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Nomenclature 

 

Latin symbols 

  area 

  body force 

   specific heat 

  diffusion coefficient 

   grain diameter 

   artificial diffusion coefficient 

  gravity vector 

𝑔  fraction of phase 𝛼 

𝑔 
  packing solid fraction 

  enthalpy 

   heat transfer coefficient  

   characteristic mesh size of an element    

  unit tensor 

  species flux 

  
  interfacial solute transfers due to phase change 

  
  interfacial solute transfers due to diffusion 

  
  interfacial solute transfers due to grain nucleation 

   partition coefficient 

  heat conduction length 

   latent heat of fusion 

  
  interfacial momentum transfers due to interfacial stress 

  
  interfacial momentum transfers due to phase change 

  
  interfacial momentum transfers due to grain nucleation 

  number of micro-timesteps over a macro-timestep 

  grain density 

  unit outward normal vector on domain’s boundary  

 ̇ source term of grain density 

  pressure 

  heat flux 

  
  interfacial heat transfers due to phase change 

  
  interfacial heat transfers due to diffusion 

  
  interfacial heat transfers due to grain nucleation 

  resistance coefficient 

  source term 

   interfacial area concentration 
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  temperature 

  time 

   macro-time step 

   micro-time step 

     exterior temperature  

  velocity vector 

        velocity at the center of an element 

   elementary volume 

  concentration 

  spatial position 

 

Greek symbols 

   discretized domain 

   thermal expansion coefficient 

     shrinkage coefficient 

   solutal expansion coefficient 

   characteristic length for permeability 

   scale of the convection time 

   scale of the diffusion time 

   scale of the solidification time 

      test function when using the SUPG method 

   interpolation function associated with node   

  function regime 

  continuous domain 

  thermal conductivity 

  permeability 

  domain’s height 

  deviatoric stress tensor 

  exchanged mass flux across the phase interface due to phase change 

  rate of transferred mass due to grain nucleation 

𝛼 one of two constant parameters of the artificial diffusion coefficient 

  one of two constant parameters of the artificial diffusion coefficient 

  solute diffusion length 

  dynamic viscosity 

  iteration 

  phase function 

  density 

  stabilization parameter 

   domain’s boundary  
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Subscripts 

𝑔  growth 

    indexes of nodes 

     nucleation 

       packed bed regime 

    reference 

       slurry regime 

   transport 

    undetermined 

 

Superscripts 

   interface   solid phase 

  buoyancy   time   

  transpose 𝛼 phase 𝛼 

  liquid phase   iteration 

  mixture   

 

Supplementary symbols 

〈     〉 volume average in phase 𝛼 

〈     〉  intrinsic volume average in phase 𝛼 

  tensor product 

  gradient operator 

   divergence operator 

   number of elements 

   number of nodes 

   Péclet number 

   Reynolds number 

      hyperbolic cotangent 

     hyperbolic tangent 

 

Acronyms 

FE / FEM finite element / finite element method 

FV / FVM finite volume / finite volume method 

LHS left hand side 

RHS right hand side 
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Chapter 1 - Introduction 

 

 

Chapter 1  

Introduction  
 

1.1 Motivation 

 

Research activities and modeling of solidification have rapidly developed since the past half-

century, not only aiming at improving conventional solidification processes (e.g. ingot 

casting, continuous casting, rapid solidification), but also addressing advanced materials for 

which solidification is used as an effective and crucial manufacturing technique (e.g. metal-

matrix composites, materials with unique microstructures, superconducting crystals). 

Predicting the properties and structures of solidified products needs the knowledge related to 

many disciplines (such as heat, mass and solute transport, the formation kinetics of new 

phases, etc.) since a number of physical phenomena simultaneously take place and interact 

together during casting, from microscopic processes happening in a few seconds at the atomic 

level (nano scale), over interactions between different phases (between micron and centimeter 

scales), to the heat extraction and mass transport at the product scale (meter scale) during 

many hours.  

 

In the context of casting industries, solidification process decisively influences on properties 

of final products. Mechanical properties of castings are determined by microstructures, e.g. 

fine-grained structures are favored for fatigue resistance, while coarse-grained structures show 

a better creep resistance in high temperature applications. The nucleation and evolution of 

solid structures at the microscopic scale lead to locally change the distribution of alloying 

elements during phase transformation. It results in an impact on the thermal field due to latent 

heat release as well as on the behavior of phase flow, e.g. through buoyancy forces and 

interactive phases drags. Heterogeneities in composition are then manifested at the system 

scale, that become more or less severe largely depending on the behavior of fluid flow and 

solid movement, the so-called macrosegregation, which is one of the main defects 

encountered in casting [Flemings, 1974]. The ability to predict macrosegregation in products 

obtained by solidification is essential for many industrial applications. This would provide 

economic benefits and time-saving in production. Macrosegregation in heavy industrial 

products poses challenges for numerical predictions because it results from various coupled 

micro-macro phenomena where transport velocity fields become significant and further 

considerable simulation cost is required.  

 

A schematic of a solidifying ingot in Fig.1. 1-a) illustrates several simultaneous phenomena 

occurring at an intermediate state, such as the liquid phase enriched in solute, local 

segregation channels, dendritic fragments, settling equiaxed grains [Ludwig et al., 2015a]. 

Fig.1. 1-b) presents the (left side) macrostructure and (right side) carbon macrosegregation of 
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a steel ingot weighted 65t and containing 0.22wt% nominal carbon. It consists of different 

structural types and heterogeneous solute distribution: including columnar structure near the 

surface with a homogenous solute composition; globular equiaxed grains in the center from 

the bottom up to 75% of the total height, corresponding to a negative segregation zone; and 

dendritic equiaxed grains on the top of the ingot with a positive segregation [Lesout, 2005]. 

 

 

  
a) b) 

   

Fig.1. 1 –  Schematic of (a) a solidifying ingot at an intermediate state, issued from 

[Ludwig et al., 2015a], (b-left) macrostructure and (b-right) carbon 

macrosegregation of a 65t steel ingot containing 0.22 wt% nominal carbon, 

issued from [Lesout, 2005]. 

 

With an increasing computational power, solidification modeling to predict macrosegregation 

has been enhanced by properly addressing more and more phenomena at both microscopic 

and macroscopic levels with respect to their complex dependence. Starting from a simple 

model that simulates solidification by only solving the heat conservation equation, then other 

physical issues have been subsequently dealt with, such as melt convection, transport of 

chemical species, diffusion at different scales, etc. Besides additionally integrating physical 

aspects, various numerical methods have been also developed to be able to study processes 

from a very small scale until a practical level of massive castings, in consideration of 

establishing effective mathematical solutions for a system of non-linear equations used to 

describe multi-scale multi-physical phenomena.  

 

Reviewing applications to industrial ingots, in 1999, Gu and Beckermann applied the authors’ 

model, a multi-scale multi-component solidification model [Scheneider and Beckermann, 

1995], to predict 2D macrosegregation for a heavy steel ingot [Gu and Beckermann, 1999], 

for which the solid phase was assumed to be fixed. Fig.1. 2-a) presents the configuration of 

the simulated ingot including its dimensions in millimeter and corresponding materials.  
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Fig.1. 2-b) and Fig.1. 2-c) display the profiles of macrosegregation in carbon and in sulfur, 

respectively, along the center of the ingot at the end of solidification. According to the 

authors, although a similar tendency was generally achieved between numerical solutions and 

experimental measures, the negative segregation in the lower part of the ingot could not be 

predicted because of neglecting the sedimentation of solid grains. In addition, the positive 

segregation in the upper part was underestimated for the case of carbon since the absorption 

of carbon from insulation materials at the top of the ingot was not included. 

 

 

  

  

a) b) c) 

   

Fig.1. 2 – Macrosegregation modeling without solid motion, 

           results issued from [Gu and Beckermann, 1999]. 

(a) Schematic of the 2D simulated ingot. Comparison between numerical and experimental 

segregation profiles (b) in carbon and (c) in sulfur along the center line of the ingot. 

 

With a great investigation, recently subsequent simulations applied to large castings 

demonstrated and confirmed that the negative segregation at the lower zone of ingots is 

mainly due to sedimentation of equiaxed grains, such as applications to a 3.3t steel ingot 

[Combeau et al., 2009][Založnik and Combeau, 2009a], a 6.2t steel ingot [Kumar et al., 

2012], a 65 steel ingot [Combeau et al., 2012a], a 2.45t steel ingot [Wu et al., 2014] [Ludwig 

et al., 2015a]. Fig.1. 3-a) and -b) present the relative segregation profiles along the center line 

and the relative segregation maps of the 65t steel ingot, respectively. The results are issued 

from the work of Combeau and co-workers [Combeau et al., 2012a]. Numerical predictions 

obtained for two case studies were compared to (green curve) experimental measurement, 

including (blue curve) the case where solid grains are imposed to be fixed and (red curve) the 

case where the solid motion is accounted for. The latter case reproduced the typical 

segregation pattern of the ingot (negative segregation at the lower zone and positive 

segregation at the upper zone). It can be seen in the corresponding experimental 

characterization (Fig.1. 1-b)) that the globular grains occupy a large region, compared to other 

present structures (columnar and dendritic equiaxed structures). In addition, for such ingots of 

large dimensions, the movements of the solid and liquid phases were shown to be 
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predominantly important. Therefore, accounting for the motion of globular grains due to both 

liquid convection and sedimentation is essential to predict the macrosegregation.    

 

 

  

 a) b)  

Fig.1. 3 – Segregation simulation applied to a 65t steel ingot [Combeau et al., 2012a] with 

 a) final relative segregation profiles along the center line of the ingot: (green 

curve) experiment results, (blue curve) without solid motion, (red curve) with solid 

motion; and b) final relative segregation maps (left) without solid motion and 

(right) with solid motion. 

 

Although significant achievements of solidification modeling have been obtained and 

numerical simulations can predict essential features of experimental measurements, more 

investigation would be expected to accurately anticipate properties of final castings in order to 

control defects and to produce alloys with desired qualities. This is also the domain which is 

investigated by our present work, focusing on the effect of solid motion. As strong coupling 

of the solid motion with other phenomena leads to solve a complex set of non-linear 

equations, it has been limitedly studied, though increasingly, for a detailed understanding 

about its influences. However, in large industrial casting products such as ingots, the solid 

motion yet becomes a dominant factor which affects the distribution of structures and solute 

composition. Moreover, studies were mostly carried out with two-dimensional simulations. 

Integrated into a research and development casting project financed by a metallurgical 

industrial group consisting of ArcelorMittal-Maizières, ArcelorMittal-Industeel, Aperam, 

Aubert & Duval, and Asco Industries, our work will focus on the prediction of 

macrosegregation due to the movement of equiaxed solid grains, which is developed to be 

implemented into a three-dimensional casting software, Thercast® (*), used by the industrial 

partners. Besides ongoing advancements achieved for this issue from using finite volume 

methods, our work aims at contributing to this aspect an alternative numerical tool which 

utilizes a finite element method.  

 
(*) Thercast® is a 3-D finite-element software package that simulates ingot casting and continuous casting of steel and other 

metallic alloys. It is developed jointly by CEMEF and the company Transvalor. (http://www.transvalor.com)  

http://www.transvalor.com/
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Before considering a literature study of numerical solidification models related to this topic, 

let us review very briefly basic physical phenomena inducing macrosegregation in alloy 

solidification, in order to concisely show how the heterogeneous distribution of chemical 

species is formed at the scale of dendrite arms and then is exhibited at a larger scale.  

1.2 Macrosegregation in Alloy Solidification 

1.2.1 Segregation at Microscopic Scale 

 

A typical equilibrium phase diagram for a simple binary alloy A-B at constant pressure is 

shown in Fig.1. 4. Nucleation of solid crystals occurs at a temperature slightly below the 

liquidus temperature of an alloy at a given composition. Due to the partition of chemical 

species during the phase transformation, in most cases (with a solute partition coefficient less 

than unity), the solid phase is formed at a smaller composition than the average value. The 

rejection of solute from the solid to liquid leads to an increase of the concentration in the 

liquid phase. There exists a mushy zone consisting simultaneously of the solid and liquid 

phases over a temperature range.  

 

Under equilibrium and well-mixed conditions that are often assumed for simplicity, the 

evolution of concentrations in the solid and liquid phases follows the solidus and liquidus 

lines, respectively, up to their maximum solubility at the eutectic temperature.  

 

 
   

Fig.1. 4 – Phase diagram for a binary alloy (A–B). 

 

However, accounting for limited solute diffusion was demonstrated to be important in order to 

correctly model the formation and development of solidification structures. In fact, mass 

diffusivity being smaller than thermal diffusivity in metal alloys, solidification at the 

microscopic scale is principally governed by solute concentration gradients on each side of 

the solid-liquid interface. Due to a limited solute diffusion in the solid and liquid phases, 

rejected species from the solid phase are accumulated at the solid-liquid interface and then 

diffused into the liquid phase. So there exists gradients of composition in the solid and liquid 

phases as schematized in Fig.1. 5.  
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The concentration difference in the liquid phase, (       ), over the one at the interface, 

(       ), is referred to the solutal undercooling. It becomes dominant compared to the 

thermal counterpart defined by the temperature variation in the context of alloy solidification. 

Therefore, it governs the nucleation and evolution of solid structures as well as the solute 

distribution at the scale of dendrite arms. 

 

 
   

Fig.1. 5 – 1D illustrative schematic of solute profiles in a mushy zone at temperature T 

(referred to Fig.1. 4) 

 

In turn, the morphology of microstructures has a crucial impact on the solute diffusion flux. 

Solidification microstructures can be divided into columnar (constrained-growth) and 

equiaxed (unconstrained-growth) structures. In columnar solidification, most of the solute is 

rejected principally in the lateral direction perpendicular to the heat flow. While in the case of 

equiaxed crystals that are surrounded by undercooling melt, rejection of solute takes place in 

all directions on their solid-liquid interface and eventually for an accumulation layer outside 

the grains. For each structural type, solid grains can grow with more or less dendritic shape, 

corresponding to different growth and solidification kinetics at the soli-liquid interface. The 

formed structures and the grain morphology depend on many factors such as phase change 

conditions, composition, thermodynamic properties of phase transformations, impacts of 

phase convection, etc. Various subjects related to the nucleation and growth of solidification 

structures can be consulted in [Kurz and Fisher, 1989] [Dantzig and Rappaz, 2009].       

 

Advanced solidification models are able to account for the effect of convection on solute 

gradients in a small layer near the solid-liquid interface as well as for complex shapes of 

interfacial structures that are associated to instability conditions and curvatures of interfaces. 

Studies of these topics can be found in [Flemings, 1974] [Kurz and Fisher, 1989] [Langer, 

1989] [Pines et al., 1990] [Wang and Beckermann, 1993][Martorano et al., 2003]. 
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1.2.2 Segregation at Macroscopic Scale 

 

Due to the movement of the liquid and solid phases during the solidification process, the 

segregation of chemical components at the scale of solid-liquid interface is manifested on a 

system scale, the so-called macrosegregation. 

 

Generally, melt flow can be generated by many sources such as external forces, surface 

tension gradients, residual flow due to filling of the mold, buoyancy forces due to temperature 

and compositional gradients, drag forces from solid motion, etc. In the present work, the 

liquid movement is governed by the two later listed mechanisms. The thermal and solutal 

buoyancy forces can oppose or corporate to each other, depending on heat exchange 

conditions and on the weight of chemical species rejected in comparison with that of the bulk 

liquid. Additionally, during solidification these effects can be enhanced or weakened by the 

solid motion, according to the orientation of these forces relative to the gravity direction. 

 

In consideration of the solid phase, its movement can take place within a small distance, for 

instance deformation-induced displacements in continuous casting processes. The solid 

motion also manifests over large domains such as the settling and floating of equiaxed grains 

in ingot castings. Relating to the later mechanism, its influence on macrosegregation was 

experimentally observed for different solidified alloys, i.e. undercooled Pb-Sn eutectic alloys 

[de Groh III, 1994] and aluminum alloys (Al-1wt%Cu, Al-10wt%Cu with different amounts 

of grain refiner) [Rerko et al., 2003]. Settling of equiaxed crystals is also known as the 

principal factor causing the negative segregation cone at the bottom casting in Fe-C alloys 

solidification [Flemings, 1974]. The origin of the equiaxed crystals has not been entirely 

clear. Two principal formation mechanisms were proposed including: heterogenous 

nucleation and detachment and transport of dendrite arms initially formed in a columnar zone.  

 

It can be seen that macrosegregation involves physically different multi-scale phenomena. 

Consequently, in order to predict macrosegregation, it is necessary to simultaneously model 

the microscopic growth processes and the macroscopic happenings such as heat transfer, mass 

transport, phases advection… From the numerical point of view, accounting for the solid 

motion requires dealing with a complex mathematical system because of its close interaction 

with other phenomena.      
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1.3 Objectives and Outline 

 

In the aim of modeling macrosegregation with ultimate applications to industrial castings of 

large sizes or under complex geometries, developing FE solidification model would expand 

the capacity of numerical predictions, especially being promising for such industrial 

applications.  

 

With interest in successes achieved from the FV solidification model developed by Založnik 

and Combeau [Založnik and Combeau, 2010a, 2010b] in simulating macrosegregation, in 

particular for heavy ingots as presented above, our study’s objective is to adapt and 

implement this model into the FE framework on which the 3D simulating program Thercast® 

is developed, in order that it is able to model the equiaxed transport during solidification.  

 

Following this chapter in which main physical phenomena related to macrosegregation have 

been introduced,  

 

 a review of solidification models will be presented in Chapter 2, consisting of the 

multi-scale modeling, volume-averaged method, governing equations used to describe 

phenomena during solidification and volume-averaged solidification models 

accounting for solid motion.  

 

 Finite element implementation and adaptation will be detailed in Chapter 3, in which 

the resolutions for macro-micro equations are established by using the splitting 

scheme.  

 

 Chapter 4 will present two-dimensional numerical results obtained from the current 

model that will be compared to references and analyzed for the purpose of verifying 

and validating our work, taking in first for purely growth process, then with melt 

convection, then with only transport phenomena and finally solidification cases using 

the complete growth-transport model.  

 

 Three-dimensional simulations and industrial applications are the subject of Chapter 5.  

 

 Conclusions and perspectives are presented at the end of the report. 
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1.4 Résumé en français 

 

Afin de modéliser la macroségrégation pour des produits industriels de grandes tailles ou de 

géométries complexes, un modèle de solidification par éléments finis sera développé. Une 

modélisation par éléments finis peut permettre d’étendre de façon prometteuse la capacité de 

prédictions numériques du phénomène de macroségrégation dans les applications 

industrielles. 

   

Au vue de l’intérêt du modèle de volumes finis développé par Založnik et Combeau [Založnik 

and Combeau, 2010a, 2010b] pour la simulation de la macroségrégation, en particulier pour 

de larges lingots d’acier, notre étude a pour but d’adapter et de mettre en œuvre ce modèle 

dans une formulation de type éléments finis utilisée dans le logiciel industriel Thercast®, afin 

qu’il soit capable de modéliser la solidification en présence du transport des grains solides. 

Suite à ce chapitre où les principaux phénomènes physiques liés à la macroségrégation ont été 

introduits,  

 une revue bibliographique des modèles de solidification sera présentée dans le 

chapitre 2, composée  de quatre parties : Modélisation multi-échelle ; Méthode des 

prises de moyenne ; Ensemble d’équations gouvernantes ; Modèles de solidification 

utilisant la technique de prise de moyenne avec la présence du transport des cristaux. 

 

 La mise en œuvre et l’adaptation numérique seront détaillées dans le chapitre 3, dans 

lequel la résolution des équations macro-micro est établie en utilisant le schéma de 

splitting. 

 

 Le chapitre 4 est consacré à présenter et à analyser des résultats numériques obtenus 

par le modèle actuel dans une configuration bidimensionnelle, en les comparant aux 

solutions de référence.  

 

 Des simulations tridimensionnelles et des applications industrielles sont menées au 

chapitre 5.  

 

 Les conclusions et les perspectives seront portées à la fin du manuscrit.  
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Chapter 2  

Literature Reviews 
 

2.1 Multi-scale Modeling 

 

In general, continuum theories rely on conservation laws which are expressed in forms of 

differential equations. Besides long-range macroscopic heterogeneities in the continuum,   

heterogeneities principally arise from subscale microstructures (e.g. particles, defects, 

inclusions, etc.) that decisively influence the behavior and performance of systems.  

 

Multi-scale modeling developed aims at formulating a description of material properties or 

system behavior at the macroscopic level using information from other sub-scale levels that 

are usually distinguished as following types: molecular level, microscopic level and 

macroscopic level. Each level addresses phenomena over a specific scale of length and time. 

Being developed in the 20
th

 century, multi-scale modeling methodologies have advanced 

quickly due to the combination of parallel computing power, experimental capabilities to 

characterize structure-property relations down to the atomic level and theories that admit 

multiple length scales. Multi-scale modeling provides a useful tool in predicting macroscopic 

behavior regarding important smaller-level features. It has been applied and investigated for 

various disciplines (solid mechanics, fluid mechanics, materials science, physics, 

mathematics, biological, chemistry, etc.).  

 

In solidification, relevant phenomena occur over a wide range of length and time scales, 

which we have looked over in Chapter 1. It can be recalled that for the mass distribution, 

while the local solute segregation due to the growth of solid phase takes place quickly at a 

solid-liquid interface approximated by some ten microns (the scale of dendrite arms), the 

liquid motion leads to the transport of mass and heat through the whole domain sized in 

several meters and also affects the local solidification conditions. During this process, the 

melt flow interacts with the solid grains on the scale of some hundred microns, e.g. the flow 

may be dragged to go down or may be pushed up because of the settling of solid grains, and it 

can be damped inside porous areas. An illustration in Fig.2. 1 presents ingot castings with 

several meters size for which the heterogeneity of solute which is manifested at the product 

scale results from a partition of solute at the scale of dendrite arms during solidification. 

Analyses of dendrite structures at a smaller scale such as a molecular or atomic level would 

provide serviceable parameters for numerical modeling as well as give a better understanding 

of physical behaviors at substantial scales for a global casting. In this context, application of 

multi-scale modeling to solidification has received a great attention as it allows conveniently 

linking between microscopic evolutions that can proceed within a few seconds and 

macroscopic transport phenomena evolving during a few hours.  
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Basic physical phenomena related to the macrosegregation have been reported in Chapter 1. 

In this section, we will investigate the involved mathematical and numerical aspects. First let 

us review the development of multi-scale modeling applied to the alloy solidification process. 

 

 
   

Fig.2. 1 – An illustrative figure presenting casting products (of several meters size) for which 

heterogeneities in compositions and structures are originated from microscopic processes that 

are then manifested at the system scale through advective mechanism 

Two fundamental approaches are proposed. In the first one, macroscopic continuum equations 

are obtained by applying a mixture theory, which are expressed by mixture quantities 

[Bennon and Incropera, 1987a, 1987b]. In the second one, continuum equations are derived 

from local microscopic equations by averaging techniques [Drew, 1983] [Ni and 

Beckermann, 1991]. In these methods, conservation equations are solved on a single 

computational domain, thus this precludes tracking phase fronts and discretization on 

irregular zones that are required when using multi-domain procedures. Between these two 

methods, while it is difficult to account for microscopic processes in models based on the 

mixture theory, those using the averaging technique provide a physically natural integration 

of microscopic processes into macroscopic equations.  

 

Derived from general theories of flow through porous media and of multi-phase systems by 

[Batchelor, 1970] [Gray, 1975, 1983] [Hassanizadeh and Gray, 1979] and [Drew, 1983], 

volume averaging technique was first applied to solidification of binary alloys by 

Beckermann and co-workers, without solid motion [Beckermann and Viskanta, 1988] and 

then a general model accounting for liquid and solid movements [Ni and Beckermann, 1991], 

as well as by Ganesan and co-workers [Ganesan and Poirier, 1990] [Poirier et al., 1991]. 

Simulation applications were performed for equiaxed globular solidification without and with 

solid movement [Feller and Beckermann, 1993] [Ni and Beckermann, 1993]. After that, the 

models were extended to solidification of multi-component alloys in considering the 

stationary solid phase [Schneider and Beckermann, 1995] [Beckermann and Schneider, 1995] 

[Schneider et al., 1997] [Gu and Beckermann, 1999]. The equiaxed dendritic solidification 
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focusing on microstructure descriptions involving the germination and growth processes 

controlled by solute diffusion was first investigated by Rappaz and co-workers [Rappaz and 

Thévoz, 1987] [Thévoz et al., 1989]. Later on, with an introduction of a second liquid phase 

into the volume-averaged two-phase models, the transport of dendritic grains was modeled by 

considering two distinct liquid phases at both scale in the work of Wang and Beckermann 

[Wang and Beckermann, 1993, 1996a,1996b,1996c] or by assuming the same macroscopic 

behavior for two liquid phases as proposed in the work of Combeau and co-workers 

[Combeau et al., 2009]. Various advanced developments and numerical applications have 

been subsequently contributed considering different phenomena in the solidification 

processing in order to improve predictions of casting products’ properties, such as accounting 

for multi-scale solute diffusion at the solid front [Wang and Beckermann, 1993][Martorano et 

al., 2003] [Bedel, 2014], tracking the grain structure using the CAFE method [Gandin et al., 

1996] [Carozzani et al., 2012], modeling both columnar and equiaxed (globular and dendritic) 

structures and their transition [Wu and Ludwig, 2009, 2010] [Leriche et al., 2015], taking into 

account the solid deformation due to external forces as well as interphase interactions [Bellet 

and Heinrich, 2004] [Bellet et al., 2004] [Ludwig et al., 2015b]. More reviews can be read in 

[Beckermann, 2002] [Pickering, 2013]. 

 

As our study is based on the volume averaging technique, we will summarize in the following 

section its principle concepts and relevant final formulations, further details can be found in 

the above references. 

 

2.2 Volume-Averaged Method 

 

The volume averaging technique is used to establish macroscopic continuum equations on a 

representative elementary volume (REV) that is much smaller than the system size and large 

enough to be characteristic of related structures. The REV consists of different phases that 

may possess various physical properties. These phases are separated from each other by 

interface boundaries. According to [Ni and Beckermann, 1991], under typical solidification 

conditions, i.e. around several meters for the size of systems and in several micrometers for 

characteristic lengths of microstructures, a REV can be found from 10 mm to 1 mm, therefore 

the REV should contain several crystals. 

 

The average of a microscopic quantity    in phase 𝛼 over the REV is defined as: 

 

〈  〉  
 

  
∫    
 

  

   (1) 

  

where    is the volume of a REV and the phase function    is defined as: 

  

   (   )  {
                        𝛼          
          

 (2) 
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It should be noticed that the volume average of the phase function is equal to the phase 

volume fraction, e.g 𝑔  for phase 𝛼. The intrinsic volume average is expressed as the average 

with respect to the proper volume of phase 𝛼,   
 : 

 

〈  〉  
 

  
 ∫    

 

  

   
〈  〉

𝑔 
 (3) 

 

The corresponding fluctuation of quantity     is calculated as:  

 

 ̂  (   〈  〉 )   (4) 

 

The average of the product of two quantities    and    is expressed as: 

 

〈    〉  〈  〉 〈  〉  〈 ̂  ̂ 〉  (5) 

 

The average of temporal and spatial derivations can be deduced as follows [Ni and 

Beckermann, 1991] [Rappaz et al., 2003]: 
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∫  
 

  

     (7) 

  

where    is the interfacial area enveloping phase 𝛼;    is the interface velocity;    is the unit 

normal vector, directing outward from phase 𝛼. 

 

2.3 Conservation Equations 

 

The averaging procedure applied to the equations studied in the present work will be 

summarized in this section. More details can be consulted in [Ni and Beckermann, 1991], 

[Beckermann and Viskanta, 1993], [Rappaz et al., 2003], [Založnik and Combeau, 2010a].  

 

For each phase of an alloy in its mushy state (including solid and liquid phases), the local 

continuum, momentum, energy, and species conservation equations, respectively, are: 

 

  

  
    (  )    (8) 

  

 

  
(  )     (    )            (9) 
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(  )     (   )        (10) 

  

 

  
(  )     (   )        (11) 

  

where   is the density;   the velocity;   the pressure;   the deviatoric stress tensor;   the body 

force;   the specific enthalpy;   the heat flux vector;   the species concentration;   the 

species flux vector. Note that no solute index is introduced in Eq.(11), it should be understood 

that each solute should give rise to the solution of a conservation equation. 

 

At the scale of a REV of the mushy material, by applying the volume-averaged approach to 

the above local continuum equations and neglecting fluctuation terms, the corresponding 

volume-averaged conservation equations obtained are as follows: 

 

 

  
(𝑔 〈  〉 )    (𝑔 〈  〉 〈  〉 )        (12) 
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(14) 

  

 

  
(𝑔 〈  〉 〈  〉 )    (𝑔 〈  〉 〈  〉 〈  〉 ) 

     (𝑔 〈  〉 )    
      

      
    

(15) 

  

where 𝑔  is the volume fraction of phase 𝛼;     the mass flux of phase 𝛼 across the phase 

interface due to phase change;    the phase mass transfer rate due to grain nucleation; 

  
      

    and   
    the interfacial momentum transfers due to phase change, interfacial 

stress and grain nucleation respectively;   
      

    and   
    the interfacial heat transfers due 

to phase change, diffusion and grain nucleation respectively;   
      

    and   
    the interfacial 

solute transfers due to phase change, diffusion and grain nucleation respectively. 

 

In Eqs.(12)-(15), the time variation and the change due to macroscopic transport are presented 

on the LHS. Exchanges between a phase 𝛼 and its connected phases arise from microscopic 

processes, including the interface movement, diffusion across the interface and nucleation, 

which are arranged on the RHS.  
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For those associated with the interface movement, the related fluxes in and out of phase 𝛼 

which are defined as the product of the surface integral of quantity at the interface and the 

velocity of this interface relative to the phase, are given as (16), (17) and (18) for the 

momentum, solute mass and energy respectively.  

 

      
 

  
∫    (     )    
 

  

    (16) 

  

      
 

  
∫    (     )    
 

  

    (17) 

  

      
 

  
∫    (     )    
 

  

   (18) 

  

where    is the density of phase 𝛼;    is the velocity of phase 𝛼;    is the velocity of the 

interface;    is the unit normal vector at the interface, directing outward from phase 𝛼;    is 

the solute concentration in phase 𝛼;    is the specific enthalpy of phase 𝛼;    is the interface 

area;    is the averaging volume. 

 

These integrals can be modeled by the product of the averaged value of    at the interface 

and the phase change rate, which are expressed as (19), (20) and (21) for the fluxes of the 

momentum, solute mass and energy respectively. 

 

      ̅     (19) 

  

      ̅     (20) 

  

      ̅     (21) 

  

where  ̅   ;  ̅  ;  ̅   are the average values over the interfacial area   , in   , of velocity, 

solute concentration and energy, respectively, of phase 𝛼. 

 

Concerning the transfers induced by interfacial stresses or diffusion, they are introduced as 

(22), (23) and (24) for the quantities of momentum, solute mass and energy respectively. 

 

  
    

 

  
∫(      )    
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∫      
 

  

    (23) 
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∫     
 

  

   (24) 

  

where     is the deviatoric stress tensor in phase 𝛼;    is the pressure in phase 𝛼;    is the unit 

tensor;    is the species flux vector in phase 𝛼;    is the heat flux vector in phase 𝛼;    is the 

unit normal vector at the interface, directing outward from phase 𝛼. 

 

These fluxes are often modeled as functions of the difference between the interfacial average 

value of a quantity    and its intrinsic volume average one, leading to equations (25), (26) 

and (27) for momentum, solute mass and heat transfer respectively. 

 

  
          ( ̅

   〈  〉 ) (25) 

  

       
  

  
  ( ̅

   〈  〉 ) (26) 

  

     
  

  
  ( ̅

   〈  〉 ) (27) 

  

where    is the density of phase 𝛼;    is the momentum resistance coefficient of phase 𝛼; 

   is the solute diffusion coefficient in phase 𝛼;    is the characteristic solute diffusion 

length in phase 𝛼;    is the heat conductivity of phase 𝛼;    is the characteristic heat 

conduction length in phase 𝛼;        ⁄  [m
-1

] is the interfacial area concentration (identical 

for the two phases present in the REV considered). 

 

The contribution of nucleation is evaluated by the corresponding quantities generated or lost 

due to the formation of a new phase and it can be neglected in comparison with other terms. 
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2.4 Volume-Averaged Solidification Models accounting for Solid Transport 

 

From a simple solidification model that only considers heat diffusion, neglecting melt 

convection, solid movement, and species redistribution on a macroscopic scale, modeling of 

alloy solidification accounting for liquid convection began with the work of Flemings and co-

workers [Flemings et al., 1967, 1968a, 1968b]. Inclusion of the solid transport by using the 

volume averaging technique was first developed by Ni and Beckermann [Ni and Beckermann, 

1990, 1991]. Compared to the mixture approach, this formulation has the advantage that 

microscopic processes are connected in a clear and persistent manner to macroscopic 

phenomena because the volume-averaged macroscopic equations are directly derived from the 

local conservation equations. 

 

In the following, we will overview three solidification models taking into account the 

transport of solid particles and based on the averaging technique as well as the models 

previously developed at CEMEF. Through this review, we intend to provide a clear overview 

of the domain’s development and to situate the beginning for our present work. 

 

Moreover, before entering into these volume-averaged models, it would be worthy to look 

over achievements related to the solidification modeling with the presence of solid movement 

when using the mixture theory. Roberts and Loper were the first ones who developed 

mathematical models of alloy solidification which take into account the solid motion [Roberts 

and Loper, 1987]. A subsequent mixture model was developed by Vreemann and co-workers, 

coupling the transport of solid crystals and fluid flow to study the solute redistribution during 

solidification [Vreemann et al., 2000a]. Numerical applications were performed on direct chill 

castings of binary alloys [Vreemann et al., 2000b, 2002], and recently extended for ternary 

alloys [Krane, 2004]. The authors showed that accounting for the particle motion is important 

to correctly evaluate the solute distribution, especially for prediction of the negative 

segregation zone at the ingots’ center, which is observed in experimental measurements. 

Several results from these works were introduced in Chapter 1.  

 

2.4.1 Models of Beckermann and co-workers 

 

In their article published in 1991 [Ni and Beckermann, 1991], the authors presented a two-

phase model using the averaging method for a general case of the solid and liquid moving at 

different velocities, in which separate conservation equations are developed for each phase, as 

presented in Section 2.3, together with the corresponding interfacial balances. While most 

models assume that the liquid is in equilibrium and locally well mixed, e.g. the lever rule or 

Scheil models, the non-equilibrium microscopic phenomena, such as nucleation and 

undercooling which are crucial processes in equiaxed solidification in reality, are accounted 

for and consistently introduced into the macroscopic equations in this model.  
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In consideration of solid crystals, their distribution results from the advection and nucleation 

mechanisms, which is described by a population balance equation (28). 

 

  

  
   (   )   ̇ (28) 

  

where   is the grain density;   is the transport velocity and  ̇ is the source term which 

represents the net generation of crystals and can further account for phenomena such as 

crystal “birth” (nucleation, dendrite arm breakoff) and crystal “death” (full melting, 

agglomeration of crystals). 

 

In order to numerically solve a set of aforementioned equations, following the authors' 

approach, the phase change rate,    (in Eq.(12) in Section 2.3), is first evaluated by using the 

last known quantities, from which other microscopic interfacial exchange terms are deduced. 

These quantities are then injected into the conservation equations coupling microscopic 

processes and macroscopic transport phenomena. After that, a finite volume method, using an 

implicit upwind scheme, is applied to solve the momentum, solute mass, energy, grain density 

equations. An iterative procedure is effectuated by re-evaluating the phase change rate and 

other interfacial quantities, then resolving the micro-macro equations until all fields are 

converged. Details of the numerical implementation are presented in [Wang and Beckermann, 

1994, 1996b]. 

 

The two-phase model was then simplified and applied, in a finite volume formulation, to 

solidification of globular grains for which nucleation takes place with a constant density at the 

liquidus temperature [Ni and Beckermann, 1993] [Beckermann and Ni, 1996]. Numerical 

simulations of solidification were performed on a 0.05 m x 0.1 m rectangular cavity 

containing an Al-4wt%Cu alloy, being cooled on the left vertical wall, other walls are 

adiabatic. Three test cases were carried out, including (Case 1) solidification without solid 

transport, (Case 2) solidification in the presence of solid transport and with the nucleation rate 

set up at      grains m
-3

, (Case 3) also in the presence of solid transport but with a smaller 

nucleation rate of     grains m
-3

. Through results obtained, considerable effects caused by the 

motion and nucleation of solid grains are demonstrated on the evolution of quantities and their 

interactions during solidification and thus on the formation of macrosegregation and the 

heterogeneous distribution of grain sizes. As illustrated in Fig.2. 2, significant differences of 

the liquid velocity and solid volume fraction, displayed at an intermediate time (30 s), are 

found from the three calculations. Detailed analyses and results at the end of solidification are 

referred to the above references. 
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Case 1 Case 2 Case 3 

 

Fig.2. 2  – Results obtained from the two-phase model 

issued from [Beckermann and Ni, 1996]. 

Liquid velocity vectors and solid volume fraction contours at 30 s for three simulations: 

 Case 1    without solid motion.  

 Case 2    with solid motion and nucleation rate at      grains m
-3

.  

 Case 3    with solid motion and nucleation rate at     grains m
-3

.  

 

The authors then extended the model to equiaxed dendritic grains [Wang and Beckermann, 

1996a], in which three distinguished phases are considered including the solid dendrite, the 

interdendritic liquid and the extradendritic liquid as schematized in Fig.2. 3. Interactions 

between the solid and the total liquid are generally modeled on the entire range of the solid 

fraction for a single particle as well as for multi particles, as proposed in their development 

[Wang et al., 1995]. A partitioning of the liquid phase into two separate phases is considered 

at both micro and macro levels. With assumed simplifications, numerical simulations were 

performed on an Al-4wt%Cu alloy and on a NH4Cl-70wt%H2O, reported in [Wang and 

Beckermann, 1996b, 1996c]. The effect of solid transport can be seen by comparing 

simulations with and without solid motion, computed on an identical domain containing an 

Al-4wt%Cu alloy like the previous study. Fig.2. 4 shows the final macrosegregation maps for 

three test studies including Case 1 without solid motion, Case 2 with solid motion and the 

nucleation rate at     grains m
-3

 favoring the formation of dendritic grains, and Case 3 with 

solid motion and a higher nucleation rate at      grains m
-3

 indicating the case of globular 

grains. It can be observed that macrosegeration is less pronounced when accounting for solid 

movement and even becomes less severe with increasing the nucleation rate. Since the solid 

and liquid motions have the same direction, the macrosegregation due to the relative velocity 

is thus reduced and more weakened by decreasing the grain size. In other systems where the 

phase movements are opposite, the segregate solute phenomenon would be amplified. Besides 

demonstrating the effect of solid motion, the results given by these dendritic studies, 

compared to those from the model of globular grains, allowed investigating in more detail the 
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formation mechanisms of heterogeneities and complicated impacts related to the floating and 

sedimentation of dendrites during solidification. Though such a distinct consideration for the 

liquid phase may provide more realistic descriptions of phase interactions that could be 

important in certain contexts, it requires multiple supplementary parameters that must be 

identified through experimental measurements. 

 

 

 

 
a)  b)  

 

Fig.2. 3   –  

 

a) Schematic of an averaging volume containing several dendritic grains. 

Three phases including solid dendrite, interdendritic liquid and 

extradendritic liquid. 

 b) Partitioning of the liquid flow : vf – total liquid velocity ;  

vd – interdendritic liquid velocity ; vl – extradendritic liquid velocity. 

 Figures issued from [Wang and Beckermann, 1996a]. 

 

 

   
 Case 1 Case 2 Case 3 

 

Fig.2. 4  – Final macrosegregation maps obtained from the three-phase model 

Results issued from [Beckermann and Ni, 1996b]. 

 Case 1   without solid motion. 

 Case 2   with solid motion and nucleation rate at     grains m
-3

.  

 Case 3   with solid motion and nucleation rate at      grains m
-3

. 
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2.4.2 Models of Wu and co-workers 

 

A simplified version of the previous two-phase volume-averaged model, using a 

heterogeneous nucleation, was developed only for globular grains by Wu and co-workers 

[Ludwig and Wu, 2002] [Wu et al., 2003] in order to study equiaxed solidification while 

avoiding uncertainties due to the lack of realistic information required in the complex model 

proposed by Beckerman and co-workers. A similar resolution approach as the precedent one 

was proposed to solve the above micro-macro equations, microscopic interfacial exchange 

terms are first computed in subroutines using the quantities obtained from the latest iteration, 

and then the full conservation equations are solved and coupled together by a fixed point 

procedure. Details about the numerical resolution strategy implemented in finite volumes are 

presented in [Ludwig and Wu, 2002]. 

 

In order to study the solid transport, the authors’ two test cases (Case 1) without solid motion 

and (Case 2) with solid motion are introduced here, which are issued from [Wu et al., 2003]. 

The simulations were performed on a 2D casting cavity, containing an Al-4wt%Cu alloy, 

being cooled from the bottom and side walls, as schematized in Fig.2. 5-a), for which the 

thermo-solutal liquid convection was neglected, only sedimentation-induced flow was taken 

into account. From the authors’ results, the effect of solid movement is visualized and 

analyzed. The intermediate evolution of variables, at t = 40 s, is displayed in Fig.2. 5-b) and –

c), presenting the solid fraction contours and the liquid velocity vectors in Fig.2. 5-b) and the 

average composition in Fig.2. 5-c), those on the LHS for Case 1 and those on the RHS for 

Case 2. When accounting for the solid motion, liquid flow is enhanced by grain sinking and 

the flow path is changed with the appearance of vortices, leading to a different solute 

distribution compared to the fixed solid case. Moreover, the solidification sequence proceeds 

faster in the bottom than side walls due to solid sedimentation.  

 

After that, the model was extended to include the simultaneous development of columnar and 

equiaxed structures, assuming simplified morphologies (a globular form attributed to 

equiaxed grains and a cellular shape to columnar trunks) [Ludwig and Wu, 2005] [Wu and 

Ludwig, 2006]. The dendritic morphology was then considered for equiaxed grains [Wu and 

Ludwig, 2009] and for both equixed and columnar structures [Wu et al., 2010a, 2010b]. 

Recently, the authors investigated their model for ternary alloys [Wu et al., 2013, 2014]. 

Numerical studies performed on small ingots and an application to a large steel ingot 

considering in a 2D-axissymmetric configuration, both of them verified that the cone-shape 

negative segregation which is found in solidified ingots results from grain sedimentation, one 

of results being shown in Fig.2. 6. Additionally, the authors noticed that the interaction 

between settling equiaxed grains and either melt flow or columnar tip front can have an 

important impact to the formation of A-type segregates in ingots. For the simulation applied 

to a large ingot, the authors restricted their model to a simple consideration of the solute 

diffusion length and grain morphology, expecting better predictions when these limitations 

will be overcome. 
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a) b) c) 

 

Fig.2. 5  – Simulations issued from [Wu et al., 2003]. 

 a) Schematic of the studied cavity. 

 b) Contours of the solid fraction and liquid velocity vectors. 

 c) Solute distribution. 

for b) and c) : Case 1 without solid transport on LHS & Case 2 with solid transport on RHS 

 

 

 

 

  

 

 

     

 a)  b)  

 

 Fig.2. 6  – Simulation issued from [Wu and Ludwig, 2006]. 

 a) Schematic of a simulated small ingot. 

 b) Macrosegregation map (CET denoting columnar-to-equixed transition).  

 

Case 1 Case 2 Case 1 Case 2 
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2.4.3 Models of Combeau and co-workers (SOLID software (*)) 

 

The models implemented in the SOLID software are described in detail by the authors in 

[Založnik and Combeau, 2010a] and [Combeau et al., 2009] for the two-phase globular and 

three-phase dendritic models, respectively. The principles of the two models will be 

summarized in this section. 

 

In these models, the conservation equations, like those presented in Section 2.3, are derived 

from local continuum equations for each phase using the volume averaging technique and the 

numerical implementation is carried out based on a finite volume method. The authors use an 

operator-splitting scheme to split and combine the microscopic and macroscopic phenomena 

of solidification. According to this scheme, the variation of phases and solute concentrations 

during solidification is considered to be due to macroscopic transport phenomena and 

microscopic processes.  

 

With this consideration, the two-stage resolution was developed.  

 

o In the first stage, the evolvement associated with the transport mechanism is 

calculated by globally solving the averaged equations of phases and solute mass, 

solely accounting for the transport terms and using a finite volume method with a 

macro time-step. This is called the transport stage. 

 

o In the second stage, the transport part is no longer taken into consideration, the grain 

growth is evaluated through the mass balance of interfacial exchanges at the scale of 

dendrite arms, assuming thermodynamic equilibrium at the solid-liquid interface, 

locally solving in each control volume with a micro time-step. It is corresponding to 

the so-called growth stage.  

 

The transport velocity fields are used in the first stage to be computed by solving, outside the 

splitting scheme, the full average momentum conservation equations or a simplified equation 

for the solid phase by neglecting the inertial and viscous terms. Two flow regimes are 

considered according to the solid fraction. If the solid fraction is smaller than the packing 

value, equiaxed grains are free to move with respect to the liquid. The solid phase is 

considered as a continuous medium and characterized by its volume fraction and a number of 

particles contained (or an averaged grain radius). The solid-liquid interaction follows the 

model of Agarwal and O'Neill [Agarwal and O'Neill, 1988], the transferred momentum due to 

interfacial stresses is presented by (29)-(34).  In the other case, i.e. the solid fraction is higher 

than the packing limit, solid grains are considered to be blocked and form a porous solid bed 

where the liquid movement is drastically slowed down and modeled by the Carman-Kozeny 

law for the permeability, as given by (35)-(36).  

 

(*) SOLID is a two-dimentional numerical simulation software dedicated to the casting process. It is used for continuous 

casting as well for ingot casting and performs an analysis of thermo-metallurgic behavior of the material during the process. 

It is developed by Institut Jean Lamour in Nancy and Sciences Computers Consultants. (http://www.scconsultants.com) 

http://www.scconsultants.com/
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Slurry regime :  
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Packed bed regime :  

   

       
   

  
  (𝑔 ) 

   
(〈  〉  〈  〉 ) (35) 

   

where     
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in which 𝑔  ; 𝑔  are respectively the solid and the liquid fraction;   is the density;    is the 

grain diameter;    is the Reynolds number;    is the dynamic viscosity;    is the secondary 

arm spacing. 
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Modeling of nucleation can be integrated into the growth stage, together with the modeling of 

grain growth. New grains are generated when local conditions are favorable, following an 

instantaneous uniform model with a predefined constant number of nuclei and a predefined 

constant initial diameter or following an instantaneous non-uniform law in which the number 

of particles nucleated depends on the undercooling and is classified by grain size. An example 

for the latter one is illustrated in Fig.2. 7, issued from Marie Bedel’s Ph.D thesis [Bedel, 

2014] to which further description is referred. 

 

 

 
 

 

 

Fig.2. 7  – Grain nucleation with an instantaneous non-uniform law. 

Grain density depending on undercooling and arranged in classes with different grain sizes,  

Illustrative figures issued from [Bedel, 2014]. 

 

 

 Methodologically initializing one stage with the solution obtained from the other stage 

creates a consistent connection between these two contributions in order to determine an 

entire evolution of variables. This approach provides an efficient way when numerically 

solving a system of non-linear equations that describe strongly coupled multi-scale physical 

phenomena in solidification. Besides considering the solid motion together with other 

phenomena (heat transfer, solute transport, liquid movement), the model can treat both 

globular and dendritic grains, simultaneously incorporating a refine solute diffusion length 

[Tveito et al., 2011] as well as tracking the columnar-to-equiaxed transition [Leriche et al., 

2015]. It was successfully applied to predict the macrosegregation of large industrial ingots, 

such as a 3.3t steel ingot [Combeau et al., 2009][Založnik and Combeau, 2009a], a 6.2t steel 

ingot [Kumar et al., 2012], a 65 steel ingot [Combeau et al., 2012].  Fig.2. 8 presents 

simulation results for the 3.3t steel ingot at an intermediate time, issued from [Combeau et al., 

2009], with three case studies, including Case 1 - fixed solid phase, Case 2 - solid transport by 

assuming globular grains and Case 3 - solid transport with dendritic grains. It can be seen that 

the solid motion significantly impacts the solidification sequence and the flow patterns. Off 

these studies, the macrosegregation predicted by the dendritic model is very close to 

experimental measurements, as shown in Fig.2. 9.   
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Ingot geometry Case 1 Case 2 Case 3 

    

 
   

 0  1  -0.08  0.08 

   

   

Fig.2. 8  –  Ingot geometry with the map of grain structures identified from experiments 

and simulation results at 1800 s, issued from [Combeau et al., 2009], including three case 

studies: 

  Case 1   fixed solid phase. 

 Case 2   globular grain transport. 

 Case 3   dendritic grain transport. 

For each case, LHS :  solid fraction map and solid velocity vectors. 

RHS : segregation ratio map and liquid velocity vectors/streamlines. 

 

 

Case 1 Case 2 Case 3 Experiment Segregation ratio along center 

     

    

 
   

Fig.2. 9  –  Final macrosegregation ratio maps and segregation ratio along the center line, 

issued from [Combeau et al., 2009]. 
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2.4.4 Models at CEMEF 

 

Developed in FE formulation, the works related to solidification modeling are implemented in 

two codes at CEMEF. The first one in Fortran is called R2SOL and used for two-dimensional 

solidification simulations. The second one is based on the computational platform named 

CIMLib, a C++ parallel computing library that can address two-dimensional and three- 

dimensional geometries.  

 

The first works carried out in R2SOL consisted in developing the resolution for the Navier-

Stokes equation using a velocity-pressure P2+/P1 formulation and an arbitrary Lagrangian-

Eulerian method, then implementing the resolution for energy and solute transport equations 

as well as coupling the resolutions [Gaston, 1997] [Gaston et al., 2000]. After that, subsequent 

developments investigated various issues and comprised an implementation of a P1+/P1 

formulation [Heinrich, 2003], optimizations by studying coupling approaches [Liu, 2005] and 

by using an adaptive anisotropic remeshing [Gouttebroze, 2005]. The transport of solid phase 

was not addressed through these developments. However, the deformation of the solid phase 

and its interaction with the liquid phase gave rise to the development of a solid-liquid 

concurrent resolution scheme. The approach was limited to the packed bed regime in which 

the solid phase was treated as a continuum following a viscoplastic compressible constitutive 

equation, and the liquid flow obeyed a permeability law such as Carman-Kozeny. The 

concurrent resolution consisted in solving solid velocity, liquid velocity and pressure through 

a velocity-pressure formulation, using a P1+/P1+/P1 finite element formulation. Details of 

these works are presented in [Bellet, 2005] [Bellet and Fachinotti, 2006] [Bellet, 2007]. One 

of the applications was to study the macrosegregation due to solid deformation in continuous 

casting. Fig.2. 10 presents simulation results on a thick slab of steel (Fe-0.1%C) in the late 

stage of solidification [Fachinotti et al., 2006]. Fig.2. 10-a) shows the relative velocity vector 

in the mushy zone with two solidus isotherms, displaying the interaction tendency between 

the solid and liquid phases. Fig.2. 10-b) depicts the divergence distribution of the intrinsic 

solid velocity (negative values in blue color indicating contraction zones and positive values 

in red color for expansion zones). As it can be observed that the intrinsic solid velocity 

divergence predicted is consistent with the deformation and strain states involved: positive 

values are found in the stretched mushy core between two face-to-face rolls and negative 

values in compressed regions between two successive rolls. The segregation map in Fig.2. 10-

c) exposes an alternative formation of positive and negative segregations at the center of the 

slab: negative values (blue color) are predicted for the zones getting out a roll pair and 

positive values (red color) for the zones entering a roll pair.  

 

 

 

 

 

 



39 
 

Chapter 2 - Literature Reviews 

 

  
   

Fig.2. 10  –  Schematic of a continuous casting slab & the liquid fraction distribution along 

the slab. Results illustrated on a thick slice of the slab (marked by the red rectangle) 

including: 

 a) Relative velocity vectors in the mushy zone displayed with (red) solidus isotherms.  

 b) Divergence distribution of the intrinsic solid velocity (negative values in blue color 

for contraction zones ; positive values in red color for expansion zones). 

 c) Segregation map (negative values in blue color ; positive values in red color). 

 Figures issued from [Fachinotti et al., 2006]. 

 

 

Related to solidification modeling realized in CIMLib, two recent works including the theses 

of Rivaux [Rivaux, 2011] and Carozzani [Carozzani, 2012] will be presented. They can be 

considered as the starting basis for our own developments. 

 

The first contribution aims at studying macrosegregation induced by thermo-solutal liquid 

convection and solid deformation. This last aspect is specific to the continuous casting 

process due to deformation of the solidified shell either in the mold or in the machine when 

passing by the support rolls. The model using the enthalpy-based formulation was first 

implemented without considering solid deformation, in which the liquid is assumed to be 

locally well mixed; the microscopic evolution follows the lever rule (or the Scheil 

approximation). The average solute composition carried along in the liquid flow is determined 

by solving the summed-up solute equation of the solid and liquid phases, thus there is no 

explicit description of interfacial exchanges. After that, from the fixed and rigid solid case, in 

order to account for the solid deformation, the model is extendedly coupled with the 

resolution of solid mechanics, performed with Thercast®, providing the solid velocity field 

which is introduced into the Darcy term using the Carman-Kozeny law and in the terms 

arising from the relative velocity, 〈  〉  〈  〉 , in the solute transport and energy equations. 

 

 

a) b) c) 
0.03 

-0.03 

0.03 
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The second work [Carozzani, 2012] is based on the fixed solid assumption. The model was 

developed to predict grain structures using the Cellular Automaton – Finite Element (CAFE) 

method, originated from the work of Gandin and Rappaz [Gandin and Rappaz, 1994], in 

which the mutual interpolations between the FE and CA resolutions allow relating 

microstructures and macroscopic features. The quantities determined at FE nodes, i.e. 

enthalpy and solute concentration, are interpolated at cells of the CA grid superimposed onto 

the FE mesh, at which the nucleation, solute diffusion and grain growth are to be modeled. 

Once determined, the evolution of variables at CA cells is deduced to obtain the 

corresponding quantities at FE nodes by an interpolation procedure. We introduce here one of 

the case applications studied in this thesis to which detailed information and analyses are 

referred. The case study was investigated to simulate solidification of a parallelepiped cavity 

of 100 mm (length) x 60 mm (height) x 10 mm (with), containing a Sn-3wt%Pb alloy, as 

shown in Fig.2. 11-a). The cooling is controlled by imposing the temperature on two narrow 

vertical sides, other walls are considered as to be adiabatic. The corresponding experiment 

benchmark is described in [Hachani et al., 2012]. 

 

As presented in Fig.2. 11-b), the cooling curves predicted by CAFE model (plotted by colored 

solid curves) retrieve experiment measurements (displayed by black dashed curves), taking at 

four positions L21, L24, L27, L30 corresponding to four points at 5, 35, 75, 95 mm from the 

left side at the mid-height of the cavity. Fig.2. 12 shows a good agreement of the grain 

structure in the cavity’s median plane between numerical predictions given by CAFE 

simulation (Fig.2. 12-a) and experimental results (Fig.2. 12-b). In addition, it is noticed that 

there are equiaxed grains visualized in the zone marked by a dashed ellipse in Fig.2. 12-b). 

The effect of crystal transport during solidification would be accounted for to properly 

simulate the process. 

 

 

 

 
a) b) 

  

Fig.2. 11  –   a) Configurations of the simulated cavity. 

 b) Cooling curves (black dashed curves) measured by experiment and 

(colored solid curves) predicted by CAFE simulation, recorded at four 

locations L21, L24, L27, L30 being situated at 5, 35, 75, 95 mm from the 

left side at the mid-height of the cavity, issued from [Carozzani, 2012]. 
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a) b) 

  

Fig.2. 12  –  Grains structure maps in the cavity’s median plane 

 a) predicted by 3D CAFE simulation [Carozzani, 2012] 

b) obtained from experiment analysis [Hachani et al., 2012] 

 

 

It can be realized that the solid transport in solidification has been almost modeled by using 

finite volume methods. Till now, modeling with consideration of settlement and floating of 

solid grains developed on the finite element framework has been limited while the solid 

movement is known as one of the crucial factors causing macrosegregation and structural 

heterogeneities, especially in producing large castings. Being inspired by successful 

applications of the FV model in SOLID software which uses a splitting method to effectively 

solve highly dependent multi-scale phenomena during solidification, we are interested in 

adapting and implementing this scheme into the FE context to improve the models at CEMEF 

in which modeling of the motion of equiaxed grains has not been considered yet.  
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2.5 Summary 

 

In this chapter, we first reviewed the multi-scale modeling and its application to the 

solidification context, using the volume averaging technique whose principles were 

summarized. In the following, the development of solidification models was presented, 

focusing on those using the volume averaging technique with the presence of solid transport. 

Lastly, models at CEMEF were summarized, on which our work will be developed consisting 

in adapting the FV growth-transport model in SOLID software into the FE framework. The 

realization steps can be outlined as follows.  

 

 First considering a stationary system, in order to describe the formation and 

evolution of equiaxed grains, we will implement the nucleation-growth stage from 

the FV model which is able to account for an incomplete mixing solute diffusion 

within both solid and liquid phases. 

 

 The next operation is to take into account the melt convection but still no solid 

motion. We will additionally solve the liquid momentum equation and the transport 

equations due to the liquid movement driven by thermo-solutal buoyancy.  

 

 Following this work, the solid motion will be integrated into the model through two 

principal steps: first the FE resolution for purely advective equations will be 

established without grain growth. Then the implementation for the complete model 

will consist in combining solid transport with growth stage.  

 

 2D numerical simulations will be performed and compared to reference results in 

each step to verify our implementations and our resolutions. 

 

 After that, based on this model for two phases, the development will be extended to a 

three-phase model which allows accounting for the morphology of grains. 

 

 Finally, 3D simulations will be studied and industrial applications will be carried out 

for the 3.3t steel ingot produced by Aubert & Duval (Fig.2. 8). 
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2.6 Résumé en français 

 

Dans ce chapitre, nous avons tout d’abord présenté le principe de la modélisation multi-

échelle et de son application à l’étude de la solidification en utilisant la méthode de la prise de 

moyenne volumique dont les principes ont été résumés. La partie suivante a porté sur les 

modèles de solidification qui utilisent la technique de la prise de moyenne et prennent en 

compte le transport des grains équiaxes. Enfin, nous avons fait un résumé des modèles 

préexistants au CEMEF, auxquels sera intégré notre travail dont les étapes de réalisation sont 

les suivants. 

 

 Dans un premier temps, sans mouvement des phases, les modélisations de la 

germination et de la croissance des grains équiaxes seront mises en œuvre avec un 

modèle de croissance qui permet de prendre en compte une diffusion incomplète du 

soluté dans les phases de liquide et de solide.   

 

 A l’étape suivante, la convection thermo-solutale sera prise en compte mais sans 

mouvement du solide. Pour ce faire, le modèle de croissance sera combiné à la 

résolution par éléments finis des équations de conservation de la quantité de 

mouvement et de transport du soluté associées à l’advection du liquide.   

 

 Subséquemment, l’intégration du transport des grains solides dans le modèle sera 

effectuée en deux étapes principales: premièrement, la résolution par éléments finis 

des équations du transport pur sera mise en place en négligeant la croissance des 

grains; deuxièmement, l’implémentation du modèle complet, constitué du transport 

et de la croissance, sera menée. 

 

 Au cours du fil de ces travaux, des calculs numériques correspondants seront établis 

et réalisés pour vérifier nos implémentations. 

 

 Après ces étapes, à partir du modèle à deux phases, le développement sera étendu à 

un modèle à trois phases qui permet de prendre en compte la morphologie des grains 

dendritiques. 

 

 La partie finale s’intéressera aux simulations en 3D et aux applications industrielles. 
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Chapter 3  

Finite Element Implementation and Adaptation 
 

 

In this chapter, we will present our model adaptation and its numerical implementation at 

CEMEF. We first focus on the adaptation to the FE context of the model for the macroscopic 

phenomena including the transport of phases, grain density and solute, neglecting terms 

related to the contribution of microscopic processes; then we present the FE solvers for the 

conservation equations of energy and the one of solid and liquid momentums. After that, the 

microscopic evolution models, nucleation and growth stages, are described. Then the total 

coupling between these stages will be addressed and discussed. Finally, from the present 

model with two phases, we implemented its extension to the three-phase model issued from 

the thesis work of Marie Bedel [Bedel, 2014], which allows accounting for the morphology of 

dendritic grains.  

 

3.1 Two-Phase Solidification Model 

 

Before studying each stage of the transport-growth model, we introduce first several points 

related to the use of the splitting scheme, applied to the solidification context, developed by 

Založnik and Combeau [Založnik and Combeau, 2010a]. 

 

1. Using this scheme, the evolution of phase fraction, grain density and solute 

concentrations is solved by splitting the transport and growth stages since it results 

from the progress of phenomena at very different scales of time and space (from a few 

seconds for nucleation and growth processes occurring at dendrite arms, to a few 

hours for those of transport taking place on systems sized in meters). The resolutions 

for the energy and momentum conservation equations are effectuated outside the 

splitting. An illustration of the resolution algorithm is schematized in Fig.3. 1. 
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Fig.3. 1 – Schematic of the resolution algorithm using the splitting method. 

 

 

2. An iterative procedure of fixed point type is utilized to solve the entire set of non-

linear equations. The notation ( ) is hereafter referred to a previous iteration relative 

to the actual one considered (   ). 

 

3. Additionally, when applying this splitting method, the use of phase fractions 

associated to velocity fields should be noticed. As introduced in Section 2.4.3, in the 

transport stage where only the advective terms are accounted for, the transport of 

phase 𝛼 (𝛼 represents either the solid or liquid phase, i.e. 𝛼    or  ) is thus described 

by Eq.(37) from which a continuity equation (38) can be deduced by summing 

equations written for the solid and liquid phases, with assumption of constant and 

identical density for each phase. It is expressed as a function of phase fractions 

obtained from the transport stage, 𝑔  
 . Moreover, to determine which value of phase 

fractions should be used in the advective terms of the transport equation for a general 

quantity in phase 𝛼, 〈  〉  
 , it is attributed by an undetermined value 𝑔   

  as written 

in Eqs.(39).   
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On the one side, these equations can be further performed as Eqs.(40). On the other 

side, they must satisfy Eqs.(41) since the quantity must be conserved during the 

process. Substituting Eqs.(37) and (41) into Eqs.(40), we can deduce that Eqs.(40) are 

fulfilled if 𝑔   
  𝑔  

 . Consequently, the phase fractions computed from the transport 

stage 𝑔  
  are used in the continuity equation as well as in advective terms of all 

equations to ensure the conservation of quantities and the consistent scheme 

implemented. 

 

 
 (𝑔  

 )

  
   (𝑔  

 〈  〉 )    (37) 
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where the subscripts    and     indicate the transport stage and an undetermined 

value, respectively. 

 

3.1.1 Modeling of Macroscopic Transport Phenomena with FEM 

3.1.1.1 Pure Transport Equations and Artificial Diffusion 

 

To model the transport of particles, like solid grains, Lagrangian-Lagrangian and Eulerian-

Lagrangian methods are a useful analysis tool for studying in detail interaction processes, e.g. 

particle-particle or particle-liquid interactions. In Lagrangian-Lagrangian approaches, the 

fluid dynamics is simulated by the Smoothed Particle Hydrodynamics (SPH) method using a 

set of moving makers in a Lagrangian framework. Each marker has an associated kernel 

function, W(r, h), defined over a support domain, S(h), where r is the distance from the SPH 

marker and h is a characteristic length that defines the kernel smoothness, as presented in 

Fig.3. 2-a. The optimal value for h is such that every fluid particle has about 30-50 neighbors 

within smoothing volume. Each marker carries fluid properties like pressure, density, etc. For 

the solid phase, its behavior results from the sum of forces and moments acting on it, which 

are described by the Newton-Euler equations for each single solid body. The dynamics of the 

two phases, fluid and solid, are modeled through Boundary Condition Enforcing (BCE) 

markers placed on and close to the solid surface, as schematized in Fig.3. 2-b.  
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a)  b) 

 

Fig.3. 2 –  a) Illustration of a support domain, S, with black dot SPH makers. 

 
b) Schematics of BCE makers (black circles) distributed on a solid object (gray area) 

and SHP neighbors (white circles).  

 Figures issued from [Pazouki and Negrut, 2015].  

 

 

Further details related to this technique can be found in [Abel, 2011] [Bauer and Springel, 

2014] [Pazouki and Negrut, 2015]. 

 

Another approach to simulate the particles transport is using Eulerian-Lagrangian methods in 

which the integration of transport equations is performed for each individual particle moving 

in a continuous fluid. The motion of particles is modeled by accounting for various governing 

forces that depend on study cases. Different applications were investigated by using this 

method: studying the behavior and trajectory of growing solid grains transported in the bulk 

liquid [Stomp et al., 1999]; simulating the motion of bubbles (light particles) and inclusions 

(heavy particles) in a rotating fluid flow during the Rotating Continuous Casting process 

[Fidel et al., 2011]; predicting the entrapment of slag inclusion and bubbles in the continuous 

casting od steel slabs in [Zhang et al., 2004] [Yuan and Thomas, 2006] [Pfeiler et al., 2007] 

[Thomas et al., 2014].   

 

However Eulerian-Eulerian approaches are commonly preferred in industrial applications 

because on the one hand they can provide essential information, e.g. the distribution and 

velocity of particles and on the other hand they are more advantageous for dealing with high 

Reynolds numbers and a large number of particles. Our development aims mainly at studying 

the effects of liquid and solid movements on the macrosegregation formation during 

solidification, which is applied first to average-sized samples and ultimately to large industrial 

castings. With this objective in mind, we use the Eulerian-Eulerian method in which the solid 

is considered as a continuum composed by a large number of particles; it is characterized by a 

fraction, a grain density (or a mean radius) and its solute content. The solid phase moves in a 

continuous fluid and solid-liquid interactions are introduced through drag forces in the 

momentum equations. 
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In the transport stage, neglecting the contribution of microscopic phenomena (which will be 

treated separately, in a splitting manner), the transport of quantities including the solid phase, 

grain density and solutes are described by Eqs.(42), (43) and (44) respectively.  

 

 𝑔  
 

  
   (𝑔  

 〈  〉 )    (42) 

  

    
  

   (   〈 
 〉 )    (43) 

  

 (𝑔  
 〈  〉  
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   (𝑔  

 〈  〉  
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where the subscript    indicates the transport stage,  𝑔  
  is the solid fraction,     is the grain 

density, 〈  〉  
  is the solute concentration in phase 𝛼, 〈  〉  is the velocity of phase 𝛼. 

 

Due to the lack of diffusive effects, FEM resolutions for purely advective equations or 

hyperbolic equations as those above manifest numerical problems as instabilities and possibly 

non-unique weak solutions.  

 

Concerning convection-dominated problems, numerical instabilities can be effectively 

decreased by using upwind methods since the discretization of advective terms with upwind 

difference schemes introduces by itself an artificial diffusion that smears oscillations, e.g. 1D 

studies introduced in [Christie et al., 1976], 2D problems specified in [Henrich et al., 1977] 

and a more general upwind technique applied to both 1D and 2D cases presented in [Hughes, 

1978]. However resulting solutions are excessively over-diffused. For this reason, FE 

stabilizations have been developed to overcome difficulties encountered in solving 

convection-dominated equations. A great pioneering investigation for this issue was devoted 

by Hughes and co-workers whose works have been popularly applied in various domains. For 

incompressible flows, streamline upwind methods were proposed to eliminate the crosswind 

diffusion by constructing an artificial diffusion operator acting only in the flow direction 

[Hughes and Brooks, 1979]. Instead of modifying the diffusion flux like in these approaches, 

which can cause incoherence problems, the Streamline Upwind/Petrov-Galerkin (SUPG) 

method was developed [Hughes and Atkinson, 1980], in which the introduction of streamline 

upwind diffusion can be considered as a modification of the interpolation functions of the 

standard Galerkin method. This approach ensures that the residual of the associated weak 

formulation vanish with the exact solution. Further numerical application examples for these 

methods were reported in [Brooks and Hughes, 1982]. FE stabilization techniques dedicated 

to incompressible flows can be consulted in [Tezduyar and Hughes, 1982] [Hughes et al., 

1987].  
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An alternative approach developed to solve hyperbolic equations is the flux corrected 

transport scheme which provides a compromise solution for problems of spurious oscillations 

and excessive numerical diffusion [Kuzmin and Turek, 2002]. Unlike methods derived from 

the Galerkin method, this technique involves modifying the algebraic matrices of system in 

order to have desired effects, i.e. manipulating on matrices to be solved, first adding diffusion 

to eliminate negative off-diagonal coefficients of mass matrices, then removing excessive 

diffusion, but it is applicable to the case of divergence-free velocities.  

 

Firstly, through the above studies, it is worthy to notice that the presence of diffusion, whether 

being generated due to computational procedures or an artificial introduction, it seems 

essential when numerically solving convection-dominated equations. In our case, we solve the 

transport equations (42)-(44) in which there is no diffusion, numerical resolutions can 

produce unphysical instabilities. Working on the existing FE solver which was developed for 

a convection-diffusion-reaction equation and already integrated the SUPG stabilization 

scheme, we propose to introduce an artificial diffusion coefficient into hyperbolic equations 

to be solved. Secondly, while the total average velocity, including both solid and liquid 

velocities, is divergence-free, as described by Eq.(38), the transport velocities belonging to 

each phase are non-divergence-free fields Eqs.(37). In addition, complexities come from 

discontinuities due to the solid packing phenomenon taking place at a transition zone between 

two regions: in one region small grains move freely in the liquid phase (the solid fraction is 

smaller than a packing fraction); in another region large grains settle, accumulate to create a 

packed zone and become stationary (the solid fraction is higher than the packing limit). It can 

be seen that discontinuities are related to quick changes in the velocity and fraction of the 

solid phase while it forms a packed bed. 

 

Accordingly, we developed in our context an adaptive artificial diffusion in order to stabilize 

FE resolutions while not smearing results unreasonably. The coefficient   , as expressed in 

(45), consists of the gradient of solid velocities (the average solid velocity divergence   〈  〉 

and the intrinsic solid velocity divergence   〈  〉 ) which contain information about the 

variation of the related quantities (both velocity and fraction of the solid phase). It allows 

detecting and reducing discontinuities where the solid phase is being packed. Thus the 

artificial diffusion is not solved everywhere. It is only restricted to critical zones where the 

solid velocity is changing abruptly. An alternative option could be obtained by using the 

intrinsic solid velocity divergence   〈  〉  and the solid fraction gradient  𝑔 . However, the 

former expression provides a further advantage as it vanishes in the absence of solid transport; 

the model is strictly valid for the case without solid motion. The formulation of this 

coefficient is based on the principle from the work of Cook and Cabot [Cook and Cabot, 

2003] in which the authors developed an artificial non-linear diffusion using the entropy 

gradient to treat issues associated with discontinuities of the temperature and mass fraction in 

supersonic reacting flows. The constant factors 𝛼 and   in this coefficient (45), allows 

controlling the amount of diffusion in a direct way. Moreover, this approach provides more 

flexibility compared to the implicit diffusion introduced by upwind methods. 
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   (  
  )

 
(𝛼 |  〈  〉|   |  〈  〉 |) (45) 

  

where   
   denotes the characteristic size of each mesh element   in the direction of the solid 

velocity   , the formulation is issued from [Fachinotti et al., 2006]. 

 

   
   

 ‖       
 ‖

∑ |       
     |

  
 

 (46) 

   

 with    is the interpolation function associated with node   

         
  is the solid velocity at the center of the element 

 

It should be noticed that using a single artificial diffusion coefficient in the different transport 

equations is necessary, in order to ensure the consistent transport of related quantities and the 

conservation of mass and energy. 

 

Consequently, by adding the artificial diffusion coefficient   , the transport equations for 

solid phase, grain density and solute as issued from (42)-(44) are modeled by Eqs.(47)-(49). 

  

 𝑔  
 

  
 〈  〉   𝑔  

  𝑔  
    〈  〉    (   𝑔  

 )    (47) 

  

    
  

 〈  〉             〈 
 〉    (      )    (48) 

  

 (𝑔  
 〈  〉  

 )

  
 〈  〉   (𝑔  

 〈  〉  
 )  𝑔  

 〈  〉  
    〈  〉  

   (   (𝑔  
 〈  〉  

 ))    

(49) 

 

Assuming constant densities for the solid and liquid phases, it is possible to transform Eq.(49) 

in the form: 

 

𝑔  
 [
 〈  〉  

 

  
 〈  〉    〈  〉  

 ]    (  𝑔  
   〈  〉  

 )  〈  〉  
   (    𝑔  

 ) 

   (   〈 
 〉  
   𝑔  

 ) 

(50) 

 

The third term in Eq.(50) is identified by using Eq.(47). Its introduction allows reducing the 

need of calculating the divergence of potentially discontinuous velocity fields, which is 

known as being not favorable for the FEM. The solute transport equation is thus to be 

implemented with the formulation of Eq.(50). 
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Since Eqs.(47), (48) and (50) are of similar general form, as given by Eq.(51), we summarize 

here the discretization implemented for Eq.(51) and we can obtain the discretization of the 

above equations by replacing the variable   and the factors 𝛼   𝛼   𝛼     with the 

corresponding quantities, as summarized in Tab.3. 1. Details of FE discretization and 

resolution methods can be consulted in [Rappaz et al., 2003]. 

 

Tab.3. 1 – Corresponding quantities  to those of the generic equation (51) 

Eq.   𝛼  𝛼  𝛼    

(47) 𝑔  
         〈  〉    

(48)            〈  〉    

(50) 〈  〉  
  𝑔  

    𝑔  
    (    𝑔  

 )   (   〈 
 〉  
   𝑔  

 ) 

 

Let     , where   is the number of space dimensions,   the studied domain which is 

bounded by the border        , 

 

𝛼 (
  

  
     )    (𝛼   )  𝛼     (51) 

  

with the boundary conditions :  

  

        on     and         on     (52) 

  

where   is the variable;   the transport velocity; 𝛼  the diffusion coefficient; 𝛼  the reaction 

term;   the source term;     and     are the boundary’s subsets on which the Dirichlet and 

Neumann conditions apply respectively. 

 

The corresponding generalized solution is supposed to satisfy the strong form of Eq. (51) for 

sufficiently smooth data and to exist even if the divergence theorem is not applicable and the 

underlying conservation law holds only in an integral sense. The solution   must belong to 

the space of functions which are continuous with continuous partial derivatives of first and 

second order. In order to broaden the class of admissible functions, it is worthwhile to 

consider an integral or weak form of the conservation law. An approach to obtain the 

derivation of weak forms for a given partial differential equation is the method of weighted 

residuals. Consider the residual of Eq.(51): 

 

  𝛼 (
  

  
     )    (𝛼   )  𝛼     (53) 
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Let us define the following functional spaces of    and    

 

  {      ( )     |        } (54) 

  

   {      ( )     |     } (55) 

  

where   ( ) is the Sobolev space which is given as   

   

   ( )  [    ( ) 
  

   
   ( )] (56) 

   

with   ( ) the Lebesgue space :  

   

   ( )  [      ∫    
 

 

  ] (57) 

 

A zero residual remains unchanged when being multiplied with a test function and integrated 

over the domain of interest. By multiplying by the test function        
  (using the 

SUPG method), the weak formulation is defined as to find   such that Eq. (58) is satisfied. 

 

∫ [𝛼 (
  

  
     )    (𝛼   )  𝛼    ]

 

 

          (58) 

  

with               (59) 

   

where   is a positive stabilization parameter. An optimal formulation of   has not been 

generalized for all situations. By default in the existing FE codes, the parameter   is proposed 

as (60), which is generally considered as a guaranteed choice for most cases with unstructured 

meshes. Further discussion and test comparisons for different SUPG stabilization parameters 

can be found in [Akin and Tezduyar, 2004] [John and Knobloch, 2007]. 

 

   
      

 

‖       ‖
(    (  )  

 

  
) (60) 

   

 with     
  
  ‖       ‖

  𝛼 
 (61) 

   

where   
  is the characteristic mesh size of  an element   in the direction of the velocity  , as 

defined in (46);         is the velocity at the center of the element. 

 

If the set space    has infinite dimension and is composed of independent functions, Eq. 

(58) and Eq.(51) are equivalent. If it’s not the case, the weak solution   of Eq.(58) is only an 

approximate solution to the problem. 
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The above weak-form equation is solved by the FEM, which consists in approximating the 

continuous spaces   and    , of infinite dimensions, by the corresponding discrete spaces 

   and   
 . 

 

        
   

     (62) 

 

The domain   is decomposed into small elements and the discretized domain    is defined 

as: 

 

   ⋃  
 

           (63) 

  

where    denotes the domain of element   and   the set of elements  .  

 

The variable   in the studied domain    is approximated by the following sum expressed 

over Nn nodes. 

 

   ∑    

  

   

 (64) 

  

where    is the interpolation functions of the variable   associated with node   and    is the 

value of   at node  . 

 

By using an implicit temporal discretization and applying the divergence theorem [Rappaz et 

al., 2003] to the diffusion term, Eq.(58) is expressed as: 

 

∫       𝛼 
          

 
 

  

 

  

   ∫       

 

  

𝛼    (    )   (65) 

  

  ∫   𝛼   (    )   
 

   

   ∫ 𝛼   (    )     

 

  

    

  

  ∫       𝛼     

 

  

   ∫           

 

  

    

   

     

  

Here the repeated index   stands for a summation and   
 

  denotes the nodal value of   at the 

beginning of the time step when discretizing the time derivative 
  

  
. It should be noticed that 

          for linear elements and         on boundaries. 
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The discretization of the problem leads to Eq.(66) being expressed with matrix formulation. 

  

[       ]{ }  {   
 }  { } (66) 

  

where { } is the vector of variable to be determined  

   

 [ ]   ∑ ∫      𝛼 
  

  
   

  

  

   

 (67) 

   

 [ ]   ∑ ∫      𝛼         

  

  

   

 (68) 

   

 [ ]   ∑[∫𝛼            

  

 ∫ 𝛼         
 

   

  ]

  

   

 (69) 

   

 [ ]   ∑ ∫𝛼            

  

  

   

 (70) 

   

 { } 
 

  ∑ ∫      
    

 
 

  
  

  

  

   

 (71) 

   

 { }  ∑ ∫            

  

  

   

 (72) 

 

We have seen the FE implementation for the equations in the transport stage accompanied 

with particular numerical treatments. The fixed point procedure presented at the beginning of 

this chapter is now updated as shown in Fig.3. 3, by introducing the transport solutions 

determined for an actual iteration    , including the solid fraction 𝑔  
 

 
   , the grain density 

  
   

   and the intrinsic compositions 〈  〉  
 

 
   . 
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Fig.3. 3 - Schematic of the resolution algorithm using the splitting method, 

introduced the solutions obtained from the transport stage. 

 

 

Next we will study the FE solver for the energy equation, recalling that this equation is solved 

outside the splitting scheme, according to the developed method in [Založnik and Combeau, 

2010a]. 
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3.1.1.2 Energy Equation 

 

3.1.1.2-a) Description of the Implemented Equation  

 

The averaged energy equation for phase 𝛼 (recalling that 𝛼 represents either the liquid or the 

solid phase in our problem) is given as the following equation, previously introduced as 

Eq.(14) in Chapter 2:  

 

 

  
(𝑔 〈  〉 〈  〉 )    (𝑔 〈  〉 〈  〉 〈  〉 ) 

     (𝑔 〈  〉 )    
      

      
    

(73) 

  

where 〈  〉  is the intrinsic average of the heat flux vector in phase 𝛼;   
      

    and   
    

are the interfacial heat transfers due to phase change, diffusion and nucleation respectively. 

 

Two considerations are taken into account for Eq.(73). 

 

i. Firstly, as demonstrated above, when using the splitting scheme, the phase fractions in 

advection terms must be the values obtained from the transport stage. Eq.(73) is thus 

expressed as (74).     

 

 

  
(𝑔 〈  〉 〈  〉 )    (𝑔  

 〈  〉 〈  〉 〈  〉 ) 

     (𝑔 〈  〉 )    
      

      
    

(74) 

 

ii. Secondly, for numerical stabilization, the origin transport equations (42)-(44) are 

transformed to Eqs.(47)-(49) by introducing the same artificial diffusion coefficient. 

This operation implies that the related quantities (phase fraction, grain density and 

solute concentrations) would be modified in a same manner by effects of numerical 

diffusion relative to solutions without diffusion. With respect to the treatment of the 

transport equations, the energy transported in each phase must be also modified by the 

same artificial diffusion in order that the transports of variables are consistent. 

Therefore the modified energy equation for each phase is given by: 

 

 

  
(𝑔 〈  〉 〈  〉 )    (𝑔  

 〈  〉 〈  〉 〈  〉 )    (   (𝑔  
 〈  〉 〈  〉 )) 

     (𝑔 〈  〉 )    
      

      
    

(75) 
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Furthermore, other assumptions when solving the energy equation are listed below: 

 

 The densities of the solid and liquid phases, respectively 〈  〉  and 〈  〉 , are constant 

and equal, denoted  : 

 

 〈  〉  〈  〉    (76) 

 

 The heat diffusion is modeled by the Fourier law: 

 

 〈  〉   〈  〉  〈  〉  (77) 

 

 The temperature of both phases is assumed to be identical due to a large thermal 

diffusivity. 

 

 〈  〉  〈  〉    (78) 

 

 Heat exchanges at the solid/liquid interface are assumed to be in equilibrium. 

 

   
      

      
      

      
      

      (79) 

 

 

By using the assumptions (77)-(79) and adding up Eqs.(75) for the solid (𝛼   ) and liquid 

(𝛼   ) phases, we obtain the mixture energy equation: 

 

 [
 〈 〉

  
   (𝑔  

 〈  〉 〈  〉  𝑔  
 〈  〉 〈  〉 )    (   (𝑔  

 〈  〉  𝑔  
 〈  〉 ))] 

   (〈 〉  )    

(80) 

  

where 〈 〉  𝑔 〈  〉  𝑔 〈  〉  (81) 

   

 〈 〉  𝑔 〈  〉  𝑔 〈  〉  (82) 

 

 

For convenience of numerical implementation, the advection term is expressed using the 

average values of enthalpy and velocity. The corresponding correction is put on the RHS as a 

source term, noticing that since the average velocity is a divergence-free field, the term 

associated to the convection on the LHS 〈 〉   〈 〉 is equal to   (〈 〉〈 〉) on the RHS. In 

addition, in the added diffusion term, the mixture enthalpy using the transport phase fractions 

is approximated by the unknown average enthalpy. These transformations lead to Eq.(83). 
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 [
 〈 〉

  
 〈 〉   〈 〉    (   〈 〉)]    (〈 〉  ) 

  [   (𝑔  
 〈  〉 〈  〉  𝑔  

 〈  〉 〈  〉 )    (〈 〉〈 〉)] 

(83) 

  

where 〈 〉  𝑔  
 〈  〉  𝑔  

 〈  〉  (84) 

 

Compared to Eq.(51) presented above, Eq.(83) presents differences. It contains two unknowns 

in the LHS terms, the average enthalpy 〈 〉 and the temperature  , which are strongly and 

non-linearly related together as well as to other variables in the solidification context. An 

iterative resolution is operated in order to determine a solution for these variables and we 

present here the approach’s principle.  

 

For simplicity, the RHS of Eq.(83) is denoted as (85). In the iterative procedure, this source 

term is computed using the latest known values.  

 

    [   (𝑔  
 〈  〉 〈  〉  𝑔  

 〈  〉 〈  〉 )    (〈 〉〈 〉)] (85) 

 

The strong formulation is defined as to finding 〈 〉 over a bounded domain   and its boundary 

   such that:  

 

 [
 〈 〉

  
 〈 〉   〈 〉    (   〈 〉)]    (〈 〉  )     (86) 

  

with the boundary conditions   

  

                (Dirichlet condition)  

    

  〈 〉                  (Neumann condition)  

    

  〈 〉       (      )         (Fourier condition)  

    

                    

   

where   is the unit outward normal to   .  

 

Using the interpolation and test functions in the corresponding functional spaces, which are 

presented in Section 3.1.1 with the SUPG method, the weak formation consists in finding 

〈 〉    such that         
  

 

∫     { [
 〈 〉

  
 〈 〉   〈 〉    (   〈 〉)]    (〈 〉  )    }

 

     (87) 
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By applying the boundary conditions (considering the Diriclet and Fourrier conditions) to 

Eq.(87) and using the divergence theorem, we obtain Eq.(88) after several transformations. 

 

∫      
 〈 〉

  
 

   ∫      〈 〉   〈 〉

 

   ∫    〈 〉    

 

   (88) 

  ∫〈 〉     

 

   ∫    (      )

    

   ∫         

 

  

    

 

 

3.1.1.2-b) Discretization  

 

The studied domain   is approximated by the discretized domain    , the enthalpy 〈 〉 by 

〈 〉  with 〈 〉     {      (  )      |      (  )      |     (    )} and the 

temperature   by    with       {      (  )      |      (  )      |        }, 

the test functions          
  {      (  )      |      (  )      |     }. 

 

The approximated values of enthalpy, 〈 〉 , and temperature,   , are evaluated by the 

following sums expressed over the    nodes. 

 

 〈 〉  ∑   〈 〉 

  

   

    ∑     

  

   

 (89) 

 

By using an implicit temporal discretization and choosing       at nodes, we have for any 

node index   (here the repeated index   stands for a summation): 

 

∫       
〈 〉    〈 〉 

 
   

  
  

   (90) 

  

  ∫       〈 〉   (〈 〉   )

  

   ∫    (〈 〉   )     
  

    

   

  ∫〈 〉 (    )     
  

   ∫     ((    )      )

      

   ∫          
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Eq.(90) can be expressed as a vector equation using matrix formulation as:  

 

[             ]{ }  [ ]{ }  { } 
  { }  { }    (91) 

  

where the different matrixes and vectors result from an assembly procedure processed on all 

finite elements: 

  

 
{ } and { } are the vectors of the unknowns including enthalpy and temperature, 

respectively. 

   

 [     ]   ∑ ∫       
  

  
   

  

  

   

 (92) 

   

 [     ]   ∑ ∫           〈 〉   

  

  

   

 (93) 

   

 [ ]   ∑ ∫             

  

  

   

 (94) 

   

 [ ]   ∑[∫〈 〉          

  

 ∫         

   
 

]

  

   

 (95) 

   

 { } 
 

  ∑ ∫       
  〈 〉 

 
 

  
   

  

  

   

 (96) 

   

 { }  ∑ ∫          

   
 

  

   

 (97) 

   

 { }  ∑ ∫           

  

  

   

 (98) 
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3.1.1.2-c) Resolution Method  

 

In the present work, we solve for the set of nodal enthalpies which minimizes the residual 

vector (99). An alternative solution would consist in choosing nodal temperatures as principal 

unknown [Saad et al., 2015]. 

 

{ }  [             ]{ }  [ ]{ }  { } 
  { }  { } (99) 

 

As mentioned at the beginning of this chapter, due to a close relationship of all relevant 

variables, an iterative scheme - a fixed point approach - is implemented to solve the set of 

related equations, which is also effectuated at the same time to iteratively solve the non-linear 

energy equation. Therefore, the same notations are defined to call iterations, including     

for an actual iteration and   for a previous one. 

 

In each actual iteration    , we determine the enthalpy, { } 
   , or the variation of the 

enthalpy, {  } 
    ( { } 

    { } 
 ), which satisfies Eq.(100), which derives from a first 

order development of the vector { } : 

 

{ } 
    { } 

  [
  

  
]

 

 

( { } 
    { } 

 )  { } 
  [

  

  
]

 

 

{  } 
      (100) 

  

⇒ [
  

  
]

 

 

{  } 
      { } 

  (101) 

   

Knowing that [
  

  
]

 

 

 [               ̃]  (102) 

    

 where the tensor [ ̃] is expressed with its components : 

  

 [ ̃]
  
 [ ]  [

  

  
]
  

 

 where there is no sum over   (103) 

    

we rewrite Eq.(101) as  

  

 [               ̃] {  } 
      { } 

  (104) 

   

⇒ 
[               ̃] {  } 

    

  [[             ]{ }  [ ]{ }  { } 
  { }  { }]

 

 
 

(105) 
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For simplicity, the terms on the RHS of Eq.(105) can be denoted as follows: 

 {  }  [     ]{ } (106) 

   

 {  }  [     ]{ } (107) 

   

 {  }  [ ]{ } (108) 

   

 {  
 }  [ ]{ } (109) 

   

⇒ 
[               ̃] {  } 

    

  {  } 
  {  } 

  {  } 
  {  

 } 
  { } 

    { } 
  { } 

  
(110) 

   

As { } 
  { } do not change in iterations over a timestep, it is not necessary to indicate their 

number of iterations. Eq.(110) is then rewritten as (111), which is also arranged in the same 

order as in the implemented code. Although the terms related to boundary conditions which 

are separately treated in the code, here they are presented here together with the others.  

   

[               ̃] {  } 
    

 { } 
  {  } 

  {  } 
  {  } 

  {  
 } 

  { }  { } 
  

(111) 

   

where   

 [     ] [     ] [ ] [ ̃] are presented as (92);(93);(94) and (103) respectively, for 

which, the velocity and the conductivity are updated in each iteration by using the 

latest values.  
 

   

 ( { } 
  {  } 

 ) 
  ∑ ∫       

  ( 〈 〉  
  〈 〉  

 
 
)

  
   

  

  

   

 (112) 

   

 {  }  
  ∑ ∫    〈 〉 

        

  

  

   

 (113) 

   

 ( {  } 
  {  

 } 
 )

 
  

   

  ∑[∫        〈 〉 
  〈 〉 

      ∫ 〈 〉 
        

    

  

 ∫       
   

   
   

]

  

   

 (114) 

   

 { }  { }  are identical to (97) and (98).   
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The enthalpy obtained by solving the energy equation is put in the context of the fixed point 

scheme as presented in Fig.3. 4. 

 

 
 

Fig.3. 4 - Schematic of the resolution algorithm using the splitting method, 

introduced the energy solution. 

 

 

3.1.1.3 Momentum Equations 

Depending on the solid fraction, the behaviors of the solid and liquid phases are modeled in 

two distinguished regimes:  

 

 If the solid fraction is smaller than a critical packing value (𝑔  𝑔 
 ), solid grains are 

considered to move freely in the melt. This defines the so-called slurry regime.  

 

 In the other case (𝑔  𝑔 
 ), solid grains form a porous packed bed and they become 

stationary. The velocity of the solid phase is then considered null :     . For this, 

we have the so-called packed bed regime (or porous regime). 
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Actually, the reason for choosing such a simple condition to signify the transition from the 

slurry regime to the packed bed regime may be questionable. In the present work, we keep the 

same criterion as that in [Založnik and Combeau, 2010a]. In the application examples, we will 

see that despite of its simplicity, this criterion seems enough to represent the progressive 

packing of solid grains after transport and settlement. 

 

Several assumptions are supposed when solving the momentum equations as below: 

 

i. The phase densities are constant and equal, except for the buoyancy forces for which 

the liquid and solid densities are modeled as (115) and (116) respectively. 

 

  
      [    (      )    (〈 

 〉      )] (115) 

  

  
  

    

      
 (116) 

  

where      is the density at a reference temperature,     , and at a reference 

concentration,     ;      is the shrinkage coefficient. 

 

ii. The pressures in the solid and liquid phases are assumed to be equal. 

 

〈  〉  〈  〉    (117) 

 

iii. The liquid behaves as a Newtonian fluid with a constant viscosity. By neglecting the 

interfacial momentum transfer due to phase change, the divergence of the average 

deviatoric stress tensor is modeled as: 

 

  〈  〉       ( (𝑔 〈  〉 )   (𝑔 〈  〉 ) 
 ) (118) 

 

iv. In addition, the momentum transfer due to nucleation is also negligible relative to 

others, the equilibrium at the solid/liquid interface is thus described as: 

 

  
      

      (119) 

 

 

According to [Založnik and Combeau, 2010a], the authors solve two separate equations to 

calculate the liquid velocity, i.e.:  

 In the slurry regime, the equation to be solved is obtained by summing up the 

momentum equations of the liquid and solid phases in order that the momentum 

transfer due to interfacial interactions is not explicitly required to be computed. 

 

 In the packed bed regime, only the momentum equation for the liquid is solved 

(    )  with the use of a Darcy term to model the interaction with the static solid.  
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In the FE context, calculating the velocity of each phase by solving two different equations on 

a discretized domain can provoke numerical problems because of assembling dissimilar and 

irregular terms (i.e. one equation for slurry-regime elements and another for their packed-

regime neighbors). In order to overcome this issue, we further analyze the situation as 

follows. 

 

3.1.1.3-a) Conservation of the momentum for the liquid phase 

 

Using the aforementioned assumptions, the liquid momentum equation which is presented by 

Eq.(13) in Chapter 2 will be deduced as (120) for the slurry regime, (𝑔  𝑔 
 ). 

 

 [
 

  
(𝑔 〈  〉 )    (𝑔 〈  〉  〈  〉 )] (120) 

  𝑔         ( (𝑔 〈  〉 )   (𝑔 〈  〉 ) 
 )  𝑔   

          
   

  

 

Additionally, when using the splitting method, the liquid fraction associated to the velocity on 

the LHS of Eq.(120) must be the value coming from the transport stage with respect to the 

continuity equation as demonstrated at the beginning of this chapter. Meanwhile, the liquid 

fraction obtained from the growth stage is used for terms on the RHS of Eq.(120) since these 

quantities are related to a global evolution including both transport and growth processes. 

Accounting for these aspects, Eq.(120) is deduced as: 

 

 [
 

  
〈  〉     (〈 

 〉   〈  〉 )] (121) 

  𝑔         ( 〈  〉   〈  〉 
 )  𝑔   

          
   

  

  

where 〈  〉   denotes the product of the liquid fraction computed from the transport stage 𝑔  
  

and the intrinsic liquid velocity 〈  〉 . 

 

Similarly, the liquid momentum equation for the packed bed regime (𝑔  𝑔 
 ) is given as:  

 

 [
 

  
〈  〉     (〈 

 〉   〈  〉 )] (122) 

  𝑔         ( 〈  〉   〈  〉 
 )  𝑔   

          
   

  

 

Noting that Eqs.(121) and (122) only differ from each other in the momentum transfer term 

due to interfacial stresses, we can thus model the movement of the liquid phase with only one 

equation including both regimes by using a function, 𝛼 , switching between different regimes: 

 

𝛼  {
                         (𝑔  𝑔 

 )

                       (𝑔  𝑔 
 )

 (123) 
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Then, it can be envisaged to solve for a 𝛼 -weighted sum of Eqs.(121) and (122) on the whole 

domain including slurry regime and packed bed regime, as expressed by (124): 

 

𝛼     (   )  (  𝛼 )    (   )    (124) 

 

For numerical implementation, since a sudden change between the two regimes using the 

above switching function may cause discontinuities, we use a less brutal switching function, 

defined as: 

 

𝛼       (      [𝛼 (𝑔 
  𝑔 )])  (125) 

  

where we choose 𝛼     , as plotted in Fig.3. 5. 

 

  

 
 

Fig.3. 5 - Transition function, 𝛼       (      [𝛼 (𝑔 
  𝑔 )]), vs solid fraction 

where the value of the packing solid fraction 𝑔 
  is equal to 0.3. 

 

 

On the other hand, in order to effectuate the proposed combination (124) of Eq.(121) and 

Eq.(122) in a consistent way, we perform the momentum transfers of drag forces in the 

general form (126) applicable to both regimes. 

 

       
           (𝑔

 ) (〈  〉  〈  〉 ) (126) 

  

where the subscript   𝑔    denotes either the slurry regime or the packed bed regime.  

 

The expression of         for each regime is deduced by using the formulations of 

momentum transfers due to interfacial stresses presented in the article [Založnik and 

Combeau, 2010a], which were introduced in Chapter 2 (Eqs.(29)-(36)). 
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For the slurry regime : 

   

 

        

 𝑔       
   

‖〈  〉  〈  〉 ‖

(𝑔 ) 
 
 𝑔          

 (  )
 
(𝑔 ) 

 (127) 

   

For the packed bed regime : 

   

 
        

  

   
 
   (  𝑔 )   

  
 (𝑔 ) 

 (128) 

   

with      ,    and    defined as specified in Chapter 2. 

 

Then the general liquid momentum equation including both flow regimes is obtained by 

substituting (121),(122) and (126) into (124):  
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 〉   〈  〉 )] (129) 

   𝑔         ( 〈  〉   〈  〉 
 )  𝑔   

         

   

where      [𝛼         (  𝛼 )       ](𝑔
 ) (〈  〉  〈  〉 ) (130) 

   

        and         are evaluated as (127) and (128) respectively.  

 

 

Moreover, for the liquid momentum equation, the existing FE solver (referred to [Hachem et 

al., 2010]) was developed by choosing the average velocity, 〈  〉  𝑔 〈  〉 , as an unknown to 

be determined and the entire equation was divided by the liquid fraction for a numerical 

reason. Its implemented formulation is given as (131). 

 

 

𝑔 
[
 

  
〈  〉  

 

𝑔 
  (〈  〉  〈  〉)] (131) 

      
     ( 〈  〉   〈  〉 

 )

𝑔 
   

   
  

   
(〈  〉  𝑔 〈  〉 )  

 

where     is presented in Chapter 2 (Eq.(36)). 
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With respect to the previously developed solver, two considerations are proposed for the 

present work which consists in implementing Eq.(129), as follows: 

 

 the average transport velocity, 〈  〉   𝑔  
 〈  〉  , is selected as the unknown.  

 

 since the viscosity and drag terms also contain the average velocity, so it is as well 

approximated by the average transport unknown, i.e.: 

 

      ( 〈  〉   〈  〉 
 )       ( 〈  〉    〈  〉   

 ) (132) 

   

      [𝛼         (  𝛼 )       ]𝑔
 (〈  〉   𝑔

 〈  〉 ) (133) 

 

Therefore, the final formulation of the liquid momentum equation implemented is given as: 

 

 

𝑔 
[
 

  
〈  〉     (〈 

 〉   〈  〉 )] (134) 

      
     ( 〈  〉    〈  〉   

 )

𝑔 
   

   
    

𝑔 
  

   

where   

 
    

𝑔 
 [𝛼         (  𝛼 )       ](〈 

 〉   𝑔
 〈  〉 ) (135) 

 

Solving the system of equations including Eq. (134) and the continuity equation Eq.(38), we 

determine the liquid velocity, 〈  〉  , and the pressure,  .  

 

 

3.1.1.3-b) Conservation of the momentum for the solid phase 

 

Since the solid motion is only existent in the slurry regime, we only solve the momentum 

equation for the solid phase in this regime. Neglecting the inertial and viscous terms, Eq.(13), 

as introduced in Chapter 2, reduces here to:  

 

 𝑔    𝑔   
          

      (136) 

 

Substituting (126) into (136), we can deduce the solid velocity in the slurry regime as: 

 

〈  〉  〈  〉  
𝑔 (  

 𝑔     )

       (𝑔 ) 
 (137) 
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To avoid a sudden change of the solid velocity when the packing process occurs, we also 

apply a gradual switch from the moving to packed state of solid grains by using the transition 

function, 𝛼 , as designated in (125). Therefore the solid velocity is expressed as: 

 

〈  〉  𝛼 (〈 
 〉  

𝑔 (  
 𝑔     )

       (𝑔 ) 
) (138) 

 

Furthermore, to ensure that moving solid grains cannot penetrate into the area where the solid 

has already packed, the velocity of the grains going toward the zone near the packing region 

is adjusted so that these grains can land smoothly in the packed bed, i.e. reaching 〈  〉    at 

the packing limit. In order to do so, we check the distance which grains can realize with their 

actual velocity in the direction of the gradient of the solid fraction, 〈  〉    
   , and compare it 

to that between them and the packing limit,         
  . If the former is higher, it indicates that 

grains go so fast and they will enter into the packed zone, their velocity should be calibrated 

so that they just arrive at the limit. This adjustment is illustrated by the scheme in Fig.3. 6. 

Lastly, the fact that the same modified solid velocity (138) is used to model the momentum 

transfer induced by interfacial stresses in the slurry regime for the momentum equations of 

both phases, ensures the consistency in modeling solid-liquid interactions.  

 

The solutions of the momentum equations are arranged in the present fixed point scheme, as 

illustrated in Fig.3. 7. 

 

 

Before adjustment  

 

 

After adjustment  

 
   

Fig.3. 6 – Schematic of the adjustment for the solid velocity.  
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Fig.3. 7 - Schematic of the resolution algorithm using the splitting method, 

introduced the solutions of the momentum equations. 

  

 

These above developments correspond to adaptations realized for the transport stage from the 

FV model. The implementation of the FE resolutions has been detailed, in which solving 

purely advective equations and numerical treatments for discontinuities are delicate issues, 

which require careful investigation. In the next section, the relevant equations used for the 

description of solidification evolution during the nucleation and growth stages will be 

presented. 
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 3.1.2 Modeling of Microscopic Processes 

 

According to a non-dimensional analyses [Založnik and Combeau, 2010a], the characteristic 

time for nucleation and growth processes is much larger than that for transport phenomena. 

Therefore the equations for the nucleation and growth stages are solved locally, i.e. at each 

node of a considered mesh, and using a micro time-step.  

 

First nucleation occurs if local favorable conditions are satisfied. In the present work, 

instantaneous nucleation at the liquidus temperature is considered, in which a predefined 

number of grains are distributed at places where the temperature is smaller than the liquidus 

temperature. Nucleation is limited to positions where it did not happen yet. In addition, a 

redistribution of grains will be effectuated at sites that are empty of grains due to transport. 

Under these assumptions, the rate of grain generation due to nucleation  ̇ can be 

mathematically expressed as (140). This nucleation model can be improved by using more 

realistic laws, e.g. those in which grain densities are classified by size and generated 

depending upon the undercooling [Bedel, 2014]. The following set of equations is considered: 

 

      
  

  ̇ (139) 
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where the subscript      indicates the values obtained from nucleation;  ̇ is the rate of grain 

generation due to nucleation;    is a micro time-step;       is the temperature at which 

nucleation occurs;    is the rate of solid formation associated with nucleation;     is the 

composition at the solid-liquid interface in the solid side;   
    is the interfacial solute transfer 

of phase 𝛼 due to grain nucleation. 
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Next, the growth process is considered at each node as follows, in which the variables 

continue evolving from their states at the end of nucleation. 
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where the subscript 𝑔  indicates the values obtained from the growth stage. Relevant 

quantities were introduced in Chapter 2. For recalling,    is the mass flux of phase 𝛼 across 

the phase interface due to phase change,   
    is the interfacial solute transfer of phase 𝛼 due to 

phase change,    is the solute diffusion coefficient in phase 𝛼,        ⁄    (  )
 
  [m

-

1
] is the interfacial area concentration (identical for the two phases present in the REV 

considered);    ( 𝑔    ⁄ )  ⁄  [m] is the grain radius;     is the characteristic solute 

diffusion length in phase 𝛼 (details in Annex);    is the solute partition coefficient. 

 

Solving Eqs.(144)-(147) allows determining the quantities of interest consisting of the solid 

fraction and the phase concentrations. However these equations also contain other unknowns: 

the mass flux,   , and the interfacial concentration,    . 

 

The phase change rate during primary solidification is principally controlled by species 

exchanges at the interface. The variation of the enthalpy and the interfacial solute balance 

provide relations connecting variables    and    .  

 

 〈 〉        𝑔
    (148) 

  
      

      
      

      (149) 

        (150) 

where    : the specific heat and    : the latent heat of fusion, which are assumed constant. 
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Note that the symbol   is used to refer to variations within a micro time-step. 

 

 

Additional steps of manipulation to establish the system of equations to be solved are 

summarized as follows. 

 

The enthalpy variation on a micro-time step can be analyzed using Eq.(148) as follows: 
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where   is the number of micro-time steps    per a macro time-step   ;   
   is the 

temperature at the previous micro time-step. In Eq.(151) the interfacial liquid composition is 

assumed to follow equilibrium and is thus directly linked to the temperature   by the phase 

diagram.  

 

Note also that no transport terms remain in these equations. The main driving force for 

solidification is due to the enthalpy variation and the mass flux determined by manipulation of 

Eqs. (149) and (150) as follows, assuming a thermal equilibrium at the solid-liquid interface 

(i.e. the interfacial solid composition has been linked to that of the liquid phase as relation 

       
  ). 
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The two nonlinearly related variables    and     are determined by solving the system of 

equations (153) and (155) with an iterative approach, for which     in the first term of 

Eq.(155) is updated by the latest value. When doing this repetitive calculation process, as the 

phase compositions have not been determined yet, they are estimated by the last known 
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values. If the solid formation rate is negative,     , this indicates the occurrence of 

remelting for which the resolution procedure is re-effectuated considering that the interface 

and average solute concentrations on the solid side in the solute balances (146) and (154) are 

equal and unchanged relative to the previous iteration, i.e.     〈  〉  
  instead of 

considering        
  . During the growth stage, the local grain density given by the 

solution of Eq.(48) from the transport stage does not change, except in case of total remelting. 

The iterative procedure is repeated until these variables have converged.  

 

The interests obtained from the nucleation and growth stage, including the solid fraction, the 

grain density, the intrinsic compositions and the temperature are integrated into the entire 

iterative scheme as shown in Fig.3. 8.   

 

 
 

Fig.3. 8 - Schematic of the resolution algorithm using the splitting method, 

introduced the solutions obtained from the nucleation and growth stage. 

 

3.1.3 Coupling between Microscopic and Macroscopic Scales 

 

Through the previous sections, we have studied the implemented model for the macroscopic 

and microscopic stages. Using a splitting method developed by Založnik and Combeau  

[Založnik and Combeau, 2010a], the coupling between these stages is conducted as 

schematized in Fig.3. 9. Each iteration   begins with an implicit FE resolution using a macro 
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time-step for the energy and transport conservation equations in the transport stage neglecting 

the nucleation and growth terms. This gives the solutions with the subscript     and further 

adding the subscript    for those associated to the transport stage. Then the nucleation and 

growth stages are solved locally (at nodes), with variables initialized by values obtained from 

the transport stage at    . The solution proceeds through micro time-steps, assuming that 

the average composition and the total enthalpy no longer evolve on a macro time-step. 

Finally, the momentum equations are solved with a semi-implicit solver on the macro time-

step to compute the velocity fields at    . 

 

 
 

Fig.3. 9 - Schematic of the resolution algorithm using  the splitting method, 

with the growth and transport coupling.  

 

Because of the close interaction between these physical phenomena, a strong connection is 

effectuated for these stages through the initialization procedure: final values obtained from 

one stage are used to initialize the other stage. For example considering a quantity  , the 

variation of which results from transport, nucleation and growth processes we can express that 

its time derivative results from three contributions:  
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          (156) 

  

where       are the operators representing the advection, nucleation and growth 

respectively. 

 

 

The splitting method is organized as follows on a macro time-step [      ] 

 

 Initial value: Final value:  

    
  

      
  

    
       

 
⏟

               

             [      ]
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where the subscripts   ,      and 𝑔  represent values obtained from the transport, nucleation 

and growth stage respectively; the superscript indicates the time. 

 

For clarity, nucleation is considered as a separate stage. While the variation of the grain 

density due to nucleation is important, this process only results in a slight change in amount 

of other variables. Therefore, nucleation can be joined with the growth stage to form only one 

stage representing for microscopic processes and the splitting scheme thus applies to two 

stages. In addition, a full evolution of quantities in each time step is evaluated by final results 

obtained from the growth stage since these solutions also include the change due to the 

transport stage. So in the case where there is no ambiguity between values of the transport and 

growth stages, the subscript 𝑔  is simplified and without subscript implies a value computed 

from the growth stage.  

 

The resolution algorithm of the complete growth-transport model in presence of relevant 

equations and the flowchart of the nucleation-growth stage are presented in Fig.3. 10 and 

Fig.3. 11, respectively. 
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Fig.3. 10 – Transport-growth resolution algorithm for the two-phase model. 
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Fig.3. 11 – Resolution algorithm of the growth stage for the two-phase model. 
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3.2 Extension to a Three-Phase Model 

 

Through the previous study, we have worked on the two-phase model in which equiaxed 

grains are assumed to be fully globular. This is known as a two-phase model since only a 

spherical solid shell is surrounded by a liquid, as schematized in Fig.3. 12-a).  However, in 

most solidification cases, the morphology of the equiaxed grains is more complicated, like 

dendrites as the simplified illustration in Fig.3. 12-b). A dendritic grain consists of the solid 

dendrite and its interdendritic liquid phase. This grain is separated from the extradendritic 

liquid phase by an envelope whose surface passes over the active tips of the primary and 

secondary dendrite arms [Combeau et al., 2009]. 

 

two-phase model three-phase model 

  
a) b) 

 

Fig.3. 12  –  a) Schematic of the two-phase model  

(spherical solid shells and the surrounding liquid). 

 b) Schematic of the three-phase model  

(the solid dendrite, the interdendritic liquid and the extradendritic liquid). 

 

In order to account for the grain morphology, the present model is extended to the three-phase 

model which is derived from the work of Combeau and co-workers [Combeau et al., 2009] 

and Bedel [Bedel, 2014]. Details of the three-phase model are presented in these references 

and we summarize here the equations to be used and the main points which are additionally 

developed from the two-phase model. 

 

As introduced in the literature review of solidification models, according to these references 

the distinction into three phases is considered at the microscopic scale and only two phases 

including the solid and the total liquid are to be present at the macroscopic scale. Therefore 

the interfacial stresses between the solid phase and the total liquid are modeled in the same 

way as in the two-phase model by using the relations (29)-(36). However, it should be noticed 

that the characteristic length used in the three-phase model is the radius of a solid sphere that 

has the same volume as the solid dendrite within a grain. Additionally, in the two-phase 

model, the change of regimes occurs once the solid fraction has reached the packing limit. In 

the three-phase model, the interactions between the moving solid grains and the total liquid 
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take place only when the envelop fraction, being higher than the solid fraction, attains the 

packing value, then the solid grains are blocked.  

As existing the two phases at the macroscopic scale, the transport thus due to the movement 

of the two phases, consisting of the total liquid and solid phases, is almost unchanged with 

respective to that in the preceding two-phase model, except for adding a transport equation to 

be solved. In fact considering the two-phase model, the solid phase can be figured out from 

the solid fraction and the grain density. Therefore, its motion corresponds to the transport of 

the solid fraction and the grain density. While for the dendritic case, the grains are 

additionally characterized by the internal solid fraction or the envelope fraction. 

Consequently, modeling of the transport of dendritic grains requires the simultaneous 

description of transport of this extra quantity. The general resolution scheme is presented in 

Fig.3. 13 where the parts highlighted in dark yellow are added for the three-phase model from 

the two-phase one. The detailed algorithm consisting of equations to be solved is shown in 

Fig.3. 15. 

 

Concerning the microscopic scale, the solute diffusion is modeled by idealizing a well-mixed 

solute in the interdendritic liquid, for which the 1D profile of concentrations can be presented 

as Fig.3. 14-a) in consideration of the real configuration where a gradient of solute 

composition exists as schematized in Fig.3. 14-b). 

 

Similarly to the two-phase model, the evolution of variables in the growth stage is computed 

by integrating locally the conservation equations of mass and solute contents without the 

transport terms. Nevertheless the corresponding quantities in the liquid phase are separately 

evaluated for those in the interdendritic and extradendritic liquids, given as Eqs.(159)-(164).  
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where the superscripts   ,    and     indicate the interdendritic liquid, the extradendritic 

liquid and the envelope respectively ;                        are the variation rates of the 

solid, the total liquid, the envelope in the interdendritic side and the envelope in the 

extradendritic side respectively;                    are the solute diffusion lengths in the 

solid dendrite, in the interdendritic liquid associated to the solid side, in the interdendritic 

liquid associated to the extradendritic liquid side and in the extradendritic liquid respectively; 

  
     √ (             )

 
  [m

-1
] is the interfacial area concentration between the 

octahedral grain and the extradendritic liquid phase;               ( 𝑔     ⁄ )  ⁄  [m] is 

the octahedral grain radius;   
     (𝑔

  )
   
𝑔   ⁄ (  (𝑔  )

 
)  (𝑔  )

 
  
    [m

-1
] is the 

interfacial area concentration between the solid phase and the interdendritic liquid phase. 

 

 

 

 
 

Fig.3. 13  - Schematic of the resolution algorithm using the splitting method, 

for the three-phase model. 
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a) b) 

 

Fig.3. 14   – a) Schematic of concentration profiles in 1D of the present model 

(assuming a well-mixed solute in the interdendritic liquid). 

 b) Schematic of concentration profiles in 1D where there exists a gradient of 

the solute composition in the interdendritic liquid. 

 

Moreover, the balances of total mass and solute mass flux exchanged at the interfaces 

between the solid and the interdendritic liquid and between the interdendritic and 

extradendritic liquids are described by Eqs.(165) and (168). 
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From the above equations (159)-(168), by assuming a well-mixed solute diffusion in the 

interdendritic liquid (i.e. 〈   〉  
             ), as schematized in Fig.3. 14-a), and 

neglecting the time variation of the concentration at the grain-extradendritic liquid interface 

(since this does not result in important errors as demonstrated in [Tveito et al., 2013]), we 

obtain the set of equations (169)-(171). 
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By regrouping the terms associated to the variables to be determined,    and    , on the LHS, 

Eq.(171) is rewritten as Eq.(172), assuming an interfacial equilibrium condition (i.e.     

   
  ). 
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Using the same approach as for the two-phase model, the system of equations to be solved, 

consisting of Eqs.(169), (170) and (172), is closed by the enthalpy variation Eq.(153). The 

solution of interests including the solid formation rate,   , the interfacial liquid 

concentrations,     and the intrinsic concentrations, 〈  〉  
 .  

 

The solution algorithm is presented in Fig.3. 16 where the terms in the yellow zones are the 

ones modified when comparing to those of the two-phase model. Applying an iterative 

procedure as presented in the two-phase model, first two equations (172) and (153) are solved 

to compute the solid formation rate,   , the interfacial concentration,    . Then the intrinsic 

compositions in the solid dendrite and in the total liquid are determined by solving Eqs.(169) 

and (170). 

 

Since the evolvement inside of grains is microscopically governed by solute exchanges at 

dendrite arms, the solid formation rate    is thus calculated by solving mass balance 

equations at the solid - interdendritic liquid interface. While as being controlled by the 

thermal and solutal undercoolings, the grain growth is evaluated by the envelop variation rate 

     or the envelop fraction 𝑔  
    (as denoted in the algorithm Fig.3. 16) and modeled by the 

development of dendrite tips that can be assumed in a hemispherical or paraboloidal form. In 

our current work, the implemented formulations used to calculate the tip growth velocity with 

two different approximations are issued from the works of Kurz and co-workers [Kurz and 

Fisher, 1998], which are summarized in the following. 
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For both cases, considering metal alloys, the undercoolings due to the effect of kinetics and 

curvature of dendrite tips can be neglected, so the total undercooling consists of the solutal 

and thermal parts, as given (173). 

 

           (173) 

 

From the definition of the solutal and thermal supersaturations - the quantities being used to 

evaluate the gradients of solute and heat which are driving forces of the grain growth -, the 

corresponding undercoolings are expressed by the relations (174) and (175), as introduced in 

[Kurz and Fisher, 1998]: 

 

      〈   〉  (  
 

(  (    )  )
) (174) 

  

      
  

  
 (175) 

  

where    and    are the solutal and thermal supersaturations respectively. 

 

 

In a simple case, the shape of a dendrite tip is assumed to be hemispherical, for which the 

supersaturations are approximated by the Pléclet numbers (176), defined as the ratio of tip 

radius to the solute (or thermal) diffusion length. Under this assumption, the tip growth 

velocity can be computed as (177), issued from the Marie Bedel’s thesis [Bedel, 2014]. 
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     (    )   
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where the subscript     indicates the solutal   or thermal   parts. 

 

A closer morphology of a dendrite tip to its real form looks a likely paraboloid of revolution, 

as proposed by Papapetrou. With this consideration, the supersaturation being the resolution 

of the diffusion equation is found as a function of the Péclet number from the Ivantsov’s work 

the so-called Ivantsov function [Kurz and Fisher, 1998]. 

 

      (     )        
       (     ) (178) 

  

where the definition of the function of   (     ) is referred to [Kurz and Fisher, 1998]. 
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The undercooling equation (173) accompanied with the constitutive relations (174), (175) and 

(178) allows determining the product of the tip growth velocity,     , and the tip radius,     .  

Then, the tip growth velocity,     , is deduced once the radius tip being determined according 

to the relation developed in [Kurz and Fisher, 1998], as follows: 
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(181) 

 

Finally, for both cases, knowing the tip growth velocity, we can calculate the envelope 

fraction, 𝑔  
   , as presented in the algorithm Fig.3. 16. Using this model, the internal solid 

fraction, being defined as the ratio of the solid fraction and the envelope fraction, which is 

computed from the growth stage, provides information on the grain morphology resulting 

from a growth competition between the solid inside the grain and the grain envelope. If the 

internal solid fraction is close to one, grains are considered as fully globular (or fully 

spherical). If it is smaller than one, the grain growth adopts the dendritic morphology. 
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Fig.3. 15   – Transport-growth resolution algorithm for the three-phase model. 
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Fig.3. 16  – Resolution algorithm at the growth stage for the three-phase model. 
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3.3 Summary 

 

In this chapter, we have presented a FE solidification model based on the work of Založnik 

and Combeau [Založnik and Combeau, 2010a] in which the authors developed a splitting 

method to solve effectively the complexity of a strong coupling between the phenomena 

occurring during the process. Besides the summarized description of the existing model, we 

have focused on the adaptations for implementation into the FE framework. The model’s 

principles are conducted and the FE specific issues of numerical implementation are detailed 

and analyzed. Our contributions into the present works at CEMEF can be encapsulated as 

follows: 

 

 Development of an adaptive artificial diffusion to deal with numerical issues 

encountered when using FE solvers for purely transport equations which are 

disturbed by discontinuities of divergence-non-free velocity fields. 

 

 Implementation of the computational module for the solid velocity. 

 

 Realization of necessary modifications in solving the energy equation and the 

momentum equation of the liquid phase. 

 

 Implementation of the microscopic model accounting for a controlled solute 

diffusion in the liquid and solid phases. 

 

 Achievement of the complete two-phase model.  

 

 Implementation of the three-phase model for dendritic grains.   

 

In the next chapter, numerical simulations will be performed and the results will be compared 

with references from the FVM simulation and the literature in order to verify our 

implementations. 
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3.4 Résumé en francais 

 

Dans ce chapitre, nous avons présenté un modèle de solidification dérivé du travail de 

Založnik et Combeau [Založnik et Combeau, 2010a] dans lequel les auteurs ont développé 

une méthode de splitting permettant de résoudre la complexité du couplage fort entre des 

phénomènes de transport et de germination-croissance. Outre une brève description du 

modèle existant, nous sommes rentrés dans les détails des adaptations effectuées pour mettre 

en œuvre le modèle en utilisant la méthode des éléments finis. Les principes du modèle sont 

ainsi établis et une implémentation numérique est proposée. Nos contributions apportées aux 

modèles du CEMEF peuvent être résumées ainsi : 

 

 Développement d’un terme de diffusion artificielle pour traiter des problèmes 

numériques lors de la résolution des équations hyperboliques par la méthode des 

éléments finis dans lesquelles les matières sont transportées par des champs vitesses 

dont d’une part le comportement présente des discontinuités et d’autre part la 

divergence est non nulle.  

 

 Mise en œuvre du module de calcul de la vitesse du solide. 

 

 Réalisation des modifications nécessaires concernant la résolution de l’équation de 

l’énergie et de celle de la quantité de mouvement du liquide. 

 

 Mise en œuvre du modèle microscopique prenant en compte la diffusion du soluté 

finie dans les phases liquide et solide. 

 

 Implémentation du modèle à deux phases pour des grains globulitiques.  

 

 Implémentation du modèle à trois phases des grains dendritiques. 

 

Ce modèle sera appliqué aux simulations numériques présentées dans le chapitre suivant dont 

les résultats seront comparés à ceux de cas de référence obtenus par la méthode des volumes 

finis et à ceux dans littérature afin de vérifier nos implémentations.  
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Chapter 4   

Numerical Simulation and Validation 
 

4.1 Mono-dimensional Solidification 

 

4.1.1 Test Case Description 

 

For verification purposes the model is first tested for a case with pure heat diffusion, i.e. 

solving the energy equation and the nucleation and growth stage in the resolution algorithm 

for the two-phase model in Fig.3. 10 (presented in Chapter 3). This case tests its capacity to 

account for the nucleation and grain growth processes at the microscopic scale. Both liquid 

convection and solid transport are neglected. Solidification occurs in a one-dimensional 

manner. This is achieved by defining a 1 mm thick and 100 mm wide domain cooled from 

one of its narrow sides with an exterior temperature at 100°C and a heat transfer coefficient of 

500 W m
-2

 K
-1

. The initial temperature of the melt is set at 750°C.  Six sensors are defined 

along the sample, two at both ends and four between them with a regular spacing of 20 mm, 

as seen in Fig.4. 1. The thermophysical properties of the material are taken from the reference 

[Ni and Beckermann, 1993] (reported in Annex - A.1) and are representative of a binary Al-

4wt%Cu alloy, except for the solute diffusivity coefficients and the grain density. These two 

parameters are control parameters. They are used to switch between a case with a very high 

solute diffusion, so-called “infinite” diffusion, and the other case for a lower value of the 

diffusion coefficient, so-called “finite” diffusion. Results of these test cases obtained from the 

present model will be compared to those given by classical models including the lever rule 

and Gulliver-Scheil approximations [Kurz and Fisher, 1998]. 

 

This test is calculated on a 2D mesh with the mesh size of 1 mm, the solution being made 1D 

through the control of boundary conditions. Simulation parameters are listed in Annex - A.1. 

 

  
 

 Mesh form :  
 

Simulation Parameters 

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 
 

 

 

Fig.4. 1 – Schematic of the simulation case. 
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4.1.2 Modeling of Well Mixed and Partially Mixed Solute Diffusions 

 

First, for the simulation with high solute diffusion in the solid phase, the cooling curves and 

solid fraction evolutions obtained at the six sensors from the “infinite” solute diffusion case 

(green curves) are compared to those predicted by the lever rule (orange curves) as well as to 

those given by the “finite” diffusion case (red curves) in Fig.4. 2.  

 

Compared cases in Fig.4. 2 

two top sub-figures two bottom sub-figures 

“infinite” case (present two-phase model)  

& lever rule 

“finite” case (present two-phase model) 

& “infinite” case (present two-phase model) 

 

where 

 

Cases     [m
2
 s

-1
]   [grain m

-3
]    [m

2
 s

-1
] Plotted curves 

“infinite”     
       

         
   green curves 

“finite”     
       

        
   red curves 

 

The same methodology is carried out for the test without solute diffusion in the solid phase, 

i.e. the solutions acquired from the “infinite” solute diffusion case (green curves) are 

evaluated by comparing to those given by the Gulliver-Scheil approximation (orange curves) 

and those obtained from the “finite” diffusion case (red curves) in Fig.4. 3. 

 

Compared cases in Fig.4. 3 

two top sub-figures two bottom sub-figures 

“infinite” case (present two-phase model) 

& Gulliver-Scheil 

“finite” case (present two-phase model) 

& “infinite” case (present two-phase model) 

 

where 

 

Cases     [m
2
 s

-1
]   [grain m

-3
]    [m

2
 s

-1
] Plotted curves 

“infinite”     
       

     green curves 

“finite”     
       

    red curves 
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It can be seen in these figures that the green curves resulting from the present model exactly 

retrieve the lever rule for the case of high solid solute diffusion and the Gulliver-Scheil 

approximation in the study without solute back-diffusion. The cooling curves present a quick 

decrease of the temperature in the liquid zone due to the heat extraction and then a slow 

cooling which corresponds to the formation and evolution of the solid phase with the latent 

heat release. These simulations also illustrate the effect of the cooling rate as observed that the 

solid fraction increases quickly near the cold wall due to a high cooling rate and decreases 

gradually away from this side. With “finite” diffusion, it can be noticed that the first red curve 

on the cold side presents a recalescence close to the liquidus temperature, which is not 

computed when the liquid composition is well mixed, i.e. for the orange and green curves. 

This phenomenon, which characterizes an equiaxed solidification, can be captured by the 

present model since the nucleation and grain growth kinetics are taken into account. It 

depends on both the values of the grain density and the liquid diffusion coefficient and 

nucleation undercooling. When an embryo forms initially, the latent heat released is too small 

to prevent further cooling. When the solid grain growth is sufficient, i.e. for a higher 

undercooling, the latent heat released cannot be instantly compensated by heat extraction, 

which causes the temperature to increase. For the points farther away from the cold wall, 

cooling rate is decreased so recalescence disappears.  

 

Yet the red curves are found to depart very little from the green curves. With high values of 

the Lewis number (the ratio between heat diffusivity and mass diffusivity) in metallic alloys, 

solidification at the microscopic scale is dominated by solute diffusion. A limited solute 

diffusion in the liquid phase results in a slow phase transformation at the beginning of 

solidification, illustrated by a difference in the solid fraction evolutions between the “infinite” 

and “finite” diffusion cases. This difference decreases as solidification progresses. During the 

formation of solid grains, the solute rejected from the solid to the liquid is accumulated at the 

grain boundary. When the process advances, the solutal gradient progressively increases 

around growing grain surfaces, leading to accelerate solute mixing.  

 

Additionally, without solute diffusion in the solid phase, a formation of eutectic structure is 

present toward the end of solidification when the eutectic temperature is reached. This effect 

is reproduced by the present model is well correlated with the Gulliver-Scheil approximation, 

as shown in Fig.4. 3. The amount of eutectic is proportional to the final vertical jump of the 

solid fraction curves to reach unity. 
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Fig.4. 2 – Time evolutions of (left) the temperature and (right) the solid fraction  

obtained from (orange curves) the lever rule 

and from (green and red curves) the present two-phase model 

considering a high solute diffusion in the solid phase. 

 

 

 

 

 

 

 

 

Recalescence 
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Fig.4. 3 – Time evolutions of (left) the temperature and (right) the solid fraction  

obtained from (orange curves) the Gulliver-Scheil approximation 

and from (green and red curves) the present two-phase model 

considering no solute diffusion in the solid phase. 

 

 

 

 

 

 

 

 

Recalescence 
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Furthermore, as discussed elsewhere [Thévoz et al., 1989], the choice of the time-step 

depends upon situations. It should be small enough in order to efficiently capture microscopic 

evolutions, e.g. the recalescence phenomenon, and must be sufficiently large to avoid certain 

numerical issues, as bouncing effects or false eutectic plateaus, that can be experienced when 

too small time-steps are employed in modeling of microstructures. Compared to the use of a 

single time-step scheme, the two-time-step technique is less time consuming because a 

reasonable time-step for macro transport phenomena can be retained. 

  

With a good agreement between the reference solutions and those achieved from the present 

model and through the above analyses related to the effects of a partially mixed solute 

diffusion, it is demonstrated that the present model can be used as an alternative tool for 

classical approximations and additionally gives more flexibility in studying microscopic 

phenomena. Consequently, the verification of our implementation for the growth stage is 

qualified, from which the movement of the liquid phase driven by the thermo-solutal 

buoyancy is taken into account and the numerical simulations which are performed for this 

step will be presented in the next section.  

 

 

4.2 Thermo-solutal Liquid Convection during Solidification 

 

4.2.1 Test Cases Description 

 

In order to verify our implementation when integrating natural liquid convection into the 

current model, two 2D solidification simulations have been carried out, which take into 

account buoyancy driven liquid convection, assuming a fixed solid phase.  

 

+ Case 1 : The computational domain sized by 0.1 m x 0.06 m is cooled from the right 

and left sides, supposing a heat transfer coefficient of 400 W m
-2 

K
-1

. An environmental 

temperature is 25°C and an initial liquid temperature is 285.49°C. Due to its symmetry, 

only haft of the cavity is simulated. Fig.4. 4-a) shows the simulated geometry, the 

boundary and initial conditions. The sample material is a Pb-18wt.%Sn alloy, thermo-

physical properties of which are given in Annex -A.2. The temperature and concentration 

gradients act oppositely on the buoyancy forces: the liquid enriched in Sn becomes 

lighter and induces an upward flow along the solidification front, while the cooling flow 

driven by thermal effect goes downward. This benchmark was proposed as a reference 

test case for the verification and validation of different numerical solidification codes, 

presented in [Bellet et al., 2009]. 

 

+ Case 2 : This case corresponds to an identical geometry 0.1 m x 0.06 m cooled from 

the left side only, a heat exchange coefficient of 300 W m
-2 

K
-1

 and the melt at an initial 

temperature of 260°C, as illustrated in Fig.4. 4-b). The simulation is performed for the 

whole piece, considering a Sn-5wt.%Pb alloy that is characterized by cooperative thermal 

and solutal buoyancy forces. Related material properties are presented in Annex -A.2. 
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Although there is no solid motion, transports due to the solid movement are kept in the model 

(resolution algorithm in Fig.3. 10) in order to verify the application of the numerical 

procedure to a general case, in which the solid velocity and the packing solid fraction are 

imposed equal to zero. Simulation parameters of Case 1 and Case 2 are reported in Annex - 

A.2. 

 

Mesh form 

 

   
  
 

Simulation Parameters 

Mesh size     [mm] 

Macro time step     [s] 

Macro/Micro time    [-] 

 

Simulation Parameters 

Mesh size     [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

a) b) 

 

Fig.4. 4 – Schematics of system dimensions  

and boundary conditions of 2D simulation cases (accompanied with Tab.4. 1). 

 a) Case 1 performed on a half of a 0.1 m x 0.06 m sample using a Pb-18wt.%Sn. 

 b) Case 2 performed on an entire 0.1 m x 0.06 m sample with a Sn-5wt.%Pb. 

 

 

Tab.4. 1 - Thermal  and mechanical boundary conditions 

 Case 1  Case 2 

 Thermal part  Mechanical part  Thermal part  Mechanical part 

Side      
       

  

    x y    x y 

S1  adiabatic  0 0  adiabatic  0 0 

S2  Fourier type  0 0  Fourier type  0 0 

S3  adiabatic  0 0  adiabatic  0 0 

S4  symmetry  0 free  adiabatic  0 0 
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4.2.2 “Infinite” Solute Diffusion at the Microscopic Scale 

 

As we have just seen in the 1D simulations, the present model when using high values of 

solute diffusion coefficients,      m
2
 s

-1
 for the liquid phase and        m

2
 s

-1
 for the solid 

phase, produces results almost identical to those given by the lever rule. This tendency is also 

found in these 2D simulations using the FE formulation. In this section, we only present the 

comparison between the solutions obtained from the FE and FV formulations (FV results are 

obtained by using SOLID software). Similarities and differences will be pointed out. This 

comparison is intended as a based assessment for those upcoming in the subsequent parts 

including solid transport and three-phase model since the FE results will be evaluated by 

comparing with those of the FVM.  

 

Fig.4. 5 depicts the final macrosegregation maps obtained from the present FE model with 

high values of the solute diffusion coefficients and those predicted with the lever rule 

approximation using the FVM. It can be seen that a global agreement is achieved between 

these results. A high content of Sn is predicted at the top of the cavity close to the symmetry 

plane for Case 1 since during solidification the light solute-rich liquid rises up and two flows 

coincide at the center of the cavity due to its symmetrical configuration. As a result, the solute 

is continuously accumulated in the upper zone as well as in the middle area and a solute-

depleted distribution is formed in the lower part of the domain. Because of the flow 

dominated by the heavy solutal element, a different macrosegregation pattern is obtained in 

Case 2: a strong positive segregation occupies the bottom and a large zone on the right hand 

side while a solute-poor region is located in the upper part of the domain.  

 

There exist differences between the results obtained with FEM and FVM that can be 

attributed to the influence of numerical factors, i.e. discretization schemes, interpolation 

functions, iteration procedures, etc. Similar differences have already been pointed out and 

discussed in [Combeau et al., 2012b] where several numerical models have been 

benchmarked. We reported in Fig.4. 6 the results obtained from different methods, issued 

from this reference. The same macrosegregation pattern is globally predicted. The solutions 

differ from each other in local variations (the number of mesosegregation channels, their 

intensity and inclination, etc). One of the main reasons is supposed to be related to solving the 

momentum conservation equation for which the permeability is differently discretized and 

interpolated upon modeling schemes. It has a strong influence on the prediction of 

mesosegregated channels. It is worth noting that for the Pb-18wt.%Sn alloy the segregated 

channels simulated with an unstructured FEM mesh extend over a larger zone compared to 

the one obtained by using a structured FVM mesh. The opposite tendency is observed for the 

Sn-5wt%Pb alloy. This phenomenon could be explained by the fact that the unstructured FEM 

mesh is more sensible to perturbation due to liquid movement. While the counteracting 

thermal-solutal advection of Pb-18wt%Sn alloy results in instabilities, the cooperating 

convection of Sn-5wt%Pb might be less unstable. Furthermore, the concentration profiles at 

the three height levels of the cavity (10 mm, 30 mm, 50 mm) obtained from the present model 

are in good agreement with those predicted in the reference [Combeau et al., 2012b], plotted 

in Fig.4. 7. 
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 FEM (present approach) FVM (SOLID software)  

Case 1 

  

 

Case 2 

  
 

Fig.4. 5 – Average composition maps obtained (left) from the present FE model using high 

values of solute diffusion coefficients compared with those (right, issued from [Combeau et 

al., 2012] and [Založnik and Combeau, 2010b]) from the lever rule with FVM. 

 

FVM (FLUENT software) FVM (THETIS software)  

  

 

FVM (OpenFOAM software - upwind) FVM (OpenFOAM software - QUICK) 

  

Fig.4. 6 – Average composition maps obtained from different numerical solutions for the 

2D benchmark of binary columnar solidification (using a Pb-18wt%Sn alloy), described 

in [Bellet et al., 2009]. The results are issued from [Combeau et al., 2012b].  
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 from the present model from various numerical codes 

10 mm 

height 

  

 

30 mm 

height 

  

 

50 mm 

height 

  

Fig.4. 7 – Case 1 - Concentration profiles at the three height levels of the cavity,    

including (top) 10 mm, (center) 30 mm and (bottom) 50 mm,            

obtained (left) from the present model and (right) from various numerical solutions  

issued from [Combeau et al., 2012b].       
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As studied in the 1D simulations, the limited solute diffusion is stated having effects on the 

evolution of solidification. Therefore, its influence will be also analyzed in the 2D context and 

compared with the case of infinite solute diffusion, as presented hereafter. This topic was 

investigated for a case study on a Sn-5wt%Pb alloy in the FV context by Založnik and 

Combeau [Založnik and Combeau, 2009b].    

 

4.2.3 Limited Solute Diffusion at the Microscopic Scale 

 

Two simulations for the two alloys are performed, which are identical to the above cases, 

except for the solute diffusion in the liquid phase and the grain density decreasing to      m
2
 

s
-1

 and     grains m
-3

, respectively (instead of      m
2
 s

-1
 and      grains m

-3
 in the previous 

section). 

 

Fig.4. 8 presents the final macrosegregation maps obtained from the present model for the two 

alloys. These maps are globally similar to those of the infinite solute diffusion presented in 

the previous section. However, we observe that mesosegregates are not formed in the case of 

low solute diffusion. This tendency was also found in the work of Založnik and Combeau 

[Založnik and Combeau, 2009b], which further allows verifying our implementation. Based 

on analyses in this reference, we will present in this part a study related to the impact of the 

limited solute diffusion on the formation of mesosegregation channels.  

 

Test case with a Pb-18wt%Sn alloy Test case with a Sn-5wt%Pb alloy 

 

 

Fig.4. 8 – Final average composition maps obtained by the present two-phase model, 

considering a limited solute diffusion. 

 

In fact, for the case of fast solute diffusion in the liquid at the microscopic scale, studied on a 

binary alloy, the variation of the temperature and of the intrinsic composition in the liquid 

phase are in proportion given by the relations (182) and (183). So we can see that a 

perturbation of the liquid concentration  〈  〉  results in an immediate adaptation of the 

solidification kinetics following the relation (184) deduced from (182) and (183). In the zones 

where 〈  〉     is positive, the enrichment in solute decelerates solidification. The longer the 

liquid rests, the more the mushy zone is perturbed by the fluid flow so that the segregated 
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channels have convenient conditions to form and become later the favorite paths for the fluid 

flow. Consequently, they continue to develop and finally form mesosegregated channels.  

 

          𝑔
    (182) 

  

       〈  〉  (183) 

  

 𝑔      
   〈  〉   ⁄  (184) 

 

Conversely, in the low solute diffusion case, the adaptation of liquid fraction to a perturbation 

of the solute concentration,  〈  〉 , can be deduced from relation (185). By neglecting a back 

diffusion, we have the relation (186) which shows that the response of 𝑔  to the variation of 

composition in the liquid is not immediate, like in the previous case of high diffusion. Under 

such conditions, there is less perturbation by the liquid flow, the mushy zone is more stable, 

so the finite diffusion in the liquid phase induces certain constraints on the phase 

transformation and thus restrains the formation of mesosegregated channels. 

 

∑(
    

 

  
(    〈  〉 )        )

 

   (185) 

  

 𝑔  ∫
   

 

(    )  
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   (186) 

 

Additionally, for the symmetric simulation with the Pb-18wt.%Sn alloy, the positive 

segregation is still found at the top of the cavity but does not expand on the center line as 

much as it does when the solute is assumed to be well diffused. This difference is also 

suggested due to the more steadiness of the semi-solidified zone in the case where the 

diffusion is controlled, so the less quantity of the solute enriched liquid penetrates into the 

mushy zone. 

 

Through this section, it is shown that the present model reproduces the reference solutions of 

2D simulations accounting for the thermo-solutal liquid convection. The comparisons were 

reported between the FE and FV solutions with a global agreement besides differences due to 

numerical aspects. Moreover, apart from its advantages illustrated in the above 1D 

simulations, this model, via analyses on the 2D test applications, provides a useful tool to 

study the influence of the finite solute diffusion on segregation, which is the case in the reality 

while most models consider a perfect solute diffusion in the liquid phase with also a perfect 

solute diffusion in the solid phase or no diffusion in the solid phase (lever rule and Gulliver-

Scheil approximations). Unlike the infinite solute mixing, the partial diffusion likely delays 

the transient solidification process and limits the formation of mesosegregates.  
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These studies showed the ability of the present model to simulate solidification considering 

the fixed solid as well as allowed verifying our implementation for this step. In the next 

section, the integration of the solid motion will be examined and an application to simulate 

the sedimentation of solid grains will be carried out. 

 

4.3 Purely Convective Transport during Sedimentation 

 

4.3.1 Test Case Description 

 

Simulation of sedimentation first neglects the nucleation and growth stages, i.e. with a given 

number of grains being assumed to be globular with constant size. The gravitational force is 

the only body force that acts on both phases. The velocities at the top and bottom sides as well 

as the normal velocities at the vertical walls are set to zero and a perfect slip condition is 

applied to the tangential velocities at the vertical walls, as presented in Tab.4. 2 and Fig.4. 9.  

 

Fig.4. 9 displays the sample geometry and the initial state of variables, companied with 

thermal and mechanical boundary conditions in Tab.4. 2. At the beginning, the grains are 

distributed with a fixed density, 10
9
 grains m

-3
, within the full width of a subdomain from 

height 20 mm to 80 mm in a 10 mm × 100 mm domain. The volume fraction of solid in this 

subdomain is set to 0.1, thus fixing the grain radius to 288 µm. The intrinsic solute 

compositions and the temperature are related to the solid fraction through the lever rule. 

These quantities are disposed in order that there is a homogeneous average composition at 5 

wt.% Pb on the entire sample: i.e. supposing the initial temperature to be uniform at 498.057 

K, the intrinsic composition in the liquid phase is 5.515 wt.% Pb where there exists the solid 

and 5 wt.% Pb elsewhere; thus the intrinsic composition of the solid is 0.328 wt% Pb where 

the solid is present and zero elsewhere. Lastly, the enthalpy is evaluated according to the solid 

fraction and the temperature. The simulation is operated on an unstructured triangular mesh 

with a size of 0.5 mm, a constant time step 0.01 s and 𝛼     and     for the two constant 

parameters of the diffusion artificial coefficient defined in (45) (in Chapter 3 – Section 3.1.1). 

The simulation parameters and the thermophysical properties of the binary alloy Sn-5wt%Pb 

(the same alloy used in Section 4.2) are reported in Annex - A.3. 

 

Tab.4. 2  - Thermal  and mechanical boundary conditions 

 Thermal part  Mechanical part 

Side     
     

  

   x y  x y 

S1 adiabatic  0 0  0 0 

S2 adiabatic  0 free  0 free 

S3 adiabatic  0 0  0 0 

S4 adiabatic  0 free  0 free 
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4.3.2 Analyses and Coherency Verification 

 

The sedimentation process is illustrated through the maps of solid volume fraction distribution 

and its profiles at t = 0 s, 2 s (before the grains have reached the bottom of the domain), 5 s 

and 10 s (accumulation below the packing limit), and 15 s (end of packing), as shown in 

Fig.4. 10. 

 

From the initial state, the solid grains fall with a velocity of around 6 mm s
-1

 and the smaller 

liquid velocity has the opposite direction so that the continuity equation is respected, as 

displayed in Fig.4. 11. The first grains arrive at the sample bottom after 3 s and begin to 

accumulate until the characteristic packing fraction is reached, taken as 0.3. When the process 

advances, we can observe a deviation of the liquid velocity from the vertical direction due to 

the interactions with the settling grains, especially an emergence of a large vortex is observed 

at 5 s. The sedimentation is complete after 15 s, although the solid and liquid velocities still 

rest within a small layer where the gravitational force is stably balanced with the diffusive 

effect, following Eq.(187) which is derived from Eq.(47) for the steady regime. This 

phenomenon is maintained due to the persistent gradient of the solid fraction at the transition 

surface.  

 

   (𝑔  
 〈  〉 )    (   𝑔  

 )    (187) 

 

As the grain motion involves the transport of other quantities, it is important to verify the 

consistency of these transports. Compared to the evolution of the solid fraction, an identical 

behavior of the grain density as well as the same profiles of the enthalpy are shown in      

Fig.4. 12 and Fig.4. 13 (top-left), which demonstrate a compatible transport exerted on these 

quantities during the process. In addition, the profiles of the average composition in Fig.4. 13 

(top-right) also present its accordance with the others. When solid grains sediment, the solute-

rich liquid moves upward and fills the region left by the grains, leading to an increase of the 

average composition in the upper zone.  The average composition of 3.6 wt.% Pb in the 

negative segregation zone at the bottom corresponds to the final state of about 30% of solid at 

0.362 wt.%Pb and 70% of liquid at 5 wt.% Pb. Furthermore, as expected for a pure transport 

simulation, the temperature almost does not change during this process although several 

oscillations of its value can be seen at the transition zones, but kept smaller than 1°C. This is 

displayed in Fig.4. 13 (bottom-left). A good overall conservation of all quantities is also 

verified, as shown in Fig.4. 13 (bottom-right), the maximum relative errors of solute mass and 

energy being about 10
-6

 and 10
-5

, respectively. 
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Sample geometry  Solid fraction Grain density Aver. composition 

   𝑔  [-] N [m
-3

] 〈 〉 [wt.%] 

 

  

 

 

 

 

 

 

 

Simulation Parameters 

Mesh size     [mm] 

Time step      [s] 

  

  

  

 
    

     

Mesh     

 

    

    

    

       

     

Liquid composition Solid composition Temperature Enthalpy 

〈  〉  [wt.%] 〈  〉  [wt.%] T [K] <h> [J kg
-1

] 

 

 

 

 

 

 

 

 

  

 Fig.4. 9 – Geometry  and initial states of variables set up for the sedimentation simulation. 
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Solid fraction,     [-] 

 

     

 0 s 2 s 5 s 10 s 15 s 

 

 

Height – Solid fraction 

 

Fig.4. 10 – Results at 0 s, 2 s, 5 s, 10 s and 15 s with 

(maps) the solid fraction distributions  

and (graph) its profiles along the sample’s height.  
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Fig.4. 11 – Velocity fields of (upper figures) the solid phase 

and (lower figures) the liquid phase at 2 s, 5 s, 10 s and 15 s.  
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Grain density,   [grains m
-3

] 

 

     

 0 s 2 s 5 s 10 s 15 s 

 

 

Height – Grain density 

 

 

Fig.4. 12 – Results at 0 s, 2 s, 5 s, 10 s and 15 s with 

(maps) the grain density distributions  

and (graph) its profiles along the sample’s height. 
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Height - Enthalpy Height - Average composition 

 
 

  

Height - Temperature Energy – Average mass - Time 

  

 

Fig.4. 13 –  Profiles along the sample’s height at 0 s, 2 s, 5 s, 10 s and 15 s 

of (top-left) enthalpy, (top-right) average composition, (bottom-left) temperature. 

The (bottom-right) graph presents the time evolution of (green curve) the total energy  

and (blue curve) the average mass.  

 

Compared to the evolution of the solid fraction given from the FVM (SOLID software), 

shown in Fig.4. 14, the sedimentation simulated by the present FEM model has globally 

similar tendency from the beginning until the completion after 15 s. However, the results 

obtained from our FEM model are likely more diffused and progress faster than those 

predicted by SOLID regarding the intermediate solutions at 5 s and 10 s. Moreover, the solid 

layer should be accumulated at the packing fraction 0.3 but it is observed that the maximum 

solid fraction slightly exceeds this predefined value, reaching 0.31 in Fig.4. 10. Although the 

treatments for the solid velocity, as presented in the previous chapter, are carried out, which 

comprise an addition of the artificial diffusion to purely advective equations as well as an 

adjustment to avoid the penetration of moving grains into the packed region. This excess of 
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the solid fraction demonstrates that the solid accumulation is not well controlled at the 

packing limit, or in other words, singularities are not sufficiently reduced. As a consequence, 

it would be necessary to evaluate the sensibility of the model to the amount of artificial 

diffusion, which will be conducted in the following. 

Solid fraction,     [-] 

 

     

 0 s 2 s 5 s 10 s 15 s 
 

Height – Solid fraction 

 
 
 

Simulation Parameters 

Mesh size (structured mesh)     [mm] 

Time step      [s] 

 

Fig.4. 14 – Results obtained from the FVM (SOLID software) at 0 s, 2 s, 5 s, 10 s and 15 s  

with (maps) the solid fraction distributions  

and (graph) its profiles along the sample’s height.  
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4.3.3 Effects of Artificial Diffusion 

 

At first, two simulations were performed in order to study the impact of the artificial 

coefficient by separately evaluating the effect of its constant parameters, recalling the 

formulation expressed as    (  
  )

 
(𝛼 |  〈  〉|   |  〈  〉 |). 

 

Case 1:  𝛼    ;      

 

Case 2: 𝛼    ;     

 

Fig.4. 15-top shows the profiles along the sample’s height of the solid fraction and the 

temperature for Case 1. The simulation is stopped after 2.7s because of numerical problems 

occurring that are also manifested by a large variation of the temperature before this time.   

 

Although also exposing remarkable oscillations of the temperature but with a smaller order 

than Case 1, Case 2 can overcome problems encountered in Case 1. This demonstrates that 

the term related to the variation of the intrinsic velocity has a more important role in solving 

numerical singularities than its counterpart. Additionally, it can be seen that the solid packing 

not only exceeds the maximum fraction, which has already been stated for the case where 

𝛼    ;    , but also has a heterogeneous distribution that further reveals instabilities in 

numerical resolutions. 

 

For this reason, a next computation is carried out by increasing the artificial diffusion with 

𝛼    ;     . Fig.4. 16-left shows the profiles of the solid fraction distributed along the 

height of the sample at different times. It can be seen that the solid layer is accumulated at the 

fraction which is almost exactly the same as the predefined packing value. However, the 

transition zone becomes more extended due to diffusion compared with Fig.4. 14. This set of 

simulations confirms that numerical concerns due to discontinuities of the transport velocity 

field and an absence of diffusion in hyperbolic equations can be solved by adding a 

supplementary diffusive component. Nevertheless, taking a high value of  , for instance, risks 

generating too much diffusion. Therefore, it is important to regulate the amount of additional 

diffusion to avoid unreasonably diffusing quantities. 

 

After testing on these parameters, we found that     and 𝛼 being approximated from 20 to 

70 can provide a compromise for issues related to diffusion and instabilities. As plotted in 

Fig.4. 16-right the profiles of the solid fraction where 𝛼    ;    , which become more 

homogeneous with a smaller excess, around 2% relative to the packing value reference, 

compared to those in Fig.4. 15, for the case 𝛼   ;    , excessing more than 10%.  
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Height – Solid fraction Height – Temperature 
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  )

 
(  |  〈  〉|   |  〈  〉 |) 

  

    

   (  
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(  |  〈  〉|   |  〈  〉 |) 

  

  

Fig.4. 15 – Vertical profiles of (left) the solid fraction and (right) the temperature  

at 0 s, 2 s, 5 s, 10 s and 15 s. 

 

Height – Solid fraction 

   (  
  )

 
(   |  〈  〉|    |  〈  〉 |)    (  

  )
 
(   |  〈  〉|   |  〈  〉 |) 

  

  

Fig.4. 16 – Vertical profiles of the solid fraction at 0 s, 2 s, 5 s, 10 s and 15 s. 
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4.4 Complete Solidification Model 

 

4.4.1 Simulation Results and Analyses 

 

Following the integration of solid motion for the transport stage, the combination of transport 

stage and growth stage is realized to achieve a complete two-phase model. Simulations in the 

presence of solid transport due to sedimentation and natural liquid convection are performed 

using the same Sn-5wt%Pb alloy. The packing solid fraction is also assigned at the constant 

of 0.3 as the previous simulation. Studying the effect of this parameter on solidification can 

be found elsewhere [Ilegbusi and Mat, 1998][Arnberg et al., 1993][Bedel, 2014]. Based on 

experimental observations and comparisons, low values of the packing fraction, from 0 to 0.3, 

are recommended by the work of Krane [Krane, 2004]. The initial and boundary conditions 

are figured out as Fig.4. 17 and Tab.4. 3; simulation parameters are listed in Annex - A.4.  

 

 

Mesh form 
 

  

Simulation Parameters 

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

 (  )    [-] 

 (  )   [-] 
 

 

Fig.4. 17 – Recalling schematic of system dimensions (identical to Fig.4. 4-b) 

 Same thermal boundary conditions were described in Section 4.2.1. 

 Mechanical boundary conditions are presented in Tab.4. 3. 

 

Tab.4. 3  - Thermal  and mechanical boundary conditions 

 Thermal part  Mechanical part 

Side     
     

  

   x y  x y 

S1 adiabatic  0 0  0 0 

S2           W m
-2

 K
-1

 
          °C 

 0 0  0 0 

S3 adiabatic  0 0  0 0 

S4 adiabatic  0 0  0 0 
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Fig.4. 18-a, -b, -c, -d, -e, -f present the distributions of the solid fraction, the grain density, the 

temperature, the average composition, the liquid velocity and the solid velocity, respectively 

at t = 10s. Considering these subfigures, we can see that cooling starts on the LHS. As soon as 

solid grains form, they settle to the bottom due to the gravitational force and the downward 

thermo-solutal convection. Some of them are still small and are transported toward the RHS. 

They are also carried by the liquid and move upward to a certain level. 
 

In details, Fig.4. 18-a displays the solid fraction at t = 10 s, in which the three black isolines 

represent the solid fraction at 0.1 (upper isoline), 0.2 (intermediate isoline) and 0.3 (lower 

isoline). Due to the settling and transport of solid grains, the solid layer has reached the 

packing state and then being accumulated along the bottom side where the highest solid 

fraction is found. The coolest zone is yet seen on the LHS of the cavity, as illustrated by the 

temperature map in Fig.4. 18-c, showing that the solid fraction distribution is indirectly 

related to the temperature. Additionally, it can be seen in Fig.4. 18-b that besides a large 

number of grains gathered in the lower regions by sedimentation, the transport of crystals due 

to the liquid advection, as shown in Fig.4. 18-e and -f, results in a rather high grain density in 

several zones of the slurry region, yet not reflected by the sold fraction map. 
 

Furthermore, the average composition in Fig.4. 18-d shows that while a large part of the 

cavity still remains at the initial content, we can find a negative segregation at bottom and 

solute-rich liquid just above this zone. During the solidification, the rejection of solute from 

the solid to the liquid enriches the liquid and makes it heavier, inducing a downward liquid 

convection. However the bottom area is occupied by the solid phase composed of solute-

depleted grains, even heavier than the solute-rich liquid, as plotted in Annex - A.4. 
 

The evolution of the quantities at t = 20 s is shown in Fig.4. 19. The solid layer has 

progressively advanced from the bottom side and negative segregation has extended in the 

same manner. At this moment, we can see in Fig.4. 19-e and -f that the liquid and solid 

velocities become disturbed; the counter-clockwise rotation of the liquid convection observed 

at the early state has been broken due to effects of the sedimentation. This disturbance thus 

influences the transport of grains and results in a heterogeneous distribution, besides the 

causes considered in the previous study at t = 10 s. In addition, it can be seen that there exist 

instabilities of the temperature at the packing surface. This could be due to numerical effects 

as noticed and discussed in the 1D simulation section, that are related to discontinuities of the 

velocity field when the solid packing takes place. 
 

Fig.4. 20 presents the state of the quantities at t = 200 s, which are distributed in two distinct 

areas: slurry and packed areas. While the solid fraction is still small in the upper part, much 

smaller than 0.1, it is fairly high in the lower one, reaching around the solid fraction of 0.8 

near to the cooled wall. The layer of the solid fraction from 0.1 to 0.3 remains rather thin in 

comparison with the domain’s size. This indicates a quite prompt transition from one to 

another region. In the packed stationary bed, the solid velocity is zero but there exists an 

intergranular downward flow (displayed by the white streamlines) which brings the solute 

from the upper to the lower region. Although the large part in the stationary mushy zone has a 

negative segregation due to the accumulation of solute-depleted grains, at the very bottom of 

the cavity, the intensity of the flow through the mushy zone is sufficient to lead to remelting 

and finally forms a positive segregation with the form of a horizontal channel.  
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at 10 s 

 

 

  

 

    

a) Solid fraction 𝑔 [-] b) Grain density   [grains m
-3

] 
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e) Liquid velocity 〈  〉  [m s
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] f) Solid velocity 〈  〉  [m s
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Fig.4. 18 – Case with solid transport - Distributions of variables including  

 a) Solid fraction b) Gain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1 (upper isoline),  

0.2 (intermediate isoline) and 0.3 (lower isoline). Arrow showing the 

direction of velocities, color depicting their magnitude.  
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at 20 s 
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Fig.4. 19 – Case with solid transport - Distributions of variables including  

 a) Solid fraction b) Grain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1 (upper isoline),  

0.2 (intermediate isoline) and 0.3 (lower isoline). Arrow showing the 

direction of velocities, color depicting their magnitude. 
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at 200 s 
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Fig.4. 20 – Case with solid transport - Distributions of variables including  

 a) Solid fraction b) Grain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1 (upper isoline),  

0.2 (intermediate isoline) and 0.3 (lower isoline). Arrow showing the 

direction of velocities, color depicting their magnitude and white contours 

displaying liquid streamlines. 
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The final maps of the average composition and the grain density are shown in Fig.4. 21. 

Although at the early state the whole lower part has a negative segregation due to the 

accumulation of solute-depleted grains in Fig.4. 18 and Fig.4. 19, at the latter time, the 

circulation of the liquid phase in the porous zone on the one hand leads to remelting at the 

bottom and on the other hand re-enriches the lower right part where the negative segregation 

is thus less pronounced than the one on the left. A high number of grains in the lower-right 

corner results from a combination of the grain settling induced by gravity, the advection of the 

liquid and then the accumulation and packing of the solid grains. 

 

at the end of the solidification 

 Average composition 〈 〉 [wt.%] Grain density   [grains m
-3

]  

 

  

 

Fig.4. 21 – Case with solid transport -.  

Distributions of (left) the average composition (min value: 2.64 ; max value: 18.72)  

and (right) the grain density 

 

Comparison with a fixed solid case 

Compared to the fixed solid case for which the corresponding evolutions of variables are 

displayed in Fig.4. 22-Fig.4. 25 at 10 s, 20 s, 200 s and at the end of solidification, it can be 

observed that the solidification sequence is quite different. Without solid movement, initial 

solid grains nucleated along the cooled side are fixed; when solidification proceeds, newly 

formed solid grains attach to the existing solid layer. The global solidification front advances 

from left to right. This is close to a columnar growth situation, opposite to the solid transport 

situation where the horizontal packed solid bed starts developing and is sequentially built up 

from the bottom side. A high content of the solute is accumulated in the bottom-right corner 

where final solidification takes place, contrary to the last solidified upper zone in the moving 

solid case. It is also noticed that the counterclockwise liquid velocity is less intense, its 

maximum magnitude approaching 8 mm/s while it is around 30 mm/s for the moving solid 

case, because it is only driven by the buoyancy force without reinforcement due to the settling 

of the solid grains. In addition by comparing the results at 200 s in Fig.4. 20 and Fig.4. 24, it 

can be seen that solidification progresses faster when accounting for the solid transport than in 

other case. This can be explained by the fact that solid grains that settle in the vicinity of the 

cold mold are replaced by a hotter liquid phase. Consequently, the global heat exchange 

between the metal and the mold takes place more efficiently and results in faster solidification 

than the case of no solid movement where the heat is extracted by conduction through the 

solid layer fixed at the region near the cooled wall; the isolines of the solid fraction and of the 

isotherms are fairly vertical and superimposed. 
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Fig.4. 22 – Case with fixed solid phase - Distributions of variables including  

 a) Solid fraction b) Grain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1, 0.2 and 0.3. Arrow 

showing the direction of the velocities, color depicting their magnitude. 
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Fig.4. 23 – Case with fixed solid phase - Distributions of variables including  

 a) Solid fraction b) Grain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1, 0.2 and 0.3. Arrow 

showing the direction of the velocities, color depicting their magnitude. 
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Fig.4. 24 – Case with fixed solid phase - Distributions of variables including  

 a) Solid fraction b) Grain density 

 c) Temperature d) Average composition 

 e) Liquid velocity f) Solid velocity  

The three black isolines represent the solid fraction at 0.1, 0.2 and 0.3. Arrow 

showing the direction of the velocities, color depicting their magnitude. 
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The final distributions of solute and grains for the fixed solid case are exposed in Fig.4. 25 

displayed with the same scales used in the solid transport simulation for a comparison. The 

large difference between these two cases demonstrates a significant effect of the solid 

transport on macrosegregation. Furthermore, although a higher solute content is found at the 

bottom area for both cases, its formation mechanism is quite different. In the case without 

solid movement, it is primarily governed by natural convection in the zone with relatively 

high liquid fraction. The solid zone extends from left to right and the rejected solute is 

progressively accumulated in the bottom-right region due to higher density of the solute-

enriched liquid. A high solute concentration is therefore found at the bottom-right corner. 

With grain transport, a part of the initial negative segregation in the lower pattern is replaced 

by the positive one which is due to the circulation of the liquid phase in the mushy zone and 

the remelting, leading to an expense of the solute content at the top of the cavity. 

Additionally, the heterogeneous distribution of grains is totally confined to the solid 

movement. 

 

at the end of the solidification 

 

 Average composition 〈 〉 [wt.%] Grain density   [grains m
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]  

    

 

  

 

     

Fig.4. 25 – Case with fixed solid phase - 

Distributions of (left) the average composition (min value: 3.25 ; max value: 18.88) 

and (right) the grain density. 
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Comparison FEM and FVM solutions for the solid transport case 

 

On the other hand, regarding the FEM solution for the solid transport case in Fig.4. 21 

compared to those given from the FVM in Fig.4. 26, a similar tendency is stated:  a negative 

segregation in the left zone resulting from the accumulation of solute-depleted grains and a 

positive segregate channel at the bottom of the cavity due to the circulation of the liquid phase 

in the mushy zone and the remelting. Concerning the grain density maps, a similar number of 

grains are distributed in the bottom-right and upper-left corners for both cases. 

 

The differences between these two results can be explained by the influence of numerical 

factors. Besides those mentioned in the previous section for the fixed solid case, introducing 

an artificial diffusion in FEM resolutions induces a less intense segregation and a more 

diffused distribution of grain density, when comparing to the FVM results.  

 

 

at the end of the solidification 

 

 Average composition 〈 〉 [wt.%] Grain density   [grains m
-3

]  

    

 

  

 

     

Fig.4. 26 – Case with solid transport –  

FVM results obtained from the SOLID software. 

Distributions of (left) the average composition and (right) the grain density.  

 

 

In order to choose an appropriate artificial diffusion, meaning that it must be sufficient to 

stabilize numerical issues and reasonably reduce discontinuities but not cause so much 

diffusion, a sensitivity analysis of the model to the artificial diffusion coefficient was 

presented for the 1D calculations in Section 4.3.3. This aspect will be further studied with the 

actual 2D simulation case in the next section.   
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4.4.2 Effects of Artificial Diffusion 

 

For this part considering the constant parameter     as in the previous study, simulations 

are performed with two different values of 𝛼        and compared to the previous one 

where 𝛼     as well as to those obtained using the FVM from SOLID software. 

 

Fig.4. 27 presents the distribution of the solid fraction and the grain density at t = 10 s. 

Overall it can be seen that the smaller the artificial diffusion coefficient, the less the 

distribution of solid grains expands and the closer the distance between isopleths of the solid 

fraction. 

 

Intermediate results at t = 100 s in Fig.4. 28 illustrate that the diffusion coefficient strongly 

influences on the inclination angle of the slurry-porous interface: the larger the diffusion is 

applied, the less the interfacial slope is observed. It can be explained by the fact that besides a 

small quantity of the settling solid after nucleation on the cooled wall, the solid zone in the 

left part is built up by solid grains that almost grow during a long travel: starting from 

nucleation on the left side, being advected to the right wall and carried along by the slurry 

liquid from right to left, then they settle when coming back to the left region. Thereby this 

phenomenon takes place consecutively during the process. In the case of high diffusion, 

grains can diffuse more easily on the packed bed surface before accumulation. This effect 

prevents grains from a quick packing after sedimentation, thus the piling up is spread more 

horizontally than in the situation with small diffusion. 

 

Altogether, it can be observed in Fig.4. 29 that the final maps of macrosegregation and grain 

density obtained from using these three coefficients 𝛼 are similar. As anticipated, those given 

by 𝛼     are smoother than the others and the simulation results with 𝛼     and 20 are 

closer to those given by FVM. However, while the energy and the mass are well conserved in 

the case where 𝛼    , as seen in Fig.4. 30, these quantities reveal a slight deviation from the 

conservation curves with 𝛼    . An additional test with 𝛼    cannot be carried out until 

the end of solidification because problems of coherency occur that are provoked by numerical 

instabilities. Moreover, the most remarkable difference between the FEM and FVM solutions 

can be realized on the distribution of the grain density, as seen in Fig.4. 29. Compared to the 

FVM results, a larger grain density situated on the RHS of the cavity is found by the FEM 

simulation. As the number of grains is governed by the nucleation and then influenced by 

transport, remelting and re-nucleation mechanism, a large quantity of grains generated may be 

due to a high frequency of crystals emptiness because of the transport or remelting 

phenomenon, thus the re-nucleation would happen more often. However, yet it has been not 

known clearly which reason leads to this state. 
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at 10 s 
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Fig.4. 27 – Distributions of (left) the solid fraction and (right) the grain density,  

FEM solutions obtained using different 𝛼  

(first row)  𝛼    , (second row) 𝛼    , (third row) 𝛼      

and (fourth row) the FVM results. 

Black isolines representing the solid fraction at 0.1, 0.2 and 0.3. 
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at 100 s 

     

 Solid fraction,   [-]  Grain density,   [grains m
-3

]  

     

       

 
 

 

 

 

     

       

 

 

 

 

 

     

       

 

 

 

 

 

     

 FVM (SOLID)  

 

 

 

 

 

     

Fig.4. 28 – Distributions of (left) the solid fraction and (right) the grain density,  

FEM solutions obtained using different 𝛼  

(first row)  𝛼    , (second row) 𝛼    , (third row) 𝛼      

and (fourth row) the FVM results. 

Black isolines representing the solid fraction at 0.1, 0.2 and 0.3. 
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at the end of solidification 

     

 Average composition, 〈 〉 [wt.%]  Grain density,   [grains m
-3
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Fig.4. 29 – Distributions of (left) the average composition and (right) the grain density,  

FEM solutions obtained using different 𝛼  

(first row)  𝛼    , (second row) 𝛼    , (third row) 𝛼      

and (fourth row) the FVM results. 

Black isolines representing the solid fraction at 0.1, 0.2 and 0.3. 
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Fig.4. 30 – Time evolutions of (red curve) the energy in a conserved case,  

(green curve) the energy and (blue curve) the average mass calculated from simulations. 

 

Through these simulations, it has been shown that introducing an artificial diffusion is 

necessary and 𝛼     can be considered as a lower limit of the proposed formulation. 

However this value is only partially concluded, it may be not favorable for all situations and 

can be tested in order to estimate a suitable quantity. Therefore a further development of a 

more general artificial diffusion coefficient would be expected to optimize numerical 

resolutions. 

 

 

4.5 Dendritic Solidification Modeling 

 

After studying a two-phase model intended for globular solidification, this section is 

contributed to the extended model for three phases which allows taking into account the 

morphology of dendritic grains. The simulations performed are principally used to verify our 

implementation by comparing the results to those obtained from the FVM (SOLID software).  

 

4.5.1 Purely Diffusive Solidification 

 

The first verification is realized for the implementation of the growth stage by simulating a 

pure thermal solidification where a sample of Al-5wt.%Si is initially set at 621.5°C and 

cooled with a heat extraction rate equal to 42300 W kg
-1

. The test cases come from those 

figured out in the Ph.D. thesis of Marie Bedel [Bedel, 2014] for three final grain sizes: 0.1 

mm, 1 mm and 10 mm, to which the nucleated grain densities correspond. With each grain 

size, three simulations are carried out for different growth models: one for the two-phase 

model, two for the three-phase model where dendritic tips are assumed to be either 

hemispherical or paraboloidal. Thermophysical data and simulation parameters are presented 

in Annex - A.5.   
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Fig.4. 31 shows the temporal evolution of the temperature for these simulations, the graphs on 

the left display the results obtained from our implementation and those on the right present 

the solutions from the thesis of Marie Bedel. The fractions of the solid phase, the envelope 

and the internal solid are plotted versus time in Fig.4. 32-Fig.4. 34 for the three cases. It can 

be seen that the present implementation produces the results which retrieve those of the 

reference, which allows validating the step.  

 

Analyses for these results are detailed in the study of Marie Bedel, here we summarize the 

main remarks of her study related to the three-phase model.  

 

 Overall, the three-phase model predicts a faster recalescence with respect to the two-

phase model because the solid phase increases more rapidly due to a higher gradient of 

solute. 

 

 Additionally, when the grain density is small (i.e. when the final grain size is large), 

solid grains develop rather with a dendritic form. Therefore the three-phase model 

would allow a better prediction of the growth evolution than the two-phase model in 

which grains are supposed to have a full globular morphology. 

 

 For a three-phase configuration, the modeling of the morphology and the recalescence 

is significantly affected by the assumption made for the velocity of dendritic tips. With 

a given undercooling, the tips velocity computed using the hemispherical model is 

higher than calculated with the paraboloidal model. On the one hand it results in a 

faster expansion of envelopes and the grains become thus more dendritic; on the other 

hand it induces a quick development of the solid fraction leading to a quick 

recalescence.   
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FEM results FVM results 

 

Final grain size : 0.1 mm 

  
  

Final grain size : 1 mm 

 
 

  

Final grain size : 10 mm 

 
 

     

Fig.4. 31 – Time evolution of the temperature 

 (left) the present FEM results and (right) the FVM results issued from [Bedel, 2014] 

 (green curves) two-phase model, (orange curves) three-phase model with hemispherical tips, 

(purple curves) three-phase model with paraboloidal tips.  

The maximal difference between the FE and FV results is smaller than 1°C.  
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Final grain size : 0.1 mm 

  

  

FEM 

 

   
    

 solid fraction envelope fraction internal solid fraction 

    

FVM 

 

   
    

  

Fig.4. 32 – Time evolution of variables including 

(left) solid fraction, (center) envelope fraction, (right) internal solid fraction 

(first row) the FEM results and (second row) the FVM results from [Bedel, 2014]. 
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Final grain size : 1 mm 

  

  

FEM 

 

   
    

 solid fraction envelope fraction internal solid fraction 

    

FVM 

 

   
  

  

Fig.4. 33 – Time evolution of variables including 

(left) solid fraction, (center) envelope fraction, (right) internal solid fraction 

(first row) the FEM results and (second row) the FVM results from [Bedel, 2014]. 
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Final grain size : 10 mm 

  

  

FEM 

 

   
    

 solid fraction envelope fraction internal solid fraction 

    

FVM 

 

   
  

  

Fig.4. 34 – Time evolution of variables including 

(left) solid fraction, (center) envelope fraction, (right) internal solid fraction 

(first row) the FEM results and (second row) the FVM results from [Bedel, 2014]. 
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Furthermore, the 1D test case which was established in Section 4.1 for the two-phase model is 

also performed here to verify our implementation with respect to the FEM solution of the pure 

heat diffusion without the solid and liquid movement. Results obtained from the present three-

phase model (assuming either hemispherical tips or paraboloidal tips) are compared to those 

given by the lever rule and Gulliver-Scheil approximations, for which the time evolutions of 

the temperature and of the solid fraction are presented in Fig.4. 35 and Fig.4. 36, as listed 

below. 

 

 

Comparison cases in Fig.4. 35 (three-phase model with hemispherical tips)  

two top sub-figures two bottom sub-figures 

 Three-phase model  (well mixed solute) 

& Lever rule model 

Three-phase model (no back diffusion)   

& Gulliver-Scheil model 

 

 

Comparison cases in Fig.4. 36 (three-phase model with paraboloidal tips)  

two top sub-figures two bottom sub-figures 

Three-phase model  (well mixed solute) 

& Lever rule model 

Three-phase model (no back diffusion)   

& Gulliver-Scheil model 

 

where 

 

Cases    [m
2
 s

-1
]   [grain m

-3
]    [m

2
 s

-1
] 

well mixed solute     
       

         
   

no back diffusion     
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Fig.4. 35 – Time evolutions of (left) the temperature and (right) the solid fraction  

obtained from (green curves) the present three-phase model with hemispherical tips 

and (orange curves) the lever rule and Gulliver-Scheil models. 
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Fig.4. 36 – Time evolutions of (left) the temperature and (right) the solid fraction  

obtained from (green curves) the present three-phase model with paraboloidal tips 

and (orange curves) the lever rule and Gulliver-Scheil models 

 

 

Through these results, it can be seen that the three-phase model, either with hemispherical tips 

or with paraboloidal tips, reproduces the lever rule and Gulliver-Scheil solutions. This study 

additionally confirms and validates our implementation. 
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4.5.2 Complete Growth-Transport Solidification 

 

After studying the growth stage, the complete transport-growth dendritic model is applied to 

simulate a 2D case that was figured out in Marie Bedel’s thesis [Bedel, 2014]. A 76 mm 

square cavity contains a Al-22wt.%Cu alloy in the liquid state initially at 700 °C, and  is 

cooled from the left side in an environment at 500 °C with a heat transfer coefficient of    

14000 W m
-2 

K
-1

, as schematized in Fig.4. 37. Thermophysical properties of the material and 

simulation parameters are presented in Annex - A.6. Two simulations of the three-phase 

model which assume hemispherical tips (Case 1.a) and paraboloidal tips (Case 1.b) are 

performed and compared to the two-phase case (Case 2). The computation is operated on a 

non-structured triangular mesh size of 1 mm and a macro-time step of 0.01 s. 

 

 

 

Mesh form 

 

 

Simulation Parameters 

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

 (  )    [-] 

 (  )   [-] 
 

  

 

Fig.4. 37 – Schematic of system dimensions 

 Thermal and mechanical boundary conditions are presented in Tab.4. 4. 

 

 

Tab.4. 4  - Thermal  and mechanical boundary conditions 

 Thermal part  Mechanical part 

Side     
     

  

   x y  x y 

S1 adiabatic  0 0  0 0 

S2            W m
-2

 K
-1

 

         °C 

 0 0  0 free 

S3 adiabatic  0 0  0 0 

S4 adiabatic  0 0  0 free 
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Fig.4. 38 presents the distribution of variables at t = 40 s for the three simulations, including 

from top to bottom the temperature, the solid fraction, the internal solid fraction and the 

grains density. Overall, while the solutions given by the two dendritic models are different, 

those obtained assuming paraboloidal tips are very close to those predicted by the two-phase 

globular model. It can be seen that the internal solid fraction calculated from the paraboloidal-

tip model has a high value close to one for nearly the whole domain, as shown in Fig.4. 38 

(the third row). As a result, the evolution of variables simulated by using the paraboloidal-tip 

model is similar to that described by the two-phase globular model.  

 

Since the calculation given from the hemispherical-tip model predicts a rapid growth of 

envelopes, the grains with hemispherical tips possess a morphology more dendritic than 

paraboloidal-tip dendrites, as deduced from the internal solid fraction maps in Fig.4. 38 (the 

third row). On the other hand, it also leads to a quick evolvement of the solid phase and thus a 

large quantity of solid is predicted to form on the cooled wall, being observed in Fig.4. 38 (the 

second row). As consequence, the solid layer which attaches to the cooled wall makes the 

heat exchange between the hot liquid and the environment less efficient; the cooling takes 

place more slowly compared to the other cases, as presented in Fig.4. 38 (the first row).   

 

Regarding the grain density maps in Fig.4. 38 (the fourth row), since the density of the solid 

phase is smaller than the liquid density, solid grains thus have a tendency to float and 

accumulate in the upper zone, unlike the previous simulations in which solid grains are 

heavier than the melt bulk. In addition, during solidification the liquid phase has continuously 

increased its density due to the effect of thermo-solutal buoyancy. Therefore finally a higher 

grain density is found at the top of the cavity and a positive segregation is located in the 

bottom-right area where the last solidification takes place, as shown in Fig.4. 39. 

   

Moreover, since hemispherical grains grow faster, the packed bed zone is formed earlier, 

leading to a weaker segregation, compared to those obtained from the paraboloidal-tip model 

and the two-phase model. This is observed in the maps of macrosegregation of Fig.4. 39 and 

being confirmed when plotting the time evolution of segregation indexes, as displayed in 

Fig.4. 40, the lowest is given by the hemispherical-tip model.  
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Fig.4. 38 – FEM results obtained using (left) three-phase model with hemispherical 

tips, (center) three-phase model with paraboloidal tips, (right) two-phase model  

from top to bottom: temperature, solid fraction, internal solid fraction and grain density 
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 at the end of solidification 

  

 Case 1.a Case 1.b Case 2 

 (dendritic grains  

- hemispherical tips) 
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Fig.4. 39 – FEM results obtained using (left) three-phase model with hemispherical 

tips, (center) three-phase model with paraboloidal tips, (right) two-phase model  

including (first row) the grain density and (second row) the average composition. 

 

 

 
  

Fig.4. 40 – Time evolutions of the segregation index obtained from three models  

(green curve) three-phase model with hemispherical tips,  

(blue curve) three-phase model with paraboloidal tips  

and (red curve) two-phase globular model.  
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On the other hand, the FE solutions obtained from our implementation present a trend that is 

similar to those simulated using the FVM which are displayed in Fig.4. 41 and Fig.4. 42. 

Compared to the FV results obtained from the three-phase model considering hemispherical 

tips, at an intermediate time t = 40 s in Fig.4. 41, the FE solutions in Fig.4. 38 (the left 

column) present a similar distribution trend and approximatively close values of variables. 

However, the cooling and solidification are faster at the upper zone in the FE simulation. It is 

also noticed that the grain density given from the FEM is higher than that from the FVM. As a 

high grain density leads to a small undercooling and thus reduces the tip growth velocity, the 

development of envelopes will be limited. For this reason, although the solid fraction maps 

are quite similar, the internal solid fraction is rather different, which is considerably higher 

with the FE solution. Differences of the grain density predicted by the FEM and FVM 

formulations were also remarked in Section 4.4 for the two-phase globular model, for which 

the exact origin has not been known yet.    

 

at 40 s 

 

 a) Temperature   [°C] b) Solid fraction 𝑔 [-]  

    

 

  

 

    

    

 c) Internal solid fraction 𝑔  [-] d) Grain density   [grains m
-3

]  

    

 

  

 

     

Fig.4. 41 – FVM (SOLID software) results obtained  

using the three-phase model with hemispherical tips,  

a) Temperature b) Solid fraction 

c) Internal solid fraction d) Grain density 
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At the end of solidification, a positive segregation found in the lower zone, a negative one 

situated in the upper zone as well as a large grain quantity accumulated at the top of the cavity 

are globally predicted by both solutions, as seen in Fig.4. 39 (left column) for the FEM results 

and in Fig.4. 42 for those of the FVM. 

 

at the end of solidfication 

 

 Average composition 〈 〉 [wt.%] Grain density   [grains m
-3

]  

    

 

  

 

    

     

Fig.4. 42 – FVM (SOLID software) results obtained  

using the three-phase model with hemispherical tips:  

(left) the average composition and (right) the grain density. 

 

 

 

4.6 Summary 

 

This chapter presented different simulations in order to verify our implementation for the two-

phase globular model and the three-phase dendritic model in the FEM context. 

 

First, the present model was validated for a case of pure heat conduction, by comparing to the 

lever rule and Gulliver-Scheil approximations. It was demonstrated that the current model can 

retrieve the solutions of these classical models by using appropriate parameters consisting of 

the solute diffusion coefficients and grain density. In addition, this model can predict the 

recalescence phenomenon thanks to accounting for grain growth kinetics, which cannot be 

captured by the simplified models. 

 

Then, validation test cases accounting for the liquid natural convection were realized on the 

Pb-18wt%Sn and Sn-5wt%Pb benchmarks. The results presented a good agreement between 

our current FE formulation and other different approaches. One of the advantages of the 

present model in solidification modeling with the controlled solute diffusion was also 

considered and analyzed, showing its impact on the formation of meso-segregated channels.    
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The following part was investigated to study the model with the integration of the solid 

transport. The pure solid transport was applied to simulate the sedimentation phenomenon, in 

which a good coherency between the variables during the transport process was verified. The 

FE solutions were further compared to those using the FVM, presenting a close agreement 

between these results, which allowed verifying our implementation. Moreover, the effect of 

the newly developed parameters in the FE model was studied and analyzed, illustrating that 

numerical issues related to FE solutions for hyperbolic equations can be overcome by using a 

suitable adaptive artificial diffusion.  

 

After that, the complete model coupling the solid transport with other phenomena was 

performed for the reference test case which was realized by Založnik and Combeau, using the 

same model with the FVM [Založnik and Combeau, 2010b]. Finally, the application of the 

extended model - the three-phase dendritic model - was studied in the similar manner for the 

two-phase model, realizing different simulations from the pure thermal conduction to the full 

transport-growth coupling. In general, a correspondence between solutions obtained by the 

FEM and FVM formulations was achieved. Differences between these results as well as the 

sensibility to the artificial diffusion coefficient of the FE model were pointed out and 

analyzed. Through our supplementary test cases and studies in literature, the solutions were 

perceived to partially depend on numerical factors, such as time step, mesh size, discretization 

schemes, artificial diffusion … However, there exist other aspects that have been not 

thoroughly identified, for which we suggested several possibilities which may induce these 

differences.  

 

 

4.7 Résumé en français 

Dans ce chapitre, nous avons présenté des différents cas test de simulation dans le but de 

vérifier notre implémentation pour le modèle globulitique à deux phases et pour le modèle 

dendritique à  trois phases, dans le contexte de la formulation des éléments finis. 

Dans un premier temps, le modèle actuel a été validé sur un cas de conduction thermique 

pure, par une comparaison avec la loi des leviers et l’approximation de Gulliver-Scheil. En 

utilisant des paramètres appropriés incluant les coefficients de diffusion du soluté et la densité 

de grains, le présent modèle permet de retrouver les solutions des modèles classiques. De 

plus, ce modèle peut prédire le phénomène de recalescence grâce à la prise en compte des 

cinétiques de croissance de grains, ce qui n’est pas capturé par les modèles simplifiés. 

Ensuite, d’autres cas test de validation en présence de la convection naturelle du liquide ont 

été réalisés sur les benchmarks de Pb-18wt%Sn et de Sn-5wt%Pb, présentés dans [Bellet et 

al., 2009] et [Založnik and Combeau, 2010b]. Les résultats ont montré un bon accord avec 

ceux obtenus par les autres approches. L’un des avantages du présent modèle, la capacité de 

prendre en compte une diffusion du soluté limitée, a été considéré et analysé. Les cas de 

simulation correspondants ont illustré l’impact de ce phénomène sur la formation des canaux 

de ségrégation. 
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La partie suivante a été consacrée à étudier le modèle lors de l’intégration du transport du 

solide. Tout d’abord, le transport du solide pur a été appliqué à la simulation du phénomène 

de sédimentation, dans laquelle une bonne cohérence entre les quantités pendant le transport a 

été vérifiée. Ces solutions obtenues par la méthode des éléments finis ont aussi présenté une 

concordance avec celles que donne la méthode des volumes finis. Via ce cas test, l’effet des 

nouveaux paramètres développés dans la formation des éléments finis a été également étudié. 

Cela a démontré que des problèmes numériques concernant les solutions des éléments finis 

pour des équations hyperboliques pouvaient être surmontés en utilisant une diffusion 

artificielle convenablement adaptée.  

Dans une dernière étape, le modèle complet dans lequel le transport du solide est mis en 

couplage avec les autres phénomènes a été appliqué au cas de référence qui a été réalisé par le 

travail de Založnik et Combeau en utilisant le même modèle avec la méthode des volumes 

finis [Založnik and Combeau, 2010b]. Puis, l’application du modèle étendu – le modèle 

dendritique à trois phases – a été menée de même manière pour le modèle à deux phases, dans 

laquelle différentes simulations ont été mises en place, du cas thermique pur à la simulation 

avec un couplage complet transport-croissance. En général, une cohérence entre les solutions 

données par les méthodes des éléments finis et des volumes finis a été obtenue. Des 

différences entre les résultats ainsi que la sensibilité du modèle des éléments finis au 

coefficient de diffusion artificielle ont été remarquées et étudiées. Via nos cas test 

supplémentaires et des études dans la littérature, les solutions se sont avérées dépendre 

partiellement des facteurs numériques, par exemple le pas de temps, le maillage, les schémas 

des discrétisation, la diffusion artificielle… Toutefois, il y aurait d’autres aspects dont leurs 

influences ne sont pas encore clairement identifiées, pour lesquels nous avons proposé des 

possibilités qui pourraient induire ces différences. 
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Chapter 5  

Tests 3D et Applications Industrielles 
 

Suite aux études pour une configuration 2D du chapitre précédent, le modèle est tout d’abord 

appliqué à des cas 3D du benchmark de Hebditch-Hunt [Hebditch and Hunt, 1974]. Des 

applications industrielles sont ensuite menées sur un lingot d’acier 3t3 coulé par Aubert & 

Duval [Combeau et al., 2009] pour des géométries 2D et 3D.   

 

5.1 Tests 3D (Benchmark de Hebditch-Hunt) 

 

Concernant le benchmark de Hebditch-Hunt, deux parties sont présentées: 

 

 Afin de vérifier notre implémentation 3D, un calcul est mis en œuvre sur une 

pièce mince en le configurant pour qu’il soit comparable avec un calcul 2D. 

Une simulation supplémentaire est également effectuée pour étudier l’effet du 

nombre d’éléments à travers l’épaisseur.  

 

 Le cas réel est ensuite réalisé sur un domaine avec une épaisseur plus large sur 

lequel les configurations sont paramétrées pour que le calcul représente la 

moitié de la cavité. 
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5.1.1 Etude sur une pièce mince de 1 mm d’épaisseur avec deux plans de symétrie 

 

Dans la première étude, la géométrie 3D, illustrée à la Fig.5. 1, est construite avec une paroi 

mince ne contenant qu’un seul élément dans l’épaisseur séparant deux plans de symétrie. La 

chaleur est extraite par la paroi de gauche, les autres parois sont adiabatiques. Les conditions 

aux limites thermiques et mécaniques correspondantes sont présentées aux Tab.5. 1 et Tab.5. 

2. La simulation est réalisée sur un maillage structuré avec une taille de maille fixée de 1 mm 

(incluant 12 322 nœuds et 36 000 éléments). Le même alliage Sn-5wt.%Pb est utilisé. Les 

propriétés de l’alliage et les paramètres de simulation figurent dans l’annexe - A.7. 

 

 

 

maillage 
 

 

 

 

Paramètres de simulation 

Taille de maille 

(Maillage structuré) 

  [mm] 

Macro pas de temps      [s] 

Macro/Micro temps   [-] 

 (  )    [-] 

 (  )   [-] 

   

Fig.5. 1 – Schéma du cas 3D pour une pièce mince de 1 mm d’épaisseur  

Les conditions aux limites thermiques et mécaniques sont repérées pour les numéros 1 à 6 

accessibles aux Tab.5. 1 et Tab.5. 2. 

 

Tab.5. 1 – Conditions aux limites thermiques 

Plan Conditions 

P1, P3, P4, P5, P6 adiabatique 

P2          W m
-2

 K
-1 

;
          °C   

 

Tab.5. 2 – Conditions aux limites mécaniques 

Plan     
     

  

   x y z  x y z 

P1, P2, P4, P5   0 0 0  0 0 0 

P3, P6 (plan de symétrie)  libre 0 libre  libre 0 libre 

 

 

 

 



147 
 
Chapter 5 - Tests 3D et Applications Industrielles 

Les Fig.5. 2 et Fig.5. 3 affichent les cartes de fraction de solide et de densité de grains sur les 

deux plans de symétrie respectivement aux temps 10 s et 250 s. Comme nous pouvons 

l’observer, l’évolution des variables sur ces deux surfaces est presque identique.  

 

 à 10 s  

 1er plan de symétrie (P3) 2ème plan de symétrie (P6)  

F
ra

ct
io

n
 d

e 
so

li
d

e 
 

𝑔
 
[-

] 

  

 

    

D
en

si
té

 d
e 

g
ra

in
s 

 
 [

g
ra

in
s 

m
-3

] 

  
 

   

Fig.5. 2  – Calcul 3D pour une pièce de 1 mm d’épaisseur avec deux plans de symétrie 

Cartes (en haut) de fraction solide et (en bas) de densité de grains.  

 

 à 250 s  
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Fig.5. 3   – Calcul 3D pour une pièce de 1 mm d’épaisseur avec deux plans de symétrie 

Cartes (en haut) de fraction de solide et (en bas) de densité de grains.  
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Cela est visualisé par une distribution symétrique persistante jusqu’à la fin de la solidification 

comme montré à la Fig.5. 4 pour les cartes de macroségrégation et de densité de grains. 
 

 à la fin de la solidification (t = 1200 s)  
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Fig.5. 4   – Calcul 3D pour une pièce de 1 mm d’épaisseur avec deux plans de symétrie 

Cartes finales (en haut) de composition moyenne et (en bas) de densité de grains.  
 

Afin de vérifier ce calcul 3D qui est fait sur un maillage structuré, une simulation 2D est 

réalisée dans les mêmes conditions que celles présentées dans la Section 4.4.1, sauf que le 

maillage structuré est utilisé pour cette étude. La taille de maillage est fixée de 1 mm comme 

celle du test 3D.  La Fig.5. 5 et le Tab.5. 3 rappellent la géométrie du domaine, les conditions 

aux limites et paramètres de simulation. 
 

 

maillage 
 

 

Paramètres de simulation 

Taille de maille 

(Maillage structuré) 

  [mm] 

Macro pas de temps      [s] 

Macro/Micro temps   [-] 

 (  )    [-] 

 (  )   [-] 
 

 

Fig.5. 5  – Schéma du cas 2D 

Les conditions aux limites thermiques et mécaniques sont repérées pour les numéros 1 à 4 

accessibles aux Tab.5. 3. (identiques à celles précisées à la Section 4.4.1). 



149 
 
Chapter 5 - Tests 3D et Applications Industrielles 

 

Tab.5. 3 – Conditions aux limites thermiques et mécaniques 

 CL Thermiques  CL Mécaniques 

Côté     
     

  

   x y  x y 

S1, S3, S4 adiabatique  0 0  0 0 

S2           W m
-2

 K
-1  

        °C 

 0 0  0 0 

 

Les résultats obtenus par la simulation 2D aux temps intermédiaires (à 10 s et 250 s) sont 

affichés à la Fig.5. 6 et les cartes finales à la Fig.5. 7, auxquels les solutions du cas test 3D 

(Fig.5. 2 - Fig.5. 4, figures dans les colonnes de gauche) sont comparées. Outre les évolutions 

presque identiques des variables sur les deux plans de symétrie, le calcul 3D donne également 

les solutions proches de celles obtenues par le calcul 2D. Les différences entre ces deux 

calculs sont surtout constatées sur les cartes de la densité des grains. Elles pourraient être dues 

à l’impact de l’arrangement des éléments dans un maillage volumique ou aux contraintes 

générées lorsque les deux surfaces bornées sont séparées par un seul élément. Dans cette 

étude, cela induirait une diffusion plus faible dans la simulation 3D que dans celle 2D. Cela 

est illustré dans les cartes du coefficient de diffusion, Fig.5. 8, une diffusion légèrement plus 

étendue et plus prononcée étant observée dans le calcul 2D par rapport au calcul 3D.  
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Fig.5. 6  – Calcul 2D, résultats (à gauche)  à 10 s et (à droite) à 250 s  

Cartes (en haut) de fraction solide et (en bas) de densité de grains 

(à comparer aux Fig.5. 2 et Fig.5. 3, colonnes de gauche). 
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 à la fin de la solidification (t = 1200 s)  
    

 Average composition 〈 〉 [wt.%] Grain density   [grains m
-3

]  
    

 

  
 

   

Fig.5. 7  – Calcul 2D 

Cartes finales (à gauche) de composition moyenne et (à droite) de densité de grains 

(à comparer à la Fig.5. 4, colonne de gauche). 

 

 
3D 

(vue sur un plan de symétrie) 

2D  

   

10 s 

  

 

  

250 s 

  
   

Fig.5. 8  – Distributions du coefficient de diffusion artificielle (en haut) à 10 s et (en bas) à 

250 s pour (à gauche) le calcul 3D vue sur un plan de symétrie et (à droite) le calcul 2D.  

 

De plus, il est noté que cette simulation 2D est réalisée sur un maillage structuré et avec un 

nombre de micro pas de temps deux fois plus petit que celui utilisé dans le calcul 2D sur un 

maillage non structuré à la Section 4.4.1.  Les résultats obtenus par les deux calculs, (Fig.5. 7 

et Fig.4. 21), sont globalement similaires, quelques différences pouvant être constatées 

illustrant l’influence du type de maillage et du micro pas de temps. 
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Par ailleurs, bien que les résultats obtenus par les simulations 2D et 3D soient comparables, 

leurs écarts nous ont conduits à effectuer un test supplémentaire avec la présence de plusieurs 

éléments dans l’épaisseur pour étudier l’effet du maillage et vérifier l’origine des différences. 

 

Simulation 3D : Effet du nombre d’éléments à travers l’épaisseur 

 

Au lieu d’un seul élément, l’épaisseur est maintenant maillée avec cinq éléments. La 

simulation est réalisée sur un maillage structuré avec la même taille (1 mm) que celle utilisée 

dans l’étude précédente : donc 5 mm d’épaisseur, composé de 36 966 nœuds et de 180 000 

éléments. Le domaine est borné par deux plans de symétrie (P3 et P6 sur la Fig.5. 9). Les 

conditions aux limites en thermique et mécanique sont identiques à celles du cas précédent, 

rappelées aux Tab.5. 4 et Tab.5. 5. Le même alliage (Sn-5wt%Pb) est utilisé. 

 

 

 

maillage 
 

 

 

Paramètres de simulation 

Taille de maille 

(Maillage structuré) 

  [mm] 

Macro pas de temps      [s] 

Macro/Micro temps   [-] 

 (  )    [-] 

 (  )   [-] 
 

   

Fig.5. 9 – Schéma du cas 3D pour une pièce mince de 5 mm d’épaisseur  

conditions aux limites thermiques et mécaniques aux Tab.5. 4 et Tab.5. 5 

                                                    (identiques aux Tab.5. 1 et Tab.5. 2). 

 

Tab.5. 4 - Conditions aux limites thermiques 

Plan Conditions 

P1, P3, P4, P5, P6 adiabatique 

P2          W m
-2

 K
-1 

;
          °C   

 

Tab.5. 5 - Conditions aux limites mécaniques 

Plan     
     

  

   x y z  x y z 

P1, P2, P4, P5   0 0 0  0 0 0 

P3, P6 (plan de symétrie)  libre 0 libre  libre 0 libre 
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Les évolutions de la fraction de solide et de la densité de grains aux temps intermédiaires à   

10 s et 250 s sont présentées sur les  Fig.5. 10 et Fig.5. 11. Les résultats sont globalement 

similaires à ceux du calcul 3D avec 1 élément dans l’épaisseur (Fig.5. 2 et Fig.5. 3). Par 

ailleurs, la distribution des grains est visiblement sensible au maillage, les solutions avec 

plusieurs éléments dans l’épaisseur étant plus proches de celles du calcul 2D (Fig.5. 6). Ces 

résultats correspondent à la tendance attendue pour la configuration 3D mise en œuvre 

actuellement. Nous retrouvons dans ce calcul 3D (Fig.5. 11, en bas à gauche) une grande 

densité de grains distribuée dans une large zone à droite comme celle constatée dans la 

simulation 2D (Fig.5. 6, en bas à droite). Cette étude montre que le maillage avec multi-

éléments dans l’épaisseur est plus favorable que celui avec un élément.      
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Fig.5. 10 – Calcul 3D pour une pièce de 5 mm d’épaisseur avec deux plans de symétrie 

Cartes (en haut) de fraction solide et (en bas) de densité de grains.  
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 à 250 s  
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Fig.5. 11 – Calcul 3D pour une pièce de 5 mm d’épaisseur avec deux plans de symétrie 

Cartes (en haut) de fraction solide et (en bas) de densité de grains.  

 

 

Bien qu’il y ait des écarts entre les résultats 2D et 3D, nous retrouvons des résultats 

globalement similaires en ce qui concerne le transport des quantités, l’empilement de la 

couche solide de bas en haut, l’évolution de la solidification. Avec des conditions aux limites 

comme celles définies précédemment, les calculs 3D représentent un comportement d’un cas 

2D. Toutefois, suite à cette première étude purement numérique, une question demeure : Cette 

caractéristique va-t-elle changer dans le cas où on tient compte de l’effet des parois physiques 

sur lesquelles les vitesses du solide et du liquide sont nulles ?  

 

 

 

 

 

 

 

 

 

 

 

 



154 
 
Chapter 5 - Tests 3D et Applications Industrielles 

 

5.1.2 Etude du cas réel en simulant la moitié de la cavité 

 

Afin d’étudier cet aspect, une simulation a été effectuée sur une pièce de 5 mm d’épaisseur 

représentant la moitié de la cavité, comme schématisé à la Fig.5. 12. Une des deux grandes 

faces est encore considérée comme un plan de symétrie (Plan P6). L’autre est configurée pour 

se comporter comme la surface réelle de la cavité (Plan P3) – la surface en contact avec le 

moule – sur laquelle les vitesses de phase sont nulles. Dans cette partie, nous avons travaillé 

sur un maillage non structuré tétraédrique. Ce type de maillage est utilisé pour les simulations 

étudiées dans notre travail, sauf les tests numériques dans la section 5.1.1. Il est largement 

employé et préféré pour des applications avec des formes complexes ou avec des pièces de 

grandes dimensions, ce qui rend plus flexible les techniques de maillage adaptatif. Le calcul 

est réalisé avec une taille de maille uniforme de 1 mm (57 626 nœuds et 294 935 éléments, 5 

éléments dans l’épaisseur) et un pas de temps constant de 0.01 s.  

 

 

 

maillage 
 

 

 

Paramètres de simulation 

Taille de maille 

(Maillage non structuré) 

  [mm] 

Macro pas de temps      [s] 

Macro/Micro temps   [-] 

 (  )    [-] 

 (  )   [-] 
 

   

Fig.5. 12 – Schéma du cas 3D avec la moitié de la cavité 

Les conditions aux limites thermiques et mécaniques sont repérées pour les numéros 1 à 6 

accessibles aux Tab.5. 1 et Tab.5. 6. 

 

Tab.5. 6 - Conditions aux limites mécaniques 

Plan     
     

  

   x y z  x y z 

P1, P2, P4, P5   0 0 0  0 0 0 

P3 (surface réelle)  0 0 0  0 0 0 

P6 (plan de symétrie)  libre 0 libre  libre 0 libre 
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La Fig.5. 13 présente la distribution des grains à 10 s (colonne de gauche) sur le plan de 

symétrie P6 et (colonne de droite) sur la surface en contact avec le moule P3. Nous voyons 

que l’avancement des grains sur la face réelle est plus limité que celui des grains sur le plan 

de symétrie; ceci est dû à la friction créée par la surface réelle qui freine les cristaux en 

contact avec la paroi. Les résultats montrent ainsi que la densité de grains n’est plus 

symétrique, ce qui est différent de l’étude précédente avec une pièce mince bornée par deux 

plans de symétrie (Fig.5. 2). Il convient de remarquer que les vitesses sont nulles aux parois 

mais deviennent considérablement élevées juste à côté des parois comme le montre la Fig.5. 

14 dans laquelle on peut visualiser les distributions des vitesses du liquide et du solide à 10 s 

aux différentes hauteurs de la moitié de la cavité (à 17 mm, 37 mm et 57 mm). 

 

  à 10 s  

 vue sur le plan de symétrie (P6) vue sur la surface réelle (P3)  
   

 

  
 

   

Fig.5. 13 – Calcul 3D avec la moitié de la cavité  

Densité de grains à 10 s (à gauche) sur le plan de symétrie et (à droite) sur la surface réelle. 

 

 

 à 10 s  

Vitesse du liquide [m s
-1

] Vitesse du solide [m s
-1

] 

 

  
   

Fig.5. 14 – Calcul 3D avec la moitié de la cavité  

Distributions des vecteurs et de la norme des vitesses aux différentes hauteurs de la cavité  

(à 17, 37 et 57 mm), (à gauche) la vitesse du liquide et (à droite) la vitesse du solide. 
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Par ailleurs, en observant les évolutions de la composition moyenne et de la fraction solide 

pour un temps intermédiaire de 250 s, comme affichées à la Fig.5. 15, nous voyons des 

différences entre les deux surfaces extrêmes. La ségrégation sur la face réelle est prononcée 

bien que son intensité soit plus faible que celle dans le plan de symétrie et sa valeur moyenne 

est maintenue approximativement à la composition nominale. La Fig.5. 16 affiche des iso-

couches de la composition moyenne constituées de celles en 3, 4, 7, 9, 10 pds% Pb aux 

différents instants 150, 200, 250 et 300 s, avec des lignes de courant de la vitesse du liquide 

dont la couleur rouge indique une norme supérieure à 0.1 mm s
-1

 avec la direction de 

l’écoulement globalement dirigé de gauche à droite. Le canal de ségrégation en bas est 

d’abord formé à l’intérieur de la cavité où la quantité de soluté accumulé est plus élevée que 

celle sur la surface réelle. Il existe toujours – sauf si la solidification est complète – un 

écoulement qui se déplace dans la zone pâteuse et transporte le soluté de la zone supérieure 

vers le bas, bien que son intensité soit considérablement réduite par rapport à celui dans la 

zone non-packée. L’enrichissement du soluté dans ce canal de cette manière retarde la 

solidification, et ceci d’autant plus en zone intérieure qu’en paroi, pour ce qui concerne la 

région en bas de la cavité. Lorsque la solidification avance, le canal devient un chemin 

préférentiel du liquide et se développe en s’étendant suivant la longueur de la cavité  et dans 

la direction de la vitesse, ainsi qu’en traversant l’épaisseur avec un contenu en soluté diminué 

progressivement en s’approchant de la paroi. De plus, sur le côté refroidi au-dessous du canal 

de ségrégation positive en bas, la Fig.5. 15 montre que la concentration moyenne sur le plan 

intérieur (plan de symétrie) est plus faible que celle sur la surface réelle.  Cela conduit du côté 

refroidi à une solidification plus rapide à l’intérieur (vers le plan de symétrie) que sur la paroi 

extérieure.  

 à 250 s  

 vue sur le plan de symétrie (P6) vue sur la surface réelle (P3)  
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Fig.5. 15 – Calcul 3D avec la moitié de la cavité à 250 s 

Cartes (en haut) de composition moyenne et (en bas) de fraction de solide. 
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à 150 s à 200 s  

  

 

  

  

à 250 s à 300 s 

  

   

   

Fig.5. 16 – Calcul 3D avec la moitié de la cavité  

Distributions 3D des iso-surfaces de composition moyenne (en 3, 4, 7, 9, 10 wt%Pb) 

et des iso-lignes de courant de la vitesse du liquide (la couleur rouge indique une 

norme de la vitesse supérieure à 0.1 mm/s) à 150 s, 200 s, 250 s et 300 s. 

 

 

Ces simulations montrent que la prise en compte des configurations réelles de l’écoulement 

via les parois a un impact sur la prédiction de l’évolution de la solidification. Des phénomènes 

se déroulant dans l’espace sont bien pris en compte avec des simulations 3D, par exemple le 

ralentissement des cristaux solides par le frottement le long de parois, la formation 3D des 

canaux de ségrégation (par exemple le canal enrichi en soluté en bas de la cavité dans cette 

étude) ou la distribution non uniforme des quantités à travers l’épaisseur, ce qui ne peut pas 

être capturé par des calculs 2D dans lesquels les variables ne se développent que dans un plan, 

c’est-à-dire pour un volume infini dans la direction normale à la simulation. En outre, nous 

remarquons que pour les deux cas 3D étudiés la solution dans le plan de symétrie est proche 

de celle prédite par le calcul 2D puisque pour ce plan les champs de vitesse sont contraints à 

rester dans ce plan. 
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5.2 Applications Industrielles 

 

5.2.1 Configurations des simulations  

 

Dans cette partie, le modèle est appliqué pour simuler la solidification d’un lingot d’acier de 

3.3 tonnes coulé par Aubert & Duval. Nous avons présenté les travaux dédiés à ce lingot 

établis par Combeau et al. [Combeau et al., 2009] dans notre revue de la littérature (Section 

2.4.3). Les points principaux concernant les analyses sur ce lingot sont rappelés et résumés 

ici.  La configuration expérimentale du lingot est représentée sur la Fig.5. 17-a). L’acier 

liquide remplit le lingot à partir du pied, en source. La partie inférieure du lingot est en 

contact avec le moule et celle supérieure est en contact avec un réfractaire. Les parois 

externes du moule échangent thermiquement avec l’air extérieur par convection naturelle et 

rayonnement. La surface supérieure est couverte par une couche de poudre exothermique. Le 

temps de solidification total est de l’ordre de 90 minutes. La Fig.5. 17-b) et la courbe rouge 

dans la Fig.5. 17-c) présentent respectivement la carte de macroségrégation interpolée à partir 

des mesures expérimentales (114 points) et le profil de ségrégation au centre du lingot dont 

une ségrégation négative se situe en bas et une ségrégation positive élevée se trouve dans la 

zone supérieure en contact du réfractaire. Les courbes bleue et verte sur la Fig.5. 17-c) sont 

les résultats numériques du travail de Combeau et al. en supposant la croissance de grains 

globulitiques d’une part et dendritiques d’autre part.  

   

Dans nos simulations, nous reprenons l’approximation de [Combeau et al., 2009] : l’acier est 

considéré comme un alliage binaire Fe-0.36wt.%C dont les propriétés sont données à l’annexe 

A.8. Ce choix est justifié car, selon Combeau et al., l’élément carbone joue un rôle 

significativement dominant par rapport aux autres éléments contenus dans la force motrice 

résultant des gradients thermique et solutaux. Par ailleurs, le lingot réel est de section 

octogonale. Nous avons pour notre part considéré deux types de modélisation : une en 

approche 2D plane (l’approche 2D axisymétrique n’étant pas disponible) et une en approche 

3D à section transverse circulaire, donc plus proche du problème réel. La surface en haut du 

lingot est supposée adiabatique. L’assemblage des éléments moulants à corps multiples, dans 

lequel chaque composant est caractérisé par un matériau différent, ne peut pas être considéré. 

Dans le travail actuel, nous avons simulé un domaine qui ne représente que le lingot. 

L’échange thermique à la surface du lingot est modélisé en appliquant sur la paroi latérale et 

la surface inférieure une condition aux limites de type Fourier avec deux coefficients de 

transfert thermique différents:               W m
-2

 K
-1

 sur la partie supérieure représentant 

un échange limité via le réfractaire et                 W m
-2

 K
-1

 sur la partie inférieure 

figurant un échange plus efficace via le corps de la lingotière. Il est supposé que le lingot est 

déjà rempli par l’alliage liquide à sa température de liquidus de 1503 °C au début de la 

simulation. La température extérieure évolue au cours du temps : elle est fixée à 626.85 °C 

(900 K) jusqu’à 2000 s et à 26.85 °C (300 K) à partir de 4000 s ; dans la période intermédiaire 

elle diminue linéairement en fonction du temps, comme résumé dans le Tab.5. 7.  
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Cette évolution de la température extérieure sert à modéliser le changement de la température 

de l’environnement (un moule en fonte) avec lequel le lingot est mis au contact au cours du 

refroidissement. Une loi instantanée est utilisée pour la germination avec une densité de 

grains égale à                et une surfusion égale à       . La fraction d’empilement 

limite à laquelle la phase solide est bloquée est de 0.4. Seuls des grains équiaxes globulaires 

sont modélisés dans cette étude.    

 

Les géométries et les configurations établies pour le calcul 2D que nous présentons dans la 

suite sont schématisées sur la Fig.5. 18. La simulation est effectuée sur un domaine 

rectangulaire de 0.3 m x 1.8 m représentant la moitié d’une section verticale du lingot. Etant 

analysée dans un repère cartésien, la pièce est bornée par un axe de symétrie. Les conditions 

aux limites en thermique sont précisées dans le Tab.5. 7 et celles en mécanique dans l’annexe 

A.8.  La taille de maille est fixée à 10 mm (maillage isotrope non structuré avec 13 480 

éléments et 6 937 nœuds) et un pas de temps macro constant de 0.01 s est utilisé.  

 

 

 

  

 

a) b) c) 

   

Fig.5. 17 –  Configuration du lingot et résultats issus de l’article [Combeau et al., 2009] : 

 a) Configuration du lingot d’acier de 3.3 tonnes.  

 b) Carte de macroségrégation expérimentale interpolée dans une demi-

section longitudinale du lingot.  

 c) Courbes de ségrégation au centre du lingot. 
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maillage 

  

 

 

Paramètres de simulation 

Taille de maille    [mm] 

Macro pas de temps      [s] 

Macro/Micro temps    [-] 

 (  )    [-] 

 (  )   [-] 
 

 

 

Fig.5. 18 – Schéma 2D du lingot en configuration cartésienne plane.  

Conditions aux limites en thermique au Tab.5. 7. 

Conditions aux limites en mécanique (repérées pour les numéros 1 à 4) à l’annexe - A.8. 

  

 

Tab.5. 7 – Conditions aux limites thermiques 

  [      ) [s]          [K] 

  [         ) [s]                  [K] 

       [s]          [K] 

 
            ;               [W m

-2
 K

-1
]  
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5.2.2 Etude sur le lingot en configuration plane cartésienne 2D 

 

La Fig.5. 19 présente les vitesses du liquide et du solide à 10 s, 100 s et 200 s avec les 

isolignes noires de la fraction de solide à 0.1, 0.2, 0.3 et 0.4. Les résultats à 10 s montrent 

l’écoulement du liquide descendant proche de la paroi refroidie du fait de l’effet thermique, 

renforcé par la sédimentation des grains solides. Le liquide remonte au centre du lingot et 

emporte une partie du solide vers le haut. On peut constater la présence de petits vortex 

générés par les interactions entre les deux sens de l’écoulement. Plus tard, à 100 s et 200 s, les 

vortex se développent de manière plus nette, les mouvements du solide et du liquide adoptent 

une forme de cellules. Ceci révèle des interactions complexes des phénomènes. En outre, les 

évolutions similaires des vitesses du liquide et du solide reflètent une dépendance bien 

couplée du mouvement entre les deux phases - un entraînement important du mouvement des 

grains solides par le liquide et vice-versa.  
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Fig.5. 19 – Calcul 2D plan cartésien.  

Vitesses du liquide et du solide aux instants 10 s, 100 s et 200 s.  

Les isolignes noires de la fraction de solide correspondent à 0.1, 0.2, 0.3, 0.4 et 1. 
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En présence du mouvement du solide, l’écoulement du liquide est également gouverné par des 

grains solides dans la zone où ceux-ci sont en suspension. Ainsi nous voyons que la vitesse du 

liquide est toujours dirigée vers le bas le long du front de solidification sous l’effet de la 

sédimentation des grains, entraînant l’écoulement à remonter au centre du lingot. Dans le cas 

où la phase solide est fixe (analysée dans les références citées dans notre étude 

bibliographique Section 2.4 dont un des résultats est montré à la Fig.2. 8, Case 1), 

l’écoulement est contrôlé par la convection naturelle thermosolutale. Il descend le long de la 

paroi refroidie au début de la solidification du fait de l’effet thermique, mais lorsque la 

solidification est suffisamment avancée, le déplacement du liquide est dominé par l’effet 

solutal ce qui induit un écoulement ascendant le long du front de solidification et descendant 

au centre du lingot.  

 

Il est constaté que les vitesses de déplacement sont élevées (elles peuvent atteindre un 

maximum de 250 mm s
-1

), il n’y pas une couche de grains germés constamment attachée à la 

paroi verticale, comme observé sur les cartes de la fraction de solide au cours du temps (à 10, 

20, 50, 100 et 200 s) dans la Fig.5. 20 dont la courbe blanche représente l’endroit où la 

fraction solide atteint la valeur limite (0.4) à partir de laquelle les grains sont bloqués. Les 

champs de vitesse (Fig.5. 19) et la distribution temporelle de la fraction de solide (Fig.5. 20) 

montrent que des grains solides sédimentent près de la paroi refroidie où ils sont initialement 

formés, et sont ensuite transportés par le liquide vers le centre. Les grains se rencontrent et 

s’accumulent d’abord au centre, puis s’étendent du centre à la paroi, conduisant à la formation 

d’une couche solide progressant de bas en haut dans le lingot.  

 

Ces résultats, bien que qualitatifs (analyses en 2D cartésien), confirment l’hypothèse du 

présent modèle qui suppose que le temps caractéristique de la croissance peut être négligé par 

rapport à celui du mécanisme de transport. D’autre part, on peut visualiser à la Fig.5. 21 les 

distributions des variables à 250 s (de gauche à droite : la fraction de solide, la densité de 

grains, la composition moyenne, la température et le rayon moyen des grains). On constate 

que la densité de grains se trouve élevée en bas au centre du lingot et graduellement diminuée 

vers la paroi. Pendant le processus, le déplacement des grains induit une distribution non 

homogène de la quantité de grains et influence la cinétique de croissance des grains (e.g. le 

transport des grains loin du front de solidification entraîne une augmentation de la surfusion 

dans cette région, la vitesse de croissance est alors accélérée). De plus, les grains solides, 

pauvres en soluté, occupent la région inférieure du lingot. Le liquide enrichi en soluté est ainsi 

globalement transféré vers la région supérieure. Cela induit une ségrégation négative dans la 

zone inférieure du lingot qui est compensée par une ségrégation positive dans sa partie 

supérieure avec une augmentation progressive de la concentration moyenne du centre à la 

paroi. 
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 à 10 s à 20 s à 50 s à 100 s à 200 s 

          

 

     
        

        

Fig.5. 20 – Calcul 2D plan cartésien.  

Distribution de la fraction de solide aux différents instants 10, 20, 50, 100 et 200 s.  

L’iso-ligne blanche affiche la limite de la zone packée à la fraction de solide de 0.4. 
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  à 250 s   

     

Fraction de solide Densité de grains Composition en C Température Rayon moyen des grains 

𝑔 [-]   [grains m
-3

] 〈 〉 [wt.%]   [°C]    [m] 

          

 

 

 

 

 

 

 

 

 

 
        

        

Fig.5. 21 – Calcul 2D plan cartésien.  

Distribution des variables à 250 s, de gauche à droite : fraction de solide, densité de grains, 

composition moyenne en carbone, température et rayon moyen des grains.  

L’iso-ligne blanche affiche la limite de la zone packée à la fraction de solide de 0.4. 

 

 

Les cartes finales de densité de grains, de macroségrégation et la courbe de ségrégation au 

centre du lingot sont présentées sur la Fig.5. 22. A part une grande densité de grains qui se 

situe en bas du lingot due au dépôt des grains solides, nous voyons qu’une densité de grains 

également élevée se trouve dans la partie supérieure face à la zone du réfractaire. Cela 

pourrait être expliqué par le fait que le refroidissement via le réfractaire est limité. Ainsi, le 

liquide est maintenu à une température élevée et homogène tout en étant continuellement 

enrichi en soluté dans cette partie supérieure du lingot. Lorsque le liquidus de l’alliage est 

atteint dans cette région, le front de la zone packée se trouve juste en dessous. L’extraction de 

la chaleur entraîne alors une germination des grains qui ne pouvant pas sédimenter puisque 

leur déplacement est empêché par le solide déjà bloqué. D’un autre côté, la sédimentation 

peut provoquer une raréfaction des grains dans la région en haut du lingot. Aux endroits où 
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des grains sont tous transportés alors que la condition de germination (présentée à la relation 

(140) dans le Chapitre 3) est encore remplie - la température étant inférieure à la température 

de liquidus - la germination est à nouveau activée. Cette région est alors composée des 

cristaux qui germent du fait du départ local de grains. Par conséquent, plus la sédimentation 

est dominante, plus la fréquence de germination devient importante. L’accumulation 

continuelle de grains entraîne une densité de grains élevée dans cette région, ce qui n’est pas 

représentatif de la réalité. 

 

A la fin de solidification 

 

Densité de grains Composition en carbone Courbe de ségrégation au centre du lingot 

  [grains m
-3

] 〈 〉 [wt.%]  

 

 

 

 

 
 

Fig.5. 22 – Calcul 2D plan cartésien.  

Cartes finales (gauche) de densité de grains et (centre) de macroségrégation.  

A droite, courbe de ségrégation au centre du lingot.  

 

 

En regardant les résultats prédits à la fin de la solidification, nous voyons que les points 

essentiels des mesures expérimentales sont reproduits par notre simulation numérique pour ce 

qui concerne la ségrégation, négative en bas et positive en haut du lingot. Cependant, 

l’intensité de la macroségrégation prédite par notre modèle 2D semble trop élevée en 

comparaison des observations (cf Fig.5. 22). Par la suite, nous allons étudier la solidification 

du lingot dans un espace 3D, toujours en considérant des grains globulaires. 
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5.2.3 Etude sur le lingot cylindrique 3D 

 

Un schéma du domaine à étudier est présenté à la Fig.5. 23. La simulation 3D est réalisée sur 

un quart de cylindre (0.3 m de rayon et 1.8 m de hauteur), la forme simplifié du lingot 

octogonal réel, borné par deux plans de symétrie (plans P2 et P3 dans la figure). Les 

conditions aux limites en thermique sont identiques à celles établies dans l’étude 2D décrites 

précédemment : une extraction thermique de type Fourier est appliquée à la surface latérale 

avec un changement du coefficient d’échange à 1.4 m de hauteur et un refroidissement 

adiabatique en surface supérieure. Les conditions aux limites correspondantes pour la 

mécanique sont données dans l’annexe A.9.  Le calcul est effectué sur un maillage isotrope 

non structuré de 20 mm pour la taille de maille (constitué de 115 830 éléments et de 22 113 

nœuds) au lieu de 10 mm dans le calcul 2D.  Le même pas de temps de 0.01 s est utilisé.  

 

 

maillage 

 

 

 

Paramètres de simulation 

Taille de maille 

(Maillage non structuré) 

   [mm] 

Macro pas de temps      [s] 

Macro/Micro temps    [-] 

 (  )    [-] 

 (  )   [-] 
 

 

Fig.5. 23 – Schéma 3D d’un quart de lingot à étudier.  

Les conditions aux limites en thermique sont présentées dans le Tab.5. 7 (identiques à 

celles du cas 2D) et celles en mécanique (repérées pour les numéros 1 à 5) à l’annexe A.9. 
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Par la suite, des résultats 3D seront analysés et comparés aux résultats obtenus dans le cas 2D 

précédent. Il est à noter que les configurations de solidification sont différentes pour ces deux 

simulations: le calcul 2D effectué en cartésien plan, le calcul 3D est réalisé avec une 

géométrie cylindrique.  

 

La Fig.5. 24 présente les champs de vitesse visualisés sur une coupe verticale, pour lesquels le 

vecteur indique la direction et la couleur des vecteurs reflète la norme des vitesses. Trois 

figures (a-c) sont présentées pour la vitesse du liquide et trois autres (d-f) pour la phase solide. 

Le plan rose représente la surface limite de la zone packée (à la fraction de solide de 0.4) dans 

laquelle les grains sont bloqués. De plus, la valeur de la composante orthoradiale    des 

vitesses dans un référentiel (     ) est également calculée et affichée sur la coupe verticale et 

pour quatre sections transversales à 0.4, 0.8, 1.2 et 1.6 m de hauteur depuis le bas du lingot.     

Il convient d’observer que les vitesses sont moins élevées et semblent plus régulières que 

celles obtenues par le calcul 2D cartésien (Fig.5. 19). Des vortex de vitesse sont clairement 

visibles dans la simulation 2D alors que dans le cas 3D cylindrique, l’écoulement a tendance à 

descendre le long de la paroi et à remonter au centre du lingot, formant ainsi une cellule 

globale. Comme attendu et constaté sur les cartes de température de la Fig.5. 25, le 

refroidissement est plus rapide avec la configuration 3D cylindrique qu’avec le domaine 2D 

cartésien. Nous parlerons dans la suite de la différence de l’avancement du refroidissement 

entre ces deux configurations via l’observation de la fraction de solide. La force motrice 

générée sous l’effet thermique est moins perturbée dans le cas 3D cylindrique, conduisant à 

un écoulement plus stable. Plus tard à 200 s, la moindre stabilité des vitesses observée sur les 

Fig.5. 24-c) et -f) montre un développement complexe des phénomènes dans la partie haute 

du lingot en contact avec le réfractaire où la solidification aura lieu plus tard en présence d’un 

liquide plus enrichi en soluté. D’une part, le maillage utilisé n’est pas idéalement symétrique, 

et l’écoulement pas parfaitement structuré, donnant lieu à d’inévitables composantes    de la 

vitesse. D’autre part, il se peut également que des instabilités se développant donnent 

naissance à des composantes orthoradiales non nulles de la vitesse.      

 

La Fig.5. 26 présente les distributions de la fraction de solide au cours de la solidification à 

10, 20, 50, 100 et 200s. Au début du refroidissement, jusqu’à 20 s, l’ensemble des grains 

solides évolue librement dans le lingot cylindrique pour le calcul 3D. Dans le calcul 2D 

(Fig.5. 20), à 20 s, une bande packée de solide commence à se former au pied du lingot 

(comme le révèle la courbure blanche de la fraction de blocage). La formation rapide de la 

zone packée du calcul 2D résulte d’une forte vitesse de sédimentation des grains, ce que nous 

avons analysé sur les cartes de vitesse en configuration cartésienne à la Fig.5. 19, par rapport 

à celles en 3D cylindrique à la Fig.5. 24. Par contre jusqu’à 200 s, le front d’empilement du 

solide dans le cas 3D (plan rose, Fig.5. 26) dépasse la moitié de la hauteur lorsqu’au même 

moment ce front n’arrive pas encore à la moitié du lingot dans le calcul 2D cartésien (courbe 

blanche, Fig.5. 20). La solidification plus avancée dans un lingot cylindrique 3D est justifiée 

par le fait que l’extraction de chaleur surfacique rapportée au volume est plus élevée en 3D 

qu’en 2D plan.  
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Fig.5. 24 – Calcul 3D, résultats à 10 s, 100 s et 200 s  

(les vecteurs indiquent la direction des vitesses, la couleur des vecteurs indique la norme 

des vitesses, les cartes présentent la valeur des composantes    de la vitesse)  

(a-c) résultats pour la phase liquide et (d-f) résultats pour la phase solide  

Le plan rose affiche la limite de la zone packée (à la fraction solide de 0.4). 
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 à 10s à 100 s à 200 s  

     

3D 

a)  b)  c)  

 

2D 

d)  e)  f)  

 

Fig.5. 25 – Cartes de température à 10 s, 100 s et 200 s  

(a-c) résultats du calcul 3D cylindrique et (d-f) résultats du calcul 2D cartésien. 
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 Fraction solide,   [-] 
  

 à 10 s à 20 s à 50 s à 100 s à 200 s 

          

 

     
        

        

Fig.5. 26 – Calcul 3D cylindrique.  

Distribution de la fraction solide aux différents instants 10, 20, 50, 100 et 200 s  

Le plan rose affiche la limite de la zone packée (à la fraction solide de 0.4). 
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Par ailleurs, les résultats intermédiaires, à 250 s illustrés à la Fig.5. 27, comparés à ceux de la 

Fig.5. 21 pour le calcul 2D, confirment les tendances d’évolution des variables que nous 

venons d’analyser. Il est de plus possible d’observer une accumulation des grains et une 

ségrégation du soluté moins intenses dues au fait que les vitesses sont plus régulières et moins 

fortes qu’en 2D. Bien que les tailles de maille utilisées dans les simulations 2D et 3D soient 

différentes (10 mm pour le cas 2D et 20 mm pour le cas 3D), un test 2D supplémentaire avec 

une taille de maille de 20 mm a reproduit la tendance des différences concernant l’écoulement 

et la séquence de solidification entre les résultats du calcul 2D cartésien et ceux du cas 3D 

cylindrique que nous avons observée pendant le processus. 

 

  à 250 s   

     

Fraction de solide Densité de grains Composition en C Température Rayon moyen des grains 

𝑔 [-]   [grains m
-3

] 〈 〉 [wt.%]   [°C]    [m] 

     

     
        

 

Fig.5. 27 – Calcul 3D cylindrique. 

Distribution des variables à 250 s, de gauche à droite : fraction de solide, densité de grains, 

composition moyenne en carbone, température et rayon moyen des grains  

Le plan rose affiche la limite de la zone packée à la fraction solide de 0.4. 
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La Fig.5. 28 présente la distribution des grains, la carte de macroségrégation et la courbe de 

ségrégation au centre du lingot à la fin de la solidification. En comparant aux résultats 2D 

plan (Fig.5. 22), on constate que les courbes de ségrégation au centre sont similaires et que 

celle obtenue en 3D prédit une ségrégation moins négative en bas et plus positive en haut, ce 

qui se rapproche des mesures expérimentales. Les deux zones où la densité de grains est 

élevée sont aussi retrouvées mais avec une densité moins importante, notamment dans la 

partie inférieure de la masselotte. 

 

 

à la fin de solidification 
   

Densité de grains Composition en carbone Courbe de ségrégation au centre du lingot 

  [grains m
-3

] 〈 〉 [wt.%]  

 

 

 

 

 
 

Fig.5. 28 – Calcul 3D cylindrique.  

Cartes finales (gauche) de densité de grains et (centre) de macroségrégation  

et (graphe à droite) courbe de ségrégation au centre du lingot. 

 

A l’issue de cette étude, il est possible de constater que les simulations ont bien reproduit 

l’essentiel du phénomène de transport des grains quel que soit le calcul, cartésien 2D, ou 

axisymétrique 3D sur un quart de lingot. Le rôle de la géométrie est également démontré par 

cette comparaison.  

 

Faute de temps, l’application du modèle des grains dendritiques au lingot n’a pas pu être 

présentée dans ce manuscrit. Ce modèle à trois phases est cependant nécessaire afin de 
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prendre en compte la morphologie des grains équiaxes puisque comme montré par les 

mesures (Fig.2. 8), la partie en bas du lingot est occupée par des grains globulaires alors que 

des grains dendritiques se trouvent dans la partie supérieure du lingot. 

 

En outre, les écarts entre la solution numérique et les résultats expérimentaux peuvent 

provenir de plusieurs autres raisons : facteurs numériques (maillage et pas de temps), 

conditions aux limites estimées sans moule et réfractaire, … ainsi que des phénomènes 

physiques comme le retrait, l’existence à la fois des structures colonnaires et des grains 

équiaxes globulaires, dendritiques, les transitions des structures, la présence d’autres éléments 

d’alliage … autant de facteurs qui ne sont pas pris en compte dans le cadre de notre travail, et 

qui devraient donc faire l’objet d’études ultérieures. 

 

5.3 Résumé 

 

A travers ce chapitre, nous avons appliqué le modèle pour simuler la solidification d’une 

pièce 3D basée sur les configurations du benchmark de Hebditch-Hunt. Le premier calcul 

était effectué avec une petite épaisseur pour tester le fonctionnement de la méthode 

implémentée et vérifier la validité de résultats numériques. Comme attendu, nous avons 

trouvé une distribution uniforme des variables en traversant l’épaisseur pour une pièce mince 

en imposant des conditions symétriques aux bords. La simulation du benchmark réel est 

ensuite réalisée pour la moitié de la cavité. Les résultats obtenus montrent l’influence 

importante de la prise en compte des parois physiques, ce qui permet de capturer l’effet du 

frottement entre des parois et des grains mobiles ainsi que ses conséquences sur la 

macroségrégation et l’avancement de la solidification.   

 

D’autre part, l’application du modèle à un lingot industriel a été réalisée sur un domaine plan 

rectangulaire 2D dans un repère cartésien et sur un cylindre 3D. L’impact du transport des 

grains sur le comportement de l’écoulement a été mis en évidence. Globalement les solutions 

numériques retrouvent la même tendance de ségrégation identifiée par les mesures 

expérimentales, dans lesquelles les résultats du calcul 3D cylindrique donnent effectivement 

une meilleure prédiction. Ainsi les configurations géométriques influencent largement le 

déroulement de la solidification.  

 

Les résultats présentés montrent la faisabilité et la capacité du modèle mis en place pour la 

simulation de la macroségrégation en 2D et 3D, pour des domaines de petite taille et de 

grandes dimensions. En particulier, le fonctionnement du modèle actuel en 3D apporte une 

nouvelle possibilité de simuler et d’étudier la macroségrégation due au transport des grains 

équiaxes, ce qui joue un rôle important dans les distributions solutale et aussi structurale des 

produits solidifiés. Au cours des différentes simulations nous avons essayé de donner des 

premières analyses pour ce type de calculs 3D. Ce travail ouvre une perspective au 

renforcement de la prédiction des défauts dus au transport des grains solides puisque l’effet de 

ce phénomène est souvent limité à des simulations 2D alors que dans la situation réelle les 

pièces solidifiées sont souvent de forme 3D anisotrope. 
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Cependant ces simulations ont pris un temps de calcul considérable, résumé dans les Tab.5. 8 

et Tab.5. 9. Il est possible de voir que la taille de maille est un paramètre qui influe de 

manière importante sur le temps de calcul. Sur le calcul du benchmark de Hebditch-Hunt 3D, 

lorsque la taille de maille est diminuée par 2 (de 2 mm à 1 mm), les nombres d’éléments et de 

nœuds sont environ 7.5 fois plus grands (de 38 619 éléments à 294 935 éléments ; de 8 552 

nœuds  à 57 626 nœuds), le temps de calcul augmente approximativement de 3 fois (de 9 

jours à 29 jours bien qu’un plus grand nombre de cœurs soient utilisés pour le calcul avec la 

taille de maille de 1 mm). 

 

Plusieurs perspectives pour optimiser le temps de calcul peuvent être évoquées.  

 

 La première possibilité est de raffiner le maillage aux seuls endroits où il existe une 

variation importante des variables, le maillage étant raisonnablement grossier dans le 

reste du domaine. Cependant, pour mettre en pratique le remaillage dans le contexte 

du transport des grains, d’autres études approfondies seront nécessaires. le problème 

est d’identifier les zones considérées comme critiques, de définir les critères de 

remaillage correspondants ainsi que d’étudier la compatibilité du remaillage 

développé à la résolution globale du problème. D’une part, l’application du remaillage 

influencerait la qualité de la macroségregation prédite, en particulier lorsque cette 

procédure est fréquemment effectuée. D’autre part, cette réalisation aurait un impact 

sur la distribution de la diffusion artificielle qui dépend de la taille de maille, le 

raffinage du maillage aux zones d’empilement peut entraîner une diffusion 

insuffisante pour éviter des problèmes numériques. L’étude pour cette voie pourra 

poursuivre le travail de thèse de Gouttebroze [Gouttebroze, 2005] dans lequelle une 

stratégie de remaillage a été mise en place en supposant une phase solide fixe. 

 

 La deuxième possibilité est l’utilisation d’un pas de temps adaptatif. La résolution de 

la mécanique des fluides est l’une des étapes prenant du temps de calcul puisque la 

détermination simultanée des champs de vitesses et de pression serait coûteuse pour 

obtenir une convergence de ces variables en même temps. Une technique de pas de 

temps adaptés correspondante au solveur de la mécanique des fluides de CIMLib a été 

étudiée dans la thèse de Jannoun [Jannoun, 2015]. Par ailleurs, les résolutions de 

l’ensemble du problème sont obtenues en appliquant un schéma itératif de point fixe, 

ce qui demande également du temps de calcul.  

 

 Dans l’étude présente, la simulation 3D pour le lingot est faite sur un quart du 

domaine. Les phénomènes pourraient cependant être approximés sur un sixième ou un 

huitième du domaine. La réalisation des calculs avec des portions angulaires 

différentes est possible lorsque l’on travaille avec le logiciel Thercast®. Cela 

permettrait de considérablement réduire le temps de calcul d’une part et il serait 

intéressant d’étudier l’effet angulaire afin de choisir une géomètre optimale d’autre 

part.  



175 
 
Chapter 5 - Tests 3D et Applications Industrielles 

T
ab

.5
. 
8

  
- 

T
em

p
s 

d
e 

ca
lc

u
l 

su
r 

la
 c

av
it

é 
S

n
 –

 5
 w

t.
%

 P
b

 

 

T
ab

.5
. 
9

  
- 

T
em

p
s 

d
e 

ca
lc

u
l 

su
r 

le
 l

in
g
o
t 

d
’a

ci
er

 3
t3

 

 

 

 



176 
 
Chapter 5 - Tests 3D et Applications Industrielles 

 

 

 

 

 

 

 



177 
 

 

 

 

Chapter 6  

Conclusions and Perspectives 
 

 

Conclusions 

During solidification, the solid phase is formed which can be stationary or mobile. The 

stationary state is often referred to columnar structures which are attached to cooled walls and 

fixed there. For the later state, the solid movement can be due to the liquid convection and 

sedimentation. In solidification modeling, while significant developments related to the fixed 

solid case have been made, less investigation has been considered for the mobile solid case 

since accounting for the solid motion requires more complex mathematical models as well as 

more powerful numerical approaches to solve a strongly nonlinear problem. This issue has 

been investigated for mathematical and computational aspects by several groups as presented 

in the literature review (Section 2.4), based on the finite volume method. Moreover, as 

involving high computing costs, applications to predict macrosegregation to industrial large 

sized castings, for which the phases motion plays an important role, have been limited and 

often two-dimensional simulations are carried out. In reality, three-dimensional devices 

associated with complex components are often cast. Finite element methods, in which 

modeling can be performed on non-structured meshes, provide a useful tool to treat irregular 

and complex geometries.  

In this situation, the present thesis was proposed which aims at modeling solidification 

accounting for the transport of equiaxed grains in the finite element context. Following the 

model in 2D axisymmetric structured finite volume developed by Založnik and Combeau 

[Založnik and Combeau, 2010a], we adapted and implemented this FV model into the FE 

framework. At the microscopic scale, the model is able to deal with the nucleation and growth 

of grains including either globular or dendritic structures with a limited solute diffusion in 

both liquid and solid phases. The local microscopic processes are integrated into macroscopic 

transport equations by a volume averaging technique. The entire issue is solved using a 

splitting scheme that provides an effective approach for numerical implementation to deal 

with a set of non-linear equations describing highly dependent multiscale phenomena.    
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Through our work, three main tasks accomplished can be summarized: 

 

1. The two-phase model of globular grains was solved by splitting two stages – growth 

and transport stages – and was adapted and implemented in the FE code as three 

principal steps: 

 

 Implementation of the growth model 

 

The growth model consists in solving a set of equations established to describe 

the growth kinetics which is controlled by solute diffusion limited in both solid 

and liquid phases at the microscopic scale. In this stage, two phases are 

considered: the solid phase which is constituted of equiaxed grains being 

assumed to grow under a fully globular form, and the surrounding liquid phase. 

The numerical implementation was effectuated to locally solve the system at 

each node of the discretized domain. One-dimensional numerical studies for 

pure heat conduction illustrated that the solutions obtained by the present 

model can retrieve those of the standard models (lever rule and Gulliver-Scheil 

approximations). In addition, thanks to accounting for the growth kinetics, it 

can predict the recalescence phenomenon which cannot be captured by 

standard solidification paths.    

 

 

 Resolution for the transport phenomena, including following sub-works:  

 

  Integration of the thermo-solutal liquid convection with a fixed solid 

 

Considering the fixed solid phase, the implemented growth model was 

then combined with the resolution of the liquid momentum equation. 

Simulations to predict macrosegregation due to the natural convection 

were performed, including benchmarks [Bellet et al., 2009] [Založnik and 

Combeau, 2010b]. The results obtained from the present model when 

simulating with high solute diffusion gave good agreement to those in the 

literature which use the lever rule. Furthermore, the capability of 

accounting for a limited solute diffusion in the model was also tested and 

the finite element solutions showed the same tendencies predicted by using 

a finite volume method, e.g. a delayed solidification or a favorable 

formation of meso-segregated channels.    

 

  Development of the FE resolution for transport equations, introducing the 

solid motion into the model with the presence of the liquid movement while 

neglecting the growth process 

 

Relating to the macroscopic scale, the average transport velocities are 

intrinsically non-divergence-free fields and present discontinuities when 
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the solid phase builds up as a packed bed. In the actual linear finite 

element context, evaluating the convection flux on elements of a 

discretized domain can provoke important irregularities that induce 

numerical instabilities. To deal with these issues, we introduced an 

adaptive artificial diffusion into the purely convective equations to be 

solved, which allows detecting zones subjected to sharp gradients and 

helps treating reasonably such discontinuities. A special care was made to 

ensure a consistency between the resolution of these transport equations 

and other relevant equations when introducing this artificial diffusion. A 

one-dimensional simulation of the sedimentation phenomenon 

demonstrated that without this treatment the solution cannot be obtained.     

 

Accompanying this work, a computational module of the solid velocity 

was implemented. The solid phase, gathering a number of grains having 

the same characteristics (size, solute content), is considered as a 

continuous medium. Calculating its velocity consists in solving the solid 

averaged momentum equation and implementing necessary adaptations, 

e.g. developing a technique to avoid the penetration into the packed bed 

when solid grains approach the packed layer. 

 

 

 Accomplishment of the complete growth-transport two-phase model 

 

Combining the two implemented stages, one for the microscopic growth 

processes and another for the macroscopic transport phenomena, the complete 

two-phase model was achieved and then applied to simulate the reference case 

which was performed by using a finite volume method [Založnik and 

Combeau, 2010b]. A global agreement was obtained between solutions of these 

two formulations. Besides analyzing differences, a study of the effect of new 

numerical parameters developed in the finite element model was also carried 

out. The study showed that adding a suitable diffusion is important; it should 

be large enough to deal with numerical problems but well controlled to avoid 

physically unrealistic solutions.     

 

 

2. In order to account for the dendritic morphology of solid grains, a three-phase model, 

being extended from the two-phase model, was then implemented based on the works 

of Combeau and co-workers [Combeau et al., 2009] and [Bedel, 2014] which use a 

finite volume method. Numerical implementation was also considered for two 

principal stages. At the microscopic scale, the growth model is modified in order to 

account for the evolution of three distinct phases, including the dendritic solid, the 

interdendritic liquid and the extradendritic liquid. A grain envelope is constituted of 

the dendritic solid and the interdendritic liquid and its morphology is characterized by 

the solid fraction contained in it. At the macroscopic scale, two liquid phases are 
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considered to have a same hydrodynamic behavior in order that the like two-phase 

model is applicable. Different simulations were carried out for zero-, one-, and two-

dimensional configurations. The solutions obtained from the present work were in 

reasonable agreement with the finite volume results.  

 

 

3. Finally, three-dimensional simulations were performed on the Hebditch-Hunt 

benchmark. Differences relative to the two-dimensional results as well as non-uniform 

distributions of variables in the third spatial direction were visualized and analyzed. 

Such numerical evaluations would provide more practical information for 

experimental characterizations, especially for that realize on anisotropic-form objects 

or on complex-shape systems with nonsymmetrical heat transfers.  

 

Industrial applications were then carried out to predict the macrosegreation for a 3.3t 

steel ingot. The typical macrosegregation profile of steel ingots was predicted by the 

present model: a negative segregation in the lower zone and a positive segregation in 

the upper zone. The formation of these segregations is predominantly controlled by 

grains sedimentation and fluid convection. In addition, two studies, one for a two-

dimensional symmetrical ingot and another for a three-dimensional axisymmetrical 

ingot, showed a considerable effect of geometries on the solidification sequence.  

 

 

In our work, the main challenges consisted in the implementation of the FE resolution for 

purely advective equations and in numerically treating discontinuities due to the solid 

packing. It required a careful investigation under consideration of less investigation involved 

using the FE method. Up to our knowledge, the present development is original in the context 

of the FE method. 

 

A good coherency achieved when comparing the results obtained from the present work to the 

references verifies our implementation and illustrates the capacity of the model. In a near 

future, these models will be integrated in the commercial version of Thercast® software, thus 

providing industry with extended capacities of numerical simulations. 
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Perspectives 

A solidification model accounting for grain transport has been implemented. Although 

various issues have been worked out in the present thesis, there are still points that would be 

subjected to subsequent improvements. Furthermore, diverse themes would be interesting for 

future investigations. Several propositions can be made: 

 

 Computational procedures would require improvement since applications to large 

industrial product is time-consuming. Using time and mesh adaptation techniques 

could be tested. Anisotropic remeshing application can be based on the work by 

Gouttebroze [Gouttebroze, 2015] for solidification modeling with a fixed solid phase. 

A technique of adaptive time-steps for the fluid mechanics solver in CIMLib has been 

developed in the Jannoun’s thesis [Jannoun, 2015].  

 

 Homogenous nucleation at the liquidus temperature is considered in the present work. 

However, in practice, nucleation of equiaxed grains commonly takes place 

heterogeneously in the bulk undercooled melt. Advanced nucleation models would 

need being implemented in order to have a better description of physical phenomena. 

Investigation for this topic can be found in [Avrami, 1940] [Oldfield, 1966] [Rappaz 

and Thévoz, 1987] [Wu et al., 2003] [Dagner et al., 2008].  

 

 Studying an elasto-viscoplastic behavior of the solid phase, e.g. for the packed bed 

which is formed by the sedimentation of equiaxed grains, and its resulting effect like 

induced shrinkage as well as residual stresses and corresponding deformations would 

provide further insight into phenomena during the solidification process. Relevant 

studies about this matter can be consulted in [Bellet, 2007] [Ludwig et al., 2015b].  

 

 The presence of multi-chemical species and the formation of multiple phases are 

always part of alloy solidification. To take into account these phenomena, the micro-

model should be extended in order to describe the microscopic exchange of different 

chemical species and then combined with the macroscopic resolution in which the 

transport of relevant solute elements requires more equations to be integrated (at least 

two transport equations for each alloying element). 

 

 Application of the development to real casting processes (through Thercast® 

implementation), including application during mold filling and application in the 

context of continuous casting.  

 

 In addition, according to the work by Leriche and co-workers [Leriche et al., 2015], 

the present model could be applicable to model a microstructural transition (columnar-

to-equiaxed transition), that would provide a better prediction of solidification 

structures, allowing for a further control to produce castings with expected 

qualifications.
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Annexes   

Models for the Solute Diffusion Lengths  

 

For the two-phase globular model, the solute diffusion length in the liquid phase is issued 

from the work of Tveito and co-workers [Tveito et al., 2011]. It is expressed as the following 

formulation. 
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where     is the liquid composition at the liquid-solid interface in the liquid side; 〈  〉  is the 

average composition in the liquid phase;    is the liquid composition;   is the unit vector 

normal to the liquid-solid interface;    is the solute diffusion in the liquid phase;   is the 

growth velocity of the solid phase;    is the grain radius;    is the final grain radius;   is the 

stagnant film thickness;   is the kinematic viscosity; 〈  〉  is the intrinsic liquid velocity; 

〈  〉  is the intrinsic solid velocity. 

 

Related to the area concentration: 

 

In the three-phase dendritic model, the exchange surface of solute is the interface between the 

grain and the extradendritic liquid phase, instead of the one between the solid and the liquid in 

the two-phase model. The grain radius used in Error! Reference source not found. is 

replaced by the approximated envelop radius which is equal to the radius of a spherical grain 

having the same volume as follows.   
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Annexes – Data and Simulation Parameters 

Data and Simulation Parameters  

 

A.1 Mono-dimensional Solidification (Section 4.1) 

 

Thermophysical data of  an Al – 4 wt.% Cu alloy 

 

Density      [kg m
-3

] 

Thermal conductivity, liquid phase    [W (m K)
-1

] 

Thermal conductivity, solid phase     [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion        [J kg
-1

] 

Partition coefficient       [-] 

Eutectic temperature       [K] 

Melting temperature of pure Al       [K] 

Liquidus slope        [°C (wt.%)
-1

] 

 

 

Simulation Parameters 

   

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 
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A.2  Thermo-solutal Liquid Convection during Solidification (Section 4.2.2) 

 

Thermophysical data of  a Pb – 18 wt.% Sn alloy 

 

Density      [kg m
-3

] 

Thermal conductivity      [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion       [J kg
-1

] 

Partition coefficient      [-] 

Eutectic temperature       [°C] 

Melting temperature of pure Pb       [°C] 

Thermal expansion coefficient           [K
-1

] 

Solutal expansion coefficient           [(wt.%)
-1

] 

Dynamic viscosity           [Pa s] 

Characteristic length for permeability           [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale      [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale        [m
2
 s

-1
] 

Grain density      [grains m
-3

] 

Initial radius of grains          [m] 

 

Simulation Parameters 

   

Mesh size     [mm] 

Macro time step     [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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Thermophysical data of  a Sn – 5 wt.% Pb alloy 

 

Density      [kg m
-3

] 

Thermal conductivity    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion       [J kg
-1

] 

Partition coefficient        [-] 

Eutectic temperature     [°C] 

Melting temperature of  pure Sn     [°C] 

Thermal expansion coefficient        [°C
-1

] 

Solutal expansion coefficient           [(wt.%)
-1

] 

Dynamic viscosity      [Pa s] 

Characteristic length for permeability          [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale      [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale      [m
2
 s

-1
] 

Grain density      [grains m
-3

] 

Initial radius of grains          [m] 

 

Simulation Parameters 

   

Mesh size     [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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A.3  Purely Convective Transport during Solidification (Section 4.3) 

 

Thermophysical data of  a Sn – 5 wt.% Pb alloy 

 

Density, liquid phase      [kg m
-3

] 

Density, solid phase      [kg m
-3

] 

Thermal conductivity    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion       [J kg
-1

] 

Partition coefficient        [-] 

Eutectic temperature     [°C] 

Melting temperature of  pure Sn     [°C] 

Dynamic viscosity      [Pa s] 

Characteristic length for permeability           [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Grain density     [grains m
-3

] 

Radius of grains          [m] 

Packing solid fraction     [-] 

 

Simulation Parameters 

   

Mesh size     [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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A.4  Complete Solidification Model (Section 4.4) 

 

Thermophysical data of  a Sn – 5 wt.% Pb alloy 

 

Density, liquid phase      [kg m
-3

] 

Density, solid phase      [kg m
-3

] 

Thermal conductivity    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion       [J kg
-1

] 

Partition coefficient        [-] 

Eutectic temperature     [°C] 

Melting temperature of  pure Sn     [°C] 

Thermal expansion coefficient        [°C
-1

] 

Solutal expansion coefficient           [(wt.%)
-1

] 

Dynamic viscosity      [Pa s] 

Characteristic length for permeability           [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale      [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale      [m
2
 s

-1
] 

Grain density     [grains m
-3

] 

Initial radius of grains          [m] 

Packing solid fraction     [-] 

 

 

   

Fig.1 – Densities of the solid phase, liquid  and mixture phases 

displayed as functions of the solid fraction (using the Gulliver-Scheil approximation) 
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Annexes – Data and Simulation Parameters 

 

Simulation Parameters 

   

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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A.5  Dendritic Solidification Modeling (Section 4.5.1) 

 

Thermophysical data of  an Al – 5 wt.% Si alloy 

 

Density, liquid phase      [kg m
-3

] 

Density, solid phase      [kg m
-3

] 

Thermal conductivity    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion        [J kg
-1

] 

Partition coefficient       [-] 

Eutectic temperature       [°C] 

Melting temperature of  pure Al     [°C] 

Dynamic viscosity          [Pa s] 

Characteristic length for permeability (modifiable)          [m] 

Liquidus slope      [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale        [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale       [m
2
 s

-1
] 

Gibbs-Thomson coefficient          [K m] 

 

Simulation Parameters 

   

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 
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Annexes – Data and Simulation Parameters 

 

A.6  Dendritic Solidification Modeling (Section 4.5.2) 

 

Thermophysical data of  an Al – 22 wt.% Cu alloy 

 

Density, liquid phase      [kg m
-3

] 

Density, solid phase         [kg m
-3

] 

Thermal conductivity       [W (m K)
-1

] 

Specific heat      [J (kg K)
-1

] 

Latent heat of fusion          [J kg
-1

] 

Partition coefficient       [-] 

Eutectic temperature     [°C] 

Melting temperature of  pure Al        [°C] 

Thermal expansion coefficient           [°C
-1

] 

Solutal expansion coefficient           [(wt.%)
-1

] 

Dynamic viscosity          [Pa s] 

Characteristic length for permeability         [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale          [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale           [m
2
 s

-1
] 

Grain density      [grains m
-3

] 

Initial radius of grains          [m] 

Packing solid fraction      [-] 

Gibbs-Thomson coefficient           [K m] 

 

Simulation Parameters 

   

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 

 

 

 

 



203 
 

 

Annexes – Data and Simulation Parameters 

 

A.7  Tests 3D – Benchmark de Hebditch-Hunt (Section 5.1) 

 

Thermophysical data of  a Sn – 5 wt.% Pb alloy 

 

Density, liquid phase      [kg m
-3

] 

Density, solid phase      [kg m
-3

] 

Thermal conductivity    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion       [J kg
-1

] 

Partition coefficient        [-] 

Eutectic temperature     [°C] 

Melting temperature of  pure Sn     [°C] 

Thermal expansion coefficient        [°C
-1

] 

Solutal expansion coefficient           [(wt.%)
-1

] 

Dynamic viscosity      [Pa s] 

Characteristic length for permeability           [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Solute diffusion coefficient in liquid at micro scale      [m
2
 s

-1
] 

Solute diffusion coefficient in solid at micro scale      [m
2
 s

-1
] 

Grain density     [grains m
-3

] 

Initial radius of grains          [m] 

Packing solid fraction     [-] 

 

Simulation Parameters 

   

Mesh size   [mm] 

Macro time step      [s] 

Macro/Micro time   [-] 

Fixed point iteration number   [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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A.8  Etude sur le lingot 3t3 en configuration plane cartésienne 2D (Section 5.2.2) 

 

Thermophysical data of a Fe – 0.36 wt.% C alloy 

      

Density, liquid      [kg m
-3

] 

Density, solid      [kg m
-3

] 

Thermal conductivity, liquid      [W (m K)
-1

] 

Thermal conductivity, solid    [W (m K)
-1

] 

Specific heat     [J (kg K)
-1

] 

Latent heat of fusion        [J kg
-1

] 

Partition coefficient       [-] 

Eutectic temperature         [°C] 

Melting temperature of pure iron      [°C] 

Thermal expansion coefficient           [K
-1

] 

Solutal expansion coefficient             [(wt.%)
-1

] 

Dynamic viscosity          [Pa s] 

Characteristic length for permeability          [m] 

Liquidus slope        [°C (wt.%)
-1

] 

Packing envelope fraction     [-] 

Solute diffusion coef. at micro scale, liquid        [m
2
 s

-1
] 

Solute diffusion coef. at micro scale, solid             [m
2
 s

-1
] 

Initial grain radius          [m] 

Grain density     [grains m
-3

] 

 

 

Simulation Parameters 

   

Mesh size    [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 
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Annexes – Data and Simulation Parameters 

 

Mechanical boundary conditions 

    

    
    

  

  x y x y 

S1  free 0 0 0 

S2  0 free 0 free 

S3  0 0 0 0 

S4  0 0 0 free 

 

 

 

A.9  Etude sur le lingot cylindrique 3D 

 

Simulation Parameters 

   

Mesh size    [mm] 

Macro time step      [s] 

Macro/Micro time    [-] 

Fixed point iteration number    [iterations] 

𝛼 (  )    [-] 

  (  )   [-] 

Limit for convergence of enthalpy       
   [-] 

Limit for convergence of temperature     
   [-] 

Limit for convergence of solid fraction     
   [-] 

Limit for convergence of compositions     
   [-] 

Limit for convergence of velocity     
   [-] 

 

Mechanical boundary conditions 

     

    
     

  

  x y z  x y z 

P1  0 0 0  0 0 0 

P2  free 0 free  free 0 free 

P3  0 free free  0 free free 

P4  0 0 0  0 0 0 

P5  0 0 0  free free free 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Modélisation multi-échelle d’éléments finis 

de la macroségrégation et du transport des grains 

RESUME : Ce travail de thèse a pour but de modéliser la macroségrégation des produits obtenus par 

solidification en prenant en compte le transport des grains équiaxes. Le modèle de solidification à deux phases 

(solide et liquide) est traité par une méthode d’éléments finis, consistant à résoudre les équations de conservation 

moyennées de l’énergie, de la quantité de mouvement et de la masse, dans lesquelles les évolutions multi-

échelles de la masse des phases et des solutés sont modélisées en utilisant une approche de splitting. D’après 

cette technique, la variation des quantités est considérée comme résultant de la contribution de deux étapes : 

l’étape de croissance et l’étape de transport. L’implémentation numérique du modèle a été réalisée avec trois 

opérations principales : tout d’abord implémenter le modèle de croissance des grains, ensuite intégrer des 

phénomènes de transport résultant de la convection thermo-solutale du liquide et du mouvement du solide, enfin 

mettre en œuvre le modèle complet en combinant les étapes de croissance et de transport. Lors de ces opérations, 

une investigation attentive a été consacrée à l’établissement de la résolution par éléments finis pour les équations 

de transport avec champs discontinus de vitesse à divergence non nulle, afin de surmonter des problèmes 

numériques en respectant la qualité des solutions physiques. Parallèlement à ces travaux, différents tests de 

simulation 2D ont été effectués à chaque étape d’implémentation. De bons accords ont été globalement obtenus 

entre les solutions données par le modèle présent et celles de référence dans la littérature. Finalement, des 

applications industrielles et des simulations 3D ont été menées, pour lesquelles les résultats numériques 

reproduisent les configurations caractéristiques des mesures expérimentales : un profil typique de 

macroségrégation des lingots composé d’une ségrégation négative occupant de la zone inférieure et d’une 

ségrégation positive en zone supérieure. Ce profil est la signature caractéristique de la sédimentation des cristaux 

et de la convection thermo-solutale. En outre, un modèle à trois phases étendu à partir du modèle à deux phases 

précédent – en distinguant la phase liquide interdendritique – s’est avéré capable de décrire la morphologie des 

grains dendritiques.          

Mots clés : solidification, modélisation, macroségrégation, aciers, multi-échelle, éléments finis, transport 

Multiscale finite element modeling 

of macrosegregation and grain transport 

ABSTRACT : The present work aims at modeling macrosegregation of castings, accounting for the transport of 

equiaxed grains. A two-phase (solid and liquid) finite element solidification model is presented, consisting in 

solving a system of volume-averaged conservation equations of energy, momentum, solute, in which the multi-

scale evolutions of phase and solute mass are modeled by using a splitting method. According to this approach, 

the variation of quantities is considered as due to the contribution of two stages: the growth stage and the 

transport stage. The numerical implementation was realized with three principal steps: first implementing growth 

processes, then integrating transport phenomena including the thermo-solutal liquid convection and the solid 

movement, lastly combing the growth and transport stages to achieve a complete growth-transport model. Of 

these steps, solving the transport equations with discontinuous and non-divergence-free velocity fields by using 

finite element method required an attentive investigation in order to overcome numerical issues while respecting 

for physical solutions. Parallel to these works, various two-dimensional simulation tests were carried out in each 

implementation step. Agreements were globally found between results obtained from the present model and 

those of reference from the literature. Finally, industrial applications and three-dimensional simulations were 

performed, which show that computational solutions can predict essential features of experimental 

measurements. In particular, a typical macrosegregation profile of steel ingots, containing a negative segregation 

in the lower zone and a positive segregation in the upper zone, which is predominantly characterized by crystals 

sedimentation and fluid circulation was retrieved. Moreover, a three-phase model considering two different 

liquid phases, extended from the above-mentioned two-phase model, which enables to describe the morphology 

of dendritic solid crystals was implemented.     

Keywords : solidification, modeling, macrosegregation, steels, multiscale, finite element, transport equations

  


