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Abstract

Modern vehicles include advanced driving assistance systems for comfort and active safety features.
Whilst these systems contribute to the reduction of road accidents, their deployment has shown that
performance is constrained by their limited situation understanding capabilities. This is mainly
due to perception constraints and by ignoring the context within which these vehicles evolve. It
results in last minute risk assessment, and thus in curative assistance in the form of warning alerts
or automatic braking. This thesis focuses on the introduction of contextual information into the
decision processes of driving assistance systems. The overall purpose is to infer risk earlier than
conventional driving assistance systems, as well as to enhance the level of trust on the information
provided to drivers. Several factors govern the vehicle behaviour. These include the road network
and traffic rules, as well as other road users such as vehicles and pedestrians with which the
vehicle interacts. This results in strong interdependencies amongst all entities, which govern their
behaviour. Further, whilst traffic rules apply equally to all participants, each driver interacts
differently with the immediate environment, leading to different risk level for a given behaviour.
This information must be incorporated within the decision-making processes of these systems. In
this thesis, a framework is proposed that combines a priori information from digital navigation
maps with real time information from on board vehicle sensors and/or external sources via wireless
communications links, to infer a better situation understanding, which should enable to anticipate
risks. This tenet is similar to the task of a co-pilot when using a priori notated road information.
The proposed approach is constrained by using only data from close to production sensors.

The framework proposed in this thesis consists of two phases, namely situation understanding and
risk assessment. The situation understanding phase consists in performing a high level interpreta-
tion of all observations by including a priori information within the framework. The purpose is to
understand how the perceived road entities interact, and how the interactions constrain the vehicle
behaviour. This phase establishes the spatio-temporal relationships between the perceived entities
to determine their relevance with respect to the subject vehicle motion, and then to identify which
entities to be tracked. For this purpose, an ontology is proposed. It stores a priori information
about the manner how different road entities relate and interact. This initial phase was tested in
real time using data recorded on a passenger vehicle evolving in constrained environments. The
risk assessment phase then looks into the perceived situation and into the manner how it becomes
dangerous. To demonstrate the framework applicability, a use case applied to road intersections
was chosen. Intersections are complex parts in the road network where different entities converge
and most accidents occur. In order to detect risk situations, the manner how the driver reacts in
a given situation is learned through Gaussian Processes. This knowledge about the driver is then
used within a context aware Bayesian Network to estimate whether the driver is likely to interact
as expected with the relevant entities or not. The probabilistic approach taken allows to take into
consideration all uncertainties embedded in the observations. Field trials were performed using
a passenger vehicle to validate the proposed approach. The results show that by incorporating
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drivers’ individualities and their actuations with the observation of the vehicle state, it is possible
to better estimate whether the driver interacts as expected with the environment, and thus to an-
ticipate risk. Further, it is shown that it is possible to generate assistance earlier than conventional
safety systems.
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Résumé

Les nouvelles voitures sont pourvues d’aides à la conduite qui améliorent le confort et la sécurité.
Bien que ces systèmes contribuent à la réduction des accidents de la route, leur déploiement montre
que leurs performances sont encore limitées par leur faible compréhension de situation. Cela est
principalement lié aux limites des capteurs de perception, et à la non prise en compte du contexte.
Ces limites se traduisent par des détections de risques tardives, et donc en assistances sous forme
d’alertes ou de freinages automatiques. Cette thèse se concentre sur l’introduction d’informations
contextuelles dans le processus de décision des systèmes d’aides à la conduite. Le but est de détecter
des risques plus tôt que les systèmes conventionnels, ainsi que d’améliorer la confiance qu’on peut
avoir dans les informations générées. Le comportement d’un véhicule dépend de divers éléments tels
que le réseau routier, les règles de la circulation, ainsi que de la cohabitation avec d’autres usagers
de la route. Ces interactions se traduisent par une interdépendance forte entre chaque élément. De
plus, bien que chaque conducteur doive suivre les mêmes règles de circulation, ils peuvent réagir
de façon différente à une même situation. Cela implique qu’un même comportement peut être
considéré comme sûr ou risqué, selon le conducteur. Ces informations doivent être prises en compte
dans le processus de prise de décision des systèmes. Cette thèse propose un cadre qui combine
les informations a priori contenues dans les cartes de navigation numériques avec l’information
temps réel fournie par les capteurs de perception et/ou communications sans fil, pour permettre
une meilleure compréhension de situation et ainsi mieux anticiper les risques. Ce principe est
comparable aux tâches qu’un copilote doit accomplir.

Ces travaux se répartissent en deux principales étapes : la compréhension de situation, et l’esti-
mation des risques. L’étape de compréhension de situation consiste à donner du sens aux diffé-
rentes observations réalisées par les capteurs de perception, en exploitant des informations a priori.
Le but est de comprendre comment les entités perçues interagissent, et comment ces interactions
contraignent le comportement du véhicule. Cette étape établit les relations spatio-temporelles entre
les entités perçues afin d’évaluer leur pertinence par rapport au véhicule, et ainsi extraire les entités
les plus contraignantes. Pour cela, une ontologie contenant des informations a priori sur la façon
dont différentes entités de la route interagissent est proposée. Cette première étape a été testée en
temps réel, utilisant des données enregistrées sur un véhicule évoluant en environnements contraints.
L’étape de détection des risques s’appuie sur la situation perçue, et sur les signes annonciateurs de
risques. Le cas d’usage choisi pour cette étude se concentre sur les intersections, puisqu’une grande
majorité des accidents de la route y ont lieux. La manière de réagir d’un conducteur lorsqu’il se
rapproche d’une intersection est apprise par des Processus Gaussiens. Cette connaissance à priori
du conducteur est ensuite exploitée, avec les informations contextuelles, par un réseau Bayésien
afin d’estimer si le conducteur semble interagir comme attendu avec l’intersection. L’approche pro-
babiliste qui a été choisie permet de prendre en compte les incertitudes dont souffrent chacune
des sources d’information. Des tests ont été réalisés à partir de données enregistrées à bord d’un
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véhicule afin de valider l’approche. Les résultats montrent qu’en prenant en compte les individua-
lités des conducteurs, leurs actions sur le véhicule, ainsi que l’état du véhicule, il est possible de
mieux estimer si le conducteur interagit comme attendu avec l’environnement, et donc d’anticiper
les risques. Finalement, il est montré qu’il est possible de générer une assistance plus préventive
que les systèmes d’aide à la conduite conventionnels.
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1.1 Context

Safe, accessible and convenient mobility has always been one of mankind’s challenges. Whilst
disruptive solutions were imagined, society had to wait for progress in science and engineering
during the last two centuries to reach the development of modern transportation modes. The
impact of the steam engine in the 19th century enabled the transformation of energy into
mechanical power which allowed for industrial machinery, but also for steam trains. Man
left horse carriages and the redefinition of travel distance began. Trains represented the
first revolution in the transportation domain. Toward the beginning of the 20th century,
the mass production of automobiles started the notion of individual transportation and of
freedom to travel, at any time and as often as desired. Ground mobility has transformed
our lives, however it has brought other concerns such as pollution, congestion and safety.

The increasing number of vehicles lead to the progressive modernisation of driving spaces
with the construction of new roads, and with the installation of traffic lights, signs, round-
abouts, etc. The whole is governed by different laws and regulations, and the most common
one among nations is the Vienna convention [1]. The automotive industry is also working
to reduce the number of fatalities and therefore to enhance safety. Whist initial efforts were
centred on passive devices such as seat belts, today’s efforts centre on active systems designed
to avoid accidents, or at least to reduce their effect.
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Figure 1.1: Driving process: major driving tasks.

The research addressed in this thesis is centred on active devices designed to assist drivers,
usually known as Advanced Driving Assistance Systems (ADAS). The work centres on the
area of situation understanding for decision making by such systems. In this Chapter, the
context of the thesis is represented from the driver perspective and from the new generation
of vehicles known as intelligent vehicles. The emphasis is to understand how the complexity
of the driving task increases the risk of road accidents, and how intelligent vehicles using
robotics technology offer new perspectives for road safety. The problem is then formally
stated, and the contributions of the thesis are given.

1.2 Overview on the Driving Process

Driving a vehicle implies the simultaneous performance of several tasks. Shortcomings on
the ability to perform them often lead to risk situations, and to accidents. Solutions to avoid
accidents and to reduce their effect have been investigated for several decades. This Section
aims to provide an overview of what driving is, in order to understand how risk situations
arise. Further, it briefly presents how some passive solutions deployed on road networks and
vehicles were a first step towards safer traffic.

1.2.1 Driving

For most people, driving after a few years becomes a collection of mechanical tasks. How-
ever, driving is complex, as different tasks are performed in parallel, each responding to
the different situations encountered. For the purpose of this thesis, four major tasks have
been identified for a driver to safely control a vehicle. These are Perception, Understanding,
Decision-Making and Actuation, as represented in Figure 1.1.
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Figure 1.2: Example of a typical driving environment. Entities of different types cohabit in
the same area.

Perception

When driving, the first question to be answered is What is around my vehicle? The driver
must be capable to observe the surroundings, to classify the scene into the relevant entities.
This is done despite the clutter and occlusions that might occur. The Perception task is
complex, where experience enables drivers to consider mainly the most relevant entities.

Understanding

Once the driver has a mental model of the perceived world, it is then necessary to under-
stand the spatio-temporal relationships between the vehicle and the perceived entities. Those
which are relevant are inferred first, and then classified into entities that are in motion, and
those that are likely to move. Then, road features that constrain vehicle motions like road
signs are considered. Within this context, the driver takes into account all likely interactions
and constraints posed by all surrounding entities on his vehicle. Drivers need to gain a full
understanding of their situation wherever possible. Failure to do this often results in driver
errors, which may lead to conflicting and dangerous situations.

Decision-Making

Once the driver gains an understanding of his current situation by identifying the relevant
entities with regard to his future direction of motion, a process of risk assessment starts.
This includes the estimation of the future state of the interacting entities, his own intention,
the knowledge of the vehicle capabilities, etc. The collected mental model allows drivers to
decide the immediate motion of the vehicle. This implies split-second decisions, particularly
in case of difficult driving situations. Extreme situations, e.g. bad weather, hazardous sur-
rounding vehicles may lead to inappropriate decisions favoured by poor driving experience
or insufficient situation awareness.
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Actuation

Once the decision on the next vehicle manoeuvre is taken, the driver acts on the vehicle
controls, e.g. accelerates, brakes, turns the steering wheel. The vehicle then responds ac-
cordingly and completes the manoeuvre. This again is subject to driver capabilities, as any
latency might hamper the manoeuvre and might result in hazardous situations.

The four tasks are required all the time as drivers have to adapt the vehicle response according
to the situations encountered. Note that whilst localization is an important task, it is not
mentioned in this chapter as it is not considered as a major requirement to ensure safe
driving.

In the driving process, time and space are very relevant. These driving tasks are executed
almost in parallel, with Actuation being the result of the previous three. The starting time
at which the driver observes his surrounding environment and concluding at the moment he
acts on the vehicle control is incompressible. This time is known as the Reaction Time (RT).
It is the result of a humans physiological limitations in sensing, understanding, deciding and
acting. It is usually estimated between 1 and 1.5 seconds [145, 125]. Further, it depends on
several parameters related to the situation complexity and the driver (i.e. age, experience,
gender, conditions, etc.) [50].

1.2.2 Influence of Age and Experience on Driving

Everyone drives differently, the differences depend on several parameters. There are strong
driving style differences between countries; these differences reflect culture, demography, and
gender [40, 119]. The driver emotional and mental state have a major role in the manner
how drivers behave [141, 37]. Whilst the trend would be to generalize, their influence on the
same driver may vary from day to day.

Studies have shown that the most influential parameters in terms of safety concerns are
Experience and Age. Table 1.1 shows the summary of dependencies that age and experience
have on the major driving tasks. Figure 1.3a shows the dependencies of age and experience
on cognitive and physiological performances of drivers, and Figure 1.3b shows the overall
driving capabilities with respect to age and experience. They are detailed in the following
paragraphs.
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Table 1.1: Influence of age and experience on the major driving tasks.

Perception Understanding Decision Action

Younger, Novice OK
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Figure 1.3: Effect of age and experience on driving performances.

Perception

Age has a significant effect on the perception abilities of drivers. People usually suffer from
progressive narrowing of the field of view as they age. It implies that older drivers have
more difficulties with perceiving the environment. Moreover, it results in having difficulties
with perceiving road entities which might represent hazard [68, 159]. Whilst their ability to
perceive is usually good, young and inexperimented drivers more often fail to understand
their driving situations, resulting in hazardous conditions. Driver experience progressively
solves this problem by improving the visual search strategy [83].

Hazard Perception

Drivers differ mainly in their situation understanding which allows them to anticipate traffic
situations. This is known as the Hazard Perception Ability which is one of the parameters
needed for comfortable and safe driving. The earlier the hazard is detected, the earliest the
driver could decide and act to keep the situation under control. Age and driving experience
have a significant influence on this parameter [100]. As shown in Figure 1.3, younger and
older drivers have more difficulties to perceive hazards. Older drivers would need longer pro-
cessing times to understand the situation, decide and act, whilst novice drivers are likely to
have difficulties for understanding the relevance of the perceived entities [143, 21]. Moreover,
as vision capabilities diminishes, the ability of drivers to perceive and thus to infer likely
collisions decreases with age [9].
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Risk Taking

Investigations into the causes of accidents showed that young drivers are more likely to take
risks, often stimulated by their overconfidence and sensation seeking [77]. Speeding is the
most common traffic rule violation [46, 159], as well as risky overtaking and close following
[33]. By contrast, as drivers get older, risk taking is decreased. Figure 1.3 shows the vari-
ation of risk taking with age and experience. Further, younger drivers usually respond to
hazard later than other drivers, as they favour risky situations [135].

Cognitive and Physical Capabilities

For elderly drivers, statistics reveal that they are often involved in accidents at road inter-
sections, because of decision-making difficulties [159, 2, 32]. In addition, they may suffer
from altered psycho-motor functioning affecting their reaction time and on the manner they
act. Experiments in simulated environments highlighted dependencies between lower driving
performances the elderly suffer from, and collision occurrence [143]. Often, elderly drivers
become aware of their decreasing driving capabilities. They will decide either to stop driv-
ing, or to reduce the effects of their age-related decline and thus to diminish risks. For
example, to suit with their abilities, some will avoid specific situations such as left turning,
roundabouts, or will decide to drive slower, to increase following time, etc. [106, 146].

Younger, novice and older drivers show lower driving capabilities than experienced and
middle aged drivers. Road accidents statistics seem to confirm this hypothesis. Moreover,
demographic trends in OECD countries show an inversion in the pyramidal age structure.
Over the next years, the number of elderly drivers shall increase very much. Consequently,
accident risks shall also increase unless special measures are taken. This is an opportunity
for new technical solutions.

1.2.3 Accidentology

Background

Accessibility to motor vehicles has provided freedom of movement and have changed society.
However, they have also brought social and economical costs, large road networks, pollution
and most of all road accidents. Currently, road accidents kill more than 1.2 millions people
per year across the world, and represent the first cause of death of young adults aged 15-24.
Further, for every road accident fatality, at least 20 individuals sustain non-fatal injuries .
Emergent countries accident fatalities are very high with 20 deaths for 100 000 population. In
OECD countries, the death rate is much lower with less that 9 deaths for 100 000 population
[118].

Road accidents lead to significant government spendings. For example, in France, the gov-
ernment estimates the cost of a road fatality to be greater than 3 million Euros, while all
road injuries and fatalities cost 22 billions Euros per year in 2014 [110]. In the US, the
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American Automobile Association estimated that in 2011, the annual societal cost of traffic
accidents was close to 300 billions US Dollars [101].

Road Accidents

In Europe, 57% of road accidents and 79% of road fatalities occur in stabilized situations.
Problems mostly happen because of lane departure, unexpected violation manoeuvres from
other vehicles, or unexpected pedestrian appearance. The other 43% of road accidents occur
at road intersections resulting in 21% of road fatalities. Moreover, for the elderly drivers,
fatalities at road intersections are very high. Safety at road intersection is therefore of much
concern [105].

Accidents Risk Factors and Causes

Accidents are caused by the combination of several factors related to the environment, the
vehicle and the driver. Statistics show that the great majority of accidents are due to endo-
genous events (i.e. related to the driver). Out of road intersections, most of accidents are
caused by anticipation failures and bad manoeuvre planning [105]. At road intersections,
more than 80% of accidents are caused by human errors due to impaired internal conditions
(e.g. violations of traffic rules), driver behaviour (e.g. perception failures) and driver state
(e.g. tiredness, alcohol) [105, 104]. Driver errors are therefore the first cause of road acci-
dents, hence efforts have to be made to minimize their occurrence or at least to fix them
before situations become hazardous.

1.2.4 Primary Strategies for Road Safety Improvements

The constant increase in injuries and fatalities due to road accidents raised the alarm in ad-
vanced economy countries. This led to several changes on road design and equipments, but
also in vehicles with the aim of improving safety and protecting vehicle occupants when acci-
dents occur [45, 128]. Measures for road safety can be classified into two groups: 1) Measures
aiming at helping drivers to better understand the situation and to reduce risks 2) Measures
related to passive safety.

Facilitating Situation Awareness

Accidents are often related to poor environment perception, therefore efforts have been made
to install equipments on roads to inform drivers about relevant oncoming road features.
Traffic signs and road markings had a significant influence on the reduction of accidents at
dangerous road sections. Further, several road intersections were redesigned to limit risk of
bad visibility, or also to limit the number of conflict points, provided by conversion of cross-
roads into roundabouts. Their introduction reduced considerably the number of accidents
at road intersections [132].
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Passive safety

Despite all efforts made to limit risks, accidents still occur. It is therefore of importance
to limit the extent of damage resulting from such situations. In this way, guard rails and
crash cushions have showed their utility in motorways or mountain roads. Car manufactur-
ers contributed to the reduction of damages implied by road accidents by improving vehicles
passive safety. The seat belt was one of the first devices which made possible to significantly
improve passive safety in cars [34]. Moreover, the democratisation of airbags, and the signi-
ficant improvement of vehicle chock absorption offer additional protection to car occupants.
Since 1997, the Euro NCAP requirements for passive safety represent major guidelines to
car manufacturers for safety improvements [164].

Accidentology statistics show that passive safety solutions contributed to indisputable res-
ults, especially in OECD countries. However, a plateau was soon reached. It is insufficient
to protect passengers after a road accident, the aim is now to prevent accidents. This has led
onto technologies that started as driving assistance systems and moved towards intelligent
vehicles.

1.3 Intelligent Vehicles

Motor vehicles are undergoing a rapid transformation from essentially electromechanical
systems to computer controlled complex systems. That is, the control of vehicles is progress-
ively being taken over by computer systems. Further, it can be said that modern vehicles
are becoming complex, software dependent, sensor-based platforms at an accelerated pace
[74]. For example, ABS (from the German Antiblockiersystem) which is mandatory in com-
mercialized vehicles in Europe since 2007, prevents wheels from blocking during emergency
braking [23].

In this Section, a summary introduction is provided on the evolution of vehicles from Ad-
vanced Driving Assistance Systems (ADAS) to fully computer controlled vehicles known as
autonomous vehicles. Figure 1.4 shows how the introduction of intelligence in vehicles results
on a reduction on the degree of human intervention, and leads to autonomous vehicles and
zero driver intervention [75].

1.3.1 Advanced Driving Assistance Systems

Current ADAS aim to help the driver in the driving process. They can be classified into three
types: 1) ADAS addressing driver deficiencies and comfort 2) ADAS addressing dangerous
situations 3) Autonomous navigation. A quick overview of such systems is presented in this
Section.
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Figure 1.4: Impact of the introduction of intelligence and ADAS in vehicles on the degree of
human intervention. After [75].

Comfort ADAS

Several driving tasks can be stressful and/or difficult, and as presented in Section 1.2.2 the
degree varies according to age and experience. Perceiving the vehicle surrounding is in par-
ticular a difficult task. Several systems have been developed to address this problem. For
example, Blind Spot Information Systems informs drivers when a vehicle is located to their
side and rear. Further, providing in a bird’s eye point of view around the subject vehicle
is the function of Around View Monitor which aims to facilitate close manoeuvres. Such
systems can be used by parking assist systems for the detection of parking slots, and then to
either indicate the manoeuvres to follow or for the most sophisticated systems to automat-
ically perform the manoeuvre. Comfort can also be improved by systems such as Adaptive
Cruise Control (ACC) which allows the vehicle to automatically regulate the vehicle speed,
and to maintain safe distance from the vehicle ahead. Whilst they help drivers to perform
some driving tasks, comfort ADAS are not designed to assist drivers in case of hazardous
situations.

Safety ADAS

Driving may lead to dangerous situations and thus to accidents. In a limited number of
situations, ADAS may provide assistance to avoid accidents or to limit their consequences.
Nowadays, most of vehicles are equipped with electronic systems such as ABS and ESC
(Electronic Stability Control), using proprioceptive sensors to help the driver keep the vehicle
control in emergency situations. A new generation of ADAS using exteroceptive sensors
starts to be widely used within new vehicles.

Image processing techniques allow for the detection of lane markings and thus for the de-
tection of lane departure. The function Lane Departure System will for example assist the
driver when inopportune lane departures arise, by informing the driver for Lane Departure
Warning systems (LDW) or by automatically actuating on the vehicle lateral control for
Lake Keeping Assistants (LKA). Driver Monitoring Systems (DMS) can observe the driver,
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determine whether there is drowsiness, and then provide warning to the driver if necessary.
Such systems may be coupled with Lane Departure Systems (LDS) to ensure that drivers
are in control.

Collisions with other road users are also addressed by ADAS. The Automatic Emergency
Braking Systems (AEB), also known as Precrash systems, automatically stop the vehicle if
a collision is perceived as imminent. Such systems operate with perception sensors which
estimate the state of front obstacles. By considering the state of the subject vehicle and
braking capabilities, it is possible to estimate whether a collision is likely to happen if no
action is taken. Field trials show that the validation of these systems is difficult as inoppor-
tune automatic braking may have serious consequences. AEB is becoming mandatory for
vehicles to be awarded a 5 star Euro Ncap qualifications [164].

Towards Autonomous Driving

Most vehicle OEMs have running programs and product-road maps for the development
of Autonomous Vehicles (AV). These represent a disruptive technology in the automotive
industry and shall provide accessibility to a part of society that is not able to drive. They
shall improve road safety, optimize traffic flows and improve productivity by letting drivers
focus on other tasks rather than driving. Rapid developments in sensors and algorithms
have been integrated into always more impressive demonstrators of autonomous driving.

The combination of some ADAS enables to delegate driving to the vehicle in well structured
situations. For example, the combination of ACC and LKA systems allows for lateral and
longitudinal control of the vehicle, and thus would allow for automated driving in situations
such as highways or traffic jams. However, urban situations are much more complex, as the
cohabitation with other road users is difficult to understand for a machine. Poor situation
understanding would lead to risks for the vehicle passengers, but also for the nearby road
users. This is mainly why autonomous driving in complex situations remains a challenge for
car manufacturers.

Several research projects have demonstrated that autonomous driving is no longer science
fiction. One of the first notable demonstrators was Navlab (National Autonomous Vehicle
Laboratory) developed by Carnegie Mellon University in 1986 [151]. The first version which
had lateral and longitudinal control performed by computer navigated more than 300 miles
at 20 mph maximum. In 2004 and 2005, 23 teams participated to the first edition of the
DARPA Challenge [73]. For each team, the rule was to develop an AV able to navigate
autonomously on a dirt road, in a limited time with the other participants. This was followed
by the DARPA Urban Challenge in 2007. In this edition, the participants had to manage
urban situations such as intersections and parking manoeuvres [29].

The DARPA challenges represent a springboard for research in AV, and motivated univer-
sities and industry. In 2007, VisLab travelled 16000 km from Parma to Shanghai, aboard
four driverless vehicles [19]. In 2010, the New York times announced that Google developed
vehicles with full autonomous capabilities operating autonomously on Californian roads [96].
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Figure 1.5: Intelligent vehicles functions. After [90].

Moreover, they claimed that the vehicles travelled more than 800000 km on Californian roads
without accident. In 2013, VisLab successfully tested PROUD in Parma, in urban situations
[28]. Moreover, Daimler, FZI and KIT successfully tested their Bertha prototype on the 103
km famous German Bertha Benz Memorial Route [176]. In 2015, Delphi’s driverless car
covered 3400 miles from San Francisco to New York City without human intervention for
more than 99% of the time [41]. In 2015 also, Renault presented his autonomous valet park-
ing service and their vehicle accumulated 90km of autonomous driving without anybody sat
behind the steering wheel during the international ITS congress. Finally, in the same year,
Tesla Motor became the first car manufacturer to propose a hand free driving function. This
autopilot function allows the vehicle to manage speed and steer on highways [25].

From comfort ADAS to autonomous navigation, the requirements in terms of data sources
and embedded intelligence are more and more challenging. Moreover, technologies developed
for autonomous navigation should contribute to the improvement of safety ADAS. The struc-
ture of intelligent vehicles is composed by several functions which are quickly described in
the following Section.

1.3.2 Intelligent Vehicles Functions

An Intelligent Vehicle can be regarded as replicating the driver tasks (c.f. Section 1.2.1)
through sensors and computers. These are split into several functions which are classified
into Data Sources, Processing and Outputs. The first comprises all the data and information
used in the driving task. The second is concerned on the processing of the collected data.
Finally, the third applies the processed information to control the vehicle or to inform the
driver. Figure 1.5 shows the functional components required for a typical intelligent vehicle.

Data Sources

The data sources needed on board an intelligent vehicle include information about the driver,
the vehicle and the surrounding environment. These data sources can be classified into four
groups: 1) Proprioceptive sensors 2) Exteroceptive sensors 3) Databases 4) Communication.
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Proprioceptive sensors provide information about internal status and state of the sub-
ject vehicle. The internal status describes the working conditions, in particular the vehicle
accessories like the turn signal, the pedals, the air conditioning, etc. The vehicle state de-
scribes the vehicle kinematics and dynamics state, namely velocity, heading, accelerations,
etc. Whilst the vehicle velocity and accelerations can be measured with low cost odometry
and inertial sensors, estimating the vehicle location is a difficult task. Knowing the vehicle
location is a very important function. In commercialized vehicles, this is usually estimated
based in the use of GNSS (Global Navigation Satellite System), sometimes coupled with the
vehicle dynamics. Whilst much progress have been achieved, estimating the vehicle pose all
the time using automotive type components remains a challenge [112].

Exteroceptive sensors provide information about the environment in which the subject
vehicle navigates. They can be classified into two types, namely passive sensors and active
sensors. Passive sensors comprise different types of cameras, monocular, stereo and infrared.
For these cameras, the trend is to have embedded intelligence which extracts from raw data
a list of detected objects and lane markings with their attributes (position, speed, type,
etc.). Whilst much progress have been achieved, several constrains exist due to the physics
involved. The field of view and resolution are limited, there are uncertainties on the ob-
ject attributes, and performances are even reduced in extreme weather conditions [18, 52].
Active sensors comprise two main technologies: RADAR (RAdio Detection And Ranging)
and LIDAR (LIght Detection And Ranging). RADAR sensors have become very common
in modern vehicles as they are cheap and offer excellent performances for the perception of
vehicles. However their field of view is narrow and offer low performances for the detection
of non-metallic objects due to the technology they exploit [7]. LIDAR sensors (also known
as Laser scanners), whilst they are not yet common is commercialized vehicles, offer more
precise measurements than RADARS with a wider field of view. However, they are still
expensive, and as cameras, their performances are reduced under unfavourable weather con-
ditions [7].

Databases provide a priori information about the context. The most used are digital maps.
They store information about the road network features (e.g. road curvature, position of
intersections, speed limits, etc.) and enable to contextualize information about the subject
vehicle and other entities sharing the same road network. Databases may contain informa-
tion about the driver such as his driving style, his favourite roads, habits, etc. Whilst the
quality of navigation maps is very important as erroneous data may result in inappropriate
assistance, most of navigation maps embedded in commercialized vehicles are far from being
perfect [129, 177].

Communications allows the subject vehicle to perceive beyond the limits of its on board
sensors. For example, the navigation system can get real-time information about traffic con-
ditions through cellular communications. Moreover, Vehicle-to-Vehicle (V2V) and Vehicle-
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to-Infrastructure (V2I) communications provide an opportunity to enlarge the subject vehicle
perception of the environment [10, 76]. For example, at road intersections, V2V enables to
perceive hidden vehicles, and V2I enables to inform about the state of traffic lights. Whilst
communications are of much interest, systems exploiting them must handle the latency and
the loss of signal which may occur.

In general, data regarding the subject vehicle state and the surrounding environment is fused
into a unified framework that represents a digital representation of the world. Sensor fusion
techniques enable to reduce uncertainty on measurements and to improve the robustness of
the systems. However, due to the layout of sensors and the technologies used (limited in
cost), perception systems have incomplete and inaccurate representations of the world. As
a consequence, the world model suffers from the same shortcomings. That means that the
Processing function which exploits the information returned by the data sources have to deal
with them.

Processing

The Processing function aims to exploit the information returned by the data sources, in
order to provide assistance. This function is usually performed through three main steps:
1) Situation Understanding 2) Risk Assessment 3) Decision Making.

Situation Understanding aims to interpret the data stored in the world model. That is,
the world model needs to be understood with respect to the subject vehicle response and
motion needs. One major situation understanding task is to determine in what road context
the vehicle is (e.g. is it approaching to an intersection? is it on the highway? etc.). Further,
situation understanding implies giving sense to perception data by contextualizing it, and
by taking into consideration the relationships and interactions between the subject vehicle
and the relevant perceived entities.

Risk Assessment aims to estimate the likelihood that the subject vehicle will be implied
in a hazardous situation or in a collision in a near future. For example, in precrash systems,
risk assessment consists in estimating whether a collision will happen with a pedestrian or a
vehicle if no action is taken. The most used method is based on the estimation of the time
remaining before a collision, also known as the Time-To-Collision (TTC) [88]. In conven-
tional ADAS, risk situations are usually assessed very late. This is partly due to the limited
amount of information that is exploited to estimate the risk, as situation understanding is
generally rather poor.

Decision-Making aims to determine whether assistance should be provided in order to
avoid a collision, or at least to mitigate the consequences of a collision. Further, it aims to
select the most appropriate action to handle a risk situation that has been assessed. For
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example, in the case of precrash systems, Decision Making consists in deciding if automatic
emergency braking should be performed. In most of conventional safety systems, assistance
is triggered using decision thresholds.

Outputs

Outputs consist of the assistance that may be provided to the driver once decision has been
taken. Conventional assistance is usually provided under two forms: Human Machine Inter-
faces (HMI) and since more recently in commercialized vehicles, automatic vehicle control.
HMIs aim to enhance the driver’s situational awareness by providing information though
sound signals and/or pictograms displayed on the dashboard. Their design is a difficult task
as they have to assist the driver without distracting him from the driving task. Automatic
vehicle control aims to apply actions directly on the vehicle through the vehicle controller,
e.g. automatic emergency braking in the case of precrash systems.
Intelligent vehicles represent a new perspective for the improvement of road safety. Whilst
safety ADAS represent indisputable progress with respect to passive safety systems, they
still suffer from several technical limitations. The next Section aims to present the problem
that is addressed in this thesis, related to some of these limitations.

1.4 Problem Statement

The last Sections showed that the introduction of intelligence in modern vehicles through
safety type ADAS represents new perspectives for road safety. Nevertheless, conventional
ADAS can be regarded as Curative Systems as they provide assistance at the last minute.
Studies showed that curative systems are not sufficient for safety and driver comfort, as they
may become intrusive and make situation uncomfortable for drivers and passengers [93, 95].
In most of conventional ADAS, assistance is triggered using decision thresholds. Figure 1.6,
Part A illustrates how thresholds are set on a scale of risk as it is assessed. These thresholds
are set so that assistance is provided when the likelihood that an accident will occur is high
enough. At the same time, the likelihood of inopportune assistance must be at its lowest.
Part B of Figure 1.6 shows that this second constraint delays the moment at which assistance
can be provided. Further, as presented in Section 1.2.2, drivers have different perception
of hazard. Thus, the most relaxed drivers usually react early to handle a given situation,
while the most aggressive drivers usually react late to the same situation. However, most
of conventional ADAS do not consider the differences which may exist between drivers as it
would require to learn customized driving styles. Therefore, for safety ADAS, the decision
thresholds have to be set so that they are compatible with all types of drivers, i.e. most of
aggressive drivers do not undergo inopportune assistance. As a consequence, assistance is
generally provided as last resort.
By contrast to Curative Systems, this thesis addresses what can be named Preventive Sys-
tems, that is, systems which will operate in anticipation. The purpose is to look towards
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Figure 1.6: Assistance strategies for safety ADAS.

better driving safety and comfort by providing pertinent anticipatory assistance in order
to help drivers to avoid making errors, and thus to reduce the likelihood that hazardous
situations arise. The analogy is made to the action of the copilot in a rally vehicle. He
has advantageous situational awareness by using his a priori knowledge of the road and his
perception of the world. Moreover, as all drivers are different (c.f. Figure 1.6, Part B),
he can adapt his assistance to the drivers capabilities and preferences. Within the context
of ADAS, it leads to the term Copilot Inspired ADAS, as shown in Figure 1.6, Part C. A
Copilot Inspired ADAS aims to provide assistance which comes early, to be taken by the
driver as advice or recommendation. The driver should have enough time to understand
the information, to make new decisions and then to react comfortably in order to avoid the
situation to become hazardous.

The thesis aims to propose solutions to detect when it is pertinent to improve the situational
awareness of the driver through assistance that takes the form of recommendation. This is
done by relying on the data available on board modern passenger vehicles, namely proprio-
ceptive sensors, navigation maps and perception sensors. As road intersections remain a
challenge for road safety (c.f. Section 1.2.3), they have been chosen as case study.

1.5 Approach and Objectives

This thesis was driven in an industrial context, therefore the contributions have to be com-
patible with car manufacturers constraints. All data sources which are used have to be
representative of data sources available on board commercialized vehicles. In this way, in-
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formation about the subject vehicle state is provided by the vehicle CAN-bus and by a
standard GNSS receiver. Information about the environment is provided by a standard
front perception sensor such as a smart camera or a smart RADAR. It is assumed that this
sensor performs all processing necessary to output the type and the state of all detected
road users (vehicles and pedestrians). The digital map which is used is of low definition (as
most of commercialized maps) and is used within a navigation function that provides the
contextual information. All data sources offer limited performances and suffer from noise
which has already been quantified.

A copilot must be able to adapt his assistance to the driver’s driving style in order to
ensure reliable assistance. He therefore needs to observe the driver so as to learn how he
usually behaves and negotiates road situations. In the case of a vehicle approaching to an
intersection, the driver’s driving style is showed through the evolution of the vehicle velocity.
The first objective was to propose an algorithm that enables to learn velocity profiles, and
that takes into account the constraints imposed by the low performances of the sensors. The
second objective was to develop an algorithm that enables to assess risk situations, and that
exploits learnt velocity profiles to adapt assistance to the driver. Whilst the contribution of
customized driver patterns was shown, observing the driver’s actuations in addition to the
vehicle state enabled to perform faster risk assessment.

Performing risk assessment in real road conditions implies that the most appropriate risk as-
sessment algorithms have to be selected, according to the situation. This requires a situation
understanding step, which is preliminary to the risk assessment. In the case of conventional
safety ADAS, this step is usually simplified as a basic selection of a single and context in-
dependent entity among the others. For example, current precrash systems do not consider
that the motion of a monitored entity may depend on a contextual element, or on the motion
of another entity. Figure 1.7 shows that considering the context can change the understand-
ing that a system may have of a perceived world. The third objective of the thesis was to
give sense to the information returned by the various data sources in order to understand
what surrounding road entities are reliable from the point of view of the subject vehicle.
Moreover, it aims to provide guidelines on how these entities should be monitored to ensure
a safe navigation.

The approach that was followed for this thesis lead to the framework presented in Fig-
ure 1.8. This framework is composed by three main parts, namely the Data Sources, the
Electronic Copilot and the Outputs. The Electronic Copilot is composed by two blocks,
namely Situation understanding and Risk assessment. The Situation understanding block
exploits information about the subject vehicle and the environment (i.e. the other road users
and the road features). The Risk assessment block needs the guidelines returned by situation
understanding as well as information about the driver actuations and driving style. This
block estimates if it is pertinent to assist the driver, and returns what type of assistance is
the most relevant for the situation. The outputs consists of dedicated HMIs which aim to
provide the assistance to the driver. The thesis covers the generation of the trigger signal
for advice assistance, however it does not cover the development of the HMIs.
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Figure 1.7: The importance of interactions between road entities for reliable situation un-
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1.6 Contributions

The problem addressed in this thesis is the early detection of risk situations that enable to
provide early assistance in the form of advice or recommendations. This is achieved through
the definition of the Electronic Copilot framework, and through contributions in the domains
of situation understanding and risk assessment. The contributions are as follows:

1. A novel semantic-based approach for situation understanding which allows to:

− Conceptually model the static and dynamic road entities which may be met by
vehicles, and the interactions which are likely to exist between all of them.

− Represent the environment as it is perceived by a vehicle equipped with vehicle
type sensors and databases.

− Reason on the environment that is perceived by a vehicle, in order to extract the
most relevant entities and to give guidelines to risk assessment frameworks.

2. A mathematical framework that allows to model personal velocity profiles. This frame-
work:

− Takes into account the uncertainties of the sensors.

− Takes into account the variability of the drivers behaviour as they approach to
stop intersections.

3. A risk assessment framework based on the “comparing intention and expectation”
framework developed by [90]. The extended framework allows to:

− Exploit personal velocity profiles to customize risk assessment to the driver’s
driving style.

− Take into consideration the driver’s actuations as well as the vehicle state for risk
assessment. It allows for a fast detection of unexpected behaviours, and thus of
risk situations.

− Estimate the most relevant type of assistance between automated actuations,
warning and advices.

− Diminish the risk of rear-end collisions when the driver is provided with advice
assistance in case of risk situation.

The work carried out during the thesis gave rise to 5 publications presented in international
conferences and a patent registered at INPI1:

− A. Armand, D. Filliat, and J. Ibanez-Guzman. Modelling stop intersection approaches
using gaussian processes. Intelligent Transportation Systems-(ITSC), 2013 16th Inter-
national IEEE Conference on. IEEE, 2013.

1Institut National de la Propriété Intellectuelle.
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− A. Armand, D. Filliat, and J. Ibanez-Guzman. Detection of unusual behaviours for es-
timation of context awareness at road intersections. in Proceedings of the 5th Planning,
Perception and Navigation for Intelligent Vehicles Workshop (IROS 2013), 2013.

− A. Armand, D. Filliat, and J. Ibanez-Guzman. Ontology-based context awareness for
driving assistance systems. Intelligent Vehicles Symposium Proceedings, 2014 IEEE.
IEEE, 2014.

− A. Armand, D. Filliat, and J. Ibanez-Guzman. A framework for proactive assistance:
Summary. Systems, Man and Cybernetics (SMC), 2014 IEEE International Confer-
ence on. IEEE, 2014.

− A. Armand, D. Filliat, and J. Ibanez-Guzman. A Bayesian Framework for Preventive
Assistance at Road Intersections. Intelligent Vehicles Symposium Proceedings, 2016
IEEE. IEEE, 2016.

− A. Armand, J. Ibanez-Guzman and D. Filliat. Système d’aide à la conduite et procédé
mis en œuvre dans un tel système, Pattent WO2016020598, issued date February 11th,
2016.

1.7 Thesis Content

The remaining of the thesis is organised as follows:

Chapter 2 gives an overview of the related work in the domains of perception and contextual
data handling, and risk assessment. The Chapter is driven through three parts. The first
one presents with Scene representation methods, that is, methods for the representation of
road environments. The second part presents works dealing with Situation understanding,
that is, how to give sense to the Scene from the point of view of the subject vehicle. The
third part deals with Scenario prediction. In the context of the thesis, this last part presents
the existing methods for risk assessment.

Chapter 3 presents an ontology-based framework for situation understanding. After a brief
presentation of principles of ontologies, the proposed ontology is described. It consists of a
conceptual description of the road entities which are usually met on the road. This descrip-
tion includes the interactions which are likely to exist between the entities. The ontology is
used within a framework that enables to reason on the environment perceived by the subject
vehicle, and to generate guidelines intended for risk assessment frameworks. The approach
is validated through an experimental evaluation performed with real vehicle data.

Chapter 4 presents an extension of the Bayesian Network framework developed by [90],
which relies on the vehicle state for the detection of risk situation. The extension aims to
make the framework able to adapt to the driver’s driving style, and to estimate what type of
assistance is the most pertinent (between automated actuation, warning and advice) in case
of risk situation. An algorithm to learn personal velocity profiles which can be used within
the risk assessment framework is presented. Finally the ability of the framework to trigger
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advice assistance is evaluated with real vehicle data. The contribution of using personal
driver profiles for risk assessment is shown.

Chapter 5 presents a second extension of the Bayesian Network framework which aims to
detect risk situations earlier. This extension consists of the incorporation within the Bayesian
Network, of observations of the driver’s actuations. The ability of the extended framework
to trigger advice assistance is evaluated with real vehicle data. It is shown that considering
the driver’s actuations enables to detect risk situations earlier, and therefore to increase the
performances for triggering pertinent advice assistance.

Chapter 6 presents an experimentation which aims to estimate the added value of the system
presented in Chapter 5 for other vehicles interacting with the subject vehicle. This was
performed from the point of view of a vehicle following the subject vehicle in which the
driver is provided with an advice. It is shown that assistance provided in the form of advice
to the driver of the lead vehicle is also beneficial for the driver of the following vehicle, as it
allows to reduce the deceleration necessary to avoid rear-end collision.

Chapter 7 finally concludes by summarizing the thesis, and by providing perspectives for
further work.
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Chapter 2

From Road Scene Representation to Risk
Assessment: State of the Art

Contents
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2.1 Introduction

Chapter 1 showed that intelligence embedded in modern vehicles can contribute to the
improvement of comfort and safety on roads. The ability that vehicles have to be aware
of their surroundings through perception sensors, databases and communication services
represent one of the essential elements. However, the major part of intelligence is represented
by the ability to give sense to this data in order to detect risk situations, and thus to avoid
accidents.

In the literature that deals with the exploitation of perception data, 3 terms are generally
used, namely Scene, Situation and Scenario. The meaning of each of these terms in the
context of intelligent vehicles is rather vague, and it is not rare to meet conflicting definitions.
Geyer et al. formally defined the meaning of these terms in the context of assisted and
automated driving guidance [48]. These definitions are rather abstract, therefore they were
interpreted with respect to the problems addressed in this thesis:

− A Scene is a snapshot of a collection of cohabiting road entities, including the subject
vehicle and the surrounding static and dynamic entities. Each entity is defined by its
type and state. A Scene can therefore be represented by all data returned by the data
sources.

21



Chapter 2 From Road Scene Representation to Risk Assessment: State of the Art
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Figure 2.1: Definitions of Scene, Situation and Scenario as they are used in this thesis.

− A Situation is the Scene as it has to be understood by a particular dynamic entity of
this scene (i.e. the subject vehicle). This consists in understanding how the interactions
between all entities of the Scene are propagated to this entity and constrain it in its
navigation. Therefore, Situation understanding consists in giving sense to a Scene.

− A Scenario is understood as a sequence of Scenes which is the consequence of the Situ-
ation of all interacting road entities present in a primary Scene. In the context of this
thesis, predicting a Scenario consists in predicting the future state of the participating
entities in order to estimate the risks lead by the Situation.

Figure 2.1 shows how these 3 terms are linked together. A Situation is based on a Scene,
and a Scenario is based on the primary Scene and on the Situation of each entity present in
the Scene. The exploitation of the perception data can therefore be split into 3 main steps:
the Scene representation, the Situation understanding and the Scenario prediction for risk
assessment.

This Chapter aims to provide an overview of the existing methods dealing with road Scenes,
road Situations and road Scenarios. Existing situations understanding methods are strongly
linked to the manner how to represent the scene, thus the first Section presents conventional
methods for scene representation which are not well suited for situation understanding.
The second section presents how Situation understanding can be performed, and therefore
introduces other approaches for scene representation. Finally, the last section presents how
risks can be inferred from the Scene representation and the Situation understanding.

2.2 Scene Representation

The Scene representation consists of the statement of the nearby environment, with respect
to the surrounding road entities which are perceived by the subject vehicle. The simplest
scene representation consists of the raw data as it is returned by data sources, such as point
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Figure 2.2: Graphical Representation of Road Networks.

clouds provided by laser range sensors, or lists of objects returned by smart laser, radars or
cameras. This Section aims to provide an overview of the conventional techniques for the
representation of road Scenes for intelligent vehicles purposes. Two main categories were
identified: the representation of the road network only, and the representation of the road
network plus other dynamic road entities.

2.2.1 Representation of the Road Network

Maps represent a solution for the representation of the road network and static entities,
as they allow for the compilation of geographical knowledge. In the domain of intelligent
vehicles, they have become a strategic issue to store a priori information about environments
and context. For commercial use, their primary function was for path planning and guidance
of human driven vehicles through Personal Navigation Device (PND). In that way, the
digital maps contains a graphical representation of the road network and some basic semantic
information such as the streets names or the direction of navigation. The navigation systems
which exploit these maps are generally black boxes, therefore a direct access to the databases
is usually not possible.

The progresses in the research towards intelligent vehicles progressively lead to frameworks
requiring always more prior information about the environment. New formats allowing for
quick and simple edition of digital maps were developed. The Route Network Definition
Format (RNDF) has been developed and used by the participants of the DARPA challenges
for autonomous navigation [30]. This format specifies road segments, and contains informa-
tion such as the lane width, the position of stop signs, the position of parking slots, particular
zones, etc. Figure 2.2a shows the map that was used for the Urban DARPA Challenge. An
other format regularly used by intelligent vehicle frameworks is the collaborative and open
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source Open Street Map (OSM) format [58]. This format represents the road network in
the form of geolocalized nodes and ways. Semantic information can be stored in the map
through the edition of attributes on the nodes and ways. Figure 2.2b shows an example of
OSM map representation.

Whilst digital maps enable to store a large amount of prior information about the environ-
ment (i.e. static road entities), they cannot contain information about dynamic entities such
as other road users. Next Section presents techniques for the representation of dynamic road
entities.

2.2.2 Representation of the Road Network and Dynamic Road Entities

Information about nearby dynamic entities is generally provided by exteroceptive sensors.
In the domain of intelligent vehicles, a very popular approach for the representation of the
navigable space and of obstacles is the occupancy grids [169, 38, 82]. Also known as evidential
grids, occupancy grids are map-based representation of environments initially developed and
used in the field of robotics [153]. They consist of maps of the environment in the form of
arrays of cells. The range of the cells usually varies from one to several dozens of centimetres,
depending on the required precision, and on the sensors resolution. For each cell of the grid,
the aim is to compute the probability that it is occupied by an object, i.e. that the cell is
full or empty.

Conventional occupancy grids are built after processing the raw data that is returned by
sensors delivering point cloud representation of the environment (i.e. laser range sensors or
sonar sensors). They consist of 2 dimensional grids [107, 152]. An example of representation
of a 2D occupancy grid is given in Figure 2.3a. The concept was extended to allow for a
3D mapping of the environment, which is mostly used by aerial vehicles [171]. Figure 2.3b
shows an example of 3D occupancy grid. From point clouds representation, it is possible to
extract obstacles and dynamic entities.

The handling of dynamic obstacles in cluttered environments requires to perform additional
multi-target tracking, as it is done by Bayesian Occupancy Filtering (BOF) [35]. Whilst
some approaches prefer to map static and dynamic obstacles on different grids [161, 162],
others fuse both representations into a single grid [38]. Multiple data sources can be used,
for example to exploit information about lane markings [63, 97], to exploit prior knowledge
stored in digital maps [85, 113], or also to improve the tracking of the dynamic objects [24].
This allows to establish more reliable occupancy grids which can then be exploited by ADAS.
Figure 2.3c shows an example of occupancy grid representing the road course.

Recently, Dynamic Occupancy Grids have become more and more popular and reliable. For
instance, the Hybrid Sampling Bayesian Occupancy Filter (HSBOF) allows to represent the
environment as a mix static and dynamic occupancy, in order to improve the accuracy of
the results [111]. This approach can be extended by adding new features, such as empty
spaces and unknown areas, allowing for great improvement of the performances [134]. Note
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(a) 2D Occupancy grid.
After [152]

(b) 3D Occupancy grid.
After [171]

(c) Road course based on oc-
cupancy grid. After [85]

Figure 2.3: Occupancy grids.

that credibilist approaches can also be used for occupancy grids representation [154, 85].
As probabilistic approaches, credibilist approaches consider data uncertainties, but their
distinctive characteristic is their capability to consider data imprecision.

Whilst occupancy grid methods represent a straightforward method for sensor fusion, they
usually require high computational efforts and high memory consumption. This is because
the computation of the probability of occupancy has to be performed for each cell, at each
time-step. Scalability is therefore a major problem. Further, semantic information about
obstacles is often restricted to a “static object” or a “dynamic object” labels.

The smart sensors which are embedded in modern vehicles are for most of them black boxes
which return information about detected objects. As well as the state of the objects, these
sensors are usually able to classify the objects, that is, they are able to return additional
semantic information. Fusion between multiple sensors can be performed, such as fusion
between a camera and a radar. This allow to take benefit of the advantages of both sensors
in order to get more precise and reliable estimation of the type and state of the objects. How-
ever, a major part of the systems which exploit data provided by these sensors or returned
by sensor fusion represent the environment as a list of objects present in the subject vehicle
field of view. Projects such as RoadGraph aimed to integrate information from exteroceptive
sensors, digital maps and V2X communication data into a single graphical structure [80].
However, this scene representation does not enable to reason on the information that it stores
in a straightforward manner.

The techniques presented in this Section enable to provide Scene representations, however
the manner how the environment around the subject vehicle is represented do not enable
to understand the interactions which may exist between the entities present in the scene.
For this purpose, more elaborated techniques have to be used to 1) Represent the scene, 2)
Reason on the scene, i.e. to understand the situation of the subject vehicle.

25



Chapter 2 From Road Scene Representation to Risk Assessment: State of the Art

2.3 Situation Understanding

Situation understanding consists in reasoning on the Scene representation, i.e. in giving sense
to the information stored in the Scene representation. From the point of view of a subject
vehicle, it consists in inferring how it is constrained by the surrounding environment. This
therefore helps to understand what surrounding entities are the most pertinent to monitor.
For this purpose, the interactions which exist between road entities have to be considered.
Whilst Situation understanding aims to provide essential information for risk assessment, it
has not yet been extensively studied. This Section aims to present the few related works
which have been published so far. Two main categories were identified: probabilistic ap-
proaches and semantic based approaches. Table 2.1 presents a comparative review of the
works which are presented in the remaining of this Section.

2.3.1 Probabilistic Approach

Road situations are often subject to high complexity and variability of situations, especially
in urban environments. Vehicles are able to perceive plenty of surrounding entities, however
most of the time a major part of these entities is not pertinent to be considered by the subject
vehicle. It is with this perspective that Platho et al. proposed to decompose situations into
“parts of situations” or in an other term “configurations” [122]. This enables to simplify the
Scene by selecting only the entities which are pertinent for the subject vehicle. The notion
of relationship between road entities is introduced by, for example, considering that the
behaviour of a perceived vehicle can be affected by the presence of a red traffic light, or by
another vehicle which is stopped because of another entity. Figure 2.4 shows an example of
configuration. The recognition of configurations is performed through a Bayesian Network.
The approach was tested in simulated environments, and was used to predict the velocity
profiles of other road users in intersection situations [123]. However, in that state, the
approach only allows to consider direct relationships between entities. Therefore, chain
reactions are not considered. For example, if the subject vehicle follows a vehicle that
approaches to a pedestrian, the interaction between the lead vehicle and the pedestrian is
not taken into account by the subject vehicle. If chain reactions which may occur are not
considered, the situation understanding may be partially performed only.

Whilst probabilities allow to take into account uncertainties on perception data, so far they
can only be used to model basic situations based on scenes represented with conventional
methods. The amount of possible situations which may occur makes it difficult to define a
generic probabilistic model which would be well suited for all situations, and which would
be capable of considering interactions between road entities. This may explain why the
literature does not propose other probabilistic frameworks for Situation understanding than
the one presented above.
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Table 2.1: Comparative review of works on situation understanding.

Reference
Description
of Road
Network

Description
of Road
Users

Interactions
Between
Road

Entities

Purpose

Platho et al.
[123]

3 3 3

Selection of the most
pertinent entities of the

scene.
Schamm et al.

[138]
3 7 3

Situation of the subject
vehicle.

Hummel et al.
[72]

3 7 7

Model concepts of road
networks as a complement

of vision sensors.

Regele [131] 3 7 7
Conflict assessment
between vehicles.

Hülsen et al.
[71]

3 7 7

Model intersections for
conflict assessment
between vehicles.

Vacek et al.
[157]

3 3 7
Recover already met

situations.

Zhao et al.
[175]

3 3 3

Gather information from
multi sources. Estimation

of risk.

Kohlhaas et
al. [81]

3 3 3

Model interactions
between vehicles and road
network. Include traffic

rules.

Pollard et al.
[124]

3 3 7

Infer best automation
level for intelligent

vehicles.

Figure 2.4: Example of a configuration as it is defined in [122].
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2.3.2 Semantic based Approaches

Some of the approaches which were presented so far for the representation of road Scenes
take into consideration semantics, for description purposes only. Semantic based approaches
for Situation understanding aim to focus on semantics for description, but also for reason-
ing. This Section provides an overview of these approaches as they are used in the intelligent
vehicle domain for scene representation allowing for straightforward situation understand-
ing. Most of them use either First-order Logics [149] and Description Logics (DL) [14], for
representation of concepts in the form of ontologies (c.f. Chapter 3 for more details on on-
tologies). At first, semantic based approaches were used to model and understand the road
network from the point of view of the subject vehicle, and then they were also used to model
and understand the whole interaction between road network and dynamic entities.

Road Network

One of the first works exploiting DL for situation understanding was done by Hummel et
al. [72]. The ontology that is proposed introduces the concepts of road networks (roads,
lanes, dividers, road markings and junctions) and is used as a complement of vision sensors
and digital maps to retrieve relevant information about intersections. For example, when
the precision of the localisation sensors do not enable to determine on what lane the vehicle
is navigating, this information can be inferred by the ontology from map and camera data.
Whilst this formalism does not take into account cohabiting road entities (vehicles, pedes-
trians, etc.), it enables to show that ontologies can be used to reason, at least partially on
road situations.

The representation of road intersection networks through ontologies was introduced by Regele
[131]. It was used to solve the traffic coordination problem of autonomous vehicles, i.e. to
handle conflicts between vehicles reaching the same intersection or cohabiting in the same
area. This work inspired Hülsen et al. who proposed a generic description of road intersec-
tions for situation understanding at the approach to road intersections [71]. This ontology
enables to infer conflicts and thus potential risk situations for vehicles reaching the same in-
tersection. Figure 2.5 illustrates how the relationships which may exist at road intersections
are represented. The framework was tested on several intersections and its efficiency was
proved even for very complex intersections. A real time implementation of the framework
in simulated environments was successfully performed [70]. In these ontologies, vehicles and
other road entities are not formally represented.

Road Network and Other Entities

Within ontologies, the representation of road entities other than those related to the road
network was introduced by Vacek et al. [157]. In that way, semantic information about
road entities (i.e. types, etc.) were defined in an ontology which is used within a case-based
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Figure 2.5: Example of semantic representation of an intersection. After [71].

reasoning framework to perform scene understanding. The tenet was to recover similar or
resembling situations as those already met, in order to infer the behaviour which seems to
be the most appropriate to negotiate the situation. Whilst the ontology allows to represent
different types of road entities, relationships between them are ignored, which finally prevents
from understanding the situation as a whole. Moreover, the ontology was actually used to
model the context, and was not used to perform proper reasoning on the road situations.

First-order probabilistic languages (FOPL) was used by Schamm et al. to perform situation
assessment [138]. A FOPL knowledge base was used to model driving situations and interac-
tions. This a priori knowledge is thus used with sensor information to automatically create
a probabilistic network, and then to infer the situation in a structured manner. Whilst the
interest of the approach is demonstrated through collision risk estimation, it does not enable
to sufficiently consider semantics. That is, all entities are conceptually of the same type,
which prevents from considering interactions between entities of different types. Moreover,
first order logic suffers from poor expressivity, which therefore prevents from editing complex
rules in the knowledge base. Further, it seems difficult to extend such a system for more
complex situations than those presented in [138].

Zhao et al. built a knowledge base which contains information about maps and traffic
regulation, and which is used within safety ADAS to take decision at road intersections
in case of over speed [175]. Three ontologies were defined for this purpose. The first one
aims to describe information which may be stored in a digital map, the second aims to
describe control strategies and the last one aims to describe vehicles. Interactions between
road entities are considered only between vehicles reaching the same intersection, for the
generation of collision warning.
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An ontology that models traffic scenes in order to establish the state space of the subject
vehicle with respect to other vehicles and the road network was proposed by Kohlhaas et al.
[81]. Two categories of objects are considered, namely the environment objects (related to
the road network) and the dynamic objects (related to vehicles). The interactions between
the vehicles and the road network are formally stated, as well as the lateral and longitudinal
interactions between vehicles. Further, the ontology contains information about traffic rules
through defined conditions.
Finally, Pollard et al. proposed an ontology that represents features of the road network, en-
vironmental conditions, sensors states, subject vehicle state and presence of moving obstacles
[124]. This ontology enables vehicles to perform self assessment on their automated driv-
ing capabilities, with the aim to decide what automation level (from fully manual to fully
automated) is best adapted to the situation.
Whilst semantic based approaches enable to model road scenes, to model the interactions
between entities, and then to reason in a straightforward manner on situations, their main
limitation is their inability to take into account data uncertainties. FOPL enables to fill this
gap, however it does not enable to model complex situations because of the low expressivity
of the language.

2.4 Scenarios Prediction and Risk Assessment: Focus on
Road Intersections

The two last Sections presented how information returned by the data sources can be used
in order to represent road Scenes and to understand road Situations. Whilst these methods
enable to provide relevant information about the subject vehicle in its surrounding environ-
ment, they are not sufficient for an accurate estimation of the risks lead by the situation.
For a vehicle, a situation is said to be at risks if a collision between this vehicle and another
road entity is likely to happen in a near future. In the literature, two main approaches are
generally used for collision detection. The first approach consists in predicting the future
states of the concerned entities, and then in estimating the likelihood that a collision will
happen between these entities. The second approach consists in estimating the intention of
the concerned vehicles, and then in detecting unexpected or conflicting intentions. Figure 2.6
illustrates these two approaches.
Lefèvre et al. published a survey of the existing methods used for prediction of vehicle
motions and for risk assessment [91]. This survey covers the state of the art in terms of
scenario prediction aiming to assess risks lead by a situation. In this Section, it is proposed
to provide an overview of this state of the art, focussed on the problem of this thesis. The first
part presents the literature that exploits the first approach for collision detection, and the
second part presents the second approach. Table 2.2 presents a compilation of the methods
used for risk assessment that are presented in the remaining of the Section, classified by
approach and abstraction levels.
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(a) Collision detection through trajectory
prediction. Collision is detected at
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(b) Detection of unexpected or conflicting in-
tentions.

Figure 2.6: The two main approaches for risk assessment.

Table 2.2: Compilation of risk assessment approaches and related techniques.

Approach Abstraction
Level

Methods Mathematical
Tools

Customization
for drivers ?

Trajectory
Prediction and
Collision
Detection

1 Basic motion
models

KF, PF 7

2
Trajectory

Parametric
functions

3

GMM, GP 3

Manoeuvre
recognition

MLP, SVM,
HMM

3

BN, DBN ∼

3
Trajectory Parametric

functions, GMM,
GP, etc.

7

Sophisticated
motion models

BN, DBN ∼

Hierarchical
scenario

SMT 7

Detection of
Unexpected
Manoeuvres

3
Manoeuvre
recognition

Machine learning 3

BN, DBN ∼
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2.4.1 Collision Detection based on Trajectory Prediction

Prediction of vehicles motion navigating in road environments can be performed through
three levels of abstraction. In Level 1, it is assumed that the motion of the subject vehicle is
not constrained by neighbouring entities. In Level 2, it is assumed that the subject vehicle
is constrained by the road network only, while in Level 3 it is assumed that the vehicle is
constrained by both the road network and other road users. This Section presents the most
popular methods for trajectory prediction classified by levels of abstraction followed by the
manners how to use these trajectories for estimation of collision.

2.4.1.1 Trajectory Prediction of Unconstrained Vehicles

When vehicles are assumed to be independent from their surroundings, the most common
method to predict their trajectories is to use classical motion models.

Motion Models

Motion models can be classified through several levels of complexity, depending on the
physical parameters which are taken into consideration. Kinematic models assume that the
vehicle motion is only constrained by the vehicle state and movement, i.e. its position, speed,
acceleration, etc. That is, external forces such as road and air friction are not considered.
In the family of kinematic models, linear models are the simplest as they assume either a
Constant Velocity (CV) of a Constant Acceleration (CA) over time. These models assume
straights motions and therefore cannot consider rotating motions. Curvilinear models in-
cluding Constant Turn Rate and Velocity (CTRV) and Constant Turn Rate and Acceleration
(CTRA) models aim to fill this gap by taking into account the motion around the Z axis.
These motion models and other more complex kinematic models are detailed in [140].

By contrast to kinematic motion models, dynamic motion models take into consideration
the forces and parameters which affect the vehicle motion. These models can, for example,
consider the lateral acceleration that the vehicle undergoes in curved road, or the tire forces,
etc. The amount of parameters which can be taken into account by dynamic models can be
large, and therefore make the models very complex. Such complexity is most of the time not
pertinent for trajectory prediction, therefore simple models such as the well known “bicycle
model” are preferred. The vehicle is assumed to be a two wheel vehicle with front wheel
drive moving on a rigid flat horizontal surface [59].

These motion models are very generic, and the parameters which are used only depend on
the initial vehicle state. That means that these models do not allow to use parameters which
are a priori known, that is, it is not possible to use parameters which are specific to the
driver. Therefore, the trajectory prediction methods which are presented below cannot take
into consideration the driving style of the driver.
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Figure 2.7: Example of vehicle trajectory estimation using EKF tracking. Ellipsoids repres-
ent the uncertainty on the estimated locations. After [177].

Trajectory Prediction

Trajectory prediction is generally performed by exploiting a kinematic or a dynamic motion
model. The simplest manner to perform this is to directly apply the motion model using the
current state of the vehicle as initial values. This assumes that there is no uncertainty neither
on the initial values of the parameters, neither on the motion model that is used. Whilst
such a basic method is simple to implement and computationally efficient, these assump-
tions are too strong to ensure reliable and long term predictions. Taking into consideration
uncertainties helps to improve the reliability of the prediction.

The uncertainties on the vehicle state and on its evolution can be handled in a straightfor-
ward manner through recursive filters such as Gaussian Filters or Monte Carlo simulations.
Recursive filters work in two steps: the Prediction and the Update. The Prediction consists
in predicting the state of the vehicle at time t+ 1 using the selected motion model and the
state at time t. The Update consists in combining the sensors measurements performed at
time t + 1 with the predicted vehicle state. These filters allow to take into account uncer-
tainties on the inputs, but also enable to return the predicted vehicle state as a distribution.
Among Gaussian filters, it is worth citing the well known Kalman Filter (KF) [174, 153].
The basic version of this filter assumes that the uncertainties follow a normal distribution,
and that the motion and sensor models are linear. Non linear models can be handled by
more sophisticated versions of the KF such as the Extended Kalman Filter (EKF) [153].
Monte Carlo sequential simulations, also known as Particle Filtering (PF) allow to avoid
the assumption of normal distribution made on uncertainties and on the linearity of motion
models [44, 153]. All estimations are performed through a set of random variables (i.e. a set
of particles) which represent the potential locations of the vehicle. The main disadvantage
of PF-based trajectory prediction is their computational cost, as the computation has to be
performed at each step for each entity. Figure 2.7 gives an example of vehicle trajectory
estimation using a recursive filter.
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Tracking consists in looping on the Prediction and the Update steps when measurements are
available. These filters can also be used to predict the evolution of the motion of the vehicle,
even if there is no measurement available [39]. This will result in a progressive rise of the
uncertainties on the estimated state, therefore the accuracy on the predicted motion will
progressively decrease. Such prediction methods are therefore usable only for short term
motion prediction. Further, the motion models exploited for prediction do not enable to
predict changes on the vehicle motion which can be due to external constraints such as those
implied by the road network or other road users. Therefore, in case of manoeuvre (i.e. lane
change, stop or turn at road intersections, etc.) the methods presented above cannot be
used. The next section presents how constraints imposed by the road network can be taken
into consideration for vehicle motion prediction.

2.4.1.2 Trajectory Prediction of Vehicles Constrained by the Road Network

When navigating, vehicles are constrained by the road network which governs their motion.
It is therefore pertinent to take into account the road network and the possible trajectories
and manoeuvres that vehicles can follow in order to predict their motion. In that way, tra-
jectory prediction can be performed simply by using Recursive filtering (i.e. KF, PF, etc.)
which exploits the shape of the path that the vehicle is likely to follow. The information
about the road is generally a priori known and extracted from digital maps. In that way,
the road network can be taken into account during the Prediction step [168] or during the
Update step [121]. More sophisticated methods are proposed in the literature. There are
those based on trajectory prototypes and those based on manoeuvre recognition.

Trajectory based motion prediction

Trajectory based motion prediction consists in comparing the vehicle current trajectory
to a stored dataset of prototype trajectories which represent typical motion patterns. By
selecting the prototype trajectory that suits best the current vehicle trajectory, it is possible
to predict the vehicle motion several seconds ahead by using the prototype trajectory as a
model. In general, the trajectories are preliminary learnt and used as a priori knowledge
for the trajectory prediction. Therefore, this allows to learn trajectories for each driver, and
therefore to customize trajectory prediction for each driver.

Several techniques exist for the representation of the prototype trajectories as a parametric
function T (t) = Φ, with Φ the vehicle state. Φ is generally composed by spatial points on the
xy 2D plane, or/and by the vehicle yaw angle ϕ(t) and velocity v(t). Among all techniques,
polynomial descriptors, curve signatures and Chebyshev decompositions are the most pop-
ular [109, 36, 61, 170]. Figure 2.8a shows an example of clustered prototype trajectories.
The current vehicle trajectory is then compared to all prototype trajectories available in the
database. For this purpose, several metrics have been used in the literature, such as Longest
Common Subsequence (LCS), Quaternion-based Rotationally Invariance LCS (QRLCS),
Hausdorff, Levenstein, Dynamic Time Warping (DTW) and others [57, 16, 160, 61].
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(a) Cluster of prototype trajectories. (b) Prototype trajectories modelled by
GMM or GP.

Figure 2.8: Prototype trajectories.

In some situations, prototype trajectories can be classified by manoeuvres that the vehicle
can perform. For example at road intersections, the classes can be “go straight”, “turn
left”, “turn right”, etc. It can therefore be relevant to model one prototype trajectory per
class using the cluster of training prototypes which is available. For that purpose, Gaussian
Mixture Models (GMM) represent a solution to model trajectories as parametric probability
density functions [170]. Another probabilistic manner to model vehicle trajectories is based
on Gaussian Processes (GP) regressions [31, 78]. GP consist in fitting a Gaussian distribu-
tion over a training cluster of the training trajectories. By contrast to GMM, GP enable to
model trajectories as non-parametric probability functions. As shown in Figure 2.8b, using
either GMM or GP enable to predict trajectories which consist of the mean trajectory to-
gether with the uncertainty on the prediction (variance). Therefore, from the current partial
trajectory of the subject vehicle, it is rather simple to compute and select the most likely
prototype trajectory.

Manoeuvre based motion prediction

Manoeuvre recognition followed by prediction of manoeuvre execution represent an altern-
ative to trajectory prototypes for trajectory prediction. In the context of road intersections,
the most obvious feature to observe to estimate the intention to go straight or to turn is
the blinker indicator. However, in practice recognition of manoeuvre intention needs to
be performed through the exploitation of proprioceptive vehicle information (state, status,
etc.), and sometimes through road network information (geometry, topology, etc.). Man-
oeuvre recognition actually consists in classifying the intended manoeuvre among a set of
possible manoeuvres. For this purpose, discriminative learning algorithms are popular such
as Multi-Layer Perceptrons (MLP), Support Vector Machines (SVM) or more recently Lat-
ent Dynamic Discriminative Models [47, 12, 116]. These techniques are usually used for
binary classification problems, such as, for example, classification of compliant vs. violating
drivers.
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Hidden Markov Models (HMM) represent a generative approach and are a popular altern-
ative to discriminative algorithms [12, 17]. They model manoeuvres as chains of consecutive
events, the transition between events being modelled through conditional probabilities. In-
tended manoeuvres can be estimated by comparing the likelihood of the observations for
each HMM. These algorithms need to undergo a preliminary training step. For this purpose,
data recorded in vehicles is generally used, which makes it possible to customize the systems
for a given driver. It therefore allows to customize the systems for each driver by taking into
consideration the manner how they usually negotiate given situations.

Bayesian Networks (BN) represent another solution for the estimation of intended man-
oeuvres. In [89], the driver intention is not estimated through learned data, but through
the exploitation of the road network that is stored in digital maps. By contrast to the other
discriminative and generative techniques, this solution does not take into account the drivers
driving style, however it provides a generic method which adapts to all intersection layouts.
While this method does not allow for a straightforward customization for the driver, custom-
ization may be conceivable by tuning for each driver the conditional probabilities defined in
the BN.

Once the intended manoeuvre has been identified, the prediction of the vehicle trajectory can
be performed with respect to the manoeuvre. Again, several methods have been explored in
the literature. Trajectories can be predicted using GPs or Rapidly exploring Random Trees
(RRT) [31, 12]. An alternative consists in computing reachable states [6, 51].

Whilst taking into account the constraints imposed by the road network to navigating
vehicles enables to enhance the prediction of motion, this is not sufficient for most of situ-
ations. The approaches presented above assume that vehicles are not constrained by other
vehicles, that is, they cannot result in realistic predictions for situations in which the subject
vehicle cohabits with other vehicles. The next Section presents how the constraints imposed
by cohabiting vehicles can be taken into consideration for vehicle motion prediction.

2.4.1.3 Trajectory Prediction of Vehicles Constrained by the Road Network and
Other Road Users

Frameworks which take into consideration the constraints that the subject vehicle undergoes
from the road network and the other road users are rather rare. Because of the infinite
number of situations which may occur, it is not possible to model each possible situation.
Therefore, generic approaches have to be preferred. One of the main approaches is, again,
based on trajectories learned on road network without cohabiting vehicles. Assuming that
most of drivers have tendencies to avoid collisions, prototype trajectories leading to collisions
are rejected during the matching process [87]. The main limitation of this approach is that
the direct constraints imposed by the other vehicles are not formally modelled. Moreover,
the manner how drivers usually negotiate these constraints is not taken into consideration
to customize the trajectory prediction.
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Parametric motion models represent a solution to model the influence of the motion of
cohabiting entities on the motion of the subject vehicle. For example, the Intelligent Driver
Model which is usually used for traffic flow simulations can be used to model vehicle motion
in following situations [155]. Used within a BN, it represents a convenient tool to estimate the
manoeuvre intention of vehicles following other vehicles approaching to a road intersection
[92]. One limitation of this model is that it does not natively reject unrealistic vehicle
motions, such as motions implying decelerations which are physically impossible for a vehicle.

By far, Dynamic Bayesian Networks (DBN) are the most popular approach for modelling the
motion of interacting vehicles. Two main approaches have been investigated. The first one
models pairwise dependencies between interacting vehicles through Coupled HMM (CHMM),
or through asymmetric HMM which assume that interaction between entities exist in only
one way [26, 117]. Further, it is possible to model traffic rules which, as well as the road
network, influence the motion of cohabiting vehicles [5]. The second approach consists in
modelling the mutual influences that exist between vehicles. This approach was implemented
in highway situations, but also in intersection situations [49, 90]. In [90], the manoeuvres
that the vehicles are expected to performed with respect to the road network, the traffic
rules and the cohabiting vehicles are considered within the motion model.

Recently, an approach based on Scenario Model Trees (SMT) have been developed for the
prediction of manoeuvre for the surrounding vehicles [20]. Scenes are categorized into a
hierarchy, from the most simple to the most complex scene. From vehicle observations,
the most likely scene is selected from the SMT. Then, it allows to select the most relevant
behaviour models for the surrounding vehicles, and thus to predict their future behaviour.

This Section presented an overview of the techniques currently used to predict the motion of
vehicles as they are navigating on roads. Next Section aims to present how these trajectory
prediction techniques can be exploited for risk assessment.

2.4.1.4 Detection of Collision Using Predicted Trajectories

A major part of the pre-crash systems embedded in commercialized vehicles are based on the
computation of the so called Time To Collision (TTC) [150, 27, 8]. This indicator represents
an estimation of the time remaining before that a collision with another entity occurs.

The Velocity Obstacle concept usually used in the robotics field for navigation planning, can
also be used to predict collisions. This geometrical approach consists in computing a set of
velocities that the subject vehicle should not follow in order to avoid collision with another
moving vehicle [158].

Collisions can be detected by predicting the trajectories of the vehicles cohabiting in the
same area, and then by detecting conflicting points for pairs of vehicles. This can be done
by computing the intersection point between 2 trajectories, using the linear equations of
motion of 2 vehicles [62]. In practice, this solution is difficult to implement because solving
the equations can be a difficult task. The most popular solution consists in approximating
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trajectories by piecewise-straight line trajectories. Then, trajectories are discretized and
collisions are iteratively checked.

Representing the vehicles by simple points is not realistic, therefore vehicles are generally
shaped either by polygons [27, 31], either by the ellipses which represent the Gaussian uncer-
tainty on the vehicles positions [8, 15]. Figure 2.6a (page 35) illustrates collision detection
based on this approach. These algorithms enable to classify vehicles situations by returning
binary information, i.e. by returning whether or not a collision will occur. Only a few works
aimed to perform a probabilistic detection of collision, and most of them where based on
reachable states [51].

The approach presented in this Section in rather low level as the trajectories of the concerned
vehicles are directly used to estimate whether a collision will occur. Next Section presents
the second approach which is higher level as the intended vehicle manoeuvres enable to
detect risk situations and collisions.

2.4.2 Collision Detection based on Detection of Unexpected
Manoeuvres

As presented in Chapter 1, a major part of road accidents is caused by driver errors. These
errors lead to inappropriate manoeuvres, such as priority violation, dangerous lane change,
etc. Therefore, the detection of inappropriate manoeuvres represents a coherent manner to
detect risk situations. Works dealing with this approach are rather recent, and thus still
rather rare.

One technique relies on the notion of expected behaviours. For a given situation, a set
of vehicle behaviours which ensure a safe handling of this situation is defined. In general,
the expected behaviours are defined through safe vehicle velocities which match with the
road network constraints and traffic rules. They can either be defined manually [76], either
by using machine learning techniques (GMM, HMM, etc.) to learn from data the typical
behaviour of road users [136, 12]. If an unexpected behaviour that may lead to a risk situation
is detected, then the situation is classified as a risk situation.

Another technique consists in evaluating the expected manoeuvres of all cohabiting vehicles,
and to detect pairs of vehicles which have conflicting intentions. This approach was imple-
mented in the context of road intersections, exploiting a DBN based motion model. This
model estimates the risk by computing the probability that at least one vehicle does not
intend to do what it is expected to do with respect to the cohabiting road users, the road
network and the traffic rules [90]. By contrast to the other approaches presented above, this
one jointly addresses motion model and risk assessment. Further, according to the authors of
[90], this concept can be extended to other road situations, such as lane change on highways.
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2.5 Discussion and Conclusion

This Chapter presented an overview of the approaches and techniques used within the pro-
cessing of perception data for risk assessment, in particular at road intersections. The process
was split into three main tasks, namely the Scene representation, Situation understanding
and Scenario prediction for risk assessment. From this literature review, it is possible to
highlight several things.

Whilst techniques for risk assessment have been extensively studied, Scene representation
and Situation understanding techniques remain limited. Further, it is noticeable that the
state of the art frameworks for scene representation are generally not used by the state of
the art frameworks for situation understanding. That is, occupancy grids and graphical
representation of environments do not make part of probabilistic nor semantic based frame-
works for situation understanding. Further, except partially in [157], there is no framework
for risk assessment which takes advantage of preliminary situation understanding performed
through ontology or probabilistic inferences.

The review of risk assessment techniques showed that some of them use machine learning
in order to model trajectories, or to learn how drivers usually behave in given situations.
In addition to be a solution for the avoidance of design issues, it enables to adapt the
systems to drivers in a straightforward manner. Moreover, the review showed that taking
into consideration the interaction that may occur between cohabiting entities by far provides
more reliable detection of risk situations. Further, frameworks which jointly address motion
model and risk assessment also provide improvement in this field. We argue that such
frameworks which would take benefits on the manner how the driver usually drives would
probably provide even more reliable and pertinent detection of risk situations.

All the models which were presented for risk assessment were designed for specific contexts.
Even if some of them are generic for road intersections or highway situations, in their state
they cannot suit all possible road situations. The best solution would be to design a universal
model that would be able to model in a generic manner all possible road situations, that
takes uncertainties into account, and that is able to detect risks situations. Overall the
difficulty that it would be to design such a model, it would probably require very high
computational resources. This would be incompatible with car manufacturer constraints.
As claimed by Platho et al. [122], we argue that a realistic and reliable solution would be to
make a compromise between a unique generic model and a set of simplified models.

If risk assessment is performed through a set of simplified and generic models, it is necessary
to know what model(s) match(es) with the situation. This implies a case based approach.
A preliminary situation understanding is therefore necessary. It aims to give sense to the
Scene by understanding what entities interact (directly and indirectly) with the subject
vehicle. Further, this step has to make it possible to extract the entities which are the most
pertinent to monitor, and therefore what risk assessment model to employ in order to ensure
safe navigation. The literature review on situation understanding showed that only [122]
worked towards such a framework. A probabilistic approach was investigated, however it was

39



Chapter 2 From Road Scene Representation to Risk Assessment: State of the Art

shown that it is difficult to represent all direct and indirect interactions lead by the situation.
Further, in case of complex situations, probabilistic approaches will suffer from scalability. It
is from this point of view that we argue that semantic based approaches represent pertinent
tools for situation understanding. Their inability to deal with uncertainties is not an issue
as, in the context of this thesis, situation understanding is made at a very high level which
will make uncertainties negligible.

The following Chapters of this thesis will present contributions on Situation understanding
and risk assessment. A novel approach based on ontologies is presented as a solution for the
extraction of the most relevant entities of the Scene. This aims to give directions for risk
assessment. Further, solutions for early detection of risk situations for vehicles approaching
to road intersection are presented. These solutions are based on the model which was
developed by Lefevre [90], which was extended to take into account differences between
drivers.
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Ontology Based Situation Understanding
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3.1 Introduction

Chapter 2 showed that reliable risk assessment frameworks shall consist of a compromise
between a unique generic model a set of simplified models. This implies that a preliminary
step that allows to select the most relevant model is necessary. For this purpose, the rel-
evant entities of the situation have already been extracted from the available data sources.
Further, it has been understood how they should be monitored to ensure a safe navigation.
This preliminary step, called situation understanding, remains a complex task for intelligent
systems.

In a driving space, different entities including vehicles and vulnerable road users cohabit in
the same area. This cohabitation implies constant interactions between these entities, and
governs their behaviour. Smart sensors and navigation maps embedded in modern vehicles
enable awareness about the surrounding entities and about the context. However, systems
exploiting all this information usually do not consider the spatio-temporal relationships which
may exist between all entities. This limitation restrains the ability to properly understand
road situations.

Associating information about surrounding entities together with contextual information
appears as a solution towards the improvement of situation understanding of intelligent
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vehicles. For this purpose, the use of ontologies is introduced and presented in this Chapter.
The tenet is to define a semantic description of the entities which are commonly met by
vehicles in driving environments. This description includes the interactions which are likely
to happen, with respect to the variety of entities that exists. The knowledge hold by this
description would enable to consider as a whole all information provided by the data sources.
Further, it would enable to extract the most pertinent features of the situation which could
be used as guidelines for risk assessment.

This Chapter is organized as follows. At first, the principles of ontologies are given as a
background necessary for a good understanding of the rest of the Chapter. The experimental
setup is then presented as the constraints implied by the experimental facilities will govern
the design of the framework for situation understanding. Then, the framework, that exploits
an ontology is presented. The ontology that intervenes is defined, and its functioning is
described through the understanding of a given situation. Further, the implementation of
the framework for the real time situation understanding on board an experimental vehicle
under controlled conditions is presented. The added value of the information inferred thanks
to the use of the ontology is finally discussed.

3.2 Ontologies Principles

For intelligent systems, both natural and artificial, knowledge is an essential element. In
that way, intelligence can be defined as the faculty to capture, process, reuse and share this
knowledge. Whilst performing these tasks is a natural thing for living being gifted with
intelligence, it remains complex for machines. As a technical solution, ontologies represent
an Artificial Intelligence tool (AI) which enables to artificially perform these tasks. This
Section aims to present the principles of ontologies.

3.2.1 Definition

The term ontology was first introduced by the philosophers to designate the study of being
of existence. It is from the beginning of research in AI that this term started to be employed
by researchers of the domain to designate computational models which enable automated
reasoning [60]. From this point of view, several definitions of the term were published; the
three following are those which are the most often admitted by the literature:

− An ontology is an explicit specification of conceptualization [54].

− An ontology is a theory of vocabulary or concepts used for building artificial systems
[53].

− An ontology is a body of knowledge describing some domain [103].

A comparison of these three definitions was done [114]. Whilst these definitions do not
mean exactly the same, the principles of ontologies come down to the first definition. It
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Figure 3.1: Ontology.

is therefore important to understand both terms specification and conceptualization in the
good way. The conceptualization of a domain is the manner how a domain is perceived and
understood, and the specification of this conceptualization is actually a formal description
of this conceptualization.

More concretely, an ontology is a description of the concepts and relationships that are
relevant to model a domain of interest. It specifies the vocabulary that is necessary to
make assertions, and which may be inputs/outputs of knowledge agents (e.g. software, etc.).
Moreover, it provides the language for communication between agents [55]. Figure 3.1a
illustrates this definition.

3.2.2 Description Logic

Ontologies are based on Description Logics (DL) which is a formal language for Knowledge
Representation [14]. A DL enables to model Concepts, Roles and Individuals through its two
functional parts, namely the Terminological Box (TBox) and the Assertional Box (ABox).
Figure 3.1b illustrates this structure, and the description of these two parts is given below.

Terminological Box (TBox)

The TBox consists of the definition of all the concepts that the ontology aims to describe. An
analogy can be done between the TBox and the knowledge that human have. The knowledge
that humans acquire along their life is used to understand and to interpret the world. The
ontology TBox represents prior knowledge, and the definition of it is performed through the
definition of Concepts, Roles and Relations. The following definitions were established after
[65].

− Concepts (or classes) are concrete representations of the concepts of the domain that
the ontology aims to describe. These concepts can be organized into a superclass-
subclass hierarchy, which is generally called Taxonomy.
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− Roles are properties which can be defined and assigned to concepts. Roles can be
classified into two groups:

– Object Properties aim to define axioms in the form of Triples. In other words,
they are binary relationships between two concepts in the form Concept1 - Ob-
ject Property - Concept2. Characteristics may be attributed to object properties,
such as symmetry or transitivity with respect to other object properties.

– Data Properties are used to assign properties to single classes or instances of
classes in the form Concept1 - Data Property - Property Value.

− Relations between concepts are defined with taxonomic relations (hierarchical rela-
tions), axioms (classes linked by object properties) and rules. The definition of rules
can be done using basic description logic axioms which only enables the definition
of basic class equivalence. More sophisticated languages enable to define more com-
plex and expressive rules. Among these languages, the Semantic Web Rule Language
(SWRL) is one of the most common [66].

Assertional Box (ABox)

The ABox consists of the definition of instances of classes previously defined in the TBox.
These instances, commonly called Individuals, represent real life data that the ontology
aims to interpret. Again, an analogy may be done with humans as the ABox can represent
objects that humans observe, and understand thanks to prior knowledge their acquired with
experience (TBox). Further, in the same way as properties can be attributed to concepts
defined in the TBox, Object and Data Properties can be attributed to individuals defined
in the ABox.

Description Languages

Several DL languages exist, the differences between each rely on the concept constructors that
they provide. Concept constructors are actually operators which enable to build complex
descriptions [14]. The language AL (Attributive Language) provides foundations for most
of the other DL languages. Table 3.1 shows the operators which present the syntax of ALC
(Attributive Language with Complement) which is an extension of AL.

It is proposed to illustrate the syntax and expressivity with a simple example. Let’s define
two atomic concepts: Human and Male. The intersection of these two concepts Human uMale
is a concept that describes men, that is, humans who are male. Similarly, Human u ¬Male
represent humans who are not male, that is, women. Now let’s define hasChild as an atomic
role. The expression Human u ∃hasChild.> describes humans (not all) who have a child. By
contrast, Human u ∀hasChild.> describes all humans who have a child.
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Syntax Comment
NC Set of Atomic Concepts
NR Set of Atomic Roles
C, D Concept Descriptions
R Role Description
> Top Concept (Most general in Taxonomy)
⊥ Bottom Concept (Most Specific in Taxonomy)
¬C Negation
C uD Intersection
C tD Union
∀R.C Universal Restriction
∃R.C Existential Restriction

Table 3.1: Logic syntax of ALC language.

3.2.3 Tools and Exploitation

Reasoner

The interest of using ontologies is the possibility they offer to reason on the knowledge that
they store. For this purpose, Reasoners have to be used. Reasoners are pieces of software
able to infer logical consequences from a set of asserted facts or axioms [3]. In other words,
they aim to exploit information stored in the TBox in order to infer new information and
knowledge which are not specifically expressed, about the Individuals defined in the ABox.
Plenty of software solutions for ontology reasoning exist, including the most popular such
as Pellet, FACT++, HermiT, Racer and others [148, 67, 144, 56]. All reasoners present
different characteristics and performances, therefore several surveys have been produced and
published [94, 42, 3]. Among all features which characterize a reasoner, the following have
been identified as the most important (all are presented in details in [42]):

− Reasoning methodology. The methodology refers to the algorithm that is used for
the reasoning task. Several algorithms exist, namely the tableau-based and the hy-
pertableau algorithms for the most common [142, 108]. Methodology has a significant
influence on computational efforts required for reasoning.

− Expressivity and Rule support. Expressivity is the capability of the reasoner
to understand different sorts of Description Logic axioms which may be defined in an
ontology TBox. In the same way, as rules are extensions to DL to improve expressivity,
the capability to consider them is also a relevant characteristic for reasoners.

− Performances. The computational time necessary to reason on an ontology is one
of the major limitation of today’s reasoners as all existing reasoning methodologies
are computationally complex and expensive. This is therefore a significant parameter
that is taken into consideration to estimate reasoners performances. Moreover, per-
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formances are also defined by soundness and completeness which is the capability to
correctly perform all inferences which should be done in theory.

Inferences

Several types of inferences can be performed by reasoners. The following list, which is not
exhaustive, gathers some examples of typical inferences:

− Consistency checking. In the TBox, consistency checking consists in making sure
that there is no contradiction in the concepts definitions. In the ABox, it aims to make
sure that individuals do not violate descriptions and axioms defined in the TBox.

− Individual class and property checking. In the ABox, it consists in checking what
concepts an individual belongs to, and what data properties it is assigned.

− Class subsumption checking. In the TBox, it consists in checking whether a concept
A includes another concept B.

− Query answering. It gives the possibility to answer queries such as, for example
“what individuals belong to concept A, with data property B equal to C?”.

3.3 Experimental Facilities

3.3.1 Test Vehicle and Embedded Sensors

All experiments presented in this Chapter were performed using data recorded in a standard
passenger vehicle, a 2008 Renault Espace IV. This vehicle benefits from various electronic
equipments, therefore a large amount of data is available on the Controller Area Network
(CAN) which is the vehicle internal network commonly known as the vehicle CAN-bus [22].
Thus, information such as the vehicle dynamics (i.e. speed, acceleration, etc) or the state of
internal devices (i.e. the state of the pedals, of the turn signals, etc.) are easily accessible
in real time at high frequencies (20 to 50 Hz, depending on the sensors).

The localization of the vehicle was performed by a standard single frequency Ublox 6T GPS
receiver. This is a standard automotive sensor subject to external perturbations, and it there-
fore provides estimations of the vehicle pose suffering from significant noise. All experiments
were performed in open sky conditions, therefore the uncertainty of measurements in the
north and east directions is assumed to be constant. It was set such as σNorth = σEast = 3m.
Outputs are provided following the standard NMEA format, with a 5Hz frequency.

The vehicle is equipped with two perceptions sensors. The first one is an Ibeo Alasca XT
LIDAR sensor that is installed on the front of the vehicle. This smart sensor allows for the
detection, the classification and the tracking of both vehicles or pedestrians with a field of
view of 170°. The second sensor is a Mobileye smart camera that is installed on the vehicle
windscreen. This sensor is able to provide information about vehicles, pedestrians, traffic
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signs and road markings with a field of view of about 30°.

3.3.2 Navigation System

A navigation system similar to those available in commercialized vehicles was used to take
benefits from navigation maps which store contextual information. Field trials were per-
formed on closed roads, therefore commercialized navigation maps were not available. Thus,
maps had to be edited, and the Open Street Map (OSM) format was chosen for this pur-
pose. A navigation system was developed in order to exploit the OSM maps, and thus to
generate and provide in real time the information about the coming road features such as
the distance to the next intersection, the speed limit, etc. This information is called the
Electronic Horizon (EH).

Figure 3.2a shows the structure of the navigation system. An OSM digital map which has
previously been edited is required. The edition of the map is illustrated by Figure 3.2b.
Moreover, the system requires the vehicle position in the NMEA format to perform map
matching. The map matching is based on algorithms inspired from [115]. The computation
of the EH is based on the map matched vehicle position and consists in extracting from the
digital map all data referring to the close vehicle environment. The EH is finally accessible
on a TCP server.

Figure 3.2d shows how the distance to the stop intersection that is available in the EH is
defined. This distance P is the vehicle curvilinear abscissa along the carriageway, taking as
reference the next stop intersection stored in the map.

The uncertainty σP of the vehicle curvilinear abscissa P cannot be provided by the navigation
system. It is therefore set with respect to the uncertainty of the vehicle pose that is estimated
by the GNSS used for the experiments. The later is represented by an ellipsoid, according
to σNorth and σEast, the uncertainties of the vehicle pose measured in the north and east
directions. Figure 3.2e shows how an isotropic approach is used is used to estimate the value
of σP .

3.4 Ontology Based Approach

This Section aims to present the ontology based approach that is used for situation un-
derstanding. The framework in which the ontology intervenes is introduced, followed by
description of the ontology strictly speaking. What is important to retain from this Section
is the approach that is proposed, and the possibilities that ontologies may offer to solve the
problem. Therefore, it is important to keep in mind that the ontology which is presented is
not exhaustive, and must be considered as a draft that is used to confirm the coherence of
the approach. Further extensions and optimisations would be necessary if the approach is
validated.
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Figure 3.3: Exploitation of the ontology within a framework.

3.4.1 Framework Overview and Structure

The ontology that was developed makes part of an overall framework for situation under-
standing. Figure 3.3 shows the structure of the framework which is presented in the following
of this Section.

Observations

The first prerequisite for the framework is information about the presence of surrounding
entities. This step is represented by the Observations box in Figure 3.3. Two types of data
sources are considered for the awareness of the environment. Modern vehicle sensors such
as smart cameras, radars or lasers allow for the real time perception of moving entities.
Most of them are able to perform classification on the perceived entities, and provide an
estimation of their state with respect to the subject vehicle on which they are embedded.
Further, digital maps can store and provide contextual information about the road network
features. For instance, this a priori information can contain information about the coming
road intersections, about coming pedestrian crossing, etc. Figure 3.4 shows an example of
situation as it may be perceived by a vehicle.

World Model Principles

All this information is provided in a piecemeal manner as most of time all sources of in-
formation work independently from the others. It is therefore necessary to organize this
data in the form of a list of surrounding entities. As part of this thesis, this structured and
organized list is called the World Model. Table 3.2 provides an example of what could be
the corresponding world model for the situation shown in Figure 3.4.
The edition of this world model may require some preliminary processing on perception
data. For example, a same entity may be perceived at the same time by several sensors, it is
therefore necessary to consider this entity only one time (i.e. to perform data association).
Moreover, as sensors may not be synchronized, asynchronous data has to be handled. For
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Figure 3.4: Example of perceived world.
The perceived entities are
given IDs.

Table 3.2: World presented in Figure 3.4
in the form of World Model
table.

# Type Information

1 Car Subject Vehicle

2 Car
Coming from the left
Turning right

3 Motor Bike
Same lane
x meters ahead

4 Truck
Coming from the9right
x meters before intersection

5 Pedestrian Crossing x meters ahead

6 Stop9Intersection x meters ahead

7 Pedestrian
x meters ahead
On left pavement

8 Pedestrian
x meters ahead
On9the9road

9 Pedestrian
x meters ahead
On9right9pavement

these purposes, data and sensor fusion techniques have to be employed [86]. These prob-
lems are complex to solve and today they remain a meaningful challenge for the data fusion
community. However they are not the subject of this thesis, therefore these problems are
not addressed. Instead, perception is considered as a black box performing sensor and data
fusion on the data returned by a set of perception sensors.

Situation Understanding

All the situation understanding is performed through the use of the ontology, as shown
in Figure 3.3. Like every ontology, the ontology that has been developed consists of two
fundamental parts, namely the TBox and the ABox.

− The TBox consists of a conceptual description of the entities and contextual objects
which can be met by a vehicle in a navigable space. In other words, it enables to
define the types of entities which can be met, and the relationships and interactions
which are likely to exist between them. An analogy can be done with the knowledge
that drivers acquire when they learn driving at driving school, which is fundamental
to makes them able to understand situations. The TBox is the permanent part of the
ontology.

− The ABox can be considered as the conversion of the World Model into the ontology
language. That is, for each entity that is present in the World Model, an instance of
the corresponding concept is created. The ABox is the changing part of the ontology
and is updated at each update of the World Model.

After each update of the ABox, reasoning can be performed on the whole ontology. The aim
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Figure 3.5: Ontology Concepts, Object Properties and Data Properties.

of the Reasoning step is to give more sense to the data present in the World Model. In other
words, it is to take into consideration the interactions which are likely to exist between the
entities, and also chain reactions which may happen as a consequence of these interactions.
At the end, the purpose is to infer a high level interpretation of the perceived situation in
order to select the risk assessment algorithms which suit the situation best.

3.4.2 The TBox

The ontology TBox was developed with respect to the Description Logic specifications which
were presented in Section 3.2.2. That is, the TBox was designed through the definition of
concepts, object and data properties, and relations. Figure 3.5 shows the taxonomy which
defines the ontology. In this ontology, the focus is done only on situations which can be
represented in 1 dimension in space. In other words, the ontology is able to represent road
entities which are all located on the same navigation lane.
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Concepts

Box 1 of Figure 3.5 presents the taxonomy on the ontology concepts. Three major concepts
were defined, namely Context Entity, Context Parameter and Output to Risk Assessment. They
were defined as described below.

The first major concept, Context Entity, aims to list and classify the road entities which
may be met in a driving space. Road entities were classified into two sub-concepts, namely
Mobile Entity and Static Entity. From the point of view of an intelligent vehicle, information
about a mobile entity cannot be a-priori known. That is, this information has to be obtained
in real time from perception sensors. Therefore, the ontology defines pedestrians and vehicles
as mobile entities. Further, static entities are assumed to make part of the road network,
therefore their presence is perfectly predictable. Thus, information about a static entity
can be a-priori known and stored in digital maps. In the ontology that is presented, two
categories of static entities are represented. The first one gathers Road Infrastructures which
have an effect on vehicles behaviours such as Speed Bumpers and Pedestrian Crossings. The
second one gathers Road Intersections which are classified into three categories: Stop, Right
of Way and Giveway Intersections.

The second major concept, Context Parameter, aims to define spatio-temporal thresholds
which allow to decide whether interactions between two entities are likely to exist. To
illustrate the IsFollowing Parameter, let imagine two vehicles (the leader and the follower)
navigating at the same speed, on the same road and in the same direction. If the two
vehicles are separated by 90m, the interaction between them depends on their speed. If they
are moving at 30km/h, the leader is 6s ahead of the follower, so it may be considered that
there is no interaction between them. However, if they are moving at 90km/h, the leader
is only 2s ahead. It can therefore be considered that interaction between the two vehicles
is established. The IsFollowing Parameter allows to set the threshold in the form of time
duration which enables to consider if a vehicle is following another one. Following the same
logic, the IsClose Parameter and the IsToReach Parameter are also defined. Numerical values
are given to these concepts through Data Properties, which are detailed a bit later in this
paragraph.

The last major concept, Outputs to Risk Assessment, is presented in the red shaded area in
Figure 3.5. It aims to store concepts which describe the situation of vehicles. Further, these
concepts are guidelines for embedded risk assessment systems as they state what entities and
what associations of entities are pertinent to be monitored to ensure safety. The purpose is to
infer class equivalences on the subject vehicle in order to chose what risk assessment algorithm
suits best the situation. The ontology that is described emphasises on Stop Intersections and
Pedestrians. For example, if after reasoning it is inferred that the subject vehicle is actually
an instance of the concept Stop Intersection Ahead, it would mean that an algorithm that aims
to ensure safety at the approach to a stop intersection would the best adapted to perform
risk assessment on the subject vehicle. In that way, the algorithm presented in Chapter 5
would be well adapted.
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Object Properties

Box 2 of Figure 3.5 presents the taxonomy on the ontology object properties. These proper-
ties aim to define the relationships and interactions which may happen between two concepts
of Context Entities. They were defined as described below.
The state of a mobile entity with respect to another one can be described through the
goesTowards, isCloseTo, isToReach, and isFollowing properties. Further, expected behaviours
are defined through the hasToStop and hasToDecelerate properties. Finally, near future
behaviours are defined through the isToReach, willDecelerate and willReach properties.

These object properties will be used within inferred triples such as Car - goesTowards - Stop
Intersection, or Pedestrian - isCloseTo - Pedestrian Crossing, or Car - isToReach - Stop Inter-
section.

Data Properties

Box 3 of Figure 3.5 presents the taxonomy on the ontology data properties. These properties
aim to assign properties to individuals which will be defined in the ontology ABox. They
were defined as described bellow.
All individuals which will be defined in the ontology ABox have to be defined with their
position in the scene. For this purpose, a reference frame had to be chosen. As most
of observations are performed with respect to the subject vehicle, the subject vehicle was
chosen as the reference frame. Further, since the world is represented in one dimension
in the ontology, the positions of entities with respect to the subject vehicle are defined as
curvilinear abscissas along the road (in the same manner as the position of static entities
are defined in the Electronic Horizon, cf. Figure 3.2d in Section 3.3). In that way, the
property distanceToSubjectVehicle was created. This property expects arguments in the form
of a numerical values.

Further, some entities such as pedestrians can be either on the road, either on the pavement.
From the point of view of a vehicle evolving on the road, this has a significant consequence on
how pertinent it is to consider these entities. Therefore, the parameter isOnRoad enables to
define in the ontology whether a pedestrian is on the road. This property expects arguments
in the form of boolean variables.

Finally, the Context Parameter concepts require to be set. For this purpose the data para-
meter hasValue was created. This property expects arguments in the form of numerical value.

Relations

Ontology concepts, object properties and data properties alone cannot provide added value
to information present in the World Model. Relations are defined for this purpose, and can
therefore be considered as the core of the ontology. The aim of the relations is to provide a
priori knowledge about road entity concepts and about interactions which may exist between
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them, and then to extract the most relevant features of the situation. Relations consist of
axioms aiming to affect object properties to the individuals which are stored in the ontology
ABox.

Relations were edited in two steps. The first step aims to edit the axioms which enable to
infer the likely interactions between the road entities stored in the ABox. These axioms are
for most of them too expressive for using the basic Description Logic language, therefore
SWRL rules were preferred for this purpose. The second step aims to edit additional axioms
to exploit the interactions which were inferred during the first step, and thus to extract for
all vehicles the most relevant features of the situation. For this purpose, it was possible
to use the DL language as the corresponding axioms are simple. Note that SWRL could
have been used, however reasoning on SWRL rules is more expensive than reasoning on DL
axioms. It was therefore preferred to use DL axioms for this second step.

For the first part, 14 SWRL rules were edited. Table 3.3 presents in details 3 of these
rules, and the rest is available in Appendix A. These rules aim to make it possible to infer
spatio-temporal relationships between entities, near future behaviours of mobile entities and
expectation about mobile entities manoeuvres. In Table 3.3, the rule labelled as number 1
is one of the 5 rules dealing with spatio-temporal relationships. Further, the rule labelled
as number 2 is one of the 3 rules dealing with near future behaviours of the mobile entities.
Finally the rule labelled as number 3 is one of the 6 rules dealing with expected manoeuvres
of the mobile entities. Some of these rules were defined to take into consideration chain
reactions which can happen in road situations. For example, a vehicle that is following
another vehicle that has to stop has also to stop in order to avoid a collision.

For the second part, one basic DL axiom was edited for each Output For ADAS concept.
That is, 6 axioms were edited for the ontology presented in this Chapter. They are all
listed in Appendix A, but two of them are presented in Table 3.4 in order to help the
reader understand the principles. The axiom labelled as number 1 aims to define that if a
single vehicle expected to stop at a stop intersection, it is pertinent to run an ADAS that
makes sure that the driver is aware of the stop intersection. Further, the axiom labelled as
number 2 aims to define that if a vehicle following another vehicle expected to stop at a stop
intersection, it is pertinent to run an ADAS that makes sure that the driver is aware that
the lead vehicle will stop soon.

3.4.3 The ABox

The ontology ABox contains two types of individuals. There are those which are mandatory
and created independently from the World Model, and those which are created according to
the World Model contents.
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Table 3.3: Example of 3 SWRL rules edited in the ontology.

# SWRL Rules Meaning

1

1 vehicle (? v1) ∧ vehicle (? v2)
2 ∧ distanceToSubjectVehicle (?v1 ,? d1)
3 ∧ distanceToSubjectVehicle (?v2 ,? d2)
4 ∧ subtract (?sub ,?d2 ,? d1)
5 ∧ isFollowingParameter (? fParam )
6 ∧ hasValue (?f ,? fParam )
7 ∧ lessThan (?sub ,?f)
8 → isFollowing (?v2 ,? v1)

The position d1 and d2 of the vehicles v1
and v2 are known thanks to the

distanceToSubjectVehicle parameter. By
performing a subtraction (line 4), it is
possible to determine the distance sub

between both vehicles. By comparing this
distance with the threshold of the
isFollowingParameter (line 7), it is

determined whether one vehicle is following
the other one (line 8).

2
1 vehicle (? v1)
2 ∧ StopIntersection (? stop1 )
3 ∧ willReach (?v1 ,? stop1 )
4 → willStop (?v1 ,? stop1 )

The vehicle v1 will reach the stop
intersection stop1 . This condition means

that v1 will probably stop at stop1 (line 4).

3
1 vehicle (? v1)
2 ∧ StopIntersection (? stop1 )
3 ∧ isToReach (?v1 ,? stop1 )
4 → hasToStop (?v1 ,? stop1 )

The vehicle v1 is about to reach the stop
intersection stop1 . This condition means
that v1 has to stop at stop1 (line 4).

Table 3.4: Example of 2 Description Logic Axioms edited in the ontology.

# DL Axioms Meaning

1 StopIntersection .=
Vehicle u ∃hasToStop · StopIntersection

If an instance of concept Vehicle is linked to
an instance of concept StopIntersection
through the object property hasToStop,

then the instance of concept Vehicle is also
an instance of the StopIntersectionAhead

concept.

2 StopIntersectionBefore1Leader .= Vehicle
uisFollowing · StopIntersectionAhead

If an instance of concept Vehicle is linked to
an instance of concept

StopIntersectionAhead through the object
property isFollowing, then the instance of
concept Vehicle is also an instance of the
StopIntersectionBefore1Leader concept.
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Mandatory Individuals

Even if the World Model does not include any information about surrounding road entities,
the ontology ABox requires four individuals to be defined. These individuals enable the
ontology to work properly, and are defined as follows.

The World Model will always contain information about the subject vehicle that perceives
its surrounding environment. Therefore, the ontology ABox has to store one instance of the
Vehicle concept, representing the subject vehicle. This entity is taken as the origin of the
frame, so the distanceToSubjectVehicle data property is affected to this individual and is set
at 0.

The three other individuals refer to the three concepts included in the Context Parameter
major concept. These individual aim to activate the context parameters in the ontology, and
thus to assign a value to the three of them. In that way, one instance of the isCloseParameter
concept has to be created. This individual is given the hasValue data property which sets the
maximum distance between a pedestrian and a static entity to consider them close enough
to interact. Further, one instance of the isFollowingParameter concept has to be created with
the hasValue data property. The value of this property sets the distance between two vehicles
from which it is considered that the following vehicle is no longer following the leader. This
value depends on the vehicle speeds in stabilized conditions. Finally, one instance of the
isToReachParameter concept has to be created, again with the hasValue data property. This
parameter sets the distance of a vehicle to a static entity from which it is considered that
the vehicle is about to reach the static entity. This parameter also depends on the vehicle
speed in stabilized conditions.

World Model Dependant Individuals

These individuals can be considered as the conversion of the World Model contents into
the ontology language. Thus, each entity stored in the World Model has its equivalent in
the ontology ABox. For each entity, one instance of the corresponding concept is created,
and is affected the distanceToSubjectVehicle data property. The value of this property is the
position of the concerned entity, with respect to the subject vehicle. Note that uncertainties
on the position of entities are not considered by the ontology. Finally, the isOnRoad data
property has to be attributed to all instances of the Pedestrian concept to declare whether
the corresponding pedestrians are on the road or on the pavement.

3.4.4 Illustrative Example

The ontology which is described in the previous Section was tested to verify that it is able
to infer pertinent information about a road situation. It was edited in the Protégé software
(TBox and ABox), version 4.3, developed by the Stanford Center for Biomedical Informatics
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Research [165, 166]. This ontology editor enables the edition of SWRL rules.

Case Study

Figure 3.6a on Page 58 describes the situation that was manually edited in the ontology.
This situation consists of three vehicles (called Subject Vehicle, Vehicle 2 and Vehicle 3 )
going towards a stop intersection (called Stop 1 ). Vehicle 3 is the closest to the intersection,
and just passed a pedestrian crossing (called Pedestrian Crossing 1 ). Vehicle 2 goes towards
Pedestrian Crossing 1, and Subject Vehicle follows Vehicle 2. Finally, a pedestrian (called
Pedestrian 1 ) is walking next to Pedestrian Crossing 1.
Section 3.4.3 presented that the ontology ABox contains four mandatory individuals, in-
cluding one for the subject vehicle and the three others for the context parameters. In this
case study, the highest allowed speed is 50 km/h, therefore the context parameters are set
according to this speed. In that way, it was set that a vehicle is following another one if
the following time is lower than 3 seconds. Therefore, an individual of the isFollowingPara-
meter concept was created with the hasValue data property set at 42m (distance travelled
in 3 seconds at 50 km/h). Further, it was set that a mobile entity is about to reach a
static entity if at constant speed it is reaching it within 5 seconds. Therefore an individual
of the isToReach concept was created with the hasValue data property set at 70m. Finally,
an instance of the isCloseParameter concept was created with the hasValue property set at 3m.

Results

Reasoning was performed through the Protégé software that proposes a collection of reason-
ers, however the SWRL rules which define the ontology restrain the number of compatible
reasoners. Pellet was chosen as it is compatible with SWRL, and offers good performances
[42]. Figure 3.6b shows the object properties and concept equivalence assertions performed
by Pellet for the chosen case study. These inferences are detailed below.

Pedestrian 1 is inferred to be close to Pedestrian Crossing 1. The reasoner computes the
distance between these two entities according to the distanceToSubjectVehicle data parameter
set on the two corresponding individuals. This distance is of 1m, and satisfies the condition
(that depends on the isClose context parameter) that was set in the ontology to claim that
a pedestrian is close to a pedestrian crossing. It implies that the pedestrian is likely to have
the intention to cross the road, therefore it means that a vehicle that would approach to the
pedestrian would have to take care of the pedestrian. No concept equivalence is asserted on
Pedestrian 1 because there is no axiom for concept equivalence defined in the TBox for the
Pedestrian concept.

Three object property assertions are inferred for Vehicle 3. These assertions concern interac-
tions between this vehicle and the stop intersection Stop 1. Thanks to the position of these
two entities, is was inferred that Vehicle 3 passed all the static entities except Stop 1. There-
fore, it is inferred that Vehicle 3 goes toward Stop 1. Further, the distance between these two
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Name:OSubjectOVehicle
Concept:OCar
distanceToSubjectVehicleO=O0m

Name:OStopO1
Concept:OStopOIntersection
distanceToSubjectVehicleO=O85m

Name:OPedestrianO1
Concept:OPedestrian
distanceToSubjectVehicleO=O55m
isOnRoadO=Ofalse

Name:OVehicleO3
Concept:OCar
distanceToSubjectVehicleO=O65m

Name:OVehicleO2
Concept:OCar
distanceToSubjectVehicleO=O30m

Name:OPedestrianOCrossingO1
Concept:OPedestrianOCrossing
distanceToSubjectVehicleO=O56m

(a) On the left, an illustrative picture of the case study (scale is not respected). In the boxes on the right, the
World Model Dependant Individuals stored in the ABox.
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(b) Object properties and concept equivalence assertions after reasoning.

Figure 3.6: Case study.
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entities is low enough to consider that Vehicle 3 is about to reach Stop 1. Moreover, since it
was defined in the ontology that all vehicles about to reach a stop intersection have to stop
at the intersection, it is inferred that Vehicle 3 has to stop at Stop 1. Finally, it is inferred
that Vehicle 3 is an instance of the Stop Intersection Ahead concept. This is performed using
the first DL axiom presented in Table 3.4, Page 55.

Ten object property assertions are inferred for Vehicle 2. The ontology infers that this
vehicle passed neither Pedestrian Crossing 1 and Stop 1, therefore it is inferred that it goes
towards these two static entities. Moreover, Vehicle 2 is close enough to Pedestrian Crossing
1 and Stop 1 to say that it is about to reach them. Since all vehicles have to stop at stop
intersections, it is inferred that Vehicle 2 has to stop at Stop 1. This assertion implies
Vehicle 2 to be an instance of concept Stop Intersection Ahead. Moreover, all vehicle have
to decelerate before reaching a pedestrian crossing, therefore Vehicle 2 has to decelerate for
Pedestrian Crossing 1. Further, as it was inferred that Pedestrian 1 is close to Pedestrian
Crossing 1, and since Vehicle 2 is about to reach Pedestrian 1, it is inferred that it has to
decelerate for the pedestrian. This assertion implies Vehicle 2 to be an instance of concept
Pedestrian Ahead. Finally, Vehicle 2 is close enough to Vehicle 3 to claim that it is following
this latter. However, it was inferred that Vehicle 3 has to stop at Stop 1, and since Vehicle
2 is following Vehicle 3, Vehicle 2 has to top behind Vehicle 3. This chain reaction implies
Vehicle 2 to be an instance of concept Stop Intersection before 1 leader.

Eleven object property assertions are inferred for Subject Vehicle. Like Vehicle 2, Subject
Vehicle passed neither Pedestrian Crossing 1 and Stop 1. It is therefore inferred that it goes
towards these two entities. Moreover, Subject Vehicle is too far from Stop 1 to consider that
it is about to reach it. However it is inferred that Subject Vehicle will reach Stop 1, and
therefore that it will stop at Stop 1. Further, as it is close enough to Pedestrian Crossing
1, Subject Vehicle is about to reach it, and thus has to decelerate. In addition, as it is
for Vehicle 2, the chain reaction with Pedestrian 1 and Pedestrian Crossing 1 implies that
Subject Vehicle has to decelerate for Pedestrian 1. This implies Subject Vehicle to be an
instance of concept Pedestrian Ahead. Further, Subject Vehicle is close enough to Vehicle 2
to claim that it is following it. This implies several chain reactions with the other context
entities. First, Subject Vehicle is following Vehicle 2 that is an instance of Stop Intersection
ahead. This implies Subject Vehicle to be an instance of concept Stop Intersection before 1
leader. In addition, Vehicle 2 is also an instance of concept Stop Intersection before 1 leader,
therefore is also implies that Subject Vehicle is an instance of concept Stop Intersection before
several leaders. Finally, Vehicle 2 is an instance of concept Pedestrian Ahead, it therefore
implies that Subject Vehicle is an instance of concept Pedestrian before 1 leader.

These results show that the proposed ontology enables to perform coherent reasoning on
global road situations as they may be perceived by a vehicle. It shows that interactions
between road entities can be understood and considered to anticipate the behaviours of the
mobile entities, and to know how they are expected to behave. This test was performed with
an ontology whose ABox was filled manually, the next step is to test the ontology with data
recorded from sensors embedded on an experimental vehicle.
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Figure 3.7: Case study for real time evaluation of the ontology.

3.5 Implementation and Experimental Evaluation

Last Section presented the ontology based framework for situation understanding. The
approach used to define the ontology was detailed, and results of reasoning on a situation
manually edited in the Protégé software were presented. This Section aims to present how
the framework was exploited in real time with data recorded on an experimental vehicle.

3.5.1 Case Study and Implementation

Figure 3.7 shows a representation of the case study that was chosen for the evaluation of
the ontology in real time conditions. It consists of the subject vehicle that is following a
lead vehicle. Both vehicles are navigating towards a pedestrian crossing that precedes a stop
intersection. Ten meters separate the pedestrian crossing and the intersection. Finally, a
pedestrian is located next to the pedestrian crossing.

Data Sources and Software

Figure 3.8 presents the framework that was used for the real time exploitation of the ontology.

The framework requires several data sources. A priori information about the position of the
pedestrian crossing and of the stop intersection were stored in a digital map in the Open
Street Map format. In addition to this map, the localisation data returned by the GPS
receiver was used by the Navigation System in order to generate the Electronic Horizon in
real time. Real time information about leading vehicles and pedestrians are provided by the
Lidar sensor. Finally, the ontology TBox was stored in a Ontology Web Language (OWL)
file [98]. This file format is the reference for the storage of ontologies.
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Figure 3.8: Framework for real time situation understanding.

Software

Three pieces of software were necessary to exploit the ontology in real time. The first one
is the navigation system that exploits the OSM digital map and that returns the Electronic
Horizon at each new measurement of vehicle location. That is, it provides information about
the static entities, i.e. the distance of the subject vehicle to the pedestrian crossing and to
the stop intersection.
The second piece of software was developed in the C++ programming language for the
RTMaps 4 middle-ware. This software allows to get information about the mobile and static
entities as they are returned by the data sources. A RTMaps component was developed to
feed the World Model structure according to the information about road entities.

The last piece of software was developed in the Java programming language. It enables to
exploit the ontology and thus to reason about the World Model. Even if the Java language
is not the best language for real time functions, it was chosen to use it as it was the only
programming language that proposes accessible libraries for ontologies handling. For this
purpose, the OWL API library was used [64]. Moreover, the software was developed as
an ontology server, that is it communicates with clients which need to reason about World
Models. The communication between the server and RTMaps is performed through the TCP
protocol, and the World Model structure is exchanged after having been serialized using the
Protobuf library [167]. After reception of the World Model structure by the server, ontology
individuals are created, completing the core ontology that was preliminary loaded from the
OWL file. Reasoning is then performed through the Pellet reasoner, and inferences are sent
back to the TCP client. The inferences can therefore be exploited by an ADAS, which is, in
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(a) Situation of the lead vehicle with respect to the static entities, and ontology inferences.
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(b) Situation of the subject vehicle with respect to the static entities, and ontology inferences.

Figure 3.9: Results of the experimental evaluation.

this Chapter, an HMI that displays the ontology inferences.

3.5.2 Results

Figure 3.9 presents the results of the experimental evaluation of the ontology. Figure 3.9a
shows the state of the lead vehicle and the inferred class equivalences over time for the
corresponding ontology individual. Further, Figure 3.9b shows the state of the subject vehicle
and the inferred class equivalences over time for the corresponding ontology individual. From
the point of view of the subject vehicle, the situation evolves over time through eight main
events happening at times t1 to t8. These events are detailed hereafter.
From the beginning of the experiment, the interdistance between the subject vehicle and the
lead vehicle is lower than the isFollowing threshold (see Figure 3.9b). The ontology therefore
considers that the subject vehicle is following the lead vehicle. It means that as soon as the
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lead vehicle interacts with at least one other road entity, this interaction is propagated to
the subject vehicle.

At time t1, the distance between the lead vehicle and the pedestrian becomes lower than
the isToReach threshold (see Figure 3.9a). Therefore, the ontology considers that there is
interaction between the lead vehicle and the pedestrian, and that the lead vehicle is about to
reach the pedestrian. However, the pedestrian is close to the pedestrian crossing, therefore
it is inferred that the lead vehicle individual becomes an instance of the Pedestrian Ahead
concept (see Figure 3.9a). Moreover, since the subject vehicle is following the lead vehicle,
the interaction between the lead vehicle and the pedestrian is propagated to it. The subject
vehicle individual therefore becomes an instance of the Pedestrian Before 1 Leader concept
(see Figure 3.9b).

At time t2, the distance between the lead vehicle and the stop intersection becomes lower
than the isToReach threshold (see Figure 3.9a). Thus, the ontology considers that the lead
vehicle is about to reach the stop intersection. The lead vehicle individual therefore becomes
an instance of the Stop Intersection Ahead concept. Further, since the subject vehicle is still
following the lead vehicle, the subject vehicle individual becomes an instance of the Stop
Intersection Before 1 Leader concept (see Figure 3.9b).

At time t3, the distance between the subject vehicle and the pedestrian becomes lower
than the isToReach threshold (see Figure 3.9b). Since the pedestrian is still close to the
pedestrian crossing, the subject vehicle starts to interact with him and therefore the subject
vehicle individual becomes an instance of the Pedestrian Ahead concept. Note that at this
time the lead vehicle did not pass the pedestrian, therefore the subject vehicle individual is
still an instance of the Pedestrian Before 1 Leader concept.

At time t4, the distance between the subject vehicle and the stop intersection becomes lower
than the isToReach threshold (see Figure 3.9b). Therefore, the ontology considers that the
subject vehicle starts to interact with the intersection, and thus the subject vehicle individual
becomes an instance of the Stop Intersection Ahead concept. Note that at this time the lead
vehicle did not pass the stop intersection, therefore the subject vehicle individual is still an
instance of the Stop Intersection Before 1 Leader concept.

At time t5, the lead vehicle passes the pedestrian (see Figure 3.9b). As a consequence, the
lead vehicle individual is no longer an instance of the Pedestrian Ahead concept. Further,
that implies that the subject vehicle is no longer following a vehicle that is about to reach a
pedestrian. Therefore, the subject vehicle individual is no longer an instance of the Pedestrian
Before 1 Leader concept (see Figure 3.9b). It means that the subject vehicle no longer
indirectly interacts with the pedestrian.

At time t6, the lead vehicle passes the stop intersection. As a consequence, the lead vehicle
individual is no longer an instance of the Stop Intersection Ahead concept (see 3.9b). There-
fore, the subject vehicle is no longer an instance of the Stop Intersection Before 1 Leader
concept (see Figure 3.9b).

At time t7, the subject vehicle passes the pedestrian. Therefore, the subject vehicle indi-
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vidual is no longer an instance of the Pedestrian Ahead concept (see Figure 3.9b). The stop
intersection therefore becomes the only pertinent road entity for the subject vehicle.

Finally, at time t8, the subject vehicle reaches the stop intersection. Therefore, the subject
vehicle individual is no longer an instance of the Stop Intersection Ahead concept (see Figure
3.9b). The ontology no longer infers any concept equivalence, therefore there is no more
pertinent perceived surrounding entity that have to be monitored by the subject vehicle.

This Section showed that the proposed ontology based framework can be used to understand
the situation in which the subject vehicle is navigating. The ontology inferences change over
time as the situation change and can be used as guidelines for risk assessment systems. For
this experiment, the average processing time necessary for reasoning was 71ms on a 4GB
RAM laptop with a dual core 1.9GHz processor. The framework can therefore work in real
time with the data acquired from the sensors which are used. The next Section aims to
discuss about the results of the experimental evaluation of the framework.

3.6 Discussion

It was shown that the proposed ontology enables to reason on road environments as they can
be perceived by a vehicle. Reasoning on road environments can be performed with respect
to the types of the entities which are concerned, while considering the interactions which
are likely to happen between entities. The ontology enables to consider chain reactions in a
straightforward manner, that is, the interaction between two entities can have consequences
on the behaviour of another entity. In comparison, most of conventional ADAS would have
considered each perceived entity independently from the others, and would have monitored
the closest entity only. In the case of the case study of Section 3.4, Paragraph 3.4.4, the lead
vehicle Vehicle 2 alone would have been considered by a conventional ADAS.

The proposed ontology cannot be exploited to reason on every road context. Only situations
compatible with it can be understood, that is, situations which only meet entities which
have been described in the ontology TBox. It means that if the World Model contains an
entity that is not formally described in the ontology, the latter will not be able to reason
about this entity. If in real life this entity has influence on other entities known by the
ontology, a great part of the reasoning will not be representative of reality and thus will not
be consistent. Further, for the experiments which were presented, the values of the Context
parameters were set in an ad hoc manner. This was because no studies aiming to define
conditions for which entities can be considered as interacting were found in the literature.
It would therefore be pertinent to carry out studies to fill this gap.

In addition to the quality of the knowledge that is stored in the ontology, the consistency of
the inferred information depends on the quality of the information stored in the World Model.
If a pertinent entity of the situation misses in the World Model, reasoning about the situation
cannot be coherent. Moreover, if the World Model contains incoherent information about
the situation, reasoning will neither be coherent. For instance, let’s consider a situation for
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which the World Model contains an intersection and a lead vehicle in addition to the subject
vehicle. If the distance between the subject vehicle and the intersection is under-estimated,
the ontology may understand that the lead vehicle already passed the intersection while it
did not. The consequence would therefore be that no interaction between both entities is
inferred, therefore the situation would be misunderstood by the subject vehicle.

In the current state of research, one weak point of ontologies is their inability to take uncer-
tainties into account. Again, this means that the precision of the data stored in the World
Model is of great importance. This implies that all perception and localisation sensors must
provide precise and accurate measurements, and that navigations maps are precise and up
to date. In addition, this lack of uncertainty implies that it has to be assumed that drivers
comply with rules, and that it is not considered that rules can be violated. Finally, neither
uncertainties on interactions between entities, neither uncertainties on concept equivalence
assertions can be estimated. Such uncertainties could be of great interest, especially for the
risk assessment systems which may have to exploit the ontology inferences.

Finally, the time necessary to reason on an ontology is significant and has to be considered.
For the experimental evaluation presented in Section 3.5, the average processing time ne-
cessary for reasoning was 71ms on a 4GB RAM laptop with a dual core 1.9GHz processor.
For a same machine, this processing time depends both on the complexity of the ontology
TBox (number of axioms, and especially the number and complexity of the SWRL rules),
and on the number and types of road entity individuals stored in the ontology ABox. If the
ontology has to be extended, an effort would have to be made in order to limit the number
of axioms and rules and thus to limit the complexity of the reasoning step. For real time
applications, if the processing time is too high in comparison with the frequency at which the
World Model returns data, it would be conceivable to reason on the ontology asynchronously
with the rest of the system as it was done in [69].

3.7 Conclusion

This Chapter presented a framework to perform situation understanding. This framework
aims to give sense to perception data by considering the perceived environment as a whole,
and not only as a collection of road entities. Further, it enables to extract the most pertinent
features of the situation in order to provide guidelines to risk assessment systems. The
implementation of the framework, and results of real time situation understanding were
presented.

The framework is based on the exploitation of an ontology which is a semantic description
of entities currently met in road situations. This description contains a priori knowledge
about interactions which are likely to happen between entities. Further, it also contains
information about the behaviours that mobile entities are likely to have in a near future,
with respect to the interactions which are likely to exist with nearby entities. All this a
priori knowledge allows to reason about the data that the subject vehicle is able to collect
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about its nearby environment (from perception sensors and databases). Further, it allows to
understand what entities are the most pertinent, and how to monitor them and the subject
vehicle to perform risk assessment.

The evaluation of the framework was performed in two steps. The first one consisted in
exploiting the ontology for a static situation, in order to verify that it allows for a coherent
understanding of the situation and moreover to detail the functioning of the approach. The
second step aimed to exploit the framework in real time with data recorded aboard an ex-
perimental vehicle. This step allowed to analyse the evolution of the ontology inferences over
time, and thus to check the pertinence of these inferences for risk assessment. The results
showed that the proposed approach allows to give sense to perception data by considering in-
teractions, and chain reactions which may happen. Pertinent features can be extracted from
perception data, and then be used as guidelines for ADAS which perform risk assessment.

Whilst promising results were presented, it is of importance to keep in mind that the pro-
posed framework is a preliminary draft which principally aimed to check the coherence of the
approach. Further work should therefore be carried out. The ontology, in its current state,
enables to consider only entities which are on the same navigation lane than the subject
vehicle. One pertinent perspective would be to extend the ontology so that it is able to
consider entities which are on other lanes (adjacent and crossing lanes). Taking into con-
sideration vehicles coming from the right or from the left will imply to make the ontology
TBox more complex. Such extension must be performed with care in order to avoid to make
the ontology too complex, and thus to ensure a moderate processing time for reasoning.
Further, fundamental research on ontologies towards a solution to make them able to con-
sider uncertainties would be of great relevance. This would allow for an even more coherent
situation understanding as uncertainties on the state of the perceived road entities, on the
likely interactions and on behaviours would be taken into account. Nevertheless, such a
possibility would require to know the conditional probabilities which describe dependencies
between observations, interactions and likely behaviours.
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4.1 Introduction

Last Chapter presented a situation understanding framework which aims to give sense to
the perception and context data. The framework aims to extract the entities which are the
most pertinent to be considered by the subject vehicle. Further, it enables to give guidelines
for risk assessment by stating what entities should be monitored, and how they should be
monitored to ensure safe situations. The framework which is presented in this Chapter
constitutes the next step after situation understanding, that is, risk assessment.

The moment at which an ADAS infers that a situation is dangerous is a fundamental para-
meter. This has a strong impact on the manner how to solve the problem. As presented
in Chapter 1, three types of assistance can be considered, namely automated actuation,
warnings and assistance in the form of advices or recommendations. The choice of using one
type of assistance instead of another one depends on the time remaining before a probable
collision, considering the driver reaction time and the vehicle time response.

The risk that a situation turns wrong can be estimated through different approaches. While
collision assessment is usually performed by computing the time remaining before collision,
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Figure 4.1: Case study: approach of a single vehicle to a stop intersection.

the literature showed that the detection of conflicting intentions which may lead to risky
situations offers promising performances. A Bayesian framework was developed in [90] to
estimate the risk that a driver manoeuvre intention does not match with the manoeuvre he
is expected to perform.

This Chapter aims to evaluate the capabilities of this framework to detect risky situations
early enough to provide with pertinence each of the three possible types of assistance. For
this purpose, two hypothesis are tested. One considers that all drivers are the same, and uses
generic driver profiles to estimate the driver intention. The second one considers that all
drivers are different, and thus uses personal driver profiles. Car manufacturers constraints
are considered, therefore only automotive sensors can be used.

As presented in Chapter 1, road intersections are of much concern since they account for
more than 40% of road accidents in Europe. The simplest intersection scenario was chosen
for this study: the approach of a single vehicle to a stop intersection. Figure 4.1 illustrates
the chosen case study.

This Chapter is organized as follows. An overview of Bayesian models for vehicle motion
is presented as a background for the following of the Chapter. The adaptations performed
on the Bayesian network proposed in [90] are then detailed, followed by the presentation of
how Gaussian Processes are used to model drivers personal velocity profiles. The ability of
the Bayesian framework to provide the three types of assistance, using generic and personal
driver profiles is then evaluated. The obtained performances are finally discussed.

4.2 Bayesian Models for Vehicle Motion

Representing vehicle motions is a complex task as motions highly depends on the manoeuvre
the driver intends to perform. Markov State Space Models (MSSM) have often been used in
the literature with the advantage of being very flexible to considering the vehicle manoeuvre
in a straightforward manner [11, 49, 102, 90]. They consist of:
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− A set of measurement variables. These variables are observable.

− A set of state variables. These variables are hidden (not observable) and are estim-
ated from the measurements.

− A set of conditional probability functions which specify dependencies between
measurements and state, and which specify the evolution of the state in the time.

A brief description of existing models is proposed below.

4.2.1 Considering Manoeuvre Intention

The great majority of MSSMs used to model vehicle motion consider the vehicle state and
the manoeuvre intention as state variables. The literature proposes two manners to model
vehicle motions with MSSMs: using single MSSMs, or using sets of MSSMs.

Single MSSMs

Single MSSMs which consider the manoeuvre intention usually model the vehicle motion
through three layers:

− Manoeuvre Intention I. This is the highest level that represents the manoeuvre
that is performed by the vehicle (for example go, stop, turn left, etc.). These variables
are discrete and are hidden. Int represents the manoeuvre intention of vehicle n at
time t.

− Vehicle State φ. This is the middle level of the model and represents the estimation
of the physical state of the vehicle (for example its velocity, acceleration, position, etc.).
These variables are hidden and are either discrete or continue. φnt represents the state
of vehicle n at time t.

− Measurements Z. This is the lowest level of the model and usually represents the
noisy version of the Vehicle State. These variables are observable and either discrete
or continue. Zn

t represents the measurements performed about the state of vehicle n
at time t.

Figure 4.2a presents a graphical representation of a typical single MSSM. These models are
said Generative, unlike Discriminative models, as the observable variables depend on the
hidden variables.

One of the main advantages of MSSMs is their ability to account for the context. They
actually offer the possibility to make the intended manoeuvres of the subject vehicle depend
on other entities it is interacting with. For example, in the case of vehicles A and B crossing
at an intersection, the intended manoeuvre (go or stop) of vehicle A may depend on the
intended manoeuvre of vehicle B [49].
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(b) Graphical representation of a set of MSSMs.

Figure 4.2: Graphical representation of MSSMs considering the manoeuvre intention. The
layers are represented by nodes, conditional probabilities are represented by ar-
rows linking nodes together.

Set of MSSMs

A set of MSSM consists in modelling manoeuvres as a sequence of “primitive manoeuvres”,
and in having one MSSM model for each. As a consequence, the highest level Manoeuvre
Intention is replaced by the primitive manoeuvre Mn

t performed by the vehicle n at time t.
The sequences of primitive manoeuvres are constrained in order and duration. Figure 4.2b
shows a graphical representation of a set of MSSMs.
Dependencies can be taken into consideration by this type of models. It consists in represent-
ing all possible interactions between vehicles by HMMs. It actually requires a high number
of models as interactions between all primitive manoeuvres of vehicle A and all primitive
manoeuvres of vehicle B have to be modelled. As a consequence, inferences made through
such models are time consuming a lot.

4.2.2 Considering Manoeuvre Expectation

The models presented so far only account for manoeuvre intentions, and lack in considering
traffic rules which are supposed to govern intentions. For example, in the case of an approach
to a stop intersection, the driver’s intention to stop at the intersection highly depends on
the fact that making a stop is mandatory.

As a solution, Lefevre proposed to extend single MSSMs by integrating a new layer Man-
oeuvre Expectation as the top layer of the model [90]. Like the variables of the Manoeuvre
Intention layer, these variables are hidden and discrete. En

t represents the manoeuvre that
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Figure 4.3: Graphical representation of the MSSM proposed in [90] which considers expected
manoeuvres.

vehicle n is expected to perform at time t, according to traffic rules. Figure 4.3 shows a
graphical representation of this model. The expected manoeuvre is derived from the pre-
vious situation (manoeuvre intention and vehicle state), and has an effect on the intended
manoeuvre.

This model enabled a new manner to perform risk estimation by computing the probability
that the driver intends to perform a manoeuvre that he is not expected to do. This approach
was tested in the context of road intersections and showed high performances in the detection
of risky situations.

4.3 Bayesian Network Framework For Risk Assessment

The Bayesian model that is used is the Markov State Space Model (MSSM) that is presented
in [90]. It allows to consider the vehicle manoeuvres which are expected for a given context,
and therefore to infer risk situations by comparing the intended manoeuvre with the expected
manoeuvre.

In this thesis, the use of the MSSM differs from the manner it is used in [90]. Table 4.1
summarizes these differences. First of all, the case study is different. While [90] aims to
detect imminent collisions between vehicles at intersections, the case studied in this thesis
consists in monitoring a single vehicle when it approaches to a stop intersection in order to
detect suspicious behaviours which may lead to dangerous situations. In addition, the sensors
and maps used in this thesis are compatible with vehicle manufacturer constraints, while this
problem did not stand in [90]. Finally, when risk is detected, [90] does not consider the type
of assistance that would be the most pertinent for the situation. The model presented in this
Chapter aims to estimate how pertinent each type of assistance is when a risk is detected.

This Section aims to detail all adaptations and extensions performed on the original BN in
order to make it suited for the imposed constraints and the chosen case study.
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Table 4.1: Comparisons between the use of the MSSM in [90] and in this Chapter.

MSSM used in [90] MSSM used in this thesis

Case study and risk
assessment

Approach to intersections. De-
tection of collisions.

Approach to stop intersections.
Detection of suspicious beha-
viours which may lead to uncom-
fortable or dangerous situations.

Number of vehicles n vehicles can be considered
Only 1 vehicle needs to be con-
sidered

Localization Precise and accurate GNSS Noisy GNSS

Digital map Precise and designed at lane level
Not precise and designed at road
level

Assistance
The relevance of each type of as-
sistance is not considered

Estimation of the type of assist-
ance that would be the most per-
tinent

4.3.1 Variables Definition

The graphical representation of the Bayesian Network is shown in Figure 4.4. It is the same
as the one used in [90], however a conjunction node that represents the driving assistances
which can be provided has been added. This node and the relationships it has with the other
nodes of the BN are represented with dotted lines. The ensemble of variables present in the
BN is presented in Table 4.2. The shaded area represents the variables which were added to
those already present in the original BN. This paragraph aims to define all these variables
and the relationships they have with each other.

Expected Manoeuvre

The framework would allow for the representation of the expected vehicle manoeuvre through
a separation of the longitudinal manoeuvre (go or stop) and of the lateral manoeuvre (choice
of the navigable lane). Considering the lateral manoeuvre requires to perform lane level
localisation. However, the limits of the GNSS and of the navigation system prevent from
considering lane level localisation:

− The GNSS which is used suffers from noise and cannot guarantee measurement of
position with an uncertainty lower than σP = 3m, even in ideal conditions (open
sky, no external perturbations, etc.). These performances are too low to perform
accurate map matching on maps designed at lane level, and therefore to extract the
corresponding Electronic Horizon. Localization at lane level would need σP < 1m.

− The performances of the navigation system which is used can be considered as similar
as those of navigation systems embedded in commercialized vehicles. It means that
maps were not designed at lane level, but at road level. Therefore, it is technically
impossible to localize the vehicle at lane level.
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Figure 4.4: Graphical representation
of the Bayesian network.

Table 4.2: Detail of all variables present in the
BN. The variables added to the ini-
tial BN are shown in the blue area.

Conjunction
Nodes

VariablesSPresent inSConjunction
Nodes

Assistance Actuation Warning Advice

Expectation Expected Manœuvre:SGoS/SStop

Intention Intended Manœuvre:SGoS/SStop
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Real Vehicle Speed
Real Vehicle
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Position

���

�� �

�� �

���

��� ���

����� �

���
�

���
�

����� �

���

����� ����� �����

The variable that describes Expectation En
t is composed by only one node that represents

the expected longitudinal manoeuvre of the vehicle, EMn
t . For a vehicle n, two manoeuvres

can be defined with respect to the vehicle longitudinal motion, such as EMn
t ∈ {go, stop}.

− EMn
t = go means that at time t, the vehicle n is not constrained by context elements

(i.e. traffic rules, other road cohabitants) that would impose it to stop at the coming
intersection.

− EMn
t = stop means that at time t, the vehicle n is constrained by context elements

that impose it to stop at the coming intersection. In the chosen case study, as the
intersection is a stop intersection, the vehicle is expected to stop as it approaches to
the intersection.

Intended Manoeuvre

The variable that describes the driver intention Int corresponds to the variable that describes
expectation on the driver En

t . In that way, the driver intention relies only on the intended
longitudinal manoeuvre IMn

t . For the driver of vehicle n, two intended manoeuvres can be
defined with respect to the vehicle longitudinal motion, such as IMn

t ∈ {go, stop}.
− IMn

t = go means that at time t the driver of vehicle n does not have the intention to
stop at the coming intersection.

− IMn
t = stop means that at time t the driver of vehicle n has the intention to stop at

the coming intersection.
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Vehicle Physical State

The variable that describes the physical state of vehicle n at time t is represented by φnt =
(Snt , P n

t ), with:

− Snt ∈ R the true speed of vehicle n at time t.

− P n
t ∈ R the true pose of vehicle n at time t, which is represented in one dimension as

the distance to the coming intersection. It is the curvilinear abscissa from the vehicle
front extreme point and the position of the intersection stopping point as it is edited
in the map. This distance was presented in Chapter 3, Figure 3.2d.

Observations

The variable that describes the observations corresponds to the variable that describes the
vehicle physical state. In that way, observations on vehicle n at time t are represented by
Zn
t = (Sobsnt , Pobsnt ), with:

− Sobsnt ∈ R the measured vehicle speed of vehicle n. This data is collected to the vehicle
CAN-bus.

− Pobsnt ∈ R the measured pose of vehicle n. This data is returned by the navigation
system with respect to the digital map and the vehicle position provided by the GNSS.
More details were given in Chapter 3, Section 3.3.2.

Assistance

Assistance can be provided in 3 forms: automatic actuation, warning and advice. Thus,
Ant , the relevance of providing assistance to the driver of vehicle n at time t is defined by
Ant = (Actnt ,Warnt , Adv

n
t ), with:

− Actnt ∈ {not pertinent, pertinent} the relevance of performing automatic emergency
actuation on vehicle n at time t. Actnt = not pertinent means that automatic actuation
at time t is not pertinent and Actnt = pertinent means that automatic actuation at
time t is pertinent.

− Warnt ∈ {not pertinent, pertinent} the relevance of warning the driver of vehicle n at
time t. Warnt = not pertinentmeans that providing a warning at time t is not pertinent
and Warnt = pertinent means that providing a warning at time t is pertinent.

− Advnt ∈ {not pertinent, pertinent} the relevance of giving an advice to the driver of
vehicle n at time t. Advnt = not pertinent means that providing the driver with an
advice at time t is not pertinent and Advnt = pertinent means that giving an advice
at time t is pertinent.
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4.3.2 Joint Distribution

For N vehicles, the joint distribution of the general model is given by the following equation,
according to the graphical representation shown in Figure 4.4:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (A0, E0, I0, φ0, Z0)

·
T∏
t=1
·
N∏
n=1

[P (Et|It−1, φt−1) · P (Int |φnt−1, I
n
t−1, E

n
t )

·P (φnt |φnt−1, I
n
t−1, I

n
t ) · P (Zn

t |φnt ) · P (Ant |En
t , I

n
t , φ

n
t )]

(4.1)

This paragraph aims to develop this equation with all variables presented in last paragraph.

Expected Manoeuvre

The conjunction node that represents the expected manoeuvre En
t stores only one variable

which is the expected longitudinal manoeuvre of the vehicle EMn
t . This variable depends

on the intention and of the vehicle state at time t − 1. The probability on the expected
manoeuvre of vehicle n at time t can therefore be written as follows:

P (Et|It−1, φt−1) = P (EMt|It−1, φt−1) (4.2)

Intended Manoeuvre

The conjunction node that represents the intended manoeuvre Int stores only one variable
which is the intended longitudinal manoeuvre of the vehicle IMn

t . This variable depends on
the intention and of the vehicle state at time t−1, and of the expected manoeuvre at time t.
The probability on the intended manoeuvre of vehicle n at time t can therefore be written
as follows:

P (Int |φnt−1, I
n
t−1, E

n
t ) = P (IMt|φt−1, It−1, Et) (4.3)
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Vehicle Physical State

The conjunction node that represents the vehicle state φnt stores two variables which are the
true vehicle speed Snt and the true vehicle pose P n

t . These two variables are assumed to be
conditionally independent given the variables they depend on. They depend on the vehicle
state and the intended manoeuvre at time t − 1 and on the intended manoeuvre at time t.
The probability on the vehicle state can therefore be written as follows:

P (φnt |φnt−1, I
n
t−1, I

n
t ) = P (Snt |φnt−1, I

n
t−1, I

n
t ) · P (P n

t |φnt−1, I
n
t−1, I

n
t ) (4.4)

Observations

The conjunction node that represents the observations Zn
t stores two variables which are

the observed vehicle speed Sobst and the observed vehicle pose Pobst. These two variables
only depend on the physical quantities they rely on. The probability on the observations
can therefore be written as follows:

P (Zn
t |φnt ) = P (Sobst|St) · P (Pobst|Pt) (4.5)

Assistance

The conjunction node that represents the pertinence of providing assistance Ant stores three
variables which are the pertinence of performing automatic emergency braking Actnt , the
pertinence of warning the driver Warnt , and the pertinence of giving an advice to the driver
Advnt . These variables depend on the expected manoeuvre, on the intended manoeuvre and
on the vehicle state at time t. They are assumed to be conditionally independent given the
variables they depend on. The probability of the pertinence of providing assistance in vehicle
n can therefore be written as follows:

P (Ant |En
t , I

n
t , φ

n
t ) = P (Actnt |En

t , I
n
t , φ

n
t ) · P (Warnt |En

t , I
n
t , φ

n
t ) · P (Advnt |En

t , I
n
t , φ

n
t ) (4.6)
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Final Joint Distribution

Considering all these assumptions and simplifications, the joint distribution given by Equa-
tion 4.1 becomes, for the given case study:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (E0, I0, φ0, Z0)

·
T∏
t=1
· [P (EMt|It−1, φt−1) · P (IMt|φt−1, It−1, Et)

·P (St|φt−1, It−1, It) · P (Pt|φt−1, It−1, It)
·P (Sobst|St) · P (Pobst|Pt)
·P (Actt|Et, It, φt) · P (Wart|Et, It, φt) · P (Advt|Et, It, φt)

(4.7)

4.3.3 Parametric Forms

This part aims to detail all conditional probability terms whose general equations were given
in the previous part.

Expected Longitudinal Manoeuvre

The evolution model of the expected manoeuvre is very simple as the case study consists of
the approach to a stop intersection. Thus, the expected longitudinal manoeuvre is always
to make a stop at the intersection, independently from the vehicle state and the intended
manoeuvre at previous timestep. The conditional probabilities for the expected manoeuvre
are therefore defined as follows:

P (EMt = go) = 0
P (EMt = stop) = 1

(4.8)

Moreover, the conditional probability that describes the expected longitudinal manoeuvre
can be simplified such as:

P (EM t|It−1, φt−1) = P (EMt) (4.9)
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Table 4.3: Conditional probabilities describing the intended manoeuvre It.

It−1 Et P ([It = go]|It−1, Et) P ([It = stop]|It−1, Et)
go go Pcomply 1− Pcomply
go stop 0.5 0.5
stop go 0.5 0.5
stop stop 1− Pcomply Pcomply

Intended Manoeuvre

The evolution model of the intended longitudinal manoeuvre is the same as the one used in
[90]. That is, it is based on the comparison between the expected manoeuvre at time t and
the intended manoeuvre at time t− 1. Therefore Equation 4.3 can be simplified as follows:

P (IMt|φt−1, It−1, Et) = P (IMt|It−1, Et) (4.10)

Table 4.3 shows the conditional probabilities. The evolution model assumes that drivers
mostly respect traffic rules, that is, they make a stop at the intersection when they reach
a stop intersection. In that way, the variable Pcomply is defined to model how much drivers
comply with rules. A low value set for Pcomply means that most of the time drivers do not
respect rules, while a high value means that drivers usually respect rules. If the intended
manoeuvre at time t − 1 and the expected manoeuvre at time t do not match, a uniform
prior is assumed. In the following of the thesis, Pcomply is set such as Pcomply = 0.9, which
means that drivers respect traffic rules most of the time.

True Vehicle Pose

The evolution model of the true vehicle pose Pt at time t depends on the true vehicle pose
Pt−1 and speed St−1 at time t − 1. Therefore the conditional probability that describes Pt
can be simplified as follows:

P (Pt|φt−1, It−1, It) = P (Pt|Pt−1, St−1) = N (µP , σP ) (4.11)

with:

− µP the mean of the pose. For the sake of simplicity, it is computed following a constant
velocity model, using the value of Pt−1 and St−1 , and the duration between timesteps
t− 1 and t.

− σP the standard deviation of the pose. It is manually set such as σP = 1m.
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(a) Speed profile shape for It = stop.

P

S

(b) Speed profile shape for It = go.

Figure 4.5: Example of speed profile shapes depending on the intended manoeuvre. The
solid line corresponds to the mean µS and the dashed lines corresponds to the
standard deviation σS.

Observed Vehicle Pose

The evolution model of the observed vehicle pose Pobst at time t is based on a classic sensor
model as the measurements of the vehicle pose suffer from noise. The measurements follows
a normal distribution centred on the true vehicle pose. The conditional probability that
describes Pobst can therefore be written as follows:

P (Pobst|Pt) = N (Pt, σP ) (4.12)

In the following, this parameter was set such as σP = 3m, with respect to the performances
of the GPS receiver (Ublox 6T) that was used for the experiments.

True Vehicle Speed

The evolution model of the true vehicle speed St at time t depends on the true vehicle pose
Pt−1 and speed St−1 at time t − 1, and of the intended longitudinal manoeuvre at time t.
Pt−1 and St−1 are used to predict the vehicle pose Pt at time t, assuming constant speed
between t − 1 and t. St is then based on the velocity profile corresponding to the intended
longitudinal manoeuvre IMt.

Figure 4.5a shows the shape of the velocity profile referring to situations in which the driver
intends to stop at the intersection. It describes a deceleration until a null speed at the
position of the intersection. Figure 4.5b shows the shape of the velocity profile referring to
situations in which the driver does not intend to stop. It describes a constant speed all along
the run. These velocity profiles are assumed to follow normal distributions.
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The likelihood of the true vehicle speed is defined as following a normal distribution such as:

P (St|φt−1, It−1, It) = P (St|Pt−1, St−1, It) =
N (µgoS , σ

go
S ) if It = go

N (µstopS , σstopS ) if It = stop
(4.13)

These two distributions can be defined following two different strategies. The first one
considers that all drivers are the same, therefore generic speed profiles are used. The second
strategy considers that all drivers are different, therefore customized speed profiles are used.
Both strategies are tested and compared in the remaining of this Chapter.
Note that even if the case study does not consider lateral manoeuvres, situations in which
the driver intends to make a turn at the intersection are absorbed by the cases in which the
driver intends to stop. Turning at an intersection imposes to adapt the vehicle speed to the
road curvature, therefore decelerations are usually observed. This will be understood by the
BN as an intention to stop.

Observed Vehicle Speed

The measurements of the vehicle speed is collected from the vehicle CAN-bus and is ac-
curate enough to ignore uncertainties. A Dirac function is used to model the vehicle speed
measurements, such as:

P (Sobst|St) = δ(St − Sobst) (4.14)

Note that if this measurement had suffered from noise, a normal distribution centred on the
true vehicle speed would have been chosen to model the sensor.

Pertinence of Assistance

Assistance is necessary if a risk has been detected. However, the choice of the type of
assistance that has to be provided depends on the constraints imposed by the vehicle state.
Actually, providing an advice does not make sense if after reaction, the driver has to undergo
a too hard deceleration. Moreover, performing automatic braking is not pertinent if the
deceleration that the vehicle has to undergo is too smooth. This is illustrated by Figure 4.6.
Conditions have therefore to be specified to estimate if a given type of assistance would be
pertinent at time t, with respect to the vehicle state.
For this purpose, indicator τassistancet with assistance ∈ {advice, warning, actuation} is
defined in order to evaluate the pertinence of each type of assistance in case of risky situ-
ations, with:

− τadvicet ∈ {good, too late, too early} indicates if it would be time, or if it is too late or
too early to give an advice to the driver.

80



4.3 Bayesian Network Framework For Risk Assessment

(a) For automatic actuation assistance (b) For advice assistance

Figure 4.6: The importance of choosing the right moment to provide assistance.

γ: average acceleration
necessary to stop on time
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Figure 4.7: Determination of the state of τassistancet given γ.

− τwarningt ∈ {good, too late, too early} indicates if it would be time, or if it is too late or
too early to warn the driver.

− τactuationt ∈ {good, too late, too early} indicates if it would be time, or if it is too late or
too early to perform automatic emergency braking.

The state of τassistancet depends on:

− The value of the average acceleration γ that the vehicle would have to undergo to stop
on time if assistance was provided. This acceleration is computed by Equation 4.15,
considering the vehicle true speed St, the vehicle true pose Pt and reaction time RT .

− An acceleration interval defined by the variables amin and amax. Figure 4.7 presents
how γ is compared to this interval to get the state of τassistancet . If τassistancet is greater
than 0, or smaller than amin, it is considered that it is too late to provide the assistance
to the driver. If τassistancet is included between 0 and amax, it is considered that it is too
early to provide assistance. Finally, if τassistancet is included between amin and amax, it
is considered that it is the right moment to provide assistance. Table 4.4 presents the
time and physical constraints imposed by each type of assistance. Note that warning
and automatic braking assistances allow for harder acceleration (low values of γ, with
γ < 0) than advice assistance.

γ = − S2
t

2(Pt − St ·RT ) (4.15)
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Table 4.4: Time and physical constraints

Reaction Time ��
Minimum tolerated
acceleration ����

Maximum tolerated
acceleration ����

Automatic Braking �����ℎ��� ����
ℎ��� ����ℎ���

Warning �����ℎ��� + �������� ����
ℎ��� ����ℎ���

Advice �����ℎ��� + �������� ����
�����ℎ ���������ℎ

Finally, for all three types of assistance, assistance is considered as pertinent if and only if
the situation is considered as risky, i.e. It = go and Et = stop, while the time and physical
constraints are compatible with the given assistance, i.e. τassistancet = good.

The probability that it would be pertinent to provide the driver with assistance can therefore
be written as follows:

P ([Assistancet = pertinent]|IMt, EMt, St, Pt) =


1 if


([IMt = go], ...

[EMt = stop], ...
[τassistancet = good])

0 otherwise

(4.16)

with assistance ∈ {Adv,War,Act}.

The conditional probability that represents assistance At at time t can be simplified as
follows:

P (At|Et, It, φt) = P (Advt|Et, It, St, Pt) · P (Wart|Et, It, St, Pt) · P (Actt|Et, It, St, Pt)
(4.17)

In the following of the thesis, the parameters presented in Table 4.4 are set as follows:

− RTmachine = 0.4sec, the vehicle brakes time response.

− RTdriver = 1.5sec, the driver reaction time.

− ahardmin = −8m/s2, the hardest acceleration that the vehicle can undergo during emer-
gency braking.
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− ahardmax = −5m/s2, the smoothest acceleration that the vehicle can undergo during emer-
gency braking.

− asmoothmin = −3m/s2, the hardest acceleration which can be considered as comfortable
for a driver when he reacts to an advice.

− asmoothmax = −1.5m/s2, the smoothest acceleration which can be considered as pertinent
for a driver when he reacts to an advice.

Simplified Joint Probability

The joint probability can finally be simplified as follows:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (E0, I0, φ0, Z0)

·
T∏
t=1
· [P (EMt) · P (IMt|It−1, Et)

·P (St|Pt−1, St−1, It) · P (Pt|Pt−1, St−1)
·P (Sobst|St) · P (Pobst|Pt)
·P (Advt|Et, It, St, Pt) · P (Wart|Et, It, St, Pt) · P (Actt|Et, It, St, Pt)

(4.18)

4.4 Learning Velocity Profiles for Exploitation by the
Bayesian Network Framework

The previous section presented the Bayesian network framework and the adaptation it un-
derwent to fit with the case study requirements. It was explained that the manner how
the true vehicle speed St is defined depends on the strategy that is chosen. It can either
be modelled using generic velocity profiles, either be modelled using profiles depending on
the driver driving style. This Section aims to describe how Gaussian processes were used to
learn drivers velocity profiles, which will be used within the BN to model the true vehicle
speed when the driver intends to stop.

4.4.1 Problem

Learning velocity profiles which can be used as part of the BN framework comes down to
a regression problem. As repeatability for driver behaviour can differ very much, it is of
importance to take into account this wide spread during the regression process. In the ITS
domain, regression problems have been solved with Gaussian Mixture Regression (GMR)
[170], Locally Weighted Projection Regression (LWPR) [47] or also Gaussian Processes (GP)
[31]. These techniques were used for very different purposes, therefore it is difficult to
perform a relevant comparison. Nevertheless, the robotics field has often used regression
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algorithms for different problems, such as learning of mechanical models of robots. Sigaud
et al. published a survey on regression algorithms [147]. Among all algorithms presented in
this survey, LWPR is identified to be the most popular regression algorithm in the robotics
literature. However, whilst it is an efficient algorithm, it cannot provide information about
its confidence on the outputs, such as a variance. By contrast, GMR and GP allow to
return confidence on the outputs, and according to the survey they have rather equivalent
performances. However, GP seem to represent a more straightforward algorithm as it does
not require to partition the training dataset into subregions. This algorithm was therefore
preferred for the modelling of velocity profiles. Appendix B presents the principles of GP.

4.4.2 Gaussian Processes Based Pattern Extraction

Training Data

As the purpose is to learn velocity profiles, training data is necessary. It consists of n datasets
recorded using the experimental facilities described in Chapter 3, Section 3.3. These datasets
are defined such as Dtri = {Xtri, Y tri}ni=1 (see Figure 4.8a), with:

− Xtri the input training vector which corresponds to the measured vehicle pose Pt
during approach i.

− Y tri the input training vector which corresponds to the measured vehicle speed St
during approach i.

Each dataset Dtri is sampled with a frequency f , and starts l seconds before the driver starts
showing a reaction with regards to the stop intersection, i.e. l seconds before he starts to
push the brake pedal.

The full dataset D = {X, Y } that stores the n training datasets Dtri (see Figure 4.8b) is
defined such as:

− X =


Xtr1

Xtr2

...

Xtrm

 = {xj}mj=1

− Y =


Y tr1

Y tr2

...

Y trm

 = {yj}mj=1

− m =
n∑
i=1

(sizeof(Xtri)) = ∑
i=1

(sizeof(Y tri)) the size of vectors X and Y .
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(a) Example of a dataset Dtri containing 15 ap-
proaches.
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(b) Example of dataset D, storing all datasets Dtri

after sampling (f = 1Hz).

Figure 4.8: Example of a dataset before and after sampling.

Correction Matrix R

As presented in Appendix B Section B.2, basic Gaussian Processes assume that output
variance is constant over all the dataset. This assumption is rarely valid on real life case
studies, it was therefore chosen to consider heteroscedastic variance.
To generate the variance correction matrix R, it is necessary to estimate the output variance
rj(xj) for each input xi of the training dataset D. For this purpose, the same method as the
one proposed by [139] is used. This method can be described through the following steps:

1. A basic Gaussian Process GPtri is modelled for each of the n training datasets Dtri.

2. For each training input xj from dataset D, n output predictions y∗i,j are computed
using the n GP GPtri.

3. The empirical variance rj = 1
n−1

n∑
i=1

(
ȳj − y∗i,j

)2
is then computed for each training input

xj, with ȳj the mean of the n predicted values y∗i,j. Figure 4.9a gives an example of
graphical representation of rj = f(xj).

4. The vector V = {rj}mj=1 is then obtained and used to define the m × m matrix
R = diag(V ), the covariance correction matrix related to input dependent variance.

Correction Matrix P

As presented in Appendix B, Section B.3, basic Gaussian Processes assume that inputs do
not suffer from noise. This assumption is, by far, not valid for the chosen case study as GP
inputs are fed by the noisy vehicle pose measurement Pobst. The noise σx is assumed to be
constant.
To generate the variance correction matrix P related to the noise σx that all inputs xj of
dataset D suffer from, the same method as the one proposed in [99] is used. This method

85



Chapter 4 Bayesian Risk Assessment Using Vehicle State Observations

−70 −60 −50 −40 −30 −20 −10 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Vehicle/Pose/(m)

E
st

im
at

ed
/v

ar
ia

nc
e/

of
/s

pe
ed

/(
m

/s
)2

(a) Example of graphical representation of variance on
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Figure 4.9: Example of estimated variance and derivative functions necessary for the com-
putation of the covariance correction matrices R and P .

can be described through the following steps:
1. A basic Gaussian Process GPd is performed on the dataset D to get the prediction

output vector Y ∗ =
{
y∗j
}m
j=1

with respect to the input vector X.

2. The output derivative ∆Y ∗ =
{
δy∗j

}m
j=1

are then computed with respect to Y ∗. Figure
4.9b gives an example of graphical representation of δy∗j = f(xj).

3. The m ×m matrix P = diag(∆Y ∗Σx∆Y ∗T ) is then computed as the covariance cor-
rection matrix related to noisy inputs, with Σx = diag(σx) and ∆Y ∗T the transpose of
∆Y ∗.

4.4.3 Results

The results presented in this Section were obtained through data recorded in an experimental
vehicle, using the facilities described in Chapter 3, Section 3.3. The dataset contains more
than 320 approaches to stop intersections performed by 4 different drivers who have different
driving styles. From this data, only a limited number of runs were used to learn velocity
profiles.

Extracted Pattern

The three GP solutions (GP without correction matrix, GP with correction matrix R, and
GP with correction matrices R and P ) which would enable to learn velocity profiles were
applied. Figures 4.10a, 4.10b and 4.10c show a comparison of the three GP regressions
applied on a dataset composed by n = 15 randomly chosen runs, which were performed by
the same driver. It is noticeable that:
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(a) Basic homoscedastic Gaussian Process regres-
sion with noiseless inputs.
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(b) Heteroscedastic Gaussian Process regression
with noiseless inputs.
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(c) Heteroscedastic Gaussian Process regression
with noisy inputs.
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Figure 4.10: Results of GP regressions. The dataset is represented by blue dots. The GP
mean is represented by thick lines, and 2σ uncertainty is represented by thin
lines.
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− All 3 methods enable to compute continuous and smooth curves describing the average
vehicle speed (the mean µ) with respect to the distance to the intersection. Moreover,
at first glance, these mean curves are coherent with the training dataset.

− The basic homoscedastic GP regression shows an underestimated variance as several
points of the dataset are not included inside the variance envelope (the noise level σn
was set such as σn = 5, see Figure 4.10a). It would be possible to increase the value
of the noise level, but it would certainly result in an overestimated variance for some
areas of inputs x∗.

− The heteroscedastic GP regression which does not considers noisy inputs shows a vari-
ance that models the dispersion of the training points better than the basic homo-
scedastic GP, as most of training points are included inside the variance envelope.
However, the projection of the variance on the x axis (called σprojx) when x ≈ 0 is
low (σprojx < 1m on the example given in Figure 4.10b). This value may be smaller
than σx, the uncertainty on the measurement of the vehicle pose. In the given example,
σx = 3m >> 1m, it is therefore pertinent to consider this noise during the GP training.

− As expected, the differences between GP which consider noisy inputs and GP which
consider noiseless inputs are visible only when the derivative of the mean is different
from 0. Thus, during the deceleration phase (x ≈ 0 ), the projection of the variance
on the x axis is greater than if noiseless inputs were considered. In the example given
in Figure 4.10c, this value was measured such as σprojx ≈ 3m. This matches with
σx = 3m, the uncertainty on vehicle pose measurements.

Comparison Between Drivers

The main motivation to learn velocity profiles is to make it possible to easily customize
ADAS for each driver. Figure 4.10d shows the learnt velocity profiles of 3 drivers, with
different driving styles, approaching to the same intersection. Large differences between
these three profiles are visible, as the sportier the driver, the later he starts to decelerate.
Gaussian processes therefore enable to take into consideration the differences which may
exist between drivers.

Comparison with Generic Profiles

The most conventional velocity profiles which are used by ADAS are generic, therefore it it
proposed to compare them with profiles learnt from drivers. The generic profile that is used
for this comparison assumes a constant acceleration a = −2.4m/s2 until the vehicle stops.
This acceleration is the average deceleration that vehicles undergo when drivers intend to
stop at an intersection [163].
Figure 4.10e shows the comparison between a generic profile and a profile learnt for a rather
relaxed driver. It is noticeable that the generic profile was designed overestimating the
deceleration rate of the driver. If such a profile was used by an ADAS to perform risk
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assessment, in the case of dangerous situations, the situation would be detected as dangerous
much later than if a customized profile was used.

Figure 4.10f shows the comparison between a generic profile and a profile learnt for a rather
sporty driver. It is noticeable that the generic profile was designed underestimating the
deceleration rate of the driver. Contrary to the case of relaxed drivers, if such a profile
was used by an ADAS to perform risk assessment, in the case of dangerous situations, false
alarms may occur often.

Finally, when generic profiles are used, it is difficult to quantify the variance on the vehicle
velocity. Most of the time, the only solution is to define it manually, without pertinent
justification. The problem no longer exists when GP are used to model velocity profiles,
as they enable to quantify uncertainty on the learnt vehicle velocity in a straightforward
manner.

4.4.4 Discussion

The results show that Gaussian Processes represent a tool that is well suited to learn ve-
locity profiles of individual drivers. They enable to model accurately the driver patterns,
considering uncertainties which exist due to the driver and the quality of the sensors. In that
way, heteroscedastic GP which consider noisy inputs seem to be the most suitable version
of GP to solve the problem.

For real time application, it is of importance to keep in mind that the computational cost
of GP may be high, due to the necessary inversion of covariance matrix K (or K + R + P

if the most elaborate version of GP is used), coming at the cost O(n3). The bigger the
training dataset, the more expensive GP predictions. A compromise has therefore to be
found between a large amount of training data (i.e. that leads to more accurate trained
models) and a reasonable computational cost. An alternative that consists in separating
the training data into several regions and in applying GP to each region can be used. This
solution is called Local Gaussian Processes (LGP) [139], but is not investigated in this thesis.

Finally, learnt velocity profiles must not be considered as perfect driver models, and must
be used with caution if they are exploited within other frameworks (e.g. risk estimation).
As discussed in Chapter 1, the driver behaviour may depend on several factors, such as his
general state or external conditions. For pattern learning purposes, it is therefore better to
use a training dataset that is representative of different driving situations. This would make
it necessary to use a wide dataset, implying significant time necessary to collect data, and
the use of techniques such as LGP to limit the computational cost of GP. Nevertheless, as
it would be too long and difficult to get enough data covering all driving situations, it is
better to use a limited dataset for the learning phase, and to design the stakeholder systems
so they do not over-trust customized patterns, and only use them as indicators.
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4.5 Experimental Evaluation of the Bayesian Network
Framework

4.5.1 Experiment

Purpose

This section aims to evaluate the Bayesian framework ability to provide each of the three
types of assistance in case of situations leading to dangerous situations. This evaluation is
performed twice, considering the two following approaches:

− Assuming that all driver are the same, and therefore using generic velocity profiles to
set the parametric equation of the true vehicle speed N (µstopS , σstopS ) and N (µgoS , σ

go
S )

given by Equation 4.13. The manner how to generate generic velocity profiles is the
same as the one used by [90]. It is detailed in Appendix C. In the following of this
Chapter, the BN designed with this approach will be called Model 1.

− Considering that all drivers are different, and therefore use customized velocity pro-
files to set the parametric equation of the true vehicle speed N (µstopS , σstopS ) given by
Equation 4.13. Velocity profiles learnt with Gaussian Processes are used. For each
driver who participated to the experimentation, a number n = 15 runs where used for
the training process. As violating a stop is a rare event, it is not pertinent to learn
velocity profiles when the driver does not intend to stop. Generic profiles are therefore
used to model N (µgoS , σ

go
S ). In the following of this Chapter, the BN designed with this

approach will be called Model 2.

Inferences

A dataset containing 260 runs (130 for which the driver intends to stop, 130 for which the
driver intends to go), recorded with 4 different drivers, with different styles was used. For
each recorded run, the following probabilities were computed through the Bayesian network:

− P ([Actt = pertinent]|Sm0:t, Pm0:t), the probability that performing automatic actu-
ation at time t is pertinent.

− P ([Wart = pertinent]|Sm0:t, Pm0:t), the probability that providing a warning to the
driver at time t is pertinent.

− P ([Advt = pertinent]|Sm0:t, Pm0:t), the probability that providing an advice to the
driver at time t is pertinent.

All inferences were performed using a particle filter running with N = 400 particles.
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Figure 4.11: Sensitivity of the risk assessment.

4.5.2 Performance Evaluation

Metrics

To take the decision to provide assistance or not, binary outputs are necessary. It is therefore
necessary to define a threshold λ ∈ [0, 1] that will define the values of probabilities referring
to dangerous situations and those referring to safe situations. It is illustrated by Figure 4.11.
The performances of such systems are highly dependent on the value that is set for λ. To
evaluate these performances, metrics have to be used. Those are defined as follows:
A too low value will favour the rate of true detections of dangerous situations, but will also
favour the rate of inopportune detections. On the contrary, a too high value will favour the
rate of true detections of safe situations, but will also favour the rate of missed detections
of dangerous situations. As a consequence, a compromise has to be found for the value of λ
to get a maximum of True Positive detections of dangerous situations while keeping low the
number of False Positive.

One common manner to optimize the value of λ consists in computing the so-called Recall
and Precision indicators for a given dataset. They are computed as follows:

Recall(λ) = TP (λ)
TP (λ) + FN(λ) (4.19)

Precision(λ) = TP (λ)
TP (λ) + FP (λ) (4.20)

with:

− TP the number of True Positive, i.e. the number of correct detections of dangerous
situations.
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− FN the number of False Negative, i.e. the number of missed detections of dangerous
situations.

− FP the number of False Positive, i.e. the number of inopportune detections of danger-
ous situations.

Strategies

Optimized values of λ are reached when Recall(λ) = 1 and Precision(λ) = 1. For the
dataset containing safe and dangerous situations, it means that all dangerous situations are
classified by the model as dangerous situations, and that all safe situations are classified by
the model as safe situations. It may happen that there is no value of λ that satisfies this
criterion. In this case, one strategy has to be chosen between:

1. Choosing λ so that a maximum of dangerous situations are detected (i.e. take λ when
Recall(λ) is at its greatest)

2. Choosing λ so that a minimum of inopportune detection of dangerous situations hap-
pens (i.e. take λ when Precision(λ) is at its greatest).

3. Choosing λ so that a compromise between TP, FN and FP is found.

In this thesis, priority is given to the 2nd strategy when Precision(λ) = 1 can be reached.
Otherwise, a compromise between TP, FN and FP is found. As far as possible, a maximum
rate of 5% of false positive is tolerated, otherwise the value of λ for which the precision is
the greatest is selected.

4.5.3 Qualitative Results

This paragraph aims to show and explain how the Bayesian Network behaves. All details are
given in the case of a safe situation, then in the case of a risk situation. As curves obtained
with generic velocity profiles are rather similar to curves obtained with customized velocity
profiles, only BN results obtained with customized profiles are shown.

Safe Situation

Figure 4.12 presents all observed and inferred data in the case of a safe situation.
Figure 4.12a shows the vehicle speed and the velocity profile that is expected when the
driver intends to stop at the intersection. It is noticeable that the vehicle speed matches
with the velocity profile, therefore it means that the probability that the driver intends to
stop P ([IMt = stop]|obs) is high.

Figure 4.12b shows intermediate probabilities which are inferred within the BN. The prob-
ability that the situation is risky, defined by P ([IMt = go], [EMt = stop]|obs) stays low all
along the run. This is expected has the vehicle speed leads to believe that the driver has the
intention to stop.

92



4.5 Experimental Evaluation of the Bayesian Network Framework

Figure 4.12b also shows the probabilities on the state of indicators τassistance. The probability
P ([τadvicet = good]|obs) starts to increase from P ' 40m and reaches its top at P ' 25m. This
happens because the vehicle speed and position satisfy the conditions for τassistance = good

(c.f. Figure 4.7 in Section 4.3.3). By contrast, P ([τwarningt = good]|obs) stays rather low, and
P ([τactuationt = good]|obs) is equal to zeros all along the run.

Finally, Figure 4.12c shows for each type of assistance, the probability that assistance
is pertinent. It is noticeable that the probabilities P ([Actt = pertinent]|Sm0:t, Pm0:t),
P ([Wart = pertinent]|Sm0:t, Pm0:t) and P ([Advt = pertinent]|Sm0:t, Pm0:t) stay low all
along the run. This is because no risk is detected, since P ([IMt = go], [EMt = stop]|obs)
stays low. Therefore, for this example of safe situation, the BN estimates that it is not
pertinent to assist the driver.

Risk Situation

Figure 4.13 presents all observed and inferred data in the case of a risk situation.

Figure 4.13a shows the vehicle speed and the velocity profile that is expected when the driver
intends to stop at the intersection. It is noticeable that the vehicle speed does not match
with the velocity profile, therefore it means that the probability that the driver intends to
stop P ([IMt = stop]|obs) is low.

Figure 4.13b shows intermediate probabilities which are inferred within the BN. The prob-
ability that the situation is risky, defined by P ([IMt = go], [EMt = stop]|obs) is high (' 0.7)
and increases to 1 from P ' 30m as the vehicle velocity leaves the velocity profile envelope
shown in Figure 4.13a. It is inferred that the driver does not have intention to stop, and
thus that the situation is risky.

Figure 4.13b also shows the probabilities on the state of indicators τassistance. The probability
P ([τadvicet = good]|obs) starts to increase from P ' 45m and reaches its top at P ' 35m.
Moreover, P ([τwarningt = good]|obs) starts to increase at P ' 25m, and reaches its top at
P ' 20m. Finally, P ([τactuationt = good]|obs) starts to increase at P ' 15m and reaches its
top at P ' 10m. Therefore, in case of inferred risk situation, each type of assistance would
be considered as pertinent at different times.

Finally, Figure 4.13c shows the probability that assistance is pertinent, for each type of assist-
ance. It is noticeable that the probabilities P ([Actt = pertinent]|Sm0:t, Pm0:t), P ([Wart =
pertinent]|Sm0:t, Pm0:t) and P ([Advt = pertinent]|Sm0:t, Pm0:t) are high at different times.
Moreover, all of them are high during short time intervals. Therefore, for this example of
risk situation, the BN estimates that it would be pertinent to assist the driver through the
three types of assistance.
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(a) Vehicle speed and velocity profile with respect
to the vehicle pose.

−60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VehiclevPosevEm,

P
ro

ba
bi

lit
y

PE[τadvice=good]|obs,

PE[τwarning=good]|obs,

PE[τactuation=good]|obs,
PEEE

t
=1,,vEI

t
=0,,

(b) Transitional probabilities with respect to the
vehicle pose.
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(c) Probabilities that assistance is pertinent with
respect to the vehicle pose.

Figure 4.12: Example of observed and in-
ferred data in the case of a
safe situation.
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(a) Vehicle speed and velocity profile with respect
to the vehicle pose.
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(b) Transitional probabilities with respect to the
vehicle pose.
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Figure 4.13: Example of observed and in-
ferred data in the case of a
risk situation.
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Discussion

In the examples presented above, the BN behaves as it was expected to behave. In the
case of a safe situation, the probability that any type of assistance is pertinent stays low all
along the run. On the contrary, in the case of a risk situation, the BN is able to determine
precisely the time laps at which each type of assistance is pertinent. The probabilities which
represent the pertinence of each type of assistance have a clear peak indicating the best time
to provide assistance.
In Figure 4.13c, the curve which describes P ([Advt = pertinent]|Sm0:t, Pm0:t) has an average
width of about 15m, which represents a time of 1.8sec as the vehicle moves at 30km/h.
In addition, the curves which describe P ([Wart = pertinent]|Sm0:t, Pm0:t) and P ([Actt =
pertinent]|Sm0:t, Pm0:t) have an average width of about 8m which represents a time of 1sec.
It shows that time lapses during which assistance can be considered as pertinent are short.

4.5.4 Quantitative Results

4.5.4.1 Performance Evaluation

Each run present in the dataset was used as input of the Bayesian Network. For each piece
of data, the BN was used twice: once exploiting Model 1 (i.e. generic velocity profiles),
and once using Model 2 (i.e. customized velocity profiles). A velocity profile was previously
learnt for each driver. When customized velocity profiles are used, the profile learnt for the
corresponding driver is used.

Optimized values of the threshold λ, which represent the sensitivity of the risk assessment
had to be found. All runs available in the dataset are labelled either safe or dangerous,
therefore it was possible to evaluate TP, FN and FP, and thus the value of the Recall and
of the Precision for a given value of λ. Figure 4.14 shows the evolution of the Precision and
of the Recall for the three types of assistance, for Model 1 and Model 2.

For Model 1

Figure 4.14a shows that the optimized value for the threshold is obtained for λactuation = 0.15,
leading to Precision(λactuation) = 1 and Recall(λactuation) = 0.88.
Figure 4.14b shows that the optimized value for the threshold is obtained for λwarning = 0.20,
leading to Precision(λwarning) = 1 and Recall(λwarning) = 0.02.

Figure 4.14c shows that there is no value of λadvice for which Precision(λadvice) = 1. The
highest value for Precision is 0.5, so λadvice was chosen so the Recall is the highest. Thus,
λadvice = 0.10 was chosen, leading to Precision(λadvice) = 0.5 and Recall(λadvice) = 1. This
“optimized” value of λadvice leads to a rate of 100% of true positive, with a rate of 100%
of false positive. It means that for all approaches to an intersection (safe and risky), the
system will provide assistance. This makes it totally useless as the driver cannot trust it.

95



Chapter 4 Bayesian Risk Assessment Using Vehicle State Observations

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Actuation

V
al

ue

λ
Actuation

= 0.15

P = 1

R = 0.88

Precision
Recall

(a) For Model 1 in the case of ac-
tuation assistance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Warning

V
al

ue
λ

Warning
= 0.2

P = 1

R = 0.02

Precision
Recall

(b) For Model 1 in the case of
warning assistance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Advice

V
al

ue

λ
Advice

= 0.10

P = 0.5

R = 1
Precision
Recall

(c) For Model 1 in the case of ad-
vice assistance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Actuation

V
al

ue

λ
Actuation

= 0.2

P = 1 R = 1

Precision
Recall

(d) For Model 2 in the case of
actuation assistance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Warning

V
al

ue

λ
Warning

= 0.6

P = 1

R = 0.46

Precision
Recall

(e) For Model 2 in the case of
warning assistance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ
Advice

V
al

ue

λ
Advice

= 0.6

P = 0.90

R = 0.56

Precision
Recall

(f) For Model 2 in the case of ad-
vice assistance.

Figure 4.14: Recall and Precision curves for optimization of threshold lAssistance.

It is therefore considered that advice assistance cannot be provided by Model 1, thus both
rates of true positive and false positive are set to 0%. This is illustrated by Figure 4.16e.

For Model 2

Figure 4.14d shows that there is a a large range for which the value of λactuation allows for
Precision(λactuation) = 1 and Recall(λactuation) = 1. Finally λactuation = 0.2 was chosen as
an average value of this range.
Figure 4.14e shows that there are several values of λwarning leading to Precision(λwarning) =
1. λwarning was therefore chosen so that Recall(λwarning) is the highest. Thus, λwarning = 0.6
was chosen, leading to Precision(λwarning) = 1 and Recall(λwarning) = 0.46.

Figure 4.14f shows that there is no value of λadvice for which Precision(λadvice) = 1. A com-
promise between TP, FN and FP was found for λadvice = 0.6 which leads to Precision(λadvice) =
0.9 and Recall(λadvice) = 0.56.
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Figure 4.15: ROC curves

4.5.4.2 Results

Figure 4.15 shows the ROC curves for each type of assistance (Automatic Actuation, Warning
and Advice), for Model 1 and Model 2. It is noticeable that the performances obtained with
Model 2 are better than those obtained with Model 1 , as the curves are closer to the point
(False Positive Rate = 1, True Positive Rate = 1).

The results obtained with values of λ chosen in last Paragraph are shown by Figures 4.16
and 4.17.

Automatic Actuation Based Assistance

Figure 4.16a shows the performances of Model 1 obtained for the detection of dangerous
situations, leading to the activation of automatic emergency braking. The performances are
very good as the rate of 88% of true positives is reached, with a rate of false positives at 0%.

Figure 4.16b shows the same performances for Model 2. They are better than those obtained
for Model 1 as the rate of true positives reached 100%, with a rate of false positives at 0%.
Therefore, it is noticeable that using customized velocity profiles improves the performances
of the BN for the detection of dangerous situations, leading to the activation of automatic
emergency braking.

Figures 4.17a and 4.17b show the repartition of the acceleration that would be necessary to
stop on time once decision has been taken to perform automatic emergency braking in the
case of Model 1 and Model 2. These accelerations match with the acceleration which are
expected (see red windows on Figures), even if they are a bit smoother than expected.
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(a) Performances of the BN with Model 1 in the
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(d) Performances of the BN with Model 2 in the
case of warning assistance.
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(e) Performances of the BN with Model 1 in the
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Figure 4.16: Comparison of the performances of the BN for the three types of assistance,
considering Model 1 and Model 2 for the velocity profiles.
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(a) Repartition of acceleration necessary to stop on
time, using Model 1 in the case of automatic
actuation assistance.
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(b) Repartition of acceleration necessary to stop
on time, using Model 2 in the case of automatic
actuation assistance.
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(c) Repartition of acceleration necessary to stop
on time, using Model 1 in the case of warning
assistance.
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(d) Repartition of acceleration necessary to stop
on time, using Model 2 in the case of warning
assistance.
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(e) Repartition of acceleration necessary to stop
on time, using Model 1 in the case of advice
assistance.
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Figure 4.17: Comparison of the repartition of acceleration that the vehicle has to undergo for
the three types of assistance, considering Model 1 and Model 2 for the velocity
profiles. 99
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Warning Based Assistance

Figure 4.16c shows the performances of Model 1 obtained for the detection of dangerous
situations, leading to assistance in the form of warning. The performances are bad as the
rate of only 2% of true positives is reached, with a rate of false positives at 0%.
Figure 4.16d shows the same performances for Model 2. They are better than those obtained
for Model 1 as the rate of true positives reached 46%, with a rate of false positives at 0%.
Therefore, it is noticeable that using customized velocity profiles improves the performances
of the BN for the detection of dangerous situations, leading to assistance in the form of
warnings.

Figures 4.17c and 4.17d show the repartition of the acceleration that would be necessary
to stop on time ones decision has been taken to warn the driver, in the case of Model 1
and Model 2. These accelerations match with the acceleration which are expected (see red
windows on Figures).

Advices Based Assistance

Figure 4.16e shows the performances of Model 1 obtained for the detection of dangerous
situations, leading to assistance in the form of advices. As explained a few paragraphs
above, there is no values of Precision and Recall that allow for acceptable performances.
Therefore, it is assumed that the system cannot be used, and the rate of true positive and
false positive were both set to 0%.

Figure 4.16f shows the same performances for Model 2. They are better than those obtained
for Model 1 as the rate of true positives reached 57%, with a rate of false positives of 6%.
Therefore, it is noticeable that using customized velocity profiles improves the performances
of the BN for the detection of dangerous situations, leading to assistance in the form of
advices.

Figures 4.17e and 4.17f show the repartition of the acceleration that would be necessary to
stop on time once decision has been taken to provide the driver with an advice, in the case
of Model 1 and Model 2. As Model 1 cannot provide advice assistance, no repartition of
acceleration can be shown. However, for Model 2, the accelerations match with the acceler-
ation which are expected (see red windows on Figures).

4.5.5 Discussion

The results presented above show that using customized velocity profiles to infer the driver
intention has a significant impact on the performances of the BN. While differences are
not meaningful in the case of automatic actuation assistance, differences are indisputable
in the case of warning and advice assistance. Using a priori information about the driver
usual manner to approach to a stop intersection helps estimate his intention to stop more
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Figure 4.18: Influence of the uncertainties on the vehicle pose on the position at which
assistance is triggered.

accurately than if generic profiles are used. Therefore, the detection of risks is also performed
with more accuracy.

The accelerations which would be necessary to stop on time once decision has been taken
to provide assistance may be smaller than expected. It is particularly visible in Figures
4.16a and 4.16b. This is not an issue as it is better to undergo smaller accelerations than
higher accelerations, however it is interesting to understand why this happens. Figure 4.18
illustrates these reasons. The probability that assistance is pertinent at time t depends on
the state of the indicator τassistancet . This indicator, when it is represented with respect to the
vehicle pose, ignoring uncertainties on position, looks like a rectangular function. However,
in real life there is a significant uncertainty on the vehicle pose. The state of indicator
τassistancet is therefore the convolution of the rectangular function (no uncertainty on vehicle
pose) with the Gaussian curve that represents the distribution of error on the vehicle pose.
The curve that represents the state of τassistancet is thus wider than the rectangular one,
which means that for low values of threshold λassistance, assistance is triggered earlier. The
acceleration necessary to stop on time is therefore reduced.

In the case of Model 2, the learning of velocity profiles and the evaluation were performed
using data recorded on the same intersections. These intersections are similar, as both are
preceded by straight lines with same speed limitation. If the system was tested on other
intersections with different characteristics, but using the same learnt velocity profiles, the
performances would be poorer since the velocity profiles would not be well suited for the
intersections. Therefore, two approaches may be considered concerning the learnt velocity
profiles. The first one consists in learning a velocity profile for each intersection, which means
that risk assessment can be performed only on intersections located on roads on which the
driver is used to drive. The second one consists in taking benefits from repetitive journeys
to learn velocity profiles which can be used for risk assessment at unknown intersections. It
would be possible to store in a database several velocity profiles according to intersection
characteristics, and then to select the profile that suits best the intersection at which risk
assessment has to be performed.

Finally, while it was shown that using customized velocity profiles instead of generic profiles
shows promising performances, these performances are too poor to plan on taking bene-

101



Chapter 4 Bayesian Risk Assessment Using Vehicle State Observations

fits on them for warning and advice assistance. Therefore, other improvements should be
investigated.

4.6 Conclusion

This Chapter presented the extension of the Bayesian Network framework developed by
[90] for risk assessment. The extension was carried out to make the framework suitable for
industrial constraints, and for the case study consisting of approaches of a single vehicle to
stop intersections. The performances of the framework for the detection of risk situations,
and for the estimation of the pertinence of providing assistance were presented.

The extension of the BN framework was performed following two main guidelines. The first
one was to allow for the use of data sources compatible with car manufacturer constraints.
In this way, the use of low cost and noisy GNSS and of road level navigation maps imply that
only longitudinal manoeuvres could be considered by the framework. The second guideline
was to make the framework able to evaluate the pertinence of providing assistance (either
advice, warning or automatic actuation), based on the comfort of the driver and on the
braking limitations of the vehicle. The pertinence of assistance is therefore represented by a
conjunction variable present in the Bayesian Network.

Two approaches were considered in this Chapter. The first one assumes, as most conven-
tional systems, that all drivers react and behave in the same manner for a given situation.
This translates into the use of generic profiles to model the vehicle behaviour. The second
approach rejects this assumption and assumes that each driver has his own manner to react
and to behave for a given situation. This translates into the use of profiles, customized for
each driver, to model the vehicle behaviour. A method to learn velocity profiles, based on
the use of Gaussian Processes was proposed. It was shown that the method allows to model
driver patterns with precision and accuracy, considering the uncertainties the sensors suffer
from.

For both approaches, the framework was tested on its ability to trigger each of the three
types of assistance in case of risk situations. For this purpose, a dataset recorded in a stand-
ard passenger vehicle was used. For the dataset that was used, it is noticeable that the
framework is very good at triggering automatic actuation assistance with both generic and
customized driver profiles. On the contrary, when generic profiles are used, the framework is
not able to detect risk situation on time to trigger warning and advice assistance. When cus-
tomized profiles are used, performances are better as the framework is able to trigger warning
and advice assistance in about 50% of the cases. The interest of using customized driver
profiles for risk assessment purposes was therefore demonstrated, however the performances
shown is this Chapter are still too low to consider implementing the framework in that state
in a commercial vehicle. Chapter 5 proposes another extension of the Bayesian Network
framework which considers the driver actuations with the aim of improving performances.
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4.6 Conclusion

The intervals or allowed acceleration which define the pertinence of providing an advice in
case of risk situation were set manually. It was assumed that accelerations which can be
considered as comfortable for the driver depend on the acceleration he usually undergoes
when the situation is not a risk situation. As a perspective for the work led in this chapter,
it would be pertinent to set these intervals according to drivers feedbacks about what accel-
erations they consider as comfortable. It is likely that such tuning will help to ensure the
pertinence of the advices which will be provided.
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Bayesian Risk Assessment Using Vehicle
State Observations and Driver
Actuations
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5.1 Introduction

Chapter 4 showed that the use of vehicle state observations did not allow to provide the
driver with advice assistance with sufficient anticipation in many cases. This is due to the
limits of the observations and of the model which do not enable to infer risk situations early
enough. As shown in Figure 5.1, the purpose is to push the limits imposed by the vehicle
state observations in order to shift the moment at which it is possible to detect that it is
likely that the situation is at risk.

Advice Warning Auto Actuation

Time

Moment at which vehicle
state observation allow to
detect risk situations

Moment at which
risk situations have
to be detected

Figure 5.1: Time diagram showing time gaps dedicated to each type of assistance and mo-
ments of detection of risk situation.
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Figure 5.2: Response time.

When a vehicle is driven manually, there is a response time to accurately observe changes
on the vehicle state after the moment at which the driver actuates on the vehicle commands
(pedals and steering wheel). This is illustrated by Figure 5.2. In the case studied in Chapter
4, three main causes affect this response time: the vehicle response time, uncertainties on the
vehicle pose and uncertainties on the evolution models used within the Bayesian Network.
One manner to shorten this response time would be to reduce uncertainties on the evolution
models, but it would probably affect the performances of the Bayesian network.

Taking into consideration the driver as well as the vehicle and its environment at the same
moment helps to better infer driver intentions and therefore risk situations [156]. Thus, by
observing the manner how the driver is actuating on the vehicle commands through vehicle
CAN data, it would be possible to bypass the response time, and therefore it would help to
anticipate earlier what the vehicle will likely do. By incorporating the observations of the
driver’s actuations in the Bayesian network presented in Chapter 4, it would be possible to
detect risk situations early enough to provide the driver with advices instead of warnings or
automatic actuations. This hypothesis is applied for the same case study as the one chosen
in last Chapter, that is to say the approach of a single vehicle towards a stop intersection.

This Chapter is organized as follows. The manner how the Bayesian network is extended to
incorporate observations of the driver’s actuations is presented. Then, the model is evaluated
using data recorded in an experimental vehicle. All inferences are presented in details in the
case of a safe situation and of a risk situation. The performances of the new model for the
detection of risk situations that could lead to assistance in the form of advices are finally
presented and discussed.

5.2 Extension of the Bayesian Network Framework

This Section aims to detail how the Bayesian Network presented and discussed in Chapter
4 was extended to consider the driver actuations as part of the observations. The initial BN
does not consider the lateral motion of the vehicle, therefore it would be useless to consider
actuators having effect on the vehicle lateral dynamics. As a consequence, actuations on the
steering wheel were ignored, giving way to the state of the gas and brake pedals.
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Figure 5.3: Graphical representation
of the Bayesian network.

Table 5.1: Detail of all variables present in the BN.
The variables added in Chapter 4 are
shown in the blue area. The variables
added in this Chapter are shown in the
green area.
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5.2.1 Variable Definition

The graphical representation of the Bayesian framework is shown in Figure 5.3. It is similar
to the one used in Chapter 4, however the variables present in the conjunction nodes now
include the expected and intended reactions of the driver, plus the state of the control inputs
to the vehicle. The ensemble of the variables present in the Bayesian network is presented in
Table 5.1. The green shaded area represents the variables introduced in this Chapter, while
the blue shaded area represents the variables added to the initial BN in Chapter 4. Below,
the variables present in the initial BN are reminded, and the new variables are detailed.

Expected Manoeuvre

The term “manoeuvre” has to be cleared up, as from now, it concerns either the vehicle
or the driver. A manoeuvre related to the vehicle has to be understood as a the vehicle
behaviour impacting its physical state. For example, turning right, or making a stop are
considered as manoeuvres related to the vehicle. A manoeuvre related to the driver has to
be understood as an action, or an operation that the driver is performing. For example,
pushing a pedal, or turning the steering wheel are considered as manoeuvres related to the
driver.
In that way, the expected manoeuvre conjunction node stores one manoeuvre related to the
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vehicle, and one manoeuvre related to the driver, such as, at time t, En
t = (EMn

t , ER
n
t ).

They can be explained as follows:

− EMn
t ∈ {go, stop} the expected longitudinal manoeuvre of vehicle n. It is the same

variable as the one detailed in Chapter 4, Section 4.3.1. The vehicle can either be
expected to stop, or expected to go at the stop intersection.

− ERn
t ∈ {reaction, no reaction} the expected manoeuvre of the driver of vehicle n.

Here, the term “driver manoeuvre” has to be interpreted as the reaction that the
driver shows when he starts to interact with the stop intersection. Depending on the
context, the driver can therefore be expected, or not, to react.

Intended Manoeuvre

The variable that describes the intended manoeuvre It corresponds to the variable Et that
describes the expected manoeuvre. In that way, the intended manoeuvre at time t is defined
such as Int = (IMn

t , IR
n
t ), with:

− IMn
t ∈ {go, stop} the intended longitudinal manoeuvre of vehicle n. The driver can

either have the intention to stop, or to go at the stop intersection.

− IRn
t ∈ {reaction, no reaction} the intended reaction of the driver of vehicle n. The

driver can either react, or do not react to the stop intersection.

Vehicle Physical State

The physical state of vehicle n at time t is represented by φnt = (Snt , P n
t , B

n
t , G

n
t ), with:

− Snt ∈ R, the true speed of vehicle n.

− P n
t ∈ R, the true pose of vehicle n, which is represented in one dimension as the

distance to the coming intersection. More details were given in Chapter 3, Figure
3.2d.

− Bn
t ∈ {on, off}, the true state of the brake pedal of vehicle n. It is assumed that the

state of the brake pedal is binary. State on means that the driver pushes the brake
pedal, and state off means that the driver does not push the brake pedal.

− Gn
t ∈ {on, off}, the true state of the gas pedal of vehicle n. It is assumed that the

state of the gas pedal is binary. State on means that the driver pushes the gas pedal,
and state off means that the driver does not push the gas pedal.

Observations

The variable that describes the observations corresponds to the variable that describes the
physical state the vehicle. In that way, Zn

t = (Sobsnt , Pobsnt , Bobsnt , Gobsnt ) the measurements
performed on vehicle n at time t are defined such as:
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− Snobst ∈ R the measured vehicle speed of vehicle n. This data is collected to the
vehicle CAN-bus.

− P nobst ∈ R the measured pose of vehicle n. This data is returned by the navigation
system with respect to the digital map and the vehicle position provided by the GNSS.

− Bnobst ∈ {on, off}, the observed state of the brake pedal of vehicle n. This data is
collected from the vehicle CAN-bus.

− Gnobst ∈ {on, off}, the observed state of the gas pedal of vehicle n. This data is
collected from the vehicle CAN-bus.

Assistance

The Assistance conjunction node stores the same variables as in Chapter 4, namely:
− Actnt ∈ {not pertinent, pertinent} the relevance of performing automatic actuation on

vehicle n at time t..

− Warnt ∈ {not pertinent, pertinent} the relevance of warning the driver of vehicle n at
time t.

− Advnt ∈ {not pertinent, pertinent} the relevance of providing the driver of vehicle n
with an advice at time t.

5.2.2 Joint Distribution

For N vehicles, the joint distribution of the general model is given by Equation 4.1 (reminded
below). This paragraph aims to develop this equation with all variables presented in last
paragraph.

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (A0, E0, I0, φ0, Z0)

·
T∏
t=1
·
N∏
n=1

[P (En
t |Int−1, φ

n
t−1) · P (Int |φnt−1, I

n
t−1, E

n
t )

·P (φnt |φnt−1, I
n
t−1, I

n
t ) · P (Zn

t |φnt ) · P (Ant |En
t , I

n
t , φ

n
t )]

Expected Manoeuvre

The conjunction node representing the expected manoeuvre Et stores two variables which are
the expected vehicle manoeuvre EMt and the expected driver reaction ERt. These variables
depend on the intended manoeuvre and on the vehicle state at time t − 1. Moreover, they
are assumed to be conditionally independent given the same variables. The distribution on
the expected manoeuvre of vehicle n can therefore be written as follows:

P (En
t |It−1, φt−1) = P (EMn

t |Int−1, φ
n
t−1) · P (ERn

t |Int−1, φ
n
t−1) (5.1)
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Intended Manoeuvre

The conjunction node representing the intended manoeuvre It stores two variables which are
the intended vehicle manoeuvre IMt and the intended driver reaction IRt. These variables
depend on the intended manoeuvre and the vehicle state at time t− 1, and on the expected
manoeuvre at time t. Moreover, they are assumed to be conditionally independent given the
same variables. The distribution on the intended manoeuvre of vehicle n can therefore be
written as follows:

P (Int |φnt−1, I
n
t−1, E

n
t ) = P (IMn

t |φnt−1, I
n
t−1, E

n
t ) · P (IRn

t |φnt−1, I
n
t−1, E

n
t ) (5.2)

Vehicle Physical State

The conjunction node that represents the vehicle physical state φt stores four variables which
are the true vehicle speed St, the true vehicle pose Pt, the true brake pedal state Bt and the
true gas pedal state Gt. All these variables depend on the vehicle state at time t − 1, and
on the intended manoeuvre at times t and t− 1. The distribution on the state of vehicle n
can therefore be written as follows:

P (φnt |φnt−1, I
n
t−1, I

n
t ) = P (Snt |φnt−1, I

n
t−1, I

n
t ) · P (P n

t |φnt−1, I
n
t−1, I

n
t)

·P (Bn
t |φnt−1, I

n
t−1, I

n
t ) · P (Gn

t |φnt−1, I
n
t−1, I

n
t ) (5.3)

Observations

The conjunction node that represents the observations Zt stores fours variables which are
the observed vehicle speed Sobst, the observed vehicle pose Pobst, the observed brake pedal
state Bobst and the observed gas pedal state Gobst. All measurements are conditionally
independent given the physical quantities they are associated with. The distribution on the
observations on vehicle n can therefore be written as follows:

P (Zn
t |φnt ) = P (Sobsnt |Snt ) · P (Pobsnt |P n

t ) · P (Bobsnt |Bn
t ) · P (Gobsnt |Gn

t ) (5.4)
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Assistance

The conjunction node that represents the pertinence of providing assistance At stores three
variables which are the pertinence of performing automatic emergency braking Actt, the
pertinence of warning the driver Wart, and the pertinence of providing the driver with an
advice Advt. These variables depend on the expected manoeuvre, on the intended manoeuvre
and on the vehicle state at time t. They are assumed to be conditionally independent given
the variables they depend on. The probability that providing assistance in vehicle n is
pertinent can therefore be written as follows:

P (Ant |En
t , I

n
t , φ

n
t ) = P (Actnt |En

t , I
n
t , φ

n
t ) · P (Warnt |En

t , I
n
t , φ

n
t ) · P (Advnt |En

t , I
n
t , φ

n
t ) (5.5)

Final Joint Distribution

Equation 4.1 can finally be developed as follows:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (A0, E0, I0, φ0, Z0)

·
T∏
t=1
·
N∏
n=1

P (EMn
t |Int−1, φ

n
t−1) · P (ERn

t |Int−1, φ
n
t−1)

·P (IMn
t |φnt−1, I

n
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n
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n
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t )

·P (Snt |φnt−1, I
n
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n
t ) · P (P n

t |φnt−1, I
n
t−1, I

n
t )

·P (Bn
t |φnt−1, I

n
t−1, I

n
t ) · P (Gn

t |φnt−1, I
n
t−1, I

n
t )

·P (Sobsnt |Snt ) · P (Pobsnt |P n
t ) · P (Bobsnt |Bn

t ) · P (Gobsnt |Gn
t )

·P (Actnt |En
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n
t , φ

n
t ) · P (Warnt |En

t , I
n
t , φ

n
t )
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(5.6)

5.2.3 Parametric Forms

This part aims to detail all conditional probability terms whose general equations were not
given in the previous part. The proposed BN is an extension of the one presented in Chapter
4, therefore some conditional probability terms were already detailed. They are reminded
while the new probability terms or those which were modified are detailed.

Conditional Probabilities Already Defined in Section 4.3.3

− EMt ∈ {go, stop}, the expected vehicle manoeuvre at time t. See Equation 4.8.
− IMt ∈ {go, stop}, the intended vehicle manoeuvre at time t. See Equation 4.10 and

Table 5.2.
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Figure 5.4: Example of output of Algorithm 5.1 for a particular driver.

− St ∈ R, the true vehicle speed at time t. See Equation 4.13.

− Pt ∈ R, the true vehicle pose at time t. See Equation 4.11.

− Smt ∈ R, the measured vehicle speed at time t. See Equation 4.14.

− Pmt ∈ R, the measured vehicle pose at time t. See Equation 4.12.

Expected Driver Reaction

The evolution model of ERt, the expectation that the driver is reacting at time t, depends
on how early the driver usually reacts to a stop intersection. The moment at which a driver
reacts depends on γ, the average acceleration that he will have to undergo to stop on time.
The later the driver reacts, the higher the acceleration that he has to undergo is. This
acceleration depends on the driver driving style.
The approach that was chosen considers that in normal situations, drivers start to react as
early as they usually do. In other words, it means that drivers usually look to undergo accel-
erations that they are used to undergo, i.e. accelerations that they consider as comfortable.
The tenet is that if a time t the average acceleration that would be necessary to stop at the
intersection is higher than accelerations the driver usually undergoes, the driver is expected
to start to react at the same time.

It is therefore necessary to learn when drivers usually start to react to a stop intersection.
For this purpose, the average accelerations that the driver usually does not have to undergo
to stop are learnt. This is performed using Algorithm 5.1. It enables to determine the
relationship between average accelerations γ, and ψ the percentage of situations in which
the driver did not have to undergo average acceleration γ. This relationship is defined as
the driver dependent function f , defined such as ψ = f(γ). Figure 5.4 shows an example of
function f learnt for a particular driver.

At time t, the probability that the driver is expected to react, i.e. should be reacting, is
therefore derived from function f such as P (ERt|It−1, φt−1) = f(γ∗t ) = f(St−1, Pt−1). The
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Algorithm 5.1 Computation of percentage of situations in which the driver does not have
to undergo acceleration γ when he stops at an intersection.
Inputs: n training datasets Dn containing the vehicle State φt(Pt, St, Gt, Bt).

Outputs: Vehicle acceleration vector Γaverage and Percentage of situations vector Ψaverage

such as Ψaverage = f(Γaverage).

Begin
1 Γaverage = {γaveragem } = 0 : −0.1 : −10
2 Ψaverage = {ψaveragem } = zeros(sizeof(Γ))
3 For each value of n
4 Γn = {γn,m} = Γaverage
5 Ψn = {ψn,m} = Ψaverage

6 End For
7
8 For each dataset Dn
9 Find time t at which the driver starts to react (i.e. Gt = off)
10 Compute γn,t = − S2

t

2·Pt

11 For each value of m
12 If γn,t ≥ γn,m Then ψn,m = 1
13 Else ψn,m = 0
14 End For
15 End For
16
17 For each value of m
18 Compute average value of ψaveragem = 1

n

n∑
n=1

ψn,m

19 End For
20
21 Return Γaverage and Ψaverage

End
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Table 5.2: Conditional probabilities describing the intended driver reaction IRt.

IRt−1 ERt P ([IRt = reaction]|IRt−1, ERt) P ([IRt = no reaction]|IRt−1, ERt)
reaction reaction Pcomply 1− Pcomply
reaction no reaction Pcomply 1− Pcomply
no reaction reaction 0.5 0.5
no reaction no reaction 1− Pcomply Pcomply

vehicle pose Pt−1 and speed St−1 at time t − 1 are used to predict the vehicle pose P ∗t and
speed S∗t at time t, considering constant speed between t − 1 and t. The value of γ∗t can
therefore be estimated and used to determine the probability P (ERt|It−1, φt−1).

The conditional probability can be simplified as follows:

P (ERt|It−1, φt−1) = P (ERt|Pt−1, St−1) (5.7)

Intended Driver Reaction

The evolution model of IRt, the driver’s intention to react to the stop intersection at time t
is based on the comparison between the expected driver’s reaction at time t and the intended
driver’s reaction at time t− 1. The conditional probability is therefore simplified as follows:

P (IRt|φt−1, I t−1, Et) = P (IRt|IRt−1, ERt) (5.8)

This model assumes that the driver mostly complies with the behaviour he is expected to
have. This is represented through the parameter Pcomply. A high value of Pcomply means
that drivers usually react as early as usual. In the following, this parameter is set such as
Pcomply = 0.9.

In that way, it is modelled that if intention at time t − 1 and expectation at time t are
similar, the probability is high that intention at time t is the same as the one at time t− 1.
Moreover, it is modelled that if the driver starts reacting at time t− 1, the probability that
he will keep on reacting at time t is high. However, there is no prior assumption on intention
at time t when the driver was not reacting at time t−1 while he is expected to react at time
t. Table 5.2 summarizes these conditional probabilities.
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Table 5.3: Conditional probabilities describing the true state of the brake pedal Bt.

IRt P ([Bt = on]|IRt) P ([Bt = off ]|IRt)
reaction Pcomply 1− Pcomply
no reaction 0.5 0.5

True Brake Pedal State

The evolution model of Bt, the state of the brake pedal at time t is based on IRt, the
intention to react at time t. The conditional probability is therefore simplified as follows:

P (Bt|φt−1, I t−1, I t) = P (Bt|IRt) (5.9)

The model assumes that pushing the brake pedal is a sign of reaction. It means that if
the driver intends to react, the probability that he pushes the brake pedal is high. The
parameter Pcomply = 0.9 is used to model this probability. However, if the driver does not
intend to react, no prior assumption is done about the state of the brake pedal. Table 5.3
summarizes these conditional probabilities.

Observed Brake Pedal State

The measurement of the state of the brake pedal is collected from the vehicle CAN-bus. The
accuracy of the measurement is high enough to ignore uncertainties. A Dirac function is
used to model the measurement of the brake pedal state, such as:

P (Bobst|Bt) = δ(Bt −Bobst) (5.10)

True Gas Pedal State

The evolution model of Gt, the state of the gas pedal at time t is based on IRt, the intention
to react at time t. The conditional probability is therefore simplified as follows:

P (Gt|φt−1, I t−1, I t) = P (Gt|IRt) (5.11)

The model assumes that pushing the gas pedal is a sign of no reaction. It means that is the
driver pushes the gas pedal, the probability that he is not reacting is high. The parameter
Pcomply = 0.9 is used to model this probability. However, if the driver intends to react, no
prior assumption is done on the state of the gas pedal. Table 5.4 summarizes these condi-
tional probabilities.
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Table 5.4: Conditional probabilities describing the true state of the gas pedal Gt.

IRt P ([Gt = on]|IRt) P ([Gt = off ]|IRt)
reaction 0.5 0.5
no reaction Pcomply 1− Pcomply

Observed Gas Pedal State

The measurement of the state of the gas pedal is collected from the vehicle CAN-bus. The
accuracy of the measurement is high enough to ignore uncertainties. A Dirac function is
used to model the measurement of the gas pedal state, such as:

P (Gobst|Gt) = δ(Gt −Gobst) (5.12)

Pertinence of Advice

To estimate the pertinence of providing an advice, a similar approach as the one used to
estimate the pertinence of assistance in the BN presented in Chapter 4 is used. In that way,
indicator τadvicet ∈ {good, too late, too early} is determined following the method described
in Section 4.3.3. To best adapt the assistance to the driver, the variables asmoothmin and asmoothmax

which define the tolerated acceleration interval for advice assistance are learnt from the
driver and are set as follows:

− asmoothmax is set with the hardest deceleration that the driver is used to undergo when he
stops at a stop intersection. It is collected from training data.

− asmoothmin = η · asmoothmax with η > 1, which enables to tolerate deceleration a little bit
harder than the usual maximum deceleration. In the following, η is set manually such
as η = 1.5.

The estimation of risk is performed by checking whether the driver behaviour is suspicious.
Chapter 4 showed that comparing the intended and expected vehicle manoeuvre IMt and
EMt does not enable to detect risk situations early enough to assist the driver in the form
of advices. Thus, it was chosen not to use these variables to estimate the pertinence of
providing the driver with an advice.

Instead, a behaviour is considered as suspicious when the driver does not show any sign
leading to think that he is aware that he has to stop at the intersection. This is done by
comparing the intended driver reaction IRt and the expected driver reaction ERt. In that
way, the driver’s behaviour is considered as suspicious at time t as soon as IRt = no reaction

and ERt = reaction.
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The probability that it would be pertinent to give an advice to the driver can therefore be
written as follows:

P ([Advt = pertinent]|IRt, ERt, τ
advice
t ) =


1 if


([IRt = no reaction], ...

[ERt = reaction], ...
[τadvicet = good])

0 otherwise

(5.13)

The conditional probability describing the pertinence of providing the driver with an advice
at time t can be simplified as follows:

P (Advt|Et, It, φt) = P (Advt|ERt, IRt, St, Pt) (5.14)

Pertinence of Warning

It is considered that warning the driver is pertinent as soon as these two conditions are
satisfied at the same time:

− The comparison between the driver’s intended reaction IRt with the expected reaction
ERt shows that the driver’s behaviour is suspicious, i.e. the driver does not react while
he is expected to react. Moreover, the state of indicator τwarningt has to be good. It
is computed with values of ahardmin and ahardmax set manually with same values as those
described in Chapter 4, Subsection 4.3.3.

− Risk has been detected by comparing the intended vehicle manoeuvre IMt with the
expected one, EMt, i.e. by inferring that the driver does not have intention to stop
while he is expected to stop. Moreover, the state of indicator τwarningt has to be good.

The probability that it would be pertinent to warn the driver can therefore be written as
follows:

P ([Wart = pertinent]|IRt, ERt, IMt, EMt, τ
warning
t ) =


1 if

 ([IRt = no reaction], [ERt = reaction], ...
[IMt = go], [EMt = stop], [τwarningt = good])

0 otherwise

(5.15)
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The conditional probability describing the pertinence of warning the driver at time t can be
simplified as follows:

P (Wart|Et, It, φt) = P (Wart|ERt, IRt, EMt, IMt, St, Pt) (5.16)

Pertinence of Automatic Emergency Braking

The estimation of the pertinence of performing automatic emergency braking on the vehicle
is done using similar approach as the one described in Chapter 4, Subsection 4.3.3. The
state of indicator τactuationt is estimated using parameters ahardmin and ahardmax manually set with
same values as those described in Section 4.3.3. Risk is estimated by comparing the intended
vehicle manoeuvre IMt with the expected one, EMt. It is considered that if the last solution
to avoid an accident is last minute automatic emergency braking, then any sign of driver
reaction does not cast doubt on the pertinence of this assistance. Thus, the variables IRt and
ERt describing respectively the intended and expected driver reactions are not considered.

The probability that it would be pertinent to perform automatic emergency braking can
therefore be written as follows:

P ([Actt = pertinent]|IMt, EMt, τ
actuation
t ) =


1 if


([IMt = go], ...

[EMt = stop], ...
[τactuationt = good])

0 otherwise

(5.17)

The conditional probability describing the pertinence of performing automatic emergency
braking at time t can be simplified as follows:

P (Actt|Et, It, φt) = P (Actt|EMt, IMt, St, Pt) (5.18)
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Simplified Joint Probability

The joint probability can be simplified as follows:

P (A0:T , E0:T , I0:T , φ0:T , Z0:T ) = P (A0, E0, I0, φ0, Z0) ·
T∏
t=1
P (EMt|It−1, φt−1) · P (ERt|Pt−1, St−1)

·P (IMt|φt−1, I t−1, Et) · P (IRt|IRt−1, ERt)
·P (St|Pt−1, St−1, It) · P (Pt|Pt−1, St−1)
·P (Bt|IRt) · P (Gt|IRt)
·P (Sobst|St) · P (Pobst|Pt) · P (Bobst|Bt) · P (Gobst|Gt)
·P (Actt|EMt, IMt, St, Pt) · P (Advt|ERt, IRt, EMt, IMt, St, Pt)
·P (Advt|ERt, IRt, St, Pt)

(5.19)

5.3 Experimental Evaluation of the Bayesian Network
Framework

5.3.1 Experiment

Purpose

This Section aims to evaluate the performances of the Bayesian model presented in the last
Section to estimate for each type of assistance, how much it would be pertinent to assist the
driver in case of dangerous situation. The performances are evaluated following the method
described in Chapter 4, Subsection 4.5.2, based on the computation of the precision and
recall parameters.
The proposed approach aims to take advantage of the manner how drivers usually drive,
therefore it was necessary to learn driver patterns. For each driver, training was performed
using using a number n = 15 runs randomly selected within the dataset storing safe situ-
ations. This learned data is used for two purposes within the BN:

− The intended manoeuvre at time t, IMt, is estimated using personal velocity profiles
learnt with Gaussian Processes, presented in Chapter 4, Section 4.4. Those are used
to represent the vehicle speed that is expected when the driver intends to stop at the
intersection.

− The expected driver reaction at time t, ERt, is estimated thanks to statistics performed
on the acceleration γ that the vehicle usually undergoes when the driver intends to
stop. The method is presented in this Chapter in Subsection 5.2.3.
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Inferences

The same dataset as the one used in Section 4.5 is used (4 drivers, a total of 260 runs). For
each recorded run, the following probabilities were computed through the Bayesian network,
using a particle filter running with N = 400 particles:

− P ([Actt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t), the probability that performing auto-
matic emergency braking at time t is pertinent.

− P ([Wart = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t), the probability that warning the
driver at time t is pertinent.

− P ([Advt = pertinent]|Sm0:t, Pm0:t, Bm0:t, Gm0:t), the probability that providing the
driver with an advice at time t is pertinent.

5.3.2 Qualitative Results

This paragraph aims to show and to explain how the Bayesian network behaves. All details
are given in the case of a safe situation, then in the case of a risk situation, and a comparison
is finally presented.

5.3.2.1 Safe Situation

All observed and inferred data in the case of a safe situation are presented in Figure 5.5.
Figure 5.5a shows the vehicles speed and Figure 5.5b shows the state of the gas and brake
pedals.
Figure 5.5d shows the probabilities related to the driver reaction. The probability that the
driver is expected to react P ([ERt = reaction]|obs) starts to increase from Pt ' 40m as the
vehicle approaches to the intersection. Moreover, the probability that the driver is actually
reacting P ([IRt = reaction|obs) also starts to increase from Pt ' 35m as the driver starts
to release the gas pedal. The state of the gas pedal is shown in Figure 5.5b. The probability
P ([IRt = no reaction], [ERt = reaction]|obs) starts to increase a little bit because the driver
starts to react a bit later than expected. This probability does not have time to increase till
high probabilities, as it decreases to low probabilities as soon as the driver starts pushing
the brake pedal.
Figure 5.5e shows that the probability that the intended vehicle manoeuvre is not appropri-
ate, P ([IMt = go], [EMt = stop]|obs), stays low all over the run. This is due to the fact that
the vehicle speed matches with the vehicle speed expected when the driver intends to stop.
(see Figure 5.5a).

Advice

Figure 5.5c shows the probability P (τadvice = good). It shows a clear peak from Pt ' 25m
to Pt ' 10m.
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the vehicle pose.

−70 −60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VehicleRPoseR(m)

P
ro

ba
bi

lit
y

P([IR
t
=1]|obs)

P([ER
t
=1]|obs)

P([IR
t
=0],[ER

t
=1]|obs)

(d) Probabilities related to the driver’s reaction
with respect to the vehicle pose.

−70 −60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VehicleMPoseM(m)

P
ro

ba
bi

lit
y

P([IM
t
=0],[EM

t
=1]|obs)

(e) Probabilities related to the vehicle manoeuvre
with respect to the vehicle pose.

−70 −60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VehicledPosed(m)

P
ro

ba
bi

lit
y

P([Adv
t
=pertinent]|obs)

P([War
t
=pertinent]|obs)

P([Act
t
=pertinent]|obs)

(f) Probabilities that assistance is pertinent with
respect to the vehicle pose.

Figure 5.5: Example of observed and inferred data in the case of a safe situation.
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At the same moment, the probability P ([IRt = no reaction], [ERt = reaction]|obs) is low,
showing that the driver behaviour is not suspicious.

This means that the two conditions necessary to consider that providing an advice to the
driver is pertinent are not satisfied. Figure 5.5f shows that the probability P ([Advt =
pertinent]|obs) stays low all over the run, meaning that providing the driver with an advice
is not pertinent.

Warning

Figure 5.5c shows the probability P (τwarning = good). It shows a clear peak from Pt ' 20m
to Pt ' 5m. In case of inferred risk situation, time and physical constraints would be
compatible to warn the driver.

At the same moment the probability P ([IRt = no reaction], [ERt = reaction]|obs) is low,
showing that the driver reacts to the situation. Further, the probability P ([IMt = go], [EMt =
stop]|obs) is low as well, showing that the driver has the intention to stop.

This means that the conditions necessary to consider that providing warnings to the driver is
pertinent are not satisfied. Figure 5.5f shows that the probability P ([Wart = pertinent]|obs)
stays low all over the run, meaning that providing the driver with warnings is not pertinent.

Actuation

Figure 5.6c shows the probability P (τactuation = good). It does not show any peak all along
the run. In case of inferred risky situation, time and physical constraints would not be
compatible to perform automatic emergency braking.

At the same moment the probability P ([IMt = go], [EMt = stop]|obs) is low, showing that
the driver has the intention to stop.

That means that the conditions necessary to consider that performing automatic emergency
braking is pertinent are not satisfied. Figure 5.6f shows that the probability P ([Actt =
pertinent]|obs) stays low all over the run, meaning that triggering AEB is not pertinent.

5.3.2.2 Risk Situation

All observed and inferred data in the case of a safe situation are presented in Figure 5.6.
Figure 5.6a shows the vehicles speed and Figure 5.6b shows the state of the gas and brake
pedals.

Figure 5.6d shows the probabilities related to the driver reaction. The probability that
the driver is expected to react P ([ERt = reaction]|obs) starts to increase from Pt ' 50m
as the vehicle approaches to the intersection. Moreover, the probability that the driver is
reacting P ([IRt = reaction|obs) also starts to increase for a very short time because the
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driver briefly releases the gas pedal. As soon as he pushes again the pedal (visible in Figure
5.6b), this probability falls to zero. Therefore, the probability P ([IRt = no reaction], [ERt =
reaction]|obs) starts to increase from Pt ' 30m as the driver does not react as expected.
Figure 5.6e shows the probability that the intended vehicle manoeuvre is not appropriate,
P ([IMt = go], [EMt = stop]|obs). Until Pt ' 25m, this probability has an average value
as the vehicle speed partially matches with the speed that is expected (c.f. Figure 5.6a).
However, from Pt ' 25m, the probability increases to 1 has it is inferred that the driver does
not have intention to stop, while he is expected to stop.

Advice

Figure 5.6c shows the probability P (τadvice = good). It shows a clear peak from Pt ' 30m
to Pt ' 20m.
At the same moment the probability P ([IRt = no reaction], [ERt = reaction]|obs) is high,
showing that the driver behaviour is suspicious.
This means that the two conditions necessary to consider that providing an advice to
the driver is pertinent are satisfied. Figure 5.6f shows that the probability P ([Advt =
pertinent]|obs) is significant from Pt ' 30m and Pt ' 20m, meaning that it would be per-
tinent to provide the driver with an advice as long as the vehicle is located from 30 to 20m
to the intersection.

Warning

Figure 5.6c shows the probability P (τwarning = good). It shows a clear peak from Pt ' 25m
to Pt ' 15m. In case of inferred risk situation, time and physical constraints would be
compatible to warn the driver.
At the same moment the probability P ([IRt = no reaction], [ERt = reaction]|obs) is high,
showing that the driver does not show any reaction. Further, the probability P ([IMt =
go], [EMt = stop]|obs) is high, showing that the driver does not have the intention to stop.
This means that the conditions necessary to consider that providing warnings to the driver
is pertinent are satisfied. Figure 5.6f shows that the probability P ([Wart = pertinent]|obs)
is significant from Pt ' 25m and Pt ' 15m, meaning that it would be pertinent to warn the
driver as long as the vehicle is located from 25 to 15m to the intersection.

Actuation

Figure 5.6c shows the probability P (τactuation = good). It shows a clear peak from Pt ' 15m
to Pt ' 5m. In case of inferred risky situation, time and physical constraints would be
compatible to perform automatic emergency braking.
At the same moment the probability P ([IMt = go], [EMt = stop]|obs) is high, showing that
the driver does not have the intention to stop.
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with respect to the vehicle pose.
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Figure 5.6: Example of observed and inferred data in the case of a dangerous situation.
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That means that the conditions necessary to consider that performing automatic emer-
gency braking is pertinent are satisfied. Figure 5.6f shows that the probability P ([Actt =
pertinent]|obs) is significant from Pt ' 15m and Pt ' 5m, meaning that it would be pertinent
to perform AEB as long as the vehicle is located from 15 to 5m to the intersection.

5.3.2.3 Summary

The following points can be given as a concise summary of all information presented in the
two last subsections:

− In the case of a safe situation, the three probabilities describing the pertinence of the
three types of assistance stay very low all over the run.

− In the case of a risky situation, the three probabilities describing the pertinence of the
three types of assistance become significant at different times.

− The shape of the probability curves when assistance is inferred as pertinent show a clear
peak. It means that in case of risky situations, the BN is able to determine precise time
lapses during which assistance can be provided. On the illustrative example shown in
Figure 5.6, the width of the inferred curves is smaller than 10m, which represents a
time laps smaller than 1.2s as the vehicle moves with a speed of about 30km/h. Each
type of assistance can therefore be provided with relevance and integrity during 1s
time gaps.

5.3.3 Quantitative Results

5.3.3.1 Performance Evaluation

This paragraph aims to present the performances of the Bayesian model for the classification
of safe and risky situations, with the aim to provide the most pertinent assistance between
advice, warning and automatic braking. For this purpose, the same method as the one
presented in Chapter 4, Subsection 4.5.2 is used. It is based on the computation of the
Recall and Precision indicators.

Optimized values of the threshold λ, which represent the sensitivity of the risk assessment
had to be found. For this purpose, the Recall and Precision parameters were computed for
several values of λ. Figure 5.7 shows the evolution of the Recall and of the Precision with
respect to λ. Finally, the following optimized values were determined for all drivers, such as:

− Figure 5.7a shows that there is a large range for which the value of λactuation allows for
Precision(λactuation) = 1 and Recall(λactuation) = 1. Finally λactuation = 0.2 was chosen
as an average value of this range.

− Figure 5.7b shows that there is no value of λwarning that allows for Precision(λwarning) =
1 and Recall(λwarning) = 1. However, λwarning = 0.15 allows for Precision(λwarning) =
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Figure 5.7: Recall and Precision curves for optimization of threshold λAssistance.
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Figure 5.8: ROC curves

1 (i.e. no false alarm) and Recall(λwarning) = 0.84 (i.e. high detection rate). The value
λwarning = 0.15 was therefore chosen as the optimized value.

− Figure 5.7c shows that there is no value that allows for Precision(λadvice) = 1. There-
fore, a rate of false alarms lower than 5% is allowed. λadvice = 0.3 allows for Precision(λadvice) =
0.96 (i.e. 4% of false alarms with the dataset that is used) and Recall(λadvice) = 0.82
(i.e. high detection rate). The value λadvice = 0.3 was therefore chosen as the optimized
value.

5.3.3.2 Results

Figure 5.8 shows the ROC curves presenting the performances of this model for each of the
three types of assistance covered (Automatic Actuation, Warning and Advice). In addition,
it shows the ROC curves of the models presented in Chapter 4. For the sake of clarity, the
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models are designated as follows:

− Model 1 designates the original Bayesian network using vehicle state observations and
generic velocity profiles, presented in Chapter 4.

− Model 2 designates the original Bayesian network using vehicle state observations and
customized velocity profiles, presented in Chapter 4.

− Model 3 designates the extended Bayesian network using vehicle state and driver ac-
tuations observations plus customized driver profiles. This model is the one described
in this Chapter.

It is noticeable that Model 3 offers better performances than Model 1 and 2. It is con-
firmed by Figure 5.9 that shows the performances of the Bayesian network presented in this
Chapter. Finally, Figure 5.10 shows a comparison between the performances of this model
and those presented in Chapter 4.

Actuation

Figure 5.9a shows the performances of Model 3 obtained for the detection of risk situations,
leading to the activation of automatic emergency braking. The performances are excellent as
the rate of True Positive is at 100% (TP = 1), with a rate of False Positive at 0% (FP = 0).
Figure 5.10a shows that these performances are the same as those obtained for Model 2.
This was actually expected as the computation of P (Actt|Et, It, φt) in Model 3 is performed
in the same manner as it is performed in Model 2.

Figure 5.9b shows the repartition of the acceleration that would be necessary to stop on time
once decision has been taken to perform automatic emergency braking. The average accel-
eration is γ = −4.72m/s2 with a low standard deviation σγ = 0.43m/s2 . It is noticeable
that in general, the accelerations that the vehicle would undergo are a bit smoother than
those defining the range of emergency deceleration (−5 to −8m/s2, visible in red on the Fig-
ure). This light difference can be explained by the low value of the threshold λactuation = 0.2
coupled with the significant uncertainty on the vehicle pose. More details were given on this
issue in Chapter 4, Section 4.5.4.2 dealing with discussion.

Warning

Figure 5.9c shows the performances of Model 3 obtained for the detection of risk situations,
leading to assistance in the form of warnings. The performances are good as the rate of True
Positive is at 84% (TP = 0.84), with a rate of False Positive at 0% (FP = 0). Figure 5.10b
shows that these results are better that those obtained with Model 2 as the rate of True
Positive is nearly doubled (46% to 84%). This improvement was favoured by the manner
how the pertinence of warning the driver is estimated. That is, in Model 3 both vehicle state
and driver actuations are observed to estimate if the situation is risky, while Model 2 only
observes the vehicle state. The moment at which warning is triggered is the same for both
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Figure 5.9: Performances of the Bayesian model for the three types of assistance.
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Figure 5.10: Comparison between the performances of the three models presented in this
thesis.
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models, however the observation of the driver actuations allows to improve robustness in the
detection of risk situations. This is visible through the evolution of the Precision and Recall
indicators. For both models, it is possible to get Precision = 1, however Model 3 allows
for a better value of Recall than Model 2, which is synonym of lower rate of False Alarms
(Recall = 0.46 for Model 2, Recall = 0.84 for Model 3).

Figure 5.9d shows the repartition of the acceleration that would be necessary for the driver
to stop on time once decision has been taken to warn him. The average acceleration is
γ = −5.09m/s2 with a standard deviation σγ = 1.01m/s2 . In general, the accelerations
that the vehicle would undergo are a bit smoother than those defining the range of emer-
gency deceleration (−5 to −8m/s2, visible in red on the Figure). The reasons are the same
as those explained above in the case of automatic actuation assistance.

Advice

Figure 5.9e shows the performances of Model 3 obtained for the detection of risk situations,
leading to assistance in the form of advices. The performances are good as the rate of True
Positive is at 82% (TP = 0.82), with a rate of False Positive at 4% (FP = 0.04). Figure
5.10c shows that these results are better that those obtained with Model 2 as the rate of
True Positive gains 25% (57% to 82%). This improvement was favoured by the manner how
the pertinence of providing the driver with an advice is estimated. That is, in Model 3 the
driver actuations are observed to estimate if the situation is risky, while Model 2 observes the
vehicle state. When driver actuations are observed, the detection of suspicious behaviours
can be done earlier than with the vehicle state, and makes it possible to provide the driver
with early advices.

Figure 5.9f shows the repartition of the acceleration that would be necessary for the driver
to stop on time once decision has been taken to provide the driver with advices. The average
acceleration is γ = −2.64m/s2 with a low standard deviation σγ = 0.45m/s2 . The expected
accelerations interval that is shown in red in the Figure (−2.4 to −3.7m/s2) was determ-
ined as the average interval computed with each interval used for each driver. In general,
the accelerations that the vehicle would undergo are a bit smoother than those defining the
interval used within Model 3. The reasons are the same as those explained above in the case
of automatic actuation assistance.

5.3.4 Discussion

The results presented in this Section show that observing the driver actuations in addition
to the vehicle state has a significant impact on the moment at which risk situations can be
detected. As expected, this time shift allows to improve the ability of the Bayesian Network
framework to provide assistance in the form of warnings and advices. With the dataset which
was used for the evaluation, risk is detected early enough to provide warning assistance in
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84% of the cases, without any false alarm. Moreover, risk is detected early enough to provide
advice assistance in 82% of the cases, with 4% of false alarms in case of safe situations.

The dataset that was used to compute the performances of the model covers a large number
of situations with sometimes hesitant driver behaviours or noisy or incoherent observations.
Whilst the qualitative result graphs presented in Chapter show perfect inputs, the quantit-
ative results take into account all the noisy and incoherent inputs. Appendix D shows some
results obtained with such inputs. Given the good performances obtained, it is reasonable
to claim that the system is robust to noisy and incoherent inputs, especially in the case of
Warning and Automated Actuation assistances.

While a more significant dataset would be necessary to ensure the performances of Model 3,
it is reasonable to believe that an ADAS could take benefits from such a system. Actually,
risk is always detected accurately and early enough to make it possible to avoid a probable
accident by performing automatic actuation on the vehicle. The other types of assistance,
especially advice assistance, aim to avoid situations to become too risky and uncomfortable.
As they act as preventive assistance concerned to remain pertinent, it must not be considered
as a problem if the system is not able to provide an advice for less than 20% of risk situations.

It was showed that it is theoretically possible to trigger a driving assistance system that would
assist the driver in the form of advices. From the point of view of ergonomists, such a system
can be considered as a proactive system. To fully evaluate the pertinence and the added
value of the system, it would be necessary to make field trials in order to collect the drivers
feedback about the pertinence of the provided advices. For this purpose, a Human Machine
Interface (HMI) is necessary to provide information to the driver. Existing automotive HMI
were not designed for proactive systems, therefore the development of a new HMI is necessary.
Nevertheless, developing HMIs for proactive systems remains a challenge for the ergonomics
community. That implies further theoretical and methodological researches, however it is
not the scope of this thesis.

5.4 Conclusion

This Chapter presented a second extension of the Bayesian Network framework initially
presented in [90]. While Chapter 4 aimed to show the benefit of considering individual
driver patterns to perform risk assessment, this Chapter aimed to show the benefit of con-
sidering the driver actuations as additional observations. The performances of this extended
framework for the detection of risk situations and for the pertinence of providing assistance
was presented.

The extension of the framework was performed with the hypothesis that driver actuations,
as well as the vehicle state, are pertinent indicators to detect risk situations. In that way,
the framework presented in Chapter 4 was completed with variables related to the driver
actuations and to the driver reaction to the situation. Depending on the type of assistance
that is considered, risk can be assessed though the comparison of intended and expected
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manoeuvres, or through the comparison of intended and expected reactions. The pertinence
of each type of assistance is estimated.

The ability of the extended Bayesian Network framework to detect risk situation early enough
to provide each type of assistance was evaluated using dataset recorded in a passenger vehicle.
The performances were compared to those obtained with the models tested in Chapter 4,
with the aim of evaluating the benefits of considering the driver actuations. The results
showed that the performances of the Bayesian Network framework are better when the
driver actuations are considered. In the case of automatic emergency actuation assistance,
no improvement could be observed as performances already reached 100% of true positive
(with 0% of false positive). However, in the case of warning and advice assistance, significant
improvements were observed. With the dataset that was used for evaluation, warning and
advice assistance could be triggered more than 80% of the time, with a rate of false positive
lower than 5% (0% for warning assistance, 4% for advice assistance).

This Chapter showed that, for the chosen case study, risk can theoretically be assessed early
enough to trigger early assistance in the form of advices. A perspective for this work is to
make the framework work in real time inside a vehicle, in order to collect the feedback of
the drivers. These feedbacks will therefore enable to validate whether the time gaps which
are used to provide each type of assistance are well selected or not.
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Effect of Preventive Assistance on Other
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6.1 Introduction

Chapter 3 showed that the cohabitation of road users implies interactions between them.
Therefore, the action of a safety ADAS on a vehicle may have consequences on other in-
teracting vehicles. For example, if a vehicle follows another vehicle in which an automated
emergency braking is activated, this vehicle will also have to stop to avoid a rear-end col-
lision. Depending on the acceleration that the leading vehicle undergoes, and on other
parameters related to the following vehicle, the situation may become uncomfortable and
even dangerous.

Last Chapter presented an algorithm which detects whether a manually driven vehicle is
likely to be in a risk situation as it is approaching to a stop intersection. This algorithm
allows to trigger assistance which could be provided to the driver in the form of advice. It
was shown that more than 8 out of 10 times, it allows to detect risk situations early enough
to assist the driver with an advice, and thus to allow him to react more comfortably to the
situation than with a conventional driving assistance. Thus, it is likely that the situation of
other road users interacting with the vehicle will be impacted by this type of assistance.

It is therefore interesting to evaluate how much the integration of such preventive systems in
a vehicle can be beneficial for the other road users interacting with it. For this purpose, the
results of last Chapter were used, and the approach of two vehicles towards the same stop

133



Chapter 6 Effect of Preventive Assistance on Other Road Users

Leader
Follower

Stop

Figure 6.1: Initial conditions. The Leader and the Follower are navigating towards a stop
intersection.

intersection was chosen. Simulation was performed to evaluate the benefits on the comfort of
the following vehicle when the lead vehicle is provided with an advice instead of a warning.
This Chapter is organized as follows. The manner how the simulation was performed, and
how this simulation outputs allowed to generate the results of the experimentation are presen-
ted. Then, the results of the experimentation are presented and discussed.

6.2 Experimentation

6.2.1 Objectives

The objective of the experimentation that is presented in this Chapter is to evaluate the
added value of assistance provided in the form of advice, for other vehicles interacting with
the subject vehicle. The case study that is addressed consists of two vehicles, namely the
Leader and the Follower which are navigating towards the same stop intersection. These
vehicles are navigating in stabilized conditions, that is, with nearly constant speed and
interdistance separating both of them. The case study is illustrated by Figure 6.1.
The first assumption is that the Leader is equipped with the risk assessment system presen-
ted in Chapter 5. If the driver of this vehicle does not have the intention to stop at the
intersection, then the system will provide him with assistance. The driver is then expected
to need some time to react (Reaction Time), and to brake in order to stop on time at the
intersection level. This deceleration therefore implies that the Follower has to decelerate in
order to avoid rear-end collision, and thus to stop behind the Leader.
The worst case is assumed in this Chapter, that is, the driver of the Follower too is not aware
of the presence of the stop intersection. After the leader starts to decelerate, the Follower
needs some time to understand that it is necessary to stop, and to start to decelerate as well.
This sequence of events is illustrated by Figure 6.2a.
The acceleration that the Follower has to undergo depends on 3 major parameters, namely
the reaction time of its driver, the time headway between the Leader and the Follower, and
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Figure 6.2: Time diagrams showing all events occurring when the driver of the lead vehicle
is provided with assistance.

the acceleration that the Leader undergoes. Short reaction time and large time headway
imply that the driver of the Follower does not have to undergo high deceleration if the Leader
starts to brake. On the contrary, long reaction time and low time headway imply that the
driver of the Follower may have to undergo high deceleration and even rear-end collision with
the Leader if the Leader starts to brake. Moreover, in this scenario implying 2 vehicles, the
time passed between the moment at which the Leader is provided with assistance and the
moment at which the Follower starts to decelerate corresponds to the sum of the reaction
times of both drivers. This time is incompressible in conventional standalone assistance
systems.

In Chapter 1, Section 1.3, it is presented that wireless communications between vehicles
and infrastructures are subject of intensive research and development. Whilst this techno-
logy is difficult to handle, several projects such as Safespot, SCORE@F and more recently
SCOOP@F suggest that it will equip future vehicles [126, 127]. In the experiment presented
in this Chapter, communication between both vehicles, and thus cooperative assistance was
therefore taken into consideration. Figure 6.2b shows the sequence of events which would
occur if the algorithm presented in Chapter 5 was used within a cooperative assistant sys-
tem. When decision is taken to provide the Leader with assistance, the information that it is
likely to be about to brake is transmitted to the Follower (the Leader has not yet started to
react). Therefore, both drivers react approximately at the same moment, and this allows to
shorten the time (called “Gap” on the Figure) during which the Leader decelerates while the
Follower is still reacting. Actually, communication has similar effect on the Follower than
reducing his reaction time.
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Figure 6.3: Generation of results

The objective of the experimentation is to estimate how much preventive assistance impacts
the situation that the Follower has to negotiate, with comparison to curative assistance.
The results have to take into consideration the influence of the reaction time of the Follower,
and the time headway between both vehicles. Moreover, the experimentation is performed
considering a standalone system, and a connected and cooperative system. It was performed
by simulation as described in next Section.

6.2.2 Simulation of Vehicle Following and Generation of Results

The aims of the simulation is to estimate how comfortable would be the situation that the
Follower would have to handle if the Leader is provided with assistance and thus starts to
brake. Figure 6.3 shows the different stages of the experiment: initialisation, simulation and
generation of the results. This Section presents these stages in details.

6.2.2.1 Assumptions and Initial Conditions

At initial time, the Leader and the Follower are navigating towards the stop intersection, as
shown by Figure 6.1, page 134, and the Leader starts to decelerate. That is, the driver was
provided with assistance ALeader ∈ {War,Adv}, and his reaction time is passed.

It is assumed that at the moment when the Leader is provided with assistance, both vehicles
are navigating in stationary conditions, i.e. with stabilized speeds and interdistance. The
Leader is located at pose PLeader

0 and is moving at speed SLeader0 . Since the reaction time
is passed, the Leader is braking and undergoes acceleration γLeader. The experimentations
presented in Chapter 5 allowed to model γLeader through a normal distribution N (µγL, σγL),
with respect to ALeader the type of assistance the driver is provided with. It is therefore
assumed that γLeader follows N (µγL, σγL). Further, this parameter is assumed to be constant
until the Leader is stopped.
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The Follower is located at pose P Follower
0 and is moving at speed SFollower0 . Since aver-

age relative speed between two vehicles can be modelled as a standard normal distribution
N (0, σRS) [4], SFollower0 is assumed to follow the normal distribution N (SLeader0 , σRS). Both
vehicles are separated by interdistance δ0, which depends on SFollower0 and the time headway
TH between both vehicles. Finally, it is assumed that the Follower has the reaction time
RT .

6.2.2.2 Simulation

All simulations were performed considering the motion model and the algorithm that are
described below.

Motion Model

Sophisticated microscopic models such as the IDM (Intelligent Driver Model) [155], or the
Simulation of Urban MObility model (SUMO) [84] used for simulation purposes were not
chosen to model the motion of the vehicles. The first reason is that they are parametric
models, and the tuning of the parameters is complex to justify. The second reason is that
such models were conceived to simulate traffic flows in nominal conditions, which is not the
case for the experiment presented in this Chapter.

Instead, it was chosen to use a more simple motion model. In Chapter 2, Section 2.4.1.1
presented that trajectory prediction can be performed using either dynamic or kinematic
motion models. Dynamic motion models require parameters related to vehicles and environ-
ment characteristics. The use of such models is not justified here as the experiment does not
consider particular vehicles or particular environment conditions. Therefore, it was chosen
to use simple kinematic motion models for both vehicles, assuming constant accelerations
(CA). The acceleration Γn(t), the speed Sn(t) and the pose P n(t) of vehicle n are given by
Equation 6.1:


Γn(t+ ∆t) = Γn(t) = γn

Sn(t+ ∆t) = γn ·∆t+ Sn(t)
P n(t+ ∆t) = γn

2 ·∆t
2 + Sn(t) ·∆t+ P n(t)

(6.1)

The interdistance between both vehicles δ(t) is computed with respect to the position of the
vehicles, and lLeader the length of the Leader. It is given by Equation 6.2:

δ(t) = PLeader(t)− P Follower(t)− lLeader (6.2)
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δstop 

Figure 6.4: Vehicles configuration at the end of the simulation.

The acceleration that the Follower has to undergo to stop on time is computed using Equation
6.3:

γFollower = − (SFollower)2

2 ·DFollower
Stop

(6.3)

with SFollower the speed of the Follower at the moment at which the it starts to decelerate,
and DFollower

Stop is the distance from the Follower to the position at which it has to be stopped.
This position is defined considering that the Leader is stopped at the stop intersection, and
the Follower is stopped behind the Leader with interdistance δStop. This is illustrated by
Figure 6.4.

Algorithm

Algorithm 6.1, in page 139 presents the successive simulation steps necessary to evaluate
whether a rear-end collision occurs between both vehicles, and the necessary average decel-
eration that the Follower has to undergo to safely stop on time behind the Leader.

After initialization of the variables (lines 2-6), the algorithm runs until collision occurs or
until the Follower has stopped behind the Leader (loop starting on line 8). At each time
step, the position PLeader(t) and speed SLeader(t) of the Leader are computed. As soon as
the speed of the Leader reaches 0, the acceleration γLeader is set to 0 (line 13-14). The Leader
is therefore static until the end of the simulation.

At each time step, the position P Follower(t) and speed SFollower(t) of the Follower are also
computed (line 21). In addition, δ(t) the interdistance between both vehicles is computed
(line 22). If RT the reaction time of the driver of the Follower is not passed, then the Follower
does not decelerate, i.e. γFollower = 0. If RT is passed, then the new value of γFollower is
computed (line 19). It is considered that a rear-end collision occurs when δ(t) ≤ 0 (line
23). It is considered that the Follower is stopped, and thus the simulation is complete when
SFollower(t) = 0.
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Algorithm 6.1 Algorithm for simulation of vehicle following
Inputs: Distribution of the Leader acceleration N (µγ, σγ), initial Leader speed SLeader0 ,
initial Leader pose PLeader

0 , distribution of relative speed N (0, σ∆S), timestep ∆t, reaction
time of the Follower RT , time headway between both vehicles TH.

Outputs: Flag Collision indicating whether or not a collision occurred, and γFollower the
average Follower deceleration necessary to stop on time if no collision occurred.

Begin
1 /* Initialization of variables */
2 Compute γLeader = rand(N (µγ, σγ))
3 Compute SFollower0 = rand(N (SLeader0 , σ∆S))
4 Compute δ0 = SFollower0 × TH
5 Compute P Follower

0 using Equation 6.2
4 Set γFollower = 0
6 Collision = False

7
8 While (SFollower(t) 6= 0) and (Collision = False)
9 t = t+ ∆t
10
11 /* Leader */
12 Compute SLeader(t) and PLeader(t) using Equation 6.1
13 If (SLeader(t) = 0)
14 Set γLeader = 0
15 End If
16
17 /* Follower */
18 If (time > RT )
19 Compute γFollower using Equation 6.3
20 End If
21 Compute SFollower(t) and P Follower(t) using Equation 6.1
22 Compute δ(t) using Equation 6.2
23 If (δ(t) ≤ 0)
24 Return Collision = True

25 Return γFollower
26 End If
27
28 End While
29 Return Collision = False

30 Return γFollower
End
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6.2.2.3 Generation of Results

The experiment aims to evaluate the added value on the Follower comfort and safety, of
providing the Leader with advice instead of warning. The results were therefore generated
twice: once considering that the Leader is provided with warning (i.e. ALeader = War), and
once considering that the Leader is provided with advice (i.e. ALeader = Adv). Moreover, the
reaction time of the Follower RT and the time headway TH are critical parameters whose
impact is estimated.

In order to cover a large amount of possible situations undergone by the Follower, a large
amount of initial conditions have to be considered. For this purpose, n sets of initial paramet-
ers Φ0 =

{
ALeader, PLeader

0 , SLeader0 , γLeader, S
Follower
0

}
were randomly generated according to

Section 6.2.2.1. For each set Φn
0 , every combination {RT ×TH}, with RT ∈ {rt1, rt2, .., rti}

seconds and TH ∈ {th1, th2, ..., thj} seconds was considered.

A total of n× i× j simulations was performed. Each simulation returned whether a collision
occurred, or the value of γFollower if no collision occurred. The situation that the Follower has
to undergo Ψn

Follower(ALeader, RT, TH) is then classified according to the value of γFollower,
such as:

− Ψn
Follower(ALeader, RT, TH) = Moderate if −2.5 ≤ γFollower < 0 m/s2, i.e. moderate

deceleration.

− Ψn
Follower(ALeader, RT, TH) = Hard if −8 ≤ γFollower < −2.5 m/s2, i.e. hard accelera-

tion.

− Ψn
Follower(ALeader, RT, TH) = Collision if γFollower < −8 m/s2, i.e. it is physically

impossible to decelerate hard enough to avoid rear-end collision.

Simulations were performed for the n sets of initial parameters. For each combination
{ALeader ×RT × TH}n, Ψn

Follower(ALeader, RT, TH) is determined.

The results that are computed aim to observe the effect of the 3 parameters ALeader, RT, TH
on the value that is attributed to ΨFollower . For this purpose, Ωk

l (RT, TH) ∈ [0, 1] is
computed for each combination {ALeader ×ΨFollower} such as:

Ωk
l (RT, TH) = nb of occurance {[Ψn

Follower(ALeader, RT, TH) = k]|[ALeader = l]}
n

(6.4)

It represents the rate of situations of value ΨFollower = k, given ALeader = l , RT and TH
among the n initial conditions.

The results are presented in next Section.
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6.3 Results and Discussion

6.3.1 Qualitative Results

Parameters

The results which are presented in this Section were generated considering the following
parameters:

− The initial speed of the Leader: SLeader0 = 30 km/h

− The acceleration that the Leader undergoes (according to Section 5.3.3.2 in Chapter
5):

γLeader =
 N (−2.64, 0.45) m/s2 if ALeader = Adv

N (−5.09, 1.01) m/s2 if ALeader = War

− The length of the Leader: lLeader = 4.5 m

− The initial speed of the Follower: SFollower0 = N (30, 3.6) km/h

− The interdistance between both vehicles when they are stopped: δstop = 0.5m

− The number of initial conditions: n = 500

− The reaction time RT = {0 : 0.1 : 2} seconds (i.e. i = 21)

− The time headway TH = {0 : 0.1 : 2} seconds (i.e. j = 21)

The series of simulations were performed twice: once considering that the Leader is provided
with warning assistance, and once considering that the Leader is provided with advice as-
sistance.

The Leader is Provided With Warning

Figure 6.5 presents how warning assistance provided to the Leader impacts the situation
of the Follower, with respect to the reaction time of the Follower, and the time headway
between the vehicles.

Figure 6.5a shows ΩCollision
Warning, that is the rate of situations which result in rear-end collision

when the Leader is provided with warning. It is noticeable that collisions happen when the
reaction time of the Follower is greater than the time headway (RT > TH).

Figure 6.5b shows ΩHard
Warning, that is the rate of situations which result in hard decelerations

undergone by the Follower when the Leader is provided with warning. It is noticeable that
the Follower has to undergo hard decelerations when its reaction time is approximately of
the same order of magnitude as the time headway (RT w TH).

Figure 6.5c shows ΩModerate
Warning , that is the rate of situations which result in moderate decelera-

tions undergone by the Follower when the Leader is provided with warning. It is noticeable
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that the Follower has to undergo moderate decelerations when the time headway is much
greater than the reaction time, with a time headway greater than 1.5s (TH > 1.5s and
TH > 2RT ).

The Leader is Provided With Advice

Figure 6.6 presents how advice assistance provided to the Leader impacts the situation of the
Follower, with respect to the reaction time of the Follower, and the time headway between
the vehicles.

Figure 6.6a shows ΩCollision
Advice , that is the rate of situations which result in rear-end collision

when the Leader is provided with advice. It is noticeable that collisions happen only when
the time headway is much lower than the reaction time of the Follower (TH < 0.5RT ).

Figure 6.6b shows ΩHard
Advice, that is the rate of situations which result in hard decelerations

undergone by the Follower when the Leader is provided with advice. It is noticeable that
the Follower has to undergo hard decelerations mostly for reaction time greater than 1.5s,
and when the reaction time of the Follower is greater than the time headway (RT > 1.5s
and RT w 1.5TH).

Figure 6.6c shows ΩModerate
Advice , that is the rate of situations which result in moderate deceler-

ations undergone by the Follower when the Leader is provided with advice. It is noticeable
that the Follower has to undergo moderate decelerations when the time headway is greater
than the reaction time of the Follower (TH > RT ).

Differences

Figure 6.7 highlights how much providing the Leader with advice assistance instead if warning
assistance impacts the situation that the Follower has to undergo. It shows the subtraction
ΩΨ
Advice − ΩΨ

Warning. In that way, Figure 6.7a shows the subtraction for Ψ = Collision,
Figure 6.7b shows the subtraction for Ψ = Hard and Figure 6.7c shows the subtraction for
Ψ = Moderate.

This shows that providing the Leader with advice assistance instead of warning assistance
allows to diminish the risk of rear-end collision, which are replaced by hard decelerations
when RT > 1s and RT ' 2TH (shown by the blue cells on Figure 6.7a and red cells on
Figure 6.7b). Further, it allows to favour moderate decelerations to the detriment of hard
decelerations for TH > 0.5s and TH ' 2RT (shown by the blue cells on Figure 6.7b and
red cells on Figure 6.7c).

Appendix E shows the same graphs as those shown by Figures 6.5, 6.6 and 6.7, but consid-
ering different initial speeds for both vehicles (60km/h and 90km/h). Whilst the influence
of the initial speed is noticeable, the graphs show similar results as those presented in this
Section.
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Figure 6.5: Results considering that the
Leader is moving at 30 km/h
and provided with Warning
assistance.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TH (s)

R
T

 (
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) ΩCollision
Advice (RT, TH)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TH (s)

R
T

 (
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) ΩHard
Advice(RT, TH)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TH (s)

R
T

 (
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) ΩModerate
Advice (RT, TH)

Figure 6.6: Results considering that the
Leader is moving at 30 km/h
and provided with Advice
assistance.
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Figure 6.7: Added values of advice assistance provided to the Leader, for the situation the
Follower has to undergo. With Leader initial speed set at 30 km/h.
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Table 6.1: Results considering standalone assistance: RT = 1.5s and TH = 1.5s

Assistance Provided to
the Leader

Situation Undergone by the Follower
Moderate Decel Hard Decel Collision

Advice 47% 53% 0%
Warning 1% 94% 5%

6.3.2 Quantitative Results for Typical Configurations

The results presented in last Section showed that providing the Leader with advice assistance
instead of warning assistance has a significant impact on the situation that the Follower has
to undergo, depending on the time headway and the reaction time of the driver. Whilst in
real time the time headway and the reaction time of the driver are random parameters, it
is interesting to analyse the results of the experiment considering typical values for these
parameters. This Section aims to discuss these results, considering typical values for RT
and TH in the case of standalone assistance and in the case of connected assistance.

Considering Standalone Assistance

In the case of standalone assistance, the Follower is not noticed that the Leader is provided
with assistance and thus expected to brake in a short moment. The Follower therefore
understands that the Leader is braking only when he reacts after having seen the stop lights.

As mentioned in Chapter 1, the average drivers’ reaction time is about RT = 1.5s. Further,
field experimentations allowed to measure the empirical average time headway TH = 1.5s
[133]. These values were chosen to generate the results presented in this Section. Table 6.1
presents the rate of each situation undergone by the Follower.

It is noticeable that when the Leader is provided with assistance in the form of advice, the
situation of the Follower is more comfortable. Rear-end collision are likely not to happen,
and the rate of hard decelerations is almost divided by 2 (from 94% to 53%). Finally, when
the Leader is provided with warning, it is likely that the Follower can never undergo mod-
erate deceleration. If the Leader is provided with advice, then the Follower can brake with
moderate deceleration almost 50% of the time.

Considering Cooperative Assistance

In the case of connected assistance, as explained in Section 6.2.1 of this Chapter, the Follower
is informed that the Leader will probably brake nearly at the moment at which the Leader
is provided with assistance. Both drivers therefore react nearly at the same moment.

For this configuration, the time gap defined in Figure 6.2b is defined at 0.5s. This value
assumes V2V transmission delays of 100ms [120], and the fact that the reaction time of
the Follower is lightly greater than the one of the Leader. This configuration can therefore
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Table 6.2: Results considering connected assistance: RT = 0.5s and TH = 1.5s

Assistance Provided to
the Leader

Situation Undergone by the Follower
Moderate Decel Hard Decel Collision

Advice 99% 1% 0%
Warning 66% 34% 0%

be considered as similar as a standalone assistance configuration, with the reaction time of
the Follower set such as RT = 0.5s. Note that situations in which the reaction time of
the Follower is shorter than the one of the Leader is not considered, because the Follower
would probably start to brake before the Leader. The decelerations that the Follower would
undergo are therefore likely to be moderate. The time headway is kept similar as the one
chosen for the standalone assistance configuration, e.g. TH = 1.5s. Table 6.2 presents the
rate of each situation undergone by the Follower.

When the Leader is provided with warning assistance, rear-end collisions are not likely to
occur, and the Follower may undergo moderate deceleration 2 out of 3 times. This may
be considered as rather comfortable situations for the Follower. Nevertheless, providing the
Leader with advice assistance allows to make the situations even more comfortable for the
Follower as he is likely to undergo moderate decelerations almost every time.

6.3.3 Discussion

The results of the experimentation described in this Chapter show that providing the driver
with assistance in the form of advice may have considerable consequences on the comfort and
safety of the vehicle which is following. In the case of standalone assistance, and with the
parameters which were chosen for the experiment, it would allow to cancel the risk of rear-end
collision and to pass from nearly 100% of hard deceleration and 0% of moderate deceleration
to nearly 50% of each. In the case of connected assistance, it would allow the Follower
to undergo moderate decelerations only. These results allow to confirm that connected
assistance, if they are combined with driving assistant systems, can improve the safety but
also the comfort of other road users interacting with the subject vehicle. This should motivate
further research, and the deployment of cooperative driving assistant systems.

Simulation techniques were used to generate the results. Simulation imply to make several
assumptions, therefore the behaviour of the drivers and of vehicles cannot be perfectly mod-
elled. Whilst they allow to estimate how the use of advice assistance in a vehicle may be
beneficial for other road users interacting with it, the results which were presented should
be confirmed with experiments performed with real drivers and vehicles. Such experimenta-
tions would require the development of two HMIs: one HMI for the Follower, and one HMI
for the Leader which can be considered as an HMI for a proactive system. As explained
in Chapter 5, Section 5.3.4, the development of such an HMI requires further methodolo-
gical and theoretical research, therefore such an experimentation would require very long
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preparation time.

6.4 Conclusion

This Chapter presented an experiment which aimed to show that providing the driver of a
vehicle with preventive assistance instead of curative assistance is also beneficial for other
road users interacting with this vehicle. The experimentation took into consideration stan-
dalone driving assistance, and cooperative assistance.

For this purpose, the algorithm which was presented in Chapter 5 was used. The case study
that was chosen for the experimentation consists of two vehicles navigating in the same
direction, towards the same stop intersection. The Leader is provided with assistance when
he does not have intention to stop at the intersection. Simulation was used to estimate
how comfortable the situation of the Follower would be when the Leader is provided with
assistance, and therefore brakes to stop at the intersection. Comparisons were done between
situations in which the leader is provided with curative assistance (advice) and situations in
which he is provided with preventive assistance (warning).

The results show that providing the Leader with advice assistance instead of warning assist-
ance has a significant impact on the situation that the Follower has to undergo. This is the
case for both standalone system and cooperative systems. In the case of a standalone sys-
tem, it is shown that average drivers are likely to be able to undergo moderate decelerations
(i.e. to have comfortable reaction) about 50% of the time when the leader is provided with
preventive assistance. Moreover, in the case of a cooperative system, it is shown that drivers
are likely to undergo moderate decelerations almost 100% of the time.

This Chapter showed, for a chosen case study, that whilst preventive assistance systems are
more comfortable than curative systems for the driver of the vehicle in which the system
operates, they also allow to make situations more comfortable for the other road users
interacting with the vehicle. One major perspective of this work is the implementation in
real vehicles of the systems which were simulated, and the analysis of field trials to confirm
the results of the experimentation which was presented. An other perspective of this work
would be to estimate the impact of such systems in other situations of interaction, such as
two vehicles reaching an intersection but navigating in different directions. The constraints
imposed by the interactions between both vehicles would be different, as well as the manner
how assistance provided in one vehicle has consequences on both vehicles.
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7.1 Synthesis

The automotive industry is undergoing a revolution with the rapid introduction of intelligent
driving assistant systems into the whole range of vehicles, to improve comfort and safety
of road users. Whilst these systems proved their effectiveness for the reduction of road
accidents, most intervene as a last resort. Within this context, this thesis addressed situation
understanding and risk assessment, to make such systems more preventive. The focus of this
research was on road intersections where most of accidents occur.

This thesis proposed a framework to identify when situations are likely to become at risk, and
thus when is would be relevant to provide the driver with preventive assistance information.
The framework was inspired by passengers on board the vehicles who can act like copilots,
that is, passengers helping drivers to identify relevant road information and therefore to
avoid situations becoming dangerous. The ADAS Copilot paradigm applied in this thesis
lead to two major contributions. The first, enhances situation understanding through the
contextualisation of perception information via digital maps that enables the identification
of the relevant nearby entities to be taken into account. The second contribution results in
risk assessment that allows to infer whether or not the driver has taken into consideration
the relevant entities into his navigation manoeuvres. The tenet of the approach was based
upon the assumption that all drivers are different, thus these need to be taken into account
when assessing risk with more accuracy.

Situation understanding was achieved by contextualizing the information returned by the
perception sensors, and by including interactions implied by the cohabitation of road users
on shared areas. For this purpose, the use of ontologies was proposed. An ontology was
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formulated to model a conceptual representation of road users and the constraints imposed
by road features and traffic rules. This ontology included the manoeuvres that road users
are likely to perform, with respect to the interactions that can occur between road entities.
The a priori knowledge stored in the ontology is then used as part of a dedicated framework
to reason on the perception information together with the one extracted from the digital
map. The framework was experimentally tested and validated on a passenger vehicle. It
was shown that it allows to identify which road entities should be monitored, and how to
implement the monitoring to ensure safe navigation. The resulting information can then be
used as guidelines to follow for risk assessment systems.

Risk is estimated by comparing the manoeuvre the driver is expected to perform, with the
manoeuvre he is likely to have intention to perform, using a Bayesian Network as introduced
in [90]. This thesis considered three types of driving assistance within the same model,
namely Automated Emergency Braking, Warning Assistance, and Advice Assistance. The
first two are considered as curative as they are activated as a last resort, whilst the third is
preventive as it allows the driver to have sufficient time to react comfortably. The three are
applied to a vehicle as it approaches a stop line at an intersection. The system was tested
on a passenger vehicle using close to production sensors.

The Bayesian model was applied with the available sensors and digital map information, in
order to trigger the three types of assistance when risk is inferred. For this purpose, only
information about the vehicle state and map information was used. A very important con-
tribution was to introduce the different driver responses into the Bayesian model. Gaussian
Processes were used to model the manner how drivers approach stop intersections. Those
included uncertainties on sensors and digital maps. A research vehicle was used to collect
data sets used to evaluate the ability of the system to trigger each type of assistance, as the
driver did not have the intention to stop when arriving to the road intersection. It showed
that, whilst performances are improved by incorporating customized driver profiles into the
model, the system does not detect risk situations sufficiently early to provide drivers with
advice, and thus to allow them to have time to react comfortably.

The Bayesian model was extended to take into consideration the actuation of drivers on
the vehicle commands to detect risk situations, in addition to the vehicle state and map
information. The assumption made was that every change of vehicle state is the consequence
of driver actuation. Thus, by observing how the driver actuates, it would be possible to
detect unexpected driver behaviours that affects the vehicle state. The same experimental
data was used to evaluate the performances of the model to trigger preventive assistance. The
results showed a major performance improvement, favoured by the observation of the driver
actuations. For the chosen case study, it was shown that by using customized driver profiles
and by observing the driver actuations, it is possible to detect risk situations sufficiently
early to trigger preventive assistance, and thus to avoid the situation to become dangerous.

Finally, the evaluation of the benefits brought by preventive assistance on the situation
of nearby interacting road users was performed. For this purpose, the approach of two
vehicles navigating in the same direction towards the same stop intersection was chosen
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as case study. Simulation was done to estimate the impact of assistance triggered by the
Bayesian model in the leader vehicle, on the situation that the follower has to undergo to
avoid collision. For this purpose, curative and preventive assistance were considered, as
well as standalone and connected assistance. The results showed that providing preventive
assistance instead of curative assistance to a driver has a major impact on the situation of
nearby cohabiting vehicles, as it allows to reduce the deceleration necessary to avoid rear-end
collision, and therefore the risk of rear-end collision. Further, these results are emphasised
by communications between the vehicles, it allows to reduce the effect of the reaction time
of the follower.

7.2 Conclusions

The results obtained in this thesis lead to three major conclusions, which are described
below:

1. Interactions between road entities should be taken into account within the
situation understanding process
The experimental results showed that, in the contextualization process, it is possible
to consider the spatio-temporal relationships which are likely to exist between road
entities, within a situation understanding framework. This allows to understand how
the subject vehicle interacts with its surroundings, and thus to identify which perceived
road entities have impact on its situation. This identification of pertinent entities is
performed among all entities returned by perception and digital map data.

2. Situation understanding should be performed preliminarily to risk assess-
ment
The identification of the road entities which interact with the subject vehicle allows
to also identify which entities do not interact with it, and thus those which could be
ignored to perform risk assessment. Whilst digital maps and perception sensors can
provide very rich information about the subject vehicle surroundings, it remains a very
complex task to design risk assessment algorithms able to consider all this informa-
tion at the same time. Preliminary situation understanding as it is presented in this
thesis allows to manage the complexity, and computational cost of the risk assessment
algorithms by focussing only on a selection of pertinent road entities.

3. Differences between drivers, and driver actuation should be taken into ac-
count for risk assessment
The experimental results confirmed two assumptions. The first is that taking into ac-
count customized driver patterns within the risk assessment algorithm allows to infer
risk situations with more accuracy. The second is that the driver actuation represents
very rich information to estimate the driver intention, and to better anticipate risk
situations. Combining customized driver patterns and the observation of the driver
actuation enables to infer risk situations sufficiently early to trigger preventive assist-
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ance, allowing the driver to react more comfortably when he is assisted. The results also
showed that such assistance allows to secure the situation of the vehicles interacting
with the subject vehicle.

7.3 Perspectives

The results have opened numerous perspectives that are today being applied at Renault in
the autonomous vehicles domain and to actuating ADAS. The following sections provide a
summary of perspectives for further work based on this research.

7.3.1 Situation Understanding

1. Ontology Extension for ADAS and Autonomous Driving
The ontology that was presented in Chapter 3 allowed to demonstrate the coherence
of the approach for situation understanding. In its current state, the ontology only
considers road entities which are on the same navigation lane as the subject vehicle.
Situation understanding for ADAS, and especially autonomous driving would require
to cover more complex road situations. It would therefore be pertinent to extend the
ontology to multiple navigation lanes, including lanes converging at road intersections,
roundabouts, etc. Further, the list of different types of road entities should be extended,
as the list that the current version of ontology stores is limited.
Such ontology extensions would require significant work. First, it would be necessary
to model the immediate road network on which the subject vehicle is navigating. Then,
it would be necessary to model the location of the road entities on the road network.
Finally, it would be necessary to model the traffic laws and likely interactions between
the road entities, as well as the conditions which specify that an entity is relevant for
the subject vehicle navigation. Then, the ontology would have to be tested to ensure
the coherence of all a priori information that is stored, and of all information that
reasoning allows to generate. Further, this might need the development of a dedicated
method for the creation and the validation of ontologies related to road contexts.

2. Ontology and Uncertainties
One limitation of using ontologies is their inability to easily model uncertainties re-
lated to data and object properties. However, considering uncertainties within the
conceptual description of road situations would be of great interest. This would allow
to consider uncertainties on the state of road entities, on the precision of information
extracted from digital maps, on the intentions of the road users, etc. Further, it would
enable to take into consideration the fact that road users do not always respect traffic
rules. This would imply consequent work to take into account these uncertainties to
model interactions between road entities, and thus to estimate the relevance of each
perceived road entity for the navigation of the subject vehicle. Whilst the literature
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proposes some preliminary works aiming to consider uncertainties within ontologies,
these techniques are not mature enough to motivate the development of convenient
tools (i.e. reasoners, etc.) to properly reason on such ontologies [43, 173]. These
limitations should motivate further research in the domain.

7.3.2 Risk Assessment

1. Human Machine Interface Development
The risk assessment system that was presented in this thesis aims to trigger preventive
assistance. The information that is generated has therefore to be used by an HMI to
provide information to the driver. The manner how to inform the driver that he is
likely to have missed a pertinent road entity is a complex task. The information that
has to be provided has to be understood quickly and without effort for the driver.
The use of a conventional pictogram or sound alert would probably confuse the driver
as they would not allow the driver to identify the road entity he is likely to have
missed. Investigations could be done on advices provided by a virtual assistant, or on
augmented reality which could precisely describe to the driver the reason why he is
assisted. For example, information could be displayed on the windscreen to highlight
pertinent road entities.
Further, preventive driving assistance systems as they are defined in this thesis can be
considered as proactive systems. The theory and methodologies to develop HMIs for
proactive assistance are not mature yet. Researches, which are in progress to ensure the
ergonomics and the user acceptance of such systems, should be carried on [137, 172].

2. Further Experimentations
The system that was presented in this thesis was tested with data recorded in a manu-
ally driven passenger vehicle. For this purpose, several acquisition campaigns were
necessary. This required significant efforts, to prepare the experimental vehicle, to
configure and to make the sensors work, to create the digital map, to hire participants
and to carry out the experimentations. However, further experimentations should be
performed, to test the algorithm with more participants, to carry out field trials on
open roads, to analyse the users experiences and therefore to verify that such sys-
tems are relevant and accepted by the users. To perform such experimentations, the
development of an HMI is necessary.

3. Correction of False Map Information
Contextual information which is stored in the digital map is one of the major inputs
of the risk assessment algorithm. For the experimentation, it was assumed that the
information stored in the map was true, however digital maps are often out-of-date and
include faults. Using false map information would imply incoherent system behaviours,
and users would probably lose confidence in the system. For example, if the map
indicates the presence of an intersection that does not exist on the road, a false alarm
will occur. On the other hand, if information about an intersection is not stored in
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the map, assistance will never be triggered. Map integrity monitoring is therefore of
importance when map aided systems operate in a vehicle.
The approach presented in [177] could be used to detect the absence of an intersection
in the map. Benefits should be taken from information redundancy which could be
obtained from the repetitive journeys of a vehicle, or from a cloud service on which a
vehicle fleet is connected. For example, if the vehicles always stop at the same location,
and respect velocity profiles which describe the stop at a stop intersection, it is likely
that there is a stop intersection at this location. Moreover, perception sensors which
might be used as another source of redundancy, would allow to detect traffic signs, or
to inform that this is not a intersection that constraints the vehicle to stop.

4. Extension to Other Situations
Other road entities than stop intersections may require vehicles to stop, such as ped-
estrians crossing the road, vehicles stopped in the navigation lane, or whatever static
obstacles present on the road. The risk assessment system that was presented in this
thesis could be used to estimate whether the driver took the road entity into consid-
eration, and to assist the driver if it is relevant. For this purpose, the obstacles could
be considered as virtual stop intersections by the system. However, further research
would be necessary to check whether drivers decelerate in the same manner to stop for
a stop intersection or for another static object. This may imply to learn a different
velocity profiles for each type of object.
The case study that was chosen for this thesis implied that the subject vehicle is always
expected to stop at the intersection. It would be pertinent to extend the system to the
approach to more complex intersections, such as give way intersections or roundabouts
where vehicles may have priority. For this purpose, the use of customized velocity
profiles and the observation of the driver actuations should be incorporated in the
Bayesian model that was presented in [90]. Further, if it is used within connected
vehicles, such a system would probably allow to detect risk situations early enough to
provide all involved drivers with preventive assistance.

5. Use of Driver Monitoring Vision Technologies
One of the main challenge of this thesis was to push the limits of the data that is
available in conventional passenger vehicles, namely CAN, GPS and map data, to infer
risk situations. At the beginning of the thesis, driver monitoring vision technologies
were not considered because they were not compatible with car manufacturers con-
straints. This changed recently, since OEMs started to propose new systems satisfying
these constraints. These systems offer very rich information about the driver state, and
should now be considered as inputs of risk assessment systems. The Bayesian Network
that was presented in Chapter 5 should be extended to take into consideration inform-
ation provided by driver monitoring sensors in order to allow for a better estimation
of the driver intention, and therefore of risks.
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Appendix A

Ontology Rules and Axioms

A.1 SWRL Rules

All SWRL rules defined in the ontology presented in Chapter 3 are presented in Table A.1
on pages 170, 171 and 172.

A.2 DL Axioms

The 6 Description Logics Axioms defined in the ontology presented in Chapter 3 are presented
in Table A.2 on pages 173.
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Appendix A Ontology Rules and Axioms

Table A.1: The 14 SWRL rules edited in the ontology.

# SWRL Rules Meaning

1

1 vehicle (? v1) ∧ vehicle (? v2)
2 ∧ distanceToSubjectVehicle (?v1 ,? d1)
3 ∧ distanceToSubjectVehicle (?v2 ,? d2)
4 ∧ subtract (?sub ,?d2 ,? d1)
5 ∧ isFollowingParameter (? fParam )
6 ∧ hasValue (?f ,? fParam )
7 ∧ lessThan (?sub ,?f)
8 → isFollowing (?v2 ,? v1)

The position d1 and d2 of the vehicles v1
and v2 are known thanks to the

distanceToSubjectVehicle parameter. By
performing a subtraction (line 4), it is
possible to determine the distance sub

between both vehicles. By comparing this
distance with the threshold of the
isFollowingParameter (line 7), it is

determined whether one vehicle is following
the other one (line 8).

2
1 vehicle (? v1)
2 ∧ StopIntersection (? stop1 )
3 ∧ willReach (?v1 ,? stop1 )
4 → willStop (?v1 ,? stop1 )

The vehicle v1 will reach the stop
intersection stop1 . This condition means

that v1 will probably stop at stop1 (line 4).

3
1 vehicle (? v1)
2 ∧ StopIntersection (? stop1 )
3 ∧ isToReach (?v1 ,? stop1 )
4 → hasToStop (?v1 ,? stop1 )

The vehicle v1 is about to reach the stop
intersection stop1 . This condition means
that v1 has to stop at stop1 (line 4).

4
1 vehicle (? v1)
2 ∧ Infrastructure (? infr1 )
3 ∧ isToReach (?v1 ,? infr1 )
4 → hasToDecelarate (?v1 ,? infr1 )

The vehicle v1 is about to reach the
infrastructure infr1 . This condition means
that v1 has to decelerate at infr1 (line 4).

5

1 vehicle (? v1)
2 ∧ RoadNetwork (? RN1)
3 ∧ goesTowards (?v1 , ?RN1)
4 ∧ isToReachParameter (? param )
5 ∧ hasValue (? param , ? value )
6 ∧ distanceToSubjectVehicle (?RN1 , ?d2)
7 ∧ distanceToSubjectVehicle (?RN1 , ?d1)
8 ∧ substract (?sub , ?d2 , ?d1)
9 ∧ greaterthan (?sub , ? value )

10 → willReach (?v1 ,? RN1)

The vehicle v1 goes towards the road
network RN1. The position of v1 and RN1

are known through the
distanceToSubjectVehicle parameters d1 and
d2 (lines 6 and 7). By substracting d1 to d2
(line 8), it is possible to get the distance sub
between both objects v1 and RN1. If this
distance is greater than the value that is

defined by the isToReachParameter (line 5),
it means that v1 will reach RN1 (line 10).
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A.2 DL Axioms

# SWRL Rules Meaning

6

1 vehicle (? v1) ∧ Pedestrian (? p1)
2 ∧ PedestrianCrossing (? pc1)
3 ∧ isClose (?p1 ,? pc1)
4 ∧ isToReach (?v1 , ?p1)
5 ∧ isOnRoad (?p1 , ? value )
6 ∧ equal (? value , 0)
7 → hasToDecelarate (?v1 ,? p1)

The pedestrian p1 is close to the pedestrian
crossing pc1 (line 3), and is on the road

(lines 5&6). The vehicle v1 that is about to
reach p1 (line 4) has therefore to decelerate

(line 7).

7

1 vehicle (? v1) ∧ vehicle (? v2)
2 ∧ Infrastructure (? infr)
3 ∧ hasToDecelerate (?v2 , ?infr)
4 ∧ isFollowing (?V1 ,? v2)
5 → hasToDecelarate (?v1 ,? v2)

The vehicle v1 is following the vehicle v2
(line 4). v2 has to decelerate at the

infrastructure infr1 (line 3). therefore v1
has to decelerate behind v2 (line 5).

8

1 vehicle (? v1) ∧ vehicle (? v2)
2 ∧ Infrastructure (? infr)
3 ∧ hasToStop (?v2 , ?infr)
4 ∧ isFollowing (?V1 ,? v2)
5 → hasToStop (?v1 ,? v2)

The vehicle v1 is following the vehicle v2
(line 4). v2 has to stop at the infrastructure

infr1 (line 3). therefore v1 has to stop
behind v2 (line 5).

9
1 vehicle (? v1)
2 ∧ Infrastructure (? infr)
3 ∧ willReach (?v1 , ?infr)
4 → willDecelerate (?v1 ,? infr)

The vehicle v1 will reach the infrastructure
infr (line 3). v1 has therefore to decelerate

as it approaches to infr (line 4).

10

1 vehicle (? v1) ∧ Pedestrian (? p1)
2 ∧ isToReachParameter (? param )
3 ∧ hasValue (? param , ? value )
4 ∧ distanceToSubjectVehicle (?p1 , ?d2)
5 ∧ distanceToSubjectVehicle (?v1 , ?d1)
6 ∧ greaterThan (?sub , 0)
7 ∧ lessThan (?sub , ? value )
8 ∧ subtract (?sub , ?d2 , ?d1)
9 → isToReach (?v1 ,? p1)

The pedestrian p1 is located at a distance
d2 from the subject vehicle (line 4). In
addition, the vehicle v1 is moving at a

distance d1 from the subject vehicle (line
5). By computing the subtraction sub

between the distances d2 and d1 (line 8),
the distance between v1 and p1 is known.
If this distance is lower than the threshold
defined by the isToReachParameter (lines 3,
4, 8), then it is considered that v1 is about

to reach p1 (line 9).
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# SWRL Rules Meaning

11

1 vehicle (? v1)
2 ∧ RoadNetwork (? RN1)
3 ∧ isToReachParameter (? param )
4 ∧ hasValue (? param , ? value )
5 ∧ distanceToSubjectVehicle (?RN1 , ?d2)
6 ∧ distanceToSubjectVehicle (?v1 , ?d1)
7 ∧ greaterThan (?sub , 0)
8 ∧ lessThan (?sub , ? value )
9 ∧ subtract (?sub , ?d2 , ?d1)

10 → isToReach (?v1 ,? RN1)

The vehicle v1 is moving at a distance d1
from the subject vehicle. The road network
entity RN1 is situated at a the distance d2
from the subject vehicle. By computing the
subtraction sub between the distances d2
and d1 (line 9), the distance between v1
and RN1 is known. If this value is lower

than the value defined by the
isToReachParameter (line 3 and 8), then it
is considered that v1 is to reach RN1 (line

10).

12

1 Pedestrian (? p1)
2 ∧ PedestrianCrossing (? pc1)
3 ∧ isCloseParameter (? paramc )
4 ∧ hasValue (? paramc , ? value )
5 ∧ distanceToSubjectVehicle (?p1 , ?d1)
6 ∧ distanceToSubjectVehicle (?pc1 , ?d2)
7 ∧ subtract (?sub , ?d2 , ?d1)
8 ∧ pow (?res , ?sub , 2)
9 ∧ pow (? limit , ?param , 2)

10 ∧ lessThan (?res , ? limit )
11 → isClose (?p1 ,? pc1)

The pedestrian p1 is located at a distance
d1 from the subject vehicle (line 5). The
pedestrian crossing pc1 is located at a

distance d2 from the subject vehicle (line
6). The distance sub between p1 and pc1 is
computed (line 7). This distance can be

negative depending whether p1 is before, or
after pc1 (from the subject vehicle point of

view). SWRL rule do not have the
“absolute” operator, therefore res is

computed as the square of sub (line 8). If
res is lower than to the square of the

isCloseParameter value limit, then if is
considered that p1 is close to pc1.

13

1 Pedestrian (? p1)
2 ∧ Vehicle (? v1)
3 ∧ isToReach (?v1 , ?p1)
4 ∧ isOnRoad (?p1 , ? value )
5 ∧ equal (? value , 1)
6 → hasToStop (?v1 ,? pc1)

The pedestrian p1 is situated on the road
(line 4 and 5). If the vehicle v1 is to reach

p1, then it has to stop before p1.

14

1 RoadNetwork (? RN1)
2 ∧ Vehicle (? v1)
3 ∧ distanceToSubjectVehicle (?RN1 , ?d2)
4 ∧ distanceToSubjectVehicle (?v1 , ?d1)
5 ∧ greaterThan (?d2 , ?d1)
6 → goesTowards (?v1 ,? RN1)

The vehicle v1 is moving at a distance d1
from the subject vehicle. The road network
RN1 is situated at a distance d2 from the
subject vehicle. If d2 is greater than d1, it

means that v1 goes towards RN1.
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Table A.2: The 6 Description Logic Axioms edited in the ontology.

# DL Axioms Meaning

1 StopIntersectionAhead .=
Vehicle u ∃hasToStop · StopIntersection

If an instance of concept Vehicle is linked to
an instance of concept StopIntersection
through the object property hasToStop,

then the instance of concept Vehicle is also
an instance of the StopIntersectionAhead

concept.

2 StopIntersectionBefore1Leader .= Vehicle
uisFollowing · StopIntersectionAhead

If an instance of concept Vehicle is linked to
an instance of concept

StopIntersectionAhead through the object
property isFollowing, then the instance of
concept Vehicle is also an instance of the
StopIntersectionBefore1Leader concept.

3

StopIntersectionBeforeSeveralLeaders
.= Vehicle u isFollowing·

(StopIntersectionBefore1Leader
tStopIntersectionBeforeSeveralLeaders)

If an instance of concept Vehicle is linked to
an instance of concept

StopIntersectionBefore1Leader OR
StopIntersectionBeforeSeveralLeaders

through the object property isFollowing,
then the instance of concept Vehicle is also

an instance of the
StopIntersectionBeforeSeveralLeaders

concept.

4 PedestrianAhead .=
Vehicle u ∃hasToDecelerate · Pedestrian

If an instance of concept Vehicle is linked to
an instance of concept Pedestrian through
the object property hasToDecelerate, then
the instance of concept Vehicle is also an
instance of the PedestrianAhead concept.

5 PedestrianBefore1Leader .= Vehicle
uisFollowing · PedestrianAhead

If an instance of concept Vehicle is linked to
an instance of concept PedestrianAhead
through the object property isFollowing,

then the instance of concept Vehicle is also
an instance of the PedestrianBefore1Leader

concept.

6

PedestrianBeforeSeveralLeaders
.= Vehicle u isFollowing·

(PedestrianBefore1Leader
tPedestrianBeforeSeveralLeaders)

If an instance of concept Vehicle is linked to
an instance of concept

PedestrianBefore1Leader OR
PedestrianBeforeSeveralLeaders through the

object property isFollowing, then the
instance of concept Vehicle is also an

instance of the
PedestrianBeforeSeveralLeaders concept.
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Appendix B

Gaussian Processes Principles

In recent years, Gaussian Processes (GP) have become widely used by the robotics and
machine learning community for regression, classification and prediction problems [130, 139,
13, 31]. The advantage of Gaussian Processes is that they apply simple linear algebra while
they are a powerful tool to solve non linear problems.

B.1 Basic Gaussian Processes Principles

Gaussian Processes aim at recovering the functional dependency between two variables xi
and yi from n observed data points D = {(xi, yi)}ni=1, such as yi = f(xi) + εi . For each
observation (xi, yi), a random noise εi exists. It is independent and identically distributed.
The data set comprises yi as the noisy output values at input locations xi. The Gaussian
Process regression consists in learning the predictive Normal distribution p (y∗|x∗,D) of a
new test output y∗ given a new test input x∗.

Training Data

Notations can be simplified by defining the d × n matrix X which stores all the training
inputs {xi}ni=1 with d the dimension of xi. In addition, vector Y of size n which stores all
the training inputs {yi}ni=1 , such as:

X =



x1

x2

...

...

xn

 and Y =



y1

y2

...

...

yn



175



Appendix B Gaussian Processes Principles

Mean and Variance

The predictive distribution at the query point x∗ is a multivariate Gaussian distribution
N (µ∗,Σ∗) based on the training data set D. The mean µ∗ is defined as:

µ∗ = K∗(K + σ2
nI)−1Y (B.1)

and the variance Σ∗ is defined as:

Σ∗ = K∗∗(K + σ2
nI)−1K∗T (B.2)

Covariance Function

In these Equations B.1 and B.2, the covariance matrices K, K∗ and K∗∗ are computed using
the covariance function (also called Kernel) k(., .), such as:

− K ∈ Rn×n with Ki,j = k(xi, xj)
− K∗ ∈ Rn∗×n with K∗i,j = k(x∗i , xj)
− K∗∗ ∈ R with K∗∗i,j = k(x∗i , x∗j)

The covariance function k(., .) defines the Gaussian Process which may be written as GP(0, k(., .)).
It depends on parameters θ = {σn, l}, commonly called hyperparameters, and determined in
advance. The parameter σn is called the noise level, and the parameter l is called the length
scale.
Several covariance functions exist [130], but the most common is the Squared Exponential
given by:

k(xi, xj) = σ2
n exp

(
−‖xi − xj‖

2

2l2

)
(B.3)

Hyperparameters

The hyperparameters θ must be tuned to obtain a smooth and reliable regression. This
tuning can be considered as the training stage of Gaussian Processes. The most optimized
value of θ is given when the probability p(y|X, θ) is at its greatest. This log marginal
likelihood is computed as [130]:

log p(y|X, θ) = −1
2y

TK−1
y y − 1

2 log |Ky| −
n

2 log(2π) (B.4)
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with:

− Ky = K + σnI where I is the identity matrix

− |.| is the matrix determinant

Optimization algorithms have to be used to determine the optimized value of θ. The log
marginal likelihood can be locally minimized using a conjugate gradient multivariate optim-
ization algorithm.

Results

An example of results of a basic Gaussian Process regression is presented in Figure B.1a.
The hyperparameters θ are optimized, and the curve that describes the mean follows the
training samples. However, the variance is under estimated at some points.

B.2 Gaussian Processes with Heteroscedastic Variance

The Gaussian Process model which has been described in the previous section assumes a
constant noise level σn over the whole process. While this assumption may be justified in
most use cases, it may become a problem in other use cases as it may result in a variance Σ∗
that is either under or over-estimated (see Figure B.1b). Therefore, in some cases, it may
be judicious to use a more flexible noise model.

Update of Mean and Variance

In this way, Gaussian Processes using heteroscedastic noise level were introduced [79]. By
heteroscedastic noise level σn, it is meant noise level that is input dependent, in comparison
with homoscedastic noise level which is not input dependent. Therefore, the constant noise
level σn is replaced by the input dependent function r(x). Equation B.1 which defines the
estimation of mean µ∗ becomes:

µ∗ = K∗ (K + R)−1 Y (B.5)

and Equation B.2 which defines the estimation of variance Σ∗ becomes:

Σ∗ = K∗∗ + R∗ −K∗ (K + R)−1K∗T (B.6)

with:
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− R ∈ Rn such as R = diag(r), where r =



r(x1)
r(x2)
...

...

r(xn)



− R∗ ∈ R such as R∗ = diag(r∗) with r∗ =



r(x∗1)
r(x∗2)
...

...

r(x∗n)

. R
∗ is usually learned from training

data set D.

Results

An example of results of a heteroscedastic Gaussian Process regression is presented in Fig-
ure B.1b. In this version, the curve that describes the mean follows the training samples.
Moreover, it is noticeable that the variance increases over the x axis as the noise level para-
meter r(x) also increases over the x axis. This version of Gaussian Processes solves the
problem of variance under/over estimation.

B.3 Gaussian Processes with Noisy Inputs

The Gaussian Process models which have been described in the last sections assume that
inputs are noise-free. However, in some applications, the training data set D may come
from observations made with sensors suffering from noise. As a consequence, making the
assumption of noise-free inputs may lead to bad performances in the regression process. As
a solution, Gaussian Processes which consider noise on inputs have been defined [99].

Noisy Inputs in Gaussian Processes

In standard Gaussian Processes, y is a noisy measurement of the output such as:

y = ỹ + εy

where:

− εy ∼ N (0, σ2
y) in the case of homoscedastic Gaussian Processes

− εy ∼ N (0, r(x)2) in the case of heteroscedastic Gaussian Processes
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In this version of Gaussian Processes, the inputs are noisy, such as:

x = x̃+ εx

where εx ∼ N (0, σ2
x), with the input noise σx assumed as constant

The output y as a function of the input x can be written as:

y = f(x̃+ εx) + εy

which can be linearized such as (from [99]):

y = f(x̃) + εTx∂ȳ + εy (B.7)

where ∂ȳ is the derivative of the mean of a GP function. To obtain it, a first GP (ho-
moscedastic or heteroscedastic) has to be run to predict the mean and the derivative of
the output for each input xn. The probability of an observation is given by P (y∗|x∗,D) ∼
N (f, σ2

y + ∂Tȳ Σx∂ȳ) where Σx = diag(σ2
x).

Update of Mean and Variance

Equation B.5 which defines the estimation of mean µ∗ becomes:

µ∗ = K∗ (K +R + P)−1 Y (B.8)

and Equation B.6 which defines the estimation of variance Σ∗ becomes:

Σ∗ = K∗∗ +R∗ −K∗ (K +R + P)−1K∗T (B.9)

where P = diag(∆ȳΣx∆T
ȳ ) and ∆ȳ = {∂ȳ,i}ni=1.

Results

An example of results of a heteroscedastic Gaussian Process regression which considers noisy
inputs is presented in Figure B.1c. In this last version, it is noticeable that the variance is
larger over the x axis than the variance of heteroscedastic GP. This is due to the consideration
of constant noise on the input (here, σx = 0.2).

179



Appendix B Gaussian Processes Principles

x

y

−1 0 1 2 3 4 5

0

0.5

1

x

σ
n

Basic GP

−1 0 1 2 3 4 5

0

0.5

1

x

σ
x

(a) Basic Gaussian Processes

−1 0 1 2 3 4 5
0

1

2

3

4

5

x

y

−1 0 1 2 3 4 5

0

0.5

1

x

r(
x)

Heteroscedastic GP

−1 0 1 2 3 4 5

0

0.5

1

x

σ
x

(b) Heteroscedastic Gaussian Pro-
cesses

−1 0 1 2 3 4 5
0

1

2

3

4

5

x

y

−1 0 1 2 3 4 5

0

0.5

1

x

r(
x)

Heteroscedastic GP with noisy inputs

−1 0 1 2 3 4 5

0

0.5

1

x

σ
x

(c) Heteroscedastic Gaussian Pro-
cesses with noisy inputs

Figure B.1: Comparison between the 3 Gaussian Processes models. On the top line: value
of the noise level σn. In the middle line: value of noise applied on the input.
On the bottom line: blue crosses are training data D, the mean µ is repres-
ented by the blue line, and the variance Σ is represented by the blue envelope
(here, represented by 2σ).
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Appendix C

Generic Velocity Profiles

In this thesis, the parametric equation of the true vehicle speedN (µstopS , σstopS ) andN (µgoS , σ
go
S )

were based on velocity profiles learned for each driver. However, this approach was compared
with the use of generic velocity profiles similar as those used in [90]. This Appendix presents
how these generic velocity profiles are computed.

Computation

The likelihood of the true vehicle speed is defined as following a normal distribution such as:

P (St|φt−1, It−1, It) = P (St|Pt−1, St−1, It) =
N (µgoS , σ

go
S ) if It = go

N (µstopS , σstopS ) if It = stop
(C.1)

Depending on It the intention of the driver, two profiles are generated: SAthe average ve-
locity profile and SM the maximum velocity profile (i.e. the highest speed the vehicle can
undergo to perform the expected manoeuvre). Figures C.1a and C.1b present examples of
SAand SM profiles.

Mean

The evolution of the speed of the vehicle is predicted using the following equation:

µS(St−1, Pt−1, It) = SA(Pt−1)− SA(Pt−1)− SM(Pt−1)
SA(Pt)− SM(Pt)

× (SA(Pt−1)− St−1) (C.2)

with St−1the vehicle speed at time t − 1, Pt−1the vehicle pose at time t − 1, It−1the driver
intention at time t, Pt the prediction of the vehicle pose at time t. Figure C.1c presents a
generic velocity profile computed using Equation C.2.
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Appendix C Generic Velocity Profiles

(a) Velocity profiles with It = stop. (b) Velocity profiles with It = go.

(c) Example of profile computed using
Equation C.2, with It = stop.

Figure C.1: Example of generic velocity profiles (Figures from [90]).

Variance

The standard deviation is dynamically set based on the difference between SA and SM at
position Pt.
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Appendix D

Further Graphs for Chapter 5

D.1 Qualitative Results With Incoherent Pedals State

Figure D.1 shows the results with incoherent observed pedal states. At P = 20m, the gas
pedal is actuated while the brake pedal is already actuated (Figure D.1b). This is not
supposed to happen, however Figure D.1f shows that the model is robust to such event.

D.2 Qualitative Results With Hesitant Driver Behaviour

Figure D.2 shows the results obtained with a hesitant driver. Figure D.2b shows the state of
the pedals, which fluctuates between on and off. Figure D.2f shows that the model is robust
to such event.
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(a) Vehicle speed and learnt velocity profile with re-
spect to the vehicle pose.

(b) State of the gas and brake pedals with respect to
the vehicle pose.

(c) State of indicators τassistance with respect to the
vehicle pose.

(d) Probabilities related to the driver’s reaction with
respect to the vehicle pose.

(e) Probabilities related to the vehicle manoeuvre
with respect to the vehicle pose.

(f) Probabilities that assistance is pertinent with re-
spect to the vehicle pose.

Figure D.1: Example of observed and inferred data in the case of a safe situation with
incoherent pedals state.
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D.2 Qualitative Results With Hesitant Driver Behaviour

(a) Vehicle speed and learnt velocity profile with re-
spect to the vehicle pose.

(b) State of the gas and brake pedals with respect to
the vehicle pose.

(c) State of indicators τassistance with respect to the
vehicle pose.

(d) Probabilities related to the driver’s reaction with
respect to the vehicle pose.

(e) Probabilities related to the vehicle manoeuvre
with respect to the vehicle pose.

(f) Probabilities that assistance is pertinent with re-
spect to the vehicle pose.

Figure D.2: Example of observed and inferred data in the case of a safe situation with
incoherent pedals state.
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Appendix E

Further Graphs for Chapter 6

E.1 Initial Speed at 60km/h

Figure E.1 presents how warning assistance provided to the Leader impacts the situation of
the Follower when initial speed is set at 60km/h, with respect to the reaction time of the
Follower, and the time headway between the vehicles.

Figure E.2 presents how advice assistance provided to the Leader impacts the situation of
the Follower when initial speed is set at 60km/h, with respect to the reaction time of the
Follower, and the time headway between the vehicles.

Figure E.3 highlights how much providing the Leader with advice assistance instead if warn-
ing assistance impacts the situation that the Follower has to undergo when initial speed is
set at 60km/h. It shows the subtraction ΩΨ

Advice − ΩΨ
Warning.

E.2 Initial Speed at 90km/h

Figure E.4 presents how warning assistance provided to the Leader impacts the situation of
the Follower when initial speed is set at 90km/h, with respect to the reaction time of the
Follower, and the time headway between the vehicles.

Figure E.5 presents how advice assistance provided to the Leader impacts the situation of
the Follower when initial speed is set at 90km/h, with respect to the reaction time of the
Follower, and the time headway between the vehicles.

Figure E.6 highlights how much providing the Leader with advice assistance instead if warn-
ing assistance impacts the situation that the Follower has to undergo when initial speed is
set at 90km/h. It shows the subtraction ΩΨ

Advice − ΩΨ
Warning.
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Figure E.1: Results considering that the
leader is moving at 60 km/h
and provided with Warning
assistance.
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Figure E.2: Results considering that the
leader is moving at 60 km/h
and provided with Advice
assistance.
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Figure E.3: Added values of advice assistance provided to the Leader, for the situation the
Follower has to undergo. With Leader initial speed set at 60 km/h.
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Figure E.4: Results considering that the
leader is moving at 90 km/h
and provided with Warning
assistance.
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Figure E.5: Results considering that the
leader is moving at 90 km/h
and provided with Advice
assistance.
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Figure E.6: Added values of advice assistance provided to the Leader, for the situation the
Follower has to undergo. With Leader initial speed set at 90 km/h.
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Résumé : Les aides à la conduite dont sont 
équipés les nouveaux véhicules n’agissent qu’en 
dernier recours, à cause de leur compréhension 
de situation limitée. Le but de cette thèse est de 
considérer les informations contextuelles et la 
façon dont le conducteur interagit avec 
l’environnement pour détecter les risques plus 
tôt que ces systèmes. Les travaux sont répartis 
en deux phases : la compréhension de situation 
et l’estimation des risques. La compréhension 
de  situation  est  réalisée  via une  ontologie qui 

permet d’établir les relations spatio-temporelles 
entre les entités qui sont perçues, et d’identifier 
lesquelles ont un impact sur la navigation du 
véhicule. L’estimation des risques est faite par 
un réseau Bayésien qui prend en compte le 
contexte, l’état du véhicule, et le conducteur par 
ses actions et ses individualités qui sont 
modélisées par des processus Gaussiens. Les 
résultats montrent qu’il est possible de fournir 
une assistance plus préventive que des systèmes 
conventionnels. 
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Abstract : The driving assistance systems 
which are embedded in modern vehicles 
usually suffer from limited situation 
understanding capabilities, which results in last 
resort assistance. The purpose of this thesis is 
to consider contextual information and the 
manner how the driver interacts with his 
surroundings, to infer risks earlier than 
conventional systems.  The framework consists 
of two phases, namely situation understanding 
and risk assessment. Situation understanding is 
performed  through  an  ontology.  It  allows  to 
 

establish the spatio-temporal relationships 
between the perceived road entities, and to 
identify which ones impact the vehicle 
navigation. Risk assessment is performed by a 
Bayesian network, which takes into account the 
context, the vehicle state, the driver’s 
actuations, and the driver’s individualities 
which are modelled through Gaussian 
Processes. The results show that the framework 
allows triggering assistance which is more 
preventive than conventional systems. 
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