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Résumé (en Français)

Contexte et motivations

Les jeux stochastiques à somme nulle forment une classe de jeux répétés à deux joueurs,
introduite par Shapley [Sha53]. Ils décrivent des interactions qui s’étalent sur une période de
temps donnée (éventuellement infinie), entre deux agents (appelés « joueurs ») dont les inté-
rêts s’opposent. Ces joueurs prennent des décisions à intervalles de temps fixés, dans le but
d’optimiser leur gain respectif sur la durée totale de leur échange. Ce type de jeux apparaît
dans plusieurs domaines, dont les sciences informatiques (analyse statique, vérification de mo-
dèle), l’économie mathématique, la finance mathématique, ou la dynamique des populations.
Le principal trait caractéristique de cette classe de jeux réside dans le fait que les décisions,
prises à chaque étape, modifient l’état de la nature selon un processus stochastique contrôlé.
Ces décisions génèrent également un paiement instantané d’un joueur vers l’autre, qui dépend
en outre de l’état courant de la nature. Ainsi, à chaque étape, les joueurs doivent trouver un
compromis entre leur gain instantané et l’évolution de l’état, qui influence les paiements fu-
turs.

Étant donné une évaluation de la suite des paiements générés par les décisions prises
par les joueurs à chaque étape, on dit que le jeu à une valeur v si le joueur qui reçoit les
paiements (joueur « maximisant ») peut faire en sorte de recevoir au minimum cette quan-
tité v, et si le joueur qui donne les paiements (joueur « minimisant ») peut s’assurer de ne
pas perdre plus que cette quantité v, indépendamment de la stratégie suivie par le joueur
adverse. Un problème standard est de savoir si la valeur calculée à partir de la moyenne
arithmétique des k premiers paiements a une limite quand l’horizon k tend vers l’infini. On
appelle cette limite la valeur limite (ou encore, la valeur asymptotique). Ce problème a été
largement étudié pour différentes classes de jeux répétés, par un grand nombre d’auteurs
dont Bewley, Kohlberg, Mertens, Neyman, Sorin, Zamir. Nous renvoyons le lecteur aux ar-
ticles [MZ72, Koh74, BK76, KN81, MN81, RS01b, Ney03, Sor03]. En particulier, l’existence de
la valeur limite des jeux stochastiques dont l’ensemble des états et l’ensemble des actions sont
finis a été établie dans [BK76]. Cependant, quand les espaces d’action sont infinis, cette valeur
limite peut ne pas exister, même si les données du problèmes sont standards (compacité des
espaces d’action, continuité des fonctions de transition) [Vig13].

D’autres problèmes classiques proviennent des jeux stochastiques à paiement moyen, pour les-
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quels la valeur est déterminée à partir de la limite (lim sup ou lim inf) des moyennes de Cesàro
des paiements d’étapes. Dans ce cas, au lieu d’optimiser sur une période de temps finie, puis
de considérer le comportement de la valeur quand les joueurs deviennent de plus en plus pa-
tient (horizon k → ∞), on étudie un jeu qui comporte une infinité d’étapes. A l’origine, les
jeux à paiement moyen ont été étudiés dans un cadre déterministe par Ehrenfeucht et My-
cielski [EM79], et Gurvich, Karzanov er Khachiyan [GKK88]. Les premiers ont montré l’exis-
tence de stratégies optimales stationnaires, c’est-à-dire dont les décisions prises par les joueurs
à chaque étape dépendent uniquement de l’état courant (et non de l’ensemble des actions pas-
sées). Les seconds ont donné un algorithme pour déterminer celles-ci. Cependant, l’existence
d’un algorithme en temps polynomial pour résoudre les jeux à paiement moyen demeure, de-
puis lors, une question ouverte. Il est à noter que ces jeux [ZP96], ainsi que d’autres classes
de jeux stochastiques avec états absorbants [Con92] appartiennent à la classe de complexité
NP ∩ coNP. Ainsi, ils font partie des rares problèmes qui sont dans NP ∩ coNP et pour lesquels
aucun algorithme en temps polynomial n’est connu. Pour une comparaison des différentes
classes de jeux concernées par ces résultats, nous renvoyons à [AM09].

Les jeux stochastiques à paiement moyen soulèvent aussi des problèmes théoriques, tels
que l’existence de la valeur ou de stratégies optimales. Ces problèmes ont été étudiés non seule-
ment en théorie des jeux [FV97], mais aussi en théorie du contrôle (c’est-à-dire pour des jeux
à un joueur) sous la dénomination de problèmes de contrôle ergodique. Ceux-ci sont standards
pour les processus de décisions Markoviens [Put94, HLL96], ainsi que pour les problèmes
de contrôle stochastique sensible au risque, étudiés en temps discret par plusieurs auteurs
dont Hernández-Hernández et Marcus [HHM96], Fleming et Hernández-Hernández [FHH97,
FHH99], voir aussi [CCHH05] ou [AB15] pour des résultats plus récents.

Une manière d’analyser les problèmes évoqués ci-dessus est d’exploiter la structure récursive
des jeux stochastiques. Celle-ci s’exprime dans leur opérateur de programmation dynamique,
appelé opérateur de Shapley, dont il est possible de déduire des informations utiles en étudiant
leur propriétés analytiques. Cette méthode, appelé « approche opérateur », a été développée
par Kohlberg [Koh74, Koh80], Kohlberg et Neyman [KN81], Rosenberg et Sorin [RS01a], Ney-
man [Ney03], Sorin [Sor04], Renault [Ren12], entre autre. En particulier, la valeur limite des
jeux stochastiques ainsi que la valeur des jeux stochastiques à paiement moyen existent et sont
indépendantes de l’état initial, si une certaine équation non linéaire aux valeurs propres admet
une solution. Cette équation est appelée équation ergodique (en Anglais, « average reward optima-
lity equation »). Quand l’espace d’état est fini, disons {1, . . . , n}, cette équation s’écrit

T (u) = λe+ u , λ ∈ R , u ∈ Rn , (0.1)

où T : Rn → Rn est l’opérateur de Shapley et e est le vecteur unité de Rn. Le scalaire λ, appelé
constante ergodique, fournit la valeur pour n’importe quel état initial. En outre, il est possible de
déduire du vecteur u, appelé vecteur de biais, des stratégies optimales stationnaires. Pour cela, il
suffit d’identifier des actions, dans la représentation minimax de T , qui réalisent le maximum
et le minimum dans (0.1). Ainsi, comprendre la structure de l’espace des vecteurs de biais est
un problème théorique d’une importance fondamentale, puisque cette espace permet d’avoir
accès à l’ensemble des stratégies optimales stationnaires.

Dans le cas déterministe à un joueur, la représentation des vecteurs de biais est bien com-
prise. L’analyse repose sur la théorie spectrale max-plus, dont l’origine remonte aux travaux de
Romanovsky [Rom67], Gondran et Minoux [GM77] et Cunnighame-Green [CG79]. Nous ren-
voyons aussi le lecteur à [MS92, BCOQ92] pour un aperçu plus ample de cette théorie. Quand
l’espace d’état et le temps sont continus, une équation aux dérivées partielles de type Hamilton-
Jacobi remplace l’équation de programmation dynamique (0.1). Les solutions de cette équation
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aux dérivées partielles ont été étudiées dans le cadre de la théorie KAM faible, en lien avec des
problèmes de contrôle optimal en temps continu, c.f. la monographie de Fathi [Fat08]. Dans le
cas stochastique, la structure de l’espace des vecteurs de biais est également bien comprise dans
le cadre des problèmes à un joueur en temps discret, c.f. Akian et Gaubert [AG03]. Mais dans le
cadre des problèmes à deux joueurs, la structure de cet espace est bien moins comprise, et l’uni-
cité du vecteur de biais, à l’addition d’un vecteur constant près, est déjà un problème important,
notamment pour des raisons algorithmiques. En effet, des phénomène de cyclage peuvent se
manifester dans l’algorithme d’itération sur les politiques de Hoffman et Karp [HK66], quand
l’unicité n’a pas lieu (voir l’exemple dans [ACTDG12]).

Pour résoudre l’équation (0.1), il est habituel de supposer valides des « conditions de com-
munication », basées sur la structure des probabilités de transition. Par exemple, une condition
classique impose aux matrices de transition d’être toutes irréductibles, voir [Bat73]. De manière
alternative, il est possible de faire appel aux techniques de la théorie de Perron-Frobenius non
linéaire. En effet, trouver une solution à l’équation (0.1) est équivalent à trouver un vecteur
u ∈ Rn dont toutes les coordonnées sont strictement positives, et un scalaire λ strictement posi-
tif, tels que l’égalité f(u) = λu soit satisfaite pour une certaine fonction f , définie de l’intérieur
du cône standard positif de Rn dans lui-même, et qui est homogène de degré un et préserve
l’ordre partiel standard de Rn.

La théorie de Perron-Frobenius non linéaire s’intéresse plus généralement aux fonctions
f , définies d’un cône convexe fermé K d’un espace de Banach dans lui-même, qui sont non
expansives par rapport à une métrique induite par K. Selon les propres mots de Nussbaum
dans [Nus88], « la question centrale [. . . ] et la difficulté analytique irréductible » est de savoir si
f possède un vecteur propre dans l’intérieur deK, c’est-à-dire, si il existe un vecteur u ∈ int(K)
tel que

f(u) = λu (0.2)

pour un certain scalaire λ > 0.
L’intérêt pour l’équation (0.2) remonte aux travaux de Kreı̆n et Rutman [KR50]. Elle a été

particulièrement étudiée par Nussbaum [Nus88, Nus89], qui a donné des conditions analy-
tiques garantissant l’existence d’une solution. Ces conditions reposent sur la théorie du point
fixe. Elle a aussi été étudiée d’un point de vue combinatoire par Gaubert et Gunawardena
[GG04], dans le cas où K est l’orthant positif de Rn et f préserve l’ordre standard associé et est
homogène de degré un. Remarquons que ces dernières conditions imposent en particulier que
f est non expansive par rapport à la métrique projective de Hilbert. Il est à noter que l’unicité
du vecteur propre u, au produit d’un scalaire strictement positif près, est aussi un problème
important, qui a été étudié dans les références mentionnées ci-dessus.

Mentionnons que la théorie de Perron-Frobenius non linéaire a des applications dans des
domaines aussi variés que la théorie des jeux, la théorie de l’information, la théorie des sys-
tèmes dynamiques, la biologie mathématique, l’économie mathématique. En outre, des liens
avec les tenseurs positifs ont récemment été mis en lumière (voir le survey [CQZ13]). Nous
renvoyons le lecteur à la monographie [LN12] pour un vaste panorama de la théorie de Perron-
Frobenius non linéaire.

Dans la présente thèse, nous utilisons des outils de la théorie de Perron-Frobenius non li-
néaire, introduits dans [Nus88] et [GG04], afin de traiter les problèmes en lien avec l’équation
ergodique (0.1), évoqués ci-dessus. Le Chapitre 2 est dédié à la présentation détaillée du cadre
de ce travail.
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Contributions

Dans cette thèse, nous présentons des résultats nouveaux concernat les jeux stochastiques
avec paiement moyen et espace d’état fini. L’ensemble du travail exposé dans ce manuscrit re-
pose sur la notion centrale d’« ergodicité » des jeux stochastiques, que nous relions à l’existence
d’une solution pour toute une famille de problèmes ergodiques (0.1). Pour caractériser cette
notion, nous employons des méthodes de théorie des graphes, impliquant notamment les hy-
pergraphes. Nous étudions aussi l’unicité, à l’addition d’un vecteur constant près, du vecteur
de biais. Nous mentionnons que certains des résultats obtenus peuvent se formuler dans le
cadre de la théorie de Perron-Frobenius non linéaire, dont les outils sont largement utilisés.
Dans les paragraphes suivant, nous passons en revue les principaux résultats.

Dans les Chapitres 4 à 6, nous introduisons et donnons une caractérisation de la notion d’er-
godicité pour les jeux stochastiques avec espace d’état fini. Nous empruntons la terminologie
au cas des chaînes de Markov.

Selon la définition de Kemeny et Snell [KS76], l’ergodicité d’une chaîne de Markov finie
peut être caractérisée par plusieurs propriétés de sa matrice de transition : unicité de la mesure
de probabilité invariante ; unicité de la classe finale ; moyennes de Cesàro des paiements obte-
nus le long d’une trajectoire qui tendent vers une limite indépendante de l’état initial ; existence
d’une solution pour toute une famille de problèmes spectraux.

Nous montrons que la plupart de ces caractérisations reste valides dans le cas des jeux
stochastiques, avec toutefois une différence majeure concernant la propriété relative à la théorie
des graphes : le graphe dirigé associé à la matrice de transition d’une chaîne de Markov finie
doit être remplacé par une paire d’hypergraphes dirigés.

Ainsi, nous dirons qu’un jeu, ou son opérateur de Shapley T : Rn → Rn, est ergodique si
l’équation ergodique (0.1) admet une solution pour tous les opérateurs qui s’écrivent sous la
forme g + T avec g ∈ Rn. Ces derniers correspondent à des versions modifiées du jeu original,
consistant à ajouter la quantité gi à tous les paiements dans l’état i. Il s’ensuit que si le jeu est
ergodique, la valeur limite est indépendante de l’état initial pour n’importe quelle perturbation
additive des paiements.

Dans le Chapitre 4, nous considérons d’abord le cas des jeux dont la fonction de paiement
est bornée. Nous montrons, dans le Théorème 4.6, que l’ergodicité est équivalente à l’unicité,
à l’addition d’un vecteur constant près, du point fixe d’un opérateur de Shapley auxiliaire. Ce
dernier est positivement homogène, c’est-à-dire qu’il commute avec le produit par un scalaire
strictement positif. De tels opérateurs apparaissent dans les jeux dont les paiements instantanés
sont nuls, et pour cette raison nous les appelons opérateurs de Shapley sans paiement.

Cette caractérisation de l’ergodicité nous amène à considérer, dans le Chapitre 5, le pro-
blème de l’existence de points fixes d’opérateurs de Shapley sans paiement dont l’arg min ou
l’arg max est fixé. Nous donnons une condition combinatoire en termes de correspondance de
Galois (Théorème 5.7) ainsi qu’en termes d’hypergraphes (Théorème 5.12), et nous proposons
un algorithme en temps polynomial (Algorithme 1) qui résout ce problème. Mentionnons que
ce problème est intéressant en lui-même puisque la structure de l’ensemble des vecteurs de
biais d’un opérateur de Shapley polyédral (associé à un jeu à information parfaite avec espaces
d’action finis) est donné localement par l’ensemble des points fixes d’un opérateur de Sha-
pley sans paiement. Nous déduisons ensuite une caractérisation combinatoire de l’ergodicité,
qui fait intervenir une paire d’hypergraphes (Corollaire 5.13), dont la construction ne dépend
(sous certaines hypothèses) que de la structure du jeu, et non de la valeur que peuvent prendre
les différentes données. Traduit dans le langage de la théorie des jeux, nous montrons que
l’ergodicité se caractérise par l’absence de « territoires » (dominions, en Anglais) disjoints pour
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chaque joueur (Théorème 5.16), un territoire étant un ensemble d’état qu’un joueur peut rendre
invariant. Nous concluons que vérifier l’ergodicité est coNP-dur, et dépend essentiellement du
nombre d’état (Théorème 5.28) : si les états sont fixés, ce problème peut être résolu en temps
polynomial par rapport au nombre d’actions.

Nous traitons ensuite le cas général, c’est-à-dire celui des jeux stochastiques dont la fonc-
tion de paiement est potentiellement non bornée. D’après un corollaire de Gaubert et Guna-
wardena [GG04], un jeu stochastique est ergodique, au sens que nous venons de définir, si
tous les espaces de tranche sont bornés pour la semi-norme de Hilbert. Ces espaces sont des en-
sembles invariants par T , définis pour tout α, β ∈ R par {x ∈ Rn | αe + x 6 T (x) 6 βe + x}.
Dans le Chapitre 4, nous montrons que cette condition est non seulement suffisante, mais aussi
nécessaire (Théorème 4.21). Pour établir ce résultat, nous employons la théorie des opérateurs
accrétifs. Plus précisément, nous établissons une condition nécessaire de surjectivité pour de
tels opérateurs définis sur un espace normé de dimension finie (Théorème 4.16). En guise de
conséquence, nous obtenons un résultat de stabilité, concernant l’existence de points fixes pour
toute perturbation additive d’une application non expansive (Corollaire 4.20).

Dans le Chapitre 6, nous caractérisons de manière combinatoire la propriété selon laquelle
tous les espaces de tranche sont bornés pour la semi-norme de Hilbert, répondant ainsi à une
question ouverte posée dans [GG04]. Cette caractérisation se manifeste par l’absence de terri-
toires disjoints pour chaque joueur dans un jeu stochastique auxiliaire, dont les actions sont dé-
finies par le comportement asymptotique de T le long de certaines demi-droites (Théorème 6.2).
Nous donnons également une caractérisation en termes d’hypergraphes (Théorème 6.9). Sous
l’hypothèse que la fonction de paiement est bornée, cette dernière caractérisation est équiva-
lente à celle fournie dans le Chapitre 5. Quand un seul joueur a des ensembles d’action non
triviaux (c’est-à-dire quand T est convexe), nous montrons que ces conditions se simplifient.

Dans les Chapitres 7 et 8 nous étudions l’unicité, à l’addition d’un vecteur constant près,
des vecteurs de biais d’un opérateur de Shapley T . Nous commençons par traiter, dans le Cha-
pitre 7, le cas des jeux stochastiques ergodiques à information parfaite et espaces d’action finis,
c’est-à-dire quand T est une application polyédrale telle que l’équation ergodique (0.1) admet
une solution pour tout opérateur g + T avec g ∈ Rn. Nous montrons que les vecteurs de per-
turbation g pour lesquels l’unicité, à l’addition d’un vecteur constant près, n’a pas lieu sont
contenus dans les cellules d’un complexe polyédral, dont la codimension est au moins 1 (Théo-
rème 7.8). L’application de ce résultat à l’algorithme d’itération sur les politiques nous permet
d’obtenir un schéma de perturbation pour traiter les instances dégénérées de jeux stochastiques
(Théorème 7.22).

Ensuite, dans le Chapitre 8, nous généralisons cette propriété « générique » à n’importe quel
opérateur de Shapley. Pour cela, nous nous basons sur l’« approche opérateur accrétif » intro-
duite dans le Chapitre 4. Nous montrons que si l’équation ergodique (0.1) admet une solution
pour toute perturbation locale de T , alors le vecteur de biais est unique, à l’addition d’un vec-
teur constant près, pour une perturbation locale « générique » (Théorème 8.6).

Les opérateurs de Shapley définis sur Rn sont caractérisés par deux propriétés fondamen-
tales : ils préservent l’ordre standard partiel de Rn et ils sont additivement homogènes, c’est-à-
dire qu’ils commutent avec l’addition par un vecteur constant. Cette caractérisation repose sur
plusieurs représentations minimax des opérateurs vérifiant ces propriétés, voir [Kol92, RS01b].

Les opérateurs de Shapley qui sont en outre positivement homogènes occupent une place
centrale dans la caractérisation de l’ergodicité (Chapitre 4) et sont le principal objet d’étude du
Chapitre 5. Dans le Chapitre 3, nous donnons une représentation minimax de tels opérateurs
(Corollaire 3.12), justifiant ainsi leur dénomination d’« opérateurs de Shapley sans paiement ».
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Pour parvenir à cette représentation, nous montrons qu’une fonction à valeur réelle sur un es-
pace vectoriel topologique est positivement homogène de degré un et non expansive par rap-
port à une norme faible de Minkowski si, et seulement si, elle peut s’écrire comme le minimax
des formes linéaires qui sont non expansives par rapport à cette même norme (Théorème 3.8).

Présentation des chapitres

Chapitre 2

Dans le Chapitre 2, nous introduisons le modèle des jeux stochastiques à somme nulle, nous
présentons l’approche opérateur, et nous établissons le lien avec la théorie de Perron-Frobenius
non linéaire. En particulier, nous appellerons opérateur de Shapley (abstrait) sur Rn, tout opé-
rateur de Rn qui est monotone (M) et additivement homogène (AH)

Chapitre 3

Il existe plusieurs théorèmes de représentation minimax des opérateurs de Rn qui sont mono-
tones (M) et additivement homogènes (AH) : caractérisation en termes de jeux stochastiques
[Kol92] (Théorème 2.2), ou en termes de jeux répétés à information parfaite avec transitions
déterministes [RS01b, Gun03] (Théorème 2.3). Dans le cadre de la convexité abstraite, mention-
nons également [DMLR04, DMLR08], qui fournissent une caractérisation d’opérateurs vérifiant
des propriétés similaires dans un cadre multiplicatif. En outre, on obtient le même type de théo-
rèmes de représentation par la dualité de Fenchel-Legendre quand les opérateurs sont en plus
convexes (dans ce cas, il n’y a plus d’infimum dans la formule de représentation). En dimension
infinie, cela a été appliqué au cas des mesures de risque convexes [FS02] par exemple.

Une sous-classe importante d’opérateurs monotones et additivement homogènes est consti-
tuée par ceux qui sont aussi positivement homogènes (PH). C’est notamment le cas des opéra-
teurs de récession, utilisés par Gaubert et Gunawardena [GG04] en théorie de Perron-Frobenius
non linéaire. C’est aussi le cas, en dimension infinie, des mesures de risque cohérentes [ADEH99,
Del02].

Lorsque T : Rn → Rn est l’opérateur de Shapley d’un jeu stochastique Γ(r) dont la fonction
de paiement r est bornée, l’opérateur de récession T̂ est bien défini, et est lui-même l’opérateur
de Shapley du jeu stochastique Γ(0), dont la fonction de paiement est nulle. Cependant, la
réciproque ne peut pas être déduite des théorèmes de représentation évoqués ci-dessus : Si
T : Rn → Rn est un opérateur de Shapley (abstrait) qui est positivement homogène, ni le
Théorème 2.2, ni le Théorème 2.3 ne fournissent une formule de représentation de T comme
opérateur de programmation dynamique d’un jeu dont la fonction de paiement est nulle. Dans
le Chapitre 3, nous établissons une telle caractérisation. Ce résultat justifie le fait que nous
appellerons, dans la suite, opérateur de Shapley (abstrait) sans paiement sur Rn, tout opérateur de
Rn qui est monotone (M), additivement homogène (AH) et positivement homogène (PH).

Les deux propriétés qui définissent les opérateurs de Shapley (M) et (AH), sont équiva-
lentes à la propriété d’être non expansif par rapport à une certaine norme faible de Minkowski.
Ces dernières sont des substituts de normes qui ne sont pas nécessairement symétriques, ou ne
séparent pas nécessairement les points. Elles ont été étudiées en géométrie métrique, en par-
ticulier par Papadopoulos et Troyanov [PT14], et apparaissent naturellement dans l’étude des
opérateurs de Shapley, voir [GV12].

Pour obtenir une caractérisation minimax des opérateurs monotones, additivement et po-
sitivement homogènes, nous commençons par établir un théorème général de représentation
minimax qui s’applique à des fonctions réelles définies sur un espace vectoriel topologique,
et qui sont non expansives par rapport à une norme faible de Minkowski. Nous caractérisons
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ensuite les fonctions non expansives qui sont en outre positivement homogènes. Nous en dé-
duisons comme corollaire notre principale application : un théorème de représentation des
opérateurs de programmation dynamique des jeux stochastiques dont les paiements de transi-
tion sont nuls. Nous en déduisons également qu’il est possible d’approcher ces opérateurs par
une application polyédrale positivement homogène. Ce type d’approximation peut être utilisée
dans le cadre des méthodes d’éléments finis max-plus pour la résolution numérique d’équa-
tions aux dérivées partielles de Hamilton-Jacobi, voir [McE06, AGL08]. Nous déduisons aussi
un théorème de représentation de mesures de risque non convexes.

Chapitres 4 à 6

L’existence de la valeur limite d’un jeu stochastique à espace d’état fini est un problème qui
peut se résoudre en prouvant l’existence d’une solution à l’équation ergodique (0.1), faisant
intervenir l’opérateur de Shapley T du jeu. Pour que cette équation admette une solution, il
est nécessaire et suffisant qu’une orbite de T soit bornée pour la semi-norme de Hilbert (Théo-
rème 2.6). Prouver que cette dernière propriété est satisfaite est un problème difficile en gé-
néral, qui dépend non seulement de la structure du jeu (c’est-à-dire, le support des probabili-
tés de transition), mais aussi de la valeur des différents paramètres (paiements et probabilités
de transition). En suivant les idées de Gaubert et Gunawardena [GG04], un problème mieux
posé consiste à trouver des conditions pour lesquelles tous les éléments d’une famille donnée
d’espaces invariants par T sont bornés pour la semi-norme de Hilbert. De telles conditions ne
dépendent habituellement que de la structure du jeu (voir, par exemple, Théorème 2.8). Dans
ce cas, l’équation ergodique a une solution non seulement pour T , mais aussi pour toute une
famille d’opérateurs perturbés.

Le cas des chaînes de Markov ergodiques est un exemple élémentaire illustrant cette pro-
priété de stabilité. D’après Kemeny et Snell [KS76], une chaîne de Markov finie est ergodique si
sa matrice de transition satisfait l’une des assertions listées dans le théorème ci-dessous. Nous
rappelons à cet effet que pour une matrice stochastique carrée P de dimension n, le graphe di-
rigé associé est constitué des nœuds 1, . . . , n et des arcs (i, j) tels que Pij > 0. Une classe de la
matrice P est un ensemble maximal de nœuds tel que pour n’importe quelle paire de nœuds
dans cet ensemble, il existe un chemin dans le graphe de P reliant l’un à l’autre. Une classe est
dite finale si tout chemin issu d’un nœud de cette classe reste dans celle-ci. Le lecteur pourra
trouver la preuve du théorème suivant dans [KS76] et [BP94]

Theorem 0.1. Soit P ∈ Rn×n une matrice stochastique. Les assertions suivantes sont équivalentes :
(i) tout vecteur v ∈ Rn tel que Pv = v est constant ;

(ii) pour tout vecteur g ∈ Rn, il existe une paire (λ, u) ∈ R× Rn telle que g + Pu = λe+ u ;
(iii) pour tout vecteur g ∈ Rn, la limite des moyennes de Cesàro limk→∞(g + Pg + · · · + P k−1g)/k

est un vecteur constant ;
(iv) Le graphe dirigé associé à P a une unique classe finale ;
(v) la matrice stochastique P a une unique mesure de probabilité invariante.

Une chaîne de Markov finie peut être vue comme un jeu stochastique à zéro joueur. Si
P ∈ Rn×n est sa matrice de transition, et si gi est le paiement reçu quand l’état i ∈ [n] est visité,
l’opérateur de Shapley s’écrit alors T (x) = g+Px pour tout x ∈ Rn. On déduit immédiatement
que son opérateur de récession est égal à T̂ (x) = Px. Ainsi, en utilisant le vocabulaire de la
théorie des jeux, l’ergodicité d’une chaîne de Markov finie peut se caractériser soit par le fait
que tous les points fixes de l’opérateur de récession T̂ sont constants (Point (i)), soit par le fait
que l’équation ergodique a une solution pour tout opérateur g + T avec g ∈ Rn (Point (ii)), soit
encore par le fait que la valeur limite est constante pour tout vecteur de paiement g ∈ Rn
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(Point (iii)). Une question naturelle est de savoir si ces caractérisations s’étendent aux jeux
stochastiques à espace d’état fini.

Rappelons que la stabilité de l’existence d’une valeur limite constante, basée sur des pro-
priétés structurelles, a déjà été étudiée dans plusieurs cadres. Dans le cas des chaînes de Mar-
kov finies, pour lesquelles on considère un critère sensible au risque basé sur le coût moyen en
temps long, Cavazos-Cadena et Hernández-Hernández [CCHH09] ont donné une condition
nécessaire et suffisante sur la matrice de transition pour que l’équation de Poisson – une équa-
tion de type programmation dynamique – ait une solution quelle que soit la fonction de coût
associée à la chaîne. Toujours motivés par des problèmes dits sensibles au risque, les mêmes
auteurs [CCHH10] ont donné, sous une hypothèse de convexité faible, une condition néces-
saire et suffisante pour que le problème spectral non linéaire (0.2) ait une solution pour toute
perturbation des paiements. En théorie du contrôle optimal (espace d’état et temps continu),
Arisawa [Ari97, Ari98] a étudié le problème ergodique pour les équations de Hamilton-Jacobi-
Bellman, et a établi un lien entre l’existence de la constante ergodique pour toute fonction de
coût ne dépendant que de l’état et l’existence d’un « attracteur ergodique », qui ne dépend que
de la dynamique.

Dans les Chapitres 4 à 6, nous étendons la notion d’ergodicité aux jeux stochastiques à
somme nulle. Ainsi, nous dirons qu’un jeu (ou de manière équivalente, son opérateur de Sha-
pley T : Rn → Rn) est ergodique si l’équation ergodique (0.1) a une solution pour tout opéra-
teur g + T avec g ∈ Rn.

Dans le Chapitre 4, en nous inspirant des travaux de Gaubert et Gunawardena [GG04],
nous commençons par caractériser l’ergodicité en termes d’opérateur de récession. Pour cela,
nous supposons que l’opérateur de Shapley et son opérateur de récession ont le même com-
portement asymptotique. Ensuite, nous relâchons cette hypothèse et caractérisons l’ergodicité
en toute généralité, en termes d’espaces de tranche. Ce résultat s’appuie sur le lien entre les
applications non expansives et les opérateurs accrétifs.

Dans le Chapitre 5 et le Chapitre 6, nous traitons de l’aspect combinatoire de ces conditions.
En particulier, nous les formulons en termes de relation d’accessibilité dans des hypergraphes,
ainsi qu’en termes de « territoires » (ou dominions).

Chapitres 7 et 8

La description de l’ensemble des vecteurs de biais d’un jeu stochastique à somme nulle est un
problème fondamental. Dans le cas des problèmes à un joueur, c’est-à-dire pour les problèmes
de contrôle optimal en temps discret, la représentation des vecteurs de biais et leur relation avec
les stratégies optimales sont bien comprises, que les transitions soient déterministes ou stochas-
tiques (processus de décision Markoviens). Quand les transitions sont déterministes, l’analyse
de ces problèmes repose sur la théorie spectrale max-plus, qui remonte aux travaux de Roma-
novsky [Rom67], Gondran et Minoux [GM77], et Cuninghame-Green [CG79]. Pour une présen-
tation de la théorie spectrale max-plus, le lecteur pourra se référer à [MS92, BCOQ92, ABG13].
Kontorer et Yakovenko [KY92] et Kolokoltsov et Maslov [KM97] se sont en particulier intéres-
sés aux problèmes d’optimisation en horizon infini et aux problèmes à paiement moyen. Dans
ce cadre, l’ensemble des vecteurs de biais possède la structure d’un cône max-plus, c’est-à-dire
qu’il est invariant par combinaisons linéaires max-plus, et il est engendré par une unique fa-
mille minimale qui s’identifie au support des mesures maximisantes dans la formulation du
problème de contrôle optimal sous forme de programme linéaire. Ces générateurs « extrêmes »
correspondent également aux états récurrents des trajectoires optimales infinies. Une interpré-
tation combinatoire de certains de ces résultats, en termes de complexes polyédrales, a récem-
ment été proposée par Sturmfels et Tran [ST13]. L’équation ergodique (0.1) et la structure des
vecteurs de biais a aussi été étudié dans le cas d’espaces d’état continus. Un premier cadre
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d’étude est fourni par la théorie spectrale max-plus en dimension infinie (voir Akian, Gaubert
et Walsh [AGW09]), un second par la théorie KAM faible (voir Fathi [Fat08]). En outre, quand
les transitions sont stochastiques, la structure de l’ensemble des vecteurs de biais est également
bien comprise dans le cas d’espaces d’état finis, voir Akian et Gaubert [AG03].

Dans le cas des jeux à deux joueurs, la structure de l’ensemble des vecteurs de biais est
bien moins comprise. Le problème de comprendre quand le vecteur de biais est unique, à une
constante additive près, est déjà intéressant, notamment pour des questions algorithmiques.
C’est particulièrement le cas pour l’algorithme d’itération sur les politiques de Hoffman et
Karp, puisque la non unicité est en général source d’instabilités numériques ou de situations
dégénérées. Hoffman et Karp [HK66] ont introduit cet algorithme pour résoudre les jeux sto-
chastiques à somme nulle avec paiement moyen, information parfaite, et espaces d’état et d’ac-
tion finis. Ils ont montré que l’itération sur les politiques termine si pour chaque paire de stra-
tégie stationnaires des joueurs, la chaine de Markov associée est irréductible. Cependant, des
phénomènes de cyclage peuvent apparaître si cette hypothèse d’irréductibilité n’est pas satis-
faite, ce qui est le cas pour beaucoup de classes de jeux – en particulier, elle n’est essentielle-
ment jamais satisfaite pour les jeux avec transitions déterministes. Pour contourner cette obs-
truction, des raffinements ont été proposés par Cochet-Terrasson et Gaubert [CTG06], Akian,
Cochet-Terrasson, Detournay et Gaubert [ACTDG12], Bourque et Raghavan [BR14]. Mais le
prix à payer pour traiter les situations de non unicité, est une augmentation de la complexité
de l’algorithme. Ainsi, il est très intéressant de comprendre quand de tels détails techniques
peuvent être évités.

Dans le Chapitre 7, nous considérons le problème de l’unicité du vecteur de biais de jeux
stochastiques avec information parfaite et espaces d’état et d’action finis, quand ceux-ci sont
ergodiques, c’est-à-dire quand l’équation ergodique (0.1) a une solution pour toute perturba-
tion des paiements de transitions. Le résultat principal (Théorème 7.8) montre que le vecteur
de biais est génériquement unique, à l’addition d’un vecteur constant près. Plus précisément,
il montre que les vecteurs de perturbation pour lesquels le vecteur de biais n’est pas unique
sont contenus dans les cellules d’un complexe polyédrale dont la codimension est au moins 1.
Nous déduisons ensuite que l’itération sur les politiques de Hoffman et Karp converge bien
pour un paiement générique, ce qui nous amène à proposer un schéma de perturbation expli-
cite qui permet de résoudre les instances non génériques (pour lesquelles des cycles peuvent
se produire) sans faire appel à la condition d’irréductibilité.

Dans le Chapitre 8, nous nous occupons du problème de l’unicité du vecteur de biais pour
n’importe quel jeu stochastique à somme nulle dont l’espace d’état est fini. Nous montrons que
si l’équation ergodique (0.1) a une solution pour toute perturbation locale, alors l’unicité du
vecteur de biais est générique localement.

Le Chapitre 3 est basé sur la prépublication [AGH16]. La première partie du Chaptire 4 (concer-
nant les jeux stochastiques avec paiements bornés) et le Chapitre 5 sont issues de l’article
[AGH15a], publié dans le journal Discrete and Continuous Dynamical Systems, Series A. Les ré-
sultats du Chapitre 6 ont été partiellement annoncés dans les actes de la conférence CDC
2015 [AGH15b]. Les résultats du Chapitre 7, exceptés ceux relatifs à l’itération sur les poli-
tiques, ont été annoncés dans les actes de la conférence CDC 2014 [AGH14b]. Les résultats se
rapportant à l’« approche opérateur accrétif », présentés dans le Chapitre 4 et le Chapitre 8, ont
été annoncés dans les actes de la conférence MTNS 2016 [Hoc16].
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CHAPTER1

Introduction

1.1 Context and motivations

Zero-sum stochastic games are a class of two-player repeated games introduced by Shap-
ley [Sha53]. They describe long-term interactions between two agents (called “players”) with
opposite interests, which take decisions stage by stage with the objective to optimize their gains
over time. They appear in several domains, including computer science, economics or popula-
tion dynamics. The main feature of this class of games is that the decisions taken at each stage
modify the state of nature, according to a controlled stochastic process, and incur an instanta-
neous payment from one player to the other, which also depends on the current state. Hence,
at each stage, the players have to make a trade-off between the instantaneous payment and the
evolution of the state which influences future payoffs.

Given an evaluation of the stream of payments, the game has a value v if the maximizing
player can be sure to get at least this quantity v, whereas the minimizing player can be sure not
to loose more than v, independently of the strategy followed by the other player. A standard
problem is to know if the value arising from the arithmetic mean of the first k payments has a
limit when the horizon k tends to infinity. We shall call this limit the mean payoff (also known as
the asymptotic value). This problem has been widely studied for different classes of repeated
games, by several authors, including Bewley, Kohlberg, Mertens, Neyman, Sorin, Zamir, see
[MZ72, Koh74, BK76, KN81, MN81, RS01b, Ney03, Sor03]. In particular, the existence of the
mean payoff of stochastic games with finite state and action spaces was established in [BK76].
However, when the action spaces are infinite, the mean payoff may not exist even with stan-
dard assumptions on the data (compactness of the action spaces, continuity of the transition
functions) [Vig13].

Other standard problems arise from mean-payoff stochastic games, for which the global payoff
is the limit (lim sup or lim inf) of the Cesàro mean of the payments. Here, instead of optimiz-
ing over a finite horizon k and considering the behavior of the value as the players become
more patient (k → ∞), we consider a game played in infinitely many stages. Mean-payoff
games were originally considered in the deterministic framework by Ehrenfeucht and Myciel-
ski [EM79] and Gurvich, Karzanov and Khachiyan [GKK88]. They respectively showed the
existence of optimal stationary strategies, i.e., such that the decisions only depend on the cur-
rent position, and gave an algorithm to find them. However, the existence of a polynomial-time
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algorithm to solve mean-payoff games has remained, since then, an open question. Let us note
that these games [ZP96], as well as related classes of stopping stochastic games [Con92], were
shown to be in the complexity class NP ∩ coNP. Hence, they belong to the few problems that
are in NP ∩ coNP for which no polynomial-time algorithm is known. We refer to [AM09] for a
comparison of the various classes of games which have been considered. Mean-payoff stochas-
tic games also rise theoretical problems, such as the existence of the value or optimal strategies.
These problems have been considered not only in game theory [FV97], but also in control the-
ory (i.e., one-player games) under the name of ergodic control problems or long-run average-reward
problems. The latter problems are standard for Markov decision processes [Put94, HLL96] as
well as for risk-sensitive stochastic control, developed in the framework of discrete time by sev-
eral authors including Hernández-Hernández and Marcus [HHM96], Fleming and Hernández-
Hernández [FHH97, FHH99], see also [CCHH05] or [AB15] for more recent developments.

One way to analyze the aforementioned problems is to exploit the recursive structure of
stochastic games, encompassed in their dynamic programming operator, so-called Shapley op-
erator. One infers useful information by studying the analytical properties of these operators.
This method, known as “operator approach”, was developed by Kohlberg [Koh74, Koh80],
Kohlberg and Neyman [KN81], Rosenberg and Sorin [RS01a], Neyman [Ney03], Sorin [Sor04],
Renault [Ren12] and others. In particular, both the mean payoff and the value of mean-payoff
games exist and are independent of the initial state if some nonlinear eigenvalue equation,
known as ergodic equation or average reward optimality equation, has a solution. When the state
space is finite, say {1, . . . , n}, this equation writes

T (u) = λe+ u , λ ∈ R , u ∈ Rn , (1.1)

where T : Rn → Rn is the Shapley operator and e is the unit vector of Rn. The scalar λ, called
ergodic constant, gives the value for any initial state, and one can obtain optimal stationary
strategies from the vector u, called bias vector, by identifying the actions, in the minimax repre-
sentation of T , that attain the maximum or the minimum in (1.1). Thus, from a theoretical point
of view, it is a fundamental issue to understand the structure of the set of bias vectors, since
it allows one to access all optimal stationary strategies. In the one-player deterministic case,
the representation of bias vectors is well understood. The analysis relies on max-plus spectral
theory, which goes back to the work of Romanovsky [Rom67], Gondran and Minoux [GM77]
and Cunnighame-Green [CG79], see also [MS92, BCOQ92] for more background on this the-
ory. With continuous time and state space, a Hamilton-Jacobi PDE replaces the dynamic-
programming equation (1.1), the solutions of which have been studied in the framework of
weak KAM theory, in relation with continuous-time deterministic optimal control problems,
see the monograph by Fathi [Fat08]. In the stochastic case, the structure of bias vectors is still
well understood for discrete-time one-player problems with finite state space, see Akian and
Gaubert [AG03]. But in the two-player case, the structure is less well known and the unique-
ness of the bias vector, up to the addition by a constant vector, is already an important issue.
The latter problem is also a matter of importance for algorithmic purposes, as nonuniqueness
may cause cycling problems in Hoffman-Karp policy iteration algorithm [HK66] (see an exam-
ple in [ACTDG12]).

The solvability of (1.1) usually requires some “communication conditions” based on the
structure of transition probabilities – for instance, all transition matrices being irreducible,
see [Bat73]. Alternatively, one can use techniques from nonlinear Perron-Frobenius theory.
Indeed, solving Equation (1.1) is the reflection through “log-glasses” of finding a vector u ∈ Rn



Chapter 1. Introduction 3

with positive coordinates and a positive scalar λ such that f(u) = λu for some self-map f act-
ing on the standard positive cone of Rn, that is homogeneous of degree one and preserves the
standard partial order of Rn.

Nonlinear Perron-Frobenius theory deals more generally with self-maps f acting on a closed
convex cone K in a Banach space, that are nonexpansive with respect to some metric induced
by K. According to the words of Nussbaum in [Nus88], “the central question [. . . ] and the
irreducible analytic difficulty” is to know if f has an eigenvector in the interior of K, i.e., if
there exists a vector u ∈ int(K) such that

f(u) = λu (1.2)

for some scalar λ > 0. The interest for Equation (1.2) goes back to the work of Kreı̆n and
Rutman [KR50]. It has been especially studied by Nussbaum [Nus88, Nus89], who gave ana-
lytic conditions for its solvability, relying on fixed-point theory. It has also been studied from
a combinatorial point of view by Gaubert and Gunawardena [GG04] when K is the standard
nonnegative cone of Rn and f is order-preserving and homogeneous of degree one (implying
nonexpansiveness with respect to Hilbert’s projective metric). Note that the uniqueness of the
eigenvector u, up to a positive scalar multiple, is also an important issue, investigated in the
latter references. Let us mention that nonlinear Perron-Frobenius theory has applications in
various domains, including game theory, information theory, dynamical systems theory, math-
ematical biology, economics, and links with nonnegative tensors have been recently pointed
out (see the survey paper [CQZ13]). We refer to [LN12] for an overview of this theory.

In the present work, we use some tools of nonlinear Perron-Frobenius theory introduced
in [Nus88] and [GG04] to address the aforementioned problems related with the ergodic equa-
tion (1.1). Chapter 2 is dedicated to the detailed presentation of these topics.

1.2 Contributions

In this thesis, we present new results on mean-payoff stochastic games with finite state space.
The whole work is built upon the key notion of ergodicity of stochastic games, which we relate
with the solvability of a family of ergodic problems (1.1). We make an extensive use of graph-
theoretic methods, involving particularly hypergraphs, to characterize the latter notion. We
also study the uniqueness, up to the addition by a constant vector, of the bias vector. We
mention that some of these results may be transposed to the framework of nonlinear Perron-
Frobenius theory, the tools of which are being used to a great extent. We next review the main
results.

In Chapters 4 to 6, we introduce and characterize the notion of ergodicity for stochastic games
with finite state space. We borrow the term from the Markov chain case. Following the defini-
tion of Kemeny and Snell [KS76], the ergodicity of a finite Markov chain may be characterized
by several properties involving its transition matrix: uniqueness of the invariant probability
measure, uniqueness of the final class, constant limit value of the Cesàro mean of the payments
obtained along a trajectory, solvability of a family of spectral problems. We show that most
of these characterizations are valid in the case of stochastic games, with however one major
discrepancy regarding the graph-theoretic aspect: the directed graph associated with the tran-
sition matrix of a finite Markov chain must be replaced by a pair of directed hypergraphs. Thus,
we shall say that a game, or its Shapley operator T : Rn → Rn, is ergodic if the ergodic equa-
tion (1.1) has a solution for all operators g + T with g ∈ Rn. The latter operators correspond to
modified versions of the original game where the quantity gi is added to all payments in state
i. Then, if the game is ergodic, the mean payoff is constant for any such additive perturbation.
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In Chapter 4, we first consider the case of games with a bounded payment function. We
show in Theorem 4.6 that ergodicity is equivalent to the uniqueness, up to an additive con-
stant, of the fixed point of an auxiliary Shapley operator, which is positively homogeneous,
meaning that it commutes with the product by a positive scalar. Such operators arise in games
with no instantaneous payments, and for that reason we shall call them payment-free Shapley
operators. This leads us to consider in Chapter 5 the problem of existence of fixed points with
prescribed arg min or arg max for such operators. We give combinatorial conditions in terms
of Galois connections (Theorem 5.7) and in terms of hypergraphs (Theorem 5.12), and provide a
polynomial-time algorithm (Algorithm 1) to solve the latter problem. Note that this problem
is interesting in itself since the structure of the set of bias vectors of a polyhedral Shapley op-
erator (game with perfect information and finite action spaces) is given locally by the set of
fixed points of some payment-free Shapley operator. We then infer a combinatorial characteri-
zation of ergodicity involving a pair of hypergraphs (Corollary 5.13), the construction of which
only depends on the structure of the game (under standing assumption). Put in game-theoretic
terms, we show that ergodicity is characterized by the absence of disjoint dominions for each
player (Theorem 5.16), a dominion being a subset of state controlled by one player. We con-
clude that checking ergodicity is coNP-hard, but fixed parameter tractable (Theorem 5.28): if
the number of states is fixed, the latter problem can be solved in time polynomial with respect
to the number of actions.

Then, we address the general case, i.e., games with possibly unbounded payment function.
It follows from a corollary of Gaubert and Gunawardena [GG04] that a stochastic game is er-
godic, in the sense of our definition, if all slice spaces are bounded in Hilbert’s seminorm. The
latter spaces are subsets invariant by T and defined for all α, β ∈ R by {x ∈ Rn | αe + x 6
T (x) 6 βe + x}. In Chapter 4, we show that this condition is not only sufficient but also nec-
essary (Theorem 4.21). To that purpose, we use the theory of accretive operators, establishing a
necessary condition of surjectivity for any accretive map in a finite-dimensional normed space
(Theorem 4.16). As a consequence, we get a stability result (under additive perturbations) for
the existence of a fixed point for any nonexpansive map (Corollary 4.20).

In Chapter 6, we provide a combinatorial characterization of the boundedness of all slice
spaces in Hilbert’s seminorm, answering an open question raised in [GG04]. This characteri-
zation is formulated as the nonexistence of disjoint dominions for each player in an auxiliary
stochastic game, the action of which are defined by the asymptotic behavior of T along some
rays (Theorem 6.2). We also give a graph-theoretic characterization (Theorem 6.9) which re-
covers the bounded case. When one player is a dummy (i.e., T is convex), we show that these
conditions simplify.

In Chapters 7 and 8 we study the uniqueness, up to an additive constant, of the bias vector
of a Shapley operator T . In Chapter 7, we first deal with the case of ergodic stochastic games
with perfect information and finite action spaces, that is, when T is a polyhedral map such
that the ergodic equation (1.1) has a solution for all g + T with g ∈ Rn. We show that the
perturbation vectors g for which uniqueness, up to an additive constant, of the bias vector of
g + T fails are contained in the cells of a polyhedral complex, the codimension of which are
at least 1 (Theorem 7.8). As an application, we obtain a perturbation scheme allowing one to
solve degenerate instances of stochastic games by policy iteration (Theorem 7.22).

Then in Chapter 8, we generalize this “generic property” to any Shapley operator, follow-
ing the “accretive operator approach” introduced in Chapter 4. We show that if the ergodic
equation (1.1) is solvable for local perturbations of T , then the bias vector is unique, up to an
additive constant, for a “generic” local perturbation (Theorem 8.6).
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Shapley operators on Rn are characterized by two fundamental properties: they are order-
preserving and additively homogeneous, meaning that they commute with the addition by a
constant vector. This characterization follows from several minimax representations of opera-
tors satisfying the latter properties, see [Kol92, RS01b].

Shapley operators which are also positively homogeneous play a key role in characteriz-
ing ergodicity (Chapter 4) and are the central subject of study in Chapter 5. In Chapter 3,
we give a minimax representation for such operators (Corollary 3.12), justifying the term of
“payment-free Shapley operators”. To that purpose we show that a real-valued function on
any topological vector space is positively homogeneous of degree one and nonexpansive with
respect to a weak Minkowski norm if, and only if, it can be written as a minimax of linear forms
that are nonexpansive with respect to the same norm (Theorem 3.8).

Chapter 3 is based on the preprint [AGH16]. The first part of Chapter 4 (regarding stochastic
games with bounded payment function) and Chapter 5 are based on the paper [AGH15a],
published in Discrete and Continuous Dynamical Systems, Series A. The results of Chapter 6
have been partly announced, with a different point of view, in the CDC conference proceed-
ings [AGH15b]. The theoretic aspects of Chapter 7 (not dealing with the application to policy
iteration) have been announced in the CDC conference proceedings [AGH14b]. The results of
the accretive operator approach, presented in Chapter 4 and Chapter 8, have been announced
in the MTNS conference proceedings [Hoc16].



Part I

Operator approach of zero-sum
stochastic games



CHAPTER2

Preliminaries

2.1 Zero-sum stochastic games

In this section, we present the model of zero-sum stochastic, first in its general form (imperfect
information), then in the particular case of perfect information. We refer the reader to [FV97,
NS03, MSZ14] for more background on these topics.

In the remainder, we shall use the following notation:
– we denote by ∆(X) the set of probability measures on any measurable space (X,F );
– let [n] := {1, . . . , n} for any positive integer n.

2.1.1 General model

Structure of the game

A (zero-sum) stochastic game between two players, that we call MIN and MAX respectively, is
a class of zero-sum repeated games where these two agents, with opposite interests, interact at
given time steps. It is defined by a 7-tuple

Γ := (S,A,B,KA,KB, r, p) ,

where
– S is the state space, that we assume finite;
– (A,A ) and (B,B) are measurable sets, corresponding to the action spaces of players MIN

and MAX respectively;
– KA ⊂ S×A andKB ⊂ S×B are measurable sets, representing the constraint sets of players

MIN and MAX respectively. For each state s ∈ S, the section

As := {a ∈ A | (s, a) ∈ KA}

is the set of admissible actions of player MIN in state s and similarly, the section

Bs := {b ∈ B | (s, b) ∈ KB}

is the set of admissible actions of player MAX in state s. We assume that all the sets of
admissible actions are nonempty, and we let

K := {(s, a, b) | s ∈ S, a ∈ As, b ∈ Bs} ,
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which is a measurable subset of S ×A×B;
– r : K → R is a measurable function, representing the (stage) payment function (we shall also

use the word payoff function) for player MAX (and therefore the cost function for MIN);
– p : K → ∆(S) is a measurable function, corresponding to the transition function.

The game is played in stages, the players having a perfect knowledge of all the past and
current information, i.e., they know the previously chosen actions and all the states visited up
to the current one. It starts with a given initial state s1, and then proceeds as follows: at step `,
if the current state is s`, the players choose independently actions a` and b` in their respective
set of admissible actions, namely As` and Bs` . Then, player MAX receives from MIN the (stage)
payment r(s`, a`, b`) and the next state s`+1 is chosen according to the transition probability
p(· | s`, a`, b`).

In order to avoid technical problems, we shall always assume that for any states s ∈ S and
any probability measures µ and ν over As and Bs, respectively, the payoff function (a, b) 7→
r(s, a, b) is integrable with respect to the product measure of µ and ν. This is in particular the
case when r is bounded.

Strategies

Given a finite horizon k > 1, let Hk := Kk−1 × S be the set of admissible histories of length
k, and let H∞ := K∞ be the set of all histories of infinite length, also called plays. Note
that all the sets Hk have a measurable structure since they are products of measurable sets.
Therefore, we can endow H∞with the σ-algebra generated by the cylinder sets. We also denote
by H :=

⋃
k>1 Hk the set of all finite histories.

A (behavioral) strategy of player MIN is a map σ : H → ∆(A) such that, for every finite
history hk ∈ Hk with hk = (s1, a1, b1, . . . , sk), we have σ(Ask | hk) = 1. We denote by S the set
of all strategies of MIN. Similarly, the set T of strategies of player MAX is defined as the set of
all maps τ : H → ∆(B) such that τ(· | hk) is an element of ∆(Bsk) for every finite history hk
ending with sk. A strategy is said to be deterministic or pure if the image of any finite history is
a Dirac measure. In other words, a deterministic strategy of MIN (resp., MAX) can be identified
with a map σ : H → A (resp., τ : H → B) such that σ(hk) ∈ Ask (resp., τ(hk) ∈ Bsk ) for every
finite history hk ending with sk. We say that σ(hk) (resp., τ(hk)) is a pure action, as opposed to
a mixed action.

Let us also introduce the following classes of strategies. A strategy is Markovian if it only
depends on the length of the history and on its last state. A strategy σ of MIN (resp., τ of MAX)
is stationary if it only depends on the current state, regardless of all the past information, that is,
if there exists a map µ : S → ∆(A) (resp., ν : S → ∆(B)) such that σ(· | hk) = µ(· | sk) ∈ ∆(Ask)
(resp., τ(· | hk) = ν(· | sk) ∈ ∆(Bsk)) for every finite history hk ending with sk.

Finally, an initial state s ∈ S and a pair of strategies (σ, τ) ∈ S × T define, by Kolmogorov
extension theorem, a unique probability measure on the set of plays H∞. We denote by Es,σ,τ
the expectation with respect to that probability measure.

Global payo�s

Given a sequence of stage payments, generated by an initial state s and a choice of strategies
(σ, τ) ∈ S × T , there are several ways of defining a global payoff. In this work, we focus our
attention particularly on games played in finitely many stages. For a finite horizon k > 1, the
payoff is thus given by the expected value of the sum of the k first stage payments, that is,

γk(s, σ, τ) := Es,σ,τ
[ k∑
`=1

r(s`, a`, b`)

]
.
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Let us mention that a second classical way to evaluate the payoff is to fix a discount factor
δ ∈ (0, 1] and to consider the discounted sum of the stage payments:

γδ(s, σ, τ) := Es,σ,τ
[
δ
∞∑
`=1

(1− δ)(`−1)r(s`, a`, b`)

]
.

The methods used to deal with problems arising from these payoffs are similar. They usually
boil down to consider strategy spaces as compact sets for some topology, under which the
payoff function satisfies some continuity assumptions (the approach is usually referred to as
the “compact case”).

Another way to define the payoff is to consider the asymptotic behavior of the plays, on
contrary to the finite-horizon or the discounted payoffs which depend essentially on a finite
number of stages. Here, we shall especially consider the limiting average reward criterion, defined
by

γAR(s, σ, τ) := lim inf
k→∞

Es,σ,τ
[

1

k

k∑
`=1

r(s`, a`, b`)

]
.

The problems based on this evaluation are also known as ergodic control problems in optimal
control theory. Also, a stochastic game with this payoff is usually referred to as mean-payoff
game in the computer science literature.

Value

Given a global payoff function γ, an initial state s ∈ S, and strategies σ ∈ S and τ ∈ T , player
MAX intends to maximize the quantity γ(s, σ, τ), while player MIN wants to minimize it. The
stochastic game Γ with payoff function γ has a value in s ∈ S if

sup
τ∈T

inf
σ∈S

γ(s, σ, τ) = inf
σ∈S

sup
τ∈T

γ(s, σ, τ) .

In that case, the value, denoted by vs, is equal to either of the terms in the above equality.
Its existence means that for every ε > 0, player MAX can guarantee vs − ε, that is, he has an
ε-optimal strategy τε ∈ T such that

∀σ ∈ S , γ(s, σ, τε) > vs − ε ,

and dually player MIN can guarantee vs + ε, that is, he has an ε-optimal strategy σε ∈ S such
that

∀τ ∈ T , γ(s, σε, τ) 6 vs + ε .

If the k-stage game has a value in s, we denote it by vks ; if the δ-discounted game has a value in s,
we denote it by vδs ; and if the limiting average reward game, also known as mean payoff game, has
a value in s, we denote it by vARs .

Once a payoff is fixed, a first problem is to find conditions under which the value exists.
A second problem is to characterize the optimal, or ε-optimal, strategies. Moreover, for finite-
horizon or discounted stochastic games, another classical problem concerns the asymptotic
behavior of the value as the horizon goes to infinity or the discount factor vanishes. All these
issues may be considered from either a theoretical or an algorithmic point of view.

In the finite-horizon case or the discounted case, the values are known to exist under stan-
dard assumptions, see [Sor02]. Let us mention the following two cases (recalling that in our
framework, the state space is finite):

– the action spaces are finite (we say that the stochastic game Γ is finite);
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– the sets of admissible actions are compact Hausdorff in every state, and the payment and
transition functions are continuous.

Note that for particular classes of stochastic games, these values exist with mild assumptions.
The class of perfect-information stochastic games, which will be presented in the next subsec-
tion, is one of them. Let us also mention the case of Markov decision processes (MDPs for short),
which are one-player stochastic games, i.e., games in which one of the players has only a single
admissible action in each state. Then, it suffices that the payoff function is bounded to ensure
the existence of the value in finite horizon.

With the limiting average reward criterion, proving the existence of the value or finding
optimal strategies are more complex tasks. However, the value is known to exist in the finite
setup, that is, with finite state space and action spaces. In this framework, we have furthermore
vARs = limδ→0 v

δ
s = limk→∞ v

k
s/k. We refer the reader to [FV97] for a treatment of these issues

in the case of stochastic games, and to [HLL96, HLL99] in the case of MDPs.

2.1.2 Games with perfect information

In this subsection, we introduce the subclass of stochastic games with perfect information. It differs
from the general model in the structure of information: a stochastic game has perfect informa-
tion when in each state one player has a unique admissible action, hence his decision has no
effect on the payment nor the transition probabilities. If the player with trivial action space is
always the same, the game is an MDP.

In this thesis, we consider a more general model where in each state, players take decisions
in turn (MIN then MAX). Here, a perfect-information (zero-sum) stochastic game is defined by
a 7-tuple Γ := (S,A,B,KA,KB, r, p), where S is the state space, which is assumed to be finite,
and A and B are the action spaces of players MIN and MAX respectively, which are assumed
to be measurable sets. The constraint set of MIN is the same as the general model, that is,
KA ⊂ S × A is a measurable set such that each section As := {a ∈ A | (s, a) ∈ KA} represents
the admissible actions of MIN in state s. As for the constraint set of MAX, it is a measurable
set KB ⊂ S × A× B, so that his admissible actions depend on the current state and the action
chosen by the first player. If MIN has chosen action a ∈ As in state s, then the set of admissible
actions of MAX is

Bs,a := {b ∈ B | (s, a, b) ∈ KB} .

We assume that all the sets of admissible actions are nonempty, and we let

K := {(s, a, b) | s ∈ S, a ∈ As, b ∈ Bs,a}

be the domain of definition of the payment function r and the transition function p, which are
defined as in the general model.

The game is played repeatedly in discrete time like the “imperfect information” case, except
that in stage ` > 1, if the current state is s`, player MIN first select an action a` ∈ As` , then MAX

observes this move and chooses an action b` ∈ Bs`,a` .
To introduce the notion of strategy in our model, we need to distinguish histories of player

MIN from histories of player MAX. The set of admissible histories of length k > 1 for player
MIN is Hk := Kk−1 × S, and we denote by H :=

⋃
k>1 Hk the set of all finite histories of MIN.

As for player MAX, the set of admissible histories of length k > 1 is H ′
k := Kk−1×KA, and we

denote by H ′ :=
⋃
k>1 H ′

k the set of all finite histories for MAX.
A strategy of player MIN is a map σ : H → ∆(A) such that, for every finite history hk ∈Hk

with hk = (s1, a1, b1, . . . , sk), we have σ(· | hk) ∈ ∆(Ask) (and S denotes the set of all his
strategies). As for player MAX, the set of his strategies, denoted by T ′, is composed of all the
maps τ : H ′ → ∆(B) such that τ(· | hk) is an element of ∆(Bsk,ak) for every finite history hk
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ending with (sk, ak). The notion of Markovian, stationary, or deterministic strategy are defined
in the same way as in the general case.

Given a payoff evaluation γ, the perfect-information game Γ has a value in state s ∈ S if

sup
τ∈T ′

inf
σ∈S

γ(s, σ, τ) = inf
σ∈S

sup
τ∈T ′

γ(s, σ, τ) .

Contrary to the general case, the existence of the value requires less hypotheses, in particular
regarding the topology of the action spaces and the regularity of the payment and transition
functions. For instance, the existence is guaranteed in the finite-horizon case or the discounted
case as soon as the payment function is bounded (with no continuity assumptions on r or p, nor
topological assumptions on A or B). Furthermore, in the finite case, existence of deterministic
stationary strategies was shown for discounted games [Sha53] and mean-payoff games [LL69].

In the sequel, the same notation Γ will refer either to a stochastic game (with imperfect
information) or a perfect-information stochastic game. When no precision is made, a stochastic
game will always refer to the general model.

2.1.3 Asymptotic approach: the mean payo�

A major topic in the theory of repeated games concerns the asymptotic behavior of the value
in finite horizon when the horizon goes to infinity. Particularly, given an initial state s ∈ S, a
standard question is to understand when the sequence of mean values per time unit, (vks/k)k>1,
has a finite limit. This limit, when it exists, is referred to as the mean payoff (in state s), and we
denote it by χs:

χs := lim
k→∞

vks
k

, s ∈ S .

We shall denote by χ the mean payoff vector, i.e., the vector in RS whose entries are χs with s ∈ S.
The latter question was first addressed for particular classes of repeated games with finite

state space. Everett [Eve57] proved the existence of the mean payoff for recursive games, a class
of stochastic games where a nonzero payment only occurs in absorbing states (states that can-
not be escaped from and where the payoff remains the same). Kohlberg [Koh74] proved it for
absorbing games, where the transition are deterministic and some state are absorbing. Then,
Bewley and Kohlberg [BK76] showed that the limit exists for all finite stochastic games. For
more recent results, see [RS01a, Sor04] or [BGV15]. In the last reference, Bolte, Gaubert and
Vigeral proved that the mean payoff exists for definable stochastic games, where all the data (ac-
tion spaces, payment and transition functions) are definable in some o-minimal structure, a
condition that often holds in practice. In the one-player case, the existence of the mean pay-
off is ensured with even milder conditions. Thus, Renault [Ren11] proved that for any MDP
with bounded payment function (and finite state space) the mean payoff exists – actually, the
result is stronger and concerns the existence of the uniform value. Note that existence results
concerning the asymptotic approach were also obtained for games with incomplete informa-
tion [AM95, MZ72].

On the other hand, the sequence of mean values may not converge, even with standard
hypotheses. Vigeral [Vig13] provided an example of a stochastic game with finite state space,
compact action spaces, and continuous payment and transition functions, such that the mean
value in finite horizon does not converge as the horizon goes to infinity. See also [Zil16] for
similar nonexistence results.
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2.2 Operator approach of stochastic games

2.2.1 Shapley operator and recursive structure

General case

Let Γ be a stochastic game with state space S = [n]. To any vector x ∈ Rn and any state i ∈ [n],
we associate an auxiliary “one-shot” game, i.e., a repeated game played in one stage, defined
by the same action spaces and constraint sets as Γ and by the payment function

(a, b) 7→ r(i, a, b) +
∑
j∈[n]

xj p(j | i, a, b) , ∀(a, b) ∈ Ai ×Bi .

Assume that the latter one-stage game is well defined and has a value, meaning that

inf
µ∈∆(Ai)

sup
ν∈∆(Bi)

∫
Ai

∫
Bi

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
dν(b) dµ(a) =

sup
ν∈∆(Bi)

inf
µ∈∆(Ai)

∫
Bi

∫
Ai

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
dµ(a) dν(b) .

We denote by Ti(x) this value, which represents the value of the stochastic game Γ starting in
state i, played in one stage, and with an additional payoff of xj if the terminal state is j. Let us
mention that this value exists, according to Sion’s minimax theorem [Sio58], as soon as the sets
of actions are compact Hausdorff and the payment and transition functions are continuous.
Then, we define the Shapley operator T : Rn → Rn of the stochastic game Γ as the operator
whose ith coordinate map is given by

Ti(x) = inf
µ∈∆(Ai)

sup
ν∈∆(Bi)

(
r(i, µ, ν) +

∑
j∈[n]

xj p(j | i, µ, ν)
)

= sup
ν∈∆(Bi)

inf
µ∈∆(Ai)

(
r(i, µ, ν) +

∑
j∈[n]

xj p(j | i, µ, ν)
)
, ∀x ∈ Rn ,

(2.1)

where, given two probability measures µ ∈ ∆(Ai) and ν ∈ ∆(Bi),

f(i, µ, ν) :=

∫
Ai

∫
Bi

f(i, a, b) dν(b) dµ(a)

is the multilinear extension of any function f : K → R.
This operator encompasses the recursive structure of Γ, as shown by Shapley [Sha53] in the

case of finite stochastic games. Indeed, if vk := (vki )i∈[n] denotes the value vector of the k-stage
game Γ, i.e., the vector in Rn the ith entry of which is the value of the game in finite horizon k
with initial state i, then by applying a dynamic programming principle, we have

v0 = 0 and vk+1 = T (vk) , ∀k ∈ N . (2.2)

As a consequence, if the mean payoff vector exists, then it is given by the growth rate of the
orbit of T with initial point 0:

χ = lim
k→∞

T k(0)

k
, (2.3)

where T k := T ◦ · · · ◦ T denotes the kth iterate of T . The “operator approach”, initiated by
Rosenberg and Sorin [RS01a], consists in studying the properties of the Shapley operator and
its iterates to infer results about the asymptotic behavior of the sequence of values (vk)k∈N.
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Perfect-information case

When Γ is a perfect-information stochastic game with state space S = [n], the Shapley operator
simplifies. The fact that players choose actions one after the other with a perfect knowledge of
all available information makes the use of mixed actions (i.e., choices of probability measures
over the set of admissible actions) irrelevant in finitely repeated games. Thus, with perfect
information, we only need to consider pure actions, and the auxiliary one-shot game with
initial state i and terminal payoff x ∈ Rn has a value as soon as

inf
a∈Ai

sup
b∈Bi,a

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
∈ R .

In particular, this is the case when the payment function is bounded (the action spaces being
any sets and no continuity assumption on the payment and transition functions being made).
Then, the Shapley operator T : Rn → Rn has a simpler form, its ith coordinate writing

Ti(x) = inf
a∈Ai

sup
b∈Bi,a

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
, ∀x ∈ Rn . (2.4)

Note that the recursive property (2.2) of the values in finite horizon still holds.

2.2.2 Axiomatization of Shapley operators

Let T : Rn → Rn be the Shapley operator of a stochastic game with either perfect informa-
tion (2.4) or imperfect information (2.1). We endow Rn with the usual partial order and denote
by e the unit vector, i.e., the vector whose entries are all equal to 1. Then, it is readily seen that
T satisfies the following two properties:

– monotonicity:
x 6 y =⇒ T (x) 6 T (y) , ∀x, y ∈ Rn ; (M)

– additive homogeneity:

T (x+ λe) = T (x) + λe , ∀(λ, x) ∈ R× Rn . (AH)

An immediate consequence is that T is sup-norm nonexpansive:

‖T (x)− T (y)‖∞ 6 ‖x− y‖∞ , ∀x, y ∈ Rn , (N∞)

where ‖z‖∞ := max{|zi| | 1 6 i 6 n} is the standard supremum norm in Rn. Let us men-
tion that Crandall and Tartar [CT80] proved that under (AH), the properties (M) and (N∞) are
equivalent.

Remark 2.1. The nonexpansiveness of T implies that the asymptotic behavior of the sequence
(T k(x)/k)k>1 is independent of the vector x ∈ Rn: either it always converges (to a finite limit),
or it never converges. Thus, the mean payoff vector (2.3) is given by the growth rate of any
orbit of T .

The importance of monotonicity and additive homogeneity was recognized early on in
dynamic programming [Bla65]. The study of operators satisfying these properties, so called
operator approach, has proven useful not only in game theory [BK76, FV97, RS01a, Sor04,
Vig10, BGV15], but also in optimal control [Koh80, Whi83, Kol92], or in the modelling of
discrete event systems (such as communication networks, digital circuits, manufacturing pro-
cesses) [BCOQ92, Gun03].

Conversely, Kolokoltsov showed that every operator from Rn to itself which is monotone
and additively homogeneous can be written as the Shapley operator (2.1) of a stochastic game.
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Theorem 2.2 ([Kol92], see also [KM97, Th. 2.15]). Let F : Rn → Rn be a monotone and additively
homogeneous map. Then, there exist a payment function r : [n] × Rn × Rn → R and a transition
function p from [n] × Rn × Rn to the standard simplex of Rn, such that the ith coordinate map of F is
given by

Fi(x) = min
a∈Rn

max
b∈Rn

(
r(i, a, b) +

∑
j∈[n]

xj pj(i, a, b)
)

= max
b∈Rn

min
a∈Rn

(
r(i, a, b) +

∑
j∈[n]

xj pj(i, a, b)
)
, ∀x ∈ Rn .

The proof of this result, which only holds in finite dimension, is based on a minimax repre-
sentation formula due to Evans, which applies more generally to Lipschitz functions [Eva84].
Rubinov and Singer proposed a similar representation, but with perfect information. Moreover,
in their formula, the transition probabilities are degenerate, i.e., deterministic.

Theorem 2.3 ([RS01b, Th. 5.3]). Let F : Rn → Rn be a monotone and additively homogeneous map.
Then, its ith coordinate map is given by

Fi(x) = min
y∈Rn

max
j∈[n]

(
xj − yj + Fi(y)

)
, ∀x ∈ Rn .

Note that Gunawardena and Sparrow obtained independently an equivalent result [Gun03,
Prop. 2.3]. Also note that in the context of abstract convexity, a representation of functions on
cones with similar properties has been given in [DMLR04].

The above considerations motivate us to identify, in this thesis, Shapley operators with
maps that satisfy properties (M) and (AH).

Definition 2.4. We call (abstract) Shapley operator on Rn any map from Rn to itself that is both
monotone (M) and additively homogeneous (AH).

2.2.3 Ergodic equation

As mentioned above, the operator approach for stochastic games consists in studying the prop-
erties of Shapley operators in order to infer information about the asymptotic behavior of the
values in finite horizon. A basic tool in this respect is the following equation, called ergodic
equation (also known as the average reward optimality equation in the optimal control and MDP
literature):

T (u) = λe+ u , (λ, u) ∈ R× Rn . (2.5)

We say that the ergodic equation is solvable if their exist both a scalar λ ∈ R and a vector u ∈ Rn
for which (2.5) holds. If this is the case, we shall say that λ is the ergodic constant and u is a bias
vector of T . Since the solvability of the ergodic equation can be seen as a nonlinear spectral
problem in the additive framework (see Section 2.3), we shall also call λ the (additive) eigenvalue
of T , and u an (additive) eigenvector. Consequently, saying that T has an (additive) eigenvalue
is equivalent to saying that the ergodic equation is solvable for T .

Observe that if the ergodic equation is solvable, then T k(u) = kλe+u for all integers k ∈ N,
and so the mean payoff vector exists (see Remark 2.1) and each of its components is equal to
λ, that is, the mean payoff of the associated game is independent of the initial state. It follows
that the ergodic constant, when it exists, is necessarily unique. Also, since T is additively
homogeneous, any vector u+ αe with α ∈ R is a bias vector. We shall say that u is defined “up
to an additive constant”. Here, by “constant (vector)”, we mean a vector proportional to the
unit vector e.
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The ergodic equation is useful not only for the study of the mean-payoff vector, but also for
the study of the limiting average reward game. In particular, knowing explicitly an eigenvector
gives access to optimal or ε-optimal stationary strategies, see [KY92] for the deterministic case,
which readily extends to the stochastic case. See also [FV97] and [HLL96, HLL99] for the links
between the ergodic equation and optimal strategies in the framework of stochastic games and
MDPs, respectively.

The main purpose of this work is to find conditions guaranteeing the solvability of the
ergodic equation, as well as to characterize the set of bias vectors.

2.2.4 Piecewise a�ne operators and invariant half-lines

We conclude this section by mentioning the particular case of perfect-information finite stochas-
tic games. Recall that a stochastic game (with perfect information or not) is finite if the state
space and the action spaces are finite. In that case, the Shapley operator T : Rn → Rn is piece-
wise affine , meaning that Rn can be covered by finitely many polyhedra (a polyhedron being an
intersection of finitely many half-spaces) such that the restriction of the coordinate functions of
T to each polyhedron are affine.

Note that continuous piecewise affine functions are exactly the ones that can be represented
as a minimax over finite sets of affine functions, i.e., as in (2.4) where the infimum and the
supremum are taken over finite sets and the coefficients can be any real numbers, see [Ovc02,
AT07].

Then, the following result applies.

Theorem 2.5 ([Koh80, Th. 2.1]). Let F : Rn → Rn be a piecewise affine map that is nonexpansive in
any norm. Then, it has an invariant half-line, that is, there exist two vectors u, ν ∈ Rn such that

F (u+ αν) = u+ (α+ 1)ν

for all α > 0. Moreover, the vector ν is unique.

Hence, the Shapley operator T of a perfect-information finite stochastic game has an invari-
ant half-line, and so there exist vectors u, ν as in the above theorem. This yields T k(u) = u+ kν
for all integers k ∈ N, which implies that the mean-payoff vector exists (see Remark 2.1) and
is equal to ν. Moreover, it is easily seen that the solvability of the ergodic equation (2.5) is
equivalent to the mean payoff being a constant vector.

2.3 Connection with nonlinear Perron-Frobenius theory

2.3.1 Additive versus multiplicative framework

Nonlinear Perron-Frobenius theory is primarily concerned with the study of nonexpansive
maps f acting on a closed convex cones K in a Banach space. An important special case arises
when f is homogeneous of degree one and preserves the partial order induced by K. The cen-
tral question is to know if f has an eigenvector in the interior of K, i.e., if there exists a vector
u ∈ int(K) such that

f(u) = λu (2.6)

for some scalar λ > 0. Other standard problems include the characterization of the eigenvalue,
which may be seen as a spectral radius, or the uniqueness, up to the product by a positive
scalar, of the eigenvector, see [LN12].

These problems are already interesting when K is the standard nonnegative cone of Rn,
namely Rn+ := {x ∈ Rn | x > 0}, having applications, e.g., in matrix scaling problems or
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nonnegative tensor problems. Note that if f is a n × n nonnegative matrix, we recover the
classical Perron-Frobenius theory.

In this “multiplicative” framework, the aforementioned problems have been considered in
particular by Nussbaum [Nus88, Nus89]. But when f leaves the interior of Rn+ invariant, one
can equivalently work in the “additive” framework, see [GG04]. Indeed, the space Rn can be
placed in bijection with the interior of Rn+ via the map exp : Rn → int(Rn+) and its inverse
log : int(Rn+) → Rn, which applies respectively the exponential and the logarithm componen-
twise. Hence, any map f : int(Rn+) → int(Rn+) which is homogeneous of degree one and pre-
serves the standard partial order of Rn is conjugated with a unique map T : Rn → Rn, namely
T := log ◦f ◦ exp, which is monotone (M) and additively homogeneous (AH), i.e., a Shapley
operator. Then, through “log-glasses”, it is readily seen that the nonlinear eigenproblem (2.6)
is equivalent to finding a solution to the ergodic equation (2.5).

Thus, it is equivalent to work in the multiplicative framework and the additive one, as far
as the above properties are concerned, and all the results in the present work, established in
the additive framework, can be translated in the multiplicative one.

2.3.2 Hilbert's seminorm and invariant sets

A useful tool in nonlinear Perron-Frobenius theory is Hilbert’s seminorm. In the space Rn, it is
defined by

‖x‖H := max
i∈[n]

xi − min
j∈[n]

xj = max
i,j∈[n]

(xi − xj) , ∀x ∈ Rn .

The following result justifies the interest of Hilbert’s seminorm for the nonlinear spectral prob-
lem we are considering. As mentioned in [GG04], it can be seen as a special case, in the additive
framework, of a general result by Nussbaum [Nus88, Th. 4.1].

Theorem 2.6 ([GG04, Th. 9]). Let T : Rn → Rn be a Shapley operator. The ergodic equation (2.5) is
solvable if, and only if, the orbit {T k(x) | k ∈ N} is bounded in Hilbert’s seminorm for some (hence all)
x ∈ Rn.

The above theorem provides a method to tackle the problem of the solvability of the ergodic
equation, method which consists in finding invariant subsets that are bounded in Hilbert’s
seminorm. Following this direction, let us introduce three particular families of subsets that
are structurally invariant under all Shapley operators T . Given scalars α, β ∈ R, we define:

– the sub-eigenspace
Sα(T ) := {x ∈ Rn | αe+ x 6 T (x)} ;

– the super-eigenspace
Sβ(T ) := {x ∈ Rn | T (x) 6 βe+ x} ;

– the slice space

Sβα(T ) := Sα(T ) ∩ Sβ(T ) = {x ∈ Rn | αe+ x 6 T (x) 6 βe+ x} .

Even without the boundedness property, the nonemptiness of those spaces may be useful.
Indeed, a pair (α, x) ∈ R × Rn such that x ∈ Sα(T ), or (β, x) ∈ R × Rn such that x ∈ Sβ(T ),
may be seen as the solution of a generalized ergodic equation. It provides information about
the asymptotic behavior of the iterates of T , as shown by the following result. Note that in the
MDP literature, this tool is known as the average-cost optimality inequality, see [HLL96].
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Proposition 2.7 (compare with [Sor04, Prop. 7]). Let T : Rn → Rn be a Shapley operator. Assume
that the sub-eigenspace Sα(T ) is nonempty for a given scalar α. Then

lim inf
k→∞

T k(0)

k
> αe .

Similarly, if the super-eigenspace Sβ(T ) is not empty for β ∈ R, then

lim sup
k→∞

T k(0)

k
6 βe .

Finally, let us mention that the slice space Sβα(T ) is nonempty if α 6 mini∈[n] Ti(0) and
β > maxi∈[n] Ti(0). Hence, the difficulty in applying Theorem 2.6 with some slice space resides
in checking its boundedness with respect to Hilbert’s seminorm.

2.3.3 Conditions for the solvability of the ergodic equation

The question of characterizing the Shapley operators for which one of the aforementioned in-
variant spaces is bounded in Hilbert’s seminorm (but not necessarily all of them) is delicate,
and depends heavily not only on the structure but also on the parameters defining the opera-
tor. On the other hand, there exist conditions ensuring the boundedness of all invariant spaces
of a given family. These conditions, that we present in the sequel, rely on the asymptotic be-
havior of the Shapley operators. Hence, they are insensitive to perturbations that preserve the
monotonicity and the additive homogeneity and that do not change the behavior at infinity.

Boundedness of super-eigenspaces

The first condition involves the super-eigenspaces (note that a dual statement holds for sub-
eigenspaces). We need the following construction. To any Shapley operator T : Rn → Rn, we
associate the directed graph G(T ), with set of nodes [n] and an arc from i to j if Ti(αe{j}) tends
to +∞ as α goes to +∞, where e{j} is the jth vector of the canonical basis of Rn. The directed
graph G(T ) is said to be strongly connected if there is a path between any two distinct nodes.

Theorem 2.8 ([GG04, Th. 10]). Let T : Rn → Rn be a Shapley operator. If G(T ) is strongly connected,
then all super-eigenspaces are bounded in Hilbert’s seminorm.

Note that the above condition is only sufficient, but in the same paper [GG04], a combinato-
rial characterization of the boundedness of all super-eigenspaces is given, involving aggregated
graphs constructed in the same spirit as G(T ).

Boundedness of slice spaces

The second condition involves the slice spaces. Let us denote by T̂ the recession operator of any
Shapley operator T : Rn → Rn, defined by

T̂ (x) := lim
α→+∞

T (αx)

α
, ∀x ∈ Rn . (2.7)

Note that the recession operator does not always exist, but when it does it inherits from T the
monotonicity and the additive homogeneity. In addition, it is positively homogeneous, meaning
that

T̂ (αx) = αT̂ (x) , ∀α > 0 , ∀x ∈ Rn . (PH)

As a consequence, any constant vector is a fixed point of T̂ . We shall call such fixed points
trivial fixed points.
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Theorem 2.9 ([GG04, Th. 13]). If a Shapley operator T on Rn has a recession operator whose only
fixed points are trivial, then all slice spaces of T are bounded in Hilbert’s seminorm.

The above result provides a sufficient condition for the boundedness of all slice spaces,
but a counterexample in [GG04] showed that the condition is not necessary. In particular, the
following problem remained open.

Problem ([GG04]). Give a combinatorial condition or graph-theoretic characterization of the
property that all slice spaces are bounded in Hilbert’s seminorm.

The present work gives an answer to that problem.

Weakly convex operators

We mention that Cavazos-Cadena and Hernández-Hernández proved in [CCHH10], under a
weak form of convexity, that T̂ has only trivial fixed points if, and only if, the ergodic equation
is solvable for all operators g+ T with g ∈ Rn. The weak convexity property was motivated by
risk sensitive control problems. A typical example is the following Shapley operator T :

Ti(x) = log
( ∑
j∈[n]

Mij exp(xj)
)
, i ∈ [n] , x ∈ Rn , (2.8)

where M = (Mij) is a nonnegative matrix without zero row. Note that a supremum of weakly
convex Shapley operators is weakly convex, hence, one can construct further examples of
weakly convex operators by taking suprema of operators of the form (2.8).

This result gives a characterization, under the weakly convex property, of the boundedness
of all slice spaces in Hilbert’s seminorm. Indeed, it follows from Theorem 2.6 that all Shapley
operators g + T with g ∈ Rn have an eigenvector if all the slice spaces of T are bounded in
Hilbert’s seminorm.

Let us also mention that equivalent combinatorial conditions were given in the same paper,
involving the directed graph G(T ).

2.3.4 From nonlinear spectral problems to �xed point problems

The existence results in nonlinear Perron-Frobenius theory usually rely on classical fixed-point
theorems. In this subsection, we detail the link between the two topics in regard to our prob-
lems.

Let TPn be the space Rn quotiented by the equivalence relation ∼ defined as follows: for
two vectors x, y ∈ Rn, we write x ∼ y if there is a scalar α ∈ R such that x − y = αe. By
analogy with the real projective space, we call it the additive projective space. We denote by [x]
the equivalence class of any vector x ∈ Rn, which is the affine line directed by the unit vector e
and passing through x. Observe that ‖x‖H = ‖y‖H if x ∼ y. Hence, Hilbert’s seminorm can be
quotiented into a norm of TPn, that we denote by qH:

qH([x]) := ‖x‖H , ∀x ∈ Rn .

Furthermore, TPn has the structure of a vector space:

α[x] + [y] := [αx+ y] , ∀x, y ∈ Rn , ∀α ∈ R .

Thus, (TPn, qH) is a normed vector space of dimension n− 1.
Since any Shapley operator T : Rn → Rn is additively homogeneous, it is readily seen that

it can be quotiented into a map [T ] : TPn → TPn, sending each equivalence class [x] to the class
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[T (x)]. Moreover, it is a standard result that any Shapley operator is nonexpansive with respect
to Hilbert’s seminorm (see [GG04]), that is,

‖T (x)− T (y)‖H 6 ‖x− y‖H , ∀x, y ∈ Rn . (NH)

Hence, the quotiented map [T ] is nonexpansive with respect to the norm qH on TPn.
Now observe that a vector u ∈ Rn is an eigenvector of T if, and only if, its equivalence

class [x] ∈ TPn is a fixed point of [T ]. Thus, the ergodic problem (2.5) reduces to a fixed point
problem involving a nonexpansive map.



CHAPTER3

Minimax representation of positively
homogeneous nonexpansive functions

3.1 Introduction

Several minimax representation theorems are available for monotone additively homogeneous
operators on Rn: characterization in terms of stochastic games [Kol92] (Theorem 2.2), or in
terms of perfect-information repeated games with deterministic transitions [RS01b, Gun03]
(Theorem 2.3). In the context of abstract convexity, we also refer to [DMLR04, DMLR08] for
a characterization of similar operators in the multiplicative framework. The Fenchel-Legendre
duality provides the same kind of representation theorems (but with no infimum) for opera-
tors, or real functions, that are in addition convex. It has been applied in infinite dimension to
the case of convex risk measures [FS02] for instance.

An important subclass of monotone and additively homogeneous operators arises when
considering positive homogeneity (PH). This is particularly the case for recession operators,
used by Gaubert and Gunawardena [GG04] in nonlinear Perron-Frobenius theory, or for coher-
ent risk measures [ADEH99, Del02] in infinite dimension.

Observe that if T : Rn → Rn is the Shapley operator of a stochastic game (with perfect
information or not) Γ(r) = ([n], A,B,KA,KB, r, p) the payment function of which is bounded,
then its recession operator T̂ exists and it is the Shapley operator of the stochastic game Γ(0)
which has a zero payment function. However, the converse cannot be deduced from the rep-
resentation theorems mentioned above: if T : Rn → Rn is an abstract Shapley operator that is
also positively homogeneous, we cannot derive from Theorem 2.2 or 2.3 a representation for-
mula of T as the dynamic programming operator of a game with zero payment function. In
this chapter, we provide such a characterization. This leads us to the following definition.

Definition 3.1. We call (abstract) payment-free Shapley operator on Rn any self-map of Rn that is
monotone (M), additively homogeneous (AH) and positively homogeneous (PH).

It is known that the two properties characterizing Shapley operators, (M) and (AH), are
equivalent to nonexpansiveness with respect to some weak Minkowski norm. The latter are
substitutes of norms that are not necessarily symmetric or separating. They have been studied
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in metric geometry, in particular by Papadopoulos and Troyanov [PT14], and arise naturally in
the study of Shapley operators, see [GV12].

To get a minimax characterization of monotone, additively and positively homogeneous op-
erators, we first establish a general minimax representation theorem which applies to real func-
tions on a topological vector space that are nonexpansive with respect to any weak Minkowski
norm. We then characterize nonexpansive maps that are positively homogeneous. As a corol-
lary, we arrive at our main application: a representation theorem for dynamic programming
operators of stochastic games with zero payments. This representation also leads to an approx-
imation of the latter operators by polyhedral maps. Such approximation can been used in the
setting of “max-plus basis methods” for the numerical solutions of Hamilton-Jacobi type partial
differential equations, see [McE06, AGL08] for background. We also arrive at a representation
theorem for nonconvex risk measures.

The results persented in this chapter are based on the preprint [AGH16].

3.2 Preliminaries: nonexpansiveness and weak Minkowski norms

In this chapter, we denote by V a real topological vector space (t.v.s. for short). We denote by
V∗ the dual space of V (i.e., the space of linear forms on V), by V ′ its topological dual space (i.e.,
the space of continuous linear forms on V), and by 〈·, ·〉 the duality product.

We shall specially consider the situation in which V is a vector space with an (Archimedean)
order unit. This means that we assume that V is a real vector space with an order relation, de-
noted by6, that is compatible with the algebraic structure of V , that is, satisfying the following
two axioms:

(i) x 6 y =⇒ x+ z 6 y + z , ∀z ∈ V ;
(ii) x 6 y =⇒ λx 6 λy , ∀λ ∈ R+;

where R+ is the set of nonnegative real numbers. We also assume that V is equipped with a
special vector denoted by eV (or simply by e if the context is clear), called an order unit and such
that for every x ∈ V , there exists a scalar λ > 0 satisfying x 6 λeV . Finally, we assume that this
order unit is Archimedean, i.e., for any x ∈ V , we have x > 0 if λeV + x > 0 for all scalars λ > 0.
Such a space will be endowed with the topology defined by the following norm:

‖x‖eV = inf{λ ∈ R | −λeV 6 x 6 λeV} , x ∈ V , (3.1)

see [PT09]. Note that if V is the Euclidean space Rn equipped with the standard partial or-
der, then the standard unit vector of Rn is an Archimedean order unit, and the corresponding
norm (3.1) is the usual supremum norm. Hence, we will abusively refer to (3.1) as the “sup-
norm” even in general situations.

An important particular case is obtained when V is an AM-space with unit, i.e., a Banach
lattice equipped with an order unit and such that the norm satisfies (3.1), see [AB06]. By the
Kakutani-Krein theorem, any AM-space with unit is isomorphic (lattice isometric) to a space
C(K) of continuous functions over some compact Hausdorff set K, equipped with the sup-
norm, see [AB06, Th. 8.29] or [Sch74, Ch. II, Th. 7.4].

Given two vector spaces with an order unit, (V, eV) and (W, eW), we will be interested in
maps F : V → W that satisfy, for all x, y ∈ V , some of the following properties:

– monotonicity:
x 6 y =⇒ F (x) 6 F (y) ; (M)

– additive homogeneity:

F (λeV + x) = λeW + F (x) , ∀λ ∈ R ; (AH)
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– additive subhomogeneity:

F (λeV + x) 6 λeW + F (x) , ∀λ > 0 ; (ASH)

– positive homogeneity:
F (λx) = λF (x) , ∀λ > 0 ; (PH)

– sup-norm nonexpansiveness:

‖F (x)− F (y)‖eW 6 ‖x− y‖eV . (N∞)

The importance of monotonicity and additive homogeneity in optimal control and game theory
has been pointed in Subsection 2.2.2. Crandall and Tartar [CT80] showed that

(M) and (AH) ⇐⇒ (N∞) and (AH) ,

when V =W is a L∞ space. It is also known that

(M) and (ASH) ⇐⇒ (M) and (N∞) ,

see, e.g., [AG03]. These relations are readily generalized to any vector spaces with an order
unit.

The monotonicity and additive homogeneity properties turn out to be related with nonex-
pansiveness with respect to weak Minkowski norms. By weak Minkowski norm on V , we mean
a function q : V → R that is subadditive (i.e., q(x + y) 6 q(x) + q(y) for all x, y ∈ V) and posi-
tively homogeneous (PH), hence convex but not necessarily symmetric (i.e., we do not require
that q(x) = q(−x) for all x ∈ V). Our definition is a variant of the one in [PT14], where q is
also required to be nonnegative and may take infinite values. We say that a real function on V ,
f : V → R, is nonexpansive with respect to q if f(x)− f(y) 6 q(x− y) for all x, y ∈ V .

When V = Rn, a useful example of weak Minkowski norm, arising in Hilbert geome-
try [PT14], is the “top” map, t : Rn → R, defined by

t(x) := max
i∈[n]

xi , x ∈ V ,

or its variant, t+ : Rn → R+, defined by

t+(x) := max{t(x), 0} , x ∈ V .

When V =W = Rn, we shall consider for any map F : Rn → Rn the following properties:
– nonexpansiveness in t:

t(F (x)− F (y)) 6 t(x− y) ; (Nt)

– nonexpansiveness in t+:
t+(F (x)− F (y)) 6 t+(x− y) . (N+

t )

Gunawardena and Keane showed in [GK95] that

(M) and (AH) ⇐⇒ (Nt) ,
(M) and (ASH) ⇐⇒ (N+

t ) .

Again, these relations are readily generalized to any vector space V with an order unit e, defin-
ing the function t : V → R by

t(x) := inf{λ ∈ R | x 6 λe} , x ∈ V . (3.2)
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3.3 Minimax representation theorems

In this section, we give a general minimax characterization of nonexpansive functions with
respect to a weak Minkowski norm, which will lead to extension and refinements of the known
minimax representations of Shapley operators.

3.3.1 Nonexpansive functions with respect to weak Minkowski norms

We shall need the following lemma, which is a variation of Legendre-Fenchel duality.

Lemma 3.2. Let V be a real t.v.s. and let q : V → R be a weak Minkowski norm, continuous with
respect to the topology of V . Then, for every vector x ∈ V ,

q(x) = max
p∈P
〈p, x〉 , (3.3)

where P := {p ∈ V∗ | ∀x ∈ V, 〈p, x〉 6 q(x)} is a nonempty convex set of V ′, compact for the weak-*
topology.

Proof. For any x ∈ V \ {0} we have, by definition of P , q(x) > supp∈P〈p, x〉. Let p be the linear
form defined on the vector subspace of V generated by x, Rx, and such that 〈p, x〉 = q(x). If
λ > 0, then

〈p, λx〉 = λ〈p, x〉 = λq(x) = q(λx) ,

since q is positively homogeneous. If λ < 0, then

〈p, λx〉 = λ〈p, x〉 = −|λ|q(x) 6 |λ|q(−x) = q(λx) ,

the inequality coming from the subadditivity of the weak norm: 0 = q(0) 6 q(x)+q(−x). Hence
p is dominated by q on the vector subspace Rx, and according to the Hahn-Banach extension
theorem [AB06, Th. 5.53], there is a linear extension p̂ of p to V which is dominated by q on V .
Therefore, p̂ ∈ P and q(x) = 〈p̂, x〉, which shows that q(x) = maxp∈P〈p, x〉. This also proves
that P is nonempty.

Note that, since q is continuous, every linear form p dominated by q is also continuous,
hence P ⊂ V ′. The convexity of P is straightforward and since this set can also be written as

P =
⋂
x∈V
{p ∈ V∗ | 〈p, x〉 6 q(x)} ,

we deduce that P is a weak-* closed set. Furthermore, for every x ∈ V and every p ∈ P we
have−q(−x) 6 〈p, x〉 6 q(x). Hence, P is pointwise bounded. Applying the Tychonoff Product
theorem [AB06, Th. 2.61], we deduce that P is weak-* compact.

Remark 3.3. In Lemma 3.2, we did not assume that V is locally convex or Hausdorff. When these
properties hold, Lemma 3.2 becomes a direct application of [AB06, Th. 7.52], which applies
more generally to dual pairs. Alternatively, this result can be obtained using the Legendre-
Fenchel duality for convex proper lower semicontinuous functions [ET99, Prop. 4.1], still as-
suming that V is locally convex and Hausdorff.

The following simple observation shows that the maximum in (3.3) is attained in the closure
of the set of extreme points of P .
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Lemma 3.4. Let q : V → R be a continuous weak Minkowski norm, and define P as in Lemma 3.2.
Denote by extP the set of extreme points of P , and by extP its closure with respect to the weak-*
topology. Then, for every x ∈ V ,

q(x) = sup
p∈extP

〈p, x〉 = max
p∈extP

〈p, x〉 . (3.4)

In particular, if extP is closed, then the maximum in (3.3) is attained at an extreme point of P .

Proof. We already showed in Lemma 3.2 that for every x ∈ V , the supremum q(x) = supp∈P〈p, x〉
is attained at some linear form r ∈ P . It follows from the Krein-Milman theorem that P is the
closed convex hull of the set extP , the closure being understood with respect to the weak-*
topology. Hence, there exists a net (rα) of elements of the convex hull of extP that converges to
r in this topology. In particular, every rα can be written as a finite sum rα =

∑
16i6m λi pi with∑

16i6m λi = 1, λi > 0 and pi ∈ extP for all i ∈ [m] and some integer m > 1, and so, 〈rα, x〉 =∑
16i6m λi〈pi, x〉 6 supp∈extP〈p, x〉. We deduce that q(x) = limα〈rα, x〉 6 supp∈extP〈p, x〉. The

opposite inequality q(x) > supp∈extP〈p, x〉 follows readily from (3.3). Using the weak-* conti-
nuity of the map p 7→ 〈p, x〉, we get supp∈extP〈p, x〉 = supp∈extP〈p, x〉. Finally, since extP is a
weak-* closed subset of the weak-* compact set P , it is also weak-* compact. So, we deduce
that the latter supremum is attained.

We deduce from the previous lemmas a minimax representation theorem that directly ex-
tends the result of Rubinov and Singer [RS01b, Th. 5.3].

Theorem 3.5. Let V be a real t.v.s. and let q : V → R be a weak Minkowski norm, continuous with
respect to the topology of V . Let P := {p ∈ V∗ | ∀x ∈ V, 〈p, x〉 6 q(x)}. A function f : V → R is
nonexpansive with respect to q if, and only if,

f(x) = min
y∈V

max
p∈P

(
〈p, x− y〉+ f(y)

)
, ∀x ∈ V . (3.5)

Moreover, the value of the latter expression does not change if the maximum is restricted to the points
p ∈ extP .

Proof. If f is nonexpansive with respect to q, then by definition we have f(x)− f(y) 6 q(x− y)
for all x, y ∈ V . We readily deduce that f(x) = miny∈V q(x − y) + f(y), the minimum being
attained in x. Replacing q by its expression given in (3.3), we get the minimax representation
formula (3.5). The remaining part of the theorem follows directly from Lemma 3.4.

Conversely, as a consequence of Lemma 3.2, any real function given by (3.5) is easily seen
to be nonexpansive with respect to q.

Corollary 3.6. Let V be a real vector space with an order unit, denoted by e, and the topology defined
by the sup-norm (3.1) associated with that order unit. Let

∆ := {p ∈ V∗ | 〈p, e〉 = 1, 〈p, x〉 > 0, ∀x ∈ V+} ,

where V+ := {x ∈ V | x > 0}. Then, a function f : V → R is monotone and additively homogeneous
if, and only if,

f(x) = min
y∈V

max
p∈∆

(
〈p, x− y〉+ f(y)

)
.

Moreover, the value of the latter expression is not changed if the minimum is restricted to the vectors
y ∈ V such that f(y) = 0, or if the maximum is restricted to the linear forms p ∈ ext ∆.
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Proof. Let f be a monotone and additively homogeneous real function on V . As exposed in
Section 3.2, this is equivalent to the function f being nonexpansive with respect to the weak
Minkowski norm t(·) defined in (3.2). Let P be defined as in Theorem 3.5. We next show that
P = ∆.

If p ∈ P , then for all x ∈ V+ we have t(−x) 6 0, so that 〈p,−x〉 6 0, hence 〈p, x〉 > 0.
Moreover, t(e) = 1 and t(−e) = −1, so that 〈p, e〉 6 1 and 〈p,−e〉 6 −1, which shows that
〈p, e〉 = 1. This shows that P ⊂ ∆. Conversely, if p ∈ ∆, then for all x ∈ V such that t(x) < λ,
we have x 6 λe, so that 〈p, x〉 = 〈p, x− λe〉+ λ〈p, e〉 6 λ. This implies that 〈p, x〉 6 t(x) for all
x ∈ V , hence p ∈ P . Applying Theorem 3.5, we get the first equality in the corollary.

Now, remark that 〈p, x − y〉 + f(y) = 〈p, x − z〉 with z = y − f(y)e and f(z) = 0. Then, a
change of variable leads to

f(x) = min
y∈V
f(y)=0

max
p∈∆
〈p, x− y〉 .

The remaining part of the corollary follows from Theorem 3.5 and the converse is straightfor-
ward.

Example 3.7. If V = Rn and F : V → V is monotone and additively homogeneous, then, as
recalled in Section 3.2, each coordinate function Fi, i ∈ [n], is nonexpansive with respect to
the weak Minkowski norm t(·). Then, the representation result of Rubinov and Singer [RS01b,
Th. 5.3], which shows that

Fi(x) = min
y∈Rn

max
j∈[n]

(
xj − yj + Fi(y)

)
, ∀x ∈ Rn ,

is a special case of Corollary 3.6.

3.3.2 Positively homogeneous nonexpansive functions

We now consider nonexpansive functions that are positively homogeneous. The following
theorem characterizes these functions as minimax of nonexpansive linear forms.

Theorem 3.8. Let V be a real t.v.s. and let q : V → R be a weak Minkowski norm, continuous with
respect to the topology of V . Denote by P := {p ∈ V∗ | ∀x ∈ V, 〈p, x〉 6 q(x)}. A function f : V → R
is positively homogeneous and nonexpansive with respect to q if, and only if,

f(x) = min
y∈V

max
p∈Py

〈p, x〉 , (3.6)

where Py := {p ∈ P | 〈p, y〉 6 f(y)}. Moreover, the value of the expression (3.6) does not change if the
maximum is restricted to the linear forms p ∈ extPy.

Proof. The “if” part of the condition is straightforward, so we only prove that it is necessary.
Let f be a real function positively homogeneous and nonexpansive with respect to q. As a
direct consequence of nonexpansiveness, we get that

f(x) = min
y∈V

(
f(y) + q(x− y)

)
.

Since f is also positively homogeneous, by a change of variable, we have

f(x) = min
y∈V

inf
λ>0

(
λf(y) + q(x− λy)

)
.

There, the minimum in y is attained at all µx with µ > 0. Given a vector y ∈ V , let gy be the
real function defined on V by gy(x) = infλ>0 λf(y) + q(x−λy), so that f(x) = miny∈V gy(x). We
next show that gy is a continuous weak Minkowski norm.
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First, gy is bounded above by q and below by f . In particular, gy is bounded above on a
neighborhood of each point of V . Second, using the positive homogeneity of f and q, we check
that gy also satisfies this property. Third, gy is convex. Indeed, the function x 7→ f(y) + q(x− y)
is convex because so is q. Its perspective function, defined on R × V by (λ, x) 7→ λf(y) + q(x −
λy) if λ > 0 and +∞ otherwise, is also convex, see [BC11, Prop. 8.23]. Hence, the convexity
follows from the fact that gy is the marginal function with respect to the first variable of the latter
function.

We have shown that gy is a positively homogeneous convex function, finite everywhere and
bounded above on a neighborhood of each point of V . Hence, it is continuous on V , see [AB06,
Th. 5.43], and we deduce from Lemma 3.2 that it is the support function of the weak-* compact
convex set Qy := {p ∈ V∗ | ∀x ∈ V, 〈p, x〉 6 gy(x)}. To conclude, it remains to show that this
set is Py.

Let p ∈ Qy. Then, for every x ∈ V and every λ > 0, we have 〈p, x〉 6 λf(y) + q(x − λy).
Taking λ→ 0 we deduce that p ∈ P , and taking x = y and λ = 1 we deduce that 〈p, y〉 6 f(y).
Hence, p ∈ Py which shows that Qy ⊂ Py. Consider now p ∈ Py. For every x ∈ V and every
λ > 0 we have

〈p, x〉 = 〈p, x〉 − 〈p, λy〉+ 〈p, λy〉 = 〈p, x− λy〉+ λ〈p, y〉 6 q(x− λy) + λf(y) .

Taking the infimum over all λ > 0 in the right-hand side of the last inequality, we get that
〈p, x〉 6 gy(x). Hence p ∈ Qy which shows that Qy ⊂ Py and consequently that Qy = Py.

The following is an immediate corollary.

Corollary 3.9. Let V be a real vector space with an order unit, denoted by e, and the topology defined by
the sup-norm (3.1) associated with that order unit. Then, a function f : V → R is monotone, additively
homogeneous, and positively homogeneous if, and only if,

f(x) = min
y∈V

max
p∈∆y

〈p, x〉 , (3.7)

where
∆y := {p ∈ V∗ | 〈p, y〉 6 f(y), 〈p, e〉 = 1, 〈p, x〉 > 0, ∀x ∈ V+} .

Moreover, the value of the expression in (3.7) does not change if the minimum is restricted to the vectors
y ∈ V such that f(y) = 0, or if the maximum is restricted to the linear forms p ∈ ext ∆y.

3.4 Applications

We now point out some applications of the present representation theorems to nonconvex risk
measures and Shapley operators.

3.4.1 Representation of nonconvex risk measures

Let (Ω,F ,P) be a probability space. Denote by L∞(P) the space of almost surely bounded real-
valued random variables, equipped with the usual essential sup-norm. This is a special case
of an AM-space with unit, the unit 1 being the random variable a.s. equal to 1. Its topological
dual space is the space of finitely additive measures of bounded variation which are absolutely
continuous with respect to P, see [DS88, Th. IV.8.16]. We denote it by ba(P). Following stan-
dard notation, we shall write Ep[X] instead of 〈p,X〉 for a random variable X ∈ L∞(P) and a
measure p ∈ ba(P). We denote by ba+(P) the set of positive bounded finitely additive measures
and by ∆(P) := {p ∈ ba+(P) | Ep[1] = 1} the set of finitely additive probability measures.

A risk measure is a real function µ : L∞(P) → R that satisfies the following conditions, for
all X,Y ∈ L∞(P):
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(i) X 6 Y =⇒ µ(X) > µ(Y ) ;
(ii) µ(X + λ) = µ(X)− λ, ∀λ ∈ R ;

see [FS11]. Observe that this is equivalent to the function ρ : X 7→ µ(−X) being monotone and
additively homogeneous.

A risk measure µ is coherent if it is in addition convex and positively homogeneous, see
e.g. [ADEH99, Del02]. It is known that a coherent risk measure can be represented in the form

µ(X) = sup
p∈Qba

Ep[−X]

where Qba ⊂ ∆(P) is a convex subset of the space of finitely additive probability measures on
Ω, closed with respect to the σ(ba(P), L∞(P))-topology. As a direct application of Corollary 3.6,
we obtain a similar representation for general nonconvex risk measures.

Corollary 3.10. Let µ be a risk measure on L∞(P). Then,

µ(X) = min
Y ∈L∞(P)
µ(Y )=0

max
p∈∆(P)

Ep[Y −X] .

The following corollary characterizes the nonconvex risk measures that are positively ho-
mogeneous. It is a direct application of Corollary 3.9.

Corollary 3.11. Let µ be a positively homogeneous risk measure. Then,

µ(X) = min
Y ∈L∞(P)
µ(Y )=0

max
p∈∆(P)
Ep[Y ]>0

Ep[−X] .

3.4.2 Representation of payment-free Shapley operators

Here, we consider the vector space V = Rn, where 〈·, ·〉 denotes the standard scalar product.
Recall that a payment-free Shapley operator on Rn is a monotone, additively and positively ho-
mogeneous operator from Rn to itself. As mentioned in the introduction, this terminology is
justified by the following corollary, which shows that all operators of this kind precisely arise
from zero-sum stochastic games the payment function of which is identically zero.

Corollary 3.12. Let F : Rn → Rn be a monotone, additively and positively homogeneous operator.
Then, each coordinate map Fi with i ∈ [n] can be represented as

Fi(x) = min
a∈Ai

max
b∈Bi,a

∑
j∈[n]

xj p(j | i, a, b) , ∀x ∈ Rn , (3.8)

where Ai := {a ∈ Rn | Fi(a) = 0}; for every i ∈ [n] and every a ∈ Ai, Bi,a is a finite subset of Rn;
for every a ∈ Ai and every b ∈ Bi,a, (p(j | i, a, b))j∈[n] is a stochastic vector with at most two positive
coordinates.

Proof. Each coordinate function of F is monotone, additively and positively homogeneous.
Then, it follows from Corollary 3.9 that, for all i ∈ [n] and all x ∈ Rn,

Fi(x) = min
y∈Rn
Fi(y)=0

max
p∈∆n

〈p,y〉60

〈p, x〉 . (3.9)

where ∆n is the standard simplex of Rn.
Let Ai := {a ∈ Rn | Fi(a) = 0}. For a ∈ Ai, let Bi,a be the set of extreme points of the

polytope {p ∈ ∆n | 〈p, a〉 6 0} (points at which the maximum in (3.9) is attained). Finally, for
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a ∈ Ai, b ∈ Bi,a and j ∈ [n], let p(j | i, a, b) = b. Rewriting equation (3.9) using these notations
we get exactly the formula (3.8).

A standard result of convex geometry shows that every extreme point of the intersection of
a polytope with a half-space is either an extreme point of the polytope, or a convex combination
of two extreme points of this polytope (see for instance [FP96, Lem. 3]). It follows that every
element in Bi,a is either an extreme point of ∆n or a convex combination of two extreme points
of ∆n.

3.4.3 Approximation of Shapley operators

We use the previous result to approximate payment-free Shapley operators on Rn by minimax
maps where the min and max operators are taken over finite sets (i.e., continuous piecewise
affine operators). The latter maps play an important role algorithmically, in max-plus finite
element method [AGL08], and more generally in idempotent methods [McE11, MP15].

Let q : Rn → R be a weak Minkowski norm. We say that a subset A ⊂ Rn is an ε-net of any
set K ⊂ Rn with respect to (the symmetrization of) q if

inf
a∈A

max {q(x− a), q(a− x)} < ε , ∀x ∈ K .

Note that here, since the dimension is finite, q is continuous, and then it is always possible to
find a finite ε-net of any compact set with respect to q.

The following result, when applied to any Shapley operators on Rn, shows that the latter
can be approximated on any compact set by the Shapley operators of a repeated game with
deterministic transitions and finite action spaces.

Proposition 3.13. Let q : Rn → R be a weak Minkowski norm and let f : Rn → R be a map
nonexpansive with respect to q. Then, for every subset K ⊂ Rn, and for every finite ε-net (y`)`∈[m] of
K with respect to q, the function

g(x) = min
`∈[m]

(
f(y`) + q(x− y`)

)
is such that

f(x) 6 g(x) 6 f(x) + 2ε , ∀x ∈ K .

Proof. Let x ∈ K. Since f is nonexpansive with respect to q, we have f(x) 6 f(y`) + q(x − y`)
for all indices ` ∈ [m]. Thus, we have f(x) 6 g(x). We also know that there exists an index `0
such that max{q(x− y`0), q(y`0 − x)} < ε. Hence,

f(y`0) + q(x− y`0) 6 f(x) + q(y`0 − x) + q(x− y`0) 6 f(x) + 2ε ,

from which the second inequality follows.

Note that in the previous proposition, the polyhedral function g is not positively homoge-
neous, even if f is. The next result shows that when a Shapley operator is payment-free, it can
be approximated by another payment-free Shapley operator.

Corollary 3.14. Let F : Rn → Rn be a payment-free Shapley operator. Then, for all ε > 0, there exists
a payment-free Shapley operator G : Rn → Rn such that

F (x) 6 G(x) 6 F (x) + ε‖x‖∞ e , ∀x ∈ Rn ,
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which can be represented in the form

Gi(x) = min
a∈Ai

max
b∈Bi,a

∑
j∈[n]

xj p(j | i, a, b) , ∀x ∈ Rn, ∀i ∈ [n] ,

where Ai and Bi,a are finite sets, and every (p(j | i, a, b))j∈[n] is a stochastic vector with at most two
positive coordinates.

Proof. Let (z`)`∈[m] be an ε/2-net of the unit sphere of Rn with respect to the sup-norm. Ap-
plying Corollary 3.12 to F , we know that for all i ∈ [n] and ` ∈ [m], there exists an action
ai` ∈ Ai for which the minimum is attained in the minimax representation (3.8) of Fi(z`). Let
A∗i := {ai` | ` ∈ [m]} be the finite subset of Ai containing all these optimal actions in state
i ∈ [n]. Then, let G : Rn → Rn be the payment-free Shapley operator the ith coordinate map of
which is given by

Gi(x) := min
a∈A∗i

max
b∈Bi,a

∑
j∈[n]

xj p(j | i, a, b) , ∀x ∈ Rn ,

where the action spaces Bi,a are the same than in the minimax representation (3.8) of Fi. In
particular, we know that they are finite and that all the vectors (p(j | i, a, b))j∈[n] are stochastic,
with at most two positive coordinates.

By construction, we have F (x) 6 G(x) for all vectors x ∈ Rn, with equality for every z`,
` ∈ [m]. Now, given a vector x in the unit sphere of Rn, we can choose a vector z` such that
‖x − z`‖∞ 6 ε/2. Since both F and G are nonexpansive with respect to the sup-norm, we
deduce that for all i ∈ [n],

Gi(x)− Fi(x) 6 Gi(z`) + ε/2− Fi(x) = Fi(z`)− Fi(x) + ε/2 6 ε .

The conclusion follows from the positive homogeneity of F and G.



Part II

Ergodicity of zero-sum stochastic games



CHAPTER4

Analytic characterizations of
ergodicity of stochastic games

4.1 Introduction

The problem of existence of the mean-payoff vector for a stochastic game with finite state space
may be addressed by finding a solution to the ergodic equation (2.5), involving its Shapley
operator T . The latter equation has a solution if, and only if, some orbit of T is bounded in
Hilbert’s seminorm (Theorem 2.6). Finding conditions under which this property is true is
difficult in general, and depends not only on the structure of the game (i.e., the support of
the transition probabilities), but also on the values of the parameters (payment and transition
functions). Following Gaubert and Gunawardena [GG04], a better posed problem consists
in finding conditions under which all the subsets of a given family of invariant spaces are
bounded in Hilbert’s seminorm. Such conditions usually depend only on the structure of the
game (see Theorem 2.8 for instance). Then the solvability of the ergodic equation is ensured
not only for T , but also for some family of perturbations of its parameters.

An elementary case illustrating this stability property is given by ergodic finite Markov
chains. Following Kemeny and Snell [KS76], we define the ergodicity of a finite Markov chain
by one of the equivalent properties listed in the theorem below, involving its transition matrix.
Recall in particular that for a n × n stochastic matrix P , the directed graph associated with P is
composed of the nodes 1, . . . , n and of the arcs (i, j) such that Pij > 0. A class of the matrix P is
a maximal set of nodes such that every two nodes in this set are connected by a directed path.
A class is said to be final if every path starting from a node of this class remains in it. We refer
the reader to [KS76] and [BP94] for the proof of the theorem.

Theorem 4.1. Let P ∈ Rn×n be a stochastic matrix. The following assertions are equivalent:
(i) every vector v ∈ Rn such that Pv = v is constant;

(ii) for all vectors g ∈ Rn, there exists an eigenpair (λ, u) ∈ R× Rn such that g + Pu = λe+ u;
(iii) for all vectors g ∈ Rn, the Cesàro limit limk→∞(g + Pg + · · ·+ P k−1g)/k is a constant vector;
(iv) the directed graph associated with the matrix P has a unique final class;
(v) the stochastic matrix P has a unique invariant probability measure.

A finite Markov chain with transition matrix P ∈ Rn×n may be seen as a zero-player
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stochastic game with state space [n]. If gi is the payment in state i ∈ [n], then its Shapley
operator is given by T (x) = g + Px for all x ∈ Rn, and it is readily seen that its recession oper-
ator is equal to T̂ (x) = Px. Thus, the ergodicity of a finite Markov chain may be characterized,
in game-theoretic terms, either by all the fixed points of the recession operator T̂ being constant
(Point (i)), or by the ergodic equation having a solution for all Shapley operators g + T with
g ∈ Rn (Point (ii)), or by the mean-payoff vector being constant for all payment vectors g ∈ Rn
(Point (iii)). A natural question is to know if this result may be extended to any finite stochastic
game.

Let us recall that the stability of existence of a constant mean payoff, based on structural
properties, was observed and studied in various framework. In the case of finite Markov
chains with risk-sensitive long-run average cost criterion, Cavazos-Cadena and Hernández-
Hernández [CCHH09] gave a necessary and sufficient condition on the transition matrix for
the Poisson equation – a dynamic programming type equation – to have a solution for any cost
function. Still motivated by risk-sensitive applications, the same authors [CCHH10] gave, un-
der a weakly convex property and in a multiplicative framework, necessary and sufficient con-
ditions for the nonlinear spectral problem (2.6) to have a solution for arbitrary (multiplicative)
perturbations of the payments. Also, in optimal control (with continuous time and infinite state
space) Arisawa [Ari97, Ari98] studied the ergodic problem of Hamilton-Jacobi-Bellman equa-
tions and particularly the link between the existence of the ergodic constant for arbitrary cost
functions depending only on the state and the existence of an “ergodic attractor”, depending
on the dynamic.

In this chapter and the next one, we extend the notion of ergodicity to zero-sum stochastic
games. This leads us to the following definition.

Definition 4.2. A Shapley operator T : Rn → Rn is ergodic if the ergodic equation (2.5) is
solvable for all operators g+T with g ∈ Rn. A zero-sum stochastic game with finite state space
is ergodic if its Shapley operator is ergodic.

In this chapter, along the lines of Gaubert and Gunawardena [GG04], we start by charac-
terizing ergodicity in terms of recession operator, assuming that the asymptotic behavior of
the Shapley operator and its recession operator are the same. Then we characterize ergod-
icity in full generality, in terms of slice spaces, using the connections between nonexpansive
and accretive maps. In the following two chapters we deal with the combinatorial aspects of
these conditions. In particular, we formulate them in terms of hypergraphs, underlying their
structural aspects.

The notion of ergodicity for stochastic games and the results of Section 4.2 are based on
the first part of the paper [AGH14a], published in Discrete and Continuous Dynamical Systems,
Series A. The results regarding the accretive operator approach (Section 4.3 and 4.4) have been
announced in the MTNS conference proceedings [Hoc16].

4.2 Characterization of ergodicity in terms of recession operator

Let T be a Shapley operator on Rn. Assume that its recession operator T̂ exists. We know that
if all the fixed points of T̂ are trivial (i.e., constant vectors), then all the slice spaces of T are
bounded in Hilbert’s seminorm (Theorem 2.9). This implies that the ergodic equation (2.5) is
solvable and that the mean-payoff vector is constant. Note that it remains true for all operators
g + T with g ∈ Rn, since they all have the same recession operator. Hence, T is ergodic.

The following proposition specifies the link between the recession operator and the (not
necessarily constant) mean-payoff vector, when they do exist. We give the short proof for con-
venience of the reader.
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Proposition 4.3 ([RS01a]). Let T be a Shapley operator on Rn. Assume that its recession operator T̂
and the mean-payoff vector χ ∈ Rn exist. Then, T̂ (χ) = χ.

Proof. Since T is nonexpansive in the sup-norm, we have, for all vectors x, y ∈ Rn and all
integer k, ∥∥∥∥T (kx)− T (ky)

k

∥∥∥∥ 6 ‖x− y‖ .
Then, letting x = χ and y = T k(0)/k, we get∥∥∥∥T (kχ)

k
− T k+1(0)

k

∥∥∥∥ 6 ∥∥∥∥χ− T k(0)

k

∥∥∥∥ .

Now, taking the limits in k, we obtain that ‖T̂ (χ)− χ‖ = 0.

A converse statement holds.

Proposition 4.4. Let F be a payment-free Shapley operator on Rn, and let v be a fixed point of F . Then,
there is a Shapley operator T : Rn → Rn such that its recession operator exists and is given by T̂ = F ,
and such that its mean-payoff vector is equal to v.

Proof. Let T := v + F . It is readily seen that T̂ = F . Moreover, for every integer k, we have
T (kv) = (k + 1)v, so that, by induction, T k(0) = kv. Hence the mean-payoff vector associated
with T exists and is equal to v.

Remark 4.5. Let Γ(r) = ([n], A,B,KA,KB, r, p) be a parametric stochastic game whose param-
eter r is chosen among all bounded real functions on K. It is readily seen that all Shapley
operators of the games Γ(r) have the same recession operator, denoted by F . The latter is the
(payment-free) Shapley operator of the game Γ(0). Then, the fixed points of F give exactly all
the realizable mean-payoff vectors of the family of games (Γ(r)).

We now state the main result of this section, which gives a characterization of ergodicity of
a Shapley operator T : Rn → Rn in the sense of Definition 4.2. This characterization relies on
the existence of its recession operator. More precisely, we shall need the following assumption.

Assumption 4.A. The recession operator T̂ : Rn → Rn is well defined and there exists a real
constant M > 0 such that∣∣Ti(x)− T̂i(x)

∣∣ 6M , ∀x ∈ Rn , ∀i ∈ [n] .

Note that Assumption 4.A is satisfied as soon as T is the Shapley operator of a stochastic
game with bounded payment function, the constant M being a bound on the payments. In-
deed, if T : Rn → Rn is given by formula (2.1), then the ith component of its recession operator
is readily seen to be

T̂i(x) = inf
µ∈∆(Ai)

sup
ν∈∆(Bi)

∑
j∈[n]

xj p(j | i, µ, ν) , x ∈ Rn ,

where the infimum and the supremum commutes. Moreover, Assumption 4.A implies that the
convergence in the limit (2.7) defining T̂ is uniform in x.

Theorem 4.6. Let T : Rn → Rn be a Shapley operator satisfying Assumption 4.A. The following
assertion are equivalent:

(i) T̂ has only trivial fixed points;
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(ii) T is ergodic, i.e., for all vectors g ∈ Rn, the ergodic equation (2.5) is solvable for g + T ;
(iii) for all vectors g ∈ Rn, the mean-payoff vector associated with g + T exists and is constant.

Proof. From Theorem 2.9, we know that (i)⇒ (ii) and the implication (ii)⇒ (iii) is straightfor-
ward. Hence, all the equivalences will follow from the implication (iii)⇒ (i).

Assume that Point (iii) holds and let v be a fixed point of T̂ . Let ` be any integer and let
T` := `v + T . We next show by induction that, for all integers k, we have

k(`v −Me) 6 (T`)
k(0) 6 k(`v +Me) . (4.1)

For k = 0, the inequalities are trivial. Assume now that (4.1) holds for some integer k. Then, by
monotonicity of T we have

`v + T
(
k(`v −Me)

)
6 (T`)

k+1(0) 6 `v + T
(
k(`v +Me)

)
.

By additive homogeneity of T we deduce that

`v − kMe+ T (k`v) 6 (T`)
k+1(0) 6 `v + kMe+ T (k`v) .

Using Assumption 4.A, we get that

`v − (k + 1)Me+ T̂ (k`v) 6 (T`)
k+1(0) 6 `v + (k + 1)Me+ T̂ (k`v) ,

and since v is a fixed point of T̂ , the positive homogeneity yields

(k + 1)(`v −Me) 6 (T`)
k+1(0) 6 (k + 1)(`v +Me) .

According to Point (iii), the mean-payoff vector of T` exists and is constant. Let λ` be this
constant value. Then we have `v−Me 6 λ`e 6 `v+Me, which may be rewritten as (λ`−M)e 6
`v 6 (λ` + M)e. This entails `‖v‖H = ‖`v‖H 6 2M . Since the latter inequality holds for any
integer `, we deduce that ‖v‖H = 0, which means that v is proportional to the unit vector.

Note that the above theorem readily extends the case of finite Markov chains, stated in
Theorem 4.1 (Points (i) – (iii)). The graph-theoretic aspect of Point (iv) will be treated in the
next chapter.

4.3 Accretive operator approach � surjectivity conditions for

accretive maps

The purpose of this section and the next one is to extend the characterization of ergodicity to
any Shapley operators on Rn. Indeed the conclusions of Theorem 4.6 are not valid in gen-
eral. For instance, one cannot conclude when the recession operator of T does not exist. But
there are also situations where T̂ , although well defined, fails to have only trivial fixed points,
whereas all slice spaces Sβα(T ) are bounded in Hilbert’s seminorm, implying ergodicity. Such a
counterexample is provided in Subsection 6.3, others may be found in [GG04].

In the present section, we establish results about the surjectivity of accretive maps in finite
dimension. Then, in the next section, we exploit the link between nonexpansiveness and ac-
cretivity to infer stability results about the existence of fixed points for nonexpansive maps,
including Shapley operators.
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4.3.1 Preliminaries

In the remainder of the chapter, X shall always be a finite-dimensional real vector space. We
denote by X ∗ its dual space, and by 〈·, ·〉 the duality product. We assume that X is equipped
with a given norm, denoted by ‖ · ‖. The dual norm on X ∗ is denoted by ‖ · ‖∗.

Set-valued maps

Given a space Y , we denote by A : X ⇒ Y a set-valued map A from X to Y , i.e., a map from X
to the powerset of Y . We shall need the following definitions.

– The domain of A is the subset of X defined by dom(A) := {x ∈ X | A(x) 6= ∅};
– The range of A is the subset of Y defined by rg(A) :=

⋃
x∈X A(x);

– The image of a subset V ⊂ X under A is the subset of Y given by A(V) :=
⋃
x∈V A(x).

The inverse of A, denoted by A−1, is the set-valued map from Y to X sending an element y ∈ Y
to the subset {x ∈ X | y ∈ A(x)}, so that x ∈ A−1(y) if, and only if, y ∈ A(x). In particular,
note that (A−1)−1 = A, and that rg(A) = dom(A−1). Furthermore, the image of a subsetW ⊂ Y
under A−1 can be written as A−1(W) = {x ∈ X | A(x) ∩W 6= ∅}.

We shall also need the notions of upper and lower semicontinuity. The set-valued map
A : X ⇒ Y is

– upper semicontinuous at point x ∈ dom(A) if for every neighborhood V of A(x), there exists
a neighborhood U of x such that A(y) ⊂ V for all y ∈ U ;

– lower semicontinous at point x ∈ dom(A) if for every open set V that meets A(x), meaning
that V ∩ A(x) 6= ∅, there exists a neighborhood U of x such that A(y) ∩ V 6= ∅ for every
y ∈ U ;

– continuous at x ∈ dom(A) if it is both upper and lower semicontinuous at point x.
The map A is upper (resp., lower) semicontinuous, if it is upper (resp., lower) semicontinuous
at every point x ∈ dom(A). Likewise, it is continuous if it is continuous at every point x in
dom(A). Assume now that X and Y are metric spaces. The latter notions may be described in
terms of sequences. Let x be a point in the domain of A. The map A is

– upper semicontinous at x and A(x) is compact if, and only if, for every sequence of points
xk ∈ dom(A) converging to x and every yk ∈ A(xk), the sequence (yk) has an accumulation
point in A(x);

– lower semicontinuous at x if, and only if, for every y ∈ A(x) and for every sequence
of points xk ∈ dom(A) converging to x, there exists a sequence of points yk ∈ A(xk)
converging to y.

We refer the reader to the monograph of Aubin and Frankowska [AF09] for background on
set-valued maps.

Normalized duality mapping

The concept of duality mappings was introduced by Beurling and Livingston [BL62], and devel-
oped later on by Asplund [Asp67], Browder [Bro65, Bro66, Bro76], Browder and de Figueiredo
[BdF66]. In a Banach space, there is a strong link between the geometric properties of the space
(strict convexity, smoothness, etc.) and the analytic properties of the duality mappings (single-
valued, continuity, etc.). Here, we only consider the normalized duality mapping, and refer the
reader to the above-mentioned papers for a more general presentation.

Definition 4.7. The (normalized) duality mapping on (X , ‖ · ‖) is the set-valued map J : X ⇒
X ∗ defined by

J(x) := {x∗ ∈ X ∗ | ‖x∗‖∗ = ‖x‖ , 〈x, x∗〉 = ‖x∗‖∗ ‖x‖} , x ∈ X .
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Note that, by the Hahn-Banach theorem, dom(J) = X , i.e., J(x) is nonempty for every
vector x ∈ X . Furthermore, Asplund [Asp67, Th. 1] characterized duality mappings as subdif-
ferentials of convex functions. This entails that J(x) is a compact convex subset of X ∗ for every
x ∈ X . Also, it readily stems from the definition that J is homogeneous of degree one, i.e., for
every x ∈ X and every λ ∈ R, we have J(λx) = λJ(x).

Finally, we shall need the following result, obtained by Browder (see the proof of Th. 7.3 in
the reference).

Proposition 4.8 ([Bro76]). The normalized duality mapping on a finite-dimensional vector space is
upper semicontinuous.

Example 4.9. Let X = Rn. If X is equipped with the standard Euclidean norm, observe that
J is the identity map. More generally, if X is equipped with an Lp-norm with p > 1, then J is
single-valued and given for all x 6= 0 by

J(x) =
‖x‖p
‖x‖q

x ,

where q is the positive real number such that 1
p + 1

q = 1.

Example 4.10. Assume that the norm ‖ · ‖ on X is polyhedral, meaning that there is a finite
symmetric familyW ⊂ X ∗ of linear forms on X such that

‖x‖ = max
x∗∈W

〈x, x∗〉 , ∀x ∈ X .

We may assume that W is minimal, in the sense that no element in W may be written as a
convex combination of other elements in W . This case includes the standard L1- and L∞-
norms. Then, one may check that we have, for every x ∈ X ,

J(x) = ‖x‖ co{x∗ ∈ W | 〈x, x∗〉 = ‖x‖} ,

where co(V) stands for the convex hull of any set V .

Accretive maps

Accretive operators initially appeared as differential operators, and more precisely as infinites-
imal generators of one-parameter semigroup of nonexpansive self-maps on a Banach space.
We refer the reader to the series of papers [Bro67a, Bro67b, Bro68] by Browder and to the refer-
ences therein for background on the subject, as well as to the more detailed monograph [Bro76].
See also Brezis [Bré73], Crandall and Liggett [CL71], Crandall and Pazy [CP72], Kato [Kat67],
Martin [Mar70], for standard results in the theory of accretive operators.

Definition 4.11. Let A : X ⇒ X be a set-valued map. Denote by Id the identity map on X .
– A is accretive if, for every x, y ∈ X , every u ∈ A(x) and every v ∈ A(y), there exists an

element x∗ ∈ J(x− y) such that 〈u− v, x∗〉 > 0.
– A is m-accretive if it is accretive and if rg(Id +λA) = X for every λ > 0.
– A is coaccretive if, for every x, y ∈ X , every u ∈ A(x) and every v ∈ A(y), there exists an

element x∗ ∈ J(u− v) such that 〈x− y, x∗〉 > 0.

Let us mention that in a Hilbert space, the normalized duality mapping J is the identity
map, and accretivity recovers the notion of monotony, while m-accretive maps are maximal
monotone operators. In particular, note that the subdifferential of any lower semicontinuous
proper convex function is m-accretive (see [RW98]).
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Remark 4.12. An equivalent definition of accretivity is the following: a set-valued mapA : X ⇒
X is accretive if, and only if, for every x, y ∈ X , every u ∈ A(x) and v ∈ A(y), and every λ > 0,
we have ‖x− y‖ 6 ‖x− y + λ(u− v)‖. Furthermore, it is known that if A : X ⇒ X is accretive,
then rg(Id +λA) = X for every λ > 0 if, and only if, rg(Id +λA) = X for some λ > 0. Finally, a
set-valued map A : X ⇒ X is coaccretive if, and only if, A−1 is accretive.

4.3.2 Local boundedness of coaccretive maps

It is known that in a reflexive Banach space, any accretive map A is locally bounded at any point
x in the interior of its domain, meaning that there exists a neighborhood V of x such that A(V)
is bounded, see [FHK72]. The following result shows that the same holds true for coaccretive
maps, at least in finite dimension.

Proposition 4.13. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let A : X ⇒ X be a
coaccretive map. Then, for any vector x in the interior of dom(A), A is locally bounded at x.

Proof. Assume by contradiction thatA is not locally bounded at x, that is, for any neighborhood
V of x, A(V) is not bounded. Then, there exists a sequence (xk)k∈N in X converging to x such
that, for all integers k, there is a vector yk ∈ A(xk), and such that the sequence (‖yk‖) tends to
infinity. Since the dimension is finite, the bounded sequence (yk/‖yk‖) is converging, up to an
extraction, toward some point z ∈ X .

The point x being in the interior of dom(A), we may choose a scalar α > 0 such that x+αz ∈
dom(A). Let y′ ∈ A(x + αz). Since A is coaccretive, for all integers k there is a linear form
y∗k ∈ J(yk − y′) such that

〈xk − x− αz, y∗k〉 > 0 .

By homogeneity of the duality mapping, we know that z∗k :=
y∗k
‖yk‖ ∈ J

(
yk−y′
‖yk‖

)
for every integer

k, and that
〈xk − x− αz, z∗k〉 > 0 . (4.2)

Since J is upper semicontinuous and with compact values (see Subsection 4.3.1), and since the
sequence ((yk−y′)/‖yk‖) converges, up to an extraction, toward z, we deduce that the sequence
(z∗k) has an accumulation point z∗ ∈ J(z). Then, Inequality (4.2) implies that 〈z, z∗〉 6 0, a
contradiction since 〈z, z∗〉 = ‖z‖2 = 1 by definition of the duality mapping.

We deduce an immediate corollary about the image of compact sets under coaccretive maps.

Corollary 4.14. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let A : X ⇒ X be a
coaccretive map. Then, for any compact set K ⊂ X included in the interior of dom(A), A(K) is
bounded.

4.3.3 Characterization of surjectivity of accretive maps

Let us denote by B(x, ρ) the closed ball centered at point x ∈ X with radius ρ > 0, and by
dist0(V) the distance of the origin to a subset V ⊂ X , i.e., dist0(V) := infx∈V ‖x‖.

To show the main theorem of this section, we shall need the following result. It is a special
case of a result established by Kirk and Schöneberg [KS80] (see the last corollary of Th. 3) which
is itself a generalization of theorems obtained by Lange [Lan71] and Kartsatos [Kar78, Kar81].

Theorem 4.15 ([KS80]). Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let A : X ⇒ X be
an m-accretive set-valued map. Assume that

lim
‖x‖→∞

dist0(A(x)) = +∞ .
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Then, rg(A) = X .

We now state the main result of this section.

Theorem 4.16. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let A : X ⇒ X be an
accretive map. If rg(A) = X then, for all scalars α > 0, the subset Dα := {x ∈ X | dist0(A(x)) 6 α}
is bounded. Moreover, if A is m-accretive, then the converse is also true.

Proof. Assume that rg(A) = X . Equivalently, we have dom(A−1) = X . Since A is accretive,
its inverse A−1 is coaccretive (see Subsection 4.3.1). Hence, according to Corollary 4.14, the
image of any compact set under A−1 is bounded. Now, observe that for every nonnegative real
numbers α, α′ such that α′ > α, we have Dα ⊂ A−1

(
B(0, α′)

)
. Indeed, A−1

(
B(0, α′)

)
= {x ∈

X | A(x) ∩B(0, α′) 6= ∅} by definition. Hence, Dα is bounded for every α > 0.
For the converse property, let us assume that A is m-accretive. It is readily seen that the

coercivity condition in Theorem 4.15 is equivalent to the boundedness of all subsets Dα, hence
the result.

Remark 4.17. Here, since the dimension is finite, all the norms are equivalent. Hence, in the
latter theorem, the choice of the norm only matters for the definition of accretivity, but any
other norm may be considered in the definition of dist0.

Example 4.18 (discrete p-Laplacian). Let G = (V,E) be a connected (undirected) graph with a
finite set of nodes an no multiple edges. For brevity, we write i↔ j if there is an edge between
i and j. Let us equip every edge {i, j} ∈ E with a weight Cij > 0. For p > 1, we denote by
Lp : RV → RV the discrete p-Laplacian, whose ith entry is defined by

[Lp(v)]i :=
∑
j∈V
i↔j

Cij (vi − vj) |Cij (vi − vj)|p−2 , v ∈ RV .

Let B be a proper subset of V , i.e., different from ∅ and V . Assume that for every vertex i ∈
B, some real number wi is given. We are interested in the following boundary value problem:
given g ∈ RV \B , find v ∈ RV such that{

[Lp(v)]i = −gi , ∀i ∈ V \B ,

vi = wi , ∀i ∈ B .
(Pg)

Note that the discrete p-Laplacian Lp appears as the gradient of the energy function Jp defined
on RV by

Jp(v) :=
∑
{i,j}∈E

1

pCij
|Cij(vi − vj)|p , v ∈ RV .

Then, Problem (Pg) is equivalent to the following optimization problem:

minimize Jp(v) +
∑
i∈V \B

gi vi s.t. vi = wi , ∀i ∈ B .

In particular, for p = 2 it recovers the classical problem of computing the electrical potential
on the graph G, with a prescribed potential wi at each node i ∈ B and a prescribed current gi
passing through each node i ∈ V \B, Cij being the conductance of the edge {i, j}.

Let X = RV \B . We reformulate Problem (Pg) by introducing the operatorA : X → X whose
ith coordinate map is defined, for all x ∈ X , by

Ai(x) :=
∑

j∈V \B
i↔j

Cij (xi − xj) |Cij (xi − xj)|p−2 +
∑
j∈B
i↔j

Cij (xi − wj) |Cij (xi − wj)|p−2 .
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Hence, given g ∈ RV \B , Problem (Pg) is equivalent to finding a solution x ∈ X to the equation
A(x) = −g. Since A is the gradient of a continuous convex function, then it is m-accretive, X
being endowed with the standard Euclidean norm. Thus, according to Theorem 4.16, the latter
equation has a solution for all g ∈ X if, and only if, the subsets Dα = {x ∈ X | ‖A(x)‖∞ 6 α}
are bounded for all α > 0. We next show that this is the case when the graph G is connected.

Let α > 0 be such that Dα is not empty. Let x ∈ Dα and choose i0 ∈ V \ B such that
|xi0 | = ‖x‖∞. We may assume, without loss of generality, that xi0 > 0. If xi0 6 maxj∈B wj , then
x is bounded by a constant which only depends onw ∈ RB . Assume now that xi0 > maxj∈B wj .
Since G is connected, there exists an elementary path (i.e., without loop), i0, i1, . . . , im, connect-
ing i0 to some node im ∈ B and such that i` ∈ V \B for all ` ∈ {0, 1, . . . ,m− 1}. By induction,
we easily show that |xi`−1

−xi` | is bounded for all ` ∈ [m] by a constantM that only depends on
α, p and the parameters of G. Thus, we obtain that ‖x‖∞ = xi0 6 mM + wim 6 |V |M + ‖w‖∞,
where |V | is the cardinality of V . This shows that Dα is bounded.

Hence, Problem (Pg) has solution for all g ∈ RV \B .

4.4 Accretive operator approach � application to nonexpansive

maps

4.4.1 Existence stability of �xed points under additive perturbations

Let (X , ‖ · ‖) be a finite-dimensional real vector space. Recall that any operator T : X → X is
nonexpansive (with respect to ‖ · ‖) if ‖T (x) − T (y)‖ 6 ‖x − y‖ for all x, y ∈ X . The following
lemma relates nonexpansive operators to accretive maps.

Lemma 4.19. Let T : X → X be a nonexpansive operator. Then, the map A := Id−T is m-accretive.

Proof. We first show that A is accretive. Let x, y ∈ X , and let x∗ ∈ J(x− y). We have

〈T (x)− T (y), x∗〉 6 ‖x∗‖∗ ‖T (x)− T (y)‖ 6 ‖x∗‖∗ ‖x− y‖ = 〈x− y, x∗〉 .

We deduce that 〈A(x) − A(y), x∗〉 = 〈x − y − (T (x) − T (y)), x∗〉 > 0, which proves that A is
accretive.

Now, let λ > 0 and z ∈ X . The vector z is in the range of Id +λA if, and only if, the map
x 7→ Tλ,z(x) := λ

1+λT (x)+ 1
1+λz has a fixed point. Since T is nonexpansive, Tλ,z is a contraction.

More precisely, for all x, y ∈ X , we have

‖Tλ,z(x)− Tλ,z(y)‖ 6 λ

1 + λ
‖x− y‖ ,

with λ
1+λ < 1. Hence, by the Banach fixed-point theorem, Tλ,z has a (unique) fixed point. This

proves that rg(Id +λA) = X for every λ > 0, and so A is m-accretive.

Using the previous lemma, we now adapt Theorem 4.16 to the case of nonexpansive maps.
Thus, we get a necessary and sufficient condition for the existence of a fixed point for any
additive perturbation of any nonexpansive operator.

Corollary 4.20. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let T : X → X be a
nonexpansive operator. Then, the following are equivalent:

(i) for every vector g ∈ X , the operator g + T has a fixed point;
(ii) every nonexpansive operator G : X → X such that supx∈X ‖T (x) − G(x)‖ < ∞ has a fixed

point;
(iii) for every scalar α > 0, the set Dα(T ) := {x ∈ X | ‖x− T (x)‖ 6 α} is bounded.
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Proof. The equivalence between Point (i) and Point (iii) is a mere application of Theorem 4.16 to
Id−T , which is m-accretive according to Lemma 4.19. Moreover, it is straightforward to check
that (ii)⇒ (i).

We now prove that (i)⇒ (ii). Assume that (i) holds and let G : X → X be a nonexpansive
operator such that supx∈X ‖T (x) − G(x)‖ < ∞. Since (i)⇔ (iii), we know that all the subsets
Dα(T ) are bounded. We readily deduce that all the subsets Dα(G) are also bounded. This
implies in particular that G has a fixed point.

4.4.2 Characterization of ergodicity of stochastic games

Let T : Rn → Rn be a Shapley operator. Recall that T can be quotiented into a self-map [T ]
of the additive projective space TPn. This quotiented map is nonexpansive with respect to the
norm qH, the quotiented version of Hilbert’s seminorm on Rn. Moreover, the solvability of the
ergodic equation is equivalent to the existence of a fixed point for [T ] (see Subsection 2.3.4).
These considerations allow us to apply the result of the previous subsection to characterize the
ergodicity of stochastic games.

Theorem 4.21. Let T : Rn → Rn be a Shapley operator. The following are equivalent:
(i) T is ergodic, i.e., for all vectors g ∈ Rn, the ergodic equation (2.5) is solvable for g + T ;

(ii) for all scalars α > 0, the space DH
α (T ) := {x ∈ Rn | ‖x− T (x)‖H 6 α} is bounded in Hilbert’s

seminorm;
(iii) for all scalars α, β ∈ R, the slice space Sβα(T ) := {x ∈ Rn | αe+x 6 T (x) 6 βe+x} is bounded

in Hilbert’s seminorm;
(iv) the ergodic equation (2.5) is solvable for all Shapley operatorsG on Rn such that supx∈Rn ‖T (x)−

G(x)‖H <∞.

Proof. From the definition of Hilbert’s seminorm, we see that Sβα(T ) ⊂ DH
δ (T ) as soon as β−α 6

δ. It readily follows that (ii)⇒ (iii).
Let g ∈ Rn, and choose α, β ∈ R such that αe 6 g+T (0) 6 βe. Then, Sβα(g+T ) is nonempty,

and we know that it is invariant under g + T . Moreover, we have Sβα(g + T ) ⊂ Sβ
′

α′ (T ), with
α′ := α− ‖g‖∞ and β′ := β + ‖g‖∞. Thus, we deduce from Theorem 2.6 that (iii)⇒ (i).

Assume now that Point (i) holds. Then, in the quotient space (TPn, qH), the nonexpansive
map [g] + [T ] = [g + T ] has a fixed point for all equivalence classes [g] ∈ TPn. Applying
Corollary 4.20, we get that for all scalars α > 0, the space

Dα([T ]) = {[x] ∈ TPn | qH([x]− [T (x)]) 6 α}

is bounded (in the norm qH). Since x ∈ DH
α (T ) if, and only if, [x] ∈ Dα([T ]), we deduce that

(i)⇒ (ii). Likewise, we readily get from Corollary 4.20 that (iv)⇔ (i).



CHAPTER5

Fixed-point problems for
payment-free Shapley operators

In the previous chapter, a characterization of ergodicity for stochastic games with bounded
payments (Assumption 4.A) has been given in terms of fixed points of some payment-free
Shapley operator (Theorem 4.6). In this chapter, we first give a combinatorial characterization
of the latter condition. This characterization involves a pair of directed hypergraphs. Then, we
address some algorithmic and complexity issues related to the problem of checking ergodicty of
a stochastic game and to the structure of the fixed-point set of a payment-free Shapley operator.

The results of this chapter are based on the paper [AGH14a], published in Discrete and Con-
tinuous Dynamical Systems, Series A.

5.1 Galois connection associated with payment-free Shapley

operators

5.1.1 Preliminaries on lattices and Galois connections

Let (L,≺) be a partially ordered set (poset, for short), and let X be a subset of L. An element
a ∈ L is a lower bound for X if a ≺ x for all x ∈ X . The subset X has a greatest lower bound, or
infimum, if there exists a lower bound a′ for X such that a ≺ a′ for every other lower bound a.
Dually, an element b ∈ L is an upper bound for X if x ≺ b for all x ∈ X . The subset X has a
least upper bound, or supremum, if there exists an upper bound b′ for X such that b′ ≺ b for every
other upper bound b. Furthermore, if b′ ∈ X , then the latter element is said to be the maximum
of X , and we denote it by maxX .

A poset L is an inf-semilattice (resp., sup-semilattice) is every nonempty finite subset has a
greatest lower bound (resp., least upper bound). It is a lattice if it is both an inf-semilattice and
a sup-semilattice. In this work, we shall consider lattices the elements of which are subsets,
equipped with the inclusion partial order, and particularly the powerset lattice P(X) of any
set X .

We next recall the definition of a Galois connection. This notion was first introduced by
Birkhoff for lattices of subsets, in the first edition of [Bir79], and then generalized by Ore [Ore44].
Let (A,≺A) and (B,≺B) be two posets, and let φ : A → B and ψ : B → A be two maps. The
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map φ is antitone if a ≺A a′ implies φ(a′) ≺B φ(a) (and similarly for ψ). The pair (φ, ψ) is a
Galois connection between A and B if it satisfies one of the equivalent properties listed in the
following theorem, where idA (resp., idB) denotes the identity map on A (resp., on B).

Theorem 5.1. Let (A,≺A) and (B,≺B) be two posets, and let φ : A → B and ψ : B → A. The
following are equivalent:

(i) idA ≺A ψ ◦ φ , idB ≺B φ ◦ ψ , and φ, ψ are antitone;
(ii) b ≺B φ(a) ⇐⇒ a ≺A ψ(b) , ∀a ∈ A , ∀b ∈ B ;

(iii) φ is antitone and ψ(b) = max{a ∈ A | b ≺B φ(a)}, ∀b ∈ B ;
(iv) ψ is antitone and φ(a) = max{b ∈ B | a ≺A ψ(b)}, ∀a ∈ A .

Point (i) is the definition introduced by Birkhoff. The equivalence with Point (ii) is straight-
forward, and the proof of the equivalences with Points (iii) and (iv) may be found in [BJ72,
Ch. 2] or [GHK+80, Ch. 0, Sec. 3].

It follows from Point (iii) of Theorem 5.1 that for any antitone map φ : A → B, there is at
most one map ψ : B → A such that (φ, ψ) is a Galois connection between A and B. Let us
denote this map by φ? := ψ. The inequalities in Point (i) yields

φ ◦ φ? ◦ φ = φ and φ? ◦ φ ◦ φ? = φ? . (5.1)

This implies in particular that, for all b ∈ B,

(∃a ∈ A, b = ϕ(a)) ⇐⇒ φ ◦ φ?(b) = b .

Also, observe that the definition of a Galois connection is symmetric, in the sense that (φ, ψ) is
a Galois connection between A and B if, and only if, (ψ, φ) is a Galois connection between B
and A. Hence, for any statement involving the Galois connection (φ, ψ), a dual statement holds
for the Galois connection (ψ, φ). In particular, we get that

(φ?)? = φ .

We say that an element a ∈ A is closed (with respect to the Galois connection (φ, φ?)) if
a = φ? ◦ φ(a). We can show that the set of closed elements in A with respect to (φ, φ?) is
Ā = φ?(B). Dually, the set of closed element in B is B̄ := {b ∈ B | b = φ? ◦ φ(b)} = φ(A). Then,
φ is a bijection from Ā to B̄, and its inverse is φ?.

5.1.2 Galois connection between invariant faces of the hypercube

Before introducing the Galois connection that will be useful to describe the fixed points of a
payment-free Shapley operator, let us make some observation. We shall us in the remainder
the following notation: the complement of any subset I ⊂ [n] is denoted either by Ic or [n] \ I ,
and we denote by eI the vector in Rn with entries 1 on I and 0 on Ic:

[eI ]j = 1, ∀j ∈ I and [eI ]j = 0, ∀j /∈ I .

Also, for x ∈ Rn, we denote

arg minx := {i ∈ [n] | xi = min
`∈[n]

x`} and arg maxx := {i ∈ [n] | xi = max
`∈[n]

x`} .

Lemma 5.2. Let F : Rn → Rn be a payment-free Shapley operator. If u ∈ Rn is a fixed point of F then,
denoting by I := arg minu and J := arg maxu, we have

F (eIc) 6 eIc , (5.2)
eJ 6 F (eJ) . (5.3)



Chapter 5. Fixed-point problems for payment-free Shapley operators 43

Proof. Let us assume that min`∈[n] u` = 0. Since F is additively homogeneous, there is no loss of
generality. We also may assume that eIc 6 u, up to the product by a positive constant. Hence,
by monotonicity of F , we get that F (eIc) 6 u. In particular, we have Fi(eIc) 6 0 for every
index i ∈ I . Moreover, since eIc 6 e, and since the unit vector is a fixed point of F , we have
F (eIc) 6 e. It follows that F (eIc) 6 eIc .

We show the second inequality using the same arguments, making the nonrestrictive as-
sumption that max`∈[n] u` = 1 and u 6 eJ .

Remark 5.3. Conditions (5.2) and (5.3) are dual. Indeed, let F̃ be the conjugate operator of F
defined by F̃ (x) := −F (−x). Then, it is readily checked that F̃ is a payment-free Shapley
operator. Moreover, since F̃ (x) = e − F (e − x), then F̃ (eI) = e − F (eIc) for any subset I of
[n]. Hence, condition (5.2) holds for F and I if, and only if, condition (5.3) holds for F̃ and I .
Furthermore, if u is a (nontrivial) fixed point of F , then the vector ũ := e − u is a (nontrivial)
fixed point of F̃ , verifying arg max ũ = arg minu.

Remark 5.4. The inequalities in Lemma 5.2 may be stated in geometric terms. First note that the
monotonicity of F and the fact that every trivial vector (i.e., proportional to the unit vector) is
a fixed point yields that the hypercube [0, 1]n is invariant by F . Thus, it is readily seen that

F (eIc) 6 eIc ⇐⇒ Fi(eIc) = 0 , ∀i ∈ I , (5.4)
eJ 6 F (eJ) ⇐⇒ Fj(eJ) = 1 , ∀j ∈ J . (5.5)

Now, let us define

K−I := {x ∈ [0, 1]n | xi = 0, ∀i ∈ I} and K+
J := {x ∈ [0, 1]n | xj = 1, ∀j ∈ J} ,

two faces of the hypercube. We shall call them lower and upper faces, respectively. Alterna-
tively, we can define these faces by

K−I = {x ∈ [0, 1]n | x 6 eIc} and K+
J = {x ∈ [0, 1]n | x > eJ} .

From the monotonicity of F , we deduce that the inequalities in Lemma 5.2 are equivalent to
the invariance of such faces of the hypercube, that is,

F (eIc) 6 eIc ⇐⇒ F (K−I ) ⊂ K−I ,

eJ 6 F (eJ) ⇐⇒ F (K+
J ) ⊂ K+

J .

Given a payment-free Shapley operator F on Rn, we now introduce the two families of
subsets of [n], denoted byF+ and F−, satisfying the inequalities (5.2) and (5.3), respectively:

F+ := {I ⊂ [n] | F (eIc) 6 eIc} ,
F− := {J ⊂ [n] | eJ 6 F (eJ)} .

According to the geometric interpretation (Remark 5.4), the two families F+ and F− can be
identified with the families of lower and upper invariant faces of the hypercube, respectively.
However, the choice of the superscripts is motivated by the fact that I ∈ F+ (resp., J ∈ F−) if
the vector eIc (resp., eJ ) is a “superharmonic” (resp., “subharmonic”) vector of F .

The latter families are lattices of subset with respect to the inclusion partial order. Indeed,
since F is monotone, for all I1, I2 ∈ F+, we have

F (e(I1∪I2)c) = F
(
inf{e(I1)c , e(I2)c}

)
6 inf

{
F (e(I1)c), F (e(I2)c)

}
6 inf{e(I1)c , e(I2)c) = e(I1∪I2)c ,
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so that I1 ∪ I2 ∈ F+. This implies that the supremum of two sets in F+ coincides with their
supremum in the powerset lattice P([n]), namely the union I1 ∪ I2. Hence, F+ is a sup-
subsemilattice of P([n]). Moreover, F+ has a bottom element (namely the empty set) and
it is a finite poset. Then, it is automatically an inf-semilattice. Check that the infimum of two
sets I1, I2 ∈ F+ is given by ⋃

I3∈F+

I3⊂I1, I3⊂I2

I3 .

Note that the latter infimum may differ from the infimum in P([n]), namely the intersection
I1 ∩ I2. We prove that F− is a lattice by dual arguments. Also, note that F+ and F− both
contain ∅ and [n].

Following the conclusions of Lemma 5.2, given a subset I ∈ F+, we are interested in the
subsets J ∈ F− satisfying I ∩ J = ∅. We shall consider in particular the greatest subset J with
the latter property. Vice versa, given a subset J ∈ F−, we shall consider the greatest subset
I ∈ F+ such that I ∩ J = ∅. Put in geometric terms, to each lower invariant face K−I of the
hypercube [0, 1]n, we consider the greatest upper invariant faceK+

J with nonempty intersection
with K−I . Let us show that this defines a Galois connection between the lattices F+ and F−.

Let (Φ,Φ?) be the pair of functions from F+ to F− and from F− to F+, respectively, that
have just been introduced. Formally, they are defined for every I ∈ F+ and J ∈ F+ by:

Φ(I) :=
⋃

J∈F−
I∩J=∅

J and Φ?(J) :=
⋃
I∈F+

I∩J=∅

I . (5.6)

It follows readily from their definition that Φ and Φ? are antitone, that I ⊂ Φ? ◦ Φ(I) and
J ⊂ Φ ◦Φ?(J). Hence condition (i) in Theorem 5.1 is satisfied for the pair (Φ,Φ?) which proves
that it is a Galois connection between the lattices of subsets F+ and F−.

5.1.3 Galois connection and nontrivial �xed points

We now explore some properties of the Galois connection introduced in the previous subsec-
tion. Let us first rephrase and complete Lemma 5.2, by a direct application of its definition.

Lemma 5.5. Let F be a payment-free Shapley operator on Rn. If u is a fixed point of F , then

arg minu ∈ F+ and arg maxu ∈ F− .

Furthermore, if u is nontrivial, we have

arg maxu ⊂ Φ(arg minu) and arg minu ⊂ Φ?(arg maxu) .

In the next lemma, we use the notation

Fω(x) := lim
k→∞

F k(x) , x ∈ Rn ,

as soon as the limit exists. This is the case in particular when F (x) 6 x or x 6 F (x). In-
deed, since F is monotone, the former (resp., the latter) inequality implies that the sequence
(F k(x))k∈N is nonincreasing (resp., nondecreasing). Moreover, since F is nonexpansive in the
sup-norm and has a fixed point (namely 0), the sequence (F k(x))k∈N is bounded, so that it con-
verges to a finite point when k tends to infinity. Also, observe that Fω(x), if it is well defined,
is a fixed point of F .



Chapter 5. Fixed-point problems for payment-free Shapley operators 45

Lemma 5.6. Let F be a payment-free Shapley operator on Rn. Let I ∈ F+ and J ∈ F− be such that
Φ(I) 6= ∅ and Φ?(J) 6= ∅. Then,

arg maxFω(eIc) = Φ(I) and arg minFω(eJ) = Φ?(J) .

Furthermore, if I (resp., J) is closed with respect to the Galois connection (Φ,Φ?) (resp., (Φ?,Φ)), then

arg minFω(eIc) = I (resp., arg maxFω(eJ) = J) .

Proof. First, note that since F (eIc) 6 eIc , the sequence (F k(eIc))k∈N is nonincreasing and so the
limit u := Fω(eIc) does exist. Since F leaves [0, 1]n invariant, we have u ∈ [0, 1]n.

Second, by definition of the Galois connection, we have eΦ(I) 6 eIc . Using the monotonicity
of F and the characterization of F+ and F−, we get that

eΦ(I) 6 F (eΦ(I)) 6 F (eIc) 6 eIc ,

and again, by monotonicity of F , we obtain that, for all integers k,

eΦ(I) 6 F
k(eΦ(I)) 6 F

k(eIc) 6 eIc .

It follows that eΦ(I) 6 u 6 eIc and we deduce that I ⊂ arg minu and Φ(I) ⊂ arg maxu. Since Φ
is antitone, we readily have Φ(arg minu) ⊂ Φ(I) ⊂ arg maxu.

The vector u being a fixed point of F , we know from Lemma 5.5 that arg minu ∈ F+,
arg maxu ∈ F−, and arg maxu ⊂ Φ(arg minu). Hence, from the previous inclusions we deduce
that Φ(arg minu) = Φ(I) = arg maxu.

Suppose now that I is closed with respect to the Galois connection. This means that Φ? ◦
Φ(I) = I . Then, from the previous equalities, we get that Φ? ◦ Φ(arg minu) = I . This im-
plies that arg minu ⊂ I and since we already know that I ⊂ arg minu, we conclude that
I = arg minu.

The statements involving J ∈ F− follow by duality.

We next characterize the existence of a nontrivial fixed point for any payment-free Shapley
operator in terms of the Galois connection (Φ,Φ?). We shall say that I, J ⊂ [n] are conjugate
subsets with respect to the Galois connection (Φ,Φ?) if

I ∈ F+ \ ∅ ,
J ∈ F− \ ∅ ,
J = Φ(I) ,

I = Φ?(J) .

Theorem 5.7. A payment-free Shapley operator F : Rn → Rn has a nontrivial fixed point if, and only
if, there exists a pair of conjugate subsets with respect to the Galois connection (Φ,Φ?).

Proof. Assume first that F has a nontrivial fixed point u. Let I := arg minu and J := arg maxu.
We know from Lemma 5.5 that I ∈ F+ and J ∈ F−. Since Φ ◦Φ? ◦Φ = Φ, the subsets Φ? ◦Φ(I)
and Φ(I) are conjugate if, and only if, they are nonempty. This is the case since I ⊂ Φ? ◦ Φ(I)
(by definition of Galois connections), and J ⊂ Φ(I) (by Lemma 5.5).

Assume now that (I, J) is a pair of conjugate subsets. Then, Φ(I) = J is nonempty and I
is closed with respect to the Galois connection (Φ,Φ?), since Φ? ◦ Φ(I) = Φ?(J) = I . Thus, it
readily follows from Lemma 5.6 that u := Fω(eIc) is fixed point of F verifying arg minu = I
and arg maxu = J .
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We say that a subset of any set X is proper if it differs from the empty set and from X . Using
the properties of the Galois connection, we get alternative (milder) conditions characterizing
the existence of a nontrivial fixed point.

Corollary 5.8. A payment-free Shapley operator F : Rn → Rn has a nontrivial fixed point if, and only
if, one of the following equivalent assertions holds:

(i) there exist nonempty disjoint subsets I, J ⊂ [n] such that I ∈ F+ and J ∈ F−;
(ii) there exists a nonempty subset I ∈ F+ such that Φ(I) 6= ∅;

(iii) there exists a nonempty subset J ∈ F− such that Φ?(J) 6= ∅;
(iv) there is a proper subset that is closed with respect to the Galois connection (Φ,Φ?) or (Φ?,Φ);
(v) there exists a pair of conjugate subsets with respect to the Galois connection (Φ,Φ?).

Proof. Since the equivalence between the existence of a nontrivial fixed point and condition (v)
has been stated in Theorem 5.7, we only need to show the equivalence of Points (i) to (v).

(i) ⇒ (ii), (iii): If (i) holds, then by definition of the Galois connection, we have J ⊂ Φ(I)
and I ⊂ Φ?(J). Thus Φ(I) 6= ∅ and Φ?(J) 6= ∅, which shows both (ii) and (iii).

(ii)⇒ (iv): Let I be a subset as in (ii), that is, I ∈ F+ is nonempty and Φ(I) 6= ∅. We cannot
have Φ(I) = [n], otherwise, this would implies that I ⊂ Φ? ◦ Φ(I) = ∅. Hence, Φ(I) is proper.
Moreover, we know that Φ(I) is closed with respect to the Galois connection (Φ?,Φ), which
shows (one case of) (iv).

(iii) ⇒ (iv): Similarly if J ∈ F− is nonempty and if Φ?(J) 6= ∅, then Φ?(J) is proper and
closed with respect to the Galois connection (Φ,Φ?), which shows (iv).

(iv)⇔ (v): This follows readily from the definition of conjugate subsets.
(v)⇒ (i): This also readily follows from the definition of conjugate subsets and of the Galois

connection (Φ,Φ?).

5.2 Hypergraph characterization of the Galois connection

In this section, we introduce directed hypergraphs, which shall be useful to characterize the
Galois connection (Φ,Φ?). In particular, we shall see that finding Φ(I) (resp., Φ?(J)) for any
given I ∈ F+ (resp., J ∈ F−), is equivalent to solving a reachability problem in a directed
hypergraph. We refer the reader to [GLNP93, All14] for background on reachability problems
in hypergraphs.

5.2.1 Preliminaries on hypergraphs

A directed hypergraph is a pair (N,E) whereN is a set of nodes andE is a set of (directed) hyperarcs.
A hyperarc e is an ordered pair (t(e),h(e)) of disjoint nonempty subsets of nodes; t(e) is the tail
of e and h(e) is its head. For brevity, we shall write t and h instead of t(e) and h(e), respectively,
if no confusion can be made about the edge e. When t and h are both of cardinality one, the
hyperarc is said to be an arc, and when every hyperarc is an arc, the directed hypergraph
becomes a directed graph.

In the following, the term hypergraph will always refer to a directed hypergraph. The size
of a hypergraph G = (N,E) is defined as size(G) := |N | +

∑
e∈E |t(e)| + |h(e)|, where |X|

denotes the cardinality of any set X .
Let G = (N,E) be a hypergraph. A hyperpath of length m from a set of nodes I ⊂ N to a

node j ∈ N is a sequence of m hyperarcs (t1,h1), . . . , (tm,hm), such that ti ⊂ ∪i−1
k=0hk for all

i = 1, . . . ,m + 1, with the convention h0 = I and tm+1 = {j}. Then, we say that a node j ∈ N
is reachable from a set I ⊂ N if there exists a hyperpath from I to j. Alternatively, the relation
of reachability can be defined in a recursive way: a node j is reachable from the set I if either
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j ∈ I or there exists a hyperarc (t,h) such that j ∈ h and every node of t is reachable from the
set I . A set J is said to be reachable from a set I if every node of J is reachable from I . We denote
by reach(I,G) the set of reachable nodes from I in G. Note that, by definition, we always have
I ⊂ reach(I,G).

A subset I ⊂ N is invariant in the hypergraph G if it contains every node that is reachable
from itself, that is reach(I,G) = I . One readily checks that the set of nodes in N that are
reachable from I is the smallest invariant set in the hypergraph G containing I . The following
example illustrate the notion of reachability.

Example 5.9. Figure 5.1 shows a directed hypergraph G with 9 nodes, 4 hyperarcs and 2 arcs.
Check that node 8 is reachable from subset {1, 2} through the hyperpath

({1, 2}, {3}), ({2}, {4}), ({3, 4}, {6}), ({1}, {5}), ({5, 6}, {8}) .

But node 9 is not reachable from {1, 2} since the latter subset does not have access to node 7.
Also, we have here

reach({1, 2},G) = {1, 2, 3, 4, 5, 6, 8} .

1

2

3

4

6

5

7

8

9

Figure 5.1: A directed hypergraph

5.2.2 Hypergraphs associated with payment-free Shapley operators

In order to characterize the Galois connection (Φ,Φ?) associated with a payment-free Shapley
operator F on Rn, we introduce a pair of hypergraphs (G+,G−) constructed as follows:

– the set of nodes for both G+ and G− is [n];
– the hyperarcs of G+ are the pairs (J, {i}) such that Fi(eJ) > 0 and i /∈ J ;
– the hyperarcs of G− are the pairs (J, {i}) such that Fi(eJc) < 1 and i /∈ J .

When F arises from a stochastic game, with a specific minimax representation, it is possible to
give an interpretation of these hypergraphs in game-theoretic terms, providing a more intuitive
understanding of the latter. These aspects shall be treated in Section 5.3. In the present section,
we only exploit the properties (M), (AH) and (PH), characterizing payment-free Shapley oper-
ators.

The next proposition sheds light on the link between the hypergraphs G± and the families
of subsetsF±. It is a direct consequence of the alternative characterizations (5.4) and (5.5) of the
families F±, as well as the following observation. By monotonicity of F , if (J, {i}) is a hyperarc
of G±, then (J ′, {i}) is also a hyperarc of G± for any subset J ′ ⊃ J which does not contain i.
Hence, a subset J ⊂ [n] is invariant in G± if, and only if, there is no hyperarc in G± from J to
any node i /∈ J .
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Proposition 5.10. Let F : Rn → Rn be a payment-free Shapley operator, to which is associated the
pair of hypergraphs (G+,G−). Then, a subset I ⊂ [n] belongs to F+ (resp., F−) if, and only, if its
complement in [n] is invariant in G+ (resp., G−):

I ∈ F+ ⇐⇒ reach(Ic,G+) = Ic ,

I ∈ F− ⇐⇒ reach(Ic,G−) = Ic .

We now make the link with the Galois connection (Φ,Φ?).

Corollary 5.11. Let F : Rn → Rn be a payment-free Shapley operator. Let (Φ,Φ?) and (G+,G−) be
the Galois connection and the pair of hypergraphs, respectively, defined as above. Then, for all I ∈ F+

and J ∈ F−, we have

Φ(I) = [n] \ reach(I,G−) ,

Φ?(J) = [n] \ reach(J,G+) .

Proof. It follows readily from the definition of Φ that [n] \ Φ(I) is the smallest subset I ′ contain-
ing I such that I ′c is in F−. By Proposition 5.10, the latter condition holds if, and only if, I ′ is
invariant in G−. Hence, by definition of reachability, Φ(I) is the complement in [n] of the set of
nodes that are reachable from I in G−. For Φ? the argument is dual.

We shall say that I, J ⊂ [n] are conjugate subsets with respect to the hypergraphs G±, if
I, J 6= ∅ ,
I = [n] \ reach(J,G+) ,

J = [n] \ reach(I,G−) .

It readily follows from Corollary 5.11 that any sets I, J ⊂ [n] are conjugate with respect to the
Galois connection (Φ,Φ?) if, and only if, they are conjugate with respect to the hypergraphs
(G+,G−). Hence, a reformulation of Corollary 5.8 in terms of the hypergraphs (G+,G−) leads
to the following.

Theorem 5.12. Let F : Rn → Rn be a payment-free Shapley operator, to which is associated the pair of
hypergraphs (G+,G−). The following assertions are equivalent:

(i) F has a nontrivial fixed point;
(ii) there exist nonempty disjoint subsets I, J ⊂ [n] such that Ic and Jc are invariant in G+ and G−,

respectively.
(iii) there exists a pair of conjugate subsets I, J ⊂ [n] with respect to the hypergraphs (G+,G−).

5.2.3 Ergodicity of stochastic games with bounded payments

As an immediate corollary of Theorem 5.12, we get a combinatorial characterization of the
ergodicity of stochastic games with bounded payment function, relying on the analytical char-
acterization of Theorem 4.6.

Corollary 5.13. Let T : Rn → Rn be a Shapley operator satisfying Assumption 4.A, and let (G+,G−)
be the pair of hypergraphs associated with the recession operator of T . The following assertions are
equivalent:

(i) T is ergodic, i.e., for all vectors g ∈ Rn, the ergodic equation (2.5) is solvable for g + T ;
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(ii) there do not exist nonempty disjoint subsets I, J ⊂ [n] such that Ic and Jc are invariant in G+

and G−, respectively;
(iii) there does not exist conjugate subsets I, J ⊂ [n] with respect to the hypergraphs (G+,G−).

Remark 5.14. It is instructive to specialize the latter result to the case in which T arises as the
dynamic programming operator of a finite Markov chain with rewards. Then, we can write
T (x) = g+ Px, where g ∈ Rn is the payment vector and P is a n× n stochastic matrix. We also
have T̂ (x) = Px.

In that case, the two hypergraphs G+ and G− are identical. More precisely, there exists a
hyperarc (J, {i}) in G± if, and only if, there is some state j ∈ J such that Pij > 0. Consequently,
the reachability relation in G± is the same as in the directed graph G′ with same set of nodes
[n] and an arc from j to i if Pij > 0. Note that here, on contrary to hypergraphs, loops are
possible. The latter directed graph G′ is the transpose of the directed graph G associated with
the transition matrix P , i.e., the arcs of G′ are in the opposite direction. In particular, Ic is
invariant in G′ (hence in G±) if, and only if, there are no arcs nor paths from I to Ic in G.
Similarly, (I, J) is a pair of conjugate subsets with respect to (G+,G−) if, and only if, I is the
greatest set of nodes with no paths in G to a node of J , and vice versa.

So, Assertion (ii) of Corollary 5.13 implies the existence of a unique final class in G. Indeed,
if this is not the case, that is, if there exist two distinct final classes I , J in G, then there are no
arcs nor paths from I to Ic in G, and the same is true for J , a contradiction. Conversely, if G has
a unique final class, then Point (ii) of Corollary 5.13 is necessarily true. Also by contradiction,
if there exist two nonempty disjoint subsets I , J such that there are no arcs from I to Ic, nor
from J to Jc in G, then there exists a final class of G included in I and also a final class of G
included in J , a contradiction since I and J are disjoint. Hence in the present case, Assertion (ii)
of Corollary 5.13 is equivalent to the condition that the directed graph associated with P has a
unique final class, that is, Assertion (iv) in Theorem 4.1.

5.3 Game-theoretic interpretation

In this section, we consider a stochastic game Γ = ([n], A,B,KA,KB, r, p), which satisfies the
following standing assumption.

Assumption 5.B.
(i) The action spaces A and B are compact sets endowed with their respective Borel σ-

algebra, and for all states i ∈ [n], the sets of admissible actions Ai and Bi are nonempty
closed sets.

(ii) The payment function r and the transition function p are continuous.

Note that with the latter assumption, the value in finite horizon and the discounted value
exist. In particular, the Shapley operator, T : Rn → Rn, of Γ is well defined and its ith compo-
nent is given by

Ti(x) = min
µ∈∆(Ai)

max
ν∈∆(Bi)

(
r(i, µ, ν) +

∑
j∈[n]

xj p(j | i, µ, ν)
)

= max
ν∈∆(Bi)

min
µ∈∆(Ai)

(
r(i, µ, ν) +

∑
j∈[n]

xj p(j | i, µ, ν)
)
, x ∈ Rn .

Let us make some comments. First, observe that inf and sup operators in (2.1) have been
replaced by min and max operators, respectively. This is justified by the fact that the set of
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probability measures on Ai and Bi, respectively, are compact with respect to the weak-* topol-
ogy, and the multilinear extensions r(i, ·, ·) and p(j | i, ·, ·) are continuous with respect to this
topology. Another implication of Assumption 5.B is that the payment function is bounded. As
a consequence, the recession operator of T exists and its ith component is given by

T̂i(x) = min
µ∈∆(Ai)

max
ν∈∆(Bi)

∑
j∈[n]

xj p(j | i, µ, ν) , x ∈ Rn ,

where the minimum and the maximum commutes. Moreover, Assumption 4.A is satisfied.
Hence, according to Theorem 4.6, the ergodicity of Γ can be characterized by the absence of
nontrivial fixed points for the payment-free Shapley operator T̂ .

5.3.1 Dominions and ergodicity

We shall say that the families F+ and F− of subsets of [n] and the hypergraphs G+ and G− are
associated with the game Γ when the latter objects are constructed from the recession operator
T̂ . We next give a game-theoretic interpretation of the results obtained in the previous sections.

We shall call dominion of player MIN (resp., player MAX) in the game Γ any nonempty
subset of states I ⊂ [n] subject to the control of MIN (resp., MAX), in the sense that he has
a pure stationary strategy such that a sequence of states starting in any state i ∈ I stays in I
almost surely, whatever the strategy of the other player is.

Proposition 5.15. Let Γ be a stochastic game with finite state space satisfying Assumption 5.B, and let
(F+,F−) be the families of subsets of states associated with Γ. Then, I ∈ F+ \ ∅ if, and only if, I is a
dominion of MIN in Γ. Likewise, J ∈ F− \ ∅ if, and only if, J is a dominion of MAX in Γ.

Before giving the proof, let us recall the following definition: for any topological space X ,
endowed with its Borel σ-algebra, denoted by B, the support of a measure µ on (X,B) is the
unique closed set, denoted by suppµ, satisfying:

(i) µ(X \ suppµ) = 0;
(ii) If U ⊂ X is open and U ∩ suppµ 6= ∅, then µ(U ∩ suppµ) > 0.

When X = [n], we shall identify a probability measure µ ∈ ∆(X) with the stochastic vector
p ∈ Rn whose ith entry is equal to pi = µ({i}). The support of p is then given by supp p := {i ∈
[n] | pi > 0}.

Proof. Let T : Rn → Rn be the Shapley operator of Γ. Let I ∈ F+ \ ∅. Then, according to (5.4),
we have T̂i(eIc) = 0 for all i ∈ I . Let µ ∈ ∆(Ai) be a mixed action of player MIN in state i
attaining the minimum in the minimax formula of T̂ (eIc). For all mixed actions ν ∈ ∆(Bi) of
player MAX, we have ∑

j /∈I

p(j | i, µ, ν) = 0 (5.7)

By definition of the support of a measure, we necessarily have suppµ 6= ∅, otherwise µ(Ai) = 0.
So, we may choose an action ai ∈ Ai contained in suppµ. Then, it satisfies p(Ic | i, ai, b) = 0
for all actions b ∈ Bi. Indeed, if this is not the case, then there exists some b ∈ Bi such that
p(Ic | i, ai, b) is bounded below by a positive constant. By continuity of a 7→ p(Ic | i, a, b), this
implies that the function a 7→ p(Ic | i, a, b) is also bounded below by a positive constant on a
neighborhood U of ai, and since µ(U ∩ suppµ) > 0, this is a contradiction with (5.7).

Let σ be a pure stationary strategy of player MIN, identified with a map from [n] to A, such
that σ(i) = ai for all state i ∈ I . Suppose MIN chooses this strategy. At each step k of Γ, if
the current state ik is in I , and if player MAX chooses action b, then the probability that the
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state ik+1 at the following stage is in Ic is equal to p(Ic | ik, aik , b) = 0, whatever MAX chooses.
Hence, if the initial state is in I , then for any strategy of MAX, the probability that the sequence
of states (ik)k>1 leaves I is 0. This shows the “only if” part of the first statement.

Conversely, suppose that there exists a pure stationary strategy σ of player MIN, mapping
i ∈ [n] to ai = σ(i) ∈ Ai, such that for any initial state i1 in I and any strategy of player
MAX, the state of Γ stays in I almost surely. In particular, for any state i ∈ I and any action
b ∈ Bi, if the initial state is i1 = i, if MIN chooses strategy σ and if MAX chooses action b at
first stage, then the probability that i2 is outside I is equal to 0. This probability coincides with
p(Ic | i, ai, b). Hence, for all states i ∈ [n], we have

T̂i(eIc) 6 max
ν∈∆(Bi)

∑
j /∈I

p(j | i, ai, ν) = 0 .

This shows that T̂i(eIc) = 0 for all i ∈ I , that is I ∈ F+. The second assertion follows by
duality.

We deduce from the above proposition, combined with Corollary 5.8 and Theorem 4.6, a
necessary and sufficient condition for ergodicity of stochastic games in terms of dominions

Corollary 5.16. A stochastic game Γ with finite state space satisfying Assumption 5.B is ergodic if, and
only if, there does not exist a pair of disjoint dominions of players MIN and MAX, respectively, in Γ.

Remark 5.17. The hypergraphs G+ and G− can also be interpreted in terms of strategies. Indeed,
in G−, there is a hyperarc from a subset J ∈ [n] to a state i if, and only if,

min
µ∈∆(Ai)

max
ν∈∆(Bi)

p(Jc | i, µ, ν) < 1 ,

which amounts to saying that in state i, player MIN has a mixed action µi such that, for any
action b chosen by player MAX, the probability for the state to be in J at the next stage, i.e.,
p(J | i, µi, b), is bounded below by a positive constant. Note that, contrary to the family F−,
we need to consider mixed actions of MIN (and not only pure actions).

The same interpretation holds for G+ and player MAX: there is a hyperarc from J ⊂ [n] to
i ∈ [n] in G+ if, and only if, in state i, MAX has a mixed action such that, for any action chosen
by MIN, the state at the next stage is in J with positive probability.

5.3.2 Ergodicity is a structural property

We call upper and lower Boolean abstractions of T̂ , the operators defined on the set of Boolean
vectors {0, 1}n, the ith component of which are given respectively by

T̂+
i (x) := min

a∈Ai
max
b∈Bi

max{xj | p(j | i, a, b) > 0} ,

T̂−i (x) := max
b∈Bi

min
a∈Ai

min{xj | p(j | i, a, b) > 0} .

Let us make some observations. First, these Boolean operators can be extended to Rn. Then,
we have T̂− 6 T̂ 6 T̂+. Second, the operators T̂+ and T̂− are only determined by the supports
of the transition probabilities, that is, by the set of all (i, a, b, j) such that p(j | i, a, b) > 0.

The latter Boolean operators are helpful to determine the set of dominions, as well as to
construct the hypergraphs G+ and G−. These facts are a consequence of the following lemmas.
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Lemma 5.18. Let Γ be a stochastic game with state space [n] satisfying Assumption 5.B, and with
Shapley operator T : Rn → Rn. Then, a nonempty subset I ⊂ [n] is a dominion of player MIN in Γ

(i.e., T̂ (eIc) 6 eIc) if, and only if, T̂+(eIc) 6 eIc . Likewise, a nonempty subset J ⊂ [n] is a dominion
of player MAX in Γ (i.e., eJ 6 T̂ (eJ)) if, and only if, eJ 6 T̂−(eJ).

Proof. Recall that a nonempty subset I is a dominion of MIN if, and only if, T̂ (eIc) 6 eIc holds
(Proposition 5.15). Furthermore, since T̂ 6 T̂+, we only need to prove the implication

T̂ (eIc) 6 eIc =⇒ T̂+(eIc) 6 eIc .

So, let us assume that T̂ (eIc) 6 eIc , that is, I is a dominion of MIN. Then, for all i ∈ I , there
exists an action ai ∈ Ai such that the probability p(Ic | i, ai, b) is equal to 0 for all b ∈ Bi. Let
x = eIc . For all i ∈ I and b ∈ Bi, we have p(Ic | i, ai, b) =

∑
j xj p(j | i, ai, b) = 0. Since all

the terms in the latter sum are nonnegative, we must have xj = 0 as soon as p(j | i, ai, b) > 0,
which also writes max{xj | p(j | i, ai, b) > 0} = 0. We deduce that T̂+

i (x) = 0 for all i ∈ I , that
is, T̂+(eIc) 6 eIc . This shows the first equivalence, and the second follows by duality.

Note that, according to the equivalences (5.4) and (5.5) and their Boolean counterparts, the
equivalences in the previous lemma can be restated in the following way:

T̂i(eJ) > 0 ⇐⇒ T̂+
i (eJ) = 1 ,

T̂i(eJc) < 1 ⇐⇒ T̂−i (eJc) = 0 ,

for all i ∈ [n] and J ⊂ [n]. Hence, the following characterization.

Lemma 5.19. Let Γ be a stochastic game with state space [n] satisfying Assumption 5.B and with
Shapley operator T : Rn → Rn. Let G+ and G− be the hypergraphs associated with Γ. Then (J, {i}) is
a hyperarc of G+ if, and only if, T̂+

i (eJ) = 1 and i /∈ J . Likewise, (J, {i}) is a hyperarc of G− if, and
only if, T̂−i (eJc) = 0 and i /∈ J .

We deduce from the previous results that the set of dominions and the hypergraphs G+

and G− are structural, in the sense that they only depend on the supports of the transition
probabilities. Together with Corollary 5.16, we get in particular the following.

Corollary 5.20. The ergodicity of a stochastic game Γ with finite state space satisfying Assumption 5.B
only depends on the support of the transition probabilities.

We conclude this section with the following theorem, providing a way to compute the im-
ages of subsets of states by the Galois connection (Φ,Φ?).

Theorem 5.21. Let Γ be a stochastic game with state space [n] satisfying Assumption 5.B and with
Shapley operator T : Rn → Rn. Let F+ and F− be the families of subsets of states associated with Γ.
Then, for I ∈ F− and J ∈ F+ we have

eΦ(I) =
(
T̂−
)ω

(eIc) ,

e[n]\Φ?(J) =
(
T̂+
)ω

(eJ) .

Proof. We only show the first equality, the second follows by duality. Let I ∈ F−. We have
T̂+(eIc) 6 eIc , and using T̂− 6 T̂+, we obtain that T̂−(eIc) 6 eIc . It follows that (T̂−)ω(eIc)

is well defined and satisfies (T̂−)ω(eIc) 6 eIc . Since T̂− is a Boolean map, there exists some
subset L ⊂ [n] such that eL = (T̂−)ω(eIc). We need to show that L = Φ(I).
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Since eL is a fixed point of T̂−, L belongs to F+. Furthermore, it satisfies eL 6 eIc , since
I ∩ L = ∅. Then L ⊂ Φ(I).

Let K ∈ F+ be a subset such that I ∩ K = ∅, that is, eK 6 eIc . By induction, we get that
(T̂−)k(eK) 6 (T̂−)k(eIc) for every integer k. We also have eK 6 T̂−(eK), hence (T̂−)ω(eK)

exists and (T̂−)ω(eK) > eK . This leads to eK 6 (T̂−)ω(eK) 6 (T̂−)ω(eIc) = eL, which implies
that K ⊂ L. This holds for all K ∈ F+ such that I ∩K = ∅, hence, by definition of Φ, we have
Φ(I) ⊂ L.

5.4 Algorithmic and complexity issues

In this section, we consider a finite stochastic game Γ = ([n], A,B,KA,KB, r, p) with perfect
information. Assumption 5.B (hence, Assumption 4.A) is trivially satisfied, since the action
spaces are finite. Moreover, the Shapley operator T : Rn → Rn of Γ is a polyhedral map, the ith
component of which writes

Ti(x) = min
a∈Ai

max
b∈Bi,a

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
, x ∈ Rn .

As for its recession operator, which we denote here by F for simplicity, its ith component is
given by

Fi(x) := T̂i(x) = min
a∈Ai

max
b∈Bi,a

∑
j∈[n]

xj p(j | i, a, b) , x ∈ Rn . (5.8)

Note that all the results of Section 5.3 readily apply to the present setting, with minor adapta-
tions coming from the fact that the min and max operators cannot be interchanged, see [AGH15a]
where the perfect-information case has been specifically treated. In particular, the ith compo-
nents of the Boolean abstractions of F are given by

F+
i (x) = T̂+

i (x) := min
a∈Ai

max
b∈Bi,a

max{xj | p(j | i, a, b) > 0} ,

F−i (x) = T̂−i (x) := min
a∈Ai

max
b∈Bi,a

min{xj | p(j | i, a, b) > 0} .

5.4.1 Syntactic hypergraphs

In this subsection, we introduce a pair of hypergraphs (G+
s ,G−s ) representing the Boolean op-

erators F+ and F−. We shall see that the links between the Galois connection (Φ,Φ?) and the
hypergraphs (G+,G−) established in Section 5.2 still hold with this new pair of hypergraphs.
Hence, finding Φ(I) (resp., Φ?(J)) for any subset I ∈ F+ (resp., J ∈ F−) is equivalent to solving
a reachability problem in (a modified version of) G−s (resp., G+

s ).
We first construct the hypergraph G+

s , a representation of which is shown in Figure 5.2.
Let us introduce to that purpose a copy of [n], which is a set disjoint from [n] and given by a
bijection c from [n] to this copy. We also need to assume c([n]) disjoint from the two constraints
sets KA and KB .

The set of nodes of G+
s is [n] ∪KA ∪ c([n]). The hyperarcs of G+

s are of the form:
– ({i} ×Ai, {c(i)}) for each state i ∈ [n] ;
– ({j}, {(i, a)}) for each states i, j ∈ [n] and each action a ∈ Ai such that there exists some

action b ∈ Bi,a with p(j | i, a, b) > 0.
As shown on Figure 5.2, this hypergraph is structured in two layers; the first layer consists
of the arcs ({j}, {(i, a)}) whereas the second layer consists of the hyperarcs ({i} × Ai, {c(i)}).
Furthermore, the size of G+

s satisfies size(G+
s ) = O(n2|A|).
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j

(i, a)

c(i)

[n]
{i} ×Ai

c([n])

Figure 5.2: Hypergraph G+
s associated with F+

The hypergraph G+
s encodes the Boolean operator F+ in the following sense. Let x ∈ {0, 1}n

be a Boolean vector. Denote

xi,a := max
b∈Bi,a

max{xj | p(j | i, a, b) > 0} ,

so that have
F+
i (x) = min

a∈Ai
xi,a .

If x = eJ for any subset J ⊂ [n], then xi,a = 1 if, and only if, there exists some action b ∈ Bi,a
and some state j ∈ J such that p(j | i, a, b) > 0. This is also equivalent to the node (i, a) being
reachable from J in G+

s . Then, F+
i (x) = 1 if, and only if, xi,a = 1 for every action a ∈ Ai, which

is equivalent to all the nodes in the tail of the hyperarc ({i} × Ai, {c(i)}) being reachable from
J in G+

s . According to the recursive definition of reachability, this is equivalent to c(i) being
reachable from J in G+

s . Hence, the following result.

Proposition 5.22. Let F : Rn → Rn be the payment-free Shapley operator associated with a perfect-
information finite stochastic game. Then, the node c(i) ∈ c([n]) is reachable from the subset J ⊂ [n] in
G+
s if, and only if, F+

i (eJ) = 1.

We now construct the second hypergraph, a representation of which is shown in Figure 5.3.
The node set of G−s is [n] ∪KB ∪ c([n]), and its hyperarcs are:

– ({(i, a)} ×Bi, {c(i)}) for each state i ∈ [n] and action a ∈ Ai ;
– ({j}, {(i, a, b)}) for each states i, j ∈ [n] and each actions a ∈ Ai and b ∈ Bi,a such that
p(j | i, a, b) > 0.

Again, the hypergraph G−s consists of two layers (see Figure 5.3). Furthermore, the size of G−s
satisfies size(G−s ) = O(n2|A||B|).

Like G+
s , the hypergraph G−s encodes the Boolean operator F−, as shown by the following

result.

Proposition 5.23. Let F : Rn → Rn be the payment-free Shapley operator associated with a perfect-
information finite stochastic game. Then, the node c(i) ∈ c([n]) is reachable from the subset J ⊂ [n] in
G−s if, and only if, F−i (eJc) = 0.

Note that the absence of symmetry between G+
s and G−s reflects the lack of symmetry be-

tween F+ and F−. Denote by G+
s and G−s the hypergraphs obtained from G+

s and G−s , re-
spectively, by identifying every node i ∈ [n] with node c(i) ∈ c([n]). It follows readily from
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j

(i, a, b′)

(i, a, b)

(i, a′, b)

(i, a′, b′)

c(i)

[n]

{(i, a)} ×Bi,a

{(i, a′)} ×Bi,a′

c([n])

Figure 5.3: Hypergraph G−s associated with F−

Lemma 5.19 that, for all subsets I ⊂ [n], we have

reach(I,G+) = reach(I,G+
s ) ∩ [n] ,

reach(I,G−) = reach(I,G−s ) ∩ [n] .

Thus, all the results of the previous sections, involving the hypergraphs (G+,G−) and the fam-
ilies (F+,F−) can be stated with the syntactic hypergraphs (G+

s ,G
−
s ). In particular we have

the following characterization of dominions, which uses a stronger notion of invariance: in a
directed hypergraph G = (N,E), if N ′ ⊂ N , we say that a subset I of N ′ is invariant in the
hypergraph G relatively to N ′ if it contains all the nodes of N ′ that are reachable from itself, that
is, reach(I,G) ∩N ′ = I .

Corollary 5.24. Let Γ be a perfect-information finite stochastic game with state space [n]. Let (F+,F−)

and (G+
s ,G

−
s ) be the families of subsets of states and the syntactic hypergraphs, respectively, associated

with Γ. Then, a nonempty subset I ⊂ [n] is a dominion of player MIN (i.e., I ∈ F+) if, and only if, its
complement in [n] is an invariant set in the hypergraph G+

s relatively to [n]:

reach(Ic,G+
s ) ∩ [n] = Ic .

Likewise, a nonempty subset J ⊂ [n] is a dominion of player MAX (i.e., J ∈ F−) if, and only if, its
complement in [n] is an invariant set in the hypergraph G−s relatively to [n]:

reach(Jc,G−s ) ∩ [n] = Jc .

A characterization of ergodicity of stochastic games with perfect information follows.

Corollary 5.25. A perfect-information finite stochastic game with state space [n] is ergodic if, and only
if, there do not exist nonempty disjoint subsets of states that are invariant in G+

s and G−s , respectively,
relatively to [n].



Chapter 5. Fixed-point problems for payment-free Shapley operators 56

Furthermore, the images of dominions by the Galois connection (Φ,Φ?) can be effectively
computed.

Corollary 5.26. Let Γ be a perfect-information finite stochastic game with state space [n]. Let (F+,F−)

and (G+
s ,G

−
s ) be the families of subsets of states and the syntactic hypergraphs, respectively, associated

with Γ. Then, for all I ∈ F+ (resp., J ∈ F−), Φ(I) (resp., Φ?(J)) is given by the complement in [n] of
all the nodes of [n] that are reachable from I (resp., J) in G−s (resp., G+

s ):

Φ(I) = [n] \ reach(I,G−s )
(

resp., Φ?(J) = [n] \ reach(J,G+
s )
)
.

5.4.2 Checking ergodicity

According to Theorem 4.6, the negation of the following problem is equivalent to the next one.

Problem (NontrivialFP). Does a given payment-free Shapley operator F (5.8) associated with
a perfect-information finite stochastic game have a nontrivial fixed point, that is, does there
exist a vector u ∈ Rn \ Re such that u = F (u)?

Problem (Ergodicity). Is a given perfect-information finite stochastic game Γ ergodic?

It is known that in a directed hypergraph G, the set of reachable nodes from a set I can be
computed in O(size(G)) time, see [GLNP93]. Hence, from Corollary 5.24 and Corollary 5.26 we
get the following.

Proposition 5.27. Let Γ be a perfect-information finite stochastic game with state space [n], and let
(F+,F−) be the families of subsets of states associated with Γ. For any subsets I, J ⊂ [n], checking that
I ∈ F− and J ∈ F+ can be done in O(n2|A|) and O(n2|A||B|) time, respectively. Moreover, Φ(I) and
Φ?(J) can be evaluated in O(n2|A||B|) and O(n2|A|) time, respectively.

Using Proposition 5.27 and Corollary 5.8, we obtain the following result, which shows that
checking the ergodicity of a game is fixed-parameter tractable: if the dimension is fixed, we
can solve it in a time which is polynomial in the input size. Thus, for instances of moderate
dimension but with large action spaces, ergodicity condition can be checked efficiently.

Theorem 5.28. The ergodicity of a perfect-information finite stochastic game with state space [n], that
is the property “T̂ has only trivial fixed points”, can be checked in O(2nn2|A||B|) time.

Problem NontrivialFP has already been addressed in the deterministic case with finite ac-
tion spaces by Yang and Zhao [YZ04]. Suppose indeed that in the expression (5.8), the support
of each transition probability is concentrated on just one state and consider the restriction of
such an operator to the set of Boolean vectors {0, 1}n. Then, we obtain a monotone Boolean
operator.

Recall that a Boolean operator, defined on the set of Boolean vectors {0, 1}n, is expressed
using the logical operators AND, OR and NOT. Monotone Boolean operators are operators the
expression of which involves only AND and OR operators. The latter can be interpreted as
min and max operators, respectively. So, deterministic payment-free Shapley operators are
equivalent to monotone Boolean operators and Problem NontrivialFP can be expressed in a
simpler form.

Problem (MonBoolFP). Does a given monotone Boolean operator have a nontrivial fixed point,
that is, different from the zero vector and the unit vector?

Theorem 5.29 ([YZ04, Cor. 1]). Problem MonBoolFP is NP-complete.
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Using this result and the characterizations of the previous sections, we obtain the following.

Corollary 5.30. Problem NontrivialFP is NP-complete.

Proof. As a direct consequence of Theorem 5.29, we get that Problem NontrivialFP is NP-hard.
We now show that it is in NP. Suppose that a payment-free Shapley operator F (5.8) has a
nontrivial fixed point u ∈ Rn. Then arg minu and arg maxu are proper subsets of states, and
by Lemma 5.5, we have arg minu ∈ F+ and Φ(arg minu) ⊃ arg maxu 6= ∅. Hence, arg minu
is a proper subset of states in F+ such that Φ(arg minu) is nonempty, and we know by Corol-
lary 5.8 that these conditions are sufficient to guarantee the existence of a nontrivial fixed point.
Furthermore, these conditions can be checked in polynomial time, as a consequence of Propo-
sition 5.27. Hence, arg minu is a short certificate to Problem NontrivialFP.

5.4.3 Mean-payo� vectors with prescribed extrema

A way to analyze Problem NontrivialFP would be to characterize the set of fixed pointsW :=
{w ∈ Rn | F (w) = w} of a payment-free Shapley operator F . This problem also arises in
several other situations. First, in Proposition 4.4, we have shown that W is exactly the set of
possible mean-payoff vectors of the parametric game Γ(r) := ([n], A,B,KA,KB, r, p) when the
payment function r varies. Next, W allows one to determine the set E of solutions u of the
ergodic equation T (u) = λe+ u. Indeed, it is shown in [AGN16] that if the Shapley operator T
is piecewise affine, if u is any point in E and if V is a neighborhood of 0, then

E ∩ (u+ V) = u+ {w ∈ V | F (w) = w} = u+ (V ∩W) ,

where F is a payment-free Shapley operator (namely the semidifferential of T at point u).
Hence, the local study of the ergodic equation reduces to the characterization of the fixed-point
setW .

Fixed points with prescribed argmin

In an attempt to understand the structure of the set of fixed points of a payment-free Shapley
operator, we shall consider the following simpler problem.

Problem (MinFP). Let I be any subset of [n]. Does a given payment-free Shapley operator (5.8)
associated with a perfect-information finite stochastic game have a fixed point u satisfying
arg minu = I?

We know from Lemma 5.5 that a necessary condition is I ∈ F+. Under Assumption 5.B, this
is equivalent to F+(eIc) 6 eIc (Lemma 5.18). We next show that there is a stronger necessary
condition.

Lemma 5.31. Let F : R→ Rn be the payment-free Shapley operator associated with a stochastic game
satisfying Assumption 5.B, and let I ⊂ [n]. Suppose that F has a fixed point u verifying arg minu = I .
Then, F+(eIc) = eIc .

Proof. Let u be a fixed point of F verifying arg minu = I . If I = [n], the conclusion of the
lemma is trivial, so we may assume that I 6= [n]. Furthermore, we may suppose, without
loss of generality, that mini∈[n] ui = 0 and maxi∈[n] ui = 1, so that u 6 eIc . Since F 6 F+,
we get u = F (u) 6 F+(u) 6 F+(eIc). The last vector is Boolean, so this inequality implies
eIc 6 F+(eIc). Moreover, according to Lemma 5.5 and Lemma 5.18, we already know that
F+(eIc) 6 eIc . Hence the result.
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We continue with another necessary condition.

Lemma 5.32. Let F : R→ Rn be the payment-free Shapley operator associated with a stochastic game
satisfying Assumption 5.B, and let I ∈ F+. If Φ(I) = ∅, then F does not have any nontrivial fixed
point u satisfying I ⊂ arg minu.

Proof. Suppose on contrary that there is a nontrivial fixed point u such that I ⊂ arg minu. Let
I ′ := arg minu and J := arg maxu. We know from Lemma 5.5 that I ′ ∈ F+, J ∈ F− and that
J ⊂ Φ(I ′). Since I ⊂ I ′, we have Φ(I ′) ⊂ Φ(I). Hence J ⊂ Φ(I), and since J 6= ∅, we get a
contradiction.

If I = ∅, the answer to Problem MinFP is trivially negative, and if I = [n] it is trivially
positive. Assume now that I is a proper subset of [n]. The above results show that a necessary
condition to have a positive answer to problem MinFP is that I ∈ F+ and Φ(I) 6= ∅. Moreover,
by Lemma 5.6, a sufficient condition to have a positive answer to problem MinFP is that I is
closed with respect to the Galois connection (Φ,Φ?). It remains to examine the case in which I ∈
F+ is a proper subset, with Φ(I) 6= ∅, and distinct from its closure I := Φ? ◦ Φ(I) with respect
to the Galois connection (Φ,Φ?). Note that we must have, in particular, I 6= [n], otherwise we
would have Φ(I) = Φ(I) = ∅.

In the remainder of the subsection, F is the payment-free Shapley operator (5.8) associ-
ated with a perfect-information finite stochastic game Γ (hence, satisfying Assumption 5.B).
We define a reduced operator F ∗ : RI → RI as follows. According to the game-theoretic inter-
pretation (Proposition 5.15), we know that MIN can force the state of the game Γ to stay in I
from any initial position in I . Hence, we consider the actions of MIN that achieve this goal: for
every i ∈ I , let

A∗i :=
{
a ∈ Ai | ∀b ∈ Bi,a, ∀j /∈ I, p(j | i, a, b) = 0

}
.

These sets are nonempty since I ∈ F+. Alternatively, A∗i can be defined as the set of actions
a ∈ Ai which attain the minimum in the minimax formula (5.8) of Fi

(
e[n]\I

)
, that is,

A∗i =
{
a ∈ Ai

∣∣∣ max
b∈Bi,a

∑
j /∈I

p(j | i, a, b) = Fi
(
e[n]\I

)
= 0
}
.

Given x ∈ Rn and K ⊂ [n], let us denote by xK the restriction of x to RK . Then, we define the
reduced map F ∗ from RI to itself, whose ith component (i ∈ I) is given by

F ∗i (x) := min
a∈A∗i

max
b∈Bi,a

∑
j∈I

xj p(j | i, a, b) , x ∈ RI .

The latter map is a payment-free Shapley operator on RI . Indeed, from the definition ofA∗i , any
transition probability p(· | i, a, b) is supported by I as soon as a ∈ A∗i with i ∈ I . In particular,
we have, for all i ∈ I ,

F ∗i (xI) = min
a∈A∗i

max
b∈Bi,a

∑
j∈[n]

xj p(j | i, a, b) , ∀x ∈ Rn . (5.9)

Theorem 5.33. Let F : Rn → Rn be the payment-free Shapley operator associated with a perfect-
information finite stochastic game. Let I ∈ F+ be proper, such that Φ(I) 6= ∅ and I 6= I . Then F has a
fixed point the arg min of which is I if, and only if, the same holds for the reduced operator F ∗.
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Proof. We first show the “only if” part of the theorem. Let u be a fixed point of F such that
I = arg minu. Recall that I 6= [n] by hypothesis. So we may suppose that maxi∈[n] ui = 1 and
mini∈[u] ui = 0.

It follows from (5.9) that ui = Fi(u) 6 F ∗i (uI) for all i ∈ I , so that (F ∗)ω(uI) exists. Let us
denote this limit point by v. It is a fixed point of F ∗ and it satisfies uI 6 v. As a consequence,
vi > 0 for every i ∈ I \ I .

Furthermore, Lemma 5.5 implies that I ∈ F+, meaning that F (e[n]\I) 6 e[n]\I . Then, for all
i ∈ I , there exists some action a ∈ Ai such that p([n] \ I | i, a, b) = 0 for all actions b ∈ Bi,a.
Since I ⊂ I , this implies that p(j | i, a, b) = 0 for all j ∈ [n] \ I , and since this holds for all
b ∈ Bi,a, we deduce that a ∈ A∗i . Hence,

min
a∈A∗i

max
b∈Bi,a

∑
j /∈I

p(j | i, a, b) = 0 ,

which yields F ∗i (eI\I) = 0 for all i ∈ I . Therefore F ∗(eI\I) 6 eI\I , and since uI 6 eI\I , it follows
that

v = (F ∗)ω(uI) 6 (F ∗)ω(eI\I) 6 eI\I .

Hence vi = 0 for every i ∈ I , which shows that arg min v = I .
We now prove the “if” part of the theorem. Assume that F ∗ has a fixed point v such that

arg min v = I . We may suppose that maxi∈[n] vi = 1 and mini∈[n] vi = 0. Let w := Fω(e[n]\I).
We know from Lemma 5.6 that w is a fixed point of F verifying arg minw = I . Thus, it satisfies
wI = 0 and wj > 0 for every j ∈ [n] \ I , hence there exists some constant α > 0 such that
w > αe[n]\I .

We next use the notions of semidifferentiability and semiderivative, referring the reader
to [RW98, AGN16] for the definition of these notions and for their basic properties. Since the
action spaces are finite, F is piecewise affine and so, it is semidifferentiable at point w. Fur-
thermore, denoting by F ′w its semiderivative at w, there is a neighborhood V of 0 such that

F (w + x) = F (w) + F ′w(x) , ∀x ∈ V . (5.10)

We next give a formula for F ′w. For every i ∈ [n], let

Ai(w) :=
{
a ∈ Ai

∣∣∣ max
b∈Bi,a

∑
j∈[n]

wj p(j | i, a, b) = Fi(w)
}

and for all a ∈ Ai(w), let

Bi,a(w) :=
{
b ∈ Bi,a

∣∣∣ ∑
j∈[n]

wj p(j | i, a, b) = Fi(w)
}
.

Then, the ith component of F ′w is given by[
F ′w(x)

]
i

= min
a∈Ai(w)

max
b∈Bi,a(w)

∑
j∈[n]

xj p(j | i, a, b) , x ∈ Rn .

Observe that for each i ∈ I , we have Ai(w) = A∗i and Bi,a(w) = Bi for all a ∈ Ai(w). This is
because, for all i ∈ I we have Fi(w) = wi = 0 and wj > 0 for all j /∈ I , so that a ∈ Ai(w) if,
and only if, maxb∈Bi,a p([n] \ I | i, a, b) = 0 and b ∈ Bi,a(w) if, and only if, p([n] \ I | i, a, b) = 0.
Then, using (5.9), we obtain that

[F ′w(x)]I = F ∗(xI) , ∀x ∈ Rn . (5.11)
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We now introduce the vector z ∈ [0, 1]n given by zI = v and z[n]\I = 0. By the above prop-
erty (5.11) of F ′w, we get that [F ′w(z)]I = F ∗(v) = v = zI . Moreover, since F ′w is a payment-free
operator and z > 0, we get that F ′w(z) > 0, so F ′w(z) > z. Hence, the limit point z̄ := (F ′w)ω(z)
exists and is a fixed point of F ′w, belonging to [0, 1]n. Again, by the above property (5.11) of
F ′w, we get that [(F ′w)k(z)]I = F ∗([(F ′w)k−1(z)]I) for all integers k > 1, so that by induction
[(F ′w)k(z)]I = v, and finally z̄i = vi for all i ∈ I .

Choose ε > 0 small enough so that εz̄ is in V and let u = w + ε z̄. Then, from (5.10), we
get that F (u) = F (w) + εF ′w(z̄) = w + εz̄ = u, where we used the fact that F ′w is positively
homogeneous. Then u is a fixed point of F . Moreover, by construction u = w + ε z̄ > w and
u > εz̄, and since arg minw = I and arg min z̄ ∩ I = I , we deduce that uI = 0 and uj > 0 for
every j ∈ [n] \ I , that is, arg minu = I .

The previous result, together with the observations made before it, lead to Algorithm 1
below, which solves Problem MinFP, as detailed in Theorem 5.34. There, if Γ denotes a finite
stochastic game, we write Γ∗ the reduced game with, in particular, state space I and set of
admissible actions A∗i for player MIN when in state i ∈ I . Also, if F is a payment-free Shapley
operator, we write (ΦF ,Φ

?
F ) the Galois connection associated with that operator.

Algorithm 1:
input : perfect-information finite stochastic game Γ := (S,A,B,KA,KB, 0, p),

corresponding payment-free Shapley operator F : RS → RS , subset I ⊂ S.
output: answer to Problem MinFP.

1 if I = ∅ then
2 return false
3 else if I = S then
4 return true
5 else
6 repeat
7 if

(
F+(eIc) 6= eIc or ΦF (I) = ∅

)
then

8 return false
9 else if Φ?

F ◦ ΦF (I) = I then
10 return true
11 else
12 S ← Φ?

F ◦ ΦF (I), Γ← Γ∗, F ← F ∗

13 end
14 end
15 end

Theorem 5.34. Algorithm 1 solves Problem MinFP in O(n3|A||B|) time.

Proof. The fact that Algorithm 1 provides the right answer to Problem MinFP is a direct conse-
quence of Lemma 5.31, Lemma 5.32, Lemma 5.6 and Theorem 5.33.

We next show that it stops after at most n iterations of the loop. Suppose that during the
execution of a loop, the first two conditions (which are stopping criteria) are not satisfied. Then
the closure of I with respect to the Galois connection (ΦF ,Φ

?
F ) associated with F is a proper

subset of states. Hence, the cardinality of the state space for the reduced operator F ∗ is strictly
less than the one for F . Moreover, each operation in the loop requires at most O(n2|A||B|) time
(see Proposition 5.27).
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Fixed points with prescribed argmin and argmax

So far, we have only considered the problem with a single constraint on the fixed point, con-
cerning the indices of the minimal entries. The dual problem, concerning the maximal entries
of fixed points, is equivalent. We address now a mixed-condition problem.

Problem (MinMaxFP). Let I and J be nonempty disjoint subsets of [n]. Does a given payment-
free Shapley operator (5.8) associated with a perfect-information finite stochastic game have a
fixed point u satisfying arg minu = I and arg maxu = J?

The following theorem shows that Problem MinMaxFP can be split in one instance of Prob-
lem MinFP and one instance of its dual problem.

Theorem 5.35. Let F : Rn → Rn be the payment-free Shapley operator associated with a perfect-
information finite stochastic game. Let I ∈ F+ and J ∈ F− be two nonempty disjoint subsets. Then F
has a fixed point u satisfying arg minu = I and arg maxu = J if, and only if, F has fixed points v and
w satisfying arg min v = I and arg maxw = J , respectively.

Proof. We only need to prove the “if” part of the theorem. Suppose that F has fixed points v
and w such that arg min v = I and arg maxw = J , respectively. Then, we may impose

min
i∈[n]

vi = 0 , max
i∈[n]

vi = min
i∈[n]

wi = 1/2 , max
i∈[n]

wi = 1 .

Let L := {z ∈ Rn | v ∨ eJ 6 z 6 w ∧ eIc}, where ∨ and ∧ stands for the supremum and
the infimum operators, respectively. Put in words, L is the set of all elements in the hypercube
[0, 1]n whose entries are 0 on I , 1 on J and between the ones of v and w elsewhere. In particular,
the entries outside I or J of the vectors in L are in (0, 1).

The set L is a complete lattice. We next show that it is invariant by F . Since J ∈ F−, we
have

v ∨ eJ 6 F (v) ∨ F (eJ) 6 F (v ∨ eJ) ,

and since I ∈ F+, we have

w ∧ eIc > F (w) ∧ F (eIc) > F (w ∧ eIc) .

Hence, v ∨ eJ 6 z 6 w ∧ eIc implies

v ∨ eJ 6 F (v ∨ eJ) 6 F (z) 6 F (w ∧ eIc) 6 w ∧ eIc ,

which shows that L is invariant by F . Thus, since F is order-preserving, Tarski’s fixed-point
theorem guarantees the existence of a fixed point of F in L.

Corollary 5.36. Problem MinMaxFP can be solved in O(n3|A||B|) time.

Proof. According to Theorem 5.35, Problem MinMaxFP can be solved by two instances of Prob-
lem MinFP, one with inputs F and I , one with inputs F̃ (Remark 5.3) and J .

Summary of complexity results

The following table summarizes the results of this section.
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Problem Complexity class
MonBoolFP NP-complete ([YZ04, Cor. 1])
NontrivialFP NP-complete (Cor. 5.30)
MinFP P (Th. 5.34)
MinMaxFP P (Cor. 5.36)

Table 5.1: Complexity class of fixed-point problems

5.5 Example

5.5.1 Checking ergodicity

Let us consider the zero-sum stochastic game with perfect information defined by the graph
represented in Figure 5.4. There are four states represented by gray nodes. A token is initially
placed in one of these nodes. At each stage, the token is moved along the edges of the graph
until it reaches another state, according to the following rule: player MIN moves the token at
circle nodes, player MAX at square ones and at diamond nodes, an edge is selected at random
according to the probabilities indicated on the edges starting from the node. A payment only
occurs for the edges starting from a MAX node (its value is given by the label attached to them).

1
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2

1

−2

−1

2

2 2

1/2

−3

3
1/2
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4
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1/2 1/2

−1

1/2

1/2

1/2

Figure 5.4: Graph on which is played a perfect-information stochastic game

The Shapley operator of this game is

T (x) =


(2 + x1) ∧ (1 + 1

2(x1 + x2))(
(−2 + 1

2(x1 + x2)) ∨ (−1 + x1)
)
∧ (2 + 1

2(x1 + x3))
(−3 + 1

2(x1 + x3)) ∨ (−1 + 1
2(x2 + x4))

(−2 + x4) ∨ (2 + 1
2(x3 + x4))

 , x ∈ R4 .

It can be checked that the ergodic equation (2.5) is solvable, with ergodic constant λ = 1/3 and
bias vector u = (4/3, 0, 2/3, 4)ᵀ. Let us decide whether this game is ergodic.

This can be easily done following the game-theoretic interpretation of Section 5.3. Indeed,
observe on Figure 5.4 that the dominions of MIN are {1}, {1, 2} and {1, 2, 3, 4}, since, apart from
the whole set of states, MIN can always make sure that the state remains in {1} or in {1, 2}. As
for MAX, its dominions are {4} and {1, 2, 3, 4}. Thus, there exists at least one pair of disjoint
dominions of MIN and MAX, e.g., {1} and {4}, and so we conclude from Corollary 5.16 that the
game is not ergodic.
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Alternatively, and in order to illustrate the Galois connection of Section 5.1, we can study
the fixed points of the recession operator of T , denoted here by F and given by

F (x) =


x1 ∧ 1

2(x1 + x2)(
1
2(x1 + x2) ∨ x1

)
∧ 1

2(x1 + x3)
1
2(x1 + x3) ∨ 1

2(x2 + x4)
x4 ∨ 1

2(x3 + x4)

 , x ∈ R4 (5.12)

From Proposition 5.15 we readily get that the families F+ and F− associated with F are

F+ =
{
∅, {1}, {1, 2}, {1, 2, 3, 4}

}
and F− =

{
∅, {4}, {1, 2, 3, 4}

}
.

We can also obtain a description of the latter families by constructing the Boolean abstractions
of F :

F+(x) =


x1

x1 ∨ (x2 ∧ x3)
x1 ∨ x3 ∨ x2 ∨ x4

x3 ∨ x4

 and F−(x) =


x1 ∧ x2

x1 ∧ x3

(x1 ∧ x3) ∨ (x2 ∧ x4)
x4

 ,

and check that

F+(e{2,3,4}) 6 e{2,3,4} , F+(e{3,4}) 6 e{3,4} and F−(e{4}) > e{4} .

Then, by definition of the Galois connection, we have

Φ({1}) = Φ({1, 2}) = {4} and Φ?({4}) = {1, 2} .

So, ({1, 2}, {4}) is a pair of conjugate subsets with respect to the Galois connection, which
proves (Theorem 5.7 together with Theorem 4.6) that the game is not ergodic.

5.5.2 Finding a �xed point with prescribed argmin

We now address the problem of finding fixed points of F with fixed arg min. Since e{2,3,4} and
e{3,4} are the only nontrivial fixed points of F+, we know from Lemma 5.31 that {1} and {1, 2}
are the only possible candidates for nontrivial arg min.

The set {1, 2} is closed with respect to the Galois connection (Φ,Φ?). Thus, according to
Lemma 5.6, F has a fixed point whose arg min is {1, 2}. Moreover, its arg max can only be {4}.
Check that the vector (0, 0, 1/2, 1)ᵀ is a fixed point with these properties.

1

1/
2

2
1/2

Figure 5.5: Reduced game associated with F ∗
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As for the set {1}, we cannot conclude directly, since the hypotheses of Lemma 5.32 or
Lemma 5.6 are not satisfied. Hence, following Theorem 5.33, we need to construct the reduced
operator F ∗ defined on R{1,2} ({1, 2} being the closure of {1}) by

F ∗(x) =

(
x1 ∧ 1

2(x1 + x2)
x1 ∨ 1

2(x1 + x2)

)
, x ∈ R2

The directed graph associated with this operator is represented in Figure 5.5.
We check that for this reduced operator we have

F+ =
{
∅, {1}, {1, 2}

}
and F− =

{
∅, {1, 2}

}
.

Hence, Φ({1}) = ∅ and by Lemma 5.32, we know that F ∗ has no fixed point the arg min of
which is {1}. According to Theorem 5.33, the same holds for F .

We conclude that any nontrivial fixed point u of F verifies u1 = u2 < u3 < u4, and so,
from (5.12), also verifies u3 = 1

2(u2 +u4). Finally, note that if the value of the payments are con-
sidered as parameters, then, according to Proposition 4.3 and Proposition 4.4, all the realizable
mean payoff vectors χ are characterized by

χ1 = χ2 6 χ4, χ3 =
1

2
(χ1 + χ4) .



CHAPTER6

A game-abstraction condition for
ergodicity of stochastic games

In this chapter, we provide a combinatorial condition for the boundedness of all slice spaces in
Hilbert’s seminorm for any Shapley operator T on Rn. This condition is based on a simplified
version of a stochastic game (a game abstraction), constructed from T .

The results presented in this chapter have been partly announced in the CDC conference
proceedings [AGH15b], with a different point of view entirely based on graph-theoretic as-
pects.

6.1 Game abstraction, dominions and slice spaces

6.1.1 Dominion condition and boundedness of slice spaces

Game abstraction

Let us fix a Shapley operator T : Rn → Rn. We associate to T an auxiliary two-player stochastic
game, denoted by ΓT , defined in the following way. The state space is [n] and when in state i,
player MIN can choose a subset of states I ⊂ [n] such that

lim
α→+∞

Ti(αeIc) < +∞ .

Likewise, in state i, player MAX can choose a subset of states J ⊂ [n] such that

lim
α→−∞

Ti(αeJc) > −∞ .

At each stage, MIN and MAX choose simultaneously a subset I and J , respectively, and the
state at the next stage is drawn uniformly in I ∩ J . Note that here, we are only interested in the
dynamic of the state, and therefore we do not need to define a payoff function.

Let us make some observations. First, since T is monotone, the condition for I to be in
the action space of MIN in state i is equivalent to the nondecreasing sequence (Ti(keIc))k∈N
being bounded above. Likewise, J is in the action space of MAX in state i if, and only if, the
nonincreasing sequence (Ti(−keJc))k∈N is bounded below. The monotonicity of T also implies
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that if any player can choose a subset I in a given state, then he can also choose any other subset
K ⊃ I .

Second, the action spaces of the two players are never empty in any state, since they contain
the set of all states [n]. Also observe that no action space contains the empty set.

Finally, suppose that in state i the subsets I and J chosen by MIN and MAX, respectively,
are disjoint. Then, we have e − eJc = eJ 6 eIc . By monotonicity and additive homogeneity of
T , we deduce that α + Ti(−αeJc) 6 Ti(αeIc) for all scalars α > 0. The latter inequality yields
that limα→+∞ Ti(αeIc) and limα→+∞ Ti(−αeJc) cannot be both finite, a contradiction. Hence,
we necessarily have I ∩ J 6= ∅, which shows, along with the previous observation, that the
game is well defined.

Dominions

In the game ΓT , we call dominion a nonempty subset of states D ⊂ [n] such that from any
position in D, one player can force the state at the next stage to remain in D almost surely,
whatever action the other player chooses. Equivalently, D is a dominion of one player in ΓT if
for all states i ∈ D, that player can pick a subset I ⊂ D. This is also equivalent to saying that in
each state i ∈ D, the action space of the player contains the subset D.

The main result of this chapter characterizes the boundedness of slice spaces in Hilbert’s
seminorm in terms of these dominions. To that purpose, we shall need the following condition.

Assumption 6.C (Dominion condition). In ΓT , players MIN and MAX have each a dominion,
I and J respectively, such that I ∩ J = ∅.

Remark 6.1. The notion of dominion defined here is the same as the one introduced in Sec-
tion 5.3. The only difference lies in the game with respect to which it is considered. In this
chapter, we do not assume that T has an explicit minimax representation, and we construct a
game abstraction ΓT , whereas in Section 5.3, the Shapley operator T arises as the dynamic pro-
gramming operator of a given zero-sum stochastic game Γ, the data of which are known. How-
ever, when T arises explicitly from a zero-sum stochastic game Γ satisfying Assumption 5.B,
then the dominions are the same in ΓT and in Γ. Indeed, when in state i, player MIN can choose
subset I in ΓT if in the one-shot game associated with Γ, MIN is not “penalized” by an arbitrary
large final payment of α in states outside I . In particular, if Assumption 5.B holds, it is easy
to see that MIN can choose subset I in state i if, and only if, T̂i(eIc) = 0. Thus, the subset I
is a dominion of MIN in ΓT if, and only if, T̂ (eIc) 6 eIc , i.e., I is a dominion of MIN in Γ (see
Proposition 5.15). A dual statement holds for player MAX.

We now state the main result.

Theorem 6.2. Let T : Rn → Rn be a Shapley operator. All slice spaces Sβα(T ) are bounded in Hilbert’s
seminorm if, and only if, the dominion condition 6.C does not hold in the game ΓT .

According to Theorem 4.21, the above result yields a combinatorial condition of ergodicity.

Corollary 6.3. A Shapley operator T : Rn → Rn is ergodic if, and only if, the dominion condition 6.C
does not hold in the game ΓT .

6.1.2 Proof of Theorem 6.2

�if� part

We prove the converse statement. Suppose that there is some slice space Sβα(T ) unbounded in
Hilbert’s seminorm. So there exists a sequence (uk)k∈N of vectors in Sβα(T ) such that ‖uk‖H →
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+∞ as k → +∞. We may assume, without loss of generality, that mini∈[n] u
k
i = 0 for all integers

k, and we let
τk := max

i∈[n]
uki = ‖uk‖H .

Among all pairs of indices, there is at least one, (i0, j0), such that uki0 = 0 and ukj0 = τk for
infinitely many integers k. Then, up to the extraction of a subsequence, we may assume that
the latter equalities hold for all integers.

We next explain how to construct a partition of [n] in three subsets I, J, L such that there
exists a strictly increasing function φ : N→ N for which we have:

– for all i ∈ I , the sequence (u
φ(k)
i )k is bounded;

– for all j ∈ J , the sequence (τφ(k) − uφ(k)
j )k is bounded;

– for all ` ∈ L, the sequences (u
φ(k)
` )k and (τφ(k) − uφ(k)

` )k tend to∞.
We proceed by induction, starting with I0 = {i0}, J0 = {j0}, L0 = ∅, and letting φ0 be the
identity function. Then, assume that we have constructed three disjoint subsets, Im, Jm and
Lm for which the above statements are satisfied for some function φm : N → N, and such that
Im ∪ Jm ∪ Lm 6= [n]. Let i ∈ [n] \ (Im ∪ Jm ∪ Lm). If lim infk→∞ u

φm(k)
i is finite, then there

exists a bounded subsequence of (u
φm(k)
i ). In this case, we let Im+1 = Im ∪ {i}, Jm+1 = Jm,

and Lm+1 = Lm. If (u
φm(k)
i ) tends to ∞ but lim infk→∞ τ

φm(k) − u
φm(k)
i is finite, then there

exists a bounded subsequence of (τφm(k) − u
φm(k)
i ). In that case, we let Jm+1 = Jm ∪ {i},

Im+1 = Im and Lm+1 = Lm. In both cases, we denote by φm+1 : N → N the strictly increasing
function such that (u

φm+1(k)
i ) is the aforementioned subsequence. If neither cases hold, then we

let Lm+1 = Lm ∪ {i}, Im+1 = Im, Jm+1 = Jm and φm+1 = φm. The induction is finite and we
obtain at the last step a partition of [n] with the required properties. Furthermore, we know
that I and J are nonempty.

For the sake of simplicity, assume now that φ is the identity function. For all integers k, let
us denote

ρk := min
j /∈I

ukj and σk := max
i/∈J

uki .

By construction, we have limk→∞ ρ
k = limk→∞ τ

k − σk = +∞. Let M > 0 be a joint upper
bound of the sequences (uki )k for all i ∈ I , and (τk − ukj )k for all j ∈ J . Then we have, for all
indices i ∈ I ,

Ti(ρ
keIc) 6 Ti(u

k) 6 β + uki 6 β +M .

This proves that in the game ΓT , MIN can choose subset I in each state i ∈ I . Hence, I is a
dominion of MIN. Likewise, for all indices j ∈ J , we have

Tj

(
(σk − τk)eJc

)
> Tj(u

k − τke) > α+ ukj − τk > α−M ,

which proves that J is a dominion of MAX, and thus that the dominion condition holds in the
game ΓT .

�only if� part

We also prove the converse statement, and so we assume that the dominion condition holds in
ΓT . Let I, J ⊂ [n] be disjoint dominions of MIN and MAX, respectively. Then, by definition of
the game ΓT , there exists a scalar M > 0 such that, for all k ∈ N,{

Ti(0) 6 Ti(keIc) 6M , ∀i ∈ I ,

−M 6 Tj(−keJc) 6 Tj(0) , ∀j ∈ J .
(6.1)
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We can assume that M > ‖T (0)‖∞.
Let L = [n] \ (I ∪ J) and, for all integers k, let uk be a vector of Rn such that

ukj = k , ∀j ∈ J ,

−k 6 uk` 6 k , ∀` ∈ L ,

uki = −k , ∀i ∈ I .

(6.2)

Observe that ‖uk‖H = 2k. Moreover, by construction, we have 0 6 uk + ke 6 2keIc and
−2keJc 6 uk − ke 6 0. From the inequalities (6.1), we then deduce that

−M 6 Ti(0) 6 Ti(u
k) + k = Ti(u

k)− uki 6M , ∀i ∈ I ,

−M 6 Tj(uk)− k = Tj(u
k)− ukj 6 Tj(0) 6M , ∀j ∈ J .

If L = ∅, we readily have that uk ∈ SM−M (T ) for all k ∈ N, so that SM−M (T ) contains a
sequence which is unbounded in Hilbert’s seminorm, and the proof of the “only if” part is
complete in this case.

Assume now that L 6= ∅. We next show that we can find scalars α, β for which it is possible
to construct, for all k ∈ N, a vector uk satisfying (6.2) and such that α 6 T`(u

k) − uk` 6 β for
every ` ∈ L. To that purpose, we shall use the Poincaré-Miranda theorem, a generalization of
the intermediate value theorem, see [Kul97].

Theorem 6.4 (Poincaré-Miranda). Let f : [0, 1]n → Rn be a continuous map such that for each
i ∈ [n], fi(x) 6 0 whenever xi = 0 and fi(x) > 0 whenever xi = 1. Then there exists a point
x∗ ∈ [0, 1]n such that f(x∗) = 0.

Let k ∈ N be a fixed integer and G : [0, 1]L → [−k, k]n be the map given by
Gj(x) = k , ∀j ∈ J ,

G`(x) = −k + 2kx` , ∀` ∈ L ,

Gi(x) = −k , ∀i ∈ I .

Let F : [0, 1]L → RL be the map whose `th entry is defined by

F`(x) = G`(x)− T` ◦G(x) + T`(0) .

Since we have −k + T`(0) 6 T` ◦ G(x) 6 k + T`(0) for every x ∈ [0, 1]L and every ` ∈ L, then
we deduce that F`(x) 6 0 for all x such that x` = 0. Likewise, F`(x) > 0 for all x such that
x` = 1. Thus, according to the Poincaré-Miranda theorem, there exists a point xk ∈ [0, 1]L such
that F (xk) = 0. Fixing uk = G(xk), we get that T`(uk)− uk` = T`(0) for all ` ∈ L.

Hence, it is possible to choose a vector uk satisfying (6.2), and such that uk ∈ SM−M (T ) for all
integers k ∈ N. So, SM−M (T ) contains a sequence which is unbounded in Hilbert’s seminorm,
which conclude the proof of the “only if” part and of Theorem 6.2.

6.1.3 Convex case

In this subsection, we consider a convex Shapley operator T : Rn → Rn, meaning that every
coordinate function of T is convex. In this particular case, we show that Theorem 6.2 simplifies.
More precisely, we next show that the two-player game ΓT can be reduced to a one-player game
in which the actions of MIN are not taken into account while the actions of MAX are essentially
the same. However, since many actions of MAX in ΓT are superfluous (recall that if he can
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choose a subset J , then he can also choose any subset K ⊃ J), we shall need to restrict his
action spaces.

Before introducing this one-player game, let us give the following definition. For any index
i ∈ [n], we call support of Ti, and we denote it by supp(Ti), the subset of indices j ⊂ [n] such
that Ti depends effectively on xj , in the sense that there is no map h : Rn−1 → R such that

Ti(x) = h(x1, . . . , xj−1, xj+1, . . . , xn) , ∀x ∈ Rn .

The following lemma provides an alternative characterization of the support.

Lemma 6.5 ([GG04, Prop. 2]). Let T : Rn → Rn be a convex Shapley operator. For all i ∈ [n], index
j is in supp(Ti) if, and only if, limα→+∞ Ti(αe{j}) = +∞.

We now define a one-player game, denoted by Γ′T , as follows. The state space is [n] and
when in state i the player, called MAX, can choose a nonempty subset of state J ⊂ supp(Ti)
such that

lim
α→−∞

Ti(αeJc) > −∞ .

Once this subset is selected, the next state is chosen in J with uniform probability. For the same
reason as with ΓT , we do not need to define a payoff function.

The game Γ′T is well defined since in any state i ∈ [n], MAX has the possibility to choose
action J = supp(Ti). Indeed, Ti does not depend on any xj with j /∈ J , which yields that
Ti(αeJc) is independent of α. Moreover, supp(Ti) is nonempty, otherwise Ti would be constant.

By construction, any action of MAX in Γ′T is also an action of MAX in ΓT . The following
result gives a converse statement.

Lemma 6.6. Let T be a convex Shapley operator on Rn. For every state in [n], if player MAX can choose
a subset of states J in ΓT , then there exists an action K ⊂ J for MAX in Γ′T .

Proof. Let J ⊂ [n] be a possible action of MAX in state i in the game ΓT , that is, such that
α 7→ Ti(αeJc) is lower bounded. If there is some j ∈ J \ supp(Ti), then Ti does not depend on
xj and so α 7→ Ti(αeJc∪{j}) is still lower bounded. Thus, proceeding by induction, we find a
subset K ⊂ J ∩ supp(Ti) such that the sequence limα→−∞ Ti(αeKc) is finite.

We define the same notion of dominion in Γ′T as in ΓT , which amounts to say that a subset
D is a dominion if in any state i ∈ D, MAX can choose a subset J ⊂ D. In particular, Lemma 6.6
yields that a subset of states is a dominion of MAX in the two-player game ΓT if, and only if,
it is a dominion in the one-player game Γ′T . We shall also need the following notion. We say
that a nonempty subset S ⊂ [n] is a sink if MAX cannot make the state to leave S with positive
probability once it has reached it, that is, for any state i ∈ S, the action space of MAX contains
only subsets J ⊂ S. Equivalently, S is a sink if, and only if, supp(Ti) ⊂ S for all i ∈ S. Observe
that the set of sinks is not empty, since it contains the set of all states. Moreover, a sink is by
definition also a dominion.

We can now adapt Theorem 6.2 to the convex case.

Theorem 6.7. Let T : Rn → Rn be a convex Shapley operator. All slice spaces Sβα(T ) are bounded in
Hilbert’s seminorm if, and only if, MAX has no dominion which has an empty intersection with a sink
in Γ′T .

Proof. Suppose first that in Γ′T there exist a sink S and a dominion D with empty intersection.
We readily have that D is a dominion of MAX in ΓT . Moreover, for every i ∈ S, we have
supp(Ti) ⊂ S. Hence, Ti(αeSc) is independent of α and so, S can be chosen by MIN in the
game ΓT . This shows that S is a dominion of MIN in the latter two-player game. Thus, the
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dominion condition holds in ΓT which implies that there exists a slice space unbounded in
Hilbert’s seminorm, according to Theorem 6.2.

Suppose now there exist an unbounded slice space, that is, according to the aforementioned
theorem, players MIN and MAX have each a dominion, I and J respectively, such that I∩J = ∅.
We already know that J is also a dominion of MAX in Γ′T . We next show that I is a sink in Γ′T ,
which will conclude the proof. Let i ∈ I and j /∈ I . By monotonicity of T we have, for all
positive scalars α, Ti(αe{j}) 6 Ti(αeIc). Since the right-hand side of the latter inequality is
bounded by a constant independent of α, we deduce from Lemma 6.5 that j /∈ supp(Ti). This
yields that supp(Ti) ⊂ I . Since this is true for any i ∈ I , we deduce that I is a sink in Γ′T .

6.2 Hypergraph characterization and complexity aspects

In this section, we give a graph-theoretic construction that allows us to check the dominion
condition.

6.2.1 Reachability conditions and dominions

Given any Shapley operator T : Rn → Rn, the actions in the stochastic game ΓT are determined
by the “behavior at infinity” of T along some directions. To express that behavior, we introduce
a pair of hypergraphs, denoted by (H+,H−), defined as follows:

– the set of nodes for bothH+ andH− is [n];
– the hyperarcs ofH+ are the pairs (J, {i}) such that i /∈ J and

lim
α→+∞

Ti(αeJ) = +∞ ;

– the hyperarcs ofH− are the pairs (J, {i}) such that i /∈ J and

lim
α→−∞

Ti(αeJ) = −∞ .

From the definition of the hypergraphs H±, we readily get the following characterization
of invariant subsets in these hypergraphs.

Lemma 6.8. A subset of nodes J ⊂ [n] is invariant inH+ (resp.,H−) if, and only if,

lim
α→+∞

Ti(αeJ) < +∞ , ∀i ∈ [n] \ J(
resp., lim

α→−∞
Ti(αeJ) > −∞ , ∀i ∈ [n] \ J

)
.

The above lemma yields that a nonempty subset I is a dominion of MIN in ΓT if, and
only if, its complement is invariant in H+, i.e., reach(Ic,H+) = Ic. Likewise, a nonempty
subset J is a dominion of MAX in ΓT if, and only if, its complement is invariant in H−, i.e.,
reach(Jc,H−) = Jc. Thus, Theorem 6.2 can be reformulated in terms of reachability

Theorem 6.9. Let T : Rn → Rn be a Shapley operator operator. All slice spaces Sβα(T ) are bounded
in Hilbert’s seminorm if, and only if, there are no nonempty disjoint subsets of [n], (I, J), such that
reach(Ic,H+) = Ic and reach(Jc,H−) = Jc.

Remark 6.10. If T satisfies Assumption 4.A, then T and its recession operator T̂ have the same
asymptotic behaviors. Therefore, the hypergraph G+ (resp., G−) defined in Section 5.2 is the
same asH+ (resp.,H−). Thus, the condition in Theorem 6.9 recovers Point (ii) of Corollary 5.13.
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6.2.2 Convex case

In this subsection, we consider a convex Shapley operator T : Rn → Rn. In the same way as the
dominion condition 6.C in the two-player game ΓT simplifies to a condition in the one-player
game Γ′T , we next show that the hypergraph-reachability conditions of Theorem 6.9 have a
simpler formulation.

We associate to T the directed graph, denoted by G, with set of vertices [n] and an edge from
i to j if limα→+∞ Ti(αe{j}) = +∞, or equivalently, if j ∈ supp(Ti) (see Lemma 6.5). Recall that
a final class of any directed graph is a nonempty set of nodes C such that every two nodes of C
are connected by a directed path and every path starting from a node in C remains in it. Also
recall that a subset S is a sink in the one-player game Γ′T if, and only if, supp(Ti) ⊂ S for every
i ∈ S. Thus, a final class of G is also a sink in Γ′T and it is readily seen that any sink of the latter
game contains a final class of G.

The translation of Theorem 6.7 in terms of graph leads to the following.

Theorem 6.11. Let T be a convex Shapley operator on Rn. All slice spaces Sβα(T ) are bounded in
Hilbert’s seminorn if, and only if, G has a unique final class C and reach(C,H−) = [n].

Proof. Following Theorem 6.7, we show that in the one-player game Γ′T , player MAX has a
dominion disjoint from a sink if, and only if, the directed graph G has more than one final class,
or a unique final class which does not have access to the whole set of nodes inH−.

First suppose that G has two distinct final classes. Then, these sets are both sinks in Γ′T , and
since any sink is also a dominion of MAX, it follows that the dominion-sink condition holds.

Next, assume that G has a unique final class C and that reach(C,H−) 6= [n]. Let D :=
[n] \ reach(C,H−). The subsets C and D are nonempty and disjoint. Furthermore, C is a sink
and D is by construction a dominion of MAX in ΓT (since its complement is invariant in H−),
hence it is also a dominion in Γ′T .

Now, assume that S is a sink and D a dominion in Γ′T such that S ∩ D = ∅, and that G
has a unique final class, denoted C. Then, we necessarily have C ⊂ S, since any sink contains
a final class. Hence, C and D are disjoint, that is, C ⊂ Dc, which yields reach(C,H−) ⊂
reach(Dc,H−) = Dc 6= [n].

6.2.3 Complexity aspects

Given any Shapley operator T on Rn, the basic issue under consideration is to check whether
the ergodic equation (2.5) is solvable. Theorem 6.9 (or Theorem 6.11 in the convex case) pro-
vides a combinatorial condition for this property to hold. This condition can be effectively
checked as soon as the limits limα→±∞ Ti(αeJ) arising in the definition of the hyperarcs of H±
can be computed, which happens in general situations, see examples in Section 6.3. To set aside
the latter problem, let us introduce the oracle Ω which answers “yes” to any instance (J, i,±)
if, and only if, Ti(αeJ) → ±∞ as α → ±∞. We call Turing machine with oracle Ω a Turing
machine which can send a query to Ω and read the output. A call to Ω is counted as one com-
putational step of the Turing machine. We refer the reader to [AB09] for a detailed presentation
of oracle Turing machines.

We shall need the following lemma, which gives a bound for the time required to compute
the set of reachable nodes in H± from any subset. We use the notation poly(n) to indicate a
polynomial function of n.

Lemma 6.12. For any subset J ⊂ [n], reach(J,H±) can be computed in O(n2) steps by a Turing
machine with oracle Ω.
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Proof. Let J1 = J . If Ti(αeJ1) remains bounded as α → ±∞ for all i /∈ J1, then J1 is invariant
inH± according to Lemma 6.8. This means that J1 = reach(J,H±). Otherwise, define J2 as the
union of J1 and all the nodes i /∈ J1 for which Ti(αeJ1) tends to ±∞ as α → ±∞. Repeating
the same steps, we arrive at a subset Jk for some integer k 6 n, which is invariant by H± and
contains J . Hence, we must have reach(J,H±) ⊂ Jk since reach(J,H±) is the smallest subset
satisfying the latter properties. The other inclusion being trivial, we get Jk = reach(J,H±).

Now observe that each step ` of the latter recursion requires |(J`)c| calls to the oracle Ω. So,
the number of calls is bounded by n2. Furthermore, the number of elementary operations in
each step is linear with respect to the number of calls. Hence the result.

It readily follows from the characterization of dominions that the problem of deciding
whether a subset J is a dominion, i.e., reach(Jc,H±) = Jc, can be solved in O(|J |) steps
by the oracle Turing machine. Furthermore, it is easily seen that the reachability conditions
of Theorem 6.9 boil down to check that, for every I ⊂ [n], either reach(Ic,H+) 6= Ic or
reach(I,H−) = [n]. Then, we readily get the following.

Theorem 6.13. Let T : Rn → Rn be any Shapley operator. The problem of deciding whether all slice
spaces are bounded in Hilbert’s seminorm can be solved in O(2nn2) steps by a Turing machine with
oracle Ω.

Recall that the exponential bound cannot be reduced to a polynomial one unless P = coNP.
Indeed, the restricted version of this problem concerning Shapley operators with finite action
spaces reduces to check the existence of a nontrivial fixed point of a payment-free Shapley
operator, a problem which has been shown to be coNP-complete, see Subsection 5.4.2 and in
particular Corollary 5.30. However, when T is convex, the condition in Theorem 6.11 requires
the computation of the final classes of the directed graph G. Since it has n nodes, it is known
that finding its strongly connected components can be done in O(n2) time. This leads us to the
following bound.

Theorem 6.14. Let T : Rn → Rn be a convex Shapley operator. The problem of deciding whether all
slice spaces are bounded in Hilbert’s seminorm can be solved in O(n2) steps by a Turing machine with
oracle Ω.

Let us point out that simpler sufficient conditions given in [GG04] (see Subsection 2.3.3),
involving directed graphs instead of hypergraphs, can be checked using only a polynomial
number of elementary operations, but they are less accurate.

6.3 Examples and applications

6.3.1 Shapley operator with unbounded payments

Here, we provide the example of an ergodic stochastic game for which the conditions given
in [GG04, AGH15a] do not apply. We also illustrate the hypergraph characterization of The-
orem 6.9. The example is an adaptation of the classical Blackmailer’s Dilemma [Whi83], a
one-player game with two states, one absorbing with a zero payoff and one characterized by
a dilemma between obtaining a good stage payoff and increasing the probability to leave the
state.
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Let us consider the Shapley operator T : R3 → R3 given by

T (x) =


sup

0<p61

(
log p+ p(x2 ∧ x3) + (1− p)x1

)
inf

0<p61

(
− log p+ px3 + (1− p)x1

)
x3

 .

where ∧ stands for min. The map T is the dynamic programming operator of a zero-sum
stochastic game with three states: the first player, called here Player I, partially controls state
1, the second player, called Player II, controls state 2, and state 3 is an absorbing state. In state
1, Player I chooses an action p ∈ (0, 1] and receives log p from Player II. Then with probability
1 − p, the next state remains 1, and with probability p it is chosen by Player II between state 2
and state 3. Thus, in order to maximize the stage payoff, one would select p = 1, but this leads
to leave state 1 with probability one. A dual interpretation applies to Player II in state 2.

Let us denote by Ai and Bi the action spaces of players MIN and MAX, respectively, in any
state i of the game ΓT . In order to determine these spaces, it is convenient to notice that

T1(x) = h
(
(x2 ∧ x3)− x1

)
+ x1 and T2(x) = −h(x1 − x3) + x1 ,

where h is the real function defined by

h(z) = sup
0<p61

(log p+ pz) , ∀z ∈ R .

Also note that h satisfies h(z) = −1− log(−z) for z 6 −1 and h(z) = z for z > −1. Thus, we get

A1 = {{1, 2}, {1, 3}, {1, 2, 3}} , B1 = {{2, 3}, {1, 2, 3}} ,

A2 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}} , B2 = {{1, 3}, {1, 2, 3}} ,

A3 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}} , B3 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}} .

Then, the dominions of MIN in ΓT are {3}, {1, 3}, {2, 3} and {1, 2, 3}, whereas the dominions
of MAX are {3} and {1, 2, 3}. It follows that the dominion condition is not satisfied, and so all
slice spaces of T are bounded in Hilbert’s seminorm. As a consequence, T is ergodic, that is,
the ergodic equation (2.5) is solvable for all operators g + T with g ∈ R3.

It is instructive to observe that MAX (resp., MIN) can choose a subset J in state i in the game
ΓT if, and only if, Player I (resp., Player II) can force the state at the next stage to be in J almost
surely in the game with Shapley operator T .

In order to check the ergodicity of T , one may alternatively construct the hypergraphs H±
associated with T . Figure 6.1 shows a concise representation of these hypergraphs, in which
only the hyperarcs with minimal tail (with respect to the inclusion partial order) have been
represented. For instance, there is no arc from {2} to {1} in H+ since T1(αe2) = 0 for all α > 0.
However, there is a hyperarc from {2, 3} to {1}, since T1(αe{2,3}) = α for all α > 0, which yields
limα→+∞ T1(αe{2,3}) = +∞. Then, one may check that there are no nonempty disjoint subsets
of [n], (I, J), such that reach(Ic,H+) = Ic and reach(Jc,H−) = Jc, as in Theorem 6.9.

The above conclusions cannot be obtained from the conditions stated in [GG04] or in Sec-
tion 4.2 in terms of fixed points of the recession operator. Indeed, here the latter operator writes

T̂ (x) =

x1 ∨ (x2 ∧ x3)
x1 ∧ x3

x3

 .

Hence, any vector (α, 0, 0)ᵀ with α > 0 is a fixed point of T̂ .
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Figure 6.1: HypergraphsH+ (left) andH− (right) associated with T

6.3.2 Nonnegative tensors

Consider a d-order n-dimensional tensor A defined by nd real entries, denoted by ai1...id with
indices i1, . . . , id ∈ [n]. It yields a self-map f of Rn, the ith coordinate function of which is given
by

fi(x) = (Ax(d−1))i :=
∑

i2...id∈[n]

ai i2...id xi2 . . . xid .

An important problem, introduced independently by Lim [Lim05] and Qi [Qi05], concerns the
existence of an eigenvalue λ ∈ R and an eigenvector u ∈ Rn, solution of

f(u) = Au(d−1) = λud−1 , (6.3)

where ud−1 = (ud−1
1 , . . . , ud−1

n ). If the tensor A is nonnegative, meaning that ai1...id > 0 for
all indices, a variant of this problem is the existence of a positive eigenvalue λ > 0 and an
eigenvector u ∈ int(Rn+) in the standard positive cone of Rn. The latter problem can be seen as a
particular case of a nonlinear Perron-Frobenius eigenproblem. In particular, Friedland, Gaubert
and Han [FGH13] showed, as a consequence of [GG04, Th. 2], that a nonnegative tensorA has a
positive eigenvalue λ > 0 and an eigenvector u ∈ int(Rn+) if A is weakly irreducible. This notion
can be defined by means of the directed graph G(A), with set of nodes [n] and an edge from
i to j if there exists a set of indices i2, . . . , id containing j and such that ai i2...id > 0. Then, the
nonnegative tensor A is weakly irreducible if G(A) is strongly connected.

Theorem 6.11 allows us to extend the latter result. For that purpose, let us introduce the
hypergraph H(A) with set of nodes [n] and an hyperarc from J ⊂ [n] to {i} if i /∈ J and
ai i2...id > 0 implies that J ∩ {i2, . . . , id} 6= ∅.

Corollary 6.15. Let A be a nonnegative tensor of order d and dimension n. If the directed graph G(A)
has a unique final class C and if reach(C,H(A)) = [n], then A has a positive eigenvalue and an
eigenvector in int(Rn+).

Proof. Consider T := (d − 1)−1 log ◦f ◦ exp. This is a monotone additively homogeneous self-
map of Rn. Furthermore, any eigenpair (µ, v) ∈ R × Rn of T yields an eigenpair (λ, u) of f
with the required properties, namely λ = eµ(d−1) > 0 and u = exp(v) ∈ int(Rn+). This is a
standard result that functions such as log ◦fi ◦ exp are convex – it relies on the convexity of the
“log-exp” function x 7→ log(ex1 + · · · + exn), see [RW98, Ex. 2.16, Ex. 2.52]. Hence T is convex.
Now, observe that the directed graph G and the hypergraph H− associated with the convex
Shapley operator T are the same as G(A) and H(A), respectively. The conclusion follows from
an application of Theorem 6.11.
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Generic uniqueness of the bias of
perfect-information �nite stochastic

games

7.1 Introduction

The description of the set of bias vectors of zero-sum stochastic games is a fundamental issue.
For one-player problems, i.e., for discrete optimal control, the representation of bias vectors
and their relation with optimal strategies is well understood, in either the deterministic or the
stochastic case (MDPs). In the deterministic case, the analysis relies on max-plus spectral the-
ory, which goes back to the work of Romanovsky [Rom67], Gondran and Minoux [GM77] and
Cuninghame-Green [CG79]. We also refer the reader to [MS92, BCOQ92, ABG13] for more
background on max-plus spectral theory. Kontorer and Yakovenko [KY92] and Kolokoltsov
and Maslov [KM97] deal specially with infinite-horizon optimization and mean-payoff prob-
lems. In this framework, the set of bias vectors has the structure of a max-plus (tropical) cone,
i.e., it is invariant by max-plus linear combinations, and it has a unique minimal generating
family consisting of certain “extreme” generators, which can be identified by looking at the
support of the maximizing measures in the linear programming formulation of the optimal
control problem, or at the “recurrence points” of infinite optimal trajectories. A combinatorial
interpretation of some of these results, in terms of polyhedral fans, has been recently given by
Sturmfels and Tran [ST13]. The ergodic equation (2.5) and the structure of bias vectors has also
been studied for an infinite-dimensional state space in the context of infinite-dimensional max-
plus spectral theory, see Akian, Gaubert and Walsh [AGW09], and also in the setting of weak
KAM theory, for which we refer the reader to Fathi [Fat08]. In the stochastic case, the structure
of the set of bias vectors is also known, at least when the state space is finite, see Akian and
Gaubert [AG03].

In the two-player case, the structure of the set of bias vectors is less well known. In par-
ticular, the uniqueness of the bias vector up to an additive constant is an important matter for
algorithmic purposes. This is specially the case when applying the standard Hoffman-Karp
policy iteration algorithm, since nonuniqueness typically leads to numerical instabilities or
degeneracies. Hoffman and Karp [HK66] introduced this algorithm to solve mean-payoff zero-
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sum stochastic games with perfect information and finite state and action spaces. They showed
that policy iteration does terminate if every pair of strategies of the two players yields an irre-
ducible Markov chain. However, policy iteration may cycle if this irreducibility assumption is
not satisfied, which is the case for many classes of games – in particular, it is essentially never
satisfied for deterministic games. Some refinements of the Hoffman-Karp scheme have been
proposed by Cochet-Terrasson and Gaubert [CTG06], Akian, Cochet-Terrasson, Detournay and
Gaubert [ACTDG12], Bourque and Raghavan [BR14], allowing one to circumvent such degen-
eracies at the price of an increased complexity of the algorithm (handling the nonuniqueness of
the bias vector). Hence, it is of interest to understand when such technicalities can be avoided.

In this chapter, we address the question of the uniqueness of the bias vector of stochastic
games with perfect information and finite state and action spaces, restricting our attention to
ergodic games, i.e., for which the ergodic equation (2.5) is solvable for all (state-dependent)
perturbations of the transition payments. The main result, Theorem 7.8, shows that the bias
vector is generically unique up to an additive constant. More precisely, it shows that the set of
perturbation vectors for which the bias vector is not unique belongs to a polyhedral complex
the cells of which have codimension one at least. We then deduce that the Hoffman-Karp
policy iteration algorithm does converge if the payment is generic. This leads to an explicit
perturbation scheme, allowing one to solve nongeneric instances by policy iteration, avoiding
the classical irreducibility condition.

In the following chapter, we address the generic uniqueness problem for any zero-sum
stochastic game with finite state space. We show that generic uniqueness of the bias vector
holds locally, that is, for a generic perturbation in a closed set with nonempty interior, as soon
as the ergodic equation (2.5) is solvable for all perturbations in a neighborhood of this set.

The theoretic results (Section 7.3) persented in this chapter have been announced in the CDC
conference proceedings [AGH14b]. The application to policy iteration (Section 7.4) is new.

7.2 Further preliminaries in nonlinear Perron-Frobenius theory

In the remainder of this chapter, we consider a finite zero-sum stochastic game with perfect
information Γ = ([n], A,B,KA,KB, r, p). Since the action spaces A and B are finite, its Shapley
operator is a piecewise affine map, the ith coordinate of which writes

Ti(x) = min
a∈Ai

max
b∈Bi,a

(
r(i, a, b) +

∑
j∈[n]

xj p(j | i, a, b)
)
, ∀x ∈ Rn . (7.1)

Recall in particular that T has an invariant half-line (Theorem 2.5), that is, there exist two vec-
tors u, ν ∈ Rn such that T (u + αν) = u + (α + 1)ν for all α > 0. Furthermore, the vector ν is
unique and equal to the mean-payoff vector of Γ: χ(T ) = limk→∞ T

k(0)/k.

7.2.1 Characterization of the upper mean payo�

Let us denote by Ss the finite set of deterministic stationary strategies of player MIN, also
called (deterministic) policies. It is the set of maps σ : [n] → A such that σ(i) ∈ Ai for every
state i ∈ [n]. Likewise, we denote by T σs the set of deterministic stationary strategies of player
MAX when the policy σ has been chosen by MIN, i.e., the set of maps τ : [n] → B such that
τ(i) ∈ Bi,σ(i) for every state i ∈ [n].

We introduce the reduced Shapley operator T σ : Rn → Rn associated with the policy σ ∈ Ss
of player MIN. Its ith coordinate map is given by

T σi (x) = max
b∈Bi,σ(i)

(
r(i, σ(i), b) +

∑
j∈[n]

xj p(j | i, σ(i), b)
)
, ∀x ∈ Rn .
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We endow Rn with the usual partial order. Then, since the action spaces are finite, we readily
have, for all x ∈ Rn,

T (x) = min
σ∈Ss

T σ(x) . (7.2)

Likewise, we have, for all x ∈ Rn,

T σ(x) = max
τ∈T σs

(
rστ + P στx

)
, (7.3)

where rστ is the vector in Rn whose ith entry is defined by

rστi = r(i, σ(i), τ(i))

and P στ is the n× n stochastic matrix whose (i, j) entry is given by

P στij = p(j | i, σ(i), τ(i)) .

Observe that T σ is monotone, additively homogeneous and convex, in the sense that each of
its coordinates is a convex function.

Recall that if P is a n×n stochastic matrix, the directed graph associated with P is composed
of the nodes 1, . . . , n and of the arcs (i, j) such that Pij > 0. A class of the matrix P is a maximal
set of nodes such that every two nodes in this set are connected by a directed path. A class is
said to be final if every path starting from a node of this class remains in it. Let us denote by
M(P ) the set of invariant probability measures of P , i.e., the set of stochastic vector m ∈ Rn
such thatmᵀ P = mᵀ. Given a final classC of P , there is a unique invariant probability measure
m ∈ M(P ) the support of which is C, i.e., {i ∈ [n] | mi > 0} = C. Moreover, the setM(P ) is
the convex hull of such measures, and since the number of final class of P is finite,M(P ) is a
convex polytope.

Let us denote by χ(T ) the upper mean payoff of T , i.e., the greatest entry of the mean-payoff
vector χ(T ). We next give a characterization of χ(T ). Obviously, if the ergodic equation (2.5)
is solvable, then χ(T ) is a constant vector, the coordinates of which are equal to the eigenvalue
λ(T ), so that the following result also provides a characterization of the eigenvalue. In the
sequel, we denote by 〈x, y〉 the standard scalar product in Rn of two vectors x, y.

Lemma 7.1. Let T : Rn → Rn be the Shapley operator (7.1) of a finite stochastic game with perfect
information Γ. Then the upper mean payoff of T is given by

χ(T ) = min
σ∈Ss

max{〈m, rστ 〉 | τ ∈ T σs , m ∈M(P στ )} . (7.4)

Proof. First, observe that for all policies σ ∈ Ss we have T 6 T σ, which yields, by monotonicity
of the operators, χ(T ) 6 χ(T σ) and in particular χ(T ) 6 χ(T σ).

Considering an invariant half-line of T , we know that there exist a vector u ∈ Rn such that
T (u) = u+ χ(T ). Let σ ∈ Ss be a policy of player MIN such that T (u) = T σ(u). Then, we have
T σ(u) 6 u+χ(T )e. Furthermore, we know by a Collatz-Wielandt formula (see [GG04, Prop. 1])
that, for any monotone and additively homogeneous map F : Rn → Rn, we have

χ(F ) = inf{µ ∈ R | ∃x ∈ Rn, F (x) 6 µe+ x} .

So, we deduce that χ(T σ) 6 χ(T ), and finally that

χ(T ) = min
σ∈Ss

χ(T σ) .
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Now we fix a policy σ of MIN, and we let χ := χ(T σ) and

µσ := max{〈m, rστ 〉 | τ ∈ T σs , m ∈M(P στ )} .

Since T σ has an invariant half-line with direction χ, there exists a vector v ∈ Rn such that
T σ(v + αχ) = v + (α+ 1)χ for all α > 0. In particular, for every policy τ ∈ T σs we have

rστ + P στv 6 T σ(v) = v + χ 6 v + χ(T σ)e .

Then, we easily deduce that µσ 6 χ(T σ).
Furthermore, since the germs of affine functions from R to R at infinity are totally ordered,

there exists a policy τ ∈ T σs such that

T σ(v + αχ) = rστ + P στ (v + αχ)

for all α large enough. In particular, since the equality

v + (α+ 1)χ = rστ + P στ (v + αχ) (7.5)

holds for all α large enough, we get that P στχ = χ. Thus, χ is an harmonic vector for the
stochastic matrix P στ . As such, it is constant on any final class of P στ and its maximum is
attained on one of these final class (see [AG03, Lem. 2.9]). Let m ∈ M(P στ ) be the invariant
probability measure associated with a final class C of P στ such that χi = χ(T σ) for all i ∈ C.
Then, we deduce from (7.5) that 〈m, rστ 〉 = χ(T σ), which yields µα > χ(T σ) and finally µα =
χ(T σ).

Let us mention that in (7.4), the set of invariant probability measures of P στ ,M(P στ ), may
be replaced by the set of its extreme points, denoted byM∗(P στ ), since it is a convex polytope.
Recall thatM∗(P στ ) is the set of invariant probability measures the support of which are the
final classes of P στ .

7.2.2 Structure of the eigenspace

An ingredient of our approach is a result of [AG03] which describes the eigenspace, i.e., the set
of bias vectors, of one-player Shapley operators T . We next recall this result. Let us assume that
T arises from a game in which only player, MAX, has nontrivial actions, whereas player MIN

has only one possible policy σ. In this case, the representation of the eigenvalue λ(T ) = χ(T )
in Lemma 7.1 simplifies as the dependency in σ can be dropped, and we arrive, with a trivial
simplification of the notation, to

λ(T ) = max{〈m, rτ 〉 | τ ∈ Ts, m ∈M(P τ )} . (7.6)

It is shown in [AG03] that the dimension of the eigenspace of T is controlled by the number
of critical classes. The latter can be defined through the notion of maximizing measures, which
rely on behavioral policies. Recall that for every state i, such a policy τ assigns to every action
b ∈ Bi a probability τ(b | i) that this action is selected. This leads to the stochastic matrix
P τ with entries P τij =

∑
b∈Bi p(j | i, b) τ(b | i), and to the payment vector rτ with entries

rτi =
∑

b∈Bi r(i, b) τ(b | i). Then, the maximum in (7.6) is unchanged if it is taken over the set
of behavioral policies τ and of invariant measures m of the corresponding stochastic matrix P τ

(see [AG03, Prop. 7.2]). Then a measure m is maximizing if λ(T ) = 〈m, rτ 〉 for some behavioral
policy τ and if m ∈ M∗(P τ ), that is, the support of m is a final class of P τ . A subset I ⊂ [n] is
a critical class if there exists a maximizing measure m whose support is I and if I is a maximal
element with respect to inclusion among all the subsets of [n] which arise in this way. Note that
critical classes are disjoint.

The following lemma gives a sufficient condition for the critical class to be unique. Note
that the condition does not require behavioral stationary strategies.
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Lemma 7.2. Let T : Rn → Rn be a convex Shapley operator. Suppose that the ergodic equation (2.5)
is solvable. If there is a unique probability measure which attains the maximum in (7.6), then T has a
unique critical class.

Proof. Let C be a critical class of T . There exists a behavioral policy τ such that C is a final class
of P τ and such that the invariant measure m with support C satisfies λ := λ(T ) = 〈m, rτ 〉.

Let u be an eigenvector of T . For every i ∈ [n], we have λ+ui− rτi −P τi u > 0. Furthermore,
since mᵀP τ = mᵀ, we also have∑

i∈C
mi (λ+ ui − rτi − P τi u) = λ+ 〈m,u〉 − 〈m, rτ 〉 − 〈m, (P τu)〉 = 0 .

This yields that λ+ ui − rτi − P τi u = 0 for every i ∈ C. With a similar argument, we show that
λ+ ui − rbi − P bi u = 0 for every i ∈ C and every b such that τ(b | i) > 0.

Let τ ′ be a deterministic policy such that for all indices i, τ ′(i) = bi ∈ supp(τ(· | i)), i.e.,
τ(bi | i) > 0. Since P τi is a convex combination of vectors one of which is P τ

′
i , we deduce

that C contains a final class C ′ of P τ
′
. Let m′ be the invariant measure of P τ

′
whose support

is C ′. Then, we have λ = 〈m′, rτ ′〉, which implies that m′ is the unique measure attaining the
maximum in (7.6). It follows that that C is necessarily unique since it must contain the support
of m′.

We now describe the eigenspace of T .

Theorem 7.3 ([AG03, Th. 1.1]). Let T : Rn → Rn be a convex Shapley operator. Suppose that the
ergodic equation (2.5) is solvable, and let C ⊂ [n] be the union of all critical classes. We denote by πC the
restriction map Rn → RC , x 7→ (xi)i∈C . Then, the set of eigenvectors of T , denoted by E(T ), satisfies
the following properties:

(i) every element x of E(T ) is uniquely determined by its restriction πC(x);
(ii) the set πC(E(T )) is convex and its dimension is at most equal to the number of critical classes of

T ; moreover, the latter bound is attained when T is piecewise affine.

In particular, combined with Lemma 7.2, the above result yields the following.

Corollary 7.4. Let T : Rn → Rn be a convex Shapley operator. Suppose that the ergodic equation (2.5)
is solvable. If there is a unique probability measure which attains the maximum in (7.6), then T has a
unique eigenvector up to an additive constant.

We refer the reader to [AG03] for more background on critical classes, which admit several
characterizations and can be computed in polynomial time when the game is finite. We only
provide here a simple illustration in order to understand the latter theorem.

Example 7.5. Let T : R2 → R2 be such that

T (x) =

(
x1 ∨ 1

2(x1 + x2)
−3 + x2 ∨ 1

2(x1 + x2)

)
.

We have T (0) = 0, which shows in particular that the upper mean payoff is 0. If MAX chooses,
when in state 1, the action corresponding to the first term in the expression of T1, and when in
state 2, the action corresponding to the second term in the expression of T2, then we arrive at
the transition matrix

P =

(
1 0

1/2 1/2

)
which has the invariant measure m = (1, 0). This measure attains the maximum in (7.6). How-
ever, its support I = {1} is not a critical class, for it is not maximal with respect to inclusion.
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Indeed, if MAX chooses instead, when in state 1, the action corresponding to the second term
in the expression of T1, we arrive at the transition matrix

P =

(
1/2 1/2
1/2 1/2

)
which has the invariant measure m = (1/2, 1/2). This measure attains the maximum in (7.6)
and its support I = {1, 2} is maximal with respect to inclusion. Hence, I = {1, 2} is the unique
critical class. It follows from Theorem 7.3 that 0 is the unique eigenvector of T , up to an additive
constant.

Another ingredient is a variant of a result of Bruck [Bru73] concerning the topology of fixed-
point sets of nonexpansive maps. We now consider a two-player Shapley operator T such that
the ergodic equation (2.5) is solvable, and denote by

E(T ) := {u ∈ Rn | T (u) = λe+ u}

the set of eigenvectors of T .

Theorem 7.6 (Compare with [Bru73, Th. 2]). Let T : Rn → Rn be a Shapley operator. Assume that
the ergodic equation (2.5) is solvable. Then, the set of eigenvectors E(T ) is a retract of Rn by a sup-norm
nonexpansive map, meaning that E(T ) = π(Rn) where π is a sup-norm nonexpansive self-map of Rn
such that π = π2. In particular, E(T ) is arcwise connected.

Proof. The result of Bruck [Bru73, Th. 2] shows that, under some compactness conditions, the
fixed-point set of a nonexpansive self-map of a Banach space is a retract of the whole space by
a nonexpansive map.

Assume now that T is a Shapley operator and admits an eigenvector for the eigenvalue λ.
Then, the eigenspace E(T ) coincides with the fixed-point set of the map x 7→ −λe + T (x). The
latter map is sup-norm nonexpansive and satisfies the conditions of [Bru73, Th. 2], and so E(T )
is a nonexpansive retract of Rn.

Remark 7.7. The retraction π in Theorem 7.6 can be chosen to be monotone and additively
homogeneous. This can actually be shown by elementary means, following a construction in
the proof of [GG04, Lem. 3]. Indeed, we may assume without loss of generality that λ = 0, and
consider q(x) := limk→∞ inf`>k T

`(x), which is finite because every orbit of a nonexpansive
map that admits a fixed point must be bounded. Since T is monotone and continuous, we
get T (q(x)) 6 q(x), and so π(x) := limk→∞ T

k(q(x)), which is the limit of a nonincreasing
and bounded sequence, exists and is finite. The map π is easily shown to be monotone and
additively homogeneous and to satisfy π = π2.

7.3 Generic uniqueness of the eigenvector

Let us first recall some definitions. A polyhedron in Rn is an intersection of finitely many half-
spaces, a face of a polyhedron is an intersection of this polyhedron with a supporting half-space,
and a polyhedral complex is a finite set K of polyhedra satisfying the following two properties:

(i) P ∈ K and F is a face of P implies that F ∈ K;
(ii) for all P,Q ∈ K, P ∩Q is a face of P and Q.

A polyhedron inK is called a cell of the polyhedral complex. We refer to the textbook [DLRS10]
for background on polyhedral complexes. Also recall that a real map on Rn is piecewise affine
if, and only if, Rn can be covered by a finite union of polyhedra (with nonempty interior) on
which its restriction is affine. If the latter map is continuous, then the set of such polyhedra can
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be refined in a polyhedral complex. Finally, recall that continuous piecewise affine functions
are exactly the maps whose coordinate functions can be written as a minimax over finite sets
of affine functions.

We now state the main result of this chapter.

Theorem 7.8. Let T : Rn → Rn be the Shapley operator of a finite stochastic game with perfect
information. Assume that T is ergodic. Then, the space Rn can be covered by a polyhedral complex such
that, for any additive perturbation vector g ∈ Rn in the interior of a full-dimensional cell, g + T has a
unique eigenvector, up to an additive constant.

In particular, the set of perturbation vectors g for which g + T has more than one eigenvector, up to
an additive constant, is included in the finite union of subspaces of codimension at least 1.

Remark 7.9. This perturbation theorem bears some conceptual similarity with results of weak
KAM theory – we refer to the monograph by Fathi [Fat08] for more information. The latter
theory deals with a class of one-player deterministic games with continuous time and space.
In this setting, the eigenvector u and the eigenvalue λ are solution of an ergodic Hamilton-
Jacobi PDE H(x,Dxu) = λ where the Hamiltonian (x, p) 7→ H(x, p) is convex in the adjoint
variable p. One may consider the perturbation of a Hamiltonian by a potential, which amounts
to replacingH(x, p) byH(x, p)+V (x) for some function V . This is similar to the replacement of
the Shapley operator T by the perturbed Shapley operator g + T in Theorem 7.8. As observed
by Figalli and Rifford in [FR13, Th. 4.2], it follows from weak KAM theory results that under
some assumptions, the solution u of V (x)+H(u,Dxu) = λ is unique up to an additive constant
for a generic function V . Theorem 7.8 shows that an analogous property is valid for finite two-
player zero-sum stochastic games. We note however that Theorem 7.8 does not extend easily
to the case of PDE, since zero-sum games correspond to Hamilton-Jacobi PDE with a nonconvex
Hamiltonian (to which current weak KAM methods do not apply).

Proof. Let T be the Shapley operator of a finite stochastic game with perfect information Γ
which is assumed to be ergodic. Let σ ∈ Ss be a policy of player MIN. We define the real map
λσ(·) on Rn by

λσ(g) := max{〈m, (g + rστ )〉 | τ ∈ T σs , m ∈M∗(P στ )} , (7.7)

where M∗(P ) denotes the set of extreme points of the convex polytope M(P ), that is, the
set of invariant probability measures the support of which are final classes of the stochastic
matrix P . The fact that M∗(P στ ) is a set of probability measures yields that λσ is monotone
and additively homogeneous, hence sup-norm nonexpansive (and continuous). Furthermore,
since the set of policies T σs of player MAX is finite, as well as all the sets M∗(P στ ), then the
map λσ is piecewise affine. We now define the polyhedral complex Cσ covering Rn, the full-
dimensional cells of which are precisely the maximal polyhedra on which the piecewise affine
map λσ coincides with a unique affine map. Therefore, if Q is a cell of Cσ with full dimension,
then there is a unique vector m ∈ Rn and a unique scalar d ∈ R such that λσ(g) = 〈m, g〉 + d
in the interior of Q. Observe that m must be a stochastic vector since the map g 7→ λσ(g) is
monotone and additively homogeneous.

We claim that if a vector g is in the interior of Q, then the set of eigenvectors of the reduced
one-player Shapley operator F := g + T σ is either empty or reduced to a line. To see this, it
suffices to observe that the measure m attaining the maximum in (7.7) is unique for all g in the
interior of Q and independent of the choice of g in this interior, because g 7→ λσ(g) is affine on
the interior of Q and m must coincide with the linear part of this affine map. We deduce from
Corollary 7.4 that E(F ) is either empty or reduced to a line of direction e.
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Consider now the polyhedral complex C obtained as the refinement of all the complexes
Cσ. This complex covers Rn. Let g be a perturbation vector in the interior of a full-dimensional
cell of C. Since the game Γ is ergodic, E(g + T ) is not empty. Let u be an eigenvector of g + T .
According to (7.2), there is a policy σ ∈ Ss of player MIN such that g+T (u) = g+T σ(u). Hence
u is also an eigenvector of g + T σ. So, there is a finite family Σ∗ of Ss such that E(g + T ) =⋃
σ∈Σ∗ E(g+T σ). Moreover, we have proved that for any policy σ ∈ Σ∗, the eigenspace E(g+T σ)

is reduced to a line. Thus, E(g+T ) is composed of a finite union of lines which all have the same
direction, namely e. Consider the hyperplane orthogonal to the unit vector, H := {x ∈ Rn |
〈x, e〉 = 0}, and let π denote the orthogonal projection on H . Then, π(E(g+T )) = E(g+T )∩H
is finite. However, by Theorem 7.6, E(g + T ) is connected. Then, the set π(E(g + T )) is also
connected, and since it is finite, it must be reduced to a point. It follows that g+T has a unique
eigenvector, up to an additive constant.

Example 7.10. Consider the following Shapley operator defined on R3 – we use ∧ and ∨ instead
of min and max, respectively, and we recall that the addition has precedence over the latter
operators:

T (x) =

 1
2(x1 + x3) ∧ 1 + 1

2(x1 + x2)
2 + 1

2(x1 + x3) ∧
(
1 + 1

2(x1 + x2) ∨ −2 + x3

)
3 + 1

2(x1 + x3) ∨ 1 + x3

 .

It can be proved, using Theorem 4.6, that T is ergodic. Figure 7.1 shows the intersection of
the hyperplane {g ∈ R3 | g3 = 0} with the polyhedral complex introduced in Theorem 7.8.
Here, for each vector g in the interior of a full-dimensional polyhedron, g + T has a unique
eigenvector up to an additive constant.

g1

10

g2

−10

g3 = 0

•
0

Figure 7.1: Polyhedral complex C

Let us detail what happens in the neighborhood of g = 0, point in which g+ T fails to have
a unique eigenvector. Note that in the neighborhood of g = 0, the eigenvalue of g + T remains
equal to 1.

– If g1 + g2 = 0, the eigenvectors of g + T are defined by

x1 = x2 + 2g1 , −3 + g2 6 x2 − x3 6 −2− g1 .

– If g1 + g2 > 0, the unique eigenvector, up to an additive constant, is

(−2 + 2g1,−2 + 2g1 + 2g2, 0) .

– If g1 + g2 < 0, the unique eigenvector, up to an additive constant, is

(−3 + 2g1 + g2,−3 + g2, 0) .
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7.4 Application to policy iteration

In this section, we apply the previous result to show that policy iteration combined with a
perturbation scheme can solve degenerate instances of stochastic games.

7.4.1 Ho�man-Karp policy iteration

Let us recall the notation of Section 7.3. We denote by Γ a finite stochastic game with perfect
information. The (finite) set of policies of player MIN is denoted by Ss, an element of Ss being
a map σ : [n] → A such that σ(i) ∈ Ai for every state i ∈ [n]. The (finite) set of policies of
player MAX when policy σ ∈ Ss of MIN is fixed is denoted by T σs , an element of T σs being
a map τ : [n] → B such that τ(i) ∈ Bi,σ(i) for every state i ∈ [n]. Finally, recall that for
σ ∈ Ss and τ ∈ T σs , P στ denotes the n × n stochastic matrix whose (i, j) entry is given by
P στij = p(j | i, σ(i), τ(i)).

When T : Rn → Rn is the Shapley operator (7.1) of a finite stochastic game with perfect
information, Hoffman and Karp [HK66] introduced a policy iteration algorithm, which takes
the description of the game as input and returns the eigenvalue λ and an eigenvector u of T ,
i.e., a solution (λ, u) ∈ R× Rn of the ergodic equation T (u) = λe+ u. Also, optimal stationary
strategies for both players can be derived from the output of the algorithm. It is convenient here
to state an abstract, slightly more general, version of the Hoffman-Karp algorithm, described
in terms of the operators T and T σ (Algorithm 2).

Algorithm 2: Policy iteration – compare with [HK66]
input : perfect-information finite stochastic game ([n], A,B,KA,KB, r, p) with Shapley

operator T .
output: eigenvalue λ and eigenvector u of T .

1 initialization: select an arbitrary policy σ0 ∈ Ss
2 repeat
3 compute an eigenpair (λk, vk) of T σk
4 improve the policy σk in a conservative way: select a policy σk+1 ∈ Ss such that

T (vk) = T σk+1(vk) and satisfying, for every state i ∈ [n], σk+1(i) = σk(i) if
Ti(v

k) = T σki (vk)

5 until σk+1 = σk
6 return λk and vk

We assume Algorithm 2 is interpreted in exact arithmetics (the vectors vk have rational co-
ordinates and the λk are rational numbers). To implement Step 3, we may call any oracle able
to compute the eigenvalue and an eigenvector of a one-player stochastic game. In the original
approach of Hoffman and Karp, the oracle consists in applying the same policy iteration algo-
rithm for the one-player game with fixed policy σk. The proof of Hoffman and Karp shows that
Algorithm 2 is valid under a restrictive assumption.

Theorem 7.11 (Cor. of [HK66]). Algorithm 2 terminates and is correct if for all choices of policies σ
and τ of the two players, the corresponding transition matrix P στ is irreducible.

Indeed, it is easy to see that the sequence (λk)k of Algorithm 2 is nonincreasing, that is,
λk+1 6 λk for all iterations k. The irreducibility assumption was shown to imply that the latter
inequalities are always strict, which entails the finite time convergence (each policy yields a
unique well defined eigenvalue, these eigenvalues constitute a decreasing sequence, and there
are finitely many policies).
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However, the assumption that all stochastic matrices P στ are irreducible is way too strong
to guarantee that Algorithm 2 is properly posed. Indeed, to execute the algorithm, it suffices
that at every iteration k the operator T σk admits an eigenvalue and an eigenvector, which is
the case in particular if for all policies σ, the graph obtained by taking the union of the edge
sets of all the graphs associated with P στ for the different choices of τ is strongly connected
(see Subsection 5.2). In particular, the irreducibility assumption of Hoffman and Karp is essen-
tially never satisfied for deterministic games, whereas the condition involving the union of the
edge sets is satisfied by relevant classes of deterministic games.

It should be noted that Algorithm 2 may, in general, lead to degenerate iterations, in which
λk+1 = λk. As shown by an example in [ACTDG12, Sec. 6], this may lead the algorithm to
cycle when the bias vector is not unique. This difficulty was solved first in the deterministic
framework in [CTGG99], where it was shown that cycling can be avoided by enforcing a special
choice of the bias vector, obtained by a nonlinear projection operation. This approach was then
extended to the stochastic framework in [CTG06, ACTDG12]. As a special case of these results,
we get that policy iteration is correct and does terminate under much milder conditions than
in Theorem 7.11.

Theorem 7.12 (Cor. of [CTG06, Th. 7]). Algorithm 2 terminates and is correct if for each choice of
policy σ of player MIN, the operator T σ has an eigenvalue and a unique eigenvector, up to an additive
constant.

We next show that the conditions of Theorem 7.12 are satisfied for generic payments, and
conclude that nongeneric instances can still be solved by the Hoffman-Karp algorithm after an
effective perturbation of the input.

7.4.2 Generic termination of policy iteration

Let T : Rn → Rn be the Shapley operator of a finite stochastic game with perfect informa-
tion. The following assumption guarantees that Algorithm 2 is well posed for any additive
perturbation of T .

Assumption 7.D. For any policy σ ∈ Ss of player MIN, the one-player Shapley operator T σ is
ergodic, i.e., g + T σ has an eigenvalue for all perturbation vectors g ∈ Rn.

This assumption is much milder than the original assumption of Hoffman and Karp, re-
quiring all the transition matrices P στ to be irreducible (see Theorem 7.11). Moreover, we shall
see in the next subsection that one can always transform a game (in polynomial time) by a “big
M” trick in such a way that Assumption 7.D becomes satisfied.

By using the arguments of Section 7.3, we now show that under Assumption 7.D, Algo-
rithm 2 terminates for a generic perturbation of the payments.

Theorem 7.13. Let T : Rn → Rn be the Shapley operator of a finite stochastic game with perfect
information satisfying Assumption 7.D. Then, the space Rn can be covered by a polyhedral complex
such that for each perturbation vector g ∈ Rn in the interior of a full-dimensional cell, Algorithm 2
terminates after a finite number of steps and gives an eigenpair of g + T .

Proof. Consider the same complex C as in Section 7.3 and let g be a perturbation vector in the
interior of a full-dimensional cell of C. It follows from the proof of Theorem 7.8 that for any
policy σ ∈ Ss, the eigenvector of g + T σ, which exists according to Assumption 7.D, is unique
up to an additive constant. Hence, at each step k of Algorithm 2, the bias vector vk of g + T σk

is unique up to an additive constant. The conclusion follows from Theorem 7.12.
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We next provide an explicit perturbation g, depending on a parameter ε, for which the
policy iteration algorithm applied to g+T is valid. We shall see in the next subsection that ε can
be instantiated with a polynomial number of bits, in such a way that the original unperturbed
problem is solved.

Proposition 7.14. Let T : Rn → Rn be the Shapley operator of a finite stochastic game with perfect
information. Then, there exists ε0 > 0 such that all the perturbation vectors gε := (ε, ε2, . . . , εn) with
0 < ε < ε0 are in the interior of the same full-dimensional cell of the polyhedral complex of Theorem 7.13.

Proof. The cells of the polyhedral complex C introduced in Theorem 7.8 that do not have a
full dimension are included in an arrangement of finitely many hyperplanes. The real curve
ε 7→ gε = (ε, . . . , εn) cannot cross a given hyperplane in this arrangement more than n times
(otherwise, a polynomial of degree n would have strictly more than n roots). We deduce that
there is a value ε0 > 0 such that the restriction of the curve ε 7→ gε to the open interval (0, ε0)
crosses no hyperplane of the arrangement. Therefore, it must stay in the interior of a full-
dimensional cell of the complex C.

The following result is a refinement of the previous one.

Proposition 7.15. Let T : Rn → Rn be the Shapley operator of a finite stochastic game with perfect
information. Then, there exist ε1 > 0 and policies σ ∈ Ss and τ ∈ T σs such that for all ε ∈ [0, ε1], the
upper mean payoff of gε + T is given by

χ(gε + T ) = 〈mστ , gε + rστ 〉 ,

where mστ is an invariant probability measure of the stochastic matrix P στ .

Proof. Recall that the upper mean payoff of g + T is given by

χ(g + T ) = min
σ∈Ss

χσ(g)

where χσ(g) = max{〈m, g + rστ 〉 | τ ∈ T σs , m ∈M∗(P στ )} .

By construction of the polyhedral complex C of Theorem 7.8, in the interior of a full-dimensional
cell, each piecewise affine map χσ coincides with a unique affine map, but g 7→ χ(g + T ) need
not be affine. Hence, we can refine the complex C into a complex C′ such that the latter piece-
wise affine map also coincides with a unique affine map on each full-dimensional cell. The
exact same proof as Proposition 7.14 leads to the conclusion.

It readily follows that solving the game with Shapley operator gε + T for ε small enough
entails a solution of the original game.

Proposition 7.16. If T satisfies Assumption 7.D, then Algorithm 2 terminates for any input gε+T with
ε ∈ (0, ε1). Furthermore, any policy σ which is optimal for gε+T , meaning that λ(gε+T ) = λ(gε+T

σ),
is also optimal for T , i.e., λ(T ) = λ(T σ).

7.4.3 Complexity issues

In this subsection, we show that computing the upper mean payoff of a Shapley operator (a
fortiori the eigenvalue if it exists) is polynomial-time reducible to the computation of the eigen-
value of a Shapley operator for which Algorithm 2 terminates. This fact is a direct consequence
of Theorem 7.22 below. To do so, we shall need to give explicit bounds on the perturbation
parameter ε.
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We first explain how the general case can be reduced to the situation in which Assump-
tion 7.D holds. To that purpose, let use introduce for any real number M > 0, the map
RM : Rn → Rn the ith coordinate of which is given by

[RM (x)]i = max
{
xi,max

j∈[n]
(−M + xj)

}
, x ∈ Rn .

Observe that RM is a projection on the set {x ∈ Rn | ‖x‖H 6 M}, meaning that R2
M = RM and

that
RM (x) = x ⇐⇒ ‖x‖H 6M .

Lemma 7.17. Let T : Rn → Rn be the Shapley operator of a perfect-information finite stochastic game,
and let M > 0. Then, T ◦RM has an eigenvalue.

Proof. First, note that the recession operator of R̂M is given by

R̂M (x) = (maxx) e , x ∈ Rn ,

where maxx := max16i6n xi. Second, since Assumption 4.A holds, it is readily seen that the
limit (2.7) defining T̂ is uniform in x. Hence, we get that T̂ ◦RM = T̂ ◦ R̂M . Thus, using the
properties of recession operators, we have for any vector x ∈ Rn,

T̂ ◦RM (x) = T̂ ◦ R̂M (x) = T̂
(
(maxx) e

)
= (maxx) e .

This proves that the only fixed points of T̂ ◦RM are trivial. The conclusion follows from Theo-
rem 4.6.

The operator T ◦ RM can be interpreted as the Shapley operator of a perfect-information
finite stochastic game with state space [n]. In this game, at each step, if the current state is
i ∈ [n], player MIN start by choosing an action a ∈ Ai. Then, player MAX chooses an action
b ∈ Bi,a which gives rise to a transition payment r(i, a, b) and a state j is chosen randomly with
probability p(j | i, a, b) and announced to the players. Finally, MAX has the possibility to choose
the next state: if he pick any state k different from j, then he has an additional payment of−M .
In other words, MAX has the option of teleporting himself to any other state, by accepting a
penalty M .

Note that, since MIN has the same action space in the latter game as in the game Γ, the sets
of his stationary strategies in both games are identical. Then, for a fixed policy σ of MIN, the
one-player Shapley operator (T ◦ RM )σ is equal to T σ ◦ RM , and we get from Lemma 7.17 the
following result.

Corollary 7.18. Let T : Rn → Rn be the Shapley operator of a perfect-information finite stochastic
game. Then, T ◦RM satisfies Assumption 7.D.

In the modified game with Shapley operator T ◦ RM , player MAX makes, at each step, the
final decision about the next state, provided an additional cost of M . The following result
shows that if this cost is large enough, then MAX cannot do better, in the long run, than in the
game Γ.

Lemma 7.19. Let T : Rn → Rn be the Shapley operator of a perfect-information finite stochastic game.
Then, there exists a positive constant M0 such that for any M > M0, the eigenvalue of T ◦RM is equal
to the upper mean payoff χ(T ).
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Proof. First, note that RM (x) > x for all x ∈ Rn. Hence, by monotonicity of T , we deduce that
T ◦ RM > T , which yields χ(T ◦ RM ) > χ(T ). Since T ◦ RM has an eigenvalue, denoted by
λ(T ◦RM ), then we have λ(T ◦RM ) > χ(T ).

By application of a Collatz-Wielandt formula (see [GG04]), we know that the eigenvalue of
T ◦RM is given by

λ(T ◦RM ) = inf{µ ∈ R | ∃u ∈ Rn, T ◦RM (u) 6 µe+ u} .

We also know that T has an invariant half-line with direction χ(T ). So there exists a vector
u ∈ Rn such that T (u) = u+ χ(T ). Now let M0 := ‖u‖H. For every M > M0, we have

T ◦RM (u) = T (u) = u+ χ(T ) 6 u+ χ(T )e .

Hence λ(T ◦RM ) 6 χ(T ).

We shall need a technical bound on invariant measures of stochastic matrices arising from
strategies. We state it here for an arbitrary irreducible stochastic matrix.

Lemma 7.20. Let P be a n × n irreducible stochastic matrix whose entries are rational numbers with
numerators and denominators bounded by an integer D. Then, every entry of the invariant probability
measure of P is a rational number whose denominator is bounded by

nn/2Dn2

Proof. The invariant probability measure m of P is the unique solution of the linear system{
(I − P ᵀ)m = 0 ,

eᵀm = 1 ,
(7.8)

where I is the identity matrix. Note that one row of the subsystem (I−P ᵀ)m = 0 is redundant
since we are dealing with stochastic vectors and eᵀm = 1. Then, by deleting this row and
by multiplying every row of the latter subsystem by all the denominators of the coefficients
appearing in this row, we arrive at a Cramer linear system with integer coefficients of absolute
value less than Dn, and with unit coefficients on the last row. Solving this system by Cramer’s
rule, we obtain that the entries of m are rational numbers whose denominators divide the
determinant of the system. Using Hadamard’s inequality for determinants, we deduce that
these denominators are bounded by(

(n− 1)(Dn)2 + 1
)n/2

6 nn/2Dn2
.

We just showed that the upper mean payoff of T can be recovered from the upper mean
payoff of the operator T ◦ RM for a suitable large M . The latter operator satisfies Assump-
tion 7.D, and so, we can in principle apply Algorithm 2 to it. However, to do so in a way
which leads in a polynomial-time transformation of the input, it is convenient to introduce the
following modified Shapley operator TM : R2n → R2n given, for all (x, y) ∈ Rn × Rn, by

TM (x, y) := (T (y), RM (x)) .

Note that we have

(TM )2(x, y) =

(
T ◦RM (x)
RM ◦ T (y)

)
.

The following immediate lemma shows that one can recover the eigenvectors and the eigen-
value of T ◦RM from those of TM .
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Lemma 7.21. (v, w) is an eigenvector of TM with eigenvalue λ if, and only if, v is an eigenvector of
T ◦RM with eigenvalue 2λ and w = RM (v)− λe.

The operator TM is the dynamic programming operator of a game, denoted by ΓM , with
state space [2n]. In each state i ∈ [n], the actions, the payment and transition functions are
the same as in Γ, except that the next state is labeled by an element of {n + 1, . . . , 2n} instead
of [n]. Moreover, in each state i ∈ {n + 1, . . . , 2n}, player MIN has only one possible action,
while player MAX chooses the next state j among [n] with a cost M if i − j 6= n. In particular,
the policies of MIN in the two games Γ and ΓM are in one-to-one correspondence, and to sim-
plify the presentation, we shall use the same notation for these policies. Hence, we shall write
(TM )σ(x, y) = (T σ(y), RM (x)) for such a policy σ.

We saw in Lemma 7.17 that the operator T ◦ RM has an eigenvalue. The same is true
for the operator TM by Lemma 7.21, as well as for any operator (TM )σ. Thus, TM satisfies
Assumption 7.D. We know that for ε > 0 small enough, the perturbed operator gε + T ◦ RM
has a unique bias vector, up to an additive constant, where gε = (ε, . . . , εn). This leads to
considering, for ε > 0,

TM,ε := (gε, 0) + TM .

Theorem 7.22. Let Γ be a perfect-information finite stochastic game whose transition payments and
probabilities are rational numbers with numerators and denominators bounded by an integer D > 2.
Let T : Rn → Rn be the Shapley operator of Γ. If

M > 2(2n)n/2D2n2+1 and 0 < ε <
1

nnD2n(n+1)
,

then the upper mean payoff of T can be recovered from TM,ε = (gε, 0) + TM , in the sense that for any
policy σ of player MIN such λ(TM,ε) = λ((TM,ε)

σ), we have χ(T ) = χ(T σ). Furthermore, such an
optimal policy can be obtained by applying Algorithm 2 with input TM,ε.

Proof. Let g ∈ [0, 1]n, and fix a policy σ of MIN. In the game ΓM , consider a policy of MAX such
that, when in state i ∈ [n], he chooses some bi ∈ Bi,σ(i) and when in state i ∈ {n + 1, . . . , 2n},
he chooses the next state to be some j(i) ∈ [n]. Then, the transition matrix associated with that
choice of policy is the following 2n× 2n block matrix:(

0 P στ

Q 0

)
, (7.9)

where τ ∈ T σs is the policy of MAX in the game Γ defined by τ(i) = bi for each state i, and
where Q is the n × n stochastic matrix whose coefficients are Qij = 1 for j = j(i + n) and 0
otherwise.

Let (m,m′) ∈ Rn × Rn be an invariant probability measure of the stochastic matrix (7.9).
The vectors m and m′ satisfy

mP στ = m′ , m′Q = m , 〈m, e〉+ 〈m′, e〉 = 1 . (7.10)

We are interested in the eigenvalue of the perturbed one-player Shapley operator (g, 0)+(TM )σ.
Hence, following formula (7.6), we consider the quantity

γ := 〈m, g + rστ 〉 −M
∑

16i6n
Qii=0

m′i .
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If for every index i in the support of m′, we have Qii = 1, then we deduce from the second
equality in (7.10) that m′ = m. This yields that 2m is an invariant probability measure of P στ ,
and that

γ = 〈m, g + rστ 〉 6 1

2
χ(g + T σ) .

Note that the equality is attained in the above inequality for some policy τ and some invariant
measure m.

If there is an index i in the support of m′ such that Qii = 0, then we have

γ 6 〈m, g + rστ 〉 −Mm′i 6 1 + max
i,a,b

r(i, a, b)−K1M ,

where K1 is a positive constant such that K1 < m′i . Note that K1 can be chosen independently
of M and of the choice of policies. Then, taking M > M0 := (K1)−1(1 + (3/2)‖r‖∞), we obtain
that

γ <
1

2
min
i,a,b

r(i, a, b) 6
1

2
χ(g + T σ) .

Thus, we have proved that, for all policies σ of MIN and for all g ∈ [0, 1]n, we have

λ
(
(g, 0) + (TM )σ

)
=

1

2
χ(g + T σ) ,

as soon as M > M0. In particular, the choice of the parameter ε such that TM,ε is a generic
instance only relies on T (Proposition 7.15).

We now fix some M > M0. Consider, for policies σ, σ′ of MIN and τ, τ ′ of MAX, two
distinct pairs (m, d) 6= (m′, d′), where m ∈ M∗(P στ ), m′ ∈ M∗(P σ′τ ′), d := 〈m, rστ 〉 and
d′ := 〈m′, rσ′τ ′〉. We need to compare the affine maps g 7→ 〈m, g〉+ d and g 7→ 〈m′, g〉+ d′ along
the curve ε 7→ gε with ε ∈ (0, 1).

Assume first that d = d′. Then m 6= m′ and we can select the smallest index i such that
mi 6= m′i. Note that since m and m′ are stochastic vectors, we necessarily have i < n and we
also have the existence of another index j such that i < j 6 n and mj 6= m′j . Without loss of
generality, we may assume that mi−m′i > 0. Let K2 ∈ R be such that 0 < K2 < mi−m′i. Then,
for any positive parameter ε < K2 n

−1, we have

(〈m, gε〉+ d)− (〈m′, gε〉+ d′) = (mi −m′i)εi +
∑
i<j6n

(mj −m′j)εj

> K2 ε
i − nεi+1 = εi (K2 − nε) > 0 .

Assume now that d 6= d′, say d > d′, and let K3 ∈ R be such that 0 < K3 < d− d′. Then, for any
positive parameter ε < K3, we have

(〈m, gε〉+ d)− (〈m′, gε〉+ d′) > εn − ε+K3 > 0 .

Note that we can choose the positive constants K2 and K3 independently of σ, σ′, τ, τ ′,m and
m′. Hence, the above arguments show that the set of polynomial functions ε 7→ 〈m, gε + rστ 〉
with σ ∈ Ss, τ ∈ T σs and m ∈ M∗(P στ ), is totally ordered if ε is restricted to the inter-
val (0,min{K2n

−1,K3}). Thus, the parameter ε1 of Proposition 7.15 may be taken equal to
min{K2n

−1,K3}.
To complete the proof, we next explain how to instantiate the constants K1 to K3. Let us

start with K2. It is a lower bound on the absolute values of the differences between two dis-
tinct entries (with same index) of invariant probability measures associated with the transition
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matrices of Γ. These differences are of the form |p1/q1 − p2/q2| > 1/(q1q2), where p1, p2, q1, q2

are integers. By Lemma 7.20, we know that q1, q2 6 nn/2Dn2
, and so

K2 >
1

nnD2n2 .

Likewise,K3 is a lower bound on the absolute values of the differences between two distinct
scalar products 〈m, rστ 〉. Let m ∈ M(P στ ). It follows from the proof of Lemma 7.20 that the
ith entry of m can be written as mi = pi/q where pi is an integer and q 6 nn/2Dn2

is an integer
independent of i. Since every entry of rστ has a denominator at most D, it follows that 〈m, rστ 〉
is a rational number with denominator at most nn/2Dn2

Dn. Therefore, the difference between
two distinct values of 〈m, rστ 〉 is at least nnD2n2

D2n, and so

min{K2n
−1,K3} >

1

nnD2n2 min

{
1

n
,

1

D2n

}
=

1

nnD2n(n+1)
.

Finally the constant K1 is a lower bound for the positive entries of the invariant probabil-
ity measures of the transition matrices (7.9) arising in the game ΓM . A direct application of
Lemma 7.20 provides the following bound:

K1 >
1

(2n)nD4n2 .

However, the matrices (7.9) have a particular structure, and an invariant measure m solves the
linear system 

(
I −Qᵀ

−P ᵀ I

)
m = 0

eᵀ m = 0

where P is a transition matrix of the game Γ and Q is a stochastic matrix with entries either
0 or 1. Repeating the same arguments used to prove Lemma 7.20, we obtain that the positive
entries of m have a denominator dividing an integer bounded by(

(n− 1)(Dn)2 + 2
)n

2
(
(Dn)2 + 2

)n−1
2 2

1
2 6 (2n)n/2 D2n2

.

Hence,

K1 >
1

(2n)n/2D2n2 ,

and
M0 6 (1 + (3/2)D) (2n)n/2D2n2

.

An important special case to which the method of Theorem 7.22 can be applied concerns
deterministic mean-payoff games [GKK88, ZP96]. The input of such games can be described, as
in [AGG12], by means of two matrices A,B ∈ (Z ∪ {−∞})m×n. The corresponding Shapley
operator can be written as

Ti(x) = min
j∈[m]

(
−Aji + max

k∈[n]
(Bjk + xk)

)
, ∀x ∈ Rn , ∀i ∈ [n] . (7.11)

The corresponding game is played by moving a token on a graph in which n nodes, denoted
by 1, . . . , n, belong to player MIN, whereas m other nodes, denoted by 1′, . . . ,m′, belong to
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player MAX. In state i ∈ {1, . . . , n}, MIN can move the token to a state j ∈ {1′, . . . ,m′} such
that Aji 6= −∞, receiving Aji. In state j, MAX can move the token to a state k ∈ {1, . . . , n} such
thatBjk 6= −∞, receivingBjk. We assume that the matrixB has no identically infinite row, and
that the matrix A has no identically infinite column, meaning that each player has at least one
available action in each state. Then, the modified operator T ◦ RM corresponds essentially to
the matrix BM in which infinite entries of B are replaced by −M , and the operator g + T ◦RM
arises by subtracting the constant gi to every entry in the ith column of A.

Theorem 7.23. Let T denote the Shapley operator (7.11) of a deterministic mean-payoff game, with
integer payoffs bounded in absolute value by D > 2. Then, for

M > 4nD and 0 < ε < 1/n3 ,

the policy iteration Algorithm 2 applied to the operator gε + T ◦RM terminates, and any optimal policy
σ of player MIN, i.e., such that λ(gε + T ◦ RM ) = λ(gε + T σ ◦ RM ), yields an optimal policy for the
upper mean payoff of T , that is, χ(T ) = χ(T σ).

Proof. We adapt the proof of Theorem 7.22 to the case of deterministic transition matrices. In
that special case, every invariant measure is uniform, with positive entries bounded below by
1/n if the state space has cardinality n. Hence, the constantK1, arising as a lower bound for the
positive entries of the invariant probability measures of the transition matrices in ΓM , is such
that K1 > 1/(2n), and then

M0 6 (2n)(1 + (3/2)D) 6 4nD .

The constant K2, which is a lower bound on the absolute values of the differences between two
distinct entries of invariant measures of transition matrices in Γ, is such that K2 > 1/n2. As for
K3, it is a lower bound on the absolute values of the differences between two distinct values
of 〈m, rστ 〉. Since the payments are integers, every scalar product 〈m, rστ 〉 is a rational number
whose denominator divides the denominator of the positive entries of m. Hence, K3 > 1/n2,
and the parameter ε must be lower than

min{K2n
−1,K3} > 1/n3 .

Remark 7.24. One step in Algorithm 2 consists in computing an eigenpair (λk, vk) of the reduced
Shapley operator T σk obtained by fixing the strategy σk of MIN. This is a simpler problem
which can be solved by several known methods. We may apply, for instance, a similar policy
iteration algorithm to T σk , iterating this time in the space of policies τ of MAX. In this way, for
each choice of τ , we arrive at an operator of the form T σk,τ (x) = g + Px, where P is a stochas-
tic matrix which cannot in general be assumed to be irreducible. However, for one-player
problems, a classical version of policy iteration, the multichain policy iteration introduced by
Howard [How60] and Denardo and Fox [DF68], does allow one to determine (λk, vk) without
genericity conditions. Moreover, in the special case of deterministic games, the vector vk is
known to be a tropical eigenvector and λk a tropical eigenvalue. The tropical eigenpair can be
computed by direct combinatorial algorithms, see e.g. the discussion in [CTGG99].

Remark 7.25. Theorem 7.23 should be compared with the other known perturbation scheme,
relying on vanishing discount. The latter method requires the computation of a fixed point
of the operator x 7→ T (αx) for 0 < α < 1 sufficiently close to one. It is known that, for
deterministic mean-payoff games, if the discount factor α is chosen so that

α > 1− 1

4(n+m)3D
,
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whereD denotes the maximal absolute value of a finite entryAij orBij , then, the solution of the
mean-payoff problem can be derived from the solution of the discounted problem, see [ZP96,
Sec. 5]. The latter can be obtained by policy iteration (which terminates without any nonde-
generacy conditions in the discounted case). The present perturbation scheme requires shorter
rational numbers. Note in particular that applying Algorithm 2 to the map gε + T requires
solving a linear systems in which the matrix is independent of ε and well conditioned, whereas
vanishing discount requires the inversion of a matrix which becomes singular as α → 1. If
the vanishing discount approach is interpreted in exact arithmetics, it leads to a blow up of
the bitsize of the intermediate data as α → 1, whereas if this is interpreted in floating point
arithmetics, it may lead to numerical instabilities or overflows.

Remark 7.26. The present approach allows one to compute the upper mean payoff, i.e., the
maximum of the mean payoff over all initial states. This leads to no loss of expressivity since
it follows from known reductions that this problem is polynomial-time equivalent to solving
a mean-payoff game in which the initial state is fixed (combine [AGS16, Cor. C.3] with the
reductions in [AM09]). An alternative route to compute the mean payoff of any given initial
state, avoiding the use of such reductions, would be to extend the present perturbation scheme
to the “multichain” version of policy iteration, discussed in [CTG06, ACTDG12].



CHAPTER8

Accretive operator approach to
generic uniqueness of the bias vector

The results persented in this chapter have been announced, in a milder version, in the MTNS
conference proceedings [Hoc16].

8.1 Generic uniqueness of the �xed point of nonexpansive maps

8.1.1 Uniqueness and continuity of the �xed-point map

Let (X , ‖ · ‖) be a real vector space of finite dimension, endowed with a given norm. In this
section, we fix an operator T : X → X , nonexpansive with respect to the norm of X , and we
assume that there exists an open subset V ⊂ X such that g + T has at least one fixed point for
all g ∈ V .

Let us introduce the set-valued map FP : V ⇒ X defined by

FP(g) := {x ∈ X | x− T (x) = g} , g ∈ V .

Put in words, the mapping FP sends each vector g ∈ V to the set of fixed points of g + T .
Observe that the inverse map of FP is

FP−1 = Id−T ,

so that it is coaccretive by Lemma 4.19. Since we have assumed that dom(FP) = V , then we get
from the local boundedness of coaccretive maps (Proposition 4.13) the following.

Lemma 8.1. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let T : X → X be a nonex-
pansive map such that g + T has a fixed point for all vectors g in an open subset V ⊂ X . Then, the
set-valued map FP : V ⇒ X has compact values and is upper semicontinuous.

Proof. It readily follows from Proposition 4.13 that FP(g) is bounded for any g ∈ V . Further-
more, since g + T is continuous, FP(g) is closed, hence compact.

It is now possible to characterize sequentially the upper-semicontinuity of FP. Let (gk)k∈N
be a sequence in V converging to some vector g ∈ V and for all integers k, let xk ∈ FP(gk).
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We know from Proposition 4.13 that FP is locally bounded at g. Hence the sequence (xk)k∈N
is bounded, and therefore has an accumulation point x. Since xk − T (xk) = gk for all k, the
continuity of T yields that x − T (x) = g, that is, x ∈ FP(g). This proves that FP is upper
semicontinuous at g.

We shall need the following technical result, which is a variant of the Hahn-Banach theorem.

Lemma 8.2. Let J be the duality mapping on (X , ‖ · ‖), and let x be any vector in X . Then,

x 6= 0 ⇐⇒ ∃y ∈ X \ {0} , ∀x∗ ∈ J(x) , 〈y, x∗〉 > 0 .

Proof. Let x ∈ X \ {0}. We know that J(x) is a compact convex subset of X ∗. Furthermore,
0 /∈ J(x). Hence, according to the Hahn-Banach theorem, there exists an affine hyperplane of
X ∗ strongly separating the two compact convex subsets J(x) and {0}, i.e., there exists some
vector y ∈ X \ {0} and a constant ε > 0 such that for all x∗ ∈ J(x) we have 〈y, x∗〉 > ε > 0.

Conversely, if x = 0, then J(x) = {0} and so, for all y ∈ X we have 〈y, x∗〉 = 0 with
x∗ = 0 ∈ J(x).

We now state the main result of this section.

Theorem 8.3. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let T : X → X be a non-
expansive map such that g + T has a fixed point for all vectors g in an open subset V ⊂ X . Then, the
set-valued map FP : V ⇒ X is continuous at point g ∈ X if, and only if, FP(g) is a singleton.

Proof. Suppose first that the map FP is single-valued at g. We have shown in Lemma 8.1 that
FP is upper semicontinuous at g. It readily follows from the definition (Subsection 4.3.1) that
FP is also lower semicontinuous at g, since it is single-valued. Hence, FP is continuous at g.

Conversely, suppose that FP is continuous at point g ∈ V and let x and x′ be two vectors in
FP(g), i.e., two fixed points of g + T . Choose y ∈ X \ {0}, and for every positive integer k, let
gk := g − k−1y. We may assume, without loss of generality, that gk is in V for all k. Since FP is
continuous at g, hence lower semicontinuous, there exists a sequence of elements xk ∈ FP(gk)
converging to x. Furthermore, we know from Lemma 4.19 that the map FP = (Id−T )−1 is
coaccretive. Hence, for every integer k > 0, there is a point x∗k ∈ J(xk − x′) such that

〈gk − g, x∗k〉 > 0 ,

which yields
〈y, x∗k〉 6 0 .

Since the duality mapping J is upper semicontinuous (Proposition 4.8) and with compact val-
ues, then the sequence of elements x∗k ∈ J(xk − x′) has an accumulation point x∗ ∈ J(x − x′),
which satisfies

〈y, x∗〉 6 0 .

Thus, we have proved that for any point y ∈ X \ {0}, there exists an element x∗ ∈ J(x − x′)
such that 〈y, x∗〉 6 0. We deduce from Lemma 8.2 that x− x′ = 0, and consequently that FP(g)
is a singleton.

8.1.2 Generic continuity

Under mild conditions, the continuity of any upper semicontinuous set-valued map A is a
generic property. By generic, we mean that the set of points where the map A is continuous is a
residual. Recall that a residual of any space Y is a countable intersection of dense open subsets
of Y . In particular, if Y is a Baire space, then a residual is dense.
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Theorem 8.4 (see [AF09, Th. 1.4.13]). Let A be a set-valued map from a complete metric space X to
a complete separable metric space Y . If A is upper semicontinuous on X , then it is continuous on a
residual of X .

Note that Theorem 8.4 states that the set of points where an upper semicontinous set-valued
map is continuous (only) contains a residual. We can in fact be more specific about the charac-
terization of elements where the fixed-point map FP is single-valued.

Theorem 8.5. Let (X , ‖ · ‖) be a finite-dimensional real vector space, and let T : X → X be a non-
expansive map. Let U be an open subset of X such that g + T has a fixed point for all vectors g in a
neighborhood of U . Then, the set of vectors g ∈ U for which g + T has a unique fixed point is a residual
of U . In particular, it is dense in U .

Proof. According to Lemma 8.1, the set-valued map FP is upper semicontinuous on a neigh-
borhood of U . Hence, its restriction to U (which is also upper semicontinuous) is continuous on
a dense subset (Theorem 8.4). Consider the intersection of this dense subset with U , which is
still dense in U . According to Theorem 8.3, at any point g in the latter subset, g+T has a unique
fixed point. So there is a dense subset of U such that for each point g in this subset, g + T has a
unique fixed point. It remains to show that the set of points in U for which FP is a singleton is
a countable intersection of open subsets.

There is no loss of generality in assuming that 0 ∈ U . Let (yi)i>1 be a countable dense subset
of U . For all positive integers i and k, let

Fi,k := {g ∈ U | ∃x, x′ ∈ FP(g), ∃x∗ ∈ J(x− x′), 〈yi, x∗〉 > 1/k} .

We show that FP is single-valued at g if, and only if, g /∈
⋃
i,k∈NFi,k. First, if FP(g) is a singleton,

then g cannot be in any set Fi,k. Conversely, if it is not a singleton, we can find two distinct
fixed points of g + T , x, x′, and according to Lemma 8.2, there exists some vector y ∈ X \ {0}
such that 〈y, x∗〉 > 0 for all x∗ ∈ J(x− x′). Since U is an open set containing 0, we may assume,
up to a scaling, that y is in U . Therefore, y can be approximated by some point yi such that the
inequality 〈yi, x∗〉 > 0 still holds for all x∗ ∈ J(x− x′). Hence g ∈ Fi,k for some integer k large
enough.

We next show that all the sets Fi,k are closed, which will prove that FP is single-valued
on a residual of U . Fix the integers i, k > 1 and let (g`) be a sequence in Fi,k converging to
some vector g. For every integer `, there exist x`, x′` ∈ FP(g`) and x∗` ∈ J(x` − x′`) such that
〈yi, x∗` 〉 > 1/k. Since the map FP is locally bounded at g (Proposition 4.13), we may suppose, up
to an extraction, that the sequences (x`) and (x′`) converge to some points x and x′, respectively.
By continuity of T , it is readily seen that x, x′ ∈ FP(g). Furthermore, since the duality mapping
J has compact values and is upper semicontinuous, the sequence (x∗` ) has an accumulation
point x∗ in J(x− x′), which satisfies 〈yi, x∗〉 > 1/k. Thus g ∈ Fi,k.

8.2 Application to nonlinear Perron-Frobenius theory

We apply the main result of the previous section (Theorem 8.5) to the case of Shapley operators
arising from ergodic stochastic games.

Theorem 8.6. Let T : Rn → Rn be an ergodic Shapley operator. Then, the set of vectors g for which
g + T has a unique bias vector, up to an additive constant, is a residual of Rn.

Proof. We apply Theorem 8.5 to the quotiented self-map [T ] of the additive projective space
TPn, endowed with the norm qH. Thus, there exists a residual of TPn, denoted by R̃, charac-
terizing the set of equivalence classes [g] for which the quotiented map [g] + [T ] = [g + T ] has
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a unique fixed point. Hence, the operator g + T has a unique bias vector up to an additive
constant if, and only if, the equivalence class of g is in this residual.

LetR be the preimage in Rn of R̃ by the canonical map Rn → TPn. The latter quotient map
is continuous, since the preimage of any open ball, that is, any set {x ∈ Rn | ‖x − g‖H < ρ}
with ρ > 0 and g ∈ Rn, is open. Hence, it follows that R is also a countable intersection of
open subsets. Moreover, for any vector g ∈ Rn and any real number ε > 0, there exists a vector
h ∈ R such that qH([g] − [h]) = ‖g − h‖H < ε, since the residual R̃ is dense in TPn. The vector
h is defined up to an additive constant, so we may assume that

min
i∈[n]

(gi − hi) = 0 ,

in which case ‖g − h‖H is equal to the sup-norm of g − h. Therefore, for any vector in Rn we
can find a vector inR arbitrarily close. This shows thatR is dense in Rn.



CHAPTER9

Conclusion and perspectives

We now briefly summarize our main contributions and point out some open problems.

In Chapters 4 to 6, we have introduced a notion of ergodicity for zero-sum stochastic games
with finite state space, which recover the finite Markov chain case. We have also given several
characterizations for this property to hold, in particular in terms of hypergraph reachability. To
that purpose, we have followed the operator approach by applying techniques from nonlin-
ear Perron-Frobenius theory to the study of Shapley operators. The perspectives of this work
follow naturally two paths, one in relation with game-theoretic aspects, and the other with
nonlinear Perron-Frobenius theory.

Regarding nonlinear Perron-Frobenius theory, we have given a condition that guarantees
the existence of a fixed point for any additive perturbation of a nonexpansive map T (Corol-
lary 4.20) for any norm in a finite-dimensional vector space. This condition, established in the
additive framework, requires that all the spaces {x | ‖x − T (x)‖ 6 α} are bounded. A natural
question is to know if a similar result holds in the multiplicative framework. More precisely,
let us consider a symmetric cone K of a Euclidean space, i.e., a self-dual open convex cone, the
automorphism group G of which acts transitively on it. Let f : K → K be an order-preserving
homogeneous map, such that the self-map of K sending x to g(f(x)) has a fixed point for all
automorphisms g ∈ G. Does this imply that all the spaces Dα(f) := {x ∈ K | dH(x, f(x)) 6 α}
are bounded in Hilbert’s projective metric dH arising from K? In particular, is this true when
K is the cone of positive semi-definite matrices? Another problem, following the results in
Chapter 6, is to find a combinatorial characterization, similar to the one in Theorem 6.2, of the
boundedness of all spaces Dα(f) for any cone K. When the cone K is simplicial, this problem
should reduce to the case of the standard nonnegative cone of Rn treated in this thesis. When
K is polyhedral but not simplicial, we expect that the characterization involves the asymptotic
behavior of f along the faces of K.

As for game theory problems, it would be interesting to extend the characterization of er-
godicity to stochastic games with infinite state space. It would allow in particular to broaden
the latter notion to other classes of zero-sum repeated games, including games with incomplete
information. Indeed, a wide range of repeated games have a recursive structure, expressing it-
self in a Shapley operator, see [Sor03] and references therein. It is then possible to reduce these
games to stochastic games, the state space of which is a probability space over the set of un-
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known parameters.
A first step to solve the above problem could be to generalize the surjectivity conditions

for accretive maps (Theorem 4.16) to the case of infinite-dimensional Banach spaces. However,
this generalization would most likely require strong topological assumptions (reflexive Banach
space, fixed-point property) which might not be compatible with our framework (say space of
continuous or bounded functions on a compact set, endowed with Hilbert’s seminorm). An-
other idea would be to start directly from the formulation of ergodicity in terms of dominions
and discretize the infinite state space in order to approximate the original game with a simpler
one with finite state space.

With continuous time and space (i.e., differential games), the problem of the asymptotic
behavior of the value in finite horizon, known as ergodic problem for Hamilton-Jacobi equa-
tions, has attracted much attention lately, see [Bar09, AB10]. In the deterministic framework,
the value u(x, t) in horizon t with initial state x is the viscosity solution of an Hamilton-Jacobi
PDE

∂tu+H(x, ∂xu) = 0 ,

for some Hamiltonian H . An important question is then to understand when u(x, t)/t con-
verges as t→ +∞ to some constant λ. Note that if this property holds, λ is the unique constant
c for which the Hamilton-Jacobi PDE

H(x, ∂xv) = −c

has a viscosity solution v. Hence, the latter equation replaces the ergodic equation (2.5) when
time and space are continuous. In the one-player case, i.e., when (x, p) 7→ H(x, p) is convex
in the adjoint variable p, the study of the ergodic problem is treated in the framework of weak
KAM theory. However, in the two-player case (nonconvex Hamiltonian), weak KAM methods
no longer apply and the problem is less well understood [Car10]. Although the results of this
thesis do not extend easily to the PDE case, we hope they could provide a good inspiration
to tackle the latter issues. In particular, an operator approach is possible by considering the
evolution semigroup associated with the game.

In Chapters 7 and 8, we have used tools of nonlinear Perron-Frobenius theory to establish
the uniqueness, up to an additive constant, of the bias vector of an ergodic Shapley operator for
a generic perturbation. We have also shown more generally that this generic property is true
locally, as soon as the ergodic equation is solvable for all additive perturbations in any open
subset. These results make a contribution to the more general problem of understanding the
structure of the set of bias vectors of Shapley operators.

In the case of payment-free Shapley operators, the results in Chapter 5 give partial answers
to the latter problem, which seems hard to tackle in full generality. The case of Shapley oper-
ators with perfect information and deterministic transitions is already interesting. When the
operator is Boolean monotone (corresponding to payment-free Shapley operator with perfect
information and deterministic transitions), it is possible to show that the set of bias vectors
(which coincides with the set of fixed points) is uniquely determined by the Boolean fixed
points (i.e., the coordinates of which are either 0 or 1). More generally, in the deterministic
perfect-information framework, the set of bias vectors is a polyhedral complex, intersection be-
tween two tropical convex sets, one max-plus and the other min-plus, but it remains an open
question to find a suitable description of this space.
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Titre : Théorie de Perron-Frobenius non-linéaire et jeux stochastiques à somme nulle avec paiement moyen.

Mots clés : jeux répétés à somme nulle, jeux stochastiques à paiement moyen, contrôle ergodique, opérateurs de
Shapley, applications non-expansives, opérateurs accrétifs, hypergraphes.

Résumé : Les jeux stochastiques à somme nulle possèdent une structure récursive qui s’exprime dans leur opérateur
de programmation dynamique, appelé opérateur de Shapley. Ce dernier permet d’étudier le comportement asympto-
tique de la moyenne des paiements par unité de temps. En particulier, le paiement moyen existe et ne dépend pas de
l’état initial si l’équation ergodique – une équation non-linéaire aux valeurs propres faisant intervenir l’opérateur de
Shapley – admet une solution. Comprendre sous quelles conditions cette équation admet une solution est un problème
central de la théorie de Perron-Frobenius non-linéaire, et constitue le principal thème d’étude de cette thèse. Diverses
classes connues d’opérateur de Shapley peuvent être caractérisées par des propriétés basées entièrement sur la re-
lation d’ordre ou la structure métrique de l’espace. Nous étendons tout d’abord cette caractérisation aux opérateurs
de Shapley « sans paiements », qui proviennent de jeux sans paiements instantanés. Pour cela, nous établissons une
expression sous forme minimax des fonctions homogènes de degré un et non-expansives par rapport à une norme
faible de Minkowski. Nous nous intéressons ensuite au problème de savoir si l’équation ergodique a une solution
pour toute perturbation additive des paiements, problème qui étend la notion d’ergodicité des chaînes de Markov.
Quand les paiements sont bornés, cette propriété d’“ergodicité” est caractérisée par l’unicité, à une constante additive
près, du point fixe d’un opérateur de Shapley sans paiement. Nous donnons une solution combinatoire s’exprimant
au moyen d’hypergraphes à ce problème, ainsi qu’à des problèmes voisins d’existence de points fixes. Puis, nous en
déduisons des résultats de complexité. En utilisant la théorie des opérateurs accrétifs, nous généralisons ensuite la
condition d’hypergraphes à tous types d’opérateurs de Shapley, y compris ceux provenant de jeux dont les paiements
ne sont pas bornés. Dans un troisième temps, nous considérons le problème de l’unicité, à une constant additive près,
du vecteur propre. Nous montrons d’abord que l’unicité a lieu pour une perturbation générique des paiements. Puis,
dans le cadre des jeux à information parfaite avec un nombre fini d’actions, nous précisons la nature géométrique de
l’ensemble des perturbations où se produit l’unicité. Nous en déduisons un schéma de perturbations qui permet de
résoudre les instances dégénérées pour l’itération sur les politiques.

Title : Nonlinear Perron-Frobenius theory and mean-payoff zero-sum stochastic games.

Keywords : zero-sum repeated games, mean-payoff stochastic games, ergodic control, Shapley operators, nonexpan-
sive maps, accretive operators, hypergraphs.

Abstract : Zero-sum stochastic games have a recursive structure encompassed in their dynamic programming opera-
tor, so-called Shapley operator. The latter is a useful tool to study the asymptotic behavior of the average payoff per
time unit. Particularly, the mean payoff exists and is independent of the initial state as soon as the ergodic equation –
a nonlinear eigenvalue equation involving the Shapley operator – has a solution. The solvability of the latter equation
is a central question in nonlinear Perron-Frobenius theory, and the main focus of the present thesis. Several known
classes of Shapley operators can be characterized by properties based entirely on the order structure or the metric
structure of the space. We first extend this characterization to “payment-free” Shapley operators, that is, operators
arising from games without stage payments. This is derived from a general minimax formula for functions homoge-
neous of degree one and nonexpansive with respect to a given weak Minkowski norm. Next, we address the problem
of the solvability of the ergodic equation for all additive perturbations of the payment function. This problem ex-
tends the notion of ergodicity for finite Markov chains. With bounded payment function, this “ergodicity” property
is characterized by the uniqueness, up to the addition by a constant, of the fixed point of a payment-free Shapley
operator. We give a combinatorial solution in terms of hypergraphs to this problem, as well as other related problems
of fixed-point existence, and we infer complexity results. Then, we use the theory of accretive operators to generalize
the hypergraph condition to all Shapley operators, including ones for which the payment function is not bounded.
Finally, we consider the problem of uniqueness, up to the addition by a constant, of the nonlinear eigenvector. We first
show that uniqueness holds for a generic additive perturbation of the payments. Then, in the framework of perfect
information and finite action spaces, we provide an additional geometric description of the perturbations for which
uniqueness occurs. As an application, we obtain a perturbation scheme allowing one to solve degenerate instances of
stochastic games by policy iteration.
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