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Résumé
Cette thèse de doctorat porte sur l’étude théorique de la conductivité thermique du

réseau dans le bismuth semi-métallique et sur les stratégies favorables pour la réduire. Les
propriétés thermiques du bismuth sont extrêmement intéressantes grâce à sa conductivité
thermique très basse qui rend ce matériau approprié pour les applications de gestion ther-
mique. De plus, étant un matériau archétypique pour les thermoélectriques modernes, tels
que les alliages à base du bismuth (BiSb) et les composés du bismuth (Bi2Te3), le bismuth
est une excellente substance modèle pour étudier la thermoélectricité. Potentiellement, les
matériaux thermoélectriques pourraient être utilisés dans l’industrie pour la conversion
d’énergie thermoélectrique ou pour la dissipation de la chaleur en microélectronique.

Le présent travail est basé sur les progrès significatifs réalisés récemment dans notre
laboratoire dans la description des propriétés électroniques et vibrationnelles du bismuth,
et la détermination de la grandeur du couplage électron-phonon à la fois expérimentale-
ment et théoriquement [1, 2, 3, 4]. Les résultats sont devenus un point de départ de ce
travail et m’ont permis d’étudier les propriétés de transport thermique dans le bismuth.

En collaboration avec L. Paulatto (IMPMC), G. Fugallo (École Polytechnique), F.
Mauri (IMPMC) et M. Lazzeri (IMPMC), j’ai utilisé des méthodes avancées de résolu-
tion de l’équation de transport de Boltzmann pour les phonons [5], et de calcul ab initio
des éléments de matrice de l’interaction phonon-phonon [6]. J’ai calculé la dépendance
en température de la conductivité thermique du réseau dans le matériau en volume en
excellent accord avec les rares expériences disponibles [7]. De plus, une description mi-
croscopique très précise de transport de la chaleur a été réalisée et la contribution des
porteurs de charge électrique à la conductivité thermique totale a été déterminée.

En outre, j’ai démontré que la nano-structuration et la photo-excitation sont des
moyens très efficaces dans le bismuth pour contrôler la diffusion des phonons qui por-
tent la chaleur, respectivement par interaction avec les bords de l’échantillon et par in-
teraction phonon-phonon. En contrôlant l’équilibre entre ces deux derniers effets, j’ai
prédit de façon exhaustive l’effet de réduction pour différentes températures et tailles de
nano-structures, pour des mono- et poly-cristaux, semi-conducteurs ou semi-métalliques
[7].

Les méthodes que j’utilise ne contiennent aucun paramètre ajustable et ainsi donnent
un aperçu direct sur les mécanismes microscopiques qui déterminent les propriétés de
transport et les propriétés anharmoniques des matériaux. Cela m’a permis d’analyser
l’élargissement anharmonique, qui est inversement proportionnel à la durée de vie des
phonons, le long des directions de haute symétrie dans la zone de Brillouin, et de montrer
quels sont les principaux canaux de diffusion (collision/fission) des phonons qui régissent
le transport thermique dans le bismuth. De plus, l’atténuation des ondes sonores a été
prédite et mes résultats pourraient être utilisés pour concevoir de futures expériences.
Enfin, l’approximation des grandes longueurs d’ondes [long-wave approximation (LWA)],
largement utilisé dans la littérature, a été validée pour le bismuth et ses limites ont été
déterminées.
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Abstract
This Ph.D. thesis has been devoted to the theoretical study of the lattice thermal

conductivity (LTC) in bismuth and of the possible strategies for its reduction. Thermal
properties of Bi are extremely interesting because of its low thermal conductivity that
makes this material suitable for the thermal management applications. Moreover, being
an archetype material for typical thermoelectrics such as bismuth-based alloys (BiSb) and
compounds (Bi2Te3), bismuth is an excellent model substance for the study of thermoelec-
tricity. The thermoelectric materials could be potentially used in industry, for example,
for the thermoelectric energy conversion or for the thermal dissipation in microelectronics.

The present work stands on the significant progress achieved recently in our labo-
ratory in the description of electronic and vibrational properties of bismuth, and in the
determination of the magnitude of the electron-phonon coupling, both experimentally and
theoretically [1, 2, 3, 4]. These results have become a starting point of my Ph.D. work
and have allowed me to study the thermal transport properties in bismuth.

In collaboration with L. Paulatto (IMPMC), G. Fugallo (Ecole Polytechnique), F. Mauri
(IMPMC) and M. Lazzeri (IMPMC) I have employed the recently developed advanced
methods of the solution of the Boltzmann transport equation (BTE) for the phonon sys-
tem [5] and of ab initio calculations of the phonon-phonon matrix elements [6]. I have
obtained the temperature dependence of the bulk LTC which is in excellent agreement
with the rare experiments and have predicted the LTC at temperatures at which it has
not been measured [7]. A very accurate microscopic description of heat transport has
been achieved and the charge-carrier contribution to the total thermal conductivity has
been determined.

I have demonstrated that nanostructuring and photoexcitation are very efficient routes
to control respectively phonon-boundary scattering and phonon-phonon interaction in
bismuth. By controlling the interplay between these two scattering processes, I have
predicted in an exhaustive way the effect of size reduction for various temperatures and
nanostructure shapes, both single- and polycrystalline ones, and both semiconducting and
semi metallic [7].

The methods I use contain no empirical fitting parameters and give a direct insight
into the microscopic mechanisms determining the transport and anharmonic properties
of the materials. This allows me to analyze the anharmonic broadening that is inversely
proportional to the phonon lifetime, for the various phonon modes along the high sym-
metry directions in the Brillouin zone and show what are the major scattering channels
for coalescence/decays of phonons that govern the thermal transport in Bi. Moreover, the
attenuation of sound waves has been predicted and could be used as a guide for future
experiments. Finally, the long-wave approximation (LWA), widely used in the literature,
has been validated for bismuth and its limitations studied.
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Introduction

Bismuth is an important material in the history of thermoelectricity. It has been first
used in the pioneer experiments of T.J. Seebeck in thermocouples and has remained the
best electron-based thermoelectric material for a long time. Nowadays, the attention of
scientists has mainly moved to compounds based on bismuth, such as Bi2Te3, and to
alloys with antimony, Bi-Sb. However, bismuth is still competitive with respect to other
materials for thermoelectric applications, especially in its nanostructured form that is
expected to have superior thermoelectric properties with respect to bulk bismuth. Indeed,
since bismuth is a chemically pure material, it is technologically easy to produce comparing
with the alloys and compounds. Moreover, the cost of bismuth is very low in comparison
with tellurium1 that makes it advantageous from the economical point of view.

Bismuth has a very high Seebeck coefficient that amounts to S ≈ −110 µVK−1 in
the trigonal direction at T = 200 K [8] that is more than 10 times higher than values
in typical metals [9]. In a magnetic field, the Seebeck coefficient is increased even more,
reaching the value of S ≈ −200 µVK−1 for B > 3 T [10]. Such high values of the
Seebeck coefficient, make bismuth a good candidate for applications like temperature
sensors based on thermocouples with an electric output signal, or like thermal converters
in which an electrical signal is measured by converting it into heat. Moreover, due to
its giant magnetoresistance bismuth can be used as a magnetoresistive thermometer or
magnetorestive sensor [11].

The Seebeck coefficient is defined by the entropy per charge carriers [12]. In metals
the Seebeck coefficient results from a very sensitive balance of energy current by charge
carriers in a small shell near the Fermi energy [13], and is proportional to the ratio
S ∼ kBT

εF
[12]. Since in metals the carriers are degenerate, kBT � εF , the Seebeck

coefficient is small. The situation is different in the case of bismuth, where for T > 60
K one finds εF ∼ kBT and the full Fermi-Dirac statistics must be used [14], resulting in
high values of the Seebeck coefficient. However, in semimetals like bismuth, there are two
types of charge carriers, electrons and holes, at the same time. They contribute to the
Seebeck coefficient with opposite signs partially compensating each other. The electrons
at L points have very small effective masses and, thus, high mobilities resulting in the
dominant electronic contribution and negative sign of the total Seebeck coefficient which
is quite high.

In intrinsic semiconductors and insulators the total entropy spreads over only a few
charge carriers. For the case of two bands separated by an energy gap ∆, the Seebeck

1The price of Bi is about 9$ per kg while the price of Te is 110$ per kg. Data from
http://www.metalprices.com/ on January 2016.
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coefficient is S ∼ ∆
kBT

[12] and in the non-degenerate regime, kBT � ∆, the Seebeck coef-
ficient has very high values. However, the large gap ∆ will spoil the electrical conductivity
σ.

The optimal values of the power factor PF = S2σ lie in the region of concentrations
at the interface between the narrow-gap semiconductors and semimetals. However, in
bismuth the concentration of charge carriers, electrons and holes, is very low n = p =
2.7 · 1018 cm−3 at T = 300 K [14]. It is partially compensated by high mobilities, but
the resulting electrical conductivity is still about two orders of magnitude lower than in
metals [14].

Bismuth has the lowest thermal conductivity among all metals except mercury [15]
which is explained mainly by its high atomic mass2. However, in bismuth there is no
one single mechanism determining the thermal conductivity. Apart from the lattice part,
there are also monopolar contributions from electrons and holes, as well as the bipolar
contribution which exists in semimetals due to the presence of an equal number of elec-
trons and holes, that move together in the same direction transporting energy without
carrying any net charge [16]. The separation of the lattice and non-lattice contributions
is hard from the experimental point of view. Thus, the first objective of this thesis is
to provide reliable quantitative data about the lattice thermal conductivity in the two
crystallographic directions of bulk bismuth.

Since the works of L. D. Hicks and M. S. Dresselhaus, nanostructuring is known to be
a promising route to enhance the thermoelectric properties of materials [17, 18]. First,
due to the confinement effect, nanostructuring increases the asymmetry of the density
of states on the two sides of the Fermi level, leading to the increase of the Seebeck
coefficient. Moreover, nanostructuring is a well-known way to reduce the lattice thermal
conductivity by limiting the longest phonon mean free paths. However, compared to
intensive studies in relatively simple materials such as Si and Si-Ge alloys, systematic
studies are scarce in bismuth. Most of the studies are experimental. Measurements made
in thin films [19, 20, 21] and nanowires [22, 15, 23, 24, 25, 26] have yielded widely scattered
values, preventing a deep understanding of the mechanisms at play in nanostructures [15].
Thus, a theoretical determination of the nanostructuring effect on the lattice thermal
conductivity is the second objective of this thesis.

The methods I use in this thesis are ab initio plus the Boltzmann Transport Equation.
At the beginning of this work, this approach had been applied to graphene, graphite
and diamond by G. Fugallo, L. Paulatto and collaborators at IMPMC (Université Paris
VI) [6, 5]. I had to develop my own tool to analyze the data for bismuth. In particular,
I have performed the analysis of the lattice thermal conductivity contributions in the
Brillouin zone, the analysis of anharmonic broadening along the high symmetry directions
and the analysis of anharmonic matrix elements. Moreover, in this work I will test some
common approximations existing in the literature such as the long-wave approximation.

During my PhD, a paper from my competitors in the Massachusetts Institute of Tech-
nology (MIT) has been published [25], that confirmed my unpublished data of the ab
initio lattice thermal conductivity between 50 K and 300 K and showed a discrepancy
with experiments that will be explained in Chapter 4. Then I have developed the analy-

2Bismuth is the heaviest non-radioactive element in the periodic table.
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sis tool to understand the discrepancy. This enabled me to understand the mechanisms
governing the magnitude of the lattice thermal conductivity on the microscopic level and
particularly the large effect of acoustic-optical anharmonic interaction.

Finally, I have also implemented the Casimir model for wires and thin films for a
three-dimensional and anisotropic material.

In this work, calculations in a high performance computing environment have been
performed. 585 thousands hours of CPU time approximately have been spent in total. In
particular, I have spent about 300 thousands hours of CPU time in Grand Équipement
National de Calcul Intensif (GENCI) and about 285 thousands hours at the local LSI-LLR
cluster.

The thesis consists of two parts. First, in Part I, I consider the general computational
and theoretical framework necessary to perform thermal transport calculations shown in
Part II. I also review the physical properties of bismuth with which my results will be
compared in Part II. Then, Part II gathers all of the results of thermal transport calcula-
tions in bulk bismuth and its nanostructures as well as the analyzes of these calculations.
An Appendix completes the manuscript.

Part I contains 2 chapters.
In Chapter 1, I will formulate the problem of heat conduction in solids. I will define

the system of equations governing thermal transport. I will present the methods to solve
this system. In particular, I will focus my attention on the limitations of the formalism
which I will use in Part II.

In Chapter 2, I will explain why bismuth still remains competitive as a material
for thermoelectric applications. I will discuss the thermoelectric figure of merit of Bi
as well as its ingredients. I will show that the experimental methods used to extract
the lattice part of the thermal conductivity in Bi are non-direct and have considerable
limitations which are the motivation for the theoretical study presented in this thesis.
This information will be required for the discussion of my results in Chapter 4. I will also
discuss nanostructuring of bismuth as a promising route to enhance its thermoelectric
efficiency and to improve its thermal insulating properties.

Part II contains 4 chapters of results.
In Chapter 3, I will discuss vibrational properties of bismuth and I will show the

crucial role of spin-orbit coupling in the phonon dispersion of bismuth. I will present the
results of the calculation of the lattice thermal conductivity and I will show a crucial role
of the the acoustic-optical phonon interaction on its magnitude. I will perform a detailed
analysis of the heat transfer mechanisms in bismuth.

In Chapter 4, I will analyze the results of my calculations of the lattice thermal con-
ductivity with respect to the experimental data discussed in Chapter 2. I will discuss the
anisotropy of the thermal conductivity. Finally, I will evaluate the non-lattice (charge car-
rier) contribution to the thermal conductivity found as a difference between the measured
total thermal conductivity and my calculation of the lattice part.

In Chapter 5, I will discuss the possible mechanisms of the thermal conductivity re-
duction in bismuth. I will study the effect of acoustic-optical phonon interaction and its
possible realization in photoexcited bismuth. I will study the lattice thermal conductivity
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reduction in nanostructures of different geometries, thin films, nanowires and polycrys-
talline grains, compare my results with available experiments and predict the reduction
factors for thin films and grains of different sizes.

In Chapter 6, I will discuss the anharmonic properties of phonons in bismuth. I will
perform a detailed analysis of scattering processes contributing to the anharmonicity of
both acoustic and optical phonons, as well as the role of acoustic-optical phonon interac-
tion on it. I will discuss the sound attenuation in bismuth and predict the results that can
be measured in future experiments. Then, I will analyze the phonon-phonon anharmonic
matrix elements and I will examine the applicability of the long-wave approximation.

Finally, I will draw the general conclusions and perspectives.



Part I

Background: the state of the art

5





Chapter 1

Heat transport

In this Chapter I present the computational framework for the calculations of heat trans-
port in bulk materials and nanostructures, and discuss its limitations. First, in Section 1.1,
I consider the definition of thermal conductivity via Fourier’s law and discuss the scope
of its application. In Section 1.2, I present the microscopic statistical equation, namely
the Boltzmann Transport Equation (BTE), that governs the statistical behavior of out-of-
equilibrium thermodynamic system when the gradient of temperature is imposed. Then,
I discuss the contribution to the total scattering rate due to the different sources of scat-
tering such as phonon-phonon scattering, boundary scattering and isotopic scattering.
In Section 1.4, I present the methods to solve the linearized BTE: the relaxation time
approximation (RTA), as well as the exact methods such as iterative and variational
approaches. Finally, in Section 1.5, I discuss the calculation of the three-phonons an-
harmonic coefficients that determine phonon lifetimes and thus is a crucial ingredient in
phonon transport theory. The general review of thermal transport theory and methods
essentially follows Ref. [27, 5, 6].

1.1 Thermal conductivity

1.1.1 Thermoelectricity: figure of merit ZT
The thermoelectric phenomena refer to the two well-known reciprocal physical effects
consisting in the direct conversion of a temperature difference into an electric voltage
(the Seebeck effect) and vice versa (the Peltier effect 1) [28]. These thermoelectric ef-
fects have a number of promising applications including power generation and refrigera-
tion [29, 30, 31, 32]. The thermoelectric properties are some of the material characteristics
and the potential use of a material for thermoelectric applications is determined by its
thermoelectric efficiency.

The efficiency of a thermoelectric material is defined by the dimensionless figure of
merit ZT [28]

ZT = S2σ

κ
T = PF

κ
T (1.1)

1Thomson effect can be considered as a continuous version of the Peltier effect

7
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where T is the absolute temperature, σ is the electrical conductivity, κ is the total thermal
conductivity and S is the Seebeck coefficient or thermopower. By definition, the Seebeck
coefficient is a coefficient of proportionality between the temperature difference ∆T and
the corresponding voltage difference ∆V

S = −∆V
∆T (1.2)

Together, the square of the Seebeck coefficient S2 and the electrical conductivity σ, are
often denoted as the power factor PF = S2σ [33, 34]. In essence, the figure of merit ZT is
a measure of the competition between electronic transport (defined by the power factor
PF ) and thermal transport (defined by the total thermal conductivity κ) [33]. As can be
seen from formula 1.1, the enhancement of the figure of merit is a very challenging task
since it requires the optimization of three quantities at the same time.

The prime objective of this thesis is the investigation of the thermal conductivity κ
that governs the heat transport in materials. From Eq. 1.1 one can see that the reduction
of thermal conductivity enables us to improve thermoelectric properties of material as
well as to improve its thermal insulation properties. In general, the thermal conductivity
κ contains the contribution due to the lattice vibrations κL and the contribution due to
the charge carriers κE such as monopolar contribution of electrons, holes and bipolar con-
tribution due to the electron-hole pairs (see Section 2.4). The total thermal conductivity
can be found as the sum of all contributions

κ = κL + κE (1.3)

Further discussion in this Chapter will concern only the lattice part of thermal conduc-
tivity if the reverse is not stated.

1.1.2 Thermal conductivity: Fourier’s law.
Fourier’s law is an empirical relationship which defines the thermal conductivity κ as

J = −κ ·∇T (1.4)

where J is the heat flux that is the amount of energy that flows through a unit area
per unit time, ∇T is the gradient of temperature in the direction of heat flow. Thermal
conductivity is a strictly positive quantity that requires the heat flux and the gradient of
temperature to have opposite signs. Otherwise, the heat propagates from lower to higher
temperature that is prohibited by the second law of thermodynamics.

If heat is carried by phonons, the heat flux in the direction of temperature gradient
can be expressed as follows [5]

J = 1
NqV

∑
ν

~ωνcνnν (1.5)

where ~ων is the energy of phonon mode ν with vector q (uniformly sampled with Nq
points in the Brillouin zone) and branch index j, V is the volume of the unit cell, cν =
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∇qων is the phonon group velocity in the direction of heat propagation and nν is the
out-of-equilibrium phonon distribution established after the imposition of the gradient of
temperature. To determine the resulting heat flux J and, thus, to obtain the thermal
conductivity from Eq. 1.4, one needs to know the out-of-equilibrium phonon distribution
nν , the determination of which requires an additional equation: the Boltzmann Transport
Equation (BTE).

1.1.3 Limitation of Fourier’s law: second sound.
In the absence of density and pressure gradients, the continuity equation for heat transport
can be written as [35]

C
∂T

∂t
+∇ · J = 0 (1.6)

where C is the heat capacity per unit volume. Putting Eq. 1.4 into Eq. 1.6, one gets a
well-known partial differential equation of parabolic type that describes the distribution
of heat in a given region over time

∂T

∂t
= D∆T (1.7)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator and D = κ
C

is the thermal diffusivity.
Equation 1.7 is called the heat (or diffusion) equation. The solution of heat equation 1.7
with the initial value

T (r, t = 0) = T0(r), r ∈ R3 (1.8)

is given by

T (r, t) = 1
(4πDt)3/2

ˆ
R3
T0(r′) exp

(
−|r− r′|2

4Dt

)
d3r′ (1.9)

Equation 1.9 shows that even if the initial temperature distribution T0(r′) is localized
in space, the solution T (r, t) at any time t > 0 will be spread out over the entire space
R3. In other words, thermal pulse has an infinite speed of propagation [36, 37, 38] and
I discuss this point in the next paragraph.

Analogy with the harmonic oscillator.

An important partial differential equation describing the propagation of signal with a
finite velocity v is the wave equation

∂2T

∂t2
= v2∆T (1.10)

that after the Fourier transform becomes

d2Tq

dt2
+ ω2

0Tq = 0 (1.11)
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where ω2
0 = v2k2 and Tq =

´
T (r, t) exp (−iq · r)dq. Equation 1.11 has a direct analogy

with a simple harmonic oscillator vibrating with frequency ω0 where the role of tempera-
ture T is replaced by displacement x

d2x

dt2
+ ω2

0x = 0 (1.12)

where ω2
0 = α

m
. The second term of equation 1.12 results from the force determined by

Hooke’s law F = −αx with a positive spring constant α that is balanced by F = md2x
dt2

(first term in 1.12) in the second Newton law.
The heat equation 1.7 after the Fourier transform becomes

dTq

dt
+DTq = 0 (1.13)

It has no analogy with a harmonic oscillator since there is no second order derivative
d2Tq
dt2

corresponding to F = ma. However, the first term dTq
dt

in equation 1.13 resembles a
viscous force F = −β dx

dt
with β being a viscous damping coefficient. One can include this

term into the second Newton law and get the following equation for the damped harmonic
oscillator

d2x

dt2
+ 2ζ dx

dt
+ ω2

0x = 0 (1.14)

where ζ = β
2m is a damping parameter. The solution of this equation 1.14 in case of small

friction ζ < ω0 is
x(t) = A exp (−ζt) sin

(√
ω2

0 − ζ2 − φ
)

(1.15)

where A is a constant and φ is an initial phase. As one can see from equation 1.15,
x(t) is decaying in time with the characteristic time inversely proportional to a damping
parameter ζ.

Application of Vernotte’s correction to Fourier’s law.

One can arrive at equation similar to 1.14 instead of the heat equation 1.7 if, following
Vernotte [36], one assumes that Fourier’s law 1.4 is violated and introduces an extra term
in its left hand side

τss
∂J
∂t

+ J = −κ∇T (1.16)

The physical sense of τss will become clear later. Combining Eq. 1.16 and Eq. 1.6, one
gets the final equation

τss
∂2T

∂t2
+ ∂T

∂t
−D∆T = 0 (1.17)

which becomes
d2Tq

dt2
+ 1
τss

dTq

dt
+ D

τss
k2Tq = 0 (1.18)

after the Fourier transform. Drawing an analogy with Eq. 1.14, one can write 2ζ = 1
τss

and ω2
0 = D

τss
k2. As we have seen, the parameter ζ describes the damping of harmonic
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oscillator and is inversely proportional to the characteristic relaxation time of damping
thermal wave that is now defined by τss. Then, using the expression for ω2

0 obtained
for wave equation 1.11, one can define the velocity for the propagation of a thermal
pulse as vss =

√
D
τss

. Now, if the second-order derivative term is absent in Eq. 1.17 (i.e.
τss = 0), the propagation velocity is infinitely large as it has been concluded from the
heat equation 1.7 .

Second sound.

Equation 1.17 predicts the propagation of heat pulse in form of a damped temperature
wave, instead of the diffusion propagation predicted by Fourier’s law in equation 1.7 [35].
This temperature wave is called second sound similar to first sound when density or
pressure is used instead of temperature in equation. 1.17 [39].

However, the diffusive propagation of heat predicted by Fourier’s law is usually a good
approximation over a wide temperature range in solids. This is due to the important
role of resistive Umklapp processes that do not conserve the crystal momentum and are
activated at high temperatures. In contrast, the non-diffusive hydrodynamic transport
described by equation 1.17 appears for situations involving very short times, extreme
thermal gradients and cryogenic temperatures [40]. At low temperatures, normal processes
conserving the total crystal momentum become dominant and the heat flow is similar to
the hydrodynamic flow of gas. This phenomenon has been observed experimentally in
NaF [41], in Bi [42] and solid helium [43]. Moreover, recent theoretical studies reveals
that the conditions under which second sound can be observed are fulfilled in 2D materials
at temperatures as high as room temperature and above [44, 45].

In further discussion in this Chapter I will rely on Fourier’s law as a definition of the
thermal conductivity.

1.2 The Boltzmann Transport Equation and phonon
scattering processes.

1.2.1 Introduction
The lattice Boltzmann transport equation (BTE) has been first formulated by R. Peierls
in 1929 [46]. It states that, when in the presence of a stationary temperature gradient,
the steady state heat flow (i.e. ∂n

∂t
= 0) is established, the phonon diffusion due to the

gradient of temperature is balanced by the scattering rate due to all kinds of scattering
processes in which phonons are involved [47, 27, 5].

cν ·∇T
(
∂nν
∂T

)
= ∂nν

∂t

∣∣∣∣∣
scatt

(1.19)

I keep the symbolic notation ∂nν
∂t

∣∣∣
scatt

even for the time independent steady state process
as described in textbooks [27, 48]. I consider the situation when external (electric or
magnetic) fields are absent. The difficulty with the Boltzmann transport equation is the
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complexity of the scattering term ∂nν
∂t

∣∣∣
scatt

which includes the transition rates from all
other states. These transition rates, in turn, depend on the occupation number of those
states [27].

The different sources of scattering contribute independently to the scattering term
∂nν
∂t

∣∣∣
scatt

and, thus one can express the latter as

∂nν
∂t

∣∣∣∣∣
scatt

= ∂nν
∂t

∣∣∣∣∣
ph−ph

+ ∂nν
∂t

∣∣∣∣∣
be

+ ∂nν
∂t

∣∣∣∣∣
iso

+ ... (1.20)

where the first term represents the intrinsic phonon-phonon scattering, the second term
is due to the scattering of phonons by sample boundaries, the third term is due to the
isotopic (also called impurity) scattering. In the next paragraphs I discuss in detail the
probability scattering rates due to the mentioned scattering mechanisms. Any other
sources of scattering can be included in Eq. 1.20 in the same way if the analytical form
of the scattering term is known.

1.2.2 Phonon-phonon scattering
The intrinsic phonon-phonon scattering is the prime mechanism determining heat propa-
gation by lattice vibrations in crystals. In principle, processes involving three, four or even
more phonons are possible. However, in this work I will consider only the three-phonon
processes that are enough to determine phonon lifetimes and their mean free paths. The
fourth order terms have no imaginary part and, thus, do not contribute to the phonon
lifetime2 [49, 50, 51].

The scattering rate describing the transition from the initial phonon state |i〉 to the
final phonon state |f〉 due to phonon-phonon interaction is given by Fermi’s Golden
Rule [27]

P ph−ph
|i〉→|f〉 = 2π

~
|〈i|V3|f〉|2 · δ(Ei − Ef ) (1.21)

where V3 = 1
3!
∑
ss′s′′

∂3V

∂us,αR ∂us
′,α′

R′ ∂us
′′,α′′

R′′
us,αR us

′,α′

R′ u
s′′,α′′

R′′ is the cubic term in Taylor expansion of

the potential energy V of the system with respect to atomic displacements {us,αR , us
′,α′

R′ , u
s′′,α′′

R′′ }.
Atoms are labeled by indices s, s′ and s′′ in the unit cells with the lattice vectors R, R′
and R′′; α, α′ and α′′ are the Cartesian indices of the displacement vector components,
δ(Ei−Ef ) is the joint density of states ensuring the energy and momentum conservation
rules.

Generally, two types of three-phonon process are possible, that are coalescence and
decay processes. These processes are schematically illustrated in Figs. 1.1 (a) and (b).
The respective energy and momentum conservation rules for coalescence (plus) and decay
(minus) are

~ων ± ~ων′ = ~ων′′ (1.22)
q ± q′ = q′′ + G (1.23)

2In perturbation theory the effect of cubic anharmonicity to second order and the effect of quartic
anharmonicity to first order is taken into account.
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Figure 1.1: Schematic illustration of three-phonon scattering processes. a) Coalescence
of incoming phonon |q, j〉 with another incoming phonon |q′, j′〉 resulting in the creation
of a single outcoming phonon |q′′, j′′〉. b) Spontaneous decay of a single phonon mode
|q, j〉 into two outcoming phonon modes |q′, j′〉 and |q′′, j′′〉. The figure is extracted from
Ref. [5].

where G is a reciprocal lattice vector. A process in which the total phonon momentum is
conserved, G = 0, is called Normal or N-process [27]. Otherwise, when G 6= 0, the process
is called Umklapp or U-process indicating that the phonon "flop over" in the process [27].

Explicitly treating the matrix elements 〈i|V3|f〉 in eq. (1.21), one can obtain the fol-
lowing expressions for the probability rate of coalescence P ν′′

ν,ν′ and for the probability rate
of decay P ν′,ν′′

ν [27, 5, 6]

P ν′′

ν,ν′ = 2π
Nq~2

∑
G

|V (3)(ν, ν ′,−ν ′′)|2
ωνων′ων′′

nνnν′(nν′′ + 1)δq+q′−q′′,Gδ(~ων + ~ων′ − ~ων′′) (1.24)

P ν′,ν′′

ν = 2π
Nq~2

∑
G

|V (3)(ν,−ν ′,−ν ′′)|2
ωνων′ων′′

nν(nν′ + 1)(nν′′ + 1)δq−q′−q′′,Gδ(~ων − ~ων′ − ~ων′′)

(1.25)
where the third order derivative of the total energy V (3)(ν, ν ′, ν ′′) is defined as

V (3)(ν, ν ′, ν ′′) = 1
N

∂3V

∂Xν∂Xν′∂Xν′′
(1.26)

with the quantity Xν defined in this manuscript as3

∂

∂Xν

=
∑
s,α

√
~

2Ms

zs,αν
∂

∂us,αq
(1.27)

3In Refs. [5, 6] Xν is defined as adimensional quantity ∂
∂Xν

=
∑
s,α

√
~

2Msων
zs,αν

∂
∂us,αq

. In this
manuscript I carry frequency ων outside of the definition ofXν to facilitate the relation with the long-wave
approximation in Sections 1.5.1 and 6.7.
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where zs,αν being the orthogonal phonon eigenmodes of the harmonic dynamical matrix,
normalized in the unit cell, Ms is the atomic mass and us,αq is the Fourier transform of
the atomic displacement us,αR

us,αq = 1
N

∑
R
us,αR e−iq·R (1.28)

where the sum is performed on the lattice vectors {R} and N is the number of cells
involved in the summation [6].

1.2.3 Boundary scattering.

At low temperatures the phonon-phonon scattering processes may be frozen and ineffec-
tive because of the low phonon occupation, leading to very large mean free paths exceeding
the length of the specimen [27]. In this case, the sample boundaries act as highly effi-
cient scattering regions, and limit the apparent mean free path of the carriers [27]. The
probability scattering rate for boundary scattering of phonons is then given by Casimir’s
model [5, 52]

P be
ν = |cbν |

LCasF
nν(nν + 1) (1.29)

where LCas is the Casimir length of the sample, F characterizes the sample roughness [27]
and |cbν | is the modulus of the phonon group velocity vector which has components in the
direction(s) in which the phonon transport is limited by the sample boundaries.

Casimir’s model is also applied to nanostructures with sizes in the nanometer range,
resulting in an efficient scattering by the sample boundaries even at high temperatures [48].

1.2.4 Isotope scattering.

Another scattering mechanism which could contribute to the thermal resistance of crystals
is the elastic scattering of phonons by isotopic impurities. For a crystal containing a
fraction fs of isotopes of type s with a difference of mass ∆Ms with respect to the average
isotopic mass Mavg = ∑

s fsMs, assuming that the isotopes are distributed randomly, one
can use the following expression of the scattering probability rate [5, 53, 54, 55, 56, 57]

P isot
ν,ν′ = π

2Nq

ωνων′ [nν(nν′ + 1)]
∑
s

fs

(
∆Ms

Mavg

)2 ∣∣∣∣∣∑
α

zsα∗ν · zsαν′
∣∣∣∣∣
2

δ(ων − ων′) (1.30)

Large isotope effects have been found for several systems such as diamond [5, 58], graphene [59],
gallium nitride (GaN) [60], cubic boron nitride (c-BN) [61], boron antimonide (BSb) [61],
beryllium telluride (BeTe) [61] and germanium carbide (GeC) [61].

The scattering rate (1.30) has also been used to predict the spectral phonon relaxation
times and the thermal conductivity of doped materials and even alloys [62].



1.3. BOLTZMANN TRANSPORT EQUATION 15

1.2.5 Other sources of scattering.
As has already been mentioned, other scattering mechanisms might be present in material
such as, for instance, the scattering of phonons by electrons in light materials or the
scattering of phonons by dislocations. They are not considered in this work.

1.3 Boltzmann Transport Equation

1.3.1 Full Boltzmann Transport Equation
Now, when the scattering probabilities are derived, one can write down the resulting total
scattering rate ∂nν

∂t

∣∣∣
scatt

which balances the diffusion term in the Boltzmann Transport
Equation (1.19). The total scattering rate of a particular phonon mode ν due to intrinsic
(elastic) three-phonon scattering with two other phonons ν ′ and ν ′′ is a sum over all
possible three-phonon processes [27]

∂nν
∂t

∣∣∣∣∣
ph−ph

=
∑
ν′,ν′′

[
(P ν,ν′

ν′′ − P ν′′

ν,ν′) + 1
2(P ν

ν′,ν′′ − P ν′,ν′′

ν )
]

(1.31)

where the probability P ν′′
ν,ν′ and P ν′,ν′′

ν are given by (1.24) and (1.25) respectively. Here
the factor 1

2 comes from the fact that we count |ν〉 → |ν ′〉 + |ν ′′〉 and |ν ′〉 + |ν ′′〉 → |ν〉
processes twice when summing over all possible ν ′ and ν ′′ in eq. (1.31) [63].

The total scattering rate due to the elastic scattering of phonon with isotopic impurities
is given by [5]

∂nν
∂t

∣∣∣∣∣
iso

=
∑
ν′
P iso
ν,ν′ (1.32)

where the probability P iso
ν,ν′ from eq. (1.30). Finally, the third term in equation (1.20)

represents the scattering of phonon ν with boundary

∂nν
∂t

∣∣∣∣∣
iso

= P be
ν (1.33)

where P be is the probability of boundary scattering from eq. (1.29).
Finally, the Boltzmann Transport Equation can be written as

cν · ∇T
(
∂nν
∂T

)
=
∑
ν′,ν′′

[
(P ν,ν′

ν′′ − P ν′′

ν,ν′) + 1
2(P ν

ν′,ν′′ − P ν′,ν′′

ν )
]

+
∑
ν′
P iso
ν,ν′ + P be

ν (1.34)

1.3.2 Linearization of the Boltzmann Transport Equation
The obtained Boltzmann Transport Equation (1.34) can be linearized, if one assumes
the deviation fν of phonon exact distribution nν from the equilibrium Bose-Einstein dis-
tribution n0

ν = (e~ων/kBT − 1)−1 to be small. Moreover, I assume that the temperature
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gradient is established in x direction. Then, replacing
(
∂nν
∂T

)
=
(
∂n0

ν

∂T

)
and writing the

non-equilibrium phonon distribution as

nν = n0
ν −

(
∂n0

ν

∂~ων

)
∂T

∂x
· fν (1.35)

we arrive at the linearized Boltzmann Transport Equation

−cν
(
∂n0

ν

∂T

)
=
∑
ν,ν′

[
P ν′′

ν,ν′(fν + fν′ − fν′′) + 1
2P

ν′,ν′′

ν (fν − fν′ − fν′′)
]

+

+
∑
ν′
P iso
ν,ν′(fν − fν′) + P be

ν fν (1.36)

where cν is the group velocity projection on the direction of heat propagation in crystal.
The resulting equation is linear and can be written in the matrix form following [5]

A · f = b (1.37)

where A is a scattering matrix defined as

Aν,ν′ =


∑
ν′′,ν′′′

(
P ν′′

ν,ν′′′ +
P ν′′′,ν′′
ν

2

)
+
∑
ν′′
P iso
ν,ν′′ + P be

ν︸ ︷︷ ︸
Aout

 δν,ν
′−
∑
ν′′

(P ν′

ν,ν′′ − P
ν,ν′

ν′′ + P ν′,ν′′

ν ) + P iso
ν,ν′︸ ︷︷ ︸

Ain
(1.38)

and b is a vector consisting of the known quantities

bν′ = −cν′~ων′n0
ν′(n0

ν′ + 1) (1.39)

As can be seen from (1.38), the scattering matrix A can be separated into two parts, Aout

and Ain, where the former is diagonal [5]. This diagonal term, in turn, can be written in
the following form

Aoutν,ν′ = n0
ν(n0

ν + 1)
τRν

δν,ν′ (1.40)

where τRν denotes the total relaxation time of phonon mode ν defined via Matthiessen’s
rule

1
τRν

= 1
τ ph−phν

+ 1
τ beν

+ 1
τ isoν

(1.41)

where the inverse relaxation time due to phonon-phonon interaction is given by

1
τ ph−phν

= Γν
~

= π

~2N0

∑
ν′

∣∣∣V (3)(ν, ν ′, ν ′′)
∣∣∣2

ωνων′ων′′

[
2(n0

ν′ − n0
ν′′)δ(~ων + ~ων′ − ~ων′′)δq+q′−q′′,G+

+(1 + n0
ν′ + n0

ν′′)δ(~ων − ~ων′ − ~ων′′)δq−q′−q′′,G
]

(1.42)
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and the relaxation time due to the boundary effects is

1
τ beν

= |c
b
ν |

LF
(1.43)

and, finally, the relaxation time due to the isotopic scattering is

1
τ isoν

= π

2Nq

ω2
ν

∑
ν′
δ(~ων − ~ων′)

∑
s

fs

(
∆Ms

Mavg

)2 ∣∣∣∣∣∑
α

zsα∗ν · zsαν′
∣∣∣∣∣
2

(1.44)

1.3.3 Expression of the thermal conductivity.
To obtain the lattice thermal conductivity one needs to explicitly write down the phonon
heat flux (1.5) in Fourier’s law (1.4), that results in the following equality

− κ∇T = 1
NqV

∑
ν

~ωνcνnν (1.45)

Then, the linearized Boltzmann Transport Equation can be formally solved by inversion
of the scattering matrix, i.e. f = A−1b, that gives the first-order deviation fν of phonon
exact distribution nν from the equilibrium Bose-Einstein distribution.

By substituting the linearized out-of-equilibrium phonon distribution (1.35) into (1.45)
and taking into account the fact that the equilibrium flux is zero, J0 = ∑

ν ~ωνcνn0
ν = 0,

we arrive at the following expression for the lattice thermal conductivity

κ = − ~
NqV kBT

∑
ν

ωνn
0
ν(n0

ν + 1)cheatν fν (1.46)

that can be formally written as
κ = λb · f (1.47)

with coefficient λ = 1
NqV kBT

. I will use equation 1.46 in my calculations.

1.4 Solution of the Boltzmann Transport Equation

1.4.1 Single mode relaxation time approximation
Let us assume that the diagonal part Aout of the scattering matrix gives a good estimation
for the whole scattering matrix, such that A = Aout. This approximation is called the
Relaxation Time Approximation (RTA) or the Single Mode Approximation (SMA). Then,
the formal solution of the BTE can be written as

fRTA = (Aout)−1 · b (1.48)

Substituting (1.48) into (1.47), one gets

κRTA = λb · (Aout)−1 · b (1.49)
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Taking into account (1.39) and (1.40)

κRTA = ~2

NqV kBT

∑
c2
νω

2
νn

0
ν(n0

ν + 1)τRν (1.50)

Such an approximation is exact if the repopulation loses memory of the initial phonon
distribution and if it is proportional to the equilibrium population of ν. It remains a
good approximation if the repopulation is isotropic [5]. I note that in SMA (RTA) the
Matthiessen rule 1.41 defines the full relaxation time of each phonon mode. This is not
the case in the exact solution.

1.4.2 Exact solution: the iterative approach
To exactly solve the BTE, one must consider the whole scattering matrix A = Aout+ Ain

f =
(
Aout + Ain

)−1
· b (1.51)

Considering Ain as a correction to Aout, one can expand the right side of eq. (1.51) into
geometrical series and obtain the following iterative solution [54] of the linearized BTE

fi =
i∑

j=0

(
−(Aout)−1Ain

)j
(Aout)−1b (1.52)

Then, if the iterative solution fi is known, the lattice thermal conductivity can be found
from equation (1.47)

κIT (fi) = λb · fi (1.53)

It should be noted that the convergence can be achieved only if (Aout)−1Ain < 1.

1.4.3 Exact solution: the variational approach
Another more computationally efficient way to solve the linearized BTE is to employ
a variational principle [27]. Since the scattering matrix A is symmetric, positive and
semi-definite [5], one can minimize the following quadratic form

F (f) = 1
2f ·Af − b · f (1.54)

Indeed, the first variational derivative of functional F (f) is equal to

δF (f)
δf

= Af − b (1.55)

that gives exactly the Boltzmann Transport Equation for a minimal vector fmin

Afmin = b (1.56)



1.5. PHONON-PHONON INTERACTION 19

Then, the second variational derivative gives the scattering matrix that is positive

δ2F (f)
δf2 = A > 0 (1.57)

Alternatively, one can maximize the functional of thermal conductivity

κV (f) = −2λF (f) (1.58)

The resulting vector fmin that minimizes functional F (f) in (1.54) gives the lattice thermal
conductivity κ(fmin) = −2λF (fmin). All other solutions f will result in lower values of
the lattice thermal conductivity [5].

1.4.4 Conclusions
In this manuscript, most of the results have been obtained with the variational solution
of the BTE described in Section 1.4.3. In Chapter 3, I also compare the exact solution
with the one obtained with the Single Mode Approximation (SMA) of Section 1.4.1. Part
of the analysis has been performed with the help of the results obtained with the iterative
approach of Section 1.4.2. Both exact solutions, the variational solution and the iterative
one, gives the same value of the lattice thermal conductivity in my calculations.

1.5 Phonon-phonon interaction
As we have seen in Section 1.2.2, the key ingredients to model the intrinsic phonon-phonon
scattering are the anharmonic matrix elements. These matrix elements govern the phonon
lifetimes (eq. (6.1)) and scattering rates (eqs. (1.24) and (1.25)), that determine the
phonon transport in materials. In the following, I consider the existing approximations
and computational methods to obtain the anharmonic matrix elements.

1.5.1 The long-wave approximation (LWA)
From the elastic theory, one can obtain for the long-wave acoustic phonons the following
approximate expression for the anharmonic matrix elements [64, 65, 66]

V (3)(q,q′,q′′) =
∑

αβµνζξ

Sαβ,µν,ζξ × qαq′γq′′µ × eβeδeν (1.59)

where qα is a phonon wave-vector, eβ is the phonon polarization, Sαβ,µν,ζξ is a combination
of the second and third-order elastic constants

Sαβ,µν,ζξ = Cαβ,µν,ζξ + δαµCβν,ζξ + δαζCµν,βξ + δµζCαβ,νξ (1.60)

and the Greek indices run over {x, y, z}.
However, to exactly calculate the anharmonic matrix elements (or anharmonic force

constants) one must use advanced computational methods such as the supercell approach
or the reciprocal space method that are described next.
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1.5.2 The supercell approach: a real space method.
Both harmonic and anharmonic force constants can be extracted by the direct real space
method. In this method a small displacement of an atom placed in a supercell is per-
formed. This displacement produces the forces acting on the surrounding atoms. The
ratio between the components of the induced force and the components of the imposed
small displacement gives the harmonic force constants. The third and higher order an-
harmonic force constants, in turn, can be calculated from finite differences of forces.

However, since the real space method to extract the anharmonic force constants re-
quires a supercell that contains several primitive unit cells, it is computationally very
expensive. In general, one can reduce the number of force constants by applying the
symmetries of the force constants that are deduced from the rotational and translational
invariances of the system as well as from the symmetries of the crystal itself. This method
has been recently implemented as a part of an open source code ShengBTE [67] and is
described in detail, for instance, in Refs. [68] and [69].

1.5.3 The "2n+1" theorem: a reciprocal space method
The second-order interatomic force constants interpolated with the Fourier transform to
the reciprocal space are called the dynamical matrices. These dynamical matrices can be
obtained by using the density functional perturbation theory (DFPT) within the linear
response formalism [70]. In this approach the small periodic displacements of atoms uq
produce a perturbing potential and the resulting electron-density linear response of a
system, determining the dynamical matrices, is calculated.

The anharmonic force constants interpolated with the Fourier transform to the recip-
rocal space are called the anharmonic matrix elements. In general, these matrix elements
are given by the derivatives of the system total energy which, in turn, can be calculated
by using the "2n+ 1" theorem. This theorem states that the knowledge of the derivatives
of the wave functions up to order n allows one to calculate the derivatives of the energy
up to order "2n + 1" [70]. Thus, to calculate the third order derivatives of total energy,
one needs to compute only the first order derivatives of the ground-state density and
wave functions. As a positive consequence, this method does not require any expensive
supercell calculations. Moreover, the responses to perturbations of different wavelengths
are decoupled [70]. Recently, this method has been implemented by L. Paulatto et al. [6]
and will be used further in this work.

1.6 Limitations of the formalism.
The lattice thermal conductivity of equation 1.46 relies on Fourier’s law that, as we have
seen in Section 1.1.3, is not appropriate for the description of second sound. However,
using the BTE one can study the conditions for the hydrodynamic flow of phonons that
is necessary for the existence of second sound. Namely, one must have

ΓU < ΓB < ΓN (1.61)
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where Γ is phonon linewidth for Normal (N), Umklapp (U) and Boundary (B) scattering
processes solely. In my formalism, the BTE yields only the stationary state for the non-
equilibrium distribution function. The use of molecular dynamics is a possible solution to
study the transition non-steady state and observe the propagation of heat pulse in form
of second sound. Such simulations have not been done in this work.

1.7 Summary and outlook
In this Chapter I have briefly reviewed the general theory of thermal transport with
emphasis on approaches used in this work for the thermal conductivity calculations. First,
I have defined the thermal conductivity with empirical Fourier’s law and I have discussed
its possible violation resulting in the heat propagation in form of damped temperature
wave instead of the usual diffusive propagation predicted by Fourier’s law. Then, I have
presented the Boltzmann Transport Equation that provides the out-of-equilibrium phonon
distribution necessary for the determination of thermal conductivity. I have discussed in
detail the scattering term that balances the diffusion. I have presented the analytical
expressions of contributions to the total scattering rate due to phonon-phonon scattering,
boundary scattering and isotopic scattering. Then, I reviewed the methods to solve the
BTE such as RTA, iterative and variational approaches. Finally, I have reviewed the
methods of calculation of three-phonon anharmonic coefficients that govern the magnitude
of internal phonon-phonon scattering and define phonon lifetimes.

The next Chapter will be devoted to the brief up-to-date review of thermal and ther-
moelectric properties of bismuth and its compounds. I will also discuss some particular
phenomena existing in bismuth at low temperatures such as phonon drag and second
sound. Moreover, I will also shortly discuss the thermal conductivity of bismuth nanos-
tructures and thin films.
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Chapter 2

Material: bismuth.

This Chapter provides the description of the physical properties of bismuth with which my
results will be compared. It is devoted to the brief review of thermal and thermoelectric
properties of bismuth. First, in Section 2.1, I discuss an important historical role of
bismuth as a material used in the first experiments with thermocouples that led to the
discovery of thermoelectricity. Then, I consider the archetype role of bismuth for modern
thermoelectric materials, such as bismuth telluride and the bismuth-antimony alloy, that
are already used in technological applications nowadays. In Section 2.2, I show why pure
bismuth still remains competitive for thermoelectricity and discuss in detail the ingredients
that determine the figure of merit ZT : the Seebeck coefficient, the electrical conductivity
and the thermal conductivity. In particular, I focus my attention on the remarkable
thermal insulating properties of bismuth and discuss the difficulties in the experimental
determination of the mechanisms governing thermal conduction in this material. I also
briefly consider some interesting effects, such as the second sound and the phonon drag,
observed in bismuth at low temperatures. In conclusion, in Section 2.5, I discuss bismuth
nanostructures and bismuth thin films as promising candidates for thermoelectricity and
outstanding thermal insulators.

2.1 Archetype material for thermoelectrics.

2.1.1 Seebeck effect on Bi/Sb thermocouple
Bismuth played an important role in the history of thermoelectricity. In 1821, a Ger-
man physicist Thomas Johann Seebeck discovered the effect that bears his name on a
bismuth-antimony thermocouple that is a circuit made from two dissimilar metals with
junctions [71]. He found that a compass magnet is deflected when the junctions are put
into the heat reservoirs of different temperatures. A schematic picture of the experiment
is shown in Fig. 2.1. First, this effect has been mistakenly attributed to magnetic phe-
nomenon. However, later Seebeck understood that the reason is the presence of an electric
current flowing in the circuit. The discovered effect has been entitled in honor of T.J.
Seebeck.

Seebeck’s finding was only the first step in a series of exciting discoveries of thermo-

23
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electric (Peltier, Thompson) and magnetothermoelectric (Nernst, Ettingshausen) effects.
The importance of thermoelectric phenomena has been realized later in view of the pos-
sible applications to energy conversion and refrigeration. However, to widely use thermo-
electricity in industry, one needs to enhance the thermoelectric efficiency. As has been
mentioned in Chapter 1, this task is quite challenging since it requires the optimization
of three independent quantities at the same time: the Seebeck coefficient S, the electrical
conductivity σ and the thermal conductivity κ. Nowadays, the advanced methods on
the interface of physics, chemistry and engineering are applied to solve this critical and
important problem, in conjunction with the modeling of transport properties.

Today, bismuth still remains a competitive thermoelectric material due to its high
Seebeck coefficient and low thermal conductivity. However, the electrical conductivity
of bismuth is very low. Meanwhile, it was demonstrated that bismuth would be an
outstanding material for n-type thermoelements, whenever the positive holes as minority
carriers were absent [72].

Nowadays the attention of scientists is also attracted by the materials based on bismuth
such as Bi2Te3 and the Bi-Sb alloy that will be discussed in the next paragraphs.

Figure 2.1: A schematic picture of a thermocouple based on bismuth and antimony
metallic wires with two junctions put in the reservoirs at different temperatures. Due
to the Seebeck effect, the established temperature difference leads to an electric current
flowing in the circuit that can be detected by the attached voltmeter. The picture has
been extracted from Ref. [73].
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2.1.2 Bismuth compound: Bi2Te3

Bulk bismuth telluride is a narrow gap semiconductor with a high mean atomic weight [74].
In 1954 H.J. Goldsmid and R.W. Douglas first reported that bismuth telluride, Bi2Te3,
is an efficient thermoelectric material [74]. In their experiment, they constructed a ther-
mocouple by using melt-grown Bi2Te3, which turned out to have an excess of Bi atoms,
leading to a p-type conduction, in conjunction with pure (n-type) bismuth. Later, n-type
material based on Bi2Te3 doped with iodine donor impurities has been produced [75].

Generally, the inclusion of donor (Bi2Se3) and acceptor (Sb2Te3) impurities has proved
to lead to much higher values of ZT for n-type and p-type Bi2Te3 [76]. To get the highest
value of ZT , one needs to optimize the stoichometry of an alloy. However, it has been
firmly established that ZT at ambient temperature has a maximum value of 1.0 for
large-grained p-type (Bi-Sb)2Te3 and is almost as high as 0.9 for aligned n-type Bi2(Se-
Te)3 [76]. Significant advances can be achieved by nanostructuring. Recently, the values
ZT = 1.41 for nanostructured p-type Bi0.5Sb1.5Te3 and ZT = 1.19 for nanostructured
n-type Bi2Te2.82Se0.18 have been reported [76].

The superior thermoelectric properties of Bi2Te3 are reinforced by the low values of
the thermal conductivity that are due to the high mean atomic weight of this alloy and to
a strong impurity (isotopic) scattering. The lattice thermal conductivity at T = 300 K for
different concentrations of Sb2Te3 and Bi2Se3 are shown in Fig. 2.2. As one can see, the
minimum values κL ≈ 0.45 Wm−1K−1 for x ≈ 62% of Sb2Te3 and κL ≈ 0.90 Wm−1K−1

for x ≈ 25% of Bi2Se3 have been measured in experiments [77]. These values are lower
than κL ≈ 1.3 Wm−1K−1 in pure Bi2Te3 [77].

Bismuth telluride is the material that is already used in a variety of thermoelectric
applications such as thermoelectric coolers and thermoelectric generators [30].

2.1.3 Bismuth alloys: Bi-Sb
Another potentially important thermoelectric material is the alloy of bismuth and an-
timony1 [72]. Addition of Sb acts as a neutral dopant, and thus the concentrations
of electrons and holes are equal in both Bi and in the Bi-Sb alloy [80]. However, the
band structure of Bi-Sb alloy changes as a function of Sb concentration. Its evolution is
schematically shown in Fig. 2.3 [79]. As one can see, in pure bismuth there is an overlap
between the highest valence band at T point and the lowest conduction band Ls at L
point resulting in the semimetallic structure of Bi. With the increase of Sb concentration,
the valence band at T point goes down very fast opening the band gap at a Sb concentra-
tion of x = 7%. Thus, the Bi-Sb alloy becomes semiconducting and remains so until the
valence band at the H point has the same energy as the conduction band at L, forming
a semimetallic state for a x = 22% Sb concentration [78, 79]. A maximum positive gap
in the semiconducting state of about 30 meV has been observed at Sb concentrations
15 < x < 17% [72, 79]. The presence of the energy gap in semiconducting Bi-Sb alloys
results in the enhancement of the Seebeck coefficient [80].

The differences in the atomic properties2 of Bi and Sb lead to the formation of local
1Similarly to Bi, Sb is also a group V semimetal with the same A7 rhombohedral structure.
2The atomic masses of Bi and Sb differ by a factor of 1.71: MBi ≈ 209, MSb ≈ 122
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Figure 2.2: Lattice thermal conductivity of Bi2Te3 at T = 300 K as a function of Bi2Se3
(left panel) and Sb2Te3 (right panel) concentrations. The points and lines denote the
measured values and interpolations reproduced after Ref. [77]. The anoumalous sharp
rise in κ in the range of 25-50 % of Bi2Te3 concentrations might be explained by the
superlattice formation in experiment [75].
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Figure 2.3: Schematic illustration of the band edge configuration of Bi1−xSbx alloys as
a function of Sb concentration x at T = 0 K. The band edges at T and L high-symmetry
points in the Brillouin zone and the point H of the hole extremum experimentally observed
in Ref [78] are denoted by the corresponding letters. The semiconducting state is observed
in the range of Sb concentrations 7% < x < 22%. The picture is extracted from Ref. [79].
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defects at antimony-atom sites in the crystal lattice of Bi-Sb alloy, which causes the intense
scattering (similar to isotopic scattering) of phonons by these defects [81]. The magnitude
of this scattering can be enhanced with the number of defects (the Sb concentration) in
an alloy. This results in the reduced lattice thermal conductivity3, which also helps to
increase the thermoelectric figure of merit [81, 48].

However, the energy band gap in semiconducting Bi-Sb alloys is too small to be used in
thermoelectric applications at ordinary temperatures. For instance, at ambient tempera-
ture the figure of merit is ZT = 0.20 in the binary direction and ZT = 0.31 in the trigonal
direction at Sb concentration of 12% close to the gap maximum [83]. Nevertheless, Bi-Sb
alloy significantly improves its thermoelectric properties at lower temperatures. For the
same alloy with 12% Sb concentration at T = 120 K, the figure of merit is increased to
ZT = 0.25 in the binary direction and ZT = 0.51 in the trigonal direction [83].

Despite of all the advantages of Bi-Sb alloys, like higher Seebeck coefficient and
lower thermal conductivity with respect to pure Bi, it should be mentioned that the
homogeneous single crystal Bi-Sb alloys are exceedingly difficult to produce technologi-
cally [80, 84].

2.1.4 Conclusion.
In conclusion, there is presently a high research activity in the development of new mate-
rials based on bismuth and in the study of their thermoelectric properties [76, 72]. These
studies show that the highest ZT values can be achieved in nanostructured and doped
materials of optimized stoichiometry.

2.2 Thermoelectric properties of bismuth
Bismuth is a semimetal with remarkable and highly anisotropic transport properties such
as long carrier mean free paths, small effective masses at L point [4] and long electron
wavelengths [15, 85]. It is close to be a good thermoelectric material because of the
asymmetry between electron and hole densities of states, which make the thermopower S
high [12], and also because of the high mean atomic weight resulting in the low intrinsic
lattice thermal conductivity [15]. However, the presence of two types of carriers, electrons
and holes, at the same time and approximately equal (and low) concentrations is not
advantageous for the electrical conductivity that is about two orders of magnitude lower
than in metals [14]. Moreover, it results in the additional bipolar contribution which is
estimated to give respectively about 29% and 12.5% of the total thermal conductivity in
the binary direction and trigonal directions at ambient temperature [8] (see Section 2.4).

The thermoelectric figure of merit in two principal directions, along the trigonal axis
(green solid line) and along the binary axis perpendicular to the trigonal one (blue solid
line), is shown in Fig. 2.4. As one can see, ZT is almost 6.5 times higher if the current
flows in the trigonal direction, rather than in the binary direction [8]. Below I consider

3In Bi-Sb alloy at T > 20 K there is also an important contribution to thermal conductivity due to
the charged carriers [81]. This component has been found to be major in the region of temperatures
77 < T < 300 K [82].
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Figure 2.4: Temperature variation of the thermoelectric figure of merit ZT of bismuth
in the binary and trigonal directions. Reproduced after Ref. [14].
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all three ingredients determining the thermoelectric figure of merit separately and show
that this giant anisotropy results from the Seebeck coefficient S and from the thermal
conductivity κ.

2.3 Electronic properties of bismuth: electrical con-
ductivity and Seebeck coefficient

2.3.1 Electrical conductivity.
Bismuth has a very low density of charge carriers, electrons and holes, n = p = 2.7 · 1018

cm−3 at T = 300 K that is more than four times less than values in typical metals n ∼ 1023

cm−3 [86]. The density decreases even more with the decrease of temperature reaching
the value of n = p = 3.0 · 1017 cm−3 at liquid helium temperature. Thus, one can expect
to get very low values of the electrical conductivity as well. However, as one can see in
Fig. 2.5 the electrical conductivity of bismuth has a value of σ ≈ 106 Sm−1 that is only
two orders of magnitude lower than in metals σmetal ∼ 108 Sm−1. It is explained by the
very small effective masses of carriers in bismuth (m∗ ∼ 0.001me) with respect to the
free electron mass me. It results in the high carrier mobilities that compensate a low
density of charge carriers and leads to values of the electrical conductivity higher than
those expected from the densities of charged carriers [14].

One can also see in Fig. 2.5 that the electrical conductivity is almost isotropic and
grows as T−1 with the decrease of temperature. At ultra-low temperatures the regime
changes to T−2 growth and reaches the value of σ ≈ 5 · 108 Sm−1 [14].

2.3.2 Seebeck coefficient
The Seebeck coefficient S, or thermopower, enters the thermoelectric figure of merit as
S2. It has been defined in Eq.1.2 as the ratio between the thermoelectric voltage and the
gradient of temperature. Generally, the diffusion and the phonon dragging of charge car-
riers are the two major mechanisms governing the Seebeck coefficient [14]. The resulting
Seebeck coefficient contains the diffusion and phonon drag contributions, Sdiff and Sdrag,
and the phonon drag contribution is estimated as

Sdrag = S − Sdiff (2.1)

where S is the total Seebeck coefficient measured in experiment. The diffusion term in
metals can be found with the Mott formula

Sdiff = π2k2
B

3eεf
T
∂ ln σ(ε)
∂ ln ε

∣∣∣∣∣
ε=εF

PAge29, titleofparagraph2.4.6 (2.2)

where the energy-dependent electrical conductivity σ(ε) is defined in

σ =
ˆ
σ(ε)

(
−∂f(ε)

∂ε

)
dε (2.3)
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Figure 2.5: Temperature variation of electrical conductivity σ of bismuth in the binary
(green curve) and trigonal (blue curve) directions. Reproduced after Ref. [8].
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Figure 2.6: Temperature variation of the absolute Seebeck coefficient S of bismuth in
the binary (Bi11) and trigonal (Bi33) directions. Reproduced after Ref. [14].
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with f(ε) being the equilibrium Fermi-Dirac distribution function. The diffusion part
Sdiff in Eq. 2.2 varies linearly with temperature and usually dominates at high tempera-
tures [14]. It results from a very sensitive balance of energy current by charge carriers in
a small shell right below and above the Fermi energy εF and is favored by the asymmetry
of the electronic bands near the Fermi level [12, 13]. Diffusion takes place from hot to cold
regions and is counterbalanced by the thermoelectric electromotive force (e.m.f.) ∆V in
Eq. 1.2.

Semiconductors usually have the Seebeck coefficient S ∼ 10−3 VK−1 that is much
higher than S ∼ 10−6 VK−1 in pure metals [14]. Semimetals like bismuth, in turn, possess
intermediate values of the Seebeck coefficient S ∼ 10−4 − 10−5 VK−1 that is limited by
the presence of two types of charge carriers at the same time. Indeed, if two types of
carriers coexist, the absolute Seebeck coefficient S can be expressed as

S = σeSe + σhSh
σe + σh

(2.4)

where Se and Sh are the partial Seebeck coefficients of electrons and holes, and σe and σh
are the partial electrical conductivities of electrons and holes. The two contributions in
the denominator have different signs and partially compensate each other.

The temperature variation of the absolute Seebeck coefficient of bismuth along the
binary and trigonal directions is shown in Fig. 2.6. As one can see, the Seebeck coefficient
is negative everywhere except of the small region below T < 3 K in the trigonal direction,
demonstrating that the electronic part Se is dominant. The absolute Seebeck coefficient
is highly anisotropic and, in the high temperature region, shows maximum values of
S ≈ −110×10−6 VK−1 at T ≈ 200 K in the trigonal direction and S ≈ −50×10−6 VK−1

at T ≈ 300 K in the binary direction. This high temperature behavior has been explained
by Gallo et al. [8] by accounting only for the diffusion contribution of electrons and holes
to the Seebeck coefficient.

2.3.3 Phonon drag
At low temperatures the Seebeck coefficient in the binary direction has a sharp and narrow
peak with the maximum value of S ≈ −100 × 10−6 VK−1 at T ≈ 3 K. This peak has
been attributed to the guide role of phonon drag mechanism which accounts for the drift
of electrons dragged by the phonon flow [14, 87, 88]. The phonon drag process has a two-
step character [89]. First, the non-equilibrium thermal phonons transfer an additional
momentum to low-energy phonons via Normal phonon-phonon collisions. The transfer
is especially intense at low temperatures, when Normal phonon collisions dominate over
resistive Umklapp collisions. Then, the low-energy phonons transfer the momentum to
electrons via electron-phonon interaction. The important role of low energy phonons is
explained by the fact that they have a small enough wavevector to obey the conservation
rules while interacting with electrons. In contrast, the phonon momentum of high energy
thermal phonons substantially exceeds the characteristic momentum of electrons [89].

The phonon drag effect might also result in an enhancement of the electrical con-
ductivity [14]. In principle, phonons should be less affected by electrons because of the
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hight atomic masses comparing with electrons. However, to the best of my knowledge,
there were no attempts to evaluate the effect of electron-phonon interaction on the lattice
thermal conductivity in the phonon drag temperature region.

2.4 Thermal conductivity of bismuth.
Bismuth has the lowest thermal conductivity among all metals except mercury. This
low thermal conductivity is explained mainly by its high atomic mass [15]. The thermal
conductivity of bismuth is highly anisotropic and strongly varies with temperature, as
shown in Fig. 2.7. As one can see, the thermal conductivity is lower in the trigonal
direction than in the plane perpendicular to it. For example, at ambient temperature
κtot = 11.4 WK−1m−1 [8] in the binary direction and κtot = 8.0 WK−1m−1 in the trigonal
direction [90].

2.4.1 Heat transport mechanisms in bismuth.
Contrastingly to metals and insulators where electrons and phonons respectively are the
only heat carriers, in bismuth there is no one single mechanism governing the heat trans-
port at all temperatures [14]. The relative importance of different heat carriers changes
with temperature and, thus, one needs to separate the lattice and non-lattice contribu-
tions. One of the objectives of this thesis is to provide ab initio data for the lattice part
which will help separating the contributions and complement the experimental data where
they are not available.

Material Lattice Electrons, holes Bipolar
Insulator All temperatures - -

Semiconductor All temperatures Usually weak -
Metal - All temperatures -

Bismuth 2-20 K Below 1K, above 20K Above 50 K
Antimony Low temperatures All temperatures Weak
Arsenic Low temperatures All temperatures -

Table 2.1: Summary of the major heat transport mechanisms existing in materials
including the group V elements such as As, Sb and Bi. The table has been extracted from
Ref [14].

Table 2.1 summarizes how most of the known heat transport mechanisms contribute
to the total thermal conductivity of the materials [16]. As one can see, in bismuth at
ultra-low temperatures below 2 K and temperatures from 20 K to 50 K the major role
is played by the monopolar contributions of electrons and holes. At temperatures higher
than 50 K a significant role is played by the bipolar thermodiffusion. When electron-hole
pairs are created at the hot end of the sample, they flow down the temperature gradient
and recombine at the cold end. This gives rise to the additional transport ionization
energy [92]. Between 2 K and 20 K the heat is primarily transferred by phonons.
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Figure 2.7: Total thermal conductivity measured in the binary (black curve) [14] and
trigonal [91, 90] (blue curve) directions. The pink region denotes the temperature range
where the lattice thermal conduction is found to be the single dominant mechanism of heat
transport [14]. According to Ref. [14], other mechanisms are also indicated by vertical
legends in the temperature regions were they are found to play a significant role.
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2.4.2 Evaluation the non-lattice thermal conductivity.
The lattice thermal conductivity has been first evaluated by C. Gallo et al. [8] as a differ-
ence between the measured total thermal conductivity and the non-lattice part calculated
analytically. The latter can be found as a sum of the ordinary monopolar contributions of
electrons and holes, κe and κh, and an extra bipolar term κeh which exists in semimetals
due to the presence of an equal amount of electrons and holes that move together in the
same direction, transporting energy without carrying any net charge [16]

κE = κe + κh + κeh (2.5)

The monopolar terms for electrons κe and holes κh can be estimated by means of the
empirical Wiedmann-Franz law

κi = LiTσi (2.6)

where Li is the Lorenz number and σi is the electrical conductivity due to electrons, i = e,
and holes, i = h. The Lorenz number is known for metals L0 = 2.44 × 10−8 V2K−2 and
supposes that the charge carriers are highly degenerate [14]. However, this condition does
not hold in bismuth at high temperatures and instead the monopolar contributions to
thermal conductivity can be expressed in a way analogous to semiconductors [14]

κi = T

(
k

e

)2

γ(ξe) (2.7)
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with Fj(ξ) =
´∞

0
xjdx
ex−ξ+1 being the Fermi-Dirac integral and ξi = Ei

f/kBT are the adimen-
sional Fermi energies of electrons and holes measured from the edges of their respective
bands [93, 8]. The derivation of Eq. 2.5 relies on the assumption of the quadratic dis-
persion law E(k) ∼ k2 and assumes the power law for the charge carrier relaxation time
τe = τe0E

s with s = −1/2 for the dominant intravalley acoustic lattice scattering.
The bipolar contribution in Eq. 2.5 can be expressed as [93, 8]

κeh = T
σeσh
σe + σh

(Se − Sh)2 (2.9)

κeh is particularly important when the mobilities of electrons and holes are compara-
ble [16]. As one can see, the derivation of C. Gallo heavily relies on the description of the
details of the band structure, which in principle can lead to inaccurate results, as I will
show in Section 4.2.

2.4.3 Measurements under a strong magnetic field.
Another attempt to separate the lattice and non-lattice (charge carrier) contributions to
thermal conductivity by means of a strong magnetic field has been applied by C. Uher
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et al [16]. This method relies only minimally on an accurate theoretical description of
the electronic properties of bismuth and thus avoids the drawbacks of Gallo’s theoretical
analysis. Application of a magnetic field does not change the lattice thermal conductivity,
while the remaining non-lattice part is now associated with the non-vanishing Nernst and
Ettingshausen coefficients and can be expressed as [16]

κEii (B) = κ̄Eii (B)− Tαsi(−B)σsl(B)αli(B) (2.10)

where i denotes a crystallographic direction (1 - binary, 2 - bisectrix, 3 - trigonal), κ̄Eii (B)
is a part of the charge carrier thermal conductivity vanishing when B → ∞, αsi(B) is
the thermomagnetic tensor, σsl(B) is the galvanomagnetic tensor. These tensors, in turn,
can be expressed in terms of partial Seebeck coefficients and charge carrier (electron and
hole) mobilities.

By measuring the thermal conductivity κ⊥(B) = κ11(B) with the magnetic field along
the bisectrix and trigonal axis, B2 and B3, and using the theoretical ratio κE11(B2→∞)

κE11(B3→∞) for
the remaining electronic part of the thermal conductivity, the lattice part of thermal
conductivity can be determined [16]

κL⊥ = κ⊥(B3 →∞)− κ⊥(B2 →∞)− κ⊥(B3 →∞)
κE11(B2→∞)
κE11(B3→∞) − 1

(2.11)

When the temperature becomes sufficiently low, the second term in equation 2.11 vanishes
and the lattice thermal conductivity is well approximated by the high magnetic field limit
of the total thermal conductivity. As a limitation, the method requires the classical field
conditions µiBi � 1, which restricts its application to low temperatures, since the mo-
bilities in bismuth becomes small at high temperatures. The lattice thermal conductivity
has been extracted only in the binary direction below 150 K [16].

2.4.4 Comparison of the experimental results.

To compare the results of the two approaches described above, I plot the measured lattice
thermal conductivity in Fig. 2.8 (blue and red curves) and the total thermal conductivity
(black curve) in the binary direction. As one can see, the results of Gallo (red curve)
are considerably lower providing the value κL ≈ 6 WK−1m−1 at T ≈ 150 K, while Uher
gets κL ≈ 10 WK−1m−1 that is more than 60% higher. However, the measurement of
Uher does not rely on the electronic properties of bismuth, that are approximated by
simple models in the estimation of Gallo, and, thus, are more preferable as I will show
in Section 4.2. However, the recent study of Ref. [94] shows, that phonons might be
sensitive to the presence of the magnetic field even in a diamagnetic material such as
in InSb where the lattice thermal conductivity has been found to be decreased by 12%.
Thus, the theoretical calculations should be performed to provide the reliable data of the
lattice thermal conductivity that is an objective of this thesis.
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Figure 2.8: Lattice thermal conductivity in the binary direction estimated in the exper-
iment of C. Gallo [8] (red curve) and measured by C. Uher [16] with the magnetic field
method (blue curve). The total thermal conductivity from Ref. [14] is also shown (thick
black solid curve).
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2.4.5 Previous ab initio calculations of the lattice thermal con-
ductivity.

The first attempt to calculate the lattice thermal conductivity of bismuth in the limited
range of temperatures 50-300 K has been done and published in 2014 by S. Lee et al. from
Massachusetts Institute of Technology (MIT). The authors used an iterative approach (see
Section 1.4.2) to solve the BTE and a real space approach to compute the phonon-phonon
matrix elements (see Section 1.5.2). In Chapter 3 I will also compare the results of my
calculations with those of S. Lee.

2.4.6 Scattering mechanisms contributing to the lattice thermal
conductivity.

Bismuth is an excellent substance for modeling of the lattice thermal conductivity and
for the study of thermal transport regimes. In contrast to other materials, bismuth has
only one single isotope and, thus, high quality (high purity) Bi single crystals are avail-
able for experiments [87]. The electron-phonon scattering does not expect to significantly
contribute to the lattice thermal conductivity at high temperatures due to the low con-
cetration of charge carriers (1018 cm−3) [14]. For instance, in Si the increase of carrier
concentration up to 3 orders (from 1015 to 1018 cm−3) results in the 2.8% decrease of
the lattice thermal conductivity only [95]. Thus, in the most of the temperature range,
thermal transport is determined by the competition between two major mechanisms:
phonon-phonon scattering and phonon scattering by boundaries.

2.4.7 Second sound
In Chapter 1, I have shown that the violation of empirical Fourier’s law results in the
heat propagation in form of a damped temperature wave instead of a propagation with
the diffusion equation described by Fourier’s law 1.4. This temperature wave is called
second sound. In Section 1.1.3, I have also discussed the capability of my formalism to
predict the conditions necessary for the propagation of second sound in materials.

Due to its isotopic purity and high degree of chemical and physical perfection, bis-
muth is one of the materials where second sound has been observed experimentally [42]. In
Fig. 2.9 one can see the detected signal of heat pulse propagating along the bisectrix direc-
tion over a distance of l = 9.06 mm. At the lowest temperatures T < 2.1 K there are three
distinct peaks attributed to the ballistic propagation of three acoustic (one longitudinal
and two transverse, fast and slow) phonon modes. Then, in the interval of temperatures
3 K < T < 3.5 K the damped second-sound mode consisting of a thermodynamic mixture
of all three modes is registered by the detector [42]. With further increase of temperature,
the pulse is broadened and delayed in arrival revealing the diffusion regime of propagation.
The transition to the diffusive regime is related to the apparent role of resistive Umklapp
processes that are activated with the increase of temperature.

The analogous behavior of heat pulse propagation has also been observed in the trig-
onal direction where the second sound is detected, for 2.1 K < T < 3.5 K [42].
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Figure 2.9: Heat pulse propagation in Bi along the bisectrix axis over a distance of l =
9.06 mm. The three different propagation regimes have been observed. First, the ballistic
propagation of three acoustic (longitudinal L, fast transverse FT and slow transverse ST)
modes is clearly identified at the two lowest temperatures T = 1.3 K and T = 2.1 K. Then,
a wave-like propagation pulse corresponding to second-sound is detected at temperatures
between 3 K < T < 3.5 K. Finally, the heat pulse begins to diffuse at highest temperature
T = 3.81 K. The figure has been extracted from Ref. [42].
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2.5 Thermoelectric properties of bismuth nanostruc-
tures and thin films.

Since the works of L. D. Hicks and M. S. Dresselhaus, nanostructuring is known to be
a promising route to enhance the thermoelectric properties of materials [17, 18]. First,
nanostructuring on the scale of a few tens of nanometers, with the aim of opening a
confinement-induced energy-gap [17, 18, 96], allows to break the electron-hole symmetry
around the Fermi level and, thus, leads to the increase of the density of states [15]. As a
result, the increase of the Seebeck coefficient S by several orders of magnitude in nanowires
has been observed [96, 97].

Moreover, nanostructuring is known to reduce the lattice thermal conductivity by
limiting the longest phonon mean free paths. This effect has been intensively studied
in relatively simple materials such as Si [98, 99, 95, 100, 101, 102] and SiGe alloys [99,
103], but systematic studies are scarce in bismuth. A quasi-suppression of the thermal
conductivity has been found in bismuth nanowires, but its origin is still debated [15].
Measurements made on thin films [19, 20, 21] and nanowires [22, 15, 23, 24, 25, 26] have
yielded widely scattered values, preventing a deep understanding of the mechanisms at
play in nanostructures [15]. Thus, a theoretical determination of the nanostructuring
effect on the lattice thermal conductivity of bismuth has become mandatory and this is
one of the objectives of this thesis.

2.6 Details of the calculations for the thermal con-
ductivity of Bi.

In this Section I provide the technical details of my thermal transport calculations. In
my work, phonon frequencies and group velocities have been computed within the density
functional perturbation theory (DFPT) [70] on a 6×6×6 q-point grid in the Brillouin
zone (BZ) centered at Γ. State-of-the-art calculations of the third-order anharmonic
constants have been performed on a 4×4×4 q-point grid in the Brillouin zone which
amounts to 95 irreducible (q1,q2,q3) phonon-triplets [6], where qi, i=1,3 are phonon
wavevectors, and with q1 = q2±q3 + G. G is a vector of the reciprocal lattice, and both
Normal and Umklapp processes have been taken into account exactly in the Boltzmann
equation. Then, the third-order anharmonic constants were Fourier-interpolated on the
28×28×28 denser grid necessary for converged integrations in Eq. 1.46. The convergence
has been checked at T = 5 K and T = 300 K. In the Boltzmann Transport Equation, the
lattice thermal conductivity was accurately converged on a 28×28×28 q-point grid in the
Brillouin zone with a Gaussian broadening of the detailed balance condition [5] taken to
be σ = 1 cm−1.

When I started my PhD work, progresses had already been achieved in the modeling
of bismuth, to interpret photoemission data in photoexcited bismuth [1, 3]. A pseudopo-
tential with 5d10 semi-core states included as valence states was used. However, phonon
calculations were hardly feasible with this pseudopotential, which included 15 electrons in
total. Thus, I decided to develop a new pseudopotential with 5d10 electronic states frozen
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in core, and only 5 electrons in the valence. I took the 15 electron pseudopotential as a
reference.

The details of my pseudopotental, equilibrium lattice parameters and electronic band
structure are reported in Appendix A.

2.7 Conclusions.
Bismuth is an important material in the history of thermoelectricity. For many years it
has been used as a foreground n-type material for thermocouples. This is due to its large
Seebeck coefficient and low thermal conductivity. However, the thermoelectric efficiency
of bismuth is limited by the presence of two types of charge carriers, electrons and holes, at
the same time in approximately equal and low concentrations, which is not advantageous
for the electrical conductivity and results in the additional bipolar contribution to the
thermal conductivity. Thus, the attention of scientists nowadays is mainly focused on
bismuth-based compounds, Bi2Te3 and Bi-Sb alloy, that inherit and even enhance the
outstanding properties of bismuth and allow to overcome its drawbacks.

On the other hand, pure bismuth is a good thermal insulating material due to its
low thermal conductivity. However, despite extensive studies, there are still many open
questions concerning its thermal transport properties. In particular, the determination
of dominant mechanisms governing thermal conduction at different temperatures and the
magnitude of the lattice contribution to thermal conductivity remains unclear due to the
complexity and limitations of experimental methods. Moreover, the systematic studies
of the nanostructuring effect, which is known to suppress thermal conductivity resulting
in the enhancement of thermoelectric and thermal insulating properties of material, are
scarce in bismuth.

The answers to these questions will be given in Part II of the manuscript which is
devoted to my results of ab initio simulations of thermal transport in bismuth as well
as to the discussion of possible routes to reduce it. The methods I use, ab initio plus
the Boltzmann Transport Equation, enables me not just to calculate the macroscopic
quantities such as the lattice thermal conductivity but also to analyze the specific processes
contributing to heat transport on microscopic level, as will be shown in Chapter 6.
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Chapter 3

Thermal conductivity of bismuth
from first principles calculations

Introduction
A study of thermal conductivity is extremely important for a variety of technological ap-
plications like thermoelectric energy conversion and thermal management of electronics.
However, most of the methods to compute the lattice thermal conductivity rely on theo-
retical models like the Callaway [104], Klemens [105, 106] or Herring models [107] which
contain empirical fitting parameters. This limitation has motivated the development of
numerical methods based on first principles and molecular dynamics that can predict the
lattice thermal conductivity from the atomic structure, without any adjustable parameters
and with accuracy greater than models relying on ad hoc parameters [62].

Thermal properties of bismuth are extremely interesting because of its low thermal
conductivity. Bismuth is an excellent model substance for the study of thermoelectric-
ity because its high Seebeck coefficient [14]. Moreover, bismuth-based compound Bi2Te3
is a typical thermoelectric materials used in industrial applications for mobile refrigera-
tors [76].

In this chapter I will present the results of modeling of thermal properties of bismuth
based on the Boltzmann transport equation (BTE) for the phonon system, coupled to
fully ab initio data. These advanced techniques enable me to study the behavior of the
lattice thermal conductivity over a wide range of temperatures, from ultra-low T up to
the melting point. In addition, the analysis of the processes governing thermal conduction
in bismuth on the microscopic level brings insights into the origin of the small value of
thermal conductivity.

The chapter is organized as follows. In Section 3.1, I will describe vibrational prop-
erties of bismuth by means of ab initio calculations. I will demonstrate the crucial role
of spin-orbit coupling (SOC) to obtain a correct phonon dispersion relation for acoustic
phonons. In Section 3.2, I will discuss the role of acoustic-optical phonon interaction
(AOPI) and I will present a model to modify the optical part of the dispersion to accu-
rately describe the AOPI. In Section 3.3, I will present the results of calculation of the
lattice thermal conductivity and I will show how they changed if the corrected AOPI is

45
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taken into account. In Section 3.4, I will perform a detailed analysis of the heat transfer
mechanisms in bismuth.

3.1 Vibrational properties of bismuth.
Phonons are quanta of the lattice vibrational field which play a crucial role in heat trans-
port in materials [27]. In general, the lattice conduction of heat is a dominant mechanism
in non-metals like semiconductors and insulators when an electronic gap is open. More-
over, it is also important in semimetals when the gap is zero but the density of electronic
states at the Fermi level is small [6]. Thus a deep understanding of vibrational properties
in materials is mandatory for an accurate description of their thermal properties.

As we have seen in the previous chapters, in the harmonic approximation, phonons are
treated as independent quasiparticles. In this case their properties are entirely unaffected
by the presence of other phonons. Each single phonon is characterized by the wave vector
q, polarization index j and energy ~ωqj. The relationship between the phonon frequency
ωqj (or phonon energy ~ωqj) and the wave vector q is called a dispersion law. It is unique
for every material and could be obtained experimentally from, for instance, inelastic
neutron and inelastic X-ray scattering experiments on single crystals [27, 66, 108] or
theoretically from ab initio calculations using either the frozen phonon method [109, 110]
or the density-functional perturbation theory (DFPT) [70].

3.1.1 Phonon dispersion.
Bismuth possesses an A7 rhombohedral structure similar to other group-V semimetals
such as As and Sb. There are two atoms per primitive unit cell which results in six
phonon branches [111]. The three lowest branches are conventionally called acoustic. In
the limit of small wave vector q (or long wavelength λ) these modes correspond to the
propagation of usual sound waves traveling through the crystal. The three highest phonon
branches, in turn, are called optical since they can interact either directly or indirectly with
light [66]. In contrast with the acoustic branches, they always have non-zero frequencies
at the Brillouin zone center.

In Fig. 3.1 I show the calculated phonon dispersion (black solid lines) of Bi along
some high-symmetry directions obtained within the DFPT approach with the LDA norm-
conserving pseudopotential developed in this work (see Section 2.6). The details of the
pseudopotential generation, parameters of phonon dispersion calculation and the compar-
ison of electronic band structure and phonon dispersion obtained with LDA and GGA
exchange-correlation functionals are given in Appendix A. Another theoretical phonon
dispersion found in the literature [56] (red dashed line) as well as experimental data from
inelastic neutron scattering experiments (green circles [112] and blue circles [113]) are
also shown in Fig. 3.1 for comparison. One can see that the acoustic branches of obtained
phonon dispersion are in extremely good agreement with the existing experimental data
and with the previous calculations.
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Figure 3.1: DFT-LDA calculated phonon dispersion in bismuth including spin-orbit
coupling (black solid line, left panel) and the corresponding density of states (right panel).
Previous theoretical results (also including spin-orbit interaction) are reproduced after Lee
et al. [56] (red dashed line). Experimental data extracted from Ref. [112] (green circles)
and Ref. [113] (blue circles).
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The three-fold degeneracy which exists in the cubic structure is lifted in the rhom-
bohedral bismuth by the Peierls distortion resulting in a two-fold degenerate Eg mode
(displacement perpendicular to the trigonal axis) plus a one-fold A1g mode (displacement
parallel to the trigonal axis) [114]. The Γ-T direction in the Brillouin zone corresponds to
the direction along the trigonal axis in the real space and preserves the trigonal symme-
try. The trigonal symmetry imposes the degeneracy of the transverse optical and acoustic
modes along Γ-T.

Another important direction in the Brillouin zone is Γ-K-X, which corresponds to
the binary direction in the real space. The eigenvectors of the modes in this direction
have two distinct symmetries: they are either symmetric (3rd, 4th and 5th branches) or
antisymmetric (1st, 2nd and 6th branches) under a twofold rotation about the binary
axis [115]. The branches are well separated near the zone center but show a significant
mixing close to the zone boundary. For example, the highest longitudinal acoustic mode
first crosses with the fast transverse mode near K point in the Γ-K direction and then
becomes the lowest branch when approaching X point.

3.1.2 Acoustic phonons.

As has already been mentioned, in the limit of small wave vector q the acoustic branches
of the spectrum correspond to the ordinary elastic sound waves propagating through
the solid. The acoustic branches are linear in this region with the slope equal to the
speed of sound propagating along the given direction. The obtained sound velocities
for longitudinal and transverse modes in both trigonal and binary directions are shown
in Table 3.2. The sound velocities observed in experiment [116] are also indicated in
the Table. The difference between the experiment and theoretical values is small which
validates an accurate description of the acoustic branches. In the following TAs and TAf
label the transverse acoustic branches having slow and fast sound velocities respectively.

Alternatively, vibrational properties in the elastic region have been described with
the second-order elastic constants. By definition the elastic constants are the coefficients
of proportionality between the imposed strain and induced physical stress in the crys-
tal. I used an ElaStic 1.0 package [117] interfaced with QUANTUM ESPRESSO [118] to
calculate the energy and stress values of the distorted structures (see Appendix A for
details). The six independent Voigt second-order elastic constants obtained in bismuth
are given in Table 3.1 as well as the experimental values obtained with the pulse echo
technique [116, 119]. Theoretical elastic constants agree reasonably well with the exper-
iment of Eckstein [116]. The greatest difference of 43.1% and 40.3% is observed for the
smallest constants C14 and C44 respectively. The sound velocities can also be obtained
from the elastic constants using the relations described in Ref. [120]. As it is shown in
Table 3.2, the resulting sound velocities fit well to the velocities obtained from the slopes
of the phonon branches near the zone center and the corresponding experimental values
from Ref. [116].

However, phonon dispersion shown in the left panel of Fig. 3.1 does not provide the
information about the distribution of phonons over the energy states. This information
can be obtained with the vibrational density of states (DOS) which gives the number of
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Cii (GPa) DFT-LDA Ref. [116], 300 K Ref. [116], 4.2 K Ref. [119]
C11 69.7±0.3 63.5 (9.7%) 68.7 (1.5%) 62.9 (10.8%)
C12 25.3±0.2 24.7 (2.4%) - 35.0 (27.7%)
C13 26.6±0.2 24.5 (8.6%) - 21.1 (26.1%)
C14 4.8±0.5 7.23 (33.6%) 8.44 (43.1%) 4.23 (13.5%)
C33 43.3±0.2 38.1 (13.6%) 40.6 (6.6%) 44.0 (1.6%)
C44 7.7±0.8 11.3 (31.9%) 12.9 (40.3%) 10.8 (28.7%)

Table 3.1: Second-order elastic constants of bismuth. My calculation (DFT-LDA) is
done with the ElaStic Package [117] and corresponds to zero temperature. Experimental
values have been obtained by Eckstein et al., Ref. [116], and Bridgeman, Ref. [119]. The
percentage of error is given in parenthesis, Cth−Cexp

Cexp
, with theoretical elastic constant Cth

and experimental value Cexp.

Propagation along the binary axis
vi (m/sec) Th., elastic constants Th., slope Expt, Ref. [116] Mode

v1 2624±11 2460±10 2540±22 Longitudinal (LA)
v2 1528±225 1610±350 1550±9 Fast shear (TAf)
v3 786±115 924±176 850±4 Slow shear (TAs)

Propagation along the trigonal axis
vi (m/sec) Th., elastic constants Th., slope Expt, Ref. [116] Mode

v4 2068±10 2050±10 1972±15 Longitudinal (LA)
v5 872±90 1271±278 1074±11 Degen. shear (TAs/TAf)

Table 3.2: Velocities of sound propagating along the binary axis (top panel) and along
the trigonal axis (bottom panel). Theoretical values were obtained from the second-order
elastic constants from Table 3.1 (second column) and from the slopes of acoustic phonons
in vicinity of Γ point. Experimental results of Ref. [116] are given in the third column.
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states per interval of energy that are occupied. It is shown in the right panel of Fig. 3.1.
One can see that in the vicinity of the zone center the number of occupied phonon states
is small comparing with the rest of the Brillouin zone for both acoustic and optical modes.
The acoustic branches are filled almost uniformly from 20 cm−1 to 60 cm−1, while the
optical phonons have a pronounced peak in DOS about 93 cm−1.

3.1.3 Stability.
Phonons in bismuth are extremely sensible to external deformations such as strain. Such
deformations lead to instability in acoustic phonon branches in vicinity of the Brillouin
zone center Γ and thus to “imaginary” phonon frequencies in this region signifying about
the phase transition. Indeed, recent transport [121], thermodynamic [122] and magnetore-
sistance [123] studies show that bismuth loses its three-fold symmetry at low temperatures
and high magnetic field. Among the possible origins of this phase transition is a field-
induced lattice distortion (magnetostrictive strain) by magnetic field that is driven by
electron-phonon coupling [90, 124, 125]. Lowering symmetry in this case allows to get
rid of the costly electronic degeneracy, which may be reduced thanks to lattice distor-
tion [90, 124].

3.1.4 The effect of spin-orbit coupling on phonon dispersion.
All results discussed so far were obtained with the electronic Hamiltonian and resulting
ground state energy accounting for the relativistic spin-orbit coupling effect (SOC). This
effect has been shown to play a crucial role in the description of the electronic properties of
bismuth [1, 4]. In particular, the account of spin-orbit interaction changes the electronic
structure from metallic to semimetallic and the latter agrees with experiment [4]. Thus
the SOC should also change vibrational properties such as phonon dispersion since they
are determined by the second-order derivative of the ground state energy with respect to
the atomic displacements. Indeed, in Fig. 3.2 one can see the two phonon spectra: one
including the spin-orbit coupling (black solid lines) and another without it (red solid lines).
The latter has steeper acoustic branches near Γ. Moreover, both acoustic and optical
branches are lifted upward comparing with the SOC calculation. Thus, the theoretical
results without SOC disagree with the experimental data. Vibrational density of states
for the SOC and noSOC cases are shown in the left panel of Fig. 3.2. The effect of SOC
interaction on DOS is similar to the one on the phonon dispersion. In particular, the
plateau in the region of acoustic phonons is shifted upwards on about 5 cm−1. The DOS
of optical phonons is also lifted up and smeared.

In conclusion, we have seen that ab initio calculations describe the acoustic part of the
phonon dispersion of bismuth remarkably well. The account of the spin-orbit coupling
interaction is shown to play a crucial role on vibrational properties of Bi.
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Figure 3.2: Left panel: DFT-LDA calculated phonon dispersion in bismuth including
spin-orbit coupling (black solid lines) and without spin-orbit coupling (red solid lines).
Experimental data extracted from [112] (green circles) and [113] (blue circles). Right
panel: the corresponding density of states.
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3.2 The role of optical phonons: AOPI.

3.2.1 Optical phonons.
In the previous section, I have discussed vibrational properties of Bi focusing mainly on
the acoustic part of the phonon dispersion and on the quantities that could be derived
from it such as sound velocities. Now I consider the optical modes represented by the
three highest branches in Fig. 3.1. These branches are almost flat in most of the Brillouin
zone except the region near the zone center. This flat behavior results in the small group
velocities of the optical phonons. Contrastingly, near the zone center transverse optical
modes are very steep and fall down in a deep minimum. However, as one can see from
the right panel of Fig. 3.1 the density of states of these modes is small in this region.
The maximum frequency of optical phonons in Bi appears not at Γ point but at q near
the zone boundary in contrast with other materials such as Si, Ge or GaAs. A similar
behavior has been observed for the longitudinal optical (LO) branch in diamond resulting
from the sufficiently large interatomic force constants between second-nearest neighbors
giving rise to the overbending [126].

3.2.2 Indirect phonon gap.
The acoustic and optical branches are well separated at each point of the Brillouin zone.
To describe the relative position of optical phonon branches with respect to the acoustic
modes, I define the indirect phonon gap ∆ as the difference between the minimum of the
transverse optical (TO) mode ωTO at Γ and the maximum of a longitudinal acoustic (LA)
branch ωLA at T point

∆ = ωTO(Γ)− ωLA(T ) (3.1)

In my calculation this indirect phonon gap is absent1 and a small intersection of about
1 cm−1 is observed instead. As we have already seen, the acoustic branches match well
with the experimental data, and the difference in ωLA(T ) lies within a small error bar
of about 2 cm−1. However, the experimental value of ωTO(Γ) lies considerably higher of
about 12 cm−1 than the one found in my calculation and it results in the opening of a
phonon gap ∆. The positions of the minimum of the TO mode ωTO(Γ), the maximum
of the LA mode ωLA(T ) and the gap value ∆ found in this work, in previous theoretical
calculations [111, 56] and in experiment [112], are given in Table 3.3. To the best of
my knowledge, in most of the DFT calculations [111, 56], including my calculations with
both LDA and GGA exchange-correlation potentials, the optical frequencies at Γ are
underestimated and lie much lower than the experimental value ωminTO = 72 − 74 cm−1

[127, 112]. The only exception is the calculation of Murray et al. [115] in which Bi has
been treated as a semiconductor and a considerably higher value ωTO = 79 cm−1 has been
found. As we will see further an accurate position of ωTO(Γ) is important to describe the
allowed interaction processes between the acoustic and optical phonons in Bi.

1Only a part of the Brillouin zone along some high symmetry directions shown in Fig. 3.1 has been
investigated, but not all the Brillouin zone.
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Calculation ωTO(Γ), cm−1 ωLA(T ), cm−1 ∆, cm−1

ab initio SOC (DFT-LDA) 60.4 61.5 -1.1
ab initio SOC (DFT-LDA) + rigid shift 73.0 61.5 11.5
ab initio noSOC (DFT-LDA) 68.1 62.9 5.2
ab initio SOC (DFT-GGA) 67.3 47.7 19.6
Lee et al [56] (DFT-LDA) 65.5 58.4 7.1
Gonze et al [111] (DFT-LDA) 65.4 58.7 6.7
Murray et al [115] (DFT-LDA) 79.0 58.5 20.5
Experiment [112] 74.0 59.7 14.3
Experiment [127] 72.0 - -

Table 3.3: Phonon frequencies of the transverse optical phonons at Γ, longitudinal acoustic
phonons at T and indirect gap between them defined in Eq. 3.1.

3.2.3 Optical phonons as an efficient scattering channel.
As we have just seen the main discrepancy between my theoretical phonon dispersion and
experiment is a profoundly deep minimum in frequencies of the transverse optical phonons
in the vicinity of Γ. However, optical phonons in general are known to contribute less
than acoustic modes in the transport of heat in materials [27]. This is because of their flat
behavior in most of the Brillouin zone that results in small group velocities. In bismuth
the optical branches are steep only in the vicinity of the zone center, but this region
contributes little to the lattice thermal conductivity because of the small DOS.

Nevertheless, as I will show further the optical phonons in bismuth provide an effi-
cient scattering channel for acoustic phonons. The quantity which describes the allowed
interaction processes between the phonons based on the energy and momentum conserva-
tion laws is called the joint density of states (JDOS). In this work I consider interaction
processes in which only three phonons are involved. I define the JDOS as

JDOS(ω) =
ˆ
dων1

∑
ν2,ν3

[δ(ων1 + ων2 − ων3) + δ(ων1 − ων2 − ων3)] δ(ω − ων1) (3.2)

where index νi condensates phonon vector qi and mode index ji for all three interacting
phonons i = 1, 3. The first delta function δ(ων1 + ων2 − ων3) describes the coalescence
(collision) between two phonons and a creation of one single outcoming phonon. The sec-
ond delta function δ(ων1 − ων2 − ων3) describes a spontaneous decay (fission) of a phonon
into two outcoming phonons. Wavevectors of the interacting phonons must satisfy the
momentum conservation rule i.e. q1 ± q2 = q3 + G where G is a vector of a reciprocal
lattice and plus/minus correspond to coalescence/decay. The JDOS defined in Eq. 3.2 al-
lows to analyze the relative importance of different interaction processes between phonons
if their polarization indices are specified.

In the left panel of Fig. 3.3, I show the phonon dispersion which is the same as the
one in Fig 3.1. I draw the optical branches obtained from my ab initio calculations with
the black dashed lines. To estimate the effect of the absence of phonon gap in my ab
initio calculations on the phonon lifetimes, I open the phonon gap by rigidly shifting the
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Figure 3.3: Right panel: phonon dispersion of Bi obtained from ab initio calculation.
Left panel: the corresponding joint density of states.
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optical branches upwards (black solid lines) to match the experimental frequency of the
TO modes at the Γ point while the acoustic branches remain the same. In the right panel
of Fig. 3.3, I show the joint density of states as a function of frequency of incoming phonon.
As one can see, the lift of optical phonons considerably reduces the JDOS between 30
and 50 cm−1 since the acoustic phonons in this region have not enough energy after
the coalescence to reach even the lowest optical branches. Thus an appropriate position
of the lowest phonon frequency of the TO mode ωTO(Γ) is important, as it provides a
realistic description of the acoustic-optical phonon interaction (AOPI) in bismuth. The
peak in the JDOS of optical phonons is also reduced and shifted upwards. However, as
has already been mentioned earlier, the optical branches in the rest of the Brillouin zone
are not important for the thermal transport since they have low group velocities.

To conclude, in this section I have shown that, although overall optical dispersion is
well reproduced, the TO phonons at Γ obtained from ab initio calculations lie considerably
lower than in experiment. It results in the closure of the indirect phonon gap ∆ and
causes an enhanced acoustic-optical phonon interaction. To resolve this inconsistency I
have shifted rigidly the optical part of the phonon dispersion upwards and got a reduced
JDOS of acoustic phonons. In the next section I will show how this change in the JDOS
affects the thermal transport properties in Bi.

3.3 Thermal conductivity calculation and analysis:
ab initio results.

In this section I will present the results of the thermal conductivity calculation in the
framework of the theory described earlier in Chapter 1. I will show that the enhanced
acoustic optical phonon interaction results in lower values of the lattice thermal conduc-
tivity. I will compare results obtained within the single mode approximation and the ones
from the full solution of the Boltzmann transport equation.

3.3.1 The effect of AOPI on the lattice thermal conductivity.
The lattice thermal conductivity describes the ability of a material to propagate the heat
by means of lattice vibrations. It strongly depends on the quantities derived from the
phonon dispersion such as phonon frequencies, group velocities and the JDOS. In the
previous section we have seen that the latter is considerably overestimated in my ab initio
calculations because of the low position of the TO modes near the zone center comparing
with the experimental data. To correct this drawback, I rigidly shifted optical phonons
upwards to match the value of ωTO(Γ) and obtain a realistic interaction between acoustic
and optical modes (AOPI). In the following I will assign the results done with the shifted
optical phonons as a reference.

In Fig. 3.4, I show the temperature variation of the lattice thermal conductivity κL
calculated by exactly solving the Boltzmann transport equation with the modified phonon
dispersion (black solid line). As one can see the values of the thermal conductivity are
superior to the ones obtained with the pristine ab initio dispersion (black dashed line). It
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Figure 3.4: Temperature variation of the thermal conductivity in the binary direction.
Black solid line - calculation with ab initio phonon dispersion with rigid shift of optical
phonons. Black dashed line - calculation with ab initio phonon dispersion resulting in
the enhanced AOPI. Red solid line - calculation of Lee et al. [56] with phonon dispersion
shown in red dashed lines in Fig. 3.1.
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is explained by the fact that the latter dispersion provides an enhanced AOPI that results
in the lower phonon relaxation time and thus lower thermal conductivity.

At low temperatures the acoustic phonon modes of high energy (mainly LA) are not
populated and hence the interaction processes involving optical phonons are not impor-
tant. As a result, the two curves coincide. Another theoretical lattice thermal conductivity
obtained by Lee et al [56] is also shown in Fig. 3.4 (red solid lines)2. Since the phonon
gap in their calculation is underestimated (see red dashed lines in Fig. 3.1 and Table 3.3),
κL exhibits a behavior similar to the one with the enhanced AOPI in my calculations.

As one can see thermal conductivity in bismuth noticeably variates with temperature.
First, it increases as T−1 with decreasing of temperature down to 10 K. Then in the
absence of scattering other than phonon-phonon interaction thermal conductivity turns
to the exponential growth below 10 K. This behavior is directly due to the decrease of
anharmonic phonon decay as the temperature decreases. In this case the lattice vibrations
act as a set of harmonic oscillators and the lattice conductivity tends towards infinity.

3.3.2 Exact solution versus SMA
The results of the calculation of the lattice thermal conductivity discussed so far were
obtained by exactly solving the BTE. Both variational and iterative methods reviewed in
Chapter 1 yield the same results in my calculation. Another method to solve the BTE is
the single mode relaxation time approximation (SMRTA or SMA). In Fig. 3.5, I show the
difference in the lattice thermal conductivity obtained from the exact solution (black solid
line) and from the SMA (blue dashed-dotted line). As one can see, the SMA remains a
good approximation at high temperatures when the repopulation processes are not very
important. However, at low temperatures the heat is carried not by single phonons but
by the collective excitations and the repopulation of the phonon states must be taken
into account to get a correct value of the lattice thermal conductivity as discussed in
Section 1.4. This is possible only by exactly solving the BTE. Indeed, at T < 10 K the
exact solution results in significantly higher values of the lattice thermal conductivity
comparing with SMA.

In Table 3.4, I summarized the values of the lattice thermal conductivity in the bi-
nary and trigonal direction obtained from the exact solution and from the SMA. We
see that it ranges from 3.2 W(K.m)−1/2.5 W(K.m)−1 near the melting temperature3,
to 5.8 W(K.m)−1/4.5 W(K.m)−1 at ambient temperature in the binary/trigonal direc-
tion respectively. It reaches 31.1 W(K.m)−1/25.0 W(K.m)−1 at 50 K, and 142 W(K.m)
−1/103 W(K.m)−1 at 10 K, and then gains more than four orders of magnitude between
10 K and 2 K when the boundary scattering is not introduced.

In conclusion, in this section I have discussed the temperature variation of the lattice
thermal conductivity in Bi. I have shown that the SMA is a good approximation for κL
at high temperatures when the heat is carried by the individual phonons. However, at

2Harmonic and anharmonic force constants were calculated with the real space approach (see 1.5.2).
The Boltzmann Transport Equation was numerically solved with the iterative approach (see 1.4.2).

3Near the melting temperature, the quasi-harmonic approximation (QHA) must be used to accurately
describe the lattice thermal conductivity. This approximation accounts for the volume dependent thermal
effects such as thermal expansion.
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Figure 3.5: Temperature variation of thermal conductivity in the binary direction ob-
tained from ab initio phonon dispersion with the rigidly shifted upward optical phonons.
Black solid line - exact solution of the BTE. Blue dashed-dotted line - the single mode
relaxation time approximation (SMA).
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binary
T, K κfullL κSMA

L

300 5.8 5.1
200 8.6 7.5
100 16.7 14.6
50 31.1 26.7
20 66.5 54.8
10 142 108

trigonal
T, K κfullL κSMA

L

300 4.5 3.9
200 6.8 5.8
100 13.3 11.3
50 25.0 20.8
20 53.0 42.8
10 103 80.0

Table 3.4: The lattice thermal conductivity found in my calculations at different temper-
atures obtained from full solution of the BTE, κfullL , and from the SMA in both binary
and trigonal directions.

low temperatures the exact solution of the BTE is mandatory since the SMA does not
account for the repopulation effects. Moreover, I have demonstrated that the acoustic-
optical phonon interaction plays a crucial role in the determination of the magnitude of
the lattice thermal conductivity in Bi in a wide temperature range. In the next section I
will discuss the basic heat transfer mechanisms in bismuth and I will show what are the
phonons that carry heat in this material.

3.4 Phonon heat transfer mechanisms in bismuth.
In the previous section, I have determined the values of the lattice thermal conductivity
as a function of temperature. In my calculation I have included only the intrinsic source
of scattering due to the phonon-phonon interaction. To provide a realistic interaction
between acoustic and optical phonons, I have shifted the optical branches upwards. It
leads to the considerable reduction of the JDOS of acoustic phonons. However, because
of this rigid shift, the resulting optical branches now lie higher than in experiment in most
of the BZ except the region near the zone center Γ. In this section, I will demonstrate
that the optical phonons carry only a small portion of heat comparing with the acoustic
modes. Thus their prime role is to produce a scattering channel for the acoustic phonons
but not to contribute to the transport of heat.

In Figure 3.6, I show the phonon mode contributions to the lattice thermal conductivity
in the binary direction as a function of temperature. As one can see, the acoustic phonons
carry most of the heat in Bi. The contribution of optical branches to κL is only about 16%
of the total vibrational part at T = 300 K. This result is explained by the flat behavior of
optical branches in most of the BZ that leads to the low group velocities cν and thus to
low contribution to thermal conductivity (κL ∼ c2

ν in RTA). Then the optical contribution
monotonously decreases with the decrease of temperature and entirely vanishes at T ≈ 20
K since the highest vibrational energies are no longer populated.

As shown in Figure 3.6, at high temperatures most of the heat is carried by the high
energy acoustic modes such as TAf (red solid line) and LA (green solid line) phonons
while the lowest TAs branch (blue solid line) has the smallest contribution. At T = 300
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Figure 3.6: The contributions due to the 1st acoustic (TAs, blue line), 2nd acoustic (TAf,
red line), 3rd acoustic (LA, green line) and optical (TO and LO, orange line) modes to
the vibrational part of the thermal conductivity. TAs and TAf phonon modes are defined
in Table 3.2 and in Section 3.1.2.
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K, for instance, the LA modes are responsible for about 28%, TAf for about 35% and
TAs for only about 20% of the total lattice thermal conductivity. While the temperature
decreases, the high energy phonons become less populated and thus less important. The
contribution of the lowest TAs mode, in turn, grows and becomes greater than the one
of the LA phonons at T ≈ 20 K. Finally, at low temperatures T ≤ 15 K the TAs modes
give more than 40% of the total lattice thermal conductivity.

3.4.1 Distribution in the Brillouin zone.
To understand how κL is distributed in the BZ, I analyze the lattice thermal conductivity
calculated from the iterative solution of the BTE as a function of the modulus of the
wavevector of the initial phonon |q|. I define the quantity κL(|q|) as

κL(|q|) =
ˆ
BZ

κqi
L δ(|q| − |qi|)d|qi| (3.3)

where κqi
L is the lattice thermal conductivity contribution from the given qi point in the

Brillouin zone defined in equation 1.46. The total lattice thermal conductivity can be
restored from κL(|q|) by integrating over |q|

κL =
ˆ max(|q|)

0
κL(|q|)d|q| (3.4)

I choose two temperatures T = 300 K and T = 5 K where the behavior of the lattice
thermal conductivity is found to be qualitatively different. In Fig. 3.7, I show κL(|q|)
(black solid lines) for T = 300 K (top panels) and for T = 5 K (bottom panels) in binary
(left panels) and trigonal (right panels) directions. At high temperature I find that the
lattice thermal conductivity, in both binary and trigonal directions, is due to phonons
with q-vectors all over Brillouin zone, and not only due to the phonons near zone center.
This is somewhat surprising, as one expects the main contribution to the lattice thermal
conductivity to come from the region near the zone center where the group velocities are
high and the mean-free paths are long. This behavior can be understood, if one remembers
that κL(|q|) implicitly contains the density of q-states (q-DOS) of the initial phonon that
is defined as

DOS(|q|) =
ˆ
BZ

δ(|q| − |qi|)d|qi| (3.5)

The q-DOS is shown in the insert of Fig. 3.7. It depends only on the form of the BZ
and shows a parabolic dependence on |q| away from the boundaries of the BZ. At high
temperatures, when all phonon branches are populated, the difference in group velocities
and in phonon lifetimes is insufficient to overcome the difference in q-DOS in the Brillouin
zone. Thus, the region around Γ gives a relatively small contribution to the thermal
conductivity.

Contrastingly, at small temperatures the major contribution to κL(|q|) starts to drift
towards the small |q| since most of the high-energy phonon states are not populated
anymore due to the small thermal energy kBT . The only active states are now located
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near the zone center Γ and the lattice thermal conductivity κL(|q|) has a pronounced
peak at |q| ≈ 0.15× 2π

a0
at 5 K for both directions.

In Figure 3.7, I also display the contributions of the three acoustic branches (blue, red
and green solid lines). At T = 300 K the contribution of the highest LA branch (green
solid line) has a clear maximum at |q| ≈ 0.2× 2π

a0
while the contributions of the lowest TA

(blue and red solid lines) branches show the behavior similar to that of the |q|-dependent
phonon DOS. AtT = 5 K the biggest contribution comes from the TAs mode (blue solid
line) which is spread in the region of |q| = 0.1− 0.4× 2π

a0
. The LA contribution is small

and is localized near |q| = 0.05× 2π
a0
.

In conclusion, in this section I have discussed the mechanisms of the heat transport in
bismuth due to the separate phonon modes. I have shown that optical phonons carry only
a small fraction of heat but participate in the scattering of the acoustic phonons. I have
analyzed the lattice thermal conductivity distributed over the Brillouin zone at high and
low temperatures. I have shown that at ambient temperature the heat is carried by high
energy LA and TA phonons. The distribution of heat carrying phonons is found to be
almost uniform over the BZ and follows the behavior of the q-DOS. At low temperatures
the biggest contribution comes from the lowest TAs mode and all heat carrying phonons
are localized in the region of small wave vectors.
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Figure 3.7: Lattice thermal conductivity as a function of the absolute value of the phonon
vector of incoming phonon q in the binary (left) and trigonal (right) directions at 300K
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3.5 Summary and outlook
This chapter is devoted to the the lattice thermal conduction in bismuth which is defined
by the individual lattice vibrations as well as by the interaction between them. First,
I have discussed vibrational properties of bismuth obtained from first principles calcula-
tions. I have shown that an accurate account of spin-orbit coupling (SOC) is necessary to
get a correct phonon dispersion of acoustic modes. However, the optical phonon branches
lie considerably lower than in experiment providing an efficient extra-channel of scattering
for the acoustic phonons after the coalescence.

To overcome this drawback, I have applied a model to modify an optical part of
phonon dispersion by shifting them upward to match the frequency of optical transverse
modes at Γ to the experimental value. I have shown that this shift leads to the reduction
of the joint-density of states for the acoustic phonons in the frequency region between
30 and 50 cm−1. Then I have presented the results of the calculation of the lattice
thermal conductivity with ab initio phonon dispersion as well as with the shifted optical
branches. I have demonstrated that the acoustic-optical phonon interaction defined by
the phonon gap between acoustic and optical phonons allows to modulate the value of
the lattice thermal conductivity. With respect to available theoretical literature and, in
particular, with respect to Ref. [25], my calculations brought a deeper understanding of
the microscopic processes determining the lattice thermal conductivity in bismuth, and
also in materials in general.

Finally, I have shown that the acoustic phonons carry most of the heat in bismuth
at all temperatures. At high temperatures, when all phonon modes are populated, the
heat carrying phonons are almost uniformly distributed over the Brillouin zone except
the region near the zone center where the contribution to the lattice thermal conductivity
is found to be small. This behavior has been explained by the dominant role of q-DOS.
Contrastingly, at low temperatures only the low-energy phonons are populated and and
the heat is carrying by the carriers localized near the zone center Γ.

In the next Chapter, my results will be compared with the available experimental
data.



Chapter 4

Thermal conductivity of bismuth:
comparison with experiment

Introduction

Bismuth is a semimetal and in contrast to other materials like pure metals and insulators,
where heat is transferred solely by charge carriers and phonons respectively, there are
several types of carriers that contribute to thermal conduction at the same time [14] (see
Section 2.4). Thus to understand thermal transport in Bi and to evaluate the relative
role of different types of carriers in different temperature regions, one must separate their
contributions. Experimentally, this is a quite challenging task. Uher et al. [16] were
able to measure a contribution to thermal conductivity due to the charge carriers in the
binary direction up to T ≈ 150 K by applying a very strong magnetic field. However,
this method has a serious limitation on the temperature range. Alternatively, Gallo et
al. [8] evaluated the non-lattice part by implying Wiedmann-Franz law and by using an
analytical expression for the binary ("electron-hole") contribution. In both works the
lattice contribution has been found as a difference between the measured total thermal
conductivity and obtained charge carrier contribution to thermal conductivity. However,
estimations of the lattice part of thermal conductivity given in experimental works [16, 8]
do not agree with each other, nor with the recent theoretical calculation [56]. In this
Chapter I will show that my theoretical calculations presented in Chapter 3 are able to
resolve the uncertainty on the absolute value of the lattice thermal conductivity at high
temperatures in bulk Bi and, moreover, are able to explain the anisotropy in thermal
conductivity.

The Chapter is organized as follows. In Section 4.1, I will recall the experimental meth-
ods to separate the lattice and non-lattice contributions to thermal conductivity in Bi.
Then in Section 4.2, I will compare the theoretical thermal conductivity obtained in my
calculations with the available experimental data. Then, I will estimate the contribution
to thermal conductivity due to the charge carriers in the trigonal direction where it has not
been measured, and I will discuss the anisotropy of thermal conductivity. Furthermore,
in Section 4.3, I will discuss the Casimir model to simulate the effect of boundary scatter-
ing. I will show that an account for boundary scattering leads to finite values of thermal

65
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conductivity at low temperatures in contrast with the divergent behavior observed when
only intrinsic phonon-phonon scattering is taken into account in my calculations.

4.1 Transport mechanisms in bismuth.
The accurate measurements of the thermal conductivity of bulk materials have become
a routine nowadays [48]. There are many satisfactory experimental techniques such as,
for example, the steady-state technique [128], the 3ω technique [129], and the thermal
diffusivity measurement [130]. However, these methods do not provide information about
the carriers that transfer heat in the material to which they are applied. This information
is extremely important for the case of intrinsic semiconductors and semimetals when
charge carriers and phonons contribute to thermal conductivity together. In this Section
I recall some facts about the determination of the lattice thermal conductivity already
discussed in detail in Chapter 2.

Bismuth belongs to group V elements and shares with As and Sb the semimetallic
nature. Total thermal conductivity of Bi κ can be expressed as a sum of two terms
κ = κL+κE, where κL is the lattice thermal conductivity and κE is the charge carrier (non-
lattice thermal conductivity. The latter accounts for all contributions from the charge
carriers such as unipolar contributions due to the electrons (κe) and holes (κh) alone,
and a bipolar contribution (κe−h) that describes the transfer of the "heat of formation" of
electron-hole pairs which diffuse from the hot region to the cold one [131].

Gallo et al. [8] were the first authors who derived a model to estimate the charge
carrier contribution to thermal conductivity in bismuth from the experimentally measured
electrical conductivities σi and partial Seebeck coefficient Si, where for holes i = h and
electrons i = e. This model employs the empirical Wiedmann-Franz law κi = LiσiT
for the unipolar contributions. However, the Lorenz numbers Li for semimetals are not
known. To estimate them the authors relied on the model derived for semiconductors
assuming a quadratic dispersion law and scattering of the current carriers by acoustical
phonons. As has been shown in Ref. [91], violation of the former assumption leads to the
overestimation of the electronic thermal conductivity. Thus another more precise method
is mandatory.

Another experimental method to separate the contributions is based on the effect of a
strong magnetic field on the thermal conductivity. It relies only minimally on an accurate
theoretical description of the electronic properties of bismuth [16] and thus allows to
correct the result of Ref. [8]. In this approach the non-lattice thermal conductivity has
been expressed in terms of galvanomagnetic and thermomagnetic tensors that can be
obtained from the mobilities and partial Seebeck coefficients measured in experiment.
However, this approach has a strong limitation requiring µiBi � 1, where µi is the
mobility of a carrier and Bi is the magnetic field in the i-th direction. The mobility
of charge carriers in Bi goes down with the increase of temperature, and thus stronger
magnetic fields are required. In Ref. [16] the analytical expression for κE have been
determined only in the binary direction and the measurements were performed up to T ≈
150 K. The resulting lattice thermal conductivity has been found as a difference between
the total thermal conductivity and its indirectly measured electronic contribution.
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In the next section, I will refer to the result of Uher with strong magnetic field as to
the experimental reference. However, I will also compare with the experimental values of
Gallo.

Ab initio calculations provide an appealing route to determine the heat transport
mechanisms in bismuth by revealing the relative role of charge carriers and phonons in
the total thermal conductivity. In the next section I will compare my theoretical lattice
thermal conductivity presented earlier in Chapter 3 with the available experimental data
in the binary direction. Above all, I will also predict the lattice and charge carrier thermal
conductivity in the trigonal direction where the experimental data are missing.

4.2 Thermal conductivity at high temperatures
In this section, I study the lattice thermal conductivity in a temperature range in which
scattering by sample boundaries is not important. In Section 4.3, I will study the effect
of sample boundaries at low temperatures.

In Chapter 3, I have shown that the magnitude of the calculated lattice thermal
conductivity in bismuth is modulated by the indirect phonon gap ∆. If the phonon gap
is closed, as in the case of my ab initio calculations, or is too small, as in the calculations
of Lee et al [56], the interaction between acoustic and optical phonons is enhanced and
phonon lifetimes are shortened. To overcome this problem, I have shifted optical phonons
upwards to match the frequency of transverse optical modes at Γ and thus open a phonon
gap ∆. In this case, low energy acoustic phonons are not able anymore to reach the high
energy optical phonons after a coalescence process, which results in longer lifetimes of
acoustic phonons and higher values of the lattice thermal conductivity.

4.2.1 Lattice thermal conductivity.
In Fig. 4.1, I show the theoretical lattice thermal conductivity in the binary direction
as a function of temperature as well as the experimental data of Uher et al [16] (green
squares). As one can see, the calculation with shifted optical phonons (black solid line)
describing a realistic AOPI shows an extremely good agreement with experiment of Uher
et al [16]. For example, the lattice thermal conductivity at T = 50 K and T = 140 K
are found to be 31 Wm−1K−1 and 11.5 Wm−1K−1 in my calculations respectively that is
comparing with values of 30 Wm−1K−1 and 10.5 Wm−1K−1 obtained in experiment by
Uher. Contrastingly, my calculation with ab initio phonon dispersion (black dashed line)
and the calculation of Lee et al [56] (red dashed dotted line) predict much lower values
of the lattice thermal conductivity due to the enhanced AOPI.

The data of Gallo et al [8] provide the lowest values of the lattice thermal conductivity
among the all available data. For instance, at ambient temperature Gallo et al. found
1.7 and 0.9 Wm−1K−1 in the binary and trigonal directions respectively. These values
are considerably lower than my results 5.8 and 4.5 Wm−1K−1 with the realistic AOPI as
well as my ab initio results, 3.1 and 2.4 Wm−1K−1, and the results of Lee, 4.4 and 3.9
Wm−1K−1 . However, as has been discussed earlier in Section 4.1, the estimation of Gallo
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heavily rely on the electronic structure of bismuth that is approximated by parabolic band
structure and found to be inexact in their model [91].

4.2.2 Non-lattice (charge carrier) thermal conductivity.
To evaluate the non-lattice (charge carrier) contribution I subtract the theoretical lat-
tice thermal conductivity from the experimentally measured total thermal conductivity.
The resulting differences in the binary and trigonal directions are shown in Fig. 4.2(a)
and Fig. 4.2(b) respectively. In both directions the electronic contribution is found to
be constant if the lattice part is calculated from phonon dispersion with shifted optical
branches (black solid lines). In the binary direction the electronic contribution is found
to be about 6 Wm−1K−1 that matches remarkably well with the experimental data of
Ref. [14] (green circles) and Ref. [91] (green triangles) obtained from the high magnetic
field experiments. In the trigonal direction there is no experimental data and I predict
the electronic thermal conductivity to be equal to 3 Wm−1K−1. At low temperatures T <
50 K the estimated electronic contribution goes up that could result from an additional
source of scattering that is not taken into account in my calculations. Indeed, the phonon
drag effect caused by the strong electron-phonon interaction has been determined to play
an important role on the magnitude of Seebeck coefficient at low temperatures [14, 87].
Thus the electron-phonon scattering might play an important role in thermal transport as
well. If the lattice thermal conductivity is obtained from the ab initio phonon dispersion,
the electronic contribution (black dashed line) is not constant anymore and monotonously
grows with the decrease of temperature in both directions.

4.2.3 Relative contributions of the charge carriers and of the
lattice.

To summarize the relative role of the lattice and charge carrier contributions in the ther-
mal transport in bismuth, I display in Fig. 4.3(a) and Fig. 4.3(b) the bar diagrams of
the contributions to the thermal conductivity at several temperatures in the binary and
trigonal directions respectively. The non-lattice part (blue bars) becomes less important
at low temperatures. It gives only about 17% of the total thermal conductivity at T = 50
K, comparing with 49% at ambient temperature in the binary direction. In the trigonal
direction, the non-lattice part contributes less than in the binary direction. For instance,
it gives 14% instead of 17% at T = 50 K, and 43% instead of 49% at T = 300 K.

4.2.4 Anisotropy ratio.
So far, I have presented the results of the calculations of the lattice thermal conductivity
in two main directions: in the trigonal direction and in the binary direction which is
perpendicular to the trigonal axis. Now I define the anisotropy ratio of thermal conduc-
tivities in bismuth as κ⊥

κ‖
where κ⊥ is the thermal conductivity in the binary direction and

κ‖ is the thermal conductivity in the trigonal direction.
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Figure 4.1: The lattice thermal conductivity of bismuth in the binary direction as a
function of temperature. Black solid line - calculation with the experimentally observed
AOPI. Black dashed line - calculation with ab initio phonon dispersion. Red dashed
dotted line - calculation of Lee et al [56]. Green squares - experimental results of Uher
et al [16].
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Figure 4.2: Evaluated non-lattice (charge carrier) thermal conductivity in the binary
(top panel) and trigonal (bottom panel) directions found as a difference between the
measured total thermal conductivity and my theoretical lattice thermal conductivity.
Black solid line - calculation with rigidly shifted upwards optical phonons, Black dashed
line - calculation with ab initio phonon dispersion. Green circles and squares are the
experimental data of Ref. [14] and Ref. [91] respectively. Red dashed line shows the
value of the non-lattice thermal conductivity at T = 300 K with calculated with ab initio
phonon dispersion.

.
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Figure 4.3: Relative contributions of the lattice vibrations (red bars) and of the charge
carriers (blue bars) to thermal conductivity of bismuth in the binary (top panel) and
trigonal (bottom panel) directions

.
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In Fig. 4.4, I show the anisotropy ratio of the lattice thermal conductivities obtained
in my calculation (black solid line). As one can see, it is constant at T > 20 K and
equal to about 1.3. This anisotropy ratio is defined mainly by the acoustic phonons and,
thus, does not depend on the shift of optical phonons. The experimental ratio of total
thermal conductivities (green dashed line) includes the contributions from both the lattice
vibrations and the charge carriers. In the region T < 100 K, the black solid curve and the
green dashed curve coincide, indicating that the anisotropy ratio is defined only by the
lattice part, as expected. The relative role of the charge carrier contribution is negligible
in this region.

As we have already seen, the anisotropy ratio of the charge carrier contribution
amounts to 2, and play a more and more important role as temperature increases. Thus,
we conclude that the anisotropy ratio of the total thermal conductivity increases, while
the lattice one stays constant.

Another theoretical results of Lee et al [56] (red dashed dotted line) is also displayed
for comparison. However, it is considerably lower even in the region of low temperatures
where the lattice part strongly dominates.
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Figure 4.4: Anisotropy of the thermal conductivity defined as the ratio κ⊥
κ‖

of thermal
conductivity in the binary direction κ⊥ and κ‖ thermal conductivity in the trigonal di-
rection. Black solid line - the theoretical lattice thermal conductivity anisotropy found
in my calculations. Red dashed-dotted line - the theoretical lattice thermal conductivity
anisotropy from Lee et al. [56]. Green dashed line - experimental total thermal conduc-
tivity anisotropy from Ref. [91].

4.3 Boundary scattering at low temperatures.
In Section 4.2, I have shown that the results of the calculation of the lattice thermal con-
ductivity agree remarkably well with experiment if the realistic acoustic-optical phonon
interaction is taken into account. Moreover, I have analyzed the relative role of heat
carriers at different temperatures and their role in the anisotropic ratio of thermal con-
ductivities.

However, we have seen in Chapter 3 that the calculated thermal conductivity increases
rapidly with the decrease of temperature, tending to infinity at ultra-low temperatures.
This divergent behavior is explained by the increase of the phonon mean free path that
is an average distance traveled by phonon before being scattered. So far the only source
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Figure 4.5: Schematic illustration of the geometry of the macroscopic wire of length
L and of circular cross-section with diameter d in experiment and in my calculations.
Heat propagates in the y direction and the phonon transport is limited in the x and z
directions.

of scattering in the calculations was an intrinsic phonon-phonon scattering. But the real
experimental samples always have a finite size and the sample boundaries must limit
the diffusive propagation of phonons. Thus an additional external source of scattering of
phonons from sample boundaries must be included along with the internal phonon-phonon
scattering to prevent the divergence of the lattice thermal conductivity in my calculations
and describe thermal transport at ultra-low temperatures.

4.3.1 Definition and implementation of the Casimir scattering
cross-section.

As we have already discussed in Section 1.2.3, boundary scattering of phonons could be
included in the calculation by means of Casimir model [27]. This model gives an analytical
expression for the probability of reflection of phonon from the boundary

P be
ν =

∣∣∣cbν ∣∣∣
LCasF

n0
ν(n0

ν + 1) (4.1)
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Figure 4.6: Temperature dependence of the lattice thermal conductivity in the binary
direction for a single crystal without and with millimeter-sized boundary effects. Black
solid lines: the result with no Casimir’s scattering rate, or with LCas = 2.65 mm and
9.72 mm. Green dashed lines: lattice thermal conductivity found as a difference between
measured total thermal conductivity (from Ref. [14] for sample 1 of a rectangular cross-
section 8.8 × 8.6 mm2 or from Ref. [91] for sample 2 of diameter d = 2.65 mm) and the
electronic thermal contribution of 6 W(K.m)−1 as determined earlier.
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where n0
ν is the equilibrium Bose-Einstein distribution for the phonon mode ν, LCas is

the Casimir length, describing the shortest sample dimension, F characterizes the sample
roughness [27] and is taken to be 0.5 in all further calculations [132, 133, 5], |cbν | depends
on the phonon group velocity cν in the direction(s) in which the phonon transport is
limited by the sample boundary, and, thus, is defined by the sample geometry.

Most of the experiments have been carried out on macroscopic wires with either cir-
cular or rectangular cross-sections. The illustration of the sample geometry with circular
cross-section is shown in Fig. 4.5. Heat propagates along the chosen direction which has
the length L (oriented along y axis on the figure) that is much longer than two other di-
rections (oriented along x and z axis on the figure) of length d. In this geometry the heat
transport is limited in the directions perpendicular to the propagation direction (i.e. in x
and z directions on the figure) and thus |cbν | =

√
(cxν)2 + (czν)2. The Casimir length LCas is

equal to the diameter d of the sample in case of circular cross section and LCas = 2
√

d1d2
π

in
case of rectangular cross-section with sides d1 and d2. I have implemented in the program
the model for the wires and thin films.

4.3.2 Results with Casimir’s scattering cross-section.
In Fig. 4.6 I show the calculated lattice thermal conductivity (LTC) in the binary direction
as a function of temperature (black solid curves). To compare with the experimental
data, I extract the electronic thermal conductivity of 6 Wm−1K−1 found earlier from the
measured total thermal conductivity from Refs. [14, 91] (green dashed curves). The first
experimental sample has a rectangular cross-section of 8.8×8.6 mm2 [14] and the second
one has a circular cross-section of d = 2.65 mm [91]. I determine Casimir’s lengths to be
LCas = 9.72 mm and LCas = 2.65 mm respectively (see paragraph above). One can see
that the account for boundary scattering makes the lattice thermal conductivity to be
finite in contrast to the asymptotically-infinitely large values in the absence of boundary
scattering. Moreover, the theoretical curves now well reproduce the experimental behavior
of the thermal conductivity and, in particular, the positions of the thermal conductivity
maxima at about T = 4 K. Further decrease of temperature leads to the decrease of
thermal conductivity with a decay low in T3, showing the dominant role of the scattering
of phonons by the boundaries.

4.4 Summary and outlook
This Chapter is devoted to the comparison of the calculated lattice thermal conductivity
presented earlier in Chapter 4 with the available experimental data. My ab initio calcula-
tion and a previous calculation of Lee et al. [56] provide a considerably lower value of the
lattice thermal conductivity. I have demonstrated that the lattice thermal conductivity
in the binary direction obtained with the account for realistic acoustic-optical phonon
interaction (AOPI) shows an excellent agreement with the experiment of Uher et al. [16].
Above all, I have predicted the lattice thermal conductivity in the trigonal direction where
it has not been measured.
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Then I have evaluated the non-lattice (charge carrier) thermal conductivity as a dif-
ference between the measured total thermal conductivity and my theoretical results. I
have found that it is constant as a function of temperature at T > 20 K and equal to 6
Wm−1K−1 in the binary direction and to 3 Wm−1K−1 in the trigonal direction. I have dis-
cussed the anisotropy of the thermal conductivity and I have shown that it is determined
by the lattice contribution in the region of low temperatures where it dominates. At
high temperatures the electronic contribution is comparable with the lattice one and con-
tributes to the anisotropy as well. Above all, I have predicted the charge carrier thermal
conductivity in the trigonal direction.

Finally, I have discussed the Casimir model of boundary scattering. I have shown that
the account for boundary scattering in macro-samples leads to finite values of the lattice
thermal conductivity at ultra-low temperatures in contrast with the divergent values in the
presence of phonon-phonon scattering only. I have demonstrated that the Casimir model
enables me to describe accurately the position of the thermal conductivity maximum as
well as temperature behavior of thermal conductivity down to T = 2 K.
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Chapter 5

Thermal conductivity reduction.

Introduction.
The enhancement of thermal insulation properties of materials is one of the ways to
increase their thermoelectric efficiency. It requires the reduction of thermal conductivity
which governs the heat transport. However, the theoretical investigation of the lattice
thermal conductivity in such a complicated material as Bi, even in the bulk case, is a
quite challenging task and an accurate description of the scattering between optical and
acoustic phonons is necessary. As we have seen in the previous chapters, the latter allows
me to reproduce the experimental values and opens the way to study the possible routes
of thermal conductivity reduction in Bi. That is the aim of this chapter.

The chapter is organized as follows. First, in Section 5.1, I discuss the effect of
acoustic-optical phonon interaction (AOPI) and its possible realization in photoexcited
bismuth. I show how the magnitude of the lattice thermal conductivity is modulated with
the rigid shift of optical phonons. Second, in Section 5.2, I discuss some of the existing
approaches to study the effect of nanostructuring which is a well known way to reduce
the lattice thermal conductivity. I show that by means of the Casimir model, one can
study nanostructures of different geometries. I compare the results of my calculations
with experiments on polycrystalline thin films as well as polycrystalline and single crystal
nanowires. Finally, in Section 5.7, I predict the reduction of the thermal conductivity
in semimetallic and semiconducting thin films and polycrystalline bismuth for different
thicknesses and grain sizes respectively.

5.1 Enhancing the acoustic-optical phonon interac-
tion.

In the previous chapters we have seen that an appropriate position of TO phonon branches
at Γ is mandatory for an accurate description of the lattice thermal conductivity in Bi.
This results in a realistic estimation of the interaction between the acoustic and optical
modes (AOPI) comparing with the pure ab initio calculation where this interaction is
overestimated due to the softening of the optical phonons.

79
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Experimentally, the modulation of the strength of the AOPI defined by the indirect
phonon gap between the LA branch at T point and the TO branch at Γ has been achieved
by photoexcitation of bismuth in ultra-fast pump-probe experiments [134]. The effect of
photoexcitation on the phonon dispersion of Bi has been studied by Murray et al [115]
by means of the constrained DFT approach in which the valence and conduction bands
are filled independently of each other using Fermi-Dirac distributions. Two chemical
potentials are determined by requiring the correct total number of electrons within each
set of bands separately and Bi has been treated as semiconductor [115]. The resulting
dispersions for 0% (equilibrium, orange solid curve) and 1% (magenta dashed curve)
fraction of the valence electrons excited to the conduction bands are shown in Fig. 5.1 as
well as my theoretical dispersion with the shifted optical branches (black solid lines) and
the existing experimental data for phonons in not excited Bi (green crosses and pluses).
One can see that photoexcitation has a negligible effect on acoustic phonons which match
well with the DFT results. In the equilibrium state, the transverse optical modes at Γ
obtained with the constrained DFT approach lie at a frequency about of 79 cm−1 that is
even higher then the experimental value (see also Table 3.3). In the photoexcited state,
the frequencies of optical phonons are reduced almost uniformly over the Brillouin zone
by about 8.5 cm−1 downward. Thus the rigid shift discussed earlier can be regarded as
the photoexcitation of Bi.

The softening of the optical modes may result from two main factors: from the reduc-
tion of bond strength when electrons move out of their bonding state and from the change
in the equilibrium value of the internal parameter u which describes the atomic positions
along the trigonal axis [115] (see Appendix A for details of the atomic structure of Bi). In
the latter case u tends to 0.5 which corresponds to the cubic phase and the optical modes
must tend toward their corresponding acoustic modes, as the system moves from a two
atom unit cell to a single atom unit cell system. The change in the equilibrium value of
u has been found to be the dominating factor on the softening of the TO modes [115].

In Fig. 5.2(a), I show the lattice thermal conductivity as a function of the shifting
frequency ωshift of optical phonons at T = 100 K (green solid line), 200 K (blue solid line)
and 300 K(black solid line). Its zero value corresponds to the experimental position of the
TO mode at the zone center. The positive and negative shifting frequencies are attributed
to the upward and downward shifts respectively. One can see a monotonous decrease in
thermal conductivity with the frequency shift at all temperatures. Ab initio values are
marked with black dashed-dotted line and lie considerably lower than the experimental
values as I have already discussed in the previous chapter. The corresponding reduction
factors with respect to ωshift = 0 are shown in Fig. 5.2(b). The shift down to 8.5 cm−1

caused by excitation of 1% valence electrons to conduction band [115] leads to the decrease
of the lattice thermal conductivity by about 1.4 times. The reduction factor is found to
grow almost linearly with the shifting frequency ωshift.

The AOPI turns out to be the reason of thermal conductivity reduction in many ma-
terials. For example, the strong anharmonic coupling between the ferroelectric transverse
optic mode and the longitudinal acoustic modes results in extremely low thermal conduc-
tivity in PbTe [135]. In relaxor ferroelectrics the anharmonic interaction between TA and
TO modes leads to the "waterfall" effect when optical phonons become over-damped and
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Figure 5.1: Theoretical phonon dispersion with upwardly shifted optical branches to
match the frequency of the TO mode at the zone center Γ (black solid lines) and the
ones obtained by Murray et al. [115] by means of the constrained DFT calculations with
0% (orange solid curve) and 1% (magenta dashed curve) fraction of the valence electrons
excited to the conduction bands. Experimental data extracted from [112] (green pluses)
and [113] (green crosses)
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Figure 5.2: Top panel: The lattice thermal conductivity κL as a function of the shift
frequency ωshift of optical phonons at T = 100 K (green solid line), 200 K (blue solid
line) and 300 K (black solid line). Bottom panel: The reduction factor caused by the
downward shift of the optical branches ωshift at T = 100 K (green solid line), 200 K and
300 K (black solid line) which are matched to each other. Ab initio value of ωshift is
marked with thin black dashed-dotted line. Experimental value is set to ωshift = 0.
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seem to fall into the acoustic branch resulting in glass-like thermal conductivity [136].
Moreover, in inclusion compounds the acoustic-optical coupling may lead to the reso-
nances between the acoustic modes of the host material and localized modes of the inclu-
sion which leads to enhanced scattering called resonant scattering [48]. In general, this
mechanism could be important in any systems with low-lying optical phonon modes and
potentially it provides an efficient way of the thermal conductivity reduction [48].

As I have shown in this section, the AOPI could be the way to reduce the lattice
thermal conductivity in bismuth. To the best of my knowledge, for the moment no
experimental route but photoexcitation was found to soften the optical phonons in bulk
Bi. However, the excitation by laser is hard to implement in a thermoelectric device
since it has to be constantly maintained. Thus, the result of this section should enoughbe
regarded as a theoretical concept.

5.2 Interface scattering.
Interface scattering is a well-known and effective mechanism of the thermal conductivity
reduction in materials [137, 138, 139]. It provides the way to improve the thermal insu-
lation properties that is extremely important for thermal management applications. The
enhancement of the interface scattering could be achieved by reducing the dimensionality
of the material in 1, 2 or 3 directions like in thin films, nanowires and spherical dots.
Other nanostructures of various geometries have also been investigated [22], by using a
polycrystalline material where the phonons encounter small polycrystalline grains [27, 140]
or by nanoparticle inclusions embedded in alloy [141, 142]. On the other hand, the nanos-
tructuring leads to the enhancement of the Seebeck coefficient S and consequently of
the power factor S2σ, through the modification of the density of states for electrons and
holes [17, 18], especially through the decrease of the symmetry of electrons and holes on
either side of the Fermi level [12] (see also Section 2.3.2). The simultaneous reduction of
the thermal conductivity and the increase of S will result in the significant enhancement
of the overall figure of merit ZT necessary to improve the thermoelectric efficiency of the
materials [143, 144, 145, 146, 102].

Bulk bismuth has the lowest thermal conductivity among all metals except mer-
cury [15]. The Seebeck coefficient is also large in Bi. However, it is not considered
as a good thermoelectric material because of the semimetal band structure which leads
to a small electrical conductivity. The interest in Bi as a thermoelectric material was
renewed when theoretical and experimental investigations of size effects on the transport
properties of Bi and Bi-based nanostructures predicted an enhancement in ZT for one-
dimensional systems such as nanowires [147]. The physical mechanisms that result in
the superior thermoelectric performance of low-dimensional materials are the increase in
the Seebeck coefficient S and the simultaneous reduction of the lattice thermal conduc-
tivity [22]. Indeed, in Bi the confinement effect leads to a semimetal-to-semiconductor
transition [15, 96, 97] and favors an increase of the thermopower coefficient [15], by sev-
eral orders of magnitude for instance in a 15-nm-sized Bi composite [96, 97]. The detailed
investigation of the thermal conductivity reduction in Bi nanostructures is thus of high
practical interest. It will complement the existing studies of the electronic transport
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properties of Bi and will give an additional piece of information necessary to evaluate the
thermoelectric figure of merit.

In the following sections, I describe the approach I use to study the lattice thermal
conductivity of nanostructures. I compare my theoretical calculations with the existing
experimental data to show the predictive capability of the method. Finally, I predict the
lattice thermal conductivity reduction and the possible overall effect on ZT .

5.3 Method: Casimir’s approach versus accumulated
approach.

5.3.1 Accumulated approach.

The typical approach used in the literature to evaluate the effect of size reduction is an a
posteriori analysis [148, 149]. It consists in the analysis of the lattice thermal conductivity
as an accumulated function of the mean free paths of individual phonons. This approach
could be used either in single mode approximation (SMA) or in combination with the
iterative solution of the BTE (see Section 1.4.2) when all ingredients to obtain the lattice
thermal conductivity defined in (see Eq. 1.46)

κL = − ~
NqV kBT

∑
ν

n0
ν(n0

ν + 1)cheatν ωνfν (5.1)

are known. Here, the key ingredient, fν , is the deviation of the phonon population with
respect to the equilibrium distribution n0

ν under the influence of the scattering terms,
namely the phonon-phonon interaction and the boundary scattering.

Mathematically, to obtain an accumulated lattice thermal conductivity of fixed nanos-
tructure size d one keeps the phonon distribution of bulk material and cancels the phonon
contributions to the lattice thermal conductivity when the phonon mean free path Λ is
larger than d [148, 149]. The lattice thermal conductivity of Eq (5.1) then becomes

κL(d) =
ˆ d

0
dxκL(x)δ(Λ− x) (5.2)

The described accumulated approach may be valid for the nanostructure analysis
only if the mean free paths in nanostructure remain the same as in the bulk. However,
the thermal conductivity is a collective property and the change of extrinsic sources of
scattering does not merely scale down the largest mean free paths but it also affects all the
distribution at once [52]. Thus another approach directly accounting for the redistribution
of the phonon mean free paths must be used to correctly describe the lattice thermal
conductivity in nanostructures.
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5.3.2 Casimir’s approach.
To accurately account for the scattering due to the sample boundaries I used the Casimir
model [150] with the scattering rate for a phonon ν (see Section 1.2.3)

P be
ν =

∣∣∣cbν ∣∣∣
LCasF

n0
ν(n0

ν + 1) (5.3)

It has already been used in Section 4.3 to successfully describe the behavior of the lat-
tice thermal conductivity in the finite samples of macroscopic sizes at low temperatures.
In particular, boundary scattering has been shown to lead to finite values of the lat-
tice thermal conductivity in contrast with the divergent values in infinite samples. The
temperature dependence of the lattice thermal conductivity and the position of its maxi-
mum were also described remarkably well validating the correctness of the model on the
macroscopic scale.

Boundary scattering depends on the geometry of the sample and on the roughness
of the surface. The latter is defined by the specular parameter F which is set to 0.5
everywhere in our calculations to be consistent with the previous theoretical works [132,
133, 5]. The geometry of the sample defines the directions in which the phonon transport
is limited by the sample boundary and thus

∣∣∣cbν ∣∣∣ in the formula of the Casimir scattering
rate (5.3). It depends on the sample orientation in space with respect to the direction in
which the heat flux is measured.

ColdHot

Heat flux propagation 

a)

b)

c)

x

y

z

 d

dL

d

Figure 5.3: Illustration of different sample geometries: a) spherical grains, b) cylindrical
wire and c) thin film.
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Method Accumulated approach Casimir’s scattering
T (K) Lee et al.. [56] This work This work

Binary direction
10 - 3380 10400
20 - 526 1430
50 120 148 410
100 55 69 190
200 26 34 90
300 17 22 60

Trigonal direction
10 - 2240 5467
20 - 412 760
50 87 126 160
100 40 59 68
200 19 29 32
300 13 19 21

Table 5.1: Bi: maximum value of the heat carrier mean-free path Λ (nm) which provides
a contribution of 50% to the bulk lattice thermal conductivity in the binary and trigonal
directions.

5.3.3 Casimir’s approach: geometry.
In contrast to the usual accumulated approach, the Casimir model allows to study the
different sample geometries such as thin films, wires, spherical nanoparticles (Fig. 5.3
(c), (b) and (a) respectively). For the sake of generality, in Fig. 5.3, I use Cartesian
coordinates, and the heat flux is measured in y direction. In this case we have:

•
∣∣∣cbν ∣∣∣ = |czν | for the thin film geometry,

•
∣∣∣cbν ∣∣∣ =

√
(cxν)2 + (czν)2 for the nanowire geometry,

•
∣∣∣cbν ∣∣∣ =

√
(cxν)2 + (cyν)2 + (czν)2 for the spherical-grain geometry.

Here, cxν , cyν , czν are Cartesian components of the phonon group velocity cν and LCas = d
is the smallest dimension in which the reduction occurs.

5.3.4 Comparison between Casimir’s approach and the accumu-
lated approach.

When applied to bismuth, results obtained with eq. (5.2) and with the full iterative
solution of the BTE exceed the ones found in the work of Ref. [56] (columns 1 and 2
in Table 5.1). The difference is explained by the softened optical modes near Γ in the
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calculations of Ref. [56] (i.e. enhanced AOPI). It results in an effective scattering channel
of the acoustic phonons and smaller phonon relaxation times. The phonon mean free
paths and the lattice thermal conductivity are reduced accordingly.

In Figure 5.4, I show that the two approaches yield very different results for the
nanostructure lattice thermal conductivity. Indeed, the accumulated approach (Fig. 5.4,
empty squares and circles) yields an overestimation of the lattice thermal conductivity in
the nanostructures by a factor of 1.6 for a 100 nm nanostructure, and by a factor of 2.0
for a 50 nm nanostructure at ambient temperatures, with respect to the exact solution of
the Boltzmann Transport Equation. At low temperature T = 10 K, on the contrary, the
lattice thermal conductivity is underestimated by the a posteriori analysis, by more than
one order of magnitude for 100 nm and 50 nm nanostructures.

Turning to the nanostructure size predicted by the two approaches which would yield
a 50% reduction of the lattice thermal conductivity, we find that nanostructure sizes
obtained with the accumulated approach (column 2 in Table 5.1) are about three times
smaller than those predicted using Casimir’s scattering rate (column 3 in Table 5.1), at
all temperatures. This shows that there is a strong redistribution of the phonon mean
free paths when the effect of sample boundaries is taken into account.

5.3.5 Modeling of grain boundaries: polycrystalline samples.
Sample boundaries are the only interface-related source of scattering in single-crystalline
objects. However, often the experiments are carried out on samples having polycrystalline
nature. Such samples are composed of a number of smaller crystals or crystallites of
different orientations. The presence of grain boundaries introduces an additional source
of scattering, which I assume to be independent on others. Thus, for the polycrystalline
structures two independent scattering rates of Eq. 5.3 corresponding to the geometry
of spherical grain and of the sample under consideration must explicitly be taken into
account at the same time. The scattering rates include the extrinsic length LCasgrain for grains
and LCassample for sample geometry corresponding to the average grain size and minimum
dimension of the sample respectively.
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Figure 5.4: Temperature dependence of the lattice thermal conductivity (LTC) in the
binary direction of Bi (black solid line). The results for the exact solution of bulk bismuth
and for polycrystalline nanostructures with grain sizes of 100 nm (filled squares) and 50 nm
(filled disks). The results obtained with the accumulated approach in this work are given
for a 100-nm nanostructure (empty squares) and for a 50-nm nanostructure (empty disks).
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5.4 Comparison with experiments on polycrystalline
thin films.

Bismuth is built of pucked bilayers of atoms perpendicular to the rhombohedral [111]
direction (trigonal axis) in which each atom is covalently bonded to its three nearest
neighbors. The inter-bilayer bonding is much weaker than the one inside the bilayers.
This makes possible to cleave Bi crystals along the [111] direction [114].

However, the exfoliation of bismuth layer (like in graphene or Bi2Te3) has never been
achieved experimentally. The growth of Bi single crystalline thin films even in [111] is
also a quite challenging task and the properties of thin films close to the bulk were ob-
tained only in recent experiments [151, 152]. Unfortunately, no measurements of thermal
conductivity in such samples has ever been done. In contrast, most of the experimental
studies have been performed on polycrystalline or nanoporous thin films [19, 153, 20, 21].

To show a predictive power on the nanoscale of the method I use, I compare the calcu-
lated thermal conductivity of polycrystalline thin films with the measurements performed
by Volklein and coauthors [19, 153]. First, I note that the nanostructuring effect in poly-
crystalline samples is characterized by both film thickness d, and average grain size G
which I model with the spherical grain geometry (see Section 5.3.3). Thus, in my calcu-
lation I take into account scattering from both thin film boundaries and polycrystalline
grains at the same time. The resulting thermal conductivity (black solid lines) at T =
100 K, 200 K and 300 K as well as the experimental data of Ref. [19] (red diamonds) are
shown in Fig. 5.5. Thin film thickness and average grain size are not independent and have
been found to be G(d) ∼ log(d) in experiment [19] (see Fig. 5.6(a)). For clarity, I show
in Fig. 5.5 the dependence of thermal conductivity on film thickness (bottom abscissa)
and on average grain size (top abscissa). As one can see the results show a remarkable
agreement with experiments of Ref. [19]. For very thin films, the average grain size has
been found to be much larger than the film thickness and thus sample boundaries is a
dominating extrinsic source of scattering. Contrastingly, for film thicknesses larger than
200 nm, an average grain size is inferior to the film thickness and the scattering from
polycrystalline grains is more important than the scattering from the sample boundaries.

In Fig. 5.5, the available experimental data of Ref. [20] are also shown (empty squares).
In Ref. [20], the average grain size was found to be approximately equal to the film
thickness, i.e. it was found to be larger than that of Ref. [19] for most samples. Although
my calculated lattice thermal conductivity lies between the two experimental data sets
for 200 K and 300 K, the best agreement is clearly found for the more recent work [19],
the most probable cause being the effect of the film-substrate, as pointed out in Ref. [19].

The fact that the theoretical lattice thermal conductivities are close to the experimen-
tal total thermal conductivities is consistent with the marked semiconducting temperature-
dependent behavior seen in the film electrical resistivity [19]. In Fig. 5.7(a), I show the
electrical resistivity of thin films measured in the same experiment [19] and the one mea-
sured in bulk bismuth (black solid curve) [8]. Indeed, one can see that the electrical
conductivity drops from 3 to 6 times at ambient temperature and from 20 to 25 times
at T = 100 K for the samples studied in the experiment [19]. This results in a signif-
icant reduction of the charge carrier component of the thermal conductivity which has
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Figure 5.5: Lattice thermal conductivity in the binary direction (solid lines) as a function
of the thin-film thickness (nm) (bottom abscissa axis) or of the grain size (top abscissa
axis, data from [19]) at 100 K, 200 K and 300 K (resp. top, center and bottom panels).
Red filled diamonds: expt. total thermal conductivity κTOT from Ref. [19]. Empty red
squares: expt. κTOT from Ref. [20].
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Figure 5.6: Dependence of grain size G(d) (“mean grain diameter”) of bismuth films on
the thickness d found in experiment [19, 153]. Extracted from Ref. [153].
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Figure 5.7: Electrical resistivity of Bi thin films measured in the experiments of Ref [19,
153] (red, blue, green, cyan and violet solid curves) and the one measured in bulk Bi [8]
(black solid curve).
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been found to be constant and equal to about 6 Wm−1K−1 in bulk bismuth in the binary
direction (see Section 4.2.2).

5.5 Comparison with experiments on nanowires.

5.5.1 Calculations on monocrystalline nanowires.

A quasi-suppression of the thermal conductivity has also been found in bismuth nanowires,
but its origin is still debated [15]. Measurements made on nanowires [15, 22, 23, 24, 25, 26],
most of which are semiconducting, have yielded widely scattered values. In Fig. 5.8, I show
the calculated thermal conductivity for single crystal nanowires (black solid line) which
monotonically goes down when the diameter decreases. As one can see, for the nanowire
diameters greater than about 200 nm, the curve lies between the experimental data. While
for the nanostructures of small size, Casimir’s model overestimates the lattice thermal
conductivity of nanowire. The extremely scattered character of the experimental data
available in literature suggests the presence of unidentified sample-dependent scattering
mechanisms in Bi [15], or a problem of contacts in the experiments.

From the experimental point of view, the fabrication and the measurement of the
thermal conductivity in single-crystalline nanowires are quite challenging. Synthesized
nanowires are often coated with the surrounding oxide shells which might introduce an
additional effect on the thermal conductivity. Moreover, the effects of template on which
nanowire has been synthesized and of strain in case of suspended nanowire must accurately
be taken into account.

Similar problems were recently reported on single-crystalline silicon nanowires [154]
where extremely low value of thermal conductivity had been observed. The measured
thermal conductivity is one order of magnitude lower than predicted by the diffuse
boundary limit of Casimir’s theory [100]. The explicit consideration of surface rough-
ness on the atomic level, allowed to obtain lower values of the thermal conductivity than
with the Casimir model but a significant disagreement with the experiment was still
observed [100, 155]. In other words, available theoretical studies suggest a profound mod-
ification of the nanowire atomic structure such as surface oxidation, roughness, and core
defects in Si [102, 100, 101].

My calculations show that the same conclusion can be drawn for Bi nanowires. This is
surprising with respect to the good agreement with bulk values and with polycrystalline
films. Contamination by an oxidation of bulk bismuth has been seen in the experiment
of electron energy loss spectroscopy (EELS) [156], in which a peak at 29 eV has been
attributed to Bi2O3. However, the experiment performed on thin films did not reveal
their oxidation.

Thus, the complete understanding of the thermal conductivity in nanowires in general
is still lacking. Further studies to resolve the existing discrepancy between theory and
experiment would be of great interest and form one of the perspectives of this PhD.
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Figure 5.8: Calculated thermal conductivity of single crystalline nanowire grown in the
binary direction as a function of the nanowire diameter (black solid line). Experimental
data of Ref. [23] (empty green circles), Ref. [26] (blue squares) and Ref. [15] (red triangles)
are also indicated.
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5.5.2 Calculations on polycrystalline nanowires.
Now let us turn to the polycrystalline nanowires. First, I note that the thermal con-
ductivity measured in polycrystalline nanowires is lower than in single crystal samples
and provide a lower band for the thermal conductivity (magenta diamonds on Fig. 5.8).
For instance, for the nanowires of d = 74 nm and d = 255 nm it is κ = 0.60 Wm−1K−1

and κ = 0.72 Wm−1K−1 respectively [15]. To describe the experiment of Ref. [15], in
analogy with polycrystalline thin films, I introduce two sources of boundary scattering
simultaneously i.e. the scattering from nanowire boundaries and from grain boundaries.
In Fig. 5.9, I show the lattice thermal conductivity for the fixed nanowire diameter given
in experiments a function of the grain size (green and black solid lines). The experimental
values are displayed with dashed lines. An average grain size has not been identified in
experiment of Ref. [15]. I find that the theoretical lattice thermal conductivity matches
with the measured one if the grain sizes are 7.5 nm and 5.7 nm for the nanowires with
diameters 74 nm and 255 nm respectively.

These values, however, must be taken with extreme caution given the lack of under-
standing of the case of monocrystalline nanowires reported in the previous section 5.5.1.
The scattering by boundaries in Casimir’s model is smaller than the one found in ex-
periments. In my calculations for polycrystalline nanowires, a smaller grain size in the
scattering by grain boundaries may compensate the smaller value of the scattering by
boundaries in nanowires with Casimir’s model.
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Figure 5.9: Calculated thermal conductivity of polycrystalline nanowires in the binary
direction of d = 74 nm (black solid curve) and d = 255 nm (green solid curve) as a function
of the grain size. Experimental thermal conductivities for d = 74 nm (black dashed line)
and d = 255 nm (green dashed line) are shown.
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5.6 Effect of geometry on the thermal conductivity
of nanostructures.

In the previous sections I have shown a predictive capability of the Casimir model for
the available experimental data on thin films. Most of the studied samples possess a
polycrystalline nature and the simultaneous account of sample boundaries and grains is
crucial to describe the experiment.

Now I consider the single-crystalline bismuth nanostructures to see the effect of the
geometry on the lattice thermal conductivity. In Fig. 5.10, I show the calculated lattice
thermal conductivity for thin films (solid lines), nanowires (dotted lines) and spherical
nanograins (dashed lines) at T = 100 K (bottom panel), T = 200 K (medium panel) and
300 K (top panel). I include only one extrinsic source of scattering due to the sample
boundary. I take the Casimir length LCas to be equal to the smallest dimension of the
sample. In agreement with previous studies [157, 158], I find that the sample geometry
plays an important role in the reduction of the lattice thermal conductivity. The largest
heat transport reduction is found for the spherical geometry, and the smallest one for
monocrystalline thin films. The results are analogous at all temperatures.

This result could be easily understood if the precise meaning of
∣∣∣cbν ∣∣∣ in Eq. (5.3) for

each of the geometries is considered. Indeed, as has already been explained in Sec. 5.3,∣∣∣cbν ∣∣∣ = |czν | for the thin film geometry,
∣∣∣cbν ∣∣∣ =

√
(cxν)2 + (czν)2 for the nanowire geometry, and∣∣∣cbν ∣∣∣ =

√
(cxν)2 + (cyν)2 + (czν)2) for the spherical-grain geometry. This leads to an obvious

relation
√

(cxν)2 + (cyν)2 + (czν)2 >
√

(cxν)2 + (czν)2 >
√

(czν)2 and thus to the inequality for
the scattering rates Sgrainν > Swireν > Sfilmν which is inversely proportional the lattice
thermal conductivity in Fig. 5.10. Therefore, the thermal conductivity of the spherical
grain is always lower than the one of thin film.
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Figure 5.10: Lattice thermal conductivity (LTC) for different geometries of bismuth nanos-
tructures. Solid lines: LTC in the binary direction for monocrystalline thin films as a func-
tion of the film thickness. Dotted lines: LTC along the binary axis of monocrystalline
nanowires. Dashed lines: spherical grain.
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5.7 Reduction factor.

5.7.1 Reduction factor for thin films and spherical grains.

To rationalize the effect of nanostructuring on the lattice thermal conductivity in Bi, I
define the reduction factor R(T ) = κbulkL (T )

κnanoL (T ) , where κ
bulk
L is the thermal conductivity of

bulk bismuth, κnanoL is the thermal conductivity of nanostructure. In Fig. 5.11, I show the
reduction factor for spherical nanograins (dashed curves) and thin films (solid curves) for
a number of temperatures. This figure provides an abacus for the thermal management,
that can be employed to deduce the reduction factor for a given nanostructure size or,
alternatively, to choose the nanostructure size to obtain a desired reduction of the heat
transport.

In Fig. 5.11, we can see that the spherical grain geometry is beneficial comparing
with thin film, as has already been pointed out in Sec. 5.6. Indeed, to obtain the same
reduction factor one needs a grain size greater than the one of thin film. In cases where
only thermal properties matter and electronic conductivity is not so important, the control
of grain sizes in polycrystalline films turns out to provide the best strategy for the control
of heat transport reduction in bismuth. For instance, for a target reduction factor equal
to two, the grain size should be smaller than 62 nm at 300 K, 95 nm at 200 K and 188 nm
at 300 K (dashed lines).

5.7.2 Reduction factor for semimetallic and semiconducting thin
films.

The synthesis of thin films is facilitated by the atomic structure of bismuth. However, the
fabrication of very high quality semimetallic single-crystalline films became possible only
recently [151]. The electronic properties of single-crystalline thin-films are much improved
with respect to polycrystalline samples, making thin-films a possible alternative for ther-
moelectric applications. In Fig. 5.12, I show the reduction factor for the semiconducting
thin films (thin solid curves) and for the metallic thin films (dashed dotted curves) as a
function of nanostructure size and temperature1. For the latter case I redefine the re-
duction factor as R̂(T ) = κbulkL +κbulkE

κnanoL +κbulkE
, where κbulkE is the contribution due to the charge

carriers in the bulk that has been found to be constant with temperature variation and
equal to κbulkE = 6 Wm−1K−1 in the binary direction. One can see that because of the
presence of the charge carrier contribution the reduction is smaller in the case of metallic
thin films. For a target reduction by factor of two, the film thickness should be smaller
than 4 nm at 300 K, 12 nm at 200 K and 40 nm at 100 K. Instead, nanostructure sizes of
19 nm at 300 K, 27 nm at 200 K and 60 nm at 100 K are found to be necessary in case
of semiconducting thin films.

1I assume that harmonic and anharmonic force constants of Bi in semiconducting state remain the
same as in semimetallic state. Calculation of phonon dispersion of semiconducting bismuth has been
done in Ref. [115] and show no difference in acoustic part of phonon dispersion that brings the main
contribution to the lattice thermal conductivity of Bi.
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Figure 5.11: Nanostructuring-reduced lattice thermal conductivity (LTC). Abacus of the
reduction factor as a function of the nanostructure size and temperature, at 300 K (black),
200 K (red), 100 K (green), 50 K (blue), 20 K (violet). Solid lines: single-crystalline thin-
films, LTC along the binary direction; Dashed lines: spherical grain-geometry.
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Figure 5.12: Nanostructuring-reduced total thermal conductivity (LTC) for semiconduct-
ing (solid curves) and semimetallic (dashed-dotted curves)thin films. The reduction factor
as a function of the nanostructure size and temperature, at 300 K (black), 200 K (red),
100 K (green), 50 K (blue), 20 K (violet). The shaded area delimits the 76 nm size, where
the contribution from charge carriers vanishes due to the semimetal-to-semiconductor
transition in Bi thin films [151].
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In Bi thin films with the thicknesses of the several tens of nanometers the semimetal-
to-semiconductor transition will occur [159]. The semiconducting region is shaded in
Fig. 5.12 by grey color. The best semimetallic Bi thin films fabricated so far had thichness
of 76 nm [151]. For this thickness, the reduction factor amounts only to 1.2 at 300 K, 1.3
at 200 K and 1.6 at 100 K. The electrical conductivity σ is higher for the metallic thin
films than for the semiconducting ones. However, the drop of the electrical conductivity
can be compensated by the increase of the Seebeck coefficient S due to the breaking of
the electron-hole symmetry near the Fermi level in semiconducting Bi. Thus, providing
a strong thermal conductivity reduction, an experimental and theoretical investigation of
the power factor PF = S2σ in semiconducting single-crystalline thin-films would be of
great interest for thermoelectric applications.

5.8 Summary and outlook
In this chapter I have studied by means of ab initio DFT calculations the possible routes
for the lattice thermal conductivity reduction.

First, I have discussed the practical realization of the acoustic-optical coupling in
the ultra-fast pump-probe experiments on photoexcited bismuth. I have shown that
this interaction may significantly alter the magnitude of the lattice thermal conductivity
causing a strong reduction when the optical branches are softened down towards the
acoustic modes. However, the thermoelectric application of this phenomenon is hard to
achieve since the excitation by laser has to be constantly maintained.

Then I have turned to the study of nanostructured bismuth. I have explained that the
accumulated approach which is often used in the literature to predict the nanostructure
size necessary to effectively reduce the lattice thermal conductivity is valid only if the
mean-free path distribution in nanostructured bismuth remains the same as in bulk Bi.
However, this condition is certainly wrong on the nanoscale. Thus, I have used the Casimir
model which allows to accurately take into account the redistribution of the mean free
path due to the extrinsic boundary scattering. I have shown that this model allows to
study the samples of different geometries such as thin films, nanowires and spherical
grains and of both polycrystalline and single crystal nature. I have shown the predictive
capability of the method by precisely describing the experiments in the polycrystalline thin
films and comparing with the existing thermal conductivity data in nanowires. Finally, I
have predicted the effect of size reduction on the lattice thermal conductivity, and I have
estimated the effect of size reduction in thin films and semiconducting polycrystalline
bismuth providing an abacus for the thermal management and thermoelectric applications
as well as for future experiments.

One of the perspectives of this work is to understand the discrepancy between Casimir’s
model and the experiment in single crystalline nanowires.
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Chapter 6

Phonon-phonon interaction in Bi

Introduction.
Phonon-phonon interaction manifests itself in a wealth of temperature-induced physical
phenomena like melting or thermal transport, or in the observation of phonon linewidths
with spectroscopy techniques like infrared absorption and Raman scattering. As an-
harmonic coupling limits the mean free paths of heat-carrying phonons, phonon life-
times are directly related to thermal conductivity of materials, whereas understanding
the mechanisms of heat transfer is crucial to design specific materials with new ther-
mal properties [48, 62]. That is the reason why, in the past few years, the mechanisms
governing phonon lifetimes have attracted renewed attention, both from the experimen-
tal [160, 161, 162, 163, 164, 165, 166] and theoretical point of view [167, 168].

Moreover, recent developments in time-resolved spectroscopy offer the possibility of
imaging electronic states after a photo-excitation, with the potential activation of (optical)
coherent phonons in the photoexcited excited state [169]. These studies raise the question
of the interaction between coherent phonons in the excited states [170], and also the
evolution of the phonon-phonon interaction in presence of the free carriers promoted in
the conduction band [169].

Bismuth is a material widely studied with femtosecond spectroscopy [170, 171, 172,
134, 173], where optical phonons are of primary interest, with the ultimate aim of exerting
an optical control of lattice displacements and manipulating interatomic separations [174].
But acoustic phonons and their anharmonic interaction is also of wide interest, as bismuth,
with its low thermal conductivity is a candidate for thermal management and thermo-
electric energy conversion. At the same time, the subject of phonon-phonon coupling
in bismuth has been little addressed in literature, to the best of my knowledge. It is,
however, of great interest, as the identification of the main scattering channels governing
the lifetimes could shed light on the above-mentioned phenomena.

The Chapter is organized as follows. In Section 6.1, I will discuss the anharmonic prop-
erties of phonon modes in bismuth along some high-symmetry directions in the Brillouin
zone. Then, Sections 6.2 and 6.3 are devoted to the detailed analysis of the three-phonon
scattering processes contributing to the anharmonicity of acoustic phonons and to the role
of acoustic-optical phonon interaction (AOPI). In Section 6.4, I discuss the sound attenu-
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ation in bismuth that can be used in future experiments to obtain information about the
anharmonicity of acoustic phonons. In Sections 6.5 and 6.6, I turn to the detailed study
of the major three-phonon scattering processes contributing to anharmonic broadening of
optical phonons as well as the effect of AOPI on it. Finally, in Section 6.7, I will study
the anharmonic matrix elements and I will examine the applicability of the long-wave
approximation (LWA) which is often used in the literature.

6.1 Anharmonic properties of bismuth.

6.1.1 Introduction.
So far I have been focused on the study of thermal conductivity of bulk bismuth and its
nanostructures that is a macroscopic quantity which describes the ability of a material
to conduct heat. I have shown that a large portion of heat in bismuth is carried by
lattice vibrations, that becomes the sole mechanism for heat transfer at low temperatures.
However, phonons do not pass freely from the hot end of sample to the cold one to transmit
heat when the temperature gradient is established. On the contrary, on their way phonons
undergo many collisions with other phonons and different extrinsic obstacles such as
sample boundaries and defects. These collisions limit the propagation of heat, confine
phonon lifetimes and mean-free paths, and thus contribute to the thermal resistance in
a material. Thus, a direct insight into phonon scattering processes, defining the lattice
thermal conductivity on the microscopic level, is extremely important to understand the
heat conduction in materials. In this Chapter, I will discuss only three-phonon scattering
processes that, as we have already seen in Chapter 4, are sufficient to explain thermal
conductivity behavior with respect to experiment.

6.1.2 Anharmonicity.
In Section 1.3.2 we have seen that the anharmonic broadening Γqj of a particular phonon
|q, j〉 of wave vector q and mode index j is inversely proportional to its lifetime τqj. It
is defined as the total probabilities of phonon-phonon interaction, calculated via Fermi’s
Golden Rule [66]:

τ−1
qj = Γqj

~
= π

~2Nq

∑
q′j′,j′′

∣∣∣V (3)(qj,q′j′,q′′j′′)
∣∣∣2

ωqjωq′j′ωq′′j′′
×

×[2(n0
q′j′ − n0

q′′j′′)δ(~ωqj + ~ωq′j′ − ~ωq′′j′′)+

+ (1 + n0
q′j′ + n0

q′′j′′)δ(~ωqj − ~ωq′j′ − ~ωq′′j′′)] (6.1)

where V (3) are the matrix elements for three-phonon interaction processes defined in
Eq. 1.26. The broadening Γqj includes all possible scattering processes in which this
particular incoming phonon |q, j〉 is involved. Specifically, there are coalescence and
decay processes that are schematically illustrated in Figs. 1.1 (a) and (b).
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In case of coalescence, two incoming phonons, |q, j〉 and |q′, j′〉, interact to create a
final |q′′, j′′〉 phonon (Fig. 1.1 a).

|q, j〉+ |q′, j′〉 → |q′′, j′′〉 (6.2)

This process must obey the energy conservation law

~ωqj + ~ωq′j′ = ~ωq′′j′′ (6.3)

and the momentum conservation rule

q + q′ = q′′ + G (6.4)

These conservation rules are explicitly accounted for in the first Dirac delta function in
Eq. 6.1.

The second type of processes is a spontaneous decay of |q, j〉 phonon with creation of
two outcoming phonons |q′, j′〉 and |q′′, j′′〉(Fig. 1.1 b).

|q, j〉 → |q′, j′〉+ |q′′, j′′〉 (6.5)

Similarly to coalescence, it obeys the energy conservation rule

~ωqj = ~ωq′j′ + ~ωq′′j′′ (6.6)

and the momentum conservation rule

q = q′ + q′′ + G (6.7)

These conservation rules are explicitly accounted for in the second Dirac delta function
in Eq. 6.1.

Together, the two delta functions in Eq. 6.1 define the joint-density of states (JDOS)
describing all allowed scattering processes between three phonons, as it has already been
discussed in Section 3.2.3. The anharmonic broadenings depend on temperature through
the Bose-Einstein distribution functions, n0

q′j′ and n0
q′′j′′ , that are included as prefactors

of delta functions. The three-phonon matrix elements in equation 6.1, in turn, play a role
in weighting the various contributions of the allowed phonon-phonon scattering processes
in the phonon linewidth.

6.1.3 Anharmonic broadening along high symmetry directions
in the Brillouin zone at T = 300 K.

To study anharmonicity in bismuth, I present in Fig. 6.1 the anharmonic broadening Γqj
of an incoming phonon mode |q, j〉 at T = 300 K along some high symmetry directions
in the Brillouin zone. At ambient temperature all phonon modes are occupied since the
maximum phonon frequency ωmaxLO corresponds to a frequency of about 170 K only1. In
the top panel of Fig. 6.1, the anharmonic broadening for each of six branches is put on
top of phonon dispersion and is increased by 4 times for the illustrative purpose. The
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Figure 6.1: Top panel: phonon dispersion of bismuth along some high symmetry directions
with anharmonic broadening Γqj at T = 300 K on top of them. Broadening is increased
by 4 times for the illustrative purpose. Thick solid blue - TAs acoustic branch, thin solid
red - TAf acoustic branch, thick dashed green - LA acoustic branch, thick solid magenta
- TOl optical branch, thin solid orange - TOh optical branch and thick dashed dark
green - LO optical branch. Middle panel: not scaled anharmonic broadening for acoustic
branches only. Bottom panel: not scaled anharmonic broadening for optical branches
only. K-Γ is one of the in-plane binary directions and Γ-T is the trigonal direction. TAs
and TAf are defined in Section 3.1.2, as having the smallest (slow) and highest (fast)
sound velocities among the transverse acoustic modes. TOl and TOh are defined as the
transverse optical modes having the lowest and highest frequences near Γ.
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anharmonic broadenings in real scale are shown on the medium panel for acoustic branches
and on the bottom panel for optical phonons.

One can see in Fig. 6.1 that the smallest broadenings Γqj for acoustic phonons are found
near the Brillouin zone center Γ. They result in the longest phonon lifetimes τqj = ~

Γqj

and, consequently, the longest mean-free paths λqj = |cqj|τqj of phonons in this region.
Then, the broadenings grow rapidly with the modulus of the q vector revealing an active
role of acoustic phonons from the zone boundaries in the phonon-phonon interaction in
bismuth and, thus, leading to short lifetimes for these phonons. For example, the lifetimes
due to phonon-phonon interaction change from about 10 ns to 105 ps for the transverse
acoustic (TAs and TAf are degenerated in this direction) modes in the Γ-T direction, and
from 25 ns to 8 ps for the longitudinal acoustic (LA) mode in the same direction. The
highest branches (LA phonons in the Γ - K, Γ - T and Γ - X directions and TAf phonons
in the Γ - L direction) have the smallest broadening among all of the acoustic branches
near the zone center, and, on the contrary, the maximum one near the zone boundaries.
The values of phonon lifetimes of acoustic phonons at some high-symmetry points of the
Brillouin zone are summarized in the top part of Table 6.1. The shortest lifetimes are
determined to be τ = 8.0 ps at T point (LA branch), τ = 9.0 ps at L point (TAf mode),
τ = 17.7 ps at L point (LA mode) and τ = 28.3 ps at W point (LA branch). At other
high-symmetry points considered in this work the lifetimes are found to be of the order
of a few hundreds of ps (see Table 6.1).

In the bottom panel of Fig. 6.1, I show the anharmonic broadening of optical phonon
modes. In bismuth there are two transverse modes and I denote TOl and TOh as lower
and higher transverse optical mode near the Brillouin zone center. As one can see, the
transverse optical phonons have the largest broadening in the vicinity of the Brillouin
zone center, reaching the value of 5.15 cm−1 at Γ. It is explained by the fact that these
phonons have the lowest energies among all optical phonons that facilitates their inter-
action with acoustic modes. In Chapter 5 we have also seen that the acoustic-optical
phonon interaction (AOPI) can be even strengthened in photoexcited bismuth, because
the optical branches are softened in the excited state, while the acoustic branches remain
the same as in non-excited bismuth. The obtained phonon lifetime of the TO phonon
at Γ is τ = 6.5 ps (table 6.1) is in excellent agreement with the value found in Raman
experiments τ = 6.4 ps [176] and τ = 6.2 ps [175]2. This fact demonstrates the dominant
role of phonon-phonon interaction for TO phonons at Γ. Contrastingly, the LO phonon
lifetime is much longer, τ = 57.9 ps, than the experimental values τ = 10.1 ps [176] and
τ = 6.3 ps [175]. This fact shows a dominant role of electron-phonon scattering gov-
erning the lifetime of LO phonon that is not included in my calculation. The values of
phonon lifetimes of optical phonons at some high-symmetry points of the Brillouin zone
are summarized in the bottom part of Table 6.1.

1Not all the Brillouin zone is studied. The maximum frequency ωmaxLO is determined only for the
directions displayed in Fig. 6.1.

2In Raman experiments of Refs. [175, 176] the anharmonic broadening has been measured. The
obtained values are ΓTO = 5.2 cm−1 and ΓLO = 3.3 cm−1 in Ref. [176] and ΓTO = 5.4 cm−1 and
ΓLO = 5.3 cm−1 in Ref. [175]. In the current section I recalculated the phonon lifetimes from the given
values of broadening Γ.
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Acoustic branches
X K Γ T W L

TAs 188.5 161.2 - 105.1 200.9 63.1
TAf 163.9 140.7 - 105.1 209.4 9.0
LA 279.8 91.8 - 8.0 28.3 17.7

Optical branches
X K Γ T W L

TOl 56.9 38.5 6.5 1962.1 35.9 1283.4
6.2 [175]
6.4 [176]

TOh 33.8 85.6 6.5 1962.1 30.0 2674.9
6.2 [175]
6.4 [176]

LO 35.4 59.8 57.9 417.5 83.0 872.5
6.3 [175]
10.1 [176]

Table 6.1: Phonon-phonon interaction: relaxation times (ps) at high symmetry points in
the Brillouin zone. The lifetimes obtained from the anharmonic broadening for optical
phonons at Γ measured in Raman experiments in Bi [175, 176] are also given. See caption
of Fig. 6.1 for the definition of TAs, TAf, TOl and TOh.
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6.2 The main scattering channels for acoustic phonons.
The intrinsic anharmonic broadening Γν of the heat-carrying phonon mode |ν〉 = |q, j〉
gathers all possible scattering processes between this particular incoming phonon |ν〉 and
all other phonons existing in the material. The intensity of scattering determines the
thermal resistance, limiting the heat conduction. However, not all of the phonon-phonon
scattering processes contribute equally to anharmonicity. Thus, it is important to inves-
tigate the major three-phonon scattering processes determining the thermal resistance at
the microscopic level.

In this section, I will discuss the role of coalescence and decay processes for incoming
acoustic phonons with wavevectors q in two principle directions: K-Γ (along the binary
axis) and Γ-T (along the trigonal axis) at ambient temperature when all phonon states
are occupied. In Fig. 6.2 I show the anharmonic broadenings of TAs (bottom panel,
thick blue line), TAf (middle panel, thick red line) and LA (top panel, thick green line)
phonons that are the same as the ones discussed earlier in Fig. 6.1 in section 6.1.3, and
the contributions of some particular anharmonic processes (thin lines).

As one can see in the top panel of Fig. 6.2, the initial LA phonons near the zone
boundary, where the broadening is maximal, predominantly decay into TA phonons (thin
violet lines). These processes are known as Simons processes [177]. This is in agreement
with a theoretical analysis of Bi1−xSbx alloys [81] where Simons processes were found to
be predominant at all Sb concentrations x. In addition, another important scattering
process for LA phonons is their coalescence with LA phonon (from some point in the
Brillouin zone3) to form an outcoming TO phonon (black thin line). The latter process
contributes to anharmonicity mainly in the regions where the LA branch has the highest
frequencies among all acoustic phonons.

Near the zone center I find that LA phonons interact particularly with TA modes to
form another LA phonon of higher energy (thin orange dashed-dotted line in top panel of
Fig. 6.2). This is in contrast to other materials like Si [65], GaAs [65] or TeO2 [178, 179]
where Herring’s processes LA + TAs → TAf play a crucial role in the phonon-phonon
interaction. However, the original Herring analysis was limited to cubic anharmonicity
and low temperatures [180]. Moreover, generally the Herring processes are important
only very close to Γ point where the phonon phase space is small [65]. But, as we have
already seen in Chapter 3, despite the fact that the phonons near Γ point has a small
scattering rate and long relaxation times, they contribute negligibly to the lattice thermal
conductivity because of the low density of states in this region (see Section 3.4). Thus
they are not important for thermal transport in Bi.

The major processes for TAf phonons are shown on the middle panel of Fig. 6.2. As
one can see, in the K-Γ direction the main scattering channels are similar in magnitude
to the ones of LA phonons but not at the same q points. It is expected since LA and
TAf branches are very close to each other in this direction (see Fig. 6.1.3). In the Γ-
T direction, TAs and TAf transverse modes are degenerate. The TAs phonons have

3The analysis is done for the second phonon ν′ = {q′, j′} in equation 6.1 defined on a uniform grid
in the Brillouin zone. I did not analyze the location in the Brillouin zone of each phonon ν′ in the
coalescence process.
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Figure 6.2: The total anharmonic broadening (thick solid lines) and its major contribu-
tions due to various coalescence and decay channels for TAs (bottom panel), TAf (middle
panel) and LA (top panel) branches of the incoming phonons along the K-Γ (in-plane
binary) and Γ-T (out-of-plane trigonal) directions. The particular coalescence and decay
processes are marked by thin (solid, dashed and dashed-dotted) color lines as indicated
in the legends.
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the lowest energy among all phonon branches in bismuth and thus coalescence processes
contribute to anharmonic broadening much more than decay processes. Indeed, one can
see in the bottom panel of Fig. 6.2 that the dominant scattering process for them is the
coalescence with another TAs or TAf mode, resulting in the creation of LA phonons of
higher energy.

6.3 Role of acoustic-optical interaction in the anhar-
monic broadening of acoustic phonons.

In Chapter 3, I have shown that an accurate description of frequencies of TO phonons near
Γ point with respect to experiment considerably affects the JDOS of acoustic phonons
providing a realistic acoustic-optical phonon interaction (AOPI) and resulting in the values
of the lattice thermal conductivity close to the experimental ones. In this section I will
show how the AOPI changes the anharmonic broadening of acoustic phonons.

In Fig. 6.3 I show the anharmonic broadening of LA (top panel), TAf (middle panel) and
TAs (bottom panel) phonon modes with the realistic AOPI (solid lines) and the ab initio
AOPI (dashed lines), which is enhanced with respect to the realistic one. For the lowest
TAs branch with realistic AOPI, the maximum of the anharmonic broadening is found
between Γ and T points, and is equal to 0.7 cm−1. It mainly results from the interaction
between the acoustic phonons: TAs + TAf → LA coalescence process. When the optical
branches lie lower, like in my ab initio calculations and in photoexcited bismuth, the
highest broadening is found to be 0.95 cm−1 at T point and 1.38 cm−1 at L point instead
of 0.28 cm−1 and 0.51 cm−1 respectively when the realistic AOPI is accounted for. At
these points TAs phonons have the highest energies in the Brillouin zone, which facilitates
their interaction with the softened optical modes.

The ab initio description of the two other acoustic phonon branches, TAf and LA, has
the same tendency to enlarge the anharmonic broadening in the regions of the Brillouin
zone where the branches have the highest energies. For example, a broadband structure
in the anharmonic broadening of TAf phonons is enlarged in the X-K-Γ directions with
the increase of the maximum peak from 1.7 cm−1 to 2.2 cm−1. The broadening of LA
phonons is increased from 2.0 cm−1 to 2.5 cm−1 for the maximum in X-K-Γ directions,
from 2.2 cm−1 to 2.8 cm−1 for the maximum in W-L-Γ directions, and from 0.8 cm−1 to
1.2 cm−1 for the maximum in the Γ-X direction .

Thus the linewidths of acoustic phonons turn out to be heavily dependent, both in their
magnitude and in their q-dependence, on an accurate description of the lower TO phonon
branch which provides a realistic interaction between acoustic and optical phonons.
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Figure 6.3: Effect of AOPI on the anharmonic broadening of acoustic phonons. Solid
lines: with optical phonon branches as shifted in this work. Dashed lines: with the ab
initio phonon dispersion. Top, center and bottom panel are respectively for longitudinal
(LA), second-transverse (TAf) and first-transverse phonons (TAs). K-Γ is one of the
in-plane binary directions and Γ-T is the trigonal direction.
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6.4 Sound attenuation.

6.4.1 Introduction.

In principle, anharmonic properties of materials can also be studied in picosecond ul-
trasonic experiments [165, 181]. In these experiments, a laser generates high-frequency
light pulses that are then absorbed by a transducer, causing a local stress inside of it.
The relaxation of this stress launches strain pulses in the form of an acoustic signal with
energy in the THz range. This acoustic signal propagates further in the investigated bulk
structure that is put on top of the transducer. By measuring the attenuation of the prop-
agating sound wave, one can get access to information about, for instance, lifetimes of
individual phonons experimentally.

The attenuation of sound waves, studied in this Section, should not be confused with
second sound, discussed in Sections 1.1.3 and 2.4.7. The former is a mechanical wave
describing fluctuations in the density of media while the latter is a temperature wave
describing fluctuations in the density of thermal excitations i.e. phonons.

The attenuation αqj of a phonon mode |q, j〉 is defined as

αqj = Γqj

2v0j~
(6.8)

where v0j is the sound velocity in the propagation direction and Γqj is the anharmonic
broadening due to the scattering of the generated phonon carrying the sound with other
phonons from the heat reservoir. However, experimentally it is not easy to transduce the
light pulse into an acoustic pulse of well defined energy. Due to the experimental difficulty,
most of the studies have been performed in relatively simple bulk structures such as Si,
Al or GaAs where the superlattices of Si/Ge, Al/Ag and GaAs/AlAs respectively were
used as transducers. However, no attempts to measure the attenuation in such a complex
material as bismuth have ever been done and, thus, my ab initio calculations provide the
data for the future experiments in Bi.

Furthermore, I will study the sound attenuation αqj of bismuth as a function of its
frequency ωqj. As one can see from eq. 6.8, the sound attenuation depends on frequency
only through the anharmonic broadening Γqj, while the sound velocities v0j in the prop-
agation direction remain constant. For the latter, I will use the values obtained from
the second-order elastic constants that have already been discussed in Section 3.1.2 in
Chapter 3 and that are summarized in Table 3.2.

Furthermore, I will restrict my study to the region ω < 40 cm−1, where the acoustic
phonon branches are linear and there is a one-to-one correspondence between the phonon
wavevector q and its energy ~ωqj

4. The exception is TAs mode in the Γ-K direction where
the behavior remains linear for ω < 25 cm−1 which defines the restriction range of my
study.

4In the experiment the energy is fixed and we look at phonon propagation at this fixed energy Efix
where there is one solution to Efix = ~ωph. To this end I restrict the frequency range near Γ as, for
instance, in the X-K-Γ directions, the equation Efix = ~ωph has at least two solutions.



114 CHAPTER 6. PHONON-PHONON INTERACTION IN BI

6.4.2 Sound attenuation in the trigonal direction.
First, I study the sound attenuation αqj at T = 300 K in the Γ-T direction in the Brillouin
zone, which corresponds to the sound propagation in the trigonal direction.

The two (degenerate) transverse acoustic modes (TA) are shown in the top panel of
Fig. 6.4. As one can see, the attenuation grows linearly at small frequencies and reaches
the maximum value of α = 12 µm−1 at ω ≈ 18 cm−1. Further increase of the frequency
ω leads to a linear decrease of the attenuation. This behavior essentially arises from the
contribution to the anharmonic broadening due to the coalescence process TA + TAf →
LA.

Contrastingly, the attenuation of the longitudinal acoustic mode (LA), that is shown in
the bottom panel of Fig. 6.4, grows as ω2 up to ω = 18 cm−1. Then, it remains constant,
forming a plateau in the region 18 cm−1 < ω < 25 cm−1. At higher frequencies, the sound
attenuation continues to grow approximately as ω5/2.

The plateau-like behavior of the attenuation of the LA phonon mode has also been
found in GaAs and Si [65]. In these materials it has been associated with the dominant
role of the Herring processes LA + TAs → TAf. However, in the case of Bi, the Herring
processes are important only in a region of frequencies that is much lower than the plateau
region. In contrast, the plateau is formed mainly by two competing scattering processes:
LA + TAs→ LA and LA + TAf→ LA. The plateau disappears when the decay processes
LA → TAs + TAs and LA → TAs + TAf become dominant, resulting in the increase of
Γqj and, thus, of αqj.

The sound attenuation of the LA mode is much lower than the one of TA modes. It
is expected, since the longitudinal phonons always have higher sound velocities than the
transverse modes. Moreover, as we have seen in section 6.1.3, the anharmonic broadening
of LA phonon close to the BZ center in the Γ-T direction has the smallest value.

6.4.3 Sound attenuation in the binary direction.
Then, I study the attenuation at T = 300 K in the Γ-K direction in the Brillouin zone,
which corresponds to the sound wave propagation in the binary direction.

The two (non-degenerate) transverse acoustic modes (TAs and TAf) are shown in the
top panel of Fig. 6.5. The slowest transverse mode, TAs, first, grows as ω2 in the small
region close to the zone center. Many coalescence processes such as TAs + TAs/TAf →
TAf/LA contribute to the anharmonic broadening in this region. Then, it varies slowly
with frequency at ω > 3 cm−1 between 2 µm−1 and 4 µm−1 reaching the maximum at
ω = 23 cm−1. This slow variation is mainly defined by the coalescence process TAs
+ TAs/TAf → LA. The fastest transverse mode, TAf, in turn, grows monotonously
approximately as ω2 and then start to slowly decay at ω < 23 cm−1. This behavior is
governed by the the coalescence processes TAf + TAs/TAf → LA.

The sound attenuation of the longitudinal acoustic mode (LA) in the Γ-K direction
is shown in the bottom panel of Fig. 6.5. Similar to the Γ-T direction, it grows as ω2

up to ω = 19 cm−1. However, then, no plateau region is observed in this direction.
Contrastingly, the attenuation α decreasing monotonously in the region 19 cm−1 < ω <
32 cm−1 and, then, increases rapidly again at ω > 32 cm−1. The absence of plateau is
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Figure 6.4: The sound attenuation in bismuth in Γ-T direction in the Brillouin zone
(trigonal direction) for TA (degenerate) modes (top panel, red thick curve) and LA mode
(bottom panel, green thick curve). The fitting curves are also shown on top of the at-
tenuation (black thin solid and dashed curves). The fitting curves are α = 0.648 · ω and
α = 19.27− 0.348 · ω for the TA modes and α = 2.52 · 10−3ω2 and α = 1.49 · 10−3ω5/2 for
the LA phonon.
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Figure 6.5: The sound attenuation in bismuth in the Γ-K direction in the Brillouin zone
(binary direction) for TAs and TAf modes (top panel, red and blue thick curves) and LA
mode (bottom panel, green thick curve). The fitting curves are also shown on top of the
attenuation (black thin solid and dashed curves). TAs mode on the top panel is shown up
to energy ω < 25 cm−1 where it has a linear behavior and a one-to-one correspondence
with wavevector q. The fitting curves are α = 0.293·ω2 for the TAs mode, α = 3.9·10−2ω2

for the TAf mode and α = 3.8 · 10−3ω2 for the LA mode.
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explained by the fact that the dominant contributions to anharmonic broadening from
LA + TAs→ LA and LA + TAf→ LA processes are more localized in the Γ-K direction
than in the Γ-T direction, resulting in a sharp peak but not in the plateau behavior of
attenuation.

6.4.4 Conclusion.
In this Section I have analyzed the attenuation of sound waves as a function of its energy
in the binary and trigonal directions in bismuth. I have also studied the major phonon-
phonon scattering processes determining the attenuation. The predicted values of sound
attenuation can be used in future experiments.

6.5 Role of different scattering channels for optical
phonons.

So far I have primarily discussed the anharmonic properties of acoustic phonons. These
phonons are particularly important for thermal transport since they carry most of the
heat in bismuth. However, the relative role of optical phonons in nanostructures is in-
creased since the longest mean free paths of acoustical phonons are severely limited.
Moreover, optical phonons are of utmost interest in femtosecond spectroscopy experiment
with the aim of optical control of lattice displacements and manipulating interatomic sep-
arations [174]. Thus, the understanding of the basic scattering mechanisms determining
the anharmonicity of optical phonons become important.

In this section, I will discuss the role of various scattering channels for incoming optical
phonons with wavevectors q in two principle directions: K-Γ (along the binary axis) and
Γ-T (along the trigonal axis) at ambient temperature. In Fig. 6.6, I show the anharmonic
broadenings of TOl (bottom panel, thick magenta line), TOh (middle panel, thick orange
line) and LO (top panel, thick dark green line) phonons that are the same as the ones
discussed earlier in Fig. 6.1 in section 6.1.3 and the contributions of some particular
processes anharmonic (thin solid and dashed lines).

The LO phonons have the highest energies among all phonon branches in bismuth.
Thus, one can expect to have more decay than coalescence processes. Indeed, the main
contribution to anharmonic broadening of LO phonons (top panel of Fig. 6.6) is due to
its decay into two acoustic phonons, namely, LO → TAf + LA and LO → LA + LA
processes (thin solid cyan line). Moreover, near the T point, LO phonons decay into one
high energy TO phonon and one low energy TAs phonon (thin dashed red line).

The major scattering channels of TOl and TOh incoming phonon modes are shown
on the middle and in the bottom panels of Fig. 6.6 respectively. As it has already been
mentioned in section 6.1, the total anharmonic broadening of TO phonons in the vicinity
of the Brillouin zone center is much larger than in the rest of the Brillouin zone. This
large broadening results from the low energies of these phonons, comparing with other
optical phonons, that facilitates their interaction with the acoustic phonons. The basic
scattering channels are found to be the decay into acoustic LA and TA branches (thin
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Figure 6.6: The total anharmonic broadening (thick solid lines) and its major contribu-
tions due to various scattering channels for TOl (bottom panel), TOh (middle panel) and
LO (top panel) branches of the incoming phonons along the K-Γ (in-plane binary) and
Γ-T (out-of-plane trigonal) directions. The particular coalescence and decay processes are
marked by thin (solid and dashed) color lines as indicated in the legends.
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solid cyan lines) and coalescence with TAs or TAf phonon to create an optical phonon of
higher energy (thin dashed violet lines).

6.6 Role of acoustic-optical interaction in the anhar-
monic broadening of optical phonons.

In this section, I discuss the effect of AOPI in the anharmonic broadening of optical
phonons in bismuth. In Fig. 6.7, I show the anharmonic broadenings of TOl (bottom
panel), TOh (middle panel) and LO (top panel) phonon modes with the realistic AOPI
(solid lines) and the ab initio AOPI (dashed lines), which is enhanced with respect to the
realistic one. One can see that the enhancement of AOPI first of all has a striking effect on
anharmonic broadening of TO phonons in the vicinity of Γ point, which is increased from
5.15 cm−1 to 12.6 cm−1 at Γ point. This effect results from the fact that the low position
of optical branches in the ab initio facilitates their decay into two acoustic phonons.
The optical phonons with the lowest energies are the TO phonons. Thus, these phonons
interact with acoustic phonons more intensively than other optical phonons. The LO
phonons have a small broadening everywhere in the Brillouin zone. The enhanced AOPI
results in a relatively broad band with a maximum of 1.9 cm−1 in the T-W direction and
in a peak with maximum 1.7 cm−1 in the Γ-T direction.
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Figure 6.7: Effect of AOPI on the anharmonic broadening of optical phonons. Solid
lines: with optical phonon branches as shifted in this work. Dashed lines: with the ab
initio phonon dispersion. Top, center and bottom panel are respectively for longitudinal
(LO), second-transverse (TOh) and first-transverse phonons (TOl).
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6.7 Phonon-phonon matrix elements: the validity of
the LWA approximation

So far in this chapter I have focused my attention on the study of the anharmonic broad-
ening Γq,j and of the quantities which can be directly derived from it, such as the phonon
lifetimes τq,j (Sections 6.2 and 6.5) and the sound attenuation αq,j (Section 6.4). The
anharmonic broadening, defined in Eq. 6.1, is determined by two major components. The
first component, the joint density of states (JDOS) of Eq. 3.2, accounts for the phonon-
phonon interaction processes which are allowed by the energy and momentum conservation
rules. The JDOS is fully determined by the harmonic properties of crystals i.e. one needs
to know only phonon frequencies ωq,j and phonon wave vectors q. In Section 3.2.3, we
have seen that the softening of the transverse optical phonon modes at the Γ point leads
to the considerable enhancement of the acoustic-optical phonon interaction via the JDOS.

The second component is the matrix element(s) of the transition rates in Eqs. 1.24
and 1.24, and more specifically the coefficients

∣∣∣V (3)(qj,q′j′,q′′j′′)
∣∣∣. Their calculation is

not an easy task and requires the advance computational method explained in Section 1.5.
In this work, I have used a new recently implemented method based on "2n+1" theorem
and on ab initio calculations to obtain the anharmonic matrix coefficients [6].

To analyze the anharmonic coefficients in Bi, I first define an average squared coefficient
as

〈|V (3)|2〉(qj) = π

~2Nq

∑
q′j′,j′′

∣∣∣V (3)(qj,q′j′,q′′j′′)
∣∣∣2 (6.9)

It depends only on the wave vector q of the incoming phonon and of its branch index j
which includes the acoustic phonon modes j=1,3 and the optical phonon modes j=4,6.
This definition is similar to the one of the anharmonic broadening in Eq. 6.1, but without
the part containing phonon frequencies (i.e. the JDOS and the normalization factor

1
ωqjωq′j′ωq′′j′′

).
I calculate the average squared coefficients 〈|V (3)|2〉(qj) on the uniform grid of q vectors

and I plot the obtained coefficients as a function of the modulus |q| for each of the acoustic
(Fig. 6.8) and optical (Fig. 6.9) branches. Since there are many points qi which have the
same modulus of wave vector |q|, I also define a mean value as

〈|V (3)|2〉(|q|, j) =
´
BZ
〈|V (3)|2〉(qi, j)δ(|q| − |qi|)d|qi|´

BZ
δ(|q| − |qi|)d|qi

(6.10)

where the denominator is the density of q-states (q-DOS) discussed in Section 3.4.1. The
mean values 〈|V (3)|2〉(|q|, j) are also indicated in Figs. 6.8 and 6.9 by thick cyan solid
lines.

As we can see in Fig. 6.8, near the zone center the average coefficients 〈|V (3)|2〉(q, j)
of the acoustic phonon modes grow with the increase of the modulus |q| of the incoming
vector. I have fit these coefficients with the quadratic law in the region |q| < 0.4 and
obtained an excellent agreement with the mean value 〈|V (3)|2〉. Such a quadratic depen-
dance on |q| has been expected from the long-wave approximation (LWA) and, thus, this
approximation is validated for the acoustic phonons having small |q|. However, when
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|q| grows further, the values of the average coefficients become scattered while the mean
values are essentially constant. The highest value of the average coefficient are found for
the highest TAf and LA modes near the zone boundaries.

The average coefficients for optical phonons are shown in Fig. 6.9. One can see, that
〈|V (3)|2〉(q, j) are more than two orders of magnitude higher for the optical branches than
for the acoustic ones. First, the mean values decrease with |q| quadratically and, similarly
to the acoustic phonon, become sufficiently constant at |q| > 0.2.

The mean values 〈|V (3)|2〉(|q|, j) show a universal behavior as a function of |q|: for
the acoustic branches they grow parabolically at |q| < 0.4 and then become constant,
while for the optical branches they decrease parabolically |q| < 0.2 and then also become
constant.

The obtained values of the third-order coefficients can be further used as a simple
analytical model for the matrix element and thus avoiding expensive calculations of the
anharmonic coefficients.
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Figure 6.8: Average coefficients 〈|V (3)|2〉(qj) of acoustic phonon modes as a function of
the modulus of the wave vector |q| of the incoming phonon. Bottom panel: blue crosses -
the TAs mode. Middle panel: red crosses - the TAf mode. Top panel: green crosses - the
LA mode. The mean values 〈|V (3)|2〉(|q|, j) defined in Eq. 6.10 are shown by thick cyan
lines for each phonon mode. The fitting parameters are α = 8.1 · 10−14 cm−1Ry4

(
a0
2π

)2

for the TAs mode, α = 1.7 · 10−13 cm−1Ry4
(
a0
2π

)2
for the TAf mode and α = 4.1 · 10−13

cm−1Ry4
(
a0
2π

)2
for the LA mode.
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Figure 6.9: Average coefficients 〈|V (3)|2〉(qj) of optical phonon modes as a function of
the modulus of the wave vector |q| of the incoming phonon. Bottom panel: magenta
crosses - the TOl mode. Middle panel: orange crosses - the TOh mode. Top panel: green
crosses - the LO mode. The mean values 〈|V (3)|2〉(|q|, j) defined in Eq. 6.10 are shown
by thick cyan lines for each phonon mode. The fitting parameters are α = 9.7 · 10−13

cm−1Ry4
(
a0
2π

)2
and β = 3.9 · 10−12 cm−1Ry4 for the TOl mode, α = 9.6 · 10−13 cm−1Ry4(

a0
2π

)2
and β = 4.6 · 10−12 cm−1Ry4 for the TOh mode and α = 7.4 · 10−13 cm−1Ry4

(
a0
2π

)2

and β = 2.9 · 10−12 cm−1Ry4 for the LO mode.
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6.8 Summary and outlook
This Chapter is devoted to the study of phonon-phonon interaction in bismuth and to
its anharmonic properties such as anharmonic broadening and phonon lifetime that are
governed by this interaction.

First, I have discussed the anharmonic broadening of both acoustic and optical phonon
modes at ambient temperature along some high symmetry directions in the Brillouin
zone. I have shown that the smallest broadening is observed for the acoustic phonons near
the center of the Brillouin zone. The longitudinal modes have the smallest broadening
comparing with the transverse modes in the chosen direction. Contrastingly, the acoustic
phonons from the zone boundaries and optical phonons in vicinity of Γ point are found
to have the largest broadening.

Then, I have analyzed the interaction processes of the incoming phonons in the binary
and trigonal directions with arbitrary phonons from all over the Brillouin zone and I
have evaluated the contributions of these processes to anharmonic broadening. I have
found that the dominant processes for acoustic phonons are the coalescence with another
acoustic phonon to create a phonon with higher energy (LA or TO) and the decay of
the acoustic phonons near the zone boundary into two TA modes with lower energies.
TO modes, in turn, either coalesce with TA phonon to form another optical phonon or
decay into two acoustic phonon modes. The highest LO phonons can only decay into the
low acoustic modes. The lifetime of TO mode at Γ point is found to be determined by
the phonon-phonon interaction solely and matches perfectly with the experimental values
obtained from the Raman experiments [175, 176]. However, my value of the lifetime of
the LO phonon is much higher than the experimental one. The latter is thus expected to
be limited by electron-phonon interaction rather than by phonon-phonon interaction.

I have analyzed the attenuation of sound waves as a function of its energy in the
binary and trigonal directions in bismuth. I have also studied the major phonon-phonon
scattering processes determining the attenuation. The predicted values of the sound
attenuation can be used in future experiments.

I have studied the anharmonic phonon-phonon matrix elements as a function of the
modulus of the wavevector q of incoming phonon. I have examined a long-wave approx-
imation (LWA) for the anharmonic matrix elements. I have found that it gives a good
estimation in the region near the zone center and works poorly elsewhere.

I have not discussed the role of anharmonicity on the phonon frequency. Such a cal-
culation requires computation of anharmonic coefficient up to fourth order [51]. This
subject is left as a perspective of this work.
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General conclusions and perspectives

This thesis has been devoted to the theoretical investigation of the heat conduction in
bulk bismuth and to the possible strategies for its reduction such as nanostructuring and
photoexcitation. To describe thermal transport, I used a recently developed advanced
methods of the solution of the Boltzmann transport equation [5] and of the phonon-
phonon matrix elements calculation from first principles [6]. I have also developed my
own tools to perform a detailed analysis of the lattice thermal conductivity and of the
phonon-phonon interaction. In order to study nanostructuring effect, I have included the
Casimir model for a three-dimensional and anisotropic material. I have performed my
calculations in a high performance computing environment.

I have studied vibrational properties of bismuth and I have obtained an accurate de-
scription of the acoustic part of the phonon dispersion. However, the optical phonon
branches near Γ lie considerably lower than in experiments providing an efficient extra-
channel of scattering for the acoustic phonons and enhancing the coalescence processes
of acoustic phonons into optical ones. Moreover, I have found that optical phonons carry
only a small portion of heat in bismuth at all temperatures. Thus, I have applied a model
to modify the optical part of the phonon dispersion by shifting them upward to match
the frequency of optical transverse modes at Γ to the experimental one. I have shown
that this shift leads to the reduction of the joint-density of states for the acoustic phonons
and results in the lattice thermal conductivity which is in excellent agreement with the
experiments of Uher et al. [16]. My ab initio calculation without rigid shift agrees with
a previous calculation of Lee et al. [56] and provides a considerably lower value of the
lattice thermal conductivity.

I have calculated the lattice thermal conductivity in the two principal directions, binary
and trigonal, in a broad temperature range from 2 K up to melting point temperature 550
K. I have discussed the Casimir model for the scattering of phonons by sample boundaries.
I have shown that the account for boundary scattering in macro-samples leads to finite
values of the lattice thermal conductivity at ultra-low temperatures in contrast with the
divergent values in the presence of phonon-phonon scattering only. I have demonstrated
that the Casimir model allows me to describe accurately the position of the thermal
conductivity maximum as well as temperature behavior of thermal conductivity down to
T = 2 K.

As a byproduct of my calculation, I have evaluated the electronic thermal conductiv-
ity as a difference between the measured total thermal conductivity and my theoretical
results. I have found that it is constant as a function of temperature and equal to 6
Wm−1K−1 in the binary direction and to 3 Wm−1K−1 in the trigonal direction. I have
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discussed the anisotropy of thermal conductivity and I have shown that it is determined
by the lattice contribution in the region of low temperatures where it dominates.

I have discussed the practical realization of the acoustic-optical coupling in the ultra-
fast pump-probe experiments in photoexcited bismuth. I have shown that this interaction
may significantly alter the magnitude of the lattice thermal conductivity causing a strong
reduction when the optical branches are softened down towards the acoustic modes.

I have shown that the Casimir model allows to study the samples of different geometries
such as thin films, nanowires and spherical grains and of both polycrystalline and single
crystal nature. I have shown the predictive capability of the method on the nanoscale
by precisely describing the experiments in the polycrystalline thin films and comparing
with the existing thermal conductivity data in nanowires. Finally, I have also predicted
the effect of size reduction of thermal conductivity in metallic and semiconducting thin
films and semiconducting polycrystalline bismuth, providing an abacus for the thermal
management and thermoelectric applications as well as for future experiments.

I have studied the anharmonic broadening of both acoustic and optical phonon modes
at ambient temperature along some high symmetry directions in the Brillouin zone. I
have found that the acoustic phonons from the zone boundaries and optical phonons in
the vicinity of Γ have the largest broadening revealing their active role in phonon-phonon
interaction in bismuth. Then, I have analyzed the interaction processes of the incoming
phonons in the binary and trigonal directions with arbitrary phonons from all over the
Brillouin zone and I have evaluated the contributions of these processes to anharmonic
broadening. I have shown that the lifetime of TO phonon at Γ is determined by the
phonon-phonon interaction solely and matches extremely well with the experimental val-
ues obtained from the Raman experiments [175, 176]. I have found that accounting for
phonon-phonon interaction is not sufficient to explain the lifetime of LO phonon at Γ
which is presumably determined by electron-phonon interaction [169]. I have predicted
the attenuation of acoustic phonons which can be used in future experiments. Finally, I
have analyzed the anharmonic phonon-phonon matrix elements and validated the long-
wave approximation often used in the literature.

Below I list some immediate perspectives of my PhD work.

• Anharmonic shift of optical Eg mode at Γ
In Chapter 3, I have shown that in all DFT calculations of bismuth which have been
performed so far, the frequency of the transverse optical (TO) phonon mode at Γ
lies considerably lower than in experiment. The possible explanation might be the
effect of anharmonic shift which is not taken into account in the phonon dispersion.
To calculate the anharmonic shift, one needs to compute a real part of self-energy
consisting of tadpole, bubble and loop diagrams [51]. The latter diagram requires
the knowledge of fourth-order anharmonic constants.

• Raman spectrum
In general, the calculation of anharmonic shift opens a route to the explanation of
Raman spectrum of bismuth [176, 182].
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• Second sound
In Chapter 2, I have discussed the violation of Fourier’s law resulting in the prop-
agation of heat in form of a damped wave instead of the diffusion mechanism.
Second sound has been observed experimentally in bismuth in temperature range 2
K < T <3.5 K [42]. The methods I use enable me to study the conditions necessary
for the existence of second sound i.e. the presence of the hydrodynamic regime of
heat flow.

On the long term, I see two main research axes, one of which is not particular to
bismuth.

First, the thermal conductivity of monocrystalline nanowires still remains unexplained.
This is true in silicon [100, 101] and in bismuth (this work). As we have seen in Section 5.5,
experiments in bismuth nanowires provide extremely scattered values of the thermal con-
ductivity (Fig. 5.8). The Casimir model used in this work shows a large thermal con-
ductivity reduction which is, however, not enough large to match the experimental data.
Thus, further theoretical and experimental investigations of the thermal conductivity of
nanowires are necessary.

On the theoretical side, Casimir’s model is limited by the fact that the probability
of the scattering of phonons by sample boundaries in Eq. 5.3 has been evaluated with
the equilibrium Bose-Einstein phonon distribution. However, in case of strong scatter-
ing the role of the out-of-equilibrium distribution function may be important. Another
limitation of my formalism is the fact that the different sources of scattering are treated
as independent. However, there might be also cases where the two sources of scattering
are coupled and the Matthiessen rule is violated [183, 184]. An accurate account for the
surface structure effects and roughness might also require more realistic models.

On the experimental side, the production of good electrical and thermal contacts, in
particular for nanowires, is challenging and is probably the main source of inaccuracy in
experimental data [23, 15]. In the modeling of thermal devices based on silicon, like those
performed at Institut d’Électronique Fondamentale (IEF) Université Paris XI, unusually
large parameters accounting for the phonon scattering by interfaces must be inserted in
the model to reproduce the low experimental values of the lattice thermal conductivity of
nanowires. On the other hand, careful transport calculations based on ab initio methods
have so far been unable to explain the low value of the lattice thermal conductivity
in silicon nanowires. As shown in the present manuscript, the same conclusion can be
drawn for bismuth. So far, very large atomic modifications in the wires are the main
explanations for the low values of the lattice thermal conductivity [100, 101]. Hence,
further experimental and theoretical studies are called for.

As a second long-term perspective, the theoretical studies of the electron-related quan-
tities (i.e. the power factor PF = S2σ) in bulk bismuth and its nanostructures are of high
interest. They will complement the study of the lattice thermal conductivity done in this
thesis and enable us to evaluate the full thermoelectric figure of merit ZT . It is especially
interesting in view of experiments of Ref. [96, 97] in Bi nanowires where the Seebeck
coefficient S has been found to be increased by several orders of magnitude. Moreover,
at low temperatures the study of phonon drag effect (see Section 2.3.3) is necessary to
explain the high values of the Seebeck coefficient.
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Appendix A

Bismuth

A.1 Crystal structure
Bismuth possesses a rhombohedral A7 crystal structure typical for the group V semimetals
such as Sb and As. It could be described either by a hexagonal or by a rhombohedral
(trigonal) unit cell. In the latter case, the lattice parameters are the rhombohedral edge a0,
the rhombohedral angle α and the internal parameter u, describing atomic positions along
the trigonal axis: (u,u,u) and (−u,−u,−u) in crystal coordinates. The rhombohedral unit
cell is shown in Fig. A.1. In my calculations after relaxation, I have obtained the following
parameters for LDA : a0 = 8.820 a.u., α = 57.990 and u = 0.23554 (in units of a0) and
for GGA a0 = 9.270 a.u., α = 56.360 and u = 0.23161 (in units of a0). The experimental
parameters are a0 = 8.9263 a.u., α = 57.350 and u = 0.234 (in units of a0)[185].

A.2 Pseudopotential.
Using the ATOMIC code integrated in the QUANTUM ESPRESSO package, I have generated a
full-relativistic norm-conserving pseudopotential of bismuth in a separable form.

Neutral bismuth contains 83 electrons. Its electronic configuration is [Xe]4f 145d106s26p3.
However, the chemical properties of materials mainly depend on the valence electrons from
the outer shells rather than on the deep core electrons which are hardly influenced by the
environment [186]. In my pseudopotential, I have included 5 electrons 6s26p3 in the
valence regions and the remaining ones I treat as core electrons.

Often the semi-core 5d10 are also included in the valence region. It improves the trans-
ferability of pseudopotential and its accuracy, but makes the pseudopotential extremely
hard from the computational point of view. The norm-conserving pseudopotential with
semi-core 5d10 states in valence had been developed by I. Timrov in our laboratory [4].
It enabled us to achieve an accurate description of electronic of bismuth, as well as to
determine the magnitude of the electron-phonon coupling [1, 3]. In this work, I have used
the pseudopotential with 5d10 in valence as the reference one and compared the details of
the electronic band structure for both pseudopotentials in Appendix A.3.

All calculations in this work have been performed with pseudopotential including the
LDA exchange-correlation functional. The pseudopotential with the same parameters but
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with the GGA exchange-correlation functional has also been generated for comparison.

A.3 Comparison of the electronic band structure
The electronic band structure obtained with my pseudopotentials are close to the ones
obtained in Iurii Timrov’s PhD [4]. The summary of some important energy levels (eV)
obtained in this work, in the work of Iurii Timrov [4] and in some experiments is given in
Table A.1.

A.4 Comparison of the phonon dispersions with LDA
and GGA.

Two phonon dispersions of Bi calculated with LDA and GGA exchange-correlation func-
tionals respectively for a 6 × 6 × 6 uniform grid are shown in Fig. A.2. The spin-orbit-
coupling is included in both calculations. As can be seen from Fig. A.2, the acoustic part
of the phonon dispersion with GGA shows very low frequencies comparing with experi-
mental data. This is due to the equilibrium lattice paramenters which are much larger for
GGA than for LDA (see Section A.1). Phonon dispersion with LDA exchange-correlation
potential has been used in this thesis instead.
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Figure A.1: Crystal structure of bulk bismuth described as a rhombohedral lattice. Two
inequivalent atoms in a rhombohedral unit cell with coordinates (-u,-u,-u) and (u,u,u) in
crystal coordinates are marked by letters A and B correspondingly. The rhombohedral
edge a0 and angle α are shown. The three cartesian axes are: bisectrix (C1,y), binary
(C2,x) and trigonal (C3,z). The three crystal axis are: ~a1, ~a2 and ~a3. Reproduced after
Ref. [114].
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Figure A.2: Phonon dispersions calculated with pseudopotentials developed in this work.
Black - calculation within the LDA used in this work. Red - calculation within the GGA.
Both calculation are done with accounting for the spin-orbit coupling interaction and with
the equilibrium theoretical lattice parameters. Experimental data are also shown (same
as in Fig. 3.1).
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Titre : Prédiction de la conductivité thermique et stratégie de réduction du transport de
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Résumé :Cette thèse de doctorat porte sur l'étude théo-
rique de la conductivité thermique du réseau dans le
bismuth semi-métallique et sur les stratégies pour ré-
duire la conductivité thermique en vue d'applications
pour réduire l'échau�ement dans les circuits électro-
niques, et pour la thermoélectricité. J'ai utilisé des mé-
thodes avancées de résolution de l'équation de trans-
port de Boltzmann pour les phonons, et de calcul ab

initio des éléments de matrice de l'interaction phonon-
phonon. J'ai calculé la dépendance en température de
la conductivité thermique du réseau dans le matériau
en volume en excellent accord avec les rares expériences
disponibles. J'ai obtenu une description très précise, à
l'échelle microscopique, du transport de la chaleur et
j'ai quanti�é la contribution des porteurs de charge
à la conductivité thermique totale. J'ai démontré que
la nano-structuration et la photo-excitation sont des

moyens très e�caces dans le bismuth de contrôler la
di�usion des phonons qui portent la chaleur, respecti-
vement par interaction avec les bords de l'échantillon,
et par interaction phonon-phonon. En contrôlant l'équi-
libre entre ces deux derniers e�ets, j'ai prédit de façon
exhaustive l'e�et de réduction pour di�érentes tempé-
ratures et tailles de nano-structures, pour des mono-
et poly-cristaux, semi-conducteurs ou semi-métalliques.
En�n, j'ai étudié l'élargissement anharmonique des pho-
nons acoustiques et optiques, et j'ai déterminé pour cha-
cun les interactions majeures qui contribuent à l'élar-
gissement. L'atténuation du son a été prédite dans le
bismuth pour de futures expériences. L'approximation
des grandes longueurs d'ondes [long-wave approximation
(LWA)] a été validée pour le bismuth et ses limites ont
été déterminées.

Title : Prediction of thermal conductivity and strategies for heat transport reduction in

bismuth: an ab initio study.

Keywords : bismuth, density functional theory, density functional perturbation theory, phonons, anharmonicity,
Boltzmann transport equation, Casimir's model, heat transport, thermal conductivity, Bi nanostructures, thin
�lms, nanowires, sound attenuation, high performance computing.

Abstract : This Ph.D. thesis has been devoted to
the theoretical study of the lattice thermal conducti-
vity (LTC) in bismuth and of the possible strategies for
its reduction, for applications in thermal management
and thermoelectricity. I have employed advanced me-
thods of the solution of the Boltzmann transport equa-
tion for the phonon system, and of ab initio calcula-
tions of the phonon-phonon interaction matrix elements.
I have obtained the temperature dependence of the bulk
LTC in excellent agreement with the rare available ex-
periments. A very accurate microscopic description of
heat transport has been achieved and the charge-carrier
contribution to the total thermal conductivity has been
determined. I have demonstrated that nanostructuring

and photoexcitation are very e�cient routes to control
respectively phonon-boundary scattering and phonon-
phonon interaction in bismuth. By controlling the in-
terplay between these two scattering processes, I have
predicted in an exhaustive way the e�ect of size reduc-
tion for various temperatures and nanostructure shapes,
both single- and polycrystalline ones, and both semi-
conducting and semi metallic. I have studied the anhar-
monic broadenings of both acoustic and optical modes
and determined the major interaction processes contri-
buting to them. Sound attenuation has been predicted
in bismuth for future experiments. The long-wave ap-
proximation (LWA) has been validated for bismuth and
its limitations studied.
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