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Résumé

Dans un environnement virtualisé, l’hyperviseur fournit l’isolation au niveau
logiciel, mais l’infrastructure partagée rend possible des attaques au niveau
matériel. Les attaques par canaux auxiliaires ainsi que les canaux cachés sont
des problèmes bien connus liés aux infrastructures partagées, et en partic-
ulier au partage du processeur. Cependant, ces attaques reposent sur des
caractéristiques propres à la microarchitecture qui change avec les différentes
générations de matériel. Ces dernières années ont vu la progression des calculs
généralistes sur processeurs graphiques (aussi appelés GPUs), couplés aux
environnements dits cloud. Cette thèse explore ces récentes évolutions, ainsi
que leurs conséquences en termes de fuites d’information dans les environ-
nements virtualisés. Premièrement, nous investiguons les microarchitectures
des processeurs récents. Notre première contribution est C5, un canal caché
sur le cache qui traverse les coeurs d’un processeur, évalué entre deux ma-
chines virtuelles. Notre deuxième contribution est la rétro-ingénierie de la
fonction d’adressage complexe du dernier niveau de cache des processeurs
Intel, rendant la classe des attaques sur les caches facilement réalisable en
pratique. Finalement, dans la dernière partie nous investiguons la sécurité
de la virtualisation des GPUs. Notre troisième contribution montre que les
environnements virtualisés sont susceptibles aux fuites d’informations sur la
mémoire d’un GPU.
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Abstract

In a virtualized environment, the hypervisor provides isolation at the software
level, but shared infrastructure makes attacks possible at the hardware level.
Side and covert channels are well-known issues of shared hardware, and
in particular shared processors. However, they rely on microarchitectural
features that are changing with the different generations of hardware. The last
years have also shown the rise of General-Purpose computing on Graphics
Processing Units (GPGPU), coupled to so-called cloud environments. This
thesis explores these recent evolutions and their consequences in terms of
information leakage in virtualized environments. We first investigate the recent
processor microarchitectures. Our first contribution is C5, a cross-core cache
covert channel, evaluated between virtual machines. Following this work,
our second contribution is the reverse engineering of the complex addressing
function of the last-level cache of Intel processors, rendering the class of cache
attacks highly practical. In the last part, we investigate the security of GPU
virtualization. Our third contribution shows that virtualized environments
are susceptible to information leakage from the GPU memory.
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Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . 5

1.1 Context

Cloud computing was introduced this last decade and gained in popularity ever
since. It provides customers – users or enterprises – on-demand solutions for
computing and storage in dedicated datacenters. For customers, the benefit is
simplicity: the same services run on different hardware platforms, without
having to consider the specificities of hardware. It also offloads the need
to manage an infrastructure to a dedicated provider. For cloud providers,
the benefit is cost efficiency: several virtual machines, that can be owned by
different customers, run on the same physical machine. Cloud computing
relies heavily on virtualization, which consists in the decoupling of software
services from underlying hardware. Hardware sharing is a central aspect of
the cloud computing environment. Among others, two important pieces of
hardware are virtualized today: the Central Processing Unit (CPU), and the
Graphics Processing Unit (GPU).

1



1. Introduction

The CPU is the computing part of a computer system. As predicted by
Moore’s law [Moo75], x86 processors that constitute personal computers and
servers become smaller, faster, and more power-efficient. The speed of the
processor has increased exponentially over the last decades. Modern CPUs
are composed of several cores, that are basic processing units. They also use
caches, that are small but fast memories filling the performance gap between
the processor and the main memory.

The GPU is used primarily in personal computers for multimedia appli-
cations such as video gaming or high-definition video editing. As these new
multimedia usages grew, GPUs became widespread. Their highly parallel
architecture changed towards general purpose computing. Today, GPUs are
also used for high performance computing, including in servers and clusters.
As a result, they made an appearance in services offered by cloud computing
providers.

Shared hardware between different tenants induces the potential threat
of information leakage. In particular, the CPU can be accessed concurrently
by different users, and the CPU cache is heavily shared. This leads to covert
and side channels. The GPU is time-shared, i.e., not two users can access it at
the same time, but they can access it one after the other. Memory isolation is
crucial in this case to prevent information leakage. Attacks on these systems
either aim to actively exchange information between two processes, or for a
spy process to exfiltrate secret information from a victim process.

1.2 Problem statement

Information leakage due to shared hardware is a known problem and has
been extensively studied. However, these attacks are highly dependent on
the hardware. Yet, we see evolutions both in hardware design and adoption.
First, CPU microarchitectures change frequently. For example, Intel has built
a new one nearly every year since 2009. Second, GPUs have been designed to
provide maximum performance and not for concurrent accesses and security.
Nonetheless, they have been recently offered by several cloud computing
providers. Due to the evolution of hardware or to the countermeasures in
production, some attacks are rendered more complex or impossible to perform.
In contrast, some modifications are carried out with performance in mind,
which is often conflicting with security. We therefore question: How do the
recent evolutions impact information leakage due to hardware sharing?

This question gives rise to some challenges concerning the investigation
of these security issues. Indeed, we are faced with two layers of obscurity.

2



1.3. Contributions

The first is the cloud provider. For reasons as diverse as security concerns
or business model, cloud providers are reluctant to give details about their
infrastructure. The second is the hardware itself. As it is increasingly complex,
both CPUs and GPUs are built with some performance-critical parts that
remain undocumented.

1.3 Contributions

The goal of this thesis is to study the impact of evolutions in recent hardware in
terms of information leakage on shared hardware. We also apply our findings
to virtualized environments which are widely used today, and which constitute
a natural use case of hardware sharing. This thesis presents the work done
during my PhD and makes contributions along three axes.

Building a Cross-Core Cache Covert Channel Covert channels were demon-
strated to violate isolation and, typically, allow data exfiltration. Several covert
channels have been proposed that rely on the CPU cache. However, these
covert channels are either slow or impractical due to the addressing uncertainty.
This uncertainty is caused by the additional layer of indirection in virtualized
environment, and by the addressing mode of recent last-level caches. Using
shared memory would elude addressing uncertainty, but shared memory is
not available in most practical setups. We build C5, a covert channel that
tackles addressing uncertainty without requiring any shared memory, mak-
ing this covert channel fast and practical. We are able to transfer messages
on modern hardware across any cores of the same processor. The C5 covert
channel targets the last-level cache that is shared across all cores. It exploits
the inclusive feature of caches, allowing a core to evict lines in the private first
level cache of another core. We experimentally evaluate our covert channel in
native and virtualized environments. In particular, we successfully establish
a covert channel between virtual machines running on different cores. We
measure a bitrate one order of magnitude above previous cache-based covert
channels in the same setup.

Reverse-engineering the complex addressing function of Intel last-level
cache The last-level cache of recent processors is split in slices. While predict-
ing the slice used by an address is simple in older processors, recent processors
are using an undocumented technique called complex addressing. This renders
some attacks more difficult and makes other attacks impossible, because of
the loss of precision in the prediction of cache collisions. Previous work only
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manually reverse-engineered the complex addressing function of one specific
processor. We build an automatic and generic method for reverse-engineering
Intel complex addressing, consequently rendering the class of cache attacks
highly practical. Our method relies on CPU hardware performance counters to
determine the cache slice an address is mapped to. We show that our method
gives a more precise description of the complex addressing function than
previous work. We validated our method by reversing the complex addressing
function on a diverse set of Intel processors. This set encompasses Sandy
Bridge, Ivy Bridge and Haswell microarchitectures, with different number
of cores, for mobile and server range processors. We show that knowing the
complex addressing improves C5 by several orders of magnitude. We also
discuss how knowing the complex addressing function of a cache enables
other attacks, such as sandboxed Rowhammer.

Information leakage on GPU memory in virtualized environments Few
studies have been conducted on the security implications of General-Purpose
Computing on Graphics Processing Units (GPGPU) combined to cloud com-
puting. Our objective is to highlight possible information leakage due to GPUs
in virtualized and cloud computing environments. We provide insight into the
different GPU virtualization techniques, along with their security implications.
We systematically experiment and analyze the behavior of GPU global memory
in the case of direct device assignment. We find that GPU global memory is
zeroed only in some configurations, as a side effect of Error Correction Codes
(ECC) and not for security reasons. As a consequence, an attacker can recover
data of a previously executed GPGPU application in a variety of situations.
These situations include setups where the attacker launches a virtual machine
after the victim’s virtual machine using the same GPU, thus bypassing the
isolation mechanisms of virtualization. Memory cleaning is not implemented
by the GPU card itself and we cannot generally exclude the possibility of data
leakage in cloud computing environments. Furthermore, we discuss possible
countermeasures for current GPU clouds users and providers. To the best of
our knowledge, this is the first work on information leakage of GPU memory
in virtualized environments.

Our contributions in the domain of CPU cache covert channels make a
significant advancement in two directions. First, by building a covert channel,
we analyze the root causes of the interferences that make information leakage
possible in recent processors. Second, the reverse engineering of Intel last-level
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cache complex addressing function tackles one of the challenges that is the
lack of documentation of hardware. Finally, our contribution in the domain of
GPU memory isolation paves the way to secure virtualization of GPUs.

1.4 Organization of the thesis

This thesis is organized as follows.

Chapter 2 reviews technical background and the state of the art. It first cov-
ers the architecture and virtualization of x86 systems. It also includes
information leakage on shared resources such as the memory bus and
the CPU, with a focus on CPU caches and GPU memory.

Chapter 3 presents C5, a new covert channel on inclusive last-level caches.
This covert channel takes into account the evolution of recent CPUs. We
evaluated its bitrate and error rate on setups across cores and across
virtual machines.

Chapter 4 details how we reverse-engineered the complex addressing func-
tion of recent Intel last-level caches. We evaluated our approach by
retrieving the function on a large set of different processors. We also
show some security applications that ensued this work.

Chapter 5 documents the impact of GPU virtualization techniques on security.
We systematically investigate information leakage on GPU memory, in
particular in virtualized environments. We detail two methods to access
GPU memory, that require different levels of privileges.

Chapter 6 concludes and gives perspective on future work.
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This chapter first introduces the architecture of an x86 system (Section 2.1),
and in particular the internals of the CPU cache. We then detail hardware
virtualization, concerning the CPU, memory and I/O devices, and the different
threats in terms of security (Section 2.2). We next present covert and side
channels on shared resources (Section 2.3), with a focus on the case of data
cache (Section 2.4). Finally, we discuss information leakage on GPU memory
(Section 2.5).

2.1 Architecture of an x86 system

2.1.1 CPU

A CPU is a component with one or more processing units called cores. Cores
execute the sequence of instructions formed by programs. In this thesis, we
focus on the Instruction Set Architecture (ISA) x86, that is present in most
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Figure 2.1: Timeline of the different Intel microarchitectures since Nehalem to
the most recent one Broadwell.
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Figure 2.2: Baseline architecture of an x86 system.

personal computers and servers. The ISA can be implemented by a variety
of microarchitectures. In this thesis, we focus on Intel processors as Intel has
a dominant position in market share [For14], compared to AMD. Still, most
of this discussion applies also to other x86 processors. Figure 2.1 shows the
timeline of the most recent x86 Intel microarchitectures. Figure 2.2 illustrates
the baseline architecture and different components of an x86 system.

Major microarchitectural advances in recent processors in terms of perfor-
mance comprise: pipelining, out-of-order execution, speculative execution,
multiple cores and threads, prefetching and caching. In pipelined processors,
several instructions can be processed simultaneously, i.e., in a single cycle, at
different stages. This increases instruction-level parallelism. In out-of-order
processors, the instructions can be processed in an order that is different from
the one in the binary, depending on the availability of input data. With specu-
lative execution, the processor performs a task before it is known if the task is
actually needed. Intel started manufacturing multi-core processors in 2006;
they are now widespread.
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Figure 2.3: Cache hierarchy on Intel processors since Nehalem microarchitec-
ture to the most recent one Broadwell.

We now describe in more detail cache organization, as well as branch
prediction.

2.1.1.1 Data cache

Data caches store recently-used data in a fast but small Static Random Access
Memory (SRAM). They exploit the concepts of temporal and spatial locality:
if some resource is accessed, it is likely to be re-accessed in the near future
(temporal), as well as its neighbor resources (spatial).

Cache hierarchy Intel processors use a cache hierarchy similar to the one
depicted in Figure 2.3 since the Nehalem microarchitecture and until the most
recent Broadwell microarchitecture [Int14a]. There are usually three cache
levels, called L1, L2 and L3. The levels L1 and L2 are private to each core, and
store several kilobytes. The L3 cache is also called Last-Level Cache (LLC). It
is shared among cores and can store several megabytes.

To read or write data in main memory, the CPU first checks the memory
location in the L1 cache. If the address is found, it is a cache hit and the CPU
immediately reads or writes data in the cache line. Otherwise, it is a cache
miss and the CPU searches for the address in the next level, and so on, until
reaching main memory. A cache hit is significantly faster than a cache miss.

Particularities of the last-level cache in recent processors In recent Intel
processors, the last-level cache is divided into slices that are connected to the
cores through a ring interconnect. Moreover, the last-level cache is inclusive,
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Figure 2.4: Simple addressing scheme.

which means that it is a superset of the L1 and L2, i.e., it contains all data present
in L1 and L2. This property does not fully exploit the total available capacity
of the cache levels, however, it is an advantageous design for performance
reasons, as only one level needs to be checked to know if a line is cached.
Inclusiveness also simplifies the cache coherence protocol. To guarantee the
inclusion property, a line evicted from the last-level cache is also removed
(invalidated) in the L1 and L2 caches.

Addressing scheme Data is transferred between the cache and the memory
in 64-byte blocks called lines. The location of a particular line depends on the
cache structure. Today’s caches are n-way associative, which means that a cache
is composed of sets of n lines. A line is loaded in a specific set depending on
its address, and occupies any of the n lines.

With caches that implement a direct addressing scheme, memory addresses
can be decomposed in three parts: the tag, the set and the offset in the line.
The lowest o bits determine the offset in the line, with: o = log2(line size).
The next s bits determine the set, with: s = log2(number of sets). And the
remaining t bits form the tag. Figure 2.4 illustrates this scheme.

In contrast to direct addressing, some caches implement a complex addressing
scheme, where potentially all address bits are used to index the cache. Indeed,
in the last-level cache each physical address is associated with a slice via
a function that is not documented by Intel, to the best of our knowledge.
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Figure 2.5: Complex addressing scheme on the LLC. This assumes a quad-core
processor, and the following characteristics of the LLC: 64B lines and 2048 sets
per slice.

As each slice has a cache pipeline, the addressing function is designed to
distribute evenly the traffic across all slices for a wide range of memory access
patterns, to increase performance. The set is then directly addressed. Intel
started implementing this complex addressing scheme on the Sandy Bridge
microarchitecture, and onwards (see Table 2.1). Figure 2.5 illustrates this
scheme.

The address used to compute the cache location can be either a physical or
a virtual address. A Virtually Indexed, Virtually Tagged (VIVT) cache only uses
virtual addresses to locate data in the cache. Modern processors involve phys-
ical addressing, thus cache levels are either Virtually Indexed Physically Tagged
(VIPT), or Physically Indexed Physically Tagged (PIPT). The physical address is
not known by processes, thus a process cannot know the location of a specific
line for physically indexed caches. Typically, the L1 cache is VIPT, and L2 and
L3 are PIPT.

Replacement policy When a cache set is full, a cache line needs to be evicted
before storing a new cache line. When a line is evicted from L1 it is stored back
to L2, which can lead to the eviction of a new line to the last-level cache, etc. The
replacement policy decides the victim line to be evicted. Good replacement
policies choose the line that is the least likely to be reused. Used policies include
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Table 2.1: Characteristics of the recent Intel microarchitectures.

Nehalem Sandy Bridge Ivy Bridge Haswell
LLC slices 3 3 3 3

LLC complex addr. 7 3 3 3

Replacement policy LRU LRU Quad-Age Quad-Age

Pseudo Random, Least Recently Used (LRU), and variations of LRU [JTSE10]
(see Table 2.1). An adaptive policy can also be used, where the processor
dynamically changes the replacement policy depending on the miss rate of
specific cache sets [QJP+07]. An efficient replacement policy minimizes the
number of cache misses and is thus crucial for performance. These policies
are therefore not well documented in recent processors. For instance, the
replacement policy used in the Ivy Bridge microarchitecture, a variation of
LRU called Quad-Age, only appears as a part of an Intel presentation [JGSW],
and is not fully documented to the best of our knowledge. Details of the
replacement policies can however be partially reverse-engineered using micro-
benchmarks, as it has been done for the Ivy Bridge microarchitecture [Won13].

2.1.1.2 Instruction cache

Similarly to the data cache, the instruction cache stores the most recently used
program instructions, and benefits from temporal and spatial locality.

Recent Intel processors have an instruction cache that is private to each core
and separate from the data cache for the L1. The L2 and L3 caches are unified,
which means that they contain both data and instructions. All considerations
we discussed for data caches apply to the instruction cache as well.

2.1.1.3 Branch prediction unit

Two-way branches, e.g., an if-then-else structure, is usually implemented with
a conditional jump instruction. The conditional jump can either be “taken”
or “not taken”. This cannot be known for sure until the condition has been
calculated, which results in wasted cycles in the pipeline if the processor
is stalling, waiting for it. Instead, speculative execution is used to improve
performance.

The branch predictor predicts the outcome of the branch instructions,
using past behavior. Thereby, the processor speculatively continues to execute
instructions on the predicted path, without waiting for the outcome to be
computed. When a misprediction happens the pipeline is flushed, thus all the
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speculative instructions have to be dumped and the execution has to start over,
resulting in a longer execution time. The penalty depends on the length of the
pipeline: the deeper the pipeline, the higher the penalty. Modern processors
tend to have longer pipelines, thus the branch predictor is a critical element of
modern pipelined processors.

If a branch is predicted to be taken, the next instruction needs to be fetched
and issued. This requires knowing the address of this instruction. For that,
the CPU uses a Branch Target Buffer, that is the buffer of the target addresses
of previously executed branches. The Branch Target Buffer is a cache.

2.1.2 Memory

The main memory (also referred simply as memory) is a volatile type of stor-
age, i.e., information is lost when memory is powered off, typically made of
Dynamic Random Access Memory (DRAM). Contrary to external memory,
e.g., hard disk drives, the main memory is directly accessible by the CPU, via
the memory bus.

The memory bus connects the main memory to the memory controller. In
recent CPUs, the memory controller has been moved from the motherboard
to the CPU itself. It is called an integrated memory controller. The memory
bus is actually composed of two different buses: the address bus and the data
bus. The CPU sends the address on the address bus, to indicate the location
of the requested data, and read or written data is sent via the data bus.

Modern CPUs implement virtual memory using a Memory Management
Unit (MMU), a hardware unit between the CPU and the DRAM that maps
virtual addresses used by processes to physical addresses.

2.2 Hardware virtualization

Virtualization is the decoupling of software services from the underlying hard-
ware. This solution has gained attraction, with the rise of the cloud computing.
For users, the benefit is simplicity: the same services run on different hardware
platforms, without having to consider the specificities of the hardware. For
cloud providers, the benefit is cost efficiency: several Virtual Machines (VMs),
that can be owned by different tenants, run on the same physical machine.

Virtualized environment have three main components: the hypervisor that
is the abstraction layer, a host operating system that has privileged access to
hardware, and guest operating systems that are unprivileged virtual machines.
There are two main types of hardware virtualization. Type 1 hypervisors, also
called native or bare-metal, run directly on top of hardware (see Figure 2.6).
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Figure 2.6: Type 1 virtualization.

They manage all the resources, including the CPU, memory and Input/Out-
put (I/O) devices. Examples of type 1 hypervisors include Xen [BDF+03],
KVM [KKL+07] and VMware ESXi. Type 2 hypervisors, also called hosted,
run as a process on top of a host operating system. They manage access to
hardware from the guest operating systems via calls to the host operating sys-
tem. Examples of type 2 hypervisors include VMware Player and VirtualBox.
In both types of virtualization, the crucial role of the hypervisor is to isolate
the different guest operating systems from each other. Type 1 virtualization
is the most used in multi-tenants environments such as in cloud computing
environments. This is the type of virtualization we focus on in the remainder
of this thesis.

2.2.1 CPU

The x86 architecture provides some challenges to virtualization. Indeed, some
sensitive instructions do not have the same semantics when executed in Ring 3
(least privileged, user-level application) and in Ring 0 (most privileged, kernel-
level).

Software-based virtualization techniques include binary translation and
para-virtualization. In binary translation, the hypervisor translates the virtual
machine instructions before their execution. It replaces non-virtualizable
instructions by instructions that behave the same way, but that do not have
the same effect on the underlying hardware. Hardware is fully virtualized
and the operating system that runs on top of it does not have to be adapted.
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To increase performance, a combination of binary translation for kernel-level
code and direct execution for user-level code can be used. In para-virtualization,
a virtualization layer that is similar to the underlying hardware is presented
to the virtual machines. The operating system kernel is modified to replace
non-virtualizable instructions by hypercalls (requests of privileged operations
from a domain to the hypervisor).

Hardware-based virtualization was introduced by Intel and AMD in 2005 and
2006 – respectively named Intel VT-x and AMD-V. It extends the instruction
set and creates a new ring for the hypervisor below Ring 0. It allows running
an unmodified guest operating system that is unaware of the virtualization
layer. When the processor encounters a privileged instruction, it exits from the
guest mode, lets the hypervisor emulate the instruction, and then returns to
the guest mode.

2.2.2 Memory

Memory virtualization handles an additional layer of indirection caused by the
MMU: from the guest virtual pages, to the guest physical pages, to the actual
machine pages (see Figure 2.7). The hypervisor is responsible to map the guest
physical memory to the actual machine memory. To avoid performance penalty,
software and hardware methods remove this additional layer of indirection.

With a software-based solution, the hypervisor maintains a shadow page
table to directly map the guest virtual memory to the machine memory. How-
ever, the monitoring of the guest pages by the hypervisor entails a significant
overhead. Indeed, the entries of the shadow page table are built at every guest
page fault, which causes a hypervisor exit.

Intel and AMD brought hardware support for MMU virtualization, re-
spectively named EPT (Extended Page Tables) and RVI (Rapid Virtualization
Indexing). The guest continues to maintain guest virtual pages to guest physi-
cal pages mapping, but the guest physical pages to machine pages mapping is
maintained by the hypervisor and exposed to hardware. The physical CPU
walks the two tables and caches the guest virtual pages to machine pages map-
ping in the Translation Lookaside Buffer (TLB). Performance gain is evaluated
to more than 40% compared to the software table [VMw09a, VMw09b].
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Figure 2.7: Memory virtualization.

2.2.3 I/O devices

Beyond the CPU and memory, a virtual machine needs to access I/O devices,
such as Network Interface Cards (NICs) and Graphics Processing Units (GPUs).
When virtualizing I/O devices, the hypervisor needs to route I/O requests of
guests between the virtual device and the physical device.

With the emulation solution, the hypervisor has a software implementation
of the features of standard devices, over any physical device. All the commands
of the real-world device are replicated in software, and have the same behavior
as its hardware counterpart. The common approach is to emulate a well-
known real-world device. This way, the guest operating system can run an
unmodified device driver. This approach has acceptable performance for basic
and low-bandwidth devices.

A split-driver (also called paravirtualized driver) solution lets a privileged
domain handle hardware management. A frontend driver runs in the guest
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virtual machine and forwards calls to the backend driver in the host. The
backend driver then takes care of sharing resources among virtual machines.
This solution requires special drivers for the guest virtual machine. However,
it has the advantage of multiplexing several guests on the same hardware
device, and improves performance compared to emulation.

With the direct device assignment solution, the guest virtual machine has
direct control of the device. This is essentially achieved by mapping device
memory into the virtual machine memory space. This solution requires ded-
icated hardware to limit the memory accesses of the device, and to re-route
interrupts. It also forbids multiplexing, allowing a single guest on a given
device. However, it does not require any driver change to the guest, and pro-
vides near native performance. It is thus an interesting solution for devices
that have complex drivers, and are performance-oriented, such as GPUs.

Single Root I/O Virtualization (SR-IOV) capable devices can expose them-
selves to the operating system as several devices. With this solution, the
hardware device itself can be composed of several independent functions
(multiple devices) or multiplex the resources in hardware.

2.2.4 Attack surface of the virtualization layer

The virtualization layer itself is a target, given its privileged access to hardware.
The virtualization layer is composed of the hypervisor, the host operating
system, as well as an emulator. This layer is quite complex and forms a large
trusted computing base. The attacker searches to attack another guest by
escaping the guest environment, targeting the hypervisor and performing his
attack through privileged access via the host.

2.2.4.1 Hypervisor

Hypervisor exits constitute a first attack surface. They are performed when
the guest is interrupted so that the hypervisor handles an event. As Szefer et al.
[SKLR11] noted, a guest performs a lot of exits: ∼600 per second when idle,
and more than 9 million when the guest starts. Each exit is a possibility for
exploiting a bug in the hypervisor code. Typical proposed mitigations consist
in reducing the trusted computing base. Seshadri et al. [SLQP07] proposed
SecVisor, a hypervisor with a tiny code base. However, the lack of function-
alities do not make it a practical alternative for cloud providers. Szefer et al.
[SKLR11] proposed to remove the hypervisor attack surface altogether, by
enabling guests to run natively on hardware, and eliminate all interactions
between the hypervisor and guests.
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2.2.4.2 Device emulator

Virtual hardware, e.g., virtual network devices, are handled by an emulator
such as QEMU. However, the code base of QEMU is hard to maintain: it
includes many legacy devices, and low-level code. Vulnerabilities are thus
regularly found. As an example, in 2015 Jason Geffner found a vulnerability
in the virtual floppy disk controller [CVE15], making possible a privilege
escalation regardless of the presence and configuration of the virtual floppy
disk. The OpenStack Foundation [Ope13] recommended removing unused
components from the system in order to minimize the QEMU code base as a
practical defense.

2.2.4.3 Direct device assignment

Physical hardware accessed by direct device assignment also introduces se-
curity issues. Certain hardware devices use Direct Memory Access (DMA)
to access memory in the operating system in native environments. Arbitrary
memory accesses are an issue in virtualized environments because it allows
the guest to map its device memory into the memory of the host or into that of
other guests. Pék et al. [PLS+14] reviewed these attacks and their feasibility.
A hardware I/O Memory Management Unit (IOMMU), such as Intel’s VT-d,
thwarts DMA attacks by preventing devices from accessing arbitrary parts
of the physical memory. However, Wojtczuk and Rutkowska showed that
the IOMMU is not exempt from vulnerabilities by building software attacks
that bypass it [WR11]. Willmann et al. [WRC08] reviewed different protection
strategies for devices in direct device assignment. They argue that software-
only strategies can outperform IOMMU-based strategies, with less overhead.

2.3 Covert and side channels on shared resources

We now consider another type of attacks, applicable more broadly to multi-
tenant environments, for which virtualization is a natural use case. In the case
of virtualization, these attacks do not rely on flaws in the virtualization layer
such as described in Section 2.2.4. Instead of directly compromising the other
guest, the attacker is a non-privileged process that uses shared hardware as
a medium to leak information. These attacks fall into the category of covert
channels and side channels. Covert channels involve the cooperation of two
attacker processes to actively exchange information. Side channels imply
passive observation of a victim process by an attacker process, usually to
extract a secret like a cryptographic key.
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2.3.1 Achieving and detecting co-residency

To perform covert or side channels on shared hardware, the first step for an
attacker is to be co-resident with his victim, i.e., to share a physical machine. In
a native environment, the attacker has to run a program on the same operating
system as its victim. In a virtualized environment, the attacker has to run
a virtual machine alongside the virtual machine of its victim, on the same
physical machine. We now review methods for an attacker to achieve and
detect co-residency on a virtualized environment.

Ristenpart et al. [RTSS09] presented some heuristics to achieve co-residency
on Amazon EC2 instance placement. They started by mapping the IP ranges
of EC2 service, that correspond to different instance types and availability
zones. The authors also showed that a brute-force strategy already achieves a
reasonable success rate, for a large set of victim instances. A more elaborate
strategy abuses the placement algorithm, that tends to co-locate virtual ma-
chines launched in a short temporal interval. The attacker can also abuse the
auto-scaling system that automatically creates new instances when demand
increases. This forces the victim to launch a new instance, from which point
the attacker can himself launch new instances until one is co-resident with the
victim. Varadarajan et al. [VZRS15] reevaluated the co-residency vulnerability
in three major cloud providers, after the adoption of Virtual Private Cloud
(VPC). VPC logically isolates networks, but it does not gives physical isolation,
i.e., virtual machines from different VPCs can share the same physical machine.
Varadarajan et al. found that VPC makes prior attacks ineffective. However,
Xu et al. [XWW15] demonstrated a new approach to attack instances that are
in a VPC. They exploit latency variations in routing between instances that are
behind a VPC and instances that are not. This approach comes at high cost, as
an attacker needs to launch more than 1000 instances to achieve co-residency
in a VPC. However, it shows that virtual network isolation does not completely
solve the issue, thus attacks on co-resident virtual machines are still a real
threat.

The next step is then to check co-residency. In [RTSS09], the authors also
proposed a load-based co-residency test based on requests of a client that
performs HTTP requests. With their tool HomeAlone, Zhang et al. [ZJOR11]
monitored L2 cache usage to detect co-residency: they used a classical side
channel as a defensive tool. A virtual machine that wants to attack a co-resident
victim running HomeAlone has to lower its fingerprint, and consequently
cannot use the cache as a side channel. Bates et al. [BMPP12] leveraged the
sharing of the network interface to detect a co-resident virtual machine via
traffic analysis techniques. The attacker needs a flooder virtual machine and a
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client that makes requests to a victim server. If the flooder is co-resident with
the victim server, the flooder can induce a watermark, i.e., a specific pattern,
in the traffic from the victim server to the client.

2.3.2 Attack surface of an x86 processor

2.3.2.1 Data and instruction cache

Side and covert channels on both data and instruction caches are based on
differences in timing between memory accesses that are in cache, and ones
that are served from the main memory.

Data cache attacks exploit secret-dependent data access patterns. They
happen when the implementation of cryptographic algorithms relies on look-
ups that depend on the secret key – e.g., the substitution boxes in block ciphers
such as AES, and the multipliers table in public-key algorithms such as RSA.
There is a large body of literature on the subject of data cache attacks. These
attacks are described in more detail in Section 2.4.

Instruction cache attacks exploit secret-dependent execution paths instead.
They work similarly as data cache attacks. Block ciphers like AES are not
vulnerable to instruction cache attacks since they have a fixed instruction flow.
Aciiçmez [Aci07] used the instruction cache to attack RSA implementations
that use Square and Multiply exponentiation algorithm. The sequence of
square and multiply operations are key-dependent. A spy process executes
dummy instructions to fill the cache before the execution of the cipher process.
If the cipher process executes square (resp. multiply) instructions, it evicts the
dummy instructions of the attacker, which will result in a cache miss when the
attacker resumes the execution of his dummy instructions. The attacker thus
reveals the execution flow of the cipher by measuring the execution time of his
own instructions. Aciiçmez et al. [ABG10] later improved the method using
supervised learning. Zhang et al. [ZJRR12] demonstrated the attack across
different virtual machines on Xen hypervisor to extract ElGamal decryption
keys.

Microarchitectural countermeasures for securing the data cache – such as
randomized mappings – were proposed to be adapted to secure the instruction
cache [KASZ13, LWL15]. These studies show that these countermeasures incur
a low performance overhead, compared to software countermeasures. They
however come at the cost of extra hardware and complexity, and are less
flexible than software countermeasures.
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2.3.2.2 Branch prediction unit

Aciiçmez et al. [ASK07b] presented an attack against the Branch Target Buffer.
The attack leverages the differences in execution time against RSA implemen-
tations to reveal their execution flow. A spy process executes a number of
branches to fill the Branch Target Buffer. When the cipher executes its branches,
the prediction will be not taken. If the branch is indeed not taken, the prediction
is correct and the Branch Target Buffer is not updated. If the branch is taken,
this is a misprediction and the Branch Target Buffer is updated. This evicts one
of the spy branches, which results in a misprediction for the spy process and a
longer execution of one of its branches. The attacks need a statistical analysis
over many measurements to be able to accurately differentiate between the
square and the multiply operations. Aciiçmez et al. improved the branch
prediction attack in [AKS07, AGS07] to recover almost all the secret key bits
in a single execution. All these attacks are limited to be performed by the
attacker on the same core as the victim, as the branch prediction unit is not
shared across cores.

As a countermeasure, Kong et al. [KASZ13] proposed to change the up-
date policy for the Branch Target Buffer, as well as to add dummy conditional
branches, so that there is the same Branch Target Buffer mapping for condi-
tional branches whether the branches are taken or not taken.

2.3.2.3 Arithmetic logic unit

Some functional units are shared between threads on the same core, to al-
low hyper-threading at a moderate cost in terms of die surface. In partic-
ular, Intel Pentium 4 shares a long integer multiplier unit between threads
of the same core. While at a given time only one thread can use this unit,
hyper-threading interleaves the execution of two independent long integer
multiplication threads.

Aciiçmez et al. [AS07] attacked the Square-and-Multiply Exponentiation
Algorithm for RSA. The spy process continuously executes multiply operations,
and measures the execution time of their own process. The execution is longer
if the victim is also performing a multiply operation as well, thus leaking
information on the key bits.
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2.3.3 Attack surface of the memory and memory bus

2.3.3.1 Memory deduplication

Page-level deduplication is used by hypervisors and operating systems as a means
to avoid storing multiple copies of redundant data. In the Linux kernel, the
deduplication mechanism is called Kernel Same-Page Merging (KSM), and it
is used by KVM. When KSM is active, a thread regularly scans all pages to find
pages that are identical. Identical pages are then merged to a single read-only
page. A write to this page triggers a copy.

This copy-on-write mechanism is used maliciously for memory disclosure
attacks, as it induces a higher latency compared to a regular write access.
Suzaki et al. [SIYA11] used it to infer the applications that are running on other
guests, whereas Owens et al. [OW11] inferred the operating system of other
guests. Xiao et al. [XXHW13] built a covert channel that can attain above 90bps,
and 40bps on a system under memory pressure. The authors also showed that
memory deduplication can be used to detect virtualization – VMWare ESX
server, Xen, and Linux KVM – independently of any instruction or guest OS.
Barresi et al. [BRPG15] exploited memory deduplication to defeat Address
Space Layout Randomization (ASLR) in virtualized environments, leaking the
address layout of co-located virtual machines.

Due to these security concerns, some public cloud providers have now
disabled memory deduplication. However, Gruss et al. [GBM15] showed
that these attacks can also be ported to JavaScript, enabling an attacker to
mount an attack remotely through a website. This places the threat not only
on public cloud environment, but on any system that has enabled memory
deduplication.

2.3.3.2 Memory bus

Wu et al. [WXW12] proposed a bus-contention based covert channel, that uses
atomic memory operations that lock the shared memory bus. Atomic memory
operations are guaranteed to perform uninterrupted. On early processor
generations, it is implemented by locking the bus, which results in system-
wide contention. Next generations improve the implementation by locking
the cache line and not the bus, when possible. The bus is still locked when an
atomic memory operation is performed on an unaligned address that spans
two cache lines. These accesses are quite exotic because modern compilers
automatically generate aligned accesses, but they are easy to generate manually.
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The Nehalem microarchitecture introduces Non-Uniform Memory Access
(NUMA) and removes the shared memory bus. However, exotic memory
accesses emulate bus lock to ensure the atomicity of the operation.

The bus contention is visible system-wide, which creates conditions for a
covert channel, exploitable even across processors contrary to, e.g., cache-based
covert channels. The authors obtained a raw bandwidth of 38kbps between
two virtual machines, and about 746bps with a protocol that handles error
correction. They further evaluated the covert channel on EC2 virtual machines,
obtaining more than 100bps when the sender and receiver are throttled. This
covert channel is not affected by non-participating workload that stresses
the cache, but as expected it is still affected by memory intensive workloads.
Saltaformaggio et al. [SXZ13] designed a hypervisor-based solution to prevent
this attack. It hooks page faults, and replaces the atomic instructions – which
are responsible for the covert channels – with a trap to the hypervisor.

2.4 The case of the data cache of x86 processors

We now cover attacks on data caches – simply called “cache attacks” in the
remainder – in more detail. There are three categories of cache attacks: time-
driven, trace-driven, and access-driven. The differences between them are the
abilities of the attacker and the number of measurements needed. They are
mainly focused on cryptographic side-channel attacks, but some are adapted
to build covert channels, or to leak other kind of information.

2.4.1 Time-driven attacks

In a time-driven attack, the attacker only observes the overall execution time
of the cipher. He then deduces the total number of cache hits and cache
misses from these aggregate measurements, via statistical analysis on many
executions. These attacks are the least restrictive, because they do not require
strong assumptions on the attacker, like the ability to watch the outcome of
memory accesses or special equipment.

Such attacks have been conducted by Tsunoo et al. [TSS03] against DES.
Bernstein et al. [Ber05], Neve et al. [NSW06], Bonneau and Mironov [BM06],
and Aciiçmez et al. [ASK07a] used it against AES. Weiss et al. [WHS12] and
Irazoqui et al. [IIES14a] revisited Bernstein’s attack against AES in a virtualized
environment.
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2.4.2 Trace-driven attacks

In a trace-driven attack, the attacker observes the outcome of memory accesses
in terms of cache hits and misses, i.e., the trace of the execution. The attacker
makes several measurements by changing the plaintext, that will lead to differ-
ent access patterns, thus different traces. The attacker then infers the key from
these traces. This type of attacks leaks more information than a time-driven
attack to an attacker. However, it also supposes a more powerful attacker,
who has physical access to the device, complex equipment and signal analysis
techniques.

These attacks have been performed against AES by Bertoni et al. [BZB+05],
Lauradoux [Lau05] and Aciiçmez et al. [AK06]. The traces are captured using
power analysis, making these attacks infeasible remotely.

2.4.3 Access-driven attacks

In an access-driven attack, the attacker determines the cache sets that the
cipher process modifies by monitoring his own activity and not his victim’s.
Access-driven attacks leak more information than time-driven attacks while
requiring less abilities from the attacker than trace-driven attacks, e.g., no
physical access.

This category of attack is further divided into two types:

1. Prime+Probe, where the attacker fills cache sets,

2. Flush+Reload and Evict+Time, where the attacker evicts cache sets.

Table 2.2 gives an overview of the different access-driven attacks.
In a Prime+Probe attack, the attacker repeatedly accesses values in a ta-

ble to fill the cache. The victim that runs the cipher eventually evicts en-
tries in the cache. When the attacker regains control, he reads the memory
lines to check which ones were evicted from the cache. This attack has been
performed against RSA [Per05], AES [OST06, NS06, TOS10, IES15b], and El-
Gamal [LYG+15].

In a Flush+Reload attack, the attacker evicts some memory lines, waits
while the victim performs encryption, and reloads the lines to check which
one were reloaded by the victim. The lines are shared between the attacker
and the victim, and evicted using the clflush instruction. Due to their ability
to target a single line, these attacks are precise and very powerful. Such
attacks have been performed against RSA [YF14], AES [GBK11, IIES14b] and
ECDSA [BvdPSY14]. Irazoqui et al. [IES15a] used Flush+Reload to revive an
attack on CBC encryption that was patched some years before. In an Evict+time
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attack, the attacker first performs an encryption to measure the execution time.
Similarly to Flush+Reload, in the second step the attacker evicts a cache set,
and performs the encryption again to compare the execution time with the first
one. If the time increases, the attacker knows that the victim program accesses
this set. These attacks are akin to time-driven attacks, as they need numerous
executions. Such attacks have been performed against AES [OST06].

The differences between Prime+Probe and Flush+Reload attacks lies in
the requirements and in the granularity. Flush+Reload attacks require shared
memory between the spy and the victim. In this setup, the system loads data
(e.g., libraries) in the main memory only once. Data is thus also shared in
physically indexed caches, where the spy process can evict it with the clflush
instruction. However, as Flush+Reload attacks operate on a single cache line,
they are more fine-grained than Prime+Probe attacks that operate on sets.

2.4.4 Beyond cryptographic side channels

Most of the aforementioned attacks are side-channel attacks on cryptographic
algorithms. However, other type of attacks can be derived from the same
techniques.

Covert channels exploit the same techniques as access-based cryptographic
side channels, using a variant of the Prime+Probe technique. Ristenpart et al.
[RTSS09] constructed a covert channel on the L1 cache, restricting the two
programs to be on the same core. They obtained a bitrate of 0.2bps, running
cross-VM on Amazon EC2 environment. Xu et al. [XBJ+11] studied the fea-
sibility and quantified cache covert channels, from the theoretical model to
the real life implementation. They showed that these covert channels have
a bitrate between 85bps and 215bps in laboratory environment, but come to
less than a bit per second in Amazon EC2 environment. Indeed, the covert
channel is not cross-core, thus the sender and receiver need to share the same
core, which does not happen frequently due to the hypervisor scheduling. The
authors concluded that covert channels are thus worrying but still limited to
the extraction of small secrets. Wu et al. [WXW14] designed a cross-core cache
covert channel, obtaining a raw bitrate of 190kbps in a native environment
with a Nehalem processor.

Similarly, attacks that target sensitive data other than cryptographic keys
leverage the same techniques as access-based side channels. Hund et al.
[HWH13] used cache attacks to defeat kernel-space ASLR. Zhang et al. [ZJRR14]
used Flush+Reload technique on Platform-as-a-Service (PaaS) clouds to ex-
tract data such as the number of items in a shopping cart from applications
co-located with a malicious virtual machine. Irazoqui et al. [IIES15] exploited
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the Flush+Reload technique to detect and distinguish between various popular
cryptographic libraries. Oren et al. [OKSK15] showed that cache attacks can
be exploited from a web page in JavaScript, using the Prime+Probe technique
to, e.g., spy on user mouse activity.

Finally, the exploitation of these attacks is not an easy task: monitoring
leaking addresses requires a good understanding of the software that is at-
tacked, and its source code can be very large e.g., including many libraries, or
not available i.e., only a binary is accessible. Gruss et al. [GSM15] presented a
generic attack method to overcome these difficulties, using the Flush+Reload
technique. The genericity of the approach also enables developers to monitor
their own piece of software to find if it is susceptible to cache attacks.

2.4.5 Evolutions of cache attacks

Cache attacks changed and developed along three axes. First, they evolved
with hardware, from single-core to multi-core CPUs. Second, they evolved with
execution environments: with the rise of the cloud computing, attacks that first
targeted native environments migrated to virtualized environments. Third,
attacks naturally evolved with the countermeasures in production: the most
recent attacks do not use any shared memory.

2.4.5.1 From single-core to muti-core CPUs

Cache attacks evolved with hardware. The first attacks targeted current single-
core processors, e.g., Intel Pentium 4 [Per05]. They either relied on Simulta-
neous MultiThreading (SMT) [Per05, OST06, TOS10] that makes one physical
core working as two logical cores, or they exploited the OS scheduling when
SMT is not available or disabled for security reasons [NS06].

Multi-core began to be the norm in the following generations of CPUs,
beginning with the Core microarchitecture in 2006. Consequently, only ex-
ploiting one core drastically reduced the performance of attacks. Indeed, the
attacker and the victim are no longer always running on the same core, due
to the OS scheduling [XBJ+11]. Due to this reason, and the fact that proces-
sors became more and more complex, Mowery et al. [MKS12] pinpointed that
side-channel attacks were increasingly more difficult. However, multi-core
processors often have a last-level cache that is shared between cores. Yarom
and Falkner [YF14] exploited this shared last-level cache and shared memory
to construct the first cross-core cache side channel, with Flush+Reload.
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Cross-core attacks that do not use shared memory need to be able to pre-
cisely locate cache lines in the last-level cache. However, the design of the last-
level cache also changed with generations of microarchitecture. Sandy Bridge
introduced the complex addressing function that maps addresses to last-level
cache slices, whereas Nehalem uses only one or two bits of the physical address.
This function is not documented, it is thus not possible to locate a cache line in
the last-level cache just by knowing its physical address. Hund et al. [HWH13]
reverse-engineered the function for a Sandy Bridge processor, but no study
had been made to generalize this finding. Irazoqui et al. [IES15b] targeted
processors pre-Sandy Bridge. Concurrently, Liu et al. [LYG+15] bypassed the
complex addressing function, and achieved the evcition of particular cache
lines by building sets of addresses, called eviction sets, with a timing attack.
Their attack is thus able to target more recent processors.

2.4.5.2 From native to virtualized environments

Research on cache side channels started with theoretical attacks in 1992, with
Hu [Hu92], followed by Kocher et al. [Koc96] and Page [Pag02]. The first
practical attack was demonstrated by Tsunoo et al. [TSS03], on a native en-
vironment. Research on cache side channels got a new impetus with the
rise of cloud computing, in particular for time-driven and access-driven at-
tacks that do not rely on physical access. In 2009, Ristenpart et al. [RTSS09]
showed that the CPU cache was a means of information leakage between
two virtual machines on Amazon EC2 cloud platform. Zhang et al. [ZJRR12]
were the first to demonstrate the use of side channels to extract cryptographic
keys across virtual machines using the instruction cache, in a laboratory en-
vironment. Since then, the following articles mostly consider cross-VM leak-
age [YF14, IIES14b, IES15a, IES15b, LYG+15].

2.4.5.3 From shared to non-shared memory

Flush+Reload attacks operate at the granularity of a single cache line, they
are thus very powerful. However, they require shared memory. As some
public cloud providers disabled shared memory for security reasons, the most
recent attacks use the Prime+Probe technique. At the beginning of 2015 and
concurrently to this thesis, Irazoqui et al. [IES15b] and Liu et al. [LYG+15]
demonstrated that it is possible to target a precise set without any shared
memory on the physically indexed last-level cache. Both articles exploit 2MB
pages that are contiguous in physical memory.
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2.4.6 Timing measurements

Establishing cache covert and side channels demands fine-grained and ac-
curate timing measurements. Processors provide a timestamp counter for
the number of cycles since reset. This counter can be accessed by the rdtsc
and rdtscp instructions. However, because of the out-of-order execution, the
actual execution may not respect the sequence order of instructions as written
in the executable. In particular, a reordering of the rdtsc instruction can lead
to a measurement of more, or less, than the wanted sequence. Reordering
can be prevented by using serializing instructions, such as cpuid. Intel gives
recommendations for fine-grained timing analysis in [Int10]. Appendix B
gives a listing of the code we used to perform timing measurements in the
remainder of this thesis.

2.4.7 Countermeasures

Countermeasures against cache attacks can be envisioned at three levels: di-
rectly at the architecture or microarchitecture level, at the operating system or
hypervisor level, and finally, at the application level.

2.4.7.1 Architecture or microarchitecture level

Instruction set Some changes to the instruction set itself can mitigate or
completely remove side channels. For example, on ARM architecture, flushing
a line is a privileged operation – contrary to the x86 clflush instruction –, thus
removing the Flush+Reload attack vector for this architecture. Additionally,
Intel introduced an extension to its x86 instruction set, called AES-NI [Int08].
This added new instructions to enable data encryption and decryption with
the AES algorithm. These instructions have a fixed time – thus countering
time-driven attacks – and remove memory accesses on key-dependent data –
thus countering trace-driven and access-driven attacks. This countermeasure
however implies a change in existing programs to use these instructions, and
only works on supported hardware.

Secure cache designs Two general solutions are proposed regarding new
secure cache designs: either removing cache interferences, or randomizing them
such that information about cache timings is useless to the attacker.

To remove cache interferences, Page [Pag05] proposed partitioning the
cache architecture, as well as introducing changes to the instruction set. This
approach however is quite heavy and causes performance degradations. Wang
and Lee [WL06, WL07] proposed the Partition Locked Cache (PLcache). It
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avoids cache interference by dynamically locking cache lines of sensitive pro-
grams, thus preventing other processes from evicting them. After analyzing
the security of PLcache [KASZ08], Kong et al. [KASZ09, KASZ13] proposed
an improvement over its logic: preloading all critical data in cache before the
beginning of the cryptographic operations. All critical data will thus be locked
in cache. Domnister et al. [DJL+11] proposed to modify the replacement pol-
icy in the cache controller. It statically reserves one or several ways for each
hardware thread, without the need for the instruction set to change.

To randomize cache interferences, Wang and Lee [WL06, WL07] proposed
the Random Permutation Cache (RPcache). It creates permutations tables
so that the memory-to-cache-sets mapping are not the same for sensitive
programs as for others. After analyzing the security of RPcache [KASZ08],
Kong et al. [KASZ09, KASZ13] proposed two improvements over it. The first
is the use of informing loads to secure RPcache. Informing loads are special
instructions that inform the software when a load misses in the cache. An
exception can then be raised, and the exception handler can then load critical
data such that future loads will hit the cache, eliminating time variations. The
second is to use informing loads to change the permutations of RPcache when
critical data misses the cache. Wang and Lee [WL08] introduced a third secure
cache design, called Newcache, that also randomizes the interferences. It adds
a level of indirection for memory-to-cache mapping, as well as a modified
random replacement algorithm. Liu and Lee [LL13] investigated the security
of Newcache, and proposed a modification to the replacement algorithm to
counter specifically crafted attacks. Liu and Lee [LL14] proposed to change
the filling policy of the cache, to de-correlate it from the demand. It means
that instead of filling the cache for each miss, data populates the cache after
being served to the processor, randomly within a configurable time window.

Prefetcher Fuchs and Lee [FL15] suggested to use disruptive prefetching in
order to mitigate cache side channels. Prefetchers are traditionally studied
regarding performance. In terms of security, the key idea is that the prefetcher
adds noise to the original memory access sequence. By altering the prefetching
policy, the cache behavior becomes less predictable. Their new prefetching
policy prevents attacks on the L1 data cache, and has been tested against a
Prime+Probe attack.

2.4.7.2 Operating system or hypervisor level

Isolation A first countermeasure at the system level – operating system
or hypervisor – is to isolate the different virtual machine processes, so that
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they do not share the resources that are the cause of information leakage.
The most obvious solution is to only allow one virtual machine per physical
machine. However, this removes the main benefit of virtualization in terms of
performance and thus raises the cost of cloud computing. A more fine-grained
solution is to physically isolate only previously annotated functions [BJB15].
Similarly to new cache designs, page coloring provides cache isolation, but
operating at the software level [RNSE09, SSCZ11, KPMR12]. Other papers
have a more relaxed isolation approach in software. Zhang et al. [ZR13]
proposed Düppel, that repeatedly cleans caches that are time-shared, e.g., the
L1 cache. Varadarajan et al. [VRS14] investigate the role of the scheduler to
limit the frequency of cross-VM interactions. Although it does not completely
eliminate the possibility of such interactions, side channels require frequent
measurements to be accurate. Changing the scheduler to limit the frequency
of preemptions is thus a practical way of defeating side channels on private
caches in virtualized environments. This countermeasure however needs to
be evaluated against the newer cache attacks on the shared last-level cache.

Noise in timers Another solution is to use lower-resolution timers or remove
them altogether [VDS11, MDS12]. Indeed, one condition for side channels is
the ability for the attacker to perform fine-grained measurements to distinguish
between, e.g., a cache hit and a cache miss. However, this solution does not
account for legitimate uses of fine-grained timers.

Normalized timings Deterministic execution in cloud architecture is an al-
ternative solution to remove timing channels [AHFG10, LGR13]. Similar to
this idea, Braun et al. [BJB15] proposed modifying the OS to offer protection to
sensitive functions, previously annotated. Here the key idea is that the execu-
tion time is not entirely deterministic: only the key-dependent computations
are time-padded, not external timing differences (e.g., OS scheduling, CPU
frequency scaling).

2.4.7.3 Application level

Finally, countermeasures can be built directly at the application level. They
are specific to each application, and require either changes in the compilation
flow, or in the algorithms themselves. Since they focus on specific applications,
they are not able to prevent all cache attacks, e.g., covert channels.
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Compiler-based mitigations Compiler-based mitigations have the advan-
tage to automate parts of the changes needed to prevent side channels. Cop-
pens et al. [CVDD09] proposed to use automated compiler techniques to re-
move key-dependent control flow and key-dependent timings in cryptographic
software. The changes are made in the backend compiler, leveraging x86 con-
ditional move instructions to eliminate branches. Subsequently, Cleemput et al.
[CCD12] investigated variable latency instructions. They evaluated changes
to the backend compiler that either compensate this variable latency, or force
the use of fixed latency operations. They conclude that these transformations
incur a too high overhead when strong protection is required, thus making
this solution not practical. Crane et al. [CHB+15] explored software diversity.
Their key idea is to create several clones of sensitive program fragments, that
are functionally equivalent but differ in runtime characteristic. Then at run-
time, the program dynamically and randomly chooses which control path to
take.

Manual changes in applications Manual changes in applications are tedious
since they require finding the source of the leak and to patch it manually,
and they are dependent on the algorithm and implementation. For exam-
ple, Brickell et al. [BGNS06] focused on AES and proposed compressed and
randomized tables, as well as pre-loading cache lines. However, Blömer and
Krummel [BK07] showed that these countermeasures are sometimes not suffi-
cient. For AES, bitslice implementations avoid using table lookups [RSD06,
K0̈8, KS09], without any change in hardware.

They are nonetheless necessary in real-world critical software, since the
developers cannot assume changes on the hardware or operating system. For
instance, OpenSSL includes mitigations against Percival [Per05] attack1, against
Aciiçmez et al. [AGS07] branch prediction attack2, and against Yarom et al.
[YB14] attack against ECSDA3. To that effect, methods that detect side channels
in binaries can be used to find the source of information leakage and to close
it [DFK+13, GSM15].

1See [Ope], “Changes between 0.9.7g and 0.9.7h”, 11 October 2005.
2See [Ope], “Changes between 0.9.8e and 0.9.8f”, 11 October 2007.
3See [Ope], “Changes between 1.0.1f and 1.0.1g”, 7 April 2014.
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Figure 2.8: Architecture of NVIDIA GPU.

2.5 Information leakage on GPU memory

In this section, we investigate the GPU memory. We focus on NVIDIA GPUs
in the remainder of this thesis, considering that they are the most widespread
devices used for GPGPU applications. We review their architecture, as well as
their usage in security – offensive and defensive.

2.5.1 Architecture

In 2006, NVIDIA launched the Tesla microarchitecture4 that introduced a
general purpose pipeline. Tesla microarchitecture is followed by Fermi, Kepler
and the latest to date, Maxwell.

GPUs handle throughput-based workloads that have a large degree of
data parallelism. They have hundreds to thousands of cores that can handle

4Tesla is used by NVIDIA both as an architecture code name and a product range
name [LNOM08]. NVIDIA commercialized the Tesla microarchitecture under the name
GeForce 8 Series. When not specified, we refer to the product range name.
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hundreds of threads. Data parallelism mitigates the latency caused by the
limited memory bandwidth and the deep pipeline. Figure 2.8 illustrates the
architecture of a GPU. It is first composed of several streaming multiprocessors
(SM), which are in turn composed of streaming processor cores (SP, or CUDA
cores). The number of SMs depends on the card, and the number of SP per
SM depends on the architecture. The Fermi architecture introduces a memory
hierarchy. It offers an off-chip DRAM memory and an off-chip L2 cache shared
by all SMs. On-chip, each SM has its own set of registers and its own memory
partitioned between a L1 cache and a shared memory accessible by the threads
running on the SPs.

2.5.2 Programming model

CUDA is the most used GPGPU platform and programming model for NVIDIA
GPUs. CUDA allows developers to write GPGPU-specific C functions called
kernels. Kernels are executed n times in parallel by n threads. Each SP handles
one or more threads. A group of threads is called a block, and each SM handles
one or more blocks. A group of blocks is called a grid, and an entire grid is
handled by a single GPU. CUDA introduces a set of memory types. Global,
texture and constant memory are accessible by all threads of a grid and stored
on the GPU DRAM. Local memory is specific to a thread but stored on the
GPU DRAM. Shared memory is shared by all threads of a block and stored in
shared memory. Finally, registers are specific to a thread and stored on-chip.

CUDA programs either run on top of the closed source NVIDIA CUDA
runtime or on top of the open-source Gdev [KMMB12] runtime. The NVIDIA
CUDA runtime relies on the closed-source kernel-space NVIDIA driver and
a closed-source user-space library. Gdev supports the open source Nouveau
driver [Nou], the PSCNV driver [Pat] and the NVIDIA driver. Both closed-
source and open-source solutions support the same APIs: CUDA programs
can be written using the runtime API, or the driver API for low-level interaction
with the hardware [NVI12].

2.5.3 Offensive usage of GPUs

2.5.3.1 The GPU as the subject of attacks

Using the CUDA framework, Di Pietro et al. [DLV13] showed that GPU ar-
chitectures are vulnerable to information leakage, mainly due to memory
isolation issues. The leakage affects the different memory spaces in GPU:
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global memory, shared memory, and registers. Di Pietro et al. also showed that
current implementations of AES cipher that leverage GPUs allow recovering
both plaintext and encryption key in the GPU global memory.

Subsequently to our work, Lee et al. [LKKK14] showed that uninitialized
GPU memory can be exploited for, e.g., inferring the browsing history on
browsers that use GPU-accelerated rendering.

2.5.3.2 The GPU as a medium for attacks

In addition to being the subject of attacks, some work searched to leverage
the GPU as a medium for attacks. A first category of attacks exploits the
high degree of parallelism for, e.g., password cracking [MKS10, Spr11]. A
second category exploits the particular access of the GPU to the system to
evade detection. Vasiliadis et al. [VPI10] implemented GPU-assisted malware
with unpacking routines and run-time polymorphism [VPI10]. Other work
exploits the DMA capabilities of the GPU. In particular, Ladakis et al. [LKV+13]
performed keystroke logging, and Danisevskis et al. [DPS13] constructed a
privilege escalation attack in a mobile environment.

2.5.4 Defensive usage of GPUs

The computing power of GPUs is also used for defense. Several publications
have used GPUs to implement and accelerate cryptographic algorithms, both
for asymmetric [HW09] and symmetric block ciphers [GBM12]. However, as
Di Pietro et al. [DLV13] showed, some implementations can leak secret keys
due to the poor memory isolation of GPUs. Tackling this issue, Vasiliadis
et al. [VPAI14] leveraged specific features of the GPU to secure cryptographic
operations such as AES and RSA, in a tool called PixelVault. The secret keys
are stored in the GPU registers, making them inaccessible to other processes.
All the operations are performed entirely on the device, using a GPU kernel
that runs indefinitely.

Another usage for GPUs for defensive usage is security monitoring. Lom-
bardi et al. [LP10] leveraged unused GPUs in cloud environments, by moni-
toring guest virtual machines on the host side. A similar usage is intrusion
detection. Indeed, these systems use pattern matching against a large set of
regular expressions, and need a high throughput to monitor networks. GPUs
thus outperform CPUs in these setups [VAP+08, VPA+09].

Finally, Bress et al. [BKS13] considered using the GPU memory vulnerabil-
ities to perform forensic investigations. Nevertheless, they noted that calls to
the CUDA API cannot be guaranteed to not modify the memory.
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2.6 Conclusions

In this chapter, we introduced background on x86 systems, covering in more
detail the CPU data cache. We also described the virtualization of such systems.
Virtualization is widely used today in cloud computing environments that
allow several tenants to share a single physical machine, through virtual
machines. We detailed well-known covert and side channels on the processor
or the memory, with a focus on attacks on the data cache. These attacks gained
a new impetus with the rise of cloud computing, since they can be operated
remotely via virtual machines sharing same physical machine. However, they
are highly dependent on the microarchitecture of the processor, which has
changed every year the past few years, and for which some parts are not
documented. Attacks also evolved with new countermeasures in production.
Indeed, shared memory is now disabled on some cloud environments, which
makes attacks that rely on it impractical in real life virtualized environments.

Another recent evolution in cloud computing environments is the rise
in usage of GPUs, either for their computing or graphical powers. There is
little research on the security of these devices that have been designed for
performance, but a previous article has shown GPUs suffer from security
issues involving memory isolation. However, no research has been done on
the security of these devices in virtualized environments.

In the rest of this thesis, we investigate cache attacks without any shared
memory. We also detail how we reverse-engineered an undocumented part of
the cache addressing. Finally, we examine the security of GPU virtualization.
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3.1 Introduction

Covert channels are used to exfiltrate sensitive information, and can also be
used as a co-residency test [ZJOR11]. There are many challenges for covert
channels across virtual machines. First, core migration drastically reduces
the bitrate of channels that are not cross-core [XBJ+11]. Second, simultaneous
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execution of the virtual machines over several cores prevents a strict round-
robin scheduling between a sender and a receiver [WXW12]. Third, virtual to
physical address translation and functions that map an address to a cache set
are not exposed to processes, and thus induce uncertainty over the location
of data in the cache. This addressing uncertainty (term coined in [WXW12])
prevents a sender and a receiver to agree on a particular location to work on.

Covert channels that do not tackle the addressing uncertainty are limited to
use private first level caches on modern processors. This dramatically reduces
the bitrate in virtualized environments. A way to circumvent this issue is to
rely on deduplication offered by the hypervisor or the OS. With deduplication,
common pages use the same caches lines. However, deduplication is deacti-
vated by some cloud providers [BRPG15], which makes this attack impractical
in some scenarios.

In this chapter, we present a novel cache covert channel, called C5. We
differentiate our covert channel with previous work by tackling the issue of
the addressing uncertainty without relying on any shared memory. Our covert
channel works between two virtual machines that run across any cores of the
same processor. It leverages the shared and inclusive feature of the last-level
cache in modern processors. We obtain high bitrates of 1291bps for a native
setup and 751bps for a virtualized setup, arguing that this covert channel is
practical.

Section 3.2 details the issue of addressing uncertainty. Section 3.3 gives an
overview of C5. More details are given on the sender in Section 3.4 and on
the receiver in Section 3.5. We evaluate our covert channel in a native and
virtualized environment in Section 3.6. We discuss the factors that impact
performance in Section 3.7, possible countermeasures in Section 3.8, and dif-
ferences with the related work in Section 3.9. Finally, Section 3.10 concludes
and gives perspective on future work.

3.2 The issue of addressing uncertainty

Existing cache covert channels rely on the fact that a sender and a receiver are
able to target a specific cache set. However, two conditions individually create
uncertainty on the addressing, making it difficult to target a specific set of the
last-level cache: memory virtualization and complex addressing.

Processors implement virtual memory using an MMU that maps virtual
addresses to physical addresses. With virtual machines, hypervisors introduce
an additional layer of translation, as illustrated by Figure 2.7 page 16. The
guest virtual pages are translated to the guest physical pages, and further
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Figure 3.1: Additional layer of indirection added by memory virtualization
and its effect on the addressing of the last-level cache sets.

to the actual machine pages. The hypervisor is responsible for mapping the
guest physical memory to the actual machine memory. A process knowing a
virtual address in its virtual machine has no way of learning the corresponding
physical address of the guest, nor the actual machine address. As the last-level
cache is physically indexed, this results in the process being unable to predict
in which set its access goes (see Figure 3.1).

The complex addressing scheme maps an address to a set with a function
that potentially uses all address bits (see Figure 2.5 page 11). As the function is
undocumented, a process cannot straightforwardly determine the set in which
it is reading or writing. Thus, on processors that use complex addressing,
two processes cannot agree on a cache set to communicate, even in a native
environment.
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Figure 3.2: Cross-core covert channel illustration of sender and receiver behav-
ior. Step (1): the receiver probes one set repeatedly; the access is fast because
the data is in its L1 (and LLC by inclusive feature). Step (2): the sender fills the
LLC, thus evicting the set of the receiver from LLC and its private L1 cache.
Step (3): the receiver probes the same set; the access is slow because the data
must be retrieved from RAM.

3.3 Overview of C5

We now present C5, our cross-core cache covert channel. The sender process
sends bits to the receiver by varying the access delays that the receiver observes
when accessing a set in its private cache. At a high level view, this covert
channel encodes a ‘0’ as a fast access for the receiver and a ‘1’ as a slow access.

Figure 3.2 illustrates our covert channel. It relies on the fact that the last-
level cache is shared and inclusive. The strategy is a variant of Prime+Probe.
The receiver process repeatedly probes one set. To transmit a ‘0’, the sender
stays idle. The receiver observes a fast access, because the data stays in its
private L1 cache, see Figure 3.2-1. The data is also present in the last-level
cache because of its inclusive property. To transmit a ‘1’, the sender process
writes data to occupy the whole last-level cache, see Figure 3.2-2. In particular
this evicts the set of the receiver from the last-level cache. The data also gets
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evicted from the private L1 cache of the receiver due to the inclusive property.
The receiver now observes that the access to its set is slow because the data
must be retrieved from RAM, see Figure 3.2-3.

Next we provide a detailed description of the sender and the receiver.

3.4 Sender

To perform a cross-core covert channel, the sender needs a way to interfere
with the private cache of the other cores. In our covert channel, the sender
leverages the inclusive feature of the last-level cache. As the last-level cache is
shared amongst the cores of the same processor, the sender may evict lines
that are owned by other processes, and in particular processes running on
other cores.

A straightforward idea is that the sender writes in a set, and the receiver
probes the same set. However, due to virtualization and complex addressing,
the sender and the receiver cannot agree on the cache set to work on. Our
technique consists of a scheme where the sender evicts the whole last-level
cache, and the receiver probes a single set. This way, the sender is guaranteed
to affect the set that the receiver reads, thus resolving addressing uncertainty.

In order to evict the whole last-level cache, the sender must evict cache lines
and therefore access memory to load new cache lines that will evict the older
ones. To do so, the sender just writes data into a buffer. In fact, either writing
or reading data would provoke a cache miss. We choose to write because a
read miss following a write operation induces a higher penalty for the receiver
than a read miss following a read operation. This leads to a stronger signal.
We further discuss this choice in Section 3.7.

The eviction of cache lines from the last-level cache leverages the replace-
ment policy. The replacement policy and the associativity influence the buffer
size b of the sender. Considering a pure LRU policy, writing n lines in each
set is enough to evict all lines of the last-level cache, n being the associativity.
Typical replacement policies are pseudo-LRU, variants of LRU and bimodal
insertion policy (BIP) where the CPU can switch between the two strategies to
achieve optimal cache usage. Pseudo-LRU policies are known to be inefficient
for memory intensive workloads of working sets greater than the cache size.
The actual replacement policy is a Quad-Age LRU on Ivy Bridge, however, its
internals are not documented. We thus determine experimentally the size b of
the buffer to which the sender needs to write.

The order of writes into the buffer depends on the cache parameters. Lin-
early iterating over the buffer would lead to iterate over sets and evict a single
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Algorithm 1 Sender: f(n, o, s, c, w)
message← {0,1}*
n← LLC associativity
o← log2(line size)
s← log2(number of sets in LLC)
b← n× 2o+s × c
buffer[b]
for each bit in message do

wait(w)
if bit == 1 then

for i = 0 to number of sets do
for j = 0 to n× c do

buffer[2oi+ 2o+sj] = constant
end for

end for
end if

end for

line of each set before going through the first set again. With too many sets,
there is a risk that the receiver probes a set before the sender evicts all lines
of this set. In this setting, the probing of the receiver may evict all lines of
the sender and the signal may be lost. Ideally, to iterate over the buffer we
would take into account the function that maps an address to a set. However,
this function is undocumented, thus we assume a direct addressing; other
types of iterations are possible. The sender writes with the following memory
pattern 2oi+ 2o+sj as described in Algorithm 1. 2s is the number of sets of the
last-level cache and 2o the line size; j and i are line and set indices respectively.

Algorithm 1 summarizes the steps performed by the sender. The parame-
ters are the last-level cache associativity n, the number of sets 2s, the line size
2o, and a constant c to adapt the buffer size. To send a ‘1’, the sender evicts the
entire last-level cache by writing in each line j (n× c times) of each set i, with
the described memory pattern. To send a ‘0’, the sender does nothing. The
sender waits for a determined time w before sending a bit to allow the receiver
to distinguish between two consecutive bits.
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Algorithm 2 Receiver: f(n, o, s)
n← L1 associativity
o← log2(line size)
s← log2(number of sets in L1)
buffer[n× 2o+s]
loop

read← 0
begin measurement
for i = 0 to n do

read + = buffer[2o+si]
end for
end measurement
record (localT ime, accessDelay)

end loop

3.5 Receiver

The receiver repeatedly probes all the lines of the same cache set in its L1 cache.
Algorithm 2 summarizes the steps performed by the receiver. The iteration
is dependent on the cache parameters. To access each line i (n times) of the
same set, the receiver reads a buffer – and measures the time taken – with
the following memory pattern: 2o+si. The cumulative variable read prevents
optimizations from the compiler, by introducing a dependency between the
consecutive loads so that they happen in sequence and not in parallel. In the
actual code, we also unroll the inner for loop to reduce unnecessary branches
and memory accesses.

The receiver is able to probe a set in its L1 cache because the L1 is virtually
indexed, and does not use complex addressing. We do not seek to probe
the L2 or L3, because all read and write accesses reach the L1 first and they
might evict each other, creating differences in timing that are not caused by
the sender.

The receiver probes a single set when the sender writes to the entire cache,
thus one iteration of the receiver is faster than one iteration of the sender. The
receiver runs continuously and concurrently with the sender, while the sender
only sends one bit every w microseconds. As a consequence, the receiver
performs several measurements for each bit transmitted by the sender. The
receiver could be monitoring a single line from its L1 set, however, this leads
to noise if this line is evicted by another program. As the sender is the limiting
factor in this covert channel, we choose for the receiver to probe all lines of
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Figure 3.3: Reception of a 128-bit transmission. Laptop setup in native environ-
ment, with w = 500µs, b = 3MB.

the set, i.e., to measure the access time of all lines of the set. This smooths the
measurements without incurring a performance penalty. Indeed, it reduces
the probability of a false positive, i.e., a line has been evicted by another process
and is wrongfully counted as a ‘1’.

Each measurement of the receiver has the form (localT ime, accessDelay),
where localT ime is the time of the end of one measurement according to the
local clock of the receiver and accessDelay is the time taken for the receiver to
read the set. Figure 3.3 illustrates the measurements performed by the receiver.

Having these measurements, the receiver decodes the transmitted bit-
sequence. First, the receiver extracts all ‘1’s. It removes all points that have
an accessDelay below (or equal to) typical L2 access time. Then the receiver
only keeps the localT ime information and applies a clustering algorithm to
separate the bits. We choose DBSCAN [EKSX96], a density-based clustering
algorithm, over the popular k-means algorithm. A drawback of the k-means
algorithm is that it takes the number k of clusters as an input parameter. In
our case, it would mean knowing in advance the number of ‘1’s, which is not
realistic. The DBSCAN algorithm takes two input parameters, minPts and ε:
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Table 3.1: Experimental setups, LLC characteristics.

Name laptop workstation
Model Core i5-3340M Xeon E5-2609v2
Microarchitecture Ivy Bridge Ivy Bridge
Cores 2 4
Size 3MB 10MB
Sets 4096 8192
Associativity 12 20
Complex addressing yes yes

1. minPts: the minimum number of points in each cluster. IfminPts is too
low, we could observe false positives, reading a ‘1’ when there is none; if
minPts is too high, we could observe false negatives, not reading a ‘1’
when there is one. In practice, we use minPts between 5 and 20.

2. ε: if a point belongs to a cluster, every point in its ε-neighborhood is also
part of the cluster. In practice, we choose ε below w.

Once all ‘1’s of the transmitted bit-sequence have been extracted, the re-
ceiver reconstructs the remaining ‘0’s. This step is straightforward as the
receiver knows the time taken to transmit a ‘0’ which is w.

3.6 Evaluation

In this section, we evaluate our covert channel on native and virtualized setups.

3.6.1 Testbed

Table 3.1 summarizes characteristics of the laptop and workstation setups. Some
parameters of the architecture are constant for the considered processors. The
line size in all cache hierarchy is 64 bytes, and the L1 is 8-way associative
and has 64 sets. We conduct our experiments in lab-controlled native and
virtualized environments.

We adjust two parameters: the size b of the buffer that evicts the last-level
cache, and the delay w between the transmission of two consecutive bits. The
size b and the delay w impact the bitrate and the error rate of the clustering
algorithm, as depicted in Figures 3.4 and 3.5. The precision of the clustering
algorithm increases with the size b, however, the bitrate is proportionally
reduced. The size b is controlled by the multiplicative parameter c and must be
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at least the size of the last-level cache. In practice, we used c = 1 and c = 1.5.
The bitrate increases with lower values of w, but the precision of the clustering
algorithm decreases.

To evaluate this covert channel, the sender transmits a random 4096-bit
message to the receiver. We transmit series of 20 consecutive ‘1’s as a header
and a footer framing the payload to be able to extract it automatically. The
receiver then reconstructs the message from its measurements. We run 10
experiments for each set of parameters, and calculate the bitrate and the error
rate. We derive the error rate from the Levenshtein distance between the sent
payload and the received payload. The Levenshtein distance is the minimum
number of characters edits and accounts for insertions, deletions and bit flips.
We provide evaluation results for each environment: native in Section 3.6.2
and virtualized in Section 3.6.3.

Establishing cache-based channels demands fine-grained and accurate time
measurements. However, out-of-order execution creates issues, as explained
in Section 2.4.6. We used the code provided in Appendix B to perform our
timing measurements.

3.6.2 Native environment

We evaluate C5 in the laptop and workstation setups, in a native (non-virtualized)
environment. We run the sender and the receiver as unprivileged processes,
in Ubuntu 14.04. To demonstrate the cross-core property of our covert channel,
we pin the sender and the receiver to different cores1. Figure 3.3 illustrates a
transmission of 128 bits in the laptop setup, for w = 500µs and b = 3MB.

Figure 3.4 presents the results in the laptop setup, for two values of b,
and three values for waiting time w. For b = 3MB (the size of the LLC), we
obtain a bitrate between 232bps and 1291bps by varying w. The error rate is
comprised between 0.3% (with a standard deviation σ = 3.0× 10−3) and 3.1%
(σ = 0.013). When we increase b to 4.5MB, the bitrate slightly decreases but
stays in the same order of magnitude, between 223bps and 1033bps. The error
rate decreases between 0.02% (σ = 8.5× 10−5) and 1.6% (σ = 1.1× 10−4). The
standard deviation of the error rate also decreases, leading to a more reliable
transmission. We conclude that it is sufficient to write n lines per set, but
that the transmission is more reliable if we write more than n lines. This is a
tradeoff between the bitrate and the error rate.

In the workstation setup, we obtain a bitrate of 163bps for b = 15MB (1.5×
LLC), for an error rate of 1.9% (σ = 7.2 × 10−3). We observe that the bitrate

1Using the sched_setaffinity(2) Linux system call.
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Figure 3.4: Bitrate as a function of the error rate, for two sizes of buffer b. Laptop
setup (3MB LLC) in native environment.

decreases when the size of the last-level cache increases. This is expected
since it takes longer to send a ‘1’, as the sender must write into the entire
last-level cache. Compared to the laptop setup, the error rate and the standard
deviation have also increased. There are two factors that can explain these
results. First, the ratio of the associativity over the number of cores is smaller
in the workstation setup, which means that lines have a greater probability of
being evicted by processes running in other cores, leading to a higher error
rate. Second, the last-level cache is bigger in the workstation setup, which
means that the allocation of a buffer might not cover all the sets of the last-level
cache, leading to a difference in the error rate between runs, and thus a higher
standard deviation.

3.6.3 Virtualized environment

We evaluate C5 in the laptop setup, using Xen 4.4 hypervisor. We run the
sender as an unprivileged process in a guest virtual machine and the receiver
as an unprivileged process in another guest virtual machine. The host and two
guests run Ubuntu 14.04. We use the same operating system as in the native
environment experiments to remove additional influence from the operating
system. Each guest has one vCPU, and the host uses the default algorithm to
schedule guest virtual machines.
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Figure 3.5: Bitrate as a function of the error rate, for two sizes of buffer b. Laptop
setup (3MB LLC) in virtualized environment.

Figure 3.5 presents the results for two values of b (b = 3MB and b = 4.5MB),
and two waiting time w (w = 4000µs and w = 1000µs). For b = 3MB (the size
of the LLC), we obtain a bitrate between 229bps and 751bps by varying w.
When we increase b to 4.5MB, the bitrate goes from 219bps to 661bps. There
is a performance degradation compared to the native setup, but the bitrate
stays in the same order of magnitude. The error rate is slightly higher than in
the native setup, between 3.3% (σ = 0.019) and 5.7% (σ = 8.8× 10−3), and is
comparable for the two values of b. The standard deviation of the error rate is
also higher than in the native setup, and is higher for a low value of b. This
can be explained by the noise induced by virtualization, due to the hypervisor,
the host and the two guest virtual machines.

3.7 Discussion

Reducing the number of targeted sets C5 evicts the whole last-level cache,
thus evicting all sets. It is possible to reduce the number of targeted sets, even
without knowing the complex addressing function. Indeed, the lower bits (12
bits for 4kB pages) of a virtual address are the same as the lower bits of its
physical address. As a result, two processes can agree on a value for these bits.
The sender thus targets one set every 64 sets, making less memory accesses

48



3.7. Discussion

to transmit a message. We implemented it and indeed found a speedup of
around 64 times compared to the bitrate of C5, with a new bitrate of 23kbps.
However, we did not properly evaluate the error rate.2

Signal quality Evicting cache lines by reading or writing memory modifies
the quality of the signal. A read operation is generally less costly than a write
operation, so the sender could prefer to perform reads instead of writes in this
covert channel. However, reads do not have the same impact in terms of timing
for the receiver. When the receiver loads a new cache line, there are two cases.
In the first case, the line had previously only been read by the sender, and
not modified. The receiver thus requires a single memory access to load the
line. In the second case, the line had previously been modified by the sender.
At the time of eviction, it needs to be written back in memory. This requires
an additional memory access, and thus takes longer. We implemented both
approaches and we choose to evict cache lines using memory writes because
of the higher latency, which improves the signal quality.

Running on the same core Whenever the sender and the receiver run on
the same core, C5 may benefit from optimizations. In this case, there is no
need to evict the entire last-level cache: evicting the L1 cache that is 32kB is
sufficient and faster than evicting 3MB. However, the sender and the receiver
are scheduled by the OS or the hypervisor, and frequently run on different
cores [XBJ+11]. We would need a method to detect when both run on the
same core, and adapt the sender algorithm accordingly. We preferred to keep
our method simpler, less error-prone and agnostic to scheduling.

Detection algorithm The detection algorithm of the receiver impacts the
overall bitrate. We put the priority on having a good detector at the receiver
end, to minimize the error rate. In our implementation, the sender is waiting
between the transmission of consecutive bits. The receiver uses a density-based
clustering algorithm to separate the bits. Further work can be dedicated to
reduce or eliminate the waiting time on the sender side, by using a different de-
tection algorithm on the receiver side. The detection algorithm is nevertheless
not the bottleneck of C5, so we do not expect a dramatic bitrate improvement
by changing it.

2This improvement was suggested to us by Yossef Oren after we published the camera
ready of [MNHF15]. It is also used in [OKSK15].
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Different cache design and system architecture Our covert channel depends
on the cache design. In particular, it critically relies on the shared and inclusive
last-level cache. We believe this is a reasonable assumption, given that the
latest generations of microarchitectures of Intel processors all have this design.
The caches of AMD processors have historically been exclusive, and our covert
channel is likely not to work with this cache design. However, inclusive caches
seem to be a recent trend even at AMD. Indeed, the low-power microarchitec-
ture named Jaguar introduced in 2015, and the future CPU microarchitecture
named Zen both use an inclusive last-level cache. As Wu et al. [WXW12]
noted, cache-based covert channels also need to be on the same processor.
On a machine with two processors, two virtual machines are on average half
the time on the same processor. Such a setting would introduce transmission
errors. These errors may be handled by implementing error correcting codes
or some synchronization between the receiver and the sender. In any case
the bitrate would be reduced for C5 as well as for other cache-based covert
channels.

Cloud computing setup In a public cloud setup such as on Amazon EC2,
several factors may impact the performance and applicability of our covert
channel. First, the sender and receiver must be co-resident, i.e., they must run
on the same hardware and hypervisor despite the virtual machine placement
policy of the cloud provider. Section 2.3.1 provides some background on how
to achieve and detect co-residency in cloud environments. In practice, it is
costly and difficult to achieve. Second, the hypervisor, and in particular its
associated vCPU scheduler, may have an impact on performance, as previously
reported by [RTSS09, XBJ+11]. Amazon EC2 relies on a customized version of
Xen which uses an unknown scheduler. As a consequence, the results obtained
in our lab experiments using Xen’s default scheduler cannot be translated as
is to a cloud setting. We expect the performance to be degraded in a cloud
environment.

Noise induced by non-participating workload Similarly, we expect the er-
ror rate to increase in presence of a high non-participating workload, as it
is the case with other cache covert channels [XBJ+11]. The resulting error
rate depends on the memory footprint of the workload, the core on which it
executes, and on its granularity of execution compared to the transmission
delay of the message.
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3.8 Countermeasures

Section 2.4.7 described the state-of-the-art in terms of cache attacks counter-
measures. In this section, we review some of these solutions, both at the
hardware and at the software levels, to determine if they also apply to the
mitigation of our covert channel.

3.8.1 Hardware countermeasures

At the hardware level, some countermeasures are designed to protect a par-
ticular sensitive application, e.g., a cryptographic algorithm. For example,
PLcache [WL07] locks the cache lines of sensitive programs, to prevent their
eviction by an attacker. Such countermeasures do not prevent covert channels,
where both programs cooperate to exchange information and are controlled
by an attacker.

Other countermeasures apply globally, they thus have more likelihood
to thwart covert channels. Domnister et al. [DJL+11] proposed to modify
the replacement policy in the cache controller. Their cache design prevents
a thread from evicting lines that belong to other threads. Although L2/L3
attacks and defense are out of the scope of their paper, if the policy is applied
to the last-level cache, the sender cannot evict all lines of the receiver, so it may
partially mitigate our covert channel too. However, performance degradation
of this method on L1 cache is about 1% on average, up to 5% on some bench-
marks. This mitigation might impact even more performance if also applied to
the last-level cache. RPcache [WL07] randomizes the interferences such that
information about cache timings is useless to an attacker. It is done by creating
permutations tables so that the memory-to-cache-sets mapping is not the same
for sensitive programs as for others. However, C5 is agnostic to this mapping
since it targets the whole cache, so this solution may not mitigate our covert
channel. These hardware-based solutions are currently not implemented.

Finally, exclusive caches, used by current AMD processors, mitigate our
covert channel as they prevent the last-level cache from invalidating sets of
private L1 caches. However, AMD has already shifted from exclusive to inclu-
sive caches in their low-power microarchitectures, and has announced that
their next CPU microarchitecture will also use an inclusive last-level cache. It
is thus unlikely to see future generations of CPUs with an exclusive last-level
cache.
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3.8.2 Software countermeasures

Similarly to hardware countermeasures, software countermeasures that target
applications are not suited to defend against covert channels, as the sender
and the receiver are controlled by an attacker.

At the system level, the operating system or the hypervisor can take mea-
sures against last-level cache covert channels by isolating better the programs
or virtual machines. Similar to Kim et al. [KPMR12], the hypervisor can parti-
tion the last-level cache such that each virtual machine works on dedicated
sets within the last-level cache. This way, the sender cannot evict the lines of
the receiver that is running in a different virtual machine.

Another countermeasure is to introduce noise. Düppel [ZR13] is a solution
that repeatedly cleans the L1 cache. This introduces noise on the timing
measurements of the attacker, thus rendering them useless. As the mitigation
is only performed on the L1 cache, it may not mitigate our covert channel that
exploits the last-level cache. Furthermore, applying this countermeasure to
the whole cache hierarchy would lead to an important performance penalty,
as this would nullify the purpose of the cache. Modifying the scheduler to
introduce noise in the measurements as in [VRS14] can in practice complicate
the transmission between the sender and the receiver, and thus reduce the
bitrate.

3.9 Related work

Covert channels using caches have been known for a long time. Hu [Hu92] in
1992 was the first to consider the use of cache to perform cross-process leakage
via covert channels. Covert channels in the cloud were introduced by Risten-
part et al. [RTSS09] in 2009, and were thus performed on older generations of
processors. In particular, it was not possible to perform a cross-core channel
using the cache. Ristenpart et al. built a covert channel for Amazon EC2, based
on L2 cache contention that uses a variant of Prime+Probe [Per05, OST06].
Despite its low bitrate of 0.2bps, this covert channel shows deficiencies in the
isolation of virtual machines in Amazon EC2. However, this covert channel
has some limitations: the sender and receiver must synchronize and share the
same core. Xu et al. [XBJ+11] quantified the achievable bitrate of such a covert
channel: they reached 215bps in lab condition, but only 3bps in the cloud. The
dramatic drop is due to the fact that the covert channel does not work across
cores, and thus the channel design has to take into account core migration.

Wu et al. [WXW12] designed a data transmission scheme purely time-
based, for which the sender and receiver are not scheduled in a round-robin
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fashion, but simultaneously. The sender and the receiver can thus run on
different cores. This covert channel also uses a variant of Prime+Probe. How-
ever, the sender and receiver have to agree on a set to work on, which ignores
the addressing issue. Their experiment has been tested on a non-virtualized
environment, and on a CPU with an older microarchitecture that does not
feature complex addressing. They further assumed that cache-based covert
channels are impractical due to the need of a shared cache. Yet, modern pro-
cessors – including those used by Amazon EC2 – have all the properties that
make cache-based covert channels practical, and thus this assumption needs
to be revisited. Moreover, complex addressing on the last-level cache is now
a common feature. In contrast with this work, we leverage the properties
of modern hardware to build a covert channel that works across cores in a
virtualized environment.

Flush+Reload attacks [YF14, IIES14b] rely on deduplication offered by the
hypervisor. With deduplication, common pages use the same cache lines.
These attacks thus bypass the uncertainty brought both by virtualization and
complex addressing. They exploit the inclusive feature of last-level caches, and
use the clflush instruction that flushes a line from the whole cache hierarchy.
However, using deduplication imposes constraints on the platform where the
attack can be performed. For instance, to the best of our knowledge, the Xen
version used in Amazon EC2 does not allow deduplication. In contrast with
these papers, we tackle the addressing uncertainty without any shared memory,
which makes our covert channel possible in more restrictive environments.

Hund et al. [HWH13] reverse-engineered the complex addressing function
in order to circumvent the kernel space ASLR. While this is a first step to
resolve the addressing uncertainty brought by complex addressing on modern
processors, the authors only reversed the function for a given Sandy Bridge
processor. It is unknown if the function differs for processors of the same
microarchitecture, or for processors of a different microarchitecture. Our
covert channel is agnostic to this function, hence it applies to a large range of
modern processors.

Concurrently to our work, Liu et al. [LYG+15] demonstrated a Prime+Probe
attack on the last-level cache that bypasses both virtualization and complex
addressing, without any shared memory. Instead of reverse-engineering the
complex addressing function, or targeting the whole last-level cache, they
used a timing attack to find set of addresses that are located in the same last-
level cache set. They used huge pages to resolve the uncertainty brought by
memory virtualization. They demonstrated two cryptographic side channels,
as well as a covert channel that has a bitrate of 1.2Mbps, with an error rate
of 22%, on Sandy Bridge processors. Irazoqui et al. [IES15b] also used huge
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pages to resolve the uncertainty brought by memory virtualization, but they
demonstrated a side channel on a Nehalem processor that does not use complex
addressing.

3.10 Conclusions and perspectives

This chapter described C5, a novel covert channel that transfers messages
across different cores of the same processor. Our covert channel tackles address-
ing uncertainty that is in particular introduced by hypervisors and complex
addressing. In contrast to previous work, our covert channel does not require
any shared memory. All these properties make our covert channel fast and
practical.

We analyzed the root causes that enable this covert channel, i.e., microarchi-
tectural features such as the shared last-level cache, and the inclusive feature of
the cache hierarchy. We experimentally evaluated our covert channel in native
and virtualized environments. We successfully established a covert channel
between virtual machines despite the CPU scheduler of the hypervisor. We
measured a bitrate one order of magnitude above previous cache based covert
channels in the same setup.

Concurrent work [LYG+15] showed that it is possible to target precise
sets on Sandy Bridge processors despite virtualization and complex address-
ing. However, we later showed [GMM15] that the new replacement policy in
Ivy Bridge and Haswell requires an adaptation of the eviction strategy. Our
covert channel has been demonstrated on an Ivy Bridge, and thus defeats
this replacement policy, however it is not fine-grained enough to be used in
a cryptographic side channel. The impact of this new replacement policy on
side channels will be explored in a future work.
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4.1 Introduction

Cache attacks can operate at all cache levels: L1, L2 or last-level cache. Attacks
on the L1 or L2 cache restrict the attacker to be on the same core as the victim.
This is a too strong assumption on a multi-core processor when the attacker
and the victim migrate across cores [RTSS09, XBJ+11]. We thus focus on cache
attacks on the last-level cache, which is shared among cores in modern pro-
cessors. Attacks on last-level cache are more powerful as the attacker and the
victim can run on different cores, but they are also more challenging. Without
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using any shared memory, an attacker has to find addresses that map to the
same set, and exploit the cache replacement policy to evict lines. He faces two
issues: the last-level cache is physically addressed, and modern processors
map physical addresses to slices using the so-called complex addressing scheme
which is undocumented. We detailed in the last chapter a method to bypass
this complex addressing scheme, by evicting the whole last-level cache. This
is a practical way to perform cache covert channels as we showed, but it is not
fine-grained enough to perform, e.g., cryptographic side channels. Addition-
ally, previous approaches already manually reverse-engineered the complex
addressing function for specific Sand Bridge processors [HWH13, Sea15b].
However, they used a timing attack, that is unable to retrieve all the bits, lead-
ing to a partial function only. It is also unknown if the function is the same for
other processors.

In this chapter, we present a novel and automatic method to reverse-
engineer the addressing function of the last-level cache. We use hardware
performance counters to monitor events associated with slices in order to map
physical addresses to each slice. We thus recover all the bits of the function. We
evaluated our method on a wide variety of processors, encompassing Sandy
Bridge, Ivy Bridge and Haswell microarchitectures, for different numbers of
cores.

Section 4.2 gives background on hardware performance counters. Sec-
tion 4.3 shows how to use performance counters to derive a mapping between
physical addresses and last-level cache slices. Section 4.4 details how we derive
a compact addressing function for processors that have 2n cores. Section 4.5
demonstrates how the function can be used in practice, by building a covert
channel that is faster than C5, and exploiting the Rowhammer vulnerability
in JavaScript. We discuss the differences between our function and the ones
previously retrieved in Section 4.6, and related work in Section 4.7. Finally,
Section 4.8 concludes and gives perspective on future work.

4.2 Hardware performance counters

Hardware performance counters are special-purpose registers that are used to
monitor hardware-related events. Such events include cache misses or branch
mispredictions, making the counters useful for performance analysis or fine
tuning. Because performance counters require high level of privileges, they
cannot be directly used for an attack.

The registers are organized by performance monitoring units (called PMON).
Each PMON unit has a set of counter registers, paired with control registers. Per-
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formance counters can only be used to measure global events that happen at
the hardware level, and not for a process in particular. This adds noise and
has to be considered when performing a measurement.

There is one PMON unit, called CBo (or C-Box), per last-level cache slice.
Each CBo has a separate set of counters, paired to control registers. Among
available events, LLC_LOOKUP counts all accesses to the last-level cache. A mask
on the event filters the type of the request (data read, write, external snoop, or
any) [Int12, Int14c, Int14d].

Performance counters depend on the processor, but the CBo counters
and the LLC_LOOKUP event are present in a wide range of processors, and
documented by Intel.1 Some adaptations are needed between different types
of processors. Indeed, for Xeon Sandy Bridge, Xeon Ivy Bridge, Xeon Haswell
and Core processors, the MSR addresses and the bit fields (thus the values
assigned to each MSR) vary, but the method remains similar. Details of the
MSR addresses and values can be found in Appendix C. Reading and writing
MSR registers needs to be done by the kernel via the privileged instructions
rdmsr and wrmsr.

4.3 Mapping physical addresses to cache slices

In this section, we present our technique for reverse-engineering the complex
addressing function, using performance counters. Our objective is to build
a table that maps a physical address (for each line of cache) to a slice (e.g.,
Table 4.1).

Algorithm 3 describes our technique. First, monitoring the LLC_LOOKUP
event is set up by writing to control registers with wrmsr. Then, one memory
address is repeatedly accessed (Listing 4.1) to generate activity on the corre-
sponding slice. The counter registers are then read for each slice (each CBo).
Next, the virtual address is translated to a physical address by reading the file
/proc/pid/pagemap. Finally, the physical address is associated to the slice that
has the most lookups. Such monitoring sessions are iterated with different
addresses to obtain a set of pairs (physical address, slice), forming a table.

The number of times the address needs to be polled is determined experi-
mentally to differentiate the lookup of this particular address in a slice from the
noise of other last-level cache accesses. We empirically found that polling an

1For the Xeon range (servers): processors of the microarchitecture Sandy Bridge in [Int12],
Ivy Bridge in [Int14c], and Haswell in [Int14d]. For the Core range (mobiles and workstations),
in [Int14b] for the three aforementioned microarchitectures.

57



4. Reverse-engineering last-level cache complex addressing

Table 4.1: Mapping table obtained after running Algorithm 3. Each address
has been polled 10000 times. The columns CBo 0 to CBo 3 are obtained from
experiment and the column slice is derived from it.

Physical address CBo 0 CBo 1 CBo 2 CBo 3 Slice
0x3a0071010 11620 1468 1458 143 0
0x3a0071050 626 10702 696 678 1
0x3a0071090 498 567 10559 571 2
0x3a00710d0 517 565 573 10590 3

· · · · · · · · · · · · · · · · · ·

Algorithm 3 Constructing the address to slice mapping table.
1: mapping← new table
2: for each addr do
3: for each slice do
4: write MSRs to set up monitoring LLC_LOOKUP event
5: end for
6: polling(addr) // see Listing 4.1
7: for each slice do
8: read MSRs to access LLC_LOOKUP event counter
9: end for

10: paddr← translate_address(addr)
11: find slice i that has the most lookups
12: insert (paddr, i) in mapping
13: end for

Listing 4.1 Memory polling function.
1: void polling ( uintptr_t addr ){
2: register int i asm ("eax");
3: register uintptr_t ptr asm ("ebx") = addr;
4: for(i=0; i< NB_LOOP ; i++){
5: clflush (( void *) ptr );
6: }
7: }
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address 10 000 times is enough to distinguish the correct slice from noise with-
out ambiguity, and to reproduce the experiment on different configurations.
The polling itself is carefully designed to avoid access to memory locations
other than the tested address (see Listing 4.1). To this end, most of the variables
are put in registers, and the only access to main memory is performed by the
clflush instruction that flushes the line in all cache hierarchies. The clflush
instruction causes a lookup in the last-level cache even when the line is not
present.

Table 4.2 shows the characteristics of the CPUs we tested. Scanning an
address per cache line, i.e., an address every 64B, takes time, but it is linear with
the memory size. Scanning 1GB of memory takes a bit less than 45 minutes.
We now estimate the storage cost of the mapping table. The lowest 6 bits of the
address are used to compute the offset in a line, hence we do not need to store
them. In practice, it is also not possible to address all the higher bits because
we are limited by the memory available in the machine. For a processor with
c slices, the slice is represented with dlog2(c)e bits. A configuration of, e.g.,
256GB (= 238) of memory and 8 cores can be represented as a table with an
index of 32 (= 38− 6) bits. Each table entry contains 3 bits identifying the slice
and an additional bit indicating whether the address has been probed or not.
The size of the table is thus 232 × 4 bits = 2GB.

Note that the attacker does not necessarily need the entire table to perform
an attack. Only the subset of addresses used in an attack is relevant. This
subset can be predefined by the attacker, e.g., by fixing the bits determining
the set. Alternatively, the subset can be determined dynamically during the
attack, and the attacker can query an external server to get the corresponding
slice numbers.

4.4 Building a compact addressing function

4.4.1 Problem statement

We aim at finding a function, as a compact form of the table. The function
takes n bits of a physical address as input parameters. In the remainder, we
note bi the bit i of the address. The function has an output of dlog2(c)e bits for
c slices. To simplify the expression and the reasoning, we express the function
as several Boolean functions, one per bit of output. We note oi(b63, . . . , b0) the
function that determines the bit i of the output.
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Table 4.2: Characteristics of the Intel CPUs used in our experimentations
(mobile and server ranges).

Name Model µ-arch Cores Mem
config_1 Xeon E5-2609 v2 Ivy Bridge 4 16GB
config_2 Xeon E5-2660 Sandy Bridge 8 64GB
config_3 Xeon E5-2650 Sandy Bridge 8 256GB
config_4 Xeon E5-2630 v3 Haswell 8 128GB
config_5 Core i3-2350M Sandy Bridge 2 4GB
config_6 Core i5-2520M Sandy Bridge 2 4GB
config_7 Core i5-3340M Ivy Bridge 2 8GB
config_8 Core i7-4810MQ Haswell 4 8GB
config_9 Xeon E5-2640 Sandy Bridge 6 64GB

Our problem is an instance of Boolean function minimization: our mapping
can be seen as a truth table, that can consequently be converted to a formula
in Disjunctive Normal Form (DNF). However, the minimization problem is
known as NP-hard, and is thus computationally difficult [CH11].

Existing work on Boolean function minimization does not seem suitable to
reconstruct the function from this table. Exact minimization algorithms like
Karnaugh mapping or Quine-McCluskey have an exponential complexity in
number of input bits. In practice those are limited to 8 bits of input, which is
not enough to compute a complete function. The standard tool for dealing with
a larger number of inputs is Espresso, which relies on non-optimal heuristics.
However, it does not seem suited to handle truth tables of hundreds of millions
of lines in a reasonable time.2 It also gives results in DNF, which will not
express the function compactly if it contains logical gates other than AND or
OR. Indeed, we provided lines for a subset of the address space to Espresso,
but the functions obtained were complex and we did not succeed to generalize
them manually. They were generated from a subset, thus they are only true
for that subset and do not apply to the whole address space.

We thus need hints on the expression of the function to build a compact
addressing function. We did this by a first manual reconstruction, then fol-
lowed by a generalization. We have done this work for processors with 2n

cores, which we consider in the remainder of the section.

2We let Espresso running for more than 2000 hours without any results on a table of more
than 100.000.000 lines, which only represents the sixth of the 64GB of memory of the machine.
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4.4.2 Manually reconstructing the function for Xeon E5-2609 v2

We now explain how one can manually reverse-engineer a complex addressing
function: this is indeed how we started for a Xeon E5-2609 v2 (config_1 in
Table 4.2). In Section 4.4.3, we will explain how this can be automated and
generalized to any processor model with 2n cores. The following generalization
removes the need to perform manual reconstruction for each setup.

We manually examined the table to search patterns and see if we can de-
duce relations between the bits and the slices. We performed regular accesses
to addresses which were calculated to fix every bit but the ones we want to
observe, e.g., regular accesses every 26 bytes to observe address bits b11 . . . b6.
For bits b11 . . . b6, we can observe addresses in 4kB pages. For the higher bits
(b12 and above) we need contiguous physical addresses in a bigger range to
fix more bits. This can be done using a custom driver [HWH13], but for im-
plementation convenience we used 1GB pages. Across the table, we observed
patterns in the slice number, such as the sequences (0,1,2,3), (1,0,3,2), (2,3,0,1),
and (3,2,1,0). These patterns are associated with the XOR operation of the
input bits, which made the manual reconstruction of the function easier.

We obtained these two binary functions:

o0(b63, . . . , b0) = b6 ⊕ b10 ⊕ b12 ⊕ b14 ⊕ b16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b22

⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32 ⊕ b33.

o1(b63, . . . , b0) = b7 ⊕ b11 ⊕ b13 ⊕ b15 ⊕ b17 ⊕ b19 ⊕ b20 ⊕ b21 ⊕ b22

⊕ b23 ⊕ b24 ⊕ b26 ⊕ b28 ⊕ b29 ⊕ b31 ⊕ b33 ⊕ b34.

We confirmed the correctness of the obtained functions by comparing the
output of the slice calculated with the function against the entire mapping
table obtained with the MSRs.

4.4.3 Reconstructing the function automatically

Our manual reconstruction shows that each output bit oi(b63, . . . , b0) can be
expressed as a series of XORs of the bits of the physical address. Hund et al.
[HWH13] manually reconstructed a mapping function of the same form, albeit
a different one. In the remainder, we thus hypothesize, and subsequently
validate the hypothesis, that the function has the same form for all processors
that have 2n cores.
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Table 4.3: Functions obtained for the Xeon and Core processors with 2, 4 and 8
cores. Gray cells indicate that a machine with more memory would be needed
to determine the remaining bits.

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

The fact that the function only relies on XORs makes its reconstruction a
very constrained problem. For each Boolean function oi(b63, . . . , b0), we can
analyze the implication of the address bits independently from each other,
in order to access only a handful of physical addresses. Our algorithm finds
two addresses that only differ by one bit, finds their respective slices using
performance counters, and compares the output. If the output is the same, it
means that the bit is not part of the function. Conversely, if the output differs,
it means that the bit is part of the function. Note that this only works for a
XOR function. This algorithm is linear in number of bits.

To implement the algorithm, we use huge pages of 1GB on Xeon proces-
sors (resp. 2MB on Core processors), which is contiguous physical memory
naturally aligned on the huge page size. The offset in a huge page is 30-bit
(resp. 21-bit) long, therefore the lowest 30 bits (resp. 21 bits) in virtual memory
will be the same as in physical memory. We thus calculate offsets in the page
that will result in physical addresses differing by a bit, without converting
virtual addresses to physical addresses. To discover the remaining bits, we
allocate several huge pages, and convert their base virtual address to physical
address to find those that differ by one bit. In order to do this, we allocate as
many huge pages as possible.

To evaluate the algorithm, we retrieved the function for all models from
config_1 to config_8 of Table 4.2. Results are summarized in Table 4.3. The
functions are given for the machine that has the most memory, to cover as
many bits as possible. We remark that the functions, for a given number
of cores, are identical among all processors, for all ranges of products and
microarchitectures. Using the aforementioned algorithm, we obtained those
functions quickly (from a few seconds to five minutes in the worst cases). We
also remark that we have in total 3 functions o0, o1 and o2 for all processors,
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and that the functions used only depend on the number of cores, regardless of
the microarchitecture or the product range. While in retrospective this seems
to be the most straightforward solution to be adopted by Intel, this was far
from evident at the beginning of our investigations. Now that the functions
are known, an attacker can use them to perform his attack without any reverse
engineering.

4.5 Applications

Reverse-engineering the complex addressing function is orthogonal to per-
forming cache attacks. Indeed, knowing the correct addressing function can
help any fine-grained attack on the last-level cache. Cache attacks rely on the
attacker evicting data from a cache level. This can be done by the clflush
instruction. However, it requires shared memory in a covert or side channel
scenario, and it is not available in all environments. We thus focus on building
attacks without this instruction. To perform an attack on the last-level cache,
the attacker needs to create an eviction set, and to subsequently access the
data to evict the lines that are currently cached.

There are two methods to create an eviction set: a dynamic approach based
on a timing attack that does not require the function, and a static approach
that uses the function to compute addresses that belong to an eviction set.
Building a static eviction set has the advantage of being faster than building a
dynamic one. Indeed, the function is already known, whereas the dynamic
set has to be computed for each execution. Moreover, in [GMM15] we show
that dynamically computing a set to achieve an optimal eviction is a slow
operation.

Several publications already used a static approach to perform cache at-
tacks. Hund et al. [HWH13] defeated KASLR. Similarly, Irazoqui et al. [IES15b]
performed a side channel on a Nehalem CPU that does not use complex ad-
dressing. Yet, their attack requires understanding the slice selection, and thus
the complex addressing function for more recent CPUs. We now detail two
new applications: the construction of a covert channel, and the implementation
of the Rowhammer vulnerability in JavaScript.

4.5.1 Building a faster covert channel

To verify empirically the correctness of the function, we build a covert channel.
This covert channel uses principles similar to C5 (see Chapter 3). It is based
on the fact that the last-level cache is inclusive, i.e., when a line is evicted from
the last-level cache, it is also evicted from the L1 and L2. With this property, a
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Figure 4.1: Receiving interleaved ‘0’s and ‘1’s to test the raw bitrate of the
covert channel.

program on any core can evict a line from the private cache of another core.
This property can then be used by two programs to communicate. C5 bypasses
the complex addressing issue by evicting the whole last-level cache. However,
the last-level cache typically stores a few megabytes, and thus the sender needs
to access a buffer that is the size of (or bigger than) the last-level cache to evict
it entirely. Having the complex addressing function, the sender targets a set in
a slice, and thus evicts a cache line with much fewer accesses. For example,
in the case of a 12-way associative last-level cache, assuming a pseudo-LRU
replacement policy, the sender needs approximately only 12 accesses to evict
the whole set.

In this covert channel, the sender creates a set of physical addresses that
map to the same set, with a static approach using the function and the transla-
tion from virtual to physical addresses. It repeatedly accesses these addresses
to send a ‘1’, and does nothing to send a ‘0’. The receiver has a set of physical
addresses that map to the same last-level cache set as the sender’s. When the
sender sends a ‘1’, it evicts the data of the receiver from the last-level cache,
and thus from its private L1 cache. The receiver consequently observes a slow
access to its set.
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We conduct an experiment on config_1 to estimate the bitrate of this covert
channel, in which the sender transmits interleaved ‘0’s and ‘1’s. Figure 4.1
illustrates the measurements performed by the receiver. According to the
measurements, 29 bits can be transmitted over a period of 130 microseconds,
leading to a bitrate of approximately 223 kilobits per second. This is a speedup
of around 300 times compared to C5. A more thorough evaluation is required
to evaluate the error rate of this covert channel.

4.5.2 Exploiting the Rowhammer vulnerability in JavaScript

We also apply our findings to exploit Rowhammer [KNQ14] in restrictive
environments.3 Rowhammer is not a typical cache attack, since it exploits faulty
DRAM to flip bits. This vulnerability has already been exploited [Sea15a] to
gain root privileges and to evade a sandbox, showing the severity of faulting
single bits for security. However, the vulnerability is triggered by frequent
accesses to the DRAM, i.e., non-cached accesses. The original exploits used
the clflush instruction, that is not available in, e.g., JavaScript. An attack that
seeks to avoid using the clflush instruction thus also needs to compute a set
of addresses that evict the address that needs to be flushed.

Yet, the bit flips only occur when numerous accesses are performed between
two consecutive refreshes of the row buffer. The challenge is thus to perform
accesses that are solely non-cached quickly enough to induce bit flips. The
computed eviction set must therefore be minimal in order to reduce the number
of memory accesses.

First, to build a proof-of-concept in native environment without the clflush
instruction, we computed eviction set using a static approach, with the com-
plex addressing function. We show that it is possible to trigger bit flips this
way, albeit significantly less than with the clflush instruction (see Figure 4.2).
This makes the attack technique independent of the specific CPU microar-
chitecture, programming language and runtime environment, as long as the
stream of memory accesses is executed quickly enough. The JavaScript proof-
of-concept also uses a static approach, accompanied by a tool that spies Firefox
memory mappings. The final attack in JavaScript uses a dynamic approach
to compute eviction sets, as the attack cannot rely on the virtual to physical
address translation.

3This work is the result of a collaboration with Daniel Gruss and Stefan Mangard. It is
described in more detail in an article [GBM15] of which I am a co-author.
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Figure 4.2: Number of bit flips as a function of the DRAM refresh interval,
within 15 minutes, in different configurations: (1) in native environment with
clflush, (2) in native environment with an eviction set (without clflush), (3)
in JavaScript (from [GMM15]).

4.6 Discussion

4.6.1 Dealing with unknown physical addresses

The translation from virtual to physical addresses is unknown to the attacker in
most practical setups, like in virtualized or sandboxed environments. We now
describe a possible extension to the covert channel described in Section 4.5.1
to avoid using this address translation.

Similarly to the work of Liu et al. [LYG+15] and Irazoqui et al. [IES15b],
the sender and the receiver both use huge pages. Cache index bits are thus the
same for virtual and physical addresses. Using the function only on the bits in
the offset of the huge page, the sender is able to create a set of addresses that
map to the same set, in the same slice. As some bits of the physical address
are unknown, he does not know the precise slice. However, he does know that
these addresses are part of a single set, in a single slice.

The receiver now performs the same operation. The receiver only knows the
index set to target, but he does not know in which of then slices. He thus creates
n sets of addresses, each one being in a different slice. He then continuously
accesses each of these sets. The receiver will only receive transmitted bits in a
single set: from now on, he can target a single set. The sender and the receiver
are effectively accessing the same last-level cache set in the same slice.
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Figure 4.3: Median number of CPU cycles to access a reference address, after
accessing N addresses in the same set, which is calculated using [HWH13]
and our function. Results on 100 runs, on config_1 (Ivy Bridge with a 20-way
associative LLC).

4.6.2 Comparison to previously retrieved functions

We observe that the functions we obtained differ from the ones obtained by
Hund et al. [HWH13], and Seaborn [Sea15b]. In particular, Hund et al. found
that the functions only use the tag bits (bits b17 to b31). We argue that their
method does not infer the presence of the bits used to compute the set (bits
b6 to b16). Indeed, as they searched for colliding addresses, they obtained
addresses that belong to the same slice and the same set. As in this case the
set is directly mapped to the bits b6 to b16, addresses that collide have the same
values for these bits. Therefore, if the function that computes the slice uses
the bits b6 to b16, the method of [HWH13] is not able to retrieve them. On the
contrary, our method retrieves the slices regardless of the sets, leading to a
complete function.

We also observe that the function we retrieved for 2-core CPUs is the
same as the one retrieved in [Sea15b], albeit a more complete one. However,
the function we retrieve for 4-core CPUs does not use the same bits as the
one retrieved in [HWH13]. We argue that we do have access to the ground
truth (i.e., the slices accessed), whereas they rely on indirect measurements.
Several correct functions can however be retrieved, as the slices can be labeled
differently from one work to another.
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To compare our function against [HWH13], we performed the following
experiment. Using the retrieved addressing function, we constructed a set
of physical addresses that are supposed to map the same set (thus the same
slice). We accessed N different addresses from this set. We then measured the
access time to the first reference address accessed, to see if it was evicted from
the cache. Figure 4.3 shows the median number of CPU cycles to access the
reference address for different values of N , for 100 runs. The function that is
the most precise should have a memory access time spike the closest toN = 20
(which is the cache associativity). We observe that both functions have a spike
slightly after N = 20. We note that the spike occurs for a value N > 20 and
not exactly N = 20: it is most likely due to the fact that the replacement policy
on Ivy Bridge is not strictly LRU, but a variant called Quad-Age LRU [JGSW].
In practice, both functions are able to evict a cache line with few accesses.
However, our function seems more precise than the one of [HWH13], leading
to fewer accesses to evict a cache line (N = 23 accesses for our function,N = 24
for [HWH13]), and a sharper transition. This also confirms the correctness of
our function.

4.7 Related work

Hardware performance counters are traditionally used for performance mon-
itoring. They have also been used in a few security scenarios. In defensive
cases, they are used to detect an anomalous behavior such as malware de-
tection [DMS+13], integrity checking of programs [MZK11], control flow in-
tegrity [XLCZ12], and binary analysis [WHF+12]. Uhsadel et al. [UGV08]
used performance counters in offensive cases to profile the cache and derive a
side-channel attack against AES. However, performance counters can only be
read with high privileges, i.e., in kernel-mode, or being root in user-mode if a
driver is already loaded. Contrary to this attack, we use performance counters
to infer hardware properties offline, and our subsequent cache attack does not
need high privileges.

Liu et al. [LYG+15], and Oren et al. [OKSK15] have extended Prime+Probe
attacks to the last-level cache. Even if we share the same motivation, i.e.,
performing cache attacks on recent processors without any shared memory,
our approach is different. Moreover, our work has a broader application,
as it contributes to a better understanding of the undocumented complex
addressing function, possibly leading to other types of attacks.

Other work is directly interested in retrieving the function, and several
attempts have been made to reverse-engineer it. Hund et al. [HWH13] per-
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formed a manual reverse engineering for a 4-core Sandy Bridge CPU. Seaborn
[Sea15b] continued the work of [HWH13], with a 2-core Sandy Bridge CPU.
Both work use colliding addresses, i.e., indirect measurements, to derive the func-
tion. Our method, using performance counters, performs direct measurements,
i.e., retrieves the exact slice for each access. We thus show that the functions
in [HWH13, Sea15b] are partially incorrect, even though they are sufficient to
be used in practice. We also derive a function for all processors with 2n cores,
automating reverse engineering. Different from these two approaches, we also
have tested our method on a large variety of processors. Concurrently to our
work, Irazoqui et al. [IES15c] worked on automating this reverse engineering,
and evaluated their work on several processors. However, their method is
similar to Hund et al. [HWH13], and thus suffers from the same limitations.

4.8 Conclusions and perspectives

In this chapter, we introduced a novel method to reverse-engineer Intel’s
undocumented complex addressing, using hardware performance counters.
We showed that this method is able to retrieve more bits in the function than
previous work, that used a timing attack to recover the function. We evaluated
our approach on a wide range of processors, encompassing Sandy Bridge,
Ivy Bridge and Haswell microarchitectures, and different numbers of cores.
We showed that in the case of CPUs with 2n cores, the functions are identical
across microarchitectures, and only depend on the number of cores.

The reversed functions can be exploited by an attacker to target specific sets
in the last-level cache. We built a covert channel that does not rely on shared
memory, and target the cache sets, thus being more fine-grained and greatly
improving C5 (see Chapter 3). We also directly applied our findings to exploit
the Rowhammer vulnerability in a JavaScript environment, where the clflush
instruction is not available. We conclude that current countermeasures that
disable shared memory or the clflush instruction in sensitive environments
are not effective.

Our work expands the understanding of these complex and only partially
documented pieces of hardware that are modern processors. We foresee sev-
eral directions for future work. First, a compact representation for CPUs with
a number of cores different from 2n would generalize our findings. Second, we
believe that new attacks could be made possible by knowing the complex ad-
dressing of a cache. Finally, we believe that the understanding of the complex
addressing function enables the development of countermeasures to cache
attacks.
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5.1 Introduction

GPUs benefit from a great interest from the scientific community. Indeed,
GPGPU allows performing massively parallel general purpose computations
by leveraging the inherent parallelism of GPUs. The applications are diverse,
such as finance [BSS10, KP05, TB10], encryption [gE, Yam07], and Bitcoin
mining [Kol]. GPUs have recently been offered by several cloud computing
providers to supply on demand and pay-per-use of otherwise very expensive
hardware. Additionally, graphic-intensive applications using virtualization
for rendering are emerging. Low-end devices such as tablets can be used to
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play video games on cloud gaming platforms. Regular desktops or laptops can
be used to perform tasks such as movie editing or computer-aided design on
virtualized workstations.

GPUs have been designed to provide maximum performance and through-
put. However, they have not been designed for concurrent accesses, i.e., to
support virtualization or simultaneous users. It is known that GPU buffers
are not zeroed when allocated [Ker12]. This raises confidentiality issues be-
tween different programs or different users when GPUs are used natively on
personal computers [DLV13]. Clearly, the attack surface is larger in a cloud en-
vironment when several users exploit the same GPU one after another or even
simultaneously. Yet, such a setup has not been previously studied. Moreover,
identifying possible information leakage in such environments is an intricate
problem due to two layers of obscurity: the cloud provider as well as the GPU.

In this chapter, we study information leakage on GPUs and evaluate its
possible impact on GPU clouds. We systematically experiment and analyze
the behavior of GPU global memory in non-virtualized and virtualized en-
vironments. In addition to previous work [BKS13, DLV13], we show how an
attacker can retrieve information from GPU global memory using a variety of
drivers and frameworks. Furthermore, we find that in the rare cases where
GPU global memory is zeroed, it is only as a side effect of Error Correction
Codes (ECC) and not for security reasons. We also propose a method to re-
trieve memory in a driver agnostic way that bypasses some memory cleanup
measures a conscious programmer may have implemented.

Section 5.2 details our attacker model and Section 5.3 the security impact of
the different GPU virtualization techniques. We detail our setup in Section 5.4.
We show two techniques to access the memory: leveraging the GPGPU runtime
(Section 5.5), and exploiting the PCI configuration space (Section 5.6). We
discuss countermeasures in Section 5.7 and related work in Section 5.8. We
conclude and give perspective on future work in Section 5.9.

5.2 Attacker model

The objective of the attacker is to learn some information about the victim.
This can occur directly by retrieving data owned by the victim in the GPU
memory, or indirectly through side channels. We assume that the attacker has
full control over a virtual machine. In our case, the virtual machine has access
to a virtualized GPU. We consider two cases. First, the serial attacker has access
to the same GPU as the one of the victim, before or after the victim. He will
seek for traces of data previously left in different GPU memory levels. The
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experiments in the remainder of this chapter consider this particular attacker.
Second, the parallel attacker and the victim are running simultaneously on the
same virtualized GPU. He may also have direct access to memory used by the
victim, if memory management is not properly implemented. However, as the
parallel attacker shares the device with the victim, he may also abuse some side
channels on the GPU, possibly allowing him to recover useful information.

The serial attacker can have access to the GPU memory in two different
ways. In our experiments, we outline two types of attacks that require different
capabilities for the attacker and differ in their results:

– In the first scenario, the attacker accesses portions of the GPU memory
through a GPGPU runtime. He does not need root privileges since he
uses perfectly legitimate calls to the CUDA runtime API.

– In the second scenario, the attacker accesses the GPU memory through
the PCI configuration space. We assume the attacker has root privileges,
either because he controls the machine or because he compromised it
by exploiting a known privilege escalation. This attack assumes a more
powerful attacker, but gives a complete snapshot of the GPU memory.

5.3 Impact of the GPU virtualization techniques on
security

We presented different solutions to virtualize I/O devices in Section 2.2.3,
which apply to GPUs. We now review their impact on security.

5.3.1 Emulation

Emulation is conceptually the safest virtualization technique. It is the one
that brings the most interposition, i.e., the hypervisor is able to inspect, and
possibly modify or deny, all guests calls. Emulation also implements a narrow
API, which limits the attack surface. Emulation often does not rely on actual
hardware. Therefore, information leakage – or side channels – that is due to
hardware sharing is effectively eliminated.

5.3.2 Split driver model

The split driver model is prone to information leakage and side channels
enabled by shared hardware. Furthermore, the backend driver has to ensure
the isolation of guests that share the same hardware. GPU drivers have not
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been designed with that goal in mind, therefore, the backend driver should
completely be redesigned to address this. From an isolation, interposition and
attack surface perspective, the split driver model is between emulation and
direct device assignment. The API exposed to the guest domain is limited,
which makes the split driver model a safe approach at first sight.

Nevertheless, if the backend driver runs on the privileged domain and not
in a separate isolated driver domain, the device driver is part of the Trusted
Computing Base (TCB), along with the hypervisor and the hardware. As such,
a compromise of the backend driver can lead to the compromise of the entire
system and break isolation between guest virtual machines. Reducing the
TCB to its minimum is a common method to improve security. One approach
is [Smo09], that breaks the monolithic Gallium 3D graphic driver to move a
portion of the code out of the privileged domain. More generally, reducing the
TCB is a daunting task given that the TCB of a virtualization platform is already
very large [CNZ+11]. Drivers are well-known to be a major source of operating
systems bugs [CYC+01]. GPU drivers are also very complex, require several
modules and have a large code base. In the case of NVIDIA drivers, code
cannot be inspected and verified since it is closed source. Like any complex
piece of software, GPU drivers can suffer from vulnerabilities, such as those
reported for NVIDIA drivers [CVE12a, CVE12b, CVE13a, CVE13b, CVE13c].

5.3.3 Direct device assignment

Direct device assignment gives direct access to a physical GPU, with a very
limited level of interposition. The PCI passthrough is managed by QEMU and
the IOMMU, that become two targets for attacks. The attack surface of the
IOMMU is large since it has to handle every calls to the hardware: Memory-
Mapped Input/Output (MMIO), Programmed Input/Output (PIO), DMA,
interrupts. Although a piece of hardware is generally known as more secure
than a piece of software, the IOMMU is prone to attacks [LLND10, WR11].
Side channels are of less importance because the GPU is not simultaneously
shared by two tenants, but information leakage can still occur given that it is
physical hardware that is shared across different sessions.

5.3.4 Direct device assignment with SR-IOV

Subsequently to our study, NVIDIA launched GPUs that handle virtualization
in hardware, called GRID. Amazon EC2 documents using GRID K520 boards
in two types of GPU instances [Amab]. The g2.2xlarge instance offers 1 GPU,
and the g2.8xlarge instance 4 GPUs [Amaa]. According to NVIDIA, the
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GRID K520 boards are composed of 2 GK104 GPUs [NVI], and support up
to 16 concurrent users. The g2.2xlarge instance thus most probably shares
the board with another instance. To the best of our knowledge, no study
has been conducted to assess the security of this setup. Because they are
designed for virtualization and for sharing, it is likely that they provide an
isolation mechanism that will prevent direct information leakage from a parallel
attacker. However, if memory cleaning is not properly implemented, it is the
same situation as direct device assignment for a serial attacker. Moreover,
performance and resource sharing are antagonistic to side channel resistance.
Therefore, we expect that indirect information leaks are possible.

Full emulation and split driver techniques have low maturity and per-
formance, and SR-IOV GPUs were not deployed at the time of our study.
Therefore, in the rest of this chapter, we focus on data leaks in virtualization
setups when GPUs are used in direct device assignment mode and in cloud
setups. This effectively restricts the attacker model to the serial attacker.

5.4 Experimental setup

In this section, we detail the experiments that we conducted during our study.
We consider the serial attacker. We organize our experiments according to two
main parameters: the degree of virtualization, and the method used to access
the GPU memory.

We pursue experiments using no virtualization, and using virtualization
with direct device assignment. We use a lab setup for both settings and a real
life cloud computing setup using Amazon. In our virtualized lab setup, we
test two hypervisors: KVM and Xen. For both of them, we used HVM virtual-
ization, with VT-d enabled. The administrative and guest virtual machines
run GNU/Linux. The cloud computing setup is an Amazon GPU instance
that uses Xen HVM virtualization with an NVIDIA Tesla GPU in direct device
assignment mode. The virtual machine also runs GNU/Linux.

We pursue experiments accessing the memory with different GPGPU
frameworks under different drivers (see Section 2.5.2). We also access the
memory with no framework through the PCI configuration space, in a driver
agnostic way. To that extent, we build a generic CUDA taint program and two
search programs, depending on the access method.
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Table 5.1: Overview of the attacks and results. The different actions between
taint and search are: (1) switch user; (2) soft reboot bare machine or VM; (3)
reset GPU using nvidia-smi utility; (4) kill VM and start another one; (5) hard
reboot machine. 3 indicates a leak, and 7 no successful leak. N/A means
that the attack is not applicable.

Actions between taint and search
Setup ECC 1 2 3 4 5
GPGPU runtime access

Native on 3 7 7 N/A 7

off 3 3 3 7

Virtualized on 3 7 7 7 7

off 3 3 3 3 7

Cloud on 3 7 7 N/Aa N/Aoff 3 3 3

PCI configuration space access

Native on N/Ab 7 7 N/A 7

off 3 3 7

Virtualized – N/Ab 7 7 7 7

Cloud – N/Ab 7 7 N/Aa N/A
aWe cannot guarantee that we end up in the same physical machine after releasing a virtual

machine in the cloud setup.
bThe access through PCI configuration space needs root privilege.
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1. Taint writes identifiable strings in the global memory of the GPU. It
uses the CUDA primitives cudaMalloc to allocate space on the global
memory, cudaMemcpy to copy data from host to device, and cudaFree
that frees memory on the device.

2. Search scans the global memory, searching for the strings written by taint.
The program that uses a GPGPU framework operates in the same way
as taint by allocating memory on the device. However, data is copied
from device to host before finally freeing memory. The other program
uses PCI configuration space.

We first execute taint, then search, with various actions between these two
executions. An information leakage occurred if search can retrieve data written
by taint. Table 5.1 summarizes our experiments and their results.

5.5 Accessing memory through GPGPU runtime

In this section, we detail our method and results to access the GPU memory
with CUDA and Gdev runtimes, in three environments: native, virtualized
and cloud.

5.5.1 Native environment

We conduct experiments similar to [BKS13, DLV13] with a Quadro Fermi
GPU that does not support ECC. We validate information leakage on two
frameworks: (i) using the runtime API on top of the CUDA runtime and the
NVIDIA driver and (ii) using the driver API on top of the Gdev runtime and the
Nouveau driver. We observed information leakage when users switch, when
there is a soft reboot and when the GPU is reset, i.e., in all cases between search
and taint except for the hard reboot. This indicates that the GPU maintains
data in memory as long as it is powered, i.e., anyone can retrieve data during
this time. The driver and framework do not impact memory leakage in this
setting.

We now consider a Tesla Kepler GPU which provides ECC for its memory.
We found that the Tesla GPU has two options that impact the behavior of
memory: the persistence mode, and ECC mode. Enabling persistence keeps the
driver loaded even when no application is accessing the GPU and minimizes
the driver load latency. When the Error Correction Code option is enabled, part
of the dedicated memory is used for ECC bits – this reduces the available
memory by 12.5%. ECC protects register files, L1/L2 caches, shared memory,
and DRAM [NVI10]. It takes effect after the next reboot, or device reset.
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Table 5.2: Information leakage with user switch between the execution of taint
and search, as function of ECC and persistence mode. Tested on a Tesla card in
a native environment. 3 indicates a leak, and 7 no successful leak.

ECC enabled ECC disabled
Persistence off 7 3

Persistence on 3 3

Table 5.2 shows in which cases we could observe information leakage with
a user switch on the Tesla Kepler GPU in a native environment. The only case
where we could not observe any information leakage is when ECC is enabled
and persistence is disabled. In this mode, the driver loads dynamically each
time a GPU application is executed. These experiments suggest that memory
cleaning is triggered by loading the driver when ECC is enabled. Furthermore,
memory is not zeroed with ECC and persistence disabled. This indicates that
memory zeroing in the ECC case is not implemented for security reasons but
only to properly support ECC mode.

In the case of a soft reboot of the machine or a reset of the GPU, the driver
is unloaded and reloaded independently of the persistence mode. There is no
information leakage between taint and search with ECC enabled in these cases.

5.5.2 Virtualized environment

Within a guest virtual machine, we observed information leakage when switch-
ing user between taint and search, which is the same behavior as in a native
environment. The soft reboot and the GPU reset are also giving different
results depending on ECC, showing information leakage when ECC is dis-
abled, and no leakage when ECC is enabled. Consistently with the native
environment, there was no information leakage after a hard reboot. Informa-
tion leakage on these setups threatens the confidentiality between users and
applications of the same guest virtual machine.

To investigate the role of the hypervisor, we are interested in knowing
whether a guest virtual machine can retrieve data in the GPU memory left by
a previous guest. For that matter, we create a guest virtual machine running
NVIDIA driver on Ubuntu, launch the taint program and then destroy the vir-
tual machine. Afterwards, we create another guest virtual machine and launch
the search program. We retrieved data on both Xen and KVM, revealing that
information has leaked. This result indicates a clear violation of the isolation
that the hypervisor must maintain between two guest virtual machines.
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5.5.3 Cloud environment

Within a guest virtual machine (called instance on Amazon EC2), we obtain the
same results as in the virtualized environment. Information leakage occurs
with ECC disabled when there is a user switch, after a soft reboot of the virtual
machine or a reset of the GPU.

In the default configuration of Amazon GPU instances, ECC is enabled
and persistence is disabled. In accordance with our previous experiments,
it means that GPU memory is cleaned, and it is supposed to prevent a user
from accessing the memory of previous users. However, a user that deacti-
vates ECC to have more memory available (or uses a virtual machine image
configured this way) may not be protected. Based on our observations, we
imagine a scenario where an attacker rents many instances and disables ECC –
or provides a custom image that disables ECC to numerous victims. Slaviero
et al. [SMA09] showed that it is possible to pollute the Amazon Machine Image
market with virtual machine images prepared by an attacker. The attacker
then waits for its victim to launch an instance where the ECC has been dis-
abled. When the victim releases the instance, the attacker tries to launch his
own instance on the same physical machine. While this is difficult, several
studies [RTSS09, VZRS15, XWW15] showed that it is possible to exploit and
influence virtual machine placement in Amazon. The attacker then runs the
search program to seek data in the GPU memory. We did not implement this
attack as we would have needed to rent numerous instances, without any
guarantee to retrieve the same physical machine after freeing one.

We therefore contacted Amazon security team, who mentioned that they
were already addressing such concerns in their pre-provisioning workflow, i.e.,
before allocating a new instance to a user. However, without further details on
how GPU memory is cleaned, there is no guarantee that Amazon performs this
correctly. In addition to this, in absence of formal industry recommendations,
we cannot exclude the existence of data leakage in other GPU cloud providers.

5.6 Accessing memory through PCI configuration
space

The access method that leverages GPGPU runtime has the disadvantage of
showing a partial view of the GPU memory, i.e., only what can be accessed via
the GPU MMU. In this section, we show a method to access the GPU memory
through the PCI configuration space, in a driver agnostic way.
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Figure 5.1: Accessing GPU memory via PCI configuration space: PRAMIN
mapping is used to access 1MB of the GPU physical memory, at address config-
ured in the register host_mem. We depict two consecutive steps in Algorithm 4
while loop.

5.6.1 Native environment

There are two methods to perform I/O operations between the CPU and
I/O devices: Memory-Mapped I/O (MMIO) and Port-mapped I/O (PIO).
The mapping of the device memory to the MMIO or PIO address space is
configured in the Base Address Registers (BAR), in the PCI configuration space.
The PCI configuration space is a set of registers that allow the configuration of
PCI devices. Reads and writes can be initiated by the legacy x86 I/O address
space, and memory-mapped I/O.

For NVIDIA GPUs, the BARs were obtained by a reverse-engineering work
of the open-source community. BAR0 contains MMIO registers, documented
in the Envytools git [Env]. The registers are architecture dependent, but the
area we are interested in remains the same for the architectures Tesla, Fermi
and Kepler. The mapping at 0x700000-0x7fffff, called PRAMIN, can be used
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Algorithm 4 Accessing memory through PRAMIN
pramin_offset← 0x700000
host_mem← 0x0
vram[size]
while i < size do

read(pramin_offset, vram[i], 0x100000)
host_mem← host_mem + 0x100000

end while

to access any part of video memory by its physical address. It is used as a 1MB
window to physical memory, and its base address can be set using the register
HOST_MEM at the address 0x1700. Figure 5.1 illustrates this access.

The access to video RAM is done through the following steps. First,
HOST_MEM is set to 0x0 and we read the PRAMIN BAR (1MB) – this way we
are able to read the first 1MB of the GPU physical memory. We then add 1MB
to HOST_MEM and re-read PRAMIN. This step is done again until the whole
memory has been accessed. Algorithm 4 summarizes these steps. We use the
read and write functions of Envytools [Env] (nva_wr32 and nva_rd8), that in
turn use libpciaccess to access the PCI configuration space.

Consistently with the experiments leveraging a GPGPU runtime, we ob-
serve information leakage after a soft reboot and a reset of the GPU. There is
no information leakage after a hard reboot. Changing user does not apply in
this setup since we need to be root to access the PCI configuration space.

Accessing memory through PCI configuration space gives a complete
snapshot of the GPU memory and bypasses the GPU MMU. The advantage of
such method is that it is capable of bypassing some memory cleanup measures
implemented at the applicative level. We discuss this aspect in Section 5.7.

5.6.2 Virtualized and cloud environment

Xen provides I/O virtualization by means of emulation for its HVM guests
with the QEMU device model (QEMU-dm) daemon that runs in Dom0. When
a guest is configured with a device in direct device assignment mode, QEMU-
dm reads its PCI configuration space register, and then replicates it in a virtual
PCI configuration space. QEMU-dm maps MMIO and PIO into the guest
memory space, and configures the IOMMU to grant the guest OS access to
these memory regions. However, QEMU-dm emulates some configuration
space registers like BAR for security reasons, so that an attacker cannot change
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the memory mapping of the device to another device attached to another
virtual machine, or to the hypervisor. Other registers like the command register
are not emulated.

Our access method leverages BAR registers to access the GPU memory.
We tested this method on our Xen setup and obtained garbage (series of
0xffff values), confirming that the access to the registers is emulated, which
prevented us from effectively accessing the memory. The results are the same
for Amazon GPU instances. These setups are then showing no information
leakage. To circumvent the protection of BAR registers, an attacker may try to
attack the virtualization mechanisms themselves.

5.7 Countermeasures

We divide the possible countermeasures in three categories: changes in existing
runtimes, steps that can be taken by cloud providers, and those that can already
be initiated by a user using only calls to existing APIs.

5.7.1 GPGPU runtimes

Di Pietro et al. [DLV13] suggested an approach to be implemented in runtimes.
Their solution is to zero-fill buffers at allocation time, as it is done when an
operating system allocates a new physical page of memory to a process. This
solution targets an attacker that uses GPGPU runtime to launch his attack,
however, it does not protect from an attacker who accesses memory through
PCI configuration space, since he will not allocate memory. In this case, it
would be better to clear memory at deallocation time. In both cases, zero-filling
buffers entails performance issues as the memory bandwidth is generally a
bottleneck for GPGPU applications. Di Pietro et al. assessed the impact of the
cudaMemset function that is used for zeroing buffers. The overhead turns out
to be linearly proportional to the buffer size.

5.7.2 Hypervisors and cloud providers

Cloud providers can already take measures to protect their customers. The
necessary steps before handing an instance to a customer include cleanup of
the GPU memory. This is the approach that appears to be taken by Amazon,
which seems to implement proper memory cleaning. This approach should
also be implemented in hypervisors. Although this would not eliminate attacks
within a virtual machine, a pre-provisioning approach effectively eliminates
attacks across virtual machines with no overhead for customers.
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5.7.3 Defensive programming

In the absence of the two types of countermeasures above, a security-conscious
programmer that writes his own programs and accepts a performance penalty
can clear the buffer before freeing memory with a function such as cudaMemset.
If the end-user can not modify the program, he should erase the GPU memory
when finishing an execution on a GPU. This countermeasure seems trivial,
nevertheless its practical implementation can be difficult due to the compli-
cated memory hierarchy present in GPUs (e.g., access mechanisms depend on
the type of memory). A standalone CUDA program that cleans the memory
would allocate the maximum amount of memory, and then overwrite it (e.g.,
with zeros). However, this solution relies on the CUDA memory manager,
which does not guarantee the allocation of the whole memory. Portions of
memory risk not to be properly erased because of fragmentation issues. We
built an experiment to illustrate this. We run a first CUDA program for some
time, then we stop it to run a second CUDA program that cleans the memory.
We finally dump the memory via PRAMIN to access the whole memory. We
recovered a portion of the memory that was not cleaned by the second CUDA
program, demonstrating clear limitations of this countermeasure.

A practical solution for NVIDIA Tesla GPUs that benefit from ECC memory
is to enable ECC and reload the driver, or to reset the GPU when ECC is enabled.
As we saw in our experiments Section 5.5.1, these sequences of actions clear
the memory.

5.8 Related work

Using the CUDA framework, Di Pietro et al. [DLV13] showed that GPU ar-
chitectures are vulnerable to information leakage, mainly due to memory
isolation issues. The leakage affects different memory spaces in GPU: global
memory, shared memory, and registers. Di Pietro et al. also showed that
current implementations of AES cipher that leverage GPUs allow recovering
both plaintext and encryption key in GPU global memory. Bress et al. [BKS13]
considered using these vulnerabilities to perform forensic investigations. Nev-
ertheless, they noted that we cannot guarantee that calls to the CUDA API do
not modify the memory. These two articles began to pave the way of GPU
security. However, they did not evaluate information leakage by GPUs in the
context of virtualization that is characteristic of cloud computing. In contrast,
we analyzed several approaches to access the GPU memory, experimenting
with different drivers and GPGPU runtimes, as well as the PCI configuration
space. We also extended these findings to virtualized environments.
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Subsequent work of Lee et al. [LKKK14] showed further the applicability
of this type of information leakage by recovering textures rendered by the
GPU for web browsers. This attack allows inferring which web pages are
visited by a victim. Danisevskis et al. [DPS13] showed that mobile GPUs,
which are becoming increasingly more common, and in particular their DMA
capabilities, can also be abused for malware delivery.

5.9 Conclusions and perspectives

In this chapter, we evaluated the confidentiality issues that are caused by the
recent advent of GPU virtualization. Our experiments in native and virtual-
ized environments showed that the driver, operating system, hypervisor and
the GPU card itself do not implement any security related memory cleanup
measure. As a result, we observed information leakage from one user to
another, and in particular from one virtual machine to another in a virtual-
ized environment. Amazon EC2 seems to implement proper GPU memory
cleaning at the provisioning of an instance; we could thus not confirm any
information leakage from one Amazon instance to another. However, because
of the general lack of GPU memory zeroing, we cannot generally exclude the
existence of data leakage in cloud computing environments.

The rise of GPGPU increases the attack surface and urges programmers
and industry to handle GPU memory with the same care as main memory. For
this matter, industry should include GPU memory cleaning in its best practices.
We provided a set of recommendations for proper memory cleanup at the
various layers involved in GPU virtualization (application, driver, hypervisor).

The most recent trend in GPU virtualization is the shift from sequential
sharing of a GPU card to simultaneous sharing between several tenants. In-
deed, NVIDIA launched a new series of GPUs called GRID that handle virtu-
alization in hardware with a dedicated hypervisor. In this context, memory
isolation is even more challenging, and new issues arise such as covert and
side channels. This effectively allows the other attacker model we described
in Section 5.2, i.e., the parallel attacker. In context of native environments, inte-
grated GPUs are another unexplored research topic. Being manufactured on
the same die as the CPU, they must fit on a smaller surface than a discrete GPU
and are thus less efficient. Moreover, they do not have any dedicated memory
and therefore they use the system memory. Yet, the latest range of integrated
GPUs increased in performance, and they are now much more widespread.
The consequences of this integration to the CPU in terms of security will be
explored in a future work.
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Information leakage due to shared hardware has recently gained a new
impetus with the appearance of cloud computing environments. Indeed, these
environments heavily use virtualization to co-locate several virtual machines,
that can be owned by different customers, on the same physical machine. This
thesis focuses on attacks due to memory isolation issues as well as covert
and side channels performed at the microarchitectural level. Indeed, main
memory and some microarchitectural elements are shared between virtual
machines and accessible without physical access. However, these attacks are
highly dependent on the hardware, which evolves constantly. Our work was
thus motivated by the following question: How do the recent evolutions impact
information leakage due to hardware sharing?

6.1 Contributions

In this thesis, we explored the impact of evolutions in recent hardware in
terms of information leakage on shared hardware and applied our findings to
virtualized environments.
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Exploiting hardware features to build a low-requirement covert channel
Cross-core cache attacks target the last-level cache that is shared by all CPU
cores. Previous attacks on the last-level cache relied on shared memory in
order to evict cache lines. However, disabling shared memory is sufficient to
circumvent these attacks, and this countermeasure is already in production
in some cloud environments. We demonstrated a cross-core covert channel
without using any shared memory, exploiting the shared and inclusive prop-
erties of the last-level cache. We evaluated this covert channel in native and
virtualized environments.

Reverse-engineering cache internals to improve attacks The function that
maps a physical address to a last-level cache slice is undocumented on Intel
CPUs. This renders attacks either slow, difficult or even impossible to perform,
because of the loss of precision in the cache collisions. We built an automatic
and generic method for reverse-engineering the complex addressing func-
tion. We evaluated our method and retrieved the function for a wide range
of processors, encompassing different microarchitectures and different num-
bers of cores. We demonstrated the broad applicability of these findings by
accelerating our cache covert channel and adapting Rowhammer, a DRAM
vulnerability, in sandboxed JavaScript.

Investigating setups causing information leakage on GPU memory GPUs
have been designed to provide maximum performance. They have not been
designed with security in mind, nor to support concurrent access. Yet, they
are increasingly used in cloud computing setups. We documented the security
implications of the different GPU virtualization techniques. We systematically
experimented and analyzed the behavior of GPU global memory in the case
of direct device assignment. We found information leakage in scenarios such
as an attacker launching a virtual machine after a victim’s virtual machine
using the same GPU. With these results, we clearly underlined bypasses of the
isolation mechanisms of virtualization. We proposed countermeasures to be
implemented by cloud providers and end users.

6.2 Future directions

Hardware is in constant evolution, requiring a continuous effort from both
attacks and defenses to accommodate to these changes. The subjects explored
in this thesis and our results open new perspectives in this domain and can be
further developed in the following directions.
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6.2.1 Attack techniques

Exploiting shared caches in new attacks A shared cache is one of the con-
ditions that render cross-core attacks possible, as we showed in Chapter 3. We
envision three more issues in this direction. First, in some processors the cache
is not only shared by the CPU cores, but also with the integrated GPU, when
available. With advances in GPU malware, it will be necessary to investigate
the possibility of covert communication between the CPU and the integrated
GPU through this shared cache. Second, in some Haswell and Broadwell
CPUs, another level of cache can be found: the L4 cache. It is an eDRAM die
that can be used by the integrated GPU and the CPU, and is also shared across
cores. The CPU uses it as a victim cache, i.e., a line evicted from L3 will go
to L4 before being evicted from the whole hierarchy. This change in cache
design creates opportunities to reevaluate current cache attacks by taking into
account this new level, and to investigate possibilities of new cache attacks.
Third, an interesting direction would be to examine non-x86 systems, e.g.,
ARM. Indeed, ARM processors are now massively used in ubiquitous devices
such as smartphones. A side channel has already been demonstrated on the
private L1 cache [SP13], however not yet on the shared L2. As this cache level
is exclusive for data, current attack techniques are not directly applicable, and
exploiting exclusive caches remains a challenge.

New GPU architectures Subsequently to our study on information leakage
on GPU memory in Chapter 5, NVIDIA launched new GPUs that support
virtualization in hardware, now adopted by Amazon EC2. As these GPUs
support concurrent users, we expect that indirect information leakage such as
covert and side channels will be possible.

6.2.2 Defense techniques

Our work on cache attacks in Chapter 3 and 4 demonstrates that current
countermeasures that disable shared memory in virtualized environments
and the clflush instruction in sandboxes are not sufficient. Indeed, the root
causes of interferences between cores do not lie in the shared memory or the
clflush instruction, but rather in the inclusive and shared cache. As these
two features are key elements in today’s cache performance, they are likely to
stay. Adequate countermeasures must thus take them into account. Proposed
countermeasures that are focused on the L1 cache are not applicable to the
last-level cache, for performance reasons. For instance, countermeasures that
flush the cache periodically to induce noise would in practice flush all the
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cache hierarchy if applied to the last-level cache, due to its inclusive property.
Moreover, the recent advances in cache attacks are led by advances in perfor-
mance. Finding efficient countermeasures that have a low performance impact
is thus a challenge, however it is a necessity for their adoption.

Our work on the reverse engineering of the last-level cache addressing
function in Chapter 4 opens a perspective for a more fine-grained page coloring
system at the software level. Indeed, having the addressing function allows
a defense mechanism to target and isolate sets from different programs or
virtual machines more precisely, thus limiting the impact on performance.

Additionally, our usage of hardware performance counters in Chapter 4
can be extended to detect cache attacks in order to later stop them without
causing a loss of performance to the whole system. Indeed, cache attacks
incur a significant number of cache misses, that can be monitored by perfor-
mance counters. A thorough evaluation needs to be conducted to measure the
efficiency of this system.

6.2.3 Expanding knowledge of CPU internals

For both attacks and defense, it is necessary to understand in detail the internals
of increasingly complex CPUs. Their usage is extensively documented by
vendors, however some performance-critical parts like addressing functions
and replacement policies remain undocumented, seemingly to keep some
advantage in the performance race.

Following the reverse-engineering work in Chapter 4, we foresee another
direct application. The Ivy Bridge microarchitecture introduced another un-
documented addressing function, that maps a physical address to a DRAM
channel. Additionally, Xeon processors can monitor events associated to each
DRAM channel. Using the same technique as with the events associated to
each slice would retrieve the addressing function of DRAM channels.

More generally, hardware performance counters can monitor plenty of
hardware events, and can be of a great help to understand the series of events
happening at the hardware level. Indeed, a useful tool would be an accurate
CPU simulator. CPU simulators are currently used by the research community
interested in hardware performance, to benchmark and compare their respec-
tive contributions. However, these simulators currently also suffer from the
lack of documentation by vendors. They are thus not reliable when looking at
some components in detail, e.g., for a security analysis that needs to be accurate
relatively to real-world hardware. Continuing this reverse-engineering effort
is helpful for the research community at large, beyond the security community.
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Résumé en français

A.1 Introduction

A.1.1 Contexte

Les environnements cloud ont été introduits lors de cette dernière décennie
et ont gagné en popularité depuis. Ils apportent aux clients, particuliers
et entreprises, des solutions pour le calcul et le stockage dans des centres
dédiés. Pour les clients, le bénéfice est la simplicité : les mêmes services
s’exécutent sur différentes plateformes physiques, sans avoir à considérer les
spécificités du matériel. Cela décharge également les besoins de gestion de
l’infrastructure. Pour les fournisseurs de service, le bénéfice est le rapport
coût-efficacité: plusieurs machines virtuelles, qui peuvent être possédées par
différents clients, tournent sur la même machine physique. Le cloud se base
énormément sur la virtualisation, qui consiste en le découplage des services
logiciels par rapport au matériel. Le partage matériel est un aspect central des
environnements cloud. Entre autres, deux importantes pièces matérielles sont
partagées aujourd’hui : le CPU et le GPU. Le matériel partagé entre différents
clients cause des menaces de fuites d’information. En particulier, le CPU
est accédé de manière concurrente par différents utilisateurs, et la mémoire
cache des CPUs est énormément partagée. Cela mène à des canaux cachés
(covert channels) et des canaux auxiliaires (side channels). Le GPU est partagé
sur le temps, c’est à dire que deux utilisateurs ne peuvent pas l’utiliser au
même moment, mais ils peuvent l’utiliser les uns après les autres. L’isolation
mémoire est cruciale dans ce cas pour prévenir les fuites d’information. Les
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attaques sur ces systèmes visent soient à activement échanger des données
secrètes d’un processus à un autre, ou à espionner un processus pour exfiltrer
des données secrètes d’une victime.

A.1.2 Problématique

Les fuites d’informations dues au matériel partagé sont un sujet connu qui a été
largement étudié. Cependant, ces attaques sont très dépendantes du matériel.
Nous voyons également des évolutions aussi bien dans la construction du
matériel que dans son adoption. Premièrement, la microarchitecture des
CPUs change fréquemment. Par exemple, Intel en fabrique une nouvelle
quasiment tous les ans depuis 2009. Deuxièmement, les GPUs ont été construits
dans le but de fournir un maximum de performance et non pour des accès
concurrents, et sans prendre en compte des critères de sécurité. Néanmoins, ils
ont récemment été proposés par les fournisseurs de service cloud. En raison
de l’évolution du matériel ou des contre-mesures en production, certaines
attaques sont rendues plus complexes voire impossible à réaliser. En revanche,
certaines modifications sont réalisées avec pour seul but la performance, ce qui
est souvent en contradiction avec la sécurité. Nous posons donc la question
suivante : Comment ces récentes évolutions impactent les fuites d’informations dues
au partage matériel ?

Cette question donne lieu à plusieurs défis en ce qui concerne l’investigation
de ces questions de sécurité. En effet, nous sommes face à deux niveaux
d’obscurité. Le premier est celui du fournisseur de services cloud. Pour
des raisons aussi diverses que les préoccupations de sécurité ou le modèle
économique, les fournisseurs de services cloud sont réticents à donner des
détails sur leur infrastructure. Le second est le matériel en lui-même. Étant
de plus en plus complexe, les CPUs comme les GPUs sont construits avec
certaines parties cruciales en terme de performance, mais non documentées.

A.1.3 Contributions

Le but de cette thèse est d’étudier l’impact des évolutions du matériel récent
en terme de fuites d’informations sur le matériel partagé. Nous appliquons
également nos découvertes aux environnements virtualisés qui sont largement
utilisés aujourd’hui et constituent un cas d’utilisation naturel de matériel
partagé. Cette thèse présente les travaux réalisés durant ma thèse et apporte
des contributions selon trois axes principaux.
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Canaux cachés au niveau des mémoires caches des processeurs Les canaux
cachés ont démontré pouvoir transgresser l’isolation des environnements
virtualisés, et typiquement, de permettre l’exfiltration de données. Plusieurs
canaux cachés se basant sur la mémoire cache des processeurs ont été proposés.
Cependant, ces canaux cachés sont soit lents ou inapplicables en raison de
l’incertitude sur l’adressage du cache. Cette incertitude est causée par le niveau
supplémentaire d’indirection dans les environnements virtualisés, ainsi que
par le mode d’adressage du dernier niveau de cache dans les processeurs
récents. Utiliser de la mémoire partagée (comme la dé-duplication mémoire
entre deux machines virtuelles) permet de résoudre cette incertitude, mais la
mémoire partagée n’est pas toujours disponible en pratique dans le cloud. En
effet, la dé-duplication est désactivée par la plupart des fournisseurs de service
cloud, comme Amazon Web Services. Nous avons construit C5, un canal caché
qui s’attaque à la problématique de l’incertitude sur l’adressage sans requérir
de mémoire partagée, en faisant un canal caché rapide et pratique. Ce canal
caché peut transférer des messages entre différents coeurs d’un processeur
récent. Il cible le dernier niveau de cache qui est partagé entre tous les coeurs,
et exploite la caractéristique d’inclusivité de ce niveau de cache, qui permet
à un coeur de supprimer des lignes du premier niveau de cache privé d’un
autre coeur. Nous avons évalué notre canal caché en environnement natif et
virtualisé. En particulier, nous avons établi un canal caché entre machines
virtuelles tournant sur des coeurs différents. Nous avons mesuré une vitesse
d’un ordre de grandeur supérieur aux canaux cachés de la littérature dans les
mêmes conditions.

Rétro-ingénierie de la fonction d’adressage du dernier niveau de cache dans
les processeurs Intel Le dernier niveau de cache des processeurs Intel est
partagé en slices. Prédire la slice utilisée par une adresse mémoire est simple
dans les processeurs plus anciens, mais les processeurs récents utilisent une
fonction d’adressage non documentée. Cela rend certaines attaques plus diffi-
ciles, et d’autres totalement impossibles, en raison du manque de précision
dans la prédiction des collisions dans le cache. L’état de l’art avait seulement
retrouvé la fonction manuellement et pour un seul modèle de processeur. Nous
avons construit une méthode automatique et générique pour effectuer la rétro-
ingénierie de cette fonction d’adressage, rendant par conséquent la classe des
attaques sur les caches grandement pratique. Notre méthode s’appuie sur les
compteurs de performance matériels des processeurs pour déterminer la slice
du cache à laquelle une adresse mémoire est mappée. Nous avons montré que
notre méthode donne une description plus précise de la fonction d’adressage
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que les travaux existants. Nous avons validé notre méthode en effectuant la
rétro-ingénierie de cette fonction sur un ensemble varié de processeurs Intel,
comprenant les microarchitectures Sandy Bride, Ivy Bridge et Haswell, avec
différents nombre de coeurs, et pour les gammes de processeurs mobiles et de
serveurs. Nous avons montré que connaître la fonction d’adressage du dernier
niveau de cache permet d’améliorer C5 de plusieurs ordres de grandeur.

Fuites d’information dans les GPUs virtualisés Peu d’études ont été con-
duites sur les implications en terme de sécurité du calcul générique sur un
processeur graphique (GPGPU) combiné aux environnements cloud. Notre
objectif a été de souligner les fuites d’information dues aux GPUs dans les
environnements virtualisés et de cloud. Nous avons étudié les différentes
techniques de virtualisation des GPUs, ainsi que leurs implications en terme
de sécurité. Nous avons analysé de manière systématique le comportement
de la mémoire globale des GPUs dans le cas du direct device assignment. Nous
avons trouvé que la mémoire globale des GPUs n’est correctement nettoyée
que dans certaines configurations, seulement en effet secondaire des codes
correcteurs d’erreurs (ECC), et non pas pour des raisons de sécurité. Ainsi,
un attaquant peut retrouver des données d’applications GPGPU précédem-
ment exécutées dans une variété de scénarios. Ces scénarios incluent des
situations dans lesquelles un attaquant lance une machine virtuelle après celle
d’une victime ayant utilisé le même GPU. Cette attaque transgresse clairement
l’isolation qu’un hyperviseur est censé apporter aux environnements virtual-
isés. Le nettoyage de la mémoire n’est pas implémenté par le GPU lui-même,
et nous ne pouvons pas exclure de manière définitive la possibilité de fuites
d’information dans les environnements cloud. Nous avons en plus discuté de
contre-mesures possibles pour les utilisateurs et les fournisseurs de services
cloud.

A.1.4 Organisation de la thèse

Cette thèse est organisée comme suit.

Le chapitre 2 passe en revue l’état de l’art ainsi que la documentation tech-
nique nécessaire à la lecture de cette thèse. Il couvre tout d’abord
l’architecture et la virtualisation des systèmes x86. Il inclut également
des détails sur les fuites d’informations sur les ressources partagées
comme le bus mémoire et le CPU, avec un intérêt particulier pour les
caches des CPUs et la mémoire des GPUs.
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Le chapitre 3 présente C5, un nouveau canal caché sur le dernier niveau de
cache inclusif. Ce canal caché prend en compte l’évolution des CPUs
récents. Nous avons évalué sa vitesse et son taux d’erreur sur différentes
expériences, notamment en passant des messages d’un coeur à l’autre et
entre machines virtuelles.

Le chapitre 4 détaille comme nous avons effectué la rétro-ingénierie de la
fonction d’adressage du dernier niveau de cache dans les processeurs
Intel. Nous avons évalué notre approche en retrouvant la fonction sur
un large ensemble de processeurs différents. Nous montrons également
des applications en terme de sécurité qui découlent de ces travaux.

Le chapitre 5 documente l’impact des techniques de virtualisation des GPUs
en termes de sécurité. Nous investiguons de manière systématique les
fuites d’informations sur la mémoire des GPUs, en particulier dans
les environnements virtualisés. Nous détaillons deux méthodes pour
accéder à la mémoire d’un GPU, qui requièrent différents niveaux de
privilèges.

Le chapitre 6 conclut et donne les perspectives sur les travaux futurs.

A.2 Contourner l’adressage complexe : le canal caché
C5

Les canaux cachés sont utilisés pour exfiltrer des informations sensibles, et
peuvent aussi être utilisés comme tests de co-résidence dans le cloud [ZJOR11].
Il y a plusieurs défis pour réaliser des canaux cachés entre machines virtuelles.
Premièrement, la migration des programmes entre les différents coeurs ré-
duit drastiquement la vitesse des canaux cachés qui ne marchent pas entre
différents coeurs [XBJ+11]. Deuxièmement, l’exécution simultanée de ma-
chines virtuelles entre différents coeurs empêche un ordonnancement de type
round-robin strict entre un émetteur et un récepteur [WXW12]. Troisième-
ment, la traduction d’adresse virtuelle vers physique ainsi que les fonctions
qui mappent une adresse vers un set de cache ne sont pas exposées aux pro-
cessus, et induisent ainsi une incertitude sur l’emplacement des données
dans le cache. Cette incertitude sur l’adressage (appelée addressing uncertainty
dans [WXW12]) empêche un émetteur et un récepteur de parvenir à un accord
sur un emplacement sur lequel travailler.
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Les canaux cachés qui ne prennent pas en compte cette incertitude sur
l’adressage sont limités à utiliser le premier niveau de cache privé sur les pro-
cesseurs modernes. Cela réduit dramatiquement la vitesse en environnement
virtualisé. Une méthode pour circonvenir à ce problème est de dépendre de la
dé-duplication mémoire offerte par l’hyperviseur ou le système d’exploitation.
Avec la dé-duplication, les pages mémoires en commun de deux processeurs
utilisent les mêmes lignes de cache. Cependant, la dé-duplication est désac-
tivée par certains fournisseurs de services cloud [BRPG15], ce qui rend cette
attaque inexploitable dans certaines situations.

Dans ce chapitre, nous présentons un nouveau canal caché, appelé C5.
Nous différencions notre canal caché de l’état de l’art en prenant en compte
le problème de l’incertitude sur l’adressage sans dépendre de la mémoire
partagée. Notre canal caché marche entre deux machines virtuelles qui tour-
nent sur n’importe quel coeur d’un même processeur. Il utilise le fait que le
dernier niveau de cache est à la fois partagé et est inclusif des niveaux L1 et L2
dans les processeurs modernes. Nous obtenons les hautes vitesses de 1291bps
dans un environnement natif et 751bps dans un environnement virtualisé,
soutenant ce canal caché comme une attaque pratique.

A.3 Rétro-ingénierie de l’adressage du dernier niveau
de cache

Les attaques sur les caches peuvent opérer à tous les niveaux de cache : L1, L2
ou dernier niveau de cache. Les attaques sur les niveaux L1 et L2 restreignent
l’attaquant à être sur le même coeur que sa victime. Cette hypothèse est trop
forte sur un processeur multi-coeurs quand l’attaquant et la victime migrent
de coeurs [RTSS09, XBJ+11]. Nous nous concentrons donc sur les attaques sur
le dernier niveau de cache, qui est partagé entre les coeurs dans les processeurs
modernes. Les attaques sur le dernier niveau de cache sont plus puissantes,
car l’attaquant et la victime peuvent ainsi être sur des coeurs différents, mais
elles sont également plus difficiles. Sans utiliser de mémoire partagée, un
attaquant doit trouver des adresses qui mappent un même set de cache, et
exploiter la politique de remplacement de cache pour expulser les lignes du
set.

L’attaquant est face à deux problèmes : le dernier niveau de cache est
adressé physiquement, et les processeurs modernes mappent les adresses
physiques aux slices de cache en utilisant une fonction appelée adressage com-
plexe, qui n’est pas documentée. Nous avons détaillé dans le dernier chapitre
une méthode pour contourner cette fonction complexe, en expulsant les lignes
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de tout le dernier niveau de cache. C’est un moyen pratique de réaliser des
canaux cachés comme nous l’avons montré, mais ce n’est en revanche pas une
méthode qui est assez fine pour exécuter, par exemple, des canaux auxiliaires
sur des algorithmes cryptographiques. En outre, les approches précédentes
ont déjà effectué la rétro-ingénierie de cette fonction, manuellement et pour
un processeur Sandy Bridge spécifique [HWH13, Sea15b]. Ils ont cependant
utilisé une attaque temporelle qui n’est pas capable de retrouver tous les bits
de la fonction, menant à une fonction partielle seulement. La fonction d’autres
processeurs est inconnue.

Dans ce chapitre, nous présentons une méthode nouvelle et automatique
pour effectuer la rétro-ingénierie de la fonction d’adressage du dernier niveau
de cache. Nous utilisons les compteurs de performance matériels pour con-
trôler les événements associés aux slices de cache, dans le but de mapper
les adresses physiques à chaque slice. Nous retrouvons donc tous les bits
de la fonction. Nous avons évalué notre méthode sur une grande variété de
processeurs, comprenant les microarchitectures Sandy Bridge, Ivy Bridge et
Haswell, pour différents nombres de coeurs.

A.4 Fuites d’informations sur la mémoire des GPUs

Les GPUs bénéficient d’un grand intérêt de la part de la communauté scien-
tifique. En effet, le calcul générique sur GPU permet d’effectuer des calculs
génériques massivement parallèles en utilisant la parallélisme intrinsèque des
GPUs. Les applications sont diverses comme la finance [BSS10, KP05, TB10],
le chiffrement [gE, Yam07], et le mining de Bitcoins [Kol]. Les GPUs ont récem-
ment été proposés par plusieurs fournisseurs de services cloud pour fournir un
paiement à l’utilisation et à la demande d’un matériel autrement très coûteux.
En outre, les applications utilisant la virtualisation pour du rendu graphique
sont émergentes. Les appareils peu performants, comme les tablettes, peuvent
être utilisés pour des jeux vidéo sur des plate-formes de cloud gaming. Des
ordinateurs portables ou stations de travail ordinaires peuvent exécuter des
taches comme du montage vidéo ou de conception assistée par ordinateur sur
des systèmes virtualisés.

Les GPUs ont été conçus pour fournir un maximum de performance.
Cependant, ils n’ont pas été conçus pour des accès concurrents, c’est à dire
pour supporter de la virtualisation ou plusieurs utilisateurs simultanément.
Il est connu que les buffers des GPUs ne sont pas nettoyés quand ils sont
alloués [Ker12]. Cela pose des questions de confidentialité entre différents
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programmes ou différents utilisateurs quand les GPUs sont utilisés en environ-
nement natif sur des ordinateurs personnels [DLV13]. Clairement, la surface
d’attaque est plus grande dans un environnement cloud quand plusieurs
utilisateurs exploitent le même GPU les uns après les autres, ou même simul-
tanément. Cependant, cette problématique n’a jamais été étudiée. De plus,
identifier les fuites d’informations possibles dans ces environnements est un
problème difficile dû au deux couches d’obscurité : le fournisseur de services
cloud ainsi que le GPU lui-même.

Dans ce chapitre, nous étudions les fuites d’informations sur les GPUs et
évaluons ses impacts possibles sur les clouds GPUs. Nous expérimentons et
analysons de manière systématique le comportement de la mémoire globale
du GPU en environnements natif et virtualisé. Nous différenciant de l’état de
l’art [BKS13, DLV13], nous montrons comment un attaquant peut retrouver
des informations de la mémoire globale du GPU en utilisant une variété de
drivers et de frameworks. Par ailleurs, nous trouvons que dans les rares cas où
la mémoire globale du GPU est nettoyée, elle l’est seulement à cause d’un effet
de bord de la correction d’erreurs (ECC), et non pour des raisons de sécurité.
Nous proposons également une méthode pour retrouver la mémoire du GPU
d’une façon agnostique au driver, qui contourne des mesures de nettoyage de
la mémoire qu’un programmeur consciencieux pourrait implémenter.

A.5 Travaux futurs

Dans cette thèse, nous avons exploré l’impact des évolutions du matériel récent
en termes de fuites d’information sur du matériel partagé, et avons appliqué
nos découvertes aux environnements virtualisés.

Le matériel est en constante évolution, ce qui requiert un effort continu
de la part à la fois des attaquants et des défenseurs, pour s’accommoder de
ces changements. Les sujets explorés dans cette thèse ouvrent de nouvelles
perspectives dans ce domaine et peuvent être développés dans les directions
suivantes.

A.5.1 Nouvelles attaques

Les processeurs continuent d’évoluer, ainsi que les caractéristiques de leurs
caches. De nouvelles attaques sont donc envisageables, en tirant parti du cache
partagé entre le CPU et le GPU intégré dans certains modèles de processeurs
Intel, ou par exemple en regardant les implications du nouveau niveau de
cache dans les tous dernières microarchitectures. Une autre direction intéres-
sante est de regarder l’architecture ARM, omniprésente par exemple dans
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les smartphones, et qui n’a pour l’instant pas reçu la même attention que
l’architecture x86. Les GPUs continuent également d’évoluer, et de nouvelles
architectures supportent maintenant la virtualisation au niveau hardware.
Si l’isolation mémoire a des chances d’avoir été au coeur du design de ces
GPUs, il peut subsister, comme au niveau des CPUs, des possibilités de fuites
d’information par des canaux cachés ou des canaux auxiliaires.

A.5.2 Contre-mesures

Ces travaux de thèse ont montré à quel point les techniques défensives sont
plus que jamais importantes face aux attaques sur les caches, et que les contre-
mesures logicielles appliquées jusque ici (comme la désactivation de la dé-
duplication mémoire) ne sont pas efficaces contre ces nouvelles attaques. De
nombreuses solutions existent dans la littérature au niveau matériel mais
ces solutions ne sont applicables que par les constructeurs et, comme elles
induisent des pertes de performances, elles ne sont pas introduites dans le
design des nouveaux processeurs. Des contre-mesures logicielles efficaces et
minimisant les pertes de performance sont donc indispensables. Nos travaux
sur la rétro-ingénierie de la fonction d’adressage du cache ouvrent des per-
spectives quand à un partitionnement à grain fin du cache et donc entraînant
peu de pertes de performance. Il est également envisageable d’utiliser les
compteurs de performance pour monitorer le système et détecter des attaques
sur les caches.

A.5.3 Élargir les connaissances du fonctionnement interne des
CPUs

Que ce soit pour les attaques ou les contre-mesures, il est nécessaire de com-
prendre en détail le fonctionnement interne des CPUs, qui sont de plus en plus
complexes. Si leur usage est largement documenté par les vendeurs, certaines
parties critiques pour les performances comme les fonctions d’adressage et les
politiques de remplacement de cache restent non documentées, certainement
afin de préserver un avantage dans la course à la performance.

En continuant le travail de rétro-ingénierie du chapitre 4, nous voyons une
autre application directe. La microarchitecture Ivy Bridge a introduit une nou-
velle fonction d’adressage non documentée, qui mappe une adresse physique à
un canal de DRAM. De plus, les processeurs Xeon peuvent monitorer les événe-
ments associés à chaque canal de DRAM. En utilisant la même technique que
pour les slices de cache, il serait possible de retrouver la fonction d’adressage
des canaux de DRAM. Plus généralement, les compteurs de performance
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matériels peuvent monitorer beaucoup de types d’événements matériels, et
peuvent être d’une grande aide pour comprendre les séries d’événements qui
surviennent au niveau matériel.

Le travail de rétro-ingénierie est également bénéfique à la communauté
scientifique au sens large, au delà de la communauté de sécurité, pour tous
les travaux de recherche qui ont trait à la performance et qui ont besoin de
modèles fiables et le plus proche possible du matériel réel.
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Accurate timing measurements

For accurate timing measurements taking into account out-of-order execution,
we use the following method, described in more detail in [Int10].

1: # define begin_measurement (begin_high , begin_low ) \
2: asm volatile ("CPUID\n\t" \
3: "RDTSC\n\t" \
4: "mov %%edx , %0\n\t" \
5: "mov %%eax , %1\n\t" \
6: : "=r" ( begin_high ), "=r" ( begin_low ) \
7: : \
8: : "%rax", "%rbx", "%rcx", "%rdx");
9:

10:
11: # define end_measurement (end_high , end_low ) \
12: asm volatile (" RDTSCP \n\t" \
13: "mov %%edx , %0\n\t" \
14: "mov %%eax , %1\n\t" \
15: "CPUID\n\t" \
16: : "=r" ( end_high ), "=r" ( end_low ) \
17: : \
18: : "%rax", "%rbx", "%rcx", "%rdx");
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C

Model Specific Registers values for
reverse-engineering the complex

addressing function

C.1 Xeon CPUs

C.1.1 Monitoring session

To set up a monitoring session for the LLC_LOOKUP event on Xeon Sandy Bridge,
Ivy Bridge and Haswell CPUs, the following steps must be taken:

1. freeze box counters,

2. reset counter and control registers,

3. enable counting,

4. select LLC_LOOKUP event,

5. select all MESIF states,

6. unfreeze box counters,

7. launch program to monitor,

8. freeze box counters,

9. read counter value in PMON_CTR0.

101



C. MSR values for reverse-engineering the addressing function

C.1.2 MSR addresses and values for Xeon Sandy Bridge CPUs

MSR addresses for Xeon Sandy Bridge CPUs can be found in [Int12]. The
values are derived from the MSR layout and events.

Table C.1: MSR addresses – Xeon Sandy Bridge CPUs

PMON_CTR0 PMON_BOX_FILTER PMON_CTL0 PMON_BOX_CTL
CBo 0 0xd16 0xd14 0xd10 0xd04
CBo 1 0xd36 0xd34 0xd30 0xd24
CBo 2 0xd56 0xd54 0xd50 0xd44
CBo 3 0xd76 0xd74 0xd70 0xd64
CBo 4 0xd96 0xd94 0xd90 0xd84
CBo 5 0xdb6 0xdb4 0xdb0 0xda4
CBo 6 0xdd6 0xdd4 0xdd0 0xdc4
CBo 7 0xdf6 0xdf4 0xdf0 0xde4

Table C.2: MSR values for LLC_LOOKUP event monitoring – Xeon Sandy Bridge
CPUs

value MSR description
0x10100 PMON_CTR0 freeze counters
0x10103 PMON_BOX_CTL reset counter and control registers
0x400000 PMON_CTL0 enable counting
0x401134 PMON_CTL0 select LLC_LOOKUP event
0x7c0000 PMON_BOX_FILTER select all MESIF states
0x10000 PMON_BOX_CTL unfreeze counters
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C.1.3 MSR addresses and values for Xeon Ivy Bridge CPUs

MSR addresses for Xeon Ivy Bridge CPUs can be found in [Int14c]. The values
are derived from the MSR layout and events.

Table C.3: MSR addresses – Xeon Ivy Bridge CPUs

PMON_CTR0 PMON_BOX_FILTER PMON_CTL0 PMON_BOX_CTL
CBo 0 0xd16 0xd14 0xd10 0xd04
CBo 1 0xd36 0xd34 0xd30 0xd24
CBo 2 0xd56 0xd54 0xd50 0xd44
CBo 3 0xd76 0xd74 0xd70 0xd64
CBo 4 0xd96 0xd94 0xd90 0xd84
CBo 5 0xdb6 0xdb4 0xdb0 0xda4
CBo 6 0xdd6 0xdd4 0xdd0 0xdc4
CBo 7 0xdf6 0xdf4 0xdf0 0xde4
CBo 8 0xe16 0xe14 0xe10 0xe04
CBo 9 0xe36 0xe34 0xe30 0xe24
CBo 10 0xe56 0xe54 0xe50 0xe44
CBo 11 0xe76 0xe74 0xe70 0xe64
CBo 12 0xe96 0xe94 0xe90 0xe84
CBo 13 0xeb6 0xeb4 0xeb0 0xea4
CBo 14 0xed6 0xed4 0xed0 0xec4

Table C.4: MSR values for LLC_LOOKUP event monitoring – Xeon Ivy Bridge
CPUs

value MSR description
0x30100 PMON_CTR0 freeze counters
0x30103 PMON_BOX_CTL reset counter and control registers
0x400000 PMON_CTL0 enable counting
0x401134 PMON_CTL0 select LLC_LOOKUP event
0x7e0010 PMON_BOX_FILTER select all MESIF states
0x30000 PMON_BOX_CTL unfreeze counters

103



C. MSR values for reverse-engineering the addressing function

C.1.4 MSR addresses and values for Xeon Haswell CPUs

MSR addresses for Xeon Haswell CPUs can be found in [Int14d]. The values
are derived from the MSR layout and events.

Table C.5: MSR addresses – Xeon Haswell CPUs

PMON_CTR0 PMON_BOX_FILTER PMON_CTL0 PMON_BOX_CTL
CBo 0 0xe08 0xe05 0xe01 0xe00
CBo 1 0xe18 0xe15 0xe11 0xe10
CBo 2 0xe28 0xe25 0xe21 0xe20
CBo 3 0xe38 0xe35 0xe31 0xe30
CBo 4 0xe48 0xe45 0xe41 0xe40
CBo 5 0xe58 0xe55 0xe51 0xe50
CBo 6 0xe68 0xe65 0xe61 0xe60
CBo 7 0xe78 0xe75 0xe71 0xe70
CBo 8 0xe88 0xe85 0xe81 0xe80
CBo 9 0xe98 0xe95 0xe91 0xe90
CBo 10 0xea8 0xea5 0xea1 0xea0
CBo 11 0xeb8 0xeb5 0xeb1 0xeb0
CBo 12 0xec8 0xec5 0xec1 0xec0
CBo 13 0xed8 0xed5 0xed1 0xed0
CBo 14 0xee8 0xee5 0xee1 0xee0
CBo 15 0xef8 0xef5 0xef1 0xef0
CBo 16 0xf08 0xf05 0xf01 0xf00
CBo 17 0xf18 0xf15 0xf11 0xf10

Table C.6: MSR values for LLC_LOOKUP event monitoring – Xeon Haswell CPUs

value MSR description
0x30100 PMON_CTR0 freeze counters
0x30103 PMON_BOX_CTL reset counter and control registers
0x400000 PMON_CTL0 enable counting
0x401134 PMON_CTL0 select LLC_LOOKUP event
0x7e0020 PMON_BOX_FILTER select all MESIF states
0x30000 PMON_BOX_CTL unfreeze counters
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C.2 Core CPUs

Uncore performance monitoring for Intel Core processors is described in [Int14b],
Section 18.9.6.

C.2.1 Monitoring session

To set up a monitoring session for the event – called UNC_CBO_CACHE_LOOKUP
for Core processors – the following steps must be taken:

1. disable counters,

2. reset counters,

3. select event to monitor,

4. enable counting,

5. launch program to monitor,

6. read counter value from MSR_UNC_CBO_i_PER_CTR0 for each CBo i.

C.2.2 MSR addresses and values

MSR addresses for Core processors can be found in [Int14b], Section 35.8.1.
The values are derived from the MSR layout Section 18.9.6 and from the events
described in Section 19.4, Table 19-10. They are valid for Sandy Bridge, Ivy
Bridge and Haswell microarchitectures.

Table C.7: MSR addresses – Core CPUs

MSR address
MSR_UNC_PERF_GLOBAL_CTRL 0x391
MSR_UNC_CBO_0_PERFEVTSEL0 0x700
MSR_UNC_CBO_0_PER_CTR0 0x706
MSR_UNC_CBO_1_PERFEVTSEL0 0x710
MSR_UNC_CBO_1_PER_CTR0 0x716
MSR_UNC_CBO_2_PERFEVTSEL0 0x720
MSR_UNC_CBO_2_PER_CTR0 0x726
MSR_UNC_CBO_3_PERFEVTSEL0 0x730
MSR_UNC_CBO_3_PER_CTR0 0x736
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Table C.8: MSR values for UNC_CBO_CACHE_LOOKUP event monitoring – Core
CPUs

value MSR description
0x2000000f MSR_UNC_PERF_GLOBAL_CTRL enable counting
0x0 MSR_UNC_PERF_GLOBAL_CTRL disable counting
0x408f34 MSR_UNC_CBO_i_PERFEVTSEL0 select UNC_CBO_CACHE_LOOKUP

event
0x0 MSR_UNC_CBO_i_PER_CTR0 reset counters
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