

2.56e−1

8.53e−2

−8.53e−2

−2.56e−1

−4.27e−1

−5.97e−1

−7.68e−1

‡xx

2.14e1

1.90e1

1.65e1

1.40e1

1.16e1

9.08e0

6.61e0

4.14e0

1.67e0

−7.99e−1

‡xy

1.24e1

9.66e0

6.90e0

4.14e0

1.38e0

−1.38e0

−4.14e0

−6.90e0

−9.66e0

−1.24e1
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F.1.3 Soft matrix

F.1.3.1 Method (1)

≠1.51e≠3 ≠ 1.55e≠3 ≠ 1.66e≠3 ≈ Min

2.25e≠3 2.75e≠3 2.86e≠3 ≈ Max

4.94e≠4 1.46e≠4 4.07e≠5 ≈ SD

‘xx

3.12e−2

2.77e−2

2.42e−2

2.07e−2

1.72e−2

1.37e−2

1.02e−2

6.72e−3

3.22e−3

−2.80e−4

‘xy

3.74e−2

2.91e−2

2.08e−2

1.25e−2

4.16e−3

−4.16e−3

−1.25e−2

−2.08e−2

−2.91e−2

−3.74e−2

‡xx

1.59e1

1.36e1

1.13e1

8.98e0

6.67e0

4.37e0

2.06e0

−2.47e−1

−2.55e0

−4.86e0

‡xy

8.27e0

6.43e0

4.59e0

2.76e0

9.19e−1

−9.19e−1

−2.76e0

−4.59e0

−6.43e0

−8.27e0
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F.1.3.2 Method (2)

≠2.18e≠3 ≠ 4.20e≠3 ≠ 6.74e≠3 ≈ Min

3.14e≠3 2.77e≠3 3.90e≠3 ≈ Max

7.40e≠4 2.77e≠4 1.00e≠4 ≈ SD

‘xx

3.12e−2

2.77e−2

2.42e−2

2.07e−2

1.72e−2

1.37e−2

1.02e−2

6.72e−3

3.22e−3

−2.80e−4

‘xy

3.74e−2

2.91e−2

2.08e−2

1.25e−2

4.16e−3

−4.16e−3

−1.25e−2

−2.08e−2

−2.91e−2

−3.74e−2

‡xx

1.59e1

1.36e1

1.13e1

8.98e0

6.67e0

4.37e0

2.06e0

−2.47e−1

−2.55e0

−4.86e0

‡xy

8.27e0

6.43e0

4.59e0

2.76e0

9.19e−1

−9.19e−1

−2.76e0

−4.59e0

−6.43e0

−8.27e0
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F.1.3.3 Method (3)

≠2.50e≠3 ≠ 3.25e≠3 ≠ 3.76e≠3 ≈ Min

4.29e≠3 3.71e≠3 3.51e≠3 ≈ Max

9.15e≠4 2.81e≠4 7.75e≠5 ≈ SD

‘xx

3.12e−2

2.77e−2

2.42e−2

2.07e−2

1.72e−2

1.37e−2

1.02e−2

6.72e−3

3.22e−3

−2.80e−4

‘xy

3.74e−2

2.91e−2

2.08e−2

1.25e−2

4.16e−3

−4.16e−3

−1.25e−2

−2.08e−2

−2.91e−2

−3.74e−2

‡xx

1.59e1

1.36e1

1.13e1

8.98e0

6.67e0

4.37e0

2.06e0

−2.47e−1

−2.55e0

−4.86e0

‡xy

8.27e0

6.43e0

4.59e0

2.76e0

9.19e−1

−9.19e−1

−2.76e0

−4.59e0

−6.43e0

−8.27e0
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F.1.3.4 Method (4)

≠2.55e≠3 ≠ 3.32e≠3 ≠ 3.84e≠3 ≈ Min

4.44e≠3 3.91e≠3 3.77e≠3 ≈ Max

9.34e≠4 2.86e≠4 7.92e≠5 ≈ SD

‘xx

3.12e−2

2.77e−2

2.42e−2

2.07e−2

1.72e−2

1.37e−2

1.02e−2

6.72e−3

3.22e−3

−2.80e−4

‘xy

3.74e−2

2.91e−2

2.08e−2

1.25e−2

4.16e−3

−4.16e−3

−1.25e−2

−2.08e−2

−2.91e−2

−3.74e−2

‡xx

1.59e1

1.36e1

1.13e1

8.98e0

6.67e0

4.37e0

2.06e0

−2.47e−1

−2.55e0

−4.86e0

‡xy

8.27e0

6.43e0

4.59e0

2.76e0

9.19e−1

−9.19e−1

−2.76e0

−4.59e0

−6.43e0

−8.27e0
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F.2 Anisotropic case

F.2.1 Homogeneous media

F.2.1.1 Method (1)

≠3.63e≠4 ≠ 2.55e≠4 ≠ 2.42e≠4 ≈ Min

3.90e≠4 2.71e≠4 2.46e≠4 ≈ Max

9.23e≠5 2.31e≠5 5.62e≠6 ≈ SD

‘xx

1.16e−2

9.37e−3

7.13e−3

4.90e−3

2.67e−3

4.33e−4

−1.80e−3

−4.03e−3

−6.27e−3

−8.50e−3

‘xy

1.38e−2

1.07e−2

7.67e−3

4.60e−3

1.53e−3

−1.53e−3

−4.60e−3

−7.67e−3

−1.07e−2

−1.38e−2

‡xx

4.43e−1

3.00e−1

1.57e−1

1.40e−2

−1.29e−1

−2.72e−1

−4.15e−1

−5.58e−1

−7.01e−1

−8.44e−1

‡xy

8.67e−1

6.74e−1

4.82e−1

2.89e−1

9.63e−2

−9.63e−2

−2.89e−1

−4.82e−1

−6.74e−1

−8.67e−1
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F.2.1.2 Method (2)

≠2.21e≠3 ≠ 1.62e≠3 ≠ 1.61e≠3 ≈ Min

2.04e≠3 1.58e≠3 1.60e≠3 ≈ Max

5.94e≠4 1.97e≠4 5.94e≠5 ≈ SD

‘xx

1.16e−2

9.37e−3

7.13e−3

4.90e−3

2.67e−3

4.33e−4

−1.80e−3

−4.03e−3

−6.27e−3

−8.50e−3

‘xy

1.38e−2

1.07e−2

7.67e−3

4.60e−3

1.53e−3

−1.53e−3

−4.60e−3

−7.67e−3

−1.07e−2

−1.38e−2

‡xx

4.43e−1

3.00e−1

1.57e−1

1.40e−2

−1.29e−1

−2.72e−1

−4.15e−1

−5.58e−1

−7.01e−1

−8.44e−1

‡xy

8.67e−1

6.74e−1

4.82e−1

2.89e−1

9.63e−2

−9.63e−2

−2.89e−1

−4.82e−1

−6.74e−1

−8.67e−1
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F.2.1.3 Method (3)

≠3.85e≠4 ≠ 3.43e≠4 ≠ 2.85e≠4 ≈ Min

3.96e≠4 3.45e≠4 2.85e≠4 ≈ Max

8.96e≠5 3.60e≠5 1.35e≠5 ≈ SD

‘xx

1.16e−2

9.37e−3

7.13e−3

4.90e−3

2.67e−3

4.33e−4

−1.80e−3

−4.03e−3

−6.27e−3

−8.50e−3

‘xy

1.38e−2

1.07e−2

7.67e−3

4.60e−3

1.53e−3

−1.53e−3

−4.60e−3

−7.67e−3

−1.07e−2

−1.38e−2

‡xx

4.43e−1

3.00e−1

1.57e−1

1.40e−2

−1.29e−1

−2.72e−1

−4.15e−1

−5.58e−1

−7.01e−1

−8.44e−1

‡xy

8.67e−1

6.74e−1

4.82e−1

2.89e−1

9.63e−2

−9.63e−2

−2.89e−1

−4.82e−1

−6.74e−1

−8.67e−1
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F.2.1.4 Method (4)

≠3.85e≠4 ≠ 3.43e≠4 ≠ 2.85e≠4 ≈ Min

3.96e≠4 3.45e≠4 2.85e≠4 ≈ Max

8.96e≠5 3.60e≠5 1.35e≠5 ≈ SD

‘xx

1.16e−2

9.37e−3

7.13e−3

4.90e−3

2.67e−3

4.33e−4

−1.80e−3

−4.03e−3

−6.27e−3

−8.50e−3

‘xy

1.38e−2

1.07e−2

7.67e−3

4.60e−3

1.53e−3

−1.53e−3

−4.60e−3

−7.67e−3

−1.07e−2

−1.38e−2

‡xx

4.43e−1

3.00e−1

1.57e−1

1.40e−2

−1.29e−1

−2.72e−1

−4.15e−1

−5.58e−1

−7.01e−1

−8.44e−1

‡xy

8.67e−1

6.74e−1

4.82e−1

2.89e−1

9.63e−2

−9.63e−2

−2.89e−1

−4.82e−1

−6.74e−1

−8.67e−1
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F.2.2 Hard matrix

F.2.2.1 Method (1)

≠5.79e≠2 ≠ 1.18e≠1 ≠ 2.21e≠1 ≈ Min

5.95e≠2 1.06e≠1 1.87e≠1 ≈ Max

9.46e≠3 7.53e≠3 3.83e≠3 ≈ SD

‘xx

7.63e−1

4.87e−1

2.11e−1

−6.43e−2

−3.40e−1

−6.16e−1

−8.92e−1

−1.17e0

−1.44e0

−1.72e0

‘xy

1.49e0

1.16e0

8.30e−1

4.98e−1

1.66e−1

−1.66e−1

−4.98e−1

−8.30e−1

−1.16e0

−1.49e0

‡xx

1.81e1

1.60e1

1.38e1

1.17e1

9.50e0

7.34e0

5.19e0

3.03e0

8.79e−1

−1.28e0

‡xy

1.00e1

7.81e0

5.58e0

3.35e0

1.12e0

−1.12e0

−3.35e0

−5.58e0

−7.81e0

−1.00e1
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F.2.2.2 Method (2)

≠3.21e≠2 ≠ 1.00e≠1 ≠ 2.09e≠1 ≈ Min

3.77e≠2 7.30e≠2 1.59e≠1 ≈ Max

5.69e≠3 4.54e≠3 2.34e≠3 ≈ SD

‘xx

7.63e−1

4.87e−1

2.11e−1

−6.43e−2

−3.40e−1

−6.16e−1

−8.92e−1

−1.17e0

−1.44e0

−1.72e0

‘xy

1.49e0

1.16e0

8.30e−1

4.98e−1

1.66e−1

−1.66e−1

−4.98e−1

−8.30e−1

−1.16e0

−1.49e0

‡xx

1.81e1

1.60e1

1.38e1

1.17e1

9.50e0

7.34e0

5.19e0

3.03e0

8.79e−1

−1.28e0

‡xy

1.00e1

7.81e0

5.58e0

3.35e0

1.12e0

−1.12e0

−3.35e0

−5.58e0

−7.81e0

−1.00e1
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F.2.2.3 Method (3)

≠1.29e≠1 ≠ 2.09e≠1 ≠ 3.62e≠1 ≈ Min

1.51e≠1 5.03e≠1 7.22e≠1 ≈ Max

2.03e≠2 3.65e≠2 1.97e≠2 ≈ SD

‘xx

7.63e−1

4.87e−1

2.11e−1

−6.43e−2

−3.40e−1

−6.16e−1

−8.92e−1

−1.17e0

−1.44e0

−1.72e0

‘xy

1.49e0

1.16e0

8.30e−1

4.98e−1

1.66e−1

−1.66e−1

−4.98e−1

−8.30e−1

−1.16e0

−1.49e0

‡xx

1.81e1

1.60e1

1.38e1

1.17e1

9.50e0

7.34e0

5.19e0

3.03e0

8.79e−1

−1.28e0

‡xy

1.00e1

7.81e0

5.58e0

3.35e0

1.12e0

−1.12e0

−3.35e0

−5.58e0

−7.81e0

−1.00e1
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F.2.2.4 Method (4)

≠4.32e≠2 ≠ 1.00e≠1 ≠ 1.77e≠1 ≈ Min

3.65e≠2 4.69e≠2 7.20e≠2 ≈ Max

6.19e≠3 3.41e≠3 1.51e≠3 ≈ SD

‘xx

7.63e−1

4.87e−1

2.11e−1

−6.43e−2

−3.40e−1

−6.16e−1

−8.92e−1

−1.17e0

−1.44e0

−1.72e0

‘xy

1.49e0

1.16e0

8.30e−1

4.98e−1

1.66e−1

−1.66e−1

−4.98e−1

−8.30e−1

−1.16e0

−1.49e0

‡xx

1.81e1

1.60e1

1.38e1

1.17e1

9.50e0

7.34e0

5.19e0

3.03e0

8.79e−1

−1.28e0

‡xy

1.00e1

7.81e0

5.58e0

3.35e0

1.12e0

−1.12e0

−3.35e0

−5.58e0

−7.81e0

−1.00e1
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F.2.3 Soft matrix

F.2.3.1 Method (1)

≠1.27e≠3 ≠ 1.24e≠3 ≠ 1.56e≠3 ≈ Min

1.81e≠3 2.27e≠3 2.66e≠3 ≈ Max

5.01e≠3 1.38e≠3 3.99e≠3 ≈ SD

‘xx

4.15e−2

3.54e−2

2.93e−2

2.31e−2

1.70e−2

1.09e−2

4.77e−3

−1.36e−3

−7.48e−3

−1.36e−2

‘xy

2.90e−2

2.26e−2

1.61e−2

9.67e−3

3.22e−3

−3.22e−3

−9.67e−3

−1.61e−2

−2.26e−2

−2.90e−2

‡xx

1.03e1

8.99e0

7.68e0

6.37e0

5.06e0

3.75e0

2.44e0

1.13e0

−1.80e−1

−1.49e0

‡xy

4.38e0

3.41e0

2.43e0

1.46e0

4.87e−1

−4.87e−1

−1.46e0

−2.43e0

−3.41e0

−4.38e0
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F.2.3.2 Method (2)

≠2.38e≠3 ≠ 3.08e≠3 ≠ 5.21e≠3 ≈ Min

3.30e≠3 2.32e≠3 3.58e≠3 ≈ Max

8.29e≠4 2.88e≠4 1.01e≠4 ≈ SD

‘xx

4.15e−2

3.54e−2

2.93e−2

2.31e−2

1.70e−2

1.09e−2

4.77e−3

−1.36e−3

−7.48e−3

−1.36e−2

‘xy

2.90e−2

2.26e−2

1.61e−2

9.67e−3

3.22e−3

−3.22e−3

−9.67e−3

−1.61e−2

−2.26e−2

−2.90e−2

‡xx

1.03e1

8.99e0

7.68e0

6.37e0

5.06e0

3.75e0

2.44e0

1.13e0

−1.80e−1

−1.49e0

‡xy

4.38e0

3.41e0

2.43e0

1.46e0

4.87e−1

−4.87e−1

−1.46e0

−2.43e0

−3.41e0

−4.38e0
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F.2.3.3 Method (3)

≠3.07e≠3 ≠ 3.45e≠3 ≠ 3.86e≠3 ≈ Min

5.56e≠3 5.43e≠3 6.44e≠3 ≈ Max

9.41e≠4 2.84e≠4 8.24e≠5 ≈ SD

‘xx

4.15e−2

3.54e−2

2.93e−2

2.31e−2

1.70e−2

1.09e−2

4.77e−3

−1.36e−3

−7.48e−3

−1.36e−2

‘xy

2.90e−2

2.26e−2

1.61e−2

9.67e−3

3.22e−3

−3.22e−3

−9.67e−3

−1.61e−2

−2.26e−2

−2.90e−2

‡xx

1.03e1

8.99e0

7.68e0

6.37e0

5.06e0

3.75e0

2.44e0

1.13e0

−1.80e−1

−1.49e0

‡xy

4.38e0

3.41e0

2.43e0

1.46e0

4.87e−1

−4.87e−1

−1.46e0

−2.43e0

−3.41e0

−4.38e0
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F.2.3.4 Method (4)

≠3.65e≠3 ≠ 4.70e≠3 ≠ 5.42e≠3 ≈ Min

5.39e≠3 5.23e≠3 4.75e≠3 ≈ Max

9.53e≠4 3.02e≠4 8.75e≠5 ≈ SD

‘xx

4.15e−2

3.54e−2

2.93e−2

2.31e−2

1.70e−2

1.09e−2

4.77e−3

−1.36e−3

−7.48e−3

−1.36e−2

‘xy

2.90e−2

2.26e−2

1.61e−2

9.67e−3

3.22e−3

−3.22e−3

−9.67e−3

−1.61e−2

−2.26e−2

−2.90e−2

‡xx
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Résumé 
 

Le comportement mécanique des alliages métalliques 

industriels, notamment ceux utilisés dans le domaine 

de l'aéronautique, est contrôlé par la présence de 

différents types de précipités et par la nucléation et 

propagation de défauts cristallins tels que les 

dislocations. La compréhension du comportement de 

ces matériaux nécessite des modèles continus afin 

d'accéder à l'échelle macroscopique. Cependant, 

même aujourd'hui, les théories conventionnelles de la 

plasticité utilisent des variables mésoscopique et des 

équations d'évolution qui ne reposent pas sur la 

notion de transport de dislocations. En conséquence, 

ces théories sont basées sur des lois 

phénoménologiques qu'il est nécessaire de calibrer 

pour chaque matériau et chaque application. Il est 

donc souhaitable d'établir le lien entre les échelles 

micro et macro afin de générer une théorie continue 

de la plasticité déduite analytiquement des équations 

fondamentales de la dynamique des dislocations. 

L'objet de cette thèse est précisément de contribuer 

à l'élaboration d'une telle théorie. La première étape 

a consisté à établir rigoureusement la procédure de 

changement d'échelle dans une situation simplifiée. 

Nous avons alors abouti à un système d'équations de 

transport hyperboliques sur des densités de 

dislocations contrôlées par des contraintes locales de 

friction et de backstress qui émergent du changement 

d'échelle. Nous avons ensuite développé une 

procédure numérique pour calculer ces termes et 

analyser leur comportement. Finalement, nous avons 

développé un schéma numérique efficace pour 

intégrer les équations de transport ainsi qu'un 

schéma spectral multi-grille pour résoudre l'équilibre 

élastique associé à un champ de déformation propre 

quelconque dans un milieu élastiquement anisotrope 

et inhomogène. 

 

 

Mots Clés 
 

Plasticité, dislocations, 

changement d’échelle, corrélations 

Abstract 
 

The mechanical behavior of industrial metallic 

alloys, in particular those used in the aerospace 

industry, is controlled by the existence of several 

types of precipitates and by the nucleation and 

propagation of crystalline defects such as 

dislocations. The understanding of this behavior 

requires continuous models to access the 

macroscopic scale. However, even today, 

conventional plasticity theories use mesoscopic 

variables and evolution equations that are not 

based on the transport of dislocations. Therefore, 

these theories are based on phenomenological laws 

that must be calibrated for each material, or, for 

each specific application. It is therefore highly 

desirable to make link between the micro and 

macro scales, in order to derive a continuous 

theory of plasticity from the fundamental 

equations of the dislocation dynamics. 

The aim of this thesis is precisely to contribute 

the elaboration of such a theory. The first step 

has consisted to rigorously establish a coarse 

graining procedure in a simplified situation. We 

have then obtained a set of hyperbolic transport 

equations on dislocation densities, controlled by a 

local friction stress and a local back-stress that 

emerge from the scale change. We have then 

developed a numerical procedure to compute 

these local terms and analyze their behavior. 

Finally, we have developed an efficient numerical 

scheme to integrate the transport equations as 

well as a multigrid spectral scheme to solve 

elastic equilibrium associated to an arbitrary 

eigenstrain in an elastically heterogeneous and 

anisotropic medium. 
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