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Short Abstract

Recently, global tech companies released so-called virtual intelligent personal
assistants. Highlighting what was the emerging trend in the interaction with
machines, especially on hand-held devices.

This thesis has a bi-directional approach to the domain of spoken dialog
systems. On the one hand, parts of the work emphasize on increasing the relia-
bility and the intuitiveness of such interfaces. On the other hand, it also focuses
on the design and development side, providing a platform made of independent
specialized modules and tools to support the implementation and the test of
prototypical spoken dialog systems technologies.

The topics covered by this thesis are centered around an open-source frame-
work for supporting the design and implementation of natural-language spoken
dialog systems. The framework has been developed and set up following the use
cases of the supporting projects. It is still currently evolving.

One way to characterize a spoken dialog system is by using the listening
method it is applying. Continuous listening, where users are not required to
signal their intent prior to speak, has been and is still an active research area.
Two methods are proposed here, analyzed and compared.

According to the two directions taken in this work, the natural language
understanding subsystem of the platform has been thought to be intuitive to
use, allowing a natural language interaction. It is easy to set up as well since
one does not need much knowledge of the technologies involved to configure the
subsystem for one’s application.

Finally, on the dialog management side, this thesis argue in favor of the
deterministic modeling of dialogs. However, such an approach requires intense
human labor, is prone to error and does not ease the maintenance, the update
or the modification of the models. A new paradigm, the linked-form filling
language, offers to facilitate the design and the maintenance tasks by shifting
the modeling to an application specification formalism.
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Résumé court

L’interaction vocale avec des systèmes automatiques connâıt, depuis quelques
années, un accroissement dans l’intérêt que lui porte tant le grand public que la
communauté de la recherche. Cette tendance s’est renforcée avec le déploiement
des assistants vocaux personnels sur les terminaux portables.

Cette thèse s’inscrit dans ce cadre pour aborder le sujet depuis deux points
de vue complémentaires. D’une part, celui apparent de la fiabilité, de l’efficacité
et de l’utilisabilité de ces interfaces. D’autre part, les aspects de conception et
d’implémentation sont étudiés pour apporter des outils de développement aux
concepteurs plus ou moins initiés de tels systèmes.

A partir des outils et des évolutions dans le domaine, une plate-forme mod-
ulaire de dialogue vocal a été agrégée. Progressivement, celle-ci a été configurée
pour répondre aux exigences des scénarios d’usage et de démonstration dans
l’optique des collaborations encadrant ce travail. Le système s’est complexifié
et est constamment en évolution suivant les approches mentionnées plus haut.

L’interaction continue, basée sur une “écoute” permanente du système pose
des problèmes de segmentation, de débruitage, de capture de son, de sélection
des segments adressés au système, etc... Une méthode simple, basée sur la
comparaison des résultats de traitements parallèles a prouvé son efficacité, tout
comme ses limites pour une interaction continue avec l’utilisateur.

Les modules de compréhension du langage forment un sous-système intercon-
necté au sein de la plate-forme. Ils sont les adaptations d’algorithmes de l’état
de l’art comme des idées originales. Ils ont été pensé pour rendre l’interaction
naturelle et fiable tout en limitant la complexité de leur configuration et en
maintenant leur généricité et donc leur usage à travers plusieurs dialogues.
L’utilisabilité est évaluée à partir de données collectées lors d’essais en labora-
toire avec des utilisateurs réels. L’aisance dans la configuration d’un tel système
et sa modularité, plus difficiles à prouver empiriquement, sont discutées.

Le choix de la gestion du dialogue basé sur des modèles de tâches hiérarchiques,
comme c’est la cas pour la plate-forme, est argumenté. Ce formalisme est basé
sur une construction humaine et présente, de fait, des obstacles pour concevoir,
implémenter, maintenir et faire évoluer les modèles. Pour parer à ceux-ci, un
nouveau formalisme est proposé qui se transforme en hiérarchie de tâches grâce
aux outils associés. Ce document se veut être une référence du nouveau lan-
gage code et de sa conversion, il présente également des mesures d’évaluation
de l’apport d’un tel outil.
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Supporting Projects

CompanionAble

Adapted from the CompanionAble’s website homepage (http://www.companionable.net)

There are widely acknowledged imperatives for helping the elderly live at
home (semi)-independently for as long as possible. Without cognitive stim-
ulation support the elderly dementia and depression sufferers can deteriorate
rapidly and the carers will face a more demanding task. Both groups are in-
creasingly at the risk of social exclusion.

CompanionAble’s objective is to provide the synergy of Robotics and Am-
bient Intelligence technologies and their semantic integration to provide for a
care-giver’s assistive environment. This supports the cognitive stimulation and
therapy management of the care-recipient. This is mediated by a robotic com-
panion (mobile facilitation) working collaboratively with a smart home environ-
ment (stationary facilitation).

The distinguishing advantages of the CompanionAble Framework Architec-
ture arise from the objective of graceful, scalable and cost-effective integration.
Thus CompanionAble addresses the issues of social inclusion and homecare of
persons suffering from chronic cognitive disabilities prevalent among the increas-
ing European older population. A participative and inclusive co-design and sce-
nario validation approach drives the Research and Technological Development
(RTD) efforts in CompanionAble; involving care recipients and their close car-
ers as well as the wider stakeholders. This is to ensure end-to-end systemic
viability, flexibility, modularity and affordability as well as a focus on overall
care support governance and integration with quality of experience issues such
as dignity-privacy-security preserving responsibilities fully considered.

CompanionAble has been evaluated at a number of testbeds representing a
diverse European user-base as the proving ground for its socio-technical-ethical
validation. The collaboration of leading gerontologists, specialist elderly care
institutions, industrial and academic RTD partners, including a strong cogni-
tive robotics and smart-house capability makes for an excellent confluence of
expertise for this innovative project.
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Figure 1: CompanionAble logo

Start date: January 2008
Duration: 48 months

Arhome

Arhome is a French national project, which aims at building an unified exchange
platform for home care and services. The consortium consists of partners from
home care agencies, software development companies and research labs.

The central system of the project’s architecture is a communication bus.
It provides an access to shared databases made available for senior beneficia-
ries, authorized relatives and caregivers, according to the access rights they are
granted with.

The project is motivated by the scarcity of communication tools in the do-
main between the seniors and their relatives, the seniors and their caregivers
and the relatives and the caregivers.

Interface devices are smartphones for the relatives, tablets for the main users,
i.e. the seniors, and a web interface for the caregivers who may also use the
seniors’ tablet at home. In addition to the Graphical User Interface (GUI),
which is available on all devices, the project aims at providing a vocal assistant
to guide the senior while he/she is using the system on the tablet.

Figure 2: Arhome logo

Start date: October 2011
Duration: 24 months
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vAssist

Adapted from the vAssist website’s homepage (http://vassist.cure.at)

vAssist stands for Voice Controlled Assistive Care and Communication Ser-
vices for the Home.

The goal of the vAssist project is to provide specific voice controlled Home
Care and Communication Services for two target groups of older persons: se-
niors suffering from chronic diseases and persons suffering from (fine) motor
skills impairments. The main goal is the development of simplified and adapted
interface variants for tele-medical and communication applications using multi-
lingual natural speech and voice interaction (and supportive GUIs where neces-
sary).

vAssist aims to enhance the perceived quality of healthcare services and
to enable a reduction in the costs related to their production and delivery by
achieving channel independence in the delivery of vAssist services, so that ex-
isting hardware and interfaces in the home of the users can be used such as PC,
TV, mobile phone or tablets. Further, the vAssist consortium considers user,
technical and economic constraints in a sound methodological setup throughout
the whole project duration (from user requirements to field evaluation studies).
From an interface point of view vAssist leverages approaches to connect to uni-
versal interfaces in the delivery of Ambient Assisted Living (AAL) services (e.g.
UniversAAL, I2Home, etc.) and provides user-specific voice assisted interfaces
in order to address a wider audience.

However, vAssist’s aim is not to develop another platform for service and
interface integration, but to develop specific modules in order to enhance existing
services with voice and speech intelligence. Existing platforms like the ones
above-mentioned are considered in the exploitation strategy and technical design
of vAssist services.

A User-Centered Market-Oriented Design (UCMOD) process involves end-
users in all phases of the development process and considers market-oriented
aspects from the initial phase of the project. This assures that the iteratively de-
veloped services and business model (service and hardware delivery) are adapted
to the requirements and needs of the users and show a high market potential
within the next 2-3 years. Overall, vAssist services can be ready for market in
this time after completion of the project – as it bases on existing services and
such that are currently already in use, with service enhancement by adding new
interaction without the requirement of new service development from scratch.
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Figure 3: vAssist logo

Start date: December 2011
Duration: 36 months
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8.4 Écoute permanente et robustesse de la reconnaissance de la parole 176
8.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.4.2 Problématiques . . . . . . . . . . . . . . . . . . . . . . . . 176
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Abstract

Most recent deployment of global companies’ virtual personal assistants such
as Siri (Apple), Google Now (Google), Cortana (Microsoft), S Voice (Sam-
sung) or Voice Mate (LG) demonstrated the potential of vocal interaction with
automated systems. A Spoken Dialog System (SDS) constitutes such an in-
terface [35]. It is characterized as a system that is able to recognize speech
[5, 8, 90, 152, 194, 195], understand the language [7, 48], make decisions based
on that [29, 37] and generate a response back. The assistants mentioned earlier
are instances of SDSs. The recent interest and success of them is closely related
to the increasing quality of Automatic Speech Recognition (ASR) technologies.

This thesis tries to build on this advances, identifying weaknesses and pro-
viding solutions. The approach is two-fold.

On the one hand, it recognizes the lack of open-source SDSs for research
purposes which hinders the development of systems and their individual com-
ponents. Consequently, a framework for building SDS has been provided along
with tools to support the design and the set up of modules for ASR, Natural
Language Understanding (NLU), dialog management, Natural Language (NL)
generation and speech synthesis.

On the other hand, studies have defined the compulsory features required to
build an SDS. They are reliability, spontaneity, displayed intelligence, human-
like behaviour, etc. Each of them has been explored and methods to improve
them have been experimented.

Mainly, this thesis makes five proposals to contribute to the SDS domain.
They are detailed in the following.

A modular open-source platform for spoken dialog systems An SDS
is defined as a system providing an interface to a service, may it be virtual or
concrete, via a human-like dialog [35].

Those systems not usually consist of a single component but comprise several
specialized programs combined in order to recognize the speech, extract the
information relevant to the dialog in the transcriptions, act on back-end services,
decide on the best next step, generate NL from Dialog Acts (DAs) and synthesize
speech.

While commercial deployed systems are black boxes for obvious monetiza-
tion considerations, there are open-source systems such as JUPITER [223], the
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Philips Automatic Train Timetable Information System [6], Olympus [17] (Let’s
Go [57, 157, 158]), etc. However, the second group, while freely available, are
not so much user-friendly for who would like to build an SDS for one’s own
service.

This thesis claims to have conceived a modular open-source framework for
SDS which is easy to use, easy to set up and within which components can be
easily substituted.

Moreover, the platform has been populated with components to fulfill all
the requirements drawn from the study of previous SDSs. The following work
bases all its implementation within this continuously evolving framework of
components.

A Step Towards continuous listening for spoken interaction The pace
of the interaction of deployed commercial SDSs is dictated by a binary modal-
ity, e.g. a keyword detection mechanism, a motion sensor, a button, etc. Those
mechanisms are implemented to indicate the beginning of a user’s speech seg-
ment, i.e. the user signals his/her intention to address the system before actually
producing the utterance.

The turn taking (who is speaking) in human-human dialogs is much more
complex. However, such a constraint allows the system to avoid some hurdles
in the processing.

Indeed, continuous listening, i.e. when the microphone is kept open through-
out the whole dialog and the task of segmenting and filtering the incoming signal
is left entirely to the automatic system, requires a few issues to be tackled: noisy
signal, speech-free segments, start and end of utterance marking, distant speech
recognition, echo removal, out-of-scope utterances, etc.

According to the conditions of deployment, a method, based on sound clas-
sification, parallel processing of speech, alignment scoring and attention level
computation, has been implemented and evaluated. It tries to deal with some
of those issues at once.

A sub-system to map natural-language utterances to situated parametrized
dialog acts The NLU community looks at ways to extract knowledge from
those modalities from which humans can produce and convert the signal to
machine-readable pieces of information. For an SDS, this means that the NLU
sub-system converts spoken utterances to representations of the intent of the
user commonly known as DAs. Those depend on the current dialog state, and
so does the interpretation of the meaning of transcribed segments.

Four compulsory features for a NLU system, integrated to an SDS, have been
identified. It has to: allow variations in the utterances of the user, allow for a
mixed initiative, integrate the dialog context in the process, integrate relevant
external environment variables to augment the information.

The SDS framework developed here includes a modular NLU system which
segments the incoming signal, transcribes the speech, parses the utterances,
augments the inputs with the dialog context and additional external sources,
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selects the user DA and tries to detect and recover from errors. It as been
conceived to be convenient to use and human-like while, according to the second
axis of this thesis, easy to set up and manipulate.

Linked-form filling: a new paradigm to create and update task-based
dialog models In the literature one finds a number of methods to model
and control dialogs. They range from the early adjacency-pairs analysis, which
scripted the interaction, through the Information State (IS) [101, 134], the
flow-graphs, the example databases [91, 106, 108, 109], the Markov Decision
Processes (MDPs) [113, 114, 167], the plan-based dialog managers up to the
most advanced Partially Observable Markov Decision Processes (POMDPs)
[25, 28, 79, 207, 210, 216, 217, 218, 221, 221]. The older approaches require
system designers to carry out a thorough analysis of the interaction to be auto-
mated and to manually define the domain, the parameters and, to some extent,
the behaviour of the machine. MDPs, POMDPs and example-based models are
called stochastic models since their strategy for selecting the next most appro-
priate step(s) is learnt from data.

The context of development along the course of this thesis favoured the
employment of a deterministic formalism to control dialogs. This was motivated
by the requirements of the overall system it had to be integrated to. Table 1
summarizes the advantages and drawbacks of both approaches with an emphasis
on the task-based paradigm for the deterministic part.

Stochastic approach Deterministic approach
Advantages Drawbacks Advantages Drawbacks
Only the

domain has to
be defined

Require prior
data collection

Intuitive
Manual

modelling of
the interaction

Can be
automatically

adapted

Need target
user to be
involved in

early
development

No need for
prior data
collection

Difficult to
build, debug,

adapt

Suitable for big
data

Exact solution
computation

may be
intractable

Static

Table 1: Comparison of stochastic and deterministic approaches for dialog man-
agement

While the design of deterministic dialog models requires the analysis of actual
interaction data and the knowledge of an expert, it is generally agreed that the
basic workflow of an application is straightforward to build. Thus, the Linked
Form-Filling (LFF) proposes to shift the modeling towards a description, in
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terms of connected forms, of the service/application to which one wants to add
a dialog interface to.

An LFF model consists of a set of forms linking each other under certain
conditions and to which grounding scripts can be attached. Such a network is
then transformed into an ANSI/CEA-2018 [41] compliant task hierarchy which
is suitable for some Dialog Managers (DMs) [18, 20, 72, 112, 161, 162, 163, 164,
165, 182] to handle an interaction.

The LFF layer hides the complexity of plan-based dialog models while pre-
serving alternative paths achieving the same goals.
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Chapter 1

Introduction

Lately speech and other types of NL are experiencing an increased acceptance
when being used for interacting with “intelligent” computing systems. Com-
panies increasingly provide us with potentially new application scenarios where
this modality is seen as the best way of operation. This trend is particularly
reflected by recent technology releases such as Apple’s Siri, Google’s Google
Now, Microsoft’s Cortana, Samsung’s S Voice and LG’s Voice Mate.

Figure 1.1: Current commercial vocal user interfaces: Maluuba (Maluuba),
Cortana (Microsoft), Google Now (Google), S Voice (Samsung), Voice Mate
(LG), Siri (Apple)

While these products clearly demonstrate the industry’s vision of how we
should be interacting with our current and future devices, they also highlight
some of the great challenges that still remain. The main criticisms that have
been received questions the the reliability, the usefulness, the data protection,
the proprietary aspects of the technologies, etc.

In 2010 17.38% of Europe’s population was older than 65 years of age and
current projections suggest that by 2060 we will have less than two people of
working age (15-65 years) for every person beyond 65. Technologies that offer
more natural and less cognitive demanding interaction channels, such as speech,
may therefore not only attract our technophile young but generally be seen as
a way of supporting the life of an ageing society.
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However, we often lack the necessary tools and methods that would allow
us to realistically develop, test and study these types of interactions. Build-
ing, integrating and combining language technologies such as ASR, NLU, DM,
Natural Language Generator (NLG) and Text-To-Speech (TTS), for different
application scenarios, poses significant design and software engineering chal-
lenges [1, 22, 30, 40, 85, 169, 170].

NL interaction is, despite those recent advances, still not reliable enough to
be used by a larger range of users and to be accepted as an efficient mean of
communication with a machine. We face a socio-technological problem where
the use of those error-prone technologies may easily lead to unsatisfying user
experiences [86]. While for some talking to a computer may simply convey
a great user experience, for others, it can offer a significant alleviation when
interacting with a piece of technology. However, the leap forward taken by ASR
has demonstrated how a technology entering the virtuous circle of machine
learning (Figure 1.2) may benefit from it.

Figure 1.2: Virtuous circle of machine learning

SDSs build on the advances of the technologies that define them. They
aim at mimicking the behaviour of a human supporting the spoken interaction.
The cognitive abilities that we, humans, can demonstrate is complex in many
ways [3]. Thus current systems, even the mosts advanced ones struggle to act
like true autonomous-thinking entities, which consequently appear to the user
as unnatural [87]. Some challenges to be tackled are the turn taking, the DA
extraction from speech, context inclusion, decision making, adaptive learning,
or personalization.

Given the status of the technologies related to SDSs, this thesis explores
three research questions:

• How can we make the human-machine spoken interaction more reliable?

• What are the important features for an SDS to improve its human-like
appearance?

• How can we support the development of SDSs?
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1.1 A Modular Open-source Platform for Spo-
ken Dialog Systems

An SDS is a system providing an interface to a service or an application via
a dialog. An interaction qualifies as dialog as soon as it exceeds one turn. It
requires to keep track of the dialog state, including the history of past turns, in
order to select the next appropriate step.

An SDS processes user inputs with a cascade of algorithms to extract DAs,
i.e. single units of dialog moves, from speech segments [47, 120, 122]. Platforms
combine agents implementing these functionalities [137, 138, 212, 213, 214].

Commercial interfaces hide the scheme of their system to protect them from
being copied. The research community, through some of its members, witnessed
the emergence of open-source SDS frameworks.

Among those, JUPITER [223] was one of the first SDS released to the pub-
lic. The phone-based weather information conversational interface has received,
between 1997 and 1999, over 30 000 calls.

Earlier, researchers from Philips [6] implemented an automatic train timetable
information desk for Germany. Phone callers were initially the system’s devel-
opers, then lab members. The target user group had been enlarged steadily
until the service was made available to any German speaker.

More recently, Carnegie Mellon University (CMU) provided Olympus [17],
“a freely available framework for research in conversational interfaces”, which
has been used since to build systems like RoomLine, MeetingLine, TeamTalk
[74], ConQuest [16], Let’s Go! Bus Information System [57, 157, 158], etc.
Olympus defines a communication protocol to connect components through a
single central hub which passes messages. Let’s Go! Bus Information System
has been deployed on a Voice over IP (VoIP) server and is answering calls since
2003. The system is able to inform users about the bus timetables and routes
in the Pittsburgh area. Figure 1.3 shows the architecture of the system.

Figure 1.3: Architecture of the Let’s Go! Bus Information System

In order to experiment the interaction with SDSs, a flexible modular open-
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source platform has been created. The architecture is shown in Figure 1.4. It
is made of a set of connected specialized services which processes the inputs of
users. It has been designed to be efficient to use and at the same time simple
to set up.

Figure 1.4: Architecture of the platform

1.2 A Step Towards Continuous Listening for
Spoken Interaction

The way an SDS listens to the user has several effects on how the system handles
the dialog. Current deployed commercial systems chose to give the initiative to
the user to segment the signal. Most of them base that process on a binary
state whose value (either listening or paused) is set by restrictive methods such
as gesture recognition, keyword detection, button presses, etc. In practice, it
means that every turn starts with the user signaling his/her intent to address
the system before actually uttering his/her request.

The previous way of pacing the interaction is inspired by the sequential
processing of dialog turns and thus it doesn’t reflect the manner with which
humans share information in conversations. Despite that, the reliability of such
makes it an appropriate choice for SDSs, avoiding the hurdles of continuous
uncontrolled listening.

When the turn-taking control is left to the machine and the capturing device
is continuously recording, we talk about continuous listening. It means that the
user interacts freely with the agent and that the latter segments and filters
the signal. Continuous listening introduces challenges: noisy signal, speech-free
segments, start and end of utterance marking, distant speech recognition, echo
removal, out-of-scope utterances, etc.

This document proposes a method for continuous listening applied to the
vocal interaction with a mobile companion robot. A head-mounted microphone
records permanently in the home environment and the processing, based on
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sound classification, parallel processing of speech, alignment scoring and atten-
tion level computation,tries to deal with the inherent issues.

1.3 A Sub-system to Map Natural-language Ut-
terances to Situated Parametrized Dialog Acts

NLs are any languages which arise, unpremeditated, in the brains of human
beings. Typically, these are the languages humans use to communicate with
each other 1. Unlike computer languages that are deterministically parsable
and that obey some structural rules, NL grammars are flexible and vary from
one speaker to another.

In research, NLU groups aim at extracting the meaning out of the NL in-
put of a system, so as to build computing machines that ’understand’ human
language.

The modality for SDSs is speech. Thus, an NLU component’s role is to
analyse the (segmented) speech signal to extract meaningful information for
the dialog. A unit of dialog move is called DA. It is specific to a dialog and a
system, i.e. each system defines its own set of DAs and the dynamics between
interaction domains. The NLU establishes a mapping between a spoken input
and a DA. Note that this matching may not exists, thus a NLU sub-system
needs to implement mechanisms to reject and recover from such out-of-scope
utterances.

Early NLU systems based their interpretation of spoken utterances on the
detection of designer-defined keywords or patterns [48, 204]. The scalability
of such an approach is very limited; and so is their applicability for different
domains.

Later, Context-free Grammars (CFGs) and Probabilistic Context-free Gram-
mars (PCFGs) were applied to the understanding process [53, 68, 132, 201, 202,
203] with the aim of building parse trees covering the sequence of recognized
words. This path has been taken by many who additionally proposed methods
to infer grammars from data.

To avoid the burden of extracting static structures from observed data and
in anticipation of the big data era, Chronus [12, 144, 145] based its processing on
HMM modeling. The mapping between words in the utterances and semantic
symbols was learned from data.

One last model which should be cited here is the Hidden Vector State (HVS)
model [76, 77, 78, 180] which allows the creation of a parse tree from word
sequences according to an automata whose history vectors are contained in
HMM states. More on that will be discussed in chapter 4.

One major difference between the text extracted from Internet documents
or newspapers and natural speech is the grammatical construction, which is
much more flexible in the latter case. This thesis strongly argues for the partial

1http://en.wikipedia.org/wiki/Natural language
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parsing for SDSs in which parts of the input are processed while irrelevant ones
are ignored.

A last specificity of an SDS is that, since the dialog spans several turns,
the machine and the user iteratively build a shared knowledge of the interaction
context and its environment. The content of that common space is reused within
the same dialog and in subsequent ones, dynamically altering the meaning of
utterances. The NLU components of an SDS must grab that relevant context
and insert it appropriately when processing inputs.

The NLU system currently implemented within the platform performs the
task of mapping user utterances to DAs according to those considerations.

1.4 The Linked-form Filling language: A New
Paradigm to Create and Update Task-based
Dialog Models

The DM is the decision-making component of an SDS. Based on the dialog
history, the last DA and the current dialog state, it selects the most appropriate
next step.

Figure 1.5: Dialog manager role

Over the years, this task has seen a variety of approaches. ELIZA [204] is
considered by many as the first dialog system. Its inputs were textual messages
and the adjacency-pairs analysis was the paradigm of the DM. The core of the
system was built out of scripts, which associated a system’s response by looking
for a pattern in the input. The whole dialog was scripted that way, each script
being a character for the ELIZA engine.

Larsson and Traum argued that the state of the dialog, including its history,
may be represented as the sum of the information exchanged so far [101, 134].
An IS designer defines the elements of the information relevant to a dialog and
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decides on their machine representation. The dialog state evolves according to
a set of update rules consisting of a conditional part and an operation part.
The rule applies if the condition(s), tested on the last DA and the dialog state,
return(s) true. In the cases where more than one rule is available, an update
strategy picks the one to be applied.

An attempt to incorporate stochastic concepts into an IS model has been
proposed by Lison [115, 116, 117]. The operation part of the update rules
consists of several effect, each associated with a probability value. It is computed
from data and depends on the dialog state variables and the last user’s input.
A Bayesian network encodes the dialog state. The rules update the Bayesian
network’s variables that encode the dialog state according to their effects and,
based on the new stochastic dialog state, decide on the most appropriate next
step.

An example-based DM [91, 106, 108, 109] constructs a request to a database
from the annotated input DA (primary DA, discourse DA, history vector). The
database stores examples seen in interaction data. The algorithm looks for the
most similar entry in the base and executes the associated system’s action.

Work flows have been applied to DM. Those automata encode the system
response within the states while the transitions are deterministically extracted
from the user’s turns. This may be the simplest way to model dialogs but it
lacks flexibility and naturalness.

The increasing amount of available interaction data favores the development
of stochastic systems. The MDPs are appropriate to manage dialogs [113, 114,
167]. In those, the dialog state space contains all the states the dialog may be
in and the transitions depend on the user inputs. The behaviour of a DM based
on MDPs is defined by a strategy which associates to each states an action to
be executed. This strategy is learned from data so the designer only needs to
define the domain.

POMDPs extended the MDPs hiding the states which emit observations
according to a probabilistic distribution [25, 28, 79, 94, 167, 191, 207, 218, 221].
This additional layer encodes the uncertainty about both, in the case of SDSs,
the ASR and the NLU. Currently, practical POMDP-based DMs are limited in
the number of variables and by the intractability of the optimal strategy exact
computation [24, 81, 119, 135, 150, 190, 206, 208, 209]. Methods have been
proposed to reduce the search space [24, 81, 119, 135, 150, 190, 206, 208, 209,
220], others explores the use of a simulated user to efficiently collect interaction
data [31, 32, 54, 55, 93, 111, 146, 166].

This thesis chose to use task hierarchies to model the dialogs [18, 20, 72,
112, 161, 162, 163, 164, 165, 182]. A task-based manager applies the following
rule: a task is achieved when all its children tasks, if it has any, are achieved,
by itself otherwise. In other words, a task hierarchy defines primitive tasks and
intermediate nodes between them to create dialogs.

Such a paradigm allows for a direct update of the models since it only takes
changing the branching or substituting primitive tasks to do so. Also, there is no
need for additional data. The hierarchy enables users to utter extra information,
which are looked for to be grounded in a limited part of the trees.
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However, building a task model and updating and maintaining it is increas-
ingly difficult proportionally to its size and complexity of the desired behavior.

This thesis proposes a new paradigm to shift the modeling task to an appli-
cation specification one. A designer willing to write a dialog model for his/her
application/service describes the specifications in the LFF language. This code
is transformed automatically to a task-based dialog model, compliant to the
ANSI/CEA-2018 standard [41]. Thus the complexity of the low-level hierarchy
is hidden and the design is facilitated.

The following document is divided into five chapters. At first, the open-
source platform is introduced, its architecture and its processing flow. According
to the order in which an input is processed, the second chapter deals with
the listening control, tightly correlated with the third one whose topic is the
personalization of SDSs. The NLU sub-system is described next and the final
part of the thesis is about the dialog modeling using the LFF language.
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Chapter 2

A Modular Open-source
Platform for Spoken Dialog
Systems

2.1 Introduction

The central theme of this document is a modular open-source platform for SDSs.
This chapter introduces it to the reader.

2.1.1 SDS Definition

An SDS is defined as a system providing an interface to a service, may it be
virtual or concrete, via a human-like dialog [35]. An interaction qualifies as a
dialog as soon as it exceeds one turn. It requires to keep track of the dialog
state, including the history of past turns, in order to select the next appropriate
step (cf. 5.2).

The SDS worflow is usually split into distinctive features which recognize the
speech, extract the information relevant to the dialog, act on back-end services,
decide on the best next step, generate NL from DAs and synthesize speech.

Figure 2.1: State-of-the-art SDS’s chained processes
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In this chapter, the modular open-source platform for SDSs is introduced.
An overview of it is provided along with an example of interaction to detail
the functionalities of each component. The components which define the out-
going interface are described while the others are explored in other chapters.
Experiments with the platform are reported here as well.

2.1.2 Deployed Research Systems

One can distinguish two main directions in the current status of SDS develop-
ment. On the one hand, global technology companies such as Apple, Google,
Samsung, etc, recently released their virtual speaking assistants for hand-held
devices. The competition between those entities is tough. Thus, the inner meth-
ods are kept hidden and the systems are based on protected remote servers.
Research open systems generally suffer from the lack of in-domain data and
potential end users.

In this section, some research systems are presented followed with insights
on the current gap between commercial SDS and them.

Olympus (Let’s Go)

The Let’s Go! Bus Information System [57, 157, 158] is the result of a collab-
oration between CMU and the Pittsburgh’s Port Authority. The system has
been deployed on a VoIP server and is answering calls since 2003. It is able
to inform users about the bus timetables and routes in the Pittsburgh area.
Thus it interacts with a broad range of callers with varying knowledge about he
system’s abilities, its vocabulary set, etc.

The training and configuration data was provided by the Port Authority of
Allegheny County. It consisted of the bus schedule and recorded dialogs between
customers and human operators.

Architecture The Let’s Go! Bus Information System is based on the Olym-
pus architecture [17], “a freely available framework for research in conversational
interfaces”, which has been used to build systems like RoomLine, MeetingLine,
TeamTalk [74], ConQuest [16], etc. Olympus defines a communication proto-
col to connect components through a single central hub which passes messages.
Figure 2.2 shows the architecture of the system.
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Figure 2.2: Architecture of the Let’s Go! Bus Information System

Speech recognition The speech recognition is achieved with Sphinx [198].
The system runs two engines set up with different gender-dependent Acoustic
Models (AMs) and a shared LM.

Natural language understanding Phoenix [19, 202], which parses the user’s
utterances is based on a CFG. In addition, a component, Helios [16, 17, 142, 156],
annotates the inputs with a score computed by a logistic regression model-based
algorithm.

Dialog management RavenClaw [18] is the task-based DM of the bus in-
formation system. The engine is a task-independent inference engine that is
configured with task hierarchies.

Natural language generation and speech synthesis Rosetta and the
Kalliope speech synthesizer are combined to generate the natural-language spo-
ken outputs of the system.

The deployment of the Let’s Go system to the general population and the
release of the collected data make it a great tool for evaluating, testing and
training SDSs.

JUPITER

Jupiter [223] is a phone-connected SDS to get information about the weather
forecast in selected cities in the United States [223]. It is based on the GALAXY-
II architecture [179].

Architecture The JUPITER’s architecture is shown in Figure 2.3.
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Figure 2.3: Jupiter’s architecture (source: [223])

Speech recognition The SUMMIT ASR engine is set to recognize 1957 words
including 650 cities and 166 countries using landmark-based diphone acoustic
modeling, a lexicon and bigram or trigram LMs.

Natural language understanding The NLU in the system is used in two
ways. TINA:

• parses the user’s queries to extract the intent of the caller.

• analyses the retrieved weather forecast reports to convert them to frames
that the NLG module is able to process.

Dialog management Called turn manager in the architecture, the DM de-
fines a set of operations that are executed whenever their pre-conditions are
fulfilled.

Natural language generation Text messages intended to be synthesized to
the user are generated by the GENESIS engine based on rewrite rules, a lexicon
and templates.

The Philips automatic train timetable information system

The Philips automatic train timetable information system went public in 1995
[6]. It allows users to make enquiries to the national German train timetable in
a naturally speaking manner.

Architecture The Philips automatic train timetable information system’s ar-
chitecture is shown in Figure 2.4.
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Figure 2.4: Philips automatic train timetable information system’s architecture
(source: [6])

Speech recognition The ASR task is carried out by the PHICOS system, a
research product of the same company. The acoustic models are 6-states left-
to-right HMMs of 40 phonemes. The total number of words the module can
recognize is 1850. 1200 of those lexicon entries are train station names.

Natural language understanding The SDS applies PCFG rules to parse
the user utterances. Special tokens such as filler words and silences have been
integrated in the grammar. The parse trees are then extended to associate a
database’s search slot with semantic concepts.

Dialog management The DM handles the database’s requests to add/relax
constraints when needed. It produces the text segments to interpret the results
of the queries or asks the user for more information.

RailTel, Arise, Ritel

In 1997, the RailTel project [99] studied the technical adequacy of vocal tele-
phone services to get rail travel information. The RailTel system, whose archi-
tecture is shown in Figure 2.5, has been the baseline for the Arise [100] SDS
(Figure 2.6).
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Figure 2.5: RailTel system’s architecture (source: [99])

Figure 2.6: Arise system’s architecture (source: [100])

The Ritel system [61] proposes to merge a question-answering system and
an SDS. The goal is for the system to be able to answer general questions with
an intelligent refinement stage when necessary. The system is phone-based as
shown in Figure 2.7.

Figure 2.7: Ritel system’s architecture (source: [61])

WikiTalk

Another open-domain SDS worth mentioning is WikiTalk [4, 44, 89, 205]. This
program claims to be an open-domain knowledge access system. Indeed, it uses
Wikipedia as a very large base of topics to talk about. However, unlike many
similar systems, WikiTalk uses a finite-state machine to keep track of the current
topic and manage the shift from one to another.

The advantages of such an approach is in the huge quantity of Wikipedia
entries available and the human-annotated hyperlinks that are used to imple-
ment smooth topic shifts. Moreover, the vocabulary set that may be uttered
by the user – and thus the one that needs to be recognized – is dynamically
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adapted with the latent user topic shifts, called NewInfos, and a limited set of
commands such as “start”, “stop”, “continue”, etc. This improves the accu-
racy of the speech recognizer before applying keywords spotting methods to the
transcribed user utterances.

The finite-state machine to manage topics in WikiTalk is shown in figure 2.8

Figure 2.8: WikiTalk’s finite-state machine for topic tracking (source: [205])

2.1.3 Commercial and Research Perspectives

Lately speech and other types of NL are experiencing an increased acceptance
when being used for interacting with “intelligent” computing systems. Com-
panies increasingly provide us with potentially new application scenarios where
the modality is seen as the best way of operation. This trend is particularly
reflected by recent technology releases such as Apple’s Siri, Google’s Google
Now, Microsoft’s Cortana, Samsung’s S Voice and LG’s Voice Mate.

While these products clearly demonstrate the industry’s vision of how we
should be interacting with our current and future devices, they also highlight
some of the great challenges that still remain [140]. Indeed, criticisms have been
received questioning the reliability, the usefulness, the data protection, and the
proprietary aspects of the technologies, etc.

NL interaction is, despite those recent advances, still not reliable enough
to be used by the majority of users and hence hardly accepted as an efficient
way to communicate with a machine. We face a socio-technological problem
where the use of those error-prone technologies may easily lead to unsatisfying
user experiences. While for some talking to a computer may simply convey
a great user experience, for others, it can offer a significant alleviation when
interacting with a piece of technology. However, the leap forward taken by ASR
has demonstrated how a technology entering the virtuous circle of machine
learning Figure 2.9) may significantly improve its performance.
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Figure 2.9: Virtuous circle of machine learning

SDSs depend on the technological advancements of those components which
essentially define them. They aim at mimicking the behaviour of a human
supporting the spoken interaction. The cognitive abilities that we, humans,
can demonstrate are complex in many ways. Thus current systems, even the
mosts advanced ones struggle to act like true autonomous-thinking entities, and
consequently appear to the user as unnatural. Some challenges to be tackled
are the turn taking, the DA extraction from speech, context inclusion, decision
making, adaptive learning, or personalization.

Commercial interfaces hide the scheme of their system to protect them from
being copied. In the research community, however, we have seen the emergence
of open-source frameworks.

This chapter serves as the primary documentation for an SDS platform that
integrates and extends some of these existing open-source components. The
modular architecture of the SDS is explained with a running interaction to de-
scribe the functionalities of every component. The listening control, the ASR,
the NLU and the DM are the topics of dedicated chapters and thus will not be
explored here. However, the speech synthesis and language generation compo-
nents are detailed along with a technical point of view on the speech recorder
and player. The experiments conducted with the platform conclude the chapter.
Their goal was both to collect training data and to evaluate the overall system
with real users.

2.2 A New SDS Platform

Here, an overview of the platform is presented.

2.2.1 Desired characteristics

To start with, a list of the characteristics that a new SDS platform should
have has been established. This was defined from both the research projects
requirements and the study of the state of the art in the domain.

According to that list, proposing a new SDS platform is relevant if it brings
the features described next.

• Server based: a server-based system is able to manage many users con-
currently and remotely.
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• Extendable: the platform architecture is flexible and may evolve. It does
not prevent the integration of additional components, resources or services.

• Modular: any component making up the platform may be isolated, re-
placed or, if not essential, removed.

• Multi-lingual: the platform may be set for many languages. It is not
constrained to the original one(s).

• Multi-modal: even though the primary objective is to build a spoken
human-machine interface, the platform is sufficiently generic to allow for
the plug of some other modality sensors/processors.

• Open-source: the platform sources are available for use and modification.

• Facilitated setup: the platform main objective is to facilitate the access
to full dialog systems to specialists of narrower domains such as the ASR,
the NLU, the NLG, the DM, etc. These non-experts developers needs
facilitated methods to set up the platform to their convenience.

• Minimum data requirement: the advent of the machine learning era leads
to believe that a computing machine may do almost anything given that it
has access to enough data to train with. The platform allows for skipping
most of the data collection beforehand. One may set up a first working
system which then can be used to collect training data (see figure 2.9).

Table 2.1 shows the characteristic mapping of several platform and systems.

Server-
based

Modular Extendable
Open-
source

Minimum
data

require-
ment

Multi-
lingual

Multi-
modal

Facilitated
setup

CLSU
Toolkit [189]

× � � � � � × �

GALAXY-II
[179]

� × × � � � × ×

Voice XML � × × � � � × �

Olympus
[17]

� � � � � � × ×

OpenDial1

[115]
� � � � � � × �

Siri-like
systems

� - × × - � × -

Table 2.1: Characteristics mapping for SDS platforms
�: has the characteristic

×: does not have the characteristic
-: the information is not available
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2.2.2 Architecture

The usual chained workflow of an SDS is represented in Figure 2.10.

Figure 2.10: State-of-the-art SDS’s chained processes

It is a uni-directional sequence of processes whose turning point is the DM.
ASR and NLU interpret the user’s spoken inputs and generate natural-language
system’s utterances from formal DM data structures (or DAs).

The SDS built in this work extends this design. Components are split into
modified sub-modules and new processes are integrated to the state-of-the-art
workflow chain. Figure 2.11 shows the current status of the SDS’s implemen-
tation. It consists of a set of connected specialized services which process the
inputs of users. It has been designed to be efficient to use and at the same time
simple to set up.

Figure 2.11: Architecture of the platform

2.2.3 Communication

All the platform’s components communicate with ActiveMQ2, a message queu-
ing protocol available for Java, C and other programming languages. Ac-

1As of version 0.95, released on April 4, 2014
2http://activemq.apache.org
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tiveMQ’s architecture is built around a broker whose task is to connect the
registered clients, collect messages and distribute them to receivers of topics
and queues.

This protocol is standard, light and flexible. It allows for the substitution of
components and their implementation as independent services.

2.2.4 Grounding

Since an SDS is an interface between users and applications, it needs to provide
methods to gain access to various background services. Simply sustaining a
dialog is the characteristic of a conversational agent. An SDS, on the other
hand, defines a goal, which should be reached in the most efficient way.

Grounding is the process of communicating between the SDS and the back-
end services, i.e. linking the information representation within the DM and the
API of the services [38, 39].

The DM detailed here currently implements anytime-calls to back-end soft-
ware. The grounding process is done via ECMAScript pieces of code calling
external APIs.

The grounding is usually most effective at the end of a dialog, i.e. once
enough necessary pieces of information have been collected. However, in order to
synchronize the SDS with a graphical application, some more message exchanges
have been integrated, so as to update the remote client in real time with the
spoken data collected (to be displayed).

2.3 Interaction Example

In this section, the functionalities of the platform’s components are described.
It is based on an interaction example whose in-depth system’s processing is
observed step by step. The reader is invited to follow the workflow in the
architecture schematic above Figure 2.11).

2.3.1 Simulated Service Description

The service the SDS mediates is the access to a weather forecast information
system (similar to JUPITER). The necessary pieces of information to start a
search request are the location, e.g. the name of a city, and the day one wants
to get the forecast for. We assume here, for the sake of this example, that the
system can understand any location in the world and that the forecast is known
in advance for an (unrealistic) infinite period of time. The user-defined detail
level is binary. When high, the system returns the wind speed, the temperature,
the air humidity, the likelihood of rain and the UV index while a low level causes
the system to summarize the forecast to a shallow overview.
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2.3.2 One Interaction Turn

1. The system is idle. The user has connected to the SDS via a voice client
but has not spoken yet. We assume here that the first signal segment
perceived by the system contains only speech3.

2. The user addresses the system: “What is the weather forecast for today?”.
He/she did not have to signal his/her intent of speaking before talking.
The system handles the listening automatically, as the sensor records the
signal continuously.

3. The continuous signal entering the segmenter is split according to a silence
delay. The segments start when a signal frame’s amplitude exceeds the
silence threshold. The component ends a segment when it detects that the
signal’s amplitude has been below the same threshold for a certain dura-
tion of time. Both the threshold and the delay are dynamic parameters
that can be set off-line as well as in real time.

4. A segment is rejected if its duration is less than the minimum length
parameter. Otherwise, it is sent, through ActiveMQ, to the ASR input
queue associated with a user Identifier (ID) and a language code.

5. The ASR service provides up to seven ranked hypotheses about the content
of the signal segment. The confidence score of the best hypothesis is
returned as well. Non-speech segments do not allow for this score to be
high enough to be considered as relevant. Thus, the set of hypotheses one
obtains is empty. The ASR component provides, in this case, a default
utterance “unknown”. All hypotheses are passed on to the next module,
whether the set consists of seven, or less, or a single “unknown” hypothesis.

6. The Semantic Parser (SP) aims at labeling the transcriptions with seman-
tic concepts. Such concepts represent the meaning of the combined words.
The SP in the platform tries a sequence of transformation rules. When-
ever the applicability conditions are true, the transformation is applied.
The algorithm bases the extraction of the concepts on the transcriptions
only, without any knowledge of the current dialog state or the application
environment. The data structures produced are Semantic Frames (SFs)
(one for each hypothesis) made of a goal and zero or more slots.

7. The Semantic Unifier and Reference Resolver (SURR) information base
consists of trees of semantic concepts. The algorithm searches for a path in
the graph to reach root nodes from SFs’ slots and goals. The component
has several usages:

(a) It is used to resolve relative references. In that example, “today” is
a dynamic concept, i.e. it changes every day, that does not link to
an absolute date. The SURR has external calling nodes whose inner

3See chapter 3 for non-speech signal processing
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value(s) is(are) set by accessing some host functionalities or APIs.
One of them gives an absolute value to the “today” concept. The
component requests the current date of the host system, formats it
and substitutes the values. The current time and location can be
obtained the same way.

(b) It is used to solve dialog contextual references. The Context Catcher
(CC) maintains the SURR up to date with the current status of the
dialog, modifying the nodes and the branching of the latter’s inner
forest. That way, the dialog context is injected into the SFs at the
SURR stage.

(c) It is used to adjust the semantic level of the analysis. The SP tries
to label the utterances with semantic concepts which may not be in-
cluded in the semantic concept set of the Dialog Act Mapper (DAM),
whose semantic space is less large. The SURR bridges this gap merg-
ing/converting/splitting the SF slots to a level characterized as root,
using the same tree representation described before.

(d) It manages the hypotheses set. For a single interaction turn, the
SURR gets all the SF hypotheses derived from the seven (or less)
ASR transcriptions. Only the best one is passed on to the DAM
after being processed by the SURR. The others are sent after the
DAM, when unable to map the SF to a DA, requests the next one in
the ranked list. If the bottom of the set is reached the best hypothesis
is sent again with a “final” flag.

Thus, out of this component, one gets an absolute contextualized situated
SF for the DAM to process.

Figure 2.12: Architecture of the platform

8. The ultimate NLU component retrieves the set of DAs available in the
current dialog state, then it tries to map the received SF to one of them.
The mapping is actually a conversion from goal to DA intent and from
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slots to parameters. The difficult task, however, is to get the current set of
DAs. The DAM has to explore the stack of tasks, the partially elaborated
plans and anticipate the likely next turns looking for a variable already
mentioned in the user speech. If the mapping can not be found, the module
requests the next hypothesis from the SURR unless the final flag is true.

9. The DM consults the dialog history and task models, and associates the
last DA to update the dialog state, possibly connecting to back-end ser-
vices and selecting the most appropriate next step to apply. The models
define the dynamic sequence of those to be executed in order to access the
service in the most efficient way. The DM works with the units of dialog
called DAs, it gets some as inputs and sends some out.

10. The DAs out of the DM are projected back into the semantic space, the
system’s intent becomes the goal of the SFs and the parameters are con-
verted to slots.

11. The NLG is set with templates to express the parametric meaning rep-
resented as an SF. It matches the input with the templates in an SF-
constrained search . If more than one template has the same character-
istics, a random selection picks the one to be instantiated. More on this
process will be discussed in section 2.5

12. The speech synthesizer generates speech from text. It is based on a remote
server computation. The text is embedded in an Hypertext Transfer Pro-
tocol (HTTP) request and the signal stream is captured back and stored
in a file. Parameters are the text, the language and the voice one wants
to synthesize.

13. The generated speech is played back to the user: “Which city do you want
the forecast for?”

2.3.3 Interaction Turns

Here is the whole interaction with the inter-component messages.

From the user to the Speech Recorder “What is the weather forecast for
today”

From the Speech Recorder to the ASR en /tmp/6002-2014.1001.151252.flac

From the ASR to the SP en 6002-2014.1001.151252;what is the weather
forecast for today;who what is the weather forecast for today;what is the weather
forecast today;who what is the weather forecast today;
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From the SP to the SURR en 6002-2014.1001.151252;goal=input;
freetext=what is the weather forecast for today;goal=request forecast;date=today;
goal=request forecast;date=today;goal=request forecast;date=today;
goal=request forecast;date=today;

From the SURR to the DM en 6002-request forecast:date=March 11,
2015;reco:what is the weather forecast for today

From the DM to the NLG en 6002-Ask.What:goal=get location;slot=location;

From the NLG to the TTS en 6002-which city do you want the forecast
of?

From the TTs to the user “Which city do you want the forecast of?”

From the user to the Speech Recorder “For Paris”

From the Speech Recorder to the ASR en /tmp/6002-2014.1001.151301.flac

From the ASR to the SP en 6002-2014.1001.151301;for paris;

From the SP to the SURR en 6002-2014.1001.151301;goal=input;freetext=for
paris;goal=input;city=paris;

From the SURR to the DM en 6002-input:location=paris;reco:for paris

From the DM to the NLG en 6002-Ask.What:goal=get detail level;slot=detail level;

From the NLG to the TTS en 6002-which level of detail do you want?

From the TTs to the user “Which level of detail do you want?”

From the user to the Speech Recorder “The lowest one”

From the Speech Recorder to the ASR en /tmp/6002-2014.1001.151307.flac

From the ASR to the SP en 6002-2014.1001.151307;the lowest one;

From the SP to the SURR en 6002-2014.1001.151307;goal=input;freetext=the
lowest one;goal=input;level=low;

From the SURR to the DM en 6002-input:detail level=low;reco:the lowest
one
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From the DM to the NLG en 6002-Feedback:goal=report;content=it is
sunny in paris, the temperature is 25;

From the NLG to the TTS en 6002-it is sunny in paris, the temperature
is 25

From the TTs to the user “It is sunny in paris, the temperature is 25”

2.4 Speech synthesis

MaryTTS [141, 177] is an open-source speech synthesis framework maintained
by the Cluster of Excellence MMCI and the DFKI. It offers pre-built voice
models for different languages as well as tools to create and manipulate them.

The MaryTTS module is a client to a generating server, which may be
hosted on the same machine. A request containing the text to be synthesized
with additional prosodic information is sent to the central server which returns
the speech stream. The TTS module of the present platform is a basic client
program embedded into an ActiveMQ wrapper.

2.5 Natural Language Generation

The NLG component is based on sentence templates to be instantiated. The
inputs are SFs from the DM and the outputs are system’s text utterances.

NLG is an active research area in the Human-Computer Interaction (HCI)
domain. In our case, a simple but effective solution to produce NL utterances
conveying the DM’s messages was targeted. Received messages are SFs built
into the interface converting the DM’s outputs. The engine is fed with a set of
templates made of a title (identical to an SF’s goal) associated with an utterance
whose parts may be replaced by slot names or slot name-value pairs. Table 2.2
presents the 3 patterns one can find in the configuration file of the NLG and
their respective instance example.

[...]
greetings: good morning. How are you?
“Good morning. How are you?”
personalGreetings: good morning /firstname/.
“Good morning John”
situatedGreetings: good evening [/time=evening/].
“Good evening”
[...]

Table 2.2: NLG template file sample (and instances examples)
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The selection algorithm first compares the goal of the input SF with the
titles and marks the matching templates. Then a second pass removes the ones
requiring slot names or slot pairs that are not contained in the input SF. At
this stage, if there are still more than one template available, the algorithm
randomly picks one of them, substitutes the slot’s markers with their values
defined in the SF, and discards the slots in squared brackets. The result is a
NL utterance to be synthesized or displayed on a screen.

Figure 2.13: Schematic of the NLG process

2.6 Speech Recognition

The system has been built with two different ASR engines. The first integrates
the Julius [104, 105] recognition engine, the second uses the Google Speech API.

2.6.1 Local Implementation

Julius, developed at the Kawahara Lab at Kyoto University, was our first choice
as a Speech recognition engine. It is able to process large-vocabulary search in
real time, running a 2-pass algorithm. The configuration of the engine consists
of 3 Knowledge Sources (KSs): an n-gram LM, a set of acoustic HMMs and
a lexicon. In addition, Julius parameterizes digital speech segments on the
fly according to an HTK-compliant parameter set. The engine can concurrently
process identical audio segments with several instances. All those features made
it the appropriate automatic speech recognizer for our platform.

The phonemic HMMs were trained on the ESTER and ETAPE [62] corpora
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which are based on transcribed French radio and TV broadcast. The LMs are
learned from the text resource from “Le Monde”.

2.6.2 Web Service

For the web-based implementation of the Google Speech API, the service specifi-
cation are the following. An HTTP POST request transmits the signal segment
to be recognized. The API returns the n-best hypotheses, where n is a pa-
rameter of the request, and the confidence score of the best one. An empty
result is returned when the speech segment cannot be recognized with enough
confidence, i.e. it does not contain speech.

2.6.3 Speech Recognizers Benchmarking

The history of the lab within which this work has been achieved is mainly about
signal processing, especially speech recognition and biosignal processing. Over
the last decade, the most relevant pieces of software that were both set up and
with which people had experience with were the HTK and Julius. AMs and LMs
have been built for many languages such as Spanish, German, Dutch, French,
English, Italian, etc.

Earlier, the trade-off in the speech recognition task was mentioned. The
larger the domain, in terms of vocabulary size and speaker variability, the lower
the performances of a speech recognition system. Consequently, the smaller it
is, the more reliable one can expect the produced hypotheses to be.

Also, ASR engines, when applying machine learning methods such as the
HMMs or the neural networks, require as much data as it is possible to gather
and process. In regards to that, the Google global company possesses, obviously,
much more data than is available in the research lab. They have the tools, the
man power and the computing ability to, as this report is being written, collect
utterances from speakers all over the world.

The benchmarking in this section offers subjective measurements to answer
the question: “What ASR should I use for my SDS?”. This topic has been
investigated in [133]. Here is a comparative evaluation of a Julius-based speech
recognizer and the Google Speech API using the data collected with the SDS
platform in the vAssist project.

Corpus The speech data, collected in the real-user experiments (cf. Section
2.7), has been manually processed offline. Since the collection phases used the
Google Speech API to transcribe speech, the transcription of every entry in
the database (see Table 2.5) has been checked and/or corrected by a human
annotator.

Pairs (speech file, transcription) have been extracted to build a reference
corpus. It contains 1037 speech segments, whose length varies between 1 and 24
words. Overall, there are 8618 words in the corpus. Speech files are encoded on
16 bits at 16 kHz as Signed Integer PCM. Although the recording environment
was free of ambient noise, the automatic segmentation as well as the unintended
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utterances, i.e. those that are not addressing the system, were kept so that the
actual SDS usage conditions are preserved for the experiment.

Method Figure 2.14 shows the method of evaluation.

Figure 2.14: Benchmarking setup

Each corpus’ speech segment was submitted to both modules, which at-
tempted to produce up to five hypotheses on the transcription. These are com-
pared to the reference transcriptions using the sclite tool from the NIST Scoring
Toolkit (SCTK).

The comparison is performed in three ways.
At first, all hypotheses from a single speech segment are aligned with the

reference transcription. The metrics are averaged over all the hypotheses. This
method is used to give a primary overall performance measure of an ASR system.

The first hypothesis is the top ranked one out of a speech recognizer, i.e.
it is the one which the module gives the best confidence score for. In an SDS,
this first hypothesis is the one that is the most likely to enter the dialog flow.
Indeed, some systems are only processing a single top-ranked word hypothesis
resulting from the speech recognizer.

The here presented platform has the ability to handle multiple hypotheses.
Then, the most relevant measure, in this framework, may be the best hypothesis
comparison. The best hypothesis is the one that gives the best match compared
to the reference sentence. Again, all hypotheses from a single speech segment,
are aligned with the reference. Only the best score is added to the computation
of the averaged measures.

Metrics Two metrics are computed. The sentence error rate is measured, as
well as the word error rate.

sentence error rate = 100×
count of incorrect hypothesis sentences

count of reference sentences

word error rate = 100×
count of incorrect hypothesis words

count of reference words
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Results The following table shows the averaged metrics’ values for the three
different analyses.

Julius-based speech
recognizer

Google Speech API

All
hypotheses

Sentence error
rate

97.9% 88.9%

Word error rate 58.1% 28.1%

First
hypothesis

Sentence error
rate

94.9% 95%

Word error rate 56.9% 28.8%

Best
hypothesis

Sentence error
rate

94.2% 56%

Word error rate 55.7% 21.5%

Table 2.3: Comparative evaluation of the speech recognizers

Conclusion This benchmarking demonstrates that the Google Speech API is
more reliable than the open-source version available in the lab. The web service
covers the vAssist domain. The continued focus on that technology from the
global company lead one to expect the performance to improve with time.

However, the Google Speech API does not allow for any modification of
the recognizer KSs. In the next chapter (Chapter 3), two listening methods
are presented. One is based on the adaptation of the KSs to the user, the
environment and the dialog context while the other uses the Google Speech
API and thus can not be dynamically updated.

2.7 Real-user Data Collection

Real users have been asked to interact with the SDS. There are three motivations
for that:

• Real data related to the actual domain of the application have to be col-
lected and annotated in order to train some modules.

• A user-interaction corpus is the basis to evaluate individual components
as well as to provide a benchmark of comparable performance measures
to monitor the system iteratively.

• The development of the platform is based on a user-centered design method.

Experiments were conducted in Vienna and Paris to collect data, evaluate
the usability of the system and elicit recommendations for later development.
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2.7.1 Wizard of Oz

A Wizard of Oz (WoZ) tool is a quick prototyping/evaluation method. It con-
sists of a human operator replacing part(s) or the whole of an automatic system
to collect data, get user feedback and evaluate individual components and us-
ability at an early development stage.

2.7.2 WoZ-based Lab trials

A first data collection session took place in Fall 2013 in Vienna and in Paris
with elderly people, which are the target group members. Within the first
lab evaluation a mix of different qualitative and quantitative measurements
and the WoZ method were applied to gather first insights about usability and
interaction aspects and to collect a first set of natural speech data that will feed
the development process of the speech-based interaction concept of vAssist.
This section provides a detailed overview of the Austrian and French lab trial
results that constitute the basis for recommendations and system interaction
improvements.

Figure 2.15 shows example screenshots for the two main GUIs, which are
the PillBox and the DailyCare applications.

Figure 2.15: Screenshots from the PillBox (left) and the DailyCare (right) ap-
plications

Setup

The trialed system is different in the first experimentation phase and in the
second one. Indeed, the data collected are different for each one of them.

Figure 2.16 shows the first SDS data collection setup.
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Figure 2.16: First setup

The location was the experience room of the lab. The noise was limited to
the one produced by people inside the room. The user was facing the laptop
displaying the press-to-speak button and integrating the microphone and two
speakers. The facilitator was seated next to the experimenter. The WoZ opera-
tor, who was outside the room received the user’s utterances as transcribed by
the ASR service and created on the fly the SF expressing the same intent. This
data structure was sent back to the automatic system, which contextualized
SFs, managed the dialog, and generated and synthesized the responses.

Users were introduced to the system, mentioning that it was fully auto-
matic, and then asked to perform a number of interactions with it. The inter-
component data was recorded as shown in Figure 2.16. The goal of this phase
was mostly to collect data to train the NLU sub-system.

Users

In total 15 persons participated in the first lab trial; 7 (one drop out) in Austria
and 8 in France.

Table 2.4 below provides an overview on the sample, demographic data and
pre-interview results referring to experience with technology; physical constrains
that might affect technology interaction; applied coping strategies; doctor visits
and the perceived stress level of doctor visits.
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Data Austria France
Participants 7 8
Age (range) 66.6 (60-72) 77.0 (65-86)

Gender 4 ♀, 3 ♂ 7 ♀, 1 ♂

Retiree 6/7 8/8

Experience with
touchscreen devices

3/7 have experience
with touch-screen

devices

5/8 have experience
with touch-screen

devices

Physical constraints
3/7 fine motor
restrictions

4/8 chronic disease

Coping strategies
Pencils, integrated
extendable keyboard

Big size screen

Frequency doctor visits
3/7 less than once a
month, 4/7 more

frequent

8/8 less than once a
month

Perceived stress level
On average not very

stressful
7/8 not stressful at all

Reduction of doctor
visits requested

5/7 yes, 1/7 ok, 1/7 no 3/8 ok, 5/8 no

Table 2.4: Second lab trials user sample description and pre-interview results

Collected data and results

The collected data has been aligned and combined so that each entry in the
database consists of the sound file’s absolute path, the best ASR hypothesis,
the WoZ-generated semantic parse, the semantic frame out of the NLU sub-
system, the system’s DA and the CC messages (if any). The ASR hypotheses
have been manually checked offline.

Speech file’s absolute path
/home/xxx/recordings/
2013.0910.153845.wav

Best ASR hypothesis La première prise est à 9h30
Semantic parse input:first intake=9h30
Semantic frame input:first intake=9h30

System’s DA Ask.What:slot=confirmation

CC messages out

retract:rewrite(frame(G, S),
frame(G, [slot(affirmative,
V)])) asserta:rewrite(frame(G,
[slot(confirmation, V)]), frame(G,
[slot(affirmative, V)]))

Table 2.5: An entry of the database obtained after the first data collection
session
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The database contains 75 dialogs consisting of 336 turns. That is less than
12 minutes of cumulated speech data.

The data collected allows for training the SP. The corpus contains the text
utterance of the users and their WoZ-generated SF.

Moreover, the user feedbacks (cf. Section 3.9.4) highlighted some expecta-
tions and consequently guided the next iterations of development.

2.7.3 System Trials

The second user experiment session was achieved using a fully automatic SDS
monitored by a latent WoZ operator.

Setup

The second experiment session was located in the same rooms. The SDS was
fully automatic although a developer was available to monitor the system and
guide the user when he/she had difficulties interacting. Figure 2.17 summarizes
the setup. The listening control was left for the system to manage. The user was
facing a wireless portable speaker which was similar to a bluetooth hands-free
kit for the phone.

Figure 2.17: Second setup

Users

In total 17 persons participated in the second lab trial.
Table 2.4 below provides an overview on the sample, demographic data and

pre-interview results referring to experience with technology; physical constrains
that might affect technology interaction; applied coping strategies; doctor visits
and the perceived stress level of doctor visits.
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Data Austria France
Participants 9 8
Age (range) 69.1 (63-76) 77.0 (66-90)

Gender 4 ♀, 5 ♂ 7 ♀, 1 ♂

Retiree 9/9 8/8

Experience with
touchscreen devices

8/9 have experience
with touch-screen

devices

5/8 have experience
with touch-screen

devices

Physical constraints
7/9 fine motor
restrictions

5/8 chronic disease

Frequency doctor visits
5/9 less than once a
month, 4/9 more

frequent

7/8 less than once a
month, 1/8 more

frequent

Perceived stress level
3/9 a bit stressful or
stressful, 6/9 not
stressful at all

2/8 a bit stressful or
stressful, 6/8 not
stressful at all

Reduction of doctor
visits requested

5/9 yes, 4/9 no 3/8 yes, 5/8 no

Table 2.6: Second lab trials user sample description and pre-interview results

Collected data and results

A for the first lab trail, the collected data has been aligned and combined so
that each entry in the database consists of the sound file’s absolute path, the
best ASR hypothesis, the semantic parse, the semantic frame out of the NLU
sub-system, the system’s DA and the CC message (if any). The ASR hypotheses
have been manually checked offline.

The database contains 178 dialogs consisting of 603 turns. That is less than
28 minutes of cumulated speech data.

No specific data usage was targeted although the inter-component messages
were stored. Some has been used for further training of learning modules.

The data from both sessions provides a corpus for post evaluation of the
overall system and its individual components. It contains 253 dialogs (939
turns).

The user feedbacks are reported in Section 3.9.7.

2.8 Conclusion

The main theme of the thesis exposed in the present document is a platform to
support the development of SDSs. It is open-source and modular.

Indeed, the research community in the spoken interaction domains lacks
tools to experiment with SDSs. Each member generally focuses on a specific
topic or component of such systems. The here presented platform allows for the
easy and quick substitution of any of the modules it consists of. Moreover, it
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does not require an in-depth knowledge of the “other” components to set them
up.

This chapter is intended as a primary documentation resource to use the
platform, whether the reader is an application designer willing to interface ser-
vices with an intelligent spoken interaction, or an expert in the domain who
may need some support in the implementation of a complete system.

In the next chapters, the components of the ASR, NLU and DM modules
are detailed. They have been implemented within the open-source framework
described here and so are they open-source as well
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Chapter 3

A Step Towards Continuous
Listening for Spoken
Interaction

3.1 Introduction

The ASR task has evolved quite dramatically in the last decades [75]. Noticeable
progresses have been made in the signal parameters extraction, the basic unit
selection and the word sequence modeling. Some of these steps have had more
impact than others. The speech signal encoding as Mel-Frequency Cepstral
Coefficients (MFCCs) [46], the use of HMMs to model the distribution of the
descriptors for each acoustic unit [59, 90, 151, 152, 154, 211, 219] and the prob-
abilistic computation of the likelihood of sentences [33, 34, 139, 181, 186, 222]
were major steps in this improvement.

Despite these efforts, the technology is not yet reliable enough compared to
human performances for the same task, especially in challenging sound environ-
ment. Results are tightly related to the recording conditions and the quality
and quantity of the training data.

Currently, the market leaders are global companies collecting and learning
from huge amounts of proprietary data.

DMs handle user’s inputs on a turn-by-turn basis. The unit of action, called
the DA, is the minimal effect a user can have on the dialog. Human-human
conversations are interleaved interaction turns from participants. Turns can
overlap in time and thus it is difficult to identify who has the floor, who is the
most important speaker and what is the relevant information to be extracted
from his/her/its inputs. In consequence, the first task of a human-machine
interaction manager applied to voice is to locate the start and end pointers at
the beginning, respectively the end, of a turn, i.e. define the boundaries of a
segment of speech so that it is the most relevant in the dialog context.
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Automatic classification and recognition methods are ruled by a principle
which says that increasing the number of symbols to be identified in the input
deteriorates the algorithm performances. Also, the more variations in the train-
ing, the worse the specificity of the method. In other words, the more a system
fits a cluster of data, the better is its recognition rate. On the other hand, a
restricted system does not generalize well, while a generic system can handle
more variations, although achieving lower accuracy. The following approach is
based on the assumption that the optimal method should use both a specific
system and a generic one and combine their outputs to get optimal results.

3.2 Automatic Speech Recognition: An Intro-
duction

3.2.1 Recording Speech

A speech signal, as recorded by a microphone, is an analog time-varying ampli-
tude related to the air pressure on the surface of the sensor. In order for an ASR
system to make hypotheses on the orthographic content of a speech signal seg-
ment, the waveform has to be digitized, analyzed and converted to a sequence
of acoustic parameter vectors [5]. Then the output of this parameterization
process can be matched against predefined models of acoustic units.

An analog-to-digital converter samples an analog signal to produce a discrete-
valued representation. The configuration of such a process defines the sampling
frequency and the output value range.

3.2.2 Parameters Extraction

Over the years, several parameter extraction techniques have been proposed
to value the distinctive features of a signal. The currently most widely used
method derives sequences of MFCC [46] vectors from a speech waveform.

The signal is first segmented based on overlapping frames then a windowing
is performed on every sample. The spectrogram is obtained by the application
of the Fast Fourier Transform (FFT), i.e. a computer implementation of the
discrete Fourier transform, switching the analysis from the time domain to the
frequency domain. Mel-frequency filter banks are applied to the resulting signal
representation. Finally, the coefficients are converted back to the time domain
via a cosine inverse transformation.

Figure 3.1: Mel-frequency cepstral coefficients computation chain
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MFCCs have well-known advantages:

• They give a good discrimination between components

• They are based on the actual human ear perception1.

• The coefficients are weakly correlated

They are however very sensitive to noise.

3.2.3 Search Graph

An ASR engine searches the best scoring path in a network of sound units. We
will consider here that the units of sound are phonemes, i.e. the smallest units
of sound. The search graph combines three KSs: the LM, the lexicon and the
set of AMs.

Figure 3.2: Search graph

3.2.4 Language Modeling

An LM defines the authorized combinations of words or symbols for a language.
It does so either based on a grammar which strictly defines the available com-
binations or with some probability functions trained from data, which give the
likelihood of a sequence [33, 34, 139, 181, 186, 222].

Context-free grammars

A CFG is formally defined as a tuple G = (S,N,Σ, R) where S is the start
symbol, N is the set of non-terminal symbols, Σ is the set of terminal symbols
also called the alphabet and R is the set of derivation rules.

Starting from S and applying the derivation from R, the process defines all
the available sequences of terminal symbols, from the alphabet Σ. The set of
those can be finite as well as infinite.

1The mel scale is a perceptual scale of pitches judged by listeners to be equal in distance
from one another.
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CFGs are well suited for small and grammatically simple languages such as
commands or code because they strictly define the symbol sequences. They
however can reach high levels of complexity and cannot be inferred from data
thus requiring intensive human labor. Moreover, for a NL spoken interaction,
an ASR engine should not be configured with them since they do not allow for
any deviation from the original static grammar.

Probabilistic context-free grammars (cf. 4.2.3)

PCFGs extend from CFGs with a probabilistic distribution attached to the
derivation rules. The sets of symbols Σ and N , including the starting one S are
kept. However, the likelihood of a derivation rule is an additional parameter
used to discriminate parse trees according to the overall computed likelihood.
The value is computed with:

P (T ) = P (r1)× P (r2)× ...× P (rn)

where P (T ) is the likelihood of the parse tree T and P (ri) is the probability
associated with the rule ri. T is built from the application of the rule 1 to n.

Since the derivation rule’s likelihood is computed from data, PCFGs encode
a small part of the domain knowledge. However, they can grow rapidly and
thus are unfit for large interaction scopes.

N-gram model

The current trend for Large Vocabulary Continuous Speech Recognition (LVCSR)
language modeling is to use n-grams [33, 34, 139, 181, 186, 222]. An LM based
on n-grams is made of the probabilities of words given the n−1 previous words.

This likelihood is computed from a domain-specific corpus of text in the
target language. The probability of a word w with respect to the n−1 previous
ones is naively computed with this formula:

P (wn|w1, w2, ..., wn−1) =
c(w1, w2, ..., wn)

c(w1, w2, ..., wn−1)

where c(w1, w2, ..., wn) is the count of the occurrences of the sequence w1, w2, ..., wn

in the training corpus.
The likelihood of a sequence of words w1, w2, ..., wk can then be estimated

with:

P (w1, w2, ..., wk) = P (wk|w1, w2, ..., wk−1)

× P (wk−1|w1, w2, ..., wk−2)

× ...

× P (w2|w1)

× P (w1)
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Preserving the whole history of words to compute the probability of the next
one is not efficient and may introduce some defects when the data available for
this particular sequence is scarce. To overcome the data scarcity and smoothen
the probabilities of an LM, n-gram LMs limit the size of the history to the order
n, i.e. only n− 1 words are kept. The estimation is thus:

P (w1, w2, ..., wk) = P (wk|wk−n+1, wk−n+2, ..., wk−1)

× P (wk−1|wk−n, wk−n+1, ..., wk−2)

× ...

× P (w2|w1)

× P (w1)

Injecting the 3-grams probabilities into the search graph, one obtains the
graph in Figure 3.3

Figure 3.3: 3-gram LM graphic representation

The prediction quality of a model, which is evaluated with the perplexity
measure, is highly dependent on the quantity of training data available and on
the correlation with the application domain.

3.2.5 Lexicon

A lexicon or pronouncing dictionary provides a decomposition of the words in a
language into acoustic units. LVCSR AMs are trained on a phoneme basis, i.e.
on the smallest units of sound.

Lexicons are built by experts in phonetics and are specific to a language.
They link the words and their distribution in the LM with the AMs.

Figure 3.4 shows the result of applying the lexicon to the previous search
graph.
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Figure 3.4: Acoustic unit search graph (LM’s probabilities have been omitted
for more clarity)

3.2.6 Acoustic Modeling

HMM-based AMs associate a generative HMM with each unit of sound [59, 90,
151, 152, 153, 154, 211, 219]. The model estimates the likelihood of phonemes
to be contained in a time-variant sequence of observation vectors.

Hidden Markov Model definition

An HMM is a tuple H = (S, V,A,B, π). S is the set of states S1, S2, ..., SN . V
is the vector space. A is the state transition matrix, whose elements are:

aij = P (qt+1 = Sj |qt = Si)

where qt is the state occupied at time t.
B is the observation symbol probability for each state:

bi(k) = P (Vk|Si)

where Vk is an element of V
π is the initial state distribution:

πi = P (qo = Si)

Based on the model parameters, one can compute the likelihood that such a
HMM generates an observation sequence O1, O2, OT where Oi is a symbol from
the vocabulary V .

HMM decoding

The purpose of decoding is to compute the likelihood of an observation sequence
to be generated by an HMM, i.e. P (O|A,B, π) where O = O1, O2, ..., OT is the
observation sequence, A is the state transition matrix, B is the observation
symbol probability for each state and π is the initial state distribution.
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Based on the forward-backward algorithm, the Viterbi procedure efficiently
computes the most likely path through an HMMwhich generates the observation
sequence.

For speech recognition, the HMMs generate sequences of descriptors. Each
model matches one unit of speech and thus one gets the likelihood of modeled
units making up the uttered sequence.

HMM training

In order to compute the parameters A and B for a given HMM, an iterative
training procedure takes place. The objective is to maximize the probabil-
ity of the best path in the HMM generating the training data, i.e. given the
set of observation sequences O, tune the parameters for the cumulative prob-
ability P (O|A,B, π) to be a maximum. This is achieved with Expectation-
Maximization algorithms which estimate the parameters so that the models
best fit the learning corpus.

Section 4.2.4 presents an additional usage of the HMMs.
In Figure 3.5, the phonemes have been substituted with their HMMs.

Figure 3.5: HMM search graph (LM’s probabilities have been omitted)

Merging the three KSs that are the LM, the AM and the lexicon, this is the
graph for the engine to search in.

3.2.7 Software and Tools

HTK

The Hidden Markov model ToolKit (HTK) [184, 219] is an open-source set
of publicly available tools. It was originally developed by the Department of
Engineering at the University of Cambridge.

The HTK is used to manipulate HMMs, which can be used for speech synthe-
sis and recognition, handwriting recognition, DNA sequencing and many other
applications. It consists of modules, libraries and tools developed in the C pro-
gramming language. The software supports both continuous mixture Gaussian
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distributions and discrete ones, which allows to create complex systems based
on HMMs.

Julius

Adapted from the Julius website’s homepage (http://julius.sourceforge.jp)

Julius [104, 105] is a high-performance, two-pass LVCSR decoder software for
speech-related researchers and developers. Based on word n-gram and context-
dependent HMM, it can perform almost real-time decoding on most current PCs
in 60k word dictation tasks. Major search techniques are fully incorporated such
as tree lexicon, n-gram factoring, cross-word context dependency handling, en-
veloped beam search, Gaussian pruning, Gaussian selection, etc. Besides search
efficiency, it is also modularised carefully to be independent from model struc-
tures, and various HMM types are supported such as shared-state triphones and
tied-mixture models, with any number of mixtures, states, or phones. Standard
formats are adopted to cope with other free modelling toolkits such as the HTK,
the CMU-Cambridge Statistical Language Modeling toolkit, etc.

The main platform is Linux and other Unix workstations, but it also works
on Windows. The most recent version is developed for Linux and Windows and
also has a Microsoft SAPI version.

Julius is distributed with an open licence together with source codes.
Julius has been developed as a research software for Japanese LVCSR since

1997. The work was continued under the IPA Japanese dictation toolkit project
(1997-2000), the Continuous Speech Recognition Consortium, Japan (CSRC)
(2000-2003) and currently in the Interactive Speech Technology Consortium
(ISTC).

Sphinx

Sphinx-4 [198] is a state-of-the-art speech recognition system written entirely
in the Java programming language. It was created via a joint collaboration
between the Sphinx group at CMU, Sun Microsystems Laboratories, Mitsubishi
Electric Research Labs (MERL), and Hewlett Packard (HP), with contributions
from the University of California at Santa Cruz (UCSC) and the Massachusetts
Institute of Technology (MIT).

Sphinx-4 started out as a port of Sphinx-3 to the Java programming lan-
guage, but evolved into a recognizer designed to be much more flexible than
Sphinx-3, thus becoming an excellent platform for speech research.

Sphinx includes features such as the live mode and batch mode speech recog-
nizers, capable of recognizing discrete and continuous speech and the generalized
pluggable LM architecture, which includes pluggable LM support for ASCII and
binary versions of unigram, bigram, trigram, Java Speech API Grammar Format
(JSGF), and ARPA-format FST grammars.
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3.3 The most common listening method

Figure 3.6 presents a schematic of the most commonly used listening method
for the current SDSs.

Figure 3.6: Most common listening method for SDSs

Here is how it works.

1. The user signal its intent to address the system via the press of a button.

2. The start-of-user-segment button is disabled while the recording is trig-
gered.

3. Depending on the method that is used, the system or the user marks the
end of the user speech segment.

4. The resulting speech segment is processed by the SDS.

5. Once the SDS has produced a response, it is played back to the user.

6. After the system segment is done the button is re-enabled, thus the system
gets back to its initial state.

In order to achieve a truly human-like listening, starting from this generic
method, there are four problematics to be tackled. The sequence of steps is the
following:

• Press-to-speak-button removal: the system gets a continuous audio stream-
ing

• Robust segmentation: the system gets segments of audio signal

70



• Noise filtering: the system gets only speech segments

• Intelligent attention selection: the system gets only speech segments that
are intended to the interaction with the interface.

In this chapter, the contributions of that thesis toward achieving a truly
continuous listening for the spoken interaction are presented.

3.4 CompanionAble Project Setup and Task

Within the CompanionAble consortium, the task at Institut Mines-Telecom was
to add a speech recognition ability to an overall ambient intelligence system.

To capture sounds, a wireless omni-directional CMT microphone had been
mounted on the “head” of a mobile companion robot [69]. The Speech/Sound
Analysis (SSA) module got the input signal from a wireless sound card provided
by the Austrian audio hardware producer AKG. The analog signal was sampled
at 16 kHz on 16 bits. A single orthographic hypothesis over the content of a
spoken utterance was transmitted to the central controller to be consumed by
the dialog management system implemented in the robot’s software.

Figure 3.7: CompanionAble’s architecture sample

The main trial sites were in Eindhoven in the Netherlands and Gits in Bel-
gium, which are Dutch-speaking and Flemish-speaking locations, making Dutch
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the trial language. This led to further developments and tests with this language.
Notice however that speech recognizers for English, French and Spanish were
built as well.

3.5 Speech Recognition Issues

A first prototype was built to experiment with the system. This enabled us to
point out some weak points of the system.

3.5.1 Acoustic Mismatch

The project’s target user group was dependent European senior citizens living
at home. The speech characteristics of this age category are different from those
of the younger population due to age-related physical and cognitive transforma-
tions [43, 66].

Acoustic phonemic HMMs trained on readily available transcribed-speech
databases, such as ESTER/ETAPE [62] (TV and radio broadcasts) for French
or the Corpus Gesproken Nederlands (CGN) for Dutch, do not fit well the speech
descriptor sequences produced by such users.

Consequently, a better matching has to be obtained to get an acceptable
recognition rate. This can be achieved by either retraining the HMMs from
scratch with elderly speakers recordings, or by adapting them with less data.

3.5.2 Distant Speaker

As previously mentioned, the sound-capturing device uses a head-mounted CMT
microphone on top of a mobile companion robot. The machine could move freely
into the user’s house and the SSA system was always “listening”. The user may
address the robot anytime and from anywhere within the broad omni-directional
recording range of the microphone. The distance to the speaker had a major
impact on the overall ASR performance due to the increase or decrease of the
signal’s amplitude [121].

3.5.3 Echo

The house spatial configuration induced that the user speech may be reverber-
ated depending on the location of the user and the companion robot. The sound
waves originating from the speaker’s mouth bounced off the floor, the walls, the
ceiling and large objects.

The captured signal was disrupted by other weaker echoed segments. The
added delay and noisy speech had a negative effect on the ASR performances.

Moreover, since the CMT microphone was mobile, pre-processing algorithms
to remove the echo were blind, i.e. they could not rely on accurate models of
the environment or assumptions about the recording conditions.
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3.5.4 Uncontrolled Background Noise

Issues related to the spatial location of the robot are not the only causes of
disturbances. Noise sources are plenty in a house. Media such as radios or
TV sets, electronic appliances such as washing machines, microwave ovens or
vacuum cleaners produce some when turned on. The noise from key shuffling,
doors opening/closing, running water, steps, coughs, glass breaking or rain on
windows has to be filtered out to analyze speech-only signals.

Among the methods that have been applied to remove these signal parasites,
one aims at modeling the noise and then discard it [199]. Another one puts
sensors near known sources of noise and removes the recorded signals from the
interesting ones [102, 103].

3.5.5 Controlled Background Noise

The noise produced by the robot (audio player, driving motors) is a factor that
can be somehow controlled, i.e. removed from the signal. Indeed, the system
“knows” both the content and the time of emission of these robot-originating
sounds. It then relates to the second method from the previous subsection to
cancel those recorded segments out.

3.5.6 Single Input Channel

The system employs a single microphone to record the environment through
a single channel in a single unknown mobile location of the house. Speaker
tracking methods or microphone array-based source separation algorithms can
not be applied.

3.5.7 System Attention

Even if an ideal clean environment is obtained in which only the speech signals
are analyzed, there is still the issue of getting the attention of the companion
robot. The system must collect clues as to know whether a detected speaker
is addressing the ambient intelligence, is on the phone, is listening to the TV,
to the radio or even talking to guests or caregivers. An unimodal, speech-only
triggering mechanism has to be integrated.

3.6 Primary Continuous Listening System

3.6.1 Architecture

Within the SSA system, the ambient sound signal is continuously analyzed
by two parallel modules: one that is able to detect and classify sound events
and another one which does the speech recognition part. Figure 3.8 shows
the parallel processing of these components whose communication is achieved
through the TCP/IP protocol. The speech recognition output goes through a
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similarity test, then it is filtered with the sound recognition system results in
order to reject hypothesis made from the analysis of non-verbal signal segments.
The recognized commands are sent to the CompanionAble home server using
the Simple Object Access Protocol (SOAP).

Figure 3.8: SSA system architecture

3.6.2 Signal Segmentation

The first task to carry out before attempting to recognize speech in a continuous
signal is to segment it. This process is based on the only 2 dimensions available
at that stage, which are the amplitude and the time.

The segmenter in that system places end markers according to a time delay
and a level threshold. When N successive windows, which have an energy level
below the threshold, are detected, the system stops the recording, sends the
last segment to be analyzed and starts a new one. N actually derives from a
measure of time expressed in milliseconds:

N = F × L

where F is the sampling rate and L is the length of the time delay (in
seconds).

3.6.3 Sound Classification

This module was conceived and implemented by the École Supérieure d’Ingénieurs en Infor-

matique et Génie des Télécommunications

The sound classification is a two-steps process [84]. It is the combination
of a detection module based on wavelet transformation and a hierarchical la-
beling system (noise/speech and sound classification) based on Gaussian Mix-
ture Model (GMM). The sound classes used for the CompanionAble trials were
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trained using sound recordings collected with CMT microphone in the exper-
imentation house. The system integrates five sound classes: fall of an object,
door bell, key shuffling, cough and claps. The sound classification is a pre-
processing of the speech analysis, filtering out signal segments labeled as noise.

To reduce the processing time, the two modules are running in parallel, thus
synchronization flags are needed. The sound module memorizes the three last
noise/speech segment labels associated with timestamps. Then the decision of
forwarding or rejecting the speech recognition hypothesis within the server is
effective on output pairs with matching timestamps.

The noise classification algorithm was initially evaluated on pre-recorded
data. The computed rate was approx. 80% valid. The speech/noise decision
was tested in the actual trial environment with an accuracy rate of 95%.

3.6.4 Speech Recognition

The end-user difficulty (even inability) to interact with a computing system
through traditional menu-based interfaces and touch screens motivates the de-
ployment of vocal user interfaces. Cognitive or motor-skills deficiencies could
drastically lower the system usability if it is not equipped with a distant speech
recognition ability.

Labs for practical experiments in the CompanionAble project were based in
the Netherlands ands in Flemish-speaking Belgium, thus the final HCI language
was Dutch.

Julius, developed at the Kawahara lab of Kyoto University [104, 105], was
our choice as a Speech recognition engine. As previously discussed, it is able
to process large-vocabulary search in real time, running a 2-pass algorithm.
The configuration of the engine consists of 3 KSs: an n-gram LM, a set of
acoustic HMMs and a lexicon. In addition, Julius parameterizes digital speech
segments on the fly according to an HTK-compliant parameter set. The en-
gine can concurrently process identical audio segments with several instances.
All those features made it the appropriate automatic speech recognizer for the
CompanionAble tasks.

The phonemic HMMs were trained on the CGN which contains 800 hours
of transcribed Dutch speech consisting of nearly 9 Million words. This is the
largest corpus for contemporary Dutch. Files are single speaker and multiple
speakers recordings of prompted or spontaneous speech.

3.6.5 Language Models Interpolation

The first version of the speech recognition module was based on a single n-
gram LM trained on a sub-part of the CGN corpus. The AMs were adapted to
fit the voice characteristics of the users using an Maximum Likelihood Linear
Regression (MLLR) method [70].

This system produced too much false positives, i.e. unintended commands,
when put to practical tests and the recognition accuracy was too low. In order
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to improve both the recognition and rejection rates, the approach, described
next, was implemented.

Frame-specific models

The dialog is designed based on a frame paradigm. Frames contain non-overlapping
sub-dialogs. Transitions between states are triggered by the robot’s inter-
nal states/variables combined with the user inputs (vocal commands, buttons
or/and sensor readings). A frame is enabled, i.e. available, when at least one
of its activation conditions is fulfilled; these are the same variable types as the
intra frames ones. Thus one can build a dialog hierarchy: the root frame, which
is initially enabled, contains all the activation events to enable the sub frames,
and intra-frame terminal states allow the sub frames to return the control back
to the main frame.

Figure 3.9: Dialog hierarchy illustration

The dialog sub-frames have been clustered into eight classes. Each class
lists all the vocal commands which are allowed and can be interpreted by the
compound frames. A LM is built from those lists. A 9th LM is trained on the
activation commands and is associated with the main frame. Since the speech
recognition module does not receive feedbacks about the current state of the
dialog, nine parallel instances of the recognition engine are decoding the sound
stream and deliver transcriptions.

This LM selection process improves the recognition rates for the applica-
tion commands but does not solve the rejection issues for out-of application
sentences.
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Models weights

Section 3.6.6 will discuss the proposed similarity test. It compares the recogni-
tion results from each of the nine LM-specific engines with those from a general
recognizer. The general recognizer LM is learned from the CGN. Moreover, one
has to make sure that the general ASR engine recognizes the sequences of words
contained in the specific LMs. One needs to add the whole set of commands in
the training corpus of such a general model. We introduced a weight for these
additional sentences, which has been experimentally defined to be 1000: the
commands were added 1000 times in the training corpus.

The test is not applied to a single general-engine hypothesis. We found that
it is better to use the n-best ones as it improves the recognition rate:

• One hypothesis is produced by each specific decoder based on the size of
their LM.

• Several hypothesis (3 in our application) are produced by the general
decoder and then fed to the similarity test

3.6.6 Similarity Test

The similarity measure between two recognizer hypotheses is an extended Lev-
enshtein distance. This is the total count of needed operations (substitutions,
deletions, insertions) to transform a sequence of words into another one. It is
furthermore normalized by the count of words in the sequences.

NormLev(Ref,Hyp) =
Lev(Ref,Hyp)

word count(Ref)+word count(Hyp)
2

For instance:

NormLev(“I want to send a message”, “can you send a message”) =
3

6+5
2

= 0.55

Depending on the relative value of this distance, given a threshold, the hy-
pothesis recognized by a speech recognition instance set with a specific LM is
validated or discarded. This test is useful to:

• Confirm a good recognition hypothesis: a well recognized command, ac-
cording to both the general decoder and the specific decoder is validated.
The specific-decoder hypothesis is sent

• Reject a wrong hypothesis: a command recognized only by the general
decoder is rejected

• Correct a partially correct hypothesis: a command recognized by a specific
decoder while the general decoder outputs a close match, is corrected. The
specific-instance hypothesis is sent
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Figure 3.10: Multiple-instance ASR decoding and similarity test

3.6.7 Noise-labeled Segments filter

A LVCSR recognition engine such as Julius searches the best match between the
acoustic observation vectors and a sequence of words. One may add a garbage
model, which would be the default match to unknown observation sequences or
sub-sequences. In our system however, every input is matched with a sequence
of words. Thus, noise is processed as if it was speech and a word sequence
hypothesis is returned. The speech/noise labeling prevents this to be propagated
to the DM by discarding speech recognition results that occurred while the
segment was classified as noise.

3.6.8 Attention Level

The DM designers offered to lower the false-positive rate with a dynamic trigger-
word detection mechanism. A detection of the keyword in the audio stream
increases the attention level of the DM, which otherwise steadily decreases over
time. When the level is positive, it triggers the analysis of the recognition
results.

The attention level is initially null, the speech recognition engine perma-
nently processes the audio stream and produces text hypotheses. As long as the
trigger word can not be extracted from those text segments, the transcriptions
are ignored by the DM. As soon as the attention value is greater than zero,
a dialog starts and the manager processes the received transcribed commands.
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While the dialog is sustained between the user and the system either by repeat-
ing the trigger word or by moving through the dialog flow, the attention level
increases. Silences and out-of-scope utterances (rejected by the SSA system),
on the other hand, lower the level. If the floor value, i.e. zero, is reached, the
analysis of the inputs stops.

The selection of the attention word is important for the stability and re-
liability of such a mechanism. It has to be easy for users to remember but
should be distinct from any other word that may be detected in the background
environment or in casual conversations.

3.6.9 Acoustic Adaptation

Acoustic adaptation methods have been studied at the earliest stage of the
project. Two adaptation methods were compared: the Maximum A Posteriori
(MAP) [63, 110] and the MLLR [27, 70]. A LM has been trained on a corpus
of 57500 sentences derived from practical experiments and paraphrasing. The
speaker was the same for the whole study. She had been previously recorded
and the audio files were played through a loudspeaker.

Only 10 phonetically balanced sentences were used to train the system, the
MLLR adaptation was the technique for getting the best results. Without adap-
tation, 60% of the transcriptions are correct. This rate reached 70% with MAP
adaptation and 73% with MLLR adaptation.

Users went through a preliminary MLLR adaptation round before they used
the system.

3.7 Evaluation

3.7.1 Expected Improvement Axes

The improvement over a basic ASR system that were expected to be brought
by this setup are two-fold.

The first axis aims at increasing the recognition rate of the system for in-
domain utterances. The reliability is itself two-fold. It includes getting a good
rate while attempting to transcribe in-application commands and automatically
reject out-of-scope utterances to avoid misleading the DM.

A second objective is to estimate the degree with which a segment has been
intended to the SDS. Since the listening is continuous, the system needs to
select the speech segments that are addressed to the machine and discard all
the others.

3.7.2 Improving the ASR Reliability

The reliability is optimized thanks to the combined action of the speaker adapta-
tion, the threaded speech recognition, the sound classification and the similarity
test. This last mechanism allows for:
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• validating in-application utterances

• discarding out-of-scope hypotheses

• correcting partially recognized sentences

3.7.3 Detecting the Intended Segments

The attention level, which gives the estimate of the intention of the user to inter-
act with the machine, is computed from the detection of a keyword, the dialog
progress measure, the threaded speech recognition processes and the similarity
test.

3.7.4 Evaluation Corpus

A test corpus with 5 speakers has been recorded in the demonstration building.
Each of them uttered 58 sentences: 10 phonetically-balanced sentences for acous-
tic adaptation, 20 in-application commands, 22 out-of -application commands
and 6 partial commands. The partial commands were obtained by deleting one
or more words in in-application commands.

3.7.5 Noise-free Evaluation

Objectives

The first phase was intended to set the value of the commands’ weight in the
general model and the number of hypothesis from the general recognition process
used in the similarity test.

Setup

The evaluation setup is shown in Figure 3.11. Audio test files are played through
a loudspeaker and recorded by a CMT microphone. A second loudspeaker was
used in the second phase of the experiment to simulate noisy conditions. The
loudspeakers were placed on top of each other. The sound level was set to be
about 60 dBA which is the level of an average speaker standing one meter away
from the recording device.
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Figure 3.11: Evaluation setup

System configurations

Several system configurations have been experimented. The most relevant ones
for the evaluation are presented in the following tables. Here is a quick descrip-
tion of each configuration.

• Baseline + adaptation: the baseline system is made from the raw Julius
speech recognizer whose acoustic models have been adapted to the test
speaker’s voice characteristics with the MLLR method using 10 phonet-
ically balanced utterances. Only the best hypothesis is used to compute
the evaluation measure.

• Baseline + adaptation + similarity test (specific LMs’ weight: 1; general
decoder hypothesis: 1): in addition to the previous system baseline setup,
the similarity test (cf. 3.6.6) is applied to the speech recognizers’ outputs.
The specific LM’s weight is the weight of the in-application commands
added to the general-domain language model training corpus. Only the
best hypothesis from the general decoder is input to the similarity test.

• Baseline + adaptation + similarity test (specific LMs’ weight: 1000; gen-
eral decoder hypothesis: 1): the difference between this configuration and
the previous one is that, in that case, the commands are added a thousand
times to the general-domain language model training corpus. Hence, the
specific LMs’ weight is 1000.

• Baseline + adaptation + similarity test (specific LMs’ weight: 1000; gen-
eral decoder hypothesis: 3): in the last configuration, the similarity test
gets 3 hypotheses from the general decoder, the 3 best ones. As before,
the in-application commands’ weight is 1000.

Metrics

Two metrics are presented, the sentence error rate:

sentence error rate = 100×
count of badly recognized sentences

count of sentences
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And the sentence false-positive rate:

sentence false-positive rate = 100×
wrongly validated sentences

count of sentences

Results

System
Sentence error

rate

Sentence
false-positive

rate
Baseline + adaptation 85% (±7%) -

Baseline + adaptation + similarity test
(specific LMs’ weight: 1; general

decoder hypothesis: 1)
80% (±8%) 10% (±6%)

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 1)
45% (±10%) 0%

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 3)
15% (±7%) 0%

Table 3.1: Sentence error rate and false-positive rate for in-application com-
mands

System
Sentence error

rate

Sentence
false-positive

rate
Baseline + adaptation 91% (±5%) -

Baseline + adaptation + similarity test
(specific LMs’ weight: 1; general

decoder hypothesis: 1)
100% 0%

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 1)
100% 0%

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 3)
100% 0%

Table 3.2: Sentence error rate and false-positive rate for out-of-application com-
mands
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System
Sentence error

rate

Sentence
false-positive

rate
Baseline + adaptation 83% (±13%) -

Baseline + adaptation + similarity test
(specific LMs’ weight: 1; general

decoder hypothesis: 1)
67% (±17%) 0%

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 1)
33% (±17%) 0%

Baseline + adaptation + similarity test
(specific LMs’ weight: 1000; general

decoder hypothesis: 3)
33% (±17%) 0%

Table 3.3: Sentence error rate and false-positive rate for partial commands

Only 15% of the in-application vocal commands were recognized by the base-
line engine whose LM had been trained on the CGN. The featured similarity
test improved these results by up to 20% but one could notice the increase of
the false-positive rate. The best system could recognize commands with 85%
accuracy and never gave false-positives. Every out-of-application sentence was
rejected by the system. Partial commands were most of the time validated.

3.7.6 Evaluation in noisy conditions

Objective and setup

In a second phase of the evaluation process, the noise robustness was tested. A
second loudspeaker placed on top of the first one played various ambient noises.

Results

Noise type Sentence error rate Sentence false-positive rate
Washing machine 26% (±9%) 11% (±6%)
Dutch speaker 47% (±10%) 11% (±6%)

Music 53% (±10%) 5% (±6%)
Crowd 58% (±10%) 11% (±6%)

Table 3.4: Sentence error rate and sentence false-positive rate for in-application
commands
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Washing machine 100% 0%
Dutch speaker 100% 0%

Music 100% 0%
Crowd 100% 4% (±4%)

Table 3.5: Sentence error rate and sentence false-positive rate for out-of-
application commands

Washing machine 60% (±17%) 0%
Dutch speaker 40% (±17%) 0%

Music 80% (±14%) 0%
Crowd 40% (±17%) 0%

Table 3.6: Sentence error rate and sentence false-positive rate for partial com-
mands

As expected, the performances dropped. The recognition rate was lower as well
as the rejection rate.

3.8 Another System for Hand-held Devices

3.8.1 Introduction

The previous method may not be optimal for other setups. Such became ap-
parent as later on a system based on spoken interaction posed additional, so far
unseen challenges (and offered alternative solutions).

3.8.2 Listening Context

The vAssist project aims at providing a set of services targeting elderly people
mediated by a vocal interaction. The endpoints for users to access the system
are hand-held devices such as smartphones, tablets, etc.

The vAssist architecture is based on a remote-server implementation of an
SDS, which itself is reliant on other distant services. The user interface is a
graphical application which enables users to place calls to the SDS and re-
ceive/send asynchronous messages from/to a data bus.

Some of the issues mentioned earlier are not relevant to this setup. These
include the speaker’s distance, the echo, and the attention of the system. Indeed,
we made the assumption that a user would be, when connected to the server-
based system, close to the microphone and involved in the interaction. The
background noise is also assumed to be weak given the microphone limited
range of the portable devices.

A user, however is only able to open and close the communication channel
to the SDS, he/she has no means of controlling the listening. In calls such is
left entirely to the system.
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3.8.3 Architecture

The listening system, i.e. the set of components making the decision whether a
transcription hypothesis should be validated or rejected spans from the recorder/seg-
menter to the edge of the DM. The modules are those within the black border
in Figure 3.12

Figure 3.12: Listening system architecture

The speech recorder is responsible for recording and segmenting the signal
before the ASR service makes hypotheses about the content of each segment.
The SP, the SURR and the DAM define the core of the NLU system (chapter
4).

These components implement some functionalities to estimate the relevance
of a segment and thus reject it or process it. DAs are produced out of this inner
system when relevant to the current dialog context.

3.8.4 Signal Segmentation

The way the segmenter splits the signal is identical to the method detailed
earlier, except for the addition of a terminal binary decision.

The module, when recording, measures the signal amplitude. For a segment
to be started, this value has to exceed the threshold defined in dB. In order to
end a segment, the algorithm analyses the signal and cuts it when it can spot a
period of S seconds during which the amplitude of all the frames of the signal
are below the pause level.

Moreover, a minimum duration parameter has been defined. Any segment
whose length is less than it is rejected. The idea of this mechanism originates
from the fact that, when connecting to the SDS with a smartphone, we observed
that some users, including us, manipulate the client device while interacting. It
produces noises which have the property of being short bursts of sound that
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are processed by the system. Implementing this minimum duration condition
proved to be an efficient way of “cleaning” the captured signal.

The parameters of the segmentation are dynamic, i.e., they can be changed
when the segmenter is not recording. This gives the possibility to update them
in real time and learn them from the on-going interaction. However, the here
presented work does not present results of such experiments.

3.8.5 Confidence Scoring

The second control mechanism for filtering the segments is in the ASR module.
This service makes hypotheses about the content of segments. To achieve that,
the signal is parameterized and the sequence of descriptor vectors are matched
against AMs. The confidence score reflects how similar the segment to be rec-
ognized is to a modeled word sequence [96, 97].

The ASR engine returns an n-best list of transcriptions ranked according
to the computed score. Hypotheses whose value is below the threshold are
discarded. They are, however, not completely ignored but rather converted to
a non understanding SF, which is passed on to the next module in the SDS.

3.8.6 Semantic Appropriateness

In a dialog between a human and a machine, the purpose of the NLU component
is to associate a DA (unit of dialog move) to the user input.

A continuously listening interface attempts to interpret every recorded speech
segment. However, the conversion to a DA may not be obtained, depending on
the user input and/or the current dialog state.

The first transformation applied to the transcribed utterance is the seman-
tic parsing. This is a partial one, i.e. only parts of the sentence are labeled
with semantic concepts. The first control mechanism to remove an incorrect
utterance is then to reject any input from which no SF can be built. Actually,
the system produces a default empty SF for such cases. This to enable error
recovery mechanisms.

Then the SURR processes the resulting SF to contextualize it. Here again,
if no suitable frame can be obtained from the algorithm, an error message is
passed on to the next component.

The last component a transcribed hypothesis goes through before entering
the DM is the DAM. This module, tightly joined with the DM, has access to
the dialog state maintained in the SDS core. From that knowledge, the DAM
defines a set of DAs that, in the current situation, have an effect on the dialog
evolution. Matching an SF with a DA is straightforward when the latter is
available. Whenever an SF can not be converted to a DA included in the DAM-
made set, it triggers a non understanding error. It means that either the system
misinterpreted the user utterance or the user request is not available at that
point.

Thus, the semantic appropriateness of the transcribed speech is tested, not
only at the acoustic and linguistic level but also through semantic analysis.
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These checking mechanisms reinforce the robustness of the overall input pro-
cessing system.

3.8.7 Error Recovery

Recovering from errors implies several tasks: detecting the errors, tracking the
error source, automatically resolving the mistakes or, in some cases, signaling
the error and guiding the user to recovery [80].

We have seen previously that the input processing pipeline implements some
milestone checks to reject a signal segment at several abstraction levels (acoustic,
linguistic, semantic, dialog). It has also been mentioned that the erroneous
inputs were not completely rejected but actually generated SFs whose goal is
“non understanding”.

The SURR keeps track of these SFs. When three successive non understand-
ings occur, the two first ones are ignored, i.e.the SURR stops the processing and
reactivates the listening. This is to prevent the system to produce error mes-
sages too often when recording out-of-scope interaction turns, which may not be
intended to it. In that, ignoring two errors out of three successive ones appears
less annoying to the user. Two is simply an arbitrary number and could easily
be changed.

Whenever a non understanding frame enters the DM, the triggered dialog
contains one turn: it signals the user that an error occurred and tries to give
some clues about how to recover from it. Clues are the best hypothesis of
the ASR, the dialog state in human-readable form and what is available and
expected in that state. The system’s turns include them progressively. They:

1. signal that a non-understanding occurred: “I didn’t get that”

2. signal that a non-understanding occurred including the best ASR hypoth-
esis: “I heard <best hypothesis> but I can not understand it in this
context”

3. signal that a non-understanding occurred and propose some utterance
templates to the user: “I cannot understand that. Try to say <template
1> or <template 2>”

3.8.8 Multiple Hypothesis Testing

Often, what we mean to say can be transcribed in different ways. The sur-
rounding context (sentences or words) can help an ASR engine to select the
right word sequence. This statistical information is encoded within the LMs.
Moreover, in a dialog, there is an iteratively built shared interaction context,
the user turn may be very short and thus not include much clues about the
correct transcriptions to produce.

As an example, in French, “10 heures” which means “10 hours” or “10
o’clock” is pronounced the same as “Deezer”, a French music streaming website.
For instance, a user utterance containing only “10 heures”, in response to a
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starting point request, produces a non-understaning SF when transcribed as
“Deezer”. However, looking at the n-best hypotheses from the ASR, one can
see that the correct transcription is ranked second or third.

The platform processes up to seven hypotheses from the same speech seg-
ment. If the best one can not be associated with a DA in the current context,
the second one in the list is tried, and then the third and the fourth one until
the last hypothesis of the initial set. If the system gets to the end of the list
without finding an appropriate DA, an error frame is produced.

“10 heures” is now always understood (when in the right context), whatever
the first hypothesis is.

3.9 Evaluation

Similarly to the first setup, this second system for hand-held devices have been
experimented with real users.

3.9.1 Introduction

Two listening methods have been experimented with, along the course of the
vAssist project.

The first experience session took place in Fall 2013 in Paris, France and in
Vienna, Austria, early in the development process. The goal was to estimate
the usability and validate the functionalities of the system in a user-centered
manner. The setup included a WoZ which replaced the components which were
not developed at the time.

The second session started in Spring 2014 based on a fully automatic sys-
tem. The goal was to validate the final version of the system in the lab before
offering it to actual users for an extended period of time (several months) in an
uncontrolled environment.

3.9.2 First Setup

Figure 3.13 shows the setup for the first experimental session.
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Figure 3.13: First setup

The location was the experience room of the lab. The noise was limited to
the one produced by people inside the room. The user was facing the laptop
displaying the press-to-speak button and integrating the microphone and two
speakers. The facilitator was seated next to the experimenter.

The WoZ operator, who was outside the room, received the user’s utterances
as transcribed by the ASR service and created the SF expressing the intent on
the fly. This data structure was sent back to the automatic system which contex-
tualized SFs, managed the dialog, generated and synthesized spoken responses.

The recommendation to the user was to click on the press-to-speak button
before uttering commands. The button label then became “Listening...” until
the signal amplitude fell below the threshold for long enough to be detected
as a silence. Past this delay, the listening was stopped and the button showed
“Processing...”, then the system played a response and the button was made
available again.

3.9.3 Observations

The main issue with this setup was the required button press. Elderly users
often forgot to activate the listening, which was harmless for the system, but
quite frustrating for the human speaker. However, they quickly got used to
trigger the recording after a few turns.

The button was “locked” while the system was processing the inputs and
playing replies. This added to the frustration of the user and to the feeling that
the system was slow. Actually, most of the speed reduction of the system came
from the WoZ latency and the Internet connection quality.

Intra-utterance pauses were also an issue in this setup. Users were thinking
about what they were saying while speaking, which increased the silence be-
tween words. They were detected as the end of utterances and thus led to non
understandings or partial ones.
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3.9.4 User Feedback

In post-experiment interviews, users expressed their satisfaction with the listen-
ing control after they remembered to press the button.

The information displayed on the button was not always noticed and users
complained about how non-informative the SDS was about its internal status.

3.9.5 Second Setup

The second experiment session was located in the same room. The SDS was
fully automatic although a developer was available to monitor it and guide the
user when he/she had difficulties interacting. Figure 3.14 summarizes the setup.
The listening control was left for the system to manage. The user was facing
a wireless portable speaker, which was similar to a bluetooth hands-free kit for
phones.

Figure 3.14: Second setup

3.9.6 Observations

In comparison to the strict sequencing of the dialog in the first experiments, the
second setup showed more naturalness in the turn taking. It was quicker and
the usage learning curve was not as steep.

3.9.7 User Feedback

The apparent interaction control from the user point of view is nearly null.
Users requested some sound markers or graphical clues to inform them about
the system state.

Task easiness Perceived ease in performing a task is considered an important
factor influencing user experiences when interacting with a given technology or
system [197]. The ease or difficulty of the task was measured by a Single Ease
Questionnaire (SEQ) right after participants finished it. The SEQs rely on a
seven-point scale that ranges from 1 (very difficult) to 7 (very easy).

As shown by the boxplots in Figure 3.15, most of the VUI Tasks were per-
ceived to be rather easy by participants, independently of the considered setup
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(all median SEQ scores were equal or above 4). “Entering sleep data” was de-
scribed as more difficult than other VUI tasks; more issues in vocal interaction
occurred during this task, independently from the task itself. Regarding the
touch-only tasks, participants perceived them as more difficult than the speech-
based tasks (all median SEQ scores were equal or under 4).

Figure 3.15: Result of the SEQ

Usability The System Usability Scale (SUS) was employed to measure the
usability of the entire vAssist prototype system. SUS scores fall between 0 and
100, the higher the score the better the overall usability. Scores below 50 are
typically considered not acceptable [172]. The SUS scores for Austria and France
were 68 (sd = 17.2) and 70 (sd = 11.5), respectively. Following Sauro and Lewis
[172], who suggest classifying SUS scores according to American school grades
(from A [=excellent] to F [=failure]), the Austrian SUS-score equals grade “D”
and the French SUS-score grade “C”. This indicates the need for improvement
of the Apps used within vAssist in terms of usability for both countries.
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Figure 3.16: Result of the SUS

Speech assessment The Subjective Assessment of Speech System Interfaces
(SASSI) questionnaire was employed to measure the interaction quality of the
speech-based vAssist services. The SASSI is a tool to evaluate speech-based
interfaces [83]. Users are presented a series of statement, which they grade
according to their agreement with them, on a scale from 1 to 7. The analysis of
the questionnaires provides developer with an assessment of the system along
several axes such as the easiness, the friendliness, the speed, etc.

The SASSI scores for Austria are summarized in Figure 3.17, those for France
in Figure 3.18. The higher the values on a subscale, i.e. “Response Accuracy,
“Likeability”, “Cognitive Demand”, and “Speed”, the more participants agreed
that the system performance was good as opposed to bad (vice versa for lower
values). Note that the SASSI scores reported based on only those tasks where
speech-based interaction was enabled. For the Austrian sample, the results
indicated that both “Performance Accuracy” and “Speed” were judged to be
neither good nor bad, i.e., neutral in agreement, and that “Likability” and
“Cognitive Demand” were judged to be fair, i.e., slight agreement.
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Figure 3.17: Result of the SASSI for Austria

For the French sample, the results indicated that “Likeability” and “Cog-
nitive Demand” were judged to be fair, i.e. slight agreement. In other words:
participants appeared to like the system and were not overwhelmed by its cogni-
tive demands. By comparison, “Response accuracy” and “Speed” were judged
to be neither good nor bad, i.e. neutral in agreement.
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Figure 3.18: Result of the SASSI for France

Overall the likability and the cognitive demand were judged as good accord-
ing to the SASSI. The average evaluation results were, respectively, 5.28/7 and
5.15/7.

3.10 Conclusion and Future Work

In this chapter, two methods for continuous listening applied to SDSs were
presented.

The first method was isolated within the system. Thus, while the SSA had
the knowledge of the application domain, there was no real-time feedback to
augment the recognizer KSs nor any context inclusion in the semantic represen-
tation of the user’s intent.

Also the second method, i.e. the method tested with a hand-held device,
suffered from the lack of control on the client side. The ability to set the volume
level and to mute/unmute the microphone (pause the call) were not available
neither was the multi-modality feature.

Overall, the automatic speech recognizers are analyzing the “raw” signal.
Some signal processing algorithms could have been applied in order to “clean”
the signal from the ambient noise or to normalize it, thus reducing the effect of
the speaker’s distance on the signal amplitude.

In the mobile robot setup, the way the sound was captured was far from
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optimal. Some experiments led by other teams working in the domain showed
that the recognition rate benefits from the use of several microphones located
in strategic spots associated with an appropriate selection algorithm [102, 103].

Additionally, the CMT developers worked on a speaker tracking feature
based on the three directional microphones available on the device.

The sounds/speech analysis system was pushing messages on a server which
every devices or services in the house were connected to. Making use of this
real-time information flow would definitely have helped in the implementation
of a more reliable sound processing system.

The second setup, which specifically targets hand-held devices, is currently
the method used in the vAssist project, so are the methods exposed next, for
the interpretation of the user utterances and the modeling of dialogs.
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Chapter 4

A Sub-system to Map
Natural-language
Utterances to Situated
Parameterized Dialog Acts

4.1 Introduction

The NLU component of an SDS acts as the link between the wide informal real-
world language space a user speaks in and the well-structured messages that a
computing machine can process [136, 196]. Whether its inputs are transcription
hypotheses from an ASR engine or typed on a keyboard, the automatic system
needs to convert the inputs into structures bearing the meaning or the intent of
the user in order to “understand” her/him. An NLU system produces DAs for
the DM to work with [168].

Several methods have been used to convert either a word sequence, a word
lattice or a (ranked) set of sentences to such meaningful data structures [9, 10].
There is however no universal agreement regarding the kind of data an NLU
system should produce and the data type it should take in [2, 160].

While the process is uni-directional, from NL to meaning representation, its
algorithm integrates and combines the information from several sources into the
algorithm.

This chapter provides an overview of the issues and challenges the NLU
domain currently faces. The platform introduced earlier integrates a set of
inter-connected components to transform NL spoken utterances to DAs, the
unit of dialog, so that the DM may understand the user and react accordingly.
Since the NLU is not a single piece of software but a set of independent services,
each one of them will be described in a specific section.

96



4.2 State-of-the-art Methods for NLU

Over the years, many techniques to interpret the content of the speech signal
have been proposed [45, 48]. This section presents a selection of the state of the
art in these techniques.

4.2.1 Keywords Spotting

Early NLU systems based their analysis on keywords [48, 204]. The inputs’
textual content was searched for words which, by themselves, defined the intent
or the signification of the user’s turn.

The keywords spotting method limits the size of the application domain.
Indeed, the overlap between utterances has to be minimal and the keywords
have to be manually defined.

4.2.2 Context-free Grammars

Definition

A Context-Free Grammar (CFG) [53, 132, 201, 202, 203] is a tupleG = (S,N,Σ, R),
where:

• S is the start symbol

• N is a set of non-terminal symbols

• Σ is a set of terminal symbols, also called the alphabet

• R is a set of derivation rules

Given a terminal symbols sequence, drawn from Σ, the objective is to build
a parse tree, whose root is S, applying the derivation rules.

Parsing algorithms

The derivation algorithms are characterized along two axes: the parsing direc-
tion and the priority.

The next paragraphs will be based on the following CFG instance:

• S = P

• N = {P, V, C,D,N, PP} (P = Phrase, V = Verb, C = Complement, D =
Determiner, N = Noun, PP = Preposition)

• Σ = {the, cat, dog, bird, sleeps, runs, eats, on}

• R = {

P → SV | SV C

S → DN
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C → S | PPS

D → the

N → cat | dog | bird

V → sleeps | runs | eats

PP → on

}

Let us use the above algorithm and try to obtain a parsing for the terminal
symbols’ sequence “the cat sleeps”, applying the grammar.

Top-down leftmost parsing

Starting from the start symbol, the algorithm applies the first derivation rule
available. For instance, the first rule is P → SV .

The next table details the top-down leftmost parsing steps for the terminal
symbols’ sequence: “the cat sleeps”. The algorithm attempts to expand the
tree applying the leftmost derivation rule in R until it reaches terminal symbols
from Σ. If a suitable tree can not be found, a backtracking mechanism tries out
alternative rules.
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Applied derivation rule Stack state Parse tree

Start symbol: P

P → SV

S → DN

D → the

N → cat

V → sleeps

Table 4.1: Example of top-down leftmost parsing of the sequence: “the cat
sleeps”
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Top-down rightmost parsing

In the case of a rightmost algorithm, the resulting parse tree is identical. The
applied sequence of derivation rules is:

P → SV

V → sleeps

S → DN

N → cat

D → the

Bottom-up leftmost parsing

A bottom-up parsing algorithm applies the derivation rules from the symbols’
sequence to the start symbol. From the same example sequence, one can build
the following tree:

Top-down rightmost parsing

One obtains the same parse tree using a rightmost priority. The sequence of
rules to apply is:

sleeps → V

cat → N

the → D

DN → S

SV → P
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Advantages and drawbacks

CFGs are appropriate to quickly specify a small set of utterances from a formally-
defined language. However, the hand-crafting requirements as well as the in-
flexibility of the parsing restrict their usage.

4.2.3 Probabilistic Context-free Grammars (cf. 3.2.4)

Probabilistic Context-Free Grammars (PCFGs) [68] extend from the CFGs with
the addition of the uncertainty in the parsing and a method to resolve ambigu-
ities that may occur in the selection of derivation rules.

The definition of a PCFG is similar to the one of a CFG. It’s a tuple G =
(S,N,Σ, R) where:

• S is the start symbol

• N is a set of non-terminal symbols

• Σ is a set of terminal symbols, also called the alphabet

• R is a set of derivation rules

Additionally, each derivation rule has an associated probability and, for the
same left symbol, all the probabilities sum up to 1.

An example of such probabilistic rules, adapted from the previous example
would be:

R = {

P → SV (0.5) | SV C(0.5)

S → DN(1)

C → S(0.3) | PPS(0.7)

D → the(1)

N → cat(0.5) | dog(0.25) | bird(0.25)

V → sleeps(0.5) | runs(0.2) | eats(0.3)

PP → on(1)

}
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Parsing

The derivation algorithms are the same as the CFG’s. Additionally, when more
than one parse tree can be built for a sequence of terminal symbols, the likeli-
hood of each one of them is computed with:

P (tree) = P (R1)× P (R2)× ...× P (Rn)

Where P (tree) stands for the overall probability of a parse tree, P (Rx) is
the probability associated with the derivation rule x and tree results from the
application of the rules R1 to Rn.

The tree with the highest overall probability is selected.

Learning

The probability of the rules is learned from an annotated corpus. The following
formula applies:

P (X → Y ) =
c(X → Y )

c(X →?)

Where P (X → Y ) is the probability of the rule that derives Y from X,
c(X → Y ) is the count of occurrences of that rule in the annotated corpus and
c(X →?) is incremented every time the symbol X is expanded in the training
source annotation trees.

Advantages and drawbacks

The extension of the CFGs with stochastic rules does not alleviate the need
for handcrafting the grammar components. While the probabilities are learned
automatically, making the method more powerful, the burden of creating the
initial grammar and annotating a set of examples hinders the process.

4.2.4 Hidden Markov Model

Chronus [144, 145], a parsing system developed at the AT&T Bell laboratories,
proposes to apply HMMs to the semantic labeling task [12, 178]. The HMM’s
hidden states define the semantic labels and generate word observations.

A description of the HMMs is included in section 3.2.6. Figure 4.1 illustrates
the method applied to semantic parsing.

102



Figure 4.1: Illustration of semantic parsing using HMMs

Learning

A corpus of labeled natural-language word sequences is provided to train the
model. The annotations are a semantic label, i.e. an HMM state, for each word.

The forward-backward algorithm defines the HMM’s parameters so that it
maximizes the likelihood of the dataset.

Decoding

As for any other HMM-based decoder, the Viterbi algorithm efficiently searches
for the most likely sequence of hidden states in the HMM that produces the
observation sequence, i.e. the sequence whose overall probability is the highest.

Advantages and drawbacks

Such a paradigm enables a model to be learned from annotated data. Hence,
actual manual work is reduced to the collection and the annotation of a corpus.

However HMM-based parsers build flat trees which do not catch distant
dependencies. Moreover, especially in the case of spontaneous speech, a full
parsing, where every word is associated to a label, does not generalize well.
Adding filler words to the training corpus improves the scope of the parser.
Still, we argue here that the partial parsing of utterances is more appropriate
for NL SDSs.

4.2.5 Hidden Vector State Model

The HVS model extends the HMM-based parser [76, 77, 78, 180]. Since the
former lacks a hierarchical labeling ability, the HVS model aims at improving
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it such as to allow a multi-level parse tree to be generated.
A parse tree can be represented as a sequence of vectors built from the

chains of labels, from the preterminal one to the root one. An example of such
a sequence is shown in Figure 4.2 with the corresponding tree.

Figure 4.2: Parse tree representation as a sequence of vector states (source: [76])

SS, DUMMY, RETURN, TOLOC, ON, etc. are semantic concepts. For
instance, SS is the sentence start marker, SE is the sentence end marker, RE-
TURN is the return trip information, TOLOC is a location concept, etc.

The vectors encode a sequence of stack states. Therefore, the transitions
essentially use two operations: popping concepts out of the stack and pushing
some in.

Consequently, a corpus can be annotated to train an HVS model, i.e. an
HMM whose hidden states are semantic label vectors generating words. Such a
model is then defined by:

• W = w1, w2, ..., wm a set of words

• C = c1, c2, ..., cn a set of vectors of concepts ci = [ci[1], ci[2], ..., ci[Di]]
where Di is the size of the vector ci. These are the model’s states.

• A = a11, a12, ..., ann is a set of state-transition probabilities aij = P (cj |cj)

• B = b1, b2, ..., bn a set of output probability distributions bi(wx) = P (wx|ci)

The probability of a sequence of concept vectors C, given a sequence of words
W is given by:
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P (C|W ) = P (w1|c1)×P (c1)×

T∏

t=2

P (wt|w1, w2, ..., wt−1, ct)×P (ct|c1, c2, ..., ct−1)

where P (wt|w1, w2, ..., wn−1, ct) is the probability of observing the word wt

while in state ct after observing w1 to wt−1. P (ct|c1, c2, ..., ct−1) is the proba-
bility that the state ct is entered after c1 to ct−1 have been visited.

Tractability

Computing the parameters of the HVS model is often intractable without further
constraints on the state transitions and the vectors’ size.

To reduce the search space, the transitions are split into two constrained
operations:

• The stack is shifted by 0 or more symbols

• Only one new symbol is pushed into the stack

The word observations are assumed to be dependent only on the emitting
state.

Thus, the formula becomes:

P (C|W ) = P (w1|c1)× P (c1[1])×
T∏

t=2

P (wt|ct)× P (ct[1]|ct[2...Dt])× P (nt|ct−1)

where P (wt|w1, w2, ..., wn−1, ct) becomes P (wt|ct) and P (ct|c1, c2, ..., ct−1)
becomes P (ct[1]|ct[2...Dt]) × P (nt|ct−1). P (nt|ct−1 is the probability of the
position shift of the stack and P (ct[1]|ct[2...Dt]) is the probability of the single
concept to be pushed onto the stack.

Advantages and drawbacks

The HVS model is able to capture hierarchical structures in the parsing while
keeping the computation cost low enough to stay tractable. However, this model
applies a full parsing to the data which then, as shown before, may not be ideal
for spontaneous speech, which favors the partial parsing of the NLU task.

4.2.6 Semantic Frame: A Meaning Representation

An SF is a data structure to represent the semantic content of a user utterance
or interaction move [21, 50, 123, 124]. It has a 2-level hierarchy.

The goal, i.e. the implicit or explicit intent of the entity emitting a signal,
is characterized by 0 or more slots. Slots are pairs, a name and a value, defined
in a multi-dimensional semantic space.
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Figure 4.3: A SF example

Figure 4.3 shows an SF. This is the semantic representation of the input of
a user asking for the weather forecast in Paris on the 15th of November, 2012.
For instance, the spoken utterance may be “What is the weather like in Paris
now?”, “Will it be sunny in the French capital on the 15th?” or “Show me the
weather”. Within the system’s scope, all those inputs carry the same meaning.
They may result, after being processed by an NLU system, in the SF shown
above.

4.3 Natural Language Understanding: Issues and
Challenges

The review of the state of the art in the NLU domain highlighted both the limit
of the current method and the requirements for those systems [13, 14, 51, 52, 56,
159, 187]. This section presents an analysis of both aspects. On the one hand,
what is mandatory for an NLU sub-system to implement and, on the other
hand, what are the most prominent issues when building such components.

4.3.1 Challenges

Keep a mixed initiative

Dialog designs can be characterized along an initiative scale that ranges from
user-driven to machine-driven initiative.

In the case of a machine-driven dialog users strictly follow the predefined
flow of the system. Interaction turns that are outside the scope of the dialog
are not understood. They may either be discarded or, in the worst case, might
lead to a system failure. Despite this, a machine-driven design makes the dialog
easier to control and therefore less prone to errors. Yet, due to the lack of
adaptability exposed by the system, it appears less human-like.

On the other end of the scale, full user-driven dialog designs minimize the
functional range of a system as they only require the DM to react to commands.
Its role of maintaining a dialog state to select the best next step, is not relevant
anymore. It is the so-called command-and-control paradigm.

Advanced SDSs therefore aim at implementing a mixed initiative, where
the system’s integrity and its goals are sufficiently defined. The user, however,
should not be restricted by the type and amount of spoken utterance he/she
can use to interact.
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In order to maintain a mixed initiative, the NLU component(s) of advanced
SDSs is(are) required to handle a wider vocabulary, various speaking styles,
spontaneous speech and need to implement some recovery methods so that the
system may react appropriately to everything the user may attempt.

Moreover a gradual fallback mechanism is needed for the system, so as to
signal out-of-scope cases, attempt inner repairs and/or guide the user back into
the scope of the system.

In other words, a (true) mixed initiative means that the user is not restricted
to a set of utterances he/she can speak in any given state. Rather, the system
is able to select and discard respectively the relevant utterances and the out-of-
scope ones.

Allow for variability

In the past, SDSs were primarily command-controlled. They applied small and
static grammars and used keyword spotting to identify the user’s intention.
Hence, users usually had to be trained before interacting with the system so
that they would stay within the scope of its understanding capabilities while
interacting.

More recent NLU systems, however, target the casual speaker using a NL to
express its intent.

“A natural language or ordinary language is any language which arises, un-
premeditated, in the brains of human beings. Typically, therefore, these are the
languages human beings use to communicate with each other, whether by speech,
signing, touch or writing. They are distinguished from constructed and formal
languages such as those used to program computers or to study logic” [118].

Understanding such an unrestricted communication language is achieved
through relaxing the constraints put on the grammar and the words of ut-
terances as well as further processing of the parsing results.

Humans naturally make use of co-references, ellipses, shared knowledge, etc,
in a spoken interaction. Thus, NLU systems, in the quest to build them closer to
the human abilities, should allow for as many ways of expressing an equivalent
intent as a human may utter it. Such would allow for more variability with
respect to possible user inputs and therefore may lead to a more human-like
system.

Disambiguate using the dialog history

To optimize the exchange of information, a human-human dialog creates a
shared knowledge space between dialog participants. As for an SDS, this in-
herent grounding process is similar to keeping track of the dialog history.

In order to disambiguate references to earlier spoken entities or conversation
topics, the NLU components should have access to these recordings. This would
allow for mimicking the human-human interactive build-up [49].
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Disambiguate using the dialog expectations

The SDS’s DM expects formal meaning representations to be converted to actual
dialog moves or DAs similar to parametrized dialog commands. A DA is the
unit of action in the dialog flow.

The set of DAs that are available is finite, dynamic and depends on the
current state of the dialog1. At every turn, a list of these can be extracted from
the DM. It contains the actions the manager is able to handle, possibly with
a probability or ranking associated with them. This defines the expectations.
One can think of them as constraints to the inputs or as guidances.

An NLU system aims at mapping the NL inputs to one or several action
unit(s) made available by the DM. The tying between the initial infinite (user’s)
set and the finite well-defined DM’s DAs list is either complete, i.e. there is
always a unique mapping from input to DA or partial with a default “non
understanding” action which is produced when no coherent mapping can be
extracted. Also, the mapping method can be based on static rules or on dynamic
links synchronized to the state of the dialog, a particular user, etc.

Two input utterances carrying the same meaning may lead to different de-
cisions depending on the dialog state. The right action, i.e. the real DA, is to
be determined by the NLU component.

Use the environment knowledge

SDSs should not be closed boxes whose resources are restricted to static databases,
dialog models and/or policies. Today’s ubiquitous systems are often “aware” of
their surrounding environment, and possibly share this awareness with the user.
This ongoing trend towards multi-modal awareness, where external sensors in-
creasingly deliver real-time information to a range of different systems, may
also be used to improve language understanding. Additional data, if success-
fully processed, can lead to a better context disambiguation and consequently
increase the overall NLU accuracy.

Here is an example of using the inner clock of a system to inject some envi-
ronment knowledge into the dialog. It can be found in many online automatic
services such as train and plane booking, navigation systems, etc. Let us con-
sider the concept ”now”, referring to the current point in time.

A user of, for instance, a travel booking SDS system declares that he/she
wants to travel “now”. With a sufficiently good parser, one gets an SF whose
goal is traveling and whose only parameter is travel time = now.

The concept “now”, before being passed on to the DM, has to be resolved
to represent an absolute point in time. For that, an NLU component may call
the host’s clock functionalities, associated with a proper formatting method to
transfer “now” to travel time = July 22, 2014. 3.44pm.

Many other environment sensor’s readings affect the meaning of an utter-
ance. NLU systems should use these information sources as much as possible.

1Here a state does not refer to a ‘real’ state, such as the ones used in MDPs or POMDPs,
but rather to the status of the dialog
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4.3.2 Issues

Several issues have been identified which increase the difficulty level of the NLU
task from straightforward to extremely difficult.

Filler words and backchannels

Human conversations contain filler words such as “euh”, “hum”, “so” and back-
channel interjections such as “ah”, “OK” which serve a purpose in the informa-
tion exchange in a human-human conversation [60]. In the case of a multi-modal
interaction, the backchannels can also be gestures, head nods, gazes or anything
that conveys information about the activity of the listener.

In order to closely mimic human behavior, handling and processing them is
necessary.

Elliptical construction

An ellipsis occurs when one or more words of an utterance are omitted, yet it
is still understandable given the context of the interaction [26]. Missing tokens
can refer to past dialog topics or to common background knowledge.

Processing such constructions requires first to detect elliptical constructions,
retrieve the missing information and integrate it back into the turn. Each one
of these three steps is a tricky challenge to tackle.

Indirection

The best way to explain what is an indirection is to consider a dialog example.
Here are two:

A: The phone is ringing. Could you answer the phone?
B: I’m in the bath. I can’t pick up the phone.
A: OK. I’m going to answer the phone.

A: I’m hungry.
I want to eat something. Please

cook for me.

B: What would you like to eat?
What would you like to eat?/What

can I cook for you?

The italicized sentences are the actual social interpretation of the spoken
utterances on the left-hand side. Here, the social interpretation differs from the
word-content interpretation of the inputs [65]. They require several degrees of
abstraction from the word content.

Anaphoras

Anaphoras are references to expressions or clauses in the context but use a
different wording to refer to them [65]. Here are two examples:
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I’m going to my friend’s place to visit her.
her refers to the expression my friend.

Since he is back, John wants to be a cook.
The pronoun he refers to John as resolved in the second clause.

4.4 Platform’s NLU System Overview

The current version of the SDS platform integrates an NLU system, as shown
in the black shape in Figure 4.4

Figure 4.4: The platform’s NLU sub-system

This NLU sub-system is a set of inter-connected components, such as in
[11, 45] providing a mapping from transcribed utterances to parameterized DAs
related to the current dialog state. As such it is a multi-step dynamic process
with clearly separated roles taken on by individual sub-components.

The input space size of any sub-component is greater or equal to the size
of its output space. In other words, the NLU engine processes user utterances
sequentially and, at every stage, the abstraction level of the semantics extracted
from the text becomes more machine oriented. This sequential analysis of the
inputs is illustrated in Figure 4.5.

Figure 4.5: The one-way interpretation process of spoken user utterances
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4.5 Semantic Parsing

The SP, which gets inputs from the ASR, associates semantic labels to text
utterances (or parts of them). The most commonly used parsing techniques are
based on CFGs or PCFGs, which are either hand-coded, based on the analysis
of collected dialog data, or designed by experts.

The SP, here, integrates the algorithm proposed by [92], which is the appli-
cation of the work from [23, 95]. Instead of matching whole sentences with parse
structures, the algorithm looks for patterns in chunks of the text-level utterance
and in the temporary (i.e. currently assigned) SF.

The module applies an ordered set of conditional rules, which is learned from
data.

4.5.1 Training

The training of the SP is based on a corpus consisting of annotated utterances.
The annotations are, for each utterance, the SF containing all the concepts
extractable from the corresponding word utterance. The main concept, i.e. the
overall intent conveyed by the utterance, is the goal of the SF.

The algorithm, given all those pairs (utterance, SF), searches for the best
sequence of rules to convert default SFs to the ones in the corpus.

Transformation rules A rule has two parts. The trigger part is a pattern to
search for in the utterance as well as in the temporarily assigned SF. Triggers
are combinations of:

• an n-gram in the word utterance

• a skipping 2-gram in the word utterance

• the goal of the temporary SF

• the name of a slot

• the name and value of a slot

The operation part transforms the temporary SF. It is a combination of:

• a goal substitution

• a slot addition

• a slot removal

• a slot’s value substitution
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Algorithm The default SF is the frame whose goal is occurring the most in
the training corpus. The training starts with every utterance assigned to it.
At every step, the Levenshtein distance is computed to measure how close the
result of the application of a rule sequence is from the “truth”, given by the
annotated corpus.

Every available rule, given the state of the database, i.e. the temporary
transformed initial corpus, is evaluated and the distance to the reference corpus
is computed. The one that reduces the distance the most is applied to the
database, creating a new state for it, and is added to the rule list. As long
as the algorithm can find a rule that “improves” the database above a given
threshold, the algorithm executes. When no additional rule can be applied to
narrow the distance, the result is an ordered set of rules.

4.5.2 Decoding

This phase is less complex than the training part. An utterance to parse is first
labeled with the default SF. This is the SF with no slots and whose goal is the
one occurring the most in the training corpus. It is the first operation of the rules
sequence whose condition is always true. Rules are taken from the list produced
by the training. The trigger of each of them is matched against the current
utterance and the temporary SF. The rule is applied, i.e. the transformation
operates, if and only if every condition in the trigger is fulfilled. Iteratively the
initial SF is transformed to the expected one, given the input to the parser.

Below is the log of parsing the utterance “I would like to call John” to
illustrate this paragraph.

Input content: I would like to call John
Decoding rules file: /opt/TPT/conf/vassist/sp/sp corpus vassist en.pckl-decoder
Trigger conditions: {‘nearestDepTreePOSWord’: 0, ‘nSlots’: 1, ‘nStarGrams’: 4,

‘DBItems’: ‘replace’, ‘hasSlots’: 1, ‘nGrams’: 4, ‘useDeps’: 0, ‘speechAct’: 1}
173 rules
12551 slot values
Dialog act: I would like to call sv name-0 . x 0 slots
Generated grams count: 25
Decoder loaded, applying rules...
Rule[Trigger(N-Gram: None - Speech Act: None - Slots: None - HasSlots: None),

Trans(SpeechAct: input - AddSlot: None - DelSlot: None - SubSlot: None)]
Rule[Trigger(N-Gram: (‘sv name-0’,) - Speech Act: None - Slots: None - HasSlots: None),

Trans(SpeechAct: None - AddSlot: name=sv name-0 - DelSlot: None - SubSlot: None)]
Rule[Trigger(N-Gram: (’call’, ‘sv name-0’) - Speech Act: None - Slots: None - HasSlots: None),

Trans(SpeechAct: make a call dialog - AddSlot: None - DelSlot: None - SubSlot: None)]
Semantic frame: goal=make a call dialog;name=“John”

Table 4.2: Log of the decoding of “I would like to call John”

4.5.3 Slot Values Clustering

There is an additional feature to reduce the complexity of the initial corpus.
For example, let us assume that one would like to set up the parser for utter-
ances requesting the system to call someone on the phone. Three sentences are
collected and annotated. That is:
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let’s call John [goal(call);slot(callee=John)]
please call Jack [goal(call);slot(callee=Jack)]
ring James [goal(call);slot(callee=James)]

Table 4.3: SP training corpus 1

A parser trained with this tiny corpus has four rules:

Rule# Trigger Operation
1 - goal=call
2 utterance contains 1-gram “’s” slot(callee=John)
3 utterance contains 2-gram “please call” slot(callee=Jack)
4 utterance contains 1-gram “James” slot(callee=James)

Table 4.4: Ordered set of rules 1

Obviously, this is not valid. Applying these rules, a user saying “Let’s call
Jack” would end up speaking to John while another user asking “Please call
John” would reach Jack. To solve this, the corpus can be multiplied so that the
three utterances are tuned to the three callers, i.e.:

let’s call John [goal(call);slot(callee=John)]
please call John [goal(call);slot(callee=John)]
ring John [goal(call);slot(callee=John)]
let’s call Jack [goal(call);slot(callee=Jack)]
please call Jack [goal(call);slot(callee=Jack)]
ring Jack [goal(call);slot(callee=Jack)]
let’s call James [goal(call);slot(callee=James)]
please call James [goal(call);slot(callee=James)]
ring James [goal(call);slot(callee=James)]

Table 4.5: SP training corpus 2

Then the parsing produces four rules:

Rule# Trigger Operation
1 - goal=call
2 utterance contains 1-gram “James” slot(callee=James)
3 utterance contains 1-gram “Jack” slot(callee=Jack)
4 utterance contains 1-gram “John” slot(callee=John)

Table 4.6: Ordered set of rules 2

To avoid this increase in corpus size and the burden of collecting, annotating
and checking more data, the algorithm can be augmented with a slot database.
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The base organizes some tokens according to two levels of labelisation. Figure
4.6 is a schematic of the database structure.

Figure 4.6: Structure of the slot database

A token, if contained in the database, is labeled with the name of the slot
n it belongs to. Furthermore, the token is either the member of a slot’s value
subgraph or the head token (arrows are pointing towards head values). These
tiny subgraphs are synonyms.

A database for our example above is schematically presented in Figure 4.7.

Figure 4.7: Example slot database

The learned list of rules is reduced to only two rules:

Rule# Trigger Operation
1 - goal=call
2 utterance contains 1-gram “callee-x” slot(callee=callee-x)

Table 4.7: Ordered set of rules 3

Adding a slot’s value to the database extends the scope of the parser easily.

4.6 Semantic Unifier and Reference Resolver

In this section, we present a novel component: the Semantic Unifier and Refer-
ence Resolver (SURR). This versatile component holds a pretty simplistic forest
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of nodes and is used to mine the dialog history, incorporate external sources of
information and add some local turn context. It is the meeting point of three
different sources, as schematized in Figure 4.8.

Figure 4.8: SURR connections

The internal structure of the SURR is shown in Figure 4.9

Figure 4.9: SURR knowledge representation

The SURR embeds a forest structure at its core. Trees consist of hierarchies
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of fully or partially defined SFs, some nodes are also calls to external systems,
APIs or services. When requested, the SURR is able to dynamically modify
(remove/add) branches to any part of the forest. The top node of a hierarchy
defines a root node (in red in the drawings).

The SURR algorithm tries to find a unique path from an input SF, i.e. from
the parsed user input, mapped to nodes of the forest, to a root node. Going
up the trees, the algorithm applies the optional operations held on branches.
These operations can have a single SF input argument (Figure 4.10)

Figure 4.10: Single-argument operation

Or may request several ones (Figure 4.11)

Figure 4.11: Multiple-arguments operation

A root node reached is equivalent to the input of the user being contex-
tualized. In case the algorithm can not find such a path, i.e. the SURR has
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failed to produce a suitable SF (given the current context and knowledge avail-
able), a “NoMap” SF is generated to signal to the next components that a
non-understanding occurred.

4.7 Context Catcher

The complement of the external knowledge extractor (see Section 4.8.3) is the
Context Catcher (CC). This component analyzes the output of the DM and
subsequently updates the SURR, i.e. dynamically changes its inner structure,
to match the dialog context.

The component relies on a set of classes which hold some slots requested by
the DM. When a request to such a slot name is caught by the CC, it creates a
link from the generic class name to the more specific slot name, such that an
input labeled as generic by the parser could be resolved to the requested slot.
The CC also erases the temporary associations once the expected concept is not
in focus anymore.

Here again, an example to illustrate that: the dialog application is a pill box
management tool, i.e. an application that helps to manage the treatement of a
person, gives reminders and monitors the intakes (cf. 2.7.2). One of the services
is to add an aspirin2 prescription from a practitioner to the box. The scenario:

User U1: Hi, I just got a new prescription that I’d like to add.
System S1: What is the name of the drug?
User U2: That is for aspirin.
System S2: How many intake a day?
User U3: 2 intakes.
System S3: How long between intakes
User U4: 6 hours.
System S4: How many pill for each intake?
User U5: Just 1
System S5: What time is the first intake?
User U6: At 9 am.
System S6: Please check the information on the screen. Are they correct?
User U7: Hum... Yes.
System S7: Good. The new prescription is saved. You will get reminders for it.
User U8: Thanks!
System S8: You’re welcome.

Let’s focus on the turn 4 and 5. the information carried by the utterances are
weak. For the first one, the ideal SP would produce Figure 4.12 and similarly,
Figure 4.13 is the result of parsing “Just 1”.

2You’re quite unlikely to need a prescription for aspirin but it is an example
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Figure 4.12: Parsing of “6 hours” Figure 4.13: Parsing of “Just 1”

However, the previous system turns have set the expectations of the DM.
Thus, if a temporary link is created between a generic class and a specific one,
such as number → quantity per intake and hour → time between intakes, then
the SURR may find a path from the original SFs to the expectations of the DM
(Figure 4.14).

Figure 4.14: Resolution using local context

The CC intercepts the requests of the DM to create or remove branches of
the SURR’s forest such that the latter is always up to date with the dialog state.

4.8 Reference Resolution

Reference resolution is the process of associating absolute concepts to relative
ones using the history of the interaction or any external knowledge the system
can access. Two categories of references can be defined: those which refer to
entities that the user assumes are known by the system and the coreferences
which relate to previously debated topics.
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4.8.1 Dialog Context References

We explained in previous sections (4.6 and 4.7) how the SURR, supported by
the CC injects the last-turn context into the NLU processing.

Indeed, those two components capture the DM requests to update the se-
mantic concepts trees dynamically, thus resolving ambiguities regarding shared
concepts between dialogs.

4.8.2 Extended Dialog History

Currently, most of the deployed SDSs make use of the dialog history to keep
track of the dialog state and disambiguate user’s inputs.

Figure 4.15: The two main usages of the dialog history

The history spans over turn0 to turnt−1. turn0 is the first turn of the current
dialog while turnt−1 is the last turn, at step t, of the current interaction. For
reference resolution, the user should understand that the system knows only
a very restricted part of the shared knowledge, i.e. it only keeps track of the
current interaction.

The NLU, includes deeper insights into the common knowledge of both en-
tity. Indeed, we exploit the history from turn0 to turnt−1 but also the n pre-
vious turns, giving us what we call an extended dialog history which is the set
{turn−n, . . . , turn−1, turn0, . . . , turnt−1}. In other words, the history is not
cleared between dialogs.

In future work, we will build user’s profiles from that extended history, and
store and mine them efficiently for a better personalization of the SDS.

4.8.3 External References

Because the taxonomy maintained at the core of the SURR is generic, the same
mechanism can be used to inject external variables into the SFs when they are
relevant.
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A node within the SURR includes an SF with a goal and the parameters.
Some of those parameters’ values are not defined but instead, when the algo-
rithm reaches their containing nodes, trigger a call to an external resource. This
source can be a database (the past weather forecast), a web-service (the weather
forecast) or a set of sensors (the current local weather).

Some research teams have been studying the effects of the emotional state,
the location, etc, on the way dialogs develop between a human and a machine.
While this thesis did not explore these kinds of external clues to understand
spoken utterances, the mechanism is available. Mostly, it has been used to read
some system information for an agenda management task. Thus, the day of the
week, or the current month were implicitly added to inputs such that “Monday,
the 4th”, for instance, was converted to an absolute concept “Monday, the 4th
of October, 2014”.

4.9 Semantic Unification

Semantic unification is the process of making semantic concepts converge to the
same so-called semantic level.

A concept can be classified and ranked according to a taxonomy. Building
taxonomies is the practice of classifying such concepts into a hierarchy.

Indeed, for the purpose of mapping a NL input to the underlying DA, it is
required to get a matching between the set of concepts that can be extracted
at the SP level, and the set of action parameters that can be passed on to the
DM. Thus, we assume that a taxonomy classifies all our concepts and associates
a semantic level to them. The problem then is to unify the semantic levels the
inputs are in.

In the SURR structure, the appropriate level for the DM is the root level,
e.g. the top level, although it is also possible to declare any intermediate level
node as root. This, however, requires the designer to guarantee that only a
single output is possible in any context. Let us consider this example (Figure
4.16) extracted from the actual taxonomy integrated in the SDS.
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Figure 4.16: Extract from the taxonomy

Here we have 4 concepts. date is a particular day specified according to the
Gregorian calendar, day is the day number of the month, year is the year number
and month is the month name. Except for the concept date, the concepts are
not root, i.e. they cannot be passed on to the DM and have to be unified to
a root node. Let us further assume that a user’s input got a parse like the
following (Figure 4.17).

Figure 4.17: SF for the example

The SURR looking for a path to root nodes would eventually find the one
represented on Figure 4.16 and thus obtain the SF in Figure 4.18 that can be
passed on to the next component, thus achieving the semantic level unification
task.

Figure 4.18: Resolution SF for the example

We remind the reader that the taxonomy can be extended as desired. More-

121



over in the previous example, the addition of external information such as the
current month or the current year allows for the resolution of parse SFs with
the day concept only. In such case, the month and the year concepts are in-
stantiated with the current values. It works similarly for SFs whose only slots
are the day and the month concepts.

Figure 4.19: Extract from the taxonomy

Figure 4.20: Extract from the taxonomy

The purpose of the SURR’s semantic unification task brings much advan-
tages with respect to the flexibility of the design, since it acts as an articulation
between the SP and the DM. The latter’s semantic space is much smaller and
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much more constrained than the former’s. Thus the complexity of the DM is
decreased, i.e. there is no need to implement dialog models for each semantic
level, while the SP tries to go as deep as possible in the parsing details, assuming
that the overall meaning can be reconstructed by the SURR.

4.10 Mapping Semantic Frames to Dialog Acts

Here is the last stage of the NLU processing. Once an input has been parsed,
external and local references have been resolved, and the semantic level has been
unified, the ultimate step is to convert the SF into a DA.

A SF that got that far in the analysis is guaranteed to have a matching
parameterized DA to trigger. However, all DAs are not available at any dialog
state.

The mapper retrieves the set of DAs available when an input comes in. Then
it looks for the match between the SF in and the set of DAs. This match is
unique. If found, the mapper’s job is to trigger the corresponding DA. Otherwise
a generic “NoMap”, which stands for “no mapping available”, is triggered. This
triggers a gradual response from the DM with a targeted guidance to the user
(see section 3.8.7).

4.11 Dealing With Multiple Hypotheses

The NLU subsystem of the generic platform implements a mechanism to handle
multiple hypothesis out of the speech recognizer.The method is rather simple,
as schematized in Figure 4.21.

Figure 4.21: Dealing with multiple hypotheses
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The ASR engine produces up to seven hypotheses from the analysis of a
speech signal segment. They are ranked such that the top hypothesis is the one
that got the best confidence score in the processing.

The SP extracts the meaning of every transcription, i.e. if there are seven
hypotheses in, one gets seven hypotheses out of the SP module.

Then the SURR implements the storage of the hypotheses. The component
first processes all of them, and then internally saves the resulting list.

A single contextualized SF enters the DAM. It is the best ranked hypothesis
from the ASR, after it has been transformed by both the SP and the SURR. At
that point, the final mapping of the user’s turn to a DA is attempted. When it
succeeds, the system’s processing goes on. In the case it does not, the DAM has
the ability to discard the current hypothesis and request the next one from the
SURR, and this, until either the lowest ranked hypothesis is rejected or one of
them is valid. If all hypotheses are rejected, the DAM bases the error recovery
dialogs initialization on the best one.

The multiple hypotheses processing ability originates from the observations
that many spoken utterances were transcribed with similar but different results
than the expected ones. For instance, in French, “10 heures” and “Deezer”, etc.
Those ambiguous utterances hinders the performances of the NLU subsystem
and this method solves this issue efficiently.

4.12 Evaluation

The evaluation of the NLU subsystem shows how the set of components performs
when deployed to real users.

4.12.1 Corpus and method

The task of mapping natural-language utterances to situated parameterized DAs
may be seen by some as a classification problem. Indeed, the overall objective
is to associate a DA with the n hypotheses entering the system.

Since inter-components messages were recorded during the two real-user lab
sessions, a corpus has been created, which contains 253 dialogs consisting of, on
average, 3.7 turns. The total number of turns is 939.

Online and offline annotation and alignment rounds took place so that an
entry, in the corpus, finally consists of the best transcription hypothesis, the SF
resulting from the semantic parsing, and the DA entering the DM. Although
this is not used in this evaluation, the system’s DA and the generated response
are included. Tables 4.8 and 4.9 show instances of turns in the database.
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Best hypothesis à 9h du matin

Semantic frame input:hour=9;

Contextualized semantic frame input:first intake=9h00

Dialog act input:first intake=9h00

System’s dialog act
Ask.What:goal=frequency per day;
slot=frequency per day;

System’s response Quelle est la fréquence des prises?

Table 4.8: An example of an entry in the corpus

Best hypothesis mon petit-fils

Semantic frame input:name=grandson;

Contextualized semantic frame input:name=grandson

Dialog act xxx:

System’s dialog act
Ask.What:goal=call type;
slot=call type;

System’s response
Vous souhaitez passer un appel audio ou
vidéo?

Table 4.9: An example of an entry in the corpus

The SDS’s NLU system processed all the hypotheses and the results were
compared to the “truth” in the corpus. Several measures were taken as it will
be shown next.

Metrics

Two metrics are presented, the precision:

precision = 100×
count of correctly retrieved elements

count of elements to be retrieved

And the slot recall:

precision = 100×
count of correctly retrieved slots

count of slots to be retrieved

4.12.2 SP Evaluation

The SP is the module which projects the text utterances into the semantic space.
It has been isolated from its containing system for evaluation.

The precision of the retrieved goals is a measure of the understanding of the
overall user intent, while the precision of the slots gives the variables extraction
parameters.

The following chart presents the result from the measurements.
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Figure 4.22: SP precision

The slot’s recall is also relevant here. Indeed, as for any classification algo-
rithm, the evaluation of the performance of the system is drawn from both the
accuracy of the labeling process and the retrieving ratio. This is an estimation
of the depth of the parsing whose value, in that case, is 88.27%.

4.12.3 NLU Evaluation

In a second phase of the evaluation, the same corpus was used to measure the
performance of the whole NLU system. Figure 4.23 shows the setup of the
experiment.
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Figure 4.23: NLU evaluation setup

The count of DAs that matched the ones contained in the reference corpus
were 912, which means that, out of 939 text utterances, 97.12% have been
fully understood. 2.77% of the resulting DA were correct but they lacked some
information and 0.11% of these, i.e. only one instance, contained errors.

4.13 Conclusion

In this chapter, the NLU subsystem has been presented. It consists of a network
of independent services implementing non-overlapping tasks. The inputs are
textual hypotheses based on the user’s utterances’ content and the outputs are
contextualized parametric DAs. The NLU is the link between the ASR module
and the DM core.

The architecture and the specifications of the NLU part have been conceived
such as to be dialog independent. This includes the way the interaction is
managed and the domain it belongs to. Such generic components allow the
actual implementation of a wide range of SDSs for many applications.

The performances of the system has been evaluated through user trials.
Results show that the system works efficiently. These measures depend on the
amount of available data and the interaction variability.

Since every individual service in the NLU set is independent, replacing them
is straightforward. Substituting a component with a WoZ operator, for data
collection or comparative evaluation, is also easily possible.

Finally, the simple task carried out by each part of the subsystem requires
from developers only little knowledge about the underlying SDS technology,
allowing them to quickly set up and configure a system. Such, also helps to
open the domain to a wider community of potential SDS designers.
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Still aiming at facilitating and spreading the implementation of SDSs to in-
terface various applications,the last stage of input processing takes place within
the DM. A tool has been proposed to ease that task.
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Chapter 5

The Linked-form Filling
language: A New Paradigm
to Create and Update
Task-based Dialog Models

5.1 Introduction

The ultimate goal of the artificial intelligence is to emulate the human brain
abilities. In 1950, Alan Turing asked: “Can a machine think?”, the famous
Turing test was born. The competition asks several human testers to engage in
a conversation with a software, which is either based on an algorithm (i.e. some
sort of artificial intelligence) or operated by a human being. The participants
are then asked to estimate the likelihood they would assign to the system being
operated by a human.

According to the research community, the first so-called DM was named
ELIZA [204]. Its best script, according to most, was the one where she (it)
mimicked the behavior of a psychotherapist. It was based on adjacency pairs,
i.e. the system reacted to keywords and patterns, spotted in the textual entries,
with predefined replies.

A DM maintains a dialog context, processes the user’s inputs and questions
the interaction models to select the most appropriate next step in the dialog
[82]. Managing dialogs is necessary when the length of the interaction exceeds
one turn (cf. 2.1).

In this chapter, we therefore introduce a new coding language to support the
design of ANSI/CEA-2018-compliant [41, 161] dialog models. After reviewing
the state of the art in dialog management, the task hierarchy paradigm is in-
troduced. Then examples of models are given. Based on the conclusion drawn
from experimenting the design of such models, an alternative is proposed, its
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trade-offs are discussed, and some advantages of using this LFF paradigm for
dialog modeling are presented.

Figure 5.1: The DM task

5.2 Related Work in Dialog Management

Following is an overview of the history of various dialog management methods
[29, 37, 88, 107].

5.2.1 Flow Graphs

Definition A flow graph is a deterministic representation of the different paths
a program can go through while executing. In the dialog management domain,
the nodes of such graphs contain the dialog state and the action the system
performs. Directed edges are the transitions from one such state to another.
They are conditioned on the user’s turns.

Example Figure 5.2 shows a possible flow graph for a messaging application.
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Figure 5.2: Flow graph example

Advantages and drawbacks Designing flow graphs to model dialogs is fairly
easy and straightforward. However, the depth of the interaction, its apparent
intelligence and its flexibility, are rather limited.

5.2.2 Adjacency Pairs

The adjacency-pairs paradigm is a scripted dialog management method acting
on a local level. Adjacency pairs, as used by ELIZA [204], rely on the detection
of keywords and patterns in the user’s inputs to trigger predefined replies.

This is well suited to build shallow automatic conversational partners since
the system does not explicitly maintain a state of the dialog, and neither keeps
track of the history.

Moreover, there is no target goal to achieve but, instead, the available rules
maintain a coherent dialog in the topic of the user’s choice. Chatterbots are
mostly based on this rule formalism.

Examples of adjacency pairs:

Pattern Predefined reply
“What’s your name?” My name is Eliza

“[...]mother[...]” Tell me about your mother
... ...

5.2.3 The Information State

The theory behind the IS [101, 134] approach builds on the idea that the state of
a dialog is based on the informative content exchanged while interacting. Track-
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ing the IS means monitoring, storing and reasoning based on the information
cumulated over the course of a dialog session.

Setting up an IS manager requires the execution of a sequence of steps.

Figure 5.3: Scheme of the information state process

Identifying the key informational elements of the dialog As shown
in Figure 5.3, the basic elements of the IS are the informational components.
These are the bits and pieces of the information that the DM keeps track of.
They can be qualified as static, dynamic, semi-static/semi-dynamic according
to the granularity of the information components.

A static piece of information is available anytime and cannot be modified
by the interaction. The name of the system’s avatar is, for instance, a static
information.

The current date or time are semi-static/semi-dynamic since they are not
modifiable with dialogs while they change over time.

As for the dynamic pieces of information, the current intent of the user, the
last dialog move and the system’s objective are instances of those.

The informational components may represent the user’s state of mind (as
observed by the system), the system’s dialog context or the shared knowledge
between participants.

Defining the set of dialog moves Dialog moves are the dialog action units.
They are the result of the processing of the user’s signal by the interpretation
components of the dialog system. The IS designer defines such a set of dialog
moves that would trigger some update rules.
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Providing an update mechanism The IS evolves following update rules.
They are made of two parts. The applicability conditions analyzes the IS and
the last dialog move, i.e. the last user’s DA, to allow or prevent the execution
of the rule’s operation. If the applicability is valid, the effects can be applied.

Effects update the IS (if necessary) partly or fully and provide it with the
next system’s dialog moves.

Providing an update strategy The last component in an IS system is a
set of update strategies. Indeed, there is no requirement to insure that only a
single update rule is applicable for every pair (state, dialog move) . Thus, it is
necessary to have a method to select the rule that will operate in cases where
several rules are applicable.

Update strategies range from random selection to more elaborated ranking
mechanisms, to reduce a set of several update rules to a single one.

The IS approach is a theory with little guidances and no/barely any restrictions
with respect to the low-level implementation. Moreover there is no necessary
finiteness in the dialog, i.e. the IS can grow indefinitely. Just like the scripted
adjacency-pairs paradigm, the IS is suited for question-answering characters and
has been demonstrated as such.

5.2.4 Example-based Dialog Modeling

As highlighted before, the main drawback of dialogs based on rules is that their
conception is very human-labor intensive. Lee et al., however, proposed a hybrid
system which is based on rules [91, 106, 108, 109], while trained from annotated
data. They followed two principles. One is that the DM task should be free of
state transitions. The other is that the domain specificities of a task should be
processed by experts of that domain.

In order to follow these incentives, the example-based DM does not base
its reasoning on finite-state models but instead deals with the “situation”. A
situation consists of the current user utterance, the user intention, the semantic
frame1 and the discourse history.

User utterance “I want to go to Dublin at 7 pm”

User intention
Dialog act request
Main action travel booking

Semantic frame destination = Dublin; time = 7 pm”

Discourse history
date = September 6, 2014; departure = un-
known; destination = unknown; time = un-
known

Table 5.1: An example of “situation”

1Note that here the concept of an SF is different from an SF introduced in Section 4.2.6
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This closely relates to the IS. A situation is the summary of all information
elements that matter to reason and select the next step to take in the dialog.

The DM rules are learned from an annotated corpus of dialogs. The an-
notations match the requirements to build situations. They combine the text
utterance, the intention and the SF as extracted by the NLU. These annota-
tions can be obtained from an annotated corpus of the NLU/NLG system or by
running those algorithms on a raw corpus. Each turn is an entry of the example
database to which the discourse history is associated.

Figure 5.4 shows the schematic of the DM processing.

Figure 5.4: Cycle of an example-based dialog management process

The input of the user, augmented with the output of the NLU, is transformed
into a query for the database of examples. Then, there is either no match,
a single one, or multiple matches found. Depending on this result, the DM,
respectively, relaxes some constraints of the query, produces the system turn
of the example retrieved from the database or proceeds to a deeper selection
among the results.
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The relaxation strategy operates on the DA and on the main action of the
situation to broaden the search. The selection mechanism computes a similarity
measure based on lexico-semantic and historical criteria in order to select a single
output turn.

5.2.5 Markov Decision Processes

Definition The dialog management task can be cast as a finite-state pro-
cess and modeled by an MDP. A MDP [113, 114, 147, 167], applied to dialog
management, is defined by the tuple {S,A, T,R, s0, π} where:

• S = {s0, s1, ..., sm} is a set of states

• A = {a0, a1, ..., an} is a set of actions

• T : S ×A× S → R is a transition probability function

• R : S ×A→ R is a reward function

• s0 is the initial state

• π is a policy

The states si are instances of the configuration the dialog may be in. In the
case of a booking application, for instance, the states can enclose the departure
location, the destination, the time of departure, etc. The choice of the variables
to represent the dialog state is of great importance. All the information rele-
vant to the action selection have to be included. The value of the variables is
maintained in the states as well.

The actions are the ones that the system may take, such as requesting an
input, informing the user, greeting the user, etc.

Transiting from one state to another has a cost defined by the probability
function T . T (s, a, s′) = P (s′|a, s) is the probability of transiting from state s
to state s′ taking action a.

Finally, the designer of such models is required to implement a reward/cost
function which evaluates the efficiency of taking an action a while in state s.
This function rewards the “good” decisions of the system and the achievement
of the task to be implemented.

The policy π, which is learned from data, associates each state with the
action to take when in it. This is not part of the initial human-created model, the
policy is trained. When running the model, it substitutes the reward function
to control the flow of the dialog.

Execution The execution of MDP models follows these steps:

1. while in state s0, select an action a0 according to policy π

2. receive a reward R(s0, a0)
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3. move to s1 = argmaxs′ T (s0, a0, s
′)

4. while in state s1, select an action a1 according to π

5. receive reward R(s1, a1)

6. move to s2 = argmaxs′ T (s1, a1, s
′)

7. ...

8. move to st, a terminal state

Training The training algorithm looks for the policy that maximizes the cu-
mulative reward for the training corpus. This is given by:

∞∑

t=0

R(st, at)

It is is based on the value function which is the value of the expected reward
starting from state s and applying the policy π. That is:

Vπ(s) = R(s, π(s)) +
∑

s∈S

T (s, π(s), s′) · Vπ(s
′)

5.2.6 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) extend from MDPs
to include uncertainty in the decision-making mechanism [25, 28, 64, 79, 81, 94,
119, 135, 148, 149, 150, 190, 191, 192, 193, 206, 207, 208, 209, 210, 216, 217,
218, 221]. The dialog states are hidden and can only be estimated with the
generated observations.

Definition The components of a POMDP are in the tuple {S,A, T,R,O, Z, b0, γ, π}
where:

• S = {s0, s1, ..., sm} is a set of states

• A = {a0, a1, ..., an} is a set of actions

• O = {o1, o2, ..., oo} is a set of observations (may be a continuous space)

• T : S ×A× S → R is a transition probability function

• R : S ×A→ R is a reward function

• Z : S ×A×O → R is an observation function

• b0 is an initial distribution over the state occupancy

• γ is a geometric discount factor
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• π is a policy

S, A, T and R are similar to the spaces and functions of an MDP.
O, the set of observations or observation space, includes all vectors the sys-

tem can get from the user, i.e. those are the user actions.
Z(s′, a, o) = P (o|a, s′) is the probability of observing o after taking the action

a and transitioning to state s′.
Since the system’s state is not known for sure due to the uncertainty over

the user’s input, tracking it is achieved by computing, at each time step, a
distribution of the probability of being in each one of them. This dynamic
distribution is called the belief state b. bt(s) is the probability of being in state
s at time t. Initially, the belief state b0 is arbitrarily defined and in most cases,
b0(s) is null for all but one state which is, by analogy to the MDPs, s0.

Training Tracking the belief state means computing the new belief state b′

at each step based on the previous belief state b, the last action selected a, and
the observation received o.

b′(s′) = k · Z(s′, a, o)
∑

s∈S

T (s, a, s′)b(s)

k is a normalizing constant: k = 1/P (o|b, a)
The cumulative reward is then:

∞∑

t=0

γtR(bt, at) =

∞∑

t=0

γt
∑

s

bt(s)R(s, at)

The value function, that gives the expected reward starting from the belief
state b and following the policy π is computed as follow. We write:

• b′ = τ(b, a, o) the belief updating function

• R(b, a) =
∑

s b(s)R(s, a) the reward function

• Z(b, a, o) = P (o|b, a) the observation probability

The value function for training becomes:

Vπ(b) = R(b, π(b)) +
∑

o∈O

Z(b, π(b), o) · Vπ(τ(b, π(b), o))

5.3 The Task Hierarchy Paradigm

There is one DM method that has not been mentioned in the above section. It
is the task hierarchy paradigm.
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5.3.1 Principles

Modeling dialogs may be achieved by splitting them into fine-grained tasks
whenever it is possible [15, 18, 20, 72, 112, 161, 162, 163, 164, 165, 182]. The
ruling theory is that a task is completed when all its subtasks are. A primitive
task, which has no subtask, is achievable by itself.

The conception work of a task model consists in defining unit tasks and
organizing them onto a hierarchy such that a dialog is a node in the hierarchy,
which requires all of its children tasks to be executed.

5.3.2 The ANSI/CEA-218 Standard

The ANSI/CEA-2018 standard is a framework for task model descriptions, i.e. it
defines semantics and Extensible Markup Language (XML) notations for them.
The Disco dialog management engine makes use of such models to manage
dialogs.

The ANSI/CEA-2018 standard [41] was originally intended to provide a uni-
fied intermediate layer between electronic devices and GUIs. The functionalities
of the standard are shown in Figure 5.5.

Figure 5.5: ANSI/CEA-2018 interaction scheme (source: [41])

A dialog model, or task model description, is a tree structure defining a
hierarchy of tasks with their attributes: input and output parameters, pre- and
post conditions, bindings, task decompositions, grounding scripts, etc.

The top task is an XML element which links to sub-nodes, which have to be
completed to achieve a dialog. The root of any task file is a <TaskModel> ele-
ment.

Theory

The ANSI/CEA-218 Standard is a framework to create task model descriptions.
The units of such models are task classes which have several parameters charac-
terizing each one of them: the time extent, the task actor – the entity performing
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the task –, the abstraction level, etc. The same task class can be instantiated
at will.

In the next subsections, the XML elements defined by the standard are
described.

Syntax

taskModel The root node of every task model. The content of the “about”
attribute defines a (unique) namespace associated with the model.

task A task may have a precondition, a postcondition, a set of subtasks, a set
of scripts, a set of inputs and a set of outputs.

<task> =

(<precondition>)?
(<postcondition>)?
(<input>)*
(<output>)*
(<subtasks>)*
(<script>)*

Tasks are the basic entities of task models.

input and output A task may require variables to be defined or may create/-
modify some while executing. Such is the motivation of the input and output
nodes. The former is a set of variables that need to be given a value before the
task containing them can be initiated. The outputs are accessed as the task is
executed. They are bound to input variables and/or handled by ECMAScript
scripts [58].

Four of those slots are predefined. The input slot whose name is external, of
boolean type, defines the actor for the task, which is either the user (external
= “true”) or the system (external = “false”). The slots “device”, “when” and
“success” are not relevant here.

precondition and postcondition The execution/success of a task may be
parameterized by the return value of an ECMAScript script. A precondition
and a postcondition contain scripts which return boolean values to allow the
execution of a task and mark it as successful respectively.

subtasks A subtasks node describes a method, i.e. a set of steps, to achieve a
task. It defines sub elements, which share the same precondition, postcondition,
inputs and outputs. A subtasks node consists in a recipe to achieve the task it
belongs to.

<subtasks> =
(<step>)*
(<applicable>)?
(<binding>)*
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step A step is a link to a task. The modularity of the standard allows for
tasks to be inserted into different subforms by reference. Moreover, a step links
to a task according to some conditions. The “minOccurs” and “maxOccurs”
attributes define the range of the task’s occurrence – it is higher than “minOc-
curs” and lower than “maxOccurs”. The “requires” attribute points to a list of
steps that have to be achieved before the containing one can be entered.

applicable The applicability condition of a subtasks node can be explicitly
specified with an ECMAScript script that returns true (the subtasks are appli-
cable) or false (the subtasks are not applicable)

binding Within a binding element, the variable pointed by the slot’s attribute
is set to the value of the value’s attribute. Bindings unify local variables through-
out tasks. The first attribute’s value is set to the “value” attribute’s content
interpretation.

script Grounding steps of the dialog are implemented in the ECMAScript
language embedded into script elements that can be called by tasks.

Figure 5.6: The ANSI/CEA-2018 schematic (some details have been omitted )

5.3.3 Related Issues

Simple task model

Let us consider, as an example, a possible dialog model to send a message to
someone. The root task is decomposed into several primitive ones. Figure 5.7
shows the task decomposition. The “set content” and the “set recipient” tasks
require, respectively, the text content of the message and the recipient’s name
to be defined before executing.
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Figure 5.7: An example of a simple task model.

Following is the code implementing the whole task model. Note the addition
of an attribute “requires”, which forces both tasks set content and set recipient
to be executed before the “send” task can be started. This attribute is available
because the “ordered” boolean is set to false (default is true).

<taskModel>
<task id=“message”>

<subtasks id=“message steps” ordered=“false”>
<step name=“set content” task=“set content”/>
<step name=“set recipient” task=“set recipient”/>
<step name=“send” task=“send” requires=“set content set recipient”/>

</subtasks>
</task>
<task id=“set content”>

<input name=“content” type=“string”/>
<binding slot=“$this.external” value=“false”/>
<script><!– grounding script to set the content –>
</script>

</task>
<task id=“set recipient”>

<input name=“recipient” type=“string”/>
<binding slot=“$this.external” value=“false”/>
<script><!– grounding script to set the recipient –>
</script>

</task>
<task id=“send”>

<binding slot=“$this.external” value=“false”/>
<script><!– grounding script to send the message –>
</script>

</task>
</taskModel>

Table 5.2: An example of a simple task model XML code.

The example is quite shallow thus simple to understand, debug or extend.
Instantiating this messaging task model description, a typical dialog would

be:
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User U1: I’d like to write a
message

[Propose to start the message task]

System S1: Who would you like to
send it to?

[Ask for the recipient input for
set recipient]

User U2: To John [Propose a value for the recipient
input for set recipient]

System S2: What would you like to
write?

[Ask for the content input for
set content]

User U3: The meeting is at 5 [Propose a value for the content
input for set content]

System S3: It’s done [Close the dialog]

Actually, if the surface form of the turns is not considered, there are only
two sequences of task execution. The other one is:

User U1: I’d like to write a
message

[Propose to start the message task]

System S1: What would you like to
write?

[Ask for the content input for
set content]

User U2: The meeting is at 5 [Propose a value for the content
input for set content]

System S2: Who would you like to
send it to?

[Ask for the recipient input for
set recipient]

User U3: To John [Propose a value for the recipient
input for set recipient]

System S3: It’s done [Close the dialog]

An experienced user would, however, like to get rid of some guidances and
thus be able to skip some tasks or, in other words, merge them. For instance,
User U1 and User U2 may be concatenated into a single utterance: I’d like
to write a message to John. The same goes for larger models, where the user
should be able to fill as much fields as he/she would like. Including those dialog
alternatives in the models expands them.

Complex task model

Let us now consider a larger model. One which is even too complex and large
to be drawn in this document despite a fairly simple dialog basis. Here is a
description of the dialog model in English words. It is extracted from the set
of models built along the course of this thesis and was generated using the
Extensible Stylesheet Language Transformations (XSLT) rules described later
(Section 5.6), i.e. it was not hand coded.

“add a prescription” dialog model The application is a personal drug
management software that basically organizes one’s medical prescriptions. The
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user adds new prescriptions via a spoken dialog. In Table 5.3 the mandatory
fields that need to be filled are detailed for the sake of clarity.

Field’s name Details
drug Name of the medication
frequency per day Frequency of intake per day
quantity per intake Quantity of medication unit per intake
dosage form Medication unit form
interval time Time interval between intakes
first intake Time of the first intake of the day
confirmation Validation confirmation
field Selection of the field to be changed

Table 5.3: Field description.

When sufficient data has been collected by the system, a summary is dis-
played to the user in order for him to validate the prescription or change the
incorrect field(s).

Additionally there is another source of increased complexity: the synchro-
nization with the GUI. Every field the SDS gets a value for is stored in memory
as well as displayed on the screen. This is achieved through grounding scripts
that send the update to a message bus. These scripts need to be added at every
relevant point of the dialog flow.

Issues with complex models The “add a prescription” dialog task model
defines 42 tasks and one initial script. A designer of such task models, needs a
way to design a set of interactions, define the minimal constraints of the dialog
and let the system mine that to generate every possible turn sequence.

The advantages are two-fold. A modification of the dialog structure is auto-
matically echoed throughout the whole task model. The system itself browses
the design to construct a model including all the possible paths to achieve di-
alogs.

Aiming at these two features, both a description language and a set of re-
cursive XSLT rules to convert from documents in the new language to similar
models compliant to the ANSI/CEA-2018 standard, have been proposed.

5.4 Disco: A Dialog Management Library

The core of the implemented DM is based on Disco [72, 112, 161, 162, 163, 164,
165, 182], an open-source dialog management library, whose algorithm processes
task hierarchy models.
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5.4.1 Introduction

A dialog model is a constrained XML tree of tasks [161]. A terminal task node,
also called an action, is executable with no other purpose than itself, whereas
the other tasks are decomposed into subtasks.

In Disco, an internal stack maintains the state of the dialog. It piles up
tasks, associated with partially elaborated plans, to be completed to achieve
the current dialog(s).

The plan recognizer uses the recipes defined in the dialog models and this
dialog state to select the best available plans for the tasks in the stack. Then
the reasoning engine selects the most appropriate next step.

5.4.2 Embedding Disco

According to Disco’s basic theory, a dialog event may have three effects. It
either:

1. starts a new discourse segment

2. contributes to the current discourse segment, or

3. ends the current discourse segment

This translates into a set of DAs which either:

1. start a new discourse segment

2. execute a step in a recipe

3. identify a recipe

4. identify the actor of a task, or

5. identify the input parameter(s) of a task

A mechanism had to be implemented to map the SFs out of the NLU compo-
nent with Disco’s commands. This process is dynamic because a DA modifies
the internal state of the DM. The set of available commands applicable to a
dialog context is finite. The mapping algorithm is a multiple-stage process (cf.
4.10) that is schematically described in Figure 5.8. It returns an ordered list of
DAs that are sequentially fed to the dialog engine.
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Figure 5.8: Schematic of the algorithm mapping SFs to DAs

On the output side of the DM, another interface is required to convert the
agent’s utterance format to SFs.

Disco’s creators proposed a set of XSLT rules to facilitate the design of model
files [164]. However, one may quickly find himself overwhelmed while building,
debugging and maintaining even small-sized models, due to both the lack of an
appropriate GUI interface and the complexity and depth of the models.
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5.5 Linked-form Filling Language Description

First, in order to automatize the building of dialog models, application specifi-
cations were described in terms of logical operations between variables. Then,
the LFF has been proposed.

5.5.1 LFF Principles

In an attempt to overcome the hurdles inherent to the specification of task
models, the dialog modeling paradigm is shifted to an LFF one. Form-filling
dialogs are based on structures containing sets of fields, which the user needs
to provide a value for in order to trigger a terminal action. The order in which
the DM asks for the values is not predefined. The user may define multiple field
values within a single utterance/turn.

The LFF language offers to combine these properties with the ability to
trigger an action at any point of the dialogs and the inclusion of subforms.
Furthermore, a field, just like a subform, can be optional, i.e. either ignored by
the system when unset or proposed to the user.

Let us get back to the simple dialog example described previously (see section
5.3.3). The form-filling of such a dialog is shown in Figure 5.9.

Figure 5.9: Form-filling example 1

A user cannot confirm that the message content is correct before sending it.
This is solved by:

Figure 5.10: Form-filling example 2
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We wish to execute some actions at key points of the dialog. The issue here
is that if the order of the slots is not constrained, we may end up with the
“confirmation” field defined before the “content” one, resulting in an invalid
dialog state. Furthermore, we would have to define every possible combination
of slots statuses to trigger the right action after filling one of them (cf. Figure
5.11).

Figure 5.11: Form-filling example 3

Forcing a strict order is also not a good solution, as this would prevent the
redefinition of incorrect data. Here, we make use of the unlimited depth of a
task model – because a link between two task nodes is a reference, a node can
point to its “parent” node – to loop around tasks while keeping a sequencing
order. Figure 5.12 is the schematic of the message dialog in this new paradigm.
The numbering of the arrow is an indication of the linking sequence order.
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Figure 5.12: LFF language description example

The reader may notice the two links labeled “If confirmation is equal to
“no””. Those are conditional links which are dependent of the value of the
“confirmation” slot, i.e. they are both applied or none of them is.

It is encoded via the following lines
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<description>
<form id=“message”>

<slot variable=“recipient”/>
<subform constraint=“mandatory”>

<link form=“get content”/>
<link form=“confirm”/>

</subform>

<subform constraint=“mandatory”>
<script action=“send”/>

</subform>

</form>

<form id=“get content”>
<slot variable=“content”/>
<script action=“update content”/>

</form>

<form id=“confirm”>
<slot variable=“confirmation”/>
<subform constraint=“mandatory”>

<link form=“get content”/>
<link form=“confirm”/>
<applicable>

confirmation==“no”
</applicable>

</subform>

</form>

<variable id=“recipient” type=“string”/>
<variable id=“content” type=“string”/>
<variable id=“confirmation” type=“string”/>
<action id=“send”/>
<action id=“update content”/>

</description>

Table 5.4: LFF language description XML code.

5.5.2 Syntax

Following is the syntax of the LFF language.

description The root node of all LFF (LFF) documents is a description ele-
ment

form Forms are the main entities to be defined in the language. They are
tagged with a unique identifier (ID). Links reference these IDs.

action The content of an action is an ECMAScript script that can be called
by a script node, pointing to the action’s ID. Here, the ID also needs to be
unique.

variable Variables are convenience nodes. Each one refers to a global variable.
A smarter way of dealing with global declarations would have been to list all
the slots of the model and declare a unique instance of each one.
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subform Subforms are contained within forms. They themselves contain a set
of zero or more links to either forms (<link> elements) or actions (<script> el-
ements)

slot A slot is the unit variable in a form. In other words, a slot needs to be
given a value to complete the form.

link Links refer to forms. It is basically the insertion of a form into the
containing subform.

applicable Similar to the applicable nodes of the ANSI/CEA-2018 standard.
A script returns a boolean value to allow or disallow the execution of the parent
subform.

script Self-named scripts are grounding actions to apply while executing a
subform.

Figure 5.13 shows the hierarchy of XML nodes, as specified by the new LFF
language.

Figure 5.13: Hierarchy of the LFF language

5.6 From Linked-form Filling to ANSI/CEA-2018

The aim of the LFF language is to offer a somehow simpler design method to a
powerful standard dialog modeling specification. Since it is also an XML based
language we opted for XSLT to convert an LFF document into a compliant di-
alog model. XSLT stands for EXtensible Stylesheet Language Transformations.
A number of rules have been defined to create a well-formed LFF document.
This section will not go through all of them but will describe the basic principles
of the transformations.
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5.6.1 Variables and Actions

Variables and actions generate primitive tasks identified by their ID. They are
executed by the system. Below is an example of transformation of a variable
element toward a primitive task.

LFF <variable id=“variable id”/>

ANSI/CEA-
2018

<task id=“variable i”>
<input name=“variable id” type=“string”/>
<binding slot=“$this.external” value=“false”/>
<script>variable id=$this.variable id; </script>

</task>

Table 5.5: Transformation of a variable node

Here is the same transformation type applied to an action node

LFF <action id=“action id”> ECMAScript </action>

ANSI/CEA-
2018

<task id=“action id”>
<binding slot=“$this.external” value=“false”/>
<script> ECMAScript </script>

</task>

Table 5.6: Transformation of an action node

5.6.2 Forms

A form is transformed into a task with the same ID. The rules applied to a
newly created node are split into two parts.

The first set of rules recursively creates the inputs based on the slots of the
current form, but also all the descendant slots defined by the linked forms. The
subtasks nodes are created in three steps: the step nodes, the applicable node,
and the binding nodes.

The transformations are applied to maintain the constraints defined at the
LFF level so that a subform whose constraint is “ignored” does not transform
the same way as one whose constraint is “mandatory” or “proposed”. Also, all
the possible dialog paths are explored to make them available in the task tree.

Following is an example of the conversion of a form element. The example is
incomplete since the slot element makes a reference to a non-existing variable.
The link and the script tags are void as well.
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LFF

<form id=“form id”>
<slot variable=“variable id”/>
<subform constraint=“mandatory”>

<link form=“form id 2”/>
<script action=“action id”/>

</subform>
</form>

ANSI/CEA-
2018

<task id=“form id”>
<input name=“variable id” type=“string”/>
<subtasks id=“form idSteps1”>

<step name=“empty” task=“empty”/>
<step name=“variable id” task=“variable id”/>
<step name=“form id 2” task=“form id 2”/>
<step name=“script action id” task=“action id”/>
<applicable>($this.variable id!=“null”) </applicable>
<binding slot=“$variable id.variable id”

value=“$this.variable id”/>
</subtasks>
<subtasks id=“form idSteps0”>

<step name=“empty” task=“empty”/>
<step name=“variable id” task=“variable id”/>
<step name=“form id 2” task=“form id 2”/>
<step name=“script action id” task=“action id”/>
<applicable>($this.variable id==“null”) </applicable>

</subtasks>
</task>

Table 5.7: Transformation of a form node

5.7 Linked-form Filling Evaluation

The evaluation of a new programming language to model dialogs deals with two
questions:

1. How does the new models compare to the former ones at runtime?

2. What are the advantages and drawbacks of using the new paradigm for a
designer?

Both directions are explored in the following sections.

5.7.1 Model’s Comparison

In order for a DM such as Disco to run them, LFF models are “compiled”,
i.e. converted using XSLT rules. The result of the transformations is a task-
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based model compliant to the ANSI/CEA-2018 standard. This means that the
final models are actually identical, whether they have been manually created or
derived from LFF intermediate models.

The LFF does not add any functionalities nor any mechanisms to dialog
models. It is a supporting tool to create them. The quality of a model depends
mainly on the skills of the designer who implements the standard directly. While
it would surely take more time to create the models, one may indeed avoid using
the LFF.

5.7.2 Design Comparison

Size and complexity measures

All the dialog models available by the time of writing this thesis – 26 of them
– have been evaluated. A human designer created the LFF models and the
automatic tool performed the transformation to ANSI/CEA-2018 compliant
structures. Two comparisons measuring the design complexity are shown in
Table 5.8.

Task hierarchy LFF Reduction
Count of lines 139 [49− 246] 30 [14− 46] 76.34% (±5.26%)

Count of XML
elements

87 [24− 164] 18 [7− 32] 76.854% (±10.184%)

Table 5.8: Comparing LFF and ANSI/CEA-2018 models

The count of lines and the count of XML elements demonstrate the reduction
in manual coding size and hierarchy depth from the standard models to the LFF
design. The count of lines is a measure of the size of the models. The more
XML elements there are, the deeper and more complex the model is.

The reduction may also be seen as how powerful the transformation rules
are. Going from a model consisting of, on average, 30 elements to a model
which has 139, is the result of the thorough exploration of the LFF models by
the XSLT rules, looking for maximum interaction possibilities to fulfill the same
service requirements.

Augmenting the abilities of deterministic models

Along the course of this thesis, two users sessions allowed the collection of in-
teraction data to train stochastic components. Still, the chosen dialog modeling
paradigm is deterministic, based on manual task hierarchies.

Stochastic models such as MDPs and POMDPS are trained from large
amount of data collected with real-users recordings. The cost, in terms of time
and labor, that accompanies such a collection may explain why these paradigms
so far remained in the world of research and were not adopted by commercial
companies.
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Moreover, stochastic learning algorithms are dependent on the data available
and its relevance to the application. In other words, updating a stochastic model
or porting it to new domains is, at the moment, an active research area.

Given these considerations, a deterministic way of modeling dialogs seems
appropriate. However, unless one wants to implement a very constrained system,
deterministic models are difficult to build, debug, maintain and/or modify.

The LFF language offers a light and intuitive syntax, which matches the
constraints of the service one wishes to add a spoken interface to.

Building a complex ANSI/CEA-2018 model via the LFF tool is quick and
automatic, thanks to the XSLT rules which bridge the gap from one to another.

The LFF tool applies an exploratory algorithm, i.e. it tries to build a task
model description that allows for all the dialog paths compliant with the LFF-
defined model. In other word, the sequencing order is shuffled, some tasks are
combined, etc., so that the user can perform the same dialog in any possible
fashion with the same results.

5.7.3 Characteristics summary

Here is a summary of the characteristics of the LFF language.

• No data requirements

• Facilitated design

• Quick conception

• Low expertise requirements

• Guarantee of dialog completion

• Direct domain enlargement

• Automatic dialog variability

5.7.4 Compared to...

In the following table (Table 5.9), the characteristics of the LFF have been
mapped to the state of the art dialog modelling methods.
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No data
require-
ments

Facilitated
design

Quick
concep-
tion

Low
expertise
require-
ments

Guarantee
of dialog
comple-
tion

Direct
domain
enlarge-
ment

Automatic
dialog

variability

Flow
charts

� - � � � � ×

Example-
based

× - × � × × �

Information
state

� � � × × × �

Adjacency
pairs

� - � � × � �

Stochastic
models

× � × × � × �

Linked-
form
filling

� � � � � � �

Table 5.9: Characteristics mapping for dialog modelling methods
�: has the characteristic

×: does not have the characteristic
-: not relevant

5.8 Conclusion

This chapter focused on the DM, which is the decision-making component of
an SDS. Several methods for this task were discussed. The current platform
integrates a deterministic task-based DM, whose core algorithm is provided by
the Disco library. An LFF paradigm was proposed to facilitate the development
of models.

The deterministic modeling of dialogs was selected for mainly two reasons.
The first one is that stochastic models needs in-domain data to learn a strategy.
This data collection is costly. Moreover, modifying a stochastic DM requires to
modify the data it has been trained on. Expanding dialogs requires adding more
data. Such is often not available. Despite the user-centered approach applied
in the here presented work, this two-step process, where one first collects data
and then learns the models, is not efficient enough.

However, there is a trade-off in building task hierarchies. The complexity of
the system, i.e. its apparent intelligence and flexibility, hinders the easiness of
the development. In other words, the larger and more complex the system is,
the harder it is to update, maintain, debug, and modify it.

The LFF language offers a light, intuitive syntax to model the application
specifications, which are mined by the XSLT rules to produce complex task
hierarchies. It tries to combine the best of both worlds.

The LFF reduces the size and the complexity of models and is automatically
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transformed. Thus, the conception is facilitated without losing the intelligent
aspects of the SDS.

Towards the end of the vAssist project, which provided the application space
for the work presented in this thesis, the GUI application, and consequently the
dialogs, were reshaped according to the results gained from the previous real-
users lab rials. This LFF design proved to be an efficient method to rapidly
develop the new models.

5.9 Future work: proposal For the Evaluation of
Dialog Management Methods

Evaluating a DM is not a straightforward task. Unlike most classification pro-
cesses whose performances can be measured by comparing the test outputs with
a static ground truth, a manager runs a dynamic algorithm. The corpus col-
lected with a DM may not be suitable for another one. Indeed the response
from such a component depends on two parameter sets. One is the inputs it
gets, the other one is the maintained inner dialog context. In order to evaluate
a system, a pool of live users is necessary.

Also, when comparing two systems, they have to share the same domain(s)
for the comparison to be relevant.

In this section, the upcoming vAssist field trials and the work in progress to
set up and compare a statistical DM are described.

5.9.1 vAssist Field Trials

In the last months of the vAssist project, the whole system will be deployed
to users for an extended period of time. These trials will take place in Austria
and in France with elderly users satisfying the target group requirements, i.e.
seniors suffering from chronic diseases and persons suffering from (fine) motor
skills impairments. Here is an overview of the system.
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Figure 5.14: vAssist field trials setup

Users access the system via their smartphones, tablets or TVs. They will
be regularly prompted and reminded to use it, especially in the first days of the
experiment.

Over the course of the experiment, the inter-component data will be auto-
matically recorded, aligned and stored similarly to the previous data collections.
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Figure 5.15: Data collection setup

5.9.2 Switching Dialog Managers

The RavenClaw DM is a task-based DM similar to the Disco library. Currently,
dialog models are being implemented for the vAssist tasks. Also, RavenClaw’s
communication protocol, part of the Olympus architecture, is being augmented
to send and receive messages to and from an ActiveMQ broker. This aims at
integrating the DM into the platform architecture.

During the field trials, the DM will be switched on a regular basis. The ob-
jective is to compare the behaviors of both managers for the same task. Metrics
such as the average number of turns to achieve tasks and subjective assessment
measures (SUS, SASSI, SEQ) will be obtained from the trials.

5.9.3 Comparison With a Statistical Dialog Manager

The Speech Interactive Research group of the Universidad del Pais Vasco/Euskal
Herriko Uniberstitatea has been working on the development of a statistical DM
[64, 192, 193]. In this paradigm, stochastic dialog models are trained from data.
They encode the dialog paths as sequences of system’s state nodes and user’s
input transitions. The graph structure as well as the transition probabilities are
automatically learned from a corpus of dialogs.

The collected data (cf. Section 2.7) has been used to train both a user model
and the statistical DM. Dialogs were generated from the interaction between
these two components. Currently, the new dialog corpus is being analyzed to
detect wrong node transitions and improve the learning algorithm

This DM will be integrated into the platform as an alternative DM so that
experiments could take place with real users. They will be requested to perform
a set of scenarios for each DM method. The DM paradigm of the SDSs they
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will be engaging in a conversation with will be transparent to them. Objective
and subjective evaluations will be performed and analyzed.
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion

This document reports on 3 years of research work conducted at Télécom Paris-
Tech whose main objective was to build an SDS for a particular group of users,
i.e. elderly people from France, Austria and Italy.

The path of research followed the requirements of the supporting projects
CompanionAble, Arhome and vAssit. These projects gave access to users at the
specification, development and deployment phases, and hence helped to design
the system, collect data, get feedback and measure performances in real condi-
tions. This user-centered process brought benefits to this work and anchored it
into the reality of SDSs.

In this endeavor, multiple areas and domains have been explored, creating
an overall idea of the SDS design and, while focusing on some components,
keeping in mind the interaction between them, thus not restricting the scope to
a single functionality.

Collaborating with experts from different domains highlighted the need for
tools to facilitate the configuration of SDSs which are complex multi-task pro-
cessing systems.

While the human-machine interaction aims at freeing the communication
from a constraining sequence, experiments showed that some users, especially
elderly, while keen to use the system, expected it to be highly reliable and
robust. That request appeared as early as the first WoZ-based experiments.

In order to address the three main research questions listed below and in
chapter 1, this document is divided into four parts or application domain to
which this thesis brings a contribution. The problematics are:

• How can we make the human-machine spoken interaction more reliable?
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• What are the important features for an SDS to improve its human-like
appearance?

• How can we support the development of SDSs?

Following are the main contributions of this thesis.

A modular open-source platform for spoken dialog systems The plat-
form detailed in chapter 2 has three usages.

The owner of a service who wants to add a vocal interface to it may set
up the platform so that it handles the dialogs to access the service. Individual
components are easy to set up and this task does not require in-depth knowledge
of the algorithm they implement.

Researchers from the SDS-related domains such as ASR, NLU, DM, NLG
and TTS often specialize in one specific functionality and thus lack the overall
system to integrate their technology in. Since the platform is modular, any
component (or set of) can be replaced by another one whose inputs and outputs
are identically formatted. Thus, the in-context performance of a new algorithm
can be evaluated within the framework.

Finally, the most obvious way of using the platform is by interacting with
it. It has been ported, with a set of configuration files, to a server accessible via
a VoIP link, i.e. any SIP client with an authorized ID can call the system to
experiment with it.

A Step Towards continuous listening for spoken interaction Elderly
users, as it was observed in early experiments with the system, tended to forget
about triggering the recording of segments, i.e. they addressed the system like
it was a human being. Continuous listening solves that but brings up many
more issues with respect to SDS design and development. An optimal trade-off
had to be found between how constrained the system is and how much it allows
the user to control the interaction.

A first iteration of a continuous listening method showed encouraging results,
although it needed to be set up for a specific environment and a specific speaker.

Currently, the platform implements a lighter mechanism that is shared among
dialogs and users and spans over more components of the ASR and NLU sub-
systems. This continuous listening is not yet as fine-grained as one would wish
but it is a step towards a more natural manner of talking to a machine.

A sub-system to map natural-language utterances to situated parametrized
dialog acts The SDS framework developed here includes a modular NLU sys-
tem, which segments the incoming signal, transcribes the speech, parses the ut-
terances, augments the inputs with the dialog context and additional external
sources, selects the user DA, and tries to detect and recover from errors.

The NLU components have been set up for three languages using the support
of native speakers. Since many languages were to be implemented, the sub-
system has been conceived to be as portable as possible. Thus, only the front-
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end processors are language-dependent while the remaining ones are based on
semantic concepts, whose human-readable representations are English words.

The four mandatory features of an NLU system to be called as such have
been integrated:

1. allow variations in the utterances of the user

2. allow for a mixed initiative

3. integrate the dialog context in the process

4. integrate relevant external environment variables to augment the informa-
tion

The linked-form filling language: a new paradigm to create and up-
date task-based dialog models The LFF modeling paradigm enables non-
expert developers to build and maintain dialog task hierarchies compliant to
the ANSI/CEA-2018 standard, while hiding the complexity of the final models.
The tool adds to the domain of DM design by opening it up to a wider com-
munity. It is an alternative to the data-based learned models which require less
development efforts but much more data collection/annotation phases and are,
at the moment, not mature enough to be put to practical use.

All the dialog models currently part of the platform have been transformed
from an LFF file, itself encoding the services’ specifications

6.2 Future Work

The framework is a great baseline platform to conduct experiments with SDSs.
The current setup allows to do so in three different languages: German, French
and Italian. Here are ideas for the future to build upon that.

There are currently a dozen services that the server-based SDS provides an
interface for. I wish to offer more of them to users.

Also, implementing new languages would demonstrate the above claims.
Currently, a Spanish version is in progress. The designer is creating the NLG
templates file and an SP corpus for this language.

The current components of the platform are not the initial ones for most
of them. Actually, the system is still evolving. New components should be
experimented such as an improved ASR module, additional NLU resources,
stochastic DMs, a trained NLG, etc. The statistical DM is an instance of such
alternative components.

One drawback of the system is that it lacks, in some dialogs situation, guid-
ances to give to the user. The latter is left without much information about
the state of the system or the options available. This should be improved. The
SDS is set up for a well-defined domain and some specific services. Out-of-
scope utterances are rejected with a flat “I don’t understand that” system’s
turn when the DM has no context information. This limits the naturalness of
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the system. Some generic deflection dialogs should be implemented as well as a
bit of “chit-chat” handled by the SDS.

This SDS platform may be a data collector to seamlessly shift to a fully
stochastic system. For that, it needs data and practical algorithms to learn and
execute models. So far, the SDS as been deployed to a specific chunk of the
population in Europe. The deployment of the Let’s Go Bus Information System
showed how rewarding it is to release a system to the general population. For
that the automatic dialogs need to answer actual needs and provide services at
least as efficiently as their human-based counterpart. Large deployment means
more data collected, the ability to learn online and a continuous feedback on
the usage of such system. Such an SDS could be available as an interface to the
online room booking system of the school, a guide of the buildings for visitors
or an interface with the information systems service desk, etc.

Even though machine learning methods have been scarcely used to set up
components in the work above, there is no denying it is the future of the inter-
active computing. I wish to work on the application of such techniques for the
ASR, the NLU and the dialog management.

There are two ways to integrate data in an SDS. The offline training uses
a corpus of data to train or adapt models. Learning new dialog strategies,
utterance structures and/or adapting to the voice of the users online has the
same objective but require less manual work, though it seems that it is less
reliable.

Another promising area in the human-machine interaction is the adaptation
and learning from a specific user. It means either adapting the existing system
so that it fit better the user or giving the ability for a user to “teach” the system,
i.e. create new tasks, services and increasing the natural language domains via
the interaction.
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Pierrick Milhorat, and Stephan Schlögl. vAssist : Building The Personal
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horat, and Gianni Pelosi. Assessing Voice User Interfaces: The vAssist
System Prototype. In Cognitive Infocommunications, pages 91–96, 2014

165



Chapter 8
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8.1 Résumé

L’interaction vocale avec des systèmes automatiques connâıt, depuis quelques
années, un accroissement dans l’intérêt que lui porte tant le grand public que la
communauté de la recherche. Cette tendance s’est renforcée avec le déploiement
des assistants vocaux personnels sur les terminaux portables.

Cette thèse s’inscrit dans ce cadre pour aborder le sujet depuis deux points
de vue complémentaires. D’une part, celui apparent de la fiabilité, de l’efficacité
et de l’utilisabilité de ces interfaces. D’autre part, les aspects de conception et
d’implémentation sont étudiés pour apporter des outils de développement aux
concepteurs plus ou moins initiés de tels systèmes.

A partir des outils et des évolutions (très récentes) dans le domaine, une
plate-forme modulaire de dialogue vocal a été agrégée. Progressivement, celle-
ci a été configurée pour répondre aux exigences des scénarios d’usage et de
démonstration dans l’optique des collaborations encadrant ce travail. Le système
s’est complexifié et est constamment en évolution suivant les deux approches
mentionnées plus haut.

L’interaction continue, basée sur une “écoute” permanente du système pose
des problèmes de segmentation, de débruitage, de capture de son, de sélection
des segments adressés au système, etc... Une méthode simple, basée sur la
comparaison des résultats de traitements parallèles a prouvé son efficacité, tout
comme ses limites pour une interaction continue avec l’utilisateur.

Les modules de compréhension du langage forment un sous-système intercon-
necté au sein de la plate-forme. Ils sont les adaptations d’algorithmes de l’état
de l’art comme des idées originales. Ils ont été pensé pour rendre l’interaction
naturelle et fiable tout en limitant la complexité de leur configuration et en
maintenant leur généricité et donc leur usage à travers plusieurs dialogues.
L’utilisabilité est évaluée à partir de données collectées lors d’essais en labora-
toire avec des utilisateurs réels. L’aisance dans la configuration d’un tel système
et sa modularité, plus difficiles à prouver empiriquement, sont discutées.

Le choix de la gestion du dialogue basé sur des modèles de tâches hiérarchiques,
comme c’est la cas pour la plate-forme, est argumenté. Ce formalisme est basé
sur une construction humaine et présente, de fait, des obstacles pour concevoir,
implémenter, maintenir et faire évoluer les modèles. Pour parer à ceux-ci, un
nouveau formalisme est proposé qui se transforme en hiérarchie de tâches grâce
aux outils associés. Ce document se veut être une référence du nouveau lan-
gage code et de sa conversion, il présente également des mesures d’évaluation
de l’apport d’un tel outil.

Construire un système de dialogue vocal peut se faire selon deux méthodes:
soit on cherche à créer un système utilisable par le plus grand nombre, soit
on cible un groupe d’utilisateurs particulier. En terme de fiabilité, un système
générique large perd en précision dans ses traitements puisque configuré/appris
sur une moyenne de ses utilisateurs potentiels. En revanche, les utilisateurs
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obtiennent un accès immédiat aux services proposés. A l’opposé, une interface
adaptée et/ou adaptive demande à l’utilisateur de s’investir dans la configura-
tion et l’apprentissage du système pour en retirer des bénéfices postérieurs. Dans
cette thèse, cette dernière approche est favorisée: des mécanismes de person-
nalisation permettent d’adapter un système général à un utilisateur spécifique.
Plusieurs expériences montrent l’amélioration des performances du système de
dialogue vocal dans le cadre d’un usage personnel.

8.2 Introduction

Récemment, de nombreuses firmes internationales de technologie ont déployé
leur propre assistant virtuel personnel. Ces produits ont attiré l’attention du
grand public de par leur interaction naturelle (vocale) mais ont, d’autre part, es-
suyé des critiques concernant la fiabilité, l’utilité réelle, la protection des données
personnelles ou encore les aspects propriétaires de ces interfaces.

De son côté également, la communauté scientifique, bien que saluant l’aboutissement
démontré de la technologie, déplore le manque d’ouverture des systèmes. En
effet, les chercheurs bénéficieraient de l’accès aux outils développés, tireraient
des leçons de l’étude de ceux-ci et pourraient comparer leurs résultats avec ces
assistants à l’échelle du composant si de tels technologies étaient ouvertes.

C’est dans ce contexte que s’inscrit ce travail de thèse. Le principal résultat
en est l’élaboration d’une plate-forme de dialogue vocal ouverte qui apporte des
éléments de réponse aux problématiques suivantes:

• Comment fiabiliser l’interaction avec les systèmes de dialogue vocal?

• Quelles caractéristiques sont importantes pour rendre une apparence na-
turelle et spontanée à l’interaction vocale homme-machine?

• Comment soutenir le développement des systèmes de dialogue vocal par
des concepteurs plus ou moins initiés?

La plate-forme de dialogue vocal Un système de dialogue vocal se définit
par une interface vocale (en langage naturel) qui permet l’accès à un ensemble
de services [35]. Une telle interface allie les technologies de capture et d’analyse
du signal [5, 8, 194, 195], de reconnaissance des formes [90, 152], d’apprentissage
automatique, d’intelligence artificielle [29, 37], de traitement du langage [7, 48],
de génération du langage, de synthèse vocale [141, 177], etc...

On parle de dialogue dès lors que l’interaction excède un tour, i.e. dès lors
que le système et le ou les utilisateur(s) construisent l’interaction sur une base
d’information partagée. De fait, un système de dialogue requiert un gestionnaire
[88] qui sélectionne, à chaque tour, la ou les actions les plus appropriées en
fonction de l’historique du dialogue et de sa modélisation.

Plusieurs équipes de recherche ont proposé des plate-formes de dialogue vo-
cal, partielles ou complètes, ouvertes ou fermées, configurables ou statiques
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[61, 73, 98, 143, 188]. L’une des plus aboutie étant, de mon point de vue, Olym-
pus [17]. Celle-ci définit un protocole de communication et associe plusieurs
modules pour construire un système de dialogue vocal. Olympus fut utilisé
pour créer RoomLine, MeetingLine, TeamTalk [74], ConQuest [16], Let’s Go!
Bus Information System [57, 157, 158], etc... Le dernier d’entre eux, Let’s Go,
est accessible depuis 2003 par l’intermédiaire d’une liaison téléphonique. Il con-
necte les usagers à un service automatique d’information sur les lignes de bus
de Pittsburgh et de ses environs.

Préalablement, le MIT avait proposé JUPITER [223] tandis que Philips
construisait le automatic train timetable information system [6]. Let’s Go, basé
sur l’architecture Olympus a été pensé pour être ouvert: ses sources comme les
données d’usage collectées sont disponibles. Cependant, tous les modules ne
sont pas transférables à de nouveaux scénarios, d’autres ne sont pas adaptables
et doivent être reconstruits et, plus encore, remplacer un composant du système
s’avère difficile du fait de l’éparpillement de la documentation et/ou de son
absence.

Le document joint renseigne la plate-forme construit en fil rouge de cette
thèse. Celle-ci se veut complètement ouverte et aisément configurable pour
des dialogues orientés vers l’accès à des services (par opposition aux agents
conversationnels).

Écoute permanente et robustesse de la reconnaissance de la parole
L’interaction vocale avec une machine peut être caractérisée par le degré de
contrôle de l’écoute. Le terme englobe l’ensemble des paramètres relatifs à
l’enregistrement du signal. Dans le cas où elle est très contrainte, l’utilisateur
doit signaler sa volonté de s’adresser au système et se plier aux exigences de
la capture du son. Pour ce faire, la majorité des systèmes, se servent d’une
modalité binaire (bouton, geste, ...) ou cherche en permanence une phrase clé
dans le signal enregistré (on peut alors parler d’écoute semi-permanente). Les
performances d’un système et son efficacité dépendent alors essentiellement de
la qualité de l’enregistrement: distance de l’utilisateur au microphone [121],
souffle direct sur le capteur, bruit ambiant, écho, utilisation d’algorithmes de
pré-traitement, quantité de capteurs, etc...

Contraindre les conditions d’enregistrement permet d’améliorer la robustesse
du système mais en ternit les aspects naturels. De fait, l’écoute permanente et
libre présente des avantages de ce point de vue, en dépit d’une fragilité accrue
du système [7].

Nous verrons dans la section 8.4 comment une méthode basée sur une recon-
naissance automatique de la parole parallèle et une comparaison des résultats
permet la validation ou le rejet de segments de signal dans le cadre d’une écoute
permanente.

Compréhension du langage appliqué au dialogue vocal Pour obtenir
une interface en langage naturel, deux sous-systèmes, l’un interprétant le lan-
gage de l’utilisateur (compréhension) et l’autre générant les tours de parole du
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système (génération), doivent être apposés de part et d’autre du module pivot
qu’est le gestionnaire de dialogue. Nous nous intéressons à la compréhension,
ici, dans le cadre des systèmes de dialogue vocal. Celle-ci a pour but d’extraire
un sens, une signification pour le système de dialogue, dans une entrée parlée.

Les premières interfaces de dialogue interprétaient les segments de texte is-
sus de la reconnaissance automatique de la parole par la détection de mot clés
(ou séquence de) [48, 204]. Vinrent ensuite les grammaires déterministes suiv-
ies des grammaires stochastiques pour lesquelles un important travail préalable
d’analyse et de conception est nécessaire [53, 68, 132, 201, 202, 203]. L’avènement
des méthodes d’apprentissage automatique dans plusieurs domaines du traite-
ment du signal ou de l’intelligence artificielle a débordé sur cette tâche et des
systèmes basés sur les Modèles de Markov Cachés (MMCs), tels que Chronus
[12, 144, 145], ont vu le jour. Ces modèles sont appris à partir de données
d’interaction, avec les avantages et les inconvénients inhérents à ces méthodes.
Un modèle intéressant, le Hidden Vector State [76, 77, 78, 180], s’appuie sur les
MMC pour proposer un algorithme de parsing moins gourmand en annotation.

Il est nécessaire de prendre en considération des phénomènes inhérents au
langage parlé, tels que les hésitations, les répétitions, les erreurs de grammaire,
lors de l’analyse sémantique de segment de parole transcrits [13, 14, 51, 187].
Ainsi, il est préférable de procéder à un parsing partiel qui s’attache a étiqueter
une partie de la transcription au lieu d’un parsing total pour lequel à tous les
mots doit correspondre un symbole sémantique. C’est le choix qui est fait pour
le sous-système de compréhension du langage de la présente plate-forme.

Un autre aspect de la compréhension du langage dans le contexte du dialogue
est la notion de dynamisme dans l’association du sens sémantique d’un segment
de parole à l’acte de dialogue. En effet, cette correspondance dépend de l’état du
dialogue et de son historique. La plate-forme développée intègre des mécanismes
de résolution de références aux concepts du dialogue précédemment abordés
et de références à un savoir partagé tel qu’on pourrait l’envisager lors d’une
interaction entre deux entités humaines.

Modélisation des dialogues: linked-form filling Le chapitre final de
ce manuscrit présente les efforts consentis pour faciliter la modélisation des
dialogues. Les modèles de dialogue, ceux sur lesquels le gestionnaire base
son raisonnement, ont suivi une évolution similaire à celle du domaine de la
compréhension du langage.

Partis de scripts de réponses prédéfinies [204], la tendance actuelle en matière
de gestion du dialogue est dominé par les POMDPs [25, 28, 79, 94, 167, 191,
207, 218, 221] qui présentent une base stochastique intégrant l’incertitude des
résultats du traitement du langage dans la modélisation.

Entre les deux, l’Information State (IS) [101, 134] a été proposé. Il définit
l’état du dialogue comme la somme des informations échangées au cours de celui-
ci. Un ensemble de règles, conditionnées par leur applicabilité et une stratégie
de mise à jour, assurent la gestion du dialogue.

La modélisation de l’état du dialogue par cumul des variables utiles à celui-ci
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a inspiré Lison [115, 116, 117] qui étend les règles de mise à jour en y injectant
des aspects stochastiques.

Les modèles basés sur les hiérarchies de tâches [18, 71, 112, 161, 162, 163,
164, 165, 182, 185] obéissent au principe suivant: une tâche, si elle n’est pas
primitive, est complétée après que l’ensemble de ses tâches filles l’ai été, une
tâche primitive s’exécute indépendamment. Définir les tâches et leur hiérarchie
fait appel aux capacités d’analyse des concepteurs et l’anticipation de ceux-ci
quant au déroulement du dialogue.

Ce paradigme, contrairement au MDPs et POMDPs, ne s’appuie pas sur
une collection de données préalable pour établir les paramètres. Cependant,
il participe grandement à la complexification des SDVs, à la difficulté de leur
maintenance et de leur portabilité pour les concepteurs du système, plus encore
pour les non initiés.

Pour autant, les modèles de tâches permettent la création de modèles de
dialogue sans collection de données préalable ou bien dans le but de collecter
ces données auprès d’un groupe initial d’utilisateurs potentiels.

Cette thèse propose de supplanter les modèles bruts avec une nouvelle ab-
straction appelé Linked-Form Filling (LFF) qui modélise un service selon un
ensemble de formulaires inter-connectés. Ceux-ci sont ensuite transformés en
hiérarchies de tâches à l’aide de l’outil de transformation approprié.

La suite de ce mémoire comporte quatre parties. Dans la première, la plate-
forme open-source de dialogue vocal est introduite: son architecture et le fonc-
tionnement de chacun des modules la composant. Ensuite, viennent en détails
les aspects de robustesse de la transcription vocale et de gestion de l’écoute
du système. Suivent ensuite les travaux sur la compréhension du langage et
le nouveau paradigme LFF de modélisation du dialogue par formulaires inter-
connectés.

8.3 La plate-forme de dialogue vocal

8.3.1 Introduction

Les plate-formes disponibles aujourd’hui pour le développement de SDVs sont
peu nombreuses et les systèmes commerciaux, jusqu’à présent, n’offrent que peu
voire aucune option de configuration [6, 17, 36, 68, 98, 158, 188, 215, 223].

L’usage de la reconnaissance vocale, pourtant, a pu être généralisée par la
mise à disposition d’APIs [173] et de moteurs de reconnaissance, ouvrant cette
modalité aux services développés sur les machines portatives mais également
les explorateurs internet intégrant un dispositif de capture de son [7, 133, 183].
Ces services se basent sur d’immenses quantités de données et se nourrissent
de celles collectées lorsqu’un utilisateur y fait appel, autrement dit, le cercle
vertueux de l’apprentissage automatique (figure 8.1) a été initié.
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Figure 8.1: Cercle vertueux de l’apprentissage automatique

L’avènement de ces interfaces a élargi le champ des possibilités dans le do-
maine de l’interaction vocale avec une machine et les intérêts se recentrent sur la
question: “Comment bien utiliser ces transcriptions du langage naturel?” [67].

Un système pour l’interaction homme-machine tend à reproduire les com-
portements humains, que ce soit pour animer un robot humanöıde ou pour en-
gager une discussion avec un avatar virtuel. Le dialogue vocal avec une machine
demande de comprendre le sens des mots au-delà de leur définition immédiate. Il
faut prendre en compte leur combinaison, les figures de styles, les sous-entendus
et le contexte dans lequel un énoncé est exprimé. Les SDVs ajoute cette couche
d’analyse à la reconnaissance automatique de la parole pour interagir avec un
utilisateur dans le but de l’accompagner dans l’accomplissement d’une tâche.

Ce chapitre présente la plate-forme développée tout au long de cette thèse.
Après une vue d’ensemble de celle-ci, dans son état actuel, un exemple permettra
de détailler les fonctions de chacun des modules la composant.

8.3.2 Vue d’ensemble

Au cours du travail présenté dans ce document, une plate-forme intégrant des
modules utiles à un SDV a été assemblée avec pour but premier de constituer
une base modulaire pour l’étude de tels systèmes et de leurs composants mais
aussi dans le but d’expérimenter ce type d’interaction et ses applications.

Pour ce faire, le protocole de communication entre les modules est léger et
décentralisé, i.e. il n’existe pas de régulateur ou de noeud central de gestion des
messages. Tous les composants agissent comme des services indépendants asyn-
chrones. ActiveMQ est un protocole de transmission de messages sur le modèle
client-serveur. Un client producteur émet des messages dont l’entête contient
l’identifiant de la destination. Chaque client enregistré comme consommateur
pour une destination se voit recevoir les envois vers celle-ci. Ce système flexible
et léger permet le remplacement facile de n’importe quel composant ou l’ajout
rapide d’un nouveau module.

Le système a connu plusieurs évolutions et, au moment où ce document est
rédigé, s’agence comme sur le figure 8.2.
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Figure 8.2: Architecture de la plate-forme

8.3.3 Fonctionnement des composants

Basons nous sur un exemple pour détailler les fonctionnalités de chaque com-
posant et suivre la séquence de traitement pour compléter un tour d’interaction.
Le service simulé permet à un usager de consulter la météo à la date et pour
le lieu de son choix (en considérant que cette information est disponible pour
tous les lieux et toutes les dates). Le niveau de détail des données retournées est
réglable selon deux niveaux: soit haut (température, force du vent, hygrométrie,
pression), soit bas (météo générale).

Voici les étapes de traitement:

1. L’utilisateur dit: “Quel temps fait-il aujourd’hui?”. Le système écoute
en permanence, l’utilisateur n’a pas besoin de signaler son intention de
s’adresser au système.

2. Le module d’enregistrement segmente le signal continu reçu selon un seuil
de niveau sonore (en dB), un délai de silence (une fenêtre du signal dans
laquelle l’énergie est inférieure au seuil) et un durée minimume. Le résultat
est un fichier sonore contenant un tour de parole de l’utilisateur. Une
fois ce dernier obtenu, le composant se met en attente de messages de
réactivation.

3. La reconnaissance de la parole produit une liste classée de, au plus, 7 hy-
pothèses sur la transcription du segment de parole. Toutes les hypothèses
sont transmises au composant suivant du SDV: l’analyseur sémantique.

4. L’analyseur sémantique associe une trame sémantique, i.e. un représentation
de la signification, à chaque transcription supposée. Cette analyse s’appuie
uniquement sur la définition et la combinaison des mots dans la phrase.

5. L’unificateur sémantique et résolveur de référence a plusieurs rôles. Il
peut:
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• rejeter le tour de parole de l’utilisateur si le score de confidence de la
meilleure hypothèse de transcription est trop bas: soit en l’ignorant
“silencieusement”, ce qui a pour effet d’abandonner le traitement et
de réactiver l’enregistreur, soit en déclenchant un dialogue spécial
qui signale à l’utilisateur l’incompréhension et que ce dernier devrait
reformuler sa requête.

• résoudre les références relatives (comme “aujourd’hui” dans le cas
présent) en leur associant des valeurs absolues.

• résoudre les références relatives au dialogue. En effet, l’analyse sémantique
se basant uniquement sur les mots, elle n’inclue pas les notions de
contexte du dialogue. La section 8.5 détaillera cette fonctionnalité.

• réajuster le niveau ou l’espace sémantique de l’analyse

Le SURR ne transmet, dans un premier temps, que le résultat du traite-
ment de la meilleure hypothèse de reconnaissance de la parole. Les autres
résultats sont conservés.

6. Une correspondance entre la trame sémantique et un acte de dialogue
parmi ceux extraits du gestionnaire de dialogue est obtenue au sein du
dernier composant préalable au gestionnaire. Celle-ci peut ne pas exister,
i.e. l’entrée de l’utilisateur, telle que transcrite par le module de recon-
naissance automatique de la parole n’a pas d’effet sur le dialogue. Dans
ce cas, une requête est envoyée au SURR qui fournit la trame sémantique
correspondant à l’hypothèse suivante dans la liste classée originale. Si
cette liste est épuisée, la meilleure trame est à nouveau transmise avec un
drapeau “final”.

7. Le gestionnaire combine l’historique du dialogue, le ou les modèles disponibles
et le dernier acte de dialogue de l’utilisateur pour sélectionner une action
du système. Il produit en sortie un acte de dialogue système.

8. L’acte de dialogue système est converti en trame sémantique.

9. A partir d’une trame sémantique, le générateur de langage naturel instan-
cie un modèle paramétrique qui exprime le sens porté par la trame de
manière à ce qu’un humain puisse le comprendre.

10. La synthèse de la parole génère de la voix à partir du texte. dans cet ex-
emple, le tour système est: “Pour quelle localité souhaitez-vous connâıtre
les conditions météorologiques?”

11. Le fichier de parole synthétisée est joué pour l’utilisateur, cela clos un
tour.

Voici un exemple du déroulement d’un dialogue pour ce service

1. Utilisateur: “Quel temps fait-il aujourd’hui?”
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2. Système: “Pour quelle localité souhaitez-vous connâıtre les conditions
météorologiques?”

3. Utilisateur: “Pour paris”

4. Système: “Quel niveau de détail souhaitez-vous?”

5. Utilisateur: “Peu de détails”

6. Système: “La météo est ensoleillée, il fait 25°C”

Un SDV est une interface avec un service via une interaction intelligente.
Pour implémenter l’interaction, il faut connecter les deux entités: le service et le
SDV. La plate-forme intègre, au niveau du gestionnaire de dialogue, des espaces
de code JavaScript qui permettent de faire appel à des APIs, des services web,
etc... Dans nos scénarios, une connection à un bus de données, à des services
web et à une application graphique est maintenue à l’aide de tels scripts.

8.3.4 Configuration

Dans la dernière partie de cette section, la configuration du système et la
méthode avec laquelle nous avons procédé est détaillée. Le séquence de traite-
ment naturelle du dialogue est inversée pour ces explications.

MaryTTS [141, 177] est une plate-forme de synthèse vocale maintenue par le
Cluster of Excellence MMCI et DFKI. L’équipe de développement du système
propose plusieurs modèles selon la langue et la voix que l’on souhaite générer,
ainsi que des outils de construction/manipulation de modèles. Il faut, pour
utiliser le moteur, créer un serveur sur lequel on peut alors placer des appels
contenant le texte à synthétiser et d’autre informations prosodiques et lire le
flux de données retourné. Pour son intégration, un client MaryTTS basique a
été augmenté, intégrant un client ActiveMQ et un lecteur de fichiers sonores.

La génération du langage naturel est basée sur des modèles qui se différencient
par le but, le nom et la valeur des slots. Il peut exister plusieurs modèles pour
une même trame sémantique, la sélection est alors faite aléatoirement entre
ceux-ci.

Le gestionnaire du dialogue et le sous-système de compréhension du langage
ne sont pas détaillés ici puisqu’ils le seront dans les chapitres suivants.

Bien que l’implémentation actuelle du système utilise une API distante (à
savoir Google Speech API [173]) pour la tâche de reconnaissance automatique
de la parole, les premières versions de la plate-forme intégraient Julius [104,
105], un moteur de reconnaissance développé au laboratoire Kawahara de Kyoto
et configuré avec des modèles appris sur des corpus issus de la presse écrite
et radiophonique francophones. Le module implémente la méthode décrite en
section 8.4 pour différencier, fiabiliser voire corriger les transcriptions.

Le passage du module initial qui remplissait les fonctions d’enregistrement
et de reconnaissance à deux composants, reliés par l’intermédiaire du protocole
ActiveMQ, a accru la flexibilité du système.
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8.4 Écoute permanente et robustesse de la re-
connaissance de la parole

8.4.1 Introduction

Le domaine de la reconnaissance de la parole a connu de nombreuses évolutions
jusqu’à présent, que ce soit pour la paramétrisation du signal, la sélection des
symboles, la modélisation des unités acoustiques ou encore l’agrégation des
unités modélisées. Certaines étapes ont eu plus d’impact que d’autres telles que
la proposition des MFCCs [46], l’introduction des HMMs pour la modélisation
[59, 90, 151, 152, 154, 211, 219] et l’implémentation des n-grammes [33, 34, 139,
181, 186, 222] pour remplacer les grammaires déterministes. Malgré ces progrès,
la tâche reste encore très dépendante des conditions d’enregistrement, de la
qualité et de la quantité des données d’apprentissage. Depuis peu, le secteur
est dominé par des entreprises mondiales qui traitent et collectent d’immenses
masses de données.

Il existe un compromis lors de la construction d’un système de reconnaissance
ou de classification: augmenter le nombre de classes ou l’espace de recherche
influe sur la précision et le rappel de manière inversement proportionnelle. En
d’autres termes, un large système sera moins précis pour une tâche donnée mais
offrira plus de nuances/variations tandis qu’un système restreint conservera une
précision importante sur les données d’apprentissage mais se dégradera vite
lorsqu’il est nécessaire de généraliser ou d’étendre à d’autres domaines. C’est
de ce principe, qui suggère que l’équilibre d’un système se situe entre les deux
extrêmes, que la méthode proposée ici s’inspire.

Dans un premier temps, les conditions de la tâche sont présentées, avec une
analyse des conséquences sur un système de reconnaissance vocale. Sera ensuite
décrit la méthode proposée, la théorie de son application pour finir par une
évaluation chiffrée de ses capacités.

8.4.2 Problématiques

Le module de reconnaissance de la parole avait pour objectif d’être intégré à
un système réparti dont le noeud principal est un robot assistant autonome
et mobile au sein d’une maison connectée. La prise de son est effectuée avec
un microphone CMT (Coincidence Microphone Technology) omnidirectionnel et
sans fil. Celui-ci est placé au sommet du robot compagnon, soit à environ 1,5m
du sol. Le son est capté et transmis en continu vers le module de traitement
audio dont la tâche est de segmenter le signal, faire une hypothèse unique sur le
contenu vocal des segments et transmettre celle-ci au gestionnaire de dialogue
multi-modal.

Cette configuration a plusieurs conséquences sur la manière de traiter le flux
continu de parole et de bruit capturé par le microphone.

La première d’entre elle est la distance au locuteur qui peut varier de quelques
centimètres à une dizaine de mètres (selon la configuration et la taille de l’habitation
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concernée).
La réverbération sur les murs, les plafonds, les sols et les objets de taille

conséquente ajoute des signaux parasites convolués et retardés.
A ces problématiques spatiales vient s’ajouter celle des bruits de l’environnement:

les médias (radio, télévisions), les appareils ménagers (machine à laver, four à
micro-ondes, aspirateur), les bruits de portes, de clés, d’eau, de pas, de toux, les
bris de verre, la pluie sur les fenêtres et le toit, etc... Il existe une solution de
filtrage dans laquelle on modélise les bruits nuisibles susceptibles d’être enten-
dus et on tente de les reconnâıtre dans le flux et de les éliminer [199]. D’autres
équipes de recherche ont placé des microphones aux abords des sources sonores
majeures pour en soustraire l’influence dans le signal perçu [102, 103].

Enfin, le son provenant des moteurs du robot sur lequel est placé le micro-
phone et de ses haut-parleurs peut être directement annulé du fait du contrôle
sur leur activité.

Contrairement à d’autres prototypes abordant les mêmes problématiques, le
système ne possède que d’un unique capteur mobile et de fait ne permet pas les
techniques de séparation de sources basé sur les réseaux de microphones ou la
modélisation de l’espace.

Pour finir, la dernière question qui se pose concerne l’attention du robot. En
effet, en admettant que le système filtre parfaitement le bruit environnant, les
effets d’écho et ramène l’amplitude à une distance constante, ce signal propre
de parole pourrait correspondre à une discussion entre deux personnes présentes
dans la zone de capture du microphone, à un appel téléphonique, à un débat
télévisé ou tout autre énoncé non destiné à une interaction avec la machine. Il
est donc indispensable de créer des mécanismes qui contrôle l’attention du robot
et ce de manière transparente et vocale.

8.4.3 Méthode d’écoute continue

La méthode proposée est construite comme suit:

Figure 8.3: Schéma
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Le flux audio est segmenté selon un seuil de niveau sonore et un délai de
silence.

Un segment se dédouble pour qu’une copie, identifiée par horodatage, suive
la branche de reconnaissance de la parole tandis que l’autre, identifiée de la
même façon, se dirige vers celle du le classeur de sons.

Ce dernier classe le segment selon un critère binaire son/parole par com-
paraison à des modèles de mixtures de gaussiennes. Il y a 5 classes de sons. Le
résultat du traitement est un paramètre booléen qui valide le segment comme
n’étant pas un bruit connu et identifiable.

La reconnaissance automatique de la parole parallélise le traitement. Il y a
n+1 moteurs configurés avec des modèles de langage différents mais partageant
le même lexique et les mêmes modèles acoustiques. n correspond au nombre
de “dialogues” différents pour le système. Pour chacun d’eux, un modèle de
langage fermé est créé à partir de l’ensemble des formulations possibles pour les
commandes disponibles. Le n + 1ème moteur de reconnaissance est configuré
avec un modèle de langage large vocabulaire appris sur le corpus CGN: c’est le
modèle général (par opposition à ceux des moteurs spécifiques). Chaque moteur
produit, par segment, une hypothèse de transcription tandis que le module
général en produit trois (mes trois meilleures).

Toutes ces hypothèses passent ensuite un test de similarité, i.e. chaque
hypothèse est comparée aux 3 hypothèses issues du moteur général et la distance
de Levenstein normalisée par le nombre de mots établit la mesure de similarité.
Selon si cette distance est supérieure ou inférieure au seuil expérimentalement
défini, l’hypothèse est validée ou rejetée. Dans le cas où plus d’une hypothèse
est valide, la distance la plus courte ou, le cas échéant, une sélection aléatoire,
décide de l’unique transcription qui est le résultat du test de similarité. Si
aucune hypothèse ne passe le test, le segment original est rejeté.

En dernier lieu, le résultat du test de similarité est filtré par la valeur du
booléen produit par le classeur de sons pour le même segment initial. Si un
segment a été associé à une classe de son, même si la branche de reconnaissance
de la parole produit une transcription, celle-ci est rejetée.

Deux mécanismes supplémentaires, pour améliorer la fiabilité de l’analyse
sonore, ont été ajoutées.

La première consiste en l’utilisation d’un niveau d’attention ajusté en fonc-
tion de la détection d’un mot clé combiné à la progression dans le dialogue.

En second, une adaptation spécifique à l’utilisateur cible est appliquée. Dix
phrases phonétiquement équilibrées sont enregistrées par l’utilisateur servant
à ajuster les paramètres des modèles acoustiques partagés selon la méthode
Maximum Likelihood Linear Regression [70].

8.4.4 Evaluation

Rappelons les deux axes d’amélioration envisagés:

• Fiabilité de la reconnaissance

• Estimation de l’attention

178



La fiabilité est optimisée de par l’adaptation acoustique au locuteur, la vali-
dation ou le rejet des hypothèses avec la reconnaissance parallèle, le classement
des sons et le test de similarité. Ce denier test permet trois actions:

• Confirmer une hypothèse correcte

• Rejeter une hypothèse incorrecte

• Corriger une hypothèse partiellement correcte

Du côté de l’attention, celle-ci est gérée par, dans l’ordre, la détection d’un
mot clé, une progression significative dans le dialogue, la reconnaissance parallèle
et le test de similarité.

Le système de traitement audio a été testé sur des données collectées dans
les conditions réelles de déploiement, i.e. enregistrées dans la maison cible.
Cinq utilisateurs ont été enregistrés, chacun prononçant 58 énoncés: 10 phrases
phonétiquement équilibrées pour l’adaptation acoustique, 20 phrases incluses
dans les commandes disponibles, 22 phrases en dehors du périmètre des dia-
logues et 6 phrases qui constituent des commandes disponibles auxquelles on
enlève un ou deux mots de manière aléatoire. Les résultats de la première phase
de test sont montrés dans les tables 8.1 à 8.4.

System
Recognition

rate
False-positive

rate
Baseline + adaptation 15% 0%

Baseline + adaptation + similarity test 85% 0%

Table 8.1: Taux de validation pour les commandes du système

System
Recognition

rate
False-positive

rate
Baseline + adaptation 9.09% 0%

Baseline + adaptation + similarity test 0% 0%

Table 8.2: Taux de validation pour les commandes non incluses dans le système

System
Recognition

rate
False-positive

rate
Baseline + adaptation 16.67% 0%

Baseline + adaptation + similarity test 66.67% 0%

Table 8.3: Taux de validation pour les commandes partielles du système

Dans une seconde phase du système, la robustesse au bruit a été mise à
l’épreuve. Divers types de bruits environnants ont été joués en même temps que
les segments vocaux à traiter.
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Noise type Recognition rate False-positive rate
Washing machine 74% 11%
Dutch speaker 53% 11%

Music 47% 5%
Crowd 42% 11%

Table 8.4: Taux de validation pour les commandes du système

Noise type Recognition rate False-positive rate
Washing machine 0% 0%
Dutch speaker 0% 0%

Music 0% 0%
Crowd 0% 3.64%

Table 8.5: Taux de validation pour les commandes non incluses dans le système

Noise type Recognition rate False-positive rate
Washing machine 40% 0%
Dutch speaker 60% 0%

Music 20% 0%
Crowd 60% 0%

Table 8.6: Taux de validation pour les commandes partielles du système

Le système atteint un taux de 85% de reconnaissance dans un environnement
propre, ne donne aucun faux positifs et corrige 66% des commandes partielles.
En environnement bruité, ces taux se dégrade.

Plus de détails sur le protocole d’évaluation et les résultats obtenus sont
inclus dans le document de thèse.

8.5 Compréhension du langage appliqué au dia-
logue vocal

8.5.1 Introduction

On parle de Compréhension Du Langage (CDL) lorsque l’objectif est d’extraire
une signification, quelle qu’elle soit, d’une phrase ou d’un texte (considérons
ici qu’il est écrit) pour le rendre interprétable par un programme informatique.
Le domaine s’est développé récemment du fait des progrès, notamment, de la
reconnaissance de la parole.

Pour un SDV, la CDL est l’interface uni-directionelle qui convertit les mots
de l’utilisateur tels que hypothétisés par le module de reconnaissance automa-
tique en une ou plusieurs unités d’action du dialogue. Ces dernières sont en
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quantité limitée et dépendantes de l’état, à chaque tour, du dialogue contrôlé
par le gestionnaire.

La langue naturelle parlée s’inscrit dans un espace complexe et immense
dans lequel les combinaisons de mots, les références aux concepts passés, les
références culturelles, les figures de style, etc, ajoutent des niveaux de traitement
entrelacés.

Un système de CDL remplit plusieurs conditions. Il doit:

• Autoriser les variations dans l’expression des intentions de l’utilisateur.
Contrairement aux premiers systèmes qui se basaient sur des comman-
des prédéfinies, un système qui prétend utiliser la langue naturelle doit
accepter des expressions dérivées des données initiales.

• Maintenir l’initiative mixte. L’initiative définit le degré avec lequel une
entité domine dans la direction du dialogue. Une initiative système impose
un suivi strict des contraintes du modèle et réduit fortement la spontanéité
tandis qu’une initiative utilisateur ôte le bénéfice de la gestion du dialogue
puisque la machine réagit tour après tour sans guider l’utilisateur. Une
initiative mixte fragilise le système de CDL mais modélise mieux les in-
teractions humaines.

• Intégrer les éléments de contexte locaux du dialogue. L’intérêt du dialogue
tient dans le traitement de l’information selon un modèle qui s’étend sur
plusieurs tours d’interaction. Les informations échangées lors des tours
précédents peuvent modifier ou ajouter un sens au tour courant. De fait,
un système de CDL se doit de les intégrer à bon escient dans l’analyse
effectuée.

• Intégrer les éléments de contexte partagés et les paramètres de l’environnement.
Il est bien entendu que nous supposons que certains faits sont connus par
notre interlocuteur lorsque nous engageons la conversation. Cela permet
d’optimiser l’échange d’information et de susciter un intérêt. Un module
de CDL qui intégre une culture, un savoir, une identité et des notions de
l’environnement dans lequel il se situe permet d’atteindre un niveau de
naturel bien plus élevé qu’un système amnésique et inculte.

Basé sur ces prérequis, nous proposons un système de CDL dont les modules
s’organisent comme sur la figure 8.4.
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Figure 8.4: Architecture du sous-système de compréhension du langage

Rappelons que des hypothèses (7 au maximum) de transcription de segments
de texte, correspondant chacune à un tour de parole, sont soumises au sous-
système de CDL. En sortie, des actes de dialogue, correspondant à l’impact que
de telles expressions ont sur le dialogue dans son état actuel, sont produites.
Figure 8.5 montre la séquence de traitement.

Figure 8.5: Séquence de traitement du langage

Dans les sections suivantes, nous visiterons les modules de traitement et
tenteront de répondre aux quatre conditions qui font du système un système
complet.

8.5.2 Extraire les concepts sémantiques du texte

La langue naturelle évolue perpétuellement et peut être considérée comme un en-
semble infini bien que composé d’un vocabulaire fini (difficilement dénombrable).
Extraire des actes de dialogue paramétriques directement à partir du texte de-
mande une transcription parfaite du signal de parole et d’avoir listé toutes les
manières de formuler tous les actes de dialogue, ce qui rend la tâche virtuelle-
ment impossible.

Dans un premier temps, nous proposons de travailler dans un espace sémantique.
La sémantique n’étudie pas la forme des mots mais bien leur signification et celle
de leurs combinaisons. Cette signification à plusieurs niveaux.
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Un analyseur sémantique, dans notre cas, cherche à extraire des étiquettes
sémantiques à partir des mots. Le résultat prend la forme d’une trame sémantique
qui est constituée d’un but, c’est l’intention générale du segment, et de zéro ou
plusieurs paramètre(s) qui sont des paires (identifiant+valeur) précisant ce but.
L’analyseur sémantique base son traitement sur des règles de transformation or-
données qui sont appliquées une à une dès lors que leurs conditions d’application
sont respectées [23, 92, 95].

Ces règles sont apprises sur un corpus annoté. L’algorithme d’apprentissage
teste et cherche les meilleures règles parmi toutes celles possibles et transforme
le corpus initial jusqu’à obtenir le corpus de référence ou ne plus pouvoir appli-
quer de transformation qui produirait une amélioration. Pour ne pas perdre en
variabilité, il est important de fournir un corpus d’apprentissage aussi complet
que possible.

Cette étape projette l’information à traiter vers un espace sémantique réduit
et fermé. L’analyse par transformations successives permet de détecter des sous
segments de phrases comme sources de concepts sémantiques, de combiner les
concepts entre eux et de les augmenter itérativement. De plus, les conditions
d’applicabilité des règles de transformation utilisent des motifs dans l’énoncé ce
qui est bien adapté à la langue parlée, plus flexible sur les règles de syntaxes
[51, 187, 199, 200], et peut passer outre des erreurs de reconnaissance introduites
par le module précédent.

8.5.3 Résoudre les références locales

Dans une trame sémantique issue de l’analyse par transformations successives,
certains paramètres peuvent être relatifs au contexte du dialogue, c’est à dire
correspondre à un concept mentionné précédemment par l’utilisateur ou le
système. Ces concepts doivent être mémorisés au cours du dialogue pour être
utilisés à bon escient lorsque l’utilisateur y fait référence.

Ici, nous nous intéressons aux références issues du dialogue qui peuvent donc
être retrouvées dans l’historique de ce dernier. Le design du sous-système de
CDL permet d’accéder à deux sources de contexte du dialogue: le Context
Catcher (CC) met à jour la CDL à partir des actes de dialogue générés par le
gestionnaire et le Dialog Act Mapper (DAM) récupère l’ensemble des actes de
dialogue et leurs paramètres à partir du gestionnaire.

Ces deux sources sont intégrées aux trames sémantiques, si nécessaire, par
le module du SURR.

Le SURR est basé sur une forêt, i.e. un ensemble d’arbres dont les noeuds
sont des trames sémantiques partiellement définies (voir figure 8.6). Chaque
noeud a donc un but associé, qui peut être indéfini, et zéro ou plusieurs paramètres
dont le nom comme la valeur peut être libre.

Une trame sémantique à traiter est placée dans les arbres, soit complètement,
soit en partageant ses paramètres et en copiant son but. L’algorithme de
résolution cherche un chemin vers un noeud ou un ensemble de noeuds car-
actérisés comme étant “racines”. Ceci n’implique pas qu’ils soient à la base des
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arbres: les bases des arbres sont des racines mais les racines ne sont pas toutes
des bases.

Ces arbres forment donc une taxinomie dynamique des concepts sémantiques
dont les branches sont modifiables par le CC en fonction des actes de dialogue
produit par le gestionnaire du dialogue.

Figure 8.6: Structure interne du SURR

Étudions deux exemples, l’un pour illustrer la résolution d’une référence
locale par l’action du CC et l’autre pour illustrer les effets du DAM.

Prenons le dialogue suivant:

• Utilisateur: “Bonjour, je voudrais commander des pizzas”

• Système: “Oui, combien de pizzas voulez-vous?”

• Utilisateur: “Deux”

• Système: “D’accord, quelles recettes?”

• ...

Le 2ème tour, dans lequel l’utilisateur fait référence au nombre de pizzas
n’est interprétable en lui-même que par le fait qu’un lien se crée entre le nombre
deux, la quantité deux et la quantité de pizzas. Pour ce faire, il faut créer un
noeud racine dont le but est indéfini et dont l’unique paramètre est la quantité
de pizzas et relier ce noeud à celui contenant un but indéfini et un nombre
comme paramètre. Ainsi, le contexte local est intégré dynamiquement grâce au
CC qui ajoute/détruit noeuds et liens.
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Continuons le dialogue.

• ...

• Utilisateur: “Les recettes 4 fromages et napolitaines”

• Système: “D’accord, vous désirez deux pizzas: une 4 fromages et une
napolitaine, c’est correct?”

• Utilisateur: “Oui”

• Système: “Vos pizzas seront prêtes dans 20 minutes. Il vous faut autre
chose?”

• Utilisateur: “Non, merci”

• Système: “Au revoir”

Ici, le système demande à l’utilisateur de confirmer la commande. Une con-
firmation courte, positive est exprimée par l’utilisateur, qu’il faut relier à l’état
actuel du dialogue.

Cette fois, on utilisera le DAM. Celui-ci établit, à partir de l’état actuel du di-
alogue maintenu par le gestionnaire, quels sont les actes de dialogue disponibles
et relie ceux-ci aux trames sémantiques reçues.

Dans le 4ème tour, l’acte de dialogue qui confirme, i.e. qui donne la valeur
de la confirmation, est unique bien qu’il puisse apparâıtre à d’autres endroits
du dialogue (5ème tour). La confirmation est donc contextualisé par le mapper
qui déclenche l’acte de dialogue correspondant à l’état actuel du dialogue et non
en réponse à la question: “Il vous faut autre chose?”

8.5.4 Résoudre les références communes et situer l’interaction

Un interlocuteur humain détient et utilise, lorsqu’il communique un savoir, des
croyances partagées et des codes sociaux qui influent sur le contenu d’une con-
versation avec un autre humain. Un système de dialogue, implémenté sur une
machine, accéde aux APIs, functions, librairies, capteurs et ressources internet
de son hôte.

Ces dernières sources d’information, infinies, pour être utiles, doivent être
intégrées au bon endroit, au bon moment. Elles permettent de résoudre des
références quant à la situation géographique, temporelle, les conditions clima-
tiques, l’économie et de profiler l’utilisateur.

Nous utilisons le SURR pour ces inclusions. Tout comme les ajouts du CC,
des appels aux sources externes d’information sont des noeuds virtuellement
instanciés en permanence qui, lorsque nécessaire à la résolution de références,
exécutent leur fonctionnalité cible.

Appuyons nous, ici encore, sur un exemple. Le terme “aujourd’hui” réfère
à la date du jour, un concept partagé par tous les humains respectant le même
calendrier. Il est simple pour un système d’implémenter une fonction d’obtention
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de cette date selon le format souhaité. C’est le rôle d’un noeud du SURR
qui contient un paramètre “date du jour” constamment porteur d’une valeur.
Lorsque le concept “aujourd’hui” est extrait d’un énoncé, le chemin vers un
noeud racine passe par le remplacement de “aujourd’hui” avec la valeur du
paramètre “date du jour”, transformant un concept relatif en un concept à
valeur absolue avant d’être transmis au DAM.

Le même principe s’applique pour le jour de la semaine, les conditions
météorologiques, l’heure, la localisation du système, etc... Aisément, toute
source d’information utile au système de dialogue vocal visé est intégrable par
le biais d’un module malléable qu’est le SURR et indépendamment des autres
composants.

8.5.5 Unifier les espaces sémantiques

Un dernier pas vers la simplification et la modularité du système de compréhension
du langage, effectif au niveau du SURR, tient dans l’unification des espaces
sémantiques.

Il a été mentionné précédemment que l’analyseur sémantique extrayait les
concepts au plus bas niveau possible, c’est à dire au niveau quasi-primitif de la
taxinomie maintenue au coeur du SURR. Ce constat s’appuie sur le fait que seuls
les informations portées par l’hypothèse de transcription sont utilisées puisque
les éléments de contexte interviennent plus tard dans le traitement. Le DAM,
quant à lui, agit dans un espace sémantique dynamique restreint.

De fait, il est nécessaire de projeter les concepts sémantiques extraits par
l’analyseur sémantique vers les concepts définis par le gestionnaire de dialogue.
Ce traitement est effectué par le SURR,. Les noeuds racines correspondent
aux concepts acceptables pour le DAM. Cette unification rend indépendant le
développement de l’analyseur et du gestionnaire, ce qui, en conséquence, rend
leur remplacement et leur modification aisés et rapides.

8.5.6 Joindre les attentes du gestionnaire dialogue

Une fois la trame sémantique extraite de l’énoncé, contextualisée et unifiée, il
reste à trouver la correspondance entre celle-ci et un acte de dialogue paramétrique.

Nous avons vu que le DAM récupère la liste des actes de dialogue disponibles
selon l’état du dialogue, plus de détails sont inclus dans le document de thèse.
Ainsi, il établit un lien direct entre l’intention d’un acte de dialogue et le but
d’une trame sémantique. Le rôle de cet ultime composant de la compréhension
du langage est donc d’instancier l’acte de dialogue correspondant et, dans le
cas où il n’y a pas de lien existant, de rejeter l’entrée de l’utilisateur, ce qui
déclenche les mécanismes de récupération des erreurs.

8.5.7 Conclusion

Le sous-système de compréhension du langage utilise pleinement les aspects de
séquencement pour traiter les énoncés en entrée. Son fonctionnement à l’échelle
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du composant permet le remplacement de chacun d’eux, la création rapide de
nouveaux dialogues et de services ou l’extension des capacités de SDV.

8.6 Modélisation des dialogues: linked-form fill-
ing

8.6.1 Introduction

Dès lors que l’interaction vocale entre un humain et une machine excède un tour,
on parle de dialogue. Le terme sous entend que l’entité non-humaine est capable
d’établir une relation entre les tours d’interaction, i.e. elle maintient un état du
dialogue lui permettant de guider un utilisateur dans les services proposés [88].
De fait, un système de dialogue vocal nécessite un organe de prise de décision
et de maintien de l’état du dialogue pour contrôler son comportement. Figure
8.7 résume le rôle qu’endosse un tel composant.

Figure 8.7: Le rôle du gestionnaire de dialogue

La gestion du dialogue est rendue difficile de par plusieurs phénomènes lin-
guistiques [67]. Naturellement, l’esprit humain intègre l’information exprimée
par un locuteur de manière continue. Un système de dialogue procède itérativement
et requiert une représentation formelle des éléments informatifs. En conséquence,
il faut non seulement déterminer quels sont ces éléments, les extraire du signal
capté mais également segmenter le flux de parole en unités d’action du dialogue.

L’observation de conversations entre humains a montré l’existence de phénomènes
de retour de l’auditeur pour maintenir la compréhension mutuelle (back channel
en anglais).

En plus de ces informations non utiles parce que non prises en compte par le
système de dialogue, le langage parlé introduit des hésitations, des mots super-
ficiels pouvant être attribués à des tics de langage ou des expressions ambiguës.
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Enfin, nous l’avons introduit précédemment, les ellipses (omissions de mots),
les indirections ou encore les anaphores complexifient la tâche d’interprétation.

Pour gérer le dialogue, plusieurs méthodes ont été appliquées. Dès 1966,
la notion de paires adjacentes est proposée [204]. Cette analyse porte sur la
reconnaissance de motifs dans le discours. Elle est locale, i.e. elle ne porte que
sur le contenu du tour courant et non sur un historique de dialogue et dans un
objectif à long terme.

En 2000, Larsson et Traum proposent de modéliser l’état du dialogue par le
cumul de l’information échangée: c’est l’Information State [101, 134]. Celui-
ci est mis à jour par des règles conditionnées par l’état actuel du dialogue
et l’acte de dialogue le plus récent de l’utilisateur. En plus, une stratégie de
mise à jour permet de résoudre les ambigüıtés dans la sélection de la meilleure
règle à appliquer. Cette méthode est bien adaptée aux agents conversationnels
puisqu’elle ne requiert pas de définition de mesure d’objectif et de performance.
Ainsi, elle étend le formalisme des paires adjacentes du fait de la conservation
d’un historique de dialogue et la sélection d’une réplique selon celui-ci. La
qualité de l’interaction, cependant, est strictement attribuable aux concepteurs
qui définissent quels sont les éléments de l’information utiles au dialogue, leur
représentation formelle, les règles de mises à jour et la stratégie de sélection.

Un modèle hybride, basé sur les mêmes principes de représentation et de
logique a été proposé par Lison [115, 116, 117]. Un règle de mise à jour définit
une multitude d’effets auxquels est associée une probabilité pour chacun d’eux.
La valeur de ces éléments stochastiques est apprise sur des données collectées
préalablement. L’état du dialogue est modélisé par un réseau bayésien dy-
namique régit par les règles de mise à jour probabilistes. Le gestionnaire de
dialogue, en appliquant ces dernières, modifie les variables de l’état courant et
décide de l’action la plus appropriée à exécuter.

Lee et al. on adopté un formalisme hybride entre l’Information State et
la modélisation par apprentissage automatique [91, 106, 108, 109]. Le modèle
est fait d’une base de données d’exemples, appris sur un corpus annoté de di-
alogue. Les annotations sont multi-niveaux et définissent les actes de dialogue
primaires, les actes de discours et un vecteur d’historique de dialogue. Chaque
tour de parole dans le corpus est appelé une situation. L’algorithme cherche à
rapprocher un énoncé de l’utilisateur, dont l’annotation est produite automa-
tiquement par des composants de la compréhension du langage, à une entrée
de la base d’exemples. La correspondance la plus proche définit quelle action
doit être exécutée. Elle correspond à l’action prise dans le dialogue sur lequel la
base d’exemples a été apprise . La comparaison est effectuée par un mécanisme
classique de recherche dans les bases de données et de relâchement/addition de
contraintes. Il y a un avantage certain à utiliser ce formalisme puisqu’il ne de-
mande pas de définir précisément le domaine, l’ensemble des actions possibles
pour le système et leur conditions d’applicabilité. Cependant, il n’exclut pas
l’enregistrement des dialogues et la lourde tâche qu’est l’annotation des données.
Certaines situations, qui n’apparaissent pas pendant l’apprentissage, sont rat-
tachées aux exemples plus ou moins similaires, ce qui limites les possibilités de
dialogue.
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De nombreuses applications de dialogue vocal basent la gestion sur des au-
tomates finis. Les états du dialogue n’encode pas explicitement l’historique du
dialogue mais les transitions entre ceux-ci définissent un chemin vers un état
final. Cette modélisation présente les avantages d’être simple, de limiter les
entrées de l’utilisateur et de pouvoir définir, pour chaque état, l’ensemble des
commandes disponibles. Dans les inconvénients, on pourra citer l’initiative to-
talement orientée vers la machine et l’impossibilité pour l’utilisateur de combiner
plusieurs éléments d’information dans un tour de parole.

Plus récemment, les modèles stochastiques ont fait leur premiers pas dans
la gestion du dialogue. Un Processus de Décision Markovien (PDM) [113, 114,
167] est défini par un ensemble d’états (S), un ensemble d’actions (A) que le
système peut faire, un état initial (S0), une fonction de transition (P (s′|a, s′))
et une fonction de récompense (R(s, a)). La stratégie (π(s))définit l’action la
plus probable et donc celle qu’un système doit exécuter, dans un état donné
de dialogue. Celle-ci est calculée automatiquement à partir d’un ensemble
d’apprentissage. Elle a pour objectif d’optimiser l’efficacité du système en
maximisant les résultats et en en minimisant le coût (opposé du produit de
la fonction de récompense). Les PDMs demandent de collecter des dialogues
qui explorent tous les états possibles, ce qui crôıt rapidement avec le nombre
de variables disponibles dans les dialogues. L’avantage en est la facilité de
l’apprentissage et le fait que seul le domaine est défini, et non le comporte-
ment du gestionnaire. Cela rend l’interaction plus naturelle et offre des possi-
bilités d’apprentissage continue de la stratégie. Il a été montré, cependant, que
l’objectif d’un dialogue n’est pas toujours défini et mesurable et que dans ce cas,
cette approche devient impossible.

En rajoutant un niveau d’abstraction aux PDMs, dans le but de prendre en
compte, dans la prise de décision, l’incertitude inhérente à la transcription et
à la compréhension de la parole, Young et al. ont introduit les MDP Partielle-
ment Observables (PDMPOs) [25, 28, 79, 207, 210, 216, 217, 218, 221, 221].
Ces modèles héritent de l’ensemble d’états, l’ensemble d’actions et la fonc-
tion de transition des PDMs. Ils y ajoutent un ensemble des observations
(O), une fonction d’observation (P (o|s, a)) et un belief state (b(s)). Cette
dernière fonction définit la probabilité, à un instant donné, d’occuper un état
du modèle. En effet, ceux-ci ne sont pas observables et ne peuvent être es-
timer que par les observations qu’ils émettent. La fonction de récompense
prend en compte cette incertitude, tout comme la stratégie qui ne prend plus
de décision basée sur l’état courant réel mais sur le belief state. L’apprentissage
porte également cet accroissement de la complexité et l’explosion combina-
toire des possibilités rend la recherche de la stratégie optimale difficile, voire
impossible pour des dialogues dont le nombre de variables excède un certain
seuil. Plusieurs méthodes pour réduire l’espace de recherche ont été proposées
[24, 81, 119, 135, 150, 190, 206, 208, 209]. Des méthodes de simulation de
l’utilisateur [31, 32, 54, 93, 111, 146, 166] ont également été implémentées qui
permettent d’entrâıner un système sans pour autant demander à des utilisa-
teurs d’interagir avec un système sub-optimal. La construction du simulateur
est cependant parfois aussi ardue que la définition du modèle de dialogue.
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8.6.2 Hiérarchies de tâches pour modéliser le dialogue

La modélisation du dialogue peut également se faire par décomposition des
tâches à effectuer et une hiérarchisation de celles-ci [18, 72, 112, 161, 162, 163,
164, 165, 182]. Le principe de base étant: une tâche non primitive s’exécute
de par l’exécution de toutes ces tâches filles et une tâche primitive s’exécute
par elle même. La conception consiste alors à définir les tâches de dialogue
primitives et à les agencer dans un modèle hiérarchique de façon à ce qu’un
dialogue corresponde à un noeud de la hiérarchie pour lequel il faut exécuter
tous les noeuds de niveaux inférieurs (jusqu’au niveau primitif).

Comme exemple, la figure 8.8 montre comment modéliser un dialogue pour
envoyer un message à un correspondant.

Figure 8.8: Un exemple de hiérarchie de tâches

Les trois tâches primitives sont exécutées par le système qui consulte l’utilisateur
pour obtenir les variables d’entrée (content et recipient). Une application du
modèle pourrait être:

• Utilisateur: “Bonjour, prépare l’envoi d’un message”

• Système: “Pour qui est le message?”

• Utilisateur: “Paul”

• Système: “Quel en est le contenu?”

• Utilisateur: “Je serai en retard”

• Système: “Le message est envoyé”

• Utilisateur: “Merci”

Ce modèle peut-être étendu facilement en rajoutant des tâches telles que
la confirmation du destinataire, le type de message, le sujet, etc... De plus la
notion d’extra-information apportée par l’utilisateur, impossible dans un auto-
mate fini ou augmentant la complexité dans d’autres formalismes, est directe et
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localement influente ici. Cela permet à l’utilisateur de déclarer ces intentions
en même temps que de donner le destinataire, ce qui ferait: “Bonjour, prépare
l’envoi d’un message pour Paul”.

Cependant, la définition d’une hiérarchie, sa maintenance, son extension
et son entretien deviennent vite difficiles avec l’augmentation du nombre de
variables/concepts ou l’ajout de comportements plus élaborés.

Pour bénéficier des avantages de la modélisation par hiérarchies de tâches
tout en excluant certains de ces inconvénients, nous proposons un formalisme
que nous appellerons Linked-Form Filling (LFF). Celui-ci est basé sur des formu-
laires, conditionnés et liés pour spécifier les contraintes du service à interfacer.
Ces modèles sont ensuite “compilés” pour produire un modèle de tâche selon le
standard ANSI/CEA-2018 [41]. La librairie Disco [161, 165] permet de raison-
ner sur ces modèles et constitue de fait le coeur de notre implémentation de
gestionnaire de dialogue.

Nous verrons ici comment est défini ce nouveau paradigme, comment il est
compilé et les avantages, comme les inconvénients apportés. Enfin, une section
sera consacré à la recherche des actes de dialogue possibles pour un état du
dialogue.

8.6.3 Principes du Linked-Form Filling

L’unité de base du LFF est le formulaire. Celui-ci contient un ensemble de
slots auxquels une valeur doit être associée pour compléter le formulaire, des
actions à exécuter à certains points du dialogue et des liens vers d’autres (sous-
)formulaires. Ces liens sont conditionnés: soit obligatoires (par défaut), soit
optionnels, soit ignorés. La différence entre optionnels et ignorés est que le
système proposera à l’utilisateur de suivre les premiers tandis que les seconds
ne le seront que si l’utilisateur en prend l’initiative (en définissant au moins un
slot qu’ils contiennent).

La modélisation par form filling utilise ces mêmes principes à l’exception
des sous formulaires liés et dans le fait que, généralement, une action conclut
un formulaire. Le LFF permet de définir un semi-ordre dans la succession des
slots/actions en regroupant ceux-ci à l’intérieur d’un même formulaire.

Il n’y a pas à proprement parlé de hiérarchie entre les formulaires, on parle
plutôt de réseau dont les transitions sont orientées. De plus, un sous-formulaire,
une fois complété, retourne le contrôle au formulaire appelant.

Prenons un exemple pour illustrer le LFF. Nous nous basons sur l’exemple
précédent du service d’envoi de messages que nous complexifions pour mettre en
lumière les apports du LFF. Une confirmation est demandée quant au contenu
du message et le type de message (mail ou sms) est configurable par l’utilisateur.
Si l’utilisateur n’en fait pas la demande, cependant, le système ignore ce dernier
paramètre. La figure 8.9 présente le schéma LFF conçu à partir de ces con-
sidérations.
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Figure 8.9: Schéma LFF pour le service d’envoi de messages

Dans son déroulement, le modèle demande d’abord de définir le destinataire
du message, puis son contenu. Le contenu du message peut être affiché sur
un écran en exécutant l’action update content. Dans le cas ou l’utilisateur ne
confirme pas que ce dernier a été correctement transcrit, il peut le redicter, et
ce indéfiniment jusqu’à en être satisfait. Le type de message est valué seule-
ment si l’utilisateur l’a mentionné dans un tour portant plus d’information que
nécessaire (par exemple: “Le destinataire du sms est Paul” qui informe à la fois
le destinataire et le type).

L’avantage de ce modèle en est la clarté et l’intuitivité de conception, cepen-
dant, il ne diffère pas réellement de la modélisation par automates finis dans
sa flexibilité et l’explosion des combinaisons du dialogue. Ces avantages sont
apportés par la transformation en hiérarchie de tâche et la recherche d’actes de
dialogue dans le modèle.

La section suivante se penche sur la transformation en modèle hiérarchique.

8.6.4 Transformation en hiérarchie de tâches

Le but de la conversion est de passer d’un modèle LFF dérivé de XML à un
modèle conforme au standard ANSI/CEA-2018. Pour ce faire, nous utilisons
des règles XSLT récursives qui modifient et créent les éléments du standard.

Toutes les règles ne sont pas expliquées ici mais les principales seront décrites
dans leur fonctionnement global. La hiérarchie des éléments LFF est présentée
sur la figure 8.10.
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Figure 8.10: Hiérarchie des éléments LFF

Par transformation, les éléments variables et actions produisent des tâches
primitives dans le modèle final. Elles seront exécutables par le système seule-
ment. Les variables serviront à enregistrer les valeurs attribuées aux slots et les
actions sont des éléments de code externes.

La transformation d’un formulaire produit primitivement une tâche: c’est
celle qu’il faut exécuter pour compléter le formulaire. Les règles de conversions
entreprennent ensuite une recherche de tous les slots disponibles dans les sous-
formulaires descendants et obligatoires. Ce mécanisme permet d’accéder à tous
les slots de dialogue en cours dans les tâches parentes et ainsi de garder la possi-
bilité d’extra information. Puis, les formulaires liés sont à leur tour transformés
(selon les conditions) pour être ensuite intégrés au modèle.

Tout le processus de transformation est automatique. Bien que le modèle
obtenu soit textuel, sa taille étant bien supérieure au modèle original, la lec-
ture par l’humain est difficile. Cependant, toute opération de modification, de
maintenance ou de debug est effective dans le modèle LFF, plus accessible, y
compris pour un non initié.

8.6.5 Évaluation

Évaluer un nouveau langage de modélisation comprend deux aspects:

• Comment les modèles obtenus se comparent aux modèles construits précédemment?

• Quels sont les avantages (mesurables) du nouveau paradigme par com-
paraison aux autres?

La première question n’est pas vraiment pertinente. En effet, les modèles
LFF sont des biais de conception, ils ne sont pas exécutables en eux-mêmes et
doivent d’abord être transformés. De fait, comparer les nouveaux modèles avec
les anciens modèles ne dépend que de la qualité de conception de chacun d’eux.
Bien que cela prenne plus de temps, il est parfaitement possible de construire
les modèles convertis de LFF directement sous le standard ANSI/CEA-2018.
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En ce qui concerne les avantages mesurables, nous proposons, dans la table
8.7, de dénombrer les lignes de code et les éléments pour les versions LFF et
celles du standard de plusieurs modèles.

Task hierarchy LFF Reduction
Count of lines 139 [49− 246] 30 [14− 46] 76.34% (±5.26%)
Count of XML

elements
87 [24− 164] 18 [7− 32] 76.854% (±10.184%)

Table 8.7: Comparaison entre les modèles LFF et les hiérarchies de tâches

Cela permet d’estimer la différence de complexité entre les deux méthodes
et démontre l’utilité, de ce point de vue, d’un tel outil.

On peut argumenter que nous ne proposons pas ici de nouveau langage mais
un outil pour la conception. Un outil s’évalue notamment sur la satisfaction de
ses utilisateurs.

Nous cherchons à conduire une étude d’utilisabilité de l’outil auprès d’un
groupe aux compétences variés d’utilisateurs. Nous discutons, ici, l’avantage
de la conception de modèles non basé sur l’apprentissage automatique (et donc
l’utilisation de données) qui permet d’initier une collection de donnée ou de s’en
passer complètement.

Dans le cadre de cette thèse, les conditions de développement ont forcées
ce choix qui, en fait, est bien plus évident dans le monde industriel [143]. Le
coût en termes de temps et d’effort pour collecter un corpus de données suffisant
pour apprendre des modèles stochastiques tels que les PDMs ou les POMDPs
auprès d’un ensemble d’utilisateurs potentiels est souvent la raison pour laquelle
ce formalisme reste aujourd’hui restreint à la communauté de la recherche.

D’un autre côté, le développement de modèles manuellement se doit d’être
méticuleux et ne permet pas de partager le modèle avec d’autres concepteurs
sans préalablement le documenter et former ces collaborateurs.

L’outil LFF est à la fois visuel et intuitif et, de fait, s’adresse à un plus grand
nombre de cibles. De plus, le mapping des tours de parole en langage naturel
est facilité par le modèle LFF puisque la décomposition en formulaires et slots
délivre une liste exhaustive de ceux-ci.

8.6.6 Conclusion

Les hiérarchies de tâches ont été sélectionnées pour modéliser le dialogue dans la
plate-forme développé au cours de cette thèse. Les conditions de développement,
l’exigence de prototypage rapide ont influencé ce choix.

Cependant, l’expérience a montré les limites de cette méthode et notam-
ment la difficulté de concevoir, implémenter, debugger, adapter les modèles. Un
langage outil, appelé LFF a été proposé qui offre un biais intermédiaire entre
le concepteur et le modèle exécutable. Ce paradigme ouvre la conception des
modèles aux designers moins expérimentés et facilite celle-ci aux plus avancés.
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8.7 Conclusion et perspectives

La principale contribution de cette thèse tient dans la création d’une plate-
forme pour le développement de systèmes de dialogue vocal. Celle-ci, libre,
possède une modularité qui rend aisée l’implémentation d’un SDV complet, la
réutilisation des composants et/ou leur remplacement.

Pour permettre les aspects intelligents, robustes et naturels du système, des
mécanismes de détection de l’attention, de correction et de rejet des transcrip-
tions produites par la reconnaissance automatique de la parole ont été proposés.
Leur évaluation sur des données collectées dans l’environnement cible a montré
leur plus-value et leurs limites. De plus, les méthodes de personnalisation ap-
pliquées à la reconnaissance de la parole permettent de fiabiliser les résultats
obtenus pour un utilisateur spécifique dans le cadre d’un usage personnel.

Le sous-système de compréhension du langage, séquentiellement, parse par-
tiellement les entrées, résout les références à partir d’une base de connaissance
statique et de prédicats dynamiques et sélectionne l’acte de dialogue correspon-
dant. Les cas de rejet déclenchent un protocole de guidage de l’utilisateur gradué
et préserve l’intégrité du système. Les mesures effectuées sur des éléments isolés
et l’ensemble du système ont montré à quel point ce sous-système était fiable et
rapidement configurable.

Enfin, la modélisation sous forme de hiérarchies de tâches, bien que sous-
optimale en terme de vitesse de conception, s’avère essentielle pour initier la
collection de données nécessaire à un futur système stochastique ou, en terme
général, modéliser les scénarios possibles à partir des contraintes du ou des
services visés.

A court terme, cette plate-forme pourrait être augmenté avec l’ajout de
paraphrases dans le corpus d’apprentissage de l’analyseur sémantique. étendant
ainsi les possibilités d’interaction. Une paraphrase constitue une formulation
différente, dans le vocabulaire et/ou la grammaire, d‘une idée similaire, i.e.
qui a la même annotation sémantique. Agrandir le set d’apprentissage, pour
les services déjà implémentés, constitue une amélioration de la spontanéité de
l’interaction avec le système.

Bien que quelques méthodes de récupération et de prévention des erreurs
aient été implémentées, l’état de l’art du domaine pointe certaines lacunes. Si
le système s’y prête, il serait profitable d’implémenter ces mécanismes.

Pour conclure, la segmentation des tours de parole pourrait également être
assouplie. Le contrôle rigide actuel s’avère fragile et est gênant pour l’utilisateur
et l’idée qu’il pourrait avoir quant à la spontanéité du système . Il n’existe
pas de synchronisation entre la sortie du système et son entrée. C’est notam-
ment dû à l’architecture client-serveur. Le client devrait intégrer quelques out-
ils de contrôle pour robustiser et filtrer les entrées de l’utilisateur. La CDL
incrémentale est, à terme, le mode de fonctionnement d’un SDV puisqu’une
conversation humain-humain est régie selon ce principe.

Sur le long terme, je souhaite que la plate-forme puisse être utilisée et mod-
ifiée selon les besoins de chacun et ainsi la faire évoluer. Il est difficile de de-
mander à des non-initiés de tester celle-ci étant donné la quantité de tâches qu’il
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faut entreprendre. De fait, il n’existe, à ce jour, pas de retour sur les aspects de
conception appliqué à l’ensemble du système, ce qui est dommage.
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Evaluating spoken dialogue models under the interactive pattern recogni-
tion framework. In InterSpeech, pages 480–484, 2013.

[65] Jonathan Ginzburg. The interactive stance. Oxford University Press,
2012.

[66] Diego Giuliani and Matteo Gerosa. Investigating recognition of children’s
speech. International Conference on Acoustics, Speech and Signal Pro-
cessing, 2003.

[67] James R. Glass. Challenges for spoken dialogue systems. In IEEE Work-
shop on Automatic Speech Recognition and Understanding, 1999.

[68] Allen L. Gorin, Giuseppe Riccardi, and Jeremy H. Wright. How may I
help you? Speech Communication, 23(1):113–127, 1997.

[69] Horst-Michael Gross, Christof Schröter, Mueller Steffen, Michael
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ABSTRACT 

 

This paper describes a hands-free speech/sound recognition 

system developed and evaluated in the framework of the 

CompanionAble European Project. The system is intended 

to work continuously on a distant wireless microphone and 

detect not only vocal commands but also everyday life 

sounds. The proposed architecture and the description of 

each module are outlined. In order to have good recognition 

and rejection rates, some constraints were defined for the 

user and the vocabulary was limited. First results are 

presented; currently project trials are underway. 

 

Index Terms— speech recognition, sound processing, 

sound recognition, domotics. 

 

1. INTRODUCTION 

 

The CompanionAble European project aims at combining 

smart home functionalities with mobile robot abilities for 

dependent people. The robot is the front-end of the domotic 

system (turning on/off the lights, shutting/opening the 

curtains, playing/stopping music, etc) as well as an everyday 

helper. Supported by external sensors in the house (infra red 

sensors, door opening detectors, etc) and internal data 

(camera, sonar, etc), it’s an assistant reacting to predefined 

scenarios (homecoming, video call, etc) or defined by the 

user himself (task reminder, pill dispenser, etc). 

To achieve such variety of tasks, the device is equipped with 

a touch screen. A mobile tablet and a static screen on the 

kitchen wall are also available. These are the three means to 

access the common graphical user interface of the system. 

Esigetel and the Mines-Télécom institute gave the robot its 

vocal interaction ability. A list of domotic commands have 

been extracted from practical experiments with end users. 

Other applications, for instance the agenda, the cognitive 

training or the robot control are also accessed via vocal 

commands. In both cases, commands are not only words but 

full natural language sentences. 

Lots of projects were about speech recognition; current 

commercial systems show us how the vocal interaction may 

be widely available in a near future. However, our work 

tries to solve the issues related to the distance to the 

microphone. In our configuration, we use a single 

microphone on top of the robot which can drive anywhere in 

the one-floor house. The noise environment is also 

unrestricted and traditional. Noise subtraction methods with 

dedicated microphone recording hypothetical noise sources 

are difficult to be applied to this real time changing 

environment. 

The CompanionAble project is further detailed in the second 

part of this paper. Sections 3 and 4 are about the sound 

processing and classification process, then, in section 5, the 

speech recognition system is described. Section 6 presents 

the first evaluations. Conclusions and perspectives drawn 

from this work are presented in the final part. 

 

2. COMPANIONABLE 

 

CompanionAble stands for Integrated Cognitive Assistive & 

Domotic Companion Robotic Systems for Ability & 

Security. This project is funded by the European 

commission and is composed by  18 academic and industrial 

partners. Partners are from France, Germany, Spain, Austria, 

Belgium, the Netherlands and the United-Kingdom. The 

main objectives are: 

- To combine mobile companion robot ability with 

smart home functionalities 

- To support social connection for dependent people 

- To improve the quality of life and the autonomy of 

elderly people 

Esigetel and the Mines-Telecom institute are leaders, each, 

to develop a vocal interaction and a multimodal distress 

situation detector. They take part in the person localization 

within the house as well. This paper focuses on the acoustic 

work. 

Currently, the project is tested by end users in SmH 

Eindhoven (Netherlands) and LabinHam in Gits (Belgium). 

They are invited to try the whole system for several 

consecutive days. 

 

3. SOUND PROCESSING ARCHITECTURE 

 

The sound is acquired continuously through two parallel 

systems: a first one which is able to detect and classify 

sound events between existing sound classes; another one  
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5.2. Speech/sounds classification 

 

A speech recognition engine such as Julius search for the 

closest sequence of words matching the input audio 

observations given the probabilities contained in the 

acoustic model and in the language model. One may add a 

garbage model which will be the default match for unknown 

observation sequences or sub-sequences. In this application, 

every input is matched with a sequence of words. Thus 

sounds are processed as they were speech and a word 

sequence is returned. The sound classification prevents this 

to happen by discarding speech recognition results that 

occur while the stream has been classified as sound. It’s a 

real-time process in parallel of the speech recognition one. 

 

5.3. Acoustic adaptation 

 

Acoustic adaptation methods have been studied at the 

earliest stage of the project [4]. Two adaptation methods 

were compared, namely: Maximum A Posteriori (MAP) and 

Maximum Likelihood Linear Regression (MLLR). 

A language model was trained on a corpus of 57500 

sentences derived from practical experiments and 

paraphrasing. The speaker is the same for the whole study, 

she has been previously recorded and the audio files are 

played through a loudspeaker. As expected, as only 10 

phonetically balanced sentences are used, MLLR adaptation 

is the most suited technique. Without adaptation, 60% of the 

Julius’ transcriptions are correct while this rate reach 70% 

with MAP adaptation and 73% with MLLR adaptation. 

Users go through MLLR adaptation before they use the 

system. 

 

5.4. Language model combination 

 

The first version of the speech recognition module was 

based on a single N-gram model trained on a 57658- 

sentence corpus. The acoustic model was adapted to fit the 

voice characteristics of the users using the MLLR method. 

This first system presented too much false positives, i.e. 

unwanted commands, when put to practical tests.  

In order to improve both the recognition and rejection rates, 

a filter, described next, was implemented.  

The dialog is based on frames [5]. These frames contain 

sub-dialogue graphs and transitions between states are 

triggered by the robot internal state/variables and the user 

inputs (vocal commands, buttons or/and sensors). A frame is 

enabled when at least one of its activation conditions is 

fulfilled; these are the same kinds of variables than the intra-

frames ones. Thus one can build a dialogue hierarchy: the 

root frame which is initially enabled contains all the 

activation events to enable the sub frames and terminal 

states allow the sub frames to hand over the control to the 

main frame. 

The sub frames have been clustered within eight classes. 

Each class lists all the vocal commands which are allowed 

and can be interpreted in the compound frames. A language 

model is build from those lists. 

A 9th language model is trained on the activation commands 

and is associated to the main frame. 

Even while the speech recognition module doesn’t receive 

information about the state of the dialogue, nine instances of 

the recognition engine run at the same time and deliver 

transcriptions of the input audio stream. 

This language model selection process improves the good 

recognition rates for the application commands but on the 

other hand doesn’t solve the rejection issues for out-of-

application sentences. 

 

5.5. Similarity test 

 

Similarity between two recognizers’ hypothesis is an 

extended Levenshtein distance. This is the total number of 

operation (substitution, deletion, insertion) to transform a 

sentence in another one. Furthermore it is normalized with 

the count of word in the sentences. Depending of the 

relative value of this distance, given a threshold, the 

hypothesis recognized by an engine fed with a specific 

language model is accepted or discarded. This test is used 

to: 

- Confirm good recognition: a well recognized 

command according to both the general decoder 

and the specific decoder is validated. The exact 

specific decoder’s hypothesis is sent 

- Reject wrong hypothesis: a command recognized 

only by the general decoder is rejected. 

- Correct partially correct hypothesis: a command 

recognized by a specific decoder while the general 

decoder outputs a close match is corrected: the 

specific hypothesis is sent 

 

The general language model must, in this setup, recognize 

the sequences of word contained in the specific language 

models. One needs to add the whole set of commands in the 

training corpus of such a general model. We introduced a 

weight for these additional sentences which has been 

experimentally defined to be 1000: the commands were 

added 1000 times. 

Finally, the test is not effective between one hypothesis for 

each decoder. We found out that it is better to use the n-best 

ones; it improves the good recognition rate: 

- One hypothesis is outputted for specific decoder 

because of the size of their language model   

- Several hypothesis (3 in our application) are 

produced by the general decoder and then fed to 

the similarity test 

All this improvements were implemented. A first evaluation 

of those is presented next. 

 

6. EVALUATIONS 

 

A test corpus has been recorded in SmH with 5 speakers. 
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Music 0 0 

Crowd 0 3.64 

 

Table 5. Recognition rate and false-positive rate for out-of-application commands 

 
System Recognition rate False-positives rate 

Wash machine 40 0 

Dutch speaker 60 0 

Music 20 0 

Crowd 60 0 

 

Table 6. Recognition rate and false-positive rate for mixed commands 

 

 

7. CONCLUSIONS AND PESPECTIVES 

 

The set up presented on this paper aims at providing spoken 

input for a companion robot within a smart home 

environment. As the robot is always on, so is the speech 

recognizer. Given these constraints, the most important 

characteristic to keep in mind is the robustness of the 

recognition. This combines both a good recognition rate but 

also accurate rejection criteria.  

A trade-off between these two aspects has to be found. Is it 

acceptable to erroneously recognize a command?  Can the 

user be asked to repeat utterances? During trials, it has been 

noticed that false positives could mean trouble and disturb 

the user. To solve this issue, the command/sentence set to be 

recognized has been restricted, this yields two other 

problems. Intended users are elderly and dependant people 

who get some trouble remembering specific commands. 

Furthermore, they could get quickly upset if the robot 

doesn’t recognize their orders and think that this is useless, 

ignoring this functionality.   

We proposed to experiment a combination of language 

models to improve the system accuracy.  

A new general language model has been built from a read 

Dutch subset of the CGN corpus. Let’s assume that it is able 

to recognize any Dutch utterances. Then another pass works 

on a restricted specific model with close vocabulary. The 

similarity between both resulting sentences, computed as a 

variation of the Levenshtein distance, behaves as a filter for 

acceptation/rejection.  

A closer collaboration with the dialog manager would also 

bring more ways of refinement and filtering. The dialog 

manager of the CompanionAble project implemented in the 

companion robot follows a finite state automaton clustered 

in frames. Except for the root/main state which activates 

sub-frames and so is always active, we can select a specific 

language model built from acceptable sentences given a 

frame. Thus 10 restricted models have been created, one for 

each frame and one for the “main” frame. The dialog 

manager listens to the recognition process outputs, filtering 

them with what the current state(s) allow(s).  

This more elaborated system proved to be robust enough to 

allow a good recognition rate as well as limited false 

positive cases. However, informal experiments showed its 

weakness when it comes to reject short commands, i.e. one-

word sentences. The use of the robot’s attention with the 

trigger word prevents this to happen. 
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Abstract

While natural language as an interaction

modality is increasingly being accepted by

users, remaining technological challenges

still hinder its widespread employment.

Tools that better support the design, devel-

opment and improvement of these types

of applications are required. This demo

presents a prototyping framework for Spo-

ken Dialog System (SDS) design which

combines existing language technology

components for Automatic Speech Recog-

nition (ASR), Dialog Management (DM),

and Text-to-Speech Synthesis (TTS) with

a multi-step component for Natural Lan-

guage Understanding (NLU).

1 Introduction

Recently speech and other types of natural lan-

guage are experiencing an increased acceptance

when being used for interacting with ‘intelli-

gent’ computing systems. This trend is particu-

larly reflected by products such as Apple’s Siri1,

Google’s Now2 and Nuance’s Dragon Solutions3.

While these applications demonstrate the indus-

try’s vision of how we should be interacting with

our current and future devices, they also highlight

some of the great challenges that still exist. One

of these challenges may be seen in the fact that

Automatic Speech Recognition (ASR) remains a

highly error-prone technology which influences

subsequent natural language processing compo-

nents such as Natural Language Understanding

(NLU) and Dialog Management (DM) and leads

to often unsatisfying user experiences. Hence we

require appropriate tools that better support the

testing and studying of language as an interaction

1http://www.apple.com/ios/siri/
2http://www.google.com/landing/now/
3http://www.nuance.com/dragon/

modality and consequently allow us to build bet-

ter, more user-centered applications.

This demo presents our approach of develop-

ing a prototyping tool for Spoken Dialog Systems

(SDS). Our solution is particularly focusing on

the natural language understanding aspect of SDS

design. The overall framework is composed of

a set of existing open-source technology compo-

nents (i.e. ASR, DM, TTS) which are expanded

by several additional NLP modules responsible for

natural language understanding as well as genera-

tion. The following sections first provide a general

overview of the entire framework and then focus

particularly on the NLU part of our solution and

the different sub-modules it integrates.

2 Spoken Dialog System Design

A state-of-the-art SDS usually consists of a set of

technology components that are integrated to form

a consecutive processing chain. Starting on the

input side the ASR module produces a hypothe-

sis about the orthographic content of a spoken ut-

terance. The NLU takes this recognized utterance

and converts it into a machine readable command

or input Dialog Act (DA). The DM processes this

input DA and sends the relevant output DA to the

Natural Language Generation (NLG) component.

The NLG is then responsible for converting the

output DA into appropriate natural language text.

Finally, the Text-to-Speech (TTS) synthesis com-

ponent takes the text transmitted by the NLG and

speaks it to a user.

According to this general architecture different

open-source language components have been in-

tegrated to form a loosely coupled SDS frame-

work. The framework includes ASR performed by

the Julius Large Vocabulary Continuous Speech

Recognition engine4, dialog management based

on the Disco DM library (Rich, 2009; Rich

4http://julius.sourceforge.jp/en index.php
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and Sidner, 2012) and TTS achieved through the

MARY Text-to-Speech Synthesis Platform5. Ad-

ditionally, we have integrated the WebWOZ Wiz-

ard of Oz Prototyping Platform6 (Schlögl et al.,

2010) in order to allow for the simulation of (flaw-

less) natural language understanding. Expanding

these existing components we have then developed

as a set of modules responsible for actual system-

based natural language processing. The following

section describes these modules in more detail and

highlights the types of challenges they try to over-

come.

3 Natural Language Understanding

Within the processing chain of a spoken/text-

based dialog system, the NLU component is the

link between the wide and informal communica-

tion space of a user’s input and the formal and

rather restrictive semantic space that can be pro-

cessed by the DM (Mori et al., 2007). Trying to

bridge these two spaces we have connected sev-

eral modules to form an NLU processing segment

whose different modules are described below.

3.1 Semantic Parsing

First we use a Semantic Parsing (SP) module to

convert the transcribed speech provided by the

ASR into so-called Semantic Frames (SFs). To

achieve this mapping Jurčı́ček et al. (2009) de-

signed a Transformation-Based Learning Seman-

tic Parser (Brill, 1995) which we adapted to inte-

grate it with our framework. The algorithm applies

an ordered set of rules to hypothetical [utterance,

SF] pairs in order to find the closest matching SF.

3.2 Semantic Unification

Next we use what we call the Semantic Unifier

and Reference Resolver (SURR) module to con-

vert input SFs into SFs that can be processed by

the DM input interface. To do this we imple-

mented a bottom-up search algorithm for rewrit-

ing trees whose nodes contain lists of valued slots.

The algorithm looks for a group of root nodes that

can be reached in the forest (i.e. the existing num-

ber of trees) by transforming an input SF’s set of

slots according to the given rewriting rules. It suc-

ceeds when all slots can be rewritten into a root

list of slots. This module is supported by exter-

nal knowledge sources such as for example the

5http://mary.dfki.de/
6https://github.com/stephanschloegl/WebWOZ

context in which an utterance has been produced

(i.e. it receives input from the Context Catcher

module described below). Furthermore it could

call operating system functions, sensor readings
7 or other knowledge sources capable of provid-

ing relevant data, in order to resolve and disam-

biguate input. For instance, special-valued slots

like ‘date=today’ are dynamically resolved to the

correct data type and value, making the NLU more

sensitive to its surrounding environment.

3.3 Context Inclusion

In order to optimize information exchange

Human-Human interactions usually build up a

common knowledge between dialog participants.

This inherent grounding process can be compared

to the dialog history recorded in an SDS’s DM.

Using these recordings we have introduced a so-

called Context Catcher (CC) module. The way

this module is currently working is as follows: The

DM requests information from the user to progress

through the task-oriented dialog. The user replies

without specifying the type of data he/she is pro-

viding, the overall intent of the utterance or the re-

lation to any dialog slot. The CC evaluates the re-

quest expressed by the DM and consequently up-

dates various parameters of the SURR component.

Consequently the SURR is able to provide a better,

more context-specific mapping between raw SFs

provided by the SP module and the expected slots

to be filled by the DM component.

3.4 Dialog Act Conversion

An SDS’s DM expects formal meaning represen-

tations to be converted to actual dialog moves or

Dialog Acts (DA); similar to parametrized dialog

commands. A DA is the smallest unit of determin-

istic action to support the dialogue flow. The num-

ber of DAs that are available at any given point is

finite, dynamic and depends on the current state of

the dialog (Note: Here a state does not refer to a

‘real’ state, such as the ones used in Markov De-

cision Processes or Partially Observable Markov

Decision Processes, but rather to a general status

of the dialog). In other words, two input utter-

ances carrying the same meaning may lead to dif-

ferent consequences depending on a given dialog

state. The right action, i.e. the accurate DA, is to

be determined by the NLU component. As there

7Note: At the moment sensor readings are not imple-
mented as they are currently not available in the developing
environment
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is usually a many-to-many matching between SFs

and actual DAs we integrated an additional Dialog

Act Converter (DAC) module. This module uses

the context to generate a list of expected slots for

which a user may provide a value (i.e. it converts

possible DAs to SFs). Then a matching between

the actual inputs and the expectations is applied in

order to find the most probable DA.

4 Supporting Mixed Initiatives

SDS dialog designs usually run along an initia-

tive scale that ranges from user-driven to strictly

machine-driven interaction. In the case of a

machine-driven dialog a user has to follow the re-

quests of the system. Interactions that lie out of the

scope of this dialog design are not understood and

may either be discarded or, in the worst case, lead

to a system failure. Despite this potential for fail-

ure, machine-driven designs make the dialog eas-

ier to control and thus less prone to errors, yet,

due to the lack of adaptability exposed by the sys-

tem, also less human-like. On the other hand, pure

user-driven dialog designs minimize the functional

range of a system as they only react to commands

without assuring their functional integrity.

The above described modular approach to NLU

aims to support a mixed initiative design where a

system’s integrity and its goals are sufficiently de-

fined; the user, however, is not restricted by the

type and amount of spoken input he/she can use

to interact. To offer this type of interaction the

system needs to handle three kinds of potential

mis-usages: (1) out-of-application cases, (2) out-

of-dialog cases and (3) out-of-turn cases. To ad-

dress the first one our training corpus has been

augmented so that it includes examples of garbage

SFs. As a result an out-of-application utterance

triggers a generic reply from the system, notifying

the user that he/she is outside the scope of the ap-

plication. In the case where a user stays within

the scope of the application but tries to initiate

a new unrelated dialog (i.e. out-of-dialog case),

the DM’s stack of tasks is incremented with the

new dialog. The system will lead the user back

to the previous topic once the newly added one

is completed. Finally, as for the out-of-turn cases

i.e. the cases where a user would answer a sys-

tem request with a non-expected utterance such as

an over-complete one, the NLU process, retriev-

ing the DM’s expectations, discards unrelated or

over-complete information.

5 Demo Description

Focusing on the NLU aspect of the SDS pipeline

this demo will demonstrate how the different mod-

ules described above (i.e. SP, SURR, CC, and

DAC) work together. An application scenario

from the ambient assisted living domain (i.e. the

operation of a ‘Pillbox’ application) will serve as

an example use case. It will be shown how the

natural language input potentially recognized by

an ASR component is further interpreted by our

NLU processing segment. All the steps discussed

in Section 3 will be visible.

6 Conclusion

In this paper we described a set of NLU compo-

nents that were integrated as part of a loosely cou-

pled SDS. Separate modules for semantic parsing,

semantic unification and reference resolution, con-

text inclusion as well as dialog act conversion have

been described. Furthermore we have highlighted

how our system offers support for mixed-initiative

dialog interactions. A first test of this NLU pro-

cessing chain showed that the use of our multi-

component approach is feasible, and we believe

that this solution can be seen as a valuable test and

development framework for natural language pro-

cessing research.
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ABSTRACT

While Graphical User Interfaces (GUI) still represent the
most common way of operating modern computing technol-
ogy, Spoken Dialog Systems (SDS) have the potential to of-
fer a more natural and intuitive mode of interaction. Even
though some may say that existing speech recognition is nei-
ther reliable nor practical, the success of recent product re-
leases such as Apple’s Siri or Nuance’s Dragon Drive sug-
gests that language-based interaction is increasingly gaining
acceptance. Yet, unlike applications for building GUIs, tools
and frameworks that support the design, construction and
maintenance of dialog systems are rare. A particular chal-
lenge of SDS design is the often complex integration of tech-
nologies. Systems usually consist of several components (e.g.
speech recognition, language understanding, output genera-
tion, etc.), all of which require expertise to deploy them in
a given application domain. This paper presents work in
progress that aims at supporting this integration process. We
propose a framework of components and describe how it may
be used to prototype and gradually implement a spoken dia-
log system without requiring extensive domain expertise.

Author Keywords

SDS Design; Language Technology Components; WOZ.

ACM Classification Keywords

H.5.2 User Interfaces: Natural language; H.5.2 User Inter-
faces: Prototyping; D.5.2 User Interfaces: Voice I/O

General Terms

Human Factors; Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.

Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

INTRODUCTION

Spoken Dialog Systems (SDS) are booming, with prod-
ucts such as Apple’s Siri1, Google’s Voice Search2 or Nu-
ance’s Dragon Solutions3 demonstrating how current (and fu-
ture) technologies may change the way we interact with our
devices. Even though a lot of these potential applications
might also be achievable using traditional Graphical User
Interfaces (GUI), a reasonably ‘intelligent’ computer sys-
tem that (sufficiently) understands spoken input would sim-
ply convey a better user experience [23]. Yet, the design of
this type of systems is complex and so we see a pressing de-
mand for tools and techniques that better support this task.
SDSs usually consist of several language technology com-
ponents, ranging from speech recognition and generation to
dialog management and artificial intelligence. Building func-
tioning solutions may therefore require sufficient expertise in
several different domains. While some tool-support for stand-
alone components exists (e.g. [14, 27, 30, 8, 9, 26, 4]) only
few attempts have been undertaken to generate a more holis-
tic framework for SDS design (e.g. [15, 16, 7, 3]).

This paper discusses an SDS prototyping framework that has
been implemented by our research group. The goal of our
approach is to exclude ‘hand-crafting’ work as much as pos-
sible and use a combination of machine learning algorithms
and Wizard of Oz (WOZ) experimentation [13] to build SDS
solutions from scratch. Integrating existing open-source tech-
nology components with WOZ we aim for the creation of a
flexible and easy to use prototyping environment, that can
be used not only by speech engineers, but also by design-
ers/researchers outside the signal processing community. The
paper starts with an overview of the proposed framework ar-
chitecture which is followed by a description of its different
components. After that we discuss our current employment
of the framework and conclude the paper with planned future
directions.

1http://www.apple.com/ios/siri/
2http://www.google.com/mobile/voice-search/
3http://www.nuance.com/dragon/



Figure 1. A framework architecture for Spoken Dialog System design

FRAMEWORK COMPONENTS

The overall architecture of our prototyping framework closely
resembles the state of the art processing chain of a modern
SDS (cf. Figure 1). On the input side we find the Automatic
Speech Recognition (ASR) module, a Natural Language Un-
derstanding (NLU) component, as well as a novel compo-
nent which we call the Semantic Unifier and Reference Re-
solver (SURR). The output side consists of a Natural Lan-
guage Generation (NLG) component and a Text-to-Speech
synthesis (TTS) module. The core of the system is repre-
sented by a Dialog Manager (DM) which is connected to the
input and output chain via two formatting interfaces. These
interfaces offer additional flexibility with respect to possible
future framework extensions (e.g. a potential integration of
multi-modality).

At runtime the ASR module decodes speech input, produc-
ing natural language text utterances and passes them on to
the NLU component. The NLU component then extracts
from these utterances so-called Semantic Frames (SF), which
consist of a goal and 0 to n instantiated slots. Next, the
SURR component filters these SFs, replaces relative values
like dates, times or locations by absolute ones and resolves
references. Then an interface component translates the SURR
output into a format that can be processed by the DM. The
DM, which represents the core of the overall system, is re-
sponsible for keeping track of the dialog progress, taking into
account the given context, and consequently triggers the re-
quest for additional input; i.e. it is aware of the current tasks
and therefore demands the relevant variables to be defined.
It takes the output of the SURR and, based on the currently
loaded task model, selects appropriate actions (i.e. it initiates
utterances to be produced by the NLG component or com-
mands to be sent to a back-end application). Again, a dedi-
cated formatting interface is used to translate the DM output

into a format that can be interpreted by the NLG component.
Such consequently produces the requested text utterance. Fi-
nally, the TTS module takes the NLG output and converts it
into synthesized speech.

In order to offer this work flow we have integrated a set of
open-source language technology components, augmented by
various ‘home-made’ software modules, into a flexible SDS
prototyping framework. The following sections will describe
the different components of this framework and their roles in
some more detail, and highlight which extensions and adapta-
tions were necessary in order to create a cohesive interaction
pipeline.

Automatic Speech Recognition Module

SDSs are different from other dialog systems in that speech
represents their single interaction modality. Thus, an SDS’s
first processing stage has to generate hypotheses about the
orthographic content that is encoded in a user’s spoken in-
put. Despite decades of research and commercial deployment
this processing is still regarded as highly error-prone. Cur-
rent best practice is to search for the best matching sequence
of stochastic models using the digitized input signal. Mel-
Frequency Cepstrum Coefficients (MFCC) (and their deltas)
are widely used descriptors for such speech signal analyses
(e.g. [6, 2, 1]). The distribution of the coefficients’ vec-
tors for the contextualized phonemes or triphones (i.e. the
smallest units of the processed sound signal) are usually en-
coded as Hidden Markov Models (HMM) [11], which were
trained from already transcribed speech segments. These
models constitute the first ingredient for building a working
ASR module – the so called Acoustic Model (AM). Next,
in order to construct words out of a sequence of phonemes,
a Pronouncing Dictionary (PD) is required, which consists
of the decomposition of a language’s words into phonemic



units. Finally, the last ingredient that is necessary to build
the ASR module is a so-called Language Model (LM) which
provides probabilities for given word sequences to appear in
a sentence. Those probabilities are based on existing linguis-
tic structures and encoded as n-grams. The combination of
the three knowledge sources (i.e. AM, PD and LM) is then
used by the recognition engine to produce one or several hy-
pothesis of recognized text for a given (segmented) speech
signal [1].

Given these requirements one may argue that building ASR
systems for distinct application scenarios is time consuming
and very much dependent on both the availability of required
knowledge sources (i.e. AM, PD and LM), and the quality
and amount of data that was used to construct them. Yet, ex-
isting Large Vocabulary Continuous Speech Recognition sys-
tems (LVCSR) often already cover a great amount of general
purpose vocabulary (as long as their training has been per-
formed on such data). Hence, extending such a general sys-
tem (and its knowledge sources) to fit the vocabulary space of
a specific application scenario may be quicker and more ef-
fective than building an entirely new recognizer from scratch.
What is needed, however, are appropriate interfaces that al-
low for the adaptation of the general models so that they bet-
ter facilitate the recognition of expected utterances related to
a specific application scenario. Milhorat et al. [17] proposed
a filtering method to favor such a recognition of ‘correct’ ut-
terances while discarding mis-recognized or out-of-context
ones. Results could then further be augmented with features
like the dialog state, the dialog history and, a user’s person-
alized settings, and eventually be used to dynamically up-
date/replace an LVCSR’s general engine configuration with
a more specific, application dependent one.

In order to offer a solution that allows for such a dynamic
adaptation of knowledge sources our prototyping framework
integrates the Julius ASR engine, an LVCSR engine devel-
oped by the Kawahara Lab at Kyoto University [14]. The
current setup supports the recognition of spoken input in En-
glish, French, Spanish and Dutch. In addition we have ac-
quired the necessary databases to build recognizers for Ger-
man and Italian. Using this setting we plan to create adapted
language models for a number of application scenarios, in-
cluding the speech-based operation of a calendar program, the
use of communication services such as email and text mes-
sages, and the interaction with several health and well-being
applications (e.g. a well-being diary).

Natural Language Understanding Component

Although all uni-modal dialog systems work with only one
input modality (i.e. either direct text input or text recognized
by an ASR component) the meaning representation they em-
ploy can differ greatly between solutions [9, 18]. The outp-
tut that has to be produced by an integrated NLU component
therefore depends on the purpose of the overall system as well
as its DM formalism. Specific implementations can take on
various forms and notations. For our prototyping framework
we have chosen a frame-based semantic representation of lan-
guage understanding. Semantic Frames (SF) are often used
because of their versatility. An SF (cf. Figure 2) consists of a

goal (i.e. the user’s intent) and is further defined by a number
of relevant parameters, represented by slot-value pairs. Given
a textual input, the task of and SF-based NLU component is
to select a matching SF (i.e. a goal and its parameters) from
a predefined set of possibilities. It does this by applying a
number of rules which are usually learned from an annotated
corpus.

Figure 2. The example of a Semantic Frame (SF)

The NLU component we have integrated employs an algo-
rithm developed by Jurcicek et al. [12]. It is based on sequen-
tial transformation rules which are applied to find a match
between an input utterance and an SF. Rules consist of trig-
gers and transformation operations. A trigger contains one or
more conditions such as an n-gram or a skipping bigram in
the user utterance, a goal value, or a slot-type in the (tempo-
rary) paired SF. The transformation is applied if all the con-
ditions of a rule’s trigger match the input utterance-SF pair.
An utterance to be processed is initialized with the default
dialog act i.e. no slot and the most common goal as deter-
mined by the annotated training corpus. The training algo-
rithm then looks for one rule that maximizes the value of the
optimization function (i.e. it follows a transformation-based
learning principle). In our case the optimization measure is
the distance between each temporary SF and the ‘true’ SF
in the corpus. This is computed as the sum of required ad-
dition, deletion and substitution operations (i.e. Levenshtein
distance). Once this best rule is found, it is applied to the cur-
rent state of the corpus and the algorithm is re-initiated for the
resulting new training database. The process is stopped when
the best rule’s increase of the optimization function is below
a given threshold.

Semantic Unifier and Reference Resolver

The Semantic Unifier and Reference Resolver (SURR) is not
a standard SDS component but rather one of the features that
was needed to fill the gap between the NLU component in-
tegrated with our prototyping framework and its DM compo-
nent. In particular, it transforms the NLU output, which is
out of context, so that it can be processed by the following
DM. For example, if we want to add a valid event entry to
a calendar application the system usually requires an event
name (i.e. a title), a starting as well as an ending point in time
(i.e. a date and a time) and maybe an optional note. A user,
however, might interact with the system as follows:

- User: “Add the birthday of my daughter, on Saturday the
15th of November from 2 pm”

- System: [asks the user for the ending-point-in-time slot’s
value] “When will it be finished?”

- User: “I think I’ll be there for 6 hours”



In this situation, even if the system would create an SF with
a duration slot of 6 hours instead of an ending time, the DM
would not be able to process the data as it requires a precise
ending. What we see here is an SF space difference between
the semantic interpreter (NLU) and the decision-making com-
ponent (DM). To solve this mismatch we would need to aug-
ment the entire dialog task model, which consequently might
also require significant changes to be made to the back-end
application. Instead, however, our framework uses a dynamic
mapping component (i.e. the SURR) that allows for a dura-
tion slot to be converted into an ending-point-in-time slot. We
call this process the semantic unification. Furthermore we use
what we call a reference resolution process to convert the ‘to-
morrow’ that is used in the above example into ‘today’s date
incremented by one day’. Both operations, semantic unifica-
tion and reference resolution, are contained in the same tree
structures which are searched by the SURR algorithm. These
trees are handcrafted from situations that happen in experi-
ments with real users, and then further expanded according
to a designer’s/researcher’s ideas. For instance, after having
implemented the ‘tomorrow’ branch one may think of adding
the ‘yesterday’ one.

The current version of the SURR module is based on data
collected through a set of initial experiments. It employs a
tree-climbing algorithm that is applied to a structure of addi-
tive and converting branches. Every link between nodes rep-
resents a predicate. Figure 3 shows an example of a tree and
Figure 4 its associated implementation. The initial function
looks for 1 to n slot-value pair(s) for which a transforming
predicate exists and subsequently applies the defined opera-
tion. The resulting (transformed) SF is then processed again
and such is repeated until no further predicate match is found.
The algorithm succeeds if the final SF contains only those
pairs that are declared as roots. All parameters of an SF which
cannot be replaced by a root slot (i.e. where the algorithm
fails) are subsequently discarded.

Figure 3. The tree structure of the Semantic Unifier and Reference Re-
solver (SURR)

Dialog Manager

To date several probabilistic DM components are available
(e.g. [10, 28]). Yet, most of them require a significant amount
of data to produce viable results, and their scalability is of-
ten limited to a few slots, user dialog acts and system ac-
tions. An alternative can be found in fully deterministic DM
components whose functional breadth is pre-defined. Such,

Figure 4. An example implementation of the Semantic Unifier and Ref-
erence Resolver (SURR)

however, requires greater knowledge of the supported dia-
log space and is therefore only suitable for well defined in-
teraction domains. Since the goal of our framework is to
support the development of dialog systems for specific ap-
plication scenarios we decided to integrate Disco [21, 22], a
representative of the later approach. It requires a task model
compliant with the ANSI CEA-20184 standard, which essen-
tially demands a recursive decomposition of tasks into atomic
actions. Disco integrates a so-called inference engine which,
if provided with one or more task models, is able to man-
age a mixed-initiative dialog. It processes a hierarchy of
tasks (applying plan recognition), guiding the user towards
the completion of macro tasks (consisting of several sub-
tasks). Planning is performed automatically, supported by
static task models and a dynamic focus stack. Task models
contain the task structure, the temporal constraints for the di-
alog and the data flow within the models. They are imple-
mented in XML and usually require expertise to be built. In
order to help with their creation we investigated two notation
languages. These languages aim at the automatic extraction
of suitable task models based on the description of the given
back-end application, where the back-end applications is rep-
resented by a form-filling service with attached commands.
The first such language is a set of first-order logic formu-
las. It enables the designer/researcher to specify incompat-
ibilities between slots, as well as optional and mandatory slot
attributes. While such certainly helps the design process its
application is somewhat limited. Additional manual edits are
still required in order to support all the essential information
a task model might need to encode. Hence a second, more ad-
vanced language is currently under development, which sup-
ports conditional relationships between slots, reusable sub-
application descriptions, and computed values. Here, an ap-
plication’s command is described as a form containing an ID,
a set of slots, sub-forms (i.e. links to other forms) and an
action triggered by the completion of the form. Sub-form
attributes are boolean optional, ignore and default, which re-
spectively set the linked form to non mandatory, ignored (in
the case the applicable condition is not fulfilled), or default (in
the case of ambiguity). This process may allow for a richer
formalism and should enable the designer/researcher to focus
more thoroughly on the actual application.

4http://www.ce.org/Standards/Standard-Listings/R7-Home-
Network-Committee/CEA-2018-(ANSI).aspx



Formatting Interfaces (SF to DM and DM to SF)

In addition to the earlier highlighted semantic ambiguities
which exist between NLU and DM (we tackle them with the
described SURR component), we often also find certain for-
matting incompatibilities between those two components (as
well as between the DM and the following NLG component).
Such is usually caused by the use of different input/output
interface standards or diverging forms of knowledge repre-
sentation. Generally the task of a DM component is to trigger
output-dialog-acts and accompanying actions based on input
provided by the NLU. The anticipated input as well as the
produced output are, however, context dependent so that the
current dialog state is often required for better disambigua-
tion. To tackle this problem we have introduced two format-
ting interfaces; one of which translates an SF (delivered by
the SURR) into a context-specific input-dialog-act (i.e. fac-
toring in the current dialog state), and a second one that takes
the output-dialog-act delivered by the DM and translates it
back into an SF (i.e. the format that can be processed by our
NLG component). While these interfaces do not modify the
actual input/output content they can be regarded as necessary
formatting components, implemented as an overlay to the ac-
tual DM. As such, they also offer more flexibility with respect
to the modularization of our framework (Note: A future re-
placement of single components might require additional in-
put/ output formatting).

Natural Language Generation Component

While NLG is generally an important aspect of an SDS it is
currently not our main area of interest. Our framework there-
fore only implements a very basic generation engine. It uses
the output of the DM (i.e. the output that has been converted
by the output formatting interface described above) to select
a human-readable response sentence form a set of possible
templates. Each template uses a goal ID that is matched with
the dialog act produced by the DM. The SDS designer has
to provide at least as many templates (cf. Fig. 5) as dialog
acts exist. In case there are more possible templates for a
given dialog act, the NLG component randomly selects one
and forwards it to the TTS.

Figure 5. Natural Language Generator templates

Text-to-Speech Synthesis Module

Finally, in order to generate speech from the text fragments
produced by the NLG component, our framework integrates
the OpenMary TTS [19, 25]; a state-of-the-art, open source,
synthesis platform which supports several languages. We cur-
rently use the platform to produce speech output in German,
Italian, French and English.

Wizard of Oz Component

One last important aspect of our proposed framework archi-
tecture is the integration of a Wizard of Oz (WOZ) compo-
nent. WOZ constitutes a prototyping method that uses a hu-
man operator, the so-called wizard, to simulate a system (or

part of it) in order to collect relevant interaction data [5]. To
support this task we have integrated the WebWOZ prototyp-
ing platform [24]; a tool that permits the wizard to replace one
or several components of an SDS. Such should offer an easy
and efficient solution for various sorts of data gathering. For
example, the training corpus for our NLU component con-
sists of possible inputs and its matching outputs. Replacing
this component by a human wizard who transforms spoken
input into relevant dialogue acts (i.e. SFs), may alleviate the
fastidious work of manually searching and annotating corpus
data that matches a given application domain.

CURRENT FRAMEWORK EMPLOYMENT

The framework described above is currently used to build a
multi-lingual SDS for an application scenario situated in the
ambient assisted living domain. Experiments are conducted
in which the WOZ component acts as a substitution for the
ASR as well as the NLU component. Doing this we are able
to collect various types of interaction data (mainly training
data that is used for building and improving the NLU com-
ponent and user experience data that helps to obtain initial
end-user feedback). While our initial sessions are in French,
experiments in German and Italian are planned for the next
couple of month. Once sufficient data for a language is col-
lected, one only needs to re-configure the ASR and re-train
the NLU to integrate it with the system. Such demonstrates
the flexibility we are aiming for with our framework compo-
sition. Another aspect of this flexibility is reflected by the
amount of control the human operator (i.e. the wizard) can
take over. Set-ups in which 1-n parts of the framework are
simulated/augmented/controlled should allow for accurate re-
finements of faulty or weak components as well as support
user studies at any stage of the development process; an as-
pect which, we believe, may enable also non-experts to use
our framework as a means for designing and building novel
SDS solutions.

CONCLUSION AND FUTURE WORK

We presented a flexible SDS prototyping framework that aims
to support the easy and quick construction of voice user inter-
faces for different application scenarios. The implementation
of this framework is achieved through the integration of a set
of interchangeable open-source language technology compo-
nents. While the different components are not by default
ready to be used with any application domain, their config-
uration and adaptation to fit a specific purpose requires only
little knowledge and expertise.

Future work will focus on the adaptability and flexibility of
the presented framework, particularly exploring its employ-
ment by non-expert users. Furthermore we will investigate
possible ways of improving single framework components.
For example, we aim for increasing the robustness of the ASR
by using the feedback produced by post-processing compo-
nents (i.e. NLU, SURR, DM). Another planned improvement
is the use of parametric HMMs [29, 20]. Those can be con-
trolled by a set of external shared parameters and therefore
would match more closely the acoustic phenomenons of spo-
ken language. Finally, we are also investigating the use of
several speech recognition hypothesis.
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∗Télécom ParisTech & †Télécom SudParis
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Abstract

Wizard of Oz (WOZ) prototyping employs

a human wizard to simulate anticipated

functions of a future system. In Natural

Language Processing this method is usu-

ally used to obtain early feedback on di-

alogue designs, to collect language cor-

pora, or to explore interaction strategies.

Yet, existing tools often require complex

client-server configurations and setup rou-

tines, or suffer from compatibility prob-

lems with different platforms. Integrated

solutions, which may also be used by de-

signers and researchers without technical

background, are missing. In this paper

we present a framework for multi-lingual

dialog research, which combines speech

recognition and synthesis with WOZ. All

components are open source and adaptable

to different application scenarios.

1 Introduction

In recent years Language Technologies (LT) such

as Automatic Speech Recognition (ASR), Ma-

chine Translation (MT) and Text-to-Speech Syn-

thesis (TTS) have found their way into an increas-

ing number of products and services. Technolog-

ical advances in the field have created new possi-

bilities, and ubiquitous access to modern technol-

ogy (i.e. smartphones, tablet computers, etc.) has

inspired novel solutions in multiple application ar-

eas. Still, the technology at hand is not perfect and

typically substantial engineering effort (gathering

of corpora, training, tuning) is needed before pro-

totypes involving such technologies can deliver a

user experience robust enough to allow for poten-

tial applications to be evaluated with real users.

For graphical interfaces, well-known prototyping

methods like sketching and wire-framing allow for

obtaining early impressions and initial user feed-

back. These low-fidelity prototyping techniques

do not, however, work well with speech and nat-

ural language. The Wizard of Oz (WOZ) method

can be employed to address this shortcoming. By

using a human ‘wizard’ to mimic the functional-

ity of a system, either completely or in part, WOZ

supports the evaluation of potential user experi-

ences and interaction strategies without the need

for building a fully functional product first (Gould

et al., 1983). It furthermore supports the collection

of domain specific language corpora and the easy

exploration of varying dialog designs (Wirén et al.,

2007). WOZ tools, however, are often application

dependent and built for very specific experimental

setups. Rarely, are they re-used or adapted to other

application scenarios. Also, when used in combi-

nation with existing technology components such

as ASR or TTS, they usually require complex soft-

ware installations and server-client configurations.

Thus, we see a need for an easy ‘out-of-the-box’

type solution. A tool that does not require great

technical experience and therefore may be used by

researchers and designers outside the typical NLP

research and development community. This demo

is the result of our recent efforts aimed at building

such an integrated prototyping tool.

We present a fully installed and configured

server image that offers multi-lingual (i.e. English,

German, French, Italian) ASR and TTS integrated

with a web-based WOZ platform. All components

are open-source (i.e. adaptable and extendable)

and connected via a messaging server and a num-

ber of Java programs. When started the framework

requires only one single script to be executed (i.e.

there is a separate script for each language so that

the components are started using the right param-

eters) in order to launch a WOZ driven system en-

vironment. With such a pre-configured setup we

believe that also non-NLP experts are able to suc-

cessfully conduct extended user studies for lan-

guage technologies applications.
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2 Existing Comparable Tools

Following the literature, existing tools and frame-

works that support prototyping of language tech-

nology applications can be separated into two cat-

egories. The first category consists of so-called

Dialogue Management (DM) tools, which focus

on the evaluation of Language Technologies (LTs)

and whose primary application lies in the areas of

NLP and machine learning. Two well-known ex-

amples are the CSLU toolkit (Sutton et al., 1998)

and the Olympus dialogue framework (Bohus et

al., 2007). Others include the Jaspis dialogue man-

agement system (Turunen and Hakulinen, 2000)

and the EPFL dialogue platform (Cenek et al.,

2005). DM tools explore the language-based inter-

action between a human and a machine and aim at

improving this dialogue. They usually provide an

application development interface that integrates

different LTs such as ASR and TTS, which is then

used by an experimenter to specify a pre-defined

dialogue flow. Once the dialogue is designed, it

can be tested with human participants. The main

focus of these tools lies on testing and improving

the quality of the employed technology compo-

nents and their interplay. Unlike DM tools, rep-

resentatives from the second category, herein af-

ter referred to as WOZ tools, tend to rely entirely

on human simulation. This makes them more in-

teresting for early feedback, as they better sup-

port the aspects of low-fidelity prototyping. While

these applications often offer more flexibility, they

rarely integrate actual working LTs. Instead, a hu-

man mimics the functions of the machine, which

allows for a less restrictive dialogue design and

facilitates the testing of user experiences that are

not yet supported by existing technologies. Most

WOZ tools, however, should be categorized as

throwaway applications i.e. they are built for one

scenario and only rarely re-used in other settings.

Two examples that allow for a more generic ap-

plication are SUEDE (Klemmer et al., 2000) and

Richard Breuer’s WOZ tool1.

While both DM and WOZ tools incorporate

useful features, neither type provides a full range

of support for low-fidelity prototyping of LT ap-

plications. DM tools lack the flexibility of ex-

ploring aspects that are currently not supported by

technology, and pure WOZ applications often de-

pend too much on the actions of the wizard, which

can lead to unrealistic human-like behaviour and

1http://www.softdoc.de/woz/index.html

inconsistencies with its possible bias on evalua-

tion results. A combination of both types of tools

can outweigh their deficiencies and furthermore

allow for supporting different stages of prototyp-

ing. That is, a wizard might complement exist-

ing technology on a continuum by first taking on

the role of a ‘controller’ who simulates technol-

ogy. Then, in a second stage one could act as a

‘monitor’ who approves technology output, before

finally moving on to being a ‘supervisor’ who only

overrides output in cases where it is needed (Dow

et al., 2005). However, to allow for such variation

an architecture is required that on the one hand

supports a flexible use of technology components

and on the other hand offers an interface for real-

time human intervention.

3 Integrated Prototyping Framework

In order to offer a flexible and easy to use pro-

totyping framework for language technology ap-

plications we have integrated a number of exist-

ing technology components using an Apache AC-

TIVEMQ messaging server2 and several Java pro-

grams. Our framework consists of the JULIUS

Large Vocabulary Continuous Speech Recogni-

tion engine3, an implementation of the GOOGLE

SPEECH API4, the WEBWOZ Wizard of Oz

Prototyping Platform5 and the MARY Text-to-

Speech Synthesis Platform6. All components are

fully installed and connected running on a VIR-

TUAL BOX server image7 (i.e. Ubuntu 12.04 LTS

Linux Server). Using this configuration we offer

a platform that supports real-time speech recogni-

tion as well as speech synthesis in English, French,

German and Italian. Natural Language Under-

standing (NLU), Dialog Management (DM), and

Natural Language Generation (NLG) is currently

performed by the human ‘wizard’. Respective

technology components may, however, be inte-

grated in future versions of the framework. The

following sections describe the different compo-

nents in some more detail and elaborate on how

they are connected.

2http://activemq.apache.org/
3http://julius.sourceforge.jp/en index.php
4http://www.google.com/intl/en/chrome/demos/speech.html
5https://github.com/stephanschloegl/WebWOZ
6http://mary.dfki.de/
7https://www.virtualbox.org/
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3.1 Automatic Speech Recognition

The JULIUS open-source Large Vocabulary Con-

tinuous Speech Recognition engine (LVCSR) uses

n-grams and context-dependent Hidden Markov

Models (HMM) to transform acoustic input into

text output (Lee et al., 2008). Its recognition

performance depends on the availability of lan-

guage dependent resources i.e. acoustic models,

language models, and language dictionaries. Our

framework includes basic language resources for

English, German, Italian and French. As those

resources are still very limited we have also in-

tegrated online speech recognition for these four

languages using the Google Speech API. This al-

lows for conducting experiments with users while

at the same time collecting the necessary data for

augmenting and filling in JULIUS language re-

sources.

3.2 Text-to-Speech Synthesis

MARY TTS is a state-of-the-art, open source

speech synthesis platform supporting a variety

of different languages and accents (Schröder and

Trouvain, 2003). For the here presented multi-

lingual prototyping framework we have installed

synthesized voices for US English (cmu-slt-

hsmm), Italian (istc-lucia-hsmm), German (dfki-

pavoque-neutral) as well as French (enst-dennys-

hsmm). Additional voices can be downloaded and

added through the MARY component installer.

3.3 Wizard of Oz

WebWOZ is a web-based prototyping platform for

WOZ experiments that allows for a flexible inte-

gration of existing LTs (Schlögl et al., 2010). It

was implemented using modern web technologies

(i.e. Java, HTML, CSS) and therefore runs in any

current web browser. It usually uses web services

to integrate a set of pre-configured LT components

(i.e. ASR, MT, TTS). For the presented prototyp-

ing framework, however, we have integrated Web-

WOZ with our ASR solution (i.e. the combined

Google/JULIUS engine) and MARY TTS. Conse-

quently ASR output is displayed in the top area

of the wizard interface. A wizard is then able to

select an appropriate response from a set of pre-

viously defined utterances or use a free-text field

to compose a response on the fly. In both cases

the utterance is sent to the MARY TTS server and

spoken out by the system.

3.4 Messaging Server and Gluing Programs

In order to achieve the above presented integration

of ASR, WOZ and TTS we use an Apache AC-

TIVEMQ messaging server and a number of Java

programs. One of these programs takes the output

from our ASR component and inserts it into the

WebWOZ input stream. In addition it publishes

this output to a specific ASR ActiveMQ queue so

that other components (e.g. potentially an NLU

component) may also be able to process it. Once

an ASR result is available within WebWOZ, it is

up to the human wizard to respond. WebWOZ

was slightly modified so that wizard responses are

not only sent to the internal WebWOZ log, but

also to a WIZARD ActiveMQ queue. A second

Java program then takes the wizard responses from

the WIZARD queue and pushes them to a sepa-

rate MARY queue. While it may seem unneces-

sary to first take responses from one queue just to

publish them to another queue, it allows for the

easy integration of additional components. For

example, we have also experimented with a dis-

tinct NLG component. Putting this component

between the WIZARD and the MARY queue we

were able to conduct experiments where a wiz-

ard instead of sending entire text utterance would

rather send text-based semantic frames (i.e. a se-

mantically unified representation of a user’s in-

put). Such shows the flexibility of using the de-

scribed queue architecture. Finally we use a third

Java program to take text published to the MARY

queue (i.e. either directly coming from the wiz-

ard or produced by an NLG component as with

one of our experimental settings) and send it to the

MARY TTS server. Figure 1 illustrates the differ-

ent framework components and how they are con-

nected to each other.

4 Demo Setup

The optimal setup for the demo uses two computer

stations, one for a wizard and one for a test user.

The stations need to be connected via a LAN con-

nection. The test user station runs the prototyping

framework, which is a fully installed and config-

ured Virtual Box software image (Note: any com-

puter capable of running Virtual Box can serve as a

test user station). The wizard station only requires

a modern web browser to interact with the test user

station. A big screen size (e.g. 17 inch) for the

wizard is recommended as such eases his/her task.

Both stations will be provided by the authors.
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Figure 1: Prototyping Framework Components.

5 Summary and Future Work

This demo presents an integrated prototyping

framework for running WOZ driven language

technology application scenarios. Gluing together

existing tools for ASR, WOZ and TTS we have

created an easy to use environment for spoken di-

alog design and research. Future work will focus

on adding additional language technology compo-

nents (e.g. NLU, DM, NLG) and on improving the

currently limited ASR language resources.
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Can you send a message to Peter, please? Send_message(peter) 
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Context-free grammar 
[Ward1994] : builds 

parse trees from 
derivation rules 

Hidden vector state 
[He2003] : parse tree as 

a sequence of vector 
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Probabilistic context-free grammar [Gorin1997] : 
builds parse trees from probabilistic derivation rules 

Conclusion: investigate a multi-step NLU subsystem 
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Semantic parsing [Jurcicek2009]  

n Based on a sequence of transformations 

n Use a slot database 
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Rule #1 

Rule #2 

Rule #3 

… 

Rule #N 

Utterance  

<=>  

Default semantic frame 

Utterance  

<=> 

Resulting semantic frame 

Hey I want to send a text message  to Peter 
could you do that for me 
<=> 
Input() 

Hey I want to send a text message  
could you do that for me 
<=> 
Send_message(recipient=peter) 
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Semantic Parser 
Dialog Act 

Mapper 

Context Catcher 

External 

environment + 

Dialog  history 

Semantic Unifier 

and Reference 

Resolver 

oryoryory

fier 

link  

extens

ion 

link 

modifi

cation 

SemSem

semantic frame  

semantic frame  

Hey I want to send a text message  
could you do that for me 
<=> 
Send_message(recipient=best_friend) 

Dialog context update 

Past dialog context 
Dynamic nodes Send_message(messsage_recipient=peter) 

INPUT 

OUTPUT 
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Semantic Parser 
Dialog Act 

Mapper 

Context Catcher 

External 

environment + 

Dialog  history 

Semantic Unifier 

and Reference 

Resolver 

oryoryory

fier 

link  

extens

ion 

link 

modifi

cation 

SemSemSem

semantic frame  

semantic frame  

Input(recipient=best_friend) 

Input(time=now) 

Input(day=17, month=December, year=2014) 

Input(recipient=peter) 

Input(time=15.42) 

Input(date=December 17, 2014) 

INPUT 

OUTPUT 



Institut Mines-Télécom 

Context catcher 

17/12/2014 
An open-source Framework for Supporting the Design and 

Implementation of Natual-language Spoken Dialog Systems 
31 

Context catcher’s update: 

hour -> time_between_intakes 

time -> time_between_intakes 

Slots: 

hour = 6 

Goal: 

input 

Slots: 

hour = 6 

Goal: 

input 

SURR 

Slots: 

time_between_intakes = 6 

Goal: 

input 

Slots: 

hour = 6 

Goal: 

input 

SURR 

System: “How long between two intakes” 

User: “6 hours” 
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Dialog act mapper 
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Dialog act 

mapper 
Dialog manager 

Semantic unifier 

and reference 

resolver 

Retrieves the set of dialog acts available 
for a given dialog state 

Matches dialog acts 
with semantic frames 
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n Gradual error levels: 
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System: “What is your mood today?” 

User: “I want to cook a meal” 

Error level Behavior Examples 

1 Signal that a non-understanding 
occurred 

“I did not get that” 
“What did you say?” 

2 Signal that a non-understanding 
occurred including the best ASR 
hypothesis 

“I understood “I want to cook a 
meal” but I am not able to handle 

that request” 

3 Signal that a non-understanding 
occurred and propose some 
utterances templates  

“I can’t handle that request. Try 
to say “good” or “bad”, or say 
“start over”” 
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Evaluation corpus 

n 253 dialogs (in French and German) collected 

with a Wizard-of-Oz setup (WebWOZ) 

n 939 turns 
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Semantic Parser 

Semantic Unifier 

and Reference 

Resolver 

Dialog Act 

Mapper 

Dialog Manager 

Natural Language 

Generator 

Sem
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frame  
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semantic frame  
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ech Player
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Semantic Parser
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Semtexttexttext
Dialog Act 

Mapper

d
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a
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Reference corpus 

Evaluation

1 

2 
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Evaluation metrics 

n Precision: 

 

 

 

n Slot recall: 
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retrieved) be to entscount(elem

elements) retrievedectly count(corr
100 ´

retrieved) be to scount(slot

slots) retrievedectly count(corr
100 ´
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Element Precision ratio Precision Recall 

Semantic frame 
(output of the 
semantic parser ) 

882 / 939 
94% 

(±1.5%) 
- 

Slots (output of 
the semantic 
parser) 

502 / 537 
93% 

(±1.6%) 
88% 

(474 / 537) 

Dialog act 912 / 939 
97% 

(±1%) 
- 

Dialog acts: 3% (26) incomplete, 0.1% (1) incorrect 
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Linked-form filling: a new 

paradigm to create and update 

task-based dialog models 
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Managing dialogs 
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Dialog manager 

Back-end 

services 

Dialog 

models 

Dialog 

history y

user’s dialog act system turn 

Send_messsage() Ask(recipient) 

ø 
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State of the art in dialog management 
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Deterministic methods Stochastic methods 

Adjacency pairs 
[Weizenbaum1966]: 
predefined triggers 

and responses 
 

Flow graphs: 
finite-state 
machine 

Probabilistic IS [Lison2012]: 
probabilistic update rules 

Markov decision processes 
[Levin1998,Levin2000]: finite-

state machine with probabilistic 
transitions Information state 

[Larsson1998]: state 
is the sum of the 

information 
exchanged 

 

Example-based 
[Lee2006]: 
example 
database 

learned from 
corpus 

Partially observable Markov 
decision processes 

[Young2006,Lemon2007]: 
integrates the uncertainty of the 

observations 
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Modeling with task hierarchies 

n A task is completed 

when all of its subtasks, 

if any, are completed 

[Bohus2003,Rich2009] 

n Define and organize unit 

tasks 
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Send  

message 

recipient content 

Send 
Set  

content 

Set 

recipient 

Pros Cons 

n No data required 

n Limited time to 

deployment 

n Standardized modeling 

(ANSI/CEA-2018) 

n Available runtime 

tools: Disco, 

RavenClaw 

n Increasingly complex 

with the dialog 

variations 

n Difficult to maintain 

and update the dialogs 

(expertise, manual 

modeling) 

n Static structure 
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The linked-form filling: a language and a 

tool 
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form: content 

slot: content 

update_

content 

1 
send 

3 form: message 

slot: recipient 

Form 

form: confirm 

slot: confirmation 

confirm

nfirmation

form: content

slot: content

update_

content

11

2 

if confirmation is equal to "no" 
2 

if confirmation is equal to "no" 
1 

Link 

System: who do you  
want to send it to? 
 User:  

System: what do you 
want to write? 
 User: 

System: do you  
confirm? 
 User: 

System: sending… 
Sys
wan

Sys
con Sys

update_content 
send 
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eXtensible Stylesheet Language 

Transformations 
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<form id="form id"> 
<slot variable="variable id"/> 
<subform constraint="mandatory"> 
<link form="form id 2"/> 
<script action="action id"/> 
</subform> 
</form> 

<task id="form id"> 
<input name="variable id" type="string"/> 
<subtasks id="form idSteps1"> 
<step name="empty" task="empty"/> 
<step name="variable id" task="variable id"/> 
<step name="form id 2" task="form id 2"/> 
<step name="script action id" task="action id"/> 
<applicable>($this.variable id!="null") 
</applicable> 
<binding slot="$variable id.variable id" value="$this.variable id"/> 
</subtasks> 
<subtasks id="form idSteps0"> 
<step name="empty" task="empty"/> 
<step name="variable id" task="variable id"/> 
<step name="form id 2" task="form id 2"/> 
<step name="script action id" task="action id"/> 
<applicable>($this.variable id=="null") 
</applicable> 
</subtasks> 
</task> 

form: form id 

slot: variable id 

action 

id 

form: form id 2 for

cti

XSLT 

•Explore all dialog paths 
•Flattens the menu 
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Characteristics 

n No data 

n Facilitated design 

n Quick conception 

n Low expertise requirements 

n Guarantee of dialog completion 

n Direct domain enlargement 

n Automatic dialog variability 
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Task 

hierarchy 

Linked-form 

filling 

Reduction 

Lines 139 (49-246) 30 (14-46) 76% (±5%) 

XML elements 87 (24-164) 18 (7-32) 76%(±10%) 
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No data Facilitated 

design 

Quick 

conception 

Low 

expertise 

requirements 

Guarantee 

of dialog 

completion 

Direct 

domain 

enlargement 

Automatic 

dialog 

variability 

Flow charts 

ü - ü ü ü ü û 
Example-

based û - û ü û û ü 
Information 

state ü ü ü û û û ü 
Adjacency 

pairs ü - ü ü û ü ü 
Stochastic 

models û ü û û ü û ü 
Linked 

form-filling ü ü ü ü ü ü ü 

üHas the characteristic 
û Does not have the characteristic 
- Not relevant 
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Conclusions and future work 
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Conclusions 

n A modular open-source platform for spoken 

dialog systems 

• Open-source platform for researchers 

• Independent components (modular, extendable, multi-
modal, multi-lingual) 

• Facilitated setup (minimum data requirement) 

• Real-users deployment (server-based) 
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Conclusions 

n Towards continuous listening for spoken 

interaction 

• Continuous method for a target speaker and 
environment (no press-to-speak button, attention 
selection, automatic segmentation) 
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Conclusions 

n A sub-system to map natural-language utterances 

to situated parameterized dialog acts 

• Handles variability 

• Allows for a mixed intiative interaction 

• Integrates the dialog context (current and past) 

• Integrates knowledge about the environment 

• Multi-lingual and portable: French, German, Italian, 
Spanish, etc. 
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Conclusions 

n Linked form-filling: a new paradigm to create and 

update task-based dialog models 

• Novel paradigm 

• Quick conception 

• Low expertise requirements 

• No data required 

• Automatic transformation 

• Compliant to the ANSI/CEA-2018 standard 
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Future work 
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Build upon the 

baseline 

platform 

Train 

components 

Data collection 

using the system 

and real users 

More services 

and more dialog 

types 

g 

Spanish setup 

ervices 

Add more 

deflection 

dialogs 

Add more error 

recovery 

mechanisms 

more 

Active learning/ 

adaptation 

on the

Study the 

human-machine 

interaction 
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Pierrick MILHORAT

RESUME : L’interaction vocale avec des systèmes automatiques connaît, depuis quelques années, un accroisse-

ment dans l’intérêt que lui porte tant le grand public que la communauté de la recherche. Cette tendance s’est renforcée

avec le déploiement des assistants vocaux personnels sur les terminaux portables.

Cette thèse s’inscrit dans ce cadre pour aborder le sujet depuis deux points de vue complémentaires. D’une part,

celui apparent de la fiabilité, de l’efficacité et de l’utilisabilité de ces interfaces. D’autre part, les aspects de conception

et d’implémentation sont étudiés pour apporter des outils de développement aux concepteurs plus ou moins initiés de

tels systèmes.

A partir des outils et des évolutions dans le domaine, une plate-forme modulaire de dialogue vocal a été agrégée.

Progressivement, celle-ci a été configurée pour répondre aux exigences des scénarios d’usage et de démonstration

dans l’optique des collaborations encadrant ce travail. Le système s’est complexifié et est constamment en évolution

suivant les approches mentionnées plus haut.

L’interaction continue, basée sur une “écoute” permanente du système pose des problèmes de segmentation, de

débruitage, de capture de son, de sélection des segments adressés au système, etc... Une méthode simple, basée

sur la comparaison des résultats de traitements parallèles a prouvé son efficacité, tout comme ses limites pour une

interaction continue avec l’utilisateur.

Les modules de compréhension du langage forment un sous-système interconnecté au sein de la plate-forme.

Ils sont les adaptations d’algorithmes de l’état de l’art comme des idées originales. Ils ont été pensé pour rendre

l’interaction naturelle et fiable tout en limitant la complexité de leur configuration et en maintenant leur généricité et

donc leur usage à travers plusieurs dialogues. L’utilisabilité est évaluée à partir de données collectées lors d’essais en

laboratoire avec des utilisateurs réels. L’aisance dans la configuration d’un tel système et sa modularité, plus difficiles à

prouver empiriquement, sont discutées.

Le choix de la gestion du dialogue basé sur des modèles de tâches hiérarchiques, comme c’est la cas pour la

plate-forme, est argumenté. Ce formalisme est basé sur une construction humaine et présente, de fait, des obstacles

pour concevoir, implémenter, maintenir et faire évoluer les modèles. Pour parer à ceux-ci, un nouveau formalisme est

proposé qui se transforme en hiérarchie de tâches grâce aux outils associés. Ce document se veut être une référence

du nouveau langage code et de sa conversion, il présente également des mesures d’évaluation de l’apport d’un tel outil.

ABSTRACT : Recently, global tech companies released so-called virtual intelligent personal assis-

tants. Highlighting what was the emerging trend in the interaction with machines, especially on hand-held

devices.

This thesis has a bi-directional approach to the domain of spoken dialog systems. On the one hand,

parts of the work emphasize on increasing the reliability and the intuitiveness of such interfaces. On the

other hand, it also focuses on the design and development side, providing a platform made of independent

specialized modules and tools to support the implementation and the test of prototypical spoken dialog

systems technologies.

The topics covered by this thesis are centered around an open-source framework for supporting

the design and implementation of natural-language spoken dialog systems. The framework has been

developed and set up following the use cases of the supporting projects. It is still currently evolving.

One way to characterize a spoken dialog system is by using the listening method it is applying. Conti-

nuous listening, where users are not required to signal their intent prior to speak, has been and is still an

active research area. Two methods are proposed here, analyzed and compared.

According to the two directions taken in this work, the natural language understanding subsystem of

the platform has been thought to be intuitive to use, allowing a natural language interaction. It is easy to

set up as well since one does not need much knowledge of the technologies involved to configure the

subsystem for one’s application.

Finally, on the dialog management side, this thesis argue in favor of the deterministic modeling of dia-

logs. However, such an approach requires intense human labor, is prone to error and does not ease the

maintenance, the update or the modification of the models. A new paradigm, the linked-form filling lan-

guage, offers to facilitate the design and the maintenance tasks by shifting the modeling to an application

specification formalism.


